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Abstract: Although extensive research has shown the pathological effect of fine and ultrafine airborne
particles, clear evidence of association of environmental exposure to them and inflammatory changes
in human nasal mucosa is missing. Meanwhile, pathogenesis of chronic rhinosinusitis, despite being
a disease with high prevalence in the population, is still unclear. The increasing evidence of the
pro-inflammatory properties of these particles raises the question of their possible role in chronic
rhinosinusitis. The presented study focused on detection of microsized anorganic particles and
clusters of nanosized anorganic particles in the nasal mucosa of patients with chronic rhinosinusitis
by Raman microspectroscopy and comparison of their composition to histologic findings. The
results were compared to the findings in mucosa obtained from cadavers with no history of chronic
rhinosinusitis. Solid particles were found in 90% of tissue samples in the group with chronic
rhinosinusitis, showing histologic signs of inflammation in 95%, while in the control group, the
particles were found in 20% of samples, with normal histologic findings in all of them. The main
detected compounds were graphite, TiO,, amorphous carbon, calcite, ankerite and iron compounds.
The results are in accordance with the premise that exogenous airborne particles interact with the
nasal mucosa and possibly deposit in it in cases where the epithelial barrier is compromised in
chronic rhinosinusitis.

Keywords: fine and ultrafine particles; micro- and nanosized particles; airborne pollutants; nanotoxi-
cology; chronic rhinosinusitis; Raman microspectroscopy

1. Introduction
1.1. Definition and Difference between Fine and Ultrafine (Micro- and Nanosized) Particles

Particulate matter (PM) pollution is one a threat to human health. The particles of
pollutants vary chemically and in size, depending on the sources from which they are
emitted. These PM are divided into individual fractions according to their aerodynamic
diameter, namely coarse (2.5-10 um), fine (0.1-2.5 um) and ultrafine (<0.1 pm) [1,2].

Ultrafine particles (UFPs), also referred to as PMj 1, are aerosols with an aerodynamic
diameter below 0.1 um (100 nm). These ultrafine particles are present in large amounts in
the air, which means they pose a greater health risk. They usually enter the body through
inhalation or ingestion [3].

The terms “fine” and “ultrafine particles” are reserved to airborne particles; therefore,
when referring to particles in tissues, the terms “micro-” and “nanosized particles” (MPs
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and NPs) should rather be used, while the cut-off size between micro- and nano- remains
the same, i.e., 100 nm.

Due to their extremely small scale, the relative surface of NPs is larger and thus the
number of reactive atom groups on their surface is several times higher than in MPs and
larger particles [4]. They also exhibit increased diffusivity and delayed sedimentation—
therefore, they tend to stay airborne in the atmosphere for longer periods of time than MPs,
which increases the risk of their inhalation [5,6]. They are ubiquitous in the environment,
composed mostly of metal oxides and carbon, predominantly of antropogenous origin—
produced, for example, by smoking, fossil fuel combustion, welding or road traffic [7,8].

They have been proven to have pathological effect on living cells by numerous in vitro
studies and on animal models [6,9-11]. They can penetrate tissues both paracellularly and
through cells and become bloodborne, redistribute in the organism and accumulate in
vital organs, while the possibility of their lysosomal degradation, in contrast to MPs, is
limited [7]. Due to their size being similar to the size of subcellular structures and increased
reactivity, they can interfere with the function of organelles, enzymes or antibodies and
also exhibit genotoxic properties, by induction of oxidative stress and by direct interaction
with DNA [10,12,13].

All the above being said, it is quite rare to detect individual NPs in the tissues because
they tend to form clusters probably due to the interaction with living cells and possibly due
to processing of the tissue samples as well. For example, titanium dioxide, vastly used in
various products in its nanosized form, probably enters the living organisms as a pollutant
predominantly in the form of NPs; however, in tissues, it has been found mostly in the
form of clusters [14,15].

1.2. Possible Role of Solid Anorganic Particles in Chronic Rhinosinusitis

The respiratory tract is, aside from the skin and the digestive tract, one of the main
routes of entrance of solid anorganic particles into the organism [16]. The nasal cavity is
the first passage through which air enters during respiration and several numerical models
suggest that it is also the region where both MPs and NPs deposit the most out of the whole
respiratory tract [17-19]. According to the “European Position Paper on Rhinosinusitis and
Nasal Polyps 2020”, chronic rhinosinusitis (CRS) in adults is defined as the presence of two
or more symptoms, one of which should be either nasal blockage/obstruction/congestion
or nasal discharge (anterior/posterior nasal drip); or facial pain/pressure and/or reduction
of loss of smell for >12 weeks [20]. Although CRS has a high prevalence in the population
(estimated at 5.5-28%) and represents a significant burden not only to the quality of life of
individual patients but is also undoubtedly a financially burdensome disease (for example,
the estimated overall economic cost is USD 20-30 billion annually in the USA alone), its
etiology and pathogenesis is still unclear, despite extensive research [20,21]. The emerging
view is that CRS is a syndrome with multifactorial etiology in which interaction between
environmental factors and host immune system play crucial roles [20]. Although evidence
suggests that sinonasal epithelial barrier disruption and mucociliary clearance dysfunction
leading to chronic mucosal inflammation may be triggered by environmental pollution,
data on the specific pollutants, the synergy of their actions and the mechanism of their role
in CRS pathogenesis is still insufficient [21,22].

The increasing evidence of cytotoxic and pro-inflammatory properties of airborne
MPs and NPs naturally raises the question of their possible role in chronic inflammatory
diseases, such as CRS.

1.3. Clinical Research of MPs and NPs and the Aim of the Study

Although it is clear that airborne pollutants pose a health, occupational and envi-
ronmental hazard, only a few clinical studies focusing on micro- and nanosized particles
have been conducted so far—for example, Zelenik et al. studied the presence of NPs in
tonsillar tissue and Munger et al. analyzed metabolic, hematologic and urinalysis measures
in healthy volunteers after administration of silver nanoparticles [8,23]. However, clear
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evidence of the association of exposure to MPs and NPs present in the living environment
as air pollutants and inflammatory changes in nasal mucosa is still missing.

The presented study follows up on the authors’ pilot study focused on the possibility
of detection and evaluation of MPs and NPs in nasal mucosa obtained by endoscopic
mucotomy in patients diagnosed with CRS by Raman microspectroscopy. A novel method
of identification of said particles in tissue samples was developed and applied on a limited
number of samples [16,24]. In the following study, the authors present a new set of
results obtained by this Raman microspectroscopy mapping; in total, using 40 tissue
samples obtained from patients with CRS and 10 reference samples, we discuss the possible
relationship between the compounds found in the samples and inflammatory processes
and compare the results with histological findings, smoking and occupational status [24].

2. Materials and Methods

This prospective study was conducted from September 2013 to March 2015, and was
approved by the Institutional Ethics Committee of University Hospital Ostrava (identifier
FNO-ENT-Nanoparticles, 2 RVO-FNOs /2013) and registered at ClinicalTrials.gov (identifier
NCT02270125). The study was performed in accordance with the Declaration of Helsinki,
good clinical practice, and applicable regulatory requirements. Informed consent was
obtained from all participants before initiation of any procedure.

The inclusion criteria for the study group (CRS group) were:

- Ageover 18 years;

- Clinical diagnosis of CRS according to EPOS2012 criteria (the criteria are identical to
criteria named in EPOS2020);

- Endoscopically verified hypertrophy of inferior turbinates;

- Insufficient response to conservative therapy (nasal corticosteroid spray administra-
tion for 6 months or longer), as subjectively assessed by the patient;

- No history of turbinate surgery and/or sinonasal tumor;

- Immunocompetency and aptitude for surgery under general anaesthesia;

- Written informed consent obtained.

A randomly selected group of 40 patients meeting the inclusion criteria, aged 20-78
(mean 41.3), 31 males and 9 females, were enrolled in the study. Their demographic and
occupational history and history of smoking was obtained (Table 1).

Table 1. CRS group.

Smokin Histology
Sample Sex Age S 8 Occupation Detected Compounds (Severity of
tatus .
Inflammation)
Mi1 m 42 Y builder (M) GR 0
M32 m 31 N administrator (O) AC, Al comp., ankerite 0
AC, ankerite, CaCOs3, GR,

M1 m 78 N welder (M) TiOy-A 1

M2 m 38 N programmer (O) CaCO;3, Fe3Oy4, TiO,-A, TiOz-R 1

M3 m 38 N welder (M) AC, CaSOy, Fe304, GR, TiOz-A 1

. AC, ankerite, GR, TiO,-A,

M4 m 65 Y policeman (M) TiO,-R 1
M14 m 32 N policeman (M) AC, Fe;03, GR, TiO,-A 1
Mi16 m 44 Y driver (M) CaCO;3, GR, TiO;-A, TiO,-R 1
M17 f o N Wareh"(‘ﬁ‘; keeper ankerite, BaSOy, TiO,-A 1
M18 m 34 Y carrier (M) AC, CaCOs3, GR, SiO,, TiOz-A 1
M20 m 35 Y tinsmith (M) ankerite, CaCOj3, GR, SiO; 1
M33 m 43 N machinist (M) AC, GR, TiO;-A 1
M35 f 65 N manager (O) CaCOs, TiO,-R 1
M40 m 54 N bailiff (O) - 1

M8 m 44 Y labourer (M) CaCOj3, GR 2
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Table 1. Cont.

Smokin Histology
Sample Sex Age S & Occupation Detected Compounds (Severity of
tatus .
Inflammation)

M10 m 37 N manager (O) GR, TiOz-A 2

M21 m 31 N labourer (M) ankerite, GR 2
rolling mill .

M2 m 28 N operator (M) TiOz-A 2
M25 m 44 N exe“““‘(’g)‘hre“"r AC, Si comp., TiOy-A, TiO-R 2
M28 m 42 Y policeman (M) AC, ankerite, BaSO4, GR 2
M29 m 25 Y unemployed (O) AC, GR, TiO,-A 2
M30 m 39 Y welder (M) AC, Al comp., (Ca, Mg)CO3 2

M5 f 26 N student (O) Fe;04, GR 3

M6 f 44 N labourer (M) AC, CaCOs3 3

M7 m 28 N student (O) GR 3

M9 f 58 N artist (O) GR, TiO-A 3
Mi12 f 45 N manager (O) GR, TiO;-A 3
M13 m 40 N clerk (O) Fe, 03, TIO,-A 3
M15 f 53 N shop assistant (M) ankerite, GR, TiO,-A 3

. ankerite, CaCOj3, Fe; O3, SiO;,

M19 m 48 N waiter (M) TiOsA 3
M23 m 28 N operator (M) TiOz-A 3
M24 m 54 N policeman (M) AC,GR 3
M26 m 4 N train C}fga“her AC, CaCOs, GR 3
M27 m 25 N student (O) AC 3
M31 f 20 N student (O) GR, TiO;-A, TiO,-R 3
M34 f 41 N seamstress (M) GR, TiO,-A 3
M36 m 36 N IT technician (O) GR, TiO,-A 3
M37 m o 44 N production - 3

supervisor (M)
M38 m 34 N electro(t;/c[?nician } 3

M39 m 55 N businessman (O) - 3

Table legend: m—male; f—female; Y—yes; N—no; M—manual worker; O—office worker; GR—graphite; AC—
amorphous carbon; comp.—composite; TiO,-A—anatase; TiO,-R—rutile. Histology (level of inflammation):
0—normal histology (no inflammation); 1—epithelial hyperplasia; 2—epithelial hyperplasia with mild signs of
inflammation in submucosal space (characterized as “focal”; “discrete” or “minimal” inflammatory cellularization);
3—<chronic inflammation.

The inclusion criteria for the control group (cadaveric donors) were:

- Ageover 18 years.

- No history of chronic inflammatory disease of sinonasal mucosa (i.e., CRS, allergic
fungal rhinosinusitis, allergic rhinitis) or other significant pathologies and surgical
procedures in sinonasal region during their life (for example sinonasal tumors);

- No endoscopic signs of inferior turbinate hypertrophy.

A total of 10 samples were obtained from randomly selected cadaveric donors meeting
the inclusion criteria, aged 37-87 (mean 69), 6 males and 4 females (Table 2).

Table 2. Control group.

e
R1 m 71 N M _

R5 m 57 Y M _

R6 m 77 N M TiO,
R8 m 44 N M -

R9 m 67 Y M _
R10 m 37 Y M _
R11 f 87 N 0 ]
R12 f 84 N 0

R13 f 84 N 0O )

Table legend: m—male; f—female; Y—yes; N—no; M—manual worker; O—office worker; AC—amorphous
carbon.
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All the subjects from both groups shared similar living environment regarding air-
borne pollution levels—all of them resided in the same region (Moravian-Silesian region,
Czech Republic).

2.1. Sample Acquisition and Preparation

The tissue samples were obtained by endoscopic “cold-steel” mucotomy under general
anesthesia. The same technique was used in case of cadaver samples. The samples were
attached to paraffin tablets by sterile surgical needles, immersed in 10% formalin and
sent to the Institute of Pathology under sterile conditions for further processing. After
alcohol-xylene dehydration and automated paraffin embedding, 2-4 pum thin sections were
cut and mounted onto glass microscope slides, before staining with hematoxylin/eosin for
routine pathological examination (Tables 1 and 2).

2.2. Raman Microspectroscopy

Raman spectra allowing chemical characterization of particles/clusters in the samples
were obtained using Smart Raman Microscopy System XploRA (HORIBA Jobin Yvon,
France). Raman spectra were acquired in the whole range from 100 to 4000 cm~!. A 100
objective lens was used, which is more suitable for the samples in thin films or fluids
dried on a glass slide. The 532 nm excitation laser source (20-25 mW) with the laser spot
diameter of approximately 0.5 pm allowing point analysis of particles/clusters was used.
The intensity of the laser was regulated with regard to the measured sample—a lower
intensity of the laser beam was set due to the potential of damage to organic samples.
XploRA device allows 0.1, 1, 10, 25, 50 and 100% intensity of the initial laser beam. The
acquisition time and the number of accumulations were set according to each sample to
reduce the signal/noise ratio. Grating with 1200 grooves/mm was set. A screen image
recorder camera attached to the microscope enabled the visualization of white-light images
and the selection of the area of interest. In addition, the recording of the spectral images
(Raman mapping) was performed in a selected region with 1 pm step. Measured Raman
spectra were corrected using the LabSpec 5 software (HORIBA, Grenoble, France). The
baseline correction (polynomial, order 8th), smoothing (Linear Savitsky-Golay filter, 2nd
order, 9 points), and marking the position of the Raman bands in the measured individual
Raman spectra were performed by LabSpec 5 software (HORIBA, Grenoble, France) [24].

2.3. Histological Examination

All the samples underwent routine pathological examination which was performed
by a single pathologist in all the cases. The histological signs of severity of inflammation
were subjectively visually assessed (Tables 1 and 2):

0  Normal histology (no inflammation);

1  Epithelial hyperplasia;

2 Epithelial hyperplasia with mild signs of inflammation;
3  Chronic inflammation.

“Epitheal hyperplasia” was defined as presence of hyperplastic cylindrical epithelium
with thickened basement membrane. Mild signs of inflammation in the submucosal
space were characterized as presence of “focal”, “discrete” or “minimal” inflammatory
cellularization (lymphoplasmocytic cellularization with occasional presence of neutrophiles
and eosinophiles). Chronic inflammation was defined as massive presence of inflammatory
cellularization (presence of large clusters of lymphocytes with presence of plasmocytes,
macrophages and fibroblasts, and/or overall massive inflammatory infiltration of the tissue,
i.e., not only focal, as subjectively assessed by the same pathologist).

2.4. Correlation of Detected Compounds, Histology and Smoking and Occupational History

For the purpose of correlation of histological findings with the Raman mapping
findings, the CRS group was divided into two subgroups: group A (histological signs of
severity of inflammation 0-2, i.e., no or mild inflammation) and group B (histological signs
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of severity of inflammation 3, i.e., severe inflammation). The presence and composition of
detected compounds were compared in the two groups.

According to the smoking and occupational history, CRS and control groups were di-
vided to smoker/non-smoker subgroups and “manual” workers (M)/“office” workers (O)
subgroups. M/O subgroups were divided according to their estimated risk of occupational
exposure to airborne pollution (M—high risk: for example, welder, policeman, tinsmith,
etc.; O—low risk: for example, manager, programmer, student, etc.).

3. Results
3.1. Detected Compounds

Solid anorganic MPs and clusters of NPs of average size of 0.5 um were found in
90% (36/40) tissue samples of the CRS group and in 20% (2/10) tissue samples of the
control group.

The main detected compounds in the CRS group tissue samples were graphite, TiO,
(anatase, rutile), amorphous carbon, CaCOj (calcite), Ca(Fe, Mg, Mn)(CO3); (ankerite) and
iron compounds Fe;0, (magnetite) and Fe,Os3 (hematite)—the results are summarized
in Table 3.

Table 3. Main detected compounds in the CRS group tissue samples (total of 40 samples).

Detected Compound Number of Samples/40 Percent of Samples
Graphite 24 60.0%
TiO, 23 57.5%
amorphous carbon 15 37.5%
CaCOs 10 25.0%
Ca(Fe, Mg, Mn)(COs3); 9 22.5 %
iron compounds 6 15.0%

BaSO; (barite), Al (aluminium) and Si (silicon) were detected sporadically.

In the control group, only TiO, (anatase) and amorphous carbon were detected, each
in one sample (Table 2).

Examples of Raman spectra are provided in Figures 1-5.
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Figure 1. Raman spectra and electron microscopy image of anatase found in sample M1.
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Figure 2. Raman spectra and electron microscopy image of calcite found in sample M2.
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Figure 3. Raman spectra and electron microscopy image of CaSO4 found in sample M3.
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Figure 4. Raman spectra and electron microscopy image of graphite found in sample M3.
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Figure 5. Raman spectra and electron microscopy image of magnetite found in sample M3.

3.2. Histology

Histological signs of severity of inflammation in the CRS group were assessed subjec-
tively by a single pathologist (Table 1). At least minimal signs of inflammation were found
in 95% of samples in this group.

The results are summarized in Table 4.
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Table 4. Severity of inflammation in the CRS group (total of 40 samples).

Severity of Inflammation Number of Samples/40 Percent of Samples
0 (no inflammation) 2 5.0%
1 (epithelial hyperplasia) 13 32.5%
2 (mild signs of inflammation) 7 17.5%
3 (chronic inflammation) 18 45.0%

No signs of inflammation were found in the control group.

3.3. Correlation of Histology and Detected Compounds

Detected compounds in correlation to histology (group A—severity of inflammation 0
2-55.0% (22/40) of samples; group B—severity of inflammation 3-45.0% (18/40) of samples
respectively) are summarized in Table 5.

Table 5. Detected compounds in correlation to severity of inflammation in the CRS group (group
A—severity of inflammation 0-2; group B—severity of inflammation 3).

Detected Group A/22 Samples Group B/18 Samples
Compound Number of Percent of Number of Percent of
P Samples Samples Samples Samples
graphite 14 63.0% 9 50.0%
TiO, 14 63.0% 9 50.0%
amorphous 7 31.8% 4 22.2%
carbon
CaCO3 7 31.8% 3 16.7%
Ca(Fe, Mg,
7 31.8% 2 11.1%
Mn)(COs),
iron compounds 3 13.6% 3 16.7%

Examples of histological findings in the samples of nasal mucosa are provided in
Figures 6-9.

3.4. Correlation of Smoking Status and Detected Compounds

As to the smoking status, 22.5% (9/40) and 30.0% (3/10) of samples in the CRS group
and control group, respectively, were obtained from smokers. All the samples obtained
from smokers in the CRS group belonged to the group A with no or mild histological signs
of inflammation.

Detected compounds in the CRS group correlated to the smoking status are summa-
rized in Table 6.

Table 6. Detected compounds in correlation to smoking status in the CRS group.

Smokers/9 Samples Non-Smokers/31 Samples
Detected Compound Number of Percent of Number of Percent of
Samples Samples Samples Samples

graphite 8 88.9% 16 51.6%
TiO, 4 44.4% 19 61.3%
amorphous carbon 5 55.6% 10 32.3%
CaCOs3 4 44.4% 6 19.4%
Ca(Fe, Mg, Mn)(CO3); 3 33.3% 6 19.4%
iron compounds 0 0.0% 6 19.4%

In the control group, both samples in which TiO, and amorphous carbon were found
were obtained from non-smokers. No compounds were detected in the smoker subgroup
of the control group.
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3.5. Correlation of Occupational History and Detected Compounds

Detected compounds in the CRS group (group M/O respectively) are summarized in
Table 7.

Table 7. Detected compounds in correlation to occupational history in the CRS group.

Manual Workers/22 Samples Office Workers/18 Samples

Detected

Compound Number of Percent of Number of Percent of
P Samples Samples Samples Samples
graphite 17 77.3% 7 38.9%
TiO, 13 59.1% 10 55.5%
amorphous 11 50.0% 4 22.2%
carbon
CaCOs 8 36.4% 2 11.1%
Ca(Fe, Mg
LY 8 36.4% 1 5.6%
Mn)(CO3)2
iron compounds 3 14.6% 2 11.1%

In the control group, the sample in which TiO, was found was obtained from a
“manual” worker, while the sample with amorphous carbon detected was obtained from a
“office” worker.

‘a ¢ J‘

Figure 6. Normal histology (no inflammation, severity of inflammation grade 0). Optic microscopy,

magnification 200 x.
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Figure 7. Epithelial hyperplasia (severity of inflammation grade 1). Arrow indicates hyperplastic
epithelium. Optic microscopy, magnification 200 x.

Figure 8. Epithelial hyperplasia with mild signs of inflammation (severity of inflammation grade 2).
Arrows indicate hyperplastic epithelium (blue) and focal inflammatory cellularization (red). Optic
microscopy, magnification 200x.
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Figure 9. Chronic inflammation of the submucosa (severity of inflammation grade 3). Arrow indicates
a large cluster of inflammatory cellularization. Optic microscopy, magnification 400 x.

4. Discussion

The aim of the presented study was to detect MPs and NPs in the nasal mucosa tissue
obtained from patients diagnosed with CRS, correlate their presence with the histological
findings in the mucosa and to compare their presence and molecular composition with the
control group without history of CRS. Since a vast variety of these compounds were found
in the CRS group while their presence in the control group was rare, the presented results
suggest an association between the diagnosis of CRS and observed particles.

Although the authors’ previous pilot study has proposed a somewhat limited possibil-
ity of quantification of solid particles in the mucosa and their localization, with the ongoing
examination of the samples these methods have proven to be immensely time-consuming,
and the obtained data of low informative value [16]. Therefore, the authors focused on
the sole examination of the presence of the particles to bring more detailed information
about their composition in larger set of samples compared to a representative control group.
Although the authors are aware that the lack of quantification of the particles poses a limi-
tation to this study, in their opinion the presented results, especially the striking contrast
between the abundant presence of particles in the CRS group and virtual lack of particles
in the control group, can still contribute to better understanding of CRS pathogenesis, as
will be discussed further on.

As to the composition of the particles found in the tissue samples, the compounds that
were found in the tissues the most frequently were either carbon compounds (graphite,
amorphous carbon, calcite and ankerite) or titanium dioxide (in the crystalic form of anatase
and rutile). Both carbon and titanium compounds have been studied extensively in the past
2 decades for their cytotoxicity, genotoxicity and pro-inflammatory properties, predomi-
nantly in vitro and in animal models [9-11,23-28]. The results of this study are therefore in
accordance with the general direction of the field of nanotoxicology with numerous studies
focusing on possible health implications of manufactured carbon- and titanium-based
nanomaterials (carbon nanotubes, printer ink, pigments, cosmetics compounds etc.) [12].
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Iron-based MPs and NPs of exogenous origin have also been previously found in tissue
samples by Raman microspectroscopy [6,8,16]. Iron oxide dust and fumes are known to
cause harm to respiratory tract (pneumosiderosis) which has been documented in welders
occupationally exposed to welding fumes and are also emitted by fossil fuel combustion
into the environment [6,29].

BaSOy (barite), Al (aluminum) and Si (silicon) were detected sporadically; these
compounds are frequently found in road traffic and vehicle non-exhaust emissions (wear
debris of brake materials) [30].

Overall, the composition of the compounds detected in this study can confirm the
premise that the solid anorganic particles found in nasal mucosa are of exogenous origin.
Although one of the limitations of the study is the lack of a control group consisting of
residents from different regions for the purpose of comparison of the particle composition
according to the specific living environment, virtually all the compounds detected in the
tissue samples are considered either generally ubiquitous air pollutants and/or are linked
to smoking or occupational exposure, as discussed above (none of the detected compounds
can be considered “region-specific”).

The striking difference between the presence of solid particles in the CRS and the con-
trol group is possibly the most remarkable result obtained in this study. Epithelial barrier
dysfunction and its increased permeability is one of the pathogenetic mechanisms in chronic
mucosal inflammation and has been studied in chronic rhinosinusitis, as well [12,31,32].
This could be the possible explanation to our findings—in healthy mucosa, the deposition of
solid particles is prevented by functional epithelial barrier mechanisms (mucocilliary trans-
port, intercellular junctions, intact basement membrane, etc.), while in CRS, the mucosal
epithelium is permeable to airborne particles. Given the cytotoxic and pro-inflammatory
properties of said particles, their presence in the mucosa can possibly promote and maintain
further chronic inflammatory processes and contribute to refractory CRS symptoms.

Histological signs of severity of inflammation in the tissue samples were subjectively
assessed by a single pathologist. A standard histologic optic-microscopy examination was
performed in all the samples of mucosa; no signs of inflammation were found in the control
group samples while at least mild signs of inflammation, from epithelial hyperplasia to
definite signs of chronic inflammation (dense inflammatory cellularization) were found in
95% of CRS group samples. This is in correlation with the presence of solid particles in 90%
of the CRS group samples and the absence of these particles in healthy mucosa in 80% of
the control group samples.

While semiquantitative histological grading scales have been proposed in different
inflammatory processes, for example in ulcerative colitis [33], no similar scale exists in case
of CRS. Therefore, for the purpose of correlation of presence of particles and histologic
findings, the authors divided the CRS group into two subgroups: group A—no or mild signs
of inflammation; and group B—severe inflammation. Against the authors’ expectations,
significantly larger variety of compounds were found in group A compared to in group B
(Tables 1 and 5).

The authors are aware that this evaluation has its limits (subjective assessment, exami-
nation of a single section of mucosa that might not be representative, limited possibility of
quantification of the detected compounds) and that further research is needed to determine
the relationship between severity of inflammation and presence (and possibly quantity) of
solid particles.

The fact that no definite histological signs of chronic inflammation were found in
any of the samples obtained from patients with diagnosed CRS, defined as a chronic
inflammatory disease, is in accordance with the concept of CRS as a clinical diagnosis that
should be treated according to the endoscopic findings and patients’ complaints [20].

Smoking status and occupational history indicate increased exposition of smokers and
certain workers to airborne particles. In the study, significant association of smoking and
high-risk (“manual”) occupation with presence of carbon compounds was found, while
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these two characteristics are inseparable (all the smokers in the CRS group were “manual”
workers) because of clear association of daily smoking and social class [12,34].

5. Conclusions

The results of this study are in accordance with the premise that exogenous airborne
MPs and NPs, predominantly carbon and titanium compounds, interact with the nasal
mucosa and possibly deposit in it in case the epithelial barrier is compromised in CRS. In
control samples, i.e., in healthy mucosa, as confirmed histologically, these particles were
virtually absent. Thus, these results suggest association between the diagnosis of CRS and
observed particles.

Presence of carbon compounds seem to be associated with smoking and occupations
in high risk of air pollutant exposure.

It is unclear whether presence of MPs and NPs contributes to the severity of inflam-
mation; in this study, evaluation of histological findings in correlation with the presence
of solid particles in the mucosa was inconclusive (however, this is in accordance with the
concept of CRS being a clinical diagnosis based on endoscopic examination of the nasal
cavity and patients’ complaints).

Although it can be concluded that the presence of these compounds may be linked to
CRS, further research is needed to determine if the link is causal or that presence of solid
particles in the mucosa is a result of pre-existing impairment and increased permeability of
the epithelial barrier in chronic inflammation.
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