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Abstrakt a přínos práce

Počítačová grafika od svého vzniku v 60. letech 20. století udělala velký pokrok. Stala se sou-
částí každodenního života. Můžeme ji vidět všude kolem nás, od chytrých hodinek a smart-
phonů, kde jsou grafické akcelerátory již součástí čipů a dokáží vykreslovat nejen interaktivní
menu, ale i náročné grafické aplikace, přes notebooky a osobní počítače až po výkonné vizua-
lizační servery nebo superpočítače, které dokáží zobrazovat náročné simulace v reálném čase.
V této disertační práci se zaměříme na jednu z výpočetně nejnáročnějších oblastí počítačové
grafiky, a tou je výpočet globálního osvětlení. Jednou z nejpoužívanějších metod pro simu-
laci globálního osvětlení je metoda sledování cesty. Pomocí této metody můžeme vizualizovat
např. vědecká nebo lékařská data. Metodu sledování cest lze urychlit pomocí několika gra-
fických akcelerátorů, na které se v této práci zaměříme. Představíme řešení pro vykreslování
masivních scén na více GPU. Náš přístup analyzuje vzory přístupů k paměti a definuje, jak
by měla být data scény rozdělena mezi grafickými akcelerátory s minimální ztrátou výkonu.
Klíčovým konceptem je, že části scény, které mají nejvyšší počet přístupů do paměti, jsou
replikovány na všech grafických akcelerátorech. Představíme dvě metody pro maximalizaci
výkonu vykreslování při práci s částečně distribuovanými daty scény. Obě metody pracují na
úrovni správy paměti, a proto není třeba datové struktury přepracovávat. Tento nový out-
of-core mechanismus jsme implementovali do open-source path traceru Blender Cycles, který
jsme také rozšířili o technologie podporující běh na superpočítačích a schopné využít všechny
akcelerátory alokované na více uzlech. V této práci také představíme novou službu, která vy-
užívá naši rozšířenou verzi Blender Cycles a zjednodušuje odesílání a spouštění úloh přímo z
programu Blender.

Klíčová slova

Multi-GPU Path Tracing, CUDA Unified Memory, metoda sledování cest, distribuovaná data,
sdílená paměť, služba Rendering-as-a-service



Abstract and Contributions

Computer graphics, since its inception in the 1960s, has made great progress. It has become
part of everyday life. We can see it all around us, from smartwatches and smartphones,
where graphic accelerators are already part of the chips and can render not only interactive
menus but also demanding graphic applications, to laptops and personal computers as well
as to high-performance visualization servers and supercomputers that can display demanding
simulations in real time. In this dissertation we focus on one of the most computationally
demanding area of computer graphics and that is the computation of global illumination. One
of the most widely used methods for simulating global illumination is the path tracing method.
Using this method, we can visualize, for example, scientific or medical data. The path tracing
method can be accelerated using multiple graphical accelerators, which we will focus on in this
work. We will present a solution for path tracing of massive scenes on multiple GPUs. Our
approach analyzes the memory access pattern of the path tracer and defines how the scene
data should be distributed across up to 16 GPUs with minimal performance impact. The
key concept is that the parts of the scene that have the highest number of memory accesses
are replicated across all GPUs. We present two methods for maximizing the performance
of path tracing when dealing with partially distributed scene data. Both methods operate
at the memory management level, and therefore the path tracing data structures do not
need to be redesigned. We implemented this new out-of-core mechanism in the open-source
Blender Cycles path tracer, which we also extended with technologies that support running
on supercomputers and can take advantage of all accelerators allocated on multiple nodes.
In this work, we also introduce a new service that uses our extended version of the Blender
Cycles renderer to simplify sending and running jobs directly from Blender.

Keywords

Multi-GPU Path Tracing, CUDA Unified Memory, Data Distributed Path Tracing, Dis-
tributed Shared Memory Path Tracing, Rendering-as-a-service
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Chapter 1

Introduction

In this chapter we would like to introduce the main topic of this dissertation, motivation and
objectives. This thesis is based on the article [1] published in ACM Transactions on Graphics
(D1), a leading peer-reviewed journal in the field of computer graphics, in which I was the
lead author.

1.1 Rendering

The progress in high-performance computing (HPC) plays an important role in science and
technology. Computationally intensive simulations have become an essential part of research
and development of new technologies. Many research groups in the field of computer graphics
are working on problems related to the extremely time-consuming process of image synthesis
of virtual scenes, also called rendering.

The purpose of rendering is to create visually realistic 2D images of the modeled 3D scenes.
It is used for generating photorealistic images and developing animated movies, computer
games, architectural visualization, medical imaging, etc. The Figures 1.1,1.2 show a preview
of the 3D scene in the Blender’s viewport and its rendered part. Due to the complex nature
of light propagation used in rendering, it is a computationally extremely demanding task.
Therefore, versatile hardware and software solutions are used to speed up this process.

There are several software solutions that provide scene modelling and rendering in a single
package. The open-source Blender package is one such candidate. It is mainly used for
creating 3D graphics and it has a broad user base and wide extensibility through C++ and
Python programming. Blender includes, among other things, a 3D modelling environment and
two renderers - Eevee and Blender Cycles [2, 3]. Blender Cycles is implemented to use a multi-
core CPU or GPU accelerator for efficient rendering in both offline and interactive modes.
Blender can also be extended with external renderers such as Mitsuba [4] or LuxRender [5]
to provide additional rendering functionality. In addition to Blender, there are several other
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Figure 1.1: The example of Agent327 scene in the Blender’s viewport

Figure 1.2: The example of Agent327 scene and its rendered image
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renderers that offer both offline and interactive rendering, but few of them provide distributed
rendering suitable for HPC environments. This is quite important because HPC offers high
computational power that can be efficiently used for rendering. It is also important to note
that essentially all rendering software usable in HPC environment, except for Blender, is
commercial. Examples include Indigo [6], Maxwell [7], Redshift [8], Octane [9], Arnold [10],
RenderMan [11], V-Ray [12], Iray [13], which support graphics accelerators.

In addition to using HPC clusters to accelerate computationally intensive tasks, hardware
accelerators are also widely used. These can further increase the computational performance
and rendering efficiency of HPC clusters. In general, two types of general-purpose hardware
accelerators, namely Many Integrated Core (MIC) coprocessors, also known as Intel Xeon
Phi and Graphics Processing Units (GPUs), can be used. MIC is a technology that by now
has been replaced by graphics accelerators and it is no longer developed. But it is still an
excellent example of upcoming many-core CPUs and therefore it is worth to focus on them
in this work.

Ten years ago, Intel introduced its own accelerator technology, the Intel Many Integrated
Core. The advantage of this accelerator technology was that it had more memory available
compared to GPUs. To use Intel Xeon Phi technology in rendering, Intel introduced Embree
[14], which is a library of photorealistic ray tracing kernels. However, the Corona renderer
[15], as an example of a commercial Embree-based product, only runs on general purpose
processors. Moreover, an open-source renderer OSPRay [16] developed by Intel also runs only
on CPUs. Mainly for these reasons, we decided to develop and present an extension to the
open-source Blender code that can use an entire cluster equipped with either Intel or AMD
processors or graphic accelerators, both for offline and interactive rendering.

Direct use of a remote cluster is very complicated for inexperience users. It requires exten-
sive knowledge of the cluster’s infrastructure, operating system, installed software packages,
and job schedulers. There are several solutions for using remote computers. A computer clus-
ter that is exclusively used for rendering is also called a render farm, e.g., RebusFarm [17],
Fox Render Farm [18], RNDR [19], iRender [20], GarageFarm [21]. These farms provide cloud
rendering services based on the Infrastructure-as-a-Service (IaaS) model [22]. J. Ruby An-
nette describes the Rendering-as-a-service model for the focusing on the rendering [23]. This
model provides a high-level access to the remote cluster. In this work, we present our newly
developed RaaS solution based on High-End Application Execution Middleware (HEAppE
Middleware, [24]). Our solution is unique in its ease of use. The controls are integrated into
the Blender environment and contain two buttons, one for submitting the scene and the other
for downloading. With one button, the entire cluster can be utilized. Another unique feature
is the support for fast unified memory and therefore support for large scenes.Being able to
take advantage of the latest technologies such as memory sharing across multiple graphic
cards, this service thus allows even large scenes to be rendered.
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In recent years, due to advances in GPU technology, GPU rendering has become popular
for its superior performance when compared to CPU rendering [8]. On the other hand, a
significant disadvantage of GPUs when compared to CPUs is the limited memory size. This
is one of the key reasons why CPUs still play a dominant role in production rendering, as
described by the authors of the main rendering systems used in film production [25, 26, 27,
28, 29]. For example, [27] reports that scenes from Pixar’s Coco consumed up to 120 GB.
Scenes of that size cannot fit in the memory of a single GPU.

An essential part of this thesis presents a solution to this problem that is based on repli-
cating a small amount of scene data, i.e. between 1 and 5%, and intelligently distributing
the rest of the data into the memory of multiple GPUs. Our approach [1] relies on two key
technologies: (i) NVLink GPU interconnection, which allows multiple GPUs to efficiently
share the contents of their memories due to its high bandwidth and low latency, [30], and (ii)
CUDA Unified Memory (UM), which gives programmers control over the location of data in
the memories of the interconnected GPUs, [31].

In 2016, NVIDIA introduced NVLink interconnect technology [32] into the world of pro-
fessional computer graphics with the Quadro GP100 product [33]. With the Turing GPU
hardware architecture, the technology was also released for GPUs in the gaming sector [34].
This interconnect enables multiple GPUs to share their memories due to its very high band-
width, which is comparable to the memory bandwidth of a high-end CPU to its DDR memory,
and due to its low latency. Today, in the professional computer graphics sector, two GPUs
can be connected using NVLink and provide up to 2 × 48 GB of shared memory. However,
in the world of High Performance Computing (HPC) and Artificial Intelligence (AI), where
“memory size matters”’, NVLink technology is already used to interconnect 4, 8, and even
16 GPUs. This means that state-of-the-art GPU servers designed for HPC and AI, like the
NVIDIA DGX-2 used for this work, may have up to 512 GB of shared GPU memory [35]. In
such servers, each GPU has a memory bandwidth of approximately 790 GB/s, which is 4−5
times faster than a high-end CPU. The bandwidth for remote GPU memory over NVLink in
DGX-2 is 138 GB/s which is similar to the CPU local memory bandwidth. We expect that
it is merely a matter of a few years before servers like this will be equipped with GPUs with
hardware acceleration for path tracing such as ray tracing (RT) cores [34].

As a proof-of-concept (using the whole cluster or rendering of the large scenes on multiple
GPUs), the proposed mechanisms have been implemented in the comprehensive open-source
Blender Cycles engine, which uses a path-tracing method to achieve realistic results[36].

1.1.1 Path to path-tracing

The history of rendering dates back to 1960, when graphic designer William Fetter needed
to find a way to optimize the cockpit interior of a Boeing aircraft. His efforts led him to
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a technique that started a revolution in rendering. He created a computer-generated ortho-
graphic view of the human figure that he called [37] computer graphics. Another computer
graphics pioneer coming from the same period as William Fetter, Ivan Sutherland, created the
first computer graphics software called Sketchpad [38]. It was the first software that allowed
interactive drawing on a computer screen. At that time, 3D images were only displayed as
wireframes.

For a long time, this seemed almost impossible, especially after the addition of shading
and depth of field, until Henry Gouraud developed the shading model [39] in 1971, which
became widely used. In practice, Gouraud’s model is used to achieve illumination on surfaces
with a small number of polygons without demanding computational requirements.

The final step in solving the problem of creating a realistic image was to accurately place
the shadows using the ray tracing method. The first concept, developed by an IBM researcher
known as Appel [40], was a method known as ray casting, where the calculation is completed
after the first intersection of the ray with the object. However, computers at the time (1968)
were not powerful enough to make his concept a reality. In 1980, Turner Whitted published
a paper [41] on the recursive method of ray tracing, where the calculation continues after the
first intersection and continues to reflect in the direction given by the material type. This
paper was considered groundbreaking at the time. From the basic ray tracing method, several
other variants of this method emerged, such as distributed ray tracing [42], path tracing [43],
bidirectional path tracing [44, 45], and metropolis light transport [46], which are widely used
today. These methods work on the same principle but differ in the number and direction of
the beams. There are also other methods that are not based on pure ray tracing, such as
Reyes’ method [47] and photon mapping [48, 49]. In this work, we focus on the path-tracing
method used by the Blender Cycles renderer.

1.1.2 Rendering equation

The rendering equation is the basic algorithm for all ray-tracing-based image synthesis algo-
rithms such as path-tracing [50]. In 1986, Kajiya first introduced the rendering equation in
computer graphics, [51]. One of the most recent versions ([52]) of this equation is represented
as follows

Lo(x, ω⃗o) = Le(x, ω⃗o) + Lr(x, ω⃗o) = Le(x, ω⃗o) +
∫︂
Ω

Li(x, ω⃗i)fr(x, ω⃗i, ω⃗o)(ω⃗i · n⃗)dω⃗i, (1.1)

where ωo is the direction of the outgoing beam, Lo is the spectral radiation emitted by
the source from point x in the direction of ωo, LE is the spectral radiation emitted from
point x in the direction of ωo, ωi is the direction of the incoming beam, Li is the spectral
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Figure 1.3: The unit hemisphere of the rendering equation in the direction of the normal
vector n⃗ centered at x, over which we integrate.

radiation coming into x in the direction of ωi, Ω is the unit hemisphere (see Figure 1.3) in
the direction of the normal vector n centered at x over which we integrate, and fr(x, ωi, ωo)
is the bidirectional image reflectance distribution function (BRDF) at x from the direction ωi

to the direction ωo, ωi · n is the angle between ωi and the surface normal.
Solving the rendering equation is computationally very demanding. The most common

methods are based on numerical estimation of the integral of the [53]. One of the most used
methods for numerical solution of the rendering equation is the Monte Carlo (MC) method.

The deterministic form of the Monte Carlo method is called quasi-Monte Carlo (QCM) [54].
In this method, pseudo-random numbers are replaced by quasi-random numbers that are
generated by deterministic algorithms. A typical property of such numbers is that they fill
the unit square more uniformly. This property is called low discrepancy (LD) [55, 56]. Well-
known types of LD sequences include the Halton, Faure, Sobol, Wozniak, Hammersly, and
Niederreiter sequences.

Blender uses the Sobol sequences [57, 58, 59, 60] for the path-tracing method because they
suit its needs - they run well on CPU and GPU accelerators, support high path depth, and
can perform adaptive sampling.

1.1.3 Path-tracing

Path-tracing algorithm integrates possible paths of light from the light source into a selected
pixel in a rendered image. In Monte Carlo, we select random sub-pixels and then track a
light ray bouncing randomly from object surfaces. Average, weighted by BRFDs, represents
the pixel’s intensity and color. Each ray path is represented by a high dimensional randomly
generated vector, which determines the selected sub-pixel and subsequent random bounces.

It is important to bear in mind that what we see it is not light itself but a light object
surface. In the Figure 1.4 you can see how light is reflected by the surface, and that this
reflection depends on the surface material. There are two different types of material in the
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Diffuse Glossy

Figure 1.4: The light reflections for the diffuse material (left) and for the glossy material
(right)

0

1

Light

Object

Figure 1.5: The path of the ray through the scene

picture, a glossy and diffusive one, respectively and how they change the way light is reflected.
On the left, there is a diffuse shader. For this type of material all directions have the same
likelihood of light being reflected. On the right, there is a glossy shader. Directions further
away from the angle of reflection are less likely. The length of the arrows denotes the likelihood
of a ray continuing in its direction.

Path tracing works in the following way (see Figure 1.5): For each pixel a ray is cast into
the scene. It starts as a camera ray until it collides with an object. The ray is influenced by
the type of a shader assigned to the surface it hits. The ray then continues as a glossy ray.
Let’s say after that it hits a diffuse surface. From there it bounces into a random direction.
Assuming that the maximum number of bounces in your scene is not reached yet, the ray
eventually hits a light source. It is discontinued and the color of the sample the ray belongs to
is calculated depending on all materials the ray hits while bouncing. This process is repeated
as many times as the number of samples in the render settings is reached. In the end the
mean value of all samples is used for the color of the pixel (see Figure 1.6).
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Figure 1.6: The calculation of the resulting pixel color after repeatedly casting of the ray into
the scene

1.2 Motivation

First, I would like to mention a 1965 law by Intel co-founder Gordon Moore, called Moore’s
Law: the number of transistors that can be placed on an integrated circuit doubles approxi-
mately every 18 months while keeping the price the same. Such growth is called exponential.
With the increasing use of new techniques such as global illumination, physical simulation,
and stereo projection, more and more processor hours are needed to render still images and
animations. This increase, based on Moore’s Law, has been described by DreamWorks as
Shrek’s Law of [61]. As an example, consider the production of a DreamWorks film. The
2001 feature film Shrek 1 required 5 million CPU hours, but 2004’s Shrek 2 required 10 mil-
lion CPU hours, 2007’s Shrek 3 required 20 million CPU hours, and 2010’s Shrek Forever
3D required 50 million CPU hours. As you can see from Shrek’s Law, rendering is one of
the most computationally demanding tasks in computer graphics. Shrek is a commercial
project, and we are particularly interested in open-source projects. One such project is the
Blender project, which aims not only to develop free software but also open movie projects
(see Figures 1.7,1.8,1.9,1.10).

Our main motivation for this work is to improve Blender’s rendering technique and per-
formance, and thus help Blender and its large community of users to accelerate their projects,
especially those interested in HPC rendering.

However, movie rendering is only one of the domains where image synthesis of a vir-
tual scene is needed. Medical imaging is playing an increasingly important role for refining
diagnosis or disease detection. Creating photorealistic images from traditional computed to-
mography (CT) or magnetic resonance imaging (MRI) is called cinematic rendering [62, 63].
Cinematic rendering is a computationally very demanding task and requires a large amount
of computational resources to transfer large details to the doctor’s computer screen in an
interactive mode, which is our other motivation (see Figures 1.11,1.12,1.13,1.14).
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Figure 1.7: Blender’s open movie: Cosmos Laundromat: First Cycle

Figure 1.8: Blender’s open movie: Agent 327: Operation Barbershop
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Figure 1.9: Blender’s open movie: The Daily Dweebs

Figure 1.10: Blender’s open movie: Spring
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Figure 1.11: The volume rendering of computed tomography dataset using HDR environmen-
tal lighting in Blender

Figure 1.12: The volume rendering of computed tomography dataset using emission shader
in Blender
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Figure 1.13: The rendering of computed tomography dataset after the segmentation method
using refraction and transparent shader in Blender

Figure 1.14: The rendering of computed tomography dataset after the segmentation method
using only diffuse shader in Blender
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Figure 1.15: The visualization of the computational fluid dynamics using the Covise editor
and the cutting surface node in Blender

Another area where rendering is widely used is visualization of scientific data of large
datasets (see Figures 1.15,1.16,1.17), which can come from simulations of various physical
phenomena (e.g., fluid dynamics, structural analysis, etc.).

The purpose of our new Render-as-a-Service is to simplify the visualization process not
only for researchers or students using our infrastructure but also for doctors, e.g., from the
University Hospital Ostrava.

1.3 The goals of the thesis

The main goals of this thesis are as follows:

• Main scientific goal: development of novel method that enables rendering of massive
scenes on multi-GPU systems,

• Secondary goal: development of Rendering-as-a Service toolchain based on the open-
source Blender tool that enables simple usage of HPC resources to large community of
Blender users.
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Figure 1.16: The volume rendering of the computational fluid dynamics using the Covise
editor and the isosurface node in Blender

Figure 1.17: The rendering of the computational fluid dynamics using the Covise editor,
Blender’s particles and emission shader in Blender
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Chapter 2

State-of-the-art

Our scientific contribution to the state-of-the-art in the area of parallel rendering is the devel-
opment of the method that enables rendering of large scenes on multiple GPUs. The following
sections describe the current state-of-the-art related to this topic.

2.1 Techniques for rendering of massive scenes on GPUs

The majority of film production rendering systems rely on path tracing. These systems almost
exclusively use CPUs to deliver the final image [29, 27, 25, 28, 26] as their scenes are too large
to fit in the limited memory of a GPU. There are two possible solutions for the limited
local memory: (i) out-of-core rendering and (ii) distributed or parallel rendering. We map
both approaches, but more attention is given to the distributed rendering since our proposed
solution belongs to this area.

2.1.1 Out-of-core rendering

The GPU accelerated rendering of large scenes is mostly handled using out-of-core techniques.
Budge et al. [64] presented an approach that dealt with out-of-core data management for het-
erogeneous architectures consisting of multiple CPU/GPU nodes. Son et al. [65] addressed
the problem of path tracing on various sets of device configurations. Their approach sup-
ported out-of-core rendering for heterogeneous clusters with CPU/GPU nodes and network
interconnection.

In terms of multi-GPU rendering, Zhou et al. [66] presented a photorealistic rendering
system that used an out-of-core approach for textures together with dynamic scheduling for
efficient parallelization. As it implemented REYES rendering on GPUs [47], it mainly con-
tributed to rasterization rather than path tracing. Pantaleoni et al. [67] proposed a rendering
system capable of fast lighting iterations over large scenes. It used an out-of-core GPU ray
tracing algorithm for the computation of directional occlusion and spherical integrals. Wang
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et al. [68] suggested a GPU rendering framework that can handle massive scenes with out-
of-core geometry and complex lighting. The solution was designed to use only one GPU and
applied a many-lights method instead of path tracing.

In the area of commercial GPU renderers, Redshift [8] is available as a ray tracer with
a versatility of features including support for out-of-core geometry and textures. Redshift is
able to use CPU memory in cases where the number of polygons or the size of the textures
exceed the capacity of the GPU memory. Although it supports rendering on multiple GPUs,
it is still not able to combine the memory of multiple GPUs into one large memory space.

It is important to also mention the area of ray statistics that can influence the creation
of acceleration data structures in ray tracing. In [69, 70] the authors provide methods for
constructing acceleration data structures, such as Bounding Volume Hierarchy (BVH), that
are further compared to the standard approach of the Surface Area Heuristic (SAH). Both
techniques use a priori knowledge about rays. Feltman et al. [70] focus on cost reduction
by tracing only the shadow rays. Bittner et al. [69] provide a better solution compared to
standard SAH where only primary rays are cast. If shadow rays and secondary rays are
considered, then SAH performs better due to the rather uniform ray distribution in the scene
which SAH is expecting.

2.1.2 Distributed rendering

There is a large body of work on distributed rendering techniques for massive scenes on
distributed memory systems. In the standard classification proposed by Molnar et al. [71] these
works fall into one of these categories: sort-first, which results in image-based partitioning,
sort middle (related to rasterization only), and sort-last, which uses scene data distribution.

2.1.2.1 Image-Parallel Rendering

Sort-first methods are based on screen-partitioning, and the workload is distributed among
processors or machines per blocks of pixels of a rendered image. In the most common as well
as the most efficient way, the scene data is fully replicated in all local memories, and ray
tracing is embarrassingly parallel.

In the case of ray tracing complex scenes that do not fit into local memory, this approach
results in on-demand scene data movement while rays remain fixed [72, 73, 74, 75]. Our
proposed solution is based on scene data communication while rays never leave the GPU they
are created on.

2.1.2.2 Data-Parallel Rendering

Sort-last methods, also called data-parallel, distribute the workload by subdividing the scene
data. In the case of distributed ray tracing, these approaches transfer ray data among proces-
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sors or machines, while scene data do not move after the initial distribution. Kato et al. [76]
used this approach for production rendering on a cluster of workstations. More recently, this
approach was used in the field of scientific visualizations of massive data sets from scientific
simulations on supercomputers [77]. Navratil et al. [78, 79] proposed a hybrid (combination of
image-parallel and data-parallel) approach for distributed memory supercomputers that used
dynamic ray scheduling. The proposed dynamic solutions worked well, except in situations
where ray communication costs exceeded data load costs such as in high quality rendering at
high resolution.

2.2 Hardware: Shared Memory Multi-GPU Systems

2.2.1 Distributed Shared Memory Systems

During the late 1990s, Shared Memory Processors (SMP) with large amounts of Distributed
Shared Memory (DSM) became commercially available [80]. In such machines, each processor
has a local memory with caches, and a hardware or software layer transparently creates an
illusion of global shared memory for applications [81]. As multiple processors read and write
from/to one shared memory, the key problem is preserving a coherent view of shared data,
which in practice is solved by various cache-coherent mechanisms [82].

DSM systems exhibit Non-Uniform Memory Access (NUMA), as the latency to access
remote data is considerably larger than the latency to access local data. On such machines,
good data locality is therefore critical for high performance. There were several methods that
improved data locality over basic cache coherency using replication/migration techniques as
summarized in [83]. This is also the key concept of our proposed approach. In addition
to data replication, the performance of DSM systems can also be improved by application-
specific techniques to reduce memory bandwidth requirements. For ray tracing of incoherent
rays, such a technique was proposed by Aila and Karras [84].

In the past, large DSM systems such as SGI Origin 2000, KSR1, and Stanford DASH were
used for ray tracing of large scenes, such as in Parker et al. [85], Keates and Hubbold [86], and
Singh et al. [87], respectively. In these works, authors used screen partitioning, but proposed
different solutions to work distribution, load balancing, and synchronization in the case of
interactive rendering.

2.2.2 CUDA Unified Memory for Multi-GPU systems

NVIDIA’s Unified Memory (UM) [31, 88] manages communication between multiple GPUs
and CPUs transparently by adopting DSM techniques. Alternative approaches have also been
proposed [89, 90, 91]. UM simplifies both out-of-core processing between GPUs and CPUs
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as well as multi-GPU processing1 and combinations of both. Previously, the applications
focusing on large data processing on GPUs required algorithm-specific techniques for memory
handling [92, 93, 94, 95, 96, 97, 98, 99].

In terms of HW technologies, NVLink interconnect is the key enabler of DSM multi-
GPU systems. Li et al. [30] provided thorough evaluation of several variants of NVLink
interconnects against PCIe bus. Chien et al. [100] evaluated the performance of advanced
UM features such as prefetching and user-controlled data placement [101] on two different
platforms, one with PCIe 3.0 interconnect between CPUs and GPUs and one with NVLink
interconnect (based on Power9 CPU).

A critical mechanism for UM is prefetching, page-eviction due to memory over subscrip-
tion, and page migration between GPUs. The works of [102, 103, 104, 105, 106] proposed
new algorithms to improve UM performance in the case of transparent memory management.
In contrast, our approach controls the page placement and replication manually based on
analysis of memory access patterns. Several works from the CG area use UM on multi-GPU
systems. Christensen et al. [107] efficiently used NVLink for image composition after dis-
tributed rendering on up to 8 GPUs. Kim et al. [108] utilized multiple GPUs for scalable split
frame rendering (SFR), which assigns disjoint regions of a frame to different GPUs. Finally,
Xie et al. [109] used a multi-GPU system for rendering for Virtual Reality systems. They
exploited the data locality of scene objects to reduce inter-GPU memory traffic.

2.2.3 Selected Multi-GPU HPC platforms

Most large companies have their own rendering farms such as Disney or Dreamworks, and even
car manufacturers have their own computer clusters that they use for rendering. However,
there are rendering farms (e.g. [17]) that are equipped with rendering programs and offer
their computational time to render. Qarnot Computing [110] introduced a very interesting
remote rendering solution, which installs high-performance silent computers in its radiators
and uses waste heat to heat rooms. Another way to render is to use the high-performance
supercomputers with accelerators available in Europe.

Accelerators are also used to speed up computationally intensive tasks. These accelerators
can also increase the computing power of HPC clusters several times. There are several types
of accelerators, the best known of which are graphic accelerators (GPUs), programmable gate
arrays (FPGAs), and MICs (Many Integrated Core) processors. In this work, we focused
specifically on Intel MIC Xeon Phi processors and NVIDIA graphic cards.

As a researcher working in the European HPC environment I had the opportunity to work
not only on the Salomon and Anselm supercomputers [111], which were part of IT4Innovations
infrastructure but also on other supercomputers such as the Italian Marconi machine installed

1All GPUs must be in a single server.
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Figure 2.1: NVLink GPU interconnect in the Barbora GPU server

in Cineca [112] or the German HLRN Cray System [113]. All of these supercomputers were
equipped with Intel MIC Xeon Phi processors. Salomon was equipped with hundreds of Intel
MIC Xeon Phi processors codenamed Knights Corner (KNC), which we used to test Blender
for the Blender Institute [2]. Cineca and HLRN were equipped with newer Intel MIC Xeon
Phi processors codenamed Knights Landing (KNL).

As part of IT4Innovations, there are several clusters which contain state-of-the-art multi-
GPU systems: NVIDIA DGX-2 (16x NVIDIA V100), the GPU accelerated nodes (4x NVIDIA
V100) of the Barbora supercomputer, and the GPU accelerated nodes (8x NVIDIA A100) of
the Karolina supercomputer. We had an opportunity to work on the DGX-A100 system in
Altair Engineering GmbH. DGX-A100 contains 8x NVIDIA A100 cards, which is similar to
the accelerated node configuration of Karolina.

2.2.3.1 Barbora GPU Server Hardware Description

Developed for HPC infrastructures, the BullSequana X410 E5 is a dense GPU-accelerated
compute node, which contains two CPUs and 4 Tesla V100 GPUs, each with 16 GB of fast
HBM2 memory. For the purpose of this work, the key part is the NVLink 2.0 [114] interconnect
that connects all GPUs as shown in Figure 2.1.

Tesla V100 contains 6 NVLink 2.0 ports, each capable of a theoretical bandwidth of
25 GB/s in each direction. Each GPU is connected to 3 other GPUs and there are two links
between any pair of GPUs. This provides a total bandwidth of 50 GB/s. This is the theoretical
bandwidth at which one GPU can read/write data from/to another GPU memory.

The actual remote memory bandwidth measured by the STREAM benchmark [115] is
48 GB/s for all combinations of GPUs, as shown in Figure 2.2. The latency is approximately
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GPU 0 1 2 3

0 743 10 11 11

1 10 741 11 11

2 11 11 741 10

3 11 11 10 744

GPU 0 1 2 3

0 741 48 48 48

1 48 745 48 48

2 48 48 744 48

3 48 48 48 745

Figure 2.2: Memory bandwidth over PCI-Express (left) and over NVLink (right) in the
Barbora GPU server

GPU 0 1 2 3

0 3.4 20 20 20

1 20 4 20 20

2 20 20 3.8 19

3 19 20 19 3.1

GPU 0 1 2 3

0 3.4 7.2 7.1 7.1

1 7.3 4 7.2 7.2

2 7 7.1 3.8 7.1

3 6.6 6.8 6.8 3.1

Figure 2.3: Memory access latency over PCI-Express (left) and over NVLink (right) in the
Barbora GPU server

7 µs (see Figure 2.3). The local memory bandwidth is 743 GB/s, which is 15.5 times higher
than the remote memory bandwidth. This work shows that even though the remote memory
bandwidth is 2.9 times lower than in the case of DGX-2 (see next Section 2.2.3.2), it is still
sufficient for our approach if path-tracing uses 4 GPUs only.

Comparison of bandwidth and latency for accessing remote memory over PCI-Express 3.0
(approximately 11 GB/s and 20 µs) and NVLink 2.0 (approx. 48 GB/s and 7 µs) for all
combinations of GPUs on a Barbora node. Memory bandwidth and latency to local memory
is approximately 743 GB/s and 3.6 µs, respectively, and is on the diagonal of the matrices.

2.2.3.2 NVIDIA DGX-2 Hardware Description

There are multiple platforms on the market that are equipped with multiple GPUs connected
using NVLink [114, 116]. However, currently only NVIDIA HGX-2 and DGX-2 platforms use
NVSwitch [32] based interconnect to connect 16 Tesla V100 GPUs. A theoretical bandwidth
between any pair of GPUs is 150 GB/s in one direction (bidirectional bandwidth is 300 GB/s).2

Because of its advanced interconnect, any set of 8 GPUs can communicate with the remain-
ing 8 GPUs in parallel, and any pair of GPUs communicate at the full 300 GB/s bandwidth.
This is facilitated by the non-blocking Fat tree topology of the NVSwitch network; see Fig-
ure 2.4. This unique hardware feature is also an essential one for the approach presented in
this work for the following reasons: (i) it enables fast access for a GPU to the memory of

2This bandwidth is achieved by combining all 6 NVLink 2.0 links available at the Tesla V100.
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Figure 2.4: NVLink GPU interconnect in the DGX-2 system

another GPU, and (ii) with UM technology (see Section 2.2.2 for more details) it gives a code
developer 512 GB of global GPU shared memory.

Real memory bandwidth and latency to the local and the remote memory was measured
using a specialized benchmark [117] for both NVLink 2.0 and PCI-Express 3.03 buses. The
results for NVLink and for PCI-Express are shown in Figures 2.5, 2.6, 2.7, 2.8. The values
on the diagonal represent performance of the local memory, and off-diagonal values represent
access to the remote memory. One can see that the local memory has approximately 5.7
times higher bandwidth and 3 times lower latency when compared to reading the remote
memory over NVLink. Moreover, the bandwidth of NVLink is 12.5 times higher than the
bandwidth of PCI-Express, and the latency is 2.5 times lower. When compared to state-of-
the-art CPUs (with 8 memory channels) with a memory bandwidth which, when measured by
the STREAM benchmark [115], is approximately 147 GB/s, one can see that this bandwidth
is only 6 % higher than the real NVLink bandwidth [118].

These values suggest that the technology has reached the point where data distributed
GPU path tracing becomes possible. However, the hardware is not a panacea. It is still
necessary to minimize the negative impact of remote memory access as much as possible to

3Using 16 PCI-Express lanes.
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GPU 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 795 8 10 10 11 11 11 11 11 10 11 11 10 10 11 11

1 8 796 10 10 11 11 11 11 11 11 11 11 11 11 11 11

2 10 10 790 9 11 11 11 11 11 11 11 11 11 11 11 11

3 10 10 10 796 11 11 11 11 10 11 10 10 11 11 10 10

4 11 11 11 11 791 8 10 10 11 11 11 11 11 11 11 11

5 11 11 11 11 8 800 10 10 11 11 11 11 11 11 11 11

6 11 11 11 11 9 9 793 9 11 10 11 11 11 10 11 11

7 11 11 11 11 10 10 10 795 11 11 11 11 10 11 11 11

8 11 11 11 11 11 11 11 11 792 8 10 10 11 11 11 11

9 11 11 11 11 11 11 11 11 8 796 10 10 11 11 11 11

10 11 11 11 11 11 11 11 11 9 10 792 10 11 11 11 11

11 11 11 11 11 11 11 11 11 10 10 9 797 11 11 11 11

12 11 11 11 11 11 11 11 11 11 11 11 11 792 8 9 9

13 11 11 11 11 11 11 11 11 11 11 11 11 8 799 10 10

14 11 11 11 11 11 11 11 11 11 11 11 11 10 10 794 10

15 11 11 11 11 11 11 11 11 11 11 11 11 10 9 9 800

Figure 2.5: Memory bandwidth over PCI-Express bus in the DGX-2 system

achieve good path tracing performance and scalability, as shown in Section 3.4.2.
Comparison of bandwidth and latency for accessing remote memory over PCI-Express 3.0

(approximately 11 GB/s and 25 µs and NVLink 2.0 (approx. 138 GB/s and 10 µs) for all
combinations of GPUs on the NVIDIA DGX-2 server. Memory bandwidth and latency to
local memory is approximately 800 GB/s and 3.5 µs) respectively, and is on the diagonal of
the matrices.

2.2.3.3 NVIDIA DGX-A100 Hardware Description

The DGX-A100 is the new generation of DGX-2. It is equipped with 8 Tesla A100-SXM4
GPUs. Tesla A100 contains 12 NVLink 3.0 ports, each capable of a theoretical bandwidth of
25 GB/s in each direction. DGX-A100 has 6 NVSwitches. Each GPU is connected to each
NVSwitch with two NVLinks (see Figure 2.9). A100 GPU achieves 300 GB/s unidirectional
peer-to-peer throughput and 600 GB/s in both directions over NVLink.

The actual remote memory bandwidth measured by the STREAM benchmark [115] is
255 GB/s for all combinations of GPUs, as shown in Figure 2.10. The latency is approximately
10 µs (see Figure 2.11). The local memory bandwidth is approximately 1193 GB/s.

Comparison of bandwidth and latency for accessing remote memory over PCI-Express
(approximately 17 GB/s and 27 µs) and NVLink (approx. 255 GB/s and 10 µs) for all
combinations of GPUs on the NVIDIA DGX-A100 server. Memory bandwidth and latency
to local memory is approximately 1193 GB/s and 4.3 µs, respectively, and is on the diagonal
of the matrices.
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GPU 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 790 138 138 138 138 138 137 138 138 137 138 137 138 138 138 138

1 138 795 138 138 137 138 138 138 138 138 138 138 137 138 138 138

2 138 138 792 138 137 138 138 138 138 138 138 138 138 138 138 138

3 138 139 138 797 138 138 138 138 138 138 138 138 138 138 138 138

4 138 138 138 138 790 138 138 138 138 138 138 138 138 139 138 138

5 138 138 138 138 138 797 138 138 138 138 138 137 138 138 138 138

6 138 138 137 138 138 137 792 137 138 138 139 137 138 138 138 138

7 138 138 138 138 137 138 138 797 138 138 138 138 138 138 138 138

8 138 138 138 138 138 138 138 138 790 138 138 138 138 138 138 138

9 139 138 138 138 138 138 138 138 138 798 138 138 138 138 139 139

10 139 138 138 138 139 138 138 138 138 138 795 138 138 138 138 138

11 139 138 138 138 138 138 138 138 138 138 139 800 138 139 138 138

12 139 138 138 139 138 138 138 138 138 138 138 138 793 138 139 138

13 138 138 138 138 138 138 139 138 138 138 138 138 138 798 139 138

14 138 138 138 138 138 139 138 138 138 138 139 138 138 138 796 138

15 138 138 138 138 138 138 139 138 138 138 138 139 138 138 138 798

Figure 2.6: Memory bandwidth over NVLink bus in the DGX-2 system

GPU 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 3,9 25 25 24 25 25 25 25 25 25 25 25 25 25 25 25

1 24 3,2 24 23 24 24 24 24 24 25 25 25 25 24 24 24

2 23 24 3,2 23 24 24 24 24 24 25 24 25 25 24 24 24

3 24 24 24 3,3 24 24 24 24 25 25 25 25 25 25 25 25

4 24 24 24 23 3,3 24 24 24 25 25 25 25 25 24 25 24

5 24 24 24 24 24 3,3 24 24 25 25 25 25 25 24 25 24

6 23 24 24 23 24 24 3,3 24 25 25 25 25 25 24 24 24

7 23 24 24 23 24 24 24 3,3 24 25 25 25 25 24 24 24

8 25 25 25 24 25 25 25 25 3,5 25 25 25 25 25 25 25

9 25 25 25 25 25 25 25 25 25 4,2 26 26 26 26 26 26

10 25 25 26 25 26 26 26 26 26 26 4,2 26 26 26 26 26

11 25 25 26 25 25 26 26 26 26 26 26 4,2 26 26 26 26

12 25 25 26 25 26 26 25 26 26 26 26 26 4,2 26 26 26

13 26 26 26 25 26 26 26 26 26 26 26 25 25 4,3 26 26

14 25 26 26 25 26 26 26 26 26 26 26 26 25 25 4,3 26

15 25 25 26 25 25 25 25 25 26 26 26 26 26 25 25 4,2

Figure 2.7: Memory access latency over PCI-Express in the DGX-2 system
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GPU 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 3,9 9,6 9,4 9,4 9,5 9,4 9,5 9,5 9,7 9,7 9,8 9,6 9,5 9,7 9,4 9,7

1 9,7 3,2 9,6 9,5 9,6 9,5 9,5 9,5 9,7 9,7 9,7 9,6 9,5 9,7 9,5 9,7

2 9,6 9,6 3,2 9,5 9,4 9,5 9,4 9,4 9,6 9,5 9,5 9,6 9,4 9,6 9,4 9,5

3 9,7 9,7 9,6 3,2 9,6 9,5 9,5 9,5 9,7 9,6 9,6 9,6 9,5 9,7 9,4 9,5

4 9,7 9,6 9,6 9,5 3,2 9,4 9,5 9,5 9,6 9,8 9,8 9,6 9,5 9,7 9,5 9,7

5 9,8 9,7 9,6 9,5 9,5 3,2 9,5 9,5 9,5 9,7 9,7 9,6 9,5 9,7 9,5 9,7

6 9,7 9,6 9,5 9,5 9,4 9,4 3,2 9,4 9,6 9,6 9,5 9,6 9,4 9,5 9,4 9,5

7 9,6 9,5 9,4 9,3 9,4 9,5 9,4 3,2 9,6 9,7 9,6 9,6 9,4 9,6 9,4 9,5

8 10 10 10 10 10 10 10 10 3,4 10 10 10 10 10 10 10

9 10 10 9,8 9,7 9,9 9,7 9,8 9,9 9,7 4,1 9,8 10 10 9,9 9,9 9,8

10 10 10 9,8 9,8 9,8 9,7 9,8 9,8 9,7 9,8 4,1 10 10 9,9 9,9 9,8

11 9,9 9,7 9,7 9,7 9,9 9,7 9,9 9,9 9,7 9,8 9,8 4,1 10 9,9 9,9 9,8

12 10 9,8 9,7 9,7 9,9 9,8 9,8 9,9 9,8 9,9 9,8 10 4,2 9,9 9.9 9,8

13 10 9,7 9,7 9,7 9,8 9,7 9,8 9,8 9,7 9,9 9,8 10 10 4,1 9,9 9,8

14 9,9 9,7 9,7 9,7 9,8 9,7 9,8 9,8 9,7 9,8 9,7 9,9 10 9,9 4,1 9,8

15 9,9 9,7 9,7 9,7 9,8 9,7 9,8 9,8 9,7 9,9 9,8 10 10 9,9 9,9 4,1

Figure 2.8: Memory access latency over NVLink in the DGX-2 system
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Figure 2.9: NVLink GPU interconnect in the DGX-A100 system
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GPU 0 1 2 3 4 5 6 7

0 1136 16 18 18 16 18 17 18

1 17 1163 18 18 16 18 18 18

2 18 18 1163 17 17 18 18 18

3 18 18 17 1163 17 18 18 18

4 17 18 17 17 1152 15 17 17

5 17 17 17 17 15 1159 17 17

6 17 17 17 17 17 17 1149 14

7 17 18 17 17 17 17 14 1198

GPU 0 1 2 3 4 5 6 7

0 1180 244 255 251 255 255 249 255

1 251 1202 256 245 256 256 252 257

2 248 256 1195 255 252 255 255 248

3 252 257 257 1198 253 255 255 249

4 244 255 256 249 1173 254 249 253

5 251 256 255 251 256 1198 255 252

6 256 251 255 255 253 254 1195 248

7 257 256 248 255 257 251 255 1206

Figure 2.10: Memory bandwidth over PCI-Express (left) and over NVLink (right) in the
DGX-A100 system

GPU 0 1 2 3 4 5 6 7

0 4.1 24.4 24.3 25.0 26.4 26.6 26.1 27.3

1 26.2 4.1 26.5 26.4 26.2 26.5 26.4 26.9

2 26.9 26.7 4.1 26.5 26.6 26.7 26.4 26.8

3 26.9 26.8 26.8 4.0 26.0 26.7 26.4 27.1

4 27.7 27.7 27.5 27.7 4.3 28.2 28.1 28.1

5 27.6 27.6 27.4 27.5 28.5 4.3 28.2 28.1

6 27.5 27.7 27.3 27.4 28.6 28.6 4.4 28.5

7 27.5 27.7 27.5 27.6 28.7 28.7 28.7 4.3

GPU 0 1 2 3 4 5 6 7

0 4.1 11.1 11.1 10.2 10.0 9.9 9.9 10.0

1 11.1 4.2 11.1 9.6 9.7 9.6 9.8 9.7

2 11.0 11.0 4.1 10.0 10.0 9.9 9.9 9.9

3 11.1 10.1 9.6 4.2 10.0 10.0 9.9 10.0

4 11.6 10.0 9.7 9.8 4.4 9.7 9.7 9.7

5 11.7 10.1 9.8 9.8 9.7 4.4 9.7 9.7

6 11.6 11.3 10.6 9.8 9.8 9.9 4.4 9.7

7 11.7 10.3 9.8 9.8 9.7 9.7 9.8 4.4

Figure 2.11: Memory access latency over PCI-Express (left) and over NVLink (right) in the
DGX-A100 system
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2.2.4 Intel Xeon Phi

The Intel Xeon Phi co-processor, in our case Knights Corner (KNC) based on the MIC
architecture is composed of up to 61 low power cores in terms of both energy and performance
when compared to multi-core CPUs. It can be used as a standalone Linux box or as an
accelerator to the main CPU. The peak performance of the top-of-the line Xeon Phi is over 1.1
TFLOP (1012 floating point operations per second) in double precision and over 2.2 TFLOPS
in single precision. The MIC architecture could be programmed using both shared memory
models such as OpenMP or OpenCL (provides compatibility with codes developed for GPU)
and distributed memory models such as MPI.

Intel Xeon Phi can be used in three modes: 1) offload - one process runs on the host
and the second process starts automatically on the MIC processor. Functions are called
from the guest using Offload commands, 2) symmetric - this mode can be used for network
communication using MPI, where we treat the MIC processor just like any other computer on
the network, 3) native - compiled code can only run on Xeon Phi. For example, we can use the
ssh command to connect directly to the MIC processor and run the application in the same
way as on a standard Linux computer. The ray-tracing and path-tracing methods can be very
easily parallelized because each pixel color can be calculated completely independently of the
others. Theoretically, all points of the rendered image can be calculated simultaneously if the
entire scene (all geometry, textures, etc.) is preloaded into the memory. The memory size
has always been a big issue for final rendering, especially for graphic cards, where a scene can
require up to 100GB of memory. However, this problem is addressed by the new Intel Xeon
Phi MIC processors, codenamed Knights Landing (KNL), for which this condition is met.
In addition to accelerators, we can also use network rendering to speed up the ray-tracing
method, for example in HPC systems.

Salomon was equipped with 432 accelerated computing nodes, each with two Intel Xeon
E5-2680v3 processors and two Intel Xeon Phi 7120P co-processors.

2.2.4.1 Intel IMCI/AVX-512 Intrinsics Instructions

Optimization by vectorization can be achieved in several ways, e.g. by pragma omp simd or
intrinsic instructions. The usage of OpenMP SIMD is very simple, but it only works with
an Intel Compiler. The usage of intrinsic instructions on the other hand is very effective,
works with a GCC compiler, but is quite difficult to provide. For such cases there is the
possibility to use API (see Figure 2.12). Our CyclesPhi supports Intel Initial Many Core
Instructions (IMCI) and Intel Advanced Vector Extensions 512 (AVX-512). For example,
Intel Xeon Phi Knights Landing (KNL) and Skylake support AVX-512, while Intel Xeon Phi
Knights Corner (KNC) supports IMCI. We have modified the API from Embree and used it
in Blender. There are three main structures to work with: float (avx512f), integer (avx512i),
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float dst[16], a[16], b[16];

// The intialization of a, b

// ...

for (int j = 0; j < 16; j++) {

   dst[j] = a[j] * b[j];

}

__m512 dst, a, b;

// The intialization of a, b

// ...

dst = _mm512_mul_ps(a, b);

struct avx512f {

  union {

    __m512 v;

    float f[16];

  };

  __forceinline avx512f operator*(

    const avx512f& a, const avx512f& b) {

      return _mm512_mul_ps(a, b);

  }

}

avx512f dst, a, b;

// The intialization of a, b

// ...

dst = a * b;

Figure 2.12: The example of overloading operators and hiding IMCI/AVX-512 intrinsic in-
structions

and boolean (avx512b) variables of 512 bits. SIMD vectorization is especially important for
BVH traversal and helps to improve the performance of the rendering process.
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Chapter 3

Methodology

In this chapter, we would like to introduce Blender 2.83 [2], how Blender Cycles is implemented
and how we have extended Cycles to support HPC infrastructures, including support for
rendering massive scenes on multi-GPU systems.

3.1 Blender

There are several software solutions that provide scene modeling and rendering in one package.
In this work, we will focus on extending one of the most widely used tools, Blender.

Blender is the name of a project, open to everybody who wants to join and has experience
with programming or 3D graphics. It has been founded by Tom Roosendaal. As part of this
project, 3D open-source software has been developed. This software could be used to create
pictures, movies and animations. In general, we could say that this software could be used
in any discipline dealing with 3D graphics, from design through manufacturing of parts to
medical applications such as visualization of 3D models of human organs.

Blender is entirely developed in Python, C and C++, which could be beneficial for de-
veloping new functions, features, or scripts or to modify the current ones. As Python is not
very suitable for computationally extensive tasks such as rendering, Blender could be also
extended using C++ coded extensions. This approach is used in this thesis.

Rendering is extremely time-consuming and thus parallelization is necessary. Blender
uses mainly POSIX threads [119] for faster response and more user-friendly control of its
GUI. Before rendering is executed, Blender creates three threads (see Figure 3.1): Blender
Thread, Session Thread, and Device Threads.

The Blender Thread is the thread we are in when we receive render-engine callbacks.
From this thread, we can safely access the Blender scene. The Session Thread updates the
data from Blender, updates the scene, and distributes the tasks. It is located between the
Device Threads that directly render the scene and the Blender Thread. The Device Threads
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Figure 3.1: Blender’s main threads: Blender Thread, Session Thread, and Device Threads

perform rendering of dedicated part of the scene and are maximally optimized for rendering
performance. For CPU devices there are multiple such threads, while for GPU devices there
is one thread per graphic card.

There are two main renderers in Blender, Eevee and Cycles. Eevee is a physically based
real-time renderer. It uses OpenGL and the OpenGL driver takes care of GPU memory
management. Eevee doesn’t work very well with demanding scenes. We will focus on Cycles
because this engine uses the raytracing method and state-of-the-art technologies can be used
for memory management.

3.2 Cycles renderer

Blender has a production renderer called Cycles. It is an unbiased renderer based on unidi-
rectional path tracing that supports CPU and GPU rendering. For ray tracing acceleration
it uses a Bounding Volume Hierarchy (BVH). The BVH code is based on an implementation
by NVIDIA [120, 121] with some additional code adaptation from Embree [122].

In terms of GPU rendering, Cycles supports CUDA, Optix, and OpenCL technology.
CUDA and OpenCL implementations support the same features as a CPU one does, except
for Open Shading Language (OSL). Optix support enables hardware acceleration of ray tracing
on GPUs with RT cores, i.e., GPUs based on Turing architecture.

Blender Cycles supports multi-core processor systems or graphic accelerators (GPU) to
ensure efficiency of both final (offline) and interactive rendering modes. The interactive ren-
dering offers possibilities to change many things such as the position of a light source, geometry
of the object, its material, etc., in real time without manually restarting the renderer. This
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Figure 3.2: The decomposition of synthesized image with resolution x(r) x y(r) to tiles with
size x(t) x y(t) by original implementation of the Blender Cycles for the CPU.

is opposite to the offline renderer, which is therefore used mainly for the final production
rendering.

Cycles is directly integrated into the Blender environment and it is based on a path-tracing
method that simulates the real behavior of light. Today, even the largest studios in their re-
spective renderers, such as Disney in Hyperion [29], Pixar in RenderMan [27], and Solid Angle
in Arnold [28], use the path-tracing method. Path-tracing algorithm is an embarrassingly par-
allel problem but only under the assumption that the entire scene description fits into a main
CPU or GPU memory, for CPU or GPU based rendering, respectivelly.

The next section introduces the standard parallel mechanism in Blender where the scene
is fully duplicated in memory and where tiles are used for parallelization. The way of the
parallel rendering algorithm itself is executed inside a tile and it is different for each compute
device. For CPU, POSIX threads are used. In contrast, OpenCL and CUDA technologies are
used for GPU.

3.2.1 Parallelization by POSIX

The original implementation of the Blender Cycles for CPU uses POSIX threads [119] for
parallelization. Parallelization is done in the following way: the synthesized image of the
resolution x(r) by y(r) is decomposed into tiles of size x(t) by y(t). Each tile is then computed
or rendered by one POSIX thread using one CPU core. The situation is shown in Figure 3.2.

CPU rendering is based on the CPUDevice class (see Figure 3.3) which we could divide
into two parts: a part working with data (top part of the picture) and computation itself
(lower part of the picture). In the middle, the computing units are depicted, in this case only
CPU cores.

The rendered scene is stored in KernelData and KernelTextures structures. At first, the
elementary information about the scene (for instance, the camera position or background
information) is sent to the selected compute devices, in this case the CPUDevice, using
const_copy_to method. After that the objects and textures are saved to the memory of
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KernelTextures

bvh, objects, triangles, lights, 

particles, sobol_directions, 

texture_images, ...

KernelData

cam, background, integrator 

(emission, bounces, sampler), ...

const_copy_to
tex_alloc

tex_free

RenderBuffers

mem_alloc

mem_free

mem_copy_from

mem_copy_to

CPUDevice CPUDevice

Main memory

Multi-core CPU

CPU

CPUDevice

decompose task to 

subtasks
thread_run

TILES 

STACK

Pthreads

Figure 3.3: CPUDevice class for manipulating the main memory or for calling functions
running on the CPU, all communication with the CPU and the main memory goes through
this device interface.

the CPUDevice using tex_alloc method. In addition, one have to allocate a buffer for ren-
dered pixels.

The next step is to decompose the rendered image into tiles. Each thread calls the
path_tracing method to calculate the render equation using thread_run method. Finally,
the results are stored to the buffer vector.

In the new version of CyclesX (Blender 3.0), the parallelized code was rewritten and
Blender CyclesX uses Threading Building Blocks (TBB) [123] library for parallelization.

3.2.2 Parallelization by CUDA and OpenCL

The OpenCL compute device is used for multi-core CPUs as well as for MIC or GPU accel-
erators. Only one POSIX thread with a large tile for optimal performance was used. The
parallelization is based on OpenCL threads where one thread is used for one pixel.

As the CUDA and OpenCL programing models are very similar, so is the decomposition.
In this work CUDA technology is mainly uses. There is one POSIX thread for main com-
putation per accelerator. On GPU a rendering kernel uses a single CUDA thread to render
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KernelTextures

bvh, objects, triangles, lights, 

particles, sobol_directions, 

texture_images, ...

KernelData
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tex_free

RenderBuffers

mem_alloc

mem_free

mem_copy_from

mem_copy_to

CUDADevice CUDADevice
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TILES 

STACK

Many-cores GPU

GPU Memory

Figure 3.4: CUDADevice class for manipulating the GPU memory or for calling kernel func-
tions running on the GPU, all communication with the GPU and its memory goes through
this device interface.

a single pixel of a tile. The GPU needs a lot of threads for better performance. This is the
reason why large tiles are needed.

GPU rendering is based on a CUDADevice class which could be divided into two parts
(see Figure 3.4): a part working with data (the top part of the picture) and computation itself
(the lower part of the picture). In the middle, computing units are depicted, and in this case
we can only see one GPU in here.

The principle of GPU computing is very similar to CPU rendering in the original code.
The rendered scene is stored in KernelData and KernelTextures structures. At first, the
elementary information about the scene is sent to the selected compute devices, in this case
the CUDADevice, using const_copy_to method. After that the objects and textures are
saved to the GPU memory using tex_alloc method. In addition, one has to allocate buffer
for rendered pixels.

The next step is to decompose the rendered image into tiles. There is one POSIX thread
that calls the CUDA kernel which contains the path_tracing method for GPU. The results
are stored to the buffer vector and sent back from GPU to CPU memory.
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Figure 3.5: The decomposition of the synthesized image with resolution x(r) x y(r) to tiles
with size x(t) x y(t) by original implementation of the Blender Cycles for the GPU.

In Figure 3.5, we can see how decomposition works in the original GPU implementation.
The synthesized image with resolution x(r) by y(r) is decomposed into tiles with size x(t) by
y(t). One tile is computed by one GPU device for x(t) by y(t) pixels and one CUDA thread
computes one pixel. It is worth mentioning that Blender supports multiple GPUs.

In the new version of CyclesX, one big CUDA mega kernel was replaced with several
smaller CUDA kernels (e.g., a kernel for initialization of camera, several kernels for intersec-
tions and shadings) for executing of path-tracing algorithm. The split kernels have better
efficiency in terms of the occupancy of execution units. OpenCL is deprecated in the new
version of CyclesX.

3.3 CyclesPhi renderer for HPC

To fully utilize the HPC cluster, a new Blender rendering client software has been created
which contains a subset of the original Blender functionality. We have extended the Blender
Cycles engine with OpenMP and MPI support which runs in hybrid MPI+OpenMP+CUDA
mode. We named this new rendering client CyclesPhi [124, 125].

In Figure 3.6, we can see what the rendering process in CyclesPhi looks like. The basis is
the CLIENTDevice class, the activity of which can be divided into the following two parts:
working with data (at the top) and the calculation itself (at the bottom of the diagram). The
computing means are shown in the middle. The calculation principle is very similar to the
calculation principle on accelerators in the original code. The rendered scene is stored in the
KernelData and KernelTextures structures. First, basic information about the scene is sent
to selected compute devices, in this case CLIENTDevice, using the const_copy_to method.
Objects and textures are serialized to a byte array and sent to client CyclesPhi using the
tex_alloc method. In addition, we need to allocate a buffer for the rendered. As we use
complex structures such as KernelData, we convert all data to the byte array before sending
it to the client. The next step is to lay out the rendered image or task on the tiles (parts of
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Figure 3.6: CLIENTDevice class for manipulating the main or the GPU memory on the
remote node or for calling functions running on the remote computer, all communication with
remote node and its memory goes through this device interface

the rendered image). Next, one POSIX thread is created that calls the path_tracing method
on the client. The results are stored in a buffer vector and sent back from the client to the
Blender.

3.3.1 OpenMP parallelization

The OpenMP (OMP) parallelization is implemented as OMP compute device. The workflow
is similar to the original CPU code. The difference between original and OpenMP implemen-
tation is in the decomposition of an image (see Figure 3.7). One OpenMP thread is processing
one pixel of the final image at the time. Due to the nature of the rendering algorithm, the
computation time of each sub-tile can be different. To achieve an effective load balancing (see
Section 3.3.3.3) we one to adjust the workload distribution by setting up the OpenMP runtime
scheduler to schedule (dynamic, 1). This setup produces the most efficient work distribution
among processor cores and therefore minimizes the overall processing time.

Another difference from original implementation is that only one POSIX thread is created.
This thread then uses OpenMP to parallelize the loop over all pixels of the image. The
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Figure 3.7: The comparison of decomposition over tiles and over pixels using OpenMP. For
the decomposition of the synthesized image with resolution x(r) x y(r) the OpenMP scheduler
for the dynamic load balancing performance is used.

distribution of scene data is identical to the one in the original code. This device can be
used for one node only. The main difference between the original implementation and our
implementation is that we moved the loop over samples (there are multiple samples per pixel)
inside the loop over pixels.

Another difference is in the use of the properties of the scenes. In the case of an interactive
rendering, we have moved the final color calculation of the pixel into the OpenMP loop to
preserve optimal parallelization. In this case, the buffer is a vector of floats, which contains
all Render Passes. Render Passes are important for the computation of the final image. In
each "pass", the engine computes different interactions between objects. Everything you see
in the rendered scene must be calculated for the final image. All interactions between objects
in the scene, lighting, cameras, background images, world settings, etc. must be calculated
separately in different passes for various reasons, such as shadow calculation. During render-
ing, each pixel is computed several times to ensure that it displays the correct color for the
correct part of the image [126].
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Figure 3.8: The memory usage comparison between Blender and Blender Client

3.3.2 Comparison of Memory Consumption

A great advantage of using Blender Client (CyclesPhi) is their low memory occupancy (see
Figure 3.8). Blender with Cycles has three scene representations (for efficient synchroniza-
tion), which is not very convenient in terms of memory usage. Another memory consumption
is the pre-processing of data for Cycles, especially for populating KernelTextures. It contains
several steps to group all the data into a single array type. For example, all triangles and all
vertices are appended into one array. Another example is building a BVH tree, which requires
additional memory.

The main reason for reduced memory requirements in separation of preprocessing and
rendering stage, where preprocessing is the most memory demanding part.

A Blender Client contains only final data, which is stored in KernelTextures and Kernel-
Data. That means the Blender Client needs significantly less memory than the full Blender
application. For example, one is able to save 75% when rendering The Daily Dweebs (see
Figure 3.8).

3.3.3 Cluster parallelization using MPI

Another very effective method for speeding up rendering is to use distributed rendering [71,
125], which gives us the ability to use multiple computers on the network. For communication
we use the Message Passing Interface (MPI) technology [127]. MPI is a communication pro-
tocol for parallel programming using multiple computers. Both point-to-point and collective
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communication is supported. The MPI environment is initialized with MPI_Init_thread()
when Blender is started. MPI_Finalize() is used to clean up the MPI environment and is
called just before exiting Blender. Communication between nodes is primarily done using
the following functions: MPI_Bcast(), MPI_Scatter(), MPI_Gather() and MPI_Reduce().
MPI_Bcast() is one of the standard techniques for collective communication. During a broad-
cast, one process sends the same data to all processes in the communicator. If process zero
is selected as the root process and has an initial copy of the data, all other processes re-
ceive a copy of the data. MPI_Scatter() is a collective procedure that is very similar to
MPI_Bcast(). MPI_Scatter() includes a designated root process that sends data to all pro-
cesses in the communicator. MPI_Bcast() sends the same portion of data to all processes,
while MPI_Scatter() sends portions of the array to different processes. MPI_Gather() is the
inverse function to MPI_Scatter(). Instead of sending elements from one process to many
processes, MPI_Gather() takes elements from many processes and collects them into one
process. The MPI_Reduce() function is similar to the MPI_Gather() function. Saying that,
it receives an array of input elements in each MPI process and returns an array of output
elements to the root process. The output elements contain the reduced result, which in our
case is the sum of all render buffers from all MPI processes.

CyclesPhi supports several modes for communication between allocated nodes, and the
following section discusses these modes.

3.3.3.1 CyclesPhi Runtime modes

CyclesPhi works in several modes with each being suitable for a different use case:

• Interactive Master - Client mode

• Offline Master - Client Mode

• Client only mode

In the case of Interactive Master - Client mode (see Figure3.9), Blender is used as the
master and can run on a visualization server or local station, and CyclesPhi as a client runs
on the cluster. This mode supports remote rendering where communication is done via TCP
sockets and within the cluster via MPI.

In the case of Offline Master - Client mode (see Figure3.10), Blender as master is run
from the command line without a GUI on a computed node. Blender automatically loads the
selected scene and starts rendering on the client (CyclesPhi). This mode is mainly used for
final rendering.

In Client Only mode (see Figure3.11), no Blender is running. The scene is already prepared
in a format suitable for CyclesPhi. This mode has several advantages. We can prepare the
scene on another node where more memory is available (see Section 3.3.2). The second
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advantage is the time saved in preparing and preprocessing the scene before rendering, where
we can, for example, prepare the scene on a node without a graphics card, thus saving the
core clock used. We can also use the pre-prepared scenes for presentation or virtual reality.
Another advantage is that we can render very fast "flying" cameras through the scene. The
disadvantage of the client only mode is that we can only change the camera position instead
of editing the scene.

3.3.3.2 Workload distribution for distributed rendering

CyclesPhi supports two types distribution for distributed rendering: distributed samples (see
Figure 3.12), distributed tiles (see Figure 3.13).

When the picture is rendered in the off-line mode, the synthesized image is decomposed
into samples reflecting the number of all compute devices (see Figure 3.12).

In the case of interactive rendering, the previously mentioned scheme is not convenient
due to the higher communication burden. Here, the work distribution is done statically in
the pre-processing phase. The synthesized image is decomposed into the tiles reflecting the
number of all compute devices (see Figure 3.13).
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3.3.3.3 Load ballancing algorithm

The main problem with distributed rendering is load balancing. The more computing devices
used, the more efficiently the main task must be divided into smaller subtasks for each device,
since the slowest subtask determines the overall performance. Achieving good load balancing
is not trivial and can be achieved using two main strategies [128]: static and dynamic. Static
load balancing is performed before the main job starts and remains the same throughout the
run. A dynamic load balancing algorithm dynamically changes the load distribution during
computation in accordance with the current load distribution of each subtask.

As we mentioned in the Distributed Rendering section 2.1.2, parallel rendering techniques
are classified into three groups according to the classification made by Molnar et al. in [71]:
sort-first, sort-middle and sort-last.

We use the sort-first rendering techniques for the communication between computation
nodes and between accelerators. The workflow of the sort-first rendering techniques is con-
tinuous and independent, their communication bandwidth is smaller, which is favorable for
parallel rendering, and they can theoretically realize scale extension on a class of linear costs.
Currently, the sort-first systems mainly rely on the screen splitting and allocation algorithm
to solve the load imbalance problem.

For the load balancing problem of rendering among multiple nodes, many researchers have
given solutions and discussed. For example, Abraham and others [129] proposed a rendering
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history-based load-balancing algorithm. The algorithm uses the rendering time of the previous
frame to estimate the load of the next frame, which is simple and easy to implement. We use
this method for dynamic load balancing both between nodes and between accelerators.

Another method for solving the load balancing problem, is to use the so-called cost-map.
For example, Cosenza et al. described one way to construct this map in [130]. Cosenza et
al. proposed a dynamic load balancing algorithm based on the difficulty of rendering a single
pixel. First, the 3D scene is rendered using a ray tracing algorithm and in doing so, the
number of intersections between rays and scene objects for each pixel is determined. Then,
based on these counts, a map of the rendering cost in the frame is created. Based on the
rendering history, the rendering cost map in the previous frame was used to estimate the
actual distribution of rendering costs in the future frame. In our case, we create a cost map
from the number of bounces for individual rows and distribute the data together with the
memory access analysis mentioned in Section 3.4.2.2. This method is more efficient than the
timing method (from Abraham [129]) for large scenes that do not fit in memory.

Another method for solving the load balancing problem, is to use so-called work stealing
[131]. DeMarle et al. [132] introduced a decentralized load balancing scheme based on work
stealing. In their implementation, task migration is performed at the beginning of the next
frame and the synchronization bottleneck at the master node is hidden by asynchronous task
allocation. Ize et al. [133] used a master dynamic load balancer with a job queue consisting of
large tiles that are assigned to each node (the first assignment is done statically and is always
the same), and each node has its own job queue that distributes sub-tasks to individual
processor threads.

Our implementation of load balancing differs for offline rendering and for interactive ren-
dering and is based on a sort-first rendering technique. For offline rendering if the entire scene
fits in memory, i.e., a fully duplicated scene, we use static load balancing with redistribution
according to the total number of samples per pixel and according to the total number of
devices. Thus, each accelerator gets a job of size

workd = H ∗ W ∗ S

countd
, (3.1)

where H is the height of the resulting image, W is the width of the resulting image, S

is the required number of samples per pixel, and countd is the total number of all allocated
accelerators.

For offline rendering and when the scene does not fit in the memory of a single graphic
card, we use a combination of static and dynamic load balancing. Static load balancing via
samples is used when the job is divided among the nodes as in the previous case

workn = H ∗ W ∗ S

countn
, (3.2)
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Figure 3.14: NSYS profiling of balanced scene

where countn is the number of allocated nodes. Within each node, the first step divides
the image into equally sized parts and gives each accelerator the same number of rows

workd = Hd ∗ W ∗ ( Sn

step
). (3.3)

In subsequent steps, the number of rows is recalculated for each device according to the
times of the previous step (see Algorithm 1).

ALGORITHM 1: Load balancing algorithm.
if td(i) < td(i + 1) then

c = (td(i + 1) − td(i))/countd/td(i + 1)
Hd(i)+ = Hd(i + 1) ∗ c
Hd(i + 1)− = Hd(i + 1) ∗ c
td(i + 1)− = td(i + 1) ∗ c

if td(i) > td(i + 1) then
c = (td(i) − td(i + 1))/countd/td(i)
Hd(i)− = Hd(i) ∗ c
Hd(i + 1)+ = Hd(i) ∗ c
td(i + 1)+ = td(i) ∗ c

The used load balancing Algorithm 1) is profiled in Figure 3.14 for calculation on multiple
graphic cards (NVIDIA A100). The NSYS profiler was used.

At the end of the computation, the render buffer from all devices is collected and summed
into a single buffer, from which the resulting color of each pixel is then computed.

58



For CPU rendering, dynamic load balancing is provided by OpenMP with a properly set
scheduler - see the OpenMP section.

For distributed interactive rendering, a similar setup is used for all scene types as for
offline rendering for large scenes. That means that the balancing between nodes uses a static
type via samples, and within each node the load is recalculated from the previous frame time,
changing dynamically the number of lines that each accelerator is responsible for. Unlike
offline rendering, the image is sent continuously to the master node, which sends the image
to the display device.

3.3.4 Extensions for Multi-GPU Support

In the previous section we introduced the Cycles to support new parallel hardware architec-
tures (e.g., Intel Xeon Phi co-processors and processors) and other HPC technologies (e.g.,
distributed rendering using MPI).

To implement the multi-GPUs support with distributed data over GPUs, only a few
changes need to be made to the original GPU branch of Cycles. Most importantly, the core
of the path tracing CUDA kernel used for the final rendering remains unchanged. The only
modifications inside this kernel concern implementations of software counters that record the
memory access statistics. From the rendering point of view, the functionality of this kernel
remains completely unchanged. Our modification splits each data structure used by the path
tracer into chunks of a predefined size and counts the number of accesses per chunk. Since
there is a performance overhead caused by this extra work, it is recommended to have these
modifications in a separate kernel.

The most significant changes are made to the CPU code to support the CUDA Unified
Memory, which is used to both replicate or distribute selected chunks of scene data among
multiple GPUs. This is done using cudaMallocManaged instead of cudaMalloc, together with
cudaMemAdvise data placement hints introduced in CUDA 8.0.

The CUDA UM mechanism is thoroughly described in [100, 102, 134]. For a shorter
description, see Section 2.2.2.

The overall workflow is as follows:

• distribute the data structures evenly among all GPUs,

• run the kernel with memory access counters and get the memory access statistics,

• redistribute the data structures among GPUs based on the memory access statistics,

• run the original path-tracing kernel with redistributed data.
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3.4 GPU rendering of massive scenes

3.4.1 Global Shared Memory programming

Global shared memory on DGX-2, DGX-A100 and Barbora is managed using the Unified
Memory mechanism, which creates a unified memory address space of the physically separated
memory of CPUs and GPUs. It also unifies the memory space of multiple GPUs and their
physically separated memory. This greatly simplifies the GPU programming by removing
the need for low-level memory management (explicit data transfers between CPU and GPU
controlled by a programmer). The main goal of UM is to provide a consistent view of the
data between all CPUs and GPUs within a single server. It ensures that every memory page
can be accessed by one CPU or GPU thread at a time. When a GPU accesses a page that is
not in its memory, a page fault occurs. The GPU that holds the requested page will release
it, and the page will migrate to the GPU that requested it. The same mechanism is used
between CPUs and GPUs as well as between GPUs, as thoroughly described in [100, 102,
134]. Memory trashing that continuously migrates the page from one GPU to another easily
becomes a serious bottleneck. This has been addressed by hardware support for on-demand
page migration in the Pascal architecture and page access counters in the Volta architecture
that enable the frequency of accesses to impact decisions on page migration. For more details,
see [135, 88].

This problem can also be addressed by a code developer using the data placement and
movement hints introduced in CUDA 8.0. These hints are applied using cudaMemAdvise()
to a specific part of the memory described by the address of the beginning and its size. It the
text below, we refer to the part of the memory holding data as a chunk of data [136].

The available memory hints are:

• cudaMemAdviseSetReadMostly - communicates that the chunk will be mostly read (but
can also be written),

• cudaMemAdviseSetPreferredLocation - sets the location of a chunk to the memory of a
given GPU,

• cudaMemAdviseSetAccessedBy - communicates that the chunk will be accessed from a
given GPU.

In addition, there is cudaMemPrefetchAsync(), which is used for prefetching (transferring)
data to a particular GPU (set by the hints above) before it is used by a GPU kernel. In our
proposed approach, UM is used only among GPUs connected using the NVLink bus. Due to
low performance of the PCI-Express bus connecting CPU and GPU, as shown in Figures 2.3,
2.7,2.11, the CPU memory is not utilized once data are transferred to the GPU memory.
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Figure 3.16: The first way of allocation of data structure in the Unified Memory of the
multi-GPU system: Fully distributed data structure

In Figure 3.15 the data structure are divided into chunks and placed in the CPU memory.
Suppose there is a data structure placed in the UM. If one applies the *PreferredLocation
hint on the entire data structure it will be placed in the memory of one GPU. However,
different hints can be applied to different chunks of the data structure. This enables us to
place different chunks to the memory of different GPUs, i.e., to distribute a data structure
across the memories of all GPUs, see Figure 3.16. This is a key principle for processing data
structures larger than the individual GPU memory, but it comes with the cost of non-uniform
memory access. If a chunk is marked by the *ReadMostly hint, it will be replicated in the
memory of all GPUs; see Figure 3.17. This results in optimal performance, as only local
memory accesses are performed but leads to sub-optimal memory utilization. However, one
can also combine the *PreferredLocation and *ReadMostly hints and replicate selected chunks
of the data structure while distributing the rest of them; see Figure 3.18. This can be used
to improve the performance of processing read only data, which is the case of path tracing
using the following logic: the pages with a high number of accesses are replicated, and pages
with low number of accesses are distributed and owned by the GPU with highest number of
accesses.

The process of using this simple idea to enable multi-GPU path tracing with distributed
scenes is described in Section 3.4.2.

3.4.2 Data Distributed Multi-GPU Path Tracing

In this section, we propose a method designed to minimize the negative impact of the remote
memory accesses on an algorithmic level to maximize path tracing performance and scalability.
We propose two approaches for splitting data structures used by a path tracer. Each approach
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multi-GPU system: Partially distributed data structure
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works with a different granularity of data placement control. We also evaluate how different
data distributions affect the overall performance.

In Section 3.4.2.1 we describe a less complex methodology that works with entire data
structures. Then, in Section 3.4.2.2, we introduce an advanced methodology that works
with data structures divided into chunks and controls the waythese chunks are placed in the
memory of individual GPUs.

The description of the methodology in this section is demonstrated using the Moana 12GB
and Moana 27GB scenes for the Barbora, DGX-2, and DGX-A100 servers. The 12 or 27 GB
value refers to the overall size of all data structures used by Cycles for path tracing. The
scenes of these sizes were selected because they fit into the memory of a single GPU of the
respective platform, and we are therefore able to provide a full scalability evaluation from 1
to 4, from 1 to 8, or from 1 to 16 GPUs, respectively.

3.4.2.1 Basic Distribution of Entire Data Structures

There are approximately 40 data structures in Cycles that describe the scene. Structures are
accessed only for reading. Every data structure can be independently replicated or distributed
across GPUs.

3.4.2.1.1 Memory Access Analysis We define the order in which data structures are repli-
cated as a ratio of the total memory accesses to a particular data structure over its size. To
be able to analyze its behavior, CyclesPhi was modified to count the number of accesses to
each data structure. The analysis was done on the first sample when rendering the scenes
with a resolution of 5120 × 2560 pixels.

The structures that have the highest number of memory accesses per byte are shown in
Figures 3.19,3.20,3.21.

These are:

• small_structures - a set of data structures smaller than 16MB (the most important one
is svm_nodes which stores Shader Virtual Machine (SVM) data and codes),

• bvh_nodes - stores the BVH tree without its leaves (leaves are stored in a separate
structure),

• prim_tri_verts - holds coordinates of all vertices in the scene,

• prim_tri_index - is a set of all triangles in the scene and it contains indices to the
prim_tri_verts.

As an example, we shall examine the Moana 27GB scene on the DGX-2 server. Evidently,
the most important data structure is bvh_nodes because it is responsible for 79.6% of all
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Figure 3.19: Analysis of memory accesses on the Barbora GPU system covered by the most
important data structures (full lines). Impact of the data structure distribution and replication
on rendering performance. Results for 0% replication represent full distribution of all data
structures.
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Figure 3.21: Analysis of memory accesses on the DGX-A100 system covered by the most
important data structures (full lines). Impact of the data structure distribution and replication
on rendering performance. Results for 0% replication represent full distribution of all data
structures.

memory accesses. This means that if it is replicated in the memory of all GPUs, the 79.6%
of all memory accesses will be to the local memory. See the full line in Figures 3.19,3.20,3.21.
The size of this structure is 7.2GB which represents 26.5% of the entire scene size.

The remaining lines in Figures 3.19,3.20,3.21 show how the path-tracing performance is
affected by the distribution and replication of these data structures. 0% scene replication
means that all data structures are split into 2MB chunks, and these are distributed in a
round robin fashion among all GPUs. One can see that this naive distribution leads to an
almost 3.7× longer rendering time (370%) when all 16 GPUs are used. The performance
penalty decreases when using a smaller number of GPUs. The path-tracing time for fully
replicated scenes is used as a baseline for relative rendering time evaluation. The relative
rendering time is decreased to only 149% by replicating small_structures and bvh_nodes on
all 16 GPUs. If in addition to small_structures and bvh_nodes, prim_tri_index and prim-
_tri_verts are also replicated, then the relative rendering time is only 109% while 40.7% of
the scene is replicated and the rest is distributed.

Consequently, the total memory allocation per GPU is 12.1 GB1 instead of 27.2 GB.

3.4.2.1.2 Performance and scalability evaluation The scalability of the proposed ap-
proach is evaluated for four different cases:

111.1 GB replicated + (16.1 GB / 16 GPUs) distributed = 12.1 GB per GPU.
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• all data structures are replicated – this case serves as a baseline as it achieves the best
performance and scalability,

• all data structures are evenly distributed,

• small structures and bvh_nodes are replicated while all other data structures are dis-
tributed,

• small structures, bvh_nodes, prim_tri_index, and prim_tri_verts are replicated while
all other data structures are distributed.

For case (2), two different forms of data distribution are evaluated: (a) continuous dis-
tribution: the structures are divided into large chunks of a size equal to the structure size
over a number of GPUs, and each GPU owns one chunk, (b) round robin distribution: the
distributed structure is divided into chunks of 2 MB, which are distributed in a round robin
fashion. The 2 MB chunk is the smallest possible size which still provides good performance
and is optimal for scenes of these sizes. Smaller chunks always yield worse performance for
the SetReadMostly memory hint which replicates the chunks over all GPUs.

The results of these tests are shown in Figures 3.22,3.23,3.24,3.25,3.26.
The rendering times are for one sample and an image resolution of 5120 × 2560 pixels.

Several conclusions can be made from the presented results:

• round robin distribution of small chunks performs better than continuous distribution of
large chunks, and therefore it is always used to distribute non-replicated data structures,
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• path tracing with fully distributed data structures does not scale on selected platforms
(there is reasonable scalability for two GPUs on DGX-2 but not beyond that),

• if small structures and bvh_nodes are replicated, the scalability is significantly improved:

– on Barbora the speedup is 3.8 for 4 GPUs for Moana 12GB,

– on DGX-2 the speedup is 11.8 and 11.5 for 16 GPUs for Moana 12GB and Moana
27GB scenes, respectively,

– on DGX-A100 the speedup is 5.8 and 5.7 for 8 GPUs for Moana 12GB and Moana
27GB scenes, respectively,

• if small structures, bvh_nodes, prim_tri_index, and prim_tri_verts are replicated, the
scalability is further improved:

– on Barbora the speedup is 3.9 for 4 GPUs for Moana 12GB,

– on DGX-2 the speedup is 13.7 and 14.3 for 16 GPUs for Moana 12GB and Moana
27GB scenes, respectively,

– on DGX-A100 the speedup is 6.5 and 6.3 for 8 GPUs for Moana 12GB and Moana
27GB scenes, respectively,

3.4.2.2 Advanced Distribution based on Memory Access Pattern and Statistics

Now we present an advanced data placement algorithm that takes full advantage of the Uni-
fied Memory mechanism and data placement hints introduced in CUDA 8.0 (SetReadMostly,
SetPreferredLocation, . . . )

The data placement is done with chunks, and hints are set for each chunk individually.
The optimal chunk size was identified experimentally by benchmarking the path tracer per-
formance for chunks of sizes from 64 kB to 128 MB.

We observed that:

• for scenes smaller than 30 GB the optimal chunk size is 2 MB (smaller chunks are not
recommended),

• for scenes of sizes around 40 GB the optimal chunk size is 16 MB,

• for scenes of sizes above 120 GB the optimal chunk size is 64 MB.

The workflow of this data placement strategy can be summarized by the following steps
(more details are given in the subsections below):

• copy/distribute every data structure across all GPUs in a round robin fashion using
chunks of an optimal size,
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• run the path tracing kernel with memory access counters for 1spp to measure the statis-
tics,

• gather the statistics on the CPU and run the proposed algorithm to get the optimal
data chunks distribution,

• use cudaMemAdvise to migrate or replicate all chunks,

• run the original unmodified path tracing kernel.

3.4.2.2.1 Memory Access Pattern Analysis To identify the memory access pattern, per
chunk access counters have been implemented in the GPU path tracing kernel of CyclesPhi.
There are independent counters for all data structures and all their chunks, therefore, a total
number of memory accesses per chunk can be recorded for each GPU.

The memory analysis starts with all data structures being evenly distributed using a round
robin distribution. Then the modified path tracing kernel with memory access counters is
executed on all GPUs for 1 sample.

When the kernel finishes, then for every chunk of every structure, a number of accesses
from all GPUs is recorded. This data is the input for the data placement algorithm described
in the next section. As is the case for final rendering, even during the analysis, the rendering
workload is distributed, and each GPU works on its own part of the image. The workload is
distributed among GPUs by horizontal stripes so that each GPU works on one stripe. Load
balancing is done by changing the height of stripes.

The analysis of the memory accesses for the Moana scenes of different sizes is shown in
Figure 3.27. The figure shows that 1% of the scene data covers between 56.7% and 74.4%
of memory accesses, depending on the scene size. This is significantly better than working
with entire structures. For illustration and direct comparison, we have added the dashed lines
to Figure 3.27 which represent the full lines from Figures 3.19,3.20,3.21. Another important
fact is that for the Moana 12GB, 27GB, 38GB, and 169GB scenes, 8.6%, 17.1%, 18.8%, and
18,2%, respectively, of the scene data chunks were not accessed at all.

The figure shows that 1% of scene data broken into 2MB chunks covers between 57% and
74% memory accesses depending on the scene size. For comparison we have added the data
points from Figure 2 as dashed lines to show the advantage of this method.Comparing these
results with those in Figures 3.19,3.20,3.21, the following conclusions can be drawn:

• for the Moana 27GB scene small_structures, bvh_nodes, prim_tri_index, and prim-
_tri_verts cover 95.1% of all memory access at the cost of 40.7% scene replication –
this results in 12.1 GB2 of data per GPU for 16 GPUs in total,

211.1 GB replicated + (16.1 GB / 16 GPUs) distributed = 12.1 GB per GPU.
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Figure 3.27: The analysis of the memory accesses of the Cycles path tracer for Moana of 12,
27, 38 and 169GB scenes.

• for the same scene, the method presented in this section covers 95.1% of memory accesses
with just 10.1% of replicated data – this results in 4.2 GB3 of data per GPU, which is
2.9 times smaller.

This analysis shows that there are clear candidates among the chunks that should be
replicated on all GPUs, while a major portion of the data is accessed infrequently and can
be distributed with an acceptable impact on performance. The algorithm that decides the
placement of each chunk based on this analysis is described in the next section.

3.4.2.2.2 Data Placement Algorithm based on Memory Access Pattern Algorithm 2
processes the 3-dimensional array of memory access counters Counters[G][S][C], where G

are GPUs, S are data structures, and C are chunks within a particular data structure. The
output of the algorithm provides an optimal location for each chunk (the GPU in which the
chunk should be placed) and decides whether the chunk should be distributed or replicated
to all GPUs.

In the first step, the per GPU counters are summed to get the total number of accesses
asum for each chunk c ∈ C of each data structure s ∈ S and a (asum, s, c) tuple is created. One
tuple now represents one chunk of scene data. Next, all tuples are put into a single 1D array
Hcomb. The array is sorted by asum from the largest value (the highest number of accesses) to
the smallest one and stored in H< array.

32.7 GB replicated + (24.5 GB / 16 GPUs) distributed = 4.2 GB per GPU.
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ALGORITHM 2: Data placement algorithm.
Input : Memory access counters Counters[G][S][C], where G are the GPU indices, S are the data

structures, C are the memory chunks per data structure s; Ndup is the maximum number of
chunks that can be replicated.

Output: Chunk distribution with optimal placement
i = 0
foreach c ∈ C, s ∈ S do

asum =
∑︁

g∈G
Counters[g][s][c] For chunk c in data structure s, sum accesses to it by

all GPUs and save it to asum.
Hcomb[i] = (asum, s, c) Put all per chunk counter values asum to one array so that it

can be sorted by number of accesses.
i = i + 1

end
H< = sort(Hcomb) by asum Descending sort by asum.
(t, st, ct) = H<[Ndup] Find replication threshold t.
foreach (asum, s, c) ∈ H< Process all chunks from the highest number of accesses to the

lowest one.
do

if asum > t then
set chunk c of data structure s as replicated

else if asum > 0 then
Gf = {g| GPU g has a free memory}
gm = max

g∈Gf

Counters[g][s][c] Find a GPU gm that has free memory and the highest

number of accesses to chunk c in s.
set chunk c of data structure s as distributed and set its preferred location

to GPU gm

else
chunk c is distributed in a round robin fashion Chunks with zero accesses are

distributed among GPUs with free memory.
end

end
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The last input of the algorithm is the number of chunks that can be replicated Ndup. This
value can either be set manually or automatically using the formula

Ndup = 1
Cs

(︄
Gf − Ss

Ng

)︄
(3.4)

where Gf is the amount of free memory per GPU in MB available to store scene data,
Ss is the scene size in MB, Ng is the total number of GPUs, and Cs is the chunk size in MB
(2-64 MB based on the scene size).

We define a threshold t as the Ndup-th element in the sorted array H< and evaluate all
tuples in the array H<. If the counter value asum is larger than t, the corresponding chunk
will be set as SetReadMostly, and therefore replicated.

In the opposite case, the chunk is set as SetPreferredLocation and is assigned to the GPU
with the highest number of accesses to this chunk. If the memory of this GPU is full, then
the GPU with second, third, fourth, etc., highest number of accesses is selected until a GPU
with free memory is found.

If the counter value is equal to zero (without any accesses), the corresponding chunk will
be distributed in a round robin fashion across GPUs with free memory.

3.4.2.2.3 Performance Evaluation The performance of the proposed algorithm was eval-
uated for different ratios between replicated and distributed data at a 2 MB chunk level of
granularity for the Moana 12GB and 27GB scenes. The range is from 0% of replicated chunks
(fully distributed), all the way up to 100% of replicated chunks if possible. Please note that
there is a difference in how chunks are distributed when compared to the approach presented
in Section 3.4.2.1. Previously the chunks were placed in a naive round robin fashion. However,
the chunks are now placed in the memory of the GPU that had the highest number of accesses
to it. Chunks are placed in the GPU memories so that each GPU has the same amount of
data, whilst attempting to simultaneously place chunks into the memory of the GPUs that
will access them most often. This explains the different and better performance for the fully
distributed scenes, i.e., 0% replication.

Figures 3.28,3.29,3.30,3.31 show the path tracing performance for 1 sample per pixel and
5120 × 2560 pixel resolution for both scenes and platforms and for all available GPUs. The
baseline for evaluation is the runtime for 1 GPU on DGX-2, which is 1564 ms for the smaller
scene and 2032 ms for the larger scene.

For the Moana 12GB scene, the speedup for a fully replicated scene on 4 GPUs on selected
platforms is 3.95, and parallel efficiency is 99%. On DGX-A100, the speedup for 8 GPUs is
7.7, and the parallel efficiency is 96%. On DGX-2, the speedup for 16 GPUs is 15.5, and the
parallel efficiency is 97%. For the Moana 27GB scene and 8 GPUs the speedup is 7.7 and the
parallel efficiency is 96% on DGX-A100 . On DGX-2, the speedup for 16 GPUs is 15.4, and

73



baseline - 1564

835 808 802 796 791 787 785 784 784 783

473
418 412 405 402 399 397 395 393 394

509
230 224 212 209 204 201 199 199 199

467 156
126

114 111 108 104 101 101 101

956

791 783 778 778 776 777 778 778 777

525

405 400 393 392 392 391 390 390 391

98

196

392

784

1568

0% 1% 2% 5% 10% 20% 25% 50% 75% 100%

R
u

n
ti

m
e

 [
m

s]
 

Percentage of replicated chunks 

Moana 12GB

DGX2 - 1 GPU DGX2 - 2 GPUs DGX2 - 4 GPUs DGX2 - 8 GPUs

DGX2 - 16 GPUs Barbora - 2 GPUs Barbora - 4 GPUs

Figure 3.28: Analysis of the path tracing performance for different ratios of replicated and
distributed data for the Moana 12GB scenes on the Barbora GPU server and the DGX-2
system. Runtime is for one sample per pixel.
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Figure 3.29: Analysis of the path tracing performance for different ratios of replicated and
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sample per pixel.
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Figure 3.31: Analysis of the path tracing performance for different ratios of replicated and
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sample per pixel.
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the parallel efficiency is 96%. We expect these results to be positive as in this scenario the
path tracing is an embarrassingly parallel problem.

When selected platforms are compared, one can see that there is a performance difference
only for fully distributed scenes. Once at least 1% of chunks are replicated, the performance
is almost identical.

The Moana 27GB scene does not fit into a single GPU memory used by the Barbora
platform. For 2 GPUs, only up to 2% of chunks can be replicated. However, the parallel
efficiency is still as high as 96% based on the single GPU baseline measured on the GPU in
DGX-2 with 32GB of memory. For 4 GPUs up to 25% of chunks can be replicated on the
Barbora server, which yields 95% parallel efficiency against the baseline. For comparison, if
one use 4 GPUs on DGX-2 with full scene replication, the parallel efficiency is 99%. This
is the first set of results that validates that path tracing on distributed scene data works
efficiently.

If the same scene is processed on DGX-2 and 8 GPUs for 2%, 10%, 20%, and 25% of scene
replication, the parallel performance is 86%, 89%, 92%, and 94%, respectively. The parallel
efficiency for full scene replication is 98%. For 16 GPUs the parallel efficiencies for the same
scene replication ratios are 75%, 81%, 86%, and 90%. The baseline parallel efficiency is 96%.

If the Moana 27GB scene is processed on DGX-A100 and 4 GPUs for 2%, 10%, 20%, and
25% of scene replication, the parallel performance is 79%, 86%, 92%, and 94%, respectively.
The parallel efficiency for full scene replication is 98%. For 8 GPUs the parallel efficiencies
for the same scene replication ratios are 74%, 81%, 88%, and 90%. The baseline parallel
efficiency is 96%.

3.4.2.2.4 Maximum Scene Size Analysis Up to this point, the scenes used for evaluation
have had a size of 12 or 27 GB only. Based on the results from the previous section, the reader
should now have an idea of how much of the scene data should be replicated to maintain
performance. The following equation describes the maximum ratio of replicated data that fits
into the memory of the GPU memory for a scene of a given size:

Nmax_dup =

(︂
Gf − Ss

Ng

)︂
(︂
Ss − Ss

Ng

)︂ (3.5)

where Gf is the amount of free memory per GPU in MB available to store the scene data,
Ss is the scene size in MB, and Ng is the total number of GPUs.

For instance, the DGX-2 platform with 16 GPUs where each has 28 GB (out of 32GB)
of memory available for the scene can render scenes of sizes of 256 GB, 179 GB, 138 GB, and
112 GB that can have up to 5%, 10%, 15%, and 20% of replicated data, respectively.
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In the performance analysis section, one can see that larger scenes of around 100 GB need
smaller percentages of replicated data than the smaller ones used here.
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Chapter 4

Applications

In the previous sections we have introduced the elements from research point of view: the
CyclesPhi renderer developed for HPC infrastructures and most importantly its multi-GPU
extension for rendering of massive scene on GPUs. This chapter describes how these tools
and algorithm are used in practical applications.

4.1 Rendering as a service

In both film production as well as scientific visualization a large amount of computational
resources are needed to visualize the data. In most cases the scenes are developed by people
who do not have sufficient background to work with HPC environment. Based on this fact,
we have developed a Rendering-as-a-Service (RaaS) solution that hides the complexity of
managing the computations on supercomputers and is able to utilize hundreds or thousands
of compute nodes of an HPC cluster with distributed rendering. RaaS is built from three
main parts:

• Frontend: Blender HEAppE add-on (BHEAppE), and

• Middleware: High-End Application Execution Middleware (HEAppE),

• Backend: modified version of Cycles production renderer for efficient rendering on HPC
cluster (CyclesPhi).

We describe these three parts in the next sections.

4.1.1 HEAPPE

HEAppE [24] is a tool that simplifies cluster access, allocating compute nodes, and running
jobs for inexperience HPC users (see Figure 4.1). It is a universally designed software archi-
tecture that enables unified access to different HPC systems through a simple object-oriented
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client-server interface using the Restful Web Services standard (JSON format). This provides
users with HPC capabilities without the need to manage running jobs via the command line
directly on the cluster.

Each supercomputer cluster is equipped with a scheduler (e.g., PBS, SLURM) to run jobs.
However, there are limits to creating and running individual jobs that restrict the rendering
of a series of snapshots. The node allocation is time limited and so is the maximum number
of jobs that can be created at one time. For a larger number of tasks one can use sub-tasks as
extensions of the main tasks. These sub-tasks can be identified by a unique number that, in
this case, is also used as a render frame number. For more demanding scenes where rendering
of a single frame takes longer time than desired, distributed rendering over multiple nodes
can be used.

For this type of task, it is useful to divide the whole process into three parts:

• scene preparation (pre-processing),

• rendering, and

• post-processing.

For each part, a different type of compute node can be allocated, e.g., a node with large
memory can be used for pre-processing and a node with more computing power and less
memory can be used for rendering. For this purpose, another scheduler function is used,
namely the execution of interdependent tasks. That is, a job that performs rendering waits for
a job with pre-processing and a post-processing job waits for a render job to finish, respectively.
These interdependent jobs only require to have shared storage on the cluster. Based on these
requirements, the original HEAppE was extended with several new features.

For security reasons, HEAppE allows its users to run only predefined sets of command
templates. Each template defines a script and the type of queue under which the script should
be submitted and executed. The template also contains a set of input parameters that can
be passed at runtime. Users can only run predefined command templates with a predefined
set of input parameters. These parameters can be changed by the user each time a job is
submitted.

For each group of users (the group depends on the open call or director call project), a
new web server containing an instance of HEAppE is configured. This instance is composed
of three parts (see Figure 4.1): the HEAppE core (web server), the SQL Server and the SSH
agent (ssh key message). A set of command templates is configured for each instance. Each
template contains a script that runs CyclesPhi in the background. Thus, using a simple
graphical interface, users can submit their jobs to the cluster and all job processing happens
in the background.
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Figure 4.1: HEAppE Middleware Architecture

4.1.1.1 BHEAPPE

To make the RaaS platform as user friendly as possible we have developed the BHEAppE
add-on for Blender, which implements the user interaction with the platform. Our add-on is
based on the Blender Cloud add-on [137] and can be activated in preferences of the Blender
(see Figure 4.2).

In BHEAppE user needs to insert its the login credentials for HEAppE, specify which scp
method to use when accessing the cluster storage (OpenSSH application, python paramiko
module [138] and destination folder on its local computer where final images will be down-
loaded to. The main settings of the user job are located in the Render properties panel (see
Figure 4.3). The BHEAppE panel is composed of several panels: status, message of the day,
new job, list of jobs, job details and storage.

The Status panel (see Figure 4.4) is used for a basic overview of the statuses when com-
municating with the web server. More information including detailed logs related to the
communication is printed to the Blender console.

Our platform supports cluster running Linux system. On such clusters it is common
practice to use "message of the day", i.e. motd, which contains a important messages to all
users. It informs e.g. about outages or planned downtimes. In BHEAppE these messages can
be viewed by clicking on the Message of the day button (see Figure 4.5).

In the New Job panel (see Figure 4.6), a set of input parameters for a new job can be
specified. These contains:

• cluster name (e.g. Salomon, Barbara),
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Figure 4.2: The enabling and settings of BHEAppE in Blender Preferences

Figure 4.3: The main panel of BHEAppE in the Render properties

Figure 4.4: Status panel
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Figure 4.5: Information about outages or planned downtimes

Figure 4.6: The panel for creating and submitting a new job

• Blender Cycles or CyclesPhi version with queue type (e.g. production queue, dedicated
queue for nodes with accelerators, massively parallel queue),

• project name,

• email to send information about the completed job,

• number of nodes for distributed rendering, and

• number of snapshots.

A detailed description of the entire process of submitting and running a job is shown in
Figure 4.7. By clicking the SubmitJob button (see Figure 4.6) add-on firstly authenticates
the user (name and password) using the pre-selected authentication method. This process
returns the session code, which is further used for other REST calls.

Prior to submitting the job the entire Blender scene including all dependencies is wrapped
using the Blender Asset Tracer python module (BAT) [139] and prepared for transfer to clus-
ter. Next, by calling the REST method CreateJob with all the input parameters add-on will
create a JobInfo record in the SQL database for this new HEAppE job. The JobInfo, among
others, also contains the unique HEAppE job ID and which is returned to the BHEAppE
client.

The job ID is then used to request the FileTransferMethod information, which contains
the ssh key needed for the data transfer. The packed scene data is then sent over an encrypted
channel to the cluster storage. Once the data transfer is finished, a request to run the job is
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Figure 4.7: The workflow for creating and submitting a new job
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Figure 4.8: The list of submitted jobs

Figure 4.9: The detailed information about the submitted job

submitted to the scheduler using the REST method SubmitJob. The SQL database is updated
with the status of the PBS job every 30 seconds. The In the add-on GUI the Refresh button
(see Figures 4.8) can be used to get the current information of each job (see Figures 4.9).

Each job has several statuses:

• Configuring - status after job creation,

• Submitted - job was sent to the scheduler,

• Queued - scheduled job,

• Running - running job,

• Finished - completed job,

• Failed - job that did not finish or ended with an error, and

• Canceled - cancelled job by the user.

A running job can be stopped using the Cancel Job button (see Figure 4.8). The whole
process is shown in Figure 4.10. After authentication and calling the REST method Can-
celJob, a request to stop the running PBS job is sent to the PBS scheduler. The current
status of the job can be checked again using the Refresh button.
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Figure 4.11: The panel for downloading results from a remote cluster to a selected local folder
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Figure 4.12: The workflow for downloading results from a remote cluster to a selected local
folder

After a successful calculation, the results can be downloaded to the local computer using
the Download button (see Figure 4.11). The whole process is shown in Figure 4.12. After
successful authentication, the data is downloaded using the scp protocol to the folder defined
in add-on preferences. The downloaded folder can be viewed using the button (icon) next to
the displayed local path.

BHEAppE also supports interactive rendering mode. In this mode, an ssh tunnel is
created from the user’s local machine to the cluster, i.e. changes in the scene are sent directly
to the operating memory of the remote compute node(s). The whole process is illustrated
in Figure 4.13. After authentication, creation and sending the job to the scheduler, the PBS
job is waiting to run. After the PBS job is started, the ssh key is requested using the REST
method GetFileTransferMethod. After the job successfully gets the ssh key, a tunnel to the
compute node is created and a TCP port is opened on the local machine. This port is used
by the CyclesPhi renderer to communicate with Blender running on the local machine.
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4.1.2 Backend

All jobs that are run using HEAppE contain scripts that run our modified CyclesPhi renderer,
introduced in Section 3.3. That is, all of the new functionality introduced can be used in our
RaaS service, such as interactive rendering, production rendering, and rendering large scenes.
In this section we will describe how CyclesPhi works with incoming data from Blender and
how to transfer the resulting image (render buffer) from the CyclesPhi client back to Blender
for both production rendering and interactive rendering.

In Section 3.3.3.1, we introduce three modes. All modes can use the MPI technology. Fig-
ure 4.14 shows the MPI implementation of rendering using CyclesPhi. The implementation is
similar to the original one, but communication thread is added in both Blender and CyclesPhi
client. The principle of distributed rendering works as follows:

• Sending KernelData (scene settings) to all nodes using the MPI_Bcast message.

• Sending KernelTextures (scene content) to all nodes using the MPI_Bcast message.

• Send buffer size (for rendered pixels)

• Start rendering using the MPI_Bcast message.

• Reading results from the current node and sending the buffer to the main node using
MPI_Gatherv or MPI_Reduce.

• Display results in Blender.

Figure 4.15 shows the case of the Interactive Master - Client mode with remote rendering.
In this mode communication is added using TCP sockets and ssh tunneling. The principle of
remote rendering works as follows:

• Send KernelData (ex. camera properties) to the socket server and from there to all
nodes with Bcast

• Send KernelTextures (ex. triangles) to the socket server and from there to all nodes
with Bcast

• Send the information about the size of buffer (rendered pixels) to the socket server and
from there to all nodes with Bcast

• Start rendering in the socket client and distribute the command via the socket server
by Bcast message

• Read the current results from the node and send the buffer to root with Gatherv or
Reduce and then to the socket client.

• View results in Blender
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4.2 Interactive Volume Rendering for Medical Visualization

In the previous section we described feeding rendered scene data from Blender and feeding
the render buffer in the Interactive Master - Client mode directly to Blender. Our solution
can also be used for data visualization on an external device such as a 3D projector with 4k
resolution for each eye (see Figure 4.16), which is also part of our laboratory equipment. For
this use case, the VRClient application, which uses OpenGL Stereo technology for displaying
the image, was created. Native stereo in OpenGL, also known as Quad Buffered Stereo, is a
way to provide the graphics accelerator with an image for the left and right eye in a simple
way. The 3D projector uses active stereo with polarizing glasses and operates at 120Hz. Thus,
each eye is rendered at 60Hz with a resolution of 3840×2400. This differs from other stereo
output methods such as placing the left and right images side by side at twice the output
resolution. However, the resulting 3D image is rendered and stored this way, side by side.
The graphic accelerators on the compute node are divided into two groups on each allocated
node. The first group renders the left eye and the second group the right eye. Here we use a
common buffer in unified memory. Finally, the resulting image is fed into VRClient instead
of Blender (see Figure 4.17). Our visualization lab is connected by a 100Gb/s link directly to
the cluster’s network, so there is no need to compress the image and thus lose quality. This
way of displaying data is suitable for volumetric rendering of data obtained from computed
tomography. Volumetric rendering is very computationally intensive, especially when setting
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TCP

Figure 4.16: The scheme of the Interactive Volume Rendering using VRClient

the maximum detail. CT images are converted to OpenVDB format which can be used by
Blender and CyclesPhi. During interactive rendering it is possible to change the shader
settings and thus, for example, the colors or the density of voxels as well.

4.3 Real-time path tracing for Virtual Reality

In the previous section, we were dealing with interactive rendering, where we were more inter-
ested in the quality of the transmitted image than in the transmission speed itself. Another
use case where our CyclesPhi extension can be used is rendering for virtual reality (see Fig-
ure 4.18). In this case we need to render and transfer data with the highest possible speed and
therefore latency. When sending video over a link with lower speeds like 1Gb/s, it is necessary
to compress the transmitted video. In cooperation with CESNET [140] and VRgineers [141],
we have extended their Ultragrid library [142] to support VR. That is, we need to transmit
not only the image for both eyes but also the position and parameters of the camera. For
compression we use GPUJPEG [143] which Ultragrid can handle.

For VR, VRClient is extended with OpenVR [144] and Ultragrid libraries. The whole ren-
dering process for VR works in the following way. VRClient receives the new camera position
from the OpenVR library and passes this information to the Ultragrid library. CyclesPhi waits
for the new camera position from Ultragrid and after receiving the new position, it renders
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Figure 4.17: The result of the Interactive Volume Rendering for Medical Visualization using
VRClient

the site-by-site image in YUV format to unified memory. This image remains in GPU mem-
ory and is passed on to Ultragrid, which compresses this image using the GPUJPEG library
and the image is sent over the UDP protocol to the VRClient. The VRClient receives the
decoded site-by-site image in RGBA format. This image is mapped to two OpenGL textures
(one OpenGL texture per eye) and both textures are sent to OpenVR, which then sends the
image to glasses that are compatible with this library, such as the HTC Vive PRO glasses
(see Figure 4.19). The whole process is repeated roughly 25 to 90 times per second.
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Figure 4.19: HTC VIVE Pro VR headset with wireless adapter
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Chapter 5

Performance analysis, tests and results

In this chapter we will analyze the performance and benchmarks of the state-of-the-art accel-
erators introduced in chapter 2 using the methodologies described in chapter 3. The develop-
ment of CyclesPhi started when Intel Xeon Phi technology was still supported, and for this
reason we would like to present some measured results using this older technology.

5.1 Intel Xeon Phi

In this test, we demonstrate speed up of the modified version of Cycles. We will compare the
rendering times of several rendered scenes using Intel Haswell, KNL, KNC, and Skylake (SKL).
Another presented comparison will compare the rendering times for rendering by Cycles using
original implementation of Bounding Volume Hierarchy (BVH) with Embree’s BVH and with
our modification of BVH.

5.1.1 Performance of KNC for Path Tracing in Blender Cycles

In this section, we would like to compare the performance of two technologies: MIC and CPU.
Figure 5.1 compares Intel Xeon Phi two series KNC (Intel Xeon Phi 7120P) and KNL (Intel
Xeon Phi 7250) with Intel Haswell (Intel Xeon E5-2680v3) and Intel SKL (Intel Xeon 8160)
processors. These processors are based on x86 architecture and differ mainly in the number
of OpenMP threads that were used for computation. The 244 threads were used for KNC,
12 threads for Haswell, 272 threads for KNL and 24 threads for Skylake. KNC uses BVH8.
EMBREE-BVH8 is used for Haswell, KNL and SKL. In Figures 5.2, 5.3, 5.4, we can see the
performance comparison of the different BVH implementations running on KNC, KNL and
SKL.
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Figure 5.1: Performance comparison of rendering time using Haswell, KNL, KNC, and Skylake
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Figure 5.6: Benchmark image: Barcelona Pavillion - archviz demo from eMirage (CC-BY),
house by Claudio Andres

5.1.2 CPU and Intel Xeon Phi Distributed rendering

The Salomon supercomputer at IT4Innovations contained more than 800 Intel Xeon Phi
Knights Corner (KNC) cards. Each KNC could be allocated independently to the node using
a special queue in the PBS system. For the rendering of Spring we created many tasks where
each task used 50 KNCs to render one image. In Figure 5.5, you can see the comparison of
the rendering times on 50 KNCs with different decomposition over tiles or over samples.

For next test two complex scenes were chosen, see Figures 5.6,5.7. The first one is the
scene with a house and a water pool. The realistic water surface increases the rendering time.
The second scene is taken from Laundromat movie. The Victor scene has the grass with lots
of details in it which increases the rendering time as well. The House scene consists of 40
thousand triangles with textures. Resolution of the scene is 2048x1024 and 1024 samples.
The Victor scene consists of 2.4 million triangles with textures, resolution of the scene is
2048x1024 and 1024 samples.
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Figure 5.7: Benchmark image: Cosmos Laundromat Demo, the Victor scene (CC-BY)

Time necessary to render the final Victor scene for various number of computational
nodes is depicted in Figure 5.8. Linear scalability could be observed here, which indicates
efficient parallel implementation. This means, with higher number of computing resources, the
total rendering time would decrease even further. Off-line rendering time for the Victor scene
depending on the number of computing nodes and different parallelization techniques. OMP24
runs on 24 CPU cores per node with parallelization via OpenMP. Offload denotes acceleration
on 24 CPU cores and two Intel Xeon Phi KNC per node in offload mode. Symmetric denotes
acceleration on 24 CPU cores and two Intel Xeon Phi KNC per node in symmetric mode.

Time necessary to render the preview of the House scene for various number of compu-
tational nodes is depicted in Figure 5.9. In this case, slight deflection from linear behaviour
could be observed. This is most likely due to the communication overhead. On the other
hand, the minimal conditions for interactive rendering (25 fps, 1 sample per pixel) are met
at approximately 48 of computing nodes. Interactive rendering time for the House scene de-
pending on the number of computing nodes and different parallelization techniques. OMP24
runs on 24 CPU cores per node with parallelization via OpenMP. Offload denotes acceleration
on 24 CPU cores and two Intel Xeon Phi KNC per node in offload mode. Symmetric denotes
acceleration on 24 CPU cores and two Intel Xeon Phi KNC per node in symmetric mode.

The presented implementation is able to share workload between CPU and additional
Intel Xeon Phi effectively for both off-line and interactive mode. The parallel implementation
exhibits almost linear strong scalability up to tested 64 computer nodes for off-line rendering
mode. Almost linear strong scalability of interactive mode could be observed up to the 16
nodes. After this, linearity is lost due to communication overhead. However, we are still able
to reach real-time rendering by 25fps at approximately 48 of computing nodes.
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Figure 5.8: Offline rendering time for the Victor scene depending on the number of computing
nodes and different parallelization techniques. OMP24 runs on 24 CPU cores per node with
parallelization via OpenMP; Offload denotes acceleration on 24 CPU cores and two Intel Xeon
Phi per node in offload mode; Symmetric denotes acceleration on 24 CPU cores and two Intel
Xeon Phi per node in symmetric mode.
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Figure 5.9: Interactive rendering time for the House scene depending on the number of com-
puting nodes and different parallelization techniques. OMP24 runs on 24 CPU cores per node
with parallelization via OpenMP; Offload denotes acceleration on 24 CPU cores and two Intel
Xeon Phi per node in offload mode; Symmetric denotes acceleration on 24 CPU cores and
two Intel Xeon Phi per node in symmetric mode.

5.2 GPU Rendering of massive scenes

5.2.1 Performance of Tesla V100 and Tesla A100 for Path Tracing in Blender
Cycles

In this section we would like to compare the performance of NVIDIA graphics accelerators.
The chart compares the Tesla V100 and Tesla A100 GPUs with the high-end consumer-class
GeForce RTX 3090 card, which is based on the Ampere architecture and therefore equipped
hardware acceleration for ray tracing using RT cores.

The main goal is to provide information about the path tracing performance of Tesla V100
and Tesla A100 against a well-known and widely used GPU card. The results are shown in
Figure 5.10. Please, focus on the comparison of Cycles with OptiX 7 @ GeForce RTX 3090,
which uses the Optix plug-in for Blender [145], and CyclesPhi with CUDA @ Tesla A100. It
should be noted that Optix employs RT cores for hardware acceleration of BVH tree traversal.

5.2.2 Multi-GPU Benchmark Systems

In this benchmark we use three multi-GPU platforms that can perform massive scene ren-
dering. The first one is a BullSequana X410-E5 NVLink-V blade server [116] with 4 Tesla
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Figure 5.10: The results show that hardware acceleration in OptiX 7 boosts the performance
approximately 2 ×; see the results for Cycles w. OptiX and Cycles w. CUDA, both on GeForce
RTX 3090. In the rest of the work, all the results are measured using CyclesPhi with CUDA
on Tesla V100 and Tesla A100.

V100 GPUs [146], each with 16GB of memory and direct NVLink interconnect. The server is
installed in the Barbora HPC cluster at IT4Innovations [147] and therefore we will refer to
it as Barbora.

The second, more advanced platform is NVIDIA DGX-2 [35], which is able to process
massive scenes of sizes up to 512 GB in the shared memory of its 16 Tesla V100 GPUs, each
with 32 GB of memory. The uniqueness of this platform is the enhancement of the NVLink
interconnect by using NVSwitches [32], which enable the connection of all 16 GPUs and higher
bandwidth.

The third, next generation platform of DGX-2 is NVIDIA DGX-A100 [148], which is able
to process massive scenes of sizes up to 320 GB in the shared memory of its 8 Ampere A100
GPUs, each with 40 GB of memory. This platform is equipped with NVLink connectivity
using NVSwitch [32] switches, which allow all 8 GPUs to be connected and therefore higher
bandwidth.

Similar machines can be found in the portfolio of many cloud providers and HPC centers.
The key hardware parameters of both platforms related to this benchmark are summarized
in Table 5.1.
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Table 5.1: Parameters of HW platforms used for validation of our proposed approach. Band-
width and latency is measured by the STREAM benchmark.

Server GPUs
Local memory
bandwidth &
latency

Remote memory
bandwidth &
latency

Total GPU
memory

Barbora 4x
V100

740 GB/s
4 µs

48 GB/s
7 µs 64 GB

DGX-2 16x
V100

790 GB/s
4 µs

138 GB/s
10 µs 512 GB

DGX-A100 8x
A100

1193 GB/s
4 µs

252 GB/s
10 µs 320 GB

5.2.3 Benchmark Scenes

We used four scenes for benchmarking. The first one was the Moana Island Scene [149]. It
was selected due to its uniqueness and wide acceptance by both industry and the research
community as a key production grade benchmark. The second one is based on the Museum
scene [150] and is extended by sculpture models [151] to increase the geometric complexity,
and by paintings [152] to increase the size and number of textures.

Finally, the remaining two scenes come from the recent open movies produced by the
animation studio of the Blender Institute, namely Agent 327: Operation Barbershop [153]
and Spring [154].

These scenes of different sizes were created through the surface subdivision functionality
and by increasing the texture resolution.

5.2.4 Performance for Massive Scenes

In this section, we evaluate the performance of the proposed method using two groups of
scenes:

• Group 1: Moana 38GB, Museum 41GB, Agent 37GB, and Spring 41GB are de-
signed to stress the Barbora GPU server with 64 GB of total GPU memory, see Fig-
ures 5.15,5.16,5.17,5.18, and

• Group 2: Moana 169GB, Museum 124GB, Agent 167GB, and Spring 137GB are de-
signed to stress the DGX-2 and the DGX-A100 server with 512 GB and 320GB of total
GPU memory, see Figures 5.19,5.20,5.21,5.221.

All scenes can be seen in Figures 5.11,5.12,5.13,5.14 and the key parameters of the second
group are shown in Table 5.3. All results are presented for 1 sample per pixel, but as Table 5.2

1We were not able to work with larger scenes because Cycles internally uses 32 bit integers for some key
data structures.
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Moana 169GB
5120 x 2560

DGX-2: 30 min 52 sec DGX-2: 3 min 1 sec DGX-2: 18.7 sec

100 samples1000 samples10000 samples

Figure 5.11: Moana Island Scene: the rendering time is for the different number of samples per
pixel measured on the NVIDIA DGX-2 machine with 16 GPUs. All the scene data, including
geometry, were partially distributed among the memories of all GPUs.

shows, these values can be linearly extrapolated to any number of samples per pixel. As the
topic of out-of-core algorithms for textures is very extensively covered in the literature, we use
scenes where both geometry and textures are larger than a single GPU memory and their ratio
differs from scene to scene. The goal is to show that our approach is general, and works for
textures as well as for geometry, which is the more challenging to distribute while maintaining
good performance of path tracing.

The first key observation is that for different scene sizes, a different chunk size must be
used to reach optimal performance, as presented in Section 3.4.2.2. For Group 1 the best
performance was achieved with 16MB chunks. For Group 2 the optimal chunk size is 64MB.

The results for Group 1 are shown in Figures 5.15,5.16,5.17,5.18. The following conclusions
can be made from the results:

• the performance of the Barbora server is almost identical to the performance of DGX-2
for the same amount of scene replication (up to 10%).

• DGX-2 is able to further replicate scene data up to 60%, which improves performance
by 2.8% only in the case of the Moana 38GB scene (for the other scenes the performance
is higher by only less than 1%7).

7Museum 41GB by 0.2%, Agent 37GB by 0,2%, and Spring 41GB by 0.7%.
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Museum 124GB
5120 x 2560

DGX-2: 21 min 49 sec DGX-2: 2 min 6 sec DGX-2: 12.6 sec

100 samples1000 samples10000 samples

Figure 5.12: Museum: the rendering time is for the different number of samples per pixel
measured on the NVIDIA DGX-2 machine with 16 GPUs. All the scene data, including
geometry, were partially distributed among the memories of all GPUs.

Agent 167GB
5120 x 2560

DGX-2: 56 min 18 sec DGX-2: 5 min 37 sec DGX-2: 33.8 sec

100 samples1000 samples10000 samples

Figure 5.13: Agent327: the rendering time is for the different number of samples per pixel
measured on the NVIDIA DGX-2 machine with 16 GPUs. All the scene data, including
geometry, were partially distributed among the memories of all GPUs.
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Spring 137GB
5120 x 2560

DGX-2: 83 min 36 sec DGX-2: 8 min 22 sec DGX-2: 50.1 sec

100 samples1000 samples10000 samples

Figure 5.14: Spring: the rendering time is for the different number of samples per pixel
measured on the NVIDIA DGX-2 machine with 16 GPUs. All the scene data, including
geometry, were partially distributed among the memories of all GPUs.

Table 5.2: The preprocessing time and final rendering time for the different number of samples
per pixel measured on 16 GPUs of the DGX-2 system. Chunk size is 64MB, replication ratio
is 10%. Access pattern and chunk distribution is calculated from first sample only, all other
samples uses the same chunk distribution.

Scene Moana Museum Agent Spring
169GB 124GB 167GB 137GB

Preprocessing

1spp pre-pass on GPUs 0.75 s 0.92 s 0.74 s 1.18 s
Algorithm runtime 0.06 s 0.01 s 0.01 s 0.01 s
Chunk redistribution 66.1 s 28.2 s 50.9 s 32.6 s

Rendering

1 sample 0.196 s 0.125 s 0.332 s 0.498 s
10 samples 1.94 s 1.25 s 3.37 s 5.01 s
100 samples 18.7 s 12.6 s 33.8 s 50.1 s
1000 samples 181 s 126 s 337 s 502 s
10000 samples 1852 s 1309 s 3378 s 5016 s
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Table 5.3: Parameters of the largest scenes used for performance evaluation of the presented
approach on DGX-2.

Scene Moana 169GB Museum 124GB Agent 167GB Spring 137GB

GPU memory needed
for path tracing 169 GB 124 GB 167 GB 137 GB

Image resolution 5120 × 2560 5120 × 2560 5120 × 2560 5120 × 2560
Geometry size 90 GB 69 GB 57 GB 48 GB
Triangles count 673 M 610 M 468 M 395 M
Total textures size 58 GB 46 GB 101 GB 74 GB
Number of textures 3421 22 118 96

Sizes of key data structures and percentage of total scene size

bvh_nodes 14 GB (8 %) 8 GB (6 %) 6 GB (4 %) 7 GB (5 %)
prim_tri_verts 30 GB (18 %) 27 GB (22 %) 21 GB (13 %) 18 GB (13 %)
prim_tri_index 3 GB (2 %) 2 GB (2 %) 2 GB (1 %) 2 GB (1 %)
svm_nodes 2 MB (<0.1 %) 40 kB (<0.1 %) 4 MB (<0.1 %) 5 MB (<0.1 %)
tex_image 58 GB (34 %) 46 GB (37 %) 101 GB (61 %) 74 GB (54 %)

Percentage of total memory access for key data structures for default bounces

bvh_nodes 80.3 % 66.8 % 52.8 % 62.8 %
prim_tri_verts 8.1 % 12.7 % 8.7 % 4.8 %
prim_tri_index 2.6 % 3.9 % 2.6 % 1.5 %
svm_nodes 2.1 % 3.8 % 19.3 % 19.2 %
tex_image 0.2 % 0.5 % 3.4 % 2.3 %

Average, across all GPUs, amount of replication per data structure for 64MB chunks and 16 GPUs. The values are for
0, 1, 2, 5, and 10 % of replicated chunks. For example, the bold value means that each GPU keeps on average 28 % of
the bvh_nodes in its local memory if 2 % of the scene is replicated.

bvh_nodes2 6, 17, 28, 50, 62 % 6, 16, 26, 61, 88 % 6, 25, 33, 44, 64 % 6, 20, 25, 31, 36 %
prim_tri_verts3 6, 6, 6, 10, 20 % 6, 7, 7, 7, 16 % 6, 7, 10, 14, 20 % 6, 7, 10, 16, 23 %
prim_tri_index4 6, 6, 6, 27, 48 % 6, 11, 11, 19, 57 % 6, 16, 19, 39, 52 % 6, 10, 17, 39, 46 %
svm_nodes5 6, 100, 100, 100, 100 % 6, 100, 100, 100, 100 % 6, 100, 100, 100, 100 % 6, 100, 100, 100, 100 %
tex_image6 6, 6, 6, 6, 6 % 6, 6, 7, 7, 7 % 6, 6, 6, 7, 10 % 6, 6, 6, 7, 11 %

• This means that for scenes of sizes approximately up to 45GB distributed over 4 GPUs,
the significantly less complex and cheaper GPU interconnect in the Barbora server is
sufficient.

• For the Museum, Agent, and Spring scenes 2% of scene replication attains optimal
performance. This holds for 4, 8 and 16 GPUs.

• Only the Moana scene needs higher amounts of replicated data, up to 25% for 16 GPUs.

• Scalability can be evaluated on DGX-2 for 4, 8, and 16 GPUs only. For the Moana,
Museum, Agent, and Spring scenes, for 5% scene replication, the parallel efficiencies,
going from 4 to 16 GPUs, are 82.7%, 97.1%, 97,9%, and 98.1%, respectively. In the case
of the Moana scene, a higher replication ratio is needed to improve scalability, e.g., for
25% data replication ratio the parallel efficiency is 94,4%.

The results for Group 2 are shown in Figure 5.19,5.20,5.21,5.22. One can see that:

• The performance is affected by selecting the right chunk size, particularly for the Moana
scene.
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Figure 5.15: Path tracing times for the Moana 38GB scene (Group 1) running on 4 GPUs of
the Barbora GPU server, 4,8, and 16 GPUs of the DGX-2 system and 4 and 8 GPUs of the
DGX-A100 system. The key observation is that the Barbora server with lower performing
GPU interconnect has the same performance as the DGX-2 system for 4 GPUs.
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Figure 5.16: Path tracing times for the Museum 41GB scene (Group 1) running on 4 GPUs
of the Barbora GPU server, 4,8, and 16 GPUs of the DGX-2 system and 4 and 8 GPUs of the
DGX-A100 system. The key observation is that the Barbora server with lower performing
GPU interconnect has the same performance as the DGX-2 system for 4 GPUs.
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Figure 5.17: Path tracing times for the Agent 37GB scene (Group 1) running on 4 GPUs of
the Barbora GPU server, 4,8, and 16 GPUs of the DGX-2 system and 4 and 8 GPUs of the
DGX-A100 system. The key observation is that the Barbora server with lower performing
GPU interconnect has the same performance as the DGX-2 system for 4 GPUs.
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Figure 5.18: Path tracing times for the Spring 41GB scene (Group 1) running on 4 GPUs of
the Barbora GPU server, 4,8, and 16 GPUs of the DGX-2 system and 4 and 8 GPUs of the
DGX-A100 system. The key observation is that the Barbora server with lower performing
GPU interconnect has the same performance as the DGX-2 system for 4 GPUs.
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Figure 5.19: Path tracing times for the Moana 169GB scene (Group 2) running on 8 and 16
GPUs of the DGX-2 system and 8 GPUs of the DGX-A100 system. The results show how
the performance is affected by changing the chunk size from 2 to 64 MB. The runtimes are
for 1 sample per pixel. 0% of replicated chunks represents the fully distributed scene.

• For 8 GPUs and the Moana, Agent, and Spring scenes, if the replication ratio is 10%,
the scene does not fit into the GPU shared memory anymore and chunks are swapped
between the GPU and CPU memory 8 which makes the rendering several times slower
depending on the number of chunks being moved back and forth. This is the point
at which our approach stops working, and therefore it is crucial to correctly select the
replication ratio to avoid this situation.

• For the Agent scene, 1% of scene replication gives optimal performance for both 8 and
16 GPUs. The Spring scenes needs only 0.1% for 8 GPUs and 0.25% for 16 GPUs. The
Museum scene needs 1% for 8 GPUs and 2% for 16 GPUs. Finally, the Moana scene
requires 2% for 8 GPUs and 5% for 16 GPUs.

• Scalability between 8 and 16 GPUs is good for all scenes. The parallel efficiencies are
93.8%, 98.8%, 98.6%, and 99.0% for the Moana, Museum, Agent, and Spring scenes,
respectively.

Another important feature of the proposed approach is that we analyze memory access
pattern only for one sample per pixel. Based on this pattern we distribute and replicate the
chunks only once, and then use this chunk placement for all remaining samples. The cost of
this preprocessing is shown in Table 5.2. We have verified that it is sufficient through a set

8This is the default behavior of the CUDA Unified Memory.
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Figure 5.20: Path tracing times for the Museum 124GB scene (Group 2) running on 8 and
16 GPUs of the DGX-2 system and 8 GPUs of the DGX-A100 system. The results show how
the performance is affected by changing the chunk size from 2 to 64 MB. The runtimes are
for 1 sample per pixel. 0% of replicated chunks represents the fully distributed scene.
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Figure 5.21: Path tracing times for the Agent 167GB scene (Group 2) running on 8 and 16
GPUs of the DGX-2 system and 8 GPUs of the DGX-A100 system. The results show how
the performance is affected by changing the chunk size from 2 to 64 MB. The runtimes are
for 1 sample per pixel. 0% of replicated chunks represents the fully distributed scene.
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Figure 5.22: Path tracing times for the Spring 137GB scene (Group 2) running on 8 and 16
GPUs of the DGX-2 system and 8 GPUs of the DGX-A100 system. The results show how
the performance is affected by changing the chunk size from 2 to 64 MB. The runtimes are
for 1 sample per pixel. 0% of replicated chunks represents the fully distributed scene.

of measurements using Group2 scenes for 1 to 10 000 samples. The results are in the same
table, where one can see that rendering times grow linearly with the number of samples.

5.2.5 GPU Accelerated Distributed rendering

Finally, for the Moana 169GB scene and for the Museum 124GB scene, we evaluated the per-
formance of Cycles on 256 GPUs (NVIDIA A100). This strong scalability test was performed
for 10 000 samples and for 5120x2560 resolution on the Karolina cluster (IT4Innovations)
using up to 32 accelerated nodes. The results of this experiments are shown in Figures 5.23,
5.24. In this test, we used distributed rendering over the samples listed in Section 3.3.3.2
and the load balancing Algorithm 1 from Section 3.3.3.3. We compared the data placement
Algorithm 2 using 5% duplication and 64MB chunks from Section 3.4.2.2.2 with the naive
round robin fashion presented in Section 3.4.2.1.1. It can be seen that our approach works
for all settings.
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Figure 5.23: Strong scalability for the Moana 169GB scene
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Chapter 6

Conclusion

6.1 Summary

In this dissertation, we presented a solution for tracking the paths of massive scenes on
multiple GPUs. Our approach analyzes the memory access pattern of the path tracer and
defines how the scene data should be distributed among GPUs with minimal performance loss.
The key concept is that those parts of the scene data that have the highest memory access
rate are replicated across all GPUs, as their distribution could have a significant negative
impact on performance. We proposed two methods. Both work at the memory management
level but with different granularity. Working at the memory management level means that we
only manage where (on which GPU) and how (replication or distribution) the data structures
are allocated, and that we do not care what is stored in the data structure. By different
granularity, we mean that (i) the first approach uses the same memory management rules
for the entire data structure; (ii) the second approach divides data structures into parts, and
we manage the placement and/or replication of each part separately. Since we only manage
memory allocations, there is no need to rework the path tracer data structures. This makes
our approach applicable to other GPU-based path tracers with minor changes to their code.

We extended Blender Cycles to support the OpenMP, Intel Xeon Phi, NVIDIA CUDA
technology with unified memory support, and Message Passing Interface (MPI). We called
this extension CyclesPhi [125]. We used CyclesPhi mainly to test new Blender functional-
ity in collaboration with the Blender Institute on open-movie projects (Cosmos Laundromat,
Agent 327: Operation Barbershop, The Daily Dweebs). Thanks to our collaboration, dozens
of bugs were found, and some important functionality was optimized. CyclesPhi has been pre-
sented at major conferences or workshops (IXPUG 2016-2018, SC 2016, Intel HPC Developer
Conference 2017, BCON 2018-2019, GTC2021, SIGGRAPH2021). Another extension is the
creation of a so-called bridge between the client computer and the supercomputer for remote
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visualization. Interactive elevated rendering can thus be used, for example, in 3D cinema, in
mobile phones or in virtual or augmented reality glasses.

All the tasks addressed in this thesis have led to the creation of a so-called visualization
service. This service has the ability to visualize data from different sectors of human activity
such as medicine. For example, we are able to create a 3D model from CT scans where we
are able to, for example, measure the size of tumors in the liver, necessary for subsequent
liver resection [155], the dimensions of the breathing tube in snoring problems, and locating
fractures in the human skull. Other areas where this service can be used are computations
in the areas of flow modeling or structural mechanics, where visualization of results such as
in Figure 1.15, where in some cases we need to display billions of triangles in real time, is
required. Last but not least, there is a need to meet the requirements of architects or artists
who value photorealistic visualizations.

6.2 Fulfillment of the goals

In this work, we have developed an out-of-core mechanism to enable rendering of large scenes
using multiple GPUs with unified memory in one of the most widely used freeware renderers,
Blender Cycles. This new out-of-core mechanism is used in the newly created Rendering-as-a-
service [156, 157, 158], which can be used by all current and future users of our infrastructure,
opening up new possibilities to explore, for example, computational science data from simu-
lations and cell behavior where data has been obtained from a microscope as well as to plan
surgical operations more easily using analysis of images from computed tomography. From
my point of view, all objectives have been met.

Author’s contribution to the content of this work:

• all development and implementation of CyclesPhi introduced in Section 3.3 was done
by me,

• the methods presented in Section 3.4 was designed and implemented by me and fine-
tuned by Lubomír Říha and Petr Strakoš,

• the changes in HEAPPE introduced in Section 4.1.1 and the creation of the merge
request were done by me and the changes, from the merge request, were integrated into
the main branch by Jan Křenek,

• all the implementation of BHEAPPE introduced in Section 4.1.1.1 was done by me,

• all the measurements presented in this work were performed and processed by me.

Finally, I would like to mention a comment by Francesco Siddi, who is the COO at Blender
and General Manager at Blender Studio, on the work of our team and mine as well: "IT4I has
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been instrumental for the research and development process during the production of several
Blender Open Movies. Having access to the Salomon cluster allowed for fast iterations during
scene/performance debugging, and it also allowed the pursuit of high-end visuals, pushing
rendering algorithms to the limits. The IT4I team has always supported our goals with great
transparency and in the most professional way."

6.3 Future directions

We plan to upgrade the existing version of CyclesPhi, which is based on Blender 2.83, to
Blender 3.0 with the new version of CyclesX. This version should already support the new
AMD accelerators using HIP [159]. HIP is a source language that can be compiled to run on
AMD platform as well as the NVIDIA platform. HIP should also support working with unified
memory, which AMD refers to as HMM (Heterogeneous Memory Management), and our future
goal is to apply our new memory analysis approach to AMD accelerators. We also plan to
support other platforms such as POWER9 with NVIDIA accelerators, where each POWER9
CPU is equipped with NVLink 2.0. With such platforms, our approach can be extended to
include an efficient out-of-core mechanism that uses CPU memory for infrequently accessed
data.
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