
Solving Vehicle Platooning Problem
with Neural Networks
Řešení problému s četou vozidel

pomocí neuronových sítí

Duy Quy Vo

Bachelor Thesis

Supervisor: Hossein Barghi Jond, Ph.D.

Ostrava, 2022

VSB – Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science
Department of Computer Science

Bachelor Thesis Assignment

Student: Duy Quy Vo
Study Programme: B2647 Information and Communication Technology

Study Branch: 2612R025 Computer Science and Technology

Title: Solving Vehicle Platooning Problem with Neural Networks
Řešení problému s četou vozidel pomocí neuronových sítí

The thesis language: English

Description:

The main idea behind a platoon (or string) is the longitudinal control of a group of autonomous vehicles
moving in the same lane of the highway. The first vehicle usually leads the platoon and specifies the
trajectory and speed for the follower vehicles. To act the platoon as a whole a control mechanism must be
employed. Optimal control is a common approach to design a controller for vehicle control problems.
In this work, the vehicle platooning will be formulated as an optimal control problem. Due to the
complexity of finding an analytic solution to the problem, a neural network will be employed to solve the
formulated control problem. Simulations will be carried out to verify the validity of the models and
solutions.

The thesis should be organized as follows:
1. Introduction to vehicle platooning and its application and importance in the future intelligent
transportation systems.
2. Formulation of the vehicle platooning as an optimal control problem.
3. Designing a neural network to solve the formulated problem.
4. Simulation results on the validity of the models and solutions.
5. Conclusion.

References:

[1] https://www.youtube.com/watch?v=X7vziDnNXEY&ab_channel=ScaniaNederland
[2] M. A. Huijzer, Truck platooning for a convoy of heterogeneous trucks, Bachelor Thesis, University of
Groningen, 2017. [3] S. Effati, M. Pakdaman, Optimal control problem via neural networks, Neural
Computing and Applications, Vol. 23, pp. 2093–2100, 2013.

Extent and terms of a thesis are specified in directions for its elaboration that are opened to the public on
the web sites of the faculty.

Supervisor: Hossein Barghi Jond, Ph.D.

Date of issue: 01.09.2021

Date of submission: 30.04.2022

doc. Ing. Petr Gajdoš, Ph.D. prof. Ing. Jan Platoš, Ph.D.
Head of Department Dean

Abstrakt

Tento výzkum se snaží vyřešit problém kontroly čety pomocí schopností umělých neuronových sítí.
Protože je obtížné získat analytické řešení problému řízení čety, je před hledáním přibližných řešení
upřednostňována schopnost aproximace funkcí neuronových sítí. V této práci vytváříme chybovou
funkci, která zahrnuje všechny podmínky odvozené z Pontryaginova minimálního principu (PMP)
pro řízení formace čety v topologii navazující na předchůdce. Experimentální řešení pro stavovou
funkci, Řídicí funkci a Lagrangeovy multiplikátory je odvozeno z chybové funkce. Funkce stavu,
řízení a nákladů jsou implementovány pomocí neuronových sítí. Pro optimalizaci váhy pro chy-
bovou funkci se používají optimalizační techniky, jako je genetický algoritmus (GA), diferenciální
evoluce (DE) a variace algoritmu samoorganizujícího se migračního algoritmu (SOMA). Nahradíme
optimalizované váhy v aproximovaných funkcích a získáme řešení problému řízení formace čety.

Klíčová slova

Pontryaginův minimální princip; problém optimálního řízení; umělé neuronové sítě; připojené a
automatizované vozidlo (CAV); řízení formace čety

Abstract

This research seeks to solve the platoon control problem using the abilities of Artificial Neural Net-
works. Because it is difficult to obtain an analytical solution to the platoon control problem, the
function approximation ability of Neural Networks is preferred to search for approximate solutions.
In this thesis, we create an error function that encompasses all of the Pontryagin minimum principle
(PMP) derived conditions for the platoon formation control under the Predecessor-following topol-
ogy. The experimental solution for the state function, control function, and Lagrange multipliers
is derived from the error function. State, control, and cost functions are implemented using Neural
Networks. To optimize weights for the error function, optimization techniques such as the Genetic
Algorithm (GA), Differential Evolution (DE), and variations of the self-organizing migrating al-
gorithm (SOMA) algorithm are used. We substitute the optimized weights in the approximated
functions and get the solutions to the platoon formation control problem.

Keywords

Pontryagin minimum principle; Optimal control problem; Artificial Neural Networks; Connected
and automated vehicle (CAV); Platoon formation control

Acknowledgement

It is my pleasure to express my gratitude to my supervisor, Hossein Barghi Jond, Ph.D., for his
essential counsel, unwavering support, and patience during my studies; his vast knowledge and
expertise have inspired me throughout my academic career. Czech Republic is a country in Central
Europe. For those who don’t know, I’d want to convey my heartfelt thanks to my parents. Thank
you to my parents and family for their inspiration and support.

Contents

List of symbols and abbreviations 7

List of Figures 8

List of Tables 10

1 Introduction 11

2 Problem Formation 13
2.1 Platoon Formulation . 13
2.2 Neural Networks . 17

3 Solving Platooning Problem with Neural Networks 19
3.1 Boundary Conditions . 20
3.2 Preliminaries of the Neural Network Solver . 20
3.3 Neural Network Solver . 21
3.4 Metaheuristic Algorithm . 24

4 Experimental Setup 25
4.1 Test Function . 25
4.2 Comparison Algorithms . 26
4.3 Parameter Settings . 26

5 Result and Discussion 28

6 Conclusion 39

Bibliography 40

6

List of symbols and abbreviations

PF – Predecessor-following
PMP – Pontryagin Minimum Principle
LFA – Lane Following Assist
V2V – Vehicle-to-Vehicle Communication
CAVs – Connected and Automated Vehicles
CNN – Convolutional Neural Network
RNN – Recurrent Neural Network
ODEs – Ordinary Differential Equations
DE – Differential Evolution
FEs – Function Evaluations
GA – Genetic Algorithm
iSOMA – Self-Organizing Migrating Algorithm with Narrowing Search Space

Strategy
MaxFEs – Maximum of Function Evaluations
SOMA – Self-Organizing Migrating Algorithm
SOMA ATO – Self-Organizing Migrating Algorithm All To One Version
SOMA T3A – Self-Organizing Migrating Algorithm Team To Team Adaptive

7

List of Figures

2.1 A vehicle platoon with predecessor-following (PF) topology. The figure is reprinted
from [11]. 14

2.2 An Artificial Neural Network example structure. 18

3.1 Solution steps for the optimal pairwise distances in (2.3). 19
3.2 Neural Network perceptrons. 21
3.3 Neural Network architecture for m = 5. 22

4.1 Graph of Sigmoid function. 25

5.1 Time histories of relative distance errors under the PF topology. The parameter
values are set according to Scenario 1 column of Table 4.1. 29

5.2 Time histories of control input under the PF topology. The parameter values are set
according to Scenario 1 column of Table 4.1. 29

5.3 Error for estimating E in (3.9) according to Scenario 1 with GA. 30
5.4 Error for estimating E in (3.9) according to Scenario 1 with DE. 30
5.5 Error for estimating E in (3.9) according to Scenario 1 with SOMA ATO. 31
5.6 Error for estimating E in (3.9) according to Scenario 1 with SOMA T3A. 31
5.7 Error for estimating E in (3.9) according to Scenario 1 with iSOMA. 32
5.8 Time histories of relative distance errors under the PF topology. The parameter

values are set according to Scenario 2 column of Table 4.1. 32
5.9 Time histories of control input under the PF topology. The parameter values are set

according to Scenario 2 column of Table 4.1. 33
5.10 Error for estimating E in (3.9) according to Scenario 2 with GA. 33
5.11 Error for estimating E in (3.9) according to Scenario 2 with DE. 34
5.12 Error for estimating E in (3.9) according to Scenario 2 with SOMA ATO. 34
5.13 Error for estimating E in (3.9) according to Scenario 2 with SOMA T3A. 35
5.14 Error for estimating E in (3.9) according to Scenario 2 with iSOMA. 35

8

5.15 Time histories of relative distance errors under the PF topology and approximation
solution using Neural Network with iSOMA. The parameter values are set according
to Scenario 1 column of Table 4.1. 36

5.16 Time histories of control input under the PF topology and approximation solution us-
ing Neural Network with iSOMA. The parameter values are set according to Scenario
1 column of Table 4.1. 37

5.17 Time histories of relative distance errors under the PF topology and approximation
solution using Neural Network with iSOMA. The parameter values are set according
to Scenario 2 column of Table 4.1. 37

5.18 Time histories of control input under the PF topology and approximation solution us-
ing Neural Network with iSOMA. The parameter values are set according to Scenario
2 column of Table 4.1. 38

9

List of Tables

4.1 Simulation model’s parameter values under the PF topology. 26

5.1 The average value of simulation time and error for Scenario 1 and 2 after executing
15 times. 36

10

Chapter 1

Introduction

In this world of technology , autonomous vehicles using Artificial Intelligence is among the most
important and fast-growing fields of study of Deep Learning. Autonomous vehicle is a ground-
based vehicle with integrated vehicle automation. These vehicles senses its surroundings so it can
move safely without human intervention. Facing the problem of increasing traffic and traffic safety,
autonomous vehicles help respond to increased traffic, density, efficiency, safety and comfort when
traveling. Many self-driving vehicles solutions have been tested around the world. Research efforts
continue to be made to improve the performance, reliability and cut costs of autonomous vehicles.

Autonomous vehicles are integrated with many sensors to collect information from the sur-
rounding environment such as thermographic cameras, Global Positioning System (GPS), and so
on. Advanced control systems receive information from sensors and analyze them to determine suit-
able navigation for autonomous vehicles. Autonomous vehicle navigation [1] consists of three main
steps: Perception and localization – Planning – Control. Among these steps, the motion control task
plays an important role in determining the overall performance in navigation systems. Recently,
researchers proposed methods for optimizing this task via advancements in Artificial Intelligence,
especially Deep Neural Networks. The goal of the motion controller is to ensure that the vehicle
follows a desired path by minimizing the error between the vehicle and the reference path. At the
same time, the speed of the vehicle must also be stable, to avoid collisions with other vehicles [2, 3].

In transportation, there is rarely a single but a group of autonomous or manned vehicles joining
traffic together. This group is usually preferred to as a platoon. And platooning problem is the
process of routing self-driving vehicles based on a leading vehicle given a set of starting points and
deadlines. The leading vehicle can be an autonomous vehicle or a manned vehicle. This vehicle
decides the route, speed and status of the whole platoon. Platooning brings great potential benefits
such as: reduce fuel consumption because of the decrease in the need for acceleration, deceleration,
and stopping to maintain traffic flow; reduce congestion; substantially shorter commutes during rush
hours; and fewer traffic collisions. For example, when the distance between vehicles in the platoon
is close enough, it makes better use of the road, saving time, energy and reducing emissions[4, 5].

11

The primary objective of this research is to optimize a platoon of autonomous vehicles with
a leading vehicle using Neural Networks. We suggests to use the Predecessor-following topology
(PF) to get an error function containing all PMP conditions [6]. The error function proposes an
experimental solution for state, control, and cost functions. The Neural Networks are implemented
for each function in the experimental solution: state function, cost function, control function,
respectively. The main optimization technique used in this research is to apply Heuristic algorithms
to optimize the weights of Neural Networks. When obtained the Neural Network with optimized
weights, we substitute the optimal weights into the approximation solution and get the solution to
the platoon control problem.

The motivation behind this approach is the ability of Computational Artificial Intelligence to
locate vehicles in a platoon. Computational Artificial Intelligence using computer technology allows
solving problems with very high accuracy to meet the requirements of increasing accuracy of platoon
control problem. Artificial Neural Network is an outstanding application of Computational Artificial
Intelligence with the ability to work like human being, learn from experiential data, and have high
fault tolerance. The Artificial Neural Network [7] determines the relationship between input and
output parameters for high accuracy combined with optimization algorithms to optimize weights to
achieve the lowest error value.

In section 2, we introduce the platoon control problem under the PF topology [8] and the model
of Neural Network. The construction of a Neural Network to solve the problem is covered in section
3. Section 4 tells us how to set up to get the Neural Network Solver. The simulation results as
well as the efficiency of the optimization algorithms shown in Section 5 and Section 6 gives the final
conclusions and possible development directions.

12

Chapter 2

Problem Formation

In this part, we look at different techniques to solve the problem of vehicle platooning. A platooning
control problem emerges to control the collective motions of vehicles as a platoon on the roads. These
vehicles are autonomously operated and linked to one another via a communication architecture
(CT). By this association, the location information of the vehicles is provided to find the relative
distance between the vehicles and optimize it to solve the platoon problem. To find the optimal
controller [9] for each vehicle in the platoon, it is assumed that vehicles form a platoon according to
the Predecessor-following topology (2.1). The purpose of this part is to apply the optimal control
principles to formulate the platoon formation control as an optimal control problem. This problem
has been discussed in [10, 11] under the framework of differential games and individual trajectories
for the PF topology have been obtained. The optimal control problem in this thesis is a simplified
version of the proposed differential game problem in [10, 11].

Generating the individual trajectories of the PF topology requires high computational perfor-
mance. Meeting this need, Neural Networks not only have high computational power but also large
capacity to model the platoon problem. The approach of the Neural Network to generic topology
is the major aim of section (2.2). Additionally, to optimize the results obtained from the Neural
Network, numerical approaches were used for the problem and the Hamilton [12] function.

2.1 Platoon Formulation

A control problem is presented to imitate the real-world challenge we face in vehicle platooning.
In this problem, we consider the control a platoon of CAVs going in the PF topology, as shown in
Figure 2.1.

There are two types of links in the platoon that we need to pay attention to in terms of connec-
tivity. First, a sensor link to get information of the predecessor vehicle. The source of information
is its predecessor vehicle. This implies that information can only be transmitted from the vehicle in
front to the vehicle near it in order to maintain a single and one-way communication flow through-

13

Figure 2.1: A vehicle platoon with predecessor-following (PF) topology. The figure is reprinted
from [11].

out the platoon. On the other hand, a V2V connection is the link between two sequential vehicle.
The direction of information transmission of V2V connection between two of these vehicles is not
restricted, just as with a sensor link. The V2V connection allows us to connect the car in front to
the car behind and vice versa. More information on this link can be found in [13].

In order to better understand the vehicle platoon arrangement, assume a platoon of n CAVs
traveling with a vehicle in the lead. This platoon is follow the traffic lane in which the lead vehicle
is traveling. According to the PF topology, depending on information received from the sensor
connection, this platoon automatically changes the distance between each vehicle and the vehicle
ahead of it in the platoon. As a result, when the vehicle leading the platoon changes traffic lanes
or the speed causes a change in distance with the platoon’s vehicle following it, the vehicles behind
it immediately alter their behavior according to the PF topology.

As indicated in Figure 2.1, the platoon control problem has been concretized. The reference (x0)
is a moving vehicle. The reference (x0) can be manned or unmanned, but we don’t need to worry
about it because it won’t link the V2V to any of the vehicles in our platoon. Figure 1 shows that
the vehicle leading the platoon is numbered 1 if it is a real vehicle and 0 if it is a virtual vehicle,
from right to left. Lane Following Assist (LFA) [14], for example, produces a reference trajectory
that supports the lead vehicle and vehicles in platoons. The platoon’s real vehicles are indexed as
1, . . . , n.

Let xi and ui indicate the longitudinal position and control input of the ith vehicle (i = 1, . . . , n),
respectively. The longitudinal dynamics of inter-vehicle distance policies can be characterized as

ẋi − ẋi−1 = ui. (2.1)

The platoon formation control cost function is defined as:

J(x0, · · · , xn, u1, · · · , un) = 1
2

∫︂ tf

0

n∑︂
i=1

((xi − xi−1 − di)2 + u2
i) dt, (2.2)

where tf is a limited time horizon.
To ensure traffic safety, the PF topology used for platoons must also ensure that no collision

occurs. In other words xi−xi−1−di
< 0. Using information from the sensor, each vehicle perceives its

relative distance from its predecessor. From there, the vehicle will adjust the appropriate speed to

14

avoid collisions causing traffic accidents. The platoon does not need a communication environment
between autonomous vehicles because there is no V2V connection. Using information from the
distance sensor with the predecessor vehicle avoids the situation when the information exchange
network is hacked or the information sent is faulty.

Assumption 1: (Collision-avoidance) The initial positions hold x0(0) > x1(0) > . . . > xn(0)
and di < 0 (i = 1, . . . , n) since the its direction is opposite to the traffic flow [11].

Under Assumption 1, collision-avoidance is embedded in the platoon formation control given
by (2.1) and (2.2).

Assumption 2: (Reference trajectory) We assume ẋ0 = 0, i.e., the reference has a constant
speed [11].

To make the dynamics and cost functions in (2.1) and (2.2) easier to calculate, we may substitute
the individual location of each vehicle with a value of relative distance between two vehicles through
sensor links.

Let’s define the relative distance yi = xi − xi−1 that can be directly monitored via the sensor
connection for vehicle i (i = 1, . . . , n). The platoon formation control in (2.1) and (2.2) may be
recast as the minimizing of the following optimization:

min
u1,··· ,un

J(y1, · · · , yn, u1, · · · , un) = 1
2

∫︂ tf

0

n∑︂
i=1

((yi − di)2 + u2
i)dt, (2.3)

s.t.

ẏi = ui, yi(0) = xi(0) − xi−1(0), i = 1, . . . , n.

We quote the closed-form solution of above optimal control problem from [11] in the following:

Theorem 1 For a n-vehicle platoon defined as the optimal control problem (2.3) the relative dis-
tances trajectories yi’s are obtained as [11]

yi(t) = α(t)yi(0) + (α(t) − 1)di, (2.4)

where

α(t) = cosh(tf − t)
cosh(tf) . (2.5)

Proof Define the Hamiltonian

H = 1
2

n∑︂
i=1

((yi − di)2 + u2
i + λiui) (2.6)

where λi is the costate.

15

According to the Pontryagin’s minimum principle, the necessary conditions for optimality are
∂H
∂yi

= −λ̇i and ∂H
∂λi

= ẏi, ∂Hi
∂ui

= 0. Applying the necessary conditions on (2.6) yields:

λ̇i = −yi + di, , λi(tf) = 0 (2.7)

ui = ẏi (2.8)

ui = −λi (2.9)

for i = 1, . . . , n.

Substituting (2.7) in relative dynamics results in

ẏi = −λi, yi(0) = xi(0) − xi−1(0), i = 1, . . . , n. (2.10)

Let y = [y1, . . . , yn]⊤ ∈ Rn, λ = [λ1, . . . , λn]⊤ ∈ Rn, and d = [d1, . . . , dn]⊤ ∈ Rn. Also, let 0
and I denote the zero and identity matrix of appropriate dimension. The equations (2.7), (2.9) and
(2.10) can be unified into the following differential equation

[︄
ẏ

λ̇

]︄
=

[︄
0 −I

−I 0

]︄ [︄
y

λ

]︄
+

[︄
0
d

]︄
, (2.11)

with the initial condition vector y(0) where yi(0) = xi(0) − xi−1(0) (i = 1, . . . , n) and terminal
condition vector λ(tf) where λi(tf) = 0 (i = 1, . . . , n).

If there is a solution, then equation (2.11) has a solution for each y(0) and λ(tf). Matrix
analyses in Laplace Transform domain [15] (which transforms equation (2.11) into a more solvable
algebraic equation) then shows that (2.11) has a solution as follows

[︄
y

λ

]︄
= Φ(t)

[︄
y(0)
λ(0)

]︄
+ Ψ(t, 0)d, (2.12)

where

Φ(t) =
[︄
Φ11(t) Φ12(t)
Φ21(t) Φ22(t)

]︄
= L−1{

[︄
sI I

I sI

]︄−1

} = (2.13)

L−1{
[︄

s(s2I − I)−1 −(s2I − I)−1

−I(s2I − I)−1 s(s2I − I)−1

]︄
} =

[︄
cosh(t)I −sinh(t)I

−sinh(t)I cosh(t)I

]︄
,

and

Ψ(t, 0) =
[︄
Ψ1(t, 0)
Ψ2(t, 0)

]︄
=

∫︂ t

0

[︄
Φ12(t − τ)
Φ22(t − τ)

]︄
dτ =

[︄
−(1 − cosh(t))I

−sinh(t)I

]︄
. (2.14)

16

From (2.12), y and λ are obtained as

y = Φ11(t)y(0) + Φ12(t)λ(0) + Ψ1(t, 0)d, (2.15)

λ = Φ21(t)y(0) + Φ22(t)λ(0) + Ψ2(t, 0)d. (2.16)

which can be simplified as:

y = cosh(t)y(0) − sinh(t)λ(0) − (1 − cosh(t))d, (2.17)

λ = −sinh(t)y(0) + cosh(t)λ(0) − sinh(t)d. (2.18)

Applying the terminal condition λ(tf) = 0, we obtain vector λ(0) as

λ(0) = Φ−1
22 (tf) [−Φ21(tf)y(0) − Ψ2(tf , 0)d] . (2.19)

which can be simplified as:

λ(0) = cosh(tf)−1sinh(tf) [y(0) + d] . (2.20)

To conclude the Proof 2.1, what we need to do is substitute (2.20) by (2.17). After replacing
and simplifying the expression, we get the relative distancing policies trajectories yi as in (2.4).

The control actions ui’s and the individual vehicle trajectories xi’s can be calculated from (2.1)
and the relative distances given by (2.4).

2.2 Neural Networks

A Neural Network (or Artificial Neural Network) is a beautiful mathematical-based programming
model inspired by the human biological brain network. Artificial Intelligence, particularly Deep
Learning, makes extensive use of it. Its variants are used to solve typical real-world issues such as
image processing with CNN [16], natural language processing with RNN [17], and so on.

An Artificial Neural Network has a structure that is comparable to that of a biological Neural
Network. In computer science, an Artificial Neural Network has three layers: input layer, hidden
layers, and output layer. Nodes make up the layers of an Artificial Neural Network. Figure 2.2
depicts a nice example of an Artificial Neural Network.

There are one or more nodes in each of the input and output layers. The number of hidden layers
in an Artificial Neural Network is limitless, or there are no hidden layers at all. The more hidden
layers there are, the more complicated the problem becomes and the Artificial Neural Network
becomes tough to calculate and train. As a result, it’s critical to think about creating Artificial
Neural Network models.

17

Input Layer Hidden Layer Hidden Layer Output Layer

Figure 2.2: An Artificial Neural Network example structure.

Layers are connected to one another via weights. The value for each node is calculated using the
input weight group for that node. The activation function is applied to the node values to generate
the output value.

Activation functions are non-linear functions because the calculations used before are linear
functions resulting in the whole Artificial Neural Network being linear. The activation function is
often used as Sigmoid function, tanh function, ReLU function and so on.

After the Artificial Neural Network has calculated all of the nodes, a cost function is required to
regulate the computation’s cost as efficiently as possible. The optimum Artificial Neural Network
is formed by adjusting the weights to minimize the cost value to the lowest feasible level.

18

Chapter 3

Solving Platooning Problem with Neural
Networks

Figure 3.1 illustrates our overall approach to the platooning problem (2.3). First of all, it is estab-
lished that the cost function in (2.2), along with the dynamic constraint in (2.3) must be determined.
Secondly, the aspects of (2.2) and (2.3) are converted into Hamiltonian terms in (2.6). Then, the
Pontryagin principle is operated on the Hamiltonian in (2.6). The resulting ordinary differential
equations in (2.7),(2.8) and (2.9) are then converted to the state equation in (2.11). Once an initial
value problem is determined, the linear time invariant structure is exploited to solve the system.
The next step is to build Neural Networks to approximately solve the problem.

Start Cost function and
dynamic constraint

Hamiltonian
construction Pontryagin principle

Conversion to state
equation

Transforming initial
conditions to

boundary conditions

Neural Network
SolverVehicle trajectories End

Figure 3.1: Solution steps for the optimal pairwise distances in (2.3).

19

3.1 Boundary Conditions

Procedures 1-4 have been completed in subsection 2.1 based on the solution steps presented in
Figure 3.1. We proceed with the next step in solving the challenge of converting initial conditions
to boundary conditions in this subsection. In Artificial Neural Networks, boundary conditions are
required for identifying waste solutions.

Because the simulation is based on a genuine issue, we may assume for the Eq. (2.3) that the
platoon is continue along the road without interruption.

Additionally, we have the well-known Hamiltonian (2.6). The spacing between vehicles must be
optimized as a solution to problem (2.3). It also indicates that the value of the function Hamiltonian
(2.6) must be optimized as follows for t ∈ [t0, tf] and all controls admissible:

H(y∗(t), u∗(t), λ∗(t), t) ≤ H(y∗(t), u(t), λ∗(t), t) (3.1)

An optimum control equation (3.1), according to the Pontryagin minimum principle, must op-
timize the function the Hamiltonian (see [18]). We obtain an optimum argument by demonstrating
the requirement of the Pontryagin minimal principle. These values is optimum if the y(t) state,
λ(t) costate, u(t) control fulfill the following requirements:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H(y,u,t,λ)
∂y = −λ̇(t)

∂H(y,u,t,λ)
∂λ = ẏ(t)

∂H(y,u,t,λ)
∂u = 0

(3.2)

The issue may be solved fast and easily using a system of ordinary differential equations to
solve (2.3) and the Hamiltonian function. However, in practice, obtaining the formula for ordinary
differential equations might be challenging. Only the value of the function at certain values of
the independent variables y(t), λ(t), and u(t) are of relevance. There are some applications where
even actual value is difficult to come by. As a result, utilizing an Artificial Neural Network with an
approximation function to compute values within a specific approximation is a reasonable approach.

3.2 Preliminaries of the Neural Network Solver

As we can see in Figure 3.2, one of the major components of an Artificial Neural Network is
the perceptron, designed after a living neuron. With the help of perceptrons, it is possible to
approximate the nonlinear function to an arbitrary level of precision.

20

Taking a look at Figure 3.2, we can see that w is the weight vector of the input layer, v represents
the output layers weights, while b contains the bias weights.

Input Layer Hidden Layer Hidden Layer Output Layer

X
w

+
z v

σ(z)

b

Figure 3.2: Neural Network perceptrons.

Based on these formulation, we arrives at the following result based on the Neural Network:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Output =

∑︁k
i=1 viσ(zi)

zi =
∑︁k

i=1 wix + bi

(3.3)

where k is number is the number of sigmoid units. The activation function here is the sigmoid
function in the following formula:

σ(x) = 1
1 + e−x

(3.4)

For optimal control problem (2.3), we utilizes Neural Networks for function approximation so that
we can approximate the state, co-state, and control function. We discuss this in more detail in the
following subsection.

3.3 Neural Network Solver

Our goal in this section is to approximate the proposed equations for the optimal control problem
(2.3) using a Neural Network. We interested in three functions: state, costate, and control. Specif-
ically, for each function, we need to build 3 separate Neural Networks: a state Neural Network is
called ny, a costate Neural Network is called nλ, and a control Neural Network is called nu. The
fine-tuning parameters of each Neural Network is different, as shown in Figure 3.2. In this regard, it
is important to note that the structures of Neural Network models must be constructed in order to
satisfy the initial or boundary conditions. The Neural Network model can be expressed as follows:

21

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ny =
∑︁m

n=1 vn
y σ(zn

y), zn
y = wn

y t + bn
y

nλ =
∑︁m

n=1 vn
λσ(znλ), zn

λ = wn
λt + bn

λ

nu =
∑︁m

n=1 vn
uσ(zn

u), zn
u = wu

y t + bn
u

(3.5)

for n = 1, . . . , m. where m is the number of possible neurons different for each Neural Network. As
an example, Figure (3.3) depicts the results when m = 5.

Figure 3.3: Neural Network architecture for m = 5.

The 3 Neural Networks are being built now based on expressions (3.5), and the trail has been
demodulated. Clearly, the state, cost and control main trail solution that includes Neural Networks
need to satisfy the initial and boundary conditions. A solution to the main trail approximation
problem is also determined based on the initial and boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yT = y0 + tny

λT = (t − tf)nλ

uT = nu

(3.6)

Hamiltonian trail solutions can be obtained by substituting the trail solutions into Hamilyonian
. With its trail solution, it replaces y, u, λ functions. As a result, the Hamiltonian function contains
the weights of the Neural Network. Since the trial solutions (3.6) must satisfy conditions (3.2), they
are substituted into the equation (3.2):

22

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂HT
∂yT

+ λ̇T = 0

∂HT
∂λT

− ẏT = 0

∂HT
∂uT

= 0

(3.7)

As a result of this definition [19], we have three error functions corresponding to each equation in
order to solve system (3.7) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1(ϕ, t) =
[︂

∂HT
∂yT

+ λ̇T

]︂2

E2(ϕ, t) =
[︂

∂HT
∂λT

− ẏT

]︂2

E3(ϕ, t) =
[︂

∂HT
∂uT

]︂2

(3.8)

The input layer weight vector, the bias weight vector, and the output layer weight vector are
contained within vector ϕ. Now all that is left for us to do is to differentiate the interval [t0, tf] into
m points and solve the following unconstrained optimization problem [20]:

min
ϕ

m∑︂
i=1

E1(ϕ, ti) + E2(ϕ, ti) + E3(ϕ, ti) (3.9)

As we discussed in our earlier article, it is possible to solve (3.9) with any optimization algorithm.
For example, we can use a metaheuristic algorithm such as Genetic Algorithm (GA) or Particle
Swarm Optimization algorithm [21], etc.

The optimization results are then used to substitute the value of the ϕ constant in equation (3.6)
and determine the components of the state, costate, and control functions.The main advantage to
this method is that it is not an extremely complicated algorithm to implement for beginners, and to
improve the accuracy of the approximations, we can use a large number of hidden layers or training
points within the interval [t0, tf] to get more accurate approximations.

Last but not least is that the solution for the state, co-state, control functions is presented as a
function of time (t), so that we can compute the outcome at any arbitrary point during the interval
[t0, tf]. It is also worth mentioning that the proposed state and control functions are distinguishable
and can be used in applications.

23

3.4 Metaheuristic Algorithm

In Computer Science and Mathematical Optimization, Metaheuristic is a high-level process. Alter-
natively, a Metaheuristic can be a Heuristic designed to find, generate, or select a heuristic that
provides a good enough optimization solution under conditions of limited computing power. From
a very large collection, Metaheuristic selects a subset that can be studied in a different way. Meta-
heuristic does not have too many assumptions to solve the problem, so it is used for many different
problems.

Compared with other optimization algorithms, Metaheuristic does not guarantee that a globally
optimal solution is found. However, Metaheuristic approaches the optimization problem in a useful
way. Many small simulations applied some form of random optimization yield small solutions.
These solutions are dependent on sets of random variables because of the stochastic optimization
of the simulation. A large collection of solutions are created. The large collection of solutions gives
Metaheuristic an advantage. Metaheuristic does not need too much computational effort to find
the optimal solution from that collection.

Many Metaheuristic Method has been published with claims of novelness and practical utility.
One of the powerful algorithms that is applied in this study is Self-Organizing Migrating Algorithm
with Narrowing Search Space Strategy (iSOMA) is applied in this study.

iSOMA is defined as a algorithm of optimizing a problem by repeated iterations in order to
improve the experimental solution. The experimental solution will be tied to a metric to assess
whether it tends to be optimal. The iSOMA generates a set of candidates, also known as particles.
These particles move in a search space generated by the algorithm. A mathematical formula based
on position and velocity evaluates the position of particles. The motion of the particles is affected
by the position of the particle whose position is the best and the better position in the search space.
One of the remaining particles moves in the direction of the best position it found. The particle
with the best position will be updated when the other particles find a better positions. This process
is repeated many times to direct the whole swarm to a better position. The final solution is found
when the whole swarm is in the best position in the search space. However, there are also cases
where the final solution is not found. See iSOMA algorithm at [22, 23].

In this study, Artificial Neural Networks are applied Metaheuristic algorithms such as iSOMA
to optimize the weights. The optimal Neural Network weights provide an approximate solution to
the platoon control problem base on Hamiltonian trail solutions 3.6.

24

Chapter 4

Experimental Setup

4.1 Test Function

The Sigmoid function takes a real integer as an input and transforms it to a value between 0 and 1
(see Figure 4.1). The output is asymptotically to 0 if the input is a very tiny negative real number,
and asymptotically to 1 if the input is a very big positive real number. The Sigmoid function is
frequently utilized because its derivatives are quite attractive. The Sigmoid function also has the
benefit of producing a smooth and continuous output.

In this section, we employ the Sigmoid function (3.4) as an activation function for Neural
Networks.

-10 -5 0 5 10
x

0

0.2

0.4

0.6

0.8

1

Si
gm
oi
d(
x)

Sigmoid Function

Figure 4.1: Graph of Sigmoid function.

25

4.2 Comparison Algorithms

The optimization of Artificial Neural Networks is the optimization of expressions (3.9) as well.
As the E loss in expression (3.9), gets smaller, the more the Neural Network becomes efficient.
For this we can make use of a typical Metaheuristic algorithm such as the iSOMA. To determine
whether or not using iSOMA [22, 23] algorithm may be more effective in optimizing these Neural
Networks, we intend to apply more existing popular algorithms to evaluate the effectiveness such as
the Genetic Algorithm (GA) [24, 25], Differential Evolution (DE) [26, 27], Self-organizing migrating
algorithm AllToOne (SOMA ATO) [28, 29], Self-organizing migrating algorithm team to team
adaptive (SOMA T3A) [30, 31].

4.3 Parameter Settings

The simulation is based on n = 3 vehicles within a the platoon, and the reference vehicle/trajectory
consists of three of the actual vehicles in the platoon. Within a finite horizon time under PF
topology, tf = 5 is considered. In this simulation, by applying the closed-form solutions given in
Theorem 1 with the parameter values given in Table 4.1, the simulation results are illustrated under
two different scenarios. Unless otherwise stated in Table 4.1, the positions and spacing policies for
CAVs, as well as weighting parameters, are entirely generated at random.

Table 4.1: Simulation model’s parameter values under the PF topology.

Scenario 1 Scenario 2
i di xi(0) di xi(0)
0 - 5.0937 - 4.3064
1 -0.1 4.6469 -0.2 3.2456
2 -0.2 3.8786 -0.1 0.8450
3 -0.2 2.4340 -0.3 0.2151

Considering each vehicle, it is necessary to build three Neural Networks, ny, nlambda and nu

corresponding to the values we are interested in recognizing as state, state control, and control.
The input layer, output layer, and bios vector of each Neural Network have a total of five weights.
Overall, we have 9 Neural Networks, which is the number of vehicles n = 3. Each of the Neural
Networks has 15 weights. The total weight is n × 3 × 3 × 5 = 135 weights.

Scenario 1. The weighting parameter values given on the left section of Table 4.1 are generated
randomly in range [0.1,1]. In terms of distances between adjacent vehicles, the difference between
them is not too great.

Scenario 2. Another experiment with the platoon formation control model’s parameter values
given on the right section of Table 4.1 is carried out. For this experiment, the range for generating
the weighting parameter values is [0,1]. From the value of the initial position, the distance between

26

the 1st and 2nd vehicle is much larger than the distance between the 2nd and 3rd vehicle or the
distance between the 1st vehicle and the vehicle leading the platoon.

Regarding the parameter settings for the algorithms, the dimensions of the algorithms are the
same. There are 15 neurons in a network, so dimensionality is defined as the sum of all the
weights of all the Neural Networks for a vehicle. When the conditional GA algorithm reaches the
limit after a certain amount of time, it stops. In our case, the GA algorithm is stopped after
400 seconds. The following parameters need to be installed for the DE, iSOMA, SOMA ATO,
and SOMA T3A algorithms. Maximum function evaluations (MaxFEs) were calculated with a
dimension as MaxFEs = 10000 ∗ dimensions. The control parameter of iSOMA, SOMA ATO,
SOMA T3A: PopSize = 100, Njump = 10, n = 5, m = 10, k = 15, Step = 0.3. There have been no
differences between the control parameter values of the rest algorithms, as they are the same as in
the original articles cited.

27

Chapter 5

Result and Discussion

Throughout this section, we perform a number of simulation experiments to demonstrate the effec-
tiveness of the proposed models and to verify the closed-form solutions under the PF topology in
Theorem 1. The differential input values implemented in the proposed platoon formation control is
also simulated on the general topology to observe the behavior of the platoon formation. Due to the
fact that for general topology case, there are no closed-form solutions (see [11]), the relative distance
trajectories of all CAVs can be approximated by Neural Networks utilized in this thesis. Each sce-
nario is built Neural Networks based on the experimental setup outlined in Section 4. Optimization
algorithms are applied to optimize the error function value for each vehicle in the platoon. The
error function value of the whole platoon is the error function values of all vehicles in the platoon.
Each optimization algorithm is run 15 times for each scenario to eliminate unpredictability. One of
15 executions of the algorithms is seen in the graphs below.

Scenario 1. The time histories of the sum of the relative distances trajectories with the CAVs
spacing policies are shown in Figure 5.1. On a time history model, we see that each of the time
histories approaches zero, so each relative distance satisfies limt→∞ yi(t)+di = 0 (note that di < 0).
We are able to observe, from Figure 5.2, that the associated control input to the formation control
signal tends to zero by the end of the terminal time. Since their distance at the beginning of the
convergence process is not too far away from each other, the convergence speed of the CAVs does
not differ much in this scenario.

In Figure 5.3, we can observe the error function value (Bestfitness) of the platoon when ap-
plying the GA. In the first 30 generations of the algorithm, the error function value of the Neural
Networks has a very high value but decreases very quickly from 4500 to 200. From generation 30th

to generation 45th, the amplitude of change of error value is not big. After generation 45th until
the end of the algorithm, the error function value approaches 0.

The value of the error function while using the DE approach (Figure 5.4) is initially lower than
when using the GA algorithm, about 50. The amplitude of Bestfitness falling is seldom consistent,

28

0 1 2 3 4 5
-2

-1.5

-1

-0.5

0
Relative distance errors

Figure 5.1: Time histories of relative distance errors under the PF topology. The parameter values
are set according to Scenario 1 column of Table 4.1.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Control Inputs

Figure 5.2: Time histories of control input under the PF topology. The parameter values are set
according to Scenario 1 column of Table 4.1.

29

0 20 40 60 80 100
Generation

0

1000

2000

3000

4000

5000

Fi
tn

es
s

va
lu

e

GA Function Evaluation

Best fitness

Figure 5.3: Error for estimating E in (3.9) according to Scenario 1 with GA.

but the trend is always downward. In the first six generations, the value of Bestfitness dropped
by 90%, then dropped steadily as it approached 0, finally ending in the 23rd generation.

0 5 10 15 20 25
Generation

0

10

20

30

40

50

Fi
tn

es
s

va
lu

e

DE Function Evaluation

Best fitness

Figure 5.4: Error for estimating E in (3.9) according to Scenario 1 with DE.

The SOMA ATO in Figure 5.5, on the other hand, includes three phase. Unlike the first phase
of the DE algorithm, the error function’s value reduces from 72 to 15 (79%) throughout the first
eight generations. During the 8th to 20th generation, the value of the error function continues to
decline by 93%, although at a slower rate. The value of the error function approaches close 0 and
finishes at the 42th generation.

SOMA T3A is an advancement over SOMA ATO. The function evaluation is depicted in Figure
5.6. This strategy appears to have worked effectively for the first 10 generations. The optimal

30

0 10 20 30 40 50
Generation

0

20

40

60

80

Fi
tn

es
s

va
lu

e

SOMA ATO Function Evaluation

Best fitness

Figure 5.5: Error for estimating E in (3.9) according to Scenario 1 with SOMA ATO.

amplitude of the Bestfitness value (89) is rather large. After the 10th generation, the optimal
speed begins to drop, and by the 30th generation, it has saturated.

0 10 20 30 40 50 60
Generation

0

10

20

30

40

50

60

70

Fi
tn

es
s

va
lu

e

SOMA T3A Function Evaluation

Best fitness

Figure 5.6: Error for estimating E in (3.9) according to Scenario 1 with SOMA T3A.

When evaluating the first 20 generations, the iSOMA algorithm is significantly more powerful
than the SOMA T3A. The iSOMA method only decreases the value of Bestfitness by roughly
94% when compared to the starting value. The best fitness value was decreased until the 40th

generation, when it saturated. The iSOMA algorithm generated more than 1100 generations. To
make comparisons with different algorithms simpler, Figure 5.7 only shows the first 150 generations.

Scenario 2. The relative distance trajectories of CAVs 1 and CAVs 3 converge quicker, as seen
in Figure 5.1. This occurs because CAV 2 initial distance is greater. Figure 5.9 shows that similar

31

0 50 100 150
Generation

0

20

40

60

80

100

Fi
tn

es
s

va
lu

e

iSOMA Function Evaluation

Best fitness

Figure 5.7: Error for estimating E in (3.9) according to Scenario 1 with iSOMA.

observations can be made about their control inputs.

0 1 2 3 4 5
-3

-2.5

-2

-1.5

-1

-0.5

0
Relative distance errors

Figure 5.8: Time histories of relative distance errors under the PF topology. The parameter values
are set according to Scenario 2 column of Table 4.1.

On Scenario 2, Figure 5.10 illustrates the values of E in (3.9) through generations using Ge-
netic Algorithms (GA). The Bestfitness values tend to decline over generations. The value of
Bestfitness reduces dramatically throughout the first five generations, from 6330 to 1879. The
Bestfitness value is found in the saturated optimal state. It is deteriorating at a glacial rate.

Unlike the Genetic algorithm, when using the Differential evolution (Figure 5.11), The algorithm
ends up with a very small number of generations, 13 generations. The value of fitness has dropped
by more than 97% over 13 generations.

When the SOMA ATO algorithm is applied to Scenario 2 in Figure 5.12, the algorithm begins
to work well with very high value of error function, approximate 137. From the initial to the 20th

32

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
Control Inputs

Figure 5.9: Time histories of control input under the PF topology. The parameter values are set
according to Scenario 2 column of Table 4.1.

0 20 40 60 80 100
Generation

0

1000

2000

3000

4000

5000

6000

Fi
tn

es
s

va
lu

e

GA Function Evaluation

Best fitness

Figure 5.10: Error for estimating E in (3.9) according to Scenario 2 with GA.

33

0 5 10 15
Generation

0

20

40

60

80

Fi
tn

es
s

va
lu

e

DE Function Evaluation

Best fitness

Figure 5.11: Error for estimating E in (3.9) according to Scenario 2 with DE.

generation, the most significant decreasing rate is observed (98%).

0 10 20 30 40
Generation

0

20

40

60

80

100

120

140

Fi
tn

es
s

va
lu

e

SOMA ATO Function Evaluation

Best fitness

Figure 5.12: Error for estimating E in (3.9) according to Scenario 2 with SOMA ATO.

Scenario 2’s SOMA T3A algorithm eliminates data at a faster pace than Scenario 1. This drop
rate is estimated to be 97% during the first 20 generation.

The iSOMA algorithm retains the same decreasing rate, as seen in Figure 5.14. The value
of Best fitness dropped dramatically from the first to the 30th generation (97%). The algorithm
begins nearing the optimal solution around the 30th generation and continues to minimize the
value of Best fitness until the method is completed around 1200 generations. After reviewing the
algorithms to evaluate the optimal efficiency of the algorithm, and Table 5.1 shows the average
value of the algorithm’s execution time along with the minimum E value found by the algorithm,
the GA algorithm and the algorithm DE is not effective in some cases. The value of error function

34

0 20 40 60 80
Generation

0

20

40

60

80

100

Fi
tn

es
s

va
lu

e

SOMA T3A Function Evaluation

Best fitness

Figure 5.13: Error for estimating E in (3.9) according to Scenario 2 with SOMA T3A.

0 50 100 150
Generation

0

20

40

60

80

100

120

Fi
tn

es
s

va
lu

e

iSOMA Function Evaluation

Best fitness

Figure 5.14: Error for estimating E in (3.9) according to Scenario 2 with iSOMA.

35

Table 5.1: The average value of simulation time and error for Scenario 1 and 2 after executing 15
times.

GA DE SOMA ATO SOMA T3A iSOMA
Scenario Time Error Time Error Time Error Time Error Time Error

1 186 1.520 92 0.757 29 0.443 87 0.386 89 0.013
2 186 2.463 90 2.250 36 1.321 81 0.698 86 0.013

of GA and DE greater than 0,1 is not good. The SOMA ATO algorithm outperforms the DE and
GA algorithms. The SOMA ATO algorithm not only employs a smallest time interval than the
other algorithm, but also it produces a error that is approximately 65 − 70% smaller than with GA
and DE. The iSOMA algorithm is the one that produces the best results. Despite taking around
twice as long as the SOMA T3A algorithm, it produces an astonishingly optimum outcome for the
Eq.3.9. When compared to other algorithms, the generated outputs are at least ten times smaller
and might be hundreds of times smaller. Figure 5.15, 5.16, 5.17, 5.18 depicts the approximate
solution provided by iSOMA for relative distance errors and control input of scenario 1 and 2,
respectively. It is impossible to deny that this approximate solution is excellent. The PF topology
approximations have relatively modest deviations from the answer.

0 1 2 3 4 5
-2

-1.5

-1

-0.5

0
Relative distance errors

Figure 5.15: Time histories of relative distance errors under the PF topology and approximation
solution using Neural Network with iSOMA. The parameter values are set according to Scenario 1

column of Table 4.1.

36

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Control Inputs

Figure 5.16: Time histories of control input under the PF topology and approximation solution
using Neural Network with iSOMA. The parameter values are set according to Scenario 1 column

of Table 4.1.

0 1 2 3 4 5
-3

-2.5

-2

-1.5

-1

-0.5

0
Relative distance errors

Figure 5.17: Time histories of relative distance errors under the PF topology and approximation
solution using Neural Network with iSOMA. The parameter values are set according to Scenario 2

column of Table 4.1.

37

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
Control Inputs

Figure 5.18: Time histories of control input under the PF topology and approximation solution
using Neural Network with iSOMA. The parameter values are set according to Scenario 2 column

of Table 4.1.

38

Chapter 6

Conclusion

In this thesis, Neural Network-based function approximation is utilized to find approximate solutions
to the platoon control problem. To solve this problem, the Neural Network is applied to approximate
3 functions namely, the individual relative distancing policies trajectories yi, costate λi, and control
actions ui. Each function is built 3 Neural networks to find the approximate solution. Essentially,
the solution proposes is a distinguishable function that consists of three components respectively:
state, co-state, and control. Heuristic algorithms such as GA, DE, SOMA ATO, SOMA T3A and
iSOMA are used to apply the function approximation to optimize the Neural Network weights .The
iSOMA algorithm gives the best results when simulating the problem as a platoon control problem.
On the other hand, when applied to practical problems such as automatic control of a platoon,
there are plenty of unforeseen conditions that may arise while traveling on road. Including these
dynamic constraints will make the control problem very difficult to solve. Here, the approximation
ability of Neural Networks as well as deep learning methods in general can be used to cope with
highly intricate control problems.

39

Bibliography

1. LI, Qingquan; CHEN, Long; LI, Ming; SHAW, Shih-Lung; NÜCHTER, Andreas. A sensor-
fusion drivable-region and lane-detection system for autonomous vehicle navigation in challeng-
ing road scenarios. IEEE Transactions on Vehicular Technology. 2013, vol. 63, no. 2, pp. 540–
555.

2. PEK, Christian; ALTHOFF, Matthias. Computationally efficient fail-safe trajectory planning
for self-driving vehicles using convex optimization.

In: 2018 21st International Conference onIntelligent Transportation Systems (ITSC). 2018,
pp. 1447–1454.

3. BOJARSKI, Mariusz; DEL TESTA, Davide; DWORAKOWSKI, Daniel; FIRNER, Bernhard;
FLEPP, Beat; GOYAL, Prasoon; JACKEL, Lawrence D; MONFORT, Mathew; MULLER,
Urs; ZHANG, Jiakai, et al. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316.
2016.

4. WANG, Zhaodong; CHEN, Xiqun; OUYANG, Yanfeng; LI, Meng. Emission mitigation via
longitudinal control of intelligent vehicles in a congested platoon.
Computer-Aided Civil and Infrastructure Engineering. 2015, vol. 30, no. 6, pp. 490–506.

5. LARSSON, Erik; SENNTON, Gustav; LARSON, Jeffrey. The vehicle platooning problem:
Computational complexity and heuristics. Transportation Research Part C: Emerging Technologies.
2015, vol. 60, pp. 258–277.

6. KIM, Namwook; CHA, Sukwon; PENG, Huei. Optimal control of hybrid electric vehicles based
on Pontryagin’s minimum principle. IEEE Transactions on control systems technology. 2010,
vol. 19, no. 5, pp. 1279–1287.

7. ZHANG, Huaguang; LUO, Yanhong; LIU, Derong. Neural-network-based near-optimal control
for a class of discrete-time affine nonlinear systems with control constraints.
IEEE Transactions on Neural Networks. 2009, vol. 20, no. 9, pp. 1490–1503.

8. WANG, Ziran; WU, Guoyuan; BARTH, Matthew J. Developing a distributed consensus-based
cooperative adaptive cruise control system for heterogeneous vehicles with predecessor follow-
ing topology. Journal of Advanced Transportation. 2017, vol. 2017.

40

9. MYERSON, Roger B. Nash equilibrium and the history of economic theory.
Journal of Economic Literature. 1999, vol. 37, no. 3, pp. 1067–1082.

10. YILDIZ, Aykut; JOND, Hossein B. Vehicle Swarm Platooning as Differential Game. In:
2021 20th International Conference on Advanced Robotics (ICAR). 2021, pp. 885–890. Avail-
able from doi: 10.1109/ICAR53236.2021.9659431.

11. JOND, Hossein B.; YILDIZ, Aykut.
Connected and Automated Vehicle Platoon Formation Control via Differential Games. arXiv,
2022. Available from doi: 10.48550/ARXIV.2202.02602.

12. SANZ-SERNA, Jesus-Maria; CALVO, Mari-Paz. Numerical hamiltonian problems. Courier
Dover Publications, 2018.

13. LI, Yongfu; CHEN, Bangjie; ZHAO, Hang; PEETA, Srinivas; HU, Simon; WANG, Yib-
ing; ZHENG, Zuduo. A Car-Following Model for Connected and Automated Vehicles
With Heterogeneous Time Delays Under Fixed and Switching Communication Topologies.
IEEE Transactions on Intelligent Transportation Systems. 2021.

14. CHOI, Byung Chan; KWON, Jaerock; NAM, Haewoon. Image Prediction for Lane Following
Assist using Convolutional Neural Network-based U-Net.
In: 2022 Inter. Conference on Artificial Intelligence in Information and Communication (ICAIIC).
2022, pp. 078–081.

15. KUHLMAN, Kristopher L. Review of inverse Laplace transform algorithms for Laplace-space
numerical approaches. Numerical Algorithms. 2013, vol. 63, no. 2, pp. 339–355.

16. ALBAWI, Saad; MOHAMMED, Tareq Abed; AL-ZAWI, Saad. Understanding of a convolu-
tional neural network. In: 2017 international conference on engineering and technology (ICET).
2017, pp. 1–6.

17. SHERSTINSKY, Alex. Fundamentals of recurrent neural network (RNN) and long short-term
memory (LSTM) network. Physica D: Nonlinear Phenomena. 2020, vol. 404, p. 132306.

18. KIRK, Donald E. Optimal control theory: an introduction. Courier Corporation, 2004.

19. EFFATI, Sohrab; PAKDAMAN, Morteza. Optimal control problem via neural networks.
Neural Computing and Applications. 2013, vol. 23, no. 7, pp. 2093–2100.

20. DENNIS JR, John E; SCHNABEL, Robert B.
Numerical methods for unconstrained optimization and nonlinear equations. SIAM, 1996.

21. WANG, Dongshu; TAN, Dapei; LIU, Lei. Particle swarm optimization algorithm: an overview.
Soft Computing. 2018, vol. 22, no. 2, pp. 387–408.

41

https://doi.org/10.1109/ICAR53236.2021.9659431
https://doi.org/10.48550/ARXIV.2202.02602

22. YU, Yang; HANDA, Shiro; SASAMORI, Fumihito; TAKYU, Osamu. Improved soft-output M-
algorithm for differential encoded LDPC coded systems with multiple-symbol differential detec-
tion. In: 2012 IEEE 23rd I.S. on Personal, Indoor and Mobile Radio Communications-(PIMRC).
2012, pp. 1985–1991.

23. DIEP, Quoc Bao; TRUONG, Thanh Cong; DAS, Swagatam; ZELINKA, Ivan. Self-Organizing
Migrating Algorithm with narrowing search space strategy for robot path planning.
Applied Soft Computing. 2022, vol. 116, p. 108270.

24. DASGUPTA, Kousik; MANDAL, Brototi; DUTTA, Paramartha; MANDAL, Jyotsna Kumar;
DAM, Santanu. A genetic algorithm (ga) based load balancing strategy for cloud computing.
Procedia Technology. 2013, vol. 10, pp. 340–347.

25. MOZAFAR, Mostafa Rezaei; MORADI, Mohammad H; AMINI, M Hadi. A simultaneous ap-
proach for optimal allocation of renewable energy sources and electric vehicle charging stations
in smart grids based on improved GA-PSO algorithm. Sustainable cities and society. 2017,
vol. 32, pp. 627–637.

26. PRICE, Kenneth V. Differential evolution. In: Handbook of optimization. Springer, 2013,
pp. 187–214.

27. DAS, Swagatam; SUGANTHAN, Ponnuthurai Nagaratnam. Differential evolution: A survey
of the state-of-the-art. IEEE transactions on evolutionary computation. 2010, vol. 15, no. 1,
pp. 4–31.

28. ONWUBOLU, Godfrey C; BABU, BV. New optimization techniques in engineering. Springer,
2013.

29. DAVENDRA, Donald; ZELINKA, Ivan, et al. Self-organizing migrating algorithm.
New optimization techniques in engineering. 2016.

30. DIEP, Quoc Bao; ZELINKA, Ivan; DAS, Swagatam. Self-organizing migrating algorithm
pareto. In: Mendel. 2019, vol. 25, pp. 111–120. No. 1.

31. DIEP, Quoc Bao. Self-organizing migrating algorithm Team To Team adaptive–SOMA T3A.
In: 2019 IEEE Congress on Evolutionary Computation (CEC). 2019, pp. 1182–1187.

42

	List of symbols and abbreviations
	List of Figures
	List of Tables
	1 Introduction
	2 Problem Formation
	2.1 Platoon Formulation
	2.2 Neural Networks

	3 Solving Platooning Problem with Neural Networks
	3.1 Boundary Conditions
	3.2 Preliminaries of the Neural Network Solver
	3.3 Neural Network Solver
	3.4 Metaheuristic Algorithm

	4 Experimental Setup
	4.1 Test Function
	4.2 Comparison Algorithms
	4.3 Parameter Settings

	5 Result and Discussion
	6 Conclusion
	Bibliography

