
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2021

Graph Convolutions For Teams Of Robots Graph Convolutions For Teams Of Robots

Arbaaz Khan
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Computer Sciences Commons, and the Robotics Commons

Recommended Citation Recommended Citation
Khan, Arbaaz, "Graph Convolutions For Teams Of Robots" (2021). Publicly Accessible Penn Dissertations.
5311.
https://repository.upenn.edu/edissertations/5311

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/5311
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F5311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F5311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=repository.upenn.edu%2Fedissertations%2F5311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5311?utm_source=repository.upenn.edu%2Fedissertations%2F5311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5311
mailto:repository@pobox.upenn.edu

Graph Convolutions For Teams Of Robots Graph Convolutions For Teams Of Robots

Abstract Abstract
In many applications in robotics, there exist teams of robots operating in dynamic environments requiring
the design of complex communication and control schemes. The problem is made easier if one assumes
the presence of an oracle that has instantaneous access to states of all entities in the environment and
can communicate simultaneously without any loss. However, such an assumption is unrealistic especially
when there exist a large number of robots. More specifically, we are interested in decentralized control
policies for teams of robots using only local communication and sensory information to achieve high
level team objectives. We first make the case for using distributed reinforcement learning to learn local
behaviours by optimizing for a sparse team wide reward as opposed to existing model based methods. A
central caveat of learning policies using model free reinforcement learning is the lack of scalability. To
achieve large scale scalable results, we introduce a novel paradigm where the policies are parametrized
by graph convolutions. Additionally, we also develop new methodologies to train these policies and derive
technical insights into their behaviors. Building upon these, we design perception action loops for teams
of robots that rely only on noisy visual sensors, a learned history state and local information from nearby
robots to achieve complex team wide-objectives. We demonstrate the effectiveness of our methods on
several large scale multi-robot tasks.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Electrical & Systems Engineering

First Advisor First Advisor
Vijay Kumar

Second Advisor Second Advisor
Alejandro Ribeiro

Keywords Keywords
Graph Convolutions, Machine Learning, Multi-Agent, Reinforcment Learning, Robotics, Swarm

Subject Categories Subject Categories
Computer Sciences | Robotics

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/5311

https://repository.upenn.edu/edissertations/5311

GRAPH CONVOLUTIONS FOR TEAMS OF ROBOTS

Arbaaz Khan

A DISSERTATION

in

Electrical and Systems Engineering

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2021

Supervisor of Dissertation Co-Supervisor of Dissertation

_______________________ _______________________
Alejandro Ribeiro, Vijay Kumar,
Professor, Professor,
Electrical and Systems Engineering Electrical and Systems Engineering

Graduate Group Chairperson

Alejandro Ribeiro, Professor of Electrical and Systems Engineering

Dissertation Committee

Pratik Chaudhari, Assistant Professor, Electrical and Systems Engineering

Aleksandra Faust, Ph.D Computer Science

GRAPH CONVOLUTIONS FOR TEAMS OF ROBOTS

© COPYRIGHT

2021

Arbaaz Khan

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 4.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/4.0/

http://creativecommons.org/licenses/by-nc-sa/4.0/

If I have seen further, it is by standing on the shoulders of giants.

Sir Isaac Newton

iii

A C K N O W L E D G M E N T S

No work stands alone and this thesis is no exception. I would like to begin by offering

my thanks to every teacher I ever had, be it in a formal educational setting or otherwise.

Without them this work would not exist today. I have been extremely lucky to have the

privilege of working with some extraordinarily talented people over the last five years at

Penn.

I would like to start by thanking my primary advisor Alejandro Ribeiro who not only has

an astute ability to devise solutions for seemingly intractable complex research problems

but also has infinite reserves of patience to hear out my arguments. I would also like

to thank my other primary advisor Vijay Kumar for making me appreciate the bigger

research picture and for instilling an appreciation for espresso. I am without doubt a

better researcher and a better person thanks to my advisors and for this I shall forever be

indebted to them. I would also like to extend my gratitude to my commmittee chair Pratik

Chaudhari for his help, support and encouragement navigating the complex landscape

of research and academia. I am also hugely indebted to Aleksandra Faust who not only

introduced me to cutting edge research at Google but has also time and again offered her

support and wisdom.

The list of people who have helped me out on this journey are many, but I would like to

thank as many of them as possible

• I would like to begin with thanking my mother for her constant willingness to listen

to my rambling at the oddest of hours. Her encouragement, love and support has

iv

been hugely monumental in completing this body of work. I would also like to thank

my father for his love, support and willingness to remind me time and again what is

important in life. If not for my parents, this work would not be complete.

• I would also like to thank my academic brother-in-arms, roommate and friend Clark

Zhang. I will forever cherish our trips to conferences, our chess games, late night

conversations about research and life.

• Pooja for putting up with all my princely airs while writing any paper or this thesis.

Your support has meant everything to me.

• Brent for those trips to Atlantic City where we pondered upon the intricacies of

human psychology and Kate for teaching me how to ski despite me not wanting to.

You made my time at Penn that much more enjoyable.

• Sarah Tang who guided me through the rigours of academia like an elder sibling

would.

• Nikolai at NVIDIA, Daniel Lee at Samsung Research, Anthony Francis at Google

Brain and Stefan at Apple. Your wisdom and guidance has helped me immensely in

being a better researcher.

• Last but not the least, Luna for being the purfect furry companion!

v

ABSTRACT

Graph Convolutions for Teams of Robots

Arbaaz Khan

Alejandro Ribeiro

Vijay Kumar

In many applications in robotics, there exist teams of robots operating in dynamic environ-

ments requiring the design of complex communication and control schemes. The problem

is made easier if one assumes the presence of an oracle that has instantaneous access to

states of all entities in the environment and can communicate simultaneously without

any loss. However, such an assumption is unrealistic especially when there exist a large

number of robots. More specifically, we are interested in decentralized control policies for

teams of robots using only local communication and sensory information to achieve high

level team objectives. We first make the case for using distributed reinforcement learning to

learn local behaviours by optimizing for a sparse team wide reward as opposed to existing

model based methods. A central caveat of learning policies using model free reinforcement

learning is the lack of scalability. To achieve large scale scalable results, we introduce a

novel paradigm where the policies are parametrized by graph convolutions. Additionally,

we also develop new methodologies to train these policies and derive technical insights into

their behaviors. Building upon these, we design perception action loops for teams of robots

that rely only on noisy visual sensors, a learned history state and local information from

nearby robots to achieve complex team wide-objectives. We demonstrate the effectiveness

of our methods on several large scale multi-robot tasks.

vi

C O N T E N T S

acknowledgements iv

abstract vi

list of illustrations 1

list of tables 11

1 introduction 12

2 reinforcement learning for teams of robots 17

2.1 Background and Problem Formulation 20

2.2 Learning Unlabeled Multi-Robot Planning 22

2.2.1 Markov Games for Multi-Robot Planning 22

2.2.2 Learning Policies for Continuous Actions 23

2.2.3 Learning Continuous Policies for Multiple Robots 25

2.2.4 Model Based Backup Policies for Safety 26

2.3 Experimental Results 30

2.3.1 Experimental Setup Details 32

2.3.2 Simulation Results 34

2.4 Discussion 36

2.4.1 Caveats 37

2.4.2 Guiding Ideas 37

3 graph policy gradients for large scale robot control 39

3.1 Methodology 42

3.1.1 Preliminaries 42

3.1.2 Graph Neural Networks 43

3.1.3 Permutation Equivariance of Graph Convolutional Networks 45

3.1.4 Formation Flying 46

3.1.5 Graph Policy Gradients 48

3.2 Experiments 52

3.2.1 Training for Point Mass Formation Flying with GPG 52

3.2.2 Zero Shot Policy Transfer for Formation Flying 54

vii

3.2.3 Complex dynamics and control 56

3.3 Hyperparameters 58

3.4 Related Work 59

3.5 Discussion and Guiding Ideas 60

4 graph policy gradients for large scale unlabeled motion planning 61

4.1 Distributed Collaborative Unlabeled Motion Planning 62

4.2 Graph Policy Gradients for Distributive Unlabeled Motion Planning 66

4.3 Permutation Invariance of GNN Policy parameterizations 69

4.3.1 Equivariance of GNNs for Unlabeled Motion Planning 70

4.3.2 Equivariance of Unlabeled Motion Planning 72

4.4 Experiments 74

4.4.1 Experimental Results - Inference 77

4.4.2 Comparison to Centralized Model Based Methods 78

4.4.3 High Order Dynamics 81

4.5 Discussion and Guiding Ideas 83

5 learning decentralized perception action communication loops 85

5.1 Methodology 88

5.1.1 Preliminaries 88

5.1.2 Perception System 89

5.1.3 Dataset Generation 91

5.1.4 Graph Memory Networks and Graph Memory Policies 95

5.2 Collaborative flight through a Cluttered Environment 98

5.3 Collaborative Flight through Gates 102

5.3.1 Imperfect Communication 104

5.4 Discussion and Guiding Ideas 105

6 learning decentralized perception action communication loops for
multi robot coverage 106

6.1 Introduction 106

6.2 Methodology 108

6.2.1 Preliminaries 108

6.3 Perception System 111

6.3.1 Dataset Generation 111

6.3.2 Training 111

6.3.3 Control System 114

viii

6.4 Follow 117

6.5 Fetch and Large Scale Transferance with Graphons 119

6.6 Discussion and Guiding Ideas 124

7 conclusion 126

bibliography 128

ix

L I S T O F I L L U S T R AT I O N S

Figure 1.1 Examples of multi-robot problems requiring large scale decen-

tralized solutions (Top Left) A team of robots navigating through

a cluttered outdoor environment where each roboy must rely only

on its own sensors and information coming from nearby robots

to navigate through the environment without collisions and also

staying within a certain distance to the other robots. (Top Right) A

team of robots flying through a series of checkpoints sequenced in a

specific order in the least amount of time possible. The robots do not

have information about the location of the checkpoints beforehand

and must decide on control actions on the fly to achieve team wide

objectives. (Bottom) Unlabeled motion planning where there exist

N robots and N goals but it doesn’t matter which robot goes to

which goal as long as all goals are covered. 14

1

list of illustrations 2

Figure 2.1 Learning Unlabeled Motion Planning Robots observe their own

state and velocity, relative positions of all goals and other entities

within a sensing region. For robot n, this information is compiled

into a vector sn. Each robot uses its own policy network to com-

pute an action an. During training, policy networks also exchange

information i with a centralized Q-network which uses information

from all robots to compute robot specific Q functions qn. These

Q functions are used by the individual robot functions to update

their policies. To guarantee safety, a model based policy runs in the

background. 18

Figure 2.2 Velocity Obstacle Velocity obstacle VOn
b(vb(t)) of obstacle b to

robot n. When there exist multiple obstacles, the VO is defined as

the union of all velocity obstacles. 27

Figure 2.3 Min Projection vs Sigmoid Projection of velocity When using

the minimum projection given in Eq 2.18 the safe velocity has a

discontinuity. However, if we assume that the event vn(t) = vj ±∆v

occurs with very low probability, we get p(vsafe
n (t)) a continuous

function. 29

Figure 2.4 Training curves for holonomic robots (with 2,3 and 4 Obstacles

(Obs)). We observe that the proposed MARL+RVO algorithm is

able to converge and perform better than a centralized RL (C-PPO)

policy. The global reward scale is different for each plot since it is a

function of the space the robots operate in. Each curve is produced

by running three independent runs of the algorithm. Darker line

represents mean and shaded area represents mean ± standard

deviation of mean. 31

list of illustrations 3

Figure 2.5 Training curves for non holonomic robots (with 2,3 and 4 Obsta-

cles (Obs)) When the robot dynamics are changed, MARL+RVO

is still able to converge without making any changes to the loss

function or the training parameters. 32

Figure 2.6 Trajectory executed by 3 robots Trajectories executed by robots in

three randomly generated episodes after training is complete. In

addition to robots reaching their goals in collision free manners,

the proposed approach also aligns robots to desired final goal

orientations. 33

Figure 2.7 Time taken to reach goal (with 2,3 and 4 Obstacles (Obs)) over

500 runs. We compare with Multi-Agent Reinforcement Learning

(MARL), Reciprocal Velocity Obstacles (RVO), GAP [21] and our

algorithm which combines the RL and safety(MARL+RVO). For

the RVO method, we assign each robot its nearest goal (in terms

of euclidean distance). GAP uses discrete nodes to search through

space and hence its performance is contingent on the discretization

of our continuous space. We observe that with MARL gives the

best time performance, but this performance is not guaranteed

to be collision free. Our method (MARL+RVO) trades-off time

performance for guaranteed collision free trajectories. 34

Figure 2.8 Training time to convergence. Training time for different config-

urations of robots and agents when trained on a NVIDIA DGX-1

(Tesla V100, 32GB × 8) 36

list of illustrations 4

Figure 3.1 Graph Policy Gradients. Robots are randomly initialized and, based

on some user set thresholds, a graph is defined. Information from

K-hop neighbors is aggregated at each node by learning local filters.

These local features are then used to learn policies to produce

desired behavior. 40

Figure 3.2 Graph Convolutional Networks. GNNs aggregate information

between nodes and their neighbors. For each k-hop neighborhood

(illustrated by the increasing disks), record ykn (Eq. 3.3) to build

z which exhibits a regular structure (Eq. 6.6). a) The value at each

node when initialized and at the b) one-hop neighborhood. c) two-

hop neighborhood. d) three-hop neighborhood. 45

Figure 3.3 Formation Flying. 52

Figure 3.4 10 robot Formation Flying. Using a static graph during training

increases the sample efficiency of GPG. A dynamic graph, i.e a

graph that evolves over time as the robots move in space takes

longer to converge. 53

Figure 3.5 Training for Formation Flight. Point mass robots are trained for

formation flight. The reward is a centralized reward. Each curve

is produced by running three independent runs of the algorithm.

Darker line represents mean and shaded area represents mean ±

standard deviation of mean. 54

list of illustrations 5

Figure 3.6 Zero Shot Transfer to Large Number of Robots. (Left) Policies are

trained for three robots to reach goals that are a small distance away.

Robots are randomly initialized in a rectangular region and must

reach goals much further than those in the training set. (Center)

Robots are initialized on a circle and must execute policies such

that the resulting shape is an arrowhead. (Right) Policies trained

on swarms of five robots are transferred over to form a figure of

eight. The choice of 101/51 robots is arbitrary and is not a limiting

threshold. 55

Figure 3.7 11 robot Arrow Head Formation. The robots are spawned at ground

and are manually controlled for takeoff. Once the robots are at a

desired height, control is handed over to GPG. (see Appendix for

detailed figures) 56

Figure 3.8 Training 3 Robots in AirSim. 57

Figure 3.9 Arrowhead Formation Flying for 11 robots in AirSim. 58

Figure 4.1 Training Curves for 3, 5 and 10 robots Policies trained by GPG

are able to converge on experiments with point mass robots, ex-

periments where robots follow single integrator dynamics and are

velocity controlled as well as experiments when disk shaped obsta-

cles are present in the environment. 75

list of illustrations 6

Figure 4.2 Transferring Learned GPG Filters for Large Scale Unlabelled

Motion Planning. (Left) A small number of robots are trained to

cover goals and follow point mass dynamics. During testing the

number of robots as well as the distance of the goals from the

start positions are much greater than those seen during training.

(Center) A similar experiment is performed but now robots have

single integrator dynamics. (Right) In this experiment in addition

to single integrator dynamics, the environment also has obstacles

that robots must avoid. 76

Figure 4.3 Success v/s choice of K and M. (L) During inference, we analyze

effects of choices for K and M. 79

Figure 4.4 Time to Goals Time taken by CAPT to cover all goals v/s time taken

by GPG to cover all goals when robots follow velocity controls..

80

Figure 4.5 Planning Times. CAPT v/s GPG Planning Times. 81

Figure 4.6 Large Scale Unlabelled Motion Planning in AirSim using GPG.

Control to the training algorithm is handed after robots are at a

certain altitude. (L) During inference, we use the trained filters to

cover goals spread on the edges of a cube. (R) Goals to be covered

are spread along a W. 83

Figure 5.1 Learning Decentralized Perception Action Communication Loops

for Robot Teams. Relying only on onboard visual and inertial

sensors, robots compute decentralized control policies to fly through

the constrained environment. 86

list of illustrations 7

Figure 5.2 Modular Approach for Decentralized Perception Action Com-

munications Loops for Robot Teams The proposed decentralized

solution to co-ordinate a team of robots in a constrained environ-

ment with limited communication consists of two subsystems. Top

L The perception subsystem is trained offline for a single robot

to predict waypoints that the robot must navigate to. Top R The

control subsystem uses a graph memory neural network that takes

in the prediction from the vision subsystem and communicates with

nearby robots to collaboratively fly through the obstacle course.

Bottom State computation in a single layer of a graph memory

network with K = 4. The blue blocks represent linear weights, red

blocks represent non-linearity and the green block represents a time

shift. We stack multiple such layers and the output of the final layer

is Π. 90

Figure 5.3 Perception System to Predict Waypoints. Left Full perception sys-

tem to predict waypoints. Right Individual Residual Blocks. 91

Figure 5.4 Data Collection. 91

Figure 5.5 DataSet Collection. Left Dataset Instances for Collaborative Flight

through Gates. Right Dataset Instances for Collaborative Flight

through Cluttered Environments. 94

list of illustrations 8

Figure 5.6 Collaborative Flight through a Cluttered Forest. Left Time taken

by GMP as compared to time taken by the centralized online plan-

ner to clear the forest. Here, time to clear is the sum of planning

time and execution time. As the complexity of the environment

grows, the online centralized planner has an exponential growth

in time to clear. Center Total time over all robots for which the

area constraints are violated. Right Time taken by GMP which has

memory v/s a GNN which has no memory. The GNN solution out-

performs centralized planner, but produces slower solutions than

GMP. 101

Figure 5.7 Collaborative Flight through a Series of Gates. Left Time taken by

GMP as compared to time taken by the centralized online planner

to clear the forest. Center Total time robots violate area constraints.

Right Time taken by GMP which has memory v/s a GNN which

has no memory. 104

Figure 5.8 Constraint violation in Seconds vs Velocities. Left Constraint

Violation in seconds for 15 robots for goals at a distance of 100m.

Right Constraint violation in seconds for 15 robots for a course

consisting of 8 checkpoints for a total distance of 100m. 105

list of illustrations 9

Figure 6.1 Decentralized Perception Coverage by Robot Teams A team of

aerial robots is tasked with covering a team of targets. On the left a

subset of targets are detected by a robot (bounding boxes annotated

in blue) and on the right a different subset of targets are detected

by another robot (annotated in orange). The team of robots must

collaboratively cover as many targets as possible. The targets are

moving and the aerial robots have no prior about how the targets

are going to evolve in space and time. 110

Figure 6.2 Dataset Generation for Perception System. 112

Figure 6.3 Modular Approach for Multi-Robot Coverage The proposed de-

centralized solution to co-ordinate a team of robots that follows a

set of targets consists of two subsystems. Top L The perception sub-

system is trained offline for a single robot to predict bounding boxes

for targets in the environment that the robot must cover. Top R The

control subsystem uses a graph memory neural network that takes

in the prediction from the vision subsystem and communicates with

nearby robots to collaboratively cover as many targets as possible.

Bottom State computation in a single layer of a graph memory

network with K = 4. The blue blocks represent linear weights, red

blocks represent non-linearity and the green block represents a time

shift. We stack multiple such layers and the output of the final layer

is Π. 117

list of illustrations 10

Figure 6.4 Multi-Robot Coverage On the top, the figure on the left represents

a top down view of our environment in which we test our robots.

Targets are constrained to move on the road while robots are free to

move anywhere 5 meters above the ground plane. On the bottom,

we visualize the behavior of the robots over time (left to right) and

observe the robots are able to split up and cover the targets even

when the robots have not been trained to cover splitting behaviors

in the targets. 118

Figure 6.5 Coverage Percentage for Robots Vs. Cars 119

Figure 6.6 Fetch Behavior for Multi-Robot Coverage (Qualitative) On the top,

the figure on the left represents a top down view of our environment

in which we test our robots. Targets are constrained to move on

the road while robots are free to move anywhere 5 meters above

the ground plane. On the bottom, we visualize the behavior of the

robots over time (left to right) and observe the robots are able to

cover most of the targets during inference. 123

Figure 6.7 Fetch Behavior for Multi-Robot Coverage (Quantitative Results) 124

L I S T O F TA B L E S

Table 2.1 Number of collisions for 3 robots in presence of 3 obstacles over

500 runs. 35

Table 4.1 CAPT vs GPG vs GPG+VO. Total time (T(sec)) and total number

of collisions (C) during inference for 30 robots over 3 line to circle

formations R1, R2 and R3 similar to the one seen in Fig 4.2 (Right).

R1 < R2 < R3 differ from each other in the size of the radius of

the circle on which the goals are distributed. Averaged over 20

runs. 82

Table 5.1 Number of collisions per robot for the forest environment. Results

averaged over 50 runs. 99

Table 5.2 Number of gates traversed before collision. Results averaged over

50 runs. 102

11

1 I N T R O D U C T I O N

In a world met with an increasing demand for automation and robotics, many applications

require teams of robots to collaborate in order to complete a task who’s complexity would

far exceed the operational capabilities of any individual robot in the team. Examples of

such tasks include but are not limited to formation flying [1, 2], warehouse management

with teams of robots [3], multi-robot furniture assembly [4], concurrent control and

communication for teams of robots [5], perimeter defense and surveillance [6].

In order to meaningfully solve real world multi-robot tasks, we would like our potential

solutions to be decentralized and scalable. In a system where there are many robots

operating simultaneously, it is almost infeasible for each robot to know where all the other

robots and entities in the environment are at any given time. Even if one were to set aside

this communication constraint for a moment and assume that a paradigm exists which

enables lossless and instantaneous communication between all robots. However, now we

run into the curse of dimensionality. As the size of the robot team grows, each robot must

instantaneously digest a large amount of information, produce a meaningful control action

and broadcast relevant information for other robots.

In the past traditional solutions to solving multi-robot focused on minimizing/maxi-

mizing for a carefully setup optimization problem constrained by robot and environment

dynamics. A key drawback of such hand designed cost functions can be that adding

a simple additional constraint or increasing the number of agents can render the opti-

mization problem intractable [7]. For example, in labeled multi-agent planning scenarios,

12

introduction 13

such as warehouse management [3] or delivery [8], each robot must navigate to a fixed,

non-interchangeable goal state, presumably to complete a given sub task. Unfortunately,

the curse of dimensionality causes most planning algorithms to become intractable for

large robot teams; in fact, even planning for two-dimensional disk-shaped robots in this

setting has been shown to be a strongly NP-hard problem [9].

In the recent past, deep learning has proved to be an extremely valuable tool for robotics.

Harnessing the power of deep neural networks has emerged as a successful approach

to designing policies that map sensor inputs to control outputs for complex tasks. These

include, but are not limited to, learning to play video games [10, 11], learning complex

control policies for robot tasks [12] and learning to plan in unknown environments with

only sensor information [13–15]. However, most of these works are limited to a single robot

or single entity and often require the learning algorithm to ingest large amounts of training

data. It naturally follows that directly applying these learning algorithms to multi-robot

problems would require larger datasets and longer training times as the number of robots

increases. In fact, later in Chapter 2 we show that the amount of training data/training

time required for a simple multi-robot problem grows exponentially as the number of

robots in the team increase. How then do we go about leveraging machine learning to

solve some of these problems?

The key idea explored in this work is to design intelligent machine learning solutions

that look to leverage the underlying structure of the problem in order to achieve scalability

and decentralized control for teams of robots. This work proposes new advances in the

fields of robotics and machine learning that looks to leverage the local symmetry and

structure naturally occurring in teams of robots to learn compute local control policies that

optimize for a global cost. This thesis can be broadly divided into three sections;

• Machine Learning for Teams of Robots We first start by looking to answer why

one should consider using using model free learning based solutions for multi-robot

introduction 14

Figure 1.1: Examples of multi-robot problems requiring large scale decentralized solutions (Top
Left) A team of robots navigating through a cluttered outdoor environment where each
roboy must rely only on its own sensors and information coming from nearby robots to
navigate through the environment without collisions and also staying within a certain
distance to the other robots. (Top Right) A team of robots flying through a series of
checkpoints sequenced in a specific order in the least amount of time possible. The
robots do not have information about the location of the checkpoints beforehand and
must decide on control actions on the fly to achieve team wide objectives. (Bottom)
Unlabeled motion planning where there exist N robots and N goals but it doesn’t
matter which robot goes to which goal as long as all goals are covered.

problems. To answer this question, we analyze the classic problem of unlabeled

motion planning where there exist N identical robots and N goals, but it doesn’t

matter which robot navigates to which goal. This is a well studied problem in robotics

and there exist many model based solutions that either propose a centralized solution

or a decentralized solution by relaxing constraints robot dynamics, obstacles, start or

introduction 15

goal orientations. We demonstrate that using off the shelf multi-agent reinforcement

learning to learn decentralized control policies guided by a sparse and central team

wide function can offer several benefits over existing model based solutions. These

ideas are explored in depth in Chapter 2

• Graph Convolutions for Robot Teams A key caveat of using off the shelf rein-

forcement solutions for multi-robot problems is the inability of these solutions to

scale with the number of robots or entities in the environment. To overcome these,

we propose a new policy parametrization paradigm using graph convolutions that

inherently looks to not just compute policies, but also learn to communicate with

the right subset of neighbors. We also develop a new algorithm to effectively train

these policies such that at inference time, the solutions can be scaled up to a large

number of robots. In addition to detailed simulations to verify the effectiveness of our

proposed graph convolution based solutions, we also derive key theoretical results.

These ideas are explored in Chapter 3 and Chapter 4.

• Graph Memory Convolutions for Perception Action Communication Loops We

build on our graph convolutions for multi-robot teams by moving away from our

earlier simplifying assumptions of perfect information about the environment. We

develop solutions to learn what we call perception-action-communication loops for

teams of robots operating in complex environments but only equipped with simple

visual sensors and simple communication capabilities. Additionally, we also take

a step away from our earlier simplistic reactive controllers towards more complex

control schemes required when robots are operating in complex environments and

need to achieve multiple objectives. To do so, we propose yet another paradigm

where our graph convolutions are not just defined over a robots neighbors but also

over a robot’s belief state and its neighbors belief states. We demonstrate the efficacy

introduction 16

of our methods by considering varied multi-robot problems in challenging scenarios.

These ideas are discussed in Chapter 5 and Chapter 6.

We conclude this thesis with still open problems and possible future directions in

Chapter 7.

2
R E I N F O R C E M E N T L E A R N I N G F O R

T E A M S O F R O B OT S

In many applications in robotics such as formation flying [2, 1] or perimeter defense

and surveillance [6], there exist teams of interchangeable robots operating in complex

environments. In these scenarios, the goal is to have a team of robots execute a set

of identical tasks such that each robot executes only one task, but it does not matter

which robot executes which task. One example of such a problem is the concurrent goal

assignment and trajectory planning problem where robots must simultaneously assign

goals and plan motion primitives to reach assigned goals.

Solutions to this unlabeled multi-robot planning problem must solve both the goal

assignment and trajectory optimization problems. It has been shown that the flexibility

to freely assign goals to robots allows for polynomial-time solutions under certain con-

ditions [16–18]. Nonetheless, there are still significant drawbacks to existing approaches.

Solutions with polynomial-time complexities depend on minimum separations between

start positions, goal positions, or robots and obstacles [16, 17, 19]. Motion plans generated

by graph-based approaches for this problem such as those proposed in [18, 20] are limited

to simple real-world robots that have approximately first-order dynamics. Closest to our

work, [21] proposes an algorithm to coordinate unlabeled robots with arbitrary dynamics in

obstacle-filled environments. However, it assumes the existence of a single-robot trajectory

optimizer that can produce a candidate trajectory for a robot to any given goal, which is in

itself a difficult research problem. Furthermore, the algorithm is a priority-based method

that depends on offsetting the times at which robots start traversing their trajectories to

17

reinforcement learning for teams of robots 18

Figure 2.1: Learning Unlabeled Motion Planning Robots observe their own state and velocity,
relative positions of all goals and other entities within a sensing region. For robot n,
this information is compiled into a vector sn. Each robot uses its own policy network
to compute an action an. During training, policy networks also exchange information i
with a centralized Q-network which uses information from all robots to compute robot
specific Q functions qn. These Q functions are used by the individual robot functions to
update their policies. To guarantee safety, a model based policy runs in the background.

guarantee collision avoidance. In the worst case, it degenerates into a completely sequential

algorithm where only one robot is moving at a time.

In light of these works, we propose a novel learning-based framework for goal assign-

ment and trajectory optimization for a team of identical robots with arbitrary dynamics

operating in obstacle-filled work spaces. Firstly, it is observed that the unlabeled multi-

robot planning problem can be recast as a multi-agent reinforcement learning (MARL)

problem. Robots are given their own state, configuration of obstacles and information about

other robots within some sensing radius and configuration of all goals in the environment.

The objective then is to learn policies that couple the assignment and trajectory generation

for each robot. It is important to note that in such an approach, since we do not have goals

assigned beforehand, it is non-trivial to assign individual rewards to each robot. Instead,

we simply assign a global reward to all robots that takes into account if all robots have

reinforcement learning for teams of robots 19

reached goals in a collision free manner. This global reward then forces each robot to learn

policies such that all robots can reach a goal without colliding or having to communicate

with each other. Thus, by casting the concurrent goal assignment problem as a MARL

problem, we attempt to learn policies that maximize this global reward in minimal time.

A centralized training, decentralized execution strategy is used to train policies for each

robot. This builds on a body of work in MARL that employ such a centralized training,

decentralized execution strategy [22, 23].

When utilizing a deep reinforcement learning (RL) model, one loses optimality guar-

antees as well as any guarantees for collision free trajectories. To ensure one still has

collision free trajectories, we make use of an analytical model based policy that runs

in the background and checks if the target velocities produced by the robot are "safe".

For each robot, velocity obstacles are computed at every instant in time. The velocity

obstacle divides the set of all possible velocities into safe and unsafe sets. If the velocity

computed by the learned model lies in the unsafe set, it is projected back into the safe set.

We also ensure that this projection preserves certain properties such as smoothness of the

transition function in order to be compatible with the learning process. Thus, when using

this model based policy in conjunction with the policy learned, we are guaranteed almost

safe trajectories at every instant and it is empirically shown that the computed policies

converge to the desired values.

Thus, the main contributions of our algorithm are : 1) Capability to extend to arbitrary

robot dynamics. We test with both holonomic and non-holonomic robot models 2) There

is no need to re-train if the obstacles are moved around or if the robot’s start and goal

positions are changed. This is in contrast to any model-based approach where one would

need to recompute the assignment and regenerate the trajectory. 3) It retains the safety

guarantees of model-based methods, 4) We show experimentally that better performance

based on total time to reach goals is achieved than model based methods alone.

2.1 background and problem formulation 20

2.1 background and problem formulation

Consider a two dimensional Euclidean space with N homogeneous disk-shaped robots of

radius R indexed by n and M goal locations indexed by m. Goal location m is represented

as a vector of its position (xm,ym) and heading (θm) in the plane. Thus, goal m is :

gm = [xm,ym, θm] (2.1)

The full goal state vector, G ∈ SE(2)M is given as :

G = [g1, g2, . . . , gM] (2.2)

Let robot n be equipped with a sensor with range Rs (Rs > R). The data from the sensor is

denoted as In. We assume each robot has full information about the location of the goals

and full information about its own pose. Thus, the observation of the nth robot at time t is

then given as :

on
t = [pn(t), vn(t),ωn(t), In, G] (2.3)

where pn(t) ∈ SE(2) is a vector of the position (xn(t),yn(t)) and heading (θn(t)) of robot

n in the plane and is given as :

pn(t) = [xn(t),yn(t), θn(t)] (2.4)

The linear velocity of the robot at time t is denoted as vn(t) and the angular velocity

is denoted as ωn(t). Let S be the set of states describing all possible configurations of

all robots. For each robot, given an action ant ∈ An where An describes all possible

actions for robot n, the state of the robot evolves according to some stationary dynamics

2.1 background and problem formulation 21

distribution with conditional density p(ot+1|ot,at). These dynamics can be linear or

non-linear. Further let A = [A1,A2, . . .An] be the set of all possible actions of all robot.

We define some arbitrary scalar δ > 0 such that the necessary and sufficient condition to

ensure collision avoidance is given as :

Ec(pi(t),pj(t)) > 2R+ δ,

for alli ̸= j ∈ {1, . . . N}, for allt
(2.5)

where Ec is the euclidean distance. Lastly, we define the assignment matrix ϕ(t) ∈ RN×M

as

ϕij(t) =


1, if Ec(pi(t),gj) +Dc(pi(t),gj) ⩽ ϵ

0, otherwise

(2.6)

where DC is the cosine distance and ϵ is some threshold. In this work, we consider the

case when N =M. The necessary and sufficient condition for all goals to be covered by

robots at some time t = T is then:

ϕ(T)⊤ϕ(T) = IN (2.7)

where I is the identity matrix. Thus, the concurrent assignment and planning problem

statement considered here can be defined as :

Problem 2.1.1: Given an initial set of observations {o1
t0

, . . . , oN
t0
} and a set of goals G,

compute a set of functions µn(on
t) for alln = 1, . . . ,N, for allt such that applying the

actions {at1, . . . ,atN} := {µ1(o1
t), . . . µN(oN

t)} results in a sequence of observations each

satisfying Eqn. 2.5 and at final time t = T satisfies Eqn. 3.13. In the next section we outline

our methodology to easily convert this problem to a Markov game for MARL and outline

2.2 learning unlabeled multi-robot planning 22

our methodology to compute policies such that the constraints in Eqn. 2.5 and Eqn. 3.13

are satisfied.

2.2 learning unlabeled multi-robot planning

2.2.1 Markov Games for Multi-Robot Planning

One can reformulate the unlabeled multi-robot planning problem describe in Problem 2.1.1

as a Markov game [24]. A Markov game for N robots is defined by a tuple {S,A,T,O,R,γ}.

S describes the full true state of the environment. We observe corresponds to the full state

space in the problem setup. Similarly we observe that the action space A is the same as

defined before in Problem 2.1.1. The transition function T : S×A → S is equivalent to

the dynamics distribution p(ot+1|ot,at) describe in Section 2.1. In the Markov game, the

environment is partially observed. At every timestep, each robot can only observe some

small part of the environment. This is also defined in our problem and for every timestep t

we can simply set the observation for robot On = on
t , and O = {O1, . . . ,On}. γ is a discount

factor and can be set close to one. In the Markov game, each robot n obtains a reward

function as a function of robots state and its action. We propose formulating a reward

structure that satisfies the constraints in Eqn. 2.5 and Eqn. 3.13.

r(t) =



α if ϕ(t)⊤ϕ(t) = IN

−β, if any collisions

0 otherwise

(2.8)

2.2 learning unlabeled multi-robot planning 23

where α and β are some positive constants. It is important to note that this reward structure

is global and is given to all robots {r(t) = r1(t),=, rn(t)}. By using a global reward we

remove the need for any carefully designed heuristic function. In the Markov game, the

solution for each robot n is a policy πn(an|on) that maximizes the discounted expected

reward Rn =
∑T

t=0 γ
trn(t). Once again, we draw parallels between the Markov game and

Problem 1 and set µn = πn. Thus, we can conclude the solution of the Markov game for

Multi-Robot Planning is the solution for the Unlabeled multi-robot planning considered in

Problem 2.1.1.

2.2.2 Learning Policies for Continuous Actions

Consider a single robot setting. The MDP assosciated with a single robot is given as

Mt(O,A,T1, r,γ) (T1 is the transition function associated with just the robot under consid-

eration). The goal of any RL algorithm is to find a stochastic policy π(ot|at; θ) (where θ

are the parameters of the policy) that maximizes the expected sum of rewards :

max
θ

Eπ(at|ot;θ)[
∑
t

rt] (2.9)

Policy gradient methods look to maximize the reward by estimating the gradient and

using it in a stochastic gradient ascent algorithm. A general form for the policy gradient

can be given as:

ĝ = Et[∇θlogπθ(at|ot)Q
π
t (ot,at)] (2.10)

where Qπ(ot,at) represents the action value function (estimate of how good it is to take

an action in a state)

Qπ(ot,at) := Eot+1:∞,at+1:∞
[∞∑
l=0

rt+l

]
(2.11)

2.2 learning unlabeled multi-robot planning 24

Bellman equations also give us the recursive rule for updating the action value function

given as :

Qπ(ot,at) = Eot+1:∞,at:∞
[
r(ot,at) + γEot+1:∞,at+1:∞(Qπ(ot+1,at+1))

]
(2.12)

where r(ot,at) is the reward for executing action at in ot. The gradient ĝ is estimated by

differentiating the objective wrt θ:

LPG(θ) = E[log(πθ(at|ot)Q
π(ot,at)] (2.13)

In order to extend this to continuous actions and continuous deterministic policies, [25]

propose the the Deep Deterministic Policy Gradient (DDPG) algorithm for continuous ac-

tions and deterministic policies. The algorithm maintains an actor function (parameterized

by θπ) that estimates the deterministic continuous policy π. In addition, it also maintains a

critic function (parameterized by θQ) that estimates the action value function. The critic

function is updated by using the Bellman loss as in Q-learning [26] (Eqn. 2.12) and the

actor function is updated by computing the following policy gradient :

ĝ = Et[∇θlogπθ(at|ot)∇aQ
π
t (ot,at)] (2.14)

The DDPG algorithm is an off-policy algorithm and samples trajectories from a replay

buffer of experiences stored in a replay buffer. Similar to DQN [10] it also uses a target

network to stabilize training.

A natural question to ask at this point is, why not treat every robot in the space as an

entity operating independently and learn this DDPG algorithm for each robot and in fact

this exact idea has been proposed in Independent Q-Learning [27]. However, there are two

major drawbacks to this approach. When operating in high dimensional continuous spaces

2.2 learning unlabeled multi-robot planning 25

with sparse rewards, the lack of information sharing between the robots makes it difficult

to learn any co-ordination between robots. Further, as each robot’s policy changes during

training, the environment becomes non-stationary from the perspective of any individual

robot (in a way that cannot be explained by changes in the robots’s own policy). This is

the non-stationarity problem in multi-agent learning [26].

2.2.3 Learning Continuous Policies for Multiple Robots

To overcome the aforementioned drawbacks in treating each robot as an independent

entity, a small modification to the critic function (action-value) during training time is

needed. During training, the critic function for robot n uses some extra information h from

all other robots. This has been proposed in [22, 23]. The modified action value function for

robot n can then be represented as Qn((h1(t), . . . ,hN(t)), (a1(t), . . . ,aN(t))). The most

naive method is to simply set hn(t) = on(t).

Let policy for robot n parameterized by θn be πθn
n . For brevity sake, let {h1(t), . . . ,hN(t)} =

H, {a1(t), . . . ,aN(t)} = A and Π = {πθ1

1 , . . . ,πθN

N } Thus in multi-robot case, the gradient of

the actor function for robot n is given as

ĝn = Et[∇θn
logπθn

n (an(t)|on(t))∇anQ̂
Π
n(H, A)] (2.15)

where Q̂Π
n(H, A) is the centralized critic function for robot n that takes in input all robot

observations and all robot actions and outputs a q value for robot n. The robot n then

takes a gradient of this q value with respect to to the action an executed by robot n and

this gradient along with the policy gradient of robot n’s policy is used to update the

actor function for robot n. It is important to note that the extra information from other

robots actions is only used during training to update the critic function. This gives rise

2.2 learning unlabeled multi-robot planning 26

to centralized training but decentralized policies during inference. Thus, we now have a

policy gradient algorithm that attempts to learn a policy for each robot such that Problem

2.1.1 captured in Eqn. 2.9 is maximized.

2.2.4 Model Based Backup Policies for Safety

When using deep RL, due to the stochastic nature of the solution one often loses any

guarantees of safety. Thus, when attempting to maximize the reward in Eqn. 2.9, we

have no guarantee that actions generated by our actor network are collision free (satisfy

constraint in Eqn. 2.5). In real world applications of robotics this could be simply infeasible.

Instead, we propose use of a simple analytical backup policy that ensures collision free

trajectories.

We use the Velocity Obstacle concept introduced in [28]. While there exist more sophisti-

cated algorithms for collision avoidance such as ORCA [29] and NH-ORCA [30], we opt

for VO due to its simplicity. Consider a robot n, operating in the plane with its reference

point at pn and let another planar obstacle b (another robot or a static obstacle), be at pb,

moving at velocity vb(t). The velocity obstacle VOn
b(vb(t)) of obstacle b to robot n is the

set consisting of all those velocities vn(t) for robot n that will result in a collision at some

moment in time with obstacle b. The velocity obstacle (VO) is defined as:

VOn
b(vb(t)) = {vn(t)|λ(pn, vn(t) − vb(t))∩ b

⊕
−n ̸= 0}

where
⊕

gives the Minkowski sum between object n and object b, −n denotes reflection

of object n reflected in its reference point pn, and λ(pn, vn(t) − vb(t)) represents a ray

starting at pn and heading in the direction of the relative velocity of robot n and b given

by vn(t) − vb(t). [28] show that the VO partitions the absolute velocities of robot n into

2.2 learning unlabeled multi-robot planning 27

avoiding and colliding velocities. This implies that if vn(t) ∈ VOn
b(vb(t)), then robot n

and obstacle b will collide at some point in time. If vn(t) is chosen such that it is outside

the VO of b, both objects will never collide and if vn is on the boundary, then it will brush

obstacle b at some point in time.This concept is illustrated in Fig. 2.2.

Figure 2.2: Velocity Obstacle Velocity obstacle VOn
b(vb(t)) of obstacle b to robot n. When there

exist multiple obstacles, the VO is defined as the union of all velocity obstacles.

Each robots actor network outputs a linear force and a torque, i.e an(t) = {Fn(t), τn(t)}.

The dynamics of the robot then evolve according to :

[vn(t+ 1)] :=

[
Fn(t) + z

κ

]
(∆) (2.16)

[xn(t+ 1),yn(t+ 1)] := vn(t+ 1)∆+ [xn(t),yn(t)] (2.17)

where z is some normally distributed noise z ∼ N(0,σ2), κ is mass of the robot and is

some fixed constant and ∆ is the fixed time interval. Similarly, the rotational acceleration is

derived from the torque and integrated over twice to update the orientation. For simplicity,

say that the observation is set to just the position and the velocity in the 2D plane, i.e

2.2 learning unlabeled multi-robot planning 28

ot = [pt, vn(t)]. From Eqn. 2.16, we derive the stationary dynamics distribution with

conditional density as p(ot+1|ot,at) ∼ N(
∆2F(t)+xt

κ , σ2∆4

κ2)

A fundamental assumption for the existence of the gradient in Eqn. 2.14 (and by

extension, Eqn. 2.15) is that the conditional probability distribution p(ot+1 = ξ|ot,at)

be continuous wrt ot, at for allξ . We observe that in the case when the state evolves

according to Eqn. 2.16, the probability distribution is simply a gaussian distribution and

is continuous. In order to incorporate the VO as a backup policy, we need to prove that

the new transition function is still continuous. From Eqn. 2.16, we have the velocity of the

robot. Further, from Eqn. 2.17 xt+1 = ∆vn(t) + xt. Since xt is a fixed, it suffices to find

the continuity of p(vn(t)) to conclude about the continuity of p(ot+1|ot,at). Consider an

obstacle B inside sensing range of robot n. To ensure safety, at every timestep, we compute

the VO and check if the velocity vn(t) ∈ VOn
B(vb(t)). In case, the velocity computed by

the actor network falls inside the VO, we project the velocity back to the safe set VO ′ (VO ′

is the complement of the VO). The easiest projection can be given as :

Pmin
VO ′ (vn(t)) = {min

v̄
||vn(t) − v̄|| : v̄ ∈ VO ′} (2.18)

Thus, the safe velocity for robot n is then given as:

vsafe
n (t) = vn(t)1VO ′(vn(t)) + P

min
VO ′ (vn(t))(1− 1VO ′(vn(t)) (2.19)

where 1a(b) is the indicator function and takes the value 1 if b ∈ a and 0 otherwise.

However, an issue with such a projection is that this gives us a discontinuous distribution

for p(vsafe
n (t)) (probability) because now, there exists a set of values that vsafe

n (t) never

takes. Thus, this fails the assumption of smooth transition functions necessary to compute

deterministic policy gradients. Additionally, in most real world systems, it is infeasible to

make large changes to the velocity instantaneously.

2.2 learning unlabeled multi-robot planning 29

To overcome this, we propose an alternate projection that ensures a smooth distribution

of vsafe
n (t). We note that at any given time t, the RVO set, i.e the set of infeasible velocities is

always a continuous set. By exploiting this property, we propose the following alternative

projection:

P
sig

VO ′(vn(t)) =
vi − vk

1+ e−c(vn(t)−vj)
+ vk (2.20)

where vi, vj, vk are the first, middle and last elements of the VO respectively and c is a

hyperparameter that depends on the how quickly the robots can change their velocities.

This is a shifted sigmoid projection and is visualized in Fig. 2.3. Using the sigmoid

Figure 2.3: Min Projection vs Sigmoid Projection of velocity When using the minimum projection
given in Eq 2.18 the safe velocity has a discontinuity. However, if we assume that the
event vn(t) = vj ±∆v occurs with very low probability, we get p(vsafe

n (t)) a continuous
function.

projection, the safe velocity for robot n is given as :

vsafe
n (t) = vn(t)1VO ′(vn(t)) + P

sig

VO ′(vn(t))(1− 1VO ′(vn(t)) (2.21)

2.3 experimental results 30

and from this we conclude that p(ot+1|ot,at) is a continuous probability distribution

thus enabling us to take the gradients specified in Eqn. 2.15. We put all these parts

into our system for learning unlabeled multi-robot planning with motion constraints and

present the full algorithm in Algorithm 1 and in the rest of the paper we reference it as

MARL+RVO

Algorithm 1 Learning Safe Unlabeled Multi-Robot Motion Planning (MARL+RVO)

Require: Initial random policy network and critic networks for all robots Π Replay buffer
D,

1: for episode = 1 to C (C >> 1) do
2: construct every robot’s initial state on

t (Eq 2.3).
3: for t= 1 to max episode length do
4: for each robot, compute ant = πn(on

t)
5: for each robot, guarantee safe ant (Eqn. 2.21)
6: for each robot, compute on

t+1 and reward r(t).
7: Store on

t+1,ant , on
t , r(t) in D

8: for robot = 1 to N do
9: Sample minibatch of samples from D

10: Compute bellman error using Eqn. 2.12

11: Update critic network using bellman error.
12: Compute policy gradient ĝn from Eqn. 2.15

13: Update actor network using SGD with ĝn
14: end for
15: end for
16: end for

2.3 experimental results

The efficacy of our algorithm is tested in simulated robotics experiments. We experiment

by changing the number of robots, number of obstacles present in the environment and the

robot dynamics. In order to choose a meaningful reward function that ensures all goals are

covered we first compute for each goal the distance to its nearest robot. Then among this

2.3 experimental results 31

Figure 2.4: Training curves for holonomic robots (with 2,3 and 4 Obstacles (Obs)). We observe
that the proposed MARL+RVO algorithm is able to converge and perform better than a
centralized RL (C-PPO) policy. The global reward scale is different for each plot since
it is a function of the space the robots operate in. Each curve is produced by running
three independent runs of the algorithm. Darker line represents mean and shaded area
represents mean ± standard deviation of mean.

set of distances, we pick the maximum, negate it and add it to the reward. This represents

the part of the reward function that forces all robots to cover all goals (denoted by rD(t)).

A similar strategy is adopted to ensure that the cosine difference between orientations is

minimized (denoted by rr(t)). In order to not overly depend on the projected velocity, we

add in a negative penalty every time the projection to the safe set needs to be computed.

Thus, we add a negative reward to all robots (denoted by rC(t)). Thus, the overall reward

given to each robot at time t is :

r(t) = λDrD(t) + λrrr(t) + λCrC(t) (2.22)

where λD, λr and λC are coefficients to balance each part of the reward function. This global

reward function is the same for every robot operating in the environment. Maximizing

this global reward requires a collective effort from all robots.

It is important to note that during, inference time to guarantee safety, we do away with

the soft projection introduced in Eqn. 2.20 and instead use the min projection as given in

2.3 experimental results 32

Eqn. 2.18. This is because during inference we no longer need to take gradients and hence

the transition function need not be smooth continuous anymore.

Figure 2.5: Training curves for non holonomic robots (with 2,3 and 4 Obstacles (Obs)) When the
robot dynamics are changed, MARL+RVO is still able to converge without making any
changes to the loss function or the training parameters.

2.3.1 Experimental Setup Details

For each robot, we setup an actor and critic network. The actor network consists of a

two layer fully connected multi-layer perceptron (MLP). The critic network is also based

on a similar fully connected MLP. The number of units in the hidden layers are varied

depending on the size of the problem being solved (additional units and hidden layers

when number of robots or obstacles are increased). For each episode, we set a maximum

episode length of 300 steps. To update our networks, we use Adam and the learning

rate is varied depending on the experiment under consideration. The discount factor (γ)

is set to 0.95 We also make use of a replay buffer to make sure dependencies between

samples are modelled. The size of the replay buffer is 105 and the size of the minibatch

sampled is 1024. The actions from the neural networks represent accelarations for the

2.3 experimental results 33

robots. The robots operate in a two dimensional space and do not have access to the third

Figure 2.6: Trajectory executed by 3 robots Trajectories executed by robots in three randomly
generated episodes after training is complete. In addition to robots reaching their goals
in collision free manners, the proposed approach also aligns robots to desired final goal
orientations.

dimension. The space under consideration stretches from -1 unit to 1 unit in both the X

and Y direction. Each robot is considered homogeneous and has nonzero mass. The radius

of the robot is set to 0.05 units. At the start of every episode obstacles, goals and start

positions of robots are randomly populated. Radius of the obstacles is 0.12 units and the

goal regions have a radius of 0.02 units. Robots are equipped with a sensor that returns

perfect information (no noise in sensor measurements) about the pose and velocity of

entities within the sensing range which is set at radius of 0.2 units. While the learning

algorithm does not have an explicit assignment of goals in the states or in the reward

function, when using RVO to avoid collisions, we need to greedily assign goals to agents

based on distance to nearest goal and break all ties by randomly choosing goals. Once

the RVO subprocess is done running, we again have no notion of goal assignment. In our

simulated experiments (below) we set all units to meters.

2.3 experimental results 34

Figure 2.7: Time taken to reach goal (with 2,3 and 4 Obstacles (Obs)) over 500 runs. We compare
with Multi-Agent Reinforcement Learning (MARL), Reciprocal Velocity Obstacles
(RVO), GAP [21] and our algorithm which combines the RL and safety(MARL+RVO).
For the RVO method, we assign each robot its nearest goal (in terms of euclidean
distance). GAP uses discrete nodes to search through space and hence its performance
is contingent on the discretization of our continuous space. We observe that with MARL
gives the best time performance, but this performance is not guaranteed to be collision
free. Our method (MARL+RVO) trades-off time performance for guaranteed collision
free trajectories.

2.3.2 Simulation Results

We first observe from Fig. 2.4 that the proposed MARL+RVO algorithm is able to converge

even when the number of robots and the number of obstacles are increased. One of the key

strengths of using a learning based solution for concurrent goal assignment and planning

is that the algorithm can be used even when the dynamics of the robot change. When robot

dynamics are changed to that of a non holonomic robot, we observe that our algorithm

still converges. This can be seen in Fig. 2.5. A simulated experiment setup is shown in

Fig 2.6. In Fig. 2.6 (left), a simple instance is shown where all robots must execute mostly

straight line trajectories to arrive at goals. In Fig. 2.6 (center), an interesting interaction

takes place between Robots 1 and 2. Robot 2 takes a longer path curved path around Robot

1. Lastly, in Fig. 2.6 (right) Robot 3 chooses to take a longer path around the obstacles in

order to not cutoff Robot 2’s path. These locally sub optimal, globally optimal behaviors

2.3 experimental results 35

are induced by using a global reward. We also design a centralized RL controller that uses

information from all the agents and outputs a distribution for each agent. This controller

is trained using PPO [31] and also uses velocity obstacles as a backup policy. We call this

method Centralized PPO (C-PPO). We observe that C-PPO is unable to converge to an

acceptable goal coverage policy.

In the RL framework, the policy attempts to maximize the reward function in a fixed

horizon of time T . Thus, inherently the policy is being optimized for minimum time. To

demonstrate this we compare our algorithm with vanilla MADDPG or MARL as described

in [22], reciprocal velocity obstacles [32] (RVO), and Goal Assignment and Planning (GAP)

as introduced in [21]. The RVO framework improves over VO. However, it is not a full "goal

assignment and planning" framework and only generates collision free trajectories once

goals have been assigned to robots. To benchmark, we assign goals in a greedy fashion.

Each robot is assigned the goal closest to it. GAP utilizes a similar assignment but needs a

discretization of the state space and a priority sequence for robots/goals. This prioritization

is assigned randomly and the space is discretized into units of 0.1m. Out of these three

methods, only RVO, GAP and MARL+RVO are guaranteed to produced collision free

trajectories. For a fair comparison in terms of time, we only consider those runs from

MARL where no collision occurred. Our results are shown in Fig. 2.7. It can be seen that

MARL and MARL+RVO is faster or almost comparable to GAP and RVO without needing

any of the requirements of (assigning goals/discretized state space/priority sequence)

GAP and RVO. Vanilla MARL is faster than MARL+RVO but isn’t guaranteed to generate

safe trajectories as seen from Table 2.1.

3 Robots 4 Robots 5 Robots

MARL 84 192 354

MARL+RVO 0 0 0

Table 2.1: Number of collisions for 3 robots in presence of 3 obstacles over 500 runs.

2.4 discussion 36

Figure 2.8: Training time to convergence. Training time for different configurations of robots and
agents when trained on a NVIDIA DGX-1 (Tesla V100, 32GB × 8)

2.4 discussion

In this paper we propose to solve the concurrent goal assignment and planning problem

using MARL instead. Traditional approaches to solve this problem utilize a carefully

designed heuristic function which produces guaranteed safe trajectories but breaks down

if any of the assumptions are not satisfied. These assumptions restrict the class of problems

that can be solved by traditional algorithms. By utilizing RL, we remove any assumptions

on the robot dynamics or assumptions on the environment and instead use a global

reward function that forces robots to collaborate with each other in order to maximize

the reward. To overcome the lack of any safety guarantees, we propose using a model

based policy in conjunction with the RL policy thus ensuring safe collision free trajectories.

We demonstrate the effectiveness of our algorithm on simulations with varying number

of obstacles, varying number of robots and varying robot dynamics and show that our

proposed algorithm works faster and more robustly than traditional algorithms.

2.4 discussion 37

2.4.1 Caveats

While this work attempts to learn an approximate solution for the unlabeled multi-robot

problem, it has a few caveats. One of the biggest drawbacks of our work is that there is

a significant engineering effort required in scaling up the number of robots. When the

number of robots is increased, there are two major challenges that hamper MARL. The

first is that the input space of the critic function grows as the number of robots increase.

This increase in dimensionality necessitates longer training times for the critic. It might be

possible to instead propose a local critic function that only takes in information from nearby

robots. This might be possible by thinking of the robots as nodes on a graph and leveraging

advances in graph neural networks [33], instead of using a fully connected network. The

second problem is concerned with the need for more exploration as the number of robots

increase. We observe from Fig 2.8 that the time required to train the algorithm grows

almost exponentially as the number of robots are increased. While there exist massively

parallel methods [34, 35] and software libraries [36] to scale up for reinforcement learning,

scaling up the number of robots still poses a significant computing challenge. Methods

attempting to learn hierarchical policies for agents such as those in [37] might instead

prove to be a suitable alternative. Lastly, our choice of VO for collision avoidance while

rooted in its simplicity suffers from drawbacks many of which have been improved over

by methods presented in [29], [38].

2.4.2 Guiding Ideas

One of the key insights that can be derived from this work is that thee underlying

symmetry of the robots and the locality of the problem strucuture; we hypothesize that

during training if one can learn to recognize the underlying symmetry existing in the

2.4 discussion 38

problem, then it might be possible to scale the solutions presented in this work to a larger

solution set. In the next chapters, we hypothesize using graph convolutions to parametrize

individual robot policies and also devise new methods to scale training to large number of

robots.

3
G R A P H P O L I C Y G R A D I E N T S F O R

L A R G E S C A L E R O B OT C O N T R O L

Chapter 2 introduced the idea of using multi-agent reinforcement learning as a tool

for computing solutions for the distributed decentralized control of multiple robots for

concurrent goal assignment . However, a key caveat of these methods was that as the

number of robots increases, the dimensionality of the input space and the control space

both increase making it much harder to learn meaningful policies.

In this chapter we look to tackle the problem of learning individual control policies by

exploiting the underlying graph structure among the robots. We start with the hypothesis

that the difficulty of learning scalable policies for multiple robots can be attributed to two

key issues: dimensionality and partial information. Consider an environment with N robots

(In this chapter and henceforth we shall use bold font when talking about a collection of

items, vectors and matrices). Each robot receives partial observations of the environment.

In order for a robot to learn a meaningful control policy, it must interact with some subset

of all agents, n ⊂ N. Finding the right subset of neighbors to learn from is in itself a

challenging problem. Further, in order to ensure that the method scales, as the number

of robots increase, one needs to ensure that the cardinality of the subset of neighbors |n|,

remains fixed or grows very slowly. To solve these problems for large scale multi-robot

control, we draw inspiration from convolutional neural networks (CNNs). CNNs consist of

sequentially composed layers where each layer comprises of banks of linear time invariant

filters to extract local features along with pooling operations to reduce the dimensionality.

Convolutions regularize the linear transform to exploit the underlying structure of the

39

graph policy gradients for large scale robot control 40

Figure 3.1: Graph Policy Gradients. Robots are randomly initialized and, based on some user set
thresholds, a graph is defined. Information from K-hop neighbors is aggregated at each
node by learning local filters. These local features are then used to learn policies to
produce desired behavior.

data and hence constrain the search space for the linear transform that minimizes the

cost function. However, CNNs cannot be directly applied to irregular data elements that

have arbitrary pairwise relationships defined by an underlying graph. To overcome this

limitation, there has been the advent of a new architecture called graph neural networks

(GNNs) [33, 39, 40]. Similar to CNNs, GNNs consist of sequentially composed layers that

regularize the linear transform in each layer to be a graph convolution with a bank of

graph filters and the weights of the filter are learned by minimizing some cost function.

When controlling a large swarm of robots operating in a Euclidean space Rn, the

underlying graph can be defined as G = (V, E) where V is the set of nodes and E is the

set of edges. For example, we define each robot to be a node and add an edge between

robots if they are are less than ϵ distance apart. This graph acts as a support for the data

vector x = [x1, . . . , xN]⊤ where xn is the state representation of robot n. Now, our GNN

exploits this graph G and at each node aggregates information from its neighbors (See

Section 3.1.2). This information is propagated forward to the next layer through a non

linear transformation. The output of the final layer is given by Π = [π1, . . . ,πN], where

π1, . . . ,πN are independent policies for the robots. Similar to standard reinforcement

learning, we execute these policies in the environment, collect a centralized reward and

graph policy gradients for large scale robot control 41

use policy gradients [26] to update the weights of policy network. We call this algorithm

Graph Policy Gradients (GPG) (See Fig. 5.1).

One possible concern with our proposed algorithm is that, when working with on-policy

methods for a large number of robots, it is highly likely that, due to exploration/entropy

the graph might change during training. Such a setting can result in an explosion in the

number of possible graphs that one needs to learn over as the number of robots increases.

We show that in light of this, our choice of GNNs for policy parametrization is well

motivated because it can be shown that graph convolutions are permutation equivariant,

i.e if one were to reorder the node ordering of the graph and the corresponding graph

signal, then the output of the graph convolution does not change [41]. This is important

because it reduces the dimensionality of the problem and helps training converge faster

when training with many robots.

To demonstrate the efficacy of our proposed algorithm, we perform experiments on

simulated formation flying with robots. Designing controllers and trajectories for formation

flying is an important problem in multi-robot literature [42, 43] and is in fact a good

test bed for other multi-robot control problems [44]. In our experiments, it is shown

that GPG is able to converge as the number of robots are increased in comparison to

state of the art on-policy reinforcement learning algorithms that employ fully connected

networks to parametrize the policy. We also show that our graph filters are able to learn

valid local features by training them on a small number of robots and transferring the

behavior to a very large number of robots. For example, we train a GNN for three robots

to maintain formation, avoid collisions and follow their trajectories. Then, we initialize a

swarm of many robots and use this same graph filter over the entire graph to generate

desired behavior. We show that the desired formation flying behavior is achieved without

updating the weights for the larger swarm thus achieving zero-shot transfer. Lastly, the

ability of GPG to adapt to more complex dynamics and control is demonstrated.

3.1 methodology 42

3.1 methodology

3.1.1 Preliminaries

We pose learning the controller for a large number of robots as a policy learning problem

in a collaborative Markov team [24]. The team is composed of N robots generically indexed

by n which at any given point in time t occupy a position xnt ∈ X in configuration

space and must choose an action ant ∈ A in action space. The team and environment are

assumed to be Markovian. Thus, if one were to collect the robot configurations in the vector

xt := [x1t, . . . , xNt]
⊤ and actions in the vector at := [a1t, . . . , aNt] then, the evolution of the

system is completely determined by the conditional transition probability p (xt+1|xt, at).

The transition dynamics are also assumed to be the same for all agents, so that if we swap

two of them in configuration and action space we expect to see the same statistical evolution.

This is a natural consequence when, the robotic swarm is assumed to be composed of

homogeneous robots. In this work, there exists no external communication between robots.

Instead, we define a graph G that encodes information about each robots neighbors.

Robot n can directly communicate only with its one hop neighbors. Communication

with neighbors that are further away is possible only indirectly. Each robot has access

to its own states xnt and G. In this paper, we do not design which nodes each robot

should talk to or what each robot must communicate. Each robot must learn a policy

(probability distribution) from which the robot samples actions; ant := πn(ant|xnt,G). Let

Π = [π1, . . . ,πn]. As robots operate in the environment, they collect a centralized global

3.1 methodology 43

reward rt. Collapsing everything, we are interested in computing at := Π(at|xt,G) such

that the expected sum of rewards over some time horizon T is maximized:

N∑
n=1

max
θ

EΠ

[T∑
t

rt

]
(3.1)

where θ are the parameters of Π. At a high level, the global reward encodes desired

behavior for the swarm. As the number of robots increase, the dimensionality of at and xt

increases too making the problem of learning Π(at|xt) non-trivial. Our proposition here

to instead learn Π(a|x,G) only compounds the difficulty of the problem as the size of the

graph grows exponentially as the number of robots increase (N2 for N robots). In the next

section, we discuss using a graph convolutional network as a parametrization for Π to

overcome this problem by extracting local information from the graph structure.

3.1.2 Graph Neural Networks

Consider a graph G = (V, E) described by a set of N nodes denoted V, and a set of

edges denoted E ⊆ V × V. This graph is considered as the support for a data signal

x = [x1, . . . , xN]⊤ where the value xn is assigned to node n. The relation between x and

G is given by a a matrix S called the graph shift operator. The elements of S given as sij

respect the sparsity of the graph, i.e sij = 0, for all i ̸= j and (i, j) /∈ E. Valid examples for

S are the adjacency matrix, the graph laplacian, and the random walk matrix. In this paper,

we consider the normalized graph Laplacian similar to [33]:

S = IN − D− 1
2 AD− 1

2 (3.2)

3.1 methodology 44

A key property of S is that it is assumed symmetric, with decomposition S = VΛV⊤ where

V is the eigenvector matrix and Λ is the eigenvalue matrix of S. S defines a map y = Sx

between graph signals that represents local exchange of information between a node and

its one-hop neighbors. More concretely, if the set of neighbors of node n is given by Bn

then :

yn = [Sx]n =
∑

j=n,j∈Bn

snjxn (3.3)

Eq. 3.3 performs a simple aggregation of data at node n from its neighbors that are one-hop

away. The aggregation of data at all nodes in the graph is denoted y = [y1, . . . ,yN]. By

repeating this operation, one can access information from nodes located further away. For

example, yk = Skx = S(Sk−1x) aggregates information from its k-hop neighbors (see Fig

3.2). Now one can define the spectral K-localized graph convolution as :

z =

K∑
k=0

hkSkx = H(S)x (3.4)

where H(S) =
∑∞

k=0 hkSk is a linear shift invariant graph filter [45] with coefficients hk.

Similar to CNNs the output of the GNN is fed into a pointwise non-linear function. Thus,

the final form of the graph convolution is given as:

z = σ(H(S)x) (3.5)

where σ is a pointwise non-linearity. A visualization of a GNN can be seen in Fig. 3.2.

3.1 methodology 45

(a) y0 (b) y1 (c) y2 (d) y3

Figure 3.2: Graph Convolutional Networks. GNNs aggregate information between nodes and
their neighbors. For each k-hop neighborhood (illustrated by the increasing disks),
record ykn (Eq. 3.3) to build z which exhibits a regular structure (Eq. 6.6). a) The
value at each node when initialized and at the b) one-hop neighborhood. c) two-hop
neighborhood. d) three-hop neighborhood.

3.1.3 Permutation Equivariance of Graph Convolutional Networks

To control n robots, we propose defining a graph where each robot is a node and robots

within ϵ distance of each other are connected by an edge. The robots are all initialized with

random policies and by exploring different actions, they learn what policies best optimize

the global reward. Such exploration can change the ordering of the configuration x. This

can lead to an explosion in the possible number of graphs that our policies have to learn

over. However, [41] proves a key property for graph convolutional filters.

Given a set of permutation matrices :

P = {P ∈ {0, 1}N×N : P1 = 1, P⊤1 = 1} (3.6)

where the operation Px permutes the elements of the vector x then, it can be shown that :

Theorem 1. Let graph G = (V, E) be defined with a graph shift operator S. Further, define Ĝ to be

the permuted graph with Ŝ = P⊤SP for P ∈ P and any x ∈ RN it holds that :

H(Ŝ)P⊤x = P⊤H(S)x (3.7)

3.1 methodology 46

The proof for Theorem 1 was first given in [41]. We reiterate it here due to its importance

to this body of work.

Proof for Theorem 1:

Given that P is a permutation matrix. This implies P is also an orthogonal matrix. This

implies P⊤P = PP⊤ = I. Thus,

Ŝk = P⊤SkP (3.8)

Then,

H(Ŝ) =
∞∑

k=0

hkŜk =
∑
k=0

hk(P⊤SkP) = P⊤H(S)P (3.9)

Finally, using PP⊤ = I

H(Ŝ)P⊤x = P⊤H(S)PP⊤x = P⊤H(s)x (3.10)

Hence, proved.

A consequence of Theorem 1 is that the output of the graph convolution does not change

under reordering of the graph nodes as long as the topology of the graph stays the same.

Intuitively, if the graph exhibits several nodes that have the same graph neighborhoods,

then the graph convolution filter can be translated to every other node with the same

neighborhood. When learning control for a large number of robots, this property helps in

reducing dimensionality of the problem.

3.1.4 Formation Flying

We choose formation flying as a test bed for controlling a large number of robots. In

this work, the robots are optimized to produce desired behavior in terms of trajectory

following. This behavior can easily be modified from formation flying to other multi-robot

3.1 methodology 47

objectives such as flocking [46], information gathering [47], collaborative mapping [48] and

multi-robot coverage [49].

Consider a two dimensional Euclidean space R2 with N homogeneous point mass

robots indexed by n. In later experiments, we use the robot models defined in the AirSim

simulator [50] for our experiments. Each robot has a desired goal position gn in the

euclidean space. Collectively for all robots, all goal locations are denoted g = [g1, . . . , gN].

At time t, the robot’s position in the plane is given by pnt. The state representation for

robot n that is used by our learning architecture consists only of its own relative position

to the goal, i.e xnt := pnt − gn. We choose relative positions to goals as a representation of

the robots, in order to maintain permutation invariance. It is important to note here that

robot n cannot arbitrarily communicate with any other robot in the swarm. Instead we

define a graph G that encodes pairwise relationships between robots. Robot n can directly

communicate only with its one hop neighbors. Communication with neighbors that are

further away is possible only indirectly. For each robot, given an action ant ∈ A, the state

of the robot evolves according to some stationary dynamics distribution with conditional

density p(xnt+1|xnt, ant). In this work, we work with continuous control only since it

poses a much harder problem and is also more realistic when working with robots. Two

conditions are encoded for robots to maintain formation. These are collision avoidance, and

waypoint reaching for robots. The necessary and sufficient condition to ensure collision

avoidance between robots is given as :

Ec(pit, pjt) > δ, for alli ̸= j ∈ {1, . . . N}, for allt (3.11)

3.1 methodology 48

where Ec is the euclidean distance and δ is a user-defined minimum distance between

robots. Let us also define an assignment matrix ϕ(t) ∈ RN×N as :

ϕij(t) =


1, if for alli = j,Ec(pit, gj) ⩽ ϵ

0, otherwise

(3.12)

where ϵ is some threshold region of acceptance. The necessary and sufficient condition for

all robots to be cover their assigned goals at some time t = T is then:

ϕ(T)⊤ϕ(T) = IN (3.13)

where I is the identity matrix. With these definitions in place, we now define the problem

statement considered in this paper:

Problem 1. Given an initial set of robot configurations x0, a graph G defining relationships between

robots and some goals g, compute a set of policies Π = [π1, . . . ,πn] such that executing actions

{a1t, . . . , aNt} = {π1(a1t|x1t,G), . . . ,πN(aNt|xNt,G)} results in a sequence of states that satisfy

Eq.3.11 and at time t = T , satisfy the assignment constraint in Eq.3.13.

3.1.5 Graph Policy Gradients

We proposing solving the statement in Problem 1 by exploiting the underlying graph

structure. Given an initial swarm of N robots, a graph G can be defined by setting each

robot to be a node. Next, an edge is added between nodes, if:

Ec(pi, pj) ⩽ λ, for alli ̸= j ∈ {1, . . . N} (3.14)

3.1 methodology 49

where λ is some user defined threshold to connect two robots. It is assumed that at time t,

the position of robot n (given as pnt) and as a consequence the relative position of robot n

(given as xnt) to its own goal is known precisely. The relative positions of all the robots at

time t are collected into the vector xt = [x1t, . . . , xNt]. The graph G defined earlier, acts as

the support for xt. We do not evolve the graph over time since interchanging homogeneous

nodes results in an equivalent graph convolution as discussed in Section 3.1.3. To ensure

that the topology stays constant, the number of neighbors for each node is kept fixed, i.e

robot n is connected to its say three or four nearest neighbors. We also experiment with

a time varying graph, in our simulations and it is observed that for a small number of

robots, policies using computed time varying graphs converge slower than fixed graphs

(see Fig. 3.4). However, as the number of robots is increased, policies computed using

time varying graphs do not converge whereas policies trained using a fixed graph still

converge to desired behavior. One possible reason for this is that when the number of

robots is small, the number of possible graphs is also small and it is easier to learn over

this small number of graphs. As the number of robots increase, the number of possible

graphs increase exponentially leading to a very large number of graphs that the robot

needs to learn over.

To compute the policies, a GNN architecture with L layers is initialized. At each layer

according to Eq.6.6, the output is given as:

zl+1 = σ
(
H(S)zl

)
(3.15)

where σ is a pointwise non-linear function, z0 = xt and zL = Π = [π1, . . . ,πN]. In practice,

the final layer outputs are parameters of Gaussian distributions from which actions are

sampled. Intuitively at every node, the GNN architecture aggregates information and uses

3.1 methodology 50

this information to compute policies. In order to satisfy the constraints given in Eq.3.11

and Eq.3.13, we formulate a centralized reward structure of the form:

r(t) =


−β, if any collisions,

−
∑N

i Ec(pit, gi) otherwise

(3.16)

Each robot receives the same reward an attempts to learn a policy that best optimizes this

reward. It is assumed that the policies for the robots are independent. Thus, the overall

loss function for all the robots as given in Eq.6.2

J =

N∑
n=1

max
θ

EΠ

[T∑
t

rt

]
(3.17)

where θ now represents the filter weights of the GNN for Π. Consider a trajectory τ =

(x0, a0, . . . , xT, aT). Since the reward along a trajectory is the same for all robots and all

robot policies are assumed independent, using direct differentiation the policy gradient is

given as :

∇θJ = Eτ∼(π1,...,πN)

[(T∑
t=1

∇θ log[π1(a1t|x1t,G) . . . πN(aNt|xNt,G)]
)(T∑

t=1

rt

)]
(3.18)

For the full algorithm, please see the Algorithm 1. The weights θ, are then updated using

any variant of stochastic gradient descent. We call this algorithm Graph Policy Gradients

(GPG). In the next section we demonstrate how GPG is able to learn meaningful policies

even as the number of robots increase and is also able to transfer filters learned from a

small number of robots to a larger number of robots.

3.1 methodology 51

Algorithm 2 Graph Policy Gradients

while True do

for time t = [0, . . . , T] do

for robots n = [1, . . . ,N] do

Record each robots state xt

Aggregate information at each robot n from its neighbors Bn according to

Eq. 3.3

yn =
∑

j=n,j∈Bn

snjxnt

end for

Collect xt = [x1t, . . . , xNt]

Compute K localized graph convolution zt as given in Eq.3.4

zt =
K∑

k=0

hkSkxt = H(S)xt

Stack L graph convolution layers such that z0t = xt and zLt = Π

zl+1
t = σ

(
H(S)zlt

)
Sample at = {a1t, . . . , aNt} := {π1(a1t|x1t,G), . . . ,πN(aNt|xNt,G)}

Execute at and collect reward over all robots Rt=
∑N

n=1 r(t)

end for

Record trajectory τ =
[
(x0, a0,R0), . . . , (xT , aT ,RT)

]
.

Compute the graph policy gradients as given in Eq 6.10 and update weights θ

end while

3.2 experiments 52

3.2 experiments

To investigate the performance of GPG, we design experiments to answer three key

questions :

• Can GPG learn policies that achieve desired behavior as the number of robots

increase?

• How well do the graph filters learned by GPG transfer to a large number of robots?

• Does GPG work with more complex dynamics and controls?

3.2.1 Training for Point Mass Formation Flying with GPG

We first look to establish if GPG can train for formation flying for simple point mass

dynamics as the number of robots are increased. The state of every robot n is its absolute

position to its goal and the action ant at time t for robot n is the change in x and y position

in the plane. Such a setting necessitates communication between robots. One could argue

that the robots simply have to learn to take actions such that xnt tends to zero. However,

consider the example in Fig 3.3. When the goals are reasonably far away d1 ≈ d2 and each

robot can take actions that could cause it to collide with its neighbors. Each robot must

Figure 3.3: Formation Flying.

3.2 experiments 53

Figure 3.4: 10 robot Formation Flying. Using a static graph during training increases the sample
efficiency of GPG. A dynamic graph, i.e a graph that evolves over time as the robots
move in space takes longer to converge.

communicate with its neighbors who in turn must communicate with theirs in order to

achieve collision free trajectories that take robots to their assigned goals.

To establish relevant baselines, we choose vanilla policy gradients (VPG) that uses the

same policy gradient hyperparameters as GPG but differs from GPG in that it uses a 2

layer fully connected network for policy paramterization. We also compare with Proximal

Policy Optimization (PPO) [31] a state of the art on policy method for learning continuous

policies. In this paper, we employ a batched version of PPO for faster computation [51].

The PPO baseline also employs fully connected networks. Another choice of baseline

used in this paper PPO with a recurrent network architecture since the problem on hand

requires communication between agents and shared memory is one possible mechanism.

The training curves for our experiments with 3,5 and 10 robots can be seen in Fig 3.5. We

observe right away that GPG is able to converge in all three cases. VPG does not produce

any meaningful behavior and both variants of PPO only produce partial results. In the

experiments above, we maintain a static graph G while training in light of the permutation

equivariance property of GNNs. While static graphs are used during training to speed up

3.2 experiments 54

Figure 3.5: Training for Formation Flight. Point mass robots are trained for formation flight. The
reward is a centralized reward. Each curve is produced by running three independent
runs of the algorithm. Darker line represents mean and shaded area represents mean
± standard deviation of mean.

the training process, during testing, the graphs are dynamic since the graph convolution

yields the same result. We also experiment with a dynamic graph Gt that evolves as the

robots move in space. As hypothesized and guided by the intuition of Theorem 1, using

dynamic graphs increases sample complexity of the problem whereas the static graph

converges faster. This can be seen in Fig 3.4.

3.2.2 Zero Shot Policy Transfer for Formation Flying

It can be observed from Fig 3.5 that while GPG is able to converge as the number of robots

increase, the number of samples required also increases. Training GPG for ten robots

alone takes over nine hours on a 12GB NVIDIA 2080Ti GPU whereas we wish to learn

policies for hundreds of robots. One possible solution is to realize that the filters trained

extract local features and the same filter can be used when working with many more

robots. To demonstrate this, we train a filter with a small number of robots (depending on

the formation we are interested in) and use the same filter weights without any gradient

updates on the larger swarm. Another point to note is that when training for the smaller

swarm, we only train for goals that are a small distance away to reduce the number of

3.2 experiments 55

samples (it is easier to discover goals that are close by than it is to discover goals much

further away) required for training. However, during execution these policies are able

to converge even when the goals are hundred units away. A snapshot of some of the

formations we can produce using this zero shot transfer can be seen in Fig. 4.2. In Fig.

4.2 (left) and (center), policies are trained on three robots and utilize only 1-hop neighbor

information. The figure of eight formation necessitates more communication especially

when robots at the edges cross over to form the figure of eight. In Fig. 4.2 (right) the

filters are learned by training with five robots with each robot utilizing 3 hop neighbor

information.

With these results, it can be concluded that GPG is capable of learning complex behaviors

for a small number of robots. These behaviors can then be transferred to larger more

complex swarms. To the best of our knowledge there exists no other method to learn

continuous control policies that can achieve similar results for so many robots.

Figure 3.6: Zero Shot Transfer to Large Number of Robots. (Left) Policies are trained for three
robots to reach goals that are a small distance away. Robots are randomly initialized
in a rectangular region and must reach goals much further than those in the training
set. (Center) Robots are initialized on a circle and must execute policies such that the
resulting shape is an arrowhead. (Right) Policies trained on swarms of five robots are
transferred over to form a figure of eight. The choice of 101/51 robots is arbitrary and
is not a limiting threshold.

3.2 experiments 56

Figure 3.7: 11 robot Arrow Head Formation. The robots are spawned at ground and are manually
controlled for takeoff. Once the robots are at a desired height, control is handed over to
GPG. (see Appendix for detailed figures)

3.2.3 Complex dynamics and control

In the experiments considered above, actions for robot n are simply the change in position

in the plane. Further, it is assumed that full control of robots can be achieved and at every

step robots have zero velocities. These assumptions are infeasible in the real world. Thus,

we also conduct experiments to test the efficacy of GPG on more realistic dynamics and

control.

To simulate this, we use the AirSim simulator introduced in [50]. Robots are now

assumed to have finite mass and inertia and obey single integrator dynamics. The state

for each robot used by GPG is now given as xnt := [(pnt − gn), ṗnt] where ṗnt is the

velocity at time t for robot n. Thus, the state for each robot is not just its relative position

but also includes its current velocity. The actions now represent change in velocity in the

plane. Similar to the point mass experiments, policies are first learned for a small number

of robots in AirSim. In addition to the non simplistic dynamics, the difficulty of training

3.2 experiments 57

policies in AirSim is further compounded by the fact that AirSim is a real time simulator

and produces an order of magnitude fewer training points as compared to the point-mass

simulation over a fixed period of time. Thus, it is even more imperative when working

with such a simulator to be able to learn policies for a small number of robots that require

fewer samples and then be able to transfer these policies to a larger number of robots for

which direct training would otherwise be infeasible. GPG being a model free algorithm

faces no additional difficulty in adapting to the single integrator dynamics. A snapshot of

results produced using GPG in AirSim can be seen in Fig 3.4. In this case, the baselines

used in Section 3.2.1 are unable to learn reasonable behaviors within 50K episodes. This

can be attributed to the fact that the observations in AirSim are noisier and the baselines

most likely need a lot more samples to converge.

For the experiments in AirSim, we assume the robots to obey single integrator dynamics.

Robot n’s position in the plane at time t is given as pnt and its velocity at time t is given

Figure 3.8: Training 3 Robots in AirSim.

3.3 hyperparameters 58

as ṗnt. The action ant chosen by the robot gives the change in velocities. The state of robot

n then evolves according to :

pnt+1

ṗnt+1

 =

I TsI

0 I


pnt

ṗnt

+

 0

0.1TsI

 ant (3.19)

where Ts is sampling time. To speed up training, the velocities are clipped in a range of

[−1, 1]m/s. The robots are initialized along a straight line with a fixed distance between

them. An external controller is used to arm the robots and for takeoff. Once all the robots

are at a fixed height, control is handed over to GPG. Further, when the robots reach their

goals, they do not enter hover mode. GPG outputs small velocities for the robots and as a

result when robots are close to their goals, they tend to oscillate around the goal point.

Figure 3.9: Arrowhead Formation Flying for 11 robots in AirSim.

3.3 hyperparameters

For the point mass experiments, when learning one-hop neighbor information, we use a

2 layer GNN with a tanh nonlinearity. The input layer consists of 16 hidden units and is

fed the state representation xt. The output of this layer is then fed into a µ layer and a σ

3.4 related work 59

layer both of which have 16 hidden units. Actions for the robots are sampled using these

parameters. We use the Deep Graph Library (DGL) to represent our GNNs. The learning

rate is set to 1e−3 and uses the Adam optimizer. For the VPG baseline, the learning rate

and the optimizer remain the same. The network is parametrized by fully connected layers

where the input to the first layer is the state representation and consists of 64 hidden units

followed by a ReLU non linearity. The output of this first layer is then fed into separate µ

and σ layers each consisting of 64 hidden units and ReLU activation functions. We invite

the reader to take a look at the code attached with this paper for more details.

3.4 related work

In the recent past, there has been an immense amount of interest in learning policies for a

large collection of agents. Literature in multi-agent RL has argued for a centralized training

decentralized execution scheme [52, 53] where each agent has its own policy network but

during train time, it has access to an additional critic network that co-ordinates information

among all agents. Naturally, such a scheme is not scalable as the input size of the critic

network grows as the number of robots increase in addition to the inherent complexity

of training hundreds of separate policies simultaneously. Another line of thinking in this

field, has been the idea to approximate the policies of all the agents using meta-learning

[54, 37]. These works while impressive, still run into the problem of having to execute

rollouts for a large number of agents to learn a meaningful meta-representation. Closest

to our work, perhaps is the work of [55] where the authors propose using CNNs on an

encoded graph representation of the agents. In contrast to our work, the policies learned

are discrete and the convolutions do not fully exploit the local graph structure.

3.5 discussion and guiding ideas 60

3.5 discussion and guiding ideas

The problem of learning policies that map state representation to control commands for a

large number of robots is immensely challenging, even if the robots are homogeneous. In

this work, we propose using the underlying graph structure as additional information. To

exploit information from the graph we propose using GNNs to parametrize the policies.

Using GNNs we are able to learn local filters defined on the graph that extract local

information. The additional benefit of using these local feature extractors is that they can

be used to alleviate the problem of needing a large number of rollouts as the number of

robots increase as the number of robots increase as demonstrated by the experiments in

Section 3.2.2. In the next chapter, we revisit the concurrent goal assignment and planning

problem discussed in Chapter 2 and use GPG to design learning based model free solutions

that are able to scale to a large number of robots. It might even be possible to add other

sensor representations such as camera images or lidar instead of requiring exact positions

of the robots in space. These could be first processed using standard architectures such

as CNNs and then be fed into GPG to learn policies for a large swarm of robots directly

from on board sensors. We shall use this idea to learn perception action loops for robots in

Chapter 5.

4
G R A P H P O L I C Y G R A D I E N T S F O R

L A R G E S C A L E U N L A B E L E D M OT I O N

P L A N N I N G

In Chapter 2 we introduced the unlabeled assignment and planning problem and also

introduced a model free multi-agent reinforcement learning solution as an alternative

to existing model based solutions. However, a key drawback of these methods was the

difficulty in scaling up training for a larger number of robots. In Chapter 3 we introduced

Graph Policy Gradients (GPG) as a method to train a large number of robots for a relatively

simpler problem of formation flying, where each robot has an assigned goal that it must

reach without colliding into its neighbors and all robots must reach their goals in the least

amount of time. Through varied experiments, we demonstrated how GPG can adapt to a

large swarm by training on a simpler scenario where there the number of robots operating

are much smaller than that at inference. The key idea that enabled the use of GPG for the

formation flying problem, was the careful design of the state space for the robots such

that the designed solution could leverage the permutation invariance property inherent in

graph neural networks and ensure that the solution can scale to a larger number of robots

at inference time. In this chapter, we extend these ideas to the concurrent assignment

and planning problem. We demonstrate that it is easy enough to design a permutation

invariant state space representation for the unlabeled motion planning problem such that

GPG can be adapted to it. Lastly, through varied simulations and theoretical results, we

demonstrate the efficacy of Graph Policy Gradients for the unlabeled motion planning

problem.

61

4.1 distributed collaborative unlabeled motion planning 62

4.1 distributed collaborative unlabeled motion plan-

ning

We consider the problem of navigating N disk-shaped robots to a set of N goals of radius

R. We say that the navigation problem is unlabeled because there is no prior matching

between robots and goals. Any robot can cover any goal. The positions of the goals are

fixed and we use gn to denote the position of goal n. The positions of robots change over

discrete time index t and are denoted as rn(t) for robot n. We stack goal positions into the

matrix G = [gT
1 ; . . . ; gT

N] whose nth row is the position of goal n and robot positions into

the matrix R(t) = [rT1 (t); . . . ; rTN(t)] whose nth row is the position of robot n. We further

group these two matrices to define the system state

S(t)= ⟨R(t), G⟩= ⟨[rT1 (t); . . . ; rN(t)T], [gT
1 ; . . . ; gT

N]⟩ (4.1)

We assume that robot positions evolve according to a choice of action an(t) ∈ A as deter-

mined by some stationary distribution with conditional density p(rn(t+ 1)|rn(t), Sn(t)).

This first order dynamical model implies that the state S(t) is a complete description of

the system at time t. We further assume operation in open space. Both these choices are

for simplicity of exposition. Incorporating obstacles (Section 4.4) and high order complex

dynamics is an easy extension.

The goal of the team of robots is to cover all goals in the sense that all goals gn have at

least one robot within distance R of its location. To measure how well the configuration

S(t) in (4.1) accomplish this task, the reward r(S(t)) counts the number of goals covered.

4.1 distributed collaborative unlabeled motion planning 63

This is equivalent to counting all the goals for which ∥gn − rm∥ ⩽ R for at least one robot

m, which we can write as the sum

r(S(t)) =

N∑
n=1

I
[

min
m

∥gn − rm(t)∥ ⩽ R
]

(4.2)

In (4.2) only the robots that are within distance R of a goal contribute to the reward. If

there are several robots within R of a goal, only the closest contributes toward increasing

r(S(t)). The maximum reward r(S(t)) = N occurs when all goals are covered by one robot.

Therefore, the necessary and sufficient condition for all goals to be covered at some time t

is for the reward to attain its maximum r(S(t)) = N.

Our interest here is designing policies to reach the maximum reward r(S(t)) = N

(Section 4.2) with a distributed collaborative system. The system is distributed because

agents have access to local state information only and collaborative because nearby agents

communicate with each other. To describe the locality of information and communication,

consider orderings of goals and robots relative to their distance to a given robot. Formally,

let rn[m](t) be the mth closest robot to robot n other than n itself so that for all 1 ⩽ m ⩽

m ′ ⩽ N− 1 it holds

∥rn[m](t) − rn(t)∥ ⩽ ∥rn[m ′](t) − rn(t)∥. (4.3)

Likewise, let gn[m] be the mth closest goal to robot n so that for any 1 ⩽ m ⩽ m ′ ⩽ N we

can write

∥gn[m](t) − rn(t)∥ ⩽ ∥gn[m ′](t) − rn(t)∥. (4.4)

Observe that the position gn[m](t) of the mth closest goal changes over time as robot n

moves through the environment.

4.1 distributed collaborative unlabeled motion planning 64

We assume that each agent senses at most the M goals and at most the M robots that are

closest to its location and that it can communicate with the M closest robots. We therefore

define the state of robot n at time t as a row vector concatenating its own location, the

location of its Mth closest robots, and the location of its Mth closest goals,

xn(t) =
[
rTn(t); rTn[1](t); . . . ;r

T
n[M](t);

gT
n[1](t); . . . ; gT

n[M](t)
]
. (4.5)

For future reference we introduce d to denote the number of entries of xn(t). This number is

d = 2(2M+ 1) for planar navigation and d = 3(2M+ 1) for navigation in three dimensions.

Communication between agents is also restricted to local information exchanges. We model

this with a communication graph whose adjacency matrix we denote by S(t) ∈ RN×N.

Entries of this matrix Snm(t) are binary and are 1 only if robot m is among the Mth closest

robots to robot n. We write this formally as

Snm(t) = I
[
rm ∈

{
rn(t), rn[1](t), . . . ,rn[M](t)

}]
(4.6)

where we point out that we also add self loops to S because we have made Snn = 1.

Observe that M limits the number of robots that communicate with each robot n, as well

as the number of robots and goals sensed by each robot n. These three parameters can be

distinct in practical implementations but we make them equal here to simplify notation.

Robots are given access to their local states xn(t) as defined in (4.5) and can exchange

information with neighboring agents as dictated by the graph S(t) whose entries are given

by (4.6). Given their local states and information received from neighbors, robot n chooses

an e-dimensional action an(t) ∈ Re that controls the transition into position rn(t+ 1)

4.1 distributed collaborative unlabeled motion planning 65

according to the dynamical model p(rn(t + 1)|rn(t), an(t)). We write these stochastic

policies as:

an(t) = πn
(
an(t)

∣∣ xn(t); S(t)
)
. (4.7)

The notation in (4.7) signifies that Sn(t) is chosen according to the local state xn(t) – i.e.,

the policy is distributed – and information exchanges with neighboring nodes as dictated

by the graph S(t) – i.e., the policy is collaborative. We emphasize that the graph S(t)

affects the choice of action because it limits the information accessible to robot n and

that it therefore is an important component of the robots policy. Notwithstanding, these

graph is not necessarily known to robot n and our policies will be executable without

this knowledge (Section 4.2). The individual distributed collaborative policies in (4.7)

generate the product policy Π = π
(
a1(t)

∣∣ x1(t); S(t)
)
× . . .× π

(
aN(t)

∣∣ xN(t); S(t)
)
. We

want to jointly optimize over individual policies to maximize the discounted reward

J(Π) = max
Π

EΠ

[T∑
t

γtr(S(t))

]
(4.8)

where the reward r(S(t)) is as given in (4.2). Our objective in this paper is to learn policies

having the form in (4.7) that maximize the discounted reward in (4.8). We do so with the

Graph Policy Gradient method that we introduce next.

4.2 graph policy gradients for distributive unlabeled motion planning 66

4.2 graph policy gradients for distributive unlabeled

motion planning

To find the policy Π that maximizes the reward J(Π) in (4.17) it is customary to introduce

a policy parameterization. Our key technical innovation is to parameterize Π with a

graph neural network (GNN), which as we will explain in Section 4.3 not only respects

but also leverages the locality of the distributed collaborative motion planning problem

we discussed in Section 4.1. As desciribed in Chapter 3 GNNs are generalizations of

convolutional neural networks (CNNs) built on the definition of convolutional graph

filters. Here, we add some more formalization to our definition of a GNN to fit into the

unlabeled motion planning paradigm. Formally, define the state matrix X(t) ∈ Rn×d

whose nth row is the state of robot n [cf. (4.5)],

X(t) = [x1(t); . . . ; xN(t)] ∈ RN×d. (4.9)

A graph convolutional filter to process X(t) on the graph S(t) is defined by a set of K

coefficient matrices H1k ∈ Rd×d1 . These matrices serve as coefficients of a polynomial on

S(t) that operates on the state X(t) to produce the output Y(t) ∈ Rd1 given by

Z1(t) =

K−1∑
k=0

Sk(t)X(t)H1k. (4.10)

The output of the graph filter in 4.10 is further processed with a pointwise nonlinearity to

produce the layer 1 output signal

X1(t) = σ
[

Z1(t)
]
= σ

[K−1∑
k=0

Sk(t)X(t)H1k

]
. (4.11)

4.2 graph policy gradients for distributive unlabeled motion planning 67

In a GNN with multiple layers the signal X1(t) is further processed with a graph filter with

coefficients H1k ∈ Rd1×d2 and a pointwise nonlinearity, to produce the output of Layer 2.

In general, there are a total of L layers each of which is defined by a set of K coefficients

H1k ∈ Rdl−1×dl which produce output signals Xl(t) according to the recursion

Xl(t) = σ
[

Zl(t)
]
= σ

[K−1∑
k=0

Sk(t)Xl−1(t)Hlk

]
. (4.12)

The output of the Lth layer is the output of the GNN and we propose here to use it as the

mechanism for generating robot actions. Specifically, stack the individual actions of all

agent into the action matrix A(t) = [aT1 (t); . . . ; aTN(t)] ∈ Rn×e and make

A(t) = XL(t) = Φ(X(t), S(t); H). (4.13)

Notice that in (4.13) we have introduced the notation Φ(X(t), S(t); H) to represent the

GNN’s output. This output depends on the state input X(t), the graph S(t) and the filter

tensor H := {Hlk}l,k that groups the coefficient matrices of all layers and all orders. The

advantage of using a GNN to parameterize actions A(t) is that they respect the structure of

the distributed collaborative policies in (4.7). The graph filters in (4.10) and (4.12) are made

up of diffusion operations that involve interactions between neighbors only. Consider the

product S(t)X(t) and observe that the sparsity pattern of S(t) is such that the nth row of

this product is given by

[S(t)X(t)]n =
∑

m:Smn=1

xm(t) (4.14)

If we interpret the row
[
A(t)X(t)

]
n

as a quantity that is evaluated by robot n, it follows

that robot n can evaluate this row by communicating with neighboring nodes only.

4.2 graph policy gradients for distributive unlabeled motion planning 68

Subsequent entries in the graph filters in (4.10) can be recursively evaluated noticing that

Sk(t)X(t) = Sk−1(t)X(t) and that we can therefore write:

[Sk(t)X(t)]n =
∑

m:Smn=1

[Sk−1(t)X(t)]m (4.15)

It follows that all of the summands in (4.10) can be computed exclusively through local

information exchanges. The pointwise nonlinearity in (4.11) can also be locally imple-

mented. Subsequent layers can be evaluated in a distributed manner as well, because

the argument in (4.14) and (4.15) is not specific to Layer 1. Through this recursive dis-

tributed computations, robot n ends up computing the nth row of the GNN output

[XL(t)]n = [Φ(X(t), A(t); H)]n. This row is used to define the local policy in (4.7) as

an(t) = [A(t)]n = [XL(t)]n = [Φ(X(t), S(t); H)]n (4.16)

The graph policy gradient method (GPG) is the search for a joint policy Π that maximizes

the cost in (4.17) over the space of policies Π(H) that produce actions parameterized with

a GNN of the form in (4.12). The solution of this optimization is the optimal filter tensor

H∗ = arg max
H

EΠ(H)

[T∑
t

γtr(S(t))

]
Π(H) : A(t) = Φ(X(t), S(t); H). (4.17)

In (4.17), the filter tensor H along with the state X(t) and the graph S(t) determine the

choice of action A(t). This joint action controls the state transition as dictated by the

dynamical model p(rn(t+ 1)|rn(t), Sn(t)). We want to find a filter tensor H that results in

the maximum reward J(Π(H)).

4.3 permutation invariance of gnn policy parameterizations 69

The optimal filter can be computed through online policy gradient methods. Robots roll

out trajectories τ ∼ Π and collect rewards r(S(t)) over a time horizon t = 0, . . . , T . Since the

policies are assumed to be independent, the policy gradient wrt H, ∇HJ can be given as:

= Eτ∼(Π)

[(T∑
t=1

∇H log[π1 × . . .× πN]
)(T∑

t=1

r(S(t))
)]

(4.18)

In parameterizing actions with a GNN we ensure the possibility of having a distributed

implementation. We will see in the upcoming Section 4.3 that GNNs also exhibit an

invariance to the labeling that substantiates transferability properties that we explore in

the numerical experiments in Section 4.4.

4.3 permutation invariance of gnn policy parameteriza-

tions

Let the GNN coefficients H∗ be the solution that maximizes (4.17) for a given S(t) and X(t).

Consider another set of graphs S̃(t) and state vectors X̃(t) that are produced by permuting

S(t) and X(t). Let the filter coefficients after training on S̃(t) and ˜X(t) be H̃∗. To study the

relationship between H∗ and H̃∗ we first define a set of permutation matrices of dimension

N such that P = {P ∈ {0, 1}N×N P1 = 1, P⊤1 = 1}

Such a permutation matrix P is one for which the product P⊤X(t) reorders the entries of

any X(t) and the operation P⊤S(t)P produces a reordering of the rows and columns of

4.3 permutation invariance of gnn policy parameterizations 70

any given S(t). The policy for system with S(t) is Π = Φ(X(t), S(t); H). Analogously, let

the policy for the permuted system be given as:

Π̃ = Φ(X̃(t), S̃(t); H̃) where S̃(t) = P⊤S(t)P, (4.19)

X̃ is the permuted state of all robots and H̃ is the vector of filter coefficients that parame-

terizes Π̃. This leads to:

Theorem 2. Given a configuration of robots represented by X(t) that define an underlying graph

G with graph shift operator S(t) and another configuration of robots given by X̃(t) and S̃(t) then

the graph filter coefficients H∗ and H̃∗ which are the optimal solutions for the systems (S(t), X(t))

and (S̃(t), X̃(t)) respectively are equivalent,

H∗ ≡ H̃∗ (4.20)

In order to prove Theorem 2, we must prove that both the unlabeled motion planning

problem and the GNNs parameterized by H̃∗ and H∗ are permutation equivariant.

4.3.1 Equivariance of GNNs for Unlabeled Motion Planning

Proposition 1. Given a system of robots and goals S(t) = {r(t), g} and another system where

the robot states are permuted S̃(t) = (r̃(t), g) where r̃(t) = P⊤r(t), the corresponding robot

states X(t) = [x1(t), . . . , xN(t)]⊤ and X̃(t) = [x̃1(t), . . . , x̃N(t)]⊤ are permutation related, i.e

X̃(t) = P⊤X(t).

Proof This is true because we have used ordering to construct the local robot states in

(4.5) and orderings are invariant to permutations. Formally, consider indexes n and ñ with

[P]nñ = 1. It follows from R̃(t) = PTR(t) that rn(t) = rñ(t); which means that robot n has

4.3 permutation invariance of gnn policy parameterizations 71

been mapped to robot ñ in the permutation. Since orderings are independent of labeling it

follows that for all robots we must have rn[m](t) = rñ[m](t) [cf. (4.3)]. Likewise, for all goals

we must have gn[m](t) = gñ[m](t) [cf. (4.4)]. Given the definition of the state row vector

in (4.5) we therefore have that xn(t) = xñ(t). Further recalling the definition of the state

matrix X(t) in (4.9) and the assumption that [P]nñ = 1 we also have that xn(t) = [PTX(t)]ñ.

Putting the latter two statements together we conclude that [PTX(t)]ñ = xñ(t). Since

this is true for arbitrary ñ we must have PTX(t) = X̃(t). In order to show that the GNN

parameterization is equivariant for both settings, consider the following proposition:

Proposition 2. Given robots with states X(t) and X̃(t) and underlying graphs S(t) and S̃(t)

such that X̃(t) = P⊤X(t) (from Proposition 1) and S̃(t) = P⊤S(t)P for some permutation

matrix P, the outputs of a GNN policy Φ with filter coefficients H to the pairs (S(t), X(t))

and (S̃(t), X̃(t)) are related by:

Φ(X̃(t), S̃(t); H) = P⊤Φ(X(t), S(t); H) (4.21)

Proof The output of the GNN filter for the system (S̃(t), X̃(t)) as given in (4.12) is:

Φ(X̃(t), S̃(t); H) =

K∑
k=0

hkS̃(t)kX̃(t) (4.22)

This can be expressed as:

K∑
k=0

hkS̃(t)kX̃ =

∞∑
k=0

hk(P⊤S(t)kP)P⊤X(t) (4.23)

4.3 permutation invariance of gnn policy parameterizations 72

Using the fact that P is an orthogonal matrix which in turn implies that P⊤P = PP⊤ = I:

∞∑
k=0

hk(P⊤S(t)kP)P⊤X(t) = P⊤
∞∑

k=0

hkS(t)kX(t)

= P⊤Φ(X(t), S(t); H) (4.24)

Thus, proving Proposition 2. Intuitively, Proposition 2 tells us that reordering the robots

states and corresponding nodes in the graph representation which is fed into the GNN

policy, results in an appropriate reordering of the outputs of the filter without any change

in the weights of the policy.

4.3.2 Equivariance of Unlabeled Motion Planning

In order to show that the unlabeled motion planning is permutation equivariant, we look

at the cost J.

Proposition 3. The reward function J is permutation equivariant. i.e for all permutation

matrices P ∈ P, JΠ = JΠ̃ where JΠ = maxΠ EΠ

[∑T
t γ

t
∑N

n=1 I
[

minm ∥gn − rm∥ ⩽ R
]]

Proof For the permuted system the reward is given as :

r(S̃(t)) =

N∑
n=1

I
[

min
m

∥gn − r̃m∥ ⩽ R
]

(4.25)

Since the set of robots r and r̃ are the same:

r̃i[1] = arg min
j

||gi − r̃j|| = ri[1] (4.26)

4.3 permutation invariance of gnn policy parameterizations 73

Which leads us to r(S(t)) = r(S̃(t)) and therefore
∑T

t r(S(t)) =
∑T

t r(S̃(t)). Now,

JΠ̃ =

N∑
n=1

max
θ

EΠ̃

[T∑
t

r(S̃(t))

]
(4.27)

=

N∑
n=1

max
θ

∫ T∑
t

r(S̃(t))dΠ̃ (4.28)

Using the fact that dΠ̃ = P⊤dΠ (from Proposition 2) and r(S(t)) = r(S̃(t)) we get;

N∑
n=1

max
θ

∫ T∑
t

r(S̃(t))dΠ̃ =

N∑
n=1

max
θ

P⊤
∫ T∑

t

r(S(t))dΠ (4.29)

Since the set of robots is N for both JΠ and JΠ̃, we can conclude JΠ̃ = JΠ Thus, we conclude

that the unlabeled motion planning problem is permutation equivariant. With these results,

we construct the following proof:

Proof for Theorem 2 Let optimal coefficients H∗ and H̃∗ induce a optimal reward J∗ and

J∗
Π̃

respectively. Consider the optimal filter coefficient H. From proposition 2, we have:

Φ(X̃(t), S̃(t); H) = P⊤Φ(X(t), S(t); H) (4.30)

Φ(X̃(t), S̃(t); H) induces a reward JΠ̃ while P⊤Φ(X(t), S(t); H) induces the optimal reward

J∗Π. However, as a result of Proposition 3, we have:

JΠ̃ = J∗Π (4.31)

Similarly by considering the optimal filter coefficient H̃∗:

J∗
Π̃
= JΠ (4.32)

4.4 experiments 74

If the cost J∗Π and J∗
Π̃

are the optimal costs, then:

J∗Π ⩾ JΠ = JΠ̃ (4.33)

J∗
Π̃
⩾ JΠ̃ = J∗Π (4.34)

where the second equality follows from (4.31) and (4.32). From (4.33) and (4.34), we can

conclude that

J∗
Π̃
= J∗Π (4.35)

Thus, we can conclude H∗ ≡ H̃∗, completing the proof for Theorem 2. One of the bot-

tlenecks of RL for multi-robot systems is the fact that it lacks the ability to scale to a

large number of robots. However, Theorem 1 and Proposition 2 offer us a valuable tool.

When training, we train only for a small number of robots with graph S(t) which yields

graph filters H. By realizing that the bigger swarm consists of smaller swarms that are

permutations S(t) and the filter coefficients for both are equivalent, we simply reuse the

filter H on each of the smaller swarms. Thus, we are able to achieve large scale unlabeled

motion planning without the computational burden of having to train a very large number

of robots.

4.4 experiments

To test the efficacy of GPG on the unlabelled motion planning problem, we setup a few

experiments in simulation. We establish five main experiments. 1) Unlabelled motion

planning with three, five and ten robots where robots obey point mass dynamics. 2) GPG

is tested on three, five and ten robots but here robots obey single integrator dynamics.

3) The robots follow single integrator dynamics and additionally the environment is

4.4 experiments 75

Figure 4.1: Training Curves for 3, 5 and 10 robots Policies trained by GPG are able to converge on
experiments with point mass robots, experiments where robots follow single integrator
dynamics and are velocity controlled as well as experiments when disk shaped obstacles
are present in the environment.

populated with disk shaped obstacles. 4) The performance of GPG is tested against a

model based provably optimal centralized solution for the unlabelled motion planning

problem. We demonstrate empirically that the performance of GPG is almost always

within a small margin of that of the model based method but comes with the additional

advantage of being decentralized. 5) The learning formulation for the unlabeled motion

planning problem is agnostic to underlying robot dynamics or operating conditions in

the environment. To demonstrate this, we look to execute the unlabeled motion planning

problem in the higher order dynamics simulator AirSim [50] equipped with quadrotors

that model real world effects such as downwash and wind. To establish relevant baselines,

we compare GPG with Vanilla Policy Gradients (VPG) where the policies for the robots

are parameterized by fully connected networks (FCNs). Apart from the choice of policy

parameterization there are no other significant differences between GPG and VPG. For

GPG, we setup a L-layer GNN. For experiments involving 3 and 5 robots with point mass

experiments we find a 2 layer GNN, i,e a GNN that aggregates information from neighbors

that are at most 2 hops away to be adequate. For experiments with 10 robots we find that

GNNs with 4 layers work the best. For the baseline VPG experiments, we use with 2-4

layers of FCNs. The maximum episode length is 200 steps and the discount factor γ = 0.95.

4.4 experiments 76

In experiments with 3 robots, each robot senses 2 nearest goals and 1 nearest robot. In

experiments with 5 and more robots, robots sense 2 nearest goals and 2 nearest robots.

The graph connects robots to their 1,2 and 3 nearest neighbors in experiments with 3, 5

and 10 robots respectively.

The behavior of GPG v/s VPG during training can be observed from Fig. 4.1. We observe

that in all cases GPG is able to produce policies that converge close to the maximum

possible reward (in all three cases maximum possible reward is zero). When compared to

the convergence plots of Chapter 3 where we first proposed use of RL for the unlabelled

motion planning problem, this represents a large improvement on just training. It can also

be observed that GPG converges when robot dynamics are changed or obstacles are added

to the environment. While this is not necessarily the optimal solution to the unlabelled

motion problem, it is an approximate solution to the unlabelled motion planning problem.

The FCN policies represented by VPG in Fig. 4.1 fail to converge even on the simplest

experiments.

Figure 4.2: Transferring Learned GPG Filters for Large Scale Unlabelled Motion Planning. (Left)
A small number of robots are trained to cover goals and follow point mass dynamics.
During testing the number of robots as well as the distance of the goals from the
start positions are much greater than those seen during training. (Center) A similar
experiment is performed but now robots have single integrator dynamics. (Right) In
this experiment in addition to single integrator dynamics, the environment also has
obstacles that robots must avoid.

4.4 experiments 77

4.4.1 Experimental Results - Inference

The previous section shows the feasibility of GPG as a method for training a large swarm of

robots to approximately solve the unlabelled motion planning problem. However, training

a large number of robots is still a bottleneck due to the randomness in the system. Training

10 robots with simple dynamics on a state of the art NVIDIA 2080 Ti GPU with a 30

thread processor needs 7-8 hours. We see from our experiments that this time grows

exponentially with an increase in the number of robots. Thus, to overcome this hurdle

and to truly achieve large scale solutions for the unlabelled motion planning problem, we

hypothesize that since the graph filters learned by GPG only operate on local information,

in a larger swarm one can simply slide the same graph filter everywhere in the swarm to

compute policies for all robots without any extra training. Intuitively, this can be attributed

to the fact that while the topology of the graph does not change from training time to

inference time, the size of the filter remains the same. As stated before, this is akin to

sliding a CNN filter on a larger image to extract local features after training it on small

images. To demonstrate the effect of GPG during inference time, we setup three simple

experiments where we distribute goals along interesting formations. As described earlier,

each robot only sees a certain number of closest goals, closest robots and if present closest

obstacles. Our results can be seen in Fig. 4.2. The policies in Fig. 4.2(Left) and Fig. 4.2

(Center) are produced by transferring policies trained to utilize information from 3-hop

neighbors. In Fig. 4.2 the policies are transferred after being trained to utilize information

from 5-hop neighbors. Consider the formation shown in Fig 4.2 (Left). Here each robot

receives information about 3 of its nearest goals and these nearest goals overlap with its

neighbors. Further, since the goals are very far away and robots are initialized close to each

other, a robot and its neighbor receives almost identical information. In such a scenario

the robots must communicate with each other and ensure that they each pick a control

4.4 experiments 78

action such that they do not collide into each other and at the end of their trajectories, all

goals must be covered. The GPG filters learn this local coordination and can be extended

to every robot in the swarm. When training with obstacles, we extend the system state in

Eqn. 4.1 to include the positions of the obstacles O i.e S(t)= {R(t), G, O} and extend the

state of the robots in Eqn. 4.5 to observe M nearest obstacles. The cost itself is unchanged,

and as such all results derived in this paper still hold with the inclusion of the state of

the obstacles. As before we train with the GNN filters with a small number of robots and

extend the filters to a larger number. We observe in Fig 4.2 (Right) and attached video with

this paper that our solution is capable of covering goals even when obstacles are present.

We also study the effects of the choice of K and M on the performance of the learned

models. We observe that as the number of hops, i.e K each robot communicates with, the

performance measured by looking at the success percentage (number of times all goals

are covered without collisions during 100 runs) during inference increases. However, this

increases only to a certain point after which there is a steep drop off in performance. This

can be explained to the increase in input dimensionality at each node, thus making the

problem more challenging. This result can be seen in Fig. 4.3 (Left). A similar effect can

be seen when the value of M, i.e direct neighbors and goals that each robot senses. The

increase in information only improves the learning performance to a certain point after

which there is a drop off in performance as seen in Fig. 4.3(Right).

4.4.2 Comparison to Centralized Model Based Methods

To further quantify the performance of GPG, we compare with a model based approach

that uses centralized information, called concurrent assignment and planning (CAPT),

proposed in [19]. When used in an obstacle free environment, it guarantees collision free

trajectories. We direct the reader to [19] for more details about the CAPT algorithm. We set

4.4 experiments 79

Figure 4.3: Success v/s choice of K and M. (L) During inference, we analyze effects of choices for
K and M.

up three different formations F1, F2 and F3 similar to that in Fig 4.2 (Center). On average

the goals in F3 are further away from the starting positions of the robots than those in

F2 and those in F2 are further away from goals in F1. In this work, we treat CAPT as the

oracle and look to compare how well GPG performs when compared to this oracle. We use

time to goals as a metric to evaluate GPG against this centralized oracle. Our results can

be seen in Fig. 4.4 The key takeaway from this experiment is that decentralized inference

using GPG, performs always within an ϵ margin (approximately 12-15 seconds) of the

optimal solution and this margin remains more or less constant even if the goals are further

away and if the number of robots are increased. However, GPG outshines CAPT when the

planning times for both are compared. CAPT employs the hungarian algorithm to solve the

task assignment and as a result has a time complexity of O(n3) whereas GPG only requires

a feedforward pass during inference. The planning times for both methods can be seen

Fig. 4.5. It is important to note that in the original CAPT method, the optimal performance

guarantees zero collisions. While the solution proposed in this paper is a learned solution

with the advantage of being decentralized, we cannot guarantee collision free trajectories.

Nevertheless, we analyze the number of collisions between robots. This performance can

4.4 experiments 80

Figure 4.4: Time to Goals Time taken by CAPT to cover all goals v/s time taken by GPG to cover
all goals when robots follow velocity controls..

be seen in Table . We argue that while any learned method cannot guarantee collision free

trajectories, it has been shown in the Chapter 2 that simple model based backup policies

can be used in conjunction with learned policies to empirically guarantee collision free

trajectories. Similar to the method adopted in Chapter 2, we use velocity obstacles [28]

as a backup policy that intervenes every time a collision between two robots executing

GPG policies is imminent. We call this method GPG+VO. It is important to note that in

order to prevent GPG+VO from producing degenerate solutions at the cost of collision

free trajectories, we add a penalty term to the cost function every time VO is called during

training.

We analyze these results in Table 4.1 for 30 robots over 3 line to circle formations similar

to the one seen in Fig 4.2 (Right). The formations R1 < R2 < R3 differ from each other in

the size of the radius of the circle on which the goals are distributed. As in Fig 4.4 (Left)

we observe that the difference between CAPT and GPG is the same even with different

number of formations. In terms of number of collisions when the robots have more open

space to operate, the number of collisions are almost reduced to zero with just GPG. When

the room to operate is small as in R1 the GPG based policy tends to produce a higher

4.4 experiments 81

Figure 4.5: Planning Times. CAPT v/s GPG Planning Times.

number of collisions. The backup model based policy in GPG+VO is able to remove the

number of collisions but results in an increase in time to cover goals. Using the backup

model based velocity obstacles, increases the time required by an almost negligible amount

when the robots have significant room to operate such as in R3 and at the same time

offers a decentralized solution. Hence, we conclude that decentralized GPG is close in

performance to the provably optimal centralized solution.

4.4.3 High Order Dynamics

In the previous experiments, we modeled the robots as ideal point mass systems to study

the feasibility of GNNs for the unlabeled motion planning problem. In this experiment we

4.4 experiments 82

CAPT GPG GPG+VO
T(sec) C T(sec) C T(sec) C

R1 68.27 0 85.31 11.4 94.9 0

R2 83.4 0 103.56 8.1 112.62 0

R3 98.16 0 122.15 2.3 124.15 0

Table 4.1: CAPT vs GPG vs GPG+VO. Total time (T(sec)) and total number of collisions (C) during
inference for 30 robots over 3 line to circle formations R1, R2 and R3 similar to the one
seen in Fig 4.2 (Right). R1 < R2 < R3 differ from each other in the size of the radius of
the circle on which the goals are distributed. Averaged over 20 runs.

test our learned policies in the AirSim simulator which allows us to test our policies in the

presence of higher order dynamics, slower control rates and latency in observations thus

mimicking a real world robot swarm more realistically. In such a setting it is even more

imperative to be able to train with a smaller number of robots and be able to transfer to a

larger number without any additional training samples due to the increased computational

complexity associated with training a large number of robots directly in the simulator. In

this setting, the outputs from the policies are interpreted as accelerations and are converted

to desired roll and pitch commands which are fed into the simulator. Further, since our

proposed framework is model free, it can still be trained directly as before with only a

sparse reward. Empirically, in Fig 4.6 and the attached video we observe our The action

Snt chosen by the robot gives the change in velocities. We execute the same paradigm

as before. The unlabeled motion planning is trained for a small number of robots. Then,

during inference time the filters learned for the small swarm are used across all the robots.

A snapshot of the performance of our algorithm can be seen in Fig 4.6.

4.5 discussion and guiding ideas 83

Figure 4.6: Large Scale Unlabelled Motion Planning in AirSim using GPG. Control to the
training algorithm is handed after robots are at a certain altitude. (L) During inference,
we use the trained filters to cover goals spread on the edges of a cube. (R) Goals to be
covered are spread along a W.

4.5 discussion and guiding ideas

So far, we have used the GPG method to achieve scalable decentralized solutions for

the full unlabelled motion planning problem. We show that GPG trained policies can be

transferred over to a larger number of robots and the solution computed is close to the

solution computed by a centralized oracle. This closes one of the threads of inquiry that

this thesis opened in Chapter 2 namely, can we learn a model free solution to the unlabeled

motion planning problem that improves over model based solutions but can also match up to model

based solutions when scaling to a larger team of robots. However, our solution(s) are far from

complete and make many assumptions. First and foremost, all the work in Chapter 2,3,4

assumes perfect information about the state of the local world. Further, we also assume

perfect communication rates even among local robots. Lastly, our solutions are purely

reactive as they have no notion of history, In the next chapter, we shall look to tackle some

of these assumptions and look to build perception-action-communication loops for teams

4.5 discussion and guiding ideas 84

of robots operating in environments where simple reactive policies can lead to catastrophic

collisions and failures.

5
L E A R N I N G D E C E N T R A L I Z E D

P E R C E P T I O N A C T I O N

C O M M U N I C AT I O N LO O P S

In the recent past, deep learning has played an immense role in advancing the state of the

art in robotics. Several papers have shown convolutional neural networks (CNNs) to be

immensely helpful when attempting to learn control policies directly from images for a

variety of tasks. For example, CNNs have been successfully used to learn policies for robot

arms [12], race drones [56], navigate robots in unknown environments [57]. While most of

these works deal with single robot scenarios, in our earlier Chapter 2-4 we demonstrated

how one might go about applying deep learning to learn scalable decentralized policies

for teams of robots albeit with simpler sensors or perfect state information. In this chapter,

we look to build upon the limitations of Graph Policy Gradients by attempting to learn

scalable decentralized policies for teams of robots operating in constrained environments

where each robot relies only on its own visual and inertial sensors and information from

its local neighbors. An example of this could be a team of robots traversing a forest or a

team of robots looking to navigate an obstacle course (5.1).

Consider the problem of learning to fly a team of quadrotors through a constrained

environment such as a forest or a series of checkpoints such as the one seen in Fig 5.1 where

each robot is only equipped with a front facing camera and an inertial measurement unit

(IMU). The robots are tasked with reaching a given goal waypoint. A somewhat plausible

first attempt might involve collecting ground truth data using an expert trajectory and

training a CNN policy for each robot. However, such an approach would fail to generalize

85

learning decentralized perception action communication loops 86

Figure 5.1: Learning Decentralized Perception Action Communication Loops for Robot Teams.
Relying only on onboard visual and inertial sensors, robots compute decentralized
control policies to fly through the constrained environment.

to a new obstacle course. Such a CNN policy would be completely reactive and possibly

produce degenerate solutions since at each timestep, the robot only senses a partial view

of the world and has no notion of where its neighbors are. If we were to assume robots can

also communicate with each other, the complexity of the problem increases since we must

now compute the correct subset of neighbors each robot must communicate with in order

to execute meaningful control actions. We would also need to take into account that each

robot only has a noisy estimate of its own position since IMUs/Visual Inertial Odometry

(VIO) systems are perceptible to drift over time. Alternatively, training the CNN policy for

each robot with reinforcement learning (RL) might negate the need for generating expert

trajectories and somewhat compensate for the noisy state information, but faces other

challenges such as the need for a large number of samples to train the policy, designing

a local reward function that is consistent with desired global behavior and challenges

in training with a large number of robots. We hypothesize that the problem of learning

scalable perception action loops for teams of robots can be solved by decomposing it into

two parts; 1) learning a robust perception model and 2) learning decentralized policies for

the team of robots by exploiting local structure among the robots.

learning decentralized perception action communication loops 87

Perception System In our proposed solution the perception model uses an off the shelf

convolutional neural network (CNN) to identify waypoints that each robot must navigate

to. A dataset of camera images and corresponding waypoints is computed by running

a trajectory planner for a single robot in a known environment during training time on

which the CNN is trained. It is also important to note that we only collect ground truth

data for one robot and train a single perception model that we aim to use across all robots

during inference.

Collaborative Decentralized Policies In order to learn decentralized control policies

for multiple robots using a central reward function, we propose using multi-agent RL

(MARL) to train our policy network. However, in order for the system to be scalable

to a large number of robots, we look to exploit the inherent graph structure among the

robots. In Chapters 3 and 4 we demonstrated that graph neural networks (GNNs) [33,

40] can be a good candidate to parameterize policies for robots as opposed to the fully

connected networks generally used in MARL. Define a graph G = (V, E) where V is

the set of nodes representing the robots and E is the set of edges defining relationships

between them. Similar to before, we define edges between robots based on proximity

relationships. This graph acts as a support for the data vector X = [x1, . . . , xN]⊤ where xn

is the output from the perception model combined with an estimated state representation

of robot n. The output of the GNN is interpreted as Π = [π1, . . . ,πN], where π1, . . . ,πN

are independent control policies for the robots. However, due to the dynamic nature of the

world where the robots are evolving in space and time, the underlying graph keeps and

robot n’s neighbors keep evolving. In order to produce robust control policies that work

with partial information, we propose a new memory GNN architecture that incorporates

a learned memory component at each node thus, maintaining a notion of history over

time. We look to demonstrate the efficacy of our proposed architecture in two scenarios, an

environment cluttered with trees where the robots are tasked with reaching goals at some

5.1 methodology 88

distance without colliding into each other or the trees and an environment populated with

checkpoints that the robots must traverse in the right order while avoiding collisions.

5.1 methodology

5.1.1 Preliminaries

We pose the problem of learning distributed perception action communication loops for

a team of robots as a policy learning problem in a collaborative Markov team [24]. The

team is composed of N robots generically indexed by n which at any given point in time

t occupy a position or pose pnt ∈ R3 in configuration space and must choose an action

ant ∈ A in action space. For the sake of notation, we drop the time index unless otherwise

specified.

At each time step robot n has access to an image In from a front facing camera. To

simulate communication, we also assume that robot n also has a fixed communication

radius ϵ and can communicate with at most k(k << N) nearest robots inside ϵ. Let the

information from these k nearest robot be represented as νννn = {v1, . . . , vk} where vk is

some information communicated by robot k to robot n. It is important to note that this

set of k nearest neighbors is not fixed since the robots are evolving in space and time and

the set of k robots closest to n can change from one timestep to another. Thus the state of

robot n at any given time can be given as xn = [In,νννn]. Given access to this robot state

xn, robot n chooses an e-dimensional action an ∈ Re that controls the pose of the robot

according to some unknown underlying dynamical model. To best capture the stochastic

nature of the dynamics model, the robot samples continuous actions an := πn(xn|an) from

a policy πn. Collectively, for the robot swarm we denote Π = [π1 . . . πN]. Additionally,

5.1 methodology 89

the team and environment are assumed to be Markovian. This means that if one were to

collect the robot configurations in the vector xt := [x1t, . . . , xNt]
⊤ and actions in the vector

at := [a1t, . . . , aNt] then, the evolution of the system is completely determined by some

conditional transition probability T (xt+1|xt, at). Each robot is tasked with navigating to

a goal in a collision free manner, i.e robot n must reach goal gn ∈ R3 in minimum time

and avoid collisions with other robots and other entities present in the environment. As

robots operate in the environment, they collect a centralized global reward rt. The objective

for the whole team is then to compute actions for all at := Π(at|xt) such that the expected

sum of rewards over some time horizon T is maximized:

N∑
n=1

max
θ

EΠ

[T∑
t

rt

]
(5.1)

where θ are the parameters of Π. In the next section, we introduce our modular approach

we call Graph Memory Policies (Fig 6.3) to learn Π that which consists of learning an

offline perception system and learning a distributed control policy scheme with limited

communication with nearby robots.

5.1.2 Perception System

Robot n is equipped with a front facing camera that at each timestep returns a 300× 200

image In. The perception subsytem takes in as input this camera image In and predicts a

desired direction that the robot must navigate to. The output of the perception system is

a two-dimensional vector that encodes the direction to the next waypoint in normalized

image co-ordinates. Estimating image coordinates helps eliminate the issues with drift that

creeps in when using global co-ordinates. This approach has been shown to be useful for

drone racing [58] with deep learning.

5.1 methodology 90

Figure 5.2: Modular Approach for Decentralized Perception Action Communications Loops for
Robot Teams The proposed decentralized solution to co-ordinate a team of robots in a
constrained environment with limited communication consists of two subsystems. Top
L The perception subsystem is trained offline for a single robot to predict waypoints that
the robot must navigate to. Top R The control subsystem uses a graph memory neural
network that takes in the prediction from the vision subsystem and communicates
with nearby robots to collaboratively fly through the obstacle course. Bottom State
computation in a single layer of a graph memory network with K = 4. The blue
blocks represent linear weights, red blocks represent non-linearity and the green block
represents a time shift. We stack multiple such layers and the output of the final layer
is Π.

The perception subsystem here uses a modified version of [59] and can be seen in 5.3.

The input to the perception system is a 32× 32 greyscale image and consists of two residual

blocks. The output of the perception system ĝt at time t is a two dimensional vector that

represents a goal that the robot should navigate towards. The perception system is trained

by minimizing the L2 error between the predicted ĝt and true label g̃t. The network is

trained using Adam and a learning rate of 1e− 3.

5.1 methodology 91

Figure 5.3: Perception System to Predict Waypoints. Left Full perception system to predict
waypoints. Right Individual Residual Blocks.

Figure 5.4: Data Collection.

5.1.3 Dataset Generation

In order to train the perception system we first need to collect a dataset D. To generate a

training dataset mapping images to intermediate goal positions, a global trajectory τ that

avoids obstacles and reaches the goal is computed by leveraging the work of [60]. This

trajectory planner takes in as input the start state of the robot, the final goal state, and

intermediate waypoints, see Fig 5.4 and produces a velocity profile/trajectory τ for the

robot to follow. The intermediate waypoints are selected randomly in free space or at the

center of a checkpoint. A receding horizon controller tracks this reference trajectory for a

single quadrotor. At any given time, the quadrotor’s pose is given by pt. Let ct ∈ R3 be the

pose closest to the quadrotor lying on the global trajectory τ. At every time t a desired goal

5.1 methodology 92

position gt which lies at distance d from pt, lies on the trajectory τ and is in the forward

direction with reference to ct is computed. Finally, the desired goal position gt is projected

into the image plane of the camera mounted on the front of the quadrotor to get the goal

co-ordinates in the image plane, g̃t which along with the camera image It is recorded

in the dataset; D := {It, g̃t}. In order to generalize to different obstacle courses and be

robust to other noise such as partial occlusions from other robots during inference, we

leverage domain randomization [61] and varying factors such as illumination, viewpoint,

background textures, etc are randomized and added to the dataset D. Let the perception

system be denoted by F(It) : It → g̃t produce a predicted goal coordinate ĝt ∈ [−1, 1]2,

given an image It. It is trained over the dataset D by minimizing ||ĝt − g̃t||2.

For the perception system, we need to train a system that takes in an image of the

environment and a representation of the goal and outputs a waypoint that drives the

robot towards the goal and avoids collisions with trees at the same time. Let the robots

start position given by pt0 and the final goal pose that the robot needs to get to be given

by ptT . We pick a collection of intermediate points [pt1 , . . . ,ptT−1
] that lie in free space.

By leveraging the work of [60] we generate a global trajectory τ that starts at pt0 passes

through these intermediate points and terminates at ptT . Computing this trajectory is a

centralized process, since we need to know the dimensions of the map/locations of the

trees to pick intermediate goal points that lie in free space. Once τ is generated, we use

a receding horizon controller to track τ. At every time instant, if the robots position is

pt, the closest point ct lying on τ is computed. Then, a desired goal position gt for time

t is generated by computing a point that is at a distance d from pt and in the forward

direction with reference to ct. Since, we care about predicting things in image co-ordinates,

we backproject this desired goal gt to the image plane and call it g̃t. This g̃t serves as the

label for the input image It at time t.

5.1 methodology 93

Dataset Generation for Environment with Gates

In the case of the environment with gates, we have a sequence of gates we would like

the robots to traverse in a specific sequence, i.e populated by a series of M of checkpoints

or gates G = {G1, G2, . . . , GM} such that the gates must be traversed in order, i.e G1 →

, G2,→ . . .GM by all N robots. Each gate Gm is defined as a square perpendicular to the

z-axis and is defined by a tuple ⟨−→nm,−→cm,hm⟩ where −→nm is the normal unit vector to the

gate plane, −→cm is the vector from the origin of the world to the center of the gate plane

and hm is the scalar height of the gate. A gate is said to be traversed by robot n with pose

pn(t) at some time t if the following conditions are met:

(−→pn(t) −−→cm).−→nm = 0 ∧ ||(−→pn(t) −−→cm)||1 ⩽ hm (5.2)

where ||.||1 is the L-1 norm of a vector. More formally, for each robot-gate pair we can

define a function

Fmn (t) = I

[
(−→pn(t) −−→cm).−→nm = 0∧ ||(−→pn(t) −−→cm)||1 ⩽ hm

]
(5.3)

where Fmn (t) = 1 when the two conditions for traversing a gate are satisfied. In this setting,

in order to generate τ, we set the intermediate goals to lie at the center of the gates. As

before, we generate a global trajectory that takes in as input the start position of the robots,

these intermediate goal points and the final goal point. A receding horizon controller

tracks this trajectory and we record intermediate image/desired goal position tuples as

before.

5.1 methodology 94

Domain Randomization

While generating the dataset D, we only consider the existence of a single robot. This

does not account for occlusions from other robots or lend adaptability to different courses.

Some examples of the different environments we consider can be seen below. For the

forest environment, we generate instances of an environment populated with trees in a

physics based simulator. Our choice of simulator here is [50] and we generate different

environment instances by varying the density of the trees and varying factors such as

illumination/time of day etc. For the environment with gates, we leverage the work in

drone racing [58] and add to the dataset by using environments from AirSim.

While the perception system outputs a series of waypoints given camera inputs that

drive the robot to the goal position, it does not take into account the existence of other

robots or constraints induced from team objectives. If each robot is given information about

the positions of all other robots, in theory it would be possible to design a collaborative

control policy for each robot. However, such a centralized scheme can become infeasible

due to communication constraints and the increase in dimensionality as the number of

robots increase. As such, we motivate the need for decentralized control policies for each

of the robots that relies only on local information from its own sensors and communication

from nearby neighbors to achieve a high level team wide objective. In the recent past, graph

neural networks have been shown to be a viable solution for designing local controllers

Figure 5.5: DataSet Collection. Left Dataset Instances for Collaborative Flight through Gates.
Right Dataset Instances for Collaborative Flight through Cluttered Environments.

5.1 methodology 95

for a large team of robots that maximize a high level team wide cost function [62, 63].

A drawback of these works is that they assume perfect state information and noiseless

communication among the robots. In this work, the controller operates on the outputs of

the perception system which are inherently noisy and we also look to operate the teams

of robots over longer horizons of time which necessitates the need for robust control

policies that have a notion of history. In the next sections, we introduce graph memory

neural networks and propose Graph Memory Policies (GMP) to learn perception-action-

communication loops for robots.

5.1.4 Graph Memory Networks and Graph Memory Policies

Consider a graph G = (V, E) described by a set of N nodes denoted V, and a set of

edges denoted E ⊆ V × V. This graph is considered as the support for a data signal

xt = [x1t, . . . , xNt]
⊤ where the value xnt is assigned to node n at time t. The relation

between xt and G is given by a a matrix S called the graph shift operator. The elements of

S given as sij respect the sparsity of the graph, i.e sij = 0, for all i ̸= j and (i, j) /∈ E.

Valid examples for S are the adjacency matrix, the graph laplacian, and the random walk

matrix. S defines a map yt = Sxt between graph signals that represents local exchange

of information between a node and its one-hop neighbors. More concretely, if the set of

neighbors of node n is given by Bn then ynt = [Sxt]n =
∑

j=n,j∈Bn
snjxnt. This operation

performs an aggregation of data at node n from its neighbors that are one-hop away at

time t. The aggregation of data at all nodes in the graph is denoted yt = [y1t, . . . ,yNt]. By

repeating this operation, one can access information from nodes located further away. For

5.1 methodology 96

example, yk
t = Skxt = S(Sk−1xt) aggregates information from its k-hop neighbors. Now

one can define the spectral K-localized graph convolution at time t as :

zt = σ
K∑

k=0

hkSkxt = σH(S)xt (5.4)

where H(S) =
∑K

k=0 hkSk is a linear shift invariant graph filter [45] with coefficients

hk, K is a user set parameter that defines how many hops we would like to aggregate

information over and similar to CNNs the output of the GCN is fed into a pointwise non-

linear function σ. To introduce memory at each node, we leverage the fact that the output

of a graph neural network is also a graph in itself. Thus, we assume that the state zt is in

itself a hidden nodal state. By defining another linear shift operator, B(S) =
∑K

k=0 bkSk

with coefficients bk, we can write the graph memory neural network (GMN) output as

zt = σ(H(S)xt + B(s)zt−1) (5.5)

This representation is similar to a recurrent neural network where a hidden state is updated

over a sequence while being provided with an input sequence and the output at any given

time t is computed by a linear combination of the hidden state at time t and the sequence

input at time t. A visual representation of a graph memory neural network can be seen in

Fig 6.3, bottom. In order to learn a Π that maximizes the reward in Eqn. 6.2, we propose

parameterizing Π with a Graph Memory Neural Network (GMN). More formally, let the

state of robot n at time be given as xnt = F(Int), i.e the output from the perception system.

The robots can be represented as a graph G with N nodes where each robot represents a

node in the graph and the edges are based on proximity relationships. This graph acts

as the support for the data vector xt = [x1t, . . . , xNt]. To compute the policies, a GMN

5.1 methodology 97

architecture with L layers is initialized. At each layer according to Eq.6.7, the output is

given as:

zl+1
t = σ

(
H(S)zl−1

t + B(s)zlt−1

)
(5.6)

where σ is a pointwise non-linear function, z0t = xt and zL = Π = [π1, . . . ,πN]. In

practice, the final layer outputs are parameters of Gaussian distributions from which actions

are sampled. Intuitively at every node, the GMN architecture aggregates information and

uses this information to compute policies. While rolling out a trajectory at each timestep t

each robot receives the same centralized reward rt (defined in Sec 5.2 and Sec 5.3) and

attempts to learn a policy that best optimizes this reward. It is assumed that the policies

for the robots are independent. The overall objective function function for all the robots as

given in Eq.6.2

J =

N∑
n=1

max
θ

EΠ

[T∑
t

rt

]
(5.7)

where θ now represents the filter weights of the GMN for Π. Consider a trajectory

τ = (x0, a0, . . . , xT, aT). Since the reward along a trajectory is the same for all robots and all

robot policies are assumed independent, using direct differentiation the policy gradient is

given as :

∇θJ = Eτ∼(π1,...,πN)

[(T∑
t=1

∇θ log[π1(a1t|x1t)

. . . πN(aNt|xNt)]
)(T∑

t=1

rt

)] (5.8)

The weights θ of the GMN, are then updated using any variant of stochastic gradient

descent. We call this algorithm Graph Memory Policies (GMP). In the next section we

demonstrate how GMP is able to learn meaningful policies in a variety of settings and

scenarios.

5.2 collaborative flight through a cluttered environment 98

5.2 collaborative flight through a cluttered environ-

ment

We test the ability of GMP to maneuver a team or robots through a cluttered outdoor

environment. Our choice of environment here is a simulated environment consisting of

trees that represent obstacles. The robot swarm is initialized in an open space with the

camera plane facing the direction of the goal heading.

Each robot is also assigned a goal at some distance. In this task, the state space of each

robot is appended to include the relative distance between robot’s current position and

goal position; i.e xnt = [Int,pnt −Gn] where Gn is the final goal assigned to robot n. The

graph G is constructed by considering each robot as a node and edges are added for robots

that are within ϵ distance of each other with a maximum degree of any node is capped at 3.

The perception subsystem F takes in as input the image Int and predicts an intermediate

waypoint ĝnt. The state space of robot n that is fed into the decentralized control system

is then represented as xnt = [ĝnt,pnt −Gn]. Our choice of state space representation is to

conserve the permutation invariance property as this can be useful when training for a

large number of robots with a graph neural network [64, 63]. To investigate the emergence

of interesting collaborative behaviors, we also enforce a region Ct ∈ R3, a region of fixed

size around the robots, in which the robots must be contained in at all times. To capture

this behavior, we design the following high level reward function

rt =

N∑
i=1

||pit −Gi||+ λ1

N∑
i=1

1Ct
(pit) − λ2

N∑
i=1

E(pit) (5.9)

where
∑N

i=1 1C(pit) is the indicator function that returns 1 if robot n is contained in region

C and 0 otherwise, E(pnt) returns a scalar value if robot n is in collision and λ1 and λ2 are

5.2 collaborative flight through a cluttered environment 99

positive hyper parameters. The same reward rt is given to all robots. We investigate the

results of GMP by comparing with a centralized baseline that has access to full information

about the state of all entities in the environment and the positions of all robots. The

centralized planner is an online planner that recomputes trajectories for all robots at every

time step. It does so by considering all other robots as an obstacle. While this centralized

baseline is by no means an optimal solution, it provides a good benchmark when the

robots are moving slowly enough or the time horizon for replanning is small enough.

10 Robots 25 Robots 35 Robots

CNN 8.23 18.81 29.07

GNN 3.95 10.52 16.45

GMP 1.51 4.4 9.37

Table 5.1: Number of collisions per robot for the forest environment. Results averaged over 50

runs.

For collaborative flight through a cluttered environment we reuse environments from

AirSim, a high fidelity physic simulator [50]. To experiment with varying levels of tree

coverage, we reuse the tree assets from the simulator and spawn them in a fixed area of

operation according to a random Poisson process. The robots start in a specific area of

the environment but do not have fixed starting positions. Similarly, goals are defined in

a specific area but are randomized between runs. The constraint region is defined as a

function of the number of the robots. Each robot is treated as a circular disk with radius, R.

If there exist N robots operating, then the dimensions of the constraints box are given as

2R(N+ 2)× 2R(N+ 2). Since the output of the robots is only in the XY plane, the existence

of such a constraint box necessitates team-wide collaboration. The centralized baseline is

generated by leveraging the work of [65] which is a search based planner for quadrotors.

By treating all the other robots and obstacles in the map as static, the centralized baseline

finds a valid trajectory for a time horizon dt. At the end of dt the search based planner

5.2 collaborative flight through a cluttered environment 100

recomputes a new trajectory with the new positions of the robots. We would like to point

out that such a method is only a hypothetical exercise for the sake of comparing the

learned methodologies with a clairvoyant that has access to all information but it would

be almost infeasible to execute on a real team of robots.

The maximum robot velocities are clamped depending on the number of robots present

in the configuration; for example, for a team of 5 robots, the max velocity is capped at

10m/s, for a team of 35 robots, the max velocity is clamped at 2.5 m/s (Please refer to

the appendix for more experimental details). The size of the constraint region is also

increased as we increase the size of the robot team. We set K = 3 for all our experiments;

i.e robots have access to information from neighbors 3 hops away. For all the runs, the

distance between start positions of the robots and goal positions is fixed; the length of

the cluttered forest remains the same at a distance of 100 meters. Results In the first

part, we consider time to clear the forest by GMP against the centralized baseline and

vary the density of trees/sq meter for different sizes of robot teams. The time to clear is

given by the sum of time taken to compute the plan and time taken to execute. For the

GMP method, at inference time, we only need to execute a forward inference through our

perception network and our graph memory network. For the centralized planner we need

to recompute the plan at each timestep. We observe that the centralized planner performs

well on small robot teams but the time taken to clear grows almost exponentially as the

number of robots increases (Fig 5.6 L). These results are averaged over 5 runs that are

collision free. Next, we compute the amount of time that the robots violate the constraint

region space and compare that with the centralized baseline method. We find that GMP

trades some efficiency in planning time for performance as the complexity of the system

grows (Fig 5.6 C). Lastly, to demonstrate the need for memory over a regular GNN, we

compare the time to clear by GMP vs a standard 2 layer GNN using the method introduced

in Chapter 3 with K = 3 that is trained on the same reward and policy gradient method

5.2 collaborative flight through a cluttered environment 101

as GMP. We observe that GMP produces better results than the GNN solution which has

no memory. It is important to note that though the GNN solution does worse than the

GMP solution, it does outperform than the centralized baseline method (Fig 5.6 R), thus

validating the emergence of local structure in our problem. Lastly, we bring to the readers

attention that the proposed methods here are not guaranteed to be collision free as they

are all learning based solutions. However, it has been shown in Chapter 2 and 4 that it is

easy enough to design a model based backup policy on top of a learning solution to get

empirically guaranteed collision free trajectories. Nonetheless, we compare the number

of collisions for our robots with the CNN policy (the output of the perception system

is directly transformed to control outputs), the GNN policy with no memory and GMP

policy in Table 5.1 to show that GMP produces solutions of a higher quality.

Figure 5.6: Collaborative Flight through a Cluttered Forest. Left Time taken by GMP as compared
to time taken by the centralized online planner to clear the forest. Here, time to clear is
the sum of planning time and execution time. As the complexity of the environment
grows, the online centralized planner has an exponential growth in time to clear. Center
Total time over all robots for which the area constraints are violated. Right Time taken
by GMP which has memory v/s a GNN which has no memory. The GNN solution
outperforms centralized planner, but produces slower solutions than GMP.

5.3 collaborative flight through gates 102

5.3 collaborative flight through gates

In the forest environment, each robot was assigned a specific goal to reach. In this

experiment, we look to investigate the feasibility of GMP to co-ordinate a team of robots

over a more abstract high level team wide objective; co-ordinating distances without

giving the robots a specific goal heading. In this section, we look to navigate a series of M

checkpoints without giving a specific heading to the robots. The checkpoints are arranged

similar to a drone racing course as seen in Fig 5.1 (right). The robots are tasked with

traversing as many checkpoints as possible in a given time T . Analogous to the setup in

Sec 5.2, the image captured by each robot is processed by the perception subsystem to

produce an intermediate goal waypoint ĝnt. The state space of robot n is xnt = [ĝnt].

10 Robots 25 Robots 35 Robots

CNN 4.2 3.3 0.8

GNN 15.6 13.24 10.96

GMP 21.1 18.88 16.3

Table 5.2: Number of gates traversed before collision. Results averaged over 50 runs.

We also enforce the existence of a constraint region Ct that the robots must operate in.

For this task we compute a score function Ut that at any given time t returns the number

of gates that have been traversed by all robots from 0 to t. For example, if all robots have

crossed the first gate at time t, then Ut+1 = 1. To capture the behavior, the reward function

for this task is given as:

rt = Ut + λ1

N∑
i=1

1Ct
(pit) − λ2

N∑
i=1

E(pit) (5.10)

where as before
∑N

i=1 1C(pit) is the indicator function that returns 1 if robot n is contained

in region C and 0 otherwise, E(pnt) returns a scalar value if robot n is in collision and λ1

5.3 collaborative flight through gates 103

and λ2 are positive hyper parameters. Just as before the maximum robot velocities are

capped differently based on the number of robots and we set K = 3 for all experiments.

Results Three courses are setup namely L1, L2 and L3. These primarily differ from each

other in terms of length in that L1 > L2 > L3. Additionally there also exist some variations

in offsets/distances between one set of gates to the other such that L1 is the easiest course

to traverse and L3 is the hardest course to traverse. (We refer the reader to the appendix

for more details). As before, we compare GMP with our centralized planner that runs an

online trajectory replanning at every timestep, by treating all other obstacles as fixed. In

this experiment, there exist significantly lesser number of obstacles that a robot can collide

with and the centralized planner produces results much better than those in the cluttered

forest . However, GMP is still able to outperform the centralized planner especially as the

number of robots grow due to the increased planning time required for the centralized

planner (see Fig 5.7 left). Similar to the experiment in the cluttered forest, the GMP method

trades some performance for optimality and violates the region constraints more often

than the centralized planner (see Fig 5.7 left). The last comparison exists between GMP and

a GNN solution with no memory. In this setting, we observe that the GMP gains over the

GNN solution while modest, exist nonetheless. As before, since all methods are learning

based methods and guarantee no collision free trajectories, we also analyze the number of

gates each method is able to traverse before any one of the robots collide in Table 5.2. In

this experiment, we setup a circular track and let the robots execute the policies until there

is a collision. We observe GMP is able to traverse a larger number of gates as compared to

the other methods before there is a collision.

5.3 collaborative flight through gates 104

Figure 5.7: Collaborative Flight through a Series of Gates. Left Time taken by GMP as compared
to time taken by the centralized online planner to clear the forest. Center Total time
robots violate area constraints. Right Time taken by GMP which has memory v/s a
GNN which has no memory.

5.3.1 Imperfect Communication

The limiting factor so far, is the assumption of instantaneous and perfect communication at

all times with the neighboring robots. In order to investigate the limits of this assumption,

we looks to vary the velocities of the robots and use that as a proxy for communication

rates. Our results can be found in Fig 5.8 (Left). We observe that the centralized baseline

performs well when the robots are moving slowly. However, when the robots are moving

faster, the performance of the system degrades. The replanning time horizon for the

centralized baseline does not change as the velocity of the robots is increased. While

the GNN and GMP solution also degrade as the velocity of the robots is increased, it is

observed that having memory significantly helps the system be more robust to violating

the bounding box constraints.

5.4 discussion and guiding ideas 105

Figure 5.8: Constraint violation in Seconds vs Velocities. Left Constraint Violation in seconds for
15 robots for goals at a distance of 100m. Right Constraint violation in seconds for 15

robots for a course consisting of 8 checkpoints for a total distance of 100m.

5.4 discussion and guiding ideas

This chapter introduces a novel methodology called Graph Memory Policies (GMP) that

computes decentralized perception-action-communication loops for teams of robots. GMP

leverages the use of CNNs to perceive the world and uses a novel graph recurrent network

architecture to encode past history while computing decentralized local policies. GMP

opens the door for many multi-robot collaborative applications that need to rely only on

decentralized information such as network coverage. In the next chapter, we shall leverage

GMP to build distributed large scale solutions for multi-robot coverage, where a team

of robots is tasked with following another team of robots by relying only on their visual

sensors and local communication.

6

L E A R N I N G D E C E N T R A L I Z E D

P E R C E P T I O N A C T I O N

C O M M U N I C AT I O N LO O P S F O R

M U LT I R O B OT C O V E R A G E

6.1 introduction

In Chapter 5, we introduced Graph Memory Policies to enable teams of robots to ac-

complish tasks collaboratively. However, most of the focus in the preceding chapter was

on a relatively simple task of navigating a cluttered space and mantaining a formation.

To investigate the ability of Graph Memory Policies to handle scale and complexity, we

now consider multi-robot coverage, a modified version of the unlabeled motion planning

problem that we first discussed in Chapter 2 and investigate if Graph Memory Policies

can offer a viable solution for the multi-robot coverage problem. In the coverage problem

considered here there exist a team of targets M and a team of robots N where N ⩽ M and

there exists no prior matching between robots and targets. The targets evolve according

to some unknown dynamics at each time step and the task of the robot team is to cover

as many robots as possible. In this work, we define coverage as a function of distance

between targets and robots and assume one robot can cover up to five targets at a given

time.

As in Chapter 5, the robots are only equipped with a front facing camera and an inertial

measurement unit (IMU). We choose this problem as there exist several interesting ideas

106

6.1 introduction 107

to investigate here. In the first version of the coverage problem, we initialize robots close

to targets and have the robots follow the targets around a structured environment. We

call this version of the multi-robot coverage problem Follow. In the Follow problem,

robots must adapt to sudden changes in behaviors of the target, for example groups of

targets might split up or come together in which case the robots must be able to adapt

their behaviors such that maximum coverage is achieved. By proposing a solution that

utilizes both Convolutional Neural Networks (CNNs) to detect cars, and Graph Neural

Networks with memory (GMP), we show that with the GMP solution, robot teams with

good initialization are able to closely follow and cover targets even when they exhibit

behaviors not seen during training.

In the second version of the problem, robots and targets are initialized randomly and

the robots are tasked with finding and covering as many targets as possible. We call this

flavor the coverage problem Fetch. This problem is interesting because it leverages the

local information flow through the graph of robots and forces robots that do not see any

targets to aggregate to robots that do see targets or move away from targets that are already

covered in the hope of finding new uncovered targets such that the team wide objective of

covering as many targets as possible is accomplished.

In the problems considered in the previous chapter(s), the solutions were often able to

transfer easily after training on a small number of robots and testing on a larger number of

robots. However, in the problems considered here that is not often the case. For example,

consider the Fetch problem where robots must explore the space to find the targets.

In this setting, the policy trained for say ten robots to find ten targets does not work

when attempting to infer on twenty robots attempting to search for twenty targets. The

reason being that when the twenty robots find the first ten targets, the task (for which

the policy was originally trained) is accomplished. One solution is to simply retrain the

team of twenty robots to cover twenty targets. Such an approach can get cumbersome

6.2 methodology 108

as training with a larger number of robots needs more training samples. However, we

show that when the policies are trained on a sufficiently large number of robots, it is

able to transfer to an even larger number of robots without requiring re-training. We

draw on key results from graphon signal processing [66] to explain large scale transfer.

A graphon is a bounded symmetric measurable function W : [0, 1]2 → [0, 1] that can be

thought of as an undirected graph with an uncountable number of nodes. This can be seen

by relating nodes i and j with points ui,uj ∈ [0, 1] and edges (i, j) with weights W(ui,uj).

The theorem in [66] shows that there exist bounds on the transferability of graph filters

between two deterministic graphs sampled from the same graphon. This result can be

leveraged to demonstrate transfer of policies for a complex behavior such as searching for

a large number of targets from a large number of robots (for example 50 robots searching

for 50 targets) to an even larger number of robots (for example 100 robots searching for

100 targets) with small loss in performance behavior as both the 50 robot graph and the

100 robot graph can be thought of as deterministic graphs belonging to the same "graphon

family".

6.2 methodology

6.2.1 Preliminaries

We pose the problem of learning multi-robot coverage for a team of robots as a policy

learning problem in a collaborative Markov team [24]. The team is composed of N robots

generically indexed by n which at any given point in time t occupy a position or pose

pnt ∈ R3 in configuration space and must choose an action ant ∈ A in action space. For

the sake of notation, we drop the time index unless otherwise specified. Let the targets

6.2 methodology 109

consist of M targets generically indexed by m which at any given point in time t occupy a

position or pose tmt ∈ R2. The positions of the targets evolve according to some unknown

dynamics f; i.e tmt+1 = f(tmt). The rest of the setup for the team of robots follows that of

Chapter 5.

At each time step robot n has access to an image In from a front facing camera. To

simulate communication, we also assume that robot n also has a fixed communication

radius ϵ and can communicate with at most k(k << N) nearest robots inside ϵ. Let the

information from these k nearest robot be represented as νννn = {v1, . . . , vk} where vk is

some information communicated by robot k to robot n. It is important to note that this

set of k nearest neighbors is not fixed since the robots are evolving in space and time and

the set of k robots closest to n can change from one timestep to another. Thus the state of

robot n at any given time can be given as xn = [In,νννn].

Given access to this robot state xn, robot n chooses an e-dimensional action an ∈ Re

that controls the pose of the robot according to some unknown underlying dynamical

model. To best capture the stochastic nature of the dynamics model, the robot samples

continuous actions an := πn(xn|an) from a policy πn. Collectively, for the robot swarm

we denote Π = [π1 . . . πN]. Additionally, the team and environment are assumed to be

Markovian. This means that if one were to collect the robot configurations in the vector

xt := [x1t, . . . , xNt]
⊤ and actions in the vector at := [a1t, . . . , aNt] then, the evolution of the

system is completely determined by some conditional transition probability T (xt+1|xt, at).

The team of robots is tasked with covering as many targets as possible in minimum

time and also avoid collisions with other robots and other entities in the environment. We

measure the target coverage as a utility function or reward function:

rt =

M∑
i=1

I{min
m

||pnt − tmt|| ⩽ δ} (6.1)

6.2 methodology 110

where I is the indicator function. In the case that all the targets are covered, rt = |M|.

The objective for the whole team is then to compute actions for all at := Π(at|xt) such that

the expected sum of rewards over some time horizon T is maximized:

max
θ

EΠ

[T∑
t

rt

]
(6.2)

where θ are the parameters of Π. In the next section, we introduce our modular approach

we demonstrate how Graph Memory Policies can be used to learn Π that which consists

of learning an offline perception system and learning a distributed control policy scheme

with limited communication with nearby robots. The only difference between the problem

considered here and the problem considered in the Chapter 5 is the design of vision

system. A snapshot of the problem considered in this paper can be visualized in fig 6.1.

Figure 6.1: Decentralized Perception Coverage by Robot Teams A team of aerial robots is tasked
with covering a team of targets. On the left a subset of targets are detected by a robot
(bounding boxes annotated in blue) and on the right a different subset of targets are
detected by another robot (annotated in orange). The team of robots must collaboratively
cover as many targets as possible. The targets are moving and the aerial robots have no
prior about how the targets are going to evolve in space and time.

6.3 perception system 111

6.3 perception system

6.3.1 Dataset Generation

We use the AirSim ([50]) simulator for all of our experiments. To generate the dataset for

training the object detection model to be used on each of the quadrotors, we employ a

setup with one moving quadrotor following behind a car target as seen in fig 6.1 as the

two navigate a number of waypoints in the environment. Additionally, many stationary

cars in various orientations lie on the paths traversed by the single moving quadrotor and

car. The quadrotor captures 640x480 resolution (configurable) images of the roads with a

single front-facing camera tilted 45 degrees downward. We add a number of disturbances

to the quadrotor’s waypoints in order to give it an erratic path that leads to a variety of

different positions of the target car in the quadrotor’s images. In this manner, we capture

3748 images. Out of these, 2001 were annotated for use in training. We augment the dataset

by using standard practices in computer vision such as mirroring the images and adding

small amounts of skew to result in a dataset that has about roughly 6000 training images.

In order to be able to adapt to a variety of scenarios, we employ domain randomization

where parameters such as the background textures and colors are randomized. A snapshot

of some of our training images can be seen in Fig 6.2

6.3.2 Training

We use an off-the-shelf object detection model on each of the n robots. Specifically, we

utilize a tiny Yolo-v3 model [67]. The network takes as input 640x480 images and outputs

feature vectors of shape 4500x6. Each row of this feature vector corresponds to the output

6.3 perception system 112

Figure 6.2: Dataset Generation for Perception System.

of a particular anchor box (i.e. there are 4500 anchor boxes in total). Of these anchors,

900 correspond to the 15x20 grid of larger anchor cells, and 3600 correspond to the 30x40

grid of smaller anchor cells. Each anchor cell corresponds to 3 anchor boxes with different

shape priors. The predictions gi of a given anchor box i are made relative to that anchor’s

prior information and then transformed into global image coordinates. The components of

a row gi of the output feature vector are outlined below:

gi =

(
xi yi wi hi oi ci

)
(6.3)

oi- Objectness score for a given anchor.

ci- Class probabilities for a given anchor.

xi- x-coordinate of anchor’s predicted box center.

6.3 perception system 113

yi- y-coordinate of anchor’s predicted box center.

wi- Width of the predicted box.

hi- Height of the predicted box.

Following [68], each anchor initially predicts bounding box location, width, and height

relative to its own position in the anchor grid as well as its own prior shape. However,

these intermediate outputs are transformed to give the final xi, yi,, wi, and hi. While

training we look to optimize the following multi-part loss function:

4500∑
i=1

1
obj
i (oi − ôi)

2+

λnoobj

4500∑
i=1

(1− 1obji)(oi − ôi)
2+

λcoord

4500∑
i=1

1
obj
i (xi − x̂i)

2 + (yi − ŷi)
2+

λcoord

4500∑
i=1

1
obj
i (wi − ŵi)

2 + (hi − ĥi)
2

λnoobj = 0.5, λcoord = 5

(6.4)

We begin by pre-training our tiny YOLO-v3 architecture on the COCO dataset. From there,

we fine-tune on our constructed dataset as seen in Fig 6.2. At inference time, we pick the

top k anchor boxes as relevant objects detected in the scene and pass the information to

the control subsystem. In this work, we set k to be 5.

In this work, while we use all components of gi to train the perception system, we only

pass the dimensions of the bounding box to the control system, i.e for a given output

feature vector gi, we only pass wi and hi to the control system. The reason for this being

that these are the only two dimensions in the output feature that are permutation invariant

6.3 perception system 114

and can be used to exploit permutation invariance in the GNN. Thus, the final output of

the perception system for robot n at any given time t is given as

ĝnt =
[
[w1,h1], . . . , [wk,hk]

]
(6.5)

6.3.3 Control System

We use the same graph memory network from Chapter 5 to build our decentralized control

system. We recommend skipping this section if the reader is already familiar with it from

Chapter 5.

Consider a graph G = (V, E) described by a set of N nodes denoted V, and a set of

edges denoted E ⊆ V × V. This graph is considered as the support for a data signal

xt = [x1t, . . . , xNt]
⊤ where the value xnt is assigned to node n at time t. The relation

between xt and G is given by a a matrix S called the graph shift operator. The elements of

S given as sij respect the sparsity of the graph, i.e sij = 0, for all i ̸= j and (i, j) /∈ E.

Valid examples for S are the adjacency matrix, the graph laplacian, and the random walk

matrix. S defines a map yt = Sxt between graph signals that represents local exchange

of information between a node and its one-hop neighbors. More concretely, if the set of

neighbors of node n is given by Bn then ynt = [Sxt]n =
∑

j=n,j∈Bn
snjxnt. This operation

performs an aggregation of data at node n from its neighbors that are one-hop away at

time t. The aggregation of data at all nodes in the graph is denoted yt = [y1t, . . . ,yNt]. By

repeating this operation, one can access information from nodes located further away. For

6.3 perception system 115

example, yk
t = Skxt = S(Sk−1xt) aggregates information from its k-hop neighbors. Now

one can define the spectral K-localized graph convolution at time t as :

zt = σ
K∑

k=0

hkSkxt = σH(S)xt (6.6)

where H(S) =
∑K

k=0 hkSk is a linear shift invariant graph filter [45] with coefficients

hk, K is a user set parameter that defines how many hops we would like to aggregate

information over and similar to CNNs the output of the GCN is fed into a pointwise non-

linear function σ. To introduce memory at each node, we leverage the fact that the output

of a graph neural network is also a graph in itself. Thus, we assume that the state zt is in

itself a hidden nodal state. By defining another linear shift operator, B(S) =
∑K

k=0 bkSk

with coefficients bk, we can write the graph memory neural network (GMN) output as

zt = σ(H(S)xt + B(s)zt−1) (6.7)

This representation is similar to a recurrent neural network where a hidden state is updated

over a sequence while being provided with an input sequence and the output at any given

time t is computed by a linear combination of the hidden state at time t and the sequence

input at time t. A visual representation of a graph memory neural network can be seen in

Fig 6.3, bottom. In order to learn a Π that maximizes the reward in Eqn. 6.2, we propose

parameterizing Π with a Graph Memory Neural Network (GMN). More formally, let the

state of robot n at time be given as xnt = F(Int), i.e the output from the perception system.

The robots can be represented as a graph G with N nodes where each robot represents a

node in the graph and the edges are based on proximity relationships. This graph acts

as the support for the data vector xt = [x1t, . . . , xNt]. To compute the policies, a GMN

6.3 perception system 116

architecture with L layers is initialized. At each layer according to Eq.6.7, the output is

given as:

zl+1
t = σ

(
H(S)zl−1

t + B(S)zlt−1

)
(6.8)

where σ is a pointwise non-linear function, z0t = xt and zL = Π = [π1, . . . ,πN]. In

practice, the final layer outputs are parameters of Gaussian distributions from which actions

are sampled. Intuitively at every node, the GMN architecture aggregates information and

uses this information to compute policies. While rolling out a trajectory at each timestep t

each robot receives the same centralized reward rt (defined in Sec 5.2 and Sec 5.3) and

attempts to learn a policy that best optimizes this reward. It is assumed that the policies

for the robots are independent. The overall objective function function for all the robots as

given in Eq.6.2

J =

N∑
n=1

max
θ

EΠ

[T∑
t

rt

]
(6.9)

where θ now represents the filter weights of the GMN for Π. Consider a trajectory

τ = (x0, a0, . . . , xT, aT). Since the reward along a trajectory is the same for all robots and all

robot policies are assumed independent, using direct differentiation the policy gradient is

given as :

∇θJ = Eτ∼(π1,...,πN)

[(T∑
t=1

∇θ log[π1(a1t|x1t)

. . . πN(aNt|xNt)]
)(T∑

t=1

rt

)] (6.10)

The weights θ of the GMN, are then updated using any variant of stochastic gradient

descent. We call this algorithm Graph Memory Policies (GMP). An overview of the

modified GMP system for the multi-robot coverage task can be seen in Fig

6.4 follow 117

Figure 6.3: Modular Approach for Multi-Robot Coverage The proposed decentralized solution to
co-ordinate a team of robots that follows a set of targets consists of two subsystems.
Top L The perception subsystem is trained offline for a single robot to predict bounding
boxes for targets in the environment that the robot must cover. Top R The control
subsystem uses a graph memory neural network that takes in the prediction from
the vision subsystem and communicates with nearby robots to collaboratively cover
as many targets as possible. Bottom State computation in a single layer of a graph
memory network with K = 4. The blue blocks represent linear weights, red blocks
represent non-linearity and the green block represents a time shift. We stack multiple
such layers and the output of the final layer is Π.

6.4 follow

In this task, the team of robots must follow a team of targets around a simulated city block

environment. The key assumption in this task is that the team of robots is initialized close

to the targets such that at least one of the targets is within the camera range of one of

the robots. In the next section we shall relax this assumption. The reason being that the

follow behavior requires a significantly different cost function from that described in Eqn.

6.2. In practice we also add additional terms to the cost function to penalize robots for

colliding into each other. Further, to make the problem a little more tractable, the robots

are constrained to R2 instead of R3.

6.4 follow 118

For this task during training we train on a small number of robots and transfer to a

larger number of robots during inference. Training on a larger swarm in this scenario offers

very little benefits during inference time. Additionally, we also model target behaviors

such as splitting up and regrouping but do not necessarily train on these models, instead

choosing to directly test on them during inference. In this work, the velocities of the targets

and the robots are kept the same. In the case that the targets are significantly faster than

the robots following them, the problem produces intractable results. A qualitative snapshot

of our results can be seen in Fig 6.4

Figure 6.4: Multi-Robot Coverage On the top, the figure on the left represents a top down view of
our environment in which we test our robots. Targets are constrained to move on the
road while robots are free to move anywhere 5 meters above the ground plane. On the
bottom, we visualize the behavior of the robots over time (left to right) and observe the
robots are able to split up and cover the targets even when the robots have not been
trained to cover splitting behaviors in the targets.

In addition to the qualitative results, we also demonstrate a quantitative plot for differing

number of targets (cars) vs. targets which can be seen in Fig 6.5 We observe that even as

6.5 fetch and large scale transferance with graphons 119

Figure 6.5: Coverage Percentage for Robots Vs. Cars

the number of target cars are increased the robots are able to co-ordinate behaviors by

splitting into groups to best cover as many target cars as possible and as such can conclude

that GMP offers a viable solution for multi-robot coverage where robots are equipped only

with a front facing camera and an IMU while making no assumptions about the dynamics

of robots or cars or structure of the environment.

6.5 fetch and large scale transferance with graphons

In the last section, we demonstrated a follow behavior where robots collaboratively cover a

team of targets around a simulated environment. One of the assumptions in the follow

behavior was that the robots have a good initialization, i.e the robots are initialized close to

the targets such that atleast one of the target cars are within the visual frame of one of the

robots. The reason being that the loss function used for the follow behavior trasnfers very

well from a small number of robots to a larger number of robots since the cost function

is invariant to the number of targets operating in the environment. In this section, we

consider a slightly different problem, the robots are randomly initialized in the space as are

6.5 fetch and large scale transferance with graphons 120

the targets without any assumptions about the initialization. This problem is significantly

different from the unlabeled motion planning problem where the robots were given a

representation of nearest goals. Instead in this problem the robots are only presented with

an image representation of their environment which may or may not have a target car

detected.

Now in this setting, the robots must explore the environment to find targets and either

do one of two things; co-ordinate neighboring robots to navigate to their position if

the number of targets and/or communicate with other robots to continue searching the

environment for other targets. However, this cost function is no longer invariant to the

number of targets operating in the environment; i.e a cost function that optimizes search

for 10 robots is different from a cost function that optimizes search for say 50 robots. In

such a setting, our policies no longer transfer after training from a small number of robots

to a larger number of robots.

However, to overcome this difficulty in transferring policies, we instead look to draw

recent results from the field of graphon signal processing [66]. A graphon is a bounded

symmetric measurable function W : [0, 1]2 → [0, 1] that can be thought of as an undirected

graph with an uncountable number of nodes. This can be seen by relating nodes i and

j with points ui,uj ∈ [0, 1] and edges (i, j) with weights W(ui,uj). This construction

allows us to have a limit object interpretation for W, letting us define a sequence of graphs

{Gn}
∞
n=1 that converge to W [69]. We briefly explain how one can relate multiple graphs

through a graphon in the next two sections.

Graph Homomorphisms

Consider a graph G as a set of vertices V(G) and a set of edges E(G) between the vertices

(excluding loops and multiple edges). Similarly define another graph H with vertices

V(H) and edges E(H). A graph homomorphism from a different graph H to graph G is

6.5 fetch and large scale transferance with graphons 121

defined as a map from V(H) to V(G) that preserves edge adjacency; i.e for every edge

{v,w} in E(H) the edge {ψ(v),ψ(w)} exists in E(G). The total number of possible maps

from H to G can be given as |V(G)||V(H)|. However, it is possible that not all of these maps

are homomorphisms/only some of them are. Let the number of homomorphisms between

H and G be denoted by hom(H,G)

We define homomorphism density of H into G as

t(H,G) =
hom(H,G)
|V(G)||V(H)|

(6.11)

Intuitively, t(H,G) gives us the probability that a randomly chosen map from V(H) to

V(G) preserves edge adjacency.

Graphons as graph limit objects

It is possible to define sequences of graphs {Gn}
∞
n=1 where n = |V(G)| is the number of

nodes in G. The graphon homomorphism can be given similar to those for graphs. Let

t(F, W) be the density of homomophisms of graph F into graphon W, then a sequence of

{Gn} converges to the graphon W if, for all finite unweighted and undirected graphs F;

lim
n→∞ t(F,Gn) = t(F, W) (6.12)

Thus, a graphon identifies a collection of graphs and regardless of the size of the graphs,

these graphs can be considered similar in the sense that they belong to the same graphon

family. The work of [66] builds on this result and shows that if two graphs are similar

to each other in the sense that they belong to the same graphon family, then the GNNs

trained on each of the graphs also exhibit some degree of transferability (or similarity).

More formally, the theorem in [66] states that:

6.5 fetch and large scale transferance with graphons 122

Theorem 3. Ruiz. et al Let ϕ(G) be a GNN with fixed parameters. Let Gn1 and Gn2 be

deterministic graphs with n1 and n2 nodes obtained from a graphon W. Then, under mild

conditions,

||ϕ(Gn1
) −ϕ(Gn2

|| = O(n−0.5
1 +n−0.5

2)

We point the reader to [66] for a full proof of the theorem. We utilize this theorem

to construct results for the fetch behavior for large teams of robots. Consider a graph

Gn1
of robots constructed by considering the n1 robots as nodes of the graph and edges

populated on distance based rules. Similarly consider another graph Gn2
consisting of n2

robots. Theorem 3 tells us that the GNN trained for n1 robots can transfer (mildly) to the

GNN trained on n2 robots if both graphs Gn1
and Gn2

belong to the same family of graphs

generated by an underlying graphon. Since the robots themselves are all homogeneous

and unchanged (i.e the nodes of the graphs are unchanged) and the local topology of

the graph remains unchanged (i.e edge connectivity rules are same for both graphs),

we can informally hypothesize that both robot graphs Gn1
and Gn2

belong to the same

graphon family and thus, the GNN policies trained on one of them must work well within

some bounds on the other. A rigorous mathematical proof would require proving the

graphon signal formed by an infinite number of robots is continuous and would also

require extending the result of [66] to a graph memory network and is beyond the scope

of this thesis and we leave this for future work. We empirically verify our hypothesis by

looking at the qualitative and quantitative results for the fetch behavior below in Fig ?? and

Fig 6.7 respectively.

We observe from Fig 6.7 that at inference time the policy trained on the larger number

of robots when transferred over to an even larger number at inference time, the dropoff in

performance starts reducing as expected from Theorem 3. It is important to note here that

6.5 fetch and large scale transferance with graphons 123

Figure 6.6: Fetch Behavior for Multi-Robot Coverage (Qualitative) On the top, the figure on the
left represents a top down view of our environment in which we test our robots. Targets
are constrained to move on the road while robots are free to move anywhere 5 meters
above the ground plane. On the bottom, we visualize the behavior of the robots over
time (left to right) and observe the robots are able to cover most of the targets during
inference.

this result is not just valid to the fetch problem considered here but in fact applies almost

all problems considered in this body of work. Other problems considered in this work

such as collaborative flying or co-operative unlabeled motion planning were designed to

be invariant to the number of robots by careful design of each robots state space and the

cost function and as such the policy trained on a smaller number of robots would easily

transfer over to a larger number of robots at inference time. In the fetch problem, while the

state space of each robot is still permutation invariant, the cost is no longer permutation

invariant. As such, the results here can be applied to other problems considered in this

thesis without having to carefully design a cost function.

6.6 discussion and guiding ideas 124

Figure 6.7: Fetch Behavior for Multi-Robot Coverage (Quantitative Results)

6.6 discussion and guiding ideas

In this chapter, we investigate another body of problems namely the multi-robot coverage

problem and a modified version of the problem that we call fetch. In both versions of the

problem the robots have access only to their camera image and can communicate with

nearby neighbors. For the coverage problem, we are able to demonstrate good performance

with the graph memory network and can demonstrate the behaviors transfer to a larger

number of robots even when the number of targets at inference time are increased. Further,

the graph memory network is able to learn policies that can adapt to behaviors in the

target cars at inference time such as splitting and regrouping which are not seen during

training. The fetch problem increases the complexity of the problem posed to the graph

memory network due to the non-ease in designing a permutation invariant cost function.

Due to this limitation, when looking to scale to a large number of robots, we would have

to retrain our policy thus bringing us back to some of the issues with training a large

number of robots at the same time as discussed in Chapter 2. Instead, we show that the

GNN results can still be adapted to a larger number of robots without having to train on it

due to the existence of an underlying graphon that relates the smaller sized robot graph at

6.6 discussion and guiding ideas 125

train time to the much larger robot graph at test time. While this represents another step

forward in designing large scale model free solutions for robot teams, a mathematically

rigorous proof for the existence of the underlying graphon tying the two graphs is still

required.

7 C O N C L U S I O N

In this work, we introduce the use of model free decentralized solutions for multi-robot

problems as a way of generating approximate solutions for otherwise intractable problems.

A caveat of model-free solutions is the need for a large number of samples to learn a

solution. This problem is compounded when we wish to look at model-free learning

solutions for large robot teams. In machine learning, this is the well known curse of

dimensionality. However, in this work we demonstrate that by leveraging repeating local

structures in large teams of robots and by thoughtful design of policy parametrizations

and cost functions we can learn decentralized solutions for teams of robots to achieve a

wide variety of tasks.

In Chapter 2, we investigate the use of vanilla off the shelf model free algorithms to

demonstrate feasibility of learning a decentralized solution by using a global cost function.

This approach while yields good results, is extremely limited in its scope and cannot be

extended to a larger number of robots. One of the significant ideas or innovation(s) in

this work, is to instead use a graph neural network to parameterize the policy represen-

tation for the robots to leverage repeating local structure among the robots. The use of

a graph neural network requires a careful design of the state space for each robot and

the cost function to ensure that both are permutation invariant. Over Chapter 3 and 4 we

analyze the efficacy of using a graph neural network without for collaborative control and

unlabeled motion planning albeit assuming perfect state information and instantaneous

lossless communication. In Chapter5 we further increase the complexity of the problem by

126

conclusion 127

introducing a noisy perception sensor as the input to the policy network. Additionally, we

demonstrate the need for memory in real world situations when coordinating robots faced

with noisy perception and fast motion through environments that require non-reactive

behaviors. Lastly, in chapter 6, we drop the need for a permutation invariant cost function

and demonstrate that our key ideas of transferring results between a small number of

robots at training time and a larger number of robots during inference time still hold due

to the existence of an underlying relationship between the two robot graphs.

While the science of using graph neural networks and machine learning to design

solutions for multi-robot teams is still in its infancy, we hope that future research can build

on ideas from graph neural networks to design complex policies that can be executed

by large swarms of low-cost robots to automate hazardous tasks such as construction

(unlabeled motion-planning), forest fire-fighting (navigating a dense cluttered outdoor

environment with limited perception and communication), window washing (coverage),

at an economical cost.

B I B L I O G R A P H Y

[1] Javier Alonso-Mora, Stuart Baker, and Daniela Rus. “Multi-robot navigation in

formation via sequential convex programming.” In: Intelligent Robots and Systems

(IROS), 2015 IEEE/RSJ International Conference on. IEEE. 2015, pp. 4634–4641.

[2] Jaydev P Desai, James P Ostrowski, and Vijay Kumar. “Modeling and control of

formations of nonholonomic mobile robots.” In: IEEE transactions on Robotics and

Automation 17.6 (2001), pp. 905–908.

[3] John Enright and Peter R Wurman. “Optimization and Coordinated Autonomy in

Mobile Fulfillment Systems.” In: 2011.

[4] Ross A Knepper, Todd Layton, John Romanishin, and Daniela Rus. “Ikeabot: An

autonomous multi-robot coordinated furniture assembly system.” In: Robotics and

Automation (ICRA), 2013 IEEE International Conference on. IEEE. 2013, pp. 855–862.

[5] J. Stephan, J. Fink, V. Kumar, and A. Ribeiro. “Concurrent Control of Mobility and

Communication in Multirobot Systems.” In: IEEE Transactions on Robotics 33.5 (2017),

pp. 1248–1254.

[6] David Saldana, Reza Javanmard Alitappeh, Luciano CA Pimenta, Renato Assunçao,

and Mario FM Campos. “Dynamic perimeter surveillance with a team of robots.”

In: Robotics and Automation (ICRA), 2016 IEEE International Conference on. IEEE. 2016,

pp. 5289–5294.

[7] Kiril Solovey and Dan Halperin. “On the hardness of unlabeled multi-robot motion

planning.” In: The International Journal of Robotics Research 35.14 (2016), pp. 1750–1759.

128

bibliography 129

[8] Shayegan Omidshafiei, Ali-Akbar Agha-Mohammadi, Christopher Amato, and

Jonathan P How. “Decentralized control of partially observable markov decision

processes using belief space macro-actions.” In: Robotics and Automation (ICRA), 2015

IEEE International Conference on. IEEE. 2015, pp. 5962–5969.

[9] Paul Spirakis and Chee K Yap. “Strong NP-hardness of moving many discs.” In:

Information Processing Letters 19.1 (1984), pp. 55–59.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, and Martin Riedmiller. “Playing atari with deep reinforcement learn-

ing.” In: arXiv preprint arXiv:1312.5602 (2013).

[11] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-

thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. “Asynchronous

methods for deep reinforcement learning.” In: International Conference on Machine

Learning. 2016, pp. 1928–1937.

[12] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. “End-to-end training

of deep visuomotor policies.” In: arXiv preprint arXiv:1504.00702 (2015).

[13] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. “Curiosity-

driven Exploration by Self-supervised Prediction.” In: arXiv preprint arXiv:1705.05363

(2017).

[14] Arbaaz Khan, Clark Zhang, Nikolay Atanasov, Konstantinos Karydis, Vijay Ku-

mar, and Daniel D Lee. “Memory augmented control networks.” In: International

Conference on Learning Representations (2018).

[15] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra

Malik. “Cognitive mapping and planning for visual navigation.” In: arXiv preprint

arXiv:1702.03920 (2017).

bibliography 130

[16] Aviv Adler, Mark De Berg, Dan Halperin, and Kiril Solovey. “Efficient multi-robot

motion planning for unlabeled discs in simple polygons.” In: Algorithmic Foundations

of Robotics XI. Springer, 2015, pp. 1–17.

[17] Patrick MacAlpine, Eric Price, and Peter Stone. “SCRAM: Scalable collision-avoiding

role assignment with minimal-makespan for formational positioning.” In: Twenty-

Ninth AAAI Conference on Artificial Intelligence. 2015.

[18] Jingjin Yu and M LaValle. “Distance optimal formation control on graphs with a

tight convergence time guarantee.” In: Decision and Control (CDC), 2012 IEEE 51st

Annual Conference on. IEEE. 2012, pp. 4023–4028.

[19] Matthew Turpin, Nathan Michael, and Vijay Kumar. “Capt: Concurrent assignment

and planning of trajectories for multiple robots.” In: The International Journal of

Robotics Research 33.1 (2014), pp. 98–112.

[20] Jingjin Yu and Steven M LaValle. “Multi-agent path planning and network flow.” In:

Algorithmic foundations of robotics X. Springer, 2013, pp. 157–173.

[21] Matthew Turpin, Kartik Mohta, Nathan Michael, and Vijay Kumar. “Goal assignment

and trajectory planning for large teams of interchangeable robots.” In: Autonomous

Robots 37.4 (2014), pp. 401–415.

[22] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mor-

datch. “Multi-agent actor-critic for mixed cooperative-competitive environments.”

In: Advances in Neural Information Processing Systems. 2017, pp. 6379–6390.

[23] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi-

mon Whiteson. “Counterfactual multi-agent policy gradients.” In: arXiv preprint

arXiv:1705.08926 (2017).

[24] Michael L Littman. “Markov games as a framework for multi-agent reinforcement

learning.” In: Machine Learning Proceedings 1994. Elsevier, 1994, pp. 157–163.

bibliography 131

[25] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. “Continuous control with deep rein-

forcement learning.” In: arXiv preprint arXiv:1509.02971 (2015).

[26] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. Vol. 1.

1. MIT press Cambridge, 1998.

[27] Ming Tan. “Multi-agent reinforcement learning: Independent vs. cooperative agents.”

In.

[28] Paolo Fiorini and Zvi Shiller. “Motion planning in dynamic environments using

velocity obstacles.” In: The International Journal of Robotics Research 17.7 (1998), pp. 760–

772.

[29] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. “Reciprocal

n-body collision avoidance.” In: Robotics research. Springer, 2011, pp. 3–19.

[30] Javier Alonso-Mora, Andreas Breitenmoser, Martin Rufli, Paul Beardsley, and Roland

Siegwart. “Optimal reciprocal collision avoidance for multiple non-holonomic robots.”

In: Distributed Autonomous Robotic Systems. Springer, 2013, pp. 203–216.

[31] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

“Proximal policy optimization algorithms.” In: arXiv preprint arXiv:1707.06347 (2017).

[32] Jur Van den Berg, Ming Lin, and Dinesh Manocha. “Reciprocal velocity obstacles for

real-time multi-agent navigation.” In: 2008 IEEE International Conference on Robotics

and Automation. IEEE. 2008, pp. 1928–1935.

[33] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convo-

lutional networks.” In: arXiv preprint arXiv:1609.02907 (2016).

bibliography 132

[34] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado

Van Hasselt, and David Silver. “Distributed prioritized experience replay.” In: arXiv

preprint arXiv:1803.00933 (2018).

[35] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom

Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. “Impala: Scalable

distributed deep-rl with importance weighted actor-learner architectures.” In: arXiv

preprint arXiv:1802.01561 (2018).

[36] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg,

Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica. “RLlib: Abstractions for

Distributed Reinforcement Learning.” In: International Conference on Machine Learning

(ICML). 2018.

[37] Arbaaz Khan, Clark Zhang, Daniel D Lee, Vijay Kumar, and Alejandro Ribeiro. “Scal-

able Centralized Deep Multi-Agent Reinforcement Learning via Policy Gradients.”

In: arXiv preprint arXiv:1805.08776 (2018).

[38] Javier Alonso-Mora, Paul Beardsley, and Roland Siegwart. “Cooperative collision

avoidance for nonholonomic robots.” In: IEEE Transactions on Robotics 34.2 (2018),

pp. 404–420.

[39] Fernando Gama, Antonio G Marques, Geert Leus, and Alejandro Ribeiro. “Convo-

lutional neural network architectures for signals supported on graphs.” In: IEEE

Transactions on Signal Processing 67.4 (2018), pp. 1034–1049.

[40] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S Yu. “A comprehensive survey on graph neural networks.” In: arXiv preprint

arXiv:1901.00596 (2019).

[41] Fernando Gama, Joan Bruna, and Alejandro Ribeiro. “Stability of Graph Scattering

Transforms.” In: arXiv preprint arXiv:1906.04784 (2019).

bibliography 133

[42] Matthew Turpin, Nathan Michael, and Vijay Kumar. “Trajectory design and control

for aggressive formation flight with quadrotors.” In: Autonomous Robots 33.1-2 (2012),

pp. 143–156.

[43] Matthew Turpin, Nathan Michael, and Vijay Kumar. “Decentralized formation

control with variable shapes for aerial robots.” In: 2012 IEEE international conference

on robotics and automation. IEEE. 2012, pp. 23–30.

[44] Vijay Kumar and Nathan Michael. “Opportunities and challenges with autonomous

micro aerial vehicles.” In: The International Journal of Robotics Research 31.11 (2012),

pp. 1279–1291.

[45] Santiago Segarra, Antonio G Marques, and Alejandro Ribeiro. “Optimal graph-

filter design and applications to distributed linear network operators.” In: IEEE

Transactions on Signal Processing 65.15 (), pp. 4117–4131.

[46] Michael M Zavlanos, Ali Jadbabaie, and George J Pappas. “Flocking while preserving

network connectivity.” In: 2007 46th IEEE Conference on Decision and Control. IEEE.

2007, pp. 2919–2924.

[47] Brent Schlotfeldt, Dinesh Thakur, Nikolay Atanasov, Vijay Kumar, and George J Pap-

pas. “Anytime planning for decentralized multirobot active information gathering.”

In: IEEE Robotics and Automation Letters 3.2 (2018), pp. 1025–1032.

[48] Jonathan Ko, Benjamin Stewart, Dieter Fox, Kurt Konolige, and Benson Limketkai.

“A practical, decision-theoretic approach to multi-robot mapping and exploration.”

In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS 2003)(Cat. No. 03CH37453). Vol. 4. IEEE. 2003, pp. 3232–3238.

[49] Howie Choset. “Coverage for robotics–A survey of recent results.” In: Annals of

mathematics and artificial intelligence 31.1-4 (2001), pp. 113–126.

bibliography 134

[50] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. “Airsim: High-

fidelity visual and physical simulation for autonomous vehicles.” In: Field and service

robotics. Springer. 2018, pp. 621–635.

[51] Danijar Hafner, James Davidson, and Vincent Vanhoucke. “TensorFlow Agents: Effi-

cient Batched Reinforcement Learning in TensorFlow.” In: arXiv preprint arXiv:1709.02878

(2017).

[52] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mor-

datch. “Multi-agent actor-critic for mixed cooperative-competitive environments.”

In: Advances in Neural Information Processing Systems. 2017, pp. 6382–6393.

[53] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and

Shimon Whiteson. “Counterfactual multi-agent policy gradients.” In: Thirty-Second

AAAI Conference on Artificial Intelligence. 2018.

[54] Emilio Parisotto, Soham Ghosh, Sai Bhargav Yalamanchi, Varsha Chinnaobireddy,

Yuhuai Wu, and Ruslan Salakhutdinov. “Concurrent Meta Reinforcement Learning.”

In: arXiv preprint arXiv:1903.02710 (2019).

[55] Jiechuan Jiang, Chen Dun, and Zongqing Lu. “Graph convolutional reinforcement

learning for multi-agent cooperation.” In: arXiv preprint arXiv:1810.09202 (2018).

[56] Antonio Loquercio, Elia Kaufmann, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun,

and Davide Scaramuzza. “Deep Drone Racing: From Simulation to Reality with

Domain Randomization.” In: IEEE Transactions on Robotics (2019). doi: 10.1109/TRO.

2019.2942989.

[57] Lingyan Ran, Yanning Zhang, Qilin Zhang, and Tao Yang. “Convolutional neural

network-based robot navigation using uncalibrated spherical images.” In: Sensors

17.6 (2017), p. 1341.

https://doi.org/10.1109/TRO.2019.2942989
https://doi.org/10.1109/TRO.2019.2942989

bibliography 135

[58] Antonio Loquercio, Elia Kaufmann, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun,

and Davide Scaramuzza. “Deep Drone Racing: From Simulation to Reality with

Domain Randomization.” In: IEEE Transactions on Robotics (2019). doi: 10.1109/TRO.

2019.2942989.

[59] Antonio Loquercio, Ana I. Maqueda, Carlos R. del Blanco, and Davide Scaramuzza.

“DroNet: Learning to Fly by Driving.” In: IEEE Robotics and Automation Letters 3.2

(2018), pp. 1088–1095. doi: 10.1109/LRA.2018.2795643.

[60] D. Mellinger and V. Kumar. “Minimum snap trajectory generation and control for

quadrotors.” In: 2011 IEEE International Conference on Robotics and Automation. 2011,

pp. 2520–2525. doi: 10.1109/ICRA.2011.5980409.

[61] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter

Abbeel. “Domain randomization for transferring deep neural networks from simula-

tion to the real world.” In: 2017 IEEE/RSJ international conference on intelligent robots

and systems (IROS). IEEE. 2017, pp. 23–30.

[62] Arbaaz Khan, Ekaterina Tolstaya, Alejandro Ribeiro, and Vijay Kumar. “Graph Policy

Gradients for Large Scale Robot Control.” In: arXiv preprint arXiv:1907.03822 (2019).

[63] Arbaaz Khan, Vijay Kumar, and Alejandro Ribeiro. “Large Scale Distributed Collab-

orative Unlabeled Motion Planning With Graph Policy Gradients.” In: IEEE Robotics

and Automation Letters 6.3 (2021), pp. 5340–5347.

[64] Arbaaz Khan, Chi Zhang, Shuo Li, Jiayue Wu, Brent Schlotfeldt, Sarah Y Tang,

Alejandro Ribeiro, Osbert Bastani, and Vijay Kumar. “Learning Safe Unlabeled

Multi-Robot Planning with Motion Constraints.” In: arXiv preprint arXiv:1907.05300

(2019).

https://doi.org/10.1109/TRO.2019.2942989
https://doi.org/10.1109/TRO.2019.2942989
https://doi.org/10.1109/LRA.2018.2795643
https://doi.org/10.1109/ICRA.2011.5980409

bibliography 136

[65] Sikang Liu, Kartik Mohta, Nikolay Atanasov, and Vijay Kumar. “Search-based

motion planning for aggressive flight in se (3).” In: IEEE Robotics and Automation

Letters 3.3 (2018), pp. 2439–2446.

[66] Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. “Graphon neural networks and

the transferability of graph neural networks.” In: Advances in Neural Information

Processing Systems 33 (2020).

[67] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement.” In: arXiv

(2018).

[68] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You only look

once: Unified, real-time object detection.” In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2016, pp. 779–788.

[69] Christian Borgs, Jennifer T Chayes, László Lovász, Vera T Sós, and Katalin Veszter-

gombi. “Convergent sequences of dense graphs I: Subgraph frequencies, metric

properties and testing.” In: Advances in Mathematics 219.6 (2008), pp. 1801–1851.

	Graph Convolutions For Teams Of Robots
	Recommended Citation

	Graph Convolutions For Teams Of Robots
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories

	Acknowledgements
	Abstract
	List of Illustrations
	List of Tables
	1 Introduction
	2 Reinforcement Learning for Teams of Robots
	2.1 Background and Problem Formulation
	2.2 Learning Unlabeled Multi-Robot Planning
	2.2.1 Markov Games for Multi-Robot Planning
	2.2.2 Learning Policies for Continuous Actions
	2.2.3 Learning Continuous Policies for Multiple Robots
	2.2.4 Model Based Backup Policies for Safety

	2.3 Experimental Results
	2.3.1 Experimental Setup Details
	2.3.2 Simulation Results

	2.4 Discussion
	2.4.1 Caveats
	2.4.2 Guiding Ideas

	3 Graph Policy Gradients for Large Scale Robot Control
	3.1 Methodology
	3.1.1 Preliminaries
	3.1.2 Graph Neural Networks
	3.1.3 Permutation Equivariance of Graph Convolutional Networks
	3.1.4 Formation Flying
	3.1.5 Graph Policy Gradients

	3.2 Experiments
	3.2.1 Training for Point Mass Formation Flying with GPG
	3.2.2 Zero Shot Policy Transfer for Formation Flying
	3.2.3 Complex dynamics and control

	3.3 Hyperparameters
	3.4 Related Work
	3.5 Discussion and Guiding Ideas

	4 Graph Policy Gradients for Large Scale Unlabeled Motion Planning
	4.1 Distributed Collaborative Unlabeled Motion Planning
	4.2 Graph Policy Gradients for Distributive Unlabeled Motion Planning
	4.3 Permutation Invariance of GNN Policy parameterizations
	4.3.1 Equivariance of GNNs for Unlabeled Motion Planning
	4.3.2 Equivariance of Unlabeled Motion Planning

	4.4 Experiments
	4.4.1 Experimental Results - Inference
	4.4.2 Comparison to Centralized Model Based Methods
	4.4.3 High Order Dynamics

	4.5 Discussion and Guiding Ideas

	5 Learning Decentralized Perception Action Communication Loops
	5.1 Methodology
	5.1.1 Preliminaries
	5.1.2 Perception System
	5.1.3 Dataset Generation
	5.1.4 Graph Memory Networks and Graph Memory Policies

	5.2 Collaborative flight through a Cluttered Environment
	5.3 Collaborative Flight through Gates
	5.3.1 Imperfect Communication

	5.4 Discussion and Guiding Ideas

	6 Learning Decentralized Perception Action Communication Loops for Multi Robot Coverage
	6.1 Introduction
	6.2 Methodology
	6.2.1 Preliminaries

	6.3 Perception System
	6.3.1 Dataset Generation
	6.3.2 Training
	6.3.3 Control System

	6.4 Follow
	6.5 Fetch and Large Scale Transferance with Graphons
	6.6 Discussion and Guiding Ideas

	7 Conclusion
	Bibliography

