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1 Introduction 

The portfolio optimization is the approach to selecting the optimal portfolio that 

provides the most profitable rate of return for each unit of risk taken by an investor. An 

investment portfolio is the distribution of an investor's assets, alternatively, it is the 

selection pool of an investor's investments. Modern portfolio theory assumes that an 

investor or asset manager seeks to maximize the return of a portfolio within a specific 

level of risk in a strategic manner. In this particular context, risk is defined as the standard 

deviation of portfolio returns. The optimal portfolio for an investor depends on a variety 

of choices such as risk preference, expected rate of return, and others. 

The objective of this thesis is to validate and compare the out-of-sample performance 

of the following strategies: naive strategy, minimum variance strategy and maximum 

Sharpe ratio strategy. Therefore, we chose thirty stocks that have been listed on the 

NASDAQ Composite Index during the past ten years. The top 30 companies in the 

NASDAQ Composite Index ranked by market capitalization. The selected stock data is 

collected from 1/1/2011 to 26/12/2020 in the form of weekly data of the adjusted closing 

prices of stocks on Yahoo Finance. These stock prices are divided into two parts, including 

the in-sample period (1/1/2011-26/12/2015) and the out-of-sample period (2/1/2016-

26/12/2020). 

This thesis is divided into five parts. Chapter 1 is the introduction. Chapter 2 introduces 

the description of Python, including basic introduction of Python, brief history of Python, 

types of operators, Python keywords, variable in python, the JupyterLab interface and 

plotting in Python. 

Chapter 3 describes the methodology for portfolio optimization. This chapter is 

divided into five parts to introduce. The second part is a description of the basic model 

input data, including expected returns and standard deviations. The second part is the 

effective frontier. The third part is backtesting analysis of portfolio optimization. The 

fourth part describes the naive strategy, the minimum variance strategy, and the maximum 

Sharpe ratio strategy. The last part is performance measurements, including the Sharpe 

ratio, Roy’s safety-first ratio, and maximum drawdown. 

Chapter 4 is the application part. This chapter is divided into four parts to introduce. 

The first part is the description of data, where we provide a brief description of the 
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collected stock data. The second and third parts are used to analyze the performance of 

the naive strategy, the minimum variance strategy and the maximum Sharpe ratio strategy 

during the in-sample period and the out-of-sample period by Python. The last part is 

comparison of results, which includes comparison of the performances in in-sample and 

out-of-sample and comparison of the strategies based on out-of-sample performance 

Chapter 5 discusses the results of this thesis and concludes with conclusions. 
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2 Description of Python  

“Python is a high-level, multipurpose programming language that is used in a wide 

range of domains and technical fields.” (Hilpish, 2018, p. 3). In this chapter, we introduce 

the description of Python, brief history of Python, types of operators, Python keywords, 

variables in python, the JupyterLab interface and plotting in Python. 

2.1 Basic introduction of Python 

“Python is an interpreted, object-oriented, high-level programming language with 

dynamic semantics. Its high-level built-in data structures, combined with dynamic typing 

and dynamic binding, make it very attractive for Rapid Application Development, as well 

as for use as a scripting or glue language to connect existing components together. 

Python’s simple, easy to learn syntax emphasizes readability and therefore reduces the 

cost of program maintenance. Python supports modules and packages, which encourages 

program modularity and code reuse. The Python interpreter and the extensive standard 

library are available in source or binary form without charge for all major platforms, and 

can be freely distributed.” (Hilpish, 2018, p. 3) 

The Python is currently used by schools, universities, web companies, large 

corporations and financial institutions, as well as by junior programmers and highly 

skilled expert developers in any scientific field. The Python language includes the 

following features: open source, interpreted, multi-paradigm, cross-platform, cross-

platform, dynamically typed, indentation aware, and garbage collecting. 

Open source 

Python and most of the available support libraries and tools are open source and 

generally have fairly flexible and open licenses. 

Interpreted 

The reference CPython implementation is the language's interpreter, which translates 

Python code into executable bytecode at runtime. 

Multiparadigm 

Python supports a number of different programming and implementation paradigms, 

including object-oriented and imperative, functional and procedural programming. 
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Multipurpose 

Python provides the capability to be applied for high-speed, interactive code 

development or for building large applications. Python can be used for low-level system 

operations or high-level analysis tasks. 

Cross-platform. 

Python operates on the most critical operating systems, like Windows, Linux, and 

macOS. It is used to build desktop and web applications, on the largest clusters and most 

powerful servers, and for high-level analysis tasks. 

Dynamically typed 

Types in Python are typically inferred at runtime, rather than declared statically as in 

most compiled languages. 

Indentation aware 

Python uses indentation to mark blocks of code, unlike most other programming 

languages, rather than parentheses, curly braces, or semicolons. 

Garbage collecting 

Python features automatic garbage collection and no programmer is required to manage 

memory. 

 

2.2 Brief history of Python 

The Python as a high-level programming language is universal and can be widely 

used. It is object oriented and provides powerful visual programming capabilities and a 

good user interface, with good portability and extensibility. It is widely used in various 

applications on the Internet.  

“In fact, development efforts began in the 1980s by Guido van Rossum from the 

Netherlands. He is still active in Python development and has been awarded the title of 

Benevolent Dictator for Life by the Python community. In July 2018, van Rossum stepped 

down from this position after decades of being an active driver of the Python core 

development.” (Hilpish, 2018, p. 5)  



9 

 

When python is released, we compare it to Java, C++, C etc. Python is quite well 

designed with the concept of representing concepts in less code. Its primary purpose is to 

provide readability to code and productivity for advanced developers. Since it uses an 

object-oriented approach to programming, it brings a lot of convenience to people from 

different fields when developing a new system. The release is fully capable of providing 

inherited classes, several core data type exception handling and functionality. The 

illustrations and timelines for different versions of Python are shown in Figure 2.1 

Figure 2.1 The illustrations and timelines for different versions of Python 

 

Source: https://www.geeksforgeeks.org/history-of-python/ 

Python 2.0 was released on October 16, 2000, with many major new features, 

including a loop-detection garbage collector for memory management (in addition to 

reference counting) and support for Unicode. However, the most important change is the 

https://www.geeksforgeeks.org/history-of-python/
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development process itself, shifting to a more transparency and community supported 

process. 

Python 3.0 is a major backwards compatible version which was released on December 

3, 2008 after a long period of testing. It also has many of the main features backported to 

the backward-compatible Python 2.6 and 2.7, which are no longer supported though. 

Python is the constant source of inspiration for numerous other coding languages, such 

as Ruby, Cobra, Boo, Coffee Script ECMAScript, Groovy, Swift Go, OCaml, Julia, and 

many others. The language Python is in use for various purposes such as development, 

scripting, generation and software testing. For its elegance and simplicity, top technology 

organizations like Dropbox, Google, Quora, Mozilla, Hewlett-Packard, Qualcomm, IBM, 

and Cisco have implemented Python.  

                                                                                  

2.3 Types of operators 

Operator is a symbol which performs a mathematical calculation on a variable or a 

value. The operator performs an operation on an operand (value) and then returns a result. 

The following types of operators are supported in the Python language: arithmetic 

operators, comparison operators, assignment operators, logical operators, bitwise 

operators, membership operators and identity operators. 

Arithmetic operators 

Arithmetic operators are used for performing mathematical operations, like addition, 

subtraction, multiplication, and division. Python has seven arithmetic operators for 

different mathematical operations. There are some well-known operators as addition, 

subtraction, but also ones used to find the modulus, power, etc. The addition operator “+” 

adds two operands and gives their sum. The subtraction operator “-” subtracts second 

operand from first and gives their difference. The multiplication operator “*” multiplies 

two operands and gives their product. The division operator ‘‘/’’ divides the first operand 

by second and gives their quotient. The modulus operator “%’’ divides the first operand 

by second and gives their remainder. The power operator ‘‘**’’raises the first raised to 

power of second. The list of applicable operators is shown in Table 2.1. 
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Table 2.1 Arithmetic operators 

Operator Description 

+ Addition 

- Subtraction 

* Multiplication 

/ Division(float) 

// Division(floor) 

% Modulus 

** Power 

Source: https://www.geeksforgeeks.org/python-operators/ 

Comparison operators 

Comparison operators compare the two values on either side of them and decide how 

they are related to each other. They are also called relational operators. Python has 6 

relational operators: The greater than operator “>” returns True if the first operand is 

greater than the second. The less than operator “<” returns True if the first operand is less 

than the second. The equal to operator “==” returns True if the first operand is equal to 

the second. The not equal to operator “! =” returns True if the first operand is not equal 

to the second. The greater than or equal to operator “>=” returns True if the first operand 

is greater than or equal to the second. The less than or equal to operator “<=” returns True 

if the first operand is smaller than or equal to the second. The list of comparison operators 

is shown in Table 2.2. 

 

 

 

 

 

 

 

https://www.geeksforgeeks.org/python-operators/
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Table 2.2 Comparison operators 

Operator Description 

> Greater than 

< Less than 

== Equal to 

!= Not equal to 

>= Greater than or equal to 

<= Less than or equal to 

is x is the same as y 

is not x is not the same as y 

Source: https://www.geeksforgeeks.org/python-operators/ 

Assignment operators 

Assignment operators perform an operation and use to assign values to variables. 

There are 8 assignment operators in Python. The assign operator “=” from right side 

operands to left side operand. The add and assign operator “+=” adds two operands and 

assigns the result to the variable on left. The subtract and assign operator “-=” subtracts 

second operand from first and assigns to first. The add and assign operator “+=” adds two 

operands and assigns the result to the variable on left. The subtract and assign operator “-

=” subtracts second operand from first and assigns to first. The multiply and assign 

operator “*=” assigns the product to the variable on left. The divide and assign operator 

“/=” assign the division of two operands to the first. The modulus and assign operator 

“%=” perform modulus on two operands and assigns to first. The exponentiation and 

assign operator “%=” perform exponentiation on two values and assigns to first. The list 

of assignment operators is shown in Table 2.3. 

 

 

 

 

https://www.geeksforgeeks.org/python-operators/
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Table 2.3 Assignment operators. 

Operator Description 

= Assign 

+= Add and assign 

-= Subtract and assign 

*= Multiply and assign 

/= Divide and assign 

%= Modulus and assign 

**= Exponentiation and assign 

//= Floor-divide and assign 

Source: https://www.tutorialspoint.com/ 

Logical operators  

Logical operators use to combine conditional statements and perform logical sum, 

logical or and logical non-operations. There are 3 logical operators in Python. The logical 

“and” operator returns True if both operands are True. The logical “or” operator returns 

True if even one operand is True. The logical “not” operator returns True if the operand 

is false. The list of logical operators is shown in Table 2.4. 

Table 2.4 Logical operators. 

Operator Description 

and Logical and 

or Logical or 

not Logical not 

Source: https://www.geeksforgeeks.org/python-operators/ 

Bitwise operators  

It is used to work on bits and perform bit-by-bit operations. There are 6 bitwise 

operators in Python. The bitwise and operator “&” performs logical AND on 
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corresponding bits in values. The bitwise or operator “|” performs logical OR on 

corresponding bits in values. The bitwise xor operator “^” performs logical XOR on 

corresponding bits in values. The bitwise 1’s complement operator “~” returns the bitwise 

negation of a value. Each bit is inverted. The bitwise right-shift operator “>>” shifts bits 

for a value by given number of places right. Some bits are lost. The bitwise left-shift 

operator “<<” shifts bits for a value by a given number of places left. It adds 0s to new 

positions. The list of bitwise operators is shown in Table 2.5. 

Table 2.5 Bitwise operators. 

Operator Description 

&  Bitwise and 

|  Bitwise or 

^  Bitwise xor 

~  Bitwise 1’s complement operator 

>>  Bitwise right shift 

<<  Bitwise left shift 

Source: https://www.geeksforgeeks.org/python-operators 

Membership operators 

Its membership operators, including in and not in, are used to test whether a value or 

variable is in a sequence, such as a string, list, or tuples. There are 2 membership operators 

in Python. The “in “operator returns True if value is found in the sequence. The “not in” 

operator returns Ture if value is not found in the sequence. The list of membership 

operators is shown in Table 2.6. 
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Table 2.6 Membership Operators 

Operator Description 

in True if value is found in the sequence 

not in Ture if value is not found in the sequence 

Source: https://www.geeksforgeeks.org/python-operators 

Identity operators. 

It is used to verify that two values are in the same location in memory. If two variables 

are equal, it does not mean that they are the same. There are 2 identity operators in Python. 

The “is “operator returns True if the operands are identical. The “is not” operator returns 

Ture if the operands are not identical. The list of identity operators is shown in Table 2.7. 

Table 2.7 Identity operators 

Operator Description 

is Ture if the operands are identical.  

not Ture if the operands are not identical.  

Source: https://www.geeksforgeeks.org/python-operators 

 

2.4 Python keywords 

A keyword in Python is a reserved word. The keywords are not allowed to be used as 

variable names, function names, or any other identifiers. A keyword is used in Python to 

determine the language's syntax and structure. In Python, keywords are case-sensitive. In 

Python 3.7 the number of keywords is 33. This number changes slightly over time. All 

keywords are lowercase, with the exception of True, False, and None, which have to be 

written as-is. The list of all Python keywords is shown in Table 2.8. 

 

 

 

 

https://www.geeksforgeeks.org/python-operators
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Table 2.8 Python keywords 

Keyword Description 

and A logical operator 

as To create an alias 

assert For debugging 

break To break out of a loop 

class To define a class 

continue To continue to the next iteration of a loop 

def To define a function 

del To delete an object 

elif Used in conditional statements, same as else if 

else Used in conditional statements 

except Used with exceptions, what to do when an exception occurs 

FALSE Boolean value, result of comparison operations 

finally Used with exceptions, a block of code that will be executed no matter if 

there is an exception or not 

for To create a for loop 

from To import specific parts of a module 

global To declare a global variable 

if To make a conditional statement 

import To import a module 

in To check if a value is present in a list, tuple, etc. 

is To test if two variables are equal 

lambda To create an anonymous function 

None Represents a null value 
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nonlocal To declare a non-local variable 

not A logical operator 

or A logical operator 

pass A null statement, a statement that will do nothing 

raise To raise an exception 

return To exit a function and return a value 

TRUE Boolean value, result of comparison operations 

try To make a try...except statement 

while To create a while loop 

with Used to simplify exception handling 

yield To end a function, returns a generator 

Source：https://www.w3schools.com/python/python_ref_keywords.asp 

 

2.5 Variables in Python 

Variables are used to store data, and they occupy the memory space depending on the 

kind of value that we assign to them. It is easy to create variables in Python, you only 

need to write the name of the variable on the left side of the “=” operator and the value 

on the right side. People don't need to explicitly mention the variable's type. Python will 

make inferences about their type based on the values we allocate. The variable name is 

called an identifier. There are several rules that must be followed while naming the 

variables in Python.  

• The name of a variable must always begin with a letter or an underscore (_). For 

example. _str, str, num, _num are all valid names for variables. 

• The variable's name cannot start with a number. For example: 9num is not an allowed 

variable name. 

• The variable name cannot have special characters, such as %, $, #, etc. It is allowed 

to have only the alphanumeric characters and underscores (A to Z, a to z, 0-9 or _). 
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• In Python, the names of variables are case-sensitive, this means that num and NUM 

are two different variables in Python. The code to create variables in Python is shown 

in Figure 2.2. 

Figure 2.2 Code to create variables in Python 

 

Source: https://beginnersbook.com/ 

“Python is a dynamically typed language, which means that the Python interpreter 

infers the type of an object at runtime. In comparison, compiled languages like C are 

generally statically typed. In these cases, the type of an object has to be specified for the 

object before compile time.” (Hilpish, 2018, p. 62) The most common types of variables 

are numbers, integers, floats and strings. 

Numbers 

Number data types are used to store numeric values. They are immutable data types, 

which means that changing a numeric data type will allocate a new object. Python 

supports 4 different types of numbers:  

• Fint (signed integers) is often called integers or ints, which are positive or negative 

whole numbers with no decimal point. 

• Long (long integers) are also called long, and they are infinite size integers that are 

written like integers and followed by an uppercase or lowercase L. 

• Float (floating point real numbers) is also known as floating point numbers, which 

represent real numbers and are written by dividing the integer and decimal parts 

by a decimal point. Floating point numbers can also be written in the scientific 

notation, using E or e for powers of 10 (2.5𝑒2  =  2.5 ∗ 102  =  250). 

• Complex numbers (complex numbers) are of the form a + bJ, where both a and b 

are floating-point numbers with J (or j) representing the square root of -1 (which 

is an imaginary number). The real part of the numeral is a and the imaginary part 

is b. The complex number is not much used in Python programming. 

https://beginnersbook.com/


19 

 

Integers 

Integers are zero, positive or negative integers without fractional parts and with infinite 

precision, such as -4, -3,0,5,7 etc. In Python, to declare an integer, simply write “variable 

Name = initial value”  

“The built-in function type provides type information for all objects with standard and 

built-in types as well as for newly created classes and objects. In the latter case, the 

information provided depends on the description the programmer has stored with the 

class. There is a saying that “everything in Python is an object.” This means, for example, 

that even simple objects like the int object just defined have built-in methods. One can get 

the number of bits needed to represent the int object in memory by calling the method 

bit_length ()” (Hilpish, 2018, p. 62) 

Floats 

Float point numbers serve to indicate the real numbers and are written by separating 

the integer and decimal parts with a decimal point, such as 97.98, 32.3+e18, -32.54e100 

etc. Floating-point numbers in Python are expressed as 64-bit double-precision values. 

The float type installs the numbers.Real abstract base class. Returns a float expression 

which is converted to a floating-point number. These are additional methods for float: 

• float.as_integer_ratio () returns a couple of integers with a ratio exactly equal to 

the real floating-point number which has a positive denominator. At infinity, it 

gives rise to an overflow error and non-numeric value errors (NaNs). 

• float.is_integer () returns True for float instances with finite integral values, 

otherwise, it returns False. 

• float.hex () returns a hex string of a float. 

• float.fromhex (s) returns a hex string representation of a floating point number. 

• float.fromhex (s) returns a floating point number expressed by the hexadecimal 

string s. String s has leading and trailing whitespace. 

Strings 

“The basic data type to represent text in Python is str. The str object has a number of 

helpful built-in methods. In fact, Python is generally considered to be a good choice when 

it comes to working with texts and text files of any kind and any size. A str object is 
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generally defined by single or double quotation marks or by converting another object 

using the str () function.” (Hilpisch, 2018, p. 69) The string types has also a lot of built-

in function, the list of the applicable functions can be seen in Table 2.9. 

Table 2.9 Lists a number of help methods of str object. 

 

Source: Hilpisch (2018, p. 69) 

 

2.6 The JupyterLab Interface 

“JupyterLab provides flexible building blocks for interactive, exploratory computing. 

While JupyterLab has many features found in traditional integrated development 

environments (IDEs), it remains focused on interactive, exploratory computing.  

The JupyterLab interface consists of a main work area containing tabs of documents 

and activities, a collapsible left sidebar, and a menu bar. The left sidebar contains a file 



21 

 

browser, the list of running kernels and terminals, the command palette, the notebook cell 

tools inspector, and the tabs list.  

JupyterLab sessions always reside in a workspace. Workspaces contain the state of 

JupyterLab: the files that are currently open, the layout of the application areas and tabs, 

etc. Workspaces can be saved on the server with named workspace URLs.” (Project 

Jupyter, 2018). The Jupyterlab launcher is shown in Figure 2.3.  

Figure 2.3 Jupyterlab launcher 

  

Source: https://jupyterlab.readthedocs.io/ 

A menu bar at the top of JupyterLab contains top-level menus which reveal the actions 

which are available in JupyterLab and the keyboard defaults to them. The JupyterLab 

extension allows to create a new top-level menu in the menu bar as well. The default 

menus for that include File, Edit, View, Run, etc. 

• File: operations associated to files and directories 

• Edit: operations associated to editing files and other activities 

• View: operations for changing the appearance of JupyterLab 

• Run: operations for running code in different activities, such as notebooks and 

code consoles 

• Kernel: operations to manage the kernel, which is a separate process that runs the 

code 

• Tabs: a list of documents and activities open in the Dock panel 

https://jupyterlab.readthedocs.io/
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• Settings: editor with common settings and advanced settings 

• Help: a list of JupyterLab and the Kernel Help links 

 

2.7 Plotting in Python 

Graphs in Python can be plotted through the use of the Matplotlib library. Matplotlib 

library is mainly used in graph plotting. Matplotlib needs to be installed before you can 

use it to plot graphs. Matplotlib can plot simple line plots, bar graphs, histograms, and pie 

charts. The built-in functions in the Matplotlib library are available for plotting all types 

of graphs. 

For example, when we want to plot a straight line in a graph, we use Matplotlib to 

draw a simple straight line in a graph. Here are the steps to draw a straight line. 

(1) Import matplotlib. 

(2) Specify the x and y coordinates of the lines. 

(3) Use the .plot () function to plot the specified point with a specific function. 

(4) Use the .xlabel () and .ylabel () functions to name the x- and y-axes. 

(5) use the title () function to add a title to the graph (optional). 

(6) Use the .show () function to display the graph. 

The example for plotting straight lines in Python is shown in Figure 2.4. 

Figure 2.4 Plotting the straight line 

 

Source: https://www.tutorialspoint.com/ 

The above code plots the points (1,2), (3,4), (5,6), (7,1), which are connected with 

straight lines and shown in Figure 2.5. 

https://www.tutorialspoint.com/
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Figure 2.5 Output of line graph 

 

Source: https://www.tutorialspoint.com/ 

Another type of chart we can plot in Python is a bar chart. The bar chart is a means of 

presenting data in rectangles of different heights at particular locations on the X-axis. The 

procedure to draw a bar chart is as follows:  

(1) Import Matplotlib. 

(2) Specify the x coordinates where the lower-left corner of the rectangle is located. 

(3) Specify the height of the bars or rectangle plot. 

(4) Specify the label of the bar chart. 

(5) Plot the bar using the. bar () function. 

(6) Label the x-axis and y-axis. 

(7) Give the graph a title. 

(8) Use the. show () function to display the graph. 

The example for plotting bar chart in Python is shown in Figure 2.6. 

 

 

 

 

https://www.tutorialspoint.com/
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Figure 2.6 Plotting bar chart 

 

Source: https://www.tutorialspoint.com/ 

The example for plotting a bar graph chart in Python can be seen in Figure 2.7. The 

width parameter in Pl. Bar () describes the width of each bar. The color list specifies the 

color of the bar. The output of the code is shown in Figure 2.7. 

Figure 2.7 Output of bar charts 

 

Source: https://www.tutorialspoint.com/ 

  

https://www.tutorialspoint.com/
https://www.tutorialspoint.com/
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3 Description of portfolio optimization methodology 

Portfolio optimization is the process of choosing the ratio of various assets in a 

portfolio in a way that makes the portfolio perform better than any others depending on 

specific constraints.  

Modern portfolio theory (Markowitz, 1952) argues generally that investors or asset 

managers seek to maximize the return of a portfolio within a specified level of risk in a 

strategic way. In this specific setting, risk is defined as the standard deviation of portfolio 

returns. Furthermore, the optimal or efficient portfolio perspective introduces to describe 

the portfolio which maximizes returns at a given level of risk. The efficient frontier 

permits a graphical representation of a group of optimal portfolios at a specific, well 

defined risk level.  

In this chapter, the methodology describes for portfolio optimization. This chapter is 

divided into four parts to introduce. The first part is the effective frontier. The second part 

is a description of the basic model input data, including expected returns and standard 

deviations. The third part is backtesting analysis of portfolio optimization. The last part 

describes the naive strategy, the minimum variance strategy, the maximum Sharpe ratio . 

3.1 Description of basic input data 

An effective portfolio consists of investments that provide the greatest return for the 

risk, or arguably the lowest risk for a given return. To form an effective portfolio, people 

need to know how to calculate the return and risk of the portfolio and how to reduce the 

risk through diversification. The basic description of a stock portfolio can help us to 

analyze and conduct a stock portfolio in a more diversified way. 

As we talk about asset returns, we can distinguish between discrete and continuously 

compounded returns. In the discrete case, the return 𝑅𝑡 is computed as a relative change 

of the asset’s price 𝑃𝑡,  

𝑅𝑡 =
𝑃𝑡−𝑃𝑡−1

 𝑃𝑡  
.                                                                     (3.1) 

After calculating asset returns, we can obtain the following formulas for discrete and 

continuously compound portfolio returns, 

𝑅𝑃,𝑡 = ∑ 𝑤𝑖
𝑁
𝑖=1 𝑅𝑖,𝑡.                       (3.2) 
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In this equation, the return of the portfolio represented by 𝑅𝑃,𝑡 is given by the sum of 

the products of the specified return of stock 𝑅𝑖,𝑡 and the weights of each stock 𝑤𝑖 in the 

portfolio. 

We can calculate the expected return of the portfolio as follows, 

𝐸(𝑅𝑃) = 𝑤𝑇 . 𝐸(𝑅) = ∑ 𝑤𝑖
𝑁
𝑖=1 . 𝐸(𝑅𝐼) ,              (3.3) 

the variance of the portfolio return, 

𝜎𝑝
2 = 𝑤𝑇 . 𝑄. 𝑤 = ∑ ∑ 𝑤𝑖

𝑁
𝑗=1

𝑁
𝑖=1 . 𝜎𝑖,𝑗 . 𝑤𝑗 ,           (3.4) 

and standard deviation of the portfolio return, 

𝜎𝑝 = √𝜎𝑝
2,                           (3.5) 

where 𝑄 represents covariance matrix, 𝑤 represents the vector of weights and 𝐸(𝑅) 

represents the vector of expected returns. 

 

3.2 The efficient frontier 

Investors are risk averse, therefore an optimal portfolio of investments can be defined 

as a portfolio that generates a specific expected return objective with minimal risk. 

Nevertheless, there is a different portfolio of assets to represent the risk minimizing 

portfolio for each different expected return objective, and a larger expected return 

objective requires a portfolio with a greater level of risk. 

The efficient frontier is the set of portfolios with the greatest return for each given 

level of risk or the set of portfolios that provide the best portfolio with the lowest risk for 

a given level of expected return. The set of portfolios that minimizes risk for each 

potential expected return objective is referred to as the efficient frontier. The portfolios 

which are below the efficient frontier are suboptimal because they do not provide 

sufficient returns for the given level of risk. The efficient frontier for alternative portfolios 

is shown in Figure 3.1 
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Figure 3.1 Efficient frontier for alternative portfolios  

 

Source：Reilly et al. (2019, p. 218) 

“An illustration of such a frontier is shown in Exhibit 6.13. Every portfolio that lies 

on the efficient frontier has either a higher rate of return for the same risk level or lower 

risk for an equal rate of return than some portfolio falling below the frontier. Thus, we 

would say that Portfolio A in Exhibit 6.13 dominates Portfolio C because it has an equal 

rate of return but substantially less risk. Similarly, Portfolio B dominates Portfolio C 

because it has equal risk but a higher expected rate of return. Because of the benefits of 

diversification among less-than-perfectly correlated assets, we would expect the efficient 

frontier to be made up of portfolios of investments rather than individual securities. Two 

possible exceptions arise at the end points, which represent the asset with the highest 

return and the asset with the lowest risk.” (Reilly et al., 2019, p. 217) 

 

3.3 Portfolio optimization strategies 

The idea and goal of portfolio optimization are that investors want to build their 

portfolios to be able to generate the maximum possible return while maintaining the 

amount of risk they are willing to take. This represents the need for investors to create a 

balanced portfolio by spreading their investment capital across a variety of assets. This is 

done by balancing these assets to achieve the desired risk-return outcome. The result of 

portfolio optimization should be what the investor considers to be an efficient portfolio, 

meaning that it produces the highest possible return for given risk tolerance.  
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3.3.1 Naive strategy 

A typical equally weighted portfolio is the naive portfolio, which has components that 

invest with equal weights. The portfolio's components are equally weighted for 

investment. The calculation of equal weights for each component in a naive portfolio is 

as follows, 

𝑤𝑛𝑎𝑖𝑣𝑒 =
1

𝑁 
,                                                            (3.6) 

where N is the number of the components in naive strategy. 

“There are two reasons for using the naive rule as a benchmark. First, it is easy to 

implement because it does not rely either on estimation of the moments of asset returns 

or on optimization. Second, despite the sophisticated theoretical models developed in the 

last 50 years and the advances in methods for estimating the parameters of these models, 

investors continue to use such simple allocation rules for allocating their wealth across 

assets.” (Demiguel et al., 2009, p. 1916)  

Diversification of a portfolio by not considering or incorrectly considering the 

mathematical equations in the capital asset pricing model. Naive diversification is based 

on the assumption that by investing in enough uncorrelated assets one can adequately 

reduce risk and still make a profit. In addition, people may diversify naively by 

misapplying asset pricing models for capital and finding the wrong efficient portfolio 

frontier. Such diversification does not necessarily reduce the risk for a given expected 

return, and may in fact add risk. 

3.3.2 Minimum variance strategy 

The minimum variance portfolio is a part of Markowitz efficient portfolios. " The 

Markowitz model is the type of the mean variance model, for which is allowed to invest 

only risky assets while selling the assets short is not feasible. Respecting the fact, that 

there occur three distinct steps, we have to formulate three types of problems. The first 

step is to find the portfolio with the minimal risk (portfolio A), the second step is to find 

the portfolio with the maximal expected return (portfolio B). Subsequent steps consist in 

selecting the portfolios for interior points of the efficient set (portfolios C to H).” 

(Zmeškal et al., 2004, p. 84)  
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For the minimum variance strategy, the objective function of find the minimum risk 

portfolio is shown in Figure 3.2. 

Figure 3.2 Find the minimum risk portfolio 

Objective function 

𝜎𝑃 → 𝑚𝑖𝑛.  

Constraints 

∑ 𝑥𝑖𝑖 = 1                                                           (C1) 

𝑥𝑖 ≥ 0, 𝑓𝑜𝑟 𝑖 = 1,2, ⋯ , 𝑁,                                             (C2) 

𝑤ℎ𝑒𝑟𝑒 𝜎𝑃 = √∑ ∑ 𝑥𝑖 ∙ 𝜎𝑖𝑗 ∙ 𝑥𝑗𝑗𝑖 = √𝑥→𝑇 ∙ 𝐶 ∙ 𝑥→.                           (E1) 

Source: Zmeškal et al. (2004, p. 84) 

“The objective function expressed the minimal stand deviation of the portfolio we are 

looking for. The constraint (C1) states that the sum of relative shares (percentages) 𝑥𝑖 is 

equal to 1. Hence, it is allowed to invest just the money amount we have held initially. 

The constraints (C2) exclude negativity, since short selling is not allowed there. By 

equation (E1) we define the calculation of the standard deviation for the optimal portfolio.” 

(Zmeškal et al., 2004, p. 84)  

3.3.3 Maximum Sharpe ratio strategy 

The portfolio is optimized to provide the maximum Sharpe ratio, which is a ratio based 

on the historical data and compares the amount of return with the amount of risk. The 

returns are based on compound annual growth rate (CAGR) and the risk is based on 

volatility. This portfolio is well adapted to risk-averse investors with modest growth 

expectations. 

Based on Zmeškal et al. (2004, p. 91), we identify the market portfolio M with the 

maximum Sharpe ratio strategy. For the maximum Sharpe ratio strategy, the objective 

function of set up the market portfolio M is shown in Figure 3.3. 
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Figure 3.3 Set up the market portfolio (M)  

Objective function 

𝐸(𝑅𝑀)−𝑅𝐹

𝜎𝑀
→ 𝑚𝑎𝑥. 

Constraints 

𝑥𝐹 + ∑ 𝑥𝑘𝑘 = 1,                                                  (C1) 

𝑥𝑘 ≥ 0, 𝑓𝑜𝑟 𝑘 = 1,2, ⋯ , 𝑁,                                         (C2) 

𝑥𝐹 = 0 ,                                                         (C3) 

𝑤ℎ𝑒𝑟𝑒 𝐸(𝑅𝑀) = ∑ 𝑥𝑖 ∙ 𝐸(𝑅𝑖) ,𝑁+1
𝐼=1                                     (E1) 

𝑣𝑎𝑟(𝑅𝑀) = ∑ ∑ 𝑥𝑖 ∙ 𝜎𝑖𝑗 ∙ 𝑥𝑗
𝑁+1
𝑗=1 = 𝑥→𝑇 ∙ 𝐶 ∙ 𝑥→𝑁+1

𝑖=1   ,                      (E2) 

𝜎𝑀 = 𝜎(𝑅𝑀) = √𝑣𝑎𝑟(𝑅𝑀)  ,                                        (E3) 

Source: (Zmeškal et al., 2004, p. 90) 

“Here 𝑥𝑘 means a share of the risky asset, similarly, 𝑥𝐹 states a share of the riskless 

asset in the portfolio, and 𝑥𝑖 (𝑥𝑗 ) is used to indicate a share of any asset. The vector 

𝑥→and the covariance matrix C include also all types of assets and their relationship. 

The objective function stands for the maximization of the slope of the CML line 

(effective set). The constraint (C1) represents the investment structure and the set of 

feasible variables. The constraint (C2) defines, that just investment in risky assets allowed. 

Similarly, the constraint (C3) states, that the riskless assets cannot be included in the 

portfolio. Equations (E1), (E2) and (E3) formulate the calculation of portfolio parameters.  

Finding the effective portfolio for a given standard deviation is based on maximization 

of the mean value of portfolio return for a given level of the standard deviation. Here, it 

is allowing to invest into both, risky and riskless assets. Further, riskless assets can be 

also shorted.” (Zmeškal et al., 2004, p. 91) 

 

3.4 Backtesting analysis of portfolio optimization 

“Within backtesting procedure, the historical data are utilized. For each observation 

(day) we compute the portfolio composition based on the information set known at that 
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moment, i.e., the weights of portfolio at time t are determined based on the returns/prices 

of the assets in historical window(t-m，t-1), where m determines the size of past data, 

which are utilized. In order to avoid look-ahead bias, it is vital to assure that algorithm 

utilizes only information that would have been available at the time of the portfolio 

rebalancing.” (Kresta, 2015, p. 61） 

We can calculate the ex-post portfolio returns, 

𝑟𝑃,𝑡 = ∑ 𝑟𝑖,𝑡
𝑛
𝑖=1  . 𝑤𝑖,𝑡,                                                         (3.7) 

where 𝑟  represents the ex-post observed returns and 𝑤𝑖,𝑡  represents the weights of 

assets in the portfolio, which are obtained by portfolio optimization based on the 

returns/prices of the assets in the period (𝑡 − 𝑚, 𝑡 − 1). We can then also calculate the 

ex-post wealth path, 

𝑊𝑡+1 = 𝑊𝑡 . (1 + 𝑟𝑝,𝑡).                                                   (3.8) 

 

3.5 Performance measurements 

This section presents two performance ratios: Sharpe ratio and Roy's safety-first ratio 

and maximum drawdown to measure the efficiency of different asset allocation strategies. 

3.5.1 Sharpe ratio 

The Sharpe ratio is one of the methods most widely used to calculate risk-adjusted 

returns. “The Sharpe ratio is maximal for portfolios belonging to the Capital Market Line. 

All the portfolios belonging to the Capital Market Line have the same Sharpe ratio, which 

is equal to the slope of the Capital Market Line. When investing in a single portfolio, 

wealth should be allocated first by determining a portfolio with the maximum Sharpe 

ratio and then by allocating all the wealth between this portfolio and the risk-free asset.” 

(Brugière, 2020, p. 95)  

The formula of Sharpe ratio is as follows, 

𝑆ℎ𝑎𝑟𝑝𝑒  𝑟𝑎𝑡𝑖𝑜 =  
(𝐸(𝑅𝑝)−𝑅𝑓)

𝜎𝑝
,                                                    (3.9) 

where the 𝑅𝑝 represents the return of the portfolio, 𝑅𝑓 represents risk-free rate and 𝜎𝑝 

represents the standard deviation of the portfolio’s excess return.  
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In the Sharpe ratio, the risk-free rate is deducted from the average rate of return, 

which allows the investor to better separate out the profits associated with the risk-taking 

activity. The risk-free rate of return is the return on a risk-free investment, meaning that 

it is the expected return without the investor taking any risk. In general, the higher Sharpe 

ratio indicates a higher reward per unit of risk and the more desirable the investment 

vehicle is. A low Sharpe ratio means that the fund is earning returns by taking higher risk. 

A high Sharpe ratio means that the fund has a higher ability to diversify and reduce 

unsystematic risk and that there is room for returns to rise. When the Sharpe ratio is above 

the CML, it indicates that the fund is outperforming the overall performance of the market. 

3.5.2 Roy's safety-first ratio 

Roy's safety-first criterion, also referred to SFRatio, is a method of investment 

decision-making that creates a minimum required return at a defined level for a given 

level of risk. Roe's safety-first criterion permits investors to invest in potential portfolios 

by comparing them according to the probability that a portfolio's return will be lower than 

its minimum expected return limit. It can be calculated as follows, 

𝑆𝐹𝑅𝑎𝑡𝑖𝑜 =
𝑟𝑒−𝑟𝑚

𝜎𝑝
,                                                              (3.10) 

where 𝑟𝑒 is expected return on the portfolio, 𝑟𝑚 is investor’s minimum required return 

and 𝜎𝑝  is the standard deviation of the portfolio. The SFRatio offers a probability of 

receiving the minimum required return on a given portfolio. The optimal decision for 

investors is to choose the investment portfolio which has the highest SFRatio. The 

formula can be used by investors to calculate and assess the various situations that involve 

different portfolio asset class weights, and various investments and otherwise influence 

the probability of having met their required minimum return in terms of threshold. 

3.5.3 Maximum drawdown 

The maximum drawdown is a specific indicator that measures the drawdown and looks 

for the maximum movement from a high to a low before a new peak is reached. The MDD 

only measures the amount of maximum loss and does not consider the efficiency of the 

frequency of big losses. Because an MDD measures only the maximum decline, it does 

not indicate the length of time it takes for an investor to recover a loss, or the investment 

to even recover at all. 
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Maximum downturn (MDD) is a measure used to evaluate the relative riskiness of a 

stock selection strategy to another strategy due to its focus on capital conservation, which 

is the primary concern of for most investors. The two selection strategies may have the 

same mean outperformance, tracking error and volatility, but their maximum drawdowns 

compared to the benchmark, is likely to be very different. 

The measure of maximum percentage drawdown in period (0, T) can be computed as 

follows, 

MAXDD0,T = max
τ∈(0,T)

[1 −
W(τ)

max
t∈(0,τ)

W(t)
].                                   (3.11) 

where 𝑊(𝑡) is the investment wealth at time t.  

As a low maximum drawdown should be preferred because it indicates a minimal loss 

of investment. The maximum drawdown will be zero if an investment has never lost a 

penny. The worst maximum drawdown would be -100%, which means the investment is 

completely worthless. 
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4 Application of portfolio optimization models in Python 

This chapter is a practical application where we apply the theoretical knowledge of 

portfolio optimization to real data from the financial markets. In chapters two and three, 

we introduced the basic functions and usage of Python, and describe several different 

asset portfolio allocation strategies. We select weekly data for thirty stocks listed on the 

NASDAQ composite index ranked by market capitalization over the past ten years, and 

use three different asset portfolio models for portfolio optimization, which are the naive 

strategy, minimum variance strategy and maximum Sharpe ratio strategy. The data are 

divided into two parts. There is the in-sample period (1/ 1/2012 to 26/12/2015) and the 

out-of-sample period (2/1/2016 to 26/12/2020). Next, we use these asset portfolio models 

to analyze the asset portfolios and calculate the Sharpe ratio, Roy's safety-first ratio for 

these models.  

4.1 Data description 

We chose thirty stocks that are listed on the NASDAQ composite index during the past 

ten years. These are the top 30 companies in the NASDAQ Composite Index ranked by 

market capitalization. The selected stock data were collected from 1/1/2011 to 26/12/2020 

in the form of weekly data of the adjusted closing price of stocks on Yahoo Finance, so 

we have stock price data for 523 weeks. The stock price is shown in US dollars. The 

whole sample period is divided into in-sample period (1/1/2011-26/12/2015) and out -of-

sample period (2/1/2016-26/12/2020). The list of stock’s name and tickers is shown in 

Table 4.1. 
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Table 4.1 List of stock’s name and tickers 

Name Ticker Name Ticker 

Apple Inc. AAPL Intel Corporation INTC 

Microsoft Corporation MSFT Adobe Inc. ADBE 

Alphabet Inc. GOOGL Qualcomm Incorporated QCOM 

Alphabet Inc. GOOG Texas Instruments Incorporated TXN 

Amazon.com, Inc. AMZN T-Mobile US, Inc. TMUS 

Tesla, Inc. TSLA Netflix, Inc. NFLX 

Nvidia Corporation NVDA Amgen Inc. AMGN 

ASML Holding N.V. ASML Sanofi SNY 

Broadcom Inc. AVGO Advanced Micro Devices, Inc. AMD 

Costco Wholesale Corporation COST Intuit Inc. INTU 

PepsiCo, Inc. PEP Applied Materials, Inc. AMAT 

Cisco Systems, Inc. CSCO Starbucks Corporation SBUX 

Comcast Corporation CMCSA Charter Communications, Inc. CHTR 

Verizon Communications Inc. VZ Automatic Data Processing, Inc. ADP 

AstraZeneca plc AZN Booking Holdings Inc. BKNG 

Source: https://finance.yahoo.com 

 

 

 

 

 

 

 

 

https://finance.yahoo.com/
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The mean and standard deviation of return of chosen stocks (weekly) is shown in Table 

4.2. 

Table 4.2 The mean and standard deviation of return of chosen stocks (weekly) 

 
in-sample out-of-sample 

Stocks return std return std 

AAPL    0.30% 3.89% 0.65% 3.89% 

MSFT      0.28% 3.28% 0.57% 3.28% 

GOOGL    0.33% 3.67% 0.31% 3.67% 

GOOG    0.32% 3.72% 0.32% 3.72% 

NVDA      0.18% 4.99% 1.07% 4.99% 

AMZN    0.45% 4.38% 0.60% 4.38% 

TSLA      0.77% 6.62% 1.03% 6.62% 

ASML     0.41% 4.27% 0.67% 4.27% 

AVGO      0.61% 4.81% 0.49% 4.81% 

COST     0.35% 2.28% 0.37% 2.28% 

PEP     0.20% 1.76% 0.21% 1.76% 

CSCO      0.11% 3.55% 0.25% 3.55% 

CMCSA 0.37% 2.98% 0.27% 2.98% 

VZ        0.18% 2.23% 0.18% 2.23% 

AZN       0.21% 2.91% 0.22% 2.91% 

INTC      0.23% 3.26% 0.19% 3.26% 

ADBE     0.39% 3.22% 0.64% 3.22% 

QCOM     -0.01% 3.50% 0.49% 3.50% 

TXN       0.21% 3.23% 0.47% 3.23% 

TMUS     0.24% 6.42% 0.47% 6.42% 
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NFLX     0.56% 8.75% 0.60% 8.75% 

AMGN    0.41% 3.10% 0.19% 3.10% 

SNY    0.16% 3.14% 0.13% 3.14% 

AMD     -0.54% 7.45% 1.33% 7.45% 

INTU    0.27% 2.92% 0.54% 2.92% 

AMAT     0.12% 3.93% 0.61% 3.93% 

SBUX     0.50% 3.08% 0.26% 3.08% 

CHTR     0.57% 3.64% 0.49% 3.64% 

ADP    0.29% 2.34% 0.32% 2.34% 

BKNG     0.36% 4.22% 0.21% 4.22% 

Source：own calculation 

We chose the weekly adjusted closing prices of these stocks from 2011 to 2020, with 

a total of 523 weeks of data, and calculated the mean and standard deviation of their 

weekly returns. From the mean and standard deviation of the weekly returns, we can find 

that in- sample period, the mean returns of stock QCOM and AMD are negative and the 

mean return of stock AMD is the lowest in -0.54%. The mean return of stock TSLA is the 

highest for 0.77 %. The mean of the return of AVGO is the second highest return is 0.61%. 

For the in-sample interval, stock NFLX has the highest standard deviation of 8.75%. The 

higher the standard deviation, higher will be the fluctuations in the returns. The stock PEP 

has a minimum standard deviation of 1.76%.  

In the out-of-sample period, the lowest stock return is SNY at 0.13%, followed by 

stock VZ at 0.18%. The mean return of stock AMD is the highest for 1.33%. The mean 

of the return of NVDA is the second highest return is 1.07%. The returns of stocks AMD 

and NVDA increased considerably, with the mean return of AMD increasing from -0.54% 

in-sample to 1.33% out-of-sample. The stock SBUX had the largest decrease in returns, 

from 0.50% to 0.26%. 

During the in-sample period, the stock with the largest standard deviation is NFLX, 

while the stock with the largest return is AVGO. During the out-of-sample period, the 
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stock with the largest standard deviation is NFLX, while the stock with the largest return 

is TSLA.  

The heatmap of the correlation matrix for these 30 stocks in the in-sample period is 

shown in Figure 4.1. The correlation heatmap is a graph that visually displays the strength 

of the relationship between numerical variables. The correlation matrix is also 

summarized in Annex B. 

Figure 4.1 Heatmap of correlation matrix 

 

Source: own calculation 

The correlation coefficient value takes the any value from -1 to 1. With a value of 1, it 

indicates there is a positive correlation between the two variables. It means that when one 

variable increases, the other variable also increases. With a value of -1, it indicates there 

is a negative correlation between the two variables. It means that when one variable 

increases, the other variable decreases. With a value of 0, two variables are not correlated 

with each other. It means the variables change in a random way between them.  

The heatmap in Figure 4.1 shows that the stocks PEP&AAPL, PEP&TSLA, TMUS& 

NFLX, CSCO&CHTR have weak positive correlations. The stocks NVDA&TXN, 

AMAT&TXN, TXN&INTC have strong positive correlations. 
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4.2 The Application of Python for portfolio optimization in the in-

sample period 

In this section, we use data from the in-sample period to test separately naive strategy, 

minimum variance strategy and maximum Sharpe ratio strategy. 

4.2.1 Naive strategy 

Naive strategy is when investors allocate the same amount of money in each stock so 

it refers if you have n stocks and one dollar, the investor should allocate one over n in 

every stock. We assume that the investor weighs each stock equally, with a weighting 

factor of  
1

 30
  for each asset in the portfolio. The in-sample period of return for naive 

strategy portfolio is shown in Figure 4.2. 

Figure 4. 2 The in-sample period of return for the naive strategy 

 

Source: own calculation 
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The in-sample period of wealth for naive strategy is shown in Figure 4.3. 

Figure 4.3 The in-sample period of wealth path for the naive strategy 

 

Source: own calculation 

According to Figure 4.3, the evolution of the wealth during the in-sample period under 

the naive strategy, the wealth of the portfolio is generally increase, increase from an initial 

wealth of $1 to $2.0073 at the end of the period. with the wealth reach the highest value 

in the sample reach $2.2038 on 21/11/2015. The in-sample period of results of the results 

of naive strategy is shown in Table 4.3. 

Table 4.3 Results of naive strategy 

Mean annualized return 15.31% 

Annualized standard deviation 16.77% 

Final wealth 2.0073 

Sharpe ratio 0.7448 

SF ratio 0.8396 

Source: own calculation 

We calculate two performance indicators in our naive strategy. They are the Sharpe 

Ratio and Roy's safety-first ratio. For the Sharpe ratio, we first calculate the portfolio's 

weekly return and standard deviation and annualize it. The portfolio's annual return is 

15.31%, and the annual standard deviation is 16.76%. Based on the U.S. 10-year 

government bond rate, we get that the risk-free annual rate is 2.82%1 and the Sharpe ratio 

 
1
 https://finance.yahoo.com/bonds 
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under the naive strategy is 0.7448. We need to determine the minimum acceptable return 

(MAR) for Roy's safety-first ratio. According to the IMF, the inflation rate we know for 

the U.S. in 2020, and we set MAR at 1.23%2. Under a naive strategy, Roy's safe first ratio 

is 0.8396. 

4.2.2 Minimum variance strategy 

The minimum variance strategy refers to the allocating of a given budget among n 

financial assets that minimize the risk of the expected portfolio return. For minimum 

variance strategy, we solve the problem in Figure 3.2. The weights of the minimum 

variance portfolio are shown in Table 4.4. 

Table 4.4 Weights of the minimum variance portfolio  

AAPL    0.0553 INTC      0 

MSFT      0 ADBE     0.0129 

GOOGL    0 QCOM     0 

GOOG    0 TXN       0 

NVDA      0 TMUS     0.0003 

AMZN    0 NFLX     0 

TSLA      0.0081 AMGN    0 

ASML     0 SNY    0 

AVGO      0 AMD     0 

COST     0.0871 INTU    0 

PEP     0.5267 AMAT     0 

CSCO      0 SBUX     0.0566 

CMCSA 0 CHTR     0.0284 

VZ        0.1268 ADP    0 

AZN       0.0977 BKNG     0 

Source: own calculation 

 
2 https://www.imf.org/en/Countries/USA#countrydata 
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We can see in Table 4.4 the optimized weights of the minimum variance strategy during 

the in-sample period. The highest portfolio weight belongs to PEP (PepsiCo, Inc.) at 

52.67%, which means that the investor should allocate half of his money to this stock. 

The second highest portfolio weight is the stock VZ (Verizon Communications Inc.) with 

12.68%. 

The idea behind calculating the optimized weights for the minimum variance strategy 

is that we first need to get the number of assets acquired and estimate the weight allocation 

for the different stocks. In the second step, we need to transform the mean weekly returns 

and standard deviation within the in-sample into annual mean returns and standard 

deviation and calculate the covariance within the in-sample period. We assume that each 

stock is initialized with equal weights, and for each stock's asset, we give the qualification 

that the weight is greater than or equal to 0 less than 1, that all the stocks' weights add up 

to 1, and that stocks are not allowed to be sold short. 

The in-sample period of return for minimum variance strategy is shown in Figure 4.4. 

Figure 4. 4 The in-sample period of return for minimum variance strategy 

 

Source：own calculation 
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The in-sample period of wealth for minimum variance strategy is shown in Figure 4.5. 

Figure 4.5 The in-sample period of wealth for minimum variance strategy 

 

Source：own calculation 

According to Figure 4.5, the evolution of the wealth during the in-sample period under 

the minimum variance strategy, the wealth of the portfolio generally increases, increasing 

from an initial wealth of $1 to $1.8762 at the end of the period. The wealth reaches the 

highest value in the sample period, reaching $1.9811 on 21/11/2015.  

The in-sample period of the results of the minimum variance strategy is shown in Table 

4.5. 

Table 4.5 Results of minimum variance strategy 

Mean annualized return 13.16% 

Annualized standard deviation 11.04% 

Final wealth 1.8762 

Sharpe ratio 0.9363 

RoySF ratio 1.0803 

Source: own calculation 

We calculate two performance indicators in a minimum variance strategy. They are the 

Sharpe Ratio and Roy's safety-first Ratio. For the Sharpe ratio, we first calculate the 

portfolio's weekly return and standard deviation and annualize it. The annual return of the 

portfolio is 13.16%, and the annual standard deviation is 11.04%. Based on the U.S. 10-
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year government bond rate, the annual risk-free rate is 2.82%, and the Sharpe ratio under 

the naive strategy is 0.9363. We need to determine the minimum acceptable return (MAR) 

for Roy's safety-first ratio. According to the IMF, the inflation rate we know for the U.S. 

in 2020 and set to MAR at 1.23%. Under a naive strategy, Roy's safe first ratio is 1.0803. 

4.2.3 Maximum Sharpe ratio strategy 

A higher Sharpe ratio essentially signifies a more risk-efficient portfolio. For 

maximum Sharpe ratio strategy, we solve the problem in Figure 3.3. The weights of the 

maximum Sharpe ratio portfolio are shown in Table 4.6. 

Table 4.6 Weights of the maximum Sharpe ratio portfolio 

AAPL 0 INTC 0 

MSFT 0 ADBE 0 

GOOGL 0 QCOM 0 

GOOG 0 TXN 0 

NVDA 0 TMUS 0 

AMZN 0 NFLX 0 

TSLA 0.057 AMGN 0.111 

ASML 0 SNY 0 

AVGO 0.0424 AMD 0 

COST 0.1975 INTU 0 

PEP 0.1286 AMAT 0 

CSCO 0 SBUX 0.2426 

CMCSA 0 CHTR 0.221 

VZ 0 ADP 0 

AZN 0 BKNG 0 

Source: own calculation 

Table 4.6 illustrates the calculation of the optimal allocation weights for each stock in 

a portfolio by maximizing the Sharpe ratio. The highest portfolio weight is COST (Costco 
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Wholesale Corporation) at 19.75%, the second highest portfolio weight is the stock PEP 

(PepsiCo, Inc.) with 12.86%. 

To calculate the optimal weights for maximizing Sharpe, the way to proceed is that we 

start by getting the number of assets acquired to calculate what the weight assignments 

should be for the different stocks. In the next step, we need to transform the weekly 

average returns and standard deviations within the sample into annual mean returns and 

standard deviations and calculate the covariance within the sample. We assume equal 

initialized weights for each stock, and for each stock's assets, the restrictions we give are 

that the weight is greater than or equal to 0 less than 1, that the weights of all stocks add 

up to 1, and that no short selling of stocks is allowed. The in-sample period of return for 

the maximum Sharpe ratio strategy is shown in Figure 4.6. 

Figure 4.6 The in-sample period of return for the maximum Sharpe ratio strategy 

 

Source：own calculation 
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The in-sample period of wealth for maximum Sharpe ratio strategy is shown in 

Figure 4.7. 

Figure 4.7 The in-sample period of wealth for maximum Sharpe ratio strategy  

 

Source：own calculation 

According to Figure 4.7, the evolution of the wealth during the in-sample period under 

the maximum Sharpe ratio strategy, the wealth of the portfolio is generally increase, 

increase from an initial wealth of $1 to $3.1419 at the end of the period. with the wealth 

reach the highest value in the sample reach $3.3918 on 21/11/2015. 

The in-sample period of results of the maximum Sharpe ratio strategy is shown in 

Table 4.7. 

Table 4.7 Results of maximum Sharpe ratio strategy 

Mean annualized return 23.88% 

Annualized standard deviation 14.31% 

Final wealth 3.1419 

Sharpe ratio 1.4718 

RoySF ratio 1.5829 

Source: own calculation 

Two performance metrics are calculated in our maximized Sharpe ratio strategy. They 

are the Sharpe Ratio and Roy's safety-first ratio. For the Sharpe ratio, we first calculate 

the portfolio's weekly return and standard deviation and annualize them. The portfolio 

had an annualized return of 23.88% and an annualized standard deviation of 14.31%. 



47 

 

Based on the U.S. 10-year government bond rate, we obtained an annual risk-free rate of 

2.82% and a Sharpe ratio of 1.4718 under the maximum Sharpe ratio strategy. For Roy's 

safety-first ratio, we need to determine the minimum acceptable rate of return (MAR). 

According to the International Monetary Fund, we know the inflation rate for the U.S. in 

2020, which we set to a MAR of 1.23%. Under a naive strategy, Roy's safe first ratio is 

1.5829. 

 

4.3 The Application of Python for portfolio performance 

measurement in the out-of-sample period 

In this section, we use data from the out-of-sample period to test separately naive 

strategy, minimum variance strategy, and maximum Sharpe ratio strategy. 

4.3.1 Naive strategy 

We suppose that investors have equal weights for each stock and that each asset in the 

portfolio has a weighting factor of 
1

 30
. The out-of-sample of return for the naive strategy 

is shown in Figure 4.8. 

Figure 4.8 The out-of-sample period of return for the naive strategy 

 

Source：own calculation 
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The out-of-sample period of wealth for the naive strategy is shown in Figure 4.9. 

Figure 4.9 The out-of-sample period of wealth path for the naive strategy 

 

Source: own calculation 

According to Figure 4.9, the evolution of the wealth during the out-of-sample period 

under the naive strategy, the wealth of the portfolio generally increases. Still, from 

24/10/2020-7/11/2020, wealth drops significantly. The increase from an initial wealth of 

$1 to $3.0945 at the end of the period. The wealth reaches the highest value out-of-sample 

of $3.0945 on 26/12/2020.  

The out-of-sample period of results of the naive strategy is shown in Table 4.8. 

Table 4.8 Results of naive strategy 

Mean annualized return 24.55% 

Annualized standard deviation 19.86% 

Final wealth 3.0945 

Sharpe ratio 1.0924 

RoySF ratio 1.1743 

Source: own calculation 

In the naive strategy, the mean annualized return is 24.55%, and the annualized 

standard deviation is 19.86 %. We obtain an annual risk-free rate of 2.82% and a Sharpe 

ratio of 1.0924 under a naive strategy based on the U.S. 10-year government bond rate. 

With Roy's safety-first ratio, the minimum acceptable rate of return (MAR) is what we 
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need to determine. Based on IMF data, we know the inflation rate for the U.S. in 2020, 

which we set to a MAR of 1.23%. Under the naive strategy, Roy's safe first ratio is 1.1743. 

4.3.2 Minimum variance strategy 

In this subchapter we analyze the out-of-sample performance of the minimum 

variance portfolio given in Table 4.4. 

Figure 4.10 The out-of-ample period of return for minimum variance strategy 

 

Source：own calculation 

The out-of-sample period of wealth for the minimum variance strategy is shown in 

Figure 4.11. 

Figure 4.11 The out-of-sample period of wealth for minimum variance strategy 

 

Source：own calculation 
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According to Figure 4.11, the evolution of the wealth during the out-of-sample period 

under the minimum variance strategy generally increases the wealth of the portfolio. 

However, from 24/10/2020-7/11/2020, wealth drops significantly. The increase from an 

initial wealth of $1 to $1.837 at the end of the period. The wealth reaches its highest value 

$1.837 on 26/12/2020. The results of the minimum variance strategy in the out-of-sample 

period are shown in Table 4.9. 

Table 4.9 Results of minimum variance strategy  

Mean annualized return 13.88% 

Annualized standard deviation 16.32% 

Final wealth 1.8738 

Sharpe ratio 0.6778 

RoySF ratio 0.7752 

Source: own calculation 

In the minimum variance strategy, the portfolio has an annualized return of 13.88% 

and an annualized standard deviation of 16.32%. Based on the U.S. 10-year Treasury rate, 

we obtain an annual risk-free rate of 2.82% and a Sharpe ratio of 0.6778 under the 

minimum variance strategy. For Roy's safety-first ratio, we need to determine the 

minimum acceptable rate of return (MAR). Based on IMF data, we know the inflation 

rate for the U.S. in 2020, which we set to a MAR of 1.23%. Under minimum variance 

strategy, Roy's safe first ratio is 0.7752. 

4.3.3 Maximum Sharpe ratio strategy 

In this subchapter we analyze the out-of-sample performance of the maximum Sharpe 

ratio portfolio given in Table 4.6. The out-of-sample period of return for maximum Sharpe 

ratio strategy is shown in Figure 4.12. 
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Figure 4.12 The out-of-sample period of return for maximum Sharpe ratio strategy 

 

Source: own calculation 

The out-of-sample period of wealth for maximum Sharpe ratio strategy is shown in 

Figure 4.13. 

Figure 4.13 The out-of-sample period of wealth for maximum Sharpe ratio strategy 

 

Source: own calculation 

According to Figure 4.13, the evolution of the wealth during the out-of-sample period 

under the maximum Sharpe ratio strategy, the wealth of the portfolio generally increases, 

but from 24/10/2020-7/11/2020, there is a significant drop in wealth. The increase from 

an initial wealth of $1 to $2.4017 at the end of the period. The wealth reaches the highest 

value in the sample of $2.4017on 26/12/2020. 

The results of the maximum Sharpe ratio strategy in the out-of-sample period are 

shown in Table 4.10. 
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Table 4.10 Results of maximum Sharpe ratio strategy  

Mean annualized return 19.29% 

Annualized standard deviation 18.89% 

Final wealth 2.4017 

Sharpe ratio 0.8720 

RoySF ratio 0.9526 

Source: own calculation 

In the maximum Sharpe ratio strategy, the portfolio has an annualized return of 19.29% 

and an annualized standard deviation of 18.89%. Based on the U.S. 10-year government 

bond rate, we obtain an annualized risk-free rate of 2.82% and a Sharpe ratio of 0.8720% 

under a naive strategy. For Roy's safety-first ratio, we need to determine the minimum 

acceptable rate of return (MAR). According to the IMF, we know the inflation rate for 

2020 in the U.S., which we set at 1.23% MAR. Under the maximum Sharpe ratio strategy, 

Roy's safe first ratio is 0.9526%.    

                      

4.4 Comparison of the results 

In this part, we compare the results, including the performances in in-sample and out-

of-sample and a comparison of the strategies based on out-of-sample performances. 

4.4.1 Comparison of the performances in in-sample and out-of-sample 

The whole sample period is divided into the in-sample period (1/1/2011-26/12/2015) 

and the out-of-sample period (2/1/2016-26/12/2020). According to naive strategy, 

minimum variance strategy and maximum Sharpe ratio strategy, we first calculate the 

portfolio's weekly return, standard deviation and annualize it. Next, we compute two 

performance indicators. They are the Sharpe ratio and Roy's Safety-First ratio.  
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Table 4.11 Performance of naive strategy in in-sample and out-of-sample 

 
in-sample out-of-sample 

Mean annualized return 15.31% 24.55% 

Annualized standard deviation 16.77% 19.86% 

Final wealth  2.0073 3.0945 

Sharpe ratio 0.7448  1.0942 

RoySF ratio 0.8396  1.1743  

Source: own calculation 

The performance of naive strategy in in-sample and out-of-sample is shown in Table 

4.11. From the table, we can see that in the in-sample period, the portfolio's mean 

annualized return is 15.31%, and the annualized standard deviation is 16.76%. In the out-

of-sample period, the portfolio's mean annualized return is 24.55%, and the annualized 

standard deviation is 18.86%. The performance of out-of-sample mean annualized return 

is better than in-sample, but the performance of annualized standard deviation is worse 

than in-sample, the Sharpe and Roy’s safety-first ratio increases significantly in the out-

of-sample period compared to the in-sample period. A High Sharpe Ratio means that the 

asset has a high ability to diversify and reduce unsystematic risk and has room for 

increasing returns. Roy’s safety-first ratio is very similar to the Sharpe ratio, and the best 

decision for investors is to select a portfolio with the highest Roy’s safety-first ratio. 

Table 4.12 Performance of minimum variance strategy in in-sample and out-of-sample 

 
in-sample out-of-sample 

Mean annualized return 13.16% 13.88% 

Annualized standard deviation 11.04% 16.32% 

Final wealth 1.8762  1.8738 

Sharpe ratio 0.9363  0.6778  

RoySF ratio 1.0803 0.7752  

Source: own calculation 
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The performance of the minimum variance strategy in in-sample and out-of-sample is 

shown in Table 4.12. From the table, it can be seen that the minimum variance strategy in 

the in-sample period, the portfolio's mean annualized return is 13.16%, and the annualized 

standard deviation is 11.04 %. In the out-of-sample period, the portfolio's mean 

annualized return is 13.88%, and the annualized standard deviation is 16.32%. We can 

find that the performance of out-of-sample mean annualized return is better than in-

sample, but the annualized standard deviation is worse than in-sample. In the minimum 

variance strategy, the Sharpe ratio and Roy’s safety-first ratio of the in-sample portfolios 

perform better than the out-of-sample ones, which means that the performance of the 

minimum variance strategy worsen in the out-of-sample period. 

Table 4.13 Performance of max Sharpe ratio strategy in in-sample and out-of-sample 

 
in-sample out-of-sample 

Mean annualized return 23.88% 19.29% 

Annualized standard deviation 14.31% 18.89% 

Final wealth 3.1419 2.4017 

Sharpe ratio 1.4718 0.8720 

RoySF ratio 1.5829 0.9562 

Source：own calculation 

The performance of the maximum Sharpe ratio strategy in in-sample and out-of-

sample is shown in Table 4.13. From the table, it can be seen that in the maximum Sharpe 

ratio strategy in the in-sample period, the portfolio's mean annualized return is 23.88%, 

and the annualized standard deviation is 14.31 %. In the out-of-sample period, the 

portfolio's mean annualized return is 19.29%, and the annualized standard deviation is 

18.89%. We can find that the performance of out-of-sample annualized standard deviation 

and mean annualized return are worse than in-sample. In the maximum Sharpe ratio 

strategy, the Sharpe ratio and Roy’s safety-first ratio of the in-sample period perform 

better than the out-of-sample ones, which means that the performance of the maximum 

Sharpe ratio strategy worsen in the out-of-sample period. 
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4.4.2 Comparison of the strategies based on out-of-sample performances 

The performance of three strategies in out-of-sample period is shown in Table 4.14. 

Table 4.14 Performance of three strategies in out-of-sample 

 
Naive strategy Minimum 

variance strategy 

Maximum Sharpe 

ratio strategy 

Mean annualized return 24.55% 13.88%  19.29% 

Annualized standard 

deviation 

19.86% 16.32% 18.89% 

Final wealth 3.0945 1.8738 2.4017 

Sharpe ratio 1.0942 0.6778 0.8720 

RoySF ratio 1.1743 0.7752  0.9562 

Source：own calculation 

From Table 4.14, we can see that the naive strategy has the highest Sharpe ratio and 

Roy’s safety-first ratio, and the second highest ranking is the maximum Sharpe ratio 

strategy. Moreover, the naive strategy has the highest mean annualized return and final 

wealth. Although the annualized standard deviation of the naive strategy is the highest, it 

is not much higher compared to the other strategies. So, if we should choose from these 

three strategies, the naive strategy is the best.  
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5 Conclusion  

Portfolio optimization determines the optimal combination of weights associated with 

the financial assets held in the portfolio. This thesis uses Python software to analyze 

portfolio optimization based on the naive strategy, the minimum variance strategy, and 

the maximum Sharpe ratio strategy. We selected thirty stocks in the NASDAQ Composite 

Index in the last ten years. The entire sample period is divided into an in-sample period 

(1/1/2011-26/12/2015) and an out-of-sample period (2/1/2016-26/12/2020), and the best 

portfolio is selected by evaluating the performance of each portfolio over the different 

periods. 

For the naive strategy, in the in-sample period, the portfolio's mean annualized return 

is 15.31%, and the annualized standard deviation is 16.76%. In the out-of-sample period, 

the portfolio's mean annualized return is 24.55%, and the annualized standard deviation 

is 19.86%. We can find that the performance of out-of-sample mean annualized return is 

better than in-sample, but the performance of annualized standard deviation is worse than 

in-sample. The Sharpe ratio and Roy's safety-first ratio also increases significantly in the 

out-of-sample period compared to the in-sample period. 

For the minimum variance strategy and maximum Sharpe ratio strategy, the Sharpe 

ratio and Roy’s safety-first ratio of the in-sample period perform better than the out-of-

sample ones, which means that the performance in the out-of-sample period is worse than 

in the in-sample period. This is caused mainly by higher standard deviation of returns in 

the out-of-sample period and in case of maximum Sharpe ratio strategy also by the lower 

mean annualized returns in the out-of-sample period compared to the in-sample period. 

Among the three strategies, the naive strategy has the highest Sharpe ratio and Roy's 

safety-first ratio in the out-of-sample period, and the second-ranked strategy is the 

maximum Sharpe ratio strategy. Furthermore, the naive strategy has the best performance 

in mean annualized return and final wealth. Although the annualized standard deviation 

of the naive strategy is the highest, it is not much higher compared to the other strategies. 

The higher Sharpe ratio indicates a higher reward per unit of risk and the more desirable 

the investment vehicle is. The optimal decision for investors is to choose the investment 

portfolio with the highest Sharpe ratio and Roy's safety-first ratio. Considering all 

performance metrics, as in our 30 stocks, the naive strategy is sound and arguably the 

best, and asset allocation through this model is a good choice.  
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Abbreviations 

CAGR Compound Annual Growth Rate 

CML           Capital market line 

MAR          Minimum acceptable rate of return 

MDD           Maximum downturn 

MPT            Modern portfolio theory 

SFRatio  Roy's safety-first ratio 

Std            Standard deviation 

 

Variables 

𝑃𝑡            Asset’s price 

𝑅𝑃,𝑡 Rate of return 

𝑅𝑃,𝑡 Return of the portfolio 

𝑅𝑓 Risk-free rate 

𝑅𝑡              Return 

𝑤𝑖,𝑡 Weights of assets in the portfolio 

𝑤𝑖   Weights of each stock 

𝑥𝐹 Share of the riskless asset in the portfolio 

𝑥𝑖 The weight to invest in asset 𝑖 in a portfolio 

𝜎𝑝   Standard deviation 

𝜎𝑝
2 Variance of the portfolio return 

𝐸(𝑅) Vector of expected returns 

𝑄 Covariance matrix 

𝑟 Ex-post observed returns 

𝑤 Vector of weights 
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Annex B： 

Correlation matrix between assets 
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AAPL 1,00 0,29 0,39 0,40 0,36 0,37 0,23 0,29 0,45 0,35 0,07 0,28 0,35 0,18 0,28 0,38 0,30 0,42 0,45 0,13 0,14 0,15 0,27 0,32 0,31 0,41 0,39 0,22 0,39 0,41 

MSFT 0,29 1,00 0,42 0,43 0,45 0,36 0,27 0,35 0,39 0,34 0,34 0,47 0,45 0,39 0,26 0,51 0,38 0,42 0,53 0,14 0,27 0,31 0,33 0,29 0,42 0,48 0,44 0,19 0,58 0,38 

GOOGL 0,39 0,42 1,00 1,00 0,40 0,52 0,28 0,31 0,36 0,36 0,26 0,35 0,40 0,39 0,25 0,40 0,40 0,42 0,36 0,22 0,30 0,33 0,33 0,25 0,41 0,32 0,38 0,25 0,48 0,47 

GOOG 0,40 0,43 1,00 1,00 0,40 0,52 0,27 0,31 0,37 0,36 0,26 0,35 0,40 0,39 0,25 0,41 0,39 0,42 0,38 0,22 0,30 0,33 0,32 0,26 0,42 0,32 0,38 0,25 0,49 0,47 

NVDA 0,36 0,45 0,40 0,40 1,00 0,33 0,30 0,48 0,52 0,38 0,19 0,46 0,41 0,26 0,22 0,51 0,45 0,49 0,65 0,21 0,24 0,29 0,31 0,50 0,40 0,58 0,32 0,18 0,50 0,39 

AMZN 0,37 0,36 0,52 0,52 0,33 1,00 0,32 0,38 0,42 0,38 0,23 0,32 0,42 0,27 0,26 0,36 0,44 0,40 0,40 0,19 0,24 0,31 0,33 0,27 0,45 0,41 0,43 0,25 0,48 0,51 

TSLA 0,23 0,27 0,28 0,27 0,30 0,32 1,00 0,30 0,32 0,16 0,04 0,27 0,21 0,16 0,18 0,27 0,30 0,29 0,30 0,27 0,24 0,18 0,19 0,30 0,24 0,29 0,31 0,23 0,25 0,36 

ASML 0,29 0,35 0,31 0,31 0,48 0,38 0,30 1,00 0,45 0,31 0,17 0,38 0,39 0,27 0,30 0,44 0,41 0,47 0,55 0,22 0,18 0,32 0,43 0,41 0,40 0,61 0,40 0,22 0,47 0,41 

AVGO 0,45 0,39 0,36 0,37 0,52 0,42 0,32 0,45 1,00 0,32 0,14 0,39 0,40 0,27 0,30 0,52 0,40 0,54 0,64 0,34 0,16 0,27 0,27 0,40 0,45 0,55 0,39 0,25 0,50 0,43 

COST 0,35 0,34 0,36 0,36 0,38 0,38 0,16 0,31 0,32 1,00 0,47 0,34 0,51 0,44 0,27 0,37 0,38 0,34 0,42 0,18 0,14 0,39 0,36 0,31 0,43 0,39 0,35 0,32 0,58 0,31 

PEP 0,07 0,34 0,26 0,26 0,19 0,23 0,04 0,17 0,14 0,47 1,00 0,35 0,34 0,51 0,25 0,37 0,28 0,31 0,34 0,10 0,06 0,42 0,39 0,16 0,36 0,24 0,24 0,22 0,56 0,22 

CSCO 0,28 0,47 0,35 0,35 0,46 0,32 0,27 0,38 0,39 0,34 0,35 1,00 0,40 0,28 0,23 0,46 0,39 0,41 0,55 0,19 0,16 0,27 0,37 0,36 0,39 0,50 0,39 0,08 0,56 0,34 

CMCSA 0,35 0,45 0,40 0,40 0,41 0,42 0,21 0,39 0,40 0,51 0,34 0,40 1,00 0,40 0,34 0,45 0,46 0,48 0,52 0,26 0,16 0,39 0,43 0,32 0,52 0,49 0,37 0,47 0,61 0,38 

VZ 0,18 0,39 0,39 0,39 0,26 0,27 0,16 0,27 0,27 0,44 0,51 0,28 0,40 1,00 0,26 0,37 0,29 0,33 0,36 0,20 0,06 0,44 0,41 0,16 0,38 0,32 0,27 0,28 0,57 0,24 

AZN 0,28 0,26 0,25 0,25 0,22 0,26 0,18 0,30 0,30 0,27 0,25 0,23 0,34 0,26 1,00 0,27 0,31 0,25 0,34 0,25 0,18 0,40 0,39 0,24 0,28 0,35 0,27 0,32 0,39 0,22 

INTC 0,38 0,51 0,40 0,41 0,51 0,36 0,27 0,44 0,52 0,37 0,37 0,46 0,45 0,37 0,27 1,00 0,41 0,53 0,64 0,17 0,15 0,36 0,36 0,47 0,43 0,53 0,34 0,21 0,58 0,38 

ADBE 0,30 0,38 0,40 0,39 0,45 0,44 0,30 0,41 0,40 0,38 0,28 0,39 0,46 0,29 0,31 0,41 1,00 0,47 0,54 0,18 0,21 0,35 0,40 0,33 0,54 0,49 0,40 0,30 0,56 0,43 

QCOM 0,42 0,42 0,42 0,42 0,49 0,40 0,29 0,47 0,54 0,34 0,31 0,41 0,48 0,33 0,25 0,53 0,47 1,00 0,63 0,25 0,18 0,32 0,35 0,36 0,48 0,52 0,36 0,36 0,56 0,53 

TXN 0,45 0,53 0,36 0,38 0,65 0,40 0,30 0,55 0,64 0,42 0,34 0,55 0,52 0,36 0,34 0,64 0,54 0,63 1,00 0,23 0,25 0,39 0,38 0,51 0,53 0,70 0,46 0,27 0,66 0,42 

TMUS 0,13 0,14 0,22 0,22 0,21 0,19 0,27 0,22 0,34 0,18 0,10 0,19 0,26 0,20 0,25 0,17 0,18 0,25 0,23 1,00 0,12 0,22 0,24 0,15 0,23 0,26 0,17 0,29 0,29 0,15 

NFLX 0,14 0,27 0,30 0,30 0,24 0,24 0,24 0,18 0,16 0,14 0,06 0,16 0,16 0,06 0,18 0,15 0,21 0,18 0,25 0,12 1,00 0,15 0,09 0,16 0,15 0,22 0,30 0,16 0,20 0,31 

AMGN 0,15 0,31 0,33 0,33 0,29 0,31 0,18 0,32 0,27 0,39 0,42 0,27 0,39 0,44 0,40 0,36 0,35 0,32 0,39 0,22 0,15 1,00 0,34 0,20 0,41 0,32 0,26 0,23 0,54 0,31 

SNY 0,27 0,33 0,33 0,32 0,31 0,33 0,19 0,43 0,27 0,36 0,39 0,37 0,43 0,41 0,39 0,36 0,40 0,35 0,38 0,24 0,09 0,34 1,00 0,29 0,40 0,39 0,27 0,20 0,48 0,34 

AMD 0,32 0,29 0,25 0,26 0,50 0,27 0,30 0,41 0,40 0,31 0,16 0,36 0,32 0,16 0,24 0,47 0,33 0,36 0,51 0,15 0,16 0,20 0,29 1,00 0,32 0,52 0,31 0,20 0,41 0,39 

INTU 0,31 0,42 0,41 0,42 0,40 0,45 0,24 0,40 0,45 0,43 0,36 0,39 0,52 0,38 0,28 0,43 0,54 0,48 0,53 0,23 0,15 0,41 0,40 0,32 1,00 0,46 0,42 0,25 0,60 0,45 
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AMAT 0,41 0,48 0,32 0,32 0,58 0,41 0,29 0,61 0,55 0,39 0,24 0,50 0,49 0,32 0,35 0,53 0,49 0,52 0,70 0,26 0,22 0,32 0,39 0,52 0,46 1,00 0,37 0,27 0,56 0,39 

SBUX 0,39 0,44 0,38 0,38 0,32 0,43 0,31 0,40 0,39 0,35 0,24 0,39 0,37 0,27 0,27 0,34 0,40 0,36 0,46 0,17 0,30 0,26 0,27 0,31 0,42 0,37 1,00 0,19 0,46 0,43 

CHTR 0,22 0,19 0,25 0,25 0,18 0,25 0,23 0,22 0,25 0,32 0,22 0,08 0,47 0,28 0,32 0,21 0,30 0,36 0,27 0,29 0,16 0,23 0,20 0,20 0,25 0,27 0,19 1,00 0,34 0,18 

ADP 0,39 0,58 0,48 0,49 0,50 0,48 0,25 0,47 0,50 0,58 0,56 0,56 0,61 0,57 0,39 0,58 0,56 0,56 0,66 0,29 0,20 0,54 0,48 0,41 0,60 0,56 0,46 0,34 1,00 0,45 

BKNG 0,41 0,38 0,47 0,47 0,39 0,51 0,36 0,41 0,43 0,31 0,22 0,34 0,38 0,24 0,22 0,38 0,43 0,53 0,42 0,15 0,31 0,31 0,34 0,39 0,45 0,39 0,43 0,18 0,45 1,00 

  


