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Abstract: This work focuses on improving a camera system for sensing a workspace in which
dynamic obstacles need to be detected. The currently available state-of-the-art solution (Movelt!)
processes data in a centralized manner from cameras that have to be registered before the system
starts. Our solution enables distributed data processing and dynamic change in the number of sensors
at runtime. The distributed camera data processing is implemented using a dedicated control unit on
which the filtering is performed by comparing the real and expected depth images. Measurements
of the processing speed of all sensor data into a global voxel map were compared between the
centralized system (Movelt!) and the new distributed system as part of a performance benchmark.
The distributed system is more flexible in terms of sensitivity to a number of cameras, better framerate
stability and the possibility of changing the camera number on the go. The effects of voxel grid size
and camera resolution were also compared during the benchmark, where the distributed system
showed better results. Finally, the overhead of data transmission in the network was discussed where
the distributed system is considerably more efficient. The decentralized system proves to be faster by
38.7% with one camera and 71.5% with four cameras.

Keywords: human-robot interaction; collaboration; workspace monitoring; distributed processing;
sensors network; obstacles detection

1. Introduction

Increasing computing power allows more demanding tasks to be processed in less
time. Despite this significant increase in computing power, the demands on the accuracy
or volume of data processed are also increasing. Workspace monitoring is one example
where such requirements grow even faster than computational power. There are multiple
approaches to monitoring the environment. For example, depth measurement using time
of flight [1-3] is not suitable for dynamic scenes. Structured light technology [4,5] is
susceptible to ambient illumination. Passive sensing needs various textured objects. An
extension for passive stereo vision offers an active approach [6], where a projector is added
to a pair of cameras to project a pseudo-texture and enable better spatial sensing. Each
has, of course, the positive aspects for which they were created and certain limitations. In
general, several types of cameras or sensors can describe 3D environments and, nowadays,
in great detail (millions of points) [7]. However, if a single sensor does not provide enough
information, multi-camera systems can be used to combine information together [8]. It
is necessary to think whether the whole environment needs to be captured in detail or
focus should be given to a particular object. In any use of sensor systems, the primary
focus is on the specific region of a workspace where the changes should be monitored in
great detail. Thus, not all information obtained from sensors is relevant for subsequent
use. It is almost always necessary to filter the input data to be satisfactory for the final
product; for example, sensing people (namely for gaming using Kinect [9]), use in virtual
reality, rehabilitation and similar situations from sensing people [10] to create 3D maps
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of the environment [11] requires specially designed filtering. It is possible to either filter
static objects (the environment around people) or, on the contrary, filter known dynamic
objects (e.g., a robotic arm). An important advantage is that it reduces the volume of data
by removing information which is unnecessary for subsequent processing.

If we focus specifically on a workplace with a robot designed to collaborate with
a human [12-14], it is required to monitor the workspace in which the robot can move
without endangering the human.

Nowadays, many applications have been developed to improve Human—Robot Interac-
tion (HRI) [15], which for example, use haptic feedback devices that notify a human worker
about the currently planned trajectory and changes in the status of the robot [16,17]. An
essential aspect of HRI is safety [18,19], in which robot avoidance against dynamic obstacles
can be addressed using dynamically changing collision volumes [20,21], and alternatively,
determining the robot’s speed based on detecting humans in the nearby space [22,23].
Nowadays, many applications are using neural networks [24,25] for detecting humans and
predicting their movement [26,27].

For such a situation, it is necessary to filter a static workplace and a moving robot
within it. There are already functional tools for such an application, such as Movelt! [28],
implemented in the ROS (Robotic Operating System)[29] environment. Movelt! allows
connection of 3D cameras and the use of post-processing to filter the workplace data so
that only obstacle information is retained, e.g., in the form of voxels [30] as illustrated in
Figure 1 by the green obstacle voxels.

(b)

Figure 1. Demonstration image of the output from Movelt! filtration: (a) real workspace;

(b) simulation.

For testing or research, Movelt! is one of the possible solutions for a quick implemen-
tation. This framework has an adjustable perception module for monitoring changes in
the workspace of a robot. This perception pipeline works by firstly defining the cameras’
configuration files and then connecting the corresponding communication topics with the
data from the cameras.

However, for industrial applications, this module has its own limitations. For example,
there is a limitation on the speed of updating camera data, which has a huge impact on
usability in real industrial applications. There can be multiple devices in a ROS system
that are connected in a local network, which provides sensor data. This allows connecting
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any number of cameras without overloading the USB ports on one computer. On the other
hand, more demands are placed on the local network, as the sensor data is not transmitted
via USB but via Ethernet or Wi-Fi. In addition, the cameras that are used by the system
must be defined when the system is started, which represents a major limitation as this
severely limits the flexibility of the system in terms of a simple plug-and-play solution.

These limitations are due to the centralization of data processing from all cameras on
one device.

The main contribution of this paper is a developed system to distribute process to
separate units in the ROS structure. The communication is optimized so that the network
is not overloaded (for processed data). Therefore, any unnecessary demands on the speed
and structure of the network are not needed.

We present an easily implementable solution that enables a quick connection of mul-
tiple cameras to a system at runtime. Therefore, this system can be used for prototyping
and the rapid reconfiguration of the workplace without restarting the entire monitoring
subsystem, which makes it more flexible in terms of its ability to quickly adapt to various
workplace-monitoring situations compared to conventional approaches.

2. Materials and Methods

A fundamental aspect of 3D space representation is the form in which the environment
is described. The most basic representation is the point cloud, which can be computed, for
example, using stereo vision [7]. Based on the camera stream resolution, the number of
points in space that correspond to each pixel in the depth image is obtained, see Figure 2.

(@) (b)
Figure 2. 3D chair data: (a) depth image; (b) point cloud.

Capturing the entire space with a single camera can be problematic, as the camera
only captures the surfaces of obstacles in front of it. Another problem with using just a
single camera is overshadowing an object with a different object in front of it. To create a
more accurate representation of the obstacle using a depth image, it is necessary to utilize
multiple cameras in the space to capture the obstacles at different angles. Such systems
are known as multi-camera systems. As an example of the multi-camera system, our
workstation with four cameras monitors the workplace with a UR3 robot, see Figure 3.
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Figure 3. Workspace with robot UR3.

With a multi-camera system, the workspace is scanned by multiple sensors, and the
obtained data are then merged into a single representation. To fuse 3D data from multiple
cameras, it is necessary to have a clearly defined camera position in space relative to a
common base [31]. This can be achieved either by detecting visual markers [32] or by
comparing point clouds relative to each other, from which the output is, for example, a
transformation matrix. This matrix represents the rotation of the coordinate system around
the x, y, and z axis and the displacement (1).
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After the transformation, the individual point clouds are expressed relative to a single
coordinate system and can be easily combined. The result is a single point cloud that
describes the imaged workspace in more detail, Figure 4.
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(a) (b)

Figure 4. Merged point clouds (data from camera Intel Realsense D435i with 1280 x 720 resolution)

in the workplace coordinate system: (a) data from camera D; (b) data from cameras A and D (cameras
transformation was calibrated by [32]).

This way of representing the space can achieve a detailed description of the environ-
ment, but usually, such a detailed model is not needed, and the computational power for
processing a large number of points grows enormously. Therefore, the data are simplified
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to an acceptable resolution by voxelizing the point cloud. Voxelization can be performed in
several ways [30,33-35]. In our case, this is carried out by aligning it to a voxel-sized grid,
see Algorithm 1.

Algorithm 1 Voxelization

voxels =[]
for point in pointCloud:
voxel = Voxel()
voxel.x = Floor(point.x /voxelSize + 0.5 * voxelSize)
voxel.y = Floor(point.y /voxelSize + 0.5 * voxelSize)
voxel.z = Floor(point.z/voxelSize + 0.5 * voxelSize)
index = voxels.Exist(voxel)
if(index | = None):
voxels[index].count +=1
else:
voxels. Append(voxel)

The result of voxelization is a voxel map expressed by a point cloud that represents
the volume of a grid-sized cube. The voxel size (which ranges from 10 to 100 mm in 10 mm
increments) is the same throughout the entire image at all locations and can be changed
in real-time. If the robot workspace should be captured, having 3D information about
the distant surroundings is unnecessary. Therefore, the voxel map can be cropped to the
maximum dimensions of the workspace and thus reduce the resulting number of points in
the map, see Figure 5.

Figure 5. Cropping voxel map to workspace: 1. robot; 2. robot workspace boundaries.

In this way, processed data are much more favorable for subsequent processing,
although they still contain known objects. For example, the design of the workstation on
which the robot is attached is clearly defined by the CAD model. This makes it unnecessary
to capture this information and then reprocess it.

Therefore, filtering was implemented to filter the real data using an expected depth
model. Expected depth can be obtained in two steps. First, the expected depth map is
computed based on the perspective projection of 3D objects onto the 2D image, and then
the expected depth for each pixel is computed, see Algorithm 2.

If the workplace is described by CAD models (in our case, STL models that represent
the model by triangles), the first step is to transform the model into its actual position
relative to the camera. Then, using a perspective projection matrix (Equation (5), which
is composed of Equations (1)—(4)), the model is projected to the camera view. Where FOV
represents the field of view, aspectRatio is the ratio between the width and height of the
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camera stream, nearPlane is the closest plane the camera can detect, and farPlane is the
farthest plane where the camera can reconstruct depth.

Algorithm 2 Filter mask creation

depthImageExpected =[]
models = database.GetActualScene()
foreach mesh in models:
transformationMatrix = mesh.PositionMatrix * camera.ViewMatrix * camera.ProjectionMatrix
mesh.Transform(transformationMatrix)
mesh.BackfaceCull()
mesh.ViewportScale()
depthImageExpected Draw(mesh)

The values in the perspective matrix were derived from the real Intel Realsense D435i
camera. This camera uses active stereo vision. To improve detection, it uses an infrared
projector for depth sensing. Cameras sensing the workstation do not interfere with each
other, as the infrared map just supports better triangulation.

1
yScale = ———— ?
tan(%)
_ _yScale
xScale = aspectRatio v
—nearPlane * farPlane
_ 4
planeScale farPlane — nearPlane @
xScale 0 0 0
’ o 0 yScale 0 N
prespectiveMatrix = | | 0 farPlane/(nearPlane — farPlane)  planeScale ;
0 0 1 "

To make the algorithm more efficient, all areas and faces of the 3D model that will be
facing away from the camera view (hidden faces) were ignored. This is solved by checking
the normals of the triangle area, see Algorithm 3.

Algorithm 3 Backface culling

for triangle in mesh.Triangles:
vectAB = triangle.vertex [1]-triangle.vertex [0]
vectAC = triangle.vertex [2]-triangle.vertex [0]
normal = Cross(vectAB, vectAC)
if(normal.z > 0):
triangle.visible = false

Since the model vertices are mapped (by projection matrix) to a range of <—1, 1> in
both the X and Y axes, Algorithm 4 describes a general procedure to map triangle vertices
to an arbitrary camera stream resolution, which, in turn, is dependent on the current depth
stream setting.

Algorithm 4 Viewport scale

for triangle in mesh.Triangles:
for vertex in triangle:
vertex.x = int(vertex.x*wResolution /2) + wResolution/2
vertex.y = int(vertex.y*hResolution/2) + hResolution /2
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At this point, there are already specific pixels of triangle vertices with expected depth.
The depth represented by the greyscale of each vertex of the triangle is then interpolated
for pixels inside the triangle (blue), see Figure 6.

Figure 6. Triangle depth rasterizing.

In this way, all the visible faces (triangles) of the objects wanted to project into the depth
image are drawn. There are also objects on the workstation described by CAD models
but dependent on the current configuration, such as a robot. These objects need to be
reconstructed from the current joint variables. Standard robots are described using Denavit-
Hartenberg (DH) parameters that represent the relationship between the coordinate systems
based on the current joint rotation [36]. Therefore, the actual matrices of the individual robot
link displacements at the workstation must be derived sequentially. The transformation
matrix for each joint is shown in Algorithm 5.

Algorithm 5 Transformation matrix of individual robot elements

for i in range(6):
cos(®;) —sin(¥;) xcos(a;)  sin(¥;) xsin(a;)  a; x cos(d;)
%4

M= Mo 1 sin(9;)  cos(9;) *cos(a;)  —cos(9;) xsin(a;) a; *sin(d;)
P 0 sin(a;) cos(a;) d;
0 0 0 1

where 0; represents rotation around the Z;_; axis (joint variable), d; represents transla-
tion along the Z;_; axis, 4; represents translation along the X;_; axis, and a; represents
rotation around the X; axis, i.e., those kinematic parameters follow standard Denavit—
Hartenberg convention.

The result is a reconstructed robot model according to the actual joint rotations, see
Figure 7a. In Figure 7b, the result of an expected depth image created from the CAD models
of the workspace and the actual position of the UR3 robot is shown.

Once the actual scene has been completely reconstructed (Defined static/dynamic
object), the real workspace scene obtained by the cameras can be compared with the
calculated expected depth image. However, it is necessary to realize that the real camera
captures with certain accuracy (data from the camera), and it is impossible to compare the
real and expected depth exactly. Therefore, a sufficient offset needs to be added to cover the
inaccuracy of the camera sensing, see Figure 8. This approach filters out all objects where
the distance of expected depth (with offset) is less than the distance of the actual depth.
The diagram shows the principle where the environment is defined (as a line Defined
(static) object). The expected depth of the scene is identical to the real one but is offset to
capture the basic inaccuracy of the camera (data from the camera(filtered)—red line). The
un-defined (dynamic) object is before the expected depth (from the camera view), so this
data is not filtered.
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Figure 7. Rendered UR3 robot: (a) with coordinate systems attached to individual links according to
the Denavit-Hartenberg principle (the blue z-axes represent the axes of rotation); (b) reconstructed
expected depth map of the workspace.
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Figure 8. Illustration of filtration principle.

It is impossible to filter out all image noise by comparing the real and expected depth
images. Therefore, was implemented a post-processing filter which determines whether a
voxel is a noise voxel or an actual object surface based on the density of points in the voxel.

The maximum possible density of points representing a voxel is variable based on
the distance from the camera. The relationship between voxel occupancy and distance
for a 5 cm voxel and the resolution of the Intel RealSense D435i 640 x 480 [px] camera is
shown in Figure 9. It depicts the count of points per voxel according to the minimum and
maximum possible sensing distance of the camera.
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Figure 9. Density of expected points of a voxel depending on the distance from the camera.

A simplified calculation of the maximum voxel capacity is described in Algorithm 6.
First, the alpha angle is calculated, representing the maximum angle at which the rays of
points can be projected. The density is then computed as the maximum number of rays
that can fit into the alpha angle for pixels on the X and Y axis.

Algorithm 6 Maximum number of points in a voxel

alfa = atan(voxelSize /voxel distance)
countPerRow = alfa/(hFOV /hResolution)
countPerColumn = alfa/(wFOV /wResolution)
countPerVoxel = countPerRow * countPerColumn

The final filtering is then carried out by checking whether the actual voxel coverage
is less than the density coverage with a certain threshold, and thus, these voxels are
considered to be under-covered. Several factors affect the noise filtering threshold, e.g.,
ambient effects (sunlight) or camera lens calibration. In our case, this limit was around
50-60% of the maximum value to ensure that the filtering provides a satisfactory result.
Hence, these voxels are removed as they represent noise, see Algorithm 7.

Algorithm 7 Voxel filtering by occupancy percentage

for voxel in voxels:
maxCount = GetExpectedCount(voxel.Size, voxel.Distance, camera.Info)
if(voxel.count < maxCount * threshold)
voxels.Delete(voxel)

The output of these algorithms are only voxels representing objects that have not
been defined at the workplace and thus are needed for subsequent processing, e.g., robot
trajectory re-planning.

The entire filtering process is distributed to individual computing devices that process
depth streams from just one camera, as shown in Figure 10. Each of these units filters the
scene for a specific camera position on the site. For our system, Nvidia Jetson Nano and
Intel RealSense D435i cameras were used.
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Figure 10. Diagram of the system principle: (a) centralized; (b) distributed.

Figure 10 represents only symbolic block sizes and demonstrates the principle of a
centralized and distributed system and the ratios do not correspond in any way to the
real scenario. Figure 10 describes the case with three cameras at a general FPS (Frame
Per Second).

In the initial setup of the cameras, all relative positions of the cameras to the robot
coordinate system were obtained using a calibration grid board [27]. The system uses a
single unit as the main camera, creating a server for initialization and a subsequent location
for the descendant data, see Algorithm 8.

Algorithm 8 Methods for Initialize and Update computing devices

def Initialize(device):
if(initialized Devices.Exist(device.IP):
return initializedDevice[device.IP].ID
id = initializeDevices.Insert(device.IP)
return id
def Update(device):
initializedDevices[device.ID].voxels = device.voxels
return actualSceneValues

The processed data from the individual units are combined in the main unit. Each
computed datum is stored with a timestamp of when it was received to check for old data,
see Algorithm 9. The verification is performed by comparing the time since the update
of the data from the individual cameras. In other words, if the difference between the
time of the arrival of data Ty; and actual time T is less than Threshold (Equation (6)), the
IsTimeStamp Valid condition is satisfied.

Ty — Ty < Threshold (6)
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The units are not synchronized in the sense of camera frame acquisition. Each unit
maintains its own framerate, and the most recent frame is sent to the master device, where
it is used until a newer frame arrives (or the timestamp check fails).

Latency of the data update callback was measured as the time required for data transfer
to the main device and transfer of the response data. The average transfer latency for 0 to
1000 voxels is 12 ms for each device (measured for four connected devices).

Algorithm 9 Merging data from computing devices

globalVoxelMap =[]
for device in initializedDevices:
if(device.IsTimeStampValid())):
globalVoxelMap.Insert(device.voxels)

The Initialize method on the server represents the entry point for the processing units.
When an initialization command arrives here, the incoming IP address is checked to see
if it is already registered (behind one IP is expected one camera only). If it is registered,
it represents a computing device that has been initialized in the past, and it is assumed
that the device has been restarted either intentionally or due to a failure. No new memory
space is created for such a computing device, and only its assigned ID is retrieved. The
current workstation settings (e.g., robot position, filter parameters) are added to the ID.
If the device IP is initialized for the first time, memory space is created that represents
only the data from that unit. Allocated memory is represented by a dynamic list, and its
initial size is for 150 voxels to avoid frequent increases in allocated memory. The output
method then comprises the memory ID and following values, which represent the current
settings (voxel size, robot configuration, percentage voxel occupancy, etc.), as is the case in
pre-initialized devices.

The Update method is triggered if any computing unit updates the current data. The
computing device that sends the data update also sends its ID. The server then deletes all
previous data from that unit and replaces it with the new data. In addition, the timestamp
of the newly arrived values is recorded so that the data can be checked to confirm whether
the data is outdated for future data fusion.

When connected to the network, each computing device must initialize itself to obtain
an ID under which it will then send the current local data it is currently capturing with
the connected camera. A localization algorithm (in our case, 3D grid board detection) is
used to find the position of the camera connected to a particular device. The depth map
is then filtered using the 3D reconstruction of the site and the depth map comparison
described above.

Using this structure, any number of computation devices with a camera (Jetson Nano;
Nvidia, Santa Clara, CA, USA and D435i camera; Intel, Santa Clara, CA, USA) can be
connected. Furthermore, the module is set up to run the filtering algorithms when the
system starts automatically, so there is no need to have a device (e.g., keyboard, mouse,
monitor, etc.) connected to each unit, and it will automatically start streaming the current
data when the power is turned on.

Based on the idea of distributing the computational power, algorithms have been
proposed to filter the depth information in the dynamic environment (Figure 11a). This
information was then thoroughly filtered (Figure 11c—e) so that the output data from the
sensor system contained only the necessary information about unknown objects in the
scene, see Figure 11b.
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Figure 11. Filtered scene by the distributed method: (a) real scenario; (b) 3D visualization;
(c—e) camera bitmask.

3. Results and Discussion

The depth image processing speed and refresh rate of the entire workplace scene were
compared using the distributed method versus the centralized (Movelt!) method in a real
workplace. It should be noted that the depth image filtering was performed differently by
each method. In the distributed method, the computation was performed on the Jetson
Nano unit processor (Quad-core ARM A57, 1.43 GHz, Memory 4 GB LPDDR4) [37], while
in the centralized method, everything was computed on the laptop GPU (NVIDIA GeForce
GTX 1070, 1.51 GB, CUDA Cores 1920, Memory 5 GB GDDR5) [38].

Variables such as the resolution of cameras, the size of the voxel map, and the number
of cameras were used to compare the solutions. These factors affect the total performance of
the solution with a major impact on the scene refresh rate, hence the need for measurements.

The scene refresh rate of the workstation was measured for the following depth stream
resolutions with a setting of 15 FPS:

1. 424 x 240;

2. 640 x 480;
3. 1280 x 720.
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For all of these resolutions, the voxel grid size dependencies were measured, where the
voxel size was measured from 10 to 100 mm in 10 mm increments. The actual measurement
consisted of determining the time to compute the depth image from the time of its arrival
to the filtering and the time to reconstruct the entire workstation scene from the reception
of the data from the first camera to the evaluation of the filtering from the last camera.
Tables 1 and 2 compare the time for reconstructing the whole scene with three cameras,
using both the centralized and distributed approaches. During the measurements, it
was found that the centralized approach at higher resolutions was not able to provide a
depth stream of 15 fps. At a resolution of 424 x 240, the framerate was maintained. At
640 x 480 resolution, the depth stream reached a maximum of 6 fps, and at 1280 x 720, it
reached 2 fps. A low bandwidth of the depth stream then influences the processing time
of the image. Furthermore, it was found that when the voxel size was less than 0.02 m,
the depth filtering time increased rapidly: for 424 x 240 resolution, the time increased to
1.9 s; for 640 x 480 resolution, the time increased to 2.0 s, and for 1280 x 720 resolution,
it increased to 2.9 s (Table 1). This problem could be, for example, caused by memory
management. At lower voxel resolutions, multiple memory uses occur, thus redistributing
the initial reserved space. This substantially increases the processing time for the entire
scene. On the other hand, there was no problem maintaining the required 15 fps even with
1280 x 720 resolution for the distributed approach. The scene refresh rate ranges from
0.05-0.3 s across all measured resolutions for the distributed method.

Table 1. Time required to process the whole scene with three cameras for various voxel sizes and
camera resolutions using the centralized approach.

Voxel Size (m)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Min (ms) 1303 146 47 34 18 22 15 24 16 18

424 % 240 Max (ms) 16,867 944 163 121 149 152 138 145 149 143
Median (ms) 1909 214 74 67 67 67 67 67 67 67

Average (ms) 1960 217 78 67 67 67 67 67 67 67

Min (ms) 1305 146 71 123 145 133 155 152 135 120

640 x 480 Max (ms) 11,531 997 224 476 202 210 202 205 203 190
Median (ms) 2007 234 168 167 166 166 166 166 166 166

Average (ms) 2087 248 169 172 166 167 166 168 167 167

Min (ms) 2031 339 419 409 341 255 423 410 247 368

1280 x 720 Max (ms) 21,894 616 609 561 565 555 559 554 582 560
Median (ms) 2416 504 493 492 503 500 495 490 490 495

Average (ms) 2981 503 496 494 501 496 496 491 491 495

Table 2. Time required to process the whole scene with three cameras for various voxel sizes and
camera resolutions using the distributed approach. For each camera resolution, the percentage
difference of the average value (Avg. diff) compared to the centralized system is shown.

Voxel Size (m)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Min (ms) 37 37 38 38 37 37 37 37 37 37
Max (ms) 63 63 63 63 63 63 62 63 63 63
424 x 240 Median (ms) 50 50 50 50 50 50 50 50 50 50
Average (ms) 50 50 50 50 50 50 50 50 50 50
Avg. diff (%) 97.45 76.96 35.90 25.37 25.37 25.37 25.37 25.37 25.37 25.37
Min (ms) 98 98 98 87 97 87 88 91 93 87
Max (ms) 114 115 115 126 119 125 125 115 115 163
640 x 480 Median (ms) 100 100 100 100 100 100 100 100 100 100
Average (ms) 104 104 104 104 104 104 104 104 104 104
Avg. diff (%) 95.02 58.06 38.46 39.53 37.35 37.72 37.35 38.10 37.72 37.72
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Table 2. Cont.

Voxel Size (m)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1280 x 720

Min (ms) 275 279 284 275 286 237 274 286 274 274

Max (ms) 305 300 301 307 301 301 325 313 300 325
Median (ms) 287 288 288 288 288 288 287 288 287 287
Average (ms) 287 288 290 288 290 289 287 292 286 287
Avg. diff (%) 90.37 42.74 4153 4170 4212 4173 4214  40.53 41.75  42.02

All processed values across resolutions are listed in Table 1 for the centralized system
and Table 2 for the distributed system. For a better comparison, the percentage value of the
average difference was added to Table 2, which is calculated by Equation (7):

Avgp
Avgc

Avgdiff =100 — 100 (7)
where Avgp is required average time to process the whole scene using the decentralized
approach and Avgc using the centralized approach.

Subsequently, the effect of the number of cameras on scene refresh rate was measured
for one, two, three, and four cameras in the workplace. The centralized system processes
the camera data serially and does not allow the connecting of multiple cameras for a more
detailed real-time mapping of the whole space since as the number of cameras increases,
the time to recover the whole scene increases. In a distributed system, this problem does
not arise since the computation is performed in parallel and is therefore not dependent on
the number of cameras, see Figure 12.

04 0.4
0.35 0.35
0.3 0.3

Scene refresh duration(s]
o
N

0.2
0.15 % | 0.15
0.1 0.1 ————X
0.05 0.05
0 0
B 1camera B 2 cameras [l 3 cameras 4 cameras

(@) (b)

Figure 12. Effect of the number of cameras on the scene refresh duration for 1280 x 720 camera
resolution and voxel size 20 mm: (a) centralized; (b) distributed.
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Scene refresh rate measurements based on the number of cameras have clearly shown
that a system that filters data from each camera separately and sends the resulting data
to the main device where all data are combined into a global voxel map is more efficient
to use. The distributed system refresh rate is faster by 38.7% when using one camera, by
40.1% when using two cameras, 59.4% when using three cameras, and 71.5% when using
four cameras. This ensures a more stable refresh rate of the whole scene even with larger
numbers of sensors and reduces the network requirements as it does not need to send
source data from cameras between devices.

Data sent over the network within a centralized system is sent in raw format (depth
image), which equals the image width times height times the bit rate of the depth stream
for each camera in the system. For example, when capturing at 640 x 480 resolution and a
32-bit depth image, then 9.8 Mbit of data needs to be transferred. For three cameras, this
is therefore 29.4 Mbit/scene refresh. While in a distributed system, the data sent is based
on the current scenario (nothing is sent if there are no undefined objects). When sending
voxels (either an index in the grid or specific X,Y,Z coordinates), one can count 3 x 32 bits
per voxel, whereas, in a normal scenario, the unit sends less than 100 voxels on average.
Then, on average, 9.3 Kbit per camera can be counted, and with three cameras, it is only
27.9 Kbit.

To make a distributed system less efficient, the number of voxels sent would have to
be higher than 1/3 of the number of pixels which is very unlikely with the current filtering.

Needed time may also be compared for implementing the system. In the case of a cen-
tralized system (Movelt!), it was needed to manually change parts of the code responsible
for placing cameras into the workspace (if no additional script was created for conducting
this routine instead of us). That means if there was a need to change the number of cameras,
there was a need to make changes in the code. On the other hand, while using a distributed
system, it is needed just to place or remove a camera from the system with its computation
unit to the change number of cameras. This makes this plug-and-play solution really user-
friendly and much faster to implement. There is also an advantage in the case of system
reachability. With a centralized system, reachability is limited by the length of the camera’s
USB cable (which is around 2 m for securing fast data transfer) if only one computer is
used. However, with distributed system, a 2 m USB cable should be always enough to
reach the computing unit. Communication between the main device and computing units
is addressed by a high-speed ethernet cable. This means there is a possibility of a greater
spread of cameras in the workspace in the case of a distributed system.

4. Conclusions

Workspace monitoring is one of the essential elements of a workplace where a human
has to interact with a robot. Reconstructing dynamic objects in the workplace can ensure
safety for the operator and smooth operation of the workplace because the robot can react to
changes in the free space for movement. The workplace reconstruction process is standard
through packages in the Robotic Operation System (ROS). These packages are designed for
universal use. However, this has the effect of centralizing the computing power into a single
device. Such a solution is less suitable for processing large volumes of data from multiple
sensors because the user does not have complete control over the computational processes.

Therefore, a new principle has been proposed that distributes the computational
power among the individual devices. Each processing device allows filtering of the locally
sensed data. The filtering is based on a 3D description of the workplace and the creation of
a density camera depth map for each camera separately from their point of view. Filtering
compares the actual depth map from the sensor and the calculated density depth map. The
resulting data are information about undefined obstacles (arms, boxes, etc.). These obstacles
are subsequently processed by noise filtering. The resulting data from the individual
distributed devices are combined in the main computer (Algorithm 9), which produces an
overall description of the entire sensed workspace.
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This distributed sensing method was then verified and compared with the currently
available centralized system (Movelt!). The results show that both solutions are comparable
across camera setups for different resolutions and voxel map sizes, but the main advantages
of the distributed system are in the stable refresh rate of the whole scene when the number
of sensors involved in the system changes. The measurements showed that when the
number of cameras increased (1-4 cameras were measured), the scene refresh rate of the
centralized system decreased substantially. In contrast, the distributed system maintained
its scene refresh rate. Despite the fact that in a distributed system, the computation is
performed in parallel on individual devices, when merging the data, there is a timestamp
check to avoid unwanted effects (ghosts, broken data, etc.).

Based on the measurements, the system had shown to be able to maintain the workspace
sensing rate even when the sensing parameters change. The essential parameter is the
number of cameras, which significantly influences the refresh rate of the entire scene. The
assumption that the distributed system is independent of the number of cameras has
been proven, compared to the centralized system, which is slower with each additional
camera added to the system. This assumption is especially evident when processing data
from more than three cameras, where the data calculation from the whole scene is almost
constant. If security in a given area should be ensured, the number of cameras will not be a
limiting factor.

In terms of hardware, the only difference is in the final computing unit, which has
higher computing power requirements in a centralized system than in a distributed system.
The goal of this work was not to determine the exact computational power required for
each system. The hardware in this work was selected based on previous experiences.

Despite the fact that filtering on distributed units runs on the CPU, the speed is
comparable to the currently available solution in Movelt!. Of course, this solution can be
adapted to compute using a GPU, which can increase the speed; in general, this can be
used on units that have graphic power available.

Future work could focus on noise elimination. In the current solution, voxel occupancy
is judged based on the percentage of 3D points from a single camera. This approach could
be more robust when using information from multiple cameras (e.g., two cameras detect a
voxel as empty, and a third camera detects it as occupied). Further, the functionality of the
system could be extended to automatically assign a size to each voxel based on the size and
shape of the detected feature. This could lead to a reduction in the size of the total number
of detected voxels. Consequently, it would be desirable to examine the trend of the ability
to efficiently merge the processed camera image data. It is assumed that when processing
tens of cameras (30-50 cameras), the rate of data merging should be constantly the same.
This number of used cameras could be possibly used in the case of a huge workspace.
However, the use of a higher number of cameras in the measurements was not considered,
due to the insufficient budget to purchase a large number of cameras.
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