
A Modular Command and Data Handling System
Concept for Small Satellites

Abdullah Alsalmani1, Mohammed Almehrezi1, Abdul-Halim Jallad1,2,*

1National Space Science and Technology Center (NSSTC)
2Department of Electrical Engineering

United Arab Emirates University
Al Ain, United Arab Emirates

*Corresponding Author: a.jallad@uaeu.ac.ae

Abstract—The increasing demand for high-performance
computer systems on board space missions applications, such
as artificial intelligence and machine learning, are drivers of
the need for higher on-board command and data handling
specifications. Consequently, a modular Command and Data
Handling Subsystem (CDHS) is required in order to manage
the complexity of future CDHS hardware. Some systems have
applied a similar approach; however, they either focus on
large scale satellites or have a certain level of complexity
that limits their usage by learners. This paper proposes a
modular Command and Data Handling System that includes
several layers providing more flexibility in design at a low
cost. The system also potentially allows the integration of
CDHS initially used in CubeSats in larger-scale satellites. Also,
Through this paper highlights the interfacing options used in
the proposed design, including the regular command and data
interfaces, wireless command and data interfaces, high-speed
data interfaces, and power interfaces. The results validate the
usefulness and potential of the proposed system as a modular
Command and Data Handling System that can be used in
future missions. It also opens the door for further development,
allowing the low-cost development of Command and Data
Handling Systems.

Index Terms—Space, Satellite Technology, Command and Data
Handling Subsystems, Modularity.

I. INTRODUCTION

In recent years there has been increasing demand for
high-performance computer systems on board space missions
applications, such as artificial intelligence and machine
learning are drivers of the need for higher on-board command
and data handling specifications. Consequently, a modular
Command and Data Handling System (CDHS) is required in
order to manage the complexity of future CDHS hardware.
The Command and Data Handling System acts as the brain
of the satellite, controlling its functions and operations;
where some of its functionalities are managing data on the
spacecraft, preparing data for transmission to earth, carrying
out command maneuvers, and autonomously monitoring
and responding to a wide range of on-board problems that
might occur [1]. Currently, Command and Data Handling
System (CDHS) hardware architectures have a limited ability
to scale with mission needs. However, several modular

standards began to introduce the concept of modularity in
space applications where they aim to reduce the satellite
development time and expenses.

In this project, we aim to design a modular Command
and Data Handling architecture that allows the integration of
up to four layers of modularity.

The main contribution of our work is an multi-level
modular CDHS. To achieve this goal, we also propose: (1)
designing modular hardware modules for each layer (2)
defining standard physical properties of the modules, and (3)
defining the standard interfaces between the modules.

The remainder of the paper is organized as follows:
Section II presents our literature review, Section III presents
our proposed system, Section IV discusses our experimental
testing & results, and Section V concludes the paper.

II. LITERATURE REVIEW

The Space Plug-and-Play Avionics was one of the first
approaches, where the sophisticated hardware and software
concepts are combined to make plug-and-play possible. Due
to the emergence of third-party USB developers, which has
been proven in the personal computer market, the SPA has
given a chance for developers to implement SPA in a custom
way or to use pre-developed solutions as needs dictated.
It provides a unified method for self-discovery and self-
configuration of heterogeneous PnP networks, as it offers an
elegant, robust and practical approach [2]. SPA components
get allowed to communicate without prior knowledge of the
corresponding component’s location on the system or the
type of interconnection network it uses. This has also opened
the chance for developers to build Plug-and-Play Satellites
(PnPSats) without having every component (or maybe any
components) on one’s shelf. Their PnP components would
appear as selectable options in a rapid design flow. Also,
they have created the Mission Spacecraft Design Tool in the
responsive testbed as the first step for PnPSat, and a step
towards the ultimate push-button toolflow [3].



Another modular standard is the Modular Architecture
for Robust Computing (MARC) project, which aims to
demonstrate the essential features of a heterogeneous, fault-
tolerant, high availability distributed avionics system based
on a SpaceWire network [4]. The MARC SpaceWire network
architecture is built around a High Flexibility Cluster (HFC),
which consists of two 8-port routers that provide redundancy
and each module interfaces to both routers to allow for the
failure of one router within the cluster and four modules
that can be any function (processing, memory, I/O, etc.) that
requires a network interface. The HFC has four spare ports,
each with a redundant SpaceWire (SpW) link. These spare
ports can connect clusters or other system components like
the TMTC system or EGSE. Furthermore, several HFCs can
be linked together in various topologies, and if increased bus
bandwidth is required, the number of 8 port routers within a
cluster can be doubled or increased to a larger number [5].

A third modular standard usually used in aircrafts is
Integrated Modular Avionics (IMA). IMA defines an
integrated system architecture that preserves the federated
architectures’ fault containment and ’separation of concerns’
properties, where independent functional chains share
a common computing resource. Each functional chain, or
application, is protected against interference from other chains
by a memory protection strategy and exclusive guaranteed
access to the computing resources. Applications are isolated
from each other in time and memory using software partitions
and communicate through controlled channels [6].This
has led the European Space Agency (ESA) to discuss the
potential of using IMA in space by introducing the Integrated
Modular Avionics for Space (IMA-SP). Where the software
partitioning technology can be integrated into the spacecraft
flight software architecture to improve the reliability and
security of space systems, as well as the efficiency of the
software development and validation processes [7].

Table I shows a comparison between the three currently
available modular architectures mentioned above.

Several typical command and data interfaces are used
internally on On-Board Computers; however, two transmission
standards (switched topology) stand out among the rest, the
Ethernet and SpaceWire, each having its own advantages,
trade-offs, and specific uses.

Ethernet is a long-established technology that forms the
basis of local area communication, as it can easily encompass
thousands of users within a corporate or a facility. Ethernet was
known for providing an interconnection between computers,
but it gradually expanded to interconnect appliances and
other personal devices. The Ethernet’s evolution to include
higher bandwidth, improved medium access control, and
different physical media, as well as the replacement of the
coaxial cable with a point-to-point link connected by Ethernet
repeaters or switches, has led the Ethernet to start to rapidly

replace legacy data transmission systems in the world’s
telecommunications networks. Typically, Ethernet transmits
data up to 10 Mbits/s, but it can reach 10 Gbits/s, with a
power consumption of slightly less than 1 W [8].
On the other hand, SpaceWire is a new technology discovered
in 1995, and it is characterized by its ability to build highly
fault-tolerant networks and systems. Point-to-point data links
and routing switches can be used to build networks that suit
particular applications. In contrast, the application information
is sent along with a SpaceWire link in discrete packets. The
SpaceWire standard can facilitate the construction of high-
performance on-board data handling systems, help reduce
system integration costs, promote compatibility between data
handling equipment and subsystems, and encourage the re-use
of data handling equipment across several different missions.
Also, SpaceWire’s transmission data rate ranges from 2 to
200 Mbits/s, with a power consumption of about 750 mW [9].

III. PROPOSED SYSTEM

A. System Overview

This research presents a modular Command and Data
Handling System that provides interface ability, where each
module should be seamlessly interfaced to all other modules,
and scalability, where the system should be expandable based
on the required configuration and complexity of the satellite.

Fig. 1. Proposed modular concept approach - daughter-board and motherboard
and their connector.



TABLE I
COMPARISON BETWEEN CURRENTLY AVAILABLE MODULAR STANDARDS

SPA MARC IMA

Voltage Interfaces

– SPA-O = 28v @ 30 A max
– SPA-S(LV) = 5v @ 2 A
– SPA-U = 5 V (2-pin)* @ 4.5A
– SPA-1 = 5 V (2-pin)* @ 2 A

3.3v and 5v is supplied
to the components
(Additional 1.8v can
also be supplied.)

Data Interfaces

– SPA-O = Part of SPA-S
[Up to 10-Gbit/sec]
– SPA-S(LV) = low voltage (5V)
spacewire
[400-600 Mbit/sec]
– SPA-U = similar to USB
[Up to 12 Mbit/sec]
– SPA-1 = similar to I2C
[Up to 10 kilobit/sec]

– UART
– CAN
– I2C
– SLINK
– SpaceWire

Ethernet and AFDX

Software xTEDS (extended Transducer
Electronic Datasheets)

GenFas Software
(based on
CCSDS-SOIS Architecture)
including FDIR
Manager

ARINC 653 “Avionics
Application
Software
Standard Interface”
operating system
specification

Scale of projects Nano and Small Scale Satellites Small and Medium
Scale Satellites Aircrafts

Fault Tolerance Scheme

– Health Check Monitoring
– Error detection:
- Hardware (primary command
received before previous one
processed; attempt to write into
protected memory without
override; processor sequencer
reached an illegal state.)
- Software (Primary output unit
unavailable for more than
14 seconds, self-test routine
not successfully completed;
output buffer overflow.)
- Special Reed-Solomon coding

– Health Check Monitoring
– Fault Detection
– Fault Diagnosis and
Identification
– Fault Recovery

– Health Monitoring
Mechanism
[The fault gets processed
at Partitioning Kernel level
or virtualised and
channelled to the
appropriate System or
Application Partition.]
– An application can
be instantiated more
thanonce, creating
redundancy in the
system.

As shown in Figure 1, the system consists of up to four lay-
ers, providing higher modularity. The four layers are defined
as the following:

• Layer 1: A micro-module designed for a specific appli-
cation. It is mounted on layer 2 boards.

• Layer 2: Boards with SODIMM or Bergstak connectors
can also include the mounting of layer 1 modules on
them.

• Layer 3: The motherboard that hosts the Layer 2 board
and interfaces with it using one of the connectors
(SODIMM, Micro-DIMM or other high-speed Mezzanine
connectors). It follows the PC104 standard that is com-
monly used in CubeSats.

• Layer 4: It is an external motherboard that usually
hosts the Layer 3 board and interfaces with it using a
high-speed Mezzanine connector. The layer 4 boards
usually come in larger form factors (3U, 6U, etc.).

The four layers successfully interface with each other
using several typical command and data interfaces, wireless
command and data interfaces, high-speed data interfaces, and
power interfaces.

1) Typical Command and Data Interfaces: There are four
different typical command and data interfaces used in our

design. As illustrated in Table II, we can identify that in terms
of speed, SPI has the highest, CAN bus comes next, then
UART and I2C. While in terms of data rate and bus length,
CAN bus and SPI have the same data rate at the same bus
length, then I2C comes next, and UART has the lowest data
rate but the highest bus length. Furthermore, the I2C is half-
duplex while the rest are full-duplex. The rest of the details
are included in the table.



TABLE II
COMPARISON BETWEEN REGULAR COMMUNICATION INTERFACES

I2C [10] [11] UART [10]
[11] SPI [10] [11] CAN [12]

Speed 3.4 Mbps 5 Mbps 60 Mbps 1 Mbps
Data
rate
and
Bus
Length

1Mbps
@ 0.5m

20kbps
@ 15m

25Mbps
@ 0.1m

25Mbps
@ 0.1m

10 kbps
@ 1 km

Protocol
(Sync /
Async)

Synchronous

Asynch-
ronous
(Serial
protocol)

Synchronous

Synch-
ronous
(Multi
master
protocol.)

Duplex Half duplex Full duplex Full duplex Full duplex

Types of
Lines /

Ports

Two Lines:
SCL (serial
clock line)
SDA (serial
data line
acceptance
port)

Two Lines:
TX
RX

Four ports:
MOSI,
MISO,
SCLK, and
NSS

Two Lines:
CAN High
CAN low

2) Wireless Command and Data Interfaces: There are three
different wireless command and data interfaces used in our
design. As illustrated in Table III, we can identify that the
WiFi has the highest data rate; however, it has the highest
power consumption rate. While LoRa has the most extended
transmission range but the lowest data rate.

TABLE III
COMPARISON BETWEEN WIRELESS COMMUNICATION INTERFACES

Zigbee LoRa WiFi

Data Rate

- 20 kbps
(868 MHz band)
- 40 kbps
(915 MHz band)
- 250 kbps
(2450 MHz band)

- 0.3 to 22 kbps
(LoRa
Modulation)
- 100 kbps
(using GFSK)

54 Mbps
using
802.11a/g
OFDM
Technique

Range 10 to 100 meters

- 2 to 5 Km
(urban areas)
- 15 Km
(suburban areas)

30 to 100
meters

Power
Consumption 0.39 W 0.50 W 3 W

Standard
(IEEE) 802.15.4 802.15.4g 802.11

Application LP-WAN WAN LAN

3) High Speed Data Interfaces: In most satellites used
nowadays, the SpaceWire data interface is used; therefore, we
wanted to compare it with its alternatives to choose the best
for our design. As illustrated in Table IV, we can identify
that Ethernet has a higher data rate and speed than SpaceWire
and relatively the same power consumption rate; however,
SpaceWire is more developed in space, and it has a non-limited
packet size, but Ethernet’s minimum packet size is 64 bytes.

TABLE IV
HIGH SPEED DATA INTERFACES

Ethernet SpaceWire
Speed 10 Mbps to 400 Gbps 2 to 200 Mbps
Duplex Full-duplex Full-duplex
Links Point-to-point Point-to-point

Packet

- Ethernet frame contains
Preamble and SFD.

- Ethernet header contains
Source, Destination MAC
address and payload.

- Last field is CRC which
is used to detect the error.

- Minimum packet size is
64 bytes.

- A SpaceWire packet shall
comprise one or more data
characters followed by an
end of packet marker (EOP)
or error end of
packet marker (EEP).
- Packet size is not limited.

4) Power Interfaces: Another essential type of interfaces
besides the data interfaces is the power interfaces to success-
fully interfacing between our layers. Our design allows the
power regulation in different parts of each layer to provide
the highest level of modularity and flexibility in the design,
providing voltages that range from 3.3v up to 12v. Table V
shows what voltage ranges are included in every layer.

TABLE V
POWER INTERFACES

Power Interfaces
Layer 1 3.3v
Layer 2 3.3v
Layer 3 5v and 3.3v
Layer 4 12v, 5v, and 3.3v

B. System’s Prototype

For easy demonstration and representation of our concept,
we will consider discussing Layers 1, 2, and 3. Figure 2 shows
the individual modules of Layers 1, 2, and 3, while Figure 3
depicts the detailed hardware design of the Layers 1, 2, and 3
mounted over each other. The main components used for the
system’s prototype are discussed below:

1) Layer 1: As stated earlier, layer 1 is a micromodule
designed for a specific application. As illustrated in
Figure 3, we used the Xbee 3 TH module as an example
for technology demonstration purposes. The Xbee 3
modules are micromodules made by Digi that follow
the Zigbee protocol and are ideal for low-latency and
predictable communication timing applications. They
also provide quick, robust communication in point-to-
point, peer-to-peer, and multipoint/star configurations.
They are also supported by the MicroPython and Digi
XCTU software tools that simplify the process of
adding functionality, configuration, and testing, which
aligns with our goals mentioned in this paper.

2) Layer 2: This layer is mounted on layer 3 and provides
interfacing with layer 1. In this example, we added



female headers on the layer 2 modules to mount the
layer 1 module (Xbee 3 TH module) and use it as a
bridge between layer 1 and layer 3.

3) Layer 3: This layer is our On-Board Computer, contain-
ing the memories, connectors, and voltage regulators.
It also contains the connectors used to mount layer 2
and allows the OBC to be mounted on layer 4. In our
design, we choose the Bergstak Mezzanine Board-to-
Board connector to mount the layer 2 modules, as we
found that it is more reliable and provides better stability
for the board. Our layer 3 board’s connector provides the
following interfaces to allow further modularity:

TABLE VI
LAYER 3 INTERFACES

Number of interfaces
UART 4
I2C 3
SPI 3
CAN 2

As illustrated in Table VI, we have the following avail-
able interfaces that can be used when designing the layer
2 boards: four UART interfaces, three I2C interfaces,
three SPI interfaces, two CAN interfaces.

Fig. 2. The three separate layers used in the proposed design

Fig. 3. Implementation of the three layers of the modular design

IV. EXPERIMENTAL TESTING AND RESULTS

A. Experimental Testing

The system was tested, in order to verify the operations
of the all functional units and also the interfaces between
the respective modules. We started by testing the interfacing
between the layer 3 components, and we created a specific
code that automatically does a full health check for the
components. Figure 4 shows a practical demonstration of the
code.

Fig. 4. Part of Layer 3 full functional test

Next, we tested the interfacing between layers 1 and 2
using a connectivity test, and we proceeded towards testing
its interfacing with layer 3. Finally, we tested the interfacing
between the CDHS and other satellite systems, which proved



that the proposed modular system is fully functional and can
be tested in space.

V. CONCLUSION

To conclude, a modular Command and Data Handling
system is proposed to reduce the satellite development time
and expenses and satisfy the increasing demand for high-
performance computer systems on-board space missions ap-
plications. This system includes four layers, a board that
allows the usage of CDHS used in CubeSats in larger-scale
satellites, a board that can be used in CubeSats as the OBC,
a board that has SODIMM, Micro-DIMM or other high-speed
Mezzanine connectors usually either functions on its own or
provides interfacing with a smaller module that does a specific
function and it is considered as Layer 1. This paper also
highlights the interfacing options used in the proposed design,
including the regular command and data interfaces, wireless
command and data interfaces, high-speed data interfaces, and
power interfaces. We also discuss several examples of each of
the layers. The proposed system has been tested in different
settings, proving its efficiency and ease of use. It can be
deployed at a low cost, allowing for the development of a
modular Command and Data System that can be used in
different space applications.

ACKNOWLEDGMENT

The authors would like to thank the UAE Space Agency
for sponsoring this project.

REFERENCES

[1] Johl, Shaina. (2014). A Reusable Command and Data Handling System
for University CubeSat Missions.

[2] ”Space Plug-and-Play Avionics”, The Air Force Research Laboratory,
2021.

[3] M. Martin, D. Fronterhouse and J. Lyke, ”The Implementation of a Plug-
and-play Satellite Bus”, 22nd Annual AIAA/USU Conference on Small
Satellites, 2008.

[4] Modular Architecture for Robust Computation Session: SpaceWire On-
board Equipment and Software - Short Paper, Dr. O. Emam, T. Jorden
and R.Knowelden

[5] A. Senior, P. Ireland, S. D. Fowell, R. Ward, O. Emam and B.
Greene, ”MODULAR ARCHITECTURE FOR ROBUST COMPUTING
(MARC)”, 2008.

[6] Prisaznuk, P.J.. (1992). Integrated modular avionics. 1. 39 - 45 vol.1.
10.1109/NAECON.1992.220669.

[7] Silva, Cláudio & Cristóvão, João & Schoofs, Tobias. (2012). An I/O
Building Block for the IMA Space Reference Architecture.

[8] Vinogradov, Alexey & Yablokov, Evgeni & Yachnaya, Vale-
ria. (2019). Upgrade of Ethernet-SpaceWire Protocol. 486-492.
10.23919/FRUCT.2019.8711937.

[9] Cook, Barry & Walker, Paul. (2007). Ethernet over
SpaceWire—Hardware issues. Acta Astronautica. 61. 243-249.
10.1016/j.actaastro.2007.01.007.

[10] Zibayiwa, Morelife. (2021). A Review on The Inter-Processor Commu-
nication: I2C, UART, and SPI interfacing techniques.

[11] Shanthipriya, S. & Lakshmi, S.. (2017). Design and verification of
low speed peripheral subsystem supporting protocols like SPI, I2C and
UART. ARPN Journal of Engineering and Applied Sciences. 12. 7386-
7391.

[12] Rietz, S. & Schneider, B. & Bender, S. & Fischer, W.-J & Grätz,
H. & Heinig, Andreas. (1997). Multisensor signal processing with
CAN bus interface. Sensors and Actuators A: Physical. 62. 729-733.
10.1016/S0924-4247(97)01590-2.


