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ABSTRACT 
 
 

Empirical Evaluation of Route-Based Landscape Experiences 
 
 

by 
 
 

Garet Openshaw, Master of Landscape Architecture and Environmental Planning 
 
 

Major Professor: Brent Chamberlain, Ph.D. 
Department: Landscape Architecture and Environmental Planning 

 
 

Methods of landscape visual analysis have evolved significantly due to the 

development of new methods and technology. In the assessment of visual quality, 

viewsheds remain the most common form of geospatial analysis. However, this method 

only provides a partial assessment, missing valuable information that informs planning 

decisions. This thesis explores an alternative visual analysis method, visual magnitude, 

through systematic modeling (Chapter 2) and empirical validation of the efficacy of this 

method (Chapter 3). 

Chapter 2 asks, is there an optimal sampling rate of viewpoints along a route that 

can increase efficiency in running a visual magnitude analysis and still accurately 

represent the environment? Through the use of digital elevation models and three 

separate routes we tested multiple viewpoint sampling distances from 1 to 100-meters 

along our route. The resulting visual magnitude analyses were then compared in excel to 

analyze the trade-off between our sampling distance and amount of data lost. We found 

for visually sensitive areas, a 30-meter sampling distance produced optimal results.  

Chapter 3 encompasses an application and visual analysis of routes with varying 
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scenic quality. In this study we used the optimal sampling distance of 30-meters to 

extract visual magnitude values for 15 different environments. These values are then 

compared to scenic rating values that we collected though a survey where participants 

saw videos of the same 15 envrionments and rated their scenic quality. We saw results 

that indicate this tool strongly correlated to our survey participants scenic quality ratings, 

indicating that this tool can be used to understand and predict preferred visual landscape 

experiences within Utah. Additionally, we saw indications that topography, individual 

and demographic variables all play a significant role in how survey participants rated the 

scenic quality of road-based experiences.  

From this entire study, we can suggest to professionals that they can run these 

types of visual analyses in a more efficient way. With the results from optimizing the 

viewpoint sampling rate and the relationship between scenic quality ratings and the VM 

tool, this tool can be used as a proxy to begin to understand how people view the quality 

of landscapes they are experiencing. 

  

 
 

(139 Pages) 
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PUBLIC ABSTRACT 
 
 

Empirical Evaluation of Route-Based Landscape Experiences 
 
 

by 
 
 

Garet Openshaw 
 
 

This thesis explores a method of visual analysis that aims to create a more in-

depth understanding of how individuals see and visually perceive their environment. Here 

we explore a geospatial tool, called Visual Magnitude, to assess road-based experiences. 

We aimed to provide evidence of a relationship between the tool and scenic rating 

preferences from a survey. The content of this thesis is split between two articles. The 

first article, contained in Chapter 2, focuses on optimizing the selection of viewpoints 

along route-based envrionments. In this study we ask the question is there an optimal 

sampling rate of viewpoints along a route that can increase efficency in running a visual 

magnitude analysis and still represent accurately represent the envrionment. We found 

that for visually sensitive areas, a 30-meter sampling distance produced optimal results. 

For other landscapes a 50-meter sampling distance poduced resonable results in both 

sampling points and retained raster area. 

The second article, contained in Chapter 3, is an applied visual magnitude study 

where we use the optimal sampling distance of 30-meters to extract visual magnitude 

values for 15 different envrionments. These values are then compared to scenic rating 

values that we collected though a survey where participants saw videos of the same 15 

envrionments and rated their scenic quailty. By doing this we were able to provide 
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emperical evidence that the visual magnitude tool can be a way to predict best visual 

experiences within Utah. 

 With the results from these studies we can make suggestions to professionals on 

how they can better use this GIS tool. These suggestions include sampling distances for 

multiple envrionments and the potential for this tool to be used as a poxy when 

attempting to interpret how landscapes observers feel about them. This additional 

infromation will help planners in understanding and making decisions more informed 

planning decisions along roadways and surrounding areas that have the highest potential 

impact on observers. By using this tool planners can assess where those areas are and the 

amount of impact that positive or negitive planning decisions will have on observers.  
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CHAPTER 1 
 

INTRODUCTION 
 
 

Our world is experienced in a dynamic and ever changing fashion, yet when 

assessing visual quality, most attempts still focus on static assessments. With 

advancements in technology we are able to more easily close the gap between these 

circumstaces. This research explores using the ArcPro GIS Visual Magnitude Plugin to 

simulate a route-based perspective as a means to a evaluate the visual experience an 

observers has as they move through a space. This is one of many new tools being 

developed to help planners evaluate landscapes more effectivly.  

Visual analysis is an important field within the realm of landscape architecture 

and planning because of how heavily people rely on visual information for judgements of 

scenic quality, safety and decision making. Understanding the visual impact of 

development of cities, roadways, scenic byways and even conservation is required by law 

from the federal government though the NEPA Act of 1970. This act requires companies 

to analyse the potential effects that projects would have on the environment, including 

visual effects. However, these analyses are only as good as the tools that they are 

conducted with. Most visual analyses are conducted use singular viewpoints in selected 

areas, but some installations require a more in-depth analysis that is based on a route type 

approach (e.g., roadways, scenic byways, transmission lines). Large scale planning, 

which visual magnitude was first adapted for by the Forest Service (Iverson, 1985), needs 

need sampling points that provide a more sequential and holistic picture of the 

environment. Even though visual magnitude provides a deeper insight of visual analysis 
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than the viewshed, there are no examples of studies that explore sampling distances and 

what the most representative measure could be. A study like this would help provide the 

beginning of a basis for professionals to expand and conduct visual analyses in a dynamic 

fashion in spaces that are meant to be experienced dynamically. 

Once we knew how sampling should be approached for these dynamic 

experiences, we wondered about the validity of the results of the visual magnitude tool 

expressing how people were experiencing these dynamic spaces. Again, there was very 

little basis to build on that looked at route-based experiences. However, with increasing 

importance on visual quality of environments being pushed by expansion, continuing 

development, and renewable energy projects more tools and expertise in this field is 

going to be in an ever-increasing demand. 

A viewshed analysis, which is the most used visual analysis by planners 

(Davidson et al., 1993), only provides information about areas on the landscape that are 

either visible or not. This rudimentary binary outcome does not offer a means to assess 

nuances about how individuals perceive different qualities of the landscape, including the 

topographic relationship of the land to the viewer. Nevertheless, we see these analyses 

being frequently used in instances of high visual impact by professionals (Barendse et al., 

2016; de Almeida Rodrigues et al., 2018; Poudyal et al., 2010; Sullivan et al., 2012). 

There have been numerous developments of alternatives to the binary viewshed 

that have explored areas like assessment of ocean blue space (Qiang et al., 2019), 

visualscapes (Llobera, 2003), visual exposure (Domingo-Santos et al., 2011), cumulative 

viewsheds (Wheatley, 1995), archaeological elements (Čučković, 2015), wind 

infrastructure (Gibbons, 2015), visual pollution (Chmielewski et al., 2016), landmark 
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visibility in urban areas (Bartie et al., 2010) and work on expanded viewsheds (Fisher, 

1992, 1995). One of the older methods explored is called visual magnitude (Iverson, 

1985) from which the ArcPro GIS Visual Magnitude Plugin was adapted. While (Iverson, 

1985) provided the first application of visual magnitude to landscape assessment, its roots 

extend far earlier. In fact, early references and calculations of visual magnitude are 

demonstrated by astronomers and physicists in the 19th century (and perhaps earlier). 

They used visual magnitude to assess celestial bodies to determine distances or even ages 

of stars. Early calculations focused primarily on the magnitude of light eminating from 

stars, which provided a means to calculate distance from earth. These measures could be 

done using a range of tools, including photography to measure the amount of space (and 

light) that a celestial body reflected or produced. 

In the landscape planning application, visual magnitude provides a similar result, 

but varies in that the calculation focuses on the amount visible area of an area on the 

surface of the earth, relative to the total area visible to the human eye. The result is an 

absolute measuring, theoretically ranging from 0 (not visible) to 1 (completely occupying 

a viewer’s entire visible area). To calculate visual magnitude, slope, aspect, and distance 

relative to the viewer are used (Chamberlain & Meitner, 2013). For this study, we adopt 

the average weighted visual magnitude (Chamberlain & Meitner, 2013), which also 

considers the number of times a surface area is seen. In this calculation, the visual 

magnitude values are averaged across all viewpoints in which the area is visible. We aim 

to provide evidence that the tool providing this measure can be used to provide a deeper 

understanding of large scale and route-based visual analyses.  

The potential applications of this tool to be used as an effective proxy for 
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professionals is the basis of this thesis study. We aimed to dive deeper into the 

applications of this tool by finding the answer to two questions though two separate but 

related studies: (1) what is the trade-off between the number of sample points and the 

accuracy of the average weighted visual magnitude model, referred to hereafter as visual 

magnitude? and (2) can the visual magnitude tool inform us which scenic byways or 

other roadway environments contain the best experience for vehicle-based viewers? 

These two questions are addressed in two separate articles which are contained in 

Chapters 2 and 3 of this thesis. 

Chapter 2 consists of an article exploring the first question of viewpoint sampling 

distances and the resulting trade off in model accuracy when increasing the sampling 

distance. The article contained in this chapter was published as a peer reviewed article as 

a part of the Visual Stewardship Resource Conference in 2021, except for minor edits for 

additional clarity and some additional research that was not finished prior to the articles 

publication. This additional infromation is contained in sections 3.4 and 3.5 and helps to 

enrich the initial study by looking at an additional area of differing topography and 

adding additional measurements at a 1-meter sampling distance for each environment. 

Chapter 3 takes results from the previous chapter and uses it in an applied visual 

analysis study. In this article we collected visual magnitude values pulled from 15 

different envrionments and explored how they relate to scenic ratings. Scenic ratings 

were collected though a survey published at Utah State University through Quadratics 

software collecting scenic ratings for the 15 previously mentioned envrionments as well 

as some independt infromation to assess the influece of outside variables on their ratings. 

This study has yet to be published. 
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CHAPTER 2 
 

OPTIMIZING VIEWPOINT SELECTION FOR ROUTE-BASED EXPERIENCES: 

FINDING A THRESHOLD BETWEEN SAMPLING RATE AND MODEL 

ACCURACY1 

 
Abstract 

 
Viewsheds and visual analysis are critical in understanding our relationship with 

surrounding landscape, especially when experienced along a route. The presence and use 

of geospatial visual analyses techniques have existed for decades with one of the earliest 

as the viewshed analysis. There has been tremendous progress toward the optimization, 

accuracy, and techniques for these analyses. This paper is intended to further previous 

work by addressing shortfalls with the lack of empirical work conducted on viewshed 

analysis and viewpoint optimization for landscape planning, particularly focused on the 

identification of route-based experiences.  

The purpose of this study is to identify the optimal trade-off between the number 

of viewpoints needed to represent an experience (e.g., highway route) and the accuracy of 

a visual magnitude analysis, which is an extension of the standard viewshed analysis. In 

this study, we focused on exploring the trade-off functions expressed in a mountainous 

and flat environment. The study was conducted to compare the two extremes in 

topography and see if and how their differences influence the trade-off between model 

accuracy and the sampling of viewpoints along a route. 

 
1 Authors: Openshaw, Garet K., & Chamberlain, Brent C. 
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To conduct this analysis, we employed a Visual Magnitude Plugin using publicly 

available DEM and roadway data. We generated a one-mile-long segment of a route for 

each environment and systematically discretized the route by varying the sampling 

distance intervals from 10-meter to 100-meter. In addition to the different environments, 

we compared the difference between an equal interval distance and a pseudo-random 

interval. Results show a linear decrease in the correlation of the visual magnitude model, 

with minor differences between the mountainous and flat environments. Comparing a 10-

meter base sampling distance with 30-meter and 50-meters, the correlation coefficients 

were above 0.9 and 0.7, respectively. This suggests that for route-based analyses using 

visual magnitude, reducing the sampling rate can produce equivalent results with far less 

time and precision. 

Keywords: viewshed, visual magnitude, viewpoint selection, accuracy, GIS 
 
 

Introduction 

 
The presence and use of viewshed analyses in landscape assessment has existed 

for decades (O’Sullivan & Turner, 2001; Smardon et al., 1986), with a variety of research 

on the use, optimization, and limitations of viewshed conducted in the late 90’s (Fisher, 

1992, 1993, 1996). In the past couple decades, there has been a surge in extending the 

traditional binary viewshed to more nuanced forms and applications including the 

assessment of oceanic blue space (Qiang et al., 2019), visualscape (Llobera 2003), visual 

exposure (Domingo-Santos et al., 2011), cumulative viewsheds (Wheatley 1995), the 

identification of key archaeological elements (Čučković, 2015) and identifying the 

impacts to housing prices from wind energy infrastructure (Gibbons, 2015). 
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There have also been significant efforts to optimize viewsheds in a geographic 

information system to improve the reliability of the analysis, the sampling techniques, 

and the speed with which the analysis completed. For instance, Starek et al. (2020) used a 

simulated annealing technique to identify optimal locations for locating viewsheds to 

maximize the visible area using laser scans. Earlier, Gao et al (2011) and Cauchi-

Saunders (2015) developed optimal approaches to viewsheds using Graphics Processing 

Units (GPU) with dramatic improvements over CPU-based algorithms. Andrade et al. 

(2011) has also provided a more efficient CPU-based algorithm.  

Approaches to improved efficiency can greatly reduce the amount of time it takes 

to render a specific analysis. However, reducing the time it takes to conduct the analysis 

is only one part of the equation – the other is selecting which viewpoints should be a part 

of the analysis. Within the literature, there seems to be less of a focus on selecting 

optimal and appropriate viewpoints for landscape planning, instead there tends to be a 

focus on either the optimal number of viewpoints for a large area for maximum coverage 

or in selecting representative key observation points (KOPs). For instance, Shi and Xue 

(2016) provide a technique for reducing the number of viewpoints for the maximum 

coverage over an entire area (total viewshed), assuming that peaks are the ideal 

viewpoints for maximum coverage. Likewise, Wang and Dou (2019) take a similar 

approach toward applications where total viewshed is the key issue. However, there is 

limited research on systematic techniques, particularly those assessed with empirical field 

that identifying how to select optimal key observation points, with a recent exception by 

Palmer (2019) that addresses this shortfall. These limitations are compounded by 

Chamberlain and Meitner (2013) who argue that a singular KOP may not be adequate for 
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representing landscapes that are experienced as a journey (route-based) rather than 

overrepresenting singular observation points.  

Even though there has been progress with variations of different viewshed 

analysis developed, single KOPs with a standard viewshed remains a central aspect of 

visual quality assessment. Unfortunately, there are plenty of indications that show how 

standard, binary viewsheds lack important information about the way we perceive 

landscapes (Chamberlain & Meitner, 2013; Ervin & Steinitz, 2003).Simply put, while the 

viewshed provides information on visibility, this is only a superficial layer of information 

that is not thorough enough. The result of this lack of depth is being felt by professionals 

as they are trying to fill that gap though the use of other tools that explore results that are 

beyond a simple binary output as mentioned earlier.  

Unlike the viewshed which creates a basic binary raster image of what areas of 

the landscape are seen and unseen, the visual magnitude tool aims to create a measure of 

physical measure visual impact of a landscape on observers. This is accomplished though 

calculations that determine the amount of space that an area takes up in an observer’s 

visual field. This visual impact index is created from measurements of slope, aspect, 

distance, and the number of times seen. The added depth of information from this 

analysis highlights landscape areas that are highly susceptible to impact from alteration 

and visual disruption. By isolating these areas in analyses professionals can make a case 

for the protection of these areas from a visual standpoint and have better data to inform 

land management decisions from a visual standpoint.  

The inspiration for this paper stems from: the lack of empirical work conducted 

on viewpoint optimization for landscape planning, particularly focused on the 
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identification of route-based experiences. To address these shortfalls, we asked two key 

research questions. (1) What is the trade-off between the number of sample points and the 

accuracy of the visual magnitude model? (2) Further, can we identify an optimal trade-off 

between the number of viewpoints needed to represent an experience and the accuracy of 

visual magnitude analysis? To answer these questions, we developed a systematic 

approach toward analyzing visual magnitude models in two distinct landscapes, using 

various sampling techniques with results highlighting the differences and errors between 

the sampling techniques. 

 
Methods 

 
The objectives for the study are to: (1) develop a repeatable process that can be 

validated further by other researchers, (2) assess the effectiveness of a random versus 

interval viewpoint sampling technique, and (3) compare outcomes of a mountainous and 

flat landscape. Figure 2.1 gives an overview of the process we used to conduct this study. 

This process was utilized for both terrain types, as well as both viewpoint reduction 

methods. The process included the following steps: (1) data collection, (2) site and route  

 
Figure 2.1 

Methodological Process Overview 
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selection, (3) creation of viewpoint measures, (4) running the Visual Magnitude Plugin 

tool, (5) image analysis and correlation, and (6) creation of graphs for correlation and 

other analysis. 

 
Data Collection 

All data obtained for this study were retrieved from the Utah Automated 

Geographic Reference Center (AGRC). These included transportation data for Roads and 

Highways and digital elevation models (DEM) for terrain. ESRI ArcPro software package 

was used to manipulate and analyse the geospatial data. 

 
Site and Route Selection  

The selection of sites was guided by the authors’ knowledge of the study’s region, 

which consists of two large mountain ranges and an extensive valley. To minimize 

potential impacts from urban development, sites were selected from places that fit the 

topographic demands and are designated for minimal infrastructure development. Figure 

2.2 shows the specific site and contact of the environment surrounding the route.  

The first site selected, Logan Canyon, is within the Cache National Forest just 

east of Logan, UT and is very mountainous area. The other site is along the Utah highway 

SR30 just outside of Benson, UT, where there is a large wetland on either side of the 

roadway and near popular local and regional recreational areas. Figure 2.3 shows the 

images along the selected routes and gives visual context of the environment that 

observers experience. 
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Figure 2.2  

Mountainous (left) and Flat (right) Study Site Overview 

 

provided sufficient terrain for our flat environment site. Both selected routes are located 

A 1-mile-long route was selected from each site to compare and contrast the differences 

of the effects of topographical properties on visual magnitude. 

 
Generating Viewpoints  
 

A visual magnitude analysis was run across various sampling intervals, and with 

two sampling techniques: equal interval and randomized (explained in detail later). 

Following Chamberlain and Meitner (2013) we use a 10-meter resolution DEM with 10-

meter sample distance along each route section. The initial 10-meter sampling distance 

was used as a base to create the remaining sampling variations. Additional viewpoint 

intervals along the route include 20, 30, 40, 50, and 100 meters. After selecting our 

created route, we used the Generate Points tool in ESRI’s ArcPro to create points at a 10-

meter distance. We then built a model to select the sample interval for the equal interval  



14 

Figure 2.3 
 
Site Images Along Our Study Route Giving Visual Context of the Surrounding 
Environments 

 

Note. The first image (top) shows the mountainous environment which is in Logan Canyon just east of 
Logan, UT, and the other image (bottom) showcases the flat environment. 
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technique and used a random number generator to select five different viewpoint samples 

for the randomize sampling technique. The random generator assigned a percentage to 

each viewpoint so that the sampling frequency (e.g., 50% at 20m, 25% at 40m) selected 

similar number of viewpoints relative to the equal interval stratification. 

This resulted in 168 viewpoints at 10-meter distance, and over 84 viewpoints at 

20-meter distance in our mountain environment. In the equal interval sample these 

viewpoints were spread every 20-meters, while for the random sample we selected the 

same number of viewpoints scattered throughout the 10-meter distances (resulting in 

some gaps of greater than 20-meters). Generating viewpoints at these distances will help 

us gather an understanding of the degree that we can see the surrounding environment 

when viewpoints are generated in a randomized fashion along a route. 

 
Running the Visual Magnitude Tool 
 

The Visual Magnitude Plugin (Chamberlain & Cook, 2019) was used to conduct 

the analyses. The plugin requires, at minimum, two input datasets: DEM and viewpoints. 

The DEM was clipped to a 3-kilometer site, which provides a reasonable radius around 

the one-mile route to ensure a high variety of visual magnitude values. Each of the 

different combinations of viewpoint sample techniques and intervals were conducted 

separately, and the procession time foreach was recorded. The output of the analysis is a 

single, 1-band, floating point tiff file. 

 
Statistical Analyses 
  

The Visual Magnitude Plugin produces an objective normalized value from 0 to 1 
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for each cell of the raster output, making comparisons somewhat straight-forward. For 

this study, efforts focused on conducting a Pearson correlation coefficient to identify how 

each of the different interval and sampling techniques compared to one another. 

However, before this analysis could be produced, data needed to be adjusted because of 

the differences in the total visible area (some intervals resulted in more visible area than 

others). To accomplish this, we built an analysis mask that combined all visual magnitude 

outputs into one raster where there were no null values in one or more outputs (a null 

value indicates not visible and cannot be analyzed in a coefficient). The mask was used to 

extract the visual magnitude values for each visible cell across all analyses, ensuring that 

the same cell was being compared across outputs. To conduct Pearson correlation, each 

raster cell value was extracted into a one-dimensional dataset and analyzed. Additionally, 

we noted the total missing values (not part of the mask contained within the 3-kilometer 

site) for each analysis that were not part of the base, 10-meter interval. These were 

included as error of the difference between total visible area though the percent of land 

area that was left between each of the rasters. The combination of the Pearson correlation 

and the error provides an effectiveness snapshot of each different sampling technique.  

 
Results 

 
All statistical data were analyzed in MS Excel, where we compared the number of 

viewpoints, processing time, and the total area percentage error, with accompanied 

graphs. Additionally, all maps developed were conducted using ESRI ArcPro. These 

results are provided below for each of the different study sites. Correlations are reported 

as positive (they are actually a negative relationship between the two variables studied). 
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Mountainous Environment Interval Results  
 

Figure 2.4 showcases the total visual magnitude for each of the equal interval 

analysis. The one-mile route is presented, but the scale of the image is too small for the 

sampling interval to be noticed, except for the 100-meter condition. The same legend was 

used to produce the output, resulting in an expected shift from the extent to which high 

values and low values are represented with each interval. This is expected because with 

greater number of viewpoints, the higher the visual magnitude values for each cell will 

become (increasing the number of times it is seen from each sampling point) relative to 

the lower sampling interval using the same legend. 

 
Figure 2.4 

Mountainous: Equal Interval Viewpoint Reduction Method Visual Magnitude Outputs 
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The visualization of the data appears to show a difference in the results according 

to the legend, with higher impacts being represented by the smaller sampling distance. 

However, the key question for this paper focuses on the relative differences, as measured 

through the correlation coefficient as the legends may not best represent the full story. 

Figure 2.5 shows the correlation between our interval viewpoints as we moved through 

our interval distance reduction process. As indicated, there is a gradual reduction in 

correlation between our 10-meter measure and all other resulting measures. The R2 value, 

which is being used to analyze the strength of our models, is at 0.9884, indicating a very 

strong linear relationship as we reduce the number of viewpoints. The overall trend is 

negative and linear, providing a strong indication of predictability for how a reduction in  

 
Figure 2.5 

Correlation Graph of Mountainous Environment Equal Interval Viewpoint Reduction 
Method 
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sampling will impact the result. The slope is y = -0.0046x + 1.0292, or roughly for every 

1-meter increase in sampling distance, a correlation reduction of just over 0.31%. 

Table 2.1 provides the difference for each of the sample equal interval distances, 

relative to the 10-meter base analysis. This table indicates the accuracy of the visible 

area, using our 10-meter sampling model as a base and assuming that it is accurate, 

identifying how much less of the area was visible because of increased sampling distance. 

Here the loss is about 0.06% of total visible area per 1-meter increase in sampling 

distance. 

 

Table 2.1 
 
Mountainous Environment Equal Interval Viewpoint Reduction Method Results 
 

VP distance VM raster correlation % of total area # of VP 
10 M 1.00 100 168 
20 M 0.94 98 84 
30 M 0.90 97 56 
40 M 0.84 97 42 
50 M 0.77 95 33 
100 M 0.58 94 17 

 
 
 
Mountainous Environment Random Results  

Figure 2.6 shows the results from the random viewpoint reduction method 

resulting in variation of correlation values between 5 to 10% for each viewpoint distance 

sampling interval. Each dot on the graph corresponds to one of the random viewpoints 

selection sets. Overall, the randomized viewpoint routes returned correlation values lower 
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Figure 2.6 

Correlation Graph Mountainous Environment Random Viewpoint Reduction Method 

 

 
than their corresponding interval measures. The correlation between our randomized 

measures has a R2 value of .9546, which remains high, but the slope is nearly double that 

of the equal interval technique at a roughly 0.065% loss of correlation per meter increase 

in sampling distance. 

Table 2.2 provides the error difference for each of the sampling distances. The 

correlation differs more substantially than the equal interval, even for the best of the five 

randomly selected samples for each interval. The difference in total area is similar to the 

equal interval sampling, with some of the randomly generated samples performing 

slightly better and some slightly worse. Still the total area difference is negligible. 

 
Flat Environment Interval Results  

Results from the equal interval flat environment demonstrate a similar overall 

negative trend as we reduce our viewpoints from our 10-meter measure to 100-meter.  
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Table 2.2 
 
Mountainous Environment Randomized Reduction Method Results 
 

Set VP distance VM raster correlation % of total area 
Set 1 20 M .90 to .85 99% to 97% 
Set 2 30 M .81 to .76 99% to 96% 
Set 3 50 M .65 to .57 95% to 93% 

 

Figure 2.7 showcases the relative change in visual magnitude value for the study area. 

Here there is a similar visual effect as in Figure 2.4. In Figure 2.8 the correlation values 

remain high for most of the loss in sampling distance, with roughly a 0.41% reduction in 

correlation for each meter increase in sampling distance. The R2 value is 0.9838, also 

suggesting a high degree of predicted correlation loss over distance.  

 
Figure 2.7 
 
Flat: Equal Interval Viewpoint Reduction Method Visual Magnitude Outputs 
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Figure 2.8 
 
Correlation for Flat Environment Equal Interval Viewpoint Reduction Method 
 

 

Table 2.3 is also expectedly similar to Table 2.1, with the loss in total area being 

relatively minor as the sampling distance increases. In this study area, the total area loss 

is actually less than within the mountainous study area. 

 
Table 2.3 
 
Flat Environment Equal Interval Viewpoint Reduction Method Results 
 

VP distance VM raster correlation % of total area # of VP 

10 M 1.00 100 186 

20 M 0.90 99 94 

30 M 0.88 98 63 

40 M 0.81 98 47 

50 M 0.74 97 38 

100 M 0.52 95 19 
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Hilly Environment Interval Results  

This is an additional site that was selected for this study but not included in the 

published paper. This area is a hilly environment located just south of Collinson, UT. The 

surrounding terrain is filled with undulating hills and a river section that cuts through the 

hills to the north of our selected route. This area is mostly farmland but with the presence 

of the river the area also attracts recreationists. This additional area provided us with a 

topographical middle ground between the Mountainous and Flat sites. 

The results seen from this area show an expected negative trend in correlation as 

we decrease the number of viewpoints. Figure 2.9 showcases this trend for the hilly study 

area. In Figure 2.10 the correlation values remained high again, with a resulting R2 = 0.91 

indicating a very strong relationship. 

 
Figure 2.9 
 
Hilly: Equal Interval Viewpoint Reduction Method Visual Magnitude Outputs 



24 

Figure 2.10  
 
Correlation for Hilly Environment Equal Interval Viewpoint Reduction Method 

 

Table 2.4 shows a continuing trend previously seen our other two areas. For each 

interval, there is average of 5% reduction of the correlation coefficient for every 10m 

interval increase. However, there is very little loss of total area seen, averaging less than 

0.5% per 10-meter interval increase. Around our recommended sampling distance of 30 

meters, we see a correlation of .89 with only 1% loss of total area seen. These results 

correspond with results from the other two environments. 

 
Table 2.4 
 
Hilly: Equal Interval Viewpoint Reduction Method Visual Magnitude Outputs 
 

VP distance VM raster correlation % of total area # of VP 
10 M 1.00 100 159 
20 M 0.92 99 80 
30 M 0.89 99 54 
40 M 0.81 98 40 
50 M 0.73 98 32 
100 M 0.53 96 16 

R² = 0.9801
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One Meter Measures 
 
 The following figures were created after doing an additional sampling distance for 

every 1-meter. After adding this additional measure to our Pearson correlation analysis, 

the data maintains a strong R2 values for all environments. With the addition of another 

sampling distance there is an increase in all the R2 values from changing the base 

sampling distance from 10-meters to every 1-meter shown in Table 2.5. Figures 2.11- 

2.13 show the change in correlation between each environment for every sampling 

distance. 

 
Table 2.5 
 
Hilly: Equal Interval Viewpoint Reduction Method Visual Magnitude Outputs 
 

Environments R value before 1 meter R value after 1 meter 
Mountainous .9546 .9918 
Hilly .9801 .9846 
Flat .9838 .9863 

 
 
Figure 2.11 
 
Mountain Environment Correlation Analysis with 1-Meter Sampling Distance 
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Figure 2.12 
 
Hilly Environment Correlation Analysis with 1-Meter Sampling Distance 
 

 
 
Figure 2.13 
 
Flat Environment Correlation Analysis with 1-Meter Sampling Distance 
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Discussion 

 
For this paper we sought to provide empirical evidence to address unanswered 

optimization questions for site selection of route-based experiences. We set out to 

discover the relationship between the number of sample points and the accuracy of the 

visual magnitude model, as well as the optimal point at which this trade-off could be 

exploited. The following is a discussion on the outcomes of our findings and 

recommendations for future research. 

When we set out to analyze the differences in sampling techniques (equal interval 

versus random), we had not anticipated a result where all samples performed worse than 

the equal interval technique. We suspect running additional random samples could 

produce at least one higher correlation than the equal interval but doing so negates the 

usefulness in practice due to the amount of time needed to find a high preforming random 

sample of viewpoints. The substantial variation of correlation with the random sample is 

not worth exploration. Our recommendation is to maintain and equal interval 

stratification of viewpoints along a route.  

With the random versus equal interval sampling analysis completed, we moved 

toward identifying the extent to which terrain would alter the outcome. The selection of 

two very distinct landscapes provided a means to compare differences and perhaps come 

away with reasonable recommendation for the sampling frequency. As indicated the 

overall correlation and R2 values are high across both study areas. The Pearson 

correlation reduction is linear within the sampling distances analyzed, thought this would 

likely fall off dramatically. Extending this sampling distance could be an interesting 
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research exercise, but from a localized planning perspective it is likely wise to maintain a 

higher correlation coefficient greater than the 100-meter sampling distance. 

The primary goal of this research endeavor was to identify if there was an optimal 

point between the trade-off of viewpoint sampling distance and the correlation of visual 

magnitude values. The data demonstrate a negative linear relationship between these two 

variables, making the recommendation slightly harder than if there was some inverted 

logarithmic relationship where there was a clearer indication of a tipping point. So, 

before making a blanket recommendation, we explore the relevant context from which to 

make our claim. Our data analyzed the 10-meter interval as the base. While this is an 

arbitrary number it represents an observation every half-second for someone driving 45 

MPH along our routes (similar to speed limits). Thus, it is expected the frequency of this 

sampling rate is likely to encompass the range of visual diversity an individual would see 

along this route. Further, 10 meters was also the resolution of the digital elevation model. 

For future analyses where the experience may be slower, it would be worth considering 

analyses with sampling distances as smaller intervals. For instance, if this type of analysis 

were to be conducted as a hiking trail, a 1-meter interval would be appropriate as a base 

comparison because this is representative of a walking pace. Nevertheless, the scenic and 

landscape experience from our roadway example provides some indication that 

correlation coefficient does not drop off rapidly. Even adding the additional results from 

the hilly environment and the 1-meter measures, our findings were consistent across both 

of the other two environments.  

To interpret findings, we conducted a Pearson Correlation r and followed 

recommendations from various fields that provide insight into the meaning of the results. 
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. The results provide a correlation of the average visual magnitude values across all 

viewpoints, essentially comparing the topographical response to viewpoint sampling 

distances. So, while these data sit squarely within the physical sciences, the interpretation 

of these data fall within the realm of psychological sciences because we are most 

interested in how individuals perceive topography. To this end, we recognize there are 

different interpretations between the physical and social sciences regarding Pearson’s r. 

In social sciences, interpretation of r is somewhat well defined, with 0.9 said to be very 

high (e.g., Mukaka, 2012), 0.7 is strong or high positive (e.g., Ratner, 2019). However, 

when considering these data as test-retest reliability (Koo & Li, 2016), the interpretation 

of correlation changes, with 0.5 – 0.75 as moderate or reliability, 0.75 – 0.9 as good 

reliability, and 0.9 or greater as excellent reliability. However, a test-retest reliability 

study should be conducted with comparable sampling frequency across different times or 

individual samples. In our application where values are averaged across samples, this is 

not a conventional test of reliability. 

Based on these interpretations we make two recommendations (here we assume a 

large area visual analysis). If the environment is highly sensitive to visual impacts, aim 

for a 30-meter interval (near 0.9 correlation), while for other landscapes, a 50-meter 

interval seems reasonable (near 0.7 correlation). Both substantially reduces the number of 

our viewpoints by 66% (30-meter) and 80% (50-meter), while balancing both the 

interpretation of social science correlation and reliability benchmarks. Further, it should 

be noted that these sampling distances also maintains the total area error of 96%, 

meaning that only 4% of area is not visible when sampled at 50-meters, compared to 10-

meters. This is likely of minimal concern, because the lost areas of visibility tend to be 
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skewed toward further distances, which individually have a much lower visual 

magnitude.  

Until a new optimization technique for selecting viewpoints along a route 

emerges, we believe an equal interval sampling technique will provide consistent and 

accurate results across a range of landscapes. We do see some opportunities to refine and 

enrich this study. These include increasing the variety of environments, and differing 

terrains, including a hilly environment for medium sized elevation change and urban 

environment to evaluate the influence of the built environment. We would also like to see 

additional measures of viewpoints explored. A range of greater than 3-kilometer could be 

useful to explore for open expansive environments. Additionally, we are curious the 

extent to which correlation changes most rapidly at various distances away around the 

route. Could it be that viewpoint selection could be optimized for different distances 

where visual features or impacts may be most readily observed? Further, how might these 

results be modified using different raster resolutions for the digital elevation model? To 

address these questions, we recommend further analysis into a systematic comparison of 

viewpoint sampling, raster resolution and analyses that consider correlations, where 

distance may be considered a covariate. For now, this research offers provides a 

foundation from which these additional explorations could be produced. There may 

certainly be more optimal approaches to route-based viewpoint selection, but a one-size-

fits all optimization could be challenging given the variety of localized conditions. 

 
Conclusion 

 

This study was created to help professionals process visual impact analyses more 
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efficiently for route-based conditions. Additionally, the study aimed to identify the extent 

to which accuracy of a visual magnitude model altered based on sampling distances for 

viewpoints along the route. This study was conducted in two distinct landscapes: 

mountainous and flat wetland areas. We created a systematic way to analyze how these 

environments impacted the outcome and the role of different sampling techniques. The 

analysis was conducted using a 10-meter DEM (publicly available data) and roads. Our 

findings suggest that 30-meters is an ideal sampling distance interval for highly sensitive 

environments, whereas 50-meter still produces a strongly correlated result for other 

landscapes. These recommendations establish a baseline, whereby future empirical 

studies can begin. We have identified the trade-off between the number of viewpoints 

being used along a highway route and the accuracy of the visual magnitude tool outputs. 

The result of this study carries promising results for the field of visual analysis and with 

the exploration of other environments, data resolutions and other variables mentioned in 

the discussion section the necessary input data can further optimized. 
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CHAPTER 3  

PREDICTING SCENIC QUALITY OF UTAH ROADS 
 
 

Abstract 

 
In this study we investigate whether visual magnitude metrics can predict scenic 

quality ratings. Our results indicate a statistically significant, strong correlation between 

these measures. For each site, we produced a skewness metric that evaluated the 

distribution of visual magnitude values across the visual extent of each drive. Drives that 

were skewed to a higher number of very small visual magnitude values predicted lower 

scenic quality compared with drives that were less skewed. The less skewed the visual 

magnitude analysis and wider the distribution of the standard deviation indicated higher 

ratings, with higher standard deviation providing the strongest relationship to scenic 

ratings. Additional analyses were conducted, including reviewing the relationship of 

different individual demographic and experiential characteristics. Results indicated 

differences in gender and age, with women and younger participants giving scenic quality 

ratings that were lower overall compared to other participants. With these results we have 

a greater understanding of the potential applications of the VM tool to conduct dynamic 

impact analysis of environments in a more detailed and efficient way and how this 

measure relate to how people perceive the scenic quality of environments. 

 

Keywords: visual magnitude, scenic ratings, correlation, route-based, scenic 

quality, video experience, survey 
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Introduction 

 
Spatial and visual analysis are important tools for planners in understanding and 

evaluating our surroundings. With technological advancements, these types of analyses 

often are being generated utilizing GIS computer software (Davidson et al., 1993). By 

using a viewshed analysis, which is the most common form of visual analysis (Davidson 

et al., 1993), planners can evaluate the extent of visual exposure an observer has to an 

environment. Techniques like this are often used by planners for management and 

assessment of landscapes (Daniel, 2001; Germino et al., 2001; O’Sullivan & Turner, 

2001; Palmer, 2004; Smardon et al., 1986). Information and maps generated using these 

types of geospatial analysis software is used to help planners make informed planning 

decisions. However, there are limits to the amount of data created and the extent of 

understanding that is gained from utilizing these techniques of visual analysis. This is 

primarily due to the binary nature of the returned analyses. There has been an increasing 

importance in exploring visual analysis (Gobster et al., 2019) outside of the traditionally 

used viewshed to more specific uses, including the assessment of visualscapes (Llobera, 

2003), visual exposure (Domingo-Santos et al., 2011), visual pollution (Chmielewski et 

al., 2016; De Montis & Caschili, 2012) and cumulative viewsheds (Wheatley, 1995). All 

these different visualization methods help planners gain a deeper understanding of the 

visual quality of a landscape and allow for better planning decisions.  

Many of these types of new visualization techniques and tools use specific point 

data that focuses on areas of high visual value or impact. The viewshed tool produces an 

analysis of visibility as a raster analysis. Here, the slope of each cell is calculated, relative 
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to the viewer, and any cell further away from the viewpoint must have a slope higher than 

cells closer to the viewpoint along a line of sight. If the more distant cell is determined to 

have a higher slope, it is indicated in the final viewshed with a value of one (visible). The 

viewshed tool has been used to support land management decisions, but it lacks important 

information about how viewers see the landscape. In this case, the viewshed assumes 

visibility is the same across any visible cells on the raster. Instead, there are alternative 

techniques that use the same raster analysis but provide measures of how much each cell 

is visible within an observer’s field of view. For instance, one of the alternatives to a 

binary viewshed is called visual magnitude. Visual magnitude measures and accounts for 

the visibility of each cell relative how much space that area on the landscape occupies an 

observer’s view. This providing a range from 0 (not visible) to 1 (completely occupying 

all visible area to the human eye). These measures provide a range of visibility and can 

be compared across cells and landscapes because the calculation is an absolute value. 

The first study to argue for the importance of route-based assessments using 

visual magnitude came from Brent Chamberlain in 2013, exploring a scenic area in 

British Columbia. This study focused on evaluating an experience using the Visual 

Magnitude ArcGIS Plugin (VM) tool and the different possible outputs to help inform 

landscape management decisions. The visual magnitude tool uses a combination of 

metrics including slope, aspect and number of times seen to create a visual analysis 

output that depicts the degree of impact and visibility of an environment to viewers 

(Chamberlain & Meitner, 2013). Outside of this study there has been little work done to 

empirically evaluate the efficacy of the visual magnitude tool and its analysis technique.  

This study focuses on answering the following questions: can the visual 
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magnitude tool inform us which scenic byways or other roadways which are rural or 

more natural environments contain the best experience for vehicle-based viewers and to 

what extent can an averaged visual magnitude output correlate to public scenic ratings of 

highway experiences? To answer this, we collected empirical data from ratings of rural 

roadways, including scenic byways, and correlated these with VM metrics of the same 

environments. This was done by first collecting the VM outputs of the environment and 

then creating a hyper lapse video of the same environments for rating by an audience. 

Those ratings were then compared against the VM outputs, and the extent of their 

correlation was graphed and analysed. Throughout this study we will refer to different 

sites, routes or environments that are being measured, these words are being used 

interchangeably to refer to the road and its surrounding environment. 

This study aimed to improve the understanding of how we are experiencing 

landscapes from a vehicle-based perspective, the visual impacts of an environment based 

on a route context and provide information on the extent of the visual magnitude tool to 

be able to accurately represent those environments. We can see to the extent that the 

visual magnitude tool can predict preferred exposure and scenic rating preferences for 

environments.  

 
Background and Literature Review 

 
Technology and Visual Assessments 
 

Our understanding of the world and its processes relies heavily on visual 

information. This makes sight a crucial tool in collecting information from landscapes for 

personal understanding and to inform decision making (Kaplan et al., 1998). To visualize 
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scenic quality, planners use visual analysis to help them quantify aesthetic quality of 

environments (Arriaza et al., 2004; Daniel, 2001). These visual tools assist in analysis 

and planning of environments. Most of these analyses are conducted using key 

observation points (KOPs) where certain areas of the landscape are selected to be used as 

the origin of a visual analysis to assess the visibility of a large area or selecting 

representative key observation points of visually desirable areas. This method has several 

shortcomings including providing a limited, static representation of dynamic experiences 

and overrepresenting single points (Chamberlain & Meitner, 2013). In circumstances 

where more area is included in the visual analysis, more viewpoints are needed to ensure 

adequate coverage of the entire area. Each additional viewpoint requires more than a 

trivial amount of effort, necessitating time, data preparation and computer processing for 

each analysis. This is one of the reasons KOPs are used a proxy for a broad assessment 

for continuous experiences. Alternatively, it would be useful to have a technique that 

could assess hundreds or thousands of viewpoints and simultaneously provide a metric to 

assess overall aesthetic quality. Visual magnitude, offered in (Chamberlain & Meitner, 

2013) provides this opportunity. Unfortunately, there has been no systematic 

recommendation to indicate the trade-off between how many viewpoints and the 

accuracy of the visual analysis to identify an optimal number of sampling points until our 

previous study was conducted (Openshaw & Chamberlain, 2021) or distances needed to 

represent a route-based experience.  

With the advancement of technology, visual analysis planning has shifted from 

our roots of only having photography for collecting visual information to being able to 

use geospatial software. Historically, visual assessments and visualizing changes in the 
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landscape begin with modelling and ink drawing techniques developed by the Egyptians 

and Chinese around 2500 B.C (Zube et al., 1987). These processes were developed 

further for landscape architects and planners by Humphry Repton and his creation of 

“Red Books” in the 1700s. This was a technique used by Repton where he would paint a 

landscape in its current form and then paint the landscape again with his suggested 

changes helped develop the field of scenic visualization (Raphael, 2021; Zube et al., 

1987). From there the field of visual analysis evolved significantly when cameras were 

invented. Planners began taking and analysing photographs to document landscape 

quality. Those images could then be used in public settings to gain a deeper 

understanding of preferred landscapes through ratings (DePriest, 2018; Palmer, 2004; 

Wright, 1974) but the accuracy of this method often lead to understanding of only small 

parts of the entire picture reducing the validity of their ratings of the environment that 

they were attempting to evaluate (Palmer & Hoffman, 2001). Development of computers 

and software programs once again lifted the development of visual analysis to new 

heights. With this advancement planners can now create models that allow us to have a 

deeper understanding of topography, visibility, quality, and what elements potential 

observers and users of the landscapes might experience.  

One of these commonly used visual analysis tools for planners is the Viewshed 

(Davidson et al., 1993). A viewshed analysis allows planners to identify areas that carry 

significant visual weight and allows for the mapping of areas of visual exposure 

according to a defined point that the landscape is being viewed from. Viewsheds, created 

using commercial GIS software, creates only a simple binary output (P. F. Fisher, 1996). 

A viewshed will assign the landscape a value of either one, the area is visible, or 0, the 
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area is not visible from your chosen viewpoint or KOP. The result is a geospatial raster 

image that illustrates areas that are visually exposed to viewers. This type of visual 

analysis is limited in the information that it can provide, and some experts suggest that 

using only one type of visualization method does not provide enough context to give a 

sufficient understanding of the landscape (Chamberlain & Meitner, 2013; Ervin & 

Steinitz, 2003). Many variations of non-binary analysis tools have been developed to give 

a more in depth understanding and perspective to the visual inventory and analyses 

processes to inform planning. Some examples of these tools include ocean blue space 

(Qiang et al., 2019), visualscapes (Llobera, 2003), visual exposure (Domingo-Santos et 

al., 2011), cumulative viewsheds (Wheatley, 1995), archaeological elements (Čučković, 

2015), wind infrastructure (Gibbons, 2015), visual pollution (Chmielewski et al., 2016), 

landmark visibility in urban areas (Bartie et al., 2010), and work on expanded viewsheds 

(P. F. Fisher, 1992, 1995).  

Historically visual magnitude was a measure used in Astronomy to calculate the 

visibility of stars and how faint of an object the human eye can see (Schaefer, 2000). 

However, it was realized that this method of visualization could be applicable to analyse 

the visibility of landscapes. With the development of computer-generated visual 

magnitude, the Forest Service identified it as an important tool to help them make land 

use calculations and decisions in the late 1970s although it was not documented in 

research until 1985 (Iverson, 1985). Chamberlain and Meitner (2013) proposed another 

method using this analysis technique by utilizing a specialized tool they had been 

developing for physical landscape-based impact assessments called Visual Magnitude 

(VM). This GIS plugin tool provides a unique way to assess how topography and 
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distance interact through a continuous space like a route or drive. This tool helps us to 

understand the amount of impact that the landscape visually by deriving a calculation of 

how much space (measured in pixels in images and cells in GIS raster outputs) is being 

occupied by elements or areas of the landscape in our vision throughout a route. This GIS 

tool calculates the relative distance between the viewer and a location, as well as the 

relative slope and aspect of the terrain at that location relative to the viewers angle of 

observation. Further, it includes the number of times each space is seen (Chamberlain & 

Meitner, 2013). It then generates a single value for each specific raster cell representing 

the space. The higher the value of that cell, the greater the calculated impact on an 

observer. A higher number means that the cell is closer to the viewpoint, the aspect of the 

environment is more directly facing the viewer and/or the slope is greater. All these 

factors make the amount of potential visual impact increase, but it has yet to determine 

how this technique is related to scenic quality.  

Figures 3.1 and 3.2 indicate the difference in the type of information that is being 

relayed in the same area of Logan Canyon using the same route. Figure 3.1 is a viewshed 

analysis, this analysis indicates only areas along the route that are visible. Figure 3.2 is 

our average weighted visual magnitude analysis (conducted at 30-meters) which indicates 

the amount of space each of these cells is taking up visually in the view of observers 

giving an indication of the more sensitive areas. Areas that are yellow show areas that are 

taking the highest amount of space in our visual field and have the highest degree of 

impact and black showing areas that take up the smallest amount of space but are still 

visible and contain the lowest amount of visual impact. In a ground truthing study 

conducted in 2019, it showed that the Visual Magnitude Plugin was able to accurately  
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Figure 3.1 
 
Viewshed Analysis of a Portion of Logan Canyon 
 

 

Figure 3.2 
 
Visual Magnitude Analysis of a Portion of Logan Canyon (100-meter sampling distance) 
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correlate to real word conditions when comparing the tools outputs when compared to 

photographs of the environment being studied (Chamberlain & Cook, 2019). While 

visual magnitude is only one of many tools used to assess visual quality of an area, the 

potential of this tool has yet to be explored in depth. 

 
Our Evolving Exposure to Nature 
 

How people see, understand, and interpret nature and its appeal to them has been 

a subject of research for a long time. People are drawn to places that they see as having a 

high visual value to them. There sometimes is a detachment of the understanding of beaty 

between experts and non-experts (Daniel, 2001; Zube et al., 1982) and how they interpret 

or evaluate aesthetic quality. However, many people have tried to create rating systems to 

evaluate landscape aesthetics and quality (Linton, 1968; Palmer, 2004; Wright, 1974) and 

accepted the quantification of visual quality as a measure of its resource value (Gillespie, 

1971; Linton, 1968). 

Our health behaviours are shaped by how we live (Twardzik et al., 2018). 

Exposure to natural environments offer many benefits that can increase humans’ well-

being through physical, emotional, mental and spiritual restoration, and stress recovery in 

terms of allostatic load (Haluza et al., 2014), or the cumulative burden of stress and life. 

However, with lifestyle changes, many of us are spending a significant amount of time 

away from nature. This detachment from nature has and will continue to impact our 

quality of life (QOL). However, we experience landscapes from the roadway now more 

than ever and driving for pleasure has often been one of the highest recreational activities 

in the USA (Cordell, 2008; Draper & Petty, 2001; Hallo & Manning, 2009). Even with 
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this increased travel amount we are experience a continuing detachment from nature. 

This gives us a unique opportunity to create and protect beautiful driving experiences 

(O’Neill, 2007). We utilize vehicles to help us to get from one place to another, giving us 

this opportunity to re-expose ourselves with natural environments and increase our QOL 

with the positive effects nature has on us from the roadway. This highlights the 

importance of experiences of nature that are now happening from vehicles. Traveling a 

scenic byway is one of the principle means of experiencing a linear landscape (Crafts, 

1995).  

Traveling along roadways is a unique way to experience landscapes both scenic 

and not, often at the discretion of the observer. Recognition of scenic environments and 

drives though the scenic byway system is a way that the State and Federal governments 

can increase and justify creating stronger protections for these environments and their 

resources when they have been identified as notable sites. There is a significant amount 

of land set aside for transportation purposes that takes us through a variety of scenic 

quality of environments which gives an opportunity for a variety of experiences. The 

more important sites that receive more exposure could then be a target for preservation 

policies to maintain their intrinsic values. 

 
The Scenic Byway System 
 

The scenic byway system was established beginning in 1989 with the Scenic 

Byways Act and the first report being published in 1991 (Sipes et al., 1997). Congress 

also passed the Intermodal Surface Transportation Efficiency Act (ISTEA) which helped 

to create funding for the scenic byway system (Selin & Chavez, 1995). As defined by the 
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legislation (U.S. Code, Title 23, Section 162), a “scenic byway” is recognized as 

“roadways having outstanding scenic, historic, cultural, natural, recreational, and 

archaeological qualities” (Clay & Smidt, 2004; Gustafson, 2009). Simply put, these 

selected sections of roadway and surrounding landscape showcases the most beautiful or 

most enjoyable experiences (Denstadli & Jacobsen, 2011), preserve our more scenic 

roadways, and promote tourism (Brunswick, 1995; Selin & Chavez, 1995) for everyone 

to have the opportunity to see the unique environments that are offered by that area. With 

vehicle-based experiences being a primary mode of transportation and recreation that 

influences the way that we are now experiencing nature. Protecting our scenic byways 

and the beautiful scenery that envelops the expansive roadway systems has never been 

more important.  

For a roadway to be recognized as a Scenic Byway, it must contain at least one of 

these six designated intrinsic qualities: scenic, recreation, natural, historical, cultural, or 

archaeological value worth preserving and protecting in its current form (Kelley, 2004). 

A status of All American Road is given to a roadway environment that contains multiple 

of those qualities. A scenic byway system that contains a diverse supply of these qualities 

sees success in providing unique experiences and strengthens its value as a tourist and 

recreational attraction (Kelley, 2004). These beautiful sections of road and their vistas 

face several threats, the most common being development (Kelley, 2004) development 

especially unplanned puts the qualities of the scenic environment at risk of losing the 

value that the environment holds. Effective planning (Yu et al., 2007, 2007) and 

understanding of the value of these sensitive routes and their environments is key to 

ensuring the protection of the unique experiences they hold. A continual growing number 
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of both state and national byways (Kelley, 2004) indicates an importance of this resource 

to the population of the United States and illustrates the success of the National Byway 

System. 

It is our goal to use technology to create and represent a visual experience of both 

scenic byways and regular roadways to study the vehicle-based experiences that these 

routes are creating. Using technology to represent a virtual experience is not a new 

technique (Bishop, 1997; Bishop & Bruce Hull, 1991; Clay & Gimblett, 1998; Daniel, 

1992; House et al., 1998) and can be used to represent a real-world experience (Daniel, 

2001) for analysis. 

 
Why Utah as a Study Site?  
 

A vital part of Utah’s economy depends on having vibrant and beautiful 

landscapes to draw people in for tourism. Utah is situated at an intersection of multiple 

major ecoregions giving it the opportunity to offer a wide variety of landscapes from 

Alpine Forests to Deserts. This biodiversity brings a significant desire for people to come 

and see what Utah has to offer. The state contains five National Parks, ranking it third 

among the nation even though it is only the 13th largest state. Utah also contains eight 

nationally designated scenic byways and 18 state designated scenic byways which lay the 

scene for visiting some of the most unique scenic vistas in the world. 

In conjunction with tourism, Utah is also advertising itself as a place that has 

something for everyone in terms of recreational services, whether that occurs through the 

“Greatest Snow on Earth”, the Rocky Mountains, over 2,000 lakes and 89,000 miles of 

streams. Tourism greatly influences Utah’s economy with visitors spending $10 billion 
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(Leaver, 2019). Utah’s travel and tourism industry accounted for approximately 141,500 

jobs in 2019, which is about 1 out of every 11 jobs being supported by visitor spending, a 

4% increase year-over-year (Leaver, 2019). The Utah State Tax Commission reported a 

10.7% increase in spending on amenities from 2018 to 2019 (Leaver, 2019). 

For these reasons we selected Utah as our study site. Visual aesthetics and 

maintaining a sense of scenic beauty and awe are valued highly in Utah, and with 

projected population growth Utah needs to be able to make a case for protecting its 

natural amenities and maintaining its important economic use of resources for 

recreational and tourism activities. 

 
Review of Previous Study of Sampling Distances 
 

This thesis was originally developed as two distinct studies, the first as a 

modelling exercise in visual magnitude assessment sampling and the second as an 

empirical analysis of the sampling in conjunction with the relationship to aesthetic ratings 

and visual magnitude. The first study is contained in Chapter 2 but directly influenced the 

sampling method of this study. For this reason, it seemed pertinent to include a short 

methodological review of the previous study. 

The purpose of the previous study (Openshaw & Chamberlain, 2021) was to 

identify a threshold between viewpoint sampling interval and the resulting correlation of 

visual magnitude raster outputs. By doing this we aimed to be able to identify an optimal 

sampling distance. Our hypothesis, which was confirmed, was that we would see an 

overall negative correlation trending towards 0 between increased sampling distance and 

resulting correlation of visual magnitude outputs. We also expected to see topography, 
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(mountainous, hilly, flat environments) play a role in the total amount of data that the 

visual magnitude rasters will display due to increased distance of visibility. Figure 3.3 

outlines the methodology framework being used to accomplish this objective. 

 
Figure 3.3 
 
General Methodology Part 1 
 

 

The first set of data that we needed to accomplish this objective was a Digital 

Elevation Model (DEM) of the areas of interest, then we clipped the DEMs down to the 

study site which encompassed a 3-kilometer extent to capture the optimal viewing area 

(Emerging Technology, 2019; Krisciunas & Carona, 2015; Roland, 2019). We decided 

that a DEM at a 10-meter resolution was sufficient to meet the amount of detail we need 

while looking at a 3-kilometer surrounding distance (Emerging Technology, 2019; 

Krisciunas & Carona, 2015; Roland, 2019). The second data set collected was roadway 

information, which was downloaded at the state level and then paired down to one mile 

segment in length for our study routes. Both datasets were found at the Utah Geospatial 

Resource Center (UGRC) website for download. 

We wanted to address the question of finding a viewpoint threshold to optimize 

representing an experience. This was done by selecting three environments that contain 

differing topography and selecting a mile long route through the environments. Much of 
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this process was automated using the ModelBuilder function in GIS. After selecting our 

routes and creating viewpoints at different sampling distances we had the data we needed 

for the VM tool. After running the VM tool we obtained raster outputs for each of the 

different sampling distances (10, 20, 30, 40, 50, and 100-meters). To make these rasters 

comparable we applied a mask of the lowest common area, or the cells of the raster that 

are visible on every output raster, of all of the rasters and keep only that area for analysis. 

This allowed us to extract point data for each cell across the different sampling distances 

and then compare the numerical difference between the rasters. Using Excel, we inserted 

those cell ID numbers and corresponding values to run a Pearson correlation analysis. 

After this we were able to plot the change in cell values between the VM outputs and the 

sampling distance, showing the steady decline in correlation over sampling distances 

increased. With these results we were able to view the trade-off between the sampling 

distance in the visual magnitude analysis and the time required for calculation, allowing 

us to find an optimal sampling distance to apply in out next study. 

 
Methods 

 
In this study we asked the question can the visual magnitude tool inform us which 

scenic byways or other natural or rural roadway envrionments contain the best 

experiences for vehicle-based viewers? More specifically, to what extent can the visual 

magntiude tools output correlate to public scenic ratings of highway experiences? In 

order to answer the our questions for this study, we created the methological framework 

in Figure 3.4 to guide our the process of what type of data needs to be collected, how this 

information was used to create routes and extract visual magnitude values, collection of 
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scenic rating preferences, evaluating the results and providing an analysis to answer our 

research question.  

 
Figure 3.4 
 
General Methodology Part 2 

 

 

 
Data Collection 
 

There were three primary data sources that were used to collect our needed data: (1) 

Google Street View imagery, (2) geospatial data from the Utah UGRC, and (3) EPA 

ecoregions data. From UGRC we downloaded highways and roads at the state level, as 

well as DEM data for the entire state. Unnecessary roads were removed according to the 

criteria described in the site selection section. The DEMs covered each site at a 10-meter 

resolution. To create our virtual environment experiences, we downloaded Google Street 

View images for each of the routes. Additionally, a level three ecoregions map of Utah 

was downloaded from the EPA. This ecoregion data set was used to associate people’s 

travel experience and exposure to different environment typologies within Utah to see 

how it may influence their scenic quality ratings. 

 
Site Selection 
 

 Fifteen distinct routes or drives in Utah were selected for the final analysis out of a 

total of 24 potential routes. The discovery of and use of routes, started with the initial 
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selection of 20 sites, which were then filtered. Four more sites were later added to make 

up the entire 24 potential sites. The selection process that resulted in the final 15 sites is 

provided below. First, sites were selected across two key categories: (1) availability of 

quality Google Street view imagery, and (2) site distinction and diversity within the state. 

Site selection began using the Utah Scenic Byways map (Figure 3.5) which identifies all 

locations of scenic byways and representative images. Site selection began by identifying 

different environment typologies and relative proximity to national parks and scenic areas 

(as these may be more familiar to research participants). Some routes and environments  

 
Figure 3.5 

Map of Scenic Byways Available at the Visit Utah Webpage 
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were be selected for their unique visual quality, their proximity to National Parks, their 

designation as a National or State Scenic Byway, or because their visual quality and 

experience appears subjectively poor (to encourage variety to scenic rating values). This 

was done to ensure that we were able to collect a diverse representation of experiences 

and eventually receive an equally diverse variety of scenic ratings. Selection was based 

on these subjective properties, as well as the following criteria. 

1. Selection of route length was be kept to ONE mile in length 

2. Selected roadways were TWO driving lanes in width (with or without painted 
lines) 

3. Selected environments were either be Rural Development or Natural 
Environments 

4. Roadways were contained to the state of Utah 

5. Speed limit between 50 and 60 MPH to control the rate of environmental 
exposure 

Figure 3.6 is a map of the final total routes that were identified suitable for this 

study and the ecoregions of Utah that they were in. Routes that were used in this study 

can be identified by the black color of the dot and corresponding text, whereas unused 

routes are grey in color and text.  

The conditions of the site that we identified were collected as independent 

variables due to the seasonality, quality and other factors that could affect the quality of 

Google Street View images. 20 initial sites were selected to give us a buffer of five sites 

if the environments or images from Google Maps turned out to be unusable for this study. 

Due to various factors (quality, etc.), it was concluded that we should exclude the 

following 5 roadways from the survey- Roads 6, 10, 13, 15 and 20. This left us with our 

target goal of 15 routes. 
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Figure 3.6 
 
Suitable Routes for the Study 

 
Note. Routes that were used are shown as black and unused routes are grey. 
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 After beginning the creation of the videos, we again had some issues with getting 

imagery, or imagery jumping back and forth between roadways and other quality issues. 

To address this, added several more additional routes and removed others because of 

missing imagery. In total we ended up creating 24 initial routes for analysis. We 

maintained our target goal of 15 routes by substituting some of the videos we had issues 

with alternative routes. 

 
Producing Visual Magnitude Analysis 
 

Using the roadway data and DEMs collected a range of different visual magnitude 

analyses for each site. The route experience was represented based on a one-mile-long 

route. The viewpoints used for the analysis were created at a 30-meter distance, following 

the recommendation of previous research (Openshaw & Chamberlain, 2021). The 

decision was made to clip our results down to a 3-kilometer extent to focus on the 

environment that has a more direct impact (Emerging Technology, 2019; Krisciunas & 

Carona, 2015; Roland, 2019). This gave us two different outputs to compare, one for the 

full extent or everything seen from the viewpoints and a second at a 3-kilometer extent. 

The result of the Visual Magnitude outputs was then summarized into the following 

metrics (see Table 3.1). 

 
Route Simulation and Generation  
 

To collect empirical ratings of each site, forward looking Google Street View 

images were downloaded and sequenced together to create a seamless streaming hyper 

lapse video. Each video clip was approximately 10 seconds long, and the variation in 

time of the videos was a result of the number of images available from Google Street  
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Table 3.1 
 
Collecting VM Values 
 

Metric Description 
Full Maximum (Max) VM Maximum visual magnitude value (for all raster cells) across all 

viewpoints for the entire envrionment that is visible from those 
viewpoints 

3 Km Maximum (Max) VM Maximum visual magnitude value (for all raster cells) across all 
viewpoints for a clipped 3-kilometer environment 

Full Average (Avg) VM Average visual magnitude value (for all raster cells) across all 
viewpoints for the entire environment that is visible from those 
viewpoints 

3 Km Average (Avg) VM Average visual magnitude value (for all raster cells) across all 
viewpoints for a clipped 3-kilometer environment 

Full Minimumn (Min) VM Minimum visual magnitude value (for all raster cells) across all 30-
meter viewpoints for the entire environment that is visible for those 
viewpoints 

3 Km Minimum (Min) VM Minimum visual magnitude value (for all raster cells) across 30-
meter viewpoints for a clipped 3-kilometer environment 

Standard Deviation Values (SD) Distrbution of the values show in the VM outputs 
Skewness Skewness of the values show in the VM outputs 

 
 
 
View. Stitching was done through a combination of software and updated python scripts 

(documented in Appendix A), with the original script can be found at Error! Hyperlink 

reference not valid.. Stitching together images for visual analysis is a common practice 

for aerial imagery (Liang et al., 2018), panoramas (Li & Lu, 2018), comparing static and 

dynamic environments (Stamps, 2010) and 3D model creation (Visser et al., 2014). Our 

video creation used a similar process by stitching together still street view images taken 

by google into a temporal sequence. These images were then converted into a video 

format (MP4). This process allowed us to simulate an experience for each environment 

and share it on a large scale to collect scenic ratings.  

During the video sequencing process, we encountered several problems in the 
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creation the videos of the environment that we had to respond to. By using Google Earth 

Street View to create our experiences we were limited to the most recent image sequence. 

This means that some of the imagery was collected by Google at different time periods 

(ex. Spring versus fall pictures creates different visual feels), with different cameras 

(pixel resolution) and in different weather situations (blurriness or water on the camera). 

Images illustrating some of these problems are attached in Figures 3.7, 3.8, and 3.9.  

As indicated previously, we concluded that we should initially exclude five roads 

because these problems. Three additional roads were removed after the video sequencing 

process began. Even with attempting to control for the previously mentioned imagery 

situations we were still limited in the amount of control that we had for image detail or 

 
Figure 3.7 
 
Poor Camera Resolution 
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Figure 3.8  
 
Picture Dates: Spring Photos Before Trees Have Leaves 
 

 

Figure 3.9 
 
Environmental Factors: Foggy and Blurry Photos 
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resolution, google image watermarks, blurriness on images due to Googles face blurring 

software, bugs or water droplets on the camera lens, shadows from the vehicle driving, 

etc.  

Another issue that we encountered was caused by the images being taken by a 

360-degree camera, which sometimes resulting in the pulled images being from opposite 

sides of the road (both oncoming and outgoing traffic lanes). To address this, we had to 

check the beginning and ending coordinate points for the routes so when we created the 

videos the vehicle taking the images was driving on the correct side of the road. This 

required us to use Google Maps on each of the routes and search for indicators of the 

direction the imaging was taken. We also discovered that if the vehicle taking images 

drove the same road, back and forth, that those images were not distinguished as being on 

one side of the road or the other. Images taken from both sides of the road were selected 

and imported as the same drive. To address this issue, we manually isolated images from 

one side of the road. However, this process left us with two videos that were half the 

length of all the others. These two shorter videos were used as validation videos to check 

viewer attention span and compare environment ratings to the other half of their 

respective environments. 

 
Survey Design and Participant Recruitment 
 

Generated videos were implemented into a survey interface (Qualtrics) that allows 

for a participant-based data collection. The survey asked people to rate scenic quality of 

route-based scenic experience based on their personal preference for each site. This 

provided a quantifiable number to correlate the qualitative aspect of scenic quality. 
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The survey instrument is organized into two modules: background data and rating 

collection. The first, collected preliminary information (independent variables) including 

participant age, gender, place of origin, education level and travel experience in Utah. 

Travel experience was used to identify how many of the sites or similar sites participants 

have traveled to, in order to gauge familiarity with the context of the sites used in this 

study. This was done by having participants rate familiarity to designated ecoregions, 

measured at level 3, of Utah. These variables are important to know because they can 

influence the participant perception of landscape quality from one environment to 

another. After answering those questions, participants were led though the second module 

which involved them rating videos of each site. The presentation order of the videos was 

randomized. Route segments were cut into two videos, each approximately 10 seconds 

long. Following each video participants were asked to rate the scenic quality of each 

environment on a scale of 1-10. This method originally developed in the late 70s (Daniel, 

1976) is a typical standard for rating scenic quality and is still being used an improved 

upon (Ribe, 2021).  

After the survey was created, we conducted an initial pilot test with six 

participants, known to the authors. The survey was then reviewed and edited according to 

their feedback. We added one new block at the beginning of the survey that contained an 

image of the highest and lowest ranking environments, as well as four average ranking 

environments. We asked participants to look at these images, which were randomized in 

order by the survey and without disclosing their various ranking values, asked them to 

consider how they might rank those environments differently. The aim of the images 

shown in Figure 3.10 were used to anchor peoples’ responses and give them an overview  
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Figure 3.10 

Grounding Images Used in the Survey 
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of the scope of types and qualities of environments block was to anchor peoples’ 

responses and give them an overview of the scope of types and qualities of environments. 

Participants that took part in this study were invited to participate in our study by 

office administrators and professors from USU, which resulted in our respondents being 

mostly students. Recruitment was accomplished by advertising through university-wide 

approved channels (departmental emails and canvas announcements) using a link to the 

Qualtrics survey. After creating the survey, it was sent out to a group of pilot testers, their 

feedback informed several small changes to wording and visual display of information. 

The link to the survey was then distributed though the approved channels to office 

administrators, professors, and department heads (e.g., some of these departments 

included English, Mathematics, Agriculture, Psychology, and Education) to be sent out 

via their graduate and undergraduate emailing lists. We aimed to recruit 40 participants 

for this study and received just under 50 responses. These responses were then vetted for 

their reliability by analyzing the standard deviation of their scenic ratings. The one 

participant whose results were dropped from this analysis had a SD of under 0.5, all other 

respondents had SD values of nearly .9. This left us with 44 useable results for our 

analysis. Participants who finished the survey received compensation for their time spent 

on the survey in the form of $10 cash, which was picked up after the survey had closed.  

 
Analysis Techniques 
 

To analyze the data, we proposed several different statistical tests, as well as 

platforms. Microsoft Excel and SPSS were used to produce the analyses. Figure 3.11 

illustrates how this these results and the following analysis took place. 
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Figure 3.11 
 
VM Value and Rating Extraction Process 
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First, results of the values of the VM outputs of the entire perceivable extent by 

correlating the range of metrics identified in Section 4.2.3 with the ratings for each site. 

These allowed us to identify a potential relationship between VM and broad scenic 

ratings of different highway drives. This was assessed by using Pearson correlation. 

The other independent variables collected (demographics and site conditions) 

were used in ANOVA analyses using SPSS software. This allowed us to identify 

potential variables that predict scenic ratings and how much variation is resulting from 

those individual variables.  

Each of these different types of analyses were used to compare the relationships 

between the collected visual magnitude values and the scenic ratings of each site. 

Additionally, these analyses helped us to see the relationship between the independent 

variables of participants and the scenic ratings and how those variables influenced the 

outcome of the scenic ratings. 

 
Results 

 
The following results are reported in either scientific notation or ended at the third 

decimal place for clarity.  

 
Visual Magnitude Results 
 
 We collected two different measures for the Visual Magnitude tool. The first 

measure was the entire visible area of the surrounding environment from the selected 

route. The second was the visible area seen within a 3-kilometer radius around the 

selected route. The highest returned output numbers were consistently along the road, 
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because of the cell’s proximity to the viewpoint (distance has an exponential effect on 

VM and the most impactful element in the analysis). The maximum values did not 

change when comparing the full extent and the clipped area because of this factor. The 

lowest values are where we saw the most significant changes. These value changes also 

caused the average measured visual magnitude values to shift. Additionally, the standard 

deviation, which refers to the dispersal of the values shown in the raster, between the VM 

values and the measure of skewness, which tells us the spread or distortion of the values 

compared to a normal bell curve distribution of values, were also extracted. A higher 

standard deviation indicates that the values are more spread out, whereas a low value 

means that the data is clustered around the average value. Skewness is measured in 

positive or negative trend of the values relative to a normal bell curve, the lower the 

value, the more normalized the data. With these data, all data are skewed because one of 

the calculations for visual magnitude is an exponential reduction in value due to distance 

(or distance squared). All mentioned values for each road are shown in Tables 3.2 and 

3.3. The column headings of the table relate to the measures designated for collection 

(see methodology section “Producing Visual Magnitude Analysis”). 

 Figures 3.12 and 3.13 illustrate the variation of values and changes between the 

full extent being seen of our sites and the 3-kilometer extent. Between every road there is 

a decrease to some extent in every environment of the values being seen full extent and 

the 3 K extent. Roads 4 and 5 show the most significant changes in average value 

changes when clipped to the 3-kilometer area. The minimum values show that clipping 

the VM raster caused a decrease of noise and moved the minimum value closer towards 

0. Figure 3.4 illustrates the difference between a few of the routes and the range of values  
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Table 3.2 
 
Visual Magnitude Numerical Outputs for Full Extent 
 

Road number Full VM max Full VM avg Full VM min SD Skewness 
1 0.132 0.001 5.63E-11 0.003 6.389 
3 0.200 9.32E-04 7.26E-11 3.68E-03 15.563 
4 1.06E-01 4.244E-05 3.38E-14 0.001 39.254 
5 3.64E-02 2.30E-05 6.50E-14 3.45E-04 33.425 
8 0.031 1.259E-05 1.77E-13 6.00E-05 185.727 
9 0.052 1.27E-05 3.80E-13 1.82E-04 108.288 

11 0.007 4.10E-07 2.92E-16 7.09E-06 467.0360 
12 0.027 3.63E-06 5.62E-14 6.94E-05 169.620 
14 0.087 4.46E-04 1.86E-11 1.27E-03 9.819 
16 0.013 1.48E-06 2.80E-14 2.20E-05 252.404 
17 0.018 1.33E-06 1.25E-14 3.10E-05 151.816 
18 0.046 1.11E-05 6.16E-13 1.61E-04 74.918 
19 0.105 1.87E-04 6.79E-12 1.32E-03 29.612 
21 0.090 7.80E-06 1.65E-14 2.66E-04 147.055 
23 0.027 6.01E-06 3.04E-14 7.85E-05 121.831 

 
 
 
Table 3.3 
 
Visual Magnitude Numerical Outputs for 3 K Extent 
 

Road Number 3 Km VM Max 3 Km VM Avg 3 Km VM Min SD Skewness 
1 0.132 0.001 5.19E-10 0.003 6.054 
3 0.200 0.001 1.95E-10 0.004 14.102 
4 0.106 0.001 8.97E-11 0.001 13.734 
5 3.64E-02 1.91E-04 4.83E-13 1.01E-03 11.314 
8 0.031 4.26E-05 1.46E-12 1.38E-04 39.603 
9 0.052 5.87E-05 4.50E-13 5.09E-04 39.050 

11 0.007 4.64E-06 2.29E-12 6.47E-05 51.666 
12 0.027 3.77E-05 4.36E-12 3.92E-04 30.192 
14 0.087 5.15E-04 8.38E-11 1.35E-03 13.494 
16 0.013 1.33E-05 7.52E-13 1.63E-04 34.339 
17 0.018 3.87E-05 7.40E-11 1.87E-04 25.681 
18 0.046 6.37E-05 4.42E-11 4.48E-04 26.972 
19 0.105 2.39E-04 2.18E-10 1.50E-03 26.100 
21 0.090 9.70E-05 2.07E-11 1.05E-03 29.024 
23 0.027 2.93E-05 5.86E-12 2.15E-04 44.838 
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Figure 3.12 
 
Average Visual Magnitude Values Between Full and Clipped 3-Kilometer Sites 
 

 
Figure 3.13 
 
Minimum Visual Magnitude Values between the Full and Clipped 3-Kilometer Sites 
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Figure 3.14 
 
Sample Illustrations of Six Routes 
 

 
Note. These images illustrate some of the most diverse values returned from the visual 
magnitude tools analysis output as a raster image from GIS for Roads 1 to 6. 
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found in our analysis. The entirety of our VM measures and context images are found in 

Appendix B. 

 
Scenic Ratings and Visual Magnitude Relationship  
Analyses 
 
 The values of scenic ratings across the 44 valid responses are noted in Appendix 

Tables D.1 and D.2 in Appendix D because of the size of the data.  

 Road ratings varied widely between our values of 1 and 10. Figure 3.15 and 3.16, 

respectively, show the highest and lowest rated roads. There is a wide variety in the 

scenic quality of these roads as well as vegetation, terrain, and overall environment. 

 

Figure 3.15 
 
Highest Rated Road  
 

Note. Average scenic rating of 7.9. 
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Figure 3.16 
 
Lowest Rated Road 

Note. Average scenic rating of 3.3. 
 
 
 

Descriptive statistics from a Pearson correlation analysis yielded these results 

using with 660 original data points (scenic ratings for each of the 15 roads per the 44 

survey participants) averaged into 15 data points (averaged scenic rating for each of the 

15 roads from participants). When analysing the scenic road ratings for each individual 

participant with the average visual magnitude numbers we saw a correlation of 0.582 

illustrated in Figure 3.17 for the full extent. An additional Pearson correlation analysis 

was run of all scenic ratings averaged for each roadway experience with the average 

visual magnitude numbers. This analysis showed a Pearson correlation of 0.631 

illustrated in Figure 3.18. Additional statistics for the average VM measures analysed in 

SPSS are shown in Table 3.4. 
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Figure 3.17  
 
Pearson Correlation Showing the Full Extent Average VM Values and Average Scenic 
Ratings 
 

 

Figure 3.18 
 
Pearson Correlation Showing the 3-Kilometer Extent Average VM Values and Average 
Scenic Ratings 
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Table 3.4  
 
Pearson Correlation of Average VM Values and Scenic Ratings 
 

VM outputs Pearson coefficient Count t statistic df p Value 
Full Extent  0.582 15 2.585 13 .022 
3 Km Avg  0.631 15 2.937 13 .011 

 

 To further understand the variation in values seen in the visual magnitude rasters, 

we analyzed the standard deviation (SD) between those values, in correlation with scenic 

ratings. We ran an additional Pearson correlation for the full extent which showed a 

correlation of 0.756 shown in Figure 3.19 and for the 3-kilometer extent a correlation of 

0.785 shown in Figure 3.20. Additional statistics for the standard deviation VM measures 

analysed in SPSS are shown in Table 3.5. 

 
Figure 3.19 

Pearson Correlation Analysis of the Full Extent Standard Deviation of VM Values and 
Scenic Ratings 
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Figure 3.20 
 
Pearson Correlation Analysis of the 3-Kilometer Standard Deviation of VM Values and 
Scenic Ratings 
 

 
 

Table 3.5 
 
Pearson Correlation Showing Standard Deviation VM Values and Scenic Ratings 
 

VM SD outputs Pearson coefficient Count t statistic df p value 
Full Extent  0.756 15 4.174 13 0.0011 
3 Km 0.785 15 4.582 13 0.0005 

 

 
We analysed the skewness of the VM rasters, or the spread of the values relative 

to a normal bell curve. Skewness of the values generated by the visual magnitude tool 

were analysed at both the full extent and 3-kilometer radius. When comparing the 

skewness and the scenic ratings for the full extent the correlation value was -0.61 show in 

Figure 3.21 and at the 3-kilometer outputs showed a correlation of -0.457 shown in 

Figure 3.22. These results tell us that as the skewness of the VM rasters increase there is  
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Figure 3.21 
 
Graph of Pearson Coefficient of Skewness for the Full Extent of the VM Rasters 
 

 
 

Figure 3.22  
 
Pearson Coefficient Showing Skewness of the 3-Kilometer VM Raster 
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a related decrease in scenic rating values. Additional statistics for the skewness VM 

measures analysed in SPSS are shown in Table 3.6. 

 
Table 3.6 
 
Pearson Correlation of Skewness VM Values and Scenic Ratings 
 

VM outputs Pearson coefficient Count t statistic df p value 
Full Extent -0.610 15 -2.778 13 .015 
3 Km -0.457 15 -1.853 13 .086 

 
 
 
Demographics for Survey Respondents 
 

A total of 44 people finished the survey with useable results with analyzing the 

individual variables including a wide age range from 18 to 48, three gender 

classifications, varying education levels, varying familiarity with the various ecoregions 

of Utah, and places of origin. The following subsections break down results further by 

each independent variable that was collected and analyzed though ANOVA analyses. 

 
Age 

 The age of survey participants is between 18 and 48, with a mean age of 24.5 

years old representing an overall younger demographic. There were 28 respondents who 

were 25 or under and 14 over the age of 25. To analyze differentiation of age more easily, 

we created two age groups on either side of the average participant age. This showed that 

for our scenes, participants over 25 were rating scenic quality higher than participants 

under 25. ANOVA analysis retuned the following statistics for age, F(1,1) = 39.47, p = 

.001, ηp
2 = .06 with a 95% confidence interval. These results are shown in Figure 3.23. 
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Figure 3.23  
 
Age Analysis of Participants 
 

 
Gender 

 The response for this question had 3 choices which were Male (1), Female (2) or 

Other/Non-Binary. These 3 different gender types consisted of 24 males (mean = 5.364, 

SD = 2.159), 19 females (mean = 4.528, SD = 1.9710) and 1 non-binary respondent. For 

these results, we dropped the single participant that indicated their gender as non-binary 

conforming because of the low sample size. ANOVA analysis retuned the following 

statistics for gender, F(1,1) 19.65 = , p = .001, ηp
2 = .038 with a 95% confidence interval. 

These results that indicate, for our scenes, participants who identified as male 

rated the road scenic quality higher, while those who identified as female gave lower 

ratings. These results (Figure 3.24) indicate that gender is statistically significant and 

accounts for nearly 4% of variance in rating the scenic quality of our drives. 
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Figure 3.24 

Gender Analysis of Participants 

 
Education 

 Responses for education level ranging from high school had 10 respondents 

(mean = 5.722, SD = 2.2005), college had 29 respondents (mean = 4.594, SD = 2.0224), 

master’s degree had 4 respondents (mean = 5.717, SD = 1.6605) and Ph.D. had 1 

respondent (mean = 7.167, SD = 2.0325). ANOVA analysis retuned the following 

statistics for education, F(3,1) = 19.65, p = .001, ηp
2 = .084 with a 95% confidence 

interval (see Figure 3.25). However, there is no apparent trajectory of the role that 

education plays in predicting scenic quality ratings. 

 
Familiarity/Travel Experience 

Travel experience was assessed to determine participants’ exposure to landscape 

types though Ecoregions Level Three classification of Utah. For this reason, in our 

analysis only roads that were completely contained and observed within one ecoregion,  
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Figure 3.25 

Education Analysis of Participants 
 

Note. The shown bar graph illustrates response to education level according to the following values, 2 = 
Highschool, 3 = College, 5 = Masters, 6 = Ph.D. 
 
 

leaving 12 of 15 roads. Roads were split via their respective ecoregion and matched with 

the corresponding scenic ratings for participants. Ecoregion #2 contained seven roads, 

ecoregion #3 contained two roads and ecoregion #5 contained three roads.  

 The first test evaluated potential effects of familiarity with a zone (zone rating 

used as a covariate), the specific zone (the category), the VM skewness value (another 

covariate) and the scenic road rating (dependent variable). The results from this test show 

that there is no statistical significance with the zone but that there is a statistically 

significant findings with the familiarity rating and skewness values compared to scenic 

ratings. Tests two through four used the same model in SPSS to compare familiarity 
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between each specific ecoregion (see Appendix C for more data). While the results were 

statistically significant, they were extremely random. 

 
Place of Origin 

 Just over half of our respondents, 23 out of 44, stated that their place of origin was 

outside of Utah. This data was split into two groups, one of participants who were born in 

Utah and the other of participants who were born outside of Utah. The Shapiro-Wilk (and 

Kolmogorov-Smirnov) test of non-normality were statistically significant (p < 0.001). 

Thus, a one-way ANOVA was conducted, instead of an independent t Test. The ANOVA 

revealed a statistically significant effect F(1, 3958) = 15.746, η2 =.009, p < .001. The 

mean for those self-identifying as from Utah is 4.81 and those outside of Utah is 5.08. 

living in or outside of Utah. 

 
Discussion 

 
In this paper we sought to provide empirical evidence to understand the 

relationship between visual impact data generated by the Visual Magnitude tool and how 

people interpret an environments scenic quality. We attempted to discover this 

relationship by gathering numerical impact values across a variety of different typologies 

and qualities of environments across the state of Utah. This information was then 

compared to the results of scenic quality ratings gathered from the survey that were 

created. The following paragraphs in this section discuss the outcomes, findings, and 

recommendations for any future research that may build onto the results of this study. 

Viewshed analyses were originally created as an impact analysis tool for a single 
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object (e.g., mining, solar, turbines) and not as a tool to analyze scenic quality along 

routes. VM, on the other hand, was created expressly for the purpose of evaluating 

potential visual impact through routes (Chamberlain & Meitner, 2013). However, the tool 

only generates a numerical value for the degree of potential visual impact, yet there was 

no direct and empirical explanation for what these numbers mean regarding perception 

and sentiment. This study aimed to bridge the gap between understanding the relationship 

between the impact values and how people perceive environments. 

 
Study Process  
 

In this study we wanted to evaluate the extent to which visual magnitude metrics 

related to individual sense and rating of the scenic quality of highway drives. Evaluation 

of scenic quality has a long history (Arriaza et al., 2004; Daniel, 2001; Gustafson, 2009; 

Palmer, 2004; Qin et al., 2008), where numerical values are often used to supplement 

subjective ratings of scenes. However, someone seeing moves beyond a quantifiable 

number and instead attempts to represent a broader sense of scenic quality. For instance, 

an environment with a lot of variation in topography and interesting natural elements is 

likely to be seen as more picturesque than an environment with little variation, resulting 

in different scenic rating values. The resulting impact of landscapes of low quality and 

little variation produces a feeling of indifference and boredom. While numerical ratings 

of scenes are predominately used to assess landscape, and are subjective, they tend not to 

be used to evaluate long experiences (e.g., routes or drives). 

In an attempt to be more objective and evaluate large areas with a proxy metric 

for feelings and impressions, we decided using video was the best way to give an overall 
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impression of an environment, rather than sample static locations. Asking survey 

participants to rate the scenes enables a quantitative comparison between the feeling and 

objective measure of visual magnitude. One of the major issues that we ran into surfaced 

in the process of creating the routes for the video experiences. During this process we 

ended up creating and eliminating quite a of our selected routes and environments due to 

unusable imagery from Google. Our original goal was to have 15 different routes to run 

this study on, but as we began looking at available imagery, we decided it was best to 

have some extra sites giving us a buffer to be able to discard routes with the worst 

available imagery.  

Even with this buffer of extra routes, we still encountered problems with imagery 

including graffiti, water droplets, watermarks from Google, random area blurring from 

Googles privacy algorithm, images suddenly switching lanes, poor resolution of images 

and the shadow or hood of the vehicle taking the images appearing in the videos. The 

only way that we may have been able to eliminate this problem would be by driving the 

routes ourselves, but the timeframe and scope of this project didn’t allow for that.  

The video experiences were generated with a previously existing, but outdated, 

python code. Creating the videos themselves took some time, as we had to ensure that the 

imagery being collected was coming from the correct side of the road, duplicate images 

were being erased, and correctly ordering coordinate systems for the routes. The resulting 

images created videos that were able to give viewers a good understanding of the type of 

environment that the road was in. However, the videos would have been better if we had 

been able to have a wider field of view, both horizontally and vertically similar to what 

our eyes may actually see when looking out of a vehicle. Our videos were limited to only 
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90 degrees which provided a smaller window of the surrounding environment.  

This process could be continued for other sites, but it may be best to film the drive 

directly. This could offer greater control of the quality, timing, and number of images to 

work with. Otherwise by using this method, you would be at the mercy of the available 

imagery from Google. It may also be interesting, to experiment with virtual reality with a 

study like this where observers can view the entire area. This mixed with a more in-depth 

look at where people want to look and what people want to look at along the road would 

produce some very interesting results.  

 
Understanding the Relationship of VM  
Values and Scenic Ratings 
 
 In order to assess the relationship of the VM values and scenic ratings we 

collected a number of measures from GIS including the maximum, average, minimum, 

standard deviation, and skewness values of the VM rasters. Out of all of these values we 

used the average, standard deviation, and skewness values in correlation analyses with 

our scenic ratings. Our original method was to analyze the maximum and minimum 

values of visual magnitude; however, the tool currently only calculates the highest and 

lowest VM for each analysis, not for each cell. An analysis of maximum and minimum 

VM values could be useful if we do a correlation of values by the maximum of each cell 

but at this point our tool cannot calculate these values. For this reason, we thought that 

the previously mentioned three metrics would have the best correlation with scenic 

ratings. When these values were all compared to the scenic ratings, we saw multiple 

results of strong correlations with multiple metrics. The best results for both the full 

extent and the 3-kilometer came from the standard deviation measures but both the 
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average and skewness values showed strong correlations. 

Using the average visual magnitude values, we ran statistical analyses of the full 

extent of what was being measured from our observation points on the road. Our results 

showed a low correlation between average visual magnitude and scenic ratings (.308). 

We attribute this is due to the high amount of low visual magnitude values being 

contained in fringe areas. The decision was made to clip our results down to a 3-

kilometer extent to focus on the environment that is having more of a direct impact 

(Emerging Technology, 2015; Krisciunas & Carona, 2015; Roland, 2019) and remove 

some of those fringe area that were affecting the correlation value in the full extent 

analysis. These results showed a stronger correlation value (.632) between the average 

visual magnitude measures for the full extent and the scenic quality ratings. By removing 

the very distant visible cells the skewness in the visual magnitude data was reduced, 

providing a more normal distribution of values that resulted in a stronger correlation with 

scenic ratings. Our suspicion then, was that people were rating scenes were there were 

more topographical elements of higher visual magnitude and paying less attention to 

visible areas in the far distance. Further, that skewness and distribution of VM values 

played a key role in the relationship with ratings at the full extent. 

In another test we assessed the relationship between the VM skewness values and 

the scenic ratings using a Pearson coefficient of skewness test. This test showed that the 

scenic ratings correlated stronger with the values of the full extent, rather than the 3-

kilometer outputs. These results occurred because of the loss of those extremely small 

fringe values when we changed our measured extent from full to 3-kilometer. This 

smaller extent altered the normal distribution of the represented values when compared to 
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a normal bell curve of values when the values begin on either side of 0, the resulting 

values are skewed. The more normal the skewed values were (closer to 0 or a normal 

representation of values), like we saw in the full extent VM measures, the higher the 

correlation to the scenic value ratings. Our results showed us that the more skewed the 

VM raster values were the lower the scenic rating values would be. 

Our strongest correlation measures come from the standard deviation values. 

These values resulted in a correlation of 0.756 for the full extent and 0.785 for the 3 K 

extent. We suspect that the results are so high in this measure because standard deviation 

provides an effective measure of diversity in visual magnitude throughout the route, 

suggesting that individuals prefer a wider distribution of values, indicating that people 

prefer variation in terrain and experience as well as a degree of enclosure, as shown in the 

variation of visual magnitude values. This seems to be the best metric for creating a 

highly correlating and accurate predictor of scenic preferences. We suspect this is 

because the standard deviation value shows the distribution of the values throughout the 

landscape which more accurately displays the variation of terrain and enclosure which 

from our results seems to be influencers of our survey participants for their rating of 

scenic quality. This suggests that very distant landscapes with similar topography as near 

landscape, tend to be valued much less, though not exponentially less. The results from 

using this method of standard deviation of the VM raster values indicates to us that VM 

tool can provide the most accurate and efficient predicting measure of scenic ratings. The 

evidence that we are seeing from these studies highlights the potential of the VM tool 

being used to accurately predict scenic preferences. 
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Variability of Demographics 
 

There are many different variables that influence scenic ratings that could 

potentially be collected from participants. We collected several variables that we 

hypothesized would be influential. With the results from the analysis of these variables 

we can make several inferences about how and why people are perceiving and rating 

scenic and nonscenic drives throughout Utah.  

Gender seemed to play a significant role in ratings, participants that identified as 

females were giving overall lower ratings lower for our roadway experiences, whereas 

males tended to rater higher. This conformed our hypotheses that females were more 

critical of scenic environments. This being one of the first studies conducted in this 

manner on scenic roadway assessment we did see a difference between genders similar to 

a previous article (Ode et al., 2009). We would suggest continuing to evaluate the role of 

gender in scenic ratings of landscapes, as it may have a previously little-known role in 

ratings.  

We wanted to be able to assess the influence of age on people’s perception of 

landscapes (Zube et al., 1983) and how it may differ between a younger and older 

population. Although our age group of participants was limited to a younger 

demographic, we still felt like it would still impact scenic ratings because of the 

distribution of our age results which were from 18 to 48. The results from the age 

variable analysis showed that younger people, 25 years old and under, were rating our 

scenes consistently lower. This could be because of limited of travel experience and 

being unsure of what is “beautiful” because of a lack of other comparable landscapes. It 

would be interesting to collect ratings from a much larger age distribution, including 
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participants under 18 and over 50, for comparison. 

Our survey question about education did not provide any meaningful outcomes. 

There were too many educational level options, six in total and four of them that were 

used, which spread our responses fairly thin. The wording of the question also had a bit 

too much ambiguity in what level the participant actually was. We could have worded the 

question more clearly asking for the highest level of education achieved using 

certifications as a cut off measurement like diploma, bachelors, masters, or PhD. In any 

future studies, we would want to see a much larger pool of participants with a more 

defined question to generate the type of information that would help us see if education 

has a statistically significant impact on scenic ratings. 

Familiarity with Utah’s six ecoregions was assessed to see if it increased scenic 

quality ratings because of potential bias towards one area over another (Keane, 1990; 

Mangone et al., 2021; Svobodova et al., 2010). Our analysis of travel experience 

consisted of asking people what their familiarity of certain ecoregions throughout Utah. 

Three of the six ecoregions, Northern Basin and Range, Wyoming Basin and Mojave 

Basin and Range, were unable to be represented in our study because these ecoregions 

did not contain roads that met our criteria list, this could be due to outdated data in the 

UGRC database. We excluded three roadways from our travel experience analysis 

because of their close proximity of two very different types of ecoregions, for example 

two roads were within the Central Basin and Range ecoregion but the Wasatch and Uinta 

Mountain Range were clearly visible and prominent throughout the video experience. 

This resulted in scenic ratings that could have been from either ecoregion or a 

combination of both. For a clearer understanding of scenic ratings within specific 
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ecoregions, only roads that were contained within that ecoregion, without a view of an 

adjacent ecoregion, were used in our analysis.  

By making some alterations to the roadway selection criteria we could have been 

able to include roads that are contained with the three missing ecoregions. It was difficult 

trying to find roads that did not see the Wasatch and Uinta Mountain Range ecoregion 

because of the sheer size of the mountains and the degree of their visibility throughout 

the state. In future studies, this could be controlled by selecting imagery for videos that 

only showcased the relevant ecoregion without any other ecoregions in. There were also 

more roads contained within the Central Basin and Range ecoregion of Utah. One reason 

for this was because of our criteria and how we selected roads. The other part is that this 

ecoregion contains most of the western half of Utah, approximately 37% of the state 

according to the ecoregion GIS layer that was downloaded from the EPA.  

Our hypotheses were that the higher the participants familiarity with a zone, the 

higher the corresponding roads would be rated by participants. Our results suggested that 

there is no difference in scenic rating with ecoregion type but there is a difference in 

scenic ratings based on familiarity ratings and skewness. The analysis of our results 

suggests a random relationship, unfortunately we did not have adequate depth of 

information to really interpret other nuances of this relationship. The other three tests ran 

suggest a statistically significant but irregular pattern. With these tests and results, we 

have concluded that varying levels of familiarity with the ecoregions in Utah does not 

predict what ratings would be in any of the zones that contained our roads. While there is 

some relationship, our data was not detailed enough for us to understand the extent or 

type of relationship between familiarity and scenic ratings. These results may be because 
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many of these people were already familiar with this landscape, or other similar 

landscapes (most participants were from the western U.S.). Moving forward it would be 

interesting to see if familiarity correlates with scenic ratings when we account for visual 

magnitude.  

Participants place of origin was also assessed, 21 people were from Utah and 23 

were born outside of Utah. We did identify a statistically significant, albeit small effect 

for those identifying as from Utah compared to those outside Utah. However, the effect 

size of this outcome was negligible with less than a small effect. So, while significant, it 

is unlikely that this is meaningfully different. This is not a surprising because people who 

took this test are all currently living in Utah and are being exposed to its environment 

daily. Additionally, many of the participants who were born outside of Utah were from 

the Intermountain West region of the U.S. This region shares much of the same 

geographic and ecological environments found in Utah, this factor would greatly affect 

the sense of scenic quality that may come from someone who lives in a very different 

region. This focus on Utah ecoregions with ratings from people currently residing in the 

state or largely coming from within or outside of Utah, does not provide a broader 

representation of landscape experiences. Thus, we would recommend continuing to 

evaluate the role that familiarity with, or origin from, may have on scenic ratings overall. 

We acknowledge that there are other variables that influence these ratings and in 

future studies exploration of other variables in the physical environment (e.g., physical 

environment measures, greenness) imaging variables (e.g., weather or sky conditions, 

imaging techniques and resolutions) or individual variables (e.g., ethnicity, religious, 

race) would lead a greater understanding of what variables may further influence scenic 
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rating decisions. The relationship of those variables and the VM metrics could then be 

understood and assessed. The assessed variables from this study still carry much weight 

in the decision-making process, and we would recommend continuing to use these five 

focus variables in future studies.  

 
Key Take Aways 
 

After this study we can say that the VM tool is a viable analysis tool in predicting 

the how people may rate the scenic quality of rural road-based environments, especially 

within the areas that have the highest impact on observes. This underlines the importance 

of regulating development and thoroughly planning along scenic roadways critical in the 

impact that they have on observers. These results indicate that there is a statistically 

significant relationship between the VM tools outputs and scenic ratings, to varying 

degrees based on the distance of the environment being studied. In future studies we 

think that exploring how this relationship strength of these two types of data sets might 

change when looking at different distances. For example, looking from a much closer 

area like 1-meter or 10-meter distance from the road and how that might correlate to 

scenic ratings. Also, we would like to see if there is a middle ground between the full 

extent and a 3-kilometer area that may illustrate a relationship that is more of a middle 

ground. 

There are strong indications that the scenic ratings that we collected from the 

surveys relate directly to the amount of enclosure that was occurring around the roadway. 

The environments surrounding the roads that had more topographical change or were 

more enclosed were rated higher than areas that had no enclosure and were flatter and 
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open. When it comes to visual quality and aesthetics people prefer diversity in the 

landscape (García-Llorente et al., 2012; Krause, 2001) including topographical and 

landscape elements (Qin et al., 2008). This diversity helps to keep them interested in the 

environments around them. We suspect this is why we observed high scenic ratings on 

roads that have significant topographical variation close to the viewer, compared to roads 

that were flat. 

There are many other variables or combinations of variables, that influence 

landscape preferences and scenic ratings (Dearden, 1984), that have the potential to 

augment the correlation between the VM tool and scenic quality ratings. Other variables 

that could be explored could be the amount of visible green spaces in the scenes or the 

amount of perceived naturalness (Ode et al., 2009). These and other additional measures 

could help us understand more fully what is influencing scenic preferences and ratings 

and how they night relate to visual magnitude tools assessment of landscapes. 

 
Conclusion 

 
 Our primary goal of this study was to show empirical evidence of a relationship 

between VM values and scenic ratings. We asked the question: Can the visual magnitude 

tool inform us which scenic byways or other roadway environments contain the best 

experience for vehicle-based viewers and to what extent can an averaged visual 

magnitude output correlate to scenic ratings of route-based experiences? Based on what 

we have seen, this tool can be an accurate predictor of scenic preferences. However, 

using the averaged visual magnitude values were not the best metric to use to assess the 

scenic ratings of route-based experiences. The best measure to assess scenic ratings 
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turned out to be the standard deviation. When using this value we saw the strongest 

correlation between the two data sets, making it the best predictor metric. 

The results of this study will help elevate the professionals conducting visual 

impacts analyses for route-based environments. We aimed to create an empirical study to 

understand the relationship between the Visual Magnitude Plugin for GIS and personal 

preferences in a variety of environmental typologies across the state of Utah. We 

experimented with creating pseudo-video experiences though extracting images and then 

sequencing them together for use in a survey. This survey was used to collect scenic 

quality ratings. These ratings were then compared to the VM tool output to see if there 

was any underlying relation between the environments with higher VM numbers. Based 

on the information generated results from this study we have empirical evidence that the 

visual magnitude tool can inform us of the best environments using the average VM 

value for closer extents, and the skewness values for the entire extent of the area seen. 

When analysing vehicle-based routes using this tool will yield strongly correlated results 

to how people would rate the scenic quality of environments. 
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CHAPTER 4 

CONCLUSIONS 
 
 

 The results of these two studies has several implications for acedemia and 

professional practice. The emperical evidence that we have gathered gives significt 

weight and value to the application and future expansion of this tool and other tools 

like it. The expansion of nonbinary tools to provide more dynamic pictures and 

infromation that more closely represent real world envrionments is going to 

continue, escpecially as our grasp on the concepts and technological capicty 

continues to increase. 

  From the results compiled in Chapter 2 furthered our understanding on sampling 

rates and optimal sampling distances when assessing visual magnitude. This allows for 

clearer and more efficient measuring techniques when measuring impact of route based 

experiences on observers. Additionally, the results found from Chapter 3 provide a more 

statistical foundation for validation of the tool. The statistical analyses between the two 

different data sets shows that there is a statistically significant relationship between those 

measures.  

The visual magnitude tool was originally created to assess visual impact, but its 

usefulness is expanding. This tool helps us to understand the amount of space that is 

being occupied by elements or areas of the landscape in our vision. Our study to 

understand an optimal sampling rate produced strong results mathematically and 

indicated that our sampling distances for sensitive areas be 30-meter intervals and 50-

meter intervals for other landscapes. However, combined with the results from our scenic 
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quality we are beginning to see that with the measure of standard deviation from the 

visual magnitude tool that the amount of variation of values correlates strongly to the 

scenic quality ratings. Even though mathematically our sampling distance makes sense, 

because of the additional focus that people place on terrain and additional elements in the 

landscape capture and influence people’s perception of the overall quality of the entire 

environment. While we still recommend using the sampling distance that we have found, 

these results could indicate that, in natural and rural environments, we could actually 

have a wider distance between samplings because overall impression and scenic quality is 

being heavily influenced by certain details of the landscape.  

The results of these studies have led to an interesting additional definition of the 

visual magnitude tool. Before this study we could say that the visual magnitude tool was 

just a scientific measure of impact that helps us to understand the amount of space that 

the landscape and its components are occupying in our visual field based on slope, aspect, 

and distance. Now additionally, we can say that the visual magnitude tool could be used 

as a proxy to begin to interpret how people feel about the scenic quality of rural and 

natural landscapes within Utah with the potential to do the same everywhere. While there 

is still much to be explored with this tool, this study has created an emperical base to 

build future studies of visual magnitude and impact analyses.  
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Appendix A 
 

Edited Python Code used for Video Sequencing
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orderFolder.py 
import sys 
from utils import * 
import glob 
import os 
import time 
nameOfRoad = "Road23B" 
fileType = ".jpg" 
dir_name = 'C:/Users/Scott Johnson/Downloads/street-view-movie-maker-master/street-
view-movie-maker-master/lineup-' + nameOfRoad 
# Get list of all files only in the given directory 
list_of_files = filter(os.path.isfile, 
 glob.glob(dir_name + '/*') ) 
# Sort list of files based on last modification time in ascending order 
list_of_files = sorted( list_of_files, 
 key = os.path.getmtime) 
basepath = list_of_files[0][:len(dir_name) + 1] 
 
# Iterate over sorted list of files and print file path  
# along with last modification time of file  
for i, file in enumerate(list_of_files): 
 os.rename(file, basepath + str(i)) 
print("donewithpart1") 
for i, file in enumerate(list_of_files): 
 os.rename(basepath + str(i), basepath + nameOfRoad + str(i) + fileType) 
print("donewithpart2") 
utils.py 
from __future__ import print_function 
# Some useful Google API documentation: 
# https://developers.google.com/maps/documentation/directions/ 
# https://developers.google.com/maps/documentation/roads/snap 
 
import googlemaps 
import urllib.request, os 
import numpy as np 
import json 
import pandas as pd 
import polyline 
import glob 
import subprocess 
import math 
import scipy 
PHOTO_FOLDER = "photos/" 
 
# Adapted directly from Andrew Wheeler: 
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# https://andrewpwheeler.wordpress.com/2015/12/28/using-python-to-grab-google-street-
view-imagery/ 
# Usage example: 
# >>> download_streetview_image((46.414382,10.012988)) 
def download_streetview_image(apikey_streetview, lat_lon, filename="image", 
savepath=PHOTO_FOLDER, picsize="640x640", heading=151.78, pitch=-0, fi=".jpg", 
fov=120, get_metadata=False, verbose=False, outdoor=True, radius=5): 
 assert type(radius) is int 
 # Any size up to 640x640 is permitted by the API 
 # fov is the zoom level, effectively. Between 0 and 120. 
 base = "https://maps.googleapis.com/maps/api/streetview" 
 if get_metadata: 
  base = base + "/metadata?parameters" 
 if type(lat_lon) is tuple: 
  lat_lon_str = str(lat_lon[0]) + "," + str(lat_lon[1]) 
 elif type(lat_lon) is str: 
  # We expect a latitude/longitude tuple, but if you providing a string 
address works too. 
  lat_lon_str = lat_lon 
 if outdoor: 
  outdoor_string = "&source=outdoor" 
 else: 
  outdoor_string = "" 
 url = base + "?size=" + picsize + "&location=" + lat_lon_str + "&heading=" + 
str(heading) + "&pitch=" + str(pitch) + "&fov=" + str(fov) + outdoor_string + "&radius" 
+ str(radius) + "&key=" + apikey_streetview 
 if verbose: 
  print(url) 
 if get_metadata: 
  # Description of metadata API: 
https://developers.google.com/maps/documentation/streetview/intro#size 
  response = urllib.request.urlopen(url) 
  data = json.loads(response.read()) 
  return data 
 else: 
  urllib.request.urlretrieve(url, savepath+filename+fi) 
  return savepath+filename+fi 
 
# Gist copied from https://gist.github.com/jeromer/2005586 which is in the public 
domain: 
def calculate_initial_compass_bearing(pointA, pointB): 
 if (type(pointA) != tuple) or (type(pointB) != tuple): 
  raise TypeError("Only tuples are supported as arguments") 
 lat1 = math.radians(pointA[0]) 
 lat2 = math.radians(pointB[0]) 
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 diffLong = math.radians(pointB[1] - pointA[1]) 
 x = math.sin(diffLong) * math.cos(lat2) 
 y = math.cos(lat1) * math.sin(lat2) - (math.sin(lat1) 
   * math.cos(lat2) * math.cos(diffLong)) 
 initial_bearing = math.atan2(x, y) 
 initial_bearing = math.degrees(initial_bearing) 
 compass_bearing = (initial_bearing + 360) % 360 
 return compass_bearing 
 
def haversine(a_gps, b_gps): 
 """ 
 Calculate the great circle distance between two points  
 on the earth (specified in decimal degrees) 
 """ 
 lat1, lon1 = a_gps 
 lat2, lon2 = b_gps 
 # convert decimal degrees to radians  
 lon1, lat1, lon2, lat2 = map(math.radians, [lon1, lat1, lon2, lat2]) 
 # haversine formula  
 dlon = lon2 - lon1  
 dlat = lat2 - lat1  
 a = math.sin(dlat/2)**2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon/2)**2 
 c = 2 * math.asin(math.sqrt(a))  
 km = 6367 * c 
 m = 6367000.0 * c 
 return m 
 
# Given two GPS points (lat/lon), interpolate a sequence of GPS points in a straight line 
def interpolate_points(a_gps,b_gps,n_points=20,hop_size=None): 
 if hop_size is not None: 
  distance = haversine(a_gps, b_gps) 
  n_points = int(np.ceil(distance*1.0/hop_size)) 
 x = np.linspace(a_gps[0],b_gps[0],n_points) 
 y = np.linspace(a_gps[1],b_gps[1],n_points) 
 dense_points_list = zip(x,y) 
 return dense_points_list 
 # else: 
 #  print("You forgot to provide a hop parameter! Choose between:") 
 #  print(" n_points = number of points to interpolate;") 
 #  print(" hop_size = maximum distance between points in meters.") 
 
# Short script to process the lookpoints from the above "interpolate points" function. 
def clean_look_points(look_points): 
 # Remove points that are the same 
 pt_diffs = [np.array(a)-np.array(b) for (a,b) in zip(look_points[:-
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1],look_points[1:])] 
 keepers = np.abs(np.array(pt_diffs))>0 
 look_points_out = [look_points[i] for i in range(len(keepers)) if 
np.any(keepers[i])] 
 return look_points_out 
 
# Download street view images for a sequence of GPS points. 
# The orientation is assumed to be towards the next point. 
# Setting orientation to value N orients the camera to the Nth next point. 
# If there isn't a point N points in the future, we just use the previous heading. 
def download_images_for_path(apikey_streetview, filestem, look_points, orientation=1, 
picsize="640x640"): 
 assert type(orientation) is int 
 assert orientation >= 1 
 for i in range(len(look_points)): 
  gps_point = look_points[i] 
  if i+orientation >= len(look_points): 
   heading = prev_heading 
  else: 
   heading = calculate_initial_compass_bearing(gps_point, 
look_points[i+orientation]) 
  probe = download_streetview_image(apikey_streetview, gps_point, 
filename="", heading=heading, picsize=picsize, get_metadata=True) 
  if probe['status']=="OK" and 'Google' in probe['copyright']: 
   dest_file = download_streetview_image(apikey_streetview, 
gps_point, filename=filestem + str(i), heading=heading, picsize=picsize, 
get_metadata=False) 
  prev_heading = heading 
 
def get_turn_headings(h1, h2, stepsize=15): 
 if h2 < h1: 
  h2 += 360 
 clockwise = (h2 - h1 < 180) 
 if not clockwise: 
  h1 += 360 
 n_points = np.ceil(np.abs( (h1 - h2)*1.0 /stepsize)) 
 headings = np.linspace(h1,h2,n_points) 
 return np.mod(headings,360) 
 
# def execute_turn(apikey_streetview, filestem, gps_point, h1, h2, picsize="640x640", 
stepsize=15): 
#  if h2 < h1: 
#   h2 += 360 
#  clockwise = (h2 - h1 < 180) 
#  if not clockwise: 
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#   h1 += 360 
#  n_points = np.ceil(np.abs( (h1 - h2)*1.0 /stepsize)) 
#  headings = np.linspace(h1,h2,n_points) 
#  probe = download_streetview_image(apikey_streetview, gps_point, filename="", 
heading=headings[0], picsize=picsize, get_metadata=True) 
#  if probe['status']=="OK" and 'Google' in probe['copyright']: 
#   for h_i,h in enumerate(headings): 
#    dest_file = download_streetview_image(apikey_streetview, 
gps_point, filename="{0}_turn_{1}".format(filestem,h_i), heading=h, picsize=picsize, 
get_metadata=False) 
# 
def generate_download_sequence(gps_points, savename): 
 # Create dataframe with GPS points 
 pt_list = pd.DataFrame(index=range(len(gps_points)), data=gps_points, 
columns=["lat","lon"]) 
 # Compute basic headings 
 headings = [calculate_initial_compass_bearing(pt[0], pt[1]) for pt in 
zip(gps_points[:-1],gps_points[1:])] 
 pt_list['heading'] = headings + [headings[-1]] 
 # Set up probes and collect all in raw form 
 pt_list['probe'] = [{} for i in pt_list.index] 
 for i in pt_list.index: 
  pt_list['probe'][i] = download_streetview_image("AIzaSyAaFENLZe-
tmLkswnzGXcRqECQZ_5ctmSw", (pt_list["lat"][i],pt_list["lon"][i]), filename="", 
heading=pt_list["heading"][i], get_metadata=True) 
 # Assign probe items to their own columns: 
 probe_items = ['copyright', 'date', 'location', 'pano_id', 'status'] 
 for p_item in probe_items: 
  pt_list[p_item] = [x[p_item] for x in pt_list['probe']] 
 pt_list.to_pickle(savename) 
 return pt_list 
 
def create_itinerary_df(gps_points): 
 # Create dataframe with GPS points 
 pt_list = pd.DataFrame(index=range(len(gps_points)), columns=["lat", "lon", 
"heading", "probe", "copyright", "date", "location", "pano_id", "status", "downloaded_1", 
"downloaded_array"]) 
 lats, lons = zip(*gps_points) 
 pt_list['lat'] = lats 
 pt_list['lon'] = lons 
 pt_list['downloaded_1'] = False 
 pt_list['downloaded_array'] = False 
 # Compute basic headings 
 headings = [calculate_initial_compass_bearing(pt[0], pt[1]) for pt in 
zip(gps_points[:-1],gps_points[1:])] 
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 pt_list['heading'] = headings + [headings[-1]] 
 # pt_list['probe'] = [{} for i in pt_list.index] 
 pt_list = pt_list.fillna('') 
 return pt_list 
 
def probe_itinerary_items(itinerary_df, indlist, apikey_streetview, redo=False): 
 assert [i in itinerary_df.index for i in indlist] 
 probe_items = ['copyright', 'date', 'location', 'pano_id', 'status'] 
 for i in indlist: 
  if (itinerary_df['status'][i] == '') or (redo): 
   print(i) 
   probe_result = download_streetview_image(apikey_streetview, 
(itinerary_df["lat"].loc[i],itinerary_df["lon"][i]), filename="", 
heading=itinerary_df["heading"][i], get_metadata=True) 
   # itinerary_df.loc[i]["probe"] = probe_result 
   # Assign probe items to their own columns: 
   for p_item in probe_result.keys(): 
    itinerary_df[p_item][i] = probe_result[p_item] 
 
def process_pointlist(pt_list=None, pt_list_filename=None): 
 if pt_list is None and pt_list_filename is not None: 
  pt_list = pd.read_pickle(pt_list_filename) 
 # Remove duplicate / invalid points: 
 unique_panos = np.unique(pt_list.pano_id) 
 panoid_to_ind = {panoid:pt_list.pano_id.eq(panoid).idxmax() for panoid in 
unique_panos} 
 keepers = [i for i in sorted(panoid_to_ind.values()) if pt_list.status[i]=='OK' and 
'Google' in pt_list.copyright[i]] 
 new_list = pt_list.loc[keepers] 
 new_list.index = np.arange(new_list.shape[0]) 
 crit_diff = 5 
 turn_indices = new_list.loc[np.abs(np.diff(new_list.heading))>crit_diff].index 
 new_rows = [] 
 for ti in turn_indices: 
  h1 = new_list.headings[ti] 
  h2 = new_list.headings[ti+1] 
  headings = get_turn_headings(h1, h2, stepsize=1)[1:-1] 
  tmp_df = pd.DataFrame(np.tile(new_list.loc[ti],(len(headings),1))) 
  tmp_df.columns = new_list.columns 
  tmp_df.heading = headings 
  tmp_df.index = np.linspace(ti+0.01,ti+0.99,len(headings)) 
  new_rows += [tmp_df] 
 final_list = pd.concat([new_list]+new_rows) 
 final_list = final_list.sort_index() 
 final_list.index = np.arange(final_list.shape[0]) 
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 return final_list 
 
def download_pics_from_list(item_list, apikey_streetview, filestem, picsize, 
redownload=False, index_filter=None): 
 print("hello") 
 if index_filter is None: 
  index_filter = item_list.index 
 for i in index_filter: 
  row = item_list.loc[i] 
  lat, lon, heading, downloaded = row['lat'], row['lon'], row['heading'], 
row['downloaded_1'] 
  if (not downloaded) or redownload: 
   download_streetview_image(apikey_streetview, (lat,lon), 
filename=filestem + str(i), heading=heading, picsize=picsize, get_metadata=False) 
   item_list["downloaded_1"].loc[i] = True 
 
def download_tableaux_from_list(item_list, apikey_streetview, filestem, picsize, fov, 
fov_step, pitch, grid_dim, index_filter=None): 
 if index_filter is None: 
  index_filter = item_list.index 
 for i in index_filter: 
  row = item_list.loc[i] 
  lat, lon, heading, downloaded = row['lat'], row['lon'], row['heading'], 
row['downloaded_array'] 
  download_images_for_point(apikey_streetview, (lat,lon), filestem + str(i), 
"./photos/", heading, fov, fov_step, pitch, grid_dim) 
  if (not downloaded): 
   assemble_grid_of_images(filestem + str(i), "./photos/", 
"./photos/composite-{0}-{1}".format(filestem,i), grid_dim, crop_dim="640x640+0+0") 
   item_list["downloaded_array"].loc[i] = True 
 
# Download set of zoomed-in views to be composited into a larger image 
 
# Download set of zoomed-in views to be composited into a larger image 
def download_images_for_point(apikey_streetview, lat_lon, filestem, savepath, heading, 
fov = 30, fov_step = 30, pitch = 15, grid_dim = [4,2]): 
 horiz_points = (np.arange(grid_dim[0]) - (grid_dim[0]-1)/2.0) * fov_step 
 vert_points = (np.arange(grid_dim[1])[::-1] - (grid_dim[1]-1)/2.0) * fov_step + 
pitch 
 # horiz_points = np.linspace(-1, 1, grid_dim[0]) * (fov / 90.0) 
 # vert_points = np.linspace(max_pitch, min_pitch, grid_dim[1]) * (fov / 90.0) 
 # fov_angle_frac = 1.0 * fov / max(grid_dim) 
 # fudge_factor = 5 
 # assert fov_angle_frac >= 15 
 panel_inds = np.reshape(np.arange(np.prod(grid_dim)), grid_dim, 1).transpose() 
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 for ix,x in enumerate(horiz_points): 
  for iy,y in enumerate(vert_points): 
   panel_ind = panel_inds[iy,ix] 
   print(panel_ind) 
   tmp_heading = heading + x 
   tmp_pitch = y 
   print(tmp_heading, tmp_pitch) 
   download_streetview_image(apikey_streetview, lat_lon, 
filename="{0}_{1}".format(filestem,panel_ind), savepath=savepath, picsize="640x640", 
heading=tmp_heading, pitch=tmp_pitch, fi=".jpg", fov=fov, get_metadata=False, 
verbose=False, outdoor=True, radius=5) 
 
def assemble_grid_of_images(filestem, savepath, outfilestem, grid_dim, 
crop_dim="640x640+0+0"): 
 panel_inds = np.reshape(np.arange(np.prod(grid_dim)), grid_dim, 1).transpose() 
 grid_filenames = [["{0}/{1}_{2}.jpg -crop 
{3}".format(savepath,filestem,pind,crop_dim) for pind in pindrow] for pindrow in 
panel_inds] 
 command_string = "convert " + " ".join([" \( " + " ".join(row+["+append"]) + " \) 
" for row in grid_filenames]) + " -append {0}.jpg".format(outfilestem) 
 # print(command_string) 
 subprocess.call(command_string, shell=True) 
 
# Line up files in order to make a video using ffmpeg. 
# ffmpeg requires all images files numbered in sequence, with no gaps. 
# However, some images will not have been downloaded, so we need to shift everything 
to tidy up gaps. 
# Also, some images will be duplicates, and we can remove them. 
# Also, a user may want to manually discard images because they are clearly out of step 
with the path (e.g., they might be view inside a building, or slightly down a cross-street.) 
After manually removing files, re-running this will line up the files. 
def line_up_files(filestem, new_dir="./movie_lineup", command="move", 
override_nums=None): 
 if not os.path.exists(new_dir): 
  os.makedirs(new_dir) 
 files = glob.glob("./photos/"+filestem+"*.jpg") 
 file_nums = [int(filename[9+len(filestem):-4]) for filename in files] 
 file_sort = [files[i] for i in np.argsort(file_nums)] 
 # First, remove file_nums that represent duplicate files 
 file_keepers = prune_repeated_images_from_list(file_sort) 
 # for i in range(1,len(file_sort)): 
 # prev_file = file_keepers[-1] 
 # curr_file = file_sort[i] 
 # result = os.system("diff " + curr_file + " " + prev_file) 
 # if result > 0: 
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 # file_keepers += [curr_file] 
 # Now, shuffle the files into a packed numbering: 
 for i in range(len(file_keepers)): 
  old_filename = file_keepers[i] 
  new_filename = "{0}/{1}{2}.jpg".format(new_dir,filestem,i) 
  # print("{0} {1} {2}".format(command, old_filename, new_filename)) 
  os.system("{0} {1} {2}".format(command, old_filename, new_filename)) 
 
# Refactor line_up_files as separate steps: 
def line_up_files_with_numbers_script(filestem, numbers, new_dir): 
 files = ["./photos/{0}{1}.jpg".format(filestem,num) for num in sorted(numbers)] 
 file_keepers = prune_repeated_images_from_list(files) 
 copy_files_to_sequence(file_keepers, "./photos/{0}/{1}".format(new_dir, filestem)) 
 
def copy_files_to_sequence(list_of_files, new_filestem, command='cp'): 
 for i in range(len(list_of_files)): 
  old_filename = list_of_files[i] 
  new_filename = "{0}{1}.jpg".format(new_filestem,i) 
  #print("{0} {1} {2}".format(command, old_filename, new_filename)) 
  os.system("{0} {1} {2}".format(command, old_filename, new_filename)) 
 
def prune_repeated_images_from_list(list_of_files): 
 file_keepers = [list_of_files[0]] 
 for i in range(1,len(list_of_files)): 
  prev_file = file_keepers[-1] 
  curr_file = list_of_files[i] 
  result = os.path.getsize(prev_file) - os.path.getsize(curr_file) 
  if abs(result) > 150: 
   file_keepers += [curr_file] 
 return file_keepers 
 
def make_video(base_string, rate=3, video_string=None, picsize="640x640", 
basepath="./photos"): 
 if video_string is None: 
  video_string = base_string 
 print("ffmpeg -r {0} -f image2 -s {3} -i {4}/{1}%d.jpg -vcodec libx264 -crf 25 -
pix_fmt yuv420p {2}.mp4 -y".format(9, base_string, video_string, picsize, basepath)) 
 subprocess.call("ffmpeg -r {0} -f image2 -s {3} -i {4}/{1}%d.jpg -vcodec 
libx264 -crf 25 -pix_fmt yuv420p {2}.mp4 -y".format(9, base_string, video_string, 
picsize, basepath), shell=True) 
#ffmpeg -r 20 -f image2 -s 640x640 -i ./lineup-joshua_tree//joshua_tree%d.jpg -vcodec 
libx264 -crf 25 -pix_fmt yuv420p joshua_tree.mp4 -y 
street_crawl.py 
import sys 
from utils import * 
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#from API_KEYS import API_KEY_DIRECTIONS, API_KEY_STREETVIEW 
 
'''Google Street View Movie Maker 
 
Usage is: 
 python2 ./street_crawl.py lat1 lon1 lat2 lon2 output_filestem 
 
 
For example, to make a one-second video of the entrance of Joshua Treet National Park: 
 python2 ./street_crawl.py 33.669793 -115.802125 33.671796 -115.801851 
joshua_tree 
 
Note: usage requires your own API keys. 
 
''' 
 
def main(lat_lon_A, lat_lon_B, filestem): 
 print ("Tracing path from " + str(lat_lon_A) + " to " + str(lat_lon_B)) 
 # Request driving directions from A to B 
 gd = googlemaps.Client(key='AIzaSyAaFENLZe-
tmLkswnzGXcRqECQZ_5ctmSw') 
 directions_result = gd.directions(origin=lat_lon_A, destination=lat_lon_B, 
mode="driving") 
 # Convert driving directions into sequence of GPS points 
 print(directions_result) 
 path_points = polyline.decode(directions_result[0]['overview_polyline']['points']) 
 dense_points = [interpolate_points(pt[0],pt[1],hop_size=3) for pt in 
zip(path_points[:-1],path_points[1:])]  
 look_points_rough = [item for sequence in dense_points for item in sequence] 
 # Remove unnecessary points 
 look_points = clean_look_points(look_points_rough) 
 print ("For this route, there are " + str(len(look_points)) + " images to 
download.\n") 
 continue_opt = input('Would you like to download them all Type yes to proceed; 
otherwise, program halts.\n') 
 if continue_opt not in ['Yes','yes']: 
  return 
 # Download sequence of images (up to a limit? What's the limit in a day?) 
 download_images_for_path("AIzaSyAaFENLZe-
tmLkswnzGXcRqECQZ_5ctmSw", filestem, look_points) 
 # Assign images new filenames (and remove bad images) 
 print("here" + filestem) 
 line_up_files(filestem, new_dir="./lineup-{0}/".format(filestem)) 
 # Convert sequence of images to video 
 make_video(filestem, rate=20, video_string=filestem, basepath="./lineup-
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{0}/".format(filestem)) 
 # TODO: Delete downloaded images 
 
if __name__ == "__main__": 
 lat_A, lon_A, lat_B, lon_B = [float(x) for x in sys.argv[1:5]] 
 filestem = sys.argv[5] 
 main((lat_A, lon_A), (lat_B, lon_B), filestem) 
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Appendix B 
 

Site Context Images and Visual Magnitude Raster Maps
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Appendix C 
 

Familiarity and Scenic Ratings Data
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Figure C.1 

Familiarity with Each Individual Ecoregion (Zone) and Scenic Quality Ratings   

 

 

Table C.1 

SPSS Statistics for Familiarity with each Ecoregion (Zone) and Scenic Quality Ratings  

Source df Mean square F p value Partial η2 
Intercept 1 11212.569 2629.881 .000 .400 
VM skew 1 879.618 206.312 < .001 .050 

Familiarity rating 1 79.434 18.631 < .001 .005 
Familiarity 5 4.548 1.067 .377 .001 
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Figure C.2 

Familiarity with Ecoregion (Zone) 2 and Scenic Quality Ratings  

 

Table C.2 

SPSS Statistics for Familiarity with Ecoregion (Zone) 2 and Scenic Quality Ratings  

Source df Mean square F p value Partial η2 
Intercept 1 423.199 109.369 < .001 .270 
VM skew 1 8.717 2.235 .134 .008 
Familiarity rating 88.589 4 22.147 < .001 .072 
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Figure C.3 

Familiarity with Ecoregion (Zone) 3 and Scenic Quality Ratings  
 

 

 

Table C.3 

SPSS Statistics for Familiarity with Ecoregion (Zone) 3 and Scenic Quality Ratings  

Source df Mean square F p value Partial η2 
Intercept 1 102.005 31.550 < .001 .278 
VM skew 1 33.136 10.249 .002 .111 
Familiarity rating 4 9.141 2.827 .030 .121 

 

  



123 

Figure C.4 

Familiarity with Ecoregion (Zone) 4 and Scenic Quality Ratings 
 

 
 
Table C.4 

SPSS Statistics for Familiarity with Ecoregion (Zone) 4 and Scenic Quality Ratings  

Source df Mean square F p value Partial η2 
Intercept 1 339.430 93.061 <.001 .425 
VM skew 1 1.879 .515 .474 .004 
Familiarity rating 4 10.141 2.780 .030 .081 
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Appendix D 
 

Scenic Quality Ratings for Each Roadway
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Table D.1 

Scenic Quality Ratings from the Survey Road 1 to 11 
 

ID RD 1 RD 3 RD 4 RD 5 RD 8 RD 9 RD 11 
1 5 7 5 4.5 5 5.5 4 
2 7.5 9 8 3.5 7 1.5 1.5 
3 4 6 3 1.5 2 3 1 
4 6 8 6.5 6.5 7 7.5 4.5 
5 4.5 8.5 6 2 2 4.5 2 
6 5 7.5 5.5 2.5 1.5 3 2 
7 4.5 6.5 3.5 2 3 3 1 
8 7 9 8.5 4 5 5.5 4 
9 6.5 7 4.5 3 6 3.5 3 

10 5.5 8 3.5 3 2.5 3.5 2.5 
11 4 6.5 2 3 3.5 5 2 
12 9 10 10 9 7.5 7 7 
13 7 9 8 8.5 9 7.5 8 
14 6 6.5 2.5 3.5 3.5 5.5 2.5 
15 6.5 7.5 7 6 6 6 5 
16 5.5 7.5 4 3 6.5 6.5 2 
17 4 5 3 2.5 3 4.5 2 
18 6.5 9.5 6.5 3.5 7 3.5 1 
19 5 8.5 6 3.5 4.5 4.5 3 
20 7 9 7.5 7 6.5 5.5 7 
21 4.5 8.5 6 3 5 5 1 
22 8.5 9.5 6.5 2.5 8 3 3.5 
23 3 8.5 6 4.5 5 3 7 
24 4.5 8 6 3.5 6.5 5.5 4 
25 4 9 2.5 2.5 2 5.5 1 
26 6 8 6 5 6.5 5.5 2.5 
27 8 10 8 7 8 2 6 
28 5 8.5 4 3.5 3 5 1 
29 6 8 3 5 2 5 2.5 
30 3.5 7.5 3.5 3 5 3.5 2.5 
31 8 9.5 9.5 6.5 7.5 8 8 
32 2.5 4 4 2 3.5 3.5 1 
33 5.5 8 6 3.5 5 5 1.5 
34 5.5 9 7.5 5 4.5 4 3 
35 4 9.5 5.5 1.5 2.5 1.5 1.5 
36 5.5 10 8 6 8.5 3.5 6 
37 6.5 8 7 4 5 6 2 
38 5 8.5 4.5 2 6.5 3.5 2.5 
39 6.5 7.5 7.5 5.5 7.5 7.5 5 
40 7 8.5 7 6.5 7.5 7 5 
41 3.5 8 4 4 4 4.5 5 
42 7 9.5 6 7 7 4 6 
43 4.5 7 5 3 1.5 4 2 
44 3 3.5 2.5 1 1.5 2.5 1 
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Table D.2 
 
Scenic Ratings from the Survey Road 12 to 23 
 

ID RD 12 RD 14 RD 16 RD 17 RD 18 RD 19 RD 21 RD 23 
1 6.5 6 4.5 5 4.5 6 4 4.5 
2 4.5 4 2 5 5.5 4 5 7 
3 3 2.5 2 2 2.5 4.5 3 2.5 
4 6 5.5 5.5 5.5 6 6.5 4.5 5.5 
5 6 6 4.5 4 5 7 5 5 
6 3.5 2.5 3 2.5 4 5 4.5 3 
7 3.5 3 2 2 2.5 4 2.5 3 
8 5 5.5 4.5 6 5.5 6.5 6.5 6.5 
9 3.5 6 2.5 4.5 4.5 4 4.5 5 

10 4.5 2.5 4 2.5 4 6.5 3 4 
11 4.5 2.5 3.5 2 3.5 5 3 4 
12 10 10 8.5 10 10 9.5 10 9.5 
13 8.5 9 8 8.5 8 8 8 8.5 
14 4 1 4.5 1 3.5 6.5 3 2.5 
15 6 6 5.5 6 6 8 6 6 
16 5.5 2 5.5 4 4 6.5 3 6.5 
17 4 2.5 2.5 2 2.5 4 3.5 2.5 
18 3.5 4.5 4 5.5 3 4.5 4 5.5 
19 4.5 4 4.5 4 3.5 6 4.5 5.5 
20 6.5 6 5.5 6.5 6 7 7.5 7 
21 6.5 4.5 5 3.5 2.5 7 4 5.5 
22 4 7 4 4 8 6.5 5 6 
23 5 6.5 3 6 2.5 7 4.5 5 
24 5 5.5 5.5 4 6 6 5.5 4 
25 3 2 3.5 1.5 2 4.5 3.5 2.5 
26 4.5 6.5 4.5 4.5 6 7 6.5 6.5 
27 8.5 7 3.5 8 7.5 8.5 8.5 7 
28 2.5 3.5 2 2.5 3 5.5 2.5 4.5 
29 3.5 3.5 2 4 4 7.5 4 4.5 
30 2.5 3.5 3 4 4 6 4.5 3.5 
31 7.5 7.5 4.5 3.5 7 5.5 7.5 7.5 
32 2.5 1 3 1.5 1 4 1 2.5 
33 3 3.5 3 2 2.5 6 4 3.5 
34 5 6 4 3 5 6.5 6 4.5 
35 2.5 1.5 2.5 3 1.5 4 4 3 
36 6.5 6.5 5 6.5 6 6 6.5 7.5 
37 7 2 5.5 3 5.5 6.5 3.5 4 
38 3 6 2 6 6 4.5 3 6 
39 6 7 6 6.5 5 7.5 7 6 
40 6.5 7 6 6 6 7.5 6.5 7 
41 5.5 6.5 4.5 5 5 6 7 4.5 
42 5 6 4.5 7.5 6.5 5 7 8 
43 3 3.5 3 2.5 4 4 2.5 3 
44 2 1.5 2 1 1 2.5 2 1.5 
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