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ABSTRACT 

SINGLE-CELL LINEAGE TRACING OF CANCER METASTASIS  

Kamen P. Simeonov 

Christopher J. Lengner 

The underpinnings of cancer metastasis remain poorly understood, in part due to a lack 

of tools for probing their emergence at high resolution. Here we present macsGESTALT, 

an inducible CRISPR-Cas9-based lineage recorder with highly efficient single-cell 

capture of both transcriptional and phylogenetic information. Applying macsGESTALT to 

a mouse model of metastatic pancreatic cancer, we recover ~380,000 CRISPR target 

sites and reconstruct dissemination of ~28,000 single cells across multiple metastatic 

sites. We find cells occupy a continuum of epithelial-to-mesenchymal transition (EMT) 

states. Metastatic potential peaks in rare, late-hybrid EMT states, which are aggressively 

selected from a predominately epithelial ancestral pool. The gene signatures of these 

late-hybrid EMT states are predictive of reduced survival in both human pancreatic and 

lung cancer patients, highlighting their relevance to clinical disease progression. Finally, 

we observe evidence for in vivo propagation of S100 family gene expression across 

clonally distinct metastatic subpopulations. 
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CHAPTER 1: ON CANCER METASTASIS AND LINEAGE TRACING 

Successes and failures in cancer treatment and survival rates 

Cancer kills 10 million people annually. The vast majority of these deaths are due to 

metastasis — the process by which cancer cells spread from their origin and colonize 

distant tissues, thereby transforming a localized, often curable lesion into a systemic, 

largely incurable disease (Cancer Facts & Figures 2020; McGranahan and Swanton 

2017).  

 

The problem that cancer poses to humanity is only accelerating. As the world's 

population continues to age, with the median age rising from 21.5 to 30 years over the 

last 5 decades (Ritchie and Roser 2019), cancer burden continues to increase. In the 

United States, cancer care costs have rapidly increased annually, reaching nearly $200 

billion in 2020 (Cancer Action Network 2020). Contrasting this figure to the $100 billion 

spent on cancer research by the National Cancer Institute (NCI), since the 1971 National 

Cancer Act, i.e. the start of the "War on Cancer", paints a dramatically dismal picture 

(Marshall 2011). Even more pessimistically, growth of the NCI's annual funding budget 

has not kept pace with inflation for the last 20 years, peaking in 2003 and 2009, but 

falling and stagnating since (“NCI Budget and Appropriations” 2015). However, these 

numbers do not account for private biotech and pharmaceutical spending on oncology 

research and development, as well as other cancer-focused government initiatives not 

falling under the umbrella of the NCI. Additionally, continued broad investment in basic 

research has provided both direct and indirect benefits to cancer research. A clear 

example is the Human Genome Project, which enabled The Cancer Genome Atlas 

https://paperpile.com/c/phZkFU/uv3SL+yo147
https://paperpile.com/c/phZkFU/uv3SL+yo147
https://paperpile.com/c/phZkFU/VDIPY
https://paperpile.com/c/phZkFU/UEEIa
https://paperpile.com/c/phZkFU/0wT5W
https://paperpile.com/c/phZkFU/tqLoV
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(TCGA), spurring a vastly improved understanding of the genetic underpinnings of 

cancer formation (Hutter and Zenklusen 2018). 

 

By sequencing thousands of tumor samples, TCGA efforts have uncovered many 

recurrent genetic drivers of cancer formation (Kandoth et al. 2013). In some cancers, 

genetic drivers are incredibly common. For example, in non-hypermutated colorectal 

adenocarcinoma (COAD), the most common type of colorectal cancer, mutations in 

APC, P53, and KRAS are observed in 82%, 59%, and 45% of patients, respectively 

(Cancer Genome Atlas Network 2012). P53 is recurrently mutated across many cancers, 

including, remarkably, in 95% of all ovarian cancers (OV) (Kandoth et al. 2013). In 

pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, 

KRAS and P53 are mutated in 93% and 72% of tumors, respectively (Cancer Genome 

Atlas Research Network 2017). 

 

Critically, the identification of recurrent driver mutations has enabled research efforts to 

focus on the most functionally relevant genes and pathways for cancer formation and the 

discovery of potentially targeted therapeutics with low off-target toxicity. Indeed, in the 

last two decades, there has been a flurry of new targeted drug development, ranging 

from monoclonal antibodies, tyrosine kinase inhibitors, antibody-drug conjugates, 

checkpoint inhibitors, and engineered cell based therapies – over 100 targeted therapies 

for a variety of cancers have been approved (“Reflecting on 20 Years of Progress” 

2021). 

 

https://paperpile.com/c/phZkFU/teETL
https://paperpile.com/c/phZkFU/voae5
https://paperpile.com/c/phZkFU/3Fags
https://paperpile.com/c/phZkFU/voae5
https://paperpile.com/c/phZkFU/yfso
https://paperpile.com/c/phZkFU/yfso
https://paperpile.com/c/phZkFU/ZNWeN
https://paperpile.com/c/phZkFU/ZNWeN


3 

 

So, have survival rates of cancer improved since the start of the War on Cancer? At first 

glance, the 5-year survival rate for all cancers (non-benign) in the United States (US) 

has improved from 49% in 1975 to 69% in 2012 (SEER 2017). Unfortunately, upon 

closer examination, much of this improvement came before 2000, when the survival rate 

was already 66%. Furthermore, when stratifying by the stage of the cancer or degree of 

invasion, the small improvement from 2000-2012 appears to be primarily in patients with 

localized or regional disease at the time of diagnosis (Esposito, Ganesan, and Kang 

2021). In fact, improved early detection is considered to be one of the primary reasons 

for the increased survival rates between the 1970s and the 2010s. As cancers are 

detected earlier and earlier, a larger proportion of cancers are detected at the localized 

disease stage, which has an excellent prognosis for many cancers. The 5-year survival 

rate for localized disease in breast cancer and melanoma is 99%, with colorectal cancer 

at 90% (Cancer Facts & Figures 2020; Esposito, Ganesan, and Kang 2021).  

 

Unfortunately, early detection is not always possible, and cancer is often already 

disseminated upon diagnosis. This is particularly apparent in PDAC, where 90% of 

patients have distant dissemination at the time of diagnosis (Cancer Facts & Figures 

2020). Five-year survival data is dismal across all cancers when distant dissemination is 

present, some examples include: breast 27%, melanoma 25%, colorectal 14%, lung 5%, 

stomach 5%, pancreatic 3%, liver 2% (Cancer Facts & Figures 2020). These statistics 

are profoundly disturbing. Why despite all of the progress and targeted therapeutics over 

the last decades have survival rates for disseminated disease remained so astoundingly 

low? 

 

https://paperpile.com/c/phZkFU/SsxIA
https://paperpile.com/c/phZkFU/7mVsp
https://paperpile.com/c/phZkFU/7mVsp
https://paperpile.com/c/phZkFU/uv3SL+7mVsp
https://paperpile.com/c/phZkFU/uv3SL
https://paperpile.com/c/phZkFU/uv3SL
https://paperpile.com/c/phZkFU/uv3SL
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A genetic preoccupation and a non-genetic promise 

Until recently, the majority of cancer research has focused on characterizing cancer 

genetics. And rightly so, genetic alterations have proven critical to transforming a normal 

tissue into an abnormal neoplasm. However, despite the successes outlined above of 

identifying stereotyped genetic drivers of cancer formation, recurrent genetic drivers of 

metastasis have proven elusive (Pereira et al. 2015; Margonis et al. 2015; M. K. H. Hong 

et al. 2015), with most cancers having no known drivers of metastasis (Makohon-Moore 

et al. 2017; Brastianos et al. 2015; McCreery et al. 2015; Yachida et al. 2010; Hunter et 

al. 2018).  

 

As a result, non-genetic, i.e. epigenetic and transcriptional, changes have increasingly 

been purported to play a major role in driving metastasis (Hunter et al. 2018; Esposito, 

Ganesan, and Kang 2021). Interestingly, a similar trend has emerged in drug resistance 

research, where up to 40% of therapy resistant tumors fail to display any explanatory 

genetic adaptations for resistance (Marine, Dawson, and Dawson 2020). In the case of 

both metastasis and drug resistance, a series of interrelated, and potentially 

transcriptionally-driven, phenotypic changes have been implicated, including the cancer 

stem cell hypothesis (Todaro et al. 2007; Shackleton et al. 2009; Auffinger et al. 2014), 

epithelial-mesenchymal transition (EMT) (Yang et al. 2004, 2020; Fischer et al. 2015; 

Zheng et al. 2015), and cellular dedifferentiation and plasticity (Davis et al. 1986; Yang 

et al. 2020; Auffinger et al. 2014; Boumahdi and de Sauvage 2020; Liau et al. 2017).  

 

However, the precise role that these processes play in metastasis, drug resistance, or 

both is actively under debate and poorly understood (Fischer et al. 2015; Zheng et al. 

https://paperpile.com/c/phZkFU/FeKZQ+LeJp4+QKAAQ
https://paperpile.com/c/phZkFU/FeKZQ+LeJp4+QKAAQ
https://paperpile.com/c/phZkFU/PFOq5+jcC40+wWBH0+Ftxxl+08b24
https://paperpile.com/c/phZkFU/PFOq5+jcC40+wWBH0+Ftxxl+08b24
https://paperpile.com/c/phZkFU/PFOq5+jcC40+wWBH0+Ftxxl+08b24
https://paperpile.com/c/phZkFU/08b24+7mVsp
https://paperpile.com/c/phZkFU/08b24+7mVsp
https://paperpile.com/c/phZkFU/FBktH
https://paperpile.com/c/phZkFU/RgD7F+YISf9+lf1t6
https://paperpile.com/c/phZkFU/TEO1p+M6foB+eP8xx+2DWMU
https://paperpile.com/c/phZkFU/TEO1p+M6foB+eP8xx+2DWMU
https://paperpile.com/c/phZkFU/eC5gv+M6foB+lf1t6+hZSK0+N79To
https://paperpile.com/c/phZkFU/eC5gv+M6foB+lf1t6+hZSK0+N79To
https://paperpile.com/c/phZkFU/eP8xx+2DWMU+wuPGX+SYfvH+7mVsp+ZBkKb+7qvYK
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2015; Aiello et al. 2017; Quintana et al. 2008; Esposito, Ganesan, and Kang 2021; 

Ocaña et al. 2012; Tsai et al. 2012). Interestingly, these programs appear to be heavily 

interconnected and overlapping (Scheel and Weinberg 2012; Yang et al. 2020; Lambert 

and Weinberg 2021), often via the hijacking of primitive or developmental gene 

expression programs such as, Notch (Sethi et al. 2011; Domingo-Domenech et al. 2012; 

Takebe et al. 2011; Wu et al. 2017), Wnt (Esposito et al. 2019; Zhuang et al. 2017; 

DiMeo et al. 2009), TGF-ꞵ (Calon et al. 2012; Padua et al. 2008; Colak and ten Dijke 

2017), and Hedgehog (Yauch et al. 2008; Altaba and Ruiz i Altaba 2011). Notably, 

phenotypic and transcriptional adaptations, such as cancer "stemness" and EMT, are 

implicated across a variety of distinct cancer types, underscoring the immense 

therapeutic potential of building a better understanding of these processes in the context 

of cancer. 

 

In order to build an understanding of how metastasis develops, we must obtain dense, 

precise, and accurate information of two major types: 1) the natural history of metastasis 

and 2) the molecular adaptations that vary along this natural history. The first of these 

would allow us to accurately identify which specific cancer subclones have the ability to 

metastasize, while the second tells us what alterations these subclones possess. 

Another way to state these two types of information is: What is the clonal architecture or 

lineage of the cancer and the associated intratumoral heterogeneity or cellular qualities? 

 

Until recently, the lineage tracing or reconstruction tools needed to attain such 

information have been lacking. They fall within two general categories – retrospective 

and prospective – in the next two sections we will examine both of these individually. 

https://paperpile.com/c/phZkFU/eP8xx+2DWMU+wuPGX+SYfvH+7mVsp+ZBkKb+7qvYK
https://paperpile.com/c/phZkFU/eP8xx+2DWMU+wuPGX+SYfvH+7mVsp+ZBkKb+7qvYK
https://paperpile.com/c/phZkFU/GloR0+M6foB+j5xoc
https://paperpile.com/c/phZkFU/GloR0+M6foB+j5xoc
https://paperpile.com/c/phZkFU/ngs6f+GP7yn+gA7jG+GvjFe
https://paperpile.com/c/phZkFU/ngs6f+GP7yn+gA7jG+GvjFe
https://paperpile.com/c/phZkFU/Op2Ys+8KPtG+LRsjM
https://paperpile.com/c/phZkFU/Op2Ys+8KPtG+LRsjM
https://paperpile.com/c/phZkFU/CjkaL+i6RHa+3fbZc
https://paperpile.com/c/phZkFU/CjkaL+i6RHa+3fbZc
https://paperpile.com/c/phZkFU/1adMM+YpYWa
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Retrospective lineage tracing 

In order to understand metastasis, we must reconstruct an accurate picture of the 

natural history of dissemination. In humans, where introduction of artificial lineage 

markers would be unethical or impossible, it is difficult to uncover the underlying 

population structure. Retrospective lineage tracing or reconstruction methods attempt to 

solve this problem by studying natural genetic variation in a population of cells or 

samples. Termed "retrospective" due to the analysis of genetic markers that have 

already occurred and did not occur by design. 

 

As cells divide, a variety of error prone and stochastic processes are at work, resulting in 

genetic alterations which are heritable and serve to mark different lineages of 

proliferating cells that comprise a tissue or tumor. Errors accrue in the genome over the 

course of normal human development and homeostasis, as is illustrated by four recently 

copublished studies that characterized this genetic diversity in depth to explore both 

early developmental and adult tissue progenitor dynamics (S. Park et al. 2021; Coorens 

et al. 2021; R. Li et al. 2021; Moore et al. 2021; Naxerova 2021). This recent flurry of 

papers build on a continuously improving ability to characterize such mutations with 

greater depth and breath, paralleling advances in sequencing, and thereby revealing 

insights into normal human biology (Behjati et al. 2014; Ju et al. 2017). 

 

A feature of the cancer genome is that it has a dramatically increased rate of accruing 

mutations and large-scale alterations (Stratton, Campbell, and Futreal 2009). This allows 

for cancer to rapidly adapt in its later stages, for example with the development of 

https://paperpile.com/c/phZkFU/ILR8J+1Eio5+rXbOo+mMOFP+kr79m
https://paperpile.com/c/phZkFU/ILR8J+1Eio5+rXbOo+mMOFP+kr79m
https://paperpile.com/c/phZkFU/h0KmI+nzwAw
https://paperpile.com/c/phZkFU/HPG7E
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resistance to a therapeutic, as is dramatically observed with BRAF inhibitors in 

melanoma (Shi et al. 2014). Interestingly, while increased genetic instability in cancer is 

often associated with a worse prognosis (Carter et al. 2006; Davoli et al. 2017), too 

much instability may be counterproductive (Birkbak et al. 2011; Jamal-Hanjani et al. 

2015). For the purposes of studying cancer lineages, increased genetic instability and 

replication errors provide more substrate for the reconstruction of phylogenies than is 

often possible in normal tissues. Furthermore, unlike normal samples, tumor samples 

are often readily available to researchers due to surgical excision, particularly primary 

tumors. 

 

The major sources of genetic variations that are employed as retrospective barcodes for 

lineage building in cancer are: Single-Nucleotide Variants (SNVs), Copy Number 

Variations (CNVs), microsatellites, and Long Interspersed Nuclear Element 1 (LINE-1) 

transposable retroelements. (Baron and van Oudenaarden 2019) provide a good brief 

overview of these types of variation in the context of lineage tracing more broadly, while 

(Naxerova and Jain 2015) provide a more focused and deep review of these methods in 

the context of studying cancer metastasis in human samples. 

 

SNVs have been classically employed in population level studies via Genome Wide 

Association Studies (GWAS), but cancer's increased mutagenesis rate has also 

permitted their widely adopted use in intratumoral studies (Hajirasouliha, Mahmoody, 

and Raphael 2014; El-Kebir et al. 2015; Popic et al. 2015). A benefit of SNV-based 

analysis is that coding and driver mutations can be recovered alongside many passive 

https://paperpile.com/c/phZkFU/uUZzh
https://paperpile.com/c/phZkFU/C2mW1+hGRwW
https://paperpile.com/c/phZkFU/9QoTB+9Kd2H
https://paperpile.com/c/phZkFU/9QoTB+9Kd2H
https://paperpile.com/c/phZkFU/XSgNb
https://paperpile.com/c/phZkFU/RWTCu
https://paperpile.com/c/phZkFU/Ot1VZ+HV4s0+xndHr
https://paperpile.com/c/phZkFU/Ot1VZ+HV4s0+xndHr
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mutations used for lineage reconstruction. The major drawback is the rarity of these 

variations across the enormous morass of the genome (Schwartz and Schäffer 2017). 

 

CNVs are large-scale, often chromosomal changes, where genomic regions that are 

greater than 1kb vary in their copy numbers (Baron and van Oudenaarden 2019). CNVs 

pose a benefit in that they are easier to measure with less sequencing depth and can 

often be inferred from even transcriptional data by analyzing differences in gene 

expression in the context of their genomic loci (Serin Harmanci, Harmanci, and Zhou 

2020). CNVs have been used to build phylogenies from human tumor samples (Uchi et 

al. 2016; Ha et al. 2014). 

 

Microsatellites are short stretches of repeated nucleotides that can trigger increased 

DNA polymerase skipping, which results in inappropriate loss or gain of nucleotides. 

Microsatellites are thus hypermutable regions of DNA, which are able to reach mutation 

rates 1000x higher than non-repetitive DNA and that have the added benefit of being at 

defined loci that can be examined via easier and cheaper targeted sequencing 

(Naxerova and Jain 2015). One study used targeted sequencing of polyguanine tracts to 

investigate hematogenous versus lymphatic spread in colorectal cancer (Naxerova et al. 

2017). 

 

Lineage reconstruction based on LINE-1 transposons works differently than the 

previously discussed approaches. LINE-1 elements are numerous throughout the 

genome and are able to undergo transposition (Ostertag and Kazazian 2001). 

https://paperpile.com/c/phZkFU/0DpZm
https://paperpile.com/c/phZkFU/XSgNb
https://paperpile.com/c/phZkFU/3RgPH
https://paperpile.com/c/phZkFU/3RgPH
https://paperpile.com/c/phZkFU/XKLPm+SAozi
https://paperpile.com/c/phZkFU/XKLPm+SAozi
https://paperpile.com/c/phZkFU/RWTCu
https://paperpile.com/c/phZkFU/CfXik
https://paperpile.com/c/phZkFU/CfXik
https://paperpile.com/c/phZkFU/T0rq2
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Sequencing of LINE-1 loci allows their genomic integration sites to serve as lineage 

markers.  

 

While all of the above methods have various advantages and disadvantages when 

compared amongst each, they all suffer from three major, shared limitations. First, the 

lineage trees produced are quite coarse, with limited branches distinguishing 

subpopulations. Second, they often rely on bulk tissue samples to obtain enough 

sequencing depth in order to perform analyses. This imposes further limits on resolution 

and specifically creates the possibility of missing important clonal information that is 

either unsampled or masked due to rarity in sampled regions. Third, these analyses, 

focused on genetic variation for lineage purposes, also only obtain genetic information 

for cellular identity purposes, missing transcriptional or epigenetic information that may 

be critical to understanding drivers of metastasis, as discussed extensively in the 

previous section. 

 

There have been some exceptions to these limitations. Landmark studies have used 

SNVs and CNVs to reconstruct single-cell level tumor lineages from 100 single cells 

(Navin et al. 2011), which has been scaled more recently to 1,300 single cells (Casasent 

et al. 2018). However, such approaches are challenging and expensive and as a result 

sequence vastly smaller numbers of tumor cells than what is now possible, at 

reasonable cost, with single-cell RNA sequencing (scRNA-seq) commercial assays. 

Moreover, they also do not capture potentially critical non-genetic information. 

 

https://paperpile.com/c/phZkFU/S2UTa
https://paperpile.com/c/phZkFU/6DzCg
https://paperpile.com/c/phZkFU/6DzCg
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In the last two years, two methods have been reported that perform retrospective lineage 

tracing at the single-cell level at a massive-scale and concurrently capture transcriptional 

or epigenetic information via scRNA-seq or single-cell assay for transposase-accessible 

chromatin sequencing (scATAC-seq) (Nam et al. 2019; Ludwig et al. 2019). Genotyping 

of Transcriptomes (GoT) employed targeted sequencing of specific genomic loci of 

interest to build coarse clonal level information that is overlaid onto many thousands of 

single-cancer-cell transcriptomes (Nam et al. 2019). Meanwhile, (Ludwig et al. 2019) 

reported that mitochondrial DNA (mtDNA) is inadvertently captured by standard scRNA-

seq and scATAC-seq, eventually optimizing this in (Lareau et al. 2021). mtDNA has an 

error rate that is 10-100 times higher than genomic DNA (gDNA), making it well-suited 

for lineage reconstruction (E. Kang et al. 2016; Biezuner et al. 2016). (Ludwig et al. 

2019) and (Lareau et al. 2021) used this mtDNA combined with scRNA-seq and 

scATAC-seq to investigate clonality in normal hematopoiesis and leukemia. 

 

It will be exciting to watch how these approaches will be used to vastly increase the 

scale of single-cell level retrospective lineage tracing studies that also annotate cells 

with non-genetic information. Especially, as the mtDNA based methodology appears to 

be rapidly advancing and is highly cost effective. However, it is important to note that 

even in these recent mtDNA based studies, while many thousands of cells are 

recovered, only a few dozen subclones are identified. Despite these recent advances, 

retrospective lineage tracing cannot supplant prospective lineage tracing methods, which 

themselves are advancing at breakneck pace. In the next section, we turn our attention 

to the recently invigorated field of prospective lineage tracing. 

 

https://paperpile.com/c/phZkFU/Y1Uyf+oDfZq
https://paperpile.com/c/phZkFU/Y1Uyf
https://paperpile.com/c/phZkFU/oDfZq
https://paperpile.com/c/phZkFU/FlkPZ
https://paperpile.com/c/phZkFU/1KG1S+IOvla
https://paperpile.com/c/phZkFU/oDfZq
https://paperpile.com/c/phZkFU/oDfZq
https://paperpile.com/c/phZkFU/FlkPZ
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Prospective lineage tracing 

The value of prospective lineage tracing to study cancer dissemination has been 

recognized since the dawn of metastasis research. In a seminal study, (Talmadge, 

Wolman, and Fidler 1982) x-irradiated a melanoma cell line to induce chromosomal 

breakage. The resulting chromosomal rearrangements effectively served as lineage 

markers with which to trace how cells metastasized to the lung after implantation into the 

footpads of syngenic mice. Cells from metastases were isolated and cultured and 

subsequently karyotyped as a readout of the lineage label. They found that metastases 

were primarily monoclonal but also often originated from different clones in the primary 

tumor. 

 

Since then a plethora of increasingly powerful prospective lineage tracing approaches 

have been developed, some of which have been used to study cancer metastasis. In this 

section, we will examine many of these technologies, particularly focusing on the recent 

proliferation of "evolving barcodes" or "lineage recording" systems. 

 

A lineage tracer must be heritable, while not functionally altering its host cells. The first 

major evolution of prospective lineage tracing came with the application of green 

fluorescent protein (GFP) as a genetic marker in eukaryotic cells (Chalfie et al. 1994). 

Shortly thereafter, fluorescent proteins (FPs) were combined with genetic recombination, 

particularly Cre-loxP recombination in mammalian systems, to great effect. Tools using 

FPs whose expression was irreversibly activated via Cre and CreER systems driven by 

ubiquitous or cell-type specific promoters became a staple of studies on cell lineage 

(Kretzschmar and Watt 2012). Tools such as Brainbow and Confetti were developed that 

https://paperpile.com/c/phZkFU/L88ng
https://paperpile.com/c/phZkFU/L88ng
https://paperpile.com/c/phZkFU/6kl9Q
https://paperpile.com/c/phZkFU/eraDd
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combined multiple different FPs to produce a wider variety of stochastic outcomes in 

recombination and thus label multiple clones in the same starting population (Livet et al. 

2007; Snippert et al. 2010). 

 

FPs as standalone markers or in combination with recombinases continue to be used to 

study cancer metastasis, with recent studies shedding light on polyclonal metastatic 

seeding in various models (Aceto et al. 2014; Maddipati and Stanger 2015). However, 

while FP based lineage tracing is a powerful and widely-used tool to study not just 

metastasis, but also tumor clonality more broadly, it lacks labeling diversity and tracing 

resolution. Even systems that use multiple randomly recombined FPs to generate more 

color combinations are limited to labeling no more than ten clones, while mouse 

metastases and primary tumors can contain many thousands and millions of cells, 

respectively. 

 

The next major evolution in prospective lineage tracing came with the advent of 

"lentiviral barcoding" or more generally "static barcoding", which integrates random or 

semi-random nucleotide sequences into the genomes of a starting population of cells, 

which usually receive the barcodes while in culture. The first application of this 

technology traced thousands of hematopoietic stem cells upon engraftment in vivo to 

study normal hematopoiesis (R. Lu et al. 2011).  

 

Static barcoding has since been applied extensively to cancer, for example to study drug 

resistance (Bhang et al. 2015), population hierarchy (Lan et al. 2017), and metastasis 

(Echeverria et al. 2018). More recently, expressed static barcodes have been coupled 

https://paperpile.com/c/phZkFU/qYR3K+R0s8I
https://paperpile.com/c/phZkFU/qYR3K+R0s8I
https://paperpile.com/c/phZkFU/SdTvX+GudDu
https://paperpile.com/c/phZkFU/TAeBV
https://paperpile.com/c/phZkFU/VsQSr
https://paperpile.com/c/phZkFU/UMb6Q
https://paperpile.com/c/phZkFU/YaYWX
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with scRNA-seq readout to allow efficient capture of clonal label and cell identity at the 

single-cell level to study normal hematopoiesis (Weinreb et al. 2020). However, two 

major limitations of "static barcoding" are that it is generally restricted to (1) creating 

lineage labels in vitro and (2) introducing labeling diversity at a single time point. Static 

barcoding is therefore unable to fully interrogate heterogeneity that may arise after the 

point of labeling, for example in vivo during dissemination and metastatic seeding.   

     

The desire to address the limitations of static barcoding and understand cell lineage with 

greater resolution and physiological relevance has given rise to the "evolving barcoding" 

or "lineage recording" generation of methods reviewed in: (Baron and van Oudenaarden 

2019; Kebschull and Zador 2018; McKenna and Gagnon 2019; Kester and van 

Oudenaarden 2018). The goal of these methods is to achieve repeated or even 

continuous introduction of genetic labeling diversity in vivo, thereby addressing both of 

the major limitations of static barcoding. The mechanics of these evolving barcoding 

methods have varied widely. In a method akin to a prospective version of LINE-1 based 

retrospective lineage tracing, Sleeping Beauty transposons were used to enable labeling 

of native (non-transplant) hematopoiesis (Sun et al. 2014; Rodriguez-Fraticelli et al. 

2018). Contemporaneously, Polylox was applied to also study native hematopoiesis (Pei 

et al. 2017). Polylox used Cre to stochastically recombine an array of loxP flanked 

barcodes upon induction. 

 

Starting in 2016, just prior to the start of the dissertation work presented here, the 

application of CRISPR-Cas9 to lineage tracing produced an explosion of creative new 

methods. Starting with GESTALT (genome editing of synthetic target arrays for lineage 

https://paperpile.com/c/phZkFU/oersz
https://paperpile.com/c/phZkFU/XSgNb+3zusL+ppQs6+xwRA2
https://paperpile.com/c/phZkFU/XSgNb+3zusL+ppQs6+xwRA2
https://paperpile.com/c/phZkFU/XSgNb+3zusL+ppQs6+xwRA2
https://paperpile.com/c/phZkFU/9q4MI+0C8t1
https://paperpile.com/c/phZkFU/9q4MI+0C8t1
https://paperpile.com/c/phZkFU/tArCX
https://paperpile.com/c/phZkFU/tArCX
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tracing), CRISPR-Cas9 was employed to mutagenize compact, integrated lineage 

barcodes (McKenna et al. 2016). Inheritance patterns of barcode mutations could then 

be used to infer cellular phylogeny, akin to the role natural CNVs and SNVs serve at the 

whole genome level in retrospective lineage reconstruction. In the past five years, a 

flurry of new evolving barcoding approaches have been reported, primarily based around 

Cas9 mediated editing. These include the following methods, organized by their 

characteristics and major innovations — scRNA-seq readout of single barcode 

integrants: scGESTALT (Raj, Gagnon, and Schier 2018), LINNAEUS (Spanjaard et al. 

2018), ScarTrace (Alemany et al. 2018), CARLIN (Bowling et al. 2020); in situ readout of 

barcodes: MEMOIR (Frieda et al. 2017) and intMEMOIR (a recombinase-based version) 

(Chow et al. 2021); self-targeting guide RNAs (gRNAs): homing barcodes (Kalhor, Mali, 

and Church 2017; Kalhor et al. 2018), mSCRIBE (Perli, Cui, and Lu 2016), and 

CHYRON (insertion-biased homing barcodes) (Loveless et al. 2021); multiple expressed 

barcode integrations per cell: molecular recording (Chan et al. 2019). 

 

The above methods were generally applied to study normal development in zebrafish or 

mouse, with one exception which focused on adult mouse hematopoiesis (Bowling et al. 

2020). In 2021, three studies reported the use of evolving barcodes to study cancer 

metastasis (Quinn et al. 2021; W. Zhang et al. 2021; Simeonov et al. 2021). (W. Zhang 

et al. 2021) applied an existing method, homing barcodes (Kalhor, Mali, and Church 

2017; Kalhor et al. 2018), with bulk DNA sequencing readout to examine the effects of 

the bone microenvironment in influencing metastatic-ability. Meanwhile, (Quinn et al. 

2021) and (Simeonov et al. 2021) reported new methods, which combined both static 

barcoding and evolving barcoding together with scRNA-seq readout of barcodes to 

https://paperpile.com/c/phZkFU/XQ3jk
https://paperpile.com/c/phZkFU/Ezcmu
https://paperpile.com/c/phZkFU/v2kqC
https://paperpile.com/c/phZkFU/v2kqC
https://paperpile.com/c/phZkFU/iArSS
https://paperpile.com/c/phZkFU/kczNS
https://paperpile.com/c/phZkFU/9fo3I
https://paperpile.com/c/phZkFU/OeNf9
https://paperpile.com/c/phZkFU/pPiGB+QMvAL
https://paperpile.com/c/phZkFU/pPiGB+QMvAL
https://paperpile.com/c/phZkFU/AcVXz
https://paperpile.com/c/phZkFU/pwjin
https://paperpile.com/c/phZkFU/fNH5C
https://paperpile.com/c/phZkFU/kczNS
https://paperpile.com/c/phZkFU/kczNS
https://paperpile.com/c/phZkFU/DC42r+5Q2Mi+MDqSH
https://paperpile.com/c/phZkFU/5Q2Mi
https://paperpile.com/c/phZkFU/5Q2Mi
https://paperpile.com/c/phZkFU/pPiGB+QMvAL
https://paperpile.com/c/phZkFU/pPiGB+QMvAL
https://paperpile.com/c/phZkFU/DC42r
https://paperpile.com/c/phZkFU/DC42r
https://paperpile.com/c/phZkFU/MDqSH
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reconstruct metastasis at the single-cell level. (Quinn et al. 2021) improved on the 

"molecular recorder", originally described in (Chan et al. 2019), while (Simeonov et al. 

2021) described multiplexed, activatable, clonal and subclonal GESTALT 

(macsGESTALT). In the next chapter, I will discuss the development of macsGESTALT, 

and its application to characterize cancer metastasis at high-resolution. 

 
 

  

https://paperpile.com/c/phZkFU/DC42r
https://paperpile.com/c/phZkFU/fNH5C
https://paperpile.com/c/phZkFU/MDqSH
https://paperpile.com/c/phZkFU/MDqSH
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Summary 
 

The underpinnings of cancer metastasis remain poorly understood, in part due to a lack 

of tools for probing their emergence at high resolution. Here we present macsGESTALT, 

an inducible CRISPR-Cas9-based lineage recorder with highly efficient single-cell 

capture of both transcriptional and phylogenetic information. Applying macsGESTALT to 

a mouse model of metastatic pancreatic cancer, we recover ~380,000 CRISPR target 

sites and reconstruct dissemination of ~28,000 single cells across multiple metastatic 

sites. We find cells occupy a continuum of epithelial-to-mesenchymal transition (EMT) 

states. Metastatic potential peaks in rare, late-hybrid EMT states, which are aggressively 

selected from a predominately epithelial ancestral pool. The gene signatures of these 

late-hybrid EMT states are predictive of reduced survival in both human pancreatic and 

lung cancer patients, highlighting their relevance to clinical disease progression. Finally, 

we observe evidence for in vivo propagation of S100 family gene expression across 

clonally distinct metastatic subpopulations.  

 

Keywords 

lineage tracing; lineage reconstruction; CRISPR lineage tracing; evolving barcodes; 

barcoding; lineage recorder; molecular recorder; metastasis; cancer; phylogenetics; 

epithelial-to-mesenchymal transition; EMT; single-cell; scRNA-seq; S100 
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Introduction 

The vast majority of cancer deaths are due to metastasis, a process that transforms a 

localized, often curable lesion into a systemic, largely incurable disease (Hunter et al. 

2018; Turajlic and Swanton 2016). Recurrent genetic drivers of metastasis have proven 

elusive, suggesting that other levels of dysregulation may principally drive the 

phenomenon (Hunter et al. 2018). Phylogenetic histories of cancer progression in 

individual patients, e.g. based on analyses of copy number variation (CNV) or somatic 

mutation, can inform how the cells comprising metastases are related to the primary 

tumor, as well as to one another (Naxerova and Jain 2015). However, such methods are 

restricted to natural genetic diversity and additionally fail to concomitantly capture the 

molecular phenotype of each profiled cell, limiting what can be learned about the cellular 

programs that underlie the development and success of distinct metastatic clones. An 

alternative to retrospective phylogenetic approaches are traditional prospective lineage 

tracing methods, such as lentiviral barcoding, which involve tagging cells with unique 

DNA barcodes (R. Lu et al. 2011). However, such "static" barcoding strategies are 

generally restricted to introducing labeling diversity in vitro and at a single time point. 

Therefore, they are unable to capture critical in vivo processes, including any selection 

of intraclonal genetic or epigenetic heterogeneity emerging after the point of labeling. 

 

Beginning with GESTALT (genome editing of synthetic target arrays for lineage tracing) 

(McKenna et al. 2016), a new paradigm for in vivo lineage tracing has emerged, 

employing CRISPR-Cas9 to progressively and stochastically mutagenize a compact, 

genomically-integrated barcode, thereby producing patterns of edits that can be used to 

reconstruct phylogenetic relationships amongst cells (McKenna and Gagnon 2019). 

https://paperpile.com/c/phZkFU/08b24+CFXGN
https://paperpile.com/c/phZkFU/08b24+CFXGN
https://paperpile.com/c/phZkFU/08b24
https://paperpile.com/c/phZkFU/RWTCu
https://paperpile.com/c/phZkFU/TAeBV
https://paperpile.com/c/phZkFU/XQ3jk
https://paperpile.com/c/phZkFU/ppQs6
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Such methods can be coupled to single-cell RNA sequencing (scRNA-seq) to explicitly 

relate cell lineage histories to transcriptional states (Raj et al. 2018; Spanjaard et al. 

2018; Chan et al. 2019). Until recently, GESTALT and related methods have primarily 

been applied to early development, e.g. by injection of components into zygotes and 

subsequent profiling of edited barcodes and single cell transcriptomes from the resulting 

organism (Bowling et al. 2020; Quinn et al. 2021). This strategy is fundamentally difficult 

to translate across biological systems as it requires specialized injection and titration. 

Furthemore, as components are neither integrated nor inducible, such systems are not 

amenable to longer-term or time-delayed studies in adult animals. However, with 

refinement, CRISPR-Cas9-based lineage tracers hold potential to be useful in contexts 

outside of early development, such as the study of somatic stem cell dynamics or cancer 

metastasis. 

 

  

https://paperpile.com/c/phZkFU/QLv3A+v2kqC+fNH5C
https://paperpile.com/c/phZkFU/QLv3A+v2kqC+fNH5C
https://paperpile.com/c/phZkFU/kczNS+DC42r
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Results 

 

An inducible lineage recorder with scRNA-seq readout 

To this end, we developed macsGESTALT (multiplexed, activatable, clonal and 

subclonal GESTALT), an integrated, inducible, and scalable method that can be easily 

adapted to any engineerable mammalian system to enable lineage tracing (Figure 1). 

Our approach consists of three components (Figure 1A):  

 

1) Each cell contains multiple unique barcode integrations. Barcodes are constitutively 

expressed within the 3' untranslated region (UTR) of a polyadenylated pac (puromycin 

N-acetyl-transferase) transcript, enabling sequencing via standard mRNA-based 

capture. Each barcode is a combination of a static 10bp sequence of random bases, 

used for clonal reconstruction, and a 250bp editable, evolving region composed of five 

CRISPR target sites, used for phylogenetic reconstruction (Figures 1B-E).  

 

2) The evolving region is targeted by an array of five guide RNAs (gRNAs), separated by 

transfer RNA (tRNA) spacers, under a single constitutive mammalian U6 promoter. Upon 

transcription, tRNAs are excised from the array by endogenous RNAse P and Z, 

releasing the individual gRNAs (Port and Bullock 2016). We selected this configuration 

from a screen of five different arrays, ranging from least compact to most compact 

(Figures S1A-G). The gRNA-tRNA array (Figures S1E) outperformed other compact 

configurations (Figures S1F-G) and similarly to the standard approach of placing each 

gRNA under its own U6 promoter (Figures S1D). Therefore, we selected the gRNA-

tRNA configuration for its robust editing and compact size, allowing for easy transfer to 

https://paperpile.com/c/phZkFU/zYicF
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different vectors or promoters, consistent with our goals of creating an adaptable and 

broadly applicable system. These results also illustrate the usefulness of a tRNA spacing 

strategy for gRNA multiplexing in mammalian systems. 

 

3) Cas9 expression and barcode editing are induced by doxycycline (dox) binding to a 

constitutive reverse tetracycline transactivator (rtTA) and activating a tetracycline 

responsive element (TRE) promoter (Jian Cao et al. 2016). Inducible barcode editing in 

vitro was robustly driven with limited leakiness, mostly confined to the first target site 

(Figures S1H-K). We also validated successful barcode recovery and clonal 

reconstruction in two independent experiments, each involving limiting dilution, 

expansion, and single cell sequencing (Figures S1L-P).  

 

Aggressive clones are rare and transcriptionally divergent 

We next set out to investigate cancer metastasis at high resolution by combining 

macsGESTALT and scRNA-seq (Raj et al. 2018; Chan et al. 2019). We focused on 

pancreatic ductal adenocarcinoma (PDAC), which has a 5-year survival rate of 9%, the 

lowest of any major cancer (Cancer Facts & Figures 2020). Furthermore, 90% of PDAC 

patients have some dissemination at the time of diagnosis (Cancer Facts & Figures 

2020). To study PDAC metastasis, we employed a commonly used model, where cells 

from KPCY (LSL-KrasG12D/+; Trp53LSL-R172H/+; Pdx1-cre; LSL-Rosa26YFP/YFP) mouse tumors 

(Hingorani et al. 2005; Rhim et al. 2012; J. Li et al. 2018) are orthotopically transplanted 

into the pancreata of non-tumor-bearing mice (Rhim et al. 2012; Aiello, Rhim, and 

Stanger 2016). This approach presents highly consistent growth and metastasis kinetics 

and seeding patterns, and furthermore faithfully models human disease, due to the 

https://paperpile.com/c/phZkFU/iUVLN
https://paperpile.com/c/phZkFU/QLv3A+fNH5C
https://paperpile.com/c/phZkFU/uv3SL
https://paperpile.com/c/phZkFU/uv3SL
https://paperpile.com/c/phZkFU/uv3SL
https://paperpile.com/c/phZkFU/Bwk1D+8Atci+cGEVT
https://paperpile.com/c/phZkFU/8Atci+tBQq4
https://paperpile.com/c/phZkFU/8Atci+tBQq4
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following: 1) Kras gain-of-function and p53 loss-of-function are the most common drivers 

of human PDAC (Cancer Genome Atlas Research Network 2017); 2) cells experience 

minimal time in vitro — a drawback of traditional cell lines; 3) a focal lesion develops in 

the pancreas that 4) disseminates to the same sites as human PDAC, including the liver 

and lung. 

 

To investigate PDAC metastasis and associated transcriptional states, we selected a 

highly metastatic line from a library of characterized PDAC lines derived from KPCY 

tumors (J. Li et al. 2018) (Methods). To enable lineage tracing of these cells, we 

introduced dox-inducible Cas9 and the gRNA array through lentiviral transduction, and 

separately introduced multiplexed barcodes via PiggyBac-transposition, thereby 

producing macsGESTALT PDAC cells (Figures 1D and 2A). To model cancer 

metastasis in vivo, we injected mouse pancreata with 30,000 macsGESTALT PDAC 

cells, representing thousands of static barcode clones (Figure 2A; Methods). After one 

week of engraftment, we administered doxycycline in the drinking water to initiate 

lineage tracing. As expected, all mice were morbid at five weeks post-injection (Aiello, 

Rhim, and Stanger 2016). We randomly selected two mice, M1 and M2, and harvested 

cells from six cancer-bearing sites: primary tumor, liver, lung, peritoneal mets, surgical-

site met (a peritoneal met forming at the peritoneal surgical incision site), and circulating 

tumor cells (Methods). PDAC cells were fluorescence sorted and processed for scRNA-

seq of transcriptomes and macsGESTALT barcodes. 

 

Overall, 89% of transcriptomes had corresponding clonal lineage information for M1 and 

77% for M2, demonstrating improved barcode recovery using macsGESTALT compared 

https://paperpile.com/c/phZkFU/yfso
https://paperpile.com/c/phZkFU/cGEVT
https://paperpile.com/c/phZkFU/tBQq4
https://paperpile.com/c/phZkFU/tBQq4
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to prior methods (Raj et al. 2018; Bowling et al. 2020). Notably, we observed a positive 

correlation between the recovery of a cell's transcriptomic RNA and barcode RNA (r = 

0.64, p < 2.2x10-16) (Figure S2A). While the majority of cells had 10,000-100,000 

transcriptome-derived transcripts and 10-100 barcode-derived transcripts, lower quality 

cells with low transcriptome recovery (< 5000 transcripts), often had barcode recovery at 

the limit of detection (1-2 transcripts). Cells entirely lacking barcode information 

appeared to be a natural extension of this trend, as we recovered on average less than 

half of the overall transcriptomic RNA from these cells relative to those with barcodes 

recovered (Welch's t-test, p < 2.2x10-16) (Figure S2B). Thus, barcode recovery appeared 

to be a function of cell quality and total RNA recovery rather than resulting from any 

specific bias or silencing event. With this in mind, we retained only cells with both high 

quality transcriptome and barcode information for downstream analyses (Figures S2C-

K). 

 

In total, across all sites in both mice, we recovered both the transcriptome and clonal 

history for 28,028 single cells (M1: 12,657; M2: 15,371) (Figures S2C-K). The set of 

static barcodes defining a clone were determined via hierarchical clustering and custom 

pipelines (Methods). Cells were then sorted into each clone based on their static 

barcode sequences, permitting even cells with missing barcodes to be assigned to the 

appropriate clone, while also enabling explicit multiplet detection and filtration and 

resulting in only ~0.5% unmatched cells (M1: 0.54% and M2: 0.51%) (Figure S2J). For 

M1, an average of 3.7 out of a possible 5.9 barcodes were recovered per cell, while 

recovery for M2 was on average 1.7 out of a possible 2.5 barcodes (Figure S2J). The 

https://paperpile.com/c/phZkFU/QLv3A+kczNS
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lower number of barcodes per cell in M2 likely contributed to its lower overall lineage 

recovery. 

 

Clonal reconstruction revealed 95 distinct clones across the two mice (Figure 2B), 

identified by 227 static barcodes (Figure S2J), indicating that less than 1% of all injected 

clones successfully engraft. In contrast, in vitro experiments using the same cells and a 

similar time course revealed that most cells (clones) survive and form colonies on plates 

(Figures S1L-P). Thus, cancer cells in this model experience dramatic bottlenecking 

during in vivo engraftment.  

 

Among the surviving clones, fitness differences were pronounced and shaped population 

structure across sites (Figures 2B and 2C). In the primary tumor, the majority (>50%) of 

cells came from a minority of clones (2 clones in M1; 6 clones in M2). Bottlenecking was 

even more extensive at metastatic sites, wherein 80-90% of cells typically came from a 

single clone (Figures 2B and 2C), and both mice had one clearly dominant clone across 

all disseminated sites (M1.1, M2.2). On the other hand, 51% of clones (48/95) failed to 

metastasize at all, suggesting that mutations in Kras and p53 alone do not ensure 

metastatic success. 

 

We next asked whether clones were transcriptionally distinct. Indeed, cells from the 

same clone clustered together in UMAP space (Figure 2D). This was true of both large 

and small clones (Figures 2D-G). Importantly, this finding extended to cells harvested 

from different sites, suggesting that cells retain their clonal transcriptional identity even 

after dissemination (Figure S3A). These stable transcriptional differences may result 
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from either epigenetic drift or large-scale copy number changes, the latter observed in 

our data (Figure S3B) and a hallmark of PDAC chromosomal instability (Campbell et al. 

2010). 

 

Finally, we asked whether or not differences in clonal behavior corresponded to 

transcriptional differences. While clones had distinct transcriptional identities, we found 

that many overlapped in UMAP space (Figures 2D-G). Furthermore, 81% of clones 

(77/95 across both mice) primarily resided in a single transcriptional cluster, Cluster 3 

(Figures 2B and 2H). To relate transcriptional state to tumor aggression, we derived a 

clonal aggression scoring system based on clone size and dissemination (Figure 2B; 

Methods). We found that 85% (81/95) of clones were non-aggressive and were 

transcriptionally similar, occupying a small region of Cluster 3 (Figures 2I and 2J). 

Conversely, highly-aggressive clones were exceedingly rare but transcriptionally 

divergent from other clones and each other (Figure 2I). 

 

An EMT continuum associated with aggression 

We sought to understand the specific transcriptional programs associated with clonal 

aggression. While both mice were strikingly similar in terms of clonal composition 

(Figure 2B), we initially focused on M1, since we harvested cells from more sites and 

recovered over twice as many barcodes per cell, which permits more effective 

downstream subclonal reconstruction (Figures S2J and S2K). Reanalyzing the M1 data 

apart from M2, non-aggressive clones again appeared transcriptionally similar to one 

another (Figure 3A). Interestingly, these clones were enriched for expression of 

canonical epithelial markers, such as Epcam, Muc1, and Cdh1 (Figures 3B-D and 

https://paperpile.com/c/phZkFU/Slq0Y
https://paperpile.com/c/phZkFU/Slq0Y
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S4A). Conversely, mesenchymal markers, such as Sparc, Zeb2, and Col3a1, were 

enriched in cells of the aggressive clone, M1.1 (Figures 3E-G and S4B). Loss of 

epithelial genes and gain of mesenchymal genes are defining hallmarks of epithelial-to-

mesenchymal transition (EMT) (Nieto 2013; Nieto et al. 2016). 

 

EMT is a process of transdifferentiation, wherein epithelial cells lose the properties of 

cell polarity and adhesion, while gaining the ability to be motile and migratory. In cancer, 

EMT is implicated in invasion, metastasis, tumor stemness, plasticity, and drug 

resistance (Nieto 2013; Nieto et al. 2016). EMT is primarily a transcriptional process 

mediated by a group of key master-regulator transcription factors (EMT-TFs) (Stemmler 

et al. 2019). We observed elevated expression in aggressive clones of 4/5 EMT-TFs, 

namely Zeb1, Zeb2, Snai1, and Snai2 (Figures 3F and S4C). Expression of Prrx1, an 

important regulator of EMT in PDAC (Takano et al. 2016), was also increased. 

 

Traditionally, EMT is considered a binary process, where cells switch from fully epithelial 

to fully mesenchymal. However, recent studies have reported discrete intermediate EMT 

states (M. Lu et al. 2013; J. Zhang et al. 2014; T. Hong et al. 2015; Pastushenko et al. 

2018; Pastushenko and Blanpain 2019) or even a continuum of states (van Dijk et al. 

2018; McFaline-Figueroa et al. 2019). In our data, epithelial and mesenchymal UMAP 

regions were not well segregated. Specifically, epithelial and mesenchymal genes 

appeared to gradually lose and gain expression as a function of distance from two 

extremes (Figures 3B-G), supporting the view that a continuum of EMT states exists in 

vivo.  

 

https://paperpile.com/c/phZkFU/9L8v1+Agocp
https://paperpile.com/c/phZkFU/9L8v1+Agocp
https://paperpile.com/c/phZkFU/fSDno
https://paperpile.com/c/phZkFU/fSDno
https://paperpile.com/c/phZkFU/Cj39p
https://paperpile.com/c/phZkFU/PB9fc+UDkdU+rcq5z+fiI9B+q2G9E
https://paperpile.com/c/phZkFU/PB9fc+UDkdU+rcq5z+fiI9B+q2G9E
https://paperpile.com/c/phZkFU/TWu0R+duRIh
https://paperpile.com/c/phZkFU/TWu0R+duRIh
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We leveraged our single-cell data to explore the transcriptional correlates of EMT as a 

continuum. We performed unbiased trajectory inference using Monocle 3 (Junyue Cao et 

al. 2019) and found that the main trajectory in our data corresponded to the observed 

EMT gene expression axis (Figure 3H). We named this trajectory "pseudoEMT" (akin to 

pseudotime for developmental trajectories) and placed the root of the trajectory, or the 

zero EMT state, at the most epithelial transcriptional region (Figure 3H). Hence, the 

expression of canonical epithelial markers was highest at the root. We found that many 

genes, including known epithelial or mesenchymal markers, rise and fall at different 

rates across pseudoEMT (Figures 3I and S4E-G); for example, many extracellular 

matrix genes activate only very late in the trajectory (Figures 3I and S4F). Additionally, 

numerous genes, such as Cd44 or Inhba, displayed unusual patterns, rising and then 

falling or plateauing (Figure S4H). Expression of surface markers previously used to 

stratify different EMT states in skin and breast cancer mouse models, Epcam, Vcam1 

(CD106), Itgav (CD51), and Itgb3 (CD61) (Pastushenko et al. 2018), followed a similar 

pattern in our data (Figures S4D). However, except for Epcam, expression of these 

markers was not highly variable across the EMT continuum (Figures S4I), suggesting 

that at least in PDAC, other genes might be more suitable markers for stratification. 

 

Plotting cells along pseudoEMT highlighted that smaller, non-aggressive clones reside 

on the epithelial extreme, while more mesenchymal states are restricted to large, 

aggressive clones, such as M1.2 and particularly M1.1 (Figures 3I). As 27 of 29 clones 

were highly epithelial, we suspected this to be the default transcriptional state. To 

investigate this, we applied single-cell RNA-seq on 5,932 in vitro cultured cells. We 

found that these cells comprised 40 distinct clones, none of which overlapped with any 

https://paperpile.com/c/phZkFU/ymsxs
https://paperpile.com/c/phZkFU/ymsxs
https://paperpile.com/c/phZkFU/fiI9B


28 

 

clones recovered from in vivo metastasis experiments. In vitro cells clustered 

homogeneously together and away from M1 cells (Figures S5A and S5B) and had 

distinct markers from in vivo cells at large (Figures S5C and S5G and Table S1). With 

regards to EMT, in vitro cells were strikingly epithelial, often displaying higher expression 

of epithelial markers, such as Muc1 and various keratins (Figures S5D, S5E, and S5H), 

and conversely even lower expression of mesenchymal markers, such as Zeb2, Vim, 

and Fn1 (Figures S5F and S5I), as compared to the highly-epithelial clones of M1. 

Thus, the baseline state of these PDAC cells appears to be highly epithelial with more 

mesenchymal EMT states only appearing in vivo, as in M1.1 and M1.2. 

 

To systematically characterize gene expression along EMT in vivo, we identified the top 

3000 significantly differentially expressed genes across pseudoEMT (q ~ 0, Moran's I > 

0.1) (Table S2). Hierarchical clustering of genes revealed six gene sets with similar 

kinetics (Figure 3J). We classified these sets from most epithelial to most mesenchymal 

as follows: Epithelial (E), Hybrid 1, 2, 3, and 4 (H1, H2, H3, H4), and Mesenchymal (M) 

(Figure 3J; Table S2). We then performed hypergeometric gene set enrichment using 

the Molecular Signatures Database (MSigDB) Hallmark gene sets, which represent well-

defined biological states and processes (Figure 3J; Table S2). Concordant with the 

pseudoEMT trajectory, gene set enrichment indicated an EMT process. Early clusters 

(E, H1) were enriched for apical surface genes, consistent with epithelial cell polarity, 

while late clusters showed gradually increased enrichment for EMT (H4: p = 3x10 -6, M: p 

= 3x10-29). An inducer of EMT and metastasis, TGF-β signaling (Zavadil and Böttinger 

2005; Nieto et al. 2016; Aiello et al. 2018), as well as Jak/Stat3 and Stat5 signaling (R.-

Y. Liu et al. 2014), peaked in the late hybrid state (H4) and tapered off in the highly 

https://paperpile.com/c/phZkFU/Hjmpr+Agocp+Z9Ogx
https://paperpile.com/c/phZkFU/Hjmpr+Agocp+Z9Ogx
https://paperpile.com/c/phZkFU/IcTmT
https://paperpile.com/c/phZkFU/IcTmT


29 

 

mesenchymal state (M). Other pathways purported to be involved in EMT, such as TNF-

α (Wang et al. 2013), Wnt (Kim, Lu, and Hay 2002; Basu, Cheriyamundath, and Ben-

Ze’ev 2018), and Hedgehog (J. Zhang, Tian, and Xing 2016) were also only enriched in 

H4 or M. Interestingly, Notch signaling was recently implicated as a hybrid-EMT 

stabilizer (Boareto et al. 2016; Bocci et al. 2017), consistent with our finding that it was 

only enriched in H4. 

 

Striking metabolic gene expression changes across EMT were also apparent (Figure 

3J). Transitioning from early (H1, H2) to late (H3, H4) hybrid gene clusters, we observed 

a strong shift from enrichment of oxidative phosphorylation (OXPHOS) toward glycolysis, 

potentially related to the enrichment of mTOR signaling in H2 (Ramanathan and 

Schreiber 2009). Consistent with metabolic shifts, hybrid EMT states also were highly 

enriched for proliferative gene sets, such as G2M, E2F, and mitotic spindle. Specifically, 

enrichment began modestly in H2 and peaked dramatically in H3 (G2M, H2: p = 3x10 -2, 

H3: p = 1x10-20). We next determined the cell cycle phase of each cell (G1, G2M, or S) to 

estimate the proportion of actively dividing cells (S/G2M) across pseudoEMT (Methods). 

Consistent with Hallmark gene set enrichment, cell cycling peaked at EMT regions 

representing the E and H2/H3 gene clusters (Figure S4J). These hybrid EMT 

proliferative changes were potentially driven by Myc (Gabay, Li, and Felsher 2014), as 

Myc targets mirrored proliferative gene set enrichment and cell cycling fraction (Myc-v1, 

H2: p = 1x10-3, H3: p = 1x10-30). 

 

We next asked which TFs might regulate progression through EMT. Applying HOMER 

(Heinz et al. 2010) to promoters, we detected 45 significantly enriched DNA motif 

https://paperpile.com/c/phZkFU/AZPSi
https://paperpile.com/c/phZkFU/1kTU2+YfnQU
https://paperpile.com/c/phZkFU/1kTU2+YfnQU
https://paperpile.com/c/phZkFU/zRz5G
https://paperpile.com/c/phZkFU/RfNY9+oiHHX
https://paperpile.com/c/phZkFU/Bh4Ra
https://paperpile.com/c/phZkFU/Bh4Ra
https://paperpile.com/c/phZkFU/Nno16
https://paperpile.com/c/phZkFU/B8fL2
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binding factors across all gene clusters (Figure 3K). EMT master regulators, Zeb1, 

Zeb2, Snai1, and Snai2, were enriched in early clusters, E and H1. As EMT-TFs are 

primarily transcriptional repressors that downregulate epithelial genes (Stemmler et al. 

2019), this finding illustrates our ability to discover regulators of the EMT continuum. 

ETS-domain TFs, which are associated with metastasis, invasion, and EMT (Hsu, 

Trojanowska, and Watson 2004; Sizemore et al. 2017), dominated the enrichment 

profiles of hybrid states H2 and H3. Motifs bound by members of the Sox and Fox 

families were enriched in H4 and M, respectively. Sox TFs are often associated with 

stemness-related processes (Grimm et al. 2019). Notably, the six gene clusters have no 

overlapping genes, yet adjacent clusters often displayed overlapping TF and gene set 

enrichment, lending further support for a gradual continuum of EMT transitions (Figures 

3J and 3K). Overall, across this continuum of 3000 genes, we describe many classic 

EMT markers, pathways, and regulators, but we also find many less well-characterized 

genes and processes of potential interest for furthering understanding of EMT in vivo 

(Table S2). Additionally, we performed a traditional Leiden clustering of M1 and found 

clusters roughly matching the pseudoEMT spectrum (Figure S5J). We identified the top 

markers by both cluster and clone, finding that cluster markers were consistent with 

genes enriched across corresponding EMT states (Table S3). 

 

Reconstruction of subclonal diversity arising in vivo 

Most cells in the mid-to-late EMT continuum came from a single dominant clone, M1.1, 

preventing us from precisely correlating transcriptional processes with tumor aggression 

and highlighting the limitations of static barcoding (Figure 3I). We therefore leveraged 

https://paperpile.com/c/phZkFU/fSDno
https://paperpile.com/c/phZkFU/fSDno
https://paperpile.com/c/phZkFU/OrbSg+gH39m
https://paperpile.com/c/phZkFU/OrbSg+gH39m
https://paperpile.com/c/phZkFU/c7ohi
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editing patterns of macGESTALT evolving barcodes to more precisely relate EMT and 

aggression at the subclonal level. 

 

We recovered a large number of edited and informative target sites per cell, conducive 

to phylogenetic analysis. Altogether, we recovered 384,870 CRISPR target sites, of 

which 96% were edited (Figure S6A). Editing was distributed across the length of the 

barcodes with peaks at the expected Cas9 cut-sites, 3bp upstream of the protospacer 

adjacent motif (PAM) of each target site (Figure 4A). Deletions predominated over 

insertions, as expected (McKenna et al. 2016; Raj et al. 2018; Bowling et al. 2020), with 

an approximately equal number of single- and multi-target deletions (Figures 4B and 

S6B). The average edit size varied by edit type, with 11bp for insertions, 18bp for single-

target deletions, and 80bp for multi-target deletions (Figure S6C). Multi-target deletions 

were of a large size range and involved 2, 3, 4, or 5 target sites at frequencies ranging 

from 10-19% (Figures S6B and S6C). Individual target site editing rates varied between 

89-99% (Figure 4B). On average, we recovered 18.5 target sites (3.7 barcodes) per cell 

for M1 and 8.5 (1.7) for M2 (Figure S2J).  

 

Intraclonal tree reconstruction was performed in three main steps (Figure 4C). First, 

different barcodes from the same cell were concatenated based on their static barcodes 

into a "barcode-of-barcodes", which contains all of the phylogenetic information 

recovered for that cell. Second, cells with identically edited barcode-of-barcodes were 

grouped into subclones, since they are indistinguishably close relatives. Third, 

phylogenetic relationships between subclones were reconstructed based on edit 

inheritance patterns (Figure 4C). Subclonal metastatic aggression was quantified via 

https://paperpile.com/c/phZkFU/XQ3jk+QLv3A+kczNS
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Shannon's Equitability (EH) – a statistical measure of dissemination across harvest sites 

(Methods). For example, a subclone found at only one harvest site is not metastatically 

aggressive and has an EH of zero. 

 

We sought to understand the maximum number of cells that could be uniquely tagged 

using our approach. With this in mind, we first investigated editing diversity of individual 

barcode integrants (Figures S6D). Examining 208 barcodes across both mice, we found 

that the maximum number of unique editing outcomes for a barcode scaled with the 

number of cells recovered, but gradually peaked to around 400 unique outcomes even 

for barcodes recovered in nearly 10,000 cells. Hence, in these experiments where we 

recovered an average of 2.6 barcodes per cell, we can estimate maximum labeling at 

nearly 109 cells (400 editing outcomes ^ 2.6 barcodes * 95 clones).  

 

In practice, we sampled a fraction of this theoretical space and recovered 6,055 unique 

barcodes-of-barcodes, which for efficient phylogenetic reconstruction, we filtered to a 

total of 1,692 subclones, each with at least two cells for larger clones (≥50 cells) or with 

any number of cells for smaller clones (Figure S6A; Methods). Due to a higher average 

number of barcode integrations per cell, M1 displayed greater reconstructive power than 

M2. This was particularly apparent in the dominant clone of each mouse, where M1.1 

with seven barcode integrants had 601 subclones compared to M2.2 with only two 

integrants and 110 resulting subclones. Notably, pairwise phylogenetic distances in the 

reconstructed trees were strongly concordant with the corresponding edit distances 

between barcode-of-barcodes alleles (Figure S6E) and more active target sites 
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determined earlier tree nodes (Figure S6F), suggesting that lineage relationships 

between cells are accurately captured in our trees. 

 

The full clonal and subclonal phylogenetic visualization of M1 data highlights the 

overwhelming proliferative and metastatic dominance of clone M1.1 (Figure 4D and 

S6G). However, within M1.1, we also observed vast heterogeneity with respect to 

subclonal aggression and metastatic success. Most strikingly, the same bottlenecking 

observed on the clonal level was also present on the subclonal level within M1.1 (Figure 

4E). Subclonal bottlenecking further increased at metastatic sites, again mirroring 

observations at the clonal level. Thus, cancer progression appears to be defined by a 

state of constant selection, separate from the effects of engraftment. 

 

Late-hybrid EMT states are proliferatively and metastatically advantageous 

As the vast majority of EMT diversity was within M1.1 (Figure 3I), we leveraged 

phylogenetic data to understand how this range of intraclonal EMT states may relate to 

differences in subclonal behavior. We calculated the mean pseudoEMT value for each 

subclone and plotted this and subclonal dissemination (EH) for clone M1.1 (Figures 5A 

and 5B). While M1.1 was highly mesenchymal compared to other M1 clones, many 

subclones within M1.1 were actually quite epithelial. These epithelial subclones were 

primarily small and non-metastatic (Figures 5A and 5B). Interestingly, the same was 

true of highly mesenchymal subclones. On the other hand, the largest and most 

disseminated subclones appeared to express hybrid EMT states (Figures 5A and 5B), 

providing direct evidence that EMT extremes are less metastatic than hybrid states (Jolly 

https://paperpile.com/c/phZkFU/qWekU+Agocp+GrcQb+q2G9E
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et al. 2015; Nieto et al. 2016; Lambert, Pattabiraman, and Weinberg 2017; Pastushenko 

and Blanpain 2019). 

 

To precisely characterize where aggression peaked along the EMT continuum, we 

mapped subclonal dissemination (EH) and size along pseudoEMT (Figure 5C). We found 

that dissemination gradually peaked around the H3 and H4 hybrid states (pseudoEMT 

score of 20-22) and then sharply declined at highly mesenchymal states. Thus, late-

hybrid EMT states are metastatically advantageous and are associated with specific 

proliferative, metabolic, and signaling processes (Figure 3J and Table S2), as well as 

distinct regulatory binding factors (Figure 3K).  

 

Notably, hybrid-EMT states appeared transcriptionally stable – for example, a large, 

hybrid subclone often had close relatives that were also large and hybrid (Figure 5A). 

To understand the stability of EMT states, we plotted the distribution of cells, subclones, 

and root clades along pseudoEMT (Figure 5D; Methods). Root clades mark the first 

phylogenetic subdivision within a clone and are hence an older subgrouping of cells than 

a subclone. Examples of root clades and subclones are highlighted in Figure 5A. Root 

clades exist at the time of dox initiation (one week post orthotopic transplant), cells exist 

at the time of harvest, and subclones in between; thereby we compared different "levels" 

of ancestral groups. Moving from root clades to cells, there was a shift from epithelial to 

hybrid states, suggesting that while epithelial states are the prevailing ancestral default, 

they are proliferatively and metastatically disadvantaged compared to hybrid states 

(Figure 5D). This intraclonal observation again mirrored findings at the interclonal level, 

where M1.1 itself was dominant compared to all other clones, which were generally, 

https://paperpile.com/c/phZkFU/qWekU+Agocp+GrcQb+q2G9E
https://paperpile.com/c/phZkFU/qWekU+Agocp+GrcQb+q2G9E
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highly epithelial. Therefore, ongoing natural selection of rare, late-hybrid EMT states 

over predominating epithelial states permits both rapid dissemination and forces 

continuous clonal and subclonal bottlenecking. 

 

As late-hybrid EMT states, namely the H3 and H4 gene clusters, were profoundly 

associated with metastasis in our model, we asked whether a similar trend might exist in 

human PDAC (Figure 5E). Using The Cancer Genome Atlas (TCGA) matched gene 

expression and clinical data, we found that the transcriptional signature of the E, H1, and 

H2 gene clusters had no association with disease prognosis. However, patients enriched 

for the H3 or H4 transcriptional signature had a significantly increased risk of death, and 

this risk disappeared for the highly mesenchymal cluster M (Figure 5E). Remarkably, 

these human PDAC findings faithfully mirror the rise and fall of subclonal metastatic 

aggression along pseudoEMT in our model (Figure 5C).  

 

As EMT is thought to play a role across many cancer types (Nieto et al. 2016), we also 

examined whether our pseudoEMT gene sets might predict survival in the other 

prevalent cancers by mortality (Cancer Facts & Figures 2020): lung, colorectal, breast, 

and prostate cancer. While colorectal, breast, and prostate cancers were not significantly 

associated in either direction with our PDAC-derived pseudoEMT gene sets, lung cancer 

displayed a similar pattern to PDAC (Table S4). Lung cancer patients enriched for H4 

had significantly worse overall survival, while those enriched for M again trended toward 

better overall survival. In summary, these findings highlight the clinical relevance of late-

hybrid states and emphasize the potential cancer-specific nature of EMT. 

 

https://paperpile.com/c/phZkFU/Agocp
https://paperpile.com/c/phZkFU/uv3SL
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Evidence for interclonal propagation of S100 gene expression 

We also examined the lineage and transcriptional structure of M2, which overall 

appeared strikingly similar to M1 (Figures 6A-B versus 3A and S6G). As in M1, 

labeling the transcriptional UMAP of M2 by clone highlighted that non-aggressive clones 

occupy a similar transcriptional region, while rare metastatic clones and one dominant 

clone occupy divergent transcriptional regions (Figure 6B, S5K and Table S3). 

However, due to the lower number of barcode integrants in M2.2 relative to M1.1 and the 

resulting lower number of subclones reconstructed (Figure 6A versus S6G), we were 

unable to interrogate the dominant clone of M2 in the same depth as M1.1. We instead 

broadly asked what genes might be associated with subclonal dissemination (EH) in M2, 

by performing a regression of EH against single cell gene expression with adjustment for 

confounders (Methods). We identified 973 genes positively associated with 

dissemination and 1,037 negatively associated genes (q < 0.05) (Table S5). 

Promisingly, as in M1, genes positively associated with subclonal dissemination in M2 

also predicted worse overall survival in human PDAC TCGA data (Figure 6C), as well 

as in human lung cancer but not in breast, colorectal, and prostate cancer (Table S5). 

 

Meanwhile, amongst the genes most negatively associated with dissemination were 

canonical epithelial markers, such as Ocln, Epcam, and Lgals4 (Table S5). These 

epithelial genes presented similar patterns of expression to as seen in M1. Adhesion 

encoding genes, Ocln and Epcam, were strictly contained to non-aggressive UMAP 

regions in M2 (Figures 6D and 6E), as they were in M1 (Figures 3B and S4A), while 

Lgals4 was expressed slightly more broadly, just it was in M1 (Figures 6F and S5E). 

Thus, the vast majority of clones in both M1 and M2 were non-metastatic and epithelial 
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in nature. This finding, together with our observation that these cells express epithelial 

but not mesenchymal markers in vitro (Figures S5D-F and S5H-I), further indicates that 

the default state is epithelial, that epithelial markers are repressed in order to 

metastasize, and that this process is rare. 

 

As in M1, EMT-TFs, Prrx1 and Zeb2, were expressed inversely to epithelial genes 

(Figures 6G and 6H). However, while most aggressive clones in M2 displayed similar 

expression patterns to M1 with regards to epithelial and mesenchymal genes, the 

dominant clone, M2.2, was not entirely consistent with the canonical EMT axis observed 

in M1 (Figure 3J). Specifically, the mesenchymal marker, Sparc, was lowly expressed in 

non-aggressive regions but also in M2.2 (Figure 6I). Similarly, the epithelial marker 

Muc1 was highly expressed both in non-aggressive regions and in a large portion of 

M2.2 cells (Figure 6J). This was particularly apparent when comparing M2.2 to another 

aggressive clone, M2.23 (Figures 2B and 6B), which displayed more canonical and 

complete EMT, with high mesenchymal gene expression (Figures 6G-I) and nearly 

completely absent epithelial gene expression (Figures 6D-F and 6J). Indeed when 

plotted together with M1, M2.23 cells clustered with the more mesenchymal cells of M1.1 

(Figure 2D), which may help explain its aggressive but non-dominant phenotype (Figure 

2B; Methods). 

 

We sought to better understand the processes that underlie dominance of M2.2 and 

aggression in M2 more broadly. Thus, we narrowed the genes significantly associated 

with subclonal dissemination to those that were both highly expressed and had a strong 

association, leaving 355 genes (Figure 6K; Methods). Among the most negatively 
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associated genes were again epithelial markers, as well as genes such as Ctse, which 

has been functionally shown to inhibit tumor growth and metastasis (Kawakubo et al. 

2007). Conversely, among the most positively associated genes were genes previously 

found to promote TGF-β signaling, EMT, and metastasis in other cancers, such as 

Ifitm1, Ifitm3, and Akr1b3, further highlighting the important role EMT plays in promoting 

metastasis across both M1 and M2 (Yu et al. 2015; X. Liu et al. 2019; Min et al. 2018; 

Schwab et al. 2018).   

 

Notably, we found that the S100a gene family was 52-fold over-enriched among 

positively associated genes (hypergeometric test, p = 8x10-10) and completely absent 

from negatively associated genes (Figure 6K). S100 proteins were recently found to be 

the most abundant and overrepresented secreted factors in PDAC compared to normal 

pancreas, in both human patients and mouse models (Tian et al. 2019). However, the 

specific functions of S100s in PDAC and other cancers are poorly characterized. Some 

S100s, such as S100a4, are thought to promote metastasis via EMT and to directly 

mediate pseudopodia and lamellipodia formation in order to drive cell migration and 

invasion (Bresnick, Weber, and Zimmer 2015; Fei et al. 2017). Interestingly, S100s are 

considered autocrine, paracrine, and even circulatory, long distance signaling molecules 

that potentially propagate their own expression and coordinate changes in the tumor and 

the microenvironment both locally and systemically (Bresnick, Weber, and Zimmer 

2015). However, studies have primarily focused on S100 signaling in the tumor 

microenvironment and have not assessed how signaling spreads across different tumor 

subpopulations. 

 

https://paperpile.com/c/phZkFU/S3y2h
https://paperpile.com/c/phZkFU/S3y2h
https://paperpile.com/c/phZkFU/1i9W0+s94PZ+8Y7GJ+ryGJ7
https://paperpile.com/c/phZkFU/1i9W0+s94PZ+8Y7GJ+ryGJ7
https://paperpile.com/c/phZkFU/bmBPu
https://paperpile.com/c/phZkFU/fMiZ7+0nn67
https://paperpile.com/c/phZkFU/fMiZ7
https://paperpile.com/c/phZkFU/fMiZ7
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We leveraged our coupled lineage and transcriptional data across 95 distinct cancer 

clones to investigate whether there was evidence of S100 signal propagation in tumors 

in vivo. We aggregated single-cell gene expression of the S100a family for each clone 

grouped by mouse (Figure 6L). We found that M2 clones had significantly higher 

expression of S100a genes compared to M1 clones (Welch's t-test, p = 9x10-9) and that 

this was also true when restricting comparison to only the aggressive clones of each 

mouse (p = 2x10-5). Notably, each of the 7 aggressive clones of M2 had higher S100 

expression than any of the 29 clones of M1 (Figure 6L). As all clones from both mice 

derive from the same starting population in vitro and are largely unrelated with unique 

histories, as evidenced by their macsGESTALT static barcodes (Figure 2B) as well as 

their distinct CNVs (Figure S3B), these findings present clear evidence of S100 

expression propagation across distinct clonal tumor populations in vivo. Furthermore, 

aggressive clones in M2 had significantly higher S100 expression than non-aggressive 

clones (p = 6x10-4), while this was not the case for M1 (Figure 6L). Indeed, M2.2, the 

dominant clone of M2, which displayed inconsistencies with regards to some canonical 

epithelial and mesenchymal markers, had the highest S100a expression of any clone 

across either mouse, suggesting that it had achieved dominance by complementing 

canonical EMT changes with high S100 expression. 
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Discussion 

To study cancer metastasis at high resolution, we developed macsGESTALT, a 

multiplexed, inducible lineage tracer that can be easily coupled with scRNA-seq. We 

applied macsGESTALT to an in vivo model of pancreatic cancer metastasis and 

reconstructed transcriptomic information, lineage history, and harvest site for ~28,000 

single cells derived from nearly 100 clones. These richly annotated cancer metastasis 

phylogenies can be explored interactively at https://macsgestalt.mckennalab.org/. 

 

Despite extensive investigation, the identification of recurrent genetic drivers of 

metastasis has remained challenging (Hunter et al. 2018). Here, in spite of using a 

metastatically competent genetic model, we found that most clones in fact do not 

metastasize, supporting the importance of transcriptional and non-genetic processes in 

metastasis, such as acquisition of late-hybrid EMT states or propagation of S100 

expression. While our approach enabled us to precisely map the association between 

metastasis and EMT and thereby identify gene sets predictive of human survival, further 

functional investigation of specific EMT states is necessary (Zheng et al. 2015; Aiello et 

al. 2017, 2018). Similarly, the S100 gene family appears to play a number of important 

yet poorly understood roles in cancer (Bresnick, Weber, and Zimmer 2015; Tian et al. 

2019) and warrants further functional dissection of its many distinct family members. 

Additionally, direct comparison of our data to scRNA-seq from human patients may shed 

further light on the relevance of our findings to human disease.  

 

In this study, we apply macsGESTALT lineage tracing to ~100 clones across two mice 

and find both conserved and distinct ways in which metastasis is achieved. We 

https://macsgestalt.mckennalab.org/
https://paperpile.com/c/phZkFU/08b24
https://paperpile.com/c/phZkFU/2DWMU+wuPGX+Z9Ogx
https://paperpile.com/c/phZkFU/2DWMU+wuPGX+Z9Ogx
https://paperpile.com/c/phZkFU/fMiZ7+bmBPu
https://paperpile.com/c/phZkFU/fMiZ7+bmBPu


41 

 

anticipate that future studies will build on this work and exhaustively explore the full 

landscape of possible paths to metastasis. macsGESTALT is well suited for such a task, 

as its inducibility allows lineage tracing to initiate at the optimal experimental time, here 

after tumor engraftment. Alternatively, initiation can be coupled with specific 

interventions, such as the administration of a therapeutic to study chemoresistance. 

Future optimization of macsGESTALT may include editing rate titration, minimization of 

multi-target deletions, and coupling to other emerging technologies such as signal 

recording. These technical advancements will enable questions in cancer and stem cell 

biology to be investigated at previously inaccessible levels of resolution and scale. 
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Methods 

Key resources table 
Resources table 1 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Chemicals, peptides, and recombinant proteins 

DMEM, High Glucose Fisher Scientific Cat#: 11-965-092 

FBS Corning Cat#: 35-010-CV 

L-Glutamine Invitrogen Cat#: 25030081 

Penicillin-Streptomycin Invitrogen Cat#: 15140122 

TrypLE Express Enzyme Thermo Fisher Scientific Cat#: 12605010 

Collagenase IV Thermo Fisher Scientific Cat#: 17104019 

Lipofectamine 3000 Thermo Fisher Scientific Cat#: L3000001 

Lipofectamine 2000 Thermo Fisher Scientific Cat#: 11668030 

Lipofectamine CRISPRMax Thermo Fisher Scientific Cat#: CMAX00001 

G418 Invitrogen Cat#: 108321-42-2 

Puromycin Sigma-Aldrich Cat#: P8833 

Doxycycline Hyclate Sigma-Aldrich Cat#: D9891 

BSA Sigma-Aldrich Cat#: A7906 

DAPI Thermo Fisher Scientific Cat#: 62248 

EDTA Invitrogen Cat#: 15575020 

DNase I Sigma-Aldrich Cat#: D4263 

ACK Lysing Buffer Quality Biological Cat#: 118-156-721 

HBSS Invitrogen Cat#: 14175079 

PBS Invitrogen Cat#: MT21-031-CM 

Critical commercial assays 

NEB Stable Competent E. coli NEB Cat#: 3040H 

NEBuilder HiFi DNA Assembly 
Master Mix 

NEB Cat#: E2621 

GeneArt Precision gRNA Synthesis 
Kit 

Thermo Fisher Scientific Cat#: A29377 

NucleoSpin DNA RapidLyse Kit Macherey-Nagel Cat#: 740100.50 

Agencourt AMPure XP  Beckman Coulter Cat#: A63880 

SPRI Select Beckman Coulter Cat#: B23317 

TapeStation High Sensitivity D1000 
ScreenTape 

Agilent Cat#: 5067-5584 

TapeStation High Sensitivity D1000 
Reagents 

Agilent Cat#: 5067-5585 

TapeStation High Sensitivity D5000 
ScreenTape 

Agilent Cat#: 5067-5592 

TapeStation High Sensitivity D5000 
Reagents 

Agilent Cat#: 5067-5593 

Qubit 1X dsDNA HS Assay Kit Thermo Fisher Scientific Cat#: Q33230 

NEBNext Multiplex Oligos for 
Illumina (Dual Index Primers Set) 

NEB Cat#: E7600S 

HotStart ReadyMix Kapa Biosystems Cat#: KK2601 
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KAPA Real-Time Library 
Amplification Kit 

Kapa Biosystems Cat#: KK2702 

MiSeq Reagent Kit v3 (600-cycle) Illumina Cat#: MS-102-3003 

NovaSeq 6000 S2 Reagent Kit (100 
cycles) 

Illumina Cat#: 20012862 

Chromium Single Cell 3ʹ GEM, 
Library & Gel Bead Kit v3 

10x Genomics Cat#: PN-1000075 

Chromium Single Cell B Chip Kit  10x Genomics Cat#: PN-1000074 

Deposited data 

Raw and processed transcriptome 
and barcode data 

This manuscript GEO: GSE173958 

Analyzed lineage data This manuscript Mendeley Data: 
https://doi.org/10.17
632/t98pjcd7t6.1  

Experimental models: Cell lines 

PDAC 6419c5 cells Li et al. 2018 N/A 

macsGESTALT PDAC cells This manuscript N/A 

293T-V7 cells This manuscript N/A 

293T-V8 cells This manuscript N/A 

Experimental models: Organisms/strains 

Mouse: NOD scid Jackson Laboratory Cat#: 001303 

Oligonucleotides 

Primer pairs (see Table S11) This manuscript, IDT N/A 

Recombinant DNA 

pUltra-U6-gRNAs1-5 This manuscript N/A 

PB-EF1α-Puro-V8.2 This manuscript N/A 

pLJM1-EGFP-V7 This manuscript N/A 

pLJM1-EGFP-V8 This manuscript N/A 

pCFDg1-5  This manuscript N/A 

pBS31-GFP-V8crRNAs-U6-tracr-
Ub-M2rtTA  

This manuscript N/A 

pUltra-U6-crRNAs-U6-tracr This manuscript N/A 

p5xU6_5sgRNA-Hsp70-Cas9GFP-
pA 

Raj et al. 2018 N/A 

pBS31 Beard et al. 2006 N/A 

pUltra Addgene Cat#: 24129 

pLJM1-EGFP Addgene Cat#: 19319 

Lenti-iCas9-neo Addgene Cat#: 22667 

psPAX2 Addgene Cat#: 12260 

pMD2.G Addgene Cat#: 12259 

Super PiggyBac Transposase SBI PB210PA-1 

Software and algorithms 

R v4.0.2 R Core Team https://www.r-
project.org/ 

https://doi.org/10.17632/t98pjcd7t6.1
https://doi.org/10.17632/t98pjcd7t6.1
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10x Cell Ranger v3 10x Genomics RRID: 
SCR_017344; 
https://support.10xg
enomics.com/single-
cell-gene-
expression/software/
pipelines/latest/what
-is-cell-ranger  

Monocle 3 Junyue Cao et al. 2019 RRID: 
SCR_018685; 
https://cole-trapnell-
lab.github.io/monocl
e3/  

Seurat v3.1.4 Stuart et al. 2019 RRID: 
SCR_016341; 
www.satijalab.org/se
urat/  

tidyverse v1.3.0 Wickham et al. 2019 RRID: 
SCR_019186; 
https://CRAN.R-
project.org/package
=tidyverse  

igraph v1.2.6 https://igraph.org/  RRID: 
SCR_019225; 
https://cran.r-
project.org/web/pack
ages/igraph/  

ggraph v2.0.5 https://ggraph.data-
imaginist.com/index.html  

https://cran.r-
project.org/web/pack
ages/ggraph/index.h
tml  

HOMER v4.11.1 Heinz et al. 2010 RRID: 
SCR_010881; 
http://homer.ucsd.ed
u/  

singscore v1.8.0 Foroutan et al. 2018 https://www.biocond
uctor.org/packages/r
elease/bioc/html/sin
gscore.html  

survival v3.2-7 N/A https://cran.r-
project.org/web/pack
ages/survival/index.
html  

inferCNV Trinity CTAT Project https://github.com/br
oadinstitute/inferCN
V  

Barcode alignment McKenna et al. 2016 https://github.com/m
ckennalab/SingleCel
lLineage/ 

TreeUtils McKenna et al. 2016 https://github.com/m
ckennalab/TreeUtils  

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/monocle3/
http://www.satijalab.org/seurat/
http://www.satijalab.org/seurat/
https://cran.r-project.org/package=tidyverse
https://cran.r-project.org/package=tidyverse
https://cran.r-project.org/package=tidyverse
https://igraph.org/
https://cran.r-project.org/web/packages/igraph/
https://cran.r-project.org/web/packages/igraph/
https://cran.r-project.org/web/packages/igraph/
https://ggraph.data-imaginist.com/index.html
https://ggraph.data-imaginist.com/index.html
https://cran.r-project.org/web/packages/ggraph/index.html
https://cran.r-project.org/web/packages/ggraph/index.html
https://cran.r-project.org/web/packages/ggraph/index.html
https://cran.r-project.org/web/packages/ggraph/index.html
http://homer.ucsd.edu/
http://homer.ucsd.edu/
https://www.bioconductor.org/packages/release/bioc/html/singscore.html
https://www.bioconductor.org/packages/release/bioc/html/singscore.html
https://www.bioconductor.org/packages/release/bioc/html/singscore.html
https://www.bioconductor.org/packages/release/bioc/html/singscore.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
https://github.com/mckennalab/SingleCellLineage/
https://github.com/mckennalab/SingleCellLineage/
https://github.com/mckennalab/SingleCellLineage/
https://github.com/mckennalab/TreeUtils
https://github.com/mckennalab/TreeUtils
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Lineage processing and analysis This manuscript https://github.com/ks
imeono/macsGEST
ALT & 
https://doi.org/10.17
632/t98pjcd7t6.1  

Other 

Online tree browser This manuscript https://macsgestalt.
mckennalab.org/  

 

  

https://github.com/ksimeono/macsGESTALT
https://github.com/ksimeono/macsGESTALT
https://github.com/ksimeono/macsGESTALT
https://doi.org/10.17632/t98pjcd7t6.1
https://doi.org/10.17632/t98pjcd7t6.1
https://macsgestalt.mckennalab.org/
https://macsgestalt.mckennalab.org/
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Resource availability 

 

Lead contact 

Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contact, Christopher J. Lengner (lengner@vet.upenn.edu). 

 

Materials availability 

Materials and reagents used in this study are listed in the Key Resources Table. 

Reagents generated in our laboratory are available upon request. The plasmids needed 

to implement macsGESTALT will be made available through Addgene. 

 

Data and code availability 

Raw and processed single cell lineage and transcriptional data are available through 

GEO: GSE173958. Further processed lineage data files and corresponding analysis 

scripts and R Notebooks are available together through Mendeley Data in a coherent file 

structure: http://dx.doi.org/10.17632/t98pjcd7t6.1. R Notebooks and scripts alone are 

also available through Github: https://github.com/ksimeono/macsGESTALT. 

 

  

mailto:lengner@vet.upenn.edu
http://dx.doi.org/10.17632/t98pjcd7t6.1
https://github.com/ksimeono/macsGESTALT
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Experimental models and subject details 

 

Cell lines 

All cells were cultured in a 5% CO2 incubator at 37 ℃ in culture media (High Glucose 

DMEM, 10% FBS, 1% glutamine with penicillin and streptomycin). 293T cells were a gift 

from Dr. Jeremey Wang at the University of Pennsylvania. Barcoded 293T cells for the 

gRNA screen were produced by infecting with pLJM1-EGFP-V7 or pLJM1-EGFP-V8 

lentivirus at low MOI (MOI < 0.2) and sorted by fluorescence-activated cell sorting 

(FACS) for GFP using a BD FACSAria II (BD Biosciences).  

 

For the PDAC cells used to generate macsGESTALT PDAC cells, we selected the most 

metastically aggressive cell line (6419c5) from a published library of clonal PDAC lines 

(J. Li et al. 2018), which were each derived from harvested KPCY tumors. While this cell 

line originated from a single cell bottleneck during derivation, it had since been passaged 

~15x, thereby overtime in culture, becoming effectively polyclonal at the point of 

macsGESTALT barcode delivery.  

 

macsGESTALT components were introduced into PDAC cells in 3 steps: First, dox-

inducible Cas9 was integrated with Lenti-iCas9-neo (Addgene #22667) (Jian Cao et al. 

2016), and infected cells were selected for neomycin resistance via G418 for 7 d. 

Second, the cells were infected with pUltra-U6-gRNAs1-5 at high MOI (MOI > 0.8), and 

the top 50% of GFP positive cells were sorted by FACS using a BD FACSAria II. This 

step was repeated once to produce cells with high gRNA array expression to ensure a 

high editing rate. This can be decreased to slow and spread the editing rate over time. 

https://paperpile.com/c/phZkFU/cGEVT
https://paperpile.com/c/phZkFU/iUVLN
https://paperpile.com/c/phZkFU/iUVLN
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Third, cells from the previous steps were barcoded by cotransfecting PB-EF1α-Puro-

V8.2 library and Super PiggyBac Transposase plasmid (SBI #PB210PA-1) at a 1:10 

molar ratio using Lipofectamine 3000 (Thermofisher). Barcoded cells were puromycin-

selected for 7 d. To maintain diversity and limit leaky editing, cells were expanded after 

withdrawal of purmycin and frozen down with minimal time in culture (< 7 d). For lineage 

tracing experiments, cells were only expanded after thawing for 2-4 d as needed prior to 

orthotopic injection or experiment start. 

 

Mice 

NOD scid male mice were acquired from Jackson Laboratory. 10 week old mice were 

used for orthotopic injection. All mice were maintained in a specific pathogen-free 

environment at the University of Pennsylvania Animal Care Facilities. All experimental 

protocols were approved by and performed in accordance with the relevant guidelines 

and regulations of the Institutional Animal Care and Use Committee of the University of 

Pennsylvania. 
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Method details 

 

Plasmid design and construction 

All Gibson assemblies were performed using NEBuilder HiFi DNA Assembly Master Mix 

(NEB #E2621) and were assembled at 50 ℃ for 60 min at appropriate molar ratios. For 

cloning, all PCRs were performed using HotStart ReadyMix (Kapa Biosystems 

#KK2601). Restriction enzymes, instead of PCR, were used to linearize vector 

backbones to prevent backbone mutations. All bacterial transformations were performed 

with NEB Stable Competent E. coli (NEB #3040H) and cells were grown at 30 ℃ for 24 

h, unless otherwise noted. Final plasmid preps were performed with Zymopure II 

Plasmid Kits (Zymo Research #D4202). All regulatory, coding, and editing-related 

regions in final assembly products were validated by Sanger sequencing. All gene block 

sequences were ordered from IDT. 

 

V7 and V8 barcoding lentiviral transfer plasmids used for guide RNA array screening 

were constructed in 2-part Gibson assemblies using pLJM1-EGFP (Addgene #19319) 

(Sancak et al. 2008) backbone digested with EcoRI + gene blocks for V7 or V8 barcodes 

to make pLJM1-EGFP-V7 and pLJM1-EGFP-V8.  

 

pUltra-U6-crRNAs-U6-tracr was constructed in a 3-part Gibson assembly using PacI 

linearized pUltra (Addgene #24129) (Lou et al. 2012) backbone, a U6-driven array of 10 

V8 targeting crisprRNAs (crRNAs) interspersed by tRNAs ordered as a gene block 

(pUltra5-U6crRNA-GA1), and another gene block encoding a U6-driven tracrRNA (GA1-

U6-tracr-pUltra3). 

https://paperpile.com/c/phZkFU/psxot
https://paperpile.com/c/phZkFU/G184Y
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The dox-inducible crRNA array plasmid, pBS31-GFP-V8crRNAs-U6-tracr-Ub-M2rtTA, 

was constructed in a 3-part Gibson assembly using EcoRI linearized pBS31 (Beard et al. 

2006), a gene block containing 10 V8 targeting crRNAs interspersed by tRNAs in the 3' 

of a GFP opening reading frame (ORF) (TP-gB-1), and a gene block containing U6-

driven tracrRNA followed by Ubc promoter-driven M2-rtTA with a V8 barcode of 10 

targets in the 3' UTR (TP-gB-2). The barcode was excised for transient transfection 

gRNA screening experiments by digesting with NsiI and religating the backbone. 

 

p5xU6_5sgRNA-Hsp70-Cas9GFP-pA that had V7 gRNAs 5-9 each with a separate U6 

promoter was a gift from J. Gagnon (Raj et al. 2018). 

 

pCFDg1-5 gRNA-tRNA array was constructed stepwise as previously described using 

pCFD5 (Addgene #73914) (Port and Bullock 2016) as a template and V8 targeting 

gRNAs. 

 

pUltra-U6-gRNAs1-5 lentiviral transfer plasmid, which was used to make macsGESTALT 

PDAC cells, was generated in a 3-part Gibson assembly using pUltra backbone 

linearized with PacI, a gene block with U6 promoter and gRNA 1 (pUltra5-U6-gRNA1), 

and a PCR-amplicon, amplified from pCFDg1-5, containing gRNA-tRNAs 2-5 (gRNAs1-

5-pUltra3), thereby producing a constitutively-expressed five gRNA-tRNA array and a 

constitutive GFP selection marker. 

 

https://paperpile.com/c/phZkFU/ebUCD
https://paperpile.com/c/phZkFU/ebUCD
https://paperpile.com/c/phZkFU/QLv3A
https://paperpile.com/c/phZkFU/zYicF
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PB-EF1α-Puro-V8.2 library cloning was performed as a 3-part Gibson assembly: 1) PB-

CMV-MCS-EF1α-Puro (Systems Biosciences PB-510B-1) was digested with SpeI and 

HpaI to excise its cargo and create a linear backbone. 2) EF1α promoter and puro 

resistance gene were amplified from lentiGuide-Puro (Addgene #52963). 3) The V8.2 

target array was ordered as a gene block. This assembly produced the PB-EF1α-Puro-

V8.2 vector. Then, the barcode library was generated via a 2-part Gibson assembly 

using EcoRI linearized PB-EF1α-Puro-V8.2 and a random 10 bp containing staticID 

(static barcode) fragment, which was made by annealing and extending a pair of oligos 

(targetbarcode-r: 

TTTGTCCAATTATGCTCGAGGTCGAGAATTNNNNNNNNNNCGTTGATCGCACGCCA, 

targetbarcode-f2: TAGTTGGTTCCTACTGGCGTGCGATCAACG). The library was 

transformed into NEB 10-beta Electrocompetent E. coli (NEB #3020K), and the entire 

transformation was grown as a midi culture and prepped with Chargeswitch Pro Filter 

Midi Kit (Thermofisher #CS31104).  

 

Viral production 

Lentiviruses were packaged in HEK 293T cells using psPAX2 (Addgene #12260) and 

pMD2.G (Addgene #12259) second generation packaging and envelope plasmids. Viral 

supernatants were collected 2-4 d post-transfection and filtered through 0.45 µm filters. 

Filtered supernatants were either stored at -80 ℃ (never refrozen) or used fresh to infect 

cells. 

 

Guide RNA array editing screen 
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293T cells barcoded with pLJM1-EGFP-V7 or pLJM1-EGFP-V8 lentivirus were 

transiently transfected with different combinations of plasmids to test gRNA array editing 

efficacy. Barcoded cells plated at 250,000 cells per well of 6-well plates, and transfected 

the following day with Lipofectamine 2000 (Thermofisher #11668030). 1.5 µg of px330 

was used in each well (except no-transfection and pUltra-only control wells). All wells 

receiving a gRNA array plasmid were also transfected with a 1:1 molar amount of the 

appropriate gRNA plasmid compared to px330. Dox was initiated where appropriate the 

day after transfection. Additionally, as a positive control, one well received px330 and in 

vitro transcribed (IVT) gRNAs. Guide templates matching the V8 target sites were 

constructed and transcribed using GeneArt Precision gRNA Synthesis Kit (Thermofisher 

#A29377); gRNA 6 and 7 IVT reactions failed and these guides were excluded from 

further steps. IVT gRNAs were transfected using Lipofectamine CRISPRMax 

(Thermofisher #CMAX00001) 24 h after px330 was transfected. Expression of plasmids 

containing fluorescent markers was confirmed by microscopy. Cells were then allowed to 

expand and edit for one week and then harvested for library preparation and 

sequencing. 

 

PDAC dox-induced in vitro editing experiments 

PDAC cells were cultured in complete media (DMEM, 10% FBS, 1% glutamine with 

penicillin and streptomycin). Dox-induced editing checks of macsGESTALT PDAC cells 

were performed in two separate experiments: In the first experiment, cells were plated 

and started on dox at 3 doses, 0, 0.1, or 2 µg/mL, with media change every other day. 

Cells were collected at 2 timepoints — after 1 and 2 weeks of dox exposure — and 

harvested for library preparation and sequencing. In the second experiment, cells were 
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kept on 6 different dosages of dox, 0, 10, 50, 100, 500, or 1,000 ng/mL, for 2 weeks and 

harvested for library preparation and sequencing. Prior to the start of editing 

experiments, cells experienced 3 weeks of culture time during barcode drug selection, 

expansion, and freeze/thawing, during which time background editing from leakiness 

was possible. 

 

Bulk DNA barcode sequencing 

For all bulk DNA editing experiments, approximately one million cells were harvested per 

condition, washed, pelleted, and genomic DNA extracted with the NucleoSpin DNA 

RapidLyse Kit (Macherey-Nagel #740100.50). Genomic DNA was normalized to 30-50 

ng/µL for each sample. All PCR reactions were performed using SYBR-containing 

master mix from the KAPA Real-Time Library Amplification Kit (Kapa Biosystems 

#KK2702) and terminated in the mid-exponential phase to limit over-amplification. 

AMPure beads (Agencourt Beads, Beckman Coulter #A63880) were used at a ratio of 

1.5x to purify products after all PCR reactions. Barcodes were amplified from genomic 

DNA in a nested approach and sequencing adaptors, sample indices, and flow cell 

adaptors were added by a series of subsequent PCRs. For 293T samples containing 

pLJM1-EGFP-V7 or pLJM1-EGFP-V8, barcodes were amplified and adaptors added in a 

series of 3 PCRs. For PDAC samples containing PB-EF1α-Puro-V8.2, barcodes were 

amplified and adaptors added in a series of 4 PCRs. Primer sequence, purpose, and 

annealing temperature for all PCRs in both of these library preparations are included in 

Table S6. In all cases, 250 ng of genomic DNA was loaded into a 50 µL PCR. Sample 

indices were added using NEBNext Multiplex Oligos for Illumina (Dual Index Primers Set 

– New England Biolabs). The concentration of final amplicons was measured by Qubit 
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and the length validated by TapeStation HSD1000 prior to sequencing using Illumina 

MiSeq 600-cycle v3 Reagent Kits with the following run parameters: Read 1 - 301 

cycles, i7 index - 8 cycles, i5 index - 8 cycles, Read 2 - 301 cycles. Bulk sequencing 

data for all samples was aligned and processed as previously reported (McKenna et al. 

2016) and available as a docker image 

https://github.com/mckennalab/SingleCellLineage/, with the UMI option set to FALSE (no 

UMI used). Output files were used for generating visualizations using the R 

programming language. 

 

Limiting dilution PDAC experiments 

macsGESTALT PDAC cells were plated in a limiting dilution of approximately ~5 or ~100 

cells per well in a 48-well plate. Single cells gave rise to colonies and expanded. Cells 

were all allowed to expand without split for 2 weeks. The 100-cell wells were confluent 

and overgrown after 1 week in culture. The 5-cell wells were approximately 80-90% 

confluent at 2 weeks. At 2 weeks, a healthy, representative well from each condition was 

selected and passaged at a 1:2 split into a well of a 6-well plate. After 3 d, cells were 

harvested and dissociated using 500 µL TrypLE (Thermofisher #12605010) for 3-5 min. 

Reactions were neutralized with 3 mL culture media. Cell clumps were further 

dissociated by gently pipetting up and down 10x with a p1000, and then cells were 

centrifuged at 250g for 5 min. Cells were gently resuspended with a p1000 in 1 mL 

culture media, filtered through a 30 µm strainer, ensured to be in a single cell 

suspension under a light microscope, and counted with a hemocytometer. Cells were 

washed twice with 1 mL cold HBSS with 0.04% BSA (centrifuged at 150g for 3 min each 

time). Cells were filtered again through a 30 µm strainer and resuspended in cold HBSS 

https://paperpile.com/c/phZkFU/XQ3jk
https://paperpile.com/c/phZkFU/XQ3jk
https://github.com/mckennalab/SingleCellLineage/
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with 0.04% BSA at a concentration of 700 cells/µL. Cells were counted again with a 

hemocytometer to ensure accurate concentration. For the 5-cell dilution sample, 8,000 

cells were loaded on 10x (Chromium Single Cell 3’ Reagent Kits v3) targeting 5,000 cell 

recovery; for the 100-cell dilution sample, 16,000 cells were loaded targeting 10,000 cell 

recovery. 

 

Orthotopic metastasis model 

macsGESTALT PDAC cells were thawed and expanded for 2-4 d prior to dissociation 

and orthotopic injection into 10 week old NOD scid male mice. Approximately 30,000 

PDAC cells were injected into the surgically-exposed tail of the pancreas, as previously 

described in detail (Aiello, Rhim, and Stanger 2016). Cells were allowed to engraft; then 

doxycycline was initiated 1 week post-injection and given continuously in the drinking 

water at 1 mg/mL. Mice were harvested at approximately 5 weeks post injection, once 

reaching morbidity. Primary tumor (PT), liver, lung, peritoneal macrometastases, and 

surgical-site lesions were sorted for both mice. Due to a more productive blood-draw, 

circulating tumor cells (CTCs) were captured for M1 but not M2. Additionally, the 

surgical-site lesion, which is similar in size and location to other peritoneal 

macrometastases, was processed separately in M1 but not M2.. 

 

Blood harvest and preparation 

When harvesting tissues, blood was extracted first via cardiac puncture using a 25 

gauge 5/8 needle with 1 mL syringe attached. A successful blood draw was 400-700 µL, 

which was immediately transferred to a FACS tube containing 4% sodium-citrate in Milli-

Q water. This was pelleted at 500 g for 5 min and red blood cells were lysed by 

https://paperpile.com/c/phZkFU/tBQq4
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resuspension in 2 mL ACK (Ammonium-Chloride-Potassium) buffer and incubation for 5 

min at room temperature. 3 mL PBS were added and the mix was pelleted at 500 g for 5 

min. Red blood cell lysis was repeated 2 times. Finally, cells were resuspended in 400 

µL of cold FACS buffer (PBS, 2% FBS, 1 mM EDTA, 40 ug/mL DNase) with DAPI and 

strained through a 35 µm filter for FACS. 

 

Macro lesion harvest and dissociation 

Primary tumor and macrometastases (metastases that could be manually handled, 

including surgical-site lesion) were excised from surrounding tissue, removing as much 

normal surrounding tissue as possible. All macrometastases from a mouse were 

processed as one sample. Samples were then transferred to a 6-well plate and washed 

with cold PBS 3x. Samples were minced, then transferred into 10 mL of DMEM 

containing 2 mg/mL collagenase IV plus 40 µg/mL DNase and incubated in a 37 ℃ 

shaker for 30 min. Cells were isolated by physical dissociation, filtered through a 70 µm 

cell strainer, and neutralized with cold DMEM. Samples were centrifuged at 350g for 5 

min and resuspended in 500 µL cold FACS buffer (above). Cells were centrifuged at 

350g for 5 min, resuspended in 1 mL cold FACS buffer with DAPI, pipetted up and down 

5x gently with p1000, and strained through a 35 µm filter for FACS. Samples and cells 

were kept on ice throughout unless otherwise indicated. 

 

Liver and lung harvest and dissociation 

To minimize blood contamination in the liver and lungs, 25 mL of cold PBS was perfused 

into the right ventricle of the heart (after blood draw from the heart). The entire liver (any 

macrometastases near the liver surface were completely excluded) and lungs were 
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excised and processed identically to PTs, until immediately following the 30 min shaking 

digestion step. Here, samples were filtered through 100 µm cell strainers and then 

neutralized and centrifuged as with PTs, except 250g was used instead of 350g for 

centrifugation steps.  

 

Liver samples were resuspended and further digested in 5 mL TrypLE for 5 min at 37 ℃. 

Digestions were neutralized with cold DMEM + 10% FBS, centrifuged at 250g for 5 min, 

resuspended in 3 mL ACK, and incubated for 3 min at RT. Liver reactions were 

neutralized with cold PBS, centrifuged at 250g for 5 min, resuspended in 5 mL cold 

FACS buffer with DAPI, pipetted up and down 5 times gently with p1000, and strained 

through a 35 µm filter for FACS. 

 

Lung samples were processed identically to liver samples except the order of ACK and 

TrypLE digestion steps was reversed (ACK before TrypLE). Additionally, lung samples 

were much smaller than liver samples and were thus only resuspended in 500 µL of cold 

FACS buffer with DAPI for FACS. Both liver and lung samples were kept on ice 

throughout unless otherwise indicated. 

 

Cancer FACS sorting and 10x Chromium loading 

Cancer cells were isolated from dissociated tissues via FACS using a BD FACSAria II. 

After gating for singlets and live cells, GFP+ cells were sorted, thereby purifying PDAC 

cells from normal cells. For samples with a high yield of cells (PT, macrometastases, 

surgical-site), 30-35,000 cells were sorted on the purity setting. For each of the lung, 

liver, and blood samples, the entire sample was sorted on the yield setting to recover as 
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many GFP+ cells as possible. The liver for M1 was stopped with 20% of the sample 

volume remaining due to excessively long sorting time. Cell numbers recovered for lung 

and liver were similar for each mouse (M1 liver: 22,000 (80% of total), M2 liver: 30,000, 

M1 lung: 1,000, M2 lung: 1,500). 

 

After sorting, all samples were passed through a 30 µm filter and then centrifuged at 

500g for 5 min and checked for visible pellets. Supernatant was removed to leave 20-30 

µL of solution to not disturb the pellets. Remaining volume was measured and raised to 

50 µL total by adding a 1:1 mixture of cold FACS buffer (without DNase) and nuclease-

free water. 46.6 µL of these samples was loaded for 10x (Chromium Single Cell 3’ 

Reagent Kits v3), thereby superloading some lanes with up to 25-30,000 cells 

(macsGESTALT single cell barcode sequencing allows explicit detection of multiplets, 

see Figure S2J and Methods subsection "Clonal reconstruction and multiplet 

elimination"). 

 

Single cell transcriptome sequencing 

Single cell RNA-seq libraries were prepared as in the 10x Chromium Single Cell 3' v3 

user guide (Rev A) until Step 2.3. After cDNA amplification, the 100 µL cDNA PCR was 

split 50:50 for separate barcode and transcriptome library preparation. Transcriptome 

library construction continued as in the 10x user guide instructions. Indexed and pooled 

single cell transcriptome libraries for each mouse were sequenced separately on the 

NovaSeq 6000 System with S2 100-cycle kits. 

 

Single cell barcode sequencing 
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For all single cell barcode PCRs (as for bulk DNA barcode PCRs), SYBR-containing 

master mix from the KAPA Real-Time Library Amplification Kit was used, and PCRs 

were stopped in mid-exponential phase. All primers were used at 10 µM. Primer 

sequence, purpose, and annealing temperature for all library preparation PCRs are 

included in Table S6. 

 

The barcode split of the cDNA amplification reaction (from 10x Single Cell 3' v3 Step 2.2) 

was purified via 1.2x SPRI Select (Beckman Coulter #B23317). cDNA products were 

eluted in 40 µL of EB. Concentrations were measured by Qubit, and 2 ng/µL dilutions in 

EB were created for each sample. Barcode amplification and adaptor and sample index 

addition were performed in 2 sequential PCRs.  

 

Barcodes were selectively amplified by PCR1. Here, 50 ng of each purified, diluted 

cDNA amplification sample was used to template a 100 µL PCR. After mixing, the 

reaction was split into 4 smaller reactions of 25 µL each for cycling. PCR cycling 

conditions were 1) 95 ℃ for 3 min, 2) 14-15 cycles of 98 ℃ for 20 s, 65 ℃ for 15 s, 72 ℃ 

for 15 s. Sample reaction splits were re-pooled after cycling, and products were purified 

with 0.9x SPRI Select and eluted in 60 µL EB. 

 

Sample indices were added in PCR2. Here, 5-10 µL of the eluted products of PCR1 

(1:12 or 1:6 overall dilution) were used to template a 100 µL PCR, which was again 

mixed and split into four smaller reactions of 25 µL each. PCR cycling conditions were 1) 

95 ℃ for 3 min, 2) 6 cycles of 98 ℃ for 20 s, 65 ℃ for 15 s, 72 ℃ for 15 s. Sample 

reaction splits were re-pooled after cycling. Dual-sided size selection of complete 
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barcode amplicons was performed using SPRI Select at an exclusion ratio of 0.5x and a 

selection ratio of 0.7x. Amplicons were eluted in 32 µL EB.  

 

Barcode library size and concentration were checked via TapeStation HSD5000 and 

Qubit, respectively. Libraries were sequenced using Illumina MiSeq 600-cycle v3 

Reagent Kits with the following run parameters: Read 1 - 28 cycles, i7 index - 8 cycles, 

Read 2 - 500 cycles. M1 was sequenced with 3 kits. Since barcode recovery only 

increased 5-10% with two additional kits for M1, M2 barcode library was sequenced with 

a single kit. Limiting dilution experiment libraries were also sequenced with a single kit. 
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Quantification and statistical analysis 

 

Single cell transcriptome data processing 

Single cell transcriptome sequencing data was aligned and processed using 10x Cell 

Ranger v3.1 with the mm10 reference genome. Filtered matrices from Cell Ranger 

output were further processed using Seurat 3.1.4 (https://satijalab.org/seurat/) (Stuart et 

al. 2019). All samples across both mice were merged into a single Seurat object. Low 

quality cells with ≤1,000 genes or ≥0.20 mitochondrial gene fraction (mito fraction) were 

filtered out. Cell cycle score and phase were determined for each cell using the 

CellCycleScoring function (https://satijalab.org/seurat/v3.1/cell_cycle_vignette.html).   

 

Variable feature selection, scaling, and normalization were performed using 

SCTransform, while regressing cycle scores and mito fraction. Dimensionality reduction 

by PCA was performed using the first 15 principal components (PCs). Cells were plotted 

in UMAP space and a clearly-separated, large cancer cell cluster was observed, distinct 

from smaller clusters of contaminating normal cells, mostly derived from samples sorted 

on the FACS yield setting. Contaminating normal cells were filtered out. 10x cell 

barcodes, here referred to as cellIDs, for the cancer cells were then exported and used 

for initial macsGESTALT barcode data filtering. 

 

Single cell lineage data processing 

Single cell barcode sequencing data was aligned, collapsed by UMI, and processed, as 

previously reported (McKenna et al. 2016) via a pipeline available as a docker image 

here: https://github.com/mckennalab/SingleCellLineage/ and described further here: 

https://satijalab.org/seurat/
https://paperpile.com/c/phZkFU/0lpva
https://paperpile.com/c/phZkFU/0lpva
https://satijalab.org/seurat/v3.1/cell_cycle_vignette.html
https://paperpile.com/c/phZkFU/XQ3jk
https://github.com/mckennalab/SingleCellLineage/
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https://github.com/ksimeono/macsGESTALT. For each sample, stats files, containing 

aligned and collapsed edited barcode sequence data, were extracted from pipeline 

output and used for clonal and subclonal analysis in R v4.0.2 and tidyverse v1.3.0 

(Wickham et al. 2019). Sample stats file for different harvest sites from a mouse were 

merged. However, each mouse and limiting dilution experiment was processed 

separately. 

 

To ensure high-quality barcode data was used for reconstruction, five initial filtering 

steps were applied: First, cellIDs not present in the initial transcriptome cellID list (or v3 

10x whitelist for limiting dilution experiments without transcriptional data) were filtered. 

Second, transcripts (UMIs) with incomplete static barcode (staticID) sequences were 

filtered. Third, staticIDs with less than two UMIs per cell were removed. Fourth, staticIDs 

with less than two UMIs per cell on average were filtered. Fifth, staticIDs found in less 

than 5 cells were filtered. Specific thresholds were determined by examining elbow plots 

of the relevant parameters (see https://github.com/ksimeono/macsGESTALT for detailed 

R Notebooks with inline plots for each mouse). 

 

Clonal reconstruction and multiplet elimination 

Next, potential clonal groupings of cells based on staticID content (absence or presence) 

were identified by complete-linkage hierarchical clustering. The staticID content of 

resulting clusters was examined, and clusters were found to be often improperly 

fractured due to cells with undetected staticIDs. To identify real clones defined by sets of 

staticIDs, clustering results were pruned by excluding clusters of less than five cells and 

staticIDs found in less than 20% of cells for a particular cluster (see 

https://github.com/ksimeono/macsGESTALT
https://paperpile.com/c/phZkFU/7S4ci
https://github.com/ksimeono/macsGESTALT
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https://github.com/ksimeono/macsGESTALT for relevant visualizations and code). For 

clusters of less than 20 cells, staticIDs found in less than 35% of cells were further 

excluded. Then, clusters that were either duplicates or subsets of other clusters in terms 

of their defining staticIDs were collapsed. Finally, remaining staticID cluster sets were 

manually inspected for improperly fractured clusters, and any remaining improper cluster 

splits were merged or collapsed (usually this was either not necessary or was only 

needed for a few clusters).  

 

After cluster cleanup, staticID sets were extracted and used to assign cells. Cells were 

matched to clusters based on their staticIDs. This process also served to explicitly 

identify interclonal multiplets, i.e. if a cell matched two or more clusters, this cell was 

removed as a multiplet. This method performed well, as only a small fraction of cells, 

ranging from 0 to 0.54% across experiments, went unmatched. Unmatched cells likely 

belonged to very small clones, only found in in vivo experiments. Furthermore, the 

percentage between mice was strikingly consistent (M1: 0.54% and M2: 0.51%), 

highlighting the reproducibility of the cancer model system and reconstruction approach. 

Only matched singlets were retained for downstream analysis. 

 

With this orthotopic model, it is possible that some of the cells injected can leak out of 

the pancreas during and after injection and directly colonize the peritoneal cavity 

(although we sought to minimize this as previously described (Aiello, Rhim, and Stanger 

2016)). To eliminate any such cells from further analysis, we filtered clones that were 

detected in disseminated sites but not in the PT. This resulted in the removal of a small 

https://github.com/ksimeono/macsGESTALT
https://paperpile.com/c/phZkFU/tBQq4
https://paperpile.com/c/phZkFU/tBQq4
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number of cells (M1: 1.49% and M2: 0%) from a few clones only found in peritoneal 

macrometases and in the surgical site lesion of M1. 

 

In a true singlet, without genomic duplication of a barcode, each cellID-staticID pair 

should have a single mutagenized allele. To detect potential intraclonal multiplets or 

duplicated barcodes, we calculated the number of unique mutagenized evolving 

barcodes for a cellID-staticID pair, and mutagenized barcodes with less than 25% of the 

UMIs for that cellID-staticID pair were removed as technical noise. 

 

PDAC is known to undergo large-scale copy-number changes via chromosomal 

instability. We observed this in our CNV analysis using InferCNV (Figure S3B). While 

most staticIDs had a median of one mutated allele per cell, some had a median of two 

and a notably higher average. We speculated that these might be barcodes that resided 

in genomic areas that underwent copy number gain at some point after barcode 

integration. StaticID that had an average of 1.3 or greater mutated alleles per cell were 

considered to be potentially duplicated or triplicated. 

 

Per 10x Chromium 3' Single Cell v3 documentation (page 16), our overall expected 

multiplet rate for in vivo experiments with superloading was approximately 12% to 15%. 

Having explicitly detected and filtered interclonal multiplets, we next removed potential 

intraclonal multiplets. We filtered all cells with an average number of unique mutated 

alleles per staticID greater than 1.25, except for cells containing a potentially duplicated 

staticID; for these cells, the threshold was less stringent, at greater than 3. This resulted 
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in appropriate overall multiplet rates of 12% for M1 and 15.7% for M2. Only true singlets 

were retained for further analysis. 

 

After these filtering steps, clones that were detected in disseminated sites but not in the 

PT were again removed if present, and clones were then numbered by their size in the 

primary tumor, largest to smallest. These rankings are used to refer to clones throughout 

the paper with the mouse number appended, i.e. M1.1 or M2.14. These finalized clones 

were used for calculating clone size and clone fraction for each harvest site. These final 

filtered, clone-assigned singlets were used for further single cell transcriptional analysis.  

 

Clonal aggression scores were estimated by giving points for size and fraction. For each 

non-PT harvest site where a clone was present 0.5 points were awarded. If the clone's 

fraction was higher at a disseminated site than at the PT than it was rewarded an 

additional 1 point for that site. If a clone made up 5% or more of a disseminated site it 

received an additional 0.5 points for that site and a further 0.5 points if it was 10% or 

more. 

 

For limiting dilution validation experiments, cells were visualized by their static barcode 

expression using tSNE in Seurat. A static barcode (rows) by cells (columns) expression 

matrix was generated. Just as in a regular transcriptome scRNAseq analysis, this matrix 

was used to generate a SeuratObject, where static barcodes were treated as features. 

The first 50 dimensions were used for tSNE plotting. 

 

Single cell transcriptional analysis 
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Transcriptional analysis continued using only singlets with quality barcode information 

(from above section). Seurat objects were converted into cell_data_set objects, and 

Monocle 3 (https://cole-trapnell-lab.github.io/monocle3) was used for all further 

transcriptional analysis. Preprocess_cds was run with top 20 dimensions (PCA) and 

align_cds was run with batch correction for harvest site and regression for cycle scores 

and mito fraction. Cells were plotted in UMAP space and two clusters of low quality or 

contaminating cells were removed. The first was a cluster of cells distinguished by high 

ribosomal fraction that was derived from cells of many clones and harvest sites. These 

cells were likely technical artifacts observed from droplet library preparation. The second 

was a cluster of cells with high hepatic gene expression. These cells derived from 

primarily the liver harvest sites and were most likely contaminating tumor-liver multiplets 

that had escaped initial filtrations steps. 

 

Following these filtrations, preprocess_cds and align_cds were run again as before but 

with the top 25 dimensions, as determined by examining an elbow plot using 

plot_pc_variance_explained. Cells were plotted in UMAP space and clusters found using 

cluster_cells. Further transcriptional analyses and visualizations on all mouse cancer 

cells together were performed using Monocle 3 functions and custom R scripts as 

needed. For analyses on individual mice, cells were extracted and reprocessed as 

above but with the top 20 dimensions by PCA.  

 

Copy-number variation (CNV) analysis 

InferCNV was used for single cell CNV analysis 

(https://github.com/broadinstitute/inferCNV/wiki). Default settings were used. Cutoff = 0.1 

https://cole-trapnell-lab.github.io/monocle3
https://github.com/broadinstitute/inferCNV/wiki
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was used, which is recommended by InferCNV for 10x data. Clones were treated as cell 

groups, with cluster_by_groups = T. Clones with >200 cells were downsampled to 200. 

For clones ≤200 cells, all cells were included. 

 

PseudoEMT analysis 

PseudoEMT or pseudotime analysis was performed by finding a trajectory in UMAP 

space using learn_graph with default settings. The root (most epithelial region) was 

placed where epithelial gene expression peaked. This additionally led to the most 

mesenchymal region existing at the end of the trajectory, thus resulting in a pseudoEMT 

spectrum. To find genes whose expression varied significantly along pseudoEMT, 

graph_test was used with the 'principal_graph' parameter selected. The top 3000 genes 

were retained, all of which had q ~ 0 and Moran's I > 0.1 (Table S2). For the top 3000 

genes, kinetic expression curves were clustered into groups by ward.D2 clustering using 

the R Pheatmap package, and the resulting tree was cut into six groups, which were 

named in order from epithelial to hybrid to mesenchymal patterns of expression. 

 

To find enriched transcription factor motifs within the six gene clusters, findMotifs.pl from 

HOMER was used with the provided mouse promoter set. All default parameters were 

used, except for promoter region (-500, 50 bp from TSS) and background promoter 

frequency (derived from all top 3000 pseudoEMT genes). Known motifs passing an 

enrichment cutoff of p < 0.05 were extracted. The target genes of each motif were 

obtained using HOMER’s annotatePeaks.pl. Also for each pseudoEMT gene group, 

molecular signature database (mSigDB) gene set enrichment was determined using the 

hypergeometric test within HOMER. 
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Subclonal and phylogenetic reconstruction 

Using filtered barcode data (from material and Methods subsection "Clonal 

reconstruction and multiplet elimination"), duplicated barcodes were removed entirely 

(this also removed any cells whose only recovered barcodes were duplicated). Cells with 

greater than one unique mutated allele per staticID were then filtered. For each cell in a 

clone, a barcode-of-barcodes was generated by concatenating all evolving barcode 

alleles, ordered by staticID. If a cell was missing a staticID, 

'UNKNOWN_UNKNOWN_UNKNOWN_UNKNOWN_UNKNOWN' was concatenated for 

that staticID to note the missing information for all five target sites. Thereby, for an 

example clone defined by four staticIDs, every cell had four evolving barcodes 

concatenated in order and 20 target sites overall, including any missing information. 

 

Within each clone, cells with identical barcode-of-barcodes were then grouped into 

subclones of indistinguishably closely related cells. To limit computational time required 

for downstream phylogenetic reconstruction of subclonal relationships, we pruned 

subclones of only a single cell from the largest clones, i.e. clones with ≥50 cells. This 

greatly increased computational efficiency while still retaining meaningful subclones. 

 

Separate files were constructed for each clone, containing subclones with associated 

barcode-of-barcodes alleles. Phylogenetic reconstruction of subclonal relationships was 

performed for each clone barcode-of-barcodes file separately via TreeUtils 

(https://github.com/mckennalab/TreeUtils). TreeUtils performs reconstruction using 

https://github.com/mckennalab/TreeUtils
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Camin-Sokal maximum parsimony via the PHYLIP Mix software package (Felsenstein 

1989), as previously described in depth (McKenna et al. 2016). 

 

Further analysis then resumed in R. Clone Newick files were extracted from TreeUtils 

output and converted to an edgelist dataframe format. Clone edgelists were combined 

into a single large edgelist with a common root node (for each mouse separately). A 

small fraction of clones that were entirely defined by staticIDs that had been genomically 

duplicated, and were thus left out of phylogenetic analysis, were added back as a single 

node emerging directly from the root. At this point, cellIDs were added as terminal nodes 

emerging from subclone nodes (or directly to clone nodes for clones that were left out of 

phylogenetic analysis due to barcode copy gain). Cell nodes were then annotated with 

harvest site, transcriptional, and other information as needed. For circle pack or tree 

visualization, edgelist datafames were converted to igraph graph objects 

(https://igraph.org/r/) and plotted using ggraph (https://github.com/thomasp85/ggraph). 

 

Subclonal dissemination calculation 

Shannon's Equitability (EH) was used as a statistical measure of dissemination across 

harvest sites. To calculate EH, Shannon Diversity (H) was first calculated as follows: 

 

S is the number of distinct harvest sites analyzed (six for M1, four for M2). p is the 

sampling normalized proportion at which a subclone is recovered from a harvest site, i.e. 

if a subclone is only found in the PT, pPT = 1, while p = 0 for all other sites. A subclone's H 

is then used to calculate its EH as follows: 

https://paperpile.com/c/phZkFU/7RaHG
https://paperpile.com/c/phZkFU/7RaHG
https://paperpile.com/c/phZkFU/XQ3jk
https://igraph.org/r/
https://github.com/thomasp85/ggraph
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EH therefore normalizes H by the number of harvest sites analyzed to exist between 0 

and 1, with 1 being completely even dissemination and 0 being no dissemination. For 

example, a subclone found at only one harvest site is not metastatically aggressive and 

has an EH = 0. 

 

PseudoEMT across ancestral relationships 

Comparison of pseudoEMT for root clades, subclones, and cells was performed in R. To 

determine root clade pseudoEMT values, we recursively calculated the weighted mean 

pseudoEMT value of ancestral nodes moving backwards along phylogenetic trees. Root 

clades were the nodes immediately preceding the common root of M1.1. These clades 

are depicted by the outermost circles in the circle packing visualizations of M1.1 

(Figures 5A and 5B). The density of root nodes, subclones, and cells along the 

pseudoEMT axis was then plotted as a ridge plot for comparison. 

 

Identifying genes associated with dissemination 

Regression of EH against single cell gene expression was performed while regressing out 

harvest site, cell cycle scores, and mito fraction. Genes with q < 0.05 and greater than 

1000 total transcripts across all cells were retained for further analysis. For analysis of 

highly expressed and highly associated genes, only genes with greater than 50,000 total 

transcripts and an absolute estimate of association greater than 0.1 were retained. 

 

TCGA survival analysis 
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PseudoEMT genes (n = 3000, M1) and genes associated with dissemination (n = 2010, 

M2) were mapped to their human homologs using getLDS() from the biomaRt package. 

All homologous genes were included. Preprocessed transcriptomic data (FPKM 

abundance after upper quantile normalization; FPKMuq) ) from TCGA 

(https://www.cancer.gov/tcga) for patients with pancreatic adenocarcinoma (TCGA-

PAAD; n = 173), breast invasive carcinoma (BRCA; n=969), lung adenocarcinoma 

(LUAD; n=526), colon adenocarcinoma (COAD; n=517) or prostate adenocarcinoma 

(PRAD; n=541) were obtained using the R package TCGAbiolinks. 

 

Using the singscore package (Foroutan et al. 2018), patients' enrichment scores were 

determined for either each pseudoEMT gene cluster (E, H1, H2, H3, H4, M) or genes 

positively vs negatively associated with aggression. Patient survival (from the time of 

pathological diagnosis) was obtained from TCGA clinical data for each cancer. 

Univariate and multivariate Cox regression analysis was performed in the R environment 

(survival) to determine the hazard associated with either the pseudoEMT gene 

signatures (M1) or dissemination (M2) for each cancer. Wald test, LLR and Score test 

were all significant (p<0.05), indicating the regression models were significant. 

 

Pseudobulk and metagene analyses 

The aggregate_gene_expression function from Monocle 3 was used to perform 

pseudobulk and metagene analyses. For testing whether clones retained their 

transcriptional identity, pseudobulk samples consisting of clone and harvest site 

combinations were generated, and only pseudobulk samples with >20 cells were used 

for further analysis. The entire transcriptome for each pseudobulk sample was 

https://www.cancer.gov/tcga
https://paperpile.com/c/phZkFU/KOePr


75 

 

aggregated and used to hierarchically cluster samples via the Pheatmap package, with 

the ward.D2 clustering option. 
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Additional resources 

Interactive online browser of the lineage relationships reconstructed in this study: 

https://macsgestalt.mckennalab.org/.  

  

https://macsgestalt.mckennalab.org/
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Figures 

Figure 1 

 

Figure 1. macsGESTALT for high-resolution lineage tracing 

(A) Genetic components of macsGESTALT. (B) Clone-level information is stored in 

static barcodes, while subclonal phylogenetic information is dynamically encoded into 

evolving barcodes via insertions and deletions (indels, blue and red bars) induced by 

doxycycline. (C) Two example clones from a population with n clones, each with a 

random number of integrated barcodes. Evolving barcode edits are encoded and 

inherited as cells divide. (D) Generation of a macsGESTALT barcoded population of 

cells and experimental workflow. (E) macsGESTALT analysis workflow. See also 

Figures S1 and S2.  
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Figure 2 

 

Figure 2. Most metastases arise from rare, transcriptionally-distinct clones 

(A) Schematic of metastasis lineage tracing model. (B) Clonal reconstruction using static 

barcodes, where clones are numbered by size in the primary tumor. Percent contribution 

to each harvest site (circle size) and enrichment compared to the primary tumor (circle 

color) are visualized. Top annotations show each clone’s Leiden transcriptional cluster 

and aggression assignments as in (H) and (I), respectively. (C) Cumulative fraction of 

each clone in each disseminated site (red) and primary tumor (black). Dotted-lines 

represent the theoretical scenario of perfect clone size equality. (D) UMAP plot of 28,028 

single cells containing both lineage and transcriptional information. Cells are colored by 

clone, with select large clones highlighted (as mouse.clone). (E and F) Two 

representative non-aggressive clones. (G) A representative clone of medium aggression. 

(H) Leiden transcriptional clustering of (D). (I) Cells colored by clonal aggression. (J) 
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Number of non-, mid-, or high-aggression clones of 95 total. See also Figures S3 and 

S4.  
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Figure 3 

 

Figure 3. A transcriptional EMT continuum in vivo 

(A) UMAP plot of M1, colored by clone, with the five largest clones annotated. Circled 

region indicates the transcriptional space where smaller, non-aggressive clones reside. 

(B-G) Expression of canonical epithelial (B-D) and mesenchymal (E-G) markers. (H) 

Unbiased trajectory inference revealing a pseudotime axis matching EMT (pseudoEMT). 

(I) Expression of (B-G) plotted along pseudoEMT and colored by clone as in (A). (J) 

Hierarchical clustering of kinetic curves for the top 3000 differentially expressed genes 

across pseudoEMT (q = 0, Moran's I > 0.1). Gene clusters are labeled from epithelial [E] 

to hybrid [H1-H4] to mesenchymal [M] based on expression across pseudoEMT. 

Geneset analysis using MSigDB Hallmarks for each gene cluster (hypergeometric test, p 

 <  0.05). (K) Significantly enriched motifs (hypergeometric test, p < 0.05) in promoters 

for each gene cluster, with canonical EMT master regulators highlighted. See also 

Figure S5 and Tables S1-S3.  
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Figure 4 

 

Figure 4. High-resolution subclonal lineage reconstruction of metastatic cancer 

(A) Percent at which each base is mutated in 76,974 evolving barcodes across both 

mice. Target site spacers (light grey) and PAMs (dark grey). (B) Edit types observed at 

each target site. (C) Example phylogenetic reconstruction of a small clade within clone 

M1.1. Clade M1.1.310 (root node in red) contains 6 distinct subclones composed of 58 

cells from 5 different harvest sites. Each cell in this clade has 6 evolving barcodes, 
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illustrated by white bars with edits colored as in (B). Cells with the same barcode editing 

pattern are grouped into a subclone (terminal black nodes) and dissemination (EH) is 

quantified. For each subclone, individual cells are stacked and colored by their harvest 

site on the far right. (D) Circle packing plot of the full single cell phylogeny of M1, with 

clade M1.1.310 from (C) circled in red. Outermost circles define clones, with the first 6 

clones labeled. Within each clone, nested circles group increasingly related cells. 

Innermost circles contain cells from reconstructed subclones. Each point represents a 

single cell, colored by harvest site. (E) Cumulative fraction of each subclone of clone 

M1.1 in each harvest site. Dotted-line represents perfect subclone-size equality. See 

also Figure S3.  
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Figure 5 

 

Figure 5. Peak metastatic aggression corresponds to late-hybrid EMT states 

(A and B) Circle packing plots of the phylogenetic structure of clone M1.1 with subclones 

colored by mean pseudoEMT (A) and by dissemination score (B). (C) Relationship 

between metastatic dissemination and pseudoEMT for subclones from (A and B). (D) 

Density along pseudoEMT of M1.1 cells and their increasingly ancestral (arrow) 

phylogenetic groupings, examples of which are highlighted in (A). (E) Relationship 

between PDAC patient survival (TCGA-PAAD, n=173) and patient enrichment scores for 

each pseudoEMT gene cluster using Cox regression analysis, with the hazard ratio for 

each gene cluster displayed (*, p < 0.05, •, p < 0.1). Square sizes are inversely 

proportional to p-value. See also Table S4. 
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Figure 6 

 

Figure 6. A complementary process to canonical EMT 

(A) Lineage tree for M2 subclones, where branches and nodes are colored by clone and 

scaled by the number of cells they relate. (B) UMAP of M2 cells, colored as in (A), with 

five large, aggressive clones labeled, as well as M2.1 (green), which was the largest 

clone in the PT but poorly-metastatic. Circled region indicates the transcriptional space 

where smaller, non-aggressive clones reside. (C) Relationship between PDAC patient 

survival (TCGA-PAAD, n=173) and enrichment scores for genes associated with 

subclonal dissemination using Cox regression analysis (**, p < 0.01), with the hazard 

ratio displayed. Square sizes are inversely proportional to p-value. (D-H) Canonical 

epithelial (D-F) and mesenchymal (G-H) markers. (I and J) Markers with inconsistent 
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expression patterns in the dominant clone, M2.2. (K) Highly expressed genes ranked by 

association (q < 0.05) with subclonal dissemination. (L) Aggregated single-cell gene 

expression of the S100a family for each clone, colored by aggression (as defined in 

Figure 2B) and grouped by mouse. Intramouse comparisons between 

dominant/aggressive clones versus all others are indicated above each violin. 

Comparisons between mice for all clones (black) and only dominant/aggressive clones 

(red) are indicated above the line (Welch's t-test, ****, p < 0.0001, ***, p < 0.001, ns, not 

significant). See also Figure S6 and Table S5. 
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Supplementary figures 

Supplementary figure 1 

 

Figure S1. Designing and validating macsGESTALT, Related to Figure 1 

(A-G) A gRNA array editing screen was performed, where barcoded 293T cells were 

transfected with constitutive Cas9 vector (px330) and co-transfected with a variety of 
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controls or gRNA expression formats. Barcode genomic DNA was collected and bulk 

sequenced one week post-transfection, and for each condition, the percent at which 

each barcode base was deleted (red) or adjacent to an insertion (blue) is indicated, 

along with target site spacers (light grey) and PAMs (dark grey). Conditions included: (A) 

No transfection (only Cas9) negative control. (B) GFP-only negative control. (C) In vitro 

transcribed (IVT) gRNAs positive control. (D) Each gRNA placed (targeting sites 5-9) 

under its own U6 promoter. (E) gRNA-tRNA array (targeting sites 1-5) under a U6 

promoter (selected for PDAC experiments due to both high editing rate and compact 

size). (F) A split gRNA array with a crRNA-tRNA portion (targeting sites 2-10) and a 

tracrRNA portion under U6 promoters, where the crRNA portions can complex with the 

tracrRNA portions when expressed. (G) The same array is in (F) but with the crRNA-

tRNA array in 3'UTR of a dox-inducible GFP and cultured in three different doses of dox 

post-transfection for 5 d (this configuration was leaky with no change in editing rate with 

dox administration). (H) Dox-induced macsGESTALT PDAC cells edit evenly across 

sites and accumulate edits over time. macsGESTALT PDAC cells cultured in dox for one 

(top) or two (bottom) weeks, and barcodes were bulk DNA sequenced. The percent at 

which each barcode base was deleted (red) or adjacent to an insertion (blue) is 

indicated, along with expected cut sites (dotted lines, 3 bp upstream of PAMs). Beneath 

editing plots, the top 25 most commonly observed alleles are illustrated with the number 

of observations for each on the right. Leakiness was primarily localized to the first target 

site, while sites 2-5 remain largely unmutated until dox administration. (I) Dox-inducible 

editing initiates and peaks at low doses in macsGESTALT PDACs. Cells were cultured 

under six different dosages of dox for 2 weeks and barcodes were bulk DNA sequenced 

and editing rates plotted. Prior to the start of PDAC editing experiments (H-I), cells 

experienced 3 weeks of culture time during barcode drug selection, expansion, and 
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freeze/thawing, during which time background editing from leakiness was possible. (L-P) 

In vitro validation of clonal reconstruction and single cell readout of macsGESTALT. (L) 

macsGESTALT PDAC cells were plated at two limiting dilutions of approximately ~5 or 

~100 cells, expanded without splitting (even if confluent), and barcodes were scRNA 

sequenced. (M) Potential clones of expanded cells were identified based on static 

barcode overlap via hierarchical clustering. (N) Approximately the expected number of 

clones were identified for the 5-cell dilution (a 6th cell was unintentionally plated), while 

the 100-cell dilution retained a smaller fraction of clones likely due to extended culture 

time under confluence. All cells were successfully matched to a clone and multiplets 

were explicitly identified (Methods). (O) Cells were plotted in tSNE space based on their 

static barcode expression. Cells clustered in tSNE space consistently with their clonal 

assignments. (P) Two examples illustrating static barcode expression confined to 

specific clones. 
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Supplementary figure 2 

 

Figure S2. Summary of single cell transcriptome and barcode recovery in 

metastasis experiments, Related to Figure 2 

(A) Correlation of barcode UMIs versus transcriptome UMIs (Unique Molecular 

Identifiers) recovered per cell, for every cell with at least 300 genes captured and at least 

one barcode UMI captured (r = 0.64, p < 2.2x10 -16). (B) Comparison of transcriptome 

UMIs recovered per cell for cells grouped by whether or not at least one barcode UMI 

was recovered (Welch's t-test, p < 2.2x10-16). (C) UMAP plot of 28,028 single cells 
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containing both lineage and transcriptional information passing quality filtering steps 

(Methods) colored by mouse. (D) Colored by genes recovered per cell. (E) Colored by 

transcriptome UMIs recovered per cell. (F-G) Genes and UMIs per cell grouped by 

harvest site for each mouse. (H-I) Genes and UMIs per cell grouped by clone for each 

mouse. (J) Summary table of barcode, cell, and clonal recovery for each mouse. (K) 

Number of single cancer cells obtained from each harvest site after filtering. 
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Supplementary figure 3 

 

Figure S3. Clones retain transcriptional identity after metastasizing and CNV 

among clones, Related to Figure 2  

(A) Cells were analyzed as clone-site pseudobulk samples (i.e. cells from each clone 

and harvest site combination were aggregated and treated as a bulk sample, see 
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Methods) and each sample was colored by clone. Only pseudobulk samples with >20 

cells were used. Clone-site pseudobulk samples were hierarchically clustered based on 

whole transcriptome expression. Pseudobulk samples displayed preferential clustering 

by clone rather than harvest site. (B) Genomic copy-number changes among clones. 

Copy number variation analysis was performed on all 95 clones. Clones with >200 cells 

were downsampled to 200 cells to perform CNV analysis with InferCNV. Vertical black 

lines divide clones (many small clones are not visible), and horizontal lines divide 

chromosomes. Large scale copy number changes are visible between and within clones. 
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Supplementary figure 4 

 

Figure S4. Gene expression across UMAP space and along pseudoEMT, Related 

to Figure 3  

(A) Epithelial markers, (B) mesenchymal markers, including extracellular matrix genes, 

(C) canonical EMT-TFs, and (D) previously used EMT surface markers, expressed in M1 

cells. (E) Epithelial markers, (F) extracellular matrix mesenchymal genes, (G) canonical 

EMT-TFs, (H) selected genes with unusual kinetics, and (I) previously used EMT surface 
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markers, across pseudoEMT. (J) Fraction of cells cycling, i.e. cells in S/G2M cell cycle 

phase, across pseudoEMT. 
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Supplementary figure 5 

 

Figure S5. Comparison of PDAC cells in vivo and in vitro, Related to Figure 3  

(A) UMAP of 12,657 in vivo M1 single cells and 5,932 in vitro cultured single cells, 

colored by M1 clone or in vitro origin. (B) Leiden transcriptional clustering of (A). (C-F) 

Expression of (C) an in vitro cluster top marker gene, (D-E) epithelial markers, and (F) 

an EMT-TF master regulator. (G-I) Violin plots of (G) in vitro cluster top markers, (H) 

epithelial markers, and (I) mesenchymal markers. (J) Leiden clustering of M1 cells only. 

(K) Leiden clustering of M2 cells only.  
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Supplementary figure 6 

 

Figure S6. Summary of editing and lineage information in metastasis experiments, 

Related to Figure 4 

(A) Summary table of the number of barcodes/target sites recovered, and the rate at 

which they were observed to carry a mutation. Additionally, the number of distinct edits, 

evolving barcodes, and barcode-of-barcodes are displayed. In the last three rows in the 

last column, the number of overlapping edits, evolving barcodes, and barcode-of-

barcodes between the mice is indicated in parentheses. (B) The proportion at which a 
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deletion impacts 1, 2, 3, 4, or 5 target sites. (C) Size distribution for insertions, single-

target deletions, and multi-target deletions. (D) Visualization of the barcode editing 

diversity recovered at different cell recovery rates, illustrating a plateauing maximum 

possible diversity per barcode. For each barcode integrant, the number of cells in which 

it was recovered versus the number of unique edited outcomes (alleles) detected is 

plotted. The red dashed line represents the 1:1 maximum diversity scenario, where 

every cell recovered has a unique edited outcome. The blue dashed line marks 400 

unique edited outcomes, i.e. the approximate maximum observed at any cell recovery 

number. (E) Pairwise concordance between phylogenetic distance (distance on 

reconstructed trees) and barcode allelic distance (the number of edits required to 

convert between alleles) for all clones in both M1 and M2. (F) Mean difference in the first 

appearance of editing in lineage trees of both mice for all target pairs, with 95% Tukey 

confidence limits. Editing events were filtered to only include single-target events to 

avoid confounding from large deletions. (G) Lineage tree for M1 subclones, where 

branches and nodes are colored by clone (as in Figure 3A) and scaled by the number of 

cells they relate (alternative visualization of the Figure 4D circle packing plot of M1). 
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Supplementary tables 
 
All supplementary table files can be found at: https://doi.org/10.1016/j.ccell.2021.05.005  
 
 

Supplementary table 1 

Table S1. Top marker genes for Leiden clusters comparing in vivo and in vitro cells, 
Related to Figure 3 

Supplementary table 2 

Table S2. Differentially expressed genes and MSigDB Hallmark gene sets enriched 
across pseudoEMT, Related to Figure 3 
 
Supplementary table 3     

Table S3. Top marker genes for M1 and M2 Leiden clusters and clones, Related to 
Figure 2 
 
Supplementary table 4 

Table S4. TCGA survival analysis across cancers for each pseudoEMT gene cluster, 
Related to Figure 5 
 
Supplementary table 5 

Table S5. Genes associated with M2 subclonal dissemination and TCGA survival 
analysis, Related to Figure 6  
 
Supplementary table 6 

Table S6. Annotated primer sequences and annealing temperatures used for bulk and 
single-cell barcode sequencing, Related to STAR Methods 

 
  

https://doi.org/10.1016/j.ccell.2021.05.005
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CHAPTER 3: DISCUSSION 
 
Research into the genetic drivers of metastasis has proven challenging and often 

unproductive when compared to the highly successful studies characterizing the genetic 

drivers of tumorigenesis (Kandoth et al. 2013; Hutter and Zenklusen 2018; Esposito, 

Ganesan, and Kang 2021). Instead epigenetic and transcriptional processes have been 

hypothesized to potentially play a more consistent role in promoting metastasis. In order 

to characterize the non-genetic adaptations that may enable metastasis to emerge from 

the heterogenous morass of cancer, we require tools that can faithfully and precisely 

identify metastasis-capable subpopulations and simultaneously capture nongenetic cell 

state information. 

 

Hitherto, tools that can reconstruct tumor population structure have relied on 

retrospective lineage tracing methods, which are limited by their resolution and often 

their ability to concurrently attain cell state information. The advent of static barcoding 

enabled vastly improved clonal labeling diversity than what is possible with retrospective 

methods confined to natural diversity or prospective fluorescence methods confined by 

the amount of colors that can be distinguished by microscopy (R. Lu et al. 2011; 

Kretzschmar and Watt 2012). Static barcoding methods have recently been combined 

with scRNA-seq readout to allow for capture of precision cell state information (Weinreb 

et al. 2020). However, static approaches are generally confined to introducing labels in 

vitro, thereby missing any cell state diversity that emerges after this point or in vivo, for 

example after cells are engrafted to form a tumor. 

 

https://paperpile.com/c/phZkFU/voae5+teETL+7mVsp
https://paperpile.com/c/phZkFU/voae5+teETL+7mVsp
https://paperpile.com/c/phZkFU/TAeBV+eraDd
https://paperpile.com/c/phZkFU/TAeBV+eraDd
https://paperpile.com/c/phZkFU/oersz
https://paperpile.com/c/phZkFU/oersz
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To overcome this technological hurdle to metastasis research, we turned our attention to 

the field of evolving barcoding, which was just starting to employ CRISPR-Cas9 

strategies for barcode mutagenesis, as this thesis work was beginning in late 2016 and 

early 2017 (McKenna et al. 2016; Frieda et al. 2017; Kalhor, Mali, and Church 2017). 

Evolving barcoding allowed for the introduction of labels in vivo concurrent with the 

experimental time course of interest, while maintaining the superior labeling diversity 

enabled by static barcoding methods. Furthermore, evolving barcoding approaches 

permitted repeated labeling, instead of a single labeling time point as in most static 

methods. 

 

However until 2021, evolving barcoding methods had generally been confined to studies 

focusing on in vitro validation (Frieda et al. 2017; Kalhor, Mali, and Church 2017; 

Loveless et al. 2021), normal development (McKenna et al. 2016; Raj et al. 2018; 

Spanjaard et al. 2018; Alemany et al. 2018; Kalhor et al. 2018; Chan et al. 2019), or 

adult hematopoiesis (Bowling et al. 2020), usually by injection or transient delivery of 

lineage tracing components. In order to apply evolving barcoding to study metastasis, 

we envisioned a compact, easily-integratable system with improved labeling diversity. By 

merging static barcoding with evolving barcoding, we developed macsGESTALT 

(Simeonov et al. 2021; Lee and Kang 2021), a flexible, inducible lineage tracer that 

generates thousands of unique labels both in vitro and in vivo and that can be readily 

coupled with scRNA-seq. We applied macsGESTALT to understand pancreatic cancer 

metastasis and gained critical insight into cancer behavior at the clonal, subclonal, and 

transcriptomic levels.  

 

https://paperpile.com/c/phZkFU/XQ3jk+9fo3I+pPiGB
https://paperpile.com/c/phZkFU/9fo3I+pPiGB+pwjin
https://paperpile.com/c/phZkFU/9fo3I+pPiGB+pwjin
https://paperpile.com/c/phZkFU/XQ3jk+QLv3A+v2kqC+iArSS+QMvAL+fNH5C
https://paperpile.com/c/phZkFU/XQ3jk+QLv3A+v2kqC+iArSS+QMvAL+fNH5C
https://paperpile.com/c/phZkFU/kczNS
https://paperpile.com/c/phZkFU/MDqSH+1DeYe
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Despite using an aggressive genetic model of pancreatic cancer metastasis, we found 

that most clones do not contribute to metastasis and that only very rare clones contribute 

significantly, supporting the importance of transcriptional and non-genetic processes 

(Hunter et al. 2018). While non-aggressive clones occupied similar transcriptional space, 

many aggressive clones conversely had distinct transcriptional identities, which they 

retained even upon dissemination to distant metastatic sites. Among aggressive clones, 

we found that a single dominant clone drove the overwhelming majority of metastasis 

across all sites, without apparent organotropism. This lack of apparent organotropism 

has recently also been observed in models of lung and breast cancer metastasis (W. 

Zhang et al. 2021; Quinn et al. 2021). Thereby suggesting that metastatic ability confers 

a shared ability to metastasize without significant predilection for common sites, at least 

in models of aggressive cancer. We note our findings were remarkably consistent across 

mice and suspect that the emergence of rare dominant clones from many non-metastatic 

clones may be a conserved feature of metastasis in this PDAC model. Additionally, 

these findings regarding population structure of metastases are strikingly similar to 

findings in lung cancer metastasis (Quinn et al. 2021). 

 

Highlighting the limitations of static barcoding approaches in isolation that we discussed 

previously, extensive clonal bottlenecking obscured lineage information at critical points 

in vivo. By pairing static and evolving barcodes, macsGESTALT overcame these clonal 

bottlenecking challenges by enabling subclonal reconstruction via the inducible evolving 

barcodes. In this work, evolving barcodes revealed that growth and dissemination of the 

dominant clone were driven by rare highly aggressive subclones that were associated 

with specific EMT transcriptional states. While a wide-range of EMT states existed in 

https://paperpile.com/c/phZkFU/08b24
https://paperpile.com/c/phZkFU/5Q2Mi+DC42r
https://paperpile.com/c/phZkFU/5Q2Mi+DC42r
https://paperpile.com/c/phZkFU/DC42r
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vivo — from highly epithelial to highly mesenchymal — aggressive subclones exhibited 

primarily late-hybrid EMT states. These late-hybrid subclones appeared to undergo 

continuous and aggressive evolutionary selection from a background of predominantly 

epithelial states. While this process enabled rapid proliferation and metastasis, it also 

necessitated extensive population bottlenecking, which we note may be a potentially 

vulnerable or exploitable feature of PDAC metastasis. Further underscoring the 

therapeutic relevance of our findings, late-hybrid EMT states corresponded with worse 

overall survival in human PDAC, while epithelial, early-hybrid, or highly mesenchymal 

states did not, thereby mirroring the rise and fall of metastatic capability across EMT in 

our model. These findings support studies purporting the importance of EMT in 

metastasis and drug resistance (Tsai et al. 2012; Nieto et al. 2016; Fischer et al. 2015; 

Zheng et al. 2015; Aiello et al. 2017). Recent reports have also described that partial or 

hybrid EMT states have increased aggressiveness, a concept which we were able to 

describe with single-cell resolution in vivo (Aiello et al. 2018; Pastushenko et al. 2018). 

As such, we characterized the EMT spectrum in depth, finding numerous enriched 

signaling, metabolic, and regulatory features throughout. Amongst these, in late-hybrid 

EMT states, we observed increased MYC activity and proliferation, as well as potential 

metabolic rewiring from OXPHOS to glycolysis, which has been implicated in both tumor 

invasiveness (Kamarajugadda et al. 2012; J. Lu, Tan, and Cai 2015) and EMT 

(Thomson, Balcells, and Cascante 2019; H. Kang et al. 2019).  

 

By exploring the dynamics of a dominant clone driving metastasis in a mouse model of 

PDAC, we characterized a detailed molecular roadmap of EMT in vivo and highlighted 

one potential path to aggressive metastasis, while noting that S100 genes may provide a 

https://paperpile.com/c/phZkFU/7qvYK+Agocp+eP8xx+2DWMU+wuPGX
https://paperpile.com/c/phZkFU/7qvYK+Agocp+eP8xx+2DWMU+wuPGX
https://paperpile.com/c/phZkFU/Z9Ogx+fiI9B
https://paperpile.com/c/phZkFU/GCqjM+0QI1H
https://paperpile.com/c/phZkFU/mDhbU+cIYFa


103 

 

complementary path as evidenced by their extensive expression propagation, particular 

amongst aggressive clones. As cancers are notoriously heterogeneous, we anticipate 

that many different paths to aggressive dissemination likely exist — but promisingly, we 

find that the late-hybrid EMT states uncovered by macsGESTALT also predict worse 

survival in a large human patient cohort, suggesting they may be an example of a 

conserved mechanism. As PDAC has the lowest survival rate of any major cancer 

(Cancer Facts & Figures 2020), largely due to aggressive, early metastasis present at 

diagnosis, we hope that our approach will enable future studies to reveal additional 

processes underlying the highly metastatic nature of PDAC.  

 

Our insights derive from a global, unbiased assessment of metastatic phylogeny and 

transcription at the single cell level. macsGESTALT enables such investigations by 

combining static and evolving lineage tracing and achieving high barcode recovery and 

editing rates, producing rich lineage trees densely annotated with transcriptional 

information. In this work, we perform lineage tracing of approximately 100 distinct cancer 

clones across two mice, uncovering both conserved and distinct mechanisms of cancer 

dissemination. We hope that future work will build on our findings by probing these 

processes in many mice across multiple cancers. Such studies could eventually 

exhaustively map the full landscape of cancer heterogeneity to identify the complete 

repertoire of evolutionary paths leading to metastasis. Functional analyses could then 

focus on validating these epigenetic and transcriptional avenues. This strategy could be 

applied to other potentially related aspects of cancer, such as therapy resistance. 

 

https://paperpile.com/c/phZkFU/uv3SL
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While the heterogeneity displayed by cancer across and within individuals, and between 

tissues of origin, can appear nearly infinite, the evolutionary paths that lead to metastatic 

competency are likely finite. If we take the analogy of a walled settlement on an 

unknown alien world with all manner of unknown species that may enter, we would 

notice that there are three ways to gain entry: above, below, and through the wall. While 

at first, we do not understand the nature of the various possible alien invaders, by 

studying them, we can identify those with features that, for example, enable them to fly 

over the wall. And while the evolutionary adaptations enabling flight on this alien planet 

may be diverse, they will all likely converge on the displacement of atmospheric gas. We 

believe that evolving barcoding, alongside rapid advances in single cell multiomics 

(Perkel 2021) and signal recording (Perli, Cui, and Lu 2016; J. Park et al. 2021), will be 

the tools with which we characterize and stop these alien invaders in the 21st century. 

And if a species exists that gains access via jumping to great heights rather than by 

flying, we will be prepared. 

 

 

  

https://paperpile.com/c/phZkFU/W0s2C
https://paperpile.com/c/phZkFU/AcVXz+Hcirv
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