
A Tool for Generating Data Collections, Queries
and Statistical Functions

Nástroj pro generování datových kolekcí, dotazů a statistické účely

Bogdan Postolov

Bachelor Thesis

Supervisor: Ing. Peter Chovanec, Ph.D.

Ostrava, 2022

VSB – Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science
Department of Computer Science

Bachelor Thesis Assignment

Student: Bogdan Postolov
Study Programme: B2647 Information and Communication Technology

Study Branch: 2612R025 Computer Science and Technology

Title: A Tool for Generating Data Collections, Queries and Statistical
Functions

Nástroj pro generování datových kolekcí, dotazů a statistické účely

The thesis language: English

Description:

A database framework RadegastDB is a collection of persistent data structures (e.g. an array, B-tree, R-tree,
Hash table and so on) implemented by a Database research group at the Department of Computer Science.
Their efficiency is measured by experiments over real-world as well as generated data collections and
queries. The main goal of this thesis is to implement a set of tools into the RadegastDB framework that will
provide generating of collections, queries, and some statistical and support functions.

The main tasks for a student are:
1. Study testing of data structures implemented in RadegastDB.
2. Study the currently used generator of data collections and correct its shortcomings.
3. Implement the generator of various types of queries.
4. Implement a set of statistical and support functions over data collections (e.g. sorting of data or
histogram).
5. Evaluate the implementation and its performance.

References:

[1] Jacob Kogan, Charles Nicholas, Marc Teboulle. Grouping Multidimensional Data. 2005
[2] Hanan Samet. Foundation of Multidimensional and Metric Data Structures. 2006

Extent and terms of a thesis are specified in directions for its elaboration that are opened to the public on
the web sites of the faculty.

Supervisor: Ing. Peter Chovanec, Ph.D.

Date of issue: 01.09.2021

Date of submission: 30.04.2022

doc. Ing. Petr Gajdoš, Ph.D. prof. Ing. Jan Platoš, Ph.D.
Head of Department Dean

Abstrakt

Hlavním cílem této práce je implementovat do frameworku RadegastDB sadu nástrojů, které zajistí
generování kolekcí, dotazů a některých statistických a podpůrných funkcí. Tohoto cíle je dosaženo
studiem již existujících nástrojů v rámci RadegastDB, jejich vylepšováním a implementací nových.

Klíčová slova

RadegastDB; prostorová data; datová struktura; R-strom; B–strom; n-tice; generátor; sběr dat; roz-
dělení; histogram; dotaz; bodový dotaz; dotaz na částečnou shodu; úzky rozsahový dotaz; rozsahový
dotaz; kartézsky rozsahový dotaz; z-křivka; export a import data; SQL; DBMS;

Abstract

The main goal of this thesis is to implement a set of tools into the RadegastDB framework that
will provide generating of collections, queries, and some statistical and support functions. This goal
is achieved by studying the already existing tools in the RadegastDB framework, improving them,
and implementing new ones.

Keywords

RadegastDB; spatial data; data structure; R-tree; B-tree; tuple; generator of data collections;
distribution; histogram; query; point query; partial match query; narrow range query; range query;
cartesian range query; z-order; export; SQL; DBMS;

Acknowledgement

I would like to thank all those who helped me with the work, because without them this work
would not have happened. Especially to Ing. Peter Chovanec, Ph.D. for his professional guidance,
patience, help and advices, without which this work wouldn’t have been possible. Also, I would like
to thank to my parents who have been a continuous support.

Contents

List of symbols and abbreviations 7

List of Figures 8

List of Tables 10

1 Introduction 11

2 Radegast DB 12
2.1 Data Structures . 12
2.2 Base Classes for Representation of Data . 13

3 Current Generator 16

4 New Generator
Generating Data Collection 18
4.1 What is Data Collection? . 18
4.2 Data Generator . 19
4.3 Available Distributions . 19

5 New Generator
Generating Query Collection 26
5.1 What is Query? . 26
5.2 Point Queries . 28
5.3 Partial Match Queries . 29
5.4 Narrow Range Queries . 30
5.5 Range Queries . 31
5.6 Cartesian Range Queries . 33

5

6 New Generator
Statistical and Support Functions 35
6.1 Sort Data Collection . 35
6.2 Shuffle Data Collection . 37
6.3 Sort Query Collection . 38
6.4 Shuffle Query Collection . 38
6.5 Export Collection to a File . 38
6.6 Generate SQL Selects . 39
6.7 Generate SQL Inserts . 39
6.8 Print Histogram . 40
6.9 Z-Curve(Order) . 41
6.10 Other Useful Support Functions . 42

7 Experiments 44
7.1 Experiments With Data Collections . 44
7.2 Experiments With Query Collections . 45
7.3 Experiments With Statistical and Support Functions 46

8 Conclusion 47

Bibliography 49

6

List of symbols and abbreviations

DBMS – DataBase Management System
DB – DataBase
QL – Query Low
QH – Query High
SQL – Structured Query Language

7

List of Figures

2.1 Example of Persistent Array Data Structure . 12
2.2 Example of the B-tree . 13
2.3 Example of the R-tree . 13

4.1 Data Collection Example . 18
4.2 Example of Uniform Distribution . 20
4.3 Example of Normal Distribution . 21
4.4 Example of Logonormal Distribution . 22
4.5 Example of Diagonal Distribution . 23
4.6 Example of Sierpiński Distribution . 24
4.7 Example of Bit Distribution . 25

5.1 Example of Different Types Of Queries . 26
5.2 Example of Query Window . 27
5.3 Example of Two Point Query Collections Generated for Data Collection 28
5.4 Example of Two Partial Match Query Collections Generated for Data Collection . . 29
5.5 Example of Two Query Collections Generated for Data Collection 31
5.6 Example of a Range Query Collections Generated for Data Collection 32
5.7 Example of Cartesian Range Query Collection Generated for Data Collection 34

6.1 Example of Alphabetical Sort . 36
6.2 Example of Different Types of Sort . 36
6.3 Example of Shuffled Tuples . 37
6.4 Example of Generated SQL Selects . 39
6.5 Example of Generated SQL Inserts . 40
6.6 Example of Generated Histogram . 41
6.7 Example of Conversion of Tuple to Z-Address . 41
6.8 Example of Z-Order . 42

7.1 Experiments Performed on Data Collection . 44

8

7.2 Experiments Performed on Query Collection . 45

9

List of Tables

2.1 Available Data Types and Their Codes . 15

7.1 Result of Performed Experiment on Generating Range Queries 45
7.2 Experiments Performed With Statistical and Support Functions 46

8.1 Comparison Between cTupleGenerator and cCollectionGenerator 47
8.2 Results of Experiments Performed on Data Collection 48
8.3 Results of Experiments Performed on Data Collection 48

10

Chapter 1

Introduction

Implementation and improving of data structures is important part of the area of database systems.
In the department of Computer Science, the database framework RadegastDB [1] is developed in last
decades. This framework is implemented in C++ and contains a set of data structures commonly
used in today’s relational DBMS. RadegastDB contains persistent data structures, such as B-tree,
R-tree, Hash table, Linked list and Array (Section 2.1). The efficiency of this data structures is
measured by the efficiency of the basic operations like inserts, updates, deletes and selects. In order
to execute this operations we need some collections of data and queries. For this purpose a generator
called TupleGenerator was implemented. However, this generator has it own flaws. Meaning that
there are some issues, limitations and insufficient functions for generating the required data collec-
tions. That’s why a new and improved generator will be implemented, called CollectionGenerator
which is the work of this thesis.

The purpose of this thesis is to develop a tool for generating data collections, queries and some
statistical and support functions. This is achieved in five phases, which are: Studying and testing
of already existing data structures in the RadegastDB database framework (Chapter 2). Then in the
chapter Current Generator (3) an overview is given of the current generator. Where its described
for what is this generator used as well as its functions and disadvantages are explained. After that
we’ll look at the implementation of a new improved generator for data collections which is done in
New Generator Generating Data Collections (Chapter 4).

Next, implementation of generator for various types of queries is done in New Generator Gen-
erating Query Collection (Chapter 5). In the fourth phase, some statistical and support functions
that are implemented in the new generator are explained in Statistical and New Generator Sup-
port Functions (Chapter 6). Finally, evaluation of the implementation and its performance will be
reviewed in Experiments (Chapter 7) and Conclusion (Chapter 8).

11

Chapter 2

Radegast DB

RadegastDB [1] is a database framework that is a collection of persistent data structures (e.g. an
array [2], B-tree [3][4], R-tree [5], Hash table [2], Linked list [2]) implemented by a Database research
group 1 at the Department of Computer Science.

2.1 Data Structures

Some explanation of the above mentioned data structures will be given:

An persistent array [2] is a set of pairs, index and value. For each index which is defined,
there is a value associated with that index. In mathematical terms we call this a correspondence or
a mapping. We can see an example of the persistent array data structure in the Figure 2.1.

Figure 2.1: Example of Persistent Array Data Structure

A B-tree [3][4] is a data structure that maintains data sorted and supports logarithmic amortized
searches, insertions, and deletions. It is optimized for systems that read and write big data blocks,
unlike self-balancing binary search trees. It’s most often found in database and file management
systems. An example of the B-tree data structure can be seen in the Figure 2.2.

1http://db.cs.vsb.cz

12

http://db.cs.vsb.cz

Figure 2.2: Example of the B-tree

An R-tree [5] is an advanced height-balanced Tree Data Structure that is widely used in production
for spatial problems (like geographical map operations). An R-tree is a height-balanced tree with
index records in it’s leaf nodes containing pointers to data objects Nodes correspond to disk pages
if the index is disk-resident, and the structure is designed so that a spatial search requires visiting
only a small number of nodes. Example of the R-tree data structure can be seen in the Figure 2.3.

(a) Structure (b) Containment and Overlapping Relationships

Figure 2.3: Example of the R-tree

2.2 Base Classes for Representation of Data

The fundamental element in all of the data structures presented is known as a tuple. The space
descriptor describes an n-dimensional item called a tuple. Tuples are represented in RadegastDB
by the class cTuple, and space descriptions are represented by the class cSpaceDescriptor.

13

2.2.1 cTuple

Represents n-dimensional homogeneous tuple for a tree data structure. It contains an array of
values of the specific data type. Using this class we can work with various data types for example
int, unsigned int, float, double, char, unsigned char, wchar_t, short, unsigned short.

1. SetValue(unsigned int order, int value, const cDTDescriptor* pSd): Allows us to
set a value for the appropriate data. type. For example let’s say we want to set a value for an
attribute of type int. Then we’ll specify the order of the attribute into the parameter order,
the value we want to assign will be specified into the parameter value and the space descriptor
will be specified into the parameter pSD

2. GetInt(unsigned int order, const cDTDescriptor* pSd): Allows us to obtain an at-
tribute from a tuple, of the specified order. Which is specified into the parameter order) and
the space descriptor is specified as well into the parameter pSD

3. Resize(const cDTDescriptor* pSd): Gives us an option us to resize the tuple according
to the space descriptor. Which is specified into the parameter pSD

4. Clear(const cSpaceDescriptor* pSd): Gives us an option to set all attributes of the tuple
to zero. By specifying the space descriptor into the parameter pSD

5. Print(const char* string, const cSpaceDescriptor* pSd): Allows u to print the tuples.
Where we can specify a string which will separate the tuples from one another. By specifying
the desired string into the parameter string and the space descriptor into the parameter pSD

6. SetMaxValue(unsigned int order, const cSpaceDescriptor* pSd): Gives us an option
to set maximal value for the specified attribute of the given order. However, this function
works only for int, unsigned int, and short. We can set a maximal value for the specified
attribute by specifying the order of the attribute into the parameter order and the space
descriptor into the parameter pSD

There are quite useful functions in this class however, this are some of the functions that are used
in creating the new improved generator.

2.2.2 cSpaceDescriptor

cSpaceDescriptor represents the space descriptor for the cTuple class. Here all the metadata infor-
mation about concrete cTuple is stored.

1. GetDimensionType(unsigned int dim): Gives us an option to obtain the type of the
given dimension. By specifying the dimension into the parameter dim

14

2. SetDimensionType(unsigned int dim, cTuple *type): Gives us an option to set the
type of the specified dimension. By specifying the dimension into the parameter dim and
specifying the data type into the parameter type.

3. GetDimensionSize(unsigned int order): Allows us to obtain the dimension size of the
specified order. By specifying the the order into the parameter order.

4. GetDimensionTypeCode(unsigned int dim): Allows us to obtain the code of the data
type of the specified dimension. By specifying the dimension into the parameter dim.

In the Table 2.1 we can see the available data types and their codes.

Data Type Code
cInt i

cUint u
cDouble d
cFloat f

Table 2.1: Available Data Types and Their Codes

As mentioned above this class rather support class for the class cTuple, so inside this class there
are more support function. But we explained the most important one that are used in creating the
new and improved generator.

15

Chapter 3

Current Generator

cTupleGenerator is a class for generating data collections. Which is used for generating data collec-
tion. This generator supports generating random tuples for a data collection as well as importing
data collection from a file. We’ll see some of the available functions that this generator has to offer
and we’ll explain what each function does.

1. GetTuple(uint order): Allows us to obtain a tuple from the specified order in the parameter
order. For example if we specify zero, it will return the first tuple in the collection

2. GetNextRandTuple(): Allows us to obtain a tuple from a random given order

3. GetNextTupleFromFile(): Allows us to obtain the next tuple from the file. Which is used
when loading a data collection from a file

4. GetNextTuple(): Gives us an option to obtain the next tuple in the collection

5. ResetPosition(): Gives us an option to reset the order of the tuples. For example if the last
returned tuple was the fifth tuple in the collection. Then if we call this function, the order
will reset and if we call GetNextTuple() the first tuple will be returned

6. GenerateRandomArray(): Gives us an option to generate random tuples according to
normal or Gaussian distribution

This generator has its own advantages and disadvantages. The advantage is that it allows us to
generate random data collection and import from a file an already existing data collection. It has a
very good approach for bulk loading tuples when it comes to importing a data collection. However
this generator has its own flaws. The first flaw of this generator is that only generates random
tuples according to the normal or Gaussian distribution. The next disadvantage of this generator is
that it only generates tuple collections, there isn’t a generator for query collection. Another flaw of
the current generator is that there aren’t much support function that will allow us to sort or shuffle

16

the data collection. On the other hand, there is a shortness of statistical futures like generating
histogram or generating SQL selects and inserts.

To summarize, the current generator cTupleGenerator does its job. However, as mentioned in
the Introduction, "implementation and improving of data structures is important part of the area
of database systems" so this was the perfect time to implement a new improved generator. Which
we’ll be explained and discussed in the following chapters.

17

Chapter 4

New Generator
Generating Data Collection

In this chapter we’ll talk about what is data collection and how can we generate one. Then, we’ll
analyze the available tuple generator, which is used to generate such data collections. Also, available
distributions and futures will be discussed in this chapter.

4.1 What is Data Collection?

When we refer to "Data Collection" we mean a simple collection of data, in our case that is a
collection of tuples. Not to confuse with the process "Data Collection" which has totally different
meaning. In Figure 4.1 we can see an example of a data collection.

Figure 4.1: Data Collection Example

In mathematics, a tuple is an ordered list of elements. Related to this is an n-tuple, which in
set theory is a collection (sequence) of n elements. Our data collections will be defined by Tuples
Count and Dimension. Tuples Count refers to how many tuples will be stored or generated in the
data collection. Dimension, defines how many elements will one tuple have. In our generator, we

18

can either import an already existing data collection or we can generate a new random one based
on our preferences, using the Data Generator.

4.2 Data Generator

In the previous section we defined what is data collection and what is tuple. Now we will discuss
how we can use the data generator to generate a data collection or import and already existing data
collection.

4.2.1 Import Data

We can import an already existing data collection from a file and load the data into the memory. In
case of importing a big file into the memory, we can specify the buffer size and the size of the line. It
will load part only as big as the buffer. The collection file includes number of tuples (Tuples Count)
and dimension. When we load data from a file, the file is being opened using cFileStream.h. Once
the file is opened, we look for the header where we will obtain the information of how many tuples
are stored in the file and from which dimension. Next we go trough the file line by line and search
"," as a delimiter for the elements of a single tuple. To know that we reach the last element of the
tuple, we look for a new line. Once we obtained all the values from one tuple, we load the tuple in
to the memory using a 2D array.

4.2.2 Generate Random Data

We can generate random data by given type (cInt, cUInt, cFloat, cDouble), dimension and
tuples count. Also, we can be more specific and specify a minimal and a maximal value range
for the elements of the tuples. We can also specify a distribution based on which random tuples
will be generated. In the next subsection we’ll look at the available distributions and discuss them
separately.

4.3 Available Distributions

In order to generate random tuples we need to use some distribution to achieve some randomness be-
tween the tuples. The following distributions are available for use in the tuple generation: Uniform
Distribution, Normal Distribution, Logonormal Distribution, Diagonal Distribution, Sierpiński Dis-
tribution and Bit Distribution. The implementation for some of the distributions mentioned above
was inspired by SpiderWeb [6]. To test the distributions we’ll visualize the generated tuples by
plotting them on a graph using SimplePlot [7] and Demos [8].

19

4.3.1 Uniform Distribution

In probability theory and statistics, the discrete uniform distribution [9] is a symmetric probability
distribution where in a finite number of values are equally likely to be observed; every one of n
values has equal probability 1/n. Another way of saying "discrete uniform distribution" would be
"a known, finite number of outcomes equally likely to happen". A simple example of the discrete
uniform distribution is throwing a fair dice. The possible values are 1, 2, 3, 4, 5, 6, and each time
the die is thrown the probability of a given score is 1/6. If two dice are thrown and their values
added, the resulting distribution is no longer uniform because not all sums have equal probability.

Using this distribution, we can generate random tuples of any dimension and of any of the available
types: cInt, cUInt, cFloat, cDouble.

For better understanding, we can visualize the random generated tuples by plotting them on a
graph. Which can be seen in the Figure 4.2 For this purpose, we’ll generate one thousand, two
dimensional, random tuples using Uniform distribution and values in the range from zero to three
hundred.

Figure 4.2: Example of Uniform Distribution

4.3.2 Normal Distribution

In statistics, a normal distribution (also known as Gaussian, Gauss, or Laplace–Gauss distribution)
is a type of continuous probability distribution for a real-valued random variable [10]. The distri-
bution can be described by two values: the mean and the standard deviation. This distribution
produces random numbers around the distribution mean with a specific standard deviation. The

20

normal distribution is a common distribution used for many kind of processes, since it is the distri-
bution that the aggregation of a large number of independent random variables approximates to [11].

Using this distribution, we can generate random tuples of any dimension and of any of the available
types: cInt, cUInt, cFloat, cDouble. In addition, we can set the mean by calling the func-
tion SetMean(uint pMean). And we can also set the standard deviation by calling the function
SetStdDeviation(uint pStdDeviation). Both functions SetMean(uint pMean) and SetSt-
dDeviation(uint pStdDeviation) accept parameter values greater then zero. If we don’t specify
the standard deviation and the mean, then they are both calculated appropriately.

We can also generate one thousand, two dimensional, random tuples within the value range, from
fifty to two hundred and seventy five. Then we can see the result plotted on a graph, in the Figure
4.3.

Figure 4.3: Example of Normal Distribution

4.3.3 Logonormal Distribution

In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribu-
tion of a random variable whose logarithm is normally distributed. Thus, if the random variable X

is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a nor-
mal distribution, then the exponential function of Y , X = exp(Y), has a log-normal distribution. A
random variable which is log-normally distributed takes only positive real values. The distribution is
occasionally referred to as the Galton distribution or Galton’s distribution, after Francis Galton [12].

21

Using this distribution, we can generate random tuples of any dimension and of any of the available
types: cInt, cUInt, cFloat, cDouble. In this function the mean and the standard deviation are
calculated appropriately depending on the number of tuples and their values.

We can visualize the random generated tuples by plotting them on a graph. For this purpose
we’ll generate one thousand, two dimensional random tuples with values in range from zero to three
hundred and fifty seven. The result can be seen in the Figure 4.4.

Figure 4.4: Example of Logonormal Distribution

4.3.4 Diagonal Distribution

Using Diagonal distribution [13], we can generate two dimensional random tuples with real values
from one of the available data types: cDouble or cFloat. The result of the random generated
tuples always represent a diagonal line. The thicknes of the line depends on the number of tuples.
As well of the percentage (ratio) of the points that are exactly on the line, the percentage can be
set by calling the function SetPercentage(double pPercentage). Also, it depends on the size of
the buffer around the line where additional points are scattered, the buffer can be set by calling the
function SetBuffer(double pBuffer). Both functions SetPercentage(double pPercentage)
and SetBuffer(double pBuffer) accept parameters values in range from zero to one.

For better understanding we’ll generate one thousand, two dimensional, random tuples and we’ll
visualize them by plotting the random generated tuples. And we’ll look at four cases in the Figure
4.5. In the first case, that is Figure 4.5a, we’ll set the buffer 1.0 and the percentage at 1.0 as well.
Then the second case, in Figure 4.5b, we’ll set the buffer at 0.2 and the percentage at 0.5. In the
third case, which is presented in Figure 4.5c, we’ll set the buffer at 0.5 and the percentage at 0.7.

22

Finally, in the fourth final case, in Figure 4.5d, we’ll set the buffer at 1.0 and the percentage at 0.2.

(a) buffer = 1.0 and percentage = 1.0 (b) buffer = 0.2 and percentage = 0.5

(c) buffer = 0.5 and percentage = 0.7 (d) buffer = 1.0 and percentage = 0.2

Figure 4.5: Example of Diagonal Distribution

4.3.5 Sierpiński Distribution

This distribution is based on the Sierpiński triangle [14][13]. The Sierpiński triangle (sometimes
spelled Sierpinski), also called the Sierpiński gasket or Sierpiński sieve, is a fractal attractive fixed

23

set with the overall shape of an equilateral triangle, subdivided recursively into smaller equilateral
triangles .

Using this distribution, we can generate random tuples of any dimension and of any of the available
types: cFloat, cDouble. The first three points are the corners of the triangle. The successive points
are generated starting from the current point and computing the middle point between the current
point and one of the vertices of the triangle chosen according to the random function Dice(int n).

We can visualize the Sierpiński distribution by generating one thousand, two dimensional, random
tuples and plot them on a graph. The result can be seen in the Figure 4.6.

Figure 4.6: Example of Sierpiński Distribution

4.3.6 Bit Distribution

Bit distribution [13] generates skewed tuples by introducing a rule for generating the coordinates
of the points by assigning higher probability to a subset of coordinates. For instance in the Bit
distribution, the point coordinates are generated as a bit string of a fixed length where each bit is
set with a fixed probability in the range from zero to one.

Using this distribution, we can generate random tuples of any dimension and of any of the available
types: cFloat, cDouble. For this distribution we can set the probability by calling the function
SetProbability(double pProbability). Where the probability represents a fixed probability of
setting each bit independently to one. Also, we can set the number of digits by calling the function
SetDigits(int pDigits). Where number of digits represents the number of binary digits after the
fraction point.

24

We can visualize this distribution by generating one thousand, two dimensional, random tuples
and plot them on a graph. We’ll look at four cases in the Figure 4.7. In the first two cases, in the
Figure the number of digits will be set to ten. In addition, in the first case presented in Figure 4.7a,
we’ll set the probability at 0.2. Next, in the second case in Figure 4.7b, we’ll set the probability at
0.5. Last but not least in the third case presented in Figure 4.7c, we’ll set probability at 0.9. Finally,
in the last case in Figure 4.7d, we’ll set the number of digits to one.

(a) probability = 0.2 and number of dig-
its = 10

(b) probability = 0.5 and number of dig-
its = 10

(c) probability = 0.9 and number of dig-
its = 10

(d) probability = 0.2 and number of dig-
its = 1

Figure 4.7: Example of Bit Distribution

25

Chapter 5

New Generator
Generating Query Collection

In this chapter we’ll talk about what are queries and how can we generate them. Then, we’ll analyze
the available types of query generators. The new generator provides generators for following types of
queries: Point Queries, Partial Match Queries, Narrow Range Queries, Range Queries and Cartesian
Range Queries.

5.1 What is Query?

In databases a query is a request for data or information from a database table or combination of
tables. This data may be generated as results returned by Structured Query Language (SQL) or as
pictorials, graphs or complex results, e.g., trend analyses from data-mining tools [15].

Various types of queries, such as range queries and other similarity queries, are supported by mul-
tidimensional access methods. The range query returns all tuples from a multidimensional space
contained within a query rectangle defined by an interval or a point in each dimension (attribute).
In the Figure 5.1 we can see an an example of a point query, range query, partial match query,
narrow range query.

(a) Point
Query

(b) Range
Query

(c) Narrow
Range Query

(d) Partial
Match Query

Figure 5.1: Example of Different Types Of Queries

26

The lower boundary is called QL in short of Query Low. On the other hand, the upper boundary
is called QH in short of Query High. The attribute values from QL always must be smaller or
equal to the attribute values from QH. This two boundaries form query window or also known as
query box, which can be seen in the Figure 5.2. Where R1 represents the query window and the
points P1, P2, and P3 are inside the query window. While the points P4 and P5 are outside the
query window.

Figure 5.2: Example of Query Window

27

5.2 Point Queries

A point query (also known as an exact match query) limits all attributes to a point. Such queries
can be generated by calling the function GeneratePointQueries(uint pQueriesCount, double
pPercentage. This function takes the following parameters:

• uint pQueriesCount: number of queries to be generated

• double pPercentage: percentage of empty queries

The function takes two random tuples and generates one point query. In case we have specified that
we want a certain percentage of empty queries in the collection. Empty queries represent data that
is not part of the data collection. For this purpose certain number of empty queries are generated
and they are verified that they do not return any result. If they don’t return any result then they
are added to the query collection.

To test this function, we can generate four point queries from previously generated ten, five di-
mensional, random tuples of type cUInt with values in range from zero to two hundred and fifty,
generated randomly by using normal distribution (See Figure 5.3a). We’ll see two cases in the
Figure 5.3. In the first case, presented in Figure 5.3b, we’ll set the percentage of empty queries to
0. And in the second case, in Figure 5.3c, we’ll set the percentage of empty queries to 0.5.

(a) Tuples (b) Percentage=0.0 (c) Percentage=0.5

Figure 5.3: Example of Two Point Query Collections Generated for Data Collection

28

5.3 Partial Match Queries

A partial match query limits some attributes to a point while leaving others unspecified. In this gen-
erator, we can specify the percentage of empty queries we want to be generated in the collection. This
types of queries can be generated by calling the function GeneratePartialMatchQueries(uint
pQueriesCount, double pPercentage). This function takes the following parameters:

• uint pQueriesCount: number of queries to be generated

• double pPercentage: percentage of empty queries

This generator is similar to the point query generator. This function takes two random tuples, com-
pares each element of the two random tuples and generates one partial match query. First it checks
the first elements, if they are same then it moves to the second one and so on... If two different
elements occur then for the element of the first tuple, the value min is set. For the element of the
second tuple, the value max is set. In case we have specified that we want a certain percentage of
empty queries in the collection. Then a certain number of empty queries are generated and they
are verified that they do not return any result. If they don’t return any result then the same check
mentioned above is performed and they are added to the query collection.

To test this function, we can generate four partial match queries from an already imported tu-
ples collection of type cUInt. There are ten, eleven dimensional tuples in the tuples collection (See
Figure 5.4a). We’ll see two cases in the Figure 5.4. In the first case, presented in Figure 5.4b,
we’ll set the percentage of empty queries to 0. And in the second case, in Figure 5.4c, we’ll set the
percentage of empty queries to 0.5.

(a) Tuples (b) Percentage = 0.0 (c) Percentage = 0.5

Figure 5.4: Example of Two Partial Match Query Collections Generated for Data Collection

29

5.4 Narrow Range Queries

A narrow range query is one that restricts at least one attribute to a narrow interval. In this
generator, we can specify a value for the dispersion [16], boolean mask (0 = interval attribute, 1 =
point attribute), and the percentage of empty queries we want to be generated in the collection. This
types of queries can be generated by calling the function GenerateNarrowRangeQueries(uint
pQueriesCount, uint pDispersion, char* pMask, double pPercentage). This function takes
the following parameters:

• uint pQueriesCount: number of queries to be generated

• uint pDispersion: value for the dispersion, must be greater or equal than one

• char* pMask: string of a boolean mask; 0 = interval attribute, 1 = point attribute. E.g.
"1,0,0,1,1,0,1,1"

• double pPercentage: percentage of empty queries

This generator works similarly as the point query generator (Section 5.2). When the function is
called, firstly it checks if we have specified any boolean mask. If we haven’t specified any boolean
mask then a random one is generated by calling the function GenerateMask(uint pDimCount)
where the dimension is specified into the parameter pDimCount. In case we have specified a boolean
mask, then it is converted into a boolean array using the function ConvertToBoolArray(bool*
pArray, char* pString) where we pass the boolean array into the parameter pArray and the
string of the boolean mask that needs to be converted into boolean values. Next, the element of
the QL is checked if it’s larger than the specified dispersion. If the element is greater than the
specified dispersion, then a random number is generated in the range from zero to the specified
dispersion, using uniform distribution. Then if the boolean mask returns 1 for the given element,
the unmodified value from the tuple is set for the given element of the QL. If the boolean mask
returns 0 then the value for the element of the QL is modified by tuple − (random(dispersion)).
random(dispersion) is the random number that is mentioned above. The similar process is done for
the elements of the QH, the difference is in the check for the random number generation. It checks
if the sum of the value of the given element and the value of the specified dispersion, is smaller than
the domain which is set to one hundred. Another difference is if the boolean mask returns zero for
the given tuple element, then the value is modified by tuple + (random(dispersion)). Finally, In
case we have specified that we want a certain percentage of empty queries in the collection. Then
a certain number of empty queries are generated and they are verified that they do not return any
result. If they don’t return any result then the check mentioned above is performed and they are
added to the query collection.

30

To test this function, we can generate four narrow range queries from an already imported tu-
ples collection of type cUInt. There are ten, eleven dimensional tuples in the tuples collection (See
Figure 5.5a). We’ll see two cases in the Figure 5.5. In the first case, presented in Figure 5.5b, we’ll
set the dispersion to two hundred, boolean mask to "1,0,0,0,1,1,0,1,1,0,0" and the percentage of
empty queries to 0.2. Next, in the second case, in Figure 5.5c, we’ll set the dispersion to three and
the percentage of empty queries to 0.

(a) Tuples (b) First Collection (c) Second Collection

Figure 5.5: Example of Two Query Collections Generated for Data Collection

5.5 Range Queries

Range query[17] is general query where each attribute is defined by query window. The size of
the query will be defined by query window. It means that we can specify how many tuples will
one query contain. For this purpose we need to somehow sort the tuples in the collection. This
is why the function Z-Order is being implemented (See Section 6.9). This way we can represent
multidimensional tuples into single dimensional Z addresses. To generate range queries, we need to
call the function GenerateRangeQueries(uint pQueriesCount, uint pQuerysetSizeStart,
uint pQuerysetSizeEnd). Using this function we can generate range queries of the following
type: cInt and cUInt. This function takes the following parameters:

• uint pQueriesCount: number of queries to be generated

• uint pQuerysetSizeStart: minimal number of tuples contained in one query

• uint pQuerysetSizeEnd: maximal number of tuples contained in one query

This generator works in the following way: Firstly it generates Z addresses for all the tuples in the
collection. Then we sort the tuples by their Z addresses. Next, it generates random tuple indexes

31

for QL and QH, and it checks if there are enough tuples in the generated query window. The next
step is to obtain the tuples inside the given query window and to check for each element of the
tuple if it is between the QL and QH tuples. The value of the tuple element must not be smaller
than the element of the QL and must not be greater than the element of the QH. If an element
isn’t between the QL and QH tuples, then the value of the element is modified, so the tuple can
fit inside the query window. Then the function continues to check if the relevant tuples fit inside
the query window and also keeps track of the generated tuples inside the query, not to exceed the
maximal number of tuples inside one query.

To test this function, we can generate two range queries from an already imported tuples col-
lection of type cInt (See Figure 5.6a). We’ll set each query to contain between two to eight tuples.
The generated range queries can be seen in the figure 5.6b.

(a) Generated Tuples (b) Range Query Collection

(c) First Range Query (d) Second Range Query

Figure 5.6: Example of a Range Query Collections Generated for Data Collection

In the Figure 5.6c we can see the first generated range query and its query window. Next, in the
Figure 5.6d we can see the second generated range query and its query window. Finally, in the
Figure 5.6b we can see the range query collection generated.

32

5.6 Cartesian Range Queries

Cartesian range query is query where each attribute can be defined by a set of query windows. In
this generator, we will care about the size of the result as well as the maximal number of query
windows for each query window. By using this generator we can generate cartesian range queries
of the following type: cInt and cUInt. In order to generate cartesian range queries we need
to call the function GenerateCartesianRangeQueries(uint pQueriesCount, uint pQuery-
setSizeStart, uint pQuerysetSizeEnd, uint pIntervals). This function takes the following
parameters:

• uint pQueriesCount: number of queries to be generated

• uint pQuerysetSizeStart: minimal number of tuples contained in one query

• uint pQuerysetSizeEnd: maximal number of tuples contained in one query

• uint pIntervals: number of query windows

This generator works in the following way. The generator will generate range queries for each carte-
sian range query. First, it sets the minimal and maximal number of tuples to be generated for the
range queries. The minimal number of tuples in one range query is set by: minimal number of
tuples in one query / number of query windows. Then the maximal number of tuples in one range
query is set by: maximal number of tuples in one query / number of query windows. Next it will
check if the generated range queries are in the given query windows and will merge them together
in the cartesian range query collection.

To test this function, we can generate two cartesian range queries from an already imported tuples
collection of type cInt (See Figure 5.7a). We’ll set each query to contain between two to eight tuples
and defined by two query windows. We can see the two generated query windows (First Interval
and Second Interval labeled in the Figure) and its data for the first generated cartesian range query
in the Figure 5.7c. Next, in the Figure 5.7d we can see the two generated query windows (First
Interval and Second Interval labeled in the Figure) and its data for the second cartesian range query
and the second generated cartesian range query. Finally, in the Figure 5.7b we can see the whole
cartesian range query collection generated.

33

(a) Generated Tuples (b) Generated Queries

(c) First Cartesian Range Query (d) Second Cartesian Range Queries

Figure 5.7: Example of Cartesian Range Query Collection Generated for Data Collection

34

Chapter 6

New Generator
Statistical and Support Functions

In this chapter we’ll take a look at the statistical and support functions, implemented in the new
generator, namely functions for sorting and shuffling of data/query collections, exporting of data/-
query collection, generators of sql insert/select commands, generators of histograms and so on.

6.1 Sort Data Collection

Its useful to have a public support function that will allow us to sort the tuples alphabetically.
For this purpose the function SortTuples(TypeOfSort pTypeOfSortl) is implemented, which
allows us to sort a collection of tuples. This function takes the following parameters:

• TypeOfSort pTypeOfSort: type of sort that will be performed: alphabetical or Z-Order
Sort

This function works in the following way: First, it checks what type of sort to be performed, if we
have specified that we want alphabetical sort. Then the tuples are sorted alphabetically. Bubble
sort algorithm is used for this purpose. We can see an example of this function in Figure 6.1. Where
we will sort a collection of ten, five dimensional, random generated tuples.

35

(a) Generated Tuples (b) Sorted Tuples

Figure 6.1: Example of Alphabetical Sort

Also, we can see an example of the two available sort options in Figure 6.2 performed on sixty
four, two dimensional, tuples with value within range from zero to seven. For this purpose, we’ll
plot the generated and sorted tuples using Demos [8]. In Figure 6.2a we can see the generated
tuples. Then we can see an example of alphabetical sort performed in Figure 6.2b and in 6.2c an
example of Z-Order sort performed.

(a) Generated Tuples (b) Alphabetical Sort

(c) Z-Order Sort

Figure 6.2: Example of Different Types of Sort

36

6.2 Shuffle Data Collection

On the other hand, another useful support public function that is implemented in cCollection-
Generator is the option to unsort or shuffle the tuples, the function is called UnsortTuples(uint
pNumberOfSwaps) and it takes one optional parameter pNumberOfSwaps. This function has
the following parameters:

• uint pNofShuffles: number of swaps or shuffles

To shuffle the tuples, the function takes two random tuples and switches their places. We repeat
this process for the specified number of swaps (pNumberOfSwaps). If no value is assigned for the
optional parameter than a default value of ten is assigned. We can test this function (See Figure 6.3)
by generating ten, four dimensional, random tuples and first we’ll use the function SortTuples()
to sort them that can be seen in the Figure 6.3a. Then we’ll shuffle them using the function
UnsortTuples(). The result can be seen in Figure 6.3b.

(a) Sorted Tuples (b) Shuffled Tuples

Figure 6.3: Example of Shuffled Tuples

37

6.3 Sort Query Collection

Also, there is a private function called SortQueries(cTuple** pCollecetion, uint pStart, uint
pEnd) which sorts the queries in ascending order. Which is similar to the function SortTuples()
(Section 6.1). This function takes the following parameters:

• cTuple** pCollection: array of a collection that will be sorted

• uint pStart: from where to start the sorting, from which tuple index

• uint pEnd: to which tuple index the sorting will be done

Again, bubble sort algorithm is used for sorting the queries. This function is a support function and
is set as private. Since sorting and shuffling is done upon the generation of queries. This function
is used upon generating various types of queries.

6.4 Shuffle Query Collection

Identical to UnsortTuples() (Section 6.2) is the private function ShuffleQueries(cTuple**
pCollection, uint pDimension, uint pQueryCount, uint pNofShuffles) which shuffles the
queries randomly. This function has the following parameters:

• cTuple** pCollection: array of a collection that will be shuffled

• uint pDimension: dimension of the tuples

• uint pQueryCount: number of tuples inside the collection

• uint pNofShuffles: number of swaps or shuffles

The function takes two random queries and switches their places. The process is repeated ten times
if no value is given for pNofshuffles. This function is used upon generating various types of queries.

6.5 Export Collection to a File

This statistical function allows us to export generated tuples or queries into a file. This function is
called ExportCollection(CollectionToExport pCollection, char pCollectionName*) and
has the following parameters:

• CollectionToExport pCollection: what type of collection will be exported, tuples or
queries

38

• char pCollectionName*: name of file, the default value for this optional parameter is
ExportedCoillection. This name will be set for the exported collection if we don’t specify
any file name.

The file format depends on what we’re exporting, if we choose to export tuples then the file format
will be .ctf. On the other hand, if we choose to export queries, the file format will be .qtf. In
addition, we can specify the file name by using the optional parameter pCollectionName.

6.6 Generate SQL Selects

There is also a public statistical function called GenerateSQLSelects(char pCollectionName*),
which generates SQL selects for the given query collection. This function takes the following pa-
rameters:

• char pCollectionName*: name of collection and file, the default value for this optional
parameter is ExportedCoillection. If no name is given then, the file will be named qGen-
eratedSelects.sql.

In Figure 6.4, we’ll test this function, by generating SQL selects. The result can be seen in Figure
6.4b), for a given point query collection that is presented in Figure 6.4a.

(a) Queries (b) Generated SQL Selects

Figure 6.4: Example of Generated SQL Selects

6.7 Generate SQL Inserts

GenerateSQLInserts(char pCollectionName*) is a public statistical function that generates
SQL inserts for a given data collection. This function takes the following parameters:

39

• char pCollectionName*: name of collection and file, the default value for this optional
parameter is ExportedCoillection. If no name is given then the file will be named qGen-
eratedInserts.sql.

In Figure 6.5, we will test this function. The generated SQL inserts can be seen in Figure 6.5a. The
data collection from where they are generated is presented in Figure 6.5b.

(a) Generated Tuples (b) Generated SQL Inserts

Figure 6.5: Example of Generated SQL Inserts

6.8 Print Histogram

Print Histogram is another public statistical function that allows us to find out minimal, maximal
and number unique values (values that appear only once in the collection) of each dimension in the
collection. This function is called PrintHistogram(uint pIntervalCount) and it has one op-
tional parameter which is uint pIntervalCount which allows us to specify a number of intervals,
the default value of this parameters is zero which means that no intervals will be created. Only the
minimal, maximal and number of unique values of each dimension in the collection will be printed.
Also, we can save the histogram into a text file using the following function PrintHistogram(char*
pFileName, uint pIntervalCount). Which again is the same statistical function as PrintHis-
togram(uint pIntervalCount), only that this function allows us to save the histogram into a
file. The information for each dimension is printed in the following order: dimension; minimal
value; maximal value; number of unique values;. In Figure 6.6, we’ll test this function we
can generate ten, three dimensional, random tuples and call the function PrintHistogram(char*
pFileName).

40

(a) Generated Tuples (b) Result

Figure 6.6: Example of Generated Histogram

6.9 Z-Curve(Order)

In mathematical analysis and computer science, functions which are Z-order, Lebesgue curve, Mor-
ton space filling curve, Morton order or Morton code map multidimensional data to one dimen-
sion while preserving locality of the data points [18]. For this purpose a support function called
ZOrder(int pLeft, int pRight) is implemented in cCollectionGenerator, which sorts the tu-
ples according to the Z-Order. The function takes two parameters:

• int pLeft: from where to start the sorting, from which tuple index

• int pRight: to which tuple index the sorting will be done

This function allows us to represent multidimensional tuples to one dimension by generating ap-
propriate Z address for each tuple. The addresses are generated by calling the function Gener-
ateZAddresses(). GenerateZAddresses() generates Z address for each tuple in the collection
by interleaving the bits of each element in the tuple.

For example If we want to convert a certain set of integer coordinates to a Morton code (Fig-
ure 6.7), we have to convert the decimal values to binary and interleave the bits of each coordinate
[19], [20]:

Figure 6.7: Example of Conversion of Tuple to Z-Address

41

Once we have Z addresses for every tuple in the collection, we can quick sort the addresses using
quick sort algorithm and obtain a result like in the figure bellow (Figure 6.8). Note that the X and
Y axis are flipped on the graph of this example.

Figure 6.8: Example of Z-Order

When the order of the tuple is required. Firstly, the function GenerateZAddresses() has to be
called which will generate Z addresses for all the tuples in the collection. Once we have the Z
addresses for all the tuples we can call the function ZOrder(int pLeft, int pRight) and order
the tuples according to their Z addresses. This function is set as private and used upon generating
range queries (Section 5.5) and generating cartesian range queries (Section 5.6).

6.10 Other Useful Support Functions

1. GetTuple(uint order): Allows us to obtain the tuple of the specified order. By specifying
the order of the tuple into the parameter pOrder. For example if we specify zero, it will return
the first tuple in the collection

2. GetNextTupleFromFile(): Allows us to obtain the next tuple from the file. This function
is used when importing a data collection from a file

3. GetNextTuple(): Gives us an option to obtain the next tuple in the data collection that is
stored inside the memory

42

4. ResetPosition(): Gives us an option resets the order of the tuples. For example if the last
returned tuple was the fifth tuple in the collection. Then if we call this function, the order
will reset and if we call GetNextTuple() the first tuple will be returned

5. GetTupleCount(): Allows us to obtain the number of tuples inside the tuple collection

6. GetQueriesCount(): Allows us to obtain the number of tuples inside the query collection

7. GetDimension(): Gives us an option to obtain the size of the dimension. For example if
it’s a 2D data collection, it will return 2

8. SetDataSource(char* pFileName): Gives us an option to display the collection in the
console, the collection is not saved in memory

9. SetDataSource(uint pDimension, uint pTupleCount): Allows us to generate tuples
according the specified size of dimension, number of tuples. Which is specified into the pa-
rameters pDimension and pTupleCount. The collection is displayed in the console, and it is
not saved in memory

10. SetDataSource(uint pDimension, uint pTupleCount, Distribution pDistribution):
Allows us to generate tuples according the specified size of dimension, number of tuples,
and distribution. By specifying them into the parameters pDimension, pTupleCount, and
pDimension. The collection is displayed in the console, and it is not saved in memory

43

Chapter 7

Experiments

In this chapter we’ll test the implementation of the new generator cCollectionGenerator by generat-
ing tuples, queries, performing sorts, shuffles, exporting data collections, generating SQL selects and
inserts. Where the time will be measured in seconds (ms). All experiments are executed in a single
thread on Intel(R) Core(TM) i7-8750H CPU with 16GB of RAM memory. Also, all experiments
will be performed multiple times in order to get average time.

7.1 Experiments With Data Collections

In this experiment we’ll generate one million tuples for the following dimensions: 2, 3, 5, 7, 10, 16,
24, 32, 64, 128. The experiment will be ran on the following distributions: Uniform, Normal and
Logonormal. The result of the experiments can be seen in the Figure 7.1, where the measured times
are plotted.

Figure 7.1: Experiments Performed on Data Collection

44

7.2 Experiments With Query Collections

In this experiment we’ll generate ten thousand queries of the following dimension: 2, 16, 64, 128.
The experiment will be ran on the following query generators: point query, partial match query and
narrow range query generator. The result of the experiments can be seen in the Figure 7.2, where
the measured times are plotted.

Figure 7.2: Experiments Performed on Query Collection

Also, we’ll perform an experiment where we’ll generate one thousand range queries. Where each
query will return between two to five hundred tuples. The experiment will be ran again on the same
dimensions.The result of the experiments can be seen in the Table 7.1.

Dimension Time for Range Queries *Measured on One Thousand Queries
2 12
16 80
64 134.5
128 221.8

Table 7.1: Result of Performed Experiment on Generating Range Queries

45

7.3 Experiments With Statistical and Support Functions

In this experiment we’ll sort a data collection by the Z-Order sort. Then we’ll Generate a histogram
for the data collection. Finally, we’ll shuffle the data collection. The experiment will be performed
with data collection of ten thousand tuples, from the following dimension: 2, 16, 64, 128. The
results of the measurements can be seen in the Table 7.2.

Dimension Z-Order Sort Generate Histogram Shuffle
2 0.15 0.07 0.000003
16 0.73 0.63 0.000004
64 0.26 2.61 0.000008
128 0.52 5.04 0.000011

Table 7.2: Experiments Performed With Statistical and Support Functions

46

Chapter 8

Conclusion

In this chapter we’ll have a short discussion where we’ll evaluate the implementation and its per-
formance. Also, we’ll sum up the work done, discuss what can be improved and what else can be
implemented in the future.

A new and improved generator with various of futures available has been implemented. A compar-
ison between the current generator cTupleGenerator and the new one cCollectionGenerator can be
seen in the Table 8.1.

Available Futures cTupleGenerator cCollectionGenerator
Load Data from a Collection File ✓ ✓
Generate Random Data ✓ ✓
Available Distributions 1 6
Generate Various Types of Queries × ✓
Sort Data Collection × ✓
Shuffle Data Collection × ✓
Export Data Collection × ✓
Generate SQL Selects × ✓
Generate SQL Insers × ✓
Generate Histogram × ✓

Table 8.1: Comparison Between cTupleGenerator and cCollectionGenerator

Based on the results of the experiments performed on a data collection, where data was generated
by different types of distributions can be seen in the Table 8.2. The results are quite promising.
However, we can see how the time increases when more complex distribution is used.

47

Dimension Uniform Distribution Normal Distribution Logonormal Distribution
2 0.43 0.75 1.51
3 0.48 0.91 2
5 0.53 1.2 3
7 0.58 1.47 4.1
10 0.85 1.94 5.61
16 1.14 2.76 9
24 1.59 3.89 12.7
32 1.93 5.14 16.6
64 3.59 9.81 29.9
128 6.74 18.6 61

Table 8.2: Results of Experiments Performed on Data Collection

Then we can see the results of the experiments performed on different type of query collections,
in the Table 8.3. Where PQ represents Point Query, PMQ represents Partial Matach Query, NRQ
represents Narrow Range Query, and RQ represents Range Query. Here again the time is quite
promising, however we can see how it increases when more complex type of queries are generated.

Dimension PQ PMQ NRQ RQ
2 0.09 0.1 0.11 12
16 0.11 0.12 0.24 80
64 0.2 0.23 0.72 134.5
128 0.32 0.36 1.34 221.8

Table 8.3: Results of Experiments Performed on Data Collection

Finally, to summarize the whole work. A new and improved generator has been implemented.
However, this doesn’t mean that there’s no room for improvement. For example as future work,
various types of sorts can be implemented. It will be quite useful to have more options for sorting
the data collection. Also, some other distributions can be implemented and new approaches for
generating queries can be proposed for studying and implementing. Furthermore, the generator can
be optimized so it can work faster. There is a good potential in the new generator on which can be
done various of new implementations.

48

Bibliography

1. CHOVANEC, Peter. QuickDB – Yet Another Database Management. 2015.

2. HOROWITZ, Ellis; SAHNI, Sartaj. Fundamentals of Data Structures. Ed. by HICKS, Robert
Drew. Sung Kung Computer Book Co., 1987.

3. B-Tree In Data Structure: Everything You Need to Know in Detail [online]. 2021-09-16 [vis-
ited on 2022-04-27]. Available from: https://www.simplilearn.com/tutorials/data-

structure-tutorial/b-tree-in-data-structure.

4. KUMAR, Ajitesh. Dummies notes - what is B-tree and why use them? 2015-05. Available also
from: https://vitalflux.com/dummies-notes-what-is-b-tree-and-why-use-them/.

5. Basics of R Tree [online]. 2021-08-17 [visited on 2022-04-27]. Available from: https://iq.

opengenus.org/r-tree/.

6. KATIYAR, Puloma; VU, Tin; MIGLIORINI, Sara; BELUSSI, Alberto; ELDAWY, Ahmed.
A Spatial Data Generator on the Web [online]. 2020 [visited on 2022-04-16]. Available from:
https://spider.cs.ucr.edu/.

7. Simple Plot [online] [visited on 2022-04-11]. Available from: http : / / www . shodor . org /

interactivate/activities/SimplePlot/.

8. Demos [online] [visited on 2022-04-25]. Available from: https://www.desmos.com/calculator.

9. Uniform real distribution [online]. 2021-09-08 [visited on 2022-04-10]. Available from: https:

//www.cplusplus.com/reference/random/uniform_real_distribution/.

10. AHSANULLAH, Mohammad; KIBRIA, B. M. Golam; SHAKIL, Mohammad. Normal Distri-
bution. In: Normal and Student´s t Distributions and Their Applications. Paris: Atlantis Press,
2014, pp. 7–50. isbn 978-94-6239-061-4. Available from doi: 10.2991/978-94-6239-061-4_2.

11. Normal Distribution [online] [visited on 2022-04-17]. Available from: https://www.cplusplus.

com/reference/random/normal_distribution/.

12. Std::Lognormaldistribution. Available also from: https : / / cplusplus . com / reference /

random/lognormal_distribution/.

49

https://www.simplilearn.com/tutorials/data-structure-tutorial/b-tree-in-data-structure
https://www.simplilearn.com/tutorials/data-structure-tutorial/b-tree-in-data-structure
https://vitalflux.com/dummies-notes-what-is-b-tree-and-why-use-them/
https://iq.opengenus.org/r-tree/
https://iq.opengenus.org/r-tree/
https://spider.cs.ucr.edu/
http://www.shodor.org/interactivate/activities/SimplePlot/
http://www.shodor.org/interactivate/activities/SimplePlot/
https://www.desmos.com/calculator
https://www.cplusplus.com/reference/random/uniform_real_distribution/
https://www.cplusplus.com/reference/random/uniform_real_distribution/
https://doi.org/10.2991/978-94-6239-061-4_2
https://www.cplusplus.com/reference/random/normal_distribution/
https://www.cplusplus.com/reference/random/normal_distribution/
https://cplusplus.com/reference/random/lognormal_distribution/
https://cplusplus.com/reference/random/lognormal_distribution/

13. KATIYAR, Puloma; VU, Tin; ELDAWY, Ahmed; MIGLIORINI, Sara; BELUSSI, Alberto.
SpiderWeb: A Spatial Data Generator on the Web. In: Proceedings of the 28th International
Conference on Advances in Geographic Information Systems. Seattle, WA, USA: Association
for Computing Machinery, 2020, pp. 465–468. SIGSPATIAL ’20. isbn 9781450380195. Available
from doi: 10.1145/3397536.3422351.

14. Sierpinski Triangle [online] [visited on 2022-04-19]. Available from: https://nrich.maths.

org/4757.

15. Query [online]. 2020-08-24 [visited on 2022-04-20]. Available from: https://www.techopedia.

com/definition/5736/query.

16. KOSTAL, Lubomir; LANSKY, Petr; POKORA, Ondrej. Measures of statistical dispersion
based on Shannon and Fisher information concepts. Information Sciences. 2013, vol. 235,
pp. 214–223. issn 0020-0255. Available from doi: https://doi.org/10.1016/j.ins.2013.

02.023. Data-based Control, Decision, Scheduling and Fault Diagnostics.

17. PAGEL, Bernd-Uwe; SIX, Hans-Werner; TOBEN, Heinrich; WIDMAYER, Peter. Towards
an Analysis of Range Query Performance in Spatial Data Structures. In: Proceedings of the
Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
Washington, D.C., USA: Association for Computing Machinery, 1993, pp. 214–221. PODS
’93. isbn 0897915933. Available from doi: 10.1145/153850.153878.

18. KILIMCI, Perihan; KALIPSIZ, Oya. Indexing of spatiotemporal Data: A comparison between
sweep and z-order space filling curves. In: International Conference on Information Society
(i-Society 2011). 2011, pp. 450–456. Available from doi: 10.1109/i-Society18435.2011.

5978495.

19. BAERT, Jeroen. Morton encoding/decoding through bit interleaving [online]. 2013-09-07 [vis-
ited on 2022-04-15]. Available from: https://www.forceflow.be/2013/10/07/morton-

encodingdecoding-through-bit-interleaving-implementations/.

20. SLAYTON, Zack. Z-Order Indexing for Multifaceted Queries in Amazon DynamoDB: Part 1
[online]. 2017-05-17 [visited on 2022-04-17]. Available from: https://aws.amazon.com/blogs/

database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-

1/.

50

https://doi.org/10.1145/3397536.3422351
https://nrich.maths.org/4757
https://nrich.maths.org/4757
https://www.techopedia.com/definition/5736/query
https://www.techopedia.com/definition/5736/query
https://doi.org/https://doi.org/10.1016/j.ins.2013.02.023
https://doi.org/https://doi.org/10.1016/j.ins.2013.02.023
https://doi.org/10.1145/153850.153878
https://doi.org/10.1109/i-Society18435.2011.5978495
https://doi.org/10.1109/i-Society18435.2011.5978495
https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/
https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/
https://aws.amazon.com/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1/
https://aws.amazon.com/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1/
https://aws.amazon.com/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1/

	List of symbols and abbreviations
	List of Figures
	List of Tables
	Introduction
	Radegast DB
	Data Structures
	Base Classes for Representation of Data

	Current Generator
	New GeneratorGenerating Data Collection
	What is Data Collection?
	Data Generator
	Available Distributions

	New GeneratorGenerating Query Collection
	What is Query?
	Point Queries
	Partial Match Queries
	Narrow Range Queries
	Range Queries
	Cartesian Range Queries

	New GeneratorStatistical and Support Functions
	Sort Data Collection
	Shuffle Data Collection
	Sort Query Collection
	Shuffle Query Collection
	Export Collection to a File
	Generate SQL Selects
	Generate SQL Inserts
	Print Histogram
	Z-Curve(Order)
	Other Useful Support Functions

	Experiments
	Experiments With Data Collections
	Experiments With Query Collections
	Experiments With Statistical and Support Functions

	Conclusion
	Bibliography

