
HyperQueue: Overcoming Limitations of HPC Job Managers
Stanislav Böhm

stanislav.bohm@vsb.cz
IT4Innovations, VSB – Technical

University of Ostrava
Czech Republic

Jakub Beránek
jakub.beranek@vsb.cz

IT4Innovations, VSB – Technical
University of Ostrava

Czech Republic

Vojtěch Cima
vojtech.cima@vsb.cz

IT4Innovations, VSB – Technical
University of Ostrava

Czech Republic

Roman Macháček
roman.machacek@vsb.cz

IT4Innovations, VSB – Technical
University of Ostrava

Czech Republic

Vyomkesh Jha
jha0007@vsb.cz

IT4Innovations, VSB – Technical
University of Ostrava

Czech Republic

Alfréd Kočí
alfred.koci@vsb.cz

IT4Innovations, VSB – Technical
University of Ostrava

Czech Republic

Branislav Jansík
branislav.jansik@vsb.cz

IT4Innovations, VSB – Technical
University of Ostrava

Czech Republic

Jan Martinovič
jan.martinovic@vsb.cz

IT4Innovations, VSB – Technical
University of Ostrava

Czech Republic

ABSTRACT
In recent years, HPC workloads and communities have undergone
substantial paradigm shifts. There is an increasing amount of users
that want to leverage HPC clusters to execute many simple and
embarrassingly parallel tasks as easily as possible. However, due
to the limitations of traditional HPC job managers, these users
must often resort to manual aggregation of tasks into a smaller
number of jobs to reduce job manager overhead. This approach
is both labour-intensive and inefficient, as it lacks dynamic load
balancing required to fully utilize computational nodes with tens
or hundreds of cores. We introduce HyperQueue - a task scheduling
runtime that can execute a large amount of tasks on top of an
HPC job manager by automatically aggregating tasks into jobs and
dynamically load balancing them across all allocated nodes and
CPU cores. HyperQueue is an open-source tool that is designed for
ease of use and deployment.

KEYWORDS
scheduling, task management, resource management, cluster

1 INTRODUCTION
Modern HPC systems contain a large number of computational
nodes, with each node having tens or hundreds of CPU cores. There
is an increasing number of HPC users that want to leverage all this
computational power with quite simple workloads, for example by
running a large number of single-node, relatively short-lived tasks
in an embarrassingly parallel manner [1].

While HPC systems are prepared for almost arbitrarily complex
distributed computations, it can be surprisingly difficult to execute
a large number of such simple tasks on them efficiently. HPC job
managers such as Slurm [2] or PBS are almost ubiquitously used
to manage computational resources of HPC clusters. The most
straightforward approach in this scenario is thus to simply map
each task directly to a single job.

However, this is usually infeasible, because the manager intro-
duces nontrivial overhead and thus severely limits the amount of
jobs that can be submitted by a single user. The manager is also
usually configured in a way that does not allow allocating sub-node
resources (running multiple jobs on a single node concurrently),
either for security or performance stability reasons. Therefore, if
the tasks only use a few cores, they cannot fully utilize the provided
computational nodes. These limitations can pose a barrier to entry
for new HPC users, since they cannot submit tasks to the cluster in
a straightforward way.

To overcome these limitations, we are introducing HyperQueue,
a task execution runtime that can efficiently execute many single-
node tasks on top of a Slurm/PBS cluster. Users can submit a large
amount of tasks into HyperQueue in a simple way; it will then
automatically aggregate tasks into a smaller amount of jobs. Once
the jobs are started, it will distribute and dynamically load balance
the tasks across all allocated jobs, nodes and cores to efficiently
utilize available resources.

HyperQueue is an open-source Rust project released under the
MIT licence: https://github.com/It4innovations/hyperqueue.

2 RELATEDWORK
There are several other approaches that can be used instead of
creating a separate job for each task. One alternative is to run an
additional scheduler on top of ("outside") the internal job manager.
Snakemake [3] can aggregate multiple tasks into groups. This ap-
proach reduces the number of submitted jobs and thus decreases
the overhead introduced by the job manager. Nevertheless, this
aggregation is performed eagerly, before the tasks even start to
execute. Therefore, the tasks cannot be load balanced dynamically
in response to actual node and core utilization.

Another option is to start a scheduling runtime within ("inside")
a Slurm/PBS job to enable load balancing of tasks independently of
the outer job manager. The main disadvantage of this approach is

https://github.com/It4innovations/hyperqueue


Böhm et al.

that the user has to manually aggregate tasks into jobs to avoid cre-
ating too many of them. Such aggregation is not always trivial and
it does not enable task load balancing across different jobs, which
may cause inefficient node utilization. As an example, Dask [5] can
be used in this way.

To achieve both load balancing and automatic task aggregation,
a scheduling system has to run both outside the job manager as
well as inside the submitted jobs. Merlin [4] uses this approach, but
introduces several other limitations. Its load balancing is limited,
because it requires users to specify queues with predetermined
concurrency and also does not allow specifying task resource re-
quirements. It is also nontrivial to deploy, since it requires setting
up several complex dependencies.

We are not aware of any existing tool that automatically aggre-
gates tasks and also fully dynamically load balances them while
being easy to deploy and use. We consider these properties crucial
for enabling user-friendly execution of workflows containing many
embarrassingly parallel tasks on HPC clusters.

3 HYPERQUEUE
HyperQueue is a task scheduling runtime designed to efficiently exe-
cute a large number of embarrassingly parallel tasks on a Slurm/PBS
cluster in a simple way. We list the key features of HyperQueue in
the following list.

Task Aggregation HyperQueue does not require any manual
task aggregation. Users simply submit tasks into HyperQueue and
it takes care of distributing them to computational resources (nodes
and cores) allocated by Slurm/PBS. HyperQueue can either use
computational resources (jobs) allocated externally, or it can submit
jobs automatically, as needed by the current workload.

Load balancing HyperQueue uses a work-stealing scheduler
that supports task resource requirements (how many cores does a
task need), task priorities, core pinning and is NUMA-aware. The
scheduler is dynamic with respect to computational resources; new
workers may be added or removed during workload computation
and new tasks may be submitted at any time.

ScalingHyperQueue supports task arrays and also output stream-
ing, which reduces pressure on network filesystems commonly
present on HPC clusters. The average runtime overhead is around
100𝜇𝑠 per task, which allows processing of fine-grained tasks.

Deployment HyperQueue is distributed as a single binary that
depends only on libc, does not need any third-party services, and
does not require any elevated privileges; it is thus trivial to deploy.

3.1 Architecture
The architecture of HyperQueue is depicted in Figure 1. The central
component is the server, which manages workers and schedules
tasks onto them. It is designed to be a long-lived process which can
be deployed e.g. on a login node. Users can connect to it in order to
submit tasks or observe the status of computation.

The worker component runs on the computational nodes of a
cluster, inside a Slurm or a PBS job. Its main purpose is to execute
tasks assigned to it by the server. The workers communicate with
the server over the network; they must be able to initiate a TCP/IP
connection to the server.

HQ
Server

SLURM
/

PBS

HQ
Worker

$ hq submit echo "Hello world!"

$ hq submit --cpus 16 my-computation.sh

HQ
Worker echo "Hello world!"

Task [1 cpu]

Node

HQ
Worker

HQ
Worker

Node

my-computation.sh

Task [16 cpus]

Optional: streaming outputs

Figure 1: HyperQueue architecture

3.2 Usage example
(1) Start server on a login node:

$ hq server start &

(2) Ask for a Slurm/PBS job and start HyperQueue worker
• Ask for nodes in PBS:

$ qsub <qsub-args> -- hq worker start
• Ask for nodes in SLURM:

$ sbatch <sbatch-args> --wrap "hq worker start"
(3) Submit a task:

$ hq submit my-computation.sh

(4) Check the status of the computation:

ACKNOWLEDGEMENT
This work was supported by the LIGATE project. This project has
received funding from the European High-Performance Computing
Joint Undertaking (JU) under grant agreement No 956137. The JU
receives support from the European Union’s Horizon 2020 research
and innovation programme and Italy, Sweden, Austria, the Czech
Republic, Switzerland.

This work was supported by the Ministry of Education, Youth
and Sports of the Czech Republic through the e-INFRACZ (ID:90140).

REFERENCES
[1] Dong H. Ahn, Ned Bass, Albert Chu, Jim Garlick, Mark Grondona, Stephen Her-

bein, Joseph Koning, Tapasya Patki, Thomas R. W. Scogland, Becky Springmeyer,
and Michela Taufer. 2018. Flux: Overcoming Scheduling Challenges for Exas-
cale Workflows. In 2018 IEEE/ACM Workflows in Support of Large-Scale Science
(WORKS). 10–19. https://doi.org/10.1109/WORKS.2018.00007

[2] Morris A. Jette, Andy B. Yoo, andMark Grondona. 2002. SLURM: Simple Linux Util-
ity for Resource Management. In In Lecture Notes in Computer Science: Proceedings
of Job Scheduling Strategies for Parallel Processing (JSSPP) 2003. Springer-Verlag,
44–60.

[3] Johannes Köster and Sven Rahmann. 2012. Snakemake—a scal-
able bioinformatics workflow engine. Bioinformatics 28, 19
(08 2012), 2520–2522. https://doi.org/10.1093/bioinformatics/
bts480 arXiv:https://academic.oup.com/bioinformatics/article-
pdf/28/19/2520/819790/bts480.pdf

[4] Luc Peterson, Rushil Anirudh, Kevin Athey, Benjamin Bay, Peer-Timo Bremer,
Vic Castillo, Francesco Natale, David Fox, Jim Gaffney, David Hysom, Sam Jacobs,
Bhavya Kailkhura, Joe Koning, Bogdan Kustowski, Steven Langer, Peter Robinson,
Jessica Semler, Brian Spears, Jayaraman J. Thiagarajan, and Jae-Seung Yeom. 2019.
Merlin: Enabling Machine Learning-Ready HPC Ensembles.

[5] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms and
Task Scheduling. In Proceedings of the 14th Python in Science Conference, Kathryn
Huff and James Bergstra (Eds.). 130 – 136.

https://doi.org/10.1109/WORKS.2018.00007
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/28/19/2520/819790/bts480.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/28/19/2520/819790/bts480.pdf



	Abstract
	1 Introduction
	2 Related work
	3 HyperQueue
	3.1 Architecture
	3.2 Usage example

	References

