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Abstract 

Many devices are available for measuring the height of a CMJ. An inertial measurement unit 

(IMU) measures linear acceleration, orientation, and angular velocity. As an alternative to using 

IMU estimates of flight time, CMJ height could be estimated by integrating the IMU time-series 

signal for vertical acceleration to derive CMJ take-off velocity in order to track whole-body center of 

mass (WBCoM) movement, yet this approach would require valid IMU acceleration data. Thus, the 

purpose of this study was to quantify the effects of IMU sensor location and number on the validity 

of vertical acceleration estimation in CMJ. Thirty young adults from a university setting completed 

this study. Seven IMUs were placed at the approximate center of mass of the trunk, thighs, shanks, 

and feet. A total of 15 WBCoM models were created from the 7 IMUs. Using the four segments of 

the lower body, 1-,2-,3-, and 4-segment IMU models were constructed. Root mean square error 

(RMSE) was estimated between the acceleration derived from each IMU model against acceleration 

derived from a force platform. RMSE values from the best performing 1-,2-,3-, and 4-segment IMU 

models were analyzed for main effects using a 1-way analysis of variance. Notably, all of the best 

performing models contained IMU acceleration data from the trunk. The best performing 2- and 3-

segment IMU models returned significantly lower RMSE values, on average, than the 4- segment 

model (p = 0.041, p = 0.021, p = 0.061). The average RMSE of the best performing 2- and 3-segment 

models produced an error of 20% relative to gravitational acceleration, with this error likely to be 

lower when viewed within the context of specific CMJ events and peak forces. Further investigation 

into improving IMU technology, procedures, and data processing are needed to reduce RMSE errors 

to a more acceptable level of validity relative to force platform dynamometry.  
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Introduction 

Scientists in Kinesiology often use physical tests to derive data which can be used to 

measure human strength, power, and fatigue. Measures of strength, power, and fatigue are 

critical for understanding a person’s physical health and mobility, particularly as they relate to 

tasks of daily living. The countermovement jump (CMJ) is a common physical performance test 

(Jaitner et al., 2014; Rantalainen, Finni, &Walker, 2020) which is used across an array of 

applications to measure strength, power, and fatigue. Specifically, the CMJ can be used as an 

assessment for lower extremity stretch-shortening cycle (SSC) function and mechanical power 

(Markovic, Dizdar, Jukic, & Cardinale, 2004; Toft Nielsen, Jørgensen, Mechlenburg, & Sørensen, 

2019), a monitor for neuromuscular fatigue (Patterson & Caulfield, 2010), and a benchmark to 

support the rehabilitation of skeletal muscle strength post-injury (Souissi et al., 2011; 

Holsgaard-Larsen, Jensen, Mortensen, & Aagaard, 2014). Since there is comprehensive interest 

in CMJ testing among researchers, clinicians, and sport practitioners, it is important that the 

field continues to improve the practicality, accuracy, and validity of CMJ measurement 

technologies. 

Presently, there are many devices available for measuring CMJ performance. In lab 

settings, force platform dynamometry and optical motion capture are accepted as criterion 

devices (Aragón-Vargas, 2000; Buckthorpe, Morris, & Folland, 2012; Corazza, Mündermann, 

Gambaretto, & Ferrigno, 2010; Hall, Fleming, Dolan, Millbank, & Paul, 1996; List, Hitz, Angst, 

Taylor, & Lorenzetti, 2017; Pinto & Callaghan, 2021; van der Kruk & Reijne, 2018; Windolf, 

Götzen, & Morlock, 2008). These devices sample kinematic and kinetic data which when 

processed (i.e., integrating acceleration to obtain take-off velocity, manipulating Newton’s 
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second law to find force from acceleration and mass, etc.) provide useful information into joint 

rotations and ground reaction forces (GRFs). Generally, data sampled from force platforms and 

optical motion capture are highly accurate; however, these systems are expensive, require 

training to use, and are restrained by several limitations relating to the practicality of sampling 

data in real-world situations and environments outside of the lab. Force platforms and optical 

motion capture can be bulky and difficult to assemble outside of a lab setting (Aragón-Vargas, 

2000; Buckthorpe et al., 2012; van der Kruk & Reijne, 2018). For example, both devices require 

a reliable power supply, interface with hardware such as a desktop computer and data 

acquisition modules, and a high level of proficiency to operate. Further, both devices normally 

correspond with small collection volumes which limit the nature of movement tasks that can be 

evaluated. This presents a barrier for capturing valid data on the linear mechanics of CMJ 

performance, such as the vertical displacement of the whole-body center of mass (WBCoM; 

e.g., CMJ height), in field/real-world situations and environments. 

There are several practical technologies for measuring CMJ performance that are 

commonly used in the field and do not have the limitations of force platforms and optical 

motion capture. For instance, the Vertec (Jump USA, Sunnyvale, CA, USA), contact mats, and 

optoelectronic devices are much less prohibitive to use since they address the portability, 

economics, and ease of use concerns associated with optical motion capture and force platform 

dynamometry. While these devices are generally accepted to provide estimates of CMJ height 

outside of the lab, they do not measure vertical displacement of the WBCoM. Contact mats and 

optoelectronic devices, in particular, use the flight time method to estimate jump height. Flight 

time measurements can be accurate and valid when comparing successive jumps of the same 
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participant; however, researchers should be cautious when comparing flight time 

measurements between participants. For instance, postural changes between takeoff and 

landing can create a significant overestimation of CMJ height (Yamashita, Murata, & Inaba, 

2020).  

With the recent development of microelectromechanical systems sensors, inertial 

measurement units (IMUs) have been made accessible for application across a broad range of 

human movement analyses. The IMU is an electronic device which encloses tri-axial 

accelerometers, gyroscopes, and magnetometers that sample linear acceleration, angular 

velocity, and heading relative to magnetic north, respectively. When data streams from the 

various sensor components are fused, IMUs can provide reasonable estimates of 2- or 3-

dimensional linear acceleration and angular velocity against a global reference frame. Relative 

to force platforms and optical motion capture systems, IMUs are a small, portable, and 

affordable technology that may give a practical solution for gathering lab quality data outside of 

the lab setting. 

There have been several investigations into the validity of estimating CMJ height using a 

single IMU. From these investigations, researchers have reported over- or underestimations of 

CMJ height (3% - 12% error) derived from IMU data using either an estimate of flight time or 

proprietary algorithms, when compared against force plates or video motion capture systems 

(Lesinski, Muehlbauer, & Granacher, 2016; MacDonald, Bahr, Baltich, Whittaker, & Meeuwisse, 

2017; Manor, Bunn, & Bohannon, 2020; Skazalski, Whiteley, Hansen, & Bahr, 2018). It is 

suggested the measurement error could be due to changes in posture, twisting motions, the 

difference in the WBCoM starting and stopping positions, too much upper body movement, or 
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too small of movements made by the participants (Lesinski et al., 2016; MacDonald et al., 2017; 

Manor et al., 2020; Morrow, Fortune, Kaufman, & Hallbeck, 2017; Skazalski et al., 2018). 

 Flight time is easily skewed by poor form in the CMJ. If a participant lands from the jump 

with greater flexion of lower extremity joints, this lengthens the time in between feet leaving 

and feet landing on the force plate, leading to an overestimation of true jump height. As an 

alternative to using IMU estimates of flight time to derive CMJ height, CMJ height could be 

estimated by integrating the IMU time-series signal for vertical acceleration to derive CMJ take-

off velocity. It is important to mention that IMU estimates of jump height from take-off velocity 

requires the capture of valid IMU acceleration data. Thus, there is a need to investigate the 

validity of IMU acceleration data using vertical acceleration data from a force platform as the 

criterion. Within this approach, it is important to consider that data from a single IMU may not 

sufficiently represent the linear mechanics acting through the WBCoM. Further, the location at 

which the IMU is affixed to the body will affect the information that can be derived from time-

series signals. Consequently, it is reasonable to suggest the linear mechanics acting through the 

WBCoM may be more accurately modelled through data acquired from multiple IMUs attached 

to body segments that are known to contribute substantially to CMJ performance (Al-Amri et 

al., 2018; Lapinski et al., 2019; Morrow et al., 2017; M. A. O’Reilly et al., 2017; M. O’Reilly, 

Whelan, Delahunt, Ward, & Caulfield, 2017). 

The purpose of this study was to quantify the effects of IMU sensor locations and 

number on the validity of vertical acceleration estimation in CMJ. It was hypothesized that the 

use of seven strategically placed IMUs, as opposed to one or two, would yield the most valid 

IMU WBCoM acceleration data when compared against vertical acceleration acquired via a 
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force platform. It was also hypothesized that affixing IMUs to body segments with a greater 

mass proportion relative to the whole-body would improve the validity of IMU vertical 

acceleration data. 

Methods 

Participants 

Thirty young adults from a university setting agreed to volunteer as participants in this 

study (Table 1). All participants completed this study. Participants met inclusion criteria if they 

were between the ages of 18 and 35 years of age. They were required to self-report if they 

engaged regularly in sports or other moderate-to-vigorous physical activity. Participants could 

be recreationally active, meaning they were involved in sports and other modest physical 

activity; however, participants could not be strength training more than three times a month or 

perform aerobic activities more often than 30 minutes a day, five days per week. Participants 

were excluded from the study if they had a lower limb injury or surgical intervention on the 

lower extremity or trunk within a year prior to enrollment in the study. Participants were also 

excluded from the study if they reported having a musculoskeletal or neurological disorder 

which may have affected their ability to successfully perform maximal effort jumping. The study 

was approved by the university’s Institutional Review Board and all participants read and signed 

an informed consent document prior to their enrollment in the study. 
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Table 1. Participant characteristics 

Sex n Age (years) Height (cm) Body Mass (kg) 
Female 10 21.3 (3.8) 166.1 (4.1) 67.6 (11.3) 
Male 20 22.0 (2.6) 179.2 (6.4) 83.5 (17.1) 

Data are reported as mean (SD). 

Procedures 

Participants reported to a Human Performance Laboratory for a single data collection 

session which lasted approximately 1 hour. Participants were affixed with seven IMUs (Blue 

Trident, Vicon Motion Systems Ltd, Oxford, UK). The IMUs were placed at the approximate CoM 

for the trunk, thighs, shanks, and feet according to the de Leva (1996) anthropometric model. 

The IMUs were attached directly to the skin using hypoallergenic, double-sided, motion capture 

tape (B&L Engineering, Santa Ana, CA, USA). To reduce movement artifacts, IMUs were secured 

to the trunk, thighs, and shanks by a covering sheet of Fixomull® polyurethane film (BSN 

medical GmbH, Hamburg, Germany). To secure the IMUs to the feet, participants were asked to 

wear anti-slip neoprene socks (OMgear) over the sensor. 

Once the IMUs were placed, participants were provided with a visual demonstration and 

verbal instruction of proper CMJ technique. Participants performed three practice jumps 

followed by three maximal-effort CMJ performed with the feet positioned on a tri-axial force 

platform (Model OR6-WP, Advanced Mechanical Technology Inc., Watertown, MA, USA). The 

force platform was zeroed without the participant standing on the platform in between each 

maximal-effort CMJ. To minimize contribution of the arms, participants were asked to perform 

each jump akimbo (Picerno, Camomilla, & Capranica, 2011). Immediately prior to each 

maximal-effort CMJ, participants were given the following standard verbal cue: “After I say go, 
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perform a jump upwards as high and as quickly as possible”. Participants were given a 1-minute 

rest between each maximal-effort CMJ. CMJ technique was monitored in real-time by a 

member of the research team. Successful CMJ trial criteria required participants to 1) jump 

upwards with maximal effort with both feet positioned on the force platform, 2) keep their 

arms in akimbo position during the jump, 3) land from the jump with both feet impacting the 

force platform at approximately the same time, and 4) perform the jump with no extra steps, 

hops, or loss of balance. 

Data Acquisition 

Vertical GRF data was captured from a tri-axial force plate (1000 Hz sampling rate) using 

a signal conditioner (Gen 5, Advanced Mechanical Technology Inc., Watertown, MA, USA) and 

data acquisition software (NetForce, Advanced Mechanical Technology Inc., Watertown, MA, 

USA). The force platform was set to collect for a time period of 10 seconds. Sampling was 

initiated using a manual trigger to ensure each CMJ trial was captured in full. Each IMU logged 

tri-axial angular velocity data from 16-bit MEMS gyroscopes (range = ±2000°s-1, sampling 

frequency = 1600 Hz) in addition to tri-axial linear acceleration data from 16-bit low-g (range = 

±16g, sampling frequency = 1600 Hz) accelerometers to internal memory. Time synchronization 

and IMU sampling were controlled manually using data acquisition software (Capture.U, Vicon 

Motion Systems Ltd., Oxford, UK) that was loaded to an iPad Pro (Apple Inc., Cupertino, CA, 

USA). 
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Data Analysis 

Signal processing of vertical GRF data was conducted using a custom MATLAB® (The 

Mathworks Inc., Natick, MA, USA) script. GRF data was first converted to vertical acceleration 

using Newton’s Second Law. More specifically, GRF data was converted to vertical acceleration 

by dividing out participant total body mass. Total body mass was also found using Newton’s 

Second Law. Vertical acceleration data was then passed through a 4th order recursive low-pass 

Butterworth filter. A filter cut-off frequency of 50 Hz was selected following residual analysis 

optimization (Winter, 2009). Lastly, filtered vertical acceleration data was pared to begin at the 

initiation of the countermovement and end at the beginning of the CMJ flight phase. The timing 

of CMJ initiation was determined by first estimating a 5 standard deviation range around 0.5 s 

of static data. CMJ initiation was then defined as the time point where GRF magnitude crossed 

the lower-bound of the standard deviation range (Pérez-Castilla, Fernandes, Rojas, & García-

Ramos, 2021). CMJ take-off was determined using a rate of GRF development method 

described previously (Louder, Thompson, & Bressel, 2021). 

Signal processing of IMU data was conducted using a custom MATLAB® (The Mathworks 

Inc., Natick, MA, USA) script. For each IMU, angular velocity and acceleration data were fused 

using an error-state Kalman filter. The Kalman filter output an estimate of vertical acceleration 

aligned to the global reference frame. After aligning vertical acceleration signals to the global 

vertical, the signals were then passed through a 4th order recursive low-pass Butterworth filter 

(50 Hz cut-off frequency). 
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 Filtered vertical acceleration signals from the IMUs were combined by weighting each 

signal according to segment-mass weighting coefficients adapted from de Leva (1996); Table 2-

5). Vertical acceleration signals from the 4-segment (trunk, thighs, shanks, and feet) IMU model 

of the WBCoM were aligned with vertical acceleration signals acquired from the force platform 

using cross-correlation performed in MATLAB. Following signal alignment, vertical acceleration 

signals from the IMUs were combined into 1-, 2-, 3-, and 4-segment IMU models of the whole-

body COM according to segment-mass weighting coefficients adapted from de Leva (1996); 

(Tables 2-5).  

Table 2. Segment-mass weighting percentages for a 4-segment WBCoM IMU model 
 

Sex  Model Trunk R. Thigh L. Thigh R. Shank L. Shank R. Foot L. Foot 
Male 1 52.25 17.02 17.02 5.21 5.21 1.65 1.65 

Female 50.48 17.53 17.53 5.70 5.70 1.53 1.53 
WBCoM = whole-body center of mass; IMU = inertial measurement unit. 
 
 
Table 3. Segment-mass weighting percentages for 1-segment WBCoM IMU models. 
 

Sex  Model Trunk R. Thigh L. Thigh R. Shank L. Shank R. Foot L. Foot 

Both* 

2 100 - - - - - - 
3 - 50 50 - - - - 
4 - - - 50 50 - - 
5 - - - - - 50 50 

*Weighting percentages are equivalent across sexes. WBCoM = whole-body center of mass; IMU = inertial 
measurement unit. 
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Table 4. Segment-mass weighting percentages for 2-segment WBCoM IMU models. 
 

Sex  Model Trunk R. Thigh L. Thigh R. Shank L. Shank R. Foot L. Foot 

Male 

6 60.54 19.73 19.73 - - - - 
7 83.38 - - 8.31 8.31 - - 
8 94.07 - - - - 2.97 2.97 
9 - 38.29 38.29 11.71 11.71 - - 

10 - 45.59 45.59 - - 4.41 4.41 
11 - - - 37.98 37.98 12.02 12.02 

Female 

6 59.02 20.49 20.49 - - - - 
7 81.57 - - 9.22 9.22 - - 
8 94.29 - - - - 2.86 2.86 
9 - 37.72 37.72 12.28 12.28 - - 

10 - 45.99 45.99 - - 4.01 4.01 
11 - - - 39.43 39.43 10.57 10.57 

WBCoM = whole-body center of mass; IMU = inertial measurement unit. 
 
 
 
Table 5. Segment-mass weighting percentages for 3-segment WBCoM IMU models. 
 

Sex  Model Trunk R. Thigh L. Thigh R. Shank L. Shank R. Foot L. Foot 

Male 

12 54.03 17.60 17.60 5.38 5.38 - - 
13 58.32 19.00 19.00 - - 1.84 1.84 
14 79.22 - - 7.89 7.89 2.50 2.50 
15 - 35.65 35.65 10.90 10.90 3.45 3.45 

Female 

12 52.07 18.08 18.08 5.88 5.88 - - 
13 56.98 19.78 19.78 - - 1.73 1.73 
14 77.73 - - 8.78 8.78 2.36 2.36 
15 - 35.39 35.39 11.52 11.52 3.09 3.09 

WBCoM = whole-body center of mass; IMU = inertial measurement unit. 
 

In total, the combination of IMU vertical acceleration signals yielded 15 unique models 

of the WBCoM comprised of either 1, 2, 3, or 4 body segments. For each model, root mean 

square error (RMSE) was estimated between IMU vertical acceleration data and vertical 

acceleration data acquired from the force platform. The 1-, 2-, 3-, and 4-segment models that 

returned the lowest RMSE, on average, were selected for statistical analysis. 
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Statistical Analysis 

Statistical analysis was conducted using RStudio (Version 2.1) open-source software. A 1 

× 4 Analysis of Variance was used to evaluate for a main effect of segment number (1-segment 

IMU model × 2-segment IMU model × 3-segment IMU model × 4-segment IMU model) on 

RMSE. A main effect was observed between the RMSE of the models and a post-hoc analysis 

was performed using the Tukey HSD pairwise comparison. For all hypothesis tests, an alpha 

type I error threshold of p < 0.05 was used to determine statistical significance. 

Results 

Using the above methods, RMSE data for each IMU model are presented in Table 6. 

Models 1, 2, 7, and 13 returned the lowest RMSE, on average, and thus were included as the 1-, 

2-, 3-, and 4- segment models in the ANOVA, respectively. 

Table 6. Central tendency and dispersion.  

Model Segments RMSE (m*s-2) 
1 Trunk, Thighs, Shanks, Feet 2.2 (1.1) 
2 Trunk 3.0 (1.4) 
3 Thighs 4.3 (1.2) 
4 Shanks 9.0 (2.3) 
5 Feet 15.1 (3.3) 
6 Trunk, Thighs 2.2 (1.2) 
7 Trunk, Shanks 2.1 (1.3) 
8 Trunk, Feet 2.5 (1.4) 
9 Thighs, Shanks 4.5 (1.1) 

10 Thighs, Feet 4.2 (1.1) 
11 Shanks, Feet 9.9 (2.4) 
12 Trunk, Thighs, Shanks 2.1 (1.1) 
13 Trunk, Thighs, Feet 2.0 (1.2) 
14 Trunk, Shanks, Feet 2.2 (1.3) 
15 Thighs, Shanks, Feet 4.7 (1.1) 

Data are presented as mean (SD). RMSE = root-mean-square error. 
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ANOVA 

 There was a main effect of segment number on RMSE (F = 6.0, p = 0.016). Tukey HSD 

pairwise comparisons revealed that the RMSE for the best performing 1-segment IMU model 

was significantly greater than the RMSE for the best performing 2-segment (p = 0.041; Table 7) 

and 3-segment IMU models (p = 0.021; Table 7). No other significant differences were observed 

(p = 0.061 – 0.999); however, the comparison between the best performing 1-segment model 

and the 4-segment model approached statistical significance (p = 0.061). 

 

Table 7. ANOVA Results 

Model Type Model RMSE (m*s-2) 
4-Segment 1 2.2 (1.1) 
3-Segment 13 2.0 (1.2)* 
2-Segment 7 2.1 (1.3)* 
1-Segment 2 3.0 (1.4) 

*Significantly different from 1-Segment (Model 2; p < 0.05) 

Discussion 

The purpose of this study was to quantify the effects of IMU sensor location and 

number on the validity of vertical acceleration estimation in CMJ. A total of 15 unique IMU 

models were constructed from de Leva (1996) anthropometrics. Using acceleration acquired 

from a force platform as a criterion reference, it was hypothesized that IMU models comprised 

of acceleration data that was representative of a greater proportion of body mass relative to 

the whole-body (e.g. multiple body segments, body segments with larger mass proportions) 

would yield the most valid estimate of CMJ vertical acceleration. The results of this study 

partially supported this hypothesis. 
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Our hypothesis was based on the concept that a model representing more segments, 

and thus comprising a greater overall proportion of mass relative to the whole-body would 

better characterize whole-body acceleration and so the 4-segment model constructed from 

IMU acceleration data corresponding with the approximate segmental centers of mass of the 

trunk, thighs, shanks, and feet was expected to yield the lowest RMSE values. This was not 

observed in the present investigation, as the RMSE values for the best performing 2-segment 

(Trunk, Shanks) and 3-segment (Trunk, Thighs, Feet) IMU models did not differ statistically from 

the 4-segment IMU model (see Table 7). There was no significant difference in RSME values for 

the 4-segment model when compared against the best performing 2- and 3-segment models. 

Notably, significantly lower RMSE values were observed for the best performing 2- and 3-

segment models, but not for the 4-segment model, when compared with the 1-segment model 

comprised of trunk acceleration data (see Table 7). This suggests that the best performing 2- 

and 3-segment models were marginally better than the 4-segment model.  

The observation that a 2-segment IMU model has the potential to perform equally well 

against a 4-segment IMU model would simplify methods for gathering CMJ GRF data via IMUs. 

There is practical value in developing IMU technology so as to provide access to laboratory 

grade assessments in the field. Within this scope, minimizing the number of IMUs a researcher 

would need for application in CMJ could facilitate the efficiency and convenience of 

measurements collecting in field or real-world settings. 

On average, RMSE values for the best performing 2-segment and 3-segment IMU 

models was 2.1 and 2.0 m/s2, respectively. This can be interpreted as these IMU models having 

an average error of roughly 20% of the acceleration of gravity (e.g., 2/9.81) when compared 
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against acceleration captured via a force platform. Therefore, it can also be extrapolated that 

these IMU models could be expected to represent CMJ GRF data within an average error of 

approximately 20% of body weight, given that body mass is a constant value. While the level of 

acceptable measurement error in instrument validity is highly contextual, a 5% IMU 

measurement error relative to force platform data would likely be considered acceptable by the 

broader research and practitioner communities. The average RMSE of roughly 20% observed in 

the present investigation may be viewed as too large, however, it is important to note that this 

error was interpreted in relation to body weight. During the CMJ, peak forces are substantially 

greater than body weight, which suggests that it is likely for RMSE values to be much less than 

20% when viewed within the context of specific CMJ events (e.g., peak GRF). 

In support of the hypothesis, IMU models including vertical acceleration of the trunk 

segmental center of mass tended to yield lower RMSE values. For instance, the best performing 

1-, 2-, 3-, and 4-segment models all included trunk acceleration data. This is not surprising since 

the trunk comprises roughly 43.5% and 42.5% of overall body mass in males and females, 

respectively (de Leva, 1996). Within this same context, it was hypothesized that the thighs, 

given their proportion of overall body mass, would yield acceleration data which was important 

to include to the IMU models from the perspective of maximizing instrument validity. Contrary 

to the hypothesis, the best performing 2-segment model included acceleration data from the 

trunk and shanks. It is important to note the best performing models were selected based on 

the lowest RMSE values returned, on average. RMSE values from model 7 (Trunk, Shanks) were 

lower than model 6 (Trunk, Thighs) (see Table 6). Therefore, the movement of the shanks may 

be more beneficial to track even though the thighs contain a higher percent of body mass.  
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 The results of the present investigation support the potential for using IMUs in place of 

the “gold standard” force plate when capturing CMJ data. There is practical value in using IMUs 

to collect valid CMJ data in field settings. IMUs are small, they are easy to transport and store, 

and they allow the subject to move rather than standing overtop a force platform. Yet, there is 

also a need to improve upon the validity of data captured from IMU sensors. There are various 

ways in which the validity of IMU data could be improved. One approach could be to improve 

upon the IMU technology currently available for application in kinesiology. Improving the 

technology would be achieved through minimizing systematic sensor errors such as bias, 

scaling, sensitivity, and nonlinearity (Martin, Groves, & Newman, 2016).  

Martin et al. (2016) provides an in-depth overview of the different types of systematic 

(fixed) and stochastic (random) errors associated with IMUs. They found the most important 

error to minimize is the gyroscope bias which can be improved through static calibration. The 

Kalman filter, as discussed in the methods session, was used to transform the data from the 

IMU axes to align with the global vertical (downward acceleration of gravity). It is noted by 

Martin et al. (2016) that the performance of the Kalman filter degrades with greater 

magnitudes of systematic sensor error. This was addressed in the present investigation by 

conducting a static calibration of the IMUs. The simplest approach to calibration involves 

placing the IMUs on a table to obtain static estimates of systematic sensor error, including 

gyroscope and accelerometer bias and noise (Martin et al., 2016). In this study, the IMUs were 

calibrated by collecting static data with the sensors suspended on a planar surface that was 

floated on the surface of water. By using this approach to optimize the Kalman filter, the 
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average sensor orientation error was reduced from 2.8 degrees to 1.8 degrees. Though there 

was a substantial drop in error, the calibration did not eliminate the error.  

Lastly, this study used de Leva (1996) anthropometrics to weight IMU signals according 

to the mass proportions of individual body segments. These measurements were based on 

average measurements taken and do not relate to every participant. Fat stores and torso-to-

legs ratios can skew the CoM in body segments; therefore, a more participant-specified mass 

proportioning method could beneficial. Perhaps a more optimal mass weighting strategy which 

does not follow the anthropometric norms. Methods such as DEXA scans or 3D imaging, though 

both of these are expensive and require training, would provide more specified measurements 

per participant than average CoM measurements.  

 There were a few limitations to this study. First, it is likely that there was movement 

artifact in the IMU acceleration data relating to the fat, skin, and muscle on which the IMUs are 

attached. While the use of the Fixomull® polyurethane film was intended to help minimize 

movement artifact, there may be better approaches for securing the IMUs. In the present 

investigation, we passed time-series data through a 4th order, recursive Butterworth filter that 

was set to a cut-off frequency of 50 Hz. It may also be possible to develop a time-series data 

filter that is more suitable for removing movement artifact from IMU signals, yet this would 

need to be addressed through additional study.  
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Conclusion 

The purpose of this study was to quantify the effects of IMU sensor location and 

number on the validity of vertical acceleration estimation in CMJ. Contrary to the hypothesis, 

the use of a 2-segment IMU model has the potential to perform equally well against a 4-

segment IMU model, which would simplify methods for gathering CMJ acceleration data. The 

average RMSE of the best performing 2- and 3-segement models produced an error of 

approximately 20% relative to gravitational acceleration. This error is high compared to a 

generally acceptable 5% error margin; however, the percent error observed may be lower when 

viewed within the context of specific CMJ events and peak acceleration. It was hypothesized 

that IMUs placed over segments with a greater mass proportion relative to the whole-body 

would contribute most to achieving a valid estimate of vertical acceleration in comparison with 

the force platform. This was supported, with the trunk included as a segment in all of the best 

performing models. While the results of the present investigation are promising, there is a 

continued need to further improve IMU technology, procedures, and data processing in effort 

to reduce RMSE values relative to force platform dynamometry to a more acceptable level.  
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