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Abstrakt

Geometrie a topologie se stávají silnějšími a dominantnějšími v analýze dat díky svým vy-
nikajícím vlastnostem. Nedávno se objevila jako slibná výzkumná oblast, známá jako topolo-
gická analýza dat (TDA), pro moderní informatiku. V posledních letech je algoritmus Mapper,
vynikající představitel TDA, stále více doplněn o stabilizovaný teoretický základ a praktické
aplikace a rozmanité, intuitivní a uživatelsky přívětivé implementace. Z teoretického hlediska
je algoritmus Mapper stále fuzzy shlukovací algoritmus se schopností vizualizace extrahovat
souhrn tvaru dat. Jeho výsledky jsou však stále velmi citlivé na volbu parametrů, včetně rozli-
šení a funkce. Proto je potřeba výrazně snížit závislost na jeho parametrech. Tato myšlenka je
vzrušující a lze ji vyřešit díky vynikajícím vlastnostem fuzzy shlukování. Schopnost shlukování
Mapperu je stále silnější díky podpoře známých technik. Proto se očekává, že tato kombinace
užitečně a účinně vyřeší některé problémy, se kterými se setkáváme v mnoha oblastech.

Hlavním výzkumným cílem této práce je přiblížit TDA pomocí fuzzy teorie a vytvořit mezi
nimi vzájemné vztahy z hlediska shlukování. Explicitně řečeno, algoritmus Mapper předsta-
vuje TDA a algoritmus Fuzzy C-Means (FCM) představuje fuzzy teorii. Jsou kombinovány, aby
podpořily své výhody a překonaly své nevýhody. Na jedné straně algoritmus FCM pomáhá al-
goritmu Mapper zjednodušit výběr parametrů pro získání nejinformativnější prezentace a je
ještě efektivnější při shlukování dat. Na druhé straně je algoritmus FCM vybaven vynikajícími
vlastnostmi algoritmu Mapper pro zjednodušení a vizualizaci dat pomocí kvalitativní analýzy.
Tato práce se zaměřuje na dobývání a dosažení následujících cílů: (1) Shrnutí teoretických zá-
kladů a praktických aplikací Mapperova algoritmu v toku literatury s vylepšenými verzemi
a různými implementacemi. (2) Optimalizace volby pokrytí algoritmu Mapper ve směru au-
tomatického rozdělení rozsahu filtru do nepravidelných intervalů s náhodně se překrývajícím
procentem pomocí algoritmu FCM. (3) Vytvoření nové metody pro těžbu dat, která může vyka-
zovat stejnou schopnost shlukování jako algoritmus FCM a odhalit některé smysluplné vztahy
vizualizací globálního tvaru dat poskytovaných algoritmem Mapper.

Klíčová slova: Topologická Analýza Dat, Datový Tvar, Fuzzy Shlukování, Mapper Algoritmus,
Fuzzy Mapper Algoritmus, Tvar Fuzzy C-Means Algoritmus



Abstract

Geometry and topology are becoming more powerful and dominant in data analysis because of
their outstanding characteristics. It has emerged recently as a promising research area, known
as Topological Data Analysis (TDA), for modern computer science. In recent years, the Map-
per algorithm, an outstanding TDA representative, is increasingly completed with a stabilized
theoretical foundation and practical applications and diverse, intuitive, user-friendly imple-
mentations. From a theoretical perspective, the Mapper algorithm is still a fuzzy clustering
algorithm, with a visualization capability to extract the shape summary of data. However, its
outcomes are still very sensitive to the parameter choice, including resolution and function.
Therefore, there is a need to reduce the dependence on its parameters significantly. This idea
is exciting and can be solved thanks to the outstanding characteristics of fuzzy clustering. The
Mapper clustering ability is getting more potent by the support from well-known techniques.
Therefore, this combination is expected to usefully and powerfully solve some problems en-
countered in many fields.

The main research goal of this thesis is to approach TDA by fuzzy theory to create the inter-
relationships between them in terms of clustering. Explicitly speaking, the Mapper algorithm
represents TDA, and the Fuzzy C-Means (FCM) algorithm represents fuzzy theory. They are
combined to promote their advantages and overcome their disadvantages. On the one hand,
the FCM algorithm helps the Mapper algorithm simplify the choice of parameters to obtain
the most informative presentation and is even more efficient in data clustering. On the other
hand, the FCM algorithm is equipped with the outstanding features of the Mapper algorithm
in simplifying and visualizing data with qualitative analysis. This thesis focuses on conquering
and achieving the following aims: (1) Summarizing the theoretical foundations and practical
applications of the Mapper algorithm in the flow of literature with improved versions and vari-
ous implementations. (2) Optimizing the cover choice of the Mapper algorithm in the direction
of dividing the filter range automatically into irregular intervals with a random overlapping
percentage by using the FCM algorithm. (3) Constructing a novel method for mining data
that can exhibit the same clustering ability as the FCM algorithm and reveal some meaningful
relationships by visualizing the global shape of data supplied by the Mapper algorithm.

Keywords: Topological Data Analysis, Data Shape, Fuzzy Clustering, Mapper Algorithm, Fuzzy
Mapper Algorithm, Shape Fuzzy C-Means Algorithm



Contents

List of symbols and abbreviations viii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Topological Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Simplicial Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Cover and Nerve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Fuzzy C-Means Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Mapper Algorithm 12

2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Data Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Available Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Fuzzy Mapper Algorithm 38

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Unit Circle Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Reaven and Miller Diabetes Dataset . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 NKI Breast Cancer Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



4 Shape FCM Algorithm 56

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Unit Circle Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Two Concentric Circles Dataset with Noise . . . . . . . . . . . . . . . . . . 71
4.3.3 3D Trefoil Knot Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.4 Reaven and Miller Diabetes Dataset . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Conclusion 83

5.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

References 85

Appendix 108

A Publications by Author 108

B Publications by Author Which Are Currently Under Review 109

C Summary of the Author’s Academic Activities During the Doctoral Course 110

vii



List of symbols and abbreviations

TDA – Topological Data Analysis
FCM – Fuzzy C-Means
FM – Fuzzy Mapper
KDE – Kernel Density Estimation
SVD – Singular Value Decomposition
PCA – Principal Component Analysis
t-SNE – t-Distributed Stochastic Neighbor Embedding
UMAP – Uniform Manifold Approximation and Projection
MM – Multiscale Mapper
PM – Parallel Mapper
MOG – Mapper on Graph
GNU – GNU’s Not Unix!
BM – Ball Mapper
MIT – Massachusetts Institute of Technology
SFCM – Shape Fuzzy C-Means
EM – Ensemble Mapper
DMG – Deep Graph Mapper
GNN – Graph Neural Networks
TTM – Two-Tier Mapper
MIMA – Mapper-Induced Manifold Alignment
SSMA – Semi-Supervised Manifold Alignment
MBC – Mapper Based Classifier
AE – Autoencoder
DBSCAN – Density-Based Spatial Clustering of Applications with Noise

viii



List of Figures

1 The basic simplices with dimensions from 0 to 4 from left to right. . . . . . . . . . 6
2 The different cover methods on the same point cloud with the noisy circle structure. 7
3 The nerve of an open cover on a sampled point cloud with the noisy circle struc-

ture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 The schematic diagram of the Mapper algorithm. . . . . . . . . . . . . . . . . . . . 15
5 The implementation of the Mapper algorithm on a point cloud with a noisy P

structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6 The implementation of the Mapper algorithm on a point cloud has a noisy P

structure when changing the filter function compared to Figure 5. . . . . . . . . . 17
7 The implementation of the Mapper algorithm on a point cloud has a noisy P

structure when changing the resolution parameters compared to Figure 5 . . . . 18
8 The implementation of the MM algorithm on a point cloud with a noisy P structure. 18
9 The implementation of the PM algorithm on a point cloud with a noisy P structure. 19
10 The implementation of the MOG algorithm on a graph with a noisy P structure. . 20
11 The implementation of the BM algorithm on a point cloud with a noisy P structure. 21
12 The implementation of the FM algorithm on a point cloud with a noisy P structure. 22
13 The implementation of the SFCM algorithm on a point cloud with a noisy P

structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
14 The implementation of the EM algorithm on a point cloud with a noisy P structure. 27
15 The illustration of the Mapper algorithm on a sampled point cloud with a noisy

P structure for different resolution parameters. . . . . . . . . . . . . . . . . . . . . 40
16 The illustration of algorithms on a sampled point cloud with a noisy P structure. 42
17 Two covering methods are illustrated in the original paper for the Mapper algo-

rithm with two real-valued filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
18 The illustration for two forms of the FM algorithm. . . . . . . . . . . . . . . . . . 45
19 The visualization of the Unit Circle dataset. . . . . . . . . . . . . . . . . . . . . . . 47
20 The outputs for the Unit Circle dataset. . . . . . . . . . . . . . . . . . . . . . . . . 48
21 The three-dimensional visualization of the Reaven and Miller diabetes dataset. . 50
22 The outputs for the Reaven and Miller Diabetes dataset. . . . . . . . . . . . . . . . 50
23 The networking visualization has a structure shaped like a horizontal letter Y

along with several separate components. . . . . . . . . . . . . . . . . . . . . . . . 52
24 The outputs for the NKI Breast Cancer dataset. . . . . . . . . . . . . . . . . . . . . 53
25 The illustration of algorithms on a sampled point cloud with a noisy P structure. 60
26 The visualization of the Unit Circle dataset. . . . . . . . . . . . . . . . . . . . . . . 69
27 The outputs for the Unit Circle dataset. . . . . . . . . . . . . . . . . . . . . . . . . 70
28 The visualization of the Two Concentric Circles dataset with Noise. . . . . . . . . 71
29 The outputs for the Two Concentric Circles dataset with Noise. . . . . . . . . . . 72

ix



30 The visualization of the 3D Trefoil Knot dataset. . . . . . . . . . . . . . . . . . . . 74
31 The outputs for the 3D Trefoil Knot dataset . . . . . . . . . . . . . . . . . . . . . . 74
32 The three-dimensional visualization of the Reaven and Miller diabetes dataset. . 76
33 The outputs for the Reaven and Miller Diabetes dataset. . . . . . . . . . . . . . . . 78
34 The three-dimensional visualization of the Cat dataset. . . . . . . . . . . . . . . . 79
35 The three-dimensional visualization of the Horse dataset. . . . . . . . . . . . . . . 80
36 The three-dimensional visualization of the Lion dataset. . . . . . . . . . . . . . . . 80
37 The outputs for the animal datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 80
38 The outputs for the 3D Road Network and Covertype datasets. . . . . . . . . . . 81

x



List of Tables

1 The description of the FCM algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 The description of the Mapper algorithm. . . . . . . . . . . . . . . . . . . . . . . . 13
3 The overview of the popular, accessible, and available technical toolkits that use

the Mapper algorithm as the core of their operations. . . . . . . . . . . . . . . . . 31
4 The description of the FM algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 The comparison between algorithms in the corresponding steps. . . . . . . . . . . 43
6 The parameter settings for the Unit Circle dataset. . . . . . . . . . . . . . . . . . . 47
7 The experimental results for the Unit Circle dataset. . . . . . . . . . . . . . . . . . 48
8 The silhouette coefficient scores for the Unit Circle dataset. . . . . . . . . . . . . . 49
9 The parameter settings for the Reaven and Miller Diabetes dataset. . . . . . . . . 50
10 The experimental results for the Reaven and Miller Diabetes dataset. . . . . . . . 51
11 The silhouette coefficient scores for the Reaven and Miller Diabetes dataset. . . . 52
12 The parameter settings for the NKI Breast Cancer dataset. . . . . . . . . . . . . . . 53
13 The experimental results for the NKI Breast Cancer dataset. . . . . . . . . . . . . 54
14 The silhouette coefficient scores for the NKI Breast Cancer dataset. . . . . . . . . 54
15 The comparison between algorithms in the corresponding steps. . . . . . . . . . . 58
16 The description of the SFCM algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 59
17 The comparison of properties between related algorithms. . . . . . . . . . . . . . 65
18 The parameter settings for the Unit Circle dataset. . . . . . . . . . . . . . . . . . . 69
19 The evaluation results for the Unit Circle dataset. . . . . . . . . . . . . . . . . . . . 70
20 The parameter settings for the Two Concentric Circles dataset with Noise. . . . . 72
21 The evaluation results for the Two Concentric Circles dataset with Noise. . . . . . 73
22 The parameter settings for the 3D Trefoil Knot dataset. . . . . . . . . . . . . . . . 75
23 The evaluation results for the 3D Trefoil Knot dataset. . . . . . . . . . . . . . . . . 76
24 The parameter settings for the Reaven and Miller Diabetes dataset. . . . . . . . . 77
25 The evaluation results for the Reaven and Miller Diabetes dataset. . . . . . . . . . 78
26 The parameter settings and run-time report for the experiments on the large

high-dimensional datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xi



1 Introduction

Geometry and topology have emerged recently as a new impetus for modern computer
science [1]. These frameworks are considered very natural techniques for studying massive
and high-dimensional data. While geometry studies distance functions, topology examines
shape invariance under any continuous transformation. The idea of combining two classical
mathematical fields in data analysis comes from the point of view that point clouds are finite
patterns derived from a geometric object with noise [2]. Therefore, efficient tools from different
branches of geometry and topology are mobilized to study cloud datasets to discover unique
properties or relationships from their topological structures. If geometry is used primarily as
quantitative mathematics to focus on local networks, topology effectively provides a qualitative
mathematical approach to a global data network. Geometric and topological methods allow it
to extract a summarized or compressed representation for all the features of highly complex
data to explore effectively and quickly specific patterns and relationships in that data [3].

Overall, the contributions of Chapter 1 can be summarized as follows:

[C1.1] Introducing TDA briefly to clarify the motivations and goals of this thesis in the con-
text of approaching TDA by fuzzy theory.

[C1.2] Presenting concisely the fundamental theory required for TDA and fuzzy clustering
to understand the expertise provided in the following chapters.

Moreover, the rest of this chapter is organized as follows. Section 1.1 introduces TDA and its
outstanding representative, the Mapper algorithm. Section 1.2 deals with the motivations and
goals of this thesis when approaching TDA by fuzzy theory. Section 1.3 presents the thesis
structure based on its outlined goals. Section 1.4 briefly recalls the fundamental theory re-
quired for TDA and fuzzy clustering to understand the following chapters. Finally, Section 1.5
summarizes and discusses the main points presented in this chapter.

1.1 Topological Data Analysis

TDA is a low-lying interference area between algebraic topology, computational geometry,
statistics, computer science, data analysis, and other related fields [4, 5]. It marks a significant
turning point in the research transformation from theory to the application of geometry and
topology [6, 7]. It aims to use their characteristics to construct techniques for handling and
analyzing high-dimensional data. In other words, TDA can be seen as a method to gain in-
sight into point clouds as a geometric object and extract meaningful information based on their
“shape”. In this area, the successful strategy stems from a straightforward but meaningful slo-
gan “Data has shape, shape has meaning, meaning drives value” [8]. TDA focuses on data
shape with local and global structures at various scales. The shape is often considered the focal
point that helps analysts select appropriate methods for analyzing data. It is also emphasized

1



by topology as the most essential and meaningful data characteristics [9]. TDA has proven to
be very effective against noisy high-dimensional data. Furthermore, although this method can
be sensitive to the effects of incomplete data, it is still effective when distinguishing between
datasets that have different “shapes” [10].

TDA has developed enormously in the last decade with the continuous growth of two ma-
jor fundamental streams, those focusing on persistent homology [11, 12] and the Mapper al-
gorithm [13]. While persistent homology is robust concerning small perturbations in data and
provides a compact representation for studying its qualitative features with complex structure
[4], the Mapper algorithm can summarize meaningful insights and valuable topological infor-
mation from the high-dimensional point cloud [14]. This algorithm was first published in 2007
[13], with inspiration from spatial clustering based on the classical discrete Morse theory [15,
16], through functions defined based on all data points. However, it attracted great attention
among the scientific community with the well-known work of Lum et al. published in 2013
[17], which demonstrated this approach’s effectiveness and robustness in many real-life areas.
Its development was motivated by the impossibility of visualizing and recognizing the struc-
ture of massive datasets, even when working with low-dimensional projections. This algorithm
is designed to transform massive high-dimensional datasets into visual simplicial complexes
with far fewer vertices to capture useful geometric and topological information obscured by
their immense size, with various resolutions. Moreover, it is firmly constructed on the data’s
topological characteristics, including independence in coordinates, invariance to deformations,
and compressed visualization with meaningful and helpful qualification [1]. It skillfully and
efficiently exploits these characteristics to understand the topological structure and data shape.

The Mapper algorithm can be considered an advantageous method in clustering, reduc-
ing dimensionality, and making visualization possible to gain insight into the data shape. Its
applications in science and life often focus on the following main aspects:

(1) Clustering data with the ability to discover exciting and meaningful structures that tra-
ditional techniques cannot detect.

(2) Selecting features that best characterize the data and efficiently explain the model.

(3) Visualizing the data shape effectively using a compressed graph representation through
the customizable filter and resolutions.

The success of this method is reflected in many scientific areas, especially biomedicine [18, 19].
The Mapper algorithm’s two promising areas currently being explored are the brain with neu-
roscience [20, 21, 22, 23] and gene structure in pathology [24, 25, 26, 27]. In addition, this algo-
rithm is also rapidly becoming an important focus and potential framework for deep learning
and artificial intelligence [28, 14, 29].

2



1.2 Motivation and Goal

The Mapper algorithm creates a topological approximation for a metric space via a contin-
uous function to a low-dimensional space. The continuous function is mainly used to decom-
pose data into overlapping sets, and a clustering algorithm is then carried out in each of them
to construct clusters. After that, considering each cluster as a node, the graph is generated by
connecting clusters in neighboring sets by an edge if their overlap is nonempty. This algorithm
can generally return an abstract simplicial complex that is considered an easy and convenient
method to visualize a topological summary of data. The original Mapper’s resolution parame-
ters include the length of small intervals and the overlapping percentage between consecutive
intervals. After that, the length of intervals can be replaced by the number of intervals because
of their negative correlations. When the overlapping percentage is fixed, the shorter the length
of small intervals is, the larger the number of intervals is, and vice versa. The cover choice is
very sensitive to the algorithm output. The cover is well-chosen if the output is the most infor-
mative, depending on the user’s perspective. Covering the filter range by regular intervals and
the same overlapping percentage is one weak point in the cover choice. This choice inadver-
tently causes unnatural phenomena in the covering method, which can be improved by using a
clustering process. However, based on the overlap of clusters, there are two types of clustering,
namely exclusive and overlapping. In exclusive clustering, each object belongs to exactly one
cluster. In contrast, each object can belong to two or more clusters in overlapping clustering.
Because of the flexibility in clustering and the compatibility in overlapping, the overlapping
approach is a promising bright candidate to help the Mapper algorithm obtain a well-chosen
cover more naturally. With this improvement, the filter range is covered by intervals that are
not necessarily regular and the overlapping percentage that is not necessarily equal.

From a theoretical perspective, the Mapper algorithm is still a fuzzy clustering algorithm,
with a visualization capability to extract the shape summary of data. However, its results are
still very sensitive to the choice of parameters such as resolution and function. Therefore, there
exists a need to reduce the dependence on parameters for this algorithm significantly. This
problem is interesting and can be solved thanks to the outstanding characteristics of fuzzy
clustering. On the one hand, the clustering ability of the Mapper algorithm is getting more
powerful by the support from well-known techniques of fuzzy clustering. On the other hand,
fuzzy clustering is enhanced by outstanding features in simplifying and visualizing data with
qualitative analysis. This combination is expected to usefully and powerfully solve some prob-
lems encountered in many fields, especially in bioinformatics and neuroscience.

In general, the main research goal of the thesis is to approach TDA by fuzzy theory to create
the interrelationships between them in terms of clustering. Explicitly speaking, the Mapper
algorithm represents TDA, and the FCM algorithm represents fuzzy theory. They are combined
to promote their advantages and overcome their disadvantages. On the one hand, the FCM
algorithm helps the Mapper algorithm simplify the choice of parameters to obtain the most
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informative presentation and is even more efficient in data clustering. On the other hand, the
FCM algorithm is equipped with the Mapper algorithm’s outstanding features in simplifying
and visualizing data with qualitative analysis. In summary, the research goal of this study is
elucidated through the following aims:

[A1] Aim 1: Summarizing the theoretical foundations and practical applications of the Map-
per algorithm in the flow of literature with improved versions and various implemen-
tations.

[A2] Aim 2: Optimizing the cover choice of the Mapper algorithm in the direction of divid-
ing the filter range automatically into irregular intervals with a random overlapping
percentage by using the FCM algorithm.

[A3] Aim 3: Constructing a novel method for mining data that cannot only exhibit the same
clustering ability as the FCM algorithm, but also reveal some meaningful relationships
through visualizing the global shape of data supplied by the Mapper algorithm.

1.3 Thesis Structure

Based on the motivations and goals presented in the previous section, the thesis is struc-
tured into five chapters, specifically as follows:

[C1] Chapter 1, titled “Introduction”, presents the motivations and goals to achieve the the-
sis. Moreover, it introduces some background on TDA and fuzzy clustering for under-
standing in the following chapters.

[C2] Chapter 2, titled “Mapper Algorithm”, reviews the algorithm with specific descrip-
tions and intuitive, easy-to-understand illustrations. Its variations and applications are
also presented over time systematically and thoroughly. At the same time, the pop-
ular available packages that activate this algorithm as the core of their operations are
also briefly introduced. Furthermore, its current limitations are also discussed to guide
future research and development.

[C3] Chapter 3, titled “Fuzzy Mapper Algorithm”, proposes a novel algorithm based on the
foundation of the Mapper algorithm to solve the problem of automating in dividing
cover intervals with an arbitrary overlapping percentage. Three real-world datasets,
including Unit Circle, Reaven and Miller Diabetes, and NKI Breast Cancer, are imple-
mented to demonstrate this algorithm’s effectiveness. The experimental results are an-
alyzed and compared with the original method, the Mapper algorithm, through the
output visualization and the silhouette coefficient score in the clustering evaluation.

[C4] Chapter 4, titled “Shape FCM Algorithm”, proposes another novel algorithm constructed
based on the FCM algorithm with outstanding features of the Mapper algorithm. This
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algorithm can exhibit the same clustering ability as the FCM algorithm and reveal some
relationships by visualizing the global shape of data supplied by the Mapper algorithm.
Four real-world datasets, including Unit Circle, Two Concentric Circles with Noise, 3D
Trefoil Knot, and Reaven & Miller Diabetes, are implemented to demonstrate this algo-
rithm’s effectiveness. The experimental performances are analyzed and compared with
the original method, the Mapper algorithm, and the fuzzy set-based improved method,
the FM algorithm. The comparison is conducted concerning output visualization in the
topological sense and clustering stability.

[C5] Chapter 5, titled “Conclusion”, summarizes and evaluates the main thesis contributions
based on the objectives identified at the outset. Thenceforth, the conclusions are drawn
as a fulcrum for future research orientation and development.

1.4 Preliminaries

This section begins by briefly streamlining the theoretical frameworks in preparation for
further study of the Mapper algorithm. Refer to popular classical textbooks on Algebraic Topol-
ogy [30, 31], Computational Topology [11, 32], and Data Mining [33, 34] to fully understand
these fundamentals.

1.4.1 Simplicial Complex

Definition 1 ([6]) Let X be the set of k + 1 points u0, u1, . . . , uk in the Euclidean space Rn.

(a) A point x is called an affine combination of X if x =

kq
i=0

⁄iui with the real numbers ⁄i

satisfy
kq

i=0
⁄i = 1.

(b) The set of all affine combinations of X is called its affine hull.

(c) An affine combination x of X is called its convex combination if the real numbers ⁄i are all
non-negative.

(d) The set of all convex combinations of X is called its convex hull.

(e) The system of points u0, u1, . . . , uk is called affinely independent if the system of vectors
u1 ≠ u0, u2 ≠ u0, . . . , uk ≠ u0 are linearly independent.

Definition 2 ([6]) Let X be the set of k + 1 affinely independent points u0, u1, . . . , uk in the
Euclidean space Rn.

(a) The convex hull of X is called a k-simplex or simplex with dimension k, spanned by X

and denoted as ‡ = [u0, u1, . . . , uk].

(b) Each element of X is called a vertex of the simplex ‡.
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(a) Point

u0

(b) Segment

u0

u1

(c) Triangle

u0

u1

u2

(d) Tetrahedron

u0

u1

u2

u3

Figure 1: The basic simplices with dimensions from 0 to 4 from left to right.

(c) The simplex spanned by a subset of X is called a face of the simplex ‡.

Figure 1 illustrates the basic simplices with dimensions from 0 to 4: 0-simplex is point,
1-simplex is segment, 2-simplex is triangle, and 3-simplex is tetrahedron.

Definition 3 ([6]) Let K = {S1, S2, . . . , Sn} be a finite collection of k simplices S1, S2, . . . , Sn in
the Euclidean space Rn.

(a) The collection K is a geometric simplicial complex if the following two conditions are satis-
fied:

• Every face of the simplex Si is a simplex of K,

• Two arbitrary simplices Si and Sj , either intersect to form the empty set or a com-
mon face.

(b) The dimension of the simplicial complex K is the maximum dimension of all its simplices
S1, S2, . . . , Sn.

(c) The union |K| =

nt
i=1

Si of all simplices S1, S2, . . . , Sn with the induced topology from Rn

forms the underlying space of the simplicial complex K.

Definition 4 ([6]) Let V be a non-empty finite set and K is a collection of finite non-empty
subsets of V .

(a) The collection K is an abstract simplicial complex if for all set ‡ œ K, every non-empty
subset of ‡ belongs to K.

(b) Each element ‡ of K is its simplex and the cardinality of ‡ minus 1 is the dimension of the
simplex ‡.

(c) The dimension of the simplicial complex K is the maximum dimension of all its simplices
‡ œ K.
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(a)
Point cloud

(b)
By open balls

(c)
By open sets

(d)
By preimage

Figure 2: The different cover methods on the same point cloud with the noisy circle structure.

The geometric form and abstract form of the simplicial complex have a close and unifying
relationship. The abstract form K can be constructed from geometric form K by focusing only
on the set of vertices of all its simplices and ignoring their geometric shapes. In this case, K

is called a vertex scheme of K. In contrast, the geometric form is always associated with an
abstract form K. Specifically, it is possible to construct a geometric simplicial complex K in
the Euclidean space R2d+1 from abstract simplicial complex K with dimension d [32, 6]. In
this case, K is called a geometric realization of K. It can be remarked that an abstract simplicial
complex can be seen as a topological space and a geometric complex can be seen as a geometric
realization of the underlying space [35, 36].

1.4.2 Cover and Nerve

Definition 5 ([6]) For the topological space X , a collection U = (Ui)iœI of open subsets Ui ™ X

is called an open cover of X if the condition X =
t

iœI
Ui is satisfied.

Without special modification, all covers always contain a finite number of elements. Figure
2 illustrates three cover methods on a particular point cloud, including covering by open balls,
arbitrary open sets, and the preimage of an available open cover on range through a continuous
function.

Definition 6 ([6]) Let X be a topological space, f : X æ Rn be a continuous function, and
U = (Ui)iœI be an open cover of the Euclidean space Rn.

(a) The collection of open sets f≠1
(U) =

!
f≠1

(Ui)
"

iœI is called a pull-back cover of X induced
by the pair (f, U).

(b) The collection of all connected components obtained after decomposing each element
f≠1

(Ui) of the pull-back cover f≠1
(U) is called a refined pull-back cover.
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(a)
Point cloud

(b)
Open cover

(c)
Nerve of cover

Figure 3: The nerve of an open cover on a sampled point cloud with the noisy circle structure.

Definition 7 ([6]) Let U = (Ui)iœI be an open cover of a topological space X . The nerve of U is
an abstract simplicial complex N (U) with the vertex set U that is determined as follows:

N (U) =

Y
]

[{Ui0 , Ui1 , . . . , Uik} :

ik‹

j=i0

Ui ”= ÿ

Z
^

\ (1)

In the topological sense, a nerve is considered not only a discrete summary that captures
exciting and valuable features obtained from the cover, but also ensures the preservation of
the essential cover characteristics. Figure 3 illustrates a nerve of an open cover on a particular
point cloud with the noisy circle structure.

The usefulness of the nerve in preserving the essential topological properties of the coat-
ing is confirmed against a robust theoretical framework, the Nerve theorem, as follows: If U =

(Ui)iœI is an open cover of the subspace X ™ Rn such that the intersection of any sub-collection
of the Ui’s is either empty or contractible, the nerve N (U) and the subspace X are homotopy
equivalent [6].

A cover satisfying the assumptions of the Nerve theorem is sometimes called a good cover.
This theorem holds a crucial foundational role in computational topology and geometric infer-
ence [6]. It supplies an efficient method for encoding the homotopy type of continuous spaces
into a simplicial complex with abstract combinatorial structures that describes the intersection
pattern of a good cover [36]. Therefore, the topological characteristics of a continuous space
can be studied on the nerve of its good cover. This idea is beneficial and perfectly suitable for
efficiently designing data structures and algorithms [37].

1.4.3 Fuzzy C-Means Algorithm

Clustering is a process of dividing a set of objects into different groups, called clusters, so
that the objects in the same group are more similar in some sense to each other than to those
in other groups [34]. There are two types of clustering, exclusive clustering, and overlapping
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Table 1: The description of the FCM algorithm.

Input Dataset X with finite elements.

Parameters

– Number of clusters C,
– Fuzzification exponent m,
– Termination criteria: Á œ (0; 1) or kmax.

Method

1: k = 0.
2: Initializing the fuzzy partition matrix U (0).
3: repeat

3.1: Calculating the cluster centroid matrix C
(k)

= (vj)1◊C by using the
following formula:

’j = 1, 2, . . . , C, v(k)
j =

nq
i=1

(uij)
m xi

nq
i=1

(uij)
m

.

3.2: Updating the fuzzy partition matrix U (k)
= (uij)n◊C by using the

following formula:

’i = 1, 2, . . . , n, ’j = 1, 2, . . . , C, u(k)
ij =

1

Cq

k=1

1
Îxi≠vjÎ
Îxi≠vkÎ

2 2
m≠1

.

3.3: k = k + 1.
4: until max

i,j

Ó---u(k+1)
ij ≠ u(k)

ij

---
Ô

< Á or k = kmax.

Output
– Cluster centroid matrix C = [vj ],
– Fuzzy partition matrix U = [uij ].

clustering. In exclusive clustering, each object belongs to exactly one cluster. In overlapping
clustering, each object can belong to two or more clusters depending on the membership func-
tion. Membership degree, assigned to each object, indicates the degree to which this object
belongs to each cluster. The fuzzy set concept introduced by Zadeh in 1965 [38] is considered
the inspiration for overlapping clustering. Fuzzy set theory has become an increasingly useful
tool to describe situations in which the data are imprecise or vague, such as linguistics [39, 40],
decision-making [41, 42], web mining [43, 44], frequent itemset mining [45, 46], bioinformatics
[47, 48, 49], and so on.

In many situations, overlapping clustering is more natural than exclusive clustering. This
method randomly separates data points into clusters with different overlapping percentages.
It is pretty compatible with the cover choice step for the filter range in the Mapper algorithm.
According to the topological meaning, these clusters serve as a cover of the point cloud space.

While the K-Means algorithm, also referred to by Hard C-Means, is a popular method
for exclusive clustering, then the FCM algorithm is an essential representative for overlapping
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clustering. This algorithm was first introduced in 1981 [50] by Bezdek, based on improving on
earlier clustering method in the excellent monograph produced in 1973 [51] by Dunn.

Given a dataset with finite elements X = {x1, x2, . . . , xn}, the FCM algorithm organizes
data points into the C clusters characterized by some centroids C = {v1, v2, . . . , vC}. The main
goal of this algorithm is to iteratively optimize (minimize) the following objective function:

nÿ

i=1

Cÿ

j=1
(uij)

m
Îxi ≠ vjÎ

2 , (2)

where the membership degree uij of the point xi in the cluster j is constrained in the following
way:

’i = 1, 2, . . . , n, ’j = 1, 2, . . . , C, uij œ [0; 1] , (3)

and

’i = 1, 2, . . . , n,
Cÿ

j=1
uij = 1. (4)

In Equation 2, the fuzzification exponent m is any real number greater than 1, and Î.Î is the
Euclidean metric expressing dissimilarity between arbitrary points and a given centroid.

The fuzzification exponent m plays an essential role in this algorithm. The best choice for
this exponent is made experimentally [52]. For most data, the value of m is indicated to be the
best lies within [1.5; 2.5], the best deal is obtained by evaluating some cluster validity indices
[53]. Based on empirical studies, most researchers have assigned this parameter to a fixed
value, m = 2.0. In 2008, Pedrycz and Oliveira [54] gave experimental evidence behind the
selection of the fuzzification exponent at this value. The optimal values of the fuzzification
exponent are typically lower than the commonly used value of 2.0. However, in this study, the
value of the fuzzification exponent m is set as a constant 2.0.

The fuzzy partition is carried out through iterative minimization of the objective function
through updating the cluster centroids vj and the partition matrix, generated by membership
degrees, uij according to the following formulas:

’j = 1, 2, . . . , C, vj =

nq
i=1

(uij)
m xi

nq
i=1

(uij)
m

, (5)

and
’i = 1, 2, . . . , n, ’j = 1, 2, . . . , C, uij =

1

Cq

k=1

1
Îxi≠vjÎ
Îxi≠vkÎ

2 2
m≠1

. (6)

The iterative algorithm terminates after k iterations when one of the following two termi-
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nation conditions have been satisfied:

max
i,j

Ó---u(k+1)
ij ≠ u(k)

ij

---
Ô

< Á œ (0; 1) , (7)

or
k = kmax, (8)

where Á is a given positive real number in the unit interval and kmax is a given positive inte-
ger corresponding to the number of iterations. The FCM algorithm is described clearly and
precisely in Table 1.

1.5 Discussion

By introducing basic contours on TDA literature, this chapter has clarified the motivations
of the thesis in using fuzzy theory to approach TDA. Its goals have been explicitly determined
for studying in the following chapters based on these orientations. This thesis aims are as-
sociated with the detailed contents of its three major chapters. In addition, this chapter also
presents concisely the fundamental theory required for TDA and fuzzy clustering to serve as
the framework for understanding the expertise offered in the following chapters. More com-
plete insights into these can be found in the classic textbook on algebraic topology and data
mining.
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2 Mapper Algorithm

Topological tools are becoming more powerful and dominant in data analysis because of
their outstanding characteristics such as coordinate independence, invariance under transfor-
mation, and meaningful compressed representation. These characteristics make TDA a promis-
ing area of research composed of two fundamental streams, including persistent homology and
the Mapper algorithm. While persistent homology is strong regarding small perturbations in
data and provides a compact representation for studying its qualitative features with complex
structure, the Mapper algorithm can summarize meaningful insights and valuable topologi-
cal information from the high-dimensional point cloud. This algorithm increasingly thrives
on a stabilized theoretical foundation with practical applications and diverse, intuitive, user-
friendly implementations. Its development has inspired systematically reviewing it in terms
of frameworks and applications. Chapter 2 reviews the Mapper algorithm with specific de-
scriptions and intuitive, easy-to-understand illustrations. Its variations and applications are
also presented over time, systematically and thoroughly. We also briefly introduce the popular
available packages that activate this algorithm as the core of their operations. Furthermore, we
also discuss its current limitations to guide future research and development. It is the first time
the Mapper algorithm has been independently reviewed as an outstanding representative of
TDA to the best of our knowledge.

Overall, the contributions of Chapter 2 can be summarized as follows:

[C2.1] Describing the Mapper algorithm carefully with intuitive and easy-to-understand il-
lustrations.

[C2.2] Systematizing the variations of the Mapper algorithm thoroughly over time and dis-
cussing well-known applications of this algorithm in emerging fields systematically
and clearly.

[C2.3] Providing a concise and complete introduction to the available tools using the Mapper
algorithm as a theoretical framework.

[C2.4] Presenting the current limitations and future directions for the research to develop
the Mapper algorithm continuously.

Moreover, the rest of this chapter is organized as follows. Section 2.1 condenses on the brief
frameworks of computational topology for understanding the Mapper algorithm, which is in-
troduced with its variants logically and clearly in Section 2.2. Section 2.3 is dedicated to dis-
cussing the algorithm’s applications in science and practice. Section 2.4 provides an introduc-
tion to the available tools for this algorithm on multiple platforms. Section 2.5 presents the
current limitations and Section 2.6 guides future research to develop this algorithm. Finally,
Section 2.7 marks the end of this review on the Mapper algorithm, one of the most promising
representatives of TDA.
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Table 2: The description of the Mapper algorithm.

Input Dataset X with finite elements.

Parameters

– Distance metric d,
– Filter function f : X ≠æ R,
– Cover I of the filter range f (X) with N regular intervals and the same
overlapping percentage p,
– Clustering algorithm C (option).

Method

1: Projecting all data points in X to R by using the filter f .
2: Covering f (X) by N regular intervals and the same overlapping percent-
age p between adjacent intervals.
3: Decomposing the pre-image f≠1

(Ii) of each cover interval Ii into clusters
Ci,1, Ci,2, Ci,3, . . . , Ci,ni by using the clustering algorithm C or partitioning
connected components based on the distance metric d.
4: Constructing the simplicial complex G defined by clusters Cij and their
intersections.

Output Simplicial complex G as a geometric representation of X.

2.1 Description

This algorithm takes input as a discrete dataset X and starts working with four user-defined
parameters as follows:

– Distance metric d,

– Filter function f : X æ R,

– Cover I of the filter range f (X) with the N regular intervals and the same overlapping
percentage p between adjacent intervals,

– Clustering algorithm C.

The input data is combined with user parameters to trigger the algorithm operation through
the following steps:

(1) Step 1. Projecting all points in the dataset X to the real line R by using the filter function
f .

– Computing the filter values f (xi) for all xi œ X.

– Determining the filter range f (X) = [fmin; fmax] where

fmin = min
xiœX

f (xi) , (9)

and
fmax = max

xiœX
f (xi) . (10)
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(2) Step 2. Covering the filter range f (X) by the cover I including N regular intervals and
the same overlapping percentage p between adjacent intervals.

– Determining the length l of cover intervals as follows:

l =
fmax ≠ fmin

(N ≠ 1) (1 ≠ p) + 1
. (11)

– Determining the regular cover intervals Ii = [ai; bi] for all i = 1, 2, 3, . . . , N with the
same overlapping percentage p as follows:

a1 = fmin, (12)

’i = 2, 3, 4, . . . , N, ai = a1 + (i ≠ 1) (1 ≠ p) l, (13)

’i = 1, 2, 3, . . . , N ≠ 1, bi = ai + l, (14)

bN = fmax. (15)

– Determining the cover I = {I1, I2, I3, . . . , IN } on the filter range f (X).

(3) Step 3. Decomposing the pre-image f≠1
(Ii) of each cover interval Ii into clusters Ci,1,

Ci,2, Ci,3, . . . , Ci,ni by using the clustering algorithm C or partitioning connected compo-
nents based on the distance metric d.

– Determining the pre-image Xi of each cover interval Ii as follows:

Xi = f≠1
(Ii) = {xk œ X : ai Æ f (xk) Æ bi} . (16)

– Applying the clustering algorithm C or partitioning connected components for each
pre-image Xi to separate into clusters Ci,1, Ci,2, Ci,3, . . . , Ci,ni as follows:

’i = 1, 2, 3, . . . , N, Xi =

ni€

j=1
Ci,j , (17)

’i = 1, 2, 3, . . . , N, ’j, k = 1, 2, 3, . . . , ni, j ”= k =∆ Ci,j fl Ci,k ”= ÿ. (18)

– Determining the refined pull-back cover C of X as follows:

U = {C1,1, C1,2, . . . , C1,n1 , C2,1, C2,2, . . . , C2,n1 , . . . , CN,1, CN,2, . . . , CN,nN } . (19)
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Figure 4: The schematic diagram of the Mapper algorithm.

(4) Step 4. Constructing the simplicial complex G defined by clusters Cij and their intersec-
tions.

– Determining the nerve G = (V, E) of the refined pull-back cover U of X based on the
clusters as follows:

• Each node vi,j corresponds to the cluster Ci,j ,

V = {v1,1, v1,2, . . . , v1,n1 , v2,1, v2,2, . . . , v2,n1 , . . . , vN,1, vN,2, . . . , vN,nN } (20)

• Each edge between vi,j and vi+1,k is constructed if and only if

Ci,j fl Ci+1,k ”= ÿ (21)

– Visualizing the nerve G with the nodes’ characteristics, color and size.

• The color of a node often represents the average of filter values at points in the
corresponding cluster. Usually, red indicates a maximal value and blue indicates
a minimal value. The colors ranging from red to blue express the colored values
ranging from high to low.

• The size of a node represents the number of points in the corresponding cluster.

The output of this algorithm is a network graph or a simplicial complex in general that is a
geometric representation of the previous original data. It should be noted that when the filter is a
real-valued function, the simplicial complex is constructed with a dimension not greater than
one. Therefore, to generate a simplicial complex with multiple dimensions, the Mapper users
must use more than one filter with real value or one filter with vector value. This algorithm is
briefly described in Table 2, Figure 4, and clearly illustrated in Figure 5.

The metric is sometimes not considered a parameter because it is only used to calculate dis-
tances between data points for clustering or partitioning. The clustering algorithm is essentially
the discrete version of identifying the connected components of a topological space. This al-
gorithm is an optional parameter because there are two strategies to separate the pre-image of
each cover interval into subgroups, including clustering the data points or partitioning con-
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Step 1
(Projecting)

Step 2
(Covering)

Step 3
(Clustering / Partitioning)

Step 4
(Constructing)

Figure 5: The implementation of the Mapper algorithm on a point cloud with a noisy P struc-
ture.

nected components of a built neighboring graph [13]. They are responsible for converting from
the topological representation to the statistical one to facilitate visualization [35]. It should be
noted that the Mapper algorithm is not affected by a particular clustering algorithm [36].

The filter function can be seen as forgetting the coordinates, but most useful functions are
statistically more meaningful. There is no special rule in choosing a filter for the Mapper al-
gorithm in the literature. It is also said to depend on the context and characteristics of data
[55]. The classical choices in well-known works of this algorithm can be mentioned as KDE
[13, 56], eccentricity [17], graph Laplacians [13], L-infinity centrality [17, 57, 58], SVD [17, 57,
58], PCA [58, 59, 60, 61, 26, 62]], multi-dimensional scaling [25], distance functions [63, 26],
t-SNE [21], UMAP [26], and so on. The output network is quite sensitive to this parameter.
Figure 6 illustrates how the filter function affects the results of this algorithm. Perpendicular
to the horizontal and vertical axes, these two functions are sequentially used as filters on the
same sampled point cloud with the noisy P structure. The visualizations obtained for these two
cases are very different.

The filter range cover is characterized by two factors, called the resolution parameters, includ-
ing the number of regular intervals and the overlapping percentage between adjacent intervals.
These factors significantly affect the shape of the generated simplicial complex. The number
of intervals positively correlates with the number of nodes, while the overlapping percentage
positively correlates with the connectivity between nodes. As the number of intervals changes,
the number of nodes also changes in the same direction. The same goes for the overlapping
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Step 1
(Projecting)

Step 2
(Covering)

Step 3
(Clustering / Partitioning)

Step 4
(Constructing)

Figure 6: The implementation of the Mapper algorithm on a point cloud has a noisy P structure
when changing the filter function compared to Figure 5.

percentage and the network connectivity between nodes. The choice of these parameters is
entirely up to the user’s opinion based on the graphical simplicial complex at the output. It
is worth noting that the selecting the resolution parameters significantly affects the Mapper
output. This algorithm is often unstable because a slight change in the cover on the filter range
can lead to a substantial change in the generated network [35]. Indeed, Figure 6 illustrates
the influence of resolution parameters on the resulting shape. Two cover methods on the filter
range, 7 intervals, 40% overlap in Figure 5 and 3 intervals, 20% overlap in Figure 7, are also
used sequentially as resolutions on the same sampled point cloud with the noisy P structure.
The visualizations obtained for these two cases are also entirely different.

2.2 Variation

The Mapper algorithm was invented in 2007 [13], but its emergence in the scientific commu-
nity was highlighted in 2013 [17]. Since then, it has increasingly demonstrated its effectiveness
and strength in many fields. In addition to combining with other analytical tools to achieve
high efficiency in data analysis, many of its variations have been conceived for particular pur-
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Figure 7: The implementation of the Mapper algorithm on a point cloud has a noisy P structure
when changing the resolution parameters compared to Figure 5
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Figure 8: The implementation of the MM algorithm on a point cloud with a noisy P structure.
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Step 1
(Decomposing)

Step 2
(Implementing Mapper)

Step 3
(Merging)

Figure 9: The implementation of the PM algorithm on a point cloud with a noisy P structure.

poses during its development. This subsection presents named variants based on the theoreti-
cal framework of the Mapper algorithm, including Multiscale Mapper [64, 65], Parallel Mapper
[66], Mapper on Graph [67], Ball Mapper [68], Fuzzy Mapper [35], Shape Fuzzy C-Means [37],
Ensemble Mapper [69], and Deep Graph Mapper [70].

The Multiscale Mapper algorithm was proposed in 2016 [64] as an evolution of the Mapper
method inspired by looking at data through a tower of covers instead of a fixed cover on the
filter range. This tower creates a building of simplicial complexes linked together by simplicial
maps. Through this approach, the authors have studied the results obtained from the algorithm
through its structure and stability. It should be emphasized that stability is a highly desirable
characteristic because of its ability to imply robustness to noise in data and measurements. The
MM algorithm is proven to satisfy the stability property by the homology theory, while the
Mapper algorithm does not. Besides, this stability promotes the design of efficient algorithms
for their formation and approximation in practice. With a simplicial complex and a real-valued
piecewise-linear function, this study shows that the persistence diagram can be computed pre-
cisely from only the 1-skeleton of the original complex. More broadly, for a simplicial complex
and a general function, an even simpler combinatorial version of the MM algorithm acts only
on vertex sets of the complex with connectivity given by its 1-skeleton graph. It approximates
the exact persistence diagram thanks to stability based on a “goodness” condition on the tower
of covers. Furthermore, topological information analysis of the MM outputs was given in com-
parative correlation with the Nerves, the Reeb Spaces, and the Mapper outputs to better un-
derstand these structures and facilitate their practical usage [65]. This algorithm is illustrated
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Step 1
(Projecting)

Step 2
(Covering)

Step 3
(Partitioning)

Step 4
(Constructing)

Figure 10: The implementation of the MOG algorithm on a graph with a noisy P structure.

visually in Figure 8.
The Parallel Mapper algorithm was proposed in 2017 but officially announced in 2020 [66]

as a Mapper distribution on a set of processors running in parallel. It works based on a divide
and conquer strategy for the codomain cover. Its efficiency is also demonstrated and reported
clearly through the performance experiments. The highlight of the PM algorithm is reflected in
the ability to contribute the Mapper algorithm with multi-resolutions. This property is useful
for interactive applications where it is possible to increase the resolution for some meaningful
data subgroup with a specific purpose. Figure 9 illustrates the operation steps of this algorithm
clearly.

The Mapper on Graph algorithm first appeared in 2018 [67] as a variation of the Mapper
method. It is constructed upon a popular tool in TDA, which provides a robust theoretical
foundation for summarizing the valuable information of network data and preserving their
core structures. This algorithm is developed to target weighted and undirected graphs to gen-
erate characteristic-preserving summaries by transforming large graphs into hierarchical rep-
resentations. Accompanied by the algorithm, an official distribution [71] in Python under the
GNU General Public License is also published to allow users to enable interactive explorations
for their data. The effectiveness of this approach is demonstrated by evaluating experiments
on both synthetic and real-world data. It can be said that the MOG algorithm emerges as a
new impetus to leverage TDA tools in addressing the challenges of visualizing and mining on
graph data. The operation steps of this algorithm are illustrated visually in Figure 10.

Inspired by the Mapper method, the Ball Mapper algorithm is described in 2019 [68] as an
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Step 1
(Building Á-net)

Step 2
(Constructing)

Figure 11: The implementation of the BM algorithm on a point cloud with a noisy P structure.

effective tool in exploratory data analysis by tightly encapsulating both the local and global
structure of the high-dimensional datasets. This algorithm, with simple construction, is easy to
compute and analyze, and extend. It is proposed to cover the point cloud with balls with equal
radius instead of a refined pull-back cover generated from the filter function and a cover on the
filter range. It has a straightforward description with steps that are not too difficult to under-
stand. Its complexity is also discussed with explicit calculations. By analyzing the relationship
between two algorithms, the BM algorithm is recommended as a complementary technique
used with the Mapper algorithm in data analysis. This algorithm has been published with free
official distribution [72] in R under the MIT License. Although published as a pre-print, the
author has also managed to demonstrate its effectiveness when applying it to analyze some
specific data, including visualizing financial ratios as an abstract two-dimensional graph [73],
examining the economic topology of the Brexit vote [74], analyzing and evaluating macroe-
conomy [75], visualizing the Covid-19 evolution [76], refining the understanding of corporate
failure [77], and applying to knot theory concerning the Mapper algorithm [78]. An illustration
of this algorithm can be found in Figure 11.
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The Fuzzy Mapper algorithm was proposed in 2020 [35] to improve the resolution param-
eters for the Mapper method by choosing a filter cover naturally by overlapping clustering
features. The FCM [51, 50], an intelligent technique of overlapping clustering, is used to au-
tomate the division of cover intervals with a random overlapping percentage. The new algo-
rithm has been appreciated for its ability to generate graphs like those of the Mapper algorithm
from a topological standpoint, although their cover choices are different. Its effectiveness is
also demonstrated by evaluating experimental results on the popular real-world datasets men-
tioned earlier. The good clustering ability of the FM algorithm stems from the reasonable divi-
sion of the cover intervals over filter range based on the density distribution of the data points.
A visual illustration of this algorithm is shown in Figure 12.

The Shape Fuzzy C-Means algorithm can also be considered a variant of the Mapper method
in 2021 [37] when constructed on the FCM algorithm framework and equipped with special
characters in global shape detection. It demonstrates fuzzy clustering like the FCM algorithm
and creates a concise, realistic, intuitive topological summary for high-dimensional datasets
like the Mapper algorithm. Combining two capabilities, clustering and shape detection, is a
groundbreaking, logical and feasible idea. This combination is effective for both algorithms.
The FCM algorithm is more prominent in new outstanding capabilities in simplifying and vi-
sualizing data with qualitative analysis. The Mapper algorithm is also simplified in choosing
parameters to generate the most informative presentations. This work has also shown the
SFCM algorithm’s effectiveness in fuzzy clustering ability and structure detection through ex-
periments on high-dimensional real-world datasets. Furthermore, the SFCM algorithm is also
a particular enhanced case of the FM algorithm in a certain sense. It is briefly and intuitively
described in Figure 13.

The Ensemble Mapper algorithm is the latest version that optimizes resolution parameters,
including the number of intervals and the overlapping percentage. It has just been conceived
in 2021 [69] on the theoretical foundation of the Mapper method but optimizes the choice of
resolution parameters according to the ensemble technique [79]. Ensemble methods are prac-
tical tools in improving the robustness, stability, and accuracy of clustering solutions and de-
veloped to combine clustering results rather than find the best one [80]. The inspired idea to
create this algorithm is also quite simple as the fuzzy clustering ensemble method is applied
to combine the results generated by the Mapper algorithm under different resolution param-
eter values. Developing a combined effect based on an ensemble of the various base Mapper
results shows that it is unnecessary to find the optimal deals for resolution parameters when
using the Mapper algorithm. Simultaneously, the EM algorithm outperforms the existing algo-
rithms in visualization and numeric scores by experiments on real-world datasets. A model of
this algorithm is presented in Figure 14.

The Deep Graph Mapper algorithm was first mentioned in 2020 and officially in 2021 [70]
as a topologically-grounded method that merges the Mapper method with GNN to generate
informative hierarchical graph visualizations. These visualizations not only aid in discerning
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complex graph structures, but also provide a practical means to understand the models used to
solve various tasks. In this work, the Mapper algorithm is rigorously proven by mathematical
reasoning as a generalization of soft cluster assignment pooling methods, including Diff-pool
[81] and minCUT [82]. This evidence provides an efficient connection between graph pooling
and TDA. Based on this connection, a simple Mapper-based PageRank pooling operator is
proposed with the ability to achieve similar or superior results compared to state-of-the-art
methods on several graph classification benchmarks. An official code [83] was also published
in Python for this work with the promise of making the DGM algorithm a complete graph
visualization library based on the Mapper algorithm. It is easy to see that the DGM algorithm
is a case of the MOG algorithm when effectively selecting the filter function according to the
deep learning orientation.

Besides variations that are formed directly from the core algorithm, several other algo-
rithms are also constructed upon it as an intermediate step or stage for processing data, such as
Two-Tier Mapper [84], Mapper-Induced Manifold Alignment [85], Mapper Based Classifier [86], etc.
The TTM algorithm was created in 2017 and officially published in 2019 [84] as an un-biased
topology-based clustering method for enhanced global gene expression analysis. The impetus
for its formation is derived from using TDA to overcome the existing disadvantages of cur-
rent clustering methods, including dependence on user-defined parameters, lack of stability,
and inadequacy for small data sets. The TTM algorithm is expected to become a promising
tool for personalized medicine with outstanding advantages. This algorithm is published with
a free R library [87] under the GNU General Public License in Bioconductor that allows its
widespread adoption. The MIMA algorithm is proposed on the foundation of merging SSMA
with the Mapper algorithm [85]. It is the first time a multi-modal data fusion algorithm is ap-
plied to fuse optical data, and synthetic aperture radar data and TDA are involved in remote
sensing. The SSMA method usually creates a topological structure using K-nearest neighbor,
while the MIMA algorithm implements the Mapper method to generate a novel topological
structure through spectral clustering in a data-driven fashion. The experimental results have
indicated the superior performance of the MIMA algorithm when fusing data related to land
cover land use classification and local climate zone classification. The MBC method is described
as a Mapper-based classifier to project data onto a latent space. This latent space is obtained us-
ing advanced techniques, such as PCA or AE. Notably, this classifier method is immune to any
gradient-based attack and improves robustness over traditional convolutional neural networks
[86]. New algorithms created on the framework of the Mapper algorithm have all proven their
effectiveness for a specific need in the data processing. It partly demonstrates its superiority as
an outstanding principal representative of TDA.

2.3 Application

The Mapper algorithm was proposed as a new method to analyze qualitatively, succinctly
simplify, and effectively visualize high-dimensional datasets [13]. Its motivation comes from
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Step 1
(Clustering)

Step 2
(Constructing)

Figure 13: The implementation of the SFCM algorithm on a point cloud with a noisy P struc-
ture.

the impossibility of structural visualization and discernment for massive datasets, even with
widespread low-dimensional projections. It is proposed to transform massive datasets with
high dimensionality into visual simplicial complexes with far fewer vertices to capture useful
geometric and topological information obscured by their immense size, corresponding to a
specified resolution. It resembles the Reeb graph but is more general and adaptable to even
higher dimensional objects.

2.3.1 Data Clustering

The most popular real-world application of the Mapper algorithm is its clustering capability
that reveals data insights with a simple, intuitive, and helpful summary. This algorithm’s abil-
ity was highlighted in the first appearance with experiments on the Reaven and Miller Diabetes
dataset [88, 13]. It has been demonstrated as an automated tool for discovering the boomerang
phenomenon with two floppy wings and one fat middle, even when the best possible projec-
tions do not generate such a good image. The respective patients in each wing were considered
to have fundamentally different diseases, which correspond to the division of diabetes into the
adult-onset and juvenile-onset forms. This result has great significance based on the famous
previous study conducted by Reaven and Miller [88].

In 2009, this algorithm was also chosen as a computational approach in analyzing simula-
tion data for biomolecular folding pathways [56]. Its success is shown in structural evidence
from computer simulations supporting that RNA hairpin folding has two dominant pathways
with many intermediate states and is kinetically separated. In addition, the Mapper algorithm,
with its optimization of density filters and clustering schemes, is seen as a promising way to
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solve distribution heterogeneity, deal with multiple pathway data, and be less sensitive to met-
ric choice.

This algorithm activates as the second component of Progression Analysis of Disease to
provide a helpful summary that can be used to further explore high-throughput biological
data [89]. With its outstanding ability, the Mapper algorithm has identified a unique subgroup
of Estrogen Receptor-positive breast cancers, in which their levels of c-MYB are high, and their
levels of innate inflammatory genes are low. The vital surprise is that the patients in this group
exhibit complete survival and no metastasis. This group has a clear and distinct molecular
signature with statistical significance and highlights coherent biology but is not visible for the
clustering methods.

It can be said that the ability to cluster data and the Mapper algorithm also proved effective
in identifying a meaningful subgroup quickly that traditional clustering methodologies fail to
find. This affirmation is again demonstrated in the famous work [17], which marks the scientific
community’s widespread interest in this method. This work has also shown that it can handle
many different data types by using three datasets: gene expression from breast tumors, voting
data from the United States House of Representatives, and player performance data from the
National Basketball Association.

The characteristic of detecting significant subgroups is an essential highlight for clustering
ability that traditional methods of the Mapper algorithm cannot achieve. Convincing evidence
for this claim is found in more reliable publications that appear in prestigious journals. This al-
gorithm has successfully demonstrated the characteristic ability in identifying preclinical spinal
cord injury and traumatic brain injury [58, 90], type-2 diabetes subgroups [57], clinically dis-
tinct neurophenotypes in young children [91], a subgroup in asthma and chronic obstructive
pulmonary disease [92], relevant genetic alterations in cancer [26], homogeneous subgroups of
patients [62], etc.

In addition, the clustering ability of the Mapper algorithm also manifests itself not only for
biomedical data but also in many different areas, including social networks [93, 94], epidemi-
ology [95], weather forecasting [96], radar [85, 97], pathology [61], etc.

2.3.2 Feature Selection

Another successful application of the Mapper algorithm is selecting features that best char-
acterize the data. In addition to the global structure shown by the visualization, its obtained
result is an information summary at the local level with clusters and their interactions [14].
This visualization allows easy and intuitive discovery of why connections exist within the data.
Therefore, when using this algorithm to select features, it should be based on the principle of
data shape recognition that encodes the essential structural information [98].
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Unique structures of topological significance often take the form of loops and flares. Those
are considered impressions that need attention when observing the intuitive results obtained
from the algorithm. The detection of significant subgroups is often carefully evaluated through
large changes to the resolution parameters. These subgroups often have an exciting shape
that persists steadily despite substantial differences in parameters [98]. Standard statistical
techniques are then be used to evaluate and identify features that best differentiate subgroups.

For the Mapper algorithm, feature selection is often associated with data clustering that
uncovers meaningful subgroups. This possibility is considered an adjacent step after discov-
ering exciting structures within the data. It helps users gain insight into data that underlies
the selection of the essential elements for distinguishing these remarkable structures. Using
the obtained result characteristics, including the size and color of the nodes in the graph, also
affects the feature selection. Their visualization aids users in decision-making by helping them
quickly and intuitively recognize which features are essential to select for evaluation. By eval-
uating features on Mapper results using foundational statistical techniques, users can find out
why interesting data structures are constructed. Therefore, it can be said that feature selection
effectively supports explaining the models and making them more meaningful.

The application in feature selection of the Mapper algorithm is as popular as its unique
clustering capabilities. This algorithm is quite successful in use to exploring low-density states
in biomolecular folding pathways [56], extracting insights from the estrogen receptor gene
from breast tumors [17], studying cell reactivity in both type-1 and type-2 diabetes [99], per-
forming a genetic association analysis of the emergent subtypes for type-2 diabetes to identify
subtype-specific genetic markers [57], discovering preclinical spinal cord injury and traumatic
brain injury [58], predicting manufacturing productivity [98, 100], identifying clinically dis-
tinct neurophenotypes in young children with fragile X syndrome [91], identifying traits of
hip osteoarthritis [60], recognizing pain using peripheral physiological signals [63], predicting
long-term functional outcome in early psychosis [61], identifying relevant genetic alterations
in cancer [26], indicating the risk of adverse clinical effects in a cohort of critically ill patients
with atrial fibrillation [101], etc.

2.3.3 Data Visualization

Visualization and interaction of the Mapper algorithm are two outstanding characteristics
besides the clustering ability and feature selection. When used for clustering data or selecting
features, its results are always generated to observe the data shape. However, how the output
can be used, as a clustering result or input for machine learning or visualization for observation,
all depends on the needs and preferences of the user. In previous applications [56, 89, 17], the
visualization of this algorithm was still emphasized in addition to the clustering ability.

With the ability to visualize data for interactive observations, the Mapper algorithm was
used to analyze an enormous number of IP packets on network monitoring data to make mali-
cious activities patterns easily observable by security analysts [102]. It can deal with enormous
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traffic volumes to extract packet groups belonging to the same activity, especially malicious
ones, even if they are all heavily mixed. On the other hand, it is also used to identify and visu-
alize disease microclusters masked by group-level analysis for demonstrating airway patholog-
ical heterogeneity in asthma [103]. Further, this algorithm can capture the clustering structure
of cells and preserve the continuous gene expression topologies of cells [104]. By combining
with gene co-expression network analysis, the differential expression patterns of these modules
can be revealed along with the Mapper visualization.

The spotlight for the intuitive and interactive capabilities of the Mapper method is reflected
in a famous work [20] on the dynamic organization of the brain. This work focuses on how the
brain dynamically adapts for efficient functioning on a functional magnetic resonance imaging
dataset. The Mapper algorithm is used to reveal the overall organization of individual whole-
brain activity maps as an interactive representation without arbitrarily collapsing data in space
or time. This approach distills complex brain dynamics into interactive and behaviorally rele-
vant representations. This work was the main inspiration for the official announcement of the
DyNeuSR software package [21] under the BSD License in 2019. This package is much appre-
ciated, especially in its ability to assist users in annotating Mapper-generated networks with
metadata, connect them with known neuroanatomical correlations, and study their topologies
to capture temporal transitions between coactivated brain patterns. Using the Mapper algo-
rithm in particular and TDA in general for researching neuroscience is one of the great ideas
[105, 22] and intensely studied by the Brain Dynamics lab of Stanford University with two
principal members Manish Saggar, Caleb Geniesse, and associates [27, 23]. Besides, another
research work [106] also provides reliable proof of the effectiveness of the Mapper method
in extracting subtle dynamic properties of high temporal resolution magnetoencephalography
data without the temporal and spatial collapse. At the same time, it also detects a novel neu-
roimaging marker, which is hard to see with the other pipelines that require collapsing the data
in the spatial and temporal domain.

In addition, the Mapper algorithm also began to have preliminary studies on its applicabil-
ity in representing 3D volumetric images [107] and 3D printed objects [108]. It is considered
an emerging potential tool in the 3D printing area, but further studies are needed to provide
specific application directions [109].

2.4 Available Toolkit

The Mapper algorithm was first appeared in 2007 [13] with an original code written by
Gurjeet Singh in Matlab. This original code was rewritten by Daniel Müllner on the same
platform and published under the GNU General Public License in 2010. This information is
obtained from the TDAmapper package copyright provided by Paul Pearson [110].

Since then, many data analysis tools have approached the Mapper algorithm as a stable the-
oretical framework. One of the famous proprietary tools mentioned is AyasdiAI, developed by
the Symphony AyasdiAI team [17]. This team, also known as the company, was first founded
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by Gurjeet Singh, Gunnar Carlsson, and Harlan Sexton. Their first product, the Ayasdi Iris
software, used the Mapper method as the core of its operation. Over time, the AyasdiAI ma-
chine intelligence platform uses TDA to create compressed data representations by combining
a host of state-of-the-art expertise in machine learning, statistics, and geometry. Its uniqueness
is reflected in its good visualization and high interactivity. This capability makes it possible
for users to explore the data and clearly understand the meaningful relationships quickly. The
development of AyasdiAI is increasingly surpassing expectations as it is being operationalized
to address some of the most complex challenges facing modern financial businesses today with
a commitment to innovative, comprehensive solutions.

Besides proprietary software, various implementations of this quintessential algorithm are
freely available with stable quality and high performance on popular modern programming
languages like R and Python. An overview of the public, popular, and free technical toolkits can
be found in Table 3, including Python Mapper [111], TDAmapper [110], Kepler Mapper [112,
113, 114], Mapper [115, 116], DyNeuSR [21, 117], Giotto-tda [118, 119], and Mapper Interactive
[120, 121]. In addition to these implementations, other packages share the same theoretical
framework but are less popular and written specifically for personal purposes. These packages
can be found easily on the internet with the source code freely available. To obtain a summary
of the commonly available toolkits based on the Mapper algorithm, only those listed in Table 3
are reviewed and evaluated in the following content.

Python Mapper [111] implements the Mapper algorithm written by Daniel Müllner and Ar-
avindakshan Babu in Python. This package was published under the GNU General Public
License in 2013 with two options available to the user for this toolchain: a GUI interface and a
script package. Each option has its advantages and disadvantages. With a GUI interface, users
can conveniently interact to approach the algorithm with a clear layout step by step. The graph-
ical user interface of Python Mapper is not only convenient for non-experts to access, but also
speeds up the workflow for beginners and experts alike. However, extending the algorithm
with multi-dimensional filter functions has specific difficulties when using the user interface.
In contrast, users can easily access the script package by importing the Mapper module and
writing their scripts. It is not as convenient as using a GUI interface, but it allows to define
filter functions with any dimension. Overall, the authors have created an efficient implemen-
tation of the Mapper algorithm that is suitable for many users and published its source code so
that anyone with a new idea can customize it easily, smoothly, and quickly.

TDAmapper [110] is programmed in R by Paul Pearson based on cleaning, modifying, and
porting the Mapper source code originally written by Daniel Müllner and Gurjeet Singh in
Matlab. It also fixes two bugs that existed in the source code. Therefore, this package was also
published under the GNU General Public License in 2015 as contributions by Paul Pearson,
Daniel Müllner, and Gurjeet Singh. While not a perfect product with an eye-catching interface,
the authors of Python Mapper and TDAmapper have always strived to provide a complete,
extensible, and fast toolchain to the scientific community. It can be said that these are two foun-
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Table 3: The overview of the popular, accessible, and available technical toolkits that use the
Mapper algorithm as the core of their operations.

Toolkit Language License Author(s)

Python Mapper [111] Python GNU GPL Daniel Müllner,
and Aravindakshan Babu

TDAMapper [110] R GNU GPL
Paul Pearson,

Daniel Müllner,
and Gurjeet Singh

Kepler Mapper [112, 113, 114] Python MIT

Hendrik Jacob van Veen,
Nathaniel Saul,
David Eargle,

and Sam W. Mangham
Mapper [115, 116] R MIT Matthew Piekenbrock

DyNeuSR [21, 117] Python BSD

Caleb Geniesse,
Olaf Sporns,

Giovanni Petri,
and Manish Saggar

Giotto-tda [118, 119] Python GNU AGPL

Guillaume Tauzin,
Umberto Lupo,
Lewis Tunstall,

Julian Burella Pérez,
Matteo Caorsi,
Wojciech Reise,

Anibal Medina-Mardones,
Alberto Dassatti,

and Kathryn Hess

Mapper Interactive [120, 121] Python MIT

Youjia Zhou,
Nithin Chalapathi,

Archit Rathore,
Yaodong Zhao,
and Bei Wang
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dational packages written in two popular programming languages, Python and R, which are
of great significance to scientists studying the Mapper algorithm. They can be considered the
first bricks that laid the foundation for creating free implementations of the Mapper algorithm
for the community. Moreover, they are the main driving force behind new packages becoming
more and more perfect in user interface and data visualization. In 2020, TDAmapper is used as
an online tool for TDA and visualization, TDAview [122]. It is a user-friendly tool that allows
biologists and clinicians with no programming knowledge to harness the power of TDA. This
package is published open-source under the MIT License by Kieran Walsh and Kamile Taouk
[123]. It can handle massive datasets, so it has many applications for high-dimensional data,
including the construction of topology-based gene co-expression networks.

Kepler Mapper [113] is a flexible Python implementation of the Mapper algorithm. It has
been around since 2017 [112] with two principal authors, Nathaniel Saul and Hendrik Jacob
van Veen. This package has evolved more and more entirely and was distributed officially
in 2019 under the MIT License in collaboration with four authors, Hendrik Jacob van Veen,
Nathaniel Saul, David Eargle, and Sam W. Mangham [113]. Kepler Mapper brings Mapper
algorithm to users with an intuitive interface and provides them with various comprehension
methods in visualizing the network graph generated by this algorithm [114]. It gives the ability
to analyze Mapper network graphs intuitively with many techniques, including interactive vi-
sualization and exploration in the browser, visualization interface for embedded purposes, and
static visualizations. Its flexibility and user-friendliness come from leveraging Scikit-Learn-
API-compatible [124, 125] scaling and clustering algorithms in constructing network graphs
[113]. Although it is not a professional or mature product as AyasdiAI, Kepler Mapper tries
to provide the scientific community with a user-friendly, fast, and extensible package with an
open-source. This implementation is well-recognized in the community as it is widely used as a
framework for scientific experimentation or new version development. The suite of tutorials on
using Kepler Mapper for simple and complex use cases is publicly and widely available on its
homepage. This package was recently developed and improved as a library in the Scikit-TDA
project [126, 127] that provides TDA Python tools in widely usable and easily approachable
forms.

Mapper [115] was introduced as a theoretical framework-based implementation of the Map-
per algorithm in R. It was written by Matthew Piekenbrock and distributed under the MIT
License in 2019 [116]. This package is constructed to effectively implement the Mapper method
through practical default parameter settings for those unfamiliar with this algorithm in an ex-
cellent intuitive and interactive way. It is also designed to modify or extend the core framework
more simply, smoothly, quickly, and efficiently, without limiting its generality [115]. All infor-
mation about this current development release can be found on its homepage [116].

DyNeuSR [21] is a Python visualization library for exploring, analyzing, and validating
topological representations of neuroimaging data. It is specially designed to work with net-
work graphs extracted by the famous TDA method, the Mapper algorithm. This library is the
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realization of a good idea that uses TDA to reveal the overall organization of individual whole-
brain activity maps without arbitrarily collapsing data in space or time [20]. DyNeuSR was
published under a BSD License in 2019 by the Brain Dynamics lab of Stanford University with
two principal members Manish Saggar, Caleb Geniesse, and associates [117]. Kepler Mapper
[126] is used as its core to implement the Mapper algorithm to visualize graphs interactively
and analyze neuroscience. The highlights of DyNeuSR are immensely appreciated, especially
in the ability to assist users in annotating Mapper-generated networks with meta-information,
connecting them to known neuroanatomical correlates, and studying their topological char-
acteristics to capture temporal transitions between coactivated brain patterns [21]. It is also
an open-source project, so the code, documentation, and example tutorials are publicly and
widely available on the package’s homepage. The authors hope that DyNeuSR can enable and
encourage the larger neuroscience community to more effectively mine Mapper-based methods
to generate biological insights underlying complex mental disorders.

Giotto-tda [118] is a high-performance topological machine learning toolbox written in Python
based on the Scikit-learn library [124] and distributed under the GNU Affero General Public
License in 2021 [119]. It is a member of the Giotto family of open-source projects. Giotto-tda
inherits the flexibility of the famous library [124] and retrofits topological analysis capabilities
based on the popular major theoretical frameworks of TDA, including persistent homology and
Mapper algorithm. It allows TDA to apply to univariate and multivariate time-series, images,
graphs, and even geometrical structures with high dimensionality and simple complexes. This
ability makes Giotto-tda the most comprehensive Python library for topological machine learn-
ing and data exploration to date. In terms of implementation for the Mapper method, its design
provides a great deal of intuitive interoperability and computational efficiency. It also allows
users to realize each respective operational stage in the algorithm, effectively integrate Mapper
pipelines as part of a larger machine learning workflow, and optimally use memory caching
to avoid unnecessary news in re-computations [118]. These are considered the highlights of
Giotto-tda when compared to Keppler Mapper [126]. To the best of the authors’ knowledge,
Keppler Mapper does not deploy all algorithm steps in a single class and is only partially
compatible with the Scikit-learn library [124, 125]. Furthermore, it does not support memory
caching or provide real-time hyperparameter interactivity in the visualization. Giotto-tda also
provides the code, documentation, tutorials, and illustrations publicly and freely according to
the open-source statement on its homepage [119].

Mapper Interactive [120] was introduced in 2021 as a web-based platform for interactively an-
alyzing and visualizing a high-dimensional point cloud. This package is distributed officially
under the MIT License in Python [121], in which its operational core is the Mapper algorithm.
The contribution of this implementation is highlighted in three aspects: extendability, inter-
activity, and scalability to support real-world data analysis. Moreover, its optimization, effi-
ciency, and speed are also demonstrated in comparative correlation with the two most modern
applications, Kepler Mapper [126] and Giotto-tda [118]. Mapper Interactive is emphasized on
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its ability to make the Mapper method accessible to non-specialists and speed up topological
analytics workflows.

In summary, although freely available with open source, the packages that approach the
Mapper algorithm as a solid theoretical framework are increasingly mature and stable. They
aim to provide a complete, user-friendly, quick, scalable, and efficient toolchain to the scientific
community. Almost all packages publish their code, documentation, tutorials, and illustrations
publicly and freely on their homepage. Because each tool has different strengths and weak-
nesses, the choice of which tool for implementing this algorithm depends on each researcher’s
actual needs, personal knowledge, and personal fortes.

2.5 Current Limitation

Besides the advantages in analyzing, visualizing, and understanding data, the Mapper al-
gorithm still has certain limitations when implemented in science and practice. The simplicity
of the Mapper design leads to an abundance in the choice of user parameters. How to choose
the parameters to obtain the desired results becomes a challenge for Mapper users. In addition,
the obtained results after implementing this algorithm are not stable and very sensitive to these
parameter choices. Therefore, evaluating the efficiency of Mapper-type algorithms, which both
cluster data and detect data structure, becomes a problem that requires users to pay attention
when using.

The choice of filter function depends on the features of a particular data set. The obtained
output is susceptible to this choice, so it is important. There is no recommended rule to choose
in practice [36]. The filters that are often used popularly are oriented from previous famous
and successful works. However, these orientations depend significantly on the characteristics
of each data set, and there is no advice for any data set. The idea for optimizing the filter choice
is also interesting, but this is a big challenge. Besides, another idea has also been considered
to remove Mapper’s dependency on the filter by not using it when structuring the algorithm.
This idea is good, but it should be noted that the filter is considered a Mapper’s characteristic
when using the pre-image of a continuous function to construct the simplicial complex on point
clouds instead of using other simplicial complexes Čech complex, Vietoris-Rips complex [128],
witness complex [129], geometric complex [130], etc. In general, the filter choice in the Mapper
algorithm is still a challenge and can be viewed as a data-driven decision-making problem.

The filter range is covered by regular intervals such that two adjacent intervals overlap by
the same percentage. The number of intervals and the overlapping percentage are known as the
Mapper algorithm’s resolution parameters. The resolution meaning is expressed by correlating
these parameters for features of the obtained graph after implementation. While the intervals
reflect the nodes, the overlapping percentage demonstrates the connectivity between the nodes.
The output graph created by many intervals has more nodes. A more significant overlapping
percentage also means more edges, i.e., more connections, in the graph. The dataset size is
one of the essential criteria for changing the resolution parameters. It is easy to see that larger
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datasets need more intervals to represent data complexity, and the overlapping percentage can
be lowered to control the number of edges in the data representation effectively. A tiny change
to the resolution parameters can substantially change the Mapper output, so the algorithm re-
sults are often unstable. Usually, these parameters are fine-tuned until the obtained results
capture some exciting features of the dataset and satisfy user exigency. Then, the cover corre-
sponding to these resolution parameters is well-chosen [36].

The same distribution for the cover intervals on filter range is also unnatural for the Mapper
algorithm. It makes more sense to cover this range if it is generated data-driven. When using
this algorithm with many filter functions, covering the filter range is also a challenge for users.
In addition, when using this algorithm with many filter functions, the cover formation is an
issue that needs to care. Almost current works use the rectangular cover for the Mapper algo-
rithm with two filter functions. However, at least two cover methods exist for the two-filters
case mentioned in the original work. Therefore, covering the filter range in the case of many
functions is also a particular challenge. Furthermore, how the clustering algorithm is chosen to
achieve the desired result is also very diverse for Mapper users.

The Mapper evaluation has traditionally been based on two criteria: clustering and visu-
alization. As for the clustering ability, it is usually evaluated by traditional metrics. As for
the visualizing ability, it is often assessed with the naked eye with the visual color painted at
the user’s discretion to highlight the critical feature(s) in the obtained result. However, there
needs to be a technique that evaluates the Mapper algorithm based on its unique abilities. This
research direction is still in its infancy, with work on the numerical measure for the instability
of Mapper-type algorithms [131]. This method measures the variability of the obtained out-
puts as a function of the parameter choice. The authors derive theoretical results that propose
estimates for the instability and provide practical ways to control this instability. These results
are just the beginnings of suggesting other tools evaluating the Mapper algorithm as a unique
data analysis method. Moreover, these new tools are also going to open promising directions
for more and more complete Mapper optimization.

2.6 Future Direction

The limitations of the Mapper algorithm at present serve as the impetus for its development
and evolution in the future. These motivations will help the community have research orien-
tations that are close to the scientific and social trends in the coming time. These orientations
also revolve around two main aspects, including theory and application.

The Mapper algorithm is constructed from the inspiration of the Reeb graph and has a close
relationship with discrete Morse theory [13]. Theoretical studies as its working foundations are
more and more complete and developed. They often focus on making a solid fulcrum from
classical mathematical theories so that this algorithm can work optimally, including stability
[132], statistical selection for parameters [133, 35, 134], performance evaluation [135, 131, 136],
foundation for machine learning and deep learning [137, 138, 70, 139], forming the next gener-
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ation [115, 140, 141], etc. It soon develops rapidly with many publications as the connection of
the Mapper algorithm with the Reeb graph and Morse theory is more and more intimate [142].
This orientation requires the scientists to understand of both mathematics, computer science,
and other related fields. In addition, it continues to evolve simultaneously using this method to
solve applied problems with real-life data so that the applications are always reliable for users
[14].

The most potent application area of the Mapper algorithm in the next few years could be
in biomedicine, as evidenced by the explosive beginnings of peer-reviewed publications in
prestigious journals [91, 25, 20, 26, 14, 101, 143]. Its effectiveness is increasingly proven through
clustering with its ability to detect significant subgroups [92, 144, 145, 62], select useful features
to process [63, 29, 62], and visualize with friendly interactions [21, 113, 118, 120] for biomedical
data. Two promising lands that are being vigorously explored by TDA tools today are the brain
with neuroscience [20, 23, 146] and gene structure in pathology [106, 147, 148, 149]. It also
shows its adaptation to hot current world problems such as the Covid-19 pandemic [150, 151,
55, 152]. The success of this algorithm, as well as the TDA method in supporting the diagnosis
and treatment of diseases, comes from the unique characteristics of the computational topology.
In the future, this orientation will develop even more intensely on the big bricks that have been
firmly laid by previous famous publications [136, 28].

Besides, the application of Mapper algorithm is also shown in its adaptability in other re-
lated fields including biology [153], physics [154], chemistry [155, 156], environment [157, 158],
industry [159], 3D printing [107, 109], remote sensing [85, 97], economy [77, 160], medicine
[19], earth science [161, 162], etc. The prospect of using it in the direction of applications in
other fields is very high, beneficial for structured data types with high dimensionality. This
orientation is also one of the potential new ideas to spread the Mapper algorithm effectively.

Today, artificial intelligence, which has grown enormously and rapidly thanks to machine
learning and deep learning, presents significant opportunities and challenges for data analytics
tools. The Mapper algorithm has also demonstrated its potential in this area because of its
unique capabilities. It is becoming an effective method to bring high performance to machine
learning and deep learning models [163]. They are often used as clustering or feature selection
methods when combined with other techniques that are effective for data analysis [101, 164,
158, 155]. In addition, several theoretical foundations using them as the core are also formed as
a new promising model of machine learning [137, 138]. The Mapper algorithm carefully enters
deep understanding because of its solid theoretical frameworks [28, 165, 139]. It is like new
energy that makes deep learning more powerful [166, 167, 163, 70, 168]. In addition, one of
the prospects can soon be mentioned Mapper’s interpretability to learning models to approach
explainable artificial intelligence [169, 170, 171].

One of the future expectations of the Mapper algorithm is its ability to handle time-series
data [172, 173]. It is also a good land for groundbreaking announcements [174, 160, 175, 176,
177]. This research direction has been partly reflected in the brain representation by the visual-
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ization capabilities of this algorithm [20, 21]. Furthermore, in the last few years, this algorithm
has emerged with the ability to provide a robust theoretical framework for summarizing net-
work data while preserving their core structures [67]. Using this algorithm to reconstruct the
original graph more compactly while maintaining its structure is a novel and possible idea.
This idea can be considered a pre-processing step before mining large or giant graphs [70].
This orientation is promising in graph approximation mining because of its adaptability to
high-dimensional network data. However, these ideas need a specific time to be perfected in
theory and application before practical implementation.

2.7 Discussion

This chapter has systematized the understanding of the Mapper algorithm from theory
to the application as an excellent representative of TDA. This algorithm has been carefully
restated with deep insights and intuitive illustrations. Its variations are also systematically
aggregated to clarify its evolution over time. The effectiveness of the Mapper algorithm in data
analysis is presented clearly and logically through its major popular applications, including
clustering, feature selection, visualization, and support for artificial intelligence. In addition,
this work also provides a concise introduction to the popular out-of-the-box tools that work on
the Mapper frameworks at its core. Moreover, its current limitations are also recognized as a
fulcrum for future orientation in studying and developing this algorithm.

Although this work has been carefully elaborated, it is undoubtedly not without shortcom-
ings. This limitation may come from the massive explosion in research on the Mapper algo-
rithm in recent years, both in theory and in applications. Theoretical studies are increasingly
ensuring certainty for applying it in real-life data. Generally, this algorithm is considered a
promising candidate for TDA with powerful and practical capabilities.
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3 Fuzzy Mapper Algorithm

Chapter 3 proposes a new method of improving the Mapper algorithm, called Fuzzy Map-
per, by using overlapping clustering for covering the filter range naturally. In this method,
the FCM algorithm, a famous representative of overlapping clustering, is used as the primary
tool to optimize the choice of cover. The FM algorithm is thus introduced as a development
of the Mapper algorithm in dividing cover intervals automatically with an arbitrary overlap-
ping percentage. Its advantages are also shown through extracting insights and meaningful
information from high-dimensional datasets in many fields, especially bioinformatics and neu-
roscience. Three real-world datasets, including Unit Circle, Reaven and Miller Diabetes, and
NKI Breast Cancer, are implemented to clarify this algorithm’s effectiveness. The results are an-
alyzed in the comparative relationship between two algorithms, FM and Mapper, through the
output shape in the topological sense and silhouette coefficient score in clustering evaluation.

Overall, the contributions of Chapter 3 can be summarized as follows:

[C3.1] Proposing the FM algorithm by optimizing the cover choice to automatically divide
the filter range into irregular intervals with random overlapping percentages.

[C3.2] Demonstrating that the FM algorithm can generate outputs similar to the Mapper
algorithm from a topological standpoint.

[C3.3] Reporting well-clustered results based on the FM algorithm’s silhouette coefficient
score in most experimental cases compared to the Mapper algorithm.

Moreover, the rest of this chapter is organized as follows. Section 3.1 presents the motivation
for proposing the FM algorithm. Section 3.2 describes the algorithm carefully with visual illus-
trations. The experimental results on three real-world datasets are reported clearly in Section
3.3 based on the comparison between this proposed algorithm and the original algorithm. Fi-
nally, the conclusions in Section 3.4 review what has been achieved to orientate and develop
future researches on the FM algorithm.

3.1 Motivation

In the Mapper algorithm, the length of small intervals and the percentage of overlap be-
tween consecutive intervals is called the resolution parameters. The length of intervals can
be used equivalently by the number of intervals because of the negative correlation. When
the overlapping percentage is fixed, the longer the length of small intervals is, the smaller
the number of intervals is, and vice versa. Moreover, the number of intervals is positively
correlated with the number of nodes in the output shape. When the number of intervals de-
creases (increases), the number of nodes also decreases (increases) correspondingly. Similarly,
the overlapping percentage is also positively correlated with the connectivity in the output
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shape. When the overlapping percentage increases (decreases), the degree of connectivity is
higher (lower).

The remarkable thing is the number of intervals and percentage of overlap is extremely sen-
sitive to the output shape. It is often unstable because a slight change in resolution parameters
can lead to a considerable difference in the output. In Figure 15, the results of the Mapper algo-
rithm from these two situations are very different, although using the same dataset. The cover
is well-chosen if the output is deemed the most informative form from the user’s perspective.
Moreover, covering the filter range by regular intervals and same overlapping percentage is
one weak point in the choice of cover. This choice inadvertently causes unnatural phenomena
in the covering method, and it can be improved by using a clustering process.

Overlapping clustering is more natural and effective than exclusive clustering in many real
situations. This clustering randomly separates data points into clusters with different overlap-
ping percentages. It is quite suitable and compatible with the cover choice step for the filter
range in the Mapper algorithm. According to the topological meaning, these clusters play a
role as a cover of the filter range. So, there are three leading causes why overlapping clustering
is a bright and promising candidate to perfect the Mapper algorithm in choosing cover more
naturally:

(1) Firstly, it is more flexible since each object can belong to two or more clusters.

(2) Secondly, the overlapping percentage between clusters is unforeseen and random.

(3) Thirdly, clusters are separated reasonably based on the density of data points.

In conclusion, the Mapper algorithm needs to optimize the choice of cover on the filter
range. One of the brightest candidates to meet this demand is overlapping clustering. There-
fore, the FCM algorithm, the most famous representative of overlapping clustering, is used to
develop the Mapper algorithm in this situation. How does it perfect the original algorithm
to construct a novel algorithm? What are the similar and different points of two original and
improved versions? These questions are discussed in the next section.

3.2 Description

In the same way, as with the Mapper algorithm, the FM algorithm uses a discrete dataset X
as its input. This algorithm starts working with four user-defined parameters as follows:

– Distance metric d is used to calculate distances between data points for clustering or par-
titioning.

– Filter function f : X æ R projects all data points in X to R.

– Cover I of the filter range f (X) with is responsible for dividing the filter range automat-
ically into N irregular intervals and the random overlapping percentage between them.
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Step 1
(Projecting)

Step 2
(Covering)

Step 3
(Clustering / Partitioning)

Step 4
(Constructing)

(a) 7 intervals and 40% overlap

Step 1
(Projecting)

Step 2
(Covering)

Step 3
(Clustering / Partitioning)

Step 4
(Constructing)

(b) 3 intervals and 20% overlap

Figure 15: The illustration of the Mapper algorithm on a sampled point cloud with a noisy P
structure for different resolution parameters.
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Table 4: The description of the FM algorithm.

Input Dataset X with finite elements.

Parameters

– Distance metric d,
– Filter function f : X ≠æ R,
– Cover I of the filter range f (X) with N irregular intervals and the overlap-
ping threshold · .
– Clustering algorithm C (option).

Method

1: Projecting all data points in X to R by using the filter f .
2: Covering f (X) by N irregular intervals and the random overlapping per-
centage between them based on the threshold · .
3: Decomposing the pre-image f≠1

(Ii) of each cover interval Ii into clusters
Ci,1, Ci,2, Ci,3, . . . , Ci,ni by using the clustering algorithm C or partitioning
connected components based on the distance metric d.
4: Constructing the simplicial complex G defined by clusters Cij and their
intersections.

Output Simplicial complex G as a geometric representation of X.

This overlap determines the connectivity between two intervals and depends on the thresh-
old · . The output of the FCM algorithm is seen as the reasonable cover I on the filter range
f (X).

– The clustering algorithm C is used to separate data points in every element of the pull-back
cover induced by the pair (f, U). This algorithm changes the representation from a topo-
logical version to a statistical one. As well as the Mapper algorithm, the Mapper algorithm
does not depend on a specific clustering algorithm. So, in addition to using clustering
algorithms, users can replace this process by partitioning connected components.

This novel algorithm’s output is also a network graph or a simplicial complex, in general, that
is a geometric representation of the dataset X that consists of nodes and edges. The color and
the size are the two main characteristics of nodes. The color usually indicates the average of
the colored values of points, while the size usually instructs the number of points. The blue
and red sequentially display the minimal and maximal values, respectively. The colors ranging
from blue to red express the colored values ranging from low to high.

The FM algorithm is described in detail with the steps in Table 4. It is compared with the
original algorithm, specifically in Table 5. Moreover, both algorithms are also illustrated in
Figure 16 on the same point cloud sampled with the noisy P structure.

The cover on the filter range in each algorithm depends on two quantities known as the
resolution parameters. In the Mapper algorithm, these parameters consist of the number N

of regular intervals and the same overlapping percentage p. The FM algorithm consists of
the number N of irregular intervals and the overlapping threshold · that creates a random
overlap between intervals. Using a threshold for some limited purposes is one of the popular
techniques in data mining, especially fuzzy theory [178, 179]. In this situation, the threshold ·
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Step 1
(Projecting)

Step 2
(Covering)

Step 3
(Clustering / Partitioning)

Step 4
(Constructing)

(a) Mapper algorithm

Step 1
(Projecting)

Step 2
(Covering)

Step 3
(Clustering / Partitioning)

Step 4
(Constructing)

(b) FM algorithm

Figure 16: The illustration of algorithms on a sampled point cloud with a noisy P structure.
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Table 5: The comparison between algorithms in the corresponding steps.

Step Mapper algorithm FM algorithm

1 Projecting all data points in X to R by using the filter f .
2 Covering the filter range f (X) by a

cover I that depends on the following
resolution parameters:

Covering the filter range by a cover I

that is obtained by the FCM algorithm
and depends on the following resolu-
tion parameters:

– N regular intervals, – N irregular intervals,
– Same overlapping percentage p. – Random overlapping percentage

based on the threshold · .
3 Decomposing the pre-image f≠1

(Ii) of each cover interval Ii into clusters
Ci,1, Ci,2, Ci,3, . . . , Ci,ni by using the clustering algorithm C or partitioning
connected components based on the distance metric d.

4 Constructing the simplicial complex G defined by clusters Cij and their in-
tersections.

decides the overlapping percentage between intervals by comparing the membership degrees
to the overlapping threshold. A data point belongs to an interval if its membership degree is
over the threshold · . Therefore, it can belong to one or more intervals. Moreover, the overlap
is created with random and unforeseen percentages, depending on the distribution of data
points. The resolution parameters improved by the FCM algorithm are a highlight to make it
more natural and reasonable in choosing cover on the filtering range.

From the description and implementation, the FM algorithm outperforms the Mapper al-
gorithm on the following aspects:

(1) Firstly, the overlap in the Mapper algorithm only occurs in pairs and for adjacent in-
tervals of the filter range, but this does not happen in the FM algorithm. One thing to
remember for this algorithm is that the overlap between intervals cannot be necessarily
consecutive and pairwise.

(2) Secondly, it is straightforward to see that if only using one real-valued function in the
original method, the output is a simplicial complex with a dimension no greater than
1. So, to create a multi-dimensional simplicial complex, users need to use it with more
than one real-valued filter or a vector-valued filter. However, the output in the novel
method can be a simplicial complex with the dimension greater than 1, although only
using one real-valued filter. It depends on the overlapping threshold used in the FCM al-
gorithm. This substantial property of the FM algorithm makes it valuable and influential
in extracting the high-dimensional topological data structure.

(3) Thirdly, the choice of cover in the Mapper algorithm is very complicated in the case of
more than one real-valued filter. There is no standard rule yet for this choice. When the
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(a) Rectangles (b) Hexagons

Figure 17: Two covering methods are illustrated in the original paper for the Mapper algorithm
with two real-valued filters.

Mapper algorithm was first introduced [13], two covering ways were illustrated, includ-
ing rectangles and hexagons, see Figure 17. It is easy to see that the dimension of all
simplexes in the created simplicial complex is insufficient from 0 to the number of filters.
Some topological structures are missed if the choice of cover is not good. So, the option
is difficult for the Mapper algorithm with multiple filters. The FM algorithm can sur-
mount this because of its flexibility and automation in covering the filter range through
the overlapping threshold.

(4) Finally, the cover generated in the FM algorithm is more reasonable and suitable because
the FCM algorithm creates the intervals based on the density and distribution of data
points.

This chapter uses the FM algorithm in the abridged form instead of the general form. The
abridged form is explained in that the relationship between intervals is only considered in a
pairwise manner, although the number of intervals that intersect can be over 2. Therefore,
the output is a simplicial complex with a dimension no greater than 1. In other words, the
FM algorithm in abridged form creates a graph similar to the Mapper algorithm in a simple
form with a real-valued function. This abridged form can be understood as a plane shape
of the general form. For a careful understanding of the distinction between these forms, an
illustration is clearly shown in Figure 18. The mentioned FM algorithm is always understood
in the abridged form unless otherwise specified.
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The FM algorithm is only different from the original one in covering the filter range. It
is developed naturally by dividing the filter range into irregular intervals automatically with
random overlapping percentages. Considerable attention for both algorithms is whether their
output is similar or not. By visualizing the numerical datasets, their outcomes are relatively
similar in a topological sense. The similarity in the visualization of a point cloud sampled with
the P structure by both algorithms is shown in Figure 16. It should be noted that this is only
a subjective conjecture based on the shape of some artificial datasets. The efficiency of the FM
algorithm needs to be validated by testing with real datasets.

The following section discusses the datasets’ characteristics and experimental evaluations
to compare the results between Mapper and FM algorithms.

3.3 Experiment

There are many software packages that employ approaches based on the Mapper algorithm.
This implementation uses the KeplerMapper, a free Python package for the Mapper algorithm
by Saul and Veen [112, 113], to conduct the experiments. Although it is not a professional or
mature product, the authors try to provide the scientific community with a complete, user-
friendly, fast, and extensible tool. Since its source code is open, it is extended and modified to
create source code for the FM algorithm.

In the previous well-known publications, the Mapper algorithm has proven to have several
advantages compared to some classical clustering techniques, such as single-linkage, K-means,
and PCA. Some papers focus on reaching their clustering performances to highlight the effec-
tiveness of this algorithm in identifying various meaning sub-groups clearly and uniquely [56,
89, 17, 93, 94]. So, in this section, we only examine the efficiency of the FM algorithm by eval-
uating it with the Mapper algorithm to accentuate this novel algorithm. This evaluation is
conducted by comparing the output shape in a topological sense and the internal assessment
of the clustering process. Therefore, our experiments are implemented sequentially on three
datasets with detailed descriptions.

Each dataset is alternately mined using both two algorithms, Mapper and FM. For each
dataset, the parameters concerning the filter, number of intervals, and clustering algorithm are
kept the same for both algorithms. The overlapping percentage p in the Mapper algorithm is
selected in the same way as in previous well-known experiments for each dataset [13, 17]. The
overlapping threshold · in the FM algorithm is chosen to prove that it can create the output
shape somewhat similar to the Mapper algorithm from a topological standpoint.

Moreover, for each dataset, the clustering results of both algorithms, Mapper and FM, are
evaluated based on the internal indices. Three internal indices are considered rather suitable
candidates, including the Davies-Bouldin index, the Dunn index, and the silhouette coefficient.
Both algorithms overlap in clustering, but the enhanced algorithm usually generates more to-
tal samples than the original algorithm. Therefore, the Davies-Bouldin and Dunn indices are
not chosen as they are sensitive to large total samples and overlapping clustering. The sil-
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Figure 19: The visualization of the Unit Circle dataset.

Table 6: The parameter settings for the Unit Circle dataset.

Mapper

FILTER
FUNCTION

NUMBER OF
INTERVALS

OVERLAPPING
PERCENTAGE

CLUSTERING
METHOD

Sum N = 7 p = 50% DBSCAN

FM

FILTER
FUNCTION

NUMBER OF
INTERVALS

OVERLAPPING
THRESHOLD

CLUSTERING
METHOD

Sum N = 7 · = 0.1 DBSCAN

houette coefficient is chosen because of its suitability in measuring the cohesion of an object
to clusters. The silhouette coefficient is a method to measure the overall quality of clustering
[180]. It compares the average distance to elements in the same cluster with the average dis-
tance to elements in other clusters. The silhouette value is in the closed interval [≠1; 1]. The
values near zero indicate overlapping clusters, while a negative value generally shows that the
sample corresponding to that value has been assigned to the wrong cluster. Samples with a
high silhouette value are considered well clustered; otherwise, they may be outliers [180]. The
silhouette coefficient score is the mean of the silhouette coefficients of all samples.

3.3.1 Unit Circle Dataset

The Unit Circle dataset has approximately 100 points on the circle with unit radius, centered
at the origin in the Cartesian coordinate system in the Euclidean plane. This dataset is widely
used as a basic illustration for the Mapper algorithm [13, 93, 94]. The visualization of the Unit
Circle dataset is presented in Figure 19.
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(a) Mapper (b) FM

Figure 20: The outputs for the Unit Circle dataset.

Table 7: The experimental results for the Unit Circle dataset.

NODES EDGES UNIQUE SAMPLES TOTAL SAMPLES

Mapper 12 12 100 131

FM 12 12 100 125

Both algorithms were used to analyze the Unit Circle dataset in this experiment. Their
corresponding parameters are described in Table 6. The Euclidean distance is considered a
metric for this dataset. The filter is the sum function of component coordinates. The clustering
algorithm is DBSCAN that uses default parameters from the scikit-learn library. The node’s
color indicates the average lens values at points in the set represented by the node. The red
expresses a high value, and the blue defines a low value. The node’s size indicates the number
of points in the set represented by the node. This size positively correlates with the number of
points contained in it.

Figure 20 shows the outputs of two algorithms for the Unit Circle dataset. The left shape
belongs to the Mapper algorithm, and the right shape belongs to the FM algorithm. They are
the same shape, structure, number of nodes, and number of edges. The colors and sizes of the
nodes are relatively similar. The information about nodes, edges, and samples is summarized
in Table 7.

The overlapping threshold is adjusted so that the output of both algorithms, Mapper and
FM, is similar in the topological sense. Then, its value is recognized in the range from 0.10 to
0.19. After that, the silhouette coefficient scores are calculated in some representative cases, and
the results are reported in Table 8. In this case, it can be seen that the scores of the FM algorithm
are always higher, so their mean is also higher. This phenomenon is inevitable because the FCM
algorithm updates the membership degrees and the cluster centroids to cover the filter range.
The cluster centroids divided the cover interval reasonably based on the density of the data
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Table 8: The silhouette coefficient scores for the Unit Circle dataset.

Mapper

OVERLAPPING
PERCENTAGE

SILHOUETTE COEFFICIENT
SCORE

50% 0.128

FM

OVERLAPPING
THRESHOLD

SILHOUETTE COEFFICIENT
SCORE

0.10 0.207

mean = 0.226

0.11 0.214

0.12 0.214

0.13 0.219

0.14 0.227

0.15 0.229

0.16 0.229

0.17 0.229

0.18 0.240

0.19 0.247

points. Overall, the FM algorithm is considered better because of the high silhouette coefficient
scores.

3.3.2 Reaven and Miller Diabetes Dataset

The Reaven and Miller diabetes dataset resulted from a study performed at Stanford Uni-
versity in the 1970s [181]. In this, 145 non-obese adult patients were examined. Six quantities
were reported for each patient, namely age, relative weight, fasting plasma glucose level, test
plasma glucose level (a measure of glucose intolerance), plasma insulin during the test (a mea-
sure of insulin response to oral glucose), and steady-state plasma glucose (a measure of insulin
resistance). Therefore, the Reaven and Miller diabetes dataset has six dimensions.

In 1979, Reaven and Miller applied the projection pursuit method to this dataset. They ob-
tained a direct visualization of the three-dimensional shape of the data set, as shown in Figure
21. This visualization is described as “a boomerang with floppy wings and a fat middle” [88].
The central core represents normal patients, while two “flares” emanating from the main body
represent patients with chemical diabetes and overt diabetes. In 2007, the Mapper algorithm
was described as an automatic tool for clearly detecting two “flares” in this diabetes dataset ef-
fectively only with a simple function in statistics [13]. This algorithm quickly creates highlights
and emerges rapidly because of its simplicity and effectiveness.

In this case, both algorithms were used to analyze the Reaven and Miller diabetes dataset.
Their corresponding parameters are described in Table 9. The Euclidean distance is considered
a metric for this dataset. The filter is a KDE function in statistics. The clustering algorithm
is the single-linkage clustering that uses default parameters from the scikit-learn library. The
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Figure 21: The three-dimensional visualization of the Reaven and Miller diabetes dataset.

Table 9: The parameter settings for the Reaven and Miller Diabetes dataset.

Mapper

FILTER
FUNCTION

NUMBER OF
INTERVALS

OVERLAPPING
PERCENTAGE

CLUSTERING
METHOD

KDE N = 5 p = 50% Single-Linkage

FM

FILTER
FUNCTION

NUMBER OF
INTERVALS

OVERLAPPING
THRESHOLD

CLUSTERING
METHOD

KDE N = 5 · = 0.06 Single-Linkage

(a) Mapper (b) FM

Figure 22: The outputs for the Reaven and Miller Diabetes dataset.
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Table 10: The experimental results for the Reaven and Miller Diabetes dataset.

NODES EDGES UNIQUE SAMPLES TOTAL SAMPLES

Mapper 10 9 145 191

FM 10 12 145 215

node’s color indicates the average lens values at points in the set represented by the node. The
red expresses a high value, and the blue says a low value. The node’s size indicates the number
of points in the set represented by the node. This size positively correlates with the number of
points contained in it.

Figure 22 shows the outputs of two algorithms for this diabetes dataset. The left shape
provides the output of the original algorithm, and the right shape offers the output of the
enhanced algorithm. They are the same in terms of shape and number of nodes. The colors
and sizes of the nodes are relatively similar. Two “flares” that represent patients with chemical
diabetes and overt diabetes appear in the output of each algorithm. The “flares” are not as
symmetrical as those in the Mapper output for the FM algorithm. The connection between
nodes is different in the two methods, especially concerning the left “flares”. In the left shape,
the connectivity happens for only two points to produce the edges. In contrast, this connectivity
happens for three points to stimulate the closed lines with a triangular form in the right shape.
It is caused by a difference in covering the filter range. The overlap between intervals in the
FM algorithm cannot be consecutive and pairwise. The representation of the FM algorithm is
very similar to the research results of Reaven and Miller because the density of points in two
“flares” is varied, and some points in one “flare” are more scattered than in the other.

Table 10 summarizes the outputs’ information about the nodes, edges, and samples. The
FM algorithm creates more edges in this case as the overlap happens between many intervals.

The overlapping threshold is adjusted so that the output of both algorithms, Mapper and
FM, is similar in the topological sense. Then, it receives a value from 0.056 to 0.061 to ensure
that the above condition is guaranteed. After that, the silhouette coefficient scores are calcu-
lated, and Table 11 reports their results in some representative cases. These scores of the FM
algorithm are all higher. The silhouette coefficient scores of both the algorithms are very near
zero and have negative values, demonstrating overlap between clusters and wrong cluster as-
signment for some data points, respectively. The FM algorithm is assessed to be better in this
experiment with a high score in the silhouette coefficients.

3.3.3 NKI Breast Cancer Dataset

In 2013, the NKI breast cancer dataset [182] was used in a TDA widely cited paper [17] to
prove the usefulness of topology in extracting insights from the shape of complex data. Besides
survival information, the NKI dataset consists of gene expression levels extracted from 272 tu-
mors and is analyzed using about 1500 most varying genes. The Mapper algorithm demon-
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Table 11: The silhouette coefficient scores for the Reaven and Miller Diabetes dataset.

Mapper

OVERLAPPING
PERCENTAGE

SILHOUETTE COEFFICIENT
SCORE

50% ≠0.036

FM

OVERLAPPING
THRESHOLD

SILHOUETTE COEFFICIENT
SCORE

0.056 ≠0.029

mean = ≠0.028

0.057 ≠0.029

0.058 ≠0.029

0.059 ≠0.026

0.060 ≠0.026

0.061 ≠0.026

Figure 23: The networking visualization has a structure shaped like a horizontal letter Y along
with several separate components.

strated its effectiveness in stratifying patients more finely than standard clustering methods.
Suitably identifying cancer subtypes is complex in the medical field since sub-populations can
be small and their relationships very difficult. Moreover, it is essential to identify interesting
patient sub-groups for targeted therapy to save their lives.

Through the NKI breast cancer dataset, Lum et al. used the Mapper algorithm to identify
unique patient subsets related to the estrogen receptor gene (ESR1) [17]. In the medical field,
the expression level of ESR1 positively correlates with improved prognosis, given that patients
with a high ESR1 level are likely to respond well to standard therapies. The Mapper algorithm
used its geometric representation to visualize this dataset using gene expression and survival
information. It proves that sub-groups still do not respond well to therapy among these high
ESR1 patients. In addition, although low ESR1 levels strongly correlate with poor prognosis,
there are still sub-groups with high survival over the years among these low ESR1 patients.
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Table 12: The parameter settings for the NKI Breast Cancer dataset.

Mapper

FILTER
FUNCTION

NUMBER OF
INTERVALS

OVERLAPPING
PERCENTAGE

CLUSTERING
METHOD

L-Infinity Centrality N = 10 p = 30% Single-Linkage

FM

FILTER
FUNCTION

NUMBER OF
INTERVALS

OVERLAPPING
THRESHOLD

CLUSTERING
METHOD

L-Infinity Centrality N = 10 · = 0.08 Single-Linkage

(a) Mapper (b) FM

Figure 24: The outputs for the NKI Breast Cancer dataset.

These results are proven through the network with a structure shaped like a horizontal letter Y
and several separate components in Figure 23.

Both algorithms are used to analyze the NKI breast cancer dataset in this situation. Their
corresponding parameters are described in Table 12. The correlation distance is considered a
metric for this dataset. The filter is the L-infinity centrality function that computes for every
data point the maximal distance to any other data point in the dataset. The clustering algo-
rithm is single-linkage clustering that uses default parameters from the scikit-learn library. The
node’s color indicates the average lens values at points in the set represented by the node. The
red expresses a high value, and the blue says a low value. The node’s size indicates the number
of points in the set represented by the node. This size positively correlates with the number of
points contained in it.

Figure 24 shows the outputs of two algorithms on this breast cancer dataset. The right shape
indicates the FM output, and the left shape means the Mapper output. These shapes are the
same concerning form, number of nodes, number of edges, and number of connected compo-
nents. The colors and sizes of the nodes are relatively similar. In this experiment, although only
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Table 13: The experimental results for the NKI Breast Cancer dataset.

NODES EDGES UNIQUE SAMPLES TOTAL SAMPLES

Mapper 20 14 272 365

FM 20 14 272 398

Table 14: The silhouette coefficient scores for the NKI Breast Cancer dataset.

Mapper

OVERLAPPING
PERCENTAGE

SILHOUETTE COEFFICIENT
SCORE

30% ≠0.119

FM

OVERLAPPING
THRESHOLD

SILHOUETTE COEFFICIENT
SCORE

0.10 0.207

mean = ≠0.099

0.07 ≠0.095

0.08 ≠0.094

0.09 ≠0.099

0.10 ≠0.100

0.11 ≠0.095

0.12 ≠0.100

0.13 ≠0.100

0.14 ≠0.100

0.15 ≠0.100

0.16 ≠0.100

0.17 ≠0.100

one filter was used to process instead of two filter functions, as in [17], the outputs still have
a structure shaped like a letter Y with several separate components. Both the Mapper and the
FM algorithms detect special patient sub-groups. The first sub-group, which has high survival,
although low ESR1, is shown on the branch colored blue of the letter Y structure. The second
sub-group, which has high ESR1 but does not respond well to therapy, is shown in the orange
disconnected components. The clear quantitative descriptions of nodes, edges, and samples
are summarized in Table 13.

The overlapping threshold is adjusted so that the output of both algorithms, Mapper and
FM, is similar in the topological sense. Then, its value is limited from 0.07 to 0.17, while the
overlapping percentage of the Mapper algorithm is fixed. After that, the silhouette coefficient
scores are calculated in some representative cases, and the results are reported in Table 14 with
some specific values. All of them are also higher than the score in the original method. Once
again, the scores of both algorithms are also near zero and negative. With the advantages
inherited from fuzzy clustering in covering the filter range, the FM algorithm has good scores
in the silhouette coefficient, so it clusters data better than the Mapper algorithm.
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Overall, the following observations are recognized concerning the experimental results on
the three real-world datasets.

(1) Firstly, from the topological standpoint, the output of the FM algorithm is somewhat
similar to that of the Mapper algorithm in cases when the respective parameters are well-
chosen.

(2) Secondly, the FM algorithm usually generates higher total samples than the Mapper al-
gorithm. This phenomenon can be explained entirely at the phase of covering the filter
range in each algorithm. In the Mapper algorithm, each interval only intersects with
the consecutive intervals. But, because of the automation in dividing cover intervals in
the FM algorithm, each interval can cross with more intervals and cannot necessarily be
consecutive.

(3) Finally, the FM algorithm has a good clustering evaluation based on the silhouette coeffi-
cient score because of inheriting some valuable properties from the overlapping cluster-
ing.

3.4 Discussion

In this chapter, the Mapper algorithm was enhanced to the FM algorithm by applying the
advantages of the FCM clustering algorithm. It is optimized for effectively choosing the suit-
able cover for the filter range. The cover choice develops towards the automatic division of in-
tervals and natural overlap with random percentages. The excellent ability of the FM algorithm
is demonstrated through experiments on real-world datasets and corresponding comparisons
to the original method. The FM can generate outputs similar to those of the Mapper algorithm
from the topological standpoint, although the cover choices on these algorithms are different.
Furthermore, this novel algorithm produces well-clustered results based on the silhouette co-
efficient score. This good result is caused by sensibly dividing the filter range into intervals
based on the density and distribution of data points.

This development represents the first step of different approaches to parameter choice opti-
mization for the Mapper algorithm in the future. This algorithm is quite sensitive to the choices
of filter and cover, so optimizing the parameters to achieve a better output is still an exciting
and open problem. Moreover, in the FM algorithm, an overlapping threshold is only found
with positive results. The best choice for this parameter is not still fully solved. Furthermore,
future research could also study the general FM algorithm, which has an output that is multi-
dimensional simplicial complexes. We expect that these problems will be addressed soon.
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4 Shape FCM Algorithm

In Chapter 4, a novel algorithm, called Shape FCM, is constructed based on the FCM al-
gorithm with the exclusive properties of the Mapper algorithm. This algorithm can not only
exhibit the same clustering ability as the FCM algorithm, but also reveal some relationships
through visualizing the global data shape supplied by the Mapper algorithm. It is presented
with convincing arguments, well-proved evidence, and precise experiments. The algorithm
performance is demonstrated through a comparative analysis involving the original algorithm,
Mapper, and the other fuzzy set-based improved algorithm, FM. Four synthetic and real-world
data datasets, including Unit Circle, Two Concentric Circles with Noise, 3D Trefoil Knot, and
Reaven & Miller Diabetes. The comparison is conducted concerning output shape in the topo-
logical sense, clustering stability, and internal evaluation. Moreover, the SFCM algorithm also
shows its potential to big data by testing on high-dimensional datasets with acceptable results.

Overall, the contributions of Chapter 4 can be summarized as follows:

[C4.1] Proposing the SFCM algorithm with two simultaneous possibilities for mining data:
fuzzy clustering with the FCM algorithm and shape detecting as with the Mapper
algorithm.

[C4.2] Demonstrating that the SFCM algorithm can generate similar outputs from the topo-
logical standpoint as the Mapper and FM algorithms.

[C4.3] Reporting well-clustered results based on the SFCM algorithm’s clustering stability
and internal index in most experimental cases compared to the Mapper and FM algo-
rithms.

[C4.4] Demonstrating that the SFCM algorithm can visualize highly complex data in a sim-
ple, meaningful, and informative form with potential applicability to big data.

Moreover, the rest of this chapter is organized as follows. Section 4.1 presents the motivation
for proposing the SFCM algorithm. Section 4.2 describes the algorithm carefully with visual il-
lustrations. The experimental results on four real-world datasets are reported clearly in Section
4.3 based on the comparison between this proposed algorithm and two previous algorithms.
Finally, the conclusions in Section 4.4 review what has been achieved to orientate and develop
future researches on the SFCM algorithm.

4.1 Motivation

Clustering is an effective data mining technique. It divides data into groups of similar
objects, known as clusters, that are meaningful and useful [34]. Objects in the same group are
more similar in a certain sense than others in other groups. There are two types of clustering,
exclusive clustering, and overlapping clustering. In exclusive clustering, each object belongs
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to exactly one cluster. Each object can belong to two or more clusters in overlapping clustering
depending on the membership function. Membership degree, assigned to each object, indicates
the degree to which this object belongs to each cluster. The fuzzy set concept introduced by
Zadeh in 1965 [38] is considered the inspiration for overlapping clustering. Fuzzy set theory
has become an increasingly useful tool to describe situations in which the data are imprecise
or vague, such as linguistics [183, 39, 184], decision-making [41, 185, 186], web mining [44, 187,
188], frequent itemset mining [189, 190, 191], bioinformatics [192, 193, 194], machine learning
[195, 196, 197], and so on.

It is worth noting that the Mapper algorithm is still a fuzzy clustering algorithm, from a
theoretical perspective, with a visualization ability to extract the shape summary of data. The
algorithm results are still very sensitive to the choice of the resolution parameters on the cover.
Covering the filter range by equal intervals with the same overlapping percentage is also a
weakness in the cover choice. Moreover, determining which filter to be chosen is another prob-
lem that needs to be considered when applying the Mapper algorithm in practice. Inspired
by the essence of this algorithm in the trend of optimizing the choice of parameters, a novel
algorithm, called the SFCM, is proposed based on the two algorithms, FCM and Mapper. The
SFCM algorithm is constructed on the foundation of a bright and significant representative in
overlapping clustering by carefully combining with the unique advantages of TDA. This al-
gorithm brings two simultaneous data possibilities: fuzzy clustering with the FCM algorithm
and shape detection with the Mapper algorithm. It is proposed as a summarization technique
to transform large and complex data into informative representations and provide interactive
visualizations for their exploration. In particular, from the TDA perspective, the SFCM algo-
rithm significantly reduces the dependence on the parameters. Like the original methods, this
approach is expected to solve practically and robustly some problems encountered in many
fields, especially in bioinformatics and neuroscience [59, 20, 21, 198].

The SFCM algorithm is introduced as a fuzzy clustering algorithm for extracting mean-
ingful and straightforward descriptions of high-dimensional datasets. This algorithm is con-
structed by carefully combining the advantages of the two algorithms, FCM and Mapper.

(1) Firstly, concerning the FCM algorithm, the SFCM algorithm has not only entirely inher-
ited its advantages in clustering, but also becomes powerful in terms of the abilities of
qualitative analysis, simplification, and visualization of high-dimensional datasets.

(2) Secondly, compared to the Mapper algorithm, the parameter choice of the SFCM algo-
rithm is quite simple, as it only depends on two items instead of four being encountered
in the original method

Therefore, the development and improvement of both component algorithms can be used in
this new algorithm to increase its operating performance in specific ways.

In conclusion, combining clustering and extracting shape information in data mining is a
relatively new, promising, and feasible idea. This combination is conducted on the famous
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Table 15: The comparison between algorithms in the corresponding steps.

Step Mapper algorithm SFCM algorithm

1 Projecting all data points in X to R by
using the filter f .

2 Covering the filter range f (X) by a
cover I that depends on the following
resolution parameters:

Covering the filter range by a cover I

that is obtained by the FCM algorithm
and depends on the following resolu-
tion parameters:

– N regular intervals, – N irregular intervals,
– Same overlapping percentage p. – Random overlapping percentage

based on the threshold · .
3 Decomposing the pre-image f≠1

(Ii)

of each cover interval Ii into clusters
Ci,1, Ci,2, Ci,3, . . . , Ci,ni by using the
clustering algorithm C or partitioning
connected components based on the
distance metric d.

4 Constructing the simplicial complex G defined by clusters Cij and their in-
tersections.

representative of each field, overlapping clustering and TDA. How are two well-known algo-
rithms, FCM and Mapper, combined? What are the similar and different points of the perfect
combined method with the original component methods? The following section discussed
these questions.

4.2 Description

In the same way, as with the Mapper algorithm, the SFCM algorithm uses a discrete dataset
X as its input. Due to the combination of two algorithms, this algorithm starts working with
four user-defined parameters as follows:

– Number of clusters C.

– Fuzzification exponent m whose value has been often chosen the fixed value m = 2.0

based on the previous empirical studies.

– The termination criteria, Á œ (0; 1) or kmax.

– The overlapping threshold · that decides the overlap between clusters by comparing the
membership degree of each data point.

The SFCM algorithm also creates a geometric representation of the dataset X that consists
of nodes and edges, as in the case of the Mapper algorithm. The number C of clusters and
the overlapping threshold · called the resolution parameters, affect the output result. A node
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Table 16: The description of the SFCM algorithm.

Input Dataset X with finite elements.

Parameters

– Number of clusters C,
– Fuzzification exponent m that is often set to 2.0,
– Termination criteria: Á œ (0; 1) or kmax.
– The overlapping threshold · .

Method

1: Clustering on X by using the FCM algorithm:
1.1: k = 0.
1.2: Initializing the fuzzy partition matrix U (0).
1.3: repeat

1.3.1: Calculating the cluster centroid matrix C
(k)

= (vj)1◊C by using
the following formula:

’j = 1, 2, . . . , C, v(k)
j =

nq
i=1

(uij)
m xi

nq
i=1

(uij)
m

.

1.3.2: Updating the fuzzy partition matrix U (k)
= (uij)n◊C by using

the following formula:

’i = 1, 2, . . . , n, ’j = 1, 2, . . . , C, u(k)
ij =

1

Cq

k=1

1
Îxi≠vjÎ
Îxi≠vkÎ

2 2
m≠1

.

1.3.3: k = k + 1.
1.4: until max

i,j

Ó---u(k+1)
ij ≠ u(k)

ij

---
Ô

< Á or k = kmax.

1.5: Using the overlapping threshold · to identify C clusters from the fuzzy
partition matrix U .

4: Constructing the simplicial complex G defined by clusters Ci and their
intersections.

Output Simplicial complex G as a geometric representation of X.
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Step 1
(Projecting)

Step 2
(Covering)

Step 3
(Clustering / Partitioning)

Step 4
(Constructing)

(a) Mapper algorithm

Step 1
(Clustering)

(b) FCM algorithm

Step 1
(Clustering)

Step 2
(Constructing)

(c) SFCM algorithm

Figure 25: The illustration of algorithms on a sampled point cloud with a noisy P structure.
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represents each cluster, and an edge shows each connection between two clusters. The number
of nodes positively correlates with the number of clusters in the output shape, and the connec-
tivity negatively correlates with the overlapping threshold. The color and the size are the two
main characteristics of nodes. The color usually indicates the average of the colored values of
points, while the size usually instructs the number of points. The blue and red sequentially
display the minimal and maximal values, respectively. The colors ranging from blue to red
express the colored values ranging from low to high.

The SFCM algorithm is deployed through two main processes:

(1) Step 1. In the first process, the FCM algorithm organizes the points of the dataset X =

{x1, x2, . . . , xn} into C clusters correspoding to centroids C = {v1, v2, . . . , vC} with the
fuzzy partition matrix U determined by the membership degrees of the points for each
cluster. The main task of this process is to iteratively minimize the following objective
function:

nÿ

i=1

Cÿ

j=1
(uij)

m
Îxi ≠ vjÎ

2 , (22)

where the membership degree uij of the point xi in the cluster j is constrained as follows:

’i = 1, 2, . . . , n, ’j = 1, 2, . . . , C, uij œ [0; 1] , (23)

and

’i = 1, 2, . . . , n,
Cÿ

j=1
uij = 1. (24)

The fuzzification exponent m is any real number greater than 1 and is often set to 2.0.
The norm Î.Î is a Euclidean metric expressing dissimilarity between arbitrary points and
a given centroid.

The fuzzy partition is carried out through iterative minimization of the objective func-
tion through updating the cluster centroids vj and the membership degrees uij by the
following formulas:

’j = 1, 2, . . . , C, vj =

nq
i=1

(uij)
m xi

nq
i=1

(uij)
m

, (25)

and
’i = 1, 2, . . . , n, ’j = 1, 2, . . . , C, uij =

1

Cq

k=1

1
Îxi≠vjÎ
Îxi≠vkÎ

2 2
m≠1

. (26)

The FCM algorithm stops when one of the termination criteria is satisfied:

max
i,j

Ó---u(k+1)
ij ≠ u(k)

ij

---
Ô

< Á œ (0; 1) , (27)
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or
k = kmax, (28)

The clusters then serve as the covers for X, and the overlapping threshold · is used to
express the degree of overlap between any two members of the covers. Using a threshold
for specific purposes is a widespread technique in fuzzy data mining [178, 179]. A data
point belongs to a cluster if its membership degree for this cluster is greater than or equal
to the threshold · . Therefore, it can belong to one or more clusters.

(2) Step 2. In the second process, the nerve of the refined cover defined by the clusters on
data X is constructed as the Mapper algorithm does. It is necessary to note that the re-
fined cover is generated from the overlapping clusters in the cover on filter range by
separating them into single connected components. The node vi represents for each com-
ponent Ci. Every pair of nodes corresponding to two clusters C1 and C2 is connected
by an edge if and only if their intersection C1 fl C2 is not empty. The color and the size
are the two main characteristics of nodes. The color usually indicates the average of the
colored values of points, while the size usually instructs the number of points. The blue
and red sequentially display the minimal and maximal values, respectively. The colors
ranging from blue to red express the colored values ranging from low to high.

The SFCM algorithm is described in detail with the steps in Table 16. It is compared with the
original algorithm, specifically in Table 15. As an example, the SFCM algorithm is annotated on
a point cloud sampled with the noisy P structure in Figure 25 with two-component algorithms,
FCM and Mapper. In this case, the point cloud is first covered by the nine clusters obtained
by the FCM algorithm. The graph is then composed of vertices representing the clusters and
edges representing the connections between the two non-intersecting clusters. The values of
the data points color the nodes through the projection on the vertical line. The high value is
red, and the low value is blue.

The membership degree uij of point xi to the cluster Cj belongs to the closed interval [0; 1]

and
Cq

j=1
uij = 1 for all 1 Æ i Æ n. Let

T0 = min
i,j

uij , (29)

and
T1 = min

i
max

j
uij (30)

If · Æ T0, for all i œ {1, 2, . . . , n} and j œ {1, 2, . . . , C}, all points xi belong to all clusters Cj , so
the output is a complete graph. The outputs have the same presentations for all 0 Æ · Æ T0.
If · > T1, there exist points that are not in any cluster. Therefore, the potential values of ·

are limited to a close interval [T0; T1]. The point xi belongs to the cluster Cj if and only if
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uij = max
k

uik in case · Ø T1. This condition ensures that each data point belongs to at least a
single cluster.

Theorem 1 If G· = (V, �· ) is the output graph of the SFCM algorithm corresponding to threshold · ,
then for all ·, · Õ

œ [T0; T1],
· Õ

Æ · =∆ G· ™ G· Õ (31)

Proof Because G· and G· Õ have the same vertices set V , G· ™ G· Õ ≈∆ �· ™ �· Õ . So, it is
enough to just prove �· ™ �· Õ in the condition · Ø · Õ.

For the threshold · , for all e œ �· , exist vi, vj œ V , such that e connects the two vertices vi

and vj . Then, there exists the least xk œ C·
i fl C·

j in which C·
i is the ith cluster corresponding to

the threshold · .

xk œ C·
i fl C·

j =∆

Y
]

[
xk œ C·

i

xk œ C·
j

=∆

Y
]

[
uki Ø ·

ukj Ø ·

=∆

Y
]

[
uki Ø · Õ

ukj Ø · Õ
=∆

Y
]

[
xk œ C· Õ

i

xk œ C· Õ
j

=∆ xk œ C· Õ
i fl C· Õ

j . (32)

This inference implies that for the threshold · Õ, e connects the two vertices vi and vj . So, we
have e œ �· Õ . Therefore, �· ™ �· Õ .

Theorem 2 The non-decreasing sequence of the threshold values generates the filtered sequence of ho-
mology groups.

Proof Let 0 Æ · · · Æ ·k≠1 Æ ·k Æ ·k+1 Æ · · · Æ 1 be a non-decreasing sequence of the thresh-
old values. According to Theorem 1, there is a non-decreasing sequence of the output graph
generated by the SFCM algorithm as follows:

· · · ™ G·k+1 ™ G·k ™ G·k≠1 ™ · · · (33)

This sequence is a filtered simplicial complex. Therefore, according to the algebraic topology,
there is a sequence of homology groups that generates the filtered simplicial complex as fol-
lows:

. . . ™ H
!
G·k+1

"
™ H (G·k) ™ H

!
G·k≠1

"
™ · · · (34)

Note that there are only finitely many thresholds where the structure of the output graph
G· can change. As such, there is a finite non-decreasing sequence of the thresholds as follows:

0 Æ T0 = ·0 Æ ·1 Æ ·2 Æ · · · Æ ·l = T1 Æ 1 (35)
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According to Theorem 1, this yields the sequence of homology groups as follows:

H (G·l) ™ H
!
G·l≠1

"
™ · · · ™ H (G·1) ™ H (G·0) (36)

Since the algorithm’s output is a graph, which is a simplicial complex with its dimension not
greater than one, all homology groups in Equation (34) thus have a dimensionality not greater
than one as well. The SFCM algorithm can be extended entirely to the general form when the
nerve of the cover by the clusters is constructed in higher dimensions. These theoretical results
are the same as using the Čech complex or the Vietoris-Rips complex to build the simplicial
complex on the dataset. These create the premise for analyzing data using the practical tools of
persistent homology.

Additionally, the time complexity of the SFCM algorithm can be assessed through two-
component algorithms, FCM and Mapper.

Theorem 3 The time complexity of the SFCM algorithm is O
!
kcNn2"

, where k, C, n, and N are the
numbers of iterations, clusters, objects, and attributes, respectively.

Proof In the first process, for each loop, the calculations in Equations (26), (25), (22) require
O (cnN), O

!
cnN2"

, O
!
c2n

"
operations, respectively [199]. So, the time complexity of the FCM

algorithm is O
!
k

!
cnN + cnN2

+ c2n
""

æ O
!
kcnN2"

. In the second process, it takes at most
O (k (k ≠ 1)) steps to create the connections between nodes. Overall, the time complexity of the
SFCM algorithm is O

!
kcnN2

+ k (k ≠ 1)
"

æ O
!
kcnN2"

.

In brief, the SFCM algorithm is not only a fuzzy clustering algorithm but also is equipped
with the ability to extract the shape information of a high-dimensional dataset. The FCM algo-
rithm takes advantage of being efficient to create the cover for the whole space. This property
offers a new and sound idea of high feasibility because it produces clusters naturally based
on the density and distribution of data points. The number of clusters helps the users proac-
tively decide the simplicity or complexity in the output visualization. Overall, with the men-
tioned highlights, the SFCM algorithm can visualize highly complex data in a meaningful and
straightforward form by a proper parameter selection depending on users’ perspectives. Be-
yond clustering capabilities, this algorithm can also be understood as a method for feature
compression and used for big data visualization with lower-dimensional approximate repre-
sentation in the most understandable and informative form. It can be said that the clustering
connects with the visualization naturally, efficiently, and ideally by providing an excellent the-
oretical foundation for simplifying large and complex data while preserving their core struc-
tures. Table 17 compares of the four related algorithms, namely the Mapper, FM, FCM, and
SFCM.

Through some illustrations on artificial data sets, both algorithms, SFCM and Mapper, gen-
erate similar results. It should be noted that this is only a subjective conjecture based on the
shapes and comments from these datasets. Some experiments are needed to proceed on real
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Table 17: The comparison of properties between related algorithms.

NUMBER OF
PARAMETERS

TYPE OF
CLUSTERING

CLUSTERING
ABILITY

SHAPE EXTRACTING
ABILITY

Mapper 3 Overlapping Yes Yes
FM 3 Overlapping Yes Yes

FCM 3 Overlapping Yes No
SFCM 2 Overlapping Yes Yes

datasets to confirm this assertion. Moreover, the FM algorithm is also a fuzzy set-based method
similar to the two mentioned algorithms. Therefore, the following section discusses the real
datasets’ characteristics and shows experimental evaluations to compare the results among the
three algorithms, SFCM, FM, and Mapper.

4.3 Experiment

Many software packages use the Mapper algorithm as a theoretical framework and are
freely available in MATLAB, Python, R, and Spark [35]. In this implementation, the KeplerMap-
per, a free library implementing the Mapper algorithm in Python by Saul and Veen et al. [112,
113], has been used to conduct the experiments. The authors of this library have provided a
fast and flexible tool with a user-friendly interface to the scientific community. This package re-
cently developed and improved as a library in the Scikit-TDA project [126] that provides TDA
Python tools in widely usable and easily approachable forms. The code in the open-source
codebase of the KeplerMapper is used to extend and modify to create source code for the novel
algorithms, FM and SFCM. Besides, the SciKit-Fuzzy package is also used to implement the
experiments for the FCM algorithm. It is a library of fuzzy logic algorithms in the SciPy Stack
by the Python computing language. If nothing changes, the termination criteria, reviewed in
this section, are set as a constant kmax = 10, 000 and Á = 0.0001 œ (0; 1).

In this section, the efficiency of the SFCM algorithm is evaluated on three aspects: the out-
put shape from the topological standpoint, the clustering stability with the matching coeffi-
cient, and the internal index with the silhouette coefficient. To do this, the experiments are
implemented transparently on the four real-world datasets with detailed descriptions. The
Euclidean distance is considered a metric for these datasets. Moreover, to prove the work-
ing ability on big data of this algorithm, some experimental runs are also conducted on large
datasets with high dimensions.

All three algorithms, Mapper, FM, and SFCM, are processed sequentially on each real-world
dataset for the output shape.

(1) The parameters of the Mapper algorithm, such as the filter f , the number N of intervals,
overlapping percentage p, and clustering algorithm C, are set as same as in the previous
well-known works.
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(2) The parameters of the FM algorithm concerning the filter f , number N of intervals, and
clustering algorithm C, are chosen the same as the Mapper algorithm. A tested value as-
signs the overlapping threshold · for achieving a similar shape to the Mapper algorithm
from the topological standpoint.

(3) Finally, the parameters of the SFCM algorithm are chosen to show that it is possible
to generate shapes that are pretty similar to those of the Mapper algorithm from the
topological standpoint. The number N of clusters is set the same as those in the graph of
the Mapper algorithm. The overlapping threshold · is assigned with a specific value to
get a similar shape to the Mapper algorithm from the topological standpoint.

In these experiments, the overlapping percentage p and the overlapping threshold · are
chosen to have exactly two decimal places.

Clustering stability is considered the main feature to confirm the validity of the sample-
based algorithms [200]. In practice, it is widely used for optimizing the algorithm’s parameters.
However, the theoretical analysis of this notion is quite limited, with only the Ben-Hur [201],
Luxburg [202], and Shai Ben-David [200] research works. These experiments discuss clustering
stability following the Ben-Hur [201] view through the matching coefficient.

Given a dataset X = {x1, x2, . . . , xn} with n points. The clustering with k clusters on a
dataset X is a labeling function L : X ≠æ {1, 2, . . . , k} that assigns labels to all points of X. A
clustering algorithm is a procedure that takes a set X of points as input and outputs a clustering
of X. Each labeling function L is represented by a matrix M defined as follows:

Mij =

Y
]

[
0 , if xi and xj in the same cluster

1 , otherwise
(37)

The dot product between two labeling functions L1 and L2 is defined as the dot product
between two respective representative matrices M1 and M2 as follows:

ÈL1, L2Í =

e
M1, M2

f
(38)

The dot product computes the number of pairs of points clustered together.
For two matrices M1 and M2 with 0 ≠ 1 entries, let nij be the number of entries such that

the matrix M1 has the value i and the matrix M2 has the value j. The matching coefficient,
which is a measure used for comparing the similarity of two matrices, in this case, is defined
as the fraction of the number of matching entries over the total number of entries as follows:

MC (L1, L2) =
n00 + n11

n00 + n01 + n10 + n11
(39)
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This similarity measure can be expressed in terms of the dot product as follows:

MC (L1, L2) = 1 ≠

+
M1

≠ M2, M1
≠ M2,

n2 (40)

The clustering stability of all algorithms is evaluated based on the matching coefficient for
each dataset. It is important to note that there is no standard procedure to determine clustering
stability, and a discussion of the subject can be found in [202]. We conduct these experiments to
compute the matching coefficient through the sub-sampling of the data detailed in [201]. The
clustering stability is computationally estimated by the method of the k-fold cross-validation
[203] as follows:

(1) Splitting the dataset into k sub-samples by choosing m, k œ N such that n = km and
removing the m points from m (i ≠ 1) + 1 to mi for each 1 Æ i Æ k, then obtaining k

sub-samples with (k ≠ 1) m points in each sample.

(2) Computing the matching coefficient between the clustering of each pair of sub-samples,
on the (k ≠ 2) m points of their intersection.

(3) Averaging the matching coefficients restricted to the sub-samples by summing the coef-
ficients and dividing it by C2

k = k (k ≠ 1).

The silhouette coefficient is a validation index of consistency within clusters of data [180].
A silhouette of a data point measures the clustering quality of the point. It compares the av-
erage distance of the point to all elements in the same cluster with its average distance to all
elements in other clusters. The average computed for all points of a whole dataset measures
the clustering quality.

This section uses a fuzzy version of the silhouette coefficient in the exclusive clustering [204]
to evaluate these experiments. The silhouette s (xk) of a data point xk is defined as:

s (xk) =
bpk ≠ apk

max {apk, bpk}
(41)

where apk is the distance from the point xk to its nearest prototype vp and bpk is the distance
from xk to its second closest cluster prototype.

The silhouette s (xk) is in a closed interval [≠1, 1]. The silhouette s (X) of a dataset X is the
average for all points of the dataset as follows:

s (X) =

nq

k=1
(upk ≠ uqk) sk

nq

k=1
(upk ≠ uqk)

(42)

where upk and uqk are the first and the second largest elements of the k-th column in the fuzzy
partition matrix, respectively. Good partitions are expected to bring greater values to s (xk)
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and thus to s (X) than bad ones. So, the silhouette coefficient under the fuzzy version is also a
sound maximization index [199].

All three algorithms, Mapper, FM, and SFCM, are also processed sequentially on each real-
world dataset for the clustering stability and internal index.

– In the Mapper algorithm, the parameters are set as in the previous well-known experi-
ments for each dataset. After that, the overlapping percentage p is changed in the condi-
tion that the output graphs have the same shape. The other parameters such as the filter,
number of intervals, and clustering algorithm are fixed.

– In the FM algorithm, the parameters such as the filter, number of intervals, clustering
algorithm are identified invariably as those in the Mapper algorithm for each dataset. The
overlapping threshold · is changed to guarantee the output graphs have the same shape
as the Mapper algorithm from the topological standpoint.

– In the SFCM algorithm, the number of clusters is chosen to be the same as the number
of nodes of the Mapper algorithm output. The overlapping threshold is selected to get
a similar result to the Mapper algorithm from the topological standpoint of each dataset.
The overlapping threshold · is changed such that the output graphs have the same shape
under the condition the number of clusters is fixed.

The matching coefficient is calculated using the k-fold cross-validation method for each case
in which the overlapping percentage satisfies the above condition. At the same time, the sil-
houette coefficient is also calculated for each case corresponding to the matching coefficients.
The matching score is the average of the matching coefficients for all instances of the over-
lapping resolutions. The outcome of each procedure is considered an approximation of the
clustering stability of each algorithm. The silhouette score is also the mean of the silhouette
coefficients of all cases of the overlap resolutions. The outcome of each procedure is considered
an approximation of the internal index of each algorithm.

4.3.1 Unit Circle Dataset

The Unit Circle dataset consists of approximately 150 noisy points located on a unit circle.
A unit circle is a circle of radius one and is centered at the origin in the Cartesian coordinate
system. This dataset is one of the classic examples to illustrate the functioning of the Mapper
algorithm [13, 93, 94, 35]. Figure 26 shows the visualization of this two-dimensional dataset.

All three algorithms, Mapper, FM, and SFCM, are used to analyze the Unit Circle dataset.
The clear choice of the parameters for each algorithm is described in Table 18. The parameters
for the Mapper algorithm are kept similar to those in the previous famous works. The DBSCAN
algorithm is used the default settings from the scikit-learn package in this experiment. The
parameters for the FM and SFCM algorithms are chosen to show that they can achieve the same
results as the Mapper algorithm in terms of topology. The nodes in the graphs obtained by all
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Figure 26: The visualization of the Unit Circle dataset.

Table 18: The parameter settings for the Unit Circle dataset.

Mapper

FILTER
FUNCTION

NUMBER OF
INTERVALS

OVERLAPPING
PERCENTAGE

CLUSTERING
METHOD

Sum N = 7 p = 50% DBSCAN

FM

FILTER
FUNCTION

NUMBER OF
INTERVALS

OVERLAPPING
THRESHOLD

CLUSTERING
METHOD

Sum N = 7 · = 0.25 DBSCAN

SFCM

NUMBER OF
CLUSTERS

OVERLAPPING
THRESHOLD

N = 12 · = 0.20

algorithms are colored by the same function, the mean of the coordinates of data points. The
node’s color indicates the average filter values at points in the set represented by the node. The
red expresses a maximal value, and the blue says a minimal value. The node’s size indicates
the number of points in the set represented by the node. This size positively correlates with the
number of points contained in it.

The experimental results of these algorithms on this dataset are shown in Figure 27. The left
image belongs to the Mapper algorithm, the center image belongs to the FM algorithm, and the
right image belongs to the SFCM algorithm. These images are pretty similar in terms of shape,
structure, color, and size of nodes. This figure proves that the SFCM algorithm can create an
output similar to the Mapper and FM algorithms from the topological standpoint.

In the paper [35], the FM algorithm can produce similar topological results as the Mapper
algorithm can. Therefore, in this experiment, the SFCM algorithm’s effectiveness is not only
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(a) Mapper (b) FM (c) SFCM

Figure 27: The outputs for the Unit Circle dataset.

Table 19: The evaluation results for the Unit Circle dataset.

MATCHING SCORE SILHOUETTE SCORE

Mapper 0.861 0.122

FM 0.878 0.147

SFCM 0.883 0.213

evaluated with the Mapper algorithm, but also with the FM algorithm through the matching
and silhouette scores.

Three algorithms, Mapper, FM, and SFCM, were alternately run to change the overlapping
parameters such that there was no change in the output shapes in the condition that the other
parameters were fixed. Some results are recognized for percentage and thresholds as follows:

– For the Mapper algorithm, the overlapping percentage p is varied from 42% to 50%.

– For the FM algorithm, the overlapping threshold · is varied from 0.10 to 0.25.

– For the SFCM algorithm, the overlapping threshold · is varied from 0.08 to 0.20.

For each algorithm, its effectiveness is evaluated through the matching and silhouette scores
specifically as follows:

– The matching coefficient is calculated using the k-fold cross-validation method for each
case in which the overlapping parameters satisfy the non-changed shape condition. In
this experiment, k is set at 10 for sub-sampling the data, the same as the sampling ratio of
0.8 used in [201]. The matching score is the mean of the matching coefficients of all cases.

– The silhouette coefficient is also calculated for each case where the overlapping parameters
do not change the output shape of the algorithms. The silhouette score is the mean of the
silhouette coefficients of all cases.

The matching and silhouette scores of the three algorithms are reported in Table 19.
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Figure 28: The visualization of the Two Concentric Circles dataset with Noise.

4.3.2 Two Concentric Circles Dataset with Noise

The Two Concentric Circles dataset with noise has approximately 2, 000 noise points that
create a large circle containing a smaller circle. This dataset is often used to visualize clustering
and classification algorithms [131]. The visualization of this dataset is presented in Figure 28
on the Euclidean plane.

This dataset is mined with the three algorithms, Mapper, FM, and SFCM. Their respective
parameters are described in Table 20. The parameters for the Mapper algorithm are selected so
that the output can detect the two circles’ structures. The DBSCAN algorithm is also used with
default settings from the scikit-learn package. The parameters for the FM and SFCM algorithms
are chosen to show that both of them can achieve the same results as the Mapper algorithm
in terms of topology. The nodes in the graphs obtained by these algorithms are colored by
the same function, the mean of the coordinates of data points. The node’s color indicates the
average filter values at points in the set represented by the node. The red expresses a maximal
value, and the blue says a minimal value. The node’s size indicates the number of points in the
set represented by the node. This size positively correlates with the number of points contained
in it.

Figure 29 shows the results of the three algorithms obtained for this dataset. The left image
belongs to the Mapper algorithm, the center image belongs to the FM algorithm, and the right
image belongs to the SFCM algorithm. They are almost similar in terms of shape, structure,
color, and size of nodes. The images generated by two algorithms, Mapper and FM, consist of
two loops corresponding to 8 and 4 nodes, and the SFCM image consists of two loops with the
same number of nodes. The colors of the nodes in the three images are the same, only red or
blue. On the whole, the output of the SFCM algorithm is quite similar to those of the Mapper
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Table 20: The parameter settings for the Two Concentric Circles dataset with Noise.

Mapper

FILTER
FUNCTION

NUMBER OF
INTERVALS

OVERLAP
PERCENTAGE

CLUSTERING
METHOD

Sum N = 5 p = 5% DBSCAN

FM

FILTER
FUNCTION

NUMBER OF
INTERVALS

OVERLAP
THRESHOLD

CLUSTERING
METHOD

Sum N = 5 · = 0.20 DBSCAN

SFCM

NUMBER OF
CLUSTERS

OVERLAP
THRESHOLD

N = 12 · = 0.20

(a) Mapper (b) FM (c) SFCM

Figure 29: The outputs for the Two Concentric Circles dataset with Noise.

and FM algorithms from the topological standpoint. Nevertheless, the essential thing in these
pictures is that the data points are divided into two discrete classes with 100% accuracy for all
algorithms. This result proves that the classification efficiency of the SFCM algorithm can reach
equivalence in visualization with those of the Mapper and FM algorithms.

Similar to the previous experiment, the effectiveness of the SFCM algorithm is not only
evaluated with the Mapper algorithm but also with the FM algorithm through the matching
score and silhouette scores. All of the algorithms were run to change the overlapping param-
eters such that there is no change in the shape of the outputs with the other parameters fixed.
Some results are recognized for percentage and thresholds as follows:

– For the Mapper algorithm, the overlapping percentage p is altered from 3% to 7%.

– For the FM algorithm, the overlapping threshold · is altered from 0.19 to 0.40.

– For the SFCM algorithm, the overlapping threshold · is altered from 0.15 to 0.22.

Notice that the output of the Mapper algorithm constantly forms two connected components
for all values p Æ 50%, and the classification has absolute accuracy. However, this parameter is
only changed in the above range to detect the two circle structures.
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Table 21: The evaluation results for the Two Concentric Circles dataset with Noise.

MATCHING SCORE SILHOUETTE SCORE

Mapper 0.821 0.208

FM 0.867 0.200

SFCM 0.900 0.306

For each algorithm, the matching and silhouette scores are also arranged the same calcula-
tion as in the previous experiment as follows:

– The matching coefficient is calculated using the k-fold cross-validation method for each
case in which the overlapping parameters satisfy the non-changed shape condition. In
this experiment, k is set at 10 for sub-sampling the data, the same as the sampling ratio of
0.8 used in [201]. The matching score is the mean of the matching coefficients of all cases.

– The silhouette coefficient is also calculated for each case where the overlapping parameters
do not change the output shape of the algorithms. The silhouette score is the mean of the
silhouette coefficients of all cases.

The matching and silhouette scores of the three algorithms are reported in Table 21.

4.3.3 3D Trefoil Knot Dataset

The 3D Trefoil Knot dataset has approximately 150 points that create a three-dimensional
trefoil knot in Euclidean space. This dataset is used to prove the advantages of Mapper when
compared to the traditional dimensionality reduction techniques, including linear (e.g., PCA)
and nonlinear (e.g., t-SNE) approaches [21]. The information of this comparison can be found
in [21]. The visualization of this dataset is presented in Figure 30 on the Euclidean space.

Now, three algorithms, Mapper, FM, and SFCM, process the 3D Trefoil Knot dataset. Table
22 presents the choice of parameters corresponding to each algorithm. The parameters for the
Mapper algorithm are chosen so that its output can detect the circle structure as in the previous
implementation [21]. The clustering algorithm used in the Mapper and Fuzzy algorithms is
l2-norm. This is a specific norm on a Euclidean vector space, strongly related to the Euclidean
distance, and equals the square root of the inner product of a vector with itself. The FM and
SFCM algorithms are designed so that their outputs are the same as those of the Mapper al-
gorithm from topology. The nodes in the graphs of all algorithms are colored by the same
function, the height coordinate of data points. The node’s color indicates the average filter val-
ues at points in the set represented by the node. The red expresses a maximal value, and the
blue says a minimal value. The node’s size indicates the number of points in the set represented
by the node. This size positively correlates with the number of points contained in it.

The outputs of all algorithms on this dataset are presented in Figure 31. From left to right,
the images belong to the Mapper, FM, and SFCM algorithms, respectively. These images are
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(a) Oxyz space (b) Oxy plane

(c) Oxz plane (d) Oyz plane

Figure 30: The visualization of the 3D Trefoil Knot dataset.

(a) Mapper (b) FM (c) SFCM

Figure 31: The outputs for the 3D Trefoil Knot dataset
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Table 22: The parameter settings for the 3D Trefoil Knot dataset.

Mapper

FILTER
FUNCTION

NUMBER OF
INTERVALS

OVERLAP
PERCENTAGE

CLUSTERING
METHOD

l2-Norm N = 2 p = 50% DBSCAN

FM

FILTER
FUNCTION

NUMBER OF
INTERVALS

OVERLAP
THRESHOLD

CLUSTERING
METHOD

l2-Norm N = 2 · = 0.40 DBSCAN

SFCM

NUMBER OF
CLUSTERS

OVERLAP
THRESHOLD

N = 6 · = 0.25

identical in shape, structure, and size of nodes. The color of nodes is the same for the outputs of
both Mapper and FM algorithms, but it is a little different from that of the remaining algorithm.
This difference is that the Mapper and FM algorithms use the filter, but the SFCM algorithm
does not. Overall, the output of the SFCM algorithm is almost similar to those of the Mapper
and FM algorithms concerning the topological structure.

Similarly, the effectiveness of the SFCM algorithm is evaluated with both the Mapper and
FM algorithms through the matching score and silhouette scores. Once again, the overlapping
parameters of all algorithms were adjusted such that there was no change in the shape of the
with the other parameters fixed. Some results are recognized for percentage and thresholds as
follows:

– For the Mapper algorithm, the overlapping percentage p fluctuates from 13% to 50%.

– For the FM algorithm, the overlapping threshold · fluctuates from 0.05 to 0.42.

– For the SFCM algorithm, the overlapping threshold · fluctuates from 0.21 to 0.30.

For each algorithm, the matching and silhouette scores are also arranged the same calcula-
tion as in the previous experiment as follows:

– The matching coefficient is calculated using the k-fold cross-validation method for each
case in which the overlapping parameters satisfy the non-changed shape condition. In
this experiment, k is set at 10 for sub-sampling the data, the same as the sampling ratio of
0.8 used in [201]. The matching score is the mean of the matching coefficients of all cases.

– The silhouette coefficient is also calculated for each case where the overlapping parameters
do not change the output shape of the algorithms. The silhouette score is the mean of the
silhouette coefficients of all cases.

The matching and silhouette scores of the three algorithms are reported in Table 23.
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Table 23: The evaluation results for the 3D Trefoil Knot dataset.

MATCHING SCORE SILHOUETTE SCORE

Mapper 0.891 0.017

FM 0.971 0.144

SFCM 0.925 0.205

Figure 32: The three-dimensional visualization of the Reaven and Miller diabetes dataset.

4.3.4 Reaven and Miller Diabetes Dataset

The Reaven and Miller Diabetes dataset was one of the study results in the 1970s by Stan-
ford University [181]. A total of 145 non-obese adult patients, who had diabetes and a family
history of diabetes, participated in the study. For each patient, six qualitative quantities were
recorded. Therefore, there were six dimensions for the Reaven and Miller Diabetes dataset,
which consists of the following six features: age, relative weight, fasting plasma glucose level,
test plasma glucose level, plasma insulin during the test, and steady-state plasma glucose re-
sponse. In 1979, Reaven and Miller [88] visualized this dataset directly by the projection pur-
suit method and obtained a three-dimensional shape as shown in Figure 32. This visual rep-
resentation is interpreted as a boomerang with a fat middle core and two floppy wings [88].
The authors have indicated that the central body expresses the normal patients, while the two
wings outbreaking from the core express the diabetes patients suffering from different types,
corresponding to the division of diabetes into the adult-onset and juvenile-onset forms.

All three algorithms, the original and improved versions, are now applied to extract topo-
logical insights from the shape of the Reaven and Miller Diabetes dataset. A detailed descrip-
tion of the choice of parameters in each algorithm is shown in Table 24. The parameters for the
Mapper algorithm have been kept the same as the popular publications in the original paper
[13]. The filter, in this case, is the KDE function in statistics. Besides, the single-linkage cluster-
ing from the scikit-learn package with the default parameter settings is used as the clustering
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Table 24: The parameter settings for the Reaven and Miller Diabetes dataset.

Mapper

FILTER
FUNCTION

NUMBER OF
INTERVALS

OVERLAP
PERCENTAGE

CLUSTERING
METHOD

KDE N = 5 p = 50% Single-Linkage

FM

FILTER
FUNCTION

NUMBER OF
INTERVALS

OVERLAP
THRESHOLD

CLUSTERING
METHOD

KDE N = 5 · = 0.06 Single-Linkage

SFCM

NUMBER OF
CLUSTERS

OVERLAP
THRESHOLD

N = 10 · = 0.20

algorithm. The FM and SFCM algorithms are exploited because their outputs were quite sim-
ilar to that of the Mapper algorithm in shape and structure. The nodes in the graphs of both
the algorithms were colored by the same function, which was the value of the KDE function
on data points. The node’s color indicates the average filter values at points in the set repre-
sented by the node. The red expresses a maximal value, and the blue says a minimal value.
The node’s size indicates the number of points in the set represented by the node. This size
positively correlates with the number of points contained in it.

Figure 33 shows the outputs after processing by three algorithms on this diabetes dataset.
Three images from left to right sequentially belong to the algorithms, Mapper, FM, and SFCM.
In each algorithm, the central core that expresses the normal patients appear by red nodes.
Both wings that express patients with adult-onset diabetes and juvenile-onset diabetes also
appear in each algorithm by blue nodes. However, the wings in the Mapper output appear
to be symmetrical. This phenomenon is not the case when the FM and SFCM algorithms are
implemented. In another way, the connections between the nodes are different in the three
algorithms, especially concerning the positions of the left wings. The visualizations created
by the FM and SFCM algorithms are very similar to the research result of Reaven and Miller
since the density of points in the two wings varies remarkably, and several points in one wing
are more sparse than in those in the others. There are some triangular forms in the outputs
generated by the FM and SFCM algorithms. It is caused by existent differences in covering
all points of the data cloud. In the original method, the connectivity only occurs between two
points to create one edge because the real-valued continuous function usually considers the
filter. Nevertheless, this connectivity occurs between three points to create the triangles in the
image of the new later algorithms. As well as the FM algorithm, the overlap between clusters
in the SFCM algorithm cannot necessarily be pairwise and consecutive.

The process of evaluating the clustering stability through the matching score and the inter-
nal index with silhouette score is repeated for the SFCM algorithm concerning the two algo-
rithms, Mapper and FM. Once again, all algorithms changed the overlapping parameters such
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(a) Mapper (b) FM (c) SFCM

Figure 33: The outputs for the Reaven and Miller Diabetes dataset.

Table 25: The evaluation results for the Reaven and Miller Diabetes dataset.

MATCHING SCORE SILHOUETTE SCORE

Mapper 0.889 ≠0.032

FM 0.880 ≠0.028

SFCM 0.892 0.036

that there was no change in the output shapes in the condition that the other parameters fixed.
Some results are recognized for percentage and thresholds as follows:

– For the Mapper algorithm, the overlapping percentage p is altered from 41% to 50%.

– For the FM algorithm, the overlapping threshold · is altered from 0.056 to 0.062.

– For the SFCM algorithm, the overlapping threshold · is altered from 0.20 to 0.24

For each algorithm, the matching score and silhouette score are also carried out the same
computation as in the previous experiments as follows:

– The matching coefficient is calculated using the k-fold cross-validation method for each
case in which the overlapping parameters satisfy the non-changed shape condition. In
this experiment, k is set at 10 for sub-sampling the data, the same as the sampling ratio of
0.8 used in [201]. The matching score is the mean of the matching coefficients of all cases.

– The silhouette coefficient is also calculated for each case where the overlapping parameters
do not change the output shape of the algorithms. The silhouette score is the mean of the
silhouette coefficients of all cases.

The matching and silhouette scores of the three algorithms are reported in Table 25.

Overall, for the four real-world datasets, the experiments focus on the output visualization
from the topological standpoint, the clustering stability through the matching score, and the
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Table 26: The parameter settings and run-time report for the experiments on the large high-
dimensional datasets.

DATASET DIMENSION NO. CLUSTERS OVERLAPPING THRESHOLD RUN-TIME

3D Lion (5000; 3) 12 0.180 0.65

3D Cat (7206; 3) 10 0.217 0.52

3D Horse (8430; 3) 20 0.117 5.01

3D Road (434874; 4) 12 0.150 119.76

Covertype (581012; 54) 12 0.160 752.94

(a) Oxyz space (b) Oxz plane

Figure 34: The three-dimensional visualization of the Cat dataset.

internal index with silhouette score for the three algorithms. All three algorithms, Mapper, FM,
and SFCM, have been thoroughly implemented and achieved positive results as follows:

(1) Firstly, the results generated by the SFCM algorithm are pretty similar to those of the
Mapper and FM algorithms on the topological standpoint in cases where the respective
parameters are well-chosen.

(2) Secondly, the clustering stability based on the matching score and the internal index
based on the silhouette score of the SFCM algorithm is better than those of the Mapper
and FM algorithm in most experimental cases.

To conclude this section, the SFCM algorithm is applied to visualize some large multi-
dimensional datasets, including 3D Cat, 3D Horse, 3D Lion, 3D Road Network, and Covertype,
to prove the algorithm’s capability on big data. The 3D datasets of Lion, Cat, and Horse were
taken from the examples in the open-source codebase of the KeplerMapper [112, 113]. The 3D
Road Network dataset [205] and the Covertype dataset [206] were taken from the UCI Machine
Learning Repository.

The choice of the parameters and the running time in seconds when using the SFCM al-
gorithm for each dataset are reported in Table 26. The three-dimensional visualizations of the
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(a) Oxyz space (b) Oxz plane

Figure 35: The three-dimensional visualization of the Horse dataset.

(a) Oxyz space (b) Oxz plane

Figure 36: The three-dimensional visualization of the Lion dataset.

(a) Cat (b) Horse (c) Lion

Figure 37: The outputs for the animal datasets.

80



(a) 3D Road Network (b) Covertype

Figure 38: The outputs for the 3D Road Network and Covertype datasets.

animal datasets are presented in Figures 34, 35, 36. The results of using the SFCM algorithm to
mine these three-dimensional datasets are shown in Figures 37 and 38

The run-time results are perfectly acceptable for the high-dimensional datasets. Note that
the run-time between the new proposed algorithm and the original algorithms is not compa-
rable because their run-time result depends heavily on the time complexity of the filter itself.
The results are rather impressive for the 3D animal datasets when the height coordinate of data
points colors nodes of the graph. The red expresses maximum value, and blue expresses mini-
mum value. The color-changing from red to blue indicates the corresponding values that vary
from high to low. Some parts of the animal bodies are shown clearly on the graph: blue nodes
present the feet and red nodes offer the heads.

4.4 Discussion

In this chapter, the SFCM algorithm is proposed as a fuzzy clustering algorithm endowed
with the ability to create a simple, practical, intuitive topological summary for high-dimensional
datasets. It has been generated from the FCM algorithm by carefully combining the unique
power for shape detection of the Mapper algorithm. On the one hand, the FCM algorithm has
outstanding features in simplifying and visualizing data with qualitative analysis. On the other
hand, the SFCM algorithm also helps the Mapper algorithm simplify the selection of parame-
ters to obtain the most informative presentation. Moreover, covering the data space by clusters
created by the FCM algorithm is both a breakthrough and a logical idea with high feasibility.

Experiments on the four real-world datasets demonstrate the effectiveness of the SFCM
algorithm. From the topological standpoint, this method can produce results similar to those of
the previous popular algorithms, Mapper and FM. Besides, the matching score, which presents
the clustering stability, and the silhouette score, which offers the internal index of the novel
proposed algorithm, are better than those of the Mapper and FM in most experimental cases.
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In a certain sense, the SFCM algorithm is considered a particular enhanced case of the FM
algorithm. The overlapping threshold for this specific version, like the FM algorithm, is chosen
based on the positive results. How to optimize this parameter to an optimal value is still an
interesting question. Although the optimization capabilities of this algorithm are thoroughly
proven in the experiments, its practical applicability needs to be further examined. In addition,
the theoretical framework of this method needs to be developed towards in-depth analysis
by using the persistent homology theory. The study of the SFCM algorithm in cases when
the output is a general simplicial complex also requires more attention. Last but not least, the
improvements to both the two-component algorithms should be updated to take account of this
work. These problems are expected to be addressed thoroughly soon to improve this method
regarding both theory and applications.
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5 Conclusion

In Chapter 5, the summary of our completed works according to the initial aims is briefly
presented through the author’s main contributions in publishing activities. In addition, the
future research directions are also discussed and planned to serve as a guideline for the author
after finishing the doctoral course. Therefore, the rest of this chapter is organized into two
sections corresponding to the two contents just mentioned, including contributions in Section
5.1 and directions in Section 5.2.

5.1 Contribution

The first goal of the thesis is to summarize the theoretical foundations and practical appli-
cations of the Mapper algorithm in the flow of literature with improved versions and various
implementations. This goal is achieved in Chapter 2 of this thesis when this intelligent algo-
rithm is reviewed with specific descriptions and intuitive, easy-to-understand illustrations. Its
variations and applications are also presented over time systematically and thoroughly. At the
same time, the popular available packages that activate this algorithm as the core of their op-
erations are also briefly introduced. Furthermore, its current limitations are also discussed to
guide future research and development. This chapter has been aggregated into a manuscript
for publication as a peer-reviewed scientific paper in a reputable journal [P7].

The second goal of the thesis is to optimize the cover choice of the Mapper algorithm in
the direction of dividing the filter range automatically into irregular intervals with a random
overlapping percentage by using the FCM algorithm. This goal is achieved in Chapter 3 of
this thesis when a novel algorithm, named Fuzzy Mapper, is proposed on the foundation of
the Mapper algorithm to solve the problem of automating in dividing cover intervals with an
arbitrary percentage of overlap. The experimental results are analyzed and compared with
those of the original method, the Mapper algorithm, through the output visualization and the
silhouette coefficient score in the clustering evaluation. This chapter was published as a peer-
reviewed scientific paper in a reputable journal, Knowledge-Based Systems [P1].

The third goal of the thesis is to propose a novel method for mining data that can exhibit
the same clustering ability as the Fuzzy C-Means algorithm and reveal some meaningful re-
lationships by visualizing the global data shape supplied by the Mapper algorithm. This goal
is achieved in Chapter 4 of this thesis when another novel algorithm, named Shape Fuzzy
C-Means, is proposed by combining the advantages of the Fuzzy C-Means algorithm with
outstanding features of the Mapper algorithm. The algorithm performance is demonstrated
through a comparative analysis involving the original algorithm, Mapper, and the other fuzzy
set-based improved algorithm, Fuzzy Mapper. The comparison is conducted concerning out-
put visualization in the topological sense and cluster. This chapter was published as a peer-
reviewed scientific paper in a reputable journal, IEEE Transactions on Fuzzy Systems [P3]
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5.2 Orientation

Although the thesis has achieved the set goals, there are still many challenges. Topological
Data Analysis is already a powerful emerging field and is expanding without limits to the
very vibrant areas of artificial intelligence such as machine learning and deep learning. This
development is not only a challenge, but also an opportunity when researching this field. In
the coming period, we will focus on the following research directions:

(1) Evaluating the complexity and overcoming the limitations of our algorithms to improve
and develop them towards using the superior features of fuzzy clustering as well as
variants of set theory such as rough set, vague set, soft set, and neutrosophic set [207].

(2) Developing method(s) to evaluate Mapper-type algorithms in performance and stability
[131, 208].

(3) Studying the characteristics of the Mapper algorithm based on theoretical framework in
close relationship with Reeb Graph and Discrete Morse Theory [209].

(4) Improving the ability to simplify complex high-dimensional data but still ensure the
structural features of the Mapper algorithm on complex networks [210, 211, 70] for min-
ing and learning purposes.

We hope these directions will bring positive research signals soon. The initial achievements
during my time as a doctoral student reported in this thesis are an excellent impetus for the
next steady steps to implement new ideas on the research way of Topological Data Analysis.
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