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ABSTRACT 

 

 

Quantification of Hydrologic Responses to Forest Disturbance 

in Western U.S. Watersheds 

 

by 

 

Sara A. Goeking, Doctor of Philosophy 

Utah State University, 2022 

 

Major Professor: Dr. David G. Tarboton 

Department: Watershed Science 

 

Forests influence the partitioning of precipitation into evapotranspiration and 

streamflow water balance components. Forest cover and streamflow are generally 

expected to be related because forest cover impacts evapotranspiration. In coniferous 

western forests, recent widespread tree mortality has provided opportunities to improve 

understanding of the relationship between forest cover change and water yield and inform 

management of forested watersheds in the context of climate change, increased demands 

on water, and drought. 

This work investigated hydrologic response to forest disturbance in the western 

United States. First, I synthesized findings from 78 published studies of streamflow or 

snowpack response to forest disturbances. Results indicated that streamflow and 

snowpack may increase, not change, or even decrease with reduced forest cover due to 

disturbance. Decreased streamflow occurred due to net increases in evapotranspiration, 

particularly following non-stand replacing disturbance. Higher post-disturbance 

subcanopy radiation caused increased evaporation from soil or snowpack, and rapid post-

disturbance vegetative recovery resulted in increased transpiration. 
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Next, I investigated streamflow response to forest disturbance in 159 watersheds 

using hydrologic, climatic, and forest data from an existing curated hydro-climatological 

watershed dataset and the US Forest Service’s Forest Inventory and Analysis (FIA) 

dataset. Streamflow change due to tree mortality was found to depend on aridity. In 

wetter watersheds, disturbances tended to increase streamflow, while post-disturbance 

streamflow more often decreased in arid watersheds with high potential 

evapotranspiration to precipitation ratio. 

Several physically based hydrologic models recognize the different influences 

that overstory versus understory canopies exert on hydrologic processes, yet most inputs 

to such models consist only of total leaf area index (LAI) rather than LAI differentiated 

by strata. I developed LAI datasets for separate overstory and understory canopy strata 

with the intent of providing improved canopy inputs for ecohydrologic modeling. These 

datasets were created using a novel method for estimating LAI from FIA plot data.  Time 

series of overstory and understory LAI demonstrated that interannual variability of 

understory LAI exceeds that for overstory LAI. The separation of LAI into overstory and 

understory components is anticipated to improve the ability of LAI-based analyses and 

models to simulate the influence of forest canopies on hydrologic processes. 

(210 pages) 
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PUBLIC ABSTRACT 

 

 

Quantification of Hydrologic Responses to Forest Disturbance 

in Western U.S. Watersheds 

Sara A. Goeking 

 

 

Forested watersheds produce more than half of the water supply in the United 

States. Forests affect how precipitation is partitioned into available water versus 

evapotranspiration. This dissertation investigated how water yield and snowpack 

responded to forest disturbance following recent disturbances in western U.S. forests 

during the period 2000-2019. 

Chapter 2 systematically reviewed 78 recent studies that examined how water 

yield or snowpack changed after forest disturbances. Water yield and snowpack often 

increased after disturbance, but decreased in some circumstances. Decreased water yield 

was most likely to occur following disturbances that did not remove the entire forest 

canopy. It was also more likely to occur in more arid watersheds at lower latitudes, such 

as in the southwestern U.S., and on south-facing aspects. 

Chapter 3 examined 159 watersheds across the western U.S. to determine how 

often and where water yield increased or decreased following forest disturbance. Overall, 

more severe forest disturbances, particularly in relatively wet watersheds such as in the 

Northern Rocky Mountains or Pacific Northwest, were more likely to produce larger 

water yield. However, forest disturbances in very arid watersheds, such as those in the 

southwestern U.S., were more likely to result in less water yield. 
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Chapter 4 developed a new method for more precisely mapping forest canopies 

and understory forest vegetation. This method used data collected by the U.S. Forest 

Service’s Forest Inventory and Analysis Program. The maps of separate forest canopy 

and understory vegetation layers are expected to allow hydrologists to make more 

accurate predictions regarding the effects of future vegetation changes on water supply. 

Previous studies that monitored water yield before and after clearcut timber 

harvests concluded that forest disturbances would lead to increased water yield. In 

contrast, the work presented here found that disturbances that do not remove the entire 

canopy (e.g., due to insects, drought, disease, thinning, low-severity wildfire) may lead to 

different water yield and snowpack responses than disturbances that remove the entire 

canopy (e.g., clearcut harvesting, severe wildfire). This work has therefore helped us 

better understand how future water supply, for people and for ecosystems, will be 

affected by future forest changes.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

Forest ecosystems provide most of our water supply in the western U.S. This 

dissertation describes research that enhances our understanding of how forest cover, 

disturbance, and climate interact to affect streamflow. Forests influence the partitioning 

of precipitation into runoff and evapotranspiration through several hydrologic processes. 

Our understanding of the interacting effects of climate and forest dynamics on 

streamflow requires observational examination of how streamflow has responded to 

recent forest disturbances. Our ability to predict the effects of future forest changes on 

water supply depends on this understanding and also on our ability to better represent 

forest cover and forest cover change in hydrologic models. 

This study has advanced our understanding of the effects of changes in forest 

cover on streamflow through investigations of the effects of forest disturbance on 

streamflow. First, I conducted a systematic review of literature on this topic. From this 

synthesis, I drew conclusions about how forest disturbance affects snowpack and 

streamflow, identified factors that may influence post-disturbance streamflow, and 

formulated testable hypotheses. Second, I tested my hypotheses from the earlier work 

using a sample of many watersheds across the western US. This analysis combined 

watershed-scale data from the CAMELS hydroclimatic dataset (Addor et al. 2017), which 

is a curated dataset representing carefully selected watersheds within the U.S., with forest 

cover and disturbance data from the U.S. Forest Service’s Forest Inventory and Analysis 

(FIA) dataset (Burrill et al. 2018). Third, I developed a spatially and temporally enhanced 
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representation of forest cover that may improve future performance of distributed 

hydrologic models. 

 

Objectives and hypotheses 

 

 

This dissertation addressed three specific research objectives. Each objective is 

described below, followed by a brief statement of our expectation or hypothesis related to 

that objective. 

Objective 1: Determine how recent forest disturbances have influenced 

streamflow and snowpack via canopy ecohydrologic processes. 

Expectation/hypothesis: I hypothesized that recent forest disturbance has led to 

variable streamflow responses, including no effect, increases, and decreases. I expected 

that disturbance has led to increased throughfall of precipitation and decreased 

interception and transpiration, leading to increases in streamflow, but has also resulted in 

increased solar energy fluxes that may lead to increased evaporation from soil and faster 

melting and sublimation of snowpack, thereby decreasing streamflow.  The balance of 

these process-level responses was hypothesized to dictate whether streamflow increased 

or decreased. 

Objective 2: Determine how recent forest disturbances have influenced 

streamflow, using a novel combination of systematic forest inventory data and a curated 

large-sample hydrologic dataset. 

Expectation/hypothesis: I expected that (a) annual streamflow is generally 

inversely and nonlinearly related to forest cover, (b) annual streamflow following 

disturbance may be more likely to decrease in watersheds where aridity and incoming 
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solar radiation are relatively high, e.g., in the Southwestern U.S., and (c) the interaction 

of disturbance severity and aridity affect not only the magnitude but also the direction of 

post-disturbance change in streamflow. 

Objective 3: Develop a method for producing separate overstory and understory 

leaf area index (LAI) datasets for input to hydrologic models, produced using a 

combination of data from an existing forest monitoring network, remote sensing data, and 

spatially explicit biophysical data. This objective was intended to bridge the gap between 

how foresters typically characterize forests, using metrics such as tree diameter, height, 

basal area, and canopy cover, versus how hydrologists characterize vegetation using LAI 

in hydrologic models. 

Expectation/hypothesis: I expected the result from combining these data to 

provide more detailed forest cover information than is currently available from 

nationwide remote sensing LAI products. 

Addressing these three objectives led to two major accomplishments: 1) new 

insights regarding how forest cover and climate interact to influence streamflow, and 2) a 

new method for combining forest monitoring data with biophysical and remote sensing 

information to improve the quantitative characterization of forest structure, with separate 

layers representing overstory versus understory density, for input to hydrologic modeling. 

These outcomes will improve the ability of researchers and resource managers to evaluate 

the effects of future changes in forest cover on streamflow, both through modeling and 

through improving what we know about how the relationship between forest cover and 

streamflow varies across different environments. Addressing these objectives and their 
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respective hypotheses has provided information that can be used for forest and water 

management and planning. 

 

Forest hydrology overview: Linkages between forest cover and streamflow 

 

 

All three objectives drew upon knowledge of forest hydrology derived from the 

disciplines of forestry and hydrology. Principles of forest hydrology include the effects of 

tree canopies on the main water balance components of the hydrologic cycle. Forests 

influence the partitioning of precipitation into runoff versus evapotranspiration through 

several hydrologic processes. Tree cover intercepts precipitation, affects wind patterns 

and thus snow redistribution (Broxton et al. 2015), produces litter and roots that affect 

infiltration rates (Dingman 1993), transpires water from the soil into the atmosphere 

(Biederman et al. 2015), and influences local energy balance and snow water equivalent 

(Broxton et al. 2015; Mahat and Tarboton 2014; Veatch et al. 2009). Thus, changes in 

forest cover may affect the relationship between precipitation and runoff. 

The influence of forest cover on hydrologic processes implies that changes in 

forest cover may alter the timing and magnitude of runoff. A classic long-term study of 

paired watersheds at the Fool Creek drainage in Colorado found that clearcutting a 

coniferous forest resulted in earlier and higher peak flows, as well as higher annual 

streamflow, relative to an uncut watershed (Troendle and King 1985). However, changes 

in forest cover range from complete removal of the canopy (e.g., due to clearcutting, 

stand-replacing fire, or conversion to another land use or cover type) to proportional 

reduction in forest cover due to minor disturbances such as low-severity fire, drought, or 

insect epidemics. Such proportional reductions were observed after a mountain pine 
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beetle outbreak in the 1970s in Jack Creek, Montana (Potts 1984), which increased total 

runoff and caused earlier peak flows. In the case of both clearcutting and insect 

epidemics, the primary explanation for increased streamflow is that reductions in forest 

cover resulted in decreased evapotranspiration and canopy interception (Potts 1984; 

Troendle and King 1985). 

These previous observations led to the expectation that reductions in forest cover 

would result in increased streamflow. This expectation has been tempered in snow 

dominated regions by findings that forests of intermediate cover (25-50%) can retain the 

greatest snow water equivalent due to tradeoffs between interception and shading (Veatch 

et al. 2009). Furthermore, dense forests may actually exhibit lower snowpack retention 

times if they have lower albedo or emit more downward longwave radiation than sparser 

stands (Lundquist et al. 2013). 

Recent tree mortality in the western U.S. has provided an opportunity to study the 

linkage between forest disturbance and streamflow. Tree mortality has been 

extraordinarily high over the past two decades due to a combination of drought, insects, 

and non-stand replacing wildfire, all of which reduce tree cover rather than remove the 

entire canopy, as well as severe wildfire that does remove the canopy (van Mantgem et 

al. 2009). Some studies have confirmed the general expectation that minor forest 

disturbance increases streamflow due to increased throughfall and decreased canopy 

sublimation and evapotranspiration (e.g., Livneh et al. 2015; Wei and Zhang 2010). 

However, these effects are not universally observed because increased sublimation and 

increased transpiration in surviving, understory vegetation may offset the decreased 

evapotranspiration caused by overstory mortality, either immediately post-disturbance 
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(Biederman et al. 2015) or over time if regrowth of understory vegetation occurs rapidly 

and evapotranspiration increases to pre-disturbance levels (Wei and Zhang 2010). Indeed, 

reductions in forest cover may either increase or decrease streamflow. Decreased 

streamflow is hypothesized to occur after forest disturbance in catchments with low 

precipitation or abundant understory vegetation (Adams et al. 2011). Thus, the existing 

evidence does not unambiguously support the expectation that reductions in forest cover 

will increase streamflow. Rather, it verifies the importance of considering individual 

hydrologic processes, energy budget components, and their respective contributions to 

streamflow. The variable results summarized above underscore the complexity of forest-

streamflow interactions and the need for future investigation of the link between forest 

disturbance and streamflow (Vose et al. 2016). 

Several reviews of research on forests and streamflow (Brown et al. 2005; 

Andréassian 2004; Bosch and Hewlett 1982) identified similarities among previous 

studies and then outlined gaps to be filled by future research. First, there is a dearth of 

research on watersheds larger than those considered in paired-catchments studies (Brown 

et al. 2005; Bosch and Hewlett 1982), most of which are less than 2 km2 (Andréassian 

2004). Observations of many watersheds across a broad area, or simulation models of 

larger watersheds, may be required in lieu of paired-catchment observation in larger 

watersheds due to the difficulty of finding similar-sized control catchments (Andréassian 

2004). Second, forest cover is characterized as percent forested area in both observational 

and simulation studies (Andréassian 2004), where a 20% reduction in forest area across a 

catchment is thought to produce a measurable hydrologic response (Brown et al. 2005; 

Bosch and Hewlett 1982). Thus, most studies answer questions about reductions in forest 
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area rather than reduction in tree cover, e.g., a 20% loss of forest canopy across the 

forested portion of a watershed. Given high recent tree mortality across the western U.S. 

(van Mantgem 2009), a more realistic representation of forest cover will include intrinsic 

attributes of patches within watersheds, such as basal area or leaf area per patch or per 

pixel, which may be acquired from existing forest monitoring institutions (Andréassian 

2004). 

 

The value of improved vegetation inputs for hydrologic modeling 

 

 

Water planners and managers are interested in hydrologic response at the scale of 

individual watersheds and river basins (Andréassian 2004). Water researchers are also 

interested in questions about how well site-specific processes scale up to entire 

watersheds. Spatially distributed models allow estimation of interception, sublimation, 

and evaporation within coniferous forest canopies, often at flexible spatial scales ranging 

from individual trees to forest patches to entire catchments. 

Existing hydrologic models vary with respect to their representations of 

vegetation and its effects on ecohydrologic processes in simulations of streamflow. Many 

hydrologic models do not incorporate a lot of vegetation detail, and some represent 

vegetation only in terms of land cover or land use classes. Two models that are capable of 

representing spatial distributions of forest canopies within a watershed are the Distributed 

Hydrology Soil Vegetation Model (DHSVM; Wigmosta et al. 1994) and the Regional 

Hydro-Ecologic Simulation System (RHESSys; Tague and Band 2004). DHSVM allows 

vertical representation of two canopy layers (Wigmosta et al. 1994), and RHESSys can 

simulate ecohydrologic fluxes within multiple canopy layers, an understory vegetation 
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layer, and a litter layer at multiple spatial scales within a watershed (Tague and Band 

2004). Both RHESSys and DHSVM are distributed, physically based models, wherein 

inputs and outputs are spatially explicit and temporally dynamic, and algorithms 

represent physical processes rather than statistical or empirical relationships (Tague and 

Band 2004; Wigmosta et al. 1994). For example, RHESSys uses a mass-balance 

approach to simulate streamflow as well as ecosystem processes such as 

evapotranspiration and net photosynthesis (Tague and Band 2004; Band et al. 1996). 

Among existing models that can simulate the effects of forest cover changes on 

hydrology, these models stand out due to their physically based representation of 

hydrologic processes within multiple vegetation strata in a spatially distributed 

framework. Thus, they represent a methodology for expanding ecohydrologic research 

beyond the spatial scale considered in most observational studies (Andréassian 2004) and 

for considering the possibility of increases vs. decreases in total evapotranspiration 

following disturbances that differentially affect canopy strata (Adams et al. 2011). 

Most applications of RHESSys and DHSVM do not fully exploit their capabilities 

to represent the effects of multiple vegetation layers on hydrologic processes because of 

input data limitations. RHESSys and DHSVM, as well as some other physically based 

hydrologic models, characterize canopy strata in terms of leaf area index (LAI, i.e., m2 

foliage per m2 ground area). In the absence of leaf area index data, estimates of LAI are 

generated from internal lookup tables based on land cover classes from the National Land 

Cover Dataset (Tague and Band 2004). Therefore, the accuracy and precision of 

vegetation inputs to RHESSys and other models could be improved by developing a 

method for converting detailed forest data into leaf area index. Although Landsat-based 
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LAI recently became available for a wide range of years (Kang et al. 2021), such LAI 

datasets based on remote sensing alone represent total LAI and do not distinguish 

between LAI of the forest canopy layers (i.e., the overstory) and LAI of shorter 

herbaceous or shrub vegetation (i.e., the understory). Therefore, development of separate 

overstory and understory LAI datasets represents a potential improvement to the inputs to 

such hydrologic models. If vegetation inputs are more detailed and precise, then model-

based predictions of how forest changes affect hydrologic processes and streamflow may 

be more accurate. 

Strategic forest monitoring programs such as national-scale forest inventories are 

expected to provide the most detailed ground-based observations of forest vegetation for 

hydrologic modeling purposes (Andréassian 2004). Although hydrologic models 

typically characterize vegetation in terms of LAI, most forest monitoring protocols do not 

include observations or measurements of LAI (Härkönen et al. 2015) but do include 

measurements such as canopy cover by vegetation type as well as detailed measurement 

on individual trees (Korhonen et al. 2006; Jennings et al. 1999). Therefore, a need exists 

to translate forest inventory data into LAI estimates by canopy stratum. In previous 

studies, LAI was estimated from allometric equations based on other field measurements 

such as tree basal area or sapwood area (Bréda 2003). However, only a handful of 

forestry studies have developed allometric equations for estimating LAI for tree species 

in the western U.S. (Coops et al. 2007; McDowell et al. 2007; Smith et al. 1991). Such 

studies are sparse because they typically involve destructive sampling of entire trees, 

which is expensive and time-consuming.  Therefore, one objective of this work was to 

develop methods for translating forest inventory data into separate overstory and 
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understory LAI components, and then producing spatially explicit overstory and 

understory LAI datasets. 

 

Significance 

 

This dissertation enhances our understanding of the relationship between forest 

change and streamflow. This understanding, in turn, improves the ability of managers to 

anticipate the effects of future forest disturbance and recovery on water supply from 

forested watersheds. Managers of forested watersheds can use the results of this work to 

identify the likely hydrologic impacts of an observed forest disturbance, or they may 

decide that the risk of adverse water supply impacts from future forest disturbances may 

warrant vegetation management actions. For example, a watershed with a severe insect 

epidemic may be more or less likely to produce increased water yield, depending on 

factors such as watershed aridity and post-epidemic vegetation regrowth, or the risk of 

future severe wildfire may warrant preventative actions given its anticipated impacts to 

snowpack, streamflow magnitude, water quality, and peak flow timing. 

This dissertation is presented as three papers, each submitted for publication 

separately to peer reviewed journals. The first paper, published as Goeking and Tarboton 

(2020), synthesized recent literature to identify the nuanced response of streamflow and 

snowpack to forest disturbance, including identification of process-level hydrologic 

responses that determine net streamflow and snowpack response. The next paper, 

published as a preprint in Goeking and Tarboton (2021), then tested hypotheses that were 

developed in the literature synthesis across a large-scale watershed dataset spanning the 

western U.S. This paper’s findings confirmed that streamflow response to forest 
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disturbance is variable in both magnitude and direction, and also that the direction of 

streamflow response to forest disturbance is dependent on a combination of disturbance 

severity and aridity. The final paper produced an enhanced LAI dataset for hydrologic 

modeling. Two aspects of this last paper were novel: First, the use of detailed forest 

inventory measurements to estimate overstory and understory LAI for individual sample 

plots, and then the combination of plot-scale estimates of overstory and understory LAI 

with remote sensing and biophysical variables in a machine learning model to produce 

spatially explicit LAI layers for separate overstory and understory strata. The general 

methods developed in the last chapter could be applied to any part of the world where 

spatially representative forest cover data exist and are similar to the FIA data we used, 

which are available across the conterminous U.S.  

The factors that affect streamflow and snowpack response to forest disturbance 

are not restricted to the study area of this dissertation. Therefore, our findings may be 

indicative of processes and streamflow changes occurring in other regions of the world 

that are subject to episodic reductions in forest cover. 
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CHAPTER 2 

FORESTS AND WATER YIELD: A SYNTHESIS OF DISTURBANCE 

EFFECTS ON STREAMFLOW AND SNOWPACK IN WESTERN 

CONIFEROUS FORESTS1 

 

Abstract 

 

 

In coniferous western forests, recent widespread tree mortality provided 

opportunities to test the long-held theory that forest cover loss increases water yield. We 

reviewed 78 studies of hydrologic response to standing-replacing (severe wildfire, 

harvest) or nonstand-replacing (drought, insects, low-severity wildfire) disturbances, and 

reassessed the question: Does water yield or snowpack increase after forest disturbance? 

Collective results indicate that postdisturbance streamflow and snowpack may increase, 

not change, or even decrease, and illuminate factors that may help improve predictability 

of hydrologic response to disturbance. Contrary to the expectation that tree mortality 

reduces evapotranspiration, making more water available as runoff, postdisturbance 

evapotranspiration sometimes increased—particularly following nonstand-replacing 

disturbance—because of (a) increased evaporation resulting from higher subcanopy 

radiation, and (b) increased transpiration resulting from rapid postdisturbance growth. 

Postdisturbance hydrologic response depends on vegetation structure, climate, and 

topography, and new hypotheses continue to be formulated and tested in this rapidly 

evolving discipline. 

 
1 Goeking, S.A. and Tarboton, D.G. 2020. Forests and water yield: A synthesis of disturbance effects on 

streamflow and snowpack in western coniferous forests. Journal of Forestry 118: 172-192. DOI: 

https://doi.org/10.1093/jofore/fvz069. 
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Management Implications (Plain Language Summary) 

 

 

Previous research on the link between forest management and water yield led to 

the expectation that water yield would increase following recent tree mortality in the 

Western US. This paper presents a review of papers published during 2000-2018 on the 

effects of forest disturbance on streamflow in western coniferous forests. While some 

studies observed post-disturbance increases in water yield, as expected, in many cases 

water yield did not change or even decreased. Decreases were generally observed in areas 

with the following characteristics: high total radiation and high solar radiation (i.e., at low 

latitudes and south-facing aspects); rapid growth of post-disturbance vegetation; and non-

stand replacing disturbances, such as drought and insect-caused mortality. Although one 

objective of forest management may be to increase water yield, another might be to 

encourage post-disturbance forest recovery and resilience by optimizing growing-season 

soil moisture, which depends on snow accumulation and retention. The ability to meet 

such goals, and the treatments to accomplish them, depend on residual vegetation, 

latitude, and aspect. Our review suggests that recommendations for meeting specific 

management objectives in forested watersheds of the semi-arid West – and the best 

available scientific information about the link between forest cover and water yield – are 

changing rapidly. 

 

Introduction 

 

 

In 1967, Alden Hibbert concisely formulated three long-lived hypotheses about 

the relationship between forest cover and water yield: “1. Reduction of forest cover 

increases water yield. 2. Establishment of forest cover on sparsely vegetated land 
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decreases water yield. 3. Response to treatment is highly variable, and, for the most part, 

unpredictable” (Hibbert 1967, p. 535). Decades of subsequent research have supported 

these hypotheses (Andréassian 2004; Bosch & Hewlett 1982; Hibbert 1967; Troendle 

1983; Troendle & King 1985). However, recent studies suggest that the variability of 

water yield response is a fundamental characteristic of semi-arid western watersheds and 

raise questions about the universality of the first hypothesis regarding the relationship 

between forest cover and water yield (Biederman et al. 2015; Pugh & Gordon 2013). 

Recent reviews have highlighted differences in the magnitude of water yield 

increases following disturbance, as well as variability in individual hydrologic processes 

that drive water yield response (Adams et al. 2012; Buttle et al. 2005; Mikkelson et al. 

2013; Moore & Wondzell 2005; Pugh & Gordon 2013). The magnitude of post-

disturbance water yield change varied widely in these reviews, from -50% to more than 

+200% although such large increases are questionable (Adams et al. 2012), and Pugh and 

Gordon (2013) predict either no change or increases up to +25%. However, even more 

recently, studies have concluded that water yield decreases following forest disturbance 

in semi-arid western watersheds (Bart et al. 2016; Bennett et al. 2018; Biederman et al. 

2014; Biederman et al. 2015; Slinski et al. 2016). Because these recent studies contradict 

Hibbert’s (1967) first hypothesis, additional review is needed to identify where and why 

decreases in water yield may occur and thus improve the predictability of post-

disturbance hydrologic response. 

Previous studies that observed increases in post-disturbance water yield, as 

expected, illuminated the mechanisms responsible (Bosch & Hewlett 1982; Hibbert 1967; 

Troendle 1983). Water yield is constrained by the amount of precipitation minus 
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evapotranspiration, where vegetation affects the partitioning of precipitation into runoff 

versus evapotranspiration. When forest cover is decreased, two components of 

evapotranspiration decline (Figure 1). First, less precipitation is intercepted and 

subsequently sublimated (snow) or evaporated (rain) by tree canopies. Sublimation losses 

of canopy-intercepted snow can be as high as 20-30% of snowfall in western watersheds 

where a substantial fraction of precipitation falls as snow (Montesi et al. 2004; Schmidt et 

al. 1998), thus substantially reducing the amount of water available for streamflow. 

Second, transpiration decreases following death or removal of trees (Adams et al. 2012; 

Hibbert 1967; Troendle 1983; Troendle & King 1985; Wilm 1948). 

As expected from these mechanisms, standing-replacing disturbances such as 

clearcut harvests often lead to increased streamflow (Hubbart et al. 2007; Stednick 1996; 

Troendle 1983; Troendle & King 1985; Troendle & King 1987). However, non-stand 

replacing disturbances may differ with respect to individual hydrologic processes such as 

interception of precipitation, radiation transmission, accumulation and retention of 

snowpack, and evapotranspiration from the overstory and understory. Partial-cut 

harvesting has both increased water yield (Hubbart et al. 2007) and failed to produce 

significant increases (Troendle & King 1987). Opportunistic studies of previous insect 

outbreaks concluded that streamflow increased following mortality (Figure 1a) 

(Bethlahmy 1974; Potts 1984), particularly after salvage clearcuts (Cheng 1989), 

although the increase was hypothesized to be modulated by radiation exposure 

(Bethlahmy 1975). Higher radiation exposure – which is related to a combination of 

slope, latitude, aspect, and temperature – translates to higher evaporative demand and 

thus higher potential evapotranspiration. In contrast to earlier studies, recent research has 
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observed unchanged or even decreased streamflow following insect outbreaks, likely 

because increased evapotranspiration from understory vegetation overcompensated for 

decreased evapotranspiration from the overstory (Figure 1b) (Biederman et al. 2015). 

 
a) Increase in post-disturbance water yield 

 

b) Decrease in post-disturbance water yield 

 

 

Figure 1. Post-disturbance increase (a) versus decrease (b) in net ET that determine water 

yield response, as determined by changes in individual components of evapotranspiration 

(ET) relative to pre-disturbance fluxes. Red arrows contribute to higher total ET and 

lower water yield; blue arrows contribute to lower total ET and higher water yield. Arrow 

sizes correspond to relative sizes of change in flux; in (a), blue arrows are larger than red 

arrows and drive a net decrease in ET, whereas in (b), red arrows are larger than blue 

arrows and drive a net increase in ET. ΔQ = change in water yield; ΔETtotal = net change 

in evapotranspiration; ΔTcanopy = canopy transpiration; ΔEcanopy = canopy (overstory) 

evaporation of liquid water; ΔScanopy = sublimation of canopy-intercepted snow; 

ΔTunderstory = understory transpiration; ΔEunderstory = understory evaporation; ΔSsnowpack = 

sublimation of ground snowpack; and ΔEsoil = soil evaporation. 

 

Recent widespread tree mortality across the western US (Anderegg et al. 2013; 

Breshears et al. 2005; Huang et al. 2015; van Mantgem et al. 2009) has provided 

opportunities to test hypotheses about the linkage between forest cover, disturbance, and 
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water yield. Contemporary studies differ from historical watershed experiments in several 

important ways. First, recent mortality was caused by multiple factors that did not 

typically kill or remove 100% of trees in affected stands (Hicke et al. 2015), whereas 

most previous studies and reviews (Hubbart et al. 2007; Stednick 1996; Troendle 1983; 

Troendle & King 1985) focused on stand-replacing disturbances, mainly clearcut 

harvesting and severe wildfire. Second, the spatial scale of analysis can be much broader, 

given the widespread mortality and rapidly evolving spatial analysis tools, compared to 

most historical studies of watersheds smaller than 25 km2 (Andréassian 2004; Bosch & 

Hewlett 1982). Third, the current state of physically-based, spatially distributed models – 

as well as spatially explicit input data on elevation, soil, and climate – enables 

disentangling climate versus vegetation effects (Biederman et al. 2015; Hallema et al. 

2017; Perry & Jones 2017), assessment of multiple alternative climate and land cover 

scenarios (Du et al. 2016), and examination of large watersheds using a water budget 

approach (Andréassian 2004). This capability contrasts with paired-watershed studies that 

typically focus on small watersheds using before/after-control/impact experimental 

designs, and use streamflow data as the primary and often sole catchment-scale response 

variable (Bethlahmy 1974; Bethlahmy 1975; Biederman et al. 2015; Bosch & Hewlett 

1982; Cheng 1989; Hewlett 1971; Hibbert 1967; Potts 1984; Troendle 1983; Troendle & 

King 1985). Fourth, quantifying evaporation is notoriously difficult, and eddy-covariance 

methods enable assessment of seasonal evapotranspiration (Biederman et al. 2014; 

Biederman et al. 2014). 

Our objective was to synthesize recent findings and reassess the question: Does 

water yield increase following forest disturbance in western coniferous forests? We 
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expected that water yield response may differ for stand-replacing versus non-stand 

replacing disturbances due to different process-level responses (Adams et al. 2012; 

Mikkelson et al. 2013; Pugh & Gordon 2013). A second objective was to assess whether 

the predictability of hydrologic response – particularly decreases in streamflow or 

snowpack – following forest cover loss has improved since Hibbert’s (1967) review. Our 

review included both stand-replacing disturbances, such as severe wildfire and 

clearcutting, and non-stand-replacing disturbances such as drought, insects, and low- to 

moderate-severity fire. We included literature that identified the physical processes and 

components of the hydrologic cycle that drove overall hydrologic response, as well as 

studies that explicitly assessed annual streamflow (i.e., water yield). Although we did not 

seek to specifically focus on studies in catchments that receive most precipitation as 

snow, we found that the recent widespread tree mortality in western coniferous forests 

occurred primarily in regions with seasonal snowpack. Given the relatively recent, post-

2000 timeframe of widespread natural forest disturbance in the West (Breshears et al. 

2005; Huang et al. 2015; Williams et al. 2013), we focused on papers published after 

2000. 

Scope and Approach 

 

 

To address our objectives, we first cast a wide net to include as many recent 

papers as possible, and then eliminated papers that did not focus on recent disturbances in 

western coniferous forests and also added papers that were not returned in our initial 

search that were recommended by colleagues and reviewers. The first step consisted of a 

Scopus search (scopus.com) resulting in 182 papers. Criteria for this search included 

titles, abstracts, or keywords that included “forest”; at least one term describing forest 
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cover (forest cover, tree cover, or canopy cover); at least one term describing forest 

disturbance (tree mortality, forest disturbance, drought, water stress, fire, insects, beetle, 

drought, harvest, or thinning); at least one term describing hydrologic or ecohydrologic 

response (transpiration, evapotranspiration, snowpack, snow accumulation, snow 

retention, streamflow, water yield, or runoff); and publication in peer-reviewed journals 

in year 2000 or later, given the relatively recent increase in widespread tree mortality in 

the western US (Breshears et al. 2005; Huang et al. 2015; Williams et al. 2013). In the 

second step, we eliminated papers that did not focus on disturbance in coniferous forests 

or did not include an explicit evaluation of the effects of forest disturbance on hydrologic 

processes, and also added several papers that were cited in studies within our search or 

suggested by reviewers. 

Our search resulted in a set of 78 papers (Table 1) published in 30 journals, plus 

older seminal papers and reviews on the relationship between forest cover, disturbance, 

and streamflow or snowpack in western forests. The number of papers published per year 

was higher in 2012-2017 than in 2000-2011, and was higher than expected given the rate 

of increase of all published papers during this period (Fig. 2). This trend possibly 

corresponds to increased tree mortality in the western US (van Mantgem et al. 2009), 

much of which was due to drought and insects (Meddens et al. 2012), and may reflect 

increased societal concern and scientific interest in water issues related to forest 

management. For each paper, we assessed several questions about how “forest” and 

“disturbance” were characterized, how hydrologic impacts were characterized, and 

whether confounding factors such as climate variability and post-disturbance recovery 

were considered. We also determined whether the disturbance under consideration was 
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stand-replacing or non-stand replacing, what specific disturbance agents were considered 

(e.g., insects, drought, wildfire), and whether conclusions were based on observations, 

simulations, or both. 

 

Table 1. Summary characteristics of 78 papers that met our search criteria. 

 
Author Year Journal1 Location2 Type of study3 

Adams et al. 2012 EcohydrologyO NA (conceptual) both 

Bart et al. 2016 PLoS ONEO CA simulations 

Bearup et al. 2014 Nature Climate ChangeO CO observations 

Bennett et al. 2018 Hydrology & Earth System SciencesH AZ, CO, NM, UT simulations 

Bewley et al. 2010 Journal of HydrologyH BC simulations 

Biederman et al.  2014 EcohydrologyO CO, WY observations 

Biederman et al.  2014 Water Resources ResearchH CO, WY observations 

Biederman et al.  2015 Water Resources ResearchH CO observations 

Boisrame et al. 2017 EcosystemsO CA both 

Boon 2009 Hydrological ProcessesH BC both 

Boon 2012 EcohydrologyO BC observations 

Bright et al. 2013 J. Geophysical Res.: BiogeosciencesO CO observations 

Broxton et al. 2015 EcohydrologyO CO, NM both 

Buma and Livneh 2015 Forest ScienceF CO simulations 

Buma and Livneh 2017 Environmental Research LettersO entire US observations 

Burles and Boon 2011 Hydrological ProcessesH AB both 

Buttle et al. 2005 Hydrological ProcessesH Canada (review) both 

Chen et al. 2015 Journal of HydrometeorologyH WY both 

Concilio et al. 2009 Climatic ChangeO CA observations 

Cristea et al. 2014 Hydrological ProcessesH CA simulations 

Du et al. 2016 Hydrological ProcessesH ID simulations 

Eaton et al.  2010 Earth Surf. Processes & LandformsO BC observations 

Ellis et al. 2011 Canadian J. of Forest ResearchF AB observations 

Ellis et al. 2013 Water Resources ResearchH AB observations 

Gleason et al.  2013 Geophysical Research LettersH OR observations 

Grant et al. 2013 Frontiers in Ecology & EnvironmentO NM both 

Green and Alila 2012 Water Resources ResearchH BC, CO, ID, UT, WY both 

Guardiola-

Claramonte et al. 
2011 Journal of HydrologyH AZ, CO, NM, UT observations 

Hallema et al. 2017 EcohydrologyO AZ, CA observations 

Hallema et al. 2017 Hydrological ProcessesH western US observations 

Harpold et al. 2014 EcohydrologyO NM observations 

Harpold et al. 2015 Hydrological ProcessesH CA, CO, NM observations 

Hernandez et al. 2018 ForestsF ID, MT simulations 

Hubbart et al. 2015 Forest ScienceF ID observations 

Huff et al. 2000 Journal of ForestryF CA both 

Jackson and 

Prowse 
2009 Hydrological ProcessesH BC observations 

Jacobs 2015 EcohydrologyO NM observations 

Li et al. 2018 Journal of HydrologyH BC, WA observations 

Livneh et al. 2015 Journal of HydrologyH CO both 

Lundquist et al.  2013 Water Resources ResearchH CA observations 

Mahat and 

Anderson 
2013 Hydrology & Earth System SciencesH AB simulations 

Maxwell et al. 2019 Forest Ecology & ManagementF UT observations 

Meyer et al. 2017 Forest Ecology & ManagementF BC simulations 

Mikkelson et al.  2013 BiogeochemistryO NA (review) both 

Moore and Scott 2005 Can. Water Resources JournalH BC observations 



26 

Moore and 

Wondzell 2005 J. Am. Water Resources Assocn.H AK, BC, ID, OR, WA observations 

Morillas et al. 2017 J. Geophysical Res.: BiogeosciencesO NM observations 

Penn et al. 2016 Water Resources ResearchH CO simulations 

Perrot et al. 2014 EcohydrologyO CO observations 

Perry and Jones 2017 EcohydrologyO OR observations 

Pomeroy et al. 2012 Hydrological ProcessesH AB simulations 

Poon and 

Kinoshita 
2018 Journal of HydrologyH NM simulations 

Pugh and Gordon 2013 Hydrological ProcessesH 
western North 

America 
simulations 

Pugh and Small 2012 EcohydrologyO CO observations 

Pugh and Small 2013 Hydrology ResearchH CO observations 

Reed et al. 2014 Environmental Research LettersO WY observations 

Reed et al. 2016 Theoretical & Applied ClimatologyO WY observations 

Robles et al. 2014 PLoS ONEO AZ simulations 

Saksa et al. 2017 Water Resources ResearchH CA simulations 

Sankey et al. 2015 Remote Sensing of EnvironmentO AZ observations 

Sexstone et al. 2018 Water Resources ResearchH CO both 

Slinski et al. 2016 Environmental Research LettersO 
ID, MT, OR, UT, 

WA, WY 
observations 

Stevens 2017 Ecological ApplicationsO CA observations 

Sun et al. 2018 Hydrological ProcessesH ID, WA simulations 

Svoma 2017 J. Geophysical Res.: AtmospheresO AZ simulations 

Tennant et al. 2017 Water Resources ResearchH CA, CO, NM, ID observations 

Tonina et al. 2008 Hydrological ProcessesH ID simulations 

Vanderhoof & 

Williams 
2015 Agricultural & Forest MeteorologyO CO, WY both 

Varhola et al.  2010 Canadian J. of Forest ResearchF BC both 

Wei and Zhang 2010 Water Resources ResearchH BC observations 

Wine and Cadol 2016 Environmental Research LettersO NM both 

Wine et al. 2018 Environmental Research LettersO western US both 

Winkler et al. 2005 Hydrological ProcessesH BC observations 

Winkler et al. 2014 Hydrological ProcessesH BC observations 

Winkler et al. 2015 Hydrology ResearchH BC observations 

Winkler et al. 2017 EcohydrologyO BC observations 

Yazzie and Chang 2017 ClimateO OR simulations 

Zhang and Wei 2012 Hydrology & Earth System SciencesH BC observations 
1Primary discipline of journal (F=forestry, H=hydrology, and O=other/cross-disciplinary). 2Locations are 

abbreviated using standard US state and Canadian province abbreviations. 3Indicates whether results were based on 

observations, simulations, or both observations and simulations. 

 

In the next section, we highlight unexpected hydrologic responses and the 

process-level mechanisms (e.g., post-disturbance transpiration and sublimation) that 

explain such responses. Subsequent sections provide a broader interpretation of the 

results that incorporates earlier (pre-2000) papers to highlight where recent studies 

reframe or underscore previous work. The section “Linkage between Forest Disturbance 

and Water Yield” section summarizes our conclusions and addresses our objectives of 

assessing Hibbert’s (1967) first and third hypotheses in the context of recent, post-2000 
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tree mortality in the West. In the “Improving Predictability” section, we highlight the 

strengths of selected papers and summarize needs for research that will improve 

predictive capabilities and facilitate future meta-analyses on the linkage between forest 

dynamics and water resources. The “Implications for Forest Management” section 

recognizes that managing for water yield and forest resilience may be distinct and not 

always compatible goals. 

 

 
 

Figure 2. Publication year and journal discipline (forestry, hydrology, or “other” cross-

disciplinary journal) of the 78 papers included in our review (vertical bars; left axis) and 

the total number of papers in each discipline (horizontal shaded areas; right axis). (Note 

that the journal PLoS ONE, which began publishing in 2006, is categorized as “other” yet 

omitted in the total number of papers (lines) because within five years of its founding, it 

published several times as many papers as all other journals in aggregate. Two papers in 

this review were published in PLoS ONE: one in 2014 and one in 2016.) 

 

 

Post-disturbance Hydrologic Response 

 

 

The 78 papers included in this review were based on observations (42 papers), 

simulations (18), a combination of observations and simulations (14), and conceptual 

models (4) of hydrologic fluxes. Here we summarize the findings with respect to post-
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disturbance water yield (i.e. annual streamflow), peak flows (magnitude and timing), low 

flow magnitude, and snow water equivalent (SWE). 

 

Water Yield 

 

Contrary to Hibbert’s (1967) review, water yield decreased in nine of 31 studies 

that directly assessed streamflow response to disturbance (Table 2). Many studies found 

variable responses, such as both increases and decreases in different catchments. 

Collectively, recent research indicates that water yield is more likely to decrease 

following non-stand replacing disturbance (8 of 19 studies) compared to stand-replacing 

disturbance (3 of 17 studies; Table 3). Note that some studies found variable responses 

(e.g., increases, no change, or decreases in streamflow) given different disturbance 

scenarios, and some studies assessed both stand-replacing and non-stand replacing 

disturbance. Among the 31 studies that assessed annual streamflow response, 14 used 

direct flow measurements, nine used simulation models, five used a combination of 

observations and simulations, and three presented conceptual models based on previous 

literature. 

When non-stand replacing disturbances result in decreased streamflow, is it 

because total post-disturbance evapotranspiration increases (Figure 1b), either as a result 

of increased transpiration in the understory, increased sublimation from snowpack, or 

increased soil evaporation due to more radiation reaching the surface (Bennett et al. 2018; 

Biederman et al. 2014) – all of which decrease the proportion of precipitation available 

for streamflow. Previous reviews concluded that streamflow response to non-stand 

replacing disturbance may be highly variable, relative to stand-replacing disturbances, 

and cite the competing responses of decreased overstory transpiration and decreased 
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canopy interception losses, versus increased evapotranspiration from the understory and 

ground (Figure 1) (Adams et al. 2012; Mikkelson et al. 2013; Moore & Wondzell 2005; 

Pugh & Gordon 2013). The variable responses found by other studies, many of which 

were published after these reviews, found a combination of increases and no change 

(Boisramé et al. 2017; Huff et al. 2000; Penn et al. 2016; Winkler et al. 2015), a 

combination of all possible responses (Boisramé et al. 2017; Slinski et al. 2016), and 

either decreases or no change (Biederman et al. 2015). Eight studies found consistent 

water yield responses, including both consistent increases (Buma & Livneh 2017; Li et 

al. 2018; Livneh et al. 2015; Robles et al. 2014; Wine et al. 2018) and consistent 

decreases (Bennett et al. 2018; Biederman et al. 2014; Guardiola-Claramonte et al. 2011). 

 

Table 2. Metrics of hydrologic response used in the 78 papers in this review. Numbers 

represent the number of papers that found increases, no change, or decreases in each 

metric. Totals do not always equal the sum of the papers across each row because many 

studies found variable responses (e.g., increases, no change, or decreases in streamflow 

given different disturbance scenarios). Similarly, the sum of the total number of papers 

does not equal 78 because many studies assessed multiple response metrics (e.g., both 

streamflow and evapotranspiration). 

 

Response Total number of studies Increase No change Decrease 

Streamflow (annual water yield) 31 26 16 9 

Peak flow magnitude 22 19 10 7 

Peak flow timing1 18 14 7 4 

Low flow magnitude 25 14 9 9 

Maximum SWE 42 34 10 10 

1Peak flow timing "increase" represents earlier peak flows; "decrease" represents later peak flows. 
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Table 3. Response of annual streamflow (i.e., water yield) to disturbance. Totals do not 

equal the sum of the papers across each row and column because many studies found 

variable responses (e.g., increases, no change, or decreases in streamflow given different 

disturbance scenarios, and some studies assessed both stand-replacing and non-stand 

replacing disturbance. 

 

Type of disturbance Total number of studies Increase No change Decrease 

Stand-replacing 17 15 7 3 

Non-stand replacing1 19 15 10 9 
1Papers focused on non-stand replacing disturbances included three papers based on 

conceptual models, which predicted either an increase (3 papers), no change (3 papers), or 

decreases (1 paper) in streamflow. 

 

 

Studies of stand-replacing disturbances, such as clearcutting or severe wildfire, 

confirm that water yield typically increases following stand-replacing disturbances, as 

expected from the previous reviews (Andréassian 2004; Bosch & Hewlett 1982; Hibbert 

1967; Troendle 1983; Troendle & King 1985). However, they also suggest that post-

disturbance vegetation characteristics determine the direction of response. Two of the 

three studies with decreases in annual streamflow following stand-replacing disturbances 

provide similar explanations for their results: water yield decreases when trees are 

replaced with shrubs with high leaf area and high transpiration rates (Figure 1b) (Bart et 

al. 2016; Bennett et al. 2018). The third study found decreases in streamflow within a 

geographically constrained region of rain-dominated catchments of the coastal Pacific 

Northwest, where decreases in water yield occur due to a decline in fog interception 

(Moore & Wondzell 2005). In contrast to these three studies, most studies concluded that 

water yield consistently increases following stand-replacing disturbance (Figure 1a) 

(Buma & Livneh 2015; Du et al. 2016; Hallema et al. 2017; Hernandez et al. 2018; Li et 

al. 2018; Sun et al. 2018; Wei & Zhang 2010; Winkler et al. 2015; Winkler et al. 2017; 

Zhang & Wei 2012), although several studies found variable streamflow response, 
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depending on the disturbance scenario (Bart et al. 2016; Hallema et al. 2017; Moore & 

Wondzell 2005; Wine & Cadol 2016; Wine et al. 2018). 

Among the simulation models used to assess post-disturbance water yield, only 

physically-based models predicted any decreases in water yield following disturbance, 

while simpler models predicted either no change or increases. Simulation-based studies 

that found decreases in post-disturbance streamflow are in similar types of catchments 

(i.e., those with high total radiation at low latitudes, and with dense post-disturbance 

vegetation) as observational studies that found decreases in streamflow due to net 

increases in evapotranspiration. Given that some observational studies also concluded 

that streamflow may decrease following disturbance, particularly following non-stand 

replacing disturbance, the ability to simulate post-disturbance decreases is a strength of 

physically-based models. Thus, physically-based models can complement paired-

catchment studies to robustly assess the impacts of forest disturbance on streamflow 

(Moore and Scott 2005), whereas more empirically-based models may be incapable of 

simulating the conditions that lead to post-disturbance decreases in water yield. The 

degree of spatial distribution and the number of physical processes in the model varied, 

from the point-based WRENSS model applied to grid cells (Huff et al. 2000), to 

catchment-scale empirical or statistical models (Boisramé et al. 2017; Robles et al. 2017; 

Wine & Cadol 2016; Wine et al. 2018), semi-distributed models such as the Soil and 

Water Assessment Tool (SWAT) (Hernandez et al. 2018), and several fully distributed, 

physically-based models such as the Distributed Hydrology Soil Vegetation Model 

(DHSVM) (Buma & Livneh 2015; Du et al. 2016; Green & Alila 2012; Livneh et al. 

2015; Sun et al. 2018); Regional Hydro-Ecological Simulation System (RHESSys) (Bart 
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et al. 2016; Saksa et al. 2017); ParFlow (Penn et al. 2016); and Variable Infiltration 

Capacity (VIC) (Bennett et al. 2018). 

 

Peak Flows 

 

Twenty-two studies evaluated peak flow magnitudes, and most found that post-

disturbance peak flows exceed pre-disturbance peaks (Table 2), regardless of whether 

disturbance is stand-replacing. However, three studies found that peak flows sometimes 

increase, do not change, or decrease (Bennett et al. 2018; Buma & Livneh 2017; Slinski 

et al. 2016), depending on disturbance severity and extent, post-disturbance vegetation 

recovery, and radiation budgets – all of which affect snowmelt rates (Mikkelson et al. 

2013; Moore & Wondzell 2005; Pugh & Gordon 2013). For example, snowmelt occurs 

more rapidly – and thus produces higher peak flows – at sites with higher total radiation, 

which tend to occur on sites at lower latitudes, lower elevations, and south-facing slopes. 

Snowmelt in undisturbed forested watersheds is typically asynchronous by elevation (i.e., 

lower elevations melt earlier and higher elevations melt later), whereas post-disturbance 

synchronization of snowmelt leads to higher peak flows (Bewley et al. 2010; Pomeroy et 

al. 2012). Thus, variable responses in peak flows may be explained by the degree of 

synchronicity of snowmelt rates throughout a watershed (Pomeroy et al. 2012), and 

disturbance that reduces synchronicity of snowmelt can lead to smaller peak flows. 

Another factor that may reduce post-disturbance peak flows is a simultaneous shift in 

climate that results in more precipitation falling as rain versus snow (Jacobs 2015). 

Post-disturbance peak flows typically occur earlier than pre-disturbance peaks 

(Table 2), as expected from previous reviews (Andréassian 2004). However, seven 

studies found variable responses with respect to peak flow timing, including later peaks 
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in some cases (Bart et al. 2016; Buma & Livneh 2017; Cristea et al. 2014; Du et al. 2016; 

Livneh et al. 2015; Moore & Wondzell 2005; Pomeroy et al. 2012; Pugh & Gordon 2013; 

Slinski et al. 2016). Later peak flows are more likely to occur when snow accumulation 

increases following forest cover loss (Cristea et al. 2014); note that snow accumulation 

does not always increase following disturbance (Table 2). As with peak flow magnitude, 

peak flow timing may be affected by the degree of synchronization of snowmelt across 

elevation zones (Bewley et al. 2010; Pomeroy et al. 2012). 

 

Low Flows 

 

The response of low flows to forest disturbance is related to snow accumulation, 

snowmelt rates, and summer evapotranspiration rates. Low flows typically increase when 

more snow accumulates, snow melts more slowly, and/or summer evapotranspiration 

declines. Low flows can also be sensitive to time since disturbance. In the Pacific 

Northwest, conversion of mature forests to timber plantations may initially result in 

higher summer flows but then switch to lower low flows by 15 years post-harvest, and 

this decrease may persist for several decades (Perry and Jones 2017). Most of the studies 

considered here did not cover this length of time, and it is noteworthy that Perry and 

Jones (2017) concluded that initially inflated seasonal low flows may switch to deficits 

several years after disturbance. Moore and Wondzell’s (2005) review concluded that 

water yield may initially increase but then decrease in the longer term. In both papers, 

long-term streamflow declines were attributed to rapid post-disturbance vegetation 

growth. 

Among the remaining studies, post-disturbance seasonal low flows increased in 

14 of the 19 studies that evaluated low flows, nine studies found no change, and 8 studies 
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found decreases (Table 2). However, given the rigor of Perry and Jones’s (2017) long-

term study, which ruled out climate variability as a cause of observed decreases in low 

flows, future research into the effects of disturbance on seasonal low flows must consider 

that the response may vary over decadal timescales. 

 

Snow Water Equivalent (SWE) 

 

While 34 of 42 studies that assessed SWE concluded that annual maximum SWE 

increases following forest disturbance, 10 studies concluded that it decreases (Table 2). 

Contributors to the variable response of SWE include the timing and magnitude of 

precipitation, as well as disturbance type (stand-replacing vs. non-stand replacing) and 

forest structure – which both affect radiation and thus sublimation (described in the next 

section) and SWE. In some studies, SWE in disturbed versus undisturbed stands differs in 

low-snow years but not in high-snow years, when the amount of snowfall presumably 

overwhelms trees’ interception capacity (Boon 2012; Winkler et al. 2014). Several 

studies concluded that SWE in stands affected by non-stand replacing, insect-caused 

disturbances is more similar to undisturbed forests than to sites with recent stand-

replacing disturbances (Boon 2009; Boon 2012; Burles & Boon 2011; Pomeroy et al. 

2012; Winkler et al. 2014). This suggests that SWE responds to a continuum of 

disturbance levels, and that quantitative characterization of forest density – such as 

regressions between LAI or canopy cover and SWE (Varhola et al. 2010) – could lead to 

improved quantitative predictions of disturbance effects on SWE. 

Patterns of SWE response vary geographically, with more consistent post-

disturbance increases at higher latitudes and more variable responses at lower latitudes. 

Of 13 studies of SWE conducted in Canada and the northern US, nine consistently found 
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higher SWE following disturbance (Boon 2009; Burles & Boon 2011; Chen et al. 2015; 

Du et al. 2016; Ellis et al. 2013; Gleason et al. 2013; Hubbart et al. 2015; Jackson & 

Prowse 2009; Varhola et al. 2010; Winkler et al. 2005), while four found variable 

response – i.e., a combination of increases, no change, and decreases (Boon 2012; Ellis et 

al. 2011; Winkler et al. 2014; Winkler et al. 2015). Among the 13 studies conducted 

farther south in the US, only five consistently found that SWE increases in disturbed 

stands (Biederman et al. 2014; Broxton et al. 2015; Harpold et al. 2015; Livneh et al. 

2015; Pugh & Small 2013). Four studies found that SWE responds variably to reduced 

canopy density (Lundquist et al. 2013; Perrot et al. 2014; Pugh & Small 2012; Tennant et 

al. 2017). The remaining studies concluded that SWE does not change (Biederman et al. 

2014; Maxwell et al. 2019; Sexstone et al. 2018) or decreases following disturbances 

(Harpold et al. 2014; Stevens 2017). Thus, post-disturbance SWE is more often observed 

to decrease or respond variably at low latitudes than at high latitudes, where it typically 

increases. Unexpected decreases in post-disturbance SWE are attributed to increased 

shortwave radiation, which results in increased ablation of the snowpack (Harpold et al. 

2014; Stevens 2017), as well as decreased albedo following accumulation of needles, 

bark, and other organic matter on the snow surface, which also leads to snowpack 

ablation (Gleason et al. 2013; Pugh & Gordon 2013; Winkler et al. 2014). It is important 

to note that dividing ablation into sublimation versus melt is a difficult yet important task 

for estimating water budgets, because while melt clearly contributes to streamflow, 

sublimation represents evapotranspiration losses that can contribute to reduced 

streamflow. 
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Twenty-six studies quantified at least one component of radiation budgets that 

influences snowpack. Disturbance affects both shortwave (i.e., solar) and longwave 

radiation, which increase and decrease, respectively, as a result of reduced tree cover 

(Adams et al. 2012; Mikkelson et al. 2013; Pugh & Gordon 2013; Sun et al. 2018). Post-

disturbance changes in the relative contributions of shortwave and longwave radiation are 

not linear, and their relative contributions vary throughout the seasonal snowpack season 

as sun angle changes (Boon 2009; Burles & Boon 2011; Ellis et al. 2011; Ellis et al. 

2013; Harpold et al. 2014; Sun et al. 2018). Total radiation available for snowmelt 

sometimes increases by more than the increase in insolation alone, particularly when 

organic debris (i.e., needles, bark, branches) fall on the snowpack following tree 

mortality due to insects or wildfire (Gleason et al. 2013; Pugh & Gordon 2013). Debris-

covered snowpack has a lower albedo than debris-free snowpack, and thus absorbs more 

radiation and melts or sublimates faster (Gleason et al. 2013; Pugh & Gordon 2013; 

Winkler et al. 2014). In the Sierra Nevada, disturbance severity is negatively related to 

SWE (Stevens 2017), presumably because denser, less disturbed stands shade the 

snowpack and slow snowmelt. While trees shade the snowpack from shortwave radiation, 

they also emit longwave radiation – which presents a tradeoff between shortwave and 

longwave radiation, as snowmelt is affected by total radiation (Lundquist et al. 2013; Sun 

et al. 2018). At temperatures near freezing, medium-density forests are likely to retain 

more snow than higher-density forests (with higher longwave radiation) or lower-density 

forests (with higher shortwave radiation) (Hubbart et al. 2015; Lundquist et al. 2013). For 

example, forest thinning in Arizona may decrease longwave radiation while having little 

effect on shortwave radiation reaching snowpack, resulting in decreased net radiation and 
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thus increased SWE (Svoma 2017). In contrast, in areas with average winter temperatures 

below freezing, longwave radiation may be insufficient to melt midwinter snowpack, and 

shading becomes more important for snow retention in later winter (Ellis et al. 2011; 

Lundquist et al. 2013; Stevens 2017). The impact of radiation budgets on SWE suggests 

that physically-based models that include components of radiation could improve the 

predictability of hydrologic response to disturbance. 

Several studies concluded that topographic aspect controls the effects of trees on 

snowmelt via its effects on shortwave radiation. In the Canadian Rockies, snow 

disappearance date either increases or decreases in clearings, relative to intact forest 

stands, depending on aspect (Ellis et al. 2011). Snowpack under undisturbed forests on 

south-facing slopes is shaded and thus receives less shortwave radiation – and retains 

snow longer due to slower snowmelt – than adjacent clearings, even though clearings 

may initially have higher total snowpack. In contrast, trees on north-facing slopes have 

higher late-winter snowmelt rates than clearings due to higher longwave radiation within 

forested stands (Ellis et al. 2011). In central Utah, which is at a lower latitude and thus 

has higher solar angle, stand-replacing wildfire results in earlier snow disappearance on 

both north- and south-facing slopes, relative to unburned stands (Maxwell et al. 2019). 

Two studies – one west-wide (Tennant et al. 2017) and one in New Mexico (Harpold et 

al. 2014) – concurred that in areas with relatively high solar radiation, e.g., at low 

latitudes, aspect exerts a greater control on SWE than vegetation characteristics. 

 

Evapotranspiration 

 

The long-held expectation that post-disturbance water yield will increase is based 

on the assumption that evapotranspiration will decrease (Figure 1a), thus making more 
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water available for streamflow (Adams et al. 2012; Pugh & Gordon 2013). Here we 

examine three components of evapotranspiration that have been cited as driving gains in 

streamflow following disturbance: transpiration; sublimation of snow, both from canopies 

and from snowpack; and evaporation from soil (Figure 1). All were found to respond 

variably to disturbance, as described below. 

Few studies have asked whether the expectation of reduced post-disturbance 

transpiration holds true for non-stand replacing disturbances such as the widespread 

recent die-off (Hicke et al. 2015). Two case studies highlight mechanisms that may result 

in unexpected increases in evaporation. First, although mountain pine beetle epidemics 

kill overstory trees and thus lead to declines in overstory transpiration, increased 

transpiration of surviving vegetation, including advance regeneration (i.e., seedlings and 

saplings that were present in the understory prior to the epidemic), can lead to increased 

total evapotranspiration and decreased streamflow (Biederman et al. 2014). Another 

study concluded that decreases in post-disturbance transpiration may be offset by 

increased soil evaporation, resulting in a net increase in evapotranspiration (Reed et al. 

2016). 

The assumption that reduced canopy interception will lead to a net decrease in 

post-disturbance sublimation, and thus an increase in SWE, is supported by stand-

replacing disturbances such as clearcutting (Stednick 1996). However, two observational 

studies – one in Colorado (Biederman et al. 2014) and one in New Mexico (Harpold et al. 

2014) – and one simulation study (Sexstone et al. 2018) found that increased sublimation 

from the snowpack can offset decreases in canopy sublimation. High radiation reaching 

the snowpack surface, as well as increased turbulence beneath the reduced post-
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disturbance canopy, can cause unexpectedly high sublimation from snowpack 

(Biederman et al. 2014; Sexstone et al. 2018). 

Finally, evaporation from soil represents not only a component of 

evapotranspiration but also a constraint on forest regeneration and growth. Most of the 18 

studies that assessed post-disturbance soil moisture evaluated non-stand replacing 

disturbances. Approximately equal numbers of studies concluded that soil evaporation 

increases, decreases, or does not change following disturbance, and several studies found 

variable responses (Adams et al. 2012; Bart et al. 2016; Boisramé et al. 2017; Grant et al. 

2013; Harpold et al. 2015; Pugh & Gordon 2013; Reed et al. 2014). Post-disturbance soil 

moisture may increase due to decreased transpiration (Concilio et al. 2009; Mikkelson et 

al. 2013; Penn et al. 2016; Reed et al. 2018; Saksa et al. 2017), but it may also decrease, 

particularly during the growing season, due to increased evaporative demand driven by 

higher solar radiation following overstory canopy loss (Bennett et al. 2018; Biederman et 

al. 2014; Chen et al. 2015). Soil moisture response may vary due to differences in snow 

retention – the date of complete snow disappearance (Grant et al. 2013; Harpold et al. 

2015) – and depletion of soil moisture by growing-season evapotranspiration (Bart et al. 

2016; Bennett et al. 2018). As with seasonal low flows, soil moisture response to 

disturbance may vary over long timescales (Perry & Jones 2017). 

 

Linkage Between Forest Disturbance and Water Yield  

 

This synthesis of recent literature indicates that forest disturbance may increase or 

decrease water yield, leading to two important conclusions about the linkage between 

forest disturbance and water yield in semi-arid western watersheds: 1) the hypothesis that 
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forest cover reduction leads to increased water yield is not universally true, and in some 

cases post-disturbance water yield may actually decrease, and 2) although the “response 

to treatment [or disturbance] is highly variable” (Hibbert 1967, p. 535), the ability to 

predict where water yield may increase vs. decrease following disturbance is improving. 

Thus, this review contributes insights beyond those of other recent reviews by identifying 

circumstances that may exhibit decreased post-disturbance water yield. Silvicultural 

prescriptions such as fuels treatments and forest thinning often mimic non-stand 

replacing disturbances such as those summarized here, and therefore they may fail to 

increase water yield in semi-arid western watersheds. 

Studies that found decreases in water yield highlight important exceptions to 

Hibbert’s (1967) first hypothesis that forest cover loss leads to increased water yield. 

Two previous reviews (Adams et al. 2012; Pugh & Gordon 2013) hypothesized that water 

yield could actually decrease following non-stand replacing tree die-off, and several 

studies have now confirmed this response. These unexpected results facilitate formulation 

of new hypotheses about when water yield – and potentially snowpack – might actually 

decrease following forest disturbance. First, all of these studies occurred in a semi-arid 

region. Second, two factors that lead to decreased post-disturbance water yield and 

snowpack are: 1) high density and growth rates, and thus transpiration, of post-

disturbance vegetation (Bart et al. 2016; Bennett et al. 2018; Biederman et al. 2014; 

Guardiola-Claramonte et al. 2011), and 2) high total radiation (Biederman et al. 2015; 

Harpold et al. 2014; Stevens 2017), which leads to increased sublimation from the 

snowpack (Biederman et al. 2014; Harpold et al. 2014), and increased evaporation of soil 

moisture (Bennett et al. 2018; Biederman et al. 2014; Chen et al. 2015). In short, 
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increases in evapotranspiration (Figure 1b, red arrows) more than compensate for the 

decreases (Figure 1b, blue arrows). The relative magnitudes of the responses exhibited by 

individual components of evapotranspiration (Figure 1) are related both to the type and 

density of post-disturbance vegetation, and also to net radiation, which drives evaporative 

demand. Net radiation is partly a function of latitude and aspect, which have long been 

identified as a control on the magnitude of water yield increases following harvest in 

wetter areas such as Coweeta, NC, and Fernow, WV (Hibbert 1967). 

Previous reviews provided rule-of-thumb thresholds for when and where forest 

disturbance is likely to increase water yield: in watersheds where at least 20% of tree 

cover is removed (Adams et al. 2012; Brown et al. 2005; Stednick 1996) and 

precipitation is at least 500 mm/year (Adams et al. 2012). Given that most studies 

reviewed here characterized pre-disturbance conditions categorically rather than 

quantitatively (Table 4), the interpretation of the 20% rule-of-thumb is likely to be 

applied to entire stands (e.g., 20% of area within a catchment, based on delineation of 

polygons) rather than to the density within individual stands (e.g., 20% density reduction 

in stands of known density). However, the relationship between forest cover and 

streamflow response is complex and nonlinear (Moore & Wondzell 2005). An “area 

affected” characterization can mask the variability of stand densities within a catchment, 

where density is known to affect snow accumulation and retention (Lundquist et al. 

2013), and perpetuates the categorical characterization of forests and disturbance (e.g., 

“disturbed” vs. “undisturbed”), as described below. In regards to precipitation thresholds, 

decreases in post-disturbance water yield occurred in watersheds with precipitation 

greater than the rule-of-thumb of 500 mm/year (Table 5). 
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Two recent high-profile papers underscore the ongoing interest and uncertainty 

regarding the factors that determine water yield response to forest disturbance and 

recovery. In an analysis of 251 catchments worldwide, Evaristo and McDonnell (2019) 

report that among catchments where streamflow increased following removal of forest 

cover, the best predictor of the magnitude of streamflow increase was subsurface storage 

potential (i.e., depth to bedrock). However, a subsequent critique (Kirchner et al. 2019) of 

Evaristo and McDonnell (2019) illuminates the obstacles inherent in amassing reliable 

broad-scale datasets, building robust models, and extending findings to new watersheds. 

As suggested by Kirchner et al. (2019), shortcomings in the ability to predict streamflow 

response to forest cover change could result in forest policy and management that may 

have unquantified effects over both short- and long-term timescales, and also at spatial 

scales ranging from watersheds to continental-scale linkages between cover type and 

downwind precipitation. Thus, the disciplines of forestry and hydrology have much work 

to do, both individually and collectively, to improve the predictability of the effects of 

forest dynamics on water resources, as discussed below. 

 

Table 4. Metrics used to describe forest disturbance and conditions. More than half of 

papers described forests and disturbances in categorical terms rather than quantitative 

ones; the most common quantitative metric was leaf or plant area index (LAI/PAI). 

 

Metric Forest condition Disturbance   
% of area forested/disturbed 3 14  
% canopy cover at catchment scale 5 1  
categorical 41 44  
LAI/PAI 15 8  
standard forestry measurements 11 5  
tree growth and/or mortality rates 1 4  
NA (review papers) 2 2  

Total 78 78   

 



Table 5. Summary of studies that detected decreased water yield following disturbance. Where rain vs. snow domination of 

precipitation regime was found to be important, it is noted under “Factors leading to decreased Q” (Q=water yield). Note that most 

studies also detected increases or no change in some circumstances; only conditions leading to decreased Q are indicated. 

Paper Type of 

study 

Location Annual 

precipitatio

n 

Magnitude of 

water yield 

change 

Extent of 

disturbance 

Type of disturbance Factors leading to decreased Q 

Adams et 

al. 2012 

Review 

paper 

NA (review) NA (review) -50% to +250%

(highest values

not realistic:

Adams et al.

2012)

20% forest loss Non-stand replacing 

mortality due to drought 

and insects (<100% 

mortality) 

Precipitation <~500 mm/yr, not 

snowmelt-dominated, rapid 

understory growth that results in 

increased evapo-transpiration 

Bart et al. 

2016 

Simulation 

(RHESSys) 

Sierra 

Nevada 

(CA) 

1297 mm/yr -30% to +155% 50%-100% forest 

loss 

Stand-replacing wildfire High transpiration by dense post-

disturbance shrubs 

Bennett et 

al. 2018 

Simulation 

(VIC) 

San Juan 

Basin, (AZ, 

CO, NM, 

UT) 

666 mm/yr -21% to -15% >50% forest loss Multiple agents 

(disturbance projections 

based on climate), 

including stand-replacing 

and non-stand replacing 

mortality 

High transpiration by dense post-

disturbance shrubs 

Biederma

n et al. 

2014 

Observatio

n 

Rocky 

Mountains 

(CO, WY) 

600-800

mm/yr

-74% to -62% Up to 80% or 

area affected 

Non-stand replacing 

mortality due to insects 

(<100% mortality) 

Increased post-disturbance evapo-

transpiration, including sublimation 

from snowpack 

Biederma

n et al. 

2015 

Observatio

n 

Rocky 

Mountains 

(CO) 

730-830

mm/yr

-29% to -11% 35% to 50% of 

area affected 

Non-stand replacing 

mortality due to insects 

(<100% mortality) 

Increased post-disturbance evapo-

transpiration, mainly due to 

transpiration of understory 

vegetation 

Guardiola

-

Claramont

e et al. 

2011 

Observatio

n 

Colorado 

Plateau (AZ, 

CO, NM, 

UT) 

208-480

mm/yr

Up to -50% 3%-21% 

mortality of trees 

Non-stand replacing 

mortality due to drought 

(<100% mortality) 

Increased transpiration by 

herbaceous understory vegetation 

and increased soil evaporation due to 

increased insolation of the soil 

surface 

43 



Pugh and 

Gordon 

2013 

Review 

paper 

NA NA (review) Decreases 

recognized in 

conceptual model 

Not specified Non-stand replacing 

mortality due to insects 

(<100% mortality) 

Increased post-disturbance evapo-

transpiration 

Slinski et 

al. 2016 

Observatio

n 

CO, ID, MT, 

OR, SD, 

UT, WY 

NA (not 

reported 

across 33 

catchments) 

Not reported 21% to 72% Non-stand replacing 

mortality due to insects 

(<100% mortality) 

Increased post-disturbance evapo-

transpiration 

44 
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Improving Predictability of Hydrologic Response to Disturbance 

Extending recent findings to forest and watershed management, and predicting the 

response of any given watershed to disturbance, requires an improved quantitative 

framework linking forest conditions, disturbance severity, and hydrologic response. 

Despite the recent increase in the number of papers focused on this linkage, less than half 

of studies characterized forest cover and forest disturbance quantitatively rather than 

categorically (Table 4). Given that individual components of the hydrologic cycle are 

affected by vegetation composition (Bart et al. 2016; Bennett et al. 2018), structure 

(Broxton et al. 2015), density (Hubbart et al. 2015; Lundquist et al. 2013), and radiation 

exposure (i.e., aspect) (Ellis et al. 2011; Harpold et al. 2014; Tennant et al. 2017), a more 

precise understanding of the linkage between disturbance and hydrologic response 

requires analysis of quantitative (e.g., LAI, basal area, canopy cover) rather than 

categorical or qualitative (e.g., forest vs. nonforest, disturbed vs. undisturbed) attributes. 

Among the majority of studies that characterized forests and disturbance 

categorically rather than quantitatively (Table 4), descriptors of “forest” (i.e., pre-

disturbance conditions) included three types of categories: forest vs. nonforest; forest 

type or cover type; or forest density classes. The most common categorical 

characterizations of forest disturbance (Table 4) consisted of simply “disturbed” vs. “not 

disturbed” (17 papers), where disturbance thresholds were defined either within the study 

or by an external dataset (e.g., Aerial Detection Surveys). For mountain pine beetle 

disturbance, some studies further distinguished between green, red, and gray phases of 

infestation (see Pugh and Gordon 2013, for phase definitions), which were expected to 

differentially affect snow water equivalent via their effects on snowpack albedo, shading, 
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and interception (Biederman et al. 2014; Biederman et al. 2014; Penn et al. 2016; Perrot 

et al. 2014; Pugh & Small 2013; Pugh & Small 2012; Pugh & Gordon 2013; Winkler et 

al. 2005). Other papers included scenarios of either multiple disturbance agents or 

multiple severities of a single agent, as well as one study that characterized cover type 

conversion from forest to multiple nonforest scenarios with varying vegetation densities 

(Bart et al. 2016). 

Several studies concluded that forests affected by non-stand replacing disturbance 

should be considered a distinct cover type, based on observations that non-stand 

replacing disturbances exhibit a range of hydrologic responses between those observed in 

undisturbed forests versus those subject to stand-replacing disturbances such as clearcut 

harvests or severe wildfire (Boon 2009; Boon 2012; Pomeroy et al. 2012; Winkler et al. 

2014). One of these studies (Boon 2012) proposed the concept of a “forest structure 

continuum” (p. 284), which represents a step toward quantifying forests and forest 

disturbance numerically rather than applying categories of disturbance or cover. This 

recommendation underscores the importance of characterization forests and disturbance 

quantitatively rather than categorically. 

Quantitative Characterization of Forests and Disturbance 

Among the minority of studies that quantitatively related forest conditions to 

hydrologic fluxes (Table 4), the most common metric for characterizing forest conditions 

was leaf area index (LAI). Process-based simulation models, such as the RHESSys 

(Tague & Band 2004) and DHSVM (Wigmosta et al. 1994) ecohydrologic models and 

one snowpack model (Broxton et al. 2015), include the capability to represent forest 

canopy densities in terms of LAI. Because standard forestry assessments do not include 
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LAI, (Härkönen et al. 2015; USDA 2017; plus the majority of studies in this review), a 

disconnect exists between standard forestry measurements and quantitative forest metrics 

used in hydrology. Future efforts to improve quantitative predictions of disturbance 

effects on water resources should thus include spatially explicit estimation of LAI. 

Abundant research has improved the ability to estimate LAI on the ground using light 

sensors or hemispherical photography (Jonckheere et al. 2004), or remotely via airborne 

or space-based light detection and ranging (Tang et al. 2014), as efficient alternatives to 

destructive sampling that may have the added benefit of separating understory from 

overstory LAI. In recent studies, both the scale and grain (e.g., ability to distinguish 

overstory from understory LAI) of LAI assessments has varied widely, depending mainly 

on data availability. At the broadest scale of assessment, a single LAI value represented 

each cover or disturbance class (Broxton et al. 2015; Penn et al. 2016; Perrot et al. 2014; 

Sexstone et al. 2018; Svoma 2017). Other studies spatially averaged LAI within 

disturbance severity classes (Pomeroy et al. 2012; Reed et al. 2016). The most data-

intensive studies represented spatially and temporally explicit LAI in empirical analysis 

(Bewley et al. 2010), process-based numerical models (Chen et al. 2015; Reed et al. 

2014), or ecohydrologic simulation models (Bennett et al. 2018; Huff et al. 2000; Livneh 

et al. 2015; Saksa et al. 2017). 

Of the studies that collected detailed forestry measurements, exclusive of LAI, the 

majority did not quantitatively analyze those data relative to hydrologic effects and 

presented quantitative data only in a site-descriptive context. Only a single study related 

quantitative forestry measurements to hydrologic response, using correlations of forest 

cover against maximum SWE and snowpack ablation rate (Varhola et al. 2010). Standard 



48 

forestry measurements included stand-level quantitative metrics such as basal area, tree 

density, and tree volume, as well as tree-level attributes such as diameter, height, and 

species. Although allometric equations allow estimation of LAI based on standard 

forestry measurements, they are typically applicable only in the localized regions and for 

the species for which they were developed (Jonckheere et al. 2004). The scale of forest 

characterization also ranged from site-specific evaluation to watershed-scale assessment 

based on maps or remote sensing. Two studies in Table 1 (Li et al. 2018; Zhang & Wei 

2012) quantified disturbance effects in terms of Equivalent Clearcut Area (ECA) (King 

1989) – which accounts for the density and extent of disturbed areas for the purpose of 

predicting peak flow changes – and one paper presented a brief critical review of the 

concept (Varhola et al. 2010). As discussed above, hydrologic response to disturbance is 

influenced by stand structure, density, and radiation exposure, which all affect snow 

accumulation, snowmelt rates, and evapotranspiration. Because these influences are 

almost certainly nonlinear (Moore & Wondzell 2005), it is unlikely that ECA can 

accurately represent the hydrologic impacts of spatially heterogeneous, non-stand 

replacing forest disturbances. 

 

Direct and Indirect Hydrologic Effects of Forest Disturbance and Climate 

 

Aside from the most data-intensive LAI assessments, nearly all other studies in 

our review assumed post-disturbance LAI to be time-invariant, therefore not accounting 

for growth of post-disturbance vegetation. Applying new findings to management 

requires not only improving our quantitative representation of vegetation in hydrologic 

analyses, but also accounting for post-disturbance vegetation dynamics and response to 

future climate (Andréassian 2004; Bennett et al. 2018; Buma & Livneh 2015). Future 
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disturbance and climate will have both direct effects on streamflow (e.g., warmer 

temperatures will result in more precipitation falling as rain rather than snow) and 

indirect effects as mediated through vegetation changes (e.g., warmer temperatures lead 

to tree die-off, which in turn affects evapotranspiration). Accounting for post-disturbance 

vegetation dynamics and climate scenarios is possible given the current state of 

physically-based eco-hydrologic modeling (Tague & Band 2004; Wigmosta et al. 1994), 

which again requires better quantitative characterization of forest conditions. 

Post-disturbance recovery and regrowth can cause streamflow to either increase or 

decrease, depending on seasonality, time since disturbance, and density and rate of 

regrowth (Perry & Jones 2017). Twenty-six of the 78 studies considered in this review 

incorporated either past or future climate forcing data, while only 21 included multi-

annual forest dynamics, i.e., regeneration or regrowth, in their assessments of hydrologic 

response to disturbance. Beyond timescales of about a decade, initial hydrologic 

responses, such as seasonal low flows or water yield, may return to baseline conditions or 

even differ in sign (increase vs. decrease) from the immediate post-disturbance response 

(Perry & Jones 2017). However, in studies focused on sufficiently short timelines (<10 

years), the assumption of static vegetation may be acceptable in the slow-growing 

coniferous forests of the western US. Studies that accounted for vegetation dynamics 

used a variety of methods, ranging from time-based thresholds for reversion from 

“disturbed” to “undisturbed” (Hernandez et al. 2018) to classification of stands or 

catchments in various stages of recovery, as observed either through ground observations 

or remote sensing (Boisramé et al. 2017; Li et al. 2018; Meyer et al. 2017; Robles et al. 

2014; Vanderhoof & Williams 2015; Wei & Zhang 2010; Winkler et al. 2014; Zhang & 
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Wei 2012) or simulation of future vegetation growth (Bart et al. 2016; Buma & Livneh 

2015; Grant et al. 2013; Penn et al. 2016; Saksa et al. 2017). Simulations of vegetation 

recovery vary from species-specific bioclimatic envelopes (Buma & Livneh 2015) to 

species-invariant simulated canopy growth (Bart et al. 2016; Grant et al. 2013; Saksa et 

al. 2017). 

Inter-annual climate variability can also mask streamflow and snowpack 

responses to disturbance. The largest differences in snowpack between disturbed vs. 

undisturbed stands occur in low-snowfall years (Boon 2012; Winkler et al. 2014), which 

are expected to become more common in western North America (Fyfe et al. 2017), as 

larger snowfall overwhelms the interception capacity of the overstory. Additionally, tree 

mortality is likely to increase due to drought- and heat-related factors (Adams et al. 2009; 

Allen et al. 2010; Anderegg et al. 2013; McDowell et al. 2016; Williams et al. 2013). 

Simulations that include both vegetation dynamics and climate projections suggest that 

vegetation may have a stronger influence on the future water yield than climate alone in 

dry regions (Bart et al. 2016; Bennett et al. 2018). In contrast, inter-annual precipitation 

variability in wetter areas exerts a stronger control than forest conditions on streamflow 

(Burt et al. 2015). 

Finally, future studies can help improve the predictability of hydrologic response 

to disturbance by quantifying and reporting the magnitude of changes in both forest 

conditions and hydrologic fluxes. Such quantification will allow differentiation of initial 

forest densities or structures, disturbance severities, and subsequent hydrologic response. 

In Bosch and Hewlett’s (1982) review, their Figure 1 presented a quantitative relationship 

between the percent reduction in forest cover and the annual streamflow increase. Their 



51 

review differed from this paper in that it focused on stand-replacing disturbances – 

primarily harvesting – while our review included numerous cases of both stand-replacing 

and non-stand replacing disturbances, which we conclude may exhibit different 

hydrologic responses. Although we initially sought to quantify the magnitude of increases 

or decreases in snowpack and water yield that were observed in different studies, too few 

of the papers reviewed here reported magnitudes of change in a way that enabled meta-

analysis. Therefore we recommend that future papers explicitly report the following 

metrics: quantitative forest density (e.g., in terms of LAI, basal area per acre, or canopy 

cover percentage), quantitative disturbance effects (e.g., reduction in LAI, area affected), 

scale of assessment (e.g., stand, hillslope, or catchment), annual precipitation, annual 

maximum SWE, and magnitude of hydrologic change as well as results of any statistical 

significance tests. 

 

Implications for Forest Management: Balancing Water Yield and Forest Resilience 

 

 

Given that tree mortality in the West is likely to continue at a historically high 

rate in the future (Allen et al. 2010; Anderegg et al. 2013; Williams et al. 2013), 

management objectives may seek to maximize the adaptive capacity of forested 

watersheds by optimizing growing-season soil moisture (Grant et al. 2013), e.g., by 

maximizing snow retention. The same factors that affect post-disturbance water yield also 

may affect snow retention and soil moisture. Although soil moisture sometimes increases 

in the years following harvest in relatively wet areas (Perry & Jones 2017; Ziemer 1964), 

it may decline if snowpack decreases or melts earlier. Decreases in snow accumulation, 

snow retention, or soil moisture most often occur at lower latitudes and south-facing 
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aspects where solar radiation dominates the radiation budget (Bennett et al. 2018; 

Biederman et al. 2014; Chen et al. 2015; Ellis et al. 2011; Harpold et al. 2014; Lundquist 

et al. 2013). At such sites, stand structure and density can have important effects on snow 

accumulation and retention (Broxton et al. 2015; Lundquist et al. 2013), which in turn 

affect growing-season soil moisture (Grant et al. 2013; Harpold et al. 2015; Tague et al. 

2009). 

The studies that found decreases in post-disturbance water yield (Table 5) or 

snowpack mainly occurred in catchments that coincide with regions that are expected to 

receive less precipitation as snow in the future (Fyfe et al. 2017). Even in catchments 

receiving more rain than snow, die-off may increase the vulnerability of surviving trees to 

future mortality if understory transpiration and soil evaporation overcompensate for the 

decrease in canopy evapotranspiration (Morillas et al. 2017). In stands already affected 

by natural, non-stand replacing disturbance such as drought- or insect-related die-off, 

post-disturbance salvage logging in high-radiation environments may allow increased 

solar radiation to drive earlier snowmelt and subsequent depletion of soil moisture, either 

through soil evaporation or transpiration by understory vegetation (Boon 2009; Gleason 

et al. 2013; Morillas et al. 2017; Perrot et al. 2014; Winkler et al. 2015). Such treatments 

in high-radiation environments may not only lead to reduced summer flows and possibly 

reduced water yield, but also hinder future forest recovery and resilience if soil moisture 

decreases as a result of increased solar radiation reaching the soil surface. Additionally, 

harvest treatments have additional effects if they include road-building, which can affect 

infiltration and both surface and subsurface runoff pathways and rates (Moore & 

Wondzell 2005). 
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Toward the goal of optimizing soil moisture, studies summarized here provide 

some guidelines for maximizing snow retention. In areas where average winter 

temperature is less than -1° C, longwave radiation in dense forests is typically insufficient 

to melt midwinter snowpack, and dense canopies provide shade that slows spring 

snowmelt (Lundquist et al. 2013). Thus, retaining moderately dense forest cover should 

be a goal in colder areas if forest resilience is a management objective, particularly on 

south-facing slopes where they provide solar shading (Ellis et al. 2011). However, snow 

retention at relatively windy sites in cold regions may be controlled more by winds (i.e., 

with longer retention in forests than in clearings where wind scours the snowpack) 

(Dickerson‐Lange et al. 2017). In warmer areas, i.e., those where mean winter 

temperature is warmer than -1° C, sparser tree cover may optimize snow retention by 

providing solar shading with minimal longwave radiation emittance (Lundquist et al. 

2013). For example, maximum snow retention was observed in Arizona at sites that were 

thinned and burned to about 24-30% of initial density (Sankey et al. 2015; Svoma 2017), 

where treatments provided the added benefit of lower fire risk. In such warm areas, or in 

colder areas on north-facing slopes (Ellis et al. 2011), managing for less dense forests 

may minimize total melt energy – i.e., by blocking shortwave radiation while emitting 

less longwave radiation than denser stands – and thus maximize snow retention. 

Future management-driven research should attempt to improve predictions of 

when snow retention will respond positively or negatively to silvicultural treatments such 

as thinning or salvage harvests. Physically-based models already include the capability 

for simulating the effects of canopy density (typically in terms of LAI) on radiation, 

snowpack, and evaporation (Tague & Band 2004; Wigmosta et al. 1994), and may thus 
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serve as tools for comparing management alternatives. At finer scales that are relevant to 

individual forest management projects, physically-based models can be used to 

comparatively assess alternative silvicultural prescriptions – including site aspect, 

elevation, and the number and size of harvest gaps – for maximizing hydrologic 

objectives such as snow retention, water yield, or seasonal low flow targets (Ellis et al. 

2013; Sun et al. 2018). 

 

Conclusions 

 

 

A review of 78 studies on hydrologic response to forest disturbance indicates that 

this topic has received increased attention in the literature, and that new hypotheses 

continue to be formulated as understanding increases in this rapidly evolving discipline. 

While one long-held hypothesis – that forest cover loss results in increased water yield 

due to decreased evapotranspiration – still applies in many cases, it was found to be 

incorrect under some conditions, and identifying these conditions will improve 

predictability of streamflow response to forest disturbance. Water yield and snowpack are 

more likely to decrease or not change in areas with rapid post-disturbance growth and in 

watersheds where net radiation is greater, such as at lower latitudes and south-facing 

aspects. Both observational and simulation studies concluded that post-disturbance 

streamflow and snowpack may decrease under these conditions, yet only physically-

based models were able to simulate any reductions in yield, underscoring the importance 

of continued investment in physically-based modeling to support forest management. The 

use of such models to evaluate management alternatives will require improved 

quantitative characterization of forest density and disturbance effects, particularly in 
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terms of leaf area index, which is the metric currently used for most quantitative linkages 

between forests and hydrologic response. 
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CHAPTER 3 

VARIABLE STREAMFLOW RESPONSE TO FOREST DISTURBANCE IN THE 

WESTERN US: A LARGE-SAMPLE HYDROLOGY APPROACH2 

 

Abstract 

 

 

Forest cover and streamflow are generally expected to vary inversely because 

reduced forest cover typically leads to less transpiration and interception. However, 

recent studies in the western US have found no change or even decreased streamflow 

following forest disturbance due to drought and insect epidemics. We investigated 

streamflow response to forest cover change using hydrologic, climatic, and forest data for 

159 watersheds in the western US from the CAMELS dataset for the period 2000-2019. 

Forest change and disturbance were quantified in terms of net tree growth (total growth 

volume minus mortality volume) and mean annual mortality rates, respectively, from the 

US Forest Service’s Forest Inventory and Analysis database. Annual streamflow was 

analyzed using multiple methods: Mann-Kendall trend analysis, time trend analysis to 

quantify change not attributable to annual precipitation and temperature, and multiple 

regression to quantify contributions of climate, mortality, and aridity. Many watersheds 

exhibited decreased annual streamflow even as forest cover decreased. Time trend 

analysis identified decreased streamflow not attributable to precipitation and temperature 

changes in many disturbed watersheds, yet streamflow change was not consistently 

related to disturbance, suggesting drivers other than disturbance, precipitation, and 

 
2 Goeking, S.A., and Tarboton, D.G., 2021. Water Resources Research. Variable streamflow response to 

forest disturbance in the western US: A large-sample hydrology approach. In review; preprint available: 

DOI: 10.1002/essoar.10508683.1. 
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temperature. Multiple regression analysis indicated that although change in streamflow is 

significantly related to tree mortality, the direction of this effect depends on aridity. 

Specifically, forest disturbances in wet, energy-limited watersheds (i.e., where annual 

potential evapotranspiration is less than annual precipitation) tended to increase 

streamflow, while post-disturbance streamflow more frequently decreased in dry water-

limited watersheds (where the potential evapotranspiration to precipitation ratio exceeds 

2.35). 

Key Points 

 

 

• Large-sample analyses found that while streamflow often increased following 

forest disturbance, it decreased in some watersheds. 

• The direction of streamflow response to forest disturbance (increase vs. decrease) 

is dependent on aridity. 

• Forest disturbance is more likely to occur in arid locations, which is also where 

disturbance tends to result in decreased streamflow. 

 

Plain Language Summary 

 

 

Forest disturbance is typically expected to lead to increased runoff, and therefore 

more water available for aquatic ecosystems and people, because loss of forest vegetation 

results in less water being taken up and transpired by plants. We examined streamflow 

and forest change in 159 watersheds in the western U.S. to test this expectation. We 

found that not all disturbed watersheds experienced increased streamflow. Very dry 

watersheds were more likely to produce less runoff following forest disturbance and were 

also more likely to experience forest disturbance. 
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1. Introduction 

 

 

Based on decades of research, forest cover and streamflow are generally expected 

to vary inversely (Andréassian, 2004; Bosch & Hewlett, 1982; Hibbert, 1967; Troendle, 

1983). Such research is based on a combination of paired watershed experiments (e.g., 

Brown et al., 2005; Moore et al., 2020), post-hoc analysis of streamflow data in unpaired 

watersheds where streamflow can be modeled as a function of climatic observations (e.g., 

Biederman et al., 2015; Zhao et al., 2010), and simulation modeling that encompasses 

various levels of complexity (e.g., Bennett et al., 2018; Buma and Livneh, 2015; Sun et 

al., 2018). The mechanism behind the inverse relationship between forest cover and 

streamflow includes a combination of reduced evaporation of canopy-intercepted 

precipitation, and reduced canopy transpiration following forest cover loss (Adams et al., 

2012; Hibbert, 1967; Pugh & Gordon, 2012). Conversely, forest recovery or afforestation 

are assumed to increase total transpiration and evaporative losses of canopy-intercepted 

precipitation, thus leading to decreased runoff (Andréassian, 2004; Hibbert, 1967). 

Contrary to the hypothesis of an inverse relationship between forest cover and 

streamflow, observed streamflow changes following recent forest disturbances have been 

variable in magnitude and direction (Boisramé et al., 2017; Goeking & Tarboton, 2020; 

Ren et al., 2021; Slinski et al., 2016). Over the past two decades, widespread but low- to 

moderate-severity forest disturbance has occurred as a result of drought stress, insect 

epidemics, and disease epidemics, as well as altered wildfire regimes (Adams et al., 

2012; Williams et al., 2013), thus providing opportunities to identify circumstances 

leading to decreased post-disturbance streamflow. Most exceptions to the inverse 

relationship between forest cover and streamflow occurred as post-disturbance decreases 
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in streamflow, typically at low latitudes and south-facing aspects with high aridity, high 

incoming solar radiation, and/or where tree canopies were replaced by rapid growth of 

dense herbaceous vegetation or shrubs (Bennett et al., 2018; Goeking & Tarboton, 2020; 

Guardiola-Claramonte et al., 2011; Morillas et al., 2017; Ren et al., 2021). Even in 

studies that found conforming streamflow increases following disturbance, the magnitude 

of streamflow increases was modulated by aridity (Saksa et al., 2019). Although such 

findings are anomalous in the larger context of decades of forest hydrology research, they 

highlight alternative hypotheses to the inverse relationship between forest cover and 

streamflow. One such alternative hypothesis is that although streamflow typically 

increases following forest disturbance, post-disturbance conditions that lead to increased 

evaporation (i.e., increased energy at snowpack or soil surface) or increased transpiration 

(i.e., replacement of sparse trees with dense shrubs) lead to a reduced streamflow 

response. 

While numerous studies of runoff response to forest change have focused on site-

specific treatments (e.g., harvest, planting) or severe disturbance (e.g., stand-replacing 

wildfire, clearcuts) in one or two small watersheds, fewer studies have examined lower 

severity disturbances across broader geographic areas or across more gradual timescales 

than episodic timber harvesting or wildfire (Andréassian, 2004; Hallema et al., 2017; 

Wine et al., 2018). Response to low to moderate severity forest disturbances may 

fundamentally differ from severe, stand-replacing disturbances (generally defined as 

<70% tree mortality)  due to their different effects on energy balances affecting 

snowpack and soil moisture as well as different transpiration rates for pre-disturbance 

versus post-disturbance vegetation (Adams et al., 2012; Pugh & Gordon, 2012; Reed et 
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al., 2018). Recent tree die-off events spanning western North America have provided the 

opportunity to examine streamflow responses to disturbance that is less severe but more 

widespread than the forest changes considered in most previous forest hydrology studies 

(Adams et al., 2012; Hallema et al., 2017). Studies based on both observations 

(Biederman et al., 2014, 2015; Guardiola-Claramonte et al., 2011) and simulations 

(Bennett et al., 2018; Ren et al., 2021) have revealed unexpected post-disturbance 

decreases in streamflow. Streamflow response to disturbance at broader scales may not 

reflect hypotheses developed from study of small watersheds that are commonly the 

focus of paired watershed experiments (Andréassian, 2004), which underscores the value 

of broad-scale evaluation of hypotheses that were developed at fine scales. 

A challenge in testing such hypotheses is the need to balance breadth with depth, 

i.e., gathering fine-scale observations from individual watersheds versus coarser 

observations from many watersheds (Gupta et al., 2014). Large-sample hydrology can 

complement fine-scale studies of individual small watersheds by identifying broad-scale 

patterns in streamflow response to forest disturbance. Fine-scale studies have produced 

useful information about the response of streamflow (e.g., Biederman et al., 2015; 

Guardiola-Claramonte et al., 2011), snowpack (e.g., Broxton et al., 2016; Moeser et al., 

2020), and individual ecohydrological processes to forest change (e.g., Biederman et al., 

2014; Reed et al., 2018). In contrast, large-sample hydrology can evaluate hypotheses 

across many watersheds to identify circumstances that conform to or deviate from 

hypothesized relationships (Addor et al., 2019; Gupta et al., 2014; Newman et al., 2015). 

Another challenge is accounting for the effects of climate variability in streamflow 

assessments, such that the effects of vegetation change on streamflow are not confounded 
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with climate effects. To address this challenge, quantitative models of streamflow 

response to vegetation change often include precipitation and temperature as explanatory 

variables (Zhao et al., 2010). 

In this study, we used a large sample of catchments to test hypotheses about the 

direction of runoff response following forest disturbance in semi-arid catchments. 

Observations consisted of streamflow, vegetation, and climate data, which allowed us to 

account for streamflow changes related to variability in precipitation and temperature and 

thus disentangle climate from vegetation effects. Based on previous studies finding 

exceptions to the inverse relationship between forest cover and streamflow, we developed 

two alternative hypotheses. First, post-disturbance runoff in catchments conforms with 

the commonly held paradigm that runoff increases with tree mortality or reductions in net 

growth. Second, an alternative hypothesis is that in watersheds with higher aridity and 

incoming solar radiation, runoff is more likely to decrease or not change than in 

watersheds with lower aridity and solar radiation. A corollary of this hypothesis is that a 

threshold of aridity index exists above which disturbance results in a decrease in runoff. 

Our results find this threshold to be an aridity index of 2.35. 

 

2. Data and Methods 

 

 

We combined data from the CAMELS large-sample hydrology dataset 

(CAMELS; Addor et al., 2017) and the US Forest Service’s Forest Inventory and 

Analysis (FIA) forest monitoring dataset (Bechtold & Patterson, 2005) to answer four 

questions (Table 1). The ability of each question’s analytical framework to disentangle 

climatic from forest disturbance effects on streamflow successively increases from the 
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first to the fourth question. For analyses that do not explicitly permit such disentangling, 

we interpret the results in the context of factors that were not included in the analysis. 

 

Table 6. The four questions addressed in this study, the analytical framework used to 

address each question, and the variables included in the analysis. Q=streamflow; 

P=precipitation; PET=potential evapotranspiration; T=temperature. 

 
Question Analytical 

framework 

Variables analyzed 

1) To what extent and where do watersheds 

exhibit a consistent trend in annual Q, Q/P, P, 

PET, and T, regardless of forest change effects?  

Mann-Kendall trend 

tests (univariate) 

Annual Q, Q/P, P, PET, 

and T 

2) To what extent and where do trends in runoff 

ratio and changes in forest density demonstrate 

an inverse relationship? 

Trend in Q/P vs. net 

tree growth 

Trend (Kendall's Tau) in 

annual Q/P; net tree growth 

3) To what extent has streamflow changed in 

watersheds with substantial forest disturbance? 

Time trend analysis 

(comparison of 

observed vs. 

predicted Q) 

Annual Q, P, and T; 

disturbance (disturbed/not 

disturbed) 

4) How well does the severity of forest 

disturbance, and the interaction of disturbance 

severity with aridity, predict change in 

streamflow? 

Multiple regression Annual Q, P, T; tree 

mortality; aridity (PET/P) 

 

 

2.1.   Data sources 

 

2.1.1.   Streamflow and climate data 

 

Watersheds were selected from the CAMELS dataset, which was compiled for 

watersheds that have little or no known land-use change and whose streamflow is 

relatively unimpacted by storage or diversions (Addor et al., 2017). However, watersheds 

in the CAMELS dataset have been subject to disturbance from wildfire and other causes 

of tree mortality that have been quantified by FIA. From the entire CAMELS dataset, we 

first constrained our analysis to watersheds in the western US for which we could obtain 

estimates of forest characteristics from the FIA dataset. Then we removed watersheds 

where runoff ratio was calculated as larger than 1.0 (runoff greater than precipitation) in 

any one year, which indicates an impossible water budget and where data is presumed to 

be in error. Precipitation and streamflow data within the CAMELS dataset were derived 
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from Daymet climate data and USGS streamflow gages, respectively (Addor et al., 2017), 

and these separate data sources do not impose constraints of water budget closure. While 

we recognize that some catchments may have runoff ratios greater than 1.0, e.g., in 

volcanic or karst landscapes, and that runoff ratios near but less than 1.0 may be similarly 

implausible, we had no means of quantifying realistically vs. unrealistically high runoff 

ratios. These constraints yielded 159 watersheds, out of 211 candidate watersheds as 52 

(25%) had runoff ratio greater than 1.0. The fact that 25% of watersheds had runoff ratios 

greater than 1.0 is indicative of the uncertainty and difficulty in compiling quality 

controlled data over large samples, even for curated datasets such as CAMELS. The 

watersheds selected had a wide range of physical and land cover characteristics (Table 7), 

runoff ratios, and humidity indices (Fig. 3), giving the study a broad degree of generality. 

Given the criteria for inclusion in the CAMELS dataset (Addor et al., 2017), we assumed 

that stream gauges for each watershed quantify actual runoff, and that withdrawals, 

transfers, and changes in storage are negligible. 

 

Table 7. Characteristics of 159 watersheds used in this study. Values are summarized 

from CAMELS attributes (Addor et al., 2017). 

 

  

Area 

(km2) 

Mean 

slope 

(m/km) 

Mean 

elevation (m) 

Runoff 

ratio 

P 

(mm/yr) 

PET 

(mm/yr) 

Fraction 

forested 

Median 238 92.8 1,613 0.419 822 1,084 0.76 

Mean 649 92.0 1,650 0.409 1,062 1,088 0.64 

Standard deviation 1,454 35.3 882 0.241 674 206 0.34 

 

The CAMELS dataset includes daily time series of climatic variables and 

streamflow as well as time-averaged catchment characteristics. We used temporally 

averaged variables representing basin characteristics such as mean incoming solar 

radiation (SRAD), and aridity, defined as the ratio of mean annual potential 
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evapotranspiration (PET) to mean annual precipitation, all from the CAMELS dataset 

(Addor et al., 2017). We summed CAMELS daily streamflow and precipitation values to 

get total annual water year streamflow and precipitation. Annual mean temperature was 

calculated by first averaging CAMELS minimum and maximum daily temperature to get 

daily mean temperature and then averaging the daily mean temperature. Additionally, we 

estimated annual PET by first using the Hamon method (Hamon, 1963; Lu et al., 2005) to 

estimate daily PET based on precipitation, temperature, and day length from the 

CAMELS dataset, and then aggregating daily values to annual PET. 

 

 

 
 

Fig. 3. Watersheds from the CAMELS database used in our analyses (n=159). Inset plot 

shows watersheds in nondimensional space based on long-term CAMELS attributes; the 

dashed curve represents energy limitation. the dashed curve represents energy limitation 

on streamflow, expressed as Q=P-PET framed in terms of the dimensionless axes as 

Q/P=1-1/(P/PET), where Q=annual streamflow, P=annual precipitation, and PET=annual 

potential evapotranspiration. 

 

 

Because the CAMELS dataset extends only through water year 2014, while 

available forest data extend through 2019, we used USGS streamflow data and Daymet 
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gridded climate data for water years 2015-2019 to extend the record of our analysis 

through water year 2019. USGS streamflow data were obtained through the R package 

DataRetrieval (Hirsch & De Cicco, 2015). Daymet gridded precipitation, minimum 

temperature, and maximum temperature values were downloaded using the R package 

daymetr (Hufkens et al., 2018) and extracted as area-weighted averages within each 

CAMELS catchment boundary, following the methods used to construct the CAMELS 

time series (Newman et al., 2015). That extraction process yielded time series analogous 

to the time series within the CAMELS dataset. We then aggregated daily values to annual 

values in the same manner as described above for the CAMELS time series. We cross 

checked our extended dataset by ensuring that we could replicate water year 2014 in the 

CAMELS data, finding that the only differences were due to numerical rounding. 

 

2.1.2.   Forest and disturbance data 

 

Data on forest conditions and disturbances were obtained from the US Forest 

Service’s Forest Inventory and Analysis (FIA) program. The FIA program established 

plot locations using probabilistic sampling to obtain a representative sample with mean 

spacing of 5 km across all forest types and owner groups (Bechtold & Patterson, 2005). 

In the western US, 10% of plots are measured each year and each plot is therefore 

measured once every ten years. Each year’s subsample of plots is spatially distributed 

such that the sample of forest conditions is both spatially and temporally balanced. This 

sampling design was developed to produce unbiased estimates of forest attributes that 

represent discrete areas such as watersheds (Bechtold & Patterson, 2005). 

Data collected from FIA plots include detailed tree measurements that permit 

calculation of plot-level volume of both live and dead trees, volume of net tree growth, 
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volume of trees that recently died (i.e., “mortality trees”), and many other variables 

(USDA, 2010). Each plot is associated with an expansion factor that facilitates estimation 

of forest characteristics and their associated sampling errors for discrete areas, based on 

data from multiple plots over the same sampling period (Bechtold & Patterson, 2005; 

Burrill et al., 2018). FIA estimates are updated annually based on a 10-year moving 

window such that the estimate in any one year is based on data collected during the 

previous 10 years (e.g., an estimate with a nominal date of 2019 is based on data 

collected during 2010-2019). FIA implemented this nationally consistent, probabilistic 

sample in 2000, although the onset of data collection varied among states, with Wyoming 

being the last state to fully implement this design in 2011. 

We characterized forest disturbance using FIA’s estimates of net tree growth and 

tree mortality and their associated standard errors, for the period 2010-2019, from the 

publicly accessible EVALIDator tool (USDA, 2020). Each estimate was constrained to a 

watershed represented by an 8-digit Hydrologic Unit Code (HUC8) that contains a 

CAMELS catchment. Although ideally we would have produced FIA estimates at the 

scale of CAMELS watersheds, these smaller watersheds contained small sample sizes of 

FIA plots and thus were associated with high uncertainty at the CAMELS scale. The 

forested portions of most HUC8 catchments exist at relatively high elevations that tend to 

be less impacted by water transfers and human activities (i.e., nonforest land uses), which 

is also where CAMELS watersheds occur (Addor et al., 2017). To test whether forest 

conditions in CAMELS versus HUC8 watersheds were similar, we computed the 

percentage of area at each scale that experienced forest change between 2001 and 2019 as 

determined from the National Land Cover Database change product (Homer et al., 2020). 



83 

We found that the distributions of forest change at the two scales were not significantly 

different based on p=0.51 from the Kolmogorov-Smirnov test for equal distributions. 

This result supports the use of FIA data at the HUC8 scale as representative of CAMELS 

watersheds. 

Mean annual net growth and mortality rates are expressed as volume per year 

(Burrill et al., 2018) rather than numbers of trees because under normal conditions with 

no disturbance, small trees typically die at higher rates than larger or older trees due to 

self-thinning that occurs naturally as forest stands develop over time (Reineke, 1933; 

Yoda et al., 1963). Net growth is defined as volumetric growth of all live trees minus the 

total volume of trees that died in the previous ten years (i.e., mortality volume). Values of 

net growth greater than zero indicate that tree growth has outpaced mortality, while 

negative net growth is indicative of mortality that occurred faster than growth of live 

trees. To assess the severity of forest disturbance, we estimated each watershed’s mean 

annual mortality rate and standardized that rate by the total of live volume plus mortality 

volume. Note that watersheds with high mean annual mortality can also have positive net 

growth if post-disturbance recovery and live tree growth occurs more rapidly than 

mortality. A strength of using net growth and mortality estimates is that it permits 

assessment of quantitative relationships between forest conditions and hydrologic 

variables, as opposed to being limited by categorical mapping of disturbance or rules-of-

thumb such as having >20% of area affected (Goeking & Tarboton, 2020). 

 

2.2.   Methods 

 

We used multiple analytical methods to address our objectives. First, we used 

trend analysis to identify monotonic trends in individual water budget components and 
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drivers. Second, we qualitatively related trends in runoff ratio to forest change across 

gradients of latitude and aridity. Third, we used time trend analysis (Zhao et al., 2010) to 

quantify the magnitude of streamflow change that cannot be attributed to precipitation 

and temperature drivers, and then correlated the magnitude of unattributed streamflow 

change with forest disturbance, latitude, solar radiation, and aridity. Fourth, we evaluated 

the relative importance of several factors – including temperature, precipitation, and the 

interaction of forest disturbance and aridity – for predicting change in streamflow across 

decades using a multiple regression model. 

 

2.2.1.   Trends in water budget components and drivers 

 

Our first question was whether runoff ratio has changed over time, i.e., whether 

there is any monotonic trend, regardless of climate or forest disturbance effects. We 

answered this question using the nonparametric Mann-Kendall trend test, which 

determines whether the central tendency of a variable changes solely as a function of time 

(Helsel et al., 2020). We tested for trends in annual runoff ratio (Q/P) as well as water 

budget components and drivers, including annual streamflow (Q), annual total 

precipitation (P), annual mean temperature (T), and annual potential evapotranspiration 

(PET). Each variable was tested independently of vegetation effects. Each test evaluated 

two time periods: first, the period 2000-2019, which was the basis for our subsequent 

analyses of streamflow response to forest disturbance, and second, 1980-2019, for the 

purpose of determining whether any other long-term trends exist that extend prior to the 

period covered in our analysis. 

Watersheds with significant trends in Q, P, Q/P, T, and PET were identified based 

on two-sided p-values associated with Kendall’s tau (Helsel et al., 2020) evaluated with 
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the MannKendall function in the Kendall package (McLeod, 2011) for R statistical 

analysis software (R Core Team, 2020). Two-sided p-values <0.1, which correspond to 

one-side p-values <0.05, were considered statistically significant. 

 

2.2.2.   Runoff ratio and forest density change 

 

Our second question was whether there is general support for the hypothesis that 

forest cover is inversely related to annual runoff, across a large sample of watersheds 

spanning a range of aridity, incoming solar radiation, and latitude. Under this hypothesis, 

we expected that most watersheds that experienced forest cover loss (i.e., disturbance) 

exhibited increases in runoff ratio, and that watersheds that experienced forest cover gain 

(i.e., increased tree density in the absence of disturbance) exhibited decreases in runoff 

ratio. An alternative hypothesis, based on recent observations of decreased streamflow 

following forest disturbance as summarized by Goeking and Tarboton (2020), is that 

post-disturbance runoff sometimes decreases in more arid, low-latitude watersheds with 

higher incoming solar radiation. 

To characterize watersheds as disturbed versus undisturbed and as having 

increased versus decreased runoff ratio, we determined whether net growth and trend in 

runoff ratio (Q/P) were each positive or negative for each watershed. Watersheds were 

characterized as having increased versus decreased runoff ratio on the basis of Kendall’s 

tau, which allows dimensionless comparison of trends in runoff ratio across watersheds 

whose runoff ratios may vary widely (Helsel et al., 2020), again using R package Kendall 

(McLeod, 2011). 

Net tree growth estimates for 2010-2019 encompass a temporal averaging period 

beginning in 2000 for plots measured in 2010, and in 2009 for plots measured in 2019, 



86 

because growth is calculated from individual tree growth representing the 10 years prior 

to plot measurement (USDA, 2010). Therefore, we conducted trend analysis for the 

period 2000-2019, which encompasses the averaging period for FIA plot measurements. 

We categorized watersheds into two groups: those that met the expectation that 

the change in runoff ratio is inversely related to forest cover change (conforming 

watersheds), and those that did not meet this expectation (nonconforming watersheds). 

Conforming watersheds included watersheds where tree volume increased (i.e., positive 

tree growth) and Q/P decreased, as well as those where tree volume decreased (i.e., 

negative tree growth) and Q/P increased. Similarly, nonconforming watersheds consisted 

of those where both tree volume and Q/P increased and where both tree volume and Q/P 

decreased. This categorization resulted in four combinations of change in tree volume 

and trend in Q/P. 

We assessed differences in aridity, solar radiation, and latitude among the four 

categories of conforming and nonconforming watersheds. Aridity was compared among 

watersheds in the context of evaporative index and aridity index, as defined by Budyko 

(Budyko and Miller, 1974), to assess whether nonconforming watersheds (i.e., those with 

forest disturbance and decreased streamflow) were more likely to occur in water-limited 

watersheds than in energy-limited ones. Evaporative index represents the proportion of 

precipitation that evaporates, on a mean annual basis, and is equal to the quantity 1–Q/P. 

Aridity index is the ratio of mean annual PET to mean annual P. Long-term values of 

mean annual Q, mean annual P, aridity, and incoming solar radiation for each watershed 

were obtained from the CAMELS dataset (Addor et al., 2017). We also tested for 

significant differences in latitude, aridity, and solar radiation among conforming versus 
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nonconforming watersheds using the nonparametric Kruskal-Wallis test for multiple 

comparisons, which was conducted using the function kruskal in R package agricolae (de 

Mendiburu, 2020). 

 

2.2.3.   Expected streamflow change in watersheds with and without forest 

disturbance 

 

To address the question of whether streamflow has changed as a result of forest 

disturbance over discrete time periods, we used time trend analysis, which is an analytical 

framework used to quantify streamflow change resulting from vegetation change (Zhao et 

al., 2010). The premise of time trend analysis is that expected streamflow can be 

predicted from a small number of predictor variables for a calibration period, and then 

applied to a later time period to compare predicted to observed runoff for that time 

period. Computationally, a linear regression model is calibrated on an initial time period, 

applied to a second time period, and the residuals (i.e., the difference between the 

observed and predicted values in the second time period) are assumed to be due to factors 

not included in the model. Although previous applications of time trend analysis have 

used a linear regression model, we initially attempted to conduct this analysis using a 

machine learning model structure, specifically random forests (Breiman, 2001), but found 

that random forests performed similarly to linear regression but presented the 

disadvantage of not producing easily interpretable coefficients. 

For the purposes of time trend analysis, we split our period of record into two 

time periods: 2000-2009 and 2010-2019. We calibrated and validated the linear 

regression model for time trend analysis using data from water years 2000-2009. Odd-

numbered years were used for calibration, and even-numbered years for validation. 
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Preliminary analysis indicated that our dataset met the assumptions required for linear 

regression (Helsel et al., 2020). Given that temperature exhibited a significant positive 

trend at many watersheds (Fig. 2) and was a significant predictor, we included it in our 

model. Thus, the regression model took the form: 

 

Q1  =  a1 ∗ P 1 +  b1 ∗ T 1 +  c1  +  e      (1) 

 

In Eq. (1), Q=annual streamflow; P=annual precipitation; T=annual mean 

temperature; subscripts represent values from the calibration/validation period (time 1, or 

2000-2009); a, b, and c are coefficients; and e represents model residuals. We also tested 

whether the model improved when we included the interaction of T and P as a product 

term, and seasonal rather than annual T and P; neither of these options improved model 

fit, so we proceeded with the simpler Eq. (1). The regression held a and b the same across 

all watersheds, for two reasons. First, the processes that relate P and T to streamflow 

should be consistent across all watersheds, and second, allowing these coefficients to 

vary would effectively create a separate model for each watershed, which would result in 

many watersheds being omitted due to years with missing data during the calibration 

period. The intercept, c, was allowed to vary among watersheds to capture watershed 

specific differences with respect to factors that were not included in this linear model. 

The application of this model to the evaluation period (time 2) uses time 1 coefficients 

and time 2 observations of annual precipitation and temperature to predict annual 

streamflow over time period 2 (2010-2019): 

 

Q2
′  =  a1 ∗ P 2 + b1 ∗ T 2 +  c1      (2) 
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The difference between observed (Q2
̅̅̅̅ ) and predicted (Q2

′̅̅̅̅ ) mean annual 

streamflow during the evaluation period is represented as the quantity: 

 

Qobs−exp
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  =  Q2

̅̅̅̅ − Q2
′  ̅̅ ̅̅        (3) 

 

where Qobs−exp
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ represents the magnitude of streamflow change that cannot be attributed 

to precipitation and temperature and thus is typically interpreted to be due to vegetation 

change (Zhao et al. 2010). 

One objective of time trend analysis was to determine how runoff responds to 

disturbance. As in our other analyses, we hypothesized that runoff is likely to increase in 

disturbed watersheds, although a secondary hypothesis was that runoff response depends 

not only on magnitude of disturbance but also on aridity and/or incoming solar radiation. 

To answer the question of whether streamflow has increased or decreased in disturbed 

watersheds, we interpreted significant change in streamflow, from our time trend analysis 

results (i.e., deviation in observed Q from predicted Q) in the context of disturbance. 

Significant change in annual streamflow was identified using a one-sample t-test 

(Biederman et al., 2015), wherein the null hypothesis was that there has been no change 

in streamflow due to factors other than precipitation and temperature (Qobs−exp = 0). P-

values less than 0.05 were identified as significant deviations in streamflow. Disturbed 

watersheds were defined as those where tree mortality exceeded 10% of initial live tree 

volume. 
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2.2.4.   Streamflow change as a function of disturbance severity and climate 

 

We used multiple regression to address two objectives: 1) to evaluate the relative 

importance of several factors for predicting change in streamflow (ΔQ), which allowed 

isolation of the relative contributions of climate versus disturbance to ΔQ, and 2) to 

determine whether the interaction of forest disturbance severity with aridity or solar 

radiation affects runoff response to forest disturbance. A regression model was developed 

to predict ΔQ across two discrete time periods, 2000-2009 versus 2010-2019. 

To enable disentangling the confounding effects of climate versus vegetation 

changes, we initially considered a large set of predictor variables encompassing time 

varying climatic variables (e.g., change in mean annual precipitation) as well as time-

invariant climate descriptors (e.g., long-term mean incoming solar radiation) that are 

specific to each watershed. The initial set of potential predictors included baseline Q and 

baseline P for 2000-2009 (Q1and P1, respectively), mean watershed aridity and solar 

radiation, tree mortality during 2010-2019, and change in temperature, precipitation, and 

potential evapotranspiration (PET) between the two time periods. To meet the assumption 

of noncollinearity among predictors, we then reduced the number of predictors by 

evaluating pairwise correlations among all predictors and removing predictors with 

correlation coefficients with absolute values of 0.6 or greater, where the predictor with 

the lower correlation with ΔQ was removed. In this manner, PET, solar radiation, and 

aridity were removed due to their respective correlations with temperature and P1; solar 

radiation and aridity were represented in the model in interaction terms with tree 

mortality. Due to multicollinearity between the interactions of mortality with solar 

radiation and aridity, we removed the interaction of mortality with solar radiation as it 
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was a less useful predictor than the interaction of mortality with aridity.  Thus, the final 

regression model took the form: 

 

ΔQ =  b0 + b1 P1 + b2 ΔP + b3 ΔT + b4 mortality +  b5 mortality ∗ aridity 

(4) 

where P1 represents mean annual precipitation for 2000-2009; ∆P and ∆T were 

differences in mean annual precipitation (mm) and mean annual temperature (°C) 

between 2000-2009 and 2010-2019; and bx refer to coefficients. As before, we tested 

whether model fit improved with the inclusion of a product term representing interactions 

between ∆P and ∆T, and also using differences in seasonal rather than annual P and T to 

consider the effects of precipitation phase and snowpack, and the model did not improve 

so we implemented Eq. (4) using annual observations of P and T. For this analysis, 

mortality was standardized by total volume of trees in the watershed, i.e., as the volume 

of trees that died during the study period relative to initial live tree volume, thus having 

possible values of 0 to 1 (USDA, 2020). The last term, mortality*aridity, represents the 

interaction of tree mortality with aridity, which was included to test the hypothesis that 

streamflow response to forest change is influenced by aridity. We used the p-value 

associated with the coefficient of each predictor variable in Eq. (4) to assess its 

significance as a predictor of ΔQ. We then compared standardized regression coefficients 

for each variable to determine the relative importance of climatic factors, forest 

disturbance, and interaction of forest disturbance with aridity for predicting ΔQ. 

Based on the predominant hypothesis that runoff increases following forest 

disturbance, we expected that tree mortality would have a positive coefficient in the 
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regression model, i.e., that larger levels of tree mortality would lead to positive ΔQ. Our 

alternative hypothesis – that disturbance may decrease runoff at high aridity or solar 

radiation – led to the expectation that the coefficient for the interaction of tree mortality 

with aridity or solar radiation would be negative, even as the coefficient for tree mortality 

alone was positive. To interpret the ability of each predictor variable to explain additional 

variability in ΔQ, we examined partial regression plots for each predictor (Moya-Laraño 

and Corcobado, 2008). Partial regression plots, also known as added variable plots, 

isolate the explanatory capability of a single variable relative to that of all other variables 

(Moya-Laraño and Corcobado, 2008). Although pairwise scatterplots between a predictor 

and ΔQ would be appropriate for simple (single-variable) regression, in the context of 

multiple regression, such plots ignore the effects of other variables in the model and can 

thus be misleading representations of the contribution of each variable to explaining 

variability in the response variable (Moya-Laraño and Corcobado, 2008). Partial 

regression plots were developed to address this concern using the R package car (Fox and 

Weisberg, 2019). To visualize the interactive effect of disturbance severity and aridity on 

streamflow change, we also examined marginal effects of the interaction between 

mortality and aridity using R package sjPlot (Lüdecke, 2021). 

To interpret our regression model in the context of climatic warming, we used the 

regression model (Eq. 4) to evaluate the sensitivity of streamflow changes to tree 

mortality and aridity, both with and without 1° C of warming. We compared our results 

to those of previous studies that projected decreases in streamflow with climate warming 

across the western US (McCabe et al., 2017; Udall and Overpeck, 2017). 
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3. Results 

 

 

3.1.   Trends in water budget components and drivers 

 

Most watersheds (>60%) did not experience significant monotonic trends in any 

water budget components or drivers during 2000-2019 (Fig. 2). P increased significantly 

between 2000 and 2019 in 26% of watersheds, driving some increasing trends in Q (13%) 

and Q/P (10%). P and Q decreased in <1% of watersheds, and Q/P decreased 

significantly 6% of watersheds. T and PET increased significantly in 40% and 23% 

watersheds, respectively, and both decreased in ≤1% of watersheds (Fig. 2), which is 

consistent with general climate warming. Significant changes in Q/P, P, Q, T, and PET 

were widespread with no clear geographic patterns (Fig. 2a-f). 

When we repeated the Mann-Kendall trend test for the entire period of record 

(1980-2019), results were very different than for 2000-2019. More watersheds 

experienced significant decreases in P, Q/P, and Q (7%, 24%, and 17%, respectively), 

and only 8% of watersheds exhibited significant increases in Q and Q/P. This pattern 

coincides with significant increases in T (84%) and PET (81%), both of which decreased 

in <1% of watersheds. Thus, while an appreciable percentage of watersheds show 

evidence for long-term (1980-2019) increases in T and PET, only a small percentage 

show evidence for changes in Q and Q/P. 
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Fig. 4. Significant trends in annual water budget components and drivers over the period 

2000-2019, based on the Mann-Kendall trend test (p<0.1). Q= streamflow; 

P=precipitation; T=temperature; and PET=potential evapotranspiration. 

 

 

3.2.   Runoff ratio and forest change 

 

This analysis sought to test the hypothesis that forest cover is inversely related to 

runoff, and comparison of trends in runoff ratio (Q/P) to net tree growth demonstrated 

only moderate support for this hypothesis. Slightly less than half of all watersheds (43%) 

met the expectation that Q/P is inversely related to change in forest density (Fig. 5, upper 

left and lower right quadrants, with 24 and 44 watersheds, respectively), and the 

remaining watersheds (57%) did not conform to this expectation (Fig. 5, lower left and 

upper right quadrants). However, a small proportion of watersheds exhibited statistically 
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significant trends in Q/P, as we found in the previous section. Note that in Fig. 5a, 

watersheds in both left quadrants experienced negative net tree growth, i.e., mortality 

exceed growth by surviving or newly established trees, which indicates disturbance and 

decrease in volumetric forest density. To quantify the degree to which estimated net 

growth might reflect random sample variability or noise, which is higher in smaller 

watersheds due to smaller sample sizes, we examined the standard errors associated with 

the estimated net growth in each watershed as produced by the EVALIDator tool. For 

>75% of watersheds, net growth differed from 0 by more than one standard error. Thus, 

we inferred that most watersheds have sufficient sample size to reliably indicate positive 

vs. negative net growth. 

Trends in Q/P that contradict the expectation that Q/P is inversely related to 

change in forest density occurred in two situations. First, Q/P decreased in watersheds 

with negative net tree growth, i.e., greater mortality than live tree growth (Fig. 5a, lower 

left quadrant). This response was observed mainly in water-limited catchments where 

PET/P>1 and at lower latitudes in the southwestern US (Fig. 5b-e, magenta symbols). 

Second, Q/P increased while net tree growth was positive (Fig. 5a, upper right quadrant). 

This response was generally observed in energy-limited or moderately water-limited 

(PET/P<2) watersheds at higher latitudes of the Pacific Northwest and northern Rocky 

Mountains (Fig. 5b-e). 
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Fig. 5. Relationship between trend in Q/P (measured as Kendall’s tau) and net growth of 

trees for 2000-2019. (a) Positive values of Kendall’s tau indicate a monotonic increase in 

Q/P. Colors for watersheds with significant trend over time are assigned based on 

quadrants, where upper left and lower right quadrants conform to expected Q/P response 

to forest changes, and lower left and upper right exhibit runoff ratio trends do not 

conform to expectations. (b) Position of watersheds in the Budyko framework of 

evaporative index (1-Q/P) versus aridity index (PET/P). (c & d) Aridity and incoming 

solar radiation, with watersheds grouped into the quadrants in (a). Boxes represent 

interquartile ranges; horizontal bars within boxes represent medians. Boxes were not 

statistically significantly different, based on Kruskal-Wallis test (α=0.1). (d) Geographic 

distribution of watersheds, with colors as assigned in (a). Q= streamflow; 

P=precipitation; ET=evapotranspiration; PET=potential evapotranspiration. 



97 

Given recent research questioning the inverse relationship between forest cover 

and runoff (Goeking and Tarboton, 2020), an alternative hypothesis is that runoff ratio is 

more likely to decrease following forest disturbance in watersheds with high aridity and 

at lower latitude. However, we found that forest disturbance itself was more widespread 

and severe within water-limited watersheds, as evidenced by the preponderance of 

magenta and blue symbols where PET/P>1 (Fig. 3b-c) and where incoming solar 

radiation is relatively high (Fig. 5d). Results of the Kruskal-Wallis test showed no 

significant differences in aridity or solar radiation among disturbed watersheds with 

increased versus decreased runoff ratio, nor were there significant differences among 

relatively undisturbed watersheds with increased versus decreased runoff ratio (Fig. 5c-

d). However, these results do not account for an increasing trend in P over 2000-2019 

(see previous section). The following two analyses do account for this effect and thus 

allow better separation of forest disturbance versus climate effects on streamflow. 

 

3.3.   Streamflow change as a function of precipitation and temperature vs. other 

drivers 

 

Time trend analysis and subsequent t-tests for significant deviations in streamflow 

indicated that observed streamflow changed significantly in 44 (28% of) watersheds in 

2010-2019 relative to 2000-2009 (Fig. 6) due to factors other than precipitation and 

temperature. Of these watersheds, streamflow decreased and increased by statistically 

significant magnitudes in 30 and 14 watersheds, respectively (Table 3). Validation of the 

linear model (Eq. 1) had adjusted r2=0.98. As expected, both precipitation and 

temperature were significant predictors (p<0.01 for both variables). 
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Fig. 6. Percent deviation in observed mean annual streamflow (Q) for 2010-2019, relative 

to Q predicted by time trend analysis (calibrated for 2000-2009). Watersheds with 

statistically significant deviation in Q (large symbols) were identified using on a one-

sample t-test (p<0.05); small symbols represent watersheds with no significant deviation 

in Q (p≥0.05). Disturbed watersheds (triangles) are those where tree mortality exceeded 

10% of initial live tree volume. 

 

Table 8. Results of time trend analysis, which predicts mean annual streamflow from 

observed precipitation and temperature and then compares observed to predicted 

streamflow for a future time period. Disturbed watersheds are defined as those where tree 

mortality exceeded 10% of initial live tree volume. Significant change in annual 

streamflow was identified as p<0.05 from a one-sample t-test. 

 

  

Runoff lower than 

expected (decreased Q) 

Runoff higher than 

expected (increased Q) 

  

Any 

change 

Significant 

change 

Any 

change 

Significant 

change 

Disturbed (n=67) 42 20 25 6 

Not disturbed (n=92) 56 10 36 8 

Total 98 30 61 14 

 

Only 26 watersheds experienced both disturbance and significant change in 

streamflow, as determined by time trend analysis, and streamflow decreased in 20 of 

these watersheds (Table 3). This finding contradicts the hypothesis that streamflow 

increases following disturbance. The geographic distribution of significant decreases in 

streamflow in disturbed watersheds (Fig. 6) partially supports our secondary hypothesis 
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that streamflow response to disturbance is influence by factors such as incoming solar 

radiation, aridity, or latitude. Additionally, 18 undisturbed watersheds had significant 

changes in streamflow (10 decreases and 8 increases; Fig. 6). These results imply that 

deviations in observed vs. expected streamflow, as predicted from a linear model based 

on precipitation and temperature, cannot be attributed to vegetation change alone, which 

has commonly been an interpretation of time trend analysis (Biederman et al., 2015; Zhao 

et al., 2010). However, unlike the univariate trends shown in Fig. 4 and Fig. 5, time trend 

analysis accounts for changes in P and T over time and evaluates Q relative to those 

changes. 

We considered the possibility that our choice of disturbance threshold could affect 

our results and therefore evaluated the direction of streamflow response given different 

disturbance thresholds. Among all watersheds, 67 met our initial disturbance criterion of 

>10% tree mortality during 2010-2019. Different thresholds (5%, 15%, and 20%) did not 

lead to different conclusions about the proportion of disturbed watersheds that experience 

decreased versus increased streamflow. For all thresholds of disturbance, a slight 

majority (>54%) of disturbed watersheds exhibited decreased streamflow, based on 

observed streamflow compared to that predicted by the time trend analysis model. 

 

3.4.   Streamflow change as a function of climate and disturbance 

 

All coefficients in the multiple regression model for ΔQ (Eq. 4) were statistically 

significant (p<0.05; Table 4) with adjusted model r2=0.70 (p<0.01). The average change 

in runoff (ΔQ) across all 159 watersheds during the time period considered in this 

analysis was positive (63 mm/yr), consistent with an increase in P (mean ΔP was 91 

mm/yr). Standardized regression coefficients indicate the direction and relative impact of 
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each predictor on ΔQ (Fig. 7a) and indicate that P1 had the largest impact on ΔQ, which 

may be due to a positive association of P1 and ΔP between 2000-2009 and 2010-2019 in 

watersheds that were already relatively wet. P1, ΔP, and mortality all had positive 

coefficients and thus positive effects on ΔQ, while ΔT and the interaction of mortality 

with aridity had negative coefficients (Table 4; Fig. 7a). Partial regression plots (Fig. 7b-

f) illustrate the ability of each predictor variable to explain variability in ΔQ that is not 

specifically accounted for by other predictors. Note that partial regression plots are not 

scatterplots of pairwise variables but instead represent the effect on model residuals of 

adding an additional model term to an existing model. The slopes of the lines in the 

partial regression plots (Fig. 7b-f) are equal to the regression coefficients and are all 

significantly different than zero (Table 4), which indicates that each predictor provides 

useful information in predicting ΔQ. Examination of model diagnostics verified that 

residuals were normally distributed and independent of predictor values. Fig. 7 shows 

that some observations exert high leverage for some predictors. 

 

Table 9. Regression coefficients, standard errors, t-statistics, and associated p-values for 

multiple linear regression of ΔQ between 2000-2009 and 2010-2019. 

 

Variable Units Coefficient Standard error t-statistic P-value 

Intercept mm/yr -29.20 10.20 -2.860 0.005 

P1 mm/yr 0.087 0.008 11.473 <0.001 

ΔP mm/yr 0.107 0.047 2.279 0.024 

ΔT °C -27.85 6.895 -4.038 <0.001 

Mortality proportion 250.3 67.91 3.685 <0.001 

Mortality*Aridity proportion -108.4 43.59 -2.488 0.014 
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a)      b) 

 

c)      d) 

  

e)      f) 

 

 

Fig. 7. Effect of each variable on change in annual streamflow (ΔQ), in mm/yr, from 

2000-2009 to 2010-2019: a) Unitless standardized coefficient estimates, which indicate 

the magnitude of change in ΔQ, in standard deviations, for a change equal to one standard 

deviation of each predictor variable. 𝑃1=mean annual P for 2000-2009, ∆P=change in 

precipitation, and ∆T=change in temperature. b-f) Partial regression plots for each 
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predictor variable. Each plot depicts the relationship between the named predictor and 

ΔQ while accounting for the explanatory capability of all other predictors. Values along 

the x axis of each plot represent the residuals of a model omitting the named variable, 

values along the y axis represent the residuals of a model of the named predictor as a 

function of all other predictors, and the slope of the line is equal to the multiple 

regression coefficient for the named variable. 

 

One purpose of this regression analysis was to test the hypothesis that runoff 

increases following tree mortality, and as an alternative hypothesis, that the sign (positive 

or negative) of runoff response to disturbance is affected by aridity. Our results provide 

partial support for both hypotheses. As expected, the coefficient for tree mortality was 

positive (Table 4; Fig. 7a); the statistical significance of this positive coefficient supports 

the first hypothesis that runoff increases with decreased forest cover. However, the 

significant and negative coefficient for the interaction of mortality and aridity also 

supports our alternative hypothesis that mortality does not result in increased runoff in all 

cases. In particular, runoff response to disturbance may be negative in very arid 

watersheds. Fig. 8a illustrates ΔQ as a function of mortality and aridity based on 

observations (i.e., not modeled values), demonstrating two important results. First, 

relatively wet watersheds (aridity<1.5) generally had positive ΔQ, and ΔQ was larger for 

watersheds with more tree mortality. Second, very dry watersheds (aridity>2.5) generally 

experienced negative ΔQ, and higher mortality was associated with larger decreases in Q. 

In interpreting these results, it is important to note that overall ΔP was positive, which is 

expected to contribute to positive ΔQ; thus, the dashed line representing ΔP in Fig. 8a 

provides a more neutral axis of reference than ΔQ=0. 

Fig. 8b illustrates predictions and 90% prediction intervals for ΔQ as a function of 

tree mortality for aridity at its observed 5th percentile, median, and 95th percentile, 
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assuming that all other variables are held constant at their mean observed values. The 

value of aridity at which tree mortality was predicted to have a negative effect on Q was 

2.35. Thus, for watersheds with PET/P≥2.35, ΔQ decreased with tree mortality. Thus, in 

these very water-limited watersheds there is an inverse relationship between ΔQ and tree 

mortality. Note that 95% of watersheds experienced levels of tree mortality less than 

33%, so predictions above this level of mortality are beyond the range of most data and 

therefore uncertain. 

 

  
 

Fig. 8. Interacting effect of tree mortality and aridity on ΔQ (2000-2009 vs. 2010-2019). 

a) Boxplots of ΔQ (as a proportion of Q1) based on observed values from 159 

watersheds. b) Marginal effects of mortality and aridity, based on the multiple regression 

model (i.e., values of ΔQ for different values of mortality and aridity when values of 

other predictors are held constant); values of aridity represent the 5th percentile (0.3), 

median (1.4), and 95% percentile (2.9) of watersheds examined in this study. In both 

plots, horizontal dashed lines represent ΔP times P1/Q1, (relative to Q1 for 6a), which 

illustrates the expected ΔQ based solely on ΔP. 

 

 

As shown in Eq. (4), the regression model accounted for changes in precipitation 

and temperature. The modeled relationship between mortality, aridity, and ΔQ (Fig. 8b) 

demonstrates the same variable response to disturbance as that shown by observations 

(Fig. 8a), illustrating that the response of ΔQ to disturbance and the interaction of 

disturbance with aridity is not explained by precipitation and temperature changes alone. 
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Thus, decreased streamflow in response to increased temperature or decreased 

precipitation may be modulated (in wet watersheds) or exacerbated (in dry watersheds) 

by disturbance. 

To assess the overall sensitivity of our modeled ΔQ to potential warming, we 

summarized ΔQ for several values of mortality and aridity, with and without 1° C of 

warming (Table 5) and with no change in precipitation. Specifically, equation 4 was 

applied with ΔP=0 and ΔT=0 or 1. The model predicted a mean decrease in streamflow 

of 5.6% for 1° C of warming. Regression-based estimates for ΔQ at various levels of tree 

mortality and aridity generally suggest that streamflow is expected to increase at 

increasing levels of disturbance for watersheds at low to moderate values of aridity, while 

the opposite is true in very arid watersheds, specifically with PET/P>2.35, as manifested 

in the rightmost column of Table 5. Left to right in Table 5, the model indicates greater 

percentage increases in streamflow following disturbance in more humid watersheds, 

trending down to a decrease in streamflow for the most arid watersheds. For 1° C of 

warming, the 5.6% decrease in streamflow is superimposed on these trends. 

 

Table 10. Predicted change in mean annual streamflow (expressed as a percentage of Q1, 

or initial mean Q) for different levels of tree mortality and aridity, with and without a 1° 

C temperature increase and assuming no change in precipitation.  

 
    Aridity (PET/P) 

  

Tree 

mortality 

0.30 

(5th 

percentile)  

0.77 

(25th 

percentile) 

1.44 

(Median) 

2.08  

(75% 

quantile) 

2.93  

(95th 

percentile) 

No 

warming 

0% 0.0% 0.0% 0.0% 0.0% 0.0% 

10% 4.4% 3.4% 1.9% 0.5% -1.3% 

25% 11.0% 8.5% 4.8% 1.3% -3.4% 

1° C 

warming 

0% -5.6% -5.6% -5.6% -5.6% -5.6% 

10% -1.2% -2.3% -3.7% -5.1% -7.0% 

25% 5.4% 2.8% -0.9% -4.4% -9.1% 
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4.   Discussion 

 

 

We found variable runoff response to forest disturbance using multiple analysis 

methods: Mann-Kendall trend analysis, time trend analysis of predicted vs. observed 

streamflow based on observed precipitation and temperature, and multiple regression 

using both climatic and disturbance variables. Collectively, our results confirm, via 

systematic broad-scale analysis, that the generally held hypothesis that forest cover and 

streamflow are inversely related is not universal in semi-arid western watersheds. 

Examination of the relationship between Mann-Kendall trend in Q/P versus net tree 

growth allowed us to identify two scenarios that do not conform to this relationship (Fig. 

3). First, statistically significant decreases in Q/P occurred during a period of forest cover 

loss in a small number of watersheds (four) that occur in areas of high aridity (PET/P) 

and high incoming solar radiation. Second, 10 watersheds exhibited statistically 

significant increases in Q/P during a period of forest cover growth. Time trend analysis 

indicated that among watersheds with significant changes in streamflow, 77% (20 of 26) 

of disturbed watersheds, and only 56% (10 of 18) undisturbed watersheds, experienced 

decreased streamflow. Thus, significantly decreased streamflow was more prevalent in 

disturbed than undisturbed watersheds, counter to commonly held expectations. Increased 

streamflow in 44% (8 of 18) of undisturbed watersheds coincided with higher 

precipitation overall in 2010-2019 compared to 2000-2009. Multiple regression analysis 

showed that mortality explains some variability in ΔQ that is not explained by climatic 

drivers, and that the direction of streamflow response to mortality (i.e., increase vs. 

decrease) is affected by aridity. 
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Among our analysis methods, only the multiple regression quantitatively assessed 

change in streamflow as a function of both climatic and disturbance variables in a way 

that allowed isolating and quantifying climate and disturbance effects. Therefore, the 

finding that disturbance severity (i.e., magnitude of tree mortality) is a significant 

predictor with a positive coefficient supports the overarching hypothesis that streamflow 

increases as a result of disturbance, and that disturbance effects on streamflow are 

separable from climate effects. However, the interaction of mortality and aridity had a 

negative coefficient, which signifies a decrease in streamflow as a result of disturbance in 

very arid watersheds. Observational data (Fig. 8a) as well as our multiple regression 

results (Fig. 8b) provide quantitative evidence that disturbances at high aridity are more 

likely to result in decreased streamflow than those at lower aridity. These findings are 

consistent with a recent modeling study (Ren et al., 2021), which concluded that of runoff 

responds variably to forest disturbance caused by mountain pine beetle, that the response 

depends on both mortality level and aridity, and that drier years tend toward decreased 

post-disturbance streamflow. In that study, the inflection from increased to decreased 

runoff occurred between aridity values of 2.0 and 3.0, or in wetter areas with mortality 

levels less than 40%, and decreased runoff was explained by either increased canopy 

evapotranspiration or increased ground transpiration following disturbance (Ren et al., 

2021). 

Independent of forest cover changes, we observed decreased streamflow 

associated with increased T and PET. Our multiple regression model predicted a mean 

decrease in streamflow of 5.6% for 1° C of warming, which is consistent with the 6% 

reduction per degree C that is predicted for the entire Colorado River Basin (Udall and 
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Overpeck, 2017) and 6-7% reductions per degree that are predicted for the Upper 

Colorado River Basin (McCabe et al., 2017; Udall and Overpeck, 2017). Our study 

period, 2000-2019, coincides with the onset of above-average temperatures in the 

Colorado River Basin that began in 2000 and contributed to below-average streamflow 

(Udall and Overpeck, 2017). Although this trend has been previously documented in 

western US watersheds (Brunner et al., 2020; Udall and Overpeck, 2017), the time trend 

and multiple regression analyses presented here disentangle climate from vegetation 

effects and offer a refined understanding of the role of forest change effects on 

streamflow in these trends. 

Increasing T and PET are driving not only decreases in streamflow in many 

western watersheds (Brunner et al., 2020; Udall and Overpeck, 2017) but also increases 

in tree mortality (Williams et al., 2013). Our analysis of trend in Q/P relative to net tree 

growth, and our regression model of ΔQ as a function of tree mortality, show relatively 

high forest disturbance in watersheds with high aridity and solar radiation (Fig. 3c-d). 

Higher T and PET may affect streamflow both directly, via increased evaporative 

demand, and indirectly via vegetation-mediated effects such as replacement of trees with 

vegetation that may actually have higher total evapotranspiration (Bennett et al., 2018; 

Guardiola-Claramonte et al., 2011; Morillas et al., 2017). Additionally, increases in T and 

PET that result in increased soil evaporation can increase vegetation moisture stress and 

susceptibility to disturbance such as wildfire (Groisman et al., 2004). 

Possible mechanisms for nonconforming decreases in runoff in watersheds with 

decreased forest cover (i.e., lower left quadrant in Fig. 3a) may be a combination of 

increased transpiration by surviving or newly established vegetation, as well as increased 
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solar radiation reaching snowpack and soil surfaces, either of which may increase total 

evapotranspiration. The first mechanism, net increase in evapotranspiration due to 

increased total transpiration, has been observed following insect outbreaks with rapid 

growth of surviving trees (Biederman et al., 2014), simulated tree die-off that resulted in 

increased herbaceous transpiration (Guardiola-Claramonte et al., 2011), and replacement 

of trees with dense shrubs (Bennett et al., 2018); all three of these studies were conducted 

in semiarid to arid watersheds. Further, short-term streamflow response may contradict 

longer-term response as young trees grow rapidly during forest recovery (Perry and 

Jones, 2017) in a phenomenon known as the Kuczera effect (Kuczera, 1987), and the use 

of net growth as a disturbance metric can quantify the extent to which post-disturbance 

regrowth may produce this effect. The second mechanism, increased solar radiation as a 

result of canopy loss, could result in earlier snowpack ablation (Lundquist et al., 2013) 

driven by increased sublimation (Biederman et al., 2014) and increased 

evapotranspiration from soil and non-canopy vegetation (Morillas et al., 2017; Reed et 

al., 2018). Changes to post-disturbance energy budgets have been observed following 

multiple disturbance types and severities (Cooper et al., 2017; Maness et al., 2013). Just 

as net increases in evapotranspiration can occur following forest disturbance and lead to 

decreased streamflow, the converse is that net decreases in evapotranspiration can occur 

during periods of forest cover growth and thus lead to increased streamflow (i.e., upper 

right quadrant in Fig. 3a). Independently of forest disturbance or growth, an additional 

contributing factor to decreased runoff may be a long-term decline in deep soil moisture 

due to recent droughts (Iroumé et al., 2021; Peterson et al., 2021; Williams et al., 2020). 
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Another potential confounding effect is the type of winter precipitation (rain vs 

snow). In this study, we accounted for precipitation and temperature at annual and not 

seasonal time scales; neither the regression model used for time trend analysis nor the 

multiple regression model for ΔQ improved appreciably when seasonal rather than annual 

timescales were tested. Previous work has observed both streamflow increases 

(Hammond and Kampf, 2020) and decreases (Berghuijs et al., 2014) in response to winter 

precipitation phase (snow to rain) shifts. Warmer temperatures have been observed to 

result in decreased streamflow in watersheds with high snow fraction, i.e., >0.15, 

although the causal mechanism for this observation is unknown (Berghuijs et al., 2014). 

In contrast, Hammond and Kampf (2020) observed both increased and decreased 

streamflow following shifts from snow to mixed rain and snow. Streamflow response to 

snow-to-rain transitions appear to be more strongly associated with the seasonal timing, 

particularly relative to the seasonal timing of maximum annual evapotranspiration, than 

the type of precipitation (de Lavenne and Andréassian, 2018; Knighton et al., 2020; 

Robles et al., 2021). In our study, increasing trends in Q/P and simultaneous increases in 

tree growth occurred in a wide variety of environments (Fig. 3e), including the temperate 

Pacific Northwest, where snow fraction may be less than 0.15, as well as high-elevation 

forested watersheds across the western US where winter precipitation phase change may 

translate to more rain-on-snow events that produce rapid winter runoff. Because seasonal 

snowpack represents storage of water that becomes available for transpiration by plants 

during the growing season, seasonal asynchrony between water availability and the 

growing season may dampen any relationship between forest cover changes and 

streamflow response (Knighton et al., 2020). 
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Results of our time trend analysis demonstrate that streamflow has deviated from 

predictions based on precipitation and temperature at many watersheds across the western 

US, regardless of forest disturbance (Table 3). An assumption of time trend analysis is 

that any change not predicted by factors included in the model, typically precipitation and 

temperature, is due to factors not included in the model, typically vegetation (i.e., land 

cover) change or land use change (Zhao et al., 2010). However, time trend analysis 

provides observational but not causal links of change in streamflow to factors such as 

vegetation change. Incongruities between the subset of watersheds that were disturbed 

and those with significant streamflow change (Table 3) call into question the underlying 

premise of time trend analysis that deviations of observed from predicted streamflow are 

due to vegetation change alone (Zhao et al., 2010). In our exploration of whether changes 

in streamflow were correlated with changes in T and PET over longer time periods, we 

found that although T and PET increased in most watersheds, increases in T and PET 

were not strongly correlated with changes in streamflow or runoff ratio. Given that 

Mann-Kendall trend tests detected significant increases in T and PET for 1980-2019 that 

were not detectible during the period covered by our time trend analysis (2000-2019), it 

is possible that model coefficients for T over multiple decades may not remain constant 

as temperature increases beyond the range of observed T during 2000-2009. In other 

words, the assumptions inherent in time trend analysis may not hold in a nonstationary 

climate as changes may go beyond ranges for which the model was calibrated. Other 

possible explanations for significant changes in streamflow include shifts in winter 

precipitation phase (from snow to rain), the timing of seasonal precipitation, longer term 

increases in T and PET that are occurring beyond the timeframe considered in this 
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analysis, seasonal T and precipitation extremes that are not reflected in annual mean 

values, and/or forest disturbance below the threshold considered in our analysis. 

A caveat of this study is that we characterized disturbance across entire 

watersheds, when in reality, disturbance is typically patchy and may include a 

combination of stand-replacing and nonstand-replacing disturbances. For example, less 

severe disturbance may be uniformly distributed throughout a watershed whereas more 

intense disturbances that may affect only small portions of a watershed, where both 

scenarios would lead to comparable watershed-scale metrics of forest cover loss or tree 

mortality. Previous studies illustrated that forest structure affects snowpack (Broxton et 

al., 2016; Moeser et al., 2020), so this distinction may be important for determining 

disturbance effects on runoff. The ability to project future changes in streamflow due to 

both changing climate and forest disturbance will likely improve with enhanced spatial 

representation of forest characteristics. 

Several challenges exist in combining observational datasets from different 

disciplines and using different temporal and spatial sampling frames, and here we 

describe some of those challenges and potential future solutions. First, the analyses 

conducted in this study required using forest inventory data collected across multiple 

years rather than an annual time step. It is not currently possible to produce estimates of 

the FIA attributes used in this analysis at an annual time step at the scale of individual 

watersheds, and this constraint undoubtedly dampens observed hydrologic response to 

acute, episodic disturbances such as severe wildfire. Ongoing work in the area of 

statistical small area estimation (Coulston et al., 2021; Hou et al., 2021) demonstrates 

promising capabilities for characterizing forest attributes at finer spatial and temporal 
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scales. Combining FIA-based estimates with other datasets, e.g., the Monitoring Trends 

in Burn Severity (MTBS) dataset that delineates large wildfires by severity class 

(Eidenshink et al., 2007), could illuminate how specific disturbances may have unique or 

compounding effects on streamflow and snowpack. Application of such techniques to 

future investigations will require identification of appropriate lag effects and legacy 

effects (e.g., response to recovery from severe disturbance versus persistent response to 

the initial severe disturbance). 

Second, most CAMELS watersheds are smaller than the encompassing HUC8 

watersheds that we used to summarize forest data, although we found that forest change 

metrics from the National Land Cover Database (Homer et al., 2020) were statistically 

similar at the two scales. Compatibility of these datasets could be improved by combining 

ground observations from forest monitoring plots with remote sensing and other ancillary 

data, e.g., via the small area estimation techniques described above. Ongoing extension of 

the period of record and improved precision in estimates for individual watersheds will 

enhance our ability to relate forest characteristics and dynamics to changes in hydrologic 

processes and flux magnitudes. In particular, improved precision of future monitoring 

may help quantify important relationships among modulating factors such as aridity and 

incoming solar radiation. 

Correlation is not causation, and therefore we cannot be sure that any observed 

changes in streamflow are due to forest disturbance or the lack thereof. Our results, which 

are based on observations across many watersheds, underscore the need for process-based 

modeling to understand where, why, and to what degree unexpected streamflow 

responses may occur as a result of the combined effects of forest change and climate 
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change. Although there may indeed be forest disturbance effects on streamflow, 

hydrologic responses may be modulated, offset, or intensified by factors such as aridity 

and incoming solar radiation and by changes in forcing such as increasing temperature. 

 

4. Conclusions 

 

 

We used a large-sample hydrology approach to combine hydrologic, climatic, and 

forest data within 159 watersheds in the western US to assess evidence for the hypothesis 

that forest cover loss leads to increased streamflow. This study expanded on previous 

studies that have linked streamflow to climatic drivers by also considering quantitative 

forest disturbance information, which allowed us to disentangle climate effects from 

forest disturbance effects on streamflow. Multiple analysis methods – including simple 

trend analysis, time trend analysis accounting for climate variables, and multiple 

regression – demonstrated that streamflow in some disturbed watersheds was lower than 

expected based on climatic drivers (i.e., P and T) alone. Results of both observations and 

multiple regression modeling showed that streamflow response to disturbance was 

modulated by aridity. Although disturbed watersheds exhibited increased streamflow at 

low to intermediate aridity, which is consistent with the hypothesis that reduced forest 

cover produces increased water yield, we found that disturbance in very arid watersheds 

(aridity>2.35) was associated with streamflow. Disturbance was also more prevalent in 

watersheds with high solar radiation and high aridity, the very watersheds that are more 

likely to be vulnerable to decreased streamflow following disturbance. These results 

suggest that very arid watersheds may be more susceptible to both increased forest 

disturbance and decreased streamflow in the future.  
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CHAPTER 4 

SPATIALLY DISTRIBUTED OVERSTORY AND UNDERSTORY LEAF AREA 

INDEX ESTIMATED FROM FOREST INVENTORY DATA3 

 

Abstract 

 

 

Forest cover type, density, and change over time affect the relative magnitudes of 

ecohydrologic fluxes such as evapotranspiration (ET) and streamflow. However, much is 

unknown about the sensitivity of streamflow response to vegetation disturbance, 

recovery, or conversion from forest to nonforest. Several physically based models 

recognize the different influences that overstory versus understory canopies exert on 

these processes, yet most input datasets to such models consist only of total leaf area 

index (LAI) rather than LAI differentiated by strata. Here we developed LAI datasets for 

overstory and understory canopy strata with the intent of providing improved 

representation of canopy strata for ecohydrologic modeling. We applied three preexisting 

methods for estimating overstory LAI, and one new method for estimating both overstory 

and understory LAI, to measurements collected from a permanent, probability-based plot 

network established by the US Forest Service’s Forest Inventory and Analysis (FIA) 

program. We then combined plot-level LAI estimates with gridded spatial datasets (i.e., 

topographic, climatic, and spectral remote sensing predictor variables) in a machine 

learning algorithm (random forests) to produce annual gridded LAI datasets across a 

modeling domain in northwestern Montana, USA. Each method of estimating plot-level 

LAI was thus used to produce a gridded LAI dataset, which we then compared with 

 
3 Coauthored by Sara A. Goeking and David G. Tarboton. 
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Landsat-based LAI estimates. The method that estimates total LAI (i.e., both overstory 

and understory layers) is most strongly correlated with Landsat-based LAI, while among 

methods that only estimate overstory LAI, the simplest method is most strongly 

correlated with Landsat-based LAI. Time series of overstory and understory LAI from 

1984-2019 demonstrated that interannual variability of understory LAI exceeds that for 

overstory LAI, and this variability may affect partitioning of precipitation to ET vs. 

runoff at annual timescales. The separation of LAI into overstory and understory 

components is anticipated to improve the ability of LAI-based analyses and models to 

simulate the influence of forest canopies on hydrologic processes. 

 

Introduction 

 

 

Forest cover type, density, and dynamics (i.e., change over time) affect the 

relative magnitudes of ecohydrologic fluxes such as evapotranspiration (ET) and 

streamflow (Adams et al., 2012; Bosch & Hewlett, 1982; Hibbert, 1967). Thus, water 

supply is influenced, at least in part, by how vegetation partitions precipitation into ET 

vs. streamflow. Forest canopies exert particularly strong effects on this partitioning 

because they intercept precipitation, which is often then lost to evaporation rather than 

accumulating as seasonal snowpack or reaching the ground surface to contribute to either 

runoff or recharge (Adams et al., 2012; Hibbert, 1967; Molotch et al., 2007; Stottlemyer 

& Troendle, 2001). After more than a century of research into vegetation-streamflow 

linkages (Andréassian, 2004), questions remain about how future forest disturbance, 

recovery, or conversion to nonforest vegetation, as well as differences between overstory 
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and understory influences on hydrologic processes, may affect future water supply 

(Adams et al., 2012; Molotch et al., 2007; Tague et al., 2019). 

While observational studies of individual or paired catchments provide insights to 

the mechanisms of hydrologic response to vegetation change (Brown et al., 2005), for 

logistical and practical reasons, the ability to study individual or paired catchments in 

detail is largely confined to small watersheds (Andréassian, 2004). Broad-scale questions 

about hydrologic response to forest change can be answered by using process-based 

models that are capable of representing vegetation in multiple canopy strata, such as the 

Regional Hydro-Ecologic Simulation System (RHESSys; Tague & Band, 2004) and 

Distributed Hydrology-Soil-Vegetation Model (DHSVM; Wigmosta et al., 1994). Such 

models, and indeed most quantitative relationships of hydrologic processes to vegetation 

states, express vegetation density in terms of leaf area index (LAI) (Goeking & Tarboton, 

2020). Often these models are applied using coarse-resolution total LAI derived from 

remote sensing platforms such as MODIS (e.g., Rouhani et al., 2021) if higher-resolution 

observations are not available. An advantage of LAI datasets based on spectral remote 

sensing is their wall-to-wall spatial coverage and fine temporal resolution, i.e., 

interannual or seasonal variability, but a disadvantage is that they represent total LAI and 

do not distinguish overstory from understory LAI. To capitalize on the ability of 

hydrologic models to provide insights into the linkage between water resources and forest 

disturbance or vegetation type changes, better representations of actual forest vegetation 

strata (i.e., overstory vs. understory) are required. 

In contrast to remote sensing-based LAI, ground-based observations have the 

potential to distinguish overstory from understory LAI and also attribute causes of change 
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such as type and severity of disturbance. It is possible that interpolation models, e.g., 

random forests or other machine learning algorithms, that are developed from sparse plot-

based LAI and spatially continuous predictors (e.g., reflectance, elevation, aspect) may 

produce improvements in gridded LAI estimates representing overstory and understory 

strata, compared to estimates of total LAI produced using remote sensing data alone. 

Ground-based observations ideally would be unbiased and representative of the full range 

of variability of forest characteristics that occurs within a domain of interest, but sites are 

often selected for a specific purpose that may lead to biased inference when taken as 

generally representative (Klesse et al., 2018). Several countries, including the USA, are 

monitored continuously by strategic national forest inventories that conduct probabilistic 

and repeated sampling of permanent plots that could provide inputs for plot-level LAI 

estimates. In the USA, the US Forest Service’s Forest Inventory and Analysis (FIA) 

program monitors a plot network of over 300,000 plots nationwide, across all forest types 

and ownership categories with a mean plot spacing of about 5 km (McRoberts et al., 

2005). FIA collects detailed information on trees and the overstory canopy, understory 

vegetation, and causes and timing of disturbances (Burrill et al., 2018). However, FIA 

and other national-scale forest inventories do not measure LAI (Härkönen et al., 2015; 

USDA, 2019). Thus, a method of using existing inventory data to estimate plot-scale LAI 

is needed. 

In the absence of ground-based LAI measurements such as those obtained via 

techniques such as light-sensing instruments or hemispherical photography, previous 

research has derived LAI estimates based on other available measurements such as tree 

canopy cover or canopy closure (e.g., Broxton et al., 2015; Varhola et al., 2010). Methods 
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and mathematical forms typically fall into the following categories, where the choice 

depends on the intended purpose: 1) a linear scaling factor relating canopy cover to LAI, 

where a local maximum LAI is imposed on the scaling factor (e.g., Broxton et al., 2015); 

2) an exponential function relating tree canopy cover to LAI for the purposes of modeling 

snow cover (eq. 4 in Varhola et al., 2010, derived from Pomeroy et al., 2002); or 3) 

allometric equations based on destructive measurements and detailed dissections of a 

small sample of trees (e.g., Kaufmann et al., 1982). The main limitation of these ground-

based methods for measuring or estimating LAI is that they are spatially discontinuous 

and thus require interpolation to produce gridded LAI datasets for use in spatially 

distributed hydrologic models. 

This study bridges the gap between remote sensing and ground-based estimates of 

LAI using data from the USA national forest inventory. The objectives of this study were, 

first, to use multiple LAI estimation methods to estimate plot-scale LAI for overstory and 

understory canopy strata from standard forestry measurements at FIA plots; and second, 

to combine plot-scale LAI data with spectral reflectance and other gridded variables in a 

machine-learning algorithm to produce spatially and temporally explicit maps of 

overstory and understory LAI on an annual basis. We compared alternative methods for 

estimating plot-level LAI, developed a machine learning method for interpolating yearly 

gridded overstory and understory LAI across large watersheds, and compared gridded 

estimates of annual LAI to Landsat-based LAI. Finally, we examined annual time series 

of overstory and understory LAI for two test watersheds that have experienced natural 

disturbances but no land use change. 
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Methods 

 

 

Study area 

 

The study area encompassed the South Fork Flathead River and Middle Fork 

Flathead River watersheds of northwestern Montana, USA (Fig. 9). Most of the South 

Fork watershed and part of the Middle Fork watershed are within the Bob Marshall 

Wilderness Area, which was designated in 1964 and precluded any substantial vegetation 

management since that time. The South Fork and Middle Fork are 83% and 75% forested, 

respectively, with mean elevations of 1,870 and 1,722 m; areas of 3,002 and 2,914 km2; 

mean annual temperatures of 2.63 and 2.46 ⁰C; and annual precipitation of 1,248 and 

1,268 mm (U.S. Geological Survey, 2016). 

Our first objective was to use multiple methods to estimate plot-scale LAI for 

overstory and understory canopy strata at Forest Inventory and Analysis (FIA) plots. This 

section first describes field sampling protocols and the FIA dataset. Then we summarize 

the four alternative methods that we used to estimate plot-level LAI based on FIA data, 

followed by a description of model development and validation. Fig. 10 illustrates how 

this study’s workflows involve plot data vs. gridded data as well as validation of plot-

scale vs. gridded LAI estimates. 



133 

 
 

Fig. 9. Digital elevation map of the study area. Domain for modeling leaf area index 

(LAI) is shown by the outer rectangle; domains for time series analysis of LAI and 

evapotranspiration are the South Fork Flathead River and Middle Fork Flathead River 

watersheds (outlined in blue and yellow, respectively). 



134 

 
 

Fig. 10. Data sources and methods used to produce plot-level LAI and gridded LAI 

datasets. Biophysical and remote sensing predictor variables are described in  

Table 11. 

 

 

Field Sampling Protocols 

 

In Montana, FIA began measuring permanent plots in 2003. Plots were 

established in a semi-systematic grid where each plot represents approximately 2,400 

hectares, with a remeasurement period of 10 years, and a representative sample of 10% of 

all permanent plots measured each year (Burrill et al., 2018). Each plot consists of four 

subplots, each with radius 7.3 m, where one subplot is centrally located and the other 
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three subplots are established 36.6 m from the first subplot’s center at azimuths of 0, 120, 

and 240 degrees (Fig. 11). On each subplot, field crews measure and record information 

about the site (e.g., slope and aspect), understory vegetation by growth habit (tree, shrub, 

graminoid, or non-graminoid herbaceous vegetation), and individual live and dead trees 

that are at least 12.7 cm at a height of 1.35 m (USDA, 2019), which is commonly known 

as breast height and the measurement is thus known as diameter at breast height (DBH). 

Characteristics of trees with DBH<12.7 cm are measured on a 2.1-m radius subsample of 

each subplot (USDA, 2019). 

A total of 976 plots were measured within the study area between 2003 and 2012, 

during the first 10-year measurement cycle, and 644 plots were measured between 2013 

and 2019 during the second measurement cycle. From the measurements collected by 

FIA, the variables used in this study were tree canopy cover, defined as the vertical 

projection of live tree crowns (USDA, 2019) and identified as the variable 

“LIVE_CANOPY_CVR_PCT” in the FIA database, FIADB (Burrill et al., 2018); DBH 

and species identity of live trees (DIA and SPCD in FIADB); and total aerial cover 

(LAYER=5 in FIADB) of understory vegetation (COVER_PCT) by growth habit 

(GROWTH_HABIT_CD). These variables are described in detail within the FIA 

database documentation (Burrill et al., 2018). FIA does not specifically distinguish 

between overstory and understory canopies, and for this study we defined overstory cover 

as percent tree canopy cover and understory cover as the aerial cover of non-tree life 

forms, averaged across the four subplots. 
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Fig. 11. FIA plot configuration (Burrill et al., 2018). Metric units: Subplots have radius of 

7.3 m with subplot centers 36.6 m apart; microplots have radius of 2.1 m and are located 

3.6 m from subplot centers; and macroplots were not used in this study. 

 

 

FIA defines forest as land that either currently contains, or previously supported, 

at least 10% tree cover, with a minimum forest patch size of 0.4 ha. Thus, plots that 

burned, or otherwise lost all tree cover due to natural disturbance, are still defined as 

“forest” but may have zero percent tree canopy cover until trees regenerate. For plots that 

did not meet FIA’s definition of “forest” (i.e., there is no evidence that the site previously 

supported at least 10% tree cover), we assumed overstory LAI to be zero. If understory 

vegetation data were collected on a nonforest plot, we used the field-collected vegetation 

measurements to estimate understory vegetation cover for that plot. If understory 

vegetation data were not collected (i.e., for efficiency reasons of focusing on forest plots), 

we treated the plot’s understory vegetation data as nonresponse (i.e., no data rather than 

zero). 
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Estimation of plot-level LAI 

 

We estimated LAI at each FIA plot using four plot-level estimation methods 

(Table 11). Among these four methods, the first method is most commonly used in 

previous literature and consists of linear scaling of tree canopy cover fraction, 𝐶, which 

ranges from 0 to 1, relative to LAI ranging from 0 to a local maximum that must be 

obtained from either ground observations or previous studies (Broxton et al., 2015). We 

used a local maximum LAI of 5.3 (Pierce & Running, 1988). The second method was 

developed to relate tree canopy cover to snow cover (Pomeroy et al., 2002), using the 

following equation, which is the inverted form of Eq. 4 in Varhola et al. (2010): 

 

𝐿𝐴𝐼 = 𝑒(𝐶 − 0.55) / 0.29        (1) 

 

Table 11. Empirical methods used for estimating plot-level LAI at Forest Inventory & 

Analysis (FIA) plots. 

 
Label Method FIA Inputs Outputs Source 

LAI1 Linear scaling of tree canopy 

cover with local max LAI 

Tree canopy cover Overstory 

LAI 

Broxton et al. (2015) for 

method; Pierce & Running 

(1988) for max LAI 

LAI2 Empirical (natural exponential) 

function of tree canopy cover 

Tree canopy cover Overstory 

LAI 

Varhola et al. (2010) 

LAI3 Species-specific allometric 

equations (quadratic function of 

tree diameter) 

Tree species & diameter Overstory 

LAI 

Kaufmann et al. (1982) 

LAI4 Gap-fraction model based on 

Beer’s law, with clumping 

indices specific to vegetative 

cover type 

Tree & understory 

vegetation cover; forest 

type; understory 

vegetation type 

Overstory & 

understory 

LAI 

Chen et al. (2005) for 

equation and clumping 

indices 

 

For the third method, we estimated LAI as a function of tree diameter and 

species-specific coefficients, based on destructive sampling of a small number of trees of 

four tree species (Kaufmann et al., 1982): Engelmann spruce (Picea engelmannii Parry), 
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subalpine fir (Abies lasiocarpa (Hook.) Nutt.), lodgepole pine (Pinus contorta var. 

latifolia Engelm.), and quaking aspen (Populus tremuloides Michx.). 

The fourth method for estimating LAI is has not, to our knowledge, been 

previously used to estimate LAI directly. This method (LAI4) used percent cover of 

understory and overstory (tree) vegetation as inputs to an inverted gap-fraction model 

based on Beer’s law (Chen et al., 2005, eq. 1): 

 

𝑃(𝜃) = 𝑒−𝐺(𝜃) ∗ 𝐿𝐴𝐼 ∗ 𝛺 / cos(𝜃)       (2) 

 

In Eq. 2, P(𝜃) is the gap fraction at zenith angle of view 𝜃 representing the 

fraction of canopy gaps through which light would penetrate to the ground if illuminated 

from that angle of view; G(𝜃) is the extinction coefficient of light, which has a value of 

0.5 for random leaf and branch arrangements; LAI is leaf area index; and Ω is a 

dispersion parameter, or clumping index, that is specific to vegetation type and was 

conceptually developed by Nilson (1971). When leaf arrangement is truly random, then 

Ω is equal to 1.0, but for most vegetation clumping of leaves and branches means that Ω 

is less than 1. Canopy fraction measured on FIA plots is the fraction of area that is 

canopy when viewed from above.  Thus taking 𝜃 to be zero, canopy fraction becomes 1.0 

minus gap fraction, cos(𝜃) becomes 1, and the equation above can be inverted to solve for 

LAI, resulting in: 

 

𝐿𝐴𝐼 =
ln(1−𝐶)

−0.5∗𝛺  
         (3) 
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Values for the clumping index, Ω, were based on those developed by Chen et al. 

(2005; see table 3 in that paper). We associated each FIA vegetation type with a Chen et 

al. (2005) clumping index category to determine its clumping index value (Table 12). 

Understory vegetation was assigned the clumping index that Chen et al. (2005) assigned 

to barren areas (i.e., 0.75) because their clumping indices for non-tree vegetation were 

less than 0.75 and resulted in unrealistically high LAI values compared to known local 

values and Landsat-based values. 

 

Table 12. Look-up table used to assign clumping index values to each vegetation type for 

method LAI4. Clumping index categories that do not occur in the study area are omitted. 
 

FIA vegetation type1 Clumping index category2 
Clumping 

index2 

Hardwood deciduous forest types (codes 501-988, with 

canopy cover ≥65%) 

2: Tree cover, broadleaf, deciduous, 

closed 

0.69 

Hardwood deciduous forest types (codes 501-988, with 

canopy cover <65%) 

3: Tree cover, broadleaf, deciduous, 

open 

0.70 

Softwood evergreen forest types (codes 101-319 & 

341-391) 

4: Tree cover, needleleaf, evergreen 0.62 

Softwood deciduous forest type (code 321) 5: Tree cover, needleleaf, deciduous 0.68 

Oak/pine forest types (forest type codes 401-409) 6: Tree cover, mixed leaf type 0.69 

Nonstocked forest type (code 999) and nonresponse 

(inaccessible) plots with possible tree cover 

9: Mosaic: Tree cover/other natural 

vegetation 

0.72 

Understory vegetation and nonforest plots where 

vegetation data were collected 

14: Sparse herbaceous or sparse 

shrub cover 

0.75 

1FIA forest types and nonforest/nonresponse status are described by the variables FORTYPCD and 

COND_STATUS_CD in Burrill et al. (2018). 2Clumping index categories and values are from Table 3 of Chen et al. 

(2005). 

 

Validation of the four plot-scale LAI estimation methods (Table 11) was 

accomplished by means of comparison with Landsat-based total LAI at 30-m resolution 

(Kang et al., 2021). For this comparison, we used plot-scale estimates for plots measured 

in 2019 (n=87) and Landsat-based LAI for the 2019 growing season at those same plot 

locations. We compared the frequency distributions of the four plot-scale estimation 

methods with the frequency distribution of Landsat total LAI, produced scatterplots of 



140 

plot-based vs. Landsat-based LAI for each plot-scale estimation method, and compared 

the correlation coefficient of each method’s plot-scale LAI with Landsat LAI. 

For all of these comparisons, methods LAI1, LAI2, and LAI3 represent only 

overstory LAI, while method LAI4 represents overstory LAI, understory LAI, and total 

LAI as the sum of overstory and understory LAI estimates (Table 11). Landsat-based LAI 

represents total (i.e., overstory plus understory) LAI but is known to saturate at a value of 

about 4 (Kang et al., 2021). Thus, we expected that our overstory LAI estimates would 

not precisely equal Landsat-based LAI but that there should be some correlation given 

that most of the study area is forested with overstory contributing the majority of total 

LAI. Also, ground-based estimates that include both understory and overstory vegetation 

may exceed Landsat-based estimates because ground-based estimates are not subject to 

the same saturation constraints as reflectance-based LAI. Therefore, we expected that 

LAI4 might produce total LAI estimates that exceed Landsat-based total LAI. 

 

Interpolation of gridded LAI datasets 

 

Our second objective was to combine plot-scale LAI with spectral reflectance 

data and other spatially explicit variables in a machine learning algorithm to produce 

spatially and temporally explicit maps of overstory and understory LAI on an annual 

basis. We focused on annual maximum LAI because variations in forest LAI over time 

have been mainly attributed to interannual changes in tree cover due to management or 

disturbance, where such interannual dynamics are greater in magnitude than growing-

season variability in LAI (Le Dantec et al., 2000). Plot-scale LAI estimates were derived 

using four different methods, described above. The machine learning algorithm we used 

was random forests, which is a nonparametric statistical technique that builds an 
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ensemble model from many iterations of individual classification or regression trees and 

uses bootstrapping, or bagging, to train and improve model performance (Breiman, 

2001). We developed five separate random forests regression models: one for each of 

four overstory estimation methods (LAI1, 2, 3, and 4) plus one understory estimation 

method (LAI4). 

Like other supervised statistical models or machine learning algorithms, a random 

forests model requires specification of a response variable and a set of predictor 

variables. For each model, plot-scale LAI served as the response variable. All models 

included the same set of predictor variables (Table 13). Predictor variables included 

composite maximum annual greenness quantified using normalized difference vegetation 

index (NDVI) from Landsat 5 or Landsat 7 (Table 13), acquired from Google Earth 

Engine (Gorelick et al., 2017). The maximum annual greenness for each pixel was 

calculated as the highest recorded NDVI from the images available for that year. The 

training dataset included plots measured in any year, but for any particular plot only the 

composite maximum annual greenness for the year that plot was measured was included 

in the training dataset. Other predictors included elevation and other topographic 

variables derived from elevation, including slope and aspect (Hijmans, 2021), 

topographic wetness index (Beven & Kirkby, 1979) calculated using TauDEM (Tarboton, 

2016), and a topographic exposure index (Mikita & Klimánek, 2010); tree canopy cover 

from the National Land Cover Dataset (Yang et al., 2018); precipitation and temperature 

(Daly et al., 1994); and soils hydrologic group code (USDA-NRCS, 2021) as a 

categorical input variable to random forests. The value of each predictor variable was 

extracted at the spatial location of each plot to create a plot-based training dataset. 
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Table 13. Predictor variables used in all random forests models for predicting LAI. 

 
Description Source Citation 

Composite 

maximum annual 

greenness 

Google Earth Engine 

(GEE) image collections 

GEE image collections: 

LANDSAT_LE07_C01_T1_ANNUAL_GREENEST_TOA 

(years 1999-2019) and 

LANDSAT_LT05_C01_T1_ANNUAL_GREENEST_TOA 

(years 1984-1998) 

Elevation Digital elevation model 

(DEM) from The National 

Map 

https://apps.nationalmap.gov/services/ 

Slope DEM processed in R 

package ‘raster’  

Hijmans (2021) 

Aspect DEM processed in R 

package ‘raster’  

Hijmans (2021) 

Topographic 

wetness index 

DEM processed in 

TauDEM 

http://hydrology.usu.edu/taudem/ 

Exposure index DEM processed in ArcGIS Mikita and Klimánek (2012) 

Tree canopy cover National Land Cover 

Dataset 

Yang et al. (2018) 

Precipitation; min 

& max temperature 

PRISM Daly et al. (2020) 

Soils unit STATSGO (attribute 

‘hydgrpdcd’) 

USDA-NRCS (2021) 

 

To assess the random forests models’ performance, we compared R2 and mean of 

the squared residuals from the out-of-bag observations, which for each model are 

calculated across the ensemble of all trees. Because each iteration of the regression tree 

calibrates the model on approximately 2/3 of training observations, the remaining 1/3 of 

observations constitute the out-of-bag sample and produce an unbiased estimate of model 

performance that approximates k-fold cross-validation, thus negating the need for a 

separate validation dataset (Breiman, 2001). Model calibration, performance evaluation 

based on out-of-bag observations, and application to gridded predictor variables to 

produce gridded LAI outputs were all performed in the package ‘randomForests’ (Liaw 

& Wiener, 2002) within the R statistical analysis software (R Core Team, 2020). 

After the models were trained on plot-level observations, each model was then 

used with spatially gridded predictor variables as inputs (Table 13) to produce annual 

gridded LAI datasets. Note that the plot-level LAI estimates were used only for model 
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calibration and were not needed for making predictions of LAI based on predictor 

variables. Thus, we were able to produce annual maximum LAI estimates for any year for 

which maximum annual greenness exists, including years in which no plots were 

measured (i.e., as early as 1984). Beyond the plot based out-of-bag random forest 

validation, we also assessed agreement between our gridded LAI outputs and Landsat-

based LAI (Kang et al., 2021) for a single year. We selected the year 2003 for this 

assessment because the Landsat-based LAI had minimal missing pixel values for that 

year. Assessment metrics included correlation coefficient, mean absolute error, mean bias 

error, and root mean squared error, which is similar to mean absolute error in that it 

ignores the direction of error (i.e., bias) but penalizes for larger individual errors. 

 

Time series of LAI for two large watersheds 

 

After producing gridded LAI datasets for multiple years, we identified the two 

plot-level LAI estimation methods that showed the best agreement with Landsat-based 

LAI and used those methods to produce a time series of annual LAI gridded datasets 

from 1984 to 2019. We examined these time series within two large watersheds, the 

South Fork Flathead River and Middle Fork Flathead River, in our modeling domain 

(Fig. 9). We tested the time series of overstory LAI for monotonic temporal trend using 

the Mann-Kendall trend test (Helsel et al., 2020) via R package ‘Kendall’ (McLeod, 

2011). 

We also examined the time series of annual evaporative (ET) ratios, estimated as 

the proportion of precipitation that did not result in runoff and calculated as 1 minus the 

ratio of annual streamflow to annual precipitation for each year. ET ratio for the Middle 

Fork Flathead River watershed was obtained from the CAMELS dataset for US 
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Geological Survey (USGS) gage 12358500 (Addor et al., 2017). For the South Fork 

Flathead River, daily streamflow data were obtained for USGS gage 12359800 from R 

package ‘dataRetrieval’ (De Cicco et al., 2021). Both gage locations are shown in Fig. 9. 

South Fork precipitation data were compiled from Daymet gridded data, which is the 

same source data used to compile the CAMELS dataset (Addor et al., 2017), using R 

package ‘daymetr’ (Hufkens et al., 2018). We assessed the strength of correlations 

between each LAI estimation method and ET ratio based on these time series. Although 

we tested for a lagged correlation between LAI and ET ratio, there was no significant lag 

detected and we therefore did not implement a lag in the correlation analysis. 

 

Results 

 

Estimation of plot-level LAI 

 

Correlation coefficients for estimates of plot-scale overstory LAI relative to 

Landsat-based total LAI were between 0.703 and 0.710, while for the combination of 

overstory and understory based on method LAI4 the correlation was 0.578 (Fig. 12a). 

Plot-based methods for estimating overstory LAI were strongly correlated with each 

other (pairwise r > 0.85 for all pairs), which suggests that the choice of one method over 

another may not be tremendously impactful for estimating overstory LAI alone. 

Scatterplots between each plot-scale estimation method vs. Landsat reveal that methods 

LAI2, LAI3, and LAI4 (overstory) underestimate LAI (Fig. 12a) relative to Landsat. 

Violin plots also demonstrate this pattern (Fig. 12b), which is unsurprising given that 

Landsat-based LAI detects all vegetation without distinguishing between overstory and 

understory strata, while our ground-based overstory LAI methods did not include the 

understory vegetation component. This result is somewhat expected because most forests 
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in the region are relatively open and do not have fully closed canopies. In contrast, the 

sum of overstory and understory LAI estimates produced by method LAI4 overestimate 

LAI relative to Landsat-based estimates (Fig. 12a and b), which may reflect the fact that 

ground-based estimates of multi-layered LAI are not subject to the saturation that occurs 

at a value of about 4 for Landsat-based LAI (Kang et al., 2021). Thus, the ability of 

method LAI4 to estimate total LAI represents a contribution in overcoming a known 

limitation of total LAI as estimated from spectral remote sensing. Among all methods, 

method LAI4 showed the widest dispersion of LAI values (Fig. 12b). 
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A) 

 
 B) 

 
 
 

Fig. 12. Comparisons of plot-level leaf area index (LAI) at Forest Inventory & Analysis 

(FIA) plots based on four methods for estimating overstory LAI (LAI1, LAI2, LAI3 and 

LAI4), one method for estimating both overstory and understory LAI (lai4_total), and 

Landsat-based total LAI at plot locations (from Kang et al. 2021), all using data collected 

in 2019. Individual LAI estimation methods are described in Table 11. A) Scatterplots 

and correlations; R=Spearman’s rank correlation coefficient. B) Violin shapes show 

frequency distribution, and boxplots show median (horizontal bar) and interquartile range 

(box). 
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Interpolation of gridded LAI datasets 

 

The assessment above described how well plot-level LAI estimates correspond to 

Landsat-based LAI, and here we describe machine learning models that used those plot-

level LAI estimates as calibration data for estimating LAI from gridded biophysical and 

remote sensing predictor variables that we extracted at FIA plot locations (Fig. 10). For 

all LAI estimation methods, the machine learning algorithms had value of model r2 > 0.6 

(Table 14). In contrast, understory LAI (method LAI4_under) had a very weak model (r2 

= 0.03), which might reflect that understory vegetation may be undetectable by remote 

sensing-based predictor variables (i.e., composite maximum annual greenness and the 

NLCD tree canopy cover layer) due to tree canopies obscuring this vegetation on forest 

plots. Among all plot-scale LAI estimation methods, the random forests model based on 

method LAI1 had the highest proportion of LAI variability explained by the model while 

method LAI2 had the lowest model error (mean squared residual, or MSR, in Table 14). 

Method LAI4’s overstory model had the lowest model r2 among overstory estimation 

methods, although differences among models were not large. Note that these metrics of 

model performance reflect the ability of the predictor variables to explain (via random 

forests regression) the plot-to-plot variability in each plot-level LAI estimation method, 

and thus they do not reflect the accuracy of any particular method. 

All four LAI estimation methods produced gridded datasets that are strongly 

correlated with Landsat-based gridded LAI (Table 15). Although an ideal accuracy 

assessment would have used ground-based measurements of LAI that were collected 

using a light-sensing device or hemispherical photography, such an approach was not 

feasible at the spatial scale of this study. Absent such intensive data collection, Landsat-
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based total LAI provides evidence of whether our gridded LAI values are realistic. 

Method LAI4’s total LAI (i.e., overstory plus understory) was most strongly correlated 

with Landsat (r=0.80). Mean absolute error, mean bias error, and root mean squared error 

were all lowest for method LAI1, followed closely by method LAI4, and were all highest 

for method LAI2. These pixel-based comparisons show a bias similar to that exhibited by 

plot-based comparisons: all overstory methods have a positive mean bias error, and are 

thus lower than Landsat-based total LAI, while total LAI produced by method LAI4 is 

higher than Landsat-based LAI and has a negative mean bias error (Table 15). As 

discussed above, it is realistic that overstory LAI alone would be lower than Landsat-

based total LAI and that ground-based total LAI (method LAI4) would be higher than 

Landsat-based LAI. 

 

Table 14. Performance metrics for random forests models of LAI based on four overstory 

estimation methods (LAI1, LAI2, LAI3, and LAI4) and one understory method 

(LAI4_under). Mean of squared residuals (MSR) and model R2 are based on out-of-bag 

samples from 500 trees.  

 
Method MSR Model R2 

LAI1 0.46 0.77 

LAI2 0.17 0.66 

LAI3 0.40 0.69 

LAI4 0.92 0.64 

LAI4_under 5.79 0.03 

 

 

Table 15. Pixel-to-pixel comparisons of multiple gridded LAI datasets relative to 

Landsat-derived LAI (Kang et al. 2021) as estimated for 2003. MAE=mean absolute 

error; MBE=mean bias error; RMSE=root mean squared error. LAI1, LAI2, LAI3, and 

LAI4, represent overstory LAI; LAI4_total represents the sum of overstory and 

understory LAI. 

 
2003  Pearson's r MAE MBE RMSE 

LAI1 0.75 0.97 0.83 1.28 

LAI2 0.72 1.78 1.77 2.12 

LAI3 0.71 1.48 1.44 1.80 

LAI4 0.72 1.15 1.04 1.46 

LAI4_total 0.80 1.11 -0.99 1.42 
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The wider dispersion of total LAI values produced by method LAI4, particularly 

when understory vegetation is included, more closely resemble the spatial variability and 

dispersion of values demonstrated by Landsat-based total LAI (Fig. 13). This pattern is 

evident for two different years, 2003 and 2019, which were used to assess not only 

single-year LAI estimates (above) but also change in LAI over time. Based on visual 

comparisons of change in Landsat-based estimates versus change in our gridded LAI 

datasets between 2003 and 2019, methods for estimating overstory LAI – particularly 

LAI2 and LAI3, and to a lesser extent LAI1 and LAI4 overstory – are missing a lot of 

change that is captured by Landsat-based LAI and total LAI as estimated by method 

LAI4. Notable differences still exist in the amount of change in LAI observed from 

Landsat compared to total LAI as estimated by method LAI4; these differences may be 

due to inaccuracies in either Landsat-based LAI or our plot-based method of estimating 

LAI, but resolving the ultimate cause of the discrepancy would require ground validation 

data and was beyond the scope of this study. 

 

Time series of LAI for two large watersheds 

 

Time series of LAI for 1984-2019 yielded a subtle but statistically significant (p < 

0.05) decreasing trend in overstory, understory, and total LAI in the South Fork Flathead 

River watershed (Fig. 14). Methods LAI1 and LAI4 both detected a decrease in overstory 

LAI, although this decrease was small compared to the decrease in understory and total 

LAI detected by method LAI4. In contrast to the South Fork, the Middle Fork watershed 

did not exhibit any significant trend in overstory LAI, although method LAI4 did detect a 

significant decrease in total LAI from 1984 to 2019 (Fig. 14). There were no significant 

trends in ET ratio in either watershed. 
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Fig. 13. Maps of LAI based on random forests interpolations of empirical plot-based 

methods (LAI1, LAI2, LAI3, and LAI4 for overstory LAI; LAI4_tot for overstory + 

understory LAI), and Landsat total LAI (LAI_LS) for 2003 and 2019 (top and middle 

rows, respectively) and for the difference between 2003 and 2019 (bottom row) for the 

entire modeling domain shown in Fig. 1. Negative change represents decreases in LAI. 
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South Fork Flathead watershed 

 
Middle Fork Flathead watershed 

 

Fig. 14. Annual time series of overstory, understory, and total leaf area index (LAI) in the 

South Fork Flathead River and Middle Fork Flathead River watersheds for 1984-2019, as 

produced by random forests models based on methods LAI1 and LAI4; Landsat-based 

LAI (Kang et al. 2021) for 2003, 2013, and 2019; and ET ratio (1 – ratio of mean annual 

streamflow to mean annual precipitation). LAI points represent watershed-scale medians 

and bars represent the 1st (lower) and 3rd (upper) quartiles. Values of tau and associated p-

values in the legend represent results of the Mann-Kendall trend test. Note missing 

observations for some years in the South Fork Flathead River due to lack of streamflow 

data. 
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Annual median LAI for overstory, understory, and total LAI based on methods 

LAI1 and LAI4 were strongly correlated with one another, with R>0.8 for all pairwise 

comparisons (Fig. 15). Thus, methods LAI1 and LAI4 produce highly correlated 

watershed-scale LAI estimates (r=0.977 for the South Fork, and r=0.962 for the Middle 

Fork, for LAI1 vs. LAI4 overstory LAI). Correlations with ET ratio show some minor 

differences among LAI estimation methods. In the South Fork watershed, ET ratio is very 

weakly correlated with overstory LAI as estimated by methods LAI1 and LAI4, and 

slightly more strongly correlated with understory and total LAI produced by method 

LAI4 (Fig. 15a). In the Middle Fork watershed, correlations between annual median LAI 

and ET ratio were stronger, and as in the South Fork, ET was more strongly correlated 

with total LAI as estimates by method LAI4 than with other estimates. 
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South Fork Flathead River watershed 

 
 

Middle Fork Flathead River watershed

 

Fig. 15. Comparisons of annual ET ratio and watershed-scale median leaf area index as 

estimated using methods LAI1 and LAI4 (overstory), LAI4under (understory) and 

LAI4total (total LAI) for water years 1984-2019. ET ratio is defined as 1 minus the ratio 

of mean annual streamflow to mean annual precipitation. R represents the Spearman rank 

correlation coefficient. 
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Discussion 

 

 

This study demonstrated development of gridded LAI datasets that are not subject 

to the same constraints as remote sensing-based datasets, namely the inability to separate 

LAI into overstory vs. understory strata, as well as the saturation that occurs at specific 

LAI values and above which remote sensing-based methods cannot distinguish variability 

in LAI densities. The methods demonstrated here illustrate a potential linkage between 

machine learning or artificial intelligence algorithms, such as random forests models, and 

physically based hydrologic models that may use the outputs of random forests models as 

inputs. In this study, machine learning models were used to interpolate forest vegetation 

from plot scales to spatially continuous LAI datasets. This is thus a specific case of 

machine learning algorithms informing and working in tandem with physically based 

models. 

We compared four methods of estimating plot-scale LAI from forest inventory 

data and found that three of the four overstory LAI methods produced estimates lower 

than Landsat-based total LAI. The only method that produced estimates of total LAI, 

separated into overstory and understory strata, overestimated total LAI relative to 

Landsat-based estimates. This result suggests that method LAI4 does indeed overcome 

the limitation of saturation that is characteristic of remote sensing-based LAI. Although 

new methods for estimating Landsat-based LAI have become computationally efficient 

and publicly available on Google Earth Engine (Kang et al., 2021), this algorithm was 

developed for Landsat 5 and later versions of Landsat and is thus not applicable to the 

full Landsat record. In contrast, our machine learning models used only a single Landsat-

based predictor variable that is available beginning in 1984, and it is thus possible to 
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produce gridded datasets of maximum annual LAI for any year from 1984 to the most 

recent growing season. 

Among the four alternative methods we tested for estimating plot-scale LAI and 

then interpolating gridded LAI datasets, methods LAI1 and LAI4 performed the best 

overall in comparison to Landsat-based LAI. Each of these methods has specific 

strengths and weaknesses. Method LAI1 has the advantage of requiring only a single 

ground measurement – plot-level tree canopy cover – and is thus more parsimonious. 

Although method LAI1 also requires estimating local maximum LAI, the value of 5.3 

that we used for our study area (Pierce & Running, 1988) is likely close enough to the 

value at which Landsat-based LAI saturates that it may be a realistic maximum to use 

regardless of study location. Because method LAI4 uses a clumping index that is specific 

to forest type, it requires a more complex crosswalk of FIA’s forest types to the cover 

types specified for clumping indices in Chen et al. (2005). However, scripting is provided 

to accomplish this task, and this method could more reliably be applied to FIA data 

anywhere in the USA, unlike method LAI1 which may require tuning of local maximum 

LAI based on direct field measurements of LAI. Method LAI4 has the advantage of 

producing not only overstory LAI but also understory and thus total LAI. Total and 

understory LAI, as produced by method LAI4, demonstrated the greatest sensitivity to 

change in LAI over time, as compared to Landsat-based LAI, and LAI4’s total LAI was 

more strongly correlated than LAI1 to evaporative fraction. 

The choice of the most appropriate plot-scale LAI estimation method depends 

largely on the intended application or question. For consideration of overstory LAI only, 

linear scaling of tree canopy cover with LAI, i.e., method LAI1, may be sufficient and 
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parsimonious. For studies investigating processes within overstory vs. understory strata, 

e.g., carbon allocation or partitioning of precipitation into various hydrologic pathways, 

LAI4 would be most appropriate because it is capable of estimating not only overstory 

but also understory and thus total LAI, without the saturation constraint imposed by 

remote sensing-based total LAI datasets. Although we used composite maximum annual 

greenness as a predictor variable in our machine learning models, and greenness is 

subject to the same saturation effect as Landsat-based LAI, the fact that we used machine 

learning models with additional biophysical (non-spectral) predictor variables may help 

to overcome constraints imposed by spectral remote sensing. 

The need to couple understory and overstory vegetation in models has been 

previously recognized due to the interactions between forest vegetation layers (Landuyt 

et al., 2018; Thrippleton et al., 2016). Overstory and understory vegetation have distinct 

but interacting responses to both disturbance and post-disturbance recovery (Carter et al., 

2022; Laughlin & Fulé, 2008), which may have unknown ramifications for fluxes of 

water, energy, and carbon. The ability to estimate LAI for multiple canopy strata could be 

leveraged in models that have distinct representations of separate strata, and such 

applications could enhance our understanding of the process-level responses to 

disturbances that alter forest structure or result in type changes from forest to nonforest 

vegetation. 

One outcome of this study is the comparative evaluation of several previously 

used and published methods for estimating LAI when direct measurements or remote 

sensing-based data are not available. Specifically, methods LAI1, LAI2, and LAI3 have 

been used by prior studies to estimate overstory on the basis of tree canopy cover or the 
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combination of species identity and DBH. We found that the simplest of these methods, 

LAI1, produced the best agreement with Landsat-based LAI. However, although method 

LAI2 did not agree as well with Landsat data, it may be preferable for snow modeling 

applications, which was the original purpose of that LAI estimation method (Pomeroy et 

al., 2002; Varhola et al., 2010). 

A unique benefit of using national forest inventory (NFI) data, such as that 

collected by FIA which we used to produce plot-based estimates of LAI, is that ground 

data are acquired from an ongoing data collection program with a probabilistic sample 

and methods that are consistent over time. Although lidar acquisitions such as ICESat-1, 

ICESat-2, and GEDI all present promising capabilities to estimate vertically integrated 

LAI (Tang et al., 2014), thus far such space-based missions are temporally constrained 

compared to ongoing ground data collection by NFIs. Thus, this approach to estimating 

annual LAI could be applied in other countries that have ongoing NFIs that include 

measurements of overstory and understory canopy cover. For any NFI that records causal 

agents of mortality and disturbance as well as disturbance severity and indicators of 

recovery time, another strength of this approach is that it allows differentiation of the 

drivers of changes in LAI over time. Future research may examine how specific 

disturbance types affect the distribution of carbon and hydrologic fluxes among overstory 

vs. understory canopies. 

Although this study presents novel methods of estimating LAI both as plot-scale 

estimates and as gridded datasets, it does come with caveats. First, the methods tested 

here obviously require ground observations and do not provide LAI estimates within a 

year or season. In contrast, Landsat-based LAI from radiative transfer models can provide 



158 

greater temporal resolution and thus seasonal (intra-annual) LAI, but again with the 

caveat that it estimates only total LAI. Second, validating any LAI dataset is challenging, 

and our study was limited by having only Landsat-based total LAI to use as a point of 

reference. However, the Landsat-based dataset we used was well calibrated and validated 

using widely distributed, intensively studied sites throughout the U.S. (Kang et al., 2021). 

Although we did not present the results within this paper, we did investigate the use of 

LAI datasets derived from MODIS and ICESat-1 as validation datasets. We found that 

pairwise correlations among these datasets were very weak (r<0.2), possibly due to 

spatial offsets and scale discrepancies that are difficult to resolve, and thus they are not 

included here.  

We recommend that future studies conduct additional validation of both plot-

based and gridded LAI produced using methods LAI1 and LAI4. Plot-based validation 

could be accomplished by measuring LAI using light-sensing devices (e.g., LI-COR 

sensors) on a subsample of FIA plots and then using those LAI values for calibrating and 

validating various methods that estimate LAI based on other FIA measurements. For 

example, calibration might include improved parameterization of clumping indices – 

possibly using light-sensing devices, drones, or lidar – for specific vegetation or forest 

types in support of method LAI4. Plot-based LAI measurements could also be used to 

test the assumption inherent in method LAI1, i.e., that a single maximum LAI value 

could be implemented across broad regions as the constraining upper limit for scaling 

canopy cover against overstory LAI. Gridded LAI datasets could be further evaluated by 

comparing the performance of a physically based hydrologic model using alternative LAI 

datasets as inputs. Specifically, parallel model simulations could assess the impact of 
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using strictly remote sensing-based total LAI, compared to overstory and understory 

gridded LAI based on plot-scale methods as described here, on the ability to estimate 

hydrologic fluxes (e.g., canopy evapotranspiration, soil evaporation, maximum snow 

water equivalent, etc.). 

Finally, we recommend that broad applicability of our findings will likely require 

development of tools that allow others to define an area of interest and produce multi-

strata gridded LAI datasets. To facilitate widespread and innovative use of these methods, 

such applications would ideally occur within cloud-based computing platforms that 

consume FIA plot data as well as the predictor variables used in our random forests 

models. However, in the case of the USA, such development will require cooperative 

agreements between FIA and cloud-based computing platforms that protect the 

confidentiality of plot locations as required by federal law (Sabor et al., 2007). Such 

advances could allow scientists in forestry and hydrology to use overstory and understory 

LAI datasets, rather than simply total LAI, for multiple purposes. Incorporation of 

overstory and understory LAI into physically based ecological and hydrologic models 

could enhance future understanding of how forest disturbance, recovery, and land cover 

change affect both forest and water resources. 

 

Conclusions 

 

 

This study compared four methods for estimating plot-scale leaf area index, and 

then used those plot-scale estimates in a machine learning algorithm to produce gridded 

LAI datasets on an annual basis. We evaluated these four alternative methods by 

comparing both plot-based and gridded LAI estimates against Landsat-based total LAI. 
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We found that the simplest LAI estimation method performed well at estimating 

overstory LAI but did not address our objective of estimating both overstory and 

understory LAI. The method based on an inverted gap-fraction model, combined with 

previously published clumping indices that are specific to vegetation type, performed best 

at capturing trends over time and also produced separate estimates of understory, 

overstory, and total LAI. Future research could improve validation and parameterization 

of plot-based LAI estimates and test the assumption that gridded LAI datasets that 

partition LAI into multiple canopy strata will lead to enhanced performance in hydrologic 

models. 
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CHAPTER 5 

 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

Summary and conclusions 

 

 

The research presented in this dissertation enhances our understanding of how 

forests and forest disturbances affect streamflow and thus water supply. Recent forest 

disturbances throughout the western United States have already affected both water 

quality and water quantity. These impacts are partly due to naturally occurring 

disturbances but are also related to changes in forest dynamics related to warmer 

temperatures and changing climate. Temperatures are projected to continue increasing in 

the future, which will almost certainly lead to increased moisture stress and thus 

continued drought-related forest disturbances such as wildfires, insect epidemics, disease, 

and drought-induced tree die-off. Ongoing forest disturbances, and even type changes 

from forest to nonforest land cover types, will continue influencing the water supply 

available both for ecosystems and for people. 

The objective of the literature synthesis reported in Chapter 2 was to determine 

how forest disturbance influences streamflow and snowpack via canopy ecohydrologic 

processes. I hypothesized that forest disturbance not only increases the throughfall of 

precipitation and decreases interception and transpiration, but also alters energy fluxes 

that in some cases lead to faster melting and sublimation of snowpack. Both hypotheses 

were supported by evidence from a systematic review of 78 previous studies over the 

period 2000-2019. This review showed that post-disturbance streamflow and snowpack 

increased in some cases, did not change in some cases, and decreased in other cases.  
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The variable results that were found in the systematic review in Chapter 2 can be 

explained by either net increases or net decreases in total evapotranspiration following 

disturbance, which in turn determines the associated increase or decrease in annual 

streamflow. The cases of decreased post-disturbance streamflow do not conform to 

conventional wisdom and occur when post-disturbance evapotranspiration exceeds pre-

disturbance evapotranspiration. This overcompensating effect was observed most 

frequently following non-stand replacing disturbances, such as those caused by insects, 

drought, disease, and low-severity wildfire. In such situations, increased evaporation 

(which sometimes included increased sublimation of snow) resulted from higher 

subcanopy radiation. The overcompensating effect (i.e., a net increase in 

evapotranspiration) was also observed or in watersheds with rapid post-disturbance 

vegetation growth, which resulted in a net increase in transpiration compared to pre-

disturbance canopy transpiration. I concluded from this review that hydrologic response 

following forest disturbance depends on nuances of vegetation structure, climate, and 

topography that need to be quantified and understood to make predictions for any 

particular site or disturbance. 

The literature synthesis in Chapter 2 also led to two conclusions about how 

foresters and hydrologists study forest disturbance effects on streamflow and snowpack. 

First, although both observational and model-based studies concluded that streamflow 

and snowpack may decrease following forest disturbance, physically based models were 

better than more empirically based models at simulating reductions in water yield. 

Second, most studies characterized forests and forest disturbances in categorical terms 
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(e.g., forest vs. nonforest, or disturbed vs. undisturbed) rather than in quantitative metrics 

such as leaf area index, basal area, canopy coverage, or similar numerical quantities. 

In Chapter 3, my objective was to determine how recent forest disturbances have 

influenced streamflow, using a novel combination of systematic forest inventory data and 

a curated large-sample hydrologic dataset. This analysis was catalyzed by merging the 

disciplines of forestry, including background experience with national forest inventory 

data, and hydrology. The analysis tested three hypotheses: 1) annual streamflow is 

generally inversely related to forest cover; 2) annual streamflow following disturbance 

may be more likely to decrease in watersheds where aridity and incoming solar radiation 

are relatively high, e.g., in the Southwestern U.S.; and 3) the interaction of disturbance 

severity and aridity affect not only the magnitude but also the direction of post-

disturbance change in streamflow. This large sample hydrologic analysis was novel in its 

evaluation of quantitative and numerically continuous metrics representing forest cover 

and disturbance. The use of quantitative metrics in Chapter 3 directly addressed a finding 

from Chapter 2, which was that most previous studies of forest disturbance effects on 

streamflow only considered categorical land cover metrics such as forest vs. nonforest or 

disturbed vs. undisturbed. 

The results of the large sample analysis in Chapter 3 confirmed that although 

post-disturbance streamflow increased in many watersheds, it decreased in some 

watersheds. The direction of streamflow response to forest disturbance was found to be 

dependent, in part, on aridity. Further, the interaction of aridity and the severity of 

disturbance, as measured by tree mortality, influence both the magnitude and direction of 

streamflow response to disturbance. Statistical modeling identified an aridity threshold 
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value of 2.35 (Fig. 16), above which watersheds are likely to exhibit decreased 

streamflow following disturbances. This threshold might be helpful to identify a class of 

watersheds characterized as very arid and at risk for decreased streamflow. However, this 

threshold is subject to uncertainty and based on observations between 2000 and 2019 and 

therefore may not generalize to future conditions. Thus, any use of this threshold for 

prediction of potential streamflow response to climate or vegetation change should take 

an adaptive forecasting approach with iterative updating as conditions change. 

 

 

Fig. 16. Aridity (potential evapotranspiration / precipitation) at 159 watersheds evaluated 

in Chapter 3. 

 

Finally, results of Chapter 3 showed that forest disturbances were observed more 

frequently and at greater severity in these very arid watersheds, which also experienced 

increased temperatures during the study period. This result, when considered in 

combination with projections of continuing increases in temperature, suggests that both 
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disturbance and streamflow will continue to be influenced by future climate change. 

Chapter 3 includes projections of streamflow response, or sensitivity, to various 

disturbance severities for watersheds at different aridity, both assuming no climate 

change and assuming 1⁰ C of warming. 

The objective of Chapter 4 was to develop a method for producing detailed forest 

cover datasets, based on an existing forest monitoring network combined with remote 

sensing and biophysical variables in a machine learning model, for input to hydrologic 

models. I anticipated that detailed vegetation data collected from a network of permanent 

forest monitoring plots can provide better leaf area index (LAI) information than is 

currently available from remote sensing products. Among the four methods I compared 

for producing annual maximum LAI for overstory forest vegetation, existing methods did 

not perform as well as a newly developed method. The new method not only correlated 

more strongly with Landsat-based LAI compared to the three other methods, but it also 

allowed distinguishing understory and overstory LAI. Because existing LAI datasets do 

not separate overstory from understory LAI, the ability to produce LAI datasets by 

canopy stratum represents a potential improvement in the representation of forest 

vegetation in physically based ecohydrologic models. Time series of overstory and 

understory LAI for 1984-2019 demonstrated that interannual variability of understory 

LAI exceeds that for overstory LAI, and this variability may affect partitioning of 

precipitation to ET vs. runoff at annual timescales. 

In summary, these three papers have provided new insights as to how forest 

cover, disturbance, and climate interact to influence streamflow. The conclusions about 

how streamflow and snowpack respond to disturbance, and how that response is 



177 

influenced by aridity, were first developed in the systematic literature review of Chapter 

2 and then confirmed by broad-scale analysis of multiple watersheds in Chapter 3. 

Chapter 3 also confirmed that streamflow response to disturbance is determined not only 

by disturbance severity but by the interaction of disturbance severity with aridity, such 

that streamflow is more likely to decrease following disturbance in very arid watersheds. 

Chapter 4 presented a new method for translating existing forest monitoring data at 

sample plots into overstory and understory LAI at plot scales, which can then be 

combined with remote sensing and biophysical variables to produce spatially explicit, 

gridded LAI datasets that can serve as inputs for hydrologic modeling. These outcomes 

will collectively improve the ability of researchers and resource managers to evaluate the 

effects of past and future changes in forest cover on water availability. 

 

Recommendations 

 

 

The research presented in this dissertation has led to recommendations for future 

research and management applications. These recommendations can help researchers and 

managers more efficiently apply new knowledge to resource problems in the face of 

increasing temperatures and increasing forest disturbance in the water-limited western 

U.S. 

One recommendation pertains to how ecohydrologic modelers select the types of 

models used and the way vegetation is represented in such models. One result of the 

literature synthesis in Chapter 2 was that among simulation models, physically based 

models were capable of predicting decreased snowpack or streamflow following 

disturbance whereas more empirically based hydrologic models were not. This capability 
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underscores the need to continue investing in and improving physically based models to 

support forest and watershed management. Another finding was that hydrologists use leaf 

area index to describe vegetation, while foresters collect a vast suite of measurements that 

often does not include leaf area index (Härkönen et al. 2015). Further, researchers from 

both disciplines tend to characterize forests and disturbances in categorical terms such as 

forest versus nonforest or disturbed versus undisturbed, rather than recognizing the 

continua of forest cover and disturbance. Strategic national-scale forest inventories have 

previously been recognized as a potential source of quantitative forest and disturbance 

data for hydrologic modeling and water resources assessments (Andréassian 2004), and 

Chapters 3 and 4 of this work present methods for capitalizing on forest inventory data 

for these purposes. Future research should seek to expand on the use of more informative 

vegetation metrics that enable the development of quantitative relationships between 

climate, vegetation, and hydrologic processes. Implementation of these recommendations 

to represent vegetation quantitatively, possibly based on national-scale forest inventory 

data and remote sensing data, within physically based models is likely to improve the 

accuracy of such models’ predictions. 

The separation of LAI into overstory and understory components is anticipated to 

improve the ability of LAI-based analyses and models to simulate the influence of forest 

canopies on hydrologic processes. Future research should investigate whether or by how 

much an enhanced representation of overstory and understory LAI improves the 

performance of physically based models. For example, if the goal of future research is to 

develop a model that accurately predicts streamflow or snowpack based on forest 

vegetation change over time, then simulations could compare the predictive capability of 
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the model using separate overstory and understory LAI layers as inputs, relative to its 

predictive capability using total LAI based on remote sensing data as an input. 

Another area for future research is to consider not only the direct effects of 

changing climate on streamflow and snowpack, but also the indirect effects of climate as 

mediated by vegetation. The recent increasing temperature trend has resulted in 

historically large extents of tree mortality across the western U.S. (Williams et al. 2013) 

as well as an increase in severe fire (van Mantgem et al. 2013). Thus, models that seek to 

make predictions about how future climate will affect water should incorporate 

vegetation-climate feedbacks rather than assuming static vegetation, particularly in 

forested watersheds. 

The results of Chapters 2 and 3 present a cautionary tale to forest managers who 

seek to increase water yield by thinning forests. Based on historical studies of water yield 

response to clearcut harvesting, forest managers may assume that reduced forest cover 

due to natural disturbance (e.g., due to insects or drought-induced die-off) will produce 

more runoff. While reductions in forest cover do often result in increased water yield, 

they tended to have the opposite effect in very arid watersheds. Further, these arid 

watersheds also experienced more tree mortality than wetter watersheds, possibly due to 

increased temperatures. Thus, a more critical management objective may be managing 

for increased snow retention or soil moisture to mitigate against future forest disturbance, 

including severe wildfire. Future research could improve our knowledge of when and 

where streamflow or snowpack are likely to increase versus decrease, and by how much, 

using physically based models that account for forest structure, forest density, and 

vegetation-climate feedbacks. Climate-driven forest changes could be expected to impact 
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hydrologic processes and water supplies just as management-driven forest change would. 

Thus, forest management projects such as fuels treatments or thinning could benefit from 

using physically based models to determine how the project will affect snowpack and 

streamflow. 

The final recommendation of this work relies not on its findings alone, but on its 

findings in the context of other recently published research confirming that forest 

management actions can successfully address specific objectives in forested watersheds. 

For example, forest thinning has been shown to lead to increased soil moisture in the 

rooting zone and thus can improve forest resilience (Belmonte et al. 2022). Experimental 

fuels treatments, including mechanical thinning and prescribed fire, have been shown to 

either increase forest resilience (i.e., by decreasing tree mortality) or increase water yield, 

but not both, and aridity appeared to determine which outcome occurred as a result of 

treatments (Bart et al. 2020). Fuels treatments are of great interest because severe wildfire 

poses huge risks, including a greater risk to water supplies than other disturbance types 

(e.g., drought, insects, disease, or low severity fire) due to its complete removal of 

vegetation and likelihood of producing erosion and sedimentation (Sankey et al. 2017). 

By combining information from forestry, hydrology, and wildfire science, future applied 

research could lead to a decision support framework for practitioners who seek to meet 

specific forest and watershed management objectives. 

Forest and watershed managers often seek to address multiple objectives such as 

reducing fuels to minimize the risk of future severe fire, thinning forests to increase snow 

retention and thus soil moisture, or thinning or harvesting forests to maximize snow 

retention in ways that lead to increased spring and summer streamflows. Knowledge on 
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the pieces needed to answer these questions exists, but it has rarely been compiled and 

aggregated to address management questions for specific watersheds or project locations 

and may require refinement to achieve the specificity needed for such aggregation. While 

some research has investigated the tradeoffs between managing for water versus 

managing for resilient forests (e.g., Bart et al. 2020), the potential risk to water supplies 

posed by severe wildfire (Sankey et al. 2017) could be mitigated by careful planning with 

expertise from multiple disciplines. Meeting this need requires expertise from fire science 

regarding how to conduct fuels treatments that reduce the risk of future severe wildfire; 

from forestry regarding the types of silvicultural treatments that can meet fuels reduction 

objectives; and from hydrology regarding how the alternative silvicultural treatments are 

expected to affect snowpack, streamflow, or soil moisture. 

Given the challenges inherent in each of these tasks, I recommend development of 

a decision-making framework for practitioners that combines vegetation management 

with hydrologic modeling and identifies the steps needed to simulate the impact of 

alternative silvicultural prescriptions on hydrologic processes and fluxes of interest. 

Specific steps might be to first delineate the project area. Second, identify the locations 

and vegetation targets for fuel reduction treatments. This step is recommended early in 

the process because strategically placed fuels treatments can mitigate the spread of future 

wildfires, e.g., by providing a fuel break that prevents an out-of-control wildfire from 

spreading to high-risk areas such as dense forest stands, developed areas, or critically 

important water supply catchments. Third, develop a handful of silvicultural prescriptions 

to meet the fuels treatment objectives. The feasibility of particular silvicultural treatment 

options may be determined in part by the strategic locations identified in the second step. 
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The number of options should be sufficiently small to allow efficient comparison in the 

next step. The last step is then hydrologic modeling to evaluate the effects of the 

alternative silvicultural practices on water resources objectives. For example, if the goal 

of watershed managers is to increase summer streamflow, this final step might evaluate 

summer streamflow explicitly as a result of snow accumulation and retention. Modeling 

results would then allow practitioners to select the best silvicultural prescription for 

meeting hydrologic objectives. 

The decision support tool described here would include uncertainty and would 

obviously not guarantee project success. However, managers are already asking for such 

information. A structured decision support framework may help to address the ongoing 

problem of how to manage forests, mitigate wildfire risk, and protect water supplies in 

the future. 
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Greater Yellowstone Ecosystem. Environmental Management. doi: 10.1007/s00267-018-

1073-y. 

 

Shaw, J.D.; Goeking, S.A.; Menlove, J.; Werstak, C.E., Jr. 2017. Assessment of fire effects 

based on Forest Inventory and Analysis data and a long-term fire mapping data set. 

Journal of Forestry 115: 258-269. 

 

Goeking, S.A. 2015. Disentangling forest change from forest inventory change: A case study 

from the U.S. Interior West. J. of Forestry 113: 475-483. 

 

Technical reports and publications: 

 

Wheeler, Kevin; Kuhn, Eric; Bruckerhoff, Lindsey; Udall, Brad; Wang, Jian; Gilbert, Lael; 

Goeking, Sara; Kasprak, Alan; Mihalevich, Bryce; Neilson, Bethany; Salehabadi, Homa; 

Schmidt, John C. 2021. Alternative management paradigms for the future of the Colorado 

and Green Rivers. The Future of the Colorado River Project, White Paper No. 6. Logan, 

UT: Utah State University, Quinney College of Natural Resources Center for Colorado 

River Studies. 132 p. 

 

Salehabadi, H.; Tarboton, D.; Kuhn, E.; Udall, B.; Wheeler, K.; Rosenberg, D.; Goeking, S.; 

Schmidt, J.C. 2020. The future hydrology of the Colorado River Basin. The Future of the 

Colorado River Project, White Paper No. 4. Logan, UT: Utah State University, Quinney 

College of Natural Resources Center for Colorado River Studies. 71 p. 

 

Espejo, A.; Federici, S.; Green, C.; Amuchastegui, N.; d'Annunzio, R.; Balzter, H.; 

Bholanath, P.; Brack, C.; Brewer, C.; Birigazzi, L.; Cabrera, E.; Carter, S.; Chand, N.; 

Donoghue, D.; Eggleston, S.; Fitzgerald, N.; Foody, G.; Galindo, G.; Goeking, S.; Grassi, 

G.; Held, A.; Herold, M.; Kleinn, C.; Kurz, W.; Lindquist, E.; McRoberts, R.; Mitchell, 

A.; Næsset, E.; Notman, E.; Quegan, S.; Rosenqvist, A.; Roxburgh, S.; Sannier, C.; Scott, 

C.; Stahl, G.; Stehman, S.; Tupua, V.; Watt, P.; Wilson, S.; Woodcock, C.; Wulder, M. 

2020. Integration of remote-sensing and ground-based observations for estimation of 

emissions and removals of greenhouse gases in forests: Methods and guidance from the 

Global Forest Observations Initiative, Edition 3.0. Rome, Italy: U.N. Food and 

Agriculture Organization. 300 p. 

 

Witt, C.; Shaw, J.D.; Menlove, J. ; Goeking, S.A.; DeRose, R.J.; Pelz, K.A.; Morgan, T.A.; 

Hayes, S.W. 2019. Montana s forest resources, 2006-2015. Resour. Bull. RMRS-RB-30. 

Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain 

Research Station. 102 p. 

 

DeRose, R.J.; Shaw, J.D.; Goeking, S.A.; Marcille, K.; McIver, C.P.; Menlove, J.; Morgan, 

T.A.; Witt, C. 2018. Wyoming’s forest resources, 2011-2015. Resour. Bull. RMRS-RB-

28. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain 

Research Station. 132 p. 

 

Shaw, J.D.; Menlove, J.; Witt, C. Morgan, T.A.; Amacher, M.C.; Goeking, S.A.; Werstak, 

C.E., Jr. 2018. Arizona’s forest resources, 2001-2014. Resour. Bull. RMRS-RB-25. Fort 

Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research 

Station. 126 p. 
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Witt, C. DeRose, R.J.; Goeking, S.A.; Shaw, J.D. 2018. Idaho’s forest resources, 2006-2015. 

Resour. Bull. RMRS-RB-29. Fort Collins, CO: U.S. Department of Agriculture, Forest 

Service, Rocky Mountain Research Station. 84 p. 

 

Goeking, S.A.; Menlove, J. 2017. New Mexico’s forest resources, 2008-2014. Resour. Bull. 

RMRS-RB-24. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky 

Mountain Research Station. 68 p. 

 

Thompson, M.T.; Shaw, J.D.; Witt, C. Werstak, C.E., Jr.; Amacher, M.C.; Goeking, S.A.; 

DeRose, R.J.; Morgan, T.A.; Sorenson, C.B.; Hayes, S.W.; Menlove, J.. 2017. Colorado's 

forest resources, 2004-2013. Resour. Bull. RMRS-RB-23. Fort Collins, CO: U.S. 

Department of Agriculture, Forest Service, Rocky Mountain Research Station. 136 p. 

 

Toone, M.G.; Goeking, S. 2017. Application of rangeland health indicators on forested plots 

on the Fishlake National Forest, Utah. Res. Note RMRS-RN-76. Fort Collins, CO: U.S. 

Department of Agriculture, Forest Service, Rocky Mountain Research Station. 25 p. 

 

Menlove, J.; Shaw, J.D.; Witt, C. Werstak, C.E., Jr.; DeRose, R.J.; Goeking, S.A.; Amacher, 

M.C.; Morgan, T.A.; Sorenson, C.B. 2016. Nevada's forest resources, 2004-2013. 

Resour. Bull. RMRS-RB-22. Fort Collins, CO: U.S. Department of Agriculture, Forest 

Service, Rocky Mountain Research Station. 167 p. 

 

Werstak, C.E., Jr.; Shaw, J.D.; Goeking, S.A.; Witt, C. Menlove, J.; Thompson, M.T.; 

DeRose, R.J.; Amacher, M.C.; Jovan, S.; Morgan, T.A.; Sorenson, C.B.; Hayes, S.W.; 

McIver, C.P. 2016. Utah's forest resources, 2003-2012. Resour. Bull. RMRS-RB-20. Fort 

Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research 

Station. 159 p. 

 

Barbosa, P.; Herrera, F.; Goeking, S.; Nieto, V.; Pena, M.; Ortiz, S. 2014. Manual de control 

de calidad del Inventario Forestal Nacional (IFN) [Quality control manual of the National 

Forest Inventory (NFI)]. Bogota D.C., Colombia: IDEAM. 40 p. 

 

Goeking, S.A.; Shaw, J.D.; Witt, C. Thompson, M.T.; Werstak, C.E., Jr.; Amacher, M.C.; 

Stuever, M.; Morgan, T.A.; Sorenson, C.B.; Hayes, S.W.; McIver, C.P. 2014. New 

Mexico’s forest resources, 2008-2012. Resour. Bull. RMRS-RB-18. Fort Collins, CO: 

U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 144 

p. 

 

Goeking, S.A.; Patterson, P.L. 2013. Stratifying to reduce bias caused by high nonresponse 

rates: A case study from New Mexico’s forest inventory. Res. Note RMRS-RN-59. Fort 

Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research 

Station. 22 p. 

 

Witt, C.; Shaw, J.D.; Thompson, M.T.; Goeking, S.A.; Menlove, J.; Amacher, M.C.; Morgan, 

T.A.; Werstak, Charles. 2012.  Idaho's Forest Resources, 2004-2009.   Resour. Bull. 

RMRS-RB-14. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky 

Mountain Research Station. 134 p. 
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Schmidt, J.C.; Topping, D.J.; Rubin, D.M.; Hazel, J.E., Jr.; Kaplinski, M.; Wiele, S.M.; 

Goeking, S.A. 2007. Streamflow and sediment data collected to determine the effects of 

low summer steady flows and habitat maintenance flows in 2000 on the Colorado River 

between Lees Ferry and Bright Angel Creek, Arizona: U.S. Geological Survey Open-File 

Report 2007-1268, 79 p. [http://pubs.usgs.gov/of/2007/1268/]. 

 

Grams, P.E.; Schmidt, J.C.; Topping, D.J.; Goeking, S.A. 2004. The degraded reach: rate and 

pattern of bed and bank adjustment of the Colorado River in the 25 km immediately 

downstream from Glen Canyon Dam. Technical report to the USGS Grand Canyon 

Monitoring and Research Center, 111 p. 

 

Goeking, S.A., 2003. Long-term dynamics of riparian vegetation, and their relation to 

hydrology and geomorphology, along the Green River in the Uintah Basin.  Master’s 

Thesis, Utah State University, Logan. 

 

Goeking, S.A.; Schmidt, J.C.; Webb, M.K. 2003. Spatial and temporal trends in the size and 

number of backwaters between 1935 and 2000, Marble and Grand Canyons, Arizona. 

Technical report to USGS Grand Canyon Monitoring and Research Center, 15 p. 

 

Schmidt, J. C.; Goeking, S.A.; Topping, D.J.; Rubin, D.; Lockwood, B.; Hazel, J.E.; 

Kaplinski, M.; Wiele, S.; Franseen, M. 2003. Stream flow and sediment data collected to 

determine the effects of low summer steady flows and habitat maintenance flows in 2000 

on the Colorado River between Lees Ferry and Bright Angel Creek, Arizona. Technical 

report to the USGS Grand Canyon Monitoring and Research Center, 54 p. 

 

Birchell, G.J.; Christopherson, K.; Crosby, C.; Crowl, T.A.; Gourley, J.; Townsend, M.; 

Goeking, S.; Modde, T.; Fuller, M.; Nelson, P. 2002. The levee removal project: 

assessment of floodplain habitat restoration in the middle Green River. Final report. 

Upper Colorado River Endangered Fish Recovery Program Project CAP-6-LR. Utah 

Division of Wildlife Resources, Salt Lake City. 257 pages + appendices. 

 

Schmidt, J.C.; Topping, D.J.; Goeking, S.A.; Sondossi, H.; Hazel, J.E.; Grams, P.E. 2002. 

System-wide changes in the distribution of fine-grained alluvium in the Colorado River 

corridor between Lees Ferry and Bright Angel Creek, Arizona, 1980s to 2001. Technical 

report to the USGS Grand Canyon Monitoring and Research Center, 86 p. 

 

Crowl, T.A.; Gourley, J.A.; Townsend, M.; Goeking, S.A. 2000. The Levee Removal Project, 

Technical Report to the USFWS Recovery Implementation Program for Endangered Fish 

Species in the Upper Colorado River Basin, Salt Lake City, Utah. 

 

Conference proceedings papers: 

 

Goeking, S.A.; Tarboton, D.G. 2020. An enhanced representation of forest cover for 

distributed hydrologic modeling based on forest inventory data. FIA Stakeholders 

Science Meeting, Knoxville, TN. November 2019. 

 

Goeking, S.A.; Tarboton, D.G. 2019. A method for partitioning total leaf area index into 

overstory and understory strata for distributed hydrologic modeling based on forest 

inventory, remote sensing, and biophysical data. Joint 11th Federal Interagency 
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Sedimentation Conference and 6th Federal Interagency Hydrologic Modeling 

Conference, Reno, NV. June 2019. 

 

Goeking, S.A.; Dooley, K.; Hayden, H.L.; Lambert, D.; Lister, A. 2017. Quality assurance in 

national forest inventories: Lessons learned from international partnerships. In: Healey, 

Sean P.; Berrett, Vicki M., comps. 2017. Doing more with the core: Proceedings of the 

2017 Forest Inventory and Analysis (FIA) Science Stakeholder Meeting; 2017 October 

24- 26; Park City, UT. Proc. RMRS-P-75. Fort Collins, CO: U.S. Department of 

Agriculture, Forest Service, Rocky Mountain Research Station. 56 p.  

 

Goeking, S.A.; Izlar, D.K. 2015. Using landscape-level forest monitoring data to draw a 

representative picture of an iconic subalpine tree species. In: Stanton, S.M.; Christensen, 

G.A., comps. Pushing boundaries: new directions in inventory techniques and 

applications: Forest Inventory and Analysis (FIA) symposium 2015. 2015 December 8–

10; Portland, Oregon. Gen. Tech. Rep. PNW-GTR-931. Portland, OR: U.S. Department 

of Agriculture, Forest Service, Pacific Northwest Research Station. Pp. 296-301. 

 

Goeking, S.A.; Patterson, P.L. 2015. Redrawing the baseline: A method for adjusting biased 

historical forest estimates using a spatially and temporally representative plot network. 

In: Stanton, S.M.; Christensen, G.A., comps. Pushing boundaries: new directions in 

inventory techniques and applications: Forest Inventory and Analysis (FIA) symposium 

2015. 2015 December 8–10; Portland, Oregon. Gen. Tech. Rep. PNW-GTR-931. 

Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest 

Research Station. Pp. 228-232. 

 

Goeking, S.; Izlar, D. 2014. Natural regeneration of whitebark pine: Factors affecting 

seedling density. The International Forestry Review. 16(5): 133. [Abstract] 

 

Goeking, S.A. 2012. Trends in standing biomass in Interior West forests: Reassessing 

baseline data from periodic inventories. In: Morin, Randall S.; Liknes, Greg C., comps. 

Moving from status to trends: Forest Inventory and Analysis (FIA) symposium 2012; 

2012 December 4-6; Baltimore, MD. Gen. Tech. Rep. NRS-P-105. Newtown Square, PA: 

U.S. Department of Agriculture, Forest Service, Northern Research Station. [CD-ROM]: 

453-460. 

 

Goeking, S.A.; Liknes, G.C. 2012. Is lodgepole pine mortality due to mountain pine beetle 

linked to the North American Monsoon? In: Morin, Randall S.; Liknes, Greg C., comps. 

Moving from status to trends: Forest Inventory and Analysis (FIA) symposium 2012; 

2012 December 4-6; Baltimore, MD. Gen. Tech. Rep. NRS-P-105. Newtown Square, PA: 

U.S. Department of Agriculture, Forest Service, Northern Research Station. [CD-ROM]: 

448-452. 

 

Goeking, S.A.; Liknes, G.C.; Lindblom, E.; Chase, J.; Jacobs, D.M.; Benton, R. 2012. A 

GIS-based tool for estimating tree canopy cover on fixed-radius plots using high-

resolution aerial imagery. In: Morin, Randall S.; Liknes, Greg C., comps. Moving from 

status to trends: Forest Inventory and Analysis (FIA) symposium 2012; 2012 December 

4-6; Baltimore, MD. Gen. Tech. Rep. NRS-P-105. Newtown Square, PA: U.S. 

Department of Agriculture, Forest Service, Northern Research Station. [CD-ROM]: 237-

241. 
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Liknes, G.C.; Woodall, C.W.; Walters, B.F.; Goeking, S.A. 2012. Unlocking the climate 

riddle in forested ecosystems. In: Morin, Randall S.; Liknes, Greg C., comps. Moving 

from status to trends: Forest Inventory and Analysis (FIA) symposium 2012; 2012 

December 4-6; Baltimore, MD. Gen. Tech. Rep. NRS-P-105. Newtown Square, PA: U.S. 

Department of Agriculture, Forest Service, Northern Research Station. [CD-ROM]: 99-

103. 

 

Patterson, P.L.; Goeking, S.A. 2012. Estimators used in the New Mexico inventory: practical 

implications of "truly" random nonresponse within each stratum. In: Morin, Randall S.; 

Liknes, Greg C., comps. Moving from status to trends: Forest Inventory and Analysis 

(FIA) symposium 2012; 2012 December 4-6; Baltimore, MD. Gen. Tech. Rep. NRS-P-

105. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern 

Research Station. [CD-ROM]: 330-333. 

 

Goeking, S.A.  2012.  Potential applications of prefield land use and canopy cover data: 

Examples from nonforest and nonsampled forest inventory plots. In: McWilliams, Will; 

Roesch, Francis A. (eds.), Monitoring Across Borders: 2010 Joint Meeting of the Forest 

Inventory and Analysis (FIA) Symposium and the Southern Mensurationists. e-Gen. 

Tech. Rep. SRS-157. Asheville, NC: U.S. Department of Agriculture Forest Service, 

Southern Research Station. 299 p. 

 

Goeking, S.A.; Liknes, G.C. 2009. The role of pre-field operations at four forest inventory 

units: We can see the trees, not just the forest. In: McWilliams, Will; Moisen, Gretchen; 

Czaplewski, Ray, comps. Forest Inventory and Analysis (FIA) Symposium 2008; 

October 21-23, 2008; Park City, UT. Proc. RMRS-P-56CD. Fort Collins, CO: U.S. 

Department of Agriculture, Forest Service, Rocky Mountain Research Station. 12 p. 

 

Kaplinski M.; Hazel, J.; Manone, M.; Parnell R.; Schmidt, J.C.; Goeking, S.; Topping, D.J.; 

Rubin, D.; Melis, T.S. 2003. A fistful of sand: Monitoring the fate of fine-grained 

sediment in the Colorado River, Grand Canyon, Arizona. Geological Society of America 

Abstracts with Programs, v. 35, n. 6, p. 314. [Abstract] 

 

Goeking, S.A.; Sondossi, H.; Schmidt, J.C.; Grams, P.E. 2001. Quantification of long-term 

trends in sand storage at site-specific and reach scales in Grand Canyon National Park. 

Poster presentation to the Annual Meeting of the American Geophysical Union, San 

Francisco, CA. [Abstract] 

 

MacDonald, T.; Roland, C.; Fried, J.; Goeking, S.; Oakley, K. 2001. Simulation of long-term 

monitoring sample designs in Denali National Park, in D. Harmon, ed., Crossing 

Boundaries in Park Management: Proceedings of the 11th Conference on Research and 

Resource Management in Park and on Public Lands. George Wright Society, Inc. 

 

Sondossi, H.A., J.C. Schmidt, J.E. Hazel, and S.A. Goeking, 2001. Methods of using 

detailed, small-scale data to calibrate reach-scale GIS data in order to detect changes 

caused by individual floods in a debris fan-dominated river. Poster presentation to the 

Annual Meeting of the American Geophysical Union, San Francisco, CA. [Abstract] 
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PRESENTATIONS 
 

Workshops (including planning, facilitation, and individual presentations): 

  

Quality assurance for national forest inventories. March 2021. Four-hour workshop presented 

to the national forest inventory team of Mexico. Virtual. 

 

Use of Global Navigation Satellite Systems (GNSS). April 2017. Two-day workshop on 

GNSS use for documentation of forest degradation and illegal logging. Danang Province, 

Viet Nam. 

 

Quality assurance for Colombia’s national forest inventory. July 2016. Two-week workshop 

combining classroom sessions, field data collection, analysis, and protocol revision. 

Bogotá, Colombia, and Chicaque Natural Park, Colombia. 

 

Cameroon national forest monitoring system design workshop #2. June 2015. One-week 

workshop to validate definitions of land use classes and parameters to be used in 

Cameroon’s national forest monitoring system. Yaoundé, Cameroon. 

 

Cameroon national forest monitoring system design workshop #1. March 2015. One-week 

workshop to facilitate feedback from Cameroonian REDD+ Secretariat, Cameroonian 

technical experts, multinational partners (FAO, GIZ, JICA, and others), and civil society 

to identify the primary objective and sub-objectives of Cameroon’s national forest 

monitoring system. Doula and Yaoundé, Cameroon. 

 

Implementation of Colombia’s national forest inventory. October-December 2014. Two-

month workshop to develop national forest inventory documentation: Sample design, plot 

configuration, quality control, and socialization. Bogotá, Colombia. 

 

Chaired conference sessions: 

 

Linking forest disturbance and forest dynamics to water quantity and quality. November 

2019. Forest Inventory & Analysis Science Stakeholders Meeting. Knoxville, TN. 

 

National forest inventories: Globally unique challenges. October 2017. Forest Inventory & 

Analysis Science Stakeholders Meeting. Park City, UT. 

 

Invited presentations: 

 

Goeking, S.A.; Windmuller-Campion, M. 2021. Comparative species assessments of five-

needle pines throughout the western United States. The H5II Conference: The Second 

Conference on the Research and Management of High Elevation Five Needle Pines 

(virtual). September 2021. 

 

Goeking, S.A. 2021. Overview of the Data Component of the Global Forest Observations 

Initiative. GFOI Plenary (virtual). September 2021. 
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Goeking, S.A.; Tarboton, D.G. 2021. Streamflow response to forest disturbance in the 

western US over the past two decades. American Water Resources Association Summer 

Conference: Connecting Land & Water for Healthy Communities. July 2021. 

 

Goeking, S.A.; Tarboton, D.G. 2020. Links between disturbance, snowpack, and streamflow 

in western coniferous forests. Presentation to Wildland Resources Departmental Seminar, 

Utah State University, Logan, UT. September 2020. 

 

Goeking, S.A. 2019. Whitebark pine status in northwestern Montana and the Pacific 

Northwest. Whitebark Pine Ecosystem Foundation meeting, Pablo, MT. September 2019. 

 

Goeking, S.A.; Tarboton, D.G. 2019. Forests and water yield: A synthesis of recent 

disturbance effects on snowpack and streamflow in western coniferous forests. 

Intermountain Society of American Foresters Spring Meeting, Logan, UT. March 2019. 

 

Goeking, S.A.; Tarboton, D.G. 2018. Forests and water: A synthesis of recent effects of 

forest disturbance on water yield in the West. Restoring the West conference, Logan, UT. 

October 2018. 

 

Goeking, S.A.; Izlar, D.K.; Edwards, T.C. 2018. Whitebark pine in mixed-species stands 

throughout the western US: Broad-scale indicators of extent, regeneration and recent 

decline. Whitebark Pine Ecosystem Foundation meeting, Stanley, ID. September 2018. 

 

DeRose, R.J.; Goeking, S.A. 2016. Applications of the Forest Inventory and Analysis 

Program. Invited presentation to the Broader-Scale Monitoring Workshop, Laramie, 

Wyoming. May 2016. 

 

Goeking, S.A. 2016. Applications of the Forest Inventory and Analysis Program. Invited 

presentation to National Forest Systems Region 4 Silviculturists’ meeting, Ogden, Utah. 

March 2016. 

 

Goeking, S.A.; Izlar, D.K. 2015. Using landscape-level forest monitoring data to draw a 

representative picture of an iconic subalpine tree species. Invited presentation to National 

Forest Systems Region 1 webinar series. February 2016. 

 

Goeking, S.A.; Shaw, J.D. 2016. Interdisciplinary applications of the Forest Inventory and 

Analysis Program. Dept. of Wildland Resources weekly seminar, Utah State University, 

Logan, Utah. January 2016. 

 

Goeking, S.A.; Shaw, J.D.; Menlove, J.; Werstak, C.E., Jr. 2015. Insights into fire severity 

and post-fire recovery from an integrated analysis of forest inventory data and long-term 

fire mapping datasets. Restoring the West conference, October 29, 2015, Utah State 

University, Logan, UT. [https://www.youtube.com/watch?v=Te96fG_PC7Y] 

 

Goeking, S.A. 2011. Regional trends in standing forest biomass. Restoring The West 

conference, Logan, Utah. October 19, 2011. 

 

Contributed presentations and posters (with no published proceedings): 
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Goeking, S.A.; Windmuller-Campione, M. 2021. Broad-scale assessments of five-needle 

white pines in the western US using forest inventory data. Society of American Foresters 

Convention (virtual). November 2021. 

 

Goeking, S.A.; Bakken, J.L.; Dodson, E.K.; Downey, C.; Blackard, J.A.; Menlove, J. 2021. 

Delineating within-plot cover types on fixed-area forest monitoring plots: Does it affect 

estimates and precision of land area by cover type? International Association for 

Landscape Ecology Annual Meeting. April 2021. 

 

Goeking, S.A.; Tarboton, D.G. 2021. Assessing annual streamflow response to forest 

disturbance in the western US: A large-sample hydrology approach. European 

Geophysical Union General Assembly. April 2021. 

 

Goeking, S.A.; Tarboton, D.G. 2020. Large-sample forest hydrology: Forest Inventory & 

Analysis data adds value to broad-scale hydrology datasets. Society of American 

Foresters Convention (virtual). October 2020. 

 

Goeking, S.A. (moderator). 2019 Partnerships in national forest inventories: Benefits, 

challenges, and characteristics. A Panel of International Invited Speakers. FIA 

Stakeholders Science Meeting, Knoxville, TN. November 2019. 

 

Goeking, S.A.; Tarboton, D.G. 2019. Forests and water yield: A review of recent disturbance 

effects on streamflow and snowpack in western forests. FIA Stakeholders Science 

Meeting, Knoxville, TN. November 2019. 

 

Goeking, S.A.; Tarboton, D.G. 2019. Forests and water yield: A review of recent disturbance 

effects on streamflow and snowpack in western forests. Society of American Foresters 

Convention, Louisville, KY. November 2019. 

  

Goeking, S.A.; Burgess, W.; Morrone, J.; Narduzzi, J.; Simons, R.; Frescino, T.; Menlove, J.; 

Snyder, M. 2019. Development of FIA 101: A training module for FIA staff and aspiring 

FIA data users. FIA Stakeholders Science Meeting, Knoxville, TN. November 2019. 

 

Goeking, S.A. 2019. Moderated panel discussion of partnerships as part of session “Global 

view of national forest inventories (NFIs): how they have progressed, ways they have 

utilized partnerships, and possibilities for the future.” FIA Stakeholders Science Meeting, 

Knoxville, TN. November 2019. 

 

Goeking, S.A.; Tarboton, D.G. 2019. Forests and water yield: A synthesis of recent 

disturbance effects on snowpack and streamflow in western coniferous forests. Society of 

American Foresters Convention, Louisville, KY. October 2019. 

 

Goeking, S.A.; Tarboton, D.G. 2019. Hydrologic impacts of forest disturbance: New and 

improved data inputs. Society for Conservation GIS conference, Pacific Grove, CA. July 

2019. 

 

Goeking, S.A.; Tarboton, D.G. 2018. An enhanced representation of forest cover for 

distributed hydrologic modeling. American Geophysical Union, Washington, DC. 

December 2018. 



195 

 

Goeking, S.A.; Tarboton, D.G. 2018. An enhanced representation of forest cover for 

distributed hydrologic modeling. CUAHSI Biennial Colloquium, Shepherdstown, WV. 

August 2018. 

 

Goeking, S.A. 2017. Revisiting classic watershed experiments after recent tree mortality: 

Does disturbance increase streamflow? Society of American Foresters Convention, 

Albuquerque, NM. November 2017. 

 

Goeking, S.A. 2017. Forests and watershed values: Expanding FIA data to quantitative water 

resources planning. FIA Science Stakeholder Meeting, Park City, Utah. October 2017. 

 

Goeking, S.A.; Izlar, D.K. 2016. A landscape-level assessment of whitebark pine 

regeneration, growth, and mortality in mixed-species stands. Society of American 

Foresters Convention, Madison, WI. November 2016. 

 

Goeking, S.A.; Stam, C.; Goetz, W.; Liknes, G.C.; Meneguzzo, D.; Finco, M. 2016. A 

hydrology-dependent method for delineating riparian areas. Society for Conservation GIS 

conference, Pacific Grove, CA. July 2016. 

 

Pelz, K.A.; Goeking, S.; DeRose, R.J. 2016. Variability in piñon-juniper woodlands across 

the interior West: What can we learn from broad-scale datasets to improve restoration 

outcomes? Poster presentation at Sagebrush Ecosystem Conservation: All lands, all hands 

Conference, February 23-25, 2016, Salt Lake City, UT. 

 

Goeking, S.A. 2015. A regression-modeling approach for aligning temporally inconsistent 

forest inventory estimates. Society of American Foresters Convention, Baton Rouge, LA. 

November 2015. 

 

Goeking, S.A.; Izlar, D.K. 2015. Biophysical characterization of an iconic pine from 

landscape-level forest monitoring data. Society of Conservation GIS, Pacific Grove, CA. 

July 2015. 

 

Goeking, S.A. 2014. Disentangling real change from changing methods: Trends from the 

Interior West’s forest inventories. Society of American Foresters Convention and 

International Union of Forest Research Organizations, Salt Lake City, Utah. October 

2014. 

 

Goeking, S.A.; Izlar, K.D. 2013. Natural regeneration of whitebark pine: Factors affecting 

seedling density across Idaho, Montana, and Wyoming. Restoring the West conference, 

Logan, Utah. October 2013. 

 

Goeking, S.A.; Liknes, G.C. 2013. Linking precipitation and temperature with forest 

inventory data. ESRI Southwest Users Group meeting, Salt Lake City, Utah. November 

2013. 

 

Patterson, P.; Goeking, S.  2013.  Estimators used in the New Mexico inventory: practical 

implications of "truly" random nonresponse within each stratum. Joint Statistical 

Meetings, Montreal. 



196 

 

Goeking, S.A.; Liknes, G.C. 2012. Is lodgepole pine mortality due to mountain pine beetle 

linked to the North American Monsoon? In: Morin, Randall S.; Liknes, Greg C., comps. 

Moving from status to trends: Forest Inventory and Analysis (FIA) symposium 2012; 

2012 December 4-6; Baltimore, MD. Gen. Tech. Rep. NRS-P-105. Newtown Square, PA: 

U.S. Department of Agriculture, Forest Service, Northern Research Station. [CD-ROM]: 

448-452. 

 

Goeking, S.A. 2012. Trends in standing biomass in Interior West forests: Reassessing 

baseline data from periodic inventories. In: Morin, Randall S.; Liknes, Greg C., comps. 

Moving from status to trends: Forest Inventory and Analysis (FIA) symposium 2012; 

2012 December 4-6; Baltimore, MD. Gen. Tech. Rep. NRS-P-105. Newtown Square, PA: 
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SKILLS 
 

Software: Spatial data analysis software, including ArcGIS/ArcPro/ESRI, QGIS, Google 

Earth Engine, and ERDAS; relational databases in MS Access and PL/SQL Developer 

 

Programming: R statistical analysis software; OpenGRADS software for analyzing gridded 

climate datasets; SAS Institute software for statistical analysis and dataset management; 

SQL queries for Oracle databases 

 

Field techniques:  

• Vegetation sampling methods, including quadrats, transects, ocular cover estimates, 

voucher collections, and standard forestry measurements 

• Snowpack measurements, including density, depth, snow water equivalent, and 

components of radiation that affect snowpack 
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• Physical stream surveys, including measurement of stream discharge, cross-sectional 

surveys, longitudinal profiles, and sediment transport using drift nets and Helley-

Smith samplers 

• Sampling of stream biota using snorkel counts, Surber samplers, drift nets, and 

minnow traps 

 

Backcountry field skills: 

• Ability to locate research plots using map, compass, air photo, and/or GPS 

• Experience rowing 12’-16’ inflatable rafts in class 3-4 whitewater in remote areas 

• Wilderness First Aid certification and specialized (Level 2) avalanche training 

• Experience with potentially hazardous wildlife encounters and hazard mitigation 

• Experience planning and executing logistics for large expeditions on foot, boat, horse, 

and skis 
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