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Abstract

Anticipating fire behavior as climate change and fire activity accelerate is an

increasingly pressing management challenge in fire-prone landscapes. In subalpine

forests adapted to infrequent, stand-replacing fire, self-limitation of burn severity

in short-interval fire is incompletely understood. Spatially explicit fuels data can

support assessments of landscape-scale fire risk and fuel feedbacks on burn sever-

ity. For a �1450-km2 largely forested landscape in the US Northern Rocky Moun-

tains, we used airborne lidar and imagery to predict and map canopy and surface

fuels. In a fire that burned mature (>125-year-old) and also reburned young (�30-

year-old) subalpine forest, we then asked: (1) How do prefire fuels and burn sever-

ity compare between young and mature forests that burned under similar fire

weather conditions? (2) How well do prefire fuels and forest structure predict burn

severity under extreme versus moderate fire weather? Lidar–imagery fusion

predicted fuel characteristics with high accuracy across forest and shrubland vege-

tation. Young postfire forests had abundant, densely packed canopy fuels, and both

young and mature forests had similar canopy fuel loads and coarse wood biomass.

Under similar weather conditions, young and mature forests burned at similar

severity. Overall, fuels were weak predictors of burn severity and, surprisingly, bet-

ter predicted severity under extreme rather than moderate fire weather. Our find-

ings are relevant for subalpine landscapes increasingly dominated by young

lodgepole pine (Pinus contorta var. latifolia) forests vulnerable to short-interval fire

and provide a benchmark to assess how fuels influence burn severity in future

fires. Fire managers should continually reassess fuels and update expectations

about fire behavior as landscapes change. Although recovering postfire forests can

limit fire spread and severity for a period of time, our results suggest that young

subalpine forests in the Northern Rocky Mountains have sufficient fuel loads to

burn at high severity and should not be considered effective fire breaks.
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canopy and surface fuels, fire effects, Grand Teton National Park, lidar–imagery fusion,
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INTRODUCTION

The rapid rise in fire activity across the western United
States (Higuera & Abatzoglou, 2021; Westerling, 2016) is
challenging the ability of land managers to anticipate fire
behavior and effectively allocate limited resources for fire
suppression or fuels treatment (BAH, 2015; WFEC, 2014).
When possible, fire managers also identify opportunities for
allowing fires or portions of fires to burn or for using pre-
scribed fire to achieve resource benefits such as restoring
historical vegetation structures and reducing fuel loads
(Meyer et al., 2015; WFEC, 2014). These choices must be
made in an increasingly difficult decision-making environ-
ment characterized by lengthening fire seasons (Westerling,
2016), more extreme fire weather (Abatzoglou & Williams,
2016), larger and more severe fires (Cansler & McKenzie,
2014), expanding wildland urban interface communities
(Radeloff et al., 2018), widespread human ignitions (Balch
et al., 2017), and legacies of fire exclusion leading to fuel
accumulation in some forest types (Stephens et al., 2013).
US governmental agencies use spatial assessments of fire
progression and risk to manage long-duration fires (Calkin
et al., 2011; O’Connor et al., 2016). Fire risk assessments
depend on two critical inputs that require additional refine-
ment: spatially explicit fuels data and an understanding of
how fuels influence burn severity under varying weather
conditions.

Vegetation structure and fuels vary substantially
across heterogeneous landscapes (Keane et al., 2012), but
most landscapes lack accurate canopy and surface fuels
maps. The LANDFIRE program enhanced fire risk plan-
ning capabilities by providing national, wall-to-wall fuels
maps for fire behavior models (Ryan & Opperman, 2013).
However, LANDFIRE’s utility is limited for fine-scale
applications. Canopy fuels are predicted with low accu-
racy in many vegetation types (Keane et al., 2006; Moran
et al., 2020; Reeves et al., 2009), and fuels data must be
quality checked and calibrated prior to use (Stratton,
2009). Locally derived maps can improve predictions of
fuel characteristics (Engelstad et al., 2019) and fire spread
(Krasnow et al., 2009). In addition, surface fuels are
mapped as categorical fuel models or fuel beds that are
primarily suited for estimating fire behavior and effects
and may not accurately predict actual fuel loads (Hyde
et al., 2015; Keane et al., 2013). Incorporating local data
to improve vegetation structure and surface fuels maps
could support better estimation of wildlife habitat
(Harmon et al., 1986); carbon storage, fire combustion,
and smoke emissions (Weise & Wright, 2014); and opti-
mal firefighter escape routes (Campbell et al., 2017) and
safety zones (Dennison et al., 2014).

Anticipating fire behavior as climate change and fire
activity accelerate is an increasingly pressing challenge in

fire-prone landscapes where vegetation may reburn more
frequently than their historical baseline (Coop et al., 2020;
Enright et al., 2015; Halofsky et al., 2020; Prichard
et al., 2017). In many forests throughout western North
America, burned areas can limit subsequent fire spread and
severity due to reduced postfire fuel loads and continuity,
but the duration of self-limitation varies by forest type, burn
severity, fire season weather, and trajectories of postfire fuels
development (McKenzie et al., 2011; Parks et al., 2014, 2015;
Stevens-Rumann et al., 2016; see tab. 2 in Prichard
et al., 2017). In US Northern Rocky Mountain subalpine for-
ests where lodgepole pine (Pinus contorta var. latifolia) dom-
inates postfire succession, self-regulation was previously
thought to last >100 years for spread and even longer for
severity due to slow development of fuels capable of
supporting crown fire (Despain & Sellers, 1977; Romme,
1982). This assumption did not hold when fires in 1988
severely burned extensive areas of forests of all ages under
extremely dry and windy conditions (Renkin & Despain,
1992; Romme & Despain, 1989). Recent studies suggest that
initial burning may only limit subsequent fire spread for
�10–20 years in western US forests (Buma et al., 2020;
Prichard et al., 2017), but effects on subsequent burn severity
are less clear. Some studies conclude that areas of high-
severity fire are more likely to reburn severely after only 10–
12 years (Harvey et al., 2016), whereas others indicate that
burn severity is self-regulated for decades (Parks et al., 2014;
Stevens-Rumann et al., 2016) or more than a century (Bigler
et al., 2005). In less than 25 years, lodgepole pine forests reg-
enerating from stand-replacing fire can accumulate suffi-
cient canopy and surface fuels to support crown fire (Nelson
et al., 2016, 2017) and to reburn as stand-replacing fire
(Turner et al., 2019). However, whether fuel loads and conti-
nuity in young subalpine forests support high-severity fire
across extensive reburned areas and how strongly fuels limit
burn severity in reburns are incompletely understood.

Spatial data on vegetation structure and fuels can be
used to quantify relationships between fuels and burn sever-
ity in reburns. Fuels, weather, and topography interact to
influence burn severity, and fuels tend to be a limiting fac-
tor in dry forests adapted to frequent, low-severity fire
(Schoennagel et al., 2004). In moist subalpine forests that
typically burn infrequently and at high severity, fuels are
usually plentiful and extreme fire weather is the dominant
driver of fire behavior (Bessie & Johnson, 1995; Turner
et al., 1994; Turner & Romme, 1994). However, these rela-
tionships may shift if subalpine forests change from
climate- to fuel-limited systems under increasingly frequent
fire (Hessburg et al., 2019). Studies exploring the relation-
ship between fuels and burn severity (e.g., Bessie &
Johnson, 1995; Nelson et al., 2017; Parks et al., 2018;
Stevens-Rumann et al., 2016) often rely on fuels data from
sparse field plots, simulated fire behavior, or national maps.
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A spatially continuous, accurate fuels map overcomes
many of the limitations of other approaches, which
include high sampling effort or sampling bias (field
plots), deterministic relationships between fuels and
severity (simulated fire behavior), and low accuracy of
predicted fuels (national maps). In this study, we com-
bined airborne light detection and ranging (lidar), aerial
imagery, and field data to map fuels in forests and

shrublands across a large landscape centered on
Grand Teton National Park (Wyoming, USA; Figure 1).
Airborne lidar and imagery fusion can characterize three-
dimensional vegetation structure and fuels at landscape
scales with high spatial resolution (Lefsky et al., 2002;
Lepczyk et al., 2021; Szpakowski & Jensen, 2019).We
expected lidar–imagery fusion would best predict fuel
metrics nearest to the top of the canopy (e.g., canopy

F I GURE 1 (a) Vegetation map and 2019 field plot locations within the footprint of the final fuels map, including Grand Teton National

Park, John D. Rockefeller, Jr. Memorial Parkway, and the National Elk Refuge. (b) Location of study area (star) within North America.

(c) 2016 Berry Fire footprint. Colors show areas within the footprint that burned under extreme (red) and moderate (orange) fire weather.

Lines identify areas that reburned 1987 or 1988 fire perimeters (crosshatched) or 2000 fire perimeters (parallel lines).
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height and cover) and decrease in goodness-of-fit for
within-canopy fuels (e.g., canopy base height; Andersen
et al., 2005; Chamberlain et al., 2021; Erdody & Moskal,
2010; Jakubowski et al., 2013). In forests, we expected low-
est predictive power for surface fuels, which included
downed coarse woody debris (CWD) and shrubs, although
CWD has been successfully derived from lidar in some for-
est types (Blanchard et al., 2011; Joyce et al., 2019; Pesonen
et al., 2008; Tanhuanpää et al., 2015; van Aardt et al., 2011).
We did not expect lidar to effectively differentiate between
finer surface fuels (e.g., litter, duff, fine wood, and herba-
ceous fuels) under forest canopies, so these were not
mapped.

We then used this map to ask two questions in a sub-
alpine forest reburn: (1) How do prefire fuels and burn
severity compare between young (�30-year-old) and
mature (>125-year-old) forests that burned under similar
fire weather conditions? We expected young forests to
have similar or higher fuel loads and burn severity, as
well as lower canopy base heights, relative to mature for-
ests (Nelson et al., 2016; Turner et al., 2019). (2) How well
do prefire fuels and forest structure predict burn severity
under extreme versus moderate fire weather? We
expected fuels and forest structure to be weak predictors
of burn severity despite the presence of large areas of
young forest within the fire perimeter, because young for-
ests would not be fuel limited. However, we expected
fuels would better predict burn severity under moderate
versus extreme fire weather, because under extreme con-
ditions the influence of weather would overwhelm that
of fuels (Bessie & Johnson, 1995; Collins et al., 2019;
Meigs et al., 2020).

METHODS

Study area

The study area encompasses �1450 km2 in northwest
Wyoming in the US Northern Rocky Mountains and
includes Grand Teton National Park, the John
D. Rockefeller, Jr. Memorial Parkway, and the National
Elk Refuge (hereafter collectively referred to as “GRTE”;
Figure 1). Along with Yellowstone National Park and sev-
eral national forests, GRTE anchors the Greater Yellow-
stone Ecosystem, a 89,000-km2 area that is one of the
largest protected temperate ecosystems on Earth
(YNP, 2017). The GRTE is bounded on the west by the
Teton Range, and elevations span 1900 m along the Jack-
son Hole Valley to 4200 m at the summit of Grand Teton
(Cogan et al., 2005). Shrublands dominated by mountain
big sagebrush (Artemisia tridentata ssp. vaseyana) charac-
terize the lower-elevation, relatively flat valley floor

(Figure 1a). Montane and subalpine conifer forests cover
most of the vegetated area of the park. Dominant forest
types include low- to mid-elevation lodgepole pine forests
and Douglas-fir (Pseudotsuga menziesii var. glauca) wood-
lands, higher-elevation subalpine fir (Abies lasiocarpa)–
Engelmann spruce (Picea engelmannii) forests, and
whitebark pine (Pinus albicaulis) forests near upper
treeline (3000 m). Small pockets of deciduous forests
dominated by quaking aspen (Populus tremuloides) are
interspersed at intermediate elevations. Given complex
and variable topographic conditions and disturbance his-
tories throughout the landscape, forest types and tree spe-
cies are often intermixed. At lower elevations, summers
are warm and dry with a mean July temperature of
16.6�C and 554 mm of annual precipitation, most of
which falls as snow (Moose, Wyoming, 1981–2010 cli-
mate normals; WRCC, 2020a). Temperatures cool and
precipitation increases at higher elevations.

Throughout the US Northern Rocky Mountains, conifer
forests and woodlands have historically burned infrequently
at high or mixed severity, though lower-elevation forest
types also burn at low severity at shorter fire intervals
(Baker, 2009). For over 10,000 years, Indigenous peoples
including the Eastern Shoshone, Shoshone-Bannock, Black-
feet, Crow (Aps�aalooke), Salish Kootenai (Flathead),
Aaniiih (Gros Ventre), and Niimiipu (Nez Perce) peoples
occupied and used land in Greater Yellowstone before
being forcibly removed during the creation of the National
Parks (Native Land Digital, 2021; Spence, 1999). Indigenous
burning is well documented throughout the western
United States, but evidence suggests that climate remained
the dominant driver of fire regimes in higher-elevation for-
ests of the Northern Rocky Mountains except in localized
areas such as settlements and travel routes (Baker, 2002;
Whitlock et al., 2010). In subalpine, lodgepole pine-
dominated forests, stand-replacing fires typically occurred
every 100–300 years during periods of extreme drought and
high winds (Bessie & Johnson, 1995; Higuera et al., 2011;
Renkin & Despain, 1992; Romme & Despain, 1989;
Whitlock et al., 2008). In Grand Teton National Park and
the Jackson Hole Valley, extensive, stand-replacing fires
occurred in the late 1800s, initiating synchronous, wide-
spread postfire regeneration of lodgepole pine and aspen
(Brandegee, 1898; Loope & Gruell, 1973). Many of the older
mixed conifer, Douglas-fir, and spruce-fir stands originated
from stand-replacing fire in the 1600s–1700s (Sibold
et al., 2014). Fires were suppressed during a portion of the
20th century, but past fire suppression was not always effec-
tive and had minimal effects on the stand-replacing fire
regimes that characterize forest types in this region
(Hansen et al., 2020; Schoennagel et al., 2004; Turner
et al., 1994). Except for a few years following the 1988 fire
season, wildfires have been allowed to burn for resource
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benefits since 1972 in GRTE when they are not a threat to
life or infrastructure (GRTE, 2009; Knight et al., 2014;
Loope & Wood, 1976). Annual area burned over the past
50 years has been relatively low compared to the full extent
of the study area, but there have been 11 years with
>1000 ha burned, most of which have occurred since the
year 2000.

The 2016 Berry Fire

The largest fire in recorded GRTE history, the Berry Fire
was discovered on 25 July 2016 and burned 8143 ha over
more than 2 months, mostly in subalpine, lodgepole
pine-dominated forest (Figure 1c; MTBS Project, 2019).
The lightning-ignited fire burned entirely within national
park or national forest areas and was managed primarily
for ecological objectives. The Berry Fire included 4 days
(22 August, 23–24 August, and 11 September) of high fire
spread under extreme fire weather characterized by dry
conditions and high wind (6077 ha burned, 28% average
relative humidity with maximum wind gusts between
43 and 82 km h�1; GeoMAC, 2016; WRCC, 2020b). The
remaining 2066 ha burned under more moderate fire
weather (44% average relative humidity with maximum

wind gusts between 23 and 61 km h�1). In addition to
burning mature (>125-year-old; Brandegee, 1898; Sibold
et al., 2014) forest, 43% of the Berry Fire reburned
<30-year-old forest regenerating following the 1987 Dave
Adams Hill Fire, 1988 Huck Fire, 2000 Glade Fire, and
2000 Wilcox Fire.

Predicting and mapping forest and
shrubland structure and fuels

We adapted established best practices to map vegetation
attributes from airborne lidar and imagery (Figure 2;
Laes et al., 2011; Mitchell et al., 2012; White et al., 2013).

Data sources and initial processing

Airborne discrete-return, medium-resolution (0.7 m nom-
inal pulse spacing and up to 4 returns pulse�1, resulting
in 5.7 points m�2), lidar data were collected using a Leica
ALS70 sensor for GRTE during summer 2014
(Woolpert, 2015). Woolpert (2015) reviewed, classified,
and processed lidar point clouds; vertical accuracy of bare
earth points was 0.074 m root-mean-squared error

F I GURE 2 Flow chart outlining methods for using lidar–imagery fusion with field data collection to map canopy and surface fuel

characteristics. NDVI, normalized difference vegetation index; NIR, near infrared; SD, standard deviation
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(RMSE). We prepared point clouds for plot selection and
analysis by removing points classified as noise, buildings,
water, ignored ground, and overlap and reclassifying
remaining nonground points as surface (0.1- to 2-m height)
or canopy vegetation (2–60 m). Points >60-m height were
excluded from further analysis based on the maximum
height of dominant conifers (Braziunas et al., 2018; Burns &
Honkala, 1990).

We acquired 2015 leaf-on aerial imagery for visible and
near-infrared bands (0.5-m resolution) from the National
Agriculture Imagery Program (NAIP; NAIP, 2015). We also
obtained a 2005 vegetation map for the study region, which
had an overall thematic accuracy of 82% (Cogan
et al., 2005). We used three broad vegetation types to guide
our study design and analysis: conifer forest, deciduous for-
est, and shrubland (Figure 1a).

Field data collection

Vegetation structure and fuels were sampled during sum-
mer 2019. We first excluded areas that were disturbed or
managed after acquisition of remotely sensed data
(GRTE, unpublished data; USDA Forest Service, 2019).
We then used stratified random sampling to select plots
based on vegetation type, lidar-derived 90th percentile
canopy height, and lidar-derived canopy (forests) or
shrub (shrublands) cover (see Appendix S1: Table S1).
We additionally sampled two plots that represented tar-
get conditions: first, dense young forest regenerating from
severe fire, and second, sparse postfire recovery with
abundant downed wood. All plots were separated by
>500 m except for two that were 290 m apart. In total, we
sampled 43 circular 530-m2 plots (23 conifer, 15 shrubland,
and 5 deciduous; plot radius = 13 m) that covered a wide
range of site, vegetation structure, and fuels conditions
(Table 1, Figure 1a). We recorded plot center with a Trimble
Geo 7X. Average postprocessed horizontal precision was
0.12 m, and average vertical precision was 0.16 m.

To quantify forest structure and canopy fuels in field
plots, we measured the dbh, species, and status (live,
dead, or dead with foliage) of every tree >1.4 m in height.
Trees at plot edges were counted if >50% of their crown
was within the plot. For all trees >7.6 cm dbh, we also
recorded tree height and crown base height. We devel-
oped species-specific regression models to estimate height
and crown base height of smaller trees <7.6 cm dbh. Due
to the time lag between the lidar flight and field data col-
lection, we assumed dead trees with foliage in 2019 were
alive in 2015 and included them in structure and fuel
metric calculations. For one plot in which tree density
exceeded 35,000 stems ha�1, individual trees were coun-
ted in only one-fourth of the plot area. Live saplings

between 0.1 and 1.4 m in height were tallied by species in
a 2 � 26-m belt transect (total area = 52 m2). Average
sapling height was estimated by measuring the height of
one stem closest to each 5-m mark along the transect.

To quantify surface fuel characteristics, we established
two perpendicular transects that intersected at plot center,
with a 1-m buffer to avoid double-counting (total length
= 50 m). We used Brown’s planar intercepts (Brown, 1974)
to measure CWD (1000-h fuels, >7.6 cm diameter) and line
intercepts (Coulloudon et al., 1999) to measure sapling/
shrub cover and height by species. We included trees <2-m
height in shrub line intercepts because the surface fuel layer
includes all vegetation up to 2 m in height (Keane, 2015).
We estimated sapling/shrub percent dead in eight 0.5-m2

quadrats spaced a minimum of 5 m apart along each tran-
sect (total area = 2 m2).

Derivation of fuel and structure metrics from
field data

Forest structure, CWD cover and biomass, and sapling/
shrub cover and height were derived following standard
methods (Table 1, Figure 2; Brown, 1974; Coulloudon
et al., 1999). We used Forest Vegetation Simulator (FVS;
Dixon, 2002) Complete Package Software Version
2020.03.11 to quantify canopy fuel metrics, including can-
opy height and cover, based on the Tetons Variant
(Keyser & Dixon, 2008). The FVS uses species-specific
allometric equations for a given variant to estimate fuel
loads within the canopy. Canopy fuels are defined and
calculated in different ways. Following FVS, we defined
canopy fuel load as standing live foliage biomass, canopy
bulk density (CBD) as the maximum 13-ft (4-m) running
mean within the canopy fuel profile, and canopy base
height (CBH) as the lowest height at which CBD exceeds
0.011 kg m�3 (Rebain, 2010; Scott & Reinhardt, 2001).

Derivation of potential predictor variables from
lidar and imagery

We clipped lidar and imagery to plot boundaries and
derived a suite of potential predictor values based on their
success in predicting fuels in previous studies (Appendix S1:
Table S1; Figure 2; Erdody & Moskal, 2010). Lidar predic-
tors included summary vegetation height statistics, canopy
cover, and shrub cover. From NAIP imagery, we calculated
0.5-m resolution pseudo-normalized difference vegeta-
tion index (NDVI) from the red and near-infrared bands
(Jensen, 2007) and texture homogeneity for all bands
within a 7 � 7 moving window (Moskal & Franklin,
2002). Imagery predictors included summary statistics
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TAB L E 1 Topographic conditions, forest structure, and fuel metrics for plots sampled in 2019

Measurement Description

Conifer
forest
(n = 23)

Deciduous
forest
(n = 5)

Shrubland
(n = 15)

Topographic conditions

Elevation (m) Elevation at plot center 2091 (55)
1944–2217

2083 (30)
2052–2128

2045 (50)
1959–2155

Slope (�) Dominant slope 5 (5)
0–16

9 (5)
3–14

4 (7)
0–26

Aspect (�) Dominant aspect (excludes two plots that
were flat)

200 (107)
6–356

170 (98)
92–302

215 (84)
76–314

Forest structure

Tree density (stems ha�1) Density of trees >1.4 m height 3573 (7269)
170–36,238

2972 (1694)
1149–5575

—

Tree basal area (m2 ha�1) Basal area for trees >1.4 m height 23.1 (10.5)
0.8–37.5

21.6 (16.5)
8.1–47.5

—

Sapling density (stems ha�1) Density of saplings between 0.1 and 1.4 m height 7926 (19,059)
0–93,846

3192 (2899)
0–7308

—

Sapling height (m) Mean height of saplings between 0.1 and 1.4 m
height. Excludes plots where no
saplings present

0.7 (0.2)
0.4–1.0

0.9 (0.0)
0.9–1.0

—

Canopy fuel layer

Canopy cover (CC, %) Vertically projected cover of the suspended
canopy onto the ground

41 (15)
5–63

66 (22)
40–93

—

Canopy height (CH, m) Average height of the top of the vegetated canopy 18.5 (7.2)
4.3–34.1

12.9 (6.2)
9.1–23.8

—

Canopy fuel load (CFL, kg m�2) Amount of canopy fuel consumed in a crown fire.
Quantified as standing live foliage biomass

1.00 (0.45)
0.03–1.85

— —

Canopy bulk density
(CBD, kg m�3)

Amount of burnable canopy biomass in a given
volume of space. Quantified as maximum 13-ft
(4-m) running mean within the canopy fuel
profile (Rebain, 2010; Scott & Reinhardt, 2001)

0.093 (0.045)
0.009–0.194

— —

Canopy base height (CBH, m) Lowest height at which CBD exceeds
0.011 kg m�1 (Rebain, 2010; Scott &
Reinhardt, 2001)

0.6 (0.5)
0.3–2.4

— —

Surface fuel layer

Coarse woody debris (CWD)
cover (%)

Cover of downed coarse woody debris (1000-h
woody fuels, >7.6 cm diameter)

11 (7)
3–24

4 (3)
0–10

—

CWD biomass (Mg ha�1) Quantified following Brown (1974), includes
sound and rotten, adjusted for slope

62.4 (39.8)
7.7–151.2

20.6 (20.4)
0–54.8

—

Sapling/shrub cover (%) Percent cover of surface fuel layer, which includes
all shrubs >0.1-m height and trees
<2-m height

22 (14)
5–51

24 (15)
3–46

42 (17)
16–77

Sapling/shrub height (m) Average height of surface fuel layer. Average
height is based on top height of individual
shrubs and weighted by species percent cover

0.7 (0.3)
0.3–1.4

0.7 (0.1)
0.6–0.8

0.6 (0.2)
0.2–1.0

Sapling/shrub percent dead (%) Average percent dead of surface fuel layer
by volume

9 (9)
0–36

8 (3)
4–11

23 (12)
4–48

Sagebrush cover (%) Percent cover of sagebrush species
(Artemisia spp.)

— — 27 (16)
0–54

Note: Values are expressed as mean, with SD in parentheses, and range.
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and mean homogeneity for each band. This resulted in a
total of 10 lidar-derived predictors and 30 imagery-
derived predictors.

Predicting fuels and structure with lidar–
imagery fusion

We developed linear regression models for each vegetation
structure and fuel metric (Table 2; Appendix S1: Table S2;
Figure 2). We used exhaustive best subsets model selection
to fit models to either all forest plots (conifer and deciduous,
n = 28), conifer plots only (n = 23), or shrubland plots only
(n = 15). The number of predictors for each model was lim-
ited to a maximum of five (forest or conifer models) or three
(shrubland models) to minimize overfitting. Models were
first assessed to confirm that they met assumptions of line-
arity based on residual plots and normality based on
quantile–quantile plots, and dependent variables were
transformed as needed to meet assumptions (Appendix S1:

Table S2). Models with strongly correlated predictors
(Pearson’s jrj > 0.7), multicollinearity assessed as vari-
ance inflation factor >5, or high influence of individual
observations (Cook’s distance D > 1) were excluded
from consideration. We selected final models based on
the lowest root-mean-squared-error from leave-one-out
cross-validation.

Mapping fuels and structure

We used final regression models to project fuels and vegeta-
tion structure throughout the study region at 30-m resolu-
tion. We did not map areas managed or disturbed following
acquisition of remotely sensed data in 2014. Some mapped
values were unrealistic or far outside the range of field obser-
vations. These outlier values were set to either the natural
minimum or maximum (e.g., 0% or 100% canopy cover) or
twice the maximum value observed in the field. We com-
pared final lidar–imagery fusion canopy fuels maps, as well

TAB L E 2 Performance of best models for predicting structure and fuels

Structure or fuels metric
Vegetation type(s)
included in model n Adjusted R 2 R 2 RMSE RMSEcv

Forest structure

Tree density (stems ha�1) Conifer, deciduous 28 0.72 0.77 0.45 (1419) 0.57

Tree basal area (m2 ha�1) Conifer, deciduous 28 0.84 0.86 0.52 (5.0) 0.58

Sapling density Did not meet assumptions — — — —

Sapling height Did not meet assumptions — — — —

Canopy fuel layer

Canopy cover (%) Conifer, deciduous 28 0.73 0.78 9 11

Canopy height (m) Conifer, deciduous 28 0.94 0.95 1.6 2.0

Canopy fuel load (kg m�2) Conifer 23 0.88 0.90 0.09 (0.18) 0.11

Canopy bulk density (kg m�3) Conifer 23 0.84 0.87 0.03 (0.020) 0.04

Canopy base height (m) Conifer 23 0.86 0.89 0.09 (0.1) 0.12

Surface fuel layer

Coarse woody debris cover (%) Conifer 23 0.65 0.73 4 4

Coarse woody debris biomass (Mg ha�1) Conifer 23 0.65 0.73 0.38 (25.2) 0.49

Sapling/shrub cover (%) Conifer 23 0.79 0.84 5 7

Sapling/shrub height (m) Conifer 23 0.55 0.65 0.2 0.3

Sapling/shrub cover (%) Shrubland 15 0.57 0.66 10 13

Sapling/shrub height (m) Shrubland 15 0.88 0.90 0.1 0.1

Sapling/shrub percent dead Shrubland 15 0.89 0.92 0.15 (4) 0.19

Sagebrush cover (proportion of
total sapling/shrub cover)

Shrubland 15 0.90 0.92 0.09 0.11

Note: Values in parentheses are back-transformed RMSE, if applicable. For metrics that were transformed to meet model assumptions (see Appendix S1:
Table S2), root-mean-squared error is also calculated from back-transformed predicted values. Note that the sagebrush cover model was fit to the proportion of
sagebrush cover relative to total sapling/shrub cover.
Abbreviations: RMSE, root-mean-squared error; RMSEcv, root-mean-squared error of leave-one-out cross-validation.

8 of 20 BRAZIUNAS ET AL.



as LANDFIRE fuels maps, with our field data (see
Appendix S2).

Q1: How do fuels and burn severity
compare in young versus mature subalpine
forest?

Within the Berry Fire perimeter (Figure 1c), we identified
areas of mature forest that had not previously burned for
over 125 years using perimeter data from Grand Teton
National Park (unpublished data) and Monitoring Trends
in Burn Severity (MTBS; Eidenshink et al., 2007; MTBS
Project, 2019). We compared mature forest fuels and burn
severity with young, �30-year-old forest that burned as
stand-replacing fire in 1987 or 1988. We restricted compari-
son to areas that burned under similar fire weather
(i.e., high fire spread days only; GeoMAC, 2016), were clas-
sified as conifer forest prior to the Berry Fire (Cogan
et al., 2005), and were within GRTE. We quantified burn
severity using relative differenced normalized burn ratio
(RdNBR; Miller & Thode, 2007; MTBS Project, 2019), which
effectively characterizes field-measured burn severity in the
region across a range of stand ages (Abendroth, 2008;
Harvey, 2015; Saberi, 2019). We excluded RdNBR values
that were likely unburned (RdNBR < 0) or anomalously
high (RdNBR > 2000) and used a regionally calibrated
threshold to delineate stand-replacing fire (RdNBR > 675;
Harvey et al., 2016).

In both young and mature forest that burned in the
Berry Fire, we randomly selected 30 points separated by
>500 m to avoid spatial autocorrelation (Harvey et al.,
2014, 2016). To strengthen inferences from these observa-
tional data, we used propensity score matching based on
elevation and slope to exclude eight points, four each from
young and mature forest, that fell outside overlapping
ranges (Butsic et al., 2017). For remaining points (total
n = 52), we obtained RdNBR from the closest 30-m resolu-
tion MTBS grid cell, and we used grid cell footprints to
extract lidar and imagery predictors and calculate fuel loads
(using equations from Appendix S1: Table S2). We com-
pared forest structure, canopy and surface fuels, and burn
severity between young and mature forests with two-sided
Wilcoxon rank-sum tests.

Q2: How well do fuels predict burn severity
under extreme versus moderate fire
weather?

We assessed how well fuels and forest structure predicted
burn severity within the full Berry Fire perimeter, including

all reburned areas (Figure 1c). We again used RdNBR
(values between 0 and 2000) to quantify burn severity,
excluded areas outside of GRTE, and only included areas
classified as conifer forest or recently burned vegetation
in the 2005 vegetation map. Areas were delineated as
having burned under extreme fire weather (22 August,
23–24 August, and 11 September fire growth) or rela-
tively moderate fire weather (all other days). For each
fire weather condition, we randomly selected 50 points
(n = 100 total) separated by >500 m and determined
RdNBR and fuel loads as described above. We assigned
approximate burn date based on fire progression maps
(GeoMAC, 2016).

We fit separate linear mixed effects models to predict
burn severity on either extreme or moderate weather
days from forest structure and fuels as fixed effects and
burn date as a random effect to account for daily variabil-
ity in fire weather. We transformed fuels predictors to
meet model assumptions (see Appendix S1: Table S2).
For strongly correlated predictors (Pearson’s jrj > 0.7),
we retained the predictor hypothesized to directly affect
burn severity or more strongly correlated with RdNBR.
This resulted in basal area, canopy height, canopy cover,
and CBD being excluded from model fitting. We then
performed exhaustive model selection and selected the
top models as those where all predictors were significant
(p < 0.05) and Akaike information criterion corrected
for small sample size (AICc) was within two of the best
AICc model. We used residual and quantile–quantile
plots to determine that models met assumptions, and
model residuals were not spatially autocorrelated based
on Moran’s I. Model fit was assessed using variance
explained by fixed effects (marginal R 2

LMM(m)) and by
the full model (conditional R 2

LMM(c); Nakagawa &
Schielzeth, 2013).

All data processing, analysis, and map creation were per-
formed using ArcGIS Desktop 10.6 (ESRI, Redlands, CA)
and R Version 3.6.1 (R Core Team, 2019). We primarily
relied on R packages ape (Paradis & Schliep, 2019), asbio
(Aho, 2020), car (Fox & Weisberg, 2019), caret (Kuhn
et al., 2019), corrplot (Wei & Simko, 2017), doParallel
(Microsoft & Weston, 2019a), fasterize (Ross, 2018), foreach
(Microsoft & Weston, 2019b), glcm (Zvoleff, 2020), leaps
(Lumley & Miller, 2017), lidR (Roussel & Auty, 2019), lme4
(Bates et al., 2015), lmerTest (Kuznetsova et al., 2017),
MatchIt (Ho et al., 2011), MuMIn (Barton, 2019), openxlsx
(Schauberger & Walker, 2019), optimx (Nash & Varadhan,
2011), qpcR (Spiess, 2018), raster (Hijmans, 2019), RColor-
Brewer (Neuwirth, 2014), rgdal (Bivand et al., 2019), rgeos
(Bivand & Rundel, 2019), RSQLite (Muller et al., 2019), sf
(Pebesma, 2018), sp (Pebesma & Bivand, 2005), tidyverse
(Wickham et al., 2019), and tmap (Tennekes, 2018).
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RESULTS

Predicting and mapping forest and
shrubland structure and fuels

Predicting fuels and structure with lidar–
imagery fusion

Lidar and imagery variables strongly predicted forest and
shrubland structure and fuel metrics (R2 from 0.65 to
0.95; Table 2, Figure 3; Appendix S1: Figure S1). Leave-
one-out cross-validation RMSEs were between 11% and
38% higher than RMSEs for models fit to the full data set.
Top-of-canopy metrics canopy height (R2 = 0.95) and
cover (R2 = 0.78) generally had higher goodness-of-fit
than surface fuel metrics with the exception of conifer
forest sapling/shrub cover, which had a higher R2 (0.84)
than canopy cover. Models for stand basal area
(R2 = 0.86) and within-canopy fuel metrics (R2 from 0.87
to 0.90) performed nearly as well as canopy height. Sap-
ling/shrub height in conifer forests (R2 = 0.65) and sap-
ling/shrub cover in shrubland (R2 = 0.66) had the
poorest model fits. We did not predict sapling density or
height because models did not meet linear regression
assumptions.

Most top models included both lidar- and imagery-
derived predictors (Appendix S1: Table S2). A lidar-
derived metric generally had the highest predictive power
for canopy fuel metrics, whereas an imagery-derived met-
ric had the highest predictive power for all surface fuel
metrics except sapling/shrub cover in shrublands. Final
models for canopy base height and sapling/shrub percent
dead included only imagery predictors. No top models
included only lidar predictors.

Mapping fuels and structure

Mapped fuel and structure distributions aligned well with
field data (Figure 4a,b; Appendix S1: Figures S2–S4). His-
tograms of mapped and observed data peaked at similar
values, although field observations were sometimes
bimodal or multimodal. Mapped canopy base heights
skewed slightly taller than field observations, although
in both cases most CBHs were short (<1 m height).
Some metrics were reclassified to minimum or maxi-
mum bounds; this affected 5.7% of mapped values in
forests and 14.0% of mapped values in shrublands
(Appendix S1: Table S3). Proportion sagebrush in
shrublands was most often outside of bounds (44.8% of
values). Other metrics that more frequently (>5%
of mapped values) exceeded either minimum or

maximum thresholds before reclassification were CWD
biomass, CWD cover, sapling/shrub cover, and sap-
ling/shrub height in conifer forests.

Maps of forest and shrubland structure and fuels
captured expected patterns across much of the study
landscape (Figure 4c,d; Appendix S1: Figures S5–S8).
For example, areas within 2006 and 2009 fire perime-
ters had low canopy fuel loads and patches of high
CWD cover and biomass. Shrubland was dominated by
sagebrush at low, but not high, elevations. However,
some predictions appeared erratic in locations that
were less represented by field data. For example, at
higher elevations and on steeper slopes within the rug-
ged terrain of the Tetons, canopy and surface fuels
were consistently predicted to be higher than the land-
scape average.

Q1: How do fuels and burn severity
compare in young versus mature subalpine
forest?

Young and mature forests that burned in the Berry Fire had
similar canopy fuel load (median 1.33 and 1.27 kg m�2,
respectively, p = 0.59), canopy base height (0.6 m,
p = 0.19), basal area (25.5 and 24.5 m2 ha�1, p = 0.33),
CWD biomass (29.5 and 37.5 Mg ha�1, p = 0.12), and sap-
ling/shrub height (0.3 and 0.6 m, p = 0.21; Figure 5;
Appendix S1: Figure S9). However, compared to mature for-
ests, young forests had higher CBD (median 0.163
vs. 0.098 kg m�3, p < 0.001), canopy cover (67% vs. 47%,
p = 0.001), tree density (5029 vs. 1761 trees ha�1,
p < 0.001), and CWD cover (11% vs. 8%, p = 0.01), but
lower canopy height (14.5 vs. 24.5 m, p < 0.001) and sap-
ling/shrub cover (13% vs. 26%, p < 0.001). Thus, across a
similar range of canopy fuel loads, canopy fuels were much
more densely packed in young compared to mature forests
(Figure 5).

Young and mature forest burned at similar burn
severity (median RdNBR 667 and 758, respectively,
p = 0.29; Figure 6) on days of similar, extreme fire
weather. At least half of the sampled grid cells burned as
stand-replacing fire in both young and mature forests
(RdNBR > 675).

Q2: How well do fuels predict burn severity
under extreme versus moderate fire
weather?

On days of extreme fire weather, higher burn severity was
best predicted by higher tree density and sapling/shrub
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cover, and burn date did not improve model fit (fixed effects
marginal R2

LMM(m) = 0.27 and full model conditional
R2

LMM(c) = 0.27; Table 3). On days of moderate fire

weather, higher burn severity was best predicted by higher
coarse wood biomass, tree density, and sapling/shrub cover
but with lower explanatory power (R2

LMM(m) = 0.15 in top

F I GURE 3 Predicted versus observed (field data) values for final forest structure and fuels regression models. Note that some models

were fit to transformed values (see Appendix S1: Table S2). Dashed lines are 1:1 lines. (a–d) Models fit to combined conifer and deciduous

plots (n = 28). (e–k) Models fit to conifer forest only (n = 23). BA, basal area; CBD, canopy bulk density; CBH, canopy base height; CC,

canopy cover; CFL, canopy fuel load; CH, canopy height; CWD, coarse woody debris
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model); burn date explained more variability and improved
model fit (R2

LMM(c) = 0.51 in top model). A second
moderate fire weather model included only tree density
(R2

LMM(m) = 0.06, R2
LMM(c) = 0.46).

F I GURE 4 (a, b) Histograms showing distribution of mapped values (n = 505,240; blue) versus field data observations (n = 23, red) for

canopy fuel load (CFL) and sapling/shrub cover in conifer forests. Overlapping areas are in purple. (c, d) Final lidar–imagery fusion fuels

maps for canopy fuel load and sapling/shrub cover for conifer forests at 30-m resolution. Water is shown in blue.

F I GURE 5 (a–c) Canopy and (d) surface fuels in young (�30-

year-old, green) compared to mature (>125-year-old, brown) forests

that burned during the 2016 Berry Fire (n = 28 sampled cells each).

Bold lines show the median value, boxes show the interquartile

range (IQR), and whiskers extend 1.5� IQR or to the most extreme

data point. Results of Wilcoxon rank-sum tests indicate whether

differences between distributions are not statistically significant

(ns) or statistically significant at p < 0.001 (***).

F I GURE 6 Relative differenced normalized burn ratio

(RdNBR) in young (�30-year-old, green) compared to mature

(>125-year-old, brown) forests that burned under similar, extreme

fire weather during the 2016 Berry Fire (n = 26 sampled cells each).

Horizontal dashed line shows the threshold for stand-replacing fire

(RdNBR = 675). Bold lines show the median value, boxes show the

interquartile range (IQR), and whiskers extend 1.5� IQR or to the

most extreme data point. Results of Wilcoxon rank-sum tests

indicate that differences between distributions are not statistically

significant (ns).
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DISCUSSION

Fusion of lidar and aerial imagery predicted canopy and
surface fuels in a large fire-prone landscape with high
accuracy across a wide range of woody vegetation struc-
tures. Although canopy metrics were generally predicted
with highest accuracy, surface fuels, including downed
coarse wood, were predicted surprisingly well. Using this
fuels map to assess burn severity in a changing fire
regime revealed that young (�30-year-old) postfire forests
had abundant, densely packed canopy fuels and burned
at similar severity as mature forests under similar
weather conditions. Fuels were weak predictors of burn
severity in the Berry Fire, which included a large pro-
portion of short-interval reburn, but contrary to our
hypothesis, fuels better predicted severity under
extreme rather than moderate fire weather. Our find-
ings are relevant for subalpine landscapes in the US
Northern Rocky Mountains that are increasingly domi-
nated by young, postfire lodgepole pine forests vulnera-
ble to short-interval fire.

Lidar–imagery fusion effectively predicted
and mapped vegetation structure and fuels

Lidar–imagery fusion models performed well and led to
maps that appropriately represented spatial patterns and
variability in vegetation structure and fuels throughout
much of the study region. Lidar availability is increasing
across the United States (NOAA, 2021), and we demon-
strated that medium-resolution lidar (5.7 points m�2) can
effectively characterize canopy and surface fuel metrics that
are critically important for fire and resource managers. Ide-
ally, field data should be collected within 1 year of

acquisition of remotely sensed data (Laes et al., 2011). How-
ever, we show that models can perform well despite a 5-year
gap between lidar and field data collection in forests and
shrublands where vegetation changes slowly in the absence
of disturbance. Most top models included both lidar and
imagery predictors, indicating that lidar and imagery were
complementary and enhanced model performance. This is
consistent with previous studies that found lidar–imagery
fusion was superior to using either lidar or imagery predic-
tors alone (Erdody & Moskal, 2010; Jakubowski et al., 2013;
Mutlu et al., 2008).

As expected, fuel and structure metrics closer to the
top of the canopy were generally predicted with higher
accuracy than surface fuels. However, within-canopy and
surface fuel layer predictions performed better than
anticipated. For example, CWD cover and biomass were
strongly predicted despite being well below and often
obscured by the top of the forest canopy, which is impor-
tant because CWD is highly variable and difficult to
assess across subalpine forested landscapes (Tinker &
Knight, 2000). Strong model predictions may be due to
consistent patterns of forest and fuel succession in this
region following stand-replacing disturbances. Coarse
woody debris is high 10–20 years after severe fire and
declines as forests recover, achieve canopy closure, and
increase in height, but subsequently increases after 100–
200 years as trees die and fall, creating gaps in the canopy
(Kashian et al., 2013; Lotan et al., 1985; Romme, 1982).
Similarly, CBH starts low, increases, and then declines as
gaps enable growth of trees in the understory. As indirect
proxies, predictors that characterize successional changes
in total and within-plot variability in biomass or leaf area
(e.g., NDVI; Jensen, 2007) or in height may be well suited
to predict these within-canopy or surface fuel metrics
(Pesonen et al., 2008).

TAB L E 3 Linear mixed effects models predicting burn severity on extreme versus moderate fire weather days, including all top models

within two AICc in which all predictors were significant (p < 0.05)

Fire weather AICc R 2
LMM(m) R 2

LMM(c) Fixed effects Estimate t p Random effect

Extreme 743.9 0.27 0.27 Intercept �1368.8 �2.482 0.02 Burn date

Ln(Tree density) 256.4 3.519 <0.001

Sapling/shrub cover 7.6 3.345 0.002

Moderate 727.6 0.15 0.51 Intercept �915.5 �2.275 0.03 Burn date

Ln(Tree density) 103.5 2.309 0.03

Ln(Coarse wood biomass) 121.6 2.304 0.03

Sapling/shrub cover 4.4 2.038 0.05

Moderate 728.9 0.06 0.46 Intercept �307.4 �0.877 0.39 Burn date

Ln(Tree density) 108.4 2.346 0.02

Note: Variance explained is reported for fixed effects only (marginal R 2
LMM(m)) and for the full mixed effects model (conditional R 2

LMM(c)).
Abbreviation: AICc, Akaike information criterion corrected for small sample size.
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Young and mature subalpine forests had
similar fuel loads and burn severity

Young forests did not limit burn severity in the Berry
Fire. As hypothesized, fuel loads and burn severity were
similar or higher in young compared to mature subalpine
forests that burned under similar fire weather. Our find-
ings are consistent with rapid serotinous lodgepole pine
regeneration and fuels recovery after stand-replacing fire
in mature forests (Nelson et al., 2016; Turner et al., 2004).
We found that young forests had low canopy base heights
and high canopy bulk densities, which enable crown fire
under extreme fire weather conditions (Nelson et al., 2017;
Van Wagner, 1977, 1989). Fires can limit subsequent burn
severity for over 20 years in some western US forests (Parks
et al., 2014; Stevens-Rumann et al., 2016), and our results
suggest that burn severity is limited for less than 30 years in
lodgepole pine-dominated subalpine forests. Given the com-
bination of abundant, densely packed canopy fuels close to
the ground and high CWD cover and biomass, we might
have expected even higher burn severity in young versus
mature forest. Reburns where nearly all prefire biomass
was consumed, including foliage, young trees, and CWD,
were observed in the field in the Berry Fire (Turner
et al., 2019). However, these higher severities may be poorly
differentiated by remotely sensed indices of burn severity,
which characterize canopy mortality well but are less able
to detect variation in dead biomass consumption or surface
burn severity (Saberi, 2019).

Understanding whether young forests will limit fire
spread or severity is critical for anticipating fire behavior
and forest recovery. Fire modelers update fuels maps based
on expert knowledge of fire behavior and whether recent
disturbances have altered fuels (Stratton, 2009). Our find-
ings suggest that by 30 years postfire, subalpine lodgepole
pine-dominated forests such as those prevalent throughout
Greater Yellowstone can have similar fuel loads and even
higher CBD compared to mature forests and should not be
considered effective fire breaks, meaning they may neither
slow fire spread nor reduce burn severity. This also has
important implications for future forest landscapes, because
severe short-interval fires can hamper subsequent forest
recovery and initiate transitions to different forest types or
nonforest vegetation (Coop et al., 2020; Enright et al., 2015;
Prichard et al., 2017).

Forest structure and fuels predicted burn
severity better on extreme weather days

Contrary to our hypothesis, forest structure and fuels bet-
ter predicted burn severity under extreme versus moder-
ate weather conditions. One possible explanation is that

burn severity is primarily detecting differences in canopy
mortality due to crown fire. Under extreme fire weather,
very low fuel moisture and high winds create the neces-
sary conditions for crown fire initiation and spread
(Renkin & Despain, 1992), but canopy fuel continuity
may mediate fire effects. However, under moderate con-
ditions with greater daily and potentially hourly variabil-
ity in fire weather, the conditions for crown fire initiation
and spread are less frequently met, and therefore, burn
severity can be low even when fuels are abundant. It is
nevertheless surprising that our results are contrary to
the conventional wisdom that the relative importance of
fuels is diminished under extreme fire weather in these
forest types. It is important to note that we used daily fire
progression maps, which are subject to error and uncer-
tainty, as a proxy for moderate versus extreme fire
weather. Fire risk assessments are often conducted based
on worst-case weather scenarios, and our results indicate
that prefire forest conditions can explain a small but
meaningful amount of variation in potential fire effects
on forests under extreme fire weather.

Surprisingly, canopy fuel metrics typically used to
anticipate fire behavior (canopy fuel load, bulk density,
and base height) were not included in top models.
Instead, we found that tree density, sapling/shrub cover,
and coarse wood biomass were the best predictors of
burn severity. Although not strongly correlated in our
study, higher tree densities were positively associated
with higher canopy bulk densities and fuel loads, and
horizontal continuity of canopy fuels increases with stand
density. Sapling/shrub cover includes trees <2 m in
height and thus quantifies ladder fuels, which enable sur-
face fires to ignite the canopy, while high CWD biomass
lengthens fire residence times and prolongs fuel con-
sumption (Graham et al., 2004). Our analysis of the Berry
Fire indicates significant but weak fuels effects on burn
severity in a fire with a large proportion of reburned for-
est. Another recent study compared multiple fire hazard
indices with burn severity in the Berry Fire and found
that including canopy cover and surface fuel models
mapped by LANDFIRE improved predictions of categori-
cal burn severity, although relationships were still weak
(Szpakowski et al., 2021). Our study supports the use of
tree density, shrub cover, and coarse wood biomass as
better predictors and provides new maps that can be
incorporated into risk assessments. We further provide a
benchmark that can be used to assess whether fuels more
strongly regulate burn severity in future fires. It is impor-
tant to note that our models did not include fine woody
debris or herbaceous fuels, which we did not expect to be
effectively characterized under a forest canopy by
medium-resolution lidar. These fuels are often represen-
ted by categorical fuel models, but future studies should

14 of 20 BRAZIUNAS ET AL.



explore methods for creating continuous fine surface
fuels maps to further improve predicted fire behavior and
effects.

Management applications for vegetation
structure and fuels maps

Maps of vegetation structure and fuels can be used to
support many management applications in combination
with other geospatial data. For example, maps can be
used in prefire planning to prioritize mechanical fuels
treatment locations (North et al., 2015), to predict sup-
pression difficulty under varying fire weather conditions
(Rodríguez y Silva et al., 2014), or to identify and improve
areas with relatively little vegetation to serve as fire-
fighter safety zones (Dennison et al., 2014). Numerous
studies have used lidar-derived data on vegetation struc-
ture to both understand and predict suitability of wildlife
habitat (e.g., Garcia-Feced et al., 2011; Zhao et al., 2012).
In Grand Teton National Park, resource managers and
fire ecologists plan to test our map for quantifying the
effectiveness of fuels treatments, monitoring fire effects,
and mapping greater sage-grouse (Centrocercus
urophasianus) habitat based on shrub height and sage-
brush percent cover. If lidar is flown in future years, our
regression models can be used to update the fuels map
and assess landscape change.

Limitations and recommendations

The primary limitation of this study is that we were
unable to perform an independent field-based validation
of our fuels map. Therefore, we recommend that man-
agers using either our fuels map or regression equations
to predict fuels in other landscapes critically evaluate the
reliability of mapped fuel metrics, ideally by using inde-
pendent field observations to validate fuels predictions.
In particular, values that were set to the minimum or
maximum may not be representative of conditions on the
ground. These values tend to occur at higher elevations
and on steeper slopes and often coincide with forest
edges (e.g., edge of forest and lake, edge of forest and
road) and with higher proportions of nonvegetated sur-
faces (e.g., rocky or largely barren slopes). Variation in
topographic conditions may affect the reliability of lidar
predictor variables (Guo et al., 2010), whereas snow cover
(present in some NAIP imagery at higher elevations) and
shadows likely produce erroneous NAIP predictor values.
Model precision (i.e., RMSE) should also be taken into
consideration when using mapped values to plan man-
agement activities or make ecological interpretations.

Finally, we did not test how mechanical treatments or
disturbance history might affect relationships between
lidar and imagery predictors and fuel characteristics.
Because the model for CBH only includes imagery pre-
dictors that do not penetrate the canopy, changes in CBH
due to fuels treatments may not be well characterized by
our models.

CONCLUSIONS

Quantifying forest fuels, and relationships between fuels
and burn severity, is increasingly important for under-
standing how forest landscapes and fire behavior may
change as fires recur more frequently. Here, we show
that lidar–imagery fusion can accurately predict fuels
across large landscapes, and fuels maps can improve
understanding of how fuels affect burn severity.
Although we found only weak evidence of fuels limiting
burn severity in a single short (<30-year)-interval reburn,
postfire fuel loads and forest recovery are likely to differ
after short- compared to long-interval stand-replacing
fire. As fire frequency increases, landscape-scale fuel
loads and continuity in subalpine forests may decline to
the point where they are no longer capable of sustaining
large patches of high-severity fire (Braziunas et al., 2021;
Hansen et al., 2020). Fire managers should continually
reassess and update expectations about fire behavior in
future forest landscapes. For now, however, our results
suggest that young subalpine forests in the Northern
Rocky Mountains have sufficient fuel loads to burn at
high severity and should not be considered effective fire
breaks.
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