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ABSTRACT Spectrum access system (SAS) is a three-tier layered spectrum sharing architecture proposed
by the Federal Communications Commission (FCC) for Citizens Broadband Radio Service (CBRS) 3.5 GHz
band. The available 150 MHz spectrum is dynamically shared among Incumbent Access (IA), Primary
Access Licensees (PAL) and General Authorized Access (GAA) users. IA users are the highest priority
federal military users, PAL users are the licensed users and the GAA users are the least priority unlicensed
users. In this scenario, PAL operators are willing to give access to their idle spectrum to GAA users to
generate extra revenue. SASwill ensure to protect IA users and PAL users from interference caused by lower-
tier users. It is the responsibility of SAS to allocate resources to GAA users but the method to do so is left
open. In this article, a novel auction algorithm based on Q-learning for dynamic spectrum access (SAS-QLA)
is proposed. In SAS-QLA, multiple GAA users dynamically and intelligently bid using Q-learning to access
PAL reserved idle channels. SAS will decide to allocate the channels to GAA users with maximum bidding
offers. GAA users have their own quality of service (QoS) demands i.e., transmission rate, packet loss,
bidding efficiency, and maintain the preference of available PAL reserved idle channels based on Q-learning
considering the available QoS. The proposed scenario is also modeled as a knapsack NP-hard problem and
solved using dynamic programming and distributed relaxation method. Numerical results demonstrate the
effectiveness of the SAS-QLA algorithm in improving the bidding efficiency, maximizing the data rate per
unit cost and spectrum utilization.

INDEX TERMS Auction algorithm, CBRS-SAS, GAA bidding, Q-learning.

I. INTRODUCTION
Over the decade, the demand for internet-based applications,
the internet of things (IoT), and machine-to-machine com-
munications is increasing exponentially. To meet the require-
ments, flexible and rapid access to the radio spectrum is
needed. Fifth-generation (5G) cellular communication sys-
tems provide efficient data connectivity with high speed [1].
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The radio spectrum is a limited resource and the efficient
use of the radio spectrum is the main concern of cellular
network operators, industry, and government. The federal
communications commission (FCC) proposed to share the
radio spectrum held by the government with commercialized
access in the USA [2].

The citizens broadband radio service band (CBRS)
3.5 GHz (3550 MHz – 3700 MHz) band was proposed to be
shared with licensed and unlicensed users [3]. A centralized
framework based on the spectrum access system (SAS) was
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introduced to share the radio spectrum held by the govern-
ment with licensed and unlicensed users. Moreover, three
types of users are introduced in the SAS framework [4].
Incumbent access (IA) users are the highest priority users
such as navy radars and fixed earth stations. Primary access
licensee (PAL) users are the second priority, commercial
license holders. PAL users pay for the license to get a
guaranteed quality of service (QoS). General authorized
access (GAA) users were introduced as unlicensed users
that opportunistically access the available radio spectrum.
In SAS based CBRS framework 150 MHz band is distributed
between PAL and GAA users. 70 MHz band (3550 MHz
– 3620 MHz) is dedicated to PAL users and the 80 MHz
(3620 MHz-3700MHz) band is reserved for unlicensed GAA
users. PAL operators can acquire the radio spectrum through
competitive bidding for a region for up to three years. More-
over, there can be a maximum of four PAL operators and
each PAL operator can get a maximum of four radio bands
of 10 MHz each from 70 MHz dedicated radio spectrum for
PAL users. The 80 MHz (3620 MHz - 3700 MHz) radio
spectrum band is reserved for GAA users and can be used
for unlicensed services. QoS is not guaranteed to GAA users
but the users can opportunistically access the PAL reserved
radio spectrum to get the required QoS if the quality of PAL
users is not compromised. Furthermore, PAL users cannot use
GAA reserved radio spectrum [5]. SAS is the central entity
in the CBRS-SAS framework to authorize spectrum sharing
between PAL and GAA users. It is also the responsibility of
SAS to protect IA users from interference caused by PAL and
GAA users [6].

The SAS based CBRS architecture is different from con-
ventional cellular networks and a lot of research has been
done in the domains of spectrum access, adaptive resource
allocation for multiple tiers of users, spectrum pricing, main-
taining QoS, protocols, and standards, operational security
and interference management [7], [8]. In the recent three
years, most of the work focuses on spectrum sharing and
spectrum trading between PAL and GAA users. Spectrum
trading is an efficient method for PAL operators to sell the
licensed PAL reserved idle radio spectrum to GAA users [9].
FCC proposed a set of rules to dynamically share the available
spectrum among IU, PAL, and GAA users [10]. In SAS
based CBRS framework spectrum trading is allowed where
idle spectrum held by PAL operators can be leased to GAA
users for financial gains and to use the available spectrum
efficiently while satisfying the rules of spectrum sharing.
However, the methods to trade and allocate the spectrum
to GAA users are left open in the current release of CBRS
alliance technical specifications [11].

In this paper, a novel auction algorithm SAS-QLA based
on Q-learning for dynamic spectrum access in the SAS-based
CBRS framework is proposed. The proposed algorithm aims
to improve spectrum access for GAA users. In the SAS-
QLA algorithm, reinforcement learning is used that allows
the GAA users to improve their bidding strategy based on
their past payoff knowledge to compete for the available

idle channel. The GAA users can consider factors like trans-
mission opportunity, environmental factors, and current state
to make their bid independently. Meanwhile, PAL operators
ensure to generate profits and lease radio spectrum to the
GAA users with a maximum bid. Moreover, a mathematical
model to allocate the available idle PAL reserved channel to
the best bidder i.e., GAA user, is proposed that is based on the
classical Knapsack problem. The formulated NP-hard prob-
lem is solved using the dynamic programming and distributed
relaxation method.

In the defined scenario of SAS-based architecture where
GAA users have to select a channel from the list of avail-
able idle PAL reserved channels with the best data rate and
minimum cost. This problem can be modeled as a knapsack
problem as the GAA users have the only option to accept the
channel for transmission or reject the channel. In the scenario
of a greedy knapsack problem, a portion of the item can
also be sacked. In our case, it is not feasible as GAA users
cannot take a portion of the channel. Therefore, the problem
is modeled as a knapsack 0-1 problem because each channel
has an individual weight and a value that will be used by
GAA users to decide whether to accept or reject the channel.
There are some well-known algorithms available to solve
the knapsack problems i.e., greedy algorithms [12], dynamic
programming [13], branch and bound [14], e-t-c. A dynamic
programming algorithm is used in the scenario where a prob-
lem can be segmented into sub-problems. To solve a prob-
lem, a dynamic programming algorithm solves individual
sub-problems to get a solution for a particular sub-problem.
In the end, it joins all the solutions to get an optimal solution.
Whereas genetic algorithms find the optimal solution from
a list of available solutions. Genetic algorithms are suitable
when there is already a solution set is available. Branch and
bound algorithms are suitable for combinatorial and discrete
optimization problems. The distributed relaxationmethod is a
well-known assignment algorithm that works like an auction.
The distributed relaxation method allows the persons to bid
simultaneously for multiple items with an option to raise
the bids. When all the bids are in, the item is awarded to
the highest bidding person. In our scenario, the distributed
relaxation method is used, as it allows the GAA users to bid
for the multiple PAL reserved channels in a spectrum pool.
Once the SAS receives the bids from all participating GAA
users then the PAL channel will be allocated to the GAA
user with the highest bid. The distributed relaxation method
is competitive and suitable for large problems as compared to
the existing method. Hence, we select the dynamic program-
ming and distributed relaxation method for comparison with
our proposed algorithm because these two algorithms give the
best solution in comparison with the existing methods and
algorithms and our numerical results show that the SAS-QLA
algorithm outperforms these two algorithms if SAS gives
preference to GAA users.

Above all, the paper provides the following contributions.
1) An algorithm, SAS-QLA, based on Q-learning that

uses reinforcement learning is proposed to enhance the
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bidding strategy of GAA users to access PAL reserved
radio channels.

2) We modeled the proposed scenario using the Knapsack
problem and solved the problem using the dynamic pro-
gramming method and distributed relaxation method.

3) A detailed comparison of the three algorithms is given
that shows that the proposed SAS-QLA algorithm
achieves guaranteed QoS for GAA users while satisfy-
ing rules proposed by FCC and also maximize the PAL
operator’s profit.

The remainder of the paper is organized as follows. Section II
summarizes the related work. Section III presents the net-
work model, proposed GAA bidding scenario, and detailed
problem formulation. Section IV gives the detailed problem
solution with the proposed SAS-QLA algorithm, formulation
of the Knapsack 0-1 problem, and its solution i.e., dynamic
programmingmethod and distributed relaxation method. Fur-
thermore, Results and performance evaluation are provided to
analyze the performance of bidding and allocation algorithms
ins section V. Finally, we conclude our work in Section VI.

II. RELATED WORK
In the last decade, the problems related to dynamic spec-
trum sharing have been discussed and investigated in many
research efforts. The key focus of these research efforts was
to design adaptive mechanisms and algorithms to allocate
radio resources as well as admission control, interference
management, spectrum pricing, and end users’ requirements
of quality of service [15]–[17]. In 3GPP release 15 [18], the
concept of physical resource sharing betweenmobile network
operators was proposed.

In this section, we summarize related work on spectrum
trading and its impact on the economical model of dynamic
spectrum access in 5G and beyond. Moreover, recent trends
and techniques for allocation of radio resources in spectrum
access system (SAS) based architecture proposed for citizens
broadband radio service (CBRS) 3.5 GHz band are also dis-
cussed.

Generally, Spectrum trading methods are adopted by
licensed mobile network operators (MNOs) to enhance their
financial gains and spectrum utility by leasing their unused
spectrum to unlicensed users with proper marketing strate-
gies [19]–[21]. There are a lot of surveys published in the
domain of spectrum trading, marketing strategies, spectrum
pricing mechanisms, controlling dynamic network traffic,
power allocation for radio resource management and spec-
trum hand-off, etc. [22]–[25] Authors in [26]–[29] study
the diversity of existence of licensed and unlicensed users
in a spectrum band using different strategies including
game-theory based spectrum allocation and spectrum leas-
ing to secondary users based on different pricing strategies.
Authors in [30] considered heterogeneity using a game-
theory-based approach for the coexistence of wireless infras-
tructure providers, end-user devices, and virtual network
operators. Moreover, in [31] authors proposed an algorithm

to investigate the uniqueness of equilibrium points using an
iterative three-layer game model. As a game-theory-based
approach is efficient in case of static physical scenarios so to
meet the quality of service (QoS) requirements of licensed
and unlicensed users in a real-time environment is still a
major challenge.

To address the issues of generating additional profit for
cellular and satellite network operators, researchers are pay-
ing much attention to share the idle spectrum held by net-
work operators with cognitive users [32]. In comparison
with classical wireless networks, the radio spectrum alloca-
tion problem in satellite-terrestrial networks is different in
the context of the presence of high priority satellite users
with their individual bandwidth requirements, the presence
of heterogeneous cognitive users, and their unpredictable
demands [33]–[35]. It is important to mention that the work
proposed in [33]–[35] is based on the assumption that idle
radio spectrum band is available continuously. However, the
licensed users dynamically keep joining and leaving the spec-
trum. Hence, the assumption of continuous availability of
radio spectrum is not practical as the approaches are unable
to solve the discrete bandwidth strategies.

Authors in [36] improved the heterogeneous spectrum
sensing using big data-based intelligent spectrum sensing
technique. The authors discussed the machine learning tech-
niques i.e., k-means clustering, distributed learning, extreme
learning, reinforcement learning, kernel-based learning, deep
learning, and transfer learning. The authors proposed a
machine learning-based big spectrum data clustering mecha-
nism to detect vast accessible spectrum resources for hetero-
geneous spectrum communications. In [37] authors proposed
a solution for finding idle channels with guaranteed spectrum
sensing performance with higher detection probability, high
spectrum access probability, and lower error probability in
cognitive radio networks. The authors proposed the multi-slot
double threshold spectrum sensing with Bayesian fusion
based on reinforcement learning to sense big industrial spec-
trum data. The authors modeled the channel prediction and
selection using reinforcement learning based on Thompson
sampling which results in efficiently finding the required idle
channels by sensing the big spectrum data accurately. The
problem of the age of information (AoI)- aware radio resource
management for manhattan grid vehicle-to-vehicle network
is investigated in [38]. The authors proposed a proactive
algorithm that includes decentralized online testing at the
vehicle user equipment (VUE) pairs and a centralized offline
training at roadside units (RSUs) and modeled the stochastic
decision-making procedure as a discrete-time single-agent
Markov decision process (MDP). The proposed algorithm
shows significant performance gains over the existing base-
line algorithms.

Authors in [39] proposed the spectrum allocation to unli-
censed users using reinforcement learning and game theory
to achieve Nash equilibrium and to minimize the interference
of licensed users caused by unlicensed users. However, the
pricing and auction strategies to allocate available spectrum

60792 VOLUME 10, 2022



W. Abbass et al.: Optimal Resource Allocation for GAA Users in SAS Using Q-Learning Algorithm

to unlicensed users are still left open. In [40], the authors
used a carrier sensingmechanism to formulate the super-radio
formation algorithm to investigate the co-existence of users in
shared spectrum access for the 3.5 GHz CBRS band. A chan-
nel allocation method to share the radio resources among
different categories of users is proposed by authors in [41].
The proposed algorithm achieves the minimum throughput
requirement for each category by assigning resource blocks
among all stakeholders. The implementation and evaluation
of CBRS-based SAS architecture, hardware experiments,
and field trials are discussed in [42] and [43]. In recent
research [44], the authors proposed the privacy techniques
to protect high priority incumbent users from low priority
licensed and unlicensed users. The authors used the concept
of beamforming with constraints of limiting transmit power
to alleviate interference and increase the detection probability
of incumbent users. The resource allocation techniques and
auction or pricing strategies are not considered. The authors
in [45] considered the privacy of users in the SAS frame-
work. The authors use the concept of blockchain technology
to get the details of GAA users including their physical
location, identity, and spectrum usage. The cryptographic
methods were applied to protect the information. Authors
in [46] proposed to use the concept of decentralization for
the SAS-CBRS-based framework. However, FCC proposed
the centralized SAS in the CBRS band. Moreover, in the case
of decentralized SAS, the privacy of incumbent users can be
compromised. So, this concept is practically not feasible.

Radio spectrum allocation to heterogeneous wireless tech-
nologies i.e., wireless fidelity (Wi-fi), Worldwide Interop-
erability for Microwave Access (WiMAX) networks, and
cellular networks are considered in [47]. The authors applied
a genetic algorithm and a Hungarian algorithm to solve the
problem that was modeled as a multi-objective optimization
problem. The concept of using the genetic algorithm to find
the optimal solution for the stated problem is a good idea,
but it takes a lot of time to find the optimal solution. Hence,
the efficiency of the system is not taken into account. In [48],
we proposed an improved Hungarian method to improve the
computational efficiency for allocating idle PAL reserved
channels to GAA users. We proposed the concept to find the
optimal value of achieving higher data rates at lower costs.
However, the revenue of PAL operators was not considered.
Moreover, PAL operators are the main stakeholders of the
CBRS-SAS architecture so it is important to consider the
profit of PAL operators while considering the quality-of-
service requirements of incumbent access, primary access
licensee, and general authorized access users.

The recent research papers discussed in Section II show the
tremendous efforts of the researchers towards radio network
selection and dynamic allocation of radio spectrum in multi-
tier environment; However, a need of proper mechanisms is
still required to consider practical scenarios for allocation of
radio channels to GAAusers in presence of high priority users
i.e., incumbent access users and primary access licensees
while strictly following the rules proposed by FCC for alloca-

tion of radio channels in a multi-tier environment. Moreover,
a pricing strategy is also required to enhance the spectrum
utility and increase the revenue of commercial PAL operators.

III. SYSTEM MODEL
A. NETWORK SCENARIO
The spectrum access system (SAS) is proposed to be a central
entity to manage the 3.5 GHz (3550 MH - 3700 MHZ)
citizens broadband radio service (CBRS) band usage. The
SAS-based CBRS framework is shown in Figure 1. The SAS
is the central entity, which authorizes the tiered users in the
CBRS band i.e., incumbent access (IA) users, primary access
licensee (PAL) users, and general authorized access (GAA)
users. SAS is also responsible to maintain the required quality
of service (QoS) of IA and PAL users but does not protect the
GAA users from the interference of guaranteed access to the
spectrum. As the CBRS bandwas initially reserved for the US
navy radar system and is now available for commercial usage.
So, IA users can access the whole 150MHz (3550MHz - 3700
MHz) spectrum. 70 MHz (3550 MHz - 3620 MHz) spectrum
is reserved for PAL users. This 70 MHz radio spectrum band
is divided into seven bands of 10 MHz each and assigned
to a maximum of four PAL operators through competitive
bidding.

The CBRS-SAS system consists of the following network
elements.

• Spectrum Access System (SAS)
• Environmental Sensing Capability (ESC) sensor
• Citizen Broadband Radio Service Device (CBSD)
• Domain Proxy (DP)
• Network Management System (NMS);
• FCC external databases
• End devices

SAS is the main authorizing entity to allocate channels
to IA, PAL, and GAA users and involves in radio spectrum
management and distribution. It is also the responsibility of
SAS to protect IA users from lower-tier users and also protect
PAL users from interference caused by GAA users to ensure
QoS is provided to PAL users. SAS also manages the trans-
mission power to citizen broadband radio service devices
CBSD. The CBSD is an eNodeB that supports transmissions
in the 3.5 GHz radio spectrum band and supports protocols
defined by the federal communications commission FCC in
its technical specification [49]. SAS uses external databases
to store the information of all users, CBSDS, transmit power,
and the information of radio channels that are occupied or
still available for allocation. The detection of navy radars and
IA users is carried out using environmental capability ESC
sensors. SAS uses the information provided by ESC sensors
to vacate the radio channels for use of IA users. SAS uses
domain proxy (DP) to manage CBSDs aggregation and proxy
functions to manage large-scale networks. DP can also be
integratedwith an elementmanagement system (EMS) or net-
work management system (NMS). It is an optional element
to scale large networks. In Figure 1 end-user devices (EUD)
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FIGURE 1. CBRS-SAS architecture.

are the electronic intelligent mobile devices that support fre-
quency transmission in the 3.5 GHz radio spectrum band.

In this paper, a scenario is considered where multiple GAA
users are seeking opportunities to access the radio spectrum
and bid for the available idle PAL reserved channel to get
guaranteed QoS. The bidding strategy proposed for GAA
users is based on reinforcement learning that also increases
the revenue of PAL operators. The GAA users bid accord-
ing to the future reward expected, current state, and QoS
requirements. The radio channel assignment will also be
implemented using dynamic programming i.e., a solution for
the knapsack problem and distributed relaxation method.

Consider a CBRS-based SAS framework scenario, where
there are multiple idle PAL reserved channels available and
several GAA users are seeking the available opportunities to
access idle channels. The availability of PAL reserved idle
channels can be modeled as a two-state Markov chain as the
PAL users are not active all the time and the joining and
leaving network is discontinuous. The available channels are
assumed to be perfectly orthogonal eliminating the chances of
experiencing interference if some constraints for out-of-band
emissions are applied.

Let the number of incumbent users be i. The vector
of incumbent user’s set is represented as:

i = {i1, i2, . . . . . . , ix}

The set of PAL users is given by:

p = {p1, p2, . . . . . . .py}

and GAA user’s set is written as

g = {g1, g2, . . . . . . .gz}

Let d represents the set of frequency spectrum available in
a census tract, j denotes the set of PAL reserved channels in
a census tract such that j ⊆ d and h represents the set of
GAA reserved channels. and PAL reserved channels set is
represented as:

j = {j1, j2, . . . . . . , jl}

The set of GAA reserved channels is shown as:

h = {jl+1, jl+2, . . . . . . , jn}

and the set of all channels in a census tract is given as

d = {j1, j2, . . . , jl, jl+1, jl+2, . . . . . . .jn}

The vector j represents the vector containing PAL reserved
channels and the value of each element of vector j can be
0 or 1 i.e., j ∈ {0,1}. To see, whether the PAL users are
active in any particular channel from the vector j can be
implemented as a Poisson process of switch 2 state S i.e.,
idle or busy. The state S of PAL users is represented as S =
j ∗ atg, where a

t
g shows whether the transmission opportunity

to GAA user g is available or not at time t . The value of atg is
0 or 1, atg ∈ {0,1}. State 0 shows that the channel is idle and
state 1 represents the channel is occupied. We assume GAA
users can access the available Idle channel from vector j and
transmit at constant power. Moreover, we assume that GAA
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TABLE 1. Notations Used.

users move slowly such that their channel conditions variate
slowly. The notations used in problem formulation are listed
in Table 1.

B. RADIO SPECTRUM BIDDING SCENARIO
Considering the fact that PAL users are not always active so
PAL operators can take advantage to trade the radio channels
with GAA users by using different marketing approaches.
This scenario can be modeled as an auction or trading market,
where PAL operators can sell the idle radio channels to GAA
users to increase their revenue. The GAA users look for
available opportunities and bid accordingly, while the PAL
operators offer their available idle channels for bidding. The
scenario creates a win-win business opportunity for both
parties.

We made the following assumptions in this article.
1) GAA users can bid for one or more than one channel

simultaneously and get the required QoS as committed
by the PAL operator.

2) SAS can receive offers from all GAAusers who applied
for radio spectrum. SAS will select the GAA users
on the basis of the maximum bid for each available
channel.

3) The bids of GAA users are not shared with each other.
Hence assuming a symmetric independent private value
(SIPV) [50].

4) SAS keeps the information of bids offered by all GAA
users as SAS has to decide on the basis of offered bids
to allocate the radio channels to GAA users.

5) SAS allocates a common channel with GAA users to
carry the information used in the SAS-QLA algorithm.

Moreover, SAS creates a pool of available PAL reserved
channels that can be used for trading with GAA users. The
spectrum pool of available PAL reserved channels of all four
PAL operators is shown in Figure 2 The characteristics of
PAL reserved channels of all operators may vary from each
other and depends on channel fading and interference level.
Random distribution of GAA users and complex spectrum
environments leads to quality diversity. Due to this diversity,
GAA users can make a rational selection from the spectrum
pool as the prices of ideal channels are high. Furthermore,
to maximize the profit of PAL operators, a proper pricing
mechanism is required for SAS, which is based onGAA users
bidding behaviors and QoS provided to GAA users.

C. Q-LEARNING MODEL
Q-learning is a model-free off-policy reinforcement learning
used to find the next course of action based on the current
state of the agent. The objective of the Q-learning model is to
maximize the total reward and selects the action at random as
it learns from the actions that lie outside the current policy
therefore a policy is not required. In the scenario of using
Q-learning, an agent that in our scenario is a GAA user;
performs a task at a particular state to see the consequences of
the actions in terms of the immediate reward or the penalty for
performing the particular action in the current state. The value
of the state is estimated for each action in the particular state.
It will similarly try all actions in all states to learn the best
action for a particular state based on the achieved long-term
discounted reward. The optimal policy will be achieved when
the GAA users gained the maximum expected discounted
reward. Q-learning is an iterative process, the GAA users
can exploit the reward based on the discount factor after
performing an action for its particular state to initialize it
from start. In Q-learning, a sequence of multiple stages is
defined as incremental dynamic programming for the GAA
user’s experience. The GAA users can perform the following
tasks in their nth stage:

• Observe the current state.
• Choose an action to perform for the current state.
• After the action it can observe the next state.
• It receives an immediate reward.
• Adjust the initial values using a learning factor.

The detailed formulation of the Q-learning process in the
proposed SAS-QLA algorithm is discussed in the following
section.

D. SAS-QLA FORMULATION
GAA users’ main intention is to get guaranteed QoS at a
reasonable price. GAA users can also opt for high-quality
available channels with increased transmission capacity at
a higher cost. Moreover, even with the same budget, GAA
users can also select the channels based on differentiated ser-
vices (DiffServ) with different service classes. Furthermore,
GAA users can improve their bidding strategy in the SAS
channel auction by using Q-learning based on reinforcement
learning. GAA users also maintain a bidding vector that con-
tains the best cost factor for each available idle PAL reserved
channel. We define a function FQSAS = ζ t+1g (S tg, δ

t
g) based

on Q-learning for GAA users that return the auction policy
by getting observations as input.

To implement a Q-learning-based reinforcement learning
algorithm a policy with a value function and reward function
is required to make a decision strategy for channel allocation
to GAA users. For each moment t , each GAA user g emits an
action δtg. In the next moment t+1 each GAA user receives a
reward in response to its action given by ωtg and move to next
state S t+1g . We consider a scenario, where each GAA user in
CBRS-SAS architecture can make spectrum bidding policy
individually. The SAS-QLA algorithm is modeled according
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FIGURE 2. Spectrum Pool.

to the utility perceived for the current selection of action and
the history of states visited to allocate the channels to GAA
users. Hence, it is important to define states, actions, rewards,
and learning policies for GAAusers before applying the SAS-
QLA algorithm.

1) STATES
In our defined scenario in section III-B, GAA user current
occupied channel is defined as a state S tg = {γ

t
g} ∈ S. S

represents the finite set of possible state space. Let’s denote
S = {Sk}, where k shows the number of states. Sk = {gn},
where gn = {0, 1} and n = 1, 2, . . . ., z. State transition
of GAA users from S tg to S t+1g can be determined by two
stochastic events. First one is whether the channel is occupied
and another is spectrum opportunity is not available. The
GAA users will move to next state S t+1g , when one of these
two events occur.

2) ACTIONS
SASwill perform an action when it has to assign the available
PAL reserved channels to bidding GAA users. We define
action of GAA users as δtg = {α

t
g,P

t
g}, where α

t
g shows the

preferred channel and Ptg represents the bidding price. GAA
users evaluate each action δtg that is based on Q-learning
function for every state S tg ∈ S. In result to this evaluation,
an immediate reward ωtg is received at GAA users’ end and
the state of GAA users change from S tg to S

t+1
g .

3) REWARD FUNCTION
GAA users select the channel from available idle PAL
reserved channel that gives the maximum reward that is

received from the reward function ωtg{S
t
g, δ

t
g} for each action

δtg at particular state S
t
g. So, maximizing the reward value for

GAA users at each state with particular actions can be defined
as

ωtg =

l∑
j=1

αtg,j.P
t
g,j (1)

subject to the constraints:

αg,j ∈ {0, 1},
∑
g

αtg,j ≤ j

where j is the PAL reserved channel set available for lease
to GAA users g ∈ (1, 2, 3, . . . , z) at time t . The reward ωtg
for GAA users depends on the transmission capacity of each
channel j by paying price Ptg,j.

4) LEARNING POLICY
Learning policy deals with the mapping of history of visited
states, utility received and probability of selected action δtg
into currently selected action.

For this purpose a Q-learning function ζ t+1g (S tg, δ
t
g) for

GAA users is

(S tg, δ
t
g) = (1− ηg)ζ tg(S

t
g, δ

t
g)

+ηg[(ωg + σg.maxζ tg(S
t+1
g , δt+1g )] (2)

The optimal policy (δt+1g )∗ is defined as an expected sum of
ωg, that is discounted by σ tg. The Q-learning modifies the
action value Q-learning function to obtain the true value using
the optimal policy (δt+1g )∗. i.e.,

(δt+1g )∗ = argmax ζ t+1g (S tg, δ
t
g) (3)
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Q-learning is an off-policy reinforcement learning algo-
rithm that learns from the actions that are random and finds
the best action to take for the given current state. The param-
eters used in the Q-learning process are the learning rate,
discount factor, and maximum reward. The learning factor
defined in our proposed SAS-QLA algorithm is ηg which
varies from 0 to 1. This factor shows the learning ability
of the Q-learning function. If it is set to 0, it means noth-
ing is learned and Q-values are not updated as it is using
exclusively the prior knowledge to decide. The high value
of the learning factor shows that the learning process will be
quick and the algorithmwill converge speedily because it will
ignore the old prior information and just considers the most
recent information. In case of problems with deterministic
solutions, the learning rate is set to 1. In stochastic problems
just like in our scenario, the Q-learning function in SAS-
QLA algorithm converges under technical conditions to use
the prior knowledge that is why it is set to 0.1. The discount
factor σg in the SAS-QLA algorithm also varies between
0 to 1. The discount factor is the deciding factor that helps
the Q-learning function choose between future rewards and
immediate rewards and determines the importance of future
rewards. If a high value is set for the discount factor i.e.,
1, then the future reward will be high but, in our scenario,
it makes the base price set by the PAL users too high than the
bidding price offered by GAA users, so it will be good to use
the less value for the discount factor to converge the algorithm
quickly and make the auction successful. The third important
parameter for the Q-learning function is the maximum reward
i.e., ηg.σg.maxζ tg(S

t+1
g , δt+1g ) defined in equation 2. It shows

the maximum reward that can be achieved from state S t+1g
weighted by the learning factor and the discount factor. The
Q-learning is an iterative algorithm so initial conditions are
assumed before the next update. The first reward can be used
to reset the initial conditions.

Based on the defined optimal policy, each GAA user will
make a positive preference decision. ηg is the learning rate
that remains in the range of 0 < ηg < 1. This parameter
determines the Q-function updating speed. The reward for
GAA users change too frequently if the value of ηg is close
to 1. σ tg is the discount factor that is used to determine the
current value i.e., 0 < σ tg < 1 of future reward. If the value
of discount factor σ tg approaches 1, then it shows that future
interaction plays an important role to define total utility val-
ues. The Q-function ζ t+1g (S tg, δ

t
g) takes two values to update

its evaluation.

1) The projected value (ζ -value) of new state ζ tg(S
t+1
g , δt+1g ).

2) The instantaneous reinforcement value ωtg

IV. PROPOSED SOLUTIONS
A. SAS-QLA ALGORITHM
In an example of an auction market, GAA users must offer
higher bids than SAS-QLA iterative price for GAA users to
have more chances of getting access to the radio spectrum.
In this scenario, SAS acts as an auctioneer on behalf of

PAL operators to give access to GAA users with maximal
bidding prices. The price requested by PAL operators may
vary according to the market fluctuations and GAA users
offer to payoff based on their own preference for the channel
and QoS requirements. GAA users also use evaluation of
future behaviors and current transaction state to set their
preferences.

To implement this auction scenario using the SAS-QLA
algorithm, it is assumed that GAA users strictly follow the
truth-telling policy, and there is nomotivation to misrepresent
their information.

1) GAA BIDDING PRICE
GAA user g maintains a preference list PL tg,j over time t to
access channel j. The optimal bid a GAA user can is higher
than or equal to Ptg,j i.e., PL

t
g,j ≥ P

t
g,j. Hence, a preference list

is defined for GAA user g to access channel j over time t as:

PL tg,j = ψ.B
t
j + ζ

t+1
g (S tg, δ

t
g) (4)

where Btj is a buffer that holds the total accumulative packets,
ζ t+1g (S tg, δ

t
g) is the future reward and ψ is a factor to regu-

lates the trade-off between future market and current packet
expectations.

We define a random variable λtj independent of time here,
that stores the number of packets arrived in the buffer in
time slot t . The arrival rate is supposed to follow Poisson
distribution with λ packets per second. The buffer capacity is
set to be Cg. The buffer state Sg of GAA user g is calculated
as:

BtSg = min{(Bt−1Sg − R
t−1
Sg )+ + λtg,Cg} (5)

where, RtSg shows the immediate gain received after

transmitting packets. The factor (Bt−1Sg − R
t−1
Sg )+ =

max(0, (Bt−1Sg − R
t−1
Sg ))

2) SAS-QLA IMPLEMENTATION
In the SAS-QLA algorithm, we made an assumption that
SAS will auction the available PAL reserved channels for
a time period of T and the cost payable to PAL operators
and reward payoff of GAA users remain the same for this
period. SAS releases the radio channels to GAA users when
the transaction is completed and the received bidding price
satisfies the received price constraint Cp,j for the channel j.
After receiving payoff Ptg,j from the GAA user, SAS com-
pletes the transaction and calculates the reward defined by:

Ptg,j = ψ.B
t
j (6)

So, SAS aims to maximize the profit for PAL operators and
ensures that the radio channel will be leased to GAA users
not less than the reserved price. Accordingly, the optimization
problem for maximizing PAL operator’s profit can be written
as:

τ (Sg,Ptg) = argmax(PtPi,j) (7)
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subject to:

Ptg > C t
p,j (8)

and

PtPi,j = Ptg,j (9)

3) SAS-QLA ALGORITHM CONVERGENCE
The convergence of SAS-QLA algorithm depends on the time
varying learning factor ηg. The factor ηg uses the results
derived from Robbins-Monro theory [51] and set the follow-
ing conditions to be met for convergence of equation (2) to
optimal value uniformly over ζ t+1g (S tg, δ

t
g)
∗ S tg and δtg with

probability of 1. The conditions are as:
1) The state space and action space must be finite.
2) Variable ωtg{S

t
g, δ

t
g} must be finite.

3)
+∞∑
t=0

ηg = ∞ and
+∞∑
t=0

(ηg)2 <∞.

4) If the variable ζ tg approaches to 1 then it represents that
all strategies converge to cost-free terminal state with
probability 1.

In Section III-D, the variables S tg and δtg are defined. The
variable shows the available channels. The radio channels
that can be occupied or released are from the finite set.
Hence the first condition is satisfied for condition 1. The
reward function defined in equations (1) and (2) shows that
ωming < ωtg < ωmaxg . As (ωtg)

2 is finite. So, variable ωtg =
E(ωtg)

2
− (E(ωtg))

2 is also finite. It proves that condition 2
holds. In SAS-QLA algorithm ηg is defined as:

ηg =

{
1
t t>0
0 t = 0

(10)

So, this proves that condition 3 holds as well. If the factor
ζ tg = 1, then the model implemented shows the optimal strat-
egy for achieving maximum gains, whereas, the objective is
to maximize the reward function. In this scenario, all policies
and strategies approach a terminal state with a probability
factor of 1 which is true for the finite horizon model. This
shows that condition 4 is also satisfied.

B. KNAPSACK PROBLEM AND DYNAMIC PROGRAMMING
ALGORITHM
Knapsack-based dynamic resource allocation model pro-
posed in [52] allows the SAS to select the most suitable
GAA users based on their bids to allocate idle PAL reserved
channels. The 0-1 Knapsack problem is modeled as a com-
binatorial optimization problem. It is a scenario in which
a constrained knapsack with a fixed size is filled with the
most important and profitable elements. In this article, SAS
considers a pool of available idle PAL reserved channels as a
limited sack of capacityC . Each GAA user that can be placed
in the sack has a certainweightwg and a factor of profit pg. So,
the problem defined here is to give space to GAA users in the
sack while SAS ensures that maximum profit is guaranteed to
PAL operators, and required QoS is provided to GAA users

are modeled as constraints. So, the knapsack problem for
allocation of radio channels to GAA users can be modeled
as a combinatorial optimization problem, formulated as:

max
l∑
j=1

z∑
g=1

pj,gxj,g (11)

subject to

z∑
g=1

wgxg ≤ C (12)

where, xg represents the binary variable that shows whether a
GAA user is selected or not.

xg =

{
1 if the GAA user g is selected
0 if the GAA user is not selected

Suppose there are g GAA users seeking opportunities to
access idle PAL channels available in the sack managed by
SAS. The GAA user pays a price (profit of PAL operators
for leasing the PAL idle reserved channel) pj, weight wg and
capacity C . where pj, wg and C are the positive integers. The
optimal solution of the problem modeled in equation (11) is
given by:

υg = max{υg−1(C), υg−1(C)} (13)

where, υg represents the optimal solution. The opti-
mization problem defined in equation (11) is actually a
multi-dimensional Knapsack problem and modeled as NP-
hard problem [53]. There are different solutions available to
solve resource allocation problem that is modeled as knap-
sack problem. The well-known solution to this problem is the
use of dynamic programming (DP) approaches.

Dynamic programming solution modeled in [54] is used
to solve knapsack optimization problems. Dynamic program-
ming aims to achieve optimal solution. An optimal solution
to a particular problem is combined with similar, overlapping
and smaller sub-problems. The key steps of dynamic pro-
gramming solution are:

1) Decomposition of problem into sub-problems
Suppose, the maximum cost w is obtained and stored
in an array M(g,w) by selecting GAA users 0 < g < z
while satisfying the maximum load of PAL operators
C . If all entries of this array are computed, then the
array entry M (g,wg) contains the maximum profit for
PAL operators in terms of cost is the solution to our
problem.

2) The recursive equation
After selecting an optimal solution next step is to recur-
sively define the optimal solutions of the sub-problems.
In our scenario, we have two sub-problems; whether
a GAA user is given access to PAL reserved channel
or rejected of low bid. The recursive equations are

60798 VOLUME 10, 2022



W. Abbass et al.: Optimal Resource Allocation for GAA Users in SAS Using Q-Learning Algorithm

mathematically represented as:

M (g,W ) =


0 if g = 0
M (g− 1,w) if wg > w
υg else

(14)

After the step of recursive equations, a dynamic programming
solution is achieved for the problemmodeled in equation (11).

C. DISTRIBUTED RELAXATION METHOD
Distributed relaxation method was first proposed in [55] to
solve the classical assignment problems. The algorithm acts
like an auction, where unassigned GAA users bid for the idle
PAL reserved channels. SAS will receive bids from all users,
once SAS completes the bidding process, then the particular
radio channel for which the highest bid is received is assigned
to that GAA user. In the worst scenario, the time complexity
to assign GAA users a channel becomesO(gAlog(gC), where
g is the number of GAA users. A is representing the number
of pairs i.e., GAA users and PAL reserved idle channels and
C is the maximum cost that a GAA user offer for the required
channel.

The distributed relaxationmethod solves the problem given
in equation (11) with the condition of having g× j, where G
is the number of GAA users and j represents the number of
available PAL reserved channels. To solve this optimization
problem, distributed relaxation method uses the concept of
cost equilibrium bidding strategy. In the practical scenario,
for all available idle PAL reserved channels j, every GAA
user has different interests to meet their requirements. Let’s
suppose SAS issues a pool of n radio channels. A GAA user
g has to pay a certain price P to get the access. Based on the
interest of each GAA user for the particular radio channel,
an interest factor ιg for gth GAA user to determine the value
of interest for each GAA user. Preference for each GAA user
can be determined as:

Prefg = ιg − P (15)

To successfully allocate the idle PAL reserved channel j from
the pool of channels j vector to GAA user g, the factor Prefg
must be at maximum. For all GAA users with maximum
Prefg for a particular channel meet the cost equilibrium and
assigned with their desired channel. The main steps of dis-
tributed relaxation method are given below.

1) The first step deals with the initialization that deals
with the random allocation of GAA users to idle PAL
reserved channels.

2) SAS assigns the minimum bid for each idle channel
from the pool j to 1

g−1 , where g is the number of GAA
users participating in the auction process.

3) In third step a GAA user who is not satisfied from the
allocation by SAS in step 1 increase the bidding price
i.e., Newprice = oldprice+ prefg + increment .

4) Profits for PAL operators are updated by subtracting
the updated bidding cost for allocating channels to each
GAA user and updating the profit array.

5) Repeat step 3 to select a GAA user with maximum
unsatisfactory factor and complete the auction process
using step 4 and step 5. Complete the auction pro-
cess till every GAA user is satisfied with the channel
assigned and also meets the cost equilibrium.

V. NUMERICAL RESULTS
A. PARAMETERS SETTING
In order to evaluate the performance of the proposed
scheme in the SAS-based CBRS spectrum sharing frame-
work, we consider a scenario where there are four PAL oper-
ators offering their available radio frequency channels to be
auctioned and added to a spectrum pool managed by SAS.
To see the impact of GAA user’s load in the SAS system, the
number of GAA users who took part in a spectrum auction
held by SAS is varied from 10 to 500. The scenario is depicted
in Figure 1. PAL operators add the information of their unused
frequency channels through a common channel to SAS. The
SAS creates a pool of available PAL unused frequency chan-
nels and holds an auction. The GAA users who need guar-
anteed QoS for delay-sensitive applications take part in the
auction process. We proposed the SAS-QLA algorithm to
bid intelligently in the auction based on the available current
state, future reward, and transmission requirements. The data
rate available to GAA users is modeled using the Shannon
capacity theorem [56] expressed as:

Datarate = Bjglog2

(
1+

S jg

N j
g

)
(16)

where Bjg is the bandwidth available to GAA user g for PAL

reserved channel j and S jg
N j
g
is the signal to noise ratio received

by GAA user g for using PAL reserved channel j.
The following simulation parameters for GAA users are

defined for the implementation of the scenario discussed
above. GAA users’ transmit power is restricted to 1W to
limit interference caused by GAA users and remain same for
all GAA users. Bandwidth B of sub-carriers is defined as
10 kHz per carrier to find the data rate in the equation 16
as defined in [11]. The default value of discount factor is
selected as 0.5 because the effective price where the bidding
price is higher than the reserve price is in range of 0.3 to
0.8. Learning rate is varied from 0 to 1. The macro-cell based
urban propagation model is selected for the simulations with
the Rayleighmulti-path fadingmodel and cell radius of 1Km.
The simulation parameters used in our simulations are shown
in Table 2.
All the simulation experiments are executed 50 times to

obtain the mean value to minimize the randomness and to get
stable results.

B. PERFORMANCE EVALUATION
In this article, we evaluate the performance of our proposed
algorithm SAS-QLA to allocate the idle PAL reserved radio
channels to GAA users using spectrum trading based on
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TABLE 2. Network Parameters.

Q-learning that uses reinforcement learning. The proposed
radio spectrum allocation algorithm is compared with the
dynamic programming solution for the knapsack problem and
distributed relaxation method based on the auction method to
assign channels to GAA users.

The cumulative distribution function (CDF) of radio chan-
nels allocation to 300 GAA users is represented for the sce-
nario in Figure 3, where multiple PAL operators took part in
the auction process. Separate readings are calculated for the
auction process where a single PAL operator is present and
also considered for the auction process with multiple PAL
operators. In case when only one PAL operator took part
in the auction process, the number of available channels for
competing GAA users in an auction was too less, that is the
reason only 40% of the GAA users get access to PAL reserved
channels using the SAS-QLA algorithm. The percentage is
up to 20% less in case of using dynamic programming and
distributed relaxation method. When more PAL operators
took part in the auction, more radio channels in the pool
become available to GAA users so the percentage of GAA
users getting access to PAL reserved channels increased from
40% to approximately 100% when 300 GAA users applied.
In the case of more than 300 GAA users, the percentage may
vary because of the limited availability of radio channels.
This result shows that the proposed SAS-QLA algorithm is
accommodating up to 20%more GAA users in available PAL
reserved channels in comparison with distributed program-
ming and distributed relaxation method.

In this article, we analyzed the impact of discount fac-
tor σ tg and learning factor ηg defined in equation (2) and
equation (10), respectively, for the convergence of our pro-
posed SAS-QLA algorithm. The value of the discount factor
remains between 0 and 1. So, we compare the effect of the σ tg
factor for values between 0 and 1. The impact of the discount
factor on the convergence of the SAS-QLA algorithm is
represented in Figure 4. It is clear from the Figure 4 that the
bidding price and the reserve price grow much faster when
the value of σ tg is greater than 0.8. We can see that when
the discount factor σ tgs is greater than 0.8 the reserved prices
increased up to 5 times when it approaches the value 1. The
price remains under $ 50 when the discount factor is less than
0.8. It means that the future reward defined in equation (1), (2)
and (3) has the high impact on SAS-QLA algorithm. When

FIGURE 3. CDF of channels allocated to 300 GAA users.

FIGURE 4. Effect of Discount Factor.

the discount factor σ tg is too less or too high, the bidding
price of GAA users becomes lower than the reserved price
of PAL operators set by SAS. So, for the successful trading
of radio channels, the bidding price of GAA users must be
greater than the reserved price set by PAL operators. Hence,
discount factor σ tg must be in the range of 0.05 to 0.7 for
successful allocation of available radio channels to GAA
users. If the discount factor σ tg is greater than 0.8 or less than
0.05 then the bidding price of GAA users becomes lesser than
the PAL operators reserved price. In this case, SAS will not
consider the bidding price of GAA users. In our simulations
and parameters settings, we consider the default value of
discount factor σ tg as 0.5.
The speed of updating the SAS-QLA algorithm depends on

the learning rate ηg of the algorithm defined in equation (2)
and (10). The effect of learning factor ηg is depicted in
Figure 5. Learning factor ηg is not much useful in the con-
vergence of the SAS-QLA algorithm but its main effect is on
the speed of updating the SAS-QLA algorithm to converge.
We can see in Figure 5 that the bidding price of GAA users is
quite high in comparison with the reserved price set by PAL
operators. In the case of all values ranging from 0 to 1, the
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FIGURE 5. Learning Rate.

bidding price remains high from the reserved price, we can
use any values for successful trade but need to satisfy the
constraints defined in section IV-A3.

The average data rate per unit cost is shown in Fig-
ure 6. The experiment is conducted for GAA users ranging
from 10 to 500. When there is less number of GAA users
participating in the auction managed by SAS, then the overall
demand for the available PAL idle channels in the pool is less.
So, GAA users get the best QoS at less price. As the number
of GAA users increases, the participants in the auction of the
PAL idle reserved channels become more competitive as a
result of the overall net data rate per unit cost being reduced
which is also evident from the graph.

One of the purposes of the PAL reserved channels auction
was to increase the revenue of PAL operators as PAL users
are not active all the time so PAL operators can take advan-
tage by leasing the channels to GAA users to increase their
revenue. The net revenue gained by PAL operators is shown
in Figure 7. The GAA users use the SAS-QLA algorithm to
bid intelligently based on the current state and future reward.
In the case of using dynamic programming and distributed
relaxation method, both methods select the maximum cost
offered by GAA users without offering intelligent bidding.
If the preference of SAS is to maximize the net revenue
for PAL operators, then selecting the dynamic programming
method will return the maximum revenue. In the case of using
the SAS-QLA algorithm, the SAS maintains a preference list
with respect to giving the benefit to the GAA users by allocat-
ing the maximum data rate at minimum cost. Hence, the net
revenue for PAL operators in the case of using the SAS-QLA
algorithm will be less as compared to dynamic programming
and distributed relaxation method. In the scenario, where
giving the benefit to the GAA users is the priority, then
the SAS-QLA algorithm outperforms the other two methods,
which is evident from the Figure 6 because of the GAA user’s
ability to bid intelligently. Hence, it is clear from Figure 7 that
if SAS opts to prefer the PAL operators over GAA users, PAL
operators will get 23% more revenue in comparison with the

FIGURE 6. Average data rate per unit cost.

FIGURE 7. Average Net Revenue.

SAS-QLA algorithm and 9% more revenue in comparison to
the distributed relaxation method while satisfying FCC rules
and also GAA users getting their desired QoS at the best price
using our proposed SAS-QLA algorithm. If the priority is to
prefer the best data rate per unit cost, then it is evident from
the results as depicted in Figure 6, that SAS will opt for the
SAS-QLA algorithm as the proposed algorithm gives a 43%
improved data rate per unit cost and a 32 % more data rate
per unit cost in comparison with the dynamic programming
and the distributed relaxation method respectively.

Figure 8 shows the overall fairness of the algorithms based
on Jain’s fairness index (JFI) on a scale of 0 to 1. The fairness
index of the algorithms depends on the factor that how many
GAA users are assigned channels out of the total GAA users
who became part of the spectrum auction. We can see from
the graph that the overall fairness of the algorithm reduces
as GAA users in the system are increased. It is evident from
the spectrum trading that as GAA users in the spectrum
auction increase, more GAA users will remain unassigned
because of the limited availability of radio channels. Hence,
the overall Jain’s fairness index reduces as the number of
GAA users increases. On contrary, when the number of
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FIGURE 8. GAA users satisfaction level.

FIGURE 9. Execution efficiency.

GAA users in the auction is limited the JFI value approaches
1 approximately. In comparison to dynamic programming
and distributed relaxation method, the proposed algorithm
SAS-QLA is accommodating more GAA users with the best
QoS and the overall JFI remains better than other algorithms.

Figure 9 depicts the execution efficiency of the proposed
SAS-QLA algorithm, dynamic programming method, and
distributed relaxation method to allocate idle PAL reserved
channels to GAA users. The distributed relaxation method
outperforms other algorithms because it allocates the avail-
able preferred channels to GAA users without using any
learning strategy. The proposed SAS-QLA algorithm allo-
cates 500 GAA users in almost 250ms. Dynamic program-
ming takes 300 ms to allocate available channels to GAA
users because this algorithm searches for the best match in the
worst scenario; the time complexity of dynamic programming
isO(n3). The proposed SAS-QLA algorithm is quite efficient
as compared to dynamic programming but in comparison
with distributed relaxation method, the SAS-QLA algorithm
is achieving the best data rate per unit cost and fairness index.

The simulation results presented show that the proposed
SAS-QLA algorithm efficiently allocates the GAA users
according to their requirements. The SAS-QLA algorithm
allows the GAA users to bid according to the future reward,

their current states, and transmission requirement. The bid-
ding price and reserved price of GAA users are executed
locally. When preference of the SAS is to give benefits to
GAAusers instead of PAL operators than the SAS-QLA algo-
rithm outperforms the dynamic programming method and
distributed relaxation method to achieve better bidding effi-
ciency, the data rate per unit cost, and better GAA load man-
agement. Maximum GAA users are accommodated while
meeting their desired QoS.

VI. CONCLUSION
In this paper, we proposed a Q-learning-based auction algo-
rithm that in turn is based on reinforcement learning in order
to meet the requirements of GAA users in CBRS-SAS archi-
tecture. GAA users are the least priority users in CBRS-
SAS architecture. The SAS as a central controlling entity
does not guarantee to provide the required QoS to GAA
users. For delay-sensitive real-time applications, GAA users
need guaranteed QoS. GAA reserved channels are not a good
option for delay-sensitive applications. As a matter of fact,
PAL users are licensed users and have guaranteed QoS provi-
sioning from SAS but PAL users are not active all the time to
fully utilize the PAL reserved channels. PAL operators paid
a license fee to get access to these PAL reserved channels.
In order to increase the revenue, the PAL operators can use
this opportunity to auction these channels. The PAL operators
share a list of available idle channels with SAS, where SAS
manages a pool of available idle channels shared by all PAL
operators who want to take part in spectrum trading with
GAA users.

Our proposed algorithm allows the GAA users to bid
according to the future reward, their current state, and experi-
enced environment. The PAL operators also share a vector of
reserved price i.e., SAS only accepts the bids of GAA users
for available idle channels when the bid price is higher than
the reserved price. Finally, the practicality of the SAS-QLA
algorithm is validated using SAS-QLA convergence analysis.

The simulation results of the SAS-QLA algorithm confirm
that the proposed algorithm is much more efficient in allocat-
ing maximum numbers of GAA users while satisfying their
QoS requirements. SAS-QLA algorithm also maximizes the
data rate per unit cost while the execution efficiency is not
disturbed. Jain’s fairness index (JFI) shows that when the
number of GAA users is less, who take part in the auction pro-
cess the JFI approaches 1 i.e., the maximum limit. When the
GAA users in the spectrum auction process increase to 500,
the SAS-QLA algorithm outperforms the other algorithms
and accommodates 10% more users in comparison with dis-
tributed relaxation and 20% more users in comparison to
dynamic programming. The proposed SAS-QLA algorithms
provide an approximate optimal solution that converges fast.

REFERENCES
[1] M. Vaezi, A. Azari, S. R. Khosravirad, M. Shirvanimoghaddam,

M. M. Azari, D. Chasaki, and P. Popovski, ‘‘Cellular, wide-area, and non-
terrestrial IoT: A survey on 5G advances and the road towards 6G,’’ 2021,
arXiv:2107.03059.

60802 VOLUME 10, 2022



W. Abbass et al.: Optimal Resource Allocation for GAA Users in SAS Using Q-Learning Algorithm

[2] J Holdren and E. Lander, ‘‘Realizing the full potential of government-
held spectrum to spur economic growth,’’ Executive Office President,
President’s Council Advisors Sci. Technol. (PCAST), Federal Commun.
Commission, Washington, DC, USA, Tech. Rep., Jul. 2012. [Online].
Available: http://www.whitehouse.gov/administration/eop/ostp

[3] Fcc, ‘‘Shared commercial operations in the 3550–3650MHz band,’’ Report
and Order and Second Further Notice of Proposed Rulemaking, Federal
Commun. Commission, Washington, DC, USA, Tech. Rep., Jun. 2015.

[4] CBRS Alliance, ‘‘CBRS network service technical specifications,’’ OnGo
Alliance, Beaverton, OR, USA, Tech. Rep., CBRSA-TS-1002, Feb. 2018.

[5] FCC, ‘‘Electronic code of federal regulations, title-47: Telecommunica-
tion, part 96-CBRS,’’ Federal Commun. Commission, Washington, DC,
USA, Tech. Rep. CFR-2016-title47-vol5-part96, Jul. 2015.

[6] FCC, ‘‘Promoting investment in the 3550–3700 MHz band,’’ Federal
Commun. Commission, Washington, DC, USA, Tech. Rep., Oct. 2018.

[7] S. Bhattarai, J.-M. J. Park, B. Gao, K. Bian, and W. Lehr, ‘‘An overview of
dynamic spectrum sharing: Ongoing initiatives, challenges, and a roadmap
for future research,’’ IEEE Trans. Cogn. Commun. Netw., vol. 2, no. 2,
pp. 110–128, Jun. 2016.

[8] M. M. Sohul, M. Yao, T. Yang, and J. H. Reed, ‘‘Spectrum access system
for the citizen broadband radio service,’’ IEEE Commun. Mag., vol. 53,
no. 7, pp. 18–25, Jul. 2015.

[9] G. Saha andA. A. Abouzeid, ‘‘Optimal spectrum partitioning and licensing
in tiered access under stochastic market models,’’ IEEE/ACMTrans. Netw.,
vol. 29, no. 5, pp. 1948–1961, Oct. 2021.

[10] K. B. S. Manosha, S. Joshi, T. Hanninen, M. Jokinen, P. Pirinen, H. Posti,
K. Horneman, S. Yrjola, and M. Latva-aho, ‘‘A channel allocation algo-
rithm for citizens broadband radio service/spectrum access system,’’ in
Proc. Eur. Conf. Netw. Commun. (EuCNC), Jun. 2017, pp. 1–6.

[11] CBRS Alliance, ‘‘CBRS network services use cases and
requirements,’’ OnGo Alliance, Beaverton, OR, USA, Tech. Rep.,
CBRSA-TS-1001 v4.0.0, Mar. 2021.

[12] Y. Akçay, H. Li, and S. H. Xu, ‘‘Greedy algorithm for the general multidi-
mensional knapsack problem,’’ Ann. Oper. Res., vol. 150, no. 1, pp. 17–29,
Feb. 2007.

[13] K. Chebil and M. Khemakhem, ‘‘A dynamic programming algorithm for
the knapsack problem with setup,’’Comput. Oper. Res., vol. 64, pp. 40–50,
Dec. 2015.

[14] S. Coniglio, F. Furini, and P. S. Segundo, ‘‘A new combinatorial branch-
and-bound algorithm for the knapsack problem with conflicts,’’ Eur.
J. Oper. Res., vol. 289, no. 2, pp. 435–455, 2021.

[15] N. Zhao, F. R. Yu, H. Sun, and M. Li, ‘‘Adaptive power allocation
schemes for spectrum sharing in interference-alignment-based cognitive
radio networks,’’ IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 3700–3714,
May 2016.

[16] T. X. Quach, H. Tran, E. Uhlemann, and M. T. Truc, ‘‘Secrecy per-
formance of cooperative cognitive radio networks under joint secrecy
outage and primary user interference constraints,’’ IEEE Access, vol. 8,
pp. 18442–18455, 2020.

[17] C. Gan, R. Zhou, J. Yang, and C. Shen, ‘‘Cost-aware learning and optimiza-
tion for opportunistic spectrum access,’’ IEEE Trans. Cognit. Commun.
Netw., vol. 5, no. 1, pp. 15–27, Mar. 2019.

[18] T.-K. Le, U. Salim, and F. Kaltenberger, ‘‘An overview of physical layer
design for ultra-reliable low-latency communications in 3GPP releases 15,
16, and 17,’’ IEEE Access, vol. 9, pp. 433–444, 2021.

[19] A. Abdelhadi, H. Shajaiah, and C. Clancy, ‘‘A multitier wireless spectrum
sharing system leveraging secure spectrum auctions,’’ IEEE Trans. Cognit.
Commun. Netw., vol. 1, no. 2, pp. 217–229, Jun. 2015.

[20] L. Sendrei, J. Pastircak, S. Marchevsky, and J. Gazda, ‘‘Cooperative
spectrum sensing schemes for cognitive radios using dynamic spectrum
auctions,’’ in Proc. 38th Int. Conf. Telecommun. Signal Process. (TSP),
Jul. 2015, pp. 159–162.

[21] Q. Wang, J. Huang, Y. Chen, X. Tian, and Q. Zhang, ‘‘Privacy-preserving
and truthful double auction for heterogeneous spectrum,’’ IEEE/ACM
Trans. Netw., vol. 27, no. 2, pp. 848–861, Apr. 2019.

[22] F. Benedetto, L. Mastroeni, and G. Quaresima, ‘‘Auction-based theory for
dynamic spectrum access: A review,’’ in Proc. 44th Int. Conf. Telecommun.
Signal Process. (TSP), Jul. 2021, pp. 146–151.

[23] A. Upadhye, P. Saravanan, S. S. Chandra, and S. Gurugopinath, ‘‘A survey
on machine learning algorithms for applications in cognitive radio net-
works,’’ in Proc. IEEE Int. Conf. Electron., Comput. Commun. Technol.
(CONECCT), Jul. 2021, pp. 01–06.

[24] T. T. Thanh Le and S. Moh, ‘‘Comprehensive survey of radio resource
allocation schemes for 5G V2X communications,’’ IEEE Access, vol. 9,
pp. 123117–123133, 2021.

[25] F. S. Samidi, N. A. M. Radzi, W. Ahmad, F. Abdullah, M. Z. Jamaludin,
and A. Ismail, ‘‘5G new radio: Dynamic time division duplex
radio resource management approaches,’’ IEEE Access, vol. 9,
pp. 113850–113865, 2021.

[26] W. Gulzar, A. Waqas, H. Dilpazir, A. Khan, A. Alam, and H. Mahmood,
‘‘Power control for cognitive radio networks: A game theoretic approach,’’
Wireless Pers. Commun., vol. 123, no. 1, pp. 745–749, 2021.

[27] T. LeAnh, N. H. Tran, S. Lee, E.-N. Huh, Z. Han, and C. S. Hong,
‘‘Distributed power and channel allocation for cognitive femtocell network
using a coalitional game in partition-form approach,’’ IEEE Trans. Veh.
Technol., vol. 66, no. 4, pp. 3475–3490, Apr. 2017.

[28] X. Liao, J. Si, J. Shi, Z. Li, and H. Ding, ‘‘Generative adversarial network
assisted power allocation for cooperative cognitive covert communication
system,’’ IEEE Commun. Lett., vol. 24, no. 7, pp. 1463–1467, Jul. 2020.

[29] F. Li, K.-Y. Lam, X. Li, X. Liu, L. Wang, and V. C. M. Leung, ‘‘Dynamic
spectrum access networks with heterogeneous users: How to price the
spectrum?’’ IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 5203–5216,
Jun. 2018.

[30] D. B. Rawat, A. Alshaikhi, A. Alshammari, C. Bajracharya, and M. Song,
‘‘Payoff optimization through wireless network virtualization for IoT
applications: A three layer game approach,’’ IEEE Internet Things J.,
vol. 6, no. 2, pp. 2797–2805, Apr. 2019.

[31] N. N. Sapavath and D. B. Rawat, ‘‘Wireless virtualization architecture:
Wireless networking for Internet of Things,’’ IEEE Internet Things J.,
vol. 7, no. 7, pp. 5946–5953, Jul. 2020.

[32] B. Li, Z. Fei, Z. Chu, F. Zhou, K.-K. Wong, and P. Xiao, ‘‘Robust
chance-constrained secure transmission for cognitive satellite–terrestrial
networks,’’ IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4208–4219,
May 2018.

[33] L. Wang, F. Li, X. Liu, K.-Y. Lam, Z. Na, and H. Peng, ‘‘Spectrum
optimization for cognitive satellite communications with Cournot game
model,’’ IEEE Access, vol. 6, pp. 1624–1634, 2018.

[34] F. Li, K.-Y. Lam, N. Zhao, X. Liu, K. Zhao, and L. Wang, ‘‘Spectrum
trading for satellite communication systems with dynamic bargaining,’’
IEEE Trans. Commun., vol. 66, no. 10, pp. 4680–4693, Oct. 2018.

[35] F. Li, K.-Y. Lam, J. Hua, K. Zhao, N. Zhao, and L. Wang, ‘‘Improving
spectrum management for satellite communication systems with hunger
marketing,’’ IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 797–800,
Jun. 2019.

[36] X. Liu, Q. Sun, W. Lu, C. Wu, and H. Ding, ‘‘Big-data-based intelligent
spectrum sensing for heterogeneous spectrum communications in 5G,’’
IEEE Wireless Commun., vol. 27, no. 5, pp. 67–73, Oct. 2020.

[37] X. Liu, C. Sun, M. Zhou, C. Wu, B. Peng, and P. Li, ‘‘Reinforcement
learning-based multislot double-threshold spectrum sensing with Bayesian
fusion for industrial big spectrum data,’’ IEEE Trans. Ind. Informat.,
vol. 17, no. 5, pp. 3391–3400, May 2021.

[38] X. Chen, C. Wu, T. Chen, H. Zhang, Z. Liu, Y. Zhang, and M. Bennis,
‘‘Age of information aware radio resource management in vehicular net-
works: A proactive deep reinforcement learning perspective,’’ IEEE Trans.
Wireless Commun., vol. 19, no. 4, pp. 2268–2281, Apr. 2020.

[39] Z. Youssef, E. Majeed, M. D. Mueck, I. Karls, C. Drewes, G. Bruck,
and P. Jung, ‘‘Concept design of medium access control for spectrum
access systems in 3.5 GHz,’’ in Proc. Int. Conf. Wireless Commun., Signal
Process. Netw. (WiSPNET), Mar. 2018, pp. 1–8.

[40] X. Ying, M. M. Buddhikot, and S. Roy, ‘‘Coexistence-aware dynamic
channel allocation for 3.5 GHz shared spectrum systems,’’ in Proc. IEEE
Int. Symp. Dyn. Spectr. Access Netw. (DySPAN), Mar. 2017, pp. 1–2.

[41] I.-P. Belikaidis, A. Georgakopoulos, E. Kosmatos, V. Frascolla, and
P. Demestichas, ‘‘Management of 3.5-GHz spectrum in 5G dense net-
works: A hierarchical radio resource management scheme,’’ IEEE Veh.
Technol. Mag., vol. 13, no. 2, pp. 57–64, Jun. 2018.

[42] N. N. Krishnan, N. Mandayam, I. Seskar, and S. Kompella, ‘‘Experiment:
Investigating feasibility of coexistence of LTE-U with a rotating radar
in CBRS bands,’’ in Proc. IEEE 5G World Forum (5GWF), Jul. 2018,
pp. 65–70.

[43] A. Kliks, P. Kryszkiewicz, L. Kułacz, K. Kowalik, M. Kołodziejski,
H. Kokkinen, J. Ojaniemi, and A. Kivinen, ‘‘Application of the CBRS
model for wireless systems coexistence in 3.6–3.8 GHz band,’’ in Proc. Int.
Conf. Cogn. Radio Oriented Wireless Netw. Cham, Switzerland: Springer,
2017, pp. 100–111.

VOLUME 10, 2022 60803



W. Abbass et al.: Optimal Resource Allocation for GAA Users in SAS Using Q-Learning Algorithm

[44] S. Biswas, A. Bishnu, F. A. Khan, and T. Ratnarajah, ‘‘In-band full-duplex
dynamic spectrum sharing in beyond 5G networks,’’ IEEE Commun. Mag.,
vol. 59, no. 7, pp. 54–60, Jul. 2021.

[45] M. Grissa, A. A. Yavuz, B. Hamdaoui, and C. Tirupathi, ‘‘Anonymous
dynamic spectrum access and sharing mechanisms for the CBRS band,’’
IEEE Access, vol. 9, pp. 33860–33879, 2021.

[46] Y. Xiao, S. Shi, W. Lou, C. Wang, X. Li, N. Zhang, Y. T. Hou, and
J. H. Reed, ‘‘Decentralized spectrum access system: Vision, challenges,
and a blockchain solution,’’ IEEE Wireless Commun., vol. 29, no. 1,
pp. 220–228, Feb. 2022.

[47] X. Dong, L. Cheng, G. Zheng, and T. Wang, ‘‘Network access and spec-
trum allocation in next-generation multi-heterogeneous networks,’’ Int.
J. Distrib. Sensor Netw., vol. 15, no. 8, 2019, Art. no. 1550147719866140.

[48] W. Abbass, R. Hussain, J. Frnda, N. Abbas, M. A. Javed, and S. A. Malik,
‘‘Resource allocation in spectrum access system using multi-objective
optimization methods,’’ Sensors, vol. 22, no. 4, p. 1318, Feb. 2022.

[49] SAS to CBSD Protocol Technical Report-B, Spectrum Sharing Committee
Work Group-3, Wireless Innovation Forum, Reston, VA 20191, USA,
document WINNF-15-P-0062, Mar. 2016.

[50] Y. Li, ‘‘Optimal reserve prices in sealed-bid auctions with reference
effects,’’ Int. J. Ind. Org., vol. 71, Jul. 2020, Art. no. 102624.

[51] D. B. Rokhlin, ‘‘Robbins–Monro conditions for persistent exploration
learning strategies,’’ in Modern Methods in Operator Theory and Har-
monic Analysis. Cham, Switzerland: Springer, 2018, pp. 237–247.

[52] G. R. Bitran and A. C. Hax, ‘‘Disaggregation and resource allocation using
convex knapsack problems with bounded variables,’’Manage. Sci., vol. 27,
no. 4, pp. 431–441, Apr. 1981.

[53] U. Pferschy, J. Schauer, and C. Thielen, ‘‘Approximating the product
knapsack problem,’’Optim. Lett., vol. 15, no. 8, pp. 2529–2540, Nov. 2021.

[54] S. T. T. Sin, ‘‘The parallel processing approach to the dynamic program-
ming algorithm of knapsack problem,’’ in Proc. IEEE Conf. Russian Young
Researchers Electr. Electron. Eng. (ElConRus), Jan. 2021, pp. 2252–2256.

[55] D. P. Bertsekas, ‘‘The auction algorithm: A distributed relaxation method
for the assignment problem,’’ Ann. Oper. Res., vol. 14, no. 1, pp. 105–123,
Dec. 1988.

[56] C.-F. Yang, S.-C. Chang, and C.-Y. Hsu, ‘‘Hierarchical game theoretic
design of frequency assignment and channel selection for general autho-
rized accesses,’’ in Proc. 26th Int. Conf. Telecommun. (ICT), Apr. 2019,
pp. 448–452.

WASEEM ABBASS received the B.Sc. degree in
computer engineering fromCOMSATSUniversity
Islamabad (CUI), in 2011, and the M.S. degree in
computer engineering from the University of Engi-
neering and Technology (UET), Taxila, in 2014.
He is currently pursuing the Ph.D. degree with
CUI, with a focus on architecture and protocol
design of wireless networks especially for cog-
nitive radio network. He is also a Lecturer with
the Department of Computer Science, CUI. His

research interests include D2D communication, cognitive radio networks,
wireless sensor networks, and the Internet of Things.

RIAZ HUSSAIN received the B.S. degree (Hons.)
in electrical engineering from the University of
Engineering and Technology, Peshawar, Pakistan,
the master’s degree in networks from North Car-
olina State University, Raleigh, NS, USA, and
the Ph.D. degree from the COMSATS Institute
of Information Technology, Islamabad, Pakistan,
in 2013. His dissertation was entitled ‘‘Modeling,
Analysis and Optimization of Vertical Handover
Schemes in Heterogeneous Wireless Networks.’’

He is currently an Associate Professor with the Department of Electrical
Engineering, COMSATS University Islamabad. His current research inter-
ests include cognitive radio networks, device to device communication, and
the Internet of Things.

JAROSLAV FRNDA (Senior Member, IEEE)
was born in Slovakia, in 1989. He received the
M.Sc. and Ph.D. degrees from the Department of
Telecommunications, VSB–Technical University
of Ostrava, Czechia, in 2013 and 2018, respec-
tively. He is currently working as an Assistant
Professor at the University of Žilina, Slovakia.
He has authored and coauthored 24 SCI-E and nine
ESCI papers inWoS. His research interests include
quality of multimedia services in IP networks, data

analysis, and machine learning algorithms.

IRFAN LATIF KHAN received the B.Sc. degree
in electrical engineering from The University of
Azad Jammu and Kashmir, Pakistan, in 1999,
the M.S. degree in telecommunication engineer-
ing from the University of Management and
Technology Lahore, Pakistan, in 2004, and the
Ph.D. degree from the Department of Electrical
and Computer Engineering, COMSATS Univer-
sity Islamabad, Pakistan, in 2018. He has seven
years of industrial experience as an Assistant Divi-

sional Engineer with Pakistan Telecommunication Company Ltd. Since
2008, he has been an Assistant Professor with the Department of Electrical
and Computer Engineering, COMSATS University Islamabad. His research
interests include spectrum sensing, medium access control, and resource
management in cognitive radio networks.

MUHAMMAD AWAIS JAVED (Senior Member,
IEEE) received the B.Sc. degree in electrical engi-
neering from the University of Engineering and
Technology Lahore, Pakistan, in August 2008, and
the Ph.D. degree in electrical engineering from
The University of Newcastle, Australia, in Febru-
ary 2015. From July 2015 to June 2016, he worked
as a Postdoctoral Research Scientist with the Qatar
Mobility Innovations Center (QMIC) on SafeITS
Project. He is currently working as an Associate

Professor with COMSATS University Islamabad, Pakistan. His research
interests include intelligent transport systems, vehicular networks, protocol
design for emerging wireless technologies, and the Internet of Things.

SHAHZAD A. MALIK received the B.S. degree
in electrical engineering from the University of
Engineering and Technology Lahore, Lahore, Pak-
istan, in 1991, and the M.S. degree in communica-
tion systems and networks and the M.Phil. degree
in digital telecommunication systems from the
Ecole Nationale Supérieure d’Electrotechnique,
d’Electronique, d’Informatique, d’Hydraulique et
des Télécommunications, Toulouse, France, in
1997 and 1998, respectively. He was a Postdoc-

toral Research Fellow/Student Project Advisor with the Department of Elec-
trical and Computer Engineering, Ryerson University, Toronto, ON, Canada,
from 2003 to 2004. He was an Assistant Professor with the College of
Electrical Engineering and Mechanical Engineering, National University of
Sciences and Technology, Rawalpindi, Pakistan, from 2004 to 2007. Since
2007, he has beenwith theDepartment of Electrical Engineering, COMSATS
University Islamabad, Pakistan, where he is currently a Full Professor and the
Dean of electrical engineering. His current research interests includewireless
multimedia information systems, mobile computing, QoS provisioning and
radio resource management in heterogeneous wireless networks (mobile
cellular-2.5/3G/4G, HSPA, LTE, WLANs, WiMAX, MANETs, and WSN),
modeling, simulation, and performance analysis, network protocols, archi-
tecture and security, wireless application development, embedded system
design, and the Internet of Things.

60804 VOLUME 10, 2022


