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ABSTRACT 
Space systems are notoriously difficult to develop due to the nature of the environment in which they must operate. 
Designers have only a limited window to ensure systems will function as intended, placing a high importance on 
testing. This paper discussed the ongoing development of a simulation framework to support Hardware-in-the-Loop 
(HIL) testing of CubeSat subsystem hardware. This work is being conducted at the Air Force Institute of Technology 
(AFIT) in support of the institution’s CubeSat program. The simulation framework is organized into the classic 
spacecraft subsystems. Each of these subsystems will support a software model and interfaces for the integration of 
flight hardware into the simulation framework. In demonstration of this concept, propulsion hardware has been 
successfully integrated into the model environment. Telemetry reception and command transmission within the 
simulation framework is functional and demonstrated. A loop containing the propulsion hardware, simple controller, 
and orbital motion propagator was developed to demonstrate the HIL test functionality of the simulation framework. 
This focus on the development of the propulsion HIL test configuration is a point of distinction from other HIL 
simulations, which typically focus on the Attitude Determination and Control System (ADCS). Presented results 
validate successful integration of propulsion subsystem hardware into the simulation framework.  Future work will 
focus on the integration of CubeSat subsystem models into the framework.  
 

INTRODUCTION 
Designing space systems is an incredibly difficult task 
thanks largely to the demanding environment in which 
these systems operate. Space systems must work 
perfectly in a hostile environment which cannot be 
completely replicated on the ground. Mistakes and flaws 
typically cannot be corrected once a spacecraft is in its 
operational orbit. Consequently, a strong test campaign 
is vital to the success of any space system. This is even 
more so the case with CubeSat programs. Such programs 
typically have much smaller budgets and much faster 
schedules than their traditional counterparts. The 
CubeSat systems themselves usually lack redundant 
components and/or subsystems. Teams are often smaller 
and less experienced. These factors and limitations make 
a strong test campaign simultaneously more important 
and more challenging to achieve for CubeSat programs.1 

Success under these circumstances means effectively 
utilizing limited resources. A common approach is to use 
hardware-in-the-loop simulations.2 Such simulations 
replace a hardware component’s operational 
environment with an emulated equivalent.3 For example, 
magnetic field, sun and star locations, and other space 
environment characteristics can be modeled and fed to 
the Attitude Determination and Control System (ADCS) 
such that the ADCS believes it is in its operational 
environment. Such a HIL test setup enables development 

and testing of the system without requiring additional 
spacecraft hardware.2 The Air Force Institute of 
Technology (AFIT) operates its own CubeSat program. 
Several missions are planned and under development, 
but AFIT has not yet had an operational system on orbit. 
Consequently, testing within AFIT’s CubeSat program 
is in its early stages. Like most other CubeSat programs, 
AFIT’s CubeSat program is constrained in terms of 
schedule and budget. Additionally, research efforts lack 
a high level of continuity as student and faculty 
researchers transition through the institution.4 

As a result, there exists a clear necessity for research 
aimed at improving the AFIT’s ability to test CubeSat 
hardware. Development of a Hardware-in-the-Loop 
simulation was selected as the best means of improving 
test capabilities. The objective here is to develop a 
simulation framework which can be used to test flight 
hardware in loop with its simulated environment. This 
approach provides a number of advantages compared to 
other possibilities. For example, engineering test units 
can be constructed out of flight or flight-like hardware. 
While this approach provides a highly accurate 
representation of the operational system, it necessitates 
the acquisition of additional copies of system 
components.5 This can be expensive and time consuming 
for CubeSat program’s like AFIT’s. It also is typically 
not feasible to produce enough test units for everyone 
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who needs one, potentially resulting in wait times and 
schedule delays. HIL simulation can decrease 
dependency on hardware availability, enabling faster 
testing without unnecessary delays. 

The second objective of this research is to demonstrate 
the integration of system hardware into the simulation 
architecture. The propulsion subsystem was selected as 
the subsystem of focus for this objective. There were 
several reasons for this selection. One of AFIT’s 
missions in development utilizes a propulsion subsystem 
for maneuvers.4 AFIT has not developed a propulsion-
capable CubeSat before, so it is highly desirable to focus 
additional testing efforts on the propulsion subsystem. 
Additionally, propulsion subsystems are not very 
common on CubeSats, nor are they often the focus of 
HIL simulation efforts. Typically, CubeSat HIL 
simulation efforts focus on the ADCS as this system is 
present in every CubeSat and often contains the most 
complex hardware.2 Thus, HIL simulation solutions are 
much less readily available for AFIT’s propulsion 
subsystem. At the time of writing, no HIL simulation 
effort incorporating this specific propulsion subsystem 
could be identified, adding a degree of novelty to this 
chosen subsystem focus.  

The third objective is to effectively utilize parallel 
research efforts to the greatest extent possible. For a HIL 
simulation built to test CubeSat hardware, the simulated 
environment includes the CubeSat’s other subsystems in 
addition to the physical space environment. It is 
therefore necessary to simulate these subsystems, or at 
least aspects of these subsystems. Several ongoing 
research efforts at AFIT are focused on modeling and 
simulating some of AFIT’s CubeSat subsystems. 
Incorporating these efforts into the simulation 
architecture delivers several key advantages. The first is 
that duplication of effort is avoided. Given the time and 
manpower constraints of a CubeSat program, this is a 
more efficient utilization of limited resources. 
Additionally, incorporation of these parallel models 
provides a degree of continuity over the involved 
research. Given the fairly rapid turnover of students and 
faculty at AFIT, it is not uncommon for research to lose 
continuity. This is true even of the research efforts 
connected to AFIT’s CubeSat programs. The simulation 
framework is intended to be further developed as the 
CubeSat program progresses, providing a degree of 
continuity for the integrated subsystem models. The 
simulation framework is being designed to allow for real 
subsystem hardware and its simulated software 
equivalent to run within the simulation. This will allow 
for subsystem models developed through other research 
efforts to be validated against the actual hardware they 
are attempting to model. Additionally, the framework 
will enable the included subsystem models to interact 

with each other, providing additional insight into each 
model’s performance. 

SIMULATION FRAMEWORK METHODOLOGY 
The simulation framework is designed with the intent of 
supporting various subsystems as either hardware or 
software components within the simulation. The idea 
here is that the user will configure which subsystems are 
physically connected as hardware and which are 
modeled within the simulation depending on testing 
requirements. For example, a HIL test of the ADCS 
would see the simulation set to connect to ADCS 
hardware with the other subsystems selected to run as 
software models within the simulation framework. 

Strucutre and Organization 
The framework is organized into the classic CubeSat 
subsystems1 as shown in Figure 1. Because CubeSats are 
typically developed, built and tested at the subsystem 
level, it made the most sense to apply this organizational 
scheme to the simulation framework. Additionally, the 
CubeSat’s external environment is contained within a 
separate subsystem. This organization makes adjustment 
of the external environment model simple and mirrors 
the CubeSat’s operational environment.  

 

Figure 1: Simulation Framework High Level 
Architecture 

Each subsystem block within the framework consists of 
two major components; the hardware interface and 
software-based model as shown in Figure 2, which 
depicts the propulsion subsystem. A switch enables the 
subsystem to either interface with the system’s 
corresponding hardware, or to utilize a software-based 
model. The framework is built to enable this duality for 
each of the included subsystems. Currently, 
development has been limited to demonstrating this 
functionality within a single subsystem. As described 
previously, the propulsion subsystem was selected as the 
ideal candidate. 
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Figure 2: Subsystem Architecture for Hardware and 
Software Interfacing 

Hardware Integration 
The propulsion subsystem hardware integrated into the 
simulation framework is the SNIPE Micro Propulsion 
System (MiPS) produced by Vacco Industries. This 
system is a small form factor cold gas propulsion system 
designed for CubeSat missions and will be flown on an 
upcoming AFIT mission.6 

The propulsion unit uses R-236fa as its cold gas 
propellant to provide 25 mN of thrust and a specific 
impulse of 40 seconds for each of four nozzles. The four 
nozzles point along the same axis and are aligned to 
within 0.1 degrees of each other. The Vacco MiPS 
contains 1.2 kilograms of propellant within a footprint of 
just 12x10x10 cm. Communication with this propulsion 
system occurs via an RS-422 serial port. This interface 
allows for serial communications with the propulsion 
subsystem at a data rate of up to 10 mbps.7  

To facilitate the development and testing of CubeSat 
missions using their propulsion system, Vacco Industries 
furnishes an emulator in advance of delivery of the actual 
propulsion unit. The emulator is a physical piece of 
hardware consisting of a logic board and RS-422 serial 
interface encased within a metal and glass housing. The 
emulator runs the propulsion system software and 
mimics the functioning of physical components such as 
its heaters or thruster valves. This propulsion emulator 
was used to develop the simulation framework’s ability 
to interface with the propulsion system. This was done 
because the emulator was available well in advance of 
the flight hardware yet utilizes identical communications 
protocol. 

Integrating the propulsion subsystem into the simulation 
framework required several additional components. As 
shown in Figure 3, the hardware must be connected to a 
hardware interface. This is a physical component which 
adapts the hardware’s interface to that of the system 
hosting the simulation framework. On the host system, 
drivers corresponding to the hardware interface 
component are needed in order for the system to 
recognize the CubeSat hardware. Finally, configuration 

blocks within the simulation software environment 
enable communication between the simulation 
framework and the propulsion system hardware. 

 

Figure 3: Hardware to Simulation Framework 
Structure 

The hardware interface used here is a Ulinx serial 
converter. This device adapts a serial cable connected to 
the RS-422 port to USB as shown in Figure 4, ensuring 
compatibility with most computers. The system used to 
build and run the simulation framework is a laptop 
running a standard installation of Windows 10.  

 

Figure 4: UlinxRS-422/485 to USB Adapter 
Drivers must be installed for the host computer to detect 
hardware connected via the Ulinx adapter. The drivers 
are the software interface between hardware and 
simulation. Once installed, connected hardware will 
show up in Device Manager as a COM port. Device 
Manager will specify which com port is connected. The 
port is often labeled “COM3” but can contain other 
numbers depending on the host computer’s specific 
configuration. 

Simulation Software 
Because modeling and simulation is not not a new 
concept, many software environments exist which can be 
used to create powerful simulations . Mathwork’s 
Simulink was selected as the software environment for 
the simulation framework. Simulink provides strong 
support for interfacing with external devices. 
Additionally, the majority of parallel subsystem 
modeling efforts were also being built within Matlab and 
Simulink. Thus, building the simulation framework 
within Simulink ensures a high degree of compatibility 
with the models that have been identified for integration 
into the framework. Additionally, Simulink enables the 
organization of simulation components into subsystems, 
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providing a strong visual organization to the simulation 
framework. 

The simulation framework runs on Simulink 2021a. To 
complete the interfacing of the simulation with the 
propulsion system, several specific Simulink blocks 
were utilized. The first of these is the Real-Time Sync 
block. Without this block, the simulation will attempt to 
iterate as fast as possible. While this can be useful for an 
entirely virtual CubeSat model, the hardware-interfaced 
simulation framework must run in real time. The Real-
Time Sync block accomplishes this by coordinate 
computation at each step iteration with accurate time-
keeping. 

Along with this block, input and output blocks are 
needed. The “Packet Input” and “Packet Output” blocks 
from the Simulink Real-Time Desktop Library were 
selected to provide input from and output to the CubeSat 
propulsion hardware. Though other blocks are available 
in Simulink’s libraries, only blocks within the Real-Time 
Desktop Library are compatible with real time operation. 
Both blocks must be configured to utilize an installed 
data acquisition board. Serial ports are treated as boards 
within these blocks, so “Serial Port”3 was installed and 
selected for both blocks as shown in Figure 5. This figure 
depicts the Packet Input block and its configuration 
options. The “board” was configured with a Baud rate of 
115200, eight data bits, one stop bit and no parity in 
accordance with the Vacco MiPS Interface Control 
Document (ICD).6 

 

Figure 5: Packet Input Block and Configuration 
Options 

The Packet Input block was configured to interpret input 
from hardware as packets of 86 bytes in length. This 
corresponds to the length of the telemetry message 

produced and transmitted by the propulsion system. 
Additionally, the input block was configured to interpret 
incoming data as Big-Endian unsigned eight-bit integers. 
This corresponds to the specifications detailed in the 
propulsion ICD.6 

Similarly, the Packet Output block is configured to 
output packets ten bytes in length, also as Big-Endian 
unsigned eight-bit integers. The block and its 
configuration options are shown in Figure 6. All 
commands accepted by the propulsion system follow this 
structure. The inclusion and configuration of these 
blocks within the simulation framework completes the 
chain of components, both hardware and software, 
needed to interface the propulsion subsystem hardware 
with the simulation framework. Multiple input and 
output blocks can be utilized within the simulation as 
long as they are properly configured. 

 

Figure 6: Packet Output Block and Configuration 
Options 

PROPULSION HARDWARE COMMAND AND 
TELEMETRY INTEGRATION 
With the communications link established, the 
simulation was then configured to interpret incoming 
data (telemetry) and properly format and transmit 
commands when needed. To this end, it is necessary to 
understand how the propulsion system transmits and 
receives data and to then develop what are essentially the 
drivers that enable the meaningful interfacing of the 
propulsion system with the simulation. 

Telemetry Reception and Parsing 
As specified previously, telemetry received from the 
Packet Input block is packaged into packets of 86 bytes 
in length. Each packet is a telemetry message transmitted 
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from the propulsion hardware and contains all available 
data pertaining to hardware status. Every packet begins 
with a start byte. and ends with a stop byte. Each byte 
within the telemetry message is an eight bit unsigned 
integer. In this state, each telemetry message packet is 
not useful to the simulation framework. Thus, the 
propulsion subsystem model must parse the packaged 
bytes into data that can be utilized by the simulation 
(such as hardware temperatures, pressures, etc). The 
parser was built as a custom Matlab function named 
”parse_packets” within the propulsion subsystem model. 
It converts every byte in the telemetry message through 
a number of different operations. 

Eight bit (one byte) integers can have a maximum value 
of 255, but the propulsion system needs to transmit larger 
values. This means that some data points are constructed 
from two or even three bytes. The propulsion system 
divides larger numbers into their Most Significant Byte 
(MSB), Least Significant Byte (LSB) and middle byte 
(when three bytes are needed). The MSB consists of the 
eight leftmost bits in the number and the LSB consists of 
the eight rightmost. To get the proper telemetry datapoint 
from the buffered telemetry message, the MSB and LSB 
must be reconstituted into a single value. Within the 
parse_packets Matlab function, a left logical bit shift is 
performed to shift the MSB eight bits to the left. The 
shifted MSB is then added to the LSB, creating a 16-bit 
integer. For many of the items in the telemetry message, 
a bit value must also be multiplied against this newly-
created integer. Completing this process transforms the 
package of bytes into data that accurately reflects the 
current condition/configuration of the propulsion system 
hardware. For example, converting bytes two and three 
of the telemetry message into a single integer via this 
process returns a value which accurately reports the 
current pressure of the system’s propellant tank. 

Some of the bytes in the telemetry message contain 
information on a bit-level. That is, each bit of the byte 
indicates something different about the propulsion 
system’s status. Because bits can only be one of two 
values (0 or 1), this bit-level telemetry usually indicates 
an on/off condition or whether an error condition is 
present or not. To obtain this information, the relevant 
bytes must first be converted to binary. The parser 
function then indexes the binary value, which MATLAB 
treats as a string, and assigns each bit to a descriptive 
variable name. Because Simulink usually cannot pass 
strings, each bit must then be converted into integers. 

Development of the parse_packets function relied 
heavily on the propulsion system’s ICD which contained 
detailed information about each byte, including 
maximum and minimum values, bit values, and units. 
Though every byte in the telemetry message is converted 

by the parser, the block is configured such that telemetry 
items are not passed out to other blocks by default. 
Instead, the user adds or removes outputs by altering the 
parse_packets Matlab function. Consequently, parser 
function output can be scaled to include additional 
telemetry items as the simulation framework expands. 

Commanding the Propulsion Hardware 
In order for the simulation framework to properly 
interact with propulsion system, the simulation must be 
capable of transmitting commands to the hardware. The 
propulsion system requires specifically formatted 
commands and will reject all other inputs. Every 
command is exactly ten bytes long. The first byte is 
always the start byte and the last byte is always the stop 
byte. The same start and stop bytes (unsigned eight bit 
integers 123 and 125, respectively) that are used for the 
propulsion system’s telemetry message are used in every 
command. 

The second byte of each command is an identifier byte, 
called the “Command Op Byte,” which is unique to 
every different type of command. For example, the 
Command Op Byte for the “commence thrusting” 
command is 0xA1. No other type of command uses this 
Command Op Byte, but it is always the same every time 
the commence thrusting command is issued. The third 
through eighth bytes of each command are specific to the 
contents of each command. These are the bytes that 
actually convey instructions to the propulsion system. 
Some commands require the transmission of less data 
than others, so some of these bytes may simply be “0” if 
unused. The ninth byte of each command is always a 
Cycle Redundancy Check (CRC) byte. This byte helps 
the propulsion hardware determine if a received 
command is valid and free of errors. 

As with the telemetry message, the Vacco ICD lists each 
command that can be sent to the propulsion system and 
details what information is sent and how it must be 
structured. For example, each thruster can be fired for a 
specified duration after a specified delay. For these 
thruster commands, bytes three through five contain the 
delay time, and bytes six through eight contain the fire 
duration time. Multiple bytes are used to transmit these 
numbers to allow for the transmission of larger values. If 
only single bytes were used, the largest value that could 
be transmitted would be 255. While it is technically 
possible for a user to memorize three-byte sequences or 
for the simulation to utilize only pre-programmed 
parameters, this is inherently limited and not desirable. 
Instead, the simulation is configured for a user to alter 
parameters directly. That is, if the user wants to change 
a delay time, the user alters that value and the simulation 
automatically converts it into a three-byte sequence. 



Kurtz 6 36th Annual Small Satellite Conference 

The Vacco ICD also specifies the units of the data 
contained in each command if applicable. In the case of 
the thruster commands, delay and firing times are in 
milliseconds. The simulation is configured to accept user 
inputs in the ICD-specified units. 

A significant source of challenge was in configuring 
commands to transmit only once. Simulink will compute 
over the entire model at every time step. This is desirable 
behavior for the rest of the model, but transmission of 
thruster commands must be single, conditional events. 
Additionally, the propulsion hardware requires at least 
100 milliseconds between receiving commands. 
Repeated commanding transmission of thruster firing 
commands can reset and override existing commands 
even if the system is midway through firing. Thus, 
repeated transmission of commands at each time step 
would make most aspects of hardware interaction, such 
as programming and firing thrusters, impossible. This 
problem was solved through the use of triggered 
subsystems. A triggered subsystem only activates when 
it has received a conditional input. Typically, this input 
is a change of state, such as a rising or falling signal. 
Command transmission blocks were built entirely within 
each triggered subsystem, which were configured to 
activate only when receiving a rising signal. Within the 
propulsion subsystem model, conditional events which 
need to trigger transmission of a command are translated 
into a pulse with an integer value of one, lasting the 
duration of a single time step. This signal is fed into the 
trigger input of triggered subsystems, which otherwise 
receive a default value of negative one. The subsystems 
thus interpret each pulse as a rising signal, activate only 
at that time step, and transmit their respective 
commands. Figure 7 generically depicts the structure 
utilized for command transmission. This can be 
implemented as many times as needed within the 
simulation. For example, commands to change 
propellant tank temperature and to program and fire 
thrusters are contained within separate triggered 
subsystems which receive separate trigger pulses. 
Commands are computed initially at simulation start in 
the simulation framework’s initialization file. This 
means that all possible commands must be preplanned 
prior to the start of the simulation. While this approach 
is somewhat limiting, it is more in-line with expected 
CubeSat operations. Commands are brought into the 
simulation as 10x1 arrays within constant blocks. 

 

Figure 7: Command Transmission Structure 
DEMONSTRATION AND VALIDATION 
To complete the “loop” of a HIL simulation, the 
interfaced hardware must provide input to the simulation 
and be affected by the simulation outputs it receives. 
This is a key function of the simulation framework. To 
demonstrate this functionality, the simulation was 
configured to attempt to maneuver to a target. This 
functionality was chosen because maneuver is a key (and 
arguably most important) aspect of the propulsion 
system as it pertains to CubeSat performance. To 
complete this loop, two additional components were 
implemented; a dynamics model and a simple ADCS 
model. Figure 8 depicts the interaction between these 
components. The propulsion system provides a thrust 
input to the dynamics model. The dynamics model 
computes CubeSat position which is then provided to the 
simple ADCS model. The ADCS model then determines 
if additional thrust is needed and transmits the 
appropriate signal to the propulsion system. 

 

Figure 8: Hardware-in-the-Loop Configuration for 
Propulsion Subsystem 

The dynamics model computes the CubeSat’s position 
relative to a point in orbit around the Earth. This point is 
arbitrary and was selected for the purpose of 
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demonstrating simulation functionality. The user 
specifies initial conditions for this point and the CubeSat. 
The point is specified using the six classical orbital 
elements. The CubeSat’s initial conditions can be 
specified in the same manner or in terms of relative 
position and velocity to the selected point. The dynamics 
model uses a pair of two-body-problem orbit propagators 
to compute the relative position and velocity of the 
CubeSat during the simulation. Two orbits are computed 
and the difference in position and velocity between the 
two is calculated. The CubeSat’s orbit propagator 
includes a force input to incorporate thruster outputs, but 
the propagators otherwise do not include perturbation 
effects. The model assumes that thrust occurs purely in-
track. 

The propulsion system hardware does not directly 
provide output thrust in the telemetry message. Thrust 
was necessarily derived from other telemetry data points. 
The propulsion subsystem built into the simulation 
framework provides for two possible methods of 
obtaining thrust values. The first simply assumes a 
nominal thrust at the thruster specification of 25 mN. The 
second utilizes plenum pressure telemetry to perform an 
evaluation of a manufacturer provided polynomial. The 
former approach is included in the model because the 
propulsion hardware emulator lacks the ability to 
dynamically model propellant tank dynamics. The 
emulator was used to build the simulation framework, so 
this option was necessary despite the pressure telemetry 
approach being a more accurate measure of output thrust. 
For both cases, the propulsion subsystem model 
evaluates thruster fire time telemetry to determine if that 
thruster is firing. If the firing time for a thruster is 
decreasing, that thruster is firing and model outputs its 
corresponding thrust. Constant firing time values 
indicate a non-firing thruster in which case the model 
does not output a thrust. 

The ADCS model is a simple bang-bang controller 
constructed solely to demonstrate the ability of the 
simulation framework to command the payload 
hardware based on position data received from the 
dynamics model. The controller determines if the 
CubeSat is within a user-configurable tolerance of a 
target position and requests thruster fire if not within this 
tolerance. Only in-track position is considered and the 
CubeSat was placed in-track with its arbitrary target. 
This controller is not a permanent fixture of the 
simulation framework, but is necessary to demonstrate 
completion and operation of the hardware loop. 

RESULTS 
The simulation framework is capable of interfacing with 
propulsion system hardware. It can both accurately 

receive telemetry and transmit commands with the 
connected hardware. An example of telemetry reception 
is shown in Figure 9, which depicts plenum pressure 
telemetry received from the propulsion hardware 
emulator. For this simulation run, the emulator measured 
ambient pressure. The pressure data received by the 
simulation matches what was expected: about 743 torr, 
or 14.3 psi. This indicates that the simulation framework 
properly receives and parses hardware telemetry. 

 

Figure 9: Plenum Pressure Telemetry from 
Propulsion Hardware Emulator 

Additionally, the simulation framework successfully 
functions in a HIL configuration. The interfaced 
propulsion hardware inputs telemetry into the 
simulation. As shown previously in Figure 8, this 
telemetry (specifically thruster firing times) is converted 
into a thrust output which is fed into the Dynamics and 
Environment subsystem. This subsystem calculates the 
CubeSat’s position, which is fed to a simple controller in 
the ADCS subsystem, which in turn sends a fire signal to 
trigger the transmission of thruster commands to the 
hardware, completing the loop. The expected result from 
this HIL demonstration configuration is twofold: First, 
the Propulsion subsystem telemetry will depict the 
execution of multiple thruster firing commands. Second, 
the relative in-track position of the CubeSat will change 
as the thrust input from the hardware is incorporated into 
orbit propagation. Figure 10 depicts thruster fire 
telemetry over the duration of a simulation run. The 
figure shows the expected behavior: namely that 
multiple thruster firings occur as a result of feedback 
generated by the simulation. As shown, the simulation 
was configured to produce thruster firings of a one 
second duration and was configured to assume 25 mN 
thrust output. Note that in Figure 9, all four thrusters are 
firing with identical firing regimes. The commands were 
preprogrammed to fire all thrusters. 
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Figure 10: Thrust Output from Each Thruster
The thrust output produced by the propulsion subsystem 
is fed into the dynamics subsystem. This output produces 
the relative motion shown in Figure 11. The CubeSat 
starts initially at 25 meters relative to an arbitrary target 
(10 meters in-track). In-track thrust is applied to 
maneuver towards the target. At a distance of +/- 2 
meters, the simple ADCS considers the CubeSat to have 
reached the target. The change in slope of this figure 
clearly indicates that the simulation changes its response 
based on calculated position relative to a target. Note that 
observing a change in response is the goal of this 
simulation run. A successful convergence near the 
arbitrary target is not of particular relevance for this goal.  

Within the tolerance range of the target, no additional 
thrust is requested. This can be seen clearly in Figure 12, 
which plots thruster fire requests over time. Each request 
appears as a pulse of magnitude 1. Each request triggers 
the transmission of the pre-configured one-second 
thruster firing command. As this figure shows, the 
cessation of fire requests coincides precisely with the 
CubeSat’s arrival within tolerance of its target location. 

The firing requests line up with their corresponding 
thruster firings depicted in the Figure 10 of the hardware 
telemetry. The gap in both figures indicates that the 
simple ADCS controller ceases to request thruster fire 
while the CubeSat is within tolerance of an arbitrarily-
selected target (10 meters in-track). This demonstrates 
that commands are indeed triggered by simulation 
feedback which changes as a result of conditions within 
the simulation. 

Thus, the simulation framework is capable of operating 
with hardware in the loop. Telemetry is received and 
utilized by the simulation to simulate a relevant 
environment and produce commands transmitted to the 
hardware. Although the simulated subsystems and 
environment are not to the fidelity of full-fledged 
CubeSat subsystems, they are sufficient to demonstrate 
this key functionality. 
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Figure 11: Computed In-Track Position Relative to 

an Arbitrary Target 

Figure 12: Firing Request Pulses Used to Trigger 
Transmission of Firing Commands 

CONCLUSION 
The work presented here is being developed to aid 
AFIT’s CubeSat program through the creation of a 
framework design to bring hardware and software 
models of CubeSat subsystems together. The ultimate 
vision of this framework is to integrate hardware 
interfacing and software models for every subsystem on 
a given CubeSat. The simulation framework will become 
a flexible tool to assist its users with the testing and 
development of CubeSat programs. 

Initial functionality and proof-of-concept has been 
successfully demonstrated. Integration of hardware (or at 
least its emulator stand-in) with subsystem and 
environmental models shows that the framework is 
capable of running in a HIL configuration and thus can 
support the testing and development of CubeSat 
hardware. 

Development of the simulation framework is ongoing. 
Future work will focus on the integration of CubeSat 
subsystem models currently being developed in related 
research efforts. While availability is largely bound by 
the progress/pace of those other efforts, integration of 
subsystem models is an important piece of the simulation 
framework. In particular, a model of the propulsion 
system is currently being integrated. Successful 
integration of this model will allow for a number of 
possibilities. Chief among these is model validation. 
Performance of the software propulsion model could be 
evaluated against that of the actual hardware. This will 
also demonstrate the hardware/software configurability 
aspect of the simulation framework. 

Additionally, the currently implemented models need to 
be refined and expanded. The ADCS controller built for 
validation/demonstration purposes needs to be replaced 
with a complete ADCS. The dynamics subsystem would 
benefit from the inclusion of rotational dynamics. 
Further in the future, other subsystem models will need 
to be integrated along with interfaces for their hardware 
counterparts. In time, this simulation framework can 
become a truly powerful test and validation tool. 

REFERENCES 
1. Wertz, J. R., Everett, D. F., and Puschell, J. J., Space 

Mission Engineering: the new SMAD, Microcosm Press, 
2011. 

2. Kiesbye, J., Messmann, D., Preisinger, M., Reina, G., 
Nagy, D., Schummer, F., Mostad, M., Kale, T., and 
Langer, M.,“Hardware-in-the-loop and software-in-the-
loop testing of the MOVE-II CubeSat,” Aerospace, Vol. 
6, No. 12, 2019, pp. 1–25.  

https://doi.org/10.3390/aerospace6120130. 

3. Kossiakoff, A., Sweet, W., Seymour, S., and Biemer, S., 
Systems Engineering Principles and, 2nd ed., Hoboken, 
NJ, 2011. 

4. Keys, A., and Sheffield, C., “Grissom Project 
Management Plan,” 2020. 

5. Geletko, D. M., Grubb, M. D., Lucas, J. P., Morris, J. R., 
Spolaor, M., Suder, M. D., Yokum, S. C., and Zemerick, 
S. A., “NASA Operational Simulator for Small Satellites 
(NOS3): the STF-1 CubeSat case study,” 2019.  

http://arxiv.org/abs/1901.07583. 

6. Rezaei, R., Sorathia, J., and Bhandari, R., “Interface 
Control Guide for the Korea Astronomy and Space 
Science Institute SNIPE Micro Propulsion System,” 2019. 

7. Mach, D., Yengonian, D., and Bhandari, R., “SNIPE 
MiPS (Propellant Filled),” 2021. 

 


	Development of a Simulation Framework for CubeSat
	Performance Modeling
	ABSTRACT
	INTRODUCTION
	SIMULATION FRAMEWORK METHODOLOGY
	Strucutre and Organization
	Hardware Integration
	Simulation Software

	Propulsion Hardware Command and Telemetry Integration
	Telemetry Reception and Parsing
	Commanding the Propulsion Hardware

	Demonstration and Validation
	Results
	Conclusion
	References

