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ABSTRACT 
SEASALT is a small satellite mission designed to explore the estimation of salinity in coastal environments using 
ocean color. A SEASALT constellation would fill the coastal gap by providing coastal SSS observations with much 
higher spatial resolution (30m) and much shorter revisit times (less than 1 day) on a global scale.  

Planet’s nanosatellites currently provide daily monitoring of the earth’s surface, as well as coastal locations, at 3-
meter resolution. However, they do not have the required bands needed in the near infrared (NIR) for atmospheric 
correction (they only possess 1 NIR band), thus making atmospheric correction over water very challenging. 
Accurate atmospheric corrections are fundamental to reliably retrieving salinity from ocean color. SEASALT has 
these required bands by design. Planet’s nanosatellites also do not have a 412nm band to monitor CDOM and create 
optimized salinity products. SEASALT has bands centered at 412nm, 470nm, 540nm, 625nm, 746nm, 865nm, and 
12013nm. A SEASALT constellation has the potential to monitor coastal regions consistently on a global scale as 
locally-optimized salinity retrieval algorithms can be developed. Besides retrieving SSS with a high temporal and 
spatial resolution, SEASALT will retrieve concurrent sea surface temperature (SST).  

INTRODUCTION 
Earth remote sensing typically involves satellites built 
and launched by government agencies such as NASA, 
NOAA, ESA, JAXA, etc. Currently operational polar-
orbiting ocean color sensors include NASA’s 
MODerate Resolution Imaging Spectroradiometer 
(MODIS), NOAA’s Visible Infrared Imaging 
Spectroradiometer Suite (VIIRS), and the Sentinel-3 
Ocean and Land Colour Instrument (OLCI), which 
provide multi-spectral band sets with a roughly daily 
revisit rate at a fairly coarse spatial resolution (greater 
than 750 meters). Challenges arise when using these 
sensors for analyzing complex coastal waters where 
proximity to land introduces additional spectral 
complexity in critical optical properties key to water 
color, such as suspended sediments, bottom reflection, 
and colored dissolved organic material (CDOM).  

The Satellite for Estimating Aquatic Salinity and 
Temperature (SEASALT)’s primary mission objective 
is to obtain optical and thermal coastal ocean 
measurements to estimate SSS and SST. SEASALT 
will be equipped with bands for color, NIR bands for 
atmospheric correction, and the Long Wave Infrared 
(LWIR) band for surface temperature (Table 1).  

Table 1: SEASALT Bandset 

Wavelength (nm) Purpose 

412 Deep blue, CDOM 

470, 540, 625 Visible RGB 

746, 865 NIR – atmospheric correction 
(Gordon/Wang) 

12013 LWIR – surface temperature 

Literature from the past 40 years shows that in river-
dominated coastal zones, sea surface salinity (SSS) can 
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be estimated from optical measurements. Freshwater 
sources such as rivers are richer in CDOM than salty 
oceanic water. As these two water masses mix in 
coastal areas, the CDOM concentration declines, and 
the salinity increases. There is an inverse linear 
relationship between CDOM and salinity if 
conservative mixing is assumed. This relationship, in 
principle, can be used to estimate SSS from CDOM, 
which in turn can be derived from satellite ocean color 
measurements (Figure 1). Based on these ideas of 
mixing, additional studies also show how remote 
sensing reflectance (Rrs) throughout the visible 
spectrum can be used to empirically develop 
regionalized salinity algorithms. Current microwave 
(e.g. SMAP) and spectroradiometer satellies (e.g. 
MODIS and VIIRS) typically cannot retrieve accurate 
SSS in coastal zones due to spatial and temporal 
resolution limitations, among other factors. A 
SEASALT constellation with spatial (30m) and 
temporal (less than 1 day) resolution resolves these 
issues.  

 

Figure 1: Relationship between Rrs, CDOM, and 
SSS 

To create optical salinity products from ocean color 
satellite imagery, the spectral top-of-atmosphere (TOA) 
radiances recorded by the satellite must be 
atmospherically corrected. However, ocean color 
atmospheric correction of small satellites typically 
presents a challenge. The atmospheric signal, which 
generally represents about 90% of the total TOA signal 
recorded by the satellite, must be removed prior to 
calculating water-leaving radiances, and ultimately the 
water bio-optical properties. The atmospheric signal 
consists of Rayleigh scattering (scattering by 
molecules, calculated from sensor viewing geometry) 
and aerosol scattering (modeled from radiances in two 
NIR bands). Typical coarse-resolution ocean color 
sensors such as MODIS, VIIRS, and Sentinel-3 OLCI 
have 9, 11, and 21 bands, respectively. Two or more of 
those bands are at near/mid infrared wavelengths 
needed to select aerosol models for atmospheric 
correction of the visible bands.  The presence of a 
second NIR band separates SEASALT from other small 
satellites (e.g. Planet’s nanosatellites), by allowing for 

SEASALT ocean color imagery to be atmospherically 
corrected using traditional/standard atmospheric 
correction methods [1-3]. 

Coastal regions with an in situ CDOM-SSS linear 
relationship are normally regions where the 
Evaporation minus Precipitation (E-P) atmospheric 
forcing is much less than the river runoff. Also, the 
CDOM is not much affected by bio-optical processes 
for the relationship to hold. In these regions, both SSS 
and CDOM (or its absorption of visible light, especially 
ultra violet to deep blue) can be seen as a water mass 
tracer.  

Recent observations support a near-linear trend in 
CDOM versus salinity in terrestrially affected waters, 
as CDOM and/or CDOM proxies decrease to nearly 
undetectable levels as salinity approaches oceanic 
values [4-15]. If the mixing of offshore and terrestrial 
end-member water masses is the only process affecting 
CDOM, CDOM signals decrease linearly with 
increasing salinity. Importantly, a number of studies 
demonstrate that the statistics for the linear fits between 
CDOM and salinity appear to vary temporally (or at 
least seasonally) and regionally [15]. Figure 2 depicts 
regional variability between absorption at 443nm, 
which is related to CDOM, and SSS. 
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Figure 2: Regional variation of global absorption at 
443nm (top image), which is related to CDOM, and 

global SSS (PSU, bottom image) 

In summary, for estimating SSS from satellite optical 
sensors, we need to retrieve the sea-related part of the 
radiance that arrives in the satellite. Therefore, an 
accurate atmospheric correction is fundamental. An 
empirical algorithm relating CDOM/Rrs to the SSS can 
then be developed. The relationship between these 
variables is not well established on a global scale, 
primarily due to the scarcity of in situ observations. 
Several studies indicate the relationships are regionally 
dependent, but it is likely they are related to water types 
(Jerlov classification: 9 water types for coastal waters; 3 
water types for open ocean). To better understand these 
relationships, more coordinated in situ and remote 
measurements are necessary. 

METHODOLOGY 

Required in situ Observations 
In situ measurements will be vital for developing 
optical salinity algorithms, as well as validating 
products such as SST. Potential instruments used for 
collecting in situ data consist of Autonomous Surface 
Vehicles (ASV), such as wave gliders or saildrones. 
Wave gliders are easy to mobilize and deploy on a 
global scale and have the capability to be a mission-
oriented robust technology with near real-time satellite 
communications capabilities. They can traverse large 
areas (in particular frontal zones) with high spatial 
resolution. Due to their modular design, other bio-
optical, chemical, and spectral sensors can be added. 
Figure 3 shows a wave glider located at Woods Hole 
Oceanographic Institution, which is currently being 
prepped for deployment (as of May 2022). 

 

Figure 3: Wave glider being prepped for 
deployment at WHOI. The sensors on the deck left 
to right include an Acoustic Doppler anemometer, 

RH – Air temp, a secondary winds sensor, and part 
of the downward facing Acoustic Doppler Current 

Profiler. 

Additionally, we will use ASVs and other in situ 
stations currently available to us, such as the Aerosol 
Robotic Network Ocean Color (AERONET-OC) 
platforms and the Marine Optical Buoy (MOBY) 
mooring, which provide water-leaving radiance 
measurements to calibrate and validate SEASALT’s 
optical products. AERONET-OC platforms are 
typically located in more turbid, coastal water 
environments, where ocean dynamics are sometimes 
changing on hourly time scales. MOBY is an 
autonomous optical buoy, which is moored off the 
island of Lanai, in Hawaii. It is the standard calibration 
and validation site for the ocean color community. 
Table 2 summarizes the instruments planned for this 
mission. 

Table 2: Required Instruments for In Situ 
Measurements 

Variables Essential 
Variable 

Algorithm 
Development 

Validation  

SSS Yes Yes Yes 

CDOM No Yes No 

Reflectance
/Radiance 

Yes Yes Yes 

Chlorophyll 
(Chl-A) 

No Yes No 

SST No Yes No 

Physical 
Environme
nt (winds, 
currents, 
freshwater 
fluxes, river 
runoff 

No No No 

 

Variables Study – 
Regional 

SSS 
Dynamics 

Temporal 
Frequency/Sp

atial 
Resolution/D

omain 

Potential 
Instrumentation 

SSS Yes Hourly, 
covering all 
seasons, 
multiple 
regions, ideal: 
crossing 
frontal zones 

ASV, mooring, 
shipboard 
(Thermosalinogra
ph), drifters 

CDOM No  Mooring, ASV, 
shipboard 

Reflectance
/Radiance 

No Hourly, 
covering all 
seasons, 
multiple 
regions 

Spectroradiometer 
(e.g. Spectral 
Evolution 1100f), 
AERONET-OC, 
MOBY 
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Chlorophyll 
(Chl-A) 

No  Mooring, ASV, 
shipboard 

SST No  Mooring, drifters, 
ASV, AUV, 
shipboard 

Physical 
Environme
nt (winds, 
currents, 
freshwater 
fluxes, river 
runoff 

Yes Hourly to 
daily, targeted 
regions, 
period 
depending on 
the science 
objective 
(month to 
year) 

Mooring, ASV, 
shipboard – with 
CTD, ADCP, and 
met and air-sea 
flux measurements 

 

SEASALT’s potential regions of interest are depicted in 
Figure 4. These are river-dominated regions in which 
SSS-CDOM linear relationships have been shown to 
exist in previously published literature. 

 

 

Figure 4: SEASALT Potential Regions of Interest 

 

Salinity Retrieval Algorithms 
This study discusses efforts conducted throughout the 
SEASALT design phase to create an empirical optical 
salinity algorithm based on in situ cruise data to be later 
tuned with orbital data. One method for developing a 
salinity algorithm is to use in situ bio-optical 
measurements, such as absorption and backscattering 
inherent optical properties, turbidity, or CDOM 
measurements. For example, the algorithm could be 
developed using time-series data and tested using 
vertical profile data. However, our main focus is to use 
in situ hyperspectral Rrs measurements to develop our 
optical salinity algorithm. Here, we establish trends 
between SSS and Rrs and use those trends to develop 
algorithms for estimation of SSS (Figure 5).  

 

Figure 5: Example Optical Salinity Algorithm Using 
Rrs 

One such method utilizes in situ salinity and Rrs 
measurements from a cruise the Naval Research 
Laboratory conducted in the northern Gulf of Mexico 
from March 24 thru April 17, 2018 (Figure 6). During 
this cruise, there were 8 mooring locations collecting 
bio-optical, CDOM, turbidity, and salinity data. 
However, only one location had coincident bio-optical 
and salinity data, as well as spectral Rrs. 

   

Figure 6: Study Area (Mississippi Bight) for Optical 
Salinity Algorithm Generation 

Rrs was measured with an ASD HandHeld Field 
Spectroradiometer. The in situ hyperspectral Rrs was 
convolved to Planet’s PlanetScope nanosatellite band-
specific spectral response functions. We empirically 
developed a salinity algorithm from the convolved Rrs 
in situ measurements and their corresponding in situ 
salinity values. The results show that given an accurate 
atmospheric correction, optical Rrs in the visible 
spectrum can be used to produce accurate salinity 
retrievals (Figure 7). The next steps would be to 
convolve the in situ Rrs to SEASALT bands when the 
spectral response functions become available, revise the 
reflectance salinity algorithms for SEASALT, and 
continue testing salinity algorithms with additional data 
sets from other geographical areas. 
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Figure 7: In Situ Salinity (from CTD) Compared to 
In Situ Rrs Convolved to PlanetScope Relative 

Spectral Response Functions 

There has been other literature published that discuss 
deriving a regionalized optical salinity product. Fu et. 
al. discuss two ways to retrieve SSS optically: 1. Using 
CDOM as an intermediate agent due to its significant 
correlation with SSS; 2. Directly connecting Rrs with 
SSS, since SSS can be expressed directly as a function 
of remotely sensed ocean color bands since CDOM can 
be estimated by Rrs [16]. Both of these methods are 
based on the inverse relationship between SSS and 
CDOM concentration, which performs well in coastal 
regions, but salinity may be highly variable in coastal 
and estuarine ecosystems due to unique geographical 
locations. Therefore, there is no great global salinity 
algorithm – all require training and tuning. They also 
discuss the importance of analyzing the temporal and 
spatial heterogeneity of salinity in coastal areas on the 
basis of model zoning, and they were able to divide 
their Gulf of Mexico study area based on variable 
differences (mostly depth) rather than geographical 
locations. We will look at conducting a similar analysis 
with SEASALT, where we must validate and calibrate 
with in situ measurements. 

Vandermeulen et. al. determined that the highest 
correlations were found in the difference between the 
Quasi Analytical Algorithm (QAA) absorption products 
at 486nm and 551nm [17,18]. They also noted that one 
regression model will not describe the seasonal 
dynamics optimally, since the baseline (optical 
properties of freshwater at the mouth of the Mobile 
river) is changing throughout the year relative to the 
test parameters. To account for this, they used bi-
monthly regression slopes of salinity compared to 
optical signatures, specifically QAA absorption(486nm) 
minus QAA absorption(551nm). Vandermeulen et. al. 

demonstrate that 90% of their satellite data points were 
within 5 PSU of the in situ measurements. We will look 
to generate similar QAA products but SEASALT’s 
design is missing the 443nm band that QAA requires. 
We will look at uncertainties associated with this, as 
well as possibly using other algorithms for inherent 
optical product (IOP) generation. One such algorithm is 
the Linear Matrix IOP algorithm (LMI), which uses 
wavelengths (410nm, 490nm, and 551nm) and may 
have better applications for SEASALT than the QAA. 

There are optical salinity algorithmic concerns. When 
an empirical approach is used to generate an algorithm, 
the coefficients with that algorithm must be tuned and 
validated for other temporal and spatial domains. 
Previous analysis by Vazquez-Cuervo et. al. describes 
this proxy performance function distance from the coast 
and Qing et. al. show the ability, using passive optical 
data, to determine an in situ salinity estimate derived 
from satellite measured reflectance data with a RMSE 
of 0.8333 PSU (R-squared = 0.64). We expect to 
achieve similar performance with SEASALT, provided 
proper calibration can be performed. As a result of 
experiencing the rigors of the space environment, 
integral periodic calibrations are essential to meet this 
standard. 

The Impact of Signal-To-Noise (SNR) Ratio 

One of the most important differences between 
SEASALT (and similar small satellites) and the 
satellites typically used for ocean color studies is the 
difference in signal-to-noise ratio (SNR). We have 
performed a preliminary analysis of the impact of SNR 
on accurate ocean optics and downstream salinity 
retrievals by observing systematic factors, turbidity, and 
transient environmental factors. 

To perform this analysis, in situ SSS data from cruises 
and buoys was collected for different areas where 
coincident VIIRS data was available. Any SSS data was 
coordinated temporally and spatially to optical Rrs data 
from VIIRS, which was atmospherically corrected 
within NRL’s Automated Processing System (APS), 
which is based on the NASA SEADAS code set [19]. 
Data was only matched if the observations were taken 
within 2 hours of each other. Following the procedure 
in Qing et. al., we performed a multi-linear regression 
on the 410, 486, and 551 bands, which most closely 
correlate to the bands on SEASALT. For this 
regression, we used 75% of the data for training and 
25% for testing. This produced a baseline regression for 
the VIIRS satellite. To simulate the SEASALT SNR, 
noise was added to the Rrs data to effectively change 
the SNR from that of VIIRS (25.47, 22.99, and 25,31) 
to that of SEASALT (16.34, 20.72, and 20.44). This 
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noise was simulated using a Gaussian distribution over 
the center of the data, scattering it to simulate a lower 
SNR. 

This study was performed for the coast of the Amazon 
River, to examine a location with high monthly and 
daily variation in SSS, and the Bay of Bengal, which 
has a low monthly variation. The matched SSS and Rrs 
data for each of these can be found in Figure 8. More 
Rrs data than was used in the regression is plotted for 
completeness. The salinity (black) generally follows the 
trend of the bands of interest (410, 486, and 551), but 
relatively few data points make achieving an accurate 
regression difficult. 

 

 

Figure 8: Coincident in situ and Rrs data for the 
Bay of Bengal (top image) and Amazon (bottom 

image) 

The regression was then performed for both the VIIRS 
and SEASALT SNR. These results are depicted in 
Figure 9, which compare the measured SSS to the 
estimated SSS. The regression for the Amazon is 
accurate within 0.7 Practical Salinity Units (PSU) for 
all estimates, and within 2 PSU for the Bay of Bengal. 
With the additional noise to simulate the SEASALT 
SNR, there is little difference in each of the calculated 
points, indicating that the SEASALT SNR is sufficient 
to perform the types of regressions described in this 

paper. However, the relatively low number of data 
points in this regression and the lower performance of 
the Bay of Bengal study reiterates the importance of a 
satellite (or constellation of satellites) with a higher 
revisit rate than VIIRS. Because the salinity variation 
for the Bay of Bengal was very low, it was difficult to 
find an accurate regression for the data compared to the 
higher variation for the Amazon. Future work will be 
performed to verify these results by expanding the 
VIIRS data by considering points that are spread more 
spatially and temporally.  

 

 

Figure 9: Comparison between the regression for 
the VIIRS SNR and the SEASALT SNR for the Bay 
of Bengal (top image) and Amazon (bottom image) 

SEASALT Team 

Massachusetts Institute of Technology (MIT) 

Kerri Cahoy, Mary Dahl, Albert Thieu, Cadence Payne, 
Charles Lindsay, and Shreeyam Kacker from MIT’s 
STAR Lab have extensive experience with small 
satellite design, assembly, and operation. They have 
worked with satellites in the realm of ocean sciences 
with the BeaverCube satellite [20], which was designed 
to image the ocean to study changes in ocean color over 
time. 

Woods Hole Oceanographic Institution (WHOI) 
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Viviane Menezes and Paul Fucile are members of the 
Physical Oceanography Department at WHOI. Both 
have considerable experience with remote sensing and 
physical oceanography, specifically related to salinity 
variability, air-sea interaction, and ocean circulation. 
They have strong experience recording in situ 
measurements with using moorings, floats, drifters, 
shipboard, and autonomous surface vehicles. 

Naval Research Laboratory (NRL) 

Sean McCarthy from Code 7331: The Bio-Optical 
Physical Processes and Remote Sensing Section, has 
vast experience in processing, analyzing, and ocean 
color bio-optical algorithmic development for remote 
sensing data from a multitude of sensors that are viable 
in complex coastal waters. Specifically, our section has 
demonstrated this experience over the last twenty-five 
years with the continued development of the Automated 
Processing System (APS). APS is used to ingest multi- 
and hyper-spectral remote sensing data from 
continuously imaging ocean color sensors to 
automatically produce numerous products of interest to 
Navy operations and inputs to bio-optical forecasting 
models. These Navy support products are derived from 
optical properties, including but not limited to vertical 
and horizontal visibility products from Apparent 
Optical Properties (AOPs) and IOPs, and Electro 
Optical (EO) system performance products for cameras, 
lasers, and divers.  

Conclusion 

Estimating SSS in coastal environments is a difficult 
problem that a SEASALT constellation would help 
resolve. SEASALT’s relatively high spatial resolution 
(30m) combined with the revisit rate that a constellation 
could provide would help answer oceanographic 
questions pertaining to SSS in Case 2 coastal waters. 
SEASALT’s band set was selected specifically for 
these operations, which includes two NIR bands needed 
for conventional ocean color atmospheric correction 
methods. The research conducted during the design 
phase demonstrates that optical salinity is achievable; 
however, calibrations must be applied to optimize the 
sensor where regional trends and biases exist. 
Additionally, SEASALT will be capable of deriving 
SST. SEASALT has concluded its Phase 1 Design 
Level funding, and we are currently seeking Phase 2 
funding for future implementation, testing, and 
launching. 
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