
SSC22-WKP2-28

Co-Operating Systems: A Technical Overview of Multiple Onboard Operating
Systems

Cameron Bonesteel, Evan Tichenor, Eric Miller, Andres Rodriguez
University of Georiga, Small Satellite Research Lab

1510 Cedar St. Room 107 Athens, GA 30602 ; (706) 284-4762
cameron.bonesteel@uga.edu

ABSTRACT

The Multiview Onboard Computational Imager (MOCI) built by the University of Georgia’s Small Satel-
lite Research Lab (SSRL) will be one of the first small satellites to include a small form factor graphics
processing unit (GPU), the NVIDIA TX2i, in its design and therefore includes three onboard computers
that will need to coordinate and interchange data to successfully complete the mission. The Onboard Com-
puter (OBC), standard for most satellite systems, will coordinate most system controls. The GPU serves
as the onboard payload manager and bulk data processor and coordinates with the attitude determination
and control system (ADCS) to collect all necessary data for processing. These computers will communicate
through hardware lines using two different serial protocols. In this paper, we propose a control system which
synchronizes system clocks and transfers data efficiently through the differing serial protocols in order to
process data without any bottlenecks in the data transfer or a decrease in accuracy between the data and its
matching telemetry. The success of all these components working together will serve as a proof of concept
for GPUs, like the TX2i, onboard small satellites and giving birth to future onboard computational imagers
like MOCI.

INTRODUCTION

Traditionally, small satellites contain a primary
onboard computer (OBC) that runs all system com-
mand and data handling (CDH).1 This computer
is responsible for all onboard systems, telling them
when and how to complete tasks, or collecting im-
portant telemetry points such as temperatures and
voltages. However, the University of Georgia’s Small
Satellite Research Laboratory (SSRL) is utilizing a
second onboard computer on the Multiview Onboard
Computational Imager (MOCI) mission. This on-
board computer is the NVIDIA TX2i Graphics Pro-
cessing Unit (GPU).2 The TX2i will serve as the
primary mission payload control and do onboard sci-
ence data processing. As a result, the traditional
CDH roles of the OBC are distributed to the TX2i
in some respects, but the TX2i takes on its own new
role of in-orbit data processing. With this new com-
puter being integrated into the satellite design, cer-
tain challenges arise. Each computer is running a
unique operating system, which functions slightly
differently in how they manage files and transfer
data. This becomes increasingly complex when data
needs to be transferred between multiple systems,
such as with data from the Attitude Determination
Control System (ADCS). In this paper, we will ex-

plore the system architecture, looking at each main
system and its operating system and challenges, the
different boards and considerations for their design
and the overall system design, and finally how the
design all works together to make the mission a suc-
cess.

Figure 1: MOCI System Architecture

Bonesteel 1 36th Annual Small Satellite Conference



SYSTEM ARCHITECTURE

The system architecture is designed around the
storage and movement of data onboard the satel-
lite. Each section will go in depth to explain the
main onboard computers, their operating systems,
and important information about how their operat-
ing systems control and manage data. The general
systems that will be covered include the NVIDIA
TX2i, ADCS, and the OBC as seen in Figure 1.

NVIDIA TX2i

The NVIDIA TX2i is the primary payload con-
trol computer onboard MOCI. It controls the optical
payload and manages science data including images,
point clouds, 3D models, and object recognition re-
sults. It runs YOCTO, a custom-made, simplified
Ubuntu operating system designed for the mission.
This operating system eliminates unimportant fea-
tures such as the user interface, as well as default
packages that are not used, such as python. These
improvements allow the TX2i to conserve space and
boot quicker. Since YOCTO is built off Ubuntu,
it manages files with a simple extended file system.
This makes file management on the computer easy
from an outside controller, such as the OBC. The
general file structure contains a directory for raw im-
ages taken by the optical payload with each ground
target having a unique identifier that can be used
to create a variable path name inside the raw im-
age directory using an integer. The unique identi-
fiers make grouping target images simple for mis-
sion operations. Science output files such as point
clouds and object recognition outputs can then have
a separate directory in the root directory with the
same variable numbering system to allow identifica-
tion of output files for specific ground targets. This
also allows for downlink preparation to be simplified
since old downlinked data can be erased from the
TX2i leaving only the new data to be downlinked.
The TX2i is capable of using both a Universal Asyn-
chronous Receiver/Transmitter (UART) and Inter-
Integrated Circuit (I2C) bus. For this mission, only
the UART bus is utilized.

Attitude Determination Control System

The CubeSpace Attitude Determination Control
System onboard MOCI not only controls the atti-
tude of the satellite, but also logs important atti-
tude information for science data processing. The
ADCS runs a simple UNIX operating system. This
UNIX operating system is less accessible than the
other operating systems and acts as a sort of black

box. It relies on a simple telecommand structure for
sending and receiving data over an I2C bus.3

Onboard Computer

The Onboard Computer is the main system con-
trol interface for MOCI. It is running on the FreeR-
TOS operating system. This operating system runs
alongside the flight software which has its own file
management system. The file management system
is comparable to a series of buffers that store in-
formation. This starts with a storage channel which
has a fixed capacity in terms of bytes. These storage
channels then contain rows of data where each row
is one byte. This system allows for a simple channel
and row identification to access data. To access data
that is larger than one row, a range of rows can be
accessed and returned. The flight software also re-
lies on the real time clock on the OBC to accurately
schedule mission events for autonomous operation.
The flight software specifies specific events for spe-
cific time frames and the operating system prioritizes
these events based on how time sensitive they are so
important mission events execute on time.

HOW THE SYSTEMS COOPERATE

While each operating system runs independently
of each other, they each have information that the
others may need. While routing the data directly
between the hardware is the most straightforward
approach, it becomes more difficult once many of
the mission factors are considered; such as the in-
terface boards and serial protocols, and mission life-
time. These factors will be considered in depth in
the following sections.

Interface Boards and Serial Protocols

As seen in Figure 1, each of the two additional
systems, the TX2i and the ADCS, require different
interface boards. These interface boards serve a cou-
ple different purposes.

The Peripheral USB Interface (PUSBI) board is
located adjacent to the OBC and the TX2i is mainly
part of mission redundancy. This will be covered
in the mission lifetime section. In addition to this
board, the Core GPU Interface board (CORGI) is
required to interface the TX2i with the rest of the
system. The TX2i does not have the standard 104
pin header like the rest of the stack and therefore
relies on CORGI to interface in this way. While
the TX2i can use both a UART and I2C protocol,
CORGI is only designed for UART. We wanted to

Bonesteel 2 36th Annual Small Satellite Conference



interface with the TX2i through UART because it
gives us more control of what data and how much
data is sent across the bus compared to I2C. Since
a majority the data consists of science data which is
large compared to most other system data, UART
was the safer option.

The ADCS requires the Board ADCS Interface
(BAI) and the Mini BAI boards since the 104 pin
header is not laid out the same as on the rest of the
stack. As mentioned before, the ADCS relies on I2C
for communication and commanding.

While the TX2i has I2C communication capabil-
ities which would allow it to communicate directly
with the ADCS, this would require more time that
we don’t have to research and develop the TX2i to
allow it to communicate with the ADCS seamlessly.
Additionally, CORGI would have to be redesigned to
add an I2C bus line to the TX2i so it could commu-
nicate directly with the ADCS. CORGI has been a
very challenging problem for both the software team
and the hardware team, and adding another bus to
the equation would add unnecessary complexity. In
addition, having both the OBC and TX2i able to
command the ADCS could lead to race conditions
and simultaneous data access issues. Instead, the
system structure as seen in Figure 1, continues to
be the better solution to ensure operations are only
happening one at a time.

To solve the problem of data needing to be shared
and matched between systems, each system will have
its system time updated from the OBC either on
boot of that system or on boot of the OBC. This
will allow the system times to match within less
than a second, allowing for very precise matching
of data.4 Trying to match data in real time would
have a longer delay due to the data being routed
through multiple data lines.

Mission Lifetime

The mission lifetime and critical events are im-
portant to consider in the overall system design. The
mission lifetime is expected to be no longer than 18
months. The TX2i’s lifespan is noticeably shorter
than the overall mission lifetime, with a maximum
expected lifetime of around six months.5 As a re-
sult a payload redundancy is needed to ensure we
maintain control of the payload after the TX2i fails.
PUSBI is the interface board that allows us to do
this. This board sits adjacent to the OBC and the
TX2i, and it interfaces directly with the two cameras
via USB. It connects to the OBC using a Serial Pe-
ripheral Interface (SPI) and the TX2i using USB. In
the case of a TX2i failure, PUSBI allows the OBC to

maintain communication with the cameras via SPI,
and the USB connection to the TX2i is cut off. In
the event a TX2i boot fails, another boot attempt
will be made automatically. After three failed boot
attempts, the TX2i is considered dead and the OBC
takes over. This failsafe further emphasizes why the
TX2i cannot be directly interfaced with the ADCS.
There are additional software failsafes to ensure the
OBC can do what the TX2i was doing, but by mak-
ing the OBC the primary controller of the ADCS,
these failsafes do not need to extend to that rela-
tionship.

OPERATIONAL MODES

The MOCI mission uses operational modes to
control onboard systems and manage mission re-
sources. These operational modes allow the OBC
to easily manage what systems are turned on and
off, collect telemetry from them, and run automa-
tion workflows for collecting and processing science
data. These operational modes are as follows:

• Deployment Mode

• Safe Mode

• Detumble Mode

• Cruise Mode

• Power Gen Mode

• Scan Mode

• Data Processing Mode

• Data Downlink Mode

The deployment mode is only used after satellite
deployment and runs the automatic deployment se-
quence to set up mission systems like antenna de-
ployments and health checks. The safe, detumble,
cruise, and power generation modes are mostly basic
housekeeping modes that allow it to be in low power
states while it isn’t doing mission tasks. These low
power states are useful to protect the satellite after
an error, stop it from tumbling, have it idle, or col-
lect power respectively. The scan, data processing,
and data downlink modes are more power hungry
and are considered the main mission modes. These
modes will be explored in depth in the following sec-
tions.

Bonesteel 3 36th Annual Small Satellite Conference



Scan Mode

Scan mode is the primary science collection pro-
cess onboard MOCI. This mode requires the TX2i
and the ADCS to work in conjunction to take pic-
tures of the right target at the right time. Once the
TX2i is booted, important timing and capture data
is sent to program the pass. The TX2i controls the
two onboard cameras and takes images based on the
time intervals and capture data set after startup.
The ADCS is then tasked with pointing the satellite
at the correct target so these images are being taken
correctly. The TX2i will need the pointing telemetry
to do some of the processing calculations later on. In
order to retain this data, the pointing telemetry is
saved along with the time so the TX2i can match
it to the image times later during processing. This
shared data emphasizes the importance of accurate
and synced system times as discussed earlier. In the
case of the TX2i failure, this system time sync will
be just as important as the ground systems will be
processing the data in the same way, and the times
will need to match the camera times.

Data Processing Mode

Data Processing mode is the primary demonstra-
tion of the MOCI mission. The TX2i is booted and
processes the images gathered from the scan mode in
orbit. Accurate ADCS data is required for Structure
from Motion processing, as the 3D model can only
be generated if certain information about the images
angles are known. After data processing is finished,
the data is stored on the OBC in a downlink-ready
format. In the case of TX2i failure during the mis-
sion, images are stored directly on the OBC for on-
Earth processing.

Data Downlink Mode

Data Downlink mode is the primary science data
communication mode onboard the satellite. The
ADCS is used for precise pointing to the ground sta-
tion to downlink science data, whether it is processed
or raw.

CONCLUSION

The MOCI mission is unique in its use of multi-
ple onboard computers to handle commanding and
science data. With the solutions proposed in this
paper, the MOCI mission is on track to to be a suc-
cessful implementation of the system and will hope-
fully be a model for future onboard computational
imagers. It is understood that this system may fail

upon launch, but hopefully with the failsafes men-
tioned, we can still fulfill MOCI’s other mission ob-
jectives, beyond demonstrating this onboard system.

Future Work

Future work for this system includes final testing
of all systems. The system will be tested for ease
of use, data accuracy, and overall system function
before launch. Once testing is complete on Earth,
MOCI will be ready to prove itself in orbit.

Acknowledgments

The authors would like to thank the Air Force
Research Laboratory’s University Nanosatellite Pro-
gram for giving us the opportunity to work on this
mission through their funding and support. We
would also like to thank Sydney Whilden, our lab
manager, for supporting us through our research
efforts and our principle investigator Dr. Deepak
Mishra for supporting the lab and our research. Fi-
nally, we would like to give thanks to Caleb Adams,
Godfrey Hendrix, Alex Lin, Allen Spain, Matthew
Olson, and Cate Davis for laying the ground work
for this mission, the interface boards, and much more
that laid the groundwork for this paper.

References

[1] D. Schor, J. Scowcroft, C. Nichols, and W. Kin-
sner. A command and data handling unit for
pico-satellite missions. In 2009 Canadian Con-
ference on Electrical and Computer Engineering,
pages 874–879, 2009.

[2] Caleb Adams, Allen Spain, Jackson Parker,
Matthew Hevert, James Roach, and David Cot-
ten. Towards an integrated gpu accelerated soc
as a flight computer for small satellites. In 2019
IEEE Aerospace Conference, pages 1–7, 2019.

[3] Mike-Alec Kearney. CubeSpace CubeADCS
Firmware Reference Manual. CubeSpace, 2019.

[4] Andres Rodriguez and Deepak Mishra. A simple
synchronization process for imaging satellites. In
UGA CURO Symposium, 2022.

[5] Bjorn Leicher, Paige Copenhaver, Graham
Grable, Adam King, Caleb Adams, Sydney
Whilden, and Jackson Parker. MOCI Concept
of Operations. Internal Document, 2022.

Bonesteel 4 36th Annual Small Satellite Conference


