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Abstract 
 

Pre-emptively categorizing an order as on-time, early, or late: Using an XGBoost 

algorithm to predict whether a placed order will arrive early, on-time, or late to 

Invista. 

 

By 

 

Kegan J Penovich 

 

Utah State University, 2021 

 

Logan, Utah 

 

 

Major Professor: Dr. Joe Koebbe 

 

Department of Mathematics and Statistics 

 

 Invista, a Koch subsidiary, is multinational producer of fibers, resins, and 

intermediaries, particularly nylon. To keep the company operating required 

them to take over 1.5 million orders over the course of 2 - 
1

2
 years, less than a 

third of which arrived on-time. Orders arriving other than when expected can 

cause many problems for any company. While arriving late is a clear problem, it 

also troublesome for them to arrive early. In the face of this it becomes 

important to be able to tell a-priori if an order will arrive on-time or not. 

 To address this problem, we made use of those 1.5 million orders to try 

and learn how to predict if an order would be on-time or not. There are many 

methods for doing so and we tried three approaches: Neural-Networks, Gradient 

Boosting, and Time series. In the end we found the Gradient Boosting algorithm 

worked the best. We utilized the popular XGBoost framework of Gradient 

boosting. This was made further appealing by the company having utilized this 

algorithm before. 
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1. Introduction 
Invista is a fiber, resin, and intermediates company centered in Wichita 

Kansas, though they operate many facilities in the United States and abroad. Due 

to its size, Invista requires hundreds of orders each day for products ranging 

from mechanical parts to chemical agents to building materials. An unfortunate 

reality of ordering in such volume and frequency is that some of those orders will 

not arrive when planned. This inevitably will cause delays to propagate through 

the production process resulting in loss of time and capital.  

While some level of late orders is to be expected and can be dealt with, 

widespread tardiness can become a source of continuing delays and loss in 

production. Dealing with late and early orders becomes a necessary concern 

once operations reach a certain size, and core to dealing with late and early 

arrivals is gaining some insight into what causes an order to be late or early. 

Time working with vendors and gaining domain expertise can be valuable tools 

in addressing why an order might me early or late. However, when a company 

has millions of detailed and recorded orders, more sophisticated methods must 

be used to analyze the process. 

Invista wished to try these methods to determine how likely an order would 

be early, late, or on-time. To accomplish this Invista reached out to Utah State 

University’s Analytics Solution Center. The Analytics Solution Center (ASC) is an 

organization where students at USU are given the opportunity to work with 

professors and public companies on real-world data intensive projects. The 

companies gain a solution to a real world problem at a fraction of the cost of a 

professional consultant, while students gain structured but real-world 

experience. 

The goal of the project was to provide Invista with a model that could take a 

finished order as input, and then provide as output a classification of on-time, 

early or late. Our model needed to correctly classify an order as early, late, or 

on-time correctly less than 90 percent of the time. This rate was a company 

threshold number to prevent overfitting. This made the goal to obtain a rate 

between 80 and 85 percent on test data sets for the project. 

This requirement was one that was strange to our team as we have often 

been trained to seek for as close to perfect accuracy as possible. Invista’s policy 

to have a maximum trusted accuracy of 90% ran contrary to perfect accuracy. 

We had this explained to us that while accuracy over 90% might sound great, 

Invista had found in their experience such high scores were often the result of 

over fitting. This justified Invista’s confidence in lower accuracy models to be 

more honest in their limited predictability than highly accurate models. As a 



practical note, such high accuracy is challenging to achieve so it was not as 

limiting as one might expect. 

Code developed and tested in the project was required to be usable within 

the company’s code pipeline. The choice for this project was Amazon Web 

Services (AWS). This was largely a non-issue since the code we wrote used 

common machine learning libraries available in Python. Implementation into 

Invista’s pipeline was done during the last few days of the internship. 

Throughout the internship the team that I was a part of was required to give 

weekly updates to Invista staff. This staff primarily included people responsible 

for tracking and recording orders for Invista. The meetings were designed to 

inform them of interesting results we had found, problems we were 

encountering, and as an accountability measure. These meetings were to be 

fifteen minutes with time at the end for questions that the Invista employees 

had for us. 

The analysis and the model fitting were all done in Python using AWS as the 

computational environment and data repository, and Git as version control. AWS 

is an on-demand cloud computing platform. Beyond cloud computing we also 

used AWS cloud storage for our data. Invista used Amazon Lambda, a service 

providing serverless functions, to deploy our final model. Our involvement in this 

final part was minimal, though we were walked through how that deployment 

would go.   

The project was split into five parts over a 12-week internship: 1. Data 

Exploration, 2. Feature Engineering, 3. Model selection, 4. Feature selection, and 

5. Validation. The bulk of the time was spent on the first three parts with only 4 

weeks spent on the latter two parts. We will spend a section of the paper going 

over each of these, while a short description to each will be given below. 

1. Data Exploration 

In section 2 we go over the data that was given to us by Invista. We explain 

how we had to clean and prepare the data. The main issues we faced were due 

to the data having been produced over the course of several years. Differing 

standards of data entry, changing suppliers, and company growth all caused 

challenges that had to be addressed. 

2. Feature Engineering 

In section 3 we then go on to show new variables that we created to try 

and pull more information from the data. There were also attempts to find 

trends and more useful relationships though not from any machine learning 



model. We put this section here to aid in the flow of reading; however, we were 

always on the lookout for new features or variables to test.  

3. Model Selection and the Extreme Gradiant Boosting (XGBoost) Model 

In section 3 we go over our process for choosing a model to try to categorize 

orders as late early or on-time. Two models were tried: a simple Feed Forward 

Neural Network and the XGBoost model. In the end the XGBoost model was 

chosen as it was the most accurate in our initial tests and since the model had 

been used in other Invista projects. We will explain the Xgboost model, how it 

works, and why it is a good fit for our situation. 

4. Feature Selection 

After our model was selected, we then went on to decide which variables 

were the most important to keep. The model proved robust in that its 

performance was acceptable with very few variables. The model was time 

consuming to fit so the number of variables tested was limited though not to any 

serious degree.  

5. Validation 

Once the final model was finalized, we had to validate the model to show 

that it was not suffering from overfitting. While there are several ways to 

address overfitting the time series nature of the data led us to leaving out a 

validation set. We left out the last few months of data so that 20% of the data 

was unused during the modeling process.  

6. Results 

In section 4 we will go over the results of the model. We were able to attain 

model accuracy of 75 percent using XGBoost. We will discuss which variables 

were chosen for the final fit, and more about how the model performed while 

determining which of the categories—late, early, or on-time—the model was 

predicting.  

 

2. Data 
The data we received included all received orders that Invista had received 

from January 1, 2017 till March 1, 2020. This totaled 1467858 orders received 

each of these then had an additional 24 features that could be investigated. 

Among these were company ID’s, materials ordered, company location, and 

most importantly a date of expected arrival and date of actual arrival. From this 

we were able to determine if an order was on-time, early, or late. The only issue 



we ran into was that about a third of the dates were missing a received date so 

those had to be thrown out of consideration. 

A common problem we faced with this dataset involved many missing values 

for several of the features. We were lucky in that most of these were not 

considered for ultimate use in the model, but we were forced to remove many of 

the observations ultimately resulting in a cleaned data set with around 900,000 

observation.  

Our first action on the clean dataset was to see what the breakdown 

of late/on-time/early orders was. Our assumption was that most orders 

would be late then on-time with the fewest being early. This turned out 

to be incorrect. Most orders were late, but then the second most were 

early with on-time orders being a surprisingly small number of the totals. 

Across the whole data set only 14.5% of orders were on-time. Over time 

this did increase, but this was mostly from a drop in total orders not an 

increase in on-time orders. 

 

 

Figure 1 Counts by year of Late, Early, and On-time Orders 

This tells us that our target variable is not uniformly distributed. We did not 

take the possible ramification of this into account which lead to some unutilized 

information that might have been helpful. This omission and its consequences 

will be discussed more in section 4. 

It was to these cleaned observations that we looked to in our first efforts to 

understand the problem. Our efforts largely broke down into looking at late/on-

time/early distinction order type, who they were ordered from, and general 



trends through time. This was done to orient ourselves but was also helpful as an 

eye forward to later feature engineering. 

Order type is a designation that tells us why the order was made. There are 

many such distinctions which include orders that are made when predetermined 

level in inventory is reached, ordered as needed, and other more nuanced 

situations. As this knowledge is proprietary to the company, I will not explain the 

labels.  As we looked at the order type, we first decided to look at them as 

independent of their arrival status. This gave us an idea of how to weight these 

order tpes when we investigated their arrival status. In Figure 1 below we see 

table that shows the percentage of order type. We see that nearly 93% of orders 

come from just four of these order types while we can get to 98% with just six. 

This let us know that a small subset of the order types made up the majority of 

total orders.  

We then wanted to look at the breakdown of arrival status orders by order 

type to see if the break down followed the same pattern as order type 

irrespective of arrival status. If this is not the case it would suggest the order 

type might have predictive power. Arranging them in descending order we can 

see that these do not exhibit a uniform distribution, particularly across the top 

four order type categories.  

 

 

Table 1 Percentage of Total Orders by Order Type 



 

Figure 2 Percentage Early by MRP Type 

 

Figure 3 Percentage Late by MRP Type 

 who they were ordered from, and general trends through time. 

 We then went about looking at the percentage of orders late by 

company. What we found so far suggested that most companies should be late a 

majority of the time. However, when we looked at the distribution, we found 



that the most common result was that a company was always late or always 

early. This result is shown below in a histogram binned by the percent of orders 

that were late. 

 

 

Figure 4 Histogram of Vendors by Late Delivery Rate 

We found the reason for this as we looked more closely at the companies 

order history. There were roughly 5,000 companies that Invista had placed 

orders with. When we began to look at trends from who the orders where with, 

we quickly realized that a small group of companies represented the majority of 

orders. If we were to look at only the top 20 companies, we found that more 

than 50% of orders came from them. By upping that to the top 100 we had over 

90% of orders accounted for.  

 This made us then investigate the opposite situation. That is how many 

companies had been ordered from only once. We found that this represented 

well over a thousand companies, and thus explained the bimodal distribution. 

When a company is only ordered from once it will be immediately classified into 

always late or never late.  

 This became a problem as we began to investigate time trends of orders. 

It was clear that most companies would not have enough of a history to allow for 

any meaningful exploration. This meant that we were restricted to look at the 

total trend or look at trends for the top 100 or so companies that had enough 

historical data to admit regression techniques.  



 This problem was further exacerbated when we realized that companies 

were often dropped even among those that had large order histories prior to 

being dropped. This became a deciding factor in looking into Invista’s order 

history in its entirety rather than at the companies that Invista ordered from 

individually. 

 

Figure 5 Percent of Orders Late Over Time 

 We can see from Figure 5 that early in their records there was a drop in 

the number of late orders going from 62.5% to 48% in 10 months. This then 

settled into fluctuating around 47.5% for the rest of our available history. The 

initial drop was not unexpected as it coincided with some changes that occurred 

in the company at that time. We tried to refine this by looking at bi-monthly late 

orders, but the results looked much the same. Refining the search into weekly 

levels was considered but processing the data for that would have taken several 

hours each time so the refinement was not considered in this project. 

3. Feature Engineering 
 Having done our initial exploration in the data we began to try and pull 

more information be making new features for the data, analyzing these features, 

and then ultimately doing cursory model exploration.  

 Much of the feature creation was to deal with the categorical data we 

were presented with. Order type, material type, vendor rating, and several other 

variables needed to be converted into a form that a model could take as input. 

This was accomplished through one-hot encoding, but to do so we had to create 

an “other” category to prevent each of these categories from exploding in size. 



Since each category was always dominated by three or four types it was 

straightforward to determine which to group into the “other” category.  

 We also decided to attach to each company its average percentage of on-

time percentage. While this led to many with 100% or 0% we felt like the 

information was too important to not include. We also included the number of 

days from when an order was created to when the order was released. Since we 

believed that if there was a delay here it could lead to trouble down the line. 

 We then needed to try some models that could categorize the data into 

late/on-time/early. We decided to pick two models and test them against each 

other as out of the box models. Whichever did better would be the model that 

we would use as our final model. We decided to try two since the time 

constraints did not allow for a broader search. This was particularly true since 

most models required a fair bit of learning before we could implement them. 

 The models that we were choosing amongst where Logistic Regression, 

Feed Forward Neural Network, XGBoost, and Random Forests. Invista had good 

results with XGBoost before, and the package has a reputation for being 

excellent in categorization problems which led us to select it as one model. We 

ruled out Logistic Regression since our problem seemed to be more complicated 

than it could handle. Between an FFN and a Random Forest we decided to use a 

FFN since we wanted a non-tree-based method to compare to.  

 To decide which one to use we would train each on the same training-

test data split and see which performed better on the test set. While we did 

some rough learning rate tuning, we made no other efforts to increase the 

performance of the models. The results were that the XGBoost model had an 

accuracy near 65% while the FFN was just above 51%. Since we were classifying 

into three groups, they both proved better than guessing, but XGBoost was the 

clear winner.  

 The last decision that we made at this juncture was whether to change 

the classification to on-time/not on-time, or to keep the current late/on-

time/early distinction. If we change to a binary classification, we were able to get 

the accuracy of the XGBoost model up to 75% with no other adjustments. 

Ultimately the choice was presented to the project’s stakeholders, and they 

made the decision that it was better to have the late/on-time/early distinction 

than to have an increase in accuracy in a more restricted setting. 



4. Gradient Boosting and XGBoost 
Extreme Gradient Boosting is an open-source software package that was 

created a research project by Tianqi Chen at the University of Washington. From 

the Github repository we have this description of the library and its purpose:  

 

“XGBoost is an optimized distributed gradient boosting library designed to 

be highly efficient, flexible and portable. It implements machine learning 

algorithms under the Gradient Boosting framework. XGBoost provides a 

parallel tree boosting (also known as GBDT, GBM) that solve many data 

science problems in a fast and accurate way. The same code runs on major 

distributed environment (Kubernetes, Hadoop, SGE, MPI, Dask) and can 

solve problems beyond billions of examples.” Chen 2016 

 

The library contains multiple models but for our model we used its 

implementation of Gradient boosted trees. This was due not only to its 

popularity but since the Invista team had used it before to good success.  

We will now go into the XGBoost model and explain how it functions and 

some of the things that make it unique among Gradient Boosting algorithms. For 

readability we will show the results for binary classification and not go into the 

derivations of the formulas used here, but they will be included in the appendix.  

Tree classification works from utilizing the idea that many weak learning 

models can cumulatively perform quite well. Gradient Boosting tree algorithms 

construct these trees iteratively, using the previous results to augment the next 

tree. How these trees are created then is the beginning step for any such 

algorithm. 

For XGBoost the root and splits in the tree are made using a Similarity 

Score and a Gain factor. The formulas for these at the 𝑗 + 1 step in the algorithm 

are:  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =
(∑ 𝑝𝑖𝑗 − 𝑦𝑖

𝑛
𝑖=1 )

2

∑ 𝑝𝑖𝑗(1 − 𝑝𝑖𝑗)𝑛
𝑖=1 + 𝜆

 

 

𝐺𝑎𝑖𝑛 = 𝐿𝑒𝑓𝑡 𝐿𝑒𝑎𝑓 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑅𝑖𝑔ℎ𝑡 𝐿𝑒𝑎𝑓 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 − 𝑅𝑜𝑜𝑡 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 

 



Let 𝑝𝑖𝑗 be the predicted probability of observing 𝑦𝑖  at the 𝑗𝑡ℎ step in the 

algorithm. We start with the assumption that our probability of observing 𝑦𝑖 is 

uniform giving us: 

𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
1

𝑛
, where 𝑛 is the possible categories of 𝑦𝑖 

The algorithm will then start by making the root node by calculating the 

similarity score for all the data. Each feature in the data is divided into two 

leaves and the similarity score is calculated for each leaf. The Gain is then 

calculated for the split and when the gain is maximized the split is kept. 

 

 

 

 

 

 

 

 

 

 

                        Figure 7 Split Gain Example 

 

When the dataset is small all possible splits will be tried in a Greedy 

algorithm to find the true maximum value. When the dataset is large this would 

be time intensive so instead it checks only some divisions. It chooses these by 

using Sketch algorithms running in parallel to construct a distribution of the data. 

It then calculates several quantiles and uses these splits as divisions over which 

to search for the maximum Gain. This is the Approximate greedy algorithm. 

This is then repeated until a user chosen number of leaves are reached. 

This will then be trimmed back according to another user defined parameter 𝛾. A 

node is kept if the Gain is greater than 𝛾. The value of 𝜆 in the Similarity Score 

affects this process making it more likely to trim a leaf with a larger value since 

that will shrink the Gain. 

𝑋𝑖 < 10 

252 151 

𝑋𝑖 < 15 

271 132 

𝑋𝑖 < 20 

215 188 

𝑋𝑖 < 25 

169 234 

Gain: 14.32 Gain: 15.83 

Gain: 12.65 Gain: 14.17 



Once the trimming is finished an output value is assigned to each leaf 

using the formula: 

𝐿𝑒𝑎𝑓 𝑂𝑢𝑡𝑝𝑢𝑡 =  
∑ 𝑝𝑖𝑗 − 𝑦𝑖

𝑛
𝑖=1

∑ 𝑝𝑖𝑗(1 − 𝑝𝑖𝑗)𝑛
𝑖=1 + 𝜆

 

We then will find new predictions using both our new tree and the initial 

predictions. We do get to choose how much the new tree will affect the 

predictions using a learning rate 𝜂. This formula is then: 

𝐿𝑜𝑔𝑂𝑑𝑑𝑠 = log (
𝑝𝑖𝑗+1

1 − 𝑝𝑖𝑗+1
) = log (

𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙

1 − 𝑝𝑖𝑛𝑡𝑖𝑎𝑙
) + 𝜂 ∑ 𝐿𝑒𝑎𝑓 𝑂𝑢𝑡𝑝𝑢𝑡𝑖𝑗

𝑀

𝑖=1

 

 

This is then the log-odds estimate which we can then transform into the 

probability 𝑝𝑖𝑗+1 using: 

𝑝𝑖𝑗+1 =
𝑒𝐿𝑜𝑔𝑂𝑑𝑑𝑠

1 + 𝑒𝐿𝑜𝑔𝑂𝑑𝑑𝑠
 

We can then use these to make new trees with our data and repeat the process.  

Iterating through this process we can then build an additive model from all the 

trees.  

 There are many other efforts spent to make sure that XGBoost runs as 

fast as possible while still taking advantage of the performative advantage that 

Gradient Boosting provides. What has been discussed here is a broad and terse 

accounting of the mathematical and statistical end of those efforts, a more 

elaborate definition and explanation will be given in the Appedix, but many more 

of these efforts are in more economical and particular use of computer 

architecture and hardware.  

5. Feature Selection 
Having chosen to use the XGBoost model we now had to decide which 

features to keep, or to add more, and then work to tune our hyperparameters. 

This proved to be quite time consuming, so we first fit a model with all features 

and tuned the hyperparameters. This gave us a benchmark against which to 

judge other choices. To then speed up the rest of the progress each team 

member chose to remove or add a set of features and then work to tune the 

hyperparameters. These results were then compared back to the benchmark.  



In each of these cases we also needed to validate the model in each of 

these steps. We set aside a validation set for this so that each model the team 

members had would be validated on the same set. 

The benchmark that we created was in the range of 74% accurate and 

had 100 features that it could access. To this end we wanted to test if more 

variables, particularly time series features, could help or if we could get by on 

fewer variables.  

The time series features that we tested consisted of fitting an AR(p) and 

an MA(q) model to the ordering history from each company. This gave a series of 

lag weights, p-values for Dicky-Fuller tests, and MRSE values for each of them. 

This resulted in an additional 26 features for the dataset and was attempted 

because it created so many features. The idea was that the model could find a 

way to use the knowledge provided by these simpler models to make better 

predictions. While the addition of these features did increase the accuracy, it 

was only 0.5%. Meanwhile it caused the fitting time to increase by several hours. 

For this reason, these features were left out. 

The attempts made to remove variables led to decreases in accuracy that 

we felt were too detrimental for the increased efficiency leaving us with a model 

with 112 features.  

6. Validation 

After hyper parameter tuning the final accuracy was 75%. It was now that 

we also wanted to check on the precision and recall capabilities. We wanted to 

look at this since we knew that our distribution of late/on-time/early 

observations was not uniform. We were concerned that this would cause it to 

poorly discern between the categories. We saw that when we grouped late and 

early into a single “not on time” category that our accuracy improved to 80% and 

this was without substantial effort in trying hyperparameter tuning. 

 

We can see from our results that our model did struggle correctly 

categorizing on-time orders more than it did early or late orders, particularly 



when it came to recall on on-time orders. While this was unfortunate, we were 

surprised how high the precision remained for on-time orders. This was 

heartening and the stakeholders found that this was still acceptable since the 

main priority was to predict if an order would be early or late. Since those still 

performed well the model was deemed acceptable. 

7. Conclusions 
 

The goal of the project was to build a model that can predict at release if 

an order will be early late or on-time. We were able to build at XGBoost model 

that could sort three categories, late/on-time/early with 75% accuracy. This 

accuracy could be improved by simplifying this to a binary classification of on-

time/not-on-time, but the need to differentiate between late or early was 

deemed to be of more use than an increase in accuracy. The model did show a 

propensity of struggling to classify an order as on-time as compared to late or 

early. This likely stems from the dataset having a low number of on-time orders 

to learn from.  

The next steps that were not covered in the project were dealing with 

how often the model should be refit, and if there were a better way to deal with 

the disparity in on-time orders to late/early orders. We had not considered this 

early in the project so by the time we realized the profound effect it had we 

were out of time to consider remedies more fully for it. If this issue could be 

addressed more fully it is likely that a better model could be formed. 

 

 

  



Appendix 

 

A.1.1 Derivation of Similarity Score 
 The most common loss function that we used for the XGBoost algorithm is the 

negative log-loss function. 

𝐿(𝑦𝑖, 𝑝𝑖𝑗) = −𝑦𝑖 log(𝑝𝑖𝑗) − (1 − 𝑦𝑖) log(1 − 𝑝𝑖𝑗) 

 

− ∑ 𝑦𝑖 log(𝑝𝑦𝑖
) + (1 − 𝑦𝑖) log(1 − 𝑝𝑦𝑖

)

𝑁

𝑖=1

+ 𝛾𝑇 + 𝜆𝑦𝑖̅ 

A.1.2 Derivation of Leaf Output 
We start with a regularized loss function.  

∑ 𝐿(𝑦𝑖, 𝑝𝑖
0 + 𝑂𝑣𝑎𝑙𝑢𝑒) +

1

2
𝜆𝑂𝑣𝑎𝑙𝑢𝑒

2  

𝑛

𝑖=1

 

We want to minimize this loss function but doing so can be complicated and costly. To 

sidestep this in the XGBoost algorithm the second order Taylor polynomial is solved 

instead.  

𝐿(𝑦, 𝑝𝑖
0 + 𝑂𝑣𝑎𝑙𝑢𝑒) ≈ 𝐿(𝑦, 𝑝𝑖) + [

𝑑

𝑑𝑝𝑖
𝐿(𝑦, 𝑝𝑖)] 𝑂𝑣𝑎𝑙𝑢𝑒 +

1

2
[

𝑑2

𝑑𝑝𝑖
2 𝐿(𝑦, 𝑝𝑖)] 𝑂𝑣𝑎𝑙𝑢𝑒

2  

 

𝐿 =  ∑ 𝐿(𝑦, 𝑝𝑖) + [
𝑑

𝑑𝑝𝑖
𝐿(𝑦, 𝑝𝑖)] 𝑂𝑣𝑎𝑙𝑢𝑒 +

1

2
[

𝑑2

𝑑𝑝𝑖
2 𝐿(𝑦, 𝑝𝑖)] 𝑂𝑣𝑎𝑙𝑢𝑒

2 +  
1

2
𝜆𝑂𝑣𝑎𝑙𝑢𝑒

2

𝑛

𝑖=1

 

We can then solve for the output value 𝑂𝑣𝑎𝑙𝑢𝑒 that minimizes this by locating the 

extreme value points. As this is a quadratic form and the loss function is strictly positive, 

we know that the resulting extreme value will be a minimum.  

 

𝑑𝐿

𝑑𝑂𝑣𝑎𝑙𝑢𝑒
= ∑

𝑑

𝑑𝑝𝑖
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𝑛

𝑖=1

𝑑2

𝑑𝑝𝑖
2 𝐿(𝑦, 𝑝𝑖)𝑂𝑣𝑎𝑙𝑢𝑒 + 𝜆𝑂𝑣𝑎𝑙𝑢𝑒 = 0 
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In the case of a binary classification this can be solved explicitly. However, for the case 

of higher classification this results in a matrix problem that, while able to be solved 

explicitly, is better left to numerical solvers. 

 

B.1 Code for Making Final Features 

 

# In[3]: 

 

import sys 

import numpy as np 

import pandas as pd 

import numpy as np # linear algebra 

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) 

import xgboost as xgb 

from sklearn.model_selection import train_test_split 

 

sys.path.append('../') 

from util import * 

 

pd.set_option('display.max_columns', 500) 

pd.set_option('display.float_format', lambda x: '%.3f' % x) 

 

 

# In[4]: 

 

def convert_dates(df, 

dates=['CREATE_DATE','RELEASE_DATE','FIRST_GR_POSTING_DATE','POR_DELIVERY_DA

TE','REQUESTED_DELIVERY_DATE', 'DELIVERY_DATE'],verbose=False): 

    """ 

    Converts date columns to datetime type.  

     

    Parameters: 

    ----------- 

    df: dataframe on which to perform the conversion 



    dates: columns to convert, default should contain all necessary columns 

     

    Returns: 

    ---------- 

    Panda dataframe 

    """ 

#     dates = 

['CREATE_DATE','RELEASE_DATE','FIRST_GR_POSTING_DATE','POR_DELIVERY_DATE','RE

QUESTED_DELIVERY_DATE', 'DELIVERY_DATE'] 

     

#     for date in dates: 

#         # convert column to datetime, values not converting will become NaN (such as 

0.0) 

#         df[date] = pd.to_datetime(df[date], format='%Y%m%d', errors='coerce') 

#     return df 

 

    # Note: could probably add check for type, will crash if run on datetime   

    for date in dates: 

        df[date] = df[date].replace([np.inf, -np.inf, np.nan], 0) 

        try: 

            df[date] = pd.to_datetime(df[date], format='%Y%m%d', errors='coerce')     

        except: 

            if verbose: 

                print(f'exception thrown: {date}') 

            df[date] = pd.to_datetime(df[date].astype(int), format='%Y%m%d', 

errors='coerce') 

        if verbose: 

            print(f'CONVERTED {date}') 

        df[f'{date}_YEAR'] = df[date].dt.year 

        df[f'{date}_MONTH'] = df[date].dt.month 

        df[f'{date}_DAY'] = df[date].dt.day 

    if verbose: 

        print('FINISHED CONVERSION') 

    return df 

 

 

# In[5]: 

 

data2017, data2018, data2019_20, vendor_data = get_procurement_data() 

 

# Combine data2017, data2018, and data2019_20 into one dataframe 



 

data = pd.concat([data2017, data2018, data2019_20], ignore_index=True) 

 

 

# In[6]: 

 

convert_dates(data) 

'DONE' 

 

 

# In[7]: 

 

# Creating some features 

def get_short_text(df): 

    df['Short_Text_Order'] = np.where(df.MATERIAL_ID.isnull() & 

df.SHORT_TEXT.notnull(), 1, 0) 

    return df 

 

def get_total_orders(df): 

    def get_total_orders_sub(df): 

        total_vendor_orders = df.groupby('VENDOR_ID').size() 

        total_vendor_orders = pd.DataFrame([total_vendor_orders], index=['VENDOR_ID']) 

        total_vendor_orders = total_vendor_orders.transpose() 

        total_vendor_orders = total_vendor_orders.rename(columns={'VENDOR_ID': 

'total_vendor_orders'}) 

        total_vendor_orders = total_vendor_orders.reset_index() 

        total_vendor_orders['total_vendor_orders'] = 

total_vendor_orders['total_vendor_orders'].astype(int) 

 

        return total_vendor_orders 

 

    df = pd.merge(df, get_total_orders_sub(df)[['VENDOR_ID','total_vendor_orders']], 

left_on='VENDOR_ID', right_on='VENDOR_ID', how='left') 

    return df 

 

def get_percent_null_gr(df): 

    def get_null_gr_percent_sub(df): 

        null_gr_dates = 

df[df['FIRST_GR_POSTING_DATE'].isnull()].groupby('VENDOR_ID').size() 

        total_vendor_orders = df.groupby('VENDOR_ID').size() 

        vendor_nullgr = pd.concat([null_gr_dates, total_vendor_orders], axis=1, sort=True) 



        vendor_nullgr = vendor_nullgr.reset_index() 

        vendor_nullgr = vendor_nullgr.rename(columns={'index': 'VENDOR_ID', 0: 'null_gr', 

1: 'total_orders'}) 

        vendor_nullgr['percent_null_gr'] = vendor_nullgr['null_gr'] / 

vendor_nullgr['total_orders'] 

        vendor_nullgr = vendor_nullgr.fillna(0) 

        vendor_nullgr['null_gr'] = vendor_nullgr['null_gr'].astype(int) 

        return vendor_nullgr 

     

    df = pd.merge(df, get_null_gr_percent_sub(df)[['VENDOR_ID','percent_null_gr']], 

left_on='VENDOR_ID', right_on='VENDOR_ID', how='left') 

    return df 

 

 

 

def get_rating(df, vendor_df): 

    df = pd.merge(df, vendor_df[['Vendor ID','Rating']], left_on='VENDOR_ID', 

right_on='Vendor ID', how='left') 

    df = df.drop(columns='Vendor ID') 

    return df 

 

def create_release_diff(df): 

    df['Create_to_Release_Diff'] = df['RELEASE_DATE'] - df['CREATE_DATE'] 

    return df 

 

def material_type_feature(df): 

    df['General Operating Supplies'] = np.where(df['MATERIAL_ID'].astype(str).str[0:1] == 

'1', 1, 0) 

    df['Semifinished & Finished Materials'] = 

np.where(df['MATERIAL_ID'].astype(str).str[0:1] == '2', 1, 0) 

    df['Packaging'] = np.where(df['MATERIAL_ID'].astype(str).str[0:1] == '3', 1, 0) 

    df['Raw Materials'] = np.where(df['MATERIAL_ID'].astype(str).str[0:1] == '4', 1, 0) 

     

    return df 

     

def subcommodity_type_feature(df): 

    df['Custom Manufacturing'] = np.where(df['SUB_COMMODITY_DESC'] == 'Custom 

Manufacturing', 1, 0) 

    df['Additives, Colorants & Catalysts'] = np.where(df['SUB_COMMODITY_DESC'] == 

'Additives, Colorants & Catalysts', 1, 0) 

    df['Tolling'] = np.where(df['SUB_COMMODITY_DESC'] == 'Tolling', 1, 0) 



    df['Subcommodity_Other'] = np.where((df['SUB_COMMODITY_DESC'] != 'Custom 

Manufacturing') & (df['SUB_COMMODITY_DESC'] != 'Additives, Colorants & Catalysts') & 

(df['SUB_COMMODITY_DESC'] != 'Tolling'), 1, 0) 

     

    return df 

 

 

def MRP_type_feature(df): 

    df['MRP_X0'] = np.where(df['MRP_TYPE_ID'] == 'X0', 1, 0) 

    df['MRP_ND'] = np.where(df['MRP_TYPE_ID'] == 'ND', 1, 0) 

    df['MRP_Y0'] = np.where(df['MRP_TYPE_ID'] == 'Y0', 1, 0) 

    df['MRP_Other'] = np.where((df['MRP_TYPE_ID'] != 'X0') & (df['MRP_TYPE_ID'] != 

'ND') & (df['MRP_TYPE_ID'] != 'Y0'), 1, 0) 

     

    return df 

 

 

# In[8]: 

 

# Functions that we can perform on the whole dataset 

    # 1) Drop null first_gr_posting_dates 

    # 2) Filter Vendors 

    # 3) get ratings 

    # 4) create_release_diff 

    # 5) material_type_feature 

    # 6) subcommodity_type 

    # 7) mrp_type 

    # 8) short_text 

 

 

# In[9]: 

 

# 1) drop null first_gr_posting_dates 

# dropping null first_gr_posting dates, 0's are nulls 

print("Before: ", data[data['FIRST_GR_POSTING_DATE']==0].shape[0]) 

print("Before: ", data[data['FIRST_GR_POSTING_DATE'].isna()].shape[0]) 

 

data = data[data['FIRST_GR_POSTING_DATE'] != 0] 

data = data[data['FIRST_GR_POSTING_DATE'].notnull()] 

print("After: ", data[data['FIRST_GR_POSTING_DATE']==0].shape[0]) 

print("After: ", data[data['FIRST_GR_POSTING_DATE'].isna()].shape[0]) 



 

 

# In[10]: 

 

# 2) Filter Vendors 

 

# drop all vendors starting with V 

# data = data[~data['VENDOR_NM'].astype(str).str.startswith('V')] 

 

print("Before: ", data.shape[0]) 

data = filterVendors(data) 

print("After: ", data.shape[0]) 

 

 

# In[11]: 

 

# 3) Get Ratings 

data = vendor_segmentation(data, vendor_data) 

 

 

# In[12]: 

 

data.columns 

 

 

# In[13]: 

 

# data.loc[29].Rating 

 

 

# In[14]: 

 

# def rating_to_number(df): 

#     # C: 0, B: 1, A: 2; NaN are set to 0 

#     df['RatingNum'] = 0 

     

#     df['RatingNum'] = np.where(df.Rating == 'C', 0, df['RatingNum']) 

#     df['RatingNum'] = np.where(df.Rating == 'B', 1, df['RatingNum']) 

#     df['RatingNum'] = np.where(df.Rating == 'A', 2, df['RatingNum']) 

     

#     # Create another field to keep track of null ratings 



#     df['NoRating'] = np.where(df.Rating.isnull(),1,0) 

     

#     return df 

 

 

# In[15]: 

 

# data = rating_to_number(data) 

 

 

# In[16]: 

 

# data[['Rating', 'RatingNum', 'NoRating']].tail() 

 

 

# In[17]: 

 

# 4) Create_to_Release Diff 

data = create_release_diff(data) 

 

 

# In[18]: 

 

data['Create_to_Release_Diff'] = data['Create_to_Release_Diff'].dt.days 

 

 

# In[19]: 

 

data['Create_to_Release_Diff'].tail() 

 

 

# In[20]: 

 

# 5) material_type_feature 

data = material_type_feature(data) 

 

 

# In[21]: 

 

# 6) subcommodity_type 

data = subcommodity_type_feature(data) 



 

 

# In[22]: 

 

# 7) mrp_type 

data = MRP_type_feature(data) 

 

 

# In[23]: 

 

# 8) short_text 

data = get_short_text(data) 

 

 

# In[24]: 

 

##################################### 

# Set the Target and split the data # 

##################################### 

 

 

# In[25]: 

 

set_target(data) 

# data = data.drop(columns=['Late', 'OnTime', 'Early', 'FIRST_GR_POSTING_DATE'] 

 

 

# In[26]: 

 

data = 

data.drop(columns=['FIRST_GR_POSTING_DATE','FIRST_GR_POSTING_DATE_YEAR','FIRS

T_GR_POSTING_DATE_MONTH','FIRST_GR_POSTING_DATE_DAY']) 

 

 

# In[27]: 

 

# data = data.drop(columns=['Late','OnTime','Early']) 

# data.to_csv('output.csv') 

 

 

# In[28]: 



 

data_full = data.copy() 

# X_data = data_full.drop('Late', axis=1) 

X_data = data_full.drop('DeliveryOutcome', axis=1) 

y = data_full.DeliveryOutcome 

 

 

# In[29]: 

 

X_train, X_test, y_train, y_test = get_train_test_data(X_data, y, test_size=.3, 

random_state='kyson') 

X_train = X_train.copy() 

 

X_test = X_test.copy() 

# X_test = X_test.drop(columns=['Late', 'OnTime', 'Early']) 

 

y_train = y_train.copy() 

y_test = y_test.copy() 

 

 

# In[30]: 

 

print(X_train.shape) 

print(X_test.shape) 

 

 

# In[31]: 

 

# functions to be done on training and then imputed to test set 

    # 1) get_arrival_percentage 

    # 2) get_total_orders 

    # 3) group_plants 

 

 

# In[32]: 

 

# 1) get_arrival_percentage 

X_train = X_train.rename(columns={"VendorID": "VENDOR_ID"}) 

X_test = X_test.rename(columns={'VendorID': 'VENDOR_ID'}) 

     

 



 

# In[33]: 

 

X_train = get_arrival_percentage_train(X_train,'VENDOR_ID','Vendor') 

X_train = get_arrival_percentage_train(X_train,'PLANT_ID','Plant') 

X_train = get_arrival_percentage_train(X_train,'MRP_TYPE_ID','MRP_Type') 

X_train = get_arrival_percentage_train(X_train, 'POR_DELIVERY_DATE_MONTH', 

'POR_Month') 

X_train = get_arrival_percentage_train(X_train, 'RELEASE_DATE_MONTH', 

'Release_Date_Month') 

 

 

# In[34]: 

 

X_train.columns 

 

 

# In[35]: 

 

X_test = get_arrival_percentage_test(X_test, X_train, 'VENDOR_ID', 'Vendor') 

X_test = get_arrival_percentage_test(X_test, X_train, 'PLANT_ID', 'Plant') 

X_test = get_arrival_percentage_test(X_test, X_train, 'MRP_TYPE_ID', 'MRP_Type') 

X_test = get_arrival_percentage_test(X_test, X_train, 'POR_DELIVERY_DATE_MONTH', 

'POR_Month') 

X_test = get_arrival_percentage_test(X_test, X_train, 'RELEASE_DATE_MONTH', 

'Release_Date_Month') 

 

 

# In[36]: 

 

X_test.columns 

 

 

# In[37]: 

 

# 3) group_plants 

# first on the X_train 

X_train = group_plants(X_train, verbose=True, max_buckets=4) 

 

 

# In[38]: 



 

plants = [4014, 4064, 4050] 

X_train.columns 

 

 

# In[39]: 

 

def group_plants_test(df, plant_list): 

    for i in range(len(plant_list)): 

#         print(plant_list[i]) 

        plant_name = "PLANT_" + str(plant_list[i]) 

        df[plant_name] = np.where(df['PLANT_ID'] == plant_list[i], 1, 0) 

 

#     print(plant_list) 

    df['PLANT_Other'] = df.apply(lambda row: 1 if row.PLANT_ID not in plant_list else 0, 

axis=1) 

 

 

# In[40]: 

 

group_plants_test(X_test, plants) 

 

 

# In[41]: 

 

X_test.isnull().sum() 

 

 

# In[42]: 

 

################## 

# Run the models # 

################## 

 

 

# In[43]: 

 

print(X_train.columns, len(X_train.columns)) 

print(X_test.columns, len(X_test.columns)) 

list(X_test.columns) 

 



 

# In[44]: 

 

final_columns = ['PURCHASE_DOCUMENT_ID', 

#  'CREATE_DATE', 

#  'COMPANY_CODE_ID', 

#  'COMPANY_CODE_NAME', 

#  'VENDOR_ID', 

#  'VENDOR_NM', 

#  'POSTAL_CD', 

#  'RELEASE_DATE', 

 'PURCHASE_DOCUMENT_ITEM_ID', 

#  'MATERIAL_ID', 

#  'SUB_COMMODITY_DESC', 

#  'MRP_TYPE_ID', 

#  'MRP_TYPE_DESC_E', 

#  'SHORT_TEXT', 

#  'PLANT_ID', 

#  'PLANT_NAME', 

#  'POR_DELIVERY_DATE', 

#  'DELIVERY_DATE', 

#  'REQUESTED_DELIVERY_DATE', 

 'DELIVERY_ID', 

 'DELIVERY_ITEM_ID', 

 'PLANNED_DELIVERY_DAYS', 

 'CREATE_DATE_YEAR', 

 'CREATE_DATE_MONTH', 

 'CREATE_DATE_DAY', 

 'RELEASE_DATE_YEAR', 

 'RELEASE_DATE_MONTH', 

 'RELEASE_DATE_DAY', 

#  'FIRST_GR_POSTING_DATE_YEAR', 

#  'FIRST_GR_POSTING_DATE_MONTH', 

#  'FIRST_GR_POSTING_DATE_DAY', 

 'POR_DELIVERY_DATE_YEAR', 

 'POR_DELIVERY_DATE_MONTH', 

 'POR_DELIVERY_DATE_DAY', 

 'REQUESTED_DELIVERY_DATE_YEAR', 

 'REQUESTED_DELIVERY_DATE_MONTH', 

 'REQUESTED_DELIVERY_DATE_DAY', 

 'DELIVERY_DATE_YEAR', 



 'DELIVERY_DATE_MONTH', 

 'DELIVERY_DATE_DAY', 

#  'VendorID', 

#  'Rating', 

 'imputeRatingFlag', 

#  'VendorGradeA', 

#  'VendorGradeB', 

#  'VendorGradeC', 

 'RatingNum', 

#  'Create_to_Release_Diff', 

 'General Operating Supplies', 

 'Semifinished & Finished Materials', 

 'Packaging', 

 'Raw Materials', 

 'Custom Manufacturing', 

 'Additives, Colorants & Catalysts', 

 'Tolling', 

 'Subcommodity_Other', 

#  'MRP_X0', 

#  'MRP_ND', 

#  'MRP_Y0', 

#  'MRP_Other', 

 'Short_Text_Order', 

#  'Delivery_Difference', 

 'Vendor_Percent_Late', 

 'Vendor_Percent_OnTime', 

 'Vendor_Percent_Early', 

 'Plant_Percent_Late', 

 'Plant_Percent_OnTime', 

 'Plant_Percent_Early', 

 'MRP_Type_Percent_Late', 

 'MRP_Type_Percent_OnTime', 

 'MRP_Type_Percent_Early'] 

# , 

#  'PLANT_4014', 

#  'PLANT_4064', 

#  'PLANT_4050', 

#  'PLANT_Other'] 

 

 

# In[45]: 



 

X_train = X_train[final_columns] 

X_test = X_test[final_columns] 

 

 

# In[46]: 

 

print('X_Test', X_test.shape) 

print('X_train', X_train.shape) 

print('Y_Test', y_test.shape) 

print('y_train', y_train.shape) 

 

 

# In[47]: 

 

#Train the XGboost Model for Classification 

model1 = xgb.XGBClassifier() 

model2 = xgb.XGBClassifier(n_estimators=100, max_depth=8, learning_rate=0.1, 

subsample=0.5) 

 

train_model1 = model1.fit(X_train, y_train) 

train_model2 = model2.fit(X_train, y_train) 

 

 

# In[48]: 

 

#prediction and Classification Report 

from sklearn.metrics import classification_report 

 

pred1 = train_model1.predict(X_test) 

pred2 = train_model2.predict(X_test) 

 

 

# In[49]: 

 

print('Model 1 XGboost Report %r\n' % (classification_report(y_test, pred1))) 

classification_report(y_test, pred1) 

print('Model 2 XGboost Report %r' % (classification_report(y_test, pred2))) 

 

 

# In[50]: 



 

#Let's use accuracy score 

from sklearn.metrics import accuracy_score 

 

print("Accuracy for model 1: %.2f" % (accuracy_score(y_test, pred1) * 100)) 

print("Accuracy for model 2: %.2f" % (accuracy_score(y_test, pred2) * 100)) 

 

# Accuracy for model 1: 67.25 ~ 70.54 

# Accuracy for model 2: 67.08 

 

 

# In[51]: 

 

tmp = list(train_model1.feature_importances_) 

tmp2 = list(X_train.columns) 

 

 

# In[52]: 

 

fi = {} 

for i in range(len(tmp2)): 

    fi[tmp2[i]] = tmp[i] 

 

 

# In[53]: 

 

dfObj = pd.DataFrame(fi.items()) 

dfObj = dfObj.rename(columns={0: 'Feature', 1: 'feature_importance'}) 

 

 

# In[54]: 

 

dfObj.sort_values('feature_importance', ascending=False) 

 

 

# In[55]: 

 

X_train[['VENDOR_ID','percent_late','percent_on_time', 'percent_early']] 

 

 

# In[56 ]: 



 

#Let's do a little Gridsearch, Hyperparameter Tunning 

model3 = xgb.XGBClassifier( 

 learning_rate =0.1, 

 n_estimators=1000, 

 max_depth=5, 

 min_child_weight=1, 

 gamma=0, 

 subsample=0.8, 

 colsample_bytree=0.8, 

 objective= 'binary:logistic', 

 nthread=4, 

 scale_pos_weight=1, 

 seed=27) 

 

 

# In[57]: 

 

train_model3 = model3.fit(X_train, y_train) 

pred3 = train_model3.predict(X_test) 

print("Accuracy for model 3: %.2f" % (accuracy_score(y_test, pred3) * 100)) 

 

# model 3 test 1 accuracy: 66.8 

 

 

# In[58]: 

 

from sklearn.model_selection import GridSearchCV 

 

param_test = { 

 'max_depth':[4,5,6], 

 'min_child_weight':[4,5,6] 

} 

gsearch = GridSearchCV(estimator = xgb.XGBClassifier( learning_rate=0.1, 

n_estimators=140, max_depth=5, 

 min_child_weight=2, gamma=0, subsample=0.8, colsample_bytree=0.8, 

 objective= 'binary:logistic', nthread=4, scale_pos_weight=1,seed=27),  

 param_grid = param_test, scoring='roc_auc',n_jobs=4,iid=False, cv=5) 

 

train_model4 = gsearch.fit(X_train, y_train) 

pred4 = train_model4.predict(X_test) 



print("Accuracy for model 4: %.2f" % (accuracy_score(y_test, pred4) * 100)) 

 

# model 4 test 1 accuracy: 75.51 

 

 

# In[59]: 

 

param_test2b = { 

 'min_child_weight':[6,8,10,12] 

} 

gsearch2b = GridSearchCV(estimator = xgb.XGBClassifier( learning_rate=0.1, 

n_estimators=140, max_depth=4, 

 min_child_weight=2, gamma=0, subsample=0.8, colsample_bytree=0.8, 

 objective= 'binary:logistic', nthread=4, scale_pos_weight=1,seed=27),  

 param_grid = param_test2b, scoring='roc_auc',n_jobs=4,iid=False, cv=5) 

 

train_model5 = gsearch2b.fit(X_train, y_train) 

pred5 = train_model5.predict(X_test) 

print("Accuracy for model 5: %.2f" % (accuracy_score(y_test, pred5) * 100)) 

 

# model 5 test 1 accuracy: 72.98 

 

 

# In[60]: 

 

#Tune Gamma 

param_test3 = { 

 'gamma':[i/10.0 for i in range(0,5)] 

} 

gsearch3 = GridSearchCV(estimator = xgb.XGBClassifier( learning_rate =0.1, 

n_estimators=140, max_depth=4, 

 min_child_weight=6, gamma=0, subsample=0.8, colsample_bytree=0.8, 

 objective= 'binary:logistic', nthread=4, scale_pos_weight=1,seed=27),  

 param_grid = param_test3, scoring='roc_auc',n_jobs=4,iid=False, cv=5) 

 

train_model6 = gsearch3.fit(X_train, y_train) 

pred6 = train_model6.predict(X_test) 

print("Accuracy for model 6: %.2f" % (accuracy_score(y_test, pred6) * 100)) 

 

# model 6 test 1 accuracy: 73.11 

 



 

# In[61]: 

 

xgb2 = xgb.XGBClassifier( 

 learning_rate =0.7, 

 n_estimators=1000, 

 max_depth=4, 

 min_child_weight=6, 

 gamma=0, 

 subsample=0.8, 

 colsample_bytree=0.8, 

 objective= 'binary:logistic', 

 nthread=4, 

 scale_pos_weight=1, 

 seed=27) 

 

train_model7 = xgb2.fit(X_train, y_train) 

pred7 = train_model7.predict(X_test) 

# model 7 test 1 accuracy: 81.32  
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