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ABSTRACT 

EXPERIMENTAL AND COMPUTATIONAL ANALYSES OF LOCOMOTOR RHYTHM 

GENERATION AND MODULATION IN CAENORHABDITIS ELEGANS 

Hongfei Ji 

Christopher Fang-Yen 

 

Neural circuits coordinate with muscles and sensory feedback to generate motor behaviors 

appropriate to its natural environment. Studying mechanisms underlying complex organism 

locomotion has been challenging, partly due to the complexity of their nervous systems. Here, I 

used the roundworm C. elegans to understand the locomotor circuit. With its well-mapped 

nervous system, easily-measurable movements, genetic manipulability, and many human 

homologous genes, C. elegans has been commonly used as a model organism for dissecting the 

circuit, cellular, and molecular principles of locomotion. My work introduces two separate 

approaches to probe the mechanisms by which the C. elegans motor circuit generates and 

modulates undulations. First, I quantified C. elegans movements during free locomotion and 

during transient muscle inhibition. Undulations were asymmetrical with respect to the duration of 

bending and unbending per cycle. Phase response curves induced by brief optogenetic head 

muscle inhibitions showed gradual increases and rapid decreases as a function of phase at which 

the perturbation was applied. A relaxation oscillator model was developed based on 

proprioceptive thresholds that switch the active muscle moment. It quantitatively agrees with data 

from free movement, phase responses, and previous results for gait adaptation to mechanical 

loads. Next, I characterized a proprioception-mediated compensatory behavior during C. elegans 

forward locomotion: the anterior body bending amplitude compensates for the change in midbody 

bending amplitude by an opposing homeostatic response. I demonstrated that curvature 
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compensation requires dopamine signaling driven by PDE neurons. Calcium imaging 

experiments suggested a proprioceptive functionality for PDE in sensing midbody curvature. 

Downstream of PDE dopamine signaling, curvature compensation requires D2-like dopamine 

receptor DOP-3 in the interneurons AVK. FMRFamide-like neuropeptide FLP-1, released by AVK, 

regulates SMB motor neurons via receptor NPR-6 to modulate anterior bending amplitude. These 

results revealed a mechanism whereby proprioception works with dopamine and neuropeptide 

signaling to mediate homeostatic locomotor control. Together, through a consolidation of 

experimental and computational approaches, I found C. elegans utilizes its circuitry not only to act 

motor behaviors but to adjust/correct its ongoing behaviors in its natural contexts. 
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CHAPTER 1: INTRODUCTION 

BASIC ELEMENTS OF LOCOMOTOR CIRCUITS 

Animals display locomotor behaviors such as crawling, walking, swimming, or flying via rhythmic 

patterns of muscle contractions and relaxations. In many animals, motor rhythms originate from 

networks of central pattern generators (CPGs), neuronal circuits capable of generating rhythmic 

outputs without rhythmic input (Cohen and Wallén, 1980; Grillner, 2003; Kiehn, 2011; Kristan and 

Calabrese, 1976; Marder and Calabrese, 1996; Pearce and Friesen, 1984; Yu et al., 1999). In 

vertebrates CPG-generated motor rhythms typically arise from a combined contribution of 

ipsilateral excitatory drive and reciprocal inhibition in the spinal cord (Brown, 1911; Buchanan and 

Grillner, 1987; Grillner and El Manira, 2020; Kiehn, 2016; Marder and Calabrese, 1996; Roberts 

et al., 2010; Wilson, 1961; WILSON and WEIS-FOGH, 1962). 

 Although isolated CPGs can produce outputs in the absence of sensory input, in the intact 

animal sensory feedback plays a critical role in coordinating motor rhythms across the body and 

modulating their characteristics (Friesen, 2009; Grillner and Wallen, 2002; Mullins et al., 2011; 

Pearson, 2004; Wen et al., 2012). Sensory feedback allows animals to adapt locomotor patterns 

to their surroundings (Andersson et al., 1981; Bidaye et al., 2018; Brodfuehrer and Friesen, 1986) 

and adapt to unexpected perturbations (Ekeberg and Grillner, 1999). Sensory inputs induced by 

electric stimulation of receptor cells (Yu and Friesen, 2004) or by mechanical perturbation of body 

segments (Grillner, 2021; Grillner et al., 1981) can entrain an animal’s motor behavior to imposed 

patterns, demonstrating the flexibility of motor systems in responding to feedback. 

 Animal movements are driven not only by active muscle contractions, but also by passive 

mechanical forces including elastic recoil of muscles and other body structure, internal damping 

forces, and forces from the interaction with the external environment. Efficient locomotion in 
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vertebrates depends on storage of elastic energy in tendons and muscles (Roberts and Azizi, 

2011). In insects, elasticity in the leg joints plays an important role in generating forces for walking 

and jumping (Ache and Matheson, 2013). A comprehensive understanding of animal locomotion 

should therefore encompass not only neural activity, muscle activity, and sensory feedback, but 

also biomechanical forces within the animal’s body and between the animal and its environment 

(Fig. 1.1A; Borgmann et al., 2009; Grillner and Wallen, 2002; Kiehn, 1998). 

 

Figure 1.1. Rhythm generation in C. elegans. 

(A) Motor neurons generate neuronal signals to control the activation of muscles, which 

generates movement subject to internal and external environmental constraints. Sensory input 

provides feedback about body position and the environment. 

(B and C) Two possible models for locomotory rhythm generation in C. elegans. (B) In a reflex 

loop model, sensory neurons (SN) detect body postures and excite motor neurons (MN) to 

activate body wall muscles.  

(C) In a central pattern generator (CPG) model, network of motor neurons generates basic 

rhythmic patterns that are transmitted to body wall muscles (BWM) while sensory feedback 

modulates the CPG rhythm. Diagrams adapted from Marder and Bucher (Marder and Bucher, 
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2001). 

PROPRIOCEPTIVE CONTROL OF LOCOMOTION 

In intact animals, the actual behavioral outputs during locomotion are subjected to proprioceptive 

signals arising from sensory neurons (Andersson et al., 1981; Brodfuehrer and Friesen, 1986; 

Friesen, 2009; Grillner and Wallen, 2002; Wen et al., 2012). In leeches (Cang and Friesen, 2000; 

Cang et al., 2001), lamprey (Bowtell and Williams, 1991), and Drosophila (Akitake et al., 2015; 

Mendes et al., 2013), specialized proprioceptive neurons and sensory receptors in body muscles 

detect sensory inputs to regulate and coordinate the centrally generated motor patterns. In limbed 

animals, sensory feedback from stretch receptors in the legs plays a causal role in generating 

and molding the bursting activity of leg motoneurons during limb movements (Smith et al., 1993; 

Wisleder et al., 1990; Wolf and Pearson, 1988). In mouse proprioceptive neurons, deletion of 

Piezo2, an excitatory mechanosensitive channel, induces severely uncoordinated body 

movements (Picton et al., 2021; Woo et al., 2015). 

 Proprioception is essential for regulating motor output not only during unperturbed locomotion 

but in a perturbed scenario when a gait perturbation occurs (Pearson, 2000). In humans and cats, 

the proprioceptive feedback from multisensory inputs, representing different sub-modalities in 

detecting surrounding changes, is continuously balanced and processed within spinal interneuron 

circuits to instruct compensatory electromyographic responses to the current locomotor situation 

(Dietz, 2002). In particular, sensory inputs that mediate monosynaptic spinal reflexes facilitate 

compensating movements for small ground irregularities (Dietz et al., 1987). Other proprioceptive 

signals, integrated by the polysynaptic spinal reflex system, produce more complex 

compensatory responses to ground conditions, involving synergistic coordination of leg muscle 

activation (Hansen et al., 1988). In limbless animals, both experimental and computational 

studies demonstrate that they rely critically on proprioceptive feedback to adapt their undulatory 
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gait to the changing physical environment (Berri et al., 2009; Boyle et al., 2012; Fang-Yen et al., 

2010; Fouad et al., 2018; Iwasaki et al., 2014). In C. elegans, previous studies reported that 

optogenetic muscle inhibition of the anterior region could induce simultaneous oscillation at 

different frequencies in head and tail (Fouad et al., 2018; Xu et al., 2018), and that the motor 

dynamics displayed a biphasic, sawtooth-shaped phase response curve upon transient 

perturbations (Ji et al., 2021a), both indicating unique roles of proprioception in an animal’s motor 

system. 

 Although a variety of proprioceptive components and interactions have been verified to 

contribute to adaptive locomotion in various organisms, the underlying signaling relationships of 

premotor neurons, motor neurons, and muscle cells that encode locomotor adaptation to gait 

perturbations remain primarily unknown (Büschges and Mantziaris, 2021; Dietz, 2002; Zhen and 

Samuel, 2015). 

NEUROMUSCULAR COMPONENTS FOR C. ELEGANS MOTOR RHYTHM GENERATION 

Fully understanding the molecular and cellular mechanisms of locomotory rhythm generation and 

coordination requires a model system with easily amenable, yet sophisticated behavioral outputs 

carried out by circuits that can be thoroughly dissected at the molecular and cellular levels. 

 Here I study mechanisms of locomotor rhythm generation and its modulation by sensory 

feedback in the nematode Caenorhabditis elegans. With its easily quantifiable behavior (Croll, 

1970), well-mapped nervous system (Cook et al., 2019; White et al., 1986), genetic manipulability 

(Bargmann, 1998; Brenner, 1974; Hobert, 2003), and optical transparency, this worm is a unique 

model for obtaining an integrative understanding of locomotion. 

 C. elegans forward locomotion consists of anterior-to-posterior dorsoventral undulations 

(Croll, 1970). These movements are mediated by a neuromuscular circuit consisting of 

interneurons, excitatory cholinergic motor neurons, inhibitory GABAergic motor neurons, and 
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body wall muscles. Laser ablation studies have shown that the cholinergic B-type motor neurons 

are required for forward locomotion (Chalfie et al., 1985). The GABAergic D-type motor neurons 

provide dorsoventral cross-inhibition to the body wall muscles and are essential for maintaining 

high frequency locomotion (Deng et al., 2020; Mclntire et al., 1993). A set of premotor 

interneurons (AVB, PVC, AVA, AVD, and AVE) regulate forward and reverse movements (Chalfie 

et al., 1988; Driscoll and Kaplan, 1997; Von Stetina et al., 2006). Ablation of all premotor 

interneurons does not deprive C. elegans  of the ability to undulate (Gao et al., 2018; Kawano et 

al., 2011), suggesting that a network consisting of excitatory motor neurons and muscles may be 

sufficient to generate rhythmicity. 

 

Figure 1.2. A schematic figure of connectivity in the wiring diagram for forward locomotion 

(adapted from Wen et al., 2012). 

 In recent years, rapid progress has been made in understanding the motor circuits in C. 

elegans (Boyle et al., 2012; Cohen and Denham, 2019; Gjorgjieva et al., 2014; Haspel et al., 

2020; Zhen and Samuel, 2015). In C. elegans, locomotory behavior arises from a compact 

nervous system (Fig. 1.2). A principal CPG has been suggested (Karbowski et al., 2008; Niebur 

and Erdös, 1991; Wen et al., 2012) to be localized in the head to provide bending rhythms, and 
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the bending waves are propagated along the body through a chain of reflexes connecting 

adjacent body segments (Fig. 1.3). Optogenetic and lesion experiments suggested that multiple 

oscillators exist in the ventral nerve cord (Fig. 1.3; Fouad et al., 2018). However, the mechanisms 

that give rise to these oscillators are still poorly understood. 

 

Figure 1.3. Distributed rhythm oscillators underlie C. elegans forward locomotion (adapted 

from Fouad et al., 2018). 

Two units of the ventral nerve cord (VNC) motor neurons can independently generate a fictive 

motor rhythm. All oscillating units are coupled by proprioceptive coupling (Wen et al., 2012) and 

other unknown, likely non-proprioceptive, bidirectional coupling mechanisms. Premotor 

interneurons promote or suppress this circuit, out of which AVB may play an additional, 

unexplained role in rhythm generation. 
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PROPRIOCEPTIVE CONTROL OF C. ELEGANS MOTOR BEHAVIOR 

In C. elegans, proprioceptive feedback is crucial for generating and modulating locomotor 

rhythms. Several proprioceptive mechanisms were identified implicating motor neurons, 

interneurons, sensory neurons, as well as neuromodulation of biogenic amines and 

neuropeptides. 

 Some C. elegans motor neurons appear to also display proprioceptive functions. For 

example, the B-type motor neurons mediate proprioceptive coupling from anterior to posterior 

bending during forward locomotion (Wen et al., 2012). The SMDD motor neurons, localized at the 

head, have been identified as proprioceptive regulators of head steering during locomotion (Yeon 

et al., 2018). Both the B-type motor neurons and the SMDD head motor neurons have long 

asynaptic processes hypothesized to have proprioceptive function (White et al., 1986). In 

particular, SMDD, B1, and B2 motor neurons have been suggested as candidate locomotor CPG 

elements (Kaplan et al., 2020). In addition, two types of neurons, the DVA and PVD interneurons, 

have proprioceptive roles in regulating the worm’s body bend movement. DVA exhibits 

proprioceptive properties that depend on a mechanosensitive channel, TRP-4, which acts as a 

stretch receptor to regulate the body bend amplitude during locomotion (Li et al., 2006). In 

another study, body bending was shown to induce local dendritic Ca2+ transients in PVD and 

dendritic release of neuropeptide encoded by nlp-12, which appears to regulate the amplitude of 

body movement (Tao et al., 2019). In vivo Ca2+ imaging of dopaminergic ciliated sensory neurons 

PDE revealed that Ca2+ levels oscillates during forward movement, phase-locked to the forward 

propagating bend, suggesting a proprioceptive capability in PDE of sensing body bends (Cermak 

et al., 2020). 

 Despite the recent progress in understanding proprioception and proprioceptive units within 

this small circuit, how CPGs are formed and how they work with proprioceptive cues in order to 



8 

 

generate locomotion and respond to external environmental modules remain largely unknown. 

COMPUTATIONAL MODELS OF C. ELEGANS LOCOMOTOR BEHAVIOR 

Computational models for C. elegans motor behavior have long been an important complement to 

experimental approaches, since an integrative understanding of locomotion requires 

consideration of neural, muscular, and mechanical degrees of freedom, and are often tractable 

only by modeling (Boyle et al., 2012; Bryden and Cohen, 2008; Denham et al., 2018; Izquierdo 

and Beer, 2018; Johnson et al., 2021; Karbowski et al., 2008; Kunert et al., 2017; Olivares et al., 

2021). 

 An early model (Niebur and Erdös, 1991) assumes that a CPG located in the head initiates 

dorsoventral bends and that a combination of neuronal and sensory feedback mechanisms 

propagates the waves in the posterior direction. In this model, sensory feedback plays a 

modulatory role in producing smoother curvature waves but is not explicitly required for rhythm 

generation itself. Other computational models have aimed to describe how the motor circuit 

generates rhythmicity. For example, several neural models have been developed for the forward-

moving circuit (Karbowski et al., 2008; Olivares et al., 2021) by incorporating of all major neural 

components and connectivity (Fig. 1.4). In particular, Karbowski’s model included a CPG in the 

head based on effective cross-inhibition between ventral and dorsal groups of interneurons. In 

contrast, Bryden and Cohen (Bryden and Cohen, 2008) developed a neural model in which each 

segment along the body is capable of generating proprioception-mediated oscillations. In this 

model, a circuit of AVB interneurons and B-type motor neurons suffices to generate robust 

locomotory rhythms without cross-inhibition. 
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Figure 1.4. System-level neural model of the motor circuit for forward locomotion in C. 

elegans (adapted from Karbowski et al., 2008). 

(A) The large-scale view of the circuit. 

(B) Schematic diagram of the head CPG originated from cross-inhibitions among interneurons. 

 Other models have examined how C. elegans adapts its undulatory wavelength, frequency, 

and amplitude as a gait adaptation to external load (Boyle et al., 2012; Denham et al., 2018; 

Izquierdo and Beer, 2018; Johnson et al., 2021). To account for these changes, these models 

combined the motor circuit model with additional assumptions of stretch sensitivity in motor 

neurons, and worm body biomechanical constraints, to create a model that reproduced the 

changes in undulatory wave patterns under a range of external conditions. 

 However, these recent computational models were implemented on a cellular level where 
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assumptions were typically made for detailed cell properties and inter-cellular interactions that are 

not directly supported by experimental evidence (Bryden and Cohen, 2008; Haspel et al., 2010; 

Karbowski et al., 2008). Due to the paucity of experimental findings in cellular and synaptic 

properties of motor circuit elements (Gjorgjieva et al., 2014), this ‘bottom-up’ strategy of modelling 

faces potential challenges of experimental verification and computational superfluity. 

OBJECTIVES AND OVERVIEW 

In this work I sought to explore how the C. elegans motor system generates a locomotor rhythm 

and how it adapts locomotion in response to gait perturbations. In Chapter 2, I introduce a 

dynamical systems approach to analyze the worm’s motor behavior. By integrating quantitative 

behavioral measurements, optogenetic phase response analyses, and computational modeling I 

show that the locomotor system acts as a relaxation oscillator (a type of nonlinear oscillator). In 

Chapter 3, I demonstrate that C. elegans uses a posterior-to-anterior proprioceptive feedback 

loop to adapt its locomotor amplitude to gait perturbation in a homeostatic manner. Using 

combined experimental analyses, the corresponding mechanisms are described on the behavior, 

circuit, and molecular levels. In Chapter 4, I present my perspective on future directions for my 

work. In the Appendix, I post my software for computational modeling and experimental data 

analysis. 
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CHAPTER 2: PHASE RESPONSE ANALYSES SUPPORT A RELAXATION OSCILLATOR 

MODEL OF LOCOMOTOR RHYTHM GENERATION IN C. ELEGANS 

Hongfei Ji1,*, Anthony D. Fouad1,*, Shelly Teng1, Alice Liu1, Pilar Alvarez-Illera1, Bowen Yao1, 

Zihao Li1, and Christopher Fang-Yen1,2 

1Department of Bioengineering, School of Engineering and Applied Science, University of 

Pennsylvania, Philadelphia, PA 19104 

2Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 

Philadelphia, PA 19104 

*Equal contributions 

This chapter is a slightly edited version of my paper published in the journal eLife (Ji et al., 

2021b). Anthony Fouad and his students (Shelly Teng, Alice Liu, and Pilar Alvarez-Illera) 

conducted pioneering work associated with PRC experiments in the early stages including 

experiment design, data curation, data analysis, and data interpretation. I performed additional 

experiments including optogenetic inhibition tests with single-side illuminations and under varying 

viscosities, and viscosity-dependent tests for biomechanical analysis. Christopher Fang-Yen and I 

together conceived the ideas behind the threshold-switching mechanisms of the model in the 

early stages. I implemented the primary model and other additional models. Most transgenic lines 

were generated by my colleague Anthony Fouad (All YX strains in Key resources table 2.1). The 

optogenetic targeting system was originally designed by Fang-Yen and was later constructed with 

modifications by Fouad. Custom software to run the laser system was written by Fouad. Custom 

algorithms for data analysis and modeling were written either by me or Fouad. Fang-Yen also 

helped with designing, troubleshooting, and interpreting experiments and models. 
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INTRODUCTION 

To experimentally probe mechanisms of rhythmic motor generation, including the role of 

proprioceptive feedback, we measured the phase response curve (PRC) upon transient 

optogenetic inhibition of the head muscles. We found that the worms displayed a biphasic, 

sawtooth-shaped PRC with sharp transitions from phase delay to advance. 

 We used these findings to develop a computational model of rhythm generation in the C. 

elegans motor circuit in which a relaxation-oscillation process, with switching based on 

proprioceptive feedback, underlies the worm’s rhythmic dorsal-ventral alternation. We sought to 

develop a phenomenological model to describe an overall mechanism of rhythm generation but 

not the detailed dynamics of specific circuit elements. We aimed to incorporate biomechanical 

constraints of the worm’s body and its environment (Fang-Yen et al., 2010; Gray and Lissmann, 

1964; Wallace, 1968), as well as account for how sensory feedback is incorporated. To improve 

predictive power, we aimed to minimize the number of free parameters used in the model. Finally, 

we sought to optimize and test this model with new experiments as well as with published 

findings. 

 Our model reproduces the observed PRC and describes the locomotory dynamics around 

optogenetic inhibitions in a manner that closely fits our experimental observations. Our model 

also agrees with results on gait adaptation to external load and the asymmetry in time-dependent 

curvature patterns of undulating worms. Our experimental findings and computational model 

together yield insights into how C. elegans generates rhythmic locomotion and modulates them 

depending on the environment. 
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RESULTS 

C. ELEGANS FORWARD LOCOMOTION EXHIBITS A STABLE AND NONSINUSOIDAL LIMIT 

CYCLE 

To gain insight into wave generation, we first sought to examine the quantitative behavioral 

characteristics of worms during forward locomotion. First, we measured the undulatory dynamics 

of body bending by computing the time-varying curvature along the centerline of the body (Fang-

Yen et al., 2010; Leifer et al., 2011; Pierce-Shimomura et al., 2008; Wen et al., 2012) from 

analysis of dark field image sequences of worms exhibiting forward locomotion. In order to 

quantitatively treat the drag between the body and its environment, we examined locomotion of 

worms in dextran solutions of known viscosity (see Methods; Fang-Yen et al., 2010). The 

normalized body coordinate is defined by the distance along the body centerline divided by the 

body length (Fig. 2.1A). The curvature 𝜅 at each point along the centerline of the body is the 

reciprocal of local radius of curvature (Fig. 2.1A), with a positive (negative) curvature 

representing ventral (dorsal) bending. We further define the dimensionless curvature 𝐾 = 𝜅 · 𝐿, 

where 𝐿 is the length of the worm. We focus on curvature dynamics of worm’s head region (0.1-

0.3 body coordinate, Fig. 2.1B). 

 We used this behavioral data to generate phase portraits, geometric representations of a 

dynamical system’s trajectories over time (Izhikevich, 2007), in which the time derivative of the 

curvature is plotted against the curvature. If the curvature were sinusoidal over time, as it is often 

modeled in slender swimmers (Fang-Yen et al., 2010; Gray, 1933; Guo and Mahadevan, 2008; 

Niebur and Erdös, 1991; Ranner, 2020), the time derivative of curvature would also be sinusoidal, 

with a phase shift of 𝜋/4 radians relative to the curvature, and the resulting phase portrait would 

be symmetric about both the 𝐾 and 𝑑𝐾/𝑑𝑡 axes. Instead, we found that the phase portrait of C. 

elegans forward locomotion is in fact non-ellipsoidal and strongly asymmetric with respect to 

reflection across the 𝐾 or 𝑑𝐾/𝑑𝑡 axes (Figs. 2.1C and 2.1D). Plots of both the phase portrait (Fig. 
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2.1D) and the time dependence (Fig. 2.1C) show that 𝐾 and 𝑑𝐾/𝑑𝑡 are strongly non-sinusoidal. 

 In addition to the head, other parts of the worm’s body also display nonsinusoidal bending 

movements (Fig. S2.1). In this paper, we focus on curvature dynamics of the worm’s head region 

(0.1-0.3 body coordinate) where the bending amplitude is largest and the nonsinusoidal features 

are most prominent (Fig. S2.1). 
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Figure 2.1. Undulatory dynamics of freely moving worms. 

(A) Worm undulatory dynamics are quantified by the time-varying curvature along the body. The 

normalized body coordinate is defined by the fractional distance along the centerline (head = 0, 

tail = 1). The curvature 𝜅 is the reciprocal of the local radius of curvature with positive and 

negative values representing dorsal and ventral curvature, respectively. 

(B) Curvature as a function of time and body coordinate during forward movement in a viscous 

liquid. Body bending curvature 𝐾 is represented using the nondimensional product of 𝜅 and body 

length 𝐿. 

(C) Curvature (black) in the anterior region (average over body coordinate 0.1-0.3) and the time 

derivative (dashed grey) of this curvature. Red circles mark four representative phases (0, 𝜋/2, 𝜋, 

and 3𝜋/2). The curve is an average of 5041 locomotory cycles from 116 worms. 

(D) Phase portrait representation of the oscillatory dynamics, showing the curvature and the time 

derivative of the curvature parameterized by time. Images of worm correspond to the phases 

marked in C. Arrow indicates clockwise movement over time. (Inset) waveform of the scaled 

active muscle moment, estimated by equation 𝑀𝑎 = 𝐾 + 𝜏𝑢𝐾̇. Both curves were computed from 

the data used in C. 

 We asked whether the phase portrait represents a stable cycle, i.e. whether the system tends 

to return to the cycle after fluctuations or perturbations away from it. To this end, we analyzed the 

recovery after brief optogenetic muscle inhibition. We used a closed-loop system for optically 

targeting specific parts of the worm (Fouad et al., 2018; Leifer et al., 2011) to apply brief pulses of 

laser illumination (0.1 s duration, 532 nm wavelength) to the heads of worms expressing the 

inhibitory opsin NpHR in body wall muscles (Pmyo-3::NpHR). Simultaneous muscle inhibition on 

both sides causes C. elegans to straighten due to internal elastic forces (Fang-Yen et al., 2010). 
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Brief inhibition of the head muscles during forward locomotion was followed by a maximum 

degree of paralysis approximately 0.3 s after the end of the pulse, then a resumption of 

undulation (Figs. 2.2A and 2.2B). 

 To quantify the recovery dynamics, we defined a normalized deviation 𝑑 describing the state 

of the system relative to the phase portrait of normal oscillation (see Methods), such that d = -1 at 

the origin, d = 0 at the limit cycle, and d > 0 outside the limit cycle. We found that the deviation 

following optogenetic perturbation (Fig. S2.2) decays toward zero regardless of the initial 

deviation from the normal cycle, indicating that the worm returns to its normal oscillation after a 

perturbation. These results show that C. elegans head oscillation during forward locomotion is 

stable under optogenetic perturbation. The dynamics of these perturbed worms also allow us to 

reconstruct the phase isochrons and vector flow fields (Fig. S2.3) of the worm’s head oscillation, 

two other important aspects of an oscillator (see Methods). 

 Taken together, these results show that during forward locomotion, head oscillation of a 

worm constitutes a stable oscillator containing a nonsinusoidal limit cycle. 

TRANSIENT OPTOGENETIC INHIBITION OF HEAD MUSCLES YIELDS A SLOWLY RISING, 

RAPIDLY FALLING PHASE RESPONSE CURVE 

The phase response curve (PRC) describes the change in phase of an oscillation induced by a 

perturbation as a function of the phase at which the perturbation is applied, and is often used to 

characterize biological and nonbiological oscillators (Izhikevich, 2007; Pietras and Daffertshofer, 

2019; Schultheiss et al., 2011). We performed a phase response analysis of the worm’s 

locomotion upon transient optogenetic inhibitions. 

 Using data from 991 illuminations (each 0.1 s in duration) in 337 worms, we analyzed the 

animals’ recovery from transient paralysis as a function of the phase at which the illumination 

occurred. We define the phase such that it equals to zero at the point of maximum ventral 
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bending (Fig. 2.2D). When inhibition occurred with phase in the interval [0, 𝜋/6], the head 

typically straightened briefly and then continued the previous bend, resulting in a phase delay for 

the oscillation (Figs. 2.2C-E). When inhibition occurred with phase in the interval [𝜋/3, 𝜋/2], the 

head usually appeared to discontinue the previous bend movement, which resulted in a small 

phase advance (Figs. 2.2F-H). When inhibition occurred with phase in the interval [2𝜋/3, 5𝜋/6], 

the head response was similar to that between the interval [0, 𝜋/6], and also resulted in a phase 

delay (Figs. 2.2I-K). 



18 

 

 



19 

 

Figure 2.2. Analysis of phase-dependent inhibitions for head oscillation using transient 

optogenetic muscle inhibition.  

(A) Images of a transgenic worm (Pmyo-3::NpHR) perturbed by a transient optogenetic muscle 

inhibition in the head during forward locomotion. Green shaded region indicates the 0.1 s laser 

illumination interval. h: head; t: tail; v: ventral side; d: dorsal side.  

(B) Effect of muscle inhibition on mean absolute curvature of the head. Black curve represents 

control ATR+ (no light) group (3523 measurements using 337 worms). Brown curve represents 

control ATR- group (2072 measurements using 116 worms). Red curve represents ATR+ group 

(1910 measurements using 337 worms). Green bar indicates 0.1 s light illumination interval 

starting at 𝑡 = 0.  

(C-E) Perturbed dynamics around light pulses occurring in the phase range [0, 𝜋/6]. (C) 

Kymogram of time-varying curvature 𝐾 around a 0.1 s inhibition (green dashed box). (D) Mean 

curvature dynamics around the inhibitions (green bar, aligned at 𝑡 = 0) from ATR+ group (red 

curve, 11 trials using 4 worms) and control ATR+ (no light) group (black curve, 8 trials using 3 

worms). Grey curves are individual trials from ATR+ group (10 randomly selected trials are 

shown). (E) Mean phase portrait graphs around the inhibitions (green line) from ATR+ group 

(same trials as in D) and control group (ATR+, no light, 3998 trials using 337 worms). Grey 

curves are individual trials from ATR+ group.  

(F-H) Similar to C-E, for phase range [𝜋/3, 𝜋/2].  

(I-K) Similar to C-E, for phase range [2𝜋/3, 5𝜋/6].  

(L) PRC from optogenetic inhibition experiments (ATR+ group, 991 trials using 337 worms, each 

point indicating a single illumination of one worm). The curve was obtained via a moving average 

along the x-axis with 0.16𝜋 in bin width and the filled area represents 95% confidence interval 
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within the bin.  

(M) A 2-dimensional histogram representation of the PRC using the same data. The histogram 

uses 25 bins for both dimensions, and the color indicates the number of data points within each 

rectangular bin. 

 Combining the data from all phases of inhibition yielded a sawtooth-shaped PRC with two 

sharp transitions from phase delay to advance as well as two relatively slow ascending transitions 

from phase advance to delay (Figs. 2.2L,M). In control worms, which do not express NpHR in the 

body wall muscles (see Methods), the resulting PRC shows no significant phase shift over any 

phases of illumination (Fig. S2.4). In worms perturbed with shorter pulses (0.055 s duration), we 

observed a similar sawtooth-shaped PRC (Fig. S2.5). 

 In addition to phase response analyses with perturbations to the worm’s anterior, we 

conducted similar analyses for the dynamics across the body by optogenetically inhibiting body 

wall muscles of other regions (Fig. S2.6). We found that the sawtooth feature of PRC tends to 

decrease monotonically as the perturbation occurs further away from the head (Fig. S2.6A,E,I). 

 Next, we asked whether the sharp downward transitions in the PRC represent a continuous 

decrease or instead result from averaging data from a bimodal distribution. When we plotted the 

distribution of the same data in a 2-D representation we found that the phase shifts display a 

piecewise, linear increasing dependence on the phase of inhibition with two abrupt jumps 

occurring at 𝜙 ≈ 𝜋/3 and 4𝜋/3, respectively (Fig. 2.2M). This result shows that the sharp 

decreasing transitions in PRC reflect bimodality in the data rather than continuous transitions. 

 In addition to examining PRCs induced by muscle inhibition, we also calculated PRCs with 

respect to inhibitions of cholinergic motor neurons. We performed similar experiments on 

transgenic worms in which the inhibitory opsin NpHR is expressed in either all cholinergic 
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neurons (Punc-17::NpHR::ECFP) or B-type motor neurons (Pacr-5::Arch-mCherry). In both 

strains, we again observed sawtooth-shaped PRCs (Figs. S2.7 and S2.8), with variations only in 

the magnitudes of phase shifts. These experiments show that the sawtooth-shaped feature of 

PRC is maintained for motor neuron inhibition, suggesting that the transient muscle and neuron 

inhibition interrupt the motor circuit dynamics in a similar manner. 

 The GABAergic D-type motor neurons provide a dorsoventral reciprocal inhibition of opposing 

muscles during locomotion. We asked whether the D-type motor neurons are required for the 

observed sawtooth shape of the PRC. We examined transgenic worms that express NpHR in the 

body wall muscles but have mutations unc-49(e407), a loss-of-function mutant of GABAA receptor 

that is required by the D-type motor neurons (Bamber et al., 1999). After performing optogenetic 

inhibition experiments we found that the PRC also displays a sawtooth feature (Fig. S2.9). This 

result shows that D-type motor neurons are not necessary for the motor rhythm generator to 

show the sawtooth-shaped PRC. 

 Sawtooth-shaped PRCs are observed in a number of systems with oscillatory dynamics, 

including the van der Pol oscillator (Rosenblum, 2018), and may reflect a phase resetting 

property of an oscillator with respect to a perturbation (Izhikevich, 2007; Schultheiss et al., 2011). 

Further interpretation of the PRC results is given below. 

WORM MUSCLES DISPLAY A RAPID SWITCH-LIKE ALTERNATION DURING LOCOMOTION 

As a first step in interpreting and modeling our findings, we estimated the patterns of muscle 

activity in freely moving worms, in part by drawing on previous biomechanical analyses of 

nematode movement (Fang-Yen et al., 2010; Gray and Lissmann, 1964; Ranner, 2020; Wallace, 

1968). 

 In mechanics, a moment is a measure of the ability of forces to produce bending about an 

axis. Body wall muscles create local dorsal or ventral bending by generating active moments 
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across the body. In addition to the active moments from muscles, there are also passive 

moments generated by the worm’s internal viscoelasticity and by the forces due to the interaction 

of the worm with its external environment. 

 We estimated the output patterns of the active muscle moment that drives the head 

oscillations of freely moving worms immersed in viscous solutions. Following previous analyses of 

C. elegans locomotor biomechanics under similar external conditions (Fang-Yen et al., 2010), the 

scaled active muscle moment can be described as a linear combination of the curvature and the 

time derivative of the curvature (Eqn. 2.1; also see Methods). We observed that in the phase 

portrait graph (Fig. 2.1D), there are two nearly linear portions of the curve. We hypothesized that 

these linear portions correspond to two bouts during which the active muscle moment is nearly 

constant. 

 Using fits to the phase plot trajectory (see Methods) we estimated the waveform of the active 

muscle moment as a function of time (Fig. 2.1D Inset). We found that the net active muscle 

moment alternates between two plateau regions during forward locomotion. From the slope of the 

steep portions on this curve, we estimated the time constant for transitions between active 

moments to be 𝜏𝑚 ≈ 100 𝑚𝑠. This time constant is much smaller than the duration of each 

muscle moment plateau period (≈  0.5 𝑠), suggesting that the system undergoes rapid switches of 

muscle contractions between two saturation states. 

A RELAXATION OSCILLATION MODEL EXPLAINS NONSINUSOIDAL DYNAMICS 

We reasoned that the rapid transitions of the active muscle moment might reflect a switching 

mechanism in the locomotory rhythm generation system. We hypothesized that the motor system 

generates locomotory rhythms by switching the active moment of the muscles based on 

proprioceptive thresholds. 

 To expand further upon these ideas, we developed a quantitative model of locomotory rhythm 
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generation. We consider the worm as a viscoelastic rod where the scaled curvature K(t) varies 

according to: 

𝐾(𝑡) + 𝜏𝑢

𝑑𝐾(𝑡)

𝑑𝑡
= 𝑀𝑎(𝑡), [𝟐. 𝟏] 

where 𝜏𝑢 describes the time scale of bending relaxation and 𝑀𝑎(𝑡) is the time-varying active 

muscle moment scaled by the bending modulus and the body length (see detailed derivations in 

Methods). We note that in a stationary state (𝑑𝐾/𝑑𝑡 = 0), the curvature would be equal to the 

scaled active muscle moment. That is, the scaled active moment represents the static curvature 

that would result from a constant muscle moment. 

 We define a proprioceptive feedback variable 𝑃 as a linear combination of the current 

curvature value and the rate of change of curvature. In our model, once this variable reaches 

either of two thresholds 𝑃𝑡ℎ and −𝑃𝑡ℎ (Fig. 2.3D), the active muscle moment undergoes a change 

of sign (Fig. 2.3E), causing the head to bend toward the opposite direction (Fig. 2.3B). 

 Our model has 5 parameters: (1) 𝜏𝑢, the bending relaxation time scale, (2) 𝜏𝑚, the muscle 

switching time scale, (3) 𝑀0, the amplitude of the scaled active muscle moment, (4-5) 𝑏 and 𝑃𝑡ℎ, 

which determine the switch threshold. The first 3 parameters were directly estimated from our 

experimental results from freely moving worms (see Methods). Parameters 𝑏 and 𝑃𝑡ℎ were 

obtained using a two-round fitting procedure by fitting the model first to the freely moving 

dynamics (first round) and then to the experimental phase response curve (second round) (see 

Methods). 

 With this set of parameters, we calculated the model dynamics as represented by the phase 

portrait (Fig. 2.3C) as well as curvature waveform in one cycle period (Fig. 2.3F). We found that 

in both cases the model result agreed with our experimental observations. Our model captures 
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the asymmetric phase portrait trajectory shape found from our experiments (Fig. 2.1D). It also 

describes the asymmetry of head bending during locomotion: bending toward the ventral or 

dorsal directions occurs slower than straightening toward a straight posture during the locomotory 

cycle (Fig. 2.3F Inset). 

 Considering the hypothesized mechanism under the biomechanical background (Eqn. 2.1), 

our model provides a simple explanation for the observed bending asymmetry during locomotion. 

According to the model, the active muscle moment is nearly constant during each period between 

transitions of the muscle moment. Biomechanical analysis under this condition predicts an 

approximately exponential decay in curvature, which gives rise to an asymmetric feature during 

each half period (Fig. 2.3F). 
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Figure 2.3. Free-running dynamics of a bidirectional relaxation oscillator model.  

(A) Schematic diagram of the relaxation oscillator model. In this model, sensory neurons (SN) 

detect the total curvature of the body segment as well as the time derivative of the curvature. The 

linear combination of the two values, 𝑃 = 𝐾 + 𝑏𝐾̇, is modeled as the proprioceptive signal which 

is transmitted to motor neurons (MN). The motor neurons alternatingly activate dorsal or ventral 

body wall muscles (BWM) based on a thresholding rule: (1) if 𝑃 < −𝑃𝑡ℎ, the ventral body wall 

muscles get activated and contract while the dorsal side of muscles relax; (2) if 𝑃 > 𝑃𝑡ℎ, vice 

versa. Hence, locomotion rhythms are generated from this threshold-switch process.  

(B) Time-varying curvature 𝐾 of the model oscillator. The time axis is normalized with respect to 

oscillatory period (same for D, E, and F).  

(C) Phase portrait graph of the model oscillator. Proprioceptive threshold lines (grey dashed lines) 

intersect with the phase portrait graph at two switch points (red circles) at which the active 

moment of body wall muscles is switched.  

(D) Time-varying proprioceptive feedback 𝑃 received by the motor neurons. Horizontal lines 

denote the proprioceptive thresholds (grey dashed lines) that switch the active muscle moment at 

switch points (red circles, intersections between the proprioceptive feedback curve and the 

threshold lines).  

(E) Time-varying active muscle moment. Blue-dashed square wave denotes target moment (𝑀𝑡) 

that instantly switches directions at switch points. Black curve denotes the active muscle moment 

(𝑀𝑎) which follows the target moment in a delayed manner.  

(F) Time varying curvature in the worm’s head region from experiments (red, 5047 cycles using 

116 worms) and model (black). Model curvature matches experimental curvature with an MSE ≈ 

0.18. (Inset) Bar graph of 𝑈 (time period of bending toward the ventral or dorsal directions) and 𝐷 
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(time period of straightening toward a straight posture). Vertical bars are averages of fractions 

with respect to undulatory period 𝑇0 of 𝑈 and 𝑇 (*** indicates p<0.0005 using Student’s t test). 

RELXATION OSCILLATOR MODEL REPRODUCES RESPONSES TO TRANSIENT 

OPTOGENETIC INHIBITION 

We performed simulations of optogenetic inhibitions in our model. To model the transient muscle 

paralysis, the muscle moment is modulated by a bell-shaped function of time (Fig. S2.10; also 

see Methods) such that, upon inhibition, it decays toward zero and then recovers to its normal 

value, consistent with our behavioral observations (Fig. 2.2B). 

 From simulations with different sets of model parameters, we found that the model PRCs 

consistently exhibited the sawtooth shape found in experiments, though differing in height and 

timing of the downward transitions. In addition to the model parameters 𝜏𝑢, 𝑀0, and 𝜏𝑚 that had 

been explicitly estimated from free-moving experiments, we performed a two-round fitting 

procedure (see Methods) to determine the other parameters (including 𝑏, 𝑃𝑡ℎ, and parameters for 

describing the optogenetically induced muscle inhibitions (see Fig. S2.10) to best fit the freely 

moving dynamics and the experimental PRC, respectively, with a minimum mean squared error 

(MSE) (Figs. 2.3F and 2.4A; also see Methods). For the parameters 𝑏 and 𝑃𝑡ℎ, the optimization 

estimated their values to be 𝑏 = 0.046 𝑠 and 𝑃𝑡ℎ = 2.33, as shown on the phase portraits (grey 

dashed lines in Figs. 2.3C, 2.4B and 2.4D). 

 The threshold-switch mechanism model provides an explanation for the observed sawtooth-

shaped PRC. By comparing model phase portrait graphs around inhibitions occurring at different 

phases (Figs. 2.4B-E), we found that the phase shift depends on the relative position of the 

inhibition with respect to the switch points on the phase plane. (1) If the effect of the inhibition 

occurs before the system reaches its switch point (Fig. 2.4B), the system will recover by 

continuing the previous bend and the next switch in the muscle moment will be postponed, 
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thereby leading to a phase delay (Fig. 2.4C). (2) As the inhibition progressively approaches the 

switch point, one would expect that the next switch in the muscle moment will also be 

progressively postponed; this explains the increasing portions of the PRC. (3) If the inhibition 

coincides with the switch point (Fig. 2.4D), the muscle moment will be switched at this point and 

the system will recover by aborting the previous bend tendency, resulting in a small phase 

advance (Fig. 2.4E). This switching behavior explains the two sharp downward transitions in the 

PRC. 
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Figure 2.4. Simulations of optogenetic inhibitions in the relaxation oscillator model.  

(A) Phase response curves measured from experiments (blue, same as in Fig. 3L) and model 

(orange). Model PRC matches experimental PRC with an MSE ≈ 0.12.  

(B,C) Simulated dynamics of locomotion showing inhibition-induced phase delays in the model 
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oscillator. (B) Simulated phase portrait graphs around inhibition occurring at 𝜋/6 phase of cycle 

for perturbed (red) and unperturbed (black) dynamics. Green bar indicates the phase during 

which the inhibition occurs. (C) Same dynamics as in B, represented by time-varying curvatures. 

The time axis is normalized with respect to oscillatory period (same for E).  

(D,E) Simulated dynamics of locomotion showing inhibition-induced phase advances in the model 

oscillator. (D) Simulated phase portrait graphs around inhibition occurring at 𝜋/2 phase of cycle 

for perturbed (red) and unperturbed (black) dynamics. (E) Same dynamics as in D, represented 

by time-varying curvatures. 

RELAXATION OSCILLATOR MODEL PREDICTS PHASE RESPONSE CURVES FOR 

SINGLE-SIDE MUSCLE INHIBITION 

As a further test of the model, we asked what PRCs would be produced with only the ventral or 

dorsal head muscles being transiently inhibited. In the model, the muscle activity is represented 

using the scaled active moment of muscles. We conducted model simulations (see Methods) to 

predict the PRCs for transient inhibitions of muscles on the dorsal side (Fig. 2.5A, Upper) and 

ventral side (Fig. 2.5B, Upper), respectively. 

 To experimentally perform phase response analysis of single-side muscle inhibitions, we 

visually distinguished each worm’s dorsoventral orientation (via vulval location) and targeted light 

to either the ventral or dorsal side of the animal. Transiently illuminating (0.1 s duration) dorsal or 

ventral muscles in the head region of the transgenic worms (Pmyo-3::NpHR) induced a brief 

paralyzing effect when the segment was bending toward the illuminated side but did not induce a 

significant paralyzing effect when the segment was bending away from the illuminated side (Fig. 

S2.11). 

 Combining the experimental data from all phases of dorsal-side or ventral-side inhibition 

yielded the corresponding PRCs (Figs. 2.5A and 2.5B, respectively), from which we found that 
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both PRCs show a peak in the phase range during which the bending side is illuminated but 

shows no significant phase shift in the other phase range. The experimental observations are 

qualitatively consistent with model predictions. 

 

Figure 2.5. The model predicts phase response curves with respect to single-side muscle 

inhibitions.  

(A) (Upper) a schematic indicating a transient inhibition of body wall muscles of the head on the 

dorsal side. (Lower) the corresponding PRC measured from experiments (blue, 576 trials using 

242 worms) and model (orange).  

(B) (Upper) a schematic indicating a transient inhibition of body wall muscles of the head on the 

ventral side. (Lower) the corresponding PRC measured from experiments (blue, 373 trials using 

176 worms) and model (orange). For the two experiments, each point indicates a single 

illumination (0.1 s duration, 532 nm wavelength) of one worm. Experimental curves were obtained 

using a moving average along the x-axis with 0.16𝜋 in bin width. Filled area of each experimental 

curve represents 95% confidence interval with respect to each bin of data points. 
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 We found that the PRC of dorsal-side illumination shows a smaller paralytic response than 

that of ventral-side illumination. This discrepancy may be due to different degrees of paralysis 

achieved during ventral vs. dorsal illumination (Fig. S2.11), possibly due to differences in levels of 

opsin expression and/or membrane localization. We therefore modulated the parameter for 

describing degree of paralysis when simulating the PRC of the dorsal-side illumination to 

qualitatively account for this discrepancy (see Methods). 

OUR MODEL IS CONSISTENT WITH THE DEPENDENCE OF WAVE AMPLITUDE AND 

FREQUENCY ON EXTERNAL LOAD 

C. elegans can swim in water and crawl on moist surfaces, exhibiting different undulatory gaits 

characterized by different frequency, amplitude, and wavelength (Fig. 2.6A). Previous studies 

(Berri et al., 2009; Fang-Yen et al., 2010) have shown that increasing viscosity of the medium 

induces a continuous transition from a swimming gait to a crawling gait, characterized by a 

decreasing undulatory frequency (Fig. 2.6C) and an increasing curvature amplitude (Fig. 2.6D). 

We asked whether our model is consistent with this load-dependent gait adaptation. 

 We incorporated the effect of external viscosity into our model through the bending relaxation 

time constant 𝜏𝑢 (see Methods). We ran our model to determine the dependence of model output 

on viscosity with varying viscosity 𝜂. We found that model results for frequency and amplitude 

dependence on viscosity of the external medium are in quantitative agreement with previous 

experimental results (Fang-Yen et al., 2010) (Figs. 2.6C,D). 

 We sought to develop an intuitive understanding of how the model output changes with 

increasing viscosity. We recall that the model generates a proprioceptive feedback variable in the 

form 𝑃 = 𝐾 + 𝑏𝐾̇ (Fig. 2.3A), and that the active muscle moment in our model undergoes a 

change of sign upon the proprioceptive feedback reaching either of two thresholds, 𝑃𝑡ℎ and −𝑃𝑡ℎ. 

As the viscosity increases, one expects that a worm will perform a slower undulation due to the 



32 

 

increase in external load. That is, the term 𝑏𝐾̇ becomes smaller. To compensate for this effect, 

the worm needs to undulate with a larger curvature amplitude to maintain the same level of 

proprioceptive feedback. 

 Next, we asked how the PRC depends on external viscosity. Model simulations with three 

different viscosities produced PRCs with similar sawtooth shape but with sharp transitions 

delayed in phase as the external viscosity increases (Fig. 2.6F). We also measured PRCs from 

optogenetic inhibition experiments in solutions of three different viscosities (Fig. 2.6G). 

Comparing the relative locations of the transitions in PRCs between the model and the data, our 

prediction also quantitatively agrees with the experimental results. 

 These results further support the model’s description of how undulatory dynamics are 

modulated by the external environment.  
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Figure 2.6. Model reproduces C. elegans gait adaptation to external viscosity.  

(A) Dark field images and the corresponding undulatory frequencies and amplitudes of adult 

worms (left) swimming in NGM buffer of viscosity 1 mPa·s, (right) crawling on agar gel surface. 

The worm head is to the right in both images.  

(B) Phase portrait graphs measured from worm forward movements in fluids of viscosity 10 
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mPa·s (blue, 3528 cycles using 50 worms), 120 mPa·s (red, 5050 cycles using 116 worms), and 

5400 mPa·s (yellow, 1364 cycles using 70 worms).  

(C,D) The model predicts the dependence of undulatory frequency (C) and curvature amplitude 

(D) on external viscosity (black) that closely fit the corresponding experimental observations (red). 

(E) Phase portrait graphs predicted from the model in three different viscosities (same values as 

in B). Grey dashed lines indicate threshold lines for dorsoventral bending. The intersections (red 

circles 1, 2, 3) between the threshold line and phase portrait graphs are switch points for 

undulations in low, medium, high viscosity, respectively.  

(F) Theoretically predicted PRCs in fluids of the three different viscosities show that PRC will be 

shifted to the right as the viscosity of environment increases.  

(G) PRCs measured from optogenetic inhibition experiments in the three viscosities. 

Experimental PRCs were obtained using a moving average along the x-axis with 0.16𝜋 in bin 

width and filled areas are 95% confidence interval. The tendency of shift observed in 

experimental PRCs verified the model prediction. 

EVALUATION OF ALTERNATIVE OSCILLATOR MODELS 

Although our computational model agrees well with our experimental results, we asked whether 

other models could also explain our findings. We examined three alternative models based on 

well-known mathematical descriptions of oscillators (van der Pol, Rayleigh, and Stuart-Landau 

oscillators) and compared them with our original threshold-switch model and with our 

experimental data. 

 First, we tested the van der Pol oscillator, the first relaxation oscillator model (Van der Pol, 

1926) which has long been applied in modeling neuronal dynamics (FitzHugh, 1961; Nagumo et 

al., 1962). It is based on a second-order differential equation for a harmonic oscillator with a 
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nonlinear, displacement-dependent damping term (see Methods). By choosing a set of 

appropriate parameters, we found that the free-running waveform and phase plot of the van der 

Pol oscillator are highly asymmetric, but in an inverted manner (Fig. S2.12B,F), compared with 

the experimental observations (Figs. 2.1C,D). Transiently perturbing the system with the bell-

shaped modulatory function over all phases within a cycle produced a similar sawtooth-shaped 

PRC as that observed experimentally (Fig. S2.12N). However, the perturbed system was found 

to recover toward its limit cycle with a much slower rate than that of the experiments (Fig. 

S2.12J). Simulations of single-side muscle inhibitions to the system produced single-sawtooth-

shaped PRCs similar to those found experimentally (Fig. S2.13B,F). 

 Next, we examined the Rayleigh oscillator, another relaxation oscillator model which was 

originally proposed to describe self-sustained acoustic vibrations such as vibrating clarinet reeds 

(Rayleigh, 1896). It is based on a second-order differential equation with a nonlinear, velocity-

dependent damping term and it can be obtained from the van der Pol oscillator via a variable 

differentiation and substitution (see Methods). From its free-running dynamics, we observed that 

the system exhibits a highly asymmetric waveform and phase plot that are similar to the 

experimental observations (Fig. S2.12C,G). Additionally, the Rayleigh oscillator also produces 

similar sawtooth-shaped PRCs with respect to transient muscle inhibitions of both sides (Fig. 

S2.12O), dorsal side (Fig. S2.13C), and ventral side (Fig. S2.13G), respectively, and system’s 

recovery rate after the perturbation was shown to be similar to that of the experiments (Fig. 

S2.12K). 

 Finally, we considered the Stuart-Landau oscillator, a commonly used model for the analysis 

of neuronal synchrony (Acebrón et al., 2005). Its nonlinearity is based on a negative damping 

term which depends on the magnitude of the state variable defined in a complex domain (see 

Methods). The negative damping of the system constantly neutralizes the positive damping on a 
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limit cycle, making its free-running dynamics a harmonic oscillation which shows a sinusoidal 

waveform (Fig. S2.12D,H). Moreover, PRCs with respect to transient muscle inhibitions are 

constant with respect to phase (Fig. S2.12P), contrary to the experiments. 

 We compared the results of our models with the experimental results. In the van der Pol 

oscillator, the free-running waveform displays a different asymmetry (Fig. S2.12B,F) compared 

with the experimental observations and the perturbed system was shown to recover toward its 

limit cycle with a much slower rate than that of the experiments (Fig. S2.12J). The Rayleigh 

oscillator reproduces a free-running waveform similar to experimental ones (Fig. S2.12C,G) and 

its recovery rate toward limit cycle upon perturbation was close to that of the experiments (Fig. 

S2.12K). However, its PRC (Fig. S2.12O) showed weaker agreement with the experimental PRC 

compared with the threshold-switch model (Fig. S2.12M) or the van der Pol model (Fig. S2.12N). 

Of all the models tested, the threshold-switch model showed the least mean-square error with the 

PRC data (Fig. S2.12M-P). We conclude that of these models, our threshold-switch model 

produced the best overall agreement with experiments. 

 We also found that two important experimental findings, the nonsinusoidal free-moving 

dynamics and the sawtooth-shaped PRCs can be achieved in our original model, the van der Pol 

and Rayleigh oscillators, which are all relaxation oscillators, but not in the Stuart-Landau 

oscillator, which is not a relaxation oscillator. Taken together, these results are consistent with the 

idea that a relaxation oscillation mechanism may underlie C. elegans motor rhythm generation. 

DISCUSSION 

In this study, we used a combination of experimental and modeling approaches to probe the 

mechanisms underlying the C. elegans motor rhythm generation. 

 Our model can be compared to those previously described for C. elegans locomotion. 

Previous detailed models of C. elegans locomotion have employed a relatively large number of 
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free parameters (up to 40 (Boyle et al., 2012; Karbowski et al., 2008)). In our work, we sought to 

develop a compact phenomenological model to describe an overall mechanism of rhythm 

generation but not the detailed dynamics of specific circuit elements. To improve predictive 

power, we aimed to minimize the number of free parameters used in the model. Our model has 

only 5 free parameters, yet accurately describes a wide range of experimental findings including 

the nonsinusoidal dynamics of free locomotion, phase response curves to transient paralysis, and 

dependence of frequency and amplitude on external viscosity. 

 Our phase portrait analysis of worm’s free locomotory dynamics has described a new method 

for measuring the bending relaxation time scale 𝜏𝑢 and the muscle moment transition time scale 

𝜏𝑚 (see Methods for details), which may be compared with previous studies of worm 

biomechanics (Berri et al., 2009; Fang-Yen et al., 2010) and neurophysiology (Milligan et al., 

1997). Fang-Yen et al. (Fang-Yen et al., 2010) measured a linear relationship between the 

bending relaxation time scale and the external viscosity by deforming the worm body in 

Newtonian fluids with varied viscosities in the range 1 to 25 mPa·s. Through an extrapolation 

based on that linear relationship, the relaxation time scale in 17% dextran NGM fluid 

(approximately 120 mPa·s in viscosity) is estimated to be ≈ 282 𝑚𝑠, which is quite close to our 

measured result, 𝜏𝑢 ≈ 260 𝑚𝑠. Furthermore, our measurement of the muscle moment transition 

time scale (𝜏𝑚 ≈ 100) is consistent with previously measured value for muscle time scale 

(Milligan et al., 1997) that has also been widely adopted for other detailed models of nematode 

locomotion (Boyle et al., 2012; Bryden and Cohen, 2008; Butler et al., 2015; Chen et al., 2011; 

Denham et al., 2018; Izquierdo and Beer, 2018; Johnson et al., 2021; Karbowski et al., 2008; 

Olivares et al., 2021; Wen et al., 2012). 

 In our model the mechanism for generating rhythmic patterns can be characterized by a 

‘relaxation oscillation’ process which contains two alternating sub-processes on different time 
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scales: a long relaxation process during which the motor system varies toward an intended state 

due to its biomechanics under a constant active muscle moment, alternating with a rapid period 

during which the active muscle moment switches to an opposite state due to a proprioceptive 

thresholding mechanism. 

 The term ‘relaxation oscillation’, as first employed by van der Pol, describes a general form of 

self-sustained oscillatory system with intrinsic periodic relaxation/decay features (Van der Pol, 

1926). The Fitzhugh-Nagumo model (FitzHugh, 1961; Nagumo et al., 1962), a prototypical model 

of excitable neural systems, was originally derived by modifying the van der Pol relaxation 

oscillator equations. These and similar relaxation oscillators have been characterized in various 

dynamical systems in biology and neuroscience (Izhikevich, 2007). For example, the dynamics 

exhibited from the action potentials of barnacle muscles in their oscillatory modes were found to 

yield ‘push-pull’ relaxation oscillation characteristics (Morris and Lecar, 1981). The beating human 

heart was found to behave as a relaxation oscillator (VAN DER POL, 1940). Several studies of 

walking behavior in stick insects (Bässler, 1977; Cruse, 1976; Graham, 1985; Wendler, 1968) 

proposed that the control system for rhythmic step movements constitutes a relaxation oscillator 

in which the transitions between leg movements is determined by proprioceptive thresholds. 

 Key properties shared by these relaxation oscillators are that their oscillations greatly differ 

from sinusoidal oscillations and that they all consist of a certain feedback loop with a ‘discharging 

property’. They contain a switch component that charges an integrating component until it 

reaches a threshold, then discharges it again (Nave, 1995), then repeats. Many relaxation 

oscillators, including the van der Pol and Rayleigh models, exhibit sawtooth-shaped phase 

response curves (VAN DER POL, 1940). As shown in our experimental and model results (Fig. 

S2.12), all the above properties have been revealed in the dynamics of C. elegans locomotive 

behavior, consistent with the idea that the worm’s rhythmic locomotion also results from a type of 
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relaxation oscillator. 

 In our computational model, a proprioceptive component sensing the organism’s changes in 

posture is required to generate adaptive locomotory rhythms. What elements in the motor system 

could be providing this feedback? Previous studies have suggested that head and body motor 

neurons, including the SMDD head motor neurons and the B-type motor neurons, have 

proprioceptive capabilities (Wen et al., 2012; Yeon et al., 2018) and may also be involved in 

locomotory rhythm generation (Fouad et al., 2018; Gao et al., 2018; Kaplan et al., 2020; Xu et al., 

2018). This possibility is consistent with an earlier hypothesis that the long undifferentiated 

processes of these cholinergic neurons may function as proprioceptive sensors (White et al., 

1986). In particular, recent findings (Yeon et al., 2018) have revealed that SMDD neurons directly 

sense head muscle stretch and regulate muscle contractions during oscillatory head bending 

movements. 

 In our model, the proprioceptive feedback variable depends on both the curvature and the 

rate of change of curvature. Many mechanoreceptors are sensitive primarily to time derivatives of 

mechanical strain rather than strain itself; for example, the C. elegans touch receptor cells exhibit 

such a dependence (Eastwood et al., 2015; O’Hagan et al., 2005). The ability of mechanosensors 

to sense the rate of change in C. elegans curvature has been proposed in an earlier study (Butler 

et al., 2015) in which it was hypothesized that the B-type motor neurons might function as a 

proprioceptive component in this manner. Mechanosensors encoding a simultaneous 

combination of deformation and velocity have been observed in mammalian systems including 

rapidly-adapting (RA) and intermediate-adapting (IA) sensors in the rat dorsal root ganglia 

(Rugiero et al., 2010). Proprioceptive feedback that involves a linear combination of muscle 

length and velocity was also suggested by a study of C. elegans muscle dynamics during 

swimming, crawling, and intermediate forms of locomotion (Butler et al., 2015). In our 
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phenomenological model, the motor neuron constituent may represent a collection of neurons 

involved in motor rhythm generation. Therefore, the proprioceptive function posited by our model 

might also arise as a collective behavior of curvature-sensing and curvature-rate-sensing 

neurons. 

 Further identification of the neuronal substrates for proprioceptive feedback may be possible 

through physiological studies of neuron and muscle activity using Ca2+ or voltage indicators. 

Studies of the effect of targeted lesions and genetic mutations on the phase response curves will 

also help elucidate roles of specific neuromuscular components within locomotor rhythm 

generation. 

 In summary, our work describes the dynamics of the C. elegans locomotor system as a 

relaxation oscillation mechanism. Our model of rhythm generation mechanism followed from a 

quantitative characterization of free behavior and response to external disturbance, information 

closely linked to the structure of the animal’s motor system (Gutkin et al., 2005; Nadim et al., 

2012; Schultheiss et al., 2011; Smeal et al., 2010). Our findings represent an important step 

toward an integrative understanding of how neural and muscle activity, sensory feedback control, 

and biomechanical constraints generate locomotion. 

METHODS 

Table 2.1. Key resources table for Chapter 2 

Reagent 
type 
(species) 
or 
resource 

Designation Source 
or 
reference 

Identifiers Additional 
information 

Strain, 
strain 
background 
(E. coli) 

OP50 CGC Fang-Yen Lab Strain 
Collection: OP50 
RRID:WB-
STRAIN:WBStrain00041971 

OP50 

Strain, YX148 Fouad et Fang-Yen Lab Strain qhIs1[Pmyo-
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strain 
background 
(C. 
elegans) 

al., 2018 Collection: YX148 3::NpHR::eCFP; 
lin-15(+)]; 
qhIs4[Pacr-
2::wCherry] 

Strain, 
strain 
background 
(C. 
elegans) 

YX119 Fouad et 
al., 2018 

Fang-Yen Lab Strain 
Collection: YX119 

qhIs1[Pmyo-
3::NpHR::eCFP; 
lin-15(+)]; unc-
49(e407) 

Strain, 
strain 
background 
(C. 
elegans) 

YX205 Leifer et 
al., 2011 

Fang-Yen Lab Strain 
Collection: YX205 

hpIs178[Punc-
17::NpHR::eCFP
; lin-15(+)] 

Strain, 
strain 
background 
(C. 
elegans) 

WEN001 Fouad et 
al., 2018 

Fang-Yen Lab Strain 
Collection: WEN001 

wenIs001[Pacr-
5::Arch::mCherry
; lin-15(+)] 

 

WORM STRAINS AND CULTIVATION 

All worms used in this study were cultivated on NGM plates with Escherichia coli strain OP50 at 

20°C using standard methods (Sulston and Hodgkin, 1988). Strains used and the procedures for 

optogenetic experiments are described in the Key resources table for Chapter 2. All experiments 

were performed with young adult (< 1 day) hermaphrodites synchronized by hypochlorite 

bleaching. 

 For optogenetic experiments, worms were cultivated in darkness on plates with OP50 

containing the cofactor all-trans retinal (ATR). For control experiments and free-moving 

experiments, worms were cultivated on regular OP50 NGM plates without ATR. To make OP50-

ATR plates, we added 2 µL of a 100 mM solution of ATR in ethanol to an overnight culture of 250 

µL OP50 in LB medium and used this mixture to seed 6 cm NGM plates. 

LOCOMOTION ANALYSIS 

To analyze worm locomotion in viscous fluids, we placed worms in dextran solutions in chambers 
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formed by a glass slide and a coverslip separated by 125-µm-thick polyester shims (McMaster-

Carr 9513K42). For viscosity-dependence experiments, we used 5%, 17%, and 35% (by mass) 

solutions of dextran (Sigma-Aldrich D5376, average molecular weight 1,500,000-2,800,000) in 

NGMB. These solutions were measured to have viscosities of 10, 120, and 5400 mPa·s (Fang-

Yen et al., 2010), respectively. We used a 17% dextran solution for all other experiments. NGMB 

consists of the same components as NGM media (Stiernagle, 2006), but without agar, peptone, 

or cholesterol. 

 We recorded image sequences using a custom-built optogenetic targeting system based on a 

Leica DMI4000B microscope under 10X magnification with dark field illumination provided by red 

LEDs. Worm images were recorded at 40 Hz with a sCMOS camera (Photometrics optiMOS). We 

used custom-written C++ software (Fouad et al., 2017) to perform real-time segmentation of the 

worm during image acquisition. The worm was identified in each image by its boundary and 

centerline calculated from a binary image. Anterior-posterior orientation was noted visually during 

the recording. Segmentation information, including coordinates of the worm boundary and 

centerline, was saved to disk along with the corresponding image sequences. 

 Post-acquisition image analysis was performed using a custom MATLAB (Mathworks) similar 

to previous reports (Fouad et al., 2017). The worm centerline of each image was smoothed using 

a cubic spline fit. We calculated curvature 𝜅 as the dot product between the unit normal vector to 

the centerline and derivative of the unit tangent vector to the centerline with respect to the body 

coordinate. Dimensionless curvature 𝐾 was calculated as the product of 𝜅 and the worm body 

length 𝐿 represented by length of the centerline. Since the segmentation was relatively noisy at 

the tips of the worm, we excluded curvature in the anterior and posterior 5% of the body length. 

The worm’s direction of motion was identified by calculating the gradients in the curvature over 

time and body coordinate, and image sequences in which the worm performed consistent forward 
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movement (lasting at least 4 s) were selected for analysis. The anterior curvature 𝐾(𝑡) was 

defined as the average of the dimensionless curvature over body coordinate 0.1-0.3; this range 

avoided high frequency movements of the anterior tip of the animal. 

 To quantify oscillatory dynamics during forward locomotion, we identified undulatory cycles 

from the time sequence of anterior curvature in each worm. Local extrema along each sequence 

were identified and portions between consecutive local maxima were defined as individual cycles. 

To minimize the effects of changes in the worm’s frequency, we excluded cycles whose period 

deviated by more than 20% from the average period of all worms’ undulations in each 

experimental session. 

 For the ease of computing average dynamics, we converted individual cycles from a time-

dependent to a phase-dependent curvature by uniformly rescaling each cycle to a phase range of 

2𝜋. The averaged curvature within one cycle was then computed by averaging all individual 

cycles in the phase domain: 〈𝐾(𝜙)〉 = ∑ 𝐾𝑖(𝜙)𝑁
𝑖=1 /𝑁. Similarly, the averaged phase derivative of 

curvature within one cycle was calculated as 〈𝑑𝐾/𝑑𝜙〉 = ∑ (𝑑𝐾𝑖/𝑑𝜙)𝑁
𝑖=1 /𝑁. 

STABILITY OF THE WORM’S HEAD OSCILLATION 

To examine the stability of the worm’s head oscillation during forward locomotion, we analyzed 

head oscillations of worms that were optogenetically perturbed with 0.1 s muscle inhibitions and 

estimated their recovery dynamics after being deviated from the normal oscillation due to the 

perturbation. 

 To illustrate the oscillation dynamics, we use a two-dimensional variable, i.e. 𝒙 = (𝛫, 𝜉𝛫̇) in 

the unit of curvature where 𝜉 = 0.135 𝑠 is a scaling factor. In Fig. S2.3 we depicted the closed 

trajectory (black) in the plane spanned by the variables 𝐾 and 𝜉𝐾̇ for the head oscillation of 

unperturbed moving worms (this coordinate plane is in fact a linearly scaled version of the phase 
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plane spanned by the variables 𝐾 and 𝐾̇), which we call as the normal cycle of the worm’s head 

oscillation. 

 Next, we defined an amplitude variable 𝑑 that represents the normalized deviation to the 

normal cycle. If the oscillator is stable, the closed orbit for the unperturbed dynamics is usually 

called the stable limit cycle. Here, we stick to the notion of normal cycle instead of using ‘limit 

cycle’ to avoid any confusion on the stability of the worm’s head oscillation. For any phase state 

of an individual oscillation, the normalized deviation to the normal cycle is defined as 𝑑(𝜙) =

(𝐷(𝜙) − 𝐷𝐶(𝜙))/𝐷𝐶(𝜙). Here, 𝐷(𝜙) is distance to the center of oscillation on the phase plane, 

which is set to the origin, such that 𝐷(𝜙) = √𝐾(𝜙)2 + (𝜉𝐾̇(𝜙))
2
 where 𝜙 denotes the phase value 

of the current state estimated by the four-quadrant inverse tangent of the variable pair (𝐾, 𝜉𝐾̇). In 

this expression 𝐷𝐶(𝜙) denotes the distance to the center of oscillation that is evaluated exactly on 

the normal cycle at phase 𝜙. 

 Using the deviation to the normal cycle to describe the amplitude of the worm’s head 

oscillation, we collected the amplitude dynamics over time for all periods of the worm’s head 

oscillations during which no illumination pulse occurs, that is, all periods of locomotion between 

two consecutive illumination pulses. We grouped the amplitude dynamics into bins according to 

their initial amplitudes and then calculated the collective amplitude dynamics for each bin. As 

shown in Fig. S2.2, the collective amplitude variable 𝑑 converges to zero after roughly 0.5 s 

regardless of the initial amplitude. This result indicates that the worm’s head oscillation returns to 

its normal oscillation after being perturbed and that the normal cycle may represent a stable limit 

cycle for the oscillation. 

PHASE ISOCHRON MAP AND VECTOR FIELD FOR THE WORM’S HEAD OSCILLATION 

On the normal cycle we define the phase of the oscillation as 𝜙𝐶(𝑡) = 𝜔0 · 𝑡𝑚𝑜𝑑𝑇0
, where 𝜔0 =
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2𝜋/𝑇0 is the angular frequency of normal oscillation and we determined the initial phase (𝜙𝐶 = 0) 

to be when 𝐾 reaches local maximum (or 𝒙 = (𝐾𝑚𝑎𝑥 , 0)) and hence 𝜙𝐶 = 𝜋 to be when 𝐾 reaches 

local minimum (or 𝒙 = (𝐾𝑚𝑖𝑛, 0)). In this way, we parameterized the normal cycle by defining a 

bijective map between phases and state points Φ(𝒙𝐶) = 𝜙𝐶. 

 The map Φ(𝒙) = 𝜙 has been well defined for all the state points on the normal cycle 𝐶. We 

next estimate the phases for points off the normal cycle. By definition (Izhikevich, 2007), if 𝒙0 is a 

point on the normal cycle and 𝒚0 is a point off the normal cycle, then 𝒚0 will have the same phase 

as 𝒙0 if the trajectory starting at the initial point 𝒚0 off the normal cycle converges to the trajectory 

starting at the initial point 𝒙0 on the normal cycle as time goes to infinity. Here, we define the set 

of all state points off the normal cycle having the same phase as a point 𝒙0 on the normal cycle 

as the isochron (Winfree, 2001) for phase 𝜙0 = Φ(𝒙0). 

 In our analysis, it was not possible to define an isochron according to the theoretical definition 

since data were always recorded in a finite time period during experiments. We used an 

alternative way to estimate all isochrons on the phase plane for the worm’s head oscillation. For 

each individual trial of illumination, we observed that, due to the optogenetic inhibition, the 

variable 𝐾̇ quickly decayed toward zero value immediately after the illumination and then 

recovered after approximately 0.3 s as the oscillation converged to a normal oscillation. 

Therefore, by finding the local minimal of 𝐾̇ immediately after each illumination pulse, we located 

the point at which the paralyzing effect is just removed and after which the oscillation starts a free 

resumption to normal oscillation. We call this point the “notch point” 𝒙𝑁 as it can be clearly seen 

from the phase plot (as shown in Figs. 2.2E, 2.2H, and 2.2K). After the notch point 𝒙𝑁, the 

oscillation will proceed to its next phase states 𝒙(𝜙 = 2𝜋) and 𝒙(𝜙 = 𝜋) (or vice-versa), both of 

which can be easily identified through peak finding from the curvature dynamics 𝐾. Hence, we 

obtained two sub-trajectories from the oscillation: one 𝒙𝑁 → 𝒙(𝜙 = 2𝜋), and the other 𝒙𝑁 → 𝒙(𝜙 =
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𝜋). Next to determining the timing of the notch point 𝑡(𝒙𝑁), we determined the phase of the notch 

point in the following steps: (1) we computed the phase value of the state at which the illumination 

occurs, 𝜙(𝒙𝑖𝑙𝑙𝑢𝑚), using the method described in the next subsection; (2) then we computed the 

phase of the state on the normal cycle at the timing of the notch point 𝑡(𝒙𝑁) as if the perturbation 

had not been applied, which is 𝜙(𝒙𝑁
𝐶 ) = (𝜙(𝒙𝑖𝑙𝑙𝑢𝑚) + ω0(𝑡(𝒙𝑁) − 𝑡(𝒙𝑁)))

𝑚𝑜𝑑 2𝜋 
; (3) we calculated 

the induced phase shift 𝑃𝑅𝐶(𝑡𝑖𝑙𝑙𝑢𝑚) and the phase of the notch point is 𝜙(𝒙𝑁) = 𝜙(𝒙𝑁
𝐶 ) −

𝑃𝑅𝐶(𝑡𝑖𝑙𝑙𝑢𝑚). After obtaining the sub-trajectories 𝒙𝑁 → 𝒙(𝜙 = 2𝜋) and 𝒙𝑁 → 𝒙(𝜙 = 𝜋) and 

calculating the phase of 𝒙𝑁, we then estimated the phase values for all the points within each of 

the two sub-trajectories through linear interpolation. 

 Following the above steps, we calculated the phase values for all the state points on the 

phase plane that have been recorded from the optogenetic experiments. We then applied a 2-D 

moving average (using the angular statistics method) for the obtained phase values over the 

phase plane to smooth out the isochron map. Finally, we used a linear 2-D interpolation to obtain 

a phase isochron map with a finer resolution as shown in Fig. S2.3. 

 To compute the vector field of the worm’s head oscillation, we collected all the sub-

trajectories 𝒙𝑁 → 𝒙(𝜙 = 2𝜋) and 𝒙𝑁 → 𝒙(𝜙 = 𝜋) that are defined above and took derivative of the 

trajectories with respect to time. Thus, by collecting all the phase states (𝐾, 𝑐𝐾̇) and their 

corresponding time derivatives (𝑑𝐾/𝑑𝑡, 𝑑(𝑐𝐾̇)/𝑑𝑡) that describe the tangent vectors of 

trajectories, we generated the raw form of vector field for the worm’s head oscillation. Again, we 

applied a 2-D moving average for the raw outcome over the phase plane to smooth out the vector 

field. We used a linear 2-D interpolation to obtain a vector field with an appropriate number of 

quivers to be displayed (Fig. S2.3). 
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PHASE RESPONSE ANALYSIS 

To generate phase response curves (PRCs) from optogenetic inhibition experiments, each trial’s 

illumination phase 𝜙, as well as the induced phase shift 𝐹, were calculated. To calculate the two 

variables, the animal’s phase of oscillation was estimated based on timings of local extrema 

identified from the time-varying curvature profiles via a peak finding method. Specifically, (i) the 

occurrence of illumination of the trial was set to 𝑡 = 𝑇𝑖𝑙𝑙𝑢𝑚; 𝑡 = 0 was set at the beginning of each 

experiment. (ii) Around the illumination, timings of the two local maxima of curvature immediately 

before and after were identified as the two zero-phase points of the oscillation before and after 

the illumination, respectively. Here, the timings are denoted as 𝑇𝑍−2, 𝑇𝑍−1, 𝑇𝑍+1, and 𝑇𝑍+2, in the 

ascending order of time. (iii) Similarly, timings of the two local minima of curvature immediately 

before and after the illumination were identified as the two half-cycle-phase points before and 

after the illumination, respectively. Here, the timings are denoted as 𝑇𝐻−2, 𝑇𝐻−1, 𝑇𝐻+1, and 𝑇𝐻+2, 

in the ascending order of time. (iv) With these measurements, cycle period 𝑇0 was computed as 

𝑇0 = (𝑇𝑍+2 − 𝑇𝑍+1 + 𝑇𝑍−1 − 𝑇𝑍−2 + 𝑇𝐻+2 − 𝑇𝐻+1 + 𝑇𝐻−1 − 𝑇𝐻−2)/4, so the angular frequency of 

undulation 𝜔0 = 2𝜋/𝑇0 (𝑇0 was computed as the average of differences of adjacent local 

maxima/minima before and after illumination; multiple cycles were used here to reduce noise). In 

addition, the illumination phase 𝜙 of each individual trial was computed as 𝜙𝑢 =

𝜔0(𝑇𝑖𝑙𝑙𝑢𝑚 − 𝑇𝑍−1)𝑚𝑜𝑑 𝑇0
, 𝜙𝑙 = 𝜔0(𝑇𝑖𝑙𝑙𝑢𝑚 − 𝑇𝐻−1 + 𝑇0/2)𝑚𝑜𝑑 𝑇0

, and the corresponding phase shift 𝐹 

was computed as 𝐹𝑢 = 𝜔0(𝑇𝑍+1 − 𝑇𝑍−1)𝑚𝑜𝑑 𝑇0
− 𝜋, 𝐹𝑙 = 𝜔0(𝑇𝐻+1 − 𝑇𝐻−1 + 𝑇0/2)𝑚𝑜𝑑 𝑇0

− 𝜋. (Here, 

phase of illumination and the corresponding phase shift were computed twice using zero 

(subscripted with 𝑢) and half-cycle (subscripted with 𝑙) phase points as references, respectively.) 

 We generated 2-D scatter plots for all trials with illumination phase as x coordinate and the 

corresponding phase shift as y coordinate. To visualize the distribution of the scatter points we 

generated bivariate histogram plots by grouping the data points into 2-D bins with 25 bins on both 

dimensions covering the range [0,2𝜋] for x and range [−𝜋, 𝜋] for y. To indicate average tendency 
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of phase shift depending on phase of illumination, we calculated a mean-curve representation of 

PRCs via a moving average operation. In this process, each mean was calculated over a sliding 

window of width 0.16𝜋 along the direction of 𝜙 from 0 to 2𝜋. The 95% confidence interval relative 

to each window of data points was also computed and an integral number of them were displayed 

as filled area around the PRC. Through the computation, all statistical calculations followed the 

rules of directional statistics (Fisher et al., 1993) since 𝜙 and 𝐹 are circular variables defined in 

radians. 

PHASE RESPONSE CURVES FROM PERTURBATIONS OF OTHER BODY REGIONS 

We asked how phase responses for the other regions of the body would compare to that of the 

anterior region. We conducted optogenetic experiments that inhibited Pmyo-3::NpHR transgenic 

worms by transiently illuminating 0.1-0.3 (anterior), 0.4-0.6 (middle), and 0.6-0.8 (posterior) of the 

body length, respectively. We found that the amplitude of the sawtooth feature of PRC tends to 

decrease as the perturbation occurs further from the head (Fig. S2.6A,E,I). We also noticed that, 

for the same perturbed region, the PRC shape remains unaffected regardless of the region at 

which the dynamics were analyzed (see Fig. S2.6A-C, D-F, G-I, respectively), suggesting that 

posterior regions of a freely moving worm follow their anterior neighbors with a constant phase 

offset. Taken together, these results suggest that a main rhythm generator may operate near the 

head of the worm to produce primary oscillations during forward locomotion. The sawtooth-shape 

feature of the PRC becomes stronger if the perturbation hits closer to the rhythm generator (Fig. 

S2.6A) or becomes weaker if the perturbation indirectly affects it (Fig. S2.6E,I) 

THE RELAXATION OSCILLATOR MODEL FOR LOCOMOTOR WAVE GENERATION 

We first developed a relaxation oscillator model to simulate the rhythm generation during C. 

elegans forward locomotion. In this model, we incorporated a novel neuromuscular mechanism 

with a previously described biomechanical framework (Fang-Yen et al., 2010). Here, we only 
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simulated the bending rhythms generated from the head region; the wave propagation dynamic is 

out of the scope of our study. Our phenomenological model does not contain detailed activities of 

individual neurons but focus on describing key neuromuscular mechanisms and their 

contributions to the rhythm generation. 

 To produce model variables that can be directly compared with experimental observations of 

moving animals, a biomechanical framework was first developed to describe worm’s behavioral 

dynamics in its external environments. Following previous derivations for C. elegans 

biomechanics (Fang-Yen et al., 2010), the relationship between animal behavioral outputs and 

the active muscle moments can be described as follows: 

𝐶𝑁

𝜕𝑦

𝜕𝑡
+ 𝑎

𝜕2𝜅

𝜕𝑠2
+ 𝑎𝑣

𝜕

𝜕𝑡
(

𝜕2𝜅

𝜕𝑠2
) = 𝑚𝑎 . [𝐒𝟐. 𝟏] 

 In Eqn. S2.1, the first term indicates the external viscous force that is transverse to the body 

segment where 𝐶𝑁 is the coefficient of viscous drag to the transverse movement and 𝑦 denotes 

the lateral displacement of body segment; the second term indicates the internal elastic force 

where 𝑎 is the bending modulus of the worm body; the third term indicates the internal viscous 

force where 𝑎𝑣 is the coefficient of the body internal viscosity. On the right side of Eqn. S2.1 is 

the active muscle moment 𝑚𝑎. 

 Taking the second partial derivative with respect to body coordinate 𝑠 on both sides of Eqn. 

S2.1 and, using the linear relation under the small-amplitude approximation, 𝜅 ≈ 𝑦𝑠𝑠 , we arrive at: 

𝐶𝑁

𝜕𝜅

𝜕𝑡
+ 𝑎

𝜕4𝜅

𝜕𝑠4
+ 𝑎𝑣

𝜕

𝜕𝑡
(

𝜕4𝜅

𝜕𝑠4
) =

𝜕2𝑚𝑎

𝜕𝑠2
. [𝐒𝟐. 𝟐] 

 Under the assumptions of small-amplitude undulations and a fixed wavelength 𝜆 down the 

worm body, 𝜅 can be considered as a travelling sinusoidal wave with a small deviation, 𝜅(𝑠, 𝑡) =
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𝜅0 sin(2𝜋𝑠/𝜆 − 𝜔𝑡) + 𝛿, which leads to an approximation, 𝜅𝑠𝑠𝑠𝑠 ≈ (2𝜋/𝜆)4𝜅. Plugging this 

approximation into Eqn. S2.2 while keeping 𝑠 fixed, after some rearrangement, one gets: 

𝜅 +
𝐶𝑁 (

𝜆
2𝜋)

4

+ 𝑎𝑣

𝑎
𝜅̇ =

𝜆4

(2𝜋)4𝑎

𝜕2𝑚𝑎

𝜕𝑠2
. [𝐒𝟐. 𝟑] 

In terms of the dimensionless curvature 𝐾 = 𝜅 · 𝐿 and dimensionless muscle moment 

𝑀𝑎 =
𝜆4𝐿

(2𝜋)4𝑎

𝜕2𝑚𝑎

𝜕𝑠2
, [𝐒𝟐. 𝟒] 

we can rewrite Eqn. S2.3 as: 

𝐾 + 𝜏𝑢𝐾̇ = 𝑀𝑎 , [𝐒𝟐. 𝟓] 

where 

𝜏𝑢 =
𝐶𝑁 (

𝜆
2𝜋)

4

+ 𝑎𝑣

𝑎
, [𝐒𝟐. 𝟔]

 

and we note that Eqns. S2.5 and S2.6 yield Eqn. 2.1. In Eqn. S2.6, both the wavelength 𝜆 and 

the normal viscous drag coefficient 𝐶𝑁 vary with the fluid viscosity 𝜂 (Berri et al., 2009; Fang-Yen 

et al., 2010). 

 The above biomechanical framework in our model treats the worm’s body segment as a 

viscoelastic rod and describes how the body segment bends under the forces provided by the 

active muscle moment. However, the simulated oscillation in 𝐾 comes from the rhythmicity of the 

active muscle moment which originates from the hypothesized neuromuscular mechanism 

described by the following relaxation-oscillation process: 

i. Proprioceptive feedback is sensed as a linear combination of the current curvature value 
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and the current rate of change of curvature, 𝑃 = 𝐾 + 𝑏𝐾̇ (black curve in Fig. 2.3D). 

ii. During movement of bending, this proprioceptive feedback is constantly compared with 

two threshold values 𝑃𝑡ℎ and −𝑃𝑡ℎ (grey dashed bars in Fig. 2.3D). 

iii. Once the feedback reaches either of the thresholds (the switch points as indicated by red 

circles in Fig. 2.3D), a switch command is initiated (blue square wave in Fig. 2.3E). 

iv. The switch command triggers the active muscle moment to change toward the opposite 

saturation value (black curve in Fig. 2.3E).  

 To simulate the switch-triggered muscle transition we used a modified logistic function: 

𝑀𝑎(𝑡) = ±𝑀0 ∙ tanh(𝑡/2𝜏𝑚). Here, the plus sign indicates the dorsal-to-ventral muscle moment 

transition while the minus sign indicates the opposite direction. 

 To initiate the oscillation in our model we set the system to bend toward the ventral side by 

setting 𝑀𝑎|𝑡=0 = 𝑀0 and 𝐾|𝑡=0 = 0. During forward locomotion, the active muscle moment 

oscillates by undergoing a relaxation oscillation process: a relaxation subperiod during which 𝑀𝑎 

stays at a saturated bending state (𝑀0 for ventral bending, −𝑀0 for dorsal bending), alternating 

between a shorter subperiod during which 𝑀𝑎 quickly transits toward the opposite state due to 

effects described in iii and iv. The bending curvature 𝐾(𝑡) which is driven by 𝑀𝑎 in an exponential 

decaying manner (Eqn. S2.5) follows the rhythmic activity of 𝑀𝑎, thereby also exhibiting an 

oscillatory dynamic (Fig. 2.3B). 

 This relaxation oscillator model reproduces two key features of free locomotion that we 

observed from experiments. First, freely moving worms exhibit nonsinusoidal curvature waveform 

with an intrinsic asymmetry: bending toward the ventral or dorsal directions occurs slower than 

straightening toward a straight posture during each locomotory cycle (Fig. 2.3F). Second, 

dynamic of the active muscle moment shows a trapezoidal waveform during forward locomotion 

(Fig. 2.1D Inset and Fig. 2.3E). These results are independent of external conditions but reflect 
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intrinsic properties of the neuromuscular mechanisms underlying locomotion rhythm generation. 

 Note that parameters 𝑀0, 𝜏𝑢, and 𝜏𝑚 were estimated from data of free locomotion using 

phase portrait techniques described the following subsection. Parameters 𝑏 and 𝑃𝑡ℎ were yet 

degenerate in this model of free locomotion. Here, we temporarily set 𝑏 = 0 and then set 𝑃𝑡ℎ such 

that the oscillatory period predicted by model matched the average period measured from 

experiments with a minimum squared error: 

𝑃𝑡ℎ = argmin
𝑃𝑡ℎ>0

 (𝑇𝑚𝑜𝑑𝑒𝑙(𝑃𝑡ℎ) − 𝑇𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡)
2

. [𝐒𝟐. 𝟕] 

The nondegeneracy of 𝑏 and 𝑃𝑡ℎ was determined by fitting the model to the experimental PRC as 

described in the later subsection so that all the parameters for the model are provided as 𝑀0 =

8.45, 𝜏𝑢 = 260 𝑚𝑠, 𝜏𝑚 = 100 𝑚𝑠, 𝑏 = 46 𝑚𝑠, and 𝑃𝑡ℎ = 2.33. 

MEASURING BENDING RELAXATION TIME SCALE AND AMPLITUDE OF ACTIVE MUSCLE 

MOMENT 

To estimate these two parameters, we applied a heuristic method that uses the shape properties 

of C. elegans free-running phase plot (Fig. 2.1D). From the curve in the figure, we noticed two 

‘flat’ portions symmetrically distributed at quadrant I and III on the phase plane. Recalling Eqn. 

2.1 (or Eqn. S2.5): 𝐾 + 𝜏𝑢 ⋅ 𝐾̇ = 𝑀𝑎(𝑡), the two flat regions indicate that the scaled active muscle 

moment, 𝑀𝑎(𝑡), is nearly constant during the corresponding time bouts. 

 We then computed the linear correlation between variables 𝐾 and 𝐾̇ to identify the two ‘flat’ 

regions and, through linear fits, obtained two linear relations respectively: 〈𝐾〉 + 𝜏1 ⋅ 〈𝐾̇〉 = 𝑀1 

(region 1) and 〈𝐾〉 + 𝜏2 ⋅ 〈𝐾̇〉 = 𝑀2 (region 2). Thus, the bending relaxation time scale 𝜏𝑢 and the 

amplitude of the scaled active muscle moment are estimated as 𝜏𝑢̂ = (𝜏1 + 𝜏2)/2 and 𝑀0̂ =

(|𝑀1| + |𝑀2|)/2, respectively. 
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 The above method used the phase plot measured from locomotion of worms swimming in a 

17% dextran solution (120 mPa·s viscosity) as an example. However, it is also valid for 

estimating parameters of locomotion in other viscosities. 

MEASURING ACTIVE MOMENT TRANSITION TIME SCALE 

With 𝜏𝑢 (estimated from the above method), 〈𝐾〉 and 〈𝐾̇〉 (measured from locomotion) plugged to 

the left side of Eqn. 2.1, we were able to compute the waveform of the scaled active muscle 

moment 𝑀𝑎(𝑡) on the right side of Eqn. 2.1. As expected and shown in Fig. 2.1D Inset, the curve 

of 𝑀𝑎(𝑡) is roughly centrally symmetric around point (𝑇0/2, 0) on the plane, with two plateau 

portions indicating two saturated states for dorsal and ventral muscle contractions, respectively. 

 Between the two plateau portions represents a period during which the active muscle 

moment is undergoing a ventral-to-dorsal (or vice-versa) transition. We used a modified logistic 

function to model the ventral-to-dorsal muscle moment transition (substituting 𝑡 with −𝑡 for 

transition in the other direction): 

𝑀𝑎(𝑡) = 𝑀0 ∙ tanh (
𝑡

𝜏𝑚
) . [𝐒𝟐. 𝟖] 

To estimate 𝜏𝑚, the exponential time constant for the transition of active muscle moment, we took 

the time derivative of Eqn. S2.8 and took the absolute value of the resultant: 

|
𝑑𝑀𝑎

𝑑𝑡
| =

𝑀0

𝜏𝑚
⋅

exp(2𝑡/𝜏𝑚)

(1 + exp(2𝑡/𝜏𝑚))2
. [𝐒𝟐. 𝟗] 

 We notice that when 𝑡 = 0, the maximum of |𝑑𝑀𝑎/𝑑𝑡| is achieved and the value is 𝑀0/𝜏𝑚. On 

the other hand, the maximum of |𝑑𝑀𝑎/𝑑𝑡| can be obtained from the experimental observation by 

simply finding the peak of |𝑑𝑀𝑎/𝑑𝑡| curve where 𝑀𝑎 = 〈𝐾(𝑡)〉 + 𝜏𝑢̂ ⋅ 〈𝑑𝐾(𝑡)/𝑑𝑡〉. Thus, 𝜏𝑚 can be 

estimated as: 
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𝜏𝑚 = 𝑀0̂ ⋅ |
𝑑𝑀𝑎

𝑑𝑡
|

𝑚𝑎𝑥

−1

. [𝐒𝟐. 𝟏𝟎] 

PARAMETER ESTIMATION 

For our original threshold-switch model, parameters 𝜏𝑢, 𝜏𝑚, and 𝑀0 were estimated from free 

locomotion experiments as described above. These three parameters nearly fully determine the 

biomechanical framework of C. elegans bending movements (governed by Eqns. S2.5 and S2.8). 

On the other hand, parameters 𝑏 and 𝑃𝑡ℎ describe the proprioceptive feedback and the threshold-

switch features in our model. Specifically, they characterize two threshold lines, 𝐾 + 𝑏𝐾̇ = ±𝑃𝑡ℎ 

(as shown in Fig. 2.3C). The two switch points—defined by the intersection between the phase 

trajectory and the threshold lines on the phase plane—determine the timing of switches for the 

active muscle moment (see Figs. 2.3C-E). We noted that the model behavioral output of free 

locomotion is degenerate with respect to these two parameters; the same outcome would be 

produced if the threshold lines cross the same pair of switch points. To first determine the free-

moving dynamic as well as the switch points, we temporarily set 𝑏 = 0 and then set 𝑃𝑡ℎ such that 

the oscillatory period defined by model matched the average period measured from the 

experiments. 

 To obtain the nondegeneracy of 𝑃𝑡ℎ and 𝑏, we fit our model to the experimental phase 

response curve using a global optimization procedure. Full procedure for the determination of 𝑏 

and 𝑃𝑡ℎ is given below. 

MODELING WORM OSCILLATION IN VARIED ENVIRONMENTS 

Differences in various environments will change only those parameters that are related to contact 

with external forces whereas parameters related to oscillator’s internal properties will not be 

affected. In terms of the internal parameters of our model, we used values that were previously 

determined, which are 𝜏𝑚 = 100 𝑚𝑠, 𝑀0 = 8.45, 𝑏 = 46 𝑚𝑠, 𝑃𝑡ℎ = 2.33. For the exogenous 
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parameters, only the time constant of undulation, 𝜏𝑢, varies according to external conditions. 

According to Eqn. S2.6, 𝜏𝑢 is explicitly determined in terms of other physical parameters, 

including biomechanical parameters measured in previous work (Fang-Yen et al., 2010): the 

internal viscosity of worm body is measured as 𝑎𝑣 = 5 ⋅ 10−16𝑁𝑚3𝑠; the bending modulus of 

worm body is measured as 𝑎 = 9.5 ⋅ 10−14𝑁𝑚3; 𝐶𝑁 = 31𝜂 is the coefficient of viscous drag for 

movement normal to the body (Katz et al., 1975), where 𝜂 is the fluid viscosity. According to 

previous measurements of undulatory wavelengths in different viscous solutions (Fang-Yen et al., 

2010), we applied a logarithmic fit to the data points, yielding 𝜆/𝐿 = −0.158 log10(𝜂/𝜂0) +1.5 for a 

continuous model realization in undulatory frequency and amplitude. Here, 𝜆 is the wavelength 

and 𝜂0 = 1 𝑚𝑃𝑎 · 𝑠. 

ALTERNATIVE MODELS FOR LOCOMTOR WAVE GENERATION 

To further evaluate the performance of our original model, we explored three alternative models 

for simulating locomotory rhythm generation to make comparisons across these models and the 

experimental observations. Alternative models are based on three previously studied self-

oscillator models described by 2-D nonlinear systems: the van der Pol, Rayleigh, and Stuart-

Landau oscillators. 

 First, we developed a model oscillator in the form taken from the van der Pol Oscillator: 

𝐾̈ + 𝑎𝑉 (𝑏𝑉𝐾2 − 1)𝐾̇ + 𝜔𝑉
2 𝐾 = 0, [𝐒𝟐. 𝟏𝟏] 

where 𝐾 indicates the nondimensional bending curvature. This model has a nonlinear damping 

term with a coefficient depending on 𝐾. Simulated oscillation is a limit cycle of the model (Fig. 

S2.12B,F), given parameters 𝑎𝑉 = −0.026 𝑠−1,    𝑏𝑉 = −2.04,    𝜔𝑉 = 5.51 𝑠−1. 

 Second, we developed a model oscillator by modifying the Rayleigh Oscillator: 
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𝐾̈ + 𝑎𝑅(𝑏𝑅𝐾̇2 − 1)𝐾̇ + 𝜔𝑅
2 𝐾 = 0, [𝐒𝟐. 𝟏𝟐] 

where 𝐾 again indicates the nondimensional bending curvature. This model has a nonlinear 

damping term with a coefficient depending on 𝐾̇. Simulated oscillation is a limit cycle of the model 

(Fig. S2.12C,G), given parameters 𝑎𝑅 = 2.73 𝑠−1,    𝑏𝑅 = 0.0023 𝑠2,    𝜔𝑅 = 5.6 𝑠−1. 

 Third, we developed a model oscillator by modifying the Stuart-Landau Oscillator: 

𝑍̇ + (
𝑙

2
|𝑍|2 − 𝜎) 𝑍 = 0. [𝐒𝟐. 𝟏𝟑] 

Here, the system is described in the complex domain where 𝑍 = 𝑍𝑟 + 𝑖𝑍𝑖, 𝑙 = 𝑙𝑟 + 𝑖𝑙𝑖 are complex 

variables, and 𝜎 is real. We let 𝑍𝑟, the real part of 𝑍, denote the nondimensional curvature 𝐾. This 

model has a nonlinear damping term with coefficient depending on |𝑍|. Simulated oscillation is a 

limit cycle of the model (Fig. S2.12D,H), given parameters 𝑙𝑟 = 0.54 𝑠−1,    𝑙𝑖 = 0.52 𝑠−1,    𝜎 =

5.54 𝑠−1. 

 The three alternative models produce free-running oscillatory dynamics with similar frequency 

and amplitude as measured from worms swimming in fluids with viscosity 120 𝑚𝑃𝑎 · 𝑠. 

SIMULATION OF OPTOGENETIC INHIBITION 

According to our experimental observations on the effect of the optogenetic muscle inhibition 

(Figs. 2.2A,B), paralysis of muscles of the illuminated region initiated upon illumination (defined 

as 𝑡 = 0 for Fig. 2.2B) and reached maximal effect approximately at 𝑡 = 0.3 𝑠. Here, we modeled 

the process of muscle inhibition by multiplying the scaled active muscle moment, 𝑀𝑎, with a 

factor, 1 − 𝑄(Δ𝑡), as a function of the time interval Δ𝑡 in a bell-shaped form (Fig. S2.10, Eqn. 

S2.14). 

 As described in our model, the dorsoventrally alternating feature of the active muscle moment 
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during locomotion are described by the dynamics of 𝑀𝑎(𝑡). Specifically, 𝑀𝑎(𝑡) is positive when 

ventral muscles contract and dorsal muscles relax, and negative for the other half of the cycle. 

Therefore, in our threshold-switch model, specifically inhibiting dorsal- or ventral- or both-side 

muscles was computationally equivalent to conditionally modulating 𝑀𝑎(𝑡) with the bell-shaped 

modulating function depending on the sign of 𝑀𝑎(𝑡).  

 For simulating inhibition process in the three alternative models, we factored out a specific 

term from individual model equations as a generalized active muscle moment. We applied the 

bell-shaped modulating function to this term conditionally for each individual model. Detailed 

descriptions of implementing modeled inhibitions in alternative models are available from below. 

 To get a deeper understanding of how phase response curves are related to systems 

dynamics during wave generation, we systematically simulated transient muscle inhibitions on 

individual model oscillators at different times within a cycle period to generate model PRCs. To do 

that, we theoretically simulated the process of muscle inhibition by multiplying model active 

muscle moment with a modulatory factor, 1 − 𝑄(Δ𝑡), which has a bell-shaped profile (Fig. S2.10): 

𝑄(Δ𝑡) =
𝐻

(1 + |
Δ𝑡 − 𝑟

𝑝 |
2𝑞

)

, [𝐒𝟐. 𝟏𝟒]
 

where 𝑟 = 0.3 𝑠 is the timing of the occurrence of maximal paralysis according to our 

experimental observations on the effect of muscle inhibition (Figs. 2.2A,B), 𝐻 indicated the 

maximal degree of paralysis, and 𝑝, 𝑞 measure the paralyzing rate and duration, respectively. To 

ensure sufficient smoothness during computation, we let 𝑝 = 0.3 · 10−1/𝑞 so that 𝑄|Δt=0 > 0.99. 

Note that when modeling the dorsal-side-only muscle inhibition, the parameter 𝐻 for describing 

max degree of optogenetic muscle inhibition was modulated to 𝐻 = 0.5 ∗ 𝐻𝑜𝑝𝑡𝑖𝑚𝑎𝑙 to qualitatively 

agree with experimental observations (Fig. 2.5). This factor accounts for unequal degrees of 
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paralysis during ventral vs. dorsal illumination (Fig. S2.11), causing the PRC of dorsal-side 

illumination to show a relatively moderate response compared to ventral-side illumination. 

 To simulate the muscle inhibition on our threshold-switch model, we multiplied 𝑀𝑎 with (1 −

𝑄) any time the model was to be inhibited during its oscillatory period. To apply this operation to 

the alternative models, we factored out a term as a generalized active muscle moment for each 

individual model and then multiplied it with the bell-shaped function described above. The 

generalized forms of active muscle moment for the alternative models are implemented by 

modifying their original forms as follows: 

a. For the van der Pol Oscillator, it is modified as: 

{
𝐾̈ + (−𝑀𝑉̃ + 𝑃𝑉)𝐾̇ + 𝜔𝑉

2 𝐾 = 0

𝑀𝑉 = 𝑎𝑉(1 − 𝑏𝑉𝐾2) + 𝑃𝑉

  ; [𝐒𝟐. 𝟏𝟓] 

b. For the Rayleigh Oscillator, it is modified as: 

{
𝐾̈ + (−𝑀𝑅̃ + 𝑃𝑅)𝐾̇ + 𝜔𝑅

2 𝐾 = 0

𝑀𝑅 = 𝑎𝑅(1 − 𝑏𝑅𝐾̇2) + 𝑃𝑅

  ; [𝐒𝟐. 𝟏𝟔] 

c. For the Stuart-Landau Oscillator, it is modified as: 

{
𝑍̇ + (−𝑀𝑆̃ + 𝑃𝑆)𝑍 = 0

𝑀𝑆 = 𝜎 −
𝑙

2
|𝑍|2 + 𝑃𝑆

  . [𝐒𝟐. 𝟏𝟕] 

 For each individual model listed above, 𝑀𝑖̃ (subscript 𝑖 represents V, R, and S, respectively) 

is the generalized muscle moment which is to be multiplied by the bell-shaped factor (1 − 𝑄) 

upon perturbation, and 𝑃𝑖 is the additional damping coefficient. Note that the minus sign prior to 

𝑀𝑖 in the first equation of each set indicates that 𝑀𝑖 is a negative damping term that provides 

power to the system, while 𝑃𝑖 is set positive for modeling the effect of bending toward the straight 

posture due to internal and external viscosity. Also note that Eqns. S2.15-2.17 would be 

equivalent to their original form (Eqns. S2.11-2.13) when inhibition is absent (in this case, 𝑀𝑖̃ =
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𝑀𝑖). 

 By modeling the muscle inhibition process during locomotion, we were able to perform 

simulations of phase response experiments on individual models to produce perturbed systems 

dynamics (Fig. S2.12J-L) and the corresponding PRCs (Fig. S2.12N-P and Fig. S2.13). 

OPTIMIZATION OF MODELS 

For each individual model we developed, the parameters were determined via a two-round fitting 

process. First, a subset of parameters was determined by fitting the model to observations of 

free-moving dynamics; the model could generate free-moving dynamics close to observations at 

this point. Second, the rest of the parameters were settled by fitting it to experimental phase 

response curves; a model would be fully determined at this point. Detailed descriptions of the 

two-step optimization procedure for individual models are provided as follows: 

 For the original threshold-switch model, parameters 𝜏𝑢, 𝑀0, and 𝜏𝑚 were explicitly estimated 

from the experiments of free locomotion using phase portrait techniques described above. To 

simulate free locomotion, we further determined the position of switch points in the model (as 

indicated in Fig. 2.3C red circle), which we did using method described by Eqn. S2.7. Next, we 

plugged the determined parameters into the model and conducted the second round of 

optimization by fitting the model with undetermined parameters 𝑃𝑡ℎ, 𝑏, as well as the parameters 

for simulating muscle inhibition—𝐻 and 𝑞. We generated model PRC by perturbing the model 

oscillator at different times within a cycle period and settled the parameters such that the model 

PRC matched the experimental one with a minimum mean squared error (MSE) (During the 

computation of MSE, values of both model and experimental PRCs were sampled across the 

entire range of 𝜙 with 100 evenly distributed samples. In this case, Δ𝜙 = 2𝜋/100): 

(𝑃𝑡ℎ , 𝑏, 𝐻, 𝑞) = argmin
𝑃𝑡ℎ ,𝑏,𝐻,𝑞

 ∑ (𝑃𝑅𝐶𝑚𝑜𝑑𝑒𝑙(𝑃𝑡ℎ , 𝑏, 𝐻, 𝑞; 𝜙) − 𝑃𝑅𝐶𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡(𝜙))
2

𝛥𝜙
2𝜋

0
[𝐒𝟐. 𝟏𝟖] 
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To find the parameters that minimize the difference, a global minimum search was performed 

using the MATLAB function ‘GlobalSearch’ (Ugray et al., 2007). When run, the function 

repeatedly uses a local minimum solver with different batches of parameter range and attempts to 

locate a solution that produces the lowest MSE value. 

 Similarly, the two-step optimization procedures for individual alternative models are 

summarized in Table S2.1. 

Table S2.1. Objective functions used in the optimization procedures for alternative models 

Type Free locomotion model Complete model 

van der 

Pol 

argmin
𝑎𝑉 ,𝑏𝑉,𝜔𝑉

((
𝑇𝑣𝑑𝑃

𝑇𝑒𝑥𝑝𝑡
− 1)

2

+ (
𝐴𝑣𝑑𝑃

𝐴𝑒𝑥𝑝
− 1)

2

) 

argmin
𝑝𝑉,𝐻,𝑞

∑ (𝑃𝑅𝐶𝑣𝑑𝑃(𝜙)
2𝜋

0

− 𝑃𝑅𝐶𝑒𝑥𝑝(𝜙))
2

𝛥𝜙 

Rayleigh 

argmin
𝑎𝑅,𝑏𝑅,𝜔𝑅

((
𝑇𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ

𝑇𝑒𝑥𝑝𝑡
− 1)

2

+ (
𝐴𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ

𝐴𝑒𝑥𝑝
− 1)

2

) 

argmin
𝑝𝑅,𝐻,𝑞

∑ (𝑃𝑅𝐶𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ(𝜙)
2𝜋

0

− 𝑃𝑅𝐶𝑒𝑥𝑝(𝜙))
2

𝛥𝜙 

Stuart-

Landau 

argmin
𝑎𝑆,𝑏𝑆,𝜔𝑆

((
𝑇𝑆𝐿

𝑇𝑒𝑥𝑝𝑡
− 1)

2

+ (
𝐴𝑆𝐿

𝐴𝑒𝑥𝑝
− 1)

2

) 

argmin
𝑝𝑆,𝐻,𝑞

∑ (𝑃𝑅𝐶𝑆𝐿(𝜙)
2𝜋

0

− 𝑃𝑅𝐶𝑒𝑥𝑝(𝜙))
2

𝛥𝜙 

Two-step optimization procedure for van der Pol, Rayleigh, and Stuart-Landau oscillators. The 

first-step optimization determines part of parameters such that individual models generate free 

locomotion dynamics. The second-step optimization leads to complete models such that models’ 

perturbed dynamics and phase response curves are produced. 
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INTRODUCTION 

Navigation in natural environments requires flexible and adaptable locomotor behavior 

(Alexander, 2013; Dickinson et al., 2000). During locomotion in a natural context, an animal often 

encounters obstacles and irregularities, and needs to modulate the activity in order to adapt its 

body posture and motor patterns to the inevitable perturbations (Grillner and El Manira, 2020; 

Pearson, 2000). In lamprey and other undulatory animals, while generating a spatiotemporal 

pattern for propulsion, the motor circuits also precisely and contextually tune the body’s 

biomechanical responses to the external conditions (Berri et al., 2009; Blight, 1977; Fang-Yen et 

al., 2010; Ji et al., 2021a; LONG, 1998; Tytell et al., 2018). Kinematic and electromyographic 
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studies in legged animals characterized a phasic compensatory reaction in a perturbed animal, 

which induces rapid corrective movements adapted to the perturbation (Dietz et al., 1987; 

Forssberg, 1979; Forssberg et al., 1975, 1977; Mayer and Akay, 2018; McVea and Pearson, 

2007; Potocanac et al., 2016; Prochazka et al., 1978). 

 Well-adapted locomotion against unexpected perturbations relies on intricate interactions 

between a dedicated neural circuitry capable of generating basic locomotor rhythm (central 

pattern generator; Cohen and Wallén, 1980; Delcomyn, 1980; Grillner, 2003; Kiehn, 2011; Kristan 

and Calabrese, 1976; Marder and Calabrese, 1996; Pearce and Friesen, 1984; Yu et al., 1999) 

and various feedback pathways that modulate locomotion (Grillner, 2006; Grillner and El Manira, 

2020; Kiehn, 2016; Rossignol, 2006; Windhorst, 2007). In particular, proprioception plays an 

essential role in providing rapid feedback on body position for locomotor control during natural 

movements (Andersson et al., 1981; Brodfuehrer and Friesen, 1986; Friesen, 2009; Grillner and 

Wallen, 2002; Pearson, 2000; Wen et al., 2012). In mammals, proprioceptive inputs from multiple 

sensory organs are continuously weighted and processed within spinal cord circuits to instruct 

compensatory electromyographic responses to the current locomotor situation (Dietz, 2002). In 

lamprey and other undulators alike, adaptive locomotion relies critically on proprioceptive 

feedback to adjust or correct its undulatory gait to the changing physical space (Berri et al., 2009; 

Boyle et al., 2012; Fang-Yen et al., 2010; Fouad et al., 2017; Iwasaki et al., 2014; Ji et al., 2021a; 

Picton et al., 2021; Susoy et al., 2021). 

 The neural mechanisms underlying adaptive locomotion are complex. In vertebrates, the 

corrective locomotor control for handling perturbations during movements involves delicate 

computations within circuits of spinal cord, brain stem, and forebrain (Grillner, 2003; Grillner et al., 

2005; Roseberry et al., 2016; Svoboda and Li, 2018). Recent genetic expression and 

manipulation techniques have greatly facilitated the analyses of the function of CPGs in fine 



64 

 

locomotor control as well as the identification of relevant interneurons (Goulding, 2009; Grillner 

and Jessell, 2009; Kiehn, 2016). In the mouse, many spinal cord interneurons with their 

membrane properties and synaptic connectivity have been identified and found to be important 

for corrective locomotor control (Alvarez et al., 2005; Bourane et al., 2015a, 2015b; Bui et al., 

2013; Hilde et al., 2016; Koch et al., 2017; Zagoraiou et al., 2009; Zhang et al., 2008). However, it 

is unclear how the identified interneurons are implicated in the underlying neuronal pathways to 

contribute to the motor control, in part because of the lack of in vivo methods for acutely 

interfering neuronal activity to assess their role in locomotor movements (Grillner and El Manira, 

2020; Mayer and Akay, 2018). Moreover, our knowledge of how proprioception modality is 

relayed to control movement and posture, and which interneurons are responsible for gating 

proprioceptive signal transmission is still limited (Büschges and Mantziaris, 2021; Dietz, 2002; 

Pearson, 2004; Zhen and Samuel, 2015). Here, we use the locomotor behavior of C. elegans to 

ask how the corrective locomotor control is embedded in nervous system. 

 C. elegans has a relatively small and well-identified nervous system (Bargmann, 2012; Cook 

et al., 2019; White et al., 1986). Advances in physiology and neurogenetics establish a variety of 

genetic and physical methods (Bargmann, 1998; Brenner, 1974; Chronis et al., 2007; Dong et al., 

2021; Hobert, 2003; Leifer et al., 2011; Lockery et al., 2008), offering an opportunity for a systems 

level dissection of locomotor control. 

 Undulatory movements of C. elegans during locomotion are generated by a set of body wall 

muscles arranged in two dorsal and two ventral rows running along the length of worm’s body 

(Von Stetina et al., 2006), with adjacent muscle cells within each row coupled by gap junctions 

(Liu et al., 2006). Alternating activity of antagonist muscles are driven by motor neurons located in 

head ganglia and the ventral nerve cord (Zhen and Samuel, 2015), of which the proprioception 

coupling between the ventral cord motor neurons is required for propagating rhythmic activity 
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along the body (Wen et al., 2012). Motion direction is controlled by a set of premotor interneurons 

(previously named as “command interneurons”) that directly instruct motor neurons to coordinate 

forward and backward locomotion (Chalfie et al., 1988; Kawano et al., 2011). 

 While basic sinusoidal locomotion can arise from a circuitry with only motor neurons and 

command interneurons (Chalfie et al., 1985; Deng et al., 2020; Gao et al., 2018; Kawano et al., 

2011), adaptable locomotion in natural contexts involves motor control of the head and sublateral 

motor neurons with various functional roles in modulating postures (Gray et al., 2005; Kaplan et 

al., 2020; Kato et al., 2015; Kratsios et al., 2012; Schwarz and Bringmann, 2017; Yeon et al., 

2018). Moreover, context-dependent, optimal motor control is subject to the feedback input from a 

large number of interneurons and sensory neurons (Cermak et al., 2020; Cook et al., 2019; Hums 

et al., 2016; Li et al., 2006; López-Cruz et al., 2019; Oranth et al., 2018; Shen et al., 2016; Tao et 

al., 2019; Xu et al., 2018), as well as neuromodulation of biogenic amines and neuropeptides 

which reconfigures circuit properties for driving various long-term or short-term locomotor states 

(Bargmann, 2012; Chase et al., 2004; Churgin et al., 2017; Donnelly et al., 2013; Flavell et al., 

2013; Hills et al., 2004; Hu et al., 2011; Sawin et al., 2000; Susoy et al., 2021; Vidal-Gadea et al., 

2011). 

 In the wild, natural C. elegans populations can be found from soil, compost, leaf, and various 

other environments where they inevitably need to adjust their movements against gait 

perturbations such as terrain obstructions. Previous optical physiological studies reported several 

cases where C. elegans exhibits several spatiotemporally distinctive locomotory dynamics upon 

different gait perturbations. When physically immobilized in the midbody, C. elegans anterior 

unrestrained region continues undulating while the posterior free end stays at a static curvature 

that follows the shape of the immobilized region (Wen et al., 2012). When the anterior bending 

activity is optogenetically inhibited, C. elegans head region oscillates at a lower frequency while 
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the posterior undulation frequency doubles (Fouad et al., 2018; Xu et al., 2018). Upon a transient 

inhibition on the anterior bending activity, the local bending dynamic exhibits a phase-dependent 

perturbation response curve (Ji et al., 2021a). Despite the few descriptions under perturbative 

conditions, corrective locomotor control to gait perturbations in C. elegans is still not well 

characterized, nor are the underlying neuronal control mechanisms. 

 Here, we sought to understand how the C. elegans motor system adapts locomotion in 

response to gait perturbations on the behavioral, circuit, and molecular levels. The present study 

demonstrates that C. elegans uses a posterior-to-anterior proprioceptive coupling to adapt its 

locomotor amplitude to gait perturbations in a homeostatic manner. Through microfluidic 

manipulation of behavioral outputs, in vivo optical neurophysiology, and molecular genetics, we 

dissect the underlying neuronal pathways: dopaminergic PDE neurons, functioning as 

proprioceptors by sensing the midbody curvature, transduce local proprioceptive input into 

dopamine signaling. The dopamine activity of PDE then drives AVK interneurons activity via D2-

like dopamine receptor DOP-3. FMRFamide-like neuropeptide FLP-1, released by AVK, regulates 

SMB motor neurons via receptor NPR-6, hence modulating anterior bending amplitude. Our 

findings identify a behavioral circuit for a type of corrective movement control in C. elegans 

locomotion from sensory input to motor output. 

RESULTS 

C. ELEGANS MODULATES ANTERIOR AMPLITUDE RETROGRADELY IN RESPONSE TO 

THE OPTOGENETICALLY PERTURBED MIDBODY CURVATURE 

During forward locomotion, C. elegans propagates sinusoidal bending waves posteriorly from the 

head region by alternating contralateral muscle contraction and relaxation along the worm’s body 

(Croll, 1970; Wen et al., 2012). To describe the undulatory behavior, we quantified the kinematics 

of worm undulation by calculating the time-varying curvature along the body centerline (Fang-Yen 
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et al., 2010; Leifer et al., 2011). We defined the normalized curvature as the nondimensional 

product of the body length and the reciprocal of local radius of curvature along the centerline of 

the body (Fig. 3.1A). With this metric, we quantified the undulatory behavior using the time-

varying normalized curvature from head to tail as shown in a kymograph (Fig. 3.1B). 

 

Figure 3.1. Optogenetic inhibition of midbody muscles causes increase in anterior bending 

amplitude.  

(A) Worm locomotory dynamics can be represented by time-varying curvature along the body. 

Body coordinate 𝑠 is denoted by the distance along the centerline normalized by the body length 

𝐿 (head = 0, tail = 1). The normalized curvature 𝐾 is the nondimensional product of the body 

length and the reciprocal of the local radius of curvature with positive and negative values 

representing ventral and dorsal bending, respectively.  

(B) Curvature kymograph (curvature as a function of time and body coordinate) of a freely moving 

worm during forward locomotion.  
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(C) Images of a transgenic worm (Muscle::NpHR) perturbed by an optogenetic muscle inhibition 

in the midbody during forward locomotion in a viscous liquid (viscosity = 120 mPa·s). Green 

shaded region indicates the laser illumination. a: anterior, p: posterior, d: dorsal, v: ventral. Scale 

bar, 200 µm.  

(D) Curvature kymograph of the worm locomotion shown in (C). Green dashed box indicates the 

0.5 s laser illumination interval starting at 𝑡 = 0 applied to the midbody.  

(E) A representative trial of curvature dynamics of a worm’s middle (upper) and anterior (lower) 

regions around a 0.1 s muscle inhibition in the midbody (green bar, aligned at 𝑡 = 0). Black and 

red crosses mark the last four pre-illumination and the first four post-illumination curvature peaks, 

respectively.  

(F) Kymograph of mean absolute curvature around the 0.1 s inhibitions (green dashed box) from 

1160 trials using 206 worms.  

(G) Undulatory amplitude change upon transient midbody muscle inhibitions, measured as mean 

± SEM of the normalized curvature change of the first four post-illumination curvature peaks of 

the middle (upper) and anterior (lower) body regions, respectively. Same data as used in (F). For 

each trial of illumination, the normalized curvature change is defined by Δ𝐾/|𝐾−1| = (|𝐾+𝑛| −

|𝐾−1|)/|𝐾−1|, where |𝐾+𝑛| denotes the absolute value of the 𝑛th post-illumination curvature peak 

and |𝐾−𝑖| (𝑖 = 1 or 2) denotes the absolute value of the last pre-illumination curvature peak that 

has the same bending direction of 𝐾+𝑛. Regarding worm body regions, middle = 0.4-0.6, anterior 

= 0.1-0.3 body coordinate. 

 To examine how C. elegans modulates locomotion in reaction to gait perturbation, we 

systematically perturbed the motor activity in different body regions and analyzed the 

corresponding undulatory dynamics during forward locomotion. With an optogenetic laser 
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targeting system (Fouad et al., 2018), we applied laser illumination (532 nm wavelength) to 

selected body regions of animals expressing the inhibitory opsin NpHR in body wall muscles (via 

the transgene Pmyo-3::NpHR). 

 Transient optogenetic inhibitions (0.1 or 0.5 s duration) of muscles at the head region (0.05-

0.25 body length) and neck region (0.2-0.4 body length) both caused a rapid straightening of the 

anterior region followed with a mild amplitude decline in the subsequent body bends propagating 

from head to tail (Fig. S3.1A, B, E, and F), consistent with previous findings (Fouad et al., 2018; 

Ji et al., 2021c; Xu et al., 2018). 

 When we inhibited muscles at midbody (0.4-0.6 body length), however, besides the paralytic 

effect propagating from midbody to tail, we observed exaggerated undulatory oscillations at the 

anterior region (0.1-0.3 body length; Figs. 3.1C-F; Fig. S3.1C and G). Quantitatively, midbody 

amplitude decreased by ~35% immediately after a transient midbody muscle inhibition (0.1 s 

duration) whereas the anterior amplitude increased by ~15%; within about one undulatory cycle 

after the inhibition, worms recovered to baseline undulatory amplitude (Fig. 3.1G). 

 Next, we asked how a worm would modulate its undulation in response to midbody amplitude 

exaggeration instead of reduction. To do this, we stimulated midbody muscles only on the dorsal 

side by illuminating (473 nm wavelength) the corresponding region of animals expressing the 

excitatory opsin ChR2 in body wall muscles (via the transgene Pmyo-3::ChR2). We found that 

while stimulating dorsal muscles in the midbody led to exaggerated midbody bending, the anterior 

bending decreased (Figs. 3.2A-D). Quantitatively, midbody amplitude increased by ~12% 

immediately after a transient midbody dorsal muscle stimulation (0.1 s duration) whereas the 

anterior amplitude decreased by ~12% (Fig. 3.2E). 
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Figure 3.2. C. elegans modulates anterior amplitude retrogradely in response to the 

optogenetically perturbed midbody curvature.  

(A) Images of a transgenic worm (Muscle::ChR2) perturbed by an optogenetic muscle stimulation 

in the dorsal midbody during forward locomotion in a viscous liquid (viscosity = 120 mPa·s). Blue 

shaded region indicates the laser illumination. a: anterior, p: posterior, d: dorsal, v: ventral. Scale 

bar, 200 µm.  

(B) Curvature kymograph of the worm locomotion shown in (A). Blue dashed box indicates the 

0.5 s laser illumination interval starting at 𝑡 = 0 applied to the dorsal midbody.  

(C) A representative trial of curvature dynamics of a worm’s middle (upper) and anterior (lower) 

regions around a 0.1 s muscle stimulation in the dorsal midbody (blue bar, aligned at 𝑡 = 0). 

Black and red crosses mark the last four pre-illumination and the first four post-illumination 

curvature peaks, respectively.  

(D) Kymograph of mean absolute curvature around the 0.1 s stimulations (blue dashed box) from 
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693 trials using 122 worms.  

(E) Undulatory amplitude change upon transient dorsal midbody muscle stimulations, measured 

as mean ± SEM of the normalized curvature change of the first four post-illumination curvature 

peaks (same definition as in Fig. 3.1G) of the middle (upper) and anterior (lower) regions, 

respectively. Same data as used in (D).  

(F) A scatter plot of the mean anterior curvature change plotted against the mean midbody 

curvature change. Each data point represents mean ± SEM of the corresponding normalized 

value of the first post-illumination curvature peak. Green and blue data points denote data 

induced by optogenetic midbody muscle inhibition (both sides) and stimulation (dorsal side), 

respectively. We varied the laser power and/or pulse duration to induce different degrees of 

optogenetic perturbation for individual groups. Each group consists of ~120 trials totaling ~15 

animals. Regarding worm regions, middle = 0.4-0.6, anterior = 0.1-0.3 body coordinate. 

 We also tested worm locomotion perturbed by brief muscle inhibition (0.1 s duration) at the 

posterior region (0.6-0.8 body length). In this case, posterior bending amplitude rapidly reduced 

upon illumination, but bending amplitude of the anterior half did not increase (Fig. S3.1D and H). 

 From these optogenetic experiments, our findings suggest that anterior amplitude might 

change retrogradely in response to the midbody amplitude change. To get more insight into this 

locomotor adaptation during midbody perturbation, we conducted dose-response experiments in 

which the degree of midbody muscle inhibition or stimulation was modulated by applying laser 

illumination with various pulse durations and irradiances (see Methods). We found that treated 

animals modulated the anterior amplitude in response to the induced midbody amplitude change 

with a negatively correlated relationship (Fig. 3.2F). Our data thus indicate an anteriorward 

compensatory coupling mechanism underlying locomotor adaption to midbody perturbation. We 

refer to this anterior amplitude modulation of moving animals under midbody amplitude 
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perturbation as the “curvature compensatory response”. 

MICROFLUIDIC CONSTRAINT OF MIDBODY CAUSES INCREASE IN ANTERIOR BENDING 

AMPLITUDE 

During our optogenetic experiments, curvature change was induced by a direct manipulation of 

muscle activity, leaving open the possibility of a proprioception-free muscular coupling that solely 

supports the curvature compensation. 

 To determine whether proprioception is involved in the curvature compensation, we designed 

a microfluidic device that constrained the middle region of a worm in a straight channel (Figs. 

3.3A and 3.3B). We used a 200-µm-long, 60-µm-wide channel to constrain the bending amplitude 

in the midbody. By comparing between constrained and free locomotion, we found that tested 

animals exhibited exaggerated oscillations in the anterior region during midbody constraint (Figs. 

3.3B-E). 

 

Figure 3.3. Microfluidic constraint of midbody causes increase in anterior bending 

amplitude.  
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(A) Schematic of the microfluidic device for constraining body curvature. By manipulating its 

relative position within the chamber through a fine flow control (see Methods), we were able to 

make a worm alternate between free locomotion and constrained locomotion. a: anterior region, 

p: posterior region, c: constrained middle region of a worm. PDMS: Poly-dimethyl siloxane.  

(B and C) Video images of a wild-type worm doing constrained locomotion with its midbody 

confined by the narrow channel (B) and doing free locomotion in the open area of the chamber 

(C). Scale bar, 250 µm.  

(D) Curvature kymograph of the constrained locomotion shown in (B). Gray lines indicate the 

anterior and posterior limits of the narrow channel with the worm body as a frame of reference. 

(E) Effects of midbody constraint during forward locomotion on the undulatory bending amplitude 

of the anterior, middle, and posterior regions, measured as mean ± SEM of the normalized 

curvature change of corresponding regions. Each data point is the mean of a 3 s period of 

constrained locomotion pooled across 19 wild-type animals. 

 Adjacent body wall muscle cells are connected through electrical coupling regulated by an 

innexin UNC-9 (Liu et al., 2006). We thus further asked whether the body muscle cells 

themselves might transduce the proprioceptive signals from midbody to anterior regions. To verify 

this, we used the microfluidic channel to test transgenic animals that lacked these gap junctions 

in the muscle cells (via a unc-9 pan-neuronal rescued strain with gap junction deficiency only in 

muscle) (Wen et al., 2012). We found that these transgenic animals again showed exaggerated 

bending movements in the anterior region during midbody constraint (Fig. S3.2B). 

 Taken together, these results indicate that curvature compensation is mediated by an 

anteriorward proprioceptive coupling mechanism while intermuscular coupling is insufficient to 

transduce the proprioceptive signals. 
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CURVATURE COMPENSATION REQUIRES FUNCTIONAL DOPAMINE SIGNALING BY PDE 

NEURONS 

We next sought to explore the mechanisms underlying the curvature compensation. First, we 

asked whether neurotransmission is essential for this behavioral response. To do that, we 

examined several mutant strains bearing defects in biogenic amine synthesis including dopamine 

(DA), serotonin (5-HT), tyramine (TA), and octopamine (OA). For each mutant, we analyzed the 

anterior bending amplitude of animals being constraint by the microfluidic channel in the midbody 

and compared with the amplitude during free locomotion. An indicator of curvature compensation 

was defined across all tested animals as the difference between anterior bending amplitudes 

during constrained and free locomotion normalized by the amplitude during free locomotion (see 

Methods). 

 Mutants tph-1(n4622) (defective in serotonin synthesis) and tdc-1(n3421) (defective in both 

tyramine and octopamine syntheses) displayed nearly normal locomotion and largely intact 

curvature compensation during midbody constraint from microfluidic channel (Fig. S3.2B), 

suggesting that serotonin, tyramine, and octopamine are unrequired for curvature compensation. 

In contrast, dopamine-deficient cat-2(e1112) mutants displayed normal locomotion but impaired 

curvature compensation, as they showed reduced anterior curvature change in response to the 

microfluidic constraint in the midbody (Fig. 3.4C). Addition of exogenous dopamine fully restored 

the curvature compensatory response (Fig. 3.4C), demonstrating that the defect in curvature 

compensation induced by microfluidic constraint is due to the lack of dopamine. 
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Figure 3.4. Curvature compensation requires functional dopamine signaling by PDE 

neurons.  

(A and B) Video images of a wild-type animal (A) and a cat-2(e1112) mutant (B) with midbody 

confined by the narrow channel, exhibiting curvature compensation and no curvature 

compensation, respectively. a: anterior region, p: posterior region, c: constrained middle region of 

a worm. Scale bar, 150 µm.  
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(C) cat-2 mutants showed impaired curvature compensatory response to midbody constraint, 

which was rescued by exogenous dopamine. Data represent mean ± SEM of the normalized 

anterior curvature change in response to midbody constraint for wild type and cat-2(e1112) 

mutants in either the absence or presence of exogenous 50 mM dopamine. Each data point is the 

mean of a 3 s period of constrained locomotion pooled across 10 or more animals for each 

indicated condition. ***p<0.001 when compared with wild type, ###p<0.001 when compared with 

cat-2 mutants without exogenous dopamine, Tukey-Kramer multiple comparison tests.  

(D-F) cat-2 mutants showed impaired curvature compensatory response to midbody curvature 

decrease induced by transient optogenetic muscle inhibition. (D and E) Kymographs of mean 

absolute curvature around 0.1 s illuminations (green dashed box) for animals expressing 

Muscle::NpHR in wild type (D, same data as used in Fig. 3.1F) and cat-2 mutants (E, n = 133 

trials using 33 worms). (F) Normalized anterior curvature change of the first post-illumination 

curvature peak for animals expressing Muscle::NpHR in wild type and cat-2 mutants (same data 

as used in D and E, respectively), mean ± SEM. ***p<0.001, Student’s t test.  

(G-I) cat-2 mutants showed impaired curvature compensatory response to midbody curvature 

increase induced by transient optogenetic dorsal muscle stimulation. (G and H) Kymographs of 

mean absolute curvature around 0.1 s illuminations (blue dashed box) for animals expressing 

Muscle::ChR2 in wild type (G, same data as used in Fig. 3.2D) and cat-2 mutants (H, n = 112 

trials using 24 worms). (I) Normalized anterior curvature change of the first post-illumination 

curvature peak for animals expressing Muscle::ChR2 in wild type and cat-2 mutants (same data 

as used in G and H, respectively), mean ± SEM. ***p<0.001, Student’s t test.  

(J) Out of all dopaminergic neurons, ablating PDE eliminated curvature compensation. Data 

denote mean ± SEM of the normalized anterior curvature change in response to midbody 

constraint for animals with genetic ablation of ADE and CEP (Pdat-1::ICE, PDE survival 
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confirmed by using co-expression of Pdat-1::RFP) and laser ablation of PDE, compared with 

mock-ablated control group. Each data point is the mean of a 3 s period of constrained 

locomotion pooled across 10 or more animals for each condition. ***p<0.001, ns: not significant, 

Dunnett’s multiple comparison tests.  

(K) Curvature compensation requires dopamine signaling specifically by PDE neurons. Data 

denote mean ± SEM of the normalized anterior curvature change in response to midbody 

constraint for PDE-ablated worms and transgenic animals expressing tetanus toxin light chain in 

all dopaminergic neurons (Pdat-1::TeTx), in the absence and presence of exogenous 50 mM 

dopamine, respectively. Each data point is the mean of a 3 s period of constrained locomotion 

pooled across 10 or more animals for each indicated condition. ns: not significant, Student’s t 

test. 

 In our previous experiments with wild-type animals, a worm’s midbody curvature change was 

induced by either optogenetic manipulation or microfluidic constraint. Since the two methods 

manipulated curvature physiologically differently, it is unclear whether cat-2 mutants are also 

defective in curvature compensation in response to optogenetic perturbation in the midbody. To 

address this issue, we integrated transgenic expression Muscle::NpHR and Muscle::ChR2 

respectively into cat-2 mutants and performed optogenetic muscle inhibition and stimulation 

experiments with these strains by following the same procedures as described in the earlier 

section. As opposed to wild-type animals, we found cat-2 mutants again showed impaired 

curvature compensatory response to midbody curvature decrease or exaggeration triggered by 

optogenetic muscle inhibition (Figs. 3.4D-F) or stimulation (Figs. 3.4G-I). 

 The above data suggest that dopamine signaling is required for the curvature compensation 

in response to both midbody curvature decrease and increase. In C. elegans, dopamine plays an 

essential role in a variety of behaviors including locomotion, food sensation, touch sensation, egg 
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laying, spatial pattern selectivity, gait transition (Calhoun et al., 2015; Chase et al., 2004; Han et 

al., 2017; Hills et al., 2004; Kindt et al., 2007; Sawin et al., 2000; Vidal-Gadea et al., 2011). The 

C. elegans hermaphrodite has eight dopaminergic neurons including four CEPs, two ADEs, and 

two PDEs (Sulston et al., 1975). To test which of these dopaminergic neurons were required for 

the curvature compensatory response, we ablated specific subsets of dopaminergic neurons of 

young larvae at their L3 stage, and examined the resulting adults’ compensatory response to 

microfluidic constraint in the midbody. 

 First, we ablated the ADEs and CEPs using transgenic animals expressing the human 

caspase interleukin-1β-converting enzyme (ICE) in the dopaminergic neurons under the dat-1 

promoter (Hills et al., 2004). By integrating the Pdat-1::ICE strain with a transgene Pdat-

1::mCherry that expresses RFP in all dopaminergic neurons, we verified the cell death of ADEs 

and CEPs as well as the survival of PDEs through the resulting RFP expression (see details in 

Methods). Second, we ablated only PDE neurons using a thermal laser beam (Fouad et al., 2021; 

also see Methods). Compared with the mock-ablated group, transgenic worms in which ADEs 

and CEPs were killed still exhibited curvature compensatory response to the microfluidic 

constraint in the midbody, while worms lacking only PDEs did not exhibit curvature compensation 

(Fig. 3.4J) and failed to be restored by the addition of exogenous dopamine (Fig. 3.4K). These 

results suggest that, out of all dopaminergic neurons, only PDE neurons are necessary for 

curvature compensation. 

 To further explore the dopamine signaling of PDE for curvature compensation, we examined 

transgenic animals with dopaminergic neurons expressing tetanus toxin light chain (Pdat-1::TeTx) 

that blocks their synaptic transmission. Inhibiting neurotransmitter release from dopaminergic 

neurons eliminates curvature compensation (Fig. 3.4K) and adding exogenous dopamine failed 

to restore this phenotype (Fig. 3.4K). Note that, in exogenous dopamine environments, only the 
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dopamine synthesis-deficient mutant cat-2(e1112) got rescued for curvature compensation 

whereas animals with PDE eliminated or with TeTx-expressing dopaminergic neurons still 

exhibited impaired curvature compensation. We argue the discrepancy in the rescue results may 

be because cat-2 mutants still have the vesicles for the release of dopamine, but the other groups 

do not. Thus, the results above further suggest the necessity of functional vesicle release of 

dopamine from PDE for curvature compensation. 

 Taken together, these experiments indicate that synaptic release of dopamine from PDEs, 

but not from ADEs or CEPs, is required for curvature compensation. 

CALCIUM IMAGING SHOWS THAT PDE NEURONS RESPONSE TO MIDBODY CURVATURE 

Ultrastructurally, PDE is the only dopaminergic neuron whose neuronal processes extend across 

the midbody, the region where the curvature perturbation was applied. Thus, the interpretation of 

our experiments further implies that PDEs might function as a proprioceptor that transduces the 

midbody proprioceptive input for curvature compensation. Previous studies have demonstrated 

that PDE Ca2+ activity in a wild-type animal is phase-locked to its bending waves during roaming 

(Cermak et al., 2020), but whether PDEs are proprioceptive to the body bends has not been 

characterized. 

 As a first step in investigating the neuronal activity of PDE in response to bending curvatures, 

we monitored the spontaneous Ca2+ transients of PDE in freely crawling animals expressing 

genetically encoded Ca2+ indicators GCaMP in the PDE neurons (under the Pdat-1 promoter). 

We prepared the transgenic animals on an agarose pad covered with a microscope slide and 

mounted the pad onto our fluorescence microscope (see Methods for preparation details). As an 

animal performed free locomotion on the setup, we observed robust oscillating Ca2+ dynamics in 

the PDE soma (Fig. 3.5B) during its forward movement (Fig. 3.5A). We also noticed that the Ca2+ 

activity in PDE soma was correlated with the animal’s body curvature (Fig. 3.5B shows an 
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example; yellow curve in Fig. 3.5E shows correlations between PDE activity and curvatures of 

different body regions). These correlations between PDE fluorescence and body posture were not 

observed in the control group of transgenic animals expressing GFP in PDE (Fig. S3.4). Our Ca2+ 

imaging experiments indicate that the native neuronal activity of PDE correlates with body 

posture during free locomotion of an intact wild-type animal, as has been previously reported 

(Cermak et al., 2020). 

 

Figure 3.5. Ca2+ imaging shows that PDE neurons respond to midbody curvature.  

(A and C) Fluorescent video images of PDE neuron (via transgenic expression Pdat-

1::GCaMP6m) in a freely moving wild-type animal on an agar surface (A) and a muscularly 

paralyzed mutant unc-54(e1092) restrained within a 60-µm-wide sinusoidal channel (C). 

Undulatory wavelength of the unrestrained and channel-restrained locomotion is roughly 𝐿/2 and 
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𝐿, respectively. h: head, t: tail, d: dorsal, v: ventral. 𝐿, worm body length. Scale bar, 100 µm.  

(B and D) Intracellular Ca2+ dynamics of PDE (upper) and the corresponding curvature dynamics 

from head to tail (lower) for freely moving worms (B) and muscularly paralyzed worms restrained 

within sinusoidal channels (D), respectively. The intracellular Ca2+ activity is inferred from Δ𝐹/𝐹0, 

the relative deviation of GCaMP6m fluorescence intensity from the baseline.  

(E) Cross-correlation between intracellular Ca2+ dynamics of PDE and curvatures of different 

body regions from head to tail, for freely moving worms (yellow) and channel-restrained worms 

(purple).  

(F) Average PDE Ca2+ activity at different values of midbody curvature, for freely moving worms 

(yellow) and channel-restrained worms (purple). Curves are obtained via a moving average along 

the x-axis with 2 in bin width.  

For (E) and (F), n = 12 and 20 animals for free locomotion group and sinusoidal channel group, 

respectively. Data are shown as means ± 95% confidence interval. 

 To provide physiological evidence that body posture-correlated PDE Ca2+ activity was 

attributable to a proprioceptive response to body bending, we monitored the PDE Ca2+ dynamics 

in the unc-54(e1092) mutants, which were defective in muscle contraction due to a lack of a 

major myosin heavy chain protein. To manually bend the worm body, we first restrained the 

posture of worms within a microfluidic sinusoidal channel (Fig. 3.5C) filled with viscous solutions 

(120 mPa·s in viscosity). We then manipulated the worm position within the sinusoidal channel to 

force the body segments at different curvature values by controlling the direction and rate of the 

fluidic flow with a syringe pump connected to the microfluidic device. Under this experimental 

setup, we again observed fluctuating PDE Ca2+ dynamics in response to the varying induced 

body posture as we moved the paralyzed worm through the channel (Fig. 3.5D). Despite the 
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mutant animals’ incapability of moving due to muscle paralysis, we still observed significant 

correlations between PDE fluorescence and bending curvature of various body segments (Fig. 

3.5E, purple curve). These data suggest that body bending is sufficient to induce the neuronal 

activity in PDE. 

 We further reasoned that the proprioceptive response in PDE Ca2+ dynamics was caused by 

the midbody curvature. First, by analyzing worm postures, we quantified the body wavelengths of 

freely moving worms (as shown by Fig. 3.5A) and paralyzed worms restrained within sinusoidal 

channels (as shown by Fig. 3.5C) to be approximately 𝐿/2 and 𝐿, respectively. Second, we 

noticed that similar periodicities were exhibited from the profiles of the curvature-PDE Ca2+ 

activity correlations under the two corresponding experimental conditions (by comparing yellow 

and purple curves in Fig. 3.5E with body postures in Figs. 3.5A and 3.5B respectively). This was 

because curvature dynamics at any two body regions one half of wavelength apart are very highly 

anticorrelated and the curvature-neuronal activity correlations can be transitive. Third, the two 

independent curvature-neuronal activity correlation profiles coincided only at midbody region (Fig. 

3.5E). This observation indicated that midbody might be the spatial receptive field of the 

proprioceptive response in PDE neurons. Furthermore, by quantifying the dependence of PDE 

activity on midbody curvature, we found that PDE Ca2+ levels increased as the midbody curvature 

varied from a dorsal bend to a ventral bend (Fig. 3.5F), whether the movement was due to 

muscle contractions of freely moving worms or external forces from sinusoidal channels. 

 Together with previous work (Cermak et al., 2020), our experiments suggest a proprioceptive 

functionality in PDE neurons in sensing the midbody curvature. Based on the C. elegans neuronal 

morphology (White et al., 1986), PDE neurons have short ciliated dendrites along the dorsal side 

of the posterior body and long axons travelling across the entire body along the ventral side. 

Since the proprioception receptive field of PDE seems to be the midbody region, we thus suggest 
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that it is the axons rather than the dendrites that play the proprioceptive role in PDE neurons. 

CURVATURE COMPENSATION REQUIRES D2-LIKE DOPAMINE RECEPTOR DOP-3 IN AVK 

NEURONS 

Our results so far demonstrated that PDE neurons sense proprioceptive inputs from midbody and 

regulate a dopaminergic pathway that is required for curvature compensation. To better 

understand this pathway, we next set to determine what other cellular and molecular components 

were responsible for curvature compensation downstream of the dopamine signaling from PDE 

neurons. 

 First, we determined that the D2-like dopamine receptor DOP-3 is required for mediating 

dopamine effects for curvature compensation. By constraining worms’ midbody in the microfluidic 

channel, we examined curvature compensation in animals each lacking a single type of dopamine 

receptor (DOP-1 through DOP-4; Fig. 3.6A) and all combinations of the DOP-1, DOP-2, and 

DOP-3 receptors (Fig. 3.6B). We found that the dop-3 mutation had a significant defective effect 

on curvature compensation in any genetic background, and adding exogenous dopamine did not 

restore compensatory behavior in dop-3 mutants. Our single- and double-mutant analysis also 

showed that mutants that did not contain dop-3 mutation did show normal curvature 

compensation like wild-type animals. Furthermore, we examined the effect of dop-3 mutation on 

the curvature compensatory response to optogenetic perturbation in the midbody. By performing 

the earlier described optogenetic muscle perturbation experiments on the dop-3 mutants 

expressing Muscle::NpHR and Muscle::ChR2, we found dop-3 mutants again displayed 

significant defects in curvature compensation triggered by midbody muscle inhibition (Figs. 3.6C-

E) or stimulation (Figs. 3.6F-H). 
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Figure 3.6. Curvature compensation requires D2-like dopamine receptor DOP-3 in AVK 

neurons.  

(A and B) Analysis of curvature compensatory response to midbody constraint for dopamine 

receptor knockout single (A) and double/triple (B) mutants. (A) D-2 like receptor DOP-3 is 

required for curvature compensation. Data denote mean ± SEM of the normalized anterior 

curvature change in response to midbody constraint for wild type and dopamine receptor 

knockout single mutants dop-1(vs101), dop-2(vs105), dop-3(vs106), and dop-4(tm1392) under 

indicated conditions. Each data point is the mean of a 3 s period of constrained locomotion 

pooled across 10 or more animals for each indicated condition. ***p<0.001 when compared with 

wild type, Dunnett’s multiple comparison tests; ns: not significant when comparing dop-3 mutants 

in the absence and presence of exogenous 50 mM dopamine, Student’s t test. (B) Double/triple 

mutants with DOP-3 receptor knockout showed impaired curvature compensatory response to 

midbody constraint. Data denote mean ± SEM of the normalized anterior curvature change in 

response to midbody constraint for dop-1 dop-2, dop-1 dop-3, dop-2 dop-3 double mutants and 

dop-1 dop-2 dop-3 triple mutants, compared with wild-type animals. Each data point is the mean 

of a 3 s period of constrained locomotion pooled across 10 or more animals for each indicated 

condition. ***p<0.001, Dunnett’s multiple comparison tests.  

(C-E) dop-3 mutants showed impaired curvature compensatory response to midbody curvature 

decrease induced by transient optogenetic muscle inhibition. (C and D) Kymographs of mean 

absolute curvature around 0.1 s illuminations (green dashed box) for animals expressing 

Muscle::NpHR in wild type (C, same data as used in Fig. 3.1F) and dop-3 mutants (D, n = 183 

trials using 31 worms). (E) Normalized anterior curvature change of the first post-illumination 

curvature peak for animals expressing Muscle::NpHR in wild type and dop-3 mutants (same data 

as used in C and D, respectively), mean ± SEM. ***p<0.001, Student’s t test. (F-H) dop-3 mutants 
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showed impaired curvature compensatory response to midbody increase induced by transient 

optogenetic dorsal muscle stimulation.  

(F and G) Kymographs of mean absolute curvature around 0.1 s illuminations (blue dashed box) 

for animals expressing Muscle::ChR2 in wild type (F, same data as used in Fig. 3.2D) and dop-3 

mutants (G, n = 213 trials using 33 worms).  

(H) Normalized anterior curvature change of the first post-illumination curvature peak for animals 

expressing Muscle::ChR2 in wild type and dop-3 mutants (same data as used in F and G, 

respectively), mean ± SEM. ***p<0.001, Student’s t test.  

(I) Analysis of curvature compensatory response to midbody constraint for dop-3 mutants with 

rescue of dop-3 function by transgenic expression in different tissues. The impaired curvature 

compensation of dop-3 mutants was fully rescued by transgenic expression of dop-3 function in 

AVK neurons (via promoter flp-1), and partially rescued by transgenic expression of dop-3 

function in cholinergic neurons (via promoter acr-2) and B-type motor neurons (via promoter acr-

5). Data denote mean ± SEM of the normalized anterior curvature change in response to midbody 

constraint for dop-3 mutants with dop-3 function rescued by transgenic expression in AVK 

neurons (Pflp-1(trc)::DOP-3), cholinergic neurons (Pacr-2::DOP-3), B-type motor neurons (Pacr-

5::DOP-3), GABAergic neurons (Punc-47::DOP-3), PVD neurons (Pser-2-prom3::DOP-3), and 

body wall muscle cells (Pmyo-3::DOP-3), compared with wild type and dop-3(vs106) mutants. 

Each data point is the mean of a 3 s period of constrained locomotion pooled across 10 or more 

animals for each condition. ***p<0.001 when compared with wild type, ns: not significant and -

###p<0.001 when compared with dop-3 mutants, Tukey-Kramer multiple comparison tests.  

(J) A schematic model circuit showing how midbody proprioceptive input gets transduced to 

regulate anterior curvature compensation through DOP-3 dependent dopamine signaling from 

PDE to AVK neurons.  
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(K and L) Dopamine regulates compensatory response by binding to the receptor DOP-3 and 

activating GOA-1 𝐺𝛼𝑜 signaling. (K) Curvature compensatory response analysis of mutants that 

disrupt the 𝐺𝛼𝑜 and 𝐺𝛼𝑞 signaling. Data denote mean ± SEM of the normalized anterior curvature 

change in response to midbody constraint for dop-3(vs106) mutants, 𝐺𝛼𝑜 signaling mutants goa-

1(sa734), dgk-1(sy428), egl-10(md176), gpb-2(sa603), 𝐺𝛼𝑞 signaling mutants egl-30(n686), egl-

8(md1971), eat-16(ad702), compared with wild-type animals. Each data point is the mean of a 3 s 

period of constrained locomotion pooled across 10 or more animals for each condition. 

***p<0.001, ns: not significant, Dunnett’s multiple comparison tests. (L) Schematic representation 

of the 𝐺𝛼𝑜 protein signaling pathways that regulate the curvature compensatory response in C. 

elegans (adapted from Chase et al. 2004). 

 Second, we asked which specific cell types expressing DOP-3 are responsible for mediating 

the dopamine effect for curvature compensation. According to the dop-3 gene expression in wild-

type animals, DOP-3 receptors are expressed in various cell types, including GABAergic neurons, 

cholinergic motor neurons, mechanosensory neurons PVD, interneurons AVK, and body wall 

muscle cells (Chase et al., 2004; Oranth et al., 2018). Thus, using promoters active in the above 

cells, we expressed DOP-3 individually in those types of cells and tested the ability of such 

transgenes to rescue the impaired curvature compensation of dop-3 mutants (Fig. 3.6I). 

Restoring DOP-3 expression in GABAergic neurons (promoter Punc-47), PVDs (promoter Pser-

2prom3), or body wall muscles (promoter Pmyo-3) failed to rescue the dop-3 defect. However, 

when DOP-3 was expressed in cholinergic (promoter Pacr-2), or B-type motor neurons (promoter 

Pacr-5), dop-3 animals exhibited partial rescue, and only when we restored DOP-3 expression 

specifically to AVK in dop-3 mutants (via promoter Pflp-1), the animal’s curvature compensation 

was fully restored to the wild-type level (Fig. 3.6I). Thus our rescue experiments suggest that 

DOP-3 receptors in AVK (and potentially some cholinergic motor neurons) mediate the 

proprioception-triggered dopaminergic signals from upstream PDE neurons to regulate curvature 
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compensatory behavior (Fig. 3.6J). 

 Third, we examined curvature compensation in mutants that disrupted the downstream G 

protein signaling of DOP-3 and DOP-1, the 𝐺𝛼𝑜 and 𝐺𝛼𝑞 pathways (Fig. 3.6K). Mutants with 

deficiency in GOA-1, the C. elegans ortholog of the G protein 𝐺𝛼𝑜 (coupled to DOP-3), exhibited 

impaired curvature compensation. The similar defect was found in the mutants with deficiency in 

the RGS protein DGK-1, a putative downstream effector of GOA-1 𝐺𝛼𝑜 . In contrast, mutants with 

deficiencies in EGL-10, GTPase activating protein that inhibits GOA-1 𝐺𝛼𝑜, and GPB-2, an 

obligate subunit of EGL-10 RGS, exhibited wild-type level of curvature compensation. Mutants 

with deficiencies in proteins that are associated with 𝐺𝛼𝑞 (coupled to DOP-1) all exhibited normal 

curvature compensation. Earlier studies suggested that DOP-3 and DOP-1 have opposing effects 

on locomotion by signaling through these two antagonistic G protein pathways, respectively 

(Chase et al., 2004). Given that the DOP-3 receptors, but not the DOP-1 receptors, were found 

necessary for curvature compensation behavior (Figs. 3.6A and 3.6B), our results are indeed 

consistent with the previously proposed model in which DOP-3 affects locomotion by activating 

the 𝐺𝛼𝑜 signaling pathway (Fig. 3.6L; Chase et al., 2004). 

FMRFAMIDE-LIKE NEUROPEPTIDE FLP-1, RELEASED BY AVK, REGULATES SMB MOTOR 

NEURONS VIA RECEPTOR NPR-6 TO MODULATE ANTERIOR BENDING AMPLITUDE 

So far we have demonstrated that PDE neurons sense midbody curvature and that the 

dopamine/DOP-3 signaling pathway from PDE to AVK is required for curvature compensation. 

AVK mediates FLP-1 FMRFamide-like neuropeptide signaling via release of dense core vesicles 

(DCVs) to modulate locomotion in response to various sensory inputs (Hums et al., 2016; Oranth 

et al., 2018), and the deletion of flp-1 gene results in loopy undulation with exaggerated 

sinusoidal waveform in both agar surface (Nelson et al., 1998) and liquid environments. 

 Do AVK and FLP-1 neuropeptide signaling also play a role in curvature compensation? To 



89 

 

answer that question, we first examined worms with AVK neurons eliminated by laser ablation 

(see Methods) and transgenic animals with AVK expressing tetanus toxin that blocks synaptic 

vesicle release (Pflp-1::TeTx). We found that either ablating AVK or blocking synaptic 

transmission from AVK led to superficially wildtype locomotion but strongly compromised 

curvature compensatory responses to the microfluidic constraint in the midbody (Fig. 3.7A). We 

also tested flp-1(yn4) and flp-1(sy1599) mutants both lacking FLP-1 neuropeptides, and unc-

31(e169) mutants lacking CAPS (Ca2+-activated protein for secretion, required for all 

neuropeptides release). We again found significant defects in curvature compensation in these 

mutant animals (Fig. 3.7B). These results suggest that FLP-1 peptide signaling from AVK 

neurons is required for animals to exhibit normal curvature compensation. 

 

Figure 3.7. FMRFamide-like neuropeptide FLP-1, released by AVK, regulates SMB motor 

neurons via receptor NPR-6 to modulate anterior bending amplitude.  
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(A and B) Curvature compensation requires AVK- released FLP-1 regulation of SMB neuronal 

activity via receptor NRP-6. (A) Data denote mean ± SEM of the normalized anterior curvature 

change in response to midbody constraint for animals with laser ablation of AVK and transgenic 

animals expressing tetanus toxin in AVK (Pflp-1::TeTx), compared with the mock ablation control 

group. Each data point is the mean of a 3 s period of constrained locomotion pooled across 11 or 

more animals for each case. ***p<0.001, Dunnett’s multiple comparison tests. (B) Data denote 

mean ± SEM of the normalized anterior curvature change in response to midbody constraint for 

wild type, mutants unc-31(e169), flp-1(yn4), flp-1(sy1599), npr-6(tm1497) and npr-6 mutants with 

npr-6 function rescued by transgenic expression in SMB neurons, and animals lacking SMB 

(ablation by caspase). Each data point is the mean of a 3 s period of constrained locomotion 

pooled across 12 or more animals for each case. ***p<0.001, ns: not significant, when compared 

with wild type, ###p<0.001 when compared with npr-6 mutants, Tukey-Kramer multiple comparison 

tests.  

(C-E) Schematic models for the mechanisms underlying the curvature compensatory response. 

(C) (Upper) An anatomical representation showing the relative positions of PDE (green), AVK 

(yellow), and SMB neurons (red) and their soma/processes within a worm body. (Lower) A zoom-

in representation proposing the underlying neuronal pathway for curvature compensation. 

Dopaminergic neurons PDE transduce the proprioceptive input from the midbody curvature 

perturbation and signal to AVK neurons via dopamine signaling through DOP-3 receptors. In the 

anterior region, the AVK neurons signal via FLP-1 neuropeptide to negatively regulate the head-

bending-suppressing motor neurons SMB via NPR-6 receptors. Since PDE negatively regulates 

AVK via dopamine, AVK negatively regulates SMB via FLP-1 peptides, and SMB negatively 

regulates head bending, perturbation to the midbody bending leads to a net negative regulatory 

effect on the anterior bending, as illustrated schematically in two separated scenarios (D and E). 

Red and blue colors indicate active and inhibited neuronal states, respectively. 
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 The AVK neurons, however, are interneurons which do not directly innervate muscles to drive 

body bending. To further probe the circuit underlying curvature compensation, we asked what 

downstream cells constitute the remaining pathway that directly affect the anterior body bending 

amplitude while being regulated by the upstream FLP-1 signaling from AVK. 

 Some clues provided by previous studies prompted us to speculate that SMB, a class of head 

motor neurons, might be such a candidate residing within the circuit: AVK synapses via both 

electrical and chemical couplings onto SMB (Hums et al., 2016; White et al., 1986), whose major 

function is regulating head and neck muscles and thus setting the overall amplitude of sinusoidal 

forward movement (Gray et al., 2005). Specifically, SMB activity is regulated by AVK-released 

FLP-1 signaling through the inhibitory receptor NPR-6 (Oranth et al., 2018). 

 Thus, we sought to determine the role of SMB as well as its peptide-regulated activity in 

mediating anterior bending amplitude during curvature compensation. First, we ablated SMB 

neurons by ICE expression, which led to deeply flexed head swings and a resulting significant 

increase in body bending amplitude (Gray et al., 2005). Despite having loopy sinusoidal 

movement, worms lacking SMBs showed a dramatically impaired curvature compensation (Fig. 

3.7B). Next, we examined npr-6(tm1497) mutants with and without the transgene that restores 

NPR-6 receptors in SMB neurons. We found that npr-6 mutants showed impaired curvature 

compensation, and that this phenotype was rescued by expressing NPR-6 receptors in SMBs in 

npr-6 mutants (Fig. 3.7B). These experiments support the instructive role of SMB motor neurons 

in curvature compensation, which is to modulate anterior bending amplitude under the regulation 

of AVK-released FLP-1 neuropeptide signaling. 

 Taken together, we have demonstrated that C. elegans uses proprioception to mediate 

homeostatic control of locomotor amplitude during forward movement. Our results support the 

following neural network for this motor control (Fig. 3.7C): (1) dopaminergic neurons PDE 
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transduce the proprioceptive input from the midbody curvature perturbation, and regulate AVK 

activity via dopamine/DOP-3 signaling. (2) Downstream of dopamine signaling, AVK mediates 

FLP-1 peptide signaling, through which SMB is negatively regulated via NPR-6 receptors. (3) the 

head motor neurons SMB, affected by FLP-1 signaling, directly modulates bending amplitude of 

the anterior region. 

CURVATURE COMPENSATION MECHANISM IS CONSISTENT WITH GAIT ADAPTATION OF 

BENDING AMPLITUDE IN RESPONSE TO MECHANICAL LOAD 

C. elegans can move through water or across moist substrates like agarose gels. At the scale of 

C. elegans size and speed, forces due to surface tension experienced by a crawling worm on the 

agar surface are 10,000-fold larger than forces due to viscosity experienced by a swimming worm 

in water (Sauvage, 2007). As a versatile limbless swimmer/crawler, C. elegans performs 

undulatory movements with appropriate kinematic patterns to propel itself adaptively through 

contexts with a wide range of mechanical load (Berri et al., 2009; Fang-Yen et al., 2010). Here we 

asked whether the curvature compensation mechanism contributes to this gait adaptation. 

 To do this, we measured worm undulatory parameters (frequency, wavelength, and curvature 

amplitude) in media of varying viscosities, using several core strains that we had examined for 

curvature compensation. 

 First, by immersing worms into solutions of five different viscosities ranging from 10 to 27,900 

mPa·s, we tested gait adaptions of wildtype animals and dop-3(vs106) mutants with and without 

transgenes expressing DOP-3 in AVK. For all these strains, increasing viscosity of the medium 

caused gait transitions from a swimming gait to a crawling gait, characterized by decreasing 

trends in frequency (Fig. S3.4A) and wavelength (Fig. S3.4B) and increasing trends in curvature 

amplitude (Fig. S3.4C). Despite the overall similarity in gait transition among the three strains, 

mutants dop-3(vs106) displayed a significantly higher curvature amplitude in comparison with wild 
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type in every tested medium, and this difference got restored in dop-3 mutants with transgenic 

expression AVK::dop-3 (Fig. S3.4C). 

 Next, besides the above three strains, we tested four additional strains by putting them in two 

intermediate viscous solutions (1390 and 9079 mPa·s), with a focus on their curvature amplitude 

during locomotion. The additional strains included transgenic worms expressing AVK::TeTx, 

mutants flp-1(sy1599), and mutants npr-6(tm1497) with and without transgenes expressing NPR-

6 in SMB. By comparing curvature amplitudes of locomotion in 1390 mPa·s solutions, we found 

strains defective in curvature compensation had a relatively higher curvature amplitude than 

strains showing normal curvature compensation (Fig. S3.4D). 

 To further compare gait adaptation between these strains, an index of curvature amplitude 

adaptation is provided by the difference between the curvature amplitudes in high (9079 mPa·s) 

and low (1390 mPa·s) viscous solutions divided by the curvature amplitude in the low viscous 

solution: (𝐾ℎ𝑖𝑔ℎ 𝑣𝑖𝑠 − 𝐾𝑙𝑜𝑤 𝑣𝑖𝑠)/𝐾𝑙𝑜𝑤 𝑣𝑖𝑠 (Fig. S3.4E). A greater index indicates higher plasticity of 

curvature amplitude modulation adapting to mechanical load. We found that strains defective in 

curvature compensation had a significantly smaller adaptation index in comparison with those 

who showed normal curvature compensation (Fig. S3.4E). 

 The above results implied a consistency between curvature compensation mechanism and 

gait adaptation of bending curvature: animals bearing defects in curvature compensation exhibit 

higher curvature amplitude but smaller plasticity of curvature amplitude modulation in response to 

mechanical load. 

 The proprioception-mediated curvature compensation mechanism provides an explanation 

for these observations. In low viscosities, a worm tends to have a large bending amplitude due to 

the relatively small constraint and curvature compensation then leads to a smaller anterior 
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bending amplitude. Since undulatory waves propagate posteriorly, this flattens out the overall 

amplitude of sinusoidal movement. In contrast, worms defective in curvature compensation lack 

this negative regulation of undulatory amplitude and thus tend to have a larger bending 

amplitude. 

 When shifting to a more viscous environment, a worm’s bending amplitude decreases due to 

a larger constraint it experiences. Curvature compensation leads to an increase in the anterior 

bending amplitude which counteracts the decreasing tendency. Worms with impaired curvature 

compensation, however, fail this feat and show a smaller change in curvature amplitude (i.e., a 

smaller adaptation index). 

METHODS 

Table 3.1. Key resources table for Chapter 3 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Bacterial and Virus Strains 

E. coli OP50 CGC OP50-1 

Chemicals, Peptides, and Recombinant Proteins 

All-trans retinal (ATR) Sigma-Aldrich Cat#R2500 

Dextran from Leuconostoc mesenteroides Sigma-Aldrich Cat#D5376 

Poly-dimethyl siloxane (PDMS) + curing agent Dow Corning SylGard 184 

Bovine Serum Albumin Sigma-Aldrich N/A 

Gibson Assembly Master Mix NEB N/A 

Experimental Models: Organisms/Strains 

qhIs1[Pmyo-3::NpHR::eCFP]; qhIs4[Pacr-2::wCherry] This paper YX148 

hpIs199[Pmyo-3::ChR2::eGFP] Zhen lab ZM5398 

mec-4(u253) CGC TU253 

mec-4(e1611) CGC CB1611 

mec-10(e1515) CGC CB1515 

del-1(ok150) CGC NC279 

unc-8(e15lb145) CGC MP145 

trp-4(sy695) CGC TQ296 

trpa-1(ok999) CGC TQ233 

unc-9(fc16); hpEx803[Prgef-1::unc-9cDNA + Podr-
1::GFP] 

Zhen lab ZM2509 

cat-2(e1112) CGC CB1112 

tph-1(n4622) CGC MT14984 

tdc-1(n3421) CGC MT10549 
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cat-2(e1112); qhIs1[Pmyo-3::NpHR::eCFP] This paper YX287 

cat-2(e1112); hpIs199[Pmyo-3::ChR2::eGFP] This paper YX289 

akEx387[dat-1::GFP; dat-1::ICE] Villu Maricq lab VM6365 

otIs181[Pdat-1::mCherry; ttx-3::mCherry]; 
maIs188[Pmir-288::GFP] 

Kang lab TV23560 

akEx387[dat-1::GFP; dat-1::ICE]; otIs181[Pdat-
1::mCherry; ttx-3::mCherry] 

This paper YX296 

egIs1[Pdat-1::GFP] CGC BZ555 

kyEx6101[Pdat-1::TeTx::sl2GFP] Bargmann lab YX297 

flvEx127[Pdat-1::GCaMP6m; Pmyo-3::mCherry] Flavell lab SWF331 

unc-54(e1092); flvEx127[Pdat-1::GCaMP6m; Pmyo-
3::mCherry] 

This paper YX298 

dop-1(vs101) CGC LX636 

dop-2(vs105) CGC LX702 

dop-3(vs106) CGC LX703 

dop-4(tm1392) CGC FG58 

dop-2(vs105); dop-1(vs100) CGC LX706 

dop-1(vs100); dop-3(vs106) CGC LX705 

dop-2(vs105); dop-3(vs106) CGC LX704 

dop-2(vs105); dop-1(vs100); dop-3(vs106) CGC LX734 

dop-3(vs106); qhIs1[Pmyo-3::NpHR::eCFP] This paper YX288 

dop-3(vs106); hpIs199[Pmyo-3::ChR2::eGFP] This paper YX290 

dop-3(vs106); qhEx263[Pser-2-prom3::dop-3(+) + 
Punc-47::GFP] 

This paper YX291 

dop-3(vs106); qhEx264[Punc-47::dop-3(+) + Punc-
47::GFP] 

This paper YX292 

dop-3(vs106); qhEx265[Pacr-2::dop-3(+) + Punc-
47::GFP] 

This paper YX293 

dop-3(vs106); qhEx266[Pmyo-3::dop-3(+) + Punc-
47::GFP] 

This paper YX294 

dop-3(vs106); qhEx267[Pacr-5::dop-3(+) + Punc-
47::GFP] 

This paper YX295 

goa-1(sa734) CGC JT734 

dgk-1(sy428) CGC JT748 

egl-10(md176) CGC MT8504 

gpb-2(sa603) CGC JT603 

egl-30(n686) CGC MT1434 

egl-8(md1971) CGC RM2221 

eat-16(ad702) CGC DA702 

dop-3(vs106); zxIs20[Pdat-1::ChR2(H134R)::mCherry; 
Pmyo-2::mCherry]; zxEx1063[Pflp-1(trc)::DOP-
3::SL2::GFP; Pmyo-3::CFP] 

Gottschalk lab ZX2201 

flp-1(yn-4) CGC NY16 

flp-1(sy1599) Ringstad lab PS8997 

flp-11(tm2706) CGC HBR507 

ynIs72[Pflp-1::GFP] CGC NY2072 

wzEx664[Pflp-1::TeTx; Pflp-1::mCherry] Ringstad lab FQ2747 

npr-6(tm1497) National F41E7.3 
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Bioresource 
Project for the 
Experimental 
Animal “Nematode 
C. elegans” 

npr-1(ky13) CGC CX4148 

zxIs29[Pflp-12::Cre; Podr-2(18)::LoxP::ICE; Pmyo-
2::mCherry] 

Gottschalk lab ZX3058 

npr-6(tm1497); zxEx850[Pflp-
12::LoxP::LacZ::STOP::LoxP::NPR-6::SL2::GFP; Podr-
2(18)::Cre] 

Gottschalk lab ZX2037 

Oligonucleotides 

Forward primer for amplifying dop-3 sequence 
(GCCAAAGGACCCAAAGGTATGTTTCG) 

Ringstad lab SAZ86 

Reverse primer for amplifying dop-3 sequence 
(CCGATCTTTCTTGCATCGTGCTCATC) 

Ringstad lab SAZ87 

Forward primer for inserting dop-3 sequence 
(GTTTGTCAAGAGTTTCGAGGACGG) 

Ringstad lab SAZ88 

Reverse primer for inserting dop-3 sequence 
(CAAGGGTCCTCCTGAAAATGTTCTAT) 

Ringstad lab SAZ89 

Recombinant DNA 

pDC50(unc-47::dop-3) [75 ng/µL] Koelle lab N/A 

pDC66(unc-47::GFP) [75 ng/µL] Koelle lab N/A 

pYX36(ser-2-prom3::dop-3) [75 ng/µL] This paper N/A 

pYX37(myo-3::dop-3) [75 ng/µL] This paper N/A 

pYX38(acr-2::dop-3) [75 ng/µL] This paper N/A 

pYX39(acr-5::dop-3) [75 ng/µL] This paper N/A 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Dr. Christopher Fang-Yen (chfan@seas.upenn.edu). 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

C. elegans were cultivated at 20°C on nematode growth media (NGM) plates seeded with 

Escherichia coli strain OP50 using standard methods (Sulston and Hodgkin, 1988). For 

optogenetic experiments, animals were cultivated in darkness on plates with OP50 containing 

800 µM all-trans retinal (ATR). All experiments were performed with 1-day-old adult 

hermaphrodites synchronized by hypochlorite bleaching.  

 Wild-type animals were Bristol strain N2. Transgenic strains for tissue-specific rescue of dop-

mailto:chfan@seas.upenn.edu
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3 function were generated by microinjection of a transgene of DNA clones and a fluorescent co-

injection marker (see Key resources table for Chapter 3 for plasmid concentrations). 

METHOD DETAILS 

MOLECULAR BIOLOGY 

pYX36(ser-2-prom3::dop-3), pYX37(myo-3::dop-3), pYX38(acr-2::dop-3), pYX39(acr-5::dop-3): 

Plasmid constructs are for tissue-specific expression of dop-3 function (Fig. 3.6J). The Pser-2-

prom3 (PVD), Pmyo-3 (body-wall muscles), Pacr-2 (cholinergic neurons), and Pacr-5 (B-type 

motor neurons) promoters are used for cell-specific expression, which were constructed from 

donor plasmids Pser2prom3::GFP (gift of Kang lab), Pmyo-3::RCaMP1h (made by Gottschalk 

lab), Pacr-2::GFP (gift of Koelle lab), and Pacr-5::Arch::GFP (gift of Takagi lab), respectively. dop-

3 gene sequence was amplified from pDC50(unc-47::dop-3) using primers SAZ86 and SAZ87. 

Constructs containing promoter sequences were amplified from the corresponding donor 

plasmids using primers SAZ88 and SAZ89. Reconstruction procedures were conducted using 

Gibson Assembly method (Gibson Assembly Master Mix, NEB). Resulting plasmids were verified 

by sequencing (ABI 3730XL sequencer, Penn Genomic Analysis Core). 

BEHAVIORAL ASSAYS 

Optogenetic Manipulation Experiments 

For experiments with optogenetic manipulation (Figs. 3.1C-G, 3.1S1, 3.2A-F, 3.4D-I, and 3.6C-

H), worms were prepared in a viscous solution [17% (by mass) dextran in NGM buffer; 120 

mPa·s in viscosity] confined within chambers formed by a microscope slide and a coverslip 

separated by 125-µm-thick polyester shims (9513K42, McMaster-Carr). 

 Optogenetic experiments were carried out on a Leica DMI4000B microscope coupled with a 

motorized stage (CTR4000, Leica). Image sequences were recorded at 40 Hz with a sCMOS 

camera (optiMOS, Photometrics) under 10X magnification (Leica Plan Fluotar; N.A., 0.30) with 
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dark field illumination provided by red LEDs. We used a custom-built optogenetic targeting 

system (Fouad et al., 2018) to perform spatially selective optogenetic manipulation on worm’s 

muscle activity during locomotion. To optogenetically inhibit or stimulate muscles, we used a 532-

nm solid-state laser (GL532T3-300, SLOC) with irradiance at 16 mW/mm2 or a 473-nm solid-state 

laser (BL473T3-150, SLOC) at 3.5 mW/mm2, respectively. 

 For optogenetic muscle inhibition (Figs. 3.1C-G, 3.1S1, 3.2F green data points, 3.4D-F, and 

3.6C-D) and stimulation (Figs. 3.2A-E, 3.2F blue data points, 3.4G-I, and 3.6F-H), we used wild-

type and mutant animals with body wall muscles expressing (via Pmyo-3) inhibitory opsin NpHR 

and excitatory opsin ChR2, respectively. During experiments, each individual animal was 

illuminated at the middle region (0.4-0.6 body coordinate; illuminating both sides for inhibition, 

dorsal side for stimulation) by a brief laser pulse (0.1 s duration, unless otherwise stated) 

repeated 10 times with 6 s interval between successive pulses. We used a custom-written C++ 

software (Fouad et al., 2018) to perform real-time identification of the worm with its boundary and 

centerline detected by gray level thresholding during image acquisition. The head-and-tail and 

dorsoventral orientations of a worm were noted visually during the recording. The calculated 

information was saved to disk along with the corresponding image sequences. Postprocessing of 

the behavioral data is discussed in later section. 

Microfluidic-Based Experiments 

Besides optogenetic experiments, other behavioral assays (Figs. 3.3B-E, 3.3S1, 3.4A-C, 3.4J-K, 

3.6A-B, 3.6I, 3.6K, 3.7A-B) were performed based on a custom-made microfluidic 

polydimethylsiloxane (PDMS) device fabricated using soft lithography techniques. Video 

sequences were recorded at 30 Hz with a 5-megapixel CMOS camera (DMK33GP031, The 

Imaging Source) and a C-mount lens (Nippon Kogaku NIKKOR-H; effective focal length, 28 mm) 

using IC Capture software (The Imaging Source). Red LED rings (outer size, 80 mm; Qasim) 
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surrounding the device provided dark field illumination. 

 As shown by the schematic in Fig. 3.3A, the microfluidic chamber consists of 2000-µm-wide 

open areas which are connected by two parallel narrow channels (60 µm x 200 µm). The 

microfluidic chamber was loaded with NGM buffer with 0.1% (by mass) bovine serum albumen 

(BSA) added to the solution to prevent worms from adhering to chamber surfaces or tubing. By 

using a 3-way luer valve (Cole-Parmer) and polyethylene tubing (Saint-Gobain), the worm 

chamber of the microfluidic device was connected in parallel to a 1-mL syringe and a reservoir 

containing NGM buffer. The tubing between the chamber and the syringe was mildly compressed 

by a screw-bolt unit where the spacing in between can be finely adjusted. 

 For microfluidic-based behavioral experiments, young adults were first transferred to food-

free NGM buffer for ~5 min to wash carried-over bacteria off the animals. Then animals were 

pipetted from the buffer into the inlet of the microfluidic chamber. To translate worms to the field 

of view (approximately 4 mm x 3 mm) for video recording, we used the syringe on the inlet to 

apply pressure and vacuum. For an individual animal within the field of view, behavior images 

were recorded for 3 minutes during which the worm alternating between constrained locomotion 

and free locomotion (as shown in Fig. 3.3A) with each mode lasting for ~30 s. The worm position 

within the chamber was manually controlled by slowly twisting the screw-bolt unit. Post-

acquisition behavioral quantification is discussed in the section below. 

BEHAVIORAL DATA QUANTIFICATION 

General Postprocessing 

Postprocessing of the behavioral data from the two experiments described above was performed 

using MATLAB custom software (MathWorks) similar to previous reports (Fouad et al., 2017; Ji et 

al., 2021c). With the worm centerline in each image smoothed via a cubic spline fit, the body 

curvature 𝜅 is calculated as the dot product of the unit normal vector to the centerline and the 
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derivative of the unit tangent vector along the centerline with respect to the body coordinate. The 

normalized curvature 𝐾 is the product of 𝜅 and the worm body length 𝐿 derived from the length of 

worm centerline. We excluded curvature in the anterior and posterior 5% body regions to avoid 

high frequency movements at the tips of the worm. The moving direction of a worm was 

determined by the gradients in the curvature over time and body coordinate, and image 

sequences during which the worm moved forward for at least 4 seconds were selected for 

analysis. The curvature dynamics of the anterior, middle, and posterior regions were defined as 

the average of the normalized curvature over 0.1-0.3, 0.4-0.6, and 0.7-0.9 body coordinates, 

respectively. 

 Although the method for calculating locomotor dynamics was shared for both experiments, 

the specific steps for quantifying the effects of optogenetic or microfluidic manipulations on worm 

undulatory amplitude were different due to the largely different durations of disturbances used in 

the two types of experiment. Detailed descriptions are presented below. 

Quantifying Optogenetic Behavioral Data 

To quantify the effect of optogenetic perturbations on worm undulatory amplitude, we calculated 

the curvature amplitude of the anterior and middle regions, respectively, around each trial of laser 

illumination. Regarding each body region, we used the MATLAB function findpeaks to identify 

local extrema along the time-varying curvature profiles (as shown in Figs. 3.1E and 3.2C). 

Around each illumination, |𝐾−1| denotes the absolute value of the last pre-illumination curvature 

peak which was used to define the baseline curvature amplitude; |𝐾+𝑛| denotes the absolute 

value of the 𝑛th post-illumination peak. The corresponding normalized curvature change, defined 

by Δ𝐾+𝑛/|𝐾−1| = (|𝐾+𝑛| − |𝐾−1|)/|𝐾−1|, was used to quantify the change in curvature amplitude 

induced by optogenetic perturbations as shown in Figs. 3.1G, 3.2E, 3.2F, 3.4F, 3.4I, 3.6E, and 

3.6H. 
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Quantifying Microfluidic Behavioral Data  

To quantify the effect of microfluidic-channel constraint on worm undulatory amplitude, the whole-

body curvature amplitude during constrained locomotion was computed and compared with 

curvature amplitude during free locomotion. 

 Regarding free locomotion, we analyzed worm locomotor dynamics to generate an averaged 

curvature amplitude profile as a function of body coordinate. To do that, we divided the worm 

body coordinate into 10 even sections from head to tail (starting from 0.05 to 0.95, as movements 

of the anterior and posterior 5% regions were omitted). For each individual section, we calculated 

the average of the normalized curvature over the body coordinate of the section for all periods of 

free locomotion. Local extrema along each time sequence of curvature were identified (via peak 

finding method), and the mean of the absolute value of these local extrema was defined as the 

curvature amplitude at the body coordinate defined by the mid-point of the section (e.g., 0.1 for 

section 0.05-0.15). After computing curvature amplitudes for the ten sections, the whole-body 

averaged curvature amplitude profile, 𝐴𝑓𝑟𝑒𝑒(𝑠), was obtained through a linear 1-D interpolation 

with 100 sample points of values computed across the worm body. 

 Regarding constrained locomotion, we first used a 3-second time window to divide video 

sequences of constrained movement into individual short sequences. Due to the unavoidable 

disturbances in controlling worm position by syringe pump, the body region being constrained 

could not consistently maintain in the middle and occasionally varied a lot. To record the relative 

position of the constraint with respect to the worm body (as shown by the gray lines in Fig. 3.3D), 

we manually marked the channel position in each image sequence by drawing a rectangle with its 

short sides aligned at the two limits of the channel, respectively. 

 To calculate normalized curvature change in response to mid-body constraint (Fig. 3.3E, 

3.3S1, 3.4C, 3.4J-K, 3.6A-B, 3.6I, 3.6K, and 3.7A-B), we only counted periods during which the 



102 

 

anterior and posterior limits of the narrow channel were consistently within 0.35-0.65 body 

coordinate, and denoted the corresponding curvature dynamics as 𝐾𝑐𝑜𝑛𝑠𝑡. We took the maximum 

value of |𝐾𝑐𝑜𝑛𝑠𝑡(𝑠, 𝑡)| in the direction of time for all qualified short periods and defined the resulting 

quantity, 𝐴𝑐𝑜𝑛𝑠𝑡(𝑠) = max𝑡 |𝐾𝑐𝑜𝑛𝑠𝑡(𝑠, 𝑡)|, as the curvature amplitude profile of individual periods. 

The normalized curvature change of an individual period is thus represented by 𝐴𝑐𝑜𝑛𝑠𝑡(𝑠)/

𝐴𝑓𝑟𝑒𝑒(𝑠) − 1. Additionally, the normalized anterior, mid-body, and posterior curvature changes of 

an individual period are 〈𝐴𝑐𝑜𝑛𝑠𝑡(𝑠)/𝐴𝑓𝑟𝑒𝑒(𝑠)〉|0.1
0.3 − 1, 〈𝐴𝑐𝑜𝑛𝑠𝑡(𝑠)/𝐴𝑓𝑟𝑒𝑒(𝑠)〉|0.4

0.6 − 1, and 

〈𝐴𝑐𝑜𝑛𝑠𝑡(𝑠)/𝐴𝑓𝑟𝑒𝑒(𝑠)〉|0.6
0.8 − 1, respectively (〈𝑋(𝑠)〉|𝑎

𝑏 denotes the average of 𝑋 in interval [a b]). 

LASER ABLATION OF NEURONS 

Cell ablation experiments (ablation of PDE or AVK neurons) were carried out with a custom-built 

thermal laser ablation system (Fouad et al., 2021) based on an inverted microscope (Nikon TE-

2000). Transgenic animals (Pdat-1::GFP for PDE ablation; Pflp-1::GFP for AVK ablation) at third 

larva stage were immobilized on 10% agar pads using 50 nm polystyrene beads and mounted on 

the microscope. The GFP-labeled somas of target neurons (PDE or AVK) were visualized under 

GFP fluorescence optics and illuminated with 1~2 laser pulses (1.5 ms in duration, 400 mW in 

power) through a 63X oil-immersion objective. After ablation, animals were transferred to a fresh 

OP50 plate to recover overnight. On the next day, the illuminated animals were mounted on the 

system again to run a double-check on the elimination of target neurons. Confirmed animals were 

transferred back to seeded plates to resume growth for an additional day until they turned young 

adults during behavioral assays. Mock-ablation groups were mounted on the system but not 

irradiated with the laser. 

PDE CALCIUM IMAGING IN MOVING OR PARALYZED ANIMALS 

For recording PDE Ca2+ activity in freely behaving animals (Figs. 3.5A-B), transgenic worms 

expressing GCaMP in PDE neurons (Pdat-1::GCaMP6m), after getting off carried-over bacteria, 
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were picked onto a 5% agar pad with a few microliters of NGM buffer, and covered with a #1.5 

cover glass, so that worms were between agar and cover glass. Worms moved relatively slower 

under this condition but still maintained normal body shape and locomotion. For recording PDE 

Ca2+ activity in paralyzed animals (Figs. 3.5C-D), unc-54(e1092) myosin heavy chain mutants 

expressing GCaMP in PDE neurons (Pdat-1::GCaMP6m) were loaded and restrained in a 

sinusoidal microfluidic channel which was filled with 17% (by mass) dextran solution. To induce 

varying body curvature, worm position within the channel was manually controlled by a syringe (1 

mL in volume) connected to polyethylene tubing on the inlet. 

 Ca2+ imaging of PDE in freely behaving worms and muscularly paralyzed worms was 

performed on a Leica DMI3000 B microscope equipped with a motorized stage (CTR3000, 

Leica). The GCaMP6m protein in the PDE neurons was excited by the broadband excitation light 

derived from Leica EL6000. Worm body was visualized under a red dark field illumination 

provided by a built-in halogen lamp (LH107/2, Leica). To support simultaneous recording of Ca2+ 

activity and worm movement, green fluorescence emission and red dark field illumination were 

collected through a Leica Plan Apo 10X objective (working distance, 1 mm; N.A., 0.40), separated 

by a dual-view beam splitter (DV2, Photometrics) with a CFP/GFP filter set, projected onto an 

EMCCD sensor (Cascade 1K, Photometrics). The unbinned image sequences were streamed at 

9 frames per second (fps) acquisition rate under 100 ms exposure time operated by 

MicroManager. Approximately 2 min of data were acquired for each animal. 

 Image sequences acquired in either of the worm preparations were processed offline using 

custom analysis routines. Briefly, each image in these sequences was split in half so that signals 

obtained through red and green channels were separated into individual sub-images. In the red 

sub-image sequences, each image was background-subtracted and thresholded to produce a 

binary image. The binary image sequences were used to quantify worm curvature dynamics 
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using similar methods as described above. With the computed curvature dynamics, the 

corresponding binary image sequences were computationally deformed from a worm shape into a 

skinny rectangle which provided a mask to crop out whole-body fluorescence signals from the 

green sub-image sequences. From the masked-out rectangular fluorescent images, regions of 

interest (ROIs) were selected on somas of the target neuron PDEs. GCaMP signals were 

measured as integrated fluorescence over the ROI, subtracted by a background value computed 

within each recording using a secondary ROI drawn around PDEs but lacking labeled neurons. 

To obtain normalized signals (Figs. 3.5B and 3.5D), the GCaMP values were subtracted and 

then divided by a baseline 𝐹0 value calculated per recording as the mean of the lowest 50% of 

GCaMP values. Image splitting, binarizing, and GCaMP signal extraction were conducted using 

software ImageJ. Curvature calculation and binary image deformation were performed using 

custom-written Python scripts (Ruba, Fang-Yen, unpublished). 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Each transgenic and mutant strains were tested in at least two different experiments done on two 

different days within a week, and compared to control experiments done in parallel on the same 

days. All quantification has been explained within relevant sections of Methods. Specification of 

all statistics analysis is reported in the figure legends. 

DATA AND SOFTWARE AVAILABILITY 

Raw data for all experiments and behavioral analyzing software will be available upon request. 
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CHAPTER 4: CONCLUSION AND FUTURE DIRECTIONS 

CONCLUSION 

I consolidated laboratory experiments and theoretical modelling in pursuit of a system- and 

circuit-level understanding of how C. elegans generates and modulates locomotion.  

 In Chapter 2, with the help of optogenetic perturbation, behavioral quantification, and 

computational modeling, I performed different levels of analyses which can be used to constrain 

the space of hypotheses being evaluated, allowing to construct higher-level principles and 

structures in a motor circuit model. The quantitative agreement between the model and 

experiments-importantly including the perturbation experiments-suggests forward locomotion in 

worms can be understood as being driven by a relaxation oscillator. The proposed model 

provides a ‘top-down’ framework for understanding the neural computations underlying the motor 

circuit, which can potentially be used to guide further experiments to address details.  

 In Chapter 3, through a combined effort of optogenetic, microfluidic manipulation, and 

systematic quantification of behavior, I characterized a homeostatic mechanism underlying C. 

elegans locomotion modulation in response to external postural perturbation. Using reverse 

genetic analysis, Ca2+ imaging, and neural ablation, I reveal a complete neural circuit responsible 

for this curvature compensatory behavior. This circuit involves a dopamine and neuropeptide 

signaling pathway, orchestrated by a set of sensory neurons, interneurons, and motor neurons. 

My findings demonstrates a unique mechanism where proprioception can work with dopamine 

and neuropeptide signaling to mediate homeostatic control of locomotion. 

FUTURE DIRECTIONS 

Following the current findings, the next steps of the research program could be divided into two 

parts. 
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IDENTIFY AND CHARACTERIZE NEURAL ELEMENTS CONVEYING PROPRIOCEPTIVE 

FUNCTIONS IN LOCOMOTORY RHYTHM GENERATION 

Highly quantitative and robust behavioral assays (as described by Methods in Chapter 2) will not 

only allow us to characterize and model the neuronal mechanisms that generate motor rhythms, 

but do enable us to identify critical neurons for regulating motor activities. 

 We will first identify and characterize the neural elements with the proprioceptive roles in 

locomotory rhythm generation proposed by Chapter 2. To do this task, we will conduct a 

behavioral screen on existing mutants to identify mutations that seem to be involved in the 

proprioceptive feedback detection and computation. Should any mutants show a defect in 

locomotory dynamics during our behavioral screening process, we will characterize their roles in 

the proprioception by confirming their site-of-action using cell-specific rescue and analyzing their 

effects on the Ca2+ response of specific neurons using Ca2+ imaging techniques. 

EXPLORE THRESHOLD-BASED SWITCHING MECHANISM PROPOSED IN OUR MODEL 

Next, we will explore the threshold-based switching mechanism proposed in our model. As 

indicated by the model, the proprioceptive feedback is defined as a linear combination of the total 

curvature of a body segment and its time derivative, and this factor is being compared with a pair 

of additive-inverse postural thresholds during muscle contractions. Therefore, two aspects 

concerning this hypothesis remain to be examined experimentally: (a) dependence of 

proprioceptive feedback on rate of change of curvature, (b) contributions of the threshold-based 

algorithms to the locomotory outputs. 

 To test the dependence of proprioceptive feedback on rate of change of curvature, I will 

examine Ca2+ dynamics in transgenic animals expressing the Ca2+ sensitive protein GCaMP 

selectively in motor neurons (head: SMD neurons, body: B-type neurons) of the motor circuit. We 

will place a worm in a pneumatic microfluidic device described in previous studies (Wen et al., 
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2012) where a segment of the worm is trapped in a channel flanked by two chambers. By 

pressurizing the chamber on one side while depressurizing the one on the other side, we will be 

able to manipulate the curvature of body segment in a controllable manner. Using this microfluidic 

setup, we will first systematically measure the Ca2+ signal of the neuron at different curvature 

values with the channel shape fixed at each measurement, and then measure the Ca2+ dynamics 

of the neuron while changing the channel curvature at a certain constant rate. In the experiments, 

we need to measure these neuronal activities concurrently with the changing curvatures. 

 For exploring how the threshold-based algorithms contribute to locomotory outputs, we will 

use some kind of non-depolarizing agents (need to explore further) that bind to the NMJ receptor 

as antagonists and leave fewer receptors for acetylcholine to bind (Bowman, 2006). Thus, the 

decrease in binding of acetylcholine will lead motor neuron transmission to the muscle to be less 

likely to occur and we assume this physiological effect to be conceptually equivalent to directly 

increasing the threshold value. We will then change the dosage of the drug to accomplish a range 

of effect from being mild to fully paralyzing the locomotion. Our behavioral analyzing system is 

highly automated and quantitative, so it is possible to obtain ample data from moving animals that 

are affected under different levels of paralysis (different proprioceptive thresholds). The choice of 

paralyzing locations can be various, such as the whole body or a specific side of body, which 

allows us to explore the threshold-based mechanism in a flexible way. 
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APPENDIX A: SUPPLEMENTAL FIGURES 

 

 

Figure S2.1. Phase portrait representations of the oscillatory bending dynamics for 

various body coordinates. 
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Figure S2.2. Normalized deviation to the normal cycle (the unperturbed oscillation) for the 

head oscillation of the perturbed worms.  

Individual dynamics were grouped into different bins by binning their initial amplitude at 𝑡 = 0. In 

the figure, each trace represents the collective amplitude dynamics of the corresponding group. 

Distance d is defined such that 𝑑 = −1 at the origin and 𝑑 = 0 on the limit cycle. The legend 

indicates initial amplitude range of each bin and the corresponding number of individual traces 

within the bin. 

 

 

Figure S2.3. The isochron map overlaid with the vector field for the worm’s head 

oscillation.  

On the isochron map, a point on the normal cycle (black trajectory) and all other points off the 

normal cycle that share the same color form a manifold representing states having an equal 
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phase (indicated by the color bar). On the vector field, an arrow represents the phase state 

(𝑑𝐾/𝑑𝑡, 𝑑(𝜉𝐾̇)/𝑑𝑡 ) which determines the time derivative of the state of a trajectory. Both maps 

were computed from the results of experiments with Pmyo-3::NpHR worms. 

 

 

Figure S2.4. Phase response curve of Pmyo-3::NpHR worms (ATR- control group). 

Each point represents a single illumination (0.1 s duration, 532 nm wavelength) of one worm. 

Filled area represents 95% confidence interval. Data collected from 414 trials using 116 worms. 
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Figure S2.5. Phase response curve of Pmyo-3::NpHR worms perturbed by a 0.055 s 

optogenetic muscle inhibition. 

Curve was obtained from 150 trials of transient inhibitions of head muscles using 115 worms. 

Each point represents a single illumination (0.055 s duration, 532 nm wavelength) of one worm. 

Filled area represents 95% confidence interval. 
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Figure S2.6. Phase response curves of Pmyo-3::NpHR worms induced by a 0.1 s 

optogenetic muscle inhibition, perturbed and measured at various body regions. 

Anterior = 0.1-0.3; middle = 0.4-0.6; posterior = 0.6-0.8 along the worm body. (Upper) Schematics 

illustrating the selected spatial regions for optogenetic inhibition (Green shaded area) and phase 

response analysis (dashed box).  

(A-C) PRCs induced by muscle inhibition of the anterior region (991 trials using 337 worms), 
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measured from (A) anterior, (B) middle, and (C) posterior regions, respectively.  

(D-F) PRCs induced by muscle inhibition of the middle region (687 trials using 276 worms), 

measured from (D) anterior, (E) middle, and (F) posterior regions, respectively.  

(G-I) PRCs induced by muscle inhibition of the posterior region (235 trials using 76 worms), 

measured from (G) anterior, (H) middle, and (I) posterior regions, respectively. For all the above 

plots, each point indicates a single illumination (0.1 s duration, 532 nm wavelength) of one worm. 

Experimental curves were obtained using a moving average along the x-axis with 0.16𝜋 in bin 

width. Filled area of each curve represents 95% confidence interval with respect to each bin of 

data points. 

 

 

Figure S2.7. Phase response curve of transgenic worms that express NpHR in all 

cholinergic neurons. 

Curve was obtained from 270 trials of transient inhibitions of cholinergic neurons in the head 

region using 135 worms. Each point represents a single illumination (0.055 s duration, 532 nm 

wavelength) of one worm. Filled area represents 95% confidence interval. 
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Figure S2.8. Phase response curve of transgenic worms that express Arch in the B-type 

motor neurons. 

Curve was obtained from 551 trials of transient inhibitions of the B-type motor neurons in the 

head region using 160 worms. Each point represents a single illumination (0.055 s duration, 532 

nm wavelength) of one worm. Filled area represents 95% confidence interval. 
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Figure S2.9. Phase response curve of transgenic worms that express NpHR in the body 

wall muscles but lack the GABA receptor for the D-type motor neurons. 

Curve was obtained from 259 trials of transient inhibitions of head muscles using 192 worms. 

Each point represents a single illumination (0.1 s duration, 532 nm wavelength) of one worm. 

Filled area represents 95% confidence interval. 

 

 

Figure S2.10. Bell-shaped function for modeling the optogenetic muscle inhibition (Eqn. 

S2.14).  

The curve models the degree of paralysis due to the optogenetic muscle inhibition as a function 

of time. Referring to Eqn. S2.14, the fractional variable 𝐻 describes the reduced proportion of 

muscle moment when a worm reaches maximal paralysis after illumination. 𝑟 describes the time 

of maximal paralysis with respect to the occurrence of illumination. 𝑝 determines the time interval 

during which the paralyzing degree exceeds 𝐻/2. 𝑞 and 𝑝 together determine the paralyzing rate. 



116 

 

 

 

Figure S2.11. Paralyzing effect analysis of muscle inhibitions induced by illumination on 

different sides of the worm’s head segment.  

(A) Spectra of paralyzing effects across all phases of illuminations, represented by absolute 

curvature |𝐾| of the head region. |𝐾| shown on y-axis is the value obtained 0.53𝜋 later in phase 

(or 0.3 s in time with respect to locomotion period 1.13 s) after the illumination phase 𝜙. The 

specific phase difference 0.53𝜋 (or 0.3 s time difference) was chosen for computing the 

paralyzing effects because a max paralysis is achieved at ~0.3 s after illumination as shown in 

Fig. 3B. Grey curve represents control ATR+ (no light) group (414 trials using 116 worms). Red 

curve represents ATR+ group with only ventral side being illuminated (373 trials using 176 

worms). Blue curve represents ATR+ group with only dorsal side being illuminated (576 trials 

using 242 worms). Black curve represents ATR+ group with both sides being illuminated (991 

trials using 337 worms). All curves were obtained using a moving average along the x-axis with 

0.4𝜋 in bin width and filled areas represent 95% confidence interval.  

(B) Average paralyzing effects during dorsal bend and ventral bend, represented by mean 
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absolute curvature 〈|𝐾|〉 averaged across range [0, 𝜋] (dorsal bend) and [𝜋, 2𝜋] (ventral bend), 

respectively. Colors indicate different conditions of experiment in the same way as in A. (***) 

indicates p<0.0005 using paired t test. 
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Figure S2.12. Performance of model oscillators: threshold-switch (column 1), van der Pol 

(column 2), Rayleigh (column 3), and Stuart-Landau (column 4).  

(A-D) Time-varying curvatures of the worm’s head region, measured from experiments (red, 5047 
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cycles using 116 worms) or produced by models (black). The four models match the experimental 

curvature with MSEs ≈ 0.18, 0.44, 0.18, and 0.39, respectively. (Inset table) 𝑈/𝑇0 (fraction of 

period of bending toward the ventral or dorsal directions) and 𝐷/𝑇0 (fraction of period of 

straightening toward a straight posture), for experiments or models, respectively.  

(E-H) Phase portrait graphs of the free-running dynamics shown in A-D, measured from 

experiments (red) or produced by models (black). Arrow indicates clockwise movement.  

(I-L) Phase plots showing each model perturbed (indicated by purple arrow) away from the stable 

limit cycle and then recovering toward the equilibrium.  

(M-P) Phase response curves with respect to both-side muscle inhibition, measured from 

experiments (blue, 991 trials using 337 worms) or produced by models (orange). Four models 

match the experimental PRC with MSE ≈ 0.12, 0.21, 0.37, and 0.72, respectively. 
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Figure S2.13. Phase response curves with respect to single-side muscle inhibition, 

simulated from model oscillators: threshold-switch (column 1), van der Pol (column 2), 

Rayleigh (column 3), and Stuart-Landau (column 4).  

(A-D) PRCs with respect to dorsal-side muscle inhibition, measured from experiments (blue, 576 

trials using 242 worms) or produced by models (orange).  

(E-H) PRCs with respect to ventral-side muscle inhibition, measured from experiments (blue, 373 

trials using 176 worms) or produced by models (orange). Filled areas of all experimental PRCs 

represent 95% confidence interval with respect to each bin of data points. 

 

 

Figure S3.1. Curvature modulation in response to optogenetic muscle inhibition at various 

body regions.  

(A-D) (Upper) Schematics denoting optogenetic muscle inhibition applied at head (A), neck (B), 

middle (C), posterior (D) regions of transgenic worms expressing Muscle::NpHR. h = head, t = 
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tail, d = dorsal, v = ventral. Regarding worm body regions, head = 0.05-0.25, neck = 0.2-0.4, 

middle = 0.4-0.6, posterior = 0.6-0.8 body coordinate. (Lower) Kymographs of mean absolute 

curvature around the 0.1 s inhibitions (green dashed box) in the indicated regions of worm body 

as shown by the corresponding schematics. 649 trials from 135 worms were used in (A); 466 

trials from 75 worms were used in (B); 1160 trials from 206 worms were used in (C); 467 trials 

from 76 worms were used in (D).  

(E-H) Undulatory amplitude change upon the transient optogenetic muscle inhibitions applied at 

indicated body regions, measured as mean ± SEM of the normalized curvature change of the first 

post-illumination curvature peak of various body regions from the head to the tail. Green bar 

indicates the 0.1 s laser illumination applied to the corresponding body region. Data for computing 

(E-H) were the same as used in (A-D), respectively. 
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Figure S3.2. Several mechanoreceptors, neuromodulators and receptors, and muscles are 

not required for curvature compensatory response.  

(A) Several mechanoreceptors do not contribute to curvature compensation. Data represent 

mean ± SEM of the normalized anterior curvature change in response to midbody constraint for 

DEG/ENaC channel mutants mec-4(u253), mec-4(e1611), mec-10(e1515), del-1(ok150), unc-

8(e15lb145), and TRP channel mutants trp-4(sy695), trpa-1(ok999). Each data point is the mean 

of a 3 s period of constrained locomotion pooled across 10 or more animals for each strain. ns: 

not significant when compared with wild type animals, Dunnett’s multiple comparison tests.  

(B) Signaling of several neuromodulators and gap junctions between muscle cells do not 

contribute to curvature compensation. Data represent mean ± SEM of the normalized anterior 
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curvature change in response to midbody constraint for tph-1(n4622), tdc-1(n3421), npr-1(ky13) 

mutants, and unc-9(fc16) mutants in which the UNC-9 innexin protein was rescued pan-

neuronally. TPH-1 encodes tryptophan hydroxylase which is required for serotonin synthesis. 

TDC-1 encodes tyrosine decarboxylase which is required for synthesizing tyramine or 

octopamine. The unc-9 rescued strain lacks gap junction only in muscle cells. Each data point is 

the mean of a 3 s period of constrained locomotion pooled across 10 or more animals for each 

strain. ns: not significant when compared with wild type animals, Dunnett’s multiple tests. 

 

 

Figure S3.3. Average correlations of PDE::GFP signal with body curvature (N = 15). 
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Figure S3.4. Curvature compensation mechanism is consistent with gait adaptation of 

bending amplitude in response to mechanical load.  

(A-C) Locomotory parameters in different viscous solutions, measured from wild-type animals, 

dop-3(vs106) mutants, and dop-3 mutants with dop-3 function rescued in AVK neurons. (A) Mean 

undulatory frequency; (B) mean undulatory wavelength scaled by worm body length L; (C) mean 

curvature amplitude of undulation, **p<0.01, ***p<0.001, ns: not significant compared with wild 

type, Tukey-Kramer multiple comparison tests.  

(D) Mean curvature amplitude of undulation in solutions of viscosity 1390 mPa·s, measured from 

the main strains used for studying curvature compensation. ***p<0.001 when compared with wild 

type, ###p<0.001 when compared with dop-3 mutants, §§§p<0.001 when compared with npr-6 

mutants, Tukey-Kramer multiple comparison tests.  

(E) An adaptation index was computed for each strain using the difference between the curvature 



125 

 

amplitudes in high (9079 mPa·s) and low (1390 mPa·s) viscous solutions divided by the curvature 

amplitude in the low viscous solution. ***p<0.001 when compared dop-3 mutants with wild-type 

animals. Under each viscosity condition, 10 or more animals were tested for each strain. 
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APPENDIX B: SOFTWARE CODE 

This appendix contains all the software code for data analyses described in Chapter 3. The 

original data and software files (along with compilation instructions) for Chapter 2 are available 

from an online repository (Ji et al., Dryad 2021: https://doi.org/10.5061/dryad.wwpzgmsk2).  

 The software for computing phase response curves (Chapter 2) was originally written by Dr. 

Anthony Fouad and revised by me. The Python scripts for analyzing worm posture during Ca2+ 

imaging (Chapter 3) were written by Dr. Andrew Ruba. The rest of software (Chapters 2 and 3) 

was entirely written by me.  

[In order to minimize number of pages, materials are displayed in two columns with the font size 

modulated]

AnalyzeTool_Poolmean.m 
% Worm shape analysis. This version is modified for 

analyzing data obtained 

% from worm locomotion on WormTunnel microfluidic chambers. 

% 

% First, periods during which a worm is undulating without 

constraint will be 

% collected and analyzed to generate a limit cycle for 

normal undulatory 

% dynamics (pool average). 

% 

% 

% Next, periods during which a worm is moving under 

constraint (usually at 

% the middle of body) will be collected and analyzed to 

generate phase 

% dynamics during those periods 

% Finally, combining the analyzed results from the above 

two steps, a 

% generalized compensatory factor kymogram will be 

generated in a 2D 

% heatmap form, which represents a function of time and 

body coordinate. 

% Also, information of the body portion that is being 

constrained will be 

% reflected on the kymogram. 

% 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% START 

MAIN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% 

clc; close all; clear 

  

global start_illum end_illum prefix pathname filename 

global conc fps pix_per_mm wormthreshold isie decim filsize 

spline_p initials 

  

wormlabel  = 1; 

pix_per_mm = 198.83; 

prefix; 

pathname; 

  

curvlim = 0.2; 

domovie = 1; 

issavefiles = 1; 

option1 = 'Yes (AVI only)'; 

option2 = 'Yes (MAT)'; 

  

button = length(questdlg('Load new 

data?','',option1,option2,'No', option1)); 

  

if button == length(option2) 

    disp('options2'); 

    [filename,pathname2] = uigetfile({'*.mat'}); 

    load([pathname2 filename]); 

elseif button == length(option1) 

    disp('option1'); 

    do_dialog = 1; 

    %% Identify and analyze control periods 

    if do_dialog 

        try 

            cd(pathname); 

        catch 

            pathname = pwd; 

        end 

         

        [filename,pathname]  = uigetfile('*.avi', 'Select 

File'); 

%         MATfname = ['All-' 'imm Normal.mat']; 

        MATfname = ['All-' filename(1:6) 'imm Normal.mat']; 

        load(fullfile(pathname, MATfname)); 

    end 

    %% Identify and analyze constrained periods 

    if do_dialog 

        vidObj = VideoReader(fullfile(pathname,filename)); 

        NumFrames = vidObj.NumFrames; 

        FPS       = vidObj.FrameRate; 

        NumFrames = vidObj.NumFrames; 

        fps       = vidObj.FrameRate; 

        if isempty(conc) 

            conc = 0; 

        end 

        if isempty(wormlabel) 

            wormlabel = 1; 

        end 

        if isempty(pix_per_mm) 

            pix_per_mm = 1; 

        end 

        if isempty(wormthreshold) 

            wormthreshold = 0.10; 

        end 

        if isempty(isie) 

            isie = [1, NumFrames]; 

        end 

https://doi.org/10.5061/dryad.wwpzgmsk2
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        if isempty(decim) 

            decim = 1; 

        end 

        if isempty(filsize) 

            filsize = 0.2; 

        end 

        if isempty(start_illum) 

            start_illum = 1; 

        end 

        if isempty(end_illum) 

            end_illum = 1; 

        end 

        if isempty(spline_p) 

            spline_p = 0.01; 

        end 

        if isempty(initials) 

            initials = {'JHF'}; 

        end 

        if isempty(initials) 

            initials = {'JHF'}; 

        end 

        fields={'conc','wormlabel', 'fps','pixels per 

mm','Worm image threshold',... 

            'istart/iend (use";"if multiple)', 'Decimation 

(1=none))',... 

            'Filter size / diameter', 

'start_illum','end_illum', ... 

            'spline fit parameter', 'Make movie?', 'Your 

initials', 'Save files?'}; 

        if exist('isie', 'var') 

            answer = inputdlg(fields, 'Cancel to clear 

previous', 1, ... 

                

{num2str(conc),num2str(wormlabel),num2str(fps),num2str(pix_

per_mm),num2str(wormthreshold),... 

                mat2str(isie), num2str(decim),... 

                

num2str(filsize),num2str(start_illum),num2str(end_illum), .

.. 

                num2str(spline_p), num2str(domovie), 

initials{1}, num2str(issavefiles)}); 

        else 

            answer = inputdlg(fields, '', 1); 

        end 

         

        if isempty(answer) 

            pause; 

        end 

         

        conc = str2double(answer{1}); 

        wormlabel = str2double(answer{2}); 

        fps = str2double(answer{3}); 

        pix_per_mm = str2double(answer{4}); 

        wormthreshold = str2double(answer{5}); 

        isie = Str2Mat(answer{6}); 

        decim = str2double(answer{7}); 

        filsize = str2double(answer{8}); 

        start_illum = str2double(answer{9}); 

        end_illum = str2double(answer{10}); 

        spline_p = str2double(answer{11}); 

        domovie = str2double(answer{12}); 

        initials = answer(13); 

        issavefiles = str2double(answer{14}); 

    end 

    

    nperiods    = size(isie, 1); 

    curv_const  = cell(nperiods, 1); 

    angle_const = cell(nperiods, 1); 

    len_const   = cell(nperiods, 1); 

    rgn_const   = cell(nperiods, 1); 

    fullnewdirname = cell(nperiods, 1); 

    w_diam      = cell(nperiods, 1); 

    %  Compute undulatory variables for constrained groups 

    for kk = 1 : nperiods 

        do_const = 1; 

        thisperiod = isie(kk, :); 

        options = {conc, wormlabel, fps, pix_per_mm, 

wormthreshold,... 

                   thisperiod, decim, filsize, start_illum, 

end_illum,... 

                   spline_p, domovie, initials, pathname, 

filename, do_const, issavefiles}; 

        [curv_const{kk}, ~, angle_const{kk}, len_const{kk}, 

rgn_const{kk}, fullnewdirname{kk}, w_diam{kk}]... 

            = WORMSHAPE_MAINCALCULATION(vidObj, options); 

    end 

    close all 

end 

%% Calculate the average normal phase plot from control 

groups 

[Kc_all, dKdtc_all, Kp_data, dKdtp_data, T0_avg]... 

    = Generalized_cfactor_for_microfluidics(CURV_all, 

curv_const, fps); 

% Determining control variables for normalizing phase 

states at each time 

% point and body coordinate 

numtrials = numel(Kp_data); 

numsamplepts = 100; 

numcurvpts   = 100; 

a  = .15; c = a * T0_avg; 

Zc = Kc_all + 1i*c*dKdtc_all; 

Pc = unwrap(angle(Zc), [], 2); 

[~, Sc] = meshgrid(1:numsamplepts, 1:numcurvpts); 

% Generate interpolant (in a bulk manner) 

FR = scatteredInterpolant(Pc(:), Sc(:), Zc(:), 'linear', 

'nearest'); 

% Constrcting complex curvature dynamics for pulsed group 

CR = cell(numtrials,1); 

for i = 1 : numtrials 

    Kp     = Kp_data{i}; 

    dKdtp  = dKdtp_data{i}; 

    Zp     = Kp + 1i*c*dKdtp; 

    Pp_ori = angle(Zp); % do not use unwrap 

    Pp1d   = Pp_ori(:); 

    Pp1d(Pp1d>0) = Pp1d(Pp1d>0) - 2*pi; 

    Pp = reshape(Pp1d, size(Pp_ori)); 

    [~, Sp] = meshgrid(1:size(Pp,2), 1:size(Pp,1)); 

    Rp = abs(Zp); 

    Zc4p1d = FR(Pp(:), Sp(:)); 

    Zc4p = reshape(Zc4p1d, size(Pp)); 

    Rc4p = abs(Zc4p); 

    CR{i}   = (Rp) ./ Rc4p;     

end 

%%  Plotting data 

issave = 1; 

path4save = pathname; 

fname  = strrep(filename, '_bkgsubtracted.avi', ''); 

%% 3-D phase portrait plot of normal undulation 

figure(1); clf 

numsamplepts = 100; 

numcurvpts   = 100; 

curvrgn_analysis = 1 : numcurvpts; 

TX_mesh = meshgrid(1 : numsamplepts, curvrgn_analysis); 

hold on 

plot3(Kc_all', dKdtc_all', TX_mesh)  % isosegmental line 

plot3(Kc_all,  dKdtc_all,  TX_mesh') % isophasic line 

hold off 

view([30,30]) 

xl = xlim; 

yl = ylim; 

zlim([5 95]) 

xlabel('K') 

ylabel('dKdt') 

zlabel('Body coordinate') 

set(gca, 'FontSize', 12, 'Position', 

[0.13,0.11,0.775,0.815]) 

  

%% GUI with interactive response-plot updates for phase 

portrait plots 

s  = 30; 

f  = figure(2); clf 

ax = axes('Parent',f,'position',[0.2 0.25  0.65 0.65], 

'PlotBoxAspectRatio', [1,0.81,0.75]); 

faseplot2  = @(ax, s) phasePlot2(curvrgn_analysis, Kc_all', 

dKdtc_all', s, ax, xl, yl); 

faseplot2(ax, s); 

b = 

uicontrol('Parent',f,'Style','slider','Position',[81,34,419

,23],... 

              'value',s, 'min',5, 'max',95); 

bgcolor = f.Color; 

uicontrol('Parent',f,'Style','text','FontSize',12,'Position

',[45,37,30,20],... 

                'String','Head','BackgroundColor',bgcolor); 

uicontrol('Parent',f,'Style','text','FontSize',12,'Position

',[505,37,30,20],... 

                'String','Tail','BackgroundColor',bgcolor); 

uicontrol('Parent',f,'Style','text','FontSize',12,'Position

',[240,10,100,23],... 

                'String','Body 

coordinate','BackgroundColor',bgcolor); 

             

b.Callback = @(es,ed) faseplot2(ax, es.Value); 

  

%% Cfactor as a function of time and body coordinate 

(averaged over trials) 

% customCMap = hsvCustomCMap(CR{1}); 

for i = 1 : numtrials 

    thisCR   = CR{i}; 

    thiscurv = curv_const{i}; 

    thisrgn  = rgn_const{i}; 

    t = (0 : size(thisCR, 2)-1)/fps; 

    figure(2+2*i-1);clf; 

    set(gcf, 'Position',[118,366,542,506]) 

    imagesc(curvrgn_analysis, t, thisCR') 

    hold on 
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        B = bwboundaries(thisrgn, 'noholes'); 

        for jj = 1 : numel(B) 

            B1 = B{jj}; 

            patch(B1(:,2), B1(:,1)/fps, 'red', 

'FaceColor','none', 'EdgeColor','r', 

'LineStyle',':','LineWidth',2) 

        end 

    hold off 

    xlabel('Body coordinate (0=head)') 

    ylabel('Time (sec)') 

    set(gca,'FontSize',20) 

    colormap('jet') 

    cb = colorbar('AxisLocation','out'); 

    ylabel(cb, 'Cfactor') 

    if issave 

        saveas(gcf, [fullfile(path4save, fname) '_cfactor x 

t' sprintf('%d',i) '.fig']) 

        saveas(gcf, [fullfile(path4save, fname) '_cfactor x 

t' sprintf('%d',i) '.png']) 

    end 

    figure(2+2*i);clf; 

    set(gcf, 'Position',[118,366,500,500]) 

    imagesc(curvrgn_analysis, t, thiscurv) 

    hold on 

        B = bwboundaries(thisrgn, 'noholes'); 

        for jj = 1 : numel(B) 

            B1 = B{jj}; 

            patch(B1(:,2), B1(:,1)/fps, 'red', 

'FaceColor','none', 'EdgeColor','r', 

'LineStyle',':','LineWidth',2) 

        end 

    hold off 

    xlabel('Body coordinate (0=head)') 

    ylabel('Time (sec)') 

    set(gca,'FontSize',20) 

    colormap(cmap_redblue(.7)) 

    cb = colorbar('AxisLocation','out'); 

    ylabel(cb, 'Curvature') 

    if issave 

        saveas(gcf, [fullfile(path4save, fname) '_curv x t' 

sprintf('%d',i) '.fig']) 

        saveas(gcf, [fullfile(path4save, fname) '_curv x t' 

sprintf('%d',i) '.png']) 

    end 

end 

if issave 

        save([fullfile(path4save, fname) '_data.mat'], 

'len_const', 'rgn_const', 'Kp_data', 'dKdtp_data','CR', 

'w_diam', 'fps') 

end 

 

Anterior_K_analysis.m 
N = numel(CURV_all); 

t0 = 3; 

T0 = t0 * fps; 

curv_rgn = 10:30; 

Kmax = []; 

for i = 1 : N 

    curv = CURV_all{i}; 

    v = mean(curv(:,curv_rgn),2); 

    T = numel(v); 

    num_subperiod = floor(T/T0); 

    for j = 1 : num_subperiod 

        win = (1 + (j-1)*T0):(j * T0); 

        kmax = max(abs(v(win))); 

        Kmax = cat(1, Kmax, kmax); 

    end 

end 

  

K = mean(Kmax); 

K_SEM = std(Kmax)/sqrt(N); 

 
Background_subtraction.m 
% p = { 

%      '/Volumes/HF_BACKUP/Compensatory experiment-

Microfluidic/N2_70um' 

%     }; 

% nformat = '*.avi'; 

% %% process in group 

% for i = 1:numel(p) 

%     listing = dir(fullfile(p{i}, nformat)); 

%     numvideo = numel(listing); 

%     for j = 1 : numvideo 

%         fprintf('Processing folder %d of %d, video %d 

of %d\n', i, numel(p), j, numvideo) 

%         BkgSubtraction_Output(listing(j).name, p{i}); 

%     end 

% end 

  

%% process individual 

p = { 

      'C:\Users\fffei\Desktop\data to be transferred to 

Main drive\FQ2747_60um_3-27-2022';... 

    };     

  

for n = 1 : numel(p) 

    fprintf('Exps %d out of %d\n', n, numel(p)) 

    Dir = dir(p{n}); 

    for ii = 1 : numel(Dir) 

        fname = Dir(ii).name; 

        if fname(1) == '.' 

            continue 

        end 

        BkgSubtraction_Output(fname, p{n}, 'd'); 

    end 

end 

 
BkgSubtraction_Output.m 
function BkgSubtraction_Output(filename, pathname, 

fieldmode) 

% Load video 

newfilename = 

[erase(filename,'.avi'),'_bkgsubtracted','.avi']; 

  

vidObj = VideoReader(fullfile(pathname,filename)); 

vidWidth = vidObj.Width; 

vidHeight = vidObj.Height; 

numFrames = ceil(vidObj.Duration * vidObj.FrameRate); 

  

k = 1; 

% Generate the background 

numSamples = 1800; 

while k <= numSamples 

    if ~hasFrame(vidObj) 

        break 

    end 

    currentFrame = double(readFrame(vidObj)); 

    if k == 1 

        background = currentFrame; 

    else 

        %         fprintf('%d\n',k) 

        %         background = ((k-1)*background + 

currentFrame)/k; 

        if fieldmode == 'd' % if dark-field 

            background = min(background, currentFrame); 

        elseif fieldmode == 'b' % if bright-field 

            background = max(background, currentFrame); 

        end 

    end 

    k = k + 1; 

end 

if vidObj.VideoFormat(1) == 'R' 

    background = uint8(mean(background, 3)); 

else 

    background = uint8(background); 

end 

vidObj.CurrentTime = 0; 

bkgname = fullfile(pathname,[erase(filename,'.avi') 

'_background.bmp']); 

imwrite(background, bkgname); 

% imgbkg = imread(bkgname); 

% figure(1); clf 

% image(imgbkg); colormap('gray') 

% set(gcf, 'Position', [1892,170,1327,1027]) 

% answer = length(questdlg('Need to modify background 

image?', 'BKG modification', 'Yes', 'No', 'No')); 

% if answer == 2 

%     close; 

% elseif answer == 3 

%     hold on; 

%     title('Indicate ROI to be modified'); 

%     [bw1, xi1, yi1] = roipoly; 

%     patch(xi1, yi1, 'g', 'FaceColor', 

'none','EdgeColor','g', 'LineStyle',':') 

%     title('Indicate ROI as substitute'); 

%     [bw2, xi2, yi2] = roipoly; 

%     patch(xi2, yi2, 'g', 'FaceColor', 

'none','EdgeColor','r', 'LineStyle',':') 

%     % replace the pixel colors of ROI1 with the average 

color from ROI2 

%     tmp = uint8(mean(imgbkg(bw2),'all')); 

%     background(bw1) = tmp; 

%     % rewrite the modified image and then save it 

%     imwrite(background, bkgname); 

%     close; 

% end 

% Background subtraction and create a new video 

k = 1; 

v = VideoWriter(fullfile(pathname,newfilename),'Grayscale 

AVI'); 

v.FrameRate = vidObj.FrameRate; 

open(v) 

tic 

while hasFrame(vidObj) 

    currentFrame = readFrame(vidObj); 

    if vidObj.VideoFormat(1) == 'R' 
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        currentFrame = uint8(mean(currentFrame, 3)); 

    end 

    if fieldmode == 'd' % if dark-field 

        newFrame = currentFrame - background; 

    elseif fieldmode == 'b' % if bright-field 

        newFrame = background - currentFrame; 

    end 

    writeVideo(v,newFrame); 

    k = k + 1; 

    if k == floor(0.33 * numFrames) 

        tmp = toc; 

        tmp = round(tmp/60); 

        fprintf('33%% complete, %d minutes passed\n',tmp) 

    elseif k == floor(0.67 * numFrames) 

        tmp = toc; 

        tmp = round(tmp/60); 

        fprintf('66%% complete, %d minutes passed\n',tmp) 

    end 

end 

tmp = toc; 

tmp = round(tmp/60); 

fprintf('100%% complete, %d minutes passed\n',tmp) 

close(v); 

  

end 

 
Do_collect_strains_info_beeswarm.m 
clear; close all; clc 

Parentdir = 'F:\Compensatory experiments\Combined_data'; 

P_all = { 

         'Combined_N2',     'N2';... 

%          'Combined_N2_50mM DA', 'N2+DA bath';... 

%          'Combined_CB1112', 'cat-2';... 

%          'Combined_CB1112_DAADAB', 'cat-2+DA bath';... 

%          'Combined_PVD-ChR2_light-off',  'dop-1';... 

%          'Combined_LX636',  'dop-1';... 

%          'Combined_LX702',  'dop-2';... 

%          'Combined_LX703',  'dop-3';... 

%          'Combined_LX703_NOADAB', 'dop-3+DA bath';... 

%          'Combined_FG58',   'dop-4';... 

%          'Combined_LX706',  'dop-1/2';... 

%          'Combined_LX705',  'dop-1/3';... 

%          'Combined_CB156',  'dop-2/3';... 

%          'Combined_RB1657',  'dop-1/2/3';... 

%          'Combined_RM2702', 'dat-1';... 

%          'Combined_CB1112_NOADAB', 'cat-2(single DA)';... 

%          'Combined_LX703_unc-47_rescue', 'dop-3;Punc-

47::dop-3(+)';... 

%          'Combined_LX703_ser-2_rescue', 'dop-3;PVD::dop-

3(+)';... 

%          'Combined_LX703_myo-3_rescue', 'dop-

3;Muscle::dop-3(+)' 

%          'Combined_LX703_acr-2_rescue', 'dop-3;Pacr-

2::dop-3(+)';... 

%          'Combined_LX703_acr-5_rescue', 'dop-3;Pacr-

5::dop-3(+)';... 

%          'Combined_ZX2201', 'dop-3;AVK::dop-3(+)';... 

%          'Combined_KP2018'  'egl-21';... 

%          'Combined_MT1219'  'egl-3';... 

%          'Combined_CB156',  'unc-25';... 

%          'Combined_CB382',  'unc-49';... 

%          'Combined_CB678',  'lon-2';... 

%          'Combined_KHK641', 'trp-1/2';... 

%          'Combined_MT6308', 'eat-4';... 

%          'Combined_RB1657', 'hpo-30';... 

%          'Combined_NC279',  'Mock-ablated';... 

%          'Combined_VM6365', 'ADE+CEP-ablated' 

%          'Combined_PDE_killed', 'PDE-ablated';... 

%          'Combined_LX645', 'PDE-ablated in DA';... 

%          'Combined_PDE-TeTx', 'Pdat-1::TeTx';... 

%          'Combined_PDE-TeTx_DA', 'Pdat-1::TeTx in DA';... 

%          'Combined_TV19861','dma-1;PVD::dma-1';... 

%          'Combined_PVD-HisCl_soak30min_15mM', 

'PVD::HisCl1(+) medium';... 

%          'Combined_PVD-HisCl_soak30min_20mM', 

'PVD::HisCl1(+) high';... 

%          'Combined_ZX819_off', 'PVD::ChR2(+) light-';... 

%          'Combined_ZX819_on', 'PVD::ChR2(+) light+';... 

%          'Combined_JT734','goa-1';... 

%          'Combined_KP1087','dgk-1';... 

%          'Combined_TQ296', 'egl-10';... 

%          'Combined_MT1093', 'gpb-2';... 

%          'Combined_ZX819_off', 'egl-30';... 

%          'Combined_ZX819_on','egl-8';... 

%          'Combined_VM6365_2','egl-16';... 

          'Combined_CB169', 'unc-31';... 

          'Combined_NY16', 'flp-1(yn4)';... 

          'Combined_FQ2747', 'flp-1(sy1599)';... 

%           'Combined_AVK mock-ablation', 'Mock 

ablation';... 

%           'Combined_AVK-ablation', 'AVK-ablated';... 

%           'Combined_FQ2747', 'AVK::TeTx';... 

          'Combined_RB1657', 'npr-6';... 

          'Combined_ZX2037', 'npr-6;SMB::npr-6(+)';... 

          'Combined_ZX3058', 'SMB::ICE';... 

%           'Combined_YX139',  'unc-9 (rescued in 

neurons)';... 

%           'Combined_MT14984', 'tph-1';... 

%           'Combined_MT13113', 'tdc-1';... 

%           'Combined_HBR507', 'flp-11';... 

%           'Combined_CX4148', 'npr-1';... 

%           'Combined_TU253',  'mec-4';... 

%           'Combined_CB1611', 'mec-4(d)';... 

%           'Combined_CB1515', 'mec-10';... 

%           'Combined_CB1338', 'mec-3';... 

%           'Combined_PVD-HisCl_soak30min_15mM',  'del-

1';... 

%           'Combined_PVD-HisCl_soak10min_10mM',  'unc-

8';... 

%           'Combined_TQ296',  'trp-4';... 

%           'Combined_RB1052', 'trpa-1';... 

           

         }; 

N_strains = size(P_all,1); 

Genonames = cell(1, N_strains); 

Y = cell(1, N_strains); 

Ya = cell(1, N_strains); 

Ym = cell(1, N_strains); 

Yp = cell(1, N_strains); 

F_bar = zeros(size(Y)); 

X_bar = 1 : N_strains; 

F_err = zeros(size(Y)); 

H2one = zeros(size(Y)); 

Pvals2one = zeros(size(Y)); 

H2wt = zeros(size(Y)); 

Pvals2wt = zeros(size(Y)); 

for i = 1:N_strains 

    fprintf('Strain %d out of %d', i, N_strains) 

    Genonames{i} = P_all{i,2}; 

    pathname = fullfile(Parentdir, P_all{i,1}); 

    % all subfolders 

    subfolderlist = dir(fullfile(pathname, '*_dir')); 

    N_subfolder = size(subfolderlist, 1); 

    for j = 1 : N_subfolder 

        subfoldername = fullfile(subfolderlist(j).folder, 

subfolderlist(j).name); 

        ctrlfile = dir(fullfile(subfoldername, 

'All*.mat')); 

        ctrlfilename = ctrlfile.name; 

        t1 = 3; 

        [Q_anterior, Q_immobile, Q_posterior] = 

PostProcessing_cfactor_statistic_auto(ctrlfilename, 

subfoldername, t1); 

        Ya{i} = cat(1, Ya{i}, Q_anterior-1); 

        Ym{i} = cat(1, Ym{i}, Q_immobile-1); 

        Yp{i} = cat(1, Yp{i}, Q_posterior-1); 

        Q_anterior(isnan(Q_anterior)) = []; 

        Y{i} = cat(1, Y{i}, Q_anterior-1); 

    end 

end 

% %% Plot scatter plot to show the relationship between 

anterior and immobile 

% figure(1) 

% for i = 1 : N_strains 

%     subplot(5, 5, i) 

%     ya = Ya{i}; 

%     ym = Ym{i}; 

%     todel = any(cat(2,isnan(ym),isnan(ya)), 2); 

%     ym(todel) = []; 

%     ya(todel) = []; 

%     scatter(ym, ya, 36, 'k', 'filled') 

%     p = polyfit(ym, ya, 1); 

%     Yafit = polyval(p, ym); 

%     Yares = ya - Yafit; 

%     SSres = sum(Yares.^2); 

%     SStot = (length(ya)-1) * var(ya); 

%     rsqrt = sqrt(1 - SSres/SStot); 

%     hold on 

%     fplot(@(x) polyval(p,x), [min(ym) max(ym)], 'r') 

%     hold off 

%     xlabel('M') 

%     ylabel('A') 

%     title([Genonames{i} sprintf('  (R = %.4f)', rsqrt)]) 

%     xlim([.4 2]) 

%     ylim([.4 2]) 

% end 

  

%% Plot bargraph for all strains with normalized amplitudes 

comparing with 1 

X1 = []; 

Ymean = zeros(1, N_strains); 

for i = 1 : N_strains 

    Ymean(i) = mean(Y{i}); 

end 

I = 1 : N_strains; 

% [~, I] = sort(Ymean, 'descend'); 
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Y_sort = Y(I'); 

Genonames_sort = Genonames(I'); 

for i = 1 : N_strains 

    X1 = cat(1, X1, i*ones([numel(Y_sort{i}) 1])); 

end 

% figure(2) 

% for i = 1:numel(X) 

%     x = X{i}; 

%     y = Y{i}; 

%     F_bar(i) = mean(y); 

%     F_err(i) = std(y)./sqrt(numel(x)); 

%     [H2one(i), Pvals2one(i)] = ttest(y, 1, 'Tail', 

'right'); 

%     hold on 

%     scatter(x, y, 10, 'b','filled') 

%     txt = num2str(Pvals2one(i), '%.1e'); 

%     if H2one(i) == 0 

%         text(X_bar(i), .25,txt, 'HorizontalAlignment', 

'center', 'Color', 'r') 

%     else 

%         text(X_bar(i), .25,txt, 'HorizontalAlignment', 

'center', 'Color', 'k') 

%     end 

%     hold off 

% end 

%  

% figure(2); hold on 

% bar(X_bar, F_bar, 'FaceColor', 'none', 'LineWidth', 2) 

% errorbar(X_bar, F_bar, F_err, 'LineStyle', 'none', 

'Color', 'k', 'LineWidth',1.5) 

% hold off 

%  

% hold on 

% line([0 N_strains+1],[1 1], 'Color', 'red', 'LineStyle', 

'--', 'LineWidth', 1) 

% hold off 

% ylim([0 2.5]) 

% xticks(X_bar) 

% xticklabels(Genonames) 

% ylabel('Normalized amplitude (|K|)') 

% title('Comparison with 1 (one-tail one-sample t test)') 

% set(gcf, 'Position', [740,220,530,498]) 

% set(gca, 'FontSize', 15) 

% set(gca, 'XTickLabelRotation', 45) 

%% Plot bargraph for all strains with normalized amplitudes 

comparing with wt 

Y1 = []; 

for i = 1:numel(Y_sort) 

    Y1 = cat(1, Y1, Y_sort{i}); 

    [H2wt(i), Pvals2wt(i)] = ttest2(Y_sort{1}, Y_sort{i}, 

'Tail', 'both'); 

%     [H2wt(i), Pvals2wt(i)] = ttest2(y, Y{1}, 'Tail', 

'both'); 

%     hold on 

%     if i~= 1 

%         txt = num2str(Pvals2wt(i), '%.1e'); 

%         if H2wt(i) == 1 

%             text(X_bar(i), .25,txt, 

'HorizontalAlignment', 'center', 'Color', 'r') 

%         else 

%             text(X_bar(i), .25,txt, 

'HorizontalAlignment', 'center', 'Color', 'k') 

%         end 

%     end 

%     hold off 

end 

  

figure(5);clf 

beeswarm(X1,Y1,'sort_style','hex','dot_size',.5,'overlay_st

yle','ci','corral_style','omit'); 

% ylim([-0.5 1.5]) 

% xlim([0.3 3.7]) 

xticks(X_bar) 

xticklabels(Genonames_sort) 

ylabel(sprintf('Normalized anterior\n curvature change')) 

% title('Comparison with wildtype (two-tail two-sample t 

test)') 

set(gcf,'Position', [69,291,1200,400]) 

set(gca,'FontName','Arial','FontSize',20) 

set(gca, 'XTickLabelRotation', 0) 

%% Fit linear model with continuous factors (constrained 

curvature change) and categorical factors (strain types) 

for i = 1 : N_strains 

    Genotype = Genonames{i}; 

    ya = Ya{i}; 

    ym = Ym{i}; 

    todelete = any([isnan(ya), isnan(ym)],2); 

    ya(todelete) = []; 

    ym(todelete) = []; 

    N_trials = numel(ya); 

    for j = 1 : N_trials 

        Trial_info = {Genotype, ym(j), ya(j)}; 

        if i==1 && j==1 

            T_exp = table(categorical({Genotype}), 

double(ym(j)), double(ya(j)), ... 

                'VariableNames',{'Genotype', 'Curv_imm', 

'Curv_ant'}); 

        else 

            T_exp = [T_exp; Trial_info]; 

        end 

    end 

end 

  

mdl = fitlm(T_exp, 'ResponseVar', 'Curv_ant',... 

            'PredictorVars', {'Genotype', 'Curv_imm'},... 

            'CategoricalVars', {'Genotype'}) 

% writetable(mdl.Coefficients,'F:\Compensatory 

experiments\Collective Results\fitLM.xls','Sheet',1) 

rownames = mdl.CoefficientNames'; 

% % %% Fit linear model with continuous factors 

(constrained curvature change) and categorical factors 

(strain types) with full indicator variables 

% % Genotypes_all = T_exp{:,1}; 

% % temp_Genotypes= dummyvar(categorical(Genotypes_all)); 

% % N2      = temp_Genotypes(:,1); 

% % dop_1   = temp_Genotypes(:,2); 

% % dop_2   = temp_Genotypes(:,3); 

% % dop_3   = temp_Genotypes(:,4); 

% % dop_4   = temp_Genotypes(:,5); 

% % dop_12  = temp_Genotypes(:,6); 

% % dop_13  = temp_Genotypes(:,7); 

% % dop_123 = temp_Genotypes(:,8); 

% % dat_1   = temp_Genotypes(:, 9); 

% % cat_2   = temp_Genotypes(:,10); 

% % mec_4   = temp_Genotypes(:,11); 

% % mec_4d  = temp_Genotypes(:,12); 

% % mec_10  = temp_Genotypes(:,13); 

% % mec_3   = temp_Genotypes(:,14); 

% % del_1   = temp_Genotypes(:,15); 

% % unc_31  = temp_Genotypes(:,16); 

% % unc_8   = temp_Genotypes(:,17); 

% % unc_25  = temp_Genotypes(:,18); 

% % unc_49  = temp_Genotypes(:,19); 

% % lon_2   = temp_Genotypes(:,20); 

% % trp_4   = temp_Genotypes(:,21); 

% % trpa_1  = temp_Genotypes(:,22); 

% % trp_12  = temp_Genotypes(:,23); 

% % Curv_imm = T_exp{:,2}; 

% % Curv_ant = T_exp{:,3}; 

% % T_exp2   = table(N2, dop_1, dop_2, dop_3, dop_4, 

dop_12, dop_13, dop_123, ... 

% %                  dat_1, cat_2, mec_4, mec_4d, mec_10, 

mec_3, del_1, unc_31, ... 

% %                  unc_8, unc_25, unc_49, lon_2, trp_4, 

trpa_1, trp_12, Curv_imm, Curv_ant); 

% % mdl2     = fitlm(T_exp2, 'Curv_ant ~ N2 + dop_1 + dop_2 

+ dop_3 + dop_4 + dop_12 + dop_13 + dop_123 + dat_1 + cat_2 

+ mec_4 + mec_4d + mec_10 + mec_3 + del_1 + unc_31 + unc_8 

+ unc_25 + unc_49 + lon_2 + trp_4 + trpa_1 + trp_12 + 

Curv_imm - 1') 

%% One-way ANOVA 

[p,tbl,stats] = anova1(Y1',X1'); 

multcompare(stats) 

 

Gcamp_correlation_soma.m 
clc; clear; 

Parent = 'C:\Users\fffei\Dropbox\Paper\Compensatory reponse 

mechanism\data optogenetics\GCaMP expts new\BZ555 p05 

agarpad\Intermediate data\New folder'; 

Pr = dir(fullfile(Parent, '*w*')); 

N = numel(Pr); 

numcurvpts = 100; 

numseg = 5; 

fps = 10; 

nn  = numcurvpts/numseg; 

K   = []; 

F   = []; 

Tmin = 10; % 100 180 

t0  = 5; 

for i = 1 : N 

    Prname = Pr(i).name; 

    fullname = fullfile(Parent, Prname); 

    if Prname(1) == '1' 

        Pd = dir(fullfile(fullname, 'v_*')); 

        Pv = dir(fullfile(fullname, 'd_*')); 

    elseif Prname(1) == '2' 

        Pd = dir(fullfile(fullname, 'd_*')); 

        Pv = dir(fullfile(fullname, 'v_*')); 

    end 

    Pg = dir(fullfile(fullname, 'soma*')); 

    Fd = double(imread(fullfile(Pd.folder, Pd.name))'); 

Fd([1:21 end-20:end], :) = []; 

    Fv = double(imread(fullfile(Pv.folder, Pv.name))'); 

Fv([1:21 end-20:end], :) = []; 

    Fc = Fv - Fd; 

    Fg = double(imread(fullfile(Pg.folder, Pg.name))); 
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    Fc_resc = interp1(0 : size(Fc,1)-1, Fc, (0 : 

99)./99.*(size(Fc,1)-1))'; 

    fg = mean(Fg, 2); 

    f0 = prctile(fg,25); 

    fg = (fg-f0)/f0; 

    T  = size(fg, 1); 

    if T <= Tmin 

        continue 

    end 

    % down-sample the curvature kymograph in body 

coordinate 

    K_per_worm = zeros(T, numseg); 

    for j = 1 : numseg 

        curvrgn = 1 + nn*(j-1) : nn*j; 

        fc = mean(Fc_resc(:, curvrgn),2); 

        K_per_worm(:,j) = fc; 

    end 

    % down-sample the curvature and fluorescence signal in 

time 

    T0 = floor(T/t0); 

    Kn_per_worm = zeros(T0, numseg); 

    Fn_per_worm = zeros(T0, 1); 

    for k = 1 : T0 

        timerange = 1 + t0*(k-1) : t0*k; 

        Kn_per_worm(k, :) = mean(K_per_worm(timerange, :), 

1); 

        Fn_per_worm(k)    = mean(fg(timerange)); 

    end 

    K = cat(1, K, Kn_per_worm/30); 

    F = cat(1, F, Fn_per_worm); 

end 

R_all = zeros(1, numseg); 

RL_all = zeros(1, numseg); 

RU_all = zeros(1, numseg); 

  

figure(1); clf 

for i = 1 : numseg 

    subplot(1, numseg, i) 

    plot(K(:,i), F, '.'); 

    [R, P, RL, RU] = corrcoef(K(:,i), F); 

    xlabel(sprintf('K (%.1f portion)', (i-.5)/(numseg)));  

    ylabel('\Delta F/F0'); 

    title(sprintf('R = %f\n P = %f', R(1,2), P(1,2))) 

    R_all(i) = R(1,2); 

    RL_all(i) = RL(1,2); 

    RU_all(i) = RU(1,2); 

%     ylim([47300 84000]) 

    set(gca, 'FontSize', 12) 

end 

  

X = ((1:numseg)-0.5)/numseg; 

figure(2); clf 

errorbar(X, R_all, RL_all, RU_all) 

xlabel('Body coordinate') 

ylabel('Correlation with GCaMP') 

xlim([0 1]) 

ylim([-1 1]) 

set(gca, 'FontSize', 12) 

  

%% Generate GCaMP vs curvature scatter plot for mid-body 

KK= K(:,3); 

% Concatenate the F results by maxima and minima     

    F  = F(:); 

    KK = KK(:); 

    F1 = F; 

     

% Sort data by phase at pulse 

    [~,idx]    = sort(KK); 

    K_sort     = KK(idx); 

    F_sort     = F1(idx);   

     

% Plot results 

opengl software; 

    figure(3);  

%     clf;  

    hold on 

  

%Moving average 

    Npoints     = numel(F_sort); 

    w_idx       = round(0.25 * Npoints);                % 

Normal is 0.15 The width of the median bin in elements. 

Also the N value for each bin. Note that this method could 

be invalid if the phases are not sampled approximately 

equally. 

    AVG = movmean(F_sort,w_idx); 

    SEM = movstd(F_sort,w_idx)/sqrt(w_idx); 

    shadedErrorBar(K_sort,AVG,SEM,'r'); hold on;  

     

% Individual points 

%     

plot(K_sort,F_sort,'.','MarkerSize',8,'Color',0.5*[0.5 0.5 

1]); 

    xlabel('Normalized mid-body curvature'); 

    ylabel('D F/F0') 

     

    set(gcf,'Color','w','Position',[1192 217 700 570]);  

    set(gca,'FontSize',20); 

    ylim([0 .3]) 

    xlim([-5 5]) 

     

%% Generate GCaMP vs curvature scatter plot for mid-body 

KK= K(:,3); 

% Concatenate the F results by maxima and minima 

F  = F(:); 

KK = KK(:); 

F1 = F; 

  

% Sort data by phase at pulse 

[~,idx]    = sort(KK); 

K_sort     = KK(idx); 

F_sort     = F1(idx); 

  

% Plot results 

opengl software; 

figure(4); 

%     clf; 

hold on 

  

bin = -5:1:5; 

[kk,ff] = aggregatehist(bin, K_sort, F_sort); 

dev = cellfun(@std, ff)./sqrt(cellfun('size', ff,1)); 

avg = cellfun(@mean, ff); 

kmid = (bin(1:end-1)+bin(2:end))./2; 

  

plot(kmid,avg,'y') 

hold on; 

errorbar(kmid, avg, dev, 'linestyle', 'none', 'marker', 

'o'); 

% set(gca, 'xtick', bin, 'xgrid', 'on'); 

  

  

  

% Individual points 

%     

plot(K_sort,F_sort,'.','MarkerSize',8,'Color',0.5*[0.5 0.5 

1]); 

xlabel('Normalized mid-body curvature'); 

ylabel('D F/F0') 

  

set(gcf,'Color','w','Position',[1192 217 700 570]); 

set(gca,'FontSize',20); 

% ylim([0 .3]) 

xlim([-5 5]) 

 
Gcamp_time_dynamic.m 
clc; clear; 

Parent = 'C:\Users\fffei\Dropbox\Paper\Compensatory reponse 

mechanism\data optogenetics\GCaMP expts new\Combined_SWF331 

p05 agarpad\N folder'; 

Pr = dir(fullfile(Parent, '*w*')); 

N = numel(Pr); 

numcurvpts = 100; 

numseg = 5; 

fps = 10; 

nn  = numcurvpts/numseg; 

x   = (0:numcurvpts-1)/(numcurvpts-1); 

K   = []; 

F   = []; 

Tmin = 100; 

t0  = 5; 

II = [56 58 61 63 1 4 6 7 19 21 27 28 36 49 53 56 58 61 

63]; 

FFg = []; 

FFc = []; 

for i = [1] % 1 

    Prname = Pr(i).name; 

    fullname = fullfile(Parent, Prname); 

    if Prname(1) == '1' 

        Pd = dir(fullfile(fullname, 'v_*')); 

        Pv = dir(fullfile(fullname, 'd_*')); 

    elseif Prname(1) == '2' 

        Pd = dir(fullfile(fullname, 'd_*')); 

        Pv = dir(fullfile(fullname, 'v_*')); 

    end 

    Pg = dir(fullfile(fullname, 'soma*')); 

    Fd = double(imread(fullfile(Pd.folder, Pd.name))'); 

Fd([1:21 end-20:end], :) = []; 

    Fv = double(imread(fullfile(Pv.folder, Pv.name))'); 

Fv([1:21 end-20:end], :) = []; 

    Fc = Fv - Fd; 

    Fg = double(imread(fullfile(Pg.folder, Pg.name))); 

    Fc_resc = interp1(0 : size(Fc,1)-1, Fc, (0 : 

99)./99.*(size(Fc,1)-1))'; 

    fg = mean(Fg, 2); 

    f0 = prctile(fg,25); 

    fg = (fg-f0)/f0; 
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    T  = size(fg, 1); 

    t  = (0:T-1)/fps; 

    if T <= Tmin 

        continue 

    end 

%     figure(1);clf 

%     subplot(211) 

%     plot(t, fg); 

%     xlim([0 t(end)]) 

%     ylabel('D F/F0') 

%     subplot(212) 

%     imagesc(t,x, Fc_resc'); 

%     xlim([0 t(end)]) 

%     ylabel('Body coordinate') 

%     xlabel('Time (sec)') 

%     expo = 0.7; 

%     colormap(cmap_redblue(expo)); 

    if any(II(:) == i) 

        t0 = 9.9*fps; 

        if i == 63 

            fg      = fg(1:t0); 

            Fc_resc = Fc_resc(1:t0,:); 

        end 

        FFg = cat(1, FFg, fg); 

        FFc = cat(1, FFc, Fc_resc); 

    end 

%     i 

%     T 

end 

T  = size(FFg, 1); 

t  = (0:T-1)/fps; 

%% Free 

  

figure(1);clf 

a = tiledlayout(2,1); 

ax1 = nexttile; 

plot(t, FFg); 

xlim([0 t(end)]) 

ylabel('D F/F0') 

set(gca, 'FontSize', 20) 

  

ax2 = nexttile; 

imagesc(t,x, flip(FFc',1)); 

set(gca, 'YDir', 'Normal') 

expo = 0.7; 

colormap(cmap_redblue(expo)); 

xlim([0 t(end)]) 

ylabel('Body coordinate') 

  

xlabel(a,'Time (sec)', 'FontSize', 20) 

set(gca, 'FontSize', 20) 

  

xticklabels(ax1,{}) 

a.TileSpacing = 'compact'; 

  

%% Sinusoid 

% t = t.*3/4; 

FFc = FFc(:, 25:74)'; 

FFcs = interp1(0 : size(FFc,1)-1, FFc, (0 : 

99)./99.*(size(FFc,1)-1))'; 

figure(2);clf 

a = tiledlayout(2,1); 

ax1 = nexttile; 

plot(t, FFg); 

ylim([-.2 1]) 

xlim([0 t(end)]) 

ylabel('D F/F0') 

set(gca, 'FontSize', 20) 

  

ax2 = nexttile; 

imagesc(t,x, flip(FFcs',1)); 

set(gca, 'YDir', 'Normal') 

expo = 0.7; 

colormap(cmap_redblue(expo)); 

xlim([0 t(end)]) 

ylabel('Body coordinate') 

  

xlabel(a,'Time (sec)', 'FontSize', 20) 

set(gca, 'FontSize', 20) 

  

xticklabels(ax1,{}) 

a.TileSpacing = 'compact'; 

 
Generalized_cfactor_for_microfluidics.m 
function [Kc_all, dKdtc_all, Kp_data, dKdtp_data, 

T0_avg]... 

    = Generalized_cfactor_for_microfluidics(curv_ctrl, 

curv_const, fps) 

% GENERALIZED_CFACTOR defines and calculates a generalized 

factor to 

% quantify the compensation effects of anterior curvature 

which is induced 

% by (mechanically) perturbing the middle curvature during 

the forward  

% locomotion of a worm 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%-09-24-

20-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Modified the algorithm for computing generalized 

compensatory factor of 

%   the normal orbits over body coordinates. 

%   Specific steps: 

%   1. Define the time window(s) of normal undulations. 

%   2. Calculate the average normal phase plot where phase 

angles are 

%   defined using peak-finding method 

%   3. I divided the body into 5 different segments with 

equal length and 

%   calculate phase plot for each segments individually, 

since curvature 

%   dynamics varies across body coordinates. 

%   Specifically, body is divided into segments 10%, 30%, 

50%, 70%, and 90% 

%   and phase plots elsewhere are computed through 

interpolation or 

%   extrapolation. 

  

Nc = numel(curv_ctrl); 

numcurvpts = size(curv_ctrl{1}, 2); 

numsamplepts = 100; 

curvrgn_analysis = 1 : numcurvpts; 

curvrgn_sample = 10:5:90; 

curvrgn_rd = 2; 

numsegs = numel(curvrgn_sample); 

Kc_avg_all = zeros(numsamplepts, numsegs); 

dKdtc_avg_all = zeros(numsamplepts, numsegs); 

T_all = []; 

for ii = 1 : numsegs 

    curvrgn = curvrgn_sample(ii); 

    fprintf('Computing normal phase plot at region %.0f%%. 

', curvrgn) 

    Kc_data = {}; 

    dKdtc_data = {}; 

    Ntrials_c  = 0; 

    curvrgn_win = curvrgn-curvrgn_rd : curvrgn+curvrgn_rd; 

    for i = 1:Nc 

        curvdatafiltered = curv_ctrl{i}; 

        v   = mean(curvdatafiltered(:,curvrgn_win),2); 

        % Find all peaks 

        [imax, imin] = C2_get_curvature_peaks(v,1); 

        % Find the peaks in the period which is not 

affected by illumination 

        [imax, imin] = verify_extrema(v, imax, imin); 

        imax = unique(imax); 

        imin = unique(imin); 

        imax(v(imax)<=0) = []; 

        imin(v(imin)>=0) = []; 

        T0 = mean([diff(imax); diff(imin)])/fps; 

        zci = @(v) find(v(:).*circshift(v(:), [-1 0]) <= 

0); 

        zx = zci(v); 

        num_max = numel(imax); 

        for j = 1 : num_max - 1 

            imaxs = imax(j); 

            imaxe = imax(j+1); 

            current_zx = zx(zx>imaxs & zx<imaxe); 

            if numel(current_zx)~=2 

                continue; 

            end 

            K = v(imaxs: imaxe); 

            dKdt = gradient(K)*fps; 

            dKdt(1) = 0; 

            dKdt(end) = 0; 

            Kc_data = [Kc_data; K]; 

            dKdtc_data = [dKdtc_data; dKdt]; 

            Ntrials_c = Ntrials_c + 1; 

        end 

        % record the period into matrix T 

        current_seg = curvrgn_sample(ii); 

        if current_seg>=20 && current_seg<=40 

            T_all   = [T_all, T0]; 

        end 

    end 

    numhfsamplepts = numsamplepts/2; 

    N_cycs = numel(Kc_data); 

    Kc_resc_data = zeros(N_cycs, numsamplepts); 

    dKdtc_resc_data = zeros(N_cycs, numsamplepts); 

    for i = 1 : N_cycs 

        v    = Kc_data{i}; 

        dvdt = dKdtc_data{i}; 

        [~, imin] = min(v); 

        if length(imin)>1 

            tmpdist2midpt = abs(imin - length(v)/2); 

            [~,tmpI] = min(tmpdist2midpt); 

            imin = imin(tmpI); 

        end 



133 

 

        % rescale Ks and dKdts half cycle by half cycle 

        vhf1 = v(1:imin); vhf2 = v(imin:end); 

        qx1  = numel(vhf1) / (numel(vhf1)-1); 

        qx2  = numel(vhf2) / (numel(vhf2)-1); 

        vhf1_resc = interp1((0:numel(vhf1)-1), vhf1, 

(numel(vhf1)-1)*(0:numhfsamplepts-1)/(numhfsamplepts-

1),'linear'); 

        vhf2_resc = interp1((0:numel(vhf2)-1), vhf2, 

(numel(vhf2)-1)*(0:numhfsamplepts-1)/(numhfsamplepts-

1),'linear'); 

         

        dvdthf1 = dvdt(1:imin); dvdthf2 = dvdt(imin:end); 

        qy1  = numel(dvdthf1) / (numel(dvdthf1)-1); 

        qy2  = numel(dvdthf2) / (numel(dvdthf2)-1); 

        dvdthf1_resc = interp1((0:numel(dvdthf1)-1), 

dvdthf1, (numel(dvdthf1)-1)*(0:numhfsamplepts-

1)/(numhfsamplepts-1),'linear'); 

        dvdthf2_resc = interp1((0:numel(dvdthf2)-1), 

dvdthf2, (numel(dvdthf2)-1)*(0:numhfsamplepts-

1)/(numhfsamplepts-1),'linear'); 

         

        % combine halfs to get full cycles 

        v_rescaled = [vhf1_resc vhf2_resc]; 

        dvdt_rescaled = [dvdthf1_resc dvdthf2_resc]; 

        Kc_resc_data(i,:) = v_rescaled; 

        dKdtc_resc_data(i,:) = dvdt_rescaled; 

    end 

    % Calculating averages for current segment 

    Kc_resc_avg    = mean(Kc_resc_data,1); 

    dKdtc_resc_avg = mean(dKdtc_resc_data,1); 

    Kc_avg_all(:, ii) = Kc_resc_avg; 

    dKdtc_avg_all(:, ii) = dKdtc_resc_avg; 

    fprintf('\n'); % To go to a new line after reaching 

100% progress 

end 

T0_avg = mean(T_all, 'omitnan'); 

% Adjust the averaged curvature cycle by fixing the minimum 

point and  

% scaling the near-end points so that it will equal to the 

negative  

% amplitude 

for ii = 1 : numsegs 

    v  = Kc_avg_all(:,ii); 

    [~,pf] =  min(v); pf = pf(1); 

    vf = abs(v(pf)); 

    v(1 : pf-1) = v(1 : pf-1) + (pf - (1 : pf-1)')/(pf - 1) 

* (vf - v(1)); 

    v(pf : end) = v(pf : end) + ((pf : numel(v))' - 

pf)/(numel(v) - pf) * (vf - v(end)); 

    Kc_avg_all(:,ii) = v; 

end 

% Using interpolation and extrapolation to predict the 

phase plots on other 

% segments of a worm 

Kc_all    = interp1(curvrgn_sample, 

Kc_avg_all',curvrgn_analysis, 'makima')'; 

dKdtc_all  = interp1(curvrgn_sample, 

dKdtc_avg_all',curvrgn_analysis, 'makima')'; 

Kc_all    = Kc_all'; 

dKdtc_all = dKdtc_all'; 

%% 

%%%%%%%%%%%%%%%%%%%% 

if isempty(curv_const) 

    Kp_data = []; 

    dKdtp_data = []; 

else 

    % analysis of the contrained group 

    Np = numel(curv_const); 

    Ntrials_p = 0; 

    Kp_data    = {}; 

    dKdtp_data = {}; 

    for i = 1:Np 

        fprintf('Analyzing trial %d',i) 

        curvdatafiltered = curv_const{i}; 

         

        Ntrials_p = Ntrials_p + 1; 

         

        % Analyzing bulk curvature 

        Kb    = curvdatafiltered(:,curvrgn_analysis); 

        dKdtb = gradient(Kb')' * fps; 

         

        Kp_data    = [Kp_data; Kb']; 

        dKdtp_data = [dKdtp_data; dKdtb']; 

         

        fprintf('\n') 

    end 

end 

end 

  

    function [imax,imin] = verify_extrema(v,imax,imin) 

         

        % get the mean amplitudes 

        vmax = mean(v(imax)); 

        vmin = mean(v(imin)); 

         

        if vmin > vmax 

            itemp = imax; 

            imax  = imin; 

            imin  = itemp; 

        end 

         

         

    end 

  

Generating_normal_atlas.m 
% Worm shape analysis. This version is modified for 

analyzing data obtained 

% from worm locomotion on WormTunnel microfluidic chambers. 

% 

% First, periods during which a worm is undulating without 

constraint will be 

% collected and analyzed to generate a limit cycle for 

normal undulatory 

% dynamics. 

% 

% Next, periods during which a worm is moving under 

constraint (usually at 

% the middle of body) will be collected and analyzed to 

generate phase 

% dynamics during those periods 

% 

% Finally, combining the analyzed results from the above 

two steps, a 

% generalized compensatory factor kymogram will be 

generated in a 2D 

% heatmap form, which represents a 

function                                                                                                                                                                                                         

ion of time and body coordinate. 

% Also, information of the body portion that is being 

constrained will be 

% reflected on the kymogram. 

% 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% START 

MAIN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% 

clc; close all; clear 

  

global start_illum end_illum prefix pathname filename 

global conc fps pix_per_mm wormthreshold isie decim filsize 

spline_p initials 

  

  

wormlabel  = 1; 

pix_per_mm = 198.83; 

prefix; 

pathname; 

  

curvlim = 0.2; 

domovie = 0; 

issavefiles = 0; 

iscontinue = 1; 

  

option1 = 'Yes (AVI only)'; 

option2 = 'Yes (MAT)'; 

  

fname  = questdlg('Pre or Post-const undulation?','','Pre-

','Post-','All-', 'All-'); 

button = length(questdlg('Load new 

data?','',option1,option2,'No', option1)); 

CURV_all = {}; 

dCURV_all = {}; 

pathname_all = {}; 

if button == length(option2) 

    disp('options2'); 

    [filename,pathname] = uigetfile({'*.mat'}); 

    matfname  = [fname filename(1:6)]; 

    load([pathname filename]); 

elseif button == length(option1) 

    disp('option1'); 

    do_dialog = 1; 

    %% Identify and analyze control periods 

    while iscontinue == 1 

         

    if do_dialog 

        try 

            cd(pathname); 

        catch 

            pathname = pwd; 

        end 

        [filename,pathname]  = uigetfile('*.avi', 'Select 

File'); 

        pathname_all = [pathname_all, pathname]; 

        matfname  = [fname filename(1:6)]; 

        vidObj = VideoReader(fullfile(pathname,filename)); 

        NumFrames = vidObj.NumFrames; 
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        fps       = vidObj.FrameRate; 

        if isempty(conc) 

            conc = 0; 

        end 

        if isempty(wormlabel) 

            wormlabel = 1; 

        end 

        if isempty(pix_per_mm) 

            pix_per_mm = 1; 

        end 

        if isempty(wormthreshold) 

            wormthreshold = 0.1; 

        end 

        if isempty(isie) 

            isie = [1, NumFrames]; 

        end 

        if isempty(decim) 

            decim = 1; 

        end 

        if isempty(filsize) 

            filsize = 0.2; 

        end 

        if isempty(start_illum) 

            start_illum = 1; 

        end 

        if isempty(end_illum) 

            end_illum = 1; 

        end 

        if isempty(spline_p) 

            spline_p = 0.01; 

        end 

        if isempty(initials) 

            initials = {'JHF'}; 

        end 

         

        fields={'conc','wormlabel', 'fps','pixels per 

mm','Worm image threshold',... 

            'istart/iend (use";"if multiple)', 'Decimation 

(1=none))',... 

            'Filter size / diameter', 

'start_illum','end_illum', ... 

            'spline fit parameter', 'Make movie?', 'Your 

initials', 'Save files?'}; 

        if exist('isie', 'var') 

            answer = inputdlg(fields, 'Cancel to clear 

previous', 1, ... 

                

{num2str(conc),num2str(wormlabel),num2str(fps),num2str(pix_

per_mm),num2str(wormthreshold),... 

                mat2str(isie), num2str(decim),... 

                

num2str(filsize),num2str(start_illum),num2str(end_illum), .

.. 

                num2str(spline_p), num2str(domovie), 

initials{1}, num2str(issavefiles)}); 

        else 

            answer = inputdlg(fields, '', 1); 

        end 

         

        if isempty(answer) 

            pause; 

        end 

         

        conc = str2double(answer{1}); 

        wormlabel = str2double(answer{2}); 

        fps = str2double(answer{3}); 

        pix_per_mm = str2double(answer{4}); 

        wormthreshold = str2double(answer{5}); 

        isie = Str2Mat(answer{6}); 

        decim = str2double(answer{7}); 

        filsize = str2double(answer{8}); 

        start_illum = str2double(answer{9}); 

        end_illum = str2double(answer{10}); 

        spline_p = str2double(answer{11}); 

        domovie = str2double(answer{12}); 

        initials = answer(13); 

        issavefiles = str2double(answer{14}); 

    end 

    fileID = fopen(fullfile(pathname, 'timestemp for 

ctrl.txt'),'a+'); 

    fprintf(fileID, [filename,': ', answer{6},'\n']); 

    fclose(fileID); 

    nperiods   = size(isie, 1); 

    curv_ctrl  = cell(nperiods, 1); 

    dcurvdt_ctrl = cell(nperiods, 1); 

    angle_ctrl = cell(nperiods, 1); 

    len_ctrl   = cell(nperiods, 1); 

    %  Compute undulatory variables for control groups 

    for kk = 1 : nperiods 

        do_const = 0; 

        thisperiod = isie(kk, :); 

        options = {conc, wormlabel, fps, pix_per_mm, 

wormthreshold,... 

                   thisperiod, decim, filsize, start_illum, 

end_illum,... 

                   spline_p, domovie, initials, pathname, 

filename, do_const, issavefiles}; 

        [curv_ctrl{kk},dcurvdt_ctrl{kk}, angle_ctrl{kk}, 

len_ctrl{kk}]... 

            = WORMSHAPE_MAINCALCULATION(vidObj, options); 

    end 

     

    % flip some periods where head/tail misidentified 

    for i = 1 : nperiods 

        K = curv_ctrl{i}; 

        dKdt = dcurvdt_ctrl{i}; 

        ang  = angle_ctrl{i}; 

        % debug plot 

        figure(10); clf 

        imagesc(K) 

        colormap(cmap_redblue(0.7)) 

        caxis([-25 25]) 

        colorbar 

        hold on 

        answer = length(questdlg('Need to flip some 

period?', '','Yes', 'No', 'No')); 

        if answer == 3 

            title('Indicate the period that need to be 

flipped') 

            % flip curvature and dKdt 

            [~, flpy1] = ginput(1); 

            flpy1 = max([floor(flpy1) 1]); 

            line([1 100], [flpy1 

flpy1],'Color','white','LineStyle','--') 

            [~, flpy2] = ginput(1); 

            flpy2 = min([floor(flpy2) size(K,1)]); 

            line([1 100], [flpy2 

flpy2],'Color','white','LineStyle','--') 

            K2flip = K(flpy1 : flpy2, :); 

            dKdt2flip = dKdt(flpy1 : flpy2, :); 

            ang2flip  = ang(flpy1 : flpy2, :); 

            K(flpy1 : flpy2, :) = flip(K2flip,2); 

            dKdt(flpy1 : flpy2, :) = flip(dKdt2flip,2); 

            ang(flpy1 : flpy2, :) = flip(ang2flip,2); 

        end 

        % updata data 

        curv_ctrl{i}  = K; 

        dcurvdt_ctrl{i} = dKdt; 

        angle_ctrl{i}  = ang; 

        % show updated plot 

        figure(10); clf 

        imagesc(K) 

        colormap(cmap_redblue(0.7)) 

        colorbar 

        pause(1) 

    end 

     % end fliping loop 

    CURV_all = [CURV_all; curv_ctrl]; 

    dCURV_all = [dCURV_all; dcurvdt_ctrl]; 

    Cbutton = 

length(questdlg('Continue?','','Yes','No','Yes')); 

    if Cbutton == 3 

        iscontinue = 1; 

    else 

        iscontinue = 0; 

    end 

    close all 

    end 

end 

%% Calculate the average normal phase plot from control 

groups 

fps = 30; 

[Kc_all, dKdtc_all, Kp_data, dKdtp_data, T0_avg]... 

    = Generalized_cfactor_for_microfluidics(CURV_all, [], 

fps); 

  

  

numsamplepts = 100; 

numcurvpts   = 100; 

a  = .15; c = a * T0_avg; 

Zc = Kc_all + 1i*c*dKdtc_all; 

Pc = unwrap(angle(Zc), [], 2); 

[~, Sc] = meshgrid(1:numsamplepts, 1:numcurvpts); 

% Generate interpolant (in a bulk manner) 

FR = scatteredInterpolant(Pc(:), Sc(:), Zc(:), 'linear', 

'nearest'); 

  

%%  Plotting data 

curvrgn_analysis = 1 : numcurvpts; 

% 3-D phase portrait plot of normal undulation 

figure(1); clf 

TX_mesh = meshgrid(1 : numsamplepts, curvrgn_analysis); 

hold on 

plot3(Kc_all', dKdtc_all', TX_mesh)  % isosegmental line 

plot3(Kc_all,  dKdtc_all,  TX_mesh') % isophasic line 

hold off 
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view([30,30]) 

xl = xlim; 

yl = ylim; 

zlim([5 95]) 

xlabel('K') 

ylabel('dKdt') 

zlabel('Body coordinate') 

set(gca, 'FontSize', 12, 'Position', 

[0.13,0.11,0.775,0.815]) 

  

% GUI with interactive response-plot updates for phase 

portrait plots 

s  = 30; 

f  = figure(2); clf 

ax = axes('Parent',f,'position',[0.2 0.25  0.65 0.65], 

'PlotBoxAspectRatio', [1,0.81,0.75]); 

faseplot2  = @(ax, s) phasePlot2(curvrgn_analysis, Kc_all', 

dKdtc_all', s, ax, xl, yl); 

faseplot2(ax, s); 

b = 

uicontrol('Parent',f,'Style','slider','Position',[81,34,419

,23],... 

              'value',s, 'min',5, 'max',95); 

bgcolor = f.Color; 

uicontrol('Parent',f,'Style','text','FontSize',12,'Position

',[45,37,30,20],... 

                'String','Head','BackgroundColor',bgcolor); 

uicontrol('Parent',f,'Style','text','FontSize',12,'Position

',[505,37,30,20],... 

                'String','Tail','BackgroundColor',bgcolor); 

uicontrol('Parent',f,'Style','text','FontSize',12,'Position

',[240,10,100,23],... 

                'String','Body 

coordinate','BackgroundColor',bgcolor); 

             

b.Callback = @(es,ed) faseplot2(ax, es.Value); 

%% save the NormalUndulation.mat file to all visited 

folders 

for i = 1 : numel(pathname_all) 

    fname4save = fullfile(pathname_all{i}, [matfname 'imm 

Normal.mat']); 

    save(fname4save, 'Kc_all', 'dKdtc_all', 'Zc', 'FR', 

'CURV_all', 'fps', 'T0_avg') 

end 

  

PostProcessing_cfactor_beeswarm.m 
clc; clear; close all 

% get the normal undulation data 

[ctrlfilename,pathname] = uigetfile({'*.mat'}); 

% locate the folder 

dir_list = dir(fullfile(pathname, '*data.mat')); 

nworms   = numel(dir_list); 

t0   = 3; % sampling period 

t_step = t0; % step of moving during sampling 

v    = [];% preallocate for data pool after sampling with 

period t0. dim(v) = N * i0 * 403 

prog = 0; 

issave = 1; 

%% Control group 

fprintf('------Progress: %3.0f%% \n',prog); 

% load and resampling the data 

load(fullfile(pathname, ctrlfilename)) 

nnormw = numel(CURV_all); 

do_flip = length(questdlg('Need to do flipping for ctrl?', 

'','Yes', 'No', 'No')); 

for i = 1 : nnormw 

    prog = 100*i/nnormw; 

    if i > 1 

        fprintf('\b\b\b\b%3.0f%%',prog); 

    end 

     

    i0 = floor(t0*fps); 

    step = floor(t_step*fps); 

    K    = CURV_all{i}; 

    dKdt = gradient(K')'*fps; 

    s    = 1 : size(K, 2); 

    if do_flip == 3 

        %%%%%%%%%%%%%%%%%%%%%%%%% disable this once 

corrected all data 

        % debug plot 

        figure(10); clf 

        imagesc(K) 

        colormap(cmap_redblue(0.7)) 

        caxis([-25 25]) 

        colorbar 

        set(gcf, 'Position', [581,42,584,1314]) 

        hold on 

        answer = length(questdlg('Need to flip some 

period?', '','Yes', 'No', 'No')); 

        if answer == 3 

            title('Indicate the period that need to be 

flipped') 

            % flip curvature and dKdt 

            [~, flpy1] = ginput(1); 

            flpy1 = max([floor(flpy1) 1]); 

            line([1 100], [flpy1 

flpy1],'Color','white','LineStyle','--') 

            [~, flpy2] = ginput(1); 

            flpy2 = min([floor(flpy2) size(K,1)]); 

            line([1 100], [flpy2 

flpy2],'Color','white','LineStyle','--') 

            K2flip = K(flpy1 : flpy2, :); 

            K_flipped = flip(K2flip,2); 

            K(flpy1 : flpy2, :) = K_flipped; 

        end 

        dKdt = gradient(K')'*fps; 

        % 

    end 

        % recalculate the generalized compensatory factor 

and save it 

        numsamplepts = 100; 

        numcurvpts   = 100; 

        a  = .15; c = a * T0_avg; 

        Zc = Kc_all + 1i*c*dKdtc_all; 

        Pc = unwrap(angle(Zc), [], 2); 

        [~, Sc] = meshgrid(1:numsamplepts, 1:numcurvpts); 

        % Generate interpolant (in a bulk manner) 

        FR = scatteredInterpolant(Pc(:), Sc(:), Zc(:), 

'linear', 'nearest'); 

        % Constrcting complex curvature dynamics for pulsed 

group 

        Zp     = K' + 1i*c*dKdt'; 

        Pp_ori = angle(Zp); % do not use unwrap 

        Pp1d   = Pp_ori(:); 

        Pp1d(Pp1d>0) = Pp1d(Pp1d>0) - 2*pi; 

        Pp = reshape(Pp1d, size(Pp_ori)); 

        [~, Sp] = meshgrid(1:size(Pp,2), 1:size(Pp,1)); 

        Rp = abs(Zp); 

        Zc4p1d = FR(Pp(:), Sp(:)); 

        Zc4p = reshape(Zc4p1d, size(Pp)); 

        Rc4p = abs(Zc4p); 

        cfac = (Rp) ./ Rc4p; 

        % updata data 

        CURV_all{i}  = K; 

        dCURV_all{i} = dKdt; 

        % show updated plot 

        if do_flip == 3 

            figure(10); clf 

            imagesc(K) 

            colormap(cmap_redblue(0.7)) 

            colorbar 

            pause(1) 

        end 

        %%%%%%%%%%%%%%%%%%%%%%%%% disable this once 

corrected all data 

    % convert immobilization position from boolean exp to 

coord exp 

    u  = cfac'; 

    curv = K; 

    n  = size(u, 1); 

    iwin = 1 : i0; 

    while iwin(end) <= n 

        thisu = u(iwin, :); 

        thisk = curv(iwin, :); 

        thiscfac = thisu(:, 1:100); 

        iwin = iwin + step; 

        if max(thiscfac,[],'all') > 50 

            continue 

        end 

        thisuk = cat(2, thisu, thisk); 

        v   = cat(3, v, thisuk); 

    end 

end 

fprintf('\n') 

save(fullfile(pathname, ctrlfilename), 

'CURV_all','dCURV_all','-append') 

vc = permute(v, [3 1 2]); 

%% Constrained group 

v = []; 

%%% 

wconst = 60; % normally, the width of the channel is 60 um 

%%% 

prog = 0; 

fprintf('------Progress: %3.0f%% \n',prog); 

do_flip = length(questdlg('Need to do flipping for const?', 

'','Yes', 'No', 'No')); 

% load and resampling the data 

load(fullfile(pathname, ctrlfilename)) 

for i = 1 : nworms 

    prog = 100*i/nworms; 

    if i > 1 

        fprintf('\b\b\b\b%3.0f%%',prog); 

    end 

    thisworm  = dir_list(i); 

    fname = fullfile(thisworm.folder, thisworm.name); 

    load(fname) 
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    i0 = floor(t0*fps); 

    step = floor(t_step*fps); 

    ntrials = numel(CR); 

    for j = 1:ntrials 

        cfac = CR{j}'; 

        K    = Kp_data{j}'; 

        dKdt = dKdtp_data{j}'; 

        len  = len_const{j}; 

        rgc  = rgn_const{j}; 

        wdia = w_diam{j}*1000; % unit: um 

        s =  1 : size(cfac, 2); 

        t = (0 : size(cfac, 1)-1)'/fps; 

        if do_flip == 3 

            %%%%%%%%%%%%%%%%%%%%%%%%% disable this once 

corrected all data 

            % debug plot 

            figure(10); clf 

            imagesc(K) 

            colormap(cmap_redblue(0.7)) 

            caxis([-25 25]) 

            colorbar 

            set(gcf, 'Position', [581,42,584,1314]) 

            hold on 

            answer = length(questdlg('Need to flip some 

period?', '','Yes', 'No', 'No')); 

            if answer == 3 

                title('Indicate the period that need to be 

flipped') 

                % flip curvature and dKdt 

                [~, flpy1] = ginput(1); 

                flpy1 = max([floor(flpy1) 1]); 

                line([1 100], [flpy1 

flpy1],'Color','white','LineStyle','--') 

                [~, flpy2] = ginput(1); 

                flpy2 = min([floor(flpy2) size(K,1)]); 

                line([1 100], [flpy2 

flpy2],'Color','white','LineStyle','--') 

                K2flip = K(flpy1 : flpy2, :); 

                K_flipped = flip(K2flip,2); 

                K(flpy1 : flpy2, :) = K_flipped; 

                dK2flip = dKdt(flpy1 : flpy2, :); 

                dK_flipped = flip(dK2flip,2); 

                dKdt(flpy1 : flpy2, :) = dK_flipped; 

                r2flip = rgc(flpy1 : flpy2, :); 

                r_flipped = flip(r2flip,2); 

                rgc(flpy1 : flpy2, :) = r_flipped; 

                % 

                % recalculate the generalized compensatory 

factor and save it 

                numsamplepts = 100; 

                numcurvpts   = 100; 

                a  = .15; c = a * T0_avg; 

                Zc = Kc_all + 1i*c*dKdtc_all; 

                Pc = unwrap(angle(Zc), [], 2); 

                [~, Sc] = meshgrid(1:numsamplepts, 

1:numcurvpts); 

                % Generate interpolant (in a bulk manner) 

                FR = scatteredInterpolant(Pc(:), Sc(:), 

Zc(:), 'linear', 'nearest'); 

                % Constrcting complex curvature dynamics 

for pulsed group 

                Zp     = K' + 1i*c*dKdt'; 

                Pp_ori = angle(Zp); % do not use unwrap 

                Pp1d   = Pp_ori(:); 

                Pp1d(Pp1d>0) = Pp1d(Pp1d>0) - 2*pi; 

                Pp = reshape(Pp1d, size(Pp_ori)); 

                [~, Sp] = meshgrid(1:size(Pp,2), 

1:size(Pp,1)); 

                Rp = abs(Zp); 

                Zc4p1d = FR(Pp(:), Sp(:)); 

                Zc4p = reshape(Zc4p1d, size(Pp)); 

                Rc4p = abs(Zc4p); 

                cr_new = (Rp) ./ Rc4p; 

                % updata data 

                CR{j} = cr_new; 

                Kp_data{j} = K'; 

                dKdtp_data{j} = dKdt'; 

                rgn_const{j}  = rgc; 

                % show updated plot 

                figure(10); clf 

                subplot(121) 

                imagesc(K) 

                colormap(cmap_redblue(0.7)) 

                colorbar 

                subplot(122) 

                imagesc(cr_new') 

                colorbar 

                pause(1) 

            end 

            %%%%%%%%%%%%%%%%%%%%%%%%% disable this once 

corrected all data 

        end 

        % convert immobilization position from boolean exp 

to coord exp 

        rgc(rgc == 0) = nan; 

        imb = rgc .* repmat(s, [length(t), 1]); 

        imbl = min(imb, [], 2, 'omitnan'); 

        imbr = max(imb, [], 2, 'omitnan'); 

        imbm = mean(imb, 2, 'omitnan'); 

        u  = cat(2, cfac, K, repmat([wdia, wconst], 

[length(t) 1]), len, imbl, imbr, imbm); 

        n  = size(u, 1); 

        iwin = 1 : i0; 

        while iwin(end) <= n 

            thisu = u(iwin, :); 

            thiscfac = thisu(:, 1:100); 

            iwin = iwin + step; 

            if max(thiscfac,[],'all') > 50 

                continue 

            end 

            imbc = mean(thisu(:, 206)); 

            tmp = cat(2, thisu, repmat(imbc, [i0, 1])); 

            v   = cat(3, v, tmp); 

        end 

    end 

    save(fname, 

'CR','Kp_data','dKdtp_data','rgn_const','len_const' ,'-

append') 

end 

fprintf('\n') 

vp = permute(v, [3 1 2]); 

%% Plotting results 

  

% making new folder to save results 

if issave == 1 

    savefoldername = fullfile(pathname, 'Results'); 

    mkdir(savefoldername) 

end 

  

N   = size(vp, 1); 

Loc_im = vp(:,1,207); 

edges_locim = [1,25,40,60,100]; 

% figure(1);clf 

% himb = histogram(Loc_im); 

% title('distribution of trials to immob location') 

  

Int_im = vp(:,1,201)./vp(:,1,202); 

tightness = 0; 

figure(2);clf 

hint = histogram(Int_im); 

title('distribution of trials to tightness of 

immobilization') 

set(gcf, 'Position', [1200,160,570,490]) 

if issave == 1 

    saveas(gcf, fullfile(savefoldername, 'distrubution of 

tightness.fig')); 

    saveas(gcf, fullfile(savefoldername, 'distrubution of 

tightness.png')); 

end 

  

Len = squeeze(mean(vp(:,:,203),2)); 

edges_len = [.8,.98, 1.08,1.3]; 

% figure(3);clf 

% hlen = histogram(Len); 

% title('distribution of trials to worm length') 

  

  

  

% % cfactor's dependence on location of immobilization 

(spectrum by tightness of immobilization) 

% s2 = 101:200; 

% s  = 1 : 100; 

% intlim = [0.4 1.5]; 

% figure(4);clf 

% % calculating the control group 

% for i = 1 : length(edges_locim)-1 % first grouped by loc 

of immo 

%     thisedge = edges_locim(i:i+1); 

%     idx_rgc  = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)& 

Int_im >= tightness ; 

%     thisrgclr = vp(idx_rgc, :, 204:205); 

%     thisrgclr_mean = squeeze(mean(thisrgclr,1)); 

%     L = mean(thisrgclr_mean(:,1)); 

%     R = mean(thisrgclr_mean(:,2)); 

%     ind_2nd   = Int_im; 

%     edges_2nd = edges_len; 

%     idx = idx_rgc; 

%     thisintimb = mean(ind_2nd(idx)); 

%     thiscfac  = vp(idx, :,1:100); 

%     thiscfac_mean = squeeze(mean(thiscfac,1)); 

%     h = {}; 

%     text_edge2 = {}; 

%     subplot(2,ceil((length(edges_locim)-1)/2),i) 

%     %     imagesc(s2, t2, thiscfac_mean) 

%     hold on 
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%     % plot the control group 

%     tmph = plot(s, mean(squeeze(mean(vc(:,:,s),1)),1), 

'LineWidth', 2, 'Color', 'k'); 

%     h = [h, tmph]; 

%     tmpt = sprintf('ctrl'); 

%     text_edge2 = [text_edge2, tmpt]; 

%     % plot the loc of immobiliaztion 

%     line([L L],intlim,'Color','red','LineStyle','--', 

'LineWidth',2) 

%     line([R R],intlim,'Color','red','LineStyle','--', 

'LineWidth',2) 

%     if ~isempty(thiscfac) 

%         tmph = plot(s, mean(thiscfac_mean,1), 

'LineWidth', 2); 

%         h = [h, tmph]; 

%         tmpt = sprintf('%.1f(%.0d)', thisintimb, 

sum(idx)); 

%         text_edge2 = [text_edge2, tmpt]; 

%     end 

%     hold off 

%     xlim([5 100]) 

%     xlabel('body coordinate') 

%     ylabel('normalized amplitude (gfac)') 

%     title(sprintf('immob @ %.0f to %.0f%%', L, R)) 

%     set(gca, 'FontSize', 15) 

%     legend(h, text_edge2) 

% end 

% set(gcf, 'Position', [583,41,849,740]) 

% if issave == 1 

%     saveas(gcf, fullfile(savefoldername, 

'gfac_locim_tightness.fig')); 

%     saveas(gcf, fullfile(savefoldername, 

'gfac_locim_tightness.png')); 

% end 

  

% % Cfac_const / Cfac_ctrl dependence on location of 

immobilization (spectrum by tightness of immobilization) 

% s2 = 101:200; 

% s  = 1 : 100; 

% intlim = [0.5 1.5]; 

% figure(5);clf 

% cfac_ctrl = mean(squeeze(mean(vc(:,:,s),1)),1); 

% % calculating the control group 

% for i = 1 : length(edges_locim)-1 % first grouped by loc 

of immo 

%     thisedge = edges_locim(i:i+1); 

%     idx_rgc  = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)& 

Int_im >= tightness ; 

%     thisrgclr = vp(idx_rgc, :, 204:205); 

%     thisrgclr_mean = squeeze(mean(thisrgclr,1)); 

%     L = mean(thisrgclr_mean(:,1)); 

%     R = mean(thisrgclr_mean(:,2)); 

%     ind_2nd   = Int_im; 

%     edges_2nd = edges_len; 

%     idx = idx_rgc; 

%     thisintimb = mean(ind_2nd(idx)); 

%     thiscfac  = vp(idx, :,s); 

%     thiscfac_mean = squeeze(mean(thiscfac,1)); 

%     cfac_const    = mean(thiscfac_mean,1); 

%     h = {}; 

%     text_edge2 = {}; 

%     subplot(2,ceil((length(edges_locim)-1)/2),i) 

%     %     imagesc(s2, t2, thiscfac_mean) 

%     hold on 

%     % plot the loc of immobiliaztion 

%     line([L L],intlim,'Color','red','LineStyle','--', 

'LineWidth',2) 

%     line([R R],intlim,'Color','red','LineStyle','--', 

'LineWidth',2) 

%     if ~isempty(thiscfac) 

%         tmph = plot(s, cfac_const./ cfac_ctrl, 

'LineWidth', 2); 

%         h = [h, tmph]; 

%         tmpt = sprintf('%.1f(%.0d)', thisintimb, 

sum(idx)); 

%         text_edge2 = [text_edge2, tmpt]; 

%     end 

%     hold off 

%     xlim([5 95]) 

%     ylim(intlim) 

%     xlabel('body coordinate') 

%     ylabel('ratio of amplitude (gfac)') 

%     title(sprintf('immob @ %.0f to %.0f%%', L, R)) 

%     set(gca, 'FontSize', 15) 

%     legend(h, text_edge2) 

% end 

% set(gcf, 'Position', [581,41,849,740]) 

% if issave == 1 

%     saveas(gcf, fullfile(savefoldername, 

'gfac_norm_locim_tightness.fig')); 

%     saveas(gcf, fullfile(savefoldername, 

'gfac_norm_locim_tightness.png')); 

% end 

  

% % absK dependence on location of immobilization (spectrum 

by tightness of immobilization) 

% s2 = 101:200; 

% s  = 1 : 100; 

% intlim = [0 10]; 

% figure(6);clf 

% k_ctrl = mean(squeeze(mean(abs(vc(:,:,s2)),1)),1); 

% % calculating the control group 

% for i = 1 : length(edges_locim)-1 % first grouped by loc 

of immo 

%     thisedge = edges_locim(i:i+1); 

%     idx_rgc  = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)& 

Int_im >= tightness ; 

%     thisrgclr = vp(idx_rgc, :, 204:205); 

%     thisrgclr_mean = squeeze(mean(thisrgclr,1)); 

%     L = mean(thisrgclr_mean(:,1)); 

%     R = mean(thisrgclr_mean(:,2)); 

%     ind_2nd   = Int_im; 

%     edges_2nd = edges_len; 

%     idx = idx_rgc; 

%     thisintimb = mean(ind_2nd(idx)); 

%     thisk  = abs(vp(idx, :,s2)); 

%     thisk_mean = squeeze(mean(thisk,1)); 

%     h = {}; 

%     text_edge2 = {}; 

%     subplot(2,ceil((length(edges_locim)-1)/2),i) 

%     %     imagesc(s2, t2, thiscfac_mean) 

%     hold on 

%     % plot the control group 

%     tmph = plot(s, k_ctrl, 'LineWidth', 2, 'Color', 'k'); 

%     h = [h, tmph]; 

%     tmpt = sprintf('ctrl'); 

%     text_edge2 = [text_edge2, tmpt]; 

%     % plot the loc of immobiliaztion 

%     line([L L],intlim,'Color','red','LineStyle','--', 

'LineWidth',2) 

%     line([R R],intlim,'Color','red','LineStyle','--', 

'LineWidth',2) 

%     if ~isempty(thisk) 

%         tmph = plot(s, mean(thisk_mean,1), 'LineWidth', 

2, 'Color', 'r'); 

%         h = [h, tmph]; 

%         tmpt = sprintf('%.1f(%.0d)', thisintimb, 

sum(idx)); 

%         text_edge2 = [text_edge2, tmpt]; 

%     end 

%     hold off 

%     xlim([5 95]) 

%     xlabel('body coordinate') 

%     ylabel('normalized amplitude (|K|)') 

%     title(sprintf('immob @ %.0f to %.0f%%', L, R)) 

%     set(gca, 'FontSize', 15) 

%     legend(h, text_edge2) 

% end 

% set(gcf, 'Position', [581,41,849,740]) 

% if issave == 1 

%     saveas(gcf, fullfile(savefoldername, 

'absK_locim_tightness.fig')); 

%     saveas(gcf, fullfile(savefoldername, 

'absK_locim_tightness.png')); 

% end 

  

% % absK const/ctrl ratio dependence on location of 

immobilization 

% s2 = 101:200; 

% s  = 1 : 100; 

% intlim = [0.5 1.5]; 

% figure(7);clf 

% k_ctrl = mean(squeeze(mean(abs(vc(:,:,s2)),1)),1); 

% % calculating the control group 

% for i = 1 : length(edges_locim)-1 % first grouped by loc 

of immo 

%     thisedge = edges_locim(i:i+1); 

%     idx_rgc  = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)& 

Int_im >= tightness ; 

%     thisrgclr = vp(idx_rgc, :, 204:205); 

%     thisrgclr_mean = squeeze(mean(thisrgclr,1)); 

%     L = mean(thisrgclr_mean(:,1)); 

%     R = mean(thisrgclr_mean(:,2)); 

%     ind_2nd   = Int_im; 

%     edges_2nd = edges_len; 

%     idx = idx_rgc; 

%     thisintimb = mean(ind_2nd(idx)); 

%     thisk  = abs(vp(idx, :,s2)); 

%     thisk_mean = squeeze(mean(thisk,1)); 

%     h = {}; 

%     text_edge2 = {}; 

%     subplot(2,ceil((length(edges_locim)-1)/2),i) 

%     %     imagesc(s2, t2, thiscfac_mean) 

%     hold on 

%     % plot the loc of immobiliaztion 
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%     line([L L],intlim,'Color','red','LineStyle','--', 

'LineWidth',2) 

%     line([R R],intlim,'Color','red','LineStyle','--', 

'LineWidth',2) 

%     if ~isempty(thisk) 

%         tmph = plot(s, mean(thisk_mean,1)./k_ctrl, 

'LineWidth', 2, 'Color', 'r'); 

%         h = [h, tmph]; 

%         tmpt = sprintf('%.1f(%.0d)', thisintimb, 

sum(idx)); 

%         text_edge2 = [text_edge2, tmpt]; 

%     end 

%     hold off 

%     xlim([5 95]) 

%     ylim(intlim) 

%     xlabel('body coordinate') 

%     ylabel('ratio of amplitude (|K|)') 

%     title(sprintf('immob @ %.0f to %.0f%%', L, R)) 

%     set(gca, 'FontSize', 15) 

%     legend(h, text_edge2) 

% end 

% set(gcf, 'Position', [581,41,849,740]) 

% if issave == 1 

%     saveas(gcf, fullfile(savefoldername, 

'absKratio_locim_tightness.fig')); 

%     saveas(gcf, fullfile(savefoldername, 

'absKratio_locim_tightness.png')); 

% end 

  

  

% absK const/ctrl ratio scatter plots and bar plots 

s2 = 101:200; 

s  = 1 : 100; 

intlim = [0.5 1.5]; 

absk_ctrl = mean(squeeze(mean(abs(vc(:,:,s2)),1)),1); 

% calculating the control group 

thisedge = [35 65]; 

idx_rgc  = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)& 

Int_im >= tightness ; 

num_trials = sum(idx_rgc); 

thisconstlr_indmean = squeeze(mean(vp(idx_rgc, :, 

204:205),2)); 

thisabsk_indmean  = squeeze(mean(abs(vp(idx_rgc, :, 

s2)),2)); 

thisabsk_norm_indmean = thisabsk_indmean./repmat(absk_ctrl, 

[num_trials,1]); 

q_anterior  = zeros(num_trials,1); 

q_immobile  = zeros(num_trials,1); 

q_posterior = zeros(num_trials,1); 

for i = 1 : num_trials 

    immA = thisconstlr_indmean(i, 1); 

    immP = thisconstlr_indmean(i, 2); 

    absk_norm = thisabsk_norm_indmean(i, :); 

    q_anterior(i) = mean(absk_norm(15:floor(immA))); 

    q_immobile(i) = 

mean(absk_norm(ceil(immA):floor(immP))); 

    q_posterior(i) = mean(absk_norm(ceil(immP) : 85)); 

end 

% Excluding the trials that were not successfully 

immobilized 

todelete = q_immobile>=1.2; 

q_anterior(todelete) = []; 

q_immobile(todelete) = []; 

q_posterior(todelete)= []; 

num_minitrials = numel(q_immobile); 

%%% 

num_trials = size(q_anterior,1); 

% scatter plots 

% anterior vs middle 

figure(8); clf 

scatter(q_immobile, q_anterior, 36, 'k', 'filled') 

xlabel('Middle amplitude (|K|)') 

ylabel('Anterior amplitude (|K|)') 

set(gcf, 'Position', [1200,160,570,490]) 

if issave == 1 

    saveas(gcf, fullfile(savefoldername, 'norm amplitude 

(absk) scatter a vs m.fig')); 

    saveas(gcf, fullfile(savefoldername, 'norm amplitude 

(absk) scatter a vs m.png')); 

end 

% bar plots 

x = [1*ones([num_trials 1]); 2*ones([num_trials 1]); 

3*ones([num_trials 1])]; % anterior, middle, posterior 

y = [q_anterior; q_immobile; q_posterior]; % anterior, 

middle, posterior 

figure(9); clf 

beeswarm(x,y,'sort_style','hex','dot_size',.5,'overlay_styl

e','ci','corral_style','gutter'); 

xlim([0.3 3.7]) 

xticks([1 2 3]) 

xticklabels({'Anterior', 'Middle', 'Posterior'}) 

ylabel('Normalized bending amplitude') 

set(gcf,'Position', [69,291,700,400]) 

set(gca,'FontName','Arial','FontSize',20) 

if issave == 1 

    saveas(gcf, fullfile(savefoldername, 'norm amplitude 

(absk) bar.fig')); 

    saveas(gcf, fullfile(savefoldername, 'norm amplitude 

(absk) bar.png')); 

end 

  

% % Gfactor const/ctrl ratio scatter plots and bar plots 

% s2 = 101:200; 

% s1 = 1 : 100; 

% intlim = [0.5 1.5]; 

% gfac_ctrl = mean(squeeze(mean(vc(:,:,s1),1)),1); 

% % calculating the control group 

% thisedge = [35 65]; 

% idx_rgc  = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)& 

Int_im >= tightness ; 

% num_trials = sum(idx_rgc); 

% thisconstlr_indmean = squeeze(mean(vp(idx_rgc, :, 

204:205),2)); 

% thisgfac_indmean    = squeeze(mean(vp(idx_rgc, :, 

s1),2)); 

% thisgfac_norm_indmean = 

thisgfac_indmean./repmat(gfac_ctrl, [num_trials,1]); 

% q_anterior  = zeros(num_trials,1); 

% q_immobile  = zeros(num_trials,1); 

% q_posterior = zeros(num_trials,1); 

% for i = 1 : num_trials 

%     immA = thisconstlr_indmean(i, 1); 

%     immP = thisconstlr_indmean(i, 2); 

%     gfac_norm = thisgfac_norm_indmean(i, :); 

%     q_anterior(i) = mean(gfac_norm(12:floor(immA))); 

%     q_immobile(i) = 

mean(gfac_norm(ceil(immA):floor(immP))); 

%     q_posterior(i) = mean(gfac_norm(ceil(immP) : 90)); 

% end 

% % scatter plots 

% % anterior vs middle 

% figure(10); clf 

% scatter(q_immobile, q_anterior, 36, 'k', 'filled') 

% xlabel('Middle amplitude (gfac)') 

% ylabel('Anterior amplitude (gfac)') 

% set(gcf, 'Position', [1200,160,570,490]) 

% if issave == 1 

%     saveas(gcf, fullfile(savefoldername, 'norm gfac 

amplitude (gfac) scatter a vs m.fig')); 

%     saveas(gcf, fullfile(savefoldername, 'norm gfac 

amplitude (gfac) scatter a vs m.png')); 

% end 

  

% % bar plots 

% x = {1 + randn([num_trials 1])*.1, 2+randn([num_trials 

1])*.1, 3+randn([num_trials 1])*.1}; % anterior, middle, 

posterior 

% y = {q_anterior, q_immobile, q_posterior}; % anterior, 

middle, posterior 

% F_bar = zeros(size(y)); 

% X_bar = [1 2 3]; 

% F_err = zeros(size(y)); 

% figure(11); clf 

% for i = 1:numel(x) 

%     X = x{i}; 

%     Y = y{i}; 

%     F_bar(i) = mean(Y); 

%     F_err(i) = std(Y)./sqrt(numel(X)); 

%     hold on 

%     scatter(X, Y,10, 'b','filled') 

%     hold off   

% end 

% figure(11); hold on 

% bar(X_bar, F_bar, 'FaceColor', 'none', 'LineWidth', 2) 

% errorbar(X_bar, F_bar, F_err, 'LineStyle', 'none', 

'Color', 'k', 'LineWidth',1.5) 

% hold off 

% ylim([0 3]) 

% xticks([1 2 3]) 

% xticklabels({'Anterior', 'Middle', 'Posterior'}) 

% ylabel('Normalized amplitude (gfac)') 

% set(gcf, 'Position', [1200,160,570,490]) 

% if issave == 1 

%     saveas(gcf, fullfile(savefoldername, 'norm amplitude 

(gfac) bar.fig')); 

%     saveas(gcf, fullfile(savefoldername, 'norm amplitude 

(gfac) bar.png')); 

% end 

  

% % absK const/ctrl ratio dependence on location of 

immobilization 

% s2 = 101:200; 

% s  = 1 : 100; 

% intlim = [0 4]; 

% figure(12);clf 

% absk_ctrl = mean(squeeze(mean(abs(vc(:,:,s2)),1)),1); 
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% % calculating the control group 

% thisedge = [40 60]; 

% idx_rgc  = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)& 

Int_im >= tightness ; 

% thisrgclr = vp(idx_rgc, :, 204:205); 

% thisrgclr_mean = squeeze(mean(thisrgclr,1)); 

% L = mean(thisrgclr_mean(:,1)); 

% R = mean(thisrgclr_mean(:,2)); 

% ind_2nd   = Int_im; 

% idx = idx_rgc; 

% thisintimb = mean(ind_2nd(idx)); 

% thisabsk = squeeze(mean(abs(vp(idx, :,s2)),2)); 

% num_trials = size(thisabsk,1); 

% thisabsk_norm = thisabsk./repmat(absk_ctrl, 

[num_trials,1]); 

% % calculating the moving average and variance for norm 

amplitude ratio 

% thisabsk_mean = mean(thisabsk_norm,1); 

% thisabsk_var  = std(thisabsk_norm,0,1)./sqrt(num_trials); 

% ts = tinv([0.025  0.975],num_trials-1); % T-Score 

% ts = mean(abs(ts)); 

% CI = ts.*thisabsk_var;     

% hold on 

% for j = 1 : num_trials 

%     plot(thisabsk_norm(j, :), ':', 

'LineWidth',.1,'Color', [.3 .3 .3]) 

% end 

% shadedErrorBar(s, thisabsk_mean,CI,'b', .3); hold on;  

% % plot the loc of immobiliaztion 

% line([L L],intlim,'Color','red','LineStyle','--', 

'LineWidth',2) 

% line([R R],intlim,'Color','red','LineStyle','--', 

'LineWidth',2) 

% line([0 100], [1 1], 'Color', 'r') 

% tmpt = sprintf('%.1f(%.0d)', thisintimb, sum(idx)); 

% hold off 

% xlim([5 95]) 

% ylim(intlim) 

% xlabel('body coordinate') 

% ylabel('ratio of amplitude (|K|)') 

% title(sprintf('immob @ %.0f to %.0f%%', L, R)) 

% legend(gca, tmpt) 

% set(gca, 'FontSize', 15) 

% set(gcf, 'Position', [581,41,849,740]) 

% if issave == 1 

%     saveas(gcf, fullfile(savefoldername, 

'abskratio_shaded_locim_tightness.fig')); 

%     saveas(gcf, fullfile(savefoldername, 

'abskratio_shaded_locim_tightness.png')); 

% end 

  

% % gfac const/ctrl ratio dependence on location of 

immobilization 

% s2 = 101:200; 

% s  = 1 : 100; 

% intlim = [0 4]; 

% figure(13);clf 

% gfac_ctrl = mean(squeeze(mean(vc(:,:,s),1)),1); 

% % calculating the control group 

% thisedge = [40 60]; 

% idx_rgc  = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)& 

Int_im >= tightness ; 

% thisrgclr = vp(idx_rgc, :, 204:205); 

% thisrgclr_mean = squeeze(mean(thisrgclr,1)); 

% L = mean(thisrgclr_mean(:,1)); 

% R = mean(thisrgclr_mean(:,2)); 

% ind_2nd   = Int_im; 

% idx = idx_rgc; 

% thisintimb = mean(ind_2nd(idx)); 

% thisgfac = squeeze(mean(vp(idx, :,s),2)); 

% num_trials = size(thisgfac,1); 

% thisgfac_norm = thisgfac./repmat(gfac_ctrl, 

[num_trials,1]); 

% % calculating the moving average and variance for norm 

amplitude ratio 

% thisgfac_mean = mean(thisgfac_norm,1); 

% thisgfac_var  = std(thisgfac_norm,0,1)./sqrt(num_trials); 

% ts = tinv([0.025  0.975],num_trials-1); % T-Score 

% ts = mean(abs(ts)); 

% CI = ts.*thisgfac_var;     

% hold on 

% for j = 1 : num_trials 

%     plot(thisgfac_norm(j, :), ':', 

'LineWidth',.1,'Color', [.3 .3 .3]) 

% end 

% shadedErrorBar(s, thisgfac_mean,CI,'b', .3); hold on;  

% % plot the loc of immobiliaztion 

% line([L L],intlim,'Color','red','LineStyle','--', 

'LineWidth',2) 

% line([R R],intlim,'Color','red','LineStyle','--', 

'LineWidth',2) 

% line([0 100], [1 1], 'Color', 'r') 

% tmpt = sprintf('%.1f(%.0d)', thisintimb, sum(idx)); 

% hold off 

% xlim([5 95]) 

% ylim(intlim) 

% xlabel('body coordinate') 

% ylabel('ratio of amplitude (gfac)') 

% title(sprintf('immob @ %.0f to %.0f%%', L, R)) 

% legend(gca, tmpt) 

% set(gca, 'FontSize', 15) 

% set(gcf, 'Position', [581,41,849,740]) 

% if issave == 1 

%     saveas(gcf, fullfile(savefoldername, 

'gfacratio_shaded_locim_tightness.fig')); 

%     saveas(gcf, fullfile(savefoldername, 

'gfacratio_shaded_locim_tightness.png')); 

% end 

 

PostProcessing_cfactor_statistic_auto.m 
function [Q_anterior, Q_immobile, Q_posterior] = 

PostProcessing_cfactor_statistic_auto(ctrlfilename, 

pathname, t1) 

% locate the folder 

dir_list = dir(fullfile(pathname, '*data*.mat')); 

nworms   = numel(dir_list); 

t0   = t1; % sampling period 

t_step = t0; % step of moving during sampling 

v    = [];% preallocate for data pool after sampling with 

period t0. dim(v) = N * i0 * 403 

prog = 0; 

%% Control group 

fprintf('------Progress: %3.0f%% \n',prog); 

% load and resampling the data 

load(fullfile(pathname, ctrlfilename)) 

nnormw = numel(CURV_all); 

do_flip = 0; 

for i = 1 : nnormw 

    prog = 100*i/nnormw; 

    if i > 1 

        fprintf('\b\b\b\b%3.0f%%',prog); 

    end 

     

    i0 = floor(t0*fps); 

    step = floor(t_step*fps); 

    K    = CURV_all{i}; 

    dKdt = gradient(K')'*fps; 

    s    = 1 : size(K, 2); 

    if do_flip == 3 

        %%%%%%%%%%%%%%%%%%%%%%%%% disable this once 

corrected all data 

        % debug plot 

        figure(10); clf 

        imagesc(K) 

        colormap(cmap_redblue(0.7)) 

        caxis([-25 25]) 

        colorbar 

        set(gcf, 'Position', [581,42,584,1314]) 

        hold on 

        answer = length(questdlg('Need to flip some 

period?', '','Yes', 'No', 'No')); 

        if answer == 3 

            title('Indicate the period that need to be 

flipped') 

            % flip curvature and dKdt 

            [~, flpy1] = ginput(1); 

            flpy1 = max([floor(flpy1) 1]); 

            line([1 100], [flpy1 

flpy1],'Color','white','LineStyle','--') 

            [~, flpy2] = ginput(1); 

            flpy2 = min([floor(flpy2) size(K,1)]); 

            line([1 100], [flpy2 

flpy2],'Color','white','LineStyle','--') 

            K2flip = K(flpy1 : flpy2, :); 

            K_flipped = flip(K2flip,2); 

            K(flpy1 : flpy2, :) = K_flipped; 

        end 

        dKdt = gradient(K')'*fps; 

        % 

    end 

        % recalculate the generalized compensatory factor 

and save it 

        numsamplepts = 100; 

        numcurvpts   = 100; 

        a  = .15; c = a * T0_avg; 

        Zc = Kc_all + 1i*c*dKdtc_all; 

        Pc = unwrap(angle(Zc), [], 2); 

        [~, Sc] = meshgrid(1:numsamplepts, 1:numcurvpts); 

        % Generate interpolant (in a bulk manner) 

        FR = scatteredInterpolant(Pc(:), Sc(:), Zc(:), 

'linear', 'nearest'); 

        % Constrcting complex curvature dynamics for pulsed 

group 

        Zp     = K' + 1i*c*dKdt'; 

        Pp_ori = angle(Zp); % do not use unwrap 

        Pp1d   = Pp_ori(:); 
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        Pp1d(Pp1d>0) = Pp1d(Pp1d>0) - 2*pi; 

        Pp = reshape(Pp1d, size(Pp_ori)); 

        [~, Sp] = meshgrid(1:size(Pp,2), 1:size(Pp,1)); 

        Rp = abs(Zp); 

        Zc4p1d = FR(Pp(:), Sp(:)); 

        Zc4p = reshape(Zc4p1d, size(Pp)); 

        Rc4p = abs(Zc4p); 

        cfac = (Rp) ./ Rc4p; 

        % updata data 

        CURV_all{i}  = K; 

        dCURV_all{i} = dKdt; 

        % show updated plot 

        if do_flip == 3 

            figure(10); clf 

            imagesc(K) 

            colormap(cmap_redblue(0.7)) 

            colorbar 

            pause(1) 

        end 

        %%%%%%%%%%%%%%%%%%%%%%%%% disable this once 

corrected all data 

    % convert immobilization position from boolean exp to 

coord exp 

    u  = cfac'; 

    curv = K; 

    n  = size(u, 1); 

    iwin = 1 : i0; 

    while iwin(end) <= n 

        thisu = u(iwin, :); 

        thisk = curv(iwin, :); 

        thiscfac = thisu(:, 1:100); 

        iwin = iwin + step; 

        if max(thiscfac,[],'all') > 20 

            continue 

        end 

        thisuk = cat(2, thisu, thisk); 

        v   = cat(3, v, thisuk); 

    end 

end 

fprintf('\n') 

save(fullfile(pathname, ctrlfilename), 

'CURV_all','dCURV_all','-append') 

vc = permute(v, [3 1 2]); 

%% Constrained group 

v = []; 

%%% 

wconst = 60; % normally, the width of the channel is 60 um 

%%% 

prog = 0; 

fprintf('------Progress: %3.0f%% \n',prog); 

do_flip = 0; 

% load and resampling the data 

load(fullfile(pathname, ctrlfilename)) 

for i = 1 : nworms 

    prog = 100*i/nworms; 

    if i > 1 

        fprintf('\b\b\b\b%3.0f%%',prog); 

    end 

    thisworm  = dir_list(i); 

    fname = fullfile(thisworm.folder, thisworm.name); 

    load(fname) 

    i0 = floor(t0*fps); 

    step = floor(t_step*fps); 

    ntrials = numel(CR); 

    for j = 1:ntrials 

        cfac = CR{j}'; 

        K    = Kp_data{j}'; 

        dKdt = dKdtp_data{j}'; 

        len  = len_const{j}; 

        rgc  = rgn_const{j}; 

        wdia = w_diam{j}*1000; % unit: um 

        s =  1 : size(cfac, 2); 

        t = (0 : size(cfac, 1)-1)'/fps; 

        if do_flip == 3 

            %%%%%%%%%%%%%%%%%%%%%%%%% disable this once 

corrected all data 

            % debug plot 

            figure(10); clf 

            imagesc(K) 

            colormap(cmap_redblue(0.7)) 

            caxis([-25 25]) 

            colorbar 

            set(gcf, 'Position', [581,42,584,1314]) 

            hold on 

            answer = length(questdlg('Need to flip some 

period?', '','Yes', 'No', 'No')); 

            if answer == 3 

                title('Indicate the period that need to be 

flipped') 

                % flip curvature and dKdt 

                [~, flpy1] = ginput(1); 

                flpy1 = max([floor(flpy1) 1]); 

                line([1 100], [flpy1 

flpy1],'Color','white','LineStyle','--') 

                [~, flpy2] = ginput(1); 

                flpy2 = min([floor(flpy2) size(K,1)]); 

                line([1 100], [flpy2 

flpy2],'Color','white','LineStyle','--') 

                K2flip = K(flpy1 : flpy2, :); 

                K_flipped = flip(K2flip,2); 

                K(flpy1 : flpy2, :) = K_flipped; 

                dK2flip = dKdt(flpy1 : flpy2, :); 

                dK_flipped = flip(dK2flip,2); 

                dKdt(flpy1 : flpy2, :) = dK_flipped; 

                r2flip = rgc(flpy1 : flpy2, :); 

                r_flipped = flip(r2flip,2); 

                rgc(flpy1 : flpy2, :) = r_flipped; 

                % 

                % recalculate the generalized compensatory 

factor and save it 

                numsamplepts = 100; 

                numcurvpts   = 100; 

                a  = .15; c = a * T0_avg; 

                Zc = Kc_all + 1i*c*dKdtc_all; 

                Pc = unwrap(angle(Zc), [], 2); 

                [~, Sc] = meshgrid(1:numsamplepts, 

1:numcurvpts); 

                % Generate interpolant (in a bulk manner) 

                FR = scatteredInterpolant(Pc(:), Sc(:), 

Zc(:), 'linear', 'nearest'); 

                % Constrcting complex curvature dynamics 

for pulsed group 

                Zp     = K' + 1i*c*dKdt'; 

                Pp_ori = angle(Zp); % do not use unwrap 

                Pp1d   = Pp_ori(:); 

                Pp1d(Pp1d>0) = Pp1d(Pp1d>0) - 2*pi; 

                Pp = reshape(Pp1d, size(Pp_ori)); 

                [~, Sp] = meshgrid(1:size(Pp,2), 

1:size(Pp,1)); 

                Rp = abs(Zp); 

                Zc4p1d = FR(Pp(:), Sp(:)); 

                Zc4p = reshape(Zc4p1d, size(Pp)); 

                Rc4p = abs(Zc4p); 

                cr_new = (Rp) ./ Rc4p; 

                % updata data 

                CR{j} = cr_new; 

                Kp_data{j} = K'; 

                dKdtp_data{j} = dKdt'; 

                rgn_const{j}  = rgc; 

                % show updated plot 

                figure(10); clf 

                subplot(121) 

                imagesc(K) 

                colormap(cmap_redblue(0.7)) 

                colorbar 

                subplot(122) 

                imagesc(cr_new') 

                colorbar 

                pause(1) 

            end 

            %%%%%%%%%%%%%%%%%%%%%%%%% disable this once 

corrected all data 

        end 

        % convert immobilization position from boolean exp 

to coord exp 

        rgc(rgc == 0) = nan; 

        imb = rgc .* repmat(s, [length(t), 1]); 

        imbl = min(imb, [], 2, 'omitnan'); 

        imbr = max(imb, [], 2, 'omitnan'); 

        imbm = mean(imb, 2, 'omitnan'); 

        u  = cat(2, cfac, K, repmat([wdia, wconst], 

[length(t) 1]), len, imbl, imbr, imbm); 

        n  = size(u, 1); 

        iwin = 1 : i0; 

        while iwin(end) <= n 

            thisu = u(iwin, :); 

            thiscfac = thisu(:, 1:100); 

            iwin = iwin + step; 

            if max(thiscfac,[],'all') > 50 

                continue 

            end 

            imbaa = mean(thisu(:, 204), 'omitnan'); % 

average anterior 

            imbpa = mean(thisu(:, 205), 'omitnan'); % 

average posterior 

            if isnan(imbaa) || isnan(imbpa) 

                continue 

            end 

            tmp = cat(2, thisu, repmat(imbaa, [i0, 1]), 

repmat(imbpa, [i0, 1])); 

            v   = cat(3, v, tmp); 

        end 

    end 
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    save(fname, 

'CR','Kp_data','dKdtp_data','rgn_const','len_const' ,'-

append') 

end 

fprintf('\n') 

vp = permute(v, [3 1 2]); 

%% Computing results 

N       = size(vp, 1); 

Loc_ima = vp(:,1,207); 

Loc_imp = vp(:,1,208); 

  

Int_im = vp(:,1,201)./vp(:,1,202); 

tightness = 0; 

  

% absK const/ctrl ratio scatter plots and bar plots 

s2 = 101:200; 

s  = 1 : 100; 

intlim = [0.5 1.5]; 

absk_ctrl = mean(squeeze(mean(abs(vc(:,:,s2)),1)),1); 

% calculating the control group 

thisedge = [35 65]; 

idx_rgc  = Loc_ima>=thisedge(1) & Loc_imp<=thisedge(2)& 

Int_im >= tightness; 

num_minitrials = sum(idx_rgc); 

thisconstlr_indmean = squeeze(mean(vp(idx_rgc, :, 

204:205),2, 'omitnan')); 

thisabsk_indmean    = squeeze(mean(abs(vp(idx_rgc, :, 

s2)),2, 'omitnan')); 

thisabsk_norm_indmean = thisabsk_indmean./repmat(absk_ctrl, 

[num_minitrials,1]); 

T0 = t1; % counting 10 s as one trial 

I0 = T0/t0; 

q_anterior  = zeros(num_minitrials,1); 

q_immobile  = zeros(num_minitrials,1); 

q_posterior = zeros(num_minitrials,1); 

for i = 1 : num_minitrials 

    immA = thisconstlr_indmean(i, 1); 

    immP = thisconstlr_indmean(i, 2); 

    absk_norm = thisabsk_norm_indmean(i, :); 

    q_anterior(i) = mean(absk_norm(15:thisedge(1))); 

    q_immobile(i) = 

mean(absk_norm(ceil(immA):floor(immP))); 

    q_posterior(i) = mean(absk_norm(thisedge(2) : 85)); 

end 

% % Excluding the trials that were not successfully 

immobilized 

% todelete = q_immobile>=1.0; 

% q_anterior(todelete) = []; 

% q_immobile(todelete) = []; 

% q_posterior(todelete)= []; 

% num_minitrials = numel(q_immobile); 

% %%% 

num_trials  = floor(num_minitrials/I0) + 1; 

Q_anterior  = zeros(num_trials,1); 

Q_immobile  = zeros(num_trials,1); 

Q_posterior = zeros(num_trials,1); 

for i = 1 : num_trials 

    if i ~= num_trials 

        tmprange = (1 + (i-1)*I0) : i*I0; 

    else 

        tmprange = (1 + (i-1)*I0) : num_minitrials; 

    end 

    Q_anterior(i) = mean(q_anterior(tmprange)); 

    Q_immobile(i) = mean(q_immobile(tmprange)); 

    Q_posterior(i) = mean(q_posterior(tmprange)); 

end 

Q_anterior(Q_anterior>=2.5) = []; 

 

Str2Mat.m 
function D = Str2Mat(A) 

%STR2MAT convert string to matrix 

D = reshape(str2double(regexp(A,'\d*','match')),2,[])'; 

  

end 

  

WORMSHAPE_MAINCALCULATION.m 
function [curvdatafiltered, dKdt_data, angledatafiltered, 

lendata, inconst, fullnewdirname, w_diam] = 

WORMSHAPE_MAINCALCULATION(vidObj, options) 

%WORMSHAPE_MAINCALCULATION Analyze the undulatory dynamics 

of worms 

conc          = options{1}; % 

wormlabel     = options{2}; 

fps           = options{3}; 

pix_per_mm    = options{4}; % 

wormthreshold = options{5}; 

thisperiod    = options{6}; 

decim         = options{7}; 

filsize       = options{8}; % 

start_illum   = options{9}; % 

end_illum     = options{10}; % 

spline_p      = options{11}; 

domovie       = options{12}; 

initials      = options{13}; % 

pathname      = options{14}; 

filename      = options{15}; 

do_const      = options{16}; 

issavefiles   = options{17}; 

  

expo = 0.7; 

istart = thisperiod(1); 

iend   = thisperiod(2); 

skip = floor((iend-istart+1)/10); 

resizefactor = 1; 

invert_img   = 0; 

decim_filter = ones(decim) / (decim^2); 

  

if skip ==0 

    skip = 1; 

end 

numframes  = iend - istart + 1; 

  

numcurvpts = 100; 

  

mov_size_multiplier = 1; 

savefps = 30; 

mov_quality = .9; 

if issavefiles 

    fullnewdirname = 

fullfile(pathname,strrep(filename,'.avi',sprintf('_worm%d_%

d-%d',wormlabel,istart,iend))); 

    mkdir(fullnewdirname); 

end 

  

if domovie   % MOV 

    savefname= 

strrep(filename,'.avi',sprintf('_%d-%d.mov',istart,iend)); 

    savepathfname = fullfile(fullnewdirname,savefname); 

    mov_size_multiplier = 1; 

    savefps = vidObj.FrameRate; 

    mov_quality = 0.9; 

end 

  

  

  

%%%%%%%% PREVIEW IMAGES %%%%%%%%%%% 

%%% Mark the region of constraint 

if do_const 

    img = mean(read(vidObj,istart),3); 

    img = imresize(img, resizefactor, 'bicubic'); 

     

    img = imfilter(img, decim_filter, 'same'); 

    img = img(1:decim:end,1:decim:end); 

     

    figure(1);clf 

    image(img); 

     

    bkg = imread(strrep(filename, 'bkgsubtracted.avi', 

'background.bmp')); 

    figure(2); clf 

    image(bkg); axis image 

    [ysize, xsize] = size(bkg); 

    hold on; 

    title('background'); 

    text(10,20, 'select ROI: upper left then lower right', 

'Color', 'white'); 

    [bkgx1, bkgy1] = ginput(1); 

    bkgx1 = floor(bkgx1); 

    bkgy1 = floor(bkgy1); 

    bkgx1 = max([1,bkgx1]); 

    bkgy1 = max([1,bkgy1]); 

    bkgx1 = min([size(bkg,2),bkgx1]); 

    bkgy1 = min([size(bkg,1),bkgy1]); 

    plot([1 xsize], [bkgy1 bkgy1], '-r'); 

    plot([bkgx1 bkgx1], [1 ysize], '-r'); 

    [bkgx2, bkgy2] = ginput(1); 

    bkgx2 = floor(bkgx2); 

    bkgy2 = floor(bkgy2); 

     

    % ADF EDIT: Make sure the crops are in-bounds 

    bkgx2 = max([1,bkgx2]); 

    bkgy2 = max([1,bkgy2]); 

    bkgx2 = min([size(bkg,2),bkgx2]); 

    bkgy2 = min([size(bkg,1),bkgy2]); 

     

    plot([1 xsize], [bkgy2 bkgy2], '-r'); 

    plot([bkgx2 bkgx2], [1 ysize], '-r'); 

     

    xconst = [bkgx1, bkgx2, bkgx2, bkgx1]'; 

    yconst = [bkgy1, bkgy1, bkgy2, bkgy2]'; 

end 

%%% Worm Analysis 

j=0; 

% manually remove bright none-worm objects 

img = mean(read(vidObj,istart),3); 

img = imresize(img, resizefactor, 'bicubic'); 
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img = imfilter(img, decim_filter, 'same'); 

img = img(1:decim:end,1:decim:end); 

lvl = min(min(img)) + wormthreshold* (-

min(min(img))+max(max(img))); 

figure(1);clf; 

imagesc(img> lvl); axis image; 

figure(2);clf; 

imagesc(img); colormap gray; axis image; hold on; 

bw_remove = false(size(img)); 

iscontinue = 1; 

while iscontinue == 1 

    figure(2); hold on; 

    title('Indicate none-worm ROI') 

    answer = length(questdlg('Continue to remove none-

worm?', 'BKG modification', 'Continue', 'No', 'No')); 

    if answer == 8 

        iscontinue = 1; 

        figure(2); hold on; 

        [bw_nw, xi, yi] = roipoly; 

        patch(xi, yi, 'g', 'FaceColor', 

'none','EdgeColor','r', 'LineStyle',':'); 

        bw_remove = bw_remove | bw_nw; 

    else 

        iscontinue = 0; 

        close all 

    end 

end 

img(bw_remove) =  min(min(img)); 

% % manually select four pixel points from the background 

to eliminate the 

% % background noise 

% figure(2); clf; 

% imagesc(img); colormap gray; axis image; hold on; 

% title('Pick four points as background pixels') 

% [xs_bkg, ys_bkg] = ginput(4); 

% plot(xs_bkg, ys_bkg, 'or') 

  

% create sum image 

for i=istart:skip:iend 

    j = j+1; 

     

    img = mean(read(vidObj,i),3); 

    img = imresize(img, resizefactor, 'bicubic'); 

     

    img = imfilter(img, decim_filter, 'same'); 

    img = img(1:decim:end,1:decim:end); 

     

    if invert_img 

        img = 255-img; 

    end 

    if i == istart 

        imgsum = single(img); 

        [ysize, xsize] = size(img); 

        imgmin = ones(size(img)); 

        imgdata = zeros(ysize, xsize, 

length(istart:skip:iend)); 

    end 

    figure(1); 

    imagesc(img); colormap gray;hold on; 

    axis image;    title(num2str(i)); 

    imgdata(:,:,j) = img; 

    imgsum = imgsum + single(img); 

end 

  

  

figure(1);clf; 

imagesc(imgsum); colormap jet; hold on; 

title('sum image'); 

  

text(10,20, 'select ROI: upper left then lower right', 

'Color', 'white'); 

[cropx1, cropy1] = ginput(1); 

cropx1 = floor(cropx1); 

cropy1 = floor(cropy1); 

  

% ADF EDIT: Make sure the crops are in-bounds. 

cropx1 = max([1,cropx1]); 

cropy1 = max([1,cropy1]); 

cropx1 = min([size(img,2),cropx1]); 

cropy1 = min([size(img,1),cropy1]); 

  

% Get the second corner of the ROI 

plot([1 xsize], [cropy1 cropy1], '-r'); 

plot([cropx1 cropx1], [1 ysize], '-r'); 

[cropx2, cropy2 ] = ginput(1); 

cropx2 = floor(cropx2); 

cropy2 = floor(cropy2); 

  

% ADF EDIT: Make sure the crops are in-bounds 

cropx2 = max([1,cropx2]); 

cropy2 = max([1,cropy2]); 

cropx2 = min([size(img,2),cropx2]); 

cropy2 = min([size(img,1),cropy2]); 

  

plot([1 xsize], [cropy2 cropy2], '-r'); 

plot([cropx2 cropx2], [1 ysize], '-r'); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%% MAIN 

CALCULATIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%% Parameter 

Initiation %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

showcalc = 0; 

deinterlace = 1; interlaceframe = 1; 

cropyes = 1; 

  

  

curvdata = zeros(numframes,numcurvpts); 

inconst  = zeros(numframes,numcurvpts); 

areadata = zeros(numframes,1); 

centroiddata =  zeros(numframes,2); 

  

cv2i_data = zeros(numframes,numcurvpts+2,2); 

angledata = zeros(numframes,numcurvpts+1); 

path1_rescaled_data = zeros(numframes,numcurvpts,2); 

path2_rescaled_data = zeros(numframes,numcurvpts,2); 

corner_mean = zeros(numframes,1); 

lendata = zeros(numframes, 1); 

  

for j=1 

    i = istart + (j - 1); 

    img = mean(read(vidObj,i),3);%%%%%%%%%%%%%%%% changed 

    img = imresize(img, resizefactor, 'bicubic'); 

     

    img = imfilter(img, decim_filter, 'same'); 

    img = img(1:decim:end,1:decim:end); 

    if invert_img 

        img = 255-img; 

    end 

     

    img2 = abs(single(img(:,:,1))- imgmin); 

    img = abs(single(img(:,:,1))); 

     

    if deinterlace 

        img(3-interlaceframe:2:end) = 

img(interlaceframe:2:end); 

        img2(3-interlaceframe:2:end) = 

img2(interlaceframe:2:end); 

    end 

    if cropyes 

        imgcrop = img(cropy1:cropy2,cropx1:cropx2);% 

         

        imgcrop2 = img2(cropy1:cropy2,cropx1:cropx2);% 

         

    else 

        imgcrop = img; 

        imgcrop2 = img2; 

    end 

    imgcrop = imgcrop'; 

    imgcrop2 = imgcrop2'; 

     

    imgcrop3 = imgcrop - imgcrop2; 

    imgcrop4 = imgcrop3 - min(min(imgcrop3)); 

    [a,c] = find (imgcrop4 > 40); 

    contour = [a,c]; 

    figure(2); hold off; 

    imagesc(imgcrop4, [5 250]); hold on; 

    colormap gray 

end 

  

ddd1 = []; 

vvv1 = []; 

  

for j=1:numframes 

    i = istart + (j - 1); 

     

    if i>vidObj.NumberOfFrames; break; end 

%      

    img = mean(read(vidObj,i),3); 

    img(bw_remove) =  min(min(img)); 

    img = imresize(img, resizefactor, 'bicubic'); 

    img = imfilter(img, decim_filter, 'same'); 

    img = img(1:decim:end,1:decim:end); 

    if invert_img 

        img = 255-img; 

    end 

     

    img = abs(single(img(:,:,1))- imgmin); 

    img2 = abs(single(img(:,:,1))); 

     

    if deinterlace 

        img(3-interlaceframe:2:end) = 

img(interlaceframe:2:end); 

        img2(3-interlaceframe:2:end) = 

img2(interlaceframe:2:end); 
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    end 

    if cropyes 

        imgcrop = img(cropy1:cropy2,cropx1:cropx2); 

        imgcrop2 = img2(cropy1:cropy2,cropx1:cropx2); 

    else 

        imgcrop = img; 

        imgcrop2 = img2; 

    end 

    imgcrop = imgcrop'; 

    imgcrop2 = imgcrop2'; 

     

    corner_mean(j) = mean(mean(imgcrop(1:20,1:20))); 

     

     

    figure(1); hold off; 

    imagesc(imgcrop, [5 250]); hold on; 

    text(20,20,[num2str(1*double(i-istart)/fps, '%.2f') ' 

s'], 'Color', 'w'); 

    axis image; 

     

    if j==1 

        colormap jet; 

        [ysize, xsize ] = size(imgcrop); 

        text(10,10,'click on head', 'Color', 'white'); 

        [headx, heady] = ginput(1); 

        hold on; 

        plot(headx, heady, 'or'); 

        headx0 = headx; heady0 = heady; 

        text(10,10,'click on head', 'Color', 'black'); 

        text(10,10,'click on tail', 'Color', 'white'); 

        [tailx, taily] = ginput(1); 

        tailx0 = tailx; taily0 = taily; 

        text(10,10,'click on tail', 'Color', 'black'); 

        lvl = min(min(imgcrop)) + wormthreshold* (-

min(min(imgcrop))+max(max(imgcrop))); 

         

        figure(1);clf; 

        imagesc(imgcrop> lvl); axis image; hold on; 

        text(10,10,'zoom in, press any key', 'Color', 

'white'); 

        zoom on; zoom off; 

        text(10,10,'zoom in, press any key', 'Color', 

'black'); 

         

        title('click two points separated by worm 

diameter'); 

        tmp1 = ginput(1); 

        plot(tmp1(1),tmp1(2), 'ow'); 

        tmp2 = ginput(1); 

        plot(tmp2(1),tmp2(2), 'ow'); 

        pause(.5); 

        worm_diam = norm(tmp1-tmp2); 

        title(['worm diameter = ' num2str(worm_diam) ' 

pixels']); 

        worm_area_est = 10*worm_diam^2; 

        sizethresh = round(worm_area_est / 2); 

        if mod(round(filsize*worm_diam),2)==1 

            filradius = round(filsize*worm_diam/2); 

        else 

            filradius = round(filsize*worm_diam/2)+1; 

        end 

         

        fil = fspecial('disk', filradius); 

        if domovie 

            MakeQTMovie('start',savepathfname); 

            MakeQTMovie('size', 

mov_size_multiplier*[size(img,2) size(img,1)]); 

            MakeQTMovie('quality', mov_quality); 

            MakeQTMovie('framerate', round(savefps)); 

        end 

        colormap gray; 

        zoom out; 

        set(gcf, 'Position',    [ 129   190   310   463]); 

         

         

    end 

     

    img2 = conv2(single(imgcrop), fil, 'same'); 

     

    lvl = min(min(img2))+wormthreshold* (-

min(min(img2))+max(max(img2))); 

     

    bw =(img2> lvl); 

     

    if showcalc 

        figure(2); 

        imshow(bw); 

    end 

     

    bw2 = bwareaopen(bw,  sizethresh); 

    bw3 = imcomplement(bw2); 

    bw4 = bwareaopen(bw3, sizethresh); 

    bw5 = imcomplement(bw4); 

     

    STATS = regionprops(logical(bw5),'Area', 'Centroid'); 

     

    if size(STATS,1) == 0 

        disp('Error: no worm found'); 

        break; 

    end 

     

    areadata(j) = STATS.Area; 

    centroiddata(j,:) = STATS.Centroid; 

    B = bwboundaries(bw5, 'noholes'); %  trace boundary 

clockwise 

     

    B1 = B{1}; % boundary coordinates 

     

    B1_size = size(B1,1); 

     

    ksep = ceil(B1_size/20); 

     

    B1_plus = circshift(B1,[ksep 0]); 

    B1_minus = circshift(B1,[-ksep 0]); 

     

    AA = B1 - B1_plus;  % AA and BB are vectors between a 

point on boundary and neighbors +- ksep away 

    BB = B1 - B1_minus; 

     

    cAA = AA(:,1) + sqrt(-1)*AA(:,2); 

    cBB = BB(:,1) + sqrt(-1)*BB(:,2); 

     

    B1_angle = unwrap(angle(cBB ./ cAA)); 

     

    min1 = find(B1_angle == min(B1_angle),1); % find point 

on boundary w/ minimum angle between AA, BB 

    B1_angle2 = circshift(B1_angle, -min1); 

    min2a = round(.25*B1_size)-

1+find(B1_angle2(round(.25*B1_size):round(0.75*B1_size))==m

in(B1_angle2(round(.25*B1_size):round(0.75*B1_size))),1);  

% find minimum in other half 

    min2 = 1+mod(min2a + min1-1, B1_size); 

     

    tmp = circshift(B1, [1-min1 0]); 

    end1 = 1+mod(min2 - min1-1, B1_size); 

     

    path1 = tmp(1:end1,:); 

    path2 = tmp(end:-1:end1,:); 

     

    if norm(path1(1,:) - [heady headx]) > norm(path1(end,:) 

- [heady headx]) % if min1 is at tail, reverse both paths 

        tmp = path1; 

        path1 = path2(end:-1:1,:); 

        path2 = tmp(end:-1:1,:); 

    end 

     

    heady = path1(1,1); 

    headx = path1(1,2); 

    taily = path1(end,1); 

    tailx = path1(end,2); 

     

    path_length = numcurvpts; 

     

    path1_rescaled = zeros(path_length,2); 

    path2_rescaled = zeros(path_length,2); 

    path1_rescaled2 = zeros(path_length,2); 

    path2_rescaled2 = zeros(path_length,2); 

     

    path1_rescaled(:,1) = interp1(0:size(path1,1)-1, 

path1(:,1), (size(path1,1)-1)*(0:path_length-

1)/(path_length-1), 'linear'); 

    path1_rescaled(:,2) = interp1(0:size(path1,1)-1, 

path1(:,2), (size(path1,1)-1)*(0:path_length-

1)/(path_length-1), 'linear'); 

    path2_rescaled(:,1) = interp1(0:size(path2,1)-1, 

path2(:,1), (size(path2,1)-1)*(0:path_length-

1)/(path_length-1), 'linear'); 

    path2_rescaled(:,2) = interp1(0:size(path2,1)-1, 

path2(:,2), (size(path2,1)-1)*(0:path_length-

1)/(path_length-1), 'linear'); 

     

     

    for kk=1:path_length 

        tmp1 = repmat(path1_rescaled(kk,:), 

[path_length,1]) - path2_rescaled; 

        tmp2 = sqrt(tmp1(:,1).^2 + tmp1(:,2).^2); 

        path2_rescaled2(kk,:) = 

path2_rescaled(find(tmp2==min(tmp2),1),:); 

    end 

     

    for kk=1:path_length 

        tmp1 = repmat(path2_rescaled(kk,:), 

[path_length,1]) - path1_rescaled; 

        tmp2 = sqrt(tmp1(:,1).^2 + tmp1(:,2).^2); 

        path1_rescaled2(kk,:) = 

path1_rescaled(find(tmp2==min(tmp2),1),:); 
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    end 

     

     

     

    dorsalx = path1_rescaled2(:,1); 

    dorsaly = path1_rescaled2(:,2); 

    ventralx = path2_rescaled2(:,1); 

    ventraly = path2_rescaled2(:,2); 

     

    dorsal = [ventralx,ventraly]; 

    ventral = [dorsalx,dorsaly]; 

     

    dorsalline =  round(dorsal); 

    ventralline = round(ventral); 

     

     

    a2 =[]; 

    a3 =[]; 

     

     

    for i = 1:length(ventralline) 

        a1 = find(ventralline(i,1) == contour(:,1) & 

ventralline(i,2) == contour(:,2)); 

        a4 = find(dorsalline(i,1) == contour(:,1) & 

dorsalline(i,2) == contour(:,2)); 

        if a1 > 0 

            a1 = 1; 

        else 

            a1 = 0; 

        end 

        a2 = cat(2,a2,a1); 

         

        if a4 > 0 

            a4 = 1; 

        else 

            a4 = 0; 

        end 

        a3 = cat(2,a3,a4); 

         

    end 

    ddd = sum(a3); 

    vvv = sum(a2); 

    ddd1 = cat(1,ddd1,ddd); 

    vvv1 = cat(1,vvv1,vvv); 

    comb_cont = cat(1,ddd1',vvv1'); 

     

    weight_fn = ones(path_length,1); 

    tmp=round(path_length*0.2); 

    weight_fn(1:tmp)=(0:tmp-1)/tmp; 

    weight_fn(end-tmp+1:end)=(tmp-1:-1:0)/tmp; 

    weight_fn = [weight_fn weight_fn]; 

     

    midline   = 0.5*(path1_rescaled+path2_rescaled); 

    midline2a = 0.5*(path1_rescaled+path2_rescaled2); 

    midline2b = 0.5*(path1_rescaled2+path2_rescaled); 

    midline_mixed = midline2a .* weight_fn + midline .* (1-

weight_fn); 

     

    figure(1); axis image; 

    plot(path1_rescaled(1,2),  path1_rescaled(1,1), 'or'); 

hold on; 

    plot(path2_rescaled(end,2),path2_rescaled(end,1), 

'og'); hold on; 

     

    Line = midline_mixed; 

     

    interpfactor = 10; 

    Line2 = interp1(Line, (1:(1/interpfactor):100)); % 

worm's center line in xy coordinates in imgcrop 

     

    xy = circshift(Line2, [0 1])'; df = diff(xy,1,2); 

     

     

     

    t = cumsum([0, sqrt([1 1]*(df.*df))]); 

    cv = csaps(t,xy,spline_p); 

     

    dorsal_xy = circshift(dorsalline, [0 1])'; df = 

diff(dorsal_xy,1,2); 

    tmpt2 = cumsum([0, sqrt([1 1]*(df.*df))]); 

    dorsal_cv = csaps(tmpt2,dorsal_xy,spline_p); 

     

    ventral_xy = circshift(ventralline, [0 1])'; df = 

diff(ventral_xy,1,2); 

    tmpt2 = cumsum([0, sqrt([1 1]*(df.*df))]); 

    ventral_cv = csaps(tmpt2,ventral_xy,spline_p); 

     

     

    figure(1); axis image; 

    fnplt(cv, '-g'); hold on; 

    plot(xy(1,51),xy(2,51),'or');hold on ;% centre point of 

cv 

    fnplt(dorsal_cv, '-r'); hold on; 

    fnplt(ventral_cv, '-g'); hold on; 

     

    drawnow; 

     

     

    if domovie && j>1 

        MakeQTMovie('addframe'); 

    end 

     

    if j==1 

        plot([Line(1,2) headx0],[Line(1,1) heady0], '-oc'); 

        plot([Line(end,2) tailx0],[Line(end,1) taily0], '-

oc'); 

        pause(1); 

    end 

     

    cv2 =  fnval(cv, t)'; 

    df2 = diff(cv2,1,1); df2p = df2'; 

     

    splen = cumsum([0, sqrt([1 1]*(df2p.*df2p))]); 

    lendata(j) = splen(end)/pix_per_mm; 

    % interpolate to equally spaced length units 

    cv2i = interp1(splen+.00001*(0:length(splen)-1),cv2, 

(0:(splen(end)-1)/(numcurvpts+1):(splen(end)-1))); 

    if do_const 

        xyi  = interp1(splen+.00001*(0:length(splen)-

1),cv2, (0:(splen(end)-1)/(numcurvpts-1):(splen(end)-1))); 

        xcrop = xyi(:,2); 

        ycrop = xyi(:,1); 

        xincr = cropx1; 

        yincr = cropy1; 

        ximg = xcrop + xincr; 

        yimg = ycrop + yincr; 

        % identify the part that is in the constraint ROI 

        in = inpolygon(ximg, yimg, xconst, yconst); 

        inconst(j,:) = in; 

    end 

    % store cv2i data 

     

    cv2i_data(j,:,:) = cv2i; 

    path1_rescaled_data(j,:,:) = path1_rescaled; 

    path2_rescaled_data(j,:,:) = path2_rescaled; 

    df2 = diff(cv2i,1,1); 

    atdf2 =  unwrap(atan2(-df2(:,2), df2(:,1))); 

    curv = unwrap(diff(atdf2,1)); 

    curvdata(j,:) = curv' * pix_per_mm; 

    % calculate the angle of attack during worm's 

locomotion 

    atdf2 = atan2(-df2(:,2), df2(:,1)); 

    theta   = (mean(max(atdf2)) + mean(min(atdf2)))/2; 

    xcenter = cv2i(1,1); 

    ycenter = cv2i(1,2); 

    center  = repmat([xcenter ycenter], size(cv2i, 1), 1); 

    Ro      = [cos(theta) -sin(theta); sin(theta) 

cos(theta)]; 

    % do the rotation 

    cv2io = (Ro*(cv2i' - center') + center')'; 

    df2o   = diff(cv2io,1,1); 

    atdf2o = atan2(-df2o(:,2), df2o(:,1)); 

    angledata(j,:) = atdf2o'; 

end  % end main loop 

  

% Post-processing raw curvature data 

curvdata_median = medfilt2(curvdata, [5 5]); 

tmp = reshape(curvdata_median, [numel(curvdata_median),1]); 

curv05 = prctile(tmp, 5); 

curv95 = prctile(tmp, 95); 

curvdata(curvdata > curv95) = curvdata_median(curvdata > 

curv95); 

curvdata(curvdata < curv05) = curvdata_median(curvdata < 

curv05); 

timefilter = 5; 

bodyfilter = 5; 

curvfilter = fspecial('average',[timefilter,bodyfilter]); 

curvdatafiltered = imfilter(curvdata, curvfilter, 

'replicate'); 

dKdt_data        = gradient(curvdatafiltered')'*fps; 

% Post-processing raw angle data 

angledata_median = medfilt2(angledata, [5 5]); 

tmp = reshape(angledata_median, 

[numel(angledata_median),1]); 

angle05 = prctile(tmp, 5); 

angle95 = prctile(tmp, 95); 

angledata(angledata > angle95) = 

angledata_median(angledata > angle95); 

angledata(angledata < angle05) = angledata_median(angledata 

< angle05); 

timefilter = 5; 

bodyfilter = 5; 

anglefilter = fspecial('average',[timefilter,bodyfilter]); 

angledatafiltered = imfilter(angledata,  anglefilter , 

'replicate'); 

w_diam = worm_diam/pix_per_mm; 
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if issavefiles 

    if domovie 

        MakeQTMovie('finish'); 

    end 

end 

  

end 

  

curv_vs_act.py 
import numpy as np 

import cv2 

from matplotlib import pyplot as plt 

import math 

import os 

import shutil 

from scipy.ndimage import interpolation 

from scipy.ndimage import median_filter 

from scipy.ndimage import gaussian_filter 

from scipy.interpolate import UnivariateSpline 

from skimage.segmentation import active_contour 

from scipy.stats import pearsonr 

import pickle 

import csv 

from numpy.polynomial.polynomial import polyfit 

from scipy import stats 

  

## exec(open("./curv_vs_act.py").read()) 

  

input_folder = r"C:\Users\fffei\Dropbox\Paper\Compensatory 

reponse mechanism\data optogenetics\GCaMP expts new\SWF331 

p05 agarpad round5\Analyzables\w1\c2\r\edge_detection" 

  

## write normalized images for viewing, use fold change for 

gcamp, use real curvature (K*l) 

with open(input_folder+'/'+'dorsal_kymograph.pkl','rb') as 

f: 

    dorsal_kymograph = pickle.load(f) 

with open(input_folder+'/'+'ventral_kymograph.pkl','rb') as 

f: 

    ventral_kymograph = pickle.load(f) 

with 

open(input_folder+'/'+'dorsal_body_kymograph.pkl','rb') as 

f: 

    dorsal_body_kymograph = pickle.load(f) 

with 

open(input_folder+'/'+'ventral_body_kymograph.pkl','rb') as 

f: 

    ventral_body_kymograph = pickle.load(f) 

     

## remove frames due to segmentation errors or whatever 

# toRemove = 234 

# dorsal_kymograph = dorsal_kymograph[:toRemove] 

# ventral_kymograph = ventral_kymograph[:toRemove] 

# dorsal_body_kymograph = dorsal_body_kymograph[:toRemove] 

# ventral_body_kymograph = 

ventral_body_kymograph[:toRemove] 

  

# gcamp_bg = 2200 

# dorsal_kymograph_pic = ((dorsal_kymograph-

np.min(dorsal_kymograph))/(np.max(dorsal_kymograph)-

np.min(dorsal_kymograph)))*255.0 

# dorsal_kymograph_pic = 

dorsal_kymograph_pic.astype('uint8') 

# dorsal_kymograph = dorsal_kymograph - gcamp_bg 

# temp = 

np.histogram(dorsal_kymograph.flatten(),bins=np.arange(0,np

.max(dorsal_kymograph),10)) 

# temp = list(zip(temp[0],temp[1])) 

# temp = list(sorted(temp)) 

# dorsal_kymograph = dorsal_kymograph / temp[-1][1] 

# cv2.imwrite(input_folder+'/'+'dorsal_kymograph.tif', 

dorsal_kymograph) 

# ventral_kymograph_pic = ((ventral_kymograph-

np.min(ventral_kymograph))/(np.max(ventral_kymograph)-

np.min(ventral_kymograph)))*255.0 

# ventral_kymograph_pic = 

ventral_kymograph_pic.astype('uint8') 

# ventral_kymograph = ventral_kymograph - gcamp_bg 

# temp = 

np.histogram(ventral_kymograph.flatten(),bins=np.arange(0,n

p.max(ventral_kymograph),10)) 

# temp = list(zip(temp[0],temp[1])) 

# temp = list(sorted(temp)) 

# ventral_kymograph = ventral_kymograph / temp[-1][1] 

# cv2.imwrite(input_folder+'/'+'ventral_kymograph.tif', 

ventral_kymograph) 

c_one = 9999999 

c_two = 9999999 

cutoff_one = 

np.median(dorsal_body_kymograph.flatten()[dorsal_body_kymog

raph.flatten()!=0]) + 

c_one*np.std(dorsal_body_kymograph.flatten()[dorsal_body_ky

mograph.flatten()!=0]) 

cutoff_two = 

np.median(ventral_body_kymograph.flatten()[ventral_body_kym

ograph.flatten()!=0]) + 

c_two*np.std(ventral_body_kymograph.flatten()[ventral_body_

kymograph.flatten()!=0]) 

dorsal_body_kymograph[dorsal_body_kymograph>cutoff_one] = 

0.0 

ventral_body_kymograph[ventral_body_kymograph>cutoff_two] = 

0.0 

body_min = 

np.min([np.min(dorsal_body_kymograph),np.min(ventral_body_k

ymograph)]) 

body_max = 

np.max([np.max(dorsal_body_kymograph),np.max(ventral_body_k

ymograph)]) 

dorsal_body_kymograph_pic = ((dorsal_body_kymograph - 

body_min)/(body_max-body_min))*255.0 

dorsal_body_kymograph_pic = 

dorsal_body_kymograph_pic.astype('uint8') 

ventral_body_kymograph_pic = ((ventral_body_kymograph - 

body_min)/(body_max-body_min))*255.0 

ventral_body_kymograph_pic = 

ventral_body_kymograph_pic.astype('uint8') 

  

  

## increase length of pic  

# new_length = 1000 

# dorsal_body_kymograph_pic = 

np.array([dorsal_body_kymograph_pic[0] for i in 

range(new_length)]) 

# ventral_body_kymograph_pic = 

np.array([ventral_body_kymograph_pic[0] for i in 

range(new_length)]) 

  

cv2.imwrite(input_folder+'/'+'dorsal_body_kymograph.tif', 

dorsal_body_kymograph_pic) 

cv2.imwrite(input_folder+'/'+'ventral_body_kymograph.tif', 

ventral_body_kymograph_pic) 

  

if False: 

    # ## analysis 

    dorsal_kymograph = dorsal_kymograph.astype('float') 

    ventral_kymograph = ventral_kymograph.astype('float') 

    dorsal_body_kymograph = 

dorsal_body_kymograph.astype('float') 

    ventral_body_kymograph = 

ventral_body_kymograph.astype('float') 

     

    ## adjust size so all are same size as 

dorsal_body_kymograph 

    ## dorsal_kymograph 

    new_dorsal_kymograph = [] 

    for original_length, new_length in 

zip(dorsal_kymograph.shape, dorsal_body_kymograph.shape): 

        new_dorsal_kymograph.append(np.linspace(0, 

original_length-1, new_length)) 

    coords = np.meshgrid(*new_dorsal_kymograph, 

indexing='ij') 

    dorsal_kymograph = 

interpolation.map_coordinates(dorsal_kymograph, coords) 

    new_dorsal_kymograph = None 

     

    # ventral_kymograph 

    new_ventral_kymograph = [] 

    for original_length, new_length in 

zip(ventral_kymograph.shape, dorsal_body_kymograph.shape): 

        new_ventral_kymograph.append(np.linspace(0, 

original_length-1, new_length)) 

    coords = np.meshgrid(*new_ventral_kymograph, 

indexing='ij') 

    ventral_kymograph = 

interpolation.map_coordinates(ventral_kymograph, coords) 

    new_ventral_kymograph = None 

     

    # ventral_body_kymograph 

    new_ventral_body_kymograph = [] 

    for original_length, new_length in 

zip(ventral_body_kymograph.shape, 

dorsal_body_kymograph.shape): 

        new_ventral_body_kymograph.append(np.linspace(0, 

original_length-1, new_length)) 

    coords = np.meshgrid(*new_ventral_body_kymograph, 

indexing='ij') 

    ventral_body_kymograph = 

interpolation.map_coordinates(ventral_body_kymograph, 

coords) 

    new_ventral_body_kymograph = None 

     

    fig = plt.figure() 

    ax = fig.add_subplot(111) 
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    x = dorsal_body_kymograph.flatten()-

ventral_body_kymograph.flatten() 

    y = dorsal_kymograph.flatten() 

    xy = list(sorted(list(zip(x,y)))) 

    x = np.array([xx for xx,yy in xy if xx > 0.02 or xx < -

0.02]) 

    y = np.array([yy for xx,yy in xy if xx > 0.02 or xx < -

0.02]) 

    b, m = polyfit(x, y, 1) 

    r = pearsonr(x, y) 

    ax.scatter(x,y,color='blue',s=4, label='Pearsons R: 

'+str('%.3f'%r[0]),alpha=0.05) 

    ax.plot(x, b + m * x, '-',c='black', 

label=str('%.3f'%m)+'x + '+str('%.3f'%b)) 

    plt.legend(loc="upper right") 

    ax.set_xlabel('Normalized dorsal curvature', 

fontsize=14) 

    ax.set_ylabel('Fold change dorsal activation', 

fontsize=14) 

    plt.savefig(input_folder+'/'+'dorsal.png') 

    plt.show() 

    plt.close() 

     

    fig = plt.figure() 

    ax = fig.add_subplot(111) 

    x = dorsal_body_kymograph.flatten()-

ventral_body_kymograph.flatten() 

    y = ventral_kymograph.flatten() 

    xy = list(sorted(list(zip(x,y)))) 

    x = np.array([xx for xx,yy in xy if xx > 0.02 or xx < -

0.02]) 

    y = np.array([yy for xx,yy in xy if xx > 0.02 or xx < -

0.02]) 

    b, m = polyfit(x, y, 1) 

    r = pearsonr(x, y) 

    ax.scatter(x,y,color='red',s=4, label='Pearsons R: 

'+str('%.3f'%r[0]),alpha=0.05) 

    ax.plot(x, b + m * x, '-',c='black', 

label=str('%.3f'%m)+'x + '+str('%.3f'%b)) 

    plt.legend(loc="upper right") 

    ax.set_xlabel('Normalized ventral curvature', 

fontsize=14) 

    ax.set_ylabel('Fold change ventral activation', 

fontsize=14) 

    plt.savefig(input_folder+'/'+'ventral.png') 

    plt.show() 

    plt.close() 

     

    fig = plt.figure() 

    ax = fig.add_subplot(111) 

    b, m = polyfit(dorsal_body_kymograph.flatten(), 

ventral_body_kymograph.flatten(), 1) 

    r = pearsonr(dorsal_body_kymograph.flatten(), 

ventral_body_kymograph.flatten()) 

    

ax.scatter(dorsal_body_kymograph.flatten(),ventral_body_kym

ograph.flatten(),color='gray',s=4, label='Pearsons R: 

'+str('%.3f'%r[0]),alpha=0.05) 

    ax.plot(dorsal_body_kymograph.flatten(), b + m * 

dorsal_body_kymograph.flatten(), '-',c='black', 

label=str('%.3f'%m)+'x + '+str('%.3f'%b)) 

    plt.legend(loc="upper right") 

    ax.set_xlabel('Normalized dorsal body curvature', 

fontsize=14) 

    ax.set_ylabel('Normalized ventral body curvature', 

fontsize=14) 

    plt.savefig(input_folder+'/'+'body.png') 

    plt.show() 

    plt.close() 

     

    fig = plt.figure() 

    ax = fig.add_subplot(111) 

    b, m = polyfit(dorsal_kymograph.flatten(), 

ventral_kymograph.flatten(), 1) 

    r = pearsonr(dorsal_kymograph.flatten(), 

ventral_kymograph.flatten()) 

    

ax.scatter(dorsal_kymograph.flatten(),ventral_kymograph.fla

tten(),color='gray',s=4, label='Pearsons R: 

'+str('%.3f'%r[0]),alpha=0.05) 

    ax.plot(dorsal_kymograph.flatten(), b + m * 

dorsal_kymograph.flatten(), '-',c='black', 

label=str('%.3f'%m)+'x + '+str('%.3f'%b)) 

    plt.legend(loc="upper right") 

    # ax.set_xlim(-0.1,1.1) 

    # ax.set_ylim(-0.1,1.1) 

    ax.set_xlabel('Fold change dorsal muscle activation', 

fontsize=14) 

    ax.set_ylabel('Fold change ventral muscle activation', 

fontsize=14) 

    plt.savefig(input_folder+'/'+'muscle.png') 

    plt.show() 

    plt.close() 

     

    ## get immobilization factor for body 

    skipFactor = 10 

    dbk = 0 

    for i in range(skipFactor,len(dorsal_body_kymograph)): 

        diff = dorsal_body_kymograph[i] - 

dorsal_body_kymograph[i-skipFactor] 

        dbk += np.sum(np.abs(diff))/len(diff) 

    vbk = 0 

    for i in range(1,len(ventral_body_kymograph)): 

        diff = ventral_body_kymograph[i] - 

ventral_body_kymograph[i-skipFactor] 

        vbk += np.sum(np.abs(diff))/len(diff) 

    

print('dorsal_body_kymograph',dbk/len(dorsal_body_kymograph

)) 

    

print('ventral_body_kymograph',vbk/len(ventral_body_kymogra

ph)) 

    

print('total_body_kymograph',((vbk/len(ventral_body_kymogra

ph))+(dbk/len(dorsal_body_kymograph)))/2) 

    output = 

[('dorsal_body_kymograph',dbk/len(dorsal_body_kymograph)),(

'ventral_body_kymograph',vbk/len(ventral_body_kymograph)),(

'total_body_kymograph',((vbk/len(ventral_body_kymograph))+(

dbk/len(dorsal_body_kymograph)))/2)] 

    with open(input_folder+'/'+'immobility.csv', 'w') as 

csv_file:   

        writer = csv.writer(csv_file) 

        for row in output: 

            writer.writerow(row) 

             

    ## get immobilization factor for muscles 

    skipFactor = 10 

    dk = 0 

    for i in range(skipFactor,len(dorsal_kymograph)): 

        diff = dorsal_kymograph[i] - dorsal_kymograph[i-

skipFactor] 

        dk += np.sum(np.abs(diff))/len(diff) 

    vk = 0 

    for i in range(1,len(ventral_kymograph)): 

        diff = ventral_kymograph[i] - ventral_kymograph[i-

skipFactor] 

        vk += np.sum(np.abs(diff))/len(diff) 

    print('dorsal_kymograph',dk/len(dorsal_kymograph)) 

    print('ventral_kymograph',vk/len(ventral_kymograph)) 

    

print('average_kymograph',((vk/len(ventral_kymograph))+(dk/

len(dorsal_body_kymograph)))/2) 

    output = 

[('dorsal_kymograph',dk/len(dorsal_kymograph)),('ventral_ky

mograph',vk/len(ventral_kymograph)),('average_kymograph',((

vk/len(ventral_kymograph))+(dk/len(dorsal_kymograph)))/2)] 

    with open(input_folder+'/'+'immobility_muscles.csv', 

'w') as csv_file:   

        writer = csv.writer(csv_file) 

        for row in output: 

            writer.writerow(row) 

         

# ## calculate derivative of body kymograph with respect to 

time 

# skipFactor = 10 

# dbk_deriv = [] 

# for i in range(len(dorsal_body_kymograph)): 

#     if i < skipFactor or i > len(dorsal_body_kymograph)-

skipFactor-1: 

#         

dbk_deriv.append(np.zeros(len(dorsal_body_kymograph[i]))) 

#     else: 

#         dbk_deriv.append([]) 

#         for j in range(len(dorsal_body_kymograph[i])): 

#             diff = dorsal_body_kymograph[i+skipFactor][j] 

- dorsal_body_kymograph[i-skipFactor][j] 

#             dbk_deriv[-1].append(diff) 

#         dbk_deriv[-1] = np.array(dbk_deriv[-1]) 

# dbk_deriv = np.array(dbk_deriv) 

# dbk_deriv_img = ((dbk_deriv/np.max(dbk_deriv))*255.0) 

# cv2.imwrite(input_folder+'/'+'dbk_derivative.tif', 

dbk_deriv_img.astype('uint8')) 

#      

# vbk_deriv = [] 

# for i in range(len(ventral_body_kymograph)): 

#     if i < skipFactor or i > len(ventral_body_kymograph)-

skipFactor-1: 

#         

vbk_deriv.append(np.zeros(len(ventral_body_kymograph[i]))) 

#     else: 

#         vbk_deriv.append([]) 

#         for j in range(len(ventral_body_kymograph[i])): 

#             diff = 

ventral_body_kymograph[i+skipFactor][j] - 

ventral_body_kymograph[i-skipFactor][j] 



147 

 

#             vbk_deriv[-1].append(diff) 

#         vbk_deriv[-1] = np.array(vbk_deriv[-1]) 

# vbk_deriv = np.array(vbk_deriv) 

# vbk_deriv_img = ((vbk_deriv/np.max(vbk_deriv))*255.0) 

# cv2.imwrite(input_folder+'/'+'vbk_derivative.tif', 

vbk_deriv_img.astype('uint8')) 

#  

# ## calculate derivative of muscle kymograph with respect 

to time 

# skipFactor = 10 

# dk_deriv = [] 

# for i in range(len(dorsal_kymograph)): 

#     if i < skipFactor or i > len(dorsal_kymograph)-

skipFactor-1: 

#         

dk_deriv.append(np.zeros(len(dorsal_kymograph[i]))) 

#     else: 

#         dk_deriv.append([]) 

#         for j in range(len(dorsal_kymograph[i])): 

#             diff = dorsal_kymograph[i+skipFactor][j] - 

dorsal_kymograph[i-skipFactor][j] 

#             dk_deriv[-1].append(diff) 

#         dk_deriv[-1] = np.array(dk_deriv[-1]) 

# dk_deriv = np.array(dk_deriv) 

# dk_deriv_img = ((dk_deriv/np.max(dk_deriv))*255.0) 

# cv2.imwrite(input_folder+'/'+'dk_derivative.tif', 

dk_deriv_img.astype('uint8')) 

#      

# vk_deriv = [] 

# for i in range(len(ventral_kymograph)): 

#     if i < skipFactor or i > len(ventral_kymograph)-

skipFactor-1: 

#         

vk_deriv.append(np.zeros(len(ventral_kymograph[i]))) 

#     else: 

#         vk_deriv.append([]) 

#         for j in range(len(ventral_kymograph[i])): 

#             diff = ventral_kymograph[i+skipFactor][j] - 

ventral_kymograph[i-skipFactor][j] 

#             vk_deriv[-1].append(diff) 

#         vk_deriv[-1] = np.array(vk_deriv[-1]) 

# vk_deriv = np.array(vk_deriv) 

# vk_deriv_img = ((vk_deriv/np.max(vk_deriv))*255.0) 

# cv2.imwrite(input_folder+'/'+'vk_derivative.tif', 

vk_deriv_img.astype('uint8')) 

#  

# fig = plt.figure() 

# ax = fig.add_subplot(111) 

# x = dorsal_body_kymograph.flatten()-

ventral_body_kymograph.flatten() 

# y = dk_deriv.flatten() 

# xy = list(sorted(list(zip(x,y)))) 

# x = np.array([xx for xx,yy in xy if xx > 0.02 or xx < -

0.02]) 

# y = np.array([yy for xx,yy in xy if xx > 0.02 or xx < -

0.02]) 

# b, m = polyfit(x, y, 1) 

# r = pearsonr(x, y) 

# ax.scatter(x,y,color='blue',s=4, label='Pearsons R: 

'+str('%.3f'%r[0]),alpha=0.05) 

# ax.plot(x, b + m * x, '-',c='black', 

label=str('%.3f'%m)+'x + '+str('%.3f'%b)) 

# plt.legend(loc="upper right") 

# ax.set_xlabel('Normalized dorsal curvature', fontsize=14) 

# ax.set_ylabel('Change in fold change dorsal activation', 

fontsize=14) 

# plt.savefig(input_folder+'/'+'dorsal_deriv.png') 

# plt.show() 

# plt.close() 

#  

# fig = plt.figure() 

# ax = fig.add_subplot(111) 

# x = dorsal_body_kymograph.flatten()-

ventral_body_kymograph.flatten() 

# y = vk_deriv.flatten() 

# xy = list(sorted(list(zip(x,y)))) 

# x = np.array([xx for xx,yy in xy if xx > 0.02 or xx < -

0.02]) 

# y = np.array([yy for xx,yy in xy if xx > 0.02 or xx < -

0.02]) 

# b, m = polyfit(x, y, 1) 

# r = pearsonr(x, y) 

# ax.scatter(x,y,color='red',s=4, label='Pearsons R: 

'+str('%.3f'%r[0]),alpha=0.05) 

# ax.plot(x, b + m * x, '-',c='black', 

label=str('%.3f'%m)+'x + '+str('%.3f'%b)) 

# plt.legend(loc="upper right") 

# ax.set_xlabel('Normalized ventral curvature', 

fontsize=14) 

# ax.set_ylabel('Change in fold change ventral activation', 

fontsize=14) 

# plt.savefig(input_folder+'/'+'ventral_deriv.png') 

# plt.show() 

# plt.close() 

#  

# fig = plt.figure() 

# ax = fig.add_subplot(111) 

# x = dbk_deriv.flatten() 

# y = dk_deriv.flatten() 

# xy = list(sorted(list(zip(x,y)))) 

# x = np.array([xx for xx,yy in xy if xx > 0.02 or xx < -

0.02]) 

# y = np.array([yy for xx,yy in xy if xx > 0.02 or xx < -

0.02]) 

# b, m = polyfit(x, y, 1) 

# r = pearsonr(x, y) 

# ax.scatter(x,y,color='blue',s=4, label='Pearsons R: 

'+str('%.3f'%r[0]),alpha=0.05) 

# ax.plot(x, b + m * x, '-',c='black', 

label=str('%.3f'%m)+'x + '+str('%.3f'%b)) 

# plt.legend(loc="upper right") 

# ax.set_xlabel('Change in dorsal curvature', fontsize=14) 

# ax.set_ylabel('Change in fold change dorsal activation', 

fontsize=14) 

# plt.savefig(input_folder+'/'+'dorsal_body_deriv.png') 

# plt.show() 

# plt.close() 

#  

# fig = plt.figure() 

# ax = fig.add_subplot(111) 

# x = vbk_deriv.flatten() 

# y = vk_deriv.flatten() 

# xy = list(sorted(list(zip(x,y)))) 

# x = np.array([xx for xx,yy in xy if xx > 0.02 or xx < -

0.02]) 

# y = np.array([yy for xx,yy in xy if xx > 0.02 or xx < -

0.02]) 

# b, m = polyfit(x, y, 1) 

# r = pearsonr(x, y) 

# ax.scatter(x,y,color='red',s=4, label='Pearsons R: 

'+str('%.3f'%r[0]),alpha=0.05) 

# ax.plot(x, b + m * x, '-',c='black', 

label=str('%.3f'%m)+'x + '+str('%.3f'%b)) 

# plt.legend(loc="upper right") 

# ax.set_xlabel('Change in ventral curvature', fontsize=14) 

# ax.set_ylabel('Change in fold change ventral activation', 

fontsize=14) 

# plt.savefig(input_folder+'/'+'ventral_body_deriv.png') 

# plt.show() 

# plt.close() 

 

worm_straightener.py 
import numpy as np 

import cv2 

from matplotlib import pyplot as plt 

import math 

import os 

import shutil 

from scipy.ndimage import interpolation 

from scipy.ndimage import median_filter 

from scipy.interpolate import UnivariateSpline 

from skimage.segmentation import active_contour 

import pickle 

import csv 

from skimage import morphology, img_as_bool 

import scipy.io 

  

## exec(open("./worm_straightener.py").read()) 

  

  

red_input_folder = 

r"C:\Users\fffei\Dropbox\Paper\Compensatory reponse 

mechanism\data optogenetics\GCaMP expts new\SWF331 p05 

agarpad round5\Analyzables\w11\c3\r" 

green_input_folder = 

r"C:\Users\fffei\Dropbox\Paper\Compensatory reponse 

mechanism\data optogenetics\GCaMP expts new\SWF331 p05 

agarpad round5\Analyzables\w11\c3\g" 

  

try: 

    shutil.rmtree(red_input_folder + '\\edge_detection') 

except: 

    pass 

  

images = os.listdir(red_input_folder) 

saveImages = True 

draw = True 

## make head = tail and tail = head corners 

flipHeadTail = True 

## make dorsal_contour = ventral_contour, vice versa 

flipDorsalVentral = True 

## reverse contours so they read from head to tail 

reverseDorsalVentral = False 

## flip direction of perpendicular angle during centerline 

detection 

flipAngle = True 
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## make sure curvature is correct 

flipCurvature = False 

  

os.mkdir(red_input_folder + '\\edge_detection') 

  

def distance(p,q): 

    return np.sqrt((p[0]-q[0])**2+(p[1]-q[1])**2) 

def distance_pts(p,_contours): 

    distance_lst = [] 

    for q in _contours[0]: 

        distance_lst.append((distance(p[0],q[0]),q)) 

    distance_lst = list(sorted(distance_lst, key=lambda x: 

x[0])) 

    return distance_lst[0][1] 

  

dorsal_kymograph = [] 

ventral_kymograph = [] 

dorsal_body_kymograph = [] 

ventral_body_kymograph = [] 

last_head_corner = np.array([None]) 

last_tail_corner = np.array([None]) 

last_dorsal_contour = np.array([None]) 

last_ventral_contour = np.array([None]) 

skipList = [] 

oneWormDone = False 

midline_contours = [] 

center_of_masses = [] 

  

skip = -1 

  

for image in images: 

    # if image != '0092.tif': 

    #     continue 

    ## skip images if necessary and write previous image to 

folder 

    if image in skipList: 

        

cv2.imwrite(red_input_folder+'/'+'edge_detection'+'/'+image

, img) 

        continue 

     

    skip+=1 

    # if skip<443 or skip>495: 

    #     continue 

     

    ## read in image 

    img = cv2.imread(red_input_folder+'/'+image, 

cv2.IMREAD_UNCHANGED) 

    img = 

cv2.cvtColor(img,cv2.COLOR_GRAY2RGB).astype('uint8') 

    print(image) 

     

    ## filter to make smoother edges 

    # dilation and erosion can be used to accentuate or 

deaccentuate features 

    ## kernel_one = 7, kernel_two = 3, 5 median blur, 0.1 

threshold for 3.2 um images, use large median blur to round 

edges 

    kernel_one = np.ones((21,21), np.int16) 

##    img = cv2.dilate(img, kernel_one, iterations=1) 

##    img = cv2.erode(img, kernel_one, iterations=1) 

    #plt.imshow(img),plt.show() 

    ## second round of eroding so contour edges align with 

pyo3 expression 

    kernel_two = np.ones((5,5), np.int16) 

    # img = cv2.erode(img, kernel_two, iterations=1) 

    #plt.imshow(img),plt.show() 

    ## clean all noise after dilatation and erosion 

    medianBlur_one = 7 

    img = cv2.medianBlur(img.astype('uint8'), 

medianBlur_one) 

    #plt.imshow(img),plt.show() 

    ## threshold to make clean edges 

    img = img.astype('uint8') 

    # plt.imshow(img),plt.show() 

    threshold_one = .1 

    img[img < threshold_one] = 0 

    img[img >= threshold_one] = 255 

    img = img.astype('uint8') 

    #plt.imshow(img),plt.show() 

     

    #gray scale image 

    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 

     

    # Find Canny edges  

    edged = cv2.Canny(gray, 0, 255) 

    #plt.imshow(edged),plt.show() 

     

    # Finding Contours  

    # Use a copy of the image e.g. edged.copy()  

    # since findContours alters the image  

    contours, hierarchy = cv2.findContours(edged, 

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) 

    if len(contours) != 1: 

        print('more than one contour') 

        

cv2.imwrite(red_input_folder+'/'+'edge_detection'+'/'+image

, img) 

        skipList.append(image) 

        midline_contours.append(np.array([])) 

        center_of_masses.append([]) 

        continue 

     

    ## corner selection using circle at each point on 

contour 

    ii = np.where(edged == 255) 

    corners_params = [10,50] 

    ii_r = corners_params[0] 

    ii_sums = [] 

    for ii_y,ii_x in zip(ii[0],ii[1]): 

        zero_img = np.zeros(edged.shape) 

        cv2.circle(zero_img,(ii_x,ii_y),ii_r,1,-1) 

        ii_circle = np.where(zero_img == 1) 

        zero_img = zero_img*gray 

        zero_img = np.sum(zero_img) 

        ii_sums.append((zero_img,[ii_x,ii_y])) 

    ii_sums = list(sorted(ii_sums)) 

    corners = [np.array([np.array(ii_sums[0][1])])] 

    for zi,iixiiy in ii_sums: 

        if distance(iixiiy,corners[0][0]) > 

corners_params[1]: 

            corners.append(np.array([np.array(iixiiy)])) 

            break 

    corners = np.array(corners) 

     

    ## selection corner using cv2.goodfeaturestotrack 

    # corners_params = [2,0.01,175,10] 

    # corners = 

cv2.goodFeaturesToTrack(gray,corners_params[0],corners_para

ms[1],corners_params[2],blockSize=corners_params[3]) 

    # corners = np.int0(corners) 

    # 

    

    ## split contour up into dorsal and ventral contours 

    ## find contour position closest to corners 

    if last_head_corner.any() == None: 

        head = distance_pts(corners[0],contours) 

        tail = distance_pts(corners[1],contours) 

    else: 

        if distance(last_head_corner[0],corners[0][0]) < 

distance(last_head_corner[0],corners[1][0]): 

            head = distance_pts(corners[0],contours) 

            tail = distance_pts(corners[1],contours) 

        else: 

            head = distance_pts(corners[1],contours) 

            tail = distance_pts(corners[0],contours) 

     

    last_head_corner = head 

    last_tail_corner = tail 

    head_idx = None 

    tail_idx = None 

     

    ## break single contours into dorsal and ventral 

contour 

    for idx,var in enumerate(contours[0]): 

        if var[0][0] == head[0][0] and var[0][1] == 

head[0][1]: 

            head_idx = idx 

        if var[0][0] == tail[0][0] and var[0][1] == 

tail[0][1]: 

            tail_idx = idx 

    if head_idx - tail_idx < 0: 

        dorsal_contour = 

np.array(list(reversed(list(contours[0][head_idx:tail_idx])

))) 

        ventral_contour = 

np.array(list(contours[0][tail_idx:]) + 

list(contours[0][0:head_idx])) 

    else: 

        dorsal_contour = 

np.array(list(contours[0][head_idx:]) + 

list(contours[0][0:tail_idx])) 

        ventral_contour = 

np.array(list(reversed(list(contours[0][tail_idx:head_idx])

))) 

         

    ## orient contours so they are consistently in the same 

direction 

    if last_dorsal_contour.any() != None: 

        if 

distance(last_dorsal_contour[0][0],dorsal_contour[0][0]) > 

distance(last_dorsal_contour[-1][0],dorsal_contour[0][0]): 

            dorsal_contour = dorsal_contour[::-1] 

        if 

distance(last_ventral_contour[0][0],ventral_contour[0][0]) 
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> distance(last_ventral_contour[-

1][0],ventral_contour[0][0]): 

            ventral_contour = ventral_contour[::-1] 

    last_dorsal_contour = dorsal_contour 

    last_ventral_contour = ventral_contour 

  

    ## if necessary, flip head/tail and dorsal/ventral 

    if flipHeadTail: 

        h = head 

        t = tail 

        head = t 

        tail = h 

    if flipDorsalVentral: 

        d = dorsal_contour 

        v = ventral_contour 

        dorsal_contour = v 

        ventral_contour = d 

    if reverseDorsalVentral: 

        dorsal_contour = dorsal_contour[::-1] 

        ventral_contour = ventral_contour[::-1] 

         

    ## get body midline and calculate curvature 

    ## make dorsal and ventral indieces same scale 

    dorsal_contour_idx = list(range(len(dorsal_contour))) 

    ventral_contour_idx = list(range(len(ventral_contour))) 

    if len(dorsal_contour_idx) > len(ventral_contour_idx): 

        new_dorsal_contour_idx = [] 

        for original_length, new_length in 

zip(np.array(dorsal_contour_idx).shape, 

np.array(ventral_contour_idx).shape): 

            new_dorsal_contour_idx.append(np.linspace(0, 

original_length-1, new_length)) 

        coords = np.meshgrid(*new_dorsal_contour_idx, 

indexing='ij') 

        dorsal_contour_idx = 

interpolation.map_coordinates(dorsal_contour_idx, coords) 

        new_dorsal_contour_idx = None 

    else: 

        new_ventral_contour_idx = [] 

        for original_length, new_length in 

zip(np.array(ventral_contour_idx).shape, 

np.array(dorsal_contour_idx).shape): 

            new_ventral_contour_idx.append(np.linspace(0, 

original_length-1, new_length)) 

        coords = np.meshgrid(*new_ventral_contour_idx, 

indexing='ij') 

        ventral_contour_idx = 

interpolation.map_coordinates(ventral_contour_idx, coords) 

        new_ventral_contour_idx = None 

         

    ## calculate body midline contour using average half 

distance of line scan across worm 

    # skeleton = 

morphology.medial_axis(img_as_bool(img[:,:,0])) 

    skeleton = img.copy() 

    skeleton[skeleton > 0] = 1 

    skeleton = morphology.skeletonize(img[:,:,0]>0) 

    # plt.imshow(skeleton),plt.show() 

    skel_idx = np.argwhere(skeleton==True) 

    midline_contour = [] 

    def dist(pt1,pt2): 

        d = np.sqrt((pt2[1]-pt1[1])**2+(pt2[0]-pt1[0])**2) 

        return d 

    prev_pt = head[0] 

    while len(skel_idx) != 0: 

        temp = [] 

        for pt_idx in range(len(skel_idx)): 

            pt = (skel_idx[pt_idx][1],skel_idx[pt_idx][0]) 

            pt_distance = dist(prev_pt,pt) 

            temp.append((pt_distance,pt_idx)) 

        temp = list(sorted(temp)) 

        

midline_contour.append([[skel_idx[temp[0][1]][1],skel_idx[t

emp[0][1]][0]]]) 

        prev_pt = 

[skel_idx[temp[0][1]][1],skel_idx[temp[0][1]][0]] 

        skel_idx = np.delete(skel_idx,[temp[0][1]],axis=0) 

             

    skip_one = 3 

    # min_contour = 

np.min((len(dorsal_contour),len(ventral_contour))) 

    # for i in range(len(dorsal_contour_idx)): 

    #     if i-skip_one >= 0 and i+skip_one < min_contour: 

    #         d_i = dorsal_contour_idx[i-skip_one] 

    #         d_i_1 = dorsal_contour_idx[i+skip_one] 

    #         v_i = ventral_contour_idx[i-skip_one] 

    #         v_i_1 = ventral_contour_idx[i+skip_one] 

    #         d_x,d_y = dorsal_contour[d_i][0] 

    #         d_x_1,d_y_1 = dorsal_contour[d_i_1][0] 

    #         v_x,v_y = ventral_contour[v_i][0] 

    #         v_x_1,v_y_1 = ventral_contour[v_i_1][0] 

    #         ## calculate perpendicular angle 

    #         if flipAngle: 

    #             d_angle = math.atan2((d_y_1-d_y), (d_x_1-

d_x)) + math.radians(90) 

    #             v_angle = math.atan2((v_y_1-v_y), (v_x_1-

v_x)) - math.radians(90) 

    #         else: 

    #             d_angle = math.atan2((d_y_1-d_y), (d_x_1-

d_x)) - math.radians(90) 

    #             v_angle = math.atan2((v_y_1-v_y), (v_x_1-

v_x)) + math.radians(90) 

    #         ## find halfway point for dorsal/ventral 

contours 

    #         d_point = dorsal_contour[d_i].astype('float') 

    #         v_point = 

ventral_contour[v_i].astype('float') 

    #         onWorm = True 

    #         d_point[0][0] = 

d_point[0][0]+2.0*math.cos(d_angle) 

    #         d_point[0][1] = 

d_point[0][1]+2.0*math.sin(d_angle) 

    #         v_point[0][0] = 

v_point[0][0]+2.0*math.cos(v_angle) 

    #         v_point[0][1] = 

v_point[0][1]+2.0*math.sin(v_angle) 

    #         dist = 0.25 

    #         while onWorm: 

    #             d_point[0][0] = 

d_point[0][0]+dist*math.cos(d_angle) 

    #             d_point[0][1] = 

d_point[0][1]+dist*math.sin(d_angle) 

    #             v_point[0][0] = 

v_point[0][0]+dist*math.cos(v_angle) 

    #             v_point[0][1] = 

v_point[0][1]+dist*math.sin(v_angle) 

    #             if 

img[int(d_point[0][1])][int(d_point[0][0])].any() == 0: 

    #                 d_x_new,d_y_new = d_point[0] 

    #                 d_x_mid = int((d_x+d_x_new)/2) 

    #                 d_y_mid = int((d_y+d_y_new)/2) 

    #                 

midline_contour.append([[d_x_mid,d_y_mid]]) 

    #                 onWorm = False 

                     

    midline_contour = np.array(midline_contour) 

     

    ## calculate normalized curvature 

    Kl = [] 

    l = 0.0 

    skip_two = 20 

    ## calculate curvature 

    for i in range(len(midline_contour)): 

        if i > skip_two and i < len(midline_contour)-

skip_two: 

            x0,y0 = midline_contour[i-skip_two][0] 

            x1,y1 = midline_contour[i][0] 

            x2,y2 = midline_contour[i+skip_two][0] 

            ## previous way - might be wrong 

            # dy0dx0 = (y1-y0)/((x1-x0)) 

            # dy1dx1 = (y2-y1)/((x2-x1)) 

            # d2y0dx02 = (dy1dx1-dy0dx0)/((x1-x0)) 

            # if dy0dx0 == 0 or dy1dx1 == 0 or 

np.abs(dy0dx0) > 9999999 or np.abs(dy1dx1) > 99999999: 

            #     K = 0.0 

            # else: 

            #     K = 

(d2y0dx02)/(1+(dy0dx0)**2.0)**(3.0/2.0) 

            ## different way - 

https://math.stackexchange.com/questions/3528424/relation-

between-curvature-and-radius-of-curvature 

            theta1 = np.arctan2(y1-y0,x1-x0) 

            # if theta1 < 0: 

            #     theta1 += 2*np.pi 

            theta2 = np.arctan2(y2-y1,x2-x1) 

            # if theta2 < 0: 

            #     theta2 += 2*np.pi 

            dtheta = theta2-theta1 

            dtheta = (dtheta + np.pi) % (2*np.pi) - np.pi 

            ds = np.sqrt((y1-y0)**2+(x1-

x0)**2)+np.sqrt((y2-y1)**2+(x2-x1)**2) 

            K = dtheta/ds 

            # 

print(i,np.degrees(theta1),np.degrees(theta2),K) 

            

#print(i,x0,y0,x1,y1,x2,y2,dy0dx0,dy1dx1,d2y0dx02,K) 

        else: 

            K = 0.0 

        Kl.append(K) 

    #calculate length of worm 

    for i in range(len(midline_contour)): 

        if i % skip_two == 0: 

            try: 

                x0,y0 = midline_contour[i][0] 

                x1,y1 = midline_contour[i+skip_two][0] 

                l += np.sqrt((y1-y0)**2+(x1-x0)**2) 
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            except: 

                pass 

    Kl = np.array(Kl) 

    Kl = Kl*l 

    # print(Kl) 

     

    if len(dorsal_body_kymograph) > 0: 

        new_Kl = [] 

        for original_length, new_length in zip(Kl.shape, 

Kl_shape): 

            new_Kl.append(np.linspace(0, original_length-1, 

new_length)) 

        coords = np.meshgrid(*new_Kl, indexing='ij') 

        Kl = interpolation.map_coordinates(Kl, coords) 

        new_Kl = None 

    else: 

        Kl_shape = Kl.shape 

     

    d_b_k = [] 

    v_b_k = [] 

    for i in Kl: 

        if i < 0: 

            d_b_k.append(np.abs(i)) 

        else: 

            d_b_k.append(0.0) 

    for i in Kl: 

        if i > 0: 

            v_b_k.append(np.abs(i)) 

        else: 

            v_b_k.append(0.0) 

    if not flipCurvature: 

        dorsal_body_kymograph.append(d_b_k) 

        ventral_body_kymograph.append(v_b_k) 

    else: 

        dorsal_body_kymograph.append(v_b_k) 

        ventral_body_kymograph.append(d_b_k) 

         

    if draw: 

        # # Draw all contours  

        # -1 signifies drawing all contours 

        ## all colors are (B, G, R) 

        #cv2.drawContours(img, contours, -1, (255, 0, 0), 

1) 

        cv2.drawContours(img, dorsal_contour, -1, (255, 0, 

0), 3) 

        cv2.drawContours(img, ventral_contour, -1, (0, 0, 

255), 3) 

        cv2.drawContours(img, midline_contour, -1, (128, 0, 

128), 1) 

        #cv2.drawContours(img,rev_midline_contour, -1, (0, 

0, 0), 1) 

         

        ## add corners to output 

        #for i in corners: 

        for i in (head): 

            x,y = i.ravel() 

            cv2.circle(img,(x,y),3,(0,255,0),-1) 

        for i in (tail): 

            x,y = i.ravel() 

            cv2.circle(img,(x,y),3,(0,100,0),-1) 

     

    if saveImages: 

        

cv2.imwrite(red_input_folder+'/'+'edge_detection'+'/'+image

, img) 

        #plt.imshow(img),plt.show() 

  

    ## pull contour data from gcamp/green channel 

    green_img = cv2.imread(green_input_folder+'/'+image, 

cv2.IMREAD_UNCHANGED) 

    roi_size = 3 

    d_k = [] 

    for d_c in dorsal_contour: 

        x,y = d_c[0] 

        roi = green_img[y-roi_size:y+roi_size+1, x-

roi_size:x+roi_size+1] 

        d_k.append(np.mean(roi)) 

    ## resize line 

    d_k = np.array(d_k) 

    if len(dorsal_kymograph) > 0: 

        new_d_k = [] 

        for original_length, new_length in zip(d_k.shape, 

dorsal_shape): 

            new_d_k.append(np.linspace(0, original_length-

1, new_length)) 

        coords = np.meshgrid(*new_d_k, indexing='ij') 

        d_k = interpolation.map_coordinates(d_k, coords) 

        dorsal_kymograph.append(d_k) 

        new_d_k = None 

    else: 

        dorsal_shape = d_k.shape 

        dorsal_kymograph.append(d_k) 

         

    v_k = [] 

    for v_c in ventral_contour: 

        x,y = v_c[0] 

        roi = green_img[y-roi_size:y+roi_size+1, x-

roi_size:x+roi_size+1] 

        v_k.append(np.mean(roi)) 

    ## resize line 

    v_k = np.array(v_k) 

    if len(ventral_kymograph) > 0: 

        new_v_k = [] 

        for original_length, new_length in zip(v_k.shape, 

ventral_shape): 

            new_v_k.append(np.linspace(0, original_length-

1, new_length)) 

        coords = np.meshgrid(*new_v_k, indexing='ij') 

        v_k = interpolation.map_coordinates(v_k, coords) 

        ventral_kymograph.append(v_k) 

        new_v_k = None 

    else: 

        ventral_shape = v_k.shape 

        ventral_kymograph.append(v_k) 

  

    ## worm straightening 

    skip_three = 5 

    radius = 25 

    straight_worm = None 

    prev_distance = 0 

    prev_x,prev_y = midline_contour[0][0] 

    for i in range(len(midline_contour)): 

        if i > skip_three and i < len(midline_contour)-

skip_three: 

            x0,y0 = midline_contour[i-skip_three][0] 

            x1,y1 = midline_contour[i][0] 

            x2,y2 = midline_contour[i+skip_three][0] 

            next_distance = np.sqrt((y1-y0)**2+(x1-x0)**2) 

            # 

print(i,'/',len(midline_contour),prev_distance+next_distanc

e,np.sqrt((x1-prev_x)**2+(y1-prev_y)**2)) 

            if True: #np.sqrt((x1-prev_x)**2+(y1-

prev_y)**2) > next_distance + prev_distance: 

                # print('calculating') 

                ## get corners of oblique box 

                prev_distance = np.sqrt((y2-y1)**2+(x2-

x1)**2) 

                prev_x,prev_y = (x1,y1) 

                d = np.sqrt(np.sqrt((y2-y0)**2+(x2-

x0)**2)**2 + radius**2) 

                theta_pos = math.atan2((y2-y0), (x2-x0)) + 

math.radians(90) 

                theta_neg = math.atan2((y2-y0), (x2-x0)) - 

math.radians(90) 

                c1 = 

(x1+radius*math.cos(theta_pos),y1+radius*math.sin(theta_pos

)) 

                # c2 = 

(x2+radius*math.cos(theta_pos),y2+radius*math.sin(theta_pos

)) 

                c3 = 

(x1+radius*math.cos(theta_neg),y1+radius*math.sin(theta_neg

)) 

                # c4 = 

(x2+radius*math.cos(theta_neg),y2+radius*math.sin(theta_neg

)) 

                # 

cv2.circle(img,(int(c1[0]),int(c1[1])),5,(255,0,0),-1) 

                # 

cv2.circle(img,(int(c2[0]),int(c2[1])),5,(0,255,0),-1) 

                # 

cv2.circle(img,(int(c3[0]),int(c3[1])),5,(0,0,255),-1) 

                # 

cv2.circle(img,(int(c4[0]),int(c4[1])),5,(255,255,255),-1) 

                # cv2.circle(img,(x2,y2),5,(100,100,100),-

1) 

                # cv2.circle(img,(x1,y1),5,(50,50,50),-1) 

                # cv2.circle(img,(x0,y0),5,(0,0,0),-1) 

                # 

cv2.imwrite(red_input_folder+'/'+'edge_detection'+'/'+image

, img) 

                row_theta = 0 #math.atan2((c2[1]-c1[1]), 

(c2[0]-c1[0])) 

                row_dist = 0 #np.sqrt((y2-y0)**2+(x2-

x0)**2) 

                col_theta = math.atan2((c3[1]-c1[1]), 

(c3[0]-c1[0])) 

                col_dist = 2*radius 

                temp = [] 

                for j in np.arange(0,col_dist,1): 

                    ref_x = c1[0]+j*math.cos(col_theta) 

                    ref_y = c1[1]+j*math.sin(col_theta) 

                    ref_x = int(np.round(ref_x)) 

                    ref_y = int(np.round(ref_y)) 

                    try: 



151 

 

                        

temp.append([green_img[ref_y][ref_x]]) 

                    except: 

                        temp.append([0]) 

                    # for k in np.arange(0,row_dist,1): 

                    #     ix = ref_x+k*math.cos(row_theta) 

                    #     iy = ref_y+k*math.sin(row_theta) 

                    #     ix = int(np.round(ix)) 

                    #     iy = int(np.round(iy)) 

                    #     temp[-

1].append(green_img[iy][ix]) 

                if straight_worm == None: 

                    straight_worm = temp 

                else: 

                    for row_i in range(len(temp)): 

                        straight_worm[row_i] = 

straight_worm[row_i]+temp[row_i] 

    try: 

        os.mkdir(red_input_folder + 

'\\edge_detection\\straight_worm') 

    except: 

        pass 

    ## resize  

    straight_worm = np.array(straight_worm) 

    if oneWormDone: 

        new_straight_worm = [] 

        for original_length, new_length in 

zip(straight_worm.shape, straight_worm_shape): 

            new_straight_worm.append(np.linspace(0, 

original_length-1, new_length)) 

        coords = np.meshgrid(*new_straight_worm, 

indexing='ij') 

        straight_worm = 

interpolation.map_coordinates(straight_worm, coords) 

        new_straight_worm = None 

    else: 

        straight_worm_shape = straight_worm.shape 

        oneWormDone = True 

         

    

cv2.imwrite(red_input_folder+'/'+'edge_detection'+'/'+'stra

ight_worm'+'/'+image, straight_worm.astype('uint16')) 

     

    midline_contour = np.array([i[0] for i in 

midline_contour]) 

    midline_contours.append(midline_contour) 

    

center_of_masses.append([np.mean(midline_contour.T[0]),np.m

ean(midline_contour.T[1])]) 

     

##    if image == '0001.tif': 

##        print('head:',head) 

##        print('dorsal_contour[0]:',dorsal_contour[0]) 

##        break 

  

  

dorsal_kymograph = np.array(dorsal_kymograph) 

ventral_kymograph = np.array(ventral_kymograph) 

dorsal_body_kymograph = np.array(dorsal_body_kymograph) 

ventral_body_kymograph = np.array(ventral_body_kymograph) 

  

scipy.io.savemat(red_input_folder+'/'+'edge_detection'+'/'+

'data.mat', mdict={'midline_contours': 

midline_contours,'center_of_masses':center_of_masses}) 

  

with open(red_input_folder+'/'+'edge_detection'+'/'+ 

'dorsal_kymograph.pkl', 'wb') as f:   

    pickle.dump(dorsal_kymograph, f) 

with open(red_input_folder+'/'+'edge_detection'+'/'+ 

'ventral_kymograph.pkl', 'wb') as f:   

    pickle.dump(ventral_kymograph, f) 

with open(red_input_folder+'/'+'edge_detection'+'/'+ 

'dorsal_body_kymograph.pkl', 'wb') as f:   

    pickle.dump(dorsal_body_kymograph, f) 

with open(red_input_folder+'/'+'edge_detection'+'/'+ 

'ventral_body_kymograph.pkl', 'wb') as f:   

    pickle.dump(ventral_body_kymograph, f) 

  

variables = { 

    'saveImages':saveImages, 

    'draw':draw, 

    'flipHeadTail':flipHeadTail, 

    'flipDorsalVentral':flipDorsalVentral, 

    'reverseDorsalVentral':reverseDorsalVentral, 

    'flipAngle':flipAngle, 

    'skipList':skipList, 

    'flipCurvature':flipCurvature, 

    'kernel_one':len(kernel_one), 

    'kernel_two':len(kernel_two), 

    'medianBlur_one':medianBlur_one, 

    'threshold_one':threshold_one, 

    'corners_params':corners_params, 

    'skip_one':skip_one, 

    'skip_two':skip_two, 

    'roi_size':roi_size, 

} 

with open(red_input_folder+'/'+'edge_detection'+'/'+ 

'variables.csv', 'w') as csv_file:   

    writer = csv.writer(csv_file) 

    for key, value in variables.items(): 

        writer.writerow([key, str(value)]) 

     

absK_spatio.m 
function absK_min = absK_spatio( p_pulse, 

curvrgn_perturb,curvrgn_analyze, TRange,paradur, 

phaserange,curvphiwindow, outpath, issave) 

%ABSK_SPATIO makes a 2-D plot of abs(K) as a function of s 

and t near 

% the time of stimulus. The result is an averaged result 

over all trials in 

% the same experiment group 

  

[~, strainname] = fileparts(p_pulse); 

ddp     = dir(p_pulse); 

ddp     = verify_dirlist(ddp,0,'.mat'); 

Np      = numel(ddp); 

numsamplepts = 100; 

t = TRange(1) : (TRange(2)-TRange(1))/(numsamplepts-1) : 

TRange(2); 

x = (0 : numsamplepts-1)./(numsamplepts-1); 

k = 0; 

for i = 1 : Np 

    fprintf('Analyzing trial %d',i) 

    

load(fullfile(p_pulse,ddp(i).name),'curvdatafiltered','fps'

,'istart','start_illum','end_illum'); 

    curv = curvdatafiltered; 

    is = start_illum - istart; 

% % check each illumination 

% figure(10); clf 

% imagesc(x,t, curv) 

% colormap(cmap_redblue(0.7)) 

% colorbar 

% xlabel('Body coordinate (Head = 0)') 

% ylabel('Time (s)') 

%  

% paralrgn = [0.6 0; 0.6 paradur; 0.8 paradur; 0.8 0]; 

% p = patch(paralrgn(:,1), paralrgn(:,2), 'green'); 

% p.FaceColor = 'none'; 

% p.EdgeColor = 'green'; 

     

    if is + round(TRange(1)*fps) <= 0 || is + 

round(TRange(2)*fps) >= size(curv, 1) 

        fprintf(' - SKIPPED - Out of time range\n'); 

        continue; 

    end 

    icyc = (is + round(TRange(1)*fps)) : (is + 

round(TRange(2)*fps)); 

    if phaserange(2) - phaserange(1)~=1 

        % Get the charateristic curvature to define the 

phase of undulation 

            v = 

mean(curvdatafiltered(:,curvrgn_perturb),2); 

         

        % Find all peaks 

            [imax, imin] = C2_get_curvature_peaks(v,1); 

             

        % Find the peaks immediately before and after the 

start point 

            [imax, imin] = verify_extrema(v, imax, imin); 

            imaxbef = 

imax(find(imax<is+round(curvphiwindow(2)*fps),2,'last')); 

            imaxaft = 

imax(find(imax>is+round(curvphiwindow(3)*fps),2,'first')); 

            iminbef = 

imin(find(imin<is+round(curvphiwindow(2)*fps),2,'last')); 

            iminaft = 

imin(find(imin>is+round(curvphiwindow(3)*fps),2,'first')); 

         

        % Exclude this trial if not enough peaks were found 

            if numel(imaxbef) < 2 || numel(imaxaft) < 2 || 

numel(iminaft) < 2 || numel(iminbef) < 2 

                fprintf(' - SKIPPED - Not enough peaks\n'); 

                continue; 

            end 

        % Calculate the period of undulation 

            T0 = mean([diff(imaxaft), diff(imaxbef), 

diff(iminaft), diff(iminbef)]); 

             

        % Calculate phi, the phase of the stimulus 

            phiu = mod(is - imaxbef(2),T0)/T0; 

            phil = mod(is - iminbef(2),T0)/T0 - 0.5; 

            if phil < 0 

                phil = phil + 1; 

            end 

%             dphi = abs((phiu - phil)/phil); 
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%             if dphi >0.3 

%                 fprintf(' - SKIPPED - Can determine the 

stimulus phase\n'); 

%                 continue; 

%             end 

            phi = mean([phiu phil]); 

            if phi > phaserange(2) || phi < phaserange(1) 

                fprintf(' - SKIPPED - Out of phaserange of 

interest\n'); 

                continue 

            end 

%             if phaserange(2) <= 0.5 && imaxbef(2)<=(is - 

T0*phaserange(2)) 

%                 fprintf(' - SKIPPED - phase doesnt 

match\n'); 

%                 continue 

%             end 

%             if phaserange(1) >= 0.5 && iminbef(2)<=(is - 

T0*(phaserange(2)-0.5)) 

%                 fprintf(' - SKIPPED - phase doesnt 

match\n'); 

%                 continue 

%             end 

%             Taft = diff(imaxaft); 

%             Tbef = diff(imaxbef); 

%             dT   = abs(Taft - Tbef)/Tbef; 

%         % Exclude this trial if the frequency changes by 

a lot 

%             if abs(dT) > 0.3 || (T0/fps)>1.75 

%                 fprintf(' - SKIPPED - Tratio = %0.2f - T 

= %0.2f\n',dT,T0/fps); 

%                 continue; 

%             end 

    end 

    fprintf('\n');     

    vpatch    = curv(icyc, :); 

    K_rescaled = interp1(0:size(vpatch,1)-1, vpatch, 

(size(vpatch,1)-1).*(0:numsamplepts-1)/(numsamplepts-

1),'linear'); 

    k = k+1; 

    if k == 1 

        absKp_resc_avg = abs(K_rescaled); 

    else 

        absKp_resc_avg = 1/k*sum(cat(3, (k-

1)*absKp_resc_avg, abs(K_rescaled)),3); 

    end 

end 

% % Find the location of the max compensation 

% itmp = (t>=0)&(t<=1); 

% Q = absKp_resc_avg(itmp, :); 

% figure 

% [~, idxmax] = max(Q(:)); 

% [iTmax, iSmax] = ind2sub(size(Q),idxmax); 

% Tmax = t(iTmax)+1; Smax = x(iSmax); 

% imagesc(x,t(itmp), Q) 

% hold on 

% quiver(0.4, 0.1, Smax-0.4, Tmax-0.1,'LineWidth',2); 

% colorbar; 

% colormap jet 

% hold off 

% saveas(gcf, fullfile(outpath,['ZabsK_' strainname 

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100) 

'.fig'])) 

% saveas(gcf, fullfile(outpath,['ZabsK_' strainname 

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100) 

'.png'])) 

% % Visualization 

% scrsz = get(groot, 'ScreenSize'); 

% figure('Position',[1 scrsz(4)*0/8 scrsz(3)/4 

scrsz(4)*7/8]); 

figure 

imagesc(x,t, absKp_resc_avg) 

colorbar; 

xlabel('Body coordinate (Head = 0)') 

ylabel('Time (s)') 

title(['|K| ' sprintf('(%.2f',phaserange(1)*2) '\pi-' 

sprintf('%.2f', phaserange(2)*2) '\pi)' sprintf('\n %d 

trials', k)]) 

set(gca, 'FontSize', 15) 

expo = 0.7; 

colormap('jet'); 

caxis([0.5 5]) 

paralrgn = [curvrgn_perturb(1)/100 0; 

curvrgn_perturb(1)/100 paradur; curvrgn_perturb(2)/100 

paradur; curvrgn_perturb(2)/100 0]; 

% paralrgn = [0.05 0; 0.05 0.1; 0.25 0.1; 0.25 0]; 

p = patch(paralrgn(:,1), paralrgn(:,2), 'green'); 

p.FaceColor = 'none'; 

p.EdgeColor = 'g'; 

if issave 

    saveas(gcf, fullfile(outpath,['absK_' strainname 

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100) 

'.fig'])) 

    saveas(gcf, fullfile(outpath,['absK_' strainname 

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100) 

'.png'])) 

end 

% % Make a contour plot 

% figure('Position',[1 scrsz(4)*0/8 scrsz(3)/4 

scrsz(4)*7/8]); 

% contourf(x,t, absKp_resc_avg, 6) 

% xlabel('Body coordinate (Head = 0)') 

% ylabel('Time (s)') 

% title(['|K| ' sprintf('(%.2f',phaserange(1)*2) '\pi-' 

sprintf('%.2f', phaserange(2)*2) '\pi)' sprintf('\n %d 

trials', k)]) 

% p = patch(paralrgn(:,1), paralrgn(:,2), 'green'); 

% p.FaceColor = 'none'; 

% p.EdgeColor = 'k'; 

% ax = gca; 

% ax.YDir = 'reverse'; 

% saveas(gcf, fullfile(outpath,['absK contour_' strainname 

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100) 

'.fig'])) 

% saveas(gcf, fullfile(outpath,['absK contour_' strainname 

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100) 

'.png'])) 

  

% figure('Position',[1 scrsz(4)*0/8 scrsz(3)*5/8 

scrsz(4)*2/8]) 

figure 

hold on 

paralrgn = [0 4; 0 0; paradur 0; paradur 4]; 

p = patch(paralrgn(:,1), paralrgn(:,2), 'green'); 

p.EdgeColor = 'none'; 

absK_anterior = 

mean(absKp_resc_avg(:,curvrgn_analyze(1):curvrgn_analyze(en

d)),2); 

% absK_anterior = absK_anterior./max(absK_anterior); 

plot(t, absK_anterior, 'LineWidth',2) 

hold off 

set(gca, 'FontSize', 15) 

xlabel('Time (s)') 

ylabel('|K|') 

if issave 

    saveas(gcf, fullfile(outpath,['absK1D_' strainname 

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100) 

'.fig'])) 

    saveas(gcf, fullfile(outpath,['absK1D_' strainname 

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100) 

'.png'])) 

end 

fps = numsamplepts/(TRange(2)-TRange(1)); 

i_p5 = (round(- TRange(1)*fps)) : (round((- 

TRange(1)+0.5)*fps)); 

% t_p5 = t(i_p5); 

v_p5 = absK_anterior(i_p5); 

absK_min = min(v_p5); 

end 

  

function [imax,imin] = verify_extrema(v,imax,imin) 

  

% get the mean amplitudes 

 vmax = mean(v(imax)); 

 vmin = mean(v(imin)); 

  

 if vmin > vmax 

     itemp = imax; 

     imax  = imin; 

     imin  = itemp; 

 end 

      

  

end 

 

Anterior_Local_Relationship.m 
clc; close all; clear 

p_pulse = { 

           'D:\Dropbox\Paper\Compensatory reponse 

mechanism\data optogenetics\Combined_148_p1_17pct_P4-6';... 

           'E:\compensatory experiments\Optogenetics\2021-

04-18_YX148_p1_bothside_P4-6_po31';... 

           'E:\compensatory experiments\Optogenetics\2021-

04-18_YX148_p1_bothside_P4-6_po45';... 

           'E:\compensatory experiments\Optogenetics\2021-

04-18_YX148_p1_bothside_P4-6_po75';... 

           'E:\compensatory experiments\Optogenetics\2021-

04-18_YX148_p1_bothside_P4-6_po111';... 

           'E:\compensatory experiments\Optogenetics\2021-

04-18_YX148_p1_bothside_P4-6_po31_polarize1';... 

           'E:\compensatory experiments\Optogenetics\2021-

04-18_YX148_p1_bothside_P4-6_po57_polarize2';... 

           'E:\compensatory experiments\Optogenetics\2021-

04-24_YX148_p1_bothside_P4-6_po57_polarize3';... 

           'E:\compensatory experiments\Optogenetics\2021-

04-24_YX148_p1_bothside_P4-6_po57_polarize4';... 
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           'E:\compensatory experiments\Optogenetics\2021-

04-24_YX148_p1_bothside_P4-6_po57_polarize5';... 

           }; 

outpath = 'D:\Dropbox\Paper\Compensatory reponse 

mechanism\Opto dosage Results'; 

curvrgn_anterior = 16:30; % Anterior 15~27% Local 40~60% 

curvrgn_local    = 40:60; 

curvrgn_perturb  = 40:60; 

curvphiwindow_anterior = [-0.8 -0.0 0.2 1.5]; % Anterior [-

0.8 -0.0 0.2 1.5] 

curvphiwindow_local = [-0.8 -0.0 0.1 1.5]; % Local [-0.8 -

0.0 0.1 1.5] 

curvphiwindow_perturb = [-0.8 -0.0 0.2 1.5]; % Excitation 

[-0.8 -0.0 0.2 1.5] Inhibition [-0.8 -0.0 0.5 1.5] 

peaklevel = 1; % upto four 

plotflag = 0; 

do_comparison = 1; 

do_save = 1; 

dur_pulse = 0.1; 

  

p = p_pulse{6}; 

% Produce individual points for anterior response in terms 

of phase 

[phi_anterior, F_anterior, AVG_anterior, CI95_anterior] 

=... 

                        Compensatory_Response( p, 

curvrgn_perturb, curvrgn_anterior,peaklevel,... 

                        

curvphiwindow_perturb,curvphiwindow_anterior,... 

                        outpath, plotflag, do_comparison, 

do_save); 

drawnow 

[phi_local, F_local, AVG_local, CI95_local] =... 

                        

Compensatory_Response_Inhibition( p, curvrgn_perturb, 

curvrgn_local,peaklevel,... 

                        

curvphiwindow_perturb,curvphiwindow_local,... 

                        outpath, plotflag, do_comparison, 

do_save, dur_pulse); 

                     

  

% Divide phase reange (0 ~ 2pi) into 6 bins 

num_bins  = 12; 

phasestep = 2*pi/num_bins; 

Fa_avg    = zeros(num_bins, 1); 

Fp_avg    = zeros(num_bins, 1); 

Fa_sem    = zeros(num_bins, 1); 

Fp_sem    = zeros(num_bins, 1); 

for i = 1 : num_bins 

    phaserange = phasestep.*(i-1 : i); 

    phaserange(1) 

    idx1 = (phi_anterior >= phaserange(1) & phi_anterior < 

phaserange(end)); 

    Fa_avg(i) = mean(F_anterior(idx1)); 

    Fa_sem(i) = std(F_anterior(idx1)) / 

sqrt(numel(F_anterior(idx1))); 

     

    idx2 = (phi_local >= phaserange(1) & phi_local <= 

phaserange(end)); 

    Fp_avg(i) = mean(F_local(idx2)); 

    Fp_sem(i) = std(F_local(idx2)) / 

sqrt(numel(F_local(idx2))); 

    numel(F_local(idx2)) 

end 

figure 

plot(Fp_avg, Fa_avg, '*') 

% errorbar(Fp_avg, Fa_avg, Fa_sem, Fa_sem, Fp_sem, Fp_sem, 

'o')  

  

figure 

todelete = phi_anterior<0 | phi_anterior>2*pi; 

phi_anterior(todelete) = []; 

AVG_anterior(todelete) = []; 

todelete = phi_local<0 | phi_local>2*pi; 

phi_local(todelete) = []; 

AVG_local(todelete) = []; 

  

tmp = min([numel(AVG_local) numel(AVG_anterior)]); 

step = 8; 

  

plot(AVG_local(1:step:tmp), AVG_anterior(1:step:tmp), '-*') 

 
Calculations_All_spatioPhase_Response.m 
% Calculations_All_Phase_Response.m 

  

    clear; clc; close all 

     

% Use PHASE_sort_kymogram_usingManThresh.m to automatically 

exclude most bad trials.     

  

% Paths to analyze , labels for each file (comment line to 

exclude) 

    p           = { 

                    

'/Users/hongfei/Dropbox/Paper/Compensatory reponse 

mechanism/data 

optogenetics/Combined_148_p1_17pct_all','Combined_148_p1_17

pct_all';... 

                    

'/Users/hongfei/Dropbox/Paper/Compensatory reponse 

mechanism/data optogenetics/Combined_148_p1_17pct_P2-

4','Combined_148_p1_17pct_P2-4';... 

                    

'/Users/hongfei/Dropbox/Paper/Compensatory reponse 

mechanism/data optogenetics/Combined_148_p1_17pct_P4-

6','Combined_148_p1_17pct_P4-6';... 

                    

'/Users/hongfei/Dropbox/Paper/Compensatory reponse 

mechanism/data optogenetics/Combined_148_p1_17pct_P6-

8','Combined_148_p1_17pct_P6-8';... 

                     

                     

                  }; 

               

    outpath        = '/Users/hongfei/Dropbox/Paper/motor 

circuit/Revision for Elife resubmission/Figures/PRC over 

body coordinates induced by perturbations at various 

regions'; 

% Parameters 

    toffsetCTRL = 0; 

%     curvrgn     = 15 : 35; % the default region 

%     aWin = 1*[-0.8 -0.1 0.5 1.5];% Range for analysis 

around the START and END of  

%                                % illumination (units = 

seconds):  

%                                % 

[befwindow,befbuffer,aftbuffer,aftwindow] 

%                                % Usual window is: 

%                                % [-0.8 -0.1 0.5 1.5] 

    plotdebugflag=0;                            

    do_analysis_absK = 0; 

    curvphiwindow_analyze = [-0.8 -.1 .5 1.5]; 

    curvphiwindow_perturb = [-0.8 -.1 .5 1.5]; 

    % Generate 

    rgnstart = 10; rgnend = 90; 

    Step = 5; 

    numrgns = (rgnend - rgnstart)/Step; 

    numsamplepts = 100; 

    phi_eq = (0:numsamplepts-1)./(numsamplepts-1).*(2*pi); 

    x      = (0:numrgns-1)./(numrgns-1); 

    curvrgn_perturb = 15:35; % Default 15:35 

    for n = 1%:size(p,1) 

        PRC_2D     = zeros(numsamplepts, numrgns); 

        PRC_2D_sm  = zeros(numsamplepts, numrgns); 

        for i = 1 : numrgns 

            curvrgn       = (rgnstart+(i-1)*Step) : 

(rgnstart+i*Step); 

            [phi, F_AVG]  = 

Syncronizing_Response(p{n,1},curvrgn_perturb, curvrgn, 

curvphiwindow_analyze,curvphiwindow_perturb,outpath,plotdeb

ugflag); 

            idx    = (phi>=0 & phi<=2*pi); 

            phi2   = phi(idx); 

            F_AVG2 = F_AVG(idx); 

            [phi3, ia, ic] = unique(phi2); 

            F_AVG3 = F_AVG2(ia); 

            F_AVG_resc = interp1(phi3, F_AVG3, phi_eq, 

'linear'); 

            %         figure 

            %         plot(phi_eq, F_AVG_resc) 

            %         xlim([0 2*pi]) 

            %         ylim([-pi pi]) 

            PRC_2D(:,i)     = F_AVG_resc; 

            PRC_2D_sm(:,i)  = smooth(phi_eq, 

F_AVG_resc,0.08, 'rloess'); 

        end 

         

        % smooth the PRC_2D 

        for i = 1:numrgns 

            PRC_2D_sm(:,i) = smooth(phi_eq, 

PRC_2D(:,i),0.08, 'rloess'); 

        end 

         

         

        [~, sname] = fileparts(p{n,1}); 

         

         

        % Plotting 

         

         

        % normal 2D heat map plot 

        figure 

        imagesc(phi_eq', x', PRC_2D_sm') 

        expo = 0.7; 

        map = colormap(cmap_redblue(expo)); 
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        [cmin, cmax] = caxis; 

        caxis([-cmax cmax]) 

        set(gca,'xaxisLocation','top') 

        xlabel('\phi') 

        xticks([0 pi 2*pi]) 

        xticklabels({'0', '\pi', '2\pi'}) 

        ylabel('Body coordinate') 

        yticks([0 0.5 1]) 

        yticklabels({'0', '0.5', '1'}) 

        set(gca,'FontSize',14) 

        c = colorbar('Ticks', [-2.5,-1.5, 0,1.5, 2.5],... 

            'TickLabels', {'-0.8\pi','Advance', '0', 

'Delay', '0.8\pi'}, 'Location', 'southoutside',... 

            'Direction','reverse'); 

        c.Label.String = 'Phase shift (\Delta\phi)'; 

        pbaspect([1 1.1 1]) 

        set(gcf,'Color','w','Position',[1 217 550 572]); 

        fout = fullfile(outpath, 

sprintf('%sPhaseResponseCurve_fullbody.svg', p{n,2})); 

        saveas(gcf, fout) 

        saveas(gcf,strrep(fout,'.svg','.fig')); 

         

         

%         % Plotting the PRC as a 3D surf 

%         [X, Y] = meshgrid(x, phi_eq); 

%         figure 

%         surf(X,Y,PRC_2D_sm) 

%         ylim([0 2*pi]) 

%         ylabel('\phi') 

%         yticks([0 pi 2*pi]) 

%         yticklabels({'0', '\pi', '2\pi'}) 

%         xlabel('Body coordinate') 

%         xticks([0 0.5 1]) 

%         xticklabels({'0', '0.5', '1'}) 

%         zlabel('Phase difference') 

%         set(gcf,'Color','w','Position',[700 217 550 

572]); 

%         fout = fullfile(outpath, 

sprintf('%sPhaseResponseCurve_3Dplot.fig', p{n,2})); 

%         saveas(gcf, fout) 

    end 

 
Compensatory_Response.m 
function [phi_sort, F_sort, CIRC_AVG, CIRC_CI95] = 

Compensatory_Response(p_pulse, curvrgn_perturb, 

curvrgn_analyze, peaklevel,... 

                                

curvphiwindow_perturb,curvphiwindow_analyze, outpath,... 

                                plotflag, do_comparison, 

do_save, type_perturb) 

%COMPENSATORY_RESPONSE Calculate the amplitude of the peak 

immediately 

%after the pulse, and calculate the difference between 

amplitudes of this  

%peak and the peak just before the pulse and show this 

difference as a 

%function of perturbation phase 

%    

%Outputs: 

%           p_pulse: directory of data being evaluated 

%           curvrgn1: region being illuminated 

%           curvrgn2: region being analyzed 

%           phaserange: range of phase of interest 

%           curvphiwindow: a window to exclude the effect 

of pulse on 

%                           curvature dynamics 

%           outpath: directory for outcomes 

  

[~, strainname] = fileparts(p_pulse); 

ddp  = dir(p_pulse); 

ddp  = verify_dirlist(ddp,0,'.mat'); 

Np   = numel(ddp); 

% Cycle through each file, get the peak before and after 

the pulse 

for i = 1:Np 

    % Display progress 

    fprintf('Analyzing trial %d',i) 

    % Load the file's curvature data 

    

load(fullfile(p_pulse,ddp(i).name),'curvdatafiltered','fps'

,'istart','start_illum'); 

    %------------------------------------------------------

-----------% 

    if rand>0.5 

%         fprintf('\tflipped'); 

%         curvdatafiltered = -curvdatafiltered; 

    end 

    % Extract the curvature vector 

    v1       = mean(curvdatafiltered(:,curvrgn_perturb),2); 

    t       = (0:length(v1)-1) ./ fps; 

    % Get the start point 

    is = start_illum - istart; 

     

    % Find all peaks 

    [imax,imin]    = C2_get_curvature_peaks(v1,1); 

    % Find the peaks immediately before and after the start 

point 

    [imax,imin]= verify_extrema(v1,imax,imin); 

    imaxbef1 = 

imax(find(imax<is+round(curvphiwindow_perturb(2)*fps),2,'la

st')); 

    imaxaft1 = 

imax(find(imax>is+round(curvphiwindow_perturb(3)*fps),2,'fi

rst')); 

    iminbef1 = 

imin(find(imin<is+round(curvphiwindow_perturb(2)*fps),2,'la

st')); 

    iminaft1 = 

imin(find(imin>is+round(curvphiwindow_perturb(3)*fps),2,'fi

rst')); 

    % Exclude this trial if not enough peaks were found 

    if numel(imaxbef1) < 2 || numel(imaxaft1) < 2 || 

numel(iminaft1) < 2 || numel(iminbef1) < 2 

        F(i)  = nan; 

        Fu(i) = nan; 

        Fl(i) = nan; 

        F_aft1(i) = nan; 

        F_aft2(i) = nan; 

        F_aft3(i) = nan; 

        F_aft4(i) = nan; 

        Fl_aft1(i) = nan; 

        Fl_aft2(i) = nan; 

        Fl_aft3(i) = nan; 

        Fl_aft4(i) = nan; 

        Fu_aft1(i) = nan; 

        Fu_aft2(i) = nan; 

        Fu_aft3(i) = nan; 

        Fu_aft4(i) = nan; 

        phiu(i)= nan; 

        phil(i) = nan; 

        ts2(i) = nan; 

        te2(i) = nan; 

        fprintf(' - SKIPPED - Not enough peaks\n'); 

        continue; 

    end 

        % Calculate the period of undulation 

    T0 = mean([diff(imaxaft1), diff(imaxbef1), 

diff(iminaft1), diff(iminbef1)]); 

    % Calculate the change in period after - should exclude 

those with high 

    % changes or frequency changes a lot 

    dT = abs((diff(imaxaft1) - 

diff(imaxbef1))/diff(imaxbef1)); 

  

    % Exclude this trial if the frequency changes by a lot 

    if dT > 0.2 || (T0/fps) >1.75 

        F(i)  = nan; 

        Fu(i) = nan; 

        Fl(i) = nan; 

        F_aft1(i) = nan; 

        F_aft2(i) = nan; 

        F_aft3(i) = nan; 

        F_aft4(i) = nan; 

        Fl_aft1(i) = nan; 

        Fl_aft2(i) = nan; 

        Fl_aft3(i) = nan; 

        Fl_aft4(i) = nan; 

        Fu_aft1(i) = nan; 

        Fu_aft2(i) = nan; 

        Fu_aft3(i) = nan; 

        Fu_aft4(i) = nan; 

        phiu(i)= nan; 

        phil(i) = nan; 

        ts2(i) = nan; 

        te2(i) = nan; 

        fprintf(' - SKIPPED - Tratio = %0.2f - T 

= %0.2f\n',dT,T0/fps); 

        continue; 

    end 

    % Calculate the phase at which the illum occurs, by 

maximum and minimum 

%     phiu(i) = mod(is - imaxbef(2),T0)/T0; 

%     phil(i) = mod(is - iminbef(2),T0)/T0 - 0.5; 

%     if phil(i) < 0 

%         phil(i) = phil(i) + 1; 

%     end 

     

    v2       = mean(curvdatafiltered(:,curvrgn_analyze),2); 

    % Find all peaks 

    [imax,imin]    = C2_get_curvature_peaks(v2,1); 

    % Find the peaks immediately before and after the start 

point 

    [imax,imin]= verify_extrema(v2,imax,imin); 

    imaxbef2 = 

imax(find(imax<is+round(curvphiwindow_analyze(2)*fps),2,'la

st')); 
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    imaxaft2 = 

imax(find(imax>is+round(curvphiwindow_analyze(3)*fps),2,'fi

rst')); 

    iminbef2 = 

imin(find(imin<is+round(curvphiwindow_analyze(2)*fps),2,'la

st')); 

    iminaft2 = 

imin(find(imin>is+round(curvphiwindow_analyze(3)*fps),2,'fi

rst')); 

     

    if numel(imaxbef2) < 2 || numel(imaxaft2) < 2 || 

numel(iminaft2) < 2 || numel(iminbef2) < 2 

        F(i)  = nan; 

        Fu(i) = nan; 

        Fl(i) = nan; 

        F_aft1(i) = nan; 

        F_aft2(i) = nan; 

        F_aft3(i) = nan; 

        F_aft4(i) = nan; 

        Fl_aft1(i) = nan; 

        Fl_aft2(i) = nan; 

        Fl_aft3(i) = nan; 

        Fl_aft4(i) = nan; 

        Fu_aft1(i) = nan; 

        Fu_aft2(i) = nan; 

        Fu_aft3(i) = nan; 

        Fu_aft4(i) = nan; 

        phiu(i)= nan; 

        phil(i) = nan; 

        ts2(i) = nan; 

        te2(i) = nan; 

        fprintf(' - SKIPPED - Not enough peaks\n'); 

        continue; 

    end 

     

    % Calculate the phase at which the illum occurs, by 

maximum and minimum 

    phiu(i) = mod(is - imaxbef2(2),T0)/T0; 

    phil(i) = mod(is - iminbef2(2),T0)/T0 - 0.5; 

    if phil(i) < 0 

        phil(i) = phil(i) + 1; 

    end 

     

    if do_comparison 

        Levels_bef     = [imaxbef2(1); iminbef2(1); 

imaxbef2(2); iminbef2(2) ]; 

        Levels_bef_sort = sort(Levels_bef); 

        Levels_aft     = [imaxaft2(1); iminaft2(1); 

imaxaft2(2); iminaft2(2) ]; 

        Levels_aft_sort = sort(Levels_aft); 

        Amp_aft1(i) = abs(v2( Levels_aft_sort(1) )); 

        Amp_aft2(i) = abs(v2( Levels_aft_sort(2) )); 

        Amp_aft3(i) = abs(v2( Levels_aft_sort(3) )); 

        Amp_aft4(i) = abs(v2( Levels_aft_sort(4) )); 

        % Calculate the change in amplitude, F, by the 

maxima 

        if type_perturb == 's' 

            Amp_befu(i) = abs(v2(imaxbef2(2))); 

            Fu_aft1(i)       = (Amp_aft1(i) - Amp_befu(i))/ 

(Amp_aft1(i) + Amp_befu(i)) * 2; 

            Fu_aft2(i)       = (Amp_aft2(i) - Amp_befu(i))/ 

(Amp_aft2(i) + Amp_befu(i)) * 2; 

            Fu_aft3(i)       = (Amp_aft3(i) - Amp_befu(i))/ 

(Amp_aft3(i) + Amp_befu(i)) * 2; 

            Fu_aft4(i)       = (Amp_aft4(i) - Amp_befu(i))/ 

(Amp_aft4(i) + Amp_befu(i)) * 2; 

            % Calculate the change in amplitude, F, by the 

minima 

            Amp_befl(i) = abs(v2(iminbef2(2))); 

            Fl_aft1(i)       = (Amp_aft1(i) - Amp_befl(i))/ 

(Amp_aft1(i) + Amp_befl(i)) * 2; 

            Fl_aft2(i)       = (Amp_aft2(i) - Amp_befl(i))/ 

(Amp_aft2(i) + Amp_befl(i)) * 2; 

            Fl_aft3(i)       = (Amp_aft3(i) - Amp_befl(i))/ 

(Amp_aft3(i) + Amp_befl(i)) * 2; 

            Fl_aft4(i)       = (Amp_aft4(i) - Amp_befl(i))/ 

(Amp_aft4(i) + Amp_befl(i)) * 2; 

        elseif type_perturb == 'i' 

            % Calculate the change in amplitude, F, by the 

maxima 

            Amp_befu(i) = abs(v2(imaxbef2(2))); 

            Fu_aft1(i)       = (Amp_aft1(i) - Amp_befu(i))/ 

Amp_befu(i); 

            Fu_aft2(i)       = (Amp_aft2(i) - Amp_befu(i))/ 

Amp_befu(i); 

            Fu_aft3(i)       = (Amp_aft3(i) - Amp_befu(i))/ 

Amp_befu(i); 

            Fu_aft4(i)       = (Amp_aft4(i) - Amp_befu(i))/ 

Amp_befu(i); 

            % Calculate the change in amplitude, F, by the 

minima 

            Amp_befl(i) = abs(v2(iminbef2(2))); 

            Fl_aft1(i)       = (Amp_aft1(i) - Amp_befl(i))/ 

Amp_befl(i); 

            Fl_aft2(i)       = (Amp_aft2(i) - Amp_befl(i))/ 

Amp_befl(i); 

            Fl_aft3(i)       = (Amp_aft3(i) - Amp_befl(i))/ 

Amp_befl(i); 

            Fl_aft4(i)       = (Amp_aft4(i) - Amp_befl(i))/ 

Amp_befl(i); 

        end 

    end 

     

    is2   = Levels_bef_sort(1)-is; % start point of the 

segment to plot 

    ie2   = Levels_aft_sort(2)-is; 

     

    ts2(i)   = is2/fps; 

    te2(i)   = ie2/fps; 

     

    if plotflag 

         

        % Crop the curvature curve to only the relevant 

times 

        is2   = Levels_bef_sort(1)-2; % start point of the 

segment to plot 

        ie2   = Levels_aft_sort(4)+2; 

         

        ts2(i)   = is2/fps; 

        te2(i)   = ie2/fps; 

         

        % Generate plot 

        tshift = t - t(is); 

         

        figure(1); clf; 

        subplot(2,1,1); hold on; 

        patch('Faces', 1:4, 'Vertices', [0 min(v2); 0.1 

min(v2); 0.1 max(v2); 0 max(v2)], 'FaceColor', 'green', 

'EdgeColor', 'none'); 

%         line([tshift(is)  tshift(is)] , [min(v2) 

max(v2)],'Color','g','LineWidth',3) 

        plot(tshift,v1,'-k','LineWidth',2); 

        

plot(tshift(imaxbef1),v1(imaxbef1),'+r','MarkerSize',16,'Li

neWidth',2) 

        

plot(tshift(imaxaft1),v1(imaxaft1),'+r','MarkerSize',16,'Li

neWidth',2) 

        

plot(tshift(iminbef1),v1(iminbef1),'+b','MarkerSize',16,'Li

neWidth',2) 

        

plot(tshift(iminaft1),v1(iminaft1),'+b','MarkerSize',16,'Li

neWidth',2) 

        title(sprintf('Mid-body phi = %f',phiu(i))); 

        hold off; 

        xlim([tshift(is2),tshift(ie2)]) 

        ylim([-10 10]) 

         

        subplot(2,1,2); hold on; 

        patch('Faces', 1:4, 'Vertices', [0 min(v2); 0.1 

min(v2); 0.1 max(v2); 0 max(v2)], 'FaceColor', 'green', 

'EdgeColor', 'none'); 

%         line([tshift(is)  tshift(is)] , [min(v2) 

max(v2)],'Color','g','LineWidth',3) 

        plot(tshift,v2,'-k','LineWidth',2); 

        

plot(tshift(imaxbef2),v2(imaxbef2),'+r','MarkerSize',16,'Li

neWidth',2) 

        

plot(tshift(imaxaft2),v2(imaxaft2),'+r','MarkerSize',16,'Li

neWidth',2) 

        

plot(tshift(iminbef2),v2(iminbef2),'+b','MarkerSize',16,'Li

neWidth',2) 

        

plot(tshift(iminaft2),v2(iminaft2),'+b','MarkerSize',16,'Li

neWidth',2) 

        title(sprintf('Anterior phi = %f',phiu(i))); 

        hold off; 

        xlim([tshift(is2),tshift(ie2)]) 

        ylim([-10 10]) 

        drawnow; 

        %pause(1)  

    end 

     

     

     

    % Calculate the change in amplitude, F, by the maxima 

    Amp_befu(i) = abs(v2(imaxbef2(2))); 

    Levels_aft     = [imaxaft2(1); iminaft2(1); 

imaxaft2(2); iminaft2(2) ]; 

    Levels_aft_sort = sort(Levels_aft); 

    Amp_aft(i) = abs(v2( Levels_aft_sort(peaklevel) )); 

    if type_perturb == 's' 
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        Fu(i)       = (Amp_aft(i) - Amp_befu(i))/ 

(Amp_aft(i) + Amp_befu(i))*2; 

    elseif type_perturb == 'i' 

        Fu(i)       = (Amp_aft(i) - Amp_befu(i))/ 

Amp_befu(i); 

    end 

    % Calculate the change in amplitude, F, by the minima 

    Amp_befl(i) = abs(v2(iminbef2(2))); 

    Amp_aft(i) = abs(v2(min([imaxaft2(1) iminaft2(1)]))); 

    if type_perturb == 's' 

        Fl(i)       = (Amp_aft(i) - Amp_befl(i))/ 

(Amp_aft(i) + Amp_befl(i))*2; 

    elseif type_perturb == 'i' 

        Fl(i)       = (Amp_aft(i) - Amp_befl(i))/ 

Amp_befl(i); 

    end 

    fprintf('\n');     

     

     

     

end 

%% Generate compensatory response curves 

  

% Concatenate the F results by maxima and minima     

    phi = cat(1,phiu(:),phil(:))*2*pi; 

    F   = cat(1,Fu(:),Fl(:)); 

  

    F = F(:); 

    phi = phi(:); 

    todelete = phi<0 | phi>2*pi |isnan(F) | abs(F)>=5; 

    phi1 = phi; 

    phi1(todelete) = []; 

    F1 = F; 

    F1(todelete) = []; 

    phi1=reshape(phi1,1,[]); 

    F1=reshape(F1,1,[]); 

     

% Sort data by phase at pulse 

    [~,idx]     = sort(phi1); 

    phi_sort    = phi1(idx); 

    F_sort      = F1(idx);   

     

% Pad the end with beginning data to enable circular 

averaging  

    phi_pad1     = phi_sort(phi_sort>3*pi/2); 

    F_pad1       = F_sort(phi_sort>3*pi/2); 

    phi_pad2     = phi_sort(phi_sort<pi/2); 

    F_pad2       = F_sort(phi_sort<pi/2); 

    phi_sort    = cat(2,phi_pad1-

2*pi,phi_sort,phi_pad2+2*pi); 

    F_sort      = cat(2,F_pad1,F_sort,F_pad2); 

% Plot results 

opengl software; 

    figure;  

%     clf;  

    hold on 

  

%Moving average 

    Npoints     = numel(F_sort); 

    w_idx       = round(0.15 * Npoints);                % 

Normal is 0.15 The width of the median bin in elements. 

Also the N value for each bin. Note that this method could 

be invalid if the phases are not sampled approximately 

equally. 

    CIRC_AVG  = movmean(F_sort,w_idx); 

    CIRC_CI95 = movstd(F_sort,w_idx)./sqrt(w_idx); 

    shadedErrorBar(phi_sort,CIRC_AVG,CIRC_CI95,'b'); hold 

on;  

     

% Individual points 

    

plot(phi_sort,F_sort,'.','MarkerSize',8,'Color',0.5*[0.5 

0.5 1]); 

    xlabel('Phase of illumination \phi'); 

    ylabel([sprintf('Normalized bending\n curvature 

change,') ' \DeltaK/K']) 

     

    set(gcf,'Color','w','Position',[1192 217 700 570]); 

    set(gca,'FontSize',12) 

     

    set(gca,'FontSize',28,'xtick',[0 pi 

2*pi],'xticklabel',{'0' ,'\pi' , '2\pi'}); 

    ylim([-1 1]); 

    xlim([0,2*pi]); 

     

% Plot zero line 

    line([0 2*pi],[0 0],'Color','k','LineWidth',1); 

     

     

    hold off; 

    if do_save 

        saveas(gcf, fullfile(outpath,['CRC_' strainname 

'_level' num2str(peaklevel) '_analyze' 

num2str(curvrgn_analyze(1)) '-' 

num2str(curvrgn_analyze(end)) '.fig'])) 

        saveas(gcf, fullfile(outpath,['CRC_' strainname 

'_level' num2str(peaklevel) '_analyze' 

num2str(curvrgn_analyze(1)) '-' 

num2str(curvrgn_analyze(end)) '.png'])) 

    end 

    fprintf('trials = %d\n',floor(numel(F1)/2)); 

     

     

% Plot curvature amplitude before and during inhibition 

if do_comparison 

    phi = cat(1,phiu(:),phil(:))*2*pi; 

    F_aft1 = cat(1,Fu_aft1(:),Fl_aft1(:)); F_aft1 = 

F_aft1(:); 

    F_aft2 = cat(1,Fu_aft2(:),Fl_aft2(:)); F_aft2 = 

F_aft2(:); 

    F_aft3 = cat(1,Fu_aft3(:),Fl_aft3(:)); F_aft3 = 

F_aft3(:); 

    F_aft4 = cat(1,Fu_aft4(:),Fl_aft4(:)); F_aft4 = 

F_aft4(:); 

  

    todelete1 = isnan(F_aft1) | abs(F_aft1)>5 | phi > 2*pi 

| phi < 0; 

    todelete2 = isnan(F_aft2) | abs(F_aft2)>5 | phi > 2*pi 

| phi < 0; 

    todelete3 = isnan(F_aft3) | abs(F_aft3)>5 | phi > 2*pi 

| phi < 0; 

    todelete4 = isnan(F_aft4) | abs(F_aft4)>5 | phi > 2*pi 

| phi < 0; 

     

    F_aft1(todelete1) = []; 

    F_aft2(todelete2) = []; 

    F_aft3(todelete3) = []; 

    F_aft4(todelete4) = []; 

     

    F_aft1 = reshape(F_aft1,1,[]); 

    F_aft2 = reshape(F_aft2,1,[]); 

    F_aft3 = reshape(F_aft3,1,[]); 

    F_aft4 = reshape(F_aft4,1,[]); 

     

    F_aft1_AVG = mean(F_aft1); 

    F_aft1_SEM = std(F_aft1) / sqrt(numel(F_aft1)); 

    F_aft2_AVG = mean(F_aft2); 

    F_aft2_SEM = std(F_aft2) / sqrt(numel(F_aft2)); 

    F_aft3_AVG = mean(F_aft3); 

    F_aft3_SEM = std(F_aft3) / sqrt(numel(F_aft3)); 

    F_aft4_AVG = mean(F_aft4); 

    F_aft4_SEM = std(F_aft4) / sqrt(numel(F_aft4)); 

    figure 

    bar([F_aft1_AVG; F_aft2_AVG; F_aft3_AVG; F_aft4_AVG]); 

    hold on 

    errorbar([F_aft1_AVG; F_aft2_AVG; F_aft3_AVG; 

F_aft4_AVG],[F_aft1_SEM; F_aft2_SEM; F_aft3_SEM; 

F_aft4_SEM],'.' ); 

    hold off 

     

    ylabel([sprintf('Normalized bending\n curvature 

change,') ' \DeltaK/K']) 

    xticks([1 2 3 4]) 

    xticklabels({'1','2','3','4'}) 

    set(gca,'FontSize',20) 

    numaft1 = numel(F_aft1) 

    numaft2 = numel(F_aft2) 

    numaft3 = numel(F_aft3) 

    numaft4 = numel(F_aft4) 

    if do_save 

        saveas(gcf, fullfile(outpath,['CRbars_' strainname 

'_analyze' num2str(curvrgn_analyze(1)) '-' 

num2str(curvrgn_analyze(end)) '.fig'])) 

        saveas(gcf, fullfile(outpath,['CRbars_' strainname 

'_analyze' num2str(curvrgn_analyze(1)) '-' 

num2str(curvrgn_analyze(end)) '.png'])) 

    end 

end 

  

% % estimate the size of quality time window 

todelete = isnan(ts2); 

ts2(todelete) = []; 

te2(todelete) = []; 

  

ts_AVG = mean(ts2) 

te_AVG = mean(te2) 

ts_SEM = std(ts2) 

te_SEM = std(te2) 

end 

  

    function [imax,imin] = verify_extrema(v,imax,imin) 

         

        % get the mean amplitudes 

        vmax = mean(v(imax)); 

        vmin = mean(v(imin)); 
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        if vmin > vmax 

            itemp = imax; 

            imax  = imin; 

            imin  = itemp; 

        end 

         

         

    end 

 

Do_absK_spatio.m 
clc; clear;  

p_pulse = { 

%            'F:\Compensatory 

experiments\Optogenetics\2021-08-25_SWF325_p1_P4-6_17pct' 

%            'F:\phase\Combined_148_p1_17pct'; 

%            'F:\phase\Combined_148_p1_17pct_P2-4'; 

%            'F:\phase\Combined_148_p1_17pct_P4-6'; 

%            'F:\phase\Combined_148_p1_17pct_P6-8'; 

           'F:\phase\Combined_148_p1_17pct_ctrl'; 

           }; 

outpath = '/Users/hongfei/Dropbox/Paper/Compensatory 

reponse mechanism/Results'; 

issave = 0; 

TRange = [-0.5 1.5]; 

curvrgn_analyze = [60 80]; % 10:30 

curvrgn_perturb = [60 80]; 

aWin = 1*[-0.8 -0.1 0.2 1.5]; % 0 0.2 

numdiv = 1; 

Tmax = zeros(numdiv, 1); 

Smax = zeros(numdiv, 1); 

for n = 1:numel(p_pulse) 

    paradur = .1; 

    for i = 1:numdiv 

        phaserange = [(i-1)/numdiv i/numdiv]; 

        absK_min = ... 

            absK_spatio( p_pulse{n}, curvrgn_perturb, 

curvrgn_analyze,... 

            TRange, paradur ,phaserange,aWin, outpath, 

issave); 

    end 

end 

 

Do_compensatory_response.m 
clc;  clear 

p_pulse = { 

%            'F:\phase\Combined_148_p1_17pct_P4-6'; 

%            'F:\phase\Combined_ZM5398_dor_p1_17pct_P40-

60'; 

%            'F:\Compensatory 

experiments\Optogenetics\2021-08-13_YX287_p1_bothside_P4-

6_20pct'; 

%            'F:\Compensatory 

experiments\Optogenetics\2021-08-13_YX288_p1_bothside_P4-

6_20pct'; 

%            'F:\Compensatory 

experiments\Optogenetics\2021-08-11_YX289_p1_dorsal_P4-

6_20pct'; 

%            'F:\Compensatory 

experiments\Optogenetics\2021-08-18_YX290_p1_dorsal_P4-

6_20pct'; 

%            'F:\Compensatory 

experiments\Optogenetics\2021-04-18_YX148_p1_bothside_P4-

6_po111'; 

%            'F:\Compensatory 

experiments\Optogenetics\2021-08-25_SWF325_p1_P4-6_17pct'; 

%            'F:\phase\Combined_148_p1_17pct';  

%            'F:\phase\Combined_148_p1_17pct_P2-4'; 

%            'F:\phase\Combined_148_p1_17pct_P4-6'; 

           'F:\phase\Combined_148_p1_17pct_P6-8'; 

%            'F:\phase\Combined_148_p1_17pct_ctrl'; 

           }; 

outpath = '/Users/hongfei/Dropbox/Paper/Compensatory 

reponse mechanism/Results'; 

curvrgn_analyze = 40:60; % Anterior 15~27% Local 40~60% 

curvrgn_perturb = 60:80; %  

curvphiwindow_analyze = [-0.8 -0.1 0.1 1.5]; % Excitation 

[-0.8 -0.0 0.1 1.5] Inhibition [-0.8 -0.0 0.3 1.5] 

curvphiwindow_perturb = [-0.8 -0.0 0.5 1.5]; % Excitation 

[-0.8 -0.0 0.1 1.5] Inhibition [-0.8 -0.0 0.5 1.5] 

peaklevel = 1; % up to four 

plotflag = 0; 

do_comparison = 1; 

do_save = 0; 

type_perturb = 'i'; 

F_avg = zeros(numel(p_pulse,1)); 

F_sem = zeros(numel(p_pulse,1)); 

X1 = []; 

Y1 = []; 

for i = 1 : numel(p_pulse) 

    if i == 2 

        curvphiwindow_analyze = [-0.8 -0.0 0.1 1.5]; 

        type_perturb = 'i'; 

    end 

   [~, F_sort] =  Compensatory_Response( p_pulse{i}, 

curvrgn_perturb, curvrgn_analyze,peaklevel,... 

                                          

curvphiwindow_perturb,curvphiwindow_analyze,... 

                                          outpath, 

plotflag, do_comparison, do_save, type_perturb); 

   X1 = cat(1, X1, i*ones([numel(F_sort) 1])); 

   Y1 = cat(1, Y1, F_sort'); 

   F_avg(i) = mean(F_sort); 

   F_sem(i) = std(F_sort)/sqrt(numel(F_sort));                                 

end 

% %% 

% figure(1);clf 

% % 

beeswarm(X1,Y1,'sort_style','hex','dot_size',.5,'overlay_st

yle','ci','corral_style','gutter'); 

% bar([1 2], F_avg) 

% hold on 

% errorbar([1 2], F_avg, F_sem, '.') 

% hold off 

% ylabel([sprintf('Normalized bending\n curvature change,') 

' \DeltaK/K']) 

% xticks([1 2]) 

% xticklabels({'1','2'}) 

% set(gca,'FontSize',20) 

 
Do_compensatory_response_wholebody.m 
clc; close all; clear 

p_pulse = { 

           'F:\phase\Combined_148_p1_17pct';  

           'F:\phase\Combined_148_p1_17pct_P2-4'; 

           'F:\phase\Combined_148_p1_17pct_P4-6'; 

           'F:\phase\Combined_148_p1_17pct_P6-8'; 

           'F:\phase\Combined_148_p1_17pct_ctrl'; 

           }; 

outpath = '/Users/hongfei/Dropbox/Paper/Compensatory 

reponse mechanism/Results'; 

CURVRGN_analyze = {5:25; 20:40; 40:60; 60:80; 80:100}; % 

Anterior 15~27% Local 40~60% 

CURVRGN_perturb = {5:25; 20:40; 40:60; 60:80; 20:40};  %  

curvphiwindow_analyze = [-0.8 -0.0 0.1 1.5]; % Excitation 

[-0.8 -0.0 0.1 1.5] Inhibition [-0.8 -0.0 0.3 1.5] 

curvphiwindow_perturb = [-0.8 -0.0 0.5 1.5]; % Excitation 

[-0.8 -0.0 0.1 1.5] Inhibition [-0.8 -0.0 0.5 1.5] 

peaklevel = 1; % up to four 

plotflag = 0; 

do_comparison = 1; 

do_save = 0; 

type_perturb = 'i'; 

F_avg = zeros(numel(CURVRGN_perturb), 

numel(CURVRGN_analyze)); 

F_sem = zeros(numel(CURVRGN_perturb), 

numel(CURVRGN_analyze)); 

for i = 1 : numel(CURVRGN_perturb) 

    curvrgn_perturb = CURVRGN_perturb{i}; 

    for j = 1 : numel(CURVRGN_analyze) 

        curvrgn_analyze = CURVRGN_analyze{j}; 

        [~, F_sort] =  Compensatory_Response( p_pulse{i}, 

curvrgn_perturb, curvrgn_analyze,peaklevel,... 

            curvphiwindow_perturb,curvphiwindow_analyze,... 

            outpath, plotflag, do_comparison, do_save, 

type_perturb); 

        F_avg(i,j) = mean(F_sort); 

        F_sem(i,j) = std(F_sort)/sqrt(numel(F_sort)); 

    end 

end 

% %% 

 

Do_K_spatio.m 
clc; clear; close all 

p_pulse = {'E:\phase\Combined_148_p1_17pct_P4-6';... 

           'E:\phase\Combined_148_p1_17pct_ctrl';... 

           

'C:\Users\fffei\Dropbox\PRC\Combined_148_0p100_ctrl';... 

           'E:\phase\2019-11-07_ZM5398_dor_p5_17_p40-

60';... 

           'E:\phase\2019-11-06_ZM5398_dor_p1_17_p40-

60';... 

           'E:\phase\Combined_ZM5398_dor_p5_17pct_P40-60' 

           }; 

outpath = 'C:\Users\fffei\Dropbox\Paper\motor 

circuit\Compensatory reponse mechanism\Preliminary 

Results'; 

TRange = [-1 2]; 

curvrgn_perturb = 40:60; 

curvrgn_analyze = 10:30; 

curvphiwindow_perturb = [-0.8 -0.1 0.5 1.5]; 

curvphiwindow_analyze = [-0.8 -0.1 0.25 1.5]; 

numdiv = 1; 

for n = 6%numel(p_pulse) 

    paradur = 0.5; 

    for i = 1:numdiv 

        phaserange = [(i-1)/numdiv i/numdiv]; 



158 

 

        K_spatio( p_pulse{n}, curvrgn_perturb, 

curvrgn_analyze,... 

                  TRange,paradur, 

phaserange,curvphiwindow_perturb,curvphiwindow_analyze, 

outpath) 

    end 

end 

 

Do_paralysis_response_analysis.m 
% clc; close all; clear 

p_pulse = { 

           

'F:\phase\Combined_148_p1_dor_30pct_p5_25_ALL';... 

           

'F:\phase\Combined_148_p1_ven_30pct_p5_25_ALL';... 

           'F:\phase\Combined_148_p1_35pct';... 

           'F:\phase\Combined_148_p1_35pct_ctrl';... 

           }; 

outpath = 'C:\Users\fffei\Dropbox\Paper\motor 

circuit\Compensatory reponse mechanism\Preliminary Results 

2'; 

Tpara = 0.3; 

curvrgn_analyze = 15:35; % 15:35 

curvrgn_perturb = 15:35; 

curvphiwindow_analyze = [-0.8 -.1 .5 1.5]; 

curvphiwindow_perturb = [-0.8 -.1 .5 1.5]; 

plotflag = 0; 

color = '-k'; 

for n = 4 

   [phi_sort, P_sort] =  

Paralysis_Response_absK( p_pulse{n}, curvrgn_perturb, 

curvrgn_analyze,... 

                                          

curvphiwindow_perturb,curvphiwindow_analyze, Tpara,... 

                                          outpath, 

plotflag, color); 

  

end 

%  

figure(1) 

Dt  = 0.3; 

T0  = 1.14; 

A = 4.2; 

width = 0.4*2*pi; 

funD = @(x) A*abs(cos(x+ 2*pi*Dt/T0)); 

funI = @(t) (integral(funD, t-width/2, t+width/2))/width; 

hold on 

fplot(funI, [0 2*pi]) 

hold off 

  

xlabel('\phi','FontSize',20); 

ylabel('|K| (0.3 after illum)','FontSize',12); 

  

set(gca,'FontSize',12) 

set(gca,'FontSize',28,'xtick',[0 pi 

2*pi],'xticklabel',{'0' ,'\pi' , '2\pi'}); 

xlim([0,2*pi]); 

  

% hold on 

% Npoints     = numel(P_sort); 

% w_idx       = round(0.2 * Npoints);  % Normal is 0.15 The 

width of the median bin in elements. Also the N value for 

each bin. Note that this method could be invalid if the 

phases are not sampled approximately equally. 

% AVG = movmean(P_sort,w_idx); 

% SEM = movstd(P_sort,w_idx)./sqrt(w_idx); 

% shadedErrorBar(phi_sort,smooth(AVG-1),smooth(SEM), '-c', 

0.5); 

% hold off 

 

Do_state_analysis.m 
clc; clear;close all 

p_pulse = '/Users/hongfei/Dropbox/Paper/Compensatory 

reponse mechanism/data 

optogenetics/Combined_148_p1_17pct_ctrl'; 

curvrgn_anterior = 15:35; 

curvrgn_middle   = 40:60; 

curvphiwindow = [-4.5 -0.0 0.3 1.5]; 

numdiv = 1; 

doplotdebug = 0; 

load('TmaxSmax.mat') 

for i = 1 : numdiv 

    phaserange = [(i-1)/numdiv i/numdiv]; 

    if i == 1 

        ctrdata = {}; 

    else 

        ctrdata = {rescaled_data{9}; rescaled_data{10}; 

rescaled_data{11}; rescaled_data{12}; raw_data{3}; 

raw_data{4}; rescaled_data{13}}; 

    end 

    [rescaled_data, raw_data] = 

State_analysis_2019a(p_pulse, curvrgn_anterior, 

curvrgn_middle,... 

        phaserange, curvphiwindow, doplotdebug, ctrdata); 

end 

 
Paralysis_Response_absK.m 
function [phi_sort, P_sort] = 

Paralysis_Response_absK(p_pulse, curvrgn_perturb, 

curvrgn_analyze,... 

                                

curvphiwindow_perturb,curvphiwindow_analyze,Tpara, 

outpath,... 

                                plotflag, color) 

%SYNCRONIZING_RESPONSE Calculate  

%    

%Outputs: 

%           p_pulse: directory of data being evaluated 

%           curvrgn1: region being illuminated 

%           curvrgn2: region being analyzed 

%           phaserange: range of phase of interest 

%           curvphiwindow: a window to exclude the effect 

of pulse on 

%                           curvature dynamics 

%           outpath: directory for outcomes 

  

[~, strainname] = fileparts(p_pulse); 

ddp  = dir(p_pulse); 

ddp  = verify_dirlist(ddp,0,'.mat'); 

Np   = numel(ddp); 

numsamplepts = 100; 

Period = []; 

% Cycle through each file, get the peak before and after 

the pulse 

for i = 1:Np 

    % Display progress 

    fprintf('Analyzing trial %d',i) 

    % Load the file's curvature data 

    

load(fullfile(p_pulse,ddp(i).name),'curvdatafiltered','fps'

,'istart','start_illum'); 

    %------------------------------------------------------

-----------% 

     

    % Extract the curvature vector 

    v1       = mean(curvdatafiltered(:,curvrgn_perturb),2); 

    t       = (0:length(v1)-1) ./ fps; 

    % Get the start point 

    is = start_illum - istart; 

     

    % Find all peaks 

    [imax,imin]    = C2_get_curvature_peaks(v1,1); 

    % Find the peaks immediately before and after the start 

point 

    [imax,imin]= verify_extrema(v1,imax,imin); 

    imaxbef = 

imax(find(imax<is+round(curvphiwindow_perturb(2)*fps),2,'la

st')); 

    imaxaft = 

imax(find(imax>is+round(curvphiwindow_perturb(3)*fps),2,'fi

rst')); 

    iminbef = 

imin(find(imin<is+round(curvphiwindow_perturb(2)*fps),2,'la

st')); 

    iminaft = 

imin(find(imin>is+round(curvphiwindow_perturb(3)*fps),2,'fi

rst')); 

    % Exclude this trial if not enough peaks were found 

    if numel(imaxbef) < 2 || numel(imaxaft) < 2 || 

numel(iminaft) < 2 || numel(iminbef) < 2 

        F(i)  = nan; 

        Fu(i) = nan; 

        Fl(i) = nan; 

        phiu(i)= nan; 

        phil(i) = nan; 

        fprintf(' - SKIPPED - Not enough peaks\n'); 

        continue; 

    end 

        % Calculate the period of undulation 

    T0 = mean([diff(imaxaft), diff(imaxbef), diff(iminaft), 

diff(iminbef)]); 

    % Calculate the change in period after - should exclude 

those with high 

    % changes or frequency changes a lot 

    dT = abs((diff(imaxaft) - 

diff(imaxbef))/diff(imaxbef)); 

  

    % Exclude this trial if the frequency changes by a lot 

    if dT > 0.2 || (T0/fps) >1.75 

        F(i)  = nan; 

        Fu(i) = nan; 

        Fl(i) = nan; 

        phiu(i)= nan; 

        phil(i) = nan; 

        fprintf(' - SKIPPED - Tratio = %0.2f - T 

= %0.2f\n',dT,T0/fps); 
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        continue; 

    end 

     

    % Calculate the phase at which the illum occurs, by 

maximum and minimum 

    phiu(i) = mod(is - imaxbef(2),T0)/T0; 

    phil(i) = mod(is - iminbef(2),T0)/T0 - 0.5; 

    if phil(i) < 0 

        phil(i) = phil(i) + 1; 

    end 

  

    v2       = mean(curvdatafiltered(:,curvrgn_analyze),2); 

    % Find all peaks 

    [imax,imin]    = C2_get_curvature_peaks(v2,1); 

    % Find the peaks immediately before and after the start 

point 

    [imax,imin]= verify_extrema(v2,imax,imin); 

    imaxbef = 

imax(find(imax<is+round(curvphiwindow_analyze(2)*fps),2,'la

st')); 

    imaxaft = 

imax(find(imax>is+round(curvphiwindow_analyze(3)*fps),2,'fi

rst')); 

    iminbef = 

imin(find(imin<is+round(curvphiwindow_analyze(2)*fps),2,'la

st')); 

    iminaft = 

imin(find(imin>is+round(curvphiwindow_analyze(3)*fps),2,'fi

rst')); 

     

    if numel(imaxbef) < 2 || numel(imaxaft) < 2 || 

numel(iminaft) < 2 || numel(iminbef) < 2 

        F(i)  = nan; 

        Fu(i) = nan; 

        Fl(i) = nan; 

        phiu(i)= nan; 

        phil(i) = nan; 

        fprintf(' - SKIPPED - Not enough peaks\n'); 

        continue; 

    end 

         

    if plotflag 

         

        % Crop the curvature curve to only the relevant 

times 

        is2   = min([min(imaxbef) min(iminbef)])-2; % start 

point of the segment to plot 

        ie2   = max([max(imaxaft) max(iminaft)])+2; 

         

        % Generate plot 

        figure(1); clf; 

        plot(t,v2,'-k','LineWidth',2); hold on; 

%         

plot(t(imaxbef),v2(imaxbef),'+r','MarkerSize',16,'LineWidth

',2) 

        

plot(t(imaxaft(1)),v2(imaxaft(1)),'+r','MarkerSize',16,'Lin

eWidth',2) 

%         

plot(t(iminbef),v2(iminbef),'+b','MarkerSize',16,'LineWidth

',2) 

        

plot(t(iminaft(1)),v2(iminaft(1)),'+b','MarkerSize',16,'Lin

eWidth',2) 

        line([t(is)  t(is)] , [min(v2) 

max(v2)],'Color','g','LineWidth',3) 

        title(sprintf('phi = %f',phiu(i))); 

        hold off; 

        xlim([t(is2),t(ie2)]) 

        drawnow; 

        pause(2)  

    end 

    Kp3 = v1(is + round(Tpara*fps)); 

     

    F(i) = Kp3; 

%     F(i) = abs(Kp3); 

     

    fprintf('\n');     

     

    Period = [Period; T0]; 

     

end 

%% Generate compensatory response curves 

  

% Concatenate the F results by maxima and minima     

%     phi = cat(1,phiu(:),phil(:))*2*pi; 

    phi = ((phiu(:)+phil(:))/2)*2*pi; 

    F = F(:); 

    phi = phi(:); 

    todelete = phi<0 | phi>2*pi |isnan(F); 

    phi(todelete) = []; 

    F(todelete) = []; 

    phi=reshape(phi,1,[]); 

    F=reshape(F,1,[]); 

     

% Sort data by phase at pulse 

    [~,idx]     = sort(phi); 

    phi_sort    = phi(idx); 

    P_sort      = F(idx);   

     

% Pad the end with beginning data to enable circular 

averaging  

    phi_pad1     = phi_sort(phi_sort>3*pi/2); 

    F_pad1       = P_sort(phi_sort>3*pi/2); 

    phi_pad2     = phi_sort(phi_sort<pi/2); 

    F_pad2       = P_sort(phi_sort<pi/2); 

    phi_sort    = cat(2,phi_pad1-

2*pi,phi_sort,phi_pad2+2*pi); 

    P_sort      = cat(2,F_pad1,P_sort,F_pad2); 

% Plot results 

    opengl software; 

    figure(1);  

%     clf;  

    hold on 

  

%Moving average 

    Npoints     = numel(P_sort); 

    w_idx       = round(0.25 * Npoints);  % Normal is 0.15 

The width of the median bin in elements. Also the N value 

for each bin. Note that this method could be invalid if the 

phases are not sampled approximately equally. 

    AVG = movmean(P_sort,w_idx); 

    SEM = movstd(P_sort,w_idx)./sqrt(w_idx); 

    AVG = smooth(AVG); 

    SEM = smooth(SEM); 

    shadedErrorBar(phi_sort,AVG,SEM, color, 0.5); 

    hold on;  

     

% Individual points 

%     

plot(phi_sort,P_sort,'.','MarkerSize',8,'Color',0.5*[0.5 

0.5 1]); 

    xlabel('\phi','FontSize',20); 

    ylabel('|K| (0.3 after illum)','FontSize',12); 

     

    set(gcf,'Color','w','Position',[1192 217 608 572]); 

    set(gca,'FontSize',12) 

    set(gca,'FontSize',28,'xtick',[0 pi 

2*pi],'xticklabel',{'0' ,'\pi' , '2\pi'}); 

    xlim([0,2*pi]); 

     

% Plot zero line 

     

     

    hold off; 

     

%     saveas(gcf, fullfile(outpath,['ParaC_' strainname 

'.fig'])) 

%     saveas(gcf, fullfile(outpath,['ParaC_' strainname 

'.png'])) 

    fprintf('trials = %d\n',numel(F)/2); 

     

    Period_avg = mean(Period)/fps; 

    Period_sem = std(Period)/sqrt(numel(Period))/fps; 

    fprintf('T0 = %d,\n SEM = %d\n',Period_avg, 

Period_sem); 

end 

  

    function [imax,imin] = verify_extrema(v,imax,imin) 

         

        % get the mean amplitudes 

        vmax = mean(v(imax)); 

        vmin = mean(v(imin)); 

         

        if vmin > vmax 

            itemp = imax; 

            imax  = imin; 

            imin  = itemp; 

        end 

         

         

    end 

 

shadedErrorGaussian.m 
function H = shadedErrorGaussian(x, mu, sg ) 

%SHADEDERRORGAUSSIAN  

hold on 

for i = 1: numel(x) 

    MU = mu{i}; 

    if numel(MU) == 1 

        scatter(x(i), MU, 'filled', 

'MarkerEdgeColor','none',... 

            'MarkerFaceColor','k'); 

    elseif numel(MU) == 2 

        scatter([x(i) x(i)], MU, 'filled', 

'MarkerEdgeColor','none',... 
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            'MarkerFaceColor','k'); 

    end 

end 

hold off 

end 

 

Analysis_Tool.m 
clc; clear; close all 

subfoldername = 'LX703_30pct'; 

path    = fullfile('D:\Dropbox\Paper\Compensatory reponse 

mechanism\data_gait_adaptation',subfoldername); 

savefilename = fullfile('D:\Dropbox\Paper\Compensatory 

reponse 

mechanism\data_gait_adaptation\intermediate',[subfoldername 

'.mat']); 

list = dir(fullfile(path, '*.mat')); 

spline_p = 0.01; 

numcurvpts = 100; 

curvrgn  = 10:30; 

n_trials = numel(list); 

Total_time = 0; 

expo = .7; 

f_data  = []; 

l_data  = []; 

th_data = []; 

curv_data = []; 

do_wavelength = 1; 

do_saveparameters = 1; 

for i = 1 : numel(list) 

    fprintf('%i out of %i\n', i, numel(list)) 

    f  = list(i).name; 

    load(fullfile(path,f)) 

    xy = cat(3, clinex, cliney); 

    iT = size(xy,1); 

    iS = size(xy,2); 

         

    % do wavelength analysis 

    if do_wavelength         

         

        indicator = curvdatafiltered; 

         

        c2n = bsxfun(@gt, indicator, mean(indicator, 

'omitnan')); 

        maskhead = 0.15; 

        maskneck = 0.17; 

        masktail = 0.30; 

        minimum_fraction_for_fit = 0.5; 

        c3 = edge(single(c2n),'sobel', 0); 

         

        [c4, numlab] = bwlabel(c3); 

         

        numcycles2 = 0; 

         

         

        okdatatmp = zeros(numlab, 1); 

         

        normrthresh = 220; 

         

        %   draw fit limits 

        figure(9);clf; imagesc(c2n); 

colormap(cmap_redblue(expo)); 

        % 

        hold on; 

        %     subplot(133); hold on; 

        curvsigndatatmp = []; 

        for n=1:numlab 

            c5 = (c4 == n); 

%                 figure(23); 

%                 imagesc(c5); hold on; 

            [y, x] = find(c5); 

             

            % determine if this is + or - transition 

            yshift = 3; 

            yshifted = ceil(1+0.5*(1+sign(y-yshift)) .* (y-

yshift-1)); 

            curvshift = zeros(size(x)); 

            for jj=1:length(x) 

                curvshift(jj) = indicator(yshifted(jj), 

x(jj)); 

            end 

            % 

            %         disp(n); 

            %         disp('mean(c2shift)'); 

            %         disp(mean(curvshift)); 

            % 

            % exclude points near head and tail for fitting 

            tmp = x; 

            x=x(logical((tmp>=maskhead * numcurvpts) .* 

(tmp<=(1-masktail) * numcurvpts))); 

            y=y(logical((tmp>=maskhead * numcurvpts) .* 

(tmp<=(1-masktail) * numcurvpts))); 

             

            if max(x) - min(x) >=  (1-maskhead-

masktail)*minimum_fraction_for_fit*numcurvpts 

                [p,S] = polyfit(x,y,1); 

                if S.normr < normrthresh % if the curve is 

close to a straight line 

                    if mean(curvshift) > 0 

                        plotcol = '-g'; 

                    else 

                        plotcol = '--g'; 

                    end 

                    figure(9) 

                    plot(polyval(p,1:numcurvpts), plotcol); 

hold on; 

                    numcycles2 = numcycles2 + 1; 

                    slopedatatmp(n) = p(1); 

                    timedatatmp(n) = p(2); 

                    okdatatmp(n) = 1; 

                    negshift = (mean(curvshift) > 0); 

                    curvsigndatatmp(n) = negshift; 

                    xpos = 5; 

                    ypos = p(2)-1; 

                    if p(2)<1 

                        xpos = numcurvpts/4; 

                        ypos = 5; 

                    end 

                    if negshift 

                        xpos = 45; 

                        ypos = p(2) + p(1)*xpos-1; 

                    end 

                    text(xpos,ypos,num2str([numcycles2 

p(1)]), 'Color', 'white'); hold on; 

                end 

            end 

        end 

        if isempty(curvsigndatatmp) 

            continue; 

        end 

        figure(9);hold on; 

        plot( [0.5+maskhead*numcurvpts 

0.5+maskhead*numcurvpts],[1 iT], ':k'); 

        plot( [0.5+ (1-masktail)*numcurvpts 0.5+ (1-

masktail)*numcurvpts],[1 iT], ':k'); 

        xlabel(sprintf('%d out of %d', i, n_trials)) 

         

        title(strcat(num2str(sum(curvsigndatatmp)),' 

positive, ', num2str(numcycles2-sum(curvsigndatatmp)),... 

            ' negative.  Click on bad fits, press 

return')); 

        badfits = ginput; 

         

        epsilon = 4;  % how close to fit you need to click 

        for j=1:size(badfits,1) 

            for n=1:numlab 

                if okdatatmp(n) 

                    if abs(timedatatmp(n) + 

slopedatatmp(n)*badfits(j,1) - badfits(j,2))<epsilon 

                        %                 

disp(strcat('matches #', num2str(n))); 

                        okdatatmp(n) = 0; 

                    end 

                end 

            end 

        end 

         

        numcycles2 = 0; 

        c4b = c4; 

        for n=1:numlab 

            if okdatatmp(n) 

                numcycles2 = numcycles2+1; 

                slopedata(numcycles2) = slopedatatmp(n); 

                timedata(numcycles2) = timedatatmp(n); 

                

curvsigndata(numcycles2)=curvsigndatatmp(n); 

                c4b(c4b==n) = numcycles2; 

            else 

                c4b(c4b==n) = 0; 

            end 

        end 

         

        figure(9);clf; 

        imagesc(c2n); hold on; 

         

        plot( [0.5+maskhead*numcurvpts 

0.5+maskhead*numcurvpts],[1 iT], ':w'); 

        plot( [0.5+ (1-masktail)*numcurvpts 0.5+ (1-

masktail)*numcurvpts],[1 iT], ':w'); 

        xlabel(sprintf('%d out of %d', i, n_trials)) 

         

        for n=1:numcycles2 

            if curvsigndata(n) 

                plotcol = '-g'; 

            else 

                plotcol = '--g'; 
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            end 

             

            plot(polyval([slopedata(n) 

timedata(n)],1:numcurvpts), plotcol); hold on; 

            %             text(5,p(2)-1,num2str([n 

numcycles2 S.normr]), 'Color', 'white'); hold on; 

            %             if p(2)<1 

            %                 text(5,2,num2str([n 

numcycles2 S.normr]), 'Color', 'white'); hold on; 

            %             end 

        end 

         

        if mean(curvsigndata) ~= 0.5 

            msgbox('Warning: unequal number of positive and 

negative fits','','error') 

        end 

         

        title('Press return to continue'); 

        pause; 

        figure(9) 

         

         

        title('click two points separated in time by N 

cycles'); 

        t1 = ginput(1); 

        if numel(t1) <2 

            continue 

        end 

        plot( [1 numcurvpts],[t1(2) t1(2)], '-w'); 

         

        t2 = ginput(1); 

        if numel(t2) <2 

            continue 

        end 

        plot( [1 numcurvpts],[t2(2) t2(2)], '-w'); 

        %   draw fit limits 

         

        plot( [0.5+maskhead*numcurvpts 

0.5+maskhead*numcurvpts],[1 iT], ':k'); 

        plot( [0.5+ (1-masktail)*numcurvpts 0.5+ (1-

masktail)*numcurvpts],[1 iT], ':k'); 

         

        idx = sort([t1(2) t2(2)]); 

        v_front_all = (c2n( :,floor(maskhead * 

numcurvpts))); 

        dv_front = edge(single(v_front_all),'sobel', 0); 

        idx_edge = find(dv_front == 1); 

        [~, loc1] = min(abs((idx(1) - idx_edge))); 

        idx(1) = idx_edge(loc1); 

        [~, loc2] = min(abs((idx(2) - idx_edge))); 

        idx(2) = idx_edge(loc2); 

         

         

        v_front = c2n( idx(1)+1: idx(2)-1,floor(maskhead * 

numcurvpts)); 

        v3_front = edge(single(v_front),'sobel', 0); 

        num_halfcycles = sum(v3_front)+1; 

        answer = inputdlg(sprintf('Enter number of cycles 

(suggestion: %.1f)', num_halfcycles/2)); 

         

        if isempty(answer{1}) 

            num_cycles = num_halfcycles/2; 

        else 

            num_cycles = str2double(answer{1}); 

        end 

         

        period = abs(t1(2) - t2(2)) / num_cycles; 

         

        title(strcat(num2str(num_cycles),' cycles, ', 

num2str(numcycles2), ' fits'), 'Interpreter', 'None'); 

         

         

        for n=1:numcycles2 

            if curvsigndata(n) 

                plotcol = '-g'; 

            else 

                plotcol = '--g'; 

            end 

            plot(polyval([slopedata(n) 

timedata(n)],(1:numcurvpts)), plotcol); hold on; 

             

        end 

    end 

     

    df = diff(xy,1,2); 

    lendata = zeros(size(xy,1),1); 

    angles_per_trial = []; 

    curvs_per_trial  = []; 

    for j = idx(1) : idx(2) 

        if isnan(mean(curvdatafiltered(j,:))) 

            continue 

        end 

        df2d = squeeze(df(j,:,:))'; 

        xy2d = squeeze(xy(j,:,:))'; 

         

        s  = cumsum([0, sqrt([1 1]*(df2d.*df2d))]); 

        cv = csaps(s,xy2d,spline_p); 

        cv2 =  fnval(cv, s)'; 

        df2 = diff(cv2,1,1); df2p = df2'; 

        splen = cumsum([0, sqrt([1 1]*(df2p.*df2p))]); 

        lendata(j) = splen(end); 

        cv2i = interp1(splen+.00001*(0:length(splen)-

1),cv2,... 

            (0:(splen(end)-1)/(numcurvpts+1):(splen(end)-

1))); 

        df2   = diff(cv2i,1,1); 

        atdf2 = atan2(-df2(10:90,2), df2(10:90,1)); 

         

        theta   = (mean(max(atdf2)) + mean(min(atdf2)))/2; 

        xcenter = cv2i(1,1); 

        ycenter = cv2i(1,2); 

        center  = repmat([xcenter ycenter], size(cv2i, 1), 

1); 

        Ro      = [cos(theta) -sin(theta); sin(theta) 

cos(theta)]; 

        % do the rotation 

        cv2io = (Ro*(cv2i' - center') + center')'; 

        df2o   = diff(cv2io,1,1); 

        atdf2o = atan2(-df2o(10:90,2), df2o(10:90,1)); 

%         angle_data(j,:) = atdf2o'; 

        max_angle = abs(mean(max(atdf2o))); 

        % compute average of attack angle over body 

coordinate and over periods 

        % of cycle 

        if max_angle < pi/2 * 0.95 && max_angle > 0 

            angles_per_trial   = [angles_per_trial; 

max_angle]; 

        end 

                 

    end 

     

    v = mean(curvdatafiltered(idx(1) : idx(2), curvrgn),2); 

%     [imax, imin] = C2_get_curvature_peaks(v,1); 

%     [imax, imin]  = verify_extrema(v,imax,imin); 

%     imax(imax == iT | imax == 1) = []; 

%     imin(imin == iT | imin == 1) = []; 

%     imax(v(imax)<=0) = []; 

%     imin(v(imin)>=0) = []; 

    ddx = floor(abs(idx(1) - idx(2))./num_cycles); 

    for jj = 1 : num_cycles 

        idxs = (1+(jj-1)*ddx):(jj*ddx); 

        curvs_per_trial = [curvs_per_trial; 

max(abs(v(idxs)))]; 

    end 

    % number of fits 

    fprintf('number of fits = %d \n', numcycles2) 

    % worm length 

    wormlength = mean(lendata); 

    %         fprintf('wormlength (spline) (pix) = %f \n', 

wormlength) 

     

    % undulation period 

    %         fprintf('mean period (frames) = %f \n', 

period) 

    period_s = period/fps; 

    fprintf('mean period (sec) = %f \n',period_s) 

    % undulation frequency 

    %         frequency = 1/period; 

    %         fprintf('mean frequency (frames-1) = %f \n', 

frequency) 

    frequency_hz = 1/period_s; 

    fprintf('mean frequency (sec-1) = %f \n', frequency_hz) 

     

    % wavevelocity 

    wavevelocity = mean(1./abs(slopedata),'omitnan') * 

wormlength/numcurvpts * fps; 

    %         fprintf('mean wave velocity (pix/sec) = %f 

\n', wavevelocity) 

    % 

    %         stdwavevelocity = std(1./abs(slopedata))* 

wormlength/numcurvpts * fps; 

    %         fprintf('std wave velocity (pix/sec) = %f 

\n', stdwavevelocity) 

     

    % wavelength 

    wavelength = wavevelocity * period_s; 

    %         fprintf('wavelength (pix) = %f \n', 

wavelength) 

     

    wavelength_norm = wavelength / wormlength; 

    fprintf('wavelength (norm) = %f \n', wavelength_norm) 

    %         wavelengthdata = 1./abs(slopedata) * 

wormlength/numcurvpts * period; 

     

    % angle of attack 

    halfperiod = floor(period/2); 
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    N_halfcycles = 

floor(length(angles_per_trial)/halfperiod) + 1; 

    for ii = 1 : N_halfcycles 

        if ii<N_halfcycles 

            range_period = (1 + (ii-1)*halfperiod) : 

(halfperiod*ii); 

        else 

            range_period = (1 + (ii-1)*halfperiod) : 

length(angles_per_trial); 

        end 

        angles_per_period(ii) = 

mean(max(angles_per_trial(range_period))); 

    end 

    angle_attack = mean(angles_per_trial, 'omitnan'); 

    angle_attack_degree = angle_attack/pi*180; 

    fprintf('attack angle (degree) = %f \n', 

angle_attack_degree) 

     

    % peak curvature 

    curvature = mean(curvs_per_trial, 'omitnan'); 

    fprintf('curvature (norm) = %f \n', curvature) 

     

    f_data = [f_data; frequency_hz]; 

    l_data = [l_data; wavelength_norm]; 

    th_data = [th_data; angle_attack_degree]; 

    curv_data = [curv_data; curvature]; 

     

end 

  

f_mean_all  = mean(f_data); 

f_std_all   = std(f_data); 

f_SEM_all   = f_std_all/sqrt(n_trials); 

  

l_data(l_data>2.5) = []; 

l_mean_all  = mean(l_data); 

l_std_all   = std(l_data); 

l_SEM_all   = l_std_all/sqrt(n_trials); 

  

th_mean_all = mean(th_data, 'omitnan'); 

th_std_all  = std(th_data, 'omitnan'); 

th_SEM_all  = th_std_all/sqrt(n_trials); 

  

curv_mean_all = mean(curv_data, 'omitnan'); 

curv_std_all  = std(curv_data, 'omitnan'); 

curv_SEM_all  = curv_std_all/sqrt(n_trials); 

  

if do_saveparameters 

    save(savefilename, 

'f_data','l_data','th_data','curv_data',... 

        'f_mean_all','f_std_all','f_SEM_all',... 

        'l_mean_all','l_std_all','l_SEM_all',... 

        'th_mean_all','th_std_all','th_SEM_all',... 

        'curv_mean_all','curv_std_all','curv_SEM_all') 

end 

  

function [imax,imin] = verify_extrema(v,imax,imin) 

  

% get the mean amplitudes 

vmax = mean(v(imax)); 

vmin = mean(v(imin)); 

  

if vmin > vmax 

    itemp = imax; 

    imax  = imin; 

    imin  = itemp; 

end 

  

  

end 

 
mutants.m 
% close all;  

clear; clc 

Vis     = [1390 9079]'; % Viscosity  (mPa¬∑s) 

pct     = {'30','40'}; 

N       = numel(Vis); 

  

f_N2     = zeros(N,1); 

f_N2_SEM = zeros(N,1); 

f_dop3    = zeros(N,1); 

f_dop3_SEM= zeros(N,1); 

f_avkdop3    = zeros(N,1); 

f_avkdop3_SEM= zeros(N,1); 

f_avkTeTx    = zeros(N,1); 

f_avkTeTx_SEM= zeros(N,1); 

f_flp1    = zeros(N,1); 

f_flp1_SEM= zeros(N,1); 

f_npr6    = zeros(N,1); 

f_npr6_SEM= zeros(N,1); 

f_smbnpr6    = zeros(N,1); 

f_smbnpr6_SEM= zeros(N,1); 

  

  

l_N2     = zeros(N,1); 

l_N2_SEM = zeros(N,1); 

l_dop3    = zeros(N,1); 

l_dop3_SEM= zeros(N,1); 

l_avkdop3    = zeros(N,1); 

l_avkdop3_SEM= zeros(N,1); 

l_avkTeTx    = zeros(N,1); 

l_avkTeTx_SEM= zeros(N,1); 

l_flp1    = zeros(N,1); 

l_flp1_SEM= zeros(N,1); 

l_npr6    = zeros(N,1); 

l_npr6_SEM= zeros(N,1); 

l_smbnpr6    = zeros(N,1); 

l_smbnpr6_SEM= zeros(N,1); 

  

k_N2     = zeros(N,1); 

k_N2_SEM = zeros(N,1); 

k_dop3    = zeros(N,1); 

k_dop3_SEM= zeros(N,1); 

k_avkdop3    = zeros(N,1); 

k_avkdop3_SEM= zeros(N,1); 

k_avkTeTx    = zeros(N,1); 

k_avkTeTx_SEM= zeros(N,1); 

k_flp1    = zeros(N,1); 

k_flp1_SEM= zeros(N,1); 

k_npr6    = zeros(N,1); 

k_npr6_SEM= zeros(N,1); 

k_smbnpr6    = zeros(N,1); 

k_smbnpr6_SEM= zeros(N,1); 

% K_1mPas     = [8.5478; 8.7481; 8.7701; 13.1554; 12.4032; 

9.1767; 9.2779]; 

% K_SEM_1mPas = [0.1743; 0.1936; 0.1969; 0.3115;  0.3022;  

0.2447; 0.1639]; 

th_N2     = zeros(N,1); 

th_N2_SEM = zeros(N,1); 

th_dop3    = zeros(N,1); 

th_dop3_SEM= zeros(N,1); 

th_avkdop3    = zeros(N,1); 

th_avkdop3_SEM= zeros(N,1); 

th_avkTeTx    = zeros(N,1); 

th_avkTeTx_SEM= zeros(N,1); 

th_flp1    = zeros(N,1); 

th_flp1_SEM= zeros(N,1); 

th_npr6    = zeros(N,1); 

th_npr6_SEM= zeros(N,1); 

th_smbnpr6    = zeros(N,1); 

th_smbnpr6_SEM= zeros(N,1); 

  

k2_N2      = zeros(N,1); rk_30N2      = zeros(1,1); 

rk2_30N2      = zeros(1,1); 

k2_dop3    = zeros(N,1); rk_30dop3      = zeros(1,1); 

rk2_30dop3      = zeros(1,1); 

k2_avkdop3 = zeros(N,1); rk_30avkdop3      = zeros(1,1); 

rk2_30avkdop3      = zeros(1,1); 

k2_avkTeTx = zeros(N,1); rk_30avkTeTx      = zeros(1,1); 

rk2_30avkTeTx      = zeros(1,1); 

k2_flp1    = zeros(N,1); rk_30flp1      = zeros(1,1); 

rk2_30flp1      = zeros(1,1); 

k2_npr6    = zeros(N,1); rk_30npr6      = zeros(1,1); 

rk2_30npr6      = zeros(1,1); 

k2_smbnpr6 = zeros(N,1); rk_30smbnpr6      = zeros(1,1); 

rk2_30smbnpr6      = zeros(1,1); 

  

  

  

pname = 'D:\Dropbox\Paper\Compensatory reponse 

mechanism\data_gait_adaptation\intermediate'; 

Name_n2 = 'N2'; 

Name_dop3 = 'LX703'; 

Name_avkdop3 = 'ZX2201'; 

Name_avkTeTx = 'FQ2747'; 

Name_flp1 = 'PS8997'; 

Name_npr6 = 'ZX2037U'; 

Name_smbnpr6 = 'ZX2037R'; 

Genotypes = {'N2','dop-3','AVK:dop-3(+)','AVK::TeTx','flp-

1','npr-6','SMB:npr-6(+)'}; 

for i = 1 : N % N2 

    filename_n2 = [Name_n2 '_' pct{i} 'pct.mat']; 

    load(fullfile(pname, filename_n2)) 

    f_N2(i) = mean(f_data); 

    f_N2_SEM(i) = std(f_data)/sqrt(numel(f_data)); 

    l_N2(i) = mean(l_data); 

    l_N2_SEM(i) = std(l_data)/sqrt(numel(l_data)); 

    k_N2(i)   = mean(curv_data,'omitnan'); 

    k2_N2(i)  = mean(curv_data.^2,'omitnan'); 

    if i==1 

        rk_30N2  = mean(1./curv_data,'omitnan'); 

        rk2_30N2  = mean(1./curv_data.^2,'omitnan'); 

    end 

    k_N2_SEM(i) = 

std(curv_data,'omitnan')/sqrt(numel(curv_data)); 

    th_N2(i) = mean(th_data, 'omitnan'); 
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    th_N2_SEM(i) = 

std(th_data,'omitnan')/sqrt(numel(th_data)); 

end 

for i = 1 : N % dop-3 

    filename_dop3 = [Name_dop3 '_' pct{i} 'pct.mat']; 

    load(fullfile(pname, filename_dop3)) 

    f_dop3(i) = mean(f_data); 

    f_dop3_SEM(i) = std(f_data)/sqrt(numel(f_data)); 

    l_dop3(i) = mean(l_data); 

    l_dop3_SEM(i) = std(l_data)/sqrt(numel(l_data)); 

    k_dop3(i)    = mean(curv_data,'omitnan'); 

    k2_dop3(i)  = mean(curv_data.^2,'omitnan'); 

    if i==1 

        rk_30dop3  = mean(1./curv_data,'omitnan'); 

        rk2_30dop3  = mean(1./curv_data.^2,'omitnan'); 

    end 

    k_dop3_SEM(i) = 

std(curv_data,'omitnan')/sqrt(numel(curv_data)); 

    th_dop3(i) = mean(th_data,'omitnan'); 

    th_dop3_SEM(i) = 

std(th_data,'omitnan')/sqrt(numel(th_data)); 

end 

for i = 1 : N % avk::dop-3 

    filename_avkdop3 = [Name_avkdop3 '_' pct{i} 'pct.mat']; 

    load(fullfile(pname, filename_avkdop3)) 

    f_avkdop3(i) = mean(f_data); 

    f_avkdop3_SEM(i) = std(f_data)/sqrt(numel(f_data)); 

    l_avkdop3(i) = mean(l_data); 

    l_avkdop3_SEM(i) = std(l_data)/sqrt(numel(l_data)); 

    k_avkdop3(i)    = mean(curv_data,'omitnan'); 

    k2_avkdop3(i)  = mean(curv_data.^2,'omitnan'); 

    if i==1 

        rk_30avkdop3  = mean(1./curv_data,'omitnan'); 

        rk2_30avkdop3  = mean(1./curv_data.^2,'omitnan'); 

    end 

    k_avkdop3_SEM(i) = 

std(curv_data,'omitnan')/sqrt(numel(curv_data)); 

    th_avkdop3(i) = mean(th_data,'omitnan'); 

    th_avkdop3_SEM(i) = 

std(th_data,'omitnan')/sqrt(numel(th_data)); 

end 

for i = 1 : N % avk::TeTx 

    filename_avkTeTx = [Name_avkTeTx '_' pct{i} 'pct.mat']; 

    load(fullfile(pname, filename_avkTeTx)) 

    f_avkTeTx(i) = mean(f_data); 

    f_avkTeTx_SEM(i) = std(f_data)/sqrt(numel(f_data)); 

    l_avkTeTx(i) = mean(l_data); 

    l_avkTeTx_SEM(i) = std(l_data)/sqrt(numel(l_data)); 

    k_avkTeTx(i)    = mean(curv_data,'omitnan'); 

    k2_avkTeTx(i)  = mean(curv_data.^2,'omitnan'); 

    if i==1 

        rk_30avkTeTx  = mean(1./curv_data,'omitnan'); 

        rk2_30avkTeTx  = mean(1./curv_data.^2,'omitnan'); 

    end 

    k_avkTeTx_SEM(i) = 

std(curv_data,'omitnan')/sqrt(numel(curv_data)); 

    th_avkTeTx(i) = mean(th_data,'omitnan'); 

    th_avkTeTx_SEM(i) = 

std(th_data,'omitnan')/sqrt(numel(th_data)); 

end 

for i = 1 : N % flp-1 

    filename_flp1 = [Name_flp1 '_' pct{i} 'pct.mat']; 

    load(fullfile(pname, filename_flp1)) 

    f_flp1(i) = mean(f_data); 

    f_flp1_SEM(i) = std(f_data)/sqrt(numel(f_data)); 

    l_flp1(i) = mean(l_data); 

    l_flp1_SEM(i) = std(l_data)/sqrt(numel(l_data)); 

    k_flp1(i)    = mean(curv_data,'omitnan'); 

    k2_flp1(i)  = mean(curv_data.^2,'omitnan'); 

    if i==1 

        rk_30flp1  = mean(1./curv_data,'omitnan'); 

        rk2_30flp1  = mean(1./curv_data.^2,'omitnan'); 

    end 

    k_flp1_SEM(i) = 

std(curv_data,'omitnan')/sqrt(numel(curv_data)); 

    th_flp1(i) = mean(th_data,'omitnan'); 

    th_flp1_SEM(i) = 

std(th_data,'omitnan')/sqrt(numel(th_data)); 

end 

for i = 1 : N % npr-6 

    filename_npr6 = [Name_npr6 '_' pct{i} 'pct.mat']; 

    load(fullfile(pname, filename_npr6)) 

    f_npr6(i) = mean(f_data); 

    f_npr6_SEM(i) = std(f_data)/sqrt(numel(f_data)); 

    l_npr6(i) = mean(l_data); 

    l_npr6_SEM(i) = std(l_data)/sqrt(numel(l_data)); 

    k_npr6(i)    = mean(curv_data,'omitnan'); 

    k2_npr6(i)  = mean(curv_data.^2,'omitnan'); 

    if i==1 

        rk_30npr6  = mean(1./curv_data,'omitnan'); 

        rk2_30npr6  = mean(1./curv_data.^2,'omitnan'); 

    end 

    k_npr6_SEM(i) = 

std(curv_data,'omitnan')/sqrt(numel(curv_data)); 

    th_npr6(i) = mean(th_data,'omitnan'); 

    th_npr6_SEM(i) = 

std(th_data,'omitnan')/sqrt(numel(th_data)); 

end 

for i = 1 : N % smb::npr-6 

    filename_smbnpr6 = [Name_smbnpr6 '_' pct{i} 'pct.mat']; 

    load(fullfile(pname, filename_smbnpr6)) 

    f_smbnpr6(i) = mean(f_data); 

    f_smbnpr6_SEM(i) = std(f_data)/sqrt(numel(f_data)); 

    l_smbnpr6(i) = mean(l_data); 

    l_smbnpr6_SEM(i) = std(l_data)/sqrt(numel(l_data)); 

    k_smbnpr6(i)    = mean(curv_data,'omitnan'); 

    k2_smbnpr6(i)  = mean(curv_data.^2,'omitnan'); 

    if i==1 

        rk_30smbnpr6  = mean(1./curv_data,'omitnan'); 

        rk2_30smbnpr6  = mean(1./curv_data.^2,'omitnan'); 

    end 

    k_smbnpr6_SEM(i) = 

std(curv_data,'omitnan')/sqrt(numel(curv_data)); 

    th_smbnpr6(i) = mean(th_data,'omitnan'); 

    th_smbnpr6_SEM(i) = 

std(th_data,'omitnan')/sqrt(numel(th_data)); 

end 

figure(1);clf 

F = cat(1, f_N2', f_dop3', f_avkdop3', f_avkTeTx', f_flp1', 

f_npr6', f_smbnpr6'); 

F_SEM = cat(1, f_N2_SEM', f_dop3_SEM', f_avkdop3_SEM', 

f_avkTeTx_SEM',... 

    f_flp1_SEM', f_npr6_SEM', f_smbnpr6_SEM'); 

b = bar(F, 'grouped'); 

hold on 

[ngroups, nbars] = size(F); 

% Get the x coordinate of the bars 

x = nan(nbars, ngroups); 

for i = 1:nbars 

    x(i,:) = b(i).XEndPoints; 

end 

% Plot the errorbars 

errorbar(x',F,F_SEM,'k','linestyle','none'); 

hold off 

ylabel('f (Hz)') 

set(gca, 'XTickLabel',Genotypes) 

legend({'1300', '10000'},'Location','northeast') 

  

  

figure(2);clf 

L = cat(1, l_N2', l_dop3', l_avkdop3', l_avkTeTx', l_flp1', 

l_npr6', l_smbnpr6'); 

L_SEM = cat(1, l_N2_SEM', l_dop3_SEM', l_avkdop3_SEM', 

l_avkTeTx_SEM',... 

    l_flp1_SEM', l_npr6_SEM', l_smbnpr6_SEM'); 

b = bar(L, 'grouped'); 

hold on 

[ngroups, nbars] = size(L); 

% Get the x coordinate of the bars 

x = nan(nbars, ngroups); 

for i = 1:nbars 

    x(i,:) = b(i).XEndPoints; 

end 

% Plot the errorbars 

errorbar(x',L,L_SEM,'k','linestyle','none'); 

hold off 

ylabel('\lambda/L') 

set(gca, 'XTickLabel',Genotypes) 

legend({'1300', '10000'},'Location','northeast') 

  

  

figure(3);clf 

K = cat(1, k_N2', k_dop3', k_avkdop3', k_avkTeTx', k_flp1', 

k_npr6', k_smbnpr6'); 

% K = cat(2, K_1mPas, K); 

K_SEM = cat(1, k_N2_SEM', k_dop3_SEM', k_avkdop3_SEM', 

k_avkTeTx_SEM',... 

    k_flp1_SEM', k_npr6_SEM', k_smbnpr6_SEM'); 

% K_SEM = cat(2, K_SEM_1mPas, K_SEM); 

V = K(:,1); 

V_SEM = K_SEM(:,1); 

b = bar(V, 'grouped'); 

hold on 

[ngroups, nbars] = size(V); 

% Get the x coordinate of the bars 

x = nan(nbars, ngroups); 

for i = 1:nbars 

    x(i,:) = b(i).XEndPoints; 

end 

% Plot the errorbars 

errorbar(x',V,V_SEM,'k','linestyle','none'); 

hold off 

ylabel('K') 

set(gca, 'XTickLabel',Genotypes) 

% legend({'1300', '10000'},'Location','northeast') 
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figure(4);clf 

T = cat(1, th_N2', th_dop3', th_avkdop3', th_avkTeTx', 

th_flp1', th_npr6', th_smbnpr6'); 

T_SEM = cat(1, th_N2_SEM', th_dop3_SEM', th_avkdop3_SEM', 

th_avkTeTx_SEM',... 

    th_flp1_SEM', th_npr6_SEM', th_smbnpr6_SEM'); 

b = bar(T, 'grouped'); 

hold on 

[ngroups, nbars] = size(T); 

% Get the x coordinate of the bars 

x = nan(nbars, ngroups); 

for i = 1:nbars 

    x(i,:) = b(i).XEndPoints; 

end 

% Plot the errorbars 

errorbar(x',T,T_SEM,'k','linestyle','none'); 

hold off 

ylabel('Angle of attack, (deg)') 

set(gca, 'XTickLabel',Genotypes) 

legend({'1300', '10000'},'Location','northeast') 

  

figure(5); clf % relative change of curvature 

DK = (K(:,2) - K(:,1))./K(:,1); 

K2_30 = cat(1, k2_N2(1)', k2_dop3(1)', k2_avkdop3(1)', 

k2_avkTeTx(1)',... 

    k2_flp1(1)', k2_npr6(1)', k2_smbnpr6(1)'); 

K2_40 = cat(1, k2_N2(2)', k2_dop3(2)', k2_avkdop3(2)', 

k2_avkTeTx(2)',... 

    k2_flp1(2)', k2_npr6(2)', k2_smbnpr6(2)'); 

rK2_30 = cat(1, rk2_30N2', rk2_30dop3', rk2_30avkdop3', 

rk2_30avkTeTx',... 

    rk2_30flp1', rk2_30npr6', rk2_30smbnpr6'); 

rK_30 = cat(1, rk_30N2', rk_30dop3', rk_30avkdop3', 

rk_30avkTeTx',... 

    rk_30flp1', rk_30npr6', rk_30smbnpr6'); 

DK_SEM = ((K(:,1) - K(:,2)).^2./(K(:,2).^2)... 

    .*((K_SEM(:,1).^2+K_SEM(:,2).^2)./(K(:,1) - K(:,2)).^2 

+ K_SEM(:,1).^2./K(:,2).^2)).^.5; 

% DK_SEM = ((K2_40 + K2_30 - 2*K(:,1).*K(:,2)).*rK2_30 -... 

%     (K(:,1) - K(:,2)).^2.*rK_30.^2).^.5; 

b = bar(DK); 

hold on 

% Plot the errorbars 

errorbar(1:numel(Genotypes),DK,DK_SEM,'k','linestyle','none

'); 

hold off 

ylabel('Adaptation Index, \Delta K/K_{low vis}') 

set(gca, 'XTickLabel',Genotypes) 

%% 

figure(12); clf 

subplot(311) 

load('N2_40pct.mat') 

h1 = histogram(l_data,'Normalization', 

'pdf','BinWidth',0.05); 

xlim([0 3]) 

subplot(312) 

load('LX703_40pct.mat') 

h2 = histogram(l_data,'Normalization', 

'pdf','BinWidth',0.05); 

xlim([0 3]) 

subplot(313) 

load('ZX2201_40pct.mat') 

h3 = histogram(l_data,'Normalization', 

'pdf','BinWidth',0.05); 

xlim([0 3]) 

%  

 

%% Gaussian mixture model 

figure(13); clf 

load('N2_45pct.mat') 

[l,vi] = ksdensity(l_data, 'Kernel','epanechnikov');  

plot(vi,l); xlim([0 3]) 

hold on 

load('LX703_45pct.mat') 

[l,vi] = ksdensity(l_data, 'Kernel','epanechnikov');  

plot(vi,l); 

load('ZX2201_45pct.mat') 

[l,vi] = ksdensity(l_data, 'Kernel','epanechnikov');  

plot(vi,l); 

hold off 

legend({'N2','dop-3','AVK::dop-3'},'Location','southeast') 

 
N2_dop3_rescue.m 
% close all;  

clear; clc 

Vis     = [9.2 121 1390 9079 27900]'; % Viscosity  (mPa¬∑s) 

pct     = {'05','15','30','40','45'}; 

N       = numel(Vis); 

  

f_N2     = zeros(N,1); 

f_N2_SEM = zeros(N,1); 

f_dop    = zeros(N,1); 

f_dop_SEM= zeros(N,1); 

f_avk    = zeros(N,1); 

f_avk_SEM= zeros(N,1); 

  

l_N2     = zeros(N,1); 

l_N2_SEM = zeros(N,1); 

l_dop    = zeros(N,1); 

l_dop_SEM= zeros(N,1); 

l_avk    = zeros(N,1); 

l_avk_SEM= zeros(N,1); 

  

k_N2     = zeros(N,1); 

k_N2_SEM = zeros(N,1); 

k_dop    = zeros(N,1); 

k_dop_SEM= zeros(N,1); 

k_avk    = zeros(N,1); 

k_avk_SEM= zeros(N,1); 

  

th_N2     = zeros(N,1); 

th_N2_SEM = zeros(N,1); 

th_dop    = zeros(N,1); 

th_dop_SEM= zeros(N,1); 

th_avk    = zeros(N,1); 

th_avk_SEM= zeros(N,1); 

  

pname = 'C:\Users\fffei\Dropbox\Paper\Compensatory reponse 

mechanism\data_gait_adaptation\intermediate'; 

Name_n2 = 'N2'; 

Name_dop = 'LX703'; 

Name_avk = 'ZX2201'; 

for i = 1 : N 

    filename_n2 = [Name_n2 '_' pct{i} 'pct.mat']; 

    load(fullfile(pname, filename_n2)) 

    f_N2(i) = mean(f_data); 

    f_N2_SEM(i) = std(f_data)/sqrt(numel(f_data)); 

    l_N2(i) = mean(l_data); 

    l_N2_SEM(i) = std(l_data)/sqrt(numel(l_data)); 

    k_N2(i)   = mean(curv_data,'omitnan'); 

    k_N2_SEM(i) = 

std(curv_data,'omitnan')/sqrt(numel(curv_data)); 

    th_N2(i) = mean(th_data, 'omitnan'); 

    th_N2_SEM(i) = 

std(th_data,'omitnan')/sqrt(numel(th_data)); 

end 

for i = 1 : N 

    filename_dop = [Name_dop '_' pct{i} 'pct.mat']; 

    load(fullfile(pname, filename_dop)) 

    f_dop(i) = mean(f_data); 

    f_dop_SEM(i) = std(f_data)/sqrt(numel(f_data)); 

    l_dop(i) = mean(l_data); 

    l_dop_SEM(i) = std(l_data)/sqrt(numel(l_data)); 

    k_dop(i)    = mean(curv_data,'omitnan'); 

    k_dop_SEM(i) = 

std(curv_data,'omitnan')/sqrt(numel(curv_data)); 

    th_dop(i) = mean(th_data,'omitnan'); 

    th_dop_SEM(i) = 

std(th_data,'omitnan')/sqrt(numel(th_data)); 

end 

for i = 1 : N 

    filename_avk = [Name_avk '_' pct{i} 'pct.mat']; 

    load(fullfile(pname, filename_avk)) 

    f_avk(i) = mean(f_data); 

    f_avk_SEM(i) = std(f_data)/sqrt(numel(f_data)); 

    l_avk(i) = mean(l_data); 

    l_avk_SEM(i) = std(l_data)/sqrt(numel(l_data)); 

    k_avk(i)    = mean(curv_data,'omitnan'); 

    k_avk_SEM(i) = 

std(curv_data,'omitnan')/sqrt(numel(curv_data)); 

    th_avk(i) = mean(th_data,'omitnan'); 

    th_avk_SEM(i) = 

std(th_data,'omitnan')/sqrt(numel(th_data)); 

end 

figure(1);clf 

errorbar(Vis, f_N2, f_N2_SEM, '-o','MarkerSize',10) 

hold on 

errorbar(Vis, f_dop, f_dop_SEM, '-o','MarkerSize',10) 

hold off 

hold on 

errorbar(Vis, f_avk, f_avk_SEM, '-o','MarkerSize',10) 

hold off 

ylim([0 2]) 

xlim([3 10^5]) 

xlabel('Viscosity (mPa¬∑s)') 

ylabel('f (Hz)') 

set(gca, 'XScale', 'log', 'XTick',[1 10 100 1000 10000 

100000],'FontSize', 18, 'Box', 'off') 

legend({'N2','dop-3','AVK::dop-3'},'Location','northeast') 

  

  

figure(2);clf 

errorbar(Vis, l_N2, l_N2_SEM, '-o','MarkerSize',10) 

hold on 

errorbar(Vis, l_dop, l_dop_SEM, '-o','MarkerSize',10) 
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hold off 

hold on 

errorbar(Vis, l_avk, l_avk_SEM, '-o','MarkerSize',10) 

hold off 

ylim([0.5 2]) 

xlim([3 10^5]) 

xlabel('Viscosity (mPa¬∑s)') 

ylabel('\lambda/L') 

set(gca, 'XScale', 'log', 'XTick',[1 10 100 1000 10000 

100000], 'FontSize', 18, 'Box', 'off') 

legend({'N2','dop-3','AVK::dop-3'},'Location','northeast') 

  

figure(3);clf 

errorbar(Vis, k_N2, k_N2_SEM, '-o','MarkerSize',10) 

hold on 

errorbar(Vis, k_dop, k_dop_SEM, '-o','MarkerSize',10) 

hold off 

hold on 

errorbar(Vis, k_avk, k_avk_SEM, '-o','MarkerSize',10) 

hold off 

ylim([0 10]) 

xlim([3 10^5]) 

xlabel('Viscosity (mPa¬∑s)') 

ylabel('K') 

set(gca, 'XScale', 'log', 'XTick',[1 10 100 1000 10000 

100000], 'FontSize', 18, 'Box', 'off') 

legend({'N2','dop-3','AVK::dop-3'},'Location','southeast') 

  

figure(4);clf 

errorbar(Vis, th_N2, th_N2_SEM, '-o','MarkerSize',10) 

hold on 

errorbar(Vis, th_dop, th_dop_SEM, '-o','MarkerSize',10) 

hold off 

hold on 

errorbar(Vis, th_avk, th_avk_SEM, '-o','MarkerSize',10) 

hold off 

ylim([0 60]) 

xlim([3 10^5]) 

xlabel('Viscosity (mPa¬∑s)') 

ylabel('Angle of attack, (deg)') 

set(gca, 'XScale', 'log', 'XTick',[1 10 100 1000 10000 

100000], 'FontSize', 18, 'Box', 'off') 

legend({'N2','dop-3','AVK::dop-3'},'Location','southeast') 

  

%% Gaussian mixture model 

load('N2_45pct.mat') 

k_data_N2 = curv_data; 

load('ZX2201_45pct.mat') 

k_data_dop3 = curv_data; 

[h,p,ci,stats] = ttest2(k_data_N2,k_data_dop3) 

 

%%  
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