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Abstract: Landslide is a devastating natural disaster, causing loss of life and property. It is likely to
occur more frequently due to increasing urbanization, deforestation, and climate change. Landslide
susceptibility mapping is vital to safeguard life and property. This article surveys machine learning
(ML) models used for landslide susceptibility mapping to understand the current trend by analyzing
published articles based on the ML models, landslide causative factors (LCFs), study location, datasets,
evaluation methods, and model performance. Existing literature considered in this comprehensive
survey is systematically selected using the ROSES protocol. The trend indicates a growing interest
in the field. The choice of LCFs depends on data availability and case study location; China is the
most studied location, and area under the receiver operating characteristic curve (AUC) is considered
the best evaluation metric. Many ML models have achieved an AUC value > 0.90, indicating high
reliability of the susceptibility map generated. This paper also discusses the recently developed
hybrid, ensemble, and deep learning (DL) models in landslide susceptibility mapping. Generally,
hybrid, ensemble, and DL models outperform conventional ML models. Based on the survey,
a few recommendations and future works which may help the new researchers in the field are
also presented.

Keywords: landslide; susceptibility mapping; dataset; causative factors; hybrid; ensemble; deep
learning; machine learning; literature survey

1. Introduction

Landslide is the movement of rock, soil, and organic matter down the slope, influ-
enced by gravitational force. Landslide is a devastating natural disaster, causing mass
damages to vegetation and properties, as well as human fatalities. It is expected to occur
more frequently due to three main reasons: increased urbanization, deforestation, and
precipitation intensity due to global climate change [1]. That is why we are concerned with
landslide. Prediction and risk assessment of landslide is key to reducing loss of lives and
property damage. Landslide susceptibility map (LSM) indicates the landslide-prone areas,
which can be used by policy-makers, scientists, engineers, and the general public to avoid
catastrophic landslide. In recent years, many advanced machine learning (ML) techniques
have been developed to model the complex relationships between the landslide and the
causing factors. The success of ML in landslide susceptibility mapping is further enhanced
by easily accessible satellite images, remote sensing data, historical records of landslide, and
geographical information systems (GIS). This article presents a comprehensive survey of
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existing ML algorithms for generating LSM, including the recently developed conventional,
hybrid, ensemble, and deep learning techniques. This survey will help new researchers
in choosing the ML algorithms, causative factors, performance evaluation methods, and
landslide inventories, among other information.

Many literature surveys and critical review articles on statistical and knowledge-based
methods for landslide susceptibility mapping are available [2–6]. However, only a few
literature surveys or reviews are available for ML-based landslide susceptibility mapping.
We could identify four [7–10] existing review articles on popular ML methods used for the
generation of LSM, which are listed on the Web of Science (WoS) [11] as a review article. A
summary and the limitation of the studies are presented in Table 1.

Table 1. Existing literature review on landslide susceptibility mapping using machine learning.

Year Author Objective Summary Limitation

2018 Yu Huang
et al. [8]

To review SVM for
landslide suscep-
tibility mapping
and compare it
with four other ML
techniques.

The basic theory of SVM is presented, fol-
lowed by a discussion on the methodology
involved in landslide susceptibility map-
ping using SVM. The SVM and other four
techniques (AHP, LGR, ANN, and RF) are
theoretically compared.

The work does not include the
latest development on SVM.
Only the basic theory of SVM
is discussed. Many articles on
landslide susceptibility map-
ping using SVM are not in-
cluded. This review is lim-
ited to SVM and four other ML
techniques.

2020 Merghadi
et al. [7]

To present the pop-
ular ML techniques
available for land-
slide susceptibility
mapping.

Presented the basic architecture of popu-
lar ML techniques and highlighted the ad-
vantages and disadvantages of each model.
Analyzed the performance of the ML tech-
niques by considering a case study location
in Algeria.

This study does not include
many recently developed hy-
brid, ensemble, and deep learn-
ing techniques.

2021 Naemitabar
et al. [9]

To do a comparative
study of popular ML
methods used for
generating LSM.

The study’s main focus was on the priori-
tization of effective LCFs to get better per-
formance accuracy. Four ML models were
reviewed: SVM, BRT, LMT, and RF.

The study discussed only four
ML models.

2021 Zhang et al. [10]

To carry out a com-
parative study of
four traditional ML
models integrated
with bagging strat-
egy to improve the
performance.

Four conventional ML models: BFTree, FT,
SVM, and CART as a base model, were
integrated with bagging-based ensemble
method to improve the performance of the
base models. The result shows that the
bagging-based ensemble method outper-
formed the traditional ML models. Signifi-
cant improvement was observed for CART.

The study was limited to
bagging-based ensemble mod-
els of four conventional ML
models.

Huang et al. [8] undertook a theoretical comparative study of support vector machine
(SVM) and a few other ML models. The models include analytic hierarchy process (AHP),
logistic regression (LGR), artificial neural network (ANN), and random forests (RF). The
authors have discussed the similarities and differences of the models. The study suggests
combining SVM with other methods and using high-quality landslide data to get an
accurate susceptibility map. Merghadi et al. [7] compared linear regression (LR), ANN,
SVM, decision tree (DT), RF, extremely randomized trees (ERT), Naive Bayes (NB), linear
discriminant analysis (LDA), quadratic discriminant analysis, k-nearest neighbors (KNN),
gradient boosting (GB), and neuro-fuzzy for landslide susceptibility mapping. The basic
architectures of the models are presented, and an extensive comparative analysis between
different ML techniques was performed by considering a case study location in Algeria.
The authors discussed the algorithm’s advantages, limitations, and accuracy. The study
contribution includes; comprehensive reviews focusing exclusively on the use of ML in
landslide susceptibility mapping to present the complexities, comparisons, challenges, and
opportunities for future works. Naemitabar et al. [9] have also carried out a comparative
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study of popular ML methods used in the generation of LSM. The study’s primary focus
is prioritizing effective landslide causative factor (LCF) to improve performance accuracy.
Four ML models were reviewed: SVM, boosted regression trees (BRT) model, logistic
model tree (LMT), and the RF. The study result showed that SVM with an area under the
receiver operating characteristic curve (AUC) value of 0.86 and RF with an AUC value of
0.89 had a better performance than others. Multiple LCFs were used for the study, out
of which the most effective ones identified were lithology, slope, slope aspect, distance
to fault, and land use/land cover (LULC). The author also suggests that prioritization of
effective LCFs for training the ML models produced better accuracy. Zhang et al. [10] used
four conventional ML models namely, best-first decision tree (BFTree), functional tree (FT),
SVM, and classification regression tree (CART). The bagging-based ensemble method was
used to improve the performance of the ML models. The comparative study was carried
out in Jiange County, Sichuan Province, China, to generate LSM for resource planning
and landslide management. The result shows that the bagging-based ensemble method
outperformed the conventional ML models. Significant improvement was observed for
CART with an AUC value of 0.766 without bagging and an AUC value of 0.874 for the
bagging-CART model.

There are few review papers or comparative studies [7–10] on ML-based landslide
susceptibility mapping. Technology is constantly evolving rapidly, and better ML models
are being introduced in landslide studies each passing day. Different studies [12–14] also
observed ML methods such as the hybrid, ensemble, and deep learning-based models
have good performance accuracy for generating LSM. Furthermore, a comprehensive
literature survey covering all the elements in ML-based LSM generation is nonexistent. The
study’s primary objective is to conduct an extensive literature survey on the ML models
for landslide susceptibility mapping. We will present the conventional, hybrid, ensemble,
and deep learning models and discuss the advantages and limitations of these models.
This comprehensive survey will give new researchers insight into the elements involved in
landslide susceptibility mapping using ML, the current trend, and future scopes.

The rest of the paper is organized as follows: Section 2 discusses the survey method-
ology detailing the selection of articles considered in this survey. Section 3 presents the
current trends showing the statistics of articles published per year, ML models used, top
journals, and most studied case study locations. Section 4 discusses the essential elements
of LSM using ML, including LCFs, landslide datasets and inventory, ML models, and
evaluation methods. Section 5 surveys the ML models used in LSM. The ML models are
categorized as conventional, hybrid, ensemble, and deep learning. Section 6 summarizes
the current state of the research. Section 7 concludes this survey by suggesting a few
recommendations and future research directions based on the knowledge gathered in this
survey.

2. Survey Methodology

We have used reporting standards for systematic evidence synthesis in environmental
research (ROSES) [15] for systematic literature survey. ROSES aims to improve the standard
of systematic review in environmental research. It is an extension of PRISMA [16] which
is widely used as a reporting standard in health care. ROSES ensure a reproducible and
transparent literature review process. To find relevant articles for this survey, we have used
different combinations of keywords in the WoS [11] platform to search for literature related
to our study. Keyword combination includes; “landslide, susceptibility mapping, machine
learning”, “landslide, susceptibility mapping, deep learning”, “landslide, susceptibility
mapping, SVM, support vector machine”, “landslide, susceptibility mapping, random
forest, RF”, “landslide, susceptibility mapping, hybrid, machine learning”, “landslide,
susceptibility mapping, ensemble, machine learning”, “landslide, susceptibility mapping,
ANN, artificial neural network”, and “landslide, susceptibility mapping, DT, decision tree”.
We tried to include all the popular ML models used for landslide susceptibility mapping in
the search to the best of our knowledge. Search containing landslide susceptibility mapping
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and ML keyword returned 424 papers. The combination of landslide susceptibility mapping
with SVM (231), RF (209), deep learning (67), hybrid (97), ensemble (153), ANN (148), and
DT (27) as keywords produced the search result values as indicated. The search yielded
1356 articles, and the articles were filtered using the ROSES reporting standard. The steps
involved in screening the articles are presented in a flow diagram as shown in the Figure 1.

Records identified from bibliographic
database searches

(n = 1356)

Records identified from searching
other sources

(n = 0)

(n = 143)

Duplicates removed

Records after title screening

(n = 121)

(n = 1213)

Articles retrieved at full text
(n = 119)

Unretrievable full texts
(n = 2)

(Not accessible = 1; Not found = 1)

Articles after full text screening

(n = 119)
Excluded full texts

(n = 0)

Articles / Studies included in the
review

(n = 119)

Studies included after critical
appraisal
(n = 119)

Excluded from further synthesis
(n = 0)

Records after duplicates removed

Excluded titles

(n = 22)

Figure 1. Flow diagram for selection of articles for the survey based on ROSES protocol.

We use specific criteria to filter out literature not related to our study. These criteria
ensure reproducible results for verification and validation of the survey. In the first filtration
process, we analyzed the article’s title to check if it contained the keywords specified in our
search keywords. We were able to obtain 143 papers after the title screening process. In
the second step, duplicate titles were removed, taking the number of articles down to 121.
The next step involved retrieval of full text for 121 filtered articles. We could not retrieve
one article, and one article was not found, taking the number of articles for the study to
119. The following two steps involved screening articles based on full-text screening and
critical appraisal. All the 119 articles were considered valuable for landslide susceptibility
mapping using ML. Hence none of the articles were excluded in these steps. After the
filtration process, a total of 119 articles were selected for the study, as shown in the Figure 1.
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3. Current Trend

This section discusses the current trend in ML-based landslide susceptibility mapping.
Trends are good indicators of understanding the interest and progress in any field. In
Figure 2a, we see there is a considerable jump in interest of ML-based landslide susceptibil-
ity mapping.
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Figure 2. (a) The number of article/s published per year on machine learning based landslide
susceptibility mapping. (b) The number of machine learning model names detected in article titles.
(c) Top six journals on machine learning based landslide susceptibility mapping. (d) Top five countries
as case study location.

The number of articles published per year increased from below ten to more than ten
in 2019 and a substantial increase in 2020 (26) and 2021(41). The statistics show growing
interest in LSM using ML. Figure 2b shows the trend of articles for landslide susceptibility
mapping based on ML methods. The figure shows that articles with ML in the article title
were the highest with 35. The remaining ML methods based on the article titles are SVM
(25), ensemble (24), ANN (22), RF (17), hybrid (10), deep learning (seven), and DT (three).
We found much diversity in the choice of journals and identified 44 different journals. The
top six journals in terms of the number of papers published are shown in the Figure 2c. The
journals Geocarto International (twelve), Environmental Earth Science (nine), Remote Sensing
(nine), Geomorphology (six), Geomatics Natural Hazards & Risk (six), and International Journal
of Environmental Research and Public Health (five) are the most popular choice of the authors.
The trend on case study location shown in the Figure 2d indicates China (35) as the most
popular case study location. Other countries, including Turkey (13), Iran (10), India (9), and
South Korea (8), were the other popular choice as case study locations.
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Table 2 presents the list of the top ten most-cited articles with the author name, the
title of the article, and the citation count. We observed that the number of citation counts
is different on Google scholar and WoS web portals. The google scholar citation count is
always higher than WoS. The citation count in Table 2 is based on WoS, as we are using the
WoS web portal as the primary source of information for our study. The citation count is
accurate to the best of our knowledge when writing this article.

Table 2. Most cited articles.

Author No. of Citation Article Title

Pradhan et al. [17] 650 A comparative study on the predictive ability of the decision tree, support vector machine
and neuro-fuzzy models in landslide susceptibility mapping using GIS

Yilmaz et al. [18] 504 Landslide susceptibility mapping using frequency ratio, logistic regression, artificial
neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey)

Yilmaz et al. [19] 346
Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey:
conditional probability, logistic regression, artificial neural networks, and support
vector machine

Youssef et al. [20] 340
Landslide susceptibility mapping using random forest, boosted regression tree, classifica-
tion and regression tree, and general linear models and comparison of their performance
at Wadi Tayyah Basin, Asir Region, Saudi Arabia

Yao et al. [21] 327 Landslide susceptibility mapping based on Support Vector Machine: A case study on
natural slopes of Hong Kong, China

Zare et al.[22] 222
Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural net-
work model: a comparison between multilayer perceptron (MLP) and radial basic function
(RBF) algorithms

Park et al. [23] 217 Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic
regression, and artificial neural network methods at the Inje area, Korea

Pourghasemi
et al. [24] 188 Landslide susceptibility mapping using support vector machine and GIS at the Golestan

Province, Iran

Kalantar et al. [25] 182 Assessment of the effects of training data selection on the landslide susceptibility mapping:
a comparison between SVM, LGR and ANN

Huang et al. [8] 154 Review on landslide susceptibility mapping using support vector machines

4. Elements of Landslide Susceptibility Mapping Using Machine Learning

The study of landslide using ML involves many essential elements. They include LCFs,
landslide datasets and inventory, ML models, and evaluation techniques. Each element
influences the outcome of the landslide study differently.

4.1. Landslide Causative Factors

The LCF or landslide conditioning factors are the primary factors responsible for
landslide. The objective of landslide susceptibility mapping using ML is to enable the
ML model to find relationships between the occurrence of landslide and LCFs. Once the
relationship is established, the ML models will be able to generate LSM using the LCFs.
Researchers have identified nearly 60 LCFs [26]. Determining the exact number of LCFs
to be considered in LSM is one of the most critical and challenging tasks [27]. Up till
now, there is no universally agreed upon condition-specific determination of LCF. Studies
like [13,28] use ML models to select LCFs for better accuracy. Popular LCFs can be broadly
categorized as follow:

• Topography: Slope, aspect, elevation, plan curvature, profile curvature, and sediment
transport index;

• Hydrology: Rainfall, solar radiation, stream power index, topographic wetness index
(TWI), distance to rivers, and density of the river;

• Geological: Lithology, distance to faults, and density of fault;
• Land use/cover: LULC and normalized difference vegetation index (NDVI);
• Man-made: Distance to roads and density.
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In the papers we have surveyed, the LCFs, namely slope, elevation, rainfall, distance to
rivers, LULC, NDVI, and distance to roads, are commonly used in landslide susceptibility
mapping. The LCFs are prepared as a thematic data layer using a GIS platform to study
landslide. We shall briefly discuss some of the popular LCFs used in the generation of LSM.
As a sample, different LCF layers were generated using Google earth engine (GEE), ArcGIS,
and QGIS for Meghalaya, India.

Slope degree: The degree of a slope is considered an essential factor in determining
the resilience of a slope [29]. It has a direct relation with the occurrence of landslide [30].
The degree of slope used for landslide susceptibility studies can be generated using the
digital elevation model (DEM), and slopes are grouped into slope classes. The ML models
are then used to determine the landslide susceptible class. Figure 3 shows the slope degree
for the state of Meghalaya, India.

±

Legend

0– 5 5– 1
0

10
– 15

15
–  20

20
– 26

26
– 35 > 3

5

Figure 3. Slope degree for the state of Meghalaya, India.

The slope degree is classified into 7 class, where dark-green region indicates slope with
0–5◦, green region 5–10◦, light-green 10–15◦, yellow region 15–20◦, orange region 20–26◦,
brownish-red region 26–35◦, and red region >35◦ degrees. The slope degree was generated
using shuttle radar topography mission (SRTM) DEM data from GEE and ArcGIS.

Aspect: The slope aspect is one of the primary causative factors in many landslide
susceptibility mapping studies. The paper [31] grouped aspects of a slope into nine classes.
The classes were used to determine the direction of the slope receiving more rainfall and
sunlight, to decide the side of the slope that is more susceptible to landslide. Figure 4 shows
the aspect for the state of Meghalaya, India.

Figure 4. Slope aspect for the state of Meghalaya, India.
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The aspect of the state is grouped into ten classes, Flat (−1), North (0° to 22.5°),
Northeast (22.5° to 67.5°), East (67.5° to 112.5°), Southeast (112.5° to 157.5°), South (157.5°
to 202.5°), Southwest (202.5° to 247.5°), West (247.5° to 292.5°), Northwest (292.5° to 337.5°),
and North (337.5° to 360°) indicated by different colors as shown in the figure. The aspect
was generated using SRTM DEM from GEE and ArcGIS.

Plan curvature: The plan curvature influences the characteristics of slope erosion or
surface runoff. It describes the intersection or divergence of water flow in a downslope [32].
The study [31] uses an automated geoscientific analysis GIS for the generation of plan
curvature map used for landslide studies. Multiple studies use the combination of profile
and plan curvature as a causative factor. The plan curvature of Meghalaya, India is shown
in the Figure 5, generated using SRTM DEM on GEE and QGIS software.

±

Legend
Concave
Flat
Convex

Figure 5. Plan curvature for the state of Meghalaya, India.

The curvature was classified into three classes represented by different colors: concave
indicated by black, flat region by green, and convex region by red.

Lithology: The landslide susceptibility value varies based on the lithological units.
Grouping lithological attributes in the correct group are crucial in landslide susceptibility
mapping studies. The lithology map for susceptibility studies can be mapped and digitized
using GIS. Figure 6 shows different lithological properties of Meghalaya, India.

Legend
  Cretaceous sedimentary rocks

Neogene sedimentary rocks
Paleogene sedimentary rocks
Quaternary sediments

Tertiary sedimentary rocks
Undivided Precambrian rocks

±

Figure 6. Lithology/Geology for the state of Meghalaya, India.

The lithological/geological data were downloaded from data.gov (accessed on 2 March
2022) [33] made available by the U.S. Geological Survey. The lithology attributes consist of

data.gov
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cretaceous sedimentary rocks, neogene sedimentary rocks, paleogene sedimentary rocks,
quaternary sediments, tertiary sedimentary rocks, and undivided precambrian rocks.

Distance from river: A slope’s closeness to a river or stream is also a significant factor
in slope stability. Water drainage systems can seriously impact the stability by eroding the
slope [34]. For landslide susceptibility mapping, the slopes can be classified into buffer
areas to determine the drainage system’s effect on slope stability. Figure 7 shows three
buffer zones for the state of Meghalaya, India.

River Network
<150m
150m–450m
450m–650m

Legend

±

Figure 7. Distance from river for the state of Meghalaya, India.

The three zones consist of areas with 150 m and less, 150–450 m, and 450–650 m
distance from a river. The distance from the river map for this article was generated using
the QuickOSM tool in QGIS with key-value pair set to ‘waterways:river’ and region set
to ‘Meghalaya’. The generated river network was exported as a shapefile and imported to
ArcGIS to re-project the shapefile to the correct coordinate. The re-projected shapefile was
used to generate the buffer zone in QGIS using the buffer tool.

Topographical wetness index: Among other factors, TWI is also a significant causative
factor employed to measure the degree of water accumulation at a site. According to the
studies [35,36], TWI is the proneness of water to accumulate at any point divided by the
gravitational force moving the water downslope, given by Equation (1):

TWI = ln(a/tanβ). (1)

In the above equation, a is the total up-slope area, and tanβ is the angle of the slope
at that particular point. The ln(a/tanβ) is the proneness of water to collect at any point
(given by a) and the gravitational forces that move the water downslope (given by tanβ).
We have used QGIS to generate TWI for the state of Meghalaya, India. Figure 8 shows the
wetness index of the location in the range of 4.582≤ for lower wetness to 6.446 ≥ for higher
wetness region.

Land use/Land cover: The development of roads and urbanization have led to land-
slides. The process involves digging and excavation to construct houses or build roads
destabilizing slopes. LULC can be classified into five classes which include water bodies,
urban areas, thick vegetation, rock outcrop, and scant vegetation [37]. Figure 9 shows the
distribution of vegetation areas represented in green, water bodies in white, and urban
areas in red.

The LULC thematic layer was generated on GEE using satellite images from Landsat
8 Level 1 data. The satellite images were filtered using dates ranging from 2020 to 2022
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and picking only images with less than 1% cloud cover. Further, CART a supervised ML
method was used to classify the three classes in GEE.

4.5824 5.4343 6.127 6.44622

Legend

±

Figure 8. Topographic wetness index for the state of Meghalaya, India.

±

Legend

Water
Urban
Vegetation

Figure 9. Land use/Land cover for the state of Meghalaya, India.

Generation of accurate LSM requires the requisite LCFs. There are no standard guide-
lines for selecting LCFs; data availability for the case study location is often the main factor
in selecting LCFs. Many authors have considered 20 or more causative factors [38–43]. The
importance of causative factors differs from one study location to another. Wang et al. [44]
have proposed point of interest (POI) kernel density as an LCF which is an important factor
in terms of human engineering and can influence the occurrence of landslide. Identifi-
cation of the causative factors that directly influence the landslide is crucial. Including
irrelevant features or causative factors can degrade the performance of the ML models.
Several studies have employed feature selection and optimization methods to enhance the
performance of the ML models for generating LSM. It is observed in many studies that
this additional step positively impacts the accuracy and performance of ML models. For
example, studies like [45–47] have used Chi-square attribute evaluation (CSAE) and multi-
collinearity analysis by applying variance inflation factor (VIF) and tolerance to select the
LCFs with the most influence on landslide. Researchers also have used the Ridge regression
method for LCFs importance analysis [45]. Other popular methods for feature selection
and analysis includes relative risk regression analyse [45], fractal analysis [48], resampling
scheme analysis and Pearson’s correlation analysis [49], correlation-based features selec-
tions (CFS) [50], frequency ratio (FR) [51], fuzzy and weights of LCFs using SVM [52],
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principal component analysis (PCA) to select independent and significant LCFs [53], in-
formation gain method [54], GeoDetector and recursive feature elimination (RFE) method
for LCFs optimization to reduce redundancy [51], interactive detector [51], one rule (one-
R) [42], correlation attributes evaluation (CAE) where greater calculated average merit
(AM) indicates more influence of the LCF [55], sensitivity analysis [56], Spearman’s rank
correlation coefficient [57], relief-F method [58], Fischer score analysis [47], and gain ratio
method [59].

We found many methods employed for feature selection and analysis. It is difficult
to pinpoint the best method for feature selection. All the techniques used had a positive
influence on the generation of LSM by improving the accuracy and performance of the ML
models. We also observed challenges concerning LCFs where some factors had different
measurement scales from others, reducing the prediction accuracy of the ML models. For
example, the study [51] used terrain factors generated from a DEM scale at 30 m resolution,
the geological factors were vectored from a 1:200,000 geological map, and all factors were
resampled at 30 m resolution for convenience. Liu et al. [60] employed resampling of the
digital terrain model (DTM) with a 5 m × 5 m grid to 30 m × 30 m to make the scale of
all factors consistent. Liu et al. [61] suggest exploring the effect of quantity and quality of
LCFs on the prediction accuracy of ML models. Ngo et al. [62] state that the unavailability
of essential LCFs data such as soil depth, soil texture, and distance from the water table
was a limitation of their study, which could affect the accuracy of the LCM generated.

4.2. Datasets and Landslide Inventory

There are multiple ways to gather datasets and prepare landslide inventory data.
Historical data, field surveys, aerial photograph interpretation, Google earth image inter-
pretation, and satellite imagery are standard. The data collected are used for training and
testing the ML models. Good quality and quantity of data are required to achieve high
prediction accuracy. We shall discuss a few data collection methods briefly. As a sample,
we have generated an landslide inventory map for the state of Meghalaya, India, shown in
Figure 10 using data from the Geological Survey of India.
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Figure 10. Landslide data points for the state of Meghalaya, India.

The existing landslide data points were downloaded using Job ID: d002505f-b10c-4182-
aa05-71e009fff229, from Geological Survey of India, Government of India, Kolkata, India;
Bhukosh website [63]. In Figure 10, existing landslide points are represented by the red
dots, and the different shades of green represent the degree of slope for the state.

Historical data: Historical inventories have landslide records which consist of infor-
mation about a location for periods ranging from decades to millennium [64]. In contrast,
current inventories center around shorter periods, where data are collected in terms of



Remote Sens. 2022, 14, 3029 12 of 48

hours, days, or weeks. The historical data provides information about the nature of land-
slide in a particular area and the changes observed over time [65]. So, historical data are
helpful in training ML models as they contain many landslide records, and the current
inventories can be used for validation.

Field survey: is considered the best method for generating landslide datasets or
inventory. It involves a physical examination and detailed study of the affected location
to identify and measure every distinguishable slope failure [66]. It is also used to validate
landslide inventory or datasets generated by other methods such as satellite imagery, aerial
photograph, and other forms of inventory generation. However, since field surveys require
physical inspections of the study location, some of the landslide that are not physically
accessible may be left out. Some measurements during field surveys may also be wrong
due to human errors.

Aerial photograph interpretation: Is the compilation of landslide images captured
from the air, the aerial photograph can be made with any camera, and the dataset can
span over the years [66]. Aerial photograph provides datasets from locations that are not
physically accessible and can generate more information about a particular study location
due to its high mobility nature.

Google earth image interpretation: The number of satellites that can provide images
of the earth’s surface daily has increased. These satellite images can be used for landslide
susceptibility mapping studies. However, the primary constraint is the cost, and the need
for special software to process the satellite images makes it difficult to use in landslide
susceptibility mapping. Many landslide susceptibility mapping studies like [67,68] have
relied on Google earth image interpretation mainly for free of cost and easy accessibility.
Google earth can be considered a reliable and valuable dataset source for generating LSM.

Satellite imagery: The number of satellites consistently obtaining the earth’s surface
has increased significantly in the last decades. The earth surface observation data can
be obtained in multiple forms from multispectral, optical, radar-based to hyperspectral
satellite image [69]. The data can have resolutions from medium to high (0.3 m to >50 m)
and a revisiting time of a few days to a few weeks. The satellite imagery can also cover
areas from small to large, making it suitable for monitoring earth surface deformation
such as landslide. However, using real-time high-resolution satellite imagery for the LS
susceptibility mapping may be cost-ineffective.

Accurate datasets and landslide inventory maps are essential for the correct prediction
of landslide susceptibility. Many methods are employed for generating landslide dataset
and landslide inventory. The most popular are historical data and field surveys. With
satellite data and remote sensing technology advancements, abundant high-resolution
datasets are available for landslide studies. Researchers have used landslide points ranging
from less than 100 to greater than 1000. The data of the existing landslide points are used to
generate the LSM, with the assumption that similar conditions of the existing landslide will
cause a new or recurrence of landslide. A large dataset is required to train the ML models.
Wang et al. [70] have used the synthetic minority oversampling technique (SMOTE) to
explore the effect of sample size on the accuracy of ML models. By employing SMOTE, they
artificially generated landslide points and could increase the size of the sample/dataset by
two to thirty times the original size. Different sample sizes were generated to match the
non-landslide locations and landslide sample locations for the study. The experimentation
results show SMOTE can reasonably improve the performance of the ML models used
for the landslide susceptibility study. Liu et al. [61] used Geo-detectors and Q-statics to
generate four datasets. They are manual points with 13 features dataset (MPD13), random
points with 13 features dataset (RPD13), MPD9, and RPD9 for training and validation. The
study results show that MPD9 had the best performance, with an AUC value of 0.8990.

Landslide points of the study location can be collected by different methods such
as historical data, field surveys, among other methods, and an equal amount of non-
landslide points (balance) is required for the preparation of training and testing datasets.
Several authors have selected the non-landslide points randomly. Nhu et al. [42] stated
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choosing random non-landslide locations using a trial-and-error method has limitations
and suggested a more standardized approach for selecting a non-landslide location for
future studies. Liang et al. [71] used an unsupervised ML model to generate the non-
landslide locations, and the generated dataset was used by supervised ML to generate
LSM. The additional process of using an unsupervised ML model for data generation
improved the accuracy of the LSM generated by the supervised ML model. Liang et al. [72]
suggest the use of clustering analysis to improve the sampling of non-landslide locations.
Zhang et al. [73] explored an imbalanced dataset by using a class-weighted algorithm to
solve class imbalance with landslide and non-landslide samples. The study addressed
the disadvantage of SMOTE and its limitation with over-fitting. A cost-sensitive matrix
was used to represent the cost of miss classification. Based on the G-mean and balanced
accuracy value, the class-weighted method produced a better performance for generating
LSM.

Position accuracy of landslide inventory impacts the accuracy of LSM generated
because LCFs are derived using these landslide data points. However, the data point
may not be able to represent the whole area of landslide. Abrahan et al. [43] explored the
positional accuracy and sampling strategy of landslide inventory. The study compared
landslide polygon data and point data for generating LSM. The results indicate that the
accuracy of KNN, SVM, and RF increased with polygon data, whereas NB and LR methods
showed a slight decrease. They have used the k-fold validation method to determine the
test and validation ratio. Rong et al. [74] explored borderline-SMOTE and random under-
sample methods to handle imbalanced data. Furthermore, landslide data points located at
the center of the landslide scarp were found to be the best landslide sampling strategy since
the size and shape of landslide are always different. Yilmaz et al. [75] explored the effect
of sampling techniques on the performance of ML-based LSM. The authors used three
different datasets, map1 (landslide scarp), map2 (landslide seed-cell), and map3 (point).
The study result shows that the dataset with the scarp technique had a more realistic
LSM. Hu et al. [54] suggest the use of point landslide data as landslide inventory data
to increase mapping efficiency, avoid uncertainty in landslide boundary, decrease spatial
autocorrelation among case samples, and provide uniform treatment of diverse landslide
sizes.

The ratio of dataset splitting for training and testing ML models is also important; an
incorrect choice will lower the accuracy. Sahin et al. [76] explored the effect of sampling
ratio on the performance of ML-based LSM to determine the best testing and validation
ratio. The study used nine sampling ratios of 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30,
80:20 and 90:10 and the performance of the ratio was evaluated using root-mean-square
error (RMSE). The 90:10 had the highest prediction error using LGR, and 70:30 had the least
RMSE. The 70:30 was considered the best sampling ratio based on the RMSE value. The
authors also used a stratified random sampling technique to select pixels for non-landslide
samples. Kalantar et al. [25] studied the effects of training data selection on LSM. They
prepared five different sets of training and testing data generated randomly, maintaining
the split ratio of 70:30. The study result shows random data selection has an influence
on the LSM generated. Yao et al. [21] used 2031 landslide data that occurred before 1990
as training data and 229 landslide locations after 1990 as validation dataset. The authors
used two types of SVM; a two-class SVM and a one-class SVM. The two-class SVM used
a stable site class derived from random regions with a 40m buffer away from a known
landslide location and the existing landslide area as the other class. The one-class SVM
used only failed case data. Both the one-class and two-class SVM methods produced
acceptable LSM with small training samples, and the two-class method had the better
performance. Karakas et al. [77] classified the landslide inventory data into four classes;
inactive mass movements (L1), active mass movements (L2), areas with new active location
after 2018 inside the existing landslide (L3), and new landslide after 2018 (L4) triggered
by an earthquake. The authors used an landslide inventory map generated before the
earthquake as training data and new landslide locations after an earthquake as validation
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dataset. Landslide data before and after an earthquake had considerable influence on the
performance evaluation of ML models used for LSM.

4.3. Evaluation Methods

Many performance evaluation methods are used to assess the performance of the
ML methods in landslide susceptibility mapping. Popular evaluation methods are AUC,
Accuracy (ACC), Cohen’s Kappa coefficient (κ), and RMSE, among other methods. The
overwhelmingly common method is AUC which was used in most articles. We will briefly
discuss some of these performance evaluation methods.

4.3.1. Area under the Receiver Operating Characteristic Curve

The receiver operating characteristic (ROC) curve graph consists of the sensitivity, or
true positive rate (TPR) plotted along the y-axis against the specificity, or false positive
rate (FPR) plotted along the x-axis. The AUC is the area under the ROC curve and is used
to evaluate the performance of classification problems. It measures the capability of ML
model in distinguishing the classes. A model is good at distinguishing between classes
when the AUC value is high (close to 1) [78]. The terminologies used in AUC and ROC are
defined below:

TPR/Recall/Sensitivity =
TP

TP + FN
(2)

Speci f icity =
TN

TN + FP
(3)

FPR = 1− Speci f icity (4)

=
FP

TN + FP
. (5)

In Equations (2), (3) and (5), FP is false positive, TN is true negative, FN is false nega-
tive, and TP is true positive. Substituting Equation (3) in Equation (4) we get Equation (5).
When AUC is closer to 1, the model can distinguish between different classes better. When
AUC is close to 0, the model has poor separability and gives the incorrect result, predict-
ing false cases as true and true cases as false. When the AUC value is at 0.5, the model
cannot distinguish between classes. The AUC value can represent the summary of overall
performance and is considered the most useful measure in the evaluation of landslide
susceptibility models [79].

4.3.2. Accuracy

Accuracy is a statistical metric to evaluate classification models; it is the fraction of the
model’s right predictions. ACC criteria are obtained using four possible consequences: FP,
TN, TP, and FN. ACC can be defined as Equations (6) and (7).

Accuracy =
No. o f correct predictions
Total no. o f predictions

. (6)

Positive or negative values are used in calculating the accuracy of binary classification [80].

Accuracy =
TP + TN

TP + TN + FP + FN
. (7)

Many researchers have used ACC to evaluate ML models for landslide susceptibility
mapping.

4.3.3. Cohen’s Kappa Coefficient

The Cohen’s Kappa coefficient is used to measure inter-rater reliability [81], it considers
random hits or success by chance [82]. The κ was initially designed to measure the difference
in opinion between two people observing the same phenomenon. It can be employed in
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classification problems and is recommended for use because it considers unexpected
success. The κ is determined using the confusion matrix in classification problems. κ is
defined in (8).

κ =
n ∑C

i=1 xii −∑C
i=1 xi·x·i

n2 −∑C
i=1 xi·x·i

. (8)

In Equation (8), xii represents the cell count, the number of examples is denoted by
n, the number of class values is C , x·i is the total column count, and xi· is the total row
count. κ has a range from −1 (total disagreement), 0 (some random classification), to 1
(perfect agreement). Compared with the ROC curve for binary classification problems, it is
less expressive.

4.3.4. Root Mean Square Error

The root mean square error is considered a popular statistical method for assessing
the overall performance of ML models. When the RMSE value is low (close to 0), the ML
model has a good performance [83]. The RMSE value is calculated using the Equation (9).

RMSE =

(
1
n

n

∑
i=1

(xpred. − xact.)
2

)1/2

. (9)

In Equation (9) the total samples of observations is given by n, the predicted value of
observation is xpred., and xact. is the actual output of the observation [80].

Evaluation of ML models is important because it indicates the prediction accuracy or
the reliability of the generated LSM. The AUC is the most widely used accuracy indicator
for landslide susceptibility modeling and to quantitatively compare the performance of the
ML models. The AUC value close to 1 is considered good [38]. In general, models with
an AUC value between 0.5 to 0.6 are considered to have poor accuracy. Values between
0.6 to 0.7 have average or acceptable accuracy. Values between 0.7 to 0.9 have good accuracy.
Values above 0.9 to 1.0 have excellent accuracy [84]. The AUC value is also often used to
determine the effect of LCFs on the LSM generated. The inclusion or omission of one LCF
can increase or decrease the AUC value indicating the influence of the LCF in generating an
accurate LSM [85]. The κ index is another widely used index to determine the classification
performance of the ML model in landslide susceptibility mapping. According to the study
carried out by Wang et al. [70], the RF was considered a perfect classifier with κ index value
> 0.8. The ANN and SVM models achieved a good level of performance with κ index value
> 0.6. However, LGR had a moderate performance with κ index value > 0.5. The study [70]
also employed ACC as a performance indicator. Based on the study results, RF achieved the
highest accuracy with 97.8%, followed by ANN with 95.8%, SVM with 85.1%, and LGR with
the lowest accuracy value of 74.1%. The RMSE value is used to quantify how accurately
the ML model can classify the landslide susceptibility. The lower the RMSE value indicates
better prediction accuracy of the model [86]. In the study carried out by Fang et al. [13],
the RMSE value was used to indicate the improvement made by the ML model during
the training and validation process. According to the study, the RMSE value of the model
decreased as the number of epochs gradually increased, indicating gradual improvement.
The training stops when the model converges to a small RMSE value, indicating a good fit
and generalizability of the trained model.

4.4. Machine Learning

Landslide susceptibility mapping is a function of the occurrence of landslide and LCFs.
LSM is used to depict regions likely to experience landslide and group them into different
susceptibility classes ranging from low to very high susceptibility. The ML method uses
advanced algorithms to model complex relationships by analyzing factors influencing
landslide and non-landslide locations. ML can produce repeatable and highly accurate
results through continuous learning. Many ML methods have been employed for landslide
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susceptibility mapping, and the most popular ones are RF, SVM, LGR, and ANN. Well-
known statistical methods such as LR, the weight of evidence (WoE), and the AHP are
generally used as a benchmark for evaluating new or proposed ML models. Recent studies
focus on combining conventional ML methods to produce ensemble or hybrid forms and
deep learning to improve the performance of ML in landslide susceptibility mapping.

5. Machine Learning in Landslide Susceptibility Mapping

Many ML-based landslide susceptibility mapping has been explored by researchers.
The ML models can be grouped into conventional, hybrid, ensemble, and deep learning
methods. We shall now discuss these methods.

5.1. Conventional Machine Learning Method

Conventional ML models are standalone ML models and have shown good predic-
tion accuracy, hence popular in the generation of LSM and many other applications as
well. Standalone conventional models are also often used as a benchmark for evaluating
newer models and in combination with other models in hybrid and ensemble setups. The
following conventional models are popular in landslide susceptibility mapping.

5.1.1. Random Forest

Random forest is an ensemble of DTs [87,88]. During training, it constructs many
trees based on random subsets of input data. RF predicts by taking the average or votes
of different decision trees. Increasing the number of trees reduces overfitting at the ex-
pense of computational complexity. RF can be used for classification and regression. For
classification, each decision tree predicts a class and the final result is the most voted
class. In regression, the dependent variable is estimated by taking the average results of
individual decision trees. The selection of input variables (causative factors) is a critical
step in RF because the predictive ability of the model depends on the inputs [89]. The
optimal condition for input data is given by log2(M + 1) [87], where M is the number of
inputs, and the mean-squared error (ε) for the RF is defined in Equation (10).

ε =
(
vobserved − vresponse

)2, (10)

where vobserved is the observed data, and vresponse is the result. The average prediction of all
the trees is given by Equation (11):

S = 1/K ∑ Kthvresponse, (11)

where S represents the forest prediction while K is applied to each tree.
Many studies used RF for landslide susceptibility mapping. Akinci et al. [84] used

an RF classification model. Two important parameters in RF are ntree, which signifies
the count of DTs, and mtry, the number of causative factors used in each DT. There is no
specific rule or universally accepted value of ntree and mtry in RF [90]. After many trials,
the study [84] used 50 ntrees and mtry set to 8. The success rate of RF model was 98.3%,
and the AUC value of prediction was 97.7%.

Another study [91] used an RF classification model defined in Equation (12), trained
on 700 landslide pixels.

o = (i) = max

[
∑
k

f (d)

]
, (12)

where i is the input data, o is the computed output for max ensemble, and the indicator
function f (d) is defined as:

f (d) =

{
1, i f d is ‘YES′

0, Otherwise.
(13)
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In Equation (13), YES and Otherwise represents landslide and non-landslide locations.
The value k, selected after parameters tuning, was 1000, and 3 features were tested at each
node. The accuracy of the RF was measured using out-of-bag (OOB), which estimates the
prediction error. OOB was <2%, indicating accuracy is >98%.

Zhou et al. [92] did a comparative study of a traditional statistical method certainty
factor (CF), conventional ML models SVM and RF, and hybrids of CF-SVM and CF-RF.
The study implemented RF consisting of 500 DTs, and the number of randomly selected
features was set to three. A total of 464 landslide and non-landslide samples were used
to train the RF model. The trained model was tested on 200 test samples, out of which
156 samples were accurately predicted. The RF model had a prediction accuracy of 78%,
indicating a good predictive performance.

Micheletti et al. [93] used RF for feature selection. According to the study, removing
irrelevant features or variables improves the accuracy of the susceptibility map. The user
provided the parameters ntree and mtry. As previously discussed, more trees reduce
overfitting. After detailed analysis, 500 trees and four features were selected to study
the contribution of each subset variable and, at the same time, keep the convergence
fast throughout the iteration. According to the experimentation result, the RF method
had an AUC performance of 0.93. The study focused on selecting causative features and
removing irrelevant features to improve the performance of other classification models
used in landslide susceptibility mapping.

The study [87] used STATISTICA to implement RF for LSM. ArcGIS was used to
transform the causative factors into ASCII data format. The study used 2100 landslide
points randomly split into two data groups, the first data group of 1050 for training and the
remaining 1050 for validation. They could achieve an AUC value of 0.7934 for RF.

Based on this survey, we find that RF is a popular method for implementing LSM.
Reasons for its popularity include; ease of implementation, high prediction accuracy, and
less overfitting. It can also rank the importance of LCFs and use the ranked list to remove
irrelevant ones, giving better prediction accuracy. Determining the optimum number
of trees and random input for each tree can be future scope for landslide susceptibility
mapping using RF.

5.1.2. Support Vector Machine

Support vector machine is a supervised ML model. It can be used to solve classification
and regression problems. It was initially designed for binary classification but can be
extended to solve n-class problems [94]. The basic concepts of SVM are as follows [95]:

• The separating hyper-plane: The idea of SVM is to determine a line or hyper-plane in
higher-dimensional space that can separate the input data into classes;

• Maximum-margin hyper-plane: We can have many hyper-planes for separating dif-
ferent classes. Training the SVM aims to determine the hyper-plane with maximum
margin where the margin represents the distance from the hyper-pane to the nearby
data points (also known as support vectors). The hyper-plane with maximum margin
from the data points is the best class-separator selected for the classification;

• The soft margin: If the data points are linearly separable, the maximum-margin
hyperplane can separate the classes, but data in real-life applications might not be
linearly separable. Soft-margin tolerates few miss-classification or anomalies, allowing
the model to generalize better in the case of linearly inseparable data;

• The kernel function: Kernel in SVM is a mathematical function that accepts the input
data and transforms the data into the desired form. Generally, the data are transformed
to a higher dimension space, where non-linear data becomes separable.
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The primary SVM classification function is defined in Equation (14), where number of
coordinates is given by n, parameters in vector x in original space is given by xi, class label
by y, parameters of the hyper-plane are weight w and bias b, and the sign function by sgn.

y = sgn( f (x)) = sgn

(
n

∑
i=1

wixi + b

)
= sgn(w · x + b). (14)

To deal with real time noisy and non-linearly separable classification dataset, soft-
margin is introduced to accommodate empirical errors of the classification model. Equa-
tion (14) now becomes Equation (15). The weight is given as w = ∑m

i=1 αiyixi, i = 1, ..., m
where αi denotes the weight of the ith training example as a support vector.

f (x) = sgn
m

∑
i=1

αiyi(xi · x) + b. (15)

Again to deal with non-linear decision boundary, SVM can map data points (xi) into
a higher-dimensional space where the data can be linearly separated, and xi is replaced
by φ(xi) where φ produce the higher-dimensional mapping. Furthermore, by using kernel
function which works on lower-dimension vectors (xi, xj) it is possible to produce a value
identical to the dot product of higher-dimensional vectors (φ(xi) · φ(xj)). The decision
function using kernel trick is given as Equation (16):

f (x) = sgn
m

∑
i=1

αiyik(xi, x) + b. (16)

SVM’s final output is a probabilistic binary landslide membership of 0 and 1 [93].
Many studies have used SVM for the generation of LSM. Chen et al. Chen et al. [96]
explored SVM with four different kernel functions, namely linear, polynomial degree of
2, sigmoid, and RBF, to generate LSM. The SVM models were trained using the ENVI5.1
software, and the result was exported to ArcGIS software for visualization. The landslide
susceptibility index was grouped into five classes using the natural break method. Based
on the study’s outcome, RBF-SVM had the best success rate value of 83.15%, followed by
polynomial-SVM with 82.72%, linear-SVM with 81.77%, and sigmoid-SVM with 79.99%.
The prediction capability of the four kernel functions was tested using the validation dataset.
The RBF-SVM method had the best prediction rate with 77.98%, 77.07% for linear-SVM,
77.50% for polynomial-SVM, and 76.08% for sigmoid-SVM.

The article [97] used Gaussian radial function as its kernel function, where its pa-
rameter γ = 2 and penalty factor C = 100 were found to be the optimum value for model
fitting. The datasets were divided into two random sets where 50% of the data were used
for training and the other half to test the model’s performance. They have an additional
step where the training datasets were swapped with the testing datasets, and the model’s
accuracy is the arithmetic mean of the two steps. All experiments were performed using
an open-source package LIBSVM. This study also had multiple iterations for its training
data points, 1%, 5%, and 50%. The accuracy of each iterations were 1% = 71.0, 5% = 71.0,
and 50% = 88. The experiment found that small training datasets are enough to get high
accuracy of susceptibility prediction.

Oh et al. [98] evaluated the performance of three ML methods, namely evidence belief
function (EBF), LGR, and SVM, to generate LSM. The study used the ENVI 5.0 Exelis visual
information solutions software for the SVM model application. The RBF, which is the
default kernel function in ENVI, was used because of its ability to accurately predict in
non-linear environments. The RBF function used for the study is given in Equation (17).

K(Xi, Xj) = exp(γXi − X2
j ), (17)
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where γ is the kernel parameter and K = (Xi, Xj) is the kernel function. The sensitivity
analysis of each LCF was conducted by excluding each factor from the SVM landslide
susceptibility index map. The normalized weight for each LCF was then calculated based
on the differences in the AUC values between the SVM landslide susceptibility index,
including all LCFs, and the landslide susceptibility index excluding each LCF. The weight
ranges from 0, indicating low susceptibility, to 1 indicating high susceptibility. Comparing
the AUC values of all the three models used for the study, SVM had the least AUC value
with 0.8178. The lower AUC may be due to the choice of SVM optimized kernel function
and γ parameter. Even though SVM had the least AUC value, its prediction performance is
acceptable for landslide susceptibility mapping.

Yu et al. [40] explored the combination of geographically weighted regression (GWR),
SVM, and particle swarm optimization (PSO) to improve the accuracy of LSM. Firstly, the
GWR segments study areas into several prediction regions with appropriate sizes. An SVM
method is used to classify the landslide susceptibility of each region. To further improve
the model’s accuracy, the PSO algorithm is used to obtain the best parameters for the SVM
classifier. The GWR-PSO-SVM hybrid method produced a highly accurate prediction of
landslide susceptibility with an AUC value of 0.978.

Micheletti et al. [93] explored three different ML methods: SVM, RF, and AdaBoost,
for the selection of causative features to understand its relation with landslide. They used a
Gaussian radial basis function as the kernel function of SVM. To select the causative features
by SVM, the weights of the features had to be determined first, which was impossible
with the isotropic Gaussian kernel. The anisotropic kernel would also require too much
computational power. To overcome such problems, scaling input feature properties was
performed before applying an isotropic Gaussian kernel. This approach could get the
required output with a small number of input features. Based on the papers we surveyed,
SVM is an effective ML method for generating LSM. SVM has the least false-positive rate
(using a balanced training set) for a standard ground class which is considered essential
in risk assessment application [99]. Further studies can be carried out on the application
of automated landslide susceptibility mapping using SVM and exploring different or new
SVM kernels to get higher accuracy.

5.1.3. Logistic Regression

Logistic regression is considered the most popular statistical method used in earth
science [19]. LGR has its roots in statistical pattern recognition and is regarded as the
precursor of ANN, as ANN is a generalization of LGR [100]. It is a supervised ML method
mainly used for binary classification problems. Despite its name, it is a classification
model rather than a regression model [101]. The relationship between the input and output
variables does not need to be linear in LGR [102].

Statistically LGR uses the concept of odds. It is the probability of events occurring
divided by the events not occurring. LGR has weights associated with the input. The
relationship between weights and output is exponential [103]. LGR is a log transformation
of the odds ratio given by Equation (18).

Logistic f unction =
1

1 + e−x . (18)

In Equation (18), x represents the input variable, and the logistic function is the natural
log of the odds. So, 0.5 probability translates to logistic function 0. The value of the logistic
function have a range of 0 to 1 given by P ∈ [0, 1] [102]. LGR is used to predict the binary
outcome or state, such as yes/no, success/failure, will occur/will not occur. Using LGR for
LSM, we can predict the chances for landslide occurrence in the Region of interest (ROI),
given the causative features as input variables.

According to Kavzoglu et al. [27], LGR is one of the most commonly used multivariate
methods to produce LSM. The study aimed to find how independent variables (causative
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factors) were related to the dependent variable (existence or lack of landslide). Logistic
function Logit(p) for LSM can be defined as:

Logit(p) =
p

1− p
. (19)

In Equation (19), the dependent variable is p, and (p/1− p) is the odds ratio. Multiple
linear regression function can also be implemented using Logit transformations and the
equation is given by:

Logit(pi) = β0 +
n

∑
i=1

βixi. (20)

In Equation (20), β0 is intercept, βi is the coefficients that measure impact of inde-
pendent variable xi, and the number of independent variables is n. Kavzoglu et al. [27]
have used eight independent variables (causative factors), and the dependent variable
was the existence or lack of landslide. LGR was used to determine the spatial relationship
between independent and dependent variables. The slope had the most influence on the
dependent variable because of its high coefficient value. On the other hand, NDVI and TWI
had negligible coefficient values close to 0, indicating little influence or relationship to the
occurrence of landslide. According to the experimentation results, LGR had an accuracy of
78.46% and AUC = 0.868, which is the least compared to other ML methods, namely RF,
bagging, rotation forest (RotFor), and support vector regression considered in their study.

The study [13] uses a hybrid method for the generation of LSM. They used standard
ML methods such as RF, SVM, and LGR with a convolutional neural network (CNN). CNN
can learn and extract features, which improves the performance of the ML methods. LGR
with CNN had the best predictive capability compared to other hybrid methods with the
overall accuracy (OA) of 79.82%, κ value of 0.5963, and Matthews correlation coefficient
(MCC) of 0.6013. Furthermore, LGR had the most visible improvement in the hybrid system
with an increase of 8.72% for OA, 0.1743 for κ, and 0.1727 for MCC. The frequency ratio of
landslide using CNN-LGR was 42.57%, higher than LGR of 40.93%. The experimentation
results indicate that hybrid methods had a better performance than the traditional ML
methods, with CNN-LGR achieving the most significant AUC improvement of 0.063.

Yilmaz et al. [19] did a comparative study between SVM, ANN, LGR, and conditional
probability. The initial process of landslide susceptibility mapping involves a map showing
the area affected by landslide and raster format LCFs converted into ASCII format. A
statistical software SPSS 10.0, was then used to calculate the correlation between landslide
events and the LCFs. In order to predict the possible occurrence of landslide in each grid,
the probability was calculated. The result LSM was generated by converting the file into a
raster format.

Li et al. [104] used Random SubSpace (RSS)-based classification and regression tree
(RSSCART) as the primary model to study LSM with LGR, CART as the benchmark models.
They have used 203 landslide locations and 14 causative factors. The result shows that
RSSCART had the best training and validation AUC of 0.852 and 0.827, while LGR came
in second with training AUC at 0.797 and validation AUC at 0.758. This result further
indicates the superiority of hybrid models. We found that LGR is an effective model
for LSM with the AUC performance measures consistently above 70%, meaning good
prediction performance. However, it underperformed compared to other ML methods in
most papers. The LGR used in combination with other ML models generally gives higher
performance.

5.1.4. Artificial Neural Network

The artificial neural network gets its inspiration from biological neurons. It replicates
the functionality of neurons and their interconnections to process information in parallel.
The basic architecture of ANN consists of interconnected neurons organized in different
layers; it has an input layer, a single or multiple hidden layers, and an output layer.
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A numerical value called weight is associated with every connection between neurons.
Equation (21) defines the output hi of the hidden layer neuron i.

hi = σ

(
N

∑
j=1

Vijxj + Thid
i

)
. (21)

In Equation (21), σ() is the activation function, N the number of input neurons, Vij
represents weights, xj represents inputs to the input neurons, and the bias or threshold
of the hidden neurons is given by Thid

i [105]. The activation function is introduced to add
non-linearity into the hidden layer and bind the neuron value. An activation function that
is popularly used is the sigmoid function, given in Equation (22).

σ(u) =
1

1 + exp(−u)
. (22)

Other common activation functions used in ANN include arc tangent and hyperbolic
tangent. Both functions respond to the input similarly to the sigmoid function, but the
output range is different. ANN is supervised and requires a training dataset. The training
objective is to determine the optimal weights that can predict the output correctly. Once
trained, it can predict the output for a given input.

Several researchers have used ANN for generating LSM. Choi et al. [106] developed a
14× 30× 2 ANN. Fourteen causative factors such as the thickness of soil, the density of
the forest, slope, land cover, and other factors extracted from Landsat TM satellite images
were used as the input to the network. The ANN was trained using a backpropagation
algorithm. The study’s objective was to determine the weights of the causative factors. The
trained network was validated with the data collected from Korea’s Youngin, Janghung,
and Boeun regions. The factors with higher weights were land cover, slope, and distance
from the lineament. In contrast, forest density and soil type had lesser weights. All the
study areas had similar causative factor weights. The trained ANN was evaluated in nine
study locations, achieving the best accuracy of 81.36% and the worst of 71.72%.

Lucchese et al. [107] explored the use of the Mamdani fuzzy inference system (FIS)
for LSM and compared it with ANN. FIS has not been explored in previous LSM papers
considered in this survey; therefore, the article adds significant value to the field. All the
metrics indicate that ANN has less uncertainty as compared to FIS. Both the methods had
good overall prediction accuracy. The AUC values of the models were FIS (0.8886) and
ANN (0.9409).

Yilmaz et al. [108] carried out a case study using ANN to generate LSM. The study
used a backpropagation-based ANN model. The backpropagation algorithm used was
based on the generalized Widrow–Hoff learning rule. The network consists of input layers,
multiple hidden layers, and output layers. The learning involves selecting small random-
sized numbers (0 to 1) for the weights and the biases, calculating the network’s output, and
comparing it with the expected output. If the network is close to the expected output, then
continue. Otherwise, weights are corrected using the correction rule. The ANN had an
AUC value of 0.847, indicating an good prediction accuracy.

Quan et al. [109] explored the use of ANN for landslide susceptibility mapping and
did a comparative study with a knowledge-based method AHP. The sample size of the
network was chosen from the range 30 · Ni · (Ni + 1) and 60 · Ni · (Ni + 1), where Ni is the
number of the input layer. After extracting the samples from the study location, the neural
network analysis was carried out. The number of neurons was 7, 14, and 2 in the input,
hidden, and output layers, respectively. The number of weights between the input and the
hidden layer was 98, and 14 between the hidden layer and output layer. The network was
trained in 50,000 learning cycles. The learning rate and momentum are essential parameters
that influence the convergence of the ANN model. The study explored sixteen pairs of
learning rate and momentum values. They have tested the performance of ANN and AHP
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models in twelve different areas. The AHP could identify seven areas of the field data
correctly, and the ANN model could correctly identify nine areas of the field data.

Wang et al. [110] compared ANN and WoE. The proposed ANN has 12 nodes in the
input layer, 25 nodes in the hidden layer, and two nodes in the output layer. The input data
were normalized in the range of 0.1 to 0.9. The initial weight was randomly selected, and
the learning rate was set to 0.01. The stopping criterion RMSE was set to 0.01. The 12 LCFs
and the final weights between layers of the neural network were used to generate the LSM.
The success rate in AUC of the models was ANN (0.8251) and WoE (0.7982). The prediction
rate was ANN (0.7731) and WoE (0.7459).

Zare et al. [22] explored two ANN models, MLP and RBF, for landslide susceptibility
prediction. The results showed that MLP with the Broyden-Fletcher-Goldfarb-Shanno
learning algorithm produced better predictions than the RBF algorithm. The success rate of
the algorithm was MLP (0.9193) and RBF (0.9085), and the prediction rate was MLP (0.881)
and RBF (0.8724).

Can et al. [111] explored two different ANN structures, which are composed of single
and double hidden layers. Furthermore, four different training algorithms, namely quick
propagation, batch backpropagation, Levenberg–Marquardt, and conjugate gradient de-
scent algorithms, were used to train the ANN models. ANN-CGD had the best overall
prediction accuracy with an AUC value of 0.817. The models trained by CGD had the
highest prediction accuracy but were slower than the other algorithms.

Harmouzi [112] use MLP-ANN to generate LSM for the coastal region of Morocco.
The study classified landslide into four types: complex, slide, rockfall, and flow. The
MLP-ANN method generated LSM for all four landslide types. ArcGIS software was used
for preparing the data and MATLAB for supervised learning. MLP-ANN model had an
AUC of greater than 0.90 for all the landslide types. We found that the ANN can generate
LSM with very high prediction accuracy.

5.1.5. Naive Bayes

Naive Bayes is a learning algorithm based on the Bayes’ rule. NB assumes that the
features considered for classification are independent of other features given the class [113].
However, the assumption of independence is often violated in practice, and NB provides a
competitive classification accuracy. It provides a means to use the information provided by
the sample data to estimate posterior probability P(y|x) of each class y given an object x.
The followings are the features of NB:

• Efficient computation: Training and classification time are linear to the number of
features. While the number of training examples does not affect classification, training
time is linear to the number of training examples;

• Less variance: NB does not utilize search and hence has less variance. However, this
may also result in high bias;

• Cumulative learning: NB works on the learning of lower-order probabilities using the
available training data, and the probability can be updated once new training data
are acquired;

• Posterior probabilities can be directly predicted using NB;
• Robustness: All the features are used for its prediction. Hence it is not affected by

noise.;
• Handling missing values: Missing features do not affect NB because it always uses all

its features for all its predictions, so the missing attribute effect is not noticeable.

NB is a Bayesian network (BN) classifier and is defined in Equation (23).

P(y|x) = P(y)P(x|y)
P(x)

. (23)
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Taking into consideration that the features are conditionally independent. The feature-
value data, P(y|x) can be expressed as Equation (24).

P(y|x) =
n

∏
i=0

P(xi|y). (24)

In Equation (24) the ith feature in x value is xi, and the number of features is given by
n. Equation (23) can be calculated by normalizing the numerators of the right-hand-side of
Equation (25).

P(x) =
k

∏
i=1

P(ci)P(x|ci). (25)

In Equation (25), k is the number of classes and ith class is given by ci. The NB classifier
is similar to LGR, the only difference being the manner by which features are selected.

Lee et al. [114] demonstrated how the NB model can be used for LSM. The study used
17 LCFs vectors xi, and y is the occurrence or non-occurrence vector. The NB classifier is
defined in Equation (26).

yNB =
argmaxP(yi)

yi = [event, non− event]

17

∏
i=1

P
(

xi
yi

)
(26)

P
(

xi
yi

)
=

1√
2πα

e
−(xi−η)2

2α2 . (27)

In Equation (27) the conditional probability is P(xi/yi), where P(yi) represents prior
probability of yi, the standard deviation α for xi, and the mean η. The result of the study
indicates a satisfactory prediction accuracy with 78.3% accuracy and a success rate of 79.2%.
Since the accurate prediction of landslide is difficult because it depends on many factors,
the study’s main objective was to use NB prediction as a preventive support measure to
control the damage caused by landslide.

Imtiaz et al. [115] aim to compare LSM generated using ML models. The study used
three ML, namely RF, SVM, and NB. Eleven LCFs were used to determine the susceptibility
index of the case study location. The study implemented NB using the e1071 library in R.
The NB model was used to classify the pixels into landslide and non-landslide classes. The
accuracy of NB was in the range of 96% to 97%.

Hu et al. [48] conducted a case study using ML models with fractal theory (FRT) for
landslide susceptibility mapping. The study used two ML models namely SVM and NB.
The prediction using NB is given by the Equation (28)

yj =
argmaxP(yi)

yj = {ls, non− ls}

10

∏
i=1

P(xi|yj) (28)

In Equation (28), yj represents the landslide and non-landslide category to be predicted,
P(yj) is the prior probability of yj, P(xi|yj) is the conditional probability. The study uses 10
LCFs. The accuracy of the ML model with FRT used for selecting non-landslide locations
produced a better prediction accuracy with an AUC value of 0.969 for SVM and 0.989 for
NB. The AUC value for random selection of non-landslide locations was 0.708 for SVM and
0.727 for NB. The AUC value of the ML models indicates that the quality of non-landslide
location has a considerable influence on the accuracy of LSM generated.

Youssef et al. [37] implemented NB algorithm using R 3.0.2 and the rminer package
for modeling LSM. AUC and RMSE were used to evaluate the model performance. The
performance of NB was AUC = 0.916, and RMSE = 0.464. Based on the survey of NB
classification model, we found the NB model has a good prediction accuracy and success
rate with an average AUC above 80%. NB classifier can be an effective model for generating
LSM and predicting the occurrence of landslide.
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5.2. Hybrid Techniques

The selection of causative factors greatly influences ML models’ accuracy for generat-
ing LSM. The use of redundant LCFs or the lack of causative factors with close co-relation
to the occurrence of landslide can reduce the prediction accuracy of an ML model. There-
fore, many studies have employed different optimization and feature selection methods to
improve the overall accuracy of the LSM generated using ML models. Combining a feature
selection and optimization technique with ML models or a combination of multiple ML
models is called a hybrid method. The conventional techniques for selecting causative fac-
tors includes multi-collinearity analysis by calculating VIF and tolerance (TOL) [46,47,116],
and co-relation methods such as Pearson’s correlation analysis [49], CFS [50], CAE [55],
and Spearman’s rank correlation coefficient [57]. ML models were also used for feature
selection, some of the models includes SVM [52] and RF [44]. Other methods of factor
selection and analysis include information gain, CSAE, GeoDetectors, FR, Fisher score
analysis, Relief-F, and One-R, among other methods. The inclusion of factors selection
and analysis has a considerable positive influence on the accuracy and performance of
ML-based LSM.

5.2.1. Literature on Hybrid Techniques

A total of 23 articles were identified on hybrid-based LSM generation. Indicating a
favorable research trend on hybrid methods for landslide susceptibility mapping. Table 3
presents the overview of studies on hybrid-based LSM generation.

Peng et al. [41] proposed a novel hybrid model by combining the rough set (RS) theory
and SVM model. The study’s main objective was to assess landslide susceptibility at a
regional scale using multi-source data to generate LSM. The RS method was used for feature
selection to identify the essential LCFs and SVM to predict landslide susceptibility. The
RS-SVM had better overall goodness of fit than the general SVM model, which increases
the performance of the ML model for the generation of LSM.

Yu et al. [40] proposed a novel hybrid method. The study aimed to consider envi-
ronmental factors on a local scale by using the GWR method to provide better prediction
accuracy. A hybrid technique consisting of GWR-PSO-SVM was used to generate a reli-
able LSM. The importance of each LCF was obtained using SPSS Clementine 12 software.
GWR-PSO-SVM was able to provide accurate predictions with an AUC value of 0.978.

Pham et al. [86] proposed a hybrid method using sequential minimal optimization
(SMO) and SVM (SMOSVM). The hybrid method was proposed to overcome the limitation
of SVM. Several advantages were observed in combining SMO with SVM. The main benefits
of using SMO were simple, fast, and easy algorithm implementation, better results while
using extensive data but less input, and reduced problems’ complexity. The proposed
hybrid model SMOSVM was compared with another hybrid model cascade generalization
optimization-based SVM and other conventional ML models such as SVM and NB-tree.
The SMOSVM produced the highest AUC value of 0.824, indicating that the proposed
hybrid model can be considered an effective method for generating LSM.

Zhang et al. [117] aim to quantitatively predict the extent of landslide. A hybrid
method using fractal dimension with index of entropy (IoE) and SVM was developed
for the study. The 10-fold cross-validation and information gain ratio (IGR) was used for
feature selection. The fractal dimension provided a better spatial distribution of landslide.
The authors stated combining fractal IoE and SVM in developing the hybrid technique for
LSM is new in the literature. The hybrid methods fractal IoE (AUC = 0.8591) and fractal
SVM (AUC = 0.9761) produced better LSM than the standalone IoE (0.7434) and SVM
(0.7946).
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Table 3. Literature on hybrid-based landslide susceptibility mapping.

Author Year Hybrid Method

Peng et al. [41] 2014 Novel hybrid method combining rough set theory and SVM
Yu et al. [40] 2016 SVM with geographical weighted regression and PSO
Pham et al. [86] 2019 Novel hybrid method using sequential minimal optimization and SVM
Zhang et al. [117] 2019 Fractal dimension with index of entropy and SVM
Adnan et al. [118] 2020 LSM generated by combining the LSM produced by four ML models KNN, MLP, RF, and SVM
Wang et al. [119] 2020 GeoSOM with RF and ensemble ML model consisting of ANN-SVM-GBDT
Fang et al. [13] 2020 Proposed three hybrid models CNN-SVM, CNN-RF, and CNN-LGR
Hu et al. [48] 2020 Combining fractal theory with SVM and NB
Rong et al. [74] 2020 Combination of Bayesian optimization with RF and GBDT
Wang et al. [55] 2020 Integration of MultiBoost with RBFN and CDT

Sahana et al. [120] 2020 Multi-layer perceptron neural network classifier with ensemble ML models like Bagging,
Dagging, and DECORATE

Xie et al. [79] 2021 GeoDetector using factor detectors and interaction detectors with four ML models ANN, BN,
LGR, and SVM

Alqadhi et al. [121] 2021 Four optimized ML model namely PSO-ANN, PSO-RF, PSO-M5P, and PSO-SVM with LGR

Arabameri et al. [122] 2021 Credal decision tree based hybrid models namely CDT-bagging, CDT-MultiBoost, and CDT-
SubSpace

Saha et al. [123] 2021 Hybrid ensemble method using RF as a base classifier and ensemble methods, namely RotFor-
RF, RSS-RF, and bagging-RF

Xing et al. [124] 2021 The output of ML models namely back propagation, RF, and SVM are combined using weight
factors

Hu et al. [125] 2021 Fuzzy c-means clustering and factor analysis with LGR
Zhou et al. [51] 2021 RF with GeoDetector and recursive feature elimination
Sun et al. [126] 2021 GeoDetector and RF
Lui et al. [61] 2021 GeoDetector with RF
Liang et al. [71] 2021 Combination of unsupervised and supervised ML method
Dung et al. [127] 2021 Novel hybrid method consisting bagging-based rough set and AdaBoost-based rough set
Wei et al. [128] 2022 Spatial response feature with ML classifiers

The objective of Adnan et al. [118] was to reduce uncertainties in landslide studies and
determine the spatial agreement of ML-based LSM generation. LSM was generated by the
combination of four ML models, namely KNN, MLP, RF, and SVM. The LSM generated by
the hybrid/combined method had a better spatial agreement with correlation coefficients
ranging between 0.88 and 0.92 and had better prediction accuracy than individual ML
models. Some limitations of the study include the use of landslide inventory data collected
from secondary sources, lack of data, and the DEM used for the analysis had low RMSE
accuracy.

Wang et al. [119] implemented a hybrid method using GeoSOM, RF, and ensemble ML
model consisting of ANN-SVM-Gradient boosting decision tree (GBDT). RF and Pearson
correlation coefficient was used for feature selection. GeoSOM was used to cluster the
study location into clusters of the homogeneous region to solve the heterogeneity problem.
The ensemble ML model consisting of ANN-SVM-GBDT was used to generate the LSM. A
few limitations of the study include random non-landslide samples selected from landslide-
free locations. The process was time-consuming and error-prone, which can affect the
performance of ML models. The study used Thiessen polygons to ensure each pixel is
given a cluster attribute for landslide modeling. However, this clustering approach may
not be the best way to assign cluster attributes to all grid cells.

Fang et al. [13] assessed the generation of LSM by integrating CNN with three con-
ventional ML models, namely SVM, RF, and LGR. The proposed hybrid models were
CNN-SVM, CNN-RF, and CNN-LGR. CNN was used for feature selection and effectively
improved the performance of the conventional ML models. The authors noted overfitting
was an issue with the study.

Hu et al. [48] improved the predictive performance of ML models by including FRT to
select the non-landslide locations in a hybrid setup. Three datasets samples for landslide
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and non-landslide were obtained, one using FRT, the second landslide and non-landslide
selected from regions with less than 5◦ slope, and the third using a random selection of
landslide and non-landslide locations. The three samples were used as input for SVM and
NB models. The study result showed better performance for SVM and NB models using
landslide and non-landslide samples selected using FRT.

Rong et al. [74] explored hybrid techniques, which include the combination of Bayesian
optimization (BO) with RF and GBDT. The study also used borderline-SMOTE and random
under-sample techniques to handle imbalanced datasets. The samples produced were split
into 70% training and 30% validation datasets. The BO method was used for hyperparame-
ter tuning. With BO, the prediction accuracy of the RF and GBDT models was increased by
1% and 7%, respectively.

Wang et al. [55] proposed two hybrid models, which is an integration of MultiBoost
with two ML models, radial basis function neural network (RBFN) and Credal decision tree
(CDT). The hybrid models and GIS were used to generate LSM for the case study location.
The correlation attributes evaluation method was used to determine the influence of LCFs.
MultiBoost with CDT had the best AUC value of 0.77. However, the AUC value for all the
methods was lower than other studies.

Sahana et al. [120] developed a hybrid model using multi-layer perceptron neural
network classifier (MLPC) as the base classifier with bagging, dagging, and DECORATE
ensemble methods. Factor selection for the study was implemented by multicollinearity
assessment using VIF and TOL. The study result highlighted the improvement made by
the hybrid method, with bagging-MLPC achieving the highest AUC value of 0.965.

Xie et al. [79] explored the use of GeoDetector to find spatial autocorrelation and
heterogeneity of LCFs. They developed hybrid techniques using GeoDetector with factor
detectors and interaction detectors, along with four conventional ML models ANN, BN,
LGR, and SVM. The result shows that SVM with GeoDetector had the best performance.
However, the large gap between training and validation accuracy indicates that the models
were overfitting which can be addressed in future studies.

Alqadhi et al. [121] developed four optimized ML models, namely PSO-ANN, PSO-RF,
PSO-M5P, and PSO-SVM, integrated with the LGR model to improve the accuracy of LSM
generated. The AUC value of 0.962 for the LGR-based hybrid model outperformed all
optimized ML models indicating that hybrid models improved the prediction accuracy of
optimized ML models. The authors highlighted the study’s limitations, including the use
of lower resolution satellite images, limited rainfall gauge, semi-quantitative method due
to lack of data, and not enough existing landslide location for training the ML model that
could affect the performance of the ML models.

Arabameri et al. [122] explored CDT-based hybrid model for LSM generation. The
study compared CDT as a standalone model and CDT-based hybrid models, including
CDT-SubSpace, CDT-bagging, and CDT-MultiBoost. The CDT-MultiBoost with an AUC
value of 0.993 had the best performance.

Saha et al. [123] used hybrid ensemble methods, with RF as the base classifier, namely,
RotFor-RF, RSS-RF, and bagging-RF. The study included the process of factor selection using
multicollinearity assessment, and the significance of the LCFs was analyzed using CSAE
and IGR techniques. Based on the result of the study, the authors suggested ensemble
techniques were better suited for mapping landslide hazards and disasters. The few
limitations of the study include lack of data and high-resolution DEM, satellite imagery,
and other rasterized map for the study location. The authors also suggest including more
LCFs to improve the prediction accuracy of the ML models.

Xing et al. [124] used a hybrid approach where the result of the three ML models, back-
propagation (BP), RF, and SVM, were combined using an objective function. Weights were
assigned to the output LSM of the individual ML model, and the Grey Wolf optimization
algorithm was used to compute the weight coefficients. The combined hybrid method
produced the best LSM with an AUC value of 0.790. The AUC value, when compared to
other articles, is low.
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Hu et al. [125] explored the hybrid implementation of LGR coupled with fuzzy c-means
clustering (FCM) and factor analysis (FA) for the generation of LSM. The two methods,
FCM and FA, were introduced to compensate limitation of the LGR model. The study result
shows that the hybrid method performed better in prediction accuracy and generalizability.
The FA-LGR method had the best performance, with an AUC value of 0.827.

Zhou et al. [51] proposed a hybrid method using GeoDetectors and recursive feature
elimination method with RF. The study emphasized feature selection to improve the
ML model’s accuracy for LSM generation. GeoDetectors and RFE were used for LCFs
optimization to reduce factor redundancy and collinearity in the data. The result shows
the ability of factors optimization techniques to improve the prediction accuracy of LSM
generated using ML models. The few limitations of the study include the unavailability of
uniform resolution for all LCFs and the non-existence of standards for optimal selection
of landslide and non-landslide location ratio. Furthermore, the study suggests using ML-
based techniques such as spatial autoregressive and simple linear regression models to
reduce spatial heterogeneity and correlation.

Sun et al. [126] implemented a hybrid method using GeoDetector (Geo), RFE, and RF.
The hybrid model of Geo-RFE-RF was used to eliminate redundant and noise factors. The
factor filtration process reduced twenty-two LCFs to thirteen factors, and the predictive
performance of Geo-RFE-RF was better. Geo-RFE-RF with filtered factors had the highest
AUC value of 0.982, indicating accurate prediction by the hybrid model.

Lui et al. [61] implemented a hybrid model using GeoDetector for factor optimization
to improve the performance of RF in the generation of LSM. The performance of GeoDetec-
tor, a tool to detect and utilize spatial heterogeneity, was tested using four datasets prepared
using different optimization combinations. The four dataset samples include manual point
with 13 features dataset (MPD13), random point with 13 features dataset (RPD13), MPD9,
and RPD9. The MPD9 dataset had the best accuracy, with an AUC value of 0.8990. The
result shows that the hybrid method using factor optimization improved the performance
of ML models. The authors mentioned dynamic combination of quantity and quality of
LCFs on the predictive performance of ML models is yet to be explored.

Liang et al. [71] proposed a hybrid method where unsupervised ML models consisting
of FA and k-means clustering were used for generating LSM. The generated LSM was used
to select the non-landslide locations for modeling the supervised ML model using GBDT.
The hybrid method had an AUC value of 0.976, which indicates that the hybrid model
performed well in generating LSM.

Dung et al. [127] developed a novel hybrid method consisting of bagging-based rough
set (BRS) and AdaBoost-based rough set (ABRS) for the generation of LSM. One-R algorithm
was used for feature selection. After filtration of LCFs, hybrid-based models consisting
of BRS and ABRS were used to generate LSM. The output was compared with SVM and
rough set models. BRS had the highest AUC value of 0.845, demonstrating that the hybrid
method accurately predicted landslide susceptibility.

Wei et al. [128] used a hybrid method comprising spatial response (SR) feature with
ML classifiers (SR-ML). The technique consists of three steps: extracting spatial features
using depthwise separable convolution, extracting features on a different scale using spatial
pyramid pooling, and ML classification using the features extracted in the previous steps.
The method produced a better result than the ML classifiers considered in the study.

5.2.2. Discussion on Hybrid Techniques

Accurate datasets and feature selection help in improving the prediction accuracy of
ML models. The objective of many hybrid LSM generation methods is to filter redundant
LCFs and enhance the quality of datasets by integrating optimization techniques with ML
models. Some of the hybrid techniques used for the generation of LSM include spatial
response feature with ML, GeoDetector with ML, PSO with ML and LGR, CDT with
ensemble methods, RF with other ensemble methods, the combination of LSM output using
benchmark ML models, FCM and FA with LGR, RF with GeoDetector and RFE, GeoDetector
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with RF, the combination of unsupervised learning and supervised ML method, bagging
with RS and AdaBoost, GeoSOM with RF and ensemble methods, CNN with conventional
ML models, FT with ML methods, BO with RF and GBDT, MultiBoost with RBFN and CDT,
MLPC with ensemble methods, SMO with SVM, fractal dimension with IoE and SVM, SVM
with geographical weighted regression and PSO, and RS theory with SVM.

The experimentation results of the articles surveyed show hybrid-based LSM genera-
tion method can accurately predict landslide susceptibility. There is significant performance
improvement in the hybrid method because it can solve the limitation of the conventional
ML method. landslide susceptibility mapping is a classification problem. The ML models
are used to classify the susceptibility, and most of the ML models used in the generation
of LSM do not have filtration or feature selection capability. Integrating feature selection
techniques such as GeoDetectors, CNN, and RFE, among other methods, can filter irrele-
vant LCFs, improving the ML models’ performance. Researchers have also used hybrid
techniques for the generation of datasets. The selection of non-landslide locations using
unsupervised ML learning and FT could generate adequate non-landslide samples for the
supervised learning ML method, thereby improving the prediction accuracy of the LSM.
Using hybrid techniques in determining geospatial factors also positively impacts the accu-
racy of ML methods. Use of GeoDetector to find spatial autocorrelation and heterogeneity
of LCFs, SR feature extraction for spatial feature and scale of the feature, GWR to obtain
LCFs at a local scale, fractal dimension for better spatial distribution, and GeoSOM to
cluster regions for solving the heterogeneity problem can enhance the LSM. Combining
the output of benchmark ML models using weight factors also improves the quality of the
LSM.

5.3. Ensemble Techniques

The conventional ML models used for generating LSM have their limitations. Several
studies in landslide susceptibility have used hybrid or ensemble techniques to overcome
the limitations and improve prediction accuracy. The ensemble combines the conventional
ML models using different averaging or voting systems. With the ensemble approach,
the limitation or bias of one conventional ML algorithm will be compensated by another
method, thereby producing a more accurate prediction. For this reason, many landslide
susceptibility studies have employed ensemble techniques to generate LSM [129]. The
ensemble method has been in existence for quite a while and has recently gained popularity
in landslide susceptibility mapping studies.

Several ensemble techniques were employed for landslide susceptibility studies. Some
of the ensemble techniques used in different landslide studies include lightGBM [73] which
is an ensemble algorithm based on DT. It belongs to the boosting ensemble technique family.
Microsoft introduced it as a new gradient boosting framework to overcome the limitations
of GBDT in massive data. RF [57,72,73,76,123,130,131] is a basic ensemble ML model used in
the generation of LSM and is considered a conventional technique because of its popularity
in landslide susceptibility mapping. It belongs to the Boostrap aggregation family. RF is
a preferred ML model for many ML tasks mainly because it is simple to implement, has
low computational overhead, and is robust. Rotation forest [39,47,50,59,76,123,130,132] is
a DT based ensemble model. It is a popular ensemble method used in many landslide
susceptibility studies. The algorithm works on feature extraction where the training dataset
for the base classifier is split into subsets, and PCA is applied to each of the subsets. The
technique was proposed by Rodriguez et al. [133] and provides better performance than
the individual ML model. Random subspace [39,50,123,130,134,135] is another popular
ensemble technique in landslide susceptibility studies. The algorithm was proposed by
Ho et al. [136]. It constructs trees by randomly selecting subsets of the training dataset. The
key difference between this model and other techniques is the use of different features on
an entity space [50]. The main disadvantage of the method is the problem of over-fitting.
Canonical correlation forest (CCF) [47] is an ensemble model based on decision forest and
canonical correlation statistic. It is considered an advanced method over RF and RotFor.
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The main idea behind CCF is to use many DTs to predict unknown samples using the
majority voting method. The key difference with CCF is applying bootstrapped samples
before using the estimated components for DT construction. Alternative decision tree
(ADTree) [137] is a combination of DT with boosting algorithm. The algorithm grows
the DT using boosting for the prediction, where two prediction nodes are generated at
each boosting iteration step. The final prediction is the weighted sum of all the prediction
nodes. Extremely randomized tree [57] is a tree-based ensemble method that is very similar
to RF, which is a combination of CART and bagging. The algorithm randomly selects
the splitting point in a node. Chi-squared automatic interaction detection (CHAID) [138]
is a DT-based ensemble algorithm. As a multivariate, CHAID can analyze many LCFs
for automatic classification in LSM. Some properties of the algorithm include modeling
categorical and ordinal data, where continuous data are converted to ordinal data during
analysis. It builds a non-binary tree and can grow more than two nodes from a single node.
The dependent features and causative factors are presented as continuous, nominal, or
ordinal data. Data summarization is similar to LR. It considers missing values as a single
category. CHAID does not require pre-processing of the relationship between dependant
variables and causative factors.

Natural gradient boosting (NGBoost) [129] is a relatively new ensemble model devel-
oped by Duan et al. [139]. The known limitation of existing gradient boosting techniques,
such as probabilistic prediction, were compensated using the natural gradient. It was devel-
oped to provide a more general approach to the probabilistic prediction method. XGBoost
[129,140,141] belongs to the gradient boosting family and is an effective supervised classifi-
cation model. It is a preferred ensemble technique mainly because of its ability to prevent
over-fitting issues by using bagging-bootstrap aggregation. XGBoost can also consider the
bias and variance trade-off by implementing feature randomness. Hyperparameters of XG-
Boost need to be optimized for the preparation of LSM. MultiBoost [39,50] is an ensemble
algorithm introduced by Webb [142]. The algorithm is a combination of AdaBoost and the
wagging technique. It provides combined advantages such as AdaBoost’s high bias and
variance reduction and wagging’s superior variance reduction. The decision committee
generated by MultiBoost produced fewer errors than AdaBoost or the wagging algorithm.
MultiScheme ensemble model [50] is a simpler ML technique. The algorithm uses only
one classification as the prediction tool and does not depend on the second-level classifica-
tions. The main advantages of the algorithm include a more realistic representation of a
state and a smaller bias. Real AdaBoost [50] is an improvement over AdaBoost ensemble
technique proposed by Schapire et al. [143]. The algorithm employed a real-value classifier
and one-half of the log-odds weight predicted by the classifier. The algorithm works by
combining weak classifiers repeatedly by using boosting technique. The grouped classi-
fiers provided better performance than the individual weak classifiers. AdaBoost [38,137]
known as adaptive boosting, is part of the boosting ensemble family. The algorithm was
introduced by Freund et al.[144]. The method employs adaptive resampling of the training
dataset to train the base classifiers iteratively. The miss-classified samples are given higher
weights in every iteration, and the final classification is the weighted sum of all the base
classifiers’ predictions. LogitBoost ensemble (LBE) [145] is an ensemble model based on the
popular boosting method, AdaBoost. It is an effective algorithm for reducing variance and
bias. The main advantage of LBE is the ability to handle noisy samples. Boosted regression
trees [131,146] is an ensemble model based on the combination of statistical methods with
ML to improve the prediction accuracy of a simple tree. The algorithm is not sensitive to
outliers, and the model accuracy can be improved using regression and boosting techniques.
Gradient boosting decision tree [57,72] is a boosting based ensemble model. The algorithm
use CART as the base classifier. It is a robust classification and regression method. The
GBDT employs the negative gradient for the loss value for classification-related problems.

Bagging [38,39,50,54,123,130,132,134] is another popular ensemble technique used in
landslide susceptibility mapping studies. Bagging was proposed by Breiman [147] and is
frequently used in studies related to natural hazards mainly for its ability to sense changes
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in the training variables. It consists of three steps [148]: obtain subsets of the training
dataset using random resampling of the original training dataset, use the obtained training
subsets to generate multiple classification models, and generate the final classification
model by aggregating all the sub-models. Cascade generalization [50] is another ensemble
technique. It can improve classification accuracy by removing biases from the training
dataset. This is achieved by sequentially using a set of classifiers and introducing new
attributes to the original data at each iteration. The new attributes are generated using
the base classifier’s probability class distribution. Dagging [50,132,135] is an ensemble ML
model introduced by Ting et al. [149]. It involves combining the models generated using
subsets of the training dataset by the same algorithm or different classification algorithms.
It uses the majority voting system to combine the prediction of the sub-models. The disjoint
samples are used to generate training subsets for dagging ensemble method. Compared to
boosting, it is better at dealing with noise in the training dataset. DECORATE [50,120,132]
is an ensemble algorithm first proposed by Melville et al. [150]. The ensemble model,
unlike others, creates diversity by generating artificial samples. The artificial samples are
generated by taking the standard deviation of the training dataset with Gaussian’s rule.

Stacking [54,58,151] is a heterogeneous ensemble method that combines different
models. The algorithm has a better non-linear representation and generalization ability by
taking advantage of diverse ML models [151]. Blending [151] is a heterogeneous ensemble
model. It is a variation of the stacking ensemble model proposed by Toscher [152]. The
algorithm employs the hold-out method to split the training dataset into two new subsets,
one for training and the other for validation. Use the new training dataset to train the
classifiers while the validation dataset is used as the meta-training dataset. The blending
ensemble technique can eliminate the information leakage problem. However, it is more
likely to overfit. Simple averaging and weighted averaging [151] are simple ensemble
techniques. The average of all the base classifiers’ predictions is the output prediction
for simple averaging. The weighted averaging employs an AUC-based weighted average
to integrate the base classifiers. The qualitative matrix ensemble method [56] uses a
decision matrix to combine two prediction outcomes to make a comprehensive decision.
For example, one base classifier predicts a ‘very high’ susceptibility for a particular pixel
while the other predicts a ‘medium’ susceptibility. The ensemble susceptibility using the
decision matrix for the pixel will be ‘high’. The susceptibility level will be the same if both
base classifiers predict the same susceptibility level. The semi-quantitative partition [56] is
an ensemble model where the region of study is partitioned into several sub-regions based
on certain features such as topography in studies related to landslide susceptibility. The best
prediction of all the subareas is combined to generate a new LSM. Probability-weighted [56]
ensemble method assigns weights to prediction of different base-classifiers. The weights
can be determined using certain features, such as the overall success rate. The normalized
predictions of all the base classifiers are combined to provide the final prediction. Mean of
probability [153] is an ensemble method that works by taking the mean of the probabilities
produced by each base classifier. Median of probability [153] is another ensemble method
that works by taking the median of the probabilities of each base classifier. It is observed that
the median is less sensitive to outliers than the mean probability. Committee averaging [153]
is an ensemble method where the probabilities of the selected base classifiers are converted
into binary data. The algorithm works on the principle of a simple voting system. The
model provides both predictions as well as a measure of uncertainty. Weighted mean of
probability [153] is another ensemble technique where the final probability is the mean
weight of the probability of the selected base classifiers.

5.3.1. Literature on Ensemble Techniques

A total of 31 articles on ensemble-based landslide susceptibility mapping were identi-
fied. A summary of the ensemble methods is presented in Table 4.
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From the introduction to the ensemble algorithm, we are aware of many ensemble
techniques employed for landslide susceptibility-related studies. We will look at the details
of the literature concerning ensemble algorithms.

Althuwaynee et al. [138] explored the use of the DT-based CHAID method to perform
the best classification fit for each LCF. The terminal nodes of the tree were then combined
with LGR to find the corresponding coefficients of the best-fitting function and assess
the optimal terminal nodes. In order to evaluate the proposed model, two LSMs were
produced, LSM1 generated using only terminal nodes (CHAID model) and LSM2 generated
by integrating terminal nodes in LGR (ensemble model). The best AUC achieved for success
rate was CHAID (0.734) and ensemble(0.79), and the prediction rate was CHAID (0.69) and
ensemble (0.753). The authors highlighted that the ensemble method, like the one used in
their paper, could enhance the accuracy of the models.

Kadavi et al. [38] did a comparative study of various ensemble-based machine learning
models such as AdaBoost, LogitBoost, multiclass classifier, and bagging models. The
multiclass classifier method had higher prediction accuracy (0.859) compared to bagging
(0.854), LogitBoost (0.848), and AdaBoost (0.84) methods. The authors stated ensemble
techniques improve the model performance because they can reduce bias, variance, and
over-fitting of the base classifiers.

Shirzadi et al. [39] introduced a novel ML algorithm ADTree, which is based on the
MultiBoost, bagging, RotFor, and RSS ensemble algorithms under two scenarios of different
sample sizes and raster resolutions for spatial prediction of shallow landslides. The IGR
method was used for the feature selection of LCFs. The study finding shows that removing
factors with low predictive capability improved the performance of the models. RSS and
MultiBoost models could further decrease noise and over-fitting problems.

Pham et al. [145] did a comparative study of LogitBoost ensemble, Fisher’s linear
discriminate analysis (FLDA), LGR, and SVM. The study found that LBE is the best and
most promising method compared to the other three ML models considered in the study for
the landslide susceptibility mapping. The predictive accuracy AUC value for each method
was LBE (0.969), FLDA (0.838), LR (0.840), and SVM (0.957).

Arabameri et al. [146] proposed a novel ensemble approach using a landslide numeri-
cal risk factor (LNRF) bivariate model combined with Linear multivariate regression (LMR)
and BRT, coupled with radar remote sensing data and GIS for landslide susceptibility
mapping. The LNRF and BRT ensemble had the best accuracy. The AUC value for each
method was LNRF-BRT (0.912), LNRF-LMR (0.907), and LNRF (0.855). The result shows
that LNRF-BRT and LNRF-LMR increase the accuracy of LNRF, and justifying the ensemble
approach can improve the predictive accuracy.

Roy et al. [154] proposed a novel ensemble approach by combining the WoE and SVM.
The authors explored four SVM kernels: radial basis function, linear kernel, polynomial
kernel, and sigmoid kernel. Remote sensing datasets and GIS were used for landslide
susceptibility mapping. The AUC for each method was WoE & RBF-SVM (0.87), WoE &
Linear-SVM (0.90), WoE & Polynomial-SVM (0.88), and WoE & Sigmoid-SVM (0.85).

Li et al. [46] used three bivariate statistical models, namely WoE, EBF, and IoE, and
their ensembles with LGR for the generation of LSM. The AUC value of each methods was
EBF-LGR (0.826), IoE-LGR (0.825), WoE-LGR (0.792), EBF (0.791), IoE (0.778), and WoE
(0.753). The experimentation results show that the ensemble method has a higher AUC
than the base model, and EBF-LGR had the best prediction accuracy.

Hu et al. [49] proposed stacking ensemble models with SVM, ANN, NB, and LGR
as the base classifiers. The base classifiers were combined using the stacking technique
in various combinations. The ANN-NB-LGR ensemble model had the best prediction
accuracy, with an AUC value of 0.940. Based on the result, the authors suggest that stacking
ensemble learning models can be an effective tool for modeling landslide susceptibility
mapping.
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Table 4. Literature on ensemble-based landslide susceptibility mapping.

Author Year Ensemble Method

Althuwaynee et al. [138] 2014 CHAID and LGR
Kadavi et al. [38] 2018 AdaBoost, LogitBoost, Multiclass classifier, and bagging models
Shirzadi et al. [39] 2018 ADTree based on the MultiBoost, bagging, RotFor, and RSS ensemble algorithm
Pham et al. [145] 2019 LogitBoost ensemble

Arabameri et al. [146] 2019 Ensemble of landslide numerical risk factor bivariate model with linear multivariate regres-
sion and BRT

Roy et al. [154] 2019 Weight-of-evidence and SVM
Li et al. [46] 2019 Ensemble of weight-of-evidence, evidence belief function, and IoE with LGR
Hu et al. [49] 2020 Stacking ensemble of SVM, ANN, NB, and LGR
Di et al. [153] 2020 Ensemble of ANN, generalized boosting model and maximum entropy ML algorithms
Nhu et al [137] 2020 Ensemble model of AdaBoost and alternative decision tree
Nhu et al. [130] 2020 Ensemble of RF with three meta-classifiers bagging, RSS, and RotFor
Sahin et al. [76] 2020 Canonical correlation forest, RF and RotFor
Pham et al. [135] 2020 RBFN ensemble with RSS, attribute selected classifier, cascade generalization, and dagging
Pham et al. [132] 2020 Bagging, dagging, DECORATE, and RotFor

Kalantar et al. [131] 2020 Ensemble of Flexible discriminant analysis, Generalized logistic models, Boosted regression
trees, and RF

Song et al. [57] 2020 Stacking ensemble learning method framework to combine CART, RF, extremely randomized
tree, GBDT, and XGBoost

Pham et al. [50] 2021 Bagging, Cascade generalization, dagging, DECORATE, MultiBoost, MultiScheme, Real
AdaBoost, RotFor, RSS

Saha et al. [123] 2021 Bagging-RF, RotFor-RF and RSS-RF
Kavzoglu et al. [155] 2021 Ensemble of CNN, RNN, and LSTM
Li et al. [151] 2021 Stacking ensemble of CNN and RNN
Fang et al. [58] 2021 Stacking, blending, simple averaging, and weighted averaging
Gong et al. [56] 2021 Qualitative matrix, semi-quantitative partition, and quantitative probability-weighted
Liang et al. [72] 2021 Classification and regression tree, GBDT, AdaBoost-decision tree and RF
Hu et al. [134] 2021 Bagging and RSS-based naive Bayes tree
Kutlug et al. [47] 2021 Canonical correlation forest and RotFor
Hu et al. [54] 2021 Bagging, boosting, and stacking
Fang et al. [59] 2021 Integrating decision trees (DTs) with the RotFor ensemble technique
Zhang et al. [73] 2022 LightGBM and RF
Kavzoglu et al. [129] 2022 Natural gradient boosting compared with RF and XGBoost
Zhou et al. [140] 2022 XGBoost
Zhang et al. [141] 2022 RF and XGBoost

Di et al. [153] implemented four ensemble models: mean, median, committee aver-
aging, and weighted average. The combination of the base classifiers demonstrates the
ability of the ensemble models to produce robust and stable outputs compared to the single
models. The AUC values of base models are the generalized boosting model (0.84), ANN
(0.74), and the maximum entropy model (0.83). The AUC value of ensemble models are
mean (0.91), median (0.901), committee averaging (0.899), and weighted mean (0.91). The
ensemble improves reliability is testified by the higher AUC values.

Nhu et al. [137] implemented AdaBoost and ADTree ensemble method for the genera-
tion of LSM. Their finding supports that AdaBoost-based ensemble methods can reduce
the over-fitting and noise problems in the modeling process. The AdaBoost model with an
AUC value of 0.96 had better performance than the AdaBoost-ADTree model, which had
an AUC value of 0.94.

Nhu et al. [130] implemented ensemble models using RF with three different meta-
classifiers bagging, RSS, and RotFor. The AUC value of the RF ensemble with different
meta-classifiers is RF-RotFor (0.936), bagging-RF & RSS-RF (0.907), and RF (0.812). Based
on AUC values, it is observed that RotFor significantly improved the performance of the
RF-based classifier.

Sahin et al. [76] proposed a new ensemble technique named CCF. The CCF was
compared with LGR and conventional ensemble learning models, i.e., RF and RotFor, to



Remote Sens. 2022, 14, 3029 33 of 48

test the model’s performance, suitability, and robustness. The AUC value of the different
methods explored were RF (0.982), CCF (0.970), RotFor (0.966) and LGR (0.826).

Pham et al. [135] proposed four ensemble models for spatially explicit prediction of
landslide susceptibility. The study combined RBFN with ensemble techniques such as RSS,
attribute selected classifier (ASC), cascade generalization (CG), and dagging for generation
of LSM. The training AUC value for each technique were single-RBFN (0.799), ASC-RBFN
(0.756), CG-RBFN (0.783), dagging-RBFN (0.773), and RSS-RBFN (0.790). The validation
AUC values were single-RBFN (0.79), ASC-RBFN (0.823), CG-RBFN (0.822), dagging-RBFN
(0.832), and RSS-RBFN (0.831).

Pham et al. [132] proposed novel approaches to improve the performance of the Credal
decision tree by using four ensemble techniques. The techniques include bagging, dagging,
DECORATE, and RotFor for generating LSM. The training AUC values were dagging-CDT
(0.939), dagging-CDT (838), DECORATE-CDT (0.917), RotFor-CDT (0.946), and CDT (0.88).
The validation AUC values were dagging-CDT (0.878), dagging-CDT (861), DECORATE-
CDT (0.882), RotFor-CDT (0.886), and CDT (0.842). According to the authors, ensemble
methods generally have time-consuming parameter adjustment, which may restrict their
development and application in other regions for different purposes.

Kalantar et al. [131] did a comparative study of four conventional ML models and the
ensemble consisting of all four ML models. The ML models used were flexible discriminant
analysis (FDA), generalized logistic models (GLM), BRT, and RF. The ensemble techniques
had the best ROC curve value with 0.904, followed by RF (0.8919), BRT (0.8842), FDA (8641),
and GLM (8604).

Song et al. [57] proposed a novel embedded feature selection (EFS) to allow each base
classifier to select its own subfeature space. A Stacking ensemble learning method (SELM)
framework combines a tree-based classifier (CART, RF, ERT, GBDT, and XGBoost) with
a meta-learner LGR to maximize the generalization accuracy. The proposed ensemble
method of EFS-SELM had the highest accuracy, with an AUC value of 0.864.

Pham et al. [50] explored twelve ML models, which include decision table, NB, decision
table-NB, bagging, RotFor, dagging, CG, DECORATE, multiBoost, RSS, multischeme, and
real AdaBoost. The study is a novel combination of ML methods to generate LSM. The
RSS-decision-table-NB achieved the best prediction accuracy with an AUC value of 0.839.

Saha et al. [123] implemented bagging, RotFor, and RSS ensemble technique with RF
to enhance the accuracy of the RF model. The study also employed feature selection using
multicollinearity assessment, and the influence of the LCFs was determined using CSAE
and IGR techniques. Based on the results, it was observed that ensemble techniques had
better performance for mapping landslide susceptibility. The RSS-RF method produced the
highest AUC value with 0.847.

Kavzoglu et al. [155] studied the combination of deep learning and ensemble tech-
niques to overcome the model’s low variance and limited generalization capabilities. The
authors employed an ensemble technique using CNN, recurrent neural network (RNN),
and long short-term memory (LSTM) as the base classifiers. Firstly, the proposed ensemble
DL method used the DL models for feature selection. The output of the feature selection
process was used by the DL-based prediction classifiers consisting of dropout and dense
layer. The prediction output of the individual classifiers was used as input for the final
prediction using the ensemble DL block. The ensemble model was able to improve the
performance of the DL model up to 7% in overall accuracy.

Li et al. [151] employed a stacking-based ensemble of CNN and RNN DL models
to generate LSM. The stacking, a heterogeneous ensemble-learning technique, produced
accurate predictions for the landslide susceptibility mapping. In their study, the ensemble
model of CNN-RNN had the best performance, with an AUC value of 0.918.

Fang et al. [58] implemented four heterogeneous ensemble models, namely, stacking,
blending, simple averaging, and weighted averaging. The result of the study observed that
the ensemble technique produced better performance than the conventional ML methods.
Furthermore, stacking and blending ensemble models produced better results because they
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use meta-classifiers to compensate for the errors of the base classifiers. Simple and weighted
averaging also produced good results because it uses AUC values to assign weights.

Gong et al. [56] explored ensemble methods such as qualitative matrix ensemble,
semi-quantitative partition ensemble, and quantitative probability-weighted. An extensive
comparative analysis was carried out between the ensemble and individual models. The
AUC values for the base models were frequency ratio (0.6574), fuzzy assessment (0.7434), BP
neural network (0.7098), and SVM (0.7860). The AUC values of the ensemble methods were
matrix (0.8378), semi-quantitative partition (0.8009), and quantitative probability-weighted
(0.8261). Based on the result, it can be observed that ensemble methods performed better
than the base models.

Liang et al. [72] conducted a comparative study of four DT-based ensemble models,
namely CART, GBDT, Ada-DT, and RF. The authors suggest exploring the stacking ensemble
method with SVM as the base classifier to explore and evaluate the overall potential. The
GBDT method had the highest training and validation AUC value of 0.986 and 0.940,
respectively.

Hu et al. [134] proposed a novel ensemble method which is a hybridization of Bagging
and RSS-based NB-tree named BRSSNBTree for the generation of LSM. The proposed
ensemble method was compared with traditional ML models such as SVM and RF and
found to have better performance. The BRSSNBTree ensemble model had the highest AUC
value of 0.968.

Kutlug et al. [47] tested the performance of the DT-based ensemble models, namely
CCF and RotFor, for the generation of LSM. The proposed ensemble models were compared
with other models such as RF, bagging, and AdaBoost. The AUC value for all the ensemble
models were CCF (0.932), RF (0.931), RotFor (0.925), bagging (0.90), AdaBoost (0.899). Based
on the AUC value, the CCF and RotFor could predict landslide susceptibility accurately.

Hu et al. [54] investigated different ensemble learning techniques such as bagging,
boosting, and stacking for landslide susceptibility mapping. The stacking model using C4.5
and ANN as base classifiers produced the best modeling robustness. The AUC values for all
the ensemble models are boosting-C4.5 (0.945), boosting-ANN (0.903), stacking C4.5-ANN
(0.900), bagging-ANN (0.892), bagging-C4.5 (0.878).

Fang et al. [59] presented a new ensemble technique by combining different DTs and
RotFor for predicting landslide susceptibility. The selected DTs are alternating decision tree,
forest by penalizing attributes (FPA), functional tree, logistic model tree, and Hoeffding
tree (VFDT). The LSM was generated using the combination of all the DT classifications
using RotFor. The new ensemble technique of DT and RotFor performed better than most
popular ensemble models. The AUC values of different models explored for the study
are ADTree (0.871), FPA (0.858), FT (0.779), LMT (0.884), and VFDT (0.892) for the single
models. The AUC values for the ensemble methods are ADTree-RotFor (0.903), FPA-RotFor
(0.907), FT-RotFor (0.900), LMT-RotFor (0.896), and VFDT-RotFor (0.907).

Zhang et al. [73] aim was to explore the implementation of a class-weighted algorithm
with LGR and ensemble-based lightGBM and RF algorithm for landslide susceptibility
mapping. The class-weighted method was used to handle imbalanced data issues of
landslide and non-landslide samples. The imbalanced data issue was converted to cost-
sensitive ML by setting unequal weights for both samples, improving the accuracy of LSM
generated. The AUC value of weighted-RF (0.913) was the highest indicating that the
class-weighted method with RF is effective for landslide susceptibility evaluation.

Kavzoglu et al. [129] compared NGBoost with RF and XGBoost used in landslide
susceptibility mapping. Shapley additive explanations based on the game theory approach
were used to understand the influence of LCFs on the LSM generated. Multi-collinearity
was also employed to analyze the LCFs. The result of the study indicates that NGBoost
had the best prediction accuracy with an AUC value of 0.898.

Zhou et al. [140] proposes a novel interpretable model based on the Shapley additive
explanation and XGBoost to interpret landslides susceptibility evaluation at global and
local levels. The proposed model delivered 0.75 in accuracy and an AUC value of 0.83 for
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the test sets. The authors also found that peak rainfall intensity and elevation are the most
significant LCFs in the study location.

Zhang et al. [141] used RF and XGBoost ensemble method to predict slope stability for
Yunyang County, Chongqing, China considering twelve LCFs. The prediction performance
of the ensemble methods was compared with SVM and LGR. The XGBoost, RF, LGR,
and SVM test accuracy was 0.905, 0.911, 0.886, and 0.886, respectively. According to the
authors, ensemble methods used in the study effectively captures the slope status and can
be extended to other landslide-prone locations.

5.3.2. Discussion on Ensemble Techniques

An ensemble algorithm combines conventional ML models as base classifiers with
different voting systems to produce better predictions. With the ensemble approach, the lim-
itation or bias of one conventional ML algorithm will be compensated by another method,
thereby producing a more accurate prediction. Which why it is a popular approach for
generating LSM, among other applications. Some of the popular ensemble approaches used
in landslide susceptibility mapping include lightGBM, RF, NGBoost, XGBoost, bagging, cas-
cade generalization, dagging, DECORATE, MultiBoost, AdaBoost, real AdaBoost, RotFor,
RSS, stacking, blending, simple averaging, weighted averaging, qualitative matrix, semi-
quantitative partition, GBDT, CCF, median of probability, committee averaging, weighted
mean probability, ADTree, ERT, LBE, BRT, and CHAID. From the results of various stud-
ies, the ensemble techniques consistently outperformed the conventional ML models in
terms of prediction accuracy. However, it can be limited by time-consuming parameter
tuning. Nevertheless, this can be remedied by using grid search, random search, Bayesian
optimization, evolutionary optimization, and gradient-based optimization for parameter
tuning to accelerate the model training process using the ensemble approach [132]. A
hybrid-ensemble technique using other feature optimization techniques can also be em-
ployed for feature tuning and selection to improve the overall process. Due to the observed
benefits discussed in the section, future studies can concentrate on hybrid-ensemble-based
landslide susceptibility mapping.

5.4. Deep Learning Methods

Deep learning methods outperform conventional ML methods and are advancing in
fields that have eluded the ML community for years. DL methods can produce exceptional
results in sciences, engineering, and business. It can achieve high performance because
of its ability to find intricate structures in high-dimensional data [156]. DL methods are
representation-learning techniques with multiple layers of representation. The represen-
tation layers of DL include batch normalization, flatten, dense, and dropout layer. The
batch normalization layer is used to provide consistent data distribution for training. The
flattening layer flattens two- or three-dimensional training data to one-dimensional data.
The dense layer predicts the class. The dropout neurons in the dropout layer help improve
the model’s generalization. The activation function is also an essential component in the
DL architecture. The value of the activation function should be differentiable and selected
as per the model’s application. A commonly used activation function for DL-based land-
slide susceptibility mapping is the sigmoid activation function mainly because landslide
susceptibility mapping is a non-linear [155].

Some popular DL methods employed to generate LSM in landslide studies include
CNN, deep neural network (DNN), RNN, and LSTM. ANN was considered a conventional
ML method because of its popularity in landslide susceptibility studies. CNN comprises
three essential components: convolutional, down-sampling, and fully connected layers. In
CNN, the convolutional layer consists of multiple kernels to extract feature information
from the previous layer. The shared weight strategy in the convolutional layer allows
training with fewer parameters compared to a fully connected network. The activation
function follows the convolutional layer and Rectified linear unit function is the most
popular and effective activation function. The down-sampling layer or pooling layer is
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used to reduce the size of features, and the over-fitting tendency of the model [60]. DNN is
a popular method employed in various natural hazard-related studies. It consists of several
fully connected layers, dropout layers, hyperparameters for random search, activation
function, and optimization algorithm [157]. RNN is another DL model with great success in
the temporal data processing. Unlike CNN, it can process sequential data using recurrent
hidden states, which can learn useful information from the previous and the current
state [151]. However, RNN is not accurate in long data sequences. LSTM uses an advanced,
recurrent structure to overcome the limitation of the RNN model. The basic building block
of LSTM is the memory cell, and the information stored in the cell is controlled by gates.
The input gate regulates the cell status. The forget gate decides how much of the previous
memory state is retained or forgotten. The output gate regulates the information passed on
to the next layer [155].

5.4.1. Literature on Deep Learning Methods

A total of nine DL-based articles were found in this survey. We shall discuss how the
authors of various studies employed DL to generate LSM. As ANN is already discussed in
Section 5.1, ANN is excluded in this section. Generally, DL is ANN with a large number of
layers. Table 5 presents an overview of the literature on DL-based LSM studies.

Table 5. Literature on deep learning-based landslide susceptibility mapping.

Author Year Deep Learning Method

Wang et al. [158] 2019 CNN
Nhu et al. [159] 2020 DNN
Ngo et al. [62] 2021 RNN and CNN
Kavzoglu et al. [155] 2021 CNN, RNN, and LSTM
Azarafza et al. [160] 2021 Deep convolutional neural network (CNN-DNN)
Li et al. [151] 2021 CNN and RNN
Liu et al. [60] 2022 CNN
Wei et al. [128] 2022 DL framework SR-ML
Habumugisha et al. [157] 2022 CNN, DNN, LSTM, and RNN

Wang et al. [158] introduced CNN for landslide susceptibility mapping for the first
time. Three different data representation algorithms (1D, 2D, and 3D) were developed
to construct three different CNN architectures. Sixteen LCFs were considered, and the
historical landslide data of Yanshan County, China, were randomly divided into training
and validation in the ratio of 70:30 for the experimentation. The proposed CNNs were
evaluated using OA, MCC, ROC, and AUC measures. The authors have also compared the
performance with ML methods, namely optimized SVM, DNN, and LeNet-5. The CNN-2D
achieved the highest AUC value of 0.813. From the experimentation result, the authors
suggest that CNN is more practical for landslide prevention and management than the
conventional ML methods.

Ngo et al. [62] compared DL models, namely RNN and CNN, using Iran as the case
study location. In order to generate LSM, the entire ROI was converted to a raster format.
Trained RNN and CNN were tested by calculating susceptibility indices of each pixel. The
indices were then converted to LSM, and the landslide susceptibility was classified into
five categories. The AUC value for the RNN model was 0.88 and 0.85 for CNN.

Kavzoglu et al. [155] objective was to address the limitations of DL-based landslide
susceptibility mapping, such as insufficient model variance and limited generalizability.
The authors proposed a network architecture that consists of two main parts. The first part
consist of RNN-CNN-LSTM layer blocks meant for extracting features, and the second
part includes the dense and dropout layers for prediction of the class. The trial and error
method was employed to find the best batch size, number of layers, epoch, loss function,
and optimizer. The proposed model improved the overall accuracy of DL models by up
to 7%. The AUC value also shows a 4% improvement in the susceptibility map generated.
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The AUC value of the models were CNN-RNN-LSTM (0.93), CNN (0.92), RNN (0.91), and
LSTM (0.86).

Azarafza et al. [160] did a comparative study on hybrid CNN-DNN based LSM
generation with traditional ML techniques. In their proposed hybrid setup, CNN was
used for feature extraction and DNN to sort pixels into susceptibility groups. The CNN-
DNN could achieve an AUC value of 0.909. The authors also stated the challenges in the
generation of LSM using ML. The limited number of reference landslide in recorded data
made modeling challenging. The triggering factors are highly dependent on the spatial
resolution, and DEM data quality directly affects the quality of the input data. Furthermore,
the models required extensive processing power to manage the inputs during landslide
assessment.

Li et al. [151] explored a stacking-based ensemble method using CNN and RNN to
generate LSM. The CNN and RNN methods were trained to generate new features and
present a detailed description in the training step. Furthermore, the new validation and
training dataset was used to build the final landslide susceptibility for the meta-learning
step. The AUC values of the models were CNN-RNN (0.918), CNN (0.904), RNN (0.900),
and LR (0.877).

Liu et al. [60] did a comparative study of CNN with conventional ML models. The
LSM generated by the CNN-based model is sensitive to the high-risk landslide zone
and significantly reduces the salt-and-pepper effect, which guarantees the consistency of
susceptibility assessment. However, CNN consumed more time to train and predict despite
its significant results. Based on the results, CNN-based models exhibit the best predictive
capability for LSM on the testing datasets. A few limitations of the study include a smaller
scale of the study, and re-sampling of DTM from 5m x 5m to 30m x 30m may have caused a
loss of spatial information.

Wei et al. [128] developed a DL framework that integrates spatial response features
and ML classifiers (SR-ML). The method includes three steps. In the first step, depthwise
separable convolution was used to extract spatial features to prevent confusion of multi-
factor features. In the second step, spatial pyramid pooling extracts response features to
obtain features under various scales. In the third step, the high-level features are merged
into ML classifiers for more effective feature classification. The AUC values of various
models explored were SR-LGR (0.903), SR-SVM (0.915), and SR-RF (0.920).

Habumugisha et al. [157] explored four DL methods, namely CNN, DNN, LSTM, and
RNN. The study used one-dimensional architecture for the CNN model, which consisted
of one convolution layer, one pooling layer, one flattening layer, and two fully connected
dense layers. The dropout layer was used to avoid overfitting. Keras tuner library was
used to select the number of filters, kernel size, activation function, and the number of
neurons in the fully connected layers. The DNN consists of five fully connected layers
with dropout layers in the study. A sigmoid activation function was used, and the Adam
optimization algorithm trained the model. The study used a bi-directional LSTM. The
architecture of LSTM consists of one bi-directional layer, a dropout layer, and two fully
coupled layers. The dense layer used sigmoid as the activation function, and the Adam
optimization algorithm trained the model. The RNN model was set up using a simple
RNN layer using the Keras library in the study. The architecture consists of one RNN layer,
the dropout layer, and two fully connected layers. The AUC values for all the DL models
were DNN (87.30), LSTM (86.50), CNN (85.60), and RNN (82.90).

5.4.2. Discussion on Deep Learning Methods

DL methods have outperformed traditional ML models in accurately predicting land-
slide susceptibility. DL-based algorithms are used in hybrid setup for feature selections,
as base classifiers in an ensemble setup, and for classification of landslide susceptibility
zones in a standalone setup. Popular DL methods include CNN, RNN, DNN, and LSTM.
Algorithms such as quick propagation, batch back-propagation, Levenberg–Marquardt,
and conjugate gradient descent are used to train the DL models. The limitations of DL
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models include extensive training time and processing power requirements. A trade-off
between the accuracy of landslide susceptibility and time and resource requirements must
be decided to remedy the limitation.

Based on the articles surveyed, DL models can accurately predict landslide suscepti-
bility with less uncertainty. However, DL models have low model variance and limited
generalization capabilities [155]; these issues can be overcome by using hybrid and ensem-
ble setups. Hybrid and ensemble of DL models also increase the overall accuracy of the
base DL models [155,160].

6. Discussion

This article provides a comprehensive survey of ML-based landslide susceptibility
mapping studies using the ROSES technique. We have discussed the different types of ML
techniques employed by different studies. This survey also covers the essential elements of
ML-based LSM generation, such as LCFs, landslide inventory and datasets, ML models,
and evaluation techniques. We have provided the current trends, including the number of
articles published per year, the number of ML model names used in the title of the papers,
the most preferred journals, most cited articles, and the countries with the most case study
locations. Advanced ML techniques such as hybrid, ensemble, and DL methods were also
discussed in this article.

The current trend indicates a growing interest in ML-based landslide susceptibility
mapping. The number of papers published per year is gradually increasing over the
years. Before 2019 the average number of papers per year was less than ten, 2020 had
26 papers, and 2021 had 41 papers. The substantial increase in papers is due to easily
accessible landslide inventory, satellite data, advancements in ML techniques, and GIS
tools. The choice of the journal for publishing the articles is diverse. According to our
survey statistics, Geocarto International journal is the most popular choice, with 12 article
publications, followed by Environmental Earth Science and Remote Sensing. To determine the
most popular ML models, we have used the name of ML models in the title of the article.
Many authors choose to put the specific ML model name used in the study, while some
choose to put the blanket term ‘Machine Learning’ in the title. Based on the survey, 35
articles have ‘Machine Learning’, and 25 articles have ‘Support Vector Machine’, which is
the highest amongst the specific ML names appearing in the title. According to the statistics,
SVM can be considered the most popular ML model. The study on LSM spanned different
countries; with 35 articles, China was the most studied location. Turkey, Iran, India, and
South Korea were the other popular case study locations.

LCFs are the primary factors responsible for causing landslide. In landslide suscep-
tibility mapping, ML models are used to find the relationship between the occurrence of
landslide and LCFs. Once the relationship is determined susceptibility index or LSM of
the study location can be generated. Many LCFs are required to find the relationship. On
average, 10 to 20 causative factors are commonly used. Popular LCFs include the degree
of slope, aspect of slope, plan curvature, lithology, distance from river, TWI, and LULC.
The choice of LCFs depends on the case study location. Identification of LCFs that directly
influence the landslide is essential. Including irrelevant LCFs will degrade the performance.
There is no standard guideline for selecting the LCFs. Many studies employed different
optimization, feature selection, and hybrid techniques to find the LCFs with the most
correlations.

Landslide datasets and inventory maps are essential in training the ML models. Pop-
ular methods to obtain landslide inventory and datasets include historical data, aerial
photograph interpretation, Google earth image interpretation, satellite imagery, and field
survey is the most popular method. The size of the dataset is essential. If sufficient data or
landslide points are not available, oversampling techniques such as SMOTE may be used.
We need balanced data of landslide points and non-landslide points in the preparation of
the dataset. The landslide points are often collected from historical data or field surveys,
and the non-landslide points are generated randomly. Random selection of non-landslide
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points has limitations [42] it is suggested to use a systematic approach such as clustering,
and ML, among other techniques. The positioning method used to represent the land-
slide point impacts the accuracy of LSM, as the LCFs are derived by using these points.
Researchers have different observations in this regard. Polygon data, data point at the
center of the landslide, and landslide scrap are recommended by the researchers. The data
splitting pattern is also an essential factor. Researchers have split the data based on events
(such as earthquakes), time range, and the ratio of the available dataset. It is recommended
to split the dataset in 70:30 for training and testing. However, if the objective is to study the
effect of an event such as a natural disaster, the data splitting may be performed before and
after the event for training and testing the ML model.

ML methods are advanced algorithms that can be used for finding complex relation-
ships between LCFs and the occurrence of landslide. The ML methods can be classified
into conventional, hybrid, ensemble, and DL techniques. The conventional models are
popular ML models such as RF, SVM, LGR, ANN, and NB. RF is an ensemble of decision
trees, and it can achieve high prediction accuracy by taking average or votes of weak
base classifiers’ results. Since RF is based on many base classification trees, it does not
have over-fitting issues and can automatically handle outliers and missing values. SVM is
the most popular ML model used to generate LSM. The basic structure of SVM includes
separating hyper-plane, maximum-margin hyper-plan, the soft margin, and the kernel
function. Researchers have explored different SVM kernel functions; Gaussian is com-
monly used. SVM is effective in the generation of LSM and has the least false-positive rate,
which is essential in risk assessment application [99]. To further improve the prediction
accuracy, hybridization of SVM with optimization techniques was also explored [40]. LGR
is a popular statistical method in earth science and is often used in ensemble setup as
a meta-classifier. LGR is a multivariate method. In landslide studies, the aim is to find
how independent variables, i.e., LCFs, are related to the dependent variable (existence
landslide). Many researchers have used LGR in hybrid and ensemble setups. ANN consists
of different layers of interconnected neurons. The optimum value of the interconnection
weights is determined in the training phase. Researchers have explored different ANN ar-
chitectures, transfer functions, and training algorithms. Sigmoid and RBF transfer function
and back-propagation training algorithms are popular in landslide studies. ANN trained
with a good quality dataset can accurately predict LSM. Naive Bayes is based on Bayes’
rule. NB has less variance, is computationally efficient, robust, and can handle missing
values. NB models have good prediction accuracy and success rate with an average AUC
above 80%. NB classifier is effective in generating LSM. All the conventional ML methods
provide acceptable prediction accuracy and are often used in hybrid setups as a classifier,
ensemble setups as base classifiers, or as a benchmark to compare novel techniques for the
generation of LSM.

Hybrid methods combine multiple ML models or different ML models with opti-
mization and feature selection techniques. Hybrid models can identify LCFs with high
co-relation to the occurrence of landslide. The model trained with only the selected fea-
tures has significantly higher predictive capabilities and reduced training complexity. Re-
searchers have also combined oversampling techniques with ML models to produce more
landslide data points improving the landslide inventory and dataset artificially, increasing
the generalization and predictive capability of the ML models. A total of 23 hybrid-based
LSM generation articles were identified in this survey. The hybrid setups used in different
landslide studies include spatial response features, Geo-detectors, PSO, ensemble method,
GeoSOM, SMOTE, fractal dimension with IoE, GWR, DL, and RS theory with ML models.
Based on the results from different studies, there is a noticeable improvement in the predic-
tion accuracy of ML models. This is because hybrid methods can overcome the limitations
of conventional ML models.

The ensemble method combines several weak ML models, where a voting or averaging
system derives the result of the model. This method can reduce the bias of one ML model
by compensating it for the other models. A total of 31 ensemble-based LSM generation
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articles were identified in this survey. Some well-known ensemble techniques include
lightGBM, RF, NGBoost, XGBoost, bagging, cascade generalization, dagging, DECORATE,
MultiBoost, AdaBoost, real AdaBoost, RotFor, RSS, stacking, blending, simple averaging,
weighted averaging, qualitative matrix, semi-quantitative partition, GBDT, CCF, median of
probability, committee averaging, weighted mean probability, ADTree, ERT, LBE, BRT, and
CHAID. From the experimentation result of the articles surveyed, ensemble techniques
outperform the conventional ML models in terms of prediction accuracy. Training the
ensemble model is time-consuming because it involves training the base models and
tuning the parameters/weights involved in combining them. Optimization or searching
techniques can be employed to overcome the limitation.

Deep learning is an ML model based on ANN. DL techniques require high computa-
tion power and a large training dataset. Due to technical advancements in computational
devices, easily accessible landslide inventories, and high-resolution satellite data, recently,
DL was applied for the generation of LSM. A total of nine DL-based landslide susceptibility
mapping articles are identified in this survey. Popular DL models include CNN, RNN,
DNN, and LSTM. Training algorithms such as quick propagation, batch back-propagation,
Levenberg–Marquardt, and conjugate gradient descent are used to train the DL mod-
els. Based on the articles’ results, DL models have higher prediction accuracy than the
conventional ML models.

Evaluation methods are used to determine the prediction accuracy of ML models
in landslide susceptibility mapping. Popular evaluation methods include AUC, ACC,
κ, and RMSE, among other methods. AUC value can represent the summary of overall
performance [79], it is the most popular method and is used in almost all the articles. An
AUC value greater than 0.70 can be considered to have good accuracy. The summary of the
AUC achieved by different categories of ML techniques is shown in Table 6.

Table 6. AUC Performance of machine learning techniques.

ML Techniques 0.70–0.80 0.80–0.90 >0.90

Conventional 12 31 20
Hybrid 1 15 14

Ensemble 4 40 22
Deep Learning - 6 6

It is observed that conventional techniques are the most used ML model for the
generation of LSM because they are also used as the baseline model to prove the superiority
of the proposed model in many studies. Deep learning models are the least explored
because they are new in landslide studies. Approximately 32% of the conventional, 47% of
hybrid, 33.3% of the ensemble, and 50% of deep learning have AUC over 90%. The AUC
values in the table indicate that deep learning, hybrid, and ensemble models can generate
LSM accurately.

7. Conclusions and Future Scope of Work

Landslide is a natural disaster that disrupts human lives. Scientists and researchers
have explored various techniques to minimize the effect of landslide. One of the techniques
is generating landslide susceptibility maps, which aid disaster management planners. The
methods used to generate LSM include statistical, knowledge-based, and ML techniques.
This literature survey provides a comprehensive overview of ML-based landslide suscep-
tibility mapping. We have selected 119 articles for the survey using ROSES protocol to
ensure reproducibility and transparency. The trend indicates a growing interest in the field,
increasing the number of articles published per year. The statistics signify that SVM is
frequently used to generate LSM, the Geocarto International journal is a popular choice of
authors, and China is the most studied location. This paper also introduces the essential
elements in landslide susceptibility studies, including landslide causative factors, datasets
and landslide-inventory maps, ML models, and evaluation methods. The commonly used
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LCFs are TWI, slope degree, slope aspect, distance to the river, plan curvature, and LULC.
Field survey is the most popular method for collecting landslide data. AUC is considered
the best evaluation method to assess the performance of ML models in landslide susceptible
mapping and is used in almost all the articles. Researchers explored a wide variety of ML
models, and they are grouped into conventional, hybrid, ensemble, and deep learning tech-
niques. Popular conventional ML methods include RF, SVM, NB, ANN, and LGR. All the
ML models considered in this survey can generate acceptable LSM. Many of them have an
AUC value greater than 0.90 and can generate highly reliable LSM. There are studies where
the conventional ML models produced highly accurate predictions. Generally, hybrid,
ensemble, and DL techniques produced more accurate LSM than conventional techniques.

Based on the survey followings are a few recommendations that researchers may
adopt to generate accurate LSM using ML models:

1. There is no standard guideline for selecting LCFs, and their importance differs from
one study location to another. Researchers can collect all the available LCFs for the
study location, use a suitable feature selection method to determine the important
LCFs, and use only the highly co-related LCFs in landslide susceptibility mapping;

2. A large number of high-resolution datasets are required to train the ML models. If suf-
ficient landslide data are not available, researchers can use oversampling techniques
to increase the size of the dataset. Landslide and an equal amount of non-landslide
data are also required for training and validation. Systematic approaches such as
clustering techniques can be used to select the non-landslide locations;

3. Combination of different ML models in a hybrid or ensemble setup can overcome the
limitations of standalone ML models and achieve higher accuracy;

4. For evaluating the performance of the landslide susceptibility models, AUC can be
used, as the AUC value represents the summary of overall performance [79].

Technology is fast evolving; each passing day, new ML models or improved versions
of the existing ML models are proposed by researchers. The following few least explored
ML technologies in landslide susceptibility studies that have the potential to generate
reliable LSM can be investigated in future work:

1. The Transformer DL model is a sequence-to-sequence model and state-of-the-art in
machine translation. It uses self-attention mechanism to decide which part of the input
sequence is important in translating to the output sequence. The RNN and LSTM
were also designed for sequence-to-sequence translation tasks and have achieved high
accuracy in landslide susceptibility mapping;

2. Transfer learning (TL) is a popular ML method. It reuses the previously trained model
on a new problem, and the idea is to use the knowledge learned for one task to solve
similar ones. The advantages of TL include less training time and high prediction
accuracy with a small dataset. The ML models trained on a study location with a rich
dataset can be applied in other study locations with a small dataset using transfer
learning.

The limitations of this survey are limited keywords and using only the WoS database
to search articles on landslide susceptibility studies. Future literature surveys can consider
keywords not included in this survey and more academic research databases such as
Scopus.
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