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ABSTRACT 

MACHINE LEARNING AS TOOL AND THEORY FOR COMPUTATIONAL 

NEUROSCIENCE 

Ari S. Benjamin 

Konrad P. Kording 

 
Computational neuroscience is in the midst of constructing a new framework for 

understanding the brain based on the ideas and methods of machine learning. This is 

effort has been encouraged, in part, by recent advances in neural network models. It is 

also driven by a recognition of the complexity of neural computation and the challenges 

that this poses for neuroscience’s methods. In this dissertation, I first work to describe 

these problems of complexity that have prompted a shift in focus. In particular, I develop 

machine learning tools for neurophysiology that help test whether tuning curves and other 

statistical models in fact capture the meaning of neural activity. Then, taking up a machine 

learning framework for understanding, I consider theories about how neural computation 

emerges from experience. Specifically, I develop hypotheses about the potential learning 

objectives of sensory plasticity, the potential learning algorithms in the brain, and finally 

the consequences for sensory representations of learning with such algorithms. These 

hypotheses pull from advances in several areas of machine learning, including 

optimization, representation learning, and deep learning theory. Each of these subfields 

has insights for neuroscience, offering up links for a chain of knowledge about how we 

learn and think. Together, this dissertation helps to further an understanding of the brain 

in the lens of machine learning.  
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Chapter 1: Introduction 

Neural network models are playsets for a young neuroscience. They are simpler arenas 

in which to grow and to theorize. They allow neuroscience to apply its paradigms and, with 

complete access and control, see what can be learned.  

Neural networks embody a commitment to understanding the brain in the lens of its 

function. For this aim, it helps to have some knowledge of what it takes to engineer that 

function. For example, the organization of spider silk might be understood by how it 

supplies strength to keep its shape, lightness to reduce its weight, and toughness to resist 

a break, which are all concepts of mechanical engineering (Keten, Xu, Ihle, & Buehler, 

2010). Similarly, the way in which the brain learns may be best understood with the 

concepts of the engineering of learning machines.  

Machine learning provides neuroscience with a language and set of ideas for 

formalizing learning (Marblestone, Wayne, & Kording). This includes knowledge about 

the obstacles that make learning from experience difficult. These problems have been 

solved, somehow, by evolution. Finding nature’s solutions to the problems of learning (as 

defined by machine learning) is a higher-level, more normative approach than is 

traditional in neuroscience. It does not begin from synaptic plasticity, for example. 

Instead, this approach describes what is necessary of learning in the abstract and what this 

means for hypotheses of learning in the brain. 

A focus on neural networks also represents an embrace of complexity. In artificial 

intelligence, the desired programs (for example, successfully playing Go at super-human 

levels) are often too complex to be listed as a set of human-intelligible rules. The 

engineering solution is to instead design a training regimen for a neural network and let a 

computation emerge. Recently, some in computational neuroscience have argued to 

similarly shift the focus of research away from describing computations and instead focus 

on the processes by which they arise (Richards et al., 2019). These many be easier to 

discover and describe at an abstract level, assuming the right theoretical language is used. 
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This shift has its roots in an old controversy in neuroscience. How complex is neural 

computation, exactly, and what does this mean about how we, as neuroscientists, should 

understand it? In sensory processing and in particular the neurophysiology of early vision 

(long a model for neuroscience practice), neural computation has been argued to be both 

too complex for common methods (Bruno A Olshausen & Field, 2005) and within reach 

(Rust & Movshon, 2005). Time has not resolved the argument, although new methods as 

well as arguments from machine learning are now adding weight to complexity’s side 

(Cadena et al., 2019; Lillicrap & Kording, 2019). This dissertation begins with two studies 

that add to this ongoing and field-wide debate. Specifically, these introduce tools that 

evaluate the success of techniques for understanding neural responses, paying particular 

attention to the neurophysiology of vision. These studies provide a grounding for a broader 

discussion about which methods for understanding neural computation are likely to be 

fruitful. 

This dissertation is organized into two sections. Section 1 discusses complexity within 

the practice of neurophysiology. These studies center the use of machine learning 

techniques as tools. Section 2 deals with neural network models of learning and 

perception. This work is situated between artificial intelligence and neuroscience, and 

asks, broadly, how these disciplines can mutually benefit.  

Section 1: Neurophysiology practice and the complexity of 

sensory cortex  

What is the meaning of the activity of single neurons in the visual cortex? This question 

has been the subject of some of the most intense and dedicated study in all of neuroscience. 

In the tradition of Hubel and Wiesel, a predominant approach has been to present visual 

stimuli to animals while electrically recording the activity of neurons, and then to describe 

a model (conceptual or mathematical) that describes when neurons typically fire. This 

approach has been successful in revealing many unexpected aspects about what happens 

during vision, and it remains a mainstay of the perceptual neurosciences.  

Arguably the central difficulty for single-neuron neurophysiology that one only records 

the responses to the select stimuli shown in the experiment. One cannot show all possible 
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stimuli. From these concrete instances, the challenge is to extract an understanding that 

is more general. This perennial problem for the sciences (and epistemology, no less) 

carries precise meaning for neurophysiology. Given some observations, one should say 

something about the response to different stimuli than those shown. Models and 

descriptions necessarily generalize from limited instances. 

Most critiques of typical methods for neurophysiology are critiques of an 

overgeneralization of experimental results that create a misleading or false picture of 

neural function. In their “neurophysiology” of a microprocessor, for example, Jonas & 

Kording illustrate such overgeneralization in practice (Jonas & Kording, 2017). After 

observing that the voltage of a transistor correlates with an action in a video game, one 

could overgeneralize to say that the transistor’s “role” is to encode that action. This is an 

extrapolation and, in this case, an incorrect one. Olshausen & Field have also highlighted 

problems of overgeneralization in the study of V1 responses (Bruno A Olshausen & Field, 

2005, 2006). They argue that experiments are systematically biased towards certain 

inputs (simple and artificial stimuli) as well as certain neurons (those with high firing rates 

on those stimuli), which results in failures when generalizing to other contexts. In light of 

these critiques, the onus lies with neurophysiology to establish exactly how far our models 

generalize, or in other words, to prove that an experiment does in fact establish the 

meaning of neural activity. 

Statisticians and epistemologists alike recognize that generalizing from limited 

experience requires assumptions. What are the assumptions of typical approaches in 

neurophysiology? How might these assumptions be empirically verified? The concrete aim 

of Section 1 is to introduce tools for verification for neurophysiologists that quantify how 

much a model will generalize. The two sets of methods that I will focus on are tuning 

curves and more broadly encoding models.  

Chapter 2: Tuning curves 

A tuning curve characterizes whether or not a neuron is “tuned for” a variable 

describing the sensory world, like a tuning fork might be tuned for a particular acoustic 

frequency. Tuning curves clearly have meaning with regards to the stimuli and responses 
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from which they were constructed, but what meaning do they have about how the brain 

processes other stimuli? Often, the interpretation is quite general. If a neuron responds 

strongly to certain orientations of a bar of light, it might be said to encode whether that 

orientation is present in its receptive field (in general). If this interpretation is taken, it 

implies a strong assumption about the meaning of neural activity in other contexts.  

In Chapter 2, I present a method that allows testing the assumption that tuning curves 

generalize beyond the laboratory context. Specifically, this is a method to estimate tuning 

from responses in more complicated contexts, and in particular naturalistic stimuli. This 

technique was demonstrated in a collaboration with Prof. Matthew Smith of Carnegie 

Mellon University for tuning to hue in macaque area V4. By testing for a change of tuning 

with context, one can assess whether this description of activity is a correct generalization 

from responses to laboratory stimuli. 

Chapter 3: Encoding models 

Tuning curves are just one type of encoding model, statistical models for describing a 

neural response in terms of the stimulus. An encoding model takes as its central metaphor 

the idea of a “neural code”, that activity is like a cipher for sensory information (Aljadeff, 

Lansdell, Fairhall, & Kleinfeld, 2016; Rieke, Warland, Van Steveninck, & Bialek, 1999). 

Whereas tuning curves are built by directly tabulating the stimulus/response function, 

encoding models may also be obtained by fitting regression models. Different assumptions 

can be made depending on the form of the regression. Most often neurophysiologists select 

models by considering ease of use, interpretability, and the quantitative success of fitting 

neural activity. 

In Chapter 3, I describe a method that can verify that the assumptions embedded in 

an encoding model are well-suited for the neurons in question. This approach is simple in 

principle: apply the methods and techniques of black-box machine learning to predict 

neural activity, and then take this predictive ability as a performance benchmark for 

simpler, hypothesis-driven statistical models. This approach circumvents some of the 

drawbacks of other standard verification methods, such as repeating a stimulus multiple 
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times to establish the noise level. If performance is near the benchmark, one can be more 

confidence that a statistical description of neural activity is an accurate one. 

Summary 

Tuning curves and encoding models make assumptions about neural activity in other 

contexts. These assumptions are necessary but must be verified in order to be trusted. 

Each project in Section 1 introduces a tool for such a verification as well as demonstrations 

on recordings of single neurons in macaque cortex.  

Such verifications provide an opportunity for an honest evaluation of encoding models 

in future experiments, and also inform a broader discussion about encoding models and 

their interpretation. In general, given a new tuning curve or encoding model of cortical 

activity, how much should a neurophysiologist that summarizes a general computation? 

This is a generalization of past experiments to future, unperformed experiments. Since 

even generalizations about generalizations require assumptions, neuroscience must 

consider arguments for the likely form and complexity of sensory processing.  

Outlook: how might we understand an artificial neural network? 

Neurophysiology ought to be easy in artificial neural networks (ANNs). There are no 

unobserved confounds like attention or neuromodulation. All nodes are perfectly visible 

and there are no hidden variables. How well might a neurophysiologist succeed at parsing 

the meaning of units in these networks? 

This is not purely hypothetical; many in artificial intelligence have attempted such a 

thing. Scientists have ported over methods such as tuning curves to see what might be 

illuminated (Goh et al., 2021). New methods have also been developed, such as visualizing 

the stimuli that maximally excite a specific unit or layer (Olah, Mordvintsev, & Schubert, 

2017). Yet, while these methods give an intuitive understand of how ANNs work, it has 

become clear that one cannot use them to predict how an ANN will classify and respond 

to new inputs.  
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It is a concerning possibility that the extraordinary complexity of computation in large 

artificial networks may evade a complete understanding. If one measures complexity by 

how much information would be required to describe how a system works, any description 

would need to be extraordinarily lengthy and, perhaps, too lengthy for a human to 

internalize (Lillicrap & Kording, 2019). New concepts and theories might help break down 

and package these computations, but at the moment it is clear that we do not currently 

have the tools to understand how ANNs ‘see’ their inputs and come to their decisions. 

Section 2: Learning and its consequences 

Complex systems can emerge from simple rules. Recently, some in computational 

neuroscience have argued to shift the focus away from the computations performed in the 

brain and towards how they are learned (Lillicrap & Kording, 2019; Richards et al., 2019). 

Proponents of this shift often argue that in ANNs, the emergent computation is much more 

difficult to understand than the factors set by the practitioner – the architecture, the 

learning objective, and the learning algorithm. The same may be true of brains. Rather 

than deconstructing the computation of networks, this effort seeks to understand how they 

learn and to what ends. It is a ‘deep learning framework’ for neuroscience.  

A deep learning framework is not an effort to map the components of modern deep 

learning systems onto the brain. Rather, it means adopting a computational language 

developed by machine learning and statistical learning theory – disciplines that are 

concerned with describing learning and learnability in the abstract. This rich language has 

enormous potential to help understand how brains learn and how this shapes the meaning 

of neural activity. 

In Section 2 of this dissertation, I embrace this approach to understanding the brain 

in the course of three chapters. These projects each use deep learning models and theory 

in order to reason about learning in the brain. Each takes up one of the following 

questions: what are potential learning objectives for sensory cortex? What are potential 

learning algorithms? And what are the sensory consequences for having learned with 

such algorithms?  
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A learning objective: representation learning 

One of the core concepts in a learning framework is the objective or goal of learning. 

This is a teleological interpretation of neuronal plasticity. Much of this dissertation focuses 

on perception. What is the objective of plasticity in sensory cortex?  

In Chapter 5, I examine the hypothesis that the sensory cortex aims to form internal 

representations of the external world. This objective of representation learning is central 

concept in neuroscience (though not without critique (Baker, Lansdell, & Kording, 2021; 

Brette, 2019)). As commonly defined, representations are transformations of sensory data 

into forms that are more useful to an organism. Good representations might highlight the 

true organizing principles of the world (Kersten, Mamassian, & Yuille, 2004) or encode 

information as best as possible while using minimal energy (Barlow, 1961). In this broad 

frame, the goal of sensory learning is to form useful representations. 

Representations are also key concept in machine learning. There, many works have 

attempted to formalize how to produce useful representations. One popular approach 

imagines that good sensory systems first create a model of the sensory world, and then 

infer the representations in that model that explain sensory data (Yuille & Kersten, 2006). 

Perception might be like a video-game rendering engine with representations of the 

lighting, materials, and objects that best explain a visual scene; a ‘simulation in the mind’ 

(Ullman, Spelke, Battaglia, & Tenenbaum, 2017). Many different types of models are 

possible, making this a general and flexible way to describe representations.  

What would be required if the brain learns representations in this way? In this 

Chapter, I aim to characterize the specific problems that this introduces for neural circuits. 

I then develop theories about possible solutions that may be taken by sensory cortex. These 

theories draw from machine learning techniques for representation learning, but are 

adapted so as to serve as biological hypotheses. The goal is to evaluate whether this class 

of objectives is a candidate for a description of the objective of sensory learning. 

A learning algorithm: improving upon gradient descent 
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A learning algorithm is a set of rules prescribing how a system ought to change over 

time. A deep learning framework for neuroscience aims to build a computational 

understanding of the brain’s learning algorithms, abstracted from the level of synaptic 

plasticity and its cellular implementation. Because this effort is in its infancy, a crucial first 

step is to identify and understand the candidate algorithms. 

Chapter 6 represents a foray into the fields of deep learning optimization and deep 

learning theory. These fields have identified algorithms that work well on deep learning 

systems, and then sought to understand why they work. The baseline algorithm is gradient 

descent, in which all parameters change proportional to their effect upon the output. Yet 

in deep learning, almost all papers now use different algorithms that, in practice, produce 

better networks with less training data. This chapter discusses a theoretical perspective on 

algorithms that improve upon gradient descent, and then uses this to derive a new 

algorithm for learning.  

Of all that machine learning has to offer a neuroscience of learning, perhaps the most 

important is simply a recognition of how difficult and unlikely learning really is. Like 

scientists pulling general knowledge from limited experiments, learning systems must pull 

generalities from limited experience. This requires making assumptions (David H. 

Wolpert & Macready, 1997). In deep learning systems, the assumptions come as much 

from the learning algorithm as the constraints of the system itself (Zhang, Bengio, Hardt, 

Recht, & Vinyals, 2021). Somehow, on certain problems, learning algorithms ‘choose’ to 

learn knowledge that generalizes well. The network, algorithm, and data conspire together 

for effective learning. Since the brain, too, has a staggering amount of plastic parameters, 

the theories that describe why ANNs generalize are likely to be useful for describing why 

we learn so effectively, too.  

The sensory consequences of learning algorithms 

A deep learning framework does not require abandoning a study of responses for a 

study of objectives and algorithms. Understanding learning may be the best ways to gain 

insight about responses, as well. This requires that bridges be built between neuroscience 

and deep learning theory. 



 
 

 9 

An important lesson of deep learning is that the learning algorithm leaves permanent 

traces upon the network and the function it implements. The algorithm is not an incidental 

and ultimately ignorable process. The traces left by are learning are in fact so important 

that useful learning in large neural networks is not possible without them (Zhang et al., 

2021). These traces are the bias of the learning algorithm, which are effectively 

assumptions about what is important to learn. As mentioned in the previous section, such 

assumptions are necessary for learning. Neural network representations thus must carry 

the imprint of algorithms that generalize well from limited data.  

This perspective is new to neuroscience. Usually, when explaining why neural 

representations take one form or another, neuroscience reaches to normative explanations 

and describes how the adult representation is optimal in some sense. A hypothesis of this 

flavor is that sensory representations minimize the number of spikes required to encode 

external information because of evolutionary pressure on energy usage (Bruno A. 

Olshausen & Field, 1996; Rao & Ballard, 1999). Though pressures like this certainly exist, 

there also exists an evolutionary pressure to learn effectively as an infant. Explaining adult 

representations via their emergence from effective learning algorithms introduces a new 

type of explanation, this time referencing machine learning theory. 

In Chapter 7, I show how such ideas can explain a set of findings in psychophysics and 

neurophysiology about sensory representations. In humans and other animals, sensory 

systems tend to better encode the features of the world that are more common, especially 

for low-level features like orientation and color (Wei & Stocker, 2017). In information 

theory, such a strategy represents an efficient code – a code that makes best use of a 

channel with limited capacity. In a collaboration with the lab of Alan Stocker, we use 

artificial neural networks as model systems to demonstrate that gradient descent learning 

naturally results in efficient codes, as well.  

Learning in the brain is unlikely to be gradient descent, precisely, but a similar 

principle is likely to be in play. As the algorithms of sensory learning come into focus for 

neuroscience, it will be interesting to describe how these shape what our brains choose to 

learn from experience. 
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Summary and outlook 

To understand neural computation, a learning framework looks to its source. Yet, like 

computation, learning can be understood at many levels. A deep learning or machine 

learning framework for neuroscience aims for a high-level, normative understanding in 

terms able to be abstracted from the brain’s implementation. 

The projects in this dissertation endeavor to use modern theories of machine learning 

to advance neuroscience. Along the way they engage with a number of leading theories of 

sensory processing, asking, always, how might these be learned? To find answers, I pull 

ideas from multiple subfields of artificial intelligence, from optimization to generative 

adversarial networks to deep learning theory. These machine learning perspectives offer 

new types of explanations and predictions for neuroscience. 
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Structure of this dissertation 

This dissertation is unusual in its scope. Its chapters span multiple subfields of 

neuroscience and artificial intelligence. To unite these works into one dissertation, each 

chapter begins with a brief Foreword that provides a more general contextualization.  

Machine learning plays several distinct roles in this dissertation. In a review published 

in Progress in Neurobiology1, my co-authors and I described four categories of ways in 

which machine learning can assist neuroscience. These four roles are described in 

(Interlude) The Four Roles of Supervised Machine Learning in Systems Neuroscience: 

• Role 1: to help create solutions to engineering problems.  

• Role 2: to help in identifying variables that are predictive of something, like neural 

activity or disease.  

• Role 3: to set benchmarks for simple models of the brain. 

• Role 4: to itself serve as a model for understanding the brain.  

In the Foreword to each chapter, I mention which of these four categories that chapter 

best represents.  

Each chapter represents work that has been published in a peer-reviewed journal or is 

available online as a preprint. The list of publications can be found following the 

conclusion.

 
 
1 Glaser, Joshua I.*, Ari S. Benjamin*, Roozbeh Farhoodi*, and Konrad P. Kording. “The roles of 
supervised machine learning in systems neuroscience”. Progress in neurobiology. 2019 Apr 
1;175:126-37. 
* denotes co-first authorship 
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Chapter 2: Hue tuning curves in V4 change with 

visual context 

Foreword 

A common method of investigating visual cortex is to characterize whether neurons 

are ‘tuned’ to visual features. How much does this approach tell us a neuron’s general role 

in vision?  

Tuning curves allow generalizing from stimuli by making assumptions about 

responses to unseen stimuli. One key assumption is that the encoded parameter (e.g. 

orientation) affects activity in a similar way on many stimuli. One way to verify such a 

claim is to measure tuning in other contexts. If tuning describes a general role in 

processing, it should generalize to stimuli not presented.  

This chapter provides a method to establish how far a tuning curve might generalize. 

It is an example of Role 1: machine learning as an engineering tool for neuroscience. 

One way to confirm this assumption is to measure tuning in other contexts. In vision, 

the context of natural scenes is the ethologically relevant one, but it is difficult to measure 

tuning on natural scenes because each image is different in many ways (not just the tuning 

curve’s feature). The nonlinearity of the cortical response also complicates this effort. 

Here, we developed a method to estimate tuning despite these difficulties. This can help 

to establish how far a tuning curve might generalize.  

This chapter is reproduced from a paper available online as a preprint2 and is currently 

in peer review. It was been presented as a poster at the Bernstein Conference for 

Computational Neuroscience in 2019 and the Conference of Cognitive Computational 

Neuroscience in 2017.   

 
 
2 Benjamin, Ari S., Pavan Ramkumar, Hugo Fernandes, Matthew A. Smith, and Konrad Paul 
Kording. "Hue tuning curves in V4 change with visual context." bioRxiv (2020): 780478. 
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Abstract 

Neurons are often characterized by tuning curves estimated from responses to 

a set of artificial stimuli. A critical question for any tuning curve is how much 

tuning measured with one stimulus set reveals about tuning to a new set. Here 

we ask this question for neurons in macaque V4 by estimating tuning to hue 

from a set of natural scene stimuli and again from a set of simple color stimuli. 

We found that hue tuning was strong in each dataset but was not correlated 

across the datasets. This is expected if neurons have strong mixed selectivity. 

We also show how such mixed selectivity may be useful for transmitting 

information about multiple dimensions of the world. Our findings emphasize 

the importance of confirming empirically that tuning curves in higher sensory 

areas generalize to naturalistic stimuli. 

Introduction 

Neurophysiology has long investigated the visual cortex by asking how its various 

areas encode the visual world. In order to simplify experimental design, the majority of 

early work constructed stimuli sets in which only a few key visual parameters varied. By 

then observing which areas show corresponding changes in neural activity, the visual 

cortex can be described in terms of the variables for which neurons are highly tuned. This 

program has been successful in characterizing how the response properties of neurons in 

the ventral stream ascend in complexity. V1 is discussed as responding to “edge-detecting” 

Gabor filters (Carandini et al., 2005), V2 to variations in local curvature (Hegdé & Van 

Essen, 2003), V4 to more complex shapes (Pasupathy & Connor, 2001), and IT to specific 

objects and faces (Hung, Kreiman, Poggio, & DiCarlo, 2005), which together have inspired 

the theory that object recognition proceeds via hierarchical image representations 

(Connor, Brincat, & Pasupathy, 2007; Logothetis & Sheinberg, 1996). 

In recent decades there has been a greater interest in understanding how much the 

response to simple, parameterized stimuli is informative about how the cortex encodes 

naturalistic stimuli. In addition to representing a field-wide shift towards ethology and 

natural paradigms, this question pertains to how much tuning curves estimated from 
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artificial stimuli are good models of neurons’ general functional role in visual processing. 

If tuning varies widely and unpredictably with context, the knowledge gained from 

simplified stimuli would be unique and particular to the tested stimuli alone. It is therefore 

critical to test how much tuning inferred from simplified stimuli is informative of tuning 

for more complicated stimuli. 

In principle, such a question could be asked by steadily increasing the number of 

stimulus parameters that are varied until the complexity of stimuli approaches that of 

natural scenes. The original tuning curve could then be appreciated in the context of all 

others, and all interactions with other variables characterized. However, this approach is 

prohibitive because the number of stimuli required to be displayed scales exponentially 

with the number of parameters varied. Any practical experiment of this type would need 

to leave many potential parameters unvaried.  

An alternative paradigm is to characterize neurons directly from their responses to 

natural images by regressing models of the visual response (David & Gallant, 2005; David, 

Vinje, & Gallant, 2004; Felsen & Dan, 2005; Simoncelli & Olshausen, 2001; Touryan, 

Felsen, & Dan, 2005; Vinje & Gallant, 2000). This is made possible by constraining what 

visual encodings are possible. For early areas, scientists often fit rather simple encoding 

models such as linear or linear-nonlinear models. This has revealed that some aspects of 

the V1 response are different for natural images (David et al., 2004), which limits the 

utility of characterizing artificial stimuli responses (David & Gallant, 2005; Bruno A 

Olshausen & Field, 2006). For higher areas, however, a regression methodology has not 

yet allowed such a comparison. In this work we focus on area V4. While the response of 

V4 to natural scenes been studied (Cowley, Williamson, Clemens, Smith, & Byron, 2017; 

Gallant, Connor, & Van Essen, 1998; Mazer & Gallant, 2003; T. O. Sharpee, Kouh, & 

Reynolds, 2013; Yamins et al., 2014), most knowledge about the tuning of V4 has derived 

from parameterized stimuli sets (reviewed in (Roe et al., 2012)). The increased complexity 

of the V4 response makes a regression approach more difficult, yet it also increases the 

chances that tuning curves may misrepresent the role of neurons in processing.  

Our goal in this work is to develop a methodology to compare tuning between artificial 

and natural contexts and to discuss the implications of context-dependence. We 
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specifically focus on tuning to hue, as this has previously been shown to strongly modulate 

V4 neurons yet has previously been studied by displaying simple colored shapes (Bohon, 

Hermann, Hansen, & Conway, 2016; Conway, Moeller, & Tsao, 2007; Conway & Tsao, 

2009; Li, Liu, Juusola, & Tang, 2014; Tanigawa, Lu, & Roe, 2010). Since some degree of 

context-dependence may be expected for hue but the exact degree is difficult to predict, 

this provides an important demonstration. Using a progression of encoding models, 

including one based on a deep artificial network pretrained to classify images (Yamins et 

al., 2014), we estimated the hue tuning curves of neurons from their responses to natural 

scenes and then again by varying the hue of simple stimuli. Overall we found that, although 

hue strongly modulates the V4 response, the tuning curves estimated from responses to 

stimuli of a single hue poorly described how hue affected responses to natural scenes. To 

interpret this finding we show how such mixed selectivity may be useful for information 

transmission. 

Materials and Methods 

Experimental setup: recordings 

We recorded from 96-electrode Utah arrays (1.0 mm electrode length) implanted in 

visual area V4. At the time of the experiment, Monkey 1 (M1) was aged 5 years, 10 months 

and Monkey 2 (M2) was aged 9 years, 4 months. Surgical details describing the 

implantation method can be found in previous publications. The array was located in the 

left hemisphere for monkey M1 and in the right hemisphere for M2. Spikes were sorted 

off-line first with an automated clustering procedure (Shoham, Fellows, & Normann, 

2003) and then refined by hand using MATLAB software taking into account waveform 

shape and interspike interval distributions (Kelly et al., 2007).  

All experimental procedures were approved by the Institutional Animal Care and Use 

Committee of the University of Pittsburgh. 

Artificial stimuli 

Both monkeys viewed uniform images of a single hue on a computer screen at 36 cm 

distance, with a resolution of 1024x768 pixels and a refresh rate of 100 Hz on a 21” cathode 
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ray tube display. We found that full-field hues elicited strong and selective responses from 

a majority of neurons (see Results). The hues were sampled from the hue wheel in CIELUV 

color space (calculated with a D65 standard illuminant and standard observer) at 

increments of 1 degree and at a chromaticity ensured to lie in the RGB gamut, and were 

presented in random sequence. Monkey M1 freely viewed the stimuli, and was rewarded 

periodically for maintaining eye position on the screen for 4 seconds, after which time the 

static image was refreshed. The trial was ended if the monkey looked beyond the screen 

during this duration. Monkey M2 was trained to fixate a small dot at the center of the 

screen for 0.3 seconds, during which three images were flashed for 100ms each. A 0.5 

second blank period interspersed each fixation. Monkey 1 viewed 7,173 samples of the 

uniform hue stimuli over 10 sessions, while Monkey 2 viewed 1,119 samples during a single 

session. The full monitor subtended 55.5 degrees of visual angle horizontally and 43.1 

degrees vertically. The monitor was calibrated to linearize the relationship between input 

luminance and output voltage using a lookup table. This calibration was performed for 

grayscale images, and the color profile of the monitor was not separately calibrated.  

Natural images 

Both monkeys viewed samples from a dataset of 551 natural images, obtained from a 

custom-made Google Images web crawler that searched and downloaded images based on 

keywords such as cities, animals, birds, buildings, sports, etc. Monkey M1 viewed images 

over 15 separate sessions, for a total of 77961 fixations. Monkey M2 viewed images over 

two sessions on a single day, for a total of 6713 fixations.  We then extracted the features 

from the image patch centered around each fixation that would serve as model inputs. The 

image patch around fixation corresponded to the 400 x 400 pixel block surrounding the 

center of gaze. This corresponds to a region 23.5 visual degrees on a side. 

Gaze tracking and fixation segmentation 

We employed a free-viewing paradigm for one monkey (M1) and a fixed-gaze paradigm 

for the other (M2). The location of each monkey’s gaze on the screen was tracked with an 

Eyelink 1000 infrared tracker (SR Research, Ottawa, Ontario, Canada). Visual stimuli 

were presented and the experimental trials were controlled by custom MATLAB software 
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in conjunction with the Psychophysics Toolbox (Brainard & Vision, 1997). For monkey M1, 

we segmented each fixation as a separate event based on thresholding the position and 

velocity of the gaze coordinates. We did not analyze activity occurring during eye 

movements. Once each fixation was separated, the average location of the fixation was 

recorded and matched to image coordinates. Monkey M2 was trained to fixate on a dot 

positioned at the center of each image. The gaze was tracked as for M1, but this time only 

to enforce fixation and terminate the trial if the gaze shifted away from center. 

Session concatenation 

Although all recordings in M1 were performed with the same implanted Utah array, 

they were recorded over several sessions. The recordings for M2 were made in a single 

session. In M1, this introduced the possibility that the array might have drifted, and that 

a single channel might have recorded separate neurons in different sessions. To address 

this possibility, we noted that spikes identified in a channel in one session will be less 

predictive of another session’s activity if the neurons are not the same, as we expect tuning 

to be relatively static across days (Bondar, Leopold, Richmond, Victor, & Logothetis, 

2009; McMahon, Jones, Bondar, & Leopold, 2014). We thus filtered out neurons whose 

uniform hue tuning changed across sessions. We trained a gradient boosting regression 

model with Poisson targets to predict spike counts in response to the hue of the stimuli. 

Nuisance parameters, such as duration of stimulus, gaze position, inter-trial interval, etc., 

were also included as model covariates to increase the predictive power even for neurons 

that were not hue-tuned. We then labeled a neuron as having static tuning as follows. First, 

we trained the model on each single session in a 8-fold cross-validation procedure and 

recorded the mean pseudo-R2 score. This score reflected how well the model could predict 

held-out trials on the same session. Then, we re-trained the model on each session and 

predicted on a different session, for all pairs of sessions. This resulted in a cross-prediction 

matrix with diagonal terms representing same session predictability (the 8-fold CV score), 

and off-diagonal terms representing generalization between sessions. We did not 

concatenate sessions if hue tuning estimated in one session could not predict hue 

responses in another session (i.e. the CV pseudo-R2 score was less than 0). 



 

 19 

The natural image sessions were interspersed with the artificial sessions. If a natural 

image session occurred between two artificial sessions, and a neuron showed static tuning 

both artificial sessions as identified in the above manner, then that natural image session 

was included for the hue tuning comparison and model fitting. The recordings of units 

from other natural image sessions were not used. This procedure improved our confidence 

that the neurons recorded in different sessions were the same. 

Uniform hue tuning curve estimation 

Hue tuning curves were built for each neuron by plotting its spike rate on each fixation 

against the observed hue. Spike rates were calculated from activity 50ms after fixation 

onset until 300ms or fixation offset, whichever came first. For the visualizations in the 

figures, we performed LOWESS smoothing, in which each point of the curve is given by a 

locally-weighted linear regression model of a fraction of the data. The error envelope of 

the curve represents the 95% confidence interval given by bootstrapping over individual 

fixations. To calculate the correlation between tuning curves, we did not correlate the 

LOWESS-smoothed curves but rather the simple binned averages. We created 16 bins of 

hues and calculated the average spike rate for all stimulus presentations of those hues, 

then correlated the 16-dimensional tuning curve vector with the natural image tuning 

curves. 

To see how well simple tuning could explain the V4 response, we interpreted these 

tuning curves as models of the natural image (presented in Results in Figure 2B). This was 

a linear model whose coefficients are set from the uniform field tuning curve. Prediction 

was performed such that an image patch that was all a single color would result in a 

prediction that was the firing rate observed in the uniform field condition, and mixtures 

of colors would predict linear combinations of the corresponding observed firing rates. 

More precisely, the predicted firing rate was a dot product of the tuning curve with the 

(normalized) hue histogram. To extract these hue histograms from image patches, we 

calculated the hue angle of each pixel in the receptive field during a given stimulus 

presentation (see Receptive Field estimation below) in CIELUV space. We then binned 

these hues into histograms with 16 bins of hues, and these histograms served as the 
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representation of hue input to the model. The final predicted response was then added to 

a constant term to account for the difference in mean firing rate across contexts. 

Natural scene models 

We fit several models of the V4 response to natural scenes. Each of the models 

described below differs in the form of the encoding and the manner by which hue tuning 

curves are reconstructed. 

Hue models 

Our first model describes neural activity as a function of the hues present in the 

receptive field on each fixation. We used the same extraction of hues as above: we 

calculated the hue of pixels in the receptive field in CIELUV and binned these hues into 

histograms with 16 bins of hues. Since the hue histograms have 16 bins, the base regression 

problem to describe neural activity from hue is 16-dimensional.  

As additional controls we included as covariates a small number of features unrelated 

to the images. To account for possible stimulus adaption, we included the trial number in 

the session and also the number of times the monkey previously fixated on that image. 

While all models predict the spike rate, which is already normalized by the fixation 

duration, we included the fixation duration as an input to control for possible 

nonlinearities of rate with fixation duration. We also included the duration of the saccade 

previous to the current fixation, the duration of the saccade after fixation, the location of 

the fixation, the maximum displacement of the gaze position during the entire duration of 

the fixation, and whether the pupil tracking was lost (often due to a blink) in the saccade 

before or after fixation. Including these inputs allowed the nonlinear methods to control 

for factors which also may affect spike rate. 

For our nonlinear model, we selected the machine learning method of gradient 

boosted decision trees as implemented by XGBoost, an open-source Python package 

(Chen & Guestrin, 2016b). This method allows a Poisson loss function and has previously 

been shown to be effective in describing neural responses (Benjamin et al., 2018). Briefly, 

XGBoost trains multiple decision trees in sequence, with each trained on the errors of the 
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previous trees. We chose several regularization parameters using Bayesian optimization 

for a single neuron. These parameters included the number of trees to train (200), the 

maximum depth of each decision tree (3), the data subsampling ratio (0.5), the minimum 

gain (0.3), and the learning rate (0.08). The generalized linear model (GLM) presented in 

Extended Data Fig. 3-1 was a linear-nonlinear model with an exponential link function 

and a Poisson loss. We included elastic net regularization, and selected the regularization 

coefficient for each neuron using cross-validation with k=8 folds in an inner loop in the 

outer cross-validation for model scoring (see Model Scoring and Cross-Validation). We 

implemented this with the R package r-glmnet (J. Friedman, Hastie, & Tibshirani, 2010).  

To build tuning curves from hue model we predicted the response to a vector indicating 

which color was present (that is, a “one-hot” vector with one entry per bin of hues that is 

all zeros except for the hue that is present). Then, to estimate the measurement error of 

the tuning curves, we refit the models to the original neural responses resampled with 

replacement (see Calculation of Error Bound). This resulted in tuning curves from 

hundreds of bootstrapped model fits. In figures in which we display the tuning curves, the 

lower and upper error bounds represent the 5th and 95th percentiles of the tuning curves 

observed when refitting the models to the resampled data. 

CNN model 

Our convolutional neural network (CNN) encoding model was based on findings that 

the intermediate layers of pretrained networks are highly predictive of V4 responses 

(Yamins et al., 2014). Ours was built from the VGG16 network, which is a large 

convolutional network trained to classify the images from the ImageNet dataset 

(Simonyan & Zisserman, 2014). It contains 13 convolutional layers and 3 fully connected 

layers. We built an encoding model for each neuron from the activations of layer 14 (the 

first fully-connected layer), which we found to have the highest predictive power in 

conjunction with a nonlinear readout. We did not modify or refit this CNN to predict 

neural responses. Instead, we ran nonlinear Poisson regression (XGBoost) to predict each 

neuron’s response to an image from the values of layer 14 when the VGG network was 

given the same image. The final model thus takes a fixation image as input, runs the image 

through 14 layers of the VGG16 CNN, and then through a trained instance of XGBoost to 
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predict the spike rate of a neuron. We call the combination of the CNN model and the 

trained XGBoost for each neuron the “CNN model”. 

The CNN model could then be used to build tuning curves. We conceptualized this as 

extracting the average first-order effect of hue upon the responses of this model to natural 

images. We perform the following cross-validated procedure for each of 8 bins of hues. 

First, we train the CNN model (i.e. train the XGBoost regressor) on the training set of the 

natural image dataset. We then modify the test set images by slightly desaturating all 

pixels whose hue lies within the current hue bin. The bins were chosen to be large (8 in 

instead of 16) to so as to be less affected by pixel noise and to speed computation. We 

desaturated by multiplicatively reducing the chroma of colors in LUV color space, the 

same color space in which we define hue, by a certain factor. For robustness, we modified 

images at each of many desaturation levels, ranging from 5% to 100% of their original 

chroma. We then obtained the predictions of the CNN model to the original test set and 

also for each modified, desaturated test set, and take the average difference of these two 

predictions across all images. This process is repeated in an 8-fold cross-validation 

procedure, so that each image serves as the test set once. The resulting series of average 

differences can be plotted against the desaturation. The slope of this line represents the 

average first-order contribution of that bin of hues to the images in the dataset. Note that 

the value of slope reflects the scale the x-axis, which represents the parameterization of 

the desaturation percentage. It is best to think of the units of slope as arbitrary; the 

important result is the relative value of the slope between hues. Finally, the process was 

repeated for each bin of hues, resulting in the tuning curve to hue. 

We sought to validate this procedure on simulated data (Extended Data Fig. 4-1). One 

important aspect is that predictions are made on images that are as close to the 

distribution of images in the training set as possible. Since images in which a single bin of 

hues are desaturated by 5% are visually indistinguishable from the originals, this is not 

likely to be a concern. Nevertheless, we observed whether this method would be able to 

reconstruct the hue tuning of simulated neurons. We constructed 20 simulated neurons 

that responded linearly to the hues present in a receptive field. Each neuron was cosine 

tuned with a randomly selected hue angle. Linear regression could perfectly reconstruct 
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the hue tuning of these simulated neurons, as expected. The CNN method could also 

reconstruct the tuning curves, though less well than linear regression. If linear tuning 

curves do exist, then, the CNN method would be able to reconstruct them. 

Receptive field estimation 

To estimate hue tuning on natural scenes with the hue models, we needed to know 

which hues were present within the RF on each fixation. We mapped the RFs by presenting 

sinusoidal gratings at four orientations, which were flashed sequentially at the vertices of 

a lattice covering a portion of the visual field suggested by anatomical location of the 

implant. For monkey 1, this procedure identified an average RF over neurons in the 

implant of 5.87° in diameter (full-width at half-maximum) centered 8.94° below and 4.99° 

to the right of fixation, whereas for M2 we found an average RF 7.02° wide centered 7.02° 

below and 7.02° to the left of fixation. The location of the RFs were confirmed in the 

natural scene presentations as the pixel block that allowed the best predictions on held-

out trials. For the hue model analyses, on each fixation we obtained the model inputs by 

extracting the hues present in the 50x50 pixel block (2.93º of visual angle on a side) 

surrounding the centroid of the RFs of each monkey.  

We did not use this RF information in the CNN model, which took as input the entire 

image region around the fixation. Since information about spatial location preserved in 

the lower and intermediate layers of the CNN, the RF for any neuron can be learned. This 

addressed any worry that our conclusions are dependent upon the RF specification in the 

two hue models, and as well that the RF specification might systematically change for 

natural images. 

Model scoring and cross validation:  

We quantified how well the regression methods described neural responses by 

calculating the pseudo-R2 score. This scoring function is applicable to Poisson processes, 

unlike a standard R2 score (Cameron & Windmeijer, 1997). The pseudo-R2 was calculated 

in terms of the log likelihood of the true neural activity 𝐿(𝑦), the log likelihood of the 

predicted output 𝐿(�̂�), and the log likelihood of the data under the mean firing rate 𝐿(𝑦). 
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𝑅2 = 1 −
log 𝐿(𝑦) − log 𝐿(�̂�)

log 𝐿(𝑦) − log 𝐿(𝑦)
=  

log 𝐿(�̂�) − log 𝐿(𝑦)

log 𝐿(𝑦) − log 𝐿(𝑦)
 

The pseudo-R2 is, at left, one minus the ratio of the deviance of the tested model to the 

deviance of the null model. It can be also be seen, at right, as the fraction of the maximum 

potential log-likelihood. It takes a value of 0 when the data is as likely under the tested 

model as the mean rate, and a value of 1 when the tested model perfectly describes the 

data.  

We used 8-fold cross-validation (CV) when assigning a final score to the models. The 

input and spike data were segmented randomly by fixation into eight equal partitions. The 

methods were trained on seven partitions and tested on the eighth, and this was repeated 

until all segments served as the test partition once. We report the mean of the eight scores.  

If the monkey fixated on a single image more than once, all fixations were placed into the 

same partition. This ensures that the test set contains only images that were not used to 

train the model.  

Calculation of error bounds 

Each estimate of a tuning curve represents, in essence, a summary statistic of noisy 

data. To estimate error bounds on tuning curves, we relied on the nonparametric method 

of bootstrapping across trials, or for summary statistics of the entire neural population, 

additionally bootstrapping across neurons. Since the uniform field hue tuning curves used 

for correlations were simple averages of spike rates, binned over hue, we bootstrapped 

across trials to compute the confidence intervals. The natural scene tuning curves for the 

nonlinear hue model represented the predicted response to single hues. For these 

methods, we computed uncertainty bounds on their predictions to single hues by 

retraining the methods on resampled datasets (with replacement) and selecting the 5th and 

95th percentiles of the predicted output for each bin. For the CNN method, the tuning 

curves were calculated from linear fits of the difference in test set predictions as a function 

of hue bin desaturation. The difference in predictions was noisy across images, with large 

changes predicted for some images but small changes predicted for other images. This 
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noise presented as uncertainty in the linear fit to the data. The error on the CNN tuning 

curve, then, represented the uncertainty in the linear fit to the test set predictions.  

The uncertainty on each of the tuning curves was then propagated into the correlation 

between the natural scene and uniform field tuning curves. This was again done through 

bootstrapping. For a given natural scene/uniform field correlation, we correlated the 

natural scene and uniform field tuning curves from hundreds of model fits upon 

resampled data, yielding a large distribution of correlations. We then reported the mean, 

5th, and 95th percentiles of this distribution. The uncertainty of the mean across neurons 

included a bootstrap across the trials used to build the tuning curves for each neuron, 

followed by a bootstrap across neurons. 

Normative analysis of mixed selectivity 

When neurons are nonlinearly selective for mixtures of a feature with others (a 

situation leading to tuning changing with context) they are said to have nonlinear mixed 

selectivity. Nonlinear mixed selectivity has previously been argued to be advantageous 

because it increases the dimensionality of the space of possible neural responses, which 

allows a greater diversity of linear readouts for downstream tasks (Rigotti et al., 2013). 

Here we look to the optimal coding literature to find an alternative, more general 

justification. Our findings are summarized in Results.     

A well-studied notion of optimality is that of Fisher efficient coding. In this framework 

the neural code is optimized to increase the Fisher Information it contains about the 

features of stimuli that are important for behavior. Denoting  these features as 𝜽 =

{𝜃1, 𝜃2, … , 𝜃𝑀}, and the population activity of N neurons 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑁}, the Fisher 

Information is a matrix defined elementwise as: 

𝐹(𝜃)𝑖,𝑗 = ⟨(
𝜕

𝜕𝜃𝑖
ln 𝑝(𝒙|𝜃𝑖)) ⋅ (

𝜕

𝜕𝜃𝑗
ln 𝑝(𝒙|𝜃𝑗))⟩

𝒙

. 

Here ⟨⋅⟩𝒙 denotes the expectation over 𝒙 given sources of noise. The Fisher Information 

is intuitively similar to the sensitivity of a representation across all neurons to a given 
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dimension and value of 𝜽. We will ask what representations maximize the Fisher 

Information about all M encoded features. 

Maximizing Fisher Information is a good measure of optimality because it describes 

how well any optimized decoder can read out the features 𝜽 from the response 𝒙. Note that 

this normative reason is the potential quality of the readout, rather than the overall 

number of potential linear readouts as in the work of (Rigotti et al., 2013). Following the 

literature on optimal coding of neural populations (N. Brunel & J. P. Nadal, 1998; Seung 

& Sompolinsky, 1993; Z. Wang, Stocker, & Lee, 2012), the decoding error can be bounded 

with the Cramer-Rao inequality (Seung & Sompolinsky, 1993): 

⟨(𝜽 − �̂�)
2

⟩ ≥ 𝑡𝑟(𝑭(𝜽)−1). 

This states that the reconstruction error is lower-bounded by the trace of the inverse 

of the Fisher Information of the neural population with respect to 𝜽. By this metric, larger 

Fisher Information matrices allow lower error. The key question is then whether mixed 

selectivity increases the Fisher Information of the response. 

Our analysis focuses on the case of neurons that fire with a mean rate 𝑓(𝜽) with 

additional independent Poisson noise. In this case the Fisher Information is a sum over 

neurons (Zhuo Wang, Stocker, & Lee, 2013): 

𝐹(𝜽) = ∑ 𝑓𝑖(𝜽)−1

𝑁

𝑖

∇θ𝑓𝑖(𝜽) ∇θ𝑓𝑖(𝜽)𝑇 . 

To show that mixed selectivity is advantageous in this setting, we will show that Fisher 

Information is larger (as measured by the trace) when neurons respond to mixtures of 

features rather than code for only one feature. Our approach rests on the fact that neurons 

with Poisson noise have lower variance at lower firing rates. We find that mixed selectivity 

is better in this setting because many neurons can participate in coding, rather than 

waiting in silence for their single feature, and because distributed coding allow lower firing 

rates for the same sensitivity.  
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Let the spike rates for the aligned response (one feature per neuron) be denoted as 

𝑓(𝜽). A random rotation of this response is 𝑅𝑓(𝜽), where 𝑅 is a random rotation matrix. 

We can additionally restrict R to those rotations that preserve positivity of the resultant 

spike rates. Since we have assumed that neurons fire with independent Poisson noise, the 

Fisher Information of this mixture is 

𝐹𝑀(𝜽) = ∑
1

𝑟𝑖𝑓(𝜽)

𝑁

𝑖

∇θ𝑟𝑖𝑓(𝜽) (∇θ𝑟𝑖𝑓(𝜽))𝑇 . 

Here 𝑟𝑖 is the corresponding row of the mixing matrix. In this case the trace of the 

Fisher Information (our measure of coding quality) is:  

tr𝐹𝑀(𝜽) = ∑
1

𝑟𝑖𝑓(𝜽)
tr

𝑁

𝑖

(∇θ𝑟𝑖𝑓(𝜽) (∇θ𝑟𝑖𝑓(𝜽))𝑇). 

To ask if the rotation improves coding, we can ask if either of the two terms in the 

summand increase or decrease, on average. This is an approximation but useful for 

intuition. First, we find that the average of the right term does not change. This can be 

seen via the linearity of the trace and derivative and the cyclic property of the trace,  

∑ tr(∇θ𝑟𝑖𝑓(𝜽) (∇θ𝑟𝑖𝑓(𝜽))𝑇)𝑖 =  ∑ tr(𝑟𝑖∇θ𝑓(𝜽) (∇θ𝑓(𝜽))𝑇𝑟𝑖
𝑇)𝑖 =

tr(∇θ𝑓(𝜽) (∇θ𝑓(𝜽))𝑇 ∑ (𝑟𝑖
𝑇𝑟𝑖)𝑖 ). Since R is a rotation, 𝑅𝑅𝑇 = 𝐼, and the average reduces to 

its value absent a rotation, tr(∇θ𝑓(𝜽) (∇θ𝑓(𝜽))𝑇). Thus, only the average of the scalar term 

due to Poisson noise 
1

𝑟𝑖𝑓(𝜽)
 is affected by the rotation.  

The average value of 
1

𝑟𝑖𝑓(𝜽)
 depends on the sparsity of the response. The Fisher 

Information is affected only by active neurons, of which there are some number L. We can 

approximate the average in the unrotated population with 
1

𝑁
∑  

1

𝑓𝑖(𝜽)𝑖 ≈
𝐿

𝑁𝑓𝑡𝑦𝑝
 where 𝑓𝑡𝑦𝑝 is 

the typical firing rate of the L active neurons. This will increase for any random rotation 

with a probability that increases with the number of neurons because the typical firing rate 

is almost certain to decrease with a rotation. In fact, the dot product of a random vector 

such as 𝑟𝑖 with a fixed vector 𝑓(𝜽) concentrates around 0 in high dimensions. One way to 
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see this is to imagine that the average firing rate over all neurons does not change after a 

rotation. This means the average rate of active neurons falls from 𝑓𝑡𝑦𝑝 to 
𝐿 𝑓𝑡𝑦𝑝

𝑁
 in the 

rotated population. Because the average firing rate of active neurons decreases, the 

variance of Poisson noise is smaller and the resulting population Fisher Information is 

higher. 

Thus, the Fisher Information is larger when the response utilizes all Poisson neurons 

at small firing rates, as in the rotated response, than when the response is concentrated 

on a sparse subset, as when each neuron codes for one feature. This makes coding for 

single visual features a disadvantageous strategy.  

Results 

We recorded the spike rates of neurons in area V4 of two macaques as they viewed 

images on a monitor. One monkey (M1) freely viewed images as we tracked its gaze, while 

the gaze of the second monkey (M2) was fixed at image center during image presentation. 

We analyzed the responses of 90 neurons in M1 over several viewing sessions, taking care 

that the identity of cells on each electrode did not drift across sessions (see Methods: 

Session Concatenation), and in M2 recorded from 80 neurons in a single session. We then 

estimated tuning curves from responses to both artificial and naturalistic stimuli in order 

to ask if and how hue tuning generalizes. 

Tuning to hue on uniform screens 

We first measured hue tuning by varying the hue of a uniform flat screen (Fig. 1A). We 

found that most of our neurons were well-tuned to specific hues, consistent with the 

previous literature on hue tuning in V4 (Conway et al., 2007; Li et al., 2014; Tanigawa et 

al., 2010). Neurons’ strong selectivity for hues evenly tiled the hue circle (Fig. 1C). We 

characterized the degree of modulation with hue with the Modulation Index, calculated as 

the peak-to-peak range of the mean-normalized tuning curve (Fig. 1D). We also 

characterized our ability to estimate tuning by correlating the two tuning curves estimated 

on each half of the trials, selected randomly and bootstrapped for confidence bounds. The 

confidence interval of this correlation was usually high and excluded zero for 79/90 of 
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neurons in M1 (Fig. 1C), but only for 17/80 neurons in M2 (Fig. 5A). A general trend across 

analyses was that neurons in M2 were more poorly described by hue than the neurons in 

M1. This difference in monkeys was possibly due to the spatial heterogeneity of color 

responses in V4 (Conway et al., 2007; Tanigawa et al., 2010). In later analyses, we 

compared the hue tuning of neurons only when we could reliably estimate tuning. Thus, 

the placement of our electrodes in M1 and M2 identified neurons that, as characterized by 

stimuli of a single hue, appeared to robustly encode the hue of stimuli. 

 

Figure 2-1: 

Tuning curves estimated from responses to artificial stimuli. Data from M1; see Fig. 5 for M2. A) 
We recorded from neurons in area V4 as a monkey viewed fields of a uniform hue and examined 
the average evoked spike rate 50-300ms after presentation. B) The uniform hue tuning curves for 
two example neurons, showing strong hue modulation, here displayed with LOWESS smoothing of 
trial responses. C) Most neurons modulated their activity strongly with hue. Here the unsmoothed 
tuning curves (mean rate in each bin of hues) are displayed normalized by per-neuron mean firing 
rate for comparison. D) The degree of hue tuning can be characterized with a Modulation Index, 
which is the difference in min and max of the tuning curve after normalization. The two example 
neurons of panel B are marked in orange. E) Our ability to reliably estimate hue tuning was 
captured by correlating the tuning curve estimated on one half of the trials with the tuning curve 
estimated on the other half. This correlation would be 1 in the no-noise or infinite-data condition, 
and if the 95% confidence bounds from bootstrapping include zero we cannot reliably estimate 
tuning. 
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If these tuning curves capture how these neurons encode hue, these tuning curves 

should predict responses to other types of stimuli. For example, we might expect that if a 

neuron preferred uniform fields of orange hue, then that neuron would on average have 

higher firing rates for scenes containing predominantly orange hues. To test this, we 

displayed natural images in alternating sessions to the same monkeys (Fig. 2A). We found 

that the tuning curves were not at all informative of the natural image response. 

Specifically, we asked how well uniform hue tuning curves could predict natural scene 

responses by interpreting the curves as the coefficients of a linear response to hue, and 

then scoring this model (see Methods). Our scoring method is a pseudo-R2 score which 

behaves roughly like an R2 but is valid on data with Poisson noise. Scores of 1 indicate 

perfect prediction, scores of 0 indicate the mean firing rate is an equally good predictor, 

and negative scores indicate the mean rate is a better predictor of firing than the model. 

Of all but one neuron, the uniform field tuning curves predict natural responses with a 

negative pseudo-R2 (Fig. 2B). Thus, neurons tuned for a certain color presented in 

isolation did not on average fire more when that color was present in natural scenes.  

These observations can be explained if the hue tuning curves themselves are different 

between two contexts. Alternatively these neurons could respond more strongly to non-

hue features that co-vary within natural images, like the visual texture of typically green 

plants. To distinguish these two possibilities, we next estimated tuning to hue directly 

from the responses to natural images and compared it with uniform hue tuning. 

Figure 2-2 

 

Figure 2: A) We displayed a large set of natural images to the same monkeys in interspersed 
sessions. Neurons fired at similar rates in these sessions as during presentations of a single hue. 
B) The hue-tuning on uniform hues (Fig. 1) can be treated as the coefficients of a linear model to 
predict neural responses to natural scenes, and scored. hue tuning on the artificial hue stimuli 
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could not predict any variance in the natural scene responses. This is Displayed here is the 
histogram of the Poisson pseudo-R2 goodness-of-fit scores of the tuning curves’ predictions, 
which is below zero when the predictions underperform the mean firing rate. C) The tuning 
curves’ low predictive utility is exemplified in the disparity between the stimuli that they 
predicted strong responses for (e.g. the most red), and the stimuli that actually elicited the 
strongest responses, which were consistently of different hues. 

Tuning to hue estimated from natural scenes 

To investigate if hue tuning changes in the context of natural images, we directly 

regressed the contribution of hue to the neural response using two separate models. These 

models are of varying complexity and nonlinearity. Collectively they control for other 

visual features that drive V4 neurons, including interactions between hues, and rule out 

the possibility that visual confounds could explain the discrepancy between uniform field 

hue tuning and natural scene hue tuning. 

Figure 2-3 

 

Figure 3. Tuning curves for hue estimated from the responses to natural images. 
Data from M1; see Fig. 5 for M2. A) We trained a nonlinear model with Poisson output to predict 
each neuron’s response from the hues present in its receptive field during the natural scene 
sessions. B) (i) The 9 trials that each model predicted to have highest firing rate looked similar 
to trials with the actual strongest response, unlike the uniform hue model. (ii) We built tuning 
curves from the model by observing its response to a single hue. The uncertainty of each curve is 
given by the 5th and 95th percentiles of hundreds of model fits to the trials resampled with 
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replacement. (iii) This uncertainty is then propagated into the correlation between the uniform 
hue tuning curves and natural scene tuning curves. C) Tuning curves across all neurons (resorted 
by hue tuning in this condition). D) The peaks of these tuning curves plotted against the peaks 
of the tuning curves in the uniform hue condition show no circular correlation across neurons, 
p=0.82. E) The correlations of the natural scene and the uniform hue tuning curves on each 
neuron (as shown in B(ii) and (iii)) show this is not an artifact due to multiple peaks in tuning 
curves. The neurons are sorted by their correlation to show a cumulative distribution. The two 
example neurons are highlighted in orange. Below: The smoothed density of all neurons’ natural 
scene/uniform hue correlations is similar to what would be expected if neurons randomly 
shuffled hue tuning between conditions (overlaid, blue). Also overlaid (in pink) is the control 
distribution of how the correlations might appear if tuning were the same across stimuli, which 
is limited by neural noise and finite trials. This is estimated conservatively by correlating tuning 
estimated from one half of the natural scene trials with the tuning estimated on the other half.  

Nonlinear model with hue as an input feature 

We first modeled natural image responses as a nonlinear function of the hues present 

in the receptive field of neurons during each fixation (Fig. 3A) plus control features to 

account for effects such as adaptation. This model, which we refer to as the ‘nonlinear hue 

model’, predicted neural activity during natural scenes quite accurately for neurons in 

both monkeys (Extended Data Fig. 3-1). We fit a nonlinear model because nonlinear hue 

interactions have been previously observed in V4 (Kusunoki, Moutoussis, & Zeki, 2006), 

which would lead to a bias in a generalized linear model (GLM) because hues are 

correlated in natural scenes (Fig. 3-1 A). Indeed, the nonlinear model was much more 

accurate than a GLM fit to predict spike rates using hues of natural images (Fig 3-1 B,C). 

This approach to estimating hue tuning directly regresses the response to bins of hues in 

natural images. 

We estimated hue tuning curves for the nonlinear hue by measuring its responses to 

single hues, in essence reproducing the uniform hue experiment but on the natural scene 

model. These tuning curves showed clear preference for small ranges of hues (Fig. 3C). We 

quantified our ability to estimate hue tuning in two ways. First, we repeatedly refit the 

model on the natural scene trials resampled with replacement, and observed the 

distribution of coefficients (Fig. 3Bii). This distribution was propagated through to later 

analyses such as the correlation between a neuron’s hue tuning estimated in either stimuli 

set. Secondly, we visualized how high the correlation of hue tuning across conditions 

would have appeared if tuning were the same in both contexts, given all sources of noise 
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and measurement error. This we estimated by comparing the hue tuning curves from two 

non-overlapping halves of natural scene trials (Extended Data Fig. 2-1). Note that this 

split-trial control is a conservative lower bound of our quality of estimation, as the model 

was fit on only half the number of trials. By this measure, the nonlinear hue model was 

able to consistently estimate hue tuning for the most neurons in M1 (Fig 2-1 A, see also 

Fig. 3E) but for just two neurons in M2 (Fig. 5 D-F), which prevented a statistical analysis 

in M2. These estimates of uncertainty serve as a baseline limit of how well we can observe 

changes in hue tuning.  

We compared the tuning curves across stimulus sets for neurons for which we could 

consistently estimate hue tuning. The peaks of the tuning curves did not show any 

correlation across neurons (Fig. 3D; circular correlation of -0.02, unable to reject the 

uncorrelated hypothesis with p=0.82). In addition, the shapes of the tuning curves did not 

correlate between conditions (Fig. 3E). If hue affected V4 responses in the same way in 

both contexts, we would have observed the correlations between tuning curves across 

contexts to be at least as positive as the split-trial control. This was not the case. In M1, the 

natural scene/uniform field tuning curve correlations were significantly lower than these 

split-trial correlations (p=1.0x10-14, Wilcoxon signed-rank test; Extended Data Fig. 2-1 D), 

indicating that the observed change in hue tuning across contexts was not a consequence 

of noise in the estimation of tuning. In fact, the spread of correlations between the two sets 

of tuning curves was similar to the distribution that would arise if hue tuning shifted 

randomly between contexts (Fig. 3E inset), which to preserve typical tuning shapes we 

approximated as the correlations between random neurons’ tuning. Thus, the regressed 

contribution of hue to the neural response had little relationship to the strong tuning 

observed in response to stimuli of a single hue. 
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Figure 2-4 

 

Figure 4. Tuning curves estimated for hue from a model of V4 responses built from a pretrained 
convolutional neural network (CNN). Data from M1; see Fig. 5 for M2. A) We trained a nonlinear 
Poisson regression model (gradient boosted trees) to predict the V4 response from the 
activations of an intermediate layer in the VGG16 network given the visual stimulus. B) The 
quality of the neural predictions on each neuron, measured by the cross-validated pseudo-R2 
score, were similar between the CNN model and the nonlinear hue model. C) We built hue tuning 
curves in the following manner: (i) For each image in a test set, we slightly desaturated all pixels 
in a bin of hues, and subtracted the CNN model’s predictions on the perturbed image from those 
on the original image. (ii) For each neuron, the average change in the predicted response across 
all test images was plotted against the percentage by which hues were desaturated. The slope of 
each line is, to first order, the average effect of that hue on the model response in the test set. 
The top and bottom plots show the same example neurons as in earlier plots. (iii) The resulting 
tuning curve (purple) summarizes the average effect of each of the 8 bins of hues – i.e. the slopes 
of the 8 desaturation curves. It can be seen that the tuning of neuron 1 was poorly correlated with 
the uniform hue tuning (blue), while that of neuron 2 was well-correlated, in agreement with the 
hues of the strongest-driving stimuli shown in Fig. 1B. D) We calculated the correlation between 
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the two tuning curves for all neurons. The distribution of correlations was lower than for the 
reconstructed hue tuning of simulated neurons (“simulated tuning control”; see also Extended 
Data Fig. 4-1) as well as the distribution of correlations between tuning curves estimated from 
two non-overlapping halves of the natural scene trials (“split-trial control”; see also Extended 
Data Fig. 2-1). E) The quality of the CNN model fit for each neuron did not predict the correlation 
of the tuning curves. 

Neural network model of V4 responses 

We next repeated the estimation of hue tuning on natural scenes with a more general 

model of V4 neurons that does not rely on hand-specified summaries of the features 

present in a receptive field. This was important to ensure that our results were not 

sensitive to design decisions in processing the images, as well as to account for the 

confounds of other, non-hue features contained in the image. The two hue models would 

provide biased estimates of tuning if neurons also responded to other visual features, and 

if these features co-varied in the image dataset with hue. If most green objects are plants, 

for example, the observed dependence on green hues may be partially attributable to a 

response to the high spatial frequency of greenery. Theoretically, one could include these 

features as additional covariates, but the list of features that drive the V4 response in a 

simple manner (e.g. linearly) is not comprehensively known. Good progress has been 

made with shape and texture (Okazawa, Tajima, & Komatsu, 2015; Pasupathy & Connor, 

2001; Portilla & Simoncelli, 2000), but arguably not enough to thoroughly control for all 

non-hue features in a simple model. Controlling for other drivers of V4 thus requires a 

model that learns relevant visual features instead of using features chosen by a researcher 

or parameterized by hand.  

The model we selected was based on an encoding model of V4 that relates neural 

responses to the activations to the upper layers of a convolutional neural network (CNN) 

pretrained to classify images (Yamins et al., 2014). Such “transfer learning” models have 

also recently been used to infer optimal stimuli for neurons in V4 (Bashivan, Kar, & 

DiCarlo, 2019; Cowley et al., 2017). Instead of pre-specifying a receptive field estimated 

with sparse noise, we allowed the CNN model to learn any location sensitivity itself and 

thus fed the entire fixation-centered image as input. Predictions of neural activity are 

obtained by passing the image through the network, obtaining the intermediate network 

activations, and then passing these to a classifier trained for each neuron (Fig. 4A). The 
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predictions of neural activity given by this model were comparable in accuracy to those of 

the nonlinear hue model (Fig. 4B) despite the model making many fewer assumptions 

about how raw pixels related to responses. 

Our initial, unsuccessful method to estimate hue tuning from this model was to simply 

observe the model’s response to images of a uniform hue, as before. However, this 

approach failed to reconstruct tuning on simulated data. This interesting parallel to our 

main finding is likely due to the fact that uniform field test images are far outside the 

domain of natural scenes on which the CNN was pretrained.  

Instead, we developed a method to estimate hue tuning from the model that only uses 

responses to images close to the domain of natural images. By slightly perturbing the hue 

of input images and observing the change in the learned model’s response, we could test 

the model’s sensitivity to hues to in natural images (Fig. 4C). First, for a test set of images 

not used for training, we desaturated all pixels within a bin of hues by a set percentage 

(Fig. 4Ci). The percentage of desaturation varied from 0% (i.e. no change) to 100% (in 

which all pixels of one hue are taken to the isoluminant grey). We took the difference 

between the model’s predictions on the original and perturbed images and examined how 

severely this difference depended on the level of desaturation (Fig. 3Cii, iii). For each 

neuron, we averaged over the entire image dataset to yield the average effect of perturbing 

each hue on natural images. This method established the effect of hue only in the tight 

neighborhood of each image, and is set up to estimate the average local effect of hue on 

the natural image response. 

To ensure that this process could in principle reconstruct correct tuning curves, we 

built simulated responses (Extended Data Fig. 4-1). We generated random cosine tuning 

curves, then simulated a hue response by applying these as linear filters upon the 

histograms of the hues present in each image. We then attempted to predict these 

simulated responses from the activations of the pretrained CNN given the raw images. 

Using the method of progressively desaturating test images, we found we could 

reconstruct the original cosine tuning curves with high accuracy (Fig. 4D overlay and Fig. 

4-1). As a second, more conservative test, we also performed the split-trial control for the 

actual V4 neurons, which involved repeating the entire analysis separately on two non-
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overlapping halves of natural scene trials and then correlating the two resulting tuning 

curves. The split-trial tuning curves showed significantly positive correlations for most 

neurons in M1 (Fig. 4D overlay) and M2 (Fig. 5). This method of querying the effect of hue 

could thus accurately estimate hue tuning curves from natural scene responses in both 

monkeys.  

We next asked if these tuning curves would be similar to the tuning curves to uniform 

hues. We found that the tuning curves of one context were different from tuning in the 

other (Fig. 4D for M1 and Fig. 5G for M2). Among those neurons for which we could 

consistently estimate hue tuning, the natural scene/ uniform hue tuning curve correlations 

were significantly closer to 0 (p=1.1x10-8, Wilcoxon signed-rank test, Extended Data Fig. 

2-1 for M1; Fig. 2H for M2). This difference in tuning curves was not an artifact of our 

model fit or estimation method, as this would be measured in the split-trial control, and 

additionally we observed no correlation between the model’s accuracy on unseen natural 

images and the natural scene/uniform field correlation (Fig. 4E and Fig. 5I).  
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Figure 2-5 

 

Figure 5: Collected data for M2. A) Most neurons in M2 showed poor hue tuning, and we 
were not able to consistently estimate uniform hue tuning nearly as well as for M1. B) Binned 
tuning curves for the neurons selected in A. C) As for M1, the uniform hue tuning curves were 
worse at predicting natural scene responses than the mean firing rate on natural scenes. D-F) 
Analysis of the natural scene tuning curves estimated by the nonlinear hue model was 
inconclusive. D) The natural scene tuning curves could not be estimated as consistently as for 
M1. E) The natural scene/uniform hue tuning curve correlations as estimated by the nonlinear 
hue model. Like for M1 (Fig. 2c) we overlay the split-trial distribution and the null distribution 
expected with random reshuffling of hue tuning. F) By a Wilcoxon signed rank test, we were 
unable to reject the null hypothesis that natural scene/uniform hue correlations are lower than 
the split-trial correlations (p=0.65) and thus it was not clear from the hue model on M2 neurons 
whether hue tuning does or does not change. G-I) Analysis of the natural scene tuning curves 
estimated with the CNN method. G) Distribution of correlations of hue tuning estimated of non-
overlapping halves of trials. H) Natural scene/uniform hue correlations. Inserted is the 
distribution of natural scene/uniform hue correlations of simulated neurons with cosine hue 
tuning. Since M2 saw 10x fewer trials than M1, we simulated again on this smaller dataset. I) 
Among the neurons for which we could consistently estimate hue tuning (i.e. with a positive 
correlation of tuning curves estimated on split data), all neurons had a higher split-trial natural 
scene curve correlation than a natural scene/uniform hue correlation. This was significant under 
a Wilcoxon signed rank test at p=0.003.  
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In addition to changes in tuning curve shape as captured by correlation, we also 

examined if the natural scene tuning curves showed changes in the overall degree of hue 

modulation. We found that hue modulation – the maximum of a tuning curve minus the 

minimum, normalized by the mean – was related across contexts, but weakly (Extended 

Data Fig. 4-2). Many neurons strongly modulated by hue on uniform fields had weak 

responses to hue on natural scenes, and vice versa. Overall, the tuning curves estimated 

with this more advanced method support our previous conclusion that hue tuning on 

uniform fields does not agree with the effect of hue in natural scenes.  

Figure 2-6 

 

Figure 6: Interactions between features allow neurons to carry more information 
in their activity. A) In this two-dimensional tuning curve, a hypothetical neuron responds to 
only hue and carries no information about other variables. B) A hypothetical neuron that 
additionally responds another non-hue feature is informative about multiple dimensions of 
stimuli (due to its nonzero derivative). C) We can build a hue tuning curve for this neuron by 
varying hue with the other feature held fixed. If the average non-hue feature is different between 
natural images and uniform hues, the tuning curves to hue will differ between contexts.  

Why features interact 

A straightforward explanation of why hue tuning differs across visual contexts is that 

these neurons respond to nonlinear combinations between hue and non-hue features, as 

shown schematically in Figure 6. What computational advantage could explain this coding 

scheme for visual perception? It is clear that if the role of these neurons were to encode 

hue alone, then any nonlinear interactions would be detrimental. This is because hue can 

no longer be unambiguously read out without additional contextual information. 

Therefore these V4 neurons likely assist in a more general task, like object recognition or 

segmentation. Other studies have also noted that color vision may be best thought of in 

terms of task performance (Rosenthal et al., 2018); the absorbance spectra of the L and M 
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photoreceptors in primates, for example, are not maximally separated as in birds but 

rather overlap significantly, possibly because this helps to discriminate and classify fruit 

and leaves (Osorio & Vorobyev, 2008). The question then arises: why would neurons being 

responsive to multiple features help visual processing? 

One possible reason is that selectivity to multiple features increases the dimensionality 

of the space of possible neural responses, which allows a greater diversity of linear 

readouts for downstream tasks (Rigotti et al., 2013). This justification prioritizes the 

diversity of possible uses of an area rather than the accuracy of encoding. An additional 

justification can be found in the optimal coding literature (e.g. (N. Brunel & J.-P. Nadal, 

1998; Seung & Sompolinsky, 1993; Zhuo Wang et al., 2013)). Starting with a certain set of 

behaviorally-relevant visual features, what is the optimal way of representing these M 

features in a single population of N neurons?  

Our findings, derived in Methods, show that mixed selectivity allows for better neural 

codes when neurons fire as Poisson processes and visual features are sparse and often not 

present. This is because a mixed selectivity strategy allows many more neurons to 

participate in each response. When each neuron responds to k features, k times more 

neurons can respond on average to each scene. Crucially, a distributed response in turn 

enables lower firing rates for the same sensitivity, which is advantageous because Poisson 

noise has lower variance at low firing rates. Coding quality, which is related both to the 

variance of internal noise and the sensitivity of the response when measured by Fisher 

Information, thus improves when the response is maximally distributed across many 

neurons at low firing rates. Recent studies using other measures of coding besides Fisher 

Information support this conclusion that mixed selectivity improves neural encoding 

(Johnston, Palmer, & Freedman, 2020).   

It should be noted that an optimal coding argument may not necessarily explain 

selectivity to all features. Orientation selectivity, for example, is similar across contexts 

(Touryan et al., 2005) and this may be related to fundamental visual cortical architecture 

and the importance of visual form for behavior. Where neurons do not show mixed 

selectivity, anatomical or behavioral constraints may override mixed selectivity’s benefits 

of increased precision and quality of the neural encoding. 
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Discussion 

For populations of V4 neurons in two macaques, we found that varying the hue of 

simple stimuli produced tuning curves that do not accurately describe hue tuning 

measured from natural scenes. While some discrepancy may be expected, we found that 

the two sets of tuning curves correlated not much better than chance. This finding was 

robust across multiple methods of estimating tuning, which together accounted for the 

confounds of both hue-hue interactions as well as of non-hue drivers of V4 activity. A hue 

tuning curve for V4 estimated from any one set of stimuli thus does not universally 

describe the average response to hue on other stimuli.  

Known sources of modulation in visual responses 

The V4 response is modulated by a number of factors that change with visual context. 

These factors are divided in the manner of their relevance to our findings. First are 

possible reasons why we might have observed low tuning curve correlations even if, in fact, 

tuning did not change between contexts. The second category of factors are known 

interactions between hue and other features in the V4 response that may explain why hue 

tuning in V4 changes with visual context. We will review both in turn. 

Neurons in V4 are have been shown to preferentially respond to objects near the center 

of attention, even when attention falls away from fixation (Connor, Gallant, Preddie, & 

Van Essen, 1996; Connor, Preddie, Gallant, & Van Essen, 1997; Gallant, Connor, Rakshit, 

Lewis, & Van Essen, 1996). This phenomenon of receptive-field remapping is most 

problematic for our hue models, which required that we extract the hues lying within the 

receptive field. If the monkeys’ attention frequently strayed away from fixation, we would 

have extracted hues from an irrelevant image portion. This would introduce some noise in 

the hue covariates, and therefore some smoothing of hue tuning curves. The CNN model 

learned any spatial sensitivity directly from the natural scene responses. However, the 

effect of attention upon receptive fields could not be modeled and it is likely that some 

smoothing of the hue tuning curve occurred for this technique as well. Smoothing would 

obscure fine-scale structure in the tuning curves. As the curves were already smooth, 

however, the natural scene/uniform field correlations should not be much diminished. 
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The smoothing effect is furthermore not consistent with our finding that many neurons 

have natural scene hue tuning with zero, or even negative correlation with their uniform 

field tuning while still showing strong hue-dependent modulation.  

We now turn to potential descriptions of the interactions that might have led to a shift 

in hue tuning across contexts. One possibility is the behavioral phenomenon of color 

constancy, which would present as a neural correlate as responses to the inferred surface 

color of objects rather than their apparent color (which reflects the color of ambient light) 

(Kusunoki et al., 2006). This is a clear example of the nonseparability of the V4 response 

to hue, and a reason hue tuning might change between any two, single stimuli. It is less 

obvious, however, that color constancy correlates would cause the average effect of hue 

over all natural images to be different than on uniform hues. It would be expected that 

over tens of thousands of images with a broad range of lighting conditions, color constancy 

would result in some smoothing of the estimated tuning curve due to the difference 

between the pixels’ hue and the inferred hue, and of the same characteristic scale as their 

typical difference. Additionally we may expect a bias that would result from the 

discrepancy between pure white and the average lighting condition. We expect this 

discrepancy to be small, and therefore that natural scene tuning curves would still be 

strongly (though not perfectly) correlated with the uniform field tuning curves. Though 

phenomena like color constancy would affect hue tuning on natural scenes, it cannot 

account for the entire difference we observed, and it is likely that there exists other 

undocumented sources of nonseparability. 

Another factor is visual attention (Chelazzi, Della Libera, Sani, & Santandrea, 2011; 

David, Hayden, Mazer, & Gallant, 2008). A particularly relevant form of attention is 

feature-based attention, in which neurons tuned for a feature (say, red) increase their 

firing rate if that feature is attended to (as in the task, “find the red object”) (Mirabella et 

al., 2007; Motter, 1994). While the task of M1 was free viewing and involved no 

instructions, it is likely that the monkey’s attention shifted during the task and that it was 

influenced by object salience. This would affect apparent tuning if object salience were 

correlated with hue. Attention is less likely to have presented a confound in the task of M2, 

in which gaze was fixed at center and stimuli were presented for 100ms.  
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A subpopulation of neurons in V4, so-called equiluminance cells, respond to object 

boundaries defined solely by chromatic boundaries (Bushnell, Harding, Kosai, Bair, & 

Pasupathy, 2011). Such shapes are defined by changes in hue or saturation, and so it is 

worth asking whether the response function of equiluminance cells includes interactions 

between hue/saturation and spatial arrangement. However, it was not originally 

determined if the responses were actually separable in this way, as neurons’ hue tuning 

curves were characterized with a fixed shape. It is possible that equiluminant cells had 

fixed hue tuning that was then modulated by shape. Thus, it is plausible but undetermined 

that equiluminance cells would show different hue tuning across shape and explain our 

results. 

The apparent shift in hue tuning in natural scenes may be partially be explained by a 

multiplicative or generally nonlinear interaction between shape and color, as was 

examined in a recent paper that jointly varied the hue and shape of simple stimuli 

(Bushnell & Pasupathy, 2012). In a linear model with terms for hue and a multiplicative 

interaction between hue and shape parameters, the authors observed a significant 

interaction between shape and color in the majority of cells (44/60). This interaction 

would cause (linear) hue tuning to appear different for natural images with varying shapes, 

as we observe. We note that other, undescribed features may also interact with hue, and 

that conclusively determining which visual features interact would require presenting 

stimuli tiling many more dimensions of variation. 

Implications for V4 and for the tuning curve approach 

Color responsivity has long been a defining feature of V4 (S. Zeki, 1980; S. M. Zeki, 

1973). Recent studies have shown that localized areas in V4 are strongly responsive to 

color (Conway et al., 2007), and furthermore that the anatomical organization of color 

preference on the neocortex is similar to perceptual color spaces (Bohon et al., 2016; 

Conway & Tsao, 2009; Li et al., 2014). These findings have been taken as evidence that 

areas within V4 are specialized for the perception of color. However, each of these studies 

characterized hue tuning by changing the color of simple shapes. Since the color tuning of 

V4 neurons changes with visual context, as we show here, it is possible that previous 
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conclusions about the functional organization of V4 do not accurately describe how V4 

processes more naturalistic stimuli.  

It should be noted that our simple stimuli were not colored shapes chosen by hand to 

drive V4 neurons strongly, as in many previous studies, but rather uniform screens. We 

found that these still elicited strong responses and well-identified tuning curves. 

Nevertheless it may be objected that previous studies’ stimuli may still measure hue tuning 

that generalizes to natural scenes. However, this would require that the factors that 

modulate hue tuning in V4 neurons are only present in uniform screens. It is more 

parsimonious that hue-tuned neurons are modulated by interactions with a range of 

spatial features, which collectively will cause tuning on any set of stimuli to not generalize 

to naturalistic stimuli. 

Based on the discovery of robust tuning for the color of simple visual stimuli, some 

studies have concluded that the role of color-responsive areas in V4 is to represent color. 

Our results do not rule this out; for example these areas might represent color but be 

modulated by what colors are likely given the surroundings. This would complicate a read-

out of color from V4, but may have other advantages like efficiency. It would be interesting 

to investigate this possibility in future studies. An alternative possibility is that the color-

sensitive areas of V4 are not specialized to represent color, per se, but rather serve a more 

complex role within recognition and perception. This is analogous to how V2 appears 

tuned to orientation but can perhaps be better described as processing naturalistic texture 

(Ziemba, Freeman, Movshon, & Simoncelli, 2016). Furthermore, this role aligns with the 

suggestion that the ventral temporal cortex at large decomposes scenes into neural activity 

such that object categories are linearly separable (Grill-Spector & Weiner, 2014). Thus, the 

color-responsive areas of V4 may represent how color informs an inference of object 

identity (Rosenthal et al., 2018). Whether the color responses of V4 are an end to 

themselves (i.e. representing color) or intermediate computations in a larger assessment 

of object identity (DiCarlo & Cox, 2007), or both, cannot be decided from this study; both 

are consistent with the data.  

Our study joins a longer history of literature observing that, across many brain areas, 

tuning curves previously characterized with simple stimuli in fact change with context. In 
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V1, for example, researchers found that receptive fields change with certain visual aspects 

that were not varied within previous stimuli sets, such as the presence of competing 

orientations (Fitzpatrick, 2000; Heeger, 1992; Knierim & Van Essen, 1992; Sillito & Jones, 

1996). Even sound has been shown to modulate V1 receptive fields, at least in mice 

(McClure Jr & Polack, 2019). More recently, it was observed that receptive fields are 

different in the contexts of dense versus sparse noise for neurons in layer 2/3 of V1 (Yeh, 

Xing, Williams, & Shapley, 2009). Spatio-temporal receptive fields of V1 neurons also 

appear different when estimated on natural movies versus drifting gratings (David & 

Gallant, 2005; David et al., 2004) (though note that orientation tuning is similar for static 

natural scenes versus gratings (Touryan et al., 2005)). In other areas, contextual 

modulation has been identified by showing perturbed natural images instead of white 

noise (Goldin et al., 2021; Heitman et al., 2016; McIntosh, Maheswaranathan, Nayebi, 

Ganguli, & Baccus, 2016b) or by comparing the performance of a model that assumes 

separability (such as a GLM) with a nonlinear model that does not (Benjamin et al., 2018). 

Thus, while tuning curves generalize in some situations (e.g. (Touryan et al., 2005)), it is 

common that they do not, and any assumption of separability of the neural response 

should be verified. Furthermore, as derived in Methods, feature interactions are likely 

optimal for visual processing when the full visual scene is represented in neural activity 

and should be expected. Unless specifically investigated, it might not be correct to assume 

that a tuning curve accurately describes the neural response on different stimuli than used 

to create it.  

If it cannot be assumed that neural tuning is separable, however, it becomes necessary 

to test prohibitively many stimuli or else make an alternative simplifying assumption. 

Since the number of tested stimuli must follow the number of potential feature 

combinations, the overall number of stimuli will grow exponentially with the number of 

features. When there are very many features, even very large recording datasets by today’s 

standards may be insufficient.  

One possible way forward is to make simplifying assumptions, i.e. to set strong priors 

of the kinds of tuning curves that could be expected. This is the approach taken, for 

example, when modeling neurons using the activations of deep neural networks pre-
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trained on image classification tasks (Ponce et al., 2019; Yamins et al., 2014) or 

considering neural responses as implementing a sparse code (Felsen, Touryan, & Dan, 

2005; Vinje & Gallant, 2000). To compare with the previous literature, single dimension 

experiments can then be performed on these complex encoding models, as we 

demonstrate here, or alternatively performed directly on artificial neural networks to gain 

intuition about what tuning curves say about information processing (Morcos, Barrett, 

Rabinowitz, & Botvinick, 2018; Pospisil, Pasupathy, & Bair, 2018). In general, finding 

suitable priors will require the use of strong theoretical ideas and mechanistic hypotheses. 

To estimate tuning without assuming separability, then, neurophysiology must embrace 

and develop theories of neural processing. 
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Supplementary information 

Figure 2-7 

 

Figure 2-1. Our ability to estimate hue tuning can be captured by the correlation of the tuning 
estimated on two non-overlapping halves of the trials. This correlation would be 1 in the no-noise 
or infinite-data condition. For a single neuron, the half-trial correlation represents an estimate of 
what natural scene/uniform hue tuning curve correlations we would observe if hue tuning did not 
change between conditions. (Note that by fitting models on only half of the data, the estimate of 
hue tuning is noisier than in the full-data tuning estimation. Our actual ability to measure hue 
tuning is thus better than communicated by this control. For this reason these plots show a lower 
bound of the correlation we would expect if hue tuning were the same across conditions.) A) For 
the nonlinear hue model (red) and the CNN model (blue), these plots display the correlation of the 
tuning estimated on two non-overlapping halves of the trials. One can also consider this test as 
running 2-fold cross-validation and comparing the tuning curves estimated on both splits of data. 
Like in the main analysis, we split the data such that all trials (fixations) on the same image were 
placed in the same fold of data. In this plot the neurons are again ordered by their correlation to 
produce a cumulative distribution (the order of neurons is not the same as in Figures 2C and 4A). 
Errors show 5th and 95th percentiles of this procedure repeated on the original data resampled with 
replacement. The smoothed distributions projected below are reproduced in Figures 2C and 4A. 
B) The half-trial control for the uniform hue condition. This communicates how precisely we can 
estimate uniform hue tuning. The errors again derive from repeating the cross-half correlation 
when resampling the trials and re-splitting the data in half. C) The estimation error as 
communicated by these half-data control captures the same sources of variability that were 
incorporated into the principle uncertainty measure of the correlation between tuning curves (e.g. 
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Figure 2Bii). That uncertainty was measured by resampling the trials, then re-calculating and re-
correlating the tuning curves. To demonstrate this, here we show the relation between the half-data 
correlation and the size of the uncertainty bars from the main figures (Figures 2C and 4A). As 
expected, there is a strong negative correlation. Higher half-data correlations for a neuron 
correspond to smaller bounds of the natural scene/uniform hue correlation. D) Here we compare, 
neuron-by-neuron, the relationship between the half-data correlation and the natural 
scene/uniform hue correlation. (Panel A only communicates the difference in overall 
distributions.) Importantly, there is little relation between the half-data correlation (i.e. our ability 
to estimate natural scene hue tuning) and the natural scene/uniform hue correlation (i.e. whether 
we observed that neuron to shift tuning). This shows when we observe a shift in hue tuning, it is 
not simply because for that neuron we poorly estimated the natural scene hue tuning. Another key 
takeaway is the number of neurons that lie in the region below the dotted red line, where the split-
trial correlation is higher than the natural scene/uniform hue correlation. For both estimation 
methods (nonlinear hue and CNN model), significantly more neurons lie below this line than above 
it.  

 

Figure 2-8 

 

Figure 3-1. The response of V4 neurons to hue is nonlinear and contains interactions between 
bins of hues. A) The correlation matrix of hues on the natural image dataset observed by M1. Since 
the off-diagonal terms are not zero, there are correlation between hues (especially of similar 
colors). These correlations could bias the tuning curve of a linear fit if nonlinear hue interactions 
exist in the neural response. As shown in (B) and in (C), these interactions do indeed exist. This 
can be seen by the fact that the nonlinear model (gradient boosted trees, XGB) predicts neural 
activity better than the generalized linear model (GLM) when both are fed the (saturation-
weighted) histograms of hues present within the receptive field during each fixation. 
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Figure 2-9 

 

Figure 4-1. Reconstructing simulated neural responses shows that the CNN method can in 
principle observe hue tuning. A) As for the main model, we fit a nonlinear Poisson regression model 
to predict ‘neural’ responses from the intermediate activations of the VGG16 model when given 
image segments. Instead of the actual neural response, here we fit to a simulated neural response, 
which comprised of a random (fixed) cosine filter applied to the distribution of hues in each 
fixation. B) The model could predict these simple responses well, but not perfectly, with typical 
pseudo-R2 scores less than 0.4. C) Once again we calculated the average difference in predictions 
between held-out images and those same images but with each of 8 bins of hues desaturated by 
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some percentage. We plot the difference in response as a function of desaturation. It can be seen 
that the line is somewhat sub-linear, like for actual neural responses. This plot proves that some of 
this sub-linearity is not neural in origin, but rather a function of both our choice of color space 
(CIELUV) and the way that the VGG model incorporates color into the response. D) Tuning curves 
constructed in this way (from the slopes of the saturation dependencies) closely resemble the 
original filters, with some noise. E) The typical noise of this method’s reconstruction of tuning 
curves can be summarized as a distribution of tuning curve correlations. This distribution is the 
point of comparison, representing what distribution we would expect if hue tuning were unchanged 
between categories of stimuli.  
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Figure 2-10 

 

Figure 4-2: We calculated a modulation index measuring how drastically hue affected the V4 
response on either uniform hues or natural images. In uniform hues, the modulation index was 
defined as the maximum of the uniform hue tuning curve, minus the minimum, and divided by the 
mean spike rate. In natural scenes, we examined how strongly various hues affected the CNN model 
response. This was measured by the difference between the maximum and the minimum of the 
CNN model tuning curve, which, measuring a difference in the predictions rather than the absolute 
value, is already mean-normalized. There was a weak correlation (p=0.003) between these two 
indices.  
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Chapter 3: Modern machine learning as 

benchmark for encoding models 

 

Foreword 

This chapter provides a machine learning tool to verify the assumptions of simpler, 

interpretable encoding models. By acting as performance benchmarks, machine learning 

methods can identify if nonlinearity remains to be explained. This work is also an 

instructive demonstration of which machine learning methods are most successful at 

neural prediction. This paper is an example of Role 3: machine learning as a benchmark 

for simpler models. 

In a collaboration with Prof. Lee Miller at Northwestern, we applied this approach to 

datasets collected from motor and somatosensory cortices. Many of these machine 

learning methods had not previously been used to predict neural activity, and we found 

they empirically worked quite well and outperformed GLMs at predicting spikes in three 

separate brain areas. This result is a warning that GLMs may generally fail to capture 

neural nonlinearity and can mischaracterize stimulus/response relationships for naïvely 

chosen sets of features.  

 This chapter is reproduced from a paper now published in Frontiers in 

Computational Neuroscience3, for which it was selected as Editor’s Pick 2021. It was also 

presented at two conferences, in the form of a poster at COSYNE 2017 and a talk at SAND8 

in 2018.  

  

 
 
3 Benjamin, Ari S., Hugo L. Fernandes, Tucker Tomlinson, Pavan Ramkumar, Chris VerSteeg, 
Raeed H. Chowdhury, Lee E. Miller, and Konrad P. Kording. "Modern Machine Learning as a 
Benchmark for Fitting Neural Responses." Frontiers in computational neuroscience 12 (2018)  
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Abstract 

Neuroscience has long focused on finding encoding models that 

effectively ask “what predicts neural spiking?” and generalized linear 

models (GLMs) are a typical approach. It is often unknown how much of 

explainable neural activity is captured, or missed, when fitting a model. 

Here we compared the predictive performance of simple models to three 

leading machine learning methods: feedforward neural networks, gradient 

boosted trees (using XGBoost), and stacked ensembles that combine the 

predictions of several methods. We predicted spike counts in macaque 

motor (M1) and somatosensory (S1) cortices from standard representations 

of reaching kinematics, and in rat hippocampal cells from open field 

location and orientation. Of these methods, XGBoost and the ensemble 

consistently produced more accurate spike rate predictions and were less 

sensitive to the preprocessing of features. These methods can thus be 

applied quickly to detect if feature sets relate to neural activity in a manner 

not captured by simpler methods. Encoding models built with a machine 

learning approach accurately predict spike rates and can offer meaningful 

benchmarks for simpler models. 

Introduction 

A central tool of neuroscience is the tuning curve, which maps aspects of external 

stimuli to neural responses. The tuning curve can be used to determine what information 

a neuron encodes in its spikes. For a tuning curve to be meaningful it is important that it 

accurately describes the neural response. Often, however, methods are chosen for 

simplicity but not evaluated for their relative accuracy. Since inaccurate methods may 

systematically miss aspects of the neural response, any choice of predictive method should 

be compared with accurate benchmark methods.  

A popular predictive model for neural data is the Generalized Linear Model (GLM) 

(Gerwinn, Macke, & Bethge, 2010; Nelder & Baker, 1972; Simoncelli, Paninski, Pillow, & 

Schwartz, 2004; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005; Wu, David, & 
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Gallant, 2006). The GLM performs a nonlinear operation upon a linear combination of 

the input features, which are often called external covariates. Typical covariates are 

stimulus features, movement vectors, or the animal’s location, and may include covariate 

history or spike history. In the absence of history terms, the GLM is also referred to as a 

linear-nonlinear Poisson (LN) cascade. The nonlinear operation is usually held fixed, 

though it can be learned (Chichilnisky, 2001; Paninski, Fellows, Hatsopoulos, & 

Donoghue, 2004), and the linear weights of the combined inputs are chosen to maximize 

the agreement between the model fit and the neural recordings. This optimization 

problem of weight selection is convex, allowing a global optimum, and can be solved with 

efficient algorithms (Paninski, 2004). The assumption of Poisson firing statistics can often 

be loosened (Pillow, Paninski, Uzzell, Simoncelli, & Chichilnisky, 2005), as well, allowing 

the modeling of a broad range of neural responses. Due to its ease of use, perceived 

interpretability, and flexibility, the GLM has become a popular model of neural spiking.   

When using a GLM, it is important to check that the method’s assumptions about the 

data are correct. The GLM’s central assumption is that the inputs relate linearly to the log 

firing rate, or generally some monotonic function of the firing rate. It thus cannot learn 

arbitrary multi-dimensional functions of the inputs. When the nonlinearity is different 

than assumed, it is likely that the optimal weight on one input will depend on the values 

of other inputs. In this case the GLM will only partially represent the neural response, will 

poorly predict activity, and may not be reproducible on other datasets. This drawback has 

been noted before, and indeed the GLM has been shown to miss nonlinearity in numerous 

circumstances (Butts, Weng, Jin, Alonso, & Paninski; Freeman et al.; Heitman et al.; 

McIntosh, Maheswaranathan, Nayebi, Ganguli, & Baccus). However, GLMs are still 

commonly applied without comparison to other methods. To test if the linearity 

assumption is valid, it is sufficient to test if other nonlinear methods predict activity more 

accurately from the same features. Many extensions have been proposed that introduce a 

specific form of nonlinearity (Latimer, Chichilnisky, Rieke, & Pillow; Maheswaranathan, 

Baccus, & Ganguli; McFarland, Cui, & Butts; Theis, Chagas, Arnstein, Schwarz, & Bethge; 

Williamson, Sahani, & Pillow), but these methods ask specific research questions and are 

not intended as general benchmarks. What is needed is are nonlinear methods that are 

universally applicable to new data. 
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Machine learning (ML) methods for regression have improved dramatically since the 

invention of the GLM. Many ML methods require little feature engineering (i.e. pre-

transformations the features) and do not need to assume linearity. These methods are thus 

ideal candidates for benchmark methods. The ML approach is now quite standardized and 

robust across many domains of data. As exemplified by winning solutions on Kaggle, an 

ML competition website ("Kaggle Winner's Blog," 2016), the usual approach is to fit 

several top performing methods, and then to ensemble these models together. These 

methods are now relatively easy to implement in a few lines of code in a scripting language 

such as Python, and are enabled by well-supported machine learning packages, such as 

scikit-learn (Pedregosa et al., 2011), Keras (Chollet, 2015), Tensorflow (Abadi et al., 2016), 

and XGBoost (Chen & Guestrin, 2016a). The greatly increased predictive power of modern 

ML methods is now very accessible and could help to benchmark and improve the state of 

the art in encoding models across neuroscience.  

In order to investigate the feasibility of ML as a benchmark approach, we applied 

several ML methods, including artificial neural networks, gradient boosted trees, and 

ensembles to the task of predicting spike rates, and evaluated their performance alongside 

a GLM. We compared the methods on data from three separate brain areas. These areas 

differed greatly in the effect size of covariates and in their typical spike rates, and thus 

served to evaluate the strengths of these methods across different conditions. In each area 

we found that the ensemble of methods could more accurately predict spiking than the 

GLM with typical feature choices. The use of an ML benchmark thus made clear that 

tuning curves built for these features with a GLM would not capture the full nature of 

neural activity. We provide our implementing code at 

https://github.com/KordingLab/spykesML so that all neuroscientists may easily test and 

compare ML to their own methods on other datasets. 

Materials and Methods 

Data 

We tested our methods at predicting spike rates for neurons in the macaque primary 

motor cortex, the macaque primary somatosensory cortex, and the rat hippocampus. All 
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animal use procedures were approved by the institutional animal care and use committees 

at Northwestern University and conform to the principles outlined in the Guide for the 

Care and Use of Laboratory Animals (National Institutes of Health publication no. 86-23, 

revised 1985). Data presented here were previously recorded for use with multiple 

analyses. Procedures were designed to minimize animal suffering and reduce the number 

used. 

The macaque motor cortex data consisted of previously published electrophysiological 

recordings from 82 neurons in the primary motor cortex (M1) (Stevenson et al.). The 

neurons were sorted from recordings made during a two-dimensional center-out reaching 

task with eight targets. In this task the monkey grasped the handle of a planar 

manipulandum that controlled a cursor on a computer screen and simultaneously 

measured the hand location and velocity (Fig. 1). After training, an electrode array was 

implanted in the arm area of area 4 on the precentral gyrus. Spikes were discriminated 

using offline sorter (Plexon, Inc), counted and collected in 50-ms bins. The neural 

recordings used here were taken in a single session lasting around 13 minutes. 

The macaque primary somatosensory cortex (S1) data was recorded during a two-

dimensional random-pursuit reaching task and was previously unpublished. In this task, 

the monkey gripped the handle of the same manipulandum. The monkey was rewarded 

for bringing the cursor to a series of randomly positioned targets appearing on the 

screen. After training, an electrode array was implanted in the arm area of area 2 on the 

postcentral gyrus, which receives a mix of cutaneous and proprioceptive afferents. Spikes 

were processed as for M1. The data used for this publication derives from a single 

recording session lasting 51 minutes.  

As with M1 (described in results), we processed the hand position, velocity, and 

acceleration accompanying the S1 recordings in an attempt to obtain linearized features. 

The features (𝑥, 𝑦, �̇�, �̇�) were found to be the most successful for the GLM. Since cells in 

the arm area of S1 have been shown to have approximately sinusoidal tuning curves 

relating to movement direction (Prud'homme & Kalaska, 1994), we also tested the same 

feature transformations as were performed for M1 but did not observe any increase in 

predictive power. 
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The third dataset consists of recordings from 58 neurons in the CA1 region of the rat 

dorsal hippocampus during a single 93 minute free foraging experiment, previously 

published and made available online by the authors (Mizuseki, Sirota, Pastalkova, & 

Buzsáki, 2009a, 2009b). Position data from two head-mounted LEDs provided position 

and heading direction inputs. Here we binned inputs and spikes from this experiment into 

50ms bins. Since many neurons in the dorsal hippocampus are responsive to the location 

of the rat, we processed the 2D position data into a list of squared distances from a 5x5 

grid of place fields that tile the workspace. Each position feature thus has the form 

𝑝𝑖𝑗 =
1

2
(𝑥(𝑡) − 𝜇𝑖𝑗)

𝑇
𝛴𝑖𝑗

−1(𝑥(𝑡) − 𝜇𝑖𝑗), 

where µij is the center of place field i, j ≤ 5 and ij is a covariance matrix chosen for the 

uniformity of tiling. An exponentiated linear combination of the pij (as is performed in the 

GLM) evaluates to a single Gaussian centered anywhere between the place fields. The 

inclusion of the pij as features thus transforms the standard representation of cell-specific 

place fields (Brown, Frank, Tang, Quirk, & Wilson, 1998) into the mathematical 

formulation of a GLM. The final set of features included the pij as well as the rat speed and 

head orientation. 

Treatment of Spike and Covariate History  

 We slightly modified our data preparation methods for spike rate prediction when 

spike and covariate history terms were included as regressors (Fig. 6). To construct spike 

and covariate history filters, we convolved 10 raised cosine bases (built as in (Pillow et al., 

2008)) with binned spikes and covariates. The longest temporal basis included times up 

to 250 ms before the time bin being predicted. This process resulted in 120 total covariates 

per sample (10 current covariates, 100 covariate temporal filters, and 10 spike history 

filters). We predicted spike rates in 5 ms bins (rather than 50 ms) to allow for modeling of 

more precise time-dependent phenomena, such as refractory effects. The cross-validation 

scheme also differs from the main analysis of this paper, as using randomly selected splits 

of the data would result in the appearance in the test set of samples that were in history 

terms of training sets, potentially resulting in overfitting. We thus employed a cross-
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validation routine to split the data continuously in time, assuring that no test set sample 

has appeared in any form in training sets. 

Generalized Linear Model 

The Poisson generalized linear model is a multivariate regression model that describes 

the instantaneous firing rate as a nonlinear function of a linear combination of input 

features (see e.g. (Aljadeff et al., 2016; Schwartz, Pillow, Rust, & Simoncelli, 2006) for 

review, (Fernandes, Stevenson, Phillips, Segraves, & Kording, 2014; Pillow et al., 2008; 

Ramkumar et al., 2016) for usage). Here, we took the form of the nonlinearity to be 

exponential, as is common in previous applications of GLMs to similar data (Saleh, 

Takahashi, & Hatsopoulos, 2012). It should be noted that it is also possible to learn 

arbitrary link functions through histogram methods (Chichilnisky, 2001; Paninski, 

Fellows, et al., 2004). We approximate neural activity as a Poisson process, in which the 

probability of firing in any instant is independent of firing history. The general form of the 

GLM is depicted in Figure 1. We implemented the GLM using elastic-net regularization, 

using the open-source Python package pyglmnet (Ramkumar et al., 2017). The 

regularization path was optimized separately on a single neuron in each dataset on a 

validation set not used for scoring. 

Neural Network 

Neural networks are well-known for their success at supervised learning tasks. More 

comprehensive reviews can be found elsewhere (Schmidhuber, 2015). Here, we 

implemented a simple feedforward neural network and, for the analysis with history 

terms, an LSTM, a recurrent neural network architecture that allows the modeling of time 

dependencies on multiple time-scales (Gers, Schmidhuber, & Cummins, 2000).  

We point out that a feedforward neural network with no hidden layers is equivalent in 

mathematical form to a GLM (Fig. 1). For multilayer networks, one can write each hidden 

layer of n nodes as simply n GLMs, each taking the output of the previous layer as inputs 

(noting that the weights of each are chosen to maximize only the final objective function, 

and that the intermediate nonlinearities need not be the same as the output nonlinearity). 
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A feedforward neural network can be seen as a generalization, or repeated application of 

a GLM.  

The networks were implemented with the open-source neural network library Keras, 

running Theano as the backend (Chollet, 2015; Team et al., 2016). The feedforward 

network contained two hidden layers, dense connections, rectified linear activation, and a 

final exponentiation. To help avoid overfitting, we allowed dropout on the first layer, 

included batch normalization, and allowed elastic-net regularization upon the weights 

(but not the bias term) of the network (Srivastava, Hinton, Krizhevsky, Sutskever, & 

Salakhutdinov). The networks were trained to maximize the Poisson likelihood of the 

neural response. We optimized over the number of nodes in the first and second hidden 

layers, the dropout rate, and the regularization parameters for the feedforward neural 

network, and for the number of epochs, units, dropout rate, and batch size for the LSTM. 

Optimization was performed on only a subset of the data from a single neuron in each 

dataset, using Bayesian optimization (Snoek, Larochelle, & Adams) in an open-source 

Python implementation ("BayesianOptimization," 2016).   

Gradient Boosted Trees 

A popular method in many machine learning competitions is that of gradient boosted 

trees. Here we describe the general operation of XGBoost, an open-source implementation 

that is efficient and highly scalable, works on sparse data, and easy to implement out-of-

the-box (Chen & Guestrin, 2016a).  

XGBoost trains many sequential models to minimize the residual error of the sum of 

previous model. Each model is a decision tree, or more specifically a classification and 

regression tree (CART) (J. H. Friedman, 2001). Training a decision tree amounts to 

determining a series of rule-based splits on the input to classify output. The CART 

algorithm generalizes this to regression by taking continuously-valued weights on each of 

the leaves of the decision tree.   

For any predictive model �̂�(1) = 𝑓1(𝒙𝒊) and true response yi, we can define a loss 

function 𝑙(�̂�(1), 𝑦𝑖) between the prediction and the response. The objective to be minimized 
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during training is then simply the sum of the loss over each training example i, plus some 

regularizing function  that biases towards simple models.  

𝐿 = ∑ 𝑙(�̂�𝑖
(1)

, 𝑦𝑖)

𝑖

+ 𝛺(𝑓1) 

After minimizing L for a single tree, XGBoost constructs a second tree 𝑓2(𝒙𝒊) that 

approximates the residual. The objective to be minimized is thus the total loss L between 

the true response yi and the sum of the predictions given by the first tree and the one to be 

trained. 

𝐿 = ∑ 𝑙(�̂�𝑖
(1)

+ 𝑓2(𝒙𝑖), 𝑦𝑖)

𝑖

+ 𝛺(𝑓2) 

This process is continued sequentially for a predetermined number of trees, each 

trained to approximate the residual of the sum of previous trees. In this manner XGBoost 

is designed to progressively decrease the total loss with each additional tree. At the end of 

training, new predictions are given by the sum of the outputs of all trees. 

�̂� = ∑ 𝑓𝑘(𝒙)

𝑁

𝑘=1

 

In practice, it is simpler to choose the functions fk via gradient boosting, which 

minimizes a second order approximation of the loss function (J. Friedman, Hastie, & 

Tibshirani, 2000). 

XGBoost offers several additional parameters to optimize performance and prevent 

overfitting. Many of these describe the training criteria for each tree. We optimized some 

of these parameters for a single neuron in each dataset using Bayesian optimization (again 

over a validation set different from the final test set). These parameters included the 

number of trees to train, the maximum depth of each decision tree, and the minimum 

weight allowed on each decision leaf, the data subsampling ratio, and the minimum gain 

required to create a new decision branch.  
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Random Forests 

We implement random forests here to increase the power of the ensemble (see below); 

their performance alone is displayed in Supplementary Figure 1. It should be noted that 

the Scikit-learn implementation currently only minimizes the mean-squared error of the 

output, which is not properly applicable to Poisson processes and may cause poor 

performance. Despite this drawback their presence still improves the ensemble scores. 

Random forests train multiple parallel decision trees on the features-to-spikes regression 

problem (not sequentially on the remaining residual, as in XGBoost) and averages their 

outputs (Ho, 1998). The variance on each decision tree is increased by training on a sample 

of the data drawn with replacement (i.e., bootstrapped inputs) and by choosing new splits 

using only a random subset of the available features. Random forests are implemented in 

Scikit-learn (Pedregosa et al., 2011).  

Ensemble Method 

It is a common machine learning practice to create ensembles of several trained 

models. Different algorithms may learn different characteristics of the data, make 

different types of errors, or generalize differently to new examples. Ensemble methods 

allow for the successes of different algorithms to be combined. Here we implemented 

stacking, in which the output of several models is taken as the input set of a new model 

(David H Wolpert, 1992). After training the GLM, neural network, random forest, and 

XGBoost on the features of each dataset, we trained an additional instance of XGBoost 

using the spike rate predictions of the previous methods as input. The outputs of this 

‘second stage’ XGBoost are the predictions of the ensemble. 

Scoring and Cross-Validation 

Each of the three methods was scored with the Poisson pseudo-R2 score, a scoring 

function applicable to Poisson processes (Cameron & Windmeijer, 1997). Note that a 

standard R2 score assumes Gaussian noise and cannot be applied here. The pseudo-R2 

was calculated as one minus the ratio of the deviances of the predicted output �̂� to the 

mean firing rate 𝑦. 
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𝑅𝑀
2 = 1 −

𝐷(�̂�)

𝐷(𝑦)
 

We can gain intuition into the pseudo-R2 score by writing out the deviances in terms 

of log likelihoods 𝐿(), and combining the fraction. 

𝑅𝑀
2 =  1 −

log 𝐿(𝑦) − log 𝐿(�̂�)

log 𝐿(𝑦) − log 𝐿(𝑦)
=  

log 𝐿(�̂�) − log 𝐿(𝑦)

log 𝐿(𝑦) − log 𝐿(𝑦)
 

This expression includes 𝐿(𝑦), which is the log likelihood of the “saturated model”, 

which offers one parameter per observation and models the data perfectly. The pseudo-

R2 can thus be interpreted as the fraction of the maximum potential log-likelihood gain 

achieved by the tested model (Cameron & Windmeijer, 1997). It takes a value of 0 when 

the data is as likely under the tested model as the null model, and a value of 1 when the 

tested model perfectly describes the data. It is empirically a lower value than a standard 

R2 when both are applicable (Domencich & McFadden, 1975). The null model can also be 

taken to be a model other than the mean firing rate (e.g. the GLM) to directly compare two 

methods, in which case we refer to the score as the ‘comparative pseudo-R2’. The 

comparative pseudo-R2 is referred to elsewhere as the ‘relative pseudo-R2’, renamed here 

to avoid confusion with the difference of two standard pseudo-R2 scores both measured 

against the mean (Fernandes et al., 2014). 

We used 8-fold cross-validation (CV) when assigning a final score to the models. The 

input and spike data were segmented into eight equal partitions. These partitions were 

continuous in time when spike and covariate history were included as covariates, and 

otherwise were segmented randomly in time. The methods were trained on seven 

partitions and tested on the eighth, and this was repeated until all segments served as the 

test partition once. The mean of the eight scores are then recorded for the final score.  

Cross-validation for ensemble methods requires extra care since the inputs for the 

ensemble are themselves model predictions for each data point. The training set for the 

ensemble must contain predictions from methods that were themselves not trained on the 

validation set. Otherwise, there may be a leak of information from the validation set into 

the training set and the validation score might be better than on a true held-out set. This 
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rules out using simple k-fold CV with all methods and the ensemble trained on the same 

test/train splits. Instead, we used a nested CV scheme to train and score the ensemble. We 

create an outer j=8 folds to build training and test sets for the ensemble. On each outer 

fold we create first-order predictions for each data point in the following manner. We first 

run an inner k-fold CV on just the training set (i.e. 7/8 of the original dataset) with each 

first stage method such that we obtain predictions for the whole training set of that fold. 

This ensures that the ensemble’s test set was never used for training any method. Finally, 

we build the ensemble’s test set from the predictions of the first stage methods trained on 

the entire training set. The ensemble can then be tested on a held-out set that was never 

used to fit any model. The process is repeated for each of the j folds and the mean and 

variance of the j scores of the ensemble’s predictions are recorded.  

Results 

We applied several machine learning methods to predict spike counts in three brain 

regions and compared the quality of the predictions to those of a GLM. Our primary 

analysis centered on neural recordings from the macaque primary motor cortex (M1) 

during reaching (Fig. 1). We examined the methods’ relative performance on several sets 

of movement features with various levels of preprocessing, including one set that included 

spike and covariate history terms. Analyses of data from rhesus macaque S1 and rat 

hippocampus indicate how these methods compare for areas other than M1. On each of 

the three datasets we trained a GLM and compared it to the performance of a feedforward 

neural network, XGBoost (a gradient boosted trees implementation), and an ensemble 

method. The ensemble was an additional instance of XGBoost trained on the predictions 

of all three methods plus a random forest regressor. The application of these methods 

allowed us to demonstrate the potential of a modern approach to be able to identify 

whether there are typically neural nonlinearities that are not captured by a GLM. The code 

implementing these methods can be used by any electrophysiology lab to benchmark their 

own encoding models. 
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Figure 3-1: 

Encoding models aim to predict 
spikes, top, from input data, 
bottom. The inputs displayed are 
the position and velocity signals 
from the M1 dataset (Stevenson 
et al., 2011) but could represent 
any set of external covariates. The 
GLM takes a linear combination of 
the inputs, applies an exponential 
function f, and produces a Poisson 
spike probability that can be used 
to generate spikes (left). The 
feedforward neural network 
(center) does the same when the 
number of hidden layers i = 0. 
With i ≥ 1 hidden layers, the 
process repeats; each of the j 
nodes in layer i computes a 
nonlinear function g of a linear 
combination of the previous layer. 
The vector of outputs from all j 
nodes is then fed as input to the 
nodes in the next layer, or to the 
final exponential f on the final 
iteration. Boosted trees (right) 
return the sum of N functions of 
the original inputs. Each of the fi is 
built to minimize the residual 
error of the sum of the previous f 

0:i-1.  

To test that all methods work reasonably well in a trivial case, we trained each to 

predict spiking from a simple, well-understood feature. Some neurons in M1 have been 

described as responding linearly to the exponentiated cosine of movement direction 

relative to a preferred angle (Amirikian & Georgopulos, 2000). We therefore predicted the 

spiking of M1 neurons from the cosine and sine of the direction of hand movement in the 

reaching task. (The linear combination of a sine and cosine curve is a phase-shifted cosine, 

by identity, allowing the GLM to learn the proper preferred direction). We observed that 

each method identified a similar tuning curve (Fig. 2b) and that the bulk of the neurons in 

the dataset were just as well predicted by each of the methods (Fig. 2a, c) (though the 

ensemble was slightly more accurate than the GLM, with mean comparative pseudo-R2 

above zero, 0.06 [0.043 – 0.084], 95% bootstrapped confidence interval (CI)). The similar 

performance suggested that, for the majority of neurons, an exponentiated cosine 
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successfully approximates the response to movement direction alone, as has been 

previously found (Paninski, Shoham, Fellows, Hatsopoulos, & Donoghue, 2004). All 

methods can in principle estimate tuning curves, and machine learning can indicate if the 

proper features are used.  

Figure 3-2 

 

Figure 2: Encoding models of M1 performed similarly when trained on the sine and 
cosine of hand velocity direction. All methods can in principle estimate tuning curves. (a) 
The pseudo-R2 for an example neuron was similar for all four methods. On this figure and in 
Figures 3-5 the example neuron is the same, and is not the neuron for which method 
hyperparameters were optimized. (b) We constructed tuning curves by plotting the predictions of 
spike rate on the validation set against movement direction. The black points are the recorded 
responses, to which we added y-axis jitter for visualization to better show trends in the naturally 
quantized levels of binned spikes. The tuning curves of the neural net and XGBoost were similar 
to that of the GLM. The tuning curve of the ensemble method was similar and is not shown. (c) 
Plotting the pseudo-R2 of modern ML methods vs. that of the GLM indicates that the similarity of 
methods generalizes across neurons. The single neuron plotted at left is marked with black 
arrows. The mean scores, inset, indicate the overall success of the methods; error bars represent 
the 95% bootstrap confidence interval. 
 

If the form of the nonlinearity is not known, machine learning can still attain good 

predictive ability. To illustrate the ability of modern machine learning to find the proper 

nonlinearity, we performed the same analysis as above but omitted the initial cosine 

feature-engineering step. Trained on only the hand velocity direction, in radians, which 

changes discontinuously at ±π, all methods but the GLM closely matched the predictive 

power they attained using the engineered feature (Fig. 3a). The GLM failed at generating 

a meaningful tuning curve, which was expected since the exponentiated velocity direction 
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is not equal to cosine tuning (Fig. 3b). Both trends were consistent across the population 

of recorded neurons (Fig. 3c). The neural net, XGBoost, and ensemble methods can learn 

the nonlinearity of single features without requiring manual feature transformation. 

Figure 3-3 

 

Figure 3: Modern ML models learn the cosine nonlinearity when trained on hand velocity direction, in 
radians. (a) For the same example neuron as in Figure 2, the neural net and XGBoost maintained the 
same predictive power, while the GLM was unable to extract a relationship between direction and spike 
rate. (b) XGBoost and neural nets displayed reasonable tuning curves, while the GLM reduced to the 
average spiking rate (with a small slope, in this case). (c) Most neurons in the population were poorly fit 
by the GLM, while the ML methods achieved the performance levels of Figure 2. The ensemble 
performed the best of the methods tested. 

 

The inclusion of multiple features raises the possibility of nonlinear feature 

interactions that may elude a GLM. As a simple demonstration of this principle, we trained 

all methods on the four-dimensional set of hand position and velocity (𝑥, 𝑦, �̇�, �̇�). While all 

methods gained predictive power relative to models using movement direction alone, the 

GLM failed to match the other methods (Fig. 4a, c). If the GLM was fit alone, and no 

further featuring engineering been attempted, these features would have appeared to be 

relatively uninformative of the neural response. If nonlinear interactions exist between 

preselected features, machine learning methods can potentially learn these interactions 

and indicate if more linearly-related features exist. 
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Figure 3-4 

 

Figure 4: Modern ML methods can learn nonlinear interactions between features. 
Here the methods are trained on the feature set (𝑥, 𝑦, �̇�, �̇�). Note the change in axes scales from 
Figures 2-3.  (a) For the same example neuron as in Figure 3, all methods gained a significant 
amount of predictive power, indicating a strong encoding of position and speed or their correlates. 
The GLM showed less predictive power than the other methods on this feature set. (b) The spike 
rate in black, with jitter on the y-axis, again overlaid with the predictions of the three methods 
plotted against velocity direction. The projection of the multidimensional tuning curve onto a 1D 
velocity direction dependence leaves the projected curve diffuse. (c) The ensemble method, neural 
network, and XGBoost performed consistently better than the GLM across the population. The 
mean pseudo-R2 scores show the hierarchy of success across methods. 

 

While feature engineering can improve the performance of GLMs, it is not always 

simple to guess the optimal set of processed features. We demonstrated this by training 

all methods on features that have previously been successful at explaining spike rate in a 

similar center-out reaching task (Paninski, Fellows, et al., 2004). These extra features 

included the sine and cosine of velocity direction (as in Figure 2), and the speed, radial 

distance of hand position, and the sine and cosine of position direction. The training set 

was thus 10-dimensional, though highly redundant, and was aimed at maximizing the 

predictive power of the GLM. Feature engineering improved the predictive power of all 

methods to variable degrees, with the GLM improving to the level of the neural network 

(Fig. 5). XGBoost and the ensemble still predicted spike rates better than the GLM (Fig. 

5c), with the ensemble scoring on average nearly double the GLM (ratio of population 

means of 1.8 [1.4 – 2.2], 95% bootstrapped CI). The ensemble was significantly better than 

XGBoost (mean comparative pseudo-R2 of 0.08 [0.055 – 0.103], 95% bootstrapped CI) 
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and was thus consistently the best predictor. Though standard feature engineering greatly 

improved the GLM, the ensemble and XGBoost still could identify that neural nonlinearity 

was missed by the GLM.  

Figure 3-5 

 

Figure 5: Modern ML methods outperform the GLM with standard featuring 
engineering. For this figure, all methods were trained on the features (𝑥, 𝑦, �̇�, �̇�) plus the 
engineered features. (a) For this example neuron, inclusion of the computed features increased 
the predictive power of the GLM to the level of the neural net. All methods increased in predictive 
power. (b) The tuning curves for the example neuron are diffuse when projected onto the 
movement direction, indicating a high-dimensional dependence. (c) Even with feature 
engineering, XGBoost and the ensemble consistently achieve pseudo-R2 scores higher than the 
GLM, though the neural net does not. The neuron selected at left is marked with black arrows. 

It is important to note that the specific ordering of methods depends on features such 

as the amount of data available for training. We investigated this dependence for the M1 

dataset by plotting the cross-validated performance as a function of the fraction of the data 

used for training (Supp. Fig. 3). Some neurons are best fit by the GLM when very little data 

is available, while other neurons are best fit by XGBoost and the ensemble for any amount 

of data tested. The neural network is most sensitive to training data availability. This 

sensitivity to the domain of data emphasizes the importance of the applied ML paradigm 

of evaluating (and potentially ensembling) many methods.   
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Figure 3-6 

 

Figure 6: ML algorithms 
outperform a GLM when 
covariate history and 
neuron spike history are 
included. The feature set of 
Fig 5 (in macaque M1) was 
augmented with spike and 
covariate history terms, so 
that spike rate was predicted 
for each 5 ms time bin from 
the past 250 ms of covariates 
and neural activity. Cross-
validation methods for this 
figure differ from other 
figures (see methods) and 
pseudo-R2 scores should not 
be compared directly across 
figures. All methods 
outperform the GLM, 
indicating that the inclusion 
of history terms does not 
alone allow the GLM to 
capture the full nonlinear 
relationship between 
covariates and spike rate. 

 

Studies employing a GLM often include activity history as a covariate when predicting 

spike rates, as well as past values of the covariates themselves, and it is known that this 

allows GLMs to model a wider range of phenomena (Weber & Pillow, 2016). We tested 

various ML methods on the M1 dataset using this history-augmented feature set to see if 

all methods would still explain a similar level of activity. We binned data by 5 ms (rather 

than 50 ms) to agree in timescale with similar studies, and built temporal filters by 

convolving 10 raised-cosine bases with features and spikes. We note that smaller time bins 

result in a sparser dataset, and thus pseudo-R2 scores cannot be directly compared with 

other analysis in this paper. On this problem, our selected ML algorithms again 

outperformed the GLM (Fig. 6). The overall best algorithm was the LSTM, which we 

include here as it specifically designed for modeling time series, though for most neurons 

XGBoost performed similarly. Thus, for M1 neurons, the GLM did not capture all 

predicable phenomena even when spike and covariate history were included. 
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Figure 3-7 

 

Figure 7: XGBoost and the ensemble method predicted the activity of neurons in S1 
and in hippocampus better than a GLM. The diagonal dotted line in both plots is the line 
of equal predictive power with the GLM.  (a) All methods outperform the GLM in the macaque 
S1 dataset. Interestingly, the neural network, XGBoost and the ensemble scored very similarly 
for each neuron in the 52 neuron dataset. (b) Many neurons in the rat hippocampus were 
described well by XGBoost and the ensemble but poorly by the GLM and the neural network. The 
poor neural network performance in the hippocampus was due to the low rate of firing of most 
neurons in the dataset (Supp. Fig. 2). Note the difference in axes; hippocampal cells are generally 
more predictable than those in S1. 

To ensure that these results were not specific to the motor cortex, we extended the 

same analyses to primary somatosensory cortex (S1) data. We again predicted neural 

activity from hand movement and speed, and here without spike or covariate history 

terms. The ML methods outperformed the GLM for all but three of the 52 neurons, 

indicating that firing rates in S1 generally relate nonlinearly to hand position and velocity 

(Fig. 7a). Each of the three ML methods performed similarly for each neuron. The S1 

neural function was thus equally learnable by each method, which is surprising given the 

dissimilarity of the neural network and XGBoost algorithms. This situation would occur if 

learning has saturated near ground truth, though this cannot be proven definitively to be 

the case. It is at least clear from the underperformance of the GLM that the relationship 

of S1 activity to these covariates is nonlinear beyond the assumptions of the GLM. 

We asked if the same trends of performance would hold for the rat hippocampus 

dataset, which was characterized by very low mean firing rates but strong effect sizes. All 

methods were trained on a list of squared distances to a grid of place fields and on and the 
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rat head orientation, as described in methods. Far more even than the neocortical data, 

neurons were described much better by XGBoost and the ensemble method than by the 

GLM (Fig. 7b). Many neurons shifted from being completely unpredictable by the GLM 

(pseudo-R2  near zero) to very predictable by XGBoost and the ensemble (pseudo-R2  above 

0.2). These neurons thus have responses that do not correlate with firing in any one 

Gaussian place field. We note that the neural network performed poorly, likely due to the 

very low firing rates of most hippocampal cells (Supp. Fig. 2). The median spike rate of the 

58 neurons in the dataset was just 0.2 spikes/s, and it was only on the four neurons with 

rates above 1 spikes/s that the neural network achieved pseudo-R2 scores comparable to 

the GLM. The relative success of XGBoost was interesting given the failure of the neural 

network, and supported the general observation that boosted trees can work well with 

smaller and sparser datasets than those that neural networks generally require (Supp. Fig. 

3). Thus for hippocampal cells, a method leveraging decision trees such as XGBoost or the 

ensemble is able to capture more structure in the neural response and thus demonstrate a 

deficiency of the parameterization of the GLM. 

Discussion 

We analyzed the ability of various machine learning techniques at the task of 

predicting binned spike counts in three brain regions. We found that of the tested ML 

methods, XGBoost and the ensemble routinely predicted spike counts more accurately 

than did the GLM, which is a popular method for neural data. Feedforward neural 

networks did not always outperform the GLM and were often worse than XGBoost and the 

ensemble. Machine learning methods, especially LSTMs, also outperformed GLMs when 

covariate and spike history were included as inputs. The ML methods performed 

comparably well with and without feature engineering, even for the very low spike rates of 

the hippocampus dataset. These findings indicate that a standard ML approach can serve 

as a reliable benchmark to test if data meets the assumptions of a GLM. Furthermore, it 

may be quite common that standard ML outperforms GLMs given standard feature 

choices. 

When a GLM fails to explain data as well as more expressive, nonlinear methods, the 

current parameterization of inputs must relate to the data with a different nonlinearity 
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than is assumed by the GLM. Such situations have been identified several times in the 

literature (Butts et al., 2011; Freeman et al., 2015; Heitman et al., 2016; McIntosh et al., 

2016a). This unaccounted nonlinearity may produce feature weights that do not reflect 

true feature importance. A GLM will incorrectly predict no dependence on feature x 

whatsoever, for example, in the extreme case when the neural response to some feature x 

does not correlate with exp(x). The only way to ensure that feature weights can be reliably 

interpreted is to find an input parameterization that maximizes the GLM’s predictive 

power. ML methods can assist this process by indicating how much nonlinearity remains 

to be explained. New features can then be tested, such as those suggested by a search for 

maximally informative dimensions (T. Sharpee, Rust, & Bialek, 2004). In our analysis, 

then, the GLM underperforms because we have selected the suboptimal input features. It 

is always theoretically possible to linearize features such that a GLM obtains equal 

predictive power. ML methods can highlight the deficiency of features that might have 

otherwise seemed uncontroversial. When applying a GLM or any simple model to neural 

data, it is important to compare its predictive power with standard ML methods to ensure 

the neural response is properly understood. 

There are other ways of estimating the performance of a method besides benchmark 

nonlinear methods. For example, if the same exact stimulus can be given many times in a 

row, then we can estimate neural variability without having to model how activity depends 

on stimulus features (Schoppe, Harper, Willmore, King, & Schnupp, 2016). This approach, 

however, requires that we can model how neural responses vary with repetition (Grill-

Spector, Henson, & Martin, 2006). This approach also makes it difficult to include spike 

history as an input, since the exact history is rarely repeated. We note that in some cases 

it may also be impossible to show the same stimulus multiple times, e.g. because eyes 

move. However, comparing these two classes of benchmark would be interesting on 

applications where both are feasible. 

 Advanced ML methods are not widely considered to be interpretable. 

Interpretation is not necessary for performance benchmarks, but it would be desirable to 

use these methods as standalone encoding models. We can better discuss this issue with a 

more precise definition of interpretability. Following Lipton, we make the distinction 
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between a method’s post-hoc interpretability, the ease of justifying its predictions, and 

transparency, the degree to which its operation and internal parameters are human-

readable or easily understandable (Lipton et al., 2016). A GLM is certainly more 

transparent than many ML methods due to its algorithmic simplicity. Certain nonlinear 

extensions of the GLM have also been designed to remain transparent (Latimer et al., 

2014; Maheswaranathan et al., 2017; McFarland et al., 2013; Theis et al., 2013; Williamson 

et al., 2015). For high-level areas, though, such as V4, the linearized features may be 

difficult to be interpreted themselves (Yamins et al., 2014), though it may be possible to 

increase the interpretability of features (Kaardal, Fitzgerald, Berry, & Sharpee, 2013). A 

GLM is also generally more conducive to post-hoc interpretations, though this is also 

possible with modern ML methods. It is possible, for example, to visualize the aspects of 

stimuli that most elicit a predicted response, as has been implemented in previous 

applications of neural networks to spike prediction (Lau, Stanley, & Dan, 2002; Prenger, 

Wu, David, & Gallant, 2004). Various other methods exist in the literature to enable post-

hoc explanations (McAuley & Leskovec, 2013; Simonyan, Vedaldi, & Zisserman, 2013). 

Here we highlight Local Interpretable Model-Agnostic Explanations (LIME), an approach 

that fits simple models in the vicinity of single examples to allow a local interpretation 

(Ribeiro, Singh, & Guestrin, 2016). On problems where interpretability is important, such 

capabilities for post-hoc justifications may prove sufficient. 

Not all types of interpretability are necessary for a given task, and many scientific 

questions can be answered based on predictive ability alone. Questions of the form, “does 

feature x contribute to neural activity?”, for example, or “is past activity necessary to 

explain current activity?” require no method transparency. One can simply ask whether 

predictive power increases with feature x’s inclusion or decreases upon its exclusion. 

Importance measures based on inclusion and exclusion, or upon the strategy of shuffling 

a covariate of interest, are well-studied in statistics and machine learning (Bell & Wang, 

2000; Strobl, Boulesteix, Kneib, Augustin, & Zeileis, 2008). Depending on the application, 

it may thus be worthwhile to ask not just whether different features could improve a GLM 

but also whether it is enough to use ML methods directly. It is possible for many questions 

to stay agnostic to the form of linearized features and directly use changes in predictive 

ability. 
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With ongoing progress in machine learning, many standard techniques are easy to 

implement and can even be automated. Ensemble methods, for example, remove the need 

to choose any one algorithm. Moreover, the choice of model-specific parameters is made 

easy by hyperparameter search methods and optimizers. We hope that this ease of use 

might encourage use in the neurosciences, thereby increasing the power and efficiency of 

studies involving neural prediction without requiring complicated, application-specific 

methods development (e.g. (Corbett, Perreault, & Körding, 2012)). Community-supported 

projects in automated machine learning, such as autoSklearn and auto-Weka, are quickly 

improving and promise to handle the entire regression workflow (Feurer et al., 2015; 

Kotthoff, Thornton, Hoos, Hutter, & Leyton-Brown, 2016). Applied to neuroscience, these 

tools will allow researchers to gain descriptive power over current methods even with 

simple, out-of-the-box implementations. 

Machine learning methods perform quite well and make minimal assumptions about 

the form of neural encoding. Models that seek to understand the form of the neural code 

can test if they systematically misconstrue the relationship between stimulus and response 

by comparing their performance to these benchmarks. Encoding models built with 

machine learning can thus greatly aid the construction of models that capture arbitrary 

nonlinearity and more accurately describe neural activity. 
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Chapter 4: (Interlude) The Four Roles of Supervised 

Machine Learning in Systems Neuroscience 

Foreword 

Machine learning plays multiple roles in this dissertation. These roles are logically 

distinct, and represent the general roles that machine learning can play more broadly in 

neuroscience. Here, I describe these roles and review the literature in neuroscience in 

which machine learning plays each role. This chapter is reproduced from a review paper I 

co-authored, now published at Progress in Neurobiology4. The aim of this review was to 

describe the potential uses so that other researchers might take a similar approach.   

Role 1 is to help create solutions to engineering problems. Chapter 1 features machine 

learning in this role, as do papers to which I contributed as a second author, especially 

Glaser et al. (2020)5 (see Publications). 

Role 2 is to help in identifying variables that are predictive of something, like neural 

activity or disease. This is role is played only by papers I contributed to as a middle author, 

especially Shen et al. (2020)6 (see Publications). 

Role 3 is to set benchmarks for simple models of the brain, as described in Chapter 2. 

Role 4 is for machine learning to itself serve as a model for understanding the brain. 

This is exemplified by Chapters 3, 4, and 5.  

 
 
4 Glaser, Joshua I.*, Ari S. Benjamin*, Roozbeh Farhoodi*, and Konrad P. Kording. “The roles of supervised 
machine learning in systems neuroscience”. Progress in neurobiology. 2019 Apr 1;175:126-37. 
* denotes co-first authorship 
 
5 Glaser, Joshua I., Ari S. Benjamin, Raeed H. Chowdhury, Matthew G. Perich, Lee E. Miller, and Konrad P. 
Kording. "Machine learning for neural decoding." Eneuro 7, no. 4 (2020). 

6 Shen, Hanfei, Tony Liu, Jesse Cui, Piyush Borole, Ari Benjamin, Konrad Kording, and David Issadore. "A 

web-based automated machine learning platform to analyze liquid biopsy data." Lab on a Chip 20, no. 12 
(2020) 
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Abstract 

Over the last several years, the use of machine learning (ML) in 

neuroscience has been increasing exponentially. Here, we review ML’s 

contributions, both realized and potential, across several areas of systems 

neuroscience. We describe four primary roles of ML within neuroscience: 

1) creating solutions to engineering problems, 2) identifying predictive 

variables, 3) setting benchmarks for simple models of the brain, and 4) 

serving itself as a model for the brain. The breadth and ease of its 

applicability suggests that machine learning should be in the toolbox of 

most systems neuroscientists. 

Introduction 

There is a lot of enthusiasm about machine learning (ML). After all, it has allowed 

computers to surpass human-level performance at image classification (He et al. 2015), to 

beat humans in complex games such as “Go” (Silver et al. 2016), and to provide high-

quality speech to text (Hannun et al. 2014) in popular mobile phones. Progress in ML is 

also getting attention in the scientific community. Writing in the July 2017 issue of Science 

focusing on “AI Transforms Science”, editor Tim Appenzeller writes, “For scientists, 

prospects are mostly bright: AI promises to supercharge the process of discovery” 

(Appenzeller 2017).  

The field of systems neuroscience is no exception. In the last few years there have been 

many opinion pieces about the importance of ML in neuroscience (Vu et al. 2018; Barak 

2017; Paninski and Cunningham 2017; Vogt 2018; Hinton 2011). Moreover, when we 

analyze the number of journal articles about ML in neuroscience, we find that its use has 

been growing rapidly over the last 20 years (Fig. 1). Machine learning has been used in 

many different ways within this literature. In this review, we will catalog the breadth of 

conceptual applications of ML in systems neuroscience. 
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Figure 4-1 

 

 

Figure 1: Growth of Machine 

Learning in Neuroscience. Here we 

plot the proportion of neuroscience 

papers that have used ML over the last 

two decades. The data represents the 

results of a search for “neuroscience” on 

Semantic Scholar. To identify the 

neuroscience papers that used machine 

learning methods we combined it with 

“machine learning”. 

 

 On the highest level, ML is typically divided into the subtypes of supervised, 

unsupervised, and reinforcement learning. Supervised learning builds a model that 

predicts outputs from input data. Unsupervised learning is concerned with finding 

structure in data, e.g. clustering, dimensionality reduction, and compression. 

Reinforcement learning allows a system to learn the best actions based on the reward that 

occurs at an end of a sequence of actions. This review focuses on supervised learning.  

Why is creating progressively more accurate input/output mappings (i.e. regression or 

classification; see Box 1) worthy of a title like ‘The AI Revolution’ (Appenzeller 2017)? It is 

because countless questions can be framed in this manner. When classifying images, an 

input picture can be used to predict the object in the picture. When playing a game, the 

setup of the board (input) can be used to predict an optimal move (output). When texting 

on our smartphones, our current text is used to create suggestions of the next word. 

Science has many cases where data is measured and estimates need to be made.   

In this review, we categorize the ways in which supervised ML promises to assist, or 

has already been applied to, problems in systems neuroscience. We believe that 

applications of supervised ML in this field can be divided in roughly four categories (Fig. 

2). 1) Solving engineering problems. Machine learning can improve many methods for 

neuroscientists, such as medical diagnostics, brain-computer interfaces, and research 

tools. 2) Identifying predictive variables. Machine learning can more accurately 
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determine whether variables (e.g., those related to the brain and outside world) predict 

each other. 3) Benchmarking simple models. We can compare the performance of simple 

interpretable models, to highly accurate ML models, to help determine the quality of the 

simple models. 4) Serving as a model for the brain. We can argue that the brain solves 

similar problems to ML systems, e.g. deep neural networks. The logic behind each of these 

applications is rather distinct. 

For the bulk of this review, we will go into further detail about these four roles of ML 

in neuroscience. We will provide many examples, both realized and potential, of ML across 

several areas of systems neuroscience. More specifically, we will discuss the four roles of 

ML in relation to neural function, including neural activity and how it relates to behavior; 

and neural structure, i.e., neuroanatomy. Finally, we will discuss ML in practice (see Box 

2), as that is crucial for useful applications. 

Figure 4-2 
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Figure 4-3 

 

Figure 2: Examples of the four roles 
of supervised machine learning in 
neuroscience. 1 - ML can solve 
engineering problems. For example, 
it can help researchers control a 
prosthetic limb using brain activity. 
2 - ML can identify predictive 
variables. For example, by using 
MRI data, we can identify which 
brain regions are most predictive for 
diagnosing Alzheimer’s disease 
(Lebedev et al. 2014). 3 - ML can 
benchmark simple models. If the 
simple model’s performance is close 
to that of the ML benchmark, it is 
more likely to be plausible. 4 - ML 
can serve as a model of the brain. 
For example, researchers have 
studied how neurons in the visual 
pathway correspond to units in an 
artificial network that is trained to 
classify images (Yamins and DiCarlo 
2016). 

 

 

Role 1: Solving engineering problems 

A surprisingly wide array of engineering problems can be cast as prediction problems. 

Their common thread is that one would like to estimate some quantity of interest (Y) and 

can take measurements (X) that relate to that quantity. The relationship between X and Y, 

however, is unknown and might be complicated. We call these ‘engineering problems’ 

when the final quantity, Y, is all that is desired. In these problems, one does not need 

detailed understanding of the relationship - the aim is simply to estimate Y as accurately 

as possible. For example, email providers aim to determine whether an email is spam from 

the text of that email and only care about the prediction accuracy. 



 

 86 

Traditionally, one would attempt to carefully understand this relationship, and 

synthesize this into a model. Modern machine learning (ML) is changing this paradigm. 

Instead of detailed expert knowledge of a process, a practitioner simply needs a large 

database of measurements along with the associated quantity of interest for each 

measurement. Machine learning algorithms can then automatically model their 

relationship. Once trained, an ML algorithm can make predictions for new measurements. 

This ‘engineering’ framework is the traditional application of ML and is common in 

industry. In neuroscience, there are many problems that resemble this general problem 

format. 

Neural Activity / Function 

Many medical applications depend on successfully extracting information about 

intention, sensation, or disease from measurements of neural activity. One application is 

brain-computer interfaces (BCIs), which seek to use neural signals for control, such as for 

prosthetic limbs or computer cursors. While the form of neural activity, the ‘neural code’, 

may be unknown, it is possible to obtain large datasets of neural activity and the resulting 

movements, which enables ML predictions. Several groups have used modern ML 

techniques, such as recurrent neural networks, to improve BCI using spikes (Sussillo et al. 

2016, 2012), ECoG (Elango et al. 2017), or EEG (Bashivan et al. 2015). In other 

applications, researchers used ML to predict disease state. For example, researchers 

predicted imminent seizures in epileptic patients using deep learning (Talathi 2017; 

Nigam and Graupe 2004) and ensemble methods (Brinkmann et al. 2016). Researchers 

have also classified neurological conditions, and there are several reviews on the subject 

(see (Arbabshirani et al. 2017) for classification using neuroimaging data, (Rathore et al. 

2017) for classification of Alzheimer’s disease, and (Vieira, Pinaya, and Mechelli 2017) for 

a focus on deep learning approaches). Predicting disease or intended movement from 

neural data is promising from a medical perspective. 

An ML approach also promises to assist with the inverse of the above problem: 

predicting neural activity from variables in the outside world. Solving this problem is 

important if we want to use neural stimulation to induce accurate sensation. A prosthetic 
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eye, for example, could be built by stimulating retinal ganglion cells in the correct manner 

according to the output of a camera (Nirenberg and Pandarinath 2012). The most accurate 

model of ganglion cell activity is currently a deep learning model trained to predict activity 

from naturalistic scenes (McIntosh et al. 2016). Similarly, prosthetic limbs could provide 

tactile and proprioceptive sensations if somatosensory neurons were correctly stimulated 

(Armenta Salas et al. 2018). Machine learning models may help to enable these neural 

prosthetics to induce sensations. 

Machine learning can be used as a research tool to quantify behavior (D. J. Anderson 

and Perona 2014), such as movement, sleeping, and socializing. For example, we may want 

to quantify movement of the whole body using cheap video recordings. Recent progress in 

the field has made video quantification far more precise. Researchers have used deep 

learning to estimate human poses from video (Insafutdinov et al. 2016). Related 

approaches have recently gotten easier to use and less data intensive, and have been 

extended to animal tracking (Mathis et al. 2018; T. Pereira et al. 2018). Along with 

estimating poses, we can also directly estimate types of behavior (e.g., walking vs. stopping 

vs. jumping) from video (Kabra et al. 2013). Behavior can also be estimated based on other 

modalities such as audio recordings (Arthur et al. 2013). Progress in ML-based behavior 

tracking can help us understand neural control of behavior in more natural environments. 

Finally, ML is helping the technical problem of obtaining accurate estimates of neural 

activity from raw measurements. Many imaging methods, such as EEG, MEG, and fMRI, 

require the solving of an ‘inverse problem’ - obtaining the source from the measurements. 

For example, researchers estimate the origin of EEG signals within the brain based on 

electrode recordings from the scalp. Recently, it has been observed that deep learning can 

improve the estimates for imaging (McCann, Jin, and Unser 2017). Neural networks have 

improved image denoising (Burger, Schuler, and Harmeling 2012; Xie, Xu, and Chen 

2012) and deconvolution (L. Xu et al. 2014), can provide super-resolution images (Dong 

et al. 2016), and can even replace the entire image processing pipeline (Golkov et al. 2016; 

Vito et al. 2005). Outside of imaging, the deconvolution of time series data is a common 

example. For example, once a researcher has obtained traces of cellular calcium 

concentration, there is still the difficult ‘inverse problem’ of inferring the timing of the 
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underlying spiking. Competition-style ML on labeled datasets provides good solutions 

(Berens et al. 2017). In each of these applications, a difficult engineering problem was 

replaced by building a large labeled dataset and learning the desired relationship. 

Neuroanatomy / Structure 

Along with diagnosing disease from neural activity, ML can also diagnose disease from 

neuroanatomy. For example, researchers can distinguish between Alzheimer's disease and 

healthy brains of older adults using MRI scans (Sarraf, Tofighi, and Others 2016). More 

generally, neuroanatomical measurements such as structural MRI and diffusion tensor 

imaging (DTI) can distinguish healthy from unhealthy patients across many conditions 

including schizophrenia, depression, autism and ADHD (Arbabshirani et al. 2017; Rathore 

et al. 2017; Vieira, Pinaya, and Mechelli 2017). Sometimes, ML enables surprising 

opportunities. For example, it has demonstrated using deep convolutional neural 

networks we can surprisingly predict cardiovascular risk factors from retinal fundus 

photographs (Poplin et al. 2018). The future will undoubtedly see ongoing efforts to 

automatically detect disease from biological data. 

Machine learning also creates tools for neuroanatomists. The majority of research in 

neuroanatomy is based on imaging techniques. Thus, segmenting and labeling parts of an 

image, which usually requires manual annotation, is an especially important task. 

However, as imaging techniques improve and the volume of data increases, it will become 

infeasible to rely on manual annotation. To solve this problem, many ML techniques have 

been developed to automatically segment or label new images based on a dataset of 

previously labeled images. These techniques have been used to label medical images 

(Litjens et al. 2017; Ronneberger, Fischer, and Brox 2015). They have also been used to 

understand the connections and morphologies of neurons from electron microscopy 

(Helmstaedter et al. 2013; Funke et al. 2017; Turaga et al. 2010). As imaging data improve 

in resolution and volume, ML is becoming a crucial and even necessary tool for 

reconstructing and mapping neuroanatomy. 
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Role 2: Identifying predictive variables 

Neuroscientists often ask questions of the form, “which variables are related to 

something of interest?” For example, which brain regions can predict each other? Which 

brain regions contain information related to a subject’s decision? Which cell types are 

affected by a certain disease? Machine learning (ML) can help to more accurately identify 

how informative one set of variables is about another. This is particularly instructive when 

there is a complex nonlinear relationship between the variables, which is often the case in 

neural systems. Answering these types of questions allows researchers to better 

understand the relationship between parts of the brain, stimuli, behavior, and more. 

The general strategy resembles that of the engineering applications (Role 1). 

However,  instead of only searching for maximal predictive accuracy, one examines which 

input variables lead to that accuracy. There are many methods to establish so-called 

‘feature importance’ (also known as ‘feature selection’). Two of the simplest are the leave-

one-out strategy, in which each variable is removed and one observes the decrease in 

accuracy, and the ‘best first’ strategy, in which the algorithm is run on each variable alone. 

The development of feature selection algorithms that appropriately allow for nonlinear 

feature interactions is an active field in ML and statistics (Tang, Alelyani, and Liu 2014). 

These methods allow us to get insights into which variables matter for a given problem. 

A more traditional approach for this type of question would be to fit simple models to 

data, like linear regression, and to examine the coefficients of the fit. This approach is 

ubiquitous in science. Its basic drawback, however, is that one needs to assume a model, 

which may be inaccurate. For instance, linear regression will not provide meaningful 

coefficients and confidence intervals when the underlying relationship between inputs and 

outputs is nonlinear. The ML approach, on the other hand, seeks to maximize predictive 

accuracy and in doing so does not need to assume a simple functional form. This has the 

advantage that we can evaluate a variable’s importance even when the relationship 

between inputs and outputs is quite nonlinear. Plus, by bootstrapping, we can even find 

the confidence interval for their importance values. Machine learning combined with 

feature selection approaches can be universally applied to problems regardless of whether 

we know the underlying relationship. 
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Determining the important features can also help us to construct simpler models. 

Rather than using many inputs for a model, we can only use the important features as 

inputs. For example, determining which morphological features of neurons are most 

predictive of cell type can lead us to build more accurate generative models of 

morphologies (that are based on the most predictive features). Accurately determining the 

importance of features within ML algorithms is thus also beneficial for creating simpler 

models. 

It is important to note that this approach examines the same variables that serve as 

raw inputs. Often the “features” we seek are different than the raw inputs. This is the case 

for vision, for example, in which the raw input variables may be as simple as single pixels. 

Finding these relevant features is a separate problem than the one we outline here in Role 

2, and often involves looking within the “black box” of ML systems (described in Role 4) 

or using unsupervised learning methods (Guo et al. 2011; Suk et al. 2015; Längkvist, 

Karlsson, and Loutfi 2012). 

Neural Activity / Function 

Neuroscience has a long history of building encoding models, which aim to predict 

neural activity (e.g., spikes in an individual neuron, or BOLD signal in an fMRI voxel) 

based on variables in the outside world. This is a common approach to identifying the 

“role” of a brain area. The building of encoding models is a regression problem (from 

external variables to activity), and its purpose is more akin to feature importance than 

purely predictive power. This problem is an open invitation to use ML methods in 

combination with methods of determining feature importance. 

Machine learning would not be necessary for encoding models if simpler methods were 

as accurate at describing neural activity. However, this is usually not the case. For 

example, we recently showed that XGBoost and ensemble methods led to significant 

performance improvements on datasets from motor cortex, somatosensory cortex, and 

hippocampus (Benjamin et al. 2017). These improvements were relative to Generalized 

Linear Models, which are ubiquitous in computational neuroscience. Others have also 

shown predictive improvements in other areas and modalities using methods such as 
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XGBoost (Viejo, Cortier, and Peyrache 2018) and deep learning (McIntosh et al. 2016; 

Klindt et al. 2017; Agrawal et al. 2014). These instances serve as warnings that although 

simple models may appear interpretable, they may be missing important aspects of how 

external variables relate to neural function. 

Having improved encoding performance can more generally allow researchers to 

understand which covariates are predictive of neural activity. This generalizes the already 

common approach of adding additional variables to simple models and observing the 

increase in performance (e.g., (Stringer et al. 2018)). For example, the research on 

building encoding models of head-direction neurons using XGBoost  (Viejo, Cortier, and 

Peyrache 2018) looked at the relative contribution of the different covariates (such as the 

direction of the head) within the encoding model. This allowed them to determine how the 

covariates mattered, without assuming the form of the relationship. Determining the 

importance of external variables is an important opportunity for modern ML methods. 

The reverse problem, “what information can be read-out from activity from this brain 

area” can also answer questions about information content and the role of specific brain 

areas or cell types. For example, it is possible to decode from several brain areas during a 

perceptual discrimination task to determine their role (Hernández et al. 2010). As another 

example, we have compared decoding results from motor cortex from different task 

conditions to determine how uncertainty in the brain relates to different behavioral 

uncertainty (Dekleva et al. 2016; Glaser et al. 2018). The choice of decoding method has a 

large impact on performance. We have recently done a thorough test of different ML 

methods on datasets from motor cortex, somatosensory cortex, and hippocampus, and 

have shown that modern ML methods, such as neural networks and ensemble methods 

lead to increased decoding accuracy (Glaser et al. 2017). More accurate decoding can 

increase our understanding of how much information is contained in a neural population 

about another variable, such as a decision, movement, or location.  

Researchers also want to understand the underlying factors that are predictive of a 

disease. This can be done by finding the importance of neuroimaging features in 

traditional classification techniques (e.g., determining which functional connectivity 

measures are predictive of Alzheimer’s disease in a logistic regression classifier (Challis et 
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al. 2015)). More recently, studies have used a variety of methods to look inside deep 

learning classifiers to determine the important features (e.g., determining fMRI 

connectivity relationships that are predictive of ADHD (Deshpande et al. 2015) and 

schizophrenia (Kim et al. 2016)). Determining the predictive factors of disease extends 

beyond neuroimaging data in humans. For instance, in a mouse model of depression, 

researchers determined which features of the connectivity between prefrontal cortex and 

limbic areas were predictive of pathological behavior (Hultman et al. 2016). They were 

then able to use this information to design a neural stimulation paradigm to restore 

normal behavior. Machine learning can prove to be a valuable tool to uncover predictive 

relationships between observables and disease across a wide range of neural activity 

modalities and diseases. 

Neuroscience researchers often want to determine which variables matter for 

behavior, so that they can relate these variables to neural activity. We can apply ML to find 

what variables are predictive of behavior, without assuming the form of the relationship. 

For example, researchers have aimed to determine which visual features predict where we 

look next. This is a useful step in determining the neural basis of gaze control (Ramkumar 

et al. 2016). Traditionally, hand-designed visual features have been used to predict where 

we look next (Itti and Koch 2001), but recently researchers have more accurately predicted 

fixation locations using deep learning (Kümmerer, Theis, and Bethge 2014). As another 

example, researchers have studied how features in the environment predict the songs 

produced by male Drosophila during courtship (Coen et al. 2016). Using a generalized 

linear model, this study found that the distance between the male and female was the 

strongest predictor. This allowed the researchers to then investigate the neural pathway 

that was responsible for distance modulating song amplitude. More accurate behavioral 

models can allow researchers to better investigate the relationship between neural activity 

and behavior. 

Neuroanatomy / Structure 

Machine learning can help researchers better understand how neuroanatomical 

features across the brain are predictive of disease. A general approach is to construct an 

ML classifier to determine whether a subject has the disease, and then look at the 
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importance of the features (e.g., brain areas or connections) in that classifier. In one 

example, researchers trained an SVM classifier to predict depression based on graph-

theory based features derived from diffusion-weighted imaging, and then looked at the 

importance of those features (Sacchet et al. 2015). In another example, researchers trained 

a random forest classifier to predict Alzheimer’s disease from structural MRI and then 

determined which brain areas were the most predictive features in this classifier (Lebedev 

et al. 2014). Another general approach is to compare classification models that are 

constructed using different features. For example, the previously mentioned paper 

(Lebedev et al. 2014) also compared classifiers constructed with different feature sets, e.g., 

one using cortical thickness measures and one using volumetric measures. There are thus 

multiple ways in which ML can inform us about the predictive relationship between 

neuroanatomic features and neurological disease. 

Neurons have complicated shapes with varying biological structure and vary widely 

across brain regions and across species (Zeng and Sanes 2017). Many approaches have 

been proposed to classify neurons: electrophysiology (Markram et al. 2015; Teeter et al. 

2018), morphology (Vasques et al. 2016), genetics or transcriptomics (Sümbül et al. 2014; 

Nelson, Sugino, and Hempel 2006; Tasic et al. 2016), and synaptic connectivity (Jonas 

and Kording 2015). Machine learning is often used for cell-type classification 

(Armañanzas and Ascoli 2015; Vasques et al. 2016). The cell types can be labeled based on 

one modality (e.g. whether the cell is inhibitory or excitatory), and then these labels can 

be predicted based on another modality (e.g., morphology). For instance,  both (López-

Cabrera and Lorenzo-Ginori 2017) and (Mihaljević et al. 2015) have used ML to predict 

cell type based on morphological features. This can both tell us which features are unique 

across cell types, and also which features are shared (Farhoodi and Kording 2018). In all 

of these areas, ML can help us to identify important features that shape neurons and 

transform our view of neuroanatomy.  

Role 3: Benchmarking simple models 

Machine learning (ML) cannot entirely replace simpler models within systems 

neuroscience. Such models embody human understanding and are necessary to test 

hypotheses. However, our understanding is meaningful only to the extent that these 
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simple models are actually correct. While one can check a model’s validity from its 

predictive performance (e.g. R2), it is often hard to know how much error derives from 

sources of noise versus systematic insufficiencies of the model. This is where ML can help. 

It can serve as an approximate upper bound for how much structure a simpler model 

should explain. If a human-generated model is much less accurate than the ML 

benchmark, it is likely that important principles are missing or because the model is 

misguided. If, on the other hand, an intuitive model matches the performance of ML, it is 

more likely (but not guaranteed) that the posited concepts are, indeed, meaningful.  

This approach stands in contrast to the current paradigm in which simple models are 

compared with previous (simple) models. This comparison may be meaningless if both 

models are very far from the peak ML predictive performance. Without a change in 

paradigm, we run the risk of not recognizing predictable complexity when it exists and not 

meaningfully advancing our understanding. 

There are great examples of this type of benchmarking from outside of neuroscience. 

Intelligible models are necessary for healthcare, so that patient decisions can be based on 

these models. However, it is also important that the models are as accurate as possible. 

Thus, when researchers made new, interpretable, models of pneumonia risk and hospital 

readmission, they compared the performance of interpretable models with ML 

benchmarks (Caruana et al. 2015). In psychology, researchers have compared human-

made models against ML benchmarks to understand the limitations of current behavioral 

models (Kleinberg, Liang, and Mullainathan 2017). This approach should also be 

advantageous within neuroscience. 

Finally, we want to point out that models can be compared against benchmarks on 

subsets of the data, which can help researchers determine what aspects of their model 

need to be improved. As an abstract example, imagine that we have a simple model for the 

activity of a brain area during tasks A and B. The model is close to the ML benchmark for 

task A, but not B. This tells us that the model needs to be revised to better take task B into 

account. Thus, using benchmarks can also tell us which components of models need to be 

improved. 
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Neural Activity / Function 

A common research narrative is to propose a new model (of neural activity or behavior) 

and show that it performs better than a previous simpler model. We believe that papers 

taking this ubiquitous approach should also compare a third model: an ML benchmark. 

This simple supplementary comparison could provide crucial information about how 

much neural activity or behavior remains to be explained. Unfortunately, benchmarking 

figures for new models are quite uncommon in neuroscience. 

Recent work has demonstrated that ML benchmarks may somewhat embarrass simple 

models in neuroscience. Neural networks in particular, have been shown to often describe 

neural activity far better than traditional, simple models. Neural networks better predict 

the activity of retinal ganglion cells (McIntosh et al. 2016), primate V4 and IT (Yamins et 

al. 2014), and auditory cortex (Kell et al. 2018). While the case can be made that these 

networks are themselves models of brain function (as we do in Role 4), these results also 

are plain demonstrations of the deficiencies of previous models. It would be desirable if 

such checks were made with the introduction of new simple models. 

Neuroanatomy / Structure 

Machine learning can also help benchmark the simple models that describe 

neuroanatomy. For example, many models have been proposed to describe the complexity 

of neurons’ morphologies. There are simple models describing the relationship between 

the diameters of segments at branching points (Rall 1964), the linear dependency of 

branch diameter on its length (Burke, Marks, and Ulfhake 1992), and the fractal 

dimensions of neurons and their self-similarity (Werner 2010). In all of these examples, it 

would be possible to use ML techniques on the raw data to create upper performance 

bounds for these models. This carries the promise to make anatomical modeling more 

meaningful. 

Role 4: Serving as a model for the brain 

The role of computational models of the brain is not only to predict, but also to serve 

as human-understandable distillations of how we think the brain works. It has recently 

become a more popular idea that deep neural networks are good models of the brain, albeit 
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at a high level of abstraction (Marblestone, Wayne, and Kording 2016; Hassabis et al. 

2017; Kietzmann, McClure, and Kriegeskorte 2017). Even a decade ago, this idea seemed 

less appealing to the field given the hyper-simplified form of contemporary neural 

networks. However, numerous recent empirical studies have pointed to unexpected 

parallels between the brain and neural networks trained on behaviorally relevant tasks, 

which we want to discuss here. While exciting, much work is needed (and is ongoing) to 

tighten the analogy between neural network models and the brain. Here we review these 

suggestive studies and discuss the various ways that artificial neural networks are 

becoming better models of biological ones. Neural activity and neuroanatomy are 

discussed without separation, as both aspects are often integrated together in ML models 

of the brain. 

The trend of comparing trained neural networks to the brain was reignited recently 

due to the great achievements of neural networks at behavioral tasks, such as recognizing 

images (He et al. 2015). Interestingly, these networks have many parallels to the ventral 

stream in vision. These networks are explicitly hierarchical and multi-layered. 

Information from image pixels typically is processed through upwards of a dozen layers of 

“neurons”, or nodes. In addition to their analogous organization, their activations are 

similar. For example, it has been observed that early nodes have Gabor-like receptive 

fields  (Güçlü and van Gerven 2015), reminiscent of the edge detectors seen in V1. 

Moreover, activations in early/intermediate/later layers of these networks make excellent 

predictions of V1/V4/IT responses, respectively (of both individual neurons and fMRI 

responses) (Yamins and DiCarlo 2016; Yamins et al. 2014; Khaligh-Razavi and 

Kriegeskorte 2014; Güçlü and van Gerven 2015). Recent work has further extended the 

similarities. Deep neural networks are similarly invariant to viewpoint in object 

recognition (Saeed Reza Kheradpisheh et al. 2016), respond similarly across images 

(Khaligh-Razavi and Kriegeskorte 2014), and make similar types of errors (Saeed R. 

Kheradpisheh et al. 2016). This litany of similarities is longer and extends over a broader 

range of the visual cortex than any competing class of models. 

The similarities between trained neural networks and the brain extend beyond the 

visual system. The format of these studies, nearly universally, is to compare the internal 
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response properties of a brain area to those of a neural network trained on a behavioral 

task associated with that brain area. A pioneering study published three decades ago 

showed the similarity between posterior parietal neurons and a neural network trained to 

locate objects in a visual scene (Zipser and Andersen 1988). More recently, networks 

trained on scene recognition could accurately predict responses in the occipital place area 

(Bonner and Epstein 2018). Networks trained on speech recognition and musical genre 

prediction have activity similar to the auditory cortex (Kell et al. 2018). Recurrent neural 

networks trained to reproduce monkey movements contained units with activities very 

similar in selectivity to neurons in the primary motor cortex (Sussillo et al. 2015). The 

units of recurrent networks trained on navigation tasks have activations similar to the grid 

and place cells of the entorhinal cortex and hippocampus (Kanitscheider and Fiete 2017; 

Cueva and Wei 2018; Banino et al. 2018). The similarity between response properties of 

artificial neural networks and the brain is a sign that these models may capture important 

aspects of the brain’s computations.  

While these results could indicate that current networks are already good models of 

the brain, there are a few reasons to be skeptical (Lake et al. 2017). Several neural network 

architectures can all predict activity reasonably well, despite being different in form. 

Additionally, neural networks require large amounts of data to train, while the brain can 

often learn from few examples (Carey and Bartlett 1978; F. Xu and Tenenbaum 2007). 

Plus, artificial networks are plainly different in both architecture and response patterns 

from biological brains. An alternative explanation of these results is that typical patterns 

of tuning curves are emergent properties of any good distributed computing system 

operating on the real world. More work is needed to evaluate in which circumstances deep 

neural networks form good models of neural computation.  

There is ongoing research to address the concern that artificial neural networks are 

not biologically plausible. One focus on creating biologically plausible neural networks is 

on having spiking (binary), as opposed to continuous, units. Many recent research papers 

have begun to create spiking neural networks that successfully solve typical machine 

learning (ML) problems (Zenke and Ganguli 2017; Nicola and Clopath 2017; Mozafari et 

al. 2018; Bellec et al. 2018). Another focus is on backpropagation, which is used for 
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training neural nets, yet is not considered a biologically plausible mechanism for credit 

assignment. One recent paper showed that random feedback weights still allows for 

successful learning (Lillicrap et al. 2016), solving one of the implausible aspects of 

backpropagation. Other work has presented networks based on the apical/basal dendrites 

to solve the problem of credit assignment (Guerguiev, Lillicrap, and Richards 2017; 

Körding and König 2001; Sacramento et al. 2017). Plus, there have been many other recent 

(Scellier and Bengio 2016; Bengio et al. 2015, 2017) and historic (Hinton and McClelland 

1988) works creating more plausible credit assignment mechanisms. However, one 

challenge is that many biologically-motivated deep learning algorithms do not scale well 

to large datasets (Bartunov et al. 2018). Finally, there has also been recent work 

developing architectures that are more biologically realistic (Costa et al. 2017; Linsley et 

al. 2018), for example those inspired by cortical microcircuits (Costa et al. 2017). Work on 

biologically-plausible deep learning will help to address how much artificial networks 

should be seen as faithful models of the brain. 

Another concern with these neural network models is interpretability. It would be 

worrisome to replace a brain we cannot meaningfully understand with a neural network 

equally as complicated. Still, it is advantageous that we can observe every hidden unit, 

weight, and activation within these models. There has been much recent work to develop 

methods to better understand what is occurring within neural networks. This includes 

methods for visualizing what features and information are represented at different scales 

within convolutional neural networks (Olah et al. 2018) and methods for understanding 

the dynamics within recurrent neural networks (Sussillo and Barak 2013). In fact, 

researchers are also developing new model architectures that are more easily interpretable 

(Foerster et al. 2017; Linderman et al. 2017). Neural network models can also be 

advantageous because researchers can do experiments on neural networks that would be 

impossible to perform on a biological brain. For example, researchers recently tested 

whether the tuning of individual units in neural networks were important for classification 

generalization (Morcos et al. 2018). Additionally, fully observable neural networks may 

serve as test-beds for new neural data analysis methods, which are greatly needed to 

increase understanding (Jonas and Kording 2017). While it is not guaranteed that lessons 
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about neural networks will apply directly to the brain, findings can at least challenge 

assumptions within neuroscience and provide new hypotheses to test. 

A final note about deep learning models of the brain is that the analogy invites a change 

in research focus. One might consider, for instance, focusing on which cost functions the 

brain is optimizing rather than the final properties of the network. Similarly, it is 

important to focus on determining the learning rules implemented by the brain. We have 

discussed some of these matters recently in a separate review, particularly focusing on how 

neuroscience should learn from machine learning’s quest to understand neural networks 

(Marblestone, Wayne, and Kording 2016). 

Although modeling the brain with neural networks is a popular approach, and perhaps 

most popular, other ML algorithms have also been proposed as models of the brain. 

Decision trees, for example, offer a compelling framework to model decision-making as a 

prunable tree of potential decisions (Huys et al. 2012). Simple neural circuits have also 

been modeled with threshold decision trees (Uchizawa, Douglas, and Maass 2006). The 

cerebellum and similar structures (like the mushroom body in Drosophila) can potentially 

be modeled as implementing a weighted nearest-neighbors calculation (Dasgupta, 

Stevens, and Navlakha 2017). Researchers have suggested that information processing in 

the brain relates to the ML concept of random projections (Arriaga and Vempala 2006). 

Plus, there have been many comparisons of the brain to reinforcement learning (Wang et 

al. 2018; Gläscher et al. 2010; Glimcher 2011; Doya 2000) and unsupervised learning 

(Hinton and Sejnowski 1999; Doya 2000), which we do not cover here. One may wonder 

if most ML models have been compared to the brain in some way. 
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Figure 4-4 
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Discussion 

Here we have argued that supervised machine learning (ML) has four primary roles 

within system neuroscience: 1) Solving engineering problems; 2) Identifying predictive 

variables; 3) Benchmarking simple models; and 4) Serving as a model of the brain. As the 

current trend in applying ML to neuroscience (Fig. 1) indicates, we believe that the 

influence of ML on neuroscience will continue to grow. 

Machine learning extends beyond supervised learning and thus can play an even 

greater role in neuroscience than we describe here. Using unsupervised learning methods, 

one can reduce the dimensionality of data (Cunningham and Yu 2014; Gao and Ganguli 

2015), use clustering algorithms to discover new classes/categories (Armañanzas and 

Ascoli 2015; Drysdale et al. 2017), create generative models (Molano-Mazon et al. 2018; 

Arakaki, Barello, and Ahmadian 2017), and extract features automatically (Guo et al. 2011; 

Suk et al. 2015; Längkvist, Karlsson, and Loutfi 2012). Moreover, reinforcement learning 

(RL) is another ML category used within neuroscience. RL is inspired by behavioral 

psychology and can be used as a model of the brain to understand the mechanisms of 

reward-based learning and decision making (Wang et al. 2018; Gläscher et al. 2010; 

Glimcher 2011; Doya 2000). The four roles of this paper are all about supervised learning 

and do not include unsupervised learning and RL. 

As neurotechnologies advance, the role of ML in neuroscience is likely to continue to 

grow. Datasets are rapidly growing (Stevenson and Kording 2011; Kandel et al. 2013) and 

becoming more complex (Glaser and Kording 2016; Vanwalleghem, Ahrens, and Scott 

2018). Machine learning will be needed for this regime of data, as after all, there is only so 

much time a human being can spend looking at data. Moreover, as datasets get bigger, ML 

techniques become more accurate. Additionally, it is hard to reason about complex and 

high-dimensional datasets. Of all of the models that could explain a complex system, it is 

possible to think only about those models that are simple enough to imagine – to outline 

in human working memory. But in biology, as opposed to physics, there are good reasons 

to assume that truly meaningful models must be fairly complex (O’Leary, Sutton, and 

Marder 2015). While humans will correctly see some structure in the data, they will miss 

much of the actual structure. It is simply difficult to intuit models of nonlinear and 
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recurrent biological systems. In these situations, it may be necessary to seek help from ML 

methods that can extract meaningful relationships from large datasets. 

The use of ML will also continue to expand as ML gets easier to use. Applying ML has 

already become fairly straightforward. At application time, one requires a matrix of 

training features and a vector of known labels. Given the availability of the right software 

packages (Pedregosa et al. 2011), generally, only a few lines of code are then needed to 

train any ML system. In fact, there has been recent work on automated ML (Feurer et al. 

2015; Kotthoff et al. 2017; Guyon et al. 2015), so that users do not need to make any 

decisions on specific methods to use, how to preprocess the data, or how to optimize 

hyperparameters. Thus, it is becoming less important for neuroscientists to know the 

details of the individual methods, which frees them to focus on the scientific questions that 

ML can answer. 

The power of ML allows for the design of new types of experiments. Experiments will 

benefit from as much data as possible, measured both by the number of samples and 

number of dimensions. Since ML promotes experimental approaches that aim for 

predictions rather than for interpretations of the role of each variable, one can record as 

many variables as will improve predictions. This stands in contrast with the traditional 

scientific method of variable interpretation as, through multiple comparison testing 

corrections, it is not possible to say much about any variable if too many are recorded. 

Machine learning can also be used to optimize experimental design, e.g. by intelligently 

choosing stimuli that will maximize firing rates (Cowley et al. 2017) (here acting in Role 1 

as an engineering tool). Researchers should keep ML methods in mind when designing 

experiments.  

As is the case with any modeling, we wish to remind readers that it is important to be 

cautious when interpreting ML models. High predictability does not mean causality (Pearl 

2009; Katz et al. 2016). This is especially true because there are so many unobserved 

variables within neuroscience. For instance, the apparent importance of a variable within 

a model may be inaccurate due to other unobserved variables (Stevenson 2018). Moreover, 

high model accuracy does not mean that it is actually a causally correct model of what is 

occurring in the brain. High accuracy is a necessary, but not a sufficient condition for 

https://paperpile.com/c/zANnTW/j2vu+xlHn+OjDZ
https://paperpile.com/c/zANnTW/j2vu+xlHn+OjDZ
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model correctness. This is because there is an enormous space of potential models that 

could explain the data well. This is a difficulty of modeling the brain and identifying 

predictive variables with ML, but does not impact the use of ML for engineering, or 

benchmark, applications. 

For a long time, neuroscientists have worked on improving ML techniques, and many 

ML techniques have been inspired by thoughts about brains and neural computation. With 

the growth of the ML field, the flow of information is becoming multi-directional. While 

neuroscience continues to inspire ML development, ML is also on the way to becoming 

one of the central tools and concepts in neuroscience. 
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Chapter 5: Learning to infer in recurrent biological networks 

Foreword 

This chapter asks how the sensory cortex might learn representations of the external 

world. It is situated most closely to the field of artificial intelligence called, appropriately, 

representation learning. The goal of this chapter is to reconcile representation learning 

algorithms with biology, and thus act as hypotheses for sensory neuroscience. Broadly, it 

is an example of Role 4: machine learning as a model of the brain. 

Representation learning is an old idea within AI. Here, a representation is defined as 

some transformation of sensory data into a new space. Principal Components Analysis 

(PCA), sparse coding, and k-means clustering are all examples of unsupervised 

representation learning algorithms. What is common to these algorithms is the existence 

of transformations both from data to a representation and from representation to data.  

When taken as a model of the sensory cortex, one must adopt a central dogma that the 

brain, too, forms various representations and can transform information between them. 

These transformations are presumed to be more complicated than e.g. in PCA.  

Temporarily bracketing the question of what these transformations might be, this 

chapter asks what neural circuits might be used to adjust and improve them towards their 

objective. This question is possible because the objective of representation learning has a 

general mathematical form that applies to many architectures and systems. This objective 

appropriately considers the uncertainty in choosing a correct representation. It represents 

a Bayesian framework for sensory processing and representation learning.  

This chapter is adapted from a preprint7 and is in the process of peer review.  

 
 
7 Benjamin, Ari S., and Konrad P. Kording. "Learning to infer in recurrent biological networks" 
arXiv preprint arXiv:2006.10811 (2021). 
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Abstract 

A popular theory of perceptual processing holds that the brain learns a 

generative model of the world as well as a paired recognition model. 

Though this explains much of perception, it is not known how such models 

are learned. Seeking an algorithm that is compatible with the complex 

inter-dependencies of neurons induced by recurrence, we argue here that 

the cortex may learn with an adversarial algorithm. Many observable 

symptoms of this approach would resemble known neural phenomena, 

including wake/sleep cycles and oscillations that vary in magnitude with 

surprise. We describe how further predictions could be tested. We illustrate 

the idea on recurrent neural networks trained to model image and video 

datasets. This theory of learning brings variational inference closer to 

neuroscience and yields multiple testable hypotheses. 

Introduction 

Animals can predict future sensations, are surprised when predictions are violated, 

and learn from such surprises to predict better. These phenomena imply that animals 

construct internal models of the world, or at least of their sensations, to assess what is 

likely to occur. In this formalism, a surprising event corresponds to an event with low 

probability in one’s internal model. Learning must adapt the internal model so that events 

are less surprising. Internal models carry clear benefits to a perceiving brain and are 

ubiquitous in computational neuroscience as theories of how the brain ought to perceive 

(Fiser et al., 2004; Wolpert et al., 1995). 

Internal models predict must sensations by using internal representations of aspects 

of the world. However, these representations must be updated when new information is 

received. This requires interpreting the low-level sensations in the context of its internal 

model – the reverse direction of predicting sensations. In this framework, which is often 

attributed to Helmholtz, (Knill & Richards, 1996; von Helmholtz, 1925), perception is 

understood as a process of inferring what high-level factors in one’s internal model are 

consistent with new observations. One may infer that a dark region is a shadow and not a 
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coincidental dark spot, for example, because this is most consistent with one’s internal 

model of the world. Many psychophysical and physiological experiments support this 

understanding of perception as inference, and as a result this idea is now central to the 

modern theory of perception (Berkes et al., 2011; Dasgupta et al., 2020; Friston, 2005; 

Hinton & Ghahramani, 1997; Kleinschmidt & Jaeger, 2015; Mumford, 1994; Poggio et al., 

1987; Yuille & Kersten, 2006). 

One of the ways in which the brain could perform inference over an internal model is 

via a ‘recognition model’ instantiated in bottom-up synapses (Dasgupta et al., 2020; 

Hinton et al., 1995). In this conception, the brain generates expectations over lower 

perceptual areas, such as V1, via top-down feedback. The bottom-up, feedfoward 

propagation of new information is then expected to be self-consistent with these 

expectations, in the sense that they invert the generative model. Learning a representation 

of the world becomes learning a good generative model while simultaneously learning 

invert it. 

Here, we present a potential algorithmic interpretation of wake and sleep cycles that 

would allow organisms to learn internal models as well as a paired recognition model. Our 

model follows the pioneering paradigm of the Wake/Sleep algorithm (Hinton et al., 1995). 

However, we are motivated by the failure of this algorithm to model statistical 

dependencies between neurons (given a previous layer). Such dependencies are almost 

certainly present in the brain given the high degree of local recurrence. Reconciling the 

theoretical approach of the Wake/Sleep algorithm with the brain requires developing new 

algorithms compatible with its connectivity. 

Our model and hypothesis introduces local aggregators of activity, i.e. interneurons, 

in order to solve this learning problem and allow Bayesian inference over neural 

populations. These cells take on the role of a teacher: they summarize the distributed 

activity of a target population in such a way as to indicate how incoming synapses should 

change. This requires these cells to themselves learn to be useful for learning, as a meta-

learning rule. 
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The justification for this rule derives from the literature on adversarial learning 

(Goodfellow et al., 2014). The teacher-cell interneurons learn to classify, or discriminate, 

whether population activity is driven by a generative model or by a recognition model. 

Like the Wake-Sleep algorithm, this rule requires alternating between two phases, one 

driven by the generative model and one by the recognition model. Neurons that learn with 

this rule can effectively gate plasticity over connections such that they learn generative or 

recognition models. 

As we demonstrate here, this algorithm is effective at learning hierarchical 

representations even when the neural populations are highly recurrent. In addition, we 

hypothesize a new role for a type of interneurons. We describe how this interpretation 

might be tested experimentally. This extension of the Wake/Sleep algorithm offers a 

bridge between the computational objective of Bayesian inference over an internal model 

and the biological implementation that makes learning possible. 

Background: the goal of learning 

Here we provide a brief restatement of the goal of learning. The objective of our 

learning problem is to learn mappings between inputs x and a learned representation z 

that are reciprocal in a specific sense. In our model both x and z are taken to be vectors of 

neural activities. This objective, sometimes called ‘variational inference’ or ‘free energy 

minimization’ is standard and can be found in various textbooks (Bishop, 2006; Dayan et 

al., 2001). We will introduce it here as the sum of two different objectives. 

The first objective is to model the inputs. The top-down connections is to generate a 

probability distribution over x for each z. This distribution can be written as pθ(x|z), and 

it depends on the parameters θ. Together with a prior distribution over z, this implies a 

distribution over x generated by the model and its prior. This modeled distribution is pθ(x). 

The parameters of the model θ are adjusted such that the true input distribution q(x) 

equals pθ(x). 

The second objective is inference. The bottom-up network has the role of mapping an 

observed x to a distribution over z, qϕ(z|x). Note that this depends on the learnable 
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parameters ϕ. Learning aims to adjust ϕ such that qϕ(z|x) approximates the posterior 

distribution of the z could have generated an observed x under the internal model, i.e. 

pθ(z|x). The parameters ϕ are shared over all inputs. This setting is sometimes called 

‘amortized’ variational inference. 

When these objectives are taken together, it can be seen that the final objective is to 

match two probability distributions. Both of the above objectives are met when qϕ(x,z) = 

pθ(x,z), i.e. when the joint probability distribution of (real data, inferred representation) 

pairs matches the joint distribution of (sampled representation, generated data) pairs. 

Learning in this framework is thus a distribution-matching problem. 

One can match two distributions with many metrics. Most variational inference 

algorithms minimize the Kullbeck-Leibler (KL) divergence between these two joint 

distributions. The KL divergence between the two joint distributions is: 

.  

This expression is sometimes referred to as the variational free energy. Note that this 

is typically written using the conditional qϕ(z|x), whereas we use the joint qϕ(x,z) to 

emphasize the distribution-matching interpretation. This does not change optimization 

because the value of the equation changes only by the entropy of the inputs x, which is 

independent of learnable parameters. 

This objective is quite general and can describe probabilistic representation learning 

in many settings. Examples span from probabilistic principal components analysis to 

Gaussian mixture models to very complex hierarchical, nonlinear models. Note that the 

‘usefulness’ of the representation z, however defined, depends on what prior and 

architecture is trained towards this objective. The objective itself is general to the form of 

the representation. 

The problem posed by recurrence 
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Recurrence complicates learning because it prevents the use of a powerful 

simplification used by many algorithms. This is to treat each cell as being independent, 

given the upstream neurons. This allows learning to be local to each synapse. Specifically, 

the objective DKL becomes a sum of single-neuron prediction errors and entropies. These 

can be computed locally (Rao & Ballard, 1999; Urbanczik & Senn, 2014). This strategy of 

connectivity restrictions underlies the bulk of variational inference algorithms proposed 

as models of the brain. 

The effect of recurrence can be made precise by imagining one neuron A that predicts 

two neurons B and C which interconnect (Fig. 2a). In this setting, the objective of 

prediction (contained within DKL) is to maximize the log probability of observing B and C 

given A, 𝑙𝑜𝑔 𝑝(𝐵, 𝐶|𝐴). Recurrence between B and C introduces a dependency, meaning 

tha: log 𝑝 (𝐵, 𝐶|𝐴) ≠ log 𝑝 (𝐵|𝐴) + log 𝑝 (𝐶|𝐴). Thus B and C cannot be predicted separately. 

Synapses need access to all A,B, and C’s activity in order to learn. 

Figure 5-1 

 
Fig 1. Learning to predict a target population with fast recurrence. (left) The green neurons 
interconnect and are not independent given top-down activity; learning at the synapse highlighted 
in red requires information about all three. (right) This can be solved with an interneuron that 
aggregates local activity and signals how plasticity should change. 

Ultimately, the problem posed by recurrence is that synapses now also require 

nonlocal information about many other neurons’ activity. The solution is to find low-

dimensional signals available for plasticity that aggregate local activity and communicate 

locally how learning should proceed (Fig. 1). 
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Results 

Two adversarial algorithms for sensory learning 

Here we describe two algorithms for sensory learning. The idea common to both 

algorithms is to leverage a switch between an externally-biased mode and an internally-

biased mode of processing. Such switches are widely observed in neuroscience and it has 

been hypothesized that their purpose is to learn internal models (Honey et al., 2017). Our 

contribution is to propose specific algorithms that use such switches to learn 

representations and models of the world. 

As reviewed in the introduction, the goal of representation learning is equivalent to 

aligning two probability distributions: the joint distributions of stimulus-driven activity 

qϕ(x,z) and the distribution of self-generated activity pθ(x,z). To derive an algorithm that 

can align these distributions, we look to the literature on generative adversarial algorithms 

(Donahue et al., 2016; Dumoulin et al., 2016; Goodfellow et al., 2014). The insight of the 

adversarial approach is that two distributions can better aligned if a critic or discriminator 

can tell samples from the distributions apart. 

The discriminator can be interpreted as a learned reward signal for sensory cortex. It 

signifies in which ways the two distributions meaningfully differ, and tricking the 

discriminator becomes the purpose of sensory learning. Importantly, this approach does 

not assume conditional independence and is compatible with local recurrence. 
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Figure 5-2 

 

Fig 2. A simple case illustrating the problem of recurrence. a) We created a toy task of predicting 
two connecting neurons B and C from neuron A. All connections evoke Gaussian-distributed 
responses, and all neurons are linear. The “target population” is driven by hidden neuron T. b) The 
joint distribution p(B,C) for a fixed T → B and T → C connections is quite correlated. c) When 
learning the A → B and A → C connections by maximizing p(B|A) and p(C|A) separately, ignoring 
recurrence, the predictions fail to match the joint distribution. Left is repeated from (b), right is 
EA[p(B,C|A)]. d) The adversarial hypothesis (involving a new discriminator interneuron, not 
shown) successfully aligns the distribution. The discriminator sees B and C and gates plasticity at 
the predictive connections from A. e) The alignment can be quantified with the KL divergence 
(calculated via hexagonal histograms) between the learned and target distribution. f) Another 
measure of success is the distance between A and T’s outward connections’ mean and variance, 
which we call the parameter error. 

Comparing wake and sleep distributions 

It has recently been argued that cortical activity during sleep indeed represent samples 

from an internal model (Aru et al., 2020; Hobson & Friston, 2012; Honey et al., 2017). 

Much of the evidence for this is phenomenological; dreams, after all, have many of the 

same statistical properties of the world such as meaningful objects and sounds. This idea 

has also long been popular in computational theory (Ackley et al., 1985; Hinton et al., 

1995). If this is indeed the case, it would provide a powerful opportunity to the brain to 

use an adversarial algorithm for learning representations. 

What is required for a neuron to act as a discriminator is a particular form of plasticity 

that changes sign with the phase of mode-switching. One simple method is to attempt to 

have a high firing rate on samples from one distribution and low firing rate on the other. 
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If we represent the discriminator as a neuron with an output given by D(x,z), which is a 

function of the entire network state, it should have plasticity that maximizes the objective: 

  

The particular formulation of Eq. 2, the difference of the average of D between phases, 

is but one among a large number of adversarial objectives suitable for matching 

distributions (Nowozin et al., 2016). It is that of the Wasserstein GAN, which can be 

derived from a minimization of the Wasserstein-1 distance between probability 

distributions (Arjovsky et al., 2017) and requires an additional regularizing penalty so that 

∇x,zD(x,z) ≤ 1. As proved by Donahue et al. (2016) and Dumoulin et al. (2016), this strategy 

converges when the recognition model and generative model are inverses. 

This strategy is very effective for aligning distributions. In Figure 2, we show a simple 

demonstration of this algorithm. The task is designed to show the minimal case in which 

local recurrence causes problems. This when a source neuron (A) attempts to predict to 

two neurons in a target population (B and C), but these neurons interconnect. (Note that 

for this demonstration we consider only half of the problem, learning the internal model 

of B and C given A, and omit the problem of inverting this model, inferring A given B and 

C). This causes dependencies in their distribution given the source neuron A (Fig. 2b). 

Learning an internal model of B and C by predicting them separately causes poor learning 

(Fig. 2c). Thus B and C cannot be predicted separately; synapses need access to all A,B, and 

C’s activity. However, the adversarial strategy allows the synapses from the source neuron 

A to correctly model their distribution (Fig. 2d). 

A purely wake/sleep discriminator receiving input from all neurons would work well 

in small nervous systems. This is because the discriminator has an input dimension equal 

to the total number of neurons. In the ML literature, applications of this algorithm have 

been limited to dimensions of x and z totalling tens of thousands of units at the largest 

(Donahue & Simonyan, 2019). Scaling to a system as large as the neocortex motivates our 

second proposal. 
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Comparing phases of an ascending oscillation 

The cortex arguably switches between modes of processing on multiple timescales. In 

addition to wake and sleep, oscillations with periods as low as 10ms have also been 

hypothesized to represent a switch of the main drive of activity from external (bottom-up) 

to internal (top-down) sources (Honey et al., 2017). Such oscillations may also be used for 

adversarial learning. This allows for local discriminators with many fewer inputs than in 

a purely Wake/Sleep algorithm. 

An algorithm can be derived by examining the KL divergence DKL(q∥p) for a multilayer 

network with internal recurrence in each layer. In this architecture, we can write the joint 

log-probabilities as: 

 

Here pai
p represent the neurons presynaptic to the population xi in the generative 

phase, and pai
q  are the neurons presynaptic in the inference phase. These terms are the 

KL divergence between the generative distribution and inference distribution over zi: 

If these layerwise KL divergences can be minimized, the overall DKL(qϕ∥pθ) will decrease 

as well. Instead of using one discriminator that sees the entire network state, then, the 

brain could use one discriminator per layer that only observes the local population. 

In the W-GAN formalism, the objective maximized by the discriminator and 

minimized by the layer would be: 
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Evaluating this objective requires obtaining samples of activity in each phase. While 

the inference distribution is straightforward to sample, the generative distribution 

pθ(zi|zi+1), zi+1 ∼ qϕ requires an oscillation in which the neurons zi are driven by feedback 

from one layer up. Thus the discriminator would observe alternating phases of somatic 

activity, with one phase corresponding to bottom-up inputs and one phase corresponding 

the top-down prediction. 

If oscillations represent mode switches, then one should observe stronger oscillations 

in activity for unexpected stimuli. After all, for expected (i.e. well-modeled) stimuli the 

top-down predictions are indistinguishable from bottom-up signals. We thus expect to see 

the power of the oscillation correlate with surprise, as is observed for the gamma 

oscillations. For example, in auditory cortex, MEG and EEG studies show increases in 

gamma power to unexpected auditory stimuli (Haenschel et al., 2000; Todorovic et al., 

2011), to omissions of expected musical beats (Fujioka et al., 2009), and to unexpected 

mismatches between auditory and visual cues (Arnal et al., 2011). In the hippocampus, 

both theta and gamma ranges increase after unexpected stimuli (Axmacher et al., 2010). 

The correlation of prediction errors with oscillation strength is consistent with the overall 

framework. 

The adversarial interpretation of oscillations makes two further predictions. First, the 

oscillations should ascend up sensory hierarchies. Indeed, oscillations in the gamma range 

have been found to ascend up the visual hierarchy (Van Kerkoerle et al., 2014). Second, 

top-down feedback in the internal mode should drive somatic activity. Other algorithms 

for Bayesian inference require that feedback only be integrated in dendritic compartments 

for comparison with bottom-up activity (Friston, 2005; Siegel et al., 2000). In reality, 

feedback into apical dendrites can have a large effect on somatic activity (Larkum et al., 

1999). 

Learning on two timescales: Learning can occur on both timescales, and with 

both algorithms. While one could define a separate discriminator each algorithm, it works 

well to combine objectives on the same set of discriminators. Defining a hyperparameter 

γ that balances between the objectives, we obtain a combined minimax objective for the 

ith layer and its discriminator: Lzi = γLWS + (1 − γ)(LO,zi). 
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Experiments 

To illustrate our proposal, here we apply the learning algorithm presented above. The 

overall framework of adversarially learned inference over a generative model has been 

validated elsewhere in the context of feedforward networks (Belghazi et al., 2018; 

Donahue et al., 2016; Dumoulin et al., 2016; Larsen et al., 2016; Pu et al., 2017; Srivastava 

et al., 2017). As a crucial test of biological feasibility, here we will empirically ask how well 

the algorithm will work on recurrent neural network architectures. 

Figure 5-3 

 
Fig 3. Generating MNIST digits with a recurrent, stochastic autoencoder. A) In either inference or 
generation, samples are passed through a multilayer network parameterizing a Gaussian, which is 
then sampled and subject to nonlinear stochastic recurrence. B) In the adversarial wake/sleep 
algorithm (Section 3.1), a global discriminator observes both z and x during wake and sleep phases. 
This algorithm allows realistic generation but often shows poor reconstruction. C) When the 
discriminator aligns inference with layer-wise reconstructions (Section 3.2), discriminators are 
local to each layer. We trained this system with the combined objective of Eq. 6 with γ = 0.1. D) As 
in Berkes et al. (2011), we can check empirically if the joint distributions of the Sleep and Wake 
phases match. After quantizing the vector of x and z by rounding to the nearest integer, we observed 
patterns over 16 units’ activity and histograms of how often these patterns appeared when 
observing/generating MNIST digits. Comparisons are shown for the model in panel B (top) and in 
panel C (bottom). 

MNIST digit generation from stochastic recurrent representations 

We begin with a simple autoencoder in which both the recognition model (encoder) 

and internal model of inputs (decoder) are stochastic, nonlinear transformations followed 

by recurrence (Fig. 3). The first-stage transformations are 2-layer fully-connected neural 

networks that output the mean and variance of a diagonal Gaussian over the latent z or 

inputs x, which is then sampled. During recurrence this sample is given to a stochastic 

network of the same architecture, the output of which is merged with the original sample 
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via an arithmetic mean. As a result of the nonlinearity and interpolation, the conditional 

distributions qϕ(z|x) and pθ(x|z) are not Gaussian. This recurrence induces dependencies 

among neurons in each layer, given the previous layer. 

We found that recurrence exacerbates a problem with the purely Wake/Sleep 

approach. While generation is of good quality, reconstructing digits produces different 

digits than those input (Fig. 3B). Reconstruction maps to the manifold of MNIST digits, 

but elsewhere. This is despite the optimal solution being perfect inversion. A wide search 

over learning rates, weight decay, and the β parameters of the Adam optimizer did not 

produce better reconstructions. 

The oscillatory algorithm was much more stable (Fig. 3C). In addition to the basic 

adversarial loss (LO, Eq. 5), we also employed the approach of the VAE-GAN of using the 

hidden layers of the discriminator as a metric between inputs and reconstructions (Larsen 

et al., 2016). This objective resulted in good reconstructions, signifying that the inference 

network maps to the support of the generative posterior. 

To measure the success beyond visual inspection, we employed the approach of Berkes 

et al. (2011) and empirically quantified the overlap of the wake and sleep joint 

distributions. After quantizing the inputs and latents to the nearest integer and 

subsampling to 16 units (8 x and 8 z), we counted how many times each unique pattern 

over the 16 units appeared in wake or sleep. This approximate approach is necessary as 

the log-likelihood is not tractable due to recurrence. In Fig. 3D it can be seen that both 

algorithms are sufficient to align the joint distributions as closely as in Berkes et al. (2011). 
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Figure 5-4 

 
Fig 4. Learning to model images from CIFAR-10 with a hierarchical architecture and convolutional 
filters. Each layer is a stochastic convolutional neural network subject to divisive normalization. 
We trained towards Eq. 6 with γ = 0.5. 

Modeling CIFAR-10 with a hierarchical model 

To test hierarchical models, we trained a stochastic variation of the DCGAN 

architecture using the combined objective of Eq. 6 (Fig. 4). Each of the five layers of latent 

variables and the input is paired with its own discriminator. The conditional distribution 

of each layer is a reparameterized diagonal Gaussian, but passed through a ReLU 

nonlinearity and then subject to divisive normalization over each spatial location, a 

ubiquitous form of local recurrence in the cortex (Heeger, 1992) that is also known to 

stabilize GAN training (Karras et al., 2017). We trained with the combined objective with 

γ = 0.5; additional model and training details can be found in the Appendix. After 400 

epochs, inference again maps to the support of the generative posterior as evidenced by 

reconstructions (Fig. 4B). Thus, a purely adversarial approach is feasible for deeper 

networks and more naturalistic datasets. 
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Figure 5-5 

 
Fig 5. A) We trained a recurrent, autoencoding architecture to predict future frames in the Moving 
MNIST task. Discriminators align inputs and hidden state distributions. B) Encoding and decoding 
architecture. Hidden states transfer stochastically. C)Conditioned on ten context frames, the 
trained network generates plausible digits and trajectories. 

Predicting future inputs 

Recurrence has a clear benefit when inputs vary in time, and as a model of brain 

processing the temporal dimension is unavoidable. Our approach can readily apply to this 

setting. Because of conduction delays in real neurons, however, the goal of a loop of 

processing changes from autoencoding to predicting the future inputs. 

Adversarial approaches to video prediction are common in the generative literature. 

Directly applying the oscillatory algorithm to video prediction, in fact, nearly produces the 

algorithm proposed in Stochastic Adversarial Video Prediction (SAVP; Lee et al. (2018)). 

Like the VAE-GAN from which it derives, SAVP regularizes qϕ(zt) to the prior p(z) by 

approximating it as a diagonal Gaussian, and additionally applies an L1 loss over xt. Both 

imply the assumption that the conditional distributions qϕ(zt|x0:t) and pθ(xt+1|z0:t) can 

factorize into single-neuron terms. Here, we demonstrate that the algorithm works when 

all training is adversarial and the distributions are allowed to be non-Gaussian. 

We trained a stochastic architecture (Fig. 5B) to predict the future frames of video in 

the Moving MNIST task, in which two digits bounce for 20 frames in a 64x64 area with 

random initial velocities (Srivastava et al., 2015). Both the encoding and decoding 

networks are convolutional LSTMs with stochastic hidden state transitions. 

We used separate discriminators for x and z to align the joint distribution of latent 

vectors and subsequent inputs, (xt,zt−1) via Eq. 6. The similarity between the true outcome 

xt and the prediction xˆt were also minimized using the hidden layers of the discriminator 
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as a metric. After training, the encoding and decoding are able to predict plausible future 

video frames (Fig. 5C). 

Discussion 

We have proposed that an adversarial algorithm could provide the missing link 

between a widely hypothesized computational goal of learning and its implementation in 

neural systems. This provides a concrete implementation of the idea that the brain learns 

internal models by switching between externally- and internally- driven modes of 

processing (Honey et al., 2017). Our experiments demonstrate that this algorithm is 

compatible with the brain’s stochasticity, recurrence, and multilevel architecture. 

A central prediction is that the brain meta-learns an objective for sensory learning in 

the form of a discriminator. This discriminator learns by trying to increase activity during 

a stage of sleep and decrease activity during wake, or alternatively in the two phases of a 

fast oscillation. This approximate objective is arguably easier to construct for biological 

areas than directly estimating the variational free energy of the entire sensory cortex, as 

would be required if meta-learning were not used (Rezende & Gerstner, 2014). 

What would the a discriminator look like? In the neocortex, we hypothesize local 

discriminators in each cortical column that classify oscillations. Due to their local 

connectivity these would resemble interneurons with control over local plasticity, 

especially in the critical period. Somatostatin-positive interneurons meet this rather broad 

criterion (Yaeger et al., 2019), as do 5-HT3AR+ cells in Layer 1 (Takesian et al., 2018) and 

likely many others. 

The learning rules implied by our algorithm are perhaps the most distinguishing 

feature of a discriminator. Connections onto local discriminatory interneurons should 

have a plasticity rule that switches polarity with the phase of processing. Likewise, the way 

in which their activity affects plasticity in surrounding cortex should switch polarity 

depending on the phase of processing. There is evidence for phasic switches in plasticity 

in the brain. In the hippocampus, for example, transitions between potentiation and 

depression and have been observed with phases of the theta rhythm in hippocampus 

(Huerta & Lisman, 1995; Hyman et al., 2003; Pavlides et al., 1988). Synaptic strengths 
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across cortex are also known to homeostatically increase during wake and decrease during 

sleep (González-Rueda et al., 2018; Hengen et al., 2016; Pacheco et al., 2021). Our 

approach offers a algorithmic interpretation of such phasic switches of plasticity. 

Possible experiments 

While phenomena such as hippocampal replay show that activity in wake and sleep 

are closely related (Nádasdy et al., 1999), little is known about the statistical distributions 

of brain activity during sleep. A study investigating this could closely resemble Berkes et 

al. (2011), which compared the distribution of activity in the ferret visual cortex when eyes 

are open and closed. Instead of comparing spontaneous closed-eye activity, one could 

compare activity during phases of LFP oscillations or during sleep. These distributions 

should align over development. A positive outcome in this experiment would extend 

indirect evidence that these internally-biased phases produce samples from an internal 

model (Hobson & Friston, 2012; Honey et al., 2017). 

Perturbations would allow a deeper test. During the critical period of sensory learning, 

one could selectively silence activity during a stage of sleep or half of an oscillatory cycle, 

perhaps via optogenetic methods (Andrasfalvy et al., 2010). This perturbs the generative 

distribution. One could then observe if activity changes in the waking or opposing phase 

to match that perturbed distribution. A search for what mediates this alignment could 

provide a mechanism for adversarial sensory learning. 

Recent advances in transcriptomic techniques may also help unveil the cell-specific 

roles that neuron types play in learning (Bernard et al., 2012). The hypothesis that a cell 

plays the role of a wake/sleep discriminator should be testable with e.g. Cre-dependent 

single-cell RNA-seq due to the slow timescale of the plasticity switch. A survey of 

interneuronal Cre lines should produce a cell type whose expression of factors relating to 

postsynaptic LTP and LTD is dominated by the sleep cycle. 

Limitations 

As a model of sensory learning, our hypothesis inherits the limitations of the broader 

computational goal. The strategy of Bayesian inference over a generative model is under-
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specified as a complete learning objective because it makes no reference to what subsets 

of information should be represented by higher sensory areas, or in what form. Learning 

good representations requires priors over appropriate responses or learned cognitive 

goals, perhaps embedded in the architecture. The algorithm we propose must act over a 

supplied architecture and set of priors. 

While we have advocated here for variational Bayesian inference over vectors of neural 

activity, it is worth mentioning that the brain may perform Bayesian inference through 

other strategies such as particle filtering (Lee & Mumford, 2003) or loopy belief 

propagation (Raju & Pitkow, 2016). The brain may also infer and generate probability 

distributions implied by the activity of neurons (Vértes & Sahani, 2018). 

We assume that the brain contains systems for efficiently minimizing objectives 

represented in neural activity. In our implementation, all learning depended on the 

backpropagation of error. Other systems for error minimization may be sufficient for this 

task. Alternatively, due to a connection between backpropagation and variational 

autoencoders, there is the possibility that the learned feedforward and feedback 

connections could themselves could be used for the credit assignment problem (Bengio, 

2014; Lillicrap et al., 2020). 

Methods 

Software and hardware 

The experiments presented were coded in Pytorch v1.8. All experiments were run on 

NVIDIA GeForce GTX 1080Ti GPUs. Running on a single card, the experiments take about 

5 minutes to train the MNIST architecture, 4 hours to train the CIFAR-10 architecture, 

and 10 hours to train the Moving MNIST architecture. Searches over training details were 

performed most for the MNIST and CIFAR-10 tasks and required around 100 times these 

totals. 

Optimization 
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For all tasks we used the Adam optimizer Kingma & Ba (2014) with β1 = 0.5, β2 = 0.99, 

and weight decay of 2 × 10−5. The batch size was 512 except for the Moving MNIST task, 

which for memory reasons was 32. The learning rate of the inference and generation 

networks was 10−4 and the discriminator’s learning rate of 4 × 10−4. These learning rates 

decreased by a factor of 0.96 between epochs 200 and 250. The total number of training 

epochs for all tasks was 400. These hyperparameters were chosen from previous literature 

(specifically (Donahue et al., 2016)). Random hyperparameter searches were also 

conducted, but these did not overly improve results. In general we found that adversarial 

training is very fragile to the balance of architecture, learning rate, and optimizer between 

the generator and discriminator. Architectures were tuned by hand by visually examining 

the quality of reconstructions on the training set and generations from random noise. For 

all adversarial objectives we used the Wasserstein-GAN (Arjovsky et al., 2017) with a 

gradient penalty of λ = 1 (Gulrajani et al., 2017). 

MNIST architecture 

For the MNIST task (Bottou et al., 1994) in Figure 3, we used the train set for training 

and display reconstructions using the test set. MNIST is licensed CC BY-SA 3.0. Before 

training and generation, we rescaled inputs to the range [−1,1]. The architecture of both 

the inference and generation networks is a fully-connected, two-layer neural network with 

512 hidden units and 128 output units (or 7842 in the case of generation). The hidden 

nonlinearities are ReLUs. Half of the output units specify the standard deviation and half 

the mean of a diagonal Gaussian over the outputs. This is then sampled and fed to 

nonlinear recurrence with the same architecture as the inference/generation networks. 

Finally, the output is recombined via an arithmetic mean with the inputs. 

In the global discriminator setup of Figure 3B, the discriminator first concatenated x 

and z, then passed these through a 3-layer fully-connected neural network with linear 

outputs. Each layer had 512 hidden units and a LeakyReLU unit with negative slope 0.2. 

In the local discriminator setup of Figure 3C, each discriminator for x and z was also a 3-

layer network with 512 hidden units and LeakyReLU units. 

CIFAR-10 architecture 
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For the CIFAR-10 task (Krizhevsky et al., 2009), available under an MIT licence, we 

trained an architecture inspired by the DCGAN (Radford et al., 2015). This dataset does 

not contain faces or other personal identifying information. 

Our architecture contains a hierarchy of 5 layers of latent variables. The first layer 

above the inputs has 32 channels, which doubles every layer, except for the highest layer 

which has 100 channels. This is like the DCGAN architecture, but in ours both inference 

and generation each layer is stochastic. To allow backpropagation through stochasticity, 

each layer is a reparameterized Gaussian (Kingma & Welling, 2013) subject to divisive 

normalization applied over each pixel dimension (i.e. across channels) as in Karras et al. 

(2017). The the mean and standard deviation are given by a convolutional network with 

one hidden ReLU layer, linear outputs for the mean, and softplus outputs for the standard 

deviation. In order for the inference and generator networks to have the same architecture, 

the generator must use transposed convolutions where the inference uses convolutional 

operators. 

Each of the 5 layers as well as the input are paired with their own discriminator. The 6 

discriminators are similar in that they are all neural networks with two convolutional 

layers followed by a linear output, LeakyReLU activations (0.2 negative slope), and pixel-

wise divisive normalization on the hidden layers. They differ only in the strides, kernel, 

and padding of the convolutional layers, which are decreased higher in the network to 

accommodate the shrinking spatial dimension. For further details about stride and 

padding, consult the accompanying code. 

Moving MNIST architecture 

Moving MNIST is available under an MIT license (Srivastava et al., 2015). Our 

architecture is inspired by Lee et al. (2018) in that encoding and decoding both involve 

convolutional LSTMs (Shi et al., 2015). We modified the standard deterministic LSTMs 

such that the output parameterizes a diagonal Gaussian over the hidden state, which is 

sampled each time the state updates. The stochasticity and nonlinearity implies that over 

time the distribution of hidden states given the same history of inputs is complex and not 
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Gaussian. Our model is one layer deep, and thus has one stochastic hidden state we 

perform approximate inference over. 

The encoding and decoding LSTMs each have 32 hidden units, a kernel size of 3, 

padding of 1, and stride of 1. This preserves the spatial dimension. The decoding pathway 

additionally has a two-layer CNN to map the hidden state of the decoding LSTM to the 

inputs. This CNN has one hidden layer with 16 channels and a ReLU activation. 

The discriminator used in this task is a similar architecture as in the CIFAR-10 task. 

Two convolutional layers with batch normalization and LeakyReLU units are followed by 

a linear layer, and the features before the linear layer are used as a metric to compare 

predictions with true outcomes. Note that the discriminator is not recurrent; each frame 

is compared separately. 

Training proceeds as follows. The encoder and decoder LSTMs are first initialized by 

encoding and decoding the first 10 “context” frames. During this time period nothing is 

done with the prediction of the decoder, but hidden states are maintained. Gradients are 

not cut off to allow backpropagation through time for the future objective. In the second 

10 frames, the discriminator over x attempts to classify predictions xˆt from true outcomes 

xt. The encoder and decoder pathways attempt to trick this, which due to the dependency 

on previous states requires backpropagation through time. Additionally, the encoder and 

decoder attempt to reduce the L2 distance of the discriminator’s penultimate layer given 

xˆt and xt. These two objectives ensure that the predictions of the next frame are both of a 

realistic style and appropriately similar to the true evolution of outcomes over time. 

This solely discriminator-guided prediction method worked well. Interestingly, this 

places no constraints over z. However, for consistency with the rest of the manuscript, we 

also trained the discriminator with a sleep phase, enforcing that the distribution over z 

matches a prior. The sleep phase involved sampling the hidden state from a prior 

distribution over z (a standard normal), and then bouncing back and forth between x and 

z over 10 timesteps using the encoder and decoder pathways. This wake/sleep objective is 

discounted by γ = 0.5 in the same manner as Eq. 6. 
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The Pytorch code used for all figures in this manuscript is available at 

https://github.com/KordingLab/adversarial-wake-sleep. 
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Chapter 6: Measuring and regularizing networks 

in function space 

Foreword 

Deep learning provides a catalog of concepts for neuroscience. This chapter is about 

expanding that catalog. It is written for a deep learning audience, not neuroscience per se, 

and was published in a peer-reviewed deep learning conference8. The motivating ideas are 

common to both fields. What are the available learning algorithms for neural networks?  

In deep learning, the algorithm of reference is gradient descent. However, one can 

make better choices than this. As I review in this chapter, most of deep learning now uses 

different algorithms in the same family (like Adam, RMSprop, or natural gradients).  

The insight of these methods is that all parameters are not equal. Some have a bigger 

effect on the output, and thus on the function encoded by the network. Yet gradient 

descent treats all parameters equally, in a sense, by measuring distances in parameter 

space. One can do better by using the space of functions (i.e. behavior). This chapter claims 

that this is a more natural way of thinking about learning. 

Plasticity in the brain might be interpreted in this way, as well. Synapses that are very 

influential upon behavior (like those on a motor unit in the spinal cord) ought to change 

more slowly than other, less efficacious synapses. A solution to continual learning (not 

‘catastrophically forgetting’ previous things) can also be derived with this function-space 

approach. As neuroscience discovers the brain’s learning algorithms, this concept may 

help to interpret what is found.  

 
 
8 Benjamin, Ari S., David Rolnick, and Konrad Kording. "Measuring and regularizing networks in 
function space." in International Conference on Learning Representations, 2019 
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Abstract 

To optimize a neural network one often thinks of optimizing its 

parameters, but it is ultimately a matter of optimizing the function that 

maps inputs to outputs. Since a change in the parameters might serve as a 

poor proxy for the change in the function, it is of some concern that primacy 

is given to parameters but that the correspondence has not been tested. 

Here, we show that it is simple and computationally feasible to calculate 

distances between functions in a L2 Hilbert space. We examine how typical 

networks behave in this space, and compare how parameter ℓ2 distances 

compare to function L2 distances between various points of an optimization 

trajectory. We find that the two distances are nontrivially related. In 

particular, the L2/ℓ2 ratio decreases throughout optimization, reaching a 

steady value around when test error plateaus. We then investigate how the 

L2 distance could be applied directly to optimization. We first propose that 

in multitask learning, one can avoid catastrophic forgetting by directly 

limiting how much the input/output function changes between tasks. 

Secondly, we propose a new learning rule that constrains the distance a 

network can travel through L2-space in any one update. This allows new 

examples to be learned in a way that minimally interferes with what has 

previously been learned. These applications demonstrate how one can 

measure and regularize function distances directly, without relying on 

parameters or local approximations like loss curvature. 

Introduction 

A neural network’s parameters collectively encode a function that maps inputs to 

outputs. The goal of learning is to converge upon a good input/output function. In 

analysis, then, a researcher should ideally consider how a network’s input/output function 

changes relative to the space of possible functions. However, since this space is not often 

considered tractable, most techniques and analyses consider the parameters of neural 

networks. Most regularization techniques, for example, act directly on the parameters (e.g. 

weight decay, or the implicit constraints stochastic gradient descent (SGD) places upon 
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movement). These techniques are valuable to the extent that parameter space can be taken 

as a proxy for function space. Since the two might not always be easily related, and since 

we ultimately care most about the input/output function, it is important to develop 

metrics that are directly applicable in function space. 

In this work we show that it is relatively straightforward to measure the distance 

between two networks in function space, at least if one chooses the right space. Here we 

examine L2-space, which is a Hilbert space. Distance in L2 space is simply the expected ℓ2 

distance between the outputs of two functions when given the same inputs. This 

computation relies only on function inference. 

Using this idea of function space, we first focus on characterizing how networks move 

in function space during optimization with SGD. Do random initializations track similar 

trajectories? What happens in the overfitting regime? We are particularly interested in the 

relationship between trajectories in function space and parameter space. If the two are 

tightly coupled, then parameter change can be taken as a proxy for function change. This 

common assumption (e.g. Lipschitz bounds) might not always be the case. 

Next, we demonstrate two possibilities as to how a function space metric could assist 

optimization. In the first setting we consider multitask learning, and the phenomenon of 

catastrophic forgetting that makes it difficult. Many well-known methods prevent 

forgetting by regularizing how much the parameters are allowed to shift due to retraining 

(usually scaled by a precision matrix calculated on previous tasks). We show that one can 

instead directly regularize changes in the input/output function of early tasks. Though this 

requires a ”working memory” of earlier examples, this scheme turns out to be quite data-

efficient (and more so than actually retraining on examples from old tasks). 

In the second setting we propose a learning rule for supervised learning that constrains 

how much a network’s function can change any one update. This rule, which we call Hilbert-

constrained gradient descent (HCGD), penalizes each step of SGD to reduce the magnitude 

of the resulting step in L2-space. This learning rule thus changes the course of learning to 

track a shorter path in function space. If SGD generalizes in part because large changes to 

the function are prohibited, then this rule will have advantages over SGD. Interestingly, 
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HCGD is conceptually related to the natural gradient. As we derive, the natural gradient 

can be viewed as resulting from constrains changes in a function space measured by the 

Kullbeck-Leibler divergence. 

Results 

Examining networks in function space 

We propose to examine the trajectories of networks in the space of functions defined 

by the inner product ⟨𝑓, 𝑔⟩ = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑
𝑋

µ(𝑥), which yields the following norm: 

 

Here µ is a measure and corresponds to the probability density of the input distribution 

X. Note that this norm is over an empirical distribution of data and not over the uniform 

distribution of all possible inputs. The | · |2 operator refers to the 2-norm and can apply to 

vector-valued functions. While we refer to this space as a Hilbert space, we make no use 

of an inner product and can also speak of this as any normed vector space, e.g. a Banach 

space. This norm leads to a notion of distance between two functions f and g given by 

 

Since µ is a density, RX dµ = 1, and we can write 

 

The expectation can be approximated as an empirical expectation over a batch of 

examples drawn from the input distribution: 

. 
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The quality of the empirical distance, of course, will depend on the shape and variance 

of the distribution of data as well as the form of f and g. In section 2.3, we empirically 

investigate the quality of this estimator for reasonably sample sizes N. 

Divergence of networks in L2 space during training 

We wish to compare at high level how networks move through parameter and function 

space. Our first approach is to compare a low-dimensional embedding of the trajectories 

through these spaces. In Figure 1, we take a convolutional neural network and train three 

random initializations on a 5000-image subset of CIFAR-10. By saving the parameters of 

the network at each epoch as well as the output on a single large validation batch, we can 

later compute the ℓ2 parameter distance and the L2 function distance between the 

snapshots of network at each epoch. The resulting distance matrix is then visualized as a 

two-dimensional embedding. 

 
 
Figure 1: Visualization of the trajectories of 
three random initializations of a network 
through function space, left, and parameter 
space, right. The network is a convolutional 
network trained on a 5,000 image subset of 
CIFAR-10. At each epoch, we compute the L2 

and ℓ2distances between all previous epochs, 
forming two distance matrices, and then 
recompute the 2D embedding from these 
matrices using multidimensional scaling. Each 
point on the plots represents the network at a 
new epoch of training. The black arrows 
represent the direction of movement. 

 

In parameter space, the networks are initialized at very different points and proceed 

to diverge yet further from these points. Despite this divergence, each trajectory yields a 

network that has learned the training data perfectly and generalizes with ∼ 50% accuracy 

to a test set. This illustrates the wide range of parameter settings that can be used to 

Figure 6-1 
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represent a given neural network function. The behavior of the same initializations in 

function space is quite different. First, note that all three initializations begin at 

approximately the same point in function space. This is an intriguing property of random 

initializations that, rather than encoding entirely random functions, random sets of 

parameters lead on average to the same function (for related work, see e.g. Giryes et al. 

(2016)). The initializations then largely follow an identical path for the initial stage of 

learning. Different initializations thus learn in similar manners, even if the distance 

between their parameters diverges. During late-stage optimization, random initializations 

turn from a shared trajectory and begin to diverge in L2 space. These differences underlie 

the general principle that L2 distances behave differently than ℓ2 distances, and that 

functional regularization could assist training and reduce overfitting. 

Comparing function distance with parameter distance 

How well do parameter distances reflect function distances? The answer to this question 

is relevant for any method that directly considers the behavior of parameters. Certain 

theoretical analyses, furthermore, desire bounds on function distances but instead find 

bounds on parameter distances and relate the two with a Lipschitz constant (e.g. Hardt et 

al. (2015)). Thus, for theoretical analyses and optimization methods alike, it is important 

to empirically evaluate how well parameter distances correspond to function distances in 

typical situations. 

We can compare these two situations by plotting a change in parameters ||∆θ|| against 

the corresponding change in the function || 𝑓𝜃 −  𝑓𝜃+∆𝜃||. In Figure 2 we display this 

relation for several relevant distance during the optimization of a CNN on CIFAR-10. 

There are three scales: the distance between individual updates, the distance between 

epochs, and the distance from initialization. 

Note, first, that networks continue to move in function space as well as in parameter 

space after test error converges, which is around epoch 60. (The test error can be seen in 

Appendix A, along with identical plots colored by test error instead of epoch.) Their 

movement relative to initialization slows, but there is still large movement relative to 

previous iterations and previous epochs. 
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What changes strikingly throughout optimization is the relationship between 

parameter and function space. There is a qualitative difference in the ratio of parameter 

distances to function distances that visible at all three distance scales. Early epochs 

generally see larger changes in L2 space for a given change in parameters. Intriguingly, the 

ratio of the two distances appears to converge to a single value at late optimization, after 

test error saturates. This is not because the network ceases to move, as noted above. 

Rather, the loss landscape shifts such that this ratio become constant. 

It is also clear from these plots that there is not a consistent positive correlation 

between the parameter and function distances between any two points on the optimization 

trajectory. For example, the parameter distance between successive epochs is negatively 

correlated with the L2 distance for most of optimization (Fig. 2b). The distance from 

initialization shows a clean and positive relationship, but the relationship changes during 

optimization. Between successive batches, L2 distance correlates with parameter distance 

at late epochs, but less so early in optimization when learning is quickest. Thus, at different 

stages of optimization, the L2/ℓ2 ratio is often quite different. 

The usage of Batch Normalization (BN) and weight decay in this analysis somewhat 

affects the trends in the L2/ℓ2 ratio. In Appendix A we reproduce these plots for networks 

trained without BN and without weight decay. The overall message that the L2/ℓ2 ratio 

changes during optimization is unchanged. However, these methods both change the scale 

of updates, and appear to do so differently throughout optimization, and thus some trends 

are different. In Appendix B, we also isolate the effect of training data, by reproducing 

these plots for a CNN trained on MNIST and find similar trends. Overall, the 

correspondence between parameter and function distances depends strongly on the 

context. 
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Figure 6-2 

 

Figure 2: Parameter distances is sometimes, but not always, representative of function distances. 
Here we compare the two at three scales during the optimization of a CNN on CIFAR-10. Left: 
Distances between the individual SGD updates. Middle: Distances between each epoch. Right: 
Distances from initialization. On all three plots, note the changing relationship between function 
and parameter distances throughout optimization. The network is the same as in Figure 1: a CNN 
with four convolutional layers with batch normalization, followed by two fully-connected layers, 
trained with SGD with learning rate = 0.1, momentum = 0.9, and weight decay = 1e-4. Note that 
the L2 distance is computed from the output after the softmax layer, meaning possible values range 
from 0 to 1. 

Convergence of the empirical estimator  

It might be worried that since function space is of infinite dimension, one would 

require prohibitively many examples to estimate a function distance. However, we find 

that one can compute a distance between two functions with a relatively small amount of 

examples. Figure 3 shows how the estimated L2 distance converges with an increasing 

number examples. In general, we find that only a few hundred examples are necessary to 

converge to an estimation within a few percent. 
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Figure 6-3 

 

Figure 3: The variance of the L2 estimator is small enough that it can be reasonably estimated from 
a few hundred examples. In panels A and D, we reproduced L2 distances seen in the panels of Fig. 
2. As we increase the number of validation examples these distances are computed over, the 
estimations become more accurate. Panels B and E show the 95% confidence bounds for the 
estimation; on 95% of batches, the value will lie between these bounds. These bounds can be 
obtained from the standard deviation of the L2 distance on single examples. In panel C we show 
that the standard deviation scales linearly with the L2 distance when measured between updates, 
meaning that a fixed batch size will often give similar percentage errors. This is not true for the 
distance from initialization, in panel F; early optimization has higher variance relative to 
magnitude, meaning that more examples are needed for the same uncertainty. In the Appendix, we 
also display the convergence of the L2 distance estimator between epochs.  

Applications  

Combatting catastrophic forgetting in an online learning task 

If, after having been trained on a task, a neural network is retrained on a new task, it 

often forgets the first task. This phenomenon is termed ’catastrophic forgetting’. It is the 

central difficulty of multitask training as well as applications requiring that learning be 

done online (especially in non-IID situations). Essentially, new information must be 

encoded in the network, but the the information pertinent to the previous task must not 

be overwritten. 

Most efforts to combat catastrophic forgetting rely on restricting how much 

parameters can change between tasks. Elastic Weight Consolidation (EWC; Kirkpatrick et 

al. (2017)), for example, adds a penalty to the loss on a new task B that is the distance from 
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the weights after learning on an earlier . task A, multiplied by the diagonal of the Fisher 

information matrix F (calculated on task A): 

 

This idea is closely related to well-studied approaches to Bayesian online learning, if F 

is interpreted as a precision matrix (Honkela & Valpola (2003), Opper & Winther (1998)). 

Other similar approaches include that of Ritter et al. (2018), who use a more accurate 

approximation of the Fisher, and Synaptic Intelligence (SI; Zenke et al. (2017)), which 

discounts parameter change via a diagonal matrix in which each entry reflects the sum 

contribution of that parameter to the loss. Each of these method discourages catastrophic 

forgetting by restricting movement in parameter space between tasks, scaled by a (perhaps 

diagonal) precision matrix calculated on previous tasks. 

Using a function space metric, it is not hard to ensure that the network’s output 

function on previous tasks does not change during learning. In this case, the loss for a new 

task B is modified to be: 

 

The regularization term is the L2 distance between the current function fθB and the 

function after training on task A, fθA. Since our function space metric is defined over a 

domain of examples, we will store a small set of previously seen examples in a working 

memory, as well as the output on those examples. This memory set will be used to calculate 

the L2 distance between the current iteration and the snapshot after training. This is a 

simple scheme, but novel, and we are not aware of direct precedence in the literature.  

A working memory approach is employed in related work (Lopez-Paz et al. (2017); 

Rebuffi et al. (2017)). Note, however, that storing old examples violates the rules of strict 

online learning. Nevertheless, for large networks it will be more memory-efficient. EWC, 

for example, requires storing a snapshot of each parameter at the end of the previous task, 

as well as a diagonal precision matrix with as many entries as parameters. For the 2 hidden 
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layer network with 400 nodes each that was used in the MNIST task in Kirkpatrick et al. 

(2017), this is 1,148,820 new parameters, or as many pixels as 1,465 MNIST images. When 

each layer has as many as 2,000 nodes, as in Fig. 3B of Kirkpatrick et al. (2017), the extra 

stored parameters are comparable to 15,489 MNIST images. The working memory 

approach that is required to regularize function change from old tasks is thus comparable 

or cheaper in memory. 

Empirical results 

We compared the performance of our approach at the benchmark task of permuted 

MNIST. This task requires a single MLP to learn to classify a sequence of MNIST tasks in 

which the pixels have been randomly permuted differently on each task. We trained an 

MLP with 2 hidden layers, 400 nodes each, for 10 epochs on each of 8 such permuted 

datasets. In Figure 4, we display how the test accuracy on the first of 8 tasks degrades with 

subsequent learning. 

To build the working memory, we keep 1024 examples from previous tasks, making 

sure that the number of examples from each task is equal. We also remember the 

predictions on those examples at the end of training on their originating tasks. To calculate 

the L2 distance, we simply re-infer on the examples in working memory, and regularize the 

distance from the current outputs to the remembered outputs. We chose λ = 1.3 as the 

regularizing hyperparameter from a logarithmic grid search. 
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In Figure 4, we compare this method to four comparison methods. The ”ADAM” 

method is ADAM with a learning rate of 0.001, which nearly forgets the first task 

completely at the end of the 8 tasks. The ”ADAM+retrain” method is augmented with a 

working memory of 1024 examples that are stored from previous tasks. Every n iterations 

(we found n = 10 to be best), a step is taken to decrease the loss on the memory cache. This 

method serves as a control for the working memory concept. We also include EWC and SI 

as comparisons, using the hyperparameters used in their publications  

). Overall, we found that regularizing the L2 distance on a working memory cache was 

more successful than simply retraining on the same cache. It also outperformed EWC, but 

not SI. Note that these methods store diagonal matrices and the old parameters, and in 

this circumstance these were larger in memory than the memory cache. 

 

Figure 6-4 

Figure 4: Regularizing the L2 

distance from old tasks 
(calculated over a working 
memory cache of size 1024) 
can successfully prevent 
catastrophic forgetting. 
Here we display the test 
performance on the first task 
as 7 subsequent tasks are 
learned. Our method 
outperforms simply 
retraining on the same cache 
(ADAM+retrain), which 
potentially overfits to the 
cache. Also displayed are 
ADAM without 
modifications, EWC, and SI. 

 

Constraining changes in L2 during learning 

In this section we propose that the L2 distance can be used for regularization in a single 

supervised task. In the space of parameters, SGD is a strongly local update rule and large 

jumps are generally prohibited. SGD is thus more likely to find solutions that are close to 
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the initialization, and furthermore to trace a path of limited length. This discourages the 

sampling a large volume of parameter space during optimization. If the mapping between 

parameter and function space is not already very tight, and locality is important for 

generalization, then additionally constricting changes in function space should help. 

On the basis of this logic, we propose a learning rule that directly constrains the path 

length of the optimization trajectory L2 space. If a network would have been trained to 

adjust the parameters θ to minimize some cost C0, we will instead minimize at each step t 

a new cost given by: 

C = C0 + λ||fθt − fθt+∆θ|| 

Like all regularization terms, this can also be viewed as a Langrangian that satisfies a 

constraint. Here, this constraint ensures that the change in L2-space does not exceed some 

constant value. To evaluate Equation 1, we can approximate the norm with an empirical 

expectation over X: 

. 

This cost function imposes a penalty upon the difference between the output of the 

current network at time t and the proposed network at t + 1. The data xi may derive from 

some validation batch but must pull from the same distribution X. It would also be possible 

to use unlabeled data. 

We can write an update rule to minimize Equation 1 that is a modification of gradient 

descent. We call the rule Hilbert-constrained gradient descent (HCGD). It minimizes C in 

Equation 1 via an inner loop of gradient descent. To optimize C via gradient descent, we 

first replace C0 with its first order approximation JT∆θ, where J is the Jacobian. Thus we 

seek to converge to a ∆θ0 at each update step, where 

  (2) 
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Minimization of the proper ∆θ can be performed in an inner loop by a first order 

method. We first propose some  (for learning rate ) and then 

iteratively correct this proposal by gradient descent towards ∆θ0. If only one correction is 

performed, we simply add the derivative of the Hilbert-constraining term after ∆θ0 has 

been proposed. We found empirically that a single correction was often sufficient. In 

Appendix C, we demonstrate that this algorithm does actually decrease the distance 

traveled in function space, as expected. This algorithm is shown in Algorithm 1. 

 

 
 

Note that the “proposed update” is presented as an SGD step, but could be a step of 

another optimizer (e.g. ADAM). In the Appendix, we display an extended version of this 

algorithm. This version allows for multiple corrective iterations in each step. It also allows 

for a form of momentum. In standard momentum for SGD, one follows a “velocity” term 

v which is adjusted at each step with the rule  (e.g. see Sutskever et al. (2013)). 

For HCGD, we also keep a velocity term but update it with the final Hilbert-constrained 

update ∆θ rather than J. The velocity is used to propose the initial ∆θ0 in the next update 

step. We found that this modification of momentum both quickened optimization and 

lowered generalization error. 

Relation to the natural gradient 
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The natural gradient turns out to carry a similar interpretation as HCGD, in that the 

natural gradient also regularizes the change in functions’ output distributions. 

Specifically, the natural gradient can be derived from a penalty upon the change in a 

network’s output distribution as measured by the Kullbeck-Leibler divergence (rather 

than the L2 distance). 

To show this, we start with a similar goal of function regularization and will come upon 

the natural gradient. Let us seek to regularize the change in a network’s output distribution 

Pθ throughout optimization of the parameters θ, choosing the Kullbeck-Leibler (KL) 

divergence as a measure of similarity between any two distributions. To ensure the output 

distribution changes little throughout optimization, we define a new cost function 

C = C0 + λDKL(Pθt+1||Pθt) (3) 

where C0 is the original cost function and λ is a hyperparameter that controls the 

importance of this regularization term. Optimization would be performed with respect to 

the proposed update θt+1. 

Evaluating the KL divergence directly is problematic because it is infeasible to define 

the output density Pθ everywhere. One can obtain a more calculable form by expanding 

DKL(Pθt+1kPθt) around θt to second order with respect to θ. The Hessian of the KL divergence 

is the Fisher information metric F. With ∆θ ≡ (θt+1 − θt), we can rewrite our regularized 

cost function as 

  (4) 

To optimize C via gradient descent we first replace C0 with its first order 

approximation. 

  (5) 
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At each evaluation, J is evaluated before any step is made, and we seek the value of ∆θ 

that minimizes Equation 5. By setting the derivative with respect to ∆θ to be zero, we can 

see that this value is 

  (6) 

When λ = 1 this update is equal to the natural gradient. Thus, the natural gradient 

emerges as the optimal update when one regularizes the change in the output distribution 

during learning. 

In Appendix E, we show how one can approximate the natural gradient with an inner 

first-order optimization loop, like in HCGD. We note that HCGD is computationally 

cheaper than the exact natural gradient. It does not require any matrix inversions, nor the 

calculation of separate per-example gradients. When the validation batch XV is drawn 

anew for each of n corrective iterations (step 8 in Algorithm 1), HCGD requires an 

additional two forward passes and one backwards pass for each correction, for a total of 2 

+ 3n passes each outer step. 

The natural gradient in the literature 

In addition to being seen as a regularizer of functional change, it in an interesting aside 

to note that variants of the natural gradient have appeared with many justifications. These 

include data efficiency, minimizing a regret bound during learning, speeding optimization, 

and the benefits of whitened gradients. 

Amari originally developed the natural gradient in the light of information geometry 

and efficiency (Amari et al. (1996); Amari (1998)). If some directions in parameter space 

are more informative of the network’s outputs than others, then updates should be scaled 

by each dimension’s informativeness. Equivalently, if not all examples carry equal 

information about a distribution, then the update step should be modified to make use of 

highly informative examples. That is, we wish to find a Fisher-efficient algorithm (see 

Amari et al. (2000)). The natural gradient uses the Fisher information matrix to scale the 

update by parameters’ informativeness. 
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There is also a connection between the natural gradient (and thus HCGD) and 

techniques that normalize and whiten gradients. The term F−1J, after all, simply ensures 

that steps are made in a parameter space that is whitened by the covariance of the 

gradients. Whitening the gradients thus has the effect that SGD becomes more similar to 

the natural gradient. It appears that many approaches to normalize and whiten activations 

or gradients have been forwarded in the literature (Raiko et al. (2012);Simard et al. (1998); 

Schraudolph & Sejnowski (1996); Crammer et al. (2009); Wang et al. (2013); LeCun et al. 

(1991); Schraudolph (1998); Salimans & Kingma (2016)). A similar effect is able to be 

learned with Batch Normalization, as well (Ioffe & Szegedy (2015)). By normalizing and 

whitening the gradients, or by proxy, the activations, these various methods ensure that 

parameter space is a better proxy for function space. 

Empirical comparison of HCGD 

We compared HCGD and SGD on feedforward and recurrent architectures. If it is 

important that SGD limits changes in function space, and parameter and function space 

are loosely coupled, then HCGD should improve upon SGD. In all tests, we used a tuned 

learning rate  for SGD, and then used the same learning rate for HCGD. We use values of 

λ = 0.5 and η = 0.02, generally about 10 times less than the principal learning rate. (For 

the n = 1 version, λ can be folded into the inner learning rate η. Values were chosen so that 

λη = 0.01.) We chose the batch size for the “validation” batch to be 256. While the examples 

in each “validation” batch were different than the training batch, they were also drawn 

from the train set. All models were implemented in PyTorch (Paszke et al. (2017)). 

We tested HCGD as applied to the CIFAR-10 image classification problem. For 

reproducibility, we trained a Squeezenet v1.1, a convolutional neural network model with 

batch normalization optimized for parameter efficiency (Iandola et al. (2016)). Overall 

HCGD does not outperform SGD in the final learning stage when trained with the same 

learning rate as SGD (initial ), though it does perform better in the early stage while 

the learning rate is high (Figure 5). When we increase the initial learning rate to  

(red trace), the training accuracy decreases but the test accuracy is still marginally higher 

than SGD. Given the difference in relative performance between the high and low 

learning rate stages, it is possible that HCGD requires a different learning rate schedule 
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to achieve the same level of gradient noise. HCGD thus decreases the test error at a given 

learning rate, but needs to be trained at a higher learning rate to achieve the same level 

of gradient noise. 

Figure 5: 
Results of a 
Squeezenet v1.1 
trained on 
CIFAR10. The 
learning rate is 
decreased by a 
factor of 10 at 
epoch 150. For 
the train error 
we overlay the 
running average 
of each trace for 
clarity. 

 

We next tested the performance of HCGD on a recurrent task. We trained an LSTM on 

the sequential MNIST task, in which pixels are input one at a time. The order of the pixels 

was permuted to further complicate the task. We found that HCGD outperformed SGD 

(Figure 6. We used 1 correction step, as before, but found that using more correction steps 

yielded even better performance. However, HCGD underperformed ADAM. While not the 

ideal optimizer for this  

Figure 6-5 
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task, the fact that SGD can be improved indicates that SGD does not move as locally in 

function space as it should. Parameter space thus a poor proxy for function space in 

recurrent networks. 

HCGD first proposes an update by SGD, and then corrects it, but the first update step 

can also be other optimizers. Since Adam worked well for the sequential MNIST task, we 

tested if Adam could also be improved by taking a step to penalize the change in function 

space. We found that this is indeed the case, and show the results as well in Figure 6. To 

differentiate the SGD- and Adam-based methods, we refer to in the figure as SGD+HC and 

Adam+HC. This combination of Adam and L2 functional regularization could help to 

achieve state-of-the-art performance on recurrent tasks. 

Discussion 

Neural networks encode functions, and it is important that analyses discuss the 

empirical relationship between function space and the more direct parameter space. Here, 

we argued that the L2 Hilbert space defined over an input distribution is a tractable and 

useful space for analysis. We found that networks traverse this function space qualitatively 

differently than they do parameter space. Depending on the situation, a distance of 

parameters cannot be taken to represent a proportional distance between functions. 

We proposed two possibilities for how the L2 distance could be used directly in 

applications. The first addresses multitask learning. By remembering enough examples in 

 

Figure 6: Results of a 
singlelayer LSTM with 128 
hidden units trained on the 
sequential MNIST task with 
permuted pixels. Shown are the 
traces for SGD and Adam (both 
with learning rate 0.01). We 
then take variants of the HCGD 
algorithm in which the first 
proposed step is taken to be an 
SGD step (SGD+HC) or an 
Adam step (Adam+HC). For 
SGD+HC we also show the 
effect of introducing more 
iterations n in the SGD+HC 
step. 
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a working memory to accurately estimate an L2 distance, we can ensure that the function 

(as defined on old tasks) does not change as a new task is learned. This regularization term 

is agnostic to the architecture or parameterization of the network. We found that this 

scheme outperforms simply retraining on the same number of stored examples. For large 

networks with millions of parameters, this approach may be more appealing than 

comparable methods like EWC and SI, which require storing large diagonal matrices. 

We also proposed a learning rule that reduces movement in function space during 

single-task optimization. Hilbert-constrained gradient descent (HCGD) constrains the 

change in L2 space between successive updates. This approach limits the movement of the 

encoded function in a similar way as gradient descent limits movement of the parameters. 

It also carries a similar intuition as the forgetting application: to learn from current 

examples only in ways that will not affect what has already been learned from other 

examples. HCGD can increase test performance at image classification in recurrent 

situations, indicating both that the locality of function movement is important to SGD and 

that it can be improved upon. However, HCGD did not always improve results, indicating 

either that SGD is stable in those regimes or that other principles are more important to 

generalization. This is by no means the only possibility for using an L2 norm to improve 

optimization. It may be possible, for example, to use the norm to regularize the confidence 

of the output function (e.g. Pereyra et al. (2017)). We are particularly interested in 

exploring if more implicit, architectural methods, like normalization layers, could be 

designed with the L2 norm in mind. 

It interesting to ask if there is support in neuroscience for learning rules that diminish 

the size of changes when that change would have a large effect on other tasks. One 

otherwise perplexing finding is that behavioral learning rates in motor tasks are 

dependent on the direction of an error but independent of the magnitude of that error 

(Fine & Thoroughman, 2006). This result is not expected by most models of gradient 

descent, but would be expected if the size of the change in the output distribution (i.e. 

behavior) were regulated to be constant. Regularization upon behavioral change (rather 

than synaptic change) would predict that neurons central to many actions, like neurons in 

motor pools of the spinal cord, would learn very slowly after early development, despite 
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the fact that their gradient to the error on any one task (if indeed it is calculated) is likely 

to be quite large. Given our general resistance to overfitting during learning, and the great 

variety of roles of neurons, it is likely that some type of regularization of behavioral and 

perceptual change is at play. 
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Appendix 

A CIFAR-10 L2 AND ℓ2 COMPARISON 

Figure 6-6 

 

Figure A.1: This figure reproduces Figure 2, but includes the test error. The color scale is now also 
the test accuracy, rather than epoch number. Note that those epochs with qualitatively different 
L2/ℓ2ratios than the late optimization correspond to the epochs where test error is changing fastest. 

Figure 6-7 

 

Figure A.2: This figure completes Figure 3 to include the standard deviation of the estimator for the 
distance between epochs. The scale of the standard deviation is similar to that of the L2 estimator 
between batches, requiring near 1,000 examples for accuracies within a few percent. 
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Figure 6-8 

 

Figure A.3: Same as Figure 2 (L2/ℓ2  ratio for three distance scales) but with all points within an 
epoch averaged. This makes the overall trends more apparent. 

Figure 6-9 

 

Figure A.4: Same as above, but for a network trained without Batch Normalization (BN). The 
change is most apparent in the x-axis scale of the left and middle plots. Without BN, larger 
parameter changes yield the same magnitude of L2 changes, both between updates and between 
epochs. Furthermore, the L2/ℓ2  ratio for the distance between updates (leftmost plot) changes less 
between epochs when BN is used. This appears largely a consequence of BN keeping the typical 
update size fixed at a more standard magnitude (and yet achieving a similar functional change. 

Figure 6-10 

 

Figure A.5: Same as above, but for a network trained without Batch Normalization and also without 
weight decay. Weight decay has a strong effect. The main effect is that decreases the ℓ2  distance 
traveled at all three scales (from last update, last epoch, and initialization), especially at late 
optimization. This explains the left column, and some of the middle and right columns. (It is helpful 
to look at the ”white point” on the color scale, which indicates the point halfway through training. 
Note that parameter distances continue to change after the white point when WD is not used). An 
additional and counterintuitive property is that the L2 distance from the last epoch increases in 
scale during optimization when WD is not used, but decreases if it is. These comparisons show that 
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WD has a strong effect on the L2/ℓ2  ratio, but that this ratio still changes considerable throughout 
training. This is in line with this paper’s motivation to consider L2 distances directly. 

B COMPARING FUNCTION AND PARAMETER SPACES DURING MNIST 

OPTIMIZATION 

Figure 6-11 

 

Figure B.6: Here we reproduce the results of Figure 2 and Figure 3 for the MNIST task, again using 
a CNN with batch normalization trained with SGD with momentum. It can be seen first that the 
majority of function space movement occurs very early in optimization, mostly within the first 
epoch. The standard deviation of the L2 estimator, which sets the number of examples needed to 
accurately estimate a consistent value, is somewhat higher than for CIFAR-10. Finally, at right, it 
can be seen that the relationship between parameter distance traveled and function distance is 
similar to that of a CNN on CIFAR-10, include the qualitative change after test error converges 
(which here is around epoch 1).  
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C HCGD DECREASES THE DISTANCE TRAVELED IN L2 SPACE 

Figure 6-12 

 

Figure C.7: The HCGD algorithm is designed to reduce motion through L2-space. To confirm this, 
here we plot the cumulative squared distance traveled during optimization for a simple MLP 
trained on MNIST. This is calculated by the simple cumulative sum of the squared distances 
between consecutive updates. (The squared distance is nice because Brownian motion will present 
as a linear increase in its cumulative sum). It can be seen that SGD continues to drift in L2-space 
during the overfitting regime (around epoch 15, which is when test error saturates), while HCGD 
plateaus. This indicates that the function has converged to a single location; it ceases to change. 
With SGD, on the other hand, the network continues to cahnge even long after test error saturates. 
It is interesting to note that HCGD allows the parameters to continue to drift even though the 
function has generally converged.  
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D DETAILED HCGD ALGORITHM 

This version of the algorithm includes momentum. It also allows for multiple 

corrections. 

 

E NATURAL GRADIENT BY GRADIENT DESCENT 

In order to better compare the natural gradient to the Hilbert-constrained gradient, 

we propose a natural gradient algorithm of a similar style. 

Previous work on the natural gradient has aimed to approximate F−1 as best and as 

cheaply as possible. This is equivalent to minimizing Equation 2 (i.e.  with 
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a single iteration of a second-order optimizer. For very large neural networks, however, it 

is much cheaper to calculate matrix-vector products than to approximately invert a large 

matrix. It is possible that the natural gradient may be more accessible via an inner gradient 

descent, which would be performed during each update step as an inner loop. 

We describe this idea at high level in Algorithm 2. After an update step is proposed by 

a standard optimizer, the algorithm iteratively corrects this update step towards the 

natural gradient. To start with a good initial proposed update, it is better to use a fast 

diagonal approximation of the natural gradient (such as Adagrad or RMSprop) as the main 

optimizer. Each additional correction requires just one matrix-vector product after the 

gradients are calculated. Depending on the quality of the proposed update, the number of 

iterations required is likely to be small, and even a small number of iterations will improve 

the update. 

 

Since the Fisher matrix F can be calculated from the covariance of gradients, it never 

needs to be fully stored. Instead, for an array of gradients G of size (# parameters, # 

examples), we can write 

F∆θ = (GGT)∆θ = G(GT∆θ) (7) 

The choice of G is an important one. It cannot be a vector of aggregated gradients (i.e. 

J), as that would destroy covariance structure and would result in a rank-1 Fisher matrix. 

Thus, we must calculate the gradients on a per-example basis. To compute G efficiently it 
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is required that a deep learning framework implement forward-mode differentiation, 

which is currently not supported in popular frameworks. 

If we choose G to be the array of per-example gradients on the minibatch, F is known 

as the ’empirical Fisher’. As explained in Martens (2014) and in Pascanu & Bengio (2013), 

the proper method is to calculate G from the predictive (output) distribution of the 

network, Pθ(y|x). This can be done as in Martens & Grosse (2015) by sampling randomly 

from the output distribution and re-running backpropagation on these fictitious targets, 

using (by necessity) the activations from the minibatch. Alternatively, as done in Pascanu 

& Bengio (2013), one may also use unlabeled or validation data to calculate G on each 

batch. 
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Chapter 7: Efficient neural codes naturally emerge 

through gradient descent learning 

Foreword 

This chapter focus on how sensory representations are shaped by learning. In a 

collaboration with Alan Stocker’s lab9, we showed how many aspects of visual perception 

can be explained with ideas from the study of learning in artificial neural networks. In this 

chapter, machine learning plays Role 4, a model of the brain. 

This chapter links two frameworks in two fields: efficient coding (in sensory 

neuroscience) and the implicit biases of gradient descent (in deep learning theory). Both 

create similar sensory representations. This link is surprising, and can explain why 

artificial neural networks trained on natural image tasks appear in many ways similar to 

neural responses in the ventral stream (reviewed in Chapter 4, Role 4).  

We do not treat this this result as evidence that the brain performs gradient descent, 

although is suggestive. Many algorithms might lead to similar outcomes. However, it is a 

powerful proof of principle of an alternative type of explanation for neuroscience. Sensory 

representations might be explained by appealing not just to evolution, but to the process 

of sensory learning in infancy. Whatever algorithm the brain uses to generalize from 

limited experience, it will shape sensory representations in the adult.  

Deep learning theory has a great deal to offer neuroscience beyond this finding. Future 

work may help to describe why adults and infants alike learn what they do. 

  

 
 
9 Ari Benjamin, Ling-Qi Zhang, Cheng Qiu, Alan Stocker, Konrad Kording. “Efficient neural codes 
naturally emerge through gradient descent learning” ." bioRxiv (2022) 
https://doi.org/10.1101/2022.05.11.491548 



 

 166 

Abstract 

Animal sensory systems are more sensitive to common features in the 

environment than uncommon features. For example, small deviations from 

the more frequently encountered horizontal orientations can be more easily 

detected than small deviations from the less frequent diagonal ones. Here 

we find that artificial neural networks trained to recognize objects also have 

patterns of sensitivity that match the statistics of features in images. To 

interpret these findings, we show mathematically that learning with 

gradient descent in deep neural networks preferentially creates 

representations that are more sensitive to common features, a hallmark of 

efficient coding. This result suggests that efficient coding naturally emerges 

from gradient-like learning on natural stimuli. 

Introduction 

Careful psychophysical studies of perception has revealed that neural representations 

do not encode all aspects of stimuli with equal sensitivity (Fechner, 1948). The ability to 

detect a small change in a stimulus, for instance, depends systematically on stimulus value. 

A classic example of this is the so-called ‘oblique effect’ in which changes in visual 

orientation are easier to detect near vertical or horizontal than oblique orientations 

(Appelle, 1972). The fact that these sensitivity patterns are ubiquitous and widely shared 

between animals motivates us to study the potential underlying reasons why they exist. 

The efficient coding hypothesis has become a standard explanation for the emergence 

of these non-homogeneous sensitivity patterns (Barlow, 1961). It predicts that sensory 

systems should preferentially encode more common aspects of the world at the expense of 

less common aspects, as this is the most efficient way (in the information-theoretical 

sense) to make use of limited coding resources. Indeed, perceptual sensitivity typically 

reflects the statistics of the visual environment (Coppola et al, 1998; Ganguli and 

Simoncelli, 2010; Girshick et al, 2011; Wei and Stocker, 2015, 2017). While much is known 

about efficient neural codes and their link to the stimulus statistics and perceptual 

behavior, the mechanisms that give rise to such codes remain unknown. 
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Brains are not born with fully developed sensory representations. Many 

developmental studies of perception in infants and young children have shown that visual 

sensitivities improve with age and visual experience even until adolescence (Armstrong et 

al, 2009; Braddick and Atkinson, 2011; Mayer and Dobson, 1982; Teller and Movshon, 

1986). The maturing optics of the developing eye and retina explain some of this 

improvement, but much of the improvement depends on visual experience and is due to 

neural changes downstream (Banks and Crowell, 1993; Maurer et al, 1999; Movshon and 

Kiorpes, 1993; Gold et al, 1999; Schoups et al, 2001). This suggests that perceptual 

sensitivity depends on the neural representation of sensory information and how these 

representations change with experience during development. 

We hypothesize that general, task-oriented learning is the mechanism that gives rise 

to efficient sensory representations in the brain. Any gradual learning process can only 

learn so much at a time. This means that an effective learning algorithm should prioritize 

learning more important aspects before less important ones. Conveniently, features that 

are more common are also easier to learn from a limited exposure to the world. This 

suggests that effective learning rules for neural networks might naturally produce better 

representations for common features, hence providing a mechanism for the emergence of 

efficient codes. This phenomenon is equivalent to the notion that learning provides a 

second, implicit constraint on neural coding in addition to the explicit constraint imposed 

by the limited neural resources. Our hypothesis directly predicts that we should find forms 

of efficient coding not just in biological neural networks but also in other learning systems. 

Especially, we expect artificial neural networks trained to perform visual recognition tasks 

to exhibit efficient neural representations similar to those found in the visual cortex of 

biological brains despite their many differences in their local structural properties (e.g. 

noise) and connectivity. 

A study of the consequences of effective yet gradual learning on sensory 

representations must begin from a specific learning rule. One canonical learning rule is 

gradient descent, which proposes that neural updates are as small as possible to elicit a 

given improvement in behavior. Though the brain may use more complicated learning 

rules, gradient descent is arguably the simplest rule for general learning and thus a 
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baseline for theorizing about learning in the brain. If gradient descent produces efficient 

codes, this would provide a strong proof of principle that efficient codes can emerge from 

general-purpose learning algorithms. 

To show that efficient coding emerges from gradient descent requires a formal 

understanding of how learning with gradient descent biases what is represented about the 

stimulus. This parallels an active effort in the study of deep learning. It is now recognized 

that what neural network learn about their inputs is constrained not just by their 

connectivity but also implicitly by their learning algorithm (Zhang et al, 2021). Many 

potential implicit constraints have been propose due to their importance in explaining why 

large neural networks work well on unseen data (i.e. generalize) (Jacot et al, 2018; 

Neyshabur et al, 2017; Smith and Le, 2017; Tishby and Zaslavsky, 2015). One prominent 

theory is gradient descent in a multilayer network produces nontrivial learning dynamics 

that supplies key biases on what is learned first (Arora et al, 2019; Gidel et al, 2019; 

Gunasekar et al, 2018; Razin and Cohen, 2020; Saxe et al, 2013). This raises the possibility 

that such ideas could also demonstrate whether gradient descent learning is biased 

towards efficient codes. 

In this paper, we demonstrate that learning with gradient descent biases feature 

learning towards common input features, thus reproducing the relationship between 

stimulus statistics and perceptual sensitivity (Fig. 1). This effect occurs in otherwise 

unconstrained and noiseless networks as well as for multiple learning objectives (i.e. not 

limited to information maximization). We examine two model systems. First, we show that 

deep artificial networks trained on natural image classification show similar patterns of 

sensitivity as humans, and that this is a partly a consequence of image statistics (also see 

Benjamin et al (2019); Henderson and Serences (2021)) but is also partially due to factors 

inherent in network architecture. We then leverage results from the study of linear 

networks to mathematically describe how gradient descent naturally causes learned 

representations to reflect the input statistics. To demonstrate that this framework can be 

applied to explain development, we also show that changes in sensitivity resembling 

changes in visual acuity in human children can be reproduced in a simple model trained 

with gradient descent on natural images. Our results show how learning provides a natural 



 

 169 

mechanism for the emergence of a non-uniform sensory sensitivity that matches input 

statistics. 

Results 

Humans and animals show sensitivity that depends on the orientation of stimuli. In 

humans, the sensitivity of internal representations can be inferred from psychophysical 

data on discrimination thresholds (Ganguli and Simoncelli, 2010) or the empirical 

distribution of tuning curves in V1 (Schoups et al, 2001; Stringer et al, 2021) (Fig. 2a). In 

many animals, internal representations are most sensitive at near vertical and horizontal 

orientations (Appelle, 1972). This raises the question if neural networks trained on natural 

stimuli are similarly sensitive in a non-uniform way. 

To ask if neural networks would show a similar phenomenon, we first obtained a set 

of relevant networks and measured their response to artificial stimuli. We specifically 

investigated deep neural networks trained on the ImageNet task (Deng et al, 2009) as such 

networks show a number of other similarities to human ventral streamvisual processing 

(Gü¸clü and van Gerven, 2015; Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al, 

2014). We analyzed a range of architectures, including two large convolutional neural 

networks (CNNs), VGG16 and Resnet18, and Vision Transformers which operate largely 

without convolution (Dosovitskiy et al, 2020; He et al, 2016; Simonyan and Zisserman, 

2014). Then, to measure sensitivity, we measured the squared magnitude of the change in 

network activations given a change in the angle of oriented Gabor stimuli (Fig 2b; see 

Methods). For all three networks, we found that the internal representations were most 

sensitive to changes near cardinal orientations (Fig. 2c). The effect was more pronounced 

deeper in each network. The coarse pattern of sensitivity of ImageNet-trained deep 

networks to orientation is thus similar to that of animals and animals. 

 



 

 170 

Figure 7-1 

 

Fig. 1 Reasons for efficient coding. A) One consequence of efficient coding is that perceptual 
sensitivity reflects the empirical frequency of perceptual variables. B) Efficient coding can be 
justified normatively as the most effective way to allocate finite neural resources to encode a 
stimulus ensemble. In this work we describe a mechanism for efficient coding due to learning 
components of the inputs at different rates dependent on their frequency. 

We next investigated whether this pattern was due to factors inherent in the network 

or due to the statistics of the inputs on which it was trained. Before training, randomly 

initialized networks largely do not show this pattern, nor do networks in which all weights 

after training are randomly shuffled (SI Fig. 1a). After training networks on a version of 

ImageNet in which all images are rotated by 45º, the networks lose sensitivity to cardinals 

and gain sensitivity to oblique angles (SI Fig. 1b). This finding recapitulates our 

preliminary findings and concurrent work of colleagues, and points to an origin in image 

statistics (Benjamin et al, 2019; Henderson and Serences, 2021). However, we also found 

that networks trained on rotated images do partially retain sensitivity to cardinal 

orientations; they do not simply rotate their sensitivity by 45º (SI Fig. 1b). This indicates 

that increased sensitivity to cardinals is partially due to factors inherent in the 

convolutional architecture. Indeed, we found that the use of spatial pooling with 

overlapping receptive fields (such as in AlexNet; Krizhevsky et al (2012)) involves 

oversampling a rectangular grid and that this produces a significant cardinal sensitivity 

(SI Fig 1c). The pattern of orientation sensitivity is thus both a product of the input 

statistics and inherent factors like architecture. 
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Figure 7-2 

 

Fig. 2 Artificial neural networks trained to classify naturalistic images show similar patterns of 
sensitivity as humans. a) Discrimination thresholds for orientation vary systematically in humans. 
The sensitivity of the underlying internal representations, as the Fisher Information, can be 
inferred as the inverse square of the threshold (Ganguli and Simoncelli, 2010; Wei and Stocker, 
2017). b) We measured the sensitivity of each layer in an artificial network as the change in layer’s 
response due to a given change in orientation, i.e. the squared norm of the gradient with respect to 
orientation. c) Relative (normalized) sensitivity to orientation for three networks trained on 
ImageNet, plotted for various layers in each network. 

To separate effects related to architecture and learning, we next examined the 

sensitivity of artificial neural networks to changes in hue, as this is unlikely to be affected 

by rectangular convolutional processing. We found that hue sensitivity after training was 

related to the empirical frequency of hues in ImageNet (Fig. 3c) measured in HSV color 

space. The location of the peaks of network sensitivity roughly matched the patterns of 

human sensitivity to changes in hues in the HSV color space (Fig. 3b). To test if this pattern 

is causally related to the input statistics, we trained a Resnet18 network on a version of 

ImageNet in which the hue of all pixels was shifted by 90º and observed a corresponding 

shift in the hue sensitivity (Fig. 3d). This suggests that in general the frequency of low-

level visual features determines the sensitivity of artificial neural networks trained on 

object classification. 
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Figure 7-3 

 

Fig. 3 The sensitivity of ANNs to hue also matches image statistics. a) The color of a uniform image 
is varied; in HSV color space, saturation and value are held fixed and the hue is varied. Results are 
averaged over possible saturations and values. b) In humans, the sensitivity to the H axis can be 
inferred by the perceptual distance between uniformly spaced H values (calculated using the 
approximately perceptually uniform color space CIELAB) at S=V=1. c) The sensitivity to hue in 
each layer in a trained ResNet18 tracks the empirical frequency of hues in the ImageNet dataset. 
d) Training ResNet18 on a version of ImageNet in which hues are rotated results in a corresponding 
shift in hue sensitivity. 

Sensitivity may track input statistics in artificial networks for a similar reason as in 

humans. In psychophysics, one leading explanation proposes that there is some constraint 

that limits the amount of information a neural population can contain about its inputs. 

Due to this constraint, an optimal code will allocate more resources (and be more 

sensitive) to inputs that occur frequently (Ganguli and Simoncelli, 2010; Wei and Stocker, 

2016). However, the networks above are overparameterized, in the sense that internal 

layers contain a greater number of nodes than there are input pixels, and furthermore 

contain no source of information-limiting noise during evaluation. Thus, the 

frequency/sensitivity correspondence in artificial networks likely does not arise from an 

optimal encoding of the inputs despite inherent and unresolvable architectural 

constraints. 

One alternative possibility to an explicit constraint like noise is that incremental 

learning via gradient descent naturally leads to a frequency/sensitivity correspondence. 

This hypothesis relates to the idea from connectionist models of development that the 
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most general aspects of a problem are often learned first (Munakata and McClelland, 

2003). To investigate this possibility, we analyzed a category of artificial neural networks 

amenable to mathematical study: deep linear networks. Deep linear networks contain no 

nonlinearities and are equivalent to sequential matrix multiplication. Despite their 

simplicity, deep linear networks show many of the same learning phenomena as nonlinear 

networks (Saxe et al, 2013; Arora et al, 2019) and humans (Lee et al, 2014; Saxe et al, 

2019). Moreover, this simplified setting allows us to separate the effects of gradient 

descent from those of network nonlinearity. 

How can we characterize learning in this linear setting? At a high level, the network 

becomes responsive to features earlier when those features are more common (Fig. 4). 

When learning ends due to finite training time, finite data, or saturating performance, 

there is a residual higher sensitivity for common features. We will expand on this 

phenomenon below. Overall, the link between learning rate and input frequency, 

combined with finite training time, is an additional inductive bias beyond what features 

are useful for the task and means that trained networks will tend to be more sensitive to 

frequent features. 

Figure 7-4 

 

Fig. 4 Schematic of how the learning dynamics of linear networks causes a correspondence 
between network sensitivity and input statistics. The learning problem is broken into components, 
each of which learns at a specific rate. The frequency or variance of a feature of the input data (e.g. 
the color red) in part determines the learning rate of the components that encode it. This means 
that the network becomes sensitive to frequent features first. Training may end before all features 
are fully encoded. 
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To more concretely demonstrate this phenomenon we will focus on the task of 

reconstructing natural images with a linear network (Fig. 5). This network can be as 

shallow as a single layer, in which case the reconstructed images are given by the matrix 

multiplication Xˆ = WX. Importantly, this problem can be solved exactly with the solution 

that the weight matrix W is the identity matrix I. This is an unconstrained problem; if there 

is any non-uniformity in the sensitivity of the output Xˆ to changes in X it must be due to 

the implicit constraints posed during learning. Analyzing the output sensitivity in this 

simple model will help to better understand the implicit preferences of learning with 

gradient descent. 

Figure 7-5 

 

Fig. 5 The effect of input statistics on network sensitivity can be understood with linear network 
models. Despite their simplicity these show human-like learning phenomena. a) We trained linear 
networks to reconstruct black and white patches of natural images. b) The statistics (here, variance) 
of each PC is given by its singular value, which for natural images shows a characteristic power law 
decay. c) When learning with gradient descent, the weight matrix learns each PC separately and in 
order of their variance. The sharpness of the sigmoidal learning curve is controlled by the network 
depth (SI Fig. 2) d) Human perceptual learning curves are also sigmoidal, and increasing task 
difficulty delays learning dynamics. Data replotted from Ahissar and Hochstein (1997); subjects 
trained to detect the orientation of a line, and the difficulty of the task was controlled by a masking 
stimulus. e-i) Sensitivity to spatial frequency. f) Every 50 learning steps we plotted the inverse 
square root of the sensitivity to spatial frequency, which is a proxy for detection thresholds. At each 
step note the linear increase above an elbow. g) Human data on spatial frequency thresholds 
replotted from Caelli et al (1983). h) An artificial spatial ‘acuity’ grows nearly linearly with training; 
‘acuity’ is defined as the maximum spatial frequency for which the artificial threshold is below a 
value of 0.1. i) In infants and children, the spatial acuity – the highest spatial frequency observable 
for high-contrast gratings – increases linearly with age. Replotted from Mayer and Dobson (1982). 

In our demonstrative task we will examine the sensitivity of the output Xˆ to the 

magnitude of each principal component that makes up an image (as provided by PCA on 
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the inputs, Fig. 5b). The mathematical analysis for this feature is much simpler than, say, 

for orientation. In this case also we have some expectation as to what pattern of sensitivity 

the efficient coding framework predicts because the principal components (PCs) are 

ordered by their variance. An efficient code in the presence of independent internal noise 

should be more sensitive to earlier PCs. Indeed, earlier PCs are composed of lower spatial 

frequencies, and humans are better at detecting changes in lower spatial frequencies (Fig. 

5e). If gradient descent provides a similar effect, we should find that the output Xˆ becomes 

sensitive to lower PCs first. 

In our linear model it is possible to describe analytically how the sensitivity changes 

due to gradient descent. This is done by examining how the weights change. We first 

decompose the weights W via singular value decomposition (SVD), 𝑊 = 𝑈𝑆𝑉𝑇 =

∑ 𝜎𝑖𝑖 𝑢𝑖𝑣𝑖
𝑇, as a product of unit-length singular vectors (u,v) and their corresponding 

singular values σi. The evolution of these components under gradient descent is known as 

long as certain basic conditions are met, such as a very small weight initialization (Arora 

et al, 2019; Saxe et al, 2013). One key previous finding is that the singular vectors v of the 

weight matrix rotate to align with the PCs of the input (see Theorem 2 in the Appendix) 

(Arora et al, 2019). Due to this alignment, the sensitivity of the output Xˆ to the ith PC is 

controlled by the size of the corresponding singular value in the weights, σi. This is more 

formally derived in Methods. If σi remains near its initialization close to zero, then the 

projection of data upon the ith PC will be filtered out and the output will not be sensitive 

to the corresponding PC. The sensitivity of Xˆ to each PC and how it changes with learning 

can be understood entirely by the growth of the singular values of W. 

Thus far we have linked sensitivity to the weights, but it remains to input statistics to 

how the weights change. The input statistics affect the growth of the singular values of the 

weight matrix. Each σi grows at a different rate. For this objective of reconstruction, the 

growth rate of σi is proportional to the standard deviation of the corresponding ith PC in 

the data (see Methods). These decay as a power law for natural images and are shown in 

the spectrum in Fig. 5b. As a result, the network output will become sensitive first to the 

first (largest-variance) PCs and later to the later PCs. This is verified empirically in Fig. 5c. 

Only at infinite training times does the weight matrix encode all PCs equally and recover 
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the exact solution W = I. We thus see that, at any finite learning time, the output of the 

linear network will be more sensitive to the earlier PCs. Note that this non-uniformity in 

sensitivity emerges despite the lack of any constraints on W other than learning. 

Having introduced this model to explain our findings in artificial networks, we next 

wondered how it would compare to human behavioral data. We first examined the 

sensitivity of the linear model to the spatial frequency of a sinusoidal grating (Fig. 5e). In 

adult humans, the detection threshold to changes in frequency increases linearly with 

frequency (Fig. 5g) (Caelli et al, 1983). To compare to human data, we can plot the 

“detection threshold” of an artificial network as the inverse squared sensitivity of the 

network output to frequency. This is proportional to the error rate of an optimal read-out 

of frequency given injected Gaussian noise (Rao, 1945). At several snapshots during 

training, we observed that the spatial frequency threshold increased linearly with 

frequency above a certain cutoff frequency, below which the threshold saturated at a low 

value (Fig. 5f). Even a single matrix trained to reconstruct images reproduces human-like 

sensitivity to spatial frequency when trained with gradient descent. 

If the human perceptual system is also implicitly constrained by learning dynamics, 

this would be apparent in psychophysical studies of young children. Indeed, the highest 

observable frequency of a sinusoidal grating continues to improve with age even up to 

adolescence (Fig. 5i) (Leat et al, 2009; Mayer and Dobson, 1982). This is experience-

dependent; when sight is restored in young children by the removal of cataracts their 

spatial acuity gradually improves (Maurer et al, 1999). These effects can be reproduced in 

our model of linear image reconstructions. By measuring the network’s spatial acuity as a 

function of training episode as the highest spatial frequency whose simulated detection 

threshold (inverse squared sensitivity) was below a fixed cutoff, we found we could 

reproduce a linear increase of spatial acuity with age (Fig. 5h). Learning with gradient 

descent reproduces not only an efficient encoding of spatial frequency but also the way in 

which visual acuity increases linearly with age. 

The theory of learning in deep networks makes several further predictions for human 

perception, many of which have been explored previously (Saxe, 2015; Wenliang and Seitz, 

2018). A central feature of this framework is a characteristic sigmoidal curve for 
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perceptual learning tasks (Fig. 5c). Such sigmoidal learning curves are observable in 

humans on perceptual learning tasks that are sufficiently difficult (Fig. 5d) (Ahissar and 

Hochstein, 1997). This curve is sigmoidal because the rate of improvement depends upon 

the current level of sensitivity as well as the difference from asymptotic sensitivity (see 

Methods). This causes sensitivity to rise exponentially at first but eventually converge 

exponentially towards an asymptote. In human perceptual learning experiments, the 

learning curve is indeed better described as an exponential than other functional forms 

such as power laws (Dosher and Lu, 2007). Although gradient descent in linear systems is 

a simple model, it accurately captures the functional form of how perception improves 

with experience. 

In the analysis above we trained towards the objective of reconstructing inputs, which 

is an unsupervised objective. However, the mathematical reason why gradient descent 

learns frequent inputs first also applies to supervised learning. For two features with equal 

correlation with the output labels but different variance in the inputs, the network will 

learn to use the higher-variance feature first (see Methods for derivation). Due to this 

additional bias beyond task usefulness, networks trained on a wide range of objectives will 

show greater sensitivity for frequent features. 

The emergence of efficient coding in supervised tasks can be verified with a simple task 

in which the frequency and usefulness of input features are varied independently (Fig. 6). 

We trained a nonlinear 3-layer neural network to decode the orientation of a sinusoidal 

grating appearing with a set probability distribution. We also applied noise to the output 

labels to control the information in each stimulus about the labels. As expected, both the 

input frequency and output noise separately affect the sensitivity of learned 

representations (Fig. 6b,c). However, this could also be explained by the effect of 

frequency and noise on task usefulness, defined as the total information in the input 

dataset about each label. To demonstrate that gradient descent introduces an additional 

bias beyond task usefulness, we next adjusted the magnitude of the noise such that the 

total information is uniform across labels. This requires applying a greater level of noise 

onto the labels that are more common, balancing their effects on information. Even in this 

case, a higher sensitivity to input orientation emerges for more common orientations (Fig. 
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6d). This now provides a deeper intuition of our findings earlier that networks trained on 

object recognition are more sensitive to frequent features. The preference for frequent 

features is a general feature of learning with gradient descent and is separate from 

frequency’s effect on the information about labels. 

 
Figure 7-6 

 

Fig. 6 Dissociating the effect of 
frequency and information in 
supervised learning tasks. a) We 
trained 3-layer nonlinear neural 
networks to classify the orientation of 
sinusoidal gratings into 3º bins, 
varying either input frequency or 
output noise. b) We controlled the 
informativeness of input orientations 
by injecting noise into the labels as a 
function of orientation. The sensitivity 
of the first layer to input orientation is 
shown over learning. With uniform 
statistics, the more informative 
features are preferentially learned. c) 
The effect of varying input frequency 
without applying label noise. In this 
case, the more frequent features are 
preferentially learned. d) We then 
balanced noise and frequency such that 
the total information in the input 
dataset about each output label is 
uniform (see Methods). Learning with 
gradient descent still prefers common 
angles. 

Discussion 

Here we found that the internal representations of artificial neural networks trained 

on ImageNet are more sensitive to basic visual features that are more common, which is a 

hallmark feature of efficient coding. We show that this hallmark naturally emerges from 

gradient-based learning. Even a minimal model of gradient-based learning – linear image 

reconstruction – reproduced human patterns of sensitivity to sensory variables and how 

these change over development. In this minimal model the dynamics of learning can be 

understood analytically. The correspondence of sensitivity and statistics emerges due to 

an implicit bias of gradient descent for common, high-variance aspects of the input data. 
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Our result provides a proof of principle that patterns of perceptual sensitivity in 

animals could be explained by a similar phenomenon. If plasticity in the brain 

approximates the gradient of some task, whether by reinforced Hebbian rules or some 

other algorithm, neural populations will preferentially encode the strongest dimensions in 

their inputs. As a result, organisms may not need dedicated learning algorithms for 

efficient codes in addition to algorithms for task-oriented learning. Many such local, 

unsupervised plasticity rules and neural control mechanisms have been previously 

proposed as ways the brain might develop efficient codes (Barlow, 1989; Bell and 

Sejnowski, 1995; Brito and Gerstner, 2016; Hyvärinen and Oja, 1997; Intrator and Cooper, 

1992; Karklin and Simoncelli, 2011; Olshausen and Field, 1996; Ruderman and Bialek, 

1993; Schwartz and Simoncelli, 2001; Zhou and Yu, 2018). Instead, any general algorithm 

approximating gradient descent may produce similar codes when learning towards many 

objectives. 

It is important to note that our mathematical analysis of linear networks is highly 

simplified and may not accurately describe how learning affects sensitivity in general. A 

number of considerations complicate a generalization to nonlinear artificial neural 

networks, let alone brains. Nonlinearity makes linear decompositions inaccurate, and as a 

result we cannot say the precise features that gradient descent prefers to learn before 

others in nonlinear networks. New techniques from this emerging field may soon allow a 

more complete characterization of the dynamics of learning (e.g. Goldt et al (2020)). 

However, despite these caveats, we find that this model is useful to explain why efficient 

codes emerge in nonlinear artificial networks. It is remarkable that such a simple model 

of learning also captures qualitative features of human perceptual learning, as well. 

Learning in linear systems provides a valuable source of intuition for the effects of learning 

in more complex systems. 

While we have shown one mechanism for how learning can induce a 

statistics/sensitivity correspondence, it is not the only mechanism by which it could do so. 

Theories of deep learning often distinguish between the “rich” (feature learning) and “lazy” 

(kernel) regimes possible in network learning (Woodworth et al, 2020). Our models reside 

in the rich regime, which involves learning new intermediate representations and assumes 
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a small weight initialization. In the alternative, lazy regime, intermediate representations 

change little over learning and only a readout function is learned (Jacot et al, 2018). 

Interestingly, networks in the “lazy” (kernel) regime evolve under gradient descent as if 

they were linear in their parameters (Lee et al, 2019), and furthermore have the inductive 

bias of successively fitting higher modes of the input/output function as more data is 

presented (Bordelon et al, 2020; Canatar et al, 2021). The modes are defined differently, 

however, via the kernel similarity matrix rather than the direct input covariance. Despite 

the dissimilarities in these mathematical approaches, both center gradient descent and 

learn important aspects of the problem before others. These similarities suggest that a 

statistics/sensitivity correspondence could be derived for other network regimes. 

Our broadest finding — that task-oriented learning can be a mechanism of producing 

efficient codes — is relevant to the discussion in psychophysics of the nature of the 

constraints implied by perceptual sensitivity patterns. It has long been recognized that 

these patterns imply some limitation upon coding capacity. Here, we make the distinction 

between implicit limitations due to (a lack of) learning and explicit limitations upon the 

maximum achievable code quality after learning, such as noise, metabolism, or a limited 

number of neurons. Although these categories limit perception with different 

mechanisms, they produce similar patterns of perceptual sensitivity. This distinction is 

particularly meaningful for explaining perceptual learning. Previously, perceptual 

improvements during development have been interpreted as a reduction in internal noise 

accompanied by a continuous maintenance of optimally efficient codes (Dosher and Lu, 

1998; Kiorpes and Movshon, 1998). In our framework, learning naturally creates codes 

that reflect environmental statistics at all stages of learning, and there is no need to invoke 

a reduction in noise to explain improvements. This is consistent with the view that 

perceptual learning increases the signal-to-noise ratio through neuronal changes that 

enhance the signal strength (Gold et al, 1999; Schoups et al, 2001). To be sure, the nervous 

system is indeed constrained by hard ceilings such as noise and metabolism; learning 

probably ceases eventually. The implicit constraints due to learning are complementary to 

these and their relative contribution decreases with age and experience. 
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Although operating at a much shorter time-scale, sensory adaptation induces similar 

behavioral changes as perceptual learning, such as improving sensitivity to small stimulus 

differences at the adapted (i.e. learned) stimulus value. It has been argued that sensory 

adaptation is a form of efficient coding, optimally re-allocating sensory encoding resources 

according to recent stimulus history (Fairhall et al, 2001). While the adaptation induced 

changes in neural encoding characteristics such as reduction in response gain and changes 

in tuning curves are well characterized (Benucci et al, 2013; Kohn and Movshon, 2004), it 

is unknown how these local changes in neural representation accuracy depend on the 

specific details and dynamics of the sensory history. Thus it will be interesting to explore 

the degree to which sensory adaptation and its dynamics can be explained and predicted 

by the global objective of a task-dependent learning rule (gradient descent) in a 

continually updating (i.e., adapting) sensory processing system such as the brain. 

The model system of gradient descent in linear systems can make several further 

predictions if taken as a model of human perceptual learning. In this model, the perceptual 

learning rate can be quantitatively modeled as a function of input statistics, importance, 

and current performance. These predictions could be verified in experiments that 

separably vary label noise and input statistics in supervised perceptual learning problems. 

Additionally, learning in the rich domain predicts that the learning system should 

represent the outside world in a low-dimensional way, with additional dimensions being 

added over time according to their variance and importance. As such, these learning 

dynamics naturally give rise to low-dimensional neural representations. Such learning 

dynamics may thus underlie the popular idea in neuroscience of low-dimensional neural 

manifolds (see Flesch et al (2022)). 

A learning framework for perception points to a different sort of normative analysis of 

why we perceive the way that we do. Optimality can be defined in two ways. It can 

characterize the maximum achievable code quality, in an information-theoretic sense, 

given some number of neurons and their biological limitations. Alternatively, one might 

also describe responses that are optimal given the limited experience by which to learn the 

statistics of the world. Even ideal observers must learn from limited data, and successful 

learning from limited data must be constrained (Wolpert and Macready, 1997). 
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Appropriate learning constraints would be selected for by evolution. Future research may 

help to unravel these optimal learning algorithms and characterize their sensory 

consequences. 

Methods 

Stimuli and calculation of network sensitivity 

In all networks, we defined the sensitivity of a particular layer to a sensory variable as 

the squared magnitude of the gradient. For a layer with N nodes and vector of activations 

y, the sensitivity with respect to a sensory variable θ is: 

. 

This definition of sensitivity can be related to the Fisher Information about a sensory 

variable θ in an artificial stimuli set. This is relevant for comparisons to human 

psychophysical data as the notion of sensitivity inferred from discrimination thresholds is 

the Fisher Information. In particular, our definition of sensitivity can be interpreted as the 

Fisher Information of systems with internal Gaussian noise of unit variance, and 

furthermore for the orientation of stimuli within an artificial stimulus ensemble with one 

stimulus per value of θ. A derivation of this connection can be found in the Mathematical 

Appendix. 

The sensitivity can be calculated through backpropagation or by the method of finite 

differences. We created differentiable generators of stimuli in the automatic 

differentiation framework of Pytorch. This allowed calculating the sensitivity directly via 

in-built backpropagation methods. 

For the figures in the text, we used Gabor stimuli with a spatial frequency of 2 cycles 

per 100 pixels, a contrast so that pixels span the range of [-1,1] in intensity in units of z-

scored ImageNet image intensities, and a Gaussian envelope with σ = 0.5. We 

marginalized over the phase of the Gabor by averaging the sensitivity calculated with 10 

linearly spaced spatial phases tiling the interval [−π,π]. The sinusoidal stimuli input to the 
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linear network varied in spatial frequency, and we similarly averaged sensitivity over 

spatial phase. Finally, for the hue stimuli, we generated images of a uniform color in HSV 

color space and converted pixel values to RGB. Results were marginalized over the S and 

V axes in the range [.5,1] which corresponds to the calculation of hue histograms on 

ImageNet (see below), which necessarily involves binning S and V. 

Deep nonlinear network experiments 

To measure the sensitivity of pretrained networks, we first downloaded pretrained 

ResNet18 and VGG16 (with batch normalization) networks from the Torchvision python 

package (v0.11) distributed with Pytorch. For the vision transformer, we used a 

distribution in Python available at https://github.com/lukemelas/PyTorchPretrained-

ViT. For each layer in these networks, we calculated sensitivity to orientation and hue were 

calculated with the stimuli generators described above. The ‘layers’ are defined differently 

for each network. For ResNet, layers are what in this architecture are called residual blocks 

(each of which contain multiple linearnonlinear operations). For VGG, layers are the 

activations following each linear or pooling layer. Layers within the vision transformer are 

what are called transformer blocks. 

We implemented a number of controls to determine the extent to which the observed 

patterns of sensitivity related to image statistics. We first ran the sensitivity analysis on 

untrained networks; we used the Pytorch default initialization. To ensure that the 

architectures do not show inherent patterns only in a certain regime of weight sizes, we 

calculated sensitivity on a copy of the networks in which the weights were shuffled. We 

wanted to preserve weight sizes in a layer-specific manner, and so shuffled the weights 

only within each tensor. 

As further control on the effect of image statistics we retrained certain models on a 

version of ImageNet in which all images were rotated by 45º, or as well in which the hue 

of images were rotated by 90º. The transformer model was not retrained due to its 

expense. Image modifications were performed with Torchvision’s in-built rotation and 

hue adjusting image transformations. 
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We trained all networks using a standard training procedure: stochastic gradient 

descent with an initial learning rate of 0.1, decaying by a factor of 10 every 30 epochs, as 

well as a momentum value of 0.9, and a batch size of 256 images. The networks were 

trained for 90 epochs. To match the original training setup, we augmented the image 

dataset with random horizontal reflections and random crops of a size reduction factor 

varying from 0.08 to 1. Note that the random horizontal reflections change the statistics 

of orientations so as to be symmetric around the vertical axis. After training the sensitivity 

was calculated as above. 

ImageNet hue statistics 

We wrote a custom script to extract the hue histogram of all pixels in all images in the 

ImageNet training set. We binned hues with a resolution of 1º, and binned hues over the 

S and V range [.5,1] to focus on strongly colored pixels. The exact range is arbitrary, but 

importantly matches the range used when calculating network sensitivity. 

Linear network experiments 

We first constructed a database of 32x32 images of natural scene image portions. 

These image portions were extracted from ImageNet (Deng et al, 2009), made greyscale, 

and cropped to size. Our constructed dataset contained over 100,000 examples of image 

portions. We then performed PCA on this dataset using the PCA method in Scikit-Learn 

(Pedregosa et al, 2011), and displayed the singular values of the top 1,000 components in 

Figure 5. 

Our task consisted of reconstructing these image portions using a single- or multilayer 

fully-connected linear neural network. To ensure no architectural bottleneck exists, the 

internal (hidden) dimension of the multilayer network remained at 322, the same as the 

input and output. The initial parameter values of the networks were scaled down by a 

factor of 100 from the default Pytorch initialization to ensure rich-regime learning. 

Networks were trained to minimize the mean-squared error of reconstruction using 

stochastic gradient descent, a learning rate of 1.0, and a batch size of 16,384, the largest 
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that would fit in memory. The large batch size minimizes effects relating to batch 

stochasticity. 

During learning, we calculated the sensitivity to spatial frequency as well as the 

projection of the learned weight matrix upon the PCA basis vectors of the inputs. The 

projection upon each PCA vector is given by uTi Wui, where W is the product matrix 

corresponding to the linear network and ui is the ith PCA component. The sensitivity to 

spatial frequency was calculated by constructing a sinusoidal plane wave test stimulus 

with parameterized frequency and phase and using Pytorch’s automatic differentiation 

capability to obtain the derivative of network output with respect to frequency. The 

sensitivity was calculated for 64 equally-spaced phase offsets and the result averaged over 

phase. 

Supervised label noise experiment (Fig. 6) 

In this experiment we trained a 3-layer neural network with ReLU nonlinearities to 

decode the orientation of 64x64 pixel image of a sinusoidal grating. The period of the 

sinusoid was 12.8 pixels, and in each stimulus the sinusoid carried a random phase offset. 

The random phase and orientation ensured that no image was repeated. In each image the 

orientation was sampled in the interval [0,π] from a specified probability distribution 

(either a uniform distribution or ). The objective was the categorization of images 

into 60 bins of orientations, with success quantified via a cross-entropy loss function. 

The addition of noise to the output labels was calibrated such that, on average over a 

dataset, any orientation θ is as informative as any other despite a potentially nonuniform 

orientation distribution p(θ). Since the total information in a dataset about a (potentially 

noised) label yθ scales linearly with how often it appears, all else held equal, the variation 

in per-example information must exactly balance the change in frequency. That is, for any 

two orientations θi and θj and their corresponding 

(noised) labels yθi and yθj, it must be that p(θi)I[yθi | θi] = p(θj)I[yθj | θj]. Here I[·] 

represents the information gained about a label having observed an input, i.e. the change 
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in entropy over yθ from the uniform distribution. This proportionality is satisfied if

 for some constant a. 

Our approach thus requires applying label noise of a known entropy that varies with 

orientation. Because we optimize a cross-entropy objective, rather than e.g. a mean-

squared-error objective, there are no interactions between neighboring bins. 

We applied noise by treating the nonzero element of the each label vector, which are 

indicator (1-hot) vectors, as a Bernoulli variable with rate σ(θ). σ = 1 corresponds to the 

zero-noise condition, and with rate 1 − σ(θ), a label is dropped out. For this noise, the 

information about each label is I[yθ | xθ] = 1 − Hb(σ(θ)), where Hb(σ) is the binary entropy 

function. Together, the rate of Bernoulli noise is given by ). We 

approximated the inverse binary entropy function with a table lookup and assuming σ ≥ 

0.5. 

Sensitivity analysis of linear networks 

In this section we will analyze the sensitivity of a linear multilayer neural network in 

which the weights of layer i are parameterized by Wi. The output of such a network with N 

layers is: 

 Y = WNWN−1 ...W2W1X (2) 

The product matrix is simply W, such that Y = WX. 

Throughout this analysis we will make heavy use of the singular value decomposition 

of the weight matrix, which defines matrices U, S, and V such that W = USV T. The matrix S 

is diagonal, and the diagonal elements are called the singular values σi. The U and V 

matrices are orthonormal. 

Our analysis describes how learning dynamics in this system acts to link output 

sensitivity to input statistics. Note that the derivation here is for arbitrary objectives; the 

instance of a reconstruction loss discussed in the main text is a special case. The analysis 
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is organized in three stages: 1) how the sensitivity depends on the singular values σi of W, 

2) how σi change with learning, and 3) how σi correspond to the image statistics. 

Sensitivity depends on the singular values of W 

We wish to derive the sensitivity of a linear network to arbitrary input features. We 

will first examine the case of determining the sensitivity of the network the following 

feature: how much the data aligns with each jth singular vector of W. This is a weight-

dependent feature. Specifically, let the feature θj be the dot product of the data with the jth 

right singular vector of the weight product matrix, θj = VjTx. This feature is important as it 

can be used to analyze the sensitivity to arbitrary features. 

For this feature, we find the sensitivity of the network is D(Y ; θj) = σj2. This result is 

intuitive, as σj2 describes how much data lying along the vector vj is amplified when 

multiplied with W. A derivation can be found in the Appendix. Thus, when θj = VjTx, the 

sensitivity D(Y ; θj) is constant and is the square of the associated singular value. 

The sensitivity to more general θ can be understood using this result. This is because 

the key derivative can be decomposed into the derivatives with respect to right singular 

vectors: . In this case, we find that D(y; θ) =  (see Appendix for 

derivation). Thus, for arbitrary θ, the sensitivity depends on how VjTx depends on θ times 

the size of the associated singular value, summed over components j. 

The behavior of the singular values 

Previous literature describes how the weight matrix changes due to gradient descent 

(Arora et al, 2019; Saxe et al, 2013). More information about these results can be found in 

the Appendix. 

We first define a (potentially data-dependent) cost function: ℓ(WNWN−1 ...W2W1)  

As described by Arora et al (2019), under certain conditions on the weight initialization 

the direction of the unit vectors u and v rotate with learning in a specific way. Note that 

they remain unit length during learning. This result, quoted in the Mathematical Appendix 
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as Theorem 2, states that the vectors are static when they align with the singular vectors 

of the gradient of the loss, ∇ℓ(W). More specifically, if the singular vectors are static then 

UT∇ℓ(W)V is diagonal. This will become an important condition for tying the input 

statistics to the singular values of W. 

Another important result from previous literature describes how singular values of the 

product matrix W evolve as a function of time t: 

   

Thus, each singular value evolves as a product of a function its current size and the 

network depth multiplied by how much the gradient correlates with the corresponding 

singular vectors. This formalism assumes continuous learning dynamics; see (Gidel et al, 

2019) for a treatment of finite step sizes. 

Relation of frequency to sensitivity 

In this section we wish to show how the input statistics affect the singular vectors and 

values of W. Our approach is to show that frequency p(θ) reflects in the covariance of θ. 

The covariance affects the rate of learning of the singular values of the weight matrix W. 

Frequency vs. variance 

In our analysis of how the statistics of data affect sensitivity, we focus on the variance 

of features. Since previous literature in psychophysics focus on frequency as defined by 

the vector p(θ) with a scalar value for each orientation p(θ = θj) (e.g. Wei and Stocker 

(2015)), it is appropriate to discuss their relation. Our analysis focuses on variance in part 

because attributes like orientation measured can occur with a real-valued strength in each 

image patch when measured by e.g. Gabor filters or Fourier decomposition. Thus a 

description of p(θ) in natural images might be more completely characterized with a two-

dimensional matrix with dimensions for angle and intensity. Variance summarizes the 

intensity axis and characterizes how unpredictable each orientation is within each image 

patch. The second reason we work with variance is that it cleanly relates to the speed of 

learning. 
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When features are binary and either present or not, variance and frequency are closely 

related. Modeling presence as a Bernoulli variable, the frequency is the probability p(θj) 

and the variance is σ(θj) = p(θj)(1 − p(θj)). Note that at very small values of p(θj), σ(θj) ∼ 

p(θj). However, features that are nearly always present (p(θj) near 1) have a very low 

variance. It is interesting to note that this behavior aligns with the expectation that 

efficient sensory systems should dedicate more resources to features whose presence is 

uncertain (p(θj) = .5) than to those whose presence is guaranteed (p(θj) = 1). Variance is 

thus very similar to absolute frequency for rare Bernoulli variables and in general may be 

a more intuitive measure of feature importance in regards to what determines efficient 

patterns of sensitivity. 

What W learns: autoencoding objective 

Further describing the growth of singular values requires a choice of objective. The 

base case of our study is the autoencoding objective defined for a set of inputs X: 

 

Our goal is to determine how W evolves for this cost function. We will examine both 

the singular vectors and the singular values. 

During learning, the singular vectors rotate (recall they are unit length and orthogonal) 

until they reach a fixed point. For this cost function, it is easy to verify that a fixed point of 

dynamics is when the singular vectors are equal to the principal components of the inputs 

(see Appendix for proof). That is, the vectors are static when Σxx = V ΛV T and W = V SV T for 

the same V but potentially different Λ and S. This alignment is especially relevant given the 

expression for network sensitivity derived above. With the vectors aligned, the sensitivity 

to each corresponding principal component of the inputs is given by σi2, the squared 

singular value of W. 

The evolution of sensitivity is thus governed by the evolution of singular values. The 

rate of change of σi is complicated to calculate because the singular vectors can potentially 
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rotate. However, for the sake of analysis one can examine the case when the singular 

vectors are initialized at the fixed point mentioned above, as in previous literature (Saxe 

et al, 2013). In this set of initial conditions, the time-evolution of each singular value of W 

is given by (Saxe et al, 2013; Arora et al, 2019): 

 

Note that the rate of learning is controlled by λi, the standard deviation of the ith 

principal component of the inputs. The term on the right causes σi(t) to converge to 1 

asymptotically, as is expected as the solution of the full-rank reconstruction problem is W 

= I. For deeper networks (N ≥ 2), the growth is sigmoidal and approaches a step function 

as N → ∞ (see Gidel et al (2019)). Thus, in this axisaligned initialization, the singular values 

σi(t) are learned in order of the variance of the associated principal components of the 

inputs. 

Together, these results mean that the sensitivity of a linear network’s output to the 

principal components of the inputs evolve in order of variance when trained on input 

reconstruction. This is exactly the case for the axis-aligned initialization and 

approximately true for small initializations. For the single-matrix network displayed in the 

figure in the main text, the sensitivity to the jth PC thus evolves over time t as: 

 

What W learns: supervised learning 

We can also determine how input statistics affect the sensitivity for the more general 

class of objective functions when Wx is trained to match some target y by minimizing the 

mean-squared error: 

 



 

 191 

As before, we can gain intuition about W by beginning from an initialization that is 

axis-aligned with the final solution. For the supervised case, these initializations share the 

singular vectors of the data/labels, but can differ in the singular values. 

Given 𝛴𝑥𝑥 = 𝑉𝛬𝑉𝑇  and 𝛴𝑥𝑦 = 𝑈𝑇𝑉𝑇, we set 𝑊(0) = 𝑈𝑆𝑉𝑇  for the same U and V . See the 

Appendix for proof that this is a fixed point of singular vector dynamics. 

This initialization allows us to understand how the singular values of the weight matrix 

change. As derived in the Appendix, the time evolution of σi is given by: 

 

As in the case for input reconstruction, the ith singular value approaches a target. 

Instead of 1, this value is , the ratio of the importance of this component (the 

input/output singular value ti) and the standard deviation of that component in the inputs 

λi. The growth rate is controlled by the distance from this asymptote (right term) and as 

well as on the input statistics λi. Thus, even for the case of supervised learning the input 

statistics affect what is learned first via gradient descent directly through Σxx via λi, and not 

just through the input/label covariance Σxy. 
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Supplemental figures 

Figure 7-7 

 

SI Fig 1: Controls for orientation sensitivity analyses. a) The sensitivity to the orientation of Gabor 
stimuli (see Methods for stimuli parameters) at initialization, left column, and after shuffling the 
parameters within each layer, right column. b) We retrained the Resnet18 and VGG16 architectures 
on a version of ImageNet in which all images were rotated by 45º. Left: The orientation statistics 
can be observed as the magnitude of the Fourier spatial decomposition around a circle centered at 
the origin in frequency space. This method of analysis will show artifacts of spikes at the cardinals 
due to the edge effects of rectangular images, but it is a useful control that image statistics do 
change with rotation. Top is for standard ImageNet, and bottom is for rotated ImageNet. Middle 
column: The sensitivity of ResNet18 and VGG16 after retraining on rotated images. Though 
changed, it does not appear as a simple shift of the patterns seen for standard ImageNet (Fig. 2). 
Right: The difference of this sensitivity pattern from the sensitivity pattern observed after training 
on standard ImageNet shows that changes do correspond to the change in image statistics, at least 
in part. c) One source of training-independent sensitivity to the cardinal orientations is overlapping 
pooling, where it is used. (None of the three above networks employ overlapping pooling.) Left: In 
AlexNet, which does, the network shows a strong nonuniformity of sensitivity at initialization. 
Right: The use of non-overlapping pooling greatly diminishes the non-uniformity, as does the 
complete removal of pooling layers (and accompanying change in the convolutional filter 
downsampling). 
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Figure 7-8 

 

SI Fig. 2: Learning dynamics of 2 and 3 layer linear networks. Top: As the depth of networks 
increases, the principal components are learned in sharper transitions. Bottom: The “threshold” of 
spatial frequency detection, defined as the inverse square root of the sensitivity to frequency, shows 
similar patterns regardless of network depth. 
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Appendix 

Relation of sensitivity to the Fisher information 

In the main manuscript, we define the sensitivity of a data point y to a feature θ as: 

 

Throughout this Appendix, lower-case variables represent vectors and capital letters 

refer to matrices. We denote the sensitivity an ensemble of data points as D(Y ; θ). 

The Fisher Information 

In this section we show that the above definition of sensitivity can be interpreted as 

the Fisher Information of y given θ for the case of Gaussian internal noise of unit variance. 

Suppose after obtaining y, we observe noisy observations of it ˜y. Then, the Fisher 

information of ˜y about some input feature θ is 

 

When y is a representation of some inputs x, the Fisher information is that implicitly 

reflects the stimulus ensemble X, through the connection x → θ → y. It is often the case that 

we wish to measure the average Fisher information over such an input ensemble. For 

example, the Fisher Information of orientation on natural images, or on test stimuli. We 

denote such an average by with capital letters, suggesting a matrix of examples: F(Y˜; θ). 

Fisher information for internal noise sources: 

We are concerned with the Fisher information F(Y˜; θ) when only a single input x 

corresponds to each θ. For example, one could be interested in the Fisher information 

about orientation as characterized by a set of rotating sinusoidal gratings with identical 

contrast, phase, and frequency. 
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Since we observe Y noisily, we still observe a distribution p(y˜ | x = f(θ)) for each θ. 

Here we have written x = f(θ) for some real function f : R → R since x is deterministic given 

θ. In this case the Fisher information is 

 

This is the expression we focus on in this paper. It is simple to calculate using 

derivatives (as detailed below) and a valid point of comparison to human data 

characterized with a stimulus ensemble with only one θ per x. 

The addition of external noise sources: 

As an aside, if one wants to determine the Fisher information about orientation on 

natural images, the desired quantity changes. In naturalistic datasets there are many 

inputs x that could correspond to each value of θ. Thus, there are two sources of noise: 

external noise producing the distribution p(x | θ), and internal noise producing p(y˜ | y) or 

alternatively p(y˜ | x). In this case the Fisher information is not easily obtained from 

derivatives of model representations. This is because this quantity requires marginalizing 

over x inside of the Fisher expression: 

 

The expectation inside of the log makes this analytically intractable. Approximations 

may be useful for rather simple p(x | θ), but this is prohibitive for naturalistic data. Thus 

our expression for sensitivity is not comparable to the Fisher information about data with 

external noise. 

Gaussian internal noise 

The notion of network sensitivity in our paper can be equated with Fisher Information 

in the case that one observes a noised ˜y containing an additive injection of zero-mean 

Gaussian noise. Thus with noise ζ ∼ N(0,1), y˜ = y + ζ . 
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In this case F(y ̃; θ | X) simplifies. Since the noise is independent over outputs yi  and 

furthermore Gaussian over each output unit, 

 

Taking the derivative and expectation over ζ, we obtain the well-known result for the 

Fisher of Gaussians: 

 

Sensitivity analysis of a linear network 

Imagine that we have a linear multilayer neural network in which the weights of layer 

i are parameterized by Wi. The output of such a network with N layers is Y = WNWN−1 

...W2W1X. The product matrix is simply W, and Y = WX. 

The total sensitivity can be broken up into terms that depend on the decomposition of 

W. This will be the bridge to a theory of learning. 

As a minimal example, let us first examine the case of determining the sensitivity as a 

function of how much the data aligns with each singular vector of W. That is, our feature 

θj is the dot product of the data with the jth right singular vector of the weight product 

matrix. As discussed later, for autoencoding cost functions this will align with the principal 
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components of the data after a bit of training, and so this might also be said to be the 

sensitivity about the jth principal component.  

Defining the SVD and feature of interest as,  

 

For this feature, the expected sensitivity for an input ensemble p(x) is: 

 

Since  is a one-hot vector that is 1 in the jth row and zero everywhere else, it acts 

to “pick out” the jth column of US. Note that the expectation over p(x) disappears as well. 

 

Here = 1 because columns of U are orthonormal. Thus, for when θj = VjTx, the 

sensitivity D(Y ; θ)j is constant and is the square of the associated singular value. 

More general θ 

More general θ can be understood using the result of the last section. The approach is 

to decompose an arbitrary derivative into the derivatives with respect to right singular 

vectors, as such: . In this case, 
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Thus, for arbitrary θ, the sensitivity depends on the derivative of the jth right singular 

vector with respect to θ times the size of its associated singular value. 

The behavior of the singular values 

Let us now establish a cost function upon the product matrix. 

ℓ(WNWN−1 ...W2W1) 

Results of previous literature 

Though many papers have adopted this framework, as cited in the main text, here we 

quote the result of Arora et al (2019). 

Summary: During gradient descent, under certain restrictive conditions on the initial 

values of Wi, the singular values of the product matrix evolve qualitatively differently 

for N = 1 vs. N > 1. For N > 1 they grow larger sigmoidally (roughly one-at-a-time) and 

in order of their contribution to the cost ℓ(W). 

The results to follow examine what happens when we train Wi via gradient descent to 

minimize ℓ(W). Each Wi now becomes a function of time, Wi(t), and 
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In addition we assume that the matrices are initialized in a balanced manner, meaning 

that for all j < N, 

 

This holds approximately when the weights are initialized very close to zero. 

Lemma (Arora et al. 2019) 

The product matrix W(t) can be expressed as W(t) = U(t)S(t)V T(t) where U(t) and V 

(t) have orthonormal columns and S(t) is diagonal. 

Our theory hinges on the behavior of the diagonal elements of S(t), which we will 

denote as σi(t). 

Theorem 1 (Arora et al. 2019) 

The singular values of the product matrix W (t) evolve by: 

 

Thus, each singular value evolves as a product of a function its current size and the 

network depth ( ) multiplied by how much the gradient correlates with the rank-

1 matrix implied by the singular vectors. Note that if N = 1 there is no dependence on the 

current size of σi(t). 

Another important result concerns the rotation of the unit vectors u(t) and v(t). It 

states that the vectors are static when they align with the singular vectors of ∇ℓW(t). 

Theorem 2 (Arora et al. 2019) 

Assume that at initialization, the singular values of the product matrix W (t) are 

distinct from zero, and that the matrix factorization is non-degenerate, i.e. has depth N 
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≥ 2. Then, for any time t such that the singular vectors of the product matrix W (t) are 

stationary, i.e. U˙ (t) = 0 and V˙ (t) = 0, then UT(t)∇ℓ(W(t))V (t) is diagonal. 

Relation of input statistics to sensitivity 

Our approach is to show that frequency p(θ) reflects in the covariance of θ. This in turn 

affects the rate of learning of the singular values of the weight matrix W, at least for certain 

objectives. This connects the sensitivity, or Fisher Information of Y˜, back to the 

frequency. 

The data covariance affects the learning of σi(t): autoencoding objective 

The base case of our study is the autoencoding objective defined for a set of inputs X: 

 

Our goal is to determine the evolution of σi(t) that results from this cost function. First, 

see that, 

 

 

Here Σ is the data covariance, assuming X is centered. 

In general, the time evolution of each singular value σi(t) is complicated to calculate 

because the singular vectors can potentially rotate, i.e. (˙U)(t) ̸= 0. However, for the sake 

of analysis we can examine a limited case when the direction of the singular vectors is 

static. This will allow us to obtain an analytic expression for the evolution of the singular 
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values in terms of the data covariance. In particular we will examine the case when the 

weight matrix is initialized to share right singular vectors (but not singular values) with 

the data covariance. 

By plugging the expression for ∇Wℓ(W(t)) into Theorem 2, it can be seen that if Σ = V 

ΛV T and W = V SV T for the same V , then 

 

This is diagonal, and thus by Theorem 2 V˙ (t) = 0 during gradient descent on the 

autoencoding objective. 

By Theorem 1, this initialization results in: 

 

Extension to supervised learning 

A more general class of objective functions is when Wx is trained to match some target 

y. The input statistics are again relevant here. If we again take the mean-squared error as 

the objective, 

 

The evolution of the singular values is determined by the gradient, 
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By Theorem 1, then, we have that, 

 

Thus, the evolution of the singular values depends on two additive terms. One of these 

(left) has no dependence on the labels y, only on the statistics of the data. 

As before, we can gain intuition about this evolution by beginning from an 

initialization that is axis-aligned with the final solution. For the supervised case, these 

initializations share the singular vectors of the data/labels, but can differ in the singular 

values. Given Σxx = V ΛV T and Σxy = UTV T, we set W(0) = USV T for the same U and V . This 

means that, 

 

This is a diagonal matrix, and thus a fixed point of learning. For this initialization, 

then, 
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Chapter 8: Conclusions 

This dissertation aims to justify and implement a machine learning framework for 

computational neuroscience. Together, these chapters demonstrate new ways in which 

machine learning can be used as tools (Chapters 2-4) or as a theories (Chapters 4-7) within 

neuroscience. 

Since each chapter relates to a different subfield, the conclusions and future directions 

drawn from each one are best directed at each field. A general conclusion follows. 

Chapters 2 and 3: neurophysiology 

The techniques we developed in these chapters are ways to validate descriptions of 

neural activity and function. Along with these techniques is a message: such descriptions 

need to be validated in order to be meaningful. 

To illustrate this, we documented a failure of assumptions in a few specific situations. 

These were narrow, by necessity. In recordings of neurons in area V4 in two macaque 

monkeys, we found that although neurons have strong hue tuning, these do not capture 

how hue affects those neurons in general (Chapter 2). Likewise, generalized linear models 

mischaracterize how macaque M1 cells encode arm direction and velocity (Chapter 3). 

These findings do not alone indict the entire methodology. They are warnings and 

demonstrations of the necessity of validating a generalization of experimental findings.  

Our demonstrations are not the only papers with similar conclusions. It is not a rare 

situation that features unvaried by a researcher affect the neural response (and as argued 

in Chapter 2, it should be expected). Area V1 is a canary for the approach. There, papers 

have asked about generalization of orientation tuning to natural scenes (David et al., 2004; 

Touryan et al., 2005), and compared typical models with machine learning benchmarks 

(Cadena et al., 2019; Prenger et al., 2004). As warned by Olshausen and Field (Bruno A 

Olshausen & Field, 2005, 2006), it seems much about the computations performed in V1 

still remain to be understood. This warning exists for V1 because, unusually, the validating 

measurements have been performed.  



 

 208 

In other areas, however, it is rare that key validations are presented along with an 

encoding model or tuning curve. When omitted, it signals a tacit comfort with the 

possibility that tuning curves will change with context or that encoding models will miss 

explainable variance. Encouragingly, this trend may be changing. As experimental 

methods improve and to allow more neurons to be simultaneously recorded,  researchers 

are again using benchmarks to challenge previous assumptions about the meaning of 

neural activity (e.g. (Musall, Kaufman, Juavinett, Gluf, & Churchland, 2019)).  

In addition to more frequent benchmarking, the future directions for neurophysiology 

might include theories of processing that guide one’s assumptions about responses to 

untested stimuli. Since the sensory systems know a great deal about the external world 

(Lillicrap & Kording, 2019), models that incorporate naturalistic statistics are perhaps the 

most promising. Knowing the statistics of the training data allows neurophysiologists a 

crucial leg up. An older example taking this approach (to great success) is the notion of 

efficient coding (Barlow, 1961). Another possibility is to describe the effects of learning 

effectively with limited exposure to the natural world, as I explored in Chapter 7. By 

studying the principals by which neural codes emerge, neurophysiology might begin to 

better understand the codes themselves. 

Chapter 5: Probabilistic representation learning 

This chapter aimed to further theories of learning. Adopting a popular hypothesis of 

the computational goal of learning (probabilistic representation learning), it attempted to 

draw a line reaching down to the cortical circuits that could implement this learning goal. 

Two ends thus constrained the project: the known biology, and the desired computation. 

If any lesson is to be taken from this section, it is that an adversarial algorithm could, 

in principal, be implemented by the cortex. It is one way the brain might learn internal 

models of the world via switching between externally- and internally- driven modes of 

processing (Honey et al., 2017). If this is the case, it would mean that the brain contains 

discriminators of the two modes of activity, which we hypothesized could be certain 

interneuron cell types. These would be identifiable by a plasticity rule that switches sign 

with the mode switch. This algorithm is not implausible, to the extent it is not yet ruled 
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out by known data, and would allow the cortex to solve the difficult and currently 

unresolved problems inherent to representation learning. 

This project treated with less flexibility the top-level computational goal: probabilistic 

representation learning, learning internal models of neural activity in sensory areas, and 

Bayesian inference over those models. In certain communities this framework is quite 

popular (Fiser, Berkes, Orbán, & Lengyel, 2010; Friston, 2005). Yet this theory is not 

thoroughly linked to a biological substrate, and as described in this project, it is unclear 

how this objective could be learned by neural circuits. Previous proposals for learning 

circuits (e.g. (Friston, 2005; Hinton, Dayan, Frey, & Neal, 1995; Rezende & Gerstner, 

2014)) have clear problems, and, candidly, my attempt at resolution involved an 

uncomfortable level of speculation. Since there is inconclusive evidence at the level of 

biology, the high-level computational goal must do more work to carry the theory than 

otherwise. If this, too, is inconclusive, perhaps a new and humble attention should be paid 

to learning circuits, especially during the sensitive or critical period of sensory plasticity. 

Chapter 6: Neural network optimization 

Neural networks encode functions. For certain questions of learning, one can bracket 

away the specific parameters that encode those functions and think about how the overall 

function changes. For neuroscience, this would amount to looking at changes in behavior 

instead of synapses, but using the mathematical language of optimization. 

This chapter proposed a learning rule for ANNs in which the allowed change in 

behavior is constant over time. This type of learning rule may be at play for animals, as 

well. In motor tasks, for example, learning appears dependent on the direction of an error 

but independent of the magnitude of that error (Fine & Thoroughman, 2006). Thinking 

about optimization in function space, which is well-appreciated in machine learning, may 

be a concept that is useful for neuroscience as well. 

One possible future application in neuroscience is to extend the framework of Chapter 

7 and ask about the behavioral consequences of learning with algorithms that 

incrementally adjust behavior. This is to replace gradient descent in parameter space with 

that in function space, but ask the same question about the residual effects of learning 



 

 210 

algorithms. This might allow similar insights, but would be agnostic to the specific 

mechanism by which the brain adjusts behavior. By circumventing the mechanistic issue 

of what mediates learning, this perspective may afford a more direct (yet abstract) 

description of the effects of learning on perception and behavior. 

Chapter 7: The sensory consequences of learning algorithms 

Neuroscience can gain from ‘artiphysiology’ of neural networks as a complement to 

neurophysiology. Would artificial neural networks trained on ImageNet be, like humans, 

more sensitive to basic visual features that are more common? Finding that the answer 

was ‘yes’, this chapter documented how this emerges from the learning mechanism of 

gradient descent. This was a move to link artiphysiology with deep learning theory. The 

consequences may resonate back from theory, though deep learning representations, and 

to a better understanding of the brain. 

In the course of this project, it became clear that this was a powerful way of thinking 

and just the beginning of what is possible. This paper focused on efficient coding, but a 

learning framework may help explain a constellation of neural phenomena. Already it has 

been tied to why representations appear low-dimensional (Flesch, Juechems, Dumbalska, 

Saxe, & Summerfield, 2022) and why certain categories are learned before others (Saxe, 

McClelland, & Ganguli, 2019). Future research may help to further describe these effects 

of learning in greater detail. 

With the bridge between machine learning theory and neuroscience now open, it is 

important that new concepts continue to be brought over. Machine learning theory is an 

emerging discipline. Many of its central issues – like why deep neural networks generalize, 

or what exactly they prefer to learn first – are still unresolved. These theories must be 

ported to neuroscience when and if they are found. One important area, in particular, is to 

incorporate theories that bridge the lazy (kernel) and rich (feature-learning) regimes 

identified by deep learning theory. These insights will almost certainly help to describe 

learning in the brain. 
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Conclusion 

The process of science is not unlike a learning algorithm. From limited experience, it 

must make generalizations about an underlying reality or events in the future. This 

requires making assumptions. If these are incorrect, one is at danger of overgeneralizing 

(Chapters 2-3). If the assumptions are appropriate, one can learn effectively (Chapter 6) 

even though the biases of those assumptions are never totally escapable (Chapter 7). 

Proceeding in both domains requires identifying and optimizing one’s prior beliefs. 

As the theory of machine learning progresses, this field will have increasingly more to 

say about learning in the brain and its consequences. It is important that this bridge 

remain open. Why can we learn some things, and not others? What determines the 

function of cortical areas, as plastic as they are? These questions will continue to motivate 

me and hopefully many others in the coming years. 
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