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Abstract: Nonparametric control charts (NPCC) have shown great potential for monitoring processes
in conditions of smart manufacturing with complex structures, various monitored characteristics and
the need to process big data. Practical applications of NPCCs are very rare. The main reasons for this
situation are a deficiency in software support and a lack of simple but complete instructions for their
application. The introduction of such manual, which is based on the authors’ own simulations of
performance of wide spectrum of NPCCs in conditions of different violations of data prerequisites,
leading to recommendations for the selection of the most effective NPCC in various practical situa-
tions, is the main goal of this paper. Compared to other similar studies, this approach covers a wider
range of control charts, and it was applied to a wider spectrum of data assumption violations. As an
integral part of these analyses, an examination of various control chart performance indicators such
as ARL, MRL, x5 and x95 was performed using simulations to select the best of them. The designed
methodology was verified using real data.

Keywords: nonparametric control charts; control chart performance simulations; control chart
performance indicators; data assumption violations; smart manufacturing

1. Introduction

Statistical process monitoring methods have an irreplaceable position in smart pro-
cess control.

Various control charts were developed for monitoring processes. Classical parametric
control charts (CC) assume the presence of data normality, constant mean and variance and
data independence [1–3]. However, such prerequisites for data are quite often not met in
practical conditions, which is a frequent situation in smart manufacturing processes with
complex structure, various monitored characteristics and the need to process big data. In
conditions of big data, which have already been enabled by massive deployment of various
sensors, large amounts of processed data with various structures and high frequency of
collection have led to the fact that statistical properties of data such as data non-normality
of various types or data dependence are more typical of modern manufacturing processes
than they were of previous manufacturing systems.

However, improper application of parametric control charts, including Shewhart’s
control charts, in such situations can lead to wrong conclusions about a process’s statistical
stability. Thus, more dependable nonparametric control charts were designed for these
situations] [4,5]. Nonparametric control charts (NPCC) have shown great potential for
monitoring processes in conditions of smart manufacturing due to their ability to overcome
the shortcomings of classical parametric control charts [6–9], as they were developed for
situations when the distribution of the analyzed process is arguable or unknown.

The main benefits of NPCCs are as follows: it is not necessary to presume a particular
distribution for the analyzed process, they are greatly efficient in detecting changes when
data are not normally distributed, they are more robust and resistant to outliers, and it
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is not required to assess the variance when constructing a control chart for the location
parameter [10,11]. However, practical utilization of NPCC is very rare, predominantly
because of a deficiency in software support and a lack of simple but complete instructions
for their application. The introduction of such a manual is the main output of this paper.

The heart of this developed methodology can be found in the phase of selection of the
most effective NPCC. The main goal of the research described in this paper is the selection
of the most effective NPCC in relation to various considered deviations from data precondi-
tions and the determination of the most robust NPCC. The phase mentioned above is based
on the authors’ simulations and comparison of the performance of 6 various univariable
NPCCs not only for monitoring location but also for monitoring process variability: the
Shewhart sign control chart (SSCC), the nonparametric exponentially weighted moving
average signed-rank control chart (NP-EWMA), the nonparametric sign cumulative sum
chart based on the Mann–Whitney statistic (NP-CUSUM), the nonparametric progressive
mean control chart (NP-PM), the nonparametric control chart based on the Mood statistic
for dispersion (NP-MOOD) and the nonparametric control chart based on the median
absolute deviation (NP-MAD).

In contrast to the study described in this paper, other similar studies compare fewer
control charts, and very often they compare NPCCs to some classical Shewhart control
chart. For instance, in [12], the author makes a comparison between an NPCC based on a
two-sample rank-sum test with the classical Shewhart S chart. In [13], an NPCC based on
Mann–Whitney statistics is compared to the classical Shewhart X-bar chart. Oprime [14]
designed an NPCC with simultaneous monitoring of location and scale and compared
it with classical Shewhart control charts. In [15], Shewhart S charts and NP-MAD charts
are compared. In [16], authors put the stress on the performance of three control charts—
median, bootstrap and Hodges-Lehmann control charts [17,18] in contrast to a Shewhart
X-bar control chart with estimated control limits. The most various control charts are
analyzed by the authors of [19]: the empirical likelihood-based control chart, classical
Shewhart X-bar chart, classical EWMA chart and bootstrap chart.

Another goal of this research was to analyze the performance of 6 selected NPCCs to
cover various deviations from the data assumptions as much as possible. For this reason
data from 7 distributions, i.e. normal distribution, distributions with greater and lower
kurtosis as compared to normal distribution, asymmetrical, two bimodal distributions and
autocorrelated data were incorporated into these simulations. Other authors when simulat-
ing NPCC performance used fewer distributions, distributions with different parameters
or quite different distributions, such as the β distribution [20]; normal and exponential
distributions [14]; normal, Laplace and uniform distributions [12]; normal, Laplace and
Gamma distributions [13]; normal, Student, Gamma, two symmetrical bimodal and one
asymmetrical bimodal distributions [19]; and normal, uniform, Student, double exponential
and Cauchy distributions [16].

To assess control chart performance, an ARL (average run length) indicator is applied
most frequently [12,14,19,21]. However, some criticism of this indicator can be found in
the literature [10,22], based on the fact that “the run length is a positive integer valued random
variable, so the ARL loses much of its attractiveness as a typical summary if the distributions is
skewed” ([10], p. 304). Some authors recommend and use MRL (median run length) or
quantiles x10 and x90 [13,16]. As the quality of the performance indicators has a crucial
impact on precise evaluation of NPCC performance and so on meeting the main goal of this
research, the authors incorporated into the research an additional partial goal—to analyze
ARL, MRL, x5 and x95 to identify the most precise indicators for simulations.

To reach all goals and realize the planned output, the authors set several hypotheses
that were verified during the research:

Hypothesis 1. Some NPCCs are more suitable (they have better performance) for the particular
data assumption violations than others.
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Hypothesis 2. Some NPCCs are robust (distribution-free) against most data precondition violations.

Hypothesis 3. Performance indicators such as MRL or other quantiles of the run-length distribu-
tion are better for the evaluation of control chart performance.

Hypothesis 4. Nonparametric control charts are resistant against outliers (which cannot be
explained and for this reason cannot be removed from the data or repaired).

The paper consists of the following sections: Section 2 focuses on the theoretical
framework and the solved topic. Section 3 describes the used methods, instruments and
analyses. Section 4 is devoted to the results obtained from the previous analyses. The
designed instructions for the practical use of NPCCs are applied to real data in Section 5.
Finally, in Section 6, discussion of the results can be found.

2. Theoretical Background

In the technical literature, numerous examples of the utilization of parametric statistical
process control when data come from the normal distribution can be found. Unfortunately,
in practice, there are many processes where normality cannot be met. The results of classical
parametric statistical process control may not be correct in these cases (see [23–25]). These
sources provide sufficient justification for the development and practical application of
control charts in cases of noncompliance with data normality or other data preconditions
for the use of parametric control charts. NPCCs and distribution-free control charts have
been designed to achieve this aim. The term nonparametric is not entirely accurate, as this
would mean that no parameter needs to be involved. This is not true because at least the
assumption of a continuous distribution is required. The notion of distribution-free seems
to be more correct because it captures the essence of these control charts It means they
are not dependent on a specific probability distribution, mostly the normal distribution.
However, these terms are taken as synonyms, and the term nonparametric is used more
frequently [10].

In the same source, a very valuable overview of the literature on NPCCs can be found.
The authors divided NPCCs into four classes: Shewhart-type charts, CUSUM-type charts,
EWMA-type charts and other methods.

Shewhart-type control charts are practically applicable because of their relative sim-
plicity. The first nonparametric Shewhart procedure for monitoring the location parameter
of a continuous process when the value of the parameter for the statistically stable process is
not specified was described in [26]. Other Shewhart-type methods are discussed in [27,28].

CUSUM-type control charts are more suitable for the detection of small changes in
processes. In 1975 Reynolds [29] introduced the nonparametric CUSUM based on sequential
signed ranks of observations. Other contributions to nonparametric CUSUM-type charts
can be found in [30–32].

Various EWMA-type charts, also suitable for detecting small changes, are described
for instance in [33–38].

In addition to the previous three classes of nonparametric methods, the fourth class
of NPCC defined in [10] covers various special cases that were introduced for instance
in [15,21,39–41]. Adekeye and Azubuike in [15] compared the classical Shewhart X-bar
control chart with the MAD (median absolute deviation) control chart. In [21], a new
NPCC MIN is presented. Interesting special nonparametric methods are discussed in [39].
Murakami and Matsuki in [40] suggested an NPCC working with the Mood statistic.

In the following subsections there are described in more detail some NPCCs that were
selected for analyses described in this paper.
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2.1. SSCC Control Chart

The Shewhart sign control chart (SSCC) is one of the simplest NPCCs [42]. Its principle
is as follows: Let θ0 be a target value; each measurement xij from some unknown continuous
distribution is transformed according to Formula (1):

sign(x) = xij − θ0 =


1, i f xij > θ0

0, i f xij = θ0

−1, i f xij < θ0

(1)

The statistic SNi recorded into the control chart is computed using Formula (2)

SNi =
n

∑
j=1

(
xij − θ0

)
(2)

and the control limits of the NPCC are set using Formulas (3)–(5):

UCL = c (3)

CL = 0 (4)

LCL = −c (5)

where
c = 2t − n (6)

where n is a sample size, and t is constant that can be found in [42,43].

2.2. NP-CUSUM

This NPCC is based on the Mann–Whitney statistic [44,45]. It is supposed that the
quality characteristic X has a mean µ. For every measurement is computed the deviation
yi = xi − µ, and then it is transformed into values Ii using Formula (7):

Ii =

{
1 i f yi > 0
0 i f yi ≤ 0

f or i = 1, 2, . . . , n. (7)

Let MWj be the total number of positive deviations for every subgroup.
The standardized Mann–Whitney statistic SMWj is computed using Formula (8):

SMWj =
MWj − E0

(
MWj

)√
var0

(
MWj

) (8)

In the case of a two-sided NP-CUSUM, statistics Sj
+ and Sj

−, computed according to
Formulas (9) and (10), are recorded into the control chart:

Sj
+ = max

{
0; S+

j−1 + SMWj − K
}

(9)

Sj
− = min

{
0; S− j−1 + SMWj + K

}
(10)

S_0 = 0 (11)

K = ∆/2 (12)

where ∆ is the size of the shift that should be detected as soon as possible. The control
limits are set as follows:

UCL = H, LCL = −H (13)

For parameters K and H:
H = h · σ, K = k · σ (14)
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where σ is the standard deviation of the statistic used for the creation of NP-CUSUM, and k
and h are standardized forms of parameters K and H, respectively.

In general, the values of parameters K and H should be set in a such way that the
combination of k and h will lead to the required value of ARL(0) [44]. For instance, when
the required ALR(0) = 370, the combination of k = 0.5 and h = 4.77 is quite good [22].

2.3. Nonparametric Control Chart Based on Mood Statistic

NP-Mood was derived for monitoring dispersion. The principle of this NPCC is well
described in [40].

Suppose that we have a reference sample X from a statistically stable process with m
values and an arbitrary test sample Y of n values. R1 < · · · < Rn are the combined-sample
ranks of the X value arranged in increasing order of magnitude. The statistics recorded
into this NPCC are computed using Formula (15):

Mm,n =
m

∑
i=1

(
Ri −

N + 1
2

)2
, where N = m + n (15)

The control limits are then computed as follows:

UCL = E(M_(m, n)) + c√(var(M_(m, n))) (16)

LCL = E(M_(m, n))− c√(var(M_(m, n))) (17)

where E(M_(m, n)) is the mean, and √(var(M_(m, n))) is the variance of the statistic
(M_(m, n)); it is recommended to compute them using Formulas (18) and (19) [40], p. 758.

E(Mm,n) =
m
(

N2 − 1
)

12
(18)

var(Mm,n) =
mn(N + 1)

(
N2 − 4

)
180

(19)

The value of c is set to correspond to the required value of ARL(0). For instance, for
ARL(0) = 370.4, c = 2.782177 [40], p. 761.

3. Methodological Framework

In this section, the types of performed analyses and used methods will be described.

3.1. Selection of Nonparametric Control Charts

This study covers a wide range of control charts for location and for dispersion to
represent NPCCs of various types. The criteria for the selection of control charts were
simplicity of practical use, simplicity of the creation of SW support and possible former
knowledge of the principles of similar parametric versions of the chosen control charts.

Based on these criteria, the following control charts were chosen: the Shewhart sign
control chart (SSCC) [42], the nonparametric exponentially weighted moving average
signed-rank control chart (NP-EWMA) [20,46,47], the nonparametric sign cumulative sum
chart based on the Mann–Whitney statistic (NP-CUSUM) [32,44,45], the nonparametric
progressive mean control chart (NP-PM) [48,49], the nonparametric control chart based on
the Mood statistic for dispersion (NP-MOOD) [40] and the nonparametric control chart
based on the median absolute deviation (NP-MAD) [15,50].

3.2. Nonparametric Control Chart SW Support

To be able to create analyzed NPCCs and realize our own simulations for judgment of
the control charts, a performance program in MS Excel was produced.

The Excel sheet consists of several tables. One table is used for the input values. The
sheet also contains basic information about the subgroups’ size and number, the value of the
mean, the standard deviation and other statistics necessary for the ensuing computations.
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In the biggest table, computations of the statistics necessary for construction of the selected
NPCC are realized. The program also enables calculation of the run length (RL) values
and the control chart performance indicators ARL, MRL, x5, and x95. In the lower part of
the sheet, the resulting NPCC is constructed. All computations and diagrams are made
automatically after inserting the input values [51].

3.3. Selection of Control Chart Performance Indicators

Before simulations, attention had to be paid to the selection of the most precise control
chart performance indicators that are most stable for different probability distributions
and so the most convenient for appraising and comparing the performance of various
NPCCs [52–54]. Indicators for statistically stable processes such as average run length
ARL(0), median run length MRL(0), 5% quantile x5 and indicators for statistically unstable
processes such as ARL(δ), MRL(δ) and 95% quantile x95 were analyzed. For a statistically
stable process, the values of the performance indicators must be as high as possible [12].
Calculations of these indicators are based on RL(0), which represents the quantity of
points, plotted in the control chart, that are located inside the control limits between two
points lying outside of these limits. For a statistically unstable process, the values of
the performance indicators must be as small as possible. To compute these indicators,
it is necessary to set RL(δ) (δ is a standardized value of the shift that is supposed to be
detected by the control chart as soon as possible), which is a quantity of points plotted in
the control chart starting from the point when the shift in the process occurred until the
shift is announced by the point outside of the control limit.

To assess the quality of these control chart performance characteristics, their values
were sorted in descending order. The course of the resulting pointed lines expresses the
rate of stability of the analyzed performance indicators for various simulated deviations
from the data prerequisites represented by 7 probability distributions. The more tardily the
line goes down, the more stable the performance indicator can be considered. Based on
this conclusion, it can be said that for statistically stable processes, the 5% quantile x5 is the
most stable indicator for various deviations from the data prerequisites. Regarding ARL(0)
and MRL(0), the latter is the more stable indicator. Accordingly, the following performance
evaluation of analyzed NPCCs for statistically stable processes was made using only x5
and MRL(0) performance indicators [51]. As an example of this analysis, there are plots of
performance indicators in relation to various violations of data assumptions represented by
seven different probability distributions (see Table 1) for the SSCC control that can be found
in Appendix A. Seven points on every curve in Figures A1–A6 (Appendix A) correspond
to the seven probability distributions, and three points in a vertical direction represent
three analyzed performance indicators. Such plots were constructed for all the rest of the
analyzed NPCCs.

Table 1. Summary of various simulated violations of data prerequisites and their connection to the
utilized probability distributions. Source: own research.

Unmet Data Assumption Distribution/Data Properties Distribution Parameters

None Normal distribution N (0,1)

Data normality Pearson distribution/skewed distribution χ2
3

Uniform distribution/less kurtosis R
(
−
√

3;
√

3
)

Student’s distribution/greater kurtosis t3

Constant variance Mixed distribution/different variances 50% N(0,1) + 50% N(0,4)
MIX 2

Constant mean Mixed distribution/different means 50% N(0,1) + 50% N(2,1)
MIX 1

Data independence Autocorrelated data AR (1): xi − 0.5xi + ai
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Based on a similar analysis of statistically unstable processes, only x95 and MRL(δ)
were utilized for evaluation of NPCC performance [51].

3.4. Design of Simulations of Statistically Stable Process

The statistically stable process corresponds to an in-control process which is influenced
only by random causes of variability. Table 1 contains the probability distributions used for
simulating different data prerequisites violations.

The quantity of subgroups m was equal to 300, 100 and 20, and the sizes of the
subgroup n were equal to 10 and 5. The simulations were replicated 10,000 times. The
values of n and m were set according to the results of simulations of statistically stable
processes [52] (see also [53]) so that the ARL was about 370. To assess the performance of the
analyzed NPCC, the indicators MRL(0) and x5 were applied. This simulation methodology
was utilized for all NPCCs analyzed in this study.

Let us have a sample of 100 values randomly generated from the applied distribution.
This sample is divided into m subgroups with the size n. From these values, control limits
for the constructed NPCC are calculated. These limits are drawn into the control chart.
Afterwards, n values representing the particular subgroup are randomly generated from
the applied distribution, and the control statistic is computed from these n values and
entered into the control chart. Then the RL(0) values are determined, and the values of the
performance indicators x5 and MRL (0) are calculated from them.

The resulting graphs for all analyzed NPCCs for location and all simulated deviations
from the data assumptions can be found in Appendix B (Figures A7 and A8). The outputs
of the evaluation of NPCCs for monitoring variability are in Appendix C.

3.5. Design of Simulations of Statistically Unstable Process

The statistically unstable process corresponds to an out-of-control process, i.e., a
process which is affected by both random causes and assignable causes of variability. The
quantity of subgroups m was set as 300, 100 and 20, and the size of the subgroup n was
equal to 10 and 5. The simulations were again replicated 10,000 times for each combination
of n and m and for each particular violation of the data prerequisites.

The experiment was performed similarly to the simulations for the statistically stable
process (see Section 3.4), but deviations of various sizes were inserted into the data sets
additionally. First, isolated shifts of 1.5σ, 2σ and 3σ were inserted during the 30th, 50th and
99th repetitions, respectively. After that, simulations of persistent deviations of 1.5σ, 2σ
and 3σ were performed but only for 20 × 5 combination of m and n and selected distribu-
tions. The deviation appeared before signaling by a point beyond the limit. Subsequently,
“the process was intervened,” and the following subgroup was without any deviation.
Afterward, the deviation returned.

To assess the performance of an NPCC during a statistically unstable process, only the
MRL(δ) and x95 indicators were applied (see Section 3.3).

4. Results

The previous analyses led to the results discussed in the following subsections.

4.1. Summary of Simulations of Statistically Stable Process

Based on the previous analyses (see Section 3.4 and Appendix B), it can be determined
which NPCCs for location monitoring are the most effective for a given data prerequisite
violation. The results are based on the prerequisite that for a statistically stable process, the
values of the chart performance indicators should be as high as possible. The conclusions
are summarized in Table 2.
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Table 2. Summary of analysis of NPCCs for location monitoring. Source: own research.

SSCC NP-CUSUM

• Distribution with bigger kurtosis than for
normal distribution

• Distribution with smaller kurtosis than
for normal distribution

• Asymmetric distribution
• Nonconstant variance
• Autocorrelated data (for larger samples)

• Distribution with bigger kurtosis than for
normal distribution

• Distribution with smaller kurtosis than
for normal distribution

• Nonconstant variance (for larger samples
and n = 5)

As can be seen from the figures in Appendix B, the SSCC and NP-CUSUM chart have
the best values of the used performance indicators in relation to the particular violations
of the data presumptions as summarized in the previous table. But as the most universal
(distribution-free, robust) NPCC, i.e., the CC that has very good performance indicator
values over all or nearly all simulated violations of the data prerequisites, the control chart
SSCC was selected [55].

Regarding the analysis of the performance of NPCCs for variability monitoring (see
Appendix C), the following conclusions were made (see Table 3).

Table 3. Summary of analysis of NPCCs for variability monitoring. Source: own research.

MAD Mood

• Distribution with smaller kurtosis than
for normal distribution

• Distribution with bigger kurtosis than for
normal distribution

• Nonconstant variance (for larger samples)

• Distribution with bigger kurtosis than for
normal distribution

• Asymmetrical distribution
• Nonconstant variance (for

smaller samples)
• Nonconstant mean
• Autocorrelated data

4.2. Summary of Simulations of Statistically Unstable Process

Regarding persistent deviations, analysis of the MRL(δ) and x95 performance indicators
revealed that the persistent deviation is rapidly identified by NPCCs. The analyses showed
that the NP-EWMA chart is the most powerful NPCC. Other NPCCs with acceptable x95
results are the NP-CUSUM chart and the SSCC [55].

However, for a statistically unstable process with an isolated deviation, the perfor-
mance of NPCCs is quite poor, particularly for small process changes. It can be concluded
that with increasing subgroup size, the performance indicators improve, as Das validated
in [47].

This can be explained by the fact that NPCCs perceive isolated change as a random
deviation, against which they are robust [51].

The best results for isolated deviations were demonstrated by the NP-EWMA chart,
the SSCC and the NP-CUSUM chart.

5. Suggestion of Methodology for NPCC Practical Utilization

Based on previous simulations, obtained outcomes and general principles of statistical
process control, a methodology for practical utilization of NPCCs was created. The steps of
this methodology are depicted using the following scheme in Figure 1.
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Figure 1. Scheme of the designed methodology. Source: own research.

Phases 1 and 4 contain similar activities, as they are well-known for the standard
methodology of statistical process control applications. For that reason, only Phases 2 and
3, which represent the innovative core of the designed methodology, will be described in
more detail. The collection of data and their analysis are very significant activities in the
frame of statistical monitoring because especially verification of data assumptions forms
the base for the objective decision of whether to apply the classic Shewhart CC or some
NPCC. The effective verification of data assumptions calls for combining multiple statistical
tests with graphical methods.

Significant attention must be paid to the analysis of potential outliers or suspicious
values. When causes of them cannot be identified, these values must not be removed from
the data set and must remain part of the following data analysis.

The phase of the selection of a suitable CC is wholly based on the previous results
of performed simulations, and it creates the heart of this methodology design. When all
data prerequisites are met, the classic Shewhart CC can be used, but when some of the
data prerequisites are violated, applying the classic Shewhart CC could result in incorrect
conclusions. Thus, the utilization of a suitable NPCC is a reasonable alternative in these
cases. Phase 3 is clearly described using flowcharts (see Figures 2 and 3).
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6. Practical Application

Verification of the designed methodology was performed using real data from a
supplier for the automotive industry. The organization specializes in coating interior com-
ponents with natural and synthetic leather. The weight of the adhesive that is automatically
applied by a robot was set as a controlled characteristic. The weight of the adhesive after
drying is calculated as the difference in the weight of the plastic part before application of
the adhesive and the weight of the part after application of the adhesive and its drying. The
weight of each piece is determined. The measured values were divided into 30 subgroups
with a range of 5 units.

Subsequently, a data analysis was performed to determine whether the basic data
assumptions had been met. The Anderson–Darling test was used to verify normality.
Its results showed that the data are not normally distributed. Based on Figure 4, it can
be concluded that the data are slightly skewed and contain some potential outliers or
suspicious values.
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Figure 4. Box plot. Source: own research using SW Minitab.

Verification of data independence was performed using the Box–Pierce test. The
resulting P-value of the test was 0.676, so it is greater than 0.05, and we can say that the
data are independent. However, the most strongly violated data prerequisite seems to be
kurtosis, as is clear from Figure 5 and from the value of the coefficient of kurtosis, which is
equal to 17, 88.

The potential outliers and suspicious values were analyzed, but the reasons for their
occurrence were not identified. For this reason, it was inappropriate to remove these values
from the data set. However, using classical control charts, several points should be outside
control limits UCL or LCL (see Figure 6), leading to useless searching for the nonexistent
causes and time losses for the operators or forcing them to make unnecessary process
adjustments (this is called tampering).
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Figure 5. Histogram. Source: own research using SW Minitab.

Appl. Sci. 2022, 12, x FOR PEER REVIEW  13  of  27 
 

The potential outliers and suspicious values were analyzed, but the reasons for their 

occurrence were not identified. For this reason, it was inappropriate to remove these val‐

ues from the data set. However, using classical control charts, several points should be 

outside control limits UCL or LCL (see Figure 6), leading to useless searching for the non‐

existent causes and  time  losses  for  the operators or  forcing  them  to make unnecessary 

process adjustments (this is called tampering). 

 

Figure 6. Parametric Shewhart control charts for mean and range. Source: own research using SW 

Minitab. 

For these reasons, a suitable NPCC was selected using the suggested algorithm de‐

picted in Figures 2 and 3, i.e., an NPCC based on the Mood statistic (for monitoring pro‐

cess variability) and an NP‐CUSUM chart (for monitoring process position) were applied. 

The values of the calculated statistics necessary for the construction of the selected 

control charts can be found in Table A1 (Appendix D). Figure 7 shows the NPCC based 

on the Mood statistic. As can be seen, all points are located inside the control limits. In 

terms of variability, the process is statistically stable. 

302520151051

34

32

30

28

Sample

Sa
m

ple
 M

ea
n

__
X

UCL

LCL

302520151051

12

10

8

6

4

2

0

Sample

Sa
m

ple
 R

an
ge

_
R

UCL

LCL

1

1

1

1

X-bar and R Charts

Figure 6. Parametric Shewhart control charts for mean and range. Source: own research using
SW Minitab.

For these reasons, a suitable NPCC was selected using the suggested algorithm de-
picted in Figures 2 and 3, i.e., an NPCC based on the Mood statistic (for monitoring process
variability) and an NP-CUSUM chart (for monitoring process position) were applied.
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The values of the calculated statistics necessary for the construction of the selected
control charts can be found in Table A1 (Appendix D). Figure 7 shows the NPCC based on
the Mood statistic. As can be seen, all points are located inside the control limits. In terms
of variability, the process is statistically stable.
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Regarding the evaluation of the process’s statistical stability in terms of location, an
NP-CUSUM chart was constructed. The values of the required statistics are given again
in Table A1 in Appendix D. The resulting CC is shown in Figure 8. This control chart
does not contain any points beyond the control limits, so it can be said that the process is
statistically stable.
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The results of this case study support Hypothesis 4 that NPCCs are resistant against
potential outliers, which is suitable in situations when it is not possible to find causes of
their occurrence.
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7. Discussion
7.1. Theoretical Implications

An inevitable part of our research was studying the theoretical sources and investi-
gation of practical experiences of workers in factories with SPCs and especially NPCCs.
Research of the theoretical sources has shown that during the last 20 years, a large amount
of research, concerning this topic, has been conducted. Many NPCC variations, some of
them quite simple but many of them very complex, were developed and analyzed. The
work of researchers devoting time to revealing the benefits of these methods and their abil-
ity overcome some practical problems with SPC applications was also very useful. These
analyses have shown that NPCCs could be very suitable even in a new situation in manu-
facturing that asks for more and more collecting and processing of huge amounts of various
data. However, a survey performed in manufacturing organizations revealed a large gap
between theory and practice. The lack of software support and nonexistence of simple but
complete instructions for the practical application of these methods were identified as the
main reasons for this situation. For these reasons, we decided to propose such a methodol-
ogy based predominantly on quite simple variations of the NPCC—nonparametric variants
of the known parametric CC. There is at least some probability that people in companies are
aware of their principles or have some practical experience with them (Shewhart, CUSUM
and EWMA types of control charts). To make the methodology practically applicable,
we had to create an SW application, as the situation relating to NPCCs on the statistical
programs market is very poor (only Mathematica offers the option to create one of the types
of nonparametric control charts—an NPCC based on Mann–Whitney statistics).

The survey also revealed another obstacle to the penetration of these methods into
practice—a lack of professional courses and training focusing on NPCCs.

In the introductory part of this paper, the main research goals and four research
hypotheses were defined. Table 4 summarizes the results of verification of the formu-
lated hypotheses.

7.2. Practical Implications

The research has shown that the designed methodology is applicable in practice. It
is based on quite simple NPCCs that are similar to parametric CC counterparts known in
practice. The defined rules are clear and simple, and the research narrowed the field of
options from a huge number of NPCCs to four charts. It should also simplify requirements
for training and programming.

In addition, it has been shown that in practice, the widely used MS Excel program
allows for the creation of an SW support, using both classic formulas and functions and
more advanced programming using Visual Basic for Applications (VBA).

The confirmation of Hypothesis 4 yields an effective solution for situations that occur
quite frequently during SPC applications: points outside of control limits whose real cause
is impossible to identify. It could be good instrument against frequent disappointment in
relation to SPC applications.

At present, the proposed methodology for the application of NPCCs can already
support statistical control and monitoring with a high rate of predictability of behavior of
modern manufacturing processes in a big data environment, as has been discussed in the
introductory section of this paper. In the future, it can be incorporated into computer-based
algorithms for self-control of cyber–physical systems (CPS), which are the fundamental
technology platform of smart factories.

7.3. Limitations and Future Research Directions

One of the limiting factors of this analysis is the selected probability distributions.
Even if the distributions used in our study covered all possible deviations from the data as-
sumptions, future research could focus on verifying the results using the same distributions
but with other parameters and other types of distributions as well. Another possibility for
future research is to extend the study to other nonparametric control charts.



Appl. Sci. 2022, 12, 5410 16 of 26

Table 4. Summary of verification of formulated hypotheses.

Number Formulation of Hypothesis Methods of Verification and Results

1.
Some NPCCs are more suitable (they have better
performance) for particular data assumption
violations than others.

Comparative analysis of NPCC performance using the best
performance indicators.
Appendices B and C
Result: Hypothesis cannot be rejected:
Analysis showed that some NPCCs are better for a particular data
prerequisite violation then others. For instance, for monitoring the
process location for data with greater kurtosis, the SSCC and
NP-CUSUM chart have very good performance as compared to the rest
of the analyzed NPCCs; For asymmetric distribution, the SSCC is the
best NPCC.
For monitoring the process dispersion for data with greater kurtosis,
NP-Mood is the best, and for the data with smaller kurtosis, NP-MAD
is the best.

2. Some NPCCs are robust (distribution-free)
against most data precondition violations.

Comparative analysis of NPCC performance using the best
performance indicators.
Appendices B and C
Result: Hypothesis cannot be rejected:
Analysis showed that some NPCCs are highly robust. For monitoring
the process location, SSCC is very robust.
For monitoring the process dispersion, NP-Mood is very robust.

3.
Performance indicators MRL or other quantiles
of the run-length distribution are better for the
evaluation of control chart performance.

Stability analysis of performance indicators
Appendix A
Result: Hypothesis cannot be rejected:
MRL and other quantiles are better performance indicators as
compared to ARL.

4.

Nonparametric control charts are resistant
against outliers whose occurrence cannot be
explained and for this reason removed from the
data or repaired.

Comparative analysis of NPCC performance for statistically unstable
process when isolated shifts have occurred.
Example
Result: Hypothesis cannot be rejected:
An example practically proved validity of hypothesis.

Another limitation of this study was the nonexistent SW support for nonparametric
control charts leading to the necessity of creating our own SW. Hand in hand with the
extensions defined above, the SW that was created for the experiments described in this
paper should be extended and improved to cover the abovementioned ideas.

8. Conclusions

Nonparametric statistical process control methods was well-described in various
professional journals, but their practical applications have been infrequent. According to
the results of the authors’ simulations, it can be said that various NPCCs are differently
effective for miscellaneous violations of data prerequisites. The issues of nonparametric
statistical process monitoring methods are very extensive and present a huge number of
new research opportunities, including improvement of the SW support. Nonparametric
statistical process monitoring methods could become a permanent part of the teaching of
statistical methods at universities, as well as in the frame of expert training.

Author Contributions: Conceptualization, D.N. and T.S.; methodology, D.N. and T.S.; software,
T.S.; validation, D.N. and T.S.; formal analysis, D.N.; investigation, D.N. and T.S.; resources, T.S.;
data curation, T.S.; writing—original draft preparation, T.S.; writing—review and editing, D.N.;
visualization, T.S.; supervision, D.N.; project administration, D.N.; funding acquisition, D.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Regional Development Fund in A Research Plat-
form focused on Industry 4.0 and Robotics in the Ostrava Agglomeration project, CZ.02.1.01/0.0/0.0/
17_049/0008425 within the Operational Program Research, Development and Education.



Appl. Sci. 2022, 12, 5410 17 of 26

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appl. Sci. 2022, 12, x FOR PEER REVIEW  17  of  27 
 

the results of the authors’ simulations, it can be said that various NPCCs are differently 

effective for miscellaneous violations of data prerequisites. The issues of nonparametric 

statistical process monitoring methods are very extensive and present a huge number of 

new research opportunities, including improvement of the SW support. Nonparametric 

statistical process monitoring methods could become a permanent part of the teaching of 

statistical methods at universities, as well as in the frame of expert training. 

Author Contributions: Conceptualization, D.N. and T.S.; methodology, D.N. and T.S.; software, 

T.S.; validation, D.N. and T.S.; formal analysis, D.N.;  investigation, D.N and T.S.; resources, T.S.; 

data curation, T.S.; writing—original draft preparation, T.S.; writing—review and editing, D.N.; vis‐

ualization, T.S.; supervision, D.N.; project administration, D.N.; funding acquisition, D.N. All au‐

thors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the European Regional Development Fund in A Research 

Platform  focused  on  Industry  4.0  and  Robotics  in  the  Ostrava  Agglomeration  project, 

CZ.02.1.01/0.0/0.0/17_049/0008425 within the Operational Program Research, Development and Ed‐

ucation. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest.   

Appendix A 

 

Figure A1. Values of performance indicators ARL(0), MRL(0) and x5 for 7 used distributions, num‐

ber of subgroups m = 20 and subgroup size n = 5 (control chart SSCC). Source: [51]. 

0

50

100

150

200

250

300

x5‐t3 x5‐Uniform x5‐chí3 x5‐N(0,1) x5‐MIX_1 x5‐MIX_2 x5‐AR(1)

MRL‐t3 MRL‐
Uniform

MRL‐N(0,1) MRL‐chí3 MRL‐MIX_2 MRL‐AR(1) MRL‐MIX_1

ARL‐t3 ARL‐
Uniform

ARL‐chí3 ARL‐N(0,1) ARL‐MIX_2 ARL‐AR(1) ARL‐MIX_1

V
A
LU

E 
O
F 
P
ER

FO
R
M
A
N
C
E 
IN
D
IC
A
TO

R
S

PROBABILITY DISTRIBUTION

SSCC  20×5

ARL MRL x5

Figure A1. Values of performance indicators ARL(0), MRL(0) and x5 for 7 used distributions, number
of subgroups m = 20 and subgroup size n = 5 (control chart SSCC). Source: [51].
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Figure A3. Values of performance indicators ARL(0), MRL(0) and x5 for 7 used distributions, number
of subgroups m = 100 and subgroup size n = 5 (control chart SSCC). Source [51].
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of subgroups m = 100 and subgroup size n = 10 (control chart SSCC). Source [51].
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Figure A5. Values of performance indicators ARL(0), MRL(0) and x5 for 7 used distributions, number
of subgroups m = 300 and subgroup size n = 5 (control chart SSCC). Source: [51].
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Figure A10. Values of MRL(0) and x5 for NPCCs for monitoring process dispersion—dependent data,
Student, chi-squared distributions [51].

Appendix D

Table A1. Statistics for construction of NPCC based on Mood statistic M30,5 and for NP-CUSUM.
Source: own research.

Subgroup j ¯
x j M30,5 (Mood Statistics) MW (NP-CUSUM) SMW (NP-CUSUM) Si (NP-CUSUM)

1 33.16 1174.66 3 0.11 0

2 31.36 899.02 1 −1.30 0

3 31.92 977.42 2 −0.60 0

4 32.70 1082.47 4 0.81 0.31

5 32.24 1023.00 3 0.11 0

6 32.94 1119.67 3 0.11 0

7 32.36 1032.80 3 0.11 0
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Table A1. Cont.

Subgroup j ¯
x j M30,5 (Mood Statistics) MW (NP-CUSUM) SMW (NP-CUSUM) Si (NP-CUSUM)

8 32.58 1063.31 4 0.81 0.31

9 29.06 735.09 3 0.11 0

10 33.34 1176.87 5 1.51 1.01

11 33.70 1233.01 5 1.51 2.02

12 33.14 1148.03 4 0.81 2.33

13 32.84 1103.16 3 0.11 1.93

14 33.06 1135.09 5 1.51 2.94

15 31.72 950.92 1 −1.30 1.14

16 31.36 894.30 1 −1.30 0

17 31.92 969.34 1 −1.30 0

18 32.04 985.78 1 −1.30 0

19 32.88 1107.92 4 0.81 0.31

20 32.36 1034.10 1 −1.30 0

21 32.36 1031.58 3 0.11 0

22 31.80 952.66 0 −2.00 0

23 33.14 1197.67 1 −1.30 0

24 32.62 1071.81 3 0.11 0

25 32.38 1038.84 1 −1.30 0

26 32.14 1003.35 1 −1.30 0

27 31.86 961.09 1 −1.30 0

28 32.34 1029.27 3 0.11 0

29 32.44 1043.82 3 0.11 0

30 32.20 1011.78 2 −0.60 0
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