Program Development for Computer Simulation and Analysis for Multiplex Chromatography

Barbara Pawliszyn
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports
Part of the Computer Sciences Commons

Recommended Citation

Pawliszyn, Barbara, "Program Development for Computer Simulation and Analysis for Multiplex
Chromatography" (1987). All Graduate Plan B and other Reports. 1664.
https://digitalcommons.usu.edu/gradreports/1664

This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

COMPUTER SIMULATION AND ANALYSIS FOR
MULTIPLEX CHROMATOGRAPHY
by
Barbara Pawliszyn, Master of Science

A report submitted in partial fulfillment of the requirements for the degree
of
MASTER OF SCIENCE
in

Computer Science
(Plan B)

Approved:

Major Professor
Committee Member

Committē Member

UTAH STATE UNIVERSITY
Logan, Utah
1987

This work is dedicated to my husband, Janusz

ACKNOWLEDGEMENTS

The preparation of a report at the masters level is a challenging and exacting task. The support of my husband, Janusz was invaluable both for the encouragement he gave me and for his guidance in research methodology. His never failing optimism and insightful comments provided a solid foundation for the work I had to do.

I would like to thank Dr. Greg Jones particularly for his overall direction and helpfulness. For Dr. Bob Campbell's assistance in solving problems of research design, I express my great appreciation. I would also like to thank Dr. Rex Hurst for bring an outside viewpoint to my research.

TABLE OF CONTENTS

PAGE
DEDICATION . ii
ACKNOWLEDGEMENTS iiii
LIST OF FIGURES vi

ABSTRACT . vii

CHAPTER

I. INTRODUCTION 1

Overview 1
Correlation 7
Cross-Correlation 7
Hadamard Transform 8
Fast Fourier Transform 8
II. PROBLEM STATEMENT 11
III. PROBLEM SOLUTION 14

Program Solution 14
Program and Menu Development
and Testing 14
The Program Language ASYST 15
ASYST Random Number Generator
Validation.

Data Simulation Solution 18
Introduction 18
Single Chromatogram
Calculation 18
Decision Sequence
Calculation 19
Multiplex Chromatogram
Calculation20

Calculating Electrical
White Noise 20
Calculating Electronic Drift21
Data Calculation Solution 23
Introduction 23
Cross-Correlation 23
Hadamard Transform 24
Fast Fourier Transform 25
Best Analysis Method
Determination 25
IV. RESULTS AND DISCUSSION 27
ASYST 27
Random Number Generator 28
Coding and Testing of29
Correlation Noise 29
Electrical White Noise 39
Electrical Drift 42
V. FUTURE ENHANCEMENTS 50
Decision Sequence 50
Multiplex Chromatogram 50
VI. CONCLUSIONS 52
REFERENCES 56
APPENDICES 57
Appendix A. List of Abbreviations Used in this Report 57
Appendix B. Data Flow Diagrams 58
Appendix C. Hierarchy Structure of Prototype Program Menu Calls 62
Appendix D. Prototype Program Menu Screens 64
Appendix E. User's Manual for Prototype Program 68
Appendix F. Memory Configuration and Required Space for Prototype Program 70
Appendix G. Parameter Description and Values 71
Appendix H. Relationship of Signal-to- Noise Ratio to Noise Magnitude 73
Appendix I. Parameters Used for Different Decision Sequences 74
Appendix J. Random Number Generator Test Results 75
Appendix K. Prototype Program Code 77
Appendix L. Correlation Noise with Different Decision Sequences and Length Proportions 138
Appendix M. Correlation Noise with Different Decision Sequences, Single Chromatogram Lengths and Length Proportions 139
Appendix N. Correlation Noise with Different Decision Sequences 140
Appendix O. White Noise with Different Noise Magnitudes 141
Appendix P. Drift Added to Multiplex Chromatogram 142

1. Single Injection Chromatogram Graphs 3
2. Multiplex Chromatogram Graphs 5
3. Graphs for Decision Sequence 8 Using Default Values 31
4. Graphs for Decision Sequence 3 Using Default Values 33
5. Graphs for Decision Sequence 3 Using Default Values and LP of 2 and 1 35
6. Cross-Correlation Single Chromatogram Graph for Decision Sequence 3 Using Default Values and LP of 8 38
7. Graphs for Decision Sequence 8 Using Default Values with White Noise 40
8. Graphs for Decision Sequence 8 Using Default Values with Drift Rate of 4 and LP of 4 43
9. Graphs for Decision Sequence 8 Using Default Values with Drift Rate of 4 and LP of 2 45
10. Graphs for Decision Sequence 8 Using Default Values with Drift Rate of 4 , LP of 4 and Drift Reduction 47

ABSTRACT

> Program Development for Computer Simulation and Analysis for Multiplex Chromatography

by

Barbara Pawliszyn, Master of Science Utah State University, 1987

Major Professor: Dr. Gregory Jones Department: Computer Science

In this report, the programs developed for the analysis of simulated data in multiplex chromatography are written in the ASYST language. The integration of the program modules into a menu-driven, user-friendly prototype program is outlined. The program is developed to allow for flexibility and easy upgrading of the code.

This report examines the calculation procedures potentially useful in multiplex chromatography. Analysis of the mutliplex chromatograms is done by three mathematical methods, Cross-Correlation, Hadamard Transform and Fast Fourier Transform. The effects of experimental length/chromatogram length and decision sequences on correlation noise present in a single chromatogram, are discussed. As the number of data points increases, n, the improvement of the signal-to-
noise ratio in the resulting single chromatograms is found to be a little less than the theoretical rate of ($n)^{0.5}$. A non-random decision sequence is discovered to introduce drift and noise into the multiplex chromatogram. The influence of electronic white noise and electronic drift in the experimental data (multiplex chromatogram) on the resulting single chromatograms is explored. As electronic white noise increases, the signal-to-noise ratio in the resulting single chromatogram decreases. Electronic drift also introduces noise.

Discussion of the best methods for given experimental conditions is based upon the signal-to-noise ratio in the resulting single chromatograms. Cross Correlation is theoretically the fastest method but is greatly influenced by drift. Hadamard Transform is slower than Cross-Correlation but is not effected by drift. Fast Fourier Transform has the best signal-to noise ratio in the resulting single chromatogram but the peak magnitudes are not always reflective of the real heights. Fast Fourier Transform is slow but if written in machine language, is faster than Cross Correlation or Hadamard Transform written in the ASYST language.

CHAPTER I

INTRODUCTION

Overview

Gas, liquid and supercritical fluid chromatographies are very inefficient in terms of the information content of the signal. A single injection of the sample mixture is followed by a long time period during which the chromatogram is developed. Each of the chromatographic peaks corresponds to one component of a samplemixture. The retention time, the time necessary for elution of this component, gives qualitative information. The height of the peak corresponds to quantity of the given component in the mixture.

In this report, signal-to-noise ratio (S/N) (see Appendix A for all abbreviations used in this report) or signal magnitude compared to noise magnitude, is defined to be the height of the tallest peak in the single chromatogram divided by two times one standard deviation of noise. Improvement in detection techniques, by increasing the signal or lowering the noise, can enhance the S / N so that the single chromatogram peaks are detectable.

Another method is to generate more time efficient
signals and still use the same detector. For example, instead of a single injection of the sample, a random sequence of injections may be input to the column. The average time between the injections is much shorter than the chromatogram length. Therefore, the output signal from the chromatograph corresponds to the sum of the same single chromatogram delayed in time. The time interval between each chromatogram is given by the injection sequence (decision sequence). The detector output (multiplex chromatogram) resembles noise, but, infact, it carries the information about the single chromatogram.

Figure 1.A illustrates a single chromatogram that results from a sample containing three major components. An example of electrical white noise issuing from an instrument is in Figure 1.B. The actual chromatogram recorded is a sum of these two graphs and can be found in Figure 1.C. Notice that in this case the single chromatogram is undetectable due to the low S / N or small signal magnitude compared to noise. Figure 2 . A is a multiplex chromatogram resulting from the single chromatogram in Figure 1.A.

The single chromatogram can be calculated from the multiplex chromatogram by using correlation methods. Figure 2.B shows an example of the resulting single chromatograms calculated from the mutliplex chromatogram. Now signals are larger than the noise though the orignal

Figure 1. Single Injection Chromatogram Graphs

Time
1.A Single Chromatogram used for Decision Sequences: 2,3,4,5,6 and 7; Defaults Parameters used

1.B Chromatogram of White Noise only; Noise Magnitude: 2; No other data present

1.C Chromatogram of a Single Injection with White Noise; Noise Magnitude: 2; Figures 1.A and 1.B added together

Figure 2. Multiplex Chromatogram Graphs

Time
2.A Multiplex Chromatogram with White Noise; Noise Magnitude: 2

Time
2. B Single Chromatogram calculated from Figure 2.A
single chromatogram was smaller. This is due to the throughput and multiplex advantages. The throughput advantage is the increase in the amount of sample introduced to the column per unit of time. The multiplex advantage exists since a single value from the detector output or multiplex chromatogram, carries information about many points for the single chromatogram (Ref. 1).

A major application of multiplex chromatography is the potential to continuously characterize components in the sample mixtures with high resolution and sensitivity. This method can be applied to on-line optimization of chemical industrial processing conditions, warning against excessive amounts of hazardous chemical wastes or perhaps even a physician monitoring in-vivo, chosen components in the blood stream (drugs, hormones, etc.) of a critically injured or sick patient. This approach eliminates the preconcentration of the sample components required with conventional chromatography. This approach results not only in faster determinations but will prevent confusion caused by sample alterations on catalytic surfaces such as activated carbon, commonly used to preconcentrate polutants.

Signal detection methods, such as Cross-Correlation (CC), Hadamard Transform (HT) and Fast Fourier Transform (FFT) can be applied to calculate the single chromatogram from the chromatographic output (multiplex chromatogram),
and the random input (decision sequence). In short, these computational methods' main task is to shift mathematically, the time delay between consecutive chromatograms to zero and then average the chromatogram (Ref. 2).

Corrrelation

The mathematical definition of correlation is:
(A) $\quad R(T)=\lim _{N \rightarrow \infty} 1 / 2 N \sum_{-N}^{N} x(t) y(t+T) d t$
where $R(T)$ is the correlation function formed by suming the 1 agged products of 2 waveforms, $x(t)$ and $y(t)$, and T is the time lag between $x(t)$ and $y(t)$. Functionally, correlation can be thought of as a matching up of waveform components or a similarity test between waveforms (Ref. 3).

The single chromatogram using $C C$ is computed using:
(B) $\quad R(T)=1 / N \sum_{t=1}^{N} \operatorname{INPUT}(t-T) * \operatorname{OUTPUT}(t)$
where N is the number of data points in the input and output signals, t is discrete time and T is a delay. For a linear and statistically stationary chromatographic
system with a properly chosen input signal, the single chromatogram resulting from CC is identical to the original single chromatogram, with a S / N advantage. Equation (B) would be very tedious to compute manually, but is easily programed for a computer (Ref. 1).

The equation $N=W T+E$ describes a multiplex chromatogram using $H T$, where W is the mask, T is the original signal (single chromatogram) and E is experimental measurement error (Ref. 4):
(C)

where the $i^{\text {th }}$ row of W specifies the mask configuration or decision sequence, used in the $i^{t h}$ measurement. If the measurements were perfect then $E=0$ and T could be solved by (Ref. 4) :
(D) $\quad \mathrm{T}=\mathrm{W}^{-1} \mathrm{~N}$

Fast Fourier Transform

Fourier Transform (FT) takes a very long time to compute if coded naively. In general, $F T$ takes n^{2} units
of time while Fast Fourier Transform (FFT) takes $\operatorname{llog}_{2} n$, where n is the number of data points (Ref. 3). This time improvement is due to FFT taking orthagonality of the data into consideration. For example, when $n=1024$, this amounts to a FFT execution speed 100 times faster than FT. The only disadvantage of FFT is that it can only be applied to data arrays that are a power of 2 in length (Ref. 5) .

FFT interpolates a sum of trigometric functions through n data points. Suppose $F=(f 0$. . fn-1) is a data array. The functions that actually appear in the F expression are imaginary exponentials but by Euler's formula:
(E) $\exp (i x)=\cos (x)+i s i n(x)$

These exponentials are really just the sum of two trigometric functions. From the equations below, notice that the F array consists of complex numbers even when the original data is real (Ref. 5).

FFT is defined to be (Ref. 5):

$$
\text { (F) } F m=1 / n \sum_{m=0}^{n-1} f k \exp \left\{\begin{array}{cc}
-2 * p i * i \\
\cdots \cdots & m * k \\
n
\end{array}\right\}
$$

(G) $f k=1 / n \sum_{k=0}^{n-1} F m \exp \left\{\begin{array}{c}2 * p i * i \\ \cdots \cdots m k k \\ n\end{array}\right\}$

From the Fourier Transform correlation property, correlation is greatly simplified by using FFT. The two waveforms to be correlated, $x(t)$ and $y(t)$ are transformed to the frequency domain by $F F T$ giving $X(t)$ and $Y(t)$. Following this, one term is conjugated and then the complex product is formed to give:

$$
\begin{equation*}
S(f)=X^{*}(f) Y(f) \tag{H}
\end{equation*}
$$

where (*) denotes conjugation. The final step is inverse tranforming $S(f) b a c k$ to the time domain to give the single chromatogram (Ref. 3).

The conjugate of a complex number is obtained by simply negating the imaginary part of the number. Graphically this can interpreted as reflecting the (x, y) vector around the x axis (Ref. 5).

PROBLEM STATEMENT

The main objective for this report is to write and test software to investigate multiplex chromatography by simulating data and calculating resulting single chromatograms. The effects of varying experimental conditions such as white noise and electronic drift, on resulting single chromatograms will be examined. The ability of different calculation methods (CC, HT and FFT) to produce good quality single chromatograms resulting from multiplex data will be explored. Since the inception of multiplex chromatography, only on a limited theoretical study has been conducted (Ref. 6) which investigated the effect of the sample composition and baseline drift on S / N in the calculated single chromatogram.

A menu-driven, prototype program will be written on an $I B M$ compatible microcomputer. The package should be flexible so that later it can be expanded and used to test other less significant parameters such as laser jitter and be able to collect experimental data directly in $\begin{aligned} & \text { form that } \\ & c\end{aligned}$ an later be analyzed by the calculation methods (eg. CC). The program should be user-friendly with clear prompts, error messages and recovery, have a simple and logical call structure and easy to operate.

The user should feel in control yet not be burdened with repetitive data entry.

Appropriate software must be chosen. Since good quality of random numbers will be needed for some calculations, the random number generator used should produce random numbers that pass a 0.05 level of significance. The software should be able to do calculations using complex and double precision operations. In addition, it should be easy to aquire experimental data using direct memory access.

The simulation consists of 5 parts: first, parameters are entered, either default or user determined. Second, a single chromatogram is calculated. Third, a random decision sequence is determined, to be used to calculate the fourth step which is producing a multiplex chromatogram. The multiplex chromatogram is calculated by the following steps: initialize the multiplex chromatogram array to zeros; add the single chromatogram to the array starting at the time intervals where the decision sequence array is true. Finally, random (white) noise is optionally added to the multiplex chromatogram.

The multiplex chromatogram is then analyzed using three mathematical methods: CC, HT and FFT. The resulting single chromatograms are then compared to each
other and to the original single chromatogram to see the effects of changing simulation parameters on sensitivity (S/N) and reproducibility of the calculated results. This procedure should lead to a better understanding of such complicated concepts as correlation noise.

Correlation noise is noise in the resulting single chromatogram due simply to the correlation method. The effect of the experimental length/chromatogram length ratio or length proportion (LP) and different decision sequences on correlation noise, in the resulting single chromatogram is to be investigated. In addition, the influence of electrical white noise on resulting single chromatograms is to be explored. The effect of electrical drift in the multiplex chromatogram is to be considered. This approach allows the determination of the best analysis method for a given set of conditions prior to an experiment.

Progran and Menu Development and Testing

The major program modules developed for the following sections are integrated into a menu-driven program. Dataflow diagrams, menu hierarchy diagrams and menu screens are in Appendices B, C and D. These diagrams include future anticipated enhancements as well as the core for the prototype. A user's manual and system configuration specifications for the prototype are found in Appendices E and F. Appendix G has a listing of parameter definitions. Function keys, prompts and error messages are used to ensure that the system is easy to use. Consistency in menu display and windows encourage easy learning of the prototype.

Testing of the modules is done by entering in maximum and minimum parameter values and ensuring that the program does not crash. If it does, an error check is put in or acceptable limits are changed. The graph calculations are tested by comparing what is produced to what is expected or desired.

When personal computers were beginning to appear on the market, it was commonly believed that any business software had to be specially created by expensive consultants using Basic, Fortran, Pascal or Cobol. Then the appearance of Lotus' 1-2-3 and Ashton-Tate's dBASE II showed that general purpose business software could be written. ASYST provides the same type of general purpose software but is designed for scientific and engineering needs (Ref. 5).

ASYST has been developed by Adaptable Laboratory Software, Inc. based upon their experience in scientific and engineering applications. ASYST incorporates many features of well-known computer languages such as $A P L$ and Forth. However, like dBASE II and 1-2-3, it is more than a language, it is an application environment. Asyst contains many pre-written software tools such as interactive graphics which can be used by themselves or incorporated into a custom application program (Ref. 5).

ASYST's data acquisition and data analysis modules supply prewritten tools such as the ability to simply input analog information from instruments, the ability to find the local minima on a waveform, or a highly optimized FFT. Direct memory access is supported by ASYST and is easy to configure. This allows for
experimental data to be acquired directly into memory (Ref. 5).

Because ASYST has been designed for science and engineering, all of its operations can be used with both real and complex numbers. ASYST supports high precision calculations. Using the 8087 coprocessor, most functions are calculated with a precision of 80 bits. Its automatic plotting supports linear, logarithmic and polar plotting (Ref. 5). The random number generator used i.s well respected and considered one of the best (Ref. 7).

ASYST can be used interactively or prewritten "templates" or modules can be compiled. Complex computer language is avoided by providing meaningful names for commands. Therefore, for example, FFT can be simply invoked by typing the letters "FFT". New commands can be interactively created or assigned to function keys. All these functions allow the user to focus on the application rather than how to write a complex program (Ref. 5) .

ASYST can be used to generate a turnkey, menudriven program. It supports multiple text and graphics windows. The ability to use function keys reduces keystrokes by the operator and all templates loaded are compiled so they execute at top speed (Ref. 5).

ASYST Randoom Number Generator Validation

ASYST has several different random number functions, such as RAND.UNIF and RAND.NRML, that are basedon one random integer generator. These functions can be utilized in multiplex chromatography, provided that the random numbers they produce are sufficiently random and the number generator pases tests for randomness. The integer sequence of the generator is initialized by assigning a value to the (double precision integer) scalar SEED. SEED is defaulted to the value 1 when the system is loaded. Each time one of the random number functions is executed, the value of $S E E D$ is updated to the next term of the random sequence. The sequence does not repeat itself until all 2^{23} double precision integers have been encountered (Ref. 5). The particular generator used in ASYST is the one described in Reference 7. The function RAND.UNIF produces numbers that are distributed like a uniform continuous $(0,1)$ random variable. The function RAND.NRML produces random Gaussian numbers with a mean of 0 and standard deviation of 1.

A Chi-Square test is done for RAND.UNIF on 300 numbers using 10 groups (9 degrees of freedom). A onesided t-test for RAND.NRML is used on 300 numbers. The Chi-Square test on RAND.UNIF and a two-sided t-test on RAND.NRML are run 100 times and compared to their appropriate distributions (eg. compare the t-test values

Abstract

with a t distribution). The results show that the number generator passes a frequency test.

Data ${ }^{\text {S }}$ imulatiation Solution

To generate the multiplex chromatogram, the following steps must be done: first, a single chromatogram is generated; second, a decision sequence is produced; third, the multiplex chromatogram is calculated; and the optional fourth step is the addition of white noise to the multiplex chromatogram.

The original single chromatogram is made up of a number of Gaussian peaks. Each of the peaks corresponds to a particular component of the sample. The position of the peak (retention time) characterizes the component (qualitative information) and its height is proportional to the amount of this component in the sample (quantitative information). Each peak, i, in the single chromatogram can be described by:
where $S P i(t)$ is the height of the peak i at time t, defined by the standard deviation of the peak (Si), retention time (RTi) at the maximum SPi(t), volume fraction injected (VFi) and analyte detection response factor (RFi) (Ref. 8). Si is defined to be:

$$
\text { (J) Si }=\frac{R T i}{(C E)^{0.5}}
$$

where CE is the column efficiency (Ref. 8). Therefore the original single chromatogram is defined to be:

$$
\text { (K) } \quad S C=\sum_{i=1}^{N o . P k} S P i
$$

where No.Pk is the number of peaks in the single chromatogram.

Decicision Sequence Calculation

The decision sequence is an array that indicates, by the contents of its elements, when in time a single chromatogram is to be added into the multiplex chromatogram. Random numbers are generated and compared to the average frequency parameter. This parameter determines the average frequency a decision is made. If the random number is less than or equal to this constant then the decision is positive (1), else it is negative (0). Under experimental conditions, a positive decision would indicate the injection of a sample.

Multiplex Chromatogram Calculation

For every decision sequence point that is positive, the single chromatogram is added to the multiplex chromatogram (MC). That is:

where $S C$ is the single chromatogram, CL is the chromatogram length of the single chromatogram, DS is the decision sequence and t is time. However, since the first values of the multiplex chromatogram will not store much information until the time equal to the length of one single chromatogram length (CL) has passed, the first CL of the multiplex chromatogram is not stored. This satisfies actual experimental procedures, that is, the multiplex chromatogram is not recorded until the output has stabilized.

Calculating Electrical White Noinse

Electrical white noise or fundamental noise, arises from the motion of discrete charges in electrical circuits and cannot be completely eliminated (Ref 9). Electrical instruments always produce a signal distribution which is typically Gaussian in nature. The amount of white noise or noise magnitude, must be flexible so that different signal-to-white-noise ratios
(S/WN) can be used when determining the best analysis method (CC, HT, and FFT). White noise values are determined by generating Gaussian random numbers with a mean of zero and a standard deviation of:
(M) $\quad S D=(\operatorname{MaxSC)} * N M$
where MaxSC is the height of the tallest peak in the single chromatogram and $N M$ is the noise magnitude parameter. The white noise values are then added to the multiplex chromatogram. For exactly how noise magnitude relates $S / W N$ see Appendix H.

Caĺculating Electronic Drift

Electronic drift or flicker noise (1/frequency) arises from imperfect instrumentation or non-ideal component behavior and can in principle be reduced to insignificant levels by careful practice and instrument design. The sources of electrical drift include longterm power-supply fluctuations, changes in component values and temperature drifts (Ref. 9). This results in baseline drifting. The actual characteristics of electrical drift are not really known. Before this topic can be thoroughtly investigated, real experimental data should first be acquired. For this report, a simple case of linear drift is used with its slope being dependent upon the multiplex chromatogram's experimental length (EL) and the maximum value of the multiplex chromatogram.

The multiplex chromatogram with drift (MCD) is calculated as:

$$
\text { (N) } M C D(t)=M C(t)+(t * M a x M C / E L * D F)
$$

where $M C(t)$ is the original multiplex chromatogram, t time, MaxMC is the mutliplex chromatogram's maximum value, and DF is the drift factor. Note, from equation (N) that the rate of drift for an $E L$ of X and $D F$ of Y is the same as for an $E L$ of $2 X$ and $D F$ of $Y / 2$. Therefore, drift rate is proportional to (EL*DF). Since EL is proportional to EL/CL or LP, and for ease of analysis, drift rate in this report will be defined as (LP*DF).

The three analyis methods (CC, HT and FFT) are tested upon the MCD and upon the MCD which has hadits drift reduced. The drift reduction is done as follows. The mean of 20 points before and 20 points after a point in the MCD is calculated. This mean is then subtracted from the MCD point and stored in a new multiplex chromatogram array. The resulting multiplex chromatogram is therefore 40 points shorter than the original MCD since the first and last 20 points cannot have drift reductions, that is, the means can not be calculated.

Data Calculalation Solution

Introduction

Since ASYST does array/vector calculations directly and quickly, this feature is utilized wherever possible in the calculations. Internal functions such as FFT (Fast Fourier Transform), IFFT (Inverse Fast Fourier Transform) and CONJ (Conjugation) are available and used where appropriate. The averaging of the resulting single chromatograms is omitted (1/N), to avoid computer rounding errors. The ratios or proportions are more meaningful than absolute magnitude.

Rather than directly applying equation (B) to calculate the resulting single chromatogram, a more efficient algorithm is used. It entails traversing the decision sequence searching for a positive decision. One CL of the mutliplex chromatogram is then extracted at the appropriate location and added to the resulting single chromatogram. This reduces the number of additions since where the decision is negative, the addition to the single chromatogram would just be zeros, a zero operation.

Written in terms of this report, equation (B) is:
(0)

$$
S C(T)=1 /(E L-C L) \sum_{t=1}^{E L-C L} D S(t-T) * M C(t)
$$

where $S C$ is the resulting single chromatogram, MC is the multiplex chromatogram, DS is the decision sequence, EL is the experimental length of the multiplex chromatogram and $C L$ is chromatogram length of the single chromatogram. However as mentioned above, averaging is to be ignored, giving:

$$
\begin{equation*}
S C(T)=\sum_{t=1}^{E L-C L} D S(t-T) * M C(t) \tag{P}
\end{equation*}
$$

In terms of the report, the multiplex chromatogram produced by equation (C) is:
therefore the $H T$ to produce the resulting single chromatogram, from equation (D), is (Ref. 2):

The array/vector operations of ASYST are used to implement this equation. Although this means that there will be many additions with zeros, it is faster and more efficient than using loops and tests for zero additions.

Fast Fourier Transform

The built-in ASYST functions FFT, IFFT and CONJ are used to quickly calculate the S C in equation (H). The multiplex chromatogram and decision sequence arrays used, are truncated so that their lengths are a power of 2. This improves the efficiency of the FFT calcuations.

Best Analysis Method Determination

$C C, H T$ and $F F T$ are used on a number of multiplex chromatograms with different simulation parameters (App. I). Specifically, the following conditions are considered: a basic mutliplex chromatogram to test correlation noise; a multiplex chromatogram with different CL's; multiplex chromatograms with different decision sequences; a multiplex chromatogram with white
noise; and a multiplex chromatogram with electrical drift.

The determination of the best analysis method is based upon the accuracy of the resulting single chromatograms. This is determined by comparing the peak retention times and magnitudes of the resulting single chromatograms with that of the original single chromatogram which was used to generate the multiplex chromatogram. In addition, the overall S / N of the single chromatograms resulting from the different methods, is used. S/N is defined as:

$$
\text { (S) } S / N=\frac{\text { (Height of tallest peak in resulting } S C \text {) }}{2 * \text { Standard Deviation of the noise }}
$$

where $S C$ is the single chromatogram.

RESULTS AND DISCUSSION

ASYST

ASYST was used very much like a toolbox, piecing appropriate parts together. As a result, programs ran fast due to many of the components being highly optimized (eg. FFT). Menus were quick to develop, pleasing to the eye and display time was fast. In addition, the task of integrating the programs was not too burdensome due to the fact that the author could work at a high-level, that is, concentrate on the the task, not on the coding.

The author had to keep reconfiguring ASYST so that all arrays and program modules could be stored in memory. ASYST was not good at diagnosing when memory ran out, it just "hung" the system. The whole system had to be rebooted and ASYST and the prototype program reloaded. This took about 15 minutes.

The FFT and IFFT functions in ASYST required that the number of data points be a power of 2 for the best and most efficient calculations. The maximum number of points that could be utilized was 2048. This createda constraint on the simulation portion of this report since it limited EL and therefore $L P$ as well. As a result, the
single chromatogram resulting from FFT never had a LP greater than 4. However, its optimized code provided fast calculations.

Random Number Generator

The results for evaluating the randomess of RAND.UNIF and RAND.NRML can be found in Appendix J. Both functions appear to have passed the 0.05 level of significance with each having only 1 out of 15 runs not passing. However, when these tests were run 100 times each and tested against their appropriate distributions at the 0.05 level of significance, they passed very well. The Chi-Square calculated from the total observed values for RAND.UNIF was 1.17 , well below the value 7.81 for 3 degrees of freedom with a significance level of 0.05 (Ref. 10). The Chi-Square calculated from the total observed values for RAND.NRML was 7.9, below the value 14.1 for 7 degrees of freedom with a significance level of 0.05 (Ref.10). In addition, for the two-sidedt-test of RAND.NRML, the average means were close to zero. Therefore, modules that used these functions could be sure of utilizing good quality random numbers though no generator can ever be truly random. From the literature it appears that it is one of the best algorithms available (Ref. 7).

It was found that when resolution of the original single chromatogram became too coarse, peaks were lost due to rounding errors. Therefore, to ensure that a peak was always present in the original $S C$, a round adjustment was added (see code: Calculate.Single.Chrom in App. K).

At first the author used loops to enter information into arrays. The processing time of some programs using these loops was very long. As a result, ASYST's array/vector operations were utilized, speeding up computational time as much as 7 times!

CC was found to be a faster calculation method than HT, probably due to HT taking time to do many multiplications by zero. FFT was the fastest but could not be compared to the other two methods since it utilized optimized functions internal to the system. The literature indicates that it would actually be the slowest since its speed is a function of nlog ${ }_{2}$ while CC and HT speeds are linear.

Independent of which calculation method was used, there was certain amount of noise present even when no electrical noise was added to the multiplex chromatogram
(Fig. 3). This is called correlation noise. It is due to the non-ideal random number generator and limited number of injections. Correlation noise in the single chromatograms was proportional to the largest peak present in the resulting single chromatograms. The single chromatogram resulting from FFT had less correlation noise than either CCor HT. From Appendix L, it can be observed that for any set of given conditions, FFT consistently had a S / N about twice as high (less correlation noise) as the S / N for either CC or $H T$.

When compared to the original single chromatogram, all three methods produced single chromatogram peaks at the correct retention times and with appropriate width (Fig. 1.A, 3.B, 3.C, 3.D). However, the single chromatograms resulting from FFT did not always have similar peak magnitude compared to the original single chromatogram, while CC and HT did (Fig. 1.A, 4, 5).

From Appendix M, a CC single chromatogram with a $L P$ of 4 , $C L$ of 128 and EL of 512 , had a S / N of $2.4 ;$ a CC single chromatogram with a LP of 16 , CLof 32 , and $E L$ of $512 \mathrm{had} \mathrm{a} S / \mathrm{N}$ of 3.0 ; and a CC single chromatogram with a LP of 4 , CL of 477 and EL 1908 , had a S / N of 4.5. That is, two CC single chromatograms with an EL of 512 had S/N's of 2.4 and 3.0 while two CC single chromatograms with a LP of 4 had S / N of 2.4 and 4.5. Therefore, the

Figure 3. Graphs for Decision Sequence 8 Using Default Values

Time
3.A. Multiplex Chromatogram; LP: 4

3. B Cross-Correlation Single Chromatogram calculated from Figure 3.A

Time
3. C Hadamard Transform Single Chromatogram calculated from Figure 3.A

Time
3.D Fast Fourier Transform Single Chromatogram calculated from Figure 3.A

Figure 4. Graphs for Decision Sequence 3 Using Default Values

4.A Multiplex Chromatogram; LP: 4

4. B Cross-Correlation Single Chromatogram calculated from Figure 4.A

4.C Hadamard Transform Single Chromatogram calculated from Figure 4.A

Time
4.D Fast Fourier Transform Single Chromatogram calculated from Figure 4.A

Figure 5. Graphs for Decision Sequence 3 Using Default Values and LP of 2 and 1

Time
5.A Cross-Correlation Single Chromatogram calculated from Figure 4.A with LP: 2

5. B Hadamard Transform Single Chromatogram calculated from Figure 4.A with LP: 2

5. C Fast Fourier Transform Single Chromatogram calculated from Figure 4.A with LP: 2

Time
5. D Fast Fourier Transform Single Chromatogram calculated from Figure 4.A with LP: 1
total number of points used in the calculations, rather than LP, affected the value S / N. It can also be observed that as the number of data points increased (EL), the S / N improved a little less than (EL) ${ }^{0.5}$ which is the theoretical rate (Ref. 1).

Single chromatograms from CC and HT appear to have had about the same S / N given the same data, but were significantly lower than that for FFT. For example from Appendix N, the S / N averages were 4.00 for CC, 4.43 for HT and 6.59 for FFT.

The use of different decision sequences influenced the S / N of the resulting single chromatogram to some extent. For example in Appendix N, CC varied from 3.1 to 5.5, HT from 3.7 to 5.5 and FFT from 5.5 to 8.0.

Some decision sequences produced a drift in the single chromatogram resulting from CC, though not for HT or FFT (Fig. 5.A, 5.B, 5.C). This drift was due to the decision sequence having been less than random. In this situation, the decision sequence was such that more single chromatograms were added to the begining of the multiplex chromatograms than to the end or visa vera. This drift effect was less noticable as LP increased (Fig. 5.A, 4.B, 6). This is due to the fact that as the $L P$ increased (EL increased), the decision sequence became more random. In Figure 4.A, this drift in the multiplex

Figure 6. Cross-Correlation Single Chromatogram Graph for Decision Sequence 3 Using Default Values and LP of 8

Time
chromatogram is visible. The reason that CC is affected and not $H T$ or $F F T$, can be explained by the different ways CC, $H T$ and FFT are calculated. That is, in CC, the first points of the resulting single chromatogram are more influenced by the first portion of the multiplex chromatogram and last points of the single chromatogram more influenced by the latter portion of the multiplex chromatogram. In $H T$ and FFT, all points in the single chromatogram are affected equally.

Electrical White Noise

When white noise was present, the multiplex method improved S / N about 10 times. For example from Appendix O, the S / N went from 0.25 to 2.8 for CC, to 2.8 for $H T$ and to 3.7 for FFT. The improvement $c a n$ be seen by comparing figure 1.C, a single injection chromatogram which has no detectable peaks, with Figures 7.B, 7.C and 7. D which have detectable peaks in the single chromatograms calculated from the multiplex chromatogram (Fig. 7.A).

The effects of adding white noise to multiplex chromatograms, on S / N in single chromatograms resulting from CC, $H T$ and FFT, can be seen by comparing Figure 3 with Figure 7. For all three analysis methods, as more white noise was added (ie. noise magnitude increased or

Figure 7. Graphs for. Decision Sequence 8 Using Default Values with White Noise

Time
7.A Multiplex Chromatogram; LP: 4; Noise Magnitude: 2

7. B Cross-Correlation Single Chromatogram calculated from Figure 7.A

7.C Hadamard Transform Single Chromatogram calculated from Figure 7.A

7. D Fast Fourier Transform Single Chromatogram calculated from Figure 7.A

S/N ratio decreased), the S / N of the resulting single chromatograms decreased. For example, from Appendix 0 , for noise magnitudes of $0,1,2$ and 4 , the S / N of the single chromatograms resulting from CC was 5.5, 4.0, 2.8 and 1.3 respectively. However, given the same noise magnitude, the S / N of the resulting single chromatogram improved with a larger LP. For example, for a noise magnitude of 1 and $L P$ of 4 and 16 , the S / N for $C C$ was 4.0 and 5.0 respectively. That is, as the number of points in the multiplex chromatogram (EL) increased, S / N of the resulting single chromatogram increased as well.

It is important to remember that the S / N in calculated single chromatograms is a result of both correlation noise and white noise. Therefore as white noise magnitude increases, the total contribution of correlation noise to S / N in the resulting single chromatogram diminishes.

Electrical Drift

When the multiplex chromatogram had inear drift present, the single chromatogram resulting from $C C$, but not from HT or FFT, was affected (Fig. 8). The explanation for this can be found in the correlation noise section above. However unlike drift produced by a specific decision sequence, an increase in LP did not diminish the CC single chromatogram's electrical drift

Figure
8. Graphs for Decision Sequence 8 Using Default Values with Drift Rate of 4 and LP of 4

Time
8.A Multiplex Chromatogram

Time
8. B Cross-Correlation Single Chromatogram calculated from Figure 8.A

8.C Hadamard Transform Single Chromatogram calculated from Figure 8.A

8.D Fast Fourier Transform Single Chromatogram
calculated from Figure 8 A calculated from Figure 8.A

Figure 9. Graphs for Decision Sequence 8 Using Default Values with Drift Rate of 4 and LP of 2

Time
9.A Multiplex Chromatogram

Time
9. B Cross-Correlation Single Chromatogram calculated from Figure 9.A
since the electrical drift in this report was linear and not a function of random numbers that should average to zero (Fig. 9.A, 9.B, 8.A, 8.B). Although the single chromatograms of HT and FFT might not exhibit a drift, they were still affected by it. That is, as more drift was added (drift rate increased), the S / N of the single chromatograms decreased (ie. noise increased). Drift also decreased the S / N for CC. For example, from Appendix P, for an $L P$ of 4 and drift rate of 0,2 and 4 , the S / N for FFT was $6.5,4.8$ and 4.1 respectively.

When an attempt was made to reduce the electrical drift, the S / N was still lower than in the single chromatograms calculated from a multiplex chromatogram with no initial electronic drift (Fig. 3, 10). For example from Appendix P, when there was no drift, the S / N for CC was 5.5, HT was 5.3 and FFT was 6.5 , but when electrical drift was added and then reduced, CC was 4.0 , HT was 3.7 and FFT was 3.5.

When comparing single chromatograms calculated from a multiplex chromatogram with electrical drift, to single chromatograms calculated from a multiplex chromatogram with the electronic drift reduced, only CC showed an improvement. The S / N for CC went from 3.0 to 4.0 , while HT went from 4.0 to 3.7 and FFT from 4.1 to 3.5. It is apparent that the reduction introduced more noise and

Figure 10. Graphs for Decision Sequence 8 Using Default Values with Drift Rate of 4

Time
10.A Multiplex Chromatogram

Time
10.B Cross-Correlation Single Chromatogram
calculated from Figure 10.A

10. C Hadamard Transform Single Chromatogram calculated from Figure 10.A

10. D Fast Fourier Transform Single Chromatogram calculated from Figure 10.A
since $H T$ and $F F T$ were not affected by the electronic drift, their $S / N^{\prime} s$ fell. However, since $C C$ was affected by drift, the addition of noise by the drift reduction was compensated by the improvement in electronic drift.

FUTURE ENHANCEMENTS

Decision Sequence

When generating the decision sequence, rejection of close calls may be required. That is, a second positive decision can not be made until a certain period of time has passed. This period of time is called the "rejection period". In real experiments, one method of the "injection" can be a laser shot (Ref. 11). There is a limit to how often a laser can be firedat a sample. This is due to a recharge time required by the laser before it is able to fire again.

Multiplex Chromatogram

Presently the single chromatogram is added in precisely the same way each time. It would be interesting to see the effects if the single chromatogram is added slightly earlier or later than the actual positive decision sequence times. The term for such offsetting is called "jitter". The jitter can be generated purposely as a way of experiment or it can be due to imprecisions in the timing of the injection.
effect of varying injected amounts or magnitudes of the single chromatogram. That is, sometimes the full single chromatogram would be added but other times, only a smaller magnitude of the single chromatogram would be used. For example, in laser injection, laser intensity varies which means that the laser is unable to fire at a sample at exactly the same intensity each time. This is called a "laser intensity" factor. Therefore the magnitude of the single chromatogram produced and added to the multiplex chromatogram would vary from firing to firing.

Different methods of adding and reducing drift should also be investigated. To accomplish this, experimental data is first required to determine the optimum method.

ASYST has been a satisfying language to work with. Its toolbox approach reduced coding time and gave professional looking results. The fact that the functions (eg. FFT) were highly optimized and that array operations were available, resulted in a prototype program that ran quickly. Double precision and complex operations allowed for the level of accuracy and type of computations needed for this report. ASYST provided many error checking systems but was not good at determining and preventing total filling up of memory. When memory was completely utilized, the whole system had to be rebooted.

The random number functions RAND.UNIF and RAND.NRML utilized a good random number generator. This was confirmed by the results of tests in this report as well as in the literature.

All three analysis methods, (CC, HT and FFT) had correlation noise in the resulting single chromatograms. When white noise magnitude was low, correlation noise was the determining factor of S / N in the resulting single chromatograms. Correlation noise and electrical white noise were reduced as the number of data points used
increased, at a rate a little less than (EL) ${ }^{0.5}$. By increasing $E L$, the S / N improved but required more time to do the calculations.

When only correlation noise was present, the best S / N was an average of 10 for the single chromatograms resulting from CC on a multiplex chromatogram with LP of 16, CL of 477 , EL of 7632 and no electrical noise. No resulting single chromatagram under these conditions can have a S / N better than this since correlation noise is always present. This experimental length can be considered a reasonable value for on-line acquisition and analysis since further improvement in S / N is approximately (EL) 0.5 and a larger EL wouldincrease calculation time. With this in mind, when electrical noise is small and a single injection experiment produces a chromatogram with S / N of 10 or more, there is no advantage in using the multiplex method since the method would actually add more noise (correlation noise) to the resulting single chromatogram. Only when electrical noise is significant and therefore S / N is low (much less than 10) in the single injection method, can the mutliplex method effectively reduce the noise and produce a single chromatogram with a better S / N. The multiplex methodimproves S / N due to white noise by about 10 times.

Since correlation noise is the limiting factor of the S / N in the resulting single chromatograms and is also
proportional to the tallest single chromatogram peak, it limits the size of the smallest detectable peak. That is, in a multiplex chromatogram with an EL of 7632 , the smallest peak would need to be larger than $1 / 10$ the tallest peak height for it to be distinguishable from noise since the S / N would be 10 .

CC is a faster calculation method than HT. If these two analysis methods could be optimized as was the FFT function, the fastest calculations would be CC and then HT, which speeds are proportional to the number of data points, n. FFT would be the slowest since.its speed is proportional to $\operatorname{nlog}_{2} n$. How much $C C$ would be faster than HT would depend on the number of zero operations that could be eliminated. Theoretically then, CC would be the simplest method to choose if speed were important, as is in the case of on-line acquisition and analysis.

One problem with CC is that it is sensitive to drift in the multiplex chromatogram. This drift could be the result of the non-randomness of the decision sequence or due to electronic drift. This presents the problem of finding a method of reducing drift. As initial results indicate, the method of reduction influences S / N by diminishing S / N. This is especially true for $H T$ and $F F T$ which are not effected by drift. Therefore various drift reduction methods must be investigated before valid
analysis of drift can be done. This will require the collection of experimental data to first characterize the real nature of electronic drift.

If the number of data points used is limited, HT and FFT methods are better than CC. Both methods produce more detectable peaks, with FFThaving the larger S / N. However, $H T$ is better since the single chromatogram peak heights resulting from FFT do not always reflect the original peak magnitudes.

In reflecting back, this has been a challenging and interesting project. It has developed the author's skills in investigating, determining and producing a computer solution to a problem in a field other than computer science.

REFERENCES
[1] Phillips J: Multiplex Gas Chromatography. Anal Chem 52: 468A, 1980
[2] Marshall AG, editor: Fourier, Hadamard and Hilbert Transforms in Chemistry. Plenum Press, NY, 1982
[3] Ramirez RW: The FFT Fundamentals and Concepts. Prentice-Hall Inc, $\mathrm{NJ}, 1985$
[4] Harwit M, Sloan NJA: Hadamard Transform Optics. Academic Press, NY, 1979
[5] ASYST, A Scientific System Manual. MacMillan Software Co, NY, 1985
[6] Kaljurand M, Kullik E: Comparison Between Conventional and Cross-Correlation Gas Chromatography. J Chromatogr 186: 145, 1979
[7] Knuth DE: Seminumerical Algorithms, TheArt of Computer Programming, Vol2. Addison Wesley Pub Co, NJ, 1982
[8] Synovec RE, Yeung ES: Improvement of the Limit of Detection in Chromatography by an Integration Method. Anal Chem 57: 2162, 1985
[9] Malmstadt H, Enke C, Crouch S: Electronics and Instrumentation for Scientists. Benjamin/Cummings Pub Co Inc, Menlo Pk CA, 1981
[10] Banks J, Carson JS: Discrete-Event System Simulation. Prentice-Hall Inc, NJ, 1984
[11] Pawliszyn J, Lui S: Sample Introduction for Capillary Gas Chromatography with Laser Desorption and Optical Fibers. Anal Chem 59: 1475, 1987

Appendix A


```
SC SINGLE CHROMATOGRAM
MC MULTIPLEX CHROMATOGRAM
MCD MULTIPLEX CHROMATOGRAM WITH DRIFT
DS DECISION SEQUENCE
CL CHROMATOGRAM LENGTH (OF SC)
EL EXPERIMENTAL LENGTH (OF MC)
LP LENGTH PROPORTION (CL/EL)
NM NOISE MAGNITUDE
S/N SIGNAL-TO-NOISE RATIO
S/WN SIGNAL--TO-WHITE NOISE RATIO
DF DRIFT FACTOR
CC CROSS-CORRELATION
HT HADAMARD TRANSFORM
FT FOURIER TRANSFORM
FFT FAST FOURIER TRANSFORM
```

Appendix B

Data Flow Diagrams

B. 1 Data Flow Context Diagram

E. 2 Diagram 1 - Experimental Data Collection

B. 3 Diagram 1.1 - Input Experimental Parameters

B. 4 Diagram 2 - Data Simulation

B. 5 Diagram 2.1-Input Simulation Parameters

B. 6 Diagram 2.4 - Calculate Multiplex Chromatogram

B. 7 Diagram 3 - Calculations

B. 8 Diagram 4 - Data Output

* indicates available

Appendix \underline{C}

Hierarchy Structure of Prototype Program
Menu Calls

MAIN MENU CALLS:

DATA SIMULATION MENU (2) CALLS:

DATA REPORT MENU (4) CALLS:

REPORT MENU (4.1) CALLS:

* - indicates menus are available

```
                    Appendix D
Proototype Pryogramm Menuu Sccreeens
D. 1 MAIN MENU
    MAIN MENU
                    WELCOME
            TO THE
        MULTIPLEX CHROMATOGRAM
        PROGRAM
<F1> EXPERIMENTAL DATA COLLECTION
<F2> DATA SIMULATION
<F3> DATA ANALYSIS
<F4> DATA REPORT
<F5> HOUSEKEEPING
<F6> HELP
<F10> EXIT
D.2 D_DTA SIMULATION MENU (2)
    DATA SIMULATION MENU
<F1> PARAMETERS
<F2> SINGLE CHROMATOGRAM CALCULATION
<F3> DECISION SEQUENCE CALCULATION
<F4> MULTIPLEX CHROMATOGRAM CALCULATION
<F5> NOISE CALCULATION
<F6> RENAME FILES
<F7> HELP
<F10> EXIT
FILE NAME TO BE USED: BARSIMTP.DAT
D.3 3 SIMULATIION PARAMETERS ENTRY MENU (\underline{2}.[\underline{1)}
    SIMULATION PARAMETERS ENTRY MENU
<F1> ENTER PARAMETERS <F5> DISPLAY PARAMETERS
<F2> USE DEFAULT PARAMETERS <F6> CHANGE PARAMETERS
<F3> USE STORED PARAMETERS <F7> FINISH NEXT STEPS
    AUTOMATICALLY
<F4> LIST DIRECTORY <FIO> EXIT
```

```
D.4 SINGLE CHROMATOGRAM MENU (\underline{2}.2)
    SINGLE CHROMATOGRAM MENU
<F1> DISPLAY ALL PARAMETERS <F10> EXIT
<F2> DISPLAY SINGLE CHROMATOGRAM PARAMETERS
<F3> CHANGE SINGLE CHROMATOGRAM PARAMETERS
<F4> CALCULATE SINGLE CHROMATOGRAM
<F5> USE STORED SINGLE CHROMATOGRAM
<F6> DISPLAY SINGLE CHROMATOGRAM GRAPH
D. 5 D DECISION SEQUENCE MENU (2-3)
    DECISION SEQUENCE MENU
<FI> DISPLAY ALL PARAMETERS <F10> EXIT
<F2> DISPLAY DECISION SEQUENCE PARAMETERS
<F3> CHANGE DECISION SEQUENCE PARAMETERS
<F4> CALCULATE DECISION SEQUENCE
<F5> USE STORED DECISION SEQUENCE
<F6> DISPLAY DECISION SEQUENCE GRAPH
    MULTITPLEX CHROMATOGRAM MENU (2-4)
    MULITPLEX CHROMATOGRAM MENU
<F1> DISPLAY ALL PARAMETERS
                                <F10> EXIT
<F2> DISPLAY MULTIPLEX CHROMATOGRAM PARAMETERS
<F3> CHANGE MULTIPLEX CHROMATOGRAM PARAMETERS
<F4> CALCULATE MULTIPLEX CHROMATOGRAM
<F5> USE STORED MULTIPLEX CHROMATOGRAM
<F6> DISPLAY MULTIPLEX CHROMATOGRAM GRAPH
D.7 NOIISE MENU (2-.5)
    NOISE MENU
<F1>
    DISPLAY ALL PARAMETERS
        <F10> EXIT
<F2> DISPLAY NOISE PARAMETERS
<F3> CHANGE NOISE PARAMETERS
<F4> CALCULATE NOISE
<F5> USE STORED NOISE
<F6> DISPLAY NOISE GRAPH
```

```
D.8 8 DGATM ANALYYSIS MENU (3)
    DATA ANALYSIS MENU
DATA TO BE ANALYZED: <F1> MOST RECENT SESSION
                                <F2> EXPERIMENTAL FILE
                                <F3> SIMULATION FILE
                                <F4> OTHER FILE
                        <F10> EXIT
D.-9 ANALYSIS MENU (3.3.12
    ANALYSIS MENU
<F1> CROSS-CORRELATION
<F2> HADAMARD TRANSFORM
<F3> FAST FOURIER TRANSFORM
<F10> EXIT
D.10 DATA REPORT MENU (42
    DATA REPORT MENU
REPORT: <FI> MOST RECENT SESSION
        <F2> EXPERIMENTAL FILE
        <F3> SIMULATION FILE
        <F4> OTHER FILE
        <F10> EXIT
    D.11 R REPORRT MENU (4._1)
    REPORT MENU
    REPORT: <F1> PARAMETERS
        <F2> RESULT GRAPHS
        <F3> RESULT VALUES
        <F10> EXIT
```



```
    REPORT GRAPHS MENU
<F1> SINGLE CHROMATOGRAM
<F2> MULTIPLEX.CHROMATOGRAM
<F3> CROSS CORRELATION CHROMATOGRAM
<F4> HADAMARD CHROMATOGRAM
<F5> FAST FOURIER TRANSFORM CHROMATOGRAM
<F10> EXIT
```


Appendix E

User's Manual For Prototype Program

Hardware Specifications

This software requires an $I B M$ compatible PC having a hard disk, graphics monitor, keyboard, printer and 8087 math processor. Aminimum of 640 K of memory is needed.

System Configuration

Besure that the copy of ASYST that you use has been configured with the "required memory" listed in Appendix Fof this report. These are the minimum values needed to load this program with no other definitions (programs) loaded. If other programs are to co-exist with this program, you must make the appropriate adjustments to the configuration. For more information regarding configuration, refer to the ASYST manual (Ref. 5).

Looading the Prototype Program

Follow the instructions in the ASYST manual (Ref. 5) to boot into ASYST. The files required to run the prototype program are:

$$
\begin{aligned}
& \text { BARINIT. PRO } \\
& \text { BARSIMFL. PRO } \\
& \text { BARPAR1.PRO } \\
& \text { BARPAR2.PRO } \\
& \text { BARSIM. PRO } \\
& \text { BARCROSS.PRO } \\
& \text { BARHAD. PRO } \\
& \text { BARFOUR.PRO } \\
& \text { BARMENUS. PRO }
\end{aligned}
$$

These files can be automatically loaded and a data storage file called "BARSIMTP.DAT" created by using the file BARLOAD.PRO.

1) Load this loading/initializing program when in ASYST at the OK prompt. Type:

LOAD BARLOAD.PRO

A series of dots will appear during the loading of this file. The OK prompt will return when it is completed.
2) To load and initialize the prototype program, type:

LOAD. PROGRAM

Again a series of dots will appear.

Entering and Using the Prototype Program

To enter the program type:

START.PROGRAM

The main menu will then be displayed. Any menu can be exited by using the functions key Fio. To exit from the program and return to ASYST operating system, simply touch F1O until the OK prompt reappears.

The menus are self-directing but only some menupicks are available at this time. If you happen to choose an option not available, you will receive a prompt in blue stating this. Just touch any key to continue. All menus are labeled in green, so you will know exactly where you are at all times. To see the hierarchy of the menus see Appendix C. If at any time an error is encountered, a bell will sound twice and a red error message describing the error will display at the top of the screen. You will then be given the opportunity to correct the error.

When simulating data, a particular order must be adhered to:

1) Determine the parameters
2) Calculate the single chromatogram and decision sequence
3) Calculate the multiplex chromatogram
4) Calculate and add noise to the multiplex chromatogram (optional)
5) Analyze data
6) Report data

You may always go back to a previous step, however, to get valid results, never skip an item when doing steps 1 to 6 .

Appendix F
 Memory Configuration and Required Space

 for $\underline{\text { Protototype }}$ ProgramSYSTEM NUCLEUS (fixed at 64 Kbytes)

- Is the part of memory where most of the system code resides. Also where strings and scalars are stored. The system size cannot be changed.

USER DICTIONARY (default 16 Kbytes, range 8 - 64 Kbytes, required 21 Kbytes)

- Where code for colon definitions are compiled.

SYMBOL TABLE (default 24 Kbytes, range 20-64 Kbytes required 29 Kbytes)

- Where the list of all names ASYST can recognize, is stored.

DATA ACQUISITION BUFFER (default 0 Kbytes, range 0 - 64 Kbytes)

- Reserved for all buffered I/O.

HEAP (default 32 Kbytes, range 6 - 128 Kbytes)

- Where ASYST temporarily stores all unnamed arrays, however with an increase of heap size, the amount of space available for named arrays decreases.

STRING VARIABLE STORAGE (default 0 Kbytes, range 0 - 64
Kbytes, required 6 Kbytes)

- Where contents of strings and string arrays are stored.

GPIB QUEUE (default 0 Kbytes, range 0-64 Kbytes)

- Used to store a list of asynchronous GPIB tasks (IEEE bus).

ARRAY MEMORY (required 141 Kbytes)

- All memory not used by DOS or by any of the above parts of ASYST is available for use by named arrays.

Note: the required Kbytes listed above are the minimum amounts needed to run this report's prototype program.

CODE NAME	Appendix G			
	RANGE	DEFAULT	TYPE	DESCRIPTION
EXP.LENG	$\begin{aligned} & 0-10800 \\ & \text { SEC. } \end{aligned}$	2048	I	EXPERIMENTAL/ MULTIPLEX CHROM. LENGTH
CHROM. LENG	$\begin{aligned} & 60-2700 \\ & \text { SEC. } \end{aligned}$	477	I	SINGLE CHROM. LENGTH
CHROM. RESOL	$\begin{aligned} & 0.001-\bar{~} \\ & 1.0 \mathrm{SEC} . \end{aligned}$	1	R	TIME BETWEEN DATA POINTS
DEC.INT	$\begin{aligned} & 0.1-10 \\ & \text { SEC. } \end{aligned}$	1	R	DECISION INTERVAL: TIME PASSED BEFORE ANOTHER DECISION CAN BE MADE
AVE.DEC. FREQ	$\begin{aligned} & 0.01-4 \\ & \text { SEC. } \end{aligned}$	4	R	AVERAGE DECISION FREQUENCY : AVERAGE INTERVAL BETWEEN ADDING IN SINGLE CHROM.
REJ.PER	$\begin{gathered} 0-10 \\ \text { SEC. } \end{gathered}$	0	R	REJECTION PERIOD: TIME THAT MUST PASS NEXT ADDITION OF SINGLE CHROM.
NO.OF. PEAKS	0-100	3	I	NUMBER OF PEAKS IN SINGLE CHROM.
RET.TIME	0-360	$\begin{aligned} & 1-60 \\ & 2-240 \\ & 3-450 \end{aligned}$	R [100]	RETENTION TIME: TIME WHEN PEAKS OCCUR
VOL. FRAC. INJ	0-1.0	$\begin{aligned} & 1-1 / 3 \\ & 2-1 / 3 \\ & 3-1 / 3 \end{aligned}$	R [100]	VOLUME FRACTION INJECTED: HOW MUCH OF THAT SUBSTANCE THERE IS
$\begin{gathered} \text { DET.RES. } \\ \text { FAC } \end{gathered}$	$\begin{aligned} & 0- \\ & 1000000 \end{aligned}$	$\begin{aligned} & 1-1 \\ & 2-3 \\ & 3-7 \end{aligned}$	R [100]	DETECTOR RESPONCE FACTOR : HOW SENSITIVE INSTRUMENT IS TO that substance
COL.EFF	$\begin{aligned} & 1000 \quad- \\ & 1000000 \end{aligned}$	10000	R	COLUMN EfFICIENCY

Appendix ${ }^{H}$
 Relationship of Signal-to-White-Noise Ratio

To Nois

IF: $\quad S / N=\begin{aligned} & (\text { MaxSC }) \\ & 2 *-\ldots-\cdot\end{aligned}$
where S / N is signal-to-noise ratio in the single chromatogram, MaxSC is the height of the tallest peak in the single chromatogram, and SDN is the standard deviation of noise;

AND: $\quad S D N=\operatorname{MaxSC} * N M$
where $N M$ is noise magnitude;

THEN: $\quad S / W N=1 /(2 * N M)$
where $S / W N$ is the signal-to-white-noise ratio.

Appendix I

Parameters Used for Different

Decision Sequences

DEC.SEQ\# DE	default	1	2	3	4	5	6	7	8	9
DEC.INT	1	*	*	*	*	*	*	*	*	*
AVE.DEC.										
FREQ	4	*	*	*	*	*	*	*	*	*
REJ. PER	0	*	*	*	*	*	*	*	*	*
LP	4	2	1	1	*	*	*	*	2	4
		3	2	2					4	8
		4	3	3					8	
		8	4	4					16	
		16	8	8						
			16	16						
CL 4	477	32	*	*	*	*	*	*	*	128
NO.OF.PEAKS	S 3	*	*	*	*	*	*	*	*	*
Ret.time	60	8	*	*	*	*	*	*	*	40
	240	18	*	*	*	*	*	*	*	80
	450	25	*	*	*	*	*	*	*	120

VOL. FRAC.
$\begin{array}{lllllllllll}\text { INJ } & 1 / 3 & * & * & * & * & * & * & * & * & * \\ & 1 / 3 & * & * & * & * & * & * & * & * & * \\ & 1 / 3 & * & * & * & * & * & * & * & * & *\end{array}$
DET.RES.
FAC
$\begin{array}{llllllllll}1 & * & * & * & * & * & * & * & * & * \\ 3 & * & * & * & * & * & * & * & * & * \\ 7 & * & * & * & * & * & * & * & * & *\end{array}$
 NOISE.MAG.01 \quad * $\quad * \quad * \quad * \quad * \quad * 0-10 *$

LASER.INT

JIT. DET
LIM $0.1 \quad * \quad *$ JIT.MAX $0 \quad$ * $0 \quad * \quad * \quad * \quad * \quad * \quad *$ DRIFT 0 * * * * * * * 0-5 * * indicates the default values are used.

Appendix ${ }^{\text {J }}$

Random Number Generator Test Results

U. $\underline{1}=$ RAND. UNIT Test:

Test A : A Chi-Square value was computedon a setof 300 random uniform numbers using 10 groups:

$$
\begin{array}{clll}
0.0<=x<.1, & .1<=x<.2, & .2<=x<.3, & .3<=x<.4, \\
. & .4<=x<.6, & .6<=x<.7, & .7<=x<.8, \\
. & 8<=x<.9, & .9<=x<=1.0
\end{array}
$$

Test A was run 15 times giving the follow values:

10.83	6.40	8.00	11.47	17.47
7.80	7.20	6.53	4.37	10.83
5.10	2.03	13.97	9.60	8.80

The expected Chi-Square of 9 degrees of freedom of a significance level of 0.05 is 16.9 (Ref.8).

Test B : Test A run 100 times and values tabulated into significance level groups:
$x<=.01, .01<x<=.05, .05<x<=.10, \quad x>.10$.
Test B was run 5 times giving the following values:

	01	.05	.10	REM
EXPECTED:	1	4	5	90
OBSERVED :	0	3	4	93
	0	3	3	94
	1	7	6	88
	1	5	6	89
TOTAL				8
EXPECTED:	5	20	25	450
TOTAL		22	23	

The Chi-Square calculated from the total observed values is 1.17 . The expected Chi-Square of 3 degrees of freedom with a significance level of 0.05 is 7.81 (ref.8).

J. 3 = RAND.NRML Test:

Test C A one sided average t value was computed on a set of 300 random normal numbers. Test A was run 15 times giving the follow values:

0.73	1.17	0.29	1.27	0.59
0.82	0.39	0.89	1.52	0.12
1.02	0.64	1.31	1.72	0.50

The expected t-test value for 300 items at a significance level of 0.05 is 1.645 (Ref. 10).
J. 4 = Chi-Square Value Fit Test for RAND.NRML

Test D : Test C run 100 times using a two sided t-test and values tabulated into significance level groups:

$$
\begin{array}{rrrr}
x<=-.01, & -.01<x<=-.05, & -.05<x<=-.10, & -.10<x<0, \\
0>=x<.10, & .05>x>=.10, & .01>x>=.05, & x>=.01
\end{array}
$$

Test B was run 10 times giving the following values:
MEAN -. 01 -. 05 -. 10 -REM +REM . 10 . 05 . 01

EXPECTED:	0.0	1	4	5	40	40	5	4	1
OBSERVED :	-.0024	2	6	6	30	45	6	5	0
	-.0000	1	2	2	46	40	5	1	3
	-.0009	1	6	2	45	32	8	4	2
	-.0030	1	5	7	37	41	5	3	1
	-.0105	1	8	2	45	40	2	2	0
	-.0078	1	5	7	39	42	5	1	0
	-.0036	1	5	3	40	46	2	2	1
	-.0039	3	4	4	31	49	3	4	2
	.011	1	3	5	46	35	5	2	3
	.0161	0	3	3	36	47	4	6	1

TOTAL
EXPECTED: $10 \quad 40 \quad 50 \quad 400 \quad 400 \quad 50 \quad 40 \quad 10$
TOTAL
OBSERVED: $\begin{array}{lllllllll}12 & 47 & 41 & 395 & 417 & 45 & 30 & 13\end{array}$
The Chi-Square calculated from the total observed values is 7.9. The expected Chi-Square of 7 degrees of freedom with a significance level of 0.05 is 14.1 (Ref. 10).

Appendix K
 Prototype Program Code

```
ECHO.OFF
\ BARINIT.PRO - DEFINES VARIABLES, CONSTANTS AND WINDOWS
\ REMEMBER THAT THIS IS A STACK ORIENTED LANGUAGE
\ THAT IS, IF A DEFINITION WISHES TO CALL ANOTHER
    DEFINITION, THAT DEFINITION MUST BE DEFINED EARLIER
: INIT.START \ MAKES DELETION OF PROGRAM EASY
; \ SINCE IT'S THE FIRST DEFINITION
\ SET UP MENU WINDOWS
\begin{tabular}{rrrrll}
0 & 20 & 0 & 59 & WINDOW & \{TITLE\} \\
19 & 0 & 24 & 79 & WINDOW & \{LOWSCREEN\} \\
2 & 0 & 7 & 79 & WINDOW & \{HIGHSCREEN \} \\
2 & 0 & 24 & 79 & WINDOW & \{FULLSCREEN \\
2 & 0 & 16 & 79 & WINDOW & \{UPPERSCREEN \\
17 & 0 & 18 & 79 & WINDOW & \{PROMPT\} \\
1 & 0 & 1 & 79 & WINDOW & \{ERROR\}
\end{tabular}
\ SET UP WINDOW COLOR ATTRIBUTES
: ERROR.COLOR.ON {ERROR}
    79 VIDEO.ATTRIBUTE \ YELLOW ON RED INTENSITY ON
    SCREEN.CLEAR
: ERROR.COLOR.OFF {ERROR}
    7 VIDEO.ATtRIBUTE \ WHITE ON BLACK
    SCREEN.CLEAR
: TITLE.COLOR.ON {TITLE}
    47 VIDEO.ATTRIBUTE \ WHITE ON GREEN INTENSITY ON
    SCREEN.CLEAR
: TITLE.COLOR.OFF {TITLE}
    7 VIDEO.ATTRIBUTE \ WHITE ON BLACK
    SCREEN.CLEAR
;
: LOW.SCREEN.COLOR.ON {LOWSCREEN}
    14 VIDEO.ATTRIBUTE \ YELLOW ON BLACK
    SCREEN.CLEAR
;
: LOW.SCREEN.COLOR.OFF {LOWSCREEN}
    7 VIDEO.ATTRIBUTE \ WHITE ON BLACK
    SCREEN.CLEAR
;
: HIGH.SCREEN.COLOR.ON {HIGHSCREEN}
    14 VIDEO.ATtRIBUTE \ YELLOW ON BLACK
```

SCREEN.CLEAR
;
: HIGH.SCREEN.COLOR.OFF \{HIGHSCREEN\}
7 VIDEO.ATTRIBUTE \WHITE ON BLACK SCREEN.CLEAR
;
: UPPER.SCREEN.COLOR.ON \{UPPERSCREEN\} 14 VIDEO.ATTRIBUTE \ YELLOW ON BLACK SCREEN.CLEAR
;
: UPPER.SCREEN.COLOR.OFF \{UPPERSCREEN\}
7 VIDEO.ATTRIBUTE \WHITE ON BLACK SCREEN.CLEAR
;
: PROMPT.COLOR.ON \{PROMPT\}
23 VIDEO.ATTRIBUTE \WHITE ON BLUE INTENSITY ON SCREEN.CLEAR
;
: PROMPT.COLOR.OFF \{PROMPT\}
7 VIDEO.ATTRIBUTE \WHITE ON BLACK SCREEN.CLEAR
: FULL.SCREEN.COLOR.OFF \{FULLSCREEN\}
7 VIDEO.ATTRIBUTE \WHITE ON BLACK SCREEN.CLEAR
;
\ DEFINE CONTROL VARIABLES
3 STRING MENU.ON
3 STRING AUTO.COMPLETE
1 STRING WHICH.MENU
3 STRING VALID.PARAMETER
\ DEFINE PARAMETER VARIABLES

REAL SCALAR COL.EFF
\backslash THIS MAY NOT BE NEEDED : REAL SCALAR COL.EFF.FACTOR
REAL SCALAR NOISE.MAG
REAL SCALAR CHROM.RESOL \ TIME BETWEEN DATA
\backslash POINTS (SEC)
REAL SCALAR LASER.INT.FAC \ AVERAGE CHANGE IN LASER BRIGHTNESS
REAL SCALAR JIT.DET.LIM \SMALLEST DETECTABLE AMOUNT SIGNAL CAN JITTER (SEC)
REAL SCALAR JIT.MAX \ MAXIMUM AMOUNT SIGNAL CAN JITTER (SEC)
\DEFINE PARAMETER'S CONSTANTS
INTEGER SCALAR EXP. LENG.MIN
INTEGER SCALAR EXP. LENG.MAX
INTEGER SCALAR CHROM.LENG.MIN
DP. INTEGER SCALAR CHROM.LENG.MAX
INTEGER SCALAR MIN.NO.OF.PEAKS
INTEGER SCALAR MAX.NO.OF.PEAKS
REAL SCALAR RET.TIME.MIN
REAL SCALAR RET.TIME.MAX
REAL SCALAR VOL.FRAC.INJ.MIN
REAL SCALAR VOL.FRAC.INJ.MAX
REAL SCALAR DET.RES.FAC.MIN
REAL SCALAR DET.RES.FAC.MAX
REAL SCALAR DEC.INT.MIN
REAL SCALAR DEC.INT.MAX
REAL SCALAR AVE.DEC.FREQ.MIN
REAL SCALAR AVE.DEC.FREQ.MAX
REAL SCALAR REJ.PER.MIN
REAL SCALAR REJ. PER.MAX
REAL SCALAR PT.RES.MIN
REAL SCALAR PT.RES.MAX
REAL SCALAR COL.EFF.MIN
REAL SCALAR COL.EFF.MAX
\backslash THIS MAY NOT BE NEEDED: REAL SCALAR COL.EFF.FACTOR.MIN
\THIS MAY NOT BE NEEDED: REAL SCALAR COL.EFF.FACTOR.MAX
REAL SCALAR NOISE.MAG.MIN
REAL SCALAR NOISE.MAG.MAX
REAL SCALAR CHROM.RESOL.MIN
REAL SCALAR CHROM.RESOL.MAX
REAL SCALAR LASER.INT.FAC.MIN
REAL SCALAR LASER. INT.FAC.MAX
REAL SCALAR JIT.DET.LIM.MIN
REAL SCALAR JIT.DET.LIM.MAX
REAL SCALAR JIT.MAX.MIN
REAL SCALAR JIT.MAX.MAX
: INITIATE.FIRST. PARAM.CONSTANTS

```
O EXP.LENG.MIN :=
10800 EXP.LENG.MAX :=
```

60 CHROM.LENG.MIN :=

```
2700 CHROM.LENG.MAX :=
0.001 CHROM.RESOL.MIN :=
1.0 CHROM.RESOL.MAX :=
0.1 DEC.INT.MIN :=
10.0 DEC.INT.MAX :=
0.01 AVE.DEC.FREQ.MIN :=
4.0 AVE.DEC.FREQ.MAX :=
0.0 REJ.PER.MIN :=
10.0 REJ.PER.MAX :=
;
```

: INITIATE.EXP.CONSTANTS
INITIATE.FIRST. PARAM.CONSTANTS

```
0.05 PT.RES.MIN :=
1.0 PT.RES.MAX :=
;
```

: INITIATE.SIM.CONSTANTS
INITIATE.FIRST. PARAM.CONSTANTS
O MIN.NO.OF.PEAKS :=
100 MAX.NO.OF.PEAKS :=
0.0 RET.TIME.MIN :=
3600.0 RET.TIME.MAX :=
0.0 VOL.FRAC.INJ.MIN :=
1.0 VOL.FRAC.INJ.MAX :=
0.0 DET.RES.FAC.MIN := 1000000 .0 DET.RES.FAC.MAX :=
1000.0 COL.EFF.MIN :=
1000000.0 COL.EFF.MAX :=
\ THIS MAY NOT BE NEEDED : REAL SCALAR COL.EFF.FACTOR.MIN
\ THIS MAY NOT BE NEEDED : REAL SCALAR COL.EFF. FACTOR.MAX
0.O NOISE.MAG.MIN :=
10.0 NOISE.MAG.MAX :=
0.0 LASER.INT.FAC.MIN :=
0.5 LASER.INT.FAC.MAX :=
0.01 JIT.DET.LIM.MIN :=
1.0 JIT.DET.LIM.MAX :=

```
0.0 JIT.MAX.MIN :=
0.2 JIT.MAX.MAX :=
    NO.OPTION
        PROMPT.COLOR.ON
        BELL
        " THIS OPTION IS NOT AVAILABLE - "
        ." TOUCH ANY KEY TO CONTINUE "
        PCKEY ?DROP DROP
        PROMPT.COLOR.OFF
```

```
ECHO.OFF
\ BARSIMFL.PRO - SO CAN WRITE SIMULATION DATA
    EASILY TO A FILE
: SIMFL.START \ FIRST DEFINITION OF FILE BARSIMFL.PRO
;
\ VARIABLES FOR SINGLE CHROMATOGRAM CALCULATIONS
    REAL DIM[4096 ] ARRAY SINGLE.CHROM
    INTEGER SCALAR LAST.ELEMENT
    REAL SCALAR SIGMA
    REAL SCALAR DENOM
    REAL SCALAR FRAC
    REAL SCALAR EXPO.DENOM
\ VARIABLES FOR MULTIPLEX CHROMATOGRAM CALCULATIONS
    REAL DIM[ 16384 ] ARRAY MULTIPLEX.CHROM
\ VARIABLES FOR DECISION SEQUENCE CALCULATIONS
    INTEGER DIM[ 20480 ] ARRAY DEC.SEQ
                        SINGLE.CHROM + MULTIPLEX.CHROM SIZES
    INTEGER SCALAR LAST.DEC
                            \ LAST ELEMENT IN DEC.SEQ WITH VALUE 1
    REAL SCALAR REJ.FAC
                            \ DEC.INT/AVE.DEC.FREQ
\ VARIABLES FOR MULITPLEX CHROMATOGRAM CALCULATIONS
    INTEGER SCALAR START
    INTEGER SCALAR FINISH
\ VARIABLE FOR CALCULATE.NOISE AND ELSEWHERE,
\ WHERE NEED DUMMY VARIABLE
    REAL SCALAR MISC
    VARIABLES FOR SIMULATION FILE MAINTENANCE
    6 4 ~ S T R I N G ~ C O M . L I N E ~
    14 STRING FILENAME
: DEFAULT.SIM.FILENAME
    " BARSIMTP.DAT" FILENAME ":=
;
: CREATE.SIM.FILE
    CREATES A FILE FOR SIMULATION DATA
    FILE.TEMPLATE \ SPECIFY THE APPROPRIATE FILE TEMPLATE
        15 COMMENTS
        REAL DIM[ 12 ] SUBFILE \ TO STORE SCALARS
            \ EXP.LENG, CHROM.LENG,
            \ CHROM.RESOL, DEC.INT,
            \ AVE.DEC.FREQ, REJ.PER,
                                    \ NO.OF.PEAKS, COL.EFF,
                                    \ NOISE.MAG, LASER.INT.FAC,
                                    \ JIT.DET.LIM, JIT.MAX
```

```
    RET.TIME []FORM.SUBFILE
    VOL.FRAC.INJ []FORM.SUBFILE
    DET.RES.FAC []FORM.SUBFILE
    SINGLE.CHROM []FORM.SUBFILE
4 \text { TIMES}
DEC.SEQ []FORM.SUBFILE
MULTIPLEX.CHROM []FORM.SUBFILE
    END
        LATER THESE NEXT 3 LINES CAN BE USED SO USER CAN
        SPECIFY FILE NAME TO BE CREATED
        CR ." NAME OF FILE TO CREATE? "
        "INPUT FILENAME ":=\ STORE FILENAME IN STRING
        VARIABLE FILENAME DEFER> FILE.CREATE
    DEFAULT.SIM.FILENAME \ FOR NOW ONLY THE DEFAULT FILE
                            \ NAME USED
    FILENAME FILE.CREATE
```

;
: WRITE.RET.TIME
FILENAME DEFER $>$ FILE.OPEN
2 SUBFILE RET.TIME ARRAY>FILE
FILE.CLOSE
;
: WRITE.VOL. FRAC.INJ
FILENAME DEFER $>$ FILE.OPEN
3 SUBFILE VOL.FRAC. INJ ARRAY>FILE
FILE.CLOSE
;
: WRITE.DET.RES.FAC
FILENAME DEFER $>$ FILE.OPEN
4 SUBFILE DET.RES.FAC ARRAY>FILE
FILE.CLOSE
;
: WRITE.SINGLE.CHROM
FILENAME DEFER $>$ FILE.OPEN
5 SUBFILE SINGLE. CHROM ARRAY>FILE
FILE.CLOSE
;
: WRITE.CROSS.CHROM
FILENAME DEFER $>$ FILE.OPEN
6 SUBFILE SINGLE. CHROM ARRAY>FILE
FILE.CLOSE
;

```
: WRITE.FFT.CHROM
    FILENAME DEFER> FILE.OPEN
    7 SUBFILE SINGLE.CHROM ARRAY>FILE
    FILE.CLOSE
;
: WRITE.HADAMARD.CHROM
    FILENAME DEFER> FILE.OPEN
    8 \text { SUBFILE SINGLE.CHROM ARRAY>FILE}
    FILE.CLOSE
;
: WRITE.DEC.SEQ
    FILENAME DEFER> FILE.OPEN
    9 SUBFILE DEC.SEQ ARRAY>FILE
    FILE.CLOSE
;
: WRITE.MULTIPLEX.CHROM
    FILENAME DEFER> FILE.OPEN
    10 SUBFILE MULTIPLEX.CHROM ARRAY>FILE
    FILE.CLOSE
;
: READ.RET.TIME
    FILENAME DEFER> FILE.OPEN
    2 SUBFILE RET.TIME FILE>ARRAY
    FILE.CLOSE
;
: READ.VOL.FRAC.INJ
    FILENAME DEFER> FILE.OPEN
    3 SUBFILE VOL.FRAC.INJ FILE>ARRAY
    FILE.CLOSE
;
: READ.DET.RES.FAC
    FILENAME DEFER> FILE.OPEN
    4 ~ S U B F I L E ~ D E T . R E S . F A C ~ F I L E > A R R A Y ~
    FILE.CLOSE
;
: READ.SINGLE.CHROM
    FILENAME DEFER> FILE.OPEN
    5 SUBFILE SINGLE.CHROM FILE>ARRAY
    FILE.CLOSE
```

```
: READ.CROSS.CHROM
    FILENAME DEFER> FILE.OPEN
    6 SUBFILE SINGLE.CHROM FILE>ARRAY
    FILE.CLOSE
;
: READ.FFT.CHROM
    FILENAME DEFER> FILE.OPEN
    7 SUBFILE SINGLE.CHROM FILE>ARRAY
    FILE.CLOSE
;
: READ.HADAMARD.CHROM
    FILENAME DEFER> FILE.OPEN
    8 ~ S U B F I L E ~ S I N G L E . C H R O M ~ F I L E > A R R A Y ~
    FILE.CLOSE
;
: READ.DEC.SEQ
    FILENAME DEFER> FILE.OPEN
    9 SUBFILE DEC.SEQ FILE>ARRAY
    FILE.CLOSE
;
: READ.MULTIPLEX.CHROM
    FILENAME DEFER> FILE.OPEN
    10 SUBFILE MULTIPLEX.CHROM FILE>ARRAY
    FILE.CLOSE
;
: WRITE.SCALARS
    FILENAME DEFER> FILE.OPEN
    1 SUBFILE
    REAL DIM[ 12 ] UNNAMED.ARRAY
    @[1 ] ENTER[ EXP.LENG , CHROM.LENG , CHROM.RESOL,
        DEC.INT, AVE.DEC.FREQ,
        REJ.PER , NO.OF.PEAKS , COL.EFF,
        NOISE.MAG , LASER.INT.FAC,
        JIT.DET.LIM , JIT.MAX ]
    ARRAY>FILE
    FILE.CLOSE
: READ.SCALARS
    FILENAME DEFER> FILE.OPEN
    1 SUBFILE FILE>UNNAMED.ARRAY
    FILE.CLOSE
```

```
    DUP [ 1 ] EXP.LENG :=
    DUP [ 2 ] CHROM.LENG :=
    DUP [ 3 ] CHROM.RESOL :=
    DUP [ 4 ] DEC.INT :=
    DUP [ 5 ] AVE.DEC.FREQ :=
    DUP [ 6 ] REJ.PER :=
    DUP [ 7 ] NO.OF.PEAKS :=
    DUP [ 8 ] COL.EFF :=
    DUP [ 9 ] NOISE.MAG :=
    DUP [ 10 ] LASER.INT.FAC :=
    DUP [ 11 ] JIT.DET.LIM :=
        [12 ] JIT.MAX :=
;
: WRITE.ALL.SIM
    WRITE.RET.TIME
    WRITE.VOL.FRAC.INJ
    WRITE.DET.RES.FAC
    WRITE.SINGLE.CHROM
    WRITE.MULTIPLEX.CHROM
    WRITE.DEC.SEQ
    WRITE.SCALARS
    READ.ALL.SIM
    READ.RET.TIME
    READ.VOL.FRAC.INJ
    READ.DET.RES.FAC
    READ.SINGLE.CHROM
    READ.MULTIPLEX.CHROM
    READ.DEC.SEQ
    READ.SCALARS
```

```
ECHO.OFF
\ BARPARI.PRO - PART I
\ TO ENTER IN PARAMETERS OF SIMULATION/ EXPEIMENT
\ THE USER IS PROMPTED FOR THE VALUES
THE VALUES ARE CHECKED, TO BE SURE THAT THEY ARE IN RANGE
    THE MORE EXPANDED VERSION IS IN BARPARI.ORG
    PAR1.START \ THE FIRST DEFINITION
PRINT.EXP.LENG
        *" 1 : EXPERIMENTAL LENGTH : "
        EXP.LENG .
;
: ENTER.EXP.LENG.VALUE
        PROMPT.COLOR.ON
        " NO " VALID.PARAMETER ":=
        BEGIN
            " NO " VALID.PARAMETER "=
        WHILE
            {PROMPT} CR
            ." EXPERIMENTAL LENGTH ( 0 - 10,800 SEC) : "
            BEGIN
                #INPUT NOT
        WHILE
            ERROR.COLOR.ON ." INVALID NUMBER"
            BELL BELL
            {PROMPT} CR
                ." EXPERIMENTAL LENGTH ( 0 - 10,800 SEC) : "
            REPEAT
            EXP.LENG :=
            EXP.LENG EXP.LENG.MIN >= EXP.LENG EXP.LENG.MAX <= AND
                                    TEST IF IN RANGE
            IF
                " YES" VALID.PARAMETER ":=
                    {LOWSCREEN} PRINT.EXP.LENG CR
            ERROR.COLOR.OFF
            ELSE
            ERROR.COLOR.ON
            ." EXPERIMENTAL LENGTH OUT OF RANGE"
            BELL BELL
        THEN
    REPEAT
: PRINT.CHROM.LENG
    CHROM.LENG .
                                2 : CHROMATOGRAM LENGTH : "
;
```

```
: CALCULATE.CHROM.LENG.VALUE
        \ LAST RET.TIME + 6 SIGMA
        RET.TIME [ NO.OF.PEAKS ]
        DUP COL.EFF SQRT / 6 * +
        CHROM.LENG :=
;
: ENTER.CHROM.LENG.VALUE
        PROMPT.COLOR.ON
        " NO " VALID.PARAMETER ":=
        BEGIN
            " NO " VALID.PARAMETER "=
        WHILE
            {PROMPT} CR
            ." CHROMATOGRAM LENGTH ( 60 - 2,700 SEC) : "
            BEGIN
                #INPUT NOT
            WHILE
                ERROR.COLOR.ON ." INVALID NUMBER"
                BELL BELL
            {PROMPT} CR
                ." CHROMATOGRAM LENGTH ( 60 - 2,700 SEC) : "
            REPEAT
            CHROM.LENG :=
            CHROM.LENG CHROM.LENG.MIN >=
            CHROM.LENG CHROM.LENG.MAX <= AND
            \ TEST IF IN RANGE
            IF
                " YES" VALID.PARAMETER ":=
            {LOWSCREEN} PRINT.CHROM.LENG CR
            ERROR.COLOR.OFF
        ELSE
            ERROR.COLOR.ON
            ." CHROMATOGRAM LENGTH OUT OF RANGE"
            BELL BELL
        THEN
    REPEAT
: PRINT.CHROM.RESOL
CHR 3 : CHROMATOGRAM RESOLUTION: "
;
: ENTER.CHROM.RESOL.VALUE
PROMPT.COLOR. ON
" NO " VALID. PARAMETER ":=
BEGIN
" NO " VALID. PARAMETER "=
WHILE
```

```
        {PROMPT} CR
        ." CHROMATOGRAM RESOLUTION ( 0.001 - 1.0 SEC) : "
        BEGIN
            #INPUT NOT
        WHILE
        ERROR.COLOR.ON ." INVALID NUMBER"
        BELL BELL
        {PROMPT} CR
        ." CHROMATOGRAM RESOLUTION (0.001 - 1.0 SEC) : "
        REPEAT
        CHROM.RESOL :=
        CHROM.RESOL CHROM.RESOL.MIN >=
        CHROM.RESOL CHROM.RESOL.MAX <= AND
        \ TEST IF IN RANGE
        IF
        " YES" VALID.PARAMETER ":=
        {LOWSCREEN} PRINT.CHROM.RESOL CR
            ERROR.COLOR.OFF
        ELSE
            ERROR.COLOR.ON
        ." CHROMATOGRAM RESOLUTION OUT OF RANGE"
        BELL BELL
        THEN
    REPEAT
;
: PRINT.DEC.INT
    "" 4 : DECISION INTERVAL: "
    DEC.INT.
    ENTER.DEC.INT.VALUE
        CHROM.RESOL DEC.INT }:=\\SO FOR NOW PROGRAM IS
                                \ NOT AS FLEXIBLE
;
: PRINT.AVE.DEC.FREQ
    VE.DEC.FREQ .
ENTER.AVE.DEC.FREQ.VALUE
    PROMPT.COLOR.ON
    " NO " VALID.PARAMETER ":=
    BEGIN
    " NO " VALID.PARAMETER "=
    WHILE
        {PROMPT} CR
        ." AVERAGE DECISION FREQUENCY (0.01 - 4.0 SEC) : "
        BEGIN
            #INPUT NOT
        WHILE
```

ERROR.COLOR.ON ." INVALID NUMBER" BELL BELL
\{PROMPT\} CR
." AVERAGE DECISION FREQUENCY ($0.01-4.0$ SEC) : " REPEAT

```
AVE.DEC.FREQ :=
```

AVE.DEC.FREQ AVE.DEC.FREQ.MIN $>=$
AVE.DEC.FREQ AVE.DEC.FREQ.MAX $<=$ AND
\ TEST IF IN RANGE
I F
" YES" VALID.PARAMETER ":=
\{LOWSCREEN\} PRINT.AVE.DEC.FREQ CR
ERROR.COLOR.OFF
ELSE
ERROR.COLOR. ON
." AVERAGE DECISION FREQUENCY OUT OF RANGE" BELL BELL
THEN
REPEAT
: PRINT.REJ. PER

```
                                6 : REJECTION PERIOD : " REJ.PER
```

: ENTER.REJ.PER.VALUE
PROMPT.COLOR. ON
" NO " VALID. PARAMETER ":=
BEGIN
" NO " VALID. PARAMETER " =
WH I LE
\{PROMPT\} CR
." REJECTION PERIOD ($0.0-10.0$ SEC) : "
BEGIN \#INPUT NOT
WHILE ERROR.COLOR.ON ." INVALID NUMBER" BELL BELL \{PROMPT\} CR ." REJECTION PERIOD ($0.0-10.0$ SEC) : "
REPEAT

REJ.PER :=

REJ. PER REJ.PER.MIN $>=$ REJ. PER REJ. PER.MAX $<=$ AND \ TEST IF IN RANGE IF
" YES" VALID.PARAMETER ":=
\{LOWSCREEN\} PRINT.REJ.PER CR
ERROR.COLOR.OFF
ELSE
ERROR.COLOR.ON

```
                " REJECTION PERIOD OUT OF RANGE"
                BELL BELL
                THEN
        REPEAT
    : PRINT.PT.RES
    ."
    PT.RES .
;
    : ENTER.PT.RES.VALUE
        PROMPT.COLOR.ON
            " NO " VALID.PARAMETER ":=
        BEGIN
            " NO " VALID.PARAMETER "=
        WHILE
            {PROMPT } CR
            DATA COLLECTION POINT RESOLUTION ( 0.05 - 1.0 SEC) : "
            BEGIN
                #INPUT NOT
            WHILE
                ERROR.COLOR.ON ." INVALID NUMBER"
                    BELL BELL
                {PROMPT} CR
            " DATA COLLECTION POINT RESOLUTION ( 0.05 - 1.0 SEC) : "
        REPEAT
        PT.RES :=
        PT.RES PT.RES.MIN >= PT.RES PT.RES.MAX <= AND
            TEST IF IN RANGE
        I F
            " YES" VALID.PARAMETER ":=
            {LOWSCREEN} PRINT.PT.RES CR
            ERROR.COLOR.OFF
        ELSE
            ERROR.COLOR.ON
                    ." DATA COLLECTION POINT RESOLUTION OUT OF RANGE"
            BELL BELL
        THEN
    REPEAT
```

: PRINT.NO.OF.PEAKS
"
;
: ENTER.NO.OF.PEAKS.VALUE
PROMPT.COLOR.ON
" NO " VALID. PARAMETER ":=
BEGIN
" NO " VALID.PARAMETER "=

WHILE
\{PROMPT\} CR." NUMBER OF PEAKS ($0-100$ SEC) : " BEGIN
\#INPUT NOT
WHILE
ERROR.COLOR.ON ." INVALID NUMBER"
BELL BELL
\{PROMPT\} CR ." NUMBER OF PEAKS (0 - 100 SEC) : " REPEAT

NO.OF.PEAKS :=
NO.OF.PEAKS MIN.NO.OF.PEAKS $>=$
NO.OF.PEAKS MAX.NO.OF.PEAKS $<=$ AND \TEST IF IN RANGE
I F
" YES" VALID. PARAMETER ":=
\{LOWSCREEN\} PRINT.NO.OF.PEAKS CR
ERROR.COLOR.OFF
ELSE
ERROR. COLOR. ON
." NUMBER OF PEAKS OUT OF RANGE"
BELL BELL
THEN
REPEAT

```
PRINT.RET.TIME
    " 9 : PEAK " I . ." RETENTION TIME : "
    RET.TIME [ I ] .
: ENTER.RET.TIME.VALUE
    PROMPT.COLOR.ON
    " NO " VALID.PARAMETER ":=
    BEGIN
    " NO " VALID.PARAMETER "=
    WHILE
    {PROMPT} CR
    " PEAK " I . ." RETENTION TIME ( 0.0 - 3600.0 SEC) : "
    BEGIN
        #INPUT NOT
    WHILE
        ERROR.COLOR.ON ." INVALID NUMBER"
        BELL BELL
        {PROMPT} CR
        " PEAK " I . ." RETENTION TIME ( 0.0 - 3600.0 SEC) : "
        REPEAT
    RET.TIME [ I ] :=
    RET.TIME [ I ] RET.TIME.MIN >=
    RET.TIME [ I ] RET.TIME.MAX <= AND
    \ TEST IF IN RANGE
```

I F
" YES" VALID. PARAMETER ": =
\{LOWSCREEN\} PRINT.RET.TIME CR
ERROR.COLOR.OFF
ELSE
ERROR.COLOR.ON
PEAK " I . ." RETENTION.TIME OUT OF RANGE"
BELL BELL
THEN
REPEAT

PRINT.VOL.FRAC.INJ
" 10 : PEAK " I . ." VOLUME FRACTION INJECTED : " VOL.FRAC.INJ [I] .
: ENTER.VOL.FRAC.INJ.VALUE
PROMPT.COLOR.ON
" NO " VALID. PARAMETER ":=
BEGIN
" NO " VALID.PARAMETER "=
WHILE
\{PROMPT\} CR
" PEAK " I . " VOLUME FRACTION INJECTED (0.0-1.0) : " BEGIN
\#INPUT NOT
WHILE
ERROR.COLOR.ON ." INVALID NUMBER"
BELL BELL
\{PROMPT\} CR
." PEAK " I . ." VOLUME FRACTION INJECTED"
REPEAT

VOL.FRAC.INJ [I] :=
VOL.FRAC.INJ [I]
VOL.FRAC.INJ.MIN $>=$ VOL.FRAC.INJ [I]
VOL.FRAC.INJ.MAX $<=$ AND
\ TEST IF IN RANGE
I F
" YES" VALID. PARAMETER ":=
\{LOWSCREEN\} PRINT.VOL.FRAC.INJ CR
ERROR.COLOR. OFF
ELSE
ERROR.COLOR. ON
." PEAK " I . ." VOLUME FRACTION INJECTED " " OUT OF RANGE"
BELL BELL
THEN
REPEAT

PRINT.DET.RES.FAC

```
    ."
                                    11 : PEAK " I . ." DETECTOR RESPONSE FACTOR : "
```

 DET.RES.FAC [I] .
    ```
ENTER.DET.RES.FAC.VALUE
    PROMPT.COLOR.ON
    " NO " VALID.PARAMETER ":=
    BEGIN
        " NO " VALID.PARAMETER "=
    WHILE
        {PROMPT} CR ." PEAK " I . ." DETECTOR RESPONSE FACTOR "
        "(0.0 - 1,000,000.0) : "
        BEGIN
            #INPUT NOT
        WHILE
            ERROR.COLOR.ON ." INVALID NUMBER"
            BELL BELL
            {PROMPT} CR
            ." PEAK " I . ." DETECTOR RESPONSE FACTOR"
                " (0.0 - 1,000,000.0) : "
    REPEAT
    DET.RES.FAC [ I ] :=
        DET.RES.FAC [ I ] DET.RES.FAC.MIN >= DET.RES.FAC [ I ]
        DET.RES.FAC.MAX <= AND
        \ TEST IF IN RANGE
        I F
            " YES" VALID.PARAMETER ":=
            {LOWSCREEN} PRINT.DET.RES.FAC CR
            ERROR.COLOR.OFF
        ELSE
            ERROR.COLOR.ON
                                    PEAK " I . ." DETECTOR RESPONSE FACTOR "
                                    " OUT OF RANGE"
            BELL BELL
        THEN
    REPEAT
```

: PRINT.COL.EFF
12 : COLUMN EFFICIENCY: " COL.EFF
: ENTER.COL.EFF.VALUE
PROMPT.COLOR. ON
" NO " VALID.PARAMETER ":=
BEGIN
" NO " VALID.PARAMETER "=
WHILE
\{PROMPT \} CR
." COLUMN EFFICIENCY (1,000.0-1,000,000.0) : "

```
        BEGIN
            #INPUT NOT
    WHILE
            ERROR.COLOR.ON ." INVALID NUMBER"
            BELL BELL
            {PROMPT} CR
            " COLUMN EFFICIENCY (1,000.0 - 1,000,000.0) : "
        REPEAT
    COL.EFF:=
    COL.EFF COL.EFF.MIN >= COL.EFF COL.EFF.MAX <= AND
    \ TEST IF IN RANGE
    IF
        " YES" VALID.PARAMETER ":=
            {LOWSCREEN} PRINT.COL.EFF CR
            ERROR.COLOR.OFF
        ELSE
            ERROR.COLOR.ON
            ." COLUMN EFFICENCY OUT OF RANGE "
            BELL BELL
        THEN,
    REPEAT
```

: PRINT.NOISE.MAG
13 : NOISE MAGNITUDE : " NOISE.MAG.
: ENTER.NOISE.MAG.VALUE
PROMPT.COLOR.ON
" NO " VALID.PARAMETER ":=
BEGIN
" NO " VALID. PARAMETER "=
WHILE
\{PROMPT\} CR ." NOISE MAGNITUDE (0.0-1.0) : "
BEGIN
\#INPUT NOT
WHILE
ERROR.COLOR.ON ." INVALID NUMBER"
BELL BELL
\{PROMPT\} CR ." NOISE MAGNITUDE (0.0-1.0) : "
REPEAT
NOISE.MAG : $=$
NOISE.MAG NOISE.MAG.MIN $>=$ NOISE.MAG NOISE.MAG.MAX $<=$ AND
\TEST IF IN RANGE
IF
" YES" VALID.PARAMETER ":=
\{LOWSCREEN\} PRINT.NOISE.MAG CR
ERROR.COLOR.OFF
ELSE
ERROR.COLOR.ON

```
            ." NOISE MAGNITUDE OUT OF RANGE "
            BELL BELL
        THEN
    REPEAT
PRINT.LASER.INT.FAC
    " 14: LASER INTENSITY FACTOR : "
    LASER.INT.FAC.
: ENTER.LASER.INT.FAC.VALUE
    PROMPT.COLOR.ON
    " NO " VALID.PARAMETER ":=
    BEGIN
        " NO " VALID.PARAMETER "=
    WHILE
        {PROMPT} CR ." LASER INTENSITY FACTOR (0.0 - 0.5) : "
        BEGIN
                #INPUT NOT
            WHILE
                ERROR.COLOR.ON ." INVALID NUMBER"
                BELL BELL
                    {PROMPT} CR ." LASER INTENSITY FACTOR (0.0 - 0.5) : "
        REPEAT
        LASER.INT.FAC :=
        LASER.INT.FAC LASER.INT.FAC.MIN >=
        LASER.INT.FAC LASER.INT.FAC.MAX <= AND
            TEST IF IN RANGE
        IF
            " YES" VALID.PARAMETER ":=
            {LOWSCREEN} PRINT.LASER.INT.FAC CR
            ERROR.COLOR.OFF
        ELSE
            ERROR.COLOR.ON
            " LASER INTENSITY FACTOR OUT OF RANGE "
            BELL BELL
        THEN
    REPEAT
: PRINT.JIT.DET.LIM
    JIT.DET.LIM.
                                    15: JITTER DETECTION LIMIT : "
;
ENTER.JIT.DET.LIM.VALUE
    PROMPT.COLOR.ON
    " NO " VALID.PARAMETER ":=
    BEGIN
        " NO " VALID.PARAMETER "=
```


WH I LE

\{PROMPT\} CR ." JITTER DETECTION LIMIT (0.01 - 1.0) : " BEGIN \#INPUT NOT
WHILE
ERROR.COLOR.ON ." INVALID NUMBER"
BELL BELL
\{PROMPT\} CR ." JITTER DETECTION LIMIT (0.01 - 1.0) : "
REPEAT

JIT.DET.LIM : =
JIT.DET.LIM JIT.DET.LIM.MIN $>=$
JIT.DET.LIM JIT.DET.LIM.MAX $<=$ AND \TEST IF IN RANGE
IF
" YES" VALID. PARAMETER ":
\{LOWSCREEN\} PRINT.JIT.DET.LIM CR
ERROR.COLOR. OFF
ELSE
ERROR. COLOR. ON
JITTER DETECTION LIMIT OUT OF RANGE " BELL BELL
THEN
REPEAT
: PRINT.JIT.MAX
16 : JITTER MAXIMUM : " JIT.MAX.
: ENTER.JIT.MAX.VALUE
PROMPT. COLOR.ON
" NO " VALID. PARAMETER ":=
BEGIN
" NO " VALID. PARAMETER "=
WHILE
\{PROMPT\} CR ." JITTER MAXIMUM (0.0-0.2) : "
BEGIN
\#INPUT NOT
WHILE
ERROR.COLOR.ON ." INVALID NUMBER"
BELL BELL
\{PROMPT\} CR ." JITTER MAXIMUM (0.0-0.2): "
REPEAT

JIT.MAX :=
JIT.MAX JIT.MAX.MIN $>=$ JIT.MAX JIT.MAX.MAX $<=$ AND \ TEST IF IN RANGE
I F
" YES" VALID.PARAMETER ":=
\{LOWSCREEN\} PRINT.JIT.MAX CR
ERROR.COLOR. OFF

ELSE
ERROR.COLOR.ON
." JITTER MAXIMUM OUT OF RANGE " BELL BELL THEN
REPEAT

```
ECHO.OFF
\ BARPAR2.PRO - PART II
\ TO ENTER PARAMETERS OF SIMULATION/EXPERIMENT
\ THESE DEFINITIONS CALL THE DEFINITIONS IN PART I
\ THE MORE EXPANDED VERSION IS IN BARPAR2.ORG
: BAR2.START \ THIS MAKES HOUSECLEANING EASIER SINCE IT'S
    THE FIRST DEFINITION
;
: ENTER.EXP.PARAM
        NO.OPTION
;
    ENTER.SIM. PARAM
    STORE.FUNCTION.KEYS
    CLEAR.FUNCTION.KEYS
    FULL.SCREEN.COLOR.OFF
    LOW.SCREEN.COLOR.OFF
    PROMPT.COLOR.ON
    ENTER.EXP.LENG.VALUE
    ENTER.CHROM.RESOL.VALUE
    ENTER.DEC.INT.VALUE
    ENTER.AVE.DEC.FREQ.VALUE
    ENTER.REJ.PER.VALUE
    ENTER.NO.OF.PEAKS.VALUE
    {LOWSCREEN } CR
    NO.OF.PEAKS 1 + 1 DO
        ENTER.RET.TIME.VALUE
        ENTER.VOL.FRAC. INJ.VALUE
        ENTER.DET.RES.FAC.VALUE
    LOOP
101 NO.OF.PEAKS 1 + DO \ TO ZERO OUT THE REMAINING
    O RET.TIME [ I ] :=
    O VOL.FRAC.INJ [ I ] :=
    O DET.RES.FAC [ I ] :=
LOOP
ENTER.COL.E]FF.VALUE
ENTER.NOISE.MAG.VALUE
ENTER.LASER.INT.FAC.VALUE
ENTER.JIT.DET.LIM.VALUE
ENTER.JIT.MAX.VALUE
CALCULATE.CHROM.LENG.VALUE
PROMPT.COLOR.OFF
WRITE.SCALARS
WRITE.RET.TIME
WRITE.VOL. FRAC.INJ
WRITE.DET.RES.FAC
```

: DEFAULT.EXP.PARAM
NO.OPTION
: DEFAULT.SIM.PARAM
STORE.FUNCTION.KEYS
CLEAR.FUNCTION.KEYS
1 CHROM.RESOL :=
1 DEC.INT :=
4 AVE.DEC.FREQ :=
O REJ.PER :=
3 NO.OF.PEAKS :=
O RET.TIME :=
60 RET.TIME [1] :=
240 RET.TIME [2] :=
450 RET.TIME [3] :=
O VOL.FRAC.INJ :=
1.0 3.0 / VOL.FRAC.INJ
1.0 3.0 / VOL.FRAC.INJ [2] :=
1.0 3.0 / VOL.FRAC.INJ [3] :=
O DET.RES.FAC :=
1 DET.RES.FAC [[1] [: =
10000 COL.EFF :=
0.01 NOISE.MAG :=
O LASER.INT.FAC :=
0.1 JIT.DET.LIM :=
O JIT.MAX :=
\ CALCULATE CHROM.LENG : LAST RET.TIME + 6 SIGMA
RET.TIME [NO.OF.PEAKS]
DUP COL.EFF SQRT / 6 * +
CHROM.LENG :=
2048 EXP.LENG :=
WRITE.SCALARS
WRITE.RET.TIME
WRITE.VOL.FRAC.INJ
WRITE.DET.RES.FAC
RESTORE.FUNCTION.KEYS
;
: DISPLAY.EXP.PARAM
NO.OPTION

```
```

: DISPLAY.SIM.PARAM
STORE.FUNCTION.KEYS
CLEAR.FUNCTION.KEYS
PROMPT.COLOR.ON
." TOUCH ANY KEY TO HALT LISTING" CR
" TOUCH A SECOND KEY TO CONTINUE LISTING"
." - 3 KEYS FAST TO STOP LISTING"
UPPER.SCREEN.COLOR.OFF
PRINT.EXP.LENG CR PAUSE
PRINT.CHROM.LENG CR PAUSE
PRINT.CHROM.RESOL CR PAUSE
PRINT.DEC.INT CR PAUSE
PRINT.AVE.DEC.FREQ CR PAUSE
PRINT.REJ.PER CR PAUSE
PRINT.NO.OF.PEAKS CR PAUSE
NO.OF.PEAKS 1 + 1 DO
PRINT.RET.TIME CR
PRINT.VOL.FRAC.INJ CR
PRINT.DET.RES.FAC CR
PAUSE
?KEY
IF
KEY DROP
LEAVE EXIT
THEN
LOOP
PRINT.COL.EFF CR PAUSE
PRINT.NOISE.MAG CR PAUSE
PRINT.LASER.INT.FAC CR PAUSE
PRINT.JIT.DET.LIM CR PAUSE
PRINT.JIT.MAX CR PAUSE
PROMPT.COLOR.OFF
RESTORE.FUNCTION.KEYS
CHANGE.EXP.PARAM
NO.OPTION
;
: CHANGE.SIM.PARAM
STORE.FUNCTION.KEYS
CLEAR.FUNCTION.KEYS
LOW.SCREEN.COLOR.OFF
PROMPT.COLOR.ON
BEGIN
{PROMPT} CR
." NUMBER CODE OF PARAMETER TO BE CHANGED"
." (99 WILL EXIT) : "
\#INPUT
LOW.SCREEN.COLOR.ON
." PRESENT VALUE : "
CASE

```

1 OF PRINT.EXP.LENG CR
." NEW VALUE : " CR
ENTER.EXP. LENG.VALUE ERROR. COLOR. OFF
ENDOF
2 OF PRINT.CHROM.LENG CR
." NEW VALUE : " CR
ENTER.CHROM. LENG.VALUE
ERROR.COLOR.OFF
ENDOF
3 OF PRINT.CHROM.RESOL CR ." NEW VALUE : " CR
ENTER.CHROM.RESOL.VALUE ERROR.COLOR. OFF
ENDOF
4 OF PRINT.DEC.INT CR
" NEW VALUE : " CR
ENTER.DEC.INT.VALUE ERROR. COLOR. OFF
ENDOF
5 OF PRINT.AVE.DEC.FREQ CR ." NEW VALUE : " CR ENTER.AVE.DEC.FREQ.VALUE ERROR.COLOR. OFF
ENDOF
6 OF PRINT.REJ.PER CR ." NEW VALUE : " CR ENTER.REJ. PER.VALUE ERROR.COLOR. OFF
ENDOF
8 OF PRINT.NO.OF.PEAKS CR ." NEW VALUE : " CR ENTER.NO.OF.PEAKS.VALUE ERROR. COLOR. ON
." WARNING - PEAK VALUES FOR THE FOLLOWING MUST BE ENTERED"
BELL
NO.OF.PEAKS \(1+1\) DO
ENTER.RET.TIME.VALUE
ENTER.VOL.FRAC.INJ.VALUE
ENTER.DET.RES.FAC.VALUE
LOOP
ERROR.COLOR.OFF
ENDOF
9 OF \{PROMPT\} CR ." WHICH PEAK : " \#INPUT DUP DO
\{LOWSCREEN\} PRINT.RET.TIME CR
." NEW VALUE : " CR
ENTER.RET.TIME.VALUE
ERROR.COLOR. OFF
LOOP
ENDOF
10 OF \{PROMPT\} CR ." WHICH PEAK : " \#INPUT DUP DO
```

 {LOWSCREEN} PRINT.VOL.FRAC.INJ CR
 ." NEW VALUE : " CR
 ENTER.VOL.FRAC.INJ.VALUE
 ERROR.COLOR.OFF
 LOOP
 ENDOF
 11 OF {PROMPT} CR ." WHICH PEAK : " #INPUT
 DUP DO
 {LOWSCREEN} PRINT.DET.RES.FAC CR
 ." NEW VALUE : " CR
 ENTER.DET.RES.FAC.VALUE
 ERROR.COLOR.OFF
 LOOP
 ENDOF
 12 OF PRINT.COL.EFF CR
 ." NEW VALUE : " CR
 ENTER.COL.EFF.VALUE
 ERROR.COLOR.OFF
 ENDOF
 13 OF PRINT.NOISE.MAG CR
 ." NEW VALUE : " CR
 ENTER.NOISE.MAG.VALUE
 ERROR.COLOR.OFF
 ENDOF
 14 OF PRINT.LASER.INT.FAC CR
 ." NEW VALUE : " CR
 ENTER.LASER.INT.FAC.VALUE
 ERROR.COLOR.OFF
 ENDOF
 15 OF PRINT.JIT.DET.LIM CR
 ." NEW VALUE : " CR
 ENTER.JIT.DET.LIM.VALUE
 ERROR.COLOR.OFF
 ENDOF
 16 OF PRINT.JIT.MAX CR
 ." NEW VALUE : " CR
 ENTER.JIT.MAX.VALUE
 ERROR.COLOR.OFF
 ENDOF
 9 9 ~ O F ~ F U L L . S C R E E N . ~ C O L O R . O F F '
ERROR.COLOR.OFF
EXIT
ENDOF
ERROR.COLOR.ON
." NOT A VALID NUMBER CODE - TRY AGAIN"
BELL BELL
ENDCASE
WRITE.SCALARS
WRITE.RET.TIME
WRITE. VOL. FRAC.INJ
WRITE.DET.RES.FAC

```
AGAIN

RESTORE.FUNCTION.KEYS
```

;
: DISPLAY.SINGLE.CHROM.PARAM
STORE.FUNCTION.KEYS
CLEAR.FUNCTION.KEYS
PROMPT.COLOR.ON
." TOUCH ANY KEY TO HALT LISTING" CR
." TOUCH A SECOND KEY TO CONTINUE LISTING"
." - 3 KEYS FAST TO STOP LISTING"
UPPER.SCREEN.COLOR.OFF
PRINT.CHROM.LENG CR PAUSE
PRINT.CHROM.RESOL CR PAUSE
PRINT.NO.OF.PEAKS CR PAUSE
NO.OF.PEAKS 1 + 1 DO
PRINT.RET.TIME CR
PRINT.VOL.FRAC.INJ CR
PRINT.DET.RES.FAC CR
PAUSE
?KEY
IF
KEY DROP
LEAVE EXIT
THEN
LOOP
PRINT.COL.EFF CR
PAUSE
PROMPT.COLOR.OFF
RESTORE.FUNCTION.KEYS
;
: CHANGE.SINGLE.CHROM. PARAM
STORE.FUNCTION.KEYS
CLEAR.FUNCTION.KEYS
LOW.SCREEN.COLOR.OFF
PROMPT.COLOR.ON
BEGIN
{PROMPT} CR
." NUMBER CODE OF PARAMETER TO BE CHANGED
." (99 WILL EXIT) : "
\#INPUT
LOW.SCREEN.COLOR.ON
." PRESENT VALUE : "
CASE
2 OF PRINT.CHROM.LENG CR
." NEW VALUE : " CR
ENTER.CHROM.LENG.VALUE
ERROR.COLOR.OFF
ENDOF
3 OF PRINT.CHROM.RESOL CR
." NEW VALUE : " CR
ENTER.CHROM.RESOL.VALUE
ERROR.COLOR.OFF
ENDOF

```
```

 8 OF PRINT.NO.OF.PEAKS CR
 ." NEW VALUE : " CR
 ENTER.NO.OF.PEAKS.VALUE
 ERROR.COLOR.ON
 WARNING - PEAK VALUES FOR THE"
 FOLLOWING MUST BE ENTERED"
 BELL
 NO.OF.PEAKS 1 + 1 DO
 ENTER.RET.TIME.VALUE
 ENTER.VOL.FRAC.INJ.VALUE
 ENTER.DET.RES.FAC.VALUE
 LOOP
 ERROR.COLOR.OFF
 ENDOF
 9 OF {PROMPT} CR ." WHICH PEAK : " #INPUT
 DUP DO
 {LOWSCREEN} PRINT.RET.TIME CR
 ." NEW VALUE : " CR
 ENTER.RET.TIME.VALUE
 ERROR.COLOR.OFF
 LOOP
 ENDOF
 10 OF {PROMPT} CR ." WHICH PEAK : " \#INPUT
DUP DO
{LOWSCREEN} PRINT.VOL.FRAC.INJ CR
." NEW VALUE : " CR
ENTER.VOL.FRAC.INJ.VALUE
ERROR.COLOR.OFF
LOOP
ENDOF
11 OF {PROMPT} CR ." WHICH PEAK : " \#INPUT
DUP DO
{LOWSCREEN} PRINT.DET.RES.FAC CR
." NEW VALUE : " CR
ENTER.DET.RES.FAC.VALUE
ERROR.COLOR.OFF
LOOP
ENDOF
12 OF PRINT.COL.EFF CR
." NEW VALUE : " CR
ENTER.COL.EFF.VALUE
ERROR.COLOR.OFF
ENDOF
9 9 ~ O F ~ F U L L . S C R E E N . C O L O R . O F F '
ERROR.COLOR.OFF
EXIT
ENDOF
ERROR.COLOR.ON
" NOT A VALID NUMBER CODE - TRY AGAIN"
BELL BELL
ENDCASE
AGAIN

```
    WRITE.RET.TIME
    WRITE.VOL.FRAC.INJ
    WRITE.DET.RES.FAC
    RESTORE.FUNCTION.KEYS
DISPLAY.DEC.INT.PARAM
    STORE.FUNCTION.KEYS
    CLEAR.FUNCTION.KEYS
    UPPER.SCREEN.COLOR.OFF
    PRINT.DEC.INT CR
    PRINT.AVE.DEC.FREQ CR
    PRINT.REJ.PER CR
    RESTORE.FUNCTION.KEYS
: CHANGE.DEC.INT.PARAM
    STORE.FUNCTION.KEYS
    CLEAR.FUNCTION.KEYS
    LOW.SCREEN.COLOR.OFF
    PROMPT.COLOR.ON
    BEGIN
        {PROMPT} CR
        *" NUMBER CODE OF PARAMETER TO BE CHANGED"
        ." (99 WILL EXIT) : "
        # IN PUT
        LOW.SCREEN.COLOR.ON
            " PRESENT VALUE : "
        CASE
            4 OF PRINT.DEC.INT CR
                    ." NEW VALUE : " CR
                    ENTER.DEC.INT.VALUE
                        ERROR.COLOR.OFF
            ENDOF
            5 OF PRINT.AVE.DEC.FREQ CR
                ." NEW VALUE : " CR
                ENTER.AVE.DEC.FREQ.VALUE
                        ERROR.COLOR.OFF
                    ENDOF
            6 OF PRINT.REJ.PER CR
                ." NEW VALUE : " CR
                ENTER.REJ.PER.VALUE
                        ERROR.COLOR.OFF
            ENDOF
            9 9 ~ O F ~ F U L L . S C R E E N . C O L O R . O F F '
                        ERROR.COLOR.OFF
                        EXIT
                ENDOF
                            ERROR.COLOR.ON
                        ." NOT A VALID NUMBER CODE - TRY AGAIN"
                        BELL BELL
            ENDCASE
    AGAIN
```

```
        WRITE.SCALARS
        WRITE.RET.TIME
        WRITE.VOL.FRAC.INJ
        WRITE.DET.RES.FAC
    RESTORE.FUNCTION.KEYS
: DISPLAY.NOISE.PARAM
    STORE.FUNCTION.KEYS
    CLEAR.FUNCTION.KEYS
    UPPER.SCREEN. COLOR.OFF
    PRINT.EXP.LENG CR
    PRINT.NOISE.MAG CR
    RESTORE.FUNCTION.KEYS
: CHANGE.NOISE.PARAM
    STORE.FUNCTION.KEYS
    CLEAR.FUNCTION.KEYS
    LOW.SCREEN.COLOR.OFF
    PROMPT.COLOR.ON
    BEGIN
        {PROMPT} CR ." NUMBER CODE OF PARAMETER TO BE"
            ." CHANGED (99 WILL EXIT) : "
        #INPUT
        LOW.SCREEN. COLOR.ON
            " PRESENT VALUE : "
        CASE
            1 OF PRINT.EXP.LENG CR
                    ." NEW VALUE : " CR
                        ENTER.EXP.LENG.VALUE
                        ERROR.COLOR.OFF
            ENDOF
        13 OF PRINT.NOISE.MAG CR
                ." NEW VALUE : " CR
                        ENTER.NOISE.MAG.VALUE
                        ERROR.COLOR.OFF
            ENDOF
            6 OF PRINT.REJ.PER CR
                            ." NEW VALUE : " CR
                        ENTER.REJ.PER.VALUE
                        ERROR.COLOR.OFF
            ENDOF
        9 9 ~ O F ~ F U L L . S C R E E N . C O L O R . O F F '
                        ERROR.COLOR.OFF
                        EXIT
                ENDOF
                            ERROR.COLOR.ON
                            ." NOT A VALID NUMBER CODE - TRY AGAIN"
                        BELL BELL
            ENDCASE
```

 WRITE.SCALARS
 WRITE.RET.TIME
 WRITE.VOL.FRAC.INJ
 WRITE.DET.RES.FAC
 RESTORE.FUNCTION.KEYS
 : DISPLAY.MULTIPLEX.CHROM. PARAM
STORE.FUNCTION.KEYS
CLEAR.FUNCTION.KEYS
UPPER.SCREEN.COLOR.OFF
PRINT.EXP.LENG CR
PRINT.LASER.INT.FAC CR
PRINT.JIT.DET.LIM CR
PRINT.JIT.MAX CR
RESTORE.FUNCTION.KEYS
CHANGE.MULTIPLEX.CHROM.PARAM
STORE.FUNCTION.KEYS
CLEAR.FUNCTION.KEYS
LOW.SCREEN.COLOR.OFF
PROMPT.COLOR.ON
BEGIN
{PROMPT} CR ." NUMBER CODE OF PARAMETER TO BE"
" CHANGED (99 WILL EXIT) : "
\#INPUT
LOW.SCREEN.COLOR.ON
" PRESENT VALUE : "
CASE
1 OF PRINT.EXP.LENG CR
." NEW VALUE : " CR
ENTER.EXP.LENG.VALUE
ERROR.COLOR.OFF
ENDOF
14 OF PRINT.LASER.INT.FAC CR
." NEW VALUE : " CR
ENTER. LASER.INT.FAC.VALUE
ERROR.COLOR.OFF
ENDOF
15 OF PRINT.JIT.DET.LIM CR
." NEW VALUE : " CR
ENTER.JIT.DET.LIM.VALUE
ERROR.COLOR.OFF
ENDOF
16 OF PRINT.JIT.MAX CR
." NEW VALUE : " CR
ENTER.JIT.MAX.VALUE
ERROR.COLOR.OFF
ENDOF
9 9 ~ O F ~ F U L L . S C R E E N . C O L O R . O F F '
ERROR.COLOR.OFF
EXIT

```

\section*{ENDOF}

ERROR.COLOR.ON
. " NOT A VALID NUMBER CODE - TRY AGAIN" BELL BELL
ENDCASE
AGAIN

WRITE.SCALARS
WRITE.RET.TIME
WRITE.VOL.FRAC.INJ
WRITE.DET.RES.FAC
RESTORE.FUNCTION.KEYS
' ECHO.OFF
\ BARSIM. PRO - CALCULATE SINGLE CHROMATOGRAM, DECISION SEQUENCE, MULTILPLEX CHROMATOGRAM AND MUTLIPLEX CHROMATOGRAM WITH WHITE NOISE
: SIM.START \ FIRST DEFINITION
: CALCULATE.SINGLE.CHROM \ CALCULATE SINGLE CHROMATOGRAM
PROMPT.COLOR.ON
." CALCULATING SINGLE CHROMATOGRAM - PLEASE WAIT" 0 SINGLE.CHROM := \INITIALIZE SINGLE CHROMATOGRAM READ. SCALARS
\ FOR EACH PEAK CALCULATE THE VALUES AND ADD to \ SINGLE CHROMATOGRAM

NO.OF.PEAKS \(1+1\) DO
CALCULATE SIGMA
RET.TIME [ I ] COL.EFF SQRT / SIGMA :=
\ CALCULATE FRACTION DENOMINATOR
PI 2.0 * SQRT SIGMA * DENOM :=
\ CALCULATE FRACTION
VOL.FRAC.INJ [ I ] DET.RES.FAC [ I ] * DENOM / FRAC :=
\ Calculate peak values +-6 sigma
4096 RAMP DEC.INT *
SUB[ RET.TIME [ I ] 6 SIGMA * - , 13 SIGMA * 0.5 + ]
THE 0.5 IS ADDED TO PREVENT ROUND TRUNCATION OF THE RANGE
```

CHROM.RESOL RET.TIME [I] * -

``` SIGMA /

DUP * NEG 2.0 /
EXP FRAC *
SINGLE.CHROM
SUB[ Ret.time [ I ] 6 SIGMA * - , 13 SIGMA * 0.5 + ] \(+\)
SINGLE.CHROM SUB[ RET.TIME [ I ] 6 SIGMA * - , 13 SIGMA * \(0.5+\) ] :=

LOOP
WRITE.SINGLE.CHROM
PROMPT.COLOR.OFF
BELL
```

: DISPLAY.CHROM
SINGLE.CHROM
SUB[1 , CHROM.LENG CHROM.RESOL *]
GRAPHICS.DISPLAY
Y.AUTO. PLOT
BELL
DISPLAY.SINGLE.CHROM
READ.SINGLE. CHROM
DISPLAY.CHROM
;
: CALCULATE.DEC.SEQ \ CALCULATE DECISION SEQUENCE
PROMPT.COLOR.ON
" CALCULATING DECISION SEQUENCE - PLEASE WAIT"
O DEC.SEQ := \ INITIALIZE DEC.SEQ
\ INITIALIZE LAST SO COULD FIRE AT TIME O
REJ.PER DEC.INT * NEG LAST.DEC :=
DEC.INT AVE.DEC.FREQ / REJ.FAC := \ RANDOM \# CUT-OFF
EXP.LENG CHROM.LENG + DEC.INT * 1 + 1 DO
RAND.UNIF
REJ.FAC <=
IF
1 DEC.SEQ [I] :=
THEN
LOOP
WRITE.DEC.SEQ
PROMPT.COLOR.OFF
BELL
DISPLAY.DEC.SEQ
READ.DEC.SEQ
DEC.SEQ
SUB[1 , EXP.LENG DEC.INT *]
GRAPHICS.DISPLAY
Y.AUTO. PLOT
BELL CR ." TOUCH ANY KEY TO CONTINUE " PCKEY ?DROP DROP
NORMAL.DISPLAY

```
```

: CALCULATE.MULTIPLEX.CHROM \ CALCULATE MULTIPLEX CHROMATOGRAM
PROMPT.COLOR.ON
." CALCULATING MULTIPLEX CHROMATOGRAM - PLEASE WAIT"
0 MULTIPLEX.CHROM := \ INITIALIZE MULTIPLEX.CHROM
READ.DEC.SEQ
READ.SINGLE.CHROM
\ DOES NOT STORE FIRST CHROM.LENG OF CALCULATIONS IN
MULTIPLEX.CHROM
CHROM.LENG EXP.LENG + DEC.INT * 1 DO
DEC.SEQ [I] 1=
IF
I CHROM.LENG DEC.INT * - 1 + START :=
START CHROM.LENG DEC.INT * + 1 - FINISH :=
START 1<
IF
FINISH EXP.LENG DEC.INT * >
IF
MULTIPLEX.CHROM
SINGLE.CHROM SUB[I , EXP.LENG DEC.INT *]
+ MULTIPLEX.CHROM :=
ELSE
MULTIPLEX.CHROM SUB[1 , FINISH]
SINGLE.CHROM
SUB[CHROM.LENG DEC.INT * FINISH - 1 + , FINISH]
+ MULTIPLEX.CHROM SUB[1 , FINISH] :=
THEN
ELSE
FINISH EXP.LENG DEC.INT * >
IF
MULTIPLEX.CHROM
SUB[START , EXP.LENG DEC.INT * START - 1 +]
SINGLE.CHROM
SUB[1 , EXP.LENG DEC.INT * START - 1 +]
+ MULTIPLEX.CHROM
SUB[START , EXP.LENG DEC.INT * START - 1 +] :=
ELSE
MULTIPLEX.CHROM
SUB[START , CHROM.LENG DEC.INT *]
SINGLE.CHROM
SUB[1 , CHROM.LENG DEC.INT *]
+ MULTIPLEX.CHROM
SUB[START , CHROM.LENG DEC.INT *] :=
THEN

```
    THEN

THEN
```

 WRITE.MULTIPLEX.CHROM
 PROMPT.COLOR.OFF
 BELL
 DISPLAY.MULTIPLEX.CHROM
 READ.MULTIPLEX.CHROM
 MULTIPLEX.CHROM
 SUB[1 , EXP.LENG DEC.INT *]
 GRAPHICS.DISPLAY
 Y.AUTO. PLOT
 BELL
 CALCULATE.NOISE \ CALCULATE WHITE NOISE AND ADD TO
TO MULTIPLEX CHROMATOGRAM
PROMPT.COLOR.ON
." CALCULATING NOISE - PLEASE WAIT"
READ.MULTIPLEX.CHROM
READ.SINGLE.CHROM
SINGLE.CHROM SUB[1 , CHROM.LENG DEC.INT *]
[]MAX NOISE.MAG *
MISC :=
EXP.LENG DEC.INT * 1 + 1 DO
MIS C
RAND.NRML
*
MULTIPLEX.CHROM [I] +
MULTIPLEX.CHROM [I] :=
LOOP
WRITE.MULTIPLEX.CHROM
PROMPT.COLOR.OFF
BELL

```
```

ECHO.OFF
\ BARCROSS.PRO - DOES CROSS CORRELATION ON MULTIPLEX CHROM
: CROSS.CORRELATE
PROMPT.COLOR.ON
." CALCULATING CROSS CORRELATION - PLEASE WAIT"
O SINGLE.CHROM :=
\ NORMALIZE MULTIPLEX.CHROM TO AVERAGE ABOUT O
READ.MULTIPLEX.CHROM
READ.DEC.SEQ
MULTIPLEX.CHROM SUB[1 , EXP.LENG DEC.INT *
MULTIPLEX.CHROM SUB[1 , EXP.LENG DEC.INT *]
MEAN -
MULTIPLEX.CHROM SUB[1 , EXP.LENG DEC.INT *] :=
CHROM.LENG DEC.INT * START :=
EXP.LENG CHROM.LENG - DEC.INT * 1 DO
DEC.SEQ [START] 1=
IF
SINGLE.CHROM SUB[1 , CHROM.LENG DEC.INT *]
MULTIPLEX.CHROM SUB[I , CHROM.LENG DEC.INT *] +
SINGLE.CHROM SUB[1 , CHROM.LENG DEC.INT *] :=
THEN
1 START + START :=
LOOP
WRITE.CROSS.CHROM
PROMPT.COLOR.OFF
BELL
: DISPLAY.CROSS.CHROM
READ.CROSS.CHROM
DISPLAY.CHROM

```
```

 ECHO.OFF
 \ BARHAD.PRO - CALCULATES THE HADAMARD TRANSFORM
 : HADAMARD
 PROMPT.COLOR.ON
 " CALCULATING HADAMARD TRANSFORM - PLEASE WAIT"
 O SINGLE.CHROM :=
 \ NORMALIZE MULTIPLEX.CHROM TO AVERAGE ABOUT O
 READ.MULTIPLEX.CHROM
 READ.DEC.SEQ
 MULTIPLEX.CHROM SUB[1 , EXP.LENG DEC.INT *
 MULTIPLEX.CHROM SUB[1 , EXP.LENG DEC.INT *]
 MEAN -
 MULTIPLEX.CHROM SUB[1 , EXP.LENG DEC.INT *] :=
 CHROM.LENG DEC.INT * 1 + 1 DO
 DEC.SEQ
 SUB[CHROM.LENG DEC.INT * I - + , EXP.LENG DEC.INT *]
 MULTIPLEX.CHROM SUB[1 , EXP.LENG DEC.INT *]
 << * | + >>
 SINGLE.CHROM SUB[I , 1] :=
 LOOP
 WRITE.HADAMARD.CHROM
 PROMPT.COLOR.OFF
 BELL
 ;
DIS PLAY.HADAMARD.CHROM
READ.HADAMARD.CHROM
DISPLAY.CHROM

```
;

\section*{ECHO.OFF}
\ BARFOUR.PRO CALCULATES THE FAST FOURIER TRANSFORM CHROMATOGRAM
: FOURIER

PROMPT. COLOR. ON
. " CALCULATING FAST FOURIER TRANSFORM - PLEASE WAIT"
\DETERMINE BEST \(2^{\prime} S\) POWER SIZE

EXP.LENG DEC.INT * CASE
\begin{tabular}{rlrlrl}
2048 & MIN & 2048 & OF & 2048 & MISC \\
1024 & MIN & 1024 & OF & 1024 & MISC \\
512 & MIN & 512 & OF & 512 & MISC \\
256 & \(:=\) ENDOF \\
256 & MIN & 256 & OF & 256 & MISC \\
128 & MIN & 128 & OF & 256 & MISC \\
64 & MIN & 64 & OF & \(=\) ENDOF \\
32 & MIN & 32 & OF & 34 & MISC \\
32 & MISC & \(:=\) ENDOF \\
& & & & &
\end{tabular}

0 MISC : \(=\)
ENDCASE

CALCULATE FFT CHROM
MISC \(0<>\)
I F
\ PUT THE 2 ARRAYS INTO THE FREQUENCY DOMAIN VIA FFT 0 SINGLE.CHROM := READ.MULTIPLEX. CHROM MULTIPLEX.CHROM SUB[ 1 , MISC ] DUP MEAN -
FFT

READ.DEC.SEQ
DEC.SEQ SUB[ CHROM.LENG DEC.INT * , MISC ] DUP MEAN -
FFT
\ TAKE CONJUCATION, MULTIPLY AND CONVERT BACK TO
\TIME DOMAIN
CONJ
*
IFFT
ZMAG
SUB[ 1 , CHROM.LENG ]
SINGLE.CHROM SUB[ 1 , CHROM.LENG ] :=
WRITE.FFT.CHROM
ELSE
ERROR.COLOR. ON
." EXPERIMENTAL LENGTH TOO SHORT"
THEN
PROMPT.COLOR.OFF BELL
```

ECHO.OFF
BARMENUS.PRO - MENUS OF THIS MENU DRIVEN PROGRAM
MENU.START \ FIRST DEFINITION
: EXIT.PROCEDURE \ TURNS OFF PRESENT MENU SO TO RETURN
TO CALLING MENU
" NO " MENU.ON ":=
: DEFAULT.EXP.FILENAME
" BAREXPTP.DAT" FILENAME ":=
;
\ MENU SCREENS
: DIRECTORY.LISTING
NO.OPTION
;
: PRINT.EXP.DATA.MENU
NO.OPTION
;
: PRINT.REPORT.SCREEN
SCREEN.PRINT
NORMAL.DISPLAY
;
: DEFINE.ALL.KEYS.NORMAL
CLEAR.FUNCTION.KEYS
F1 FUNCTION.KEY.DOES NORMAL.DISPLAY
F2 FUNCTION.KEY.DOES NORMAL.DISPLAY
F3 FUNCTION.KEY.DOES NORMAL.DISPLAY
F4 FUNCTION.KEY.DOES NORMAL.DISPLAY
F5 FUNCTION.KEY.DOES NORMAL.DISPLAY
F6 FUNCTION.KEY.DOES NORMAL.DISPLAY
F7 FUNCTION.KEY.DOES NORMAL.DISPLAY
F8 FUNCTION.KEY.DOES NORMAL.DISPLAY
F9 FUNCTION.KEY.DOES NORMAL.DISPLAY
F10 FUNCTION.KEY.DOES NORMAL.DISPLAY
;
: SAME.REPORT.SCREEN
." <Fl> PRINT" CR
." <F10> EXIT" CR
DEFINE.ALL.KEYS.NORMAL
F1 FUNCTION.KEY.DOES PRINT.REPORT.SCREEN
;

```
```

: PRINT.DISPLAY.SINGLE.CHROM
DISPLAY.SINGLE.CHROM CR
." SINGLE" CR
." CHROMATOGRAM" CR CR
SAME.REPORT.SCREEN
: PRINT.DISPLAY.MULTIPLEX.CHROM
DISPLAY.MULTIPLEX.CHROM CR
." MULTIPLEX" CR
." CHROMATOGRAM" CR CR
SAME.REPORT.SCREEN
;
: PRINT.DISPLAY.CROSS.CHROM
DISPLAY.CROSS.CHROM CR
." CROSS" CR
." CORRELATION" CR
." CHROMATOGRAM" CR CR
SAME.REPORT.SCREEN
;
: PRINT.DISPLAY.HADAMARD.CHROM
DISPLAY.HADAMARD.CHROM CR
." HADAMARD" CR
." TRANSFORM" CR
." CHROMATOGRAM" CR CR
SAME.REPORT.SCREEN
;
: PRINT.DISPLAY.FOURIER.CHROM
DISPLAY.FFT.CHROM CR
." FAST" CR
." FOURIER" CR
." TRANSFORM" CR
." CHROMATOGRAM" CR CR
SAME.REPORT.SCREEN
;
: GET.STORED.SIM. PARAM
NO.OPTION
;
COMPLETE.ALL.STEPS
NO.OPTION
;
: ENTER.SIM.PARAM.MENU \ MENU 2.1
TITLE.COLOR.ON ." SIMULATION PARAMETERS ENTRY MENU"
LOW.SCREEN.COLOR.OFF
<F1> ENTER PARAMETERS "
." <F5> DISPLAY PARAMETERS" CR
<F2> USE DEFAULT PARAMETERS "
." <F6> CHANGE PARAMETERS" CR
<F3> USE STORED PARAMETER "

```
\begin{tabular}{cc}
\(. "<F 7>\) FINISH NEXT STEPS AUTOMATICALLY" \\
<F4> LIST DIRECTORY & \\
<FIO> EXIT" CR
\end{tabular}

CLEAR. FUNCTION.KEYS
F1 FUNCTION.KEY.DOES ENTER.SIM.PARAM
F2 FUNCTION.KEY.DOES DEFAULT.SIM.PARAM
F3 FUNCTION.KEY.DOES GET.STORED.SIM.PARAM
F4 FUNCTION.KEY.DOES DIRECTORY.LISTING
F5 FUNCTION.KEY.DOES DISPLAY.SIM.PARAM
F6 FUNCTION.KEY.DOES CHANGE.SIM. PARAM
F7 FUNCTION.KEY.DOES COMPLETE.ALL.STEPS
F10 FUNCTION.KEY.DOES EXIT.PROCEDURE
: PRINT.ENTER.SIM.PARAM.MENU
\{DEF\} SCREEN.CLEAR
BEGIN
" YES" MENU.ON "=
WHILE
ENTER.SIM. PARAM. MENU
PCKEY INTERPRET.KEY
REPEAT
" YES" MENU.ON ":=
SO CALLILNG MENU WILL REPRINT ITSELF
: WHICH.SINGLE.CHROM
NO.OPTION
;
: DO.PRINT.DISPLAY.SINGLE. CHROM
PRINT.DISPLAY.SINGLE. CHROM
PCKEY INTERPRET.KEY
;
: SINGLE.CHROM.MENU \ MENU 2.2
TITLE.COLOR.ON ." SINGLE CHROMATOGRAM MENU" LOW. SCREEN. COLOR. OFF
<F4> CALCULATE SINGLE CHROMATOGRAM" CR <F5> USE STORED SINGLE CHROMATOGRAM" CR \(\langle F 6\rangle\) DISPLAY SINGLE CHROMATOGRAM GRAPH"

CLEAR. FUNCTION.KEYS
F1 FUNCTION.KEY.DOES DISPLAY.SIM. PARAM
F2 FUNCTION.KEY.DOES DISPLAY.SINGLE.CHROM.PARAM
F3 FUNCTION.KEY.DOES CHANGE.SINGLE.CHROM.PARAM
F4 FUNCTION.KEY.DOES CALCULATE.SINGLE.CHROM
F5 FUNCTION.KEY.DOES WHICH.SINGLE.CHROM

F6 FUNCTION.KEY.DOES DO.PRINT.DISPLAY.SINGLE.CHROM F10 FUNCTION.KEY.DOES EXIT.PROCEDURE
```

: PRINT.SINGLE.CHROM.MENU
{DEF} SCREEN.CLEAR
BEGIN
" YES" MENU.ON "=
WHILE
SINGLE.CHROM.MENU
PCKEY INTERPRET.KEY
REPEAT
" YES" MENU.ON ":= \ SO CALLING MENU WILL REPRINT ITSELF
WHICH.DEC.SEQ
NO.OPTION
: DECISION.SEQ.MENU \ MENU 2.3
TITLE.COLOR.ON."
LOW.SCREEN.COLOR.OFF
<F1> DISPLAY ALL PARAMETERS "
." <F10> EXIT" CR
<F2> DISPLAY DECISION SEQUENCE PARAMETERS "
CR
<F3> CHANGE DECISION SEQUENCE PARAMETERS"
CR
<F4> CALCULATE DECISION SEQUENCE" CR
<F5> USE STORED DECISION SEQUENCE" CR
<F6> DISPLAY DECSION SEQUENCE GRAPH"

```

CLEAR. FUNCTION.KEYS
F1 FUNCTION.KEY.DOES DISPLAY.SIM.PARAM
F2 FUNCTION.KEY.DOES DISPLAY.DEC.INT.PARAM
F3 FUNCTION.KEY.DOES CHANGE.DEC.INT.PARAM
F4 FUNCTION.KEY.DOES CALCULATE.DEC.SEQ
F5 FUNCTION.KEY.DOES WHICH.DEC.SEQ
F6 FUNCTION.KEY.DOES DISPLAY.DEC.SEQ
F10 FUNCTION.KEY.DOES EXIT.PROCEDURE
: PRINT.DECISION.SEQ.MENU
\{DEF\} SCREEN.CLEAR
BEGIN
" YES" MENU.ON "=
WHILE
DECISION.SEQ. MENU
PCKEY INTERPRET.KEY
REPEAT
" YES" MENU.ON ":= \ SO CALLING MENU WILL REPRINT ITSELF
: WHICH.NOISE
NO.OPTION
```

: DISPLAY.NOISE

```
    NO.OPTION
;
: NOISE.MENU \ MENU 2.4
        TITLE.COLOR.ON ."
        LOW. SCREEN. COLOR. OFF
    \(\langle F 1\rangle\) DISPLAY ALL PARAMETERS "
    ." <F10> EXIT" CR
    <F2> DISPLAY NOISE PARAMETERS" CR
    <F3> CHANGE NOISE PARAMETERS" CR
    <F4> CALCULATE NOISE" CR
    <F5> USE STORED NOISE" CR
    <F6> DISPLAY NOISE GRAPH"

CLEAR.FUNCTION.KEYS
F1 FUNCTION.KEY.DOES DISPLAY.SIM.PARAM
F2 FUNCTION.KEY.DOES DISPLAY.NOISE.PARAM
F3 FUNCTION.KEY.DOES CHANGE.NOISE.PARAM
F4 FUNCTION.KEY.DOES CALCULATE.NOISE
F5 FUNCTION.KEY.DOES WHICH.NOISE
F6 FUNCTION.KEY.DOES DISPLAY.NOISE
F10 FUNCTION.KEY.DOES EXIT.PROCEDURE
: PRINT.NOISE.MENU
\{DEF\} SCREEN.CLEAR
BEGIN
" YES" MENU.ON "=
WHILE
NOISE.MENU
PCKEY INTERPRET.KEY
REPEAT
" YES" MENU.ON ": = SO CALLING MENU WILL REPRINT ITSELF
;
: WHICH.MULTIPLEX.CHROM NO.OPTION
;
: DO.PRINT.DISPLAY.MULT.CHROM PRINT. DISPLAY. MULTIPLEX. CHROM
PCKEY INTERPRET.KEY
;
: MULTIPLEX.CHROM.MENU
MENU 2.5
TITLE.COLOR.ON ."
LOW. SCREEN. COLOR. OFF
\(<\) FI> DISPLAY ALL PARAMETERS
" <F10> EXIT" CR <F2> DISPLAY MULTIPLEX CHROMATOGRAM PARAMETERS"
```

 CR
 <F4> CALCULATE MULTIPLEX CHROMATOGRAM " CR
 <F5> USE STORED MULTIPLEX CHROMATOGRAM "
 ." PARAMETERS" CR
 <F6> DISPLAY MULTIPLEX CHROMATOGRAM GRAPH"
 CLEAR.FUNCTION.KEYS
F1 FUNCTION.KEY.DOES DISPLAY.SIM.PARAM
F2 FUNCTION.KEY.DOES DISPLAY.MULTIPLEX.CHROM.PARAM
F3 FUNCTION.KEY.DOES CHANGE.MULTIPLEX.CHROM.PARAM
F4 FUNCTION.KEY.DOES CALCULATE.MULTIPLEX.CHROM
F5 FUNCTION.KEY.DOES WHICH.MULTIPLEX.CHROM
F6 FUNCTION.KEY.DOES DO.PRINT.DISPLAY.MULT.CHROM
F10 FUNCTION.KEY.DOES EXIT.PROCEDURE
: PRINT.MULTIPLEX.CHROM.MENU
\{DEF\} SCREEN.CLEAR
BEGIN
" YES" MENU.ON "=
WHILE
MULTIPLEX. CHROM.MENU
PCKEY INTERPRET.KEY
REPEAT
" YES" MENU.ON ": = SO CALLING MENU WILL REPRINT ITSELF

```
: RENAME.SIM.FILE
NO.OPTION
;
: PRINT.HELP.SIM, DATA
NO.OPTION
;
: DATA.SIM.MENU \MENU 2.0
TITLE.COLOR.ON ." DATA SIMULATION MENU"
UPPER.SCREEN. COLOR. OFF
CR CR
```

 <F1> PARAMETERS" CR
    ```
                                <F1> PARAMETERS" CR
                                <F2> SINGLE CHROMATOGRAM CALCULATION" CR
                                <F2> SINGLE CHROMATOGRAM CALCULATION" CR
                                <F3> DECISION SEQUENCE CALCULATION" CR
                                <F3> DECISION SEQUENCE CALCULATION" CR
                                <F4> MULTIPLEX CHROMATOGRAM CALCULATION" CR
                                <F4> MULTIPLEX CHROMATOGRAM CALCULATION" CR
                    <F5> NOISE CALCULATION" CR
                    <F5> NOISE CALCULATION" CR
                <F6> RENAME FILES" CR
                <F6> RENAME FILES" CR
                <F7> HELP" CR
                <F7> HELP" CR
                <F10> EXIT" CR
```

 <F10> EXIT" CR
    ```

CLEAR.FUNCTION.KEYS
F1 FUNCTION.KEY.DOE
F2 FUNCTION.KEY.DOE
F3 FUNCTION KEY
F4 FUNT PRINT.DECISION.SEQ.MENU
F5 FUNCT
F6 FUN
F6 FUNCTION.KEY.DOES RENAME.SIM.FILE
```

 F7 FUNCTION.KEY.DOES PRINT.HELP.SIM.DATA
 F10 FUNCTION.KEY.DOES EXIT.PROCEDURE
 ;
: PRINT.DATA.SIM.MENU
{DEF} SCREEN.CLEAR
" S" WHICH.MENU ":=
DEFAULT.SIM.FILENAME
PROMPT.COLOR.ON ." FILE NAME TO BE USED: " FILENAME "TYPE
BEGIN
" YES" MENU.ON "=
WHILE
LOW.SCREEN.COLOR.OFF
DATA.SIM.MENU
PCKEY INTERPRET.KEY
PROMPT.COLOR.OFF
REPEAT
" YES" MENU.ON ":= \ SO CALLING MENU WILL REPRINT ITSELF
: ANALYSIS.MENU \ MENU.3.1
TITLE.COLOR.ON ."
LOW.SCREEN.COLOR.OFF
<FI> CROSS-CORRELATION" CR
<F2> HADAMARD TRANSFORM" CR
<F3> FAST FOURIER TRANSFORM" CR
<F10> EXIT" CR
CLEAR.FUNCTION.KEYS
F1 FUNCTION.KEY.DOES CROSS.CORRELATE
F2 FUNCTION.KEY.DOES HADAMARD
F3 FUNCTION.KEY.DOES FOURIER
F10 FUNCTION.KEY.DOES EXIT.PROCEDURE
;
: GET.RECENT.DATA
" BARSIMTP.DAT" FILENAME ":=
***** LATER TEST IF WAS EXP. OR SIM MOST RECENT
;
: ANAL.RECENT.SESSION
GET.RECENT.DATA
BEGIN
" YES" MENU.ON "=
WHILE
ANALYSIS.MENU
PCKEY INTERPRET.KEY
REPEAT
" YES" MENU.ON ":= \ SO CALLING MENU WILL REPRINT ITSELF
: GET.EXP.FILE
NO.OPTION

```
```

: ANAL.EXP.FILE
NO.OPTION
;
: GET.SIM.FILE
NO.OPTION
;
ANAL.SIM.FILE
NO.OPTION
GET.FILE
NO.OPTION
;
: ANAL.FILE
NO.OPTION
;
: DATA.ANAL.MENU\ MENU 3.0
TITLE.COLOR.ON ." DATA ANALYSIS MENU"
LOW.SCREEN.COLOR.OFF
DATA TO BE ANALYZED: <F1> MOST RECENT SESSION" CR
<F2> EXPERIMENTAL FILE" CR
<F3> SIMULATION FILE" CR
<F4> OTHER FILE" CR
<F10> EXIT"
CLEAR.FUNCTION.KEYS
F1 FUNCTION.KEY.DOES ANAL.RECENT.SESSION
F2 FUNCTION.KEY.DOES ANAL.EXP.FILE
F3 FUNCTION.KEY.DOES ANAL.SIM.FILE
F4 FUNCTION.KEY.DOES ANAL.FILE
F10 FUNCTION.KEY.DOES EXIT.PROCEDURE
: PRINT.DATA.ANAL.MENU
\{DEF\} SCREEN.CLEAR
BEGIN
" YES" MENU.ON "=
WHILE
DATA.ANAL. MENU
PCKEY INTERPRET.KEY
REPEAT
" YES" MENU.ON ":= \backslash SO CALLING MENU WILL REPRINT ITSELF
;
: PRINT.REPORT. PARAM.MENU
NO. OPTION
;
: REPORT.GRAPHS.MENU \MENU 4.1.2
TITLE.COLOR.ON ." REPORT GRAPHS MENU"

```
```

 LOW.SCREEN.COLOR.OFF
 GRAPH: <F1> SINGLE CHROMATOGRAM" CR
 <F2> MULTIPLEX.CHROMATOGRAM" CR
 <F3> CROSS CORRELATION CHROMATOGRAM" CR
 <F4> HADAMARD CHROMATOGRAM" CR
 <F5> FAST FOURIER TRANSFORM CHROMATOGRAM"
 CR
 <FIO> EXIT"
 CLEAR.FUNCTION.KEYS
 F1 FUNCTION.KEY.DOES
 F2 FUNCTION.KEY.DOES PRINT.DISPLAY.MULTIPLEX.CHROM
 PRIN.DISPLAY.SINGLE.CHROM
 F3 FUNCTION.KEY.DOES PRINT.DISPLAY.CROSS.CHROM
 F4 FUNCTION.KEY.DOES PRINT.DISPLAY.HADAMARD.CHROM
 F5 FUNCTION.KEY.DOES PRINT.DISPLAY.FOURIER.CHROM
 F10 FUNCTION.KEY.DOES EXIT.PROCEDURE
 PCKEY INTERPRET.KEY
 ;
: PRINT.REPORT.GRAPHS.MENU
{DEF} SCREEN.CLEAR
BEGIN
" YES" MENU.ON "=
WHILE
REPORT.GRAPHS.MENU
PCKEY INTERPRET.KEY
REPEAT
" YES" MENU.ON ":= \ SO CALLING MENU WILL REPRINT ITSELF
;
: PRINT.REPORT.VALUES.MENU
NO.OPTION
;
: WHICH.REPORT.MENU
TITLE.COLOR.ON
"
LOW.SCREEN.COLOR.OFF
REPORT: <F1> PARAMETERS" CR
<F2> RESULT GRAPHS" CR
<F3> RESULT VALUES" CR
<F10> EXIT" CR
CLEAR. FUNCTION.KEYS
F1 FUNCTION.KEY.DOES PRINT.REPORT.PARAM.MENU
F2 FUNCTION.KEY.DOES PRINT.REPORT.GRAPHS.MENU
F3 FUNCTION.KEY.DOES PRINT.REPORT.VALUES.MENU
F10 FUNCTION.KEY.DOES EXIT.PROCEDURE
;
: REPORT.RECENT.SESSION GET.RECENT. DATA
\{DEF\} SCREEN.CLEAR
BEGIN
" YES" MENU.ON " =

```
```

 WHILE
 WHICH.REPORT.MENU
 PCKEY INTERPRET.KEY
 REPEAT
 " YES" MENU.ON ":= \ SO CALLING MENU WILL REPRINT ITSELF
 REPORT.EXP.FILE
 NO.OPTION
 ;
: REPORT.SIM.FILE
NO.OPTION
;
: REPORT.FILE
NO.OPTION
;
: DATA.REPORT.MENU \ MENU 4.0
TITLE.COLOR.ON ." DATA REPORT MENU"
LOW.SCREEN.COLOR.OFF
REPORT: <F1> MOST RECENT SESSION" CR
<F2> EXPERIMENTAL FILE" CR
<F3> SIMULATION FILE" CR
<F4> OTHER FILE" CR
<F10> EXIT"
CLEAR.FUNCTION.KEYS
F1 FUNCTION.KEY.DOES REPORT.RECENT.SESSION
F2 FUNCTION.KEY.DOES REPORT.EXP.FILE
F3 FUNCTION.KEY.DOES REPORT.SIM.FILE
F4 FUNCTION.KEY.DOES REPORT.FILE
F10 FUNCTION.KEY.DOES EXIT.PROCEDURE
;
: PRINT.DATA.REPORT.MENU
{DEF} SCREEN.CLEAR
BEGIN
" YES" MENU.ON "=
WHILE
DATA.REPORT.MENU
PCKEY INTERPRET.KEY
REPEAT
" YES" MENU.ON ":= \ SO CALLING MENU WILL REPRINT ITSELF
;
: HOUSEKEEPING
NO.OPTION
;
: PRINT.HELP.MENU
NO.OPTION

```
```

SYSTEM.RETURN
{DEF} SCREEN.CLEAR
ABORT
SYSTEM.EXITING
CLEAR.FUNCTION.KEYS
SYSTEM.RETURN
: MAIN.MENU \ INTRODUCTORY MENU - FIRST ONE DISPLAYED
{DEF} SCREEN.CLEAR
TITLE.COLOR.ON ."
FULL.SCREEN.COLOR.OFF
CR CR
WELCOME" CR
MULTIPLEX CHROMATOGRAM" CR
PROGRAM" CR CR CR
<FI> EXPERIMENTAL DATA COLLECTION" CR
<F2> DATA SIMULATION" CR
<F3> DATA ANALYSIS" CR
<F4> DATA REPORT" CR
<F5> HOUSEKEEPING" CR
<F6> HELP" CR
<F10> EXIT" CR
CLEAR. FUNCTION.KEYS
F1 FUNCTION.KEY.DOES PRINT.EXP.DATA.MENU
F2 FUNCTION.KEY.DOES PRINT.DATA.SIM.MENU
F3 FUNCTION.KEY.DOES PRINT.DATA.ANAL.MENU
F4 FUNCTION.KEY.DOES PRINT.DATA.REPORT.MENU
F5 FUNCTION.KEY.DOES HOUSEKEEPING
F6 FUNCTION.KEY.DOES PRINT.HELP.MENU
F10 FUNCTION.KEY.DOES SYSTEM.EXITING
INITIATE.EXP.CONSTANTS
INITIATE:SIM.CONSTANTS
;
: PRINT.MAIN.MENU
BEGIN
" YES" MENU.ON "=
WHILE
MAIN.MENU
PCKEY INTERPRET.KEY
REPEAT
: START.PROGRAM
" YES" MENU.ON ":=
PRINT.MAIN.MENU

```
```

ECHO.OFF
BARDRIFT.PRO - TO ADD DRIFT TO MULTIPLEX.CHROM
CALCULATE.DRIFT
READ.MULTIPLEX.CHROM
MULTIPLEX.CHROM SUB[1 , EXP.LENG DEC.INT *]
[]MAX
EXP.LENG DEC.INT * /
MISC * MISC :=
EXP.LENG DEC.INT * RAMP
MISC *
MULTIPLEX.CHROM SUB[1 , EXP.LENG DEC.INT *] +
MULTIPLEX.CHROM SUB[1 , EXP.LENG DEC.INT *] :=
WRITE.MULTIPLEX.CHROM

```

\section*{ECHO.OFF}
\ BARCROSS.FIT - DOES CROSS CORRELATION ON MULTIPLEX CHROM
: CROSS.CORRELATE
\." BEGIN " CR
0 SINGLE.CHROM :=
\ NORMALIZE MULTIPLEX.CHROM TO AVERAGE ABOUT 0
READ.MULTIPLEX.CHROM
READ.DEC.SEQ
\ MULTIPLEX.CHROM SUB[ 1 , EXP. LENG DEC.INT \(*\)
\ MULTIPLEX.CHROM SUB[ 1 , EXP.LENG DEC.INT * ]
MEAN -
\ MULTIPLEX.CHROM SUB[ 1 , EXP.LENG DEC.INT * ] :=
CHROM.LENG DEC.INT * \(20+\) START \(:=\)
\." START = " START . CR
EXP.LENG CHROM.LENG - DEC.INT * 20 -
21 DO
\." DEC INDEX" START . CR
DEC.SEQ [ START ] \(1=\) IF
\." MC:" I . CHROM.LENG . ." SC ALl"
\." AFTERLE.CHROM SUB[ 1 , CHROM.LENG DEC.INT *
" MULTIPLEX.CHROM SUB[ I , CHROM.LENG DEC.INT * ] +
\." AFTER MULTI " CR SINGLE.CHROM SUB[ 1 , CHROM. LENG DEC.INT * ] :=
\ ." AFTER CALCULATION " CR
THEN
1 START + START :=
\ PAUSE
LOOP
WRITE.CROSS.CHROM
;
: DISPLAY.CROSS.CHROM
READ.CROSS.CHROM
DISPLAY. CHROM
;
```

ECHO.OFF
BARHAD.FIT - CALCULATES THE HADAMARD TRANSFORM
: HADAMARD
O SINGLE.CHROM :=
NORMALIZE MULTIPLEX.CHROM TO AVERAGE ABOUT O
READ.MULTIPLEX.CHROM
READ.DEC.SEQ
\ MULTIPLEX.CHROM SUB[1 , EXP.LENG DEC.INT *]
\ MULTIPLEX.CHROM SUB[1 , EXP.LENG DEC.INT *]
\ MEAN -
\ MULTIPLEX.CHROM SUB[1 , EXP.LENG DEC.INT *] :=
CHROM.LENG DEC.INT * 1 + 1 DO
DEC.SEQ
SUB[CHROM.LENG DEC.INT * I - 1 + 20 + ,
EXP.LENG DEC.INT * 20-]
MULTIPLEX.CHROM SUB[21, EXP.LENG DEC.INT * 20-]
<< * | + >>
SINGLE.CHROM SUB[I , 1] :=
LOOP
WRITE.HADAMARD.CHROM
;
: DISPLAY.HADAMARD.CHROM
READ.HADAMARD.CHROM
DISPLAY.CHROM

```
```

ECHO.OFF

```
\ BARFOUR.FIT CALCULATES THE FAST FOURIER TRANSFORM CHROMATOGRAM

FOURIER

DETERMINE BEST \(2^{\prime} S\) POWER SIZD
" A" CR
EXP. LENG DEC.INT * CASE
\begin{tabular}{rlrlrll}
2088 & MIN & 2088 & OF & 2048 & MISC & \(:=\) ENDOF \\
1064 & MIN & 1064 & OF & 1024 & MISC & \(:=\) ENDOF \\
552 & MIN & 552 & OF & 512 & MISC & \(:=\) ENDOF \\
296 & MIN & 296 & OF & 256 & MISC & \(:=\) ENDOF \\
168 & MIN & 168 & OF & 128 & MISC & \(:=\) ENDOF \\
104 & MIN & 104 & OF & 64 & MISC \(:=\) ENDOF \\
72 & MIN & 72 & OF & 32 & MISC \(:=\) ENDOF
\end{tabular}
        0 MISC : \(=\)
    ENDCASE
    " MISC \(=\) " MISC.
    CALCULATE FFT CHROM
    MISC \(0<>\)
    IF
        0 SINGLE.CHROM :=
        READ.MULTIPLEX.CHROM
        MULTIPLEX.CHROM SUB[ 21 , MISC ]
        DUP MEAN -
        FFT
        READ.DEC.SEQ
        DEC.SEQ SUB[ CHROM.LENG DEC.INT * \(20+\), MISC ]
DUP MEAN -
        FFT
        CONJ
        *
        IFFT
        ZMAG
        SUB[ 1 , CHROM.LENG ]
        SINGLE.CHROM SUB[ 1 , CHROM.LENG ] \(:=\)
        WRITE.FFT.CHROM
ELSE
        ERROR.COLOR. ON
        ." EXPERIMENTAL LENGTH TOO SHORT"
THEN
: DISPLAY.FFT.CHROM
READ.FFT.CHROM
DISPLAY.CHROM

ECHO.OFF
\ BARREDD.PRO - REDUCE DRIFT IN MULTIPLEX.CHROM
: REDUCE.AVE.DRIFT

READ.MULTIPLEX. CHROM
NOTE WHEN CALCULATING SINGLE.CHROM YOU MUST SKIP
THE FIRST AND LAST 20 POINTS
\(201+\operatorname{START}:=\)
START \(20+\) FINISH \(:=\)
MULTIPLEX.CHROM SUB[ 1 , FINISH ]
MEAN \(41 *\) MISC : \(=\)
MULTIPLEX.CHROM SUB[1, EXP.LENG DEC.INT * ] []COPY

EXP.LENG DEC.INT * FINISH \(-1+1+\) START DO MULTIPLEX.CHROM [ I ] MISC 41/ - MULTIPLEX.CHROM [ I ] :=

DUP
\(\left[\begin{array}{l}{[120-} \\ -1 * M I S C\end{array}+\right.\) MISC \(:=\)
DUP
\(\left[\begin{array}{ll}\text { I } 20+]\end{array}\right.\)
MISC + MISC \(:=\)
LOOP
DROP

WRITE.MULTIPLEX.CHROM
```

ECHO.OFF
\ BARRAND.PRO - TO TEST THE RANDOMNESS OF ASYST'S RANDOM
\ NUMBER GENERATOR
: RAND.START\ FIRST DEFINITION
;
REAL DIM[300] ARRAY RAND.ARRAY
REAL DIM[300] ARRAY NORM.ARRAY
INTEGER SCALAR INDEX
INTEGER DIM[10] ARRAY INTERVAL.ARRAY
REAL SCALAR CHI.VAL
REAL SCALAR AVE
REAL SCALAR SD
REAL SCALAR T.VAL
REAL DIM[4] ARRAY MISC \ .01,.05, . 1 , REST
REAL DIM[4] ARRAY MISCN \ -.Oi, -.05, -.1, -REST
REAL SCALAR AVE.MEAN
REAL SCALAR AVE.T
: FILL.NORM.TEST
3001 + 1 DO
RAND.NRML NORM.ARRAY [I] :=
LOOP
;
: NORMAL.TEST \ T-TEST
FILL.NORM.TEST
NORM.ARRAY MEAN AVE :=
NORM.ARRAY VARIANCE SQRT SD :=
300 SQRT AVE * SD /
T.VAL :=
." T VALUE:" T.VAL.
;
: FILL.RAND.TEST
3001 + 1 DO
RAND.UNIF RAND.ARRAY [I] :=
LOOP
;
: RAND.TEST
CHI-SQUARE TEST
FILL.RAND.TEST
O INTERVAL.ARRAY :=
301 1 DO

```

RAND.ARRAY [ I ] \(0.05+10 *\) INDEX \(:=\)
INTERVAL.ARRAY [ INDEX ] 1 + INTERVAL.ARRAY [ INDEX ] := LOOP

0 CHI.VAL : =
\(101+1\) DO
INTERVAL.ARRAY [ I ] \(30-\operatorname{DUP} * 30.0 /\)
CHI.VAL + CHI.VAL \(:=\)
CHI.VAL . CR
LOOP
" CHI VALUE:" CHI.VAL.
: T.TEST \ RUN SEVERAL TIMES AND SEE IF THE MEAN IS 0
0 MISC: \(=\)
0 MISCN : =
0 AVE.MEAN :=
0 AVE.T :=
\(1001+1\) DO
NORMAL.TEST
AVE AVE.MEAN + AVE.MEAN :=
T.VAL AVE.T + AVE.T : =
T.VAL \(0<\)

I F
T.VAL

CASE
-2.33 MAX -2.33 OF 1 MISCN [ 1 ]
\(-1.645 \mathrm{MAX}+\mathrm{MISCN}[1]:=\) ENDOF
1.645 MAX \(-1.6450 F \quad 1\) MISCN [ 2 ] \(+\operatorname{MISCN}[2]:=\) ENDOF
-1.28 MAX -1.28 OF 1 MISCN [ 3 ]
1 MISCN 44 + MISCN [ 3 ] \(:=\) ENDOF ENDCASE
ELSE
T.VAL

CASE

\(1 \operatorname{MISC}[4]+\operatorname{MISC}[4]:=\)
ENDCASE
THEN
LOOP
CR ." MISCNO1 " MISCN [ 1 ].
```

 CR
 AVE.MEAN 100 / AVE.MEAN :=
CR ." MEAN " AVE.MEAN .
AVE.T 100 / AVE.T :=
CR ." AVE.T " AVE.T.
CHI.TEST \ RUN SEVERAL TIMES AND SEE IF THE VALUES
ARE LIKE CHI-SQUARE DISTRIBUTION
0 MISC :=
0 MISCO1 :=
0 MISCO5 :=
O MISC1 :=
1001 + 1 DO
RAND.TEST
CHI.VAL
CASE
21.7 MIN 21.7 OF 1 MISCO1 + MISCO1 := ENDOF
16.9 MIN 16.9 OF 1 MISCO5 + MISCO5 := ENDOF
14.7 MIN 14.7 OF 1 MISC1 + MISC1 := ENDOF
1 MISC + MISC :=
ENDCASE
LOOP
CR CR
CR ." MISCO1 " MISCO1 . CR
CR ." MISCO5 " MISCO5 . CR
CR ." MISC1 " MISC1 . CR
CR ." MISC " MISC . CR

```
\[
\begin{aligned}
& \text { Appendix } \text { L } \\
& \text { Signal-to-№ise Ratios for } \\
& \text { Corrrelation Noise with Different } \\
& \text { Decision Sequences (DS) and } \\
& \text { Length Proportions (LP) }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline D S & LP & CL & C C & H T & FFT \\
\hline 2 & 1 x & 477 & - & - & \(3.4{ }^{*}\) \\
\hline 2 & 2 x & 477 & 2.0 & 2.8 & 4.0 \\
\hline 2 & 3 x & 477 & 4.0 & 3.5 & - \\
\hline 2 & 4 x & 477 & 4.5 & 3.7 & 5.0 \\
\hline 2 & 8 x & 477 & 6.7 & 4.2 & 5.0 \\
\hline 2 & 16 x & 477 & 13.3 & 7.0 & - \\
\hline 3 & 1 x & 477 & - & - & 2.6 * \\
\hline 3 & 2 x & 477 & 1.8 & 3.0 & 4.4 \\
\hline 3 & 3 x & 477 & 3.6 & 5.0 & . 4 \\
\hline 3 & 4 x & 477 & 4.5 & 5.5 & 8.0 \\
\hline 3 & 8 x & 477 & 6.7 & 11.0 & 8. 0 \\
\hline 3 & 16 x & 477 & 10.5 & 13.7 & - \\
\hline 8 & 2 x & 477 & 2.8 & 4.0 & 3.7 \\
\hline 8 & 4 x & 477 & 5.5 & 5.3 & 6.5 \\
\hline 8 & 8 x & 477 & 5.7 & 5.8 & . 5 \\
\hline 8 & 16 x & 477 & 6.7 & . 8 & - \\
\hline
\end{tabular}

\section*{Appendix \(M\) \\ Signal-to Corrrelation Noise with Different Decision Sequences (DS) Single Chromatogram Lengths (CL) and Length Proportions (LP)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline D S & LP & EL & C L & C C & HT & FFT \\
\hline 1 & 2 x & 64 & 32 & 1.3 & 1.5 & 1.6 \\
\hline 1 & 3 x & 96 & 32 & 1.5 & 1. 6 & 1.6 \\
\hline 1 & 4 x & 128 & 32 & 2.0 & 2.0 & 2.9 \\
\hline 1 & 8 x & 256 & 32 & 2.4 & 2.8 & 3. 3 \\
\hline 1 & 16 x & 512 & 32 & 3.0 & 3.7 & 5.0 \\
\hline 9 & 4 x & 512 & 128 & 2.4 & 2.5 & 3.6 \\
\hline 9 & 8 x & 1024 & 128 & 2.8 & 3.2 & 4.7 \\
\hline 3 & 1 x & 477 & 477 & - & - & 2.6 * \\
\hline 3 & 2 x & 954 & 477 & 1.8 & 3.0 & 4.4 \\
\hline 3 & 3 x & 1431 & 477 & 3.6 & 5.0 & 4.4 \\
\hline 3 & 4 x & 1908 & 477 & 4.5 & 5.5 & 8.0 \\
\hline 3 & 8 x & 3816 & 477 & 6.7 & 11.0 & 8.0 \\
\hline 3 & 16 x & 7632 & 477 & 10.5 & 13.7 & - \\
\hline
\end{tabular}

\author{
Appendix \(\underline{N}\) \\ Signal-to-Noise Ratios for Corrrelation Noise with Different Decision Sequences (DS)
}
\begin{tabular}{llllll} 
DS & LP & CL & CC & HT & FFT \\
2 & & & & & \\
3 & 4 x & 477 & 4.5 & 3.7 & 5.0 \\
4 & 4 x & 477 & 477 & 4.5 & 5.5 \\
5 & 4 x & 477 & 4.0 & 4.0 & 8.0 \\
6 & 4 x & 477 & 4.2 & 4.8 & 7.9 \\
7 & 4 x & 477 & 5.0 & 4.0 & 5.5 \\
8 & 4 x & 477 & 5.5 & 5.3 & 6.5 \\
AVE & & & 4.00 & 4.43 & 6.59
\end{tabular}

\title{
Appendix 0 \\ Signal-to-Noise Ratios for \\ White Noise with Different \\ Noisse Magnitudes (NM)
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DS} & \multicolumn{7}{|c|}{ADDED} \\
\hline & LP & CL & NM & S/N & CC & HT & FFT \\
\hline 8 & 4 x & 477 & 0 & 0.0 & 5.5 & 5.3 & 6.5 \\
\hline 8 & 4 x & 477 & 1 & 0.5 & 4.0 & 3.7 & 4.8 \\
\hline 8 & 4x & 477 & 2 & 0.25 & 2.8 & 2.8 & 3.7 \\
\hline 8 & 4 x & 477 & 4 & 0.125 & 1.3 & 1.6 & 1. 5 \\
\hline 8 & 4 x & 477 & 4 & 0.125 & & 1.1* & 1.3* \\
\hline 8 & 4 x & 477 & 10 & 0.05 & * & * & * \\
\hline 8 & 4 x & 477 & 2 & 0.25 & 3.4 & 3.5 & - \\
\hline 8 & 4 x & 477 & 4 & 0.125 & 1.7 & 2.3 & - \\
\hline 8 & 16 x & 477 & 1 & 0.5 & 5.0 & - & - \\
\hline 8 & 16 x & 477 & 2 & 0.25 & 3.6 & - & - \\
\hline 8 & 16 x & 477 & 4 & 0.125 & 2.0 & - & - \\
\hline
\end{tabular}
indicates chromatogram looks like noise.
Note: each line represents a different set of random numbers used.
```

