
 1

Task Oriented Programming for the RC64 Manycore DSP

Ran Ginosar and Peleg Aviely

Ramon.Space, Ltd., 5 HaCarmel Street, Yoqneam Illit 2069201, Israel

[ran, peleg]@ramon.space

Abstract— RC64 is a rad-hard manycore DSP combining 64

VLIW/SIMD DSP cores, lock-free shared memory, a hardware

scheduler and a task-based programming model. The hardware

scheduler enables fast scheduling and allocation of fine grain

tasks to all cores. Parallel programming is based on Tasks.

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. RELATED WORK .. 2

3. RC64 ARCHITECTURE 2

4. RC64 PROGRAMMING MODEL 2

5. RC64 HARDWARE SCHEDULER..................... 3

6. RC64 NETWORKS ON CHIP 5

7. RC64 ACCELERATORS AND I/O 5

8. RC64 SYSTEM SOFTWARE 5

9. RC64 SOFTWARE DEVELOPMENT TOOLS 6

10. RC64 RADIATION HARDNESS AND FDIR 6

11. CONCLUSIONS ... 7

ACKNOWLEDGEMENTS 7

REFERENCES ... 7

BIOGRAPHY ERROR! BOOKMARK NOT DEFINED.

1. INTRODUCTION

Multiple core architectures are divided into multi-cores and

many-cores. Multi-cores, ranging from rad-hard Gaisler/

Ramon Chips’ LEON3FT dual-core GR712RC to

commercial ARM Cortex A9 and Intel Xeon, typically

provide some form of cache coherency and are designed to

execute many unrelated processes, governed by an operating

system such as Linux. In contrast, many-cores such as Tilera

TilePro, Adapteva’s Epiphany, NVidia GPU, Intel Xeon Phi

and Ramon Chips’ RC64, execute parallel programs

specifically designed for them and avoid operating systems,

in order to achieve higher performance and higher power-

efficiency.

Many-core architectures come in different flavors: a two-

dimensional array of cores arranged around a mesh NoC

(Tilera and Adapteva), GPUs and other manycores with

clusters of cores (Kalray), and rings. This paper discusses the

Plural architecture [12]—[16] of RC64 [17], in which many

cores are interconnected to a many-port shared memory

rather than to each other (Figure 1).

Figure 1. RC64 Many-Core Architecture. 64 DSP

cores, modem accelerators and multiple DMA

controllers of I/O interfaces access the multibank

shared memory through a logarithmic network. The

hardware scheduler dispatches fine grain tasks to

cores, accelerators and I/O.

Many cores also differ on their programming models, ranging

from PRAM-like shared memory through CSP-like message-

passing to dataflow. Memory access and message passing

also relate to data dependencies and synchronization—locks,

bulk-synchronous patterns and rendezvous. RC64

architecture employs a strict shared memory programming

model.

The last defining issue relates to task scheduling—allocating

tasks to cores and handling task dependencies. Scheduling

methods include static (compile time) scheduling, dynamic

software scheduling, architecture-specific scheduling (e.g.,

for NoC), and hardware schedulers, as in RC64, in which data

 2

dependencies are replaced by task dependencies in order to

enhance performance and efficiency and to simplify

programming.

As a processor designed for operation in harsh space

environment, RC64 is based on rad-hard technology and

includes several mechanisms to enhance its fault tolerance,

such as EDAC, and to handle fault detection, isolation and

recovery (FDIR).

2. RELATED WORK

GR712RC, an early dual-core rad-hard space processor was

introduced by Ramon Chips and Cobham Gaisler [1][2].

Other multi-core architectures, not intended for space,

include ARM Cortex A9 [3] and Intel Xeon. Many core

architectures include the mesh-tiled Tilera [4][5] and

Adapteva [6], NVidia GPU [7], Intel ring-topology Xeon Phi

[8] and dataflow clusters by Kalray [9]. The research XMT

manycore [10] is PRAM-inspired and employs hardware

scheduling, similar to RC64. It employs declarative

parallelism to direct scheduling [11]. The Plural architecture

and its RC64 incarnation are discussed in [12]—[17] and is

the subject of the MacSpace European FP7 research project

[18]. An early hardware scheduler is reported in [19]. The

baseline multistage interconnection network has been

introduced in [20]. Example of SDR modem implementation

on RC64 and simulated performance results are given in [26].

Other efforts to introduce rad-hard manycores for space

include the FPGA-based AppSTAR at Harris [22], Maestro

at Boeing [23] and RADSPEED at BAE Systems [24].

3. RC64 ARCHITECTURE

This section presents the Plural architecture of RC64 (Figure

1). RC64 architecture defines a shared-memory single-chip

many-core. The many-core consists of a hardware

synchronization and scheduling unit, 64 DSP cores, and a

shared on-chip memory accessible through a high-

performance logarithmic interconnection network. The cores

contain instruction and data caches, as well as a private

‘scratchpad’ memory. The data cache is flushed and

invalidated by the end of each task execution, guaranteeing

consistency of the shared memory. The cores are designed for

low power operation using ‘slow clock’ (typically slower

than 500 MHz). Performance is achieved by high level of

parallelism rather than by sheer speed, and access to the on-

chip shared memory across the chip takes only a small

number of cycles.

The on-chip shared memory is organized in a large number

of banks, to enable many ports that can be accessed in parallel

by the many cores, via the network. To reduce collisions,

addresses are interleaved over the banks. The cores are

connected to the memory banks by a multi-stage many-to-

many interconnection network. The network detects access

conflicts contending on the same memory bank, proceeds

serving one of the requests and notifies the other cores to retry

their access. The cores immediately retry a failed access. Two

or more concurrent read requests from the same address are

served by a single read operation and a multicast of the same

value to all requesting cores. As explained in the next section,

there is no need for any cache coherency mechanism.

The CEVA X1643 DSP core comprises the following parts.

The computation unit consists of four multiplier-

accumulators (MAC) of 16-bit fixed point data, supporting

other precisions as well, and a register file. Ramon Chips has

added a floating point MAC. The data addressing units

includes two load-store modules and address calculation. The

data memory unit consists of the data cache, AXI bus

interface, write buffers for queuing write-through

transactions and a scratchpad private memory. The program

memory unit is the instruction cache. Other units support

emulation and debug and mange power gating. Thus, the DSP

core contains three memories: an instruction cache, a write-

through data cache and a scratchpad private memory.

Implemented in 65nm CMOS and designed for operation at

300 MHz, RC64 is planned to achieve 38 GFLOPS (single

precision) and 76 GMAC (16-bit). With 12 high speed serial

links operating at up to 5 Gbps in each direction, a total

bandwidth of 120 Gbps is provided. Additional high

bandwidth is enabled for memories (25 Gbps DDR3 interface

of 32 bit at 800 Mword/s with additional 16 bits for ECC) and

for high performance ADC and DAC (38 Gbps over 48

LVDS channels of 800 Mbps). The device is planned to

dissipate less than 10 Watt in either CCGA or PBGA 624

column or ball grid array packages.

4. RC64 PROGRAMMING MODEL

The Plural PRAM-like programming model of RC64 is based

on non-preemptive execution of multiple sequential tasks.

The programmer defines the tasks, as well as their

dependencies and priorities which are specified by a

(directed) task graph. Tasks are executed by cores and the

task graph is ‘executed’ by the scheduler.

In the Plural shared-memory programming model,

concurrent tasks cannot communicate. A group of tasks that

are allowed to execute in parallel may share read-only data

but they cannot share data that is written by any one of them.

If one task must write into a shared data variable and another

task must read that data, then they are dependent—the writing

task must complete before the reading task may commence.

That dependency is specified as a directed edge in the task

graph, and enforced by the hardware scheduler. Tasks that do

not write-share data are defined as independent, and may

execute concurrently. Concurrent execution does not

necessarily happens at the same time—concurrent tasks may

execute together or at any order, as determined by the

scheduler.

Some tasks, typically amenable to independent data

parallelism, may be duplicable, accompanied by a quota that

determines the number of instances that should be executed

 3

(declared parallelism [11]). All instances of the same

duplicable task are mutually independent (they do not write-

share any data) and concurrent, and hence they may be

executed in parallel or in any arbitrary order. These instances

are distinguishable from each other merely by their instance

number. Ideally, their execution time is short (fine

granularity). Concurrent instances can be scheduled for

execution at any (arbitrary) order, and no priority is

associated with instances.

Each task progresses through at most four states (Figure 2).

Tasks without predecessors (enabled at the beginning of

program execution) start in the ready state. Tasks that depend

on predecessor tasks start in the pending state. Once all

predecessors to a task have completed, the task becomes

ready and the scheduler may schedule its instances for

execution and allocate (dispatch) the instances to cores. Once

all instances of a task have been allocated, the task is All

allocated. And once all its instances have terminated, the task

moves into the terminated state (possibly enabling successor

tasks to become ready).

Terminated
All

Allocated
ReadyPending

Figure 2. Task State Graph

Many-flow pipelining facilitates enhanced core utilization in

streamed signal processing. Consider the task graph

examples for executing JPEG2000 image compression and

the processor utilization charts of Figure 3. In (a), five tasks

A-E are scheduled in sequence. Tasks B and D are duplicable

with a large number of instances, enabling efficient

utilization of 64 cores. Tasks A,C,E, on the other hand, are

sequential. Execution time of compressing one image is 160

time units, and overall utilization, reflected by the ratio of

colored area to the 64×160 rectangle, is 65%. The core

utilization chart (on the right) indicates the number of busy

cores over time, and different colors represent different tasks.

In the many-flow task graph (Figure 3b), a pipeline of seven

images is processed. During one iteration, say iteration k, the

output stage sends compressed image k, task E processes

image k+1, task D computes the data of image k+2, and so

on. Notice that the sequential tasks A,C,E are allocated first

in each iteration, and duplicable instances occupy the

remaining cores. A single iteration takes 95 time units and the

latency of a single image is extended to five iterations, but the

throughput is enhanced and the core utilization chart now

demonstrates 99% core utilization.

Data dependencies are expressed (by the programmer) as task

dependencies. For instance, if a variable is written by task tw

and must later be read, then reading must occur in a group of

tasks {tr} and tw→{tr}. The synchronization action of

completion of tw prior to any execution of tasks {tr} provides

the needed barrier.

Figure 3. Many-flow pipelining: (a) task graph and

single execution of an image compression program, (b)

many-flow task graph and its pipelined execution

5. RC64 HARDWARE SCHEDULER

The hardware scheduler assigns tasks to cores for execution.

The scheduler maintains two data structures, one for

managing cores (Figure 4) and the other for managing tasks

(Figure 5). Core and task state graphs are shown in Figure 6

and Figure 2, respectively.

The hardware scheduler operates as follows. At start, all cores

are listed as Idle and the task graph is loaded into the first

three columns of the Task Management Table. The scheduler

loops forever over its computation cycle. On each cycle, the

scheduler performs two activities: allocating tasks for

execution, and handling task completions.

Core # State Task # Instance # … …

0

1

2

…

Figure 4. Core Management Table

Task #
Duplication

quota
Dependencies State

allocated

instances

terminated

instances

0

1

2

…

data from task graph

Figure 5. Task Management Table

 4

BusyIdle

Figure 6. Core State Graph

To allocate tasks, the scheduler first selects ready tasks from

the Task Management Table. It allocates each such task to

idle cores by changing the task state to All Allocated (if the

task is regular, or if all duplicable instances have been

dispatched), by increasing the count of allocated instances in

the Task Management Table, and by noting the task number

(and instance number, for duplicable tasks) in the Core

Management Table. Finally, task/instance activation

messages are dispatched to the relevant cores. The activation

message for a specific core includes the code entry address

and (in case of a duplicable instance) the instance ID number.

To handle task completions, the scheduler collects

termination messages from cores that have completed task

executions. It changes the state of those cores to Idle. For

regular tasks, the task state is changed to Terminated. For

duplicable tasks, the counter of terminated tasks in the Task

Management Table is incremented, and if it has reached the

quota value then the state of that task is changed to

Terminated. Next, the scheduler updates the Dependencies

entry of each task in the table which depends on the

terminated task: the arrival of that token is noted, the

dependency condition is recomputed, and if all precedencies

of any task have been fulfilled then the state of that task is

changed to Ready, enabling allocation and dispatch in

subsequent scheduler computation cycles.

The scheduler capacity, namely the number of simultaneous

tasks which the scheduler is able to allocate or terminate

during each computation cycle, is limited. Any additional

task allocations and task termination messages beyond

scheduler capacity wait for subsequent cycles in order to be

processed. A core remains idle from the time it issues a

termination message until the next task allocation arrives.

That idle time comprises not only the delay at the scheduler

(wait and processing times) but also any transmission latency

of the termination and allocation messages over the

scheduler-to-cores network.

The allocation and termination algorithms are shown in

Figure 7.

Scheduling efficiency depends on the ratio of scheduling

latency (reflected in idle time of cores) to task execution time.

Extremely fine grain tasks (e.g., those executing for 1~100

cycles) call for very short scheduling latencies (down to zero

cycles) to be efficient. Alternatively, speculative advanced

scheduling may fill queues attached to each core so that the

core can start executing a new instance once it has completed

a previous instance (see [16] for such an analysis). However,

typical tasks tend to incur compiled overhead (prologue and

epilogue code sequences generated by even the most efficient

optimizing compilers), and typical programming practices of

parallel tasks tend to avoid the shortest tasks, resulting in

average task duration exceeding 100 cycles. With average

scheduling latency of only 10-20 cycles, enabled by hardware

implementation, we obtain execution efficiency close to 99%.

The hardware scheduler is implemented as custom logic in

RC64. Two other possibilities will be considered in future

generations, one based on two content-addressable memory

(CAM) arrays implementing the two management tables, and

another implementation as software executing on a dedicated

fast core with its dedicated high throughput memory.

Figure 7. Allocation (top) and termination (bottom)

algorithms

A special section of the scheduler schedules High Priority

Tasks (HPTs), which are designed as ‘interrupt handling

routines’ to handle hardware interrupts. As explained in

Section 7, all I/O interfaces (including interfaces to

accelerators) are based on DMA controllers that issue

interrupts once completing their action. The most urgent

portion of handling the interrupt is packaged as a HPT, and

less urgent parts are formulated as a normal task. HPT is

dispatched immediately and pre-emptively by the scheduler.

Each core may execute one HPT, and one HPT does not pre-

empt another HPT. Thus, a maximum of 64 HPTs may

execute simultaneously. RC64 defines fewer than 64

different HPTs, and thus there is no shortage of processors

for prompt invocation of HPTs.

ALLOCATION

1. Choose a Ready task (according to priority, if

specified)

2. While there is still enough scheduler capacity and

there are still Idle cores

a. Identify an Idle core

b. Allocate an instance to that core

c. Increase counter of allocated task instances

d. If # allocated instances == quota, change

task state to All Allocated and continue to

next task (step 1)

e. Else, continue to next instance of same task

(step 2)

TERMINATION

1. Choose a core which has sent a termination message

2. While there is still enough scheduler capacity

a. Change core state to Idle

b. Increment # terminated instances

c. If # terminated instances == quota, change

task state to Terminated

d. Recompute dependencies for all other

tasks that depend on the terminated task,

and where relevant change their state to

Ready

 5

6. RC64 NETWORKS ON CHIP

RC64 contains two specialized Networks on Chip (NOCs),

one connecting the scheduler to all cores and other

schedulable entities (DMA controllers and accelerators), and

a second NOC connecting all cores and other data sources

(DMA controllers) to the shared memory.

Scheduler NOC

The scheduler-to-cores NOC employs a tree topology. That

NOC off-loads two distributed functions from the scheduler,

task allocation and task termination.

The distributed task allocation function receives clustered

task allocation messages from the scheduler. In particular, a

task allocation message related to a duplicable task specifies

the task entry address and a range of instance numbers that

should be dispatched. The NOC partitions such a clustered

message into new messages specifying the same task entry

address and sub-range of instance numbers, so that the sub-

ranges of any two new messages are mutually exclusive and

the union of all new messages covers the same range of

instance numbers as the original message. The NOC nodes

maintain Core and Task Management Tables which are

subsets of those tables in the scheduler (Figure 4 and Figure

5, respectively), to enable making these distributed decisions.

The distributed task termination process complements task

allocations. Upon receiving instance terminations from cores

or subordinate nodes, a NOC node combine the messages and

forwards a more succinct message specifying ranges of

completed tasks.

Shared Memory NOC

The larger NOC of RC64 connects 64 cores, tens of DMA

controllers and hardware accelerators to 256 banks of the

shared memory. To simplify layout, floor-planning and

routing, we employ a Baseline logarithmic-depth multistage

interconnection network [20], symbolically drawn in Figure

1. Some of the NOC switch stages are combinational, while

others employ registers and operate in a pipeline. Two

separate networks are used, one for reading and another one

for writing. The read networks accesses and transfers 16

bytes (128 bits) in parallel, matching cache line size and

serving cache fetch in a single operation. The write network

is limited to 32 bits, compatible with the write-through

mechanism employed in the DSP cores. Writing smaller

formats (16 and 8 bits) is also allowed.

7. RC64 ACCELERATORS AND I/O

Certain operations cannot be performed efficiently on

programmable cores. Typical examples require bit level

manipulations that are not provided for by the instruction set,

such as used for error correction (LDPC, Turbo code, BCH,

etc.) and for encryption. RC64 offers two solutions. First,

several accelerators for pre-determined computations (such

as LDPC and Turbo Coding, useful in DVB-S2 and DVB-

RCS for space telecommunications) are included on chip.

They are accessible only through shared memory, as follows.

First, the data to be processed by the accelerator are deposited

in shared memory. Next, the accelerator is invoked. Data is

fetched to the accelerator by a dedicated DMA controller, and

the outcome is sent back to shared memory by a

complementing second DMA controller. This mode of

operation decouples the accelerator from the cores and

eliminates busy waiting of cores.

The second possibility is to employ an external acceleration

on either an FPGA or an ASIC. High speed serial links on

RC64 enable efficient utilization of such external

acceleration. This mode offers scalability and extendibility to

RC64.

All input / output interfaces operate asynchronously to the

cores. Each interface is managed by one DMA controller for

input and a second DMA controller for output. Many

different types of I/O interfaces are available in RC64,

including slow GPIO and SpaceWire links, high rate

DDR2/DDR3 and ONFI flash EDAC memory interfaces

(error detection and correction is carried out at the I/O

interfaces, offloading that compute load from the cores), high

speed serial links (implementing SpaceFibre [25], serial

Rapid IO and proprietary protocols) and 48-link LVDS port

useful for ADCs, DACs and other custom interfaces.

All DMA controllers are scheduled by the scheduler, submit

interrupt signals to the scheduler (as explained in Section 5

above), and read and write data directly to the shared memory

through the NOC (see Section 6 above). The system software

required for managing I/O is described in Section 8 below.

8. RC64 SYSTEM SOFTWARE

The system run-time software stack is shown schematically

in Figure 8. The boot sequence library is based on the boot

code of the DSP core. It is modified to enable execution by

many cores in parallel. Only one of the cores performs the

shared memory content initialization. The boot code includes

DSP core self-test, cache clearing, memory protection

configuration and execution status notification to an external

controlling host.

The Runtime Kernel (RTK) performs the scheduling function

for the DSP core. It interacts with the hardware scheduler,

receives task allocation details, launches the task code and

responds with task termination when the task is finished. The

RTK also initiates the power down sequence when no task is

received for execution.

The first task allocated by the scheduler is responsible for

loading the application task graph into the scheduler. This

code is automatically generated during a pre-compile stage

according to the task graph definition. Application tasks are

allocated after the initialization task is finished.

 6

Certain library routines manage EDAC for memories,

encapsulate messaging and routing services to off-chip

networking (especially over high speed serial SpaceFibre

links), respond to commands received from an external host

(or one of the on-chip cores, playing the role of a host),

perform FDIR functions, and offer some level of

virtualization when multiple RC64 chips are employed in

concert to execute coordinated missions.

Figure 8. RC64 Run Time Software. The kernel enables

boot, initialization, task processing and I/O. Other

services include execution of host commands,

networking and routing, error correction and

management of applications distributed over multiple

RC64 chips

Other components of the RTK manage I/O and accelerators.

Configuring the interfaces requires special sequences such as

link detection and activation, clock enabling, DMA

configuration, etc. Each interface has its own set of

parameters according to the required connectivity, storage

type, data rate and so on.

Figure 9 demonstrate the hardware-kernel-application

sequence of events in the case of an input of a predefined data

unit over a stream input link. The DMA controller, previously

scheduled, stores input data into a pre-allocated buffer in

memory (step 1). Upon completion, it issues an interrupt (step

2). A HPT is invoked (step 3, see Section 5) and stores

pointers and status in shared memory, effectively enqueuing

the new arrival (step 4). It ends up by issuing a ‘software

event’ to the scheduler (step 5). Eventually, the scheduler

dispatches a task that has been waiting for that event (step 6).

That task can consume the data and then dequeue it, releasing

the storage where the data was stored (step 7). Other I/O

operations are conducted similarly.

Figure 9. Event sequence performing stream input

9. RC64 SOFTWARE DEVELOPMENT TOOLS

RC64 SDK enables software development, debug and tuning,

as shown in Figure 10. The IDE tool chain includes a C/C++

compiler for the DSP core, an assembler, a linker, and a

library of DSP functions customized for the core, taking full

advantage of its VLIW capability (computing and moving

data at the same time) and SIMD (performing several

multiply and accumulate operations in parallel).

RC64 Parallel programming is supported by the task

compiler, which translates the task graph for the scheduler, a

many-task emulator (MTE) that enables efficient

development of parallel codes on personal computers, and a

many-core debugger, which synchronizes debug operations

of all cores. The RC64 parallel simulator is cycle accurate,

fully simulating the cores as well as all other hardware

components on the chip.

The profiler provides complete record of parallel execution

on all 64 cores. The event recorder generates traces with time

stamps of desired events. The kernel and libraries are

described in Section 8 above.

10. RC64 RADIATION HARDNESS AND FDIR

RC64 will be implemented in 65nm CMOS using RadSafe™

rad-hard-by-design (RHBD) technology and library [21].

RadSafe™ is designed for a wide range of space missions,

enabling TID tolerance to 300 kRad(Si), no latchup and very

low SEU rate. All memories on chip are protected by various

means and varying levels of error correction and detection.

Special protection is designed for registers that hold data for

extended time, such as configuration registers. The two

external memory interfaces, to DDR2/DDR3 and to ONFI

flash memories, implement several types of EDAC. For

instance, ten flash memory chips can be connected for eight

byte wide datapath and two flash devices for storing Reed

Solomon ECC.

 7

Figure 10. RC64 Software Development Kit.

RC64 implements extensive means for fault detection,

isolation and recovery (FDIR). An external host can reset,

boot and scrub the device through dual RMAP SpaceWire

ports. RC64 contains numerous error counters and monitors

that collect and report error statistics. Trace buffers, allocated

in shared memory as desired, enable rollback and analysis (in

addition to helping debug). Faulty sub-systems may be shut

down and the scheduler is designed to operate with partial

configurations.

11. CONCLUSIONS

RC64 is a many core architecture suitable for use in space. It

is designed for simplified PRAM-like shared memory

programming and high performance at low power. RC64 goal

is to enable future software-defined satellites in all space

endeavors. RC64 is presently under design and all

performance figures reported herein and in [26] are based on

simulations. RC64 is planned for availability before the end

of the decade. RC64 R&D project is funded by Israel Space

Agency and by the European Union.

ACKNOWLEDGEMENTS

The financial support of the Israel Space Agency, the Israel

Ministry of Defense, the Israel Aerospace Industry and the

European Union (Seventh Framework Programme grant

agreement 607212) is greatly appreciated. Itai Avron has

contributed to early versions of this paper.

REFERENCES

[1] Sturesson, F., J. Gaisler, R. Ginosar, and T. Liran.

"Radiation characterization of a dual core LEON3-FT

processor." In Radiation and Its Effects on Components

and Systems (RADECS), 2011 12th European

Conference on, pp. 938-944. IEEE, 2011.

[2] Habinc, S., K. Glembo, and J. Gaisler. "GR712RC-The

Dual-Core LEON3FT System-on-Chip Avionics

Solution." In DASIA 2010 Data Systems In Aerospace,

vol. 682, p. 8. 2010.

[3] Jacquet, David, Frederic Hasbani, Philippe Flatresse,

Richard Wilson, Franck Arnaud, Giorgio Cesana,

Thierry Di Gilio et al. "A 3 GHz dual core processor

ARM cortex TM-A9 in 28 nm UTBB FD-SOI CMOS

with ultra-wide voltage range and energy efficiency

optimization." Solid-State Circuits, IEEE Journal of 49,

no. 4 (2014): 812-826.

[4] Villalpando, Carlos Y., Andrew E. Johnson, Raphael

Some, Jacob Oberlin, and Steven Goldberg.

"Investigation of the tilera processor for real time

hazard detection and avoidance on the altair lunar

lander." In Aerospace Conference, 2010 IEEE, pp. 1-9.

IEEE, 2010.

[5] Wentzlaff, David, et al. "On-chip interconnection

architecture of the tile processor." IEEE micro 5 (2007):

15-31.

[6] Varghese, Anitha, Ben Edwards, Gaurav Mitra, and

Alistair P. Rendell. "Programming the Adapteva

Epiphany 64-core Network-on-chip Coprocessor." In

Parallel & Distributed Processing Symposium

Workshops (IPDPSW), 2014 IEEE International, pp.

984-992. IEEE, 2014.

[7] Nickolls, John, and William J. Dally. "The GPU

computing era." IEEE micro 2 (2010): 56-69.

[8] Heinecke, Alexander, Karthikeyan Vaidyanathan,

Mikhail Smelyanskiy, Alexander Kobotov, Roman

Dubtsov, Greg Henry, Aniruddha G. Shet, Grigorios

Chrysos, and Pradeep Dubey. "Design and

implementation of the linpack benchmark for single and

multi-node systems based on intel® xeon phi

coprocessor." In Parallel & Distributed Processing

(IPDPS), 2013 IEEE 27th International Symposium on,

pp. 126-137. IEEE, 2013.

[9] De Dinechin, Benoît Dupont, Duco Van Amstel, Marc

Poulhiès, and Guillaume Lager. "Time-critical

computing on a single-chip massively parallel

processor." In Design, Automation and Test in Europe

Conference and Exhibition (DATE), 2014, pp. 1-6.

IEEE, 2014.

[10] Wen, Xingzhi, and Uzi Vishkin. "Fpga-based prototype

of a pram-on-chip processor." In Proceedings of the 5th

conference on Computing frontiers, pp. 55-66. ACM,

2008.

 8

[11] Tzannes, Alexandros, George C. Caragea, Uzi Vishkin,

and Rajeev Barua. "Lazy scheduling: A runtime

adaptive scheduler for declarative parallelism." ACM

Transactions on Programming Languages and Systems

(TOPLAS) 36, no. 3 (2014): 10.

[12] Bayer, Nimrod, and Ran Ginosar. "High flow-rate

synchronizer/scheduler apparatus and method for

multiprocessors." U.S. Patent 5,202,987, issued April

13, 1993.

[13] Bayer, Nimrod, and Ran Ginosar. "Tightly Coupled

Multiprocessing: The Super Processor Architecture." In

Enabling Society with Information Technology, pp.

329-339. Springer Japan, 2002.

[14] Bayer, Nimrod, and Aviely Peleg. "Shared memory

system for a tightly-coupled multiprocessor." U.S.

Patent 8,099,561, issued January 17, 2012.

[15] Avron, Itai, and Ran Ginosar. "Performance of a

hardware scheduler for many-core architecture." In

2012 IEEE 14th International Conference on High

Performance Computing and Communication & 2012

IEEE 9th International Conference on Embedded

Software and Systems (HPCC-ICESS), pp. 151-160.

IEEE, 2012.

[16] Avron, Itai, and Ran Ginosar. "Hardware Scheduler

Performance on the Plural Many-Core Architecture."

In Proceedings of the 3rd International Workshop on

Many-core Embedded Systems, pp. 48-51. ACM, 2015.

[17] Ran Ginosar and Peleg Aviely, RC64 – Many-Core

Communication Processor for Space IP Router. In

Proceedings of International Astronautical Conference,

pp. IAC-15-B2.6.1, Jerusalem, Israel, Oct. 2015.

[18] http://www.macspace.eu/

[19] Crummey, T. P., D. I. Jones, P. J. Fleming, and W. P.

Marnane. "A hardware scheduler for parallel processing

in control applications." In Control, International

Conference on, vol. 2, pp. 1098-1103. IET, 1994.

[20] Wu, Chuan-Lin, and Tse-Yun Feng. "On a class of

multistage interconnection networks." Computers,

IEEE Transactions on, vol. C-29, no. 8, pp. 694-702,

1980.

[21] Liran, Tuvia, Ran Ginosar, Fredy Lange, Peleg Aviely,

Henri Meirov, Michael Goldberg, Zeev Meister, and

Mickey Oliel. "65nm RadSafe™ technology for RC64

and advanced SOCs." (2015).

[22] Beadle, Edward R., and Tim Dyson. "Software-Based

Reconfigurable Computing Platform (AppSTAR TM)

for Multi-Mission Payloads in Spaceborne and Near-

Space Vehicles." In International Conference on

Reconfigurable Systems and Algorithms, ERSA 2012.

[23] Malone, Michael. "OPERA RHBD multi-core." In

Military/Aerospace Programmable Logic Device

Workshop (MAPLD 2009). 2009.

[24] Marshall, Joseph, Richard Berger, Michael Bear, Lisa

Hollinden, Jeffrey Robertson, and Dale Rickard.

"Applying a high performance tiled rad-hard digital

signal processor to spaceborne applications." In

Aerospace Conference, 2012 IEEE, pp. 1-10. IEEE,

2012.

[25] Parkes, Steve, Chris McClements, David McLaren,

Albert Ferrer Florit, and Alberto Gonzalez Villafranca.

"SpaceFibre: A multi-Gigabit/s interconnect for

spacecraft onboard data handling." In Aerospace

Conference, pp. 1-13. IEEE, 2015.

[26] Aviely, Peleg, Olga Radovsky and Ran Ginosar. “DVB-

S2 Software Defined Radio Modem on the RC64

Manycore DSP.” In Aerospace Conference. IEEE,

2016.

