
[SSC22-WKP2-16]

An Evaluation of Potential Compute Platforms for Picosatellites

Ofir Cohen and Sivan Toledo
Blavatnik School of Computer Science

Tel-Aviv University

ABSTRACT

What compute platform should picosatellites use? CubeSats, classified as nanosatellites, are transitioning
from microcontrollers that cannot run modern operating systems and modern programming environments
to Linux-capable compute platforms. As electronics continue to shrink, picosatellite missions are likely to
become more common, perhaps using the PocketQube standard. This paper characterizes the requirements
that compute platforms for picosatellites should satisfy and analyzes in detail 4 potential platforms. We
show that suitable hardware does exist, but that it is not yet supported well enough to allow small teams to
use it in satellites or other specialized sensor nodes.

1 INTRODUCTION

Picosatellites, satellites weighing 0.1–1 kg are on
the rise. A standard called the PocketQube stan-
dard for such satellites is emerging.18, 23 The first
batch of PocketQubes was launched in 2013 and two
more were launched after a long hiatus in 2019 and
2021. Not many have been launched but this may
change soon, reflecting the emergence of nanosatel-
lites following the publication of the CubeSat stan-
dard in the early 2000s. Electronic components keep
shrinking, allowing smaller satellites to perform cer-
tain missions.

The first CubeSats were controlled by simple mi-
crocontrollers (MCUs). Today, many CubeSats still
use relatively weak processors and relatively primi-
tive operating systems. Is this really necessary? No.
At least one major vendor of CubeSat components
sells an on-board computer (OBC) that runs Linux.
We take the question one step further: can picosatel-
lites be driven by compute platforms that can run a
modern operating system like Linux? That is, are
there Linux platforms that satisfy the requirements
of a picosatellite, such as small physical size and low
energy budget? After all, the smart watch that you
may be wearing right now is mostly likely powered
by a Linux or Unix operating system, it is far smaller
and lighter than picosatellites, and it is battery pow-
ered.

The introduction of the Raspberry Pi and later
the Raspberry Pi Zero signaled that for a vast
range of instruments and products, microcontrollers
(MCUs) no longer have significant advantages in
terms of cost or physical size over platforms that
run Linux. Many current MCUs offer reasonable
amounts of flash and RAM and their operating sys-
tems support multithreading and multitasking. Still,
platforms that run full-featured operating systems

like Linux offer orders of magnitude more flash and
RAM and are much easier to program (for exam-
ple, a vast number of libraries are available and
ready to use under Linux, whereas they would re-
quire porting to an MCU). The introduction of the
Raspberry Pi brought down the cost of these fully-
featured platforms to tens of dollars, sizes to 10-by-
7 cm or smaller, and power consumption down to
several watts. The Raspberry Pi Zero went even
further, bringing the cost down to less than ten dol-
lars and reducing the physical size and power con-
sumption even further. More recently, Raspberry Pi
platforms are available as compute modules, which
are boards designed to be stacked on a carrier with
custom electronics and interfaces. We refer to such
modules as systems on a module (SOM).

The advent of smart watches, many of which are
now also Linux or Unix based, implies that these full-
featured operating systems can now run efficiently
on battery-powered computers with a tiny physical
size.

This paper investigates whether SOMs that run
Linux can drive a picosatellite. Our analyses and
conclusions are also relevant to other remote devices
with similar physical constraints on size and power,
and similar development constraints, namely small-
volume devices that are designed and built by small
teams. The restriction to small volume applications
stems from the fact that for large-volume applica-
tions the answer is clearly “yes”, given the success of
smart watches. A good example of devices similar to
picosatellites from this perspective is wildlife track-
ing devices. Most animal species are much smaller
than humans so they can only carry a small tracking
device, and the device must be powered by a primary
battery or by harvesting energy, almost always from
solar cells, much like a satellite.

The main contributions of this paper, beyond the

Cohen 1 36th Annual Small Satellite Conference



Figure 1: Three of the four compute platforms that we evaluated. From left to right: the
OpenQ2500, the VoCore2, and the Raspberry Pi Zero. Lines in the background are 5mm
apart.

background material in the next section, are:

• A detailed discussion of the requirements that
compute platforms for picosatellites and sim-
ilar projects must satisfy; this is presented in
Section 3.

• A classification of potential compute plat-
forms, starting from barefoot microcontrollers
and ending with compute modules capable of
running full-featured Linux distributions. This
is presented in Section 4.

• An evaluation of 4 potential compute plat-
forms relative to the requirements presented
in Section 3. The evaluation, presented in Sec-
tion 5, covers both quantitative aspects, such
as physical size and power consumption, and
qualitative aspects, such as support for de-
velopers and support for sophisticated power
management strategies. Three of these mod-
ules are shown in Figure 1.

• Section 5 also constitutes an important higher-
level contribution of this paper, namely, a

methodology for testing future candidate plat-
forms. This is particularly important since our
conclusions from the evaluation, presented in
Section 6, are that no existing SOM is appro-
priate for picosatellites, but that it is highly
likely that in the next months or years suit-
able SOMs will emerge. All the platforms that
we evaluated have crippling defects, but these
defects are unlikely to last long. Hence, a
methodology for testing them is important.

We note that in the past, similar investigations of-
ten used a completely different methodology, one in
which researchers focused on one interesting com-
pute platform, designed a working satellite, and
launched it to fully test the platform.11, 24 This al-
ternative approach can deliver definitive affirmative
evidence that the platform is viable, but it is also
narrower than our methodology (focusing on just
one candidate platform rather than on all the viable
ones) and that it cannot report on viability gaps and
deficiencies. Both approaches clearly have value.

Cohen 2 36th Annual Small Satellite Conference



2 BACKGROUND

We frame our assessment of compute platforms
using a set of concrete requirements that are pre-
sented in the next section. To justify the require-
ments, we provide in this section background on tar-
get applications, namely small satellites and wildlife
trackers and loggers.

2.1 Nanosatellites and CubeSats

As the title of the paper states, we are inter-
ested in compute platforms for picosatellites, satel-
lites weighing between 100 g and 1 kg (Table 1 names
satellite size classes). But picosatellites are still very
rare, so it makes sense to explore first the now-
mature technology of nanosatellites weighing 1 to
10 kg, which are now common and relatively easy to
design, build, and deploy.

Table 1: Satellite Classification by Mass

Satellite Class Mass (kg)
large satellite >1000
mini satellite (or small satellite) 100-1000
micro satellite 10–100
nano satellite 1–10
pico satellite 0.1–1
femto satellite (or satellite on a chip) 0.001—0.1

For decades, almost all useful satellites were
very large. The first artificial satellite, the Rus-
sian Sputnik 1, launched in 1957, weighed a mod-
est 83.6 kg (but was useful for nothing but demon-
strating that a satellite can be placed in orbit and
be tracked). Many subsequent satellites were much
bigger. The first GPS satellite, Navstar1, launched
in 1978, weighed 450 kg. Recent Israeli imaging
satellites, Ofek 7, 9, 10, and 11, launched between
2007 and 2016, weigh between 300 and 330 kg.
The European Earth-observing Envisat, launched in
2002, weighs 8211 kg (and cost 2.3 billion Euros).
Amos 17, a geosynchronous communication satellite
launched in 2019, weighs 6500 kg.

According to,15 until about 2000, very few
nanosatellites have been launched. A few have been
launched by radio amateurs; for example, the first
two, OSCAR 1 and OSCAR 2, weighed 10 kg each,
but most subsequent amateur satellites were bigger.
SNAP-1, designed in the UK and launched in 2000,
weighed 6.5 kg. TUBSAT-N and TUBSAT-N+, de-
signed by a German university and launched in 1998,
weighed 8 and 3 kg, respectively. Munin, designed by
a Swedish university and launched in 2001, weighed
6 kg. That’s about it

A revolutionary idea, published in 2000,13 led
to a dramatic reduction in the cost and effort re-

quired to launch small satellites and consequently
to a large number of launches of such satellites, as
well as a large volume of research and literature. A
group of university researchers noticed that most of
the difficulty in designing small research satellites
stemmed not from the mission’s unique payload, but
by the design and implementation of generic compo-
nents, such as the on-board computer, the deploy-
ment mechanism, energy harvesting and power man-
agement, and so on. They proposed a standardized
design of satellites measuring 10-by-10-by-10 cm or
20-by-10-by-10 cm or 30-by-10-by-10 cm (sizes com-
monly referred to now as 1U, 2U, and 3U). The stan-
dard, called the CubeSat standard,21 specifies the
physical dimensions and the mechanical interface to
a simple deployer. CubeSat satellites are typically
constructed from a stack of circuit boards housed
in a 10-by-10 cm frame (so the boards are a lit-
tle smaller than 10 by 10), with side panels covered
by solar panels. Over time, commercial companies
started offering complete or partial kits of the generic
components of a CubeSat, including the mechanical
frame, solar (side) panels and power management,
an on-board computer (OBC), transceiver and an-
tennas, and attitude control.

CubeSats often carry solar panels on all six sides.
A 1U CubeSat in low Earth orbit harvests 1 W on
average from its solar panels. This defines the power
envelope for the satellite. The minimal weight for a
1U CubeSat is around 1 kg.

The CubeSat idea has been extremely successful.
The first was launched in 2003, and the 100th was
launched in 2012.26 From 2003 to June 2021, a to-
tal of 246 1U CubeSats have launched into space, as
well as many more larger ones.16

Importantly, while CubeSats were originally en-
visaged primarily as educational tools that allow stu-
dents to design, deploy, and operate space missions,
they have proved to be effective tools for scientific
observation and experimentation.20

Several commercial companies design and sell
CubeSat components and subsystems. The major
vendors are ISIS (the Netherlands), Pumpkin Space
Systems (USA), AAC Clyde Space (Sweden) and
GomSpace (Denmark). The offerings from these
vendors essentially allow customers to build a satel-
lite from a kit; typically each satellite also includes
custom electronics and/or custom software.

Table 2 documents compute boards that are cur-
rently offered today (2021) by several of these ven-
dors. The compute platforms described in the table
fall into three categories. In one, with an ARM9 pro-
cessor and 64 MB of RAM, the platform has enough
resources to run a modern operating system, Linux,
but just barely. In the second we have motherboards
that carry compute modules that run Linux and can

Cohen 3 36th Annual Small Satellite Conference



T
a
b
le

2
:

C
o
m

p
u
te

P
la

to
rm

s
b
y

M
a
jo

r
C

u
b
e
S
a
t

v
e
n
d
o
rs

Vendor ISIS (OBC) Pumpkin (MBM2) AAC Clyde Space

(KRYTEN-M3)

GomSpace (NanoMind

A3200)

SPUTNIX (SXC-MB-04)

Operating

System

KubOS or FreeRTOS KubOS (Linux) RTEMS RTOS FreeRTOS Raspberry Pi

OBC CPU 400 MHz ARM 9 1GHz ARM Cortex-A8 +

2 specialized cores +

Sitara GPU

50MHz ARM Cortex-M3 64MHz Atmel AVR32 1.2GHzh ARM

Cortex-A53 + Cortex-M4

+ ADCS CPU

Volatile

Memory

64MB SDRAM 512MB DDR3 RAM 8MB MRAM 32MB SDRAM + 64KB

SRAM

1GB SDRAM

Nonvolatile

memory

1MB NOR + 512KB

FRAM + 2 SD card

sockets

4GB eMMC +SD card

socket

4GB + 256KB 128MB NOR + 512KB 4GB + 256KB +2MB

Power 400mW average Not specified 400mW average, 1W max 170mW average, 0.9W

max

0.9W

Peripherals I2C, SPI, UART, ADC,

PWM; on-board sensors

for voltages, RTC

UART, I2C, USB I2C, SPI, UART, CAN,

RS422, DTMF

I2C, UART, CAN, ADC,

9-axis IMU

I2C, SPI, UART, CAN,

USB, camera

Extra features Daughter board socket Carrier board that a
BeagleBone-Black board
plugs into

Carrier board that a

Raspberry Pi CM3 plugs

into

C
oh

en
4

3
6
t
h

A
n
n
u
al

S
m

all
S
atellite

C
on

feren
ce



also run software written in a high-level program-
ming environment, say Python. In the third cate-
gory we find 32-bit microcontrollers, like the ARM
Cortex-M3 and an AVR32, which are incapable of
running a modern operating system, and therefore
incapable of running software written in many pop-
ular high-level environments.

Many CubeSats have used even weaker compute
platforms, such as 16-bit micocontrollers like those
from the MSP430 family.

2.2 Picosatellites

Continued miniaturization of electronic compo-
nents and higher levels of integration led to the real-
ization that useful satellites even smaller than Cube-
Sats might be feasible.7 The first batch of picosatel-
lites were launched in November 2013.27 These satel-
lites, as well as later picosatellites, adhered to the
PocketQube standard,18 which defines a basic mini-
mal size of 5-by-5-by-5 cm, called 1p, and multiples.
The standard has been in development since 2009.
The first batch included one 1p satellite, Wren, and
a few that are not whole multiples (1.5p and 2.5p).
The next batches were launched much later, in 2019
and 2021. The total number of launches is still small.

The volume and surface area of a 1p PocketQube
satellite are 1/8 and 1/4 of those of a 1U CubeSat,
so we expect its weight to be around 125 g and its
power envelope to be around 250 mW. Larger Pock-
etQube satellites, especially those with deployable
external solar panels, can harvest more solar energy,
perhaps as much as 10 W for a 3p satellite.

As in CubeSats, the PocketQube standard is ex-
pected to simplify the design and implementation of
picosatellites.

Currently one vendor, Alba Orbital, offers a
PocketQube kit.1 The compute platform in the kit
uses a 16-bit Texas Instruments TI MSP430 micro-
controller. This on-board computer (OBC) is user
programmable. The vendor provides a set of drivers
for reading on-board sensors (temperature, an iner-
tial measurement unit that includes an accelerome-
ter, gyroscope, and magnetometer, and a real-time
clock). The board relies on regulated 3.3V supply
voltage.

2.3 Wildlife Tracking Devices

Wildlife tracking devices, usually called tags,
range from sub-gram devices, obviously with very
limited and focused functionality10, 17 all the way to
devices weighing more than 10 kg that are used to
track large mammals.9 We focus on tracking devices
whose physical characteristics are similar to those

of picosatellites. The relevant characteristics for pi-
cosatellites include board sizes around 5-by-5 cm,
weights of 250 g or less, and the ability to solar
charge a battery. The inaccessibility of the device
once launched or attached to a wild animal is an-
other important characteristic; the devices must be
highly reliable.

A typical modern device is the ES-400 from Cel-
lular Tracking Technologies.2 This tracking device
comes in several sizes down to a 5-by-1.75-by-1.5 cm,
15 g tag. These tags have a multi-constellation
GNSS receiver, a cellular modem compatible with
2G, 3G, and 4G networks, sensors (accelerometer
and temperature sensor to characterize behavior as
well as to detect illness or mortality). Slightly larger
models also have a satellite radio that can report
the location of the tag via ARGOS satellites. Other
manufacturers produce similar products. Software
or firmware for these tags is quite sophisticated, al-
lowing users to define different behaviors for different
geographical locations, times of day, etc.

Tags weighing 15 g are are applicable to animals
weighing around 300 g or more (the generally ac-
ceptable limit is 3%–5% of body mass). Larger ani-
mals can carry heavier tags. For reference, a mallard
weighs 700–1600 g, golden jackals weigh 5–12 kg, etc.

Tags that weigh a couple of grams or less, which
are used on numerous species of small birds, bats,
and terrestrial animals do not share many charac-
teristics with picosatellites; they are much smaller
than picosatellites and are often powered by a pri-
mary (non rechargeable) battery, requiring extreme
efficiency, short activity periods and low duty cy-
cles; these are difficult to achieve with anything but
an ultra-low-power microcontrollers.

3 REQUIREMENTS FROM COMPUTE
PLATFORMS FOR PICOSATELLITES

We now present the requirements that compute
platforms for picosatellites should satisfy. Some of
the requirements, such as physical size, are abso-
lutely necessary, while others, such as support for
high-level programming environments, are only de-
sirable.

3.1 Physical Size

We are interested in satellites that are signifi-
cantly smaller than 1U CubeSats. For example, so-
called PocketQube satellites22, 23 start at 5-by-5-by-
5 cm and use PCBs that are slightly smaller than
5-by-5 cm.

There are now numerous compute boards with
comparable sizes. For example, a popular range of
microcontroller boards called Feather boards14 are

Cohen 5 36th Annual Small Satellite Conference



0.9-by-2 inches (about 2.3-by-5 cm). While a Feather
board might not fit a PocketQube satellite as is, it
is clear that it is possible to design a compute board
for a PocketQube satellite using any of the micro-
controllers that are used on Feather boards, includ-
ing many ARM Cortex M0 and M4 microcontrollers,
ESP32 microcontrollers, and so on.

3.2 Energy Efficiency and Power Manage-
ment

A 1U CubeSat has a continuous power budget of
about 1 W.13 Satellites that are significantly smaller
have smaller solar panels so they must operate at
lower power budgets. For example, we expect a 5-by-
5-by-5 PocketQube to generate no more than 0.25 W
on average, since the area of the solar panels is about
a factor of four smaller.

A power budget of 250 mW is very generous for
most modern microcontrollers. For example, the
RP2040 microcontroller from the Raspberry Pi foun-
dation, consumes less than 100 mW (up to about
25 mA at 3.3. V). In sleep mode, this particular mi-
crocontroller consumes 0.39 mA on average (about
1 mW), so it appears to be efficient enough for a
PocketQube.

Still, it makes sense to choose for a small satel-
lite a compute platform that is as energy-efficient
as possible. Fortunately, given the prevalence of
battery-operated embedded systems today, there are
many such platforms to choose from. These plat-
forms (microcontrollers and sometimes entire com-
pute modules) achieve their efficiency through four
main mechanisms:

1. Sleep modes with very low-power consump-
tion. For example, the Texas Instruments
CC13XX microcontrollers consume only about
1 µA (about 2–3 µW in sleep mode, compared
with the 1 mW of the RP2040).

2. Fast wakeup from sleep mode, to allow a low-
duty cycle for a device that is in sleep mode
much of the time to respond quickly to exter-
nal events. For example, many MSP430 micro-
controllers can transition in less than 6 µs from
their deepest sleep mode to being full active.

3. Alternatively, low-power microcontrollers and
microprocessors with slow wakeups offer mech-
anisms to avoid most wakeups. These can take
the form of DMA controllers that can collect
sensor data while the main CPU is in sleep
mode, or even entire low-power processors that
can perform simple (but programmable) tasks
which the main CPU is in sleep mode. For
example, the CC13XX microcontrollers con-
tain both an ARM Cortex M3 or M4 CPU

and a low-power processor called a sensor con-
troller whose sole function is to prevent fre-
quent wakeups of the ARM processor, since
these wakeups are relatively slow and hence
power inefficient.

4. An operating system that tracks which parts
of the system must be active at any given
time, including the processors, and which shuts
down processors and peripherals that are not
needed or puts them in sleep mode.

Computer systems that aim to achieve the lowest
possible power consumption in sleep modes use only
static RAM (SRAM), in which leakage current is low
and which does not require active refreshing. SRAM
is much less dense than dynamic RAM (DRAM),
so systems that use only SRAM typically have less
than 1 MB of RAM and are incapable of running
modern full-featured operating systems. However,
we shall see below that at power budgets of around
250 mW (and even significantly less), it it possible
to use DRAM, including at sizes large enough to run
Linux.

3.3 Software-Development Environment

Software productivity relies on the use of
standard programming languages, application-
programming interfaces (APIs), and software li-
braries. All three promote reuse and hence simplify
the software development process and make it more
efficient.

Software that is developed for a laptop or server
can use a huge range of programming languages,
ranging from low-level ones like C all the way to
high-level ones like Python and Javascript. Such
software normally runs on one of three operating sys-
tem families: Linux, Windows, or MacOS (a variant
of Unix). Such software can use a huge range of
existing libraries and modules.

Therefore, the ability to run a standard operat-
ing system, especially Linux, provides huge benefits
to developers. It makes it possible to construct very
complex software from modules and libraries, with-
out the need to port them or to reimplement their
functionality.

On resource-constrainted compute platforms
that cannot run Linux, three options remain:

1. Running barefoot, without an operating sys-
tem. Usually such software is written in C.
Microcontroller vendors often make available
today device drivers, but their APIs are often
vendor-specific.

2. Using an embedded operating system, like TI-
RTOS from Texas Instruments or the portable

Cohen 6 36th Annual Small Satellite Conference



FreeRTOS. These provide more mature and
complete support for applications written in C,
but they normally still assume that the plat-
form runs a single application. In general, very
little third-party software libraries are avail-
able for these operating systems. Their APIs
are sometimes based on standard APIs (e.g.,
the POSIX APIs that Linux also uses), but in
general they are non-standard and porting any
significant software to them is a major chal-
lenge.

3. Using a portable single-application high-level
software environment, like the Arduino envi-
ronemnt or CircuitPython. The Arduino envi-
ronment is a set of simple C++ APIs for micro-
controllers that were originally designed for a
particular family of easy-to-use developement
boards, but which have now been ported to a
wide range of microcontrollers. CircuitPython
is a restricted version of the Python program-
ming language that has been designed for sim-
ilar applications. Both of these make it easy
to implement simple microcontroller projects,
but neither is particularly good for complex
projects.

3.4 Maturity, Support, and Ecosystem

Good support facilitates effective hardware and
software development. On the hardware side, micro-
controllers are open documented and supported by
their vendor extremely well, perhaps because they
need to support large number of engineers and de-
velopers. More complex processors and more spe-
cialized integrated circuits sometimes require special
relations with the vendor to access all the documen-
tation.

Software, including operating systems, varies
much more widely. Some software is mature and
very well supported. It is difficult to use software
libraries and operating system when this is not the
case.

Hardware and software form ecosystems. Some
ecosystems, like that of Ubuntu Linux (a particu-
lar popular distribution of Linux), are vibrant and
extensive. What we mean by that is that a lot of ex-
isting software has been ported and is well supported
under these environments. This happens when a
particular combination of hardware and software has
many users and many active developers. When this
is the case, the ecosystem also typically contains
detailed documentation, many answered questions
(on forums and questions-and-answers websites like
stackexachange). On the other hand, the ecosystem
of niche hardware or software is often much poor:
libraries must be ported by the application devel-

oper, documentation is not available, and questions
remain unanswered.

3.5 Compatibility with Harsh Environments
(Space)

Space is a harsh environment. On the hardware
side, components and subsystems must be able to
operate in near vacuum, at extreme temperatures,
and sometimes under intense radiation.

However, most CubeSats are in low-Earth or-
bits (LEO), inside the Van Allen belts, where the
radiation is not particularly intense. As a conse-
quence, many common microcontrollers and micro-
processors are usable in CubeSats and smaller satel-
lites.12 Many CubeSats used off-the-shelf micro-
controllers without even testing them for radiation.
Also, most silicon chips, as well as many supporting
electronic components, can operate in vacuum and
in a wide enough range of temperature for LEO or-
bits. As a consequence, some CubeSats carried com-
pute platforms that were not specifically designed for
space, such as Raspberrry Pi computers25 and smart
phones.24

Therefore, we assume that this is not a serious is-
sue and that a LEO-capable version of any common
compute platform can be designed.

Space is also remote, which implies that software
must be highly resilient. Mechanisms like watch-
dog timers can return a system gone wild to a safe
state, but such mechanisms also pose a danger . In
general, the more a satellite uses software from di-
verse sources, the more vulnerable it is to reliability
problems. In that sense, a general purpose operating
system may pose a danger, not only an opportunity.

3.6 Cost and Availability

CubeSat kits are fairly expensive. For example,
the OBC offered by ISIS costs more than 4000 Eu-
ros . This is not terribly limiting, since launching the
satellite is expensive. But expensive hardware makes
it more difficult to use small satellites as educational
tools, since it is impractical to buy multiple OBCs
for students. In comparison, single-board computers
that can run Linux are widely available for less than
50 Euros.

3.7 Summary

Compute platforms for satellites significantly
smaller than CubeSats should be physically small,
ideally 4-by-4 cm or smaller. They should be energy-
efficient, but do not need to be extreme; a constant
power consumption of a couple of milliwatts is good
enough. Ideally, they should be able to run a full-

Cohen 7 36th Annual Small Satellite Conference



featured, widely-used, and well supported operating
system, say a popular Linux distribution.

Once selected, the platform should be tested for
space conditions, or redesigned for such conditions
(e.g., replacing electronic components that might ex-
plode in low pressure with robust ones).

Wide availability and low cost are desirable but
non-critical features. They are desirable especially
where satellites are used in education. For educa-
tional uses, a low-cost easily available version of the
platform is very useful even if it is not space quali-
fied.

4 CANDIDATE PLATFORMS

4.1 Barefoot Microcontrollers

Many small satellites used microcontrollers with-
out operating systems, just like a wide range of other
products. Guertin et al.12 surveyed the types of
processors used until 2015 in low-budget CubeSat
kits and missions. They list microcontrollers from
the Texas Instruments MSP430 family, from the Mi-
crochip PIC24 and dsPIC33 families, which are all
16-bit microcontrollers that are usually programmed
barefoot. They also list more highly capable 32-
bit processors (an Atmel ARM9 processor, an Intel
Atom, and a Qualcomm Snapdradon module), but
it is clear that 16-bit barefoot microcontrollers have
been used in CubeSats.

4.2 Microcontrollers with Specialized Operat-
ing Systems

Microcontrollers today are often too complex to
program barefoot; at least a set of drivers or a hard-
ware abstraction layer implemented by the vendor is
used. Often, the silicon vendor also supports a min-
imal operating system. For example, Texas Instru-
ments offers developers an operating system (includ-
ing a full set of drivers) called TI-RTOS to many of
its microcontrollers, including the CC13XX line, the
MSP432, and more. TI-RTOS is a multi-tasking but
non-preemptive operating system without hardware
memory protection. Originally it used a specialized
proprietary API, but in recent versions much of the
functionality is accessible via a POSIX API (e.g., the
POSIX threads API).

Similarly, Silicon Labs offers an operating system
called Micrium OS for many of its microcontrollers.
Micrium OS was a portable real-time operating sys-
tem that was acquired by Silicon Labs.

Limited-functionality specialized operating sys-
tems are also used today on some MCU boards de-
signed for cube sats. For example, the cube sat on-
board computers made by AAC Clyde Space and
by GomSpace both use a 32-bit MCU with a small

amount of RAM (see Table 2). Both run specialized
real-time operating systems.

4.3 Limited-Capability Linux Platforms
(OpenWRT)

Physically-small computers capable of running
Linux have been widely available for at least 15
years, but until the introduction of the Raspberry
Pi, they were available almost exclusively as part of
specialized products, initially small routers, and to-
day also TV streamers and automotive infotainment
systems. Over time, independent developers devel-
oped standardized and well-supported Linux distri-
butions for these devices, the most popular one being
OpenWRT.5 This Linux distribution is supported on
more than 1700 different hardware products (mostly
small routers). It is memory efficient, requiring only
8 MB of flash and 64 MB of RAM (earlier versions
required even less).

Complete products such as routers or streamers
are difficult to repurpose as compute modules for
satellites or other specialized uses.

Very few compute modules designed to serve as a
part of more complex products and capable of run-
ning OpenWRT are available; in fact, we were able
to find only one, named VoCore2.3 However, it ap-
pears that designing custom printed circuit boards
for embedded Linux systems is not terribly challeng-
ing.8

Some compute modules designed specifically for
cube sats, like those produced by ISIS and Pumpkin
(see Table 2) use CPUs in the same class as the Vo-
Core2 module. The ISIS and Pumpkin modules can
indeed run a Linux-based operating system called
Kubos. It requires at least 64 MB of RAM, similar
to OpenWRT.

4.4 Full-Featured Linux Platforms

There are now small single-board computers
(SBCs) that can run a full-featured operating sys-
tem. The most widely available and widely known
of these is the Raspberry Pi family of SBCs, intro-
duced in 2012. Current offerings include

• Raspberry Pi 4 SBC with a 4-core CPU and
a range of physical ports (USB, Ethernet,
HDMI, etc).

• Raspberry Pi 3 SBC with a weaker CPU and
similar range of physical ports.

• Raspberry Pi Zero, a version of the Raspberry
Pi 3 but lacking most of the physical ports, for
use as a module within products. The Rasp-
berry Pi Zero W adds Bluetooth and WiFi con-

Cohen 8 36th Annual Small Satellite Conference



nectivity and the recent Raspberry Pi Zero 2
W, with a stronger processor.

• Raspberry Pi 3 and 4 Compute Modules, which
are versions of the 3 and 4 lacking completely
physical ports but with board-to-board con-
nectors. These are intended to be used as mod-
ules within products, like the Pi Zero, but with
simpler manufacturing and stronger CPUs.

All versions are similar in terms of firmware and op-
erating systems, but are obviously different in terms
of power consumption.

The manufacturer, the Raspberry Pi Foundation,
also maintains a Linux distribution for the comput-
ers, based on the Debian distribution. The hardware
design is not open and its details are not published.
However, the Foundation does provide detailed doc-
umentation of the platforms.

Raspberry Pis are inexpensive. The Pi Zero costs
only 5 USD and the Pi Zero W costs 10 USD. Rasp-
berry Pi Compute Modules start at about 25 USD.

Reliability, good support, and low prices made
Raspberry Pis immensely popular. In March 2021
it was reported that 38 million units have been sold
since 2012.19 The large user base, which includes
many hackers and makers, translates into excellent
community support via on-line forums, web sites,
and ported software.

Another platform with fairly similar capabilities
and market is the BeagleBone board. It was origi-
nally offered by Texas Instruments as an educational
tool, but is now available as a compute module. It
has 512 MB of RAM and runs Linux. It is used as
the on-board computer on cube sat kits offered by
GOMSpace. It can run versions of Ubuntu or Debian
Linux, and is also supported by Kubos.

A company called Compulab4 offers a fairly large
number of modules capable of running full-featured
Linux distributions. The smallest one is 3-by-3 cm,
has a dual- or quad-core ARM processor and up
to 4 GB of RAM. The company provides a Debian
Linux distribution for the board as well as support
for the Yocto Linux project.

4.5 Platforms for Wearables (Android Wear)

The original iPhone, introduced in 2007, was the
first Unix computer in the form factor of a smart
phone. Earlier Unix or Linux computers came as
servers, desktops, laptops, and specialized (but not
physically small) SBCs. Android smart phones, in-
troduced a year later, run Linux.

Wearable computers in form factors smaller than
a phone initially used microcontrollers, but more re-
cent wearables, and in particular smart watches, run
Unix (Apple watches) or Linux (Android watches).

The computer in a smart watch is obviously phys-
ically smaller than that in a phone, so the existence
of smart watches running Linux (and Android above
the Linux operating system) led us to search for
wearable platforms running Android.

It turns out that such platforms do exist and are
available for purchase, but there is not a wide selec-
tion of them. We found only one vendor selling An-
droid Wear modules (System on a Module or SOM)
and development kits for them, Intrinsyc. During
our research, Intrinsyc was acquired by Lantronix.
Intrinsyc/Lantronics offers several SOMs and devel-
opment kits for them. We chose the Open-Q 2500
SOM, which uses silicon made by Qualcomm, for our
investigation. This platform is described more fully
below.

5 EVALUATION

In this section we describe our evaluation of four
candidate compute platforms for moderns pico satel-
lites:

• A Raspberry Pi module, and more specifically,
the Raspberry Pi Zero W.

• An Android Wear module, the Intrisic Open-Q
2500 SOM.

• A compute module intended for home WiFi
routers and IoT devices, the VoCore2 module.

• A compute module intended for industrial
computers and IoT devices, the Compulab
MCM-iMX8M-Mini.

Our main findings appear to be applicable to other
similar modules. In particular, the deficiencies we
found in the Raspberry Pi Zero W are also present
in other Raspberry Pis and the deficiencies we found
in the Open-Q 2500 are also present in other Android
Wear module by the same (and only) vendor.

The evaluation mainly focused on two aspects:
power consumption and ease of development. How-
ever, we start with a detailed technical overview of
the four platforms.

5.1 Technical Details of the Evaluation Plat-
forms

The Raspberry Pi Zero W is a 65-by-30 mm SBC
containing a Broadcom BCM2835 system-on-a-chip
(also used in the Raspberry Pis 0, 1, 2, and 3). The
chip contains a 1 GHz single-core 32-bit ARMv6
CPU, a GPU, and 512 MB of DRAM. The oper-
ating system and user data are stored on a MicroS-
DHC card. The board requires 5 V power at 1.2 A.
The board also contains a wireless chip supporting

Cohen 9 36th Annual Small Satellite Conference



WiFi and Bluetooth (we did not use these), mini
HDMI and USB ports (we did not use these), and a
standard Raspberry Pi 40-pin expansion connector
supporting GPIO, I2C, and SPI, all at 3.3 V.

The Open-Q 2500 is a 31.5-by-15 mm SOM con-
taining a Quad-Core ARM Cortex A7 (32-bit) at
1.094GHz, a Qualcomm® Adreno™ 304 GPU, and
a DSP processor, as well as 1 GB of LPDDR3 RAM
and 8 GB of eMMC flash. It contains WiFi, Blue-
tooth, and GNSS radios but no antennas. It runs on
3.6 to 4.2 V. Two 100-pin connectors provide access
to GPIO, UART, I2C, I2S (audio), and USB inter-
faces, as well as to a high-resolution display and a
camera. It runs Android for Wearables version 8.
The GPIO, UART, and I2C interfaces operate at
1.8 V.

We tested the module using the vendors Devel-
opment Kit, a carrier board that provides power
and battery management, a debug interface, anten-
nas for the radios, and convenient physical interfaces
(header pins) to many of the peripheral interfaces of
the SOM. The carrier board also supports optional
display and camera, which we did not use; we ran
the SOM headless. The carrier board also provides a
current-sensing resistor, to measure power consump-
tion.

The VoCore2 is a 26-by-26 mm printed circuit
board with components on both sides (so it can-
not be soldered directly on top of another PCB).
It contains a MediaTek MT7628 system-on-a-chip
with a 580 MHz MIPS 32-bit single-core CPU and
a WiFi radio. The board also contains a 128 MB
low-power DDR2 DRAM chip and a 16 MB NOR
flash chip. It supports OpenWRT versions 18 and 19.
The MT7628 SOC is designed specifically for home-
routers and for WiFi-based IoT devices. The mod-
ule exposes through pads on its periphery SPI, I2C,
I2S, USB (host), and PCI-Expresses buses, as well
as JTAG pins, two UARTs, an SDXC card interface,
and several Ethernet interfaces. It is relatively easy
to integrate on a carrier PCB, easier than a Rasp-
berry Pi compute module.

The MCM-iMX8M-Mini is a 30-by-30 mm
printed circuit board. Like the VoCore2 is has com-
ponents on both sides and is intended to be soldered
to a carrier board with a square hole, to accomodate
the components on the bottom of the SOM. It is
based on a processor from the NXP i.MX 8M fam-
ily. The board is available with 3 differnent dual-
or quad-core processors and with 1, 2, or 4 GB of
RAM and with a 4–64 GB eMMC flash memory.
The module provides a wide range of high-speed in-
terfaces (wired Ethernet, camera and display, USB,
SDIO, etc) and low-speed interfaces (I2C, SPI, etc).
It is available in standard, extended, or industrial
temperature specifications.

The Raspberry Pi Zero W costs 10 USD. The
Raspberry Pi Compute Modules, which are more
suitable for integration in satellites and other prod-
ucts, are a bit more expensive, starting at 25 USD,
but are still relatively inexpensive. The VoCore2 is
also inexpensive, costing 18 USD in small quanti-
ties. The Open-Q SOM costs about 140 USD alone
or about 700 USD with the carrier board. The cost
of the MCM-iMX8M-Mini starts at 123 USD for a
minimal configuration at small quantities (with large
discounts for large quantities, up to a factor of 2.5);
loaded versions tested for industrial temperatures
reach prices of 448 USD for small quantities. The
wide range of options and prices is a significant ben-
efit.

5.2 Ease (or Difficulty) of Development

As stated above, Raspberry Pis are very well sup-
ported by their manufacturer and have a huge user
base, including many hackers and developers. The
level of support and documentation, the stability of
the hardware and operating system, the quality of
the Linux distribution, the availability of third-party
software, and community support are all as good as
they get. They are all fabulous. Developing soft-
ware on Raspberry Pis is easy, can be done in a wide
range of programming languages and environment.
Access to low-level interfaces (GPIO, I2C, and so on)
is standardized and easy.

Developing on the Intrinsyc SOMs is much more
challenging. There is virtually no community sup-
port for these modules. There are no code samples.
Documentation is often partial or difficult to under-
stand. Updates to the Linux distribution and the
Android system are infrequent.

For example, communicating with an I2C sensor
proved to be a major undertaking on the Open-Q
SOM. We tried to use the SOM as an I2C slave in
order to let it communicate with a radio chip that
could only be configured as an I2C master. It turns
out to be impossible, but there is no way to know
that from the documentation. We eventually man-
aged to replace the I2C connection by a UART con-
nection, but that too was very challenging. We did,
however, develop several programs that run on the
SOM and that read data from an accelerometer, gy-
roscope and temperature sensors over I2C, as well
as a daemon that communicates with the radio chip
over UART. So developing on the SOM is challeng-
ing, but certainly possible, including programs that
access the hardware interfaces.

We eventually resorted to buying a 3000 USD
support package, which allowed us to obtain answers
from Intrisic’s support engineers. This allowed us
to resolve many of the outstanding issues that pre-

Cohen 10 36th Annual Small Satellite Conference



vented us from evaluating the platform, but devel-
opment remained challenging.

While the Intrinsyc SOMs and the Qualcomm
silicon are certainly usable, our evaluation is that
they are not suitable for small development teams
and for prototyping, even when the developers are
experienced.

Developing on the VoCore2 is relatively easy.
The board is easy to bring up, requiring only a
5V, 500mA supply (any USB port or power supply
works) and a 3.3V USB-to-UART bridge, to con-
nect to the board’s Linux console. The board func-
tions by default as a WiFi access point, so it is also
possible to connect the network that it advertises
and to connect to the board using SSH (so even the
UART connection is optional, but convenient). C
and C++ programs can be cross compiled on a desk-
top Linux computer on which the custom version of
OpenWRT has been installed. Compiled programs
can be transferred to the board using SCP and once
there can be stored in a nonvolatile file system, along
with any scripts or modified configuration files. The
small amount of on-board non-volatile memory make
it unlikely that the board can support full versions
of high-level programming environments like Python
or Java. Adding a micro-SD socket and a high-
capacity memory card or an eMMC module might
rectify this issue but we have not tested this. The
relatively small amount of RAM might also make
running high-level software challenging.

We have not tried to bring up the MCM-iMX8M-
Mini, but since the vendor provides a standard De-
bian distribution for it, development should be easy.
The module can boot from both the built-in eMMC
storage, and from an external SD card, like a Rasp-
berry Pi.

5.3 Power-Consumption Measurements:
Methodology and Results

We measured the power consumption of the
Raspberry Pi by feeding it with power throught a
0.1 Ohm resistor and measuring the voltage across
the resistor with a PicoScope 3406D digital oscillo-
scope connected to a laptop running Windows. The
resolution of the PicoScope is about 1.85 mV, which
translates to about 19 mA or around 100 mW. We
used this setting to measure power consumption in
active mode, idle mode, and during boot. We used
another setup described below to measure power
consumption during sleep mode.

During these experiments, we disabled USB,
Bluetooth WiFi, and HDMI. We disabled HDMI
using the tvservice utility. We disabled WiFi
and Bluetooth via /boot/config.txt and via
systemctl. We disabled USB through sysfs.

We measured consumption in idle and active
mode for about 50 s each. In idle mode the Rasp-
berry Pi only ran background tasks. In active mode,
we ran a program called stress-ng with its de-
fault parameters, which computes FFTs on the ARM
CPU.

To measure boot time, we wrote a program that
sets a GPIO pin which the Pi ran automatically af-
ter startup. This allowed us to determine on the
oscilloscope when the boot process ended.

The operating system of the Rasberry Pi does
not support sleep mode, but the hardware does.
We tested this mode using a community-contributed
firmware called rpi-open-firmware,6 which re-
places Broadcom’s standard firmware (bootloader).
We modified the firmware so that the CPU and the
VPU (a SOC management CPU) enter sleep mode
almost immediately. To gain more resolution in
power measurements in this mode, we used a 2 Ohm
sense resistor instead of the 0.1 Ohm resistor we used
to measure power in active and idle modes and dur-
ing the boot process.

Table 3: Power consumption of the Rasberry
Pi Zero W (with its wireless and display in-
terfaces turned off).

Mode Mean±Std (mW) Peak (mW)

Sleep 33± 16 127

Boot 3024± 1116 9879 39 s
Idle 836± 121 2233

Active 3138± 1068 7974

The results of the power measurements on the
Raspberry Pi are presented in Figure 2 and table 3.

The SOM has a lower power consumption, which
required a higher resolution power measurement. We
measured current consumption (at the 4.0 V sup-
plied by the carrier board) using a 0.5 Ohm resistor
and a 100x voltage amplifier whose output was mea-
sured by the same PicoScope. The amplifier used a
Texas Instruments INA169 amplifier on a Sparkfun
breakout board.

We disabled the WiFi, Bluetooth, NFC, GNSS,
on the SOM using ADB (Android debugger) com-
mands. The display interface is active but since no
application uses it, it turns the display off and pre-
sumably consumes little or no power.

We used the same benchmark, stress-ng (run-
ning under Linux, not under Android), to test active
mode, using either 2 or 4 cores. We also used a sim-
ilar mechanism as on the Raspberry Pi to determine
when the boot process ended. The results are shown
in Figure 2 and Table 4.

Cohen 11 36th Annual Small Satellite Conference



Raspberry Pi Zero W VoCore2 Open-Q 2500

No Sleep Mode

Figure 2: Instantaneous power consumption of a Raspberry Pi Zero W, an Open-Q 2500 SOM,
and VoCore2 in different activity modes. The The SOM was tested in active mode using all
four cores.

Table 4: Power consumption of the Open-Q
2500 SOM (with its wireless and display in-
terfaces turned off).

Mode Mean±Std (mW) Peak (mW)

Sleep 4± 7 90

Boot 255± 4 258 50 s
Idle 54± 16 258

Active 258± 1 262

The VoCore2 has a high power consumption. We

measured current consumption (at the 5.0 V supply)
using an 0.2 Ohm resistor and a 25x voltage ampli-
fier whose output was measured by the same Pico-
Scope. The amplifier was again a Texas Instruments
INA169 amplifier on a Sparkfun breakout board.

We found no way to disable power-hungry pe-
ripherals (USB, Ethernet, and WiFi) that are not
needed for our intended applications and we found
no way to put the module into low-power sleep mode.
We verified with the manufacturer that they indeed

Cohen 12 36th Annual Small Satellite Conference



do not support disabling peripherals and sleep mode.
We used the same benchmark, stress-ng, to test

active mode. The results are shown in Figure 2 and
Table 5.

Table 5: Power consumption of the VoCore2
module.

Mode Mean±Std (mW) Peak (mW)

Sleep N/A N/A
Boot 505± 109 881 27 s
Idle 605± 175 2550

Active 844± 200 2690

We did not test the current consumption of the
MCM-iMX8M-Mini, but the manufacturer provides
detailed current consumption data for several oper-
ational modes, listed in Table 6.

Table 6: Power consumption of the MCM-
iMX8M-Mini SOM.

Mode Manufacturer Data
(mW)

Sleep (DRAM refresh) 15

Idle, Ethernet &
display disabled

240

GPU load 1760

6 CONCLUSIONS

Did we find a compute platform with a full-
featured modern operating system supporting mod-
ern programming environments that is suitable for
pico satellites? No.

Our results, summarized in Table 7, indicate that
from the power perspective, Android Wear SOMs
are terrific. They have a low sleep power consump-
tion (around 4 mW peak) and consume only about
250 mW in active mode. This level of power effi-
ciency should allow them to stay active all or almost
all the time even in 5-by-5-by-5 cm pocket cubes, and
to effectively exploit low duty-cycle work loads. The
modules run Android on top of Linux, so in principle
they support high-level programming (e.g., Android
apps and many programming languages running di-
rectly on top of the Linux operating system). They
are also tiny.

On the other hand, support for these modules is
poor. Developing with them presents many obstacles
that are difficult to overcome given the poor support
and the essentially non-existent developer commu-
nity. Also, software support on these modules tar-
gets Android exclusively, so other popular program-
ming environments, such as Python or Node.JS are
probably not supported out of the box.

The MCM-iMX8M-Mini SOM also has effective
power management. It can probably be used in a
nanosatellite or picosatellite, given the 15mW power
consumption in sleep mode, but under heavy com-
putational loads it consumes more than 1.7 W, re-
quiring careful consideration of energy consumption
even on a cube sat. However, this module uses an
NXP processor from the i.MX 8M family that is not
the best match for battery-powered devices. NXP
has announced an ultra-low power sub-family, the
i.MX 8ULP family, with lower power consumption.
We expect that SOMs based on it will have power
consumption similar to that of the Open-Q 2500.

We have not tested the MCM-iMX8M-Mini SOM
ourselves, but given that the manufacturer supports
both Debian and Yocto Linux on it, software devel-
opment should not be too challenging.

The relevant characteristics of the Raspberry Pi
are the exact opposites. The Pi excels where the
SOM struggles, and in particular in ease of software
development, a huge spectrum of sofware and pro-
gramming environments, and excellent vendor and
community support. Simply put, developing soft-
ware on the Raspberry Pi is easy. On the other hand,
the Raspberry Pi consumes way too much power and
lacks even minimal support for sleep modes or low-
duty cycle operations. It consumes between 3 and
10 W in active mode. This might have been accept-
able for a 250 mW satellite if it was possible to put
the Pi in sleep mode most of the time, but this is not
possible. In idle mode, when the Pi runs only back-
ground tasks (the lower useful power mode available)
it still consumes almost 1 W.

Both power and support issues render the Vo-
Core2 module unsuitable for our purposes. It is
power hungry. Not as much as a Raspberry Pi, with
peak power consumption about 2.7 W, not 8 W, but
it also lacks effective power management, so it con-
sumes around 0.6 W even when it needs to do noth-
ing. We found support from the vendor weak (e.g.,
we were able to get no assistance on the power man-
agement question), and we did not find any active
community of users and developers.

It appears that we must wait for somebody to
produce a low-power, tiny (3-by-1 cm or smaller)
compute module running Linux that is well sup-
ported. Our results show that this is certainly pos-
sible. But we have not found one yet.

APPENDIX
DETAILS OF A SOM+RF MCU PLAT-
FORM

We evaluated the ease of development with
the compute platforms, and in particular on the
OpenQ 2500 that we initially perceived as the most

Cohen 13 36th Annual Small Satellite Conference



Table 7: Relevant characteristics of potential compute platforms for picosatellites. The first
two characteristics are absolutely essential, the rest are not.

A
RM

Cor
te
x
M
4
+

A
rd

ui
no

/C
irc

ui
tP

yt
ho

n

A
RM

Cor
te
x
M
4
+

Pr
op

rie
ta
ry

O
S

Ras
pe

be
rr
y
Pi

Com
pu

te
M
od

ul
e
(3

or
4)

A
nd

ro
id

W
ea

r SO
M

O
pe

nW
RT

on
Vo

Cor
e2

M
CM

-iM
X
8M

-M
in
i

small physical size + + ± + + +

ultra low power + + − ± − ±

COTS hardware + + + ± + ±

COTS software + − + + + +

technical support + + + − + ?
ease of HW integration + + ± + + +

resources (RAM, CPU) − − + + ± +

high-level language + − + + ± +

high-capability software − + + + + +

(high-speed interfaces) − − + − + +
cost $ $ $$ $$$ $ $$$

suitable for picosatellites, by interfacing the SOM
to a radio platform suitable for a picosatellite. The
SOM, like any module designed for wearables, only
has short-range radios, namely Bluetooth and WiFi.
A picosatellite needs a long-range radio. We chose
for the radio a modern MCU with a data radio
transceiver, the CC1352P. This chip from TI has an
ARM Cortex-M4 processor and a data radio capa-
ble of transmitting at up to 100mW at both sub-GHz
frequencies (including the VHF and UHF bands typ-
ically used for CubeSats) and at 2.4 GHz. The ra-
dio can operate at both high-throughput short-range
modes and at low-throughput long range modes.
The long-range modes use a combination of narrow-
band modulation (to improve the signal-to-noise ra-
tio), spreading to improve symbol recognition, and
error-correcting codes.

We designed a software architecture to pair
the SOM with a CC1352P and tested it using a
CC1352P evaluation board. The architecture used
the CC1352P as a simple radio peripheral, since
we aimed to assign sophisticated processing to the
SOM, which in principle is much easier to program
(supports high-level languages, libraries, etc.).

Architecturally, the firmware of the CC1352P can
perform exactly two tasks that are controlled by the
SOM:

• Transmit a radio packet, and

• Enter receive mode for a given amount of time.
If a packet is received within that time, it is
sent back to the CC1352P for processing.

When the CC1352P is doing neither of these things,
it enters a deep sleep mode. The SOM can wake it
up to perform one of its tasks. Packets are opaque to
the CC1352P; it does not interpret them in any way,
only passes along valid packets. Treating packets as
opaque implies that the high-level communication
protocol is implemented by the SOM, not by the RF
MCU.

We implemented the firmware on the CC1352P
using C and the vendor’s proprietary operating sys-
tem called TI-RTOS. The implementation uses four
threads that communicate through semaphores:

• A main thread that sets up the hardware, cre-
ates the other threads, and exits.

• A radio transmit thread, which waits for a
packet from the SOM and tries to transmit it.

• A radio receive mode that receives a command
to start receiving from the SOM, executes it,
and sends back the received packet, if any.

• A service task that controls two LEDs on the
evaluation board for diagnostics.

The SOM performs all other tasks, including col-
lecting data from sensors (we connected an I2C

Cohen 14 36th Annual Small Satellite Conference



temperature sensor to the SOM’s carrier board to
test this functionality), waking up periodically us-
ing a real-time-clock (in the satellite, wakeups would
be scheduled for sensing, attitude control, and for
communication with ground stations), and attempt-
ing to communicate with ground stations using the
CC1352P.

We explored two possible mechanisms for im-
plementing the communication channel between the
SOM and the CC1352P. We first tried to implement
the channel using an I2C bus, which both devices
support. However, the CC1352P does not support
well slave mode and the SOM does not support slave
mode at all. Since one of the two would have to be
the slave in the channel, I2C proved to be a nonviable
option. (The hardware of the CC1352P does support
slave mode, but not in low-power sleep modes, and
not in the high-level driver.)

We therefore switched to a UART implementa-
tion. This proved easier and we managed to get
it to work. The UART on the CC1352P also does
not work in low-power modes, so the prototype im-
plementation only uses the UART for communica-
tion when both modules are awake. To wake the
CC1352P, the SOM uses a general-purpose input-
output (GPIO) pin. This was relatively easy to im-
plement and it works well. Waiting for the edge on
that pin was implemented using a software interrupt
routine.

The software that we wrote for the SOM side of
the prototype includes one Android system applica-
tion written mostly in Java. Because we configured
it as a system application, as opposed to a user ap-
plication, it runs nonstop. The application includes
three components, a scheduler, a handler for sensor
measurements, and a radio-message controller. The
sensor handler uses a built-in Android service called
SensorManager to configure sensors and collect data
from them.

Our Android application also contained C++
code, accessible to the Java parts through JNI (the
standard Java-native interface). This code commu-
nicates with the UART, which is exposed in Android
as a Linux character device (/dev/tty). On the
other hand, we were able to control the GPIO pin
directly from Java.

Unfortunately, user-mode Android code cannot
use the I2C buses on the SOM. Therefore, to use
an I2C sensor (I2C is very common today in so-
phisticated sensors) we had to write a Linux kernel
module that implemented the low-level communica-
tion with the sensors and that generates standard
sensor-measurement messages that eventually reach
the SensorManager running in user space.

We tested the completed prototype and verified
that it can communicate with another CC1352P

evaluation board.

EVALUATION

We believe that the overall architecture is
sound. There are now many more radio data
transceivers that are part of RF MCUs than stan-
dalone transceivers, so it is likely that future pi-
cosatellites will need to use RF MCUs as radios. Our
prototype also verified the feasibility of keeping most
of the sophisticated functionality on the SOM, not
on the harder-to-program MCU.

Unfortunately, the version of Android used on
the SOM (Android 8.1.0 for Wearables) does not al-
low high-level Android applications to access all the
hardware interfaces, and in particular the I2C in-
terface. This implies that I2C communication must
be implemented in a kernel module, one of the least
hospitable and most complex programming environ-
ments in existence. In contrast, on Raspberry Pis
I2C and other buses are easily accessible from user
space code written in a variety of programming lan-
guages (including, for example, Python or Java).

But this was not the most difficult aspect of im-
plementing the prototype. That was the lack of doc-
umentation and examples for all the unique aspects
of the SOM (that is, all the hardware and software
aspects that are not part of the base Android sys-
tem). This made development difficult and required
purchasing an expensive support package from the
manufacturer (3000 USD, much more than the cost
of the evaluation platform). Even with the paid sup-
port package, development remained challenging.

Acknowledgements

This study was supported by a grant from the
Israeli Space Agency (part of the Israeli Ministry of
Science) and by grant 1919/19 from the Israel Sci-
ence Foundation.

References

[1] Alba orbital. PocketQube platform ven-
dor at http://www.albaorbital.com, accessed
March 2022.

[2] Cellular tracking technologies. Wildlife tracking
vendor at https://celltracktech.com, ac-
cessed March 2022.

[3] Coin-sized Linux computer with WiFi and Eth-
ernet. https://vocore.io, accessed March
2022.

[4] Compulab. System-on-a-module (SOM) ven-
dor at https://www.compulab.com, accessed
March 2022.

Cohen 15 36th Annual Small Satellite Conference



[5] OpenWrt project. https://openwrt.org, ac-
cessed March 2022.

[6] Kristina Brooks. Minimal Raspberry Pi
VPU firmware. Source code and documen-
tation at https://github.com/christinaa/

rpi-open-firmware, accessed March 2022,
January 2019.

[7] C. Cappelletti. Femto, pico, nano: overview
of new satellite standards and applications. In
Advances in Astronautical Sciences: Proceed-
ings of the 4th IAA Conference on University
Satellite Missions and CubeSat Workshop, vol-
ume 163, pages 503–510, 2018.

[8] Jay Carlson. So you want to build an embed-
ded Linux system? Blog post at https://

jaycarlson.net/embedded-linux/, accessed
4 January 2022; date infered from comments,
October 2020.

[9] Frank .C. Craighead, Jr., John J. Craighead,
Charles E. Cote, and Helmut K. Buechner.
Satellite and ground radio tracking of elk. In
S. R. Galler, K. Schmidt-Koenig, G. J. Jacobs,
and R. E. Belleville, editors, Animal Orienta-
tion and Navigation, number 262 in NASA Spe-
cial Publication, pages 99–111. 1972.

[10] Z. D. Deng, T. J. Carlson, H. Li, J. Xiao,
M. J. Myjak, J. Lu, J. J. Martinez, C. M.
Woodley, M. A. Weiland, and M. B. Eppard.
An injectable acoustic transmitter for juvenile
salmon. Scientific Reports, 5(8111), 2015.

[11] Dirk Geeroms, Sabine Bertho, Michel
De Roeve, Rik Lempens, Michiel Ordies,
and Jeroen Prooth. ArduSat, an Arduino-
based CubeSat providing students with the
opportunity to create their own satellite
experiment and collect real-world space data.

[12] Steven M. Guertin, Mehran Amrbar, and
Sergeh Vartanian. Radiation test results for
common CubeSat microcontrollers and micro-
processors. In IEEE Radiation Effects Data
Workshop (REDW), pages 1–9, 2015.

[13] Hank Heidt, Jordi Puig-Suari, Augustus S.
Moore, and Shinichi Nakasuka. CubeSat: A
new generation of picosatellite for education
and industry low-cost space experimentation.
In Proceedings of 14TH Annual Conference on
Small Satellites. 19 pages.

[14] Adafruit Industries. Feather specification. Re-
trieved September 9th, 2021.

[15] Herbert J. Kramer and Arthur P. Cracknell.
An overview of small satellites in remote sens-
ing. International Journal of Remote Sensing,
29:4285–4337, 2008.

[16] Erik Kulu. Nanosats database. https://www.

nanosats.eu, accessed on August 5, 2021.

[17] B. Naef-Daenzer, D. Früh, M. Stalder, P. Wetli,
and E. Weise. Miniaturization (0.2g) and eval-
uation of attachment techniques of telemetry
transmitters. The Journal of Experimental Bi-
ology, 208, 4063–4068.

[18] Alba Orbital, Delft University, and GAUSS.
The pocketqube standard, issue 1, June 2018.

[19] Avran Pitch. Raspberry Pi’s ninth birthday:
9 things you might not know. Tom’s Hard-
ware, https://www.tomshardware.com/news/
raspberry-pi-9th-birthday, March 2021.

[20] Armen Poghosyan and Alessandro Golkar.
CubeSat evolution: Analyzing CubeSat capa-
bilities for conducting science missions. Progress
in Aerospace Sciences, 88:59–83, 2017.

[21] The CubeSat Program. CubeSat design specifi-
cation. Technical Report Revision 13, California
Polytechnic State University, 2014.

[22] S. Radu, M.S. Uludag, S. Speretta,
J. Bouwmeester, A. Menicucci, A. Cervone,
A. Dunn, T. Walkinshaw, P.L. Kaled Da Cas,
C. Cappelleti, and F. Graziani. PocketQube
Mechanical Interface Standard, 2018.

[23] Silvana Radu, Sevket Uludag, Stefano Speretta,
Jasper Bouwmeester, Eberhard Gill, and Niki-
tas Chronas Foteinakis. Delfi-PQ: The first
pocketqube of Delft University of Technology.
In Proceedings of the 69th International Astro-
nautical Congress, pages 1–10, Bremen, Ger-
many, 2018. International Astronautical Feder-
ation.

[24] Alberto Guillen Salas, Watson Attai, Ken Y.
Oyadomari, Cedric Priscal, Rogan S. Shimmin,
Oriol Tintore Gazulla, and Jasper L. Wolfe.
PhoneSat in-flight experience results. Con-
ference Paper ARC-E-DAA-TN14625, NASA,
2014. Presented at the Small Satellite Systems
and Services (4S) Conference.

[25] Jeremy Straub, Christoffer Korvald, Anders
Nervold, Atif Mohammad, Noah Root, Nicholas
Long, and Donovan Torgerson. OpenOrbiter: A
low-cost, educational prototype cubesat mission
architecture. Machines, 1(1):1–32, 2013.

Cohen 16 36th Annual Small Satellite Conference



[26] Michael Swartwout. The first one hundred
CubeSats: A statistical look. Journal of Small
Satellites, 2(2):2013–233, 2013.

[27] Wikipedia. Pocketqube. https:

//en.wikipedia.org/wiki/PocketQube,
accessed March 2022.

Cohen 17 36th Annual Small Satellite Conference


