
Kurtz 1 36th Annual Small Satellite Conference

SSC22-WKP1-15

Development of a Simulation Framework for CubeSat
Performance Modeling

Mark A. Kurtz, Andrew S. Keys, Kirk W. Johnson

Air Force Institute of Technology
2950 Hobson Way, WPAFB, OH 45433

mark.kurtz.1@spaceforce.mil

ABSTRACT
Space systems are notoriously difficult to develop due to the nature of the environment in which they must operate.
Designers have only a limited window to ensure systems will function as intended, placing a high importance on
testing. This paper discussed the ongoing development of a simulation framework to support Hardware-in-the-Loop
(HIL) testing of CubeSat subsystem hardware. This work is being conducted at the Air Force Institute of Technology
(AFIT) in support of the institution’s CubeSat program. The simulation framework is organized into the classic
spacecraft subsystems. Each of these subsystems will support a software model and interfaces for the integration of
flight hardware into the simulation framework. In demonstration of this concept, propulsion hardware has been
successfully integrated into the model environment. Telemetry reception and command transmission within the
simulation framework is functional and demonstrated. A loop containing the propulsion hardware, simple controller,
and orbital motion propagator was developed to demonstrate the HIL test functionality of the simulation framework.
This focus on the development of the propulsion HIL test configuration is a point of distinction from other HIL
simulations, which typically focus on the Attitude Determination and Control System (ADCS). Presented results
validate successful integration of propulsion subsystem hardware into the simulation framework. Future work will
focus on the integration of CubeSat subsystem models into the framework.

INTRODUCTION
Designing space systems is an incredibly difficult task
thanks largely to the demanding environment in which
these systems operate. Space systems must work
perfectly in a hostile environment which cannot be
completely replicated on the ground. Mistakes and flaws
typically cannot be corrected once a spacecraft is in its
operational orbit. Consequently, a strong test campaign
is vital to the success of any space system. This is even
more so the case with CubeSat programs. Such programs
typically have much smaller budgets and much faster
schedules than their traditional counterparts. The
CubeSat systems themselves usually lack redundant
components and/or subsystems. Teams are often smaller
and less experienced. These factors and limitations make
a strong test campaign simultaneously more important
and more challenging to achieve for CubeSat programs.1

Success under these circumstances means effectively
utilizing limited resources. A common approach is to use
hardware-in-the-loop simulations.2 Such simulations
replace a hardware component’s operational
environment with an emulated equivalent.3 For example,
magnetic field, sun and star locations, and other space
environment characteristics can be modeled and fed to
the Attitude Determination and Control System (ADCS)
such that the ADCS believes it is in its operational
environment. Such a HIL test setup enables development

and testing of the system without requiring additional
spacecraft hardware.2 The Air Force Institute of
Technology (AFIT) operates its own CubeSat program.
Several missions are planned and under development,
but AFIT has not yet had an operational system on orbit.
Consequently, testing within AFIT’s CubeSat program
is in its early stages. Like most other CubeSat programs,
AFIT’s CubeSat program is constrained in terms of
schedule and budget. Additionally, research efforts lack
a high level of continuity as student and faculty
researchers transition through the institution.4

As a result, there exists a clear necessity for research
aimed at improving the AFIT’s ability to test CubeSat
hardware. Development of a Hardware-in-the-Loop
simulation was selected as the best means of improving
test capabilities. The objective here is to develop a
simulation framework which can be used to test flight
hardware in loop with its simulated environment. This
approach provides a number of advantages compared to
other possibilities. For example, engineering test units
can be constructed out of flight or flight-like hardware.
While this approach provides a highly accurate
representation of the operational system, it necessitates
the acquisition of additional copies of system
components.5 This can be expensive and time consuming
for CubeSat program’s like AFIT’s. It also is typically
not feasible to produce enough test units for everyone

Kurtz 2 36th Annual Small Satellite Conference

who needs one, potentially resulting in wait times and
schedule delays. HIL simulation can decrease
dependency on hardware availability, enabling faster
testing without unnecessary delays.

The second objective of this research is to demonstrate
the integration of system hardware into the simulation
architecture. The propulsion subsystem was selected as
the subsystem of focus for this objective. There were
several reasons for this selection. One of AFIT’s
missions in development utilizes a propulsion subsystem
for maneuvers.4 AFIT has not developed a propulsion-
capable CubeSat before, so it is highly desirable to focus
additional testing efforts on the propulsion subsystem.
Additionally, propulsion subsystems are not very
common on CubeSats, nor are they often the focus of
HIL simulation efforts. Typically, CubeSat HIL
simulation efforts focus on the ADCS as this system is
present in every CubeSat and often contains the most
complex hardware.2 Thus, HIL simulation solutions are
much less readily available for AFIT’s propulsion
subsystem. At the time of writing, no HIL simulation
effort incorporating this specific propulsion subsystem
could be identified, adding a degree of novelty to this
chosen subsystem focus.

The third objective is to effectively utilize parallel
research efforts to the greatest extent possible. For a HIL
simulation built to test CubeSat hardware, the simulated
environment includes the CubeSat’s other subsystems in
addition to the physical space environment. It is
therefore necessary to simulate these subsystems, or at
least aspects of these subsystems. Several ongoing
research efforts at AFIT are focused on modeling and
simulating some of AFIT’s CubeSat subsystems.
Incorporating these efforts into the simulation
architecture delivers several key advantages. The first is
that duplication of effort is avoided. Given the time and
manpower constraints of a CubeSat program, this is a
more efficient utilization of limited resources.
Additionally, incorporation of these parallel models
provides a degree of continuity over the involved
research. Given the fairly rapid turnover of students and
faculty at AFIT, it is not uncommon for research to lose
continuity. This is true even of the research efforts
connected to AFIT’s CubeSat programs. The simulation
framework is intended to be further developed as the
CubeSat program progresses, providing a degree of
continuity for the integrated subsystem models. The
simulation framework is being designed to allow for real
subsystem hardware and its simulated software
equivalent to run within the simulation. This will allow
for subsystem models developed through other research
efforts to be validated against the actual hardware they
are attempting to model. Additionally, the framework
will enable the included subsystem models to interact

with each other, providing additional insight into each
model’s performance.

SIMULATION FRAMEWORK METHODOLOGY
The simulation framework is designed with the intent of
supporting various subsystems as either hardware or
software components within the simulation. The idea
here is that the user will configure which subsystems are
physically connected as hardware and which are
modeled within the simulation depending on testing
requirements. For example, a HIL test of the ADCS
would see the simulation set to connect to ADCS
hardware with the other subsystems selected to run as
software models within the simulation framework.

Strucutre and Organization
The framework is organized into the classic CubeSat
subsystems1 as shown in Figure 1. Because CubeSats are
typically developed, built and tested at the subsystem
level, it made the most sense to apply this organizational
scheme to the simulation framework. Additionally, the
CubeSat’s external environment is contained within a
separate subsystem. This organization makes adjustment
of the external environment model simple and mirrors
the CubeSat’s operational environment.

Figure 1: Simulation Framework High Level
Architecture

Each subsystem block within the framework consists of
two major components; the hardware interface and
software-based model as shown in Figure 2, which
depicts the propulsion subsystem. A switch enables the
subsystem to either interface with the system’s
corresponding hardware, or to utilize a software-based
model. The framework is built to enable this duality for
each of the included subsystems. Currently,
development has been limited to demonstrating this
functionality within a single subsystem. As described
previously, the propulsion subsystem was selected as the
ideal candidate.

Kurtz 3 36th Annual Small Satellite Conference

Figure 2: Subsystem Architecture for Hardware and
Software Interfacing

Hardware Integration
The propulsion subsystem hardware integrated into the
simulation framework is the SNIPE Micro Propulsion
System (MiPS) produced by Vacco Industries. This
system is a small form factor cold gas propulsion system
designed for CubeSat missions and will be flown on an
upcoming AFIT mission.6

The propulsion unit uses R-236fa as its cold gas
propellant to provide 25 mN of thrust and a specific
impulse of 40 seconds for each of four nozzles. The four
nozzles point along the same axis and are aligned to
within 0.1 degrees of each other. The Vacco MiPS
contains 1.2 kilograms of propellant within a footprint of
just 12x10x10 cm. Communication with this propulsion
system occurs via an RS-422 serial port. This interface
allows for serial communications with the propulsion
subsystem at a data rate of up to 10 mbps.7

To facilitate the development and testing of CubeSat
missions using their propulsion system, Vacco Industries
furnishes an emulator in advance of delivery of the actual
propulsion unit. The emulator is a physical piece of
hardware consisting of a logic board and RS-422 serial
interface encased within a metal and glass housing. The
emulator runs the propulsion system software and
mimics the functioning of physical components such as
its heaters or thruster valves. This propulsion emulator
was used to develop the simulation framework’s ability
to interface with the propulsion system. This was done
because the emulator was available well in advance of
the flight hardware yet utilizes identical communications
protocol.

Integrating the propulsion subsystem into the simulation
framework required several additional components. As
shown in Figure 3, the hardware must be connected to a
hardware interface. This is a physical component which
adapts the hardware’s interface to that of the system
hosting the simulation framework. On the host system,
drivers corresponding to the hardware interface
component are needed in order for the system to
recognize the CubeSat hardware. Finally, configuration

blocks within the simulation software environment
enable communication between the simulation
framework and the propulsion system hardware.

Figure 3: Hardware to Simulation Framework
Structure

The hardware interface used here is a Ulinx serial
converter. This device adapts a serial cable connected to
the RS-422 port to USB as shown in Figure 4, ensuring
compatibility with most computers. The system used to
build and run the simulation framework is a laptop
running a standard installation of Windows 10.

Figure 4: UlinxRS-422/485 to USB Adapter
Drivers must be installed for the host computer to detect
hardware connected via the Ulinx adapter. The drivers
are the software interface between hardware and
simulation. Once installed, connected hardware will
show up in Device Manager as a COM port. Device
Manager will specify which com port is connected. The
port is often labeled “COM3” but can contain other
numbers depending on the host computer’s specific
configuration.

Simulation Software
Because modeling and simulation is not not a new
concept, many software environments exist which can be
used to create powerful simulations . Mathwork’s
Simulink was selected as the software environment for
the simulation framework. Simulink provides strong
support for interfacing with external devices.
Additionally, the majority of parallel subsystem
modeling efforts were also being built within Matlab and
Simulink. Thus, building the simulation framework
within Simulink ensures a high degree of compatibility
with the models that have been identified for integration
into the framework. Additionally, Simulink enables the
organization of simulation components into subsystems,

Kurtz 4 36th Annual Small Satellite Conference

providing a strong visual organization to the simulation
framework.

The simulation framework runs on Simulink 2021a. To
complete the interfacing of the simulation with the
propulsion system, several specific Simulink blocks
were utilized. The first of these is the Real-Time Sync
block. Without this block, the simulation will attempt to
iterate as fast as possible. While this can be useful for an
entirely virtual CubeSat model, the hardware-interfaced
simulation framework must run in real time. The Real-
Time Sync block accomplishes this by coordinate
computation at each step iteration with accurate time-
keeping.

Along with this block, input and output blocks are
needed. The “Packet Input” and “Packet Output” blocks
from the Simulink Real-Time Desktop Library were
selected to provide input from and output to the CubeSat
propulsion hardware. Though other blocks are available
in Simulink’s libraries, only blocks within the Real-Time
Desktop Library are compatible with real time operation.
Both blocks must be configured to utilize an installed
data acquisition board. Serial ports are treated as boards
within these blocks, so “Serial Port”3 was installed and
selected for both blocks as shown in Figure 5. This figure
depicts the Packet Input block and its configuration
options. The “board” was configured with a Baud rate of
115200, eight data bits, one stop bit and no parity in
accordance with the Vacco MiPS Interface Control
Document (ICD).6

Figure 5: Packet Input Block and Configuration
Options

The Packet Input block was configured to interpret input
from hardware as packets of 86 bytes in length. This
corresponds to the length of the telemetry message

produced and transmitted by the propulsion system.
Additionally, the input block was configured to interpret
incoming data as Big-Endian unsigned eight-bit integers.
This corresponds to the specifications detailed in the
propulsion ICD.6

Similarly, the Packet Output block is configured to
output packets ten bytes in length, also as Big-Endian
unsigned eight-bit integers. The block and its
configuration options are shown in Figure 6. All
commands accepted by the propulsion system follow this
structure. The inclusion and configuration of these
blocks within the simulation framework completes the
chain of components, both hardware and software,
needed to interface the propulsion subsystem hardware
with the simulation framework. Multiple input and
output blocks can be utilized within the simulation as
long as they are properly configured.

Figure 6: Packet Output Block and Configuration
Options

PROPULSION HARDWARE COMMAND AND
TELEMETRY INTEGRATION
With the communications link established, the
simulation was then configured to interpret incoming
data (telemetry) and properly format and transmit
commands when needed. To this end, it is necessary to
understand how the propulsion system transmits and
receives data and to then develop what are essentially the
drivers that enable the meaningful interfacing of the
propulsion system with the simulation.

Telemetry Reception and Parsing
As specified previously, telemetry received from the
Packet Input block is packaged into packets of 86 bytes
in length. Each packet is a telemetry message transmitted

Kurtz 5 36th Annual Small Satellite Conference

from the propulsion hardware and contains all available
data pertaining to hardware status. Every packet begins
with a start byte. and ends with a stop byte. Each byte
within the telemetry message is an eight bit unsigned
integer. In this state, each telemetry message packet is
not useful to the simulation framework. Thus, the
propulsion subsystem model must parse the packaged
bytes into data that can be utilized by the simulation
(such as hardware temperatures, pressures, etc). The
parser was built as a custom Matlab function named
”parse_packets” within the propulsion subsystem model.
It converts every byte in the telemetry message through
a number of different operations.

Eight bit (one byte) integers can have a maximum value
of 255, but the propulsion system needs to transmit larger
values. This means that some data points are constructed
from two or even three bytes. The propulsion system
divides larger numbers into their Most Significant Byte
(MSB), Least Significant Byte (LSB) and middle byte
(when three bytes are needed). The MSB consists of the
eight leftmost bits in the number and the LSB consists of
the eight rightmost. To get the proper telemetry datapoint
from the buffered telemetry message, the MSB and LSB
must be reconstituted into a single value. Within the
parse_packets Matlab function, a left logical bit shift is
performed to shift the MSB eight bits to the left. The
shifted MSB is then added to the LSB, creating a 16-bit
integer. For many of the items in the telemetry message,
a bit value must also be multiplied against this newly-
created integer. Completing this process transforms the
package of bytes into data that accurately reflects the
current condition/configuration of the propulsion system
hardware. For example, converting bytes two and three
of the telemetry message into a single integer via this
process returns a value which accurately reports the
current pressure of the system’s propellant tank.

Some of the bytes in the telemetry message contain
information on a bit-level. That is, each bit of the byte
indicates something different about the propulsion
system’s status. Because bits can only be one of two
values (0 or 1), this bit-level telemetry usually indicates
an on/off condition or whether an error condition is
present or not. To obtain this information, the relevant
bytes must first be converted to binary. The parser
function then indexes the binary value, which MATLAB
treats as a string, and assigns each bit to a descriptive
variable name. Because Simulink usually cannot pass
strings, each bit must then be converted into integers.

Development of the parse_packets function relied
heavily on the propulsion system’s ICD which contained
detailed information about each byte, including
maximum and minimum values, bit values, and units.
Though every byte in the telemetry message is converted

by the parser, the block is configured such that telemetry
items are not passed out to other blocks by default.
Instead, the user adds or removes outputs by altering the
parse_packets Matlab function. Consequently, parser
function output can be scaled to include additional
telemetry items as the simulation framework expands.

Commanding the Propulsion Hardware
In order for the simulation framework to properly
interact with propulsion system, the simulation must be
capable of transmitting commands to the hardware. The
propulsion system requires specifically formatted
commands and will reject all other inputs. Every
command is exactly ten bytes long. The first byte is
always the start byte and the last byte is always the stop
byte. The same start and stop bytes (unsigned eight bit
integers 123 and 125, respectively) that are used for the
propulsion system’s telemetry message are used in every
command.

The second byte of each command is an identifier byte,
called the “Command Op Byte,” which is unique to
every different type of command. For example, the
Command Op Byte for the “commence thrusting”
command is 0xA1. No other type of command uses this
Command Op Byte, but it is always the same every time
the commence thrusting command is issued. The third
through eighth bytes of each command are specific to the
contents of each command. These are the bytes that
actually convey instructions to the propulsion system.
Some commands require the transmission of less data
than others, so some of these bytes may simply be “0” if
unused. The ninth byte of each command is always a
Cycle Redundancy Check (CRC) byte. This byte helps
the propulsion hardware determine if a received
command is valid and free of errors.

As with the telemetry message, the Vacco ICD lists each
command that can be sent to the propulsion system and
details what information is sent and how it must be
structured. For example, each thruster can be fired for a
specified duration after a specified delay. For these
thruster commands, bytes three through five contain the
delay time, and bytes six through eight contain the fire
duration time. Multiple bytes are used to transmit these
numbers to allow for the transmission of larger values. If
only single bytes were used, the largest value that could
be transmitted would be 255. While it is technically
possible for a user to memorize three-byte sequences or
for the simulation to utilize only pre-programmed
parameters, this is inherently limited and not desirable.
Instead, the simulation is configured for a user to alter
parameters directly. That is, if the user wants to change
a delay time, the user alters that value and the simulation
automatically converts it into a three-byte sequence.

Kurtz 6 36th Annual Small Satellite Conference

The Vacco ICD also specifies the units of the data
contained in each command if applicable. In the case of
the thruster commands, delay and firing times are in
milliseconds. The simulation is configured to accept user
inputs in the ICD-specified units.

A significant source of challenge was in configuring
commands to transmit only once. Simulink will compute
over the entire model at every time step. This is desirable
behavior for the rest of the model, but transmission of
thruster commands must be single, conditional events.
Additionally, the propulsion hardware requires at least
100 milliseconds between receiving commands.
Repeated commanding transmission of thruster firing
commands can reset and override existing commands
even if the system is midway through firing. Thus,
repeated transmission of commands at each time step
would make most aspects of hardware interaction, such
as programming and firing thrusters, impossible. This
problem was solved through the use of triggered
subsystems. A triggered subsystem only activates when
it has received a conditional input. Typically, this input
is a change of state, such as a rising or falling signal.
Command transmission blocks were built entirely within
each triggered subsystem, which were configured to
activate only when receiving a rising signal. Within the
propulsion subsystem model, conditional events which
need to trigger transmission of a command are translated
into a pulse with an integer value of one, lasting the
duration of a single time step. This signal is fed into the
trigger input of triggered subsystems, which otherwise
receive a default value of negative one. The subsystems
thus interpret each pulse as a rising signal, activate only
at that time step, and transmit their respective
commands. Figure 7 generically depicts the structure
utilized for command transmission. This can be
implemented as many times as needed within the
simulation. For example, commands to change
propellant tank temperature and to program and fire
thrusters are contained within separate triggered
subsystems which receive separate trigger pulses.
Commands are computed initially at simulation start in
the simulation framework’s initialization file. This
means that all possible commands must be preplanned
prior to the start of the simulation. While this approach
is somewhat limiting, it is more in-line with expected
CubeSat operations. Commands are brought into the
simulation as 10x1 arrays within constant blocks.

Figure 7: Command Transmission Structure
DEMONSTRATION AND VALIDATION
To complete the “loop” of a HIL simulation, the
interfaced hardware must provide input to the simulation
and be affected by the simulation outputs it receives.
This is a key function of the simulation framework. To
demonstrate this functionality, the simulation was
configured to attempt to maneuver to a target. This
functionality was chosen because maneuver is a key (and
arguably most important) aspect of the propulsion
system as it pertains to CubeSat performance. To
complete this loop, two additional components were
implemented; a dynamics model and a simple ADCS
model. Figure 8 depicts the interaction between these
components. The propulsion system provides a thrust
input to the dynamics model. The dynamics model
computes CubeSat position which is then provided to the
simple ADCS model. The ADCS model then determines
if additional thrust is needed and transmits the
appropriate signal to the propulsion system.

Figure 8: Hardware-in-the-Loop Configuration for
Propulsion Subsystem

The dynamics model computes the CubeSat’s position
relative to a point in orbit around the Earth. This point is
arbitrary and was selected for the purpose of

Kurtz 7 36th Annual Small Satellite Conference

demonstrating simulation functionality. The user
specifies initial conditions for this point and the CubeSat.
The point is specified using the six classical orbital
elements. The CubeSat’s initial conditions can be
specified in the same manner or in terms of relative
position and velocity to the selected point. The dynamics
model uses a pair of two-body-problem orbit propagators
to compute the relative position and velocity of the
CubeSat during the simulation. Two orbits are computed
and the difference in position and velocity between the
two is calculated. The CubeSat’s orbit propagator
includes a force input to incorporate thruster outputs, but
the propagators otherwise do not include perturbation
effects. The model assumes that thrust occurs purely in-
track.

The propulsion system hardware does not directly
provide output thrust in the telemetry message. Thrust
was necessarily derived from other telemetry data points.
The propulsion subsystem built into the simulation
framework provides for two possible methods of
obtaining thrust values. The first simply assumes a
nominal thrust at the thruster specification of 25 mN. The
second utilizes plenum pressure telemetry to perform an
evaluation of a manufacturer provided polynomial. The
former approach is included in the model because the
propulsion hardware emulator lacks the ability to
dynamically model propellant tank dynamics. The
emulator was used to build the simulation framework, so
this option was necessary despite the pressure telemetry
approach being a more accurate measure of output thrust.
For both cases, the propulsion subsystem model
evaluates thruster fire time telemetry to determine if that
thruster is firing. If the firing time for a thruster is
decreasing, that thruster is firing and model outputs its
corresponding thrust. Constant firing time values
indicate a non-firing thruster in which case the model
does not output a thrust.

The ADCS model is a simple bang-bang controller
constructed solely to demonstrate the ability of the
simulation framework to command the payload
hardware based on position data received from the
dynamics model. The controller determines if the
CubeSat is within a user-configurable tolerance of a
target position and requests thruster fire if not within this
tolerance. Only in-track position is considered and the
CubeSat was placed in-track with its arbitrary target.
This controller is not a permanent fixture of the
simulation framework, but is necessary to demonstrate
completion and operation of the hardware loop.

RESULTS
The simulation framework is capable of interfacing with
propulsion system hardware. It can both accurately

receive telemetry and transmit commands with the
connected hardware. An example of telemetry reception
is shown in Figure 9, which depicts plenum pressure
telemetry received from the propulsion hardware
emulator. For this simulation run, the emulator measured
ambient pressure. The pressure data received by the
simulation matches what was expected: about 743 torr,
or 14.3 psi. This indicates that the simulation framework
properly receives and parses hardware telemetry.

Figure 9: Plenum Pressure Telemetry from
Propulsion Hardware Emulator

Additionally, the simulation framework successfully
functions in a HIL configuration. The interfaced
propulsion hardware inputs telemetry into the
simulation. As shown previously in Figure 8, this
telemetry (specifically thruster firing times) is converted
into a thrust output which is fed into the Dynamics and
Environment subsystem. This subsystem calculates the
CubeSat’s position, which is fed to a simple controller in
the ADCS subsystem, which in turn sends a fire signal to
trigger the transmission of thruster commands to the
hardware, completing the loop. The expected result from
this HIL demonstration configuration is twofold: First,
the Propulsion subsystem telemetry will depict the
execution of multiple thruster firing commands. Second,
the relative in-track position of the CubeSat will change
as the thrust input from the hardware is incorporated into
orbit propagation. Figure 10 depicts thruster fire
telemetry over the duration of a simulation run. The
figure shows the expected behavior: namely that
multiple thruster firings occur as a result of feedback
generated by the simulation. As shown, the simulation
was configured to produce thruster firings of a one
second duration and was configured to assume 25 mN
thrust output. Note that in Figure 9, all four thrusters are
firing with identical firing regimes. The commands were
preprogrammed to fire all thrusters.

Kurtz 8 36th Annual Small Satellite Conference

Figure 10: Thrust Output from Each Thruster
The thrust output produced by the propulsion subsystem
is fed into the dynamics subsystem. This output produces
the relative motion shown in Figure 11. The CubeSat
starts initially at 25 meters relative to an arbitrary target
(10 meters in-track). In-track thrust is applied to
maneuver towards the target. At a distance of +/- 2
meters, the simple ADCS considers the CubeSat to have
reached the target. The change in slope of this figure
clearly indicates that the simulation changes its response
based on calculated position relative to a target. Note that
observing a change in response is the goal of this
simulation run. A successful convergence near the
arbitrary target is not of particular relevance for this goal.

Within the tolerance range of the target, no additional
thrust is requested. This can be seen clearly in Figure 12,
which plots thruster fire requests over time. Each request
appears as a pulse of magnitude 1. Each request triggers
the transmission of the pre-configured one-second
thruster firing command. As this figure shows, the
cessation of fire requests coincides precisely with the
CubeSat’s arrival within tolerance of its target location.

The firing requests line up with their corresponding
thruster firings depicted in the Figure 10 of the hardware
telemetry. The gap in both figures indicates that the
simple ADCS controller ceases to request thruster fire
while the CubeSat is within tolerance of an arbitrarily-
selected target (10 meters in-track). This demonstrates
that commands are indeed triggered by simulation
feedback which changes as a result of conditions within
the simulation.

Thus, the simulation framework is capable of operating
with hardware in the loop. Telemetry is received and
utilized by the simulation to simulate a relevant
environment and produce commands transmitted to the
hardware. Although the simulated subsystems and
environment are not to the fidelity of full-fledged
CubeSat subsystems, they are sufficient to demonstrate
this key functionality.

Kurtz 9 36th Annual Small Satellite Conference

Figure 11: Computed In-Track Position Relative to

an Arbitrary Target

Figure 12: Firing Request Pulses Used to Trigger
Transmission of Firing Commands

CONCLUSION
The work presented here is being developed to aid
AFIT’s CubeSat program through the creation of a
framework design to bring hardware and software
models of CubeSat subsystems together. The ultimate
vision of this framework is to integrate hardware
interfacing and software models for every subsystem on
a given CubeSat. The simulation framework will become
a flexible tool to assist its users with the testing and
development of CubeSat programs.

Initial functionality and proof-of-concept has been
successfully demonstrated. Integration of hardware (or at
least its emulator stand-in) with subsystem and
environmental models shows that the framework is
capable of running in a HIL configuration and thus can
support the testing and development of CubeSat
hardware.

Development of the simulation framework is ongoing.
Future work will focus on the integration of CubeSat
subsystem models currently being developed in related
research efforts. While availability is largely bound by
the progress/pace of those other efforts, integration of
subsystem models is an important piece of the simulation
framework. In particular, a model of the propulsion
system is currently being integrated. Successful
integration of this model will allow for a number of
possibilities. Chief among these is model validation.
Performance of the software propulsion model could be
evaluated against that of the actual hardware. This will
also demonstrate the hardware/software configurability
aspect of the simulation framework.

Additionally, the currently implemented models need to
be refined and expanded. The ADCS controller built for
validation/demonstration purposes needs to be replaced
with a complete ADCS. The dynamics subsystem would
benefit from the inclusion of rotational dynamics.
Further in the future, other subsystem models will need
to be integrated along with interfaces for their hardware
counterparts. In time, this simulation framework can
become a truly powerful test and validation tool.

REFERENCES
1. Wertz, J. R., Everett, D. F., and Puschell, J. J., Space

Mission Engineering: the new SMAD, Microcosm Press,
2011.

2. Kiesbye, J., Messmann, D., Preisinger, M., Reina, G.,
Nagy, D., Schummer, F., Mostad, M., Kale, T., and
Langer, M.,“Hardware-in-the-loop and software-in-the-
loop testing of the MOVE-II CubeSat,” Aerospace, Vol.
6, No. 12, 2019, pp. 1–25.

https://doi.org/10.3390/aerospace6120130.

3. Kossiakoff, A., Sweet, W., Seymour, S., and Biemer, S.,
Systems Engineering Principles and, 2nd ed., Hoboken,
NJ, 2011.

4. Keys, A., and Sheffield, C., “Grissom Project
Management Plan,” 2020.

5. Geletko, D. M., Grubb, M. D., Lucas, J. P., Morris, J. R.,
Spolaor, M., Suder, M. D., Yokum, S. C., and Zemerick,
S. A., “NASA Operational Simulator for Small Satellites
(NOS3): the STF-1 CubeSat case study,” 2019.

http://arxiv.org/abs/1901.07583.

6. Rezaei, R., Sorathia, J., and Bhandari, R., “Interface
Control Guide for the Korea Astronomy and Space
Science Institute SNIPE Micro Propulsion System,” 2019.

7. Mach, D., Yengonian, D., and Bhandari, R., “SNIPE
MiPS (Propellant Filled),” 2021.

	Development of a Simulation Framework for CubeSat
	Performance Modeling
	ABSTRACT
	INTRODUCTION
	SIMULATION FRAMEWORK METHODOLOGY
	Strucutre and Organization
	Hardware Integration
	Simulation Software

	Propulsion Hardware Command and Telemetry Integration
	Telemetry Reception and Parsing
	Commanding the Propulsion Hardware

	Demonstration and Validation
	Results
	Conclusion
	References

