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Abstract

This study analyzes and designs the Swarm intelligence (SI) that Self-organizing migrating algo-
rithm (SOMA) represents to solve industrial practice as well as academic optimization problems,
and applies them to swarm robotics. Specifically, the characteristics of SOMA are clarified, shap-
ing the basis for the analysis of SOMA’s strengths and weaknesses for the release of SOMA T3A,
SOMA Pareto and iSOMA, with outstanding performance, confirmed by well-known test suites
from IEEE CEC 2013, 2015, 2017, and 2019. Besides, the dynamic path planning problem for
swarm robotics is handled by the proposed algorithms considered as a prime instance. The
computational and simulation results on Matlab have proven the performance of the novel algo-
rithms as well as the correctness of the obstacle avoidance method for mobile robots and drones.
Furthermore, two out of the three proposed versions achieved the tie for 3rd (the same ranking
with HyDE-DF) and 5th place in the 100-Digit Challenge at CEC 2019, GECCO 2019, and
SEMCCO 2019 competition, something that any other version of SOMA has yet to do. They
show promising possibilities that SOMA and SI algorithms offer.

Keywords: Swarm intelligence; Swarm robotics; Self-organizing migrating algorithm; Opti-
mization; Mobile robot

Abstrakt

Tato práce se zabývá analýzou a vylepšením hejnové inteligence, kterou představuje samoorgani-
zující se migrační algoritmus s možností využití v průmyslové praxi a se zaměřením na hejnovou
robotiku. Je analyzován algoritmus SOMA, identifikovány silné a slabé stránky a navrženy nové
verze SOMA jako SOMA T3A, SOMA Pareto, iSOMA s vynikajícím výkonem, potvrzeným
známými testovacími sadami IEEE CEC 2013, 2015, 2017 a 2019. Tyto verze jsou pak apliko-
vány na problém s dynamickým plánováním dráhy pro hejnovou robotiku. Výsledky výpočtů
a simulace v Matlabu prokázaly výkonnost nových algoritmů a správnost metody umožňující
vyhýbání se překážkám u mobilních robotů a dronů. Kromě toho dvě ze tří navržených verzí
dosáhly na 3. a 5. místo v soutěži 100-Digit Challenge na CEC 2019, GECCO 2019 a SEMCCO
2019, což je potvrzení navržených inovací. Práce tak demonstruje nejen vylepšení SOMA, ale i
slibné možnosti hejnové inteligence.

Klíčová slova: Inteligence roje; hejnová robotika; Samoorganizující se migrační algoritmus;
optimalizace; robotika
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1 INTRODUCTION

With the continuous development of science and technology, many industrial practices and
academic problems arise challenging and most of them can be transformed into optimization
problems [1]. The swarm intelligence (SI) algorithm is one of the most effective and well-
attended methods to find the global optimal solution to such problems, such as artificial bee
colony (ABC) [2, 3], particle swarm optimization (PSO) [4, 5], and self-organizing migrating
algorithm (SOMA) [6, 7] that is a subject of the reported research here.

Proposed in the 2000s, SOMA, a representative of the SI, is a population-based optimiza-
tion algorithm, which mimics the competition - cooperation behavior among individuals in the
population of creatures to find the optimal solution. Over many migration loops, the initial
candidate solutions are optimized, making these solutions better and better over time. With a
non-gradient-based mechanism and flexibility property, i.e., solving complex functions without
using complex math equations, SOMA demonstrates its outstanding performance and is applied
in many different fields, let for example mention the solution of a partial differential equation
of civil engineering, describing the beam in the wall under statical load, synthesis of electrical
circuits (train control, heating of the house and traffic light control) [8], and more.

SOMA has not been used only in various applications or interdisciplinary implementations,
and it has also been used in the computer game StarCraft. In this game was SOMA used in
a real-time regime so that trajectories of individuals were one-to-one trajectories of game bot
warriors. Another game application (currently available on Google Play1) is the game Tic Tac
Toe powered by SOMA algorithm. It has been used not only in classical optimization tasks but
also in interdisciplinary research, for example, in evolutionary dynamics and its relations with
complex network structures [9, 10, 11].

From SOMA 21 years history, it is visible that this algorithm belongs (based on various
comparative studies) to the most efficient swarm intelligence and is also highly applicable to
various problems of industrial practice as well as academic problems.

On the one hand, real-world problems are emerging more and more complex, requiring not
only fast real-time computations but also high accuracy of results and capable to escape from
local minimal traps. Most canonical versions of SI algorithms have been less performance against
these issues.

On the other hand, it requires simplicity, ease of programming, and ease of use for many
different application areas. Besides, the adaptation of the control parameters of the algorithm
is required, because not all application developers are experts in the field of the optimization
algorithm. Therefore, the research and development of algorithms are essential.

Many versions have been proposed to boost up the performance of the algorithm and
overcome some limitations arising during the application process, such as self-adapting self-
organizing migrating algorithm [12], self-organizing migrating algorithm with quadratic inter-
polation crossover operator for constrained global optimization [13], the version of the leader
selection in the self-organizing migrating algorithm [14], self-organizing migrating algorithm

1https://play.google.com/store/apps/details?id=cz.bukacek.soma_tictactoe
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with non-binary perturbation [15], and self-adaptive parameters to self-organizing migrating
algorithm [16]. In particular, the two latest versions, team to team adaptive – SOMA T3A
[17, 18] and Pareto-based SOMA [19, 20], have made great strides, holding 3rd (the same rank-
ing with HyDE-DF [21]) and 5th out of 36 algorithms participating in the 100-Digit Challenge
Competition respectively, which reported in [22] including results from the 2019 Congress on
Evolutionary Computation (CEC 2019), the 2019 Genetic and Evolutionary Computation Con-
ference (GECCO 2019) and the 2019 Swarm, Evolutionary and Memetic Computing Conference
(SEMCCO 2019).

However, they have proven their effectiveness in the 100-Digit Challenge Competition, which
does not mean that the algorithms will be victorious at all different test suites. Furthermore,
many academic problems and real-world applications are increasingly complex, requiring algo-
rithms to be more efficient, solving problems faster, and more accurately. Is it possible to
improve the performance of the SOMA algorithm further, and how? That prompted
me to research and develop novel algorithms to answer this research question, satisfying these
illustration requirements mentioned above.

And what about swarm robotics? How to turn the specific problem of swarm robotics
into an optimization problem? And how to apply swarm intelligence to solve a
particular aspect of mobile robots and even drones? These research questions will be
answered in the next part of the thesis. It can be revealed that one of the most important
issues for swarm robotics applications is catching up with moving targets and avoiding multiple
dynamic obstacles on the ground even in space. It’s complicated in that it requires the algorithm
to work in real-time to avoid dynamic obstacles that are standing or moving in an unknown
environment where the robot does not know their position until detecting them by sensors
arranged on the robot.

1.1 Main Goals and Contributions

The main goals of the doctoral thesis can be divided as follows:
• State of the art in the research field
• Design the novel self-organizing migrating algorithms to deal with well-known test suites

and real-world problems
– Self-organizing migrating algorithm team to team adaptive
– Pareto-based self-organizing migrating algorithm
– Self-organizing migrating algorithm with narrowing search space strategy

• Determine the proposed algorithm position compared to well-known existing algorithms
– Evaluate the performance on IEEE CEC 2013, 2015, 2017, 2019
– Assert the ranking against various types of algorithms, even evolutionary algorithms

or swarm intelligence
• Apply the proposed algorithms to swarm robotics

– The movement of mobile robots
– Unmanned aerial vehicles control

11



The main contributions of the thesis can be summarized as follows:
• Conduct a comprehensive evaluation on the performance of the SOMA algorithm
• Reach the highest ranking in the history of SOMA on the IEEE CEC Competitions
• Propose an approach to a specific swarm robotics problem based on the swarm intelligence

1.2 Outline of the Thesis

The rest of the thesis is organized into the following sections. Section 2 takes a look at a broad
area of research leading to my thesis topic, showing the need to undertake the study. Section 3
describes the principles of the classic self-organizing migrating algorithm as well as its strengths
and weaknesses, which underlie the proposed algorithms, including SOMA T3A, Pareto and
iSOMA. Section 4 proposes a method to guide the robot to catch the moving target without
colliding with any dynamic obstacles based on the proposed algorithms. Section 5 shows the
experiment setup for all problems. The results and discussion are presented in Section 6. Finally,
the work is concluded in Section 7.

12



2 BACKGROUND AND MOTIVATION

This section introduces the broad area of research leading to my thesis topic, briefly summarizes
previous research to accentuate progress in the field of swarm intelligence and swarm robotics,
identifies gaps in knowledge that remain unaddressed, and summarizes what the current study
aims to achieve.

The content presented in this section is my scientific research results and co-authors. They
have also been originally published in [17, 23, 24, 25].

2.1 Swarm and Evolutionary Computation

Optimization is present in almost all areas of life, from finance to medicine and engineering.
Many real-world problems require finding an optimal solution such as finding the shortest tra-
jectory for the travelling salesman problem or finding suitable control parameters to minimize
the system’s energy consumption, as well as finding global optimal values for the given function.
For simple modelled problems, we can apply classical mathematical means to find optimal solu-
tions. However, with complex and constantly changing models, the classical mathematic solver
becomes impossible. It challenges researchers to find another way to deal with these practical
issues. Thus, the computational optimization was proposed in which the evolutionary algorithm
and swarm intelligence were representatives [26].

2.1.1 Evolutionary Algorithm

The evolutionary algorithm (EA) is a common name for optimization algorithms that have
mechanisms essentially based on the evolutionary theory of Charles Darwin. From the individ-
uals in the initial population representing the candidate solution of the given problem, through
generations of survival, crossover, mutation, and heredity, individuals evolved, changing their
genomes to adapt to the environment, helping the population get closer and closer to the optimal
solution of that problem [27].

Although implemented in many different forms, those algorithms have a common character-
istic of the evolution of organisms, and can be summarized in the following processes:

• Initialization: This process aims to initialize an initial population of individuals that rep-
resents candidate solutions to the given problem in the form of the computer code.

• Selection: The main objective of this process is to select one or several individuals to be
activated, i.e., individuals will evolve or participate in the evolution of other individuals.

• Crossover: A combination of selected individuals in a given rule to create new ones with
the heredity characteristics of the parent - selected individuals. Crossover is one of the
two important points of the evolution of creatures as well as evolutionary algorithms. It
combines and maintains the good characteristics of organisms from generation to genera-
tion.

• Mutation: Mutation is the important rest component, indispensable in the evolution of
organisms in nature, as well as in evolutionary algorithms. This process creates "new

13
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Figure 1: The evolutionary algorithm flowchart.

characteristics" that have not existed in the previous individuals in the whole population.
Depending on each algorithm, the mutation process will take place in different ways.

• Evaluation: Over the long evolutionary period, under the influence of harsh environ-
ments, weak individuals are eliminated, and healthy individuals continue their survival
and growth. In the evolutionary algorithm, this is done by assessing individuals in the
population by the given fitness function. Individuals created after the selection, crossover,
and mutation processes will be evaluated. Inappropriate individuals that have bad fitness
values will be removed from the population and replaced by better individuals.

These processes are repeated until the algorithm finds an optimization value that meets the
requirements of the practice, as depicted in Fig. 1.

2.1.2 Swarm Intelligence

The term "Swarm Intelligence" was first introduced by Beni and Wang in the context of cellular
robotics system [28]. However, much more sooner, the idea of swarm robots has been introduced
(1964) by Stanislaw Lem in his novel Invictible [29]. The swarm intelligence algorithm, differ-
ent from the evolutionary algorithms, is inspired by the cooperation-competition behaviours of
intelligent creatures to solve their problems such as foraging, attacking enemies, or defending
the nest. These behaviours reflect the action between individuals in a population, or between
individuals and the environment, taking place within the same generation. In other words,
the mechanism of swarm intelligence algorithm is the interaction between individuals with each
other or the environment according to a given rule to find the global optimal solution to the
given problem.

Slightly different from the evolutionary algorithms, which operate on Darwin’s theory of
evolution, individuals in the SI population do not inherit the genetic properties from generation
to generation, but rather will share the knowledge with each other in the same generation under
loops. This sharing of information is the key for the SI algorithms.

However, there are many similarities between the evolutionary algorithm and swarm intel-
ligence algorithm. They are all population-based algorithms, meaning that one population or
some sub-populations need to be initialized at the beginning of algorithm; they select individuals
in the population to be activated individuals; they use the fitness function as a basis for selecting
and evaluating individuals; they create new ones based on previously selected individuals - but
the mechanisms for reproducing new individuals are completely different.
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To date, many swarm intelligence algorithms have been proposed in the literature and suc-
cessfully applied in practice, including function optimization problems, finding optimal routes,
scheduling, structural optimization, and image analysis [30]. Examples of swarm intelligence al-
gorithms are: ant colony optimization [31], particle swarm optimization [32], artificial bee colony
[33], bacterial foraging [34], firefly algorithm [35], bat algorithm [36], self-organizing migrating
algorithm [6], and whale optimization algorithm [37].

2.2 SOMA - A Representative

In recent years, swarm intelligence-based algorithms have been increasingly developed. It is
attractive not only because of its simplicity and efficiency, but it can solve complex problems
without many complex equations. Some of the most regarded-known algorithms such as PSO,
ACO, ABC, and another algorithm that are confirming its position, which is the self-organizing
migrating algorithm.

The SOMA was inspired by the competitive-cooperative intelligent behavior of individuals
in the population, through many migration loops, to find the global optimal solution of the
problem [6, 8]. First introduced in 1999 [38], over two decades of development, SOMA has
attracted many researchers and many different variants were proposed, besides the original
methods of SOMA ATO and AllToAll. C-SOMGA [39] is an example. It takes advantage of
the genetic algorithm and SOMA features to solve constrained nonlinear optimization problems,
which works with less than population size and function evaluations. In another publication [40],
the authors proposed a hybrid binary coded of GA with real coded SOMA. Its effectiveness has
also been affirmed by the set of well-known 25 test problems test. Or CSOMA, a combination of
the SOMA approach and Cultural algorithm, presented better results when compared to others
algorithm to solving the economic load dispatch problem with the valve-point effect [41]. In
addition, other versions of SOMA such as hybridization of self-organizing migrating algorithm
with quadratic approximation and non uniform mutation for function optimization [42], Modified
Nelder-Mead self organizing migrating algorithm for function optimization and its application
[43], Hybrid self-organizing migrating algorithm based on estimation of distribution [44] and
Self organizing migrating algorithm with quadratic interpolation for solving large scale global
optimization problems [45] have been proposed and demonstrated their effectiveness.

During its development, SOMA has been tested, compared [46], and applied on various
practical issues. However, problems arise more and more complicated, not only requires the
speed of calculation but also requires accuracy, different versions of SOMA family do not seem
to keep up with that development. Therefore, more advanced versions are required to adapt
and solve those problems.

These observations have inspired me to research and develop faster, more powerful, and
efficient algorithms to solve more emerging complex problems, and apply them to solve a specific
field in swarm robotics.
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2.3 The Path Planning Problem of Swarm Robots

Avoiding collisions with dynamic obstacles and other robots to catch the given target is one
of the most issues in the field of swarm robotics. That is, in an unknown environment where
many robots are active, each robot not only catches its moving target but also must be able to
avoid each other and avoid dynamic obstacles that the robot does not know about them until
the sensors detect them. Various methods have been proposed to solve this problem such as
[47], [48], and [49]. Each method has its advantages in some specific environments. There is
no doubt that considering the movement of the robot as an optimization problem is one of the
most common methods.

In this study, a method of constructing an imaginary map was proposed to deal with that
problem, in which the start position, the target, the obstacles, and the robot, in turn, are
considered as the highest position, the lowest position, the small hills and the spherical ball.
This ball can be moved on the imaginary map due to gravity, corresponding to the movement of
the robot in the actual environment. The SOMA algorithm, which acts as gravity on this map,
is used to solve the problem.

Moreover, the study proposes a method for the drone to catch the given target and avoid
detected obstacles in its path based on the self-organizing migrating algorithm. In particular,
a two-component fitness function is proposed based on the principle that the closer the target,
the lower the fitness value, and the closer the obstacle, the higher the fitness value. SOMA is
used to predict the next positions that the drone will move to. These positions both satisfy the
requirement to avoid obstacles and shorten the distance to the target.
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3 SELF-ORGANIZING MIGRATING ALGORITHM

Self-organizing migrating algorithm, a swarm-based intelligence optimization algorithm, works
based on the interaction between individuals in the population according to a given rule to find
an optimal solution to the given problem [6, 7]. The mechanism constituted the SOMA lies in
how to select individuals as a Leader and Migrants, how Migrants move toward the Leader, as
well as how to update better individuals into the population and eliminate the bad one. These
processes are performed under loops named migration loops. Then, through many migration
loops, these solutions are becoming better and better than the initial. The next subsection
describes the principle of SOMA, shaping the basis for the analysis of SOMA’s strengths and
weaknesses.

The content presented in this section is my scientific research results and co-authors. They
have also been originally published in [17, 19, 50].

3.1 The Canonical SOMA

At the beginning of the algorithm, a population is generated, containing individuals as candidate
solutions to the given problem, according to Eq. 1. Each variable (dimension) of the problem
has its boundary, which is also the search range of the algorithm. They are then evaluated by
the given fitness function and enter the first migration loop.

P = x
(lo)
j + rand(x(hi)

j − x
(lo)
j ) (1)

where:
• P : the initial population of the algorithm,
• x

(lo)
j : the lowest boundary value,

• x
(hi)
j : the highest boundary value,

• rand: uniformly distributed random numbers from 0 to 1.
In each migration loop, an individual with the best fitness value in the population is selected

as the Leader, all the remaining individuals will be moving individuals. They will jump step by
step toward the Leader using the Step parameter (specified the granularity) until PathLength (a
limit of distance) is reached. Instead of jumping directly towards the Leader, another parameter
is used to generate perturbation moves, named PRTV ectorj , causing the individuals to move
in the N − k subspace that each pair is perpendicular to the original space, as shown in Eq. 2.

if randj < PRT ; PRTV ectorj = 1; else, 0. (2)

The probability of each move is determined by the PRT parameter. A number is randomly
generated and compared to this threshold. If it is less than PRT , the jump in that dimension
is performed, and vice versa. This both helps maintain the diversity of the population while
creating better new individuals. The Eq. 3 describes this moving process.
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xML+1
n,j = xML

c,j + (xML
l,j − xML

c,j ) t PRTV ectorj (3)

where:
• xML+1

n,j : the new position in the next migration loop,
• xML

c,j : the position in current migration loop,
• xML

l,j : the leader position in current migration loop,
• t: jumping step, from 0, by Step, to PathLength.
After each individual completes its moves, the best position in the moving trajectory is

chosen to compare with the initial position. It will be replaced by the better new position,
otherwise, the algorithm will skip the new position and continue the process for the remaining
individuals.

After all the individuals have completed the jumping, a new migration loop is started, the
new Leader will be chosen again, and the migration process will continue until the algorithm
reaches the given stop condition. This strategy is named SOMA AllToOne (SOMA ATO).

Instead of all individuals moving toward the Leader, in another strategy, all individuals move
towards each other, regardless of whether it is a better or bad individual. This strategy is called
SOMA AllToAll (SOMA ATA).

3.2 The Key Features of SOMA

As described in the previous subsection, after each individual has completed its movement, the
best position in this trajectory is selected for comparison with the original. It is clear that to
find the better one, the algorithm needs to call a lot of times of function evaluations (FEs). For
example, with the standard setting of SOMA: Pathlength = 3.0 and Step = 0.11, each traveling
individual has to take 27 times of jumps to complete its movement, which means the algorithm
spends 27 times of FEs to find the better position. Meanwhile, other algorithms only use one
time of FE to improve their candidate solutions such as DE, PSO, and ABC. This characteristic
causes the algorithm to soon face the stop condition of MaxFEs and the premature convergence
scenario before it searches for detail in the exploitation phase at the end of the optimization
process.

On the other side, in each variable of the optimization problem, PRTV ectorj accepts only
one of the two values of 0 and 1. Thus, this variable will be updated with a multiple of Step

if the value of PRTV ectorj is 1, and vice versa it will remain its position. Geometrically,
this means that traveling individuals will move on intersection edges of hyperplanes created by
pairs of sides of variables, as shown in Fig. 2 and Fig. 3 (setting parameters: Step = 0.33 and
PathLength = 3.0).

It can be visualized as a line-search strategy. Moving only on the edges of hyperplanes
without moving into the inner space highly limits the searching ability of the SOMA, and leads
to the risk of missing out on potential search space.

Besides, one of the major weaknesses of the canonical SOMA is that nonsense moves are
taken from better individuals to the worse one, as shown in Fig. 4. This leads to a waste of
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computational time because the algorithm spends a lot of FEs on these nonsense moves. It
causes the algorithm to face the risk of being stopped before finding the optimal solution to the
given problem. In this case, there is no position with better fitness value than the migrant itself
in the capability search space.
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Figure 4: The meaningless move from the migrant to the leader having lower fitness value.

3.3 SOMA T3A

The name "Self-organizing migrating algorithm" fully covers the operating processes of the al-
gorithm. Accordingly, the proposed algorithm is divided into processes, which are named the
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initialization process, organization process, migration process, and update process. They oper-
ate in loops called migration loops. In each migration loop, individuals in the initial population
will move towards the other to explore promising subspaces and then exploit these spaces to
find the global optimum solution. These processes are repeated until the given stop conditions
are satisfied, as described in Fig. 5.

Start Termination No Organization Migration Update

Stop

Initialization

Yes

Figure 5: The flowchart of the algorithm.

Depending on how the above processes work, different versions of SOMA are developed,
which will be presented in the next subsections.

In SOMA Team To Team Adaptive (SOMA T3A) [17], the initial population was generated
according to Eq. 1 and evaluated by the given fitness function, similar to the original version of
SOMA. The proposed algorithm then enters the first migration loop.

3.3.1 Organization

The two tasks of this process are to choose which individuals will move, named Migrants, and
which individual will be the Leader. To determine Migrants, the algorithm randomly selects m

individuals from the population and then selects the best n out of m individuals (n ⩽ m). The
n individuals are Migrants. To choose the Leader, k individuals are randomly selected from the
population, and then the best of the k individuals becomes the Leader. Fig. 6 describes this
process. In case the Leader is one of the Migrants, the moving of this coincident Migrant is
skipped.
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Figure 6: The organization process of SOMA T3A.
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The organization process plays an important role in exploring a promising subspace. The
larger the values of m, n, and k, the smaller the search subspace. That is, the algorithm only
focuses on the best group of individuals in the population. This seriously affects the diversity of
populations when the algorithm goes through migration loops. For simple functions and a small
number of dimensions, the global minimum position is found quickly and accurately. However,
for complex functions and large dimensions, the algorithm can be trapped in the local minima,
and no longer able to go beyond the local search subspace. In other words, the algorithm tends
to exploitation phase. In the case of m, n, and k equal to the population size, the algorithm
will return to its original version, which is SOMA ATO.

On the other hand, if the values of m, n, and k are smaller, the algorithm will search in a
large space in a rambling and inefficient way. These parameters determine the balance of the
two phases of exploration and exploitation, besides the PRT parameter.

3.3.2 Migration

Migration is the process of moving Migrant towards the Leader. In the original version, indi-
viduals jump towards the Leader with fixed steps until a given Pathlength is reached. Instead
of jumping straight to the Leader, individuals move in the N − k dimensional subspace, which
is perpendicular to the original space, with the probability of each jump is decided by the fixed
PRT parameter. In this version, we propose adaptive PRT and Step parameters.

PRT is a sensitive parameter of the algorithm. The closer to 1 the value of PRT , the more
individuals tend to jump straight towards the Leader. This leads to the diversity of populations
being not maintained. On the other hand, if the PRT is too small, the algorithm will be inclined
to the exploration phase. Therefore, PRT should be started with a low value, and incremented
by the number of migration loops. Such adjustable calculation of the PRT is given by Eq. 4.

PRT = 0.05 + 0.90 FEs

MaxFEs
(4)

where:
• FEs: the current function evaluation,
• MaxFEs: the maximum of function evaluations.
To find a promising subspace, large steps are recommended to speed up the algorithm and

reduce the number of function evaluations. When focusing on a promising subspace, i.e., ex-
ploitation phase, small steps are recommended to apply. For that reason, descending steps by
the number of migration loops were proposed as in Eq.5.

Step = 0.15 − 0.08 FEs

MaxFEs
(5)

In this version, the number of jumps is fixed instead of fixing the PathLength of the original
version. That is each individual moves towards the Leader with a given number of jumps Njumps,
and it is then evaluated by the fitness function.
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3.3.3 Update

The best position on the way of the Migrant is chosen to compare with the original position. If
it is better, it will replace the original position of this migrant.

3.4 SOMA Pareto

In the beginning, a population containing candidate solutions to the problem is generated ac-
cording to Eq. 1, similar to other versions of SOMA. The given fitness function then evaluates
the population and the algorithm goes into the migration loop with main processes, namely the
organization, migration, and update process [19].

3.4.1 The Organization Process

The organization process determines which individuals in the population will interact with each
other to create new candidate solutions that are different from the initial individuals. In other
words, it is the process of selecting the Migrant and the Leader, and this Migrant will then move
towards the Leader to search the better positions during the move.

This process plays an essential role in exploring promising subspaces and then focusing on
exploiting these promising subspaces. Therefore, an individual selected to become the Leader
is an individual with good fitness value, but should not always be the best. Because if it is
the best, the population will only focus on exploiting the subspace around the best Leader,
ignoring other promising subspaces around other good individuals, which may contain global
minima. And so the algorithm will converge quickly in local minima. The Migrant should be an
individual with the worst fitness value than the Leader’s fitness value to avoid the meaningless
moves, as pointed out in Fig. 4.

To choose the Migrant and Leader as analyzed, we propose to apply the Pareto Principle
[51]. Accordingly, 20% of the number of individuals (marked as A) hold 80% of the population
value, and 80% of the number of individuals (marked as B) hold 20% of the population value
only. That means the Leader should be in A and the Migrant should be in B. However, not all
individuals in B are Migrants, and not all individuals in A are Leaders. Instead, we propose to
randomly select an individual in 20% of A (marked as C) as the Leader and randomly select an
individual in 20% of B (marked as D) as the Migrant.

In other words, in each loop, the population will be sorted in increasing order of fitness
value. And the population is then divided into two parts, the first part is A containing 20%
of the number of individuals with the best fitness value, and part B containing 80% of the
remaining individuals. After that, the best 20% of A will be selected and marked as C, and
the best 20% of B will be selected and marked as D. And then, the algorithm randomly selects
an individual from C to be the Leader and randomly selects an individual from D to be the
Migrant. The entire process is described in Fig. 7.
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Figure 7: The organization process of SOMA Pareto.

3.4.2 The Migration Process

The migration process searches for a better position by moving the Migrant towards the selected
Leader. In the original version, individuals move in the N − k dimensional subspace with the
given fixed step until reaching the given PathLength. The ratio of each move is determined by
the PRT . Using fixed parameters of Step, PathLength and PRT lead to limiting the flexibility
of the algorithm. Instead, it is better to start by exploring promising subspaces and then focus
on exploiting these promising subspaces. That has been overcome in the SOMA T3A version
[17], which is to use the adaptive PRT and Step parameters and use the fixed number of jumps
(Njump) instead of the PathLength, but not yet thorough because PRTV ector still only is the
fixed value, 0 or 1.

In this version, we propose the adaptive PRT and Step as given in Eq. 6 and Eq. 7, and shown
in Fig. 8. These parameters help maintain the diversity of the population, balance between two
phases of exploration and exploitation, helping individuals move far away from the trapped area.
In this case, PathLength = Step × Njump.

PRT = 0.50 + 0.45 cos(T1π
FEs

MaxFEs
+ π) (6)

Step = 0.35 + 0.15 cos(T2π
FEs

MaxFEs
) (7)

Not only that, we propose to change the PRTV ector parameter. It not only receives two
values 0 and 1 like all previous versions but also adapts to each migration loop. It means that
the Migrant instead of moving in a N − k dimensional subspace that is perpendicular to the
original space, which will move in a narrow N − k dimensional subspace gradually with each
migration loop to focus on the Leader. PRTV ector is given in Eq. 8.

if randj < PRT ; PRTV ectorj = 1; else, PRTV ectorj = FEs

MaxFEs
. (8)
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3.4.3 The Update Process

The update process is the process of reviewing and deciding whether to replace the initial
Migrant. To do that, all jumping positions are evaluated by the fitness function and then one
of the best positions is selected to compare with the initial position of that Migrant. If the
new position is better, it will replace the initial position and become a new individual in the
population. On the contrary, it is ignored, and that migration loop has no improvement.

3.5 iSOMA

3.5.1 The Initialization Process

The iSOMA starts with the initialization process. Within the control parameters established,
an initial population containing candidate solutions to the problem is randomly generated using
uniformly distributed random numbers to scatter initial individuals in the whole given search
space, by applying Eq. 1.

This population is then evaluated by the given fitness function. The global best optimal
solution (the individual with the smallest fitness value) is recorded and the algorithm enters the
first migration loop, as described below.

3.5.2 The Self-Organizing Process

The self-organizing process in the proposed algorithm is the process of determining which in-
dividuals will move towards their targets (named as Migrants) and which one will become the
Leader. In the canonical version of ATO, all individuals are Migrants and the best individuals
in the population become the Leader for each migration loop. This results in limitations as
analysed in the previous subsection. On the other hand, if all individuals move towards each
other as the ATA version, SOMA not only faces the stop condition of FEs due to the use of
a lot number of jumpings taken place between bad individuals but also faces the premature
convergence scenario.

To overcome the mentioned shortcomings, the self-organizing process must both ensure the
elimination of bad individuals and maintain the diversity of the population by avoiding only
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focusing on the global best one. Accordingly, the iSOMA selects the best individuals in a group
to move toward the best individual in another group, similar to the organization process of
SOMA T3A.

For problems containing many local minimum traps, the values of m, n, and k should be
small. In this context, many moves are performed between random individuals, boosting the
exploring ability of the iSOMA in the search space. On the contrary, for simpler problems, the
values of m, n, and k should be larger to force the iSOMA to focus on better individuals, increas-
ing the exploiting ability on the promising searched space. These parameters highly impact on
the performance of the algorithm, besides the other control parameters will be presented below.

3.5.3 The Migrating Process

The migrating process regulates how the Migrant moves towards the Leader selected in the
previous subsection. This movement type, in the canonical version, is a straight-line-search
strategy with dotted-line positions as depicted in Fig. 2 and Fig. 3. To enhance the algorithm’s
search capabilities and restrict the mentioned weakness, we propose the following improvements
for the migrating way.

3.5.4 The Order of Jumps

Instead of jumping gradually towards the Leader as in the canonical version, we propose a
method of jumping in order, as shown in Fig. 9 (setting parameters: Step = 0.3, Njump = 10,
and PathLength = 3.0.). Accordingly, the first position of the Migrant is to jump "behind" the
Leader. After that, the Migrant gradually moves toward the leader specified by the given Step.
In other words, the Migrant starts from the farthest step by step approaching its initial position.

0 0.5 1 1.5 2 2.5 3 X1

The first jump

2nd3rd

st1

4th

The last jump
nth

Migrant Leader All potential positions

Figure 9: The order of the jumps in the iSOMA.

3.5.5 Immediately Update

Another valuable improvement derives from terminating the jumping progress of the current
Migrant and immediately update its position to the population if the new is better than the
initial position. It is executed by the algorithm that will evaluate the new position found during
the Migrant’s migration and compare it to the initial. It will immediately replace the initial and
stop its migration, going to the next Migrant.

25



This improvement, incorporated with jumping in order, not only makes the algorithm spend
fewer FEs to get a better position, but also helps the population preserve diversity, avoiding
premature convergence scenarios.

3.5.6 Narrow Search Space

Fig. 10 depicts the narrowing of the search space (with Step = 0.33, PathLength = 3.0, and
adaptive PRTV ector). In the early stages of the optimization progress, the algorithm should
prefer to explore promising subspace rather than focus on exploiting them. So, individuals move
on the edges of hyperplanes created by pairs of sides of variables (specified by small PRT ,
resulting in more PRTV ectorj equals zero).
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Figure 10: All possible positions of the offspring over migration loops.

Towards the end of optimization progress, the iSOMA is more inclined to exploit these
promising subspace. Therefore, the adaptive PRTV ector parameter is proposed so that indi-
viduals can move inside the space created by intersection hyperplanes, instead of just moving
on the edges like the canonical version. Eq. 8 is used to enable this feature.

Besides, the adaptive PRT parameter is leveraged in the iSOMA, which was introduced in
[17], given in Eq. 4. In this version, the Step parameter is fixed.

3.5.7 The Replacement Process

The process is to replace some individuals in the current population with new ones. This is a
necessary progression to be taken when the algorithm cannot find a better global optimal solution
after a certain amount of searching time measured by the number of function evaluations.

Accordingly, after several FEs, if the algorithm does not discover a better position than
the global best, the iSOMA will randomly replace some (10% for example) of the existing
individuals in the curent population (excluding the global best individual) by the same number
of randomly generated individuals in the whole search space (according to Eq. 1). Using random
individuals instead of recorded historical individuals found during the searching progress prevents
the algorithm falling into the current local traps.
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(a) Distribution of individuals of SOMA ATO, presented in 3D and 2D.
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(b) Distribution of individuals of SHADE, presented in 3D and 2D.
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(c) Distribution of individuals of iSOMA, presented in 3D and 2D.
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Figure 11: The operation of three algorithms SOMA ATO, SHADE, and iSOMA on the function
26th of CEC17 tested on 2D.

Fig. 11 visually illustrates how the operating optimization process of the three algorithms
SOMA ATO, SHADE, and iSOMA, implemented on the Rotated Composition Function (F.26)
of the CEC17. It clearly shows how the individuals of the classical SOMA move along the
edges while SHADE’s movement is spread evenly in the search space. The searching capability
has been improved in the iSOMA version by applying the above-mentioned processes providing
iSOMA’s balanced power as evidenced by "spreading" individuals throughout the search space
and then "focusing" towards the best individual.
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4 APPLICATIONS IN SWARM ROBOTICS

One of the most important issues for swarm robotics applications is catching up with moving tar-
gets and avoiding multiple dynamic obstacles. It is complicated in that it requires the algorithm
to work in real-time to avoid obstacles that are standing or moving in an unknown environment
where the robot does not know their position until detecting them by sensors arranged on robot.

Besides the long-standing methods such as potential field method [52], and the vector field
histogram [53], several new methods such as follow the gap method [54], and barrier function
[55], or artificial intelligence methods such as genetic algorithm [56], and neural network [57] also
demonstrate their effectiveness. Among the methods of artificial intelligence used to solve the
problem as a function optimization problem, SOMA emerges as a fast, powerful, and efficient
algorithm [6, 7, 8].

In this section, the author applies a method to guide the robot to catch the moving target
without colliding with any dynamic obstacles based on swarm intelligence algorithms.

The content presented in this section is my scientific research results and co-authors. They
have also been originally published in [24, 25, 58, 59, 60].

4.1 Swarm Robotics: Mobile Robots

4.1.1 The Movement of Mobile Robots

The final goal of the robot is catching the moving target without colliding with any dynamic
obstacles in the unknown environment. The assumptions outlined below ensure that the robot
can work well under certain circumstances to ensure that the goal is achieved.

Obs 2

Obs 3

Obs 1

Obs 4
  Start 1

  Start 2

  Start 3

Sensor

Figure 12: The robots and obstacles model.

• Robot: For simplicity, all the physical dimensions of the robot are enclosed by a circle of
radius rrobot. The sensors on the robot can accurately measure the distance to the obstacles
within the sensor range, see Fig. 12. The robot is offered about the position of the target
and can be controlled to reach the furthest desired position called moving step, i.e., the
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robot moves from the current position to a given furthest position without any difficulty.
Moving step is a given parameter depending on the physical structure of the robot.

• Obstacles: Obstacles are considered as circles of radius robs. The obstacles can move at any
speed and the robot does not know about the obstacles position until they are detected
by the sensors.

• Velocity: The velocity of the robot must be greater than the velocity of each obstacle
because if the opposite happens, the robot will not be able to avoid these dynamic obstacles.
Similarly, to catch the target, the robot must move with the velocity greater than the
target’s velocity.

A method that can be visualized as high mountain flowing water is proposed to solve the
issue. In this method, an imaginary map is built, in which the starting position of the robot
is considered as the top of the high mountain, the target considered as the lowest lying land,
the obstacles considered as small hills, and the robot considered as water, flowing from the top
of the mountain to the lowest lying land, flowing around small hills without flowing back into
them as a natural law, see Fig. 13. When the target and obstacles move, the small hills and the
lowest lying land also move respectively.
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Figure 13: The imaginary environment for swarm robot.

To build this map, a mathematical model will be shown in the next subsection.

4.1.2 Imaginary Map: The Fitness Function

For any optimization problem, the fitness function is an important component, which is the
object to solve. In some situations, the fitness function is already given. However, in some
cases, we have to build the fitness function by modeling that problem. In this section, we
present how to turn the robot path planning problem into a fitness function.

Starting with a simple rule, the robot is as close to the target and as far away from the
obstacles as possible. Eq. 9 generally describes the elements X stated, where n is the number
of target and obstacles detected by the sensors. The goal is to minimize the function f(X).
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f(X) =
n∑︂

i=1
Xi (9)

For the principle as close to the target as possible, we see that the value of the function f(X)

should be proportional to the distance from the robot to the target. Eq. 10 constructs the first
element of the fitness function in detail, where (xrobot, yrobot) and (xtarget, ytarget) are the current
positions of the robot and target respectively, and a1 is the equilibrium coefficient.

X1 = a1

√︂
(xtarget − xrobot)2 + (ytarget − yrobot)2 (10)

Similarly, with the rule that as far as possible from obstacles, the value of the f(X) function
should be inversely proportional to the distance from the robot to detected obstacles. Eq. 11
describes this in detail.

Xi = ai

nobstacle∑︂
0

e−(c−robstacle) disobstacle (11)

where:

disobstacle =
√︂

(xobstacle − xrobot)2 + (yobstacle − yrobot)2

• Xi: the obstacle elements of the f(X),
• ai: the equilibrium coefficient,
• nobstacle: the number of detected obstacles,
• c: the influential coefficient of obstacles,
• robstacle: the radius of detected obstacles,
• disobstacle: the distance from the robot to detected obstacles.
In the framework of this study, I do not go into details about robot kinematics and dynamics.

I assume that the robot can move smoothly from point A to a nearby point without any problem,
and the SOMA will generate the dynamic set of that points [58].

Due to the robot’s physical limitations, the maximum distance between the two points men-
tioned is limited, named dlimit. However, no matter how big the dlimit is, the algorithm quality
is completely independent of this distance.

4.2 Unmanned Aerial Vehicles Control: Drones

The control of unmanned aerial vehicles (UAVs) is often more complicated, requiring not only
the speed of the algorithm, but also real-time accuracy. Many solutions have been proposed
and successfully applied to path planning for UAVs such as sampling-based path planning for
UAV collision avoidance [61], cooperative path planning with applications to target tracking and
obstacle avoidance for multi-UAVs [62], and grid-based coverage path planning with minimum
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energy over irregular-shaped areas with UAVs [63]. However, the application of SOMA to plan
the trajectory of the drone is unprecedented.

In this subsection, I propose the application of the SOMA to generate the trajectory for the
drone, avoid detected obstacles and catch the given target.

The primary goal of the drone is to move toward and hit the given target without any collision
with obstacles along the way. To accomplish this, the following assumptions are needed.

• Obstacles: Obstacles come in many different shapes and sizes in nature. However, within
the framework of this study, we assume that the entire physical size of the obstacle is
surrounded by a sphere of radius robstacle. These obstacles do not move in space and they
will be detected and located by the sensors fitted on the drone.

• Drone: In this study, we assume that the drone is capable of freely moving through space,
being able to fly from point A to point B near A without any problem, called the moving
step rmovingstep. Depending on the size, structure, and controller, each drone has a different
moving step. Besides, the drone is equipped with a sensor system to detect and identify
obstacles within its operating range with radius rdetect. The target position is given before
and provided to the drone.

The operating model of drones and obstacles is shown in Fig. 14.
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(a) The drones and obstacles model (b) The drone model in 4-dimensional space

Figure 14: The drone model in 3D and 4D.

Now, it is conceivable that the task of the algorithm is to find all B positions consecutively
from start position A, forming a set of points that the drone will have to move through. The next
B position must both shorten the distance of the drone to the target while avoiding collisions
with obstacles. To formulate this idea, I propose an equation containing two components: the
first component acts as a magnet to pull the drone towards the target and the second component
pushes the drone away from the obstacles. This equation is proposed in Eq. 12.

fvalue = a1 ∗ ea2∗dis
a3
tar +

nobs∑︂
n=0

b1 ∗ eb2∗dis
b3
obs (12)

where:
• fvalue : the fitness value,
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• nobs : the number of detected obstacles,
• distar : the distance from the drone to the given target, in Eq. 13,
• disobs : the distance from the drone to each detected obstacle, in Eq. 14,
• ax, bx : the equilibrium coefficients (x = 1, 2, 3.).

distar =
√︂

(xtarget − xdrone)2 + (ytarget − ydrone)2 + (ztarget − zdrone)2 (13)

disobs =
√︂

(xobs − xdrone)2 + (yobs − ydrone)2 + (zobs − zdrone)2 (14)

The problem of catching the target and avoiding obstacles for the drone has now become an
optimization problem. Accordingly, generating the trajectory of the drone is to find the optimal
solution for Eq. 12.

Fig. 14b depicts drone activity in 4-dimensional space. The color represents the fitness
space. This space will change as the drone changes its position. Determining a set of points as
mentioned will be executed by SOMA.
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5 EXPERIMENT DESIGN

5.1 Computational Setup

5.1.1 Test Functions

To thoroughly evaluate the performance of the proposed algorithms, three common test suites
of the IEEE Congress on Evolutionary Computation (IEEE CEC) were used, including a total
of 73 functions as listed below:

• The first suite consists of 28 functions from the IEEE CEC 2013 Special Session on Real
Parameter Single Objective Optimization, consisting of 28 functions (CEC13, detail: [64]);

• The second suite consists of 15 functions from the IEEE CEC 2015 Competition on
Learning-based Real Parameter Single Objective Optimization (CEC15, see detail at [65]);

• And the last suite consists of 30 functions from the IEEE CEC 2017 Special Session and
Competition on Single Objective Real Parameter Numerical Optimization (CEC17, [66]).

These single objective benchmark problems were used for evaluation because they are the
basis of research on more complex optimization problems such as multi-objective, dynamic, nich-
ing composition, computationally expensive and so on. They are categorized into various types
of functions including unimodal, basic multimodal, simple multimodal, hybrid, and composi-
tion, (non-)separable, shifted and rotated functions that are challenging enough to evaluate an
algorithm. Definitions and details can be found in [64, 65, 66].

Table 1: The 100-Digit Challenge Basic Test Functions.

No. Functions D Search range
1 Storn’s Chebyshev Polynomial Fitting Problem 9 [-8192,8192]
2 Inverse Hilbert Matrix Problem 16 [-16384,16384]
3 Lennard-Jones Minimum Energy Cluster 18 [-4,4]
4 Rastrigin’s Function 10 [-100,100]
5 Griewangk’s Function 10 [-100,100]
6 Weierstrass Function 10 [-100,100]
7 Modified Schwefel’s Function 10 [-100,100]
8 Expanded Schaffer’s F6 Function 10 [-100,100]
9 Happy Cat Function 10 [-100,100]
10 Ackley Function 10 [-100,100]

In addition to those benchmark suites, the proposed algorithms were used to attend the 100-
Digit Challenge Competition [67], known as the CEC 2019. The competition provides 10 hard
functions, each participant is allowed to use an algorithm to solve (optimize) those functions with
an accuracy of 10 digits each, and 10 points are awarded for each completely solved function.
Tab. 1 lists the basic functions used in the 100-Digit Challenge. All test functions are scalable
and they were designed to have the same global minimum value of 1.0 within the search range.
The dimensions and search range are also in the two last columns in this table.
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Different from previous CEC competitions, the year’s competition highlights the accuracy
rather than the time to solve. Therefore, the algorithm is not limited to function evaluations and
is allowed to adjust 2 control parameters in the same way for all 10 functions. This competition
is a great challenge for cutting-edge algorithms, see [18, 20, 68] for more detailed.

5.1.2 Comparison Algorithms and Control Parameters

To demonstrate improvement over previous versions, the results were compared to the original
and latest versions of SOMA ATO and ATA [6, 7].

In order to investigate the proposed algorithms level of performance and effectiveness com-
pared to some well-known existing algorithms, we carry out experiments on the various types
of algorithms such as DE, PSO, and ABC shown below, including algorithms that have par-
ticipated in the corresponding years’ competitions. Compare the proposed SOMAs with other
SOMAs to figure out the impact of the improvements we have proposed and compare with other
algorithms outside the SOMAs to ascertain the position of proposed SOMA on the optimization
algorithm map.

For SOMA T3A:
• Artificial bee colony (ABC) [69, 70, 71],
• Hybrid firefly and particle swarm optimization (HFPSO) [72],
• Salp swarm algorithm (SSA) [73],
• Self-adaptive multi population elitist Jaya (SAMPE Jaya) [74].
The control parameter values of these algorithms have been used from the original papers in

the citations without any changes except the fitness functions and termination.
The dimension of all test problems was set at 30D with the same search range [−100, 100]D

and MaxFEs = 300000. For each function, each algorithm was independently repeated 51
times. The error value will be taken as 0 if it is smaller than 10−8. The Wilcoxon rank-sum test
was applied at the 5% significance level to evaluate whether the differences between the results
are significant [75, 76].

The settings of SOMA T3A for all benchmark problems: PopSize = 30, Njump = 45, n = 4,
m = 10, k = 10.

For SOMA Pareto:
• On the CEC’13:

– Super-fit Multicriteria Adaptive Differential Evolution [77] (SMASE);
– A CMA-ES Super-fit Scheme for the Re-sampled Inheritance Search [78] (CMAES-

RIS);
– Differential Evolution with Automatic Parameter Configuration [79] (DE-APC);
– A Self-adaptive Heterogeneous Particle Swarm Optimization [80] (fk-PSO).

• On the CEC’15:
– Tuning Maturity Model of Ecogeography-Based Optimization [81] (TEBO);
– An Improved Covariance Matrix Leaning and Searching Preference Algorithm [82]

(ICMLSP);
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– A Self-adaptive Dynamic Particle Swarm Optimizer [83] (SaDPSO);
– Dynamic Search Fireworks Algorithm with Covariance Mutation [84] (dynFWACM).

• On the CEC’17:
– Self-Organizing Migrating Algorithm Original [6] (SOMA AllToOne and AllToAll);
– Self-Organizing Migrating Algorithm Team to Team Adaptive [17] (SOMA T3A);
– A Version of IPOP-CMA-ES Algorithm with Midpoint [85] (RB-IPOP-CMA-ES);
– Proactive Particles in Swarm Optimization: a Settings-Free Algorithm [86] (PPSO);
– Teaching Learning Based Optimization with Focused Learning and its Performance

[87] (TLBO-FL);
– Self-Adaptive Multi Population Elitist Jaya [88] (SAMPE-Jaya).

In the above algorithms, there are 11 algorithms that have participated in the CEC Com-
petition in the corresponding years, except for SAMPE-Jaya and SOMA. Control parameter
settings of these algorithms have been used the same as the original papers in the citations
without any changes. For SOMA ATO and ATA, PopSize = 30 and PopSize = 20 respectively;
Step = 0.11; PRT = 0.1; PathLength = 3.

The dimension of all 73 test functions was set at 30D with the same search range [−100, 100]D

and MaxFEs = 10000 ∗ D. For each function, each algorithm was independently repeated 51
times. Error values will be taken as 0 if it is smaller than 10−8, as experimental settings requested
in [64], [65], and [66]. The Wilcoxon rank-sum test was applied at the 5% significance level to
evaluate whether the differences between the results are significant [75, 76].

SOMA Pareto setting: PopSize = 100, Njump = 10, PRT and Step as in Eq. 6 and Eq. 7
with T1 = T2 = 1 for all problems.

For iSOMA:
• IEEE CEC 2013 (CEC13):

– Evaluating the performance of SHADE on CEC 2013 benchmark problems [89]
(SHADE);

– Super-fit multicriteria adaptive differential evolution [77] (SMADE);
– A CMA-ES super-fit scheme for the re-sampled inheritance search [90] (CMAES-RIS);
– Testing a particle swarm optimization and artificial bee colony hybrid algorithm on

the CEC13 benchmarks [91] (SPSOABC);
– A genetic algorithm for solving the CEC’2013 competition problems on real-parameter

optimization [92] (TPC-GA).
• IEEE CEC 2015 (CEC15):

– A differential evolution algorithm with success-based parameter adaptation for
CEC2015 learning-based optimization [93] (DEsPA);

– Tuning maturity model of ecogeography-based optimization on CEC 2015 single-
objective optimization test problems [81] (TEBO);

– A Self-adaptive Dynamic Particle Swarm Optimizer [83] (SaDPSO);
– An improved covariance matrix leaning and searching preference algorithm for solving

CEC 2015 benchmark problems [82] (ICMLSP);
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– Dynamic search fireworks algorithm with covariance mutation for solving the CEC
2015 learning based competition problems [84] (dynFWACM).

• IEEE CEC 2017 (CEC17):
– A differential evolution strategy [94] (DES);
– A version of IPOP-CMA-ES algorithm with midpoint for CEC 2017 single objective

bound constrained problems [95] (RB-IPOP-CMA-ES);
– Proactive particles in swarm optimization: A settings-free algorithm for real-

parameter single objective optimization problems [96] (PPSO);
– Dynamic yin-yang pair optimization and its performance on single objective real

parameter problems of cec 2017 [97] (DYYPO);
– Teaching learning based optimization with focused learning and its performance on

CEC2017 functions [98] (TLBO-FL).
Tests on 10D and 30D are carried out, with a search range of [−100, 100]D for all problems.

The maximum number of function evaluations was set at 10000∗D (MaxFEs for 10D = 100000;
for 30D = 300000). Error value smaller than 10−8 will be taken as zero. For each function, each
algorithm was independently repeated 51 times, as experimental settings requested in [64, 65,
66]. The Wilcoxon rank-sum test was applied at the 5% significance level to evaluate whether
the differences between the results are significant [75, 76].

The control parameter settings of iSOMA for all problems: PopSize = 100, Njump = 10,
n = 5, m = 10, k = 15, Step = 0.3, and PRT as in Eq. 4. Other detailed SOMA parameters
are found in cited publications.

The control parameter settings of the rest algorithms have been used the same as the original
papers in the citations without any changes.

5.2 Simulation Setup

5.2.1 Mobile Robot Maps

5.2.1.1 Selective scenarios To rigorously evaluate the feasibility of the proposed solution,
we built 4 selective scenarios, covering most of basic situations that can occur in the real-world.

Obstacles TargetRobot

moves

Map 1 Map 2

Obstacles TargetRobot

moves 

Map 3

Robot2

Target1Robot1

Target2

 

 

Map 4

 

Robot1

Robot2 Target1

Target2
Obstacles

Figure 15: Selective scenarios to test the operability of robots.
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The first scenario is the simplest one, having a robot (with a respective target) and three
static obstacles. The location of the obstacles is intentionally arranged so that they are sym-
metrical and centered on the line connecting the robot to the target. The gap between the three
obstacles is calculated wide enough for the robot to move through them. This scenario is set up
to test the ability of the robot to pass through sufficient gaps between obstacles (see Map 1 of
Fig. 15).

The second scenario is similar to the first but the distance between the obstacles has been
changed so that they are smaller than the physical size of the robot (it cannot move through
those gaps). The aim is to trap the robot into the local minima and observe how to escape from
the trapped area of the robot (Map 2 of Fig. 15).

In the third scenario, two robots with two respective targets were set. There is no obstacle
in this map, but robots will be obstacles to each other. All of them were intentionally put
in a straight line so that the robots will move in opposite directions. This situation tests the
possibility of mutual avoidance between robots (Map 3 of Fig. 15).

The last one is the most complex scenario. Two robots, two respective targets, and three
obstacles were used. The robots are on the same side of the obstacles, and the targets are on
the opposite side but diagonally. The obstacles located in the middle are not only to prevent
the movement of the robots, but also trap the robot to the local minimum associated with the
other robot. This scenario tests the generality of the proposed algorithm (Map 4 of Fig. 15).

Table 2: Locations of obstacles and robots in Cartesian coordinates - Map 1 and 2 (in meter)

The object Obs1 Obs2 Obs3 Ro1 Tar1
xmap1 0.4 1.1 1.3 0.1 2.0
ymap1 1.1 0.4 1.3 0.1 2.0
rmap1 0.3 0.3 0.3 - -
xmap2 0.6 1.3 1.1 0.1 2.0
ymap2 1.3 0.6 1.1 0.1 2.0
rmap2 0.2 0.2 0.2 - -

Table 3: Locations of robots in Cartesian coordinates - Map 3 (in meter)

The object Ro1 Ro2 Tar1 Tar2
xmap3 0.6 1.7 2.0 0.3
ymap3 0.6 1.7 2.0 0.3

Table 4: Locations of obstacles and robots in Cartesian coordinates - Map 4 (in meter)

The object Obs1 Obs2 Obs3 Ro1 Ro2 Tar1 Tar2
xmap4 0.7 1.4 1.1 0.5 0.2 1.7 2.2
ymap4 1.4 0.7 1.1 0.2 0.5 2.2 1.7
rmap4 0.2 0.2 0.3 - - - -

The detailed locations of robots, obstacles, and targets are shown in Tabs. 2, 3, and 4.
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5.2.1.2 Setup for unknown complex environment The starting positions of all robots
and targets in this map are given in Tab. 5. The sizes and positions of the obstacles are
given in Tab. 6. The robots used in all simulations have a radius rrobot = 0.08m. The robot
sensors have an active range with a radius rsensor = 0.36m. The moving step of the robot is
rmovingstep = 0.05m.

Table 5: The starting positions and the target positions of the robots.

Map 5th 6th

Position Ro1 Ro2 Ro3 Ro4 Ro5 Ro1 Ro2 Ro3 Ro4

Start
x (m) 1.6 0.5 0.2 3.2 0.7 0.1 2.9 1.0 0.5
y (m) 2.3 0.3 1.4 0.5 2.3 0.7 0.9 0.0 2.5

Target
x (m) 1.7 2.5 3.0 0.5 2.7 3.0 0.2 2.0 2.2
y (m) 0.4 2.5 1.5 2.5 1.0 1.5 1.6 2.5 0.2

Table 6: The starting position of the obstacles.

Map Obstaclei Obs1 Obs2 Obs3 Obs4 Obs5 Obs6 Obs7

5th
xi (m) 2.6 0.7 2.3 2.0 1.0 - -
yi (m) 1.9 0.9 0.4 1.4 1.6 - -
ri (m) 0.19 0.20 0.21 0.22 0.23 - -

6th
xi (m) 1.0 1.4 2.5 0.3 0.7 2.6 1.4
yi (m) 0.7 1.5 2.0 0.3 1.1 0.7 2.3
ri (m) 0.19 0.24 0.21 0.20 0.21 0.23 0.22

5.2.1.3 Control parameters The objects were drawn using Matlab software R2020b ver-
sion in Windows 10 Pro Edition 20H2 Version. The SOMA for each robot is also programmed
using Matlab. The main control parameters of the algorithm are given in Tab. 7.

Table 7: The control parameter values of SOMA.

Migration PopSize Step PRT PathLength

20 40 0.11 0.1 3.0

PRT = 0.1, Step = 0.11, Pathlength = 3: These options are common to the SOMA
algorithm, and it is selected based on the recommendation from the original paper [6, 7, 8].

All robots used in simulations have a radius rrobot = 0.08m. The sensors have a radius of
active range rsensor = rrobot + 0.28m. The maximum step of the robots is dlimit = 0.04m.

5.2.2 Experimental Setup for Drone Simulation

We implemented the operational experiment of drones using the self-organizing migrating algo-
rithm in the Matlab environment, under the Windows 10 64-bit operating system.

Configuration parameters of the SOMA are listed below:
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• The number of individuals in the population: PopSize = 100
• The number of jumps: Njump = 30
• The PRT threshold: PRT = 0.1
• The granularity of each jump: Step = 0.11
• The maximum number of the migration loop: MaxMig = 50
Tab. 8 shows the positions of obstacles in the Cartesian coordinate system. The entire

physical size of the obstacle is considered a sphere with radius robstacle. These obstacles do not
move and are placed in positions that prevent the direct movement of the drones to the targets.
Tab. 9 presents the starting position of the drones as well as the position of the respective
targets.

Table 8: The positions and radius of obstacles (in meters)

Obstaclei Obs1 Obs2 Obs3 Obs4
xi -3 1 5 -2
yi -1 9 -4 -14
zi 10 -1 -7 0
ri 4 3 5 2

Table 9: The initial position of drones and targets (in meters)

The object Dro1 Dro2 Tar1 Tar2
xi 11 6 -5 -10
yi -14 -5 14 -12
zi -13 13 9 -10

In this simulation, we have assumed that the drones can move within a radius rstep = 1.5m

without any difficulty. Sensors on drones are capable of detecting obstacles within a radius of
15m. The drones are provided with the location of the target as indicated above.
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6 RESULTS AND DISCUSSION

The results are divided into two parts. The first part is the computational results of proposed
algorithms tested on the CEC 2013, 2015, and 2017 and the 100-Digit Challenge Competition.
Their performance is compared with well-known algorithms to investigate the SOMA position
on the SI map. The second part presents their application in the field of swarm robotics.

The content presented in this section is my scientific research results and co-authors. They
have also been originally published in [17, 18, 19, 20, 23, 24, 25, 50, 58, 59, 60, 68].

6.1 Computational Results of SOMA T3A

The error values of 51 continuous runs are used as a basis for comparing the performance of
algorithms on dimension D = 30. It is obtained by the difference between the best value found
by the algorithm and the global optimum value within the given search ranges of those functions
(f(x) − f(x∗)). Note that the error value is considered to be zero when smaller than 10−8 as
mentioned in the contest rules of [64, 65, 66].

6.1.1 Compared to Other Versions of SOMA

Table 10: Comparison of SOMA T3A with SOMA ATO and ATA on the CEC13 benchmark
functions (30 dimensions, 51 runs).

f SOMA T3A SOMA AllToOne SOMA AllToAll
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

f1 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
f2 3.48e+05 (2.01e+05) 1.70e+07 (4.03e+06)− 1.52e+07 (4.49e+06)−
f3 2.06e+07 (3.02e+07) 9.75e+07 (1.20e+08)− 2.32e+08 (1.93e+08)−
f4 4.79e+02 (3.26e+02) 2.49e+04 (5.35e+03)− 2.03e+04 (5.02e+03)−
f5 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
f6 3.13e+01 (2.46e+01) 3.24e+01 (2.34e+01)− 2.86e+01 (1.88e+01)+
f7 3.48e+01 (9.38e+00) 8.21e+01 (1.24e+01)− 9.12e+01 (1.57e+01)−
f8 2.09e+01 (4.62e−02) 2.09e+01 (5.24e−02)≈ 2.10e+01 (5.80e−02)≈
f9 2.85e+01 (2.33e+00) 3.11e+01 (1.30e+00)− 2.82e+01 (1.71e+00)≈
f10 1.87e−01 (9.30e−02) 3.88e−01 (2.44e−01)− 3.03e−01 (1.23e−01)−
f11 2.58e+00 (1.40e+00) 7.02e−01 (8.74e−01)+ 1.95e−01 (4.46e−01)+
f12 3.91e+01 (1.16e+01) 1.65e+02 (1.87e+01)− 1.22e+02 (2.09e+01)−
f13 8.03e+01 (2.67e+01) 1.80e+02 (1.41e+01)− 1.59e+02 (2.02e+01)−
f14 1.56e+01 (8.22e+00) 1.19e+01 (6.64e+00)+ 4.17e+00 (3.80e+00)+
f15 3.87e+03 (6.38e+02) 5.51e+03 (3.16e+02)− 4.59e+03 (3.72e+02)−
f16 2.08e+00 (5.02e−01) 2.13e+00 (2.29e−01)≈ 1.89e+00 (1.82e−01)+
f17 3.36e+01 (1.19e+00) 3.14e+01 (6.21e−01)+ 3.07e+01 (2.15e−01)+
f18 6.37e+01 (1.27e+01) 2.12e+02 (1.43e+01)− 1.84e+02 (1.59e+01)−
f19 1.97e+00 (3.23e−01) 1.88e+00 (3.01e−01)≈ 1.47e+00 (1.97e−01)+
f20 1.05e+01 (7.97e−01) 1.33e+01 (5.48e−01)− 1.35e+01 (5.97e−01)−
f21 3.16e+02 (8.90e+01) 3.21e+02 (8.91e+01)≈ 2.59e+02 (5.32e+01)+
f22 1.29e+02 (4.65e+01) 1.42e+02 (5.39e+01)≈ 6.02e+01 (4.18e+01)+
f23 4.61e+03 (8.02e+02) 6.27e+03 (3.41e+02)− 5.38e+03 (5.05e+02)−
f24 2.50e+02 (1.06e+01) 2.76e+02 (9.04e+00)− 2.73e+02 (8.09e+00)−
f25 2.95e+02 (6.61e+00) 3.05e+02 (3.74e+00)− 2.98e+02 (6.21e+00)−
f26 2.00e+02 (7.75e−03) 2.01e+02 (3.01e−01)− 2.01e+02 (3.55e−01)−
f27 1.01e+03 (9.22e+01) 1.04e+03 (2.08e+02)− 9.33e+02 (2.66e+02)≈
f28 3.00e+02 (0.00e+00) 3.00e+02 (0.00e+00)≈ 3.00e+02 (0.00e+00)≈

+ 3 8
− 17 14
≈ 8 6
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The comparison results between SOMA T3A and the original version tested on the CEC13
benchmark suite are shown in Tab. 10. On each row corresponding to each function, the best
results are marked in bold. The signs (+), (−), and (≈) respectively indicate that the algorithm
has significantly better results, significantly worse results, and not significantly better or worse
results compared to SOMA T3A using the Wilcoxon rank-sum test at the significance level 5%.

SOMA T3A demonstrates its performance in the unimodal functions f1 − f5 compared
to the other versions when reaching significantly better results than the rest. On the basic
multimodal functions and composition functions, SOMA T3A continues to prove good results
when significantly better than SOMA ATO (11 out of 19 problems) and SOMA ATA (10 out of
19 problems), only worse than 3 and 7 out of 19 problems respectively.

Tab. 11 presents the comparison results of 30 functions on the CEC17 benchmark suite. In
this experiment, the proposed algorithm shows the superior performance compared to SOMA
ATO with 26 of 30 cases having significantly better results, only losing 4 cases.

Table 11: Comparison of SOMA T3A with SOMA ATO and ATA on the CEC17 benchmark
functions (30 dimensions, 51 runs).

F SOMA T3A SOMA AllToOne SOMA AllToAll
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 0.00e+00 (0.00e+00) 1.48e+03 (2.41e+03)− 5.52e+02 (1.14e+03)−
F2 2.97e+09 (1.46e+10) 3.61e+08 (2.47e+09)+ 9.10e+04 (5.96e+05)+
F3 1.90e−02 (6.43e−02) 1.54e+04 (4.40e+03)− 9.89e+03 (3.34e+03)−
F4 5.12e+01 (3.12e+01) 8.46e+01 (2.78e+01)− 8.54e+01 (2.19e+01)−
F5 5.20e+01 (1.70e+01) 6.81e+01 (6.19e+00)− 4.99e+01 (9.35e+00)≈
F6 4.22e−04 (5.76e−04) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+
F7 7.77e+01 (1.48e+01) 1.06e+02 (7.50e+00)− 8.27e+01 (8.37e+00)≈
F8 5.65e+01 (1.48e+01) 7.07e+01 (6.25e+00)− 5.46e+01 (8.48e+00)≈
F9 4.14e+00 (4.32e+00) 7.17e−01 (1.25e+00)+ 3.05e+00 (4.67e+00)+
F10 2.51e+03 (4.67e+02) 3.08e+03 (2.21e+02)− 2.35e+03 (2.98e+02)≈
F11 2.35e+01 (2.15e+01) 6.00e+01 (2.77e+01)− 1.75e+01 (1.32e+01)≈
F12 1.04e+04 (5.79e+03) 3.96e+05 (2.70e+05)− 5.09e+05 (3.26e+05)−
F13 1.63e+02 (2.24e+02) 1.31e+04 (1.39e+04)− 8.30e+03 (7.59e+03)−
F14 6.86e+01 (7.42e+01) 4.28e+04 (3.36e+04)− 8.75e+04 (1.14e+05)−
F15 2.52e+01 (1.77e+01) 7.45e+03 (7.70e+03)− 2.12e+03 (2.42e+03)−
F16 5.61e+02 (1.66e+02) 7.83e+02 (1.27e+02)− 5.89e+02 (1.72e+02)≈
F17 9.63e+01 (7.21e+01) 2.34e+02 (7.51e+01)− 1.45e+02 (8.89e+01)−
F18 1.24e+04 (1.34e+04) 2.09e+05 (1.09e+05)− 2.04e+05 (1.17e+05)−
F19 1.91e+01 (9.23e+00) 7.99e+03 (8.78e+03)− 2.92e+03 (3.60e+03)−
F20 1.57e+02 (8.33e+01) 2.91e+02 (9.03e+01)− 1.85e+02 (8.71e+01)−
F21 2.45e+02 (4.41e+01) 2.79e+02 (8.92e+00)− 2.50e+02 (2.86e+01)≈
F22 3.85e+02 (8.73e+02) 5.43e+02 (1.02e+03)− 6.45e+02 (1.08e+03)−
F23 4.01e+02 (1.70e+01) 4.26e+02 (9.35e+00)− 4.04e+02 (1.05e+01)≈
F24 4.74e+02 (1.79e+01) 5.49e+02 (1.40e+01)− 5.12e+02 (4.29e+01)−
F25 3.88e+02 (1.11e+00) 3.87e+02 (1.09e+00)+ 3.87e+02 (9.42e−01)+
F26 6.61e+02 (5.68e+02) 1.18e+03 (6.92e+02)− 1.00e+03 (5.68e+02)−
F27 5.12e+02 (6.49e+00) 5.20e+02 (6.22e+00)− 5.12e+02 (6.48e+00)≈
F28 3.23e+02 (4.25e+01) 4.04e+02 (1.14e+01)− 4.02e+02 (4.98e+00)−
F29 5.63e+02 (9.71e+01) 6.67e+02 (7.73e+01)− 5.29e+02 (7.50e+01)≈
F30 4.34e+03 (2.00e+03) 7.12e+03 (2.83e+03)− 4.60e+03 (9.44e+02)−

+ 4 4
− 26 16
≈ 0 10

Compared to SOMA ATA, SOMA T3A gives better results in hybrid functions F11 − F20

and composition functions F21 − F30. For unimodal functions F1 − F3 and simple multimodal
functions F4 − F10, the results of the two algorithms are similar. Totally, SOMA T3A is better
than Soma ATA with 16(+), 10(≈) and 4(−).
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6.1.2 Compared to Other Algorithms

In the previous subsection, we compared SOMA T3A with the SOMA family, and it showed
better performance. To further validate its effectiveness outside the family, a comparison with
other algorithms in the same class needs to be implemented.

Tab. 12 and Tab. 13 report the comparison result between SOMA T3A and the other al-
gorithms: ABC, HFPSO, SSA, and SAMPE Jaya implemented on the CEC13 and CEC17
benchmark suites respectively.

Table 12: Comparison of SOMA T3A with other algorithms on the CEC13 benchmark functions
(30 dimensions). All results are the means of 51 runs.

f SOMA T3A ABC HFPSO SSA SAMPE JAYA
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

f1 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 8.65e+03 (2.63e+03)−
f2 3.48e+05 (2.01e+05) 8.60e+06 (2.84e+06)− 4.00e+05 (1.78e+05)≈ 1.21e+06 (5.21e+05)− 4.37e+07 (6.30e+06)−
f3 2.06e+07 (3.02e+07) 4.68e+08 (4.83e+08)− 4.30e+08 (7.11e+08)− 2.46e+08 (3.11e+08)− 4.94e+07 (3.01e−08)−
f4 4.79e+02 (3.26e+02) 9.76e+04 (1.37e+04)− 1.53e+02 (1.13e+02)+ 8.30e+01 (7.26e+01)+ 3.94e+04 (8.47e+03)−
f5 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 2.09e−03 (1.77e−04)− 2.67e+03 (1.71e+03)−
f6 3.13e+01 (2.46e+01) 1.47e+01 (4.38e+00)+ 2.62e+01 (2.59e+01)+ 3.71e+01 (2.83e+01)≈ 5.47e+02 (2.94e+02)−
f7 3.48e+01 (9.38e+00) 1.25e+02 (1.68e+01)− 8.40e+01 (3.12e+01)− 7.14e+01 (1.85e+01)− 1.18e+02 (2.29e+01)−
f8 2.09e+01 (4.62e−02) 2.10e+01 (5.15e−02)≈ 2.09e+01 (6.05e−02)+ 2.09e+01 (5.04e−02)≈ 1.25e+01 (0.00e+00)+
f9 2.85e+01 (2.33e+00) 3.14e+01 (1.73e+00)− 1.93e+01 (3.49e+00)+ 2.40e+01 (3.21e+00)+ 8.75e+01 (0.00e+00)−
f10 1.87e−01 (9.30e−02) 1.49e+00 (2.42e−01)− 1.21e−01 (5.43e−02)+ 9.11e−02 (6.10e−02)+ 9.14e+02 (2.41e+02)−
f11 2.58e+00 (1.40e+00) 0.00e+00 (0.00e+00)+ 5.02e+01 (1.62e+01)− 1.33e+02 (4.79e+01)− 3.29e+02 (4.36e+01)−
f12 3.91e+01 (1.16e+01) 2.75e+02 (5.16e+01)− 9.29e+01 (2.70e+01)− 1.19e+02 (3.51e+01)− 3.23e+02 (1.97e+01)−
f13 8.03e+01 (2.67e+01) 3.26e+02 (3.83e+01)− 1.64e+02 (3.11e+01)− 2.21e+02 (5.24e+01)− 2.89e+02 (3.77e+01)−
f14 1.56e+01 (8.22e+00) 2.21e−01 (2.80e−01)+ 1.46e+03 (3.83e+02)− 3.75e+03 (6.34e+02)− 2.90e+03 (6.23e+02)−
f15 3.87e+03 (6.38e+02) 3.79e+03 (3.81e+02)≈ 3.89e+03 (5.65e+02)≈ 3.90e+03 (5.70e+02)≈ 1.94e+03 (0.00e+00)+
f16 2.08e+00 (5.02e−01) 1.03e+00 (1.74e−01)+ 1.09e+00 (4.74e−01)+ 5.14e−01 (1.90e−01)+ 2.46e+00 (2.60e−01)−
f17 3.36e+01 (1.19e+00) 3.05e+01 (2.78e−02)+ 7.24e+01 (1.17e+01)− 1.71e+02 (4.21e+01)− 4.76e+02 (1.37e+02)−
f18 6.37e+01 (1.27e+01) 2.93e+02 (3.57e+01)− 1.05e+02 (1.82e+01)− 1.68e+02 (3.90e+01)− 4.22e+02 (4.81e+01)−
f19 1.97e+00 (3.23e−01) 3.64e−01 (8.98e−02)+ 8.78e+00 (1.74e+01)− 7.19e+00 (1.97e+00)− 2.06e+03 (4.89e+02)−
f20 1.05e+01 (7.97e−01) 1.46e+01 (1.99e−01)− 1.47e+01 (9.58e−01)− 1.23e+01 (1.34e+00)− 1.42e+01 (7.68e−01)−
f21 3.16e+02 (8.90e+01) 1.48e+02 (3.30e+01)+ 3.25e+02 (8.20e+01)≈ 3.19e+02 (8.24e+01)− 8.50e+01 (0.00e+00)+
f22 1.29e+02 (4.65e+01) 2.90e+01 (1.02e+01)+ 1.82e+03 (5.19e+02)− 4.25e+03 (7.86e+02)− 1.85e+02 (0.00e+00)−
f23 4.61e+03 (8.02e+02) 4.88e+03 (4.85e+02)− 4.84e+03 (1.16e+03)≈ 4.25e+03 (7.46e+02)+ 2.85e+02 (0.00e+00)+
f24 2.50e+02 (1.06e+01) 2.91e+02 (6.01e+00)− 2.72e+02 (1.00e+01)− 2.71e+02 (1.11e+01)− 3.85e+02 (0.00e+00)−
f25 2.95e+02 (6.61e+00) 3.08e+02 (5.24e+00)− 3.09e+02 (1.87e+01)− 2.85e+02 (9.87e+00)+ 4.85e+02 (0.00e+00)−
f26 2.00e+02 (7.75e−03) 2.01e+02 (2.79e−01)− 3.27e+02 (5.99e+01)− 2.26e+02 (6.18e+01)− 5.85e+02 (0.00e+00)−
f27 1.01e+03 (9.22e+01) 5.17e+02 (2.73e+02)+ 8.91e+02 (9.65e+01)+ 9.47e+02 (8.74e+01)+ 6.85e+02 (0.00e+00)+
f28 3.00e+02 (0.00e+00) 2.29e+02 (9.17e+01)≈ 5.43e+02 (5.72e+02)− 3.79e+02 (3.54e+02)− 7.85e+02 (0.00e+00)−

+ 9 7 7 5
− 14 15 17 23
≈ 5 6 4 0

In Tab. 12, the mean and standard deviation of the error values obtained by five algorithms
within 51 runs are listed. The total numbers of +, −, ≈ signs are also listed in the last three
rows of the table. Compare to other algorithms, SOMA T3A shows the competitive results
when reaching significantly better results more than a half of 28 benchmark functions (within
14 winnings compared to ABC, 15 for HFPSO, 17 for SSA, and 23 for SAMPE Jaya).

The superiority of the proposed algorithm is shown more clearly on the CEC17 test as listed
in Tab. 13. The overall performance reached by SOMA T3A on this benchmark suite is higher
than two-thirds of the 30 functions (within 22 winnings compared to ABC, 23 for HFPSO, 28
for SSA, and 22 for SAMPE Jaya).
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Table 13: Comparison of SOMA T3A with other algorithms on the CEC17 benchmark functions
(30 dimensions). All results are the means of 51 runs.

F SOMA T3A ABC HFPSO SSA SAMPE JAYA
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 0.00e+00 (0.00e+00) 1.79e+02 (2.05e+02)− 4.94e+03 (6.04e+03)− 5.82e+03 (6.27e+03)− 9.95e+09 (5.01e+09)−
F2 2.97e+09 (1.46e+10) 9.15e+08 (5.64e+09)≈ 4.81e+06 (3.44e+07)+ 1.38e+06 (5.73e+06)+ 6.87e+35 (3.43e+36)−
F3 1.90e−02 (6.43e−02) 1.16e+05 (2.00e+04)− 0.00e+00 (0.00e+00)+ 3.05e−08 (8.51e−09)+ 5.09e+04 (1.35e+04)−
F4 5.12e+01 (3.12e+01) 2.82e+01 (2.90e+01)+ 4.64e+01 (2.59e+01)+ 9.10e+01 (2.01e+01)− 1.01e+03 (5.95e+02)−
F5 5.20e+01 (1.70e+01) 8.53e+01 (1.22e+01)− 8.61e+01 (2.72e+01)− 1.18e+02 (3.51e+01)− 2.40e+02 (3.10e+01)−
F6 4.22e−04 (5.76e−04) 0.00e+00 (0.00e+00)+ 2.40e+00 (3.76e+00)− 2.83e+01 (9.76e+00)− 3.59e+01 (6.23e+00)−
F7 7.77e+01 (1.48e+01) 9.71e+01 (9.07e+00)− 1.10e+02 (2.62e+01)− 1.63e+02 (4.29e+01)− 3.44e+02 (1.33e+02)−
F8 5.65e+01 (1.48e+01) 9.22e+01 (1.34e+01)− 8.55e+01 (2.49e+01)− 1.17e+02 (2.78e+01)− 2.17e+02 (2.59e+01)−
F9 4.14e+00 (4.32e+00) 8.42e+02 (4.39e+02)− 3.19e+02 (9.03e+02)− 2.11e+03 (1.39e+03)− 1.01e+02 (7.18e−14)−
F10 2.51e+03 (4.67e+02) 2.25e+03 (2.70e+02)+ 3.38e+03 (6.50e+02)− 3.82e+03 (7.13e+02)− 6.42e−01 (0.00e+00)+
F11 2.35e+01 (2.15e+01) 4.79e+02 (3.47e+02)− 1.30e+02 (5.52e+01)− 1.68e+02 (4.72e+01)− 1.43e+02 (1.51e+02)−
F12 1.04e+04 (5.79e+03) 3.79e+05 (2.20e+05)− 2.01e+05 (2.94e+05)− 1.59e+06 (1.20e+06)− 5.56e+02 (6.89e−13)+
F13 1.63e+02 (2.24e+02) 6.12e+03 (5.23e+03)− 3.21e+04 (3.12e+04)− 1.06e+05 (7.45e+04)− 4.97e+07 (4.44e+07)−
F14 6.86e+01 (7.42e+01) 6.77e+04 (4.57e+04)− 3.38e+03 (3.13e+03)− 3.59e+03 (2.91e+03)− 5.57e+04 (5.92e+04)−
F15 2.52e+01 (1.77e+01) 7.07e+02 (8.23e+02)− 1.44e+04 (1.86e+04)− 6.01e+04 (3.88e+04)− 3.83e+05 (9.94e+04)−
F16 5.61e+02 (1.66e+02) 6.33e+02 (1.65e+02)− 7.76e+02 (2.64e+02)− 8.93e+02 (3.16e+02)− 1.23e+03 (2.15e+02)−
F17 9.63e+01 (7.21e+01) 2.20e+02 (1.01e+02)− 3.12e+02 (1.81e+02)− 3.43e+02 (1.72e+02)− 2.66e+02 (6.98e+01)−
F18 1.24e+04 (1.34e+04) 1.55e+05 (8.52e+04)− 1.55e+05 (1.80e+05)− 1.85e+05 (1.66e+05)− 8.26e+05 (9.54e+05)−
F19 1.91e+01 (9.23e+00) 1.14e+03 (1.27e+03)− 7.82e+03 (8.57e+03)− 2.93e+05 (1.35e+05)− 2.22e+07 (6.23e+07)−
F20 1.57e+02 (8.33e+01) 2.63e+02 (9.04e+01)− 2.95e+02 (1.17e+02)− 3.63e+02 (1.34e+02)− 3.40e+02 (1.38e+02)−
F21 2.45e+02 (4.41e+01) 2.49e+02 (7.62e+01)− 2.92e+02 (2.02e+01)− 3.01e+02 (2.39e+01)− 1.70e+02 (5.74e−14)+
F22 3.85e+02 (8.73e+02) 5.47e+02 (1.04e+03)− 1.64e+03 (1.80e+03)≈ 2.32e+03 (1.89e+03)− 8.78e+02 (6.51e+02)−
F23 4.01e+02 (1.70e+01) 4.19e+02 (2.71e+01)− 5.29e+02 (6.78e+01)− 4.52e+02 (2.78e+01)− 6.19e+02 (3.88e+01)−
F24 4.74e+02 (1.79e+01) 4.61e+02 (2.05e+02)+ 6.04e+02 (8.44e+01)− 5.11e+02 (2.79e+01)− 6.95e+02 (3.88e+01)−
F25 3.88e+02 (1.11e+00) 3.84e+02 (7.86e−01)+ 3.90e+02 (6.99e+00)≈ 3.94e+02 (1.64e+01)− 6.17e+02 (1.76e+02)−
F26 6.61e+02 (5.68e+02) 4.01e+02 (5.21e+02)+ 1.39e+03 (1.16e+03)≈ 2.02e+03 (7.79e+02)− 4.87e+02 (6.31e−13)+
F27 5.12e+02 (6.49e+00) 5.14e+02 (6.08e+00)≈ 5.56e+02 (4.65e+01)− 5.38e+02 (1.69e+01)− 3.87e+02 (4.59e−13)+
F28 3.23e+02 (4.25e+01) 3.99e+02 (1.38e+01)− 3.56e+02 (6.72e+01)≈ 4.09e+02 (4.53e+01)− 2.87e+02 (4.02e−13)+
F29 5.63e+02 (9.71e+01) 6.29e+02 (7.91e+01)− 7.54e+02 (1.50e+02)− 9.25e+02 (2.28e+02)− 1.87e+02 (1.15e−13)+
F30 4.34e+03 (2.00e+03) 4.99e+03 (1.40e+03)− 1.09e+04 (1.36e+04)− 1.17e+06 (7.48e+05)− 8.72e+01 (0.00e+00)+

+ 6 3 2 8
− 22 23 28 22
≈ 2 4 0 0

6.2 Comparative Results of SOMA Pareto

The comparison results between SOMA Pareto and other algorithms are presented in form
tables, in which each row is the mean and standard deviation errors of running 51 consecutive
trials corresponding to each function. The signs (+), (−), and (≈) respectively indicate that
the comparing algorithm has significantly better results, significantly worse results, and not
significantly better or worse results compared to SOMA Pareto using the Wilcoxon rank-sum
test (WRT) at 5% significance level. The best result without statistical tests on each row was
marked in bold.

6.2.1 Out-Performance of SOMA Pareto Compares to Other SOMA

Tab. 14 shows the performance of SOMA Pareto compared to other versions of SOMA. For
SOMA ATO, SOMA Pareto had 25 out of 30 cases having significantly better results (win),
4 cases having significantly worse results (lose), and one case unconfirm significantly better or
worse results (draw) using WRT. Compared to SOMA ATA, SOMA Pareto wins 21, loses 8,
and draws 1. For SOMA T3A, SOMA Pareto wins 14, loses 11, and draws 5. These results
demonstrate that the proposed algorithm is completely better than the original versions, as well
as the latest version of SOMA.
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Table 14: Comparison of SOMA Pareto with SOMA ATO, ATA, and SOMA T3A on the CEC17
benchmark functions (30 dimensions, 51 runs).

F SOMA Pareto SOMA AllToOne SOMA AllToAll SOMA T3A
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 2.49e−08 (1.48e−07) 1.48e+03 (2.41e+03)− 5.52e+02 (1.14e+03)− 0.00e+00 (0.00e+00)+
F2 1.67e+03 (9.51e+03) 3.61e+08 (2.47e+09)− 9.10e+04 (5.96e+05)− 2.97e+09 (1.46e+10)−
F3 3.81e−05 (1.45e−04) 1.54e+04 (4.40e+03)− 9.89e+03 (3.34e+03)− 1.90e−02 (6.43e−02)−
F4 3.77e+00 (9.58e+00) 8.46e+01 (2.78e+01)− 8.54e+01 (2.19e+01)− 5.12e+01 (3.12e+01)−
F5 3.00e+01 (7.20e+00) 6.81e+01 (6.19e+00)− 4.99e+01 (9.35e+00)− 5.20e+01 (1.70e+01)−
F6 1.41e−03 (1.83e−03) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 4.22e−04 (5.76e−04)+
F7 5.13e+01 (7.60e+00) 1.06e+02 (7.50e+00)− 8.27e+01 (8.37e+00)− 7.77e+01 (1.48e+01)−
F8 2.85e+01 (7.89e+00) 7.07e+01 (6.25e+00)− 5.46e+01 (8.48e+00)− 5.65e+01 (1.48e+01)−
F9 6.37e+00 (5.03e+00) 7.17e−01 (1.25e+00)+ 3.05e+00 (4.67e+00)+ 4.14e+00 (4.32e+00)+
F10 2.84e+03 (5.85e+02) 3.08e+03 (2.21e+02)− 2.35e+03 (2.98e+02)+ 2.51e+03 (4.67e+02)+
F11 2.80e+01 (1.94e+01) 6.00e+01 (2.77e+01)− 1.75e+01 (1.32e+01)+ 2.35e+01 (2.15e+01)+
F12 1.13e+04 (5.68e+03) 3.96e+05 (2.70e+05)− 5.09e+05 (3.26e+05)− 1.04e+04 (5.79e+03)≈
F13 7.26e+01 (5.11e+01) 1.31e+04 (1.39e+04)− 8.30e+03 (7.59e+03)− 1.63e+02 (2.24e+02)−
F14 1.21e+02 (3.14e+02) 4.28e+04 (3.36e+04)− 8.75e+04 (1.14e+05)− 6.86e+01 (7.42e+01)+
F15 1.49e+02 (3.22e+02) 7.45e+03 (7.70e+03)− 2.12e+03 (2.42e+03)− 2.52e+01 (1.77e+01)≈
F16 6.93e+02 (2.43e+02) 7.83e+02 (1.27e+02)− 5.89e+02 (1.72e+02)+ 5.61e+02 (1.66e+02)+
F17 8.78e+01 (8.76e+01) 2.34e+02 (7.51e+01)− 1.45e+02 (8.89e+01)− 9.63e+01 (7.21e+01)≈
F18 1.15e+04 (6.72e+03) 2.09e+05 (1.09e+05)− 2.04e+05 (1.17e+05)− 1.24e+04 (1.34e+04)≈
F19 4.29e+01 (4.28e+01) 7.99e+03 (8.78e+03)− 2.92e+03 (3.60e+03)− 1.91e+01 (9.23e+00)+
F20 1.75e+02 (8.22e+01) 2.91e+02 (9.03e+01)− 1.85e+02 (8.71e+01)≈ 1.57e+02 (8.33e+01)≈
F21 2.28e+02 (8.31e+00) 2.79e+02 (8.92e+00)− 2.50e+02 (2.86e+01)− 2.45e+02 (4.41e+01)−
F22 1.45e+02 (3.21e+02) 5.43e+02 (1.02e+03)− 6.45e+02 (1.08e+03)− 3.85e+02 (8.73e+02)−
F23 3.82e+02 (8.72e+00) 4.26e+02 (9.35e+00)− 4.04e+02 (1.05e+01)− 4.01e+02 (1.70e+01)−
F24 4.52e+02 (7.26e+00) 5.49e+02 (1.40e+01)− 5.12e+02 (4.29e+01)− 4.74e+02 (1.79e+01)−
F25 3.88e+02 (3.32e+00) 3.87e+02 (1.09e+00)+ 3.87e+02 (9.42e−01)+ 3.88e+02 (1.11e+00)+
F26 1.41e+03 (2.01e+02) 1.18e+03 (6.92e+02)≈ 1.00e+03 (5.68e+02)+ 6.61e+02 (5.68e+02)+
F27 5.34e+02 (6.75e+00) 5.20e+02 (6.22e+00)+ 5.12e+02 (6.48e+00)+ 5.12e+02 (6.49e+00)+
F28 3.04e+02 (2.05e+01) 4.04e+02 (1.14e+01)− 4.02e+02 (4.98e+00)− 3.23e+02 (4.25e+01)−
F29 5.20e+02 (9.75e+01) 6.67e+02 (7.73e+01)− 5.29e+02 (7.50e+01)− 5.63e+02 (9.71e+01)−
F30 3.22e+03 (2.87e+02) 7.12e+03 (2.83e+03)− 4.60e+03 (9.44e+02)− 4.34e+03 (2.00e+03)−

+ 4 8 11
− 25 21 14
≈ 1 1 5

6.2.2 Promising Results Compare to Well-Known Algorithms

Mean and standard deviation of SOMA Pareto, SMADE, CMAES-RIS, DE-APC, and fk-PSO
tested on 28 functions of CEC13 are presented in Tab. 15. Three last rows show the comparison
results from SOMA Pareto to the rest. In this experiment, SOMA Pareto achieved competitive
results compared to the SMADE and CMAES-RIS when SOMA Pareto won SMADE 9, lost 11,
and won CMAES-RIS 10, lost 9. Compare to DE-APC and fk-PSO, the proposed algorithm
shows much better performance when reaching 14 wins, only losing 10 and 7, respectively.

Compared to ICMLSP and SaDPSO tested on CEC15, SOMA Pareto continues to show
competitive performance when winning 8 and 7, respectively, losing 7 and 6, respectively. Despite
showing the superiority performance to dynFWACM, SOMA Pareto has not yet gained well when
compared with TEBO. These results are shown in Tab. 16.

Tab. 17 reports the comparison result between SOMA Pareto and the other algorithms:
RB-IPOP-CMA-ES, PPSO, TLBO-FL, and SAMPE-Jaya that implemented on the CEC17
benchmark suites. In this test suite, SOMA Pareto exhibits completely superior performance
compared to other algorithms, when winning 25, 26, and 22 out of 30 cases respectively, except
RB-IPOP-CMA-ES algorithm.
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Table 15: Comparison of SOMA Pareto with well-known algorithms on the CEC13 benchmark
functions (30 dimensions, 51 runs).

F SOMA Pareto SMADE CMAES-RIS DE-APC fk-PSO
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F2 8.79e+04 (3.68e+04) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 1.75e+05 (1.33e+05)− 1.59e+06 (8.11e+05)−
F3 3.60e+07 (5.49e+07) 9.82e+03 (4.99e+04)+ 2.24e+03 (1.10e+04)+ 3.21e+06 (1.19e+07)+ 2.40e+08 (3.75e+08)−
F4 7.43e+02 (1.12e+03) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 2.20e−01 (6.03e−01)+ 4.78e+02 (1.98e+02)≈
F5 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F6 1.71e+01 (1.95e+01) 2.67e+00 (7.92e+00)+ 6.94e−04 (2.01e−03)+ 9.35e+00 (2.06e+00)+ 2.99e+01 (1.78e+01)−
F7 3.74e+01 (7.86e+00) 3.25e+01 (1.63e+01)≈ 4.48e+01 (2.96e+01)≈ 2.18e+01 (1.89e+01)+ 6.39e+01 (3.12e+01)−
F8 2.09e+01 (4.89e−02) 2.10e+01 (4.85e−02)≈ 2.09e+01 (8.19e−02)+ 2.09e+01 (5.24e−02)≈ 2.09e+01 (6.34e−02)≈
F9 2.35e+01 (4.33e+00) 2.23e+01 (3.61e+00)≈ 2.37e+01 (1.95e+00)≈ 3.07e+01 (9.41e+00)− 1.85e+01 (2.72e+00)+
F10 3.00e−01 (1.48e−01) 1.84e−02 (1.35e−02)+ 8.31e−03 (5.46e−03)+ 6.42e−02 (4.82e−02)+ 2.29e−01 (1.33e−01)+
F11 1.55e+01 (4.86e+00) 1.09e+01 (4.23e+00)+ 2.54e+01 (6.36e+00)− 3.08e+00 (4.50e+00)+ 2.36e+01 (8.84e+00)−
F12 3.57e+01 (8.45e+00) 5.72e+01 (1.72e+01)− 7.94e+01 (4.39e+01)− 3.17e+01 (8.51e+00)+ 5.64e+01 (1.52e+01)−
F13 8.06e+01 (2.32e+01) 1.28e+02 (3.53e+01)− 1.56e+02 (5.42e+01)− 7.55e+01 (2.65e+01)≈ 1.23e+02 (2.21e+01)−
F14 1.26e+03 (4.01e+02) 1.33e+02 (1.28e+02)+ 7.92e+02 (2.21e+02)+ 3.84e+03 (3.85e+02)− 7.04e+02 (2.40e+02)+
F15 3.34e+03 (6.66e+02) 4.10e+03 (8.55e+02)− 3.13e+03 (4.57e+02)≈ 4.14e+03 (1.08e+03)− 3.42e+03 (5.21e+02)≈
F16 1.87e+00 (3.60e−01) 1.31e−01 (7.65e−02)+ 1.07e−01 (6.78e−02)+ 2.46e+00 (4.45e−01)− 8.48e−01 (2.23e−01)+
F17 5.22e+01 (5.37e+00) 3.48e+01 (1.54e+00)+ 5.50e+01 (5.24e+00)− 5.92e+01 (5.56e+00)− 5.26e+01 (7.18e+00)≈
F18 5.25e+01 (8.29e+00) 8.33e+01 (2.08e+01)− 1.89e+02 (2.73e+01)− 6.04e+01 (9.80e+00)− 6.81e+01 (9.78e+00)−
F19 2.78e+00 (7.47e−01) 2.55e+00 (5.23e−01)≈ 2.80e+00 (6.42e−01)≈ 2.30e+00 (6.24e−01)+ 3.12e+00 (9.93e−01)−
F20 9.86e+00 (6.76e−01) 1.05e+01 (8.15e−01)− 1.43e+01 (5.75e−01)− 1.26e+01 (7.40e−01)− 1.20e+01 (9.36e−01)−
F21 3.28e+02 (7.87e+01) 3.27e+02 (8.73e+01)+ 1.86e+02 (4.01e+01)+ 2.67e+02 (6.58e+01)+ 3.11e+02 (8.00e+01)+
F22 1.30e+03 (4.06e+02) 1.79e+02 (4.54e+01)+ 1.17e+03 (2.93e+02)≈ 4.56e+03 (6.08e+02)− 8.59e+02 (3.13e+02)+
F23 3.48e+03 (6.40e+02) 4.22e+03 (8.83e+02)− 4.03e+03 (5.43e+02)− 4.18e+03 (9.21e+02)− 3.57e+03 (5.96e+02)≈
F24 2.27e+02 (4.44e+00) 2.32e+02 (2.60e+01)− 2.59e+02 (1.76e+01)− 2.92e+02 (1.90e+01)− 2.48e+02 (8.20e+00)−
F25 2.78e+02 (8.97e+00) 2.78e+02 (1.00e+01)≈ 2.82e+02 (8.50e+00)≈ 2.99e+02 (6.86e+00)− 2.49e+02 (7.89e+00)+
F26 2.00e+02 (2.11e−03) 2.15e+02 (5.30e+01)− 1.97e+02 (1.21e+01)≈ 3.28e+02 (5.47e+01)− 2.95e+02 (7.13e+01)−
F27 6.38e+02 (8.02e+01) 6.47e+02 (1.39e+02)≈ 7.49e+02 (1.87e+02)− 1.19e+03 (1.86e+02)− 7.76e+02 (7.18e+01)−
F28 3.00e+02 (3.27e−13) 3.88e+02 (3.27e+02)− 5.39e+02 (1.33e+03)− 3.00e+02 (0.00e+00)+ 4.01e+02 (3.51e+02)−

+ 11 9 10 7
− 9 10 14 14
≈ 8 9 4 7

Table 16: Comparison of SOMA Pareto with well-known algorithms on the CEC15 benchmark
functions (30 dimensions, 51 runs).

F SOMA Pareto TEBO ICMLSP SaDPSO dynFWACM
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 1.11e+04 (8.30e+03) 3.69e+02 (7.71e+02)+ 0.00e+00 (0.00e+00)+ 1.93e−02 (8.42e−02)+ 6.17e+05 (2.49e+05)−
F2 3.14e−01 (1.10e+00) 4.54e−07 (3.02e−06)+ 4.05e−05 (1.44e−04)+ 2.88e+02 (1.09e+03)− 3.31e+03 (3.59e+03)−
F3 2.08e+01 (9.95e−02) 2.00e+01 (6.32e−02)+ 2.00e+01 (7.57e−03)+ 2.00e+01 (4.15e−05)+ 2.00e+01 (5.75e−06)+
F4 2.95e+01 (6.53e+00) 4.41e+01 (1.06e+01)− 2.31e+02 (5.66e+01)− 4.25e+01 (9.31e+00)− 1.30e+02 (3.80e+01)−
F5 2.59e+03 (5.71e+02) 1.96e+03 (6.32e+02)+ 4.03e+03 (6.56e+02)− 2.52e+03 (3.58e+02)≈ 3.38e+03 (6.98e+02)−
F6 5.47e+03 (5.55e+03) 6.98e+02 (6.52e+02)+ 1.47e+03 (4.08e+02)+ 1.38e+03 (6.04e+02)+ 2.69e+04 (1.90e+04)−
F7 4.00e+00 (9.00e−01) 4.42e+00 (1.41e+00)≈ 2.07e+01 (1.45e+01)− 9.52e+00 (1.93e+00)− 1.46e+01 (2.57e+00)−
F8 5.71e+03 (5.02e+03) 1.21e+02 (1.48e+02)+ 9.42e+02 (2.50e+02)+ 1.62e+03 (1.35e+03)+ 2.40e+04 (1.32e+04)−
F9 1.03e+02 (1.61e−01) 1.08e+02 (1.22e+00)− 1.63e+02 (1.32e+02)− 1.03e+02 (1.86e−01)− 1.08e+02 (9.01e−01)−
F10 4.55e+03 (4.50e+03) 6.21e+02 (9.31e+01)+ 1.43e+03 (3.36e+02)+ 6.52e+03 (4.66e+03)− 3.15e+04 (2.01e+04)−
F11 3.14e+02 (5.70e+01) 4.81e+02 (1.95e+02)− 1.12e+03 (2.72e+02)− 3.20e+02 (8.88e+00)− 6.72e+02 (1.54e+02)−
F12 1.04e+02 (4.13e−01) 1.06e+02 (1.04e+00)− 1.61e+02 (4.11e+01)− 1.05e+02 (4.90e−01)− 1.17e+02 (1.23e+01)−
F13 1.03e+02 (5.72e+00) 9.87e+01 (5.46e+00)+ 8.53e−02 (1.26e−01)+ 1.01e+02 (4.06e+00)≈ 2.62e−02 (7.46e−03)+
F14 3.27e+04 (4.54e+02) 3.45e+04 (4.04e+03)− 4.21e+04 (4.67e+03)− 1.87e+04 (5.27e+03)+ 4.49e+04 (1.02e+03)−
F15 1.00e+02 (2.59e−13) 1.00e+02 (0.00e+00)+ 1.27e+02 (1.62e+01)− 1.00e+02 (1.19e−13)+ 1.00e+02 (0.00e+00)+

+ 9 7 6 3
− 5 8 7 12
≈ 1 0 2 0
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Table 17: Comparison of SOMA Pareto with well-known algorithms on the CEC17 benchmark
functions (30 dimensions, 51 runs).

F SOMA Pareto RB-IPOP-CMA-ES PPSO TLBO-FL SAMPE-Jaya
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 2.49e−08 (1.48e−07) 3.15e−08 (2.75e−08)− 7.48e+02 (6.06e+02)− 3.51e+03 (3.61e+03)− 9.95e+09 (5.01e+09)−
F2 1.67e+03 (9.51e+03) 0.00e+00 (0.00e+00)+ 5.32e+01 (6.91e+01)+ 8.52e+16 (5.81e+17)− 6.87e+35 (3.43e+36)−
F3 3.81e−05 (1.45e−04) 0.00e+00 (0.00e+00)+ 1.13e+00 (4.83e−01)− 2.99e+03 (1.08e+03)− 5.09e+04 (1.35e+04)−
F4 3.77e+00 (9.58e+00) 5.53e+01 (1.65e+01)− 4.39e+01 (3.19e+01)− 9.01e+01 (2.37e+01)− 1.01e+03 (5.95e+02)−
F5 3.77e+00 (9.58e+00) 5.53e+01 (1.65e+01)− 4.39e+01 (3.19e+01)− 9.01e+01 (2.37e+01)− 1.01e+03 (5.95e+02)−
F6 1.41e−03 (1.83e−03) 1.21e−07 (3.97e−08)+ 2.03e+01 (4.15e+00)− 4.87e−01 (4.24e−01)− 3.59e+01 (6.23e+00)−
F7 5.13e+01 (7.60e+00) 3.43e+01 (1.28e+00)+ 1.35e+02 (1.63e+01)− 1.39e+02 (4.75e+01)− 3.44e+02 (1.33e+02)−
F8 2.85e+01 (7.89e+00) 1.76e+00 (1.65e+00)+ 8.10e+01 (1.04e+01)− 3.67e+01 (1.84e+01)− 2.17e+02 (2.59e+01)−
F9 6.37e+00 (5.03e+00) 0.00e+00 (0.00e+00)+ 1.36e+03 (2.82e+02)− 3.45e+01 (2.71e+01)− 1.01e+02 (7.18e−14)−
F10 2.84e+03 (5.85e+02) 1.44e+03 (5.83e+02)+ 3.13e+03 (3.46e+02)− 6.69e+03 (2.77e+02)− 6.42e−01 (0.00e+00)+
F11 2.80e+01 (1.94e+01) 4.11e+01 (4.76e+01)≈ 8.43e+01 (1.84e+01)− 8.16e+01 (4.14e+01)− 1.43e+02 (1.51e+02)−
F12 1.13e+04 (5.68e+03) 1.09e+03 (2.81e+02)+ 2.77e+04 (8.55e+03)− 5.75e+04 (8.99e+04)− 5.56e+02 (6.89e−13)+
F13 7.26e+01 (5.11e+01) 1.19e+02 (4.00e+02)− 3.21e+03 (2.88e+03)− 2.02e+04 (1.79e+04)− 4.97e+07 (4.44e+07)−
F14 1.21e+02 (3.14e+02) 9.08e+01 (5.62e+01)≈ 2.32e+03 (1.52e+03)− 7.10e+03 (5.85e+03)− 5.57e+04 (5.92e+04)−
F15 1.49e+02 (3.22e+02) 2.18e+02 (1.84e+02)≈ 2.13e+03 (1.63e+03)− 2.16e+04 (2.27e+04)− 3.83e+05 (9.94e+04)−
F16 6.93e+02 (2.43e+02) 5.02e+02 (2.54e+02)+ 8.46e+02 (1.53e+02)− 4.92e+02 (3.53e+02)+ 1.23e+03 (2.15e+02)−
F17 8.78e+01 (8.76e+01) 1.32e+02 (9.54e+01)− 3.31e+02 (1.13e+02)− 1.41e+02 (6.59e+01)− 2.66e+02 (6.98e+01)−
F18 1.15e+04 (6.72e+03) 1.60e+02 (1.14e+02)+ 6.99e+04 (3.06e+04)− 3.67e+05 (1.67e+05)− 8.26e+05 (9.54e+05)−
F19 4.29e+01 (4.28e+01) 1.15e+02 (6.59e+01)− 1.71e+03 (1.69e+03)− 1.07e+04 (1.10e+04)− 2.22e+07 (6.23e+07)−
F20 1.75e+02 (8.22e+01) 2.97e+02 (1.19e+02)− 3.48e+02 (9.16e+01)− 2.21e+02 (1.25e+02)− 3.40e+02 (1.38e+02)−
F21 2.28e+02 (8.31e+00) 2.09e+02 (1.67e+01)+ 3.05e+02 (3.30e+01)− 2.34e+02 (1.16e+01)− 1.70e+02 (5.74e−14)+
F22 1.45e+02 (3.21e+02) 6.72e+02 (7.63e+02)− 1.00e+02 (5.05e−07)+ 1.01e+02 (1.94e+00)+ 8.78e+02 (6.51e+02)−
F23 3.82e+02 (8.72e+00) 3.39e+02 (4.93e+01)+ 6.81e+02 (3.79e+01)− 3.96e+02 (1.62e+01)− 6.19e+02 (3.88e+01)−
F24 4.52e+02 (7.26e+00) 4.19e+02 (3.06e+00)+ 7.39e+02 (4.57e+01)− 4.69e+02 (1.62e+01)− 6.95e+02 (3.88e+01)−
F25 3.88e+02 (3.32e+00) 3.87e+02 (1.47e−02)+ 3.85e+02 (1.77e+00)+ 4.02e+02 (1.76e+01)− 6.17e+02 (1.76e+02)−
F26 1.41e+03 (2.01e+02) 3.94e+02 (2.17e+02)+ 2.04e+03 (1.73e+03)≈ 1.42e+03 (4.69e+02)≈ 4.87e+02 (6.31e−13)+
F27 5.34e+02 (6.75e+00) 5.12e+02 (1.13e+01)+ 7.08e+02 (5.42e+01)− 5.32e+02 (2.07e+01)≈ 3.87e+02 (4.59e−13)+
F28 3.04e+02 (2.05e+01) 3.09e+02 (2.96e+01)− 3.27e+02 (3.17e+01)− 4.30e+02 (2.67e+01)− 2.87e+02 (4.02e−13)+
F29 5.20e+02 (9.75e+01) 4.93e+02 (1.04e+02)+ 7.80e+02 (1.21e+02)− 6.15e+02 (9.09e+01)− 1.87e+02 (1.15e−13)+
F30 3.22e+03 (2.87e+02) 2.84e+03 (1.94e+03)+ 3.32e+03 (3.89e+02)≈ 2.57e+04 (2.78e+04)− 8.72e+01 (0.00e+00)+

+ 19 3 2 8
− 8 25 26 22
≈ 3 2 2 0

An important point to note is that 11 of the 12 algorithms used to compare (except SAMPE-
Jaya) have been carefully tweaked to attend the CEC Competition in its respective years. For
SOMA Pareto there is only one setting to run for 73 functions of 3 benchmark suites. It is
believed that the comparison results will be more raised if SOMA Pareto is set individually for
each benchmark suite. However, we have proposed the same setting for all issues to keep the
generality of the proposed algorithm, giving a visual perspective to the reader.

6.3 iSOMA Performance

The comparison results between iSOMA and other algorithms are reported in form tables, in
which each row is the mean and standard deviation errors of running 51 consecutive trials
corresponding to each function. The signs (+), (−), and (≈) respectively indicate that the
comparing algorithm has significantly better results (iSOMA loses), significantly worse results
(iSOMA wins), and not significantly better or worse results (draw) compared to iSOMA using
the Wilcoxon rank-sum test at 5% significance level. The best results on each row among the

46



participating algorithms without statistical tests were marked in bold. The last three rows in
each table represent the sum total of the signs (+), (−), and (≈).

Table 18: Comparison of iSOMA with SOMA family on the CEC13 benchmark functions (30
dimensions, 51 runs).

F iSOMA SOMA-ATO SOMA-ATA SOMA-Pareto SOMA-T3A
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F2 9.80e+04 (4.13e+04) 1.70e+07 (4.03e+06)− 1.40e+07 (2.62e+06)− 8.79e+04 (3.68e+04)≈ 3.48e+05 (2.01e+05)−
F3 3.13e+06 (4.17e+06) 9.75e+07 (1.20e+08)− 1.89e+08 (1.60e+08)− 3.60e+07 (5.49e+07)− 2.06e+07 (3.02e+07)−
F4 3.23e+02 (1.65e+02) 2.49e+04 (5.35e+03)− 2.08e+04 (4.85e+03)− 7.43e+02 (1.12e+03)≈ 4.79e+02 (3.26e+02)−
F5 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F6 1.95e+01 (1.70e+01) 3.24e+01 (2.34e+01)− 3.28e+01 (2.01e+01)− 1.71e+01 (1.95e+01)+ 3.13e+01 (2.46e+01)−
F7 1.37e+01 (4.39e+00) 8.21e+01 (1.24e+01)− 8.66e+01 (1.55e+01)− 3.74e+01 (7.86e+00)− 3.48e+01 (9.38e+00)−
F8 2.09e+01 (5.36e−02) 2.09e+01 (5.24e−02)≈ 2.10e+01 (4.79e−02)≈ 2.09e+01 (4.89e−02)≈ 2.09e+01 (4.62e−02)≈
F9 2.10e+01 (3.43e+00) 3.11e+01 (1.30e+00)− 2.82e+01 (2.60e+00)− 2.35e+01 (4.33e+00)− 2.85e+01 (2.33e+00)−
F10 1.91e−01 (7.57e−02) 3.88e−01 (2.44e−01)− 3.03e−01 (1.21e−01)− 3.00e−01 (1.48e−01)− 1.87e−01 (9.30e−02)≈
F11 7.33e+00 (2.10e+00) 7.02e−01 (8.74e−01)+ 2.93e−01 (5.73e−01)+ 1.55e+01 (4.86e+00)− 2.58e+00 (1.40e+00)+
F12 1.84e+01 (5.98e+00) 1.65e+02 (1.87e+01)− 1.22e+02 (2.02e+01)− 3.57e+01 (8.45e+00)− 3.91e+01 (1.16e+01)−
F13 4.42e+01 (1.61e+01) 1.80e+02 (1.41e+01)− 1.60e+02 (2.17e+01)− 8.06e+01 (2.32e+01)− 8.03e+01 (2.67e+01)−
F14 1.00e+03 (3.27e+02) 1.19e+01 (6.64e+00)+ 4.00e+00 (3.26e+00)+ 1.26e+03 (4.01e+02)− 1.56e+01 (8.22e+00)+
F15 2.84e+03 (6.80e+02) 5.51e+03 (3.16e+02)− 4.62e+03 (3.52e+02)− 3.34e+03 (6.66e+02)− 3.87e+03 (6.38e+02)−
F16 2.44e+00 (2.58e−01) 2.13e+00 (2.29e−01)+ 1.73e+00 (3.15e−01)+ 1.87e+00 (3.60e−01)+ 2.08e+00 (5.02e−01)+
F17 4.31e+01 (4.42e+00) 3.14e+01 (6.21e−01)+ 3.07e+01 (2.44e−01)+ 5.22e+01 (5.37e+00)− 3.36e+01 (1.19e+00)+
F18 5.01e+01 (8.52e+00) 2.12e+02 (1.43e+01)− 1.85e+02 (1.77e+01)− 5.25e+01 (8.29e+00)≈ 6.37e+01 (1.27e+01)−
F19 2.42e+00 (4.96e−01) 1.88e+00 (3.01e−01)+ 1.48e+00 (2.66e−01)+ 2.78e+00 (7.47e−01)− 1.97e+00 (3.23e−01)+
F20 9.18e+00 (6.49e−01) 1.33e+01 (5.48e−01)− 1.34e+01 (5.34e−01)− 9.86e+00 (6.76e−01)− 1.05e+01 (7.97e−01)−
F21 3.03e+02 (6.21e+01) 3.21e+02 (8.91e+01)− 2.73e+02 (5.81e+01)≈ 3.28e+02 (7.87e+01)− 3.16e+02 (8.90e+01)−
F22 6.51e+02 (2.49e+02) 1.42e+02 (5.39e+01)+ 5.33e+01 (3.75e+01)+ 1.30e+03 (4.06e+02)− 1.29e+02 (4.65e+01)+
F23 2.84e+03 (6.93e+02) 6.27e+03 (3.41e+02)− 5.39e+03 (3.87e+02)− 3.48e+03 (6.40e+02)− 4.61e+03 (8.02e+02)−
F24 2.21e+02 (5.18e+00) 2.76e+02 (9.04e+00)− 2.75e+02 (7.61e+00)− 2.27e+02 (4.44e+00)− 2.50e+02 (1.06e+01)−
F25 2.74e+02 (7.54e+00) 3.05e+02 (3.74e+00)− 2.97e+02 (4.48e+00)− 2.78e+02 (8.97e+00)− 2.95e+02 (6.61e+00)−
F26 2.00e+02 (3.09e−03) 2.01e+02 (3.01e−01)− 2.01e+02 (3.97e−01)− 2.00e+02 (2.11e−03)≈ 2.00e+02 (7.75e−03)−
F27 5.54e+02 (5.88e+01) 1.04e+03 (2.08e+02)− 9.13e+02 (2.70e+02)− 6.38e+02 (8.02e+01)− 1.01e+03 (9.22e+01)−
F28 3.00e+02 (0.00e+00) 3.00e+02 (0.00e+00)− 3.00e+02 (0.00e+00)− 3.00e+02 (0.00e+00)≈ 3.00e+02 (0.00e+00)−

+ 6 6 2 6
− 19 18 18 18
≈ 3 4 8 4

Table 19: Comparison of iSOMA with SOMA family on the CEC15 benchmark functions (30
dimensions, 51 runs).

F iSOMA SOMA-ATO SOMA-ATA SOMA-Pareto SOMA-T3A
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 5.61e+03 (5.25e+03) 2.00e+06 (7.21e+05)− 1.79e+06 (6.16e+05)− 1.11e+04 (8.30e+03)− 5.20e+04 (4.99e+04)−
F2 1.14e−01 (4.52e−01) 3.19e+03 (2.99e+03)− 9.12e+02 (1.21e+03)− 3.14e−01 (1.10e+00)− 1.93e−04 (9.21e−04)+
F3 2.10e+01 (4.44e−02) 2.03e+01 (3.12e−02)+ 2.03e+01 (3.82e−02)+ 2.08e+01 (9.95e−02)+ 2.04e+01 (1.06e−01)+
F4 1.47e+01 (3.76e+00) 6.80e+01 (7.81e+00)− 4.89e+01 (7.40e+00)− 2.95e+01 (6.53e+00)− 5.11e+01 (1.52e+01)−
F5 1.91e+03 (5.53e+02) 2.78e+03 (2.58e+02)− 2.17e+03 (2.44e+02)− 2.59e+03 (5.71e+02)− 2.16e+03 (4.96e+02)−
F6 2.43e+03 (1.61e+03) 1.19e+06 (6.92e+05)− 1.07e+06 (5.29e+05)− 5.47e+03 (5.55e+03)− 1.30e+04 (9.02e+03)−
F7 2.60e+00 (7.40e−01) 9.85e+00 (1.46e+00)− 8.46e+00 (1.80e+00)− 4.00e+00 (9.00e−01)− 3.79e+00 (1.05e+00)−
F8 1.88e+03 (2.41e+03) 2.70e+05 (1.28e+05)− 2.49e+05 (1.32e+05)− 5.71e+03 (5.02e+03)− 6.47e+03 (5.73e+03)−
F9 1.02e+02 (1.23e−01) 1.03e+02 (2.13e−01)− 1.04e+02 (3.29e−01)− 1.03e+02 (1.61e−01)− 1.03e+02 (1.55e−01)−
F10 2.45e+03 (1.71e+03) 3.89e+05 (2.05e+05)− 4.35e+05 (2.12e+05)− 4.55e+03 (4.50e+03)− 4.95e+03 (3.57e+03)−
F11 3.10e+02 (3.25e+01) 3.21e+02 (9.10e+00)− 3.35e+02 (5.25e+01)− 3.14e+02 (5.70e+01)− 3.03e+02 (1.99e+00)+
F12 1.04e+02 (4.28e−01) 1.07e+02 (5.68e−01)− 1.07e+02 (6.28e−01)− 1.04e+02 (4.13e−01)− 1.05e+02 (5.77e−01)−
F13 9.68e+01 (5.16e+00) 1.04e+02 (2.67e+00)− 1.01e+02 (3.53e+00)− 1.03e+02 (5.72e+00)− 1.07e+02 (4.87e+00)−
F14 3.26e+04 (5.55e+02) 3.19e+04 (6.16e+02)+ 3.23e+04 (5.69e+02)+ 3.27e+04 (4.54e+02)≈ 3.21e+04 (7.25e+02)+
F15 1.00e+02 (1.22e−13) 1.00e+02 (1.35e−13)− 1.00e+02 (1.09e−13)− 1.00e+02 (2.59e−13)− 1.00e+02 (5.50e−13)−

+ 2 2 1 4
− 13 13 13 11
≈ 0 0 1 0
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6.3.1 Outperformed Other SOMAs

Tabs. 18, 19, and 20 present the comparison results between some latest versions of the SOMA
family, in turn, performed on the CEC13, CEC15, and CEC17 test suites within only 30D.

In particular, compared to SOMA ATO and ATA versions, iSOMA has significantly better
results on 3 test suites with a total of 59 and 57 over 73 case wins, while iSOMA only loses 9
and 10, draws 5 and 6, respectively, as summarized in Fig. 16. These results clearly show that
the improvements of the iSOMA bring superior performance compared to the classical version
as well as the SOMA Pareto and T3A.
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SOMA ATO

SOMA ATA

SOMA Pareto

SOMA T3A

SOMA ATO SOMA ATA SOMA Pareto SOMA T3A

iSOMA win 59 57 56 52

iSOMA draw 5 6 10 8

iSOMA lose 9 10 7 13

73

Figure 16: The summarized comparison result between the iSOMA and other SOMAs tested on
73 benchmark functions.

6.3.2 Compete Against Other Algorithms

For CEC13:
Tabs. 21 and 22 show the comparison results on 10D and 30D with well-known DE versions

of SHADE and SMADE, and other well-attended algorithms such as PSO, GA and ABC listed
in the previous section and summarized in Fig. 17. For 10D problems, iSOMA proved weaker
than the two versions of DE, when losing 16 and 13 out of 28 functions, winning only 4 and 9
functions. However, the situation changed for 30D problems when iSOMA won 14 and lost 9
compared to SMADE. These results show promising potential.

Compared to TPC-GA and CMAES-RIS, it is clear that iSOMA is on par with them on
10D, and outperforms on 30D problems. This shows that TPC-GA and CMAES-RIS are more
effective on unimodal functions compared to iSOMA, as well as fast convergence but potentially
be trapped in local of complex functions. In contrast, iSOMA has proven its synergy on basic
multimodal and composition functions.

For CEC15:
Tabs. 23 and 24, in turn, show the simulation results between iSOMA compared to DEsPA,

TEBO, SaDPSO, ICMLSP and dynFWACM, on both 10D and 30D and summarized in Fig. 18.
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Table 20: Comparison of iSOMA with SOMA family on the CEC17 benchmark functions (30
dimensions, 51 runs).

F iSOMA SOMA-ATO SOMA-ATA SOMA-Pareto SOMA-T3A
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 6.63e−10 (3.55e−09) 1.48e+03 (2.41e+03)− 5.52e+02 (1.14e+03)− 2.49e−08 (1.48e−07)≈ 0.00e+00 (0.00e+00)≈
F2 3.92e−02 (2.80e−01) 3.61e+08 (2.47e+09)− 9.10e+04 (5.96e+05)− 1.67e+03 (9.51e+03)− 2.97e+09 (1.46e+10)−
F3 9.71e−04 (2.82e−03) 1.54e+04 (4.40e+03)− 9.89e+03 (3.34e+03)− 3.81e−05 (1.45e−04)+ 1.90e−02 (6.43e−02)−
F4 4.52e+01 (3.20e+01) 8.46e+01 (2.78e+01)− 8.54e+01 (2.19e+01)− 3.77e+00 (9.58e+00)+ 5.12e+01 (3.12e+01)≈
F5 1.41e+01 (4.02e+00) 6.81e+01 (6.19e+00)− 4.99e+01 (9.35e+00)− 3.00e+01 (7.20e+00)− 5.20e+01 (1.70e+01)−
F6 3.68e−06 (1.39e−05) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 1.41e−03 (1.83e−03)− 4.22e−04 (5.76e−04)−
F7 4.35e+01 (3.73e+00) 1.06e+02 (7.50e+00)− 8.27e+01 (8.37e+00)− 5.13e+01 (7.60e+00)− 7.77e+01 (1.48e+01)−
F8 1.56e+01 (4.00e+00) 7.07e+01 (6.25e+00)− 5.46e+01 (8.48e+00)− 2.85e+01 (7.89e+00)− 5.65e+01 (1.48e+01)−
F9 3.63e−01 (5.77e−01) 7.17e−01 (1.25e+00)− 3.05e+00 (4.67e+00)− 6.37e+00 (5.03e+00)− 4.14e+00 (4.32e+00)−
F10 2.13e+03 (4.94e+02) 3.08e+03 (2.21e+02)− 2.35e+03 (2.98e+02)− 2.84e+03 (5.85e+02)− 2.51e+03 (4.67e+02)−
F11 1.26e+01 (1.53e+01) 6.00e+01 (2.77e+01)− 1.75e+01 (1.32e+01)− 2.80e+01 (1.94e+01)− 2.35e+01 (2.15e+01)−
F12 7.00e+03 (4.23e+03) 3.96e+05 (2.70e+05)− 5.09e+05 (3.26e+05)− 1.13e+04 (5.68e+03)− 1.04e+04 (5.79e+03)−
F13 2.61e+01 (1.44e+01) 1.31e+04 (1.39e+04)− 8.30e+03 (7.59e+03)− 7.26e+01 (5.11e+01)− 1.63e+02 (2.24e+02)−
F14 4.35e+01 (1.64e+01) 4.28e+04 (3.36e+04)− 8.75e+04 (1.14e+05)− 1.21e+02 (3.14e+02)− 6.86e+01 (7.42e+01)≈
F15 1.79e+02 (6.81e+02) 7.45e+03 (7.70e+03)− 2.12e+03 (2.42e+03)− 1.49e+02 (3.22e+02)+ 2.52e+01 (1.77e+01)+
F16 3.54e+02 (2.09e+02) 7.83e+02 (1.27e+02)− 5.89e+02 (1.72e+02)− 6.93e+02 (2.43e+02)− 5.61e+02 (1.66e+02)−
F17 3.80e+01 (2.62e+01) 2.34e+02 (7.51e+01)− 1.45e+02 (8.89e+01)− 8.78e+01 (8.76e+01)− 9.63e+01 (7.21e+01)−
F18 9.13e+03 (6.75e+03) 2.09e+05 (1.09e+05)− 2.04e+05 (1.17e+05)− 1.15e+04 (6.72e+03)− 1.24e+04 (1.34e+04)≈
F19 1.46e+01 (6.05e+00) 7.99e+03 (8.78e+03)− 2.92e+03 (3.60e+03)− 4.29e+01 (4.28e+01)− 1.91e+01 (9.23e+00)−
F20 1.28e+02 (4.87e+01) 2.91e+02 (9.03e+01)− 1.85e+02 (8.71e+01)− 1.75e+02 (8.22e+01)− 1.57e+02 (8.33e+01)−
F21 2.17e+02 (4.66e+00) 2.79e+02 (8.92e+00)− 2.50e+02 (2.86e+01)− 2.28e+02 (8.31e+00)− 2.45e+02 (4.41e+01)−
F22 1.00e+02 (3.44e−01) 5.43e+02 (1.02e+03)− 6.45e+02 (1.08e+03)− 1.45e+02 (3.21e+02)− 3.85e+02 (8.73e+02)−
F23 3.65e+02 (8.16e+00) 4.26e+02 (9.35e+00)− 4.04e+02 (1.05e+01)− 3.82e+02 (8.72e+00)− 4.01e+02 (1.70e+01)−
F24 4.37e+02 (6.12e+00) 5.49e+02 (1.40e+01)− 5.12e+02 (4.29e+01)− 4.52e+02 (7.26e+00)− 4.74e+02 (1.79e+01)−
F25 3.87e+02 (3.12e−01) 3.87e+02 (1.09e+00)≈ 3.87e+02 (9.42e−01)≈ 3.88e+02 (3.32e+00)− 3.88e+02 (1.11e+00)−
F26 1.15e+03 (8.28e+01) 1.18e+03 (6.92e+02)≈ 1.00e+03 (5.68e+02)≈ 1.41e+03 (2.01e+02)− 6.61e+02 (5.68e+02)+
F27 5.17e+02 (5.00e+00) 5.20e+02 (6.22e+00)− 5.12e+02 (6.48e+00)+ 5.34e+02 (6.75e+00)− 5.12e+02 (6.49e+00)+
F28 3.17e+02 (4.13e+01) 4.04e+02 (1.14e+01)− 4.02e+02 (4.98e+00)− 3.04e+02 (2.05e+01)+ 3.23e+02 (4.25e+01)−
F29 4.61e+02 (3.84e+01) 6.67e+02 (7.73e+01)− 5.29e+02 (7.50e+01)− 5.20e+02 (9.75e+01)− 5.63e+02 (9.71e+01)−
F30 2.82e+03 (6.75e+02) 7.12e+03 (2.83e+03)− 4.60e+03 (9.44e+02)− 3.22e+03 (2.87e+02)− 4.34e+03 (2.00e+03)−

+ 1 2 4 3
− 27 26 25 23
≈ 2 2 1 4

Table 21: Comparison of iSOMA with well-known algorithms on the CEC13 benchmark func-
tions (10 dimensions, 51 runs).

F iSOMA SHADE SMADE CMAES-RIS SPSOABC TPC-GA
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F2 1.67e+03 (1.92e+03) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 1.47e+05 (1.65e+05)− 0.00e+00 (0.00e+00)+
F3 2.77e+05 (1.15e+06) 1.27e−01 (8.84e−01)+ 2.48e−01 (1.24e+00)+ 7.04e−01 (4.61e+00)+ 1.27e+05 (6.22e+05)+ 0.00e+00 (0.00e+00)+
F4 1.83e+01 (4.14e+01) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 1.37e+03 (1.46e+03)− 0.00e+00 (0.00e+00)+
F5 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F6 4.04e+00 (4.88e+00) 7.89e+00 (3.93e+00)≈ 5.41e+00 (4.81e+00)− 1.10e+00 (2.88e+00)≈ 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+
F7 2.30e+00 (2.66e+00) 3.26e−03 (4.54e−03)+ 2.27e+00 (4.50e+00)+ 5.33e+01 (4.68e+01)− 0.00e+00 (0.00e+00)+ 4.24e−02 (2.10e−01)+
F8 2.03e+01 (7.12e−02) 2.04e+01 (8.95e−02)≈ 2.03e+01 (1.04e−01)≈ 2.03e+01 (1.37e−01)≈ 0.00e+00 (0.00e+00)+ 2.04e+01 (8.44e−02)−
F9 2.73e+00 (8.60e−01) 3.39e+00 (7.35e−01)− 2.29e+00 (7.26e−01)+ 3.59e+00 (1.04e+00)− 0.00e+00 (0.00e+00)+ 3.39e+00 (2.88e+00)≈
F10 3.33e−01 (2.05e−01) 1.20e−02 (8.99e−03)+ 1.42e−02 (9.67e−03)+ 1.24e−02 (1.35e−02)+ 0.00e+00 (0.00e+00)+ 3.87e−02 (2.83e−02)+
F11 1.16e+00 (1.10e+00) 0.00e+00 (0.00e+00)+ 9.75e−02 (2.99e−01)+ 3.57e+00 (1.48e+00)− 0.00e+00 (0.00e+00)+ 2.73e−01 (4.91e−01)+
F12 4.97e+00 (2.24e+00) 3.14e+00 (9.73e−01)+ 7.80e+00 (4.14e+00)− 1.29e+01 (5.42e+00)− 0.00e+00 (0.00e+00)+ 6.03e+00 (2.18e+00)−
F13 7.73e+00 (5.20e+00) 3.77e+00 (1.85e+00)+ 1.21e+01 (6.47e+00)− 2.56e+01 (1.08e+01)− 0.00e+00 (0.00e+00)+ 9.87e+00 (6.24e+00)≈
F14 8.58e+01 (8.20e+01) 4.90e−03 (1.70e−02)+ 3.64e+00 (4.44e+00)+ 1.02e+02 (7.39e+01)≈ 0.00e+00 (0.00e+00)+ 2.45e+01 (2.47e+01)+
F15 5.13e+02 (2.99e+02) 4.21e+02 (1.14e+02)≈ 7.36e+02 (2.63e+02)− 6.17e+02 (1.74e+02)− 5.96e+02 (1.37e+02)− 7.34e+02 (2.44e+02)−
F16 1.16e+00 (2.08e−01) 7.08e−01 (2.12e−01)+ 4.04e−01 (3.17e−01)+ 1.64e−01 (7.56e−02)+ 2.00e+02 (1.25e−01)− 1.25e+00 (3.29e−01)−
F17 1.31e+01 (1.69e+00) 1.01e+01 (0.00e+00)+ 1.03e+01 (1.56e−01)+ 1.04e+01 (3.73e+00)+ 3.10e+02 (1.96e+00)− 1.12e+01 (7.76e−01)+
F18 2.02e+01 (5.81e+00) 1.69e+01 (1.54e+00)+ 2.46e+01 (4.73e+00)− 2.98e+01 (6.16e+00)− 4.17e+02 (1.95e+00)− 1.80e+01 (3.13e+00)≈
F19 7.05e−01 (2.21e−01) 3.44e−01 (4.90e−02)+ 3.95e−01 (1.26e−01)+ 8.14e−01 (2.74e−01)≈ 5.00e+02 (5.21e−02)− 5.01e−01 (1.21e−01)+
F20 2.02e+00 (5.98e−01) 2.16e+00 (3.52e−01)≈ 2.65e+00 (4.52e−01)− 4.16e+00 (3.99e−01)− 6.02e+02 (4.82e−01)− 3.17e+00 (4.81e−01)−
F21 3.98e+02 (1.25e+01) 4.00e+02 (0.00e+00)− 3.83e+02 (5.56e+01)+ 1.61e+02 (6.03e+01)+ 1.10e+03 (2.80e+01)− 2.90e+02 (5.00e+01)+
F22 9.20e+01 (8.29e+01) 4.84e+00 (6.20e+00)+ 4.93e+01 (5.38e+01)+ 2.44e+02 (1.09e+02)− 8.13e+02 (5.48e+00)− 9.07e+01 (6.14e+01)≈
F23 3.84e+02 (2.45e+02) 4.61e+02 (1.78e+02)≈ 5.78e+02 (3.20e+02)− 8.35e+02 (1.90e+02)− 1.50e+03 (1.81e+02)− 8.40e+02 (2.83e+02)−
F24 1.45e+02 (4.32e+01) 1.93e+02 (2.46e+01)− 2.02e+02 (1.78e+01)− 1.19e+02 (5.69e+00)≈ 1.20e+03 (2.33e+01)− 2.13e+02 (6.62e+00)−
F25 2.01e+02 (1.02e+01) 2.00e+02 (7.02e−01)+ 2.02e+02 (1.93e+00)≈ 1.93e+02 (3.42e+01)+ 1.30e+03 (2.16e+01)− 2.17e+02 (6.59e+00)−
F26 1.05e+02 (2.26e+00) 1.33e+02 (4.36e+01)− 1.26e+02 (3.73e+01)− 1.61e+02 (4.06e+01)− 1.33e+03 (3.99e+01)− 1.96e+02 (1.81e+01)−
F27 3.03e+02 (3.65e+00) 3.00e+02 (1.46e−08)+ 3.37e+02 (5.29e+01)≈ 3.13e+02 (2.30e+01)− 1.65e+03 (7.13e+01)− 4.24e+02 (6.83e+01)−
F28 2.92e+02 (3.92e+01) 3.00e+02 (0.00e+00)≈ 3.17e+02 (6.94e+01)≈ 2.06e+02 (1.07e+02)+ 1.69e+03 (7.01e+01)− 2.92e+02 (3.92e+01)≈

+ 16 13 9 10 11
− 4 9 12 16 10
≈ 8 6 7 2 7
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Figure 17: The summarized comparison results between the iSOMA and other algorithms tested
on the CEC13 (for both 10D and 30D).

Table 22: Comparison of iSOMA with well-known algorithms on the CEC13 benchmark func-
tions (30 dimensions, 51 runs).

F iSOMA SHADE SMADE CMAES-RIS SPSOABC TPC-GA
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F2 9.80e+04 (4.13e+04) 9.00e+03 (7.47e+03)+ 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 8.77e+05 (1.69e+06)− 2.44e+05 (1.60e+05)−
F3 3.13e+06 (4.17e+06) 4.02e+01 (2.13e+02)+ 9.82e+03 (4.99e+04)+ 2.24e+03 (1.10e+04)+ 5.16e+07 (8.00e+07)− 3.80e+07 (7.22e+07)−
F4 3.23e+02 (1.65e+02) 1.92e−04 (3.01e−04)+ 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 4.92e+03 (2.30e+03)− 1.38e+01 (2.17e+01)+
F5 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F6 1.95e+01 (1.70e+01) 5.96e−01 (3.73e+00)+ 2.67e+00 (7.92e+00)+ 6.94e−04 (2.01e−03)+ 0.00e+00 (0.00e+00)+ 2.43e+01 (1.26e+01)−
F7 1.37e+01 (4.39e+00) 4.60e+00 (5.39e+00)+ 3.25e+01 (1.63e+01)− 4.48e+01 (2.96e+01)− 0.00e+00 (0.00e+00)+ 2.91e+01 (2.20e+01)−
F8 2.09e+01 (5.36e−02) 2.07e+01 (1.76e−01)+ 2.10e+01 (4.85e−02)≈ 2.09e+01 (8.19e−02)+ 0.00e+00 (0.00e+00)+ 2.10e+01 (5.44e−02)−
F9 2.10e+01 (3.43e+00) 2.75e+01 (1.77e+00)− 2.23e+01 (3.61e+00)≈ 2.37e+01 (1.95e+00)− 0.00e+00 (0.00e+00)+ 3.61e+01 (8.55e+00)−
F10 1.91e−01 (7.57e−02) 7.69e−02 (3.58e−02)+ 1.84e−02 (1.35e−02)+ 8.31e−03 (5.46e−03)+ 0.00e+00 (0.00e+00)+ 8.68e−02 (4.78e−02)+
F11 7.33e+00 (2.10e+00) 0.00e+00 (0.00e+00)+ 1.09e+01 (4.23e+00)− 2.54e+01 (6.36e+00)− 0.00e+00 (0.00e+00)+ 2.39e+01 (8.18e+00)−
F12 1.84e+01 (5.98e+00) 2.30e+01 (3.73e+00)− 5.72e+01 (1.72e+01)− 7.94e+01 (4.39e+01)− 0.00e+00 (0.00e+00)+ 4.14e+01 (8.94e+00)−
F13 4.42e+01 (1.61e+01) 5.03e+01 (1.34e+01)≈ 1.28e+02 (3.53e+01)− 1.56e+02 (5.42e+01)− 0.00e+00 (0.00e+00)+ 8.41e+01 (2.06e+01)−
F14 1.00e+03 (3.27e+02) 3.18e−02 (2.33e−02)+ 1.33e+02 (1.28e+02)+ 7.92e+02 (2.21e+02)+ 0.00e+00 (0.00e+00)+ 9.25e+02 (3.94e+02)≈
F15 2.84e+03 (6.80e+02) 3.22e+03 (2.64e+02)− 4.10e+03 (8.55e+02)− 3.13e+03 (4.57e+02)− 3.65e+03 (3.04e+02)− 3.97e+03 (6.25e+02)−
F16 2.44e+00 (2.58e−01) 9.13e−01 (1.85e−01)+ 1.31e−01 (7.65e−02)+ 1.07e−01 (6.78e−02)+ 2.01e+02 (2.01e−01)− 2.50e+00 (5.94e−01)−
F17 4.31e+01 (4.42e+00) 3.04e+01 (0.00e+00)+ 3.48e+01 (1.54e+00)+ 5.50e+01 (5.24e+00)− 3.31e+02 (1.23e−01)− 5.44e+01 (1.05e+01)−
F18 5.01e+01 (8.52e+00) 7.25e+01 (5.58e+00)− 8.33e+01 (2.08e+01)− 1.89e+02 (2.73e+01)− 4.90e+02 (8.95e+00)− 6.96e+01 (1.33e+01)−
F19 2.42e+00 (4.96e−01) 1.36e+00 (1.20e−01)+ 2.55e+00 (5.23e−01)≈ 2.80e+00 (6.42e−01)− 5.02e+02 (4.68e−01)− 3.28e+00 (1.29e+00)−
F20 9.18e+00 (6.49e−01) 1.05e+01 (6.04e−01)− 1.05e+01 (8.15e−01)− 1.43e+01 (5.75e−01)− 6.11e+02 (7.60e−01)− 1.37e+01 (4.54e−01)−
F21 3.03e+02 (6.21e+01) 3.09e+02 (5.65e+01)− 3.27e+02 (8.73e+01)− 1.86e+02 (4.01e+01)+ 1.02e+03 (7.53e+01)− 2.92e+02 (8.74e+01)+
F22 6.51e+02 (2.49e+02) 9.81e+01 (2.52e+01)+ 1.79e+02 (4.54e+01)+ 1.17e+03 (2.93e+02)− 8.84e+02 (3.90e+01)− 1.27e+03 (5.56e+02)−
F23 2.84e+03 (6.93e+02) 3.51e+03 (4.11e+02)− 4.22e+03 (8.83e+02)− 4.03e+03 (5.43e+02)− 5.08e+03 (5.62e+02)− 4.33e+03 (8.56e+02)−
F24 2.21e+02 (5.18e+00) 2.05e+02 (5.29e+00)+ 2.32e+02 (2.60e+01)− 2.59e+02 (1.76e+01)− 1.25e+03 (1.43e+01)− 2.74e+02 (1.68e+01)−
F25 2.74e+02 (7.54e+00) 2.59e+02 (1.96e+01)+ 2.78e+02 (1.00e+01)− 2.82e+02 (8.50e+00)− 1.38e+03 (9.76e+00)− 2.98e+02 (9.14e+00)−
F26 2.00e+02 (3.09e−03) 2.02e+02 (1.48e+01)− 2.15e+02 (5.30e+01)− 1.97e+02 (1.21e+01)≈ 1.46e+03 (7.62e+01)− 3.25e+02 (5.96e+01)−
F27 5.54e+02 (5.88e+01) 3.88e+02 (1.09e+02)+ 6.47e+02 (1.39e+02)− 7.49e+02 (1.87e+02)− 2.21e+03 (1.62e+02)− 1.03e+03 (1.92e+02)−
F28 3.00e+02 (0.00e+00) 3.00e+02 (0.00e+00)≈ 3.88e+02 (3.27e+02)− 5.39e+02 (1.33e+03)− 1.73e+03 (2.32e+02)− 3.00e+02 (0.00e+00)≈

+ 16 9 9 9 3
− 8 14 16 17 21
≈ 4 5 3 2 4

Confronted with another DE representative, iSOMA was a bit weaker to lose 8 out of 15 cases
on both 10D and 30D, winning only 4 and 6 cases.

For TEBO, iSOMA has comparable optimization results on 30D problems and is some-
what weaker on 10D. The results were moderately better meanwhile antagonizing to SaDPSO,
ICMLSP, and dynFWACM when iSOMA had won more than half the number of winning cases
compared to the number of losing cases.

For CEC17:
Compared to DES and RB-IPOP-CMA-ES, iSOMA prevailed on 10D problems, winning 17

and 13 cases over 30 functions, losing 9 and 10 cases, respectively. However, the situation was
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Figure 18: The summarized comparison results between the iSOMA and other algorithms tested
on the CEC15 (for both 10D and 30D).
Table 23: Comparison of iSOMA with well-known algorithms on the CEC15 benchmark func-
tions (10 dimensions, 51 runs).

F iSOMA DEsPA TEBO SaDPSO ICMLSP dynFWACM
Mean (Std Dev ) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 4.69e+00 (1.85e+01) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 3.61e+01 (1.40e+02)− 0.00e+00 (0.00e+00)+ 1.11e+05 (9.88e+04)−
F2 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 1.36e+02 (3.19e+02)− 0.00e+00 (0.00e+00)≈ 8.86e+03 (8.90e+03)−
F3 1.83e+01 (6.10e+00) 1.67e+01 (7.24e+00)+ 1.73e+01 (6.95e+00)+ 2.00e+01 (1.32e−02)− 2.00e+01 (5.30e−05)− 2.00e+01 (2.33e−04)−
F4 3.49e+00 (1.89e+00) 3.56e+00 (1.30e+00)≈ 5.07e+00 (2.36e+00)− 4.49e+00 (1.84e+00)− 3.87e+01 (1.89e+01)− 1.67e+01 (6.65e+00)−
F5 1.78e+02 (1.26e+02) 5.19e+01 (6.01e+01)+ 9.82e+01 (1.24e+02)+ 1.31e+02 (8.54e+01)≈ 1.03e+03 (3.10e+02)− 5.18e+02 (2.40e+02)−
F6 1.37e+01 (3.22e+01) 1.59e+00 (1.21e+00)+ 1.88e+01 (3.97e+01)≈ 3.00e+02 (2.23e+02)− 5.24e+02 (2.63e+02)− 1.74e+03 (1.97e+03)−
F7 2.31e−01 (3.40e−01) 3.42e−01 (2.85e−01)− 1.40e−01 (2.67e−01)+ 6.63e−01 (3.75e−01)− 2.90e+00 (1.09e+00)− 1.45e+00 (2.31e−01)−
F8 1.24e+01 (1.42e+01) 1.95e−01 (2.22e−01)+ 5.68e+00 (1.44e+01)+ 5.61e+01 (6.03e+01)− 3.44e+02 (1.89e+02)− 1.96e+03 (2.13e+03)−
F9 1.00e+02 (3.22e−02) 1.06e+02 (1.35e+01)− 1.00e+02 (3.05e−01)− 1.00e+02 (3.72e−02)− 1.02e+02 (1.46e+00)− 1.00e+02 (4.59e−01)−
F10 2.87e+02 (8.92e+01) 7.56e+00 (3.96e−01)+ 1.61e+02 (3.89e+01)+ 3.80e+02 (1.68e+02)− 5.25e+04 (2.60e+05)− 5.47e+02 (2.37e+02)−
F11 6.28e+01 (1.19e+02) 9.46e+01 (1.00e+02)≈ 1.42e+02 (1.50e+02)≈ 1.54e+02 (1.48e+02)− 3.59e+02 (1.83e+02)− 1.85e+02 (1.47e+02)−
F12 1.01e+02 (2.00e−01) 1.01e+02 (2.84e−01)− 1.01e+02 (3.16e−01)− 6.17e+01 (5.00e+01)≈ 1.19e+02 (1.71e+01)− 1.13e+02 (1.52e+00)−
F13 3.04e+01 (2.95e+00) 1.77e+01 (2.88e+00)+ 2.86e+01 (2.98e+00)+ 2.79e+01 (5.97e+00)+ 2.26e−01 (1.51e−01)+ 1.21e−01 (1.66e−02)+
F14 3.57e+03 (1.59e+03) 3.09e+02 (6.95e+02)+ 2.92e+03 (2.18e+03)≈ 9.01e+02 (1.13e+03)+ 7.23e+03 (1.25e+03)− 6.30e+03 (2.12e+03)−
F15 1.00e+02 (1.42e−13) 2.05e+02 (1.35e−03)− 1.00e+02 (0.00e+00)+ 1.00e+02 (1.46e−13)≈ 1.00e+02 (0.00e+00)+ 1.00e+02 (0.00e+00)+

+ 8 8 2 3 2
− 4 3 10 11 13
≈ 3 4 3 1 0

Table 24: Comparison of iSOMA with well-known algorithms on the CEC15 benchmark func-
tions (30 dimensions, 51 runs).

F iSOMA DEsPA TEBO SaDPSO ICMLSP dynFWACM
Mean (Std Dev ) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 5.61e+03 (5.25e+03) 0.00e+00 (0.00e+00)+ 3.69e+02 (7.71e+02)+ 1.93e−02 (8.42e−02)+ 0.00e+00 (0.00e+00)+ 6.17e+05 (2.49e+05)−
F2 1.14e−01 (4.52e−01) 0.00e+00 (0.00e+00)+ 4.54e−07 (3.02e−06)+ 2.88e+02 (1.09e+03)− 4.05e−05 (1.44e−04)+ 3.31e+03 (3.59e+03)−
F3 2.10e+01 (4.44e−02) 2.01e+01 (4.36e−02)+ 2.00e+01 (6.32e−02)+ 2.00e+01 (4.15e−05)+ 2.00e+01 (7.57e−03)+ 2.00e+01 (5.75e−06)+
F4 1.47e+01 (3.76e+00) 8.64e+01 (2.87e−14)− 4.41e+01 (1.06e+01)− 4.25e+01 (9.31e+00)− 2.31e+02 (5.66e+01)− 1.30e+02 (3.80e+01)−
F5 1.91e+03 (5.53e+02) 1.85e+03 (3.97e+02)≈ 1.96e+03 (6.32e+02)≈ 2.52e+03 (3.58e+02)− 4.03e+03 (6.56e+02)− 3.38e+03 (6.98e+02)−
F6 2.43e+03 (1.61e+03) 1.61e+02 (8.00e+01)+ 6.98e+02 (6.52e+02)+ 1.38e+03 (6.04e+02)+ 1.47e+03 (4.08e+02)+ 2.69e+04 (1.90e+04)−
F7 2.60e+00 (7.40e−01) 3.09e+00 (7.41e−01)− 4.42e+00 (1.41e+00)− 9.52e+00 (1.93e+00)− 2.07e+01 (1.45e+01)− 1.46e+01 (2.57e+00)−
F8 1.88e+03 (2.41e+03) 2.55e+01 (2.29e+01)+ 1.21e+02 (1.48e+02)+ 1.62e+03 (1.35e+03)≈ 9.42e+02 (2.50e+02)≈ 2.40e+04 (1.32e+04)−
F9 1.02e+02 (1.23e−01) 1.80e+02 (3.60e+01)− 1.08e+02 (1.22e+00)− 1.03e+02 (1.86e−01)− 1.63e+02 (1.32e+02)− 1.08e+02 (9.01e−01)−
F10 2.45e+03 (1.71e+03) 1.71e+02 (7.08e+01)+ 6.21e+02 (9.31e+01)+ 6.52e+03 (4.66e+03)− 1.43e+03 (3.36e+02)+ 3.15e+04 (2.01e+04)−
F11 3.10e+02 (3.25e+01) 3.11e+02 (5.52e+01)− 4.81e+02 (1.95e+02)− 3.20e+02 (8.88e+00)− 1.12e+03 (2.72e+02)− 6.72e+02 (1.54e+02)−
F12 1.04e+02 (4.28e−01) 1.08e+02 (3.19e−01)− 1.06e+02 (1.04e+00)− 1.05e+02 (4.90e−01)− 1.61e+02 (4.11e+01)− 1.17e+02 (1.23e+01)−
F13 9.68e+01 (5.16e+00) 8.13e+01 (5.60e+00)+ 9.87e+01 (5.46e+00)≈ 1.01e+02 (4.06e+00)− 8.53e−02 (1.26e−01)+ 2.62e−02 (7.46e−03)+
F14 3.26e+04 (5.55e+02) 2.81e+04 (1.71e+03)+ 3.45e+04 (4.04e+03)− 1.87e+04 (5.27e+03)+ 4.21e+04 (4.67e+03)− 4.49e+04 (1.02e+03)−
F15 1.00e+02 (1.22e−13) 2.73e+02 (1.50e−01)− 1.00e+02 (0.00e+00)+ 1.00e+02 (1.19e−13)− 1.27e+02 (1.62e+01)− 1.00e+02 (0.00e+00)+

+ 8 7 4 6 3
− 6 6 10 8 12
≈ 1 2 1 1 0
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Table 25: Comparison of iSOMA with well-known algorithms on the CEC17 benchmark func-
tions (10 dimensions, 51 runs).

F iSOMA DES RB-IPOP-CMA-ES PPSO DYYPO TLBO-FL
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 0.00e+00 (0.00e+00) 1.20e−07 (3.04e−08)− 2.93e−10 (2.09e−09)≈ 2.39e+02 (2.01e+02)− 2.86e+03 (3.27e+03)− 2.02e+03 (2.46e+03)−
F2 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 1.96e−02 (1.40e−01)≈
F3 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 1.17e−05 (4.30e−05)− 1.11e−04 (7.84e−04)−
F4 2.80e−05 (1.68e−04) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 1.20e+00 (9.36e−01)− 2.07e+00 (8.25e+00)− 3.03e+00 (1.17e+00)−
F5 3.51e+00 (1.61e+00) 1.54e+00 (9.40e−01)+ 1.58e+00 (1.96e+00)+ 1.81e+01 (5.10e+00)− 1.12e+01 (4.23e+00)− 8.75e+00 (5.57e+00)−
F6 0.00e+00 (0.00e+00) 1.17e−01 (3.48e−01)− 2.01e−07 (6.21e−07)− 2.26e−01 (3.08e−01)− 6.36e−05 (6.02e−05)− 8.39e−08 (4.43e−07)≈
F7 1.41e+01 (1.91e+00) 1.19e+01 (7.04e−01)+ 1.01e+01 (2.69e+00)+ 1.69e+01 (2.21e+00)− 2.18e+01 (6.02e+00)− 2.76e+01 (3.97e+00)−
F8 3.59e+00 (1.58e+00) 1.56e+00 (1.04e+00)+ 1.97e+00 (2.32e+00)+ 9.95e+00 (2.37e+00)− 1.32e+01 (4.50e+00)− 1.23e+01 (4.40e+00)−
F9 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 1.96e−02 (9.82e−02)− 8.91e−03 (6.36e−02)≈
F10 1.88e+02 (1.78e+02) 5.66e+00 (1.71e+01)+ 4.35e+02 (1.90e+02)− 5.03e+02 (1.55e+02)− 3.67e+02 (1.69e+02)− 9.55e+02 (2.14e+02)−
F11 1.32e+00 (1.46e+00) 1.17e−01 (3.24e−01)+ 1.71e−01 (4.10e−01)+ 1.69e+01 (5.31e+00)− 9.28e+00 (4.79e+00)− 4.12e+00 (1.46e+00)−
F12 8.35e+01 (6.28e+01) 4.41e+02 (1.94e+02)− 1.10e+02 (9.37e+01)− 4.55e+03 (2.51e+03)− 1.35e+04 (1.20e+04)− 6.56e+04 (5.49e+04)−
F13 5.28e+00 (3.25e+00) 3.31e+00 (3.00e+00)+ 4.17e+00 (3.61e+00)+ 1.39e+03 (1.33e+03)− 5.08e+03 (5.64e+03)− 2.45e+03 (2.16e+03)−
F14 1.41e+00 (9.69e−01) 1.23e+01 (1.02e+01)− 1.59e+01 (1.25e+01)− 3.73e+01 (1.17e+01)− 2.07e+01 (2.20e+01)− 6.73e+01 (1.83e+01)−
F15 9.23e−01 (7.73e−01) 3.25e+00 (4.09e+00)− 4.91e−01 (4.76e−01)+ 5.33e+01 (2.27e+01)− 4.36e+01 (1.11e+02)− 1.26e+02 (4.34e+01)−
F16 6.14e−01 (1.61e−01) 6.09e+00 (2.34e+01)− 9.71e+01 (1.03e+02)− 8.30e+01 (7.25e+01)− 4.38e+01 (5.79e+01)− 8.91e+00 (2.19e+01)−
F17 5.06e+00 (6.60e+00) 2.10e+01 (1.03e+01)− 5.25e+01 (3.36e+01)− 2.46e+01 (7.43e+00)− 1.41e+01 (1.39e+01)− 3.83e+01 (7.83e+00)−
F18 9.30e−01 (6.57e−01) 2.91e+01 (2.46e+01)− 1.97e+01 (2.35e+01)− 8.78e+02 (7.14e+02)− 8.76e+03 (6.42e+03)− 6.15e+03 (5.63e+03)−
F19 3.09e−01 (4.74e−01) 2.52e+00 (2.34e+00)− 1.82e+00 (3.30e+00)− 2.25e+01 (1.56e+01)− 9.27e+01 (2.94e+02)− 6.06e+01 (3.18e+01)−
F20 1.38e+00 (3.24e+00) 1.22e+01 (9.86e+00)− 1.06e+02 (6.95e+01)− 2.78e+01 (8.96e+00)− 8.01e+00 (9.07e+00)− 1.46e+01 (9.45e+00)−
F21 1.09e+02 (2.87e+01) 2.02e+02 (4.62e+00)− 1.37e+02 (4.92e+01)− 1.04e+02 (2.15e+01)+ 1.00e+02 (9.03e−01)+ 1.42e+02 (5.17e+01)−
F22 8.52e+01 (3.16e+01) 1.00e+02 (1.50e−08)≈ 9.93e+01 (5.57e+00)≈ 9.67e+01 (1.68e+01)− 9.75e+01 (1.99e+01)− 9.33e+01 (2.27e+01)≈
F23 2.99e+02 (3.86e+01) 3.01e+02 (1.98e+00)− 2.75e+02 (7.06e+01)+ 3.42e+02 (1.05e+01)− 3.09e+02 (4.46e+01)− 3.07e+02 (3.84e+00)−
F24 1.71e+02 (1.07e+02) 3.03e+02 (6.11e+01)− 1.98e+02 (1.02e+02)− 2.27e+02 (1.35e+02)− 1.17e+02 (4.97e+01)+ 3.10e+02 (6.90e+01)−
F25 4.29e+02 (2.20e+01) 4.08e+02 (1.89e+01)+ 4.02e+02 (6.54e+01)+ 4.04e+02 (1.45e+01)+ 4.23e+02 (2.33e+01)≈ 4.26e+02 (2.25e+01)+
F26 2.88e+02 (5.86e+01) 2.96e+02 (1.96e+01)− 2.73e+02 (1.51e+02)+ 2.67e+02 (7.66e+01)+ 3.03e+02 (3.14e+01)− 3.01e+02 (4.63e+01)≈
F27 3.94e+02 (2.67e+00) 3.96e+02 (2.33e+00)− 3.95e+02 (1.09e+00)≈ 4.27e+02 (1.35e+01)− 3.96e+02 (3.76e+00)− 3.93e+02 (3.28e+00)+
F28 3.00e+02 (2.99e−13) 5.26e+02 (1.23e+02)− 4.02e+02 (1.64e+02)− 2.94e+02 (4.20e+01)+ 3.01e+02 (5.11e+01)− 4.47e+02 (1.58e+02)−
F29 2.50e+02 (7.72e+00) 2.36e+02 (7.67e+00)+ 2.66e+02 (4.53e+01)≈ 2.78e+02 (1.35e+01)− 2.60e+02 (1.89e+01)− 2.74e+02 (1.38e+01)−
F30 5.01e+02 (8.96e+01) 1.54e+05 (3.69e+05)− 2.05e+03 (1.04e+04)− 2.99e+03 (8.99e+02)− 6.70e+03 (6.52e+03)− 2.79e+05 (4.92e+05)−

+ 9 10 4 2 2
− 17 13 23 26 23
≈ 4 7 3 2 5

reversed when iSOMA lost its position on 30D. DES hence affirms the balancing power over all
three groups of unimodal, basic multimodal, and composition functions.

As for the PPSO, DYYPO and TLBO-FL algorithms, iSOMA completely dominated and
almost absolutely won over them on 10 and 30 dimensions, as shown in Tabs. 25 and 26 and
summarized in Fig. 19.
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DES RB-…-ES PPSO DYYPO TLBO-FL
iSOMA win 20 22 49 54 52
iSOMA draw 31 25 6 3 2
iSOMA lose 9 13 5 3 6
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Figure 19: The summarized comparison results between the iSOMA and other algorithms tested
on the CEC17 (for both 10D and 30D).

These results clearly show that iSOMA has good performance against some representatives
of the GA and PSO algorithms, but a little inferior to well-known DE versions due to SOMA
and DE belonging to two different algorithm classes.
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Table 26: Comparison of iSOMA with well-known algorithms on the CEC17 benchmark func-
tions (30 dimensions, 51 runs).

F iSOMA DES RB-IPOP-CMA-ES PPSO DYYPO TLBO-FL
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 6.63e−10 (3.55e−09) 5.37e−07 (7.42e−08)− 3.15e−08 (2.75e−08)− 7.48e+02 (6.06e+02)− 3.71e+03 (5.04e+03)− 3.51e+03 (3.61e+03)−
F2 3.92e−02 (2.80e−01) 5.88e−02 (2.38e−01)≈ 0.00e+00 (0.00e+00)≈ 5.32e+01 (6.91e+01)− 3.18e+09 (2.27e+10)− 8.52e+16 (5.81e+17)−
F3 9.71e−04 (2.82e−03) 2.02e−09 (4.44e−09)+ 0.00e+00 (0.00e+00)+ 1.13e+00 (4.83e−01)− 5.27e+02 (3.76e+03)≈ 2.99e+03 (1.08e+03)−
F4 4.52e+01 (3.20e+01) 5.69e+01 (1.17e+01)≈ 5.53e+01 (1.65e+01)≈ 4.39e+01 (3.19e+01)≈ 9.12e+01 (2.49e+01)− 9.01e+01 (2.37e+01)−
F5 1.41e+01 (4.02e+00) 4.64e+00 (1.42e+00)+ 1.65e+00 (1.37e+00)+ 1.12e+02 (1.33e+01)− 9.09e+01 (2.43e+01)− 3.95e+01 (2.07e+01)−
F6 3.68e−06 (1.39e−05) 4.50e−07 (1.05e−07)+ 1.21e−07 (3.97e−08)≈ 2.03e+01 (4.15e+00)− 8.59e−01 (7.17e−01)− 4.87e−01 (4.24e−01)−
F7 4.35e+01 (3.73e+00) 3.57e+01 (1.32e+00)+ 3.43e+01 (1.28e+00)+ 1.35e+02 (1.63e+01)− 1.44e+02 (3.08e+01)− 1.39e+02 (4.75e+01)−
F8 1.56e+01 (4.00e+00) 4.55e+00 (1.66e+00)+ 1.76e+00 (1.65e+00)+ 8.10e+01 (1.04e+01)− 9.63e+01 (2.45e+01)− 3.67e+01 (1.84e+01)−
F9 3.63e−01 (5.77e−01) 2.28e−09 (4.69e−09)+ 0.00e+00 (0.00e+00)+ 1.36e+03 (2.82e+02)− 6.54e+02 (7.73e+02)− 3.45e+01 (2.71e+01)−
F10 2.13e+03 (4.94e+02) 1.39e+02 (1.10e+02)+ 1.44e+03 (5.83e+02)+ 3.13e+03 (3.46e+02)− 2.84e+03 (6.02e+02)− 6.69e+03 (2.77e+02)−
F11 1.26e+01 (1.53e+01) 2.73e+01 (2.89e+01)≈ 4.11e+01 (4.76e+01)≈ 8.43e+01 (1.84e+01)− 1.16e+02 (4.11e+01)− 8.16e+01 (4.14e+01)−
F12 7.00e+03 (4.23e+03) 1.21e+03 (3.72e+02)+ 1.09e+03 (2.81e+02)+ 2.77e+04 (8.55e+03)− 1.50e+06 (1.19e+06)− 5.75e+04 (8.99e+04)−
F13 2.61e+01 (1.44e+01) 4.87e+01 (3.15e+01)− 1.19e+02 (4.00e+02)≈ 3.21e+03 (2.88e+03)− 9.58e+03 (1.28e+04)− 2.02e+04 (1.79e+04)−
F14 4.35e+01 (1.64e+01) 2.66e+01 (4.24e+00)+ 9.08e+01 (5.62e+01)− 2.32e+03 (1.52e+03)− 2.11e+03 (2.28e+03)− 7.10e+03 (5.85e+03)−
F15 1.79e+02 (6.81e+02) 3.24e+01 (1.97e+01)+ 2.18e+02 (1.84e+02)− 2.13e+03 (1.63e+03)− 1.06e+04 (9.40e+03)− 2.16e+04 (2.27e+04)−
F16 3.54e+02 (2.09e+02) 7.64e+01 (9.51e+01)+ 5.02e+02 (2.54e+02)− 8.46e+02 (1.53e+02)− 6.66e+02 (2.26e+02)− 4.92e+02 (3.53e+02)≈
F17 3.80e+01 (2.62e+01) 5.54e+01 (4.00e+01)≈ 1.32e+02 (9.54e+01)− 3.31e+02 (1.13e+02)− 2.55e+02 (1.55e+02)− 1.41e+02 (6.59e+01)−
F18 9.13e+03 (6.75e+03) 3.51e+01 (1.43e+01)+ 1.60e+02 (1.14e+02)+ 6.99e+04 (3.06e+04)− 1.25e+05 (1.01e+05)− 3.67e+05 (1.67e+05)−
F19 1.46e+01 (6.05e+00) 1.63e+01 (7.38e+00)≈ 1.15e+02 (6.59e+01)− 1.71e+03 (1.69e+03)− 1.37e+04 (1.56e+04)− 1.07e+04 (1.10e+04)−
F20 1.28e+02 (4.87e+01) 7.06e+01 (5.32e+01)+ 2.97e+02 (1.19e+02)− 3.48e+02 (9.16e+01)− 2.55e+02 (1.47e+02)− 2.21e+02 (1.25e+02)−
F21 2.17e+02 (4.66e+00) 2.07e+02 (4.27e+00)+ 2.09e+02 (1.67e+01)+ 3.05e+02 (3.30e+01)− 2.98e+02 (2.31e+01)− 2.34e+02 (1.16e+01)−
F22 1.00e+02 (3.44e−01) 1.00e+02 (1.10e−07)+ 6.72e+02 (7.63e+02)− 1.00e+02 (5.05e−07)+ 1.00e+02 (9.87e−01)− 1.01e+02 (1.94e+00)−
F23 3.65e+02 (8.16e+00) 3.50e+02 (7.57e+00)+ 3.39e+02 (4.93e+01)+ 6.81e+02 (3.79e+01)− 4.53e+02 (3.19e+01)− 3.96e+02 (1.62e+01)−
F24 4.37e+02 (6.12e+00) 4.18e+02 (4.73e+00)+ 4.19e+02 (3.06e+00)+ 7.39e+02 (4.57e+01)− 5.65e+02 (5.05e+01)− 4.69e+02 (1.62e+01)−
F25 3.87e+02 (3.12e−01) 3.87e+02 (7.55e−03)+ 3.87e+02 (1.47e−02)+ 3.85e+02 (1.77e+00)+ 3.86e+02 (1.41e+00)+ 4.02e+02 (1.76e+01)−
F26 1.15e+03 (8.28e+01) 5.74e+02 (2.72e+02)+ 3.94e+02 (2.17e+02)+ 2.04e+03 (1.73e+03)≈ 2.17e+03 (7.28e+02)− 1.42e+03 (4.69e+02)−
F27 5.17e+02 (5.00e+00) 5.10e+02 (7.85e+00)+ 5.12e+02 (1.13e+01)+ 7.08e+02 (5.42e+01)− 5.39e+02 (1.62e+01)− 5.32e+02 (2.07e+01)−
F28 3.17e+02 (4.13e+01) 3.18e+02 (4.21e+01)− 3.09e+02 (2.96e+01)+ 3.27e+02 (3.17e+01)− 3.87e+02 (4.33e+01)− 4.30e+02 (2.67e+01)−
F29 4.61e+02 (3.84e+01) 4.43e+02 (4.55e+01)+ 4.93e+02 (1.04e+02)≈ 7.80e+02 (1.21e+02)− 7.48e+02 (1.96e+02)− 6.15e+02 (9.09e+01)−
F30 2.82e+03 (6.75e+02) 2.16e+03 (1.65e+02)+ 2.84e+03 (1.94e+03)− 3.32e+03 (3.89e+02)− 3.31e+04 (3.13e+04)− 2.57e+04 (2.78e+04)−

+ 22 15 2 1 0
− 3 9 26 28 29
≈ 5 6 2 1 1

It is worth noting that the algorithms involved in the comparison have been carefully refined
to participate in the corresponding years of CEC competitions. To be fair, iSOMA should use its
own set of control parameters for each CEC test suite. That will greatly increase the comparison
results, which is more beneficial for iSOMA. However, we use the same setting parameters for all
CEC competitions. This gives iSOMA users an overview of the power of the proposed algorithm.

6.4 The 100-Digit Challenge Competition Result

In this section, we applied SOMA Pareto and T3A to solve 10 problems of the 100-Digit Chal-
lenge Competition and reached the highest score of 93 points. SOMA was structured into the
Initialization, Organization, Migration, and Update process. How to organize individuals in the
population to become the Migrants and the Leader, as well as the linear adaptive PRT and the
cosine-based adaptive Step parameters, are the major improvements of this method beside an
increment of MaxFEs to 109. This helps the algorithm avoid being trapped in the local minima
and reaching the good score in almost all functions.

SOMA Pareto and T3A have been run 50 consecutive trials for each function, and the total
number of correct digits in the 25 trials that had the best values has been counted. The average
number of correct digits in the 25 best trials is the score for that function. For example, the
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algorithm reaches equal or greater than 50% of the trials achieving 10 digits, then the score of
that function is 10 points. The highest score in total is 100 points, refer to [67] for more details.

The algorithm will terminate when one of the two following criteria is met:
• achieving the 10-digit level accuracy,
• achieving the MaxFEs (MaxFEs = 109 for 10 functions).
SOMA T3A has achieved 93 points in total in a run of 50 times for each function. Tab. 27

shows the detailed results, which the sequence number of functions are listed in the first column,
the number of correct digits columns count the number of trials in a run of 50 times that the
algorithm achieved from 1 to 10 correct digits respective to each function. The score for each
function is the average number of correct digits of the best 25 runs that showed in the last
column. The total score of all functions is presented in the last row.

In Tab. 27, SOMA T3A reached 50 over 50 runs achieving 10 correct digits on functions 1
to 6 and function 10. The score for those functions is 70 points (10 points for each function).

Table 27: SOMA T3A - Fifty runs for each function sorted by the number of correct digits

Function Number of correct digits Score0 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0 50 10
2 0 0 0 0 0 0 0 0 0 0 50 10
3 0 0 0 0 0 0 0 0 0 0 50 10
4 0 0 0 0 0 0 0 0 0 0 50 10
5 0 0 0 0 0 0 0 0 0 0 50 10
6 0 0 0 0 0 0 0 0 0 0 50 10
7 0 0 2 0 0 0 0 0 0 0 48 10
8 0 0 12 0 0 0 0 0 0 0 38 10
9 0 0 1 49 0 0 0 0 0 0 0 3
10 0 0 0 0 0 0 0 0 0 0 50 10

Total: 93

For functions 7 and 8, SOMA T3A has 2 and 12 times achieving 2 correct digits, has 48 and
38 times achieving 10 correct digits, respectively. The score for these functions is 20 points (10
for each of them).

Function 9 is the most difficult function for SOMA T3A (and other participating algorithms)
when it only has 1 time achieving 2 correct digits and 49 times achieving 3 correct digits, there
are no times in 50 runs that the algorithm achieves above 3 correct digits. The score for function
9 is 3 points.

In total, SOMA T3A achieved 93 points.
Tab. 28 representative calculation results for ten functions in the 100-Digit Challenge Com-

petition.
In this table, our algorithm accomplished 50 over 50 runs achieving ten correct digits from

functions 1, 2, 3, 4, 5, 6, 7, 10. According to the competition rule, we got the highest score
for these functions. In the case of functions 8 and 9, we achieved score 2 and 3.04 points,
respectively. Accurately, with function 8 we reach two correct digits in 50 times, and there are
no times in 50 runs that the algorithm achieves above 3 correct digits. Likewise, with function
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Table 28: SOMA Pareto - Fifty runs for each function sorted by the number of correct digits

Function Number of correct digits Score0 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0 50 10
2 0 0 0 0 0 0 0 0 0 0 50 10
3 0 0 0 0 0 0 0 0 0 0 50 10
4 0 0 0 0 0 0 0 0 0 0 50 10
5 0 0 0 0 0 0 0 0 0 0 50 10
6 0 0 0 0 0 0 0 0 0 0 50 10
7 0 0 2 0 0 0 0 0 0 0 48 10
8 0 0 50 0 0 0 0 0 0 0 0 2
9 0 0 0 49 1 0 0 0 0 0 0 3.04
10 0 0 0 0 0 0 0 0 0 0 50 10

Total: 85.04

9 we had 49 times reaching 3 correct digits, and just 1 out of 50 reaches further correct digits.
In total, we achieved the score points 85.04 out of 100.

These versions, SOMA T3A and SOMA Pareto, have made great strides, holding 3rd (the
same ranking with HyDE-DF [21]) and 5th out of 38 algorithms participating in the 100-Digit
Challenge respectively, which reported in [22] including results from the 2019 Congress on Evolu-
tionary Computation (CEC 2019), the 2019 Genetic and Evolutionary Computation Conference
(GECCO 2019) and the 2019 Swarm, Evolutionary and Memetic Computing Conference (SEM-
CCO 2019).

6.5 Obstacle Avoidance for Mobile Robot

The simulation results are presented in the form of selected figures captured from the robot’s
movement in 2D and 3D.

In those 2D figures, robots are plotted on Cartesian coordinates with obstacles and targets.
The circle around the robot represents the working range of the sensors. Obstacles are drawn
in a dark color circle. As the robot moves, obstacles detected in the sensor’s active area will be
represented by bright colors. These obstacles will turn bright colors when they are detected by
sensors located on the robot.

In 3D figures, the robot is represented as a big black dot, and the robot’s path is represented
by small black dots. Contour lines represent the surrounding environment, they can change
depending on the distance from the robot to the target and the obstacles.

6.5.1 For Map 1

Figs. 20 and 21 show the robot’s movement in 2D and 3D, respectively. They were captured
at the step of 2nd, 13th, 32nd, 38th, 58th, and 78th. At the 2nd step in Fig. 20, the robot has
not detected the obstacles yet so they are in a dark color, and the robot tends to move straight
towards the target. At this moment, the contours on the 3D map of Fig. 21 are also "flat"
(without hills).
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Figure 20: The movement process of the robot in Map 1: move through the gaps between
obstacles to hit the target.
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Figure 21: The movement process of the robot in Map 1 presented in 3D.

However, in steps 13th and 32nd, the obstacles are detected, and they have changed color,
hills appear respectively in the 3D contour maps. The robot will move along these contour lines
from high to low and avoid colliding on the rising hills (which are obstacles).

In the simple situation of Map 1, the distance between obstacles is large enough for the robot
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to pass, so the robot has no trapped between three obstacles. The robot takes 78 steps to hit
its target on this map.

6.5.2 For Map 2
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Figure 22: The movement process of the robot in Map 2: cannot move through the gaps, escape
from the trap to hit the target.

Scenario 2 is intentionally arranged so that the distance between obstacles is not enough for
the robot to move through. In this situation, the robot will be trapped between obstacles and
will not be able to move out of the trap zone. To solve this problem, the equilibrium coefficient
will change the value leading to a change the width of the hill accordingly, thereby escaping the
robot from the trapped area [59].
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Figure 23: The movement process of the robot in Map 2 presented in contour map.
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Figs. 22 and 23 show the entire operation of the robot, captured at steps 21st, 26th, 33rd,
40th, 75th, 83rd, 98th, 129th, and 183rd.

In step 21st, similar to map 1, the robot has not detected any obstacles so it moves straight to
the target. However, in step 26th, all three obstacles were detected, at which time the robot was
trapped in the contour as shown in steps 26th and 33rd. As mentioned above, the equilibrium
coefficients start to change, resulting in the size of the hills growing up, the contour changing
continuously. The robot follows these contour lines, shown in steps 40th to 98th, and exits the
trap towards the target, shown in steps 129th, and 183rd.

The robot took 183 steps in this scenario to escape the trap and hit the target.

6.5.3 For Map 3

Different from map 1 and map 2, map 3 has two robots and two targets, respectively. There are
no obstacles on this map. Instead, the positions of the robot and the targets are intentionally
arranged so that they are each other’s obstacles.

Fig. 24 shows the movement of two robots, captured at steps 5th, 16th, 19th, 25th, 30th, and
53rd. At step 5th, the robots have not detected the other robot yet so they move straight to
their target. But in step 16th, both robots are in the detection range of sensors, and they avoid
each other as shown in steps 19th to 30th. Finally, they finish their work on step 53rd.
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Figure 24: The movement process of the robot in Map 3: face-to-face between two robots.
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6.5.4 For Map 4
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Figure 25: The movement process in Map 4: a complex combination in a single scenario.

The last scenario is the most complex one to test the general operability of robots. Two
robots, two respective targets, and three obstacles are present on this map. They are arranged
so that robots will be stuck between obstacles and the remaining robot will be another obstacle,
moving around, preventing each other’s path.

Fig. 25 reveals this operation process, captured at steps of 11th, 20th, 38th, 45th, 52nd, 61st,
70th, 88th, and 123rd.

At step 11th, three obstacles have not been detected and the two robots are not in each other’s
path so they move towards the targets. However, in step 20th, three obstacles are blocking
the way of both robots. Furthermore, the remaining robot now becomes the fourth obstacle
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preventing the other robot’s path. In step 38th, Robot 2 turned its head, moved backward to
find a way out of the trap zone, and Robot 1 moved along obstacles.

In steps 45th to 61st, the robots move around in the trap to find a way to escape, and they
start out of the trap in step 70th. Once out of the trap zone, there are no obstacles left, so the
robots approach their target without any problem, as shown in step 88th. They hit the final
target at step 123rd.

6.5.5 Unknown Complex Environment
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Figure 26: The movement of the multiple robot in an unknown static environment.
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Figure 27: The detailed trajectory of the robot in the imaginary map.

Fig. 26 shows that the robots must avoid each other robots when they are close together
besides avoid surrounding obstacles at the 27th and 35th moving steps. The 1st robot detected
the 4th obstacle and the 2nd, the 3rd robots, and all of them are considered as dynamic obstacles,
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leading to three small hills around the 1st robot and it moved away from them to reach the target,
as shown in the 27th moving step in the lowest layer of Fig. 27. This happened in the same
way for the other robots until all of them reached their target. The 4th robot took the longest
distance to reach its target, which was 102 moving steps, and the 1st robot with the shortest
distance took 50 moving steps. The 2nd, the 3rd, and the 5th robots reach their targets at the
90th, the 84th, and the 64th moving steps respectively.
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Figure 28: The moving process of the robots in the complex environment.

Fig. 27 shows the movement of the robot in form imaginary map, with five layers corre-
sponding to five robots, the lowest layer indicating the 1st robot, the highest layer indicating
the 5th robot respectively. When other robots or obstacles are detected, small hills pop up in
the corresponding layer. As can be seen in these layers, the robot is like a spherical ball rolling
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from the highest position, around these small hills, to the lowest position, as well as the robot
reached its target.

Thus, all robots have completed their tasks without colliding with each other as well as
colliding with obstacles in the second map.

In the last map, a complex environment was built in which all objects moved, as shown in
Fig. 28. During the 27th to 41st moving steps, the movement of the robots became complicated
as the robots were close together and surrounded by the 1st, 2nd, 3rd, and 6th obstacles. However,
all robots did not collide with other robots and obstacles to move towards their target safely.

6.6 The Movement of Drones
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Figure 29: The results of simulating the paths of drones and avoiding obstacles in form of 3D.

Fig. 29 shows the simulation results of the flighting paths of drones, where drone 1 will start
from a given initial position and catch the target 1, and drone 2 will catch the target 2. For
each drone, there are five obstacles, including four given static obstacles in a spherical shape
and the rest one is the other drone. The blue and red dotted lines represent the paths of drone 1
and 2, respectively. These figures were captured at the step 36th, 88th, 180th and 260th. Fig. 30,
31, and 32 present the paths of the drones at different views in more detail, X-Y, X-Z, and Y-Z
view, respectively.

At the beginning of the algorithm, the position of the target is provided to the drone, and
no obstacles are detected. Therefore, in the fitness function, there is only the first element,
acting as a magnet to attract the drone to move towards the target. The predicted position
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Figure 30: Simulation of the drone’s path in X-Y view.
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Figure 31: Simulation of the drone’s path in X-Z view.
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Figure 32: Simulation of the drone’s path in Y-Z view.

that the drone will move to is created by the iSOMA algorithm. This position satisfies both the
requirement of the drone’s limited step and the minimum distance to the target.

At the step 36th, drone 1 detected obstacle 3 and drone 2 detected obstacles 1 and 2. At
this point, the second component in Eq. 12 appeared. This component makes the drone stay
away from obstacles because if it moves closer to the obstacles, the value of the fitness function
will increase. So the next predicted position provided by SOMA will both avoid obstacles and
shorten the distance to the target.

The process continues as shown at the step 88th and 180th of Fig. 29 until the drones
accomplished their purpose of catching targets at the step 260th.

From these Figs. 29, 30, 31, and 32, it can be seen that the drone’s paths change when
obstacles were detected. Drone 1 and drone 2 have accomplished the goal of catching targets 1
and 2 without colliding with each other as well as hitting obstacles from 1 to 4. This fact proves
the correctness and effectiveness of the proposed method.
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7 CONCLUSION

The study pointed out the important role of swarm intelligence in solving optimization problems,
analyzed the advantages and disadvantages of the SI that SOMA is a representative of, proposed
novel versions, evaluated them on well-known test suites, compared their performance to well-
known algorithms, and applied them to solve practical problems in swarm robotics.

Optimization is, in fact, ubiquitous in industrial practice as well as academic problems.
But not any optimization problem can be solved by conventional mathematical methods. In
that circumstance, swarm intelligence was extremely effective at solving them by simulating the
intelligent behavior of creatures, something alien to traditional mathematics but is a trend of
artificial intelligence, and SOMA is a brilliant representative.

There is no doubt in concluding that SOMA is a strong representation of the SI because
of its accomplishments. Let’s take CEC 2019 as a demonstration. One can see that the most
obvious characteristic in the CEC 2019 competition is the dominance of DE-based algorithms,
one of the most powerful representations in years of the Evolutionary algorithms class. Only the
isolated SOMA algorithm that ranked in the top 3 of the strongest algorithms among the other
competitors are DE variants, while the other representatives of SI do not do the same thing.

Specifically, the main goals that the study achieved against the initial expectations are shown
as follows:

• State of the art in the research field, published in [rel13], [rel15], [rel16].
• Analysis and design the novel algorithms to deal with well-known test suites of CEC 2013,

2015, 2017, 2019, and real-world problems, including:
– Self-organizing migrating algorithm team to team adaptive, named SOMA T3A, al-

ready published in [rel1].
– Pareto-based self-organizing migrating algorithm, named SOMA Pareto, already pub-

lished in [rel2].
– Self-organizing migrating algorithm with narrowing search space strategy, named

iSOMA [rel10].
• Determine the proposed algorithms position compared to well-known existing algorithms:

– Evaluate the performance on the IEEE CEC 2013, 2015, 2017, 2019, already published
in [rel1], [rel2], [rel3], [rel4], [rel10], [rel11], [rel12].

– Assert the ranking against various types of algorithms, even evolutionary algorithms
or swarm intelligence, already published in [rel1], [rel2], [rel10], [rel11].

• Apply the proposed algorithms to swarm robotics
– The movement of swarm robots, already published in [rel5], [rel6], [rel7], [rel8],
– Unmanned aerial vehicles control, already published in [rel8], [rel10].
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