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Abstract— RC64 is a rad-hard manycore DSP combining 64 

VLIW/SIMD DSP cores, lock-free shared memory, a hardware 

scheduler and a task-based programming model. The hardware 

scheduler enables fast scheduling and allocation of fine grain 

tasks to all cores. Parallel programming is based on Tasks. 
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1. INTRODUCTION 

Multiple core architectures are divided into multi-cores and 

many-cores. Multi-cores, ranging from rad-hard Gaisler/ 

Ramon Chips’ LEON3FT dual-core GR712RC to 

commercial ARM Cortex A9 and Intel Xeon, typically 

provide some form of cache coherency and are designed to 

execute many unrelated processes, governed by an operating 

system such as Linux. In contrast, many-cores such as Tilera 

TilePro, Adapteva’s Epiphany, NVidia GPU, Intel Xeon Phi 

and Ramon Chips’ RC64, execute parallel programs 

specifically designed for them and avoid operating systems, 

in order to achieve higher performance and higher power-

efficiency. 

Many-core architectures come in different flavors: a two-

dimensional array of cores arranged around a mesh NoC 

(Tilera and Adapteva), GPUs and other manycores with 

clusters of cores (Kalray), and rings. This paper discusses the 

Plural architecture [12]—[16] of RC64 [17], in which many 

cores are interconnected to a many-port shared memory 

rather than to each other (Figure 1).  

 
Figure 1. RC64 Many-Core Architecture. 64 DSP 

cores, modem accelerators and multiple DMA 

controllers of I/O  interfaces access the multibank 

shared memory through a logarithmic network. The 

hardware scheduler dispatches fine grain tasks to 

cores, accelerators and I/O.  

Many cores also differ on their programming models, ranging 

from PRAM-like shared memory through CSP-like message-

passing to dataflow. Memory access and message passing 

also relate to data dependencies and synchronization—locks, 

bulk-synchronous patterns and rendezvous. RC64 

architecture employs a strict shared memory programming 

model. 

The last defining issue relates to task scheduling—allocating 

tasks to cores and handling task dependencies. Scheduling 

methods include static (compile time) scheduling, dynamic 

software scheduling, architecture-specific scheduling (e.g., 

for NoC), and hardware schedulers, as in RC64, in which data 
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dependencies are replaced by task dependencies in order to 

enhance performance and efficiency and to simplify 

programming. 

As a processor designed for operation in harsh space 

environment, RC64 is based on rad-hard technology and 

includes several mechanisms to enhance its fault tolerance, 

such as EDAC, and to handle fault detection, isolation and 

recovery (FDIR). 

2. RELATED WORK 

GR712RC, an early dual-core rad-hard space processor was 

introduced by Ramon Chips and Cobham Gaisler [1][2]. 

Other multi-core architectures, not intended for space, 

include ARM Cortex A9 [3] and Intel Xeon. Many core 

architectures include the mesh-tiled Tilera [4][5] and 

Adapteva [6], NVidia GPU [7], Intel ring-topology Xeon Phi 

[8] and dataflow clusters by Kalray [9]. The research XMT 

manycore [10] is PRAM-inspired and employs hardware 

scheduling, similar to RC64. It employs declarative 

parallelism to direct scheduling [11]. The Plural architecture 

and its RC64 incarnation are discussed in [12]—[17] and is 

the subject of the MacSpace European FP7 research project 

[18]. An early hardware scheduler is reported in [19]. The 

baseline multistage interconnection network has been 

introduced in [20]. Example of SDR modem implementation 

on RC64 and simulated performance results are given in [26]. 

Other efforts to introduce rad-hard manycores for space 

include the FPGA-based AppSTAR at Harris [22], Maestro 

at Boeing [23] and RADSPEED at BAE Systems [24]. 

3. RC64 ARCHITECTURE 

This section presents the Plural architecture of RC64 (Figure 

1). RC64 architecture defines a shared-memory single-chip 

many-core. The many-core consists of a hardware 

synchronization and scheduling unit, 64 DSP cores, and a 

shared on-chip memory accessible through a high-

performance logarithmic interconnection network. The cores 

contain instruction and data caches, as well as a private 

‘scratchpad’ memory. The data cache is flushed and 

invalidated by the end of each task execution, guaranteeing 

consistency of the shared memory. The cores are designed for 

low power operation using ‘slow clock’ (typically slower 

than 500 MHz). Performance is achieved by high level of 

parallelism rather than by sheer speed, and access to the on-

chip shared memory across the chip takes only a small 

number of cycles. 

The on-chip shared memory is organized in a large number 

of banks, to enable many ports that can be accessed in parallel 

by the many cores, via the network. To reduce collisions, 

addresses are interleaved over the banks. The cores are 

connected to the memory banks by a multi-stage many-to-

many interconnection network. The network detects access 

conflicts contending on the same memory bank, proceeds 

serving one of the requests and notifies the other cores to retry 

their access. The cores immediately retry a failed access. Two 

or more concurrent read requests from the same address are 

served by a single read operation and a multicast of the same 

value to all requesting cores. As explained in the next section, 

there is no need for any cache coherency mechanism. 

The CEVA X1643 DSP core comprises the following parts. 

The computation unit consists of four multiplier-

accumulators (MAC) of 16-bit fixed point data, supporting 

other precisions as well, and a register file. Ramon Chips has 

added a floating point MAC. The data addressing units 

includes two load-store modules and address calculation. The 

data memory unit consists of the data cache, AXI bus 

interface, write buffers for queuing write-through 

transactions and a scratchpad private memory. The program 

memory unit is the instruction cache. Other units support 

emulation and debug and mange power gating. Thus, the DSP 

core contains three memories: an instruction cache, a write-

through data cache and a scratchpad private memory. 

Implemented in 65nm CMOS and designed for operation at 

300 MHz, RC64 is planned to achieve 38 GFLOPS (single 

precision) and 76 GMAC (16-bit). With 12 high speed serial 

links operating at up to 5 Gbps in each direction, a total 

bandwidth of 120 Gbps is provided. Additional high 

bandwidth is enabled for memories (25 Gbps DDR3 interface 

of 32 bit at 800 Mword/s with additional 16 bits for ECC) and 

for high performance ADC and DAC (38 Gbps over 48 

LVDS channels of 800 Mbps). The device is planned to 

dissipate less than 10 Watt in either CCGA or PBGA 624 

column or ball grid array packages. 

4. RC64 PROGRAMMING MODEL 

The Plural PRAM-like programming model of RC64 is based 

on non-preemptive execution of multiple sequential tasks. 

The programmer defines the tasks, as well as their 

dependencies and priorities which are specified by a 

(directed) task graph. Tasks are executed by cores and the 

task graph is ‘executed’ by the scheduler.  

In the Plural shared-memory programming model, 

concurrent tasks cannot communicate. A group of tasks that 

are allowed to execute in parallel may share read-only data 

but they cannot share data that is written by any one of them. 

If one task must write into a shared data variable and another 

task must read that data, then they are dependent—the writing 

task must complete before the reading task may commence. 

That dependency is specified as a directed edge in the task 

graph, and enforced by the hardware scheduler. Tasks that do 

not write-share data are defined as independent, and may 

execute concurrently. Concurrent execution does not 

necessarily happens at the same time—concurrent tasks may 

execute together or at any order, as determined by the 

scheduler. 

Some tasks, typically amenable to independent data 

parallelism, may be duplicable, accompanied by a quota that 

determines the number of instances that should be executed 
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(declared parallelism [11]). All instances of the same 

duplicable task are mutually independent (they do not write-

share any data) and concurrent, and hence they may be 

executed in parallel or in any arbitrary order. These instances 

are distinguishable from each other merely by their instance 

number. Ideally, their execution time is short (fine 

granularity). Concurrent instances can be scheduled for 

execution at any (arbitrary) order, and no priority is 

associated with instances. 

Each task progresses through at most four states (Figure 2). 

Tasks without predecessors (enabled at the beginning of 

program execution) start in the ready state. Tasks that depend 

on predecessor tasks start in the pending state. Once all 

predecessors to a task have completed, the task becomes 

ready and the scheduler may schedule its instances for 

execution and allocate (dispatch) the instances to cores. Once 

all instances of a task have been allocated, the task is All 

allocated. And once all its instances have terminated, the task 

moves into the terminated state (possibly enabling successor 

tasks to become ready). 

Terminated
All

Allocated
ReadyPending

 
Figure 2. Task State Graph 

Many-flow pipelining facilitates enhanced core utilization in 

streamed signal processing. Consider the task graph 

examples for executing JPEG2000 image compression and 

the processor utilization charts of Figure 3. In (a), five tasks 

A-E are scheduled in sequence. Tasks B and D are duplicable 

with a large number of instances, enabling efficient 

utilization of 64 cores. Tasks A,C,E, on the other hand, are 

sequential. Execution time of compressing one image is 160 

time units, and overall utilization, reflected by the ratio of 

colored area to the 64×160 rectangle, is 65%. The core 

utilization chart (on the right) indicates the number of busy 

cores over time, and different colors represent different tasks. 

In the many-flow task graph (Figure 3b), a pipeline of seven 

images is processed. During one iteration, say iteration k, the 

output stage sends compressed image k, task E processes 

image k+1, task D computes the data of image k+2, and so 

on. Notice that the sequential tasks A,C,E are allocated first 

in each iteration, and duplicable instances occupy the 

remaining cores. A single iteration takes 95 time units and the 

latency of a single image is extended to five iterations, but the 

throughput is enhanced and the core utilization chart now 

demonstrates 99% core utilization. 

Data dependencies are expressed (by the programmer) as task 

dependencies. For instance, if a variable is written by task tw 

and must later be read, then reading must occur in a group of 

tasks {tr} and tw→{tr}. The synchronization action of 

completion of tw prior to any execution of tasks {tr} provides 

the needed barrier. 

 
Figure 3. Many-flow pipelining: (a) task graph and 

single execution of an image compression program, (b) 

many-flow task graph and its pipelined execution 

5. RC64 HARDWARE SCHEDULER 

The hardware scheduler assigns tasks to cores for execution. 

The scheduler maintains two data structures, one for 

managing cores (Figure 4) and the other for managing tasks 

(Figure 5). Core and task state graphs are shown in Figure 6 

and Figure 2, respectively. 

The hardware scheduler operates as follows. At start, all cores 

are listed as Idle and the task graph is loaded into the first 

three columns of the Task Management Table. The scheduler 

loops forever over its computation cycle. On each cycle, the 

scheduler performs two activities: allocating tasks for 

execution, and handling task completions.  

 

Core # State Task # Instance # … … 

0      

1      

2      

…      

Figure 4. Core Management Table 

 

Task # 
Duplication 

quota 
Dependencies State 

# 

allocated 

instances 

# 

terminated 

instances 

0      

1      

2      

…      

data from task graph    

Figure 5. Task Management Table 
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BusyIdle

 
Figure 6. Core State Graph 

To allocate tasks, the scheduler first selects ready tasks from 

the Task Management Table. It allocates each such task to 

idle cores by changing the task state to All Allocated (if the 

task is regular, or if all duplicable instances have been 

dispatched), by increasing the count of allocated instances in 

the Task Management Table, and by noting the task number 

(and instance number, for duplicable tasks) in the Core 

Management Table. Finally, task/instance activation 

messages are dispatched to the relevant cores. The activation 

message for a specific core includes the code entry address 

and (in case of a duplicable instance) the instance ID number. 

To handle task completions, the scheduler collects 

termination messages from cores that have completed task 

executions. It changes the state of those cores to Idle. For 

regular tasks, the task state is changed to Terminated. For 

duplicable tasks, the counter of terminated tasks in the Task 

Management Table is incremented, and if it has reached the 

quota value then the state of that task is changed to 

Terminated. Next, the scheduler updates the Dependencies 

entry of each task in the table which depends on the 

terminated task: the arrival of that token is noted, the 

dependency condition is recomputed, and if all precedencies 

of any task have been fulfilled then the state of that task is 

changed to Ready, enabling allocation and dispatch in 

subsequent scheduler computation cycles. 

The scheduler capacity, namely the number of simultaneous 

tasks which the scheduler is able to allocate or terminate 

during each computation cycle, is limited. Any additional 

task allocations and task termination messages beyond 

scheduler capacity wait for subsequent cycles in order to be 

processed. A core remains idle from the time it issues a 

termination message until the next task allocation arrives. 

That idle time comprises not only the delay at the scheduler 

(wait and processing times) but also any transmission latency 

of the termination and allocation messages over the 

scheduler-to-cores network.  

The allocation and termination algorithms are shown in 

Figure 7. 

Scheduling efficiency depends on the ratio of scheduling 

latency (reflected in idle time of cores) to task execution time. 

Extremely fine grain tasks (e.g., those executing for 1~100 

cycles) call for very short scheduling latencies (down to zero 

cycles) to be efficient. Alternatively, speculative advanced 

scheduling may fill queues attached to each core so that the 

core can start executing a new instance once it has completed 

a previous instance (see [16] for such an analysis). However, 

typical tasks tend to incur compiled overhead (prologue and 

epilogue code sequences generated by even the most efficient 

optimizing compilers), and typical programming practices of 

parallel tasks tend to avoid the shortest tasks, resulting in 

average task duration exceeding 100 cycles. With average 

scheduling latency of only 10-20 cycles, enabled by hardware 

implementation, we obtain execution efficiency close to 99%. 

The hardware scheduler is implemented as custom logic in 

RC64. Two other possibilities will be considered in future 

generations, one based on two content-addressable memory 

(CAM) arrays implementing the two management tables, and 

another implementation as software executing on a dedicated 

fast core with its dedicated high throughput memory. 

 

 
Figure 7. Allocation (top) and termination (bottom) 

algorithms 

A special section of the scheduler schedules High Priority 

Tasks (HPTs), which are designed as ‘interrupt handling 

routines’ to handle hardware interrupts. As explained in 

Section 7, all I/O interfaces (including interfaces to 

accelerators) are based on DMA controllers that issue 

interrupts once completing their action. The most urgent 

portion of handling the interrupt is packaged as a HPT, and 

less urgent parts are formulated as a normal task. HPT is 

dispatched immediately and pre-emptively by the scheduler. 

Each core may execute one HPT, and one HPT does not pre-

empt another HPT. Thus, a maximum of 64 HPTs may 

execute simultaneously. RC64 defines fewer than 64 

different HPTs, and thus there is no shortage of processors 

for prompt invocation of HPTs. 

ALLOCATION 

1. Choose a Ready task (according to priority, if 

specified) 

2. While there is still enough scheduler capacity and 

there are still Idle cores 

a. Identify an Idle core 

b. Allocate an instance to that core  

c. Increase counter of allocated task instances  

d. If # allocated instances == quota, change 

task state to All Allocated and continue to 

next task (step 1)  

e. Else, continue to next instance of same task 

(step 2) 

TERMINATION 

1. Choose a core which has sent a termination message 

2. While there is still enough scheduler capacity 

a. Change core state to Idle 

b. Increment # terminated instances  

c. If # terminated instances == quota, change 

task state to Terminated 

d. Recompute dependencies for all other 

tasks that depend on the terminated task, 

and where relevant change their state to 

Ready 
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6. RC64 NETWORKS ON CHIP 

RC64 contains two specialized Networks on Chip (NOCs), 

one connecting the scheduler to all cores and other 

schedulable entities (DMA controllers and accelerators), and 

a second NOC connecting all cores and other data sources 

(DMA controllers) to the shared memory. 

Scheduler NOC 

The scheduler-to-cores NOC employs a tree topology. That 

NOC off-loads two distributed functions from the scheduler, 

task allocation and task termination. 

The distributed task allocation function receives clustered 

task allocation messages from the scheduler. In particular, a 

task allocation message related to a duplicable task specifies 

the task entry address and a range of instance numbers that 

should be dispatched. The NOC partitions such a clustered 

message into new messages specifying the same task entry 

address and sub-range of instance numbers, so that the sub-

ranges of any two new messages are mutually exclusive and 

the union of all new messages covers the same range of 

instance numbers as the original message. The NOC nodes 

maintain Core and Task Management Tables which are 

subsets of those tables in the scheduler (Figure 4 and Figure 

5, respectively), to enable making these distributed decisions. 

The distributed task termination process complements task 

allocations. Upon receiving instance terminations from cores 

or subordinate nodes, a NOC node combine the messages and 

forwards a more succinct message specifying ranges of 

completed tasks. 

Shared Memory NOC 

The larger NOC of RC64 connects 64 cores, tens of DMA 

controllers and hardware accelerators to 256 banks of the 

shared memory. To simplify layout, floor-planning and 

routing, we employ a Baseline logarithmic-depth multistage 

interconnection network [20], symbolically drawn in Figure 

1. Some of the NOC switch stages are combinational, while 

others employ registers and operate in a pipeline. Two 

separate networks are used, one for reading and another one 

for writing. The read networks accesses and transfers 16 

bytes (128 bits) in parallel, matching cache line size and 

serving cache fetch in a single operation. The write network 

is limited to 32 bits, compatible with the write-through 

mechanism employed in the DSP cores. Writing smaller 

formats (16 and 8 bits) is also allowed. 

7. RC64 ACCELERATORS AND I/O  

Certain operations cannot be performed efficiently on 

programmable cores. Typical examples require bit level 

manipulations that are not provided for by the instruction set, 

such as used for error correction (LDPC, Turbo code, BCH, 

etc.) and for encryption. RC64 offers two solutions. First, 

several accelerators for pre-determined computations (such 

as LDPC and Turbo Coding, useful in DVB-S2 and DVB-

RCS for space telecommunications) are included on chip. 

They are accessible only through shared memory, as follows. 

First, the data to be processed by the accelerator are deposited 

in shared memory. Next, the accelerator is invoked. Data is 

fetched to the accelerator by a dedicated DMA controller, and 

the outcome is sent back to shared memory by a 

complementing second DMA controller. This mode of 

operation decouples the accelerator from the cores and 

eliminates busy waiting of cores. 

The second possibility is to employ an external acceleration 

on either an FPGA or an ASIC. High speed serial links on 

RC64 enable efficient utilization of such external 

acceleration. This mode offers scalability and extendibility to 

RC64. 

All input / output interfaces operate asynchronously to the 

cores. Each interface is managed by one DMA controller for 

input and a second DMA controller for output. Many 

different types of I/O interfaces are available in RC64, 

including slow GPIO and SpaceWire links, high rate 

DDR2/DDR3 and ONFI flash EDAC memory interfaces 

(error detection and correction is carried out at the I/O 

interfaces, offloading that compute load from the cores), high 

speed serial links (implementing SpaceFibre [25], serial 

Rapid IO and proprietary protocols) and 48-link LVDS port 

useful for ADCs, DACs and other custom interfaces. 

All DMA controllers are scheduled by the scheduler, submit 

interrupt signals to the scheduler (as explained in Section 5 

above), and read and write data directly to the shared memory 

through the NOC (see Section 6 above). The system software 

required for managing I/O is described in Section 8 below. 

8. RC64 SYSTEM SOFTWARE 

The system run-time software stack is shown schematically 

in Figure 8. The boot sequence library is based on the boot 

code of the DSP core. It is modified to enable execution by 

many cores in parallel. Only one of the cores performs the 

shared memory content initialization. The boot code includes 

DSP core self-test, cache clearing, memory protection 

configuration and execution status notification to an external 

controlling host.  

The Runtime Kernel (RTK) performs the scheduling function 

for the DSP core. It interacts with the hardware scheduler, 

receives task allocation details, launches the task code and 

responds with task termination when the task is finished. The 

RTK also initiates the power down sequence when no task is 

received for execution. 

The first task allocated by the scheduler is responsible for 

loading the application task graph into the scheduler. This 

code is automatically generated during a pre-compile stage 

according to the task graph definition. Application tasks are 

allocated after the initialization task is finished. 
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Certain library routines manage EDAC for memories, 

encapsulate messaging and routing services to off-chip 

networking (especially over high speed serial SpaceFibre 

links), respond to commands received from an external host 

(or one of the on-chip cores, playing the role of a host), 

perform FDIR functions, and offer some level of 

virtualization when multiple RC64 chips are employed in 

concert to execute coordinated missions. 

 

 

Figure 8. RC64 Run Time Software. The kernel enables 

boot, initialization, task processing and I/O. Other 

services include execution of host commands, 

networking and routing, error correction and 

management of applications distributed over multiple 

RC64 chips 

Other components of the RTK manage I/O and accelerators. 

Configuring the interfaces requires special sequences such as 

link detection and activation, clock enabling, DMA 

configuration, etc. Each interface has its own set of 

parameters according to the required connectivity, storage 

type, data rate and so on. 

Figure 9 demonstrate the hardware-kernel-application 

sequence of events in the case of an input of a predefined data 

unit over a stream input link. The DMA controller, previously 

scheduled, stores input data into a pre-allocated buffer in 

memory (step 1). Upon completion, it issues an interrupt (step 

2). A HPT is invoked (step 3, see Section 5) and stores 

pointers and status in shared memory, effectively enqueuing 

the new arrival (step 4). It ends up by issuing a ‘software 

event’ to the scheduler (step 5). Eventually, the scheduler 

dispatches a task that has been waiting for that event (step 6). 

That task can consume the data and then dequeue it, releasing 

the storage where the data was stored (step 7). Other I/O 

operations are conducted similarly. 

 

 

Figure 9. Event sequence performing stream input 

9. RC64 SOFTWARE DEVELOPMENT TOOLS 

RC64 SDK enables software development, debug and tuning, 

as shown in Figure 10. The IDE tool chain includes a C/C++ 

compiler for the DSP core, an assembler, a linker, and a 

library of DSP functions customized for the core, taking full 

advantage of its VLIW capability (computing and moving 

data at the same time) and SIMD (performing several 

multiply and accumulate operations in parallel). 

RC64 Parallel programming is supported by the task 

compiler, which translates the task graph for the scheduler, a 

many-task emulator (MTE) that enables efficient 

development of parallel codes on personal computers, and a 

many-core debugger, which synchronizes debug operations 

of all cores. The RC64 parallel simulator is cycle accurate, 

fully simulating the cores as well as all other hardware 

components on the chip. 

The profiler provides complete record of parallel execution 

on all 64 cores. The event recorder generates traces with time 

stamps of desired events. The kernel and libraries are 

described in Section 8 above. 

10. RC64 RADIATION HARDNESS AND FDIR 

RC64 will be implemented in 65nm CMOS using RadSafe™ 

rad-hard-by-design (RHBD) technology and library [21]. 

RadSafe™ is designed for a wide range of space missions, 

enabling TID tolerance to 300 kRad(Si), no latchup and very 

low SEU rate. All memories on chip are protected by various 

means and varying levels of error correction and detection. 

Special protection is designed for registers that hold data for 

extended time, such as configuration registers. The two 

external memory interfaces, to DDR2/DDR3 and to ONFI 

flash memories, implement several types of EDAC. For 

instance, ten flash memory chips can be connected for eight 

byte wide datapath and two flash devices for storing Reed 

Solomon ECC. 
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Figure 10. RC64 Software Development Kit.  

RC64 implements extensive means for fault detection, 

isolation and recovery (FDIR). An external host can reset, 

boot and scrub the device through dual RMAP SpaceWire 

ports. RC64 contains numerous error counters and monitors 

that collect and report error statistics. Trace buffers, allocated 

in shared memory as desired, enable rollback and analysis (in 

addition to helping debug). Faulty sub-systems may be shut 

down and the scheduler is designed to operate with partial 

configurations.  

11. CONCLUSIONS 

RC64 is a many core architecture suitable for use in space. It 

is designed for simplified PRAM-like shared memory 

programming and high performance at low power. RC64 goal 

is to enable future software-defined satellites in all space 

endeavors. RC64 is presently under design and all 

performance figures reported herein and in [26] are based on 

simulations. RC64 is planned for availability before the end 

of the decade. RC64 R&D project is funded by Israel Space 

Agency and by the European Union. 
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