
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

Physics Capstone Projects Physics Student Research 

5-6-2022 

Improving the Efficiency of the Preconditioning of Iterative Improving the Efficiency of the Preconditioning of Iterative 

Solutions to the Kinetic Equation Solutions to the Kinetic Equation 

D. Caleb Price 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/phys_capstoneproject 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Price, D. Caleb, "Improving the Efficiency of the Preconditioning of Iterative Solutions to the Kinetic 
Equation" (2022). Physics Capstone Projects. Paper 102. 
https://digitalcommons.usu.edu/phys_capstoneproject/102 

This Article is brought to you for free and open access by 
the Physics Student Research at DigitalCommons@USU. 
It has been accepted for inclusion in Physics Capstone 
Projects by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/phys_capstoneproject
https://digitalcommons.usu.edu/physics_sr
https://digitalcommons.usu.edu/phys_capstoneproject?utm_source=digitalcommons.usu.edu%2Fphys_capstoneproject%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.usu.edu%2Fphys_capstoneproject%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/phys_capstoneproject/102?utm_source=digitalcommons.usu.edu%2Fphys_capstoneproject%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Improving the Efficiency of the Preconditioning of
Iterative Solutions to the Kinetic Equation

D. Caleb Price

May 6, 2022

Abstract
To achieve the reality of fusion, a greater understanding of plasma is required. The kinetic
equation can be evolved simultaneously alongside the fluid equations to solve for kinetic
closures. NIMROD performs this with numerical solvers where the General Minimum
Residual (GMRES) solver becomes more efficient with a preconditioning matrix as input.
Using a GPU-enabled library, the efficiency of GPU offloading to the preconditioning step
was tested. A significant decrease in the factoring time of preconditioning matrix was
observed. This suggests that the allocation of GPUs is worth investigating for NIMROD’s
own benefit, but also anyone seeking to improve the efficiency of their scientific program.

Keywords: Plasma, iterative solutions, GPU offloading

Introduction
The quest for net fusion energy as a clean and practically limitless energy source continues
as organizations like ITER seek to create a tokamak capable of maintaining thermonuclear
fusion long enough to be viable. Non-Ideal MHD with Rotation - Open Discussion (NIM-
ROD) seeks to solve for kinetic closures to equations that describe the plasma behavior
within tokamaks through several numerical methods that approximate such solutions. To
achieve such a computation now requires the use of supercomputers graciously provided
by national organizations all in the pursuit of accomplishing the monumental feat of a
fusion energy source.

However, supercomputing recently has evolved to include the GPUs or graphics pro-
cessing units in their nodes due to their capability to perform small tasks more efficiently
compared to their counterpart, the CPU. Anything that improves the efficiency of compu-
tation is desired to achieve a more accurate simulation or quicker computation, especially
for NIMROD’s code. Therefore, this research is to assess the efficiency achieved by GPU
offloading the preconditioning step within NIMROD through the use of a GPU-enabled
third-party linear algebra package, SuperLU.

1



Theory
Plasma, as a 4th state of matter, is often modelled as a fluid. It’s primarily described by
3 macroscopic quantities: density, flow, and temperature. The kinetic equation describes
the time evolution of the plasma distribution function,

∂f

∂t
+ v · ∇f +

q

m
[E + v×B] · ∇vf = C(f) (1)

where f is the distribution function of spatial location, x, particle velocity, v, and time,
t, E is the electric field and B is the magnetic field present which NIMROD solves for
E and B respectively using Ohm’s and Ampere’s Law, ∇v is a gradient in the velocity
space (where the velocity distribution function can be defined as a density of particles
within an infinitesimal volume of phase space dxdv), and C(f) is defined as the collision
operator and is a function of f.

The kinetic equation can be simplified to its lowest order moment equations, known
as the fluid equations, [1]

Density (Continuity)
dn

dt
+ n∇ · V = 0 (2)

Flow (Momentum)

mn
dV

dt
+∇ ·←→p − en(E + V×B) = F (3)

Temperature (Energy)

3

2
(
d←→p
dt

+←→p ∇ · V ) +←→p : ∇V +∇ · q = W (4)

where n is the number density, V is the velocity, ←→p is the pressure tensor, F is the
collisional friction (the first velocity moment of the collision operator), q is the heat
flux density, and W is the collisional energy change (the second velocity moment of the
collision operator).[1]

If the fluid being observed is highly collisional, then fluid closures can be assumed
and the velocity distribution is nearly Maxwellian. However, plasma in tokamaks is not
highly collisional and fluid closures cannot be assumed for ←→p , q, F, and W which are all
dependent on the distribution function.

Therefore, by simultaneously evolving the distribution function from the kinetic equa-
tion, the kinetic closures found in the fluid equations can be directly solved for.

The distribution function alone is not simple to solve, seeing as it is a 7-dimensional
quantity a dimension of time, t, three spatial dimensions, x, and three velocity dimen-
sions, v. However for a highly magnetized plasma, the distribution function is nearly
symmetric with respect to the gyroangle of the particle’s velocity, which is an assump-
tion specific to the drift-kinetic equation. Even with the assumption of toroidal spatial
symmetry and poloidal velocity symmetry, the NIMROD code is only capable of achiev-
ing a ”low resolution” solution efficiently by the following numerical analysis. It begins
with discretization.[4]

Lets consider then the five dimensional distribution function, f = f(R,Z, ξ, s, t), as
is found in the kinetic drift equation. R,Z, ξ are cylindrical coordinates that describe

2



the radius, height, and toroidal angle respectively while s is the normalized speed that is
normalized by the local thermal speed. First, it is discretized spatially.[3]

f(R,Z, ξ, s, t) =
I∑
i

fi,n=0(ξ, s, t)αi,n=0(R,Z, φ) (5)

+
IN∑

i,n>0

fi,n(ξ, s, t)αi,n(R,Z, φ) + f ∗
i,n(ξ, s, t)α

∗
i,n(R,Z, φ)

where N is the number of degrees of freedom in the polodial plane (R,Z) plane and
the coefficients to be solved for are fi,n=0(ξ, s, t) while the set of finite element basis
functions are defined as αi,n = ψi(R,Z) ∗ einφ and ψi is a 2D polynomial basis function.
See Reference 3 for a deeper explanation of the derivation. This to employ a Fourier
expansion method of numerical approximation.

Then to new coefficients are discretized according to the velocity elements, as shown
by,

fi,n(ξ, s, t) =
L∑
l

fi,n,l(v, t)Ql(ξ) (6)

where the coefficients are only dependent now on v and t while the basis functions will
be defined as a set of continuous finite elements using Gauss-Lobatto-Legendre (GLL)
polynomials over the pitch angle, θ = cos−1(ξ), otherwise known as the finite element
method.[2]

Finally, all that remains is,

fi,n,l(v, t) =
K∑
k

fi,n,l,k(t)Lk(s)e
−s2 (7)

where s is the velocity divided by the local thermal speed, N is the number of degrees
of freedom, and Lk are non-classical polynomials.[7] This is known as the collocation
method which discretizes the speed dependence of the distribution function found in the
kinetic drift equation

To understand the scale of this kind of problem, lets define the degrees of freedom to
be the number of coefficients present in the linear system, S. Thus depending on how large
S is determines how large the matrix that will be solved to determined kinetic closures
of the system is. The total number of coefficients is equivalent to S = I ∗ N ∗ L ∗ K
or the degrees of freedom found per dimension multiplied by each other. This defines
the size of the vector in question and therefore, the matrix must then be size S2 and
thus it isn’t hard to see how large this matrix truly is. An example shown in Reference
3. highlights a matrix that would be size 700, 0002 as a result of the large degrees of
freedom present. To solve this matrix then requires an adept iterative solver as well as an
effective preconditioning strategy. NIMROD employs a preconditioned GMRES method
to perform this.

The iteration of each matrix during the GMRES method has a cost of about O(2m2)
for a dense matrix of size m, which doesn’t seem very efficient for a choice of algorithm.
However, this can be reduced to an O(m) when a sparse matrix, or a matrix with mostly
zeros, with the diagonal containing almost all the values, is assumed to be used.[5] The

3



matrices that result from the discretization are in fact sparse and so GMRES is indeed ef-
ficient as an iterative solver. Yet to achieve far greater efficiency due to the extreme size of
the matrix required to provide kinetic closures to the fluid equations, the preconditioning
operation before the GMRES iteration is essential.

Preconditioning has been defined as ”a means of transforming the original linear
system into one which has the same solution, but which is likely to be easier to solve
with an iterative solver.”[6]. Effectively, it’s taking the matrix, A, and simplifying it into
a form, Ã that is easier to factor. Then the preconditioner matrix, M, is the inverse of
our approximated form, Ã , such that it obeys the following relationship.

M ≈ Ã
−1 −→MA ≈ I (8)

NIMROD useds a matrix free implemenation of GMRES where the full matrix A is
never formed, yet the preconditioning requires forming Ã and its LU factors. It’s this
approximation to the original linear system that then is solved for by the GMRES iterative
solver and overall, leads to a low resolution solution to the coefficients in the discretized
equations.

Therefore, a key aspect to the solving of the coefficients that define the distribution
function to provide a greater understanding to the additional moments of the kinetic drift
equation, depends on the factoring time of the preconditioning of the matrix.

Computational Efficiency
The computational efficiency of the preconditioning process is the research in question.
To improve the efficiency of the numerical solvers that approximate the distribution
function, the preconditioning process can be sped up by offloading the factoring of the
preconditioning matrix onto GPUs.

While offloading the factoring of these matrices to GPUs isn’t ideal due to the large
amount of communication required during the process, GPU offloading is best achieved
in cases of low-level math and in the case of NIMROD, this is about the best that can
be done with the use of a third-party library. Due to GPU computing being such a new
advent, scientific computing hasn’t evolved to accommodate with this change quite yet,
so this testing quite literally might determine whether direct GPU coding and application
within NIMROD’s code is worth investigating when the technology/code catches up.

Methods
The experiment was achieved primarily through the use of a NERSC (National Energy
Research Scientific Computer Center) supercomputer called Perlmutter with practice on
Cori. On a virtual server, both the third-party linear algebra package SuperLU and the
test version of NIMROD’s preconditioning code were compiled along with the supporting
libraries. This required greater effort than originally anticipated due to how relatively
new Perlmutter was and its continuous updates as well as the learning curve of deter-
mining which libraries were necessary for the GPU offloading to be made available for
the preconditioning. (Perlmutter is one of the first supercomputers to include 4 GPUs
directly on the node)

To test the compiling of the third party libraries and the GPU offloading, a trial session
was performed on the Ascent supercomputer from Oak Ridge Leadership Computing

4



Figure 1: Ascent Results

Figure 2: Perlmutter Results

Facility during a GPU hackathon, in order to provide greater perspective and learn to
navigate a supercomputer.

To determine the efficacy of bootstrapping GPU’s to the preconditioning process, a
test was performed using the same data input of matrices, first a base case of only CPU,
then one that included GPUs, and finally a case that also included multi-threading with
the CPU-GPU node resource set.

5



Results
The results of the experiment can be divided into two sections, the first one being when
computational testing was performed on the Ascent computer at the ORNL as a part of
practice and testing of the difficulty of compiling the necessary libraries for the actual
computational efficiency testing.

It was observed that the GPU offloading of the factoring of the preconditioning matrix
outperformed the version of the code that only allocated resources to CPUs. It’s also
noteworthy to see how the inclusion of multi-threading again increases the factorization
time and thereby total solve time.

The main results however are those found using a test version of NIMROD on Perl-
mutter with SuperLU, due to the unique nature of the Perlmutter supercomputer.

Again there is a significant increase in the efficiency of the factoring of the precondi-
tioning matrix as seen by the decrease in the total time, in the case of the GPU offloading.
It’s interesting to note the decrease in how much more efficient the program utilizing GPU
offloading compared to the CPU only code as the number of CPU tasks increases. Al-
though this makes sense because this requires greater communication between the CPUs
as the task is divided and anything that requires more communication will be less efficient
for GPU offloading.

Conclusion
Overall, it can be deduced that the employment of GPU architecture found in supercom-
puters currently is worth investigating in the actual implementation of code for NIMROD
and other computation groups. With the increase in efficiency observed with the use of
a third party linear algebra package alone, it makes sense to put a greater effort toward
researching how to best communicate with GPUs directly in the code and where in the
numerical methods they best fit and have optimal efficiency.

Acknowledgement
All my acknowledgement goes to my mentor, Andrew Spencer. This research would not
be possible without his guidance and support through it all. Also, the support from Eric
Held and the rest of the NIMROD group was very much appreciated.

I also want to acknowledge my gratitude to my family. Without them, I wouldn’t be
who I am today. I especially want to thank my mother for always believing that I could
be a scientist and that I was truly capable of changing the world.

References
[1] Gurnett, D. A., & Bhattacharjee, A. (2017). INTRODUCTION TO PLASMA PHYSICS
With Space, Laboratory and Astrophysical Applications. Cambridge University Press.

[2] J. Andrew Spencer, Brett Adair, Eric D. Held, Jeong-Young Ji, Joseph R. Jepson, Ac-
curate numerical, integral methods for computing drift-kinetic Trubnikov-Rosenbluth po-
tentials, Journal of Computational Physics, Volume 450, 2022, 110862, ISSN 0021-9991,

6



[3] E.D. Held et. al, Physics of Plasmas 22, 032511 (2015).

[4] C.R. Sovinec et. al, Journal of Computational Physics, Volume 195, 355 (2004).
https://doi.org/10.1016/j.jcp.2021.110862.

[5] Generalized minimal residual method. (n.d.). Wikipedia. Retrieved May 3, 2022, from
https://en.wikipedia.org/wiki/Generalized_minimal_residual_method

[6] Saad, Y. (2003). Iterative Methods for Sparse Linear Systems (2nd ed.).
https://doi.org/10.1137/1.9780898718003

[7]Matt Landreman, Darin R. Ernst, New velocity-space discretization for continuum
kinetic calculations and Fokker–Planck collisions, Journal of Computational Physics, Vol-
ume 243, 2013, Pages 130-150, ISSN 0021-9991, https://doi.org/10.1016/j.jcp.2013.02.041.

7


	Improving the Efficiency of the Preconditioning of Iterative Solutions to the Kinetic Equation
	Recommended Citation

	tmp.1652890498.pdf.Ok09V

