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Abstract: Numerous explicit approximations of the Colebrook equation have been developed and
evaluated based on two criteria: prediction accuracy and computational efficiency. This paper
introduces a new evaluation criterion based on the reliability of each equation. The reliability is
defined by the coefficient of variation (CV) of the explicit friction factor that is a function of the
variabilities of component random variables (roughness height of the internal pipe surface and
kinematic viscosity of the fluid). The coefficient of variation of the friction factor depends on its first
derivative for roughness height of the inner pipe surface and kinematic viscosity of the fluid and their
correlation. Seven explicit approximations were evaluated using the new reliability-based criterion.
The results show that all explicit approximations are very reliable, but variations exist regarding the
reliability level. The reliabilities of the seven approximations is very close for the rough-flow regime
and when the CV of the viscosity is minimal. However, for the smooth-flow regime, and when the
CV of the roughness is minimal, various approximations showed substantially different reliabilities.
The novelty of the proposed criterion is that it addresses an evaluation dimension that complements
the accuracy and efficiency criteria.

Keywords: Colebrook equation; explicit approximations; evaluation criterion; reliability

1. Introduction

The pipe friction factor f from the Darcy–Weisbach formula is given by

h = f · L·ρ·V
2

2·D (1)

where h is the head loss in meters, which can be calculated using the Colebrook equation
given by [1–4]

1√
f
= −2·log10

(
ε

3.7·D +
2.51

R·
√

f

)
(2)

where:
f is the dimensionless Darcy’s friction factor,
L is the length of pipe (m),
ρ is the density of the fluid (kg/m3),
V is the velocity of the fluid (m/sec),
D is the pipe diameter (m),
ε is the roughness of the inner pipe surface (m), and
R is the dimensionless Reynolds number, defined as R = V·D/ν, where
ν is the kinematic viscosity of the fluid (m2/sec).
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Both the Darcy–Weisbach and the Colebrook equations are empirical. Equation (2)
is based on experimentation with the flow of air through pipes with a different inner
pipe roughness ranging from smooth to fully rough. Additionally, it contains unknown
friction factor f on both sides of the equal sign in a form from which it cannot be extracted
analytically. To overcome this inconvenience, many explicit approximations have been
developed for efficient use in everyday engineering practice. Genic et al. [5] and Pracks
and Brkic [6] have presented excellent reviews and evaluations of the available explicit
approximations of the Colebrook equation. The evaluation criteria used for evaluating
the explicit approximations were prediction accuracy and computational efficiency. The
reliability of the explicit approximations has not been previously addressed in the literature.

This article introduces a new evaluation criterion based on the reliability of the explicit
approximations that aims to complement the existing criteria. The new criterion was used to
evaluate seven approximations of the Colebrook equation. The reliability is defined by the
coefficient of variation of the explicit friction factor that is a function of the variabilities of
component random variables (roughness height of the internal pipe surface and kinematic
viscosity of the fluid). The coefficient of variation of the friction factor depends on its first
derivative for roughness height of the inner pipe surface and kinematic viscosity of the
fluid, and their correlation.

2. Materials and Methods
2.1. Explicit Approximations of Colebrook Equation

Seven explicit approximations that are evaluated through the new reliability-based
criterion are by Swamee and Jain [7], Haaland [8], Mikata and Walczak [9], Biberg [10],
Vatankhah [11], Praks and Brkić [6], and Lamri and Easa [12].

2.1.1. Approximation by Swamee and Jain (1976)

The approximation by Swamee and Jain [7] is given by

1√
f
= −2 log

(
ε

3.7D
+

5.74
R0.9

)
(3)

2.1.2. Haaland’s Approximation (1983)

The approximation by Haaland [8] is given by

1√
f
≈ −1.8·log10

(( ε

3.7·D

)1.11
+

6.9
R

)
= −1.8·log10(ζ1) (4)

2.1.3. Approximation by Mikata and Walczak (2015)

The approximation by Mikata and Walczak [9] is given by

1√
f
≈ 0.8686·ln

(
0.458·R

A1 − ln(A1)

)
= ζ3 (5)

where A1 is defined as
A1 = 0.124·R· ε

D
+ ln(0.4587·R) (6)

2.1.4. Biberg’s Approximation (2017)

The approximation by Biberg [10] is given by

1√
f
≈ A2·

[
ln
(

R
2.51·A2

)
+

(
1

A3
− A3

)
·ln(A3)

]
= ζ4 (7)

where A2 and A3 are defined as

A2 =
2

ln(10)
(8)
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A3 = ln
(

R
2.51·A2

)
+

R
9.287·A2

· ε

D
(9)

2.1.5. Vatankhah’s Approximation (2018)

The approximation by Vatankhah [11] is given by

1√
f
≈ 0.8686·ln

 0.3984·R

(0.8686·A4)
A4

A4+A5

 = ζ5 (10)

where A4 and A5 are defined as

A4 = 0.12363·R· ε

D
+ ln(0.3984·R) (11)

A5 = 1 +
1

1+A4
0.5·ln(0.8686·A4)

− 1+4·A4
3·(1+A4)

(12)

2.1.6. Approximation by Praks and Brkić (2020)

The approximation by Praks and Brkić [6] is given by

1√
f
≈ 0.8686·

[
A8 − A9 +

A9

A6 − 0.5564·A9 + 1.207

]
= 0.8686·

[
A8 − A9 +

A9

ζ6

]
(13)

where A6, A7, A8, and A9 are defined as

A6 = A7 + A8 (14)

A7 =
R

8.0884
· ε

D
(15)

A8 = ln(R)− 0.7794 (16)

A9 = ln(A6) (17)

2.1.7. Approximation by Lamri and Easa (2022)

The approximation by Lamri [13] and Lamri and Easa [12] is given by

1√
f
≈ A10 + 2·log10(A11)·

(
−1 +

0.862
A11
·
[

1 +
1

A11
·log10

(
A11

e2

)])
(18)

where A10 and A11 are defined as

A10 = 2·log10

(
R

2.51

)
(19)

A11 =
R

9.287
· ε

D
+ A10 (20)

Brkic and Stajic [14] affirmed that Equation (18) is the most efficient available approxi-
mation of the Colebrook equation.

2.2. Proposed Reliability Criterion
2.2.1. Reliability Definition

The friction factor of the Colebrook approximations is a nonlinear function of the
random variables ν and ε, and therefore f is also a random variable. To derive the reliability
of the friction factor f, it is necessary to linearize its solution. In general, let Y be a nonlinear
function of several random variables, Xi, I = 1, 2, . . . , n, where n is the number of random
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variables. That is, Y = F(X1, X2, . . . , Xn). Then, using the Taylor series, the expected value
and variance of Y, E[Y] and var[Y], are given, respectively, by [15,16].

E[Y] ∼= F(µx1, µx1, . . . , µxn) (21)

var[Y] ∼=
n

∑
i=1

(
∂F
∂Xi

)2
σ2

Xi +
n

∑
i

n

∑
j

(
∂F
∂Xi

)(
∂F
∂Xj

)
cov
[
Xi, Xj

]
(22)

where µXi is the mean value of the random variable Xi, σXi is the standard deviation (SD)
of the random variable Xi, and cov[Xi, Xj] is the covariance of the random variables Xi and
Xj. The covariance between two random variables is given by cov[Xi, Xj] = ρXi,Xj σXi σXj,
where ρXi,Xj is the correlation coefficient between Xi and Xj. The coefficient of variation of
Y, which is a dimensionless measure of reliability, is given by

CVY =

√
var[Y]
E[Y]

(23)

where CVY is the coefficient of variation of the random variable Y and µY is the mean of
the random variable Y. Similarly, CVxi = σXi/µXi.

The coefficient of variation has been used in engineering applications to determine the
reliability of a random variable. The smaller the CV value, the more reliable the random
variable is.

The definition of reliability is graphically presented in Figure 1.
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2.2.2. First Derivatives of Friction Factor f

Since the friction factor f of the Colebrook equation is a nonlinear function of the
random variables v and ε, the mean and standard deviation of f are given by

E[ f ] ∼= F(µv, µε)

var[ f ] ∼=
(

∂ f
∂v

)2
σ2

v +
(

∂ f
∂ε

)2
σ2

ε +
(

∂ f
∂v

)(
∂ f
∂ε

)
cov[v, ε]

cov[v, ε] = ρv,εσvσε

CVf =

√
var[ f ]
E[ f ]


(24)

The first derivatives of f for v and ε are needed for calculating the variance and
expected value of f, and the coefficient of variation of f. These derivatives are presented next
for the seven explicit approximations of the Colebrook equation, respectively, presented in
Section 2.1.
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- Approximation by Swamee and Jain:

d f
dε = 4

3.7·D·ln(10) ·[−2·log10(ζ2)]
−3·[ln(ζ2)]

−1

d f
dν = 5.934

ν0.1·ln(10) ·
(

π·D
Q

)0.9
·[−2·log10(ζ2)]

−3·[ln(ζ2)]
−1

ζ2 = ε
3.7·D + 5.74

R0.9

 (25)

- Haaland’s approximation:

d f
dε = 3.6

ln(10) ·[−1.8·log10(ζ1)]
−3·
(

1.11·ε0.11

(3.7·D)1.11

)
·[ζ1]

−1

d f
dν = 3.6

ln(10) ·[−1.8·log10(ζ1)]
−3·
(

6.9·π·D
4·Q

)
·[ζ1]

−1

ζ1 =
(

ε
3.7·D

)1.11
+ 6.9

R

 (26)

- Approximation by Mikata and Walczak:

d f
dε = −2·0.8686·[ζ3]

−3·
(

−0.124·R
D·(A1−ln(A1))

)
·
(

1− 1
A1

)
d f
dν = −2·0.8686·[ζ3]

−3·
[(

−4·Q
R·π·D·ν2

)
− (A1 − ln(A1))

−1·
(

dA1
dν

)(
1− 1

A1

)]
ζ3 = 0.8686·ln

(
0.458·R

A1−ln(A1)

)
dA1
dν = −0.124·4·Q·ε

π·D2·ν2 − 1
ν


(27)

- Biberg’s approximation:

d f
dε = −2·A2·[ζ5]

−3·
[(

1
A3
− 1
)
·
(

R
9.287·z·A3·D

)
− ln(A3)·

(
R

9.287·z·A3
2·D

)]
d f
dν = −2·A2·[ζ5]

−3·
[
−1
ν + 1

A3
· dA3

dν

(
1

A3
− 1
)
− ln(A3)

A3
2 · dA3

dν

]
ζ4 = A2·

(
ln
(

R
2.51·A2

)
+
(

1
A3
− 1
)
·ln(A3)

)
 (28)

- Vatankhah’s approximation:

d f
dε = 2·(0.8686)2·[ζ5]

−3·
(

0.1236·A4·R
D·(A4+A5)·(0.8686·A4)

)
d f
dν = 2·0.8686·[ζ5]

−3·
[

1
ν −

(
1− 1

ν·(A4+A5)

)]
ζ5 = 0.8686· ln

 0.3984·R

(0.8686·A4)

A4
A4+A5




(29)

- Approximation by Praks and Brkić:

d f
dε = −2·0.8686·

[
0.8686·

[
A8 − A9 +

A9
ζ6

]]−3
·
[
− dA6

dε
· 1

A6
+

dA6
dε
· 1

A6
·ζ6−A9

(
dA6
dε
−0.5564· dA6

dε
· 1

A6

)
A6

2

]
d f
dν = −2·0.8686·

[
0.8686·

[
A8 − A9 +

A9
ζ6

]]−3
·
[
−1
ν −

dA6
dν
· 1

A6
+

dA6
dε
· 1

A6
·ζ6−A9

(
dA6
dε
−0.5564· dA6

dε
· 1

A6

)
A6

2

]
ζ6 = A6 − 0.5564·A9 + 1.207

dA6
dν

= −4·Q·ε
8.0884·πD2·ν2 − 1

ν


(30)
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- Approximation by Lamri and Easa:

d f
dε = −2·[ζ7]

−3·
[(

0.8645
A11
− 1
)
·
(

2·R
9.287·D·A11ln(10)

)
+ 2·log10(A11)·

(
−0.8645·R

9.287·D·A11
2

)]
d f
dν = −2·[ζ7]

−3·
[(

−2
ν·ln(10)

)
+
(

0.8645
A11
− 1
)
·
(

dA11
dν

)
+ log10(A11)·

(
dA11

dν

)]
ζ7 = A10 + 2·log10(A11)·

(
0.8645

A11
− 1
)

dA11
dν

= −4·Q·ε
8.0884·πD2·ν2 − 2

ν·ln(10)


(31)

2.2.3. Verification

To verify the developed derivatives, the mean and standard deviation of f of the
analytical formulas were compared with those of the Monte Carlo simulation. Given the
means of ν and ε and the assumed values of CV, the expected value and standard deviation
of f were obtained. For simplicity, ν and ε were assumed to be uncorrelated (ρv,ε = 0).
The simulation involved generating 20,000 random values of the four random variables
ν and ε, assuming their probability distributions to be normal. The generated random
values of the two variables were then substituted in the respective equation of f of the
corresponding approximation, resulting in 20,000 values of f that were used to establish a
frequency histogram.

The analytical and MC simulation results of all explicit approximations were very close.
This verifies the developed first derivatives. For example, a comparison of the simulation
and mathematical results of the approximation by Lamri and Easa [12] is shown in Figure 2.
The hollow columns represent a normal distribution with the respective mean and SD of
the mathematical solution. The solid columns represent the frequency distribution based
on simulation. It is noted that the means and standard deviations of the mathematical
formula and simulation are very close, and the distribution of f is also close to normal.
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tion by Lamri and Easa [12].

3. Results
3.1. Reliability-Based Ranking of Various Approximations

The reliability of various approximations was evaluated for the following four cases:
Case 1: Coefficient of variation of ε is zero (CVε = 0, CVν = 30%).
Case 2: Coefficient of variation of v is zero (CVε = 30%, CVν = 0).
Case 3: Smooth-flow regime (ε = 0, ν = 1 × 10−6).
Case 4: Rough-flow regime (ε = 0.001, ν = 2 × 10−9).
The reliabilities of some methods were very close in the preceding cases. To fairly

reflect the ranking of various approximations, the minimum coefficient of variation of f, min



J. Mar. Sci. Eng. 2022, 10, 803 7 of 9

CVf, was calculated for each case, and the rankings of the approximations were determined
as follows:

Rank 1: min CVf ≤ CVf < 1.1 min CVf.
Rank 2: 1.1 min CVf ≤ CVf < 1.2 min CVf.
Rank 3: 1.2 min CVf ≤ CVf.
Thus, an approximation is assigned Rank 1 if its CVf lies within 110% of min CVf and

Rank 2 if its CVf lies within 110% and 120% of min CVf. If CVf is equal to or greater than
120% of min CVf, the approximation is assigned Rank 3.

The ranking results are shown in Table 1. For each case, the minimum and maximum
CVf are shown. For example, for Case 3, min CVf = 4.438 and max CVf = 5.449. The 110% and
120% thresholds are 4.438 and 4.881, respectively. The approximation of Swamee and Jain
is assigned Rank 1 because their CVf is the minimum. The CVf of all other approximations
are greater than 4.881 and therefore were assigned Rank 3.

Table 1. Rankings of various approximations based on the reliability criterion.

Approximation

CV Level Flow regime

Case 1: CVε = 0 Case 2: CVv = 0 Case 3: Smooth 1 Case 4: Rough 2

CVν = 30%
(CVf = 0.210–0.415)

CVε = 30%
(CVf = 8.172–8.354)

ε = 0, ν = 1 × 10−6

(CVf = 4.438–5.449)
ε = 0.001, ν = 2 × 10−9

(CVf = 5.701–5.706)

Swamee and Jain 3 1 1 1
Haaland 1 1 3 1

Mikata and Walczak 2 1 3 1
Biberg 2 1 3 1

Vatankhah 3 1 3 1
Praks and Brkic 2 1 3 1
Lamri and Easa 2 1 3 1

1 CVε = 0, CVν = 30%. 2 CVε = 20%, CVν = 30%.

Thus, for Case 1, Haaland’s approximation is the most reliable (Rank 1), while the
approximations by Swamee and Jain and Vatankhah are the least reliable (Rank 3). The
other approximations have Rank 2). For Case 3, the approximation by Swamee and Jain
substantially outperforms the other approximations. For Cases 2 and 4, all approximations
are assigned Rank 1 because their reliabilities are within 110% of the min CVf (8.990 and
6.627, respectively).

3.2. Sensitivity Analysis

The variation of the reliability of various approximations was examined as v or ε varies.
The variation CVf of various approximations as the roughness varies is shown in Figure 3
for CVε = 0, CVν = 30%, and ν = 1 × 10−6. The log(ε) varied from −1.5 to −5. As noted, as
the roughness decreases to about −3, CVf of all approximations is almost the same. As the
roughness decreases further, CVf of Swamee and Jain’s approximation becomes the best,
and all other approximations exhibit substantially larger values, consistent with Case 3 of
Table 1.

The variation CVf of various approximations as the viscosity varies is shown in Figure 4
for the smooth-flow regime (ε = 0). This is similar to Case 3 of Table 1, except that v varies.
As noted, Swamee and Jain’s approximation exhibits the best reliability for the entire range
of v. The reliability of the other approximations is almost the same. However, for larger
viscosity, Haaland’s approximation shows the least reliability.
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4. Conclusions

This article has introduced a new reliability-based criterion for evaluating the perfor-
mance of the explicit approximations of the Colebrook equation. The proposed criterion
addresses a performance dimension that complements the existing prediction accuracy and
computational efficiency criteria. The criterion was used to evaluate the performance of
seven explicit approximations.

The new criterion is defined by the coefficient of variation of the explicit friction
factor. The CVf of the friction factor is calculated using the variabilities of the two random
parameters: roughness height of the internal pipe surface and kinematic viscosity of the
fluid. The coefficient of variation of the friction factor depends on its first derivatives for
these two parameters and their correlation.

The results show that all explicit approximations are very reliable, but variations exist
regarding the reliability level. The reliabilities of the seven approximations were close
for the rough-flow regime and when the CV of viscosity is minimal (all approximations
have Rank 1). For the smooth-flow regime, Swamee and Jain’s approximation showed the
largest reliability (Rank 1), while the other approximations were close (Rank 3). When the
CV of the roughness is minimal, Haaland’s approximation showed the largest reliability
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(Rank 1), followed by the approximations by Mikata and Walczak, Biberg, Praks and Brkic,
and Lamri and Easa (Rank 2). In contrast, Vatankhah’s approximation showed the least
reliability (Rank 3). The sensitivity analysis shows that, for CVε = 0, the performance of
various explicit approximations is the same for large ε, and the performance varies as ε
decreases. In addition, for the smooth-flow regime (ε = 0), the relative performance remains
almost the same for the entire range of v.
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