
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2022

Experimental And Computational Analyses Of Locomotor Rhythm Experimental And Computational Analyses Of Locomotor Rhythm

Generation And Modulation In Caenorhabditis Elegans Generation And Modulation In Caenorhabditis Elegans

Hongfei Ji
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Biophysics Commons, and the Neuroscience and Neurobiology Commons

Recommended Citation Recommended Citation
Ji, Hongfei, "Experimental And Computational Analyses Of Locomotor Rhythm Generation And
Modulation In Caenorhabditis Elegans" (2022). Publicly Accessible Penn Dissertations. 5202.
https://repository.upenn.edu/edissertations/5202

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/5202
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F5202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/4?utm_source=repository.upenn.edu%2Fedissertations%2F5202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/55?utm_source=repository.upenn.edu%2Fedissertations%2F5202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5202?utm_source=repository.upenn.edu%2Fedissertations%2F5202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5202
mailto:repository@pobox.upenn.edu

Experimental And Computational Analyses Of Locomotor Rhythm Generation Experimental And Computational Analyses Of Locomotor Rhythm Generation
And Modulation In Caenorhabditis Elegans And Modulation In Caenorhabditis Elegans

Abstract Abstract
Neural circuits coordinate with muscles and sensory feedback to generate motor behaviors appropriate to
its natural environment. Studying mechanisms underlying complex organism locomotion has been
challenging, partly due to the complexity of their nervous systems. Here, I used the roundworm C. elegans
to understand the locomotor circuit. With its well-mapped nervous system, easily-measurable
movements, genetic manipulability, and many human homologous genes, C. elegans has been commonly
used as a model organism for dissecting the circuit, cellular, and molecular principles of locomotion. My
work introduces two separate approaches to probe the mechanisms by which the C. elegans motor circuit
generates and modulates undulations. First, I quantified C. elegans movements during free locomotion
and during transient muscle inhibition. Undulations were asymmetrical with respect to the duration of
bending and unbending per cycle. Phase response curves induced by brief optogenetic head muscle
inhibitions showed gradual increases and rapid decreases as a function of phase at which the
perturbation was applied. A relaxation oscillator model was developed based on proprioceptive
thresholds that switch the active muscle moment. It quantitatively agrees with data from free movement,
phase responses, and previous results for gait adaptation to mechanical loads. Next, I characterized a
proprioception-mediated compensatory behavior during C. elegans forward locomotion: the anterior body
bending amplitude compensates for the change in midbody bending amplitude by an opposing
homeostatic response. I demonstrated that curvature compensation requires dopamine signaling driven
by PDE neurons. Calcium imaging experiments suggested a proprioceptive functionality for PDE in
sensing midbody curvature. Downstream of PDE dopamine signaling, curvature compensation requires
D2-like dopamine receptor DOP-3 in the interneurons AVK. FMRFamide-like neuropeptide FLP-1, released
by AVK, regulates SMB motor neurons via receptor NPR-6 to modulate anterior bending amplitude. These
results revealed a mechanism whereby proprioception works with dopamine and neuropeptide signaling
to mediate homeostatic locomotor control. Together, through a consolidation of experimental and
computational approaches, I found C. elegans utilizes its circuitry not only to act motor behaviors but to
adjust/correct its ongoing behaviors in its natural contexts.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Bioengineering

First Advisor First Advisor
Christopher Fang-Yen

Keywords Keywords
Adaptative behavior, Locomotion, Motor circuit, Motor control, Neuromodulation, Proprioception

Subject Categories Subject Categories
Biophysics | Neuroscience and Neurobiology

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/5202

https://repository.upenn.edu/edissertations/5202

EXPERIMENTAL AND COMPUTATIONAL ANALYSES OF LOCOMOTOR RHYTHM

GENERATION AND MODULATION IN CAENORHABDITIS ELEGANS

Hongfei Ji

A DISSERTATION

in

Bioengineering

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2022

Supervisor of Dissertation

Christopher Fang-Yen
Associate Professor of Bioengineering

Graduate Group Chairperson

Yale E. Cohen
Professor of Bioengineering and Otorhinolaryngology

Dissertation Committee

Konrad Kording, Nathan Francis Mossell University Professor of Bioengineering
Michael Nusbaum, Professor of Neuroscience
Alexander Proekt, Associate Professor of Neuroscience
Gal Haspel, Assistant Professor of Biology, New Jersey Institute of Technology
Niels Ringstad, Associate Professor of Cell and Molecular Biology, New York University

EXPERIMENTAL AND COMPUTATIONAL ANALYSES OF LOCOMOTOR RHYTHM

GENERATION AND MODULATION IN CAENORHABDITIS ELEGANS

COPYRIGHT

2022

Hongfei Ji

This work is licensed under the

Creative Commons Attribution-

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc-sa/3.0/us/

https://creativecommons.org/licenses/by-nc-sa/3.0/us/

iii

ABSTRACT

EXPERIMENTAL AND COMPUTATIONAL ANALYSES OF LOCOMOTOR RHYTHM

GENERATION AND MODULATION IN CAENORHABDITIS ELEGANS

Hongfei Ji

Christopher Fang-Yen

Neural circuits coordinate with muscles and sensory feedback to generate motor behaviors

appropriate to its natural environment. Studying mechanisms underlying complex organism

locomotion has been challenging, partly due to the complexity of their nervous systems. Here, I

used the roundworm C. elegans to understand the locomotor circuit. With its well-mapped

nervous system, easily-measurable movements, genetic manipulability, and many human

homologous genes, C. elegans has been commonly used as a model organism for dissecting the

circuit, cellular, and molecular principles of locomotion. My work introduces two separate

approaches to probe the mechanisms by which the C. elegans motor circuit generates and

modulates undulations. First, I quantified C. elegans movements during free locomotion and

during transient muscle inhibition. Undulations were asymmetrical with respect to the duration of

bending and unbending per cycle. Phase response curves induced by brief optogenetic head

muscle inhibitions showed gradual increases and rapid decreases as a function of phase at which

the perturbation was applied. A relaxation oscillator model was developed based on

proprioceptive thresholds that switch the active muscle moment. It quantitatively agrees with data

from free movement, phase responses, and previous results for gait adaptation to mechanical

loads. Next, I characterized a proprioception-mediated compensatory behavior during C. elegans

forward locomotion: the anterior body bending amplitude compensates for the change in midbody

bending amplitude by an opposing homeostatic response. I demonstrated that curvature

iv

compensation requires dopamine signaling driven by PDE neurons. Calcium imaging

experiments suggested a proprioceptive functionality for PDE in sensing midbody curvature.

Downstream of PDE dopamine signaling, curvature compensation requires D2-like dopamine

receptor DOP-3 in the interneurons AVK. FMRFamide-like neuropeptide FLP-1, released by AVK,

regulates SMB motor neurons via receptor NPR-6 to modulate anterior bending amplitude. These

results revealed a mechanism whereby proprioception works with dopamine and neuropeptide

signaling to mediate homeostatic locomotor control. Together, through a consolidation of

experimental and computational approaches, I found C. elegans utilizes its circuitry not only to act

motor behaviors but to adjust/correct its ongoing behaviors in its natural contexts.

v

TABLE OF CONTENTS

ABSTRACT ... iii
TABLE OF CONTENTS ... v
LIST OF TABLES ... vii
LIST OF ILLUSTRATIONS ... viii
CHAPTER 1: INTRODUCTION.. 1

BASIC ELEMENTS OF LOCOMOTOR CIRCUITS ... 1
PROPRIOCEPTIVE CONTROL OF LOCOMOTION ... 3
NEUROMUSCULAR COMPONENTS FOR C. ELEGANS MOTOR RHYTHM GENERATION . 4
PROPRIOCEPTIVE CONTROL OF C. ELEGANS MOTOR BEHAVIOR 7
COMPUTATIONAL MODELS OF C. ELEGANS LOCOMOTOR BEHAVIOR............................ 8
OBJECTIVES AND OVERVIEW .. 10

CHAPTER 2: PHASE RESPONSE ANALYSES SUPPORT A RELAXATION OSCILLATOR
MODEL OF LOCOMOTOR RHYTHM GENERATION IN C. ELEGANS 11

INTRODUCTION ... 12
RESULTS .. 13

C. ELEGANS FORWARD LOCOMOTION EXHIBITS A STABLE AND NONSINUSOIDAL LIMIT
CYCLE ... 13
TRANSIENT OPTOGENETIC INHIBITION OF HEAD MUSCLES YIELDS A SLOWLY RISING,
RAPIDLY FALLING PHASE RESPONSE CURVE ... 16
WORM MUSCLES DISPLAY A RAPID SWITCH-LIKE ALTERNATION DURING LOCOMOTION 21
A RELAXATION OSCILLATION MODEL EXPLAINS NONSINUSOIDAL DYNAMICS 22
RELXATION OSCILLATOR MODEL REPRODUCES RESPONSES TO TRANSIENT OPTOGENETIC
INHIBITION .. 26
RELAXATION OSCILLATOR MODEL PREDICTS PHASE RESPONSE CURVES FOR SINGLE-SIDE
MUSCLE INHIBITION .. 29
OUR MODEL IS CONSISTENT WITH THE DEPENDENCE OF WAVE AMPLITUDE AND
FREQUENCY ON EXTERNAL LOAD ... 31
EVALUATION OF ALTERNATIVE OSCILLATOR MODELS ... 34

DISCUSSION .. 36
METHODS .. 40

WORM STRAINS AND CULTIVATION ... 41
LOCOMOTION ANALYSIS ... 41
STABILITY OF THE WORM’S HEAD OSCILLATION .. 43
PHASE ISOCHRON MAP AND VECTOR FIELD FOR THE WORM’S HEAD OSCILLATION 44
PHASE RESPONSE ANALYSIS ... 47
PHASE RESPONSE CURVES FROM PERTURBATIONS OF OTHER BODY REGIONS 48
THE RELAXATION OSCILLATOR MODEL FOR LOCOMOTOR WAVE GENERATION 48
MEASURING BENDING RELAXATION TIME SCALE AND AMPLITUDE OF ACTIVE MUSCLE
MOMENT ... 52
MEASURING ACTIVE MOMENT TRANSITION TIME SCALE .. 53
PARAMETER ESTIMATION ... 54
MODELING WORM OSCILLATION IN VARIED ENVIRONMENTS .. 54
ALTERNATIVE MODELS FOR LOCOMTOR WAVE GENERATION .. 55
SIMULATION OF OPTOGENETIC INHIBITION ... 56
OPTIMIZATION OF MODELS ... 59

ACKNOWLEDGEMENTS ... 60
CHAPTER 3: A PROPRIOCEPTIVE FEEDBACK CIRCUIT CONTROLS LOCOMOTOR
AMPLITUDE THROUGH DOPAMINE AND NEUROPEPTIDE SIGNALING IN C. ELEGANS ... 62

INTRODUCTION ... 62

vi

RESULTS .. 66
C. ELEGANS MODULATES ANTERIOR AMPLITUDE RETROGRADELY IN RESPONSE TO THE
OPTOGENETICALLY PERTURBED MIDBODY CURVATURE ... 66
MICROFLUIDIC CONSTRAINT OF MIDBODY CAUSES INCREASE IN ANTERIOR BENDING
AMPLITUDE .. 72
CURVATURE COMPENSATION REQUIRES FUNCTIONAL DOPAMINE SIGNALING BY PDE
NEURONS ... 74
CALCIUM IMAGING SHOWS THAT PDE NEURONS RESPONSE TO MIDBODY CURVATURE 79
CURVATURE COMPENSATION REQUIRES D2-LIKE DOPAMINE RECEPTOR DOP-3 IN AVK
NEURONS ... 83
FMRFAMIDE-LIKE NEUROPEPTIDE FLP-1, RELEASED BY AVK, REGULATES SMB MOTOR
NEURONS VIA RECEPTOR NPR-6 TO MODULATE ANTERIOR BENDING AMPLITUDE 88
CURVATURE COMPENSATION MECHANISM IS CONSISTENT WITH GAIT ADAPTATION OF
BENDING AMPLITUDE IN RESPONSE TO MECHANICAL LOAD ... 92

METHODS .. 94
CONTACT FOR REAGENT AND RESOURCE SHARING ... 96
EXPERIMENTAL MODEL AND SUBJECT DETAILS... 96
METHOD DETAILS .. 97

MOLECULAR BIOLOGY ... 97
BEHAVIORAL ASSAYS .. 97
BEHAVIORAL DATA QUANTIFICATION ... 99
LASER ABLATION OF NEURONS .. 102
PDE CALCIUM IMAGING IN MOVING OR PARALYZED ANIMALS .. 102

QUANTIFICATION AND STATISTICAL ANALYSIS ... 104
DATA AND SOFTWARE AVAILABILITY .. 104

CHAPTER 4: CONCLUSION AND FUTURE DIRECTIONS ... 105
CONCLUSION .. 105
FUTURE DIRECTIONS .. 105

IDENTIFY AND CHARACTERIZE NEURAL ELEMENTS CONVEYING PROPRIOCEPTIVE
FUNCTIONS IN LOCOMOTORY RHYTHM GENERATION ... 106
EXPLORE THRESHOLD-BASED SWITCHING MECHANISM PROPOSED IN OUR MODEL 106

APPENDIX A: SUPPLEMENTAL FIGURES ... 108
APPENDIX B: SOFTWARE CODE.. 126
BIBLIOGRAPHY .. 166

vii

LIST OF TABLES

Table 2.1. Key resources table for Chapter 2 ... 40
Table S2.1. Objective functions used in the optimization procedures for alternative models 60
Table 3.1. Key resources table for Chapter 3 ... 94

viii

LIST OF ILLUSTRATIONS

Figure 1.1. Rhythm generation in C. elegans. .. 2
Figure 1.2. A schematic figure of connectivity in the wiring diagram for forward locomotion
(adapted from Wen et al., 2012). .. 5
Figure 1.3. Distributed rhythm oscillators underlie C. elegans forward locomotion (adapted from
Fouad et al., 2018). ... 6
Figure 1.4. System-level neural model of the motor circuit for forward locomotion in C. elegans
(adapted from Karbowski et al., 2008). ... 9
Figure 2.1. Undulatory dynamics of freely moving worms.. 15
Figure 2.2. Analysis of phase-dependent inhibitions for head oscillation using transient
optogenetic muscle inhibition.. 19
Figure 2.3. Free-running dynamics of a bidirectional relaxation oscillator model. 25
Figure 2.4. Simulations of optogenetic inhibitions in the relaxation oscillator model. 28
Figure 2.5. The model predicts phase response curves with respect to single-side muscle
inhibitions. ... 30
Figure 2.6. Model reproduces C. elegans gait adaptation to external viscosity. 33
Figure 3.1. Optogenetic inhibition of midbody muscles causes increase in anterior bending
amplitude. ... 67
Figure 3.2. C. elegans modulates anterior amplitude retrogradely in response to the
optogenetically perturbed midbody curvature... 70
Figure 3.3. Microfluidic constraint of midbody causes increase in anterior bending amplitude. 72
Figure 3.4. Curvature compensation requires functional dopamine signaling by PDE neurons. ... 75
Figure 3.5. Ca2+ imaging shows that PDE neurons respond to midbody curvature. 80
Figure 3.6. Curvature compensation requires D2-like dopamine receptor DOP-3 in AVK neurons.
 .. 85
Figure 3.7. FMRFamide-like neuropeptide FLP-1, released by AVK, regulates SMB motor
neurons via receptor NPR-6 to modulate anterior bending amplitude. .. 89

1

CHAPTER 1: INTRODUCTION

BASIC ELEMENTS OF LOCOMOTOR CIRCUITS

Animals display locomotor behaviors such as crawling, walking, swimming, or flying via rhythmic

patterns of muscle contractions and relaxations. In many animals, motor rhythms originate from

networks of central pattern generators (CPGs), neuronal circuits capable of generating rhythmic

outputs without rhythmic input (Cohen and Wallén, 1980; Grillner, 2003; Kiehn, 2011; Kristan and

Calabrese, 1976; Marder and Calabrese, 1996; Pearce and Friesen, 1984; Yu et al., 1999). In

vertebrates CPG-generated motor rhythms typically arise from a combined contribution of

ipsilateral excitatory drive and reciprocal inhibition in the spinal cord (Brown, 1911; Buchanan and

Grillner, 1987; Grillner and El Manira, 2020; Kiehn, 2016; Marder and Calabrese, 1996; Roberts

et al., 2010; Wilson, 1961; WILSON and WEIS-FOGH, 1962).

 Although isolated CPGs can produce outputs in the absence of sensory input, in the intact

animal sensory feedback plays a critical role in coordinating motor rhythms across the body and

modulating their characteristics (Friesen, 2009; Grillner and Wallen, 2002; Mullins et al., 2011;

Pearson, 2004; Wen et al., 2012). Sensory feedback allows animals to adapt locomotor patterns

to their surroundings (Andersson et al., 1981; Bidaye et al., 2018; Brodfuehrer and Friesen, 1986)

and adapt to unexpected perturbations (Ekeberg and Grillner, 1999). Sensory inputs induced by

electric stimulation of receptor cells (Yu and Friesen, 2004) or by mechanical perturbation of body

segments (Grillner, 2021; Grillner et al., 1981) can entrain an animal’s motor behavior to imposed

patterns, demonstrating the flexibility of motor systems in responding to feedback.

 Animal movements are driven not only by active muscle contractions, but also by passive

mechanical forces including elastic recoil of muscles and other body structure, internal damping

forces, and forces from the interaction with the external environment. Efficient locomotion in

2

vertebrates depends on storage of elastic energy in tendons and muscles (Roberts and Azizi,

2011). In insects, elasticity in the leg joints plays an important role in generating forces for walking

and jumping (Ache and Matheson, 2013). A comprehensive understanding of animal locomotion

should therefore encompass not only neural activity, muscle activity, and sensory feedback, but

also biomechanical forces within the animal’s body and between the animal and its environment

(Fig. 1.1A; Borgmann et al., 2009; Grillner and Wallen, 2002; Kiehn, 1998).

Figure 1.1. Rhythm generation in C. elegans.

(A) Motor neurons generate neuronal signals to control the activation of muscles, which

generates movement subject to internal and external environmental constraints. Sensory input

provides feedback about body position and the environment.

(B and C) Two possible models for locomotory rhythm generation in C. elegans. (B) In a reflex

loop model, sensory neurons (SN) detect body postures and excite motor neurons (MN) to

activate body wall muscles.

(C) In a central pattern generator (CPG) model, network of motor neurons generates basic

rhythmic patterns that are transmitted to body wall muscles (BWM) while sensory feedback

modulates the CPG rhythm. Diagrams adapted from Marder and Bucher (Marder and Bucher,

3

2001).

PROPRIOCEPTIVE CONTROL OF LOCOMOTION

In intact animals, the actual behavioral outputs during locomotion are subjected to proprioceptive

signals arising from sensory neurons (Andersson et al., 1981; Brodfuehrer and Friesen, 1986;

Friesen, 2009; Grillner and Wallen, 2002; Wen et al., 2012). In leeches (Cang and Friesen, 2000;

Cang et al., 2001), lamprey (Bowtell and Williams, 1991), and Drosophila (Akitake et al., 2015;

Mendes et al., 2013), specialized proprioceptive neurons and sensory receptors in body muscles

detect sensory inputs to regulate and coordinate the centrally generated motor patterns. In limbed

animals, sensory feedback from stretch receptors in the legs plays a causal role in generating

and molding the bursting activity of leg motoneurons during limb movements (Smith et al., 1993;

Wisleder et al., 1990; Wolf and Pearson, 1988). In mouse proprioceptive neurons, deletion of

Piezo2, an excitatory mechanosensitive channel, induces severely uncoordinated body

movements (Picton et al., 2021; Woo et al., 2015).

 Proprioception is essential for regulating motor output not only during unperturbed locomotion

but in a perturbed scenario when a gait perturbation occurs (Pearson, 2000). In humans and cats,

the proprioceptive feedback from multisensory inputs, representing different sub-modalities in

detecting surrounding changes, is continuously balanced and processed within spinal interneuron

circuits to instruct compensatory electromyographic responses to the current locomotor situation

(Dietz, 2002). In particular, sensory inputs that mediate monosynaptic spinal reflexes facilitate

compensating movements for small ground irregularities (Dietz et al., 1987). Other proprioceptive

signals, integrated by the polysynaptic spinal reflex system, produce more complex

compensatory responses to ground conditions, involving synergistic coordination of leg muscle

activation (Hansen et al., 1988). In limbless animals, both experimental and computational

studies demonstrate that they rely critically on proprioceptive feedback to adapt their undulatory

4

gait to the changing physical environment (Berri et al., 2009; Boyle et al., 2012; Fang-Yen et al.,

2010; Fouad et al., 2018; Iwasaki et al., 2014). In C. elegans, previous studies reported that

optogenetic muscle inhibition of the anterior region could induce simultaneous oscillation at

different frequencies in head and tail (Fouad et al., 2018; Xu et al., 2018), and that the motor

dynamics displayed a biphasic, sawtooth-shaped phase response curve upon transient

perturbations (Ji et al., 2021a), both indicating unique roles of proprioception in an animal’s motor

system.

 Although a variety of proprioceptive components and interactions have been verified to

contribute to adaptive locomotion in various organisms, the underlying signaling relationships of

premotor neurons, motor neurons, and muscle cells that encode locomotor adaptation to gait

perturbations remain primarily unknown (Büschges and Mantziaris, 2021; Dietz, 2002; Zhen and

Samuel, 2015).

NEUROMUSCULAR COMPONENTS FOR C. ELEGANS MOTOR RHYTHM GENERATION

Fully understanding the molecular and cellular mechanisms of locomotory rhythm generation and

coordination requires a model system with easily amenable, yet sophisticated behavioral outputs

carried out by circuits that can be thoroughly dissected at the molecular and cellular levels.

 Here I study mechanisms of locomotor rhythm generation and its modulation by sensory

feedback in the nematode Caenorhabditis elegans. With its easily quantifiable behavior (Croll,

1970), well-mapped nervous system (Cook et al., 2019; White et al., 1986), genetic manipulability

(Bargmann, 1998; Brenner, 1974; Hobert, 2003), and optical transparency, this worm is a unique

model for obtaining an integrative understanding of locomotion.

 C. elegans forward locomotion consists of anterior-to-posterior dorsoventral undulations

(Croll, 1970). These movements are mediated by a neuromuscular circuit consisting of

interneurons, excitatory cholinergic motor neurons, inhibitory GABAergic motor neurons, and

5

body wall muscles. Laser ablation studies have shown that the cholinergic B-type motor neurons

are required for forward locomotion (Chalfie et al., 1985). The GABAergic D-type motor neurons

provide dorsoventral cross-inhibition to the body wall muscles and are essential for maintaining

high frequency locomotion (Deng et al., 2020; Mclntire et al., 1993). A set of premotor

interneurons (AVB, PVC, AVA, AVD, and AVE) regulate forward and reverse movements (Chalfie

et al., 1988; Driscoll and Kaplan, 1997; Von Stetina et al., 2006). Ablation of all premotor

interneurons does not deprive C. elegans of the ability to undulate (Gao et al., 2018; Kawano et

al., 2011), suggesting that a network consisting of excitatory motor neurons and muscles may be

sufficient to generate rhythmicity.

Figure 1.2. A schematic figure of connectivity in the wiring diagram for forward locomotion

(adapted from Wen et al., 2012).

 In recent years, rapid progress has been made in understanding the motor circuits in C.

elegans (Boyle et al., 2012; Cohen and Denham, 2019; Gjorgjieva et al., 2014; Haspel et al.,

2020; Zhen and Samuel, 2015). In C. elegans, locomotory behavior arises from a compact

nervous system (Fig. 1.2). A principal CPG has been suggested (Karbowski et al., 2008; Niebur

and Erdös, 1991; Wen et al., 2012) to be localized in the head to provide bending rhythms, and

6

the bending waves are propagated along the body through a chain of reflexes connecting

adjacent body segments (Fig. 1.3). Optogenetic and lesion experiments suggested that multiple

oscillators exist in the ventral nerve cord (Fig. 1.3; Fouad et al., 2018). However, the mechanisms

that give rise to these oscillators are still poorly understood.

Figure 1.3. Distributed rhythm oscillators underlie C. elegans forward locomotion (adapted

from Fouad et al., 2018).

Two units of the ventral nerve cord (VNC) motor neurons can independently generate a fictive

motor rhythm. All oscillating units are coupled by proprioceptive coupling (Wen et al., 2012) and

other unknown, likely non-proprioceptive, bidirectional coupling mechanisms. Premotor

interneurons promote or suppress this circuit, out of which AVB may play an additional,

unexplained role in rhythm generation.

7

PROPRIOCEPTIVE CONTROL OF C. ELEGANS MOTOR BEHAVIOR

In C. elegans, proprioceptive feedback is crucial for generating and modulating locomotor

rhythms. Several proprioceptive mechanisms were identified implicating motor neurons,

interneurons, sensory neurons, as well as neuromodulation of biogenic amines and

neuropeptides.

 Some C. elegans motor neurons appear to also display proprioceptive functions. For

example, the B-type motor neurons mediate proprioceptive coupling from anterior to posterior

bending during forward locomotion (Wen et al., 2012). The SMDD motor neurons, localized at the

head, have been identified as proprioceptive regulators of head steering during locomotion (Yeon

et al., 2018). Both the B-type motor neurons and the SMDD head motor neurons have long

asynaptic processes hypothesized to have proprioceptive function (White et al., 1986). In

particular, SMDD, B1, and B2 motor neurons have been suggested as candidate locomotor CPG

elements (Kaplan et al., 2020). In addition, two types of neurons, the DVA and PVD interneurons,

have proprioceptive roles in regulating the worm’s body bend movement. DVA exhibits

proprioceptive properties that depend on a mechanosensitive channel, TRP-4, which acts as a

stretch receptor to regulate the body bend amplitude during locomotion (Li et al., 2006). In

another study, body bending was shown to induce local dendritic Ca2+ transients in PVD and

dendritic release of neuropeptide encoded by nlp-12, which appears to regulate the amplitude of

body movement (Tao et al., 2019). In vivo Ca2+ imaging of dopaminergic ciliated sensory neurons

PDE revealed that Ca2+ levels oscillates during forward movement, phase-locked to the forward

propagating bend, suggesting a proprioceptive capability in PDE of sensing body bends (Cermak

et al., 2020).

 Despite the recent progress in understanding proprioception and proprioceptive units within

this small circuit, how CPGs are formed and how they work with proprioceptive cues in order to

8

generate locomotion and respond to external environmental modules remain largely unknown.

COMPUTATIONAL MODELS OF C. ELEGANS LOCOMOTOR BEHAVIOR

Computational models for C. elegans motor behavior have long been an important complement to

experimental approaches, since an integrative understanding of locomotion requires

consideration of neural, muscular, and mechanical degrees of freedom, and are often tractable

only by modeling (Boyle et al., 2012; Bryden and Cohen, 2008; Denham et al., 2018; Izquierdo

and Beer, 2018; Johnson et al., 2021; Karbowski et al., 2008; Kunert et al., 2017; Olivares et al.,

2021).

 An early model (Niebur and Erdös, 1991) assumes that a CPG located in the head initiates

dorsoventral bends and that a combination of neuronal and sensory feedback mechanisms

propagates the waves in the posterior direction. In this model, sensory feedback plays a

modulatory role in producing smoother curvature waves but is not explicitly required for rhythm

generation itself. Other computational models have aimed to describe how the motor circuit

generates rhythmicity. For example, several neural models have been developed for the forward-

moving circuit (Karbowski et al., 2008; Olivares et al., 2021) by incorporating of all major neural

components and connectivity (Fig. 1.4). In particular, Karbowski’s model included a CPG in the

head based on effective cross-inhibition between ventral and dorsal groups of interneurons. In

contrast, Bryden and Cohen (Bryden and Cohen, 2008) developed a neural model in which each

segment along the body is capable of generating proprioception-mediated oscillations. In this

model, a circuit of AVB interneurons and B-type motor neurons suffices to generate robust

locomotory rhythms without cross-inhibition.

9

Figure 1.4. System-level neural model of the motor circuit for forward locomotion in C.

elegans (adapted from Karbowski et al., 2008).

(A) The large-scale view of the circuit.

(B) Schematic diagram of the head CPG originated from cross-inhibitions among interneurons.

 Other models have examined how C. elegans adapts its undulatory wavelength, frequency,

and amplitude as a gait adaptation to external load (Boyle et al., 2012; Denham et al., 2018;

Izquierdo and Beer, 2018; Johnson et al., 2021). To account for these changes, these models

combined the motor circuit model with additional assumptions of stretch sensitivity in motor

neurons, and worm body biomechanical constraints, to create a model that reproduced the

changes in undulatory wave patterns under a range of external conditions.

 However, these recent computational models were implemented on a cellular level where

10

assumptions were typically made for detailed cell properties and inter-cellular interactions that are

not directly supported by experimental evidence (Bryden and Cohen, 2008; Haspel et al., 2010;

Karbowski et al., 2008). Due to the paucity of experimental findings in cellular and synaptic

properties of motor circuit elements (Gjorgjieva et al., 2014), this ‘bottom-up’ strategy of modelling

faces potential challenges of experimental verification and computational superfluity.

OBJECTIVES AND OVERVIEW

In this work I sought to explore how the C. elegans motor system generates a locomotor rhythm

and how it adapts locomotion in response to gait perturbations. In Chapter 2, I introduce a

dynamical systems approach to analyze the worm’s motor behavior. By integrating quantitative

behavioral measurements, optogenetic phase response analyses, and computational modeling I

show that the locomotor system acts as a relaxation oscillator (a type of nonlinear oscillator). In

Chapter 3, I demonstrate that C. elegans uses a posterior-to-anterior proprioceptive feedback

loop to adapt its locomotor amplitude to gait perturbation in a homeostatic manner. Using

combined experimental analyses, the corresponding mechanisms are described on the behavior,

circuit, and molecular levels. In Chapter 4, I present my perspective on future directions for my

work. In the Appendix, I post my software for computational modeling and experimental data

analysis.

11

CHAPTER 2: PHASE RESPONSE ANALYSES SUPPORT A RELAXATION OSCILLATOR

MODEL OF LOCOMOTOR RHYTHM GENERATION IN C. ELEGANS

Hongfei Ji1,*, Anthony D. Fouad1,*, Shelly Teng1, Alice Liu1, Pilar Alvarez-Illera1, Bowen Yao1,

Zihao Li1, and Christopher Fang-Yen1,2

1Department of Bioengineering, School of Engineering and Applied Science, University of

Pennsylvania, Philadelphia, PA 19104

2Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania,

Philadelphia, PA 19104

*Equal contributions

This chapter is a slightly edited version of my paper published in the journal eLife (Ji et al.,

2021b). Anthony Fouad and his students (Shelly Teng, Alice Liu, and Pilar Alvarez-Illera)

conducted pioneering work associated with PRC experiments in the early stages including

experiment design, data curation, data analysis, and data interpretation. I performed additional

experiments including optogenetic inhibition tests with single-side illuminations and under varying

viscosities, and viscosity-dependent tests for biomechanical analysis. Christopher Fang-Yen and I

together conceived the ideas behind the threshold-switching mechanisms of the model in the

early stages. I implemented the primary model and other additional models. Most transgenic lines

were generated by my colleague Anthony Fouad (All YX strains in Key resources table 2.1). The

optogenetic targeting system was originally designed by Fang-Yen and was later constructed with

modifications by Fouad. Custom software to run the laser system was written by Fouad. Custom

algorithms for data analysis and modeling were written either by me or Fouad. Fang-Yen also

helped with designing, troubleshooting, and interpreting experiments and models.

12

INTRODUCTION

To experimentally probe mechanisms of rhythmic motor generation, including the role of

proprioceptive feedback, we measured the phase response curve (PRC) upon transient

optogenetic inhibition of the head muscles. We found that the worms displayed a biphasic,

sawtooth-shaped PRC with sharp transitions from phase delay to advance.

 We used these findings to develop a computational model of rhythm generation in the C.

elegans motor circuit in which a relaxation-oscillation process, with switching based on

proprioceptive feedback, underlies the worm’s rhythmic dorsal-ventral alternation. We sought to

develop a phenomenological model to describe an overall mechanism of rhythm generation but

not the detailed dynamics of specific circuit elements. We aimed to incorporate biomechanical

constraints of the worm’s body and its environment (Fang-Yen et al., 2010; Gray and Lissmann,

1964; Wallace, 1968), as well as account for how sensory feedback is incorporated. To improve

predictive power, we aimed to minimize the number of free parameters used in the model. Finally,

we sought to optimize and test this model with new experiments as well as with published

findings.

 Our model reproduces the observed PRC and describes the locomotory dynamics around

optogenetic inhibitions in a manner that closely fits our experimental observations. Our model

also agrees with results on gait adaptation to external load and the asymmetry in time-dependent

curvature patterns of undulating worms. Our experimental findings and computational model

together yield insights into how C. elegans generates rhythmic locomotion and modulates them

depending on the environment.

13

RESULTS

C. ELEGANS FORWARD LOCOMOTION EXHIBITS A STABLE AND NONSINUSOIDAL LIMIT

CYCLE

To gain insight into wave generation, we first sought to examine the quantitative behavioral

characteristics of worms during forward locomotion. First, we measured the undulatory dynamics

of body bending by computing the time-varying curvature along the centerline of the body (Fang-

Yen et al., 2010; Leifer et al., 2011; Pierce-Shimomura et al., 2008; Wen et al., 2012) from

analysis of dark field image sequences of worms exhibiting forward locomotion. In order to

quantitatively treat the drag between the body and its environment, we examined locomotion of

worms in dextran solutions of known viscosity (see Methods; Fang-Yen et al., 2010). The

normalized body coordinate is defined by the distance along the body centerline divided by the

body length (Fig. 2.1A). The curvature 𝜅 at each point along the centerline of the body is the

reciprocal of local radius of curvature (Fig. 2.1A), with a positive (negative) curvature

representing ventral (dorsal) bending. We further define the dimensionless curvature 𝐾 = 𝜅 · 𝐿,

where 𝐿 is the length of the worm. We focus on curvature dynamics of worm’s head region (0.1-

0.3 body coordinate, Fig. 2.1B).

 We used this behavioral data to generate phase portraits, geometric representations of a

dynamical system’s trajectories over time (Izhikevich, 2007), in which the time derivative of the

curvature is plotted against the curvature. If the curvature were sinusoidal over time, as it is often

modeled in slender swimmers (Fang-Yen et al., 2010; Gray, 1933; Guo and Mahadevan, 2008;

Niebur and Erdös, 1991; Ranner, 2020), the time derivative of curvature would also be sinusoidal,

with a phase shift of 𝜋/4 radians relative to the curvature, and the resulting phase portrait would

be symmetric about both the 𝐾 and 𝑑𝐾/𝑑𝑡 axes. Instead, we found that the phase portrait of C.

elegans forward locomotion is in fact non-ellipsoidal and strongly asymmetric with respect to

reflection across the 𝐾 or 𝑑𝐾/𝑑𝑡 axes (Figs. 2.1C and 2.1D). Plots of both the phase portrait (Fig.

14

2.1D) and the time dependence (Fig. 2.1C) show that 𝐾 and 𝑑𝐾/𝑑𝑡 are strongly non-sinusoidal.

 In addition to the head, other parts of the worm’s body also display nonsinusoidal bending

movements (Fig. S2.1). In this paper, we focus on curvature dynamics of the worm’s head region

(0.1-0.3 body coordinate) where the bending amplitude is largest and the nonsinusoidal features

are most prominent (Fig. S2.1).

15

Figure 2.1. Undulatory dynamics of freely moving worms.

(A) Worm undulatory dynamics are quantified by the time-varying curvature along the body. The

normalized body coordinate is defined by the fractional distance along the centerline (head = 0,

tail = 1). The curvature 𝜅 is the reciprocal of the local radius of curvature with positive and

negative values representing dorsal and ventral curvature, respectively.

(B) Curvature as a function of time and body coordinate during forward movement in a viscous

liquid. Body bending curvature 𝐾 is represented using the nondimensional product of 𝜅 and body

length 𝐿.

(C) Curvature (black) in the anterior region (average over body coordinate 0.1-0.3) and the time

derivative (dashed grey) of this curvature. Red circles mark four representative phases (0, 𝜋/2, 𝜋,

and 3𝜋/2). The curve is an average of 5041 locomotory cycles from 116 worms.

(D) Phase portrait representation of the oscillatory dynamics, showing the curvature and the time

derivative of the curvature parameterized by time. Images of worm correspond to the phases

marked in C. Arrow indicates clockwise movement over time. (Inset) waveform of the scaled

active muscle moment, estimated by equation 𝑀𝑎 = 𝐾 + 𝜏𝑢�̇�. Both curves were computed from

the data used in C.

 We asked whether the phase portrait represents a stable cycle, i.e. whether the system tends

to return to the cycle after fluctuations or perturbations away from it. To this end, we analyzed the

recovery after brief optogenetic muscle inhibition. We used a closed-loop system for optically

targeting specific parts of the worm (Fouad et al., 2018; Leifer et al., 2011) to apply brief pulses of

laser illumination (0.1 s duration, 532 nm wavelength) to the heads of worms expressing the

inhibitory opsin NpHR in body wall muscles (Pmyo-3::NpHR). Simultaneous muscle inhibition on

both sides causes C. elegans to straighten due to internal elastic forces (Fang-Yen et al., 2010).

16

Brief inhibition of the head muscles during forward locomotion was followed by a maximum

degree of paralysis approximately 0.3 s after the end of the pulse, then a resumption of

undulation (Figs. 2.2A and 2.2B).

 To quantify the recovery dynamics, we defined a normalized deviation 𝑑 describing the state

of the system relative to the phase portrait of normal oscillation (see Methods), such that d = -1 at

the origin, d = 0 at the limit cycle, and d > 0 outside the limit cycle. We found that the deviation

following optogenetic perturbation (Fig. S2.2) decays toward zero regardless of the initial

deviation from the normal cycle, indicating that the worm returns to its normal oscillation after a

perturbation. These results show that C. elegans head oscillation during forward locomotion is

stable under optogenetic perturbation. The dynamics of these perturbed worms also allow us to

reconstruct the phase isochrons and vector flow fields (Fig. S2.3) of the worm’s head oscillation,

two other important aspects of an oscillator (see Methods).

 Taken together, these results show that during forward locomotion, head oscillation of a

worm constitutes a stable oscillator containing a nonsinusoidal limit cycle.

TRANSIENT OPTOGENETIC INHIBITION OF HEAD MUSCLES YIELDS A SLOWLY RISING,

RAPIDLY FALLING PHASE RESPONSE CURVE

The phase response curve (PRC) describes the change in phase of an oscillation induced by a

perturbation as a function of the phase at which the perturbation is applied, and is often used to

characterize biological and nonbiological oscillators (Izhikevich, 2007; Pietras and Daffertshofer,

2019; Schultheiss et al., 2011). We performed a phase response analysis of the worm’s

locomotion upon transient optogenetic inhibitions.

 Using data from 991 illuminations (each 0.1 s in duration) in 337 worms, we analyzed the

animals’ recovery from transient paralysis as a function of the phase at which the illumination

occurred. We define the phase such that it equals to zero at the point of maximum ventral

17

bending (Fig. 2.2D). When inhibition occurred with phase in the interval [0, 𝜋/6], the head

typically straightened briefly and then continued the previous bend, resulting in a phase delay for

the oscillation (Figs. 2.2C-E). When inhibition occurred with phase in the interval [𝜋/3, 𝜋/2], the

head usually appeared to discontinue the previous bend movement, which resulted in a small

phase advance (Figs. 2.2F-H). When inhibition occurred with phase in the interval [2𝜋/3, 5𝜋/6],

the head response was similar to that between the interval [0, 𝜋/6], and also resulted in a phase

delay (Figs. 2.2I-K).

18

19

Figure 2.2. Analysis of phase-dependent inhibitions for head oscillation using transient

optogenetic muscle inhibition.

(A) Images of a transgenic worm (Pmyo-3::NpHR) perturbed by a transient optogenetic muscle

inhibition in the head during forward locomotion. Green shaded region indicates the 0.1 s laser

illumination interval. h: head; t: tail; v: ventral side; d: dorsal side.

(B) Effect of muscle inhibition on mean absolute curvature of the head. Black curve represents

control ATR+ (no light) group (3523 measurements using 337 worms). Brown curve represents

control ATR- group (2072 measurements using 116 worms). Red curve represents ATR+ group

(1910 measurements using 337 worms). Green bar indicates 0.1 s light illumination interval

starting at 𝑡 = 0.

(C-E) Perturbed dynamics around light pulses occurring in the phase range [0, 𝜋/6]. (C)

Kymogram of time-varying curvature 𝐾 around a 0.1 s inhibition (green dashed box). (D) Mean

curvature dynamics around the inhibitions (green bar, aligned at 𝑡 = 0) from ATR+ group (red

curve, 11 trials using 4 worms) and control ATR+ (no light) group (black curve, 8 trials using 3

worms). Grey curves are individual trials from ATR+ group (10 randomly selected trials are

shown). (E) Mean phase portrait graphs around the inhibitions (green line) from ATR+ group

(same trials as in D) and control group (ATR+, no light, 3998 trials using 337 worms). Grey

curves are individual trials from ATR+ group.

(F-H) Similar to C-E, for phase range [𝜋/3, 𝜋/2].

(I-K) Similar to C-E, for phase range [2𝜋/3, 5𝜋/6].

(L) PRC from optogenetic inhibition experiments (ATR+ group, 991 trials using 337 worms, each

point indicating a single illumination of one worm). The curve was obtained via a moving average

along the x-axis with 0.16𝜋 in bin width and the filled area represents 95% confidence interval

20

within the bin.

(M) A 2-dimensional histogram representation of the PRC using the same data. The histogram

uses 25 bins for both dimensions, and the color indicates the number of data points within each

rectangular bin.

 Combining the data from all phases of inhibition yielded a sawtooth-shaped PRC with two

sharp transitions from phase delay to advance as well as two relatively slow ascending transitions

from phase advance to delay (Figs. 2.2L,M). In control worms, which do not express NpHR in the

body wall muscles (see Methods), the resulting PRC shows no significant phase shift over any

phases of illumination (Fig. S2.4). In worms perturbed with shorter pulses (0.055 s duration), we

observed a similar sawtooth-shaped PRC (Fig. S2.5).

 In addition to phase response analyses with perturbations to the worm’s anterior, we

conducted similar analyses for the dynamics across the body by optogenetically inhibiting body

wall muscles of other regions (Fig. S2.6). We found that the sawtooth feature of PRC tends to

decrease monotonically as the perturbation occurs further away from the head (Fig. S2.6A,E,I).

 Next, we asked whether the sharp downward transitions in the PRC represent a continuous

decrease or instead result from averaging data from a bimodal distribution. When we plotted the

distribution of the same data in a 2-D representation we found that the phase shifts display a

piecewise, linear increasing dependence on the phase of inhibition with two abrupt jumps

occurring at 𝜙 ≈ 𝜋/3 and 4𝜋/3, respectively (Fig. 2.2M). This result shows that the sharp

decreasing transitions in PRC reflect bimodality in the data rather than continuous transitions.

 In addition to examining PRCs induced by muscle inhibition, we also calculated PRCs with

respect to inhibitions of cholinergic motor neurons. We performed similar experiments on

transgenic worms in which the inhibitory opsin NpHR is expressed in either all cholinergic

21

neurons (Punc-17::NpHR::ECFP) or B-type motor neurons (Pacr-5::Arch-mCherry). In both

strains, we again observed sawtooth-shaped PRCs (Figs. S2.7 and S2.8), with variations only in

the magnitudes of phase shifts. These experiments show that the sawtooth-shaped feature of

PRC is maintained for motor neuron inhibition, suggesting that the transient muscle and neuron

inhibition interrupt the motor circuit dynamics in a similar manner.

 The GABAergic D-type motor neurons provide a dorsoventral reciprocal inhibition of opposing

muscles during locomotion. We asked whether the D-type motor neurons are required for the

observed sawtooth shape of the PRC. We examined transgenic worms that express NpHR in the

body wall muscles but have mutations unc-49(e407), a loss-of-function mutant of GABAA receptor

that is required by the D-type motor neurons (Bamber et al., 1999). After performing optogenetic

inhibition experiments we found that the PRC also displays a sawtooth feature (Fig. S2.9). This

result shows that D-type motor neurons are not necessary for the motor rhythm generator to

show the sawtooth-shaped PRC.

 Sawtooth-shaped PRCs are observed in a number of systems with oscillatory dynamics,

including the van der Pol oscillator (Rosenblum, 2018), and may reflect a phase resetting

property of an oscillator with respect to a perturbation (Izhikevich, 2007; Schultheiss et al., 2011).

Further interpretation of the PRC results is given below.

WORM MUSCLES DISPLAY A RAPID SWITCH-LIKE ALTERNATION DURING LOCOMOTION

As a first step in interpreting and modeling our findings, we estimated the patterns of muscle

activity in freely moving worms, in part by drawing on previous biomechanical analyses of

nematode movement (Fang-Yen et al., 2010; Gray and Lissmann, 1964; Ranner, 2020; Wallace,

1968).

 In mechanics, a moment is a measure of the ability of forces to produce bending about an

axis. Body wall muscles create local dorsal or ventral bending by generating active moments

22

across the body. In addition to the active moments from muscles, there are also passive

moments generated by the worm’s internal viscoelasticity and by the forces due to the interaction

of the worm with its external environment.

 We estimated the output patterns of the active muscle moment that drives the head

oscillations of freely moving worms immersed in viscous solutions. Following previous analyses of

C. elegans locomotor biomechanics under similar external conditions (Fang-Yen et al., 2010), the

scaled active muscle moment can be described as a linear combination of the curvature and the

time derivative of the curvature (Eqn. 2.1; also see Methods). We observed that in the phase

portrait graph (Fig. 2.1D), there are two nearly linear portions of the curve. We hypothesized that

these linear portions correspond to two bouts during which the active muscle moment is nearly

constant.

 Using fits to the phase plot trajectory (see Methods) we estimated the waveform of the active

muscle moment as a function of time (Fig. 2.1D Inset). We found that the net active muscle

moment alternates between two plateau regions during forward locomotion. From the slope of the

steep portions on this curve, we estimated the time constant for transitions between active

moments to be 𝜏𝑚 ≈ 100 𝑚𝑠. This time constant is much smaller than the duration of each

muscle moment plateau period (≈ 0.5 𝑠), suggesting that the system undergoes rapid switches of

muscle contractions between two saturation states.

A RELAXATION OSCILLATION MODEL EXPLAINS NONSINUSOIDAL DYNAMICS

We reasoned that the rapid transitions of the active muscle moment might reflect a switching

mechanism in the locomotory rhythm generation system. We hypothesized that the motor system

generates locomotory rhythms by switching the active moment of the muscles based on

proprioceptive thresholds.

 To expand further upon these ideas, we developed a quantitative model of locomotory rhythm

23

generation. We consider the worm as a viscoelastic rod where the scaled curvature K(t) varies

according to:

𝐾(𝑡) + 𝜏𝑢

𝑑𝐾(𝑡)

𝑑𝑡
= 𝑀𝑎(𝑡), [𝟐. 𝟏]

where 𝜏𝑢 describes the time scale of bending relaxation and 𝑀𝑎(𝑡) is the time-varying active

muscle moment scaled by the bending modulus and the body length (see detailed derivations in

Methods). We note that in a stationary state (𝑑𝐾/𝑑𝑡 = 0), the curvature would be equal to the

scaled active muscle moment. That is, the scaled active moment represents the static curvature

that would result from a constant muscle moment.

 We define a proprioceptive feedback variable 𝑃 as a linear combination of the current

curvature value and the rate of change of curvature. In our model, once this variable reaches

either of two thresholds 𝑃𝑡ℎ and −𝑃𝑡ℎ (Fig. 2.3D), the active muscle moment undergoes a change

of sign (Fig. 2.3E), causing the head to bend toward the opposite direction (Fig. 2.3B).

 Our model has 5 parameters: (1) 𝜏𝑢, the bending relaxation time scale, (2) 𝜏𝑚, the muscle

switching time scale, (3) 𝑀0, the amplitude of the scaled active muscle moment, (4-5) 𝑏 and 𝑃𝑡ℎ,

which determine the switch threshold. The first 3 parameters were directly estimated from our

experimental results from freely moving worms (see Methods). Parameters 𝑏 and 𝑃𝑡ℎ were

obtained using a two-round fitting procedure by fitting the model first to the freely moving

dynamics (first round) and then to the experimental phase response curve (second round) (see

Methods).

 With this set of parameters, we calculated the model dynamics as represented by the phase

portrait (Fig. 2.3C) as well as curvature waveform in one cycle period (Fig. 2.3F). We found that

in both cases the model result agreed with our experimental observations. Our model captures

24

the asymmetric phase portrait trajectory shape found from our experiments (Fig. 2.1D). It also

describes the asymmetry of head bending during locomotion: bending toward the ventral or

dorsal directions occurs slower than straightening toward a straight posture during the locomotory

cycle (Fig. 2.3F Inset).

 Considering the hypothesized mechanism under the biomechanical background (Eqn. 2.1),

our model provides a simple explanation for the observed bending asymmetry during locomotion.

According to the model, the active muscle moment is nearly constant during each period between

transitions of the muscle moment. Biomechanical analysis under this condition predicts an

approximately exponential decay in curvature, which gives rise to an asymmetric feature during

each half period (Fig. 2.3F).

25

Figure 2.3. Free-running dynamics of a bidirectional relaxation oscillator model.

(A) Schematic diagram of the relaxation oscillator model. In this model, sensory neurons (SN)

detect the total curvature of the body segment as well as the time derivative of the curvature. The

linear combination of the two values, 𝑃 = 𝐾 + 𝑏�̇�, is modeled as the proprioceptive signal which

is transmitted to motor neurons (MN). The motor neurons alternatingly activate dorsal or ventral

body wall muscles (BWM) based on a thresholding rule: (1) if 𝑃 < −𝑃𝑡ℎ, the ventral body wall

muscles get activated and contract while the dorsal side of muscles relax; (2) if 𝑃 > 𝑃𝑡ℎ, vice

versa. Hence, locomotion rhythms are generated from this threshold-switch process.

(B) Time-varying curvature 𝐾 of the model oscillator. The time axis is normalized with respect to

oscillatory period (same for D, E, and F).

(C) Phase portrait graph of the model oscillator. Proprioceptive threshold lines (grey dashed lines)

intersect with the phase portrait graph at two switch points (red circles) at which the active

moment of body wall muscles is switched.

(D) Time-varying proprioceptive feedback 𝑃 received by the motor neurons. Horizontal lines

denote the proprioceptive thresholds (grey dashed lines) that switch the active muscle moment at

switch points (red circles, intersections between the proprioceptive feedback curve and the

threshold lines).

(E) Time-varying active muscle moment. Blue-dashed square wave denotes target moment (𝑀𝑡)

that instantly switches directions at switch points. Black curve denotes the active muscle moment

(𝑀𝑎) which follows the target moment in a delayed manner.

(F) Time varying curvature in the worm’s head region from experiments (red, 5047 cycles using

116 worms) and model (black). Model curvature matches experimental curvature with an MSE ≈

0.18. (Inset) Bar graph of 𝑈 (time period of bending toward the ventral or dorsal directions) and 𝐷

26

(time period of straightening toward a straight posture). Vertical bars are averages of fractions

with respect to undulatory period 𝑇0 of 𝑈 and 𝑇 (*** indicates p<0.0005 using Student’s t test).

RELXATION OSCILLATOR MODEL REPRODUCES RESPONSES TO TRANSIENT

OPTOGENETIC INHIBITION

We performed simulations of optogenetic inhibitions in our model. To model the transient muscle

paralysis, the muscle moment is modulated by a bell-shaped function of time (Fig. S2.10; also

see Methods) such that, upon inhibition, it decays toward zero and then recovers to its normal

value, consistent with our behavioral observations (Fig. 2.2B).

 From simulations with different sets of model parameters, we found that the model PRCs

consistently exhibited the sawtooth shape found in experiments, though differing in height and

timing of the downward transitions. In addition to the model parameters 𝜏𝑢, 𝑀0, and 𝜏𝑚 that had

been explicitly estimated from free-moving experiments, we performed a two-round fitting

procedure (see Methods) to determine the other parameters (including 𝑏, 𝑃𝑡ℎ, and parameters for

describing the optogenetically induced muscle inhibitions (see Fig. S2.10) to best fit the freely

moving dynamics and the experimental PRC, respectively, with a minimum mean squared error

(MSE) (Figs. 2.3F and 2.4A; also see Methods). For the parameters 𝑏 and 𝑃𝑡ℎ, the optimization

estimated their values to be 𝑏 = 0.046 𝑠 and 𝑃𝑡ℎ = 2.33, as shown on the phase portraits (grey

dashed lines in Figs. 2.3C, 2.4B and 2.4D).

 The threshold-switch mechanism model provides an explanation for the observed sawtooth-

shaped PRC. By comparing model phase portrait graphs around inhibitions occurring at different

phases (Figs. 2.4B-E), we found that the phase shift depends on the relative position of the

inhibition with respect to the switch points on the phase plane. (1) If the effect of the inhibition

occurs before the system reaches its switch point (Fig. 2.4B), the system will recover by

continuing the previous bend and the next switch in the muscle moment will be postponed,

27

thereby leading to a phase delay (Fig. 2.4C). (2) As the inhibition progressively approaches the

switch point, one would expect that the next switch in the muscle moment will also be

progressively postponed; this explains the increasing portions of the PRC. (3) If the inhibition

coincides with the switch point (Fig. 2.4D), the muscle moment will be switched at this point and

the system will recover by aborting the previous bend tendency, resulting in a small phase

advance (Fig. 2.4E). This switching behavior explains the two sharp downward transitions in the

PRC.

28

Figure 2.4. Simulations of optogenetic inhibitions in the relaxation oscillator model.

(A) Phase response curves measured from experiments (blue, same as in Fig. 3L) and model

(orange). Model PRC matches experimental PRC with an MSE ≈ 0.12.

(B,C) Simulated dynamics of locomotion showing inhibition-induced phase delays in the model

29

oscillator. (B) Simulated phase portrait graphs around inhibition occurring at 𝜋/6 phase of cycle

for perturbed (red) and unperturbed (black) dynamics. Green bar indicates the phase during

which the inhibition occurs. (C) Same dynamics as in B, represented by time-varying curvatures.

The time axis is normalized with respect to oscillatory period (same for E).

(D,E) Simulated dynamics of locomotion showing inhibition-induced phase advances in the model

oscillator. (D) Simulated phase portrait graphs around inhibition occurring at 𝜋/2 phase of cycle

for perturbed (red) and unperturbed (black) dynamics. (E) Same dynamics as in D, represented

by time-varying curvatures.

RELAXATION OSCILLATOR MODEL PREDICTS PHASE RESPONSE CURVES FOR

SINGLE-SIDE MUSCLE INHIBITION

As a further test of the model, we asked what PRCs would be produced with only the ventral or

dorsal head muscles being transiently inhibited. In the model, the muscle activity is represented

using the scaled active moment of muscles. We conducted model simulations (see Methods) to

predict the PRCs for transient inhibitions of muscles on the dorsal side (Fig. 2.5A, Upper) and

ventral side (Fig. 2.5B, Upper), respectively.

 To experimentally perform phase response analysis of single-side muscle inhibitions, we

visually distinguished each worm’s dorsoventral orientation (via vulval location) and targeted light

to either the ventral or dorsal side of the animal. Transiently illuminating (0.1 s duration) dorsal or

ventral muscles in the head region of the transgenic worms (Pmyo-3::NpHR) induced a brief

paralyzing effect when the segment was bending toward the illuminated side but did not induce a

significant paralyzing effect when the segment was bending away from the illuminated side (Fig.

S2.11).

 Combining the experimental data from all phases of dorsal-side or ventral-side inhibition

yielded the corresponding PRCs (Figs. 2.5A and 2.5B, respectively), from which we found that

30

both PRCs show a peak in the phase range during which the bending side is illuminated but

shows no significant phase shift in the other phase range. The experimental observations are

qualitatively consistent with model predictions.

Figure 2.5. The model predicts phase response curves with respect to single-side muscle

inhibitions.

(A) (Upper) a schematic indicating a transient inhibition of body wall muscles of the head on the

dorsal side. (Lower) the corresponding PRC measured from experiments (blue, 576 trials using

242 worms) and model (orange).

(B) (Upper) a schematic indicating a transient inhibition of body wall muscles of the head on the

ventral side. (Lower) the corresponding PRC measured from experiments (blue, 373 trials using

176 worms) and model (orange). For the two experiments, each point indicates a single

illumination (0.1 s duration, 532 nm wavelength) of one worm. Experimental curves were obtained

using a moving average along the x-axis with 0.16𝜋 in bin width. Filled area of each experimental

curve represents 95% confidence interval with respect to each bin of data points.

31

 We found that the PRC of dorsal-side illumination shows a smaller paralytic response than

that of ventral-side illumination. This discrepancy may be due to different degrees of paralysis

achieved during ventral vs. dorsal illumination (Fig. S2.11), possibly due to differences in levels of

opsin expression and/or membrane localization. We therefore modulated the parameter for

describing degree of paralysis when simulating the PRC of the dorsal-side illumination to

qualitatively account for this discrepancy (see Methods).

OUR MODEL IS CONSISTENT WITH THE DEPENDENCE OF WAVE AMPLITUDE AND

FREQUENCY ON EXTERNAL LOAD

C. elegans can swim in water and crawl on moist surfaces, exhibiting different undulatory gaits

characterized by different frequency, amplitude, and wavelength (Fig. 2.6A). Previous studies

(Berri et al., 2009; Fang-Yen et al., 2010) have shown that increasing viscosity of the medium

induces a continuous transition from a swimming gait to a crawling gait, characterized by a

decreasing undulatory frequency (Fig. 2.6C) and an increasing curvature amplitude (Fig. 2.6D).

We asked whether our model is consistent with this load-dependent gait adaptation.

 We incorporated the effect of external viscosity into our model through the bending relaxation

time constant 𝜏𝑢 (see Methods). We ran our model to determine the dependence of model output

on viscosity with varying viscosity 𝜂. We found that model results for frequency and amplitude

dependence on viscosity of the external medium are in quantitative agreement with previous

experimental results (Fang-Yen et al., 2010) (Figs. 2.6C,D).

 We sought to develop an intuitive understanding of how the model output changes with

increasing viscosity. We recall that the model generates a proprioceptive feedback variable in the

form 𝑃 = 𝐾 + 𝑏�̇� (Fig. 2.3A), and that the active muscle moment in our model undergoes a

change of sign upon the proprioceptive feedback reaching either of two thresholds, 𝑃𝑡ℎ and −𝑃𝑡ℎ.

As the viscosity increases, one expects that a worm will perform a slower undulation due to the

32

increase in external load. That is, the term 𝑏�̇� becomes smaller. To compensate for this effect,

the worm needs to undulate with a larger curvature amplitude to maintain the same level of

proprioceptive feedback.

 Next, we asked how the PRC depends on external viscosity. Model simulations with three

different viscosities produced PRCs with similar sawtooth shape but with sharp transitions

delayed in phase as the external viscosity increases (Fig. 2.6F). We also measured PRCs from

optogenetic inhibition experiments in solutions of three different viscosities (Fig. 2.6G).

Comparing the relative locations of the transitions in PRCs between the model and the data, our

prediction also quantitatively agrees with the experimental results.

 These results further support the model’s description of how undulatory dynamics are

modulated by the external environment.

33

Figure 2.6. Model reproduces C. elegans gait adaptation to external viscosity.

(A) Dark field images and the corresponding undulatory frequencies and amplitudes of adult

worms (left) swimming in NGM buffer of viscosity 1 mPa·s, (right) crawling on agar gel surface.

The worm head is to the right in both images.

(B) Phase portrait graphs measured from worm forward movements in fluids of viscosity 10

34

mPa·s (blue, 3528 cycles using 50 worms), 120 mPa·s (red, 5050 cycles using 116 worms), and

5400 mPa·s (yellow, 1364 cycles using 70 worms).

(C,D) The model predicts the dependence of undulatory frequency (C) and curvature amplitude

(D) on external viscosity (black) that closely fit the corresponding experimental observations (red).

(E) Phase portrait graphs predicted from the model in three different viscosities (same values as

in B). Grey dashed lines indicate threshold lines for dorsoventral bending. The intersections (red

circles 1, 2, 3) between the threshold line and phase portrait graphs are switch points for

undulations in low, medium, high viscosity, respectively.

(F) Theoretically predicted PRCs in fluids of the three different viscosities show that PRC will be

shifted to the right as the viscosity of environment increases.

(G) PRCs measured from optogenetic inhibition experiments in the three viscosities.

Experimental PRCs were obtained using a moving average along the x-axis with 0.16𝜋 in bin

width and filled areas are 95% confidence interval. The tendency of shift observed in

experimental PRCs verified the model prediction.

EVALUATION OF ALTERNATIVE OSCILLATOR MODELS

Although our computational model agrees well with our experimental results, we asked whether

other models could also explain our findings. We examined three alternative models based on

well-known mathematical descriptions of oscillators (van der Pol, Rayleigh, and Stuart-Landau

oscillators) and compared them with our original threshold-switch model and with our

experimental data.

 First, we tested the van der Pol oscillator, the first relaxation oscillator model (Van der Pol,

1926) which has long been applied in modeling neuronal dynamics (FitzHugh, 1961; Nagumo et

al., 1962). It is based on a second-order differential equation for a harmonic oscillator with a

35

nonlinear, displacement-dependent damping term (see Methods). By choosing a set of

appropriate parameters, we found that the free-running waveform and phase plot of the van der

Pol oscillator are highly asymmetric, but in an inverted manner (Fig. S2.12B,F), compared with

the experimental observations (Figs. 2.1C,D). Transiently perturbing the system with the bell-

shaped modulatory function over all phases within a cycle produced a similar sawtooth-shaped

PRC as that observed experimentally (Fig. S2.12N). However, the perturbed system was found

to recover toward its limit cycle with a much slower rate than that of the experiments (Fig.

S2.12J). Simulations of single-side muscle inhibitions to the system produced single-sawtooth-

shaped PRCs similar to those found experimentally (Fig. S2.13B,F).

 Next, we examined the Rayleigh oscillator, another relaxation oscillator model which was

originally proposed to describe self-sustained acoustic vibrations such as vibrating clarinet reeds

(Rayleigh, 1896). It is based on a second-order differential equation with a nonlinear, velocity-

dependent damping term and it can be obtained from the van der Pol oscillator via a variable

differentiation and substitution (see Methods). From its free-running dynamics, we observed that

the system exhibits a highly asymmetric waveform and phase plot that are similar to the

experimental observations (Fig. S2.12C,G). Additionally, the Rayleigh oscillator also produces

similar sawtooth-shaped PRCs with respect to transient muscle inhibitions of both sides (Fig.

S2.12O), dorsal side (Fig. S2.13C), and ventral side (Fig. S2.13G), respectively, and system’s

recovery rate after the perturbation was shown to be similar to that of the experiments (Fig.

S2.12K).

 Finally, we considered the Stuart-Landau oscillator, a commonly used model for the analysis

of neuronal synchrony (Acebrón et al., 2005). Its nonlinearity is based on a negative damping

term which depends on the magnitude of the state variable defined in a complex domain (see

Methods). The negative damping of the system constantly neutralizes the positive damping on a

36

limit cycle, making its free-running dynamics a harmonic oscillation which shows a sinusoidal

waveform (Fig. S2.12D,H). Moreover, PRCs with respect to transient muscle inhibitions are

constant with respect to phase (Fig. S2.12P), contrary to the experiments.

 We compared the results of our models with the experimental results. In the van der Pol

oscillator, the free-running waveform displays a different asymmetry (Fig. S2.12B,F) compared

with the experimental observations and the perturbed system was shown to recover toward its

limit cycle with a much slower rate than that of the experiments (Fig. S2.12J). The Rayleigh

oscillator reproduces a free-running waveform similar to experimental ones (Fig. S2.12C,G) and

its recovery rate toward limit cycle upon perturbation was close to that of the experiments (Fig.

S2.12K). However, its PRC (Fig. S2.12O) showed weaker agreement with the experimental PRC

compared with the threshold-switch model (Fig. S2.12M) or the van der Pol model (Fig. S2.12N).

Of all the models tested, the threshold-switch model showed the least mean-square error with the

PRC data (Fig. S2.12M-P). We conclude that of these models, our threshold-switch model

produced the best overall agreement with experiments.

 We also found that two important experimental findings, the nonsinusoidal free-moving

dynamics and the sawtooth-shaped PRCs can be achieved in our original model, the van der Pol

and Rayleigh oscillators, which are all relaxation oscillators, but not in the Stuart-Landau

oscillator, which is not a relaxation oscillator. Taken together, these results are consistent with the

idea that a relaxation oscillation mechanism may underlie C. elegans motor rhythm generation.

DISCUSSION

In this study, we used a combination of experimental and modeling approaches to probe the

mechanisms underlying the C. elegans motor rhythm generation.

 Our model can be compared to those previously described for C. elegans locomotion.

Previous detailed models of C. elegans locomotion have employed a relatively large number of

37

free parameters (up to 40 (Boyle et al., 2012; Karbowski et al., 2008)). In our work, we sought to

develop a compact phenomenological model to describe an overall mechanism of rhythm

generation but not the detailed dynamics of specific circuit elements. To improve predictive

power, we aimed to minimize the number of free parameters used in the model. Our model has

only 5 free parameters, yet accurately describes a wide range of experimental findings including

the nonsinusoidal dynamics of free locomotion, phase response curves to transient paralysis, and

dependence of frequency and amplitude on external viscosity.

 Our phase portrait analysis of worm’s free locomotory dynamics has described a new method

for measuring the bending relaxation time scale 𝜏𝑢 and the muscle moment transition time scale

𝜏𝑚 (see Methods for details), which may be compared with previous studies of worm

biomechanics (Berri et al., 2009; Fang-Yen et al., 2010) and neurophysiology (Milligan et al.,

1997). Fang-Yen et al. (Fang-Yen et al., 2010) measured a linear relationship between the

bending relaxation time scale and the external viscosity by deforming the worm body in

Newtonian fluids with varied viscosities in the range 1 to 25 mPa·s. Through an extrapolation

based on that linear relationship, the relaxation time scale in 17% dextran NGM fluid

(approximately 120 mPa·s in viscosity) is estimated to be ≈ 282 𝑚𝑠, which is quite close to our

measured result, 𝜏𝑢 ≈ 260 𝑚𝑠. Furthermore, our measurement of the muscle moment transition

time scale (𝜏𝑚 ≈ 100) is consistent with previously measured value for muscle time scale

(Milligan et al., 1997) that has also been widely adopted for other detailed models of nematode

locomotion (Boyle et al., 2012; Bryden and Cohen, 2008; Butler et al., 2015; Chen et al., 2011;

Denham et al., 2018; Izquierdo and Beer, 2018; Johnson et al., 2021; Karbowski et al., 2008;

Olivares et al., 2021; Wen et al., 2012).

 In our model the mechanism for generating rhythmic patterns can be characterized by a

‘relaxation oscillation’ process which contains two alternating sub-processes on different time

38

scales: a long relaxation process during which the motor system varies toward an intended state

due to its biomechanics under a constant active muscle moment, alternating with a rapid period

during which the active muscle moment switches to an opposite state due to a proprioceptive

thresholding mechanism.

 The term ‘relaxation oscillation’, as first employed by van der Pol, describes a general form of

self-sustained oscillatory system with intrinsic periodic relaxation/decay features (Van der Pol,

1926). The Fitzhugh-Nagumo model (FitzHugh, 1961; Nagumo et al., 1962), a prototypical model

of excitable neural systems, was originally derived by modifying the van der Pol relaxation

oscillator equations. These and similar relaxation oscillators have been characterized in various

dynamical systems in biology and neuroscience (Izhikevich, 2007). For example, the dynamics

exhibited from the action potentials of barnacle muscles in their oscillatory modes were found to

yield ‘push-pull’ relaxation oscillation characteristics (Morris and Lecar, 1981). The beating human

heart was found to behave as a relaxation oscillator (VAN DER POL, 1940). Several studies of

walking behavior in stick insects (Bässler, 1977; Cruse, 1976; Graham, 1985; Wendler, 1968)

proposed that the control system for rhythmic step movements constitutes a relaxation oscillator

in which the transitions between leg movements is determined by proprioceptive thresholds.

 Key properties shared by these relaxation oscillators are that their oscillations greatly differ

from sinusoidal oscillations and that they all consist of a certain feedback loop with a ‘discharging

property’. They contain a switch component that charges an integrating component until it

reaches a threshold, then discharges it again (Nave, 1995), then repeats. Many relaxation

oscillators, including the van der Pol and Rayleigh models, exhibit sawtooth-shaped phase

response curves (VAN DER POL, 1940). As shown in our experimental and model results (Fig.

S2.12), all the above properties have been revealed in the dynamics of C. elegans locomotive

behavior, consistent with the idea that the worm’s rhythmic locomotion also results from a type of

39

relaxation oscillator.

 In our computational model, a proprioceptive component sensing the organism’s changes in

posture is required to generate adaptive locomotory rhythms. What elements in the motor system

could be providing this feedback? Previous studies have suggested that head and body motor

neurons, including the SMDD head motor neurons and the B-type motor neurons, have

proprioceptive capabilities (Wen et al., 2012; Yeon et al., 2018) and may also be involved in

locomotory rhythm generation (Fouad et al., 2018; Gao et al., 2018; Kaplan et al., 2020; Xu et al.,

2018). This possibility is consistent with an earlier hypothesis that the long undifferentiated

processes of these cholinergic neurons may function as proprioceptive sensors (White et al.,

1986). In particular, recent findings (Yeon et al., 2018) have revealed that SMDD neurons directly

sense head muscle stretch and regulate muscle contractions during oscillatory head bending

movements.

 In our model, the proprioceptive feedback variable depends on both the curvature and the

rate of change of curvature. Many mechanoreceptors are sensitive primarily to time derivatives of

mechanical strain rather than strain itself; for example, the C. elegans touch receptor cells exhibit

such a dependence (Eastwood et al., 2015; O’Hagan et al., 2005). The ability of mechanosensors

to sense the rate of change in C. elegans curvature has been proposed in an earlier study (Butler

et al., 2015) in which it was hypothesized that the B-type motor neurons might function as a

proprioceptive component in this manner. Mechanosensors encoding a simultaneous

combination of deformation and velocity have been observed in mammalian systems including

rapidly-adapting (RA) and intermediate-adapting (IA) sensors in the rat dorsal root ganglia

(Rugiero et al., 2010). Proprioceptive feedback that involves a linear combination of muscle

length and velocity was also suggested by a study of C. elegans muscle dynamics during

swimming, crawling, and intermediate forms of locomotion (Butler et al., 2015). In our

40

phenomenological model, the motor neuron constituent may represent a collection of neurons

involved in motor rhythm generation. Therefore, the proprioceptive function posited by our model

might also arise as a collective behavior of curvature-sensing and curvature-rate-sensing

neurons.

 Further identification of the neuronal substrates for proprioceptive feedback may be possible

through physiological studies of neuron and muscle activity using Ca2+ or voltage indicators.

Studies of the effect of targeted lesions and genetic mutations on the phase response curves will

also help elucidate roles of specific neuromuscular components within locomotor rhythm

generation.

 In summary, our work describes the dynamics of the C. elegans locomotor system as a

relaxation oscillation mechanism. Our model of rhythm generation mechanism followed from a

quantitative characterization of free behavior and response to external disturbance, information

closely linked to the structure of the animal’s motor system (Gutkin et al., 2005; Nadim et al.,

2012; Schultheiss et al., 2011; Smeal et al., 2010). Our findings represent an important step

toward an integrative understanding of how neural and muscle activity, sensory feedback control,

and biomechanical constraints generate locomotion.

METHODS

Table 2.1. Key resources table for Chapter 2

Reagent
type
(species)
or
resource

Designation Source
or
reference

Identifiers Additional
information

Strain,
strain
background
(E. coli)

OP50 CGC Fang-Yen Lab Strain
Collection: OP50
RRID:WB-
STRAIN:WBStrain00041971

OP50

Strain, YX148 Fouad et Fang-Yen Lab Strain qhIs1[Pmyo-

41

strain
background
(C.
elegans)

al., 2018 Collection: YX148 3::NpHR::eCFP;
lin-15(+)];
qhIs4[Pacr-
2::wCherry]

Strain,
strain
background
(C.
elegans)

YX119 Fouad et
al., 2018

Fang-Yen Lab Strain
Collection: YX119

qhIs1[Pmyo-
3::NpHR::eCFP;
lin-15(+)]; unc-
49(e407)

Strain,
strain
background
(C.
elegans)

YX205 Leifer et
al., 2011

Fang-Yen Lab Strain
Collection: YX205

hpIs178[Punc-
17::NpHR::eCFP
; lin-15(+)]

Strain,
strain
background
(C.
elegans)

WEN001 Fouad et
al., 2018

Fang-Yen Lab Strain
Collection: WEN001

wenIs001[Pacr-
5::Arch::mCherry
; lin-15(+)]

WORM STRAINS AND CULTIVATION

All worms used in this study were cultivated on NGM plates with Escherichia coli strain OP50 at

20°C using standard methods (Sulston and Hodgkin, 1988). Strains used and the procedures for

optogenetic experiments are described in the Key resources table for Chapter 2. All experiments

were performed with young adult (< 1 day) hermaphrodites synchronized by hypochlorite

bleaching.

 For optogenetic experiments, worms were cultivated in darkness on plates with OP50

containing the cofactor all-trans retinal (ATR). For control experiments and free-moving

experiments, worms were cultivated on regular OP50 NGM plates without ATR. To make OP50-

ATR plates, we added 2 µL of a 100 mM solution of ATR in ethanol to an overnight culture of 250

µL OP50 in LB medium and used this mixture to seed 6 cm NGM plates.

LOCOMOTION ANALYSIS

To analyze worm locomotion in viscous fluids, we placed worms in dextran solutions in chambers

42

formed by a glass slide and a coverslip separated by 125-µm-thick polyester shims (McMaster-

Carr 9513K42). For viscosity-dependence experiments, we used 5%, 17%, and 35% (by mass)

solutions of dextran (Sigma-Aldrich D5376, average molecular weight 1,500,000-2,800,000) in

NGMB. These solutions were measured to have viscosities of 10, 120, and 5400 mPa·s (Fang-

Yen et al., 2010), respectively. We used a 17% dextran solution for all other experiments. NGMB

consists of the same components as NGM media (Stiernagle, 2006), but without agar, peptone,

or cholesterol.

 We recorded image sequences using a custom-built optogenetic targeting system based on a

Leica DMI4000B microscope under 10X magnification with dark field illumination provided by red

LEDs. Worm images were recorded at 40 Hz with a sCMOS camera (Photometrics optiMOS). We

used custom-written C++ software (Fouad et al., 2017) to perform real-time segmentation of the

worm during image acquisition. The worm was identified in each image by its boundary and

centerline calculated from a binary image. Anterior-posterior orientation was noted visually during

the recording. Segmentation information, including coordinates of the worm boundary and

centerline, was saved to disk along with the corresponding image sequences.

 Post-acquisition image analysis was performed using a custom MATLAB (Mathworks) similar

to previous reports (Fouad et al., 2017). The worm centerline of each image was smoothed using

a cubic spline fit. We calculated curvature 𝜅 as the dot product between the unit normal vector to

the centerline and derivative of the unit tangent vector to the centerline with respect to the body

coordinate. Dimensionless curvature 𝐾 was calculated as the product of 𝜅 and the worm body

length 𝐿 represented by length of the centerline. Since the segmentation was relatively noisy at

the tips of the worm, we excluded curvature in the anterior and posterior 5% of the body length.

The worm’s direction of motion was identified by calculating the gradients in the curvature over

time and body coordinate, and image sequences in which the worm performed consistent forward

43

movement (lasting at least 4 s) were selected for analysis. The anterior curvature 𝐾(𝑡) was

defined as the average of the dimensionless curvature over body coordinate 0.1-0.3; this range

avoided high frequency movements of the anterior tip of the animal.

 To quantify oscillatory dynamics during forward locomotion, we identified undulatory cycles

from the time sequence of anterior curvature in each worm. Local extrema along each sequence

were identified and portions between consecutive local maxima were defined as individual cycles.

To minimize the effects of changes in the worm’s frequency, we excluded cycles whose period

deviated by more than 20% from the average period of all worms’ undulations in each

experimental session.

 For the ease of computing average dynamics, we converted individual cycles from a time-

dependent to a phase-dependent curvature by uniformly rescaling each cycle to a phase range of

2𝜋. The averaged curvature within one cycle was then computed by averaging all individual

cycles in the phase domain: 〈𝐾(𝜙)〉 = ∑ 𝐾𝑖(𝜙)𝑁
𝑖=1 /𝑁. Similarly, the averaged phase derivative of

curvature within one cycle was calculated as 〈𝑑𝐾/𝑑𝜙〉 = ∑ (𝑑𝐾𝑖/𝑑𝜙)𝑁
𝑖=1 /𝑁.

STABILITY OF THE WORM’S HEAD OSCILLATION

To examine the stability of the worm’s head oscillation during forward locomotion, we analyzed

head oscillations of worms that were optogenetically perturbed with 0.1 s muscle inhibitions and

estimated their recovery dynamics after being deviated from the normal oscillation due to the

perturbation.

 To illustrate the oscillation dynamics, we use a two-dimensional variable, i.e. 𝒙 = (𝛫, 𝜉�̇�) in

the unit of curvature where 𝜉 = 0.135 𝑠 is a scaling factor. In Fig. S2.3 we depicted the closed

trajectory (black) in the plane spanned by the variables 𝐾 and 𝜉�̇� for the head oscillation of

unperturbed moving worms (this coordinate plane is in fact a linearly scaled version of the phase

44

plane spanned by the variables 𝐾 and �̇�), which we call as the normal cycle of the worm’s head

oscillation.

 Next, we defined an amplitude variable 𝑑 that represents the normalized deviation to the

normal cycle. If the oscillator is stable, the closed orbit for the unperturbed dynamics is usually

called the stable limit cycle. Here, we stick to the notion of normal cycle instead of using ‘limit

cycle’ to avoid any confusion on the stability of the worm’s head oscillation. For any phase state

of an individual oscillation, the normalized deviation to the normal cycle is defined as 𝑑(𝜙) =

(𝐷(𝜙) − 𝐷𝐶(𝜙))/𝐷𝐶(𝜙). Here, 𝐷(𝜙) is distance to the center of oscillation on the phase plane,

which is set to the origin, such that 𝐷(𝜙) = √𝐾(𝜙)2 + (𝜉�̇�(𝜙))
2
 where 𝜙 denotes the phase value

of the current state estimated by the four-quadrant inverse tangent of the variable pair (𝐾, 𝜉�̇�). In

this expression 𝐷𝐶(𝜙) denotes the distance to the center of oscillation that is evaluated exactly on

the normal cycle at phase 𝜙.

 Using the deviation to the normal cycle to describe the amplitude of the worm’s head

oscillation, we collected the amplitude dynamics over time for all periods of the worm’s head

oscillations during which no illumination pulse occurs, that is, all periods of locomotion between

two consecutive illumination pulses. We grouped the amplitude dynamics into bins according to

their initial amplitudes and then calculated the collective amplitude dynamics for each bin. As

shown in Fig. S2.2, the collective amplitude variable 𝑑 converges to zero after roughly 0.5 s

regardless of the initial amplitude. This result indicates that the worm’s head oscillation returns to

its normal oscillation after being perturbed and that the normal cycle may represent a stable limit

cycle for the oscillation.

PHASE ISOCHRON MAP AND VECTOR FIELD FOR THE WORM’S HEAD OSCILLATION

On the normal cycle we define the phase of the oscillation as 𝜙𝐶(𝑡) = 𝜔0 · 𝑡𝑚𝑜𝑑𝑇0
, where 𝜔0 =

45

2𝜋/𝑇0 is the angular frequency of normal oscillation and we determined the initial phase (𝜙𝐶 = 0)

to be when 𝐾 reaches local maximum (or 𝒙 = (𝐾𝑚𝑎𝑥 , 0)) and hence 𝜙𝐶 = 𝜋 to be when 𝐾 reaches

local minimum (or 𝒙 = (𝐾𝑚𝑖𝑛, 0)). In this way, we parameterized the normal cycle by defining a

bijective map between phases and state points Φ(𝒙𝐶) = 𝜙𝐶.

 The map Φ(𝒙) = 𝜙 has been well defined for all the state points on the normal cycle 𝐶. We

next estimate the phases for points off the normal cycle. By definition (Izhikevich, 2007), if 𝒙0 is a

point on the normal cycle and 𝒚0 is a point off the normal cycle, then 𝒚0 will have the same phase

as 𝒙0 if the trajectory starting at the initial point 𝒚0 off the normal cycle converges to the trajectory

starting at the initial point 𝒙0 on the normal cycle as time goes to infinity. Here, we define the set

of all state points off the normal cycle having the same phase as a point 𝒙0 on the normal cycle

as the isochron (Winfree, 2001) for phase 𝜙0 = Φ(𝒙0).

 In our analysis, it was not possible to define an isochron according to the theoretical definition

since data were always recorded in a finite time period during experiments. We used an

alternative way to estimate all isochrons on the phase plane for the worm’s head oscillation. For

each individual trial of illumination, we observed that, due to the optogenetic inhibition, the

variable �̇� quickly decayed toward zero value immediately after the illumination and then

recovered after approximately 0.3 s as the oscillation converged to a normal oscillation.

Therefore, by finding the local minimal of �̇� immediately after each illumination pulse, we located

the point at which the paralyzing effect is just removed and after which the oscillation starts a free

resumption to normal oscillation. We call this point the “notch point” 𝒙𝑁 as it can be clearly seen

from the phase plot (as shown in Figs. 2.2E, 2.2H, and 2.2K). After the notch point 𝒙𝑁, the

oscillation will proceed to its next phase states 𝒙(𝜙 = 2𝜋) and 𝒙(𝜙 = 𝜋) (or vice-versa), both of

which can be easily identified through peak finding from the curvature dynamics 𝐾. Hence, we

obtained two sub-trajectories from the oscillation: one 𝒙𝑁 → 𝒙(𝜙 = 2𝜋), and the other 𝒙𝑁 → 𝒙(𝜙 =

46

𝜋). Next to determining the timing of the notch point 𝑡(𝒙𝑁), we determined the phase of the notch

point in the following steps: (1) we computed the phase value of the state at which the illumination

occurs, 𝜙(𝒙𝑖𝑙𝑙𝑢𝑚), using the method described in the next subsection; (2) then we computed the

phase of the state on the normal cycle at the timing of the notch point 𝑡(𝒙𝑁) as if the perturbation

had not been applied, which is 𝜙(𝒙𝑁
𝐶) = (𝜙(𝒙𝑖𝑙𝑙𝑢𝑚) + ω0(𝑡(𝒙𝑁) − 𝑡(𝒙𝑁)))

𝑚𝑜𝑑 2𝜋
; (3) we calculated

the induced phase shift 𝑃𝑅𝐶(𝑡𝑖𝑙𝑙𝑢𝑚) and the phase of the notch point is 𝜙(𝒙𝑁) = 𝜙(𝒙𝑁
𝐶) −

𝑃𝑅𝐶(𝑡𝑖𝑙𝑙𝑢𝑚). After obtaining the sub-trajectories 𝒙𝑁 → 𝒙(𝜙 = 2𝜋) and 𝒙𝑁 → 𝒙(𝜙 = 𝜋) and

calculating the phase of 𝒙𝑁, we then estimated the phase values for all the points within each of

the two sub-trajectories through linear interpolation.

 Following the above steps, we calculated the phase values for all the state points on the

phase plane that have been recorded from the optogenetic experiments. We then applied a 2-D

moving average (using the angular statistics method) for the obtained phase values over the

phase plane to smooth out the isochron map. Finally, we used a linear 2-D interpolation to obtain

a phase isochron map with a finer resolution as shown in Fig. S2.3.

 To compute the vector field of the worm’s head oscillation, we collected all the sub-

trajectories 𝒙𝑁 → 𝒙(𝜙 = 2𝜋) and 𝒙𝑁 → 𝒙(𝜙 = 𝜋) that are defined above and took derivative of the

trajectories with respect to time. Thus, by collecting all the phase states (𝐾, 𝑐�̇�) and their

corresponding time derivatives (𝑑𝐾/𝑑𝑡, 𝑑(𝑐�̇�)/𝑑𝑡) that describe the tangent vectors of

trajectories, we generated the raw form of vector field for the worm’s head oscillation. Again, we

applied a 2-D moving average for the raw outcome over the phase plane to smooth out the vector

field. We used a linear 2-D interpolation to obtain a vector field with an appropriate number of

quivers to be displayed (Fig. S2.3).

47

PHASE RESPONSE ANALYSIS

To generate phase response curves (PRCs) from optogenetic inhibition experiments, each trial’s

illumination phase 𝜙, as well as the induced phase shift 𝐹, were calculated. To calculate the two

variables, the animal’s phase of oscillation was estimated based on timings of local extrema

identified from the time-varying curvature profiles via a peak finding method. Specifically, (i) the

occurrence of illumination of the trial was set to 𝑡 = 𝑇𝑖𝑙𝑙𝑢𝑚; 𝑡 = 0 was set at the beginning of each

experiment. (ii) Around the illumination, timings of the two local maxima of curvature immediately

before and after were identified as the two zero-phase points of the oscillation before and after

the illumination, respectively. Here, the timings are denoted as 𝑇𝑍−2, 𝑇𝑍−1, 𝑇𝑍+1, and 𝑇𝑍+2, in the

ascending order of time. (iii) Similarly, timings of the two local minima of curvature immediately

before and after the illumination were identified as the two half-cycle-phase points before and

after the illumination, respectively. Here, the timings are denoted as 𝑇𝐻−2, 𝑇𝐻−1, 𝑇𝐻+1, and 𝑇𝐻+2,

in the ascending order of time. (iv) With these measurements, cycle period 𝑇0 was computed as

𝑇0 = (𝑇𝑍+2 − 𝑇𝑍+1 + 𝑇𝑍−1 − 𝑇𝑍−2 + 𝑇𝐻+2 − 𝑇𝐻+1 + 𝑇𝐻−1 − 𝑇𝐻−2)/4, so the angular frequency of

undulation 𝜔0 = 2𝜋/𝑇0 (𝑇0 was computed as the average of differences of adjacent local

maxima/minima before and after illumination; multiple cycles were used here to reduce noise). In

addition, the illumination phase 𝜙 of each individual trial was computed as 𝜙𝑢 =

𝜔0(𝑇𝑖𝑙𝑙𝑢𝑚 − 𝑇𝑍−1)𝑚𝑜𝑑 𝑇0
, 𝜙𝑙 = 𝜔0(𝑇𝑖𝑙𝑙𝑢𝑚 − 𝑇𝐻−1 + 𝑇0/2)𝑚𝑜𝑑 𝑇0

, and the corresponding phase shift 𝐹

was computed as 𝐹𝑢 = 𝜔0(𝑇𝑍+1 − 𝑇𝑍−1)𝑚𝑜𝑑 𝑇0
− 𝜋, 𝐹𝑙 = 𝜔0(𝑇𝐻+1 − 𝑇𝐻−1 + 𝑇0/2)𝑚𝑜𝑑 𝑇0

− 𝜋. (Here,

phase of illumination and the corresponding phase shift were computed twice using zero

(subscripted with 𝑢) and half-cycle (subscripted with 𝑙) phase points as references, respectively.)

 We generated 2-D scatter plots for all trials with illumination phase as x coordinate and the

corresponding phase shift as y coordinate. To visualize the distribution of the scatter points we

generated bivariate histogram plots by grouping the data points into 2-D bins with 25 bins on both

dimensions covering the range [0,2𝜋] for x and range [−𝜋, 𝜋] for y. To indicate average tendency

48

of phase shift depending on phase of illumination, we calculated a mean-curve representation of

PRCs via a moving average operation. In this process, each mean was calculated over a sliding

window of width 0.16𝜋 along the direction of 𝜙 from 0 to 2𝜋. The 95% confidence interval relative

to each window of data points was also computed and an integral number of them were displayed

as filled area around the PRC. Through the computation, all statistical calculations followed the

rules of directional statistics (Fisher et al., 1993) since 𝜙 and 𝐹 are circular variables defined in

radians.

PHASE RESPONSE CURVES FROM PERTURBATIONS OF OTHER BODY REGIONS

We asked how phase responses for the other regions of the body would compare to that of the

anterior region. We conducted optogenetic experiments that inhibited Pmyo-3::NpHR transgenic

worms by transiently illuminating 0.1-0.3 (anterior), 0.4-0.6 (middle), and 0.6-0.8 (posterior) of the

body length, respectively. We found that the amplitude of the sawtooth feature of PRC tends to

decrease as the perturbation occurs further from the head (Fig. S2.6A,E,I). We also noticed that,

for the same perturbed region, the PRC shape remains unaffected regardless of the region at

which the dynamics were analyzed (see Fig. S2.6A-C, D-F, G-I, respectively), suggesting that

posterior regions of a freely moving worm follow their anterior neighbors with a constant phase

offset. Taken together, these results suggest that a main rhythm generator may operate near the

head of the worm to produce primary oscillations during forward locomotion. The sawtooth-shape

feature of the PRC becomes stronger if the perturbation hits closer to the rhythm generator (Fig.

S2.6A) or becomes weaker if the perturbation indirectly affects it (Fig. S2.6E,I)

THE RELAXATION OSCILLATOR MODEL FOR LOCOMOTOR WAVE GENERATION

We first developed a relaxation oscillator model to simulate the rhythm generation during C.

elegans forward locomotion. In this model, we incorporated a novel neuromuscular mechanism

with a previously described biomechanical framework (Fang-Yen et al., 2010). Here, we only

49

simulated the bending rhythms generated from the head region; the wave propagation dynamic is

out of the scope of our study. Our phenomenological model does not contain detailed activities of

individual neurons but focus on describing key neuromuscular mechanisms and their

contributions to the rhythm generation.

 To produce model variables that can be directly compared with experimental observations of

moving animals, a biomechanical framework was first developed to describe worm’s behavioral

dynamics in its external environments. Following previous derivations for C. elegans

biomechanics (Fang-Yen et al., 2010), the relationship between animal behavioral outputs and

the active muscle moments can be described as follows:

𝐶𝑁

𝜕𝑦

𝜕𝑡
+ 𝑎

𝜕2𝜅

𝜕𝑠2
+ 𝑎𝑣

𝜕

𝜕𝑡
(

𝜕2𝜅

𝜕𝑠2
) = 𝑚𝑎 . [𝐒𝟐. 𝟏]

 In Eqn. S2.1, the first term indicates the external viscous force that is transverse to the body

segment where 𝐶𝑁 is the coefficient of viscous drag to the transverse movement and 𝑦 denotes

the lateral displacement of body segment; the second term indicates the internal elastic force

where 𝑎 is the bending modulus of the worm body; the third term indicates the internal viscous

force where 𝑎𝑣 is the coefficient of the body internal viscosity. On the right side of Eqn. S2.1 is

the active muscle moment 𝑚𝑎.

 Taking the second partial derivative with respect to body coordinate 𝑠 on both sides of Eqn.

S2.1 and, using the linear relation under the small-amplitude approximation, 𝜅 ≈ 𝑦𝑠𝑠 , we arrive at:

𝐶𝑁

𝜕𝜅

𝜕𝑡
+ 𝑎

𝜕4𝜅

𝜕𝑠4
+ 𝑎𝑣

𝜕

𝜕𝑡
(

𝜕4𝜅

𝜕𝑠4
) =

𝜕2𝑚𝑎

𝜕𝑠2
. [𝐒𝟐. 𝟐]

 Under the assumptions of small-amplitude undulations and a fixed wavelength 𝜆 down the

worm body, 𝜅 can be considered as a travelling sinusoidal wave with a small deviation, 𝜅(𝑠, 𝑡) =

50

𝜅0 sin(2𝜋𝑠/𝜆 − 𝜔𝑡) + 𝛿, which leads to an approximation, 𝜅𝑠𝑠𝑠𝑠 ≈ (2𝜋/𝜆)4𝜅. Plugging this

approximation into Eqn. S2.2 while keeping 𝑠 fixed, after some rearrangement, one gets:

𝜅 +
𝐶𝑁 (

𝜆
2𝜋)

4

+ 𝑎𝑣

𝑎
�̇� =

𝜆4

(2𝜋)4𝑎

𝜕2𝑚𝑎

𝜕𝑠2
. [𝐒𝟐. 𝟑]

In terms of the dimensionless curvature 𝐾 = 𝜅 · 𝐿 and dimensionless muscle moment

𝑀𝑎 =
𝜆4𝐿

(2𝜋)4𝑎

𝜕2𝑚𝑎

𝜕𝑠2
, [𝐒𝟐. 𝟒]

we can rewrite Eqn. S2.3 as:

𝐾 + 𝜏𝑢�̇� = 𝑀𝑎 , [𝐒𝟐. 𝟓]

where

𝜏𝑢 =
𝐶𝑁 (

𝜆
2𝜋)

4

+ 𝑎𝑣

𝑎
, [𝐒𝟐. 𝟔]

and we note that Eqns. S2.5 and S2.6 yield Eqn. 2.1. In Eqn. S2.6, both the wavelength 𝜆 and

the normal viscous drag coefficient 𝐶𝑁 vary with the fluid viscosity 𝜂 (Berri et al., 2009; Fang-Yen

et al., 2010).

 The above biomechanical framework in our model treats the worm’s body segment as a

viscoelastic rod and describes how the body segment bends under the forces provided by the

active muscle moment. However, the simulated oscillation in 𝐾 comes from the rhythmicity of the

active muscle moment which originates from the hypothesized neuromuscular mechanism

described by the following relaxation-oscillation process:

i. Proprioceptive feedback is sensed as a linear combination of the current curvature value

51

and the current rate of change of curvature, 𝑃 = 𝐾 + 𝑏�̇� (black curve in Fig. 2.3D).

ii. During movement of bending, this proprioceptive feedback is constantly compared with

two threshold values 𝑃𝑡ℎ and −𝑃𝑡ℎ (grey dashed bars in Fig. 2.3D).

iii. Once the feedback reaches either of the thresholds (the switch points as indicated by red

circles in Fig. 2.3D), a switch command is initiated (blue square wave in Fig. 2.3E).

iv. The switch command triggers the active muscle moment to change toward the opposite

saturation value (black curve in Fig. 2.3E).

 To simulate the switch-triggered muscle transition we used a modified logistic function:

𝑀𝑎(𝑡) = ±𝑀0 ∙ tanh(𝑡/2𝜏𝑚). Here, the plus sign indicates the dorsal-to-ventral muscle moment

transition while the minus sign indicates the opposite direction.

 To initiate the oscillation in our model we set the system to bend toward the ventral side by

setting 𝑀𝑎|𝑡=0 = 𝑀0 and 𝐾|𝑡=0 = 0. During forward locomotion, the active muscle moment

oscillates by undergoing a relaxation oscillation process: a relaxation subperiod during which 𝑀𝑎

stays at a saturated bending state (𝑀0 for ventral bending, −𝑀0 for dorsal bending), alternating

between a shorter subperiod during which 𝑀𝑎 quickly transits toward the opposite state due to

effects described in iii and iv. The bending curvature 𝐾(𝑡) which is driven by 𝑀𝑎 in an exponential

decaying manner (Eqn. S2.5) follows the rhythmic activity of 𝑀𝑎, thereby also exhibiting an

oscillatory dynamic (Fig. 2.3B).

 This relaxation oscillator model reproduces two key features of free locomotion that we

observed from experiments. First, freely moving worms exhibit nonsinusoidal curvature waveform

with an intrinsic asymmetry: bending toward the ventral or dorsal directions occurs slower than

straightening toward a straight posture during each locomotory cycle (Fig. 2.3F). Second,

dynamic of the active muscle moment shows a trapezoidal waveform during forward locomotion

(Fig. 2.1D Inset and Fig. 2.3E). These results are independent of external conditions but reflect

52

intrinsic properties of the neuromuscular mechanisms underlying locomotion rhythm generation.

 Note that parameters 𝑀0, 𝜏𝑢, and 𝜏𝑚 were estimated from data of free locomotion using

phase portrait techniques described the following subsection. Parameters 𝑏 and 𝑃𝑡ℎ were yet

degenerate in this model of free locomotion. Here, we temporarily set 𝑏 = 0 and then set 𝑃𝑡ℎ such

that the oscillatory period predicted by model matched the average period measured from

experiments with a minimum squared error:

𝑃𝑡ℎ = argmin
𝑃𝑡ℎ>0

 (𝑇𝑚𝑜𝑑𝑒𝑙(𝑃𝑡ℎ) − 𝑇𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡)
2

. [𝐒𝟐. 𝟕]

The nondegeneracy of 𝑏 and 𝑃𝑡ℎ was determined by fitting the model to the experimental PRC as

described in the later subsection so that all the parameters for the model are provided as 𝑀0 =

8.45, 𝜏𝑢 = 260 𝑚𝑠, 𝜏𝑚 = 100 𝑚𝑠, 𝑏 = 46 𝑚𝑠, and 𝑃𝑡ℎ = 2.33.

MEASURING BENDING RELAXATION TIME SCALE AND AMPLITUDE OF ACTIVE MUSCLE

MOMENT

To estimate these two parameters, we applied a heuristic method that uses the shape properties

of C. elegans free-running phase plot (Fig. 2.1D). From the curve in the figure, we noticed two

‘flat’ portions symmetrically distributed at quadrant I and III on the phase plane. Recalling Eqn.

2.1 (or Eqn. S2.5): 𝐾 + 𝜏𝑢 ⋅ �̇� = 𝑀𝑎(𝑡), the two flat regions indicate that the scaled active muscle

moment, 𝑀𝑎(𝑡), is nearly constant during the corresponding time bouts.

 We then computed the linear correlation between variables 𝐾 and �̇� to identify the two ‘flat’

regions and, through linear fits, obtained two linear relations respectively: 〈𝐾〉 + 𝜏1 ⋅ 〈�̇�〉 = 𝑀1

(region 1) and 〈𝐾〉 + 𝜏2 ⋅ 〈�̇�〉 = 𝑀2 (region 2). Thus, the bending relaxation time scale 𝜏𝑢 and the

amplitude of the scaled active muscle moment are estimated as 𝜏�̂� = (𝜏1 + 𝜏2)/2 and 𝑀0̂ =

(|𝑀1| + |𝑀2|)/2, respectively.

53

 The above method used the phase plot measured from locomotion of worms swimming in a

17% dextran solution (120 mPa·s viscosity) as an example. However, it is also valid for

estimating parameters of locomotion in other viscosities.

MEASURING ACTIVE MOMENT TRANSITION TIME SCALE

With 𝜏𝑢 (estimated from the above method), 〈𝐾〉 and 〈�̇�〉 (measured from locomotion) plugged to

the left side of Eqn. 2.1, we were able to compute the waveform of the scaled active muscle

moment 𝑀𝑎(𝑡) on the right side of Eqn. 2.1. As expected and shown in Fig. 2.1D Inset, the curve

of 𝑀𝑎(𝑡) is roughly centrally symmetric around point (𝑇0/2, 0) on the plane, with two plateau

portions indicating two saturated states for dorsal and ventral muscle contractions, respectively.

 Between the two plateau portions represents a period during which the active muscle

moment is undergoing a ventral-to-dorsal (or vice-versa) transition. We used a modified logistic

function to model the ventral-to-dorsal muscle moment transition (substituting 𝑡 with −𝑡 for

transition in the other direction):

𝑀𝑎(𝑡) = 𝑀0 ∙ tanh (
𝑡

𝜏𝑚
) . [𝐒𝟐. 𝟖]

To estimate 𝜏𝑚, the exponential time constant for the transition of active muscle moment, we took

the time derivative of Eqn. S2.8 and took the absolute value of the resultant:

|
𝑑𝑀𝑎

𝑑𝑡
| =

𝑀0

𝜏𝑚
⋅

exp(2𝑡/𝜏𝑚)

(1 + exp(2𝑡/𝜏𝑚))2
. [𝐒𝟐. 𝟗]

 We notice that when 𝑡 = 0, the maximum of |𝑑𝑀𝑎/𝑑𝑡| is achieved and the value is 𝑀0/𝜏𝑚. On

the other hand, the maximum of |𝑑𝑀𝑎/𝑑𝑡| can be obtained from the experimental observation by

simply finding the peak of |𝑑𝑀𝑎/𝑑𝑡| curve where 𝑀𝑎 = 〈𝐾(𝑡)〉 + 𝜏�̂� ⋅ 〈𝑑𝐾(𝑡)/𝑑𝑡〉. Thus, 𝜏𝑚 can be

estimated as:

54

𝜏𝑚 = 𝑀0̂ ⋅ |
𝑑𝑀𝑎

𝑑𝑡
|

𝑚𝑎𝑥

−1

. [𝐒𝟐. 𝟏𝟎]

PARAMETER ESTIMATION

For our original threshold-switch model, parameters 𝜏𝑢, 𝜏𝑚, and 𝑀0 were estimated from free

locomotion experiments as described above. These three parameters nearly fully determine the

biomechanical framework of C. elegans bending movements (governed by Eqns. S2.5 and S2.8).

On the other hand, parameters 𝑏 and 𝑃𝑡ℎ describe the proprioceptive feedback and the threshold-

switch features in our model. Specifically, they characterize two threshold lines, 𝐾 + 𝑏�̇� = ±𝑃𝑡ℎ

(as shown in Fig. 2.3C). The two switch points—defined by the intersection between the phase

trajectory and the threshold lines on the phase plane—determine the timing of switches for the

active muscle moment (see Figs. 2.3C-E). We noted that the model behavioral output of free

locomotion is degenerate with respect to these two parameters; the same outcome would be

produced if the threshold lines cross the same pair of switch points. To first determine the free-

moving dynamic as well as the switch points, we temporarily set 𝑏 = 0 and then set 𝑃𝑡ℎ such that

the oscillatory period defined by model matched the average period measured from the

experiments.

 To obtain the nondegeneracy of 𝑃𝑡ℎ and 𝑏, we fit our model to the experimental phase

response curve using a global optimization procedure. Full procedure for the determination of 𝑏

and 𝑃𝑡ℎ is given below.

MODELING WORM OSCILLATION IN VARIED ENVIRONMENTS

Differences in various environments will change only those parameters that are related to contact

with external forces whereas parameters related to oscillator’s internal properties will not be

affected. In terms of the internal parameters of our model, we used values that were previously

determined, which are 𝜏𝑚 = 100 𝑚𝑠, 𝑀0 = 8.45, 𝑏 = 46 𝑚𝑠, 𝑃𝑡ℎ = 2.33. For the exogenous

55

parameters, only the time constant of undulation, 𝜏𝑢, varies according to external conditions.

According to Eqn. S2.6, 𝜏𝑢 is explicitly determined in terms of other physical parameters,

including biomechanical parameters measured in previous work (Fang-Yen et al., 2010): the

internal viscosity of worm body is measured as 𝑎𝑣 = 5 ⋅ 10−16𝑁𝑚3𝑠; the bending modulus of

worm body is measured as 𝑎 = 9.5 ⋅ 10−14𝑁𝑚3; 𝐶𝑁 = 31𝜂 is the coefficient of viscous drag for

movement normal to the body (Katz et al., 1975), where 𝜂 is the fluid viscosity. According to

previous measurements of undulatory wavelengths in different viscous solutions (Fang-Yen et al.,

2010), we applied a logarithmic fit to the data points, yielding 𝜆/𝐿 = −0.158 log10(𝜂/𝜂0) +1.5 for a

continuous model realization in undulatory frequency and amplitude. Here, 𝜆 is the wavelength

and 𝜂0 = 1 𝑚𝑃𝑎 · 𝑠.

ALTERNATIVE MODELS FOR LOCOMTOR WAVE GENERATION

To further evaluate the performance of our original model, we explored three alternative models

for simulating locomotory rhythm generation to make comparisons across these models and the

experimental observations. Alternative models are based on three previously studied self-

oscillator models described by 2-D nonlinear systems: the van der Pol, Rayleigh, and Stuart-

Landau oscillators.

 First, we developed a model oscillator in the form taken from the van der Pol Oscillator:

�̈� + 𝑎𝑉 (𝑏𝑉𝐾2 − 1)�̇� + 𝜔𝑉
2 𝐾 = 0, [𝐒𝟐. 𝟏𝟏]

where 𝐾 indicates the nondimensional bending curvature. This model has a nonlinear damping

term with a coefficient depending on 𝐾. Simulated oscillation is a limit cycle of the model (Fig.

S2.12B,F), given parameters 𝑎𝑉 = −0.026 𝑠−1, 𝑏𝑉 = −2.04, 𝜔𝑉 = 5.51 𝑠−1.

 Second, we developed a model oscillator by modifying the Rayleigh Oscillator:

56

�̈� + 𝑎𝑅(𝑏𝑅�̇�2 − 1)�̇� + 𝜔𝑅
2 𝐾 = 0, [𝐒𝟐. 𝟏𝟐]

where 𝐾 again indicates the nondimensional bending curvature. This model has a nonlinear

damping term with a coefficient depending on �̇�. Simulated oscillation is a limit cycle of the model

(Fig. S2.12C,G), given parameters 𝑎𝑅 = 2.73 𝑠−1, 𝑏𝑅 = 0.0023 𝑠2, 𝜔𝑅 = 5.6 𝑠−1.

 Third, we developed a model oscillator by modifying the Stuart-Landau Oscillator:

�̇� + (
𝑙

2
|𝑍|2 − 𝜎) 𝑍 = 0. [𝐒𝟐. 𝟏𝟑]

Here, the system is described in the complex domain where 𝑍 = 𝑍𝑟 + 𝑖𝑍𝑖, 𝑙 = 𝑙𝑟 + 𝑖𝑙𝑖 are complex

variables, and 𝜎 is real. We let 𝑍𝑟, the real part of 𝑍, denote the nondimensional curvature 𝐾. This

model has a nonlinear damping term with coefficient depending on |𝑍|. Simulated oscillation is a

limit cycle of the model (Fig. S2.12D,H), given parameters 𝑙𝑟 = 0.54 𝑠−1, 𝑙𝑖 = 0.52 𝑠−1, 𝜎 =

5.54 𝑠−1.

 The three alternative models produce free-running oscillatory dynamics with similar frequency

and amplitude as measured from worms swimming in fluids with viscosity 120 𝑚𝑃𝑎 · 𝑠.

SIMULATION OF OPTOGENETIC INHIBITION

According to our experimental observations on the effect of the optogenetic muscle inhibition

(Figs. 2.2A,B), paralysis of muscles of the illuminated region initiated upon illumination (defined

as 𝑡 = 0 for Fig. 2.2B) and reached maximal effect approximately at 𝑡 = 0.3 𝑠. Here, we modeled

the process of muscle inhibition by multiplying the scaled active muscle moment, 𝑀𝑎, with a

factor, 1 − 𝑄(Δ𝑡), as a function of the time interval Δ𝑡 in a bell-shaped form (Fig. S2.10, Eqn.

S2.14).

 As described in our model, the dorsoventrally alternating feature of the active muscle moment

57

during locomotion are described by the dynamics of 𝑀𝑎(𝑡). Specifically, 𝑀𝑎(𝑡) is positive when

ventral muscles contract and dorsal muscles relax, and negative for the other half of the cycle.

Therefore, in our threshold-switch model, specifically inhibiting dorsal- or ventral- or both-side

muscles was computationally equivalent to conditionally modulating 𝑀𝑎(𝑡) with the bell-shaped

modulating function depending on the sign of 𝑀𝑎(𝑡).

 For simulating inhibition process in the three alternative models, we factored out a specific

term from individual model equations as a generalized active muscle moment. We applied the

bell-shaped modulating function to this term conditionally for each individual model. Detailed

descriptions of implementing modeled inhibitions in alternative models are available from below.

 To get a deeper understanding of how phase response curves are related to systems

dynamics during wave generation, we systematically simulated transient muscle inhibitions on

individual model oscillators at different times within a cycle period to generate model PRCs. To do

that, we theoretically simulated the process of muscle inhibition by multiplying model active

muscle moment with a modulatory factor, 1 − 𝑄(Δ𝑡), which has a bell-shaped profile (Fig. S2.10):

𝑄(Δ𝑡) =
𝐻

(1 + |
Δ𝑡 − 𝑟

𝑝 |
2𝑞

)

, [𝐒𝟐. 𝟏𝟒]

where 𝑟 = 0.3 𝑠 is the timing of the occurrence of maximal paralysis according to our

experimental observations on the effect of muscle inhibition (Figs. 2.2A,B), 𝐻 indicated the

maximal degree of paralysis, and 𝑝, 𝑞 measure the paralyzing rate and duration, respectively. To

ensure sufficient smoothness during computation, we let 𝑝 = 0.3 · 10−1/𝑞 so that 𝑄|Δt=0 > 0.99.

Note that when modeling the dorsal-side-only muscle inhibition, the parameter 𝐻 for describing

max degree of optogenetic muscle inhibition was modulated to 𝐻 = 0.5 ∗ 𝐻𝑜𝑝𝑡𝑖𝑚𝑎𝑙 to qualitatively

agree with experimental observations (Fig. 2.5). This factor accounts for unequal degrees of

58

paralysis during ventral vs. dorsal illumination (Fig. S2.11), causing the PRC of dorsal-side

illumination to show a relatively moderate response compared to ventral-side illumination.

 To simulate the muscle inhibition on our threshold-switch model, we multiplied 𝑀𝑎 with (1 −

𝑄) any time the model was to be inhibited during its oscillatory period. To apply this operation to

the alternative models, we factored out a term as a generalized active muscle moment for each

individual model and then multiplied it with the bell-shaped function described above. The

generalized forms of active muscle moment for the alternative models are implemented by

modifying their original forms as follows:

a. For the van der Pol Oscillator, it is modified as:

{
�̈� + (−𝑀�̃� + 𝑃𝑉)�̇� + 𝜔𝑉

2 𝐾 = 0

𝑀𝑉 = 𝑎𝑉(1 − 𝑏𝑉𝐾2) + 𝑃𝑉

 ; [𝐒𝟐. 𝟏𝟓]

b. For the Rayleigh Oscillator, it is modified as:

{
�̈� + (−𝑀�̃� + 𝑃𝑅)�̇� + 𝜔𝑅

2 𝐾 = 0

𝑀𝑅 = 𝑎𝑅(1 − 𝑏𝑅�̇�2) + 𝑃𝑅

 ; [𝐒𝟐. 𝟏𝟔]

c. For the Stuart-Landau Oscillator, it is modified as:

{
�̇� + (−𝑀�̃� + 𝑃𝑆)𝑍 = 0

𝑀𝑆 = 𝜎 −
𝑙

2
|𝑍|2 + 𝑃𝑆

 . [𝐒𝟐. 𝟏𝟕]

 For each individual model listed above, 𝑀�̃� (subscript 𝑖 represents V, R, and S, respectively)

is the generalized muscle moment which is to be multiplied by the bell-shaped factor (1 − 𝑄)

upon perturbation, and 𝑃𝑖 is the additional damping coefficient. Note that the minus sign prior to

𝑀𝑖 in the first equation of each set indicates that 𝑀𝑖 is a negative damping term that provides

power to the system, while 𝑃𝑖 is set positive for modeling the effect of bending toward the straight

posture due to internal and external viscosity. Also note that Eqns. S2.15-2.17 would be

equivalent to their original form (Eqns. S2.11-2.13) when inhibition is absent (in this case, 𝑀�̃� =

59

𝑀𝑖).

 By modeling the muscle inhibition process during locomotion, we were able to perform

simulations of phase response experiments on individual models to produce perturbed systems

dynamics (Fig. S2.12J-L) and the corresponding PRCs (Fig. S2.12N-P and Fig. S2.13).

OPTIMIZATION OF MODELS

For each individual model we developed, the parameters were determined via a two-round fitting

process. First, a subset of parameters was determined by fitting the model to observations of

free-moving dynamics; the model could generate free-moving dynamics close to observations at

this point. Second, the rest of the parameters were settled by fitting it to experimental phase

response curves; a model would be fully determined at this point. Detailed descriptions of the

two-step optimization procedure for individual models are provided as follows:

 For the original threshold-switch model, parameters 𝜏𝑢, 𝑀0, and 𝜏𝑚 were explicitly estimated

from the experiments of free locomotion using phase portrait techniques described above. To

simulate free locomotion, we further determined the position of switch points in the model (as

indicated in Fig. 2.3C red circle), which we did using method described by Eqn. S2.7. Next, we

plugged the determined parameters into the model and conducted the second round of

optimization by fitting the model with undetermined parameters 𝑃𝑡ℎ, 𝑏, as well as the parameters

for simulating muscle inhibition—𝐻 and 𝑞. We generated model PRC by perturbing the model

oscillator at different times within a cycle period and settled the parameters such that the model

PRC matched the experimental one with a minimum mean squared error (MSE) (During the

computation of MSE, values of both model and experimental PRCs were sampled across the

entire range of 𝜙 with 100 evenly distributed samples. In this case, Δ𝜙 = 2𝜋/100):

(𝑃𝑡ℎ , 𝑏, 𝐻, 𝑞) = argmin
𝑃𝑡ℎ ,𝑏,𝐻,𝑞

 ∑ (𝑃𝑅𝐶𝑚𝑜𝑑𝑒𝑙(𝑃𝑡ℎ , 𝑏, 𝐻, 𝑞; 𝜙) − 𝑃𝑅𝐶𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡(𝜙))
2

𝛥𝜙
2𝜋

0
[𝐒𝟐. 𝟏𝟖]

60

To find the parameters that minimize the difference, a global minimum search was performed

using the MATLAB function ‘GlobalSearch’ (Ugray et al., 2007). When run, the function

repeatedly uses a local minimum solver with different batches of parameter range and attempts to

locate a solution that produces the lowest MSE value.

 Similarly, the two-step optimization procedures for individual alternative models are

summarized in Table S2.1.

Table S2.1. Objective functions used in the optimization procedures for alternative models

Type Free locomotion model Complete model

van der

Pol

argmin
𝑎𝑉 ,𝑏𝑉,𝜔𝑉

((
𝑇𝑣𝑑𝑃

𝑇𝑒𝑥𝑝𝑡
− 1)

2

+ (
𝐴𝑣𝑑𝑃

𝐴𝑒𝑥𝑝
− 1)

2

)

argmin
𝑝𝑉,𝐻,𝑞

∑ (𝑃𝑅𝐶𝑣𝑑𝑃(𝜙)
2𝜋

0

− 𝑃𝑅𝐶𝑒𝑥𝑝(𝜙))
2

𝛥𝜙

Rayleigh

argmin
𝑎𝑅,𝑏𝑅,𝜔𝑅

((
𝑇𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ

𝑇𝑒𝑥𝑝𝑡
− 1)

2

+ (
𝐴𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ

𝐴𝑒𝑥𝑝
− 1)

2

)

argmin
𝑝𝑅,𝐻,𝑞

∑ (𝑃𝑅𝐶𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ(𝜙)
2𝜋

0

− 𝑃𝑅𝐶𝑒𝑥𝑝(𝜙))
2

𝛥𝜙

Stuart-

Landau

argmin
𝑎𝑆,𝑏𝑆,𝜔𝑆

((
𝑇𝑆𝐿

𝑇𝑒𝑥𝑝𝑡
− 1)

2

+ (
𝐴𝑆𝐿

𝐴𝑒𝑥𝑝
− 1)

2

)

argmin
𝑝𝑆,𝐻,𝑞

∑ (𝑃𝑅𝐶𝑆𝐿(𝜙)
2𝜋

0

− 𝑃𝑅𝐶𝑒𝑥𝑝(𝜙))
2

𝛥𝜙

Two-step optimization procedure for van der Pol, Rayleigh, and Stuart-Landau oscillators. The

first-step optimization determines part of parameters such that individual models generate free

locomotion dynamics. The second-step optimization leads to complete models such that models’

perturbed dynamics and phase response curves are produced.

ACKNOWLEDGEMENTS

We thank Mei Zhen and Quan Wen for providing strains. Some strains were provided by the

61

CGC, funded by NIH Office of Research Infrastructure Programs (P40 OD010440). We thank Gal

Haspel, Michael Carchidi, and Patrick McClanahan for helpful discussions. H.J., A.D.F, and C.F.-

Y. were supported by the National Institutes of Health (1R01NS084835). S.T. was supported by

an Abraham Noordergraaf Research Fellowship and a Littlejohn Fellowship.

62

CHAPTER 3: A PROPRIOCEPTIVE FEEDBACK CIRCUIT CONTROLS LOCOMOTOR

AMPLITUDE THROUGH DOPAMINE AND NEUROPEPTIDE SIGNALING IN C. ELEGANS

Hongfei Ji1, Anthony D. Fouad1, Zihao Li1, Andrew Ruba1, and Christopher Fang-Yen1,2

1Department of Bioengineering, School of Engineering and Applied Science, University of

Pennsylvania, Philadelphia, PA 19104

2Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania,

Philadelphia, PA 19104

This chapter is a slightly modified manuscript in preparation.

Author contributions: Hongfei Ji: Data curation, Software, Formal analysis, Investigation,

Visualization, Methodology, Writing - original draft, review, and editing; Anthony D Fouad:

Software, Methodology; Zihao Li, Andrew Ruba: Investigation; Christopher Fang-Yen:

Conceptualization, Resources, Software, Supervision, Funding acquisition, Methodology, Writing

- original draft, review, and editing, Project administration.

INTRODUCTION

Navigation in natural environments requires flexible and adaptable locomotor behavior

(Alexander, 2013; Dickinson et al., 2000). During locomotion in a natural context, an animal often

encounters obstacles and irregularities, and needs to modulate the activity in order to adapt its

body posture and motor patterns to the inevitable perturbations (Grillner and El Manira, 2020;

Pearson, 2000). In lamprey and other undulatory animals, while generating a spatiotemporal

pattern for propulsion, the motor circuits also precisely and contextually tune the body’s

biomechanical responses to the external conditions (Berri et al., 2009; Blight, 1977; Fang-Yen et

al., 2010; Ji et al., 2021a; LONG, 1998; Tytell et al., 2018). Kinematic and electromyographic

63

studies in legged animals characterized a phasic compensatory reaction in a perturbed animal,

which induces rapid corrective movements adapted to the perturbation (Dietz et al., 1987;

Forssberg, 1979; Forssberg et al., 1975, 1977; Mayer and Akay, 2018; McVea and Pearson,

2007; Potocanac et al., 2016; Prochazka et al., 1978).

 Well-adapted locomotion against unexpected perturbations relies on intricate interactions

between a dedicated neural circuitry capable of generating basic locomotor rhythm (central

pattern generator; Cohen and Wallén, 1980; Delcomyn, 1980; Grillner, 2003; Kiehn, 2011; Kristan

and Calabrese, 1976; Marder and Calabrese, 1996; Pearce and Friesen, 1984; Yu et al., 1999)

and various feedback pathways that modulate locomotion (Grillner, 2006; Grillner and El Manira,

2020; Kiehn, 2016; Rossignol, 2006; Windhorst, 2007). In particular, proprioception plays an

essential role in providing rapid feedback on body position for locomotor control during natural

movements (Andersson et al., 1981; Brodfuehrer and Friesen, 1986; Friesen, 2009; Grillner and

Wallen, 2002; Pearson, 2000; Wen et al., 2012). In mammals, proprioceptive inputs from multiple

sensory organs are continuously weighted and processed within spinal cord circuits to instruct

compensatory electromyographic responses to the current locomotor situation (Dietz, 2002). In

lamprey and other undulators alike, adaptive locomotion relies critically on proprioceptive

feedback to adjust or correct its undulatory gait to the changing physical space (Berri et al., 2009;

Boyle et al., 2012; Fang-Yen et al., 2010; Fouad et al., 2017; Iwasaki et al., 2014; Ji et al., 2021a;

Picton et al., 2021; Susoy et al., 2021).

 The neural mechanisms underlying adaptive locomotion are complex. In vertebrates, the

corrective locomotor control for handling perturbations during movements involves delicate

computations within circuits of spinal cord, brain stem, and forebrain (Grillner, 2003; Grillner et al.,

2005; Roseberry et al., 2016; Svoboda and Li, 2018). Recent genetic expression and

manipulation techniques have greatly facilitated the analyses of the function of CPGs in fine

64

locomotor control as well as the identification of relevant interneurons (Goulding, 2009; Grillner

and Jessell, 2009; Kiehn, 2016). In the mouse, many spinal cord interneurons with their

membrane properties and synaptic connectivity have been identified and found to be important

for corrective locomotor control (Alvarez et al., 2005; Bourane et al., 2015a, 2015b; Bui et al.,

2013; Hilde et al., 2016; Koch et al., 2017; Zagoraiou et al., 2009; Zhang et al., 2008). However, it

is unclear how the identified interneurons are implicated in the underlying neuronal pathways to

contribute to the motor control, in part because of the lack of in vivo methods for acutely

interfering neuronal activity to assess their role in locomotor movements (Grillner and El Manira,

2020; Mayer and Akay, 2018). Moreover, our knowledge of how proprioception modality is

relayed to control movement and posture, and which interneurons are responsible for gating

proprioceptive signal transmission is still limited (Büschges and Mantziaris, 2021; Dietz, 2002;

Pearson, 2004; Zhen and Samuel, 2015). Here, we use the locomotor behavior of C. elegans to

ask how the corrective locomotor control is embedded in nervous system.

 C. elegans has a relatively small and well-identified nervous system (Bargmann, 2012; Cook

et al., 2019; White et al., 1986). Advances in physiology and neurogenetics establish a variety of

genetic and physical methods (Bargmann, 1998; Brenner, 1974; Chronis et al., 2007; Dong et al.,

2021; Hobert, 2003; Leifer et al., 2011; Lockery et al., 2008), offering an opportunity for a systems

level dissection of locomotor control.

 Undulatory movements of C. elegans during locomotion are generated by a set of body wall

muscles arranged in two dorsal and two ventral rows running along the length of worm’s body

(Von Stetina et al., 2006), with adjacent muscle cells within each row coupled by gap junctions

(Liu et al., 2006). Alternating activity of antagonist muscles are driven by motor neurons located in

head ganglia and the ventral nerve cord (Zhen and Samuel, 2015), of which the proprioception

coupling between the ventral cord motor neurons is required for propagating rhythmic activity

65

along the body (Wen et al., 2012). Motion direction is controlled by a set of premotor interneurons

(previously named as “command interneurons”) that directly instruct motor neurons to coordinate

forward and backward locomotion (Chalfie et al., 1988; Kawano et al., 2011).

 While basic sinusoidal locomotion can arise from a circuitry with only motor neurons and

command interneurons (Chalfie et al., 1985; Deng et al., 2020; Gao et al., 2018; Kawano et al.,

2011), adaptable locomotion in natural contexts involves motor control of the head and sublateral

motor neurons with various functional roles in modulating postures (Gray et al., 2005; Kaplan et

al., 2020; Kato et al., 2015; Kratsios et al., 2012; Schwarz and Bringmann, 2017; Yeon et al.,

2018). Moreover, context-dependent, optimal motor control is subject to the feedback input from a

large number of interneurons and sensory neurons (Cermak et al., 2020; Cook et al., 2019; Hums

et al., 2016; Li et al., 2006; López-Cruz et al., 2019; Oranth et al., 2018; Shen et al., 2016; Tao et

al., 2019; Xu et al., 2018), as well as neuromodulation of biogenic amines and neuropeptides

which reconfigures circuit properties for driving various long-term or short-term locomotor states

(Bargmann, 2012; Chase et al., 2004; Churgin et al., 2017; Donnelly et al., 2013; Flavell et al.,

2013; Hills et al., 2004; Hu et al., 2011; Sawin et al., 2000; Susoy et al., 2021; Vidal-Gadea et al.,

2011).

 In the wild, natural C. elegans populations can be found from soil, compost, leaf, and various

other environments where they inevitably need to adjust their movements against gait

perturbations such as terrain obstructions. Previous optical physiological studies reported several

cases where C. elegans exhibits several spatiotemporally distinctive locomotory dynamics upon

different gait perturbations. When physically immobilized in the midbody, C. elegans anterior

unrestrained region continues undulating while the posterior free end stays at a static curvature

that follows the shape of the immobilized region (Wen et al., 2012). When the anterior bending

activity is optogenetically inhibited, C. elegans head region oscillates at a lower frequency while

66

the posterior undulation frequency doubles (Fouad et al., 2018; Xu et al., 2018). Upon a transient

inhibition on the anterior bending activity, the local bending dynamic exhibits a phase-dependent

perturbation response curve (Ji et al., 2021a). Despite the few descriptions under perturbative

conditions, corrective locomotor control to gait perturbations in C. elegans is still not well

characterized, nor are the underlying neuronal control mechanisms.

 Here, we sought to understand how the C. elegans motor system adapts locomotion in

response to gait perturbations on the behavioral, circuit, and molecular levels. The present study

demonstrates that C. elegans uses a posterior-to-anterior proprioceptive coupling to adapt its

locomotor amplitude to gait perturbations in a homeostatic manner. Through microfluidic

manipulation of behavioral outputs, in vivo optical neurophysiology, and molecular genetics, we

dissect the underlying neuronal pathways: dopaminergic PDE neurons, functioning as

proprioceptors by sensing the midbody curvature, transduce local proprioceptive input into

dopamine signaling. The dopamine activity of PDE then drives AVK interneurons activity via D2-

like dopamine receptor DOP-3. FMRFamide-like neuropeptide FLP-1, released by AVK, regulates

SMB motor neurons via receptor NPR-6, hence modulating anterior bending amplitude. Our

findings identify a behavioral circuit for a type of corrective movement control in C. elegans

locomotion from sensory input to motor output.

RESULTS

C. ELEGANS MODULATES ANTERIOR AMPLITUDE RETROGRADELY IN RESPONSE TO

THE OPTOGENETICALLY PERTURBED MIDBODY CURVATURE

During forward locomotion, C. elegans propagates sinusoidal bending waves posteriorly from the

head region by alternating contralateral muscle contraction and relaxation along the worm’s body

(Croll, 1970; Wen et al., 2012). To describe the undulatory behavior, we quantified the kinematics

of worm undulation by calculating the time-varying curvature along the body centerline (Fang-Yen

67

et al., 2010; Leifer et al., 2011). We defined the normalized curvature as the nondimensional

product of the body length and the reciprocal of local radius of curvature along the centerline of

the body (Fig. 3.1A). With this metric, we quantified the undulatory behavior using the time-

varying normalized curvature from head to tail as shown in a kymograph (Fig. 3.1B).

Figure 3.1. Optogenetic inhibition of midbody muscles causes increase in anterior bending

amplitude.

(A) Worm locomotory dynamics can be represented by time-varying curvature along the body.

Body coordinate 𝑠 is denoted by the distance along the centerline normalized by the body length

𝐿 (head = 0, tail = 1). The normalized curvature 𝐾 is the nondimensional product of the body

length and the reciprocal of the local radius of curvature with positive and negative values

representing ventral and dorsal bending, respectively.

(B) Curvature kymograph (curvature as a function of time and body coordinate) of a freely moving

worm during forward locomotion.

68

(C) Images of a transgenic worm (Muscle::NpHR) perturbed by an optogenetic muscle inhibition

in the midbody during forward locomotion in a viscous liquid (viscosity = 120 mPa·s). Green

shaded region indicates the laser illumination. a: anterior, p: posterior, d: dorsal, v: ventral. Scale

bar, 200 µm.

(D) Curvature kymograph of the worm locomotion shown in (C). Green dashed box indicates the

0.5 s laser illumination interval starting at 𝑡 = 0 applied to the midbody.

(E) A representative trial of curvature dynamics of a worm’s middle (upper) and anterior (lower)

regions around a 0.1 s muscle inhibition in the midbody (green bar, aligned at 𝑡 = 0). Black and

red crosses mark the last four pre-illumination and the first four post-illumination curvature peaks,

respectively.

(F) Kymograph of mean absolute curvature around the 0.1 s inhibitions (green dashed box) from

1160 trials using 206 worms.

(G) Undulatory amplitude change upon transient midbody muscle inhibitions, measured as mean

± SEM of the normalized curvature change of the first four post-illumination curvature peaks of

the middle (upper) and anterior (lower) body regions, respectively. Same data as used in (F). For

each trial of illumination, the normalized curvature change is defined by Δ𝐾/|𝐾−1| = (|𝐾+𝑛| −

|𝐾−1|)/|𝐾−1|, where |𝐾+𝑛| denotes the absolute value of the 𝑛th post-illumination curvature peak

and |𝐾−𝑖| (𝑖 = 1 or 2) denotes the absolute value of the last pre-illumination curvature peak that

has the same bending direction of 𝐾+𝑛. Regarding worm body regions, middle = 0.4-0.6, anterior

= 0.1-0.3 body coordinate.

 To examine how C. elegans modulates locomotion in reaction to gait perturbation, we

systematically perturbed the motor activity in different body regions and analyzed the

corresponding undulatory dynamics during forward locomotion. With an optogenetic laser

69

targeting system (Fouad et al., 2018), we applied laser illumination (532 nm wavelength) to

selected body regions of animals expressing the inhibitory opsin NpHR in body wall muscles (via

the transgene Pmyo-3::NpHR).

 Transient optogenetic inhibitions (0.1 or 0.5 s duration) of muscles at the head region (0.05-

0.25 body length) and neck region (0.2-0.4 body length) both caused a rapid straightening of the

anterior region followed with a mild amplitude decline in the subsequent body bends propagating

from head to tail (Fig. S3.1A, B, E, and F), consistent with previous findings (Fouad et al., 2018;

Ji et al., 2021c; Xu et al., 2018).

 When we inhibited muscles at midbody (0.4-0.6 body length), however, besides the paralytic

effect propagating from midbody to tail, we observed exaggerated undulatory oscillations at the

anterior region (0.1-0.3 body length; Figs. 3.1C-F; Fig. S3.1C and G). Quantitatively, midbody

amplitude decreased by ~35% immediately after a transient midbody muscle inhibition (0.1 s

duration) whereas the anterior amplitude increased by ~15%; within about one undulatory cycle

after the inhibition, worms recovered to baseline undulatory amplitude (Fig. 3.1G).

 Next, we asked how a worm would modulate its undulation in response to midbody amplitude

exaggeration instead of reduction. To do this, we stimulated midbody muscles only on the dorsal

side by illuminating (473 nm wavelength) the corresponding region of animals expressing the

excitatory opsin ChR2 in body wall muscles (via the transgene Pmyo-3::ChR2). We found that

while stimulating dorsal muscles in the midbody led to exaggerated midbody bending, the anterior

bending decreased (Figs. 3.2A-D). Quantitatively, midbody amplitude increased by ~12%

immediately after a transient midbody dorsal muscle stimulation (0.1 s duration) whereas the

anterior amplitude decreased by ~12% (Fig. 3.2E).

70

Figure 3.2. C. elegans modulates anterior amplitude retrogradely in response to the

optogenetically perturbed midbody curvature.

(A) Images of a transgenic worm (Muscle::ChR2) perturbed by an optogenetic muscle stimulation

in the dorsal midbody during forward locomotion in a viscous liquid (viscosity = 120 mPa·s). Blue

shaded region indicates the laser illumination. a: anterior, p: posterior, d: dorsal, v: ventral. Scale

bar, 200 µm.

(B) Curvature kymograph of the worm locomotion shown in (A). Blue dashed box indicates the

0.5 s laser illumination interval starting at 𝑡 = 0 applied to the dorsal midbody.

(C) A representative trial of curvature dynamics of a worm’s middle (upper) and anterior (lower)

regions around a 0.1 s muscle stimulation in the dorsal midbody (blue bar, aligned at 𝑡 = 0).

Black and red crosses mark the last four pre-illumination and the first four post-illumination

curvature peaks, respectively.

(D) Kymograph of mean absolute curvature around the 0.1 s stimulations (blue dashed box) from

71

693 trials using 122 worms.

(E) Undulatory amplitude change upon transient dorsal midbody muscle stimulations, measured

as mean ± SEM of the normalized curvature change of the first four post-illumination curvature

peaks (same definition as in Fig. 3.1G) of the middle (upper) and anterior (lower) regions,

respectively. Same data as used in (D).

(F) A scatter plot of the mean anterior curvature change plotted against the mean midbody

curvature change. Each data point represents mean ± SEM of the corresponding normalized

value of the first post-illumination curvature peak. Green and blue data points denote data

induced by optogenetic midbody muscle inhibition (both sides) and stimulation (dorsal side),

respectively. We varied the laser power and/or pulse duration to induce different degrees of

optogenetic perturbation for individual groups. Each group consists of ~120 trials totaling ~15

animals. Regarding worm regions, middle = 0.4-0.6, anterior = 0.1-0.3 body coordinate.

 We also tested worm locomotion perturbed by brief muscle inhibition (0.1 s duration) at the

posterior region (0.6-0.8 body length). In this case, posterior bending amplitude rapidly reduced

upon illumination, but bending amplitude of the anterior half did not increase (Fig. S3.1D and H).

 From these optogenetic experiments, our findings suggest that anterior amplitude might

change retrogradely in response to the midbody amplitude change. To get more insight into this

locomotor adaptation during midbody perturbation, we conducted dose-response experiments in

which the degree of midbody muscle inhibition or stimulation was modulated by applying laser

illumination with various pulse durations and irradiances (see Methods). We found that treated

animals modulated the anterior amplitude in response to the induced midbody amplitude change

with a negatively correlated relationship (Fig. 3.2F). Our data thus indicate an anteriorward

compensatory coupling mechanism underlying locomotor adaption to midbody perturbation. We

refer to this anterior amplitude modulation of moving animals under midbody amplitude

72

perturbation as the “curvature compensatory response”.

MICROFLUIDIC CONSTRAINT OF MIDBODY CAUSES INCREASE IN ANTERIOR BENDING

AMPLITUDE

During our optogenetic experiments, curvature change was induced by a direct manipulation of

muscle activity, leaving open the possibility of a proprioception-free muscular coupling that solely

supports the curvature compensation.

 To determine whether proprioception is involved in the curvature compensation, we designed

a microfluidic device that constrained the middle region of a worm in a straight channel (Figs.

3.3A and 3.3B). We used a 200-µm-long, 60-µm-wide channel to constrain the bending amplitude

in the midbody. By comparing between constrained and free locomotion, we found that tested

animals exhibited exaggerated oscillations in the anterior region during midbody constraint (Figs.

3.3B-E).

Figure 3.3. Microfluidic constraint of midbody causes increase in anterior bending

amplitude.

73

(A) Schematic of the microfluidic device for constraining body curvature. By manipulating its

relative position within the chamber through a fine flow control (see Methods), we were able to

make a worm alternate between free locomotion and constrained locomotion. a: anterior region,

p: posterior region, c: constrained middle region of a worm. PDMS: Poly-dimethyl siloxane.

(B and C) Video images of a wild-type worm doing constrained locomotion with its midbody

confined by the narrow channel (B) and doing free locomotion in the open area of the chamber

(C). Scale bar, 250 µm.

(D) Curvature kymograph of the constrained locomotion shown in (B). Gray lines indicate the

anterior and posterior limits of the narrow channel with the worm body as a frame of reference.

(E) Effects of midbody constraint during forward locomotion on the undulatory bending amplitude

of the anterior, middle, and posterior regions, measured as mean ± SEM of the normalized

curvature change of corresponding regions. Each data point is the mean of a 3 s period of

constrained locomotion pooled across 19 wild-type animals.

 Adjacent body wall muscle cells are connected through electrical coupling regulated by an

innexin UNC-9 (Liu et al., 2006). We thus further asked whether the body muscle cells

themselves might transduce the proprioceptive signals from midbody to anterior regions. To verify

this, we used the microfluidic channel to test transgenic animals that lacked these gap junctions

in the muscle cells (via a unc-9 pan-neuronal rescued strain with gap junction deficiency only in

muscle) (Wen et al., 2012). We found that these transgenic animals again showed exaggerated

bending movements in the anterior region during midbody constraint (Fig. S3.2B).

 Taken together, these results indicate that curvature compensation is mediated by an

anteriorward proprioceptive coupling mechanism while intermuscular coupling is insufficient to

transduce the proprioceptive signals.

74

CURVATURE COMPENSATION REQUIRES FUNCTIONAL DOPAMINE SIGNALING BY PDE

NEURONS

We next sought to explore the mechanisms underlying the curvature compensation. First, we

asked whether neurotransmission is essential for this behavioral response. To do that, we

examined several mutant strains bearing defects in biogenic amine synthesis including dopamine

(DA), serotonin (5-HT), tyramine (TA), and octopamine (OA). For each mutant, we analyzed the

anterior bending amplitude of animals being constraint by the microfluidic channel in the midbody

and compared with the amplitude during free locomotion. An indicator of curvature compensation

was defined across all tested animals as the difference between anterior bending amplitudes

during constrained and free locomotion normalized by the amplitude during free locomotion (see

Methods).

 Mutants tph-1(n4622) (defective in serotonin synthesis) and tdc-1(n3421) (defective in both

tyramine and octopamine syntheses) displayed nearly normal locomotion and largely intact

curvature compensation during midbody constraint from microfluidic channel (Fig. S3.2B),

suggesting that serotonin, tyramine, and octopamine are unrequired for curvature compensation.

In contrast, dopamine-deficient cat-2(e1112) mutants displayed normal locomotion but impaired

curvature compensation, as they showed reduced anterior curvature change in response to the

microfluidic constraint in the midbody (Fig. 3.4C). Addition of exogenous dopamine fully restored

the curvature compensatory response (Fig. 3.4C), demonstrating that the defect in curvature

compensation induced by microfluidic constraint is due to the lack of dopamine.

75

Figure 3.4. Curvature compensation requires functional dopamine signaling by PDE

neurons.

(A and B) Video images of a wild-type animal (A) and a cat-2(e1112) mutant (B) with midbody

confined by the narrow channel, exhibiting curvature compensation and no curvature

compensation, respectively. a: anterior region, p: posterior region, c: constrained middle region of

a worm. Scale bar, 150 µm.

76

(C) cat-2 mutants showed impaired curvature compensatory response to midbody constraint,

which was rescued by exogenous dopamine. Data represent mean ± SEM of the normalized

anterior curvature change in response to midbody constraint for wild type and cat-2(e1112)

mutants in either the absence or presence of exogenous 50 mM dopamine. Each data point is the

mean of a 3 s period of constrained locomotion pooled across 10 or more animals for each

indicated condition. ***p<0.001 when compared with wild type, ###p<0.001 when compared with

cat-2 mutants without exogenous dopamine, Tukey-Kramer multiple comparison tests.

(D-F) cat-2 mutants showed impaired curvature compensatory response to midbody curvature

decrease induced by transient optogenetic muscle inhibition. (D and E) Kymographs of mean

absolute curvature around 0.1 s illuminations (green dashed box) for animals expressing

Muscle::NpHR in wild type (D, same data as used in Fig. 3.1F) and cat-2 mutants (E, n = 133

trials using 33 worms). (F) Normalized anterior curvature change of the first post-illumination

curvature peak for animals expressing Muscle::NpHR in wild type and cat-2 mutants (same data

as used in D and E, respectively), mean ± SEM. ***p<0.001, Student’s t test.

(G-I) cat-2 mutants showed impaired curvature compensatory response to midbody curvature

increase induced by transient optogenetic dorsal muscle stimulation. (G and H) Kymographs of

mean absolute curvature around 0.1 s illuminations (blue dashed box) for animals expressing

Muscle::ChR2 in wild type (G, same data as used in Fig. 3.2D) and cat-2 mutants (H, n = 112

trials using 24 worms). (I) Normalized anterior curvature change of the first post-illumination

curvature peak for animals expressing Muscle::ChR2 in wild type and cat-2 mutants (same data

as used in G and H, respectively), mean ± SEM. ***p<0.001, Student’s t test.

(J) Out of all dopaminergic neurons, ablating PDE eliminated curvature compensation. Data

denote mean ± SEM of the normalized anterior curvature change in response to midbody

constraint for animals with genetic ablation of ADE and CEP (Pdat-1::ICE, PDE survival

77

confirmed by using co-expression of Pdat-1::RFP) and laser ablation of PDE, compared with

mock-ablated control group. Each data point is the mean of a 3 s period of constrained

locomotion pooled across 10 or more animals for each condition. ***p<0.001, ns: not significant,

Dunnett’s multiple comparison tests.

(K) Curvature compensation requires dopamine signaling specifically by PDE neurons. Data

denote mean ± SEM of the normalized anterior curvature change in response to midbody

constraint for PDE-ablated worms and transgenic animals expressing tetanus toxin light chain in

all dopaminergic neurons (Pdat-1::TeTx), in the absence and presence of exogenous 50 mM

dopamine, respectively. Each data point is the mean of a 3 s period of constrained locomotion

pooled across 10 or more animals for each indicated condition. ns: not significant, Student’s t

test.

 In our previous experiments with wild-type animals, a worm’s midbody curvature change was

induced by either optogenetic manipulation or microfluidic constraint. Since the two methods

manipulated curvature physiologically differently, it is unclear whether cat-2 mutants are also

defective in curvature compensation in response to optogenetic perturbation in the midbody. To

address this issue, we integrated transgenic expression Muscle::NpHR and Muscle::ChR2

respectively into cat-2 mutants and performed optogenetic muscle inhibition and stimulation

experiments with these strains by following the same procedures as described in the earlier

section. As opposed to wild-type animals, we found cat-2 mutants again showed impaired

curvature compensatory response to midbody curvature decrease or exaggeration triggered by

optogenetic muscle inhibition (Figs. 3.4D-F) or stimulation (Figs. 3.4G-I).

 The above data suggest that dopamine signaling is required for the curvature compensation

in response to both midbody curvature decrease and increase. In C. elegans, dopamine plays an

essential role in a variety of behaviors including locomotion, food sensation, touch sensation, egg

78

laying, spatial pattern selectivity, gait transition (Calhoun et al., 2015; Chase et al., 2004; Han et

al., 2017; Hills et al., 2004; Kindt et al., 2007; Sawin et al., 2000; Vidal-Gadea et al., 2011). The

C. elegans hermaphrodite has eight dopaminergic neurons including four CEPs, two ADEs, and

two PDEs (Sulston et al., 1975). To test which of these dopaminergic neurons were required for

the curvature compensatory response, we ablated specific subsets of dopaminergic neurons of

young larvae at their L3 stage, and examined the resulting adults’ compensatory response to

microfluidic constraint in the midbody.

 First, we ablated the ADEs and CEPs using transgenic animals expressing the human

caspase interleukin-1β-converting enzyme (ICE) in the dopaminergic neurons under the dat-1

promoter (Hills et al., 2004). By integrating the Pdat-1::ICE strain with a transgene Pdat-

1::mCherry that expresses RFP in all dopaminergic neurons, we verified the cell death of ADEs

and CEPs as well as the survival of PDEs through the resulting RFP expression (see details in

Methods). Second, we ablated only PDE neurons using a thermal laser beam (Fouad et al., 2021;

also see Methods). Compared with the mock-ablated group, transgenic worms in which ADEs

and CEPs were killed still exhibited curvature compensatory response to the microfluidic

constraint in the midbody, while worms lacking only PDEs did not exhibit curvature compensation

(Fig. 3.4J) and failed to be restored by the addition of exogenous dopamine (Fig. 3.4K). These

results suggest that, out of all dopaminergic neurons, only PDE neurons are necessary for

curvature compensation.

 To further explore the dopamine signaling of PDE for curvature compensation, we examined

transgenic animals with dopaminergic neurons expressing tetanus toxin light chain (Pdat-1::TeTx)

that blocks their synaptic transmission. Inhibiting neurotransmitter release from dopaminergic

neurons eliminates curvature compensation (Fig. 3.4K) and adding exogenous dopamine failed

to restore this phenotype (Fig. 3.4K). Note that, in exogenous dopamine environments, only the

79

dopamine synthesis-deficient mutant cat-2(e1112) got rescued for curvature compensation

whereas animals with PDE eliminated or with TeTx-expressing dopaminergic neurons still

exhibited impaired curvature compensation. We argue the discrepancy in the rescue results may

be because cat-2 mutants still have the vesicles for the release of dopamine, but the other groups

do not. Thus, the results above further suggest the necessity of functional vesicle release of

dopamine from PDE for curvature compensation.

 Taken together, these experiments indicate that synaptic release of dopamine from PDEs,

but not from ADEs or CEPs, is required for curvature compensation.

CALCIUM IMAGING SHOWS THAT PDE NEURONS RESPONSE TO MIDBODY CURVATURE

Ultrastructurally, PDE is the only dopaminergic neuron whose neuronal processes extend across

the midbody, the region where the curvature perturbation was applied. Thus, the interpretation of

our experiments further implies that PDEs might function as a proprioceptor that transduces the

midbody proprioceptive input for curvature compensation. Previous studies have demonstrated

that PDE Ca2+ activity in a wild-type animal is phase-locked to its bending waves during roaming

(Cermak et al., 2020), but whether PDEs are proprioceptive to the body bends has not been

characterized.

 As a first step in investigating the neuronal activity of PDE in response to bending curvatures,

we monitored the spontaneous Ca2+ transients of PDE in freely crawling animals expressing

genetically encoded Ca2+ indicators GCaMP in the PDE neurons (under the Pdat-1 promoter).

We prepared the transgenic animals on an agarose pad covered with a microscope slide and

mounted the pad onto our fluorescence microscope (see Methods for preparation details). As an

animal performed free locomotion on the setup, we observed robust oscillating Ca2+ dynamics in

the PDE soma (Fig. 3.5B) during its forward movement (Fig. 3.5A). We also noticed that the Ca2+

activity in PDE soma was correlated with the animal’s body curvature (Fig. 3.5B shows an

80

example; yellow curve in Fig. 3.5E shows correlations between PDE activity and curvatures of

different body regions). These correlations between PDE fluorescence and body posture were not

observed in the control group of transgenic animals expressing GFP in PDE (Fig. S3.4). Our Ca2+

imaging experiments indicate that the native neuronal activity of PDE correlates with body

posture during free locomotion of an intact wild-type animal, as has been previously reported

(Cermak et al., 2020).

Figure 3.5. Ca2+ imaging shows that PDE neurons respond to midbody curvature.

(A and C) Fluorescent video images of PDE neuron (via transgenic expression Pdat-

1::GCaMP6m) in a freely moving wild-type animal on an agar surface (A) and a muscularly

paralyzed mutant unc-54(e1092) restrained within a 60-µm-wide sinusoidal channel (C).

Undulatory wavelength of the unrestrained and channel-restrained locomotion is roughly 𝐿/2 and

81

𝐿, respectively. h: head, t: tail, d: dorsal, v: ventral. 𝐿, worm body length. Scale bar, 100 µm.

(B and D) Intracellular Ca2+ dynamics of PDE (upper) and the corresponding curvature dynamics

from head to tail (lower) for freely moving worms (B) and muscularly paralyzed worms restrained

within sinusoidal channels (D), respectively. The intracellular Ca2+ activity is inferred from Δ𝐹/𝐹0,

the relative deviation of GCaMP6m fluorescence intensity from the baseline.

(E) Cross-correlation between intracellular Ca2+ dynamics of PDE and curvatures of different

body regions from head to tail, for freely moving worms (yellow) and channel-restrained worms

(purple).

(F) Average PDE Ca2+ activity at different values of midbody curvature, for freely moving worms

(yellow) and channel-restrained worms (purple). Curves are obtained via a moving average along

the x-axis with 2 in bin width.

For (E) and (F), n = 12 and 20 animals for free locomotion group and sinusoidal channel group,

respectively. Data are shown as means ± 95% confidence interval.

 To provide physiological evidence that body posture-correlated PDE Ca2+ activity was

attributable to a proprioceptive response to body bending, we monitored the PDE Ca2+ dynamics

in the unc-54(e1092) mutants, which were defective in muscle contraction due to a lack of a

major myosin heavy chain protein. To manually bend the worm body, we first restrained the

posture of worms within a microfluidic sinusoidal channel (Fig. 3.5C) filled with viscous solutions

(120 mPa·s in viscosity). We then manipulated the worm position within the sinusoidal channel to

force the body segments at different curvature values by controlling the direction and rate of the

fluidic flow with a syringe pump connected to the microfluidic device. Under this experimental

setup, we again observed fluctuating PDE Ca2+ dynamics in response to the varying induced

body posture as we moved the paralyzed worm through the channel (Fig. 3.5D). Despite the

82

mutant animals’ incapability of moving due to muscle paralysis, we still observed significant

correlations between PDE fluorescence and bending curvature of various body segments (Fig.

3.5E, purple curve). These data suggest that body bending is sufficient to induce the neuronal

activity in PDE.

 We further reasoned that the proprioceptive response in PDE Ca2+ dynamics was caused by

the midbody curvature. First, by analyzing worm postures, we quantified the body wavelengths of

freely moving worms (as shown by Fig. 3.5A) and paralyzed worms restrained within sinusoidal

channels (as shown by Fig. 3.5C) to be approximately 𝐿/2 and 𝐿, respectively. Second, we

noticed that similar periodicities were exhibited from the profiles of the curvature-PDE Ca2+

activity correlations under the two corresponding experimental conditions (by comparing yellow

and purple curves in Fig. 3.5E with body postures in Figs. 3.5A and 3.5B respectively). This was

because curvature dynamics at any two body regions one half of wavelength apart are very highly

anticorrelated and the curvature-neuronal activity correlations can be transitive. Third, the two

independent curvature-neuronal activity correlation profiles coincided only at midbody region (Fig.

3.5E). This observation indicated that midbody might be the spatial receptive field of the

proprioceptive response in PDE neurons. Furthermore, by quantifying the dependence of PDE

activity on midbody curvature, we found that PDE Ca2+ levels increased as the midbody curvature

varied from a dorsal bend to a ventral bend (Fig. 3.5F), whether the movement was due to

muscle contractions of freely moving worms or external forces from sinusoidal channels.

 Together with previous work (Cermak et al., 2020), our experiments suggest a proprioceptive

functionality in PDE neurons in sensing the midbody curvature. Based on the C. elegans neuronal

morphology (White et al., 1986), PDE neurons have short ciliated dendrites along the dorsal side

of the posterior body and long axons travelling across the entire body along the ventral side.

Since the proprioception receptive field of PDE seems to be the midbody region, we thus suggest

83

that it is the axons rather than the dendrites that play the proprioceptive role in PDE neurons.

CURVATURE COMPENSATION REQUIRES D2-LIKE DOPAMINE RECEPTOR DOP-3 IN AVK

NEURONS

Our results so far demonstrated that PDE neurons sense proprioceptive inputs from midbody and

regulate a dopaminergic pathway that is required for curvature compensation. To better

understand this pathway, we next set to determine what other cellular and molecular components

were responsible for curvature compensation downstream of the dopamine signaling from PDE

neurons.

 First, we determined that the D2-like dopamine receptor DOP-3 is required for mediating

dopamine effects for curvature compensation. By constraining worms’ midbody in the microfluidic

channel, we examined curvature compensation in animals each lacking a single type of dopamine

receptor (DOP-1 through DOP-4; Fig. 3.6A) and all combinations of the DOP-1, DOP-2, and

DOP-3 receptors (Fig. 3.6B). We found that the dop-3 mutation had a significant defective effect

on curvature compensation in any genetic background, and adding exogenous dopamine did not

restore compensatory behavior in dop-3 mutants. Our single- and double-mutant analysis also

showed that mutants that did not contain dop-3 mutation did show normal curvature

compensation like wild-type animals. Furthermore, we examined the effect of dop-3 mutation on

the curvature compensatory response to optogenetic perturbation in the midbody. By performing

the earlier described optogenetic muscle perturbation experiments on the dop-3 mutants

expressing Muscle::NpHR and Muscle::ChR2, we found dop-3 mutants again displayed

significant defects in curvature compensation triggered by midbody muscle inhibition (Figs. 3.6C-

E) or stimulation (Figs. 3.6F-H).

84

85

Figure 3.6. Curvature compensation requires D2-like dopamine receptor DOP-3 in AVK

neurons.

(A and B) Analysis of curvature compensatory response to midbody constraint for dopamine

receptor knockout single (A) and double/triple (B) mutants. (A) D-2 like receptor DOP-3 is

required for curvature compensation. Data denote mean ± SEM of the normalized anterior

curvature change in response to midbody constraint for wild type and dopamine receptor

knockout single mutants dop-1(vs101), dop-2(vs105), dop-3(vs106), and dop-4(tm1392) under

indicated conditions. Each data point is the mean of a 3 s period of constrained locomotion

pooled across 10 or more animals for each indicated condition. ***p<0.001 when compared with

wild type, Dunnett’s multiple comparison tests; ns: not significant when comparing dop-3 mutants

in the absence and presence of exogenous 50 mM dopamine, Student’s t test. (B) Double/triple

mutants with DOP-3 receptor knockout showed impaired curvature compensatory response to

midbody constraint. Data denote mean ± SEM of the normalized anterior curvature change in

response to midbody constraint for dop-1 dop-2, dop-1 dop-3, dop-2 dop-3 double mutants and

dop-1 dop-2 dop-3 triple mutants, compared with wild-type animals. Each data point is the mean

of a 3 s period of constrained locomotion pooled across 10 or more animals for each indicated

condition. ***p<0.001, Dunnett’s multiple comparison tests.

(C-E) dop-3 mutants showed impaired curvature compensatory response to midbody curvature

decrease induced by transient optogenetic muscle inhibition. (C and D) Kymographs of mean

absolute curvature around 0.1 s illuminations (green dashed box) for animals expressing

Muscle::NpHR in wild type (C, same data as used in Fig. 3.1F) and dop-3 mutants (D, n = 183

trials using 31 worms). (E) Normalized anterior curvature change of the first post-illumination

curvature peak for animals expressing Muscle::NpHR in wild type and dop-3 mutants (same data

as used in C and D, respectively), mean ± SEM. ***p<0.001, Student’s t test. (F-H) dop-3 mutants

86

showed impaired curvature compensatory response to midbody increase induced by transient

optogenetic dorsal muscle stimulation.

(F and G) Kymographs of mean absolute curvature around 0.1 s illuminations (blue dashed box)

for animals expressing Muscle::ChR2 in wild type (F, same data as used in Fig. 3.2D) and dop-3

mutants (G, n = 213 trials using 33 worms).

(H) Normalized anterior curvature change of the first post-illumination curvature peak for animals

expressing Muscle::ChR2 in wild type and dop-3 mutants (same data as used in F and G,

respectively), mean ± SEM. ***p<0.001, Student’s t test.

(I) Analysis of curvature compensatory response to midbody constraint for dop-3 mutants with

rescue of dop-3 function by transgenic expression in different tissues. The impaired curvature

compensation of dop-3 mutants was fully rescued by transgenic expression of dop-3 function in

AVK neurons (via promoter flp-1), and partially rescued by transgenic expression of dop-3

function in cholinergic neurons (via promoter acr-2) and B-type motor neurons (via promoter acr-

5). Data denote mean ± SEM of the normalized anterior curvature change in response to midbody

constraint for dop-3 mutants with dop-3 function rescued by transgenic expression in AVK

neurons (Pflp-1(trc)::DOP-3), cholinergic neurons (Pacr-2::DOP-3), B-type motor neurons (Pacr-

5::DOP-3), GABAergic neurons (Punc-47::DOP-3), PVD neurons (Pser-2-prom3::DOP-3), and

body wall muscle cells (Pmyo-3::DOP-3), compared with wild type and dop-3(vs106) mutants.

Each data point is the mean of a 3 s period of constrained locomotion pooled across 10 or more

animals for each condition. ***p<0.001 when compared with wild type, ns: not significant and -

###p<0.001 when compared with dop-3 mutants, Tukey-Kramer multiple comparison tests.

(J) A schematic model circuit showing how midbody proprioceptive input gets transduced to

regulate anterior curvature compensation through DOP-3 dependent dopamine signaling from

PDE to AVK neurons.

87

(K and L) Dopamine regulates compensatory response by binding to the receptor DOP-3 and

activating GOA-1 𝐺𝛼𝑜 signaling. (K) Curvature compensatory response analysis of mutants that

disrupt the 𝐺𝛼𝑜 and 𝐺𝛼𝑞 signaling. Data denote mean ± SEM of the normalized anterior curvature

change in response to midbody constraint for dop-3(vs106) mutants, 𝐺𝛼𝑜 signaling mutants goa-

1(sa734), dgk-1(sy428), egl-10(md176), gpb-2(sa603), 𝐺𝛼𝑞 signaling mutants egl-30(n686), egl-

8(md1971), eat-16(ad702), compared with wild-type animals. Each data point is the mean of a 3 s

period of constrained locomotion pooled across 10 or more animals for each condition.

***p<0.001, ns: not significant, Dunnett’s multiple comparison tests. (L) Schematic representation

of the 𝐺𝛼𝑜 protein signaling pathways that regulate the curvature compensatory response in C.

elegans (adapted from Chase et al. 2004).

 Second, we asked which specific cell types expressing DOP-3 are responsible for mediating

the dopamine effect for curvature compensation. According to the dop-3 gene expression in wild-

type animals, DOP-3 receptors are expressed in various cell types, including GABAergic neurons,

cholinergic motor neurons, mechanosensory neurons PVD, interneurons AVK, and body wall

muscle cells (Chase et al., 2004; Oranth et al., 2018). Thus, using promoters active in the above

cells, we expressed DOP-3 individually in those types of cells and tested the ability of such

transgenes to rescue the impaired curvature compensation of dop-3 mutants (Fig. 3.6I).

Restoring DOP-3 expression in GABAergic neurons (promoter Punc-47), PVDs (promoter Pser-

2prom3), or body wall muscles (promoter Pmyo-3) failed to rescue the dop-3 defect. However,

when DOP-3 was expressed in cholinergic (promoter Pacr-2), or B-type motor neurons (promoter

Pacr-5), dop-3 animals exhibited partial rescue, and only when we restored DOP-3 expression

specifically to AVK in dop-3 mutants (via promoter Pflp-1), the animal’s curvature compensation

was fully restored to the wild-type level (Fig. 3.6I). Thus our rescue experiments suggest that

DOP-3 receptors in AVK (and potentially some cholinergic motor neurons) mediate the

proprioception-triggered dopaminergic signals from upstream PDE neurons to regulate curvature

88

compensatory behavior (Fig. 3.6J).

 Third, we examined curvature compensation in mutants that disrupted the downstream G

protein signaling of DOP-3 and DOP-1, the 𝐺𝛼𝑜 and 𝐺𝛼𝑞 pathways (Fig. 3.6K). Mutants with

deficiency in GOA-1, the C. elegans ortholog of the G protein 𝐺𝛼𝑜 (coupled to DOP-3), exhibited

impaired curvature compensation. The similar defect was found in the mutants with deficiency in

the RGS protein DGK-1, a putative downstream effector of GOA-1 𝐺𝛼𝑜 . In contrast, mutants with

deficiencies in EGL-10, GTPase activating protein that inhibits GOA-1 𝐺𝛼𝑜, and GPB-2, an

obligate subunit of EGL-10 RGS, exhibited wild-type level of curvature compensation. Mutants

with deficiencies in proteins that are associated with 𝐺𝛼𝑞 (coupled to DOP-1) all exhibited normal

curvature compensation. Earlier studies suggested that DOP-3 and DOP-1 have opposing effects

on locomotion by signaling through these two antagonistic G protein pathways, respectively

(Chase et al., 2004). Given that the DOP-3 receptors, but not the DOP-1 receptors, were found

necessary for curvature compensation behavior (Figs. 3.6A and 3.6B), our results are indeed

consistent with the previously proposed model in which DOP-3 affects locomotion by activating

the 𝐺𝛼𝑜 signaling pathway (Fig. 3.6L; Chase et al., 2004).

FMRFAMIDE-LIKE NEUROPEPTIDE FLP-1, RELEASED BY AVK, REGULATES SMB MOTOR

NEURONS VIA RECEPTOR NPR-6 TO MODULATE ANTERIOR BENDING AMPLITUDE

So far we have demonstrated that PDE neurons sense midbody curvature and that the

dopamine/DOP-3 signaling pathway from PDE to AVK is required for curvature compensation.

AVK mediates FLP-1 FMRFamide-like neuropeptide signaling via release of dense core vesicles

(DCVs) to modulate locomotion in response to various sensory inputs (Hums et al., 2016; Oranth

et al., 2018), and the deletion of flp-1 gene results in loopy undulation with exaggerated

sinusoidal waveform in both agar surface (Nelson et al., 1998) and liquid environments.

 Do AVK and FLP-1 neuropeptide signaling also play a role in curvature compensation? To

89

answer that question, we first examined worms with AVK neurons eliminated by laser ablation

(see Methods) and transgenic animals with AVK expressing tetanus toxin that blocks synaptic

vesicle release (Pflp-1::TeTx). We found that either ablating AVK or blocking synaptic

transmission from AVK led to superficially wildtype locomotion but strongly compromised

curvature compensatory responses to the microfluidic constraint in the midbody (Fig. 3.7A). We

also tested flp-1(yn4) and flp-1(sy1599) mutants both lacking FLP-1 neuropeptides, and unc-

31(e169) mutants lacking CAPS (Ca2+-activated protein for secretion, required for all

neuropeptides release). We again found significant defects in curvature compensation in these

mutant animals (Fig. 3.7B). These results suggest that FLP-1 peptide signaling from AVK

neurons is required for animals to exhibit normal curvature compensation.

Figure 3.7. FMRFamide-like neuropeptide FLP-1, released by AVK, regulates SMB motor

neurons via receptor NPR-6 to modulate anterior bending amplitude.

90

(A and B) Curvature compensation requires AVK- released FLP-1 regulation of SMB neuronal

activity via receptor NRP-6. (A) Data denote mean ± SEM of the normalized anterior curvature

change in response to midbody constraint for animals with laser ablation of AVK and transgenic

animals expressing tetanus toxin in AVK (Pflp-1::TeTx), compared with the mock ablation control

group. Each data point is the mean of a 3 s period of constrained locomotion pooled across 11 or

more animals for each case. ***p<0.001, Dunnett’s multiple comparison tests. (B) Data denote

mean ± SEM of the normalized anterior curvature change in response to midbody constraint for

wild type, mutants unc-31(e169), flp-1(yn4), flp-1(sy1599), npr-6(tm1497) and npr-6 mutants with

npr-6 function rescued by transgenic expression in SMB neurons, and animals lacking SMB

(ablation by caspase). Each data point is the mean of a 3 s period of constrained locomotion

pooled across 12 or more animals for each case. ***p<0.001, ns: not significant, when compared

with wild type, ###p<0.001 when compared with npr-6 mutants, Tukey-Kramer multiple comparison

tests.

(C-E) Schematic models for the mechanisms underlying the curvature compensatory response.

(C) (Upper) An anatomical representation showing the relative positions of PDE (green), AVK

(yellow), and SMB neurons (red) and their soma/processes within a worm body. (Lower) A zoom-

in representation proposing the underlying neuronal pathway for curvature compensation.

Dopaminergic neurons PDE transduce the proprioceptive input from the midbody curvature

perturbation and signal to AVK neurons via dopamine signaling through DOP-3 receptors. In the

anterior region, the AVK neurons signal via FLP-1 neuropeptide to negatively regulate the head-

bending-suppressing motor neurons SMB via NPR-6 receptors. Since PDE negatively regulates

AVK via dopamine, AVK negatively regulates SMB via FLP-1 peptides, and SMB negatively

regulates head bending, perturbation to the midbody bending leads to a net negative regulatory

effect on the anterior bending, as illustrated schematically in two separated scenarios (D and E).

Red and blue colors indicate active and inhibited neuronal states, respectively.

91

 The AVK neurons, however, are interneurons which do not directly innervate muscles to drive

body bending. To further probe the circuit underlying curvature compensation, we asked what

downstream cells constitute the remaining pathway that directly affect the anterior body bending

amplitude while being regulated by the upstream FLP-1 signaling from AVK.

 Some clues provided by previous studies prompted us to speculate that SMB, a class of head

motor neurons, might be such a candidate residing within the circuit: AVK synapses via both

electrical and chemical couplings onto SMB (Hums et al., 2016; White et al., 1986), whose major

function is regulating head and neck muscles and thus setting the overall amplitude of sinusoidal

forward movement (Gray et al., 2005). Specifically, SMB activity is regulated by AVK-released

FLP-1 signaling through the inhibitory receptor NPR-6 (Oranth et al., 2018).

 Thus, we sought to determine the role of SMB as well as its peptide-regulated activity in

mediating anterior bending amplitude during curvature compensation. First, we ablated SMB

neurons by ICE expression, which led to deeply flexed head swings and a resulting significant

increase in body bending amplitude (Gray et al., 2005). Despite having loopy sinusoidal

movement, worms lacking SMBs showed a dramatically impaired curvature compensation (Fig.

3.7B). Next, we examined npr-6(tm1497) mutants with and without the transgene that restores

NPR-6 receptors in SMB neurons. We found that npr-6 mutants showed impaired curvature

compensation, and that this phenotype was rescued by expressing NPR-6 receptors in SMBs in

npr-6 mutants (Fig. 3.7B). These experiments support the instructive role of SMB motor neurons

in curvature compensation, which is to modulate anterior bending amplitude under the regulation

of AVK-released FLP-1 neuropeptide signaling.

 Taken together, we have demonstrated that C. elegans uses proprioception to mediate

homeostatic control of locomotor amplitude during forward movement. Our results support the

following neural network for this motor control (Fig. 3.7C): (1) dopaminergic neurons PDE

92

transduce the proprioceptive input from the midbody curvature perturbation, and regulate AVK

activity via dopamine/DOP-3 signaling. (2) Downstream of dopamine signaling, AVK mediates

FLP-1 peptide signaling, through which SMB is negatively regulated via NPR-6 receptors. (3) the

head motor neurons SMB, affected by FLP-1 signaling, directly modulates bending amplitude of

the anterior region.

CURVATURE COMPENSATION MECHANISM IS CONSISTENT WITH GAIT ADAPTATION OF

BENDING AMPLITUDE IN RESPONSE TO MECHANICAL LOAD

C. elegans can move through water or across moist substrates like agarose gels. At the scale of

C. elegans size and speed, forces due to surface tension experienced by a crawling worm on the

agar surface are 10,000-fold larger than forces due to viscosity experienced by a swimming worm

in water (Sauvage, 2007). As a versatile limbless swimmer/crawler, C. elegans performs

undulatory movements with appropriate kinematic patterns to propel itself adaptively through

contexts with a wide range of mechanical load (Berri et al., 2009; Fang-Yen et al., 2010). Here we

asked whether the curvature compensation mechanism contributes to this gait adaptation.

 To do this, we measured worm undulatory parameters (frequency, wavelength, and curvature

amplitude) in media of varying viscosities, using several core strains that we had examined for

curvature compensation.

 First, by immersing worms into solutions of five different viscosities ranging from 10 to 27,900

mPa·s, we tested gait adaptions of wildtype animals and dop-3(vs106) mutants with and without

transgenes expressing DOP-3 in AVK. For all these strains, increasing viscosity of the medium

caused gait transitions from a swimming gait to a crawling gait, characterized by decreasing

trends in frequency (Fig. S3.4A) and wavelength (Fig. S3.4B) and increasing trends in curvature

amplitude (Fig. S3.4C). Despite the overall similarity in gait transition among the three strains,

mutants dop-3(vs106) displayed a significantly higher curvature amplitude in comparison with wild

93

type in every tested medium, and this difference got restored in dop-3 mutants with transgenic

expression AVK::dop-3 (Fig. S3.4C).

 Next, besides the above three strains, we tested four additional strains by putting them in two

intermediate viscous solutions (1390 and 9079 mPa·s), with a focus on their curvature amplitude

during locomotion. The additional strains included transgenic worms expressing AVK::TeTx,

mutants flp-1(sy1599), and mutants npr-6(tm1497) with and without transgenes expressing NPR-

6 in SMB. By comparing curvature amplitudes of locomotion in 1390 mPa·s solutions, we found

strains defective in curvature compensation had a relatively higher curvature amplitude than

strains showing normal curvature compensation (Fig. S3.4D).

 To further compare gait adaptation between these strains, an index of curvature amplitude

adaptation is provided by the difference between the curvature amplitudes in high (9079 mPa·s)

and low (1390 mPa·s) viscous solutions divided by the curvature amplitude in the low viscous

solution: (𝐾ℎ𝑖𝑔ℎ 𝑣𝑖𝑠 − 𝐾𝑙𝑜𝑤 𝑣𝑖𝑠)/𝐾𝑙𝑜𝑤 𝑣𝑖𝑠 (Fig. S3.4E). A greater index indicates higher plasticity of

curvature amplitude modulation adapting to mechanical load. We found that strains defective in

curvature compensation had a significantly smaller adaptation index in comparison with those

who showed normal curvature compensation (Fig. S3.4E).

 The above results implied a consistency between curvature compensation mechanism and

gait adaptation of bending curvature: animals bearing defects in curvature compensation exhibit

higher curvature amplitude but smaller plasticity of curvature amplitude modulation in response to

mechanical load.

 The proprioception-mediated curvature compensation mechanism provides an explanation

for these observations. In low viscosities, a worm tends to have a large bending amplitude due to

the relatively small constraint and curvature compensation then leads to a smaller anterior

94

bending amplitude. Since undulatory waves propagate posteriorly, this flattens out the overall

amplitude of sinusoidal movement. In contrast, worms defective in curvature compensation lack

this negative regulation of undulatory amplitude and thus tend to have a larger bending

amplitude.

 When shifting to a more viscous environment, a worm’s bending amplitude decreases due to

a larger constraint it experiences. Curvature compensation leads to an increase in the anterior

bending amplitude which counteracts the decreasing tendency. Worms with impaired curvature

compensation, however, fail this feat and show a smaller change in curvature amplitude (i.e., a

smaller adaptation index).

METHODS

Table 3.1. Key resources table for Chapter 3

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

E. coli OP50 CGC OP50-1

Chemicals, Peptides, and Recombinant Proteins

All-trans retinal (ATR) Sigma-Aldrich Cat#R2500

Dextran from Leuconostoc mesenteroides Sigma-Aldrich Cat#D5376

Poly-dimethyl siloxane (PDMS) + curing agent Dow Corning SylGard 184

Bovine Serum Albumin Sigma-Aldrich N/A

Gibson Assembly Master Mix NEB N/A

Experimental Models: Organisms/Strains

qhIs1[Pmyo-3::NpHR::eCFP]; qhIs4[Pacr-2::wCherry] This paper YX148

hpIs199[Pmyo-3::ChR2::eGFP] Zhen lab ZM5398

mec-4(u253) CGC TU253

mec-4(e1611) CGC CB1611

mec-10(e1515) CGC CB1515

del-1(ok150) CGC NC279

unc-8(e15lb145) CGC MP145

trp-4(sy695) CGC TQ296

trpa-1(ok999) CGC TQ233

unc-9(fc16); hpEx803[Prgef-1::unc-9cDNA + Podr-
1::GFP]

Zhen lab ZM2509

cat-2(e1112) CGC CB1112

tph-1(n4622) CGC MT14984

tdc-1(n3421) CGC MT10549

95

cat-2(e1112); qhIs1[Pmyo-3::NpHR::eCFP] This paper YX287

cat-2(e1112); hpIs199[Pmyo-3::ChR2::eGFP] This paper YX289

akEx387[dat-1::GFP; dat-1::ICE] Villu Maricq lab VM6365

otIs181[Pdat-1::mCherry; ttx-3::mCherry];
maIs188[Pmir-288::GFP]

Kang lab TV23560

akEx387[dat-1::GFP; dat-1::ICE]; otIs181[Pdat-
1::mCherry; ttx-3::mCherry]

This paper YX296

egIs1[Pdat-1::GFP] CGC BZ555

kyEx6101[Pdat-1::TeTx::sl2GFP] Bargmann lab YX297

flvEx127[Pdat-1::GCaMP6m; Pmyo-3::mCherry] Flavell lab SWF331

unc-54(e1092); flvEx127[Pdat-1::GCaMP6m; Pmyo-
3::mCherry]

This paper YX298

dop-1(vs101) CGC LX636

dop-2(vs105) CGC LX702

dop-3(vs106) CGC LX703

dop-4(tm1392) CGC FG58

dop-2(vs105); dop-1(vs100) CGC LX706

dop-1(vs100); dop-3(vs106) CGC LX705

dop-2(vs105); dop-3(vs106) CGC LX704

dop-2(vs105); dop-1(vs100); dop-3(vs106) CGC LX734

dop-3(vs106); qhIs1[Pmyo-3::NpHR::eCFP] This paper YX288

dop-3(vs106); hpIs199[Pmyo-3::ChR2::eGFP] This paper YX290

dop-3(vs106); qhEx263[Pser-2-prom3::dop-3(+) +
Punc-47::GFP]

This paper YX291

dop-3(vs106); qhEx264[Punc-47::dop-3(+) + Punc-
47::GFP]

This paper YX292

dop-3(vs106); qhEx265[Pacr-2::dop-3(+) + Punc-
47::GFP]

This paper YX293

dop-3(vs106); qhEx266[Pmyo-3::dop-3(+) + Punc-
47::GFP]

This paper YX294

dop-3(vs106); qhEx267[Pacr-5::dop-3(+) + Punc-
47::GFP]

This paper YX295

goa-1(sa734) CGC JT734

dgk-1(sy428) CGC JT748

egl-10(md176) CGC MT8504

gpb-2(sa603) CGC JT603

egl-30(n686) CGC MT1434

egl-8(md1971) CGC RM2221

eat-16(ad702) CGC DA702

dop-3(vs106); zxIs20[Pdat-1::ChR2(H134R)::mCherry;
Pmyo-2::mCherry]; zxEx1063[Pflp-1(trc)::DOP-
3::SL2::GFP; Pmyo-3::CFP]

Gottschalk lab ZX2201

flp-1(yn-4) CGC NY16

flp-1(sy1599) Ringstad lab PS8997

flp-11(tm2706) CGC HBR507

ynIs72[Pflp-1::GFP] CGC NY2072

wzEx664[Pflp-1::TeTx; Pflp-1::mCherry] Ringstad lab FQ2747

npr-6(tm1497) National F41E7.3

96

Bioresource
Project for the
Experimental
Animal “Nematode
C. elegans”

npr-1(ky13) CGC CX4148

zxIs29[Pflp-12::Cre; Podr-2(18)::LoxP::ICE; Pmyo-
2::mCherry]

Gottschalk lab ZX3058

npr-6(tm1497); zxEx850[Pflp-
12::LoxP::LacZ::STOP::LoxP::NPR-6::SL2::GFP; Podr-
2(18)::Cre]

Gottschalk lab ZX2037

Oligonucleotides

Forward primer for amplifying dop-3 sequence
(GCCAAAGGACCCAAAGGTATGTTTCG)

Ringstad lab SAZ86

Reverse primer for amplifying dop-3 sequence
(CCGATCTTTCTTGCATCGTGCTCATC)

Ringstad lab SAZ87

Forward primer for inserting dop-3 sequence
(GTTTGTCAAGAGTTTCGAGGACGG)

Ringstad lab SAZ88

Reverse primer for inserting dop-3 sequence
(CAAGGGTCCTCCTGAAAATGTTCTAT)

Ringstad lab SAZ89

Recombinant DNA

pDC50(unc-47::dop-3) [75 ng/µL] Koelle lab N/A

pDC66(unc-47::GFP) [75 ng/µL] Koelle lab N/A

pYX36(ser-2-prom3::dop-3) [75 ng/µL] This paper N/A

pYX37(myo-3::dop-3) [75 ng/µL] This paper N/A

pYX38(acr-2::dop-3) [75 ng/µL] This paper N/A

pYX39(acr-5::dop-3) [75 ng/µL] This paper N/A

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be

fulfilled by the Lead Contact, Dr. Christopher Fang-Yen (chfan@seas.upenn.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

C. elegans were cultivated at 20°C on nematode growth media (NGM) plates seeded with

Escherichia coli strain OP50 using standard methods (Sulston and Hodgkin, 1988). For

optogenetic experiments, animals were cultivated in darkness on plates with OP50 containing

800 µM all-trans retinal (ATR). All experiments were performed with 1-day-old adult

hermaphrodites synchronized by hypochlorite bleaching.

 Wild-type animals were Bristol strain N2. Transgenic strains for tissue-specific rescue of dop-

mailto:chfan@seas.upenn.edu

97

3 function were generated by microinjection of a transgene of DNA clones and a fluorescent co-

injection marker (see Key resources table for Chapter 3 for plasmid concentrations).

METHOD DETAILS

MOLECULAR BIOLOGY

pYX36(ser-2-prom3::dop-3), pYX37(myo-3::dop-3), pYX38(acr-2::dop-3), pYX39(acr-5::dop-3):

Plasmid constructs are for tissue-specific expression of dop-3 function (Fig. 3.6J). The Pser-2-

prom3 (PVD), Pmyo-3 (body-wall muscles), Pacr-2 (cholinergic neurons), and Pacr-5 (B-type

motor neurons) promoters are used for cell-specific expression, which were constructed from

donor plasmids Pser2prom3::GFP (gift of Kang lab), Pmyo-3::RCaMP1h (made by Gottschalk

lab), Pacr-2::GFP (gift of Koelle lab), and Pacr-5::Arch::GFP (gift of Takagi lab), respectively. dop-

3 gene sequence was amplified from pDC50(unc-47::dop-3) using primers SAZ86 and SAZ87.

Constructs containing promoter sequences were amplified from the corresponding donor

plasmids using primers SAZ88 and SAZ89. Reconstruction procedures were conducted using

Gibson Assembly method (Gibson Assembly Master Mix, NEB). Resulting plasmids were verified

by sequencing (ABI 3730XL sequencer, Penn Genomic Analysis Core).

BEHAVIORAL ASSAYS

Optogenetic Manipulation Experiments

For experiments with optogenetic manipulation (Figs. 3.1C-G, 3.1S1, 3.2A-F, 3.4D-I, and 3.6C-

H), worms were prepared in a viscous solution [17% (by mass) dextran in NGM buffer; 120

mPa·s in viscosity] confined within chambers formed by a microscope slide and a coverslip

separated by 125-µm-thick polyester shims (9513K42, McMaster-Carr).

 Optogenetic experiments were carried out on a Leica DMI4000B microscope coupled with a

motorized stage (CTR4000, Leica). Image sequences were recorded at 40 Hz with a sCMOS

camera (optiMOS, Photometrics) under 10X magnification (Leica Plan Fluotar; N.A., 0.30) with

98

dark field illumination provided by red LEDs. We used a custom-built optogenetic targeting

system (Fouad et al., 2018) to perform spatially selective optogenetic manipulation on worm’s

muscle activity during locomotion. To optogenetically inhibit or stimulate muscles, we used a 532-

nm solid-state laser (GL532T3-300, SLOC) with irradiance at 16 mW/mm2 or a 473-nm solid-state

laser (BL473T3-150, SLOC) at 3.5 mW/mm2, respectively.

 For optogenetic muscle inhibition (Figs. 3.1C-G, 3.1S1, 3.2F green data points, 3.4D-F, and

3.6C-D) and stimulation (Figs. 3.2A-E, 3.2F blue data points, 3.4G-I, and 3.6F-H), we used wild-

type and mutant animals with body wall muscles expressing (via Pmyo-3) inhibitory opsin NpHR

and excitatory opsin ChR2, respectively. During experiments, each individual animal was

illuminated at the middle region (0.4-0.6 body coordinate; illuminating both sides for inhibition,

dorsal side for stimulation) by a brief laser pulse (0.1 s duration, unless otherwise stated)

repeated 10 times with 6 s interval between successive pulses. We used a custom-written C++

software (Fouad et al., 2018) to perform real-time identification of the worm with its boundary and

centerline detected by gray level thresholding during image acquisition. The head-and-tail and

dorsoventral orientations of a worm were noted visually during the recording. The calculated

information was saved to disk along with the corresponding image sequences. Postprocessing of

the behavioral data is discussed in later section.

Microfluidic-Based Experiments

Besides optogenetic experiments, other behavioral assays (Figs. 3.3B-E, 3.3S1, 3.4A-C, 3.4J-K,

3.6A-B, 3.6I, 3.6K, 3.7A-B) were performed based on a custom-made microfluidic

polydimethylsiloxane (PDMS) device fabricated using soft lithography techniques. Video

sequences were recorded at 30 Hz with a 5-megapixel CMOS camera (DMK33GP031, The

Imaging Source) and a C-mount lens (Nippon Kogaku NIKKOR-H; effective focal length, 28 mm)

using IC Capture software (The Imaging Source). Red LED rings (outer size, 80 mm; Qasim)

99

surrounding the device provided dark field illumination.

 As shown by the schematic in Fig. 3.3A, the microfluidic chamber consists of 2000-µm-wide

open areas which are connected by two parallel narrow channels (60 µm x 200 µm). The

microfluidic chamber was loaded with NGM buffer with 0.1% (by mass) bovine serum albumen

(BSA) added to the solution to prevent worms from adhering to chamber surfaces or tubing. By

using a 3-way luer valve (Cole-Parmer) and polyethylene tubing (Saint-Gobain), the worm

chamber of the microfluidic device was connected in parallel to a 1-mL syringe and a reservoir

containing NGM buffer. The tubing between the chamber and the syringe was mildly compressed

by a screw-bolt unit where the spacing in between can be finely adjusted.

 For microfluidic-based behavioral experiments, young adults were first transferred to food-

free NGM buffer for ~5 min to wash carried-over bacteria off the animals. Then animals were

pipetted from the buffer into the inlet of the microfluidic chamber. To translate worms to the field

of view (approximately 4 mm x 3 mm) for video recording, we used the syringe on the inlet to

apply pressure and vacuum. For an individual animal within the field of view, behavior images

were recorded for 3 minutes during which the worm alternating between constrained locomotion

and free locomotion (as shown in Fig. 3.3A) with each mode lasting for ~30 s. The worm position

within the chamber was manually controlled by slowly twisting the screw-bolt unit. Post-

acquisition behavioral quantification is discussed in the section below.

BEHAVIORAL DATA QUANTIFICATION

General Postprocessing

Postprocessing of the behavioral data from the two experiments described above was performed

using MATLAB custom software (MathWorks) similar to previous reports (Fouad et al., 2017; Ji et

al., 2021c). With the worm centerline in each image smoothed via a cubic spline fit, the body

curvature 𝜅 is calculated as the dot product of the unit normal vector to the centerline and the

100

derivative of the unit tangent vector along the centerline with respect to the body coordinate. The

normalized curvature 𝐾 is the product of 𝜅 and the worm body length 𝐿 derived from the length of

worm centerline. We excluded curvature in the anterior and posterior 5% body regions to avoid

high frequency movements at the tips of the worm. The moving direction of a worm was

determined by the gradients in the curvature over time and body coordinate, and image

sequences during which the worm moved forward for at least 4 seconds were selected for

analysis. The curvature dynamics of the anterior, middle, and posterior regions were defined as

the average of the normalized curvature over 0.1-0.3, 0.4-0.6, and 0.7-0.9 body coordinates,

respectively.

 Although the method for calculating locomotor dynamics was shared for both experiments,

the specific steps for quantifying the effects of optogenetic or microfluidic manipulations on worm

undulatory amplitude were different due to the largely different durations of disturbances used in

the two types of experiment. Detailed descriptions are presented below.

Quantifying Optogenetic Behavioral Data

To quantify the effect of optogenetic perturbations on worm undulatory amplitude, we calculated

the curvature amplitude of the anterior and middle regions, respectively, around each trial of laser

illumination. Regarding each body region, we used the MATLAB function findpeaks to identify

local extrema along the time-varying curvature profiles (as shown in Figs. 3.1E and 3.2C).

Around each illumination, |𝐾−1| denotes the absolute value of the last pre-illumination curvature

peak which was used to define the baseline curvature amplitude; |𝐾+𝑛| denotes the absolute

value of the 𝑛th post-illumination peak. The corresponding normalized curvature change, defined

by Δ𝐾+𝑛/|𝐾−1| = (|𝐾+𝑛| − |𝐾−1|)/|𝐾−1|, was used to quantify the change in curvature amplitude

induced by optogenetic perturbations as shown in Figs. 3.1G, 3.2E, 3.2F, 3.4F, 3.4I, 3.6E, and

3.6H.

101

Quantifying Microfluidic Behavioral Data

To quantify the effect of microfluidic-channel constraint on worm undulatory amplitude, the whole-

body curvature amplitude during constrained locomotion was computed and compared with

curvature amplitude during free locomotion.

 Regarding free locomotion, we analyzed worm locomotor dynamics to generate an averaged

curvature amplitude profile as a function of body coordinate. To do that, we divided the worm

body coordinate into 10 even sections from head to tail (starting from 0.05 to 0.95, as movements

of the anterior and posterior 5% regions were omitted). For each individual section, we calculated

the average of the normalized curvature over the body coordinate of the section for all periods of

free locomotion. Local extrema along each time sequence of curvature were identified (via peak

finding method), and the mean of the absolute value of these local extrema was defined as the

curvature amplitude at the body coordinate defined by the mid-point of the section (e.g., 0.1 for

section 0.05-0.15). After computing curvature amplitudes for the ten sections, the whole-body

averaged curvature amplitude profile, 𝐴𝑓𝑟𝑒𝑒(𝑠), was obtained through a linear 1-D interpolation

with 100 sample points of values computed across the worm body.

 Regarding constrained locomotion, we first used a 3-second time window to divide video

sequences of constrained movement into individual short sequences. Due to the unavoidable

disturbances in controlling worm position by syringe pump, the body region being constrained

could not consistently maintain in the middle and occasionally varied a lot. To record the relative

position of the constraint with respect to the worm body (as shown by the gray lines in Fig. 3.3D),

we manually marked the channel position in each image sequence by drawing a rectangle with its

short sides aligned at the two limits of the channel, respectively.

 To calculate normalized curvature change in response to mid-body constraint (Fig. 3.3E,

3.3S1, 3.4C, 3.4J-K, 3.6A-B, 3.6I, 3.6K, and 3.7A-B), we only counted periods during which the

102

anterior and posterior limits of the narrow channel were consistently within 0.35-0.65 body

coordinate, and denoted the corresponding curvature dynamics as 𝐾𝑐𝑜𝑛𝑠𝑡. We took the maximum

value of |𝐾𝑐𝑜𝑛𝑠𝑡(𝑠, 𝑡)| in the direction of time for all qualified short periods and defined the resulting

quantity, 𝐴𝑐𝑜𝑛𝑠𝑡(𝑠) = max𝑡 |𝐾𝑐𝑜𝑛𝑠𝑡(𝑠, 𝑡)|, as the curvature amplitude profile of individual periods.

The normalized curvature change of an individual period is thus represented by 𝐴𝑐𝑜𝑛𝑠𝑡(𝑠)/

𝐴𝑓𝑟𝑒𝑒(𝑠) − 1. Additionally, the normalized anterior, mid-body, and posterior curvature changes of

an individual period are 〈𝐴𝑐𝑜𝑛𝑠𝑡(𝑠)/𝐴𝑓𝑟𝑒𝑒(𝑠)〉|0.1
0.3 − 1, 〈𝐴𝑐𝑜𝑛𝑠𝑡(𝑠)/𝐴𝑓𝑟𝑒𝑒(𝑠)〉|0.4

0.6 − 1, and

〈𝐴𝑐𝑜𝑛𝑠𝑡(𝑠)/𝐴𝑓𝑟𝑒𝑒(𝑠)〉|0.6
0.8 − 1, respectively (〈𝑋(𝑠)〉|𝑎

𝑏 denotes the average of 𝑋 in interval [a b]).

LASER ABLATION OF NEURONS

Cell ablation experiments (ablation of PDE or AVK neurons) were carried out with a custom-built

thermal laser ablation system (Fouad et al., 2021) based on an inverted microscope (Nikon TE-

2000). Transgenic animals (Pdat-1::GFP for PDE ablation; Pflp-1::GFP for AVK ablation) at third

larva stage were immobilized on 10% agar pads using 50 nm polystyrene beads and mounted on

the microscope. The GFP-labeled somas of target neurons (PDE or AVK) were visualized under

GFP fluorescence optics and illuminated with 1~2 laser pulses (1.5 ms in duration, 400 mW in

power) through a 63X oil-immersion objective. After ablation, animals were transferred to a fresh

OP50 plate to recover overnight. On the next day, the illuminated animals were mounted on the

system again to run a double-check on the elimination of target neurons. Confirmed animals were

transferred back to seeded plates to resume growth for an additional day until they turned young

adults during behavioral assays. Mock-ablation groups were mounted on the system but not

irradiated with the laser.

PDE CALCIUM IMAGING IN MOVING OR PARALYZED ANIMALS

For recording PDE Ca2+ activity in freely behaving animals (Figs. 3.5A-B), transgenic worms

expressing GCaMP in PDE neurons (Pdat-1::GCaMP6m), after getting off carried-over bacteria,

103

were picked onto a 5% agar pad with a few microliters of NGM buffer, and covered with a #1.5

cover glass, so that worms were between agar and cover glass. Worms moved relatively slower

under this condition but still maintained normal body shape and locomotion. For recording PDE

Ca2+ activity in paralyzed animals (Figs. 3.5C-D), unc-54(e1092) myosin heavy chain mutants

expressing GCaMP in PDE neurons (Pdat-1::GCaMP6m) were loaded and restrained in a

sinusoidal microfluidic channel which was filled with 17% (by mass) dextran solution. To induce

varying body curvature, worm position within the channel was manually controlled by a syringe (1

mL in volume) connected to polyethylene tubing on the inlet.

 Ca2+ imaging of PDE in freely behaving worms and muscularly paralyzed worms was

performed on a Leica DMI3000 B microscope equipped with a motorized stage (CTR3000,

Leica). The GCaMP6m protein in the PDE neurons was excited by the broadband excitation light

derived from Leica EL6000. Worm body was visualized under a red dark field illumination

provided by a built-in halogen lamp (LH107/2, Leica). To support simultaneous recording of Ca2+

activity and worm movement, green fluorescence emission and red dark field illumination were

collected through a Leica Plan Apo 10X objective (working distance, 1 mm; N.A., 0.40), separated

by a dual-view beam splitter (DV2, Photometrics) with a CFP/GFP filter set, projected onto an

EMCCD sensor (Cascade 1K, Photometrics). The unbinned image sequences were streamed at

9 frames per second (fps) acquisition rate under 100 ms exposure time operated by

MicroManager. Approximately 2 min of data were acquired for each animal.

 Image sequences acquired in either of the worm preparations were processed offline using

custom analysis routines. Briefly, each image in these sequences was split in half so that signals

obtained through red and green channels were separated into individual sub-images. In the red

sub-image sequences, each image was background-subtracted and thresholded to produce a

binary image. The binary image sequences were used to quantify worm curvature dynamics

104

using similar methods as described above. With the computed curvature dynamics, the

corresponding binary image sequences were computationally deformed from a worm shape into a

skinny rectangle which provided a mask to crop out whole-body fluorescence signals from the

green sub-image sequences. From the masked-out rectangular fluorescent images, regions of

interest (ROIs) were selected on somas of the target neuron PDEs. GCaMP signals were

measured as integrated fluorescence over the ROI, subtracted by a background value computed

within each recording using a secondary ROI drawn around PDEs but lacking labeled neurons.

To obtain normalized signals (Figs. 3.5B and 3.5D), the GCaMP values were subtracted and

then divided by a baseline 𝐹0 value calculated per recording as the mean of the lowest 50% of

GCaMP values. Image splitting, binarizing, and GCaMP signal extraction were conducted using

software ImageJ. Curvature calculation and binary image deformation were performed using

custom-written Python scripts (Ruba, Fang-Yen, unpublished).

QUANTIFICATION AND STATISTICAL ANALYSIS

Each transgenic and mutant strains were tested in at least two different experiments done on two

different days within a week, and compared to control experiments done in parallel on the same

days. All quantification has been explained within relevant sections of Methods. Specification of

all statistics analysis is reported in the figure legends.

DATA AND SOFTWARE AVAILABILITY

Raw data for all experiments and behavioral analyzing software will be available upon request.

105

CHAPTER 4: CONCLUSION AND FUTURE DIRECTIONS

CONCLUSION

I consolidated laboratory experiments and theoretical modelling in pursuit of a system- and

circuit-level understanding of how C. elegans generates and modulates locomotion.

 In Chapter 2, with the help of optogenetic perturbation, behavioral quantification, and

computational modeling, I performed different levels of analyses which can be used to constrain

the space of hypotheses being evaluated, allowing to construct higher-level principles and

structures in a motor circuit model. The quantitative agreement between the model and

experiments-importantly including the perturbation experiments-suggests forward locomotion in

worms can be understood as being driven by a relaxation oscillator. The proposed model

provides a ‘top-down’ framework for understanding the neural computations underlying the motor

circuit, which can potentially be used to guide further experiments to address details.

 In Chapter 3, through a combined effort of optogenetic, microfluidic manipulation, and

systematic quantification of behavior, I characterized a homeostatic mechanism underlying C.

elegans locomotion modulation in response to external postural perturbation. Using reverse

genetic analysis, Ca2+ imaging, and neural ablation, I reveal a complete neural circuit responsible

for this curvature compensatory behavior. This circuit involves a dopamine and neuropeptide

signaling pathway, orchestrated by a set of sensory neurons, interneurons, and motor neurons.

My findings demonstrates a unique mechanism where proprioception can work with dopamine

and neuropeptide signaling to mediate homeostatic control of locomotion.

FUTURE DIRECTIONS

Following the current findings, the next steps of the research program could be divided into two

parts.

106

IDENTIFY AND CHARACTERIZE NEURAL ELEMENTS CONVEYING PROPRIOCEPTIVE

FUNCTIONS IN LOCOMOTORY RHYTHM GENERATION

Highly quantitative and robust behavioral assays (as described by Methods in Chapter 2) will not

only allow us to characterize and model the neuronal mechanisms that generate motor rhythms,

but do enable us to identify critical neurons for regulating motor activities.

 We will first identify and characterize the neural elements with the proprioceptive roles in

locomotory rhythm generation proposed by Chapter 2. To do this task, we will conduct a

behavioral screen on existing mutants to identify mutations that seem to be involved in the

proprioceptive feedback detection and computation. Should any mutants show a defect in

locomotory dynamics during our behavioral screening process, we will characterize their roles in

the proprioception by confirming their site-of-action using cell-specific rescue and analyzing their

effects on the Ca2+ response of specific neurons using Ca2+ imaging techniques.

EXPLORE THRESHOLD-BASED SWITCHING MECHANISM PROPOSED IN OUR MODEL

Next, we will explore the threshold-based switching mechanism proposed in our model. As

indicated by the model, the proprioceptive feedback is defined as a linear combination of the total

curvature of a body segment and its time derivative, and this factor is being compared with a pair

of additive-inverse postural thresholds during muscle contractions. Therefore, two aspects

concerning this hypothesis remain to be examined experimentally: (a) dependence of

proprioceptive feedback on rate of change of curvature, (b) contributions of the threshold-based

algorithms to the locomotory outputs.

 To test the dependence of proprioceptive feedback on rate of change of curvature, I will

examine Ca2+ dynamics in transgenic animals expressing the Ca2+ sensitive protein GCaMP

selectively in motor neurons (head: SMD neurons, body: B-type neurons) of the motor circuit. We

will place a worm in a pneumatic microfluidic device described in previous studies (Wen et al.,

107

2012) where a segment of the worm is trapped in a channel flanked by two chambers. By

pressurizing the chamber on one side while depressurizing the one on the other side, we will be

able to manipulate the curvature of body segment in a controllable manner. Using this microfluidic

setup, we will first systematically measure the Ca2+ signal of the neuron at different curvature

values with the channel shape fixed at each measurement, and then measure the Ca2+ dynamics

of the neuron while changing the channel curvature at a certain constant rate. In the experiments,

we need to measure these neuronal activities concurrently with the changing curvatures.

 For exploring how the threshold-based algorithms contribute to locomotory outputs, we will

use some kind of non-depolarizing agents (need to explore further) that bind to the NMJ receptor

as antagonists and leave fewer receptors for acetylcholine to bind (Bowman, 2006). Thus, the

decrease in binding of acetylcholine will lead motor neuron transmission to the muscle to be less

likely to occur and we assume this physiological effect to be conceptually equivalent to directly

increasing the threshold value. We will then change the dosage of the drug to accomplish a range

of effect from being mild to fully paralyzing the locomotion. Our behavioral analyzing system is

highly automated and quantitative, so it is possible to obtain ample data from moving animals that

are affected under different levels of paralysis (different proprioceptive thresholds). The choice of

paralyzing locations can be various, such as the whole body or a specific side of body, which

allows us to explore the threshold-based mechanism in a flexible way.

108

APPENDIX A: SUPPLEMENTAL FIGURES

Figure S2.1. Phase portrait representations of the oscillatory bending dynamics for

various body coordinates.

109

Figure S2.2. Normalized deviation to the normal cycle (the unperturbed oscillation) for the

head oscillation of the perturbed worms.

Individual dynamics were grouped into different bins by binning their initial amplitude at 𝑡 = 0. In

the figure, each trace represents the collective amplitude dynamics of the corresponding group.

Distance d is defined such that 𝑑 = −1 at the origin and 𝑑 = 0 on the limit cycle. The legend

indicates initial amplitude range of each bin and the corresponding number of individual traces

within the bin.

Figure S2.3. The isochron map overlaid with the vector field for the worm’s head

oscillation.

On the isochron map, a point on the normal cycle (black trajectory) and all other points off the

normal cycle that share the same color form a manifold representing states having an equal

110

phase (indicated by the color bar). On the vector field, an arrow represents the phase state

(𝑑𝐾/𝑑𝑡, 𝑑(𝜉�̇�)/𝑑𝑡) which determines the time derivative of the state of a trajectory. Both maps

were computed from the results of experiments with Pmyo-3::NpHR worms.

Figure S2.4. Phase response curve of Pmyo-3::NpHR worms (ATR- control group).

Each point represents a single illumination (0.1 s duration, 532 nm wavelength) of one worm.

Filled area represents 95% confidence interval. Data collected from 414 trials using 116 worms.

111

Figure S2.5. Phase response curve of Pmyo-3::NpHR worms perturbed by a 0.055 s

optogenetic muscle inhibition.

Curve was obtained from 150 trials of transient inhibitions of head muscles using 115 worms.

Each point represents a single illumination (0.055 s duration, 532 nm wavelength) of one worm.

Filled area represents 95% confidence interval.

112

Figure S2.6. Phase response curves of Pmyo-3::NpHR worms induced by a 0.1 s

optogenetic muscle inhibition, perturbed and measured at various body regions.

Anterior = 0.1-0.3; middle = 0.4-0.6; posterior = 0.6-0.8 along the worm body. (Upper) Schematics

illustrating the selected spatial regions for optogenetic inhibition (Green shaded area) and phase

response analysis (dashed box).

(A-C) PRCs induced by muscle inhibition of the anterior region (991 trials using 337 worms),

113

measured from (A) anterior, (B) middle, and (C) posterior regions, respectively.

(D-F) PRCs induced by muscle inhibition of the middle region (687 trials using 276 worms),

measured from (D) anterior, (E) middle, and (F) posterior regions, respectively.

(G-I) PRCs induced by muscle inhibition of the posterior region (235 trials using 76 worms),

measured from (G) anterior, (H) middle, and (I) posterior regions, respectively. For all the above

plots, each point indicates a single illumination (0.1 s duration, 532 nm wavelength) of one worm.

Experimental curves were obtained using a moving average along the x-axis with 0.16𝜋 in bin

width. Filled area of each curve represents 95% confidence interval with respect to each bin of

data points.

Figure S2.7. Phase response curve of transgenic worms that express NpHR in all

cholinergic neurons.

Curve was obtained from 270 trials of transient inhibitions of cholinergic neurons in the head

region using 135 worms. Each point represents a single illumination (0.055 s duration, 532 nm

wavelength) of one worm. Filled area represents 95% confidence interval.

114

Figure S2.8. Phase response curve of transgenic worms that express Arch in the B-type

motor neurons.

Curve was obtained from 551 trials of transient inhibitions of the B-type motor neurons in the

head region using 160 worms. Each point represents a single illumination (0.055 s duration, 532

nm wavelength) of one worm. Filled area represents 95% confidence interval.

115

Figure S2.9. Phase response curve of transgenic worms that express NpHR in the body

wall muscles but lack the GABA receptor for the D-type motor neurons.

Curve was obtained from 259 trials of transient inhibitions of head muscles using 192 worms.

Each point represents a single illumination (0.1 s duration, 532 nm wavelength) of one worm.

Filled area represents 95% confidence interval.

Figure S2.10. Bell-shaped function for modeling the optogenetic muscle inhibition (Eqn.

S2.14).

The curve models the degree of paralysis due to the optogenetic muscle inhibition as a function

of time. Referring to Eqn. S2.14, the fractional variable 𝐻 describes the reduced proportion of

muscle moment when a worm reaches maximal paralysis after illumination. 𝑟 describes the time

of maximal paralysis with respect to the occurrence of illumination. 𝑝 determines the time interval

during which the paralyzing degree exceeds 𝐻/2. 𝑞 and 𝑝 together determine the paralyzing rate.

116

Figure S2.11. Paralyzing effect analysis of muscle inhibitions induced by illumination on

different sides of the worm’s head segment.

(A) Spectra of paralyzing effects across all phases of illuminations, represented by absolute

curvature |𝐾| of the head region. |𝐾| shown on y-axis is the value obtained 0.53𝜋 later in phase

(or 0.3 s in time with respect to locomotion period 1.13 s) after the illumination phase 𝜙. The

specific phase difference 0.53𝜋 (or 0.3 s time difference) was chosen for computing the

paralyzing effects because a max paralysis is achieved at ~0.3 s after illumination as shown in

Fig. 3B. Grey curve represents control ATR+ (no light) group (414 trials using 116 worms). Red

curve represents ATR+ group with only ventral side being illuminated (373 trials using 176

worms). Blue curve represents ATR+ group with only dorsal side being illuminated (576 trials

using 242 worms). Black curve represents ATR+ group with both sides being illuminated (991

trials using 337 worms). All curves were obtained using a moving average along the x-axis with

0.4𝜋 in bin width and filled areas represent 95% confidence interval.

(B) Average paralyzing effects during dorsal bend and ventral bend, represented by mean

117

absolute curvature 〈|𝐾|〉 averaged across range [0, 𝜋] (dorsal bend) and [𝜋, 2𝜋] (ventral bend),

respectively. Colors indicate different conditions of experiment in the same way as in A. (***)

indicates p<0.0005 using paired t test.

118

Figure S2.12. Performance of model oscillators: threshold-switch (column 1), van der Pol

(column 2), Rayleigh (column 3), and Stuart-Landau (column 4).

(A-D) Time-varying curvatures of the worm’s head region, measured from experiments (red, 5047

119

cycles using 116 worms) or produced by models (black). The four models match the experimental

curvature with MSEs ≈ 0.18, 0.44, 0.18, and 0.39, respectively. (Inset table) 𝑈/𝑇0 (fraction of

period of bending toward the ventral or dorsal directions) and 𝐷/𝑇0 (fraction of period of

straightening toward a straight posture), for experiments or models, respectively.

(E-H) Phase portrait graphs of the free-running dynamics shown in A-D, measured from

experiments (red) or produced by models (black). Arrow indicates clockwise movement.

(I-L) Phase plots showing each model perturbed (indicated by purple arrow) away from the stable

limit cycle and then recovering toward the equilibrium.

(M-P) Phase response curves with respect to both-side muscle inhibition, measured from

experiments (blue, 991 trials using 337 worms) or produced by models (orange). Four models

match the experimental PRC with MSE ≈ 0.12, 0.21, 0.37, and 0.72, respectively.

120

Figure S2.13. Phase response curves with respect to single-side muscle inhibition,

simulated from model oscillators: threshold-switch (column 1), van der Pol (column 2),

Rayleigh (column 3), and Stuart-Landau (column 4).

(A-D) PRCs with respect to dorsal-side muscle inhibition, measured from experiments (blue, 576

trials using 242 worms) or produced by models (orange).

(E-H) PRCs with respect to ventral-side muscle inhibition, measured from experiments (blue, 373

trials using 176 worms) or produced by models (orange). Filled areas of all experimental PRCs

represent 95% confidence interval with respect to each bin of data points.

Figure S3.1. Curvature modulation in response to optogenetic muscle inhibition at various

body regions.

(A-D) (Upper) Schematics denoting optogenetic muscle inhibition applied at head (A), neck (B),

middle (C), posterior (D) regions of transgenic worms expressing Muscle::NpHR. h = head, t =

121

tail, d = dorsal, v = ventral. Regarding worm body regions, head = 0.05-0.25, neck = 0.2-0.4,

middle = 0.4-0.6, posterior = 0.6-0.8 body coordinate. (Lower) Kymographs of mean absolute

curvature around the 0.1 s inhibitions (green dashed box) in the indicated regions of worm body

as shown by the corresponding schematics. 649 trials from 135 worms were used in (A); 466

trials from 75 worms were used in (B); 1160 trials from 206 worms were used in (C); 467 trials

from 76 worms were used in (D).

(E-H) Undulatory amplitude change upon the transient optogenetic muscle inhibitions applied at

indicated body regions, measured as mean ± SEM of the normalized curvature change of the first

post-illumination curvature peak of various body regions from the head to the tail. Green bar

indicates the 0.1 s laser illumination applied to the corresponding body region. Data for computing

(E-H) were the same as used in (A-D), respectively.

122

Figure S3.2. Several mechanoreceptors, neuromodulators and receptors, and muscles are

not required for curvature compensatory response.

(A) Several mechanoreceptors do not contribute to curvature compensation. Data represent

mean ± SEM of the normalized anterior curvature change in response to midbody constraint for

DEG/ENaC channel mutants mec-4(u253), mec-4(e1611), mec-10(e1515), del-1(ok150), unc-

8(e15lb145), and TRP channel mutants trp-4(sy695), trpa-1(ok999). Each data point is the mean

of a 3 s period of constrained locomotion pooled across 10 or more animals for each strain. ns:

not significant when compared with wild type animals, Dunnett’s multiple comparison tests.

(B) Signaling of several neuromodulators and gap junctions between muscle cells do not

contribute to curvature compensation. Data represent mean ± SEM of the normalized anterior

123

curvature change in response to midbody constraint for tph-1(n4622), tdc-1(n3421), npr-1(ky13)

mutants, and unc-9(fc16) mutants in which the UNC-9 innexin protein was rescued pan-

neuronally. TPH-1 encodes tryptophan hydroxylase which is required for serotonin synthesis.

TDC-1 encodes tyrosine decarboxylase which is required for synthesizing tyramine or

octopamine. The unc-9 rescued strain lacks gap junction only in muscle cells. Each data point is

the mean of a 3 s period of constrained locomotion pooled across 10 or more animals for each

strain. ns: not significant when compared with wild type animals, Dunnett’s multiple tests.

Figure S3.3. Average correlations of PDE::GFP signal with body curvature (N = 15).

124

Figure S3.4. Curvature compensation mechanism is consistent with gait adaptation of

bending amplitude in response to mechanical load.

(A-C) Locomotory parameters in different viscous solutions, measured from wild-type animals,

dop-3(vs106) mutants, and dop-3 mutants with dop-3 function rescued in AVK neurons. (A) Mean

undulatory frequency; (B) mean undulatory wavelength scaled by worm body length L; (C) mean

curvature amplitude of undulation, **p<0.01, ***p<0.001, ns: not significant compared with wild

type, Tukey-Kramer multiple comparison tests.

(D) Mean curvature amplitude of undulation in solutions of viscosity 1390 mPa·s, measured from

the main strains used for studying curvature compensation. ***p<0.001 when compared with wild

type, ###p<0.001 when compared with dop-3 mutants, §§§p<0.001 when compared with npr-6

mutants, Tukey-Kramer multiple comparison tests.

(E) An adaptation index was computed for each strain using the difference between the curvature

125

amplitudes in high (9079 mPa·s) and low (1390 mPa·s) viscous solutions divided by the curvature

amplitude in the low viscous solution. ***p<0.001 when compared dop-3 mutants with wild-type

animals. Under each viscosity condition, 10 or more animals were tested for each strain.

126

APPENDIX B: SOFTWARE CODE

This appendix contains all the software code for data analyses described in Chapter 3. The

original data and software files (along with compilation instructions) for Chapter 2 are available

from an online repository (Ji et al., Dryad 2021: https://doi.org/10.5061/dryad.wwpzgmsk2).

 The software for computing phase response curves (Chapter 2) was originally written by Dr.

Anthony Fouad and revised by me. The Python scripts for analyzing worm posture during Ca2+

imaging (Chapter 3) were written by Dr. Andrew Ruba. The rest of software (Chapters 2 and 3)

was entirely written by me.

[In order to minimize number of pages, materials are displayed in two columns with the font size

modulated]

AnalyzeTool_Poolmean.m
% Worm shape analysis. This version is modified for

analyzing data obtained

% from worm locomotion on WormTunnel microfluidic chambers.

%

% First, periods during which a worm is undulating without

constraint will be

% collected and analyzed to generate a limit cycle for

normal undulatory

% dynamics (pool average).

%

%

% Next, periods during which a worm is moving under

constraint (usually at

% the middle of body) will be collected and analyzed to

generate phase

% dynamics during those periods

% Finally, combining the analyzed results from the above

two steps, a

% generalized compensatory factor kymogram will be

generated in a 2D

% heatmap form, which represents a function of time and

body coordinate.

% Also, information of the body portion that is being

constrained will be

% reflected on the kymogram.

%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% START

MAIN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

%

clc; close all; clear

global start_illum end_illum prefix pathname filename

global conc fps pix_per_mm wormthreshold isie decim filsize

spline_p initials

wormlabel = 1;

pix_per_mm = 198.83;

prefix;

pathname;

curvlim = 0.2;

domovie = 1;

issavefiles = 1;

option1 = 'Yes (AVI only)';

option2 = 'Yes (MAT)';

button = length(questdlg('Load new

data?','',option1,option2,'No', option1));

if button == length(option2)

 disp('options2');

 [filename,pathname2] = uigetfile({'*.mat'});

 load([pathname2 filename]);

elseif button == length(option1)

 disp('option1');

 do_dialog = 1;

 %% Identify and analyze control periods

 if do_dialog

 try

 cd(pathname);

 catch

 pathname = pwd;

 end

 [filename,pathname] = uigetfile('*.avi', 'Select

File');

% MATfname = ['All-' 'imm Normal.mat'];

 MATfname = ['All-' filename(1:6) 'imm Normal.mat'];

 load(fullfile(pathname, MATfname));

 end

 %% Identify and analyze constrained periods

 if do_dialog

 vidObj = VideoReader(fullfile(pathname,filename));

 NumFrames = vidObj.NumFrames;

 FPS = vidObj.FrameRate;

 NumFrames = vidObj.NumFrames;

 fps = vidObj.FrameRate;

 if isempty(conc)

 conc = 0;

 end

 if isempty(wormlabel)

 wormlabel = 1;

 end

 if isempty(pix_per_mm)

 pix_per_mm = 1;

 end

 if isempty(wormthreshold)

 wormthreshold = 0.10;

 end

 if isempty(isie)

 isie = [1, NumFrames];

 end

https://doi.org/10.5061/dryad.wwpzgmsk2

127

 if isempty(decim)

 decim = 1;

 end

 if isempty(filsize)

 filsize = 0.2;

 end

 if isempty(start_illum)

 start_illum = 1;

 end

 if isempty(end_illum)

 end_illum = 1;

 end

 if isempty(spline_p)

 spline_p = 0.01;

 end

 if isempty(initials)

 initials = {'JHF'};

 end

 if isempty(initials)

 initials = {'JHF'};

 end

 fields={'conc','wormlabel', 'fps','pixels per

mm','Worm image threshold',...

 'istart/iend (use";"if multiple)', 'Decimation

(1=none))',...

 'Filter size / diameter',

'start_illum','end_illum', ...

 'spline fit parameter', 'Make movie?', 'Your

initials', 'Save files?'};

 if exist('isie', 'var')

 answer = inputdlg(fields, 'Cancel to clear

previous', 1, ...

{num2str(conc),num2str(wormlabel),num2str(fps),num2str(pix_

per_mm),num2str(wormthreshold),...

 mat2str(isie), num2str(decim),...

num2str(filsize),num2str(start_illum),num2str(end_illum), .

..

 num2str(spline_p), num2str(domovie),

initials{1}, num2str(issavefiles)});

 else

 answer = inputdlg(fields, '', 1);

 end

 if isempty(answer)

 pause;

 end

 conc = str2double(answer{1});

 wormlabel = str2double(answer{2});

 fps = str2double(answer{3});

 pix_per_mm = str2double(answer{4});

 wormthreshold = str2double(answer{5});

 isie = Str2Mat(answer{6});

 decim = str2double(answer{7});

 filsize = str2double(answer{8});

 start_illum = str2double(answer{9});

 end_illum = str2double(answer{10});

 spline_p = str2double(answer{11});

 domovie = str2double(answer{12});

 initials = answer(13);

 issavefiles = str2double(answer{14});

 end

 nperiods = size(isie, 1);

 curv_const = cell(nperiods, 1);

 angle_const = cell(nperiods, 1);

 len_const = cell(nperiods, 1);

 rgn_const = cell(nperiods, 1);

 fullnewdirname = cell(nperiods, 1);

 w_diam = cell(nperiods, 1);

 % Compute undulatory variables for constrained groups

 for kk = 1 : nperiods

 do_const = 1;

 thisperiod = isie(kk, :);

 options = {conc, wormlabel, fps, pix_per_mm,

wormthreshold,...

 thisperiod, decim, filsize, start_illum,

end_illum,...

 spline_p, domovie, initials, pathname,

filename, do_const, issavefiles};

 [curv_const{kk}, ~, angle_const{kk}, len_const{kk},

rgn_const{kk}, fullnewdirname{kk}, w_diam{kk}]...

 = WORMSHAPE_MAINCALCULATION(vidObj, options);

 end

 close all

end

%% Calculate the average normal phase plot from control

groups

[Kc_all, dKdtc_all, Kp_data, dKdtp_data, T0_avg]...

 = Generalized_cfactor_for_microfluidics(CURV_all,

curv_const, fps);

% Determining control variables for normalizing phase

states at each time

% point and body coordinate

numtrials = numel(Kp_data);

numsamplepts = 100;

numcurvpts = 100;

a = .15; c = a * T0_avg;

Zc = Kc_all + 1i*c*dKdtc_all;

Pc = unwrap(angle(Zc), [], 2);

[~, Sc] = meshgrid(1:numsamplepts, 1:numcurvpts);

% Generate interpolant (in a bulk manner)

FR = scatteredInterpolant(Pc(:), Sc(:), Zc(:), 'linear',

'nearest');

% Constrcting complex curvature dynamics for pulsed group

CR = cell(numtrials,1);

for i = 1 : numtrials

 Kp = Kp_data{i};

 dKdtp = dKdtp_data{i};

 Zp = Kp + 1i*c*dKdtp;

 Pp_ori = angle(Zp); % do not use unwrap

 Pp1d = Pp_ori(:);

 Pp1d(Pp1d>0) = Pp1d(Pp1d>0) - 2*pi;

 Pp = reshape(Pp1d, size(Pp_ori));

 [~, Sp] = meshgrid(1:size(Pp,2), 1:size(Pp,1));

 Rp = abs(Zp);

 Zc4p1d = FR(Pp(:), Sp(:));

 Zc4p = reshape(Zc4p1d, size(Pp));

 Rc4p = abs(Zc4p);

 CR{i} = (Rp) ./ Rc4p;

end

%% Plotting data

issave = 1;

path4save = pathname;

fname = strrep(filename, '_bkgsubtracted.avi', '');

%% 3-D phase portrait plot of normal undulation

figure(1); clf

numsamplepts = 100;

numcurvpts = 100;

curvrgn_analysis = 1 : numcurvpts;

TX_mesh = meshgrid(1 : numsamplepts, curvrgn_analysis);

hold on

plot3(Kc_all', dKdtc_all', TX_mesh) % isosegmental line

plot3(Kc_all, dKdtc_all, TX_mesh') % isophasic line

hold off

view([30,30])

xl = xlim;

yl = ylim;

zlim([5 95])

xlabel('K')

ylabel('dKdt')

zlabel('Body coordinate')

set(gca, 'FontSize', 12, 'Position',

[0.13,0.11,0.775,0.815])

%% GUI with interactive response-plot updates for phase

portrait plots

s = 30;

f = figure(2); clf

ax = axes('Parent',f,'position',[0.2 0.25 0.65 0.65],

'PlotBoxAspectRatio', [1,0.81,0.75]);

faseplot2 = @(ax, s) phasePlot2(curvrgn_analysis, Kc_all',

dKdtc_all', s, ax, xl, yl);

faseplot2(ax, s);

b =

uicontrol('Parent',f,'Style','slider','Position',[81,34,419

,23],...

 'value',s, 'min',5, 'max',95);

bgcolor = f.Color;

uicontrol('Parent',f,'Style','text','FontSize',12,'Position

',[45,37,30,20],...

 'String','Head','BackgroundColor',bgcolor);

uicontrol('Parent',f,'Style','text','FontSize',12,'Position

',[505,37,30,20],...

 'String','Tail','BackgroundColor',bgcolor);

uicontrol('Parent',f,'Style','text','FontSize',12,'Position

',[240,10,100,23],...

 'String','Body

coordinate','BackgroundColor',bgcolor);

b.Callback = @(es,ed) faseplot2(ax, es.Value);

%% Cfactor as a function of time and body coordinate

(averaged over trials)

% customCMap = hsvCustomCMap(CR{1});

for i = 1 : numtrials

 thisCR = CR{i};

 thiscurv = curv_const{i};

 thisrgn = rgn_const{i};

 t = (0 : size(thisCR, 2)-1)/fps;

 figure(2+2*i-1);clf;

 set(gcf, 'Position',[118,366,542,506])

 imagesc(curvrgn_analysis, t, thisCR')

 hold on

128

 B = bwboundaries(thisrgn, 'noholes');

 for jj = 1 : numel(B)

 B1 = B{jj};

 patch(B1(:,2), B1(:,1)/fps, 'red',

'FaceColor','none', 'EdgeColor','r',

'LineStyle',':','LineWidth',2)

 end

 hold off

 xlabel('Body coordinate (0=head)')

 ylabel('Time (sec)')

 set(gca,'FontSize',20)

 colormap('jet')

 cb = colorbar('AxisLocation','out');

 ylabel(cb, 'Cfactor')

 if issave

 saveas(gcf, [fullfile(path4save, fname) '_cfactor x

t' sprintf('%d',i) '.fig'])

 saveas(gcf, [fullfile(path4save, fname) '_cfactor x

t' sprintf('%d',i) '.png'])

 end

 figure(2+2*i);clf;

 set(gcf, 'Position',[118,366,500,500])

 imagesc(curvrgn_analysis, t, thiscurv)

 hold on

 B = bwboundaries(thisrgn, 'noholes');

 for jj = 1 : numel(B)

 B1 = B{jj};

 patch(B1(:,2), B1(:,1)/fps, 'red',

'FaceColor','none', 'EdgeColor','r',

'LineStyle',':','LineWidth',2)

 end

 hold off

 xlabel('Body coordinate (0=head)')

 ylabel('Time (sec)')

 set(gca,'FontSize',20)

 colormap(cmap_redblue(.7))

 cb = colorbar('AxisLocation','out');

 ylabel(cb, 'Curvature')

 if issave

 saveas(gcf, [fullfile(path4save, fname) '_curv x t'

sprintf('%d',i) '.fig'])

 saveas(gcf, [fullfile(path4save, fname) '_curv x t'

sprintf('%d',i) '.png'])

 end

end

if issave

 save([fullfile(path4save, fname) '_data.mat'],

'len_const', 'rgn_const', 'Kp_data', 'dKdtp_data','CR',

'w_diam', 'fps')

end

Anterior_K_analysis.m
N = numel(CURV_all);

t0 = 3;

T0 = t0 * fps;

curv_rgn = 10:30;

Kmax = [];

for i = 1 : N

 curv = CURV_all{i};

 v = mean(curv(:,curv_rgn),2);

 T = numel(v);

 num_subperiod = floor(T/T0);

 for j = 1 : num_subperiod

 win = (1 + (j-1)*T0):(j * T0);

 kmax = max(abs(v(win)));

 Kmax = cat(1, Kmax, kmax);

 end

end

K = mean(Kmax);

K_SEM = std(Kmax)/sqrt(N);

Background_subtraction.m
% p = {

% '/Volumes/HF_BACKUP/Compensatory experiment-

Microfluidic/N2_70um'

% };

% nformat = '*.avi';

% %% process in group

% for i = 1:numel(p)

% listing = dir(fullfile(p{i}, nformat));

% numvideo = numel(listing);

% for j = 1 : numvideo

% fprintf('Processing folder %d of %d, video %d

of %d\n', i, numel(p), j, numvideo)

% BkgSubtraction_Output(listing(j).name, p{i});

% end

% end

%% process individual

p = {

 'C:\Users\fffei\Desktop\data to be transferred to

Main drive\FQ2747_60um_3-27-2022';...

 };

for n = 1 : numel(p)

 fprintf('Exps %d out of %d\n', n, numel(p))

 Dir = dir(p{n});

 for ii = 1 : numel(Dir)

 fname = Dir(ii).name;

 if fname(1) == '.'

 continue

 end

 BkgSubtraction_Output(fname, p{n}, 'd');

 end

end

BkgSubtraction_Output.m
function BkgSubtraction_Output(filename, pathname,

fieldmode)

% Load video

newfilename =

[erase(filename,'.avi'),'_bkgsubtracted','.avi'];

vidObj = VideoReader(fullfile(pathname,filename));

vidWidth = vidObj.Width;

vidHeight = vidObj.Height;

numFrames = ceil(vidObj.Duration * vidObj.FrameRate);

k = 1;

% Generate the background

numSamples = 1800;

while k <= numSamples

 if ~hasFrame(vidObj)

 break

 end

 currentFrame = double(readFrame(vidObj));

 if k == 1

 background = currentFrame;

 else

 % fprintf('%d\n',k)

 % background = ((k-1)*background +

currentFrame)/k;

 if fieldmode == 'd' % if dark-field

 background = min(background, currentFrame);

 elseif fieldmode == 'b' % if bright-field

 background = max(background, currentFrame);

 end

 end

 k = k + 1;

end

if vidObj.VideoFormat(1) == 'R'

 background = uint8(mean(background, 3));

else

 background = uint8(background);

end

vidObj.CurrentTime = 0;

bkgname = fullfile(pathname,[erase(filename,'.avi')

'_background.bmp']);

imwrite(background, bkgname);

% imgbkg = imread(bkgname);

% figure(1); clf

% image(imgbkg); colormap('gray')

% set(gcf, 'Position', [1892,170,1327,1027])

% answer = length(questdlg('Need to modify background

image?', 'BKG modification', 'Yes', 'No', 'No'));

% if answer == 2

% close;

% elseif answer == 3

% hold on;

% title('Indicate ROI to be modified');

% [bw1, xi1, yi1] = roipoly;

% patch(xi1, yi1, 'g', 'FaceColor',

'none','EdgeColor','g', 'LineStyle',':')

% title('Indicate ROI as substitute');

% [bw2, xi2, yi2] = roipoly;

% patch(xi2, yi2, 'g', 'FaceColor',

'none','EdgeColor','r', 'LineStyle',':')

% % replace the pixel colors of ROI1 with the average

color from ROI2

% tmp = uint8(mean(imgbkg(bw2),'all'));

% background(bw1) = tmp;

% % rewrite the modified image and then save it

% imwrite(background, bkgname);

% close;

% end

% Background subtraction and create a new video

k = 1;

v = VideoWriter(fullfile(pathname,newfilename),'Grayscale

AVI');

v.FrameRate = vidObj.FrameRate;

open(v)

tic

while hasFrame(vidObj)

 currentFrame = readFrame(vidObj);

 if vidObj.VideoFormat(1) == 'R'

129

 currentFrame = uint8(mean(currentFrame, 3));

 end

 if fieldmode == 'd' % if dark-field

 newFrame = currentFrame - background;

 elseif fieldmode == 'b' % if bright-field

 newFrame = background - currentFrame;

 end

 writeVideo(v,newFrame);

 k = k + 1;

 if k == floor(0.33 * numFrames)

 tmp = toc;

 tmp = round(tmp/60);

 fprintf('33%% complete, %d minutes passed\n',tmp)

 elseif k == floor(0.67 * numFrames)

 tmp = toc;

 tmp = round(tmp/60);

 fprintf('66%% complete, %d minutes passed\n',tmp)

 end

end

tmp = toc;

tmp = round(tmp/60);

fprintf('100%% complete, %d minutes passed\n',tmp)

close(v);

end

Do_collect_strains_info_beeswarm.m
clear; close all; clc

Parentdir = 'F:\Compensatory experiments\Combined_data';

P_all = {

 'Combined_N2', 'N2';...

% 'Combined_N2_50mM DA', 'N2+DA bath';...

% 'Combined_CB1112', 'cat-2';...

% 'Combined_CB1112_DAADAB', 'cat-2+DA bath';...

% 'Combined_PVD-ChR2_light-off', 'dop-1';...

% 'Combined_LX636', 'dop-1';...

% 'Combined_LX702', 'dop-2';...

% 'Combined_LX703', 'dop-3';...

% 'Combined_LX703_NOADAB', 'dop-3+DA bath';...

% 'Combined_FG58', 'dop-4';...

% 'Combined_LX706', 'dop-1/2';...

% 'Combined_LX705', 'dop-1/3';...

% 'Combined_CB156', 'dop-2/3';...

% 'Combined_RB1657', 'dop-1/2/3';...

% 'Combined_RM2702', 'dat-1';...

% 'Combined_CB1112_NOADAB', 'cat-2(single DA)';...

% 'Combined_LX703_unc-47_rescue', 'dop-3;Punc-

47::dop-3(+)';...

% 'Combined_LX703_ser-2_rescue', 'dop-3;PVD::dop-

3(+)';...

% 'Combined_LX703_myo-3_rescue', 'dop-

3;Muscle::dop-3(+)'

% 'Combined_LX703_acr-2_rescue', 'dop-3;Pacr-

2::dop-3(+)';...

% 'Combined_LX703_acr-5_rescue', 'dop-3;Pacr-

5::dop-3(+)';...

% 'Combined_ZX2201', 'dop-3;AVK::dop-3(+)';...

% 'Combined_KP2018' 'egl-21';...

% 'Combined_MT1219' 'egl-3';...

% 'Combined_CB156', 'unc-25';...

% 'Combined_CB382', 'unc-49';...

% 'Combined_CB678', 'lon-2';...

% 'Combined_KHK641', 'trp-1/2';...

% 'Combined_MT6308', 'eat-4';...

% 'Combined_RB1657', 'hpo-30';...

% 'Combined_NC279', 'Mock-ablated';...

% 'Combined_VM6365', 'ADE+CEP-ablated'

% 'Combined_PDE_killed', 'PDE-ablated';...

% 'Combined_LX645', 'PDE-ablated in DA';...

% 'Combined_PDE-TeTx', 'Pdat-1::TeTx';...

% 'Combined_PDE-TeTx_DA', 'Pdat-1::TeTx in DA';...

% 'Combined_TV19861','dma-1;PVD::dma-1';...

% 'Combined_PVD-HisCl_soak30min_15mM',

'PVD::HisCl1(+) medium';...

% 'Combined_PVD-HisCl_soak30min_20mM',

'PVD::HisCl1(+) high';...

% 'Combined_ZX819_off', 'PVD::ChR2(+) light-';...

% 'Combined_ZX819_on', 'PVD::ChR2(+) light+';...

% 'Combined_JT734','goa-1';...

% 'Combined_KP1087','dgk-1';...

% 'Combined_TQ296', 'egl-10';...

% 'Combined_MT1093', 'gpb-2';...

% 'Combined_ZX819_off', 'egl-30';...

% 'Combined_ZX819_on','egl-8';...

% 'Combined_VM6365_2','egl-16';...

 'Combined_CB169', 'unc-31';...

 'Combined_NY16', 'flp-1(yn4)';...

 'Combined_FQ2747', 'flp-1(sy1599)';...

% 'Combined_AVK mock-ablation', 'Mock

ablation';...

% 'Combined_AVK-ablation', 'AVK-ablated';...

% 'Combined_FQ2747', 'AVK::TeTx';...

 'Combined_RB1657', 'npr-6';...

 'Combined_ZX2037', 'npr-6;SMB::npr-6(+)';...

 'Combined_ZX3058', 'SMB::ICE';...

% 'Combined_YX139', 'unc-9 (rescued in

neurons)';...

% 'Combined_MT14984', 'tph-1';...

% 'Combined_MT13113', 'tdc-1';...

% 'Combined_HBR507', 'flp-11';...

% 'Combined_CX4148', 'npr-1';...

% 'Combined_TU253', 'mec-4';...

% 'Combined_CB1611', 'mec-4(d)';...

% 'Combined_CB1515', 'mec-10';...

% 'Combined_CB1338', 'mec-3';...

% 'Combined_PVD-HisCl_soak30min_15mM', 'del-

1';...

% 'Combined_PVD-HisCl_soak10min_10mM', 'unc-

8';...

% 'Combined_TQ296', 'trp-4';...

% 'Combined_RB1052', 'trpa-1';...

 };

N_strains = size(P_all,1);

Genonames = cell(1, N_strains);

Y = cell(1, N_strains);

Ya = cell(1, N_strains);

Ym = cell(1, N_strains);

Yp = cell(1, N_strains);

F_bar = zeros(size(Y));

X_bar = 1 : N_strains;

F_err = zeros(size(Y));

H2one = zeros(size(Y));

Pvals2one = zeros(size(Y));

H2wt = zeros(size(Y));

Pvals2wt = zeros(size(Y));

for i = 1:N_strains

 fprintf('Strain %d out of %d', i, N_strains)

 Genonames{i} = P_all{i,2};

 pathname = fullfile(Parentdir, P_all{i,1});

 % all subfolders

 subfolderlist = dir(fullfile(pathname, '*_dir'));

 N_subfolder = size(subfolderlist, 1);

 for j = 1 : N_subfolder

 subfoldername = fullfile(subfolderlist(j).folder,

subfolderlist(j).name);

 ctrlfile = dir(fullfile(subfoldername,

'All*.mat'));

 ctrlfilename = ctrlfile.name;

 t1 = 3;

 [Q_anterior, Q_immobile, Q_posterior] =

PostProcessing_cfactor_statistic_auto(ctrlfilename,

subfoldername, t1);

 Ya{i} = cat(1, Ya{i}, Q_anterior-1);

 Ym{i} = cat(1, Ym{i}, Q_immobile-1);

 Yp{i} = cat(1, Yp{i}, Q_posterior-1);

 Q_anterior(isnan(Q_anterior)) = [];

 Y{i} = cat(1, Y{i}, Q_anterior-1);

 end

end

% %% Plot scatter plot to show the relationship between

anterior and immobile

% figure(1)

% for i = 1 : N_strains

% subplot(5, 5, i)

% ya = Ya{i};

% ym = Ym{i};

% todel = any(cat(2,isnan(ym),isnan(ya)), 2);

% ym(todel) = [];

% ya(todel) = [];

% scatter(ym, ya, 36, 'k', 'filled')

% p = polyfit(ym, ya, 1);

% Yafit = polyval(p, ym);

% Yares = ya - Yafit;

% SSres = sum(Yares.^2);

% SStot = (length(ya)-1) * var(ya);

% rsqrt = sqrt(1 - SSres/SStot);

% hold on

% fplot(@(x) polyval(p,x), [min(ym) max(ym)], 'r')

% hold off

% xlabel('M')

% ylabel('A')

% title([Genonames{i} sprintf(' (R = %.4f)', rsqrt)])

% xlim([.4 2])

% ylim([.4 2])

% end

%% Plot bargraph for all strains with normalized amplitudes

comparing with 1

X1 = [];

Ymean = zeros(1, N_strains);

for i = 1 : N_strains

 Ymean(i) = mean(Y{i});

end

I = 1 : N_strains;

% [~, I] = sort(Ymean, 'descend');

130

Y_sort = Y(I');

Genonames_sort = Genonames(I');

for i = 1 : N_strains

 X1 = cat(1, X1, i*ones([numel(Y_sort{i}) 1]));

end

% figure(2)

% for i = 1:numel(X)

% x = X{i};

% y = Y{i};

% F_bar(i) = mean(y);

% F_err(i) = std(y)./sqrt(numel(x));

% [H2one(i), Pvals2one(i)] = ttest(y, 1, 'Tail',

'right');

% hold on

% scatter(x, y, 10, 'b','filled')

% txt = num2str(Pvals2one(i), '%.1e');

% if H2one(i) == 0

% text(X_bar(i), .25,txt, 'HorizontalAlignment',

'center', 'Color', 'r')

% else

% text(X_bar(i), .25,txt, 'HorizontalAlignment',

'center', 'Color', 'k')

% end

% hold off

% end

%

% figure(2); hold on

% bar(X_bar, F_bar, 'FaceColor', 'none', 'LineWidth', 2)

% errorbar(X_bar, F_bar, F_err, 'LineStyle', 'none',

'Color', 'k', 'LineWidth',1.5)

% hold off

%

% hold on

% line([0 N_strains+1],[1 1], 'Color', 'red', 'LineStyle',

'--', 'LineWidth', 1)

% hold off

% ylim([0 2.5])

% xticks(X_bar)

% xticklabels(Genonames)

% ylabel('Normalized amplitude (|K|)')

% title('Comparison with 1 (one-tail one-sample t test)')

% set(gcf, 'Position', [740,220,530,498])

% set(gca, 'FontSize', 15)

% set(gca, 'XTickLabelRotation', 45)

%% Plot bargraph for all strains with normalized amplitudes

comparing with wt

Y1 = [];

for i = 1:numel(Y_sort)

 Y1 = cat(1, Y1, Y_sort{i});

 [H2wt(i), Pvals2wt(i)] = ttest2(Y_sort{1}, Y_sort{i},

'Tail', 'both');

% [H2wt(i), Pvals2wt(i)] = ttest2(y, Y{1}, 'Tail',

'both');

% hold on

% if i~= 1

% txt = num2str(Pvals2wt(i), '%.1e');

% if H2wt(i) == 1

% text(X_bar(i), .25,txt,

'HorizontalAlignment', 'center', 'Color', 'r')

% else

% text(X_bar(i), .25,txt,

'HorizontalAlignment', 'center', 'Color', 'k')

% end

% end

% hold off

end

figure(5);clf

beeswarm(X1,Y1,'sort_style','hex','dot_size',.5,'overlay_st

yle','ci','corral_style','omit');

% ylim([-0.5 1.5])

% xlim([0.3 3.7])

xticks(X_bar)

xticklabels(Genonames_sort)

ylabel(sprintf('Normalized anterior\n curvature change'))

% title('Comparison with wildtype (two-tail two-sample t

test)')

set(gcf,'Position', [69,291,1200,400])

set(gca,'FontName','Arial','FontSize',20)

set(gca, 'XTickLabelRotation', 0)

%% Fit linear model with continuous factors (constrained

curvature change) and categorical factors (strain types)

for i = 1 : N_strains

 Genotype = Genonames{i};

 ya = Ya{i};

 ym = Ym{i};

 todelete = any([isnan(ya), isnan(ym)],2);

 ya(todelete) = [];

 ym(todelete) = [];

 N_trials = numel(ya);

 for j = 1 : N_trials

 Trial_info = {Genotype, ym(j), ya(j)};

 if i==1 && j==1

 T_exp = table(categorical({Genotype}),

double(ym(j)), double(ya(j)), ...

 'VariableNames',{'Genotype', 'Curv_imm',

'Curv_ant'});

 else

 T_exp = [T_exp; Trial_info];

 end

 end

end

mdl = fitlm(T_exp, 'ResponseVar', 'Curv_ant',...

 'PredictorVars', {'Genotype', 'Curv_imm'},...

 'CategoricalVars', {'Genotype'})

% writetable(mdl.Coefficients,'F:\Compensatory

experiments\Collective Results\fitLM.xls','Sheet',1)

rownames = mdl.CoefficientNames';

% % %% Fit linear model with continuous factors

(constrained curvature change) and categorical factors

(strain types) with full indicator variables

% % Genotypes_all = T_exp{:,1};

% % temp_Genotypes= dummyvar(categorical(Genotypes_all));

% % N2 = temp_Genotypes(:,1);

% % dop_1 = temp_Genotypes(:,2);

% % dop_2 = temp_Genotypes(:,3);

% % dop_3 = temp_Genotypes(:,4);

% % dop_4 = temp_Genotypes(:,5);

% % dop_12 = temp_Genotypes(:,6);

% % dop_13 = temp_Genotypes(:,7);

% % dop_123 = temp_Genotypes(:,8);

% % dat_1 = temp_Genotypes(:, 9);

% % cat_2 = temp_Genotypes(:,10);

% % mec_4 = temp_Genotypes(:,11);

% % mec_4d = temp_Genotypes(:,12);

% % mec_10 = temp_Genotypes(:,13);

% % mec_3 = temp_Genotypes(:,14);

% % del_1 = temp_Genotypes(:,15);

% % unc_31 = temp_Genotypes(:,16);

% % unc_8 = temp_Genotypes(:,17);

% % unc_25 = temp_Genotypes(:,18);

% % unc_49 = temp_Genotypes(:,19);

% % lon_2 = temp_Genotypes(:,20);

% % trp_4 = temp_Genotypes(:,21);

% % trpa_1 = temp_Genotypes(:,22);

% % trp_12 = temp_Genotypes(:,23);

% % Curv_imm = T_exp{:,2};

% % Curv_ant = T_exp{:,3};

% % T_exp2 = table(N2, dop_1, dop_2, dop_3, dop_4,

dop_12, dop_13, dop_123, ...

% % dat_1, cat_2, mec_4, mec_4d, mec_10,

mec_3, del_1, unc_31, ...

% % unc_8, unc_25, unc_49, lon_2, trp_4,

trpa_1, trp_12, Curv_imm, Curv_ant);

% % mdl2 = fitlm(T_exp2, 'Curv_ant ~ N2 + dop_1 + dop_2

+ dop_3 + dop_4 + dop_12 + dop_13 + dop_123 + dat_1 + cat_2

+ mec_4 + mec_4d + mec_10 + mec_3 + del_1 + unc_31 + unc_8

+ unc_25 + unc_49 + lon_2 + trp_4 + trpa_1 + trp_12 +

Curv_imm - 1')

%% One-way ANOVA

[p,tbl,stats] = anova1(Y1',X1');

multcompare(stats)

Gcamp_correlation_soma.m
clc; clear;

Parent = 'C:\Users\fffei\Dropbox\Paper\Compensatory reponse

mechanism\data optogenetics\GCaMP expts new\BZ555 p05

agarpad\Intermediate data\New folder';

Pr = dir(fullfile(Parent, '*w*'));

N = numel(Pr);

numcurvpts = 100;

numseg = 5;

fps = 10;

nn = numcurvpts/numseg;

K = [];

F = [];

Tmin = 10; % 100 180

t0 = 5;

for i = 1 : N

 Prname = Pr(i).name;

 fullname = fullfile(Parent, Prname);

 if Prname(1) == '1'

 Pd = dir(fullfile(fullname, 'v_*'));

 Pv = dir(fullfile(fullname, 'd_*'));

 elseif Prname(1) == '2'

 Pd = dir(fullfile(fullname, 'd_*'));

 Pv = dir(fullfile(fullname, 'v_*'));

 end

 Pg = dir(fullfile(fullname, 'soma*'));

 Fd = double(imread(fullfile(Pd.folder, Pd.name))');

Fd([1:21 end-20:end], :) = [];

 Fv = double(imread(fullfile(Pv.folder, Pv.name))');

Fv([1:21 end-20:end], :) = [];

 Fc = Fv - Fd;

 Fg = double(imread(fullfile(Pg.folder, Pg.name)));

131

 Fc_resc = interp1(0 : size(Fc,1)-1, Fc, (0 :

99)./99.*(size(Fc,1)-1))';

 fg = mean(Fg, 2);

 f0 = prctile(fg,25);

 fg = (fg-f0)/f0;

 T = size(fg, 1);

 if T <= Tmin

 continue

 end

 % down-sample the curvature kymograph in body

coordinate

 K_per_worm = zeros(T, numseg);

 for j = 1 : numseg

 curvrgn = 1 + nn*(j-1) : nn*j;

 fc = mean(Fc_resc(:, curvrgn),2);

 K_per_worm(:,j) = fc;

 end

 % down-sample the curvature and fluorescence signal in

time

 T0 = floor(T/t0);

 Kn_per_worm = zeros(T0, numseg);

 Fn_per_worm = zeros(T0, 1);

 for k = 1 : T0

 timerange = 1 + t0*(k-1) : t0*k;

 Kn_per_worm(k, :) = mean(K_per_worm(timerange, :),

1);

 Fn_per_worm(k) = mean(fg(timerange));

 end

 K = cat(1, K, Kn_per_worm/30);

 F = cat(1, F, Fn_per_worm);

end

R_all = zeros(1, numseg);

RL_all = zeros(1, numseg);

RU_all = zeros(1, numseg);

figure(1); clf

for i = 1 : numseg

 subplot(1, numseg, i)

 plot(K(:,i), F, '.');

 [R, P, RL, RU] = corrcoef(K(:,i), F);

 xlabel(sprintf('K (%.1f portion)', (i-.5)/(numseg)));

 ylabel('\Delta F/F0');

 title(sprintf('R = %f\n P = %f', R(1,2), P(1,2)))

 R_all(i) = R(1,2);

 RL_all(i) = RL(1,2);

 RU_all(i) = RU(1,2);

% ylim([47300 84000])

 set(gca, 'FontSize', 12)

end

X = ((1:numseg)-0.5)/numseg;

figure(2); clf

errorbar(X, R_all, RL_all, RU_all)

xlabel('Body coordinate')

ylabel('Correlation with GCaMP')

xlim([0 1])

ylim([-1 1])

set(gca, 'FontSize', 12)

%% Generate GCaMP vs curvature scatter plot for mid-body

KK= K(:,3);

% Concatenate the F results by maxima and minima

 F = F(:);

 KK = KK(:);

 F1 = F;

% Sort data by phase at pulse

 [~,idx] = sort(KK);

 K_sort = KK(idx);

 F_sort = F1(idx);

% Plot results

opengl software;

 figure(3);

% clf;

 hold on

%Moving average

 Npoints = numel(F_sort);

 w_idx = round(0.25 * Npoints); %

Normal is 0.15 The width of the median bin in elements.

Also the N value for each bin. Note that this method could

be invalid if the phases are not sampled approximately

equally.

 AVG = movmean(F_sort,w_idx);

 SEM = movstd(F_sort,w_idx)/sqrt(w_idx);

 shadedErrorBar(K_sort,AVG,SEM,'r'); hold on;

% Individual points

%

plot(K_sort,F_sort,'.','MarkerSize',8,'Color',0.5*[0.5 0.5

1]);

 xlabel('Normalized mid-body curvature');

 ylabel('D F/F0')

 set(gcf,'Color','w','Position',[1192 217 700 570]);

 set(gca,'FontSize',20);

 ylim([0 .3])

 xlim([-5 5])

%% Generate GCaMP vs curvature scatter plot for mid-body

KK= K(:,3);

% Concatenate the F results by maxima and minima

F = F(:);

KK = KK(:);

F1 = F;

% Sort data by phase at pulse

[~,idx] = sort(KK);

K_sort = KK(idx);

F_sort = F1(idx);

% Plot results

opengl software;

figure(4);

% clf;

hold on

bin = -5:1:5;

[kk,ff] = aggregatehist(bin, K_sort, F_sort);

dev = cellfun(@std, ff)./sqrt(cellfun('size', ff,1));

avg = cellfun(@mean, ff);

kmid = (bin(1:end-1)+bin(2:end))./2;

plot(kmid,avg,'y')

hold on;

errorbar(kmid, avg, dev, 'linestyle', 'none', 'marker',

'o');

% set(gca, 'xtick', bin, 'xgrid', 'on');

% Individual points

%

plot(K_sort,F_sort,'.','MarkerSize',8,'Color',0.5*[0.5 0.5

1]);

xlabel('Normalized mid-body curvature');

ylabel('D F/F0')

set(gcf,'Color','w','Position',[1192 217 700 570]);

set(gca,'FontSize',20);

% ylim([0 .3])

xlim([-5 5])

Gcamp_time_dynamic.m
clc; clear;

Parent = 'C:\Users\fffei\Dropbox\Paper\Compensatory reponse

mechanism\data optogenetics\GCaMP expts new\Combined_SWF331

p05 agarpad\N folder';

Pr = dir(fullfile(Parent, '*w*'));

N = numel(Pr);

numcurvpts = 100;

numseg = 5;

fps = 10;

nn = numcurvpts/numseg;

x = (0:numcurvpts-1)/(numcurvpts-1);

K = [];

F = [];

Tmin = 100;

t0 = 5;

II = [56 58 61 63 1 4 6 7 19 21 27 28 36 49 53 56 58 61

63];

FFg = [];

FFc = [];

for i = [1] % 1

 Prname = Pr(i).name;

 fullname = fullfile(Parent, Prname);

 if Prname(1) == '1'

 Pd = dir(fullfile(fullname, 'v_*'));

 Pv = dir(fullfile(fullname, 'd_*'));

 elseif Prname(1) == '2'

 Pd = dir(fullfile(fullname, 'd_*'));

 Pv = dir(fullfile(fullname, 'v_*'));

 end

 Pg = dir(fullfile(fullname, 'soma*'));

 Fd = double(imread(fullfile(Pd.folder, Pd.name))');

Fd([1:21 end-20:end], :) = [];

 Fv = double(imread(fullfile(Pv.folder, Pv.name))');

Fv([1:21 end-20:end], :) = [];

 Fc = Fv - Fd;

 Fg = double(imread(fullfile(Pg.folder, Pg.name)));

 Fc_resc = interp1(0 : size(Fc,1)-1, Fc, (0 :

99)./99.*(size(Fc,1)-1))';

 fg = mean(Fg, 2);

 f0 = prctile(fg,25);

 fg = (fg-f0)/f0;

132

 T = size(fg, 1);

 t = (0:T-1)/fps;

 if T <= Tmin

 continue

 end

% figure(1);clf

% subplot(211)

% plot(t, fg);

% xlim([0 t(end)])

% ylabel('D F/F0')

% subplot(212)

% imagesc(t,x, Fc_resc');

% xlim([0 t(end)])

% ylabel('Body coordinate')

% xlabel('Time (sec)')

% expo = 0.7;

% colormap(cmap_redblue(expo));

 if any(II(:) == i)

 t0 = 9.9*fps;

 if i == 63

 fg = fg(1:t0);

 Fc_resc = Fc_resc(1:t0,:);

 end

 FFg = cat(1, FFg, fg);

 FFc = cat(1, FFc, Fc_resc);

 end

% i

% T

end

T = size(FFg, 1);

t = (0:T-1)/fps;

%% Free

figure(1);clf

a = tiledlayout(2,1);

ax1 = nexttile;

plot(t, FFg);

xlim([0 t(end)])

ylabel('D F/F0')

set(gca, 'FontSize', 20)

ax2 = nexttile;

imagesc(t,x, flip(FFc',1));

set(gca, 'YDir', 'Normal')

expo = 0.7;

colormap(cmap_redblue(expo));

xlim([0 t(end)])

ylabel('Body coordinate')

xlabel(a,'Time (sec)', 'FontSize', 20)

set(gca, 'FontSize', 20)

xticklabels(ax1,{})

a.TileSpacing = 'compact';

%% Sinusoid

% t = t.*3/4;

FFc = FFc(:, 25:74)';

FFcs = interp1(0 : size(FFc,1)-1, FFc, (0 :

99)./99.*(size(FFc,1)-1))';

figure(2);clf

a = tiledlayout(2,1);

ax1 = nexttile;

plot(t, FFg);

ylim([-.2 1])

xlim([0 t(end)])

ylabel('D F/F0')

set(gca, 'FontSize', 20)

ax2 = nexttile;

imagesc(t,x, flip(FFcs',1));

set(gca, 'YDir', 'Normal')

expo = 0.7;

colormap(cmap_redblue(expo));

xlim([0 t(end)])

ylabel('Body coordinate')

xlabel(a,'Time (sec)', 'FontSize', 20)

set(gca, 'FontSize', 20)

xticklabels(ax1,{})

a.TileSpacing = 'compact';

Generalized_cfactor_for_microfluidics.m
function [Kc_all, dKdtc_all, Kp_data, dKdtp_data,

T0_avg]...

 = Generalized_cfactor_for_microfluidics(curv_ctrl,

curv_const, fps)

% GENERALIZED_CFACTOR defines and calculates a generalized

factor to

% quantify the compensation effects of anterior curvature

which is induced

% by (mechanically) perturbing the middle curvature during

the forward

% locomotion of a worm

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%-09-24-

20-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Modified the algorithm for computing generalized

compensatory factor of

% the normal orbits over body coordinates.

% Specific steps:

% 1. Define the time window(s) of normal undulations.

% 2. Calculate the average normal phase plot where phase

angles are

% defined using peak-finding method

% 3. I divided the body into 5 different segments with

equal length and

% calculate phase plot for each segments individually,

since curvature

% dynamics varies across body coordinates.

% Specifically, body is divided into segments 10%, 30%,

50%, 70%, and 90%

% and phase plots elsewhere are computed through

interpolation or

% extrapolation.

Nc = numel(curv_ctrl);

numcurvpts = size(curv_ctrl{1}, 2);

numsamplepts = 100;

curvrgn_analysis = 1 : numcurvpts;

curvrgn_sample = 10:5:90;

curvrgn_rd = 2;

numsegs = numel(curvrgn_sample);

Kc_avg_all = zeros(numsamplepts, numsegs);

dKdtc_avg_all = zeros(numsamplepts, numsegs);

T_all = [];

for ii = 1 : numsegs

 curvrgn = curvrgn_sample(ii);

 fprintf('Computing normal phase plot at region %.0f%%.

', curvrgn)

 Kc_data = {};

 dKdtc_data = {};

 Ntrials_c = 0;

 curvrgn_win = curvrgn-curvrgn_rd : curvrgn+curvrgn_rd;

 for i = 1:Nc

 curvdatafiltered = curv_ctrl{i};

 v = mean(curvdatafiltered(:,curvrgn_win),2);

 % Find all peaks

 [imax, imin] = C2_get_curvature_peaks(v,1);

 % Find the peaks in the period which is not

affected by illumination

 [imax, imin] = verify_extrema(v, imax, imin);

 imax = unique(imax);

 imin = unique(imin);

 imax(v(imax)<=0) = [];

 imin(v(imin)>=0) = [];

 T0 = mean([diff(imax); diff(imin)])/fps;

 zci = @(v) find(v(:).*circshift(v(:), [-1 0]) <=

0);

 zx = zci(v);

 num_max = numel(imax);

 for j = 1 : num_max - 1

 imaxs = imax(j);

 imaxe = imax(j+1);

 current_zx = zx(zx>imaxs & zx<imaxe);

 if numel(current_zx)~=2

 continue;

 end

 K = v(imaxs: imaxe);

 dKdt = gradient(K)*fps;

 dKdt(1) = 0;

 dKdt(end) = 0;

 Kc_data = [Kc_data; K];

 dKdtc_data = [dKdtc_data; dKdt];

 Ntrials_c = Ntrials_c + 1;

 end

 % record the period into matrix T

 current_seg = curvrgn_sample(ii);

 if current_seg>=20 && current_seg<=40

 T_all = [T_all, T0];

 end

 end

 numhfsamplepts = numsamplepts/2;

 N_cycs = numel(Kc_data);

 Kc_resc_data = zeros(N_cycs, numsamplepts);

 dKdtc_resc_data = zeros(N_cycs, numsamplepts);

 for i = 1 : N_cycs

 v = Kc_data{i};

 dvdt = dKdtc_data{i};

 [~, imin] = min(v);

 if length(imin)>1

 tmpdist2midpt = abs(imin - length(v)/2);

 [~,tmpI] = min(tmpdist2midpt);

 imin = imin(tmpI);

 end

133

 % rescale Ks and dKdts half cycle by half cycle

 vhf1 = v(1:imin); vhf2 = v(imin:end);

 qx1 = numel(vhf1) / (numel(vhf1)-1);

 qx2 = numel(vhf2) / (numel(vhf2)-1);

 vhf1_resc = interp1((0:numel(vhf1)-1), vhf1,

(numel(vhf1)-1)*(0:numhfsamplepts-1)/(numhfsamplepts-

1),'linear');

 vhf2_resc = interp1((0:numel(vhf2)-1), vhf2,

(numel(vhf2)-1)*(0:numhfsamplepts-1)/(numhfsamplepts-

1),'linear');

 dvdthf1 = dvdt(1:imin); dvdthf2 = dvdt(imin:end);

 qy1 = numel(dvdthf1) / (numel(dvdthf1)-1);

 qy2 = numel(dvdthf2) / (numel(dvdthf2)-1);

 dvdthf1_resc = interp1((0:numel(dvdthf1)-1),

dvdthf1, (numel(dvdthf1)-1)*(0:numhfsamplepts-

1)/(numhfsamplepts-1),'linear');

 dvdthf2_resc = interp1((0:numel(dvdthf2)-1),

dvdthf2, (numel(dvdthf2)-1)*(0:numhfsamplepts-

1)/(numhfsamplepts-1),'linear');

 % combine halfs to get full cycles

 v_rescaled = [vhf1_resc vhf2_resc];

 dvdt_rescaled = [dvdthf1_resc dvdthf2_resc];

 Kc_resc_data(i,:) = v_rescaled;

 dKdtc_resc_data(i,:) = dvdt_rescaled;

 end

 % Calculating averages for current segment

 Kc_resc_avg = mean(Kc_resc_data,1);

 dKdtc_resc_avg = mean(dKdtc_resc_data,1);

 Kc_avg_all(:, ii) = Kc_resc_avg;

 dKdtc_avg_all(:, ii) = dKdtc_resc_avg;

 fprintf('\n'); % To go to a new line after reaching

100% progress

end

T0_avg = mean(T_all, 'omitnan');

% Adjust the averaged curvature cycle by fixing the minimum

point and

% scaling the near-end points so that it will equal to the

negative

% amplitude

for ii = 1 : numsegs

 v = Kc_avg_all(:,ii);

 [~,pf] = min(v); pf = pf(1);

 vf = abs(v(pf));

 v(1 : pf-1) = v(1 : pf-1) + (pf - (1 : pf-1)')/(pf - 1)

* (vf - v(1));

 v(pf : end) = v(pf : end) + ((pf : numel(v))' -

pf)/(numel(v) - pf) * (vf - v(end));

 Kc_avg_all(:,ii) = v;

end

% Using interpolation and extrapolation to predict the

phase plots on other

% segments of a worm

Kc_all = interp1(curvrgn_sample,

Kc_avg_all',curvrgn_analysis, 'makima')';

dKdtc_all = interp1(curvrgn_sample,

dKdtc_avg_all',curvrgn_analysis, 'makima')';

Kc_all = Kc_all';

dKdtc_all = dKdtc_all';

%%

%%%%%%%%%%%%%%%%%%%%

if isempty(curv_const)

 Kp_data = [];

 dKdtp_data = [];

else

 % analysis of the contrained group

 Np = numel(curv_const);

 Ntrials_p = 0;

 Kp_data = {};

 dKdtp_data = {};

 for i = 1:Np

 fprintf('Analyzing trial %d',i)

 curvdatafiltered = curv_const{i};

 Ntrials_p = Ntrials_p + 1;

 % Analyzing bulk curvature

 Kb = curvdatafiltered(:,curvrgn_analysis);

 dKdtb = gradient(Kb')' * fps;

 Kp_data = [Kp_data; Kb'];

 dKdtp_data = [dKdtp_data; dKdtb'];

 fprintf('\n')

 end

end

end

 function [imax,imin] = verify_extrema(v,imax,imin)

 % get the mean amplitudes

 vmax = mean(v(imax));

 vmin = mean(v(imin));

 if vmin > vmax

 itemp = imax;

 imax = imin;

 imin = itemp;

 end

 end

Generating_normal_atlas.m
% Worm shape analysis. This version is modified for

analyzing data obtained

% from worm locomotion on WormTunnel microfluidic chambers.

%

% First, periods during which a worm is undulating without

constraint will be

% collected and analyzed to generate a limit cycle for

normal undulatory

% dynamics.

%

% Next, periods during which a worm is moving under

constraint (usually at

% the middle of body) will be collected and analyzed to

generate phase

% dynamics during those periods

%

% Finally, combining the analyzed results from the above

two steps, a

% generalized compensatory factor kymogram will be

generated in a 2D

% heatmap form, which represents a

function

ion of time and body coordinate.

% Also, information of the body portion that is being

constrained will be

% reflected on the kymogram.

%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% START

MAIN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

%

clc; close all; clear

global start_illum end_illum prefix pathname filename

global conc fps pix_per_mm wormthreshold isie decim filsize

spline_p initials

wormlabel = 1;

pix_per_mm = 198.83;

prefix;

pathname;

curvlim = 0.2;

domovie = 0;

issavefiles = 0;

iscontinue = 1;

option1 = 'Yes (AVI only)';

option2 = 'Yes (MAT)';

fname = questdlg('Pre or Post-const undulation?','','Pre-

','Post-','All-', 'All-');

button = length(questdlg('Load new

data?','',option1,option2,'No', option1));

CURV_all = {};

dCURV_all = {};

pathname_all = {};

if button == length(option2)

 disp('options2');

 [filename,pathname] = uigetfile({'*.mat'});

 matfname = [fname filename(1:6)];

 load([pathname filename]);

elseif button == length(option1)

 disp('option1');

 do_dialog = 1;

 %% Identify and analyze control periods

 while iscontinue == 1

 if do_dialog

 try

 cd(pathname);

 catch

 pathname = pwd;

 end

 [filename,pathname] = uigetfile('*.avi', 'Select

File');

 pathname_all = [pathname_all, pathname];

 matfname = [fname filename(1:6)];

 vidObj = VideoReader(fullfile(pathname,filename));

 NumFrames = vidObj.NumFrames;

134

 fps = vidObj.FrameRate;

 if isempty(conc)

 conc = 0;

 end

 if isempty(wormlabel)

 wormlabel = 1;

 end

 if isempty(pix_per_mm)

 pix_per_mm = 1;

 end

 if isempty(wormthreshold)

 wormthreshold = 0.1;

 end

 if isempty(isie)

 isie = [1, NumFrames];

 end

 if isempty(decim)

 decim = 1;

 end

 if isempty(filsize)

 filsize = 0.2;

 end

 if isempty(start_illum)

 start_illum = 1;

 end

 if isempty(end_illum)

 end_illum = 1;

 end

 if isempty(spline_p)

 spline_p = 0.01;

 end

 if isempty(initials)

 initials = {'JHF'};

 end

 fields={'conc','wormlabel', 'fps','pixels per

mm','Worm image threshold',...

 'istart/iend (use";"if multiple)', 'Decimation

(1=none))',...

 'Filter size / diameter',

'start_illum','end_illum', ...

 'spline fit parameter', 'Make movie?', 'Your

initials', 'Save files?'};

 if exist('isie', 'var')

 answer = inputdlg(fields, 'Cancel to clear

previous', 1, ...

{num2str(conc),num2str(wormlabel),num2str(fps),num2str(pix_

per_mm),num2str(wormthreshold),...

 mat2str(isie), num2str(decim),...

num2str(filsize),num2str(start_illum),num2str(end_illum), .

..

 num2str(spline_p), num2str(domovie),

initials{1}, num2str(issavefiles)});

 else

 answer = inputdlg(fields, '', 1);

 end

 if isempty(answer)

 pause;

 end

 conc = str2double(answer{1});

 wormlabel = str2double(answer{2});

 fps = str2double(answer{3});

 pix_per_mm = str2double(answer{4});

 wormthreshold = str2double(answer{5});

 isie = Str2Mat(answer{6});

 decim = str2double(answer{7});

 filsize = str2double(answer{8});

 start_illum = str2double(answer{9});

 end_illum = str2double(answer{10});

 spline_p = str2double(answer{11});

 domovie = str2double(answer{12});

 initials = answer(13);

 issavefiles = str2double(answer{14});

 end

 fileID = fopen(fullfile(pathname, 'timestemp for

ctrl.txt'),'a+');

 fprintf(fileID, [filename,': ', answer{6},'\n']);

 fclose(fileID);

 nperiods = size(isie, 1);

 curv_ctrl = cell(nperiods, 1);

 dcurvdt_ctrl = cell(nperiods, 1);

 angle_ctrl = cell(nperiods, 1);

 len_ctrl = cell(nperiods, 1);

 % Compute undulatory variables for control groups

 for kk = 1 : nperiods

 do_const = 0;

 thisperiod = isie(kk, :);

 options = {conc, wormlabel, fps, pix_per_mm,

wormthreshold,...

 thisperiod, decim, filsize, start_illum,

end_illum,...

 spline_p, domovie, initials, pathname,

filename, do_const, issavefiles};

 [curv_ctrl{kk},dcurvdt_ctrl{kk}, angle_ctrl{kk},

len_ctrl{kk}]...

 = WORMSHAPE_MAINCALCULATION(vidObj, options);

 end

 % flip some periods where head/tail misidentified

 for i = 1 : nperiods

 K = curv_ctrl{i};

 dKdt = dcurvdt_ctrl{i};

 ang = angle_ctrl{i};

 % debug plot

 figure(10); clf

 imagesc(K)

 colormap(cmap_redblue(0.7))

 caxis([-25 25])

 colorbar

 hold on

 answer = length(questdlg('Need to flip some

period?', '','Yes', 'No', 'No'));

 if answer == 3

 title('Indicate the period that need to be

flipped')

 % flip curvature and dKdt

 [~, flpy1] = ginput(1);

 flpy1 = max([floor(flpy1) 1]);

 line([1 100], [flpy1

flpy1],'Color','white','LineStyle','--')

 [~, flpy2] = ginput(1);

 flpy2 = min([floor(flpy2) size(K,1)]);

 line([1 100], [flpy2

flpy2],'Color','white','LineStyle','--')

 K2flip = K(flpy1 : flpy2, :);

 dKdt2flip = dKdt(flpy1 : flpy2, :);

 ang2flip = ang(flpy1 : flpy2, :);

 K(flpy1 : flpy2, :) = flip(K2flip,2);

 dKdt(flpy1 : flpy2, :) = flip(dKdt2flip,2);

 ang(flpy1 : flpy2, :) = flip(ang2flip,2);

 end

 % updata data

 curv_ctrl{i} = K;

 dcurvdt_ctrl{i} = dKdt;

 angle_ctrl{i} = ang;

 % show updated plot

 figure(10); clf

 imagesc(K)

 colormap(cmap_redblue(0.7))

 colorbar

 pause(1)

 end

 % end fliping loop

 CURV_all = [CURV_all; curv_ctrl];

 dCURV_all = [dCURV_all; dcurvdt_ctrl];

 Cbutton =

length(questdlg('Continue?','','Yes','No','Yes'));

 if Cbutton == 3

 iscontinue = 1;

 else

 iscontinue = 0;

 end

 close all

 end

end

%% Calculate the average normal phase plot from control

groups

fps = 30;

[Kc_all, dKdtc_all, Kp_data, dKdtp_data, T0_avg]...

 = Generalized_cfactor_for_microfluidics(CURV_all, [],

fps);

numsamplepts = 100;

numcurvpts = 100;

a = .15; c = a * T0_avg;

Zc = Kc_all + 1i*c*dKdtc_all;

Pc = unwrap(angle(Zc), [], 2);

[~, Sc] = meshgrid(1:numsamplepts, 1:numcurvpts);

% Generate interpolant (in a bulk manner)

FR = scatteredInterpolant(Pc(:), Sc(:), Zc(:), 'linear',

'nearest');

%% Plotting data

curvrgn_analysis = 1 : numcurvpts;

% 3-D phase portrait plot of normal undulation

figure(1); clf

TX_mesh = meshgrid(1 : numsamplepts, curvrgn_analysis);

hold on

plot3(Kc_all', dKdtc_all', TX_mesh) % isosegmental line

plot3(Kc_all, dKdtc_all, TX_mesh') % isophasic line

hold off

135

view([30,30])

xl = xlim;

yl = ylim;

zlim([5 95])

xlabel('K')

ylabel('dKdt')

zlabel('Body coordinate')

set(gca, 'FontSize', 12, 'Position',

[0.13,0.11,0.775,0.815])

% GUI with interactive response-plot updates for phase

portrait plots

s = 30;

f = figure(2); clf

ax = axes('Parent',f,'position',[0.2 0.25 0.65 0.65],

'PlotBoxAspectRatio', [1,0.81,0.75]);

faseplot2 = @(ax, s) phasePlot2(curvrgn_analysis, Kc_all',

dKdtc_all', s, ax, xl, yl);

faseplot2(ax, s);

b =

uicontrol('Parent',f,'Style','slider','Position',[81,34,419

,23],...

 'value',s, 'min',5, 'max',95);

bgcolor = f.Color;

uicontrol('Parent',f,'Style','text','FontSize',12,'Position

',[45,37,30,20],...

 'String','Head','BackgroundColor',bgcolor);

uicontrol('Parent',f,'Style','text','FontSize',12,'Position

',[505,37,30,20],...

 'String','Tail','BackgroundColor',bgcolor);

uicontrol('Parent',f,'Style','text','FontSize',12,'Position

',[240,10,100,23],...

 'String','Body

coordinate','BackgroundColor',bgcolor);

b.Callback = @(es,ed) faseplot2(ax, es.Value);

%% save the NormalUndulation.mat file to all visited

folders

for i = 1 : numel(pathname_all)

 fname4save = fullfile(pathname_all{i}, [matfname 'imm

Normal.mat']);

 save(fname4save, 'Kc_all', 'dKdtc_all', 'Zc', 'FR',

'CURV_all', 'fps', 'T0_avg')

end

PostProcessing_cfactor_beeswarm.m
clc; clear; close all

% get the normal undulation data

[ctrlfilename,pathname] = uigetfile({'*.mat'});

% locate the folder

dir_list = dir(fullfile(pathname, '*data.mat'));

nworms = numel(dir_list);

t0 = 3; % sampling period

t_step = t0; % step of moving during sampling

v = [];% preallocate for data pool after sampling with

period t0. dim(v) = N * i0 * 403

prog = 0;

issave = 1;

%% Control group

fprintf('------Progress: %3.0f%% \n',prog);

% load and resampling the data

load(fullfile(pathname, ctrlfilename))

nnormw = numel(CURV_all);

do_flip = length(questdlg('Need to do flipping for ctrl?',

'','Yes', 'No', 'No'));

for i = 1 : nnormw

 prog = 100*i/nnormw;

 if i > 1

 fprintf('\b\b\b\b%3.0f%%',prog);

 end

 i0 = floor(t0*fps);

 step = floor(t_step*fps);

 K = CURV_all{i};

 dKdt = gradient(K')'*fps;

 s = 1 : size(K, 2);

 if do_flip == 3

 %%%%%%%%%%%%%%%%%%%%%%%%% disable this once

corrected all data

 % debug plot

 figure(10); clf

 imagesc(K)

 colormap(cmap_redblue(0.7))

 caxis([-25 25])

 colorbar

 set(gcf, 'Position', [581,42,584,1314])

 hold on

 answer = length(questdlg('Need to flip some

period?', '','Yes', 'No', 'No'));

 if answer == 3

 title('Indicate the period that need to be

flipped')

 % flip curvature and dKdt

 [~, flpy1] = ginput(1);

 flpy1 = max([floor(flpy1) 1]);

 line([1 100], [flpy1

flpy1],'Color','white','LineStyle','--')

 [~, flpy2] = ginput(1);

 flpy2 = min([floor(flpy2) size(K,1)]);

 line([1 100], [flpy2

flpy2],'Color','white','LineStyle','--')

 K2flip = K(flpy1 : flpy2, :);

 K_flipped = flip(K2flip,2);

 K(flpy1 : flpy2, :) = K_flipped;

 end

 dKdt = gradient(K')'*fps;

 %

 end

 % recalculate the generalized compensatory factor

and save it

 numsamplepts = 100;

 numcurvpts = 100;

 a = .15; c = a * T0_avg;

 Zc = Kc_all + 1i*c*dKdtc_all;

 Pc = unwrap(angle(Zc), [], 2);

 [~, Sc] = meshgrid(1:numsamplepts, 1:numcurvpts);

 % Generate interpolant (in a bulk manner)

 FR = scatteredInterpolant(Pc(:), Sc(:), Zc(:),

'linear', 'nearest');

 % Constrcting complex curvature dynamics for pulsed

group

 Zp = K' + 1i*c*dKdt';

 Pp_ori = angle(Zp); % do not use unwrap

 Pp1d = Pp_ori(:);

 Pp1d(Pp1d>0) = Pp1d(Pp1d>0) - 2*pi;

 Pp = reshape(Pp1d, size(Pp_ori));

 [~, Sp] = meshgrid(1:size(Pp,2), 1:size(Pp,1));

 Rp = abs(Zp);

 Zc4p1d = FR(Pp(:), Sp(:));

 Zc4p = reshape(Zc4p1d, size(Pp));

 Rc4p = abs(Zc4p);

 cfac = (Rp) ./ Rc4p;

 % updata data

 CURV_all{i} = K;

 dCURV_all{i} = dKdt;

 % show updated plot

 if do_flip == 3

 figure(10); clf

 imagesc(K)

 colormap(cmap_redblue(0.7))

 colorbar

 pause(1)

 end

 %%%%%%%%%%%%%%%%%%%%%%%%% disable this once

corrected all data

 % convert immobilization position from boolean exp to

coord exp

 u = cfac';

 curv = K;

 n = size(u, 1);

 iwin = 1 : i0;

 while iwin(end) <= n

 thisu = u(iwin, :);

 thisk = curv(iwin, :);

 thiscfac = thisu(:, 1:100);

 iwin = iwin + step;

 if max(thiscfac,[],'all') > 50

 continue

 end

 thisuk = cat(2, thisu, thisk);

 v = cat(3, v, thisuk);

 end

end

fprintf('\n')

save(fullfile(pathname, ctrlfilename),

'CURV_all','dCURV_all','-append')

vc = permute(v, [3 1 2]);

%% Constrained group

v = [];

%%%

wconst = 60; % normally, the width of the channel is 60 um

%%%

prog = 0;

fprintf('------Progress: %3.0f%% \n',prog);

do_flip = length(questdlg('Need to do flipping for const?',

'','Yes', 'No', 'No'));

% load and resampling the data

load(fullfile(pathname, ctrlfilename))

for i = 1 : nworms

 prog = 100*i/nworms;

 if i > 1

 fprintf('\b\b\b\b%3.0f%%',prog);

 end

 thisworm = dir_list(i);

 fname = fullfile(thisworm.folder, thisworm.name);

 load(fname)

136

 i0 = floor(t0*fps);

 step = floor(t_step*fps);

 ntrials = numel(CR);

 for j = 1:ntrials

 cfac = CR{j}';

 K = Kp_data{j}';

 dKdt = dKdtp_data{j}';

 len = len_const{j};

 rgc = rgn_const{j};

 wdia = w_diam{j}*1000; % unit: um

 s = 1 : size(cfac, 2);

 t = (0 : size(cfac, 1)-1)'/fps;

 if do_flip == 3

 %%%%%%%%%%%%%%%%%%%%%%%%% disable this once

corrected all data

 % debug plot

 figure(10); clf

 imagesc(K)

 colormap(cmap_redblue(0.7))

 caxis([-25 25])

 colorbar

 set(gcf, 'Position', [581,42,584,1314])

 hold on

 answer = length(questdlg('Need to flip some

period?', '','Yes', 'No', 'No'));

 if answer == 3

 title('Indicate the period that need to be

flipped')

 % flip curvature and dKdt

 [~, flpy1] = ginput(1);

 flpy1 = max([floor(flpy1) 1]);

 line([1 100], [flpy1

flpy1],'Color','white','LineStyle','--')

 [~, flpy2] = ginput(1);

 flpy2 = min([floor(flpy2) size(K,1)]);

 line([1 100], [flpy2

flpy2],'Color','white','LineStyle','--')

 K2flip = K(flpy1 : flpy2, :);

 K_flipped = flip(K2flip,2);

 K(flpy1 : flpy2, :) = K_flipped;

 dK2flip = dKdt(flpy1 : flpy2, :);

 dK_flipped = flip(dK2flip,2);

 dKdt(flpy1 : flpy2, :) = dK_flipped;

 r2flip = rgc(flpy1 : flpy2, :);

 r_flipped = flip(r2flip,2);

 rgc(flpy1 : flpy2, :) = r_flipped;

 %

 % recalculate the generalized compensatory

factor and save it

 numsamplepts = 100;

 numcurvpts = 100;

 a = .15; c = a * T0_avg;

 Zc = Kc_all + 1i*c*dKdtc_all;

 Pc = unwrap(angle(Zc), [], 2);

 [~, Sc] = meshgrid(1:numsamplepts,

1:numcurvpts);

 % Generate interpolant (in a bulk manner)

 FR = scatteredInterpolant(Pc(:), Sc(:),

Zc(:), 'linear', 'nearest');

 % Constrcting complex curvature dynamics

for pulsed group

 Zp = K' + 1i*c*dKdt';

 Pp_ori = angle(Zp); % do not use unwrap

 Pp1d = Pp_ori(:);

 Pp1d(Pp1d>0) = Pp1d(Pp1d>0) - 2*pi;

 Pp = reshape(Pp1d, size(Pp_ori));

 [~, Sp] = meshgrid(1:size(Pp,2),

1:size(Pp,1));

 Rp = abs(Zp);

 Zc4p1d = FR(Pp(:), Sp(:));

 Zc4p = reshape(Zc4p1d, size(Pp));

 Rc4p = abs(Zc4p);

 cr_new = (Rp) ./ Rc4p;

 % updata data

 CR{j} = cr_new;

 Kp_data{j} = K';

 dKdtp_data{j} = dKdt';

 rgn_const{j} = rgc;

 % show updated plot

 figure(10); clf

 subplot(121)

 imagesc(K)

 colormap(cmap_redblue(0.7))

 colorbar

 subplot(122)

 imagesc(cr_new')

 colorbar

 pause(1)

 end

 %%%%%%%%%%%%%%%%%%%%%%%%% disable this once

corrected all data

 end

 % convert immobilization position from boolean exp

to coord exp

 rgc(rgc == 0) = nan;

 imb = rgc .* repmat(s, [length(t), 1]);

 imbl = min(imb, [], 2, 'omitnan');

 imbr = max(imb, [], 2, 'omitnan');

 imbm = mean(imb, 2, 'omitnan');

 u = cat(2, cfac, K, repmat([wdia, wconst],

[length(t) 1]), len, imbl, imbr, imbm);

 n = size(u, 1);

 iwin = 1 : i0;

 while iwin(end) <= n

 thisu = u(iwin, :);

 thiscfac = thisu(:, 1:100);

 iwin = iwin + step;

 if max(thiscfac,[],'all') > 50

 continue

 end

 imbc = mean(thisu(:, 206));

 tmp = cat(2, thisu, repmat(imbc, [i0, 1]));

 v = cat(3, v, tmp);

 end

 end

 save(fname,

'CR','Kp_data','dKdtp_data','rgn_const','len_const' ,'-

append')

end

fprintf('\n')

vp = permute(v, [3 1 2]);

%% Plotting results

% making new folder to save results

if issave == 1

 savefoldername = fullfile(pathname, 'Results');

 mkdir(savefoldername)

end

N = size(vp, 1);

Loc_im = vp(:,1,207);

edges_locim = [1,25,40,60,100];

% figure(1);clf

% himb = histogram(Loc_im);

% title('distribution of trials to immob location')

Int_im = vp(:,1,201)./vp(:,1,202);

tightness = 0;

figure(2);clf

hint = histogram(Int_im);

title('distribution of trials to tightness of

immobilization')

set(gcf, 'Position', [1200,160,570,490])

if issave == 1

 saveas(gcf, fullfile(savefoldername, 'distrubution of

tightness.fig'));

 saveas(gcf, fullfile(savefoldername, 'distrubution of

tightness.png'));

end

Len = squeeze(mean(vp(:,:,203),2));

edges_len = [.8,.98, 1.08,1.3];

% figure(3);clf

% hlen = histogram(Len);

% title('distribution of trials to worm length')

% % cfactor's dependence on location of immobilization

(spectrum by tightness of immobilization)

% s2 = 101:200;

% s = 1 : 100;

% intlim = [0.4 1.5];

% figure(4);clf

% % calculating the control group

% for i = 1 : length(edges_locim)-1 % first grouped by loc

of immo

% thisedge = edges_locim(i:i+1);

% idx_rgc = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)&

Int_im >= tightness ;

% thisrgclr = vp(idx_rgc, :, 204:205);

% thisrgclr_mean = squeeze(mean(thisrgclr,1));

% L = mean(thisrgclr_mean(:,1));

% R = mean(thisrgclr_mean(:,2));

% ind_2nd = Int_im;

% edges_2nd = edges_len;

% idx = idx_rgc;

% thisintimb = mean(ind_2nd(idx));

% thiscfac = vp(idx, :,1:100);

% thiscfac_mean = squeeze(mean(thiscfac,1));

% h = {};

% text_edge2 = {};

% subplot(2,ceil((length(edges_locim)-1)/2),i)

% % imagesc(s2, t2, thiscfac_mean)

% hold on

137

% % plot the control group

% tmph = plot(s, mean(squeeze(mean(vc(:,:,s),1)),1),

'LineWidth', 2, 'Color', 'k');

% h = [h, tmph];

% tmpt = sprintf('ctrl');

% text_edge2 = [text_edge2, tmpt];

% % plot the loc of immobiliaztion

% line([L L],intlim,'Color','red','LineStyle','--',

'LineWidth',2)

% line([R R],intlim,'Color','red','LineStyle','--',

'LineWidth',2)

% if ~isempty(thiscfac)

% tmph = plot(s, mean(thiscfac_mean,1),

'LineWidth', 2);

% h = [h, tmph];

% tmpt = sprintf('%.1f(%.0d)', thisintimb,

sum(idx));

% text_edge2 = [text_edge2, tmpt];

% end

% hold off

% xlim([5 100])

% xlabel('body coordinate')

% ylabel('normalized amplitude (gfac)')

% title(sprintf('immob @ %.0f to %.0f%%', L, R))

% set(gca, 'FontSize', 15)

% legend(h, text_edge2)

% end

% set(gcf, 'Position', [583,41,849,740])

% if issave == 1

% saveas(gcf, fullfile(savefoldername,

'gfac_locim_tightness.fig'));

% saveas(gcf, fullfile(savefoldername,

'gfac_locim_tightness.png'));

% end

% % Cfac_const / Cfac_ctrl dependence on location of

immobilization (spectrum by tightness of immobilization)

% s2 = 101:200;

% s = 1 : 100;

% intlim = [0.5 1.5];

% figure(5);clf

% cfac_ctrl = mean(squeeze(mean(vc(:,:,s),1)),1);

% % calculating the control group

% for i = 1 : length(edges_locim)-1 % first grouped by loc

of immo

% thisedge = edges_locim(i:i+1);

% idx_rgc = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)&

Int_im >= tightness ;

% thisrgclr = vp(idx_rgc, :, 204:205);

% thisrgclr_mean = squeeze(mean(thisrgclr,1));

% L = mean(thisrgclr_mean(:,1));

% R = mean(thisrgclr_mean(:,2));

% ind_2nd = Int_im;

% edges_2nd = edges_len;

% idx = idx_rgc;

% thisintimb = mean(ind_2nd(idx));

% thiscfac = vp(idx, :,s);

% thiscfac_mean = squeeze(mean(thiscfac,1));

% cfac_const = mean(thiscfac_mean,1);

% h = {};

% text_edge2 = {};

% subplot(2,ceil((length(edges_locim)-1)/2),i)

% % imagesc(s2, t2, thiscfac_mean)

% hold on

% % plot the loc of immobiliaztion

% line([L L],intlim,'Color','red','LineStyle','--',

'LineWidth',2)

% line([R R],intlim,'Color','red','LineStyle','--',

'LineWidth',2)

% if ~isempty(thiscfac)

% tmph = plot(s, cfac_const./ cfac_ctrl,

'LineWidth', 2);

% h = [h, tmph];

% tmpt = sprintf('%.1f(%.0d)', thisintimb,

sum(idx));

% text_edge2 = [text_edge2, tmpt];

% end

% hold off

% xlim([5 95])

% ylim(intlim)

% xlabel('body coordinate')

% ylabel('ratio of amplitude (gfac)')

% title(sprintf('immob @ %.0f to %.0f%%', L, R))

% set(gca, 'FontSize', 15)

% legend(h, text_edge2)

% end

% set(gcf, 'Position', [581,41,849,740])

% if issave == 1

% saveas(gcf, fullfile(savefoldername,

'gfac_norm_locim_tightness.fig'));

% saveas(gcf, fullfile(savefoldername,

'gfac_norm_locim_tightness.png'));

% end

% % absK dependence on location of immobilization (spectrum

by tightness of immobilization)

% s2 = 101:200;

% s = 1 : 100;

% intlim = [0 10];

% figure(6);clf

% k_ctrl = mean(squeeze(mean(abs(vc(:,:,s2)),1)),1);

% % calculating the control group

% for i = 1 : length(edges_locim)-1 % first grouped by loc

of immo

% thisedge = edges_locim(i:i+1);

% idx_rgc = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)&

Int_im >= tightness ;

% thisrgclr = vp(idx_rgc, :, 204:205);

% thisrgclr_mean = squeeze(mean(thisrgclr,1));

% L = mean(thisrgclr_mean(:,1));

% R = mean(thisrgclr_mean(:,2));

% ind_2nd = Int_im;

% edges_2nd = edges_len;

% idx = idx_rgc;

% thisintimb = mean(ind_2nd(idx));

% thisk = abs(vp(idx, :,s2));

% thisk_mean = squeeze(mean(thisk,1));

% h = {};

% text_edge2 = {};

% subplot(2,ceil((length(edges_locim)-1)/2),i)

% % imagesc(s2, t2, thiscfac_mean)

% hold on

% % plot the control group

% tmph = plot(s, k_ctrl, 'LineWidth', 2, 'Color', 'k');

% h = [h, tmph];

% tmpt = sprintf('ctrl');

% text_edge2 = [text_edge2, tmpt];

% % plot the loc of immobiliaztion

% line([L L],intlim,'Color','red','LineStyle','--',

'LineWidth',2)

% line([R R],intlim,'Color','red','LineStyle','--',

'LineWidth',2)

% if ~isempty(thisk)

% tmph = plot(s, mean(thisk_mean,1), 'LineWidth',

2, 'Color', 'r');

% h = [h, tmph];

% tmpt = sprintf('%.1f(%.0d)', thisintimb,

sum(idx));

% text_edge2 = [text_edge2, tmpt];

% end

% hold off

% xlim([5 95])

% xlabel('body coordinate')

% ylabel('normalized amplitude (|K|)')

% title(sprintf('immob @ %.0f to %.0f%%', L, R))

% set(gca, 'FontSize', 15)

% legend(h, text_edge2)

% end

% set(gcf, 'Position', [581,41,849,740])

% if issave == 1

% saveas(gcf, fullfile(savefoldername,

'absK_locim_tightness.fig'));

% saveas(gcf, fullfile(savefoldername,

'absK_locim_tightness.png'));

% end

% % absK const/ctrl ratio dependence on location of

immobilization

% s2 = 101:200;

% s = 1 : 100;

% intlim = [0.5 1.5];

% figure(7);clf

% k_ctrl = mean(squeeze(mean(abs(vc(:,:,s2)),1)),1);

% % calculating the control group

% for i = 1 : length(edges_locim)-1 % first grouped by loc

of immo

% thisedge = edges_locim(i:i+1);

% idx_rgc = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)&

Int_im >= tightness ;

% thisrgclr = vp(idx_rgc, :, 204:205);

% thisrgclr_mean = squeeze(mean(thisrgclr,1));

% L = mean(thisrgclr_mean(:,1));

% R = mean(thisrgclr_mean(:,2));

% ind_2nd = Int_im;

% edges_2nd = edges_len;

% idx = idx_rgc;

% thisintimb = mean(ind_2nd(idx));

% thisk = abs(vp(idx, :,s2));

% thisk_mean = squeeze(mean(thisk,1));

% h = {};

% text_edge2 = {};

% subplot(2,ceil((length(edges_locim)-1)/2),i)

% % imagesc(s2, t2, thiscfac_mean)

% hold on

% % plot the loc of immobiliaztion

138

% line([L L],intlim,'Color','red','LineStyle','--',

'LineWidth',2)

% line([R R],intlim,'Color','red','LineStyle','--',

'LineWidth',2)

% if ~isempty(thisk)

% tmph = plot(s, mean(thisk_mean,1)./k_ctrl,

'LineWidth', 2, 'Color', 'r');

% h = [h, tmph];

% tmpt = sprintf('%.1f(%.0d)', thisintimb,

sum(idx));

% text_edge2 = [text_edge2, tmpt];

% end

% hold off

% xlim([5 95])

% ylim(intlim)

% xlabel('body coordinate')

% ylabel('ratio of amplitude (|K|)')

% title(sprintf('immob @ %.0f to %.0f%%', L, R))

% set(gca, 'FontSize', 15)

% legend(h, text_edge2)

% end

% set(gcf, 'Position', [581,41,849,740])

% if issave == 1

% saveas(gcf, fullfile(savefoldername,

'absKratio_locim_tightness.fig'));

% saveas(gcf, fullfile(savefoldername,

'absKratio_locim_tightness.png'));

% end

% absK const/ctrl ratio scatter plots and bar plots

s2 = 101:200;

s = 1 : 100;

intlim = [0.5 1.5];

absk_ctrl = mean(squeeze(mean(abs(vc(:,:,s2)),1)),1);

% calculating the control group

thisedge = [35 65];

idx_rgc = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)&

Int_im >= tightness ;

num_trials = sum(idx_rgc);

thisconstlr_indmean = squeeze(mean(vp(idx_rgc, :,

204:205),2));

thisabsk_indmean = squeeze(mean(abs(vp(idx_rgc, :,

s2)),2));

thisabsk_norm_indmean = thisabsk_indmean./repmat(absk_ctrl,

[num_trials,1]);

q_anterior = zeros(num_trials,1);

q_immobile = zeros(num_trials,1);

q_posterior = zeros(num_trials,1);

for i = 1 : num_trials

 immA = thisconstlr_indmean(i, 1);

 immP = thisconstlr_indmean(i, 2);

 absk_norm = thisabsk_norm_indmean(i, :);

 q_anterior(i) = mean(absk_norm(15:floor(immA)));

 q_immobile(i) =

mean(absk_norm(ceil(immA):floor(immP)));

 q_posterior(i) = mean(absk_norm(ceil(immP) : 85));

end

% Excluding the trials that were not successfully

immobilized

todelete = q_immobile>=1.2;

q_anterior(todelete) = [];

q_immobile(todelete) = [];

q_posterior(todelete)= [];

num_minitrials = numel(q_immobile);

%%%

num_trials = size(q_anterior,1);

% scatter plots

% anterior vs middle

figure(8); clf

scatter(q_immobile, q_anterior, 36, 'k', 'filled')

xlabel('Middle amplitude (|K|)')

ylabel('Anterior amplitude (|K|)')

set(gcf, 'Position', [1200,160,570,490])

if issave == 1

 saveas(gcf, fullfile(savefoldername, 'norm amplitude

(absk) scatter a vs m.fig'));

 saveas(gcf, fullfile(savefoldername, 'norm amplitude

(absk) scatter a vs m.png'));

end

% bar plots

x = [1*ones([num_trials 1]); 2*ones([num_trials 1]);

3*ones([num_trials 1])]; % anterior, middle, posterior

y = [q_anterior; q_immobile; q_posterior]; % anterior,

middle, posterior

figure(9); clf

beeswarm(x,y,'sort_style','hex','dot_size',.5,'overlay_styl

e','ci','corral_style','gutter');

xlim([0.3 3.7])

xticks([1 2 3])

xticklabels({'Anterior', 'Middle', 'Posterior'})

ylabel('Normalized bending amplitude')

set(gcf,'Position', [69,291,700,400])

set(gca,'FontName','Arial','FontSize',20)

if issave == 1

 saveas(gcf, fullfile(savefoldername, 'norm amplitude

(absk) bar.fig'));

 saveas(gcf, fullfile(savefoldername, 'norm amplitude

(absk) bar.png'));

end

% % Gfactor const/ctrl ratio scatter plots and bar plots

% s2 = 101:200;

% s1 = 1 : 100;

% intlim = [0.5 1.5];

% gfac_ctrl = mean(squeeze(mean(vc(:,:,s1),1)),1);

% % calculating the control group

% thisedge = [35 65];

% idx_rgc = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)&

Int_im >= tightness ;

% num_trials = sum(idx_rgc);

% thisconstlr_indmean = squeeze(mean(vp(idx_rgc, :,

204:205),2));

% thisgfac_indmean = squeeze(mean(vp(idx_rgc, :,

s1),2));

% thisgfac_norm_indmean =

thisgfac_indmean./repmat(gfac_ctrl, [num_trials,1]);

% q_anterior = zeros(num_trials,1);

% q_immobile = zeros(num_trials,1);

% q_posterior = zeros(num_trials,1);

% for i = 1 : num_trials

% immA = thisconstlr_indmean(i, 1);

% immP = thisconstlr_indmean(i, 2);

% gfac_norm = thisgfac_norm_indmean(i, :);

% q_anterior(i) = mean(gfac_norm(12:floor(immA)));

% q_immobile(i) =

mean(gfac_norm(ceil(immA):floor(immP)));

% q_posterior(i) = mean(gfac_norm(ceil(immP) : 90));

% end

% % scatter plots

% % anterior vs middle

% figure(10); clf

% scatter(q_immobile, q_anterior, 36, 'k', 'filled')

% xlabel('Middle amplitude (gfac)')

% ylabel('Anterior amplitude (gfac)')

% set(gcf, 'Position', [1200,160,570,490])

% if issave == 1

% saveas(gcf, fullfile(savefoldername, 'norm gfac

amplitude (gfac) scatter a vs m.fig'));

% saveas(gcf, fullfile(savefoldername, 'norm gfac

amplitude (gfac) scatter a vs m.png'));

% end

% % bar plots

% x = {1 + randn([num_trials 1])*.1, 2+randn([num_trials

1])*.1, 3+randn([num_trials 1])*.1}; % anterior, middle,

posterior

% y = {q_anterior, q_immobile, q_posterior}; % anterior,

middle, posterior

% F_bar = zeros(size(y));

% X_bar = [1 2 3];

% F_err = zeros(size(y));

% figure(11); clf

% for i = 1:numel(x)

% X = x{i};

% Y = y{i};

% F_bar(i) = mean(Y);

% F_err(i) = std(Y)./sqrt(numel(X));

% hold on

% scatter(X, Y,10, 'b','filled')

% hold off

% end

% figure(11); hold on

% bar(X_bar, F_bar, 'FaceColor', 'none', 'LineWidth', 2)

% errorbar(X_bar, F_bar, F_err, 'LineStyle', 'none',

'Color', 'k', 'LineWidth',1.5)

% hold off

% ylim([0 3])

% xticks([1 2 3])

% xticklabels({'Anterior', 'Middle', 'Posterior'})

% ylabel('Normalized amplitude (gfac)')

% set(gcf, 'Position', [1200,160,570,490])

% if issave == 1

% saveas(gcf, fullfile(savefoldername, 'norm amplitude

(gfac) bar.fig'));

% saveas(gcf, fullfile(savefoldername, 'norm amplitude

(gfac) bar.png'));

% end

% % absK const/ctrl ratio dependence on location of

immobilization

% s2 = 101:200;

% s = 1 : 100;

% intlim = [0 4];

% figure(12);clf

% absk_ctrl = mean(squeeze(mean(abs(vc(:,:,s2)),1)),1);

139

% % calculating the control group

% thisedge = [40 60];

% idx_rgc = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)&

Int_im >= tightness ;

% thisrgclr = vp(idx_rgc, :, 204:205);

% thisrgclr_mean = squeeze(mean(thisrgclr,1));

% L = mean(thisrgclr_mean(:,1));

% R = mean(thisrgclr_mean(:,2));

% ind_2nd = Int_im;

% idx = idx_rgc;

% thisintimb = mean(ind_2nd(idx));

% thisabsk = squeeze(mean(abs(vp(idx, :,s2)),2));

% num_trials = size(thisabsk,1);

% thisabsk_norm = thisabsk./repmat(absk_ctrl,

[num_trials,1]);

% % calculating the moving average and variance for norm

amplitude ratio

% thisabsk_mean = mean(thisabsk_norm,1);

% thisabsk_var = std(thisabsk_norm,0,1)./sqrt(num_trials);

% ts = tinv([0.025 0.975],num_trials-1); % T-Score

% ts = mean(abs(ts));

% CI = ts.*thisabsk_var;

% hold on

% for j = 1 : num_trials

% plot(thisabsk_norm(j, :), ':',

'LineWidth',.1,'Color', [.3 .3 .3])

% end

% shadedErrorBar(s, thisabsk_mean,CI,'b', .3); hold on;

% % plot the loc of immobiliaztion

% line([L L],intlim,'Color','red','LineStyle','--',

'LineWidth',2)

% line([R R],intlim,'Color','red','LineStyle','--',

'LineWidth',2)

% line([0 100], [1 1], 'Color', 'r')

% tmpt = sprintf('%.1f(%.0d)', thisintimb, sum(idx));

% hold off

% xlim([5 95])

% ylim(intlim)

% xlabel('body coordinate')

% ylabel('ratio of amplitude (|K|)')

% title(sprintf('immob @ %.0f to %.0f%%', L, R))

% legend(gca, tmpt)

% set(gca, 'FontSize', 15)

% set(gcf, 'Position', [581,41,849,740])

% if issave == 1

% saveas(gcf, fullfile(savefoldername,

'abskratio_shaded_locim_tightness.fig'));

% saveas(gcf, fullfile(savefoldername,

'abskratio_shaded_locim_tightness.png'));

% end

% % gfac const/ctrl ratio dependence on location of

immobilization

% s2 = 101:200;

% s = 1 : 100;

% intlim = [0 4];

% figure(13);clf

% gfac_ctrl = mean(squeeze(mean(vc(:,:,s),1)),1);

% % calculating the control group

% thisedge = [40 60];

% idx_rgc = Loc_im>=thisedge(1) & Loc_im<=thisedge(2)&

Int_im >= tightness ;

% thisrgclr = vp(idx_rgc, :, 204:205);

% thisrgclr_mean = squeeze(mean(thisrgclr,1));

% L = mean(thisrgclr_mean(:,1));

% R = mean(thisrgclr_mean(:,2));

% ind_2nd = Int_im;

% idx = idx_rgc;

% thisintimb = mean(ind_2nd(idx));

% thisgfac = squeeze(mean(vp(idx, :,s),2));

% num_trials = size(thisgfac,1);

% thisgfac_norm = thisgfac./repmat(gfac_ctrl,

[num_trials,1]);

% % calculating the moving average and variance for norm

amplitude ratio

% thisgfac_mean = mean(thisgfac_norm,1);

% thisgfac_var = std(thisgfac_norm,0,1)./sqrt(num_trials);

% ts = tinv([0.025 0.975],num_trials-1); % T-Score

% ts = mean(abs(ts));

% CI = ts.*thisgfac_var;

% hold on

% for j = 1 : num_trials

% plot(thisgfac_norm(j, :), ':',

'LineWidth',.1,'Color', [.3 .3 .3])

% end

% shadedErrorBar(s, thisgfac_mean,CI,'b', .3); hold on;

% % plot the loc of immobiliaztion

% line([L L],intlim,'Color','red','LineStyle','--',

'LineWidth',2)

% line([R R],intlim,'Color','red','LineStyle','--',

'LineWidth',2)

% line([0 100], [1 1], 'Color', 'r')

% tmpt = sprintf('%.1f(%.0d)', thisintimb, sum(idx));

% hold off

% xlim([5 95])

% ylim(intlim)

% xlabel('body coordinate')

% ylabel('ratio of amplitude (gfac)')

% title(sprintf('immob @ %.0f to %.0f%%', L, R))

% legend(gca, tmpt)

% set(gca, 'FontSize', 15)

% set(gcf, 'Position', [581,41,849,740])

% if issave == 1

% saveas(gcf, fullfile(savefoldername,

'gfacratio_shaded_locim_tightness.fig'));

% saveas(gcf, fullfile(savefoldername,

'gfacratio_shaded_locim_tightness.png'));

% end

PostProcessing_cfactor_statistic_auto.m
function [Q_anterior, Q_immobile, Q_posterior] =

PostProcessing_cfactor_statistic_auto(ctrlfilename,

pathname, t1)

% locate the folder

dir_list = dir(fullfile(pathname, '*data*.mat'));

nworms = numel(dir_list);

t0 = t1; % sampling period

t_step = t0; % step of moving during sampling

v = [];% preallocate for data pool after sampling with

period t0. dim(v) = N * i0 * 403

prog = 0;

%% Control group

fprintf('------Progress: %3.0f%% \n',prog);

% load and resampling the data

load(fullfile(pathname, ctrlfilename))

nnormw = numel(CURV_all);

do_flip = 0;

for i = 1 : nnormw

 prog = 100*i/nnormw;

 if i > 1

 fprintf('\b\b\b\b%3.0f%%',prog);

 end

 i0 = floor(t0*fps);

 step = floor(t_step*fps);

 K = CURV_all{i};

 dKdt = gradient(K')'*fps;

 s = 1 : size(K, 2);

 if do_flip == 3

 %%%%%%%%%%%%%%%%%%%%%%%%% disable this once

corrected all data

 % debug plot

 figure(10); clf

 imagesc(K)

 colormap(cmap_redblue(0.7))

 caxis([-25 25])

 colorbar

 set(gcf, 'Position', [581,42,584,1314])

 hold on

 answer = length(questdlg('Need to flip some

period?', '','Yes', 'No', 'No'));

 if answer == 3

 title('Indicate the period that need to be

flipped')

 % flip curvature and dKdt

 [~, flpy1] = ginput(1);

 flpy1 = max([floor(flpy1) 1]);

 line([1 100], [flpy1

flpy1],'Color','white','LineStyle','--')

 [~, flpy2] = ginput(1);

 flpy2 = min([floor(flpy2) size(K,1)]);

 line([1 100], [flpy2

flpy2],'Color','white','LineStyle','--')

 K2flip = K(flpy1 : flpy2, :);

 K_flipped = flip(K2flip,2);

 K(flpy1 : flpy2, :) = K_flipped;

 end

 dKdt = gradient(K')'*fps;

 %

 end

 % recalculate the generalized compensatory factor

and save it

 numsamplepts = 100;

 numcurvpts = 100;

 a = .15; c = a * T0_avg;

 Zc = Kc_all + 1i*c*dKdtc_all;

 Pc = unwrap(angle(Zc), [], 2);

 [~, Sc] = meshgrid(1:numsamplepts, 1:numcurvpts);

 % Generate interpolant (in a bulk manner)

 FR = scatteredInterpolant(Pc(:), Sc(:), Zc(:),

'linear', 'nearest');

 % Constrcting complex curvature dynamics for pulsed

group

 Zp = K' + 1i*c*dKdt';

 Pp_ori = angle(Zp); % do not use unwrap

 Pp1d = Pp_ori(:);

140

 Pp1d(Pp1d>0) = Pp1d(Pp1d>0) - 2*pi;

 Pp = reshape(Pp1d, size(Pp_ori));

 [~, Sp] = meshgrid(1:size(Pp,2), 1:size(Pp,1));

 Rp = abs(Zp);

 Zc4p1d = FR(Pp(:), Sp(:));

 Zc4p = reshape(Zc4p1d, size(Pp));

 Rc4p = abs(Zc4p);

 cfac = (Rp) ./ Rc4p;

 % updata data

 CURV_all{i} = K;

 dCURV_all{i} = dKdt;

 % show updated plot

 if do_flip == 3

 figure(10); clf

 imagesc(K)

 colormap(cmap_redblue(0.7))

 colorbar

 pause(1)

 end

 %%%%%%%%%%%%%%%%%%%%%%%%% disable this once

corrected all data

 % convert immobilization position from boolean exp to

coord exp

 u = cfac';

 curv = K;

 n = size(u, 1);

 iwin = 1 : i0;

 while iwin(end) <= n

 thisu = u(iwin, :);

 thisk = curv(iwin, :);

 thiscfac = thisu(:, 1:100);

 iwin = iwin + step;

 if max(thiscfac,[],'all') > 20

 continue

 end

 thisuk = cat(2, thisu, thisk);

 v = cat(3, v, thisuk);

 end

end

fprintf('\n')

save(fullfile(pathname, ctrlfilename),

'CURV_all','dCURV_all','-append')

vc = permute(v, [3 1 2]);

%% Constrained group

v = [];

%%%

wconst = 60; % normally, the width of the channel is 60 um

%%%

prog = 0;

fprintf('------Progress: %3.0f%% \n',prog);

do_flip = 0;

% load and resampling the data

load(fullfile(pathname, ctrlfilename))

for i = 1 : nworms

 prog = 100*i/nworms;

 if i > 1

 fprintf('\b\b\b\b%3.0f%%',prog);

 end

 thisworm = dir_list(i);

 fname = fullfile(thisworm.folder, thisworm.name);

 load(fname)

 i0 = floor(t0*fps);

 step = floor(t_step*fps);

 ntrials = numel(CR);

 for j = 1:ntrials

 cfac = CR{j}';

 K = Kp_data{j}';

 dKdt = dKdtp_data{j}';

 len = len_const{j};

 rgc = rgn_const{j};

 wdia = w_diam{j}*1000; % unit: um

 s = 1 : size(cfac, 2);

 t = (0 : size(cfac, 1)-1)'/fps;

 if do_flip == 3

 %%%%%%%%%%%%%%%%%%%%%%%%% disable this once

corrected all data

 % debug plot

 figure(10); clf

 imagesc(K)

 colormap(cmap_redblue(0.7))

 caxis([-25 25])

 colorbar

 set(gcf, 'Position', [581,42,584,1314])

 hold on

 answer = length(questdlg('Need to flip some

period?', '','Yes', 'No', 'No'));

 if answer == 3

 title('Indicate the period that need to be

flipped')

 % flip curvature and dKdt

 [~, flpy1] = ginput(1);

 flpy1 = max([floor(flpy1) 1]);

 line([1 100], [flpy1

flpy1],'Color','white','LineStyle','--')

 [~, flpy2] = ginput(1);

 flpy2 = min([floor(flpy2) size(K,1)]);

 line([1 100], [flpy2

flpy2],'Color','white','LineStyle','--')

 K2flip = K(flpy1 : flpy2, :);

 K_flipped = flip(K2flip,2);

 K(flpy1 : flpy2, :) = K_flipped;

 dK2flip = dKdt(flpy1 : flpy2, :);

 dK_flipped = flip(dK2flip,2);

 dKdt(flpy1 : flpy2, :) = dK_flipped;

 r2flip = rgc(flpy1 : flpy2, :);

 r_flipped = flip(r2flip,2);

 rgc(flpy1 : flpy2, :) = r_flipped;

 %

 % recalculate the generalized compensatory

factor and save it

 numsamplepts = 100;

 numcurvpts = 100;

 a = .15; c = a * T0_avg;

 Zc = Kc_all + 1i*c*dKdtc_all;

 Pc = unwrap(angle(Zc), [], 2);

 [~, Sc] = meshgrid(1:numsamplepts,

1:numcurvpts);

 % Generate interpolant (in a bulk manner)

 FR = scatteredInterpolant(Pc(:), Sc(:),

Zc(:), 'linear', 'nearest');

 % Constrcting complex curvature dynamics

for pulsed group

 Zp = K' + 1i*c*dKdt';

 Pp_ori = angle(Zp); % do not use unwrap

 Pp1d = Pp_ori(:);

 Pp1d(Pp1d>0) = Pp1d(Pp1d>0) - 2*pi;

 Pp = reshape(Pp1d, size(Pp_ori));

 [~, Sp] = meshgrid(1:size(Pp,2),

1:size(Pp,1));

 Rp = abs(Zp);

 Zc4p1d = FR(Pp(:), Sp(:));

 Zc4p = reshape(Zc4p1d, size(Pp));

 Rc4p = abs(Zc4p);

 cr_new = (Rp) ./ Rc4p;

 % updata data

 CR{j} = cr_new;

 Kp_data{j} = K';

 dKdtp_data{j} = dKdt';

 rgn_const{j} = rgc;

 % show updated plot

 figure(10); clf

 subplot(121)

 imagesc(K)

 colormap(cmap_redblue(0.7))

 colorbar

 subplot(122)

 imagesc(cr_new')

 colorbar

 pause(1)

 end

 %%%%%%%%%%%%%%%%%%%%%%%%% disable this once

corrected all data

 end

 % convert immobilization position from boolean exp

to coord exp

 rgc(rgc == 0) = nan;

 imb = rgc .* repmat(s, [length(t), 1]);

 imbl = min(imb, [], 2, 'omitnan');

 imbr = max(imb, [], 2, 'omitnan');

 imbm = mean(imb, 2, 'omitnan');

 u = cat(2, cfac, K, repmat([wdia, wconst],

[length(t) 1]), len, imbl, imbr, imbm);

 n = size(u, 1);

 iwin = 1 : i0;

 while iwin(end) <= n

 thisu = u(iwin, :);

 thiscfac = thisu(:, 1:100);

 iwin = iwin + step;

 if max(thiscfac,[],'all') > 50

 continue

 end

 imbaa = mean(thisu(:, 204), 'omitnan'); %

average anterior

 imbpa = mean(thisu(:, 205), 'omitnan'); %

average posterior

 if isnan(imbaa) || isnan(imbpa)

 continue

 end

 tmp = cat(2, thisu, repmat(imbaa, [i0, 1]),

repmat(imbpa, [i0, 1]));

 v = cat(3, v, tmp);

 end

 end

141

 save(fname,

'CR','Kp_data','dKdtp_data','rgn_const','len_const' ,'-

append')

end

fprintf('\n')

vp = permute(v, [3 1 2]);

%% Computing results

N = size(vp, 1);

Loc_ima = vp(:,1,207);

Loc_imp = vp(:,1,208);

Int_im = vp(:,1,201)./vp(:,1,202);

tightness = 0;

% absK const/ctrl ratio scatter plots and bar plots

s2 = 101:200;

s = 1 : 100;

intlim = [0.5 1.5];

absk_ctrl = mean(squeeze(mean(abs(vc(:,:,s2)),1)),1);

% calculating the control group

thisedge = [35 65];

idx_rgc = Loc_ima>=thisedge(1) & Loc_imp<=thisedge(2)&

Int_im >= tightness;

num_minitrials = sum(idx_rgc);

thisconstlr_indmean = squeeze(mean(vp(idx_rgc, :,

204:205),2, 'omitnan'));

thisabsk_indmean = squeeze(mean(abs(vp(idx_rgc, :,

s2)),2, 'omitnan'));

thisabsk_norm_indmean = thisabsk_indmean./repmat(absk_ctrl,

[num_minitrials,1]);

T0 = t1; % counting 10 s as one trial

I0 = T0/t0;

q_anterior = zeros(num_minitrials,1);

q_immobile = zeros(num_minitrials,1);

q_posterior = zeros(num_minitrials,1);

for i = 1 : num_minitrials

 immA = thisconstlr_indmean(i, 1);

 immP = thisconstlr_indmean(i, 2);

 absk_norm = thisabsk_norm_indmean(i, :);

 q_anterior(i) = mean(absk_norm(15:thisedge(1)));

 q_immobile(i) =

mean(absk_norm(ceil(immA):floor(immP)));

 q_posterior(i) = mean(absk_norm(thisedge(2) : 85));

end

% % Excluding the trials that were not successfully

immobilized

% todelete = q_immobile>=1.0;

% q_anterior(todelete) = [];

% q_immobile(todelete) = [];

% q_posterior(todelete)= [];

% num_minitrials = numel(q_immobile);

% %%%

num_trials = floor(num_minitrials/I0) + 1;

Q_anterior = zeros(num_trials,1);

Q_immobile = zeros(num_trials,1);

Q_posterior = zeros(num_trials,1);

for i = 1 : num_trials

 if i ~= num_trials

 tmprange = (1 + (i-1)*I0) : i*I0;

 else

 tmprange = (1 + (i-1)*I0) : num_minitrials;

 end

 Q_anterior(i) = mean(q_anterior(tmprange));

 Q_immobile(i) = mean(q_immobile(tmprange));

 Q_posterior(i) = mean(q_posterior(tmprange));

end

Q_anterior(Q_anterior>=2.5) = [];

Str2Mat.m
function D = Str2Mat(A)

%STR2MAT convert string to matrix

D = reshape(str2double(regexp(A,'\d*','match')),2,[])';

end

WORMSHAPE_MAINCALCULATION.m
function [curvdatafiltered, dKdt_data, angledatafiltered,

lendata, inconst, fullnewdirname, w_diam] =

WORMSHAPE_MAINCALCULATION(vidObj, options)

%WORMSHAPE_MAINCALCULATION Analyze the undulatory dynamics

of worms

conc = options{1}; %

wormlabel = options{2};

fps = options{3};

pix_per_mm = options{4}; %

wormthreshold = options{5};

thisperiod = options{6};

decim = options{7};

filsize = options{8}; %

start_illum = options{9}; %

end_illum = options{10}; %

spline_p = options{11};

domovie = options{12};

initials = options{13}; %

pathname = options{14};

filename = options{15};

do_const = options{16};

issavefiles = options{17};

expo = 0.7;

istart = thisperiod(1);

iend = thisperiod(2);

skip = floor((iend-istart+1)/10);

resizefactor = 1;

invert_img = 0;

decim_filter = ones(decim) / (decim^2);

if skip ==0

 skip = 1;

end

numframes = iend - istart + 1;

numcurvpts = 100;

mov_size_multiplier = 1;

savefps = 30;

mov_quality = .9;

if issavefiles

 fullnewdirname =

fullfile(pathname,strrep(filename,'.avi',sprintf('_worm%d_%

d-%d',wormlabel,istart,iend)));

 mkdir(fullnewdirname);

end

if domovie % MOV

 savefname=

strrep(filename,'.avi',sprintf('_%d-%d.mov',istart,iend));

 savepathfname = fullfile(fullnewdirname,savefname);

 mov_size_multiplier = 1;

 savefps = vidObj.FrameRate;

 mov_quality = 0.9;

end

%%%%%%%% PREVIEW IMAGES %%%%%%%%%%%

%%% Mark the region of constraint

if do_const

 img = mean(read(vidObj,istart),3);

 img = imresize(img, resizefactor, 'bicubic');

 img = imfilter(img, decim_filter, 'same');

 img = img(1:decim:end,1:decim:end);

 figure(1);clf

 image(img);

 bkg = imread(strrep(filename, 'bkgsubtracted.avi',

'background.bmp'));

 figure(2); clf

 image(bkg); axis image

 [ysize, xsize] = size(bkg);

 hold on;

 title('background');

 text(10,20, 'select ROI: upper left then lower right',

'Color', 'white');

 [bkgx1, bkgy1] = ginput(1);

 bkgx1 = floor(bkgx1);

 bkgy1 = floor(bkgy1);

 bkgx1 = max([1,bkgx1]);

 bkgy1 = max([1,bkgy1]);

 bkgx1 = min([size(bkg,2),bkgx1]);

 bkgy1 = min([size(bkg,1),bkgy1]);

 plot([1 xsize], [bkgy1 bkgy1], '-r');

 plot([bkgx1 bkgx1], [1 ysize], '-r');

 [bkgx2, bkgy2] = ginput(1);

 bkgx2 = floor(bkgx2);

 bkgy2 = floor(bkgy2);

 % ADF EDIT: Make sure the crops are in-bounds

 bkgx2 = max([1,bkgx2]);

 bkgy2 = max([1,bkgy2]);

 bkgx2 = min([size(bkg,2),bkgx2]);

 bkgy2 = min([size(bkg,1),bkgy2]);

 plot([1 xsize], [bkgy2 bkgy2], '-r');

 plot([bkgx2 bkgx2], [1 ysize], '-r');

 xconst = [bkgx1, bkgx2, bkgx2, bkgx1]';

 yconst = [bkgy1, bkgy1, bkgy2, bkgy2]';

end

%%% Worm Analysis

j=0;

% manually remove bright none-worm objects

img = mean(read(vidObj,istart),3);

img = imresize(img, resizefactor, 'bicubic');

142

img = imfilter(img, decim_filter, 'same');

img = img(1:decim:end,1:decim:end);

lvl = min(min(img)) + wormthreshold* (-

min(min(img))+max(max(img)));

figure(1);clf;

imagesc(img> lvl); axis image;

figure(2);clf;

imagesc(img); colormap gray; axis image; hold on;

bw_remove = false(size(img));

iscontinue = 1;

while iscontinue == 1

 figure(2); hold on;

 title('Indicate none-worm ROI')

 answer = length(questdlg('Continue to remove none-

worm?', 'BKG modification', 'Continue', 'No', 'No'));

 if answer == 8

 iscontinue = 1;

 figure(2); hold on;

 [bw_nw, xi, yi] = roipoly;

 patch(xi, yi, 'g', 'FaceColor',

'none','EdgeColor','r', 'LineStyle',':');

 bw_remove = bw_remove | bw_nw;

 else

 iscontinue = 0;

 close all

 end

end

img(bw_remove) = min(min(img));

% % manually select four pixel points from the background

to eliminate the

% % background noise

% figure(2); clf;

% imagesc(img); colormap gray; axis image; hold on;

% title('Pick four points as background pixels')

% [xs_bkg, ys_bkg] = ginput(4);

% plot(xs_bkg, ys_bkg, 'or')

% create sum image

for i=istart:skip:iend

 j = j+1;

 img = mean(read(vidObj,i),3);

 img = imresize(img, resizefactor, 'bicubic');

 img = imfilter(img, decim_filter, 'same');

 img = img(1:decim:end,1:decim:end);

 if invert_img

 img = 255-img;

 end

 if i == istart

 imgsum = single(img);

 [ysize, xsize] = size(img);

 imgmin = ones(size(img));

 imgdata = zeros(ysize, xsize,

length(istart:skip:iend));

 end

 figure(1);

 imagesc(img); colormap gray;hold on;

 axis image; title(num2str(i));

 imgdata(:,:,j) = img;

 imgsum = imgsum + single(img);

end

figure(1);clf;

imagesc(imgsum); colormap jet; hold on;

title('sum image');

text(10,20, 'select ROI: upper left then lower right',

'Color', 'white');

[cropx1, cropy1] = ginput(1);

cropx1 = floor(cropx1);

cropy1 = floor(cropy1);

% ADF EDIT: Make sure the crops are in-bounds.

cropx1 = max([1,cropx1]);

cropy1 = max([1,cropy1]);

cropx1 = min([size(img,2),cropx1]);

cropy1 = min([size(img,1),cropy1]);

% Get the second corner of the ROI

plot([1 xsize], [cropy1 cropy1], '-r');

plot([cropx1 cropx1], [1 ysize], '-r');

[cropx2, cropy2] = ginput(1);

cropx2 = floor(cropx2);

cropy2 = floor(cropy2);

% ADF EDIT: Make sure the crops are in-bounds

cropx2 = max([1,cropx2]);

cropy2 = max([1,cropy2]);

cropx2 = min([size(img,2),cropx2]);

cropy2 = min([size(img,1),cropy2]);

plot([1 xsize], [cropy2 cropy2], '-r');

plot([cropx2 cropx2], [1 ysize], '-r');

%%%%%%%%%%%%%%%%%%%%%%%%%%% MAIN

CALCULATIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%% Parameter

Initiation %%%%%%%%%%%%%%%%%%%%%%%%%%%

showcalc = 0;

deinterlace = 1; interlaceframe = 1;

cropyes = 1;

curvdata = zeros(numframes,numcurvpts);

inconst = zeros(numframes,numcurvpts);

areadata = zeros(numframes,1);

centroiddata = zeros(numframes,2);

cv2i_data = zeros(numframes,numcurvpts+2,2);

angledata = zeros(numframes,numcurvpts+1);

path1_rescaled_data = zeros(numframes,numcurvpts,2);

path2_rescaled_data = zeros(numframes,numcurvpts,2);

corner_mean = zeros(numframes,1);

lendata = zeros(numframes, 1);

for j=1

 i = istart + (j - 1);

 img = mean(read(vidObj,i),3);%%%%%%%%%%%%%%%% changed

 img = imresize(img, resizefactor, 'bicubic');

 img = imfilter(img, decim_filter, 'same');

 img = img(1:decim:end,1:decim:end);

 if invert_img

 img = 255-img;

 end

 img2 = abs(single(img(:,:,1))- imgmin);

 img = abs(single(img(:,:,1)));

 if deinterlace

 img(3-interlaceframe:2:end) =

img(interlaceframe:2:end);

 img2(3-interlaceframe:2:end) =

img2(interlaceframe:2:end);

 end

 if cropyes

 imgcrop = img(cropy1:cropy2,cropx1:cropx2);%

 imgcrop2 = img2(cropy1:cropy2,cropx1:cropx2);%

 else

 imgcrop = img;

 imgcrop2 = img2;

 end

 imgcrop = imgcrop';

 imgcrop2 = imgcrop2';

 imgcrop3 = imgcrop - imgcrop2;

 imgcrop4 = imgcrop3 - min(min(imgcrop3));

 [a,c] = find (imgcrop4 > 40);

 contour = [a,c];

 figure(2); hold off;

 imagesc(imgcrop4, [5 250]); hold on;

 colormap gray

end

ddd1 = [];

vvv1 = [];

for j=1:numframes

 i = istart + (j - 1);

 if i>vidObj.NumberOfFrames; break; end

%

 img = mean(read(vidObj,i),3);

 img(bw_remove) = min(min(img));

 img = imresize(img, resizefactor, 'bicubic');

 img = imfilter(img, decim_filter, 'same');

 img = img(1:decim:end,1:decim:end);

 if invert_img

 img = 255-img;

 end

 img = abs(single(img(:,:,1))- imgmin);

 img2 = abs(single(img(:,:,1)));

 if deinterlace

 img(3-interlaceframe:2:end) =

img(interlaceframe:2:end);

 img2(3-interlaceframe:2:end) =

img2(interlaceframe:2:end);

143

 end

 if cropyes

 imgcrop = img(cropy1:cropy2,cropx1:cropx2);

 imgcrop2 = img2(cropy1:cropy2,cropx1:cropx2);

 else

 imgcrop = img;

 imgcrop2 = img2;

 end

 imgcrop = imgcrop';

 imgcrop2 = imgcrop2';

 corner_mean(j) = mean(mean(imgcrop(1:20,1:20)));

 figure(1); hold off;

 imagesc(imgcrop, [5 250]); hold on;

 text(20,20,[num2str(1*double(i-istart)/fps, '%.2f') '

s'], 'Color', 'w');

 axis image;

 if j==1

 colormap jet;

 [ysize, xsize] = size(imgcrop);

 text(10,10,'click on head', 'Color', 'white');

 [headx, heady] = ginput(1);

 hold on;

 plot(headx, heady, 'or');

 headx0 = headx; heady0 = heady;

 text(10,10,'click on head', 'Color', 'black');

 text(10,10,'click on tail', 'Color', 'white');

 [tailx, taily] = ginput(1);

 tailx0 = tailx; taily0 = taily;

 text(10,10,'click on tail', 'Color', 'black');

 lvl = min(min(imgcrop)) + wormthreshold* (-

min(min(imgcrop))+max(max(imgcrop)));

 figure(1);clf;

 imagesc(imgcrop> lvl); axis image; hold on;

 text(10,10,'zoom in, press any key', 'Color',

'white');

 zoom on; zoom off;

 text(10,10,'zoom in, press any key', 'Color',

'black');

 title('click two points separated by worm

diameter');

 tmp1 = ginput(1);

 plot(tmp1(1),tmp1(2), 'ow');

 tmp2 = ginput(1);

 plot(tmp2(1),tmp2(2), 'ow');

 pause(.5);

 worm_diam = norm(tmp1-tmp2);

 title(['worm diameter = ' num2str(worm_diam) '

pixels']);

 worm_area_est = 10*worm_diam^2;

 sizethresh = round(worm_area_est / 2);

 if mod(round(filsize*worm_diam),2)==1

 filradius = round(filsize*worm_diam/2);

 else

 filradius = round(filsize*worm_diam/2)+1;

 end

 fil = fspecial('disk', filradius);

 if domovie

 MakeQTMovie('start',savepathfname);

 MakeQTMovie('size',

mov_size_multiplier*[size(img,2) size(img,1)]);

 MakeQTMovie('quality', mov_quality);

 MakeQTMovie('framerate', round(savefps));

 end

 colormap gray;

 zoom out;

 set(gcf, 'Position', [129 190 310 463]);

 end

 img2 = conv2(single(imgcrop), fil, 'same');

 lvl = min(min(img2))+wormthreshold* (-

min(min(img2))+max(max(img2)));

 bw =(img2> lvl);

 if showcalc

 figure(2);

 imshow(bw);

 end

 bw2 = bwareaopen(bw, sizethresh);

 bw3 = imcomplement(bw2);

 bw4 = bwareaopen(bw3, sizethresh);

 bw5 = imcomplement(bw4);

 STATS = regionprops(logical(bw5),'Area', 'Centroid');

 if size(STATS,1) == 0

 disp('Error: no worm found');

 break;

 end

 areadata(j) = STATS.Area;

 centroiddata(j,:) = STATS.Centroid;

 B = bwboundaries(bw5, 'noholes'); % trace boundary

clockwise

 B1 = B{1}; % boundary coordinates

 B1_size = size(B1,1);

 ksep = ceil(B1_size/20);

 B1_plus = circshift(B1,[ksep 0]);

 B1_minus = circshift(B1,[-ksep 0]);

 AA = B1 - B1_plus; % AA and BB are vectors between a

point on boundary and neighbors +- ksep away

 BB = B1 - B1_minus;

 cAA = AA(:,1) + sqrt(-1)*AA(:,2);

 cBB = BB(:,1) + sqrt(-1)*BB(:,2);

 B1_angle = unwrap(angle(cBB ./ cAA));

 min1 = find(B1_angle == min(B1_angle),1); % find point

on boundary w/ minimum angle between AA, BB

 B1_angle2 = circshift(B1_angle, -min1);

 min2a = round(.25*B1_size)-

1+find(B1_angle2(round(.25*B1_size):round(0.75*B1_size))==m

in(B1_angle2(round(.25*B1_size):round(0.75*B1_size))),1);

% find minimum in other half

 min2 = 1+mod(min2a + min1-1, B1_size);

 tmp = circshift(B1, [1-min1 0]);

 end1 = 1+mod(min2 - min1-1, B1_size);

 path1 = tmp(1:end1,:);

 path2 = tmp(end:-1:end1,:);

 if norm(path1(1,:) - [heady headx]) > norm(path1(end,:)

- [heady headx]) % if min1 is at tail, reverse both paths

 tmp = path1;

 path1 = path2(end:-1:1,:);

 path2 = tmp(end:-1:1,:);

 end

 heady = path1(1,1);

 headx = path1(1,2);

 taily = path1(end,1);

 tailx = path1(end,2);

 path_length = numcurvpts;

 path1_rescaled = zeros(path_length,2);

 path2_rescaled = zeros(path_length,2);

 path1_rescaled2 = zeros(path_length,2);

 path2_rescaled2 = zeros(path_length,2);

 path1_rescaled(:,1) = interp1(0:size(path1,1)-1,

path1(:,1), (size(path1,1)-1)*(0:path_length-

1)/(path_length-1), 'linear');

 path1_rescaled(:,2) = interp1(0:size(path1,1)-1,

path1(:,2), (size(path1,1)-1)*(0:path_length-

1)/(path_length-1), 'linear');

 path2_rescaled(:,1) = interp1(0:size(path2,1)-1,

path2(:,1), (size(path2,1)-1)*(0:path_length-

1)/(path_length-1), 'linear');

 path2_rescaled(:,2) = interp1(0:size(path2,1)-1,

path2(:,2), (size(path2,1)-1)*(0:path_length-

1)/(path_length-1), 'linear');

 for kk=1:path_length

 tmp1 = repmat(path1_rescaled(kk,:),

[path_length,1]) - path2_rescaled;

 tmp2 = sqrt(tmp1(:,1).^2 + tmp1(:,2).^2);

 path2_rescaled2(kk,:) =

path2_rescaled(find(tmp2==min(tmp2),1),:);

 end

 for kk=1:path_length

 tmp1 = repmat(path2_rescaled(kk,:),

[path_length,1]) - path1_rescaled;

 tmp2 = sqrt(tmp1(:,1).^2 + tmp1(:,2).^2);

 path1_rescaled2(kk,:) =

path1_rescaled(find(tmp2==min(tmp2),1),:);

144

 end

 dorsalx = path1_rescaled2(:,1);

 dorsaly = path1_rescaled2(:,2);

 ventralx = path2_rescaled2(:,1);

 ventraly = path2_rescaled2(:,2);

 dorsal = [ventralx,ventraly];

 ventral = [dorsalx,dorsaly];

 dorsalline = round(dorsal);

 ventralline = round(ventral);

 a2 =[];

 a3 =[];

 for i = 1:length(ventralline)

 a1 = find(ventralline(i,1) == contour(:,1) &

ventralline(i,2) == contour(:,2));

 a4 = find(dorsalline(i,1) == contour(:,1) &

dorsalline(i,2) == contour(:,2));

 if a1 > 0

 a1 = 1;

 else

 a1 = 0;

 end

 a2 = cat(2,a2,a1);

 if a4 > 0

 a4 = 1;

 else

 a4 = 0;

 end

 a3 = cat(2,a3,a4);

 end

 ddd = sum(a3);

 vvv = sum(a2);

 ddd1 = cat(1,ddd1,ddd);

 vvv1 = cat(1,vvv1,vvv);

 comb_cont = cat(1,ddd1',vvv1');

 weight_fn = ones(path_length,1);

 tmp=round(path_length*0.2);

 weight_fn(1:tmp)=(0:tmp-1)/tmp;

 weight_fn(end-tmp+1:end)=(tmp-1:-1:0)/tmp;

 weight_fn = [weight_fn weight_fn];

 midline = 0.5*(path1_rescaled+path2_rescaled);

 midline2a = 0.5*(path1_rescaled+path2_rescaled2);

 midline2b = 0.5*(path1_rescaled2+path2_rescaled);

 midline_mixed = midline2a .* weight_fn + midline .* (1-

weight_fn);

 figure(1); axis image;

 plot(path1_rescaled(1,2), path1_rescaled(1,1), 'or');

hold on;

 plot(path2_rescaled(end,2),path2_rescaled(end,1),

'og'); hold on;

 Line = midline_mixed;

 interpfactor = 10;

 Line2 = interp1(Line, (1:(1/interpfactor):100)); %

worm's center line in xy coordinates in imgcrop

 xy = circshift(Line2, [0 1])'; df = diff(xy,1,2);

 t = cumsum([0, sqrt([1 1]*(df.*df))]);

 cv = csaps(t,xy,spline_p);

 dorsal_xy = circshift(dorsalline, [0 1])'; df =

diff(dorsal_xy,1,2);

 tmpt2 = cumsum([0, sqrt([1 1]*(df.*df))]);

 dorsal_cv = csaps(tmpt2,dorsal_xy,spline_p);

 ventral_xy = circshift(ventralline, [0 1])'; df =

diff(ventral_xy,1,2);

 tmpt2 = cumsum([0, sqrt([1 1]*(df.*df))]);

 ventral_cv = csaps(tmpt2,ventral_xy,spline_p);

 figure(1); axis image;

 fnplt(cv, '-g'); hold on;

 plot(xy(1,51),xy(2,51),'or');hold on ;% centre point of

cv

 fnplt(dorsal_cv, '-r'); hold on;

 fnplt(ventral_cv, '-g'); hold on;

 drawnow;

 if domovie && j>1

 MakeQTMovie('addframe');

 end

 if j==1

 plot([Line(1,2) headx0],[Line(1,1) heady0], '-oc');

 plot([Line(end,2) tailx0],[Line(end,1) taily0], '-

oc');

 pause(1);

 end

 cv2 = fnval(cv, t)';

 df2 = diff(cv2,1,1); df2p = df2';

 splen = cumsum([0, sqrt([1 1]*(df2p.*df2p))]);

 lendata(j) = splen(end)/pix_per_mm;

 % interpolate to equally spaced length units

 cv2i = interp1(splen+.00001*(0:length(splen)-1),cv2,

(0:(splen(end)-1)/(numcurvpts+1):(splen(end)-1)));

 if do_const

 xyi = interp1(splen+.00001*(0:length(splen)-

1),cv2, (0:(splen(end)-1)/(numcurvpts-1):(splen(end)-1)));

 xcrop = xyi(:,2);

 ycrop = xyi(:,1);

 xincr = cropx1;

 yincr = cropy1;

 ximg = xcrop + xincr;

 yimg = ycrop + yincr;

 % identify the part that is in the constraint ROI

 in = inpolygon(ximg, yimg, xconst, yconst);

 inconst(j,:) = in;

 end

 % store cv2i data

 cv2i_data(j,:,:) = cv2i;

 path1_rescaled_data(j,:,:) = path1_rescaled;

 path2_rescaled_data(j,:,:) = path2_rescaled;

 df2 = diff(cv2i,1,1);

 atdf2 = unwrap(atan2(-df2(:,2), df2(:,1)));

 curv = unwrap(diff(atdf2,1));

 curvdata(j,:) = curv' * pix_per_mm;

 % calculate the angle of attack during worm's

locomotion

 atdf2 = atan2(-df2(:,2), df2(:,1));

 theta = (mean(max(atdf2)) + mean(min(atdf2)))/2;

 xcenter = cv2i(1,1);

 ycenter = cv2i(1,2);

 center = repmat([xcenter ycenter], size(cv2i, 1), 1);

 Ro = [cos(theta) -sin(theta); sin(theta)

cos(theta)];

 % do the rotation

 cv2io = (Ro*(cv2i' - center') + center')';

 df2o = diff(cv2io,1,1);

 atdf2o = atan2(-df2o(:,2), df2o(:,1));

 angledata(j,:) = atdf2o';

end % end main loop

% Post-processing raw curvature data

curvdata_median = medfilt2(curvdata, [5 5]);

tmp = reshape(curvdata_median, [numel(curvdata_median),1]);

curv05 = prctile(tmp, 5);

curv95 = prctile(tmp, 95);

curvdata(curvdata > curv95) = curvdata_median(curvdata >

curv95);

curvdata(curvdata < curv05) = curvdata_median(curvdata <

curv05);

timefilter = 5;

bodyfilter = 5;

curvfilter = fspecial('average',[timefilter,bodyfilter]);

curvdatafiltered = imfilter(curvdata, curvfilter,

'replicate');

dKdt_data = gradient(curvdatafiltered')'*fps;

% Post-processing raw angle data

angledata_median = medfilt2(angledata, [5 5]);

tmp = reshape(angledata_median,

[numel(angledata_median),1]);

angle05 = prctile(tmp, 5);

angle95 = prctile(tmp, 95);

angledata(angledata > angle95) =

angledata_median(angledata > angle95);

angledata(angledata < angle05) = angledata_median(angledata

< angle05);

timefilter = 5;

bodyfilter = 5;

anglefilter = fspecial('average',[timefilter,bodyfilter]);

angledatafiltered = imfilter(angledata, anglefilter ,

'replicate');

w_diam = worm_diam/pix_per_mm;

145

if issavefiles

 if domovie

 MakeQTMovie('finish');

 end

end

end

curv_vs_act.py
import numpy as np

import cv2

from matplotlib import pyplot as plt

import math

import os

import shutil

from scipy.ndimage import interpolation

from scipy.ndimage import median_filter

from scipy.ndimage import gaussian_filter

from scipy.interpolate import UnivariateSpline

from skimage.segmentation import active_contour

from scipy.stats import pearsonr

import pickle

import csv

from numpy.polynomial.polynomial import polyfit

from scipy import stats

exec(open("./curv_vs_act.py").read())

input_folder = r"C:\Users\fffei\Dropbox\Paper\Compensatory

reponse mechanism\data optogenetics\GCaMP expts new\SWF331

p05 agarpad round5\Analyzables\w1\c2\r\edge_detection"

write normalized images for viewing, use fold change for

gcamp, use real curvature (K*l)

with open(input_folder+'/'+'dorsal_kymograph.pkl','rb') as

f:

 dorsal_kymograph = pickle.load(f)

with open(input_folder+'/'+'ventral_kymograph.pkl','rb') as

f:

 ventral_kymograph = pickle.load(f)

with

open(input_folder+'/'+'dorsal_body_kymograph.pkl','rb') as

f:

 dorsal_body_kymograph = pickle.load(f)

with

open(input_folder+'/'+'ventral_body_kymograph.pkl','rb') as

f:

 ventral_body_kymograph = pickle.load(f)

remove frames due to segmentation errors or whatever

toRemove = 234

dorsal_kymograph = dorsal_kymograph[:toRemove]

ventral_kymograph = ventral_kymograph[:toRemove]

dorsal_body_kymograph = dorsal_body_kymograph[:toRemove]

ventral_body_kymograph =

ventral_body_kymograph[:toRemove]

gcamp_bg = 2200

dorsal_kymograph_pic = ((dorsal_kymograph-

np.min(dorsal_kymograph))/(np.max(dorsal_kymograph)-

np.min(dorsal_kymograph)))*255.0

dorsal_kymograph_pic =

dorsal_kymograph_pic.astype('uint8')

dorsal_kymograph = dorsal_kymograph - gcamp_bg

temp =

np.histogram(dorsal_kymograph.flatten(),bins=np.arange(0,np

.max(dorsal_kymograph),10))

temp = list(zip(temp[0],temp[1]))

temp = list(sorted(temp))

dorsal_kymograph = dorsal_kymograph / temp[-1][1]

cv2.imwrite(input_folder+'/'+'dorsal_kymograph.tif',

dorsal_kymograph)

ventral_kymograph_pic = ((ventral_kymograph-

np.min(ventral_kymograph))/(np.max(ventral_kymograph)-

np.min(ventral_kymograph)))*255.0

ventral_kymograph_pic =

ventral_kymograph_pic.astype('uint8')

ventral_kymograph = ventral_kymograph - gcamp_bg

temp =

np.histogram(ventral_kymograph.flatten(),bins=np.arange(0,n

p.max(ventral_kymograph),10))

temp = list(zip(temp[0],temp[1]))

temp = list(sorted(temp))

ventral_kymograph = ventral_kymograph / temp[-1][1]

cv2.imwrite(input_folder+'/'+'ventral_kymograph.tif',

ventral_kymograph)

c_one = 9999999

c_two = 9999999

cutoff_one =

np.median(dorsal_body_kymograph.flatten()[dorsal_body_kymog

raph.flatten()!=0]) +

c_one*np.std(dorsal_body_kymograph.flatten()[dorsal_body_ky

mograph.flatten()!=0])

cutoff_two =

np.median(ventral_body_kymograph.flatten()[ventral_body_kym

ograph.flatten()!=0]) +

c_two*np.std(ventral_body_kymograph.flatten()[ventral_body_

kymograph.flatten()!=0])

dorsal_body_kymograph[dorsal_body_kymograph>cutoff_one] =

0.0

ventral_body_kymograph[ventral_body_kymograph>cutoff_two] =

0.0

body_min =

np.min([np.min(dorsal_body_kymograph),np.min(ventral_body_k

ymograph)])

body_max =

np.max([np.max(dorsal_body_kymograph),np.max(ventral_body_k

ymograph)])

dorsal_body_kymograph_pic = ((dorsal_body_kymograph -

body_min)/(body_max-body_min))*255.0

dorsal_body_kymograph_pic =

dorsal_body_kymograph_pic.astype('uint8')

ventral_body_kymograph_pic = ((ventral_body_kymograph -

body_min)/(body_max-body_min))*255.0

ventral_body_kymograph_pic =

ventral_body_kymograph_pic.astype('uint8')

increase length of pic

new_length = 1000

dorsal_body_kymograph_pic =

np.array([dorsal_body_kymograph_pic[0] for i in

range(new_length)])

ventral_body_kymograph_pic =

np.array([ventral_body_kymograph_pic[0] for i in

range(new_length)])

cv2.imwrite(input_folder+'/'+'dorsal_body_kymograph.tif',

dorsal_body_kymograph_pic)

cv2.imwrite(input_folder+'/'+'ventral_body_kymograph.tif',

ventral_body_kymograph_pic)

if False:

 # ## analysis

 dorsal_kymograph = dorsal_kymograph.astype('float')

 ventral_kymograph = ventral_kymograph.astype('float')

 dorsal_body_kymograph =

dorsal_body_kymograph.astype('float')

 ventral_body_kymograph =

ventral_body_kymograph.astype('float')

 ## adjust size so all are same size as

dorsal_body_kymograph

 ## dorsal_kymograph

 new_dorsal_kymograph = []

 for original_length, new_length in

zip(dorsal_kymograph.shape, dorsal_body_kymograph.shape):

 new_dorsal_kymograph.append(np.linspace(0,

original_length-1, new_length))

 coords = np.meshgrid(*new_dorsal_kymograph,

indexing='ij')

 dorsal_kymograph =

interpolation.map_coordinates(dorsal_kymograph, coords)

 new_dorsal_kymograph = None

 # ventral_kymograph

 new_ventral_kymograph = []

 for original_length, new_length in

zip(ventral_kymograph.shape, dorsal_body_kymograph.shape):

 new_ventral_kymograph.append(np.linspace(0,

original_length-1, new_length))

 coords = np.meshgrid(*new_ventral_kymograph,

indexing='ij')

 ventral_kymograph =

interpolation.map_coordinates(ventral_kymograph, coords)

 new_ventral_kymograph = None

 # ventral_body_kymograph

 new_ventral_body_kymograph = []

 for original_length, new_length in

zip(ventral_body_kymograph.shape,

dorsal_body_kymograph.shape):

 new_ventral_body_kymograph.append(np.linspace(0,

original_length-1, new_length))

 coords = np.meshgrid(*new_ventral_body_kymograph,

indexing='ij')

 ventral_body_kymograph =

interpolation.map_coordinates(ventral_body_kymograph,

coords)

 new_ventral_body_kymograph = None

 fig = plt.figure()

 ax = fig.add_subplot(111)

146

 x = dorsal_body_kymograph.flatten()-

ventral_body_kymograph.flatten()

 y = dorsal_kymograph.flatten()

 xy = list(sorted(list(zip(x,y))))

 x = np.array([xx for xx,yy in xy if xx > 0.02 or xx < -

0.02])

 y = np.array([yy for xx,yy in xy if xx > 0.02 or xx < -

0.02])

 b, m = polyfit(x, y, 1)

 r = pearsonr(x, y)

 ax.scatter(x,y,color='blue',s=4, label='Pearsons R:

'+str('%.3f'%r[0]),alpha=0.05)

 ax.plot(x, b + m * x, '-',c='black',

label=str('%.3f'%m)+'x + '+str('%.3f'%b))

 plt.legend(loc="upper right")

 ax.set_xlabel('Normalized dorsal curvature',

fontsize=14)

 ax.set_ylabel('Fold change dorsal activation',

fontsize=14)

 plt.savefig(input_folder+'/'+'dorsal.png')

 plt.show()

 plt.close()

 fig = plt.figure()

 ax = fig.add_subplot(111)

 x = dorsal_body_kymograph.flatten()-

ventral_body_kymograph.flatten()

 y = ventral_kymograph.flatten()

 xy = list(sorted(list(zip(x,y))))

 x = np.array([xx for xx,yy in xy if xx > 0.02 or xx < -

0.02])

 y = np.array([yy for xx,yy in xy if xx > 0.02 or xx < -

0.02])

 b, m = polyfit(x, y, 1)

 r = pearsonr(x, y)

 ax.scatter(x,y,color='red',s=4, label='Pearsons R:

'+str('%.3f'%r[0]),alpha=0.05)

 ax.plot(x, b + m * x, '-',c='black',

label=str('%.3f'%m)+'x + '+str('%.3f'%b))

 plt.legend(loc="upper right")

 ax.set_xlabel('Normalized ventral curvature',

fontsize=14)

 ax.set_ylabel('Fold change ventral activation',

fontsize=14)

 plt.savefig(input_folder+'/'+'ventral.png')

 plt.show()

 plt.close()

 fig = plt.figure()

 ax = fig.add_subplot(111)

 b, m = polyfit(dorsal_body_kymograph.flatten(),

ventral_body_kymograph.flatten(), 1)

 r = pearsonr(dorsal_body_kymograph.flatten(),

ventral_body_kymograph.flatten())

ax.scatter(dorsal_body_kymograph.flatten(),ventral_body_kym

ograph.flatten(),color='gray',s=4, label='Pearsons R:

'+str('%.3f'%r[0]),alpha=0.05)

 ax.plot(dorsal_body_kymograph.flatten(), b + m *

dorsal_body_kymograph.flatten(), '-',c='black',

label=str('%.3f'%m)+'x + '+str('%.3f'%b))

 plt.legend(loc="upper right")

 ax.set_xlabel('Normalized dorsal body curvature',

fontsize=14)

 ax.set_ylabel('Normalized ventral body curvature',

fontsize=14)

 plt.savefig(input_folder+'/'+'body.png')

 plt.show()

 plt.close()

 fig = plt.figure()

 ax = fig.add_subplot(111)

 b, m = polyfit(dorsal_kymograph.flatten(),

ventral_kymograph.flatten(), 1)

 r = pearsonr(dorsal_kymograph.flatten(),

ventral_kymograph.flatten())

ax.scatter(dorsal_kymograph.flatten(),ventral_kymograph.fla

tten(),color='gray',s=4, label='Pearsons R:

'+str('%.3f'%r[0]),alpha=0.05)

 ax.plot(dorsal_kymograph.flatten(), b + m *

dorsal_kymograph.flatten(), '-',c='black',

label=str('%.3f'%m)+'x + '+str('%.3f'%b))

 plt.legend(loc="upper right")

 # ax.set_xlim(-0.1,1.1)

 # ax.set_ylim(-0.1,1.1)

 ax.set_xlabel('Fold change dorsal muscle activation',

fontsize=14)

 ax.set_ylabel('Fold change ventral muscle activation',

fontsize=14)

 plt.savefig(input_folder+'/'+'muscle.png')

 plt.show()

 plt.close()

 ## get immobilization factor for body

 skipFactor = 10

 dbk = 0

 for i in range(skipFactor,len(dorsal_body_kymograph)):

 diff = dorsal_body_kymograph[i] -

dorsal_body_kymograph[i-skipFactor]

 dbk += np.sum(np.abs(diff))/len(diff)

 vbk = 0

 for i in range(1,len(ventral_body_kymograph)):

 diff = ventral_body_kymograph[i] -

ventral_body_kymograph[i-skipFactor]

 vbk += np.sum(np.abs(diff))/len(diff)

print('dorsal_body_kymograph',dbk/len(dorsal_body_kymograph

))

print('ventral_body_kymograph',vbk/len(ventral_body_kymogra

ph))

print('total_body_kymograph',((vbk/len(ventral_body_kymogra

ph))+(dbk/len(dorsal_body_kymograph)))/2)

 output =

[('dorsal_body_kymograph',dbk/len(dorsal_body_kymograph)),(

'ventral_body_kymograph',vbk/len(ventral_body_kymograph)),(

'total_body_kymograph',((vbk/len(ventral_body_kymograph))+(

dbk/len(dorsal_body_kymograph)))/2)]

 with open(input_folder+'/'+'immobility.csv', 'w') as

csv_file:

 writer = csv.writer(csv_file)

 for row in output:

 writer.writerow(row)

 ## get immobilization factor for muscles

 skipFactor = 10

 dk = 0

 for i in range(skipFactor,len(dorsal_kymograph)):

 diff = dorsal_kymograph[i] - dorsal_kymograph[i-

skipFactor]

 dk += np.sum(np.abs(diff))/len(diff)

 vk = 0

 for i in range(1,len(ventral_kymograph)):

 diff = ventral_kymograph[i] - ventral_kymograph[i-

skipFactor]

 vk += np.sum(np.abs(diff))/len(diff)

 print('dorsal_kymograph',dk/len(dorsal_kymograph))

 print('ventral_kymograph',vk/len(ventral_kymograph))

print('average_kymograph',((vk/len(ventral_kymograph))+(dk/

len(dorsal_body_kymograph)))/2)

 output =

[('dorsal_kymograph',dk/len(dorsal_kymograph)),('ventral_ky

mograph',vk/len(ventral_kymograph)),('average_kymograph',((

vk/len(ventral_kymograph))+(dk/len(dorsal_kymograph)))/2)]

 with open(input_folder+'/'+'immobility_muscles.csv',

'w') as csv_file:

 writer = csv.writer(csv_file)

 for row in output:

 writer.writerow(row)

calculate derivative of body kymograph with respect to

time

skipFactor = 10

dbk_deriv = []

for i in range(len(dorsal_body_kymograph)):

if i < skipFactor or i > len(dorsal_body_kymograph)-

skipFactor-1:

dbk_deriv.append(np.zeros(len(dorsal_body_kymograph[i])))

else:

dbk_deriv.append([])

for j in range(len(dorsal_body_kymograph[i])):

diff = dorsal_body_kymograph[i+skipFactor][j]

- dorsal_body_kymograph[i-skipFactor][j]

dbk_deriv[-1].append(diff)

dbk_deriv[-1] = np.array(dbk_deriv[-1])

dbk_deriv = np.array(dbk_deriv)

dbk_deriv_img = ((dbk_deriv/np.max(dbk_deriv))*255.0)

cv2.imwrite(input_folder+'/'+'dbk_derivative.tif',

dbk_deriv_img.astype('uint8'))

vbk_deriv = []

for i in range(len(ventral_body_kymograph)):

if i < skipFactor or i > len(ventral_body_kymograph)-

skipFactor-1:

vbk_deriv.append(np.zeros(len(ventral_body_kymograph[i])))

else:

vbk_deriv.append([])

for j in range(len(ventral_body_kymograph[i])):

diff =

ventral_body_kymograph[i+skipFactor][j] -

ventral_body_kymograph[i-skipFactor][j]

147

vbk_deriv[-1].append(diff)

vbk_deriv[-1] = np.array(vbk_deriv[-1])

vbk_deriv = np.array(vbk_deriv)

vbk_deriv_img = ((vbk_deriv/np.max(vbk_deriv))*255.0)

cv2.imwrite(input_folder+'/'+'vbk_derivative.tif',

vbk_deriv_img.astype('uint8'))

calculate derivative of muscle kymograph with respect

to time

skipFactor = 10

dk_deriv = []

for i in range(len(dorsal_kymograph)):

if i < skipFactor or i > len(dorsal_kymograph)-

skipFactor-1:

dk_deriv.append(np.zeros(len(dorsal_kymograph[i])))

else:

dk_deriv.append([])

for j in range(len(dorsal_kymograph[i])):

diff = dorsal_kymograph[i+skipFactor][j] -

dorsal_kymograph[i-skipFactor][j]

dk_deriv[-1].append(diff)

dk_deriv[-1] = np.array(dk_deriv[-1])

dk_deriv = np.array(dk_deriv)

dk_deriv_img = ((dk_deriv/np.max(dk_deriv))*255.0)

cv2.imwrite(input_folder+'/'+'dk_derivative.tif',

dk_deriv_img.astype('uint8'))

vk_deriv = []

for i in range(len(ventral_kymograph)):

if i < skipFactor or i > len(ventral_kymograph)-

skipFactor-1:

vk_deriv.append(np.zeros(len(ventral_kymograph[i])))

else:

vk_deriv.append([])

for j in range(len(ventral_kymograph[i])):

diff = ventral_kymograph[i+skipFactor][j] -

ventral_kymograph[i-skipFactor][j]

vk_deriv[-1].append(diff)

vk_deriv[-1] = np.array(vk_deriv[-1])

vk_deriv = np.array(vk_deriv)

vk_deriv_img = ((vk_deriv/np.max(vk_deriv))*255.0)

cv2.imwrite(input_folder+'/'+'vk_derivative.tif',

vk_deriv_img.astype('uint8'))

fig = plt.figure()

ax = fig.add_subplot(111)

x = dorsal_body_kymograph.flatten()-

ventral_body_kymograph.flatten()

y = dk_deriv.flatten()

xy = list(sorted(list(zip(x,y))))

x = np.array([xx for xx,yy in xy if xx > 0.02 or xx < -

0.02])

y = np.array([yy for xx,yy in xy if xx > 0.02 or xx < -

0.02])

b, m = polyfit(x, y, 1)

r = pearsonr(x, y)

ax.scatter(x,y,color='blue',s=4, label='Pearsons R:

'+str('%.3f'%r[0]),alpha=0.05)

ax.plot(x, b + m * x, '-',c='black',

label=str('%.3f'%m)+'x + '+str('%.3f'%b))

plt.legend(loc="upper right")

ax.set_xlabel('Normalized dorsal curvature', fontsize=14)

ax.set_ylabel('Change in fold change dorsal activation',

fontsize=14)

plt.savefig(input_folder+'/'+'dorsal_deriv.png')

plt.show()

plt.close()

fig = plt.figure()

ax = fig.add_subplot(111)

x = dorsal_body_kymograph.flatten()-

ventral_body_kymograph.flatten()

y = vk_deriv.flatten()

xy = list(sorted(list(zip(x,y))))

x = np.array([xx for xx,yy in xy if xx > 0.02 or xx < -

0.02])

y = np.array([yy for xx,yy in xy if xx > 0.02 or xx < -

0.02])

b, m = polyfit(x, y, 1)

r = pearsonr(x, y)

ax.scatter(x,y,color='red',s=4, label='Pearsons R:

'+str('%.3f'%r[0]),alpha=0.05)

ax.plot(x, b + m * x, '-',c='black',

label=str('%.3f'%m)+'x + '+str('%.3f'%b))

plt.legend(loc="upper right")

ax.set_xlabel('Normalized ventral curvature',

fontsize=14)

ax.set_ylabel('Change in fold change ventral activation',

fontsize=14)

plt.savefig(input_folder+'/'+'ventral_deriv.png')

plt.show()

plt.close()

fig = plt.figure()

ax = fig.add_subplot(111)

x = dbk_deriv.flatten()

y = dk_deriv.flatten()

xy = list(sorted(list(zip(x,y))))

x = np.array([xx for xx,yy in xy if xx > 0.02 or xx < -

0.02])

y = np.array([yy for xx,yy in xy if xx > 0.02 or xx < -

0.02])

b, m = polyfit(x, y, 1)

r = pearsonr(x, y)

ax.scatter(x,y,color='blue',s=4, label='Pearsons R:

'+str('%.3f'%r[0]),alpha=0.05)

ax.plot(x, b + m * x, '-',c='black',

label=str('%.3f'%m)+'x + '+str('%.3f'%b))

plt.legend(loc="upper right")

ax.set_xlabel('Change in dorsal curvature', fontsize=14)

ax.set_ylabel('Change in fold change dorsal activation',

fontsize=14)

plt.savefig(input_folder+'/'+'dorsal_body_deriv.png')

plt.show()

plt.close()

fig = plt.figure()

ax = fig.add_subplot(111)

x = vbk_deriv.flatten()

y = vk_deriv.flatten()

xy = list(sorted(list(zip(x,y))))

x = np.array([xx for xx,yy in xy if xx > 0.02 or xx < -

0.02])

y = np.array([yy for xx,yy in xy if xx > 0.02 or xx < -

0.02])

b, m = polyfit(x, y, 1)

r = pearsonr(x, y)

ax.scatter(x,y,color='red',s=4, label='Pearsons R:

'+str('%.3f'%r[0]),alpha=0.05)

ax.plot(x, b + m * x, '-',c='black',

label=str('%.3f'%m)+'x + '+str('%.3f'%b))

plt.legend(loc="upper right")

ax.set_xlabel('Change in ventral curvature', fontsize=14)

ax.set_ylabel('Change in fold change ventral activation',

fontsize=14)

plt.savefig(input_folder+'/'+'ventral_body_deriv.png')

plt.show()

plt.close()

worm_straightener.py
import numpy as np

import cv2

from matplotlib import pyplot as plt

import math

import os

import shutil

from scipy.ndimage import interpolation

from scipy.ndimage import median_filter

from scipy.interpolate import UnivariateSpline

from skimage.segmentation import active_contour

import pickle

import csv

from skimage import morphology, img_as_bool

import scipy.io

exec(open("./worm_straightener.py").read())

red_input_folder =

r"C:\Users\fffei\Dropbox\Paper\Compensatory reponse

mechanism\data optogenetics\GCaMP expts new\SWF331 p05

agarpad round5\Analyzables\w11\c3\r"

green_input_folder =

r"C:\Users\fffei\Dropbox\Paper\Compensatory reponse

mechanism\data optogenetics\GCaMP expts new\SWF331 p05

agarpad round5\Analyzables\w11\c3\g"

try:

 shutil.rmtree(red_input_folder + '\\edge_detection')

except:

 pass

images = os.listdir(red_input_folder)

saveImages = True

draw = True

make head = tail and tail = head corners

flipHeadTail = True

make dorsal_contour = ventral_contour, vice versa

flipDorsalVentral = True

reverse contours so they read from head to tail

reverseDorsalVentral = False

flip direction of perpendicular angle during centerline

detection

flipAngle = True

148

make sure curvature is correct

flipCurvature = False

os.mkdir(red_input_folder + '\\edge_detection')

def distance(p,q):

 return np.sqrt((p[0]-q[0])**2+(p[1]-q[1])**2)

def distance_pts(p,_contours):

 distance_lst = []

 for q in _contours[0]:

 distance_lst.append((distance(p[0],q[0]),q))

 distance_lst = list(sorted(distance_lst, key=lambda x:

x[0]))

 return distance_lst[0][1]

dorsal_kymograph = []

ventral_kymograph = []

dorsal_body_kymograph = []

ventral_body_kymograph = []

last_head_corner = np.array([None])

last_tail_corner = np.array([None])

last_dorsal_contour = np.array([None])

last_ventral_contour = np.array([None])

skipList = []

oneWormDone = False

midline_contours = []

center_of_masses = []

skip = -1

for image in images:

 # if image != '0092.tif':

 # continue

 ## skip images if necessary and write previous image to

folder

 if image in skipList:

cv2.imwrite(red_input_folder+'/'+'edge_detection'+'/'+image

, img)

 continue

 skip+=1

 # if skip<443 or skip>495:

 # continue

 ## read in image

 img = cv2.imread(red_input_folder+'/'+image,

cv2.IMREAD_UNCHANGED)

 img =

cv2.cvtColor(img,cv2.COLOR_GRAY2RGB).astype('uint8')

 print(image)

 ## filter to make smoother edges

 # dilation and erosion can be used to accentuate or

deaccentuate features

 ## kernel_one = 7, kernel_two = 3, 5 median blur, 0.1

threshold for 3.2 um images, use large median blur to round

edges

 kernel_one = np.ones((21,21), np.int16)

img = cv2.dilate(img, kernel_one, iterations=1)

img = cv2.erode(img, kernel_one, iterations=1)

 #plt.imshow(img),plt.show()

 ## second round of eroding so contour edges align with

pyo3 expression

 kernel_two = np.ones((5,5), np.int16)

 # img = cv2.erode(img, kernel_two, iterations=1)

 #plt.imshow(img),plt.show()

 ## clean all noise after dilatation and erosion

 medianBlur_one = 7

 img = cv2.medianBlur(img.astype('uint8'),

medianBlur_one)

 #plt.imshow(img),plt.show()

 ## threshold to make clean edges

 img = img.astype('uint8')

 # plt.imshow(img),plt.show()

 threshold_one = .1

 img[img < threshold_one] = 0

 img[img >= threshold_one] = 255

 img = img.astype('uint8')

 #plt.imshow(img),plt.show()

 #gray scale image

 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

 # Find Canny edges

 edged = cv2.Canny(gray, 0, 255)

 #plt.imshow(edged),plt.show()

 # Finding Contours

 # Use a copy of the image e.g. edged.copy()

 # since findContours alters the image

 contours, hierarchy = cv2.findContours(edged,

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

 if len(contours) != 1:

 print('more than one contour')

cv2.imwrite(red_input_folder+'/'+'edge_detection'+'/'+image

, img)

 skipList.append(image)

 midline_contours.append(np.array([]))

 center_of_masses.append([])

 continue

 ## corner selection using circle at each point on

contour

 ii = np.where(edged == 255)

 corners_params = [10,50]

 ii_r = corners_params[0]

 ii_sums = []

 for ii_y,ii_x in zip(ii[0],ii[1]):

 zero_img = np.zeros(edged.shape)

 cv2.circle(zero_img,(ii_x,ii_y),ii_r,1,-1)

 ii_circle = np.where(zero_img == 1)

 zero_img = zero_img*gray

 zero_img = np.sum(zero_img)

 ii_sums.append((zero_img,[ii_x,ii_y]))

 ii_sums = list(sorted(ii_sums))

 corners = [np.array([np.array(ii_sums[0][1])])]

 for zi,iixiiy in ii_sums:

 if distance(iixiiy,corners[0][0]) >

corners_params[1]:

 corners.append(np.array([np.array(iixiiy)]))

 break

 corners = np.array(corners)

 ## selection corner using cv2.goodfeaturestotrack

 # corners_params = [2,0.01,175,10]

 # corners =

cv2.goodFeaturesToTrack(gray,corners_params[0],corners_para

ms[1],corners_params[2],blockSize=corners_params[3])

 # corners = np.int0(corners)

 #

 ## split contour up into dorsal and ventral contours

 ## find contour position closest to corners

 if last_head_corner.any() == None:

 head = distance_pts(corners[0],contours)

 tail = distance_pts(corners[1],contours)

 else:

 if distance(last_head_corner[0],corners[0][0]) <

distance(last_head_corner[0],corners[1][0]):

 head = distance_pts(corners[0],contours)

 tail = distance_pts(corners[1],contours)

 else:

 head = distance_pts(corners[1],contours)

 tail = distance_pts(corners[0],contours)

 last_head_corner = head

 last_tail_corner = tail

 head_idx = None

 tail_idx = None

 ## break single contours into dorsal and ventral

contour

 for idx,var in enumerate(contours[0]):

 if var[0][0] == head[0][0] and var[0][1] ==

head[0][1]:

 head_idx = idx

 if var[0][0] == tail[0][0] and var[0][1] ==

tail[0][1]:

 tail_idx = idx

 if head_idx - tail_idx < 0:

 dorsal_contour =

np.array(list(reversed(list(contours[0][head_idx:tail_idx])

)))

 ventral_contour =

np.array(list(contours[0][tail_idx:]) +

list(contours[0][0:head_idx]))

 else:

 dorsal_contour =

np.array(list(contours[0][head_idx:]) +

list(contours[0][0:tail_idx]))

 ventral_contour =

np.array(list(reversed(list(contours[0][tail_idx:head_idx])

)))

 ## orient contours so they are consistently in the same

direction

 if last_dorsal_contour.any() != None:

 if

distance(last_dorsal_contour[0][0],dorsal_contour[0][0]) >

distance(last_dorsal_contour[-1][0],dorsal_contour[0][0]):

 dorsal_contour = dorsal_contour[::-1]

 if

distance(last_ventral_contour[0][0],ventral_contour[0][0])

149

> distance(last_ventral_contour[-

1][0],ventral_contour[0][0]):

 ventral_contour = ventral_contour[::-1]

 last_dorsal_contour = dorsal_contour

 last_ventral_contour = ventral_contour

 ## if necessary, flip head/tail and dorsal/ventral

 if flipHeadTail:

 h = head

 t = tail

 head = t

 tail = h

 if flipDorsalVentral:

 d = dorsal_contour

 v = ventral_contour

 dorsal_contour = v

 ventral_contour = d

 if reverseDorsalVentral:

 dorsal_contour = dorsal_contour[::-1]

 ventral_contour = ventral_contour[::-1]

 ## get body midline and calculate curvature

 ## make dorsal and ventral indieces same scale

 dorsal_contour_idx = list(range(len(dorsal_contour)))

 ventral_contour_idx = list(range(len(ventral_contour)))

 if len(dorsal_contour_idx) > len(ventral_contour_idx):

 new_dorsal_contour_idx = []

 for original_length, new_length in

zip(np.array(dorsal_contour_idx).shape,

np.array(ventral_contour_idx).shape):

 new_dorsal_contour_idx.append(np.linspace(0,

original_length-1, new_length))

 coords = np.meshgrid(*new_dorsal_contour_idx,

indexing='ij')

 dorsal_contour_idx =

interpolation.map_coordinates(dorsal_contour_idx, coords)

 new_dorsal_contour_idx = None

 else:

 new_ventral_contour_idx = []

 for original_length, new_length in

zip(np.array(ventral_contour_idx).shape,

np.array(dorsal_contour_idx).shape):

 new_ventral_contour_idx.append(np.linspace(0,

original_length-1, new_length))

 coords = np.meshgrid(*new_ventral_contour_idx,

indexing='ij')

 ventral_contour_idx =

interpolation.map_coordinates(ventral_contour_idx, coords)

 new_ventral_contour_idx = None

 ## calculate body midline contour using average half

distance of line scan across worm

 # skeleton =

morphology.medial_axis(img_as_bool(img[:,:,0]))

 skeleton = img.copy()

 skeleton[skeleton > 0] = 1

 skeleton = morphology.skeletonize(img[:,:,0]>0)

 # plt.imshow(skeleton),plt.show()

 skel_idx = np.argwhere(skeleton==True)

 midline_contour = []

 def dist(pt1,pt2):

 d = np.sqrt((pt2[1]-pt1[1])**2+(pt2[0]-pt1[0])**2)

 return d

 prev_pt = head[0]

 while len(skel_idx) != 0:

 temp = []

 for pt_idx in range(len(skel_idx)):

 pt = (skel_idx[pt_idx][1],skel_idx[pt_idx][0])

 pt_distance = dist(prev_pt,pt)

 temp.append((pt_distance,pt_idx))

 temp = list(sorted(temp))

midline_contour.append([[skel_idx[temp[0][1]][1],skel_idx[t

emp[0][1]][0]]])

 prev_pt =

[skel_idx[temp[0][1]][1],skel_idx[temp[0][1]][0]]

 skel_idx = np.delete(skel_idx,[temp[0][1]],axis=0)

 skip_one = 3

 # min_contour =

np.min((len(dorsal_contour),len(ventral_contour)))

 # for i in range(len(dorsal_contour_idx)):

 # if i-skip_one >= 0 and i+skip_one < min_contour:

 # d_i = dorsal_contour_idx[i-skip_one]

 # d_i_1 = dorsal_contour_idx[i+skip_one]

 # v_i = ventral_contour_idx[i-skip_one]

 # v_i_1 = ventral_contour_idx[i+skip_one]

 # d_x,d_y = dorsal_contour[d_i][0]

 # d_x_1,d_y_1 = dorsal_contour[d_i_1][0]

 # v_x,v_y = ventral_contour[v_i][0]

 # v_x_1,v_y_1 = ventral_contour[v_i_1][0]

 # ## calculate perpendicular angle

 # if flipAngle:

 # d_angle = math.atan2((d_y_1-d_y), (d_x_1-

d_x)) + math.radians(90)

 # v_angle = math.atan2((v_y_1-v_y), (v_x_1-

v_x)) - math.radians(90)

 # else:

 # d_angle = math.atan2((d_y_1-d_y), (d_x_1-

d_x)) - math.radians(90)

 # v_angle = math.atan2((v_y_1-v_y), (v_x_1-

v_x)) + math.radians(90)

 # ## find halfway point for dorsal/ventral

contours

 # d_point = dorsal_contour[d_i].astype('float')

 # v_point =

ventral_contour[v_i].astype('float')

 # onWorm = True

 # d_point[0][0] =

d_point[0][0]+2.0*math.cos(d_angle)

 # d_point[0][1] =

d_point[0][1]+2.0*math.sin(d_angle)

 # v_point[0][0] =

v_point[0][0]+2.0*math.cos(v_angle)

 # v_point[0][1] =

v_point[0][1]+2.0*math.sin(v_angle)

 # dist = 0.25

 # while onWorm:

 # d_point[0][0] =

d_point[0][0]+dist*math.cos(d_angle)

 # d_point[0][1] =

d_point[0][1]+dist*math.sin(d_angle)

 # v_point[0][0] =

v_point[0][0]+dist*math.cos(v_angle)

 # v_point[0][1] =

v_point[0][1]+dist*math.sin(v_angle)

 # if

img[int(d_point[0][1])][int(d_point[0][0])].any() == 0:

 # d_x_new,d_y_new = d_point[0]

 # d_x_mid = int((d_x+d_x_new)/2)

 # d_y_mid = int((d_y+d_y_new)/2)

 #

midline_contour.append([[d_x_mid,d_y_mid]])

 # onWorm = False

 midline_contour = np.array(midline_contour)

 ## calculate normalized curvature

 Kl = []

 l = 0.0

 skip_two = 20

 ## calculate curvature

 for i in range(len(midline_contour)):

 if i > skip_two and i < len(midline_contour)-

skip_two:

 x0,y0 = midline_contour[i-skip_two][0]

 x1,y1 = midline_contour[i][0]

 x2,y2 = midline_contour[i+skip_two][0]

 ## previous way - might be wrong

 # dy0dx0 = (y1-y0)/((x1-x0))

 # dy1dx1 = (y2-y1)/((x2-x1))

 # d2y0dx02 = (dy1dx1-dy0dx0)/((x1-x0))

 # if dy0dx0 == 0 or dy1dx1 == 0 or

np.abs(dy0dx0) > 9999999 or np.abs(dy1dx1) > 99999999:

 # K = 0.0

 # else:

 # K =

(d2y0dx02)/(1+(dy0dx0)**2.0)**(3.0/2.0)

 ## different way -

https://math.stackexchange.com/questions/3528424/relation-

between-curvature-and-radius-of-curvature

 theta1 = np.arctan2(y1-y0,x1-x0)

 # if theta1 < 0:

 # theta1 += 2*np.pi

 theta2 = np.arctan2(y2-y1,x2-x1)

 # if theta2 < 0:

 # theta2 += 2*np.pi

 dtheta = theta2-theta1

 dtheta = (dtheta + np.pi) % (2*np.pi) - np.pi

 ds = np.sqrt((y1-y0)**2+(x1-

x0)**2)+np.sqrt((y2-y1)**2+(x2-x1)**2)

 K = dtheta/ds

 #

print(i,np.degrees(theta1),np.degrees(theta2),K)

#print(i,x0,y0,x1,y1,x2,y2,dy0dx0,dy1dx1,d2y0dx02,K)

 else:

 K = 0.0

 Kl.append(K)

 #calculate length of worm

 for i in range(len(midline_contour)):

 if i % skip_two == 0:

 try:

 x0,y0 = midline_contour[i][0]

 x1,y1 = midline_contour[i+skip_two][0]

 l += np.sqrt((y1-y0)**2+(x1-x0)**2)

150

 except:

 pass

 Kl = np.array(Kl)

 Kl = Kl*l

 # print(Kl)

 if len(dorsal_body_kymograph) > 0:

 new_Kl = []

 for original_length, new_length in zip(Kl.shape,

Kl_shape):

 new_Kl.append(np.linspace(0, original_length-1,

new_length))

 coords = np.meshgrid(*new_Kl, indexing='ij')

 Kl = interpolation.map_coordinates(Kl, coords)

 new_Kl = None

 else:

 Kl_shape = Kl.shape

 d_b_k = []

 v_b_k = []

 for i in Kl:

 if i < 0:

 d_b_k.append(np.abs(i))

 else:

 d_b_k.append(0.0)

 for i in Kl:

 if i > 0:

 v_b_k.append(np.abs(i))

 else:

 v_b_k.append(0.0)

 if not flipCurvature:

 dorsal_body_kymograph.append(d_b_k)

 ventral_body_kymograph.append(v_b_k)

 else:

 dorsal_body_kymograph.append(v_b_k)

 ventral_body_kymograph.append(d_b_k)

 if draw:

 # # Draw all contours

 # -1 signifies drawing all contours

 ## all colors are (B, G, R)

 #cv2.drawContours(img, contours, -1, (255, 0, 0),

1)

 cv2.drawContours(img, dorsal_contour, -1, (255, 0,

0), 3)

 cv2.drawContours(img, ventral_contour, -1, (0, 0,

255), 3)

 cv2.drawContours(img, midline_contour, -1, (128, 0,

128), 1)

 #cv2.drawContours(img,rev_midline_contour, -1, (0,

0, 0), 1)

 ## add corners to output

 #for i in corners:

 for i in (head):

 x,y = i.ravel()

 cv2.circle(img,(x,y),3,(0,255,0),-1)

 for i in (tail):

 x,y = i.ravel()

 cv2.circle(img,(x,y),3,(0,100,0),-1)

 if saveImages:

cv2.imwrite(red_input_folder+'/'+'edge_detection'+'/'+image

, img)

 #plt.imshow(img),plt.show()

 ## pull contour data from gcamp/green channel

 green_img = cv2.imread(green_input_folder+'/'+image,

cv2.IMREAD_UNCHANGED)

 roi_size = 3

 d_k = []

 for d_c in dorsal_contour:

 x,y = d_c[0]

 roi = green_img[y-roi_size:y+roi_size+1, x-

roi_size:x+roi_size+1]

 d_k.append(np.mean(roi))

 ## resize line

 d_k = np.array(d_k)

 if len(dorsal_kymograph) > 0:

 new_d_k = []

 for original_length, new_length in zip(d_k.shape,

dorsal_shape):

 new_d_k.append(np.linspace(0, original_length-

1, new_length))

 coords = np.meshgrid(*new_d_k, indexing='ij')

 d_k = interpolation.map_coordinates(d_k, coords)

 dorsal_kymograph.append(d_k)

 new_d_k = None

 else:

 dorsal_shape = d_k.shape

 dorsal_kymograph.append(d_k)

 v_k = []

 for v_c in ventral_contour:

 x,y = v_c[0]

 roi = green_img[y-roi_size:y+roi_size+1, x-

roi_size:x+roi_size+1]

 v_k.append(np.mean(roi))

 ## resize line

 v_k = np.array(v_k)

 if len(ventral_kymograph) > 0:

 new_v_k = []

 for original_length, new_length in zip(v_k.shape,

ventral_shape):

 new_v_k.append(np.linspace(0, original_length-

1, new_length))

 coords = np.meshgrid(*new_v_k, indexing='ij')

 v_k = interpolation.map_coordinates(v_k, coords)

 ventral_kymograph.append(v_k)

 new_v_k = None

 else:

 ventral_shape = v_k.shape

 ventral_kymograph.append(v_k)

 ## worm straightening

 skip_three = 5

 radius = 25

 straight_worm = None

 prev_distance = 0

 prev_x,prev_y = midline_contour[0][0]

 for i in range(len(midline_contour)):

 if i > skip_three and i < len(midline_contour)-

skip_three:

 x0,y0 = midline_contour[i-skip_three][0]

 x1,y1 = midline_contour[i][0]

 x2,y2 = midline_contour[i+skip_three][0]

 next_distance = np.sqrt((y1-y0)**2+(x1-x0)**2)

 #

print(i,'/',len(midline_contour),prev_distance+next_distanc

e,np.sqrt((x1-prev_x)**2+(y1-prev_y)**2))

 if True: #np.sqrt((x1-prev_x)**2+(y1-

prev_y)**2) > next_distance + prev_distance:

 # print('calculating')

 ## get corners of oblique box

 prev_distance = np.sqrt((y2-y1)**2+(x2-

x1)**2)

 prev_x,prev_y = (x1,y1)

 d = np.sqrt(np.sqrt((y2-y0)**2+(x2-

x0)**2)**2 + radius**2)

 theta_pos = math.atan2((y2-y0), (x2-x0)) +

math.radians(90)

 theta_neg = math.atan2((y2-y0), (x2-x0)) -

math.radians(90)

 c1 =

(x1+radius*math.cos(theta_pos),y1+radius*math.sin(theta_pos

))

 # c2 =

(x2+radius*math.cos(theta_pos),y2+radius*math.sin(theta_pos

))

 c3 =

(x1+radius*math.cos(theta_neg),y1+radius*math.sin(theta_neg

))

 # c4 =

(x2+radius*math.cos(theta_neg),y2+radius*math.sin(theta_neg

))

 #

cv2.circle(img,(int(c1[0]),int(c1[1])),5,(255,0,0),-1)

 #

cv2.circle(img,(int(c2[0]),int(c2[1])),5,(0,255,0),-1)

 #

cv2.circle(img,(int(c3[0]),int(c3[1])),5,(0,0,255),-1)

 #

cv2.circle(img,(int(c4[0]),int(c4[1])),5,(255,255,255),-1)

 # cv2.circle(img,(x2,y2),5,(100,100,100),-

1)

 # cv2.circle(img,(x1,y1),5,(50,50,50),-1)

 # cv2.circle(img,(x0,y0),5,(0,0,0),-1)

 #

cv2.imwrite(red_input_folder+'/'+'edge_detection'+'/'+image

, img)

 row_theta = 0 #math.atan2((c2[1]-c1[1]),

(c2[0]-c1[0]))

 row_dist = 0 #np.sqrt((y2-y0)**2+(x2-

x0)**2)

 col_theta = math.atan2((c3[1]-c1[1]),

(c3[0]-c1[0]))

 col_dist = 2*radius

 temp = []

 for j in np.arange(0,col_dist,1):

 ref_x = c1[0]+j*math.cos(col_theta)

 ref_y = c1[1]+j*math.sin(col_theta)

 ref_x = int(np.round(ref_x))

 ref_y = int(np.round(ref_y))

 try:

151

temp.append([green_img[ref_y][ref_x]])

 except:

 temp.append([0])

 # for k in np.arange(0,row_dist,1):

 # ix = ref_x+k*math.cos(row_theta)

 # iy = ref_y+k*math.sin(row_theta)

 # ix = int(np.round(ix))

 # iy = int(np.round(iy))

 # temp[-

1].append(green_img[iy][ix])

 if straight_worm == None:

 straight_worm = temp

 else:

 for row_i in range(len(temp)):

 straight_worm[row_i] =

straight_worm[row_i]+temp[row_i]

 try:

 os.mkdir(red_input_folder +

'\\edge_detection\\straight_worm')

 except:

 pass

 ## resize

 straight_worm = np.array(straight_worm)

 if oneWormDone:

 new_straight_worm = []

 for original_length, new_length in

zip(straight_worm.shape, straight_worm_shape):

 new_straight_worm.append(np.linspace(0,

original_length-1, new_length))

 coords = np.meshgrid(*new_straight_worm,

indexing='ij')

 straight_worm =

interpolation.map_coordinates(straight_worm, coords)

 new_straight_worm = None

 else:

 straight_worm_shape = straight_worm.shape

 oneWormDone = True

cv2.imwrite(red_input_folder+'/'+'edge_detection'+'/'+'stra

ight_worm'+'/'+image, straight_worm.astype('uint16'))

 midline_contour = np.array([i[0] for i in

midline_contour])

 midline_contours.append(midline_contour)

center_of_masses.append([np.mean(midline_contour.T[0]),np.m

ean(midline_contour.T[1])])

if image == '0001.tif':

print('head:',head)

print('dorsal_contour[0]:',dorsal_contour[0])

break

dorsal_kymograph = np.array(dorsal_kymograph)

ventral_kymograph = np.array(ventral_kymograph)

dorsal_body_kymograph = np.array(dorsal_body_kymograph)

ventral_body_kymograph = np.array(ventral_body_kymograph)

scipy.io.savemat(red_input_folder+'/'+'edge_detection'+'/'+

'data.mat', mdict={'midline_contours':

midline_contours,'center_of_masses':center_of_masses})

with open(red_input_folder+'/'+'edge_detection'+'/'+

'dorsal_kymograph.pkl', 'wb') as f:

 pickle.dump(dorsal_kymograph, f)

with open(red_input_folder+'/'+'edge_detection'+'/'+

'ventral_kymograph.pkl', 'wb') as f:

 pickle.dump(ventral_kymograph, f)

with open(red_input_folder+'/'+'edge_detection'+'/'+

'dorsal_body_kymograph.pkl', 'wb') as f:

 pickle.dump(dorsal_body_kymograph, f)

with open(red_input_folder+'/'+'edge_detection'+'/'+

'ventral_body_kymograph.pkl', 'wb') as f:

 pickle.dump(ventral_body_kymograph, f)

variables = {

 'saveImages':saveImages,

 'draw':draw,

 'flipHeadTail':flipHeadTail,

 'flipDorsalVentral':flipDorsalVentral,

 'reverseDorsalVentral':reverseDorsalVentral,

 'flipAngle':flipAngle,

 'skipList':skipList,

 'flipCurvature':flipCurvature,

 'kernel_one':len(kernel_one),

 'kernel_two':len(kernel_two),

 'medianBlur_one':medianBlur_one,

 'threshold_one':threshold_one,

 'corners_params':corners_params,

 'skip_one':skip_one,

 'skip_two':skip_two,

 'roi_size':roi_size,

}

with open(red_input_folder+'/'+'edge_detection'+'/'+

'variables.csv', 'w') as csv_file:

 writer = csv.writer(csv_file)

 for key, value in variables.items():

 writer.writerow([key, str(value)])

absK_spatio.m
function absK_min = absK_spatio(p_pulse,

curvrgn_perturb,curvrgn_analyze, TRange,paradur,

phaserange,curvphiwindow, outpath, issave)

%ABSK_SPATIO makes a 2-D plot of abs(K) as a function of s

and t near

% the time of stimulus. The result is an averaged result

over all trials in

% the same experiment group

[~, strainname] = fileparts(p_pulse);

ddp = dir(p_pulse);

ddp = verify_dirlist(ddp,0,'.mat');

Np = numel(ddp);

numsamplepts = 100;

t = TRange(1) : (TRange(2)-TRange(1))/(numsamplepts-1) :

TRange(2);

x = (0 : numsamplepts-1)./(numsamplepts-1);

k = 0;

for i = 1 : Np

 fprintf('Analyzing trial %d',i)

load(fullfile(p_pulse,ddp(i).name),'curvdatafiltered','fps'

,'istart','start_illum','end_illum');

 curv = curvdatafiltered;

 is = start_illum - istart;

% % check each illumination

% figure(10); clf

% imagesc(x,t, curv)

% colormap(cmap_redblue(0.7))

% colorbar

% xlabel('Body coordinate (Head = 0)')

% ylabel('Time (s)')

%

% paralrgn = [0.6 0; 0.6 paradur; 0.8 paradur; 0.8 0];

% p = patch(paralrgn(:,1), paralrgn(:,2), 'green');

% p.FaceColor = 'none';

% p.EdgeColor = 'green';

 if is + round(TRange(1)*fps) <= 0 || is +

round(TRange(2)*fps) >= size(curv, 1)

 fprintf(' - SKIPPED - Out of time range\n');

 continue;

 end

 icyc = (is + round(TRange(1)*fps)) : (is +

round(TRange(2)*fps));

 if phaserange(2) - phaserange(1)~=1

 % Get the charateristic curvature to define the

phase of undulation

 v =

mean(curvdatafiltered(:,curvrgn_perturb),2);

 % Find all peaks

 [imax, imin] = C2_get_curvature_peaks(v,1);

 % Find the peaks immediately before and after the

start point

 [imax, imin] = verify_extrema(v, imax, imin);

 imaxbef =

imax(find(imax<is+round(curvphiwindow(2)*fps),2,'last'));

 imaxaft =

imax(find(imax>is+round(curvphiwindow(3)*fps),2,'first'));

 iminbef =

imin(find(imin<is+round(curvphiwindow(2)*fps),2,'last'));

 iminaft =

imin(find(imin>is+round(curvphiwindow(3)*fps),2,'first'));

 % Exclude this trial if not enough peaks were found

 if numel(imaxbef) < 2 || numel(imaxaft) < 2 ||

numel(iminaft) < 2 || numel(iminbef) < 2

 fprintf(' - SKIPPED - Not enough peaks\n');

 continue;

 end

 % Calculate the period of undulation

 T0 = mean([diff(imaxaft), diff(imaxbef),

diff(iminaft), diff(iminbef)]);

 % Calculate phi, the phase of the stimulus

 phiu = mod(is - imaxbef(2),T0)/T0;

 phil = mod(is - iminbef(2),T0)/T0 - 0.5;

 if phil < 0

 phil = phil + 1;

 end

% dphi = abs((phiu - phil)/phil);

152

% if dphi >0.3

% fprintf(' - SKIPPED - Can determine the

stimulus phase\n');

% continue;

% end

 phi = mean([phiu phil]);

 if phi > phaserange(2) || phi < phaserange(1)

 fprintf(' - SKIPPED - Out of phaserange of

interest\n');

 continue

 end

% if phaserange(2) <= 0.5 && imaxbef(2)<=(is -

T0*phaserange(2))

% fprintf(' - SKIPPED - phase doesnt

match\n');

% continue

% end

% if phaserange(1) >= 0.5 && iminbef(2)<=(is -

T0*(phaserange(2)-0.5))

% fprintf(' - SKIPPED - phase doesnt

match\n');

% continue

% end

% Taft = diff(imaxaft);

% Tbef = diff(imaxbef);

% dT = abs(Taft - Tbef)/Tbef;

% % Exclude this trial if the frequency changes by

a lot

% if abs(dT) > 0.3 || (T0/fps)>1.75

% fprintf(' - SKIPPED - Tratio = %0.2f - T

= %0.2f\n',dT,T0/fps);

% continue;

% end

 end

 fprintf('\n');

 vpatch = curv(icyc, :);

 K_rescaled = interp1(0:size(vpatch,1)-1, vpatch,

(size(vpatch,1)-1).*(0:numsamplepts-1)/(numsamplepts-

1),'linear');

 k = k+1;

 if k == 1

 absKp_resc_avg = abs(K_rescaled);

 else

 absKp_resc_avg = 1/k*sum(cat(3, (k-

1)*absKp_resc_avg, abs(K_rescaled)),3);

 end

end

% % Find the location of the max compensation

% itmp = (t>=0)&(t<=1);

% Q = absKp_resc_avg(itmp, :);

% figure

% [~, idxmax] = max(Q(:));

% [iTmax, iSmax] = ind2sub(size(Q),idxmax);

% Tmax = t(iTmax)+1; Smax = x(iSmax);

% imagesc(x,t(itmp), Q)

% hold on

% quiver(0.4, 0.1, Smax-0.4, Tmax-0.1,'LineWidth',2);

% colorbar;

% colormap jet

% hold off

% saveas(gcf, fullfile(outpath,['ZabsK_' strainname

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100)

'.fig']))

% saveas(gcf, fullfile(outpath,['ZabsK_' strainname

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100)

'.png']))

% % Visualization

% scrsz = get(groot, 'ScreenSize');

% figure('Position',[1 scrsz(4)*0/8 scrsz(3)/4

scrsz(4)*7/8]);

figure

imagesc(x,t, absKp_resc_avg)

colorbar;

xlabel('Body coordinate (Head = 0)')

ylabel('Time (s)')

title(['|K| ' sprintf('(%.2f',phaserange(1)*2) '\pi-'

sprintf('%.2f', phaserange(2)*2) '\pi)' sprintf('\n %d

trials', k)])

set(gca, 'FontSize', 15)

expo = 0.7;

colormap('jet');

caxis([0.5 5])

paralrgn = [curvrgn_perturb(1)/100 0;

curvrgn_perturb(1)/100 paradur; curvrgn_perturb(2)/100

paradur; curvrgn_perturb(2)/100 0];

% paralrgn = [0.05 0; 0.05 0.1; 0.25 0.1; 0.25 0];

p = patch(paralrgn(:,1), paralrgn(:,2), 'green');

p.FaceColor = 'none';

p.EdgeColor = 'g';

if issave

 saveas(gcf, fullfile(outpath,['absK_' strainname

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100)

'.fig']))

 saveas(gcf, fullfile(outpath,['absK_' strainname

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100)

'.png']))

end

% % Make a contour plot

% figure('Position',[1 scrsz(4)*0/8 scrsz(3)/4

scrsz(4)*7/8]);

% contourf(x,t, absKp_resc_avg, 6)

% xlabel('Body coordinate (Head = 0)')

% ylabel('Time (s)')

% title(['|K| ' sprintf('(%.2f',phaserange(1)*2) '\pi-'

sprintf('%.2f', phaserange(2)*2) '\pi)' sprintf('\n %d

trials', k)])

% p = patch(paralrgn(:,1), paralrgn(:,2), 'green');

% p.FaceColor = 'none';

% p.EdgeColor = 'k';

% ax = gca;

% ax.YDir = 'reverse';

% saveas(gcf, fullfile(outpath,['absK contour_' strainname

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100)

'.fig']))

% saveas(gcf, fullfile(outpath,['absK contour_' strainname

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100)

'.png']))

% figure('Position',[1 scrsz(4)*0/8 scrsz(3)*5/8

scrsz(4)*2/8])

figure

hold on

paralrgn = [0 4; 0 0; paradur 0; paradur 4];

p = patch(paralrgn(:,1), paralrgn(:,2), 'green');

p.EdgeColor = 'none';

absK_anterior =

mean(absKp_resc_avg(:,curvrgn_analyze(1):curvrgn_analyze(en

d)),2);

% absK_anterior = absK_anterior./max(absK_anterior);

plot(t, absK_anterior, 'LineWidth',2)

hold off

set(gca, 'FontSize', 15)

xlabel('Time (s)')

ylabel('|K|')

if issave

 saveas(gcf, fullfile(outpath,['absK1D_' strainname

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100)

'.fig']))

 saveas(gcf, fullfile(outpath,['absK1D_' strainname

sprintf('_%.0f-%.0f', phaserange(1)*100, phaserange(2)*100)

'.png']))

end

fps = numsamplepts/(TRange(2)-TRange(1));

i_p5 = (round(- TRange(1)*fps)) : (round((-

TRange(1)+0.5)*fps));

% t_p5 = t(i_p5);

v_p5 = absK_anterior(i_p5);

absK_min = min(v_p5);

end

function [imax,imin] = verify_extrema(v,imax,imin)

% get the mean amplitudes

 vmax = mean(v(imax));

 vmin = mean(v(imin));

 if vmin > vmax

 itemp = imax;

 imax = imin;

 imin = itemp;

 end

end

Anterior_Local_Relationship.m
clc; close all; clear

p_pulse = {

 'D:\Dropbox\Paper\Compensatory reponse

mechanism\data optogenetics\Combined_148_p1_17pct_P4-6';...

 'E:\compensatory experiments\Optogenetics\2021-

04-18_YX148_p1_bothside_P4-6_po31';...

 'E:\compensatory experiments\Optogenetics\2021-

04-18_YX148_p1_bothside_P4-6_po45';...

 'E:\compensatory experiments\Optogenetics\2021-

04-18_YX148_p1_bothside_P4-6_po75';...

 'E:\compensatory experiments\Optogenetics\2021-

04-18_YX148_p1_bothside_P4-6_po111';...

 'E:\compensatory experiments\Optogenetics\2021-

04-18_YX148_p1_bothside_P4-6_po31_polarize1';...

 'E:\compensatory experiments\Optogenetics\2021-

04-18_YX148_p1_bothside_P4-6_po57_polarize2';...

 'E:\compensatory experiments\Optogenetics\2021-

04-24_YX148_p1_bothside_P4-6_po57_polarize3';...

 'E:\compensatory experiments\Optogenetics\2021-

04-24_YX148_p1_bothside_P4-6_po57_polarize4';...

153

 'E:\compensatory experiments\Optogenetics\2021-

04-24_YX148_p1_bothside_P4-6_po57_polarize5';...

 };

outpath = 'D:\Dropbox\Paper\Compensatory reponse

mechanism\Opto dosage Results';

curvrgn_anterior = 16:30; % Anterior 15~27% Local 40~60%

curvrgn_local = 40:60;

curvrgn_perturb = 40:60;

curvphiwindow_anterior = [-0.8 -0.0 0.2 1.5]; % Anterior [-

0.8 -0.0 0.2 1.5]

curvphiwindow_local = [-0.8 -0.0 0.1 1.5]; % Local [-0.8 -

0.0 0.1 1.5]

curvphiwindow_perturb = [-0.8 -0.0 0.2 1.5]; % Excitation

[-0.8 -0.0 0.2 1.5] Inhibition [-0.8 -0.0 0.5 1.5]

peaklevel = 1; % upto four

plotflag = 0;

do_comparison = 1;

do_save = 1;

dur_pulse = 0.1;

p = p_pulse{6};

% Produce individual points for anterior response in terms

of phase

[phi_anterior, F_anterior, AVG_anterior, CI95_anterior]

=...

 Compensatory_Response(p,

curvrgn_perturb, curvrgn_anterior,peaklevel,...

curvphiwindow_perturb,curvphiwindow_anterior,...

 outpath, plotflag, do_comparison,

do_save);

drawnow

[phi_local, F_local, AVG_local, CI95_local] =...

Compensatory_Response_Inhibition(p, curvrgn_perturb,

curvrgn_local,peaklevel,...

curvphiwindow_perturb,curvphiwindow_local,...

 outpath, plotflag, do_comparison,

do_save, dur_pulse);

% Divide phase reange (0 ~ 2pi) into 6 bins

num_bins = 12;

phasestep = 2*pi/num_bins;

Fa_avg = zeros(num_bins, 1);

Fp_avg = zeros(num_bins, 1);

Fa_sem = zeros(num_bins, 1);

Fp_sem = zeros(num_bins, 1);

for i = 1 : num_bins

 phaserange = phasestep.*(i-1 : i);

 phaserange(1)

 idx1 = (phi_anterior >= phaserange(1) & phi_anterior <

phaserange(end));

 Fa_avg(i) = mean(F_anterior(idx1));

 Fa_sem(i) = std(F_anterior(idx1)) /

sqrt(numel(F_anterior(idx1)));

 idx2 = (phi_local >= phaserange(1) & phi_local <=

phaserange(end));

 Fp_avg(i) = mean(F_local(idx2));

 Fp_sem(i) = std(F_local(idx2)) /

sqrt(numel(F_local(idx2)));

 numel(F_local(idx2))

end

figure

plot(Fp_avg, Fa_avg, '*')

% errorbar(Fp_avg, Fa_avg, Fa_sem, Fa_sem, Fp_sem, Fp_sem,

'o')

figure

todelete = phi_anterior<0 | phi_anterior>2*pi;

phi_anterior(todelete) = [];

AVG_anterior(todelete) = [];

todelete = phi_local<0 | phi_local>2*pi;

phi_local(todelete) = [];

AVG_local(todelete) = [];

tmp = min([numel(AVG_local) numel(AVG_anterior)]);

step = 8;

plot(AVG_local(1:step:tmp), AVG_anterior(1:step:tmp), '-*')

Calculations_All_spatioPhase_Response.m
% Calculations_All_Phase_Response.m

 clear; clc; close all

% Use PHASE_sort_kymogram_usingManThresh.m to automatically

exclude most bad trials.

% Paths to analyze , labels for each file (comment line to

exclude)

 p = {

'/Users/hongfei/Dropbox/Paper/Compensatory reponse

mechanism/data

optogenetics/Combined_148_p1_17pct_all','Combined_148_p1_17

pct_all';...

'/Users/hongfei/Dropbox/Paper/Compensatory reponse

mechanism/data optogenetics/Combined_148_p1_17pct_P2-

4','Combined_148_p1_17pct_P2-4';...

'/Users/hongfei/Dropbox/Paper/Compensatory reponse

mechanism/data optogenetics/Combined_148_p1_17pct_P4-

6','Combined_148_p1_17pct_P4-6';...

'/Users/hongfei/Dropbox/Paper/Compensatory reponse

mechanism/data optogenetics/Combined_148_p1_17pct_P6-

8','Combined_148_p1_17pct_P6-8';...

 };

 outpath = '/Users/hongfei/Dropbox/Paper/motor

circuit/Revision for Elife resubmission/Figures/PRC over

body coordinates induced by perturbations at various

regions';

% Parameters

 toffsetCTRL = 0;

% curvrgn = 15 : 35; % the default region

% aWin = 1*[-0.8 -0.1 0.5 1.5];% Range for analysis

around the START and END of

% % illumination (units =

seconds):

% %

[befwindow,befbuffer,aftbuffer,aftwindow]

% % Usual window is:

% % [-0.8 -0.1 0.5 1.5]

 plotdebugflag=0;

 do_analysis_absK = 0;

 curvphiwindow_analyze = [-0.8 -.1 .5 1.5];

 curvphiwindow_perturb = [-0.8 -.1 .5 1.5];

 % Generate

 rgnstart = 10; rgnend = 90;

 Step = 5;

 numrgns = (rgnend - rgnstart)/Step;

 numsamplepts = 100;

 phi_eq = (0:numsamplepts-1)./(numsamplepts-1).*(2*pi);

 x = (0:numrgns-1)./(numrgns-1);

 curvrgn_perturb = 15:35; % Default 15:35

 for n = 1%:size(p,1)

 PRC_2D = zeros(numsamplepts, numrgns);

 PRC_2D_sm = zeros(numsamplepts, numrgns);

 for i = 1 : numrgns

 curvrgn = (rgnstart+(i-1)*Step) :

(rgnstart+i*Step);

 [phi, F_AVG] =

Syncronizing_Response(p{n,1},curvrgn_perturb, curvrgn,

curvphiwindow_analyze,curvphiwindow_perturb,outpath,plotdeb

ugflag);

 idx = (phi>=0 & phi<=2*pi);

 phi2 = phi(idx);

 F_AVG2 = F_AVG(idx);

 [phi3, ia, ic] = unique(phi2);

 F_AVG3 = F_AVG2(ia);

 F_AVG_resc = interp1(phi3, F_AVG3, phi_eq,

'linear');

 % figure

 % plot(phi_eq, F_AVG_resc)

 % xlim([0 2*pi])

 % ylim([-pi pi])

 PRC_2D(:,i) = F_AVG_resc;

 PRC_2D_sm(:,i) = smooth(phi_eq,

F_AVG_resc,0.08, 'rloess');

 end

 % smooth the PRC_2D

 for i = 1:numrgns

 PRC_2D_sm(:,i) = smooth(phi_eq,

PRC_2D(:,i),0.08, 'rloess');

 end

 [~, sname] = fileparts(p{n,1});

 % Plotting

 % normal 2D heat map plot

 figure

 imagesc(phi_eq', x', PRC_2D_sm')

 expo = 0.7;

 map = colormap(cmap_redblue(expo));

154

 [cmin, cmax] = caxis;

 caxis([-cmax cmax])

 set(gca,'xaxisLocation','top')

 xlabel('\phi')

 xticks([0 pi 2*pi])

 xticklabels({'0', '\pi', '2\pi'})

 ylabel('Body coordinate')

 yticks([0 0.5 1])

 yticklabels({'0', '0.5', '1'})

 set(gca,'FontSize',14)

 c = colorbar('Ticks', [-2.5,-1.5, 0,1.5, 2.5],...

 'TickLabels', {'-0.8\pi','Advance', '0',

'Delay', '0.8\pi'}, 'Location', 'southoutside',...

 'Direction','reverse');

 c.Label.String = 'Phase shift (\Delta\phi)';

 pbaspect([1 1.1 1])

 set(gcf,'Color','w','Position',[1 217 550 572]);

 fout = fullfile(outpath,

sprintf('%sPhaseResponseCurve_fullbody.svg', p{n,2}));

 saveas(gcf, fout)

 saveas(gcf,strrep(fout,'.svg','.fig'));

% % Plotting the PRC as a 3D surf

% [X, Y] = meshgrid(x, phi_eq);

% figure

% surf(X,Y,PRC_2D_sm)

% ylim([0 2*pi])

% ylabel('\phi')

% yticks([0 pi 2*pi])

% yticklabels({'0', '\pi', '2\pi'})

% xlabel('Body coordinate')

% xticks([0 0.5 1])

% xticklabels({'0', '0.5', '1'})

% zlabel('Phase difference')

% set(gcf,'Color','w','Position',[700 217 550

572]);

% fout = fullfile(outpath,

sprintf('%sPhaseResponseCurve_3Dplot.fig', p{n,2}));

% saveas(gcf, fout)

 end

Compensatory_Response.m
function [phi_sort, F_sort, CIRC_AVG, CIRC_CI95] =

Compensatory_Response(p_pulse, curvrgn_perturb,

curvrgn_analyze, peaklevel,...

curvphiwindow_perturb,curvphiwindow_analyze, outpath,...

 plotflag, do_comparison,

do_save, type_perturb)

%COMPENSATORY_RESPONSE Calculate the amplitude of the peak

immediately

%after the pulse, and calculate the difference between

amplitudes of this

%peak and the peak just before the pulse and show this

difference as a

%function of perturbation phase

%

%Outputs:

% p_pulse: directory of data being evaluated

% curvrgn1: region being illuminated

% curvrgn2: region being analyzed

% phaserange: range of phase of interest

% curvphiwindow: a window to exclude the effect

of pulse on

% curvature dynamics

% outpath: directory for outcomes

[~, strainname] = fileparts(p_pulse);

ddp = dir(p_pulse);

ddp = verify_dirlist(ddp,0,'.mat');

Np = numel(ddp);

% Cycle through each file, get the peak before and after

the pulse

for i = 1:Np

 % Display progress

 fprintf('Analyzing trial %d',i)

 % Load the file's curvature data

load(fullfile(p_pulse,ddp(i).name),'curvdatafiltered','fps'

,'istart','start_illum');

 %--

-----------%

 if rand>0.5

% fprintf('\tflipped');

% curvdatafiltered = -curvdatafiltered;

 end

 % Extract the curvature vector

 v1 = mean(curvdatafiltered(:,curvrgn_perturb),2);

 t = (0:length(v1)-1) ./ fps;

 % Get the start point

 is = start_illum - istart;

 % Find all peaks

 [imax,imin] = C2_get_curvature_peaks(v1,1);

 % Find the peaks immediately before and after the start

point

 [imax,imin]= verify_extrema(v1,imax,imin);

 imaxbef1 =

imax(find(imax<is+round(curvphiwindow_perturb(2)*fps),2,'la

st'));

 imaxaft1 =

imax(find(imax>is+round(curvphiwindow_perturb(3)*fps),2,'fi

rst'));

 iminbef1 =

imin(find(imin<is+round(curvphiwindow_perturb(2)*fps),2,'la

st'));

 iminaft1 =

imin(find(imin>is+round(curvphiwindow_perturb(3)*fps),2,'fi

rst'));

 % Exclude this trial if not enough peaks were found

 if numel(imaxbef1) < 2 || numel(imaxaft1) < 2 ||

numel(iminaft1) < 2 || numel(iminbef1) < 2

 F(i) = nan;

 Fu(i) = nan;

 Fl(i) = nan;

 F_aft1(i) = nan;

 F_aft2(i) = nan;

 F_aft3(i) = nan;

 F_aft4(i) = nan;

 Fl_aft1(i) = nan;

 Fl_aft2(i) = nan;

 Fl_aft3(i) = nan;

 Fl_aft4(i) = nan;

 Fu_aft1(i) = nan;

 Fu_aft2(i) = nan;

 Fu_aft3(i) = nan;

 Fu_aft4(i) = nan;

 phiu(i)= nan;

 phil(i) = nan;

 ts2(i) = nan;

 te2(i) = nan;

 fprintf(' - SKIPPED - Not enough peaks\n');

 continue;

 end

 % Calculate the period of undulation

 T0 = mean([diff(imaxaft1), diff(imaxbef1),

diff(iminaft1), diff(iminbef1)]);

 % Calculate the change in period after - should exclude

those with high

 % changes or frequency changes a lot

 dT = abs((diff(imaxaft1) -

diff(imaxbef1))/diff(imaxbef1));

 % Exclude this trial if the frequency changes by a lot

 if dT > 0.2 || (T0/fps) >1.75

 F(i) = nan;

 Fu(i) = nan;

 Fl(i) = nan;

 F_aft1(i) = nan;

 F_aft2(i) = nan;

 F_aft3(i) = nan;

 F_aft4(i) = nan;

 Fl_aft1(i) = nan;

 Fl_aft2(i) = nan;

 Fl_aft3(i) = nan;

 Fl_aft4(i) = nan;

 Fu_aft1(i) = nan;

 Fu_aft2(i) = nan;

 Fu_aft3(i) = nan;

 Fu_aft4(i) = nan;

 phiu(i)= nan;

 phil(i) = nan;

 ts2(i) = nan;

 te2(i) = nan;

 fprintf(' - SKIPPED - Tratio = %0.2f - T

= %0.2f\n',dT,T0/fps);

 continue;

 end

 % Calculate the phase at which the illum occurs, by

maximum and minimum

% phiu(i) = mod(is - imaxbef(2),T0)/T0;

% phil(i) = mod(is - iminbef(2),T0)/T0 - 0.5;

% if phil(i) < 0

% phil(i) = phil(i) + 1;

% end

 v2 = mean(curvdatafiltered(:,curvrgn_analyze),2);

 % Find all peaks

 [imax,imin] = C2_get_curvature_peaks(v2,1);

 % Find the peaks immediately before and after the start

point

 [imax,imin]= verify_extrema(v2,imax,imin);

 imaxbef2 =

imax(find(imax<is+round(curvphiwindow_analyze(2)*fps),2,'la

st'));

155

 imaxaft2 =

imax(find(imax>is+round(curvphiwindow_analyze(3)*fps),2,'fi

rst'));

 iminbef2 =

imin(find(imin<is+round(curvphiwindow_analyze(2)*fps),2,'la

st'));

 iminaft2 =

imin(find(imin>is+round(curvphiwindow_analyze(3)*fps),2,'fi

rst'));

 if numel(imaxbef2) < 2 || numel(imaxaft2) < 2 ||

numel(iminaft2) < 2 || numel(iminbef2) < 2

 F(i) = nan;

 Fu(i) = nan;

 Fl(i) = nan;

 F_aft1(i) = nan;

 F_aft2(i) = nan;

 F_aft3(i) = nan;

 F_aft4(i) = nan;

 Fl_aft1(i) = nan;

 Fl_aft2(i) = nan;

 Fl_aft3(i) = nan;

 Fl_aft4(i) = nan;

 Fu_aft1(i) = nan;

 Fu_aft2(i) = nan;

 Fu_aft3(i) = nan;

 Fu_aft4(i) = nan;

 phiu(i)= nan;

 phil(i) = nan;

 ts2(i) = nan;

 te2(i) = nan;

 fprintf(' - SKIPPED - Not enough peaks\n');

 continue;

 end

 % Calculate the phase at which the illum occurs, by

maximum and minimum

 phiu(i) = mod(is - imaxbef2(2),T0)/T0;

 phil(i) = mod(is - iminbef2(2),T0)/T0 - 0.5;

 if phil(i) < 0

 phil(i) = phil(i) + 1;

 end

 if do_comparison

 Levels_bef = [imaxbef2(1); iminbef2(1);

imaxbef2(2); iminbef2(2)];

 Levels_bef_sort = sort(Levels_bef);

 Levels_aft = [imaxaft2(1); iminaft2(1);

imaxaft2(2); iminaft2(2)];

 Levels_aft_sort = sort(Levels_aft);

 Amp_aft1(i) = abs(v2(Levels_aft_sort(1)));

 Amp_aft2(i) = abs(v2(Levels_aft_sort(2)));

 Amp_aft3(i) = abs(v2(Levels_aft_sort(3)));

 Amp_aft4(i) = abs(v2(Levels_aft_sort(4)));

 % Calculate the change in amplitude, F, by the

maxima

 if type_perturb == 's'

 Amp_befu(i) = abs(v2(imaxbef2(2)));

 Fu_aft1(i) = (Amp_aft1(i) - Amp_befu(i))/

(Amp_aft1(i) + Amp_befu(i)) * 2;

 Fu_aft2(i) = (Amp_aft2(i) - Amp_befu(i))/

(Amp_aft2(i) + Amp_befu(i)) * 2;

 Fu_aft3(i) = (Amp_aft3(i) - Amp_befu(i))/

(Amp_aft3(i) + Amp_befu(i)) * 2;

 Fu_aft4(i) = (Amp_aft4(i) - Amp_befu(i))/

(Amp_aft4(i) + Amp_befu(i)) * 2;

 % Calculate the change in amplitude, F, by the

minima

 Amp_befl(i) = abs(v2(iminbef2(2)));

 Fl_aft1(i) = (Amp_aft1(i) - Amp_befl(i))/

(Amp_aft1(i) + Amp_befl(i)) * 2;

 Fl_aft2(i) = (Amp_aft2(i) - Amp_befl(i))/

(Amp_aft2(i) + Amp_befl(i)) * 2;

 Fl_aft3(i) = (Amp_aft3(i) - Amp_befl(i))/

(Amp_aft3(i) + Amp_befl(i)) * 2;

 Fl_aft4(i) = (Amp_aft4(i) - Amp_befl(i))/

(Amp_aft4(i) + Amp_befl(i)) * 2;

 elseif type_perturb == 'i'

 % Calculate the change in amplitude, F, by the

maxima

 Amp_befu(i) = abs(v2(imaxbef2(2)));

 Fu_aft1(i) = (Amp_aft1(i) - Amp_befu(i))/

Amp_befu(i);

 Fu_aft2(i) = (Amp_aft2(i) - Amp_befu(i))/

Amp_befu(i);

 Fu_aft3(i) = (Amp_aft3(i) - Amp_befu(i))/

Amp_befu(i);

 Fu_aft4(i) = (Amp_aft4(i) - Amp_befu(i))/

Amp_befu(i);

 % Calculate the change in amplitude, F, by the

minima

 Amp_befl(i) = abs(v2(iminbef2(2)));

 Fl_aft1(i) = (Amp_aft1(i) - Amp_befl(i))/

Amp_befl(i);

 Fl_aft2(i) = (Amp_aft2(i) - Amp_befl(i))/

Amp_befl(i);

 Fl_aft3(i) = (Amp_aft3(i) - Amp_befl(i))/

Amp_befl(i);

 Fl_aft4(i) = (Amp_aft4(i) - Amp_befl(i))/

Amp_befl(i);

 end

 end

 is2 = Levels_bef_sort(1)-is; % start point of the

segment to plot

 ie2 = Levels_aft_sort(2)-is;

 ts2(i) = is2/fps;

 te2(i) = ie2/fps;

 if plotflag

 % Crop the curvature curve to only the relevant

times

 is2 = Levels_bef_sort(1)-2; % start point of the

segment to plot

 ie2 = Levels_aft_sort(4)+2;

 ts2(i) = is2/fps;

 te2(i) = ie2/fps;

 % Generate plot

 tshift = t - t(is);

 figure(1); clf;

 subplot(2,1,1); hold on;

 patch('Faces', 1:4, 'Vertices', [0 min(v2); 0.1

min(v2); 0.1 max(v2); 0 max(v2)], 'FaceColor', 'green',

'EdgeColor', 'none');

% line([tshift(is) tshift(is)] , [min(v2)

max(v2)],'Color','g','LineWidth',3)

 plot(tshift,v1,'-k','LineWidth',2);

plot(tshift(imaxbef1),v1(imaxbef1),'+r','MarkerSize',16,'Li

neWidth',2)

plot(tshift(imaxaft1),v1(imaxaft1),'+r','MarkerSize',16,'Li

neWidth',2)

plot(tshift(iminbef1),v1(iminbef1),'+b','MarkerSize',16,'Li

neWidth',2)

plot(tshift(iminaft1),v1(iminaft1),'+b','MarkerSize',16,'Li

neWidth',2)

 title(sprintf('Mid-body phi = %f',phiu(i)));

 hold off;

 xlim([tshift(is2),tshift(ie2)])

 ylim([-10 10])

 subplot(2,1,2); hold on;

 patch('Faces', 1:4, 'Vertices', [0 min(v2); 0.1

min(v2); 0.1 max(v2); 0 max(v2)], 'FaceColor', 'green',

'EdgeColor', 'none');

% line([tshift(is) tshift(is)] , [min(v2)

max(v2)],'Color','g','LineWidth',3)

 plot(tshift,v2,'-k','LineWidth',2);

plot(tshift(imaxbef2),v2(imaxbef2),'+r','MarkerSize',16,'Li

neWidth',2)

plot(tshift(imaxaft2),v2(imaxaft2),'+r','MarkerSize',16,'Li

neWidth',2)

plot(tshift(iminbef2),v2(iminbef2),'+b','MarkerSize',16,'Li

neWidth',2)

plot(tshift(iminaft2),v2(iminaft2),'+b','MarkerSize',16,'Li

neWidth',2)

 title(sprintf('Anterior phi = %f',phiu(i)));

 hold off;

 xlim([tshift(is2),tshift(ie2)])

 ylim([-10 10])

 drawnow;

 %pause(1)

 end

 % Calculate the change in amplitude, F, by the maxima

 Amp_befu(i) = abs(v2(imaxbef2(2)));

 Levels_aft = [imaxaft2(1); iminaft2(1);

imaxaft2(2); iminaft2(2)];

 Levels_aft_sort = sort(Levels_aft);

 Amp_aft(i) = abs(v2(Levels_aft_sort(peaklevel)));

 if type_perturb == 's'

156

 Fu(i) = (Amp_aft(i) - Amp_befu(i))/

(Amp_aft(i) + Amp_befu(i))*2;

 elseif type_perturb == 'i'

 Fu(i) = (Amp_aft(i) - Amp_befu(i))/

Amp_befu(i);

 end

 % Calculate the change in amplitude, F, by the minima

 Amp_befl(i) = abs(v2(iminbef2(2)));

 Amp_aft(i) = abs(v2(min([imaxaft2(1) iminaft2(1)])));

 if type_perturb == 's'

 Fl(i) = (Amp_aft(i) - Amp_befl(i))/

(Amp_aft(i) + Amp_befl(i))*2;

 elseif type_perturb == 'i'

 Fl(i) = (Amp_aft(i) - Amp_befl(i))/

Amp_befl(i);

 end

 fprintf('\n');

end

%% Generate compensatory response curves

% Concatenate the F results by maxima and minima

 phi = cat(1,phiu(:),phil(:))*2*pi;

 F = cat(1,Fu(:),Fl(:));

 F = F(:);

 phi = phi(:);

 todelete = phi<0 | phi>2*pi |isnan(F) | abs(F)>=5;

 phi1 = phi;

 phi1(todelete) = [];

 F1 = F;

 F1(todelete) = [];

 phi1=reshape(phi1,1,[]);

 F1=reshape(F1,1,[]);

% Sort data by phase at pulse

 [~,idx] = sort(phi1);

 phi_sort = phi1(idx);

 F_sort = F1(idx);

% Pad the end with beginning data to enable circular

averaging

 phi_pad1 = phi_sort(phi_sort>3*pi/2);

 F_pad1 = F_sort(phi_sort>3*pi/2);

 phi_pad2 = phi_sort(phi_sort<pi/2);

 F_pad2 = F_sort(phi_sort<pi/2);

 phi_sort = cat(2,phi_pad1-

2*pi,phi_sort,phi_pad2+2*pi);

 F_sort = cat(2,F_pad1,F_sort,F_pad2);

% Plot results

opengl software;

 figure;

% clf;

 hold on

%Moving average

 Npoints = numel(F_sort);

 w_idx = round(0.15 * Npoints); %

Normal is 0.15 The width of the median bin in elements.

Also the N value for each bin. Note that this method could

be invalid if the phases are not sampled approximately

equally.

 CIRC_AVG = movmean(F_sort,w_idx);

 CIRC_CI95 = movstd(F_sort,w_idx)./sqrt(w_idx);

 shadedErrorBar(phi_sort,CIRC_AVG,CIRC_CI95,'b'); hold

on;

% Individual points

plot(phi_sort,F_sort,'.','MarkerSize',8,'Color',0.5*[0.5

0.5 1]);

 xlabel('Phase of illumination \phi');

 ylabel([sprintf('Normalized bending\n curvature

change,') ' \DeltaK/K'])

 set(gcf,'Color','w','Position',[1192 217 700 570]);

 set(gca,'FontSize',12)

 set(gca,'FontSize',28,'xtick',[0 pi

2*pi],'xticklabel',{'0' ,'\pi' , '2\pi'});

 ylim([-1 1]);

 xlim([0,2*pi]);

% Plot zero line

 line([0 2*pi],[0 0],'Color','k','LineWidth',1);

 hold off;

 if do_save

 saveas(gcf, fullfile(outpath,['CRC_' strainname

'_level' num2str(peaklevel) '_analyze'

num2str(curvrgn_analyze(1)) '-'

num2str(curvrgn_analyze(end)) '.fig']))

 saveas(gcf, fullfile(outpath,['CRC_' strainname

'_level' num2str(peaklevel) '_analyze'

num2str(curvrgn_analyze(1)) '-'

num2str(curvrgn_analyze(end)) '.png']))

 end

 fprintf('trials = %d\n',floor(numel(F1)/2));

% Plot curvature amplitude before and during inhibition

if do_comparison

 phi = cat(1,phiu(:),phil(:))*2*pi;

 F_aft1 = cat(1,Fu_aft1(:),Fl_aft1(:)); F_aft1 =

F_aft1(:);

 F_aft2 = cat(1,Fu_aft2(:),Fl_aft2(:)); F_aft2 =

F_aft2(:);

 F_aft3 = cat(1,Fu_aft3(:),Fl_aft3(:)); F_aft3 =

F_aft3(:);

 F_aft4 = cat(1,Fu_aft4(:),Fl_aft4(:)); F_aft4 =

F_aft4(:);

 todelete1 = isnan(F_aft1) | abs(F_aft1)>5 | phi > 2*pi

| phi < 0;

 todelete2 = isnan(F_aft2) | abs(F_aft2)>5 | phi > 2*pi

| phi < 0;

 todelete3 = isnan(F_aft3) | abs(F_aft3)>5 | phi > 2*pi

| phi < 0;

 todelete4 = isnan(F_aft4) | abs(F_aft4)>5 | phi > 2*pi

| phi < 0;

 F_aft1(todelete1) = [];

 F_aft2(todelete2) = [];

 F_aft3(todelete3) = [];

 F_aft4(todelete4) = [];

 F_aft1 = reshape(F_aft1,1,[]);

 F_aft2 = reshape(F_aft2,1,[]);

 F_aft3 = reshape(F_aft3,1,[]);

 F_aft4 = reshape(F_aft4,1,[]);

 F_aft1_AVG = mean(F_aft1);

 F_aft1_SEM = std(F_aft1) / sqrt(numel(F_aft1));

 F_aft2_AVG = mean(F_aft2);

 F_aft2_SEM = std(F_aft2) / sqrt(numel(F_aft2));

 F_aft3_AVG = mean(F_aft3);

 F_aft3_SEM = std(F_aft3) / sqrt(numel(F_aft3));

 F_aft4_AVG = mean(F_aft4);

 F_aft4_SEM = std(F_aft4) / sqrt(numel(F_aft4));

 figure

 bar([F_aft1_AVG; F_aft2_AVG; F_aft3_AVG; F_aft4_AVG]);

 hold on

 errorbar([F_aft1_AVG; F_aft2_AVG; F_aft3_AVG;

F_aft4_AVG],[F_aft1_SEM; F_aft2_SEM; F_aft3_SEM;

F_aft4_SEM],'.');

 hold off

 ylabel([sprintf('Normalized bending\n curvature

change,') ' \DeltaK/K'])

 xticks([1 2 3 4])

 xticklabels({'1','2','3','4'})

 set(gca,'FontSize',20)

 numaft1 = numel(F_aft1)

 numaft2 = numel(F_aft2)

 numaft3 = numel(F_aft3)

 numaft4 = numel(F_aft4)

 if do_save

 saveas(gcf, fullfile(outpath,['CRbars_' strainname

'_analyze' num2str(curvrgn_analyze(1)) '-'

num2str(curvrgn_analyze(end)) '.fig']))

 saveas(gcf, fullfile(outpath,['CRbars_' strainname

'_analyze' num2str(curvrgn_analyze(1)) '-'

num2str(curvrgn_analyze(end)) '.png']))

 end

end

% % estimate the size of quality time window

todelete = isnan(ts2);

ts2(todelete) = [];

te2(todelete) = [];

ts_AVG = mean(ts2)

te_AVG = mean(te2)

ts_SEM = std(ts2)

te_SEM = std(te2)

end

 function [imax,imin] = verify_extrema(v,imax,imin)

 % get the mean amplitudes

 vmax = mean(v(imax));

 vmin = mean(v(imin));

157

 if vmin > vmax

 itemp = imax;

 imax = imin;

 imin = itemp;

 end

 end

Do_absK_spatio.m
clc; clear;

p_pulse = {

% 'F:\Compensatory

experiments\Optogenetics\2021-08-25_SWF325_p1_P4-6_17pct'

% 'F:\phase\Combined_148_p1_17pct';

% 'F:\phase\Combined_148_p1_17pct_P2-4';

% 'F:\phase\Combined_148_p1_17pct_P4-6';

% 'F:\phase\Combined_148_p1_17pct_P6-8';

 'F:\phase\Combined_148_p1_17pct_ctrl';

 };

outpath = '/Users/hongfei/Dropbox/Paper/Compensatory

reponse mechanism/Results';

issave = 0;

TRange = [-0.5 1.5];

curvrgn_analyze = [60 80]; % 10:30

curvrgn_perturb = [60 80];

aWin = 1*[-0.8 -0.1 0.2 1.5]; % 0 0.2

numdiv = 1;

Tmax = zeros(numdiv, 1);

Smax = zeros(numdiv, 1);

for n = 1:numel(p_pulse)

 paradur = .1;

 for i = 1:numdiv

 phaserange = [(i-1)/numdiv i/numdiv];

 absK_min = ...

 absK_spatio(p_pulse{n}, curvrgn_perturb,

curvrgn_analyze,...

 TRange, paradur ,phaserange,aWin, outpath,

issave);

 end

end

Do_compensatory_response.m
clc; clear

p_pulse = {

% 'F:\phase\Combined_148_p1_17pct_P4-6';

% 'F:\phase\Combined_ZM5398_dor_p1_17pct_P40-

60';

% 'F:\Compensatory

experiments\Optogenetics\2021-08-13_YX287_p1_bothside_P4-

6_20pct';

% 'F:\Compensatory

experiments\Optogenetics\2021-08-13_YX288_p1_bothside_P4-

6_20pct';

% 'F:\Compensatory

experiments\Optogenetics\2021-08-11_YX289_p1_dorsal_P4-

6_20pct';

% 'F:\Compensatory

experiments\Optogenetics\2021-08-18_YX290_p1_dorsal_P4-

6_20pct';

% 'F:\Compensatory

experiments\Optogenetics\2021-04-18_YX148_p1_bothside_P4-

6_po111';

% 'F:\Compensatory

experiments\Optogenetics\2021-08-25_SWF325_p1_P4-6_17pct';

% 'F:\phase\Combined_148_p1_17pct';

% 'F:\phase\Combined_148_p1_17pct_P2-4';

% 'F:\phase\Combined_148_p1_17pct_P4-6';

 'F:\phase\Combined_148_p1_17pct_P6-8';

% 'F:\phase\Combined_148_p1_17pct_ctrl';

 };

outpath = '/Users/hongfei/Dropbox/Paper/Compensatory

reponse mechanism/Results';

curvrgn_analyze = 40:60; % Anterior 15~27% Local 40~60%

curvrgn_perturb = 60:80; %

curvphiwindow_analyze = [-0.8 -0.1 0.1 1.5]; % Excitation

[-0.8 -0.0 0.1 1.5] Inhibition [-0.8 -0.0 0.3 1.5]

curvphiwindow_perturb = [-0.8 -0.0 0.5 1.5]; % Excitation

[-0.8 -0.0 0.1 1.5] Inhibition [-0.8 -0.0 0.5 1.5]

peaklevel = 1; % up to four

plotflag = 0;

do_comparison = 1;

do_save = 0;

type_perturb = 'i';

F_avg = zeros(numel(p_pulse,1));

F_sem = zeros(numel(p_pulse,1));

X1 = [];

Y1 = [];

for i = 1 : numel(p_pulse)

 if i == 2

 curvphiwindow_analyze = [-0.8 -0.0 0.1 1.5];

 type_perturb = 'i';

 end

 [~, F_sort] = Compensatory_Response(p_pulse{i},

curvrgn_perturb, curvrgn_analyze,peaklevel,...

curvphiwindow_perturb,curvphiwindow_analyze,...

 outpath,

plotflag, do_comparison, do_save, type_perturb);

 X1 = cat(1, X1, i*ones([numel(F_sort) 1]));

 Y1 = cat(1, Y1, F_sort');

 F_avg(i) = mean(F_sort);

 F_sem(i) = std(F_sort)/sqrt(numel(F_sort));

end

% %%

% figure(1);clf

% %

beeswarm(X1,Y1,'sort_style','hex','dot_size',.5,'overlay_st

yle','ci','corral_style','gutter');

% bar([1 2], F_avg)

% hold on

% errorbar([1 2], F_avg, F_sem, '.')

% hold off

% ylabel([sprintf('Normalized bending\n curvature change,')

' \DeltaK/K'])

% xticks([1 2])

% xticklabels({'1','2'})

% set(gca,'FontSize',20)

Do_compensatory_response_wholebody.m
clc; close all; clear

p_pulse = {

 'F:\phase\Combined_148_p1_17pct';

 'F:\phase\Combined_148_p1_17pct_P2-4';

 'F:\phase\Combined_148_p1_17pct_P4-6';

 'F:\phase\Combined_148_p1_17pct_P6-8';

 'F:\phase\Combined_148_p1_17pct_ctrl';

 };

outpath = '/Users/hongfei/Dropbox/Paper/Compensatory

reponse mechanism/Results';

CURVRGN_analyze = {5:25; 20:40; 40:60; 60:80; 80:100}; %

Anterior 15~27% Local 40~60%

CURVRGN_perturb = {5:25; 20:40; 40:60; 60:80; 20:40}; %

curvphiwindow_analyze = [-0.8 -0.0 0.1 1.5]; % Excitation

[-0.8 -0.0 0.1 1.5] Inhibition [-0.8 -0.0 0.3 1.5]

curvphiwindow_perturb = [-0.8 -0.0 0.5 1.5]; % Excitation

[-0.8 -0.0 0.1 1.5] Inhibition [-0.8 -0.0 0.5 1.5]

peaklevel = 1; % up to four

plotflag = 0;

do_comparison = 1;

do_save = 0;

type_perturb = 'i';

F_avg = zeros(numel(CURVRGN_perturb),

numel(CURVRGN_analyze));

F_sem = zeros(numel(CURVRGN_perturb),

numel(CURVRGN_analyze));

for i = 1 : numel(CURVRGN_perturb)

 curvrgn_perturb = CURVRGN_perturb{i};

 for j = 1 : numel(CURVRGN_analyze)

 curvrgn_analyze = CURVRGN_analyze{j};

 [~, F_sort] = Compensatory_Response(p_pulse{i},

curvrgn_perturb, curvrgn_analyze,peaklevel,...

 curvphiwindow_perturb,curvphiwindow_analyze,...

 outpath, plotflag, do_comparison, do_save,

type_perturb);

 F_avg(i,j) = mean(F_sort);

 F_sem(i,j) = std(F_sort)/sqrt(numel(F_sort));

 end

end

% %%

Do_K_spatio.m
clc; clear; close all

p_pulse = {'E:\phase\Combined_148_p1_17pct_P4-6';...

 'E:\phase\Combined_148_p1_17pct_ctrl';...

'C:\Users\fffei\Dropbox\PRC\Combined_148_0p100_ctrl';...

 'E:\phase\2019-11-07_ZM5398_dor_p5_17_p40-

60';...

 'E:\phase\2019-11-06_ZM5398_dor_p1_17_p40-

60';...

 'E:\phase\Combined_ZM5398_dor_p5_17pct_P40-60'

 };

outpath = 'C:\Users\fffei\Dropbox\Paper\motor

circuit\Compensatory reponse mechanism\Preliminary

Results';

TRange = [-1 2];

curvrgn_perturb = 40:60;

curvrgn_analyze = 10:30;

curvphiwindow_perturb = [-0.8 -0.1 0.5 1.5];

curvphiwindow_analyze = [-0.8 -0.1 0.25 1.5];

numdiv = 1;

for n = 6%numel(p_pulse)

 paradur = 0.5;

 for i = 1:numdiv

 phaserange = [(i-1)/numdiv i/numdiv];

158

 K_spatio(p_pulse{n}, curvrgn_perturb,

curvrgn_analyze,...

 TRange,paradur,

phaserange,curvphiwindow_perturb,curvphiwindow_analyze,

outpath)

 end

end

Do_paralysis_response_analysis.m
% clc; close all; clear

p_pulse = {

'F:\phase\Combined_148_p1_dor_30pct_p5_25_ALL';...

'F:\phase\Combined_148_p1_ven_30pct_p5_25_ALL';...

 'F:\phase\Combined_148_p1_35pct';...

 'F:\phase\Combined_148_p1_35pct_ctrl';...

 };

outpath = 'C:\Users\fffei\Dropbox\Paper\motor

circuit\Compensatory reponse mechanism\Preliminary Results

2';

Tpara = 0.3;

curvrgn_analyze = 15:35; % 15:35

curvrgn_perturb = 15:35;

curvphiwindow_analyze = [-0.8 -.1 .5 1.5];

curvphiwindow_perturb = [-0.8 -.1 .5 1.5];

plotflag = 0;

color = '-k';

for n = 4

 [phi_sort, P_sort] =

Paralysis_Response_absK(p_pulse{n}, curvrgn_perturb,

curvrgn_analyze,...

curvphiwindow_perturb,curvphiwindow_analyze, Tpara,...

 outpath,

plotflag, color);

end

%

figure(1)

Dt = 0.3;

T0 = 1.14;

A = 4.2;

width = 0.4*2*pi;

funD = @(x) A*abs(cos(x+ 2*pi*Dt/T0));

funI = @(t) (integral(funD, t-width/2, t+width/2))/width;

hold on

fplot(funI, [0 2*pi])

hold off

xlabel('\phi','FontSize',20);

ylabel('|K| (0.3 after illum)','FontSize',12);

set(gca,'FontSize',12)

set(gca,'FontSize',28,'xtick',[0 pi

2*pi],'xticklabel',{'0' ,'\pi' , '2\pi'});

xlim([0,2*pi]);

% hold on

% Npoints = numel(P_sort);

% w_idx = round(0.2 * Npoints); % Normal is 0.15 The

width of the median bin in elements. Also the N value for

each bin. Note that this method could be invalid if the

phases are not sampled approximately equally.

% AVG = movmean(P_sort,w_idx);

% SEM = movstd(P_sort,w_idx)./sqrt(w_idx);

% shadedErrorBar(phi_sort,smooth(AVG-1),smooth(SEM), '-c',

0.5);

% hold off

Do_state_analysis.m
clc; clear;close all

p_pulse = '/Users/hongfei/Dropbox/Paper/Compensatory

reponse mechanism/data

optogenetics/Combined_148_p1_17pct_ctrl';

curvrgn_anterior = 15:35;

curvrgn_middle = 40:60;

curvphiwindow = [-4.5 -0.0 0.3 1.5];

numdiv = 1;

doplotdebug = 0;

load('TmaxSmax.mat')

for i = 1 : numdiv

 phaserange = [(i-1)/numdiv i/numdiv];

 if i == 1

 ctrdata = {};

 else

 ctrdata = {rescaled_data{9}; rescaled_data{10};

rescaled_data{11}; rescaled_data{12}; raw_data{3};

raw_data{4}; rescaled_data{13}};

 end

 [rescaled_data, raw_data] =

State_analysis_2019a(p_pulse, curvrgn_anterior,

curvrgn_middle,...

 phaserange, curvphiwindow, doplotdebug, ctrdata);

end

Paralysis_Response_absK.m
function [phi_sort, P_sort] =

Paralysis_Response_absK(p_pulse, curvrgn_perturb,

curvrgn_analyze,...

curvphiwindow_perturb,curvphiwindow_analyze,Tpara,

outpath,...

 plotflag, color)

%SYNCRONIZING_RESPONSE Calculate

%

%Outputs:

% p_pulse: directory of data being evaluated

% curvrgn1: region being illuminated

% curvrgn2: region being analyzed

% phaserange: range of phase of interest

% curvphiwindow: a window to exclude the effect

of pulse on

% curvature dynamics

% outpath: directory for outcomes

[~, strainname] = fileparts(p_pulse);

ddp = dir(p_pulse);

ddp = verify_dirlist(ddp,0,'.mat');

Np = numel(ddp);

numsamplepts = 100;

Period = [];

% Cycle through each file, get the peak before and after

the pulse

for i = 1:Np

 % Display progress

 fprintf('Analyzing trial %d',i)

 % Load the file's curvature data

load(fullfile(p_pulse,ddp(i).name),'curvdatafiltered','fps'

,'istart','start_illum');

 %--

-----------%

 % Extract the curvature vector

 v1 = mean(curvdatafiltered(:,curvrgn_perturb),2);

 t = (0:length(v1)-1) ./ fps;

 % Get the start point

 is = start_illum - istart;

 % Find all peaks

 [imax,imin] = C2_get_curvature_peaks(v1,1);

 % Find the peaks immediately before and after the start

point

 [imax,imin]= verify_extrema(v1,imax,imin);

 imaxbef =

imax(find(imax<is+round(curvphiwindow_perturb(2)*fps),2,'la

st'));

 imaxaft =

imax(find(imax>is+round(curvphiwindow_perturb(3)*fps),2,'fi

rst'));

 iminbef =

imin(find(imin<is+round(curvphiwindow_perturb(2)*fps),2,'la

st'));

 iminaft =

imin(find(imin>is+round(curvphiwindow_perturb(3)*fps),2,'fi

rst'));

 % Exclude this trial if not enough peaks were found

 if numel(imaxbef) < 2 || numel(imaxaft) < 2 ||

numel(iminaft) < 2 || numel(iminbef) < 2

 F(i) = nan;

 Fu(i) = nan;

 Fl(i) = nan;

 phiu(i)= nan;

 phil(i) = nan;

 fprintf(' - SKIPPED - Not enough peaks\n');

 continue;

 end

 % Calculate the period of undulation

 T0 = mean([diff(imaxaft), diff(imaxbef), diff(iminaft),

diff(iminbef)]);

 % Calculate the change in period after - should exclude

those with high

 % changes or frequency changes a lot

 dT = abs((diff(imaxaft) -

diff(imaxbef))/diff(imaxbef));

 % Exclude this trial if the frequency changes by a lot

 if dT > 0.2 || (T0/fps) >1.75

 F(i) = nan;

 Fu(i) = nan;

 Fl(i) = nan;

 phiu(i)= nan;

 phil(i) = nan;

 fprintf(' - SKIPPED - Tratio = %0.2f - T

= %0.2f\n',dT,T0/fps);

159

 continue;

 end

 % Calculate the phase at which the illum occurs, by

maximum and minimum

 phiu(i) = mod(is - imaxbef(2),T0)/T0;

 phil(i) = mod(is - iminbef(2),T0)/T0 - 0.5;

 if phil(i) < 0

 phil(i) = phil(i) + 1;

 end

 v2 = mean(curvdatafiltered(:,curvrgn_analyze),2);

 % Find all peaks

 [imax,imin] = C2_get_curvature_peaks(v2,1);

 % Find the peaks immediately before and after the start

point

 [imax,imin]= verify_extrema(v2,imax,imin);

 imaxbef =

imax(find(imax<is+round(curvphiwindow_analyze(2)*fps),2,'la

st'));

 imaxaft =

imax(find(imax>is+round(curvphiwindow_analyze(3)*fps),2,'fi

rst'));

 iminbef =

imin(find(imin<is+round(curvphiwindow_analyze(2)*fps),2,'la

st'));

 iminaft =

imin(find(imin>is+round(curvphiwindow_analyze(3)*fps),2,'fi

rst'));

 if numel(imaxbef) < 2 || numel(imaxaft) < 2 ||

numel(iminaft) < 2 || numel(iminbef) < 2

 F(i) = nan;

 Fu(i) = nan;

 Fl(i) = nan;

 phiu(i)= nan;

 phil(i) = nan;

 fprintf(' - SKIPPED - Not enough peaks\n');

 continue;

 end

 if plotflag

 % Crop the curvature curve to only the relevant

times

 is2 = min([min(imaxbef) min(iminbef)])-2; % start

point of the segment to plot

 ie2 = max([max(imaxaft) max(iminaft)])+2;

 % Generate plot

 figure(1); clf;

 plot(t,v2,'-k','LineWidth',2); hold on;

%

plot(t(imaxbef),v2(imaxbef),'+r','MarkerSize',16,'LineWidth

',2)

plot(t(imaxaft(1)),v2(imaxaft(1)),'+r','MarkerSize',16,'Lin

eWidth',2)

%

plot(t(iminbef),v2(iminbef),'+b','MarkerSize',16,'LineWidth

',2)

plot(t(iminaft(1)),v2(iminaft(1)),'+b','MarkerSize',16,'Lin

eWidth',2)

 line([t(is) t(is)] , [min(v2)

max(v2)],'Color','g','LineWidth',3)

 title(sprintf('phi = %f',phiu(i)));

 hold off;

 xlim([t(is2),t(ie2)])

 drawnow;

 pause(2)

 end

 Kp3 = v1(is + round(Tpara*fps));

 F(i) = Kp3;

% F(i) = abs(Kp3);

 fprintf('\n');

 Period = [Period; T0];

end

%% Generate compensatory response curves

% Concatenate the F results by maxima and minima

% phi = cat(1,phiu(:),phil(:))*2*pi;

 phi = ((phiu(:)+phil(:))/2)*2*pi;

 F = F(:);

 phi = phi(:);

 todelete = phi<0 | phi>2*pi |isnan(F);

 phi(todelete) = [];

 F(todelete) = [];

 phi=reshape(phi,1,[]);

 F=reshape(F,1,[]);

% Sort data by phase at pulse

 [~,idx] = sort(phi);

 phi_sort = phi(idx);

 P_sort = F(idx);

% Pad the end with beginning data to enable circular

averaging

 phi_pad1 = phi_sort(phi_sort>3*pi/2);

 F_pad1 = P_sort(phi_sort>3*pi/2);

 phi_pad2 = phi_sort(phi_sort<pi/2);

 F_pad2 = P_sort(phi_sort<pi/2);

 phi_sort = cat(2,phi_pad1-

2*pi,phi_sort,phi_pad2+2*pi);

 P_sort = cat(2,F_pad1,P_sort,F_pad2);

% Plot results

 opengl software;

 figure(1);

% clf;

 hold on

%Moving average

 Npoints = numel(P_sort);

 w_idx = round(0.25 * Npoints); % Normal is 0.15

The width of the median bin in elements. Also the N value

for each bin. Note that this method could be invalid if the

phases are not sampled approximately equally.

 AVG = movmean(P_sort,w_idx);

 SEM = movstd(P_sort,w_idx)./sqrt(w_idx);

 AVG = smooth(AVG);

 SEM = smooth(SEM);

 shadedErrorBar(phi_sort,AVG,SEM, color, 0.5);

 hold on;

% Individual points

%

plot(phi_sort,P_sort,'.','MarkerSize',8,'Color',0.5*[0.5

0.5 1]);

 xlabel('\phi','FontSize',20);

 ylabel('|K| (0.3 after illum)','FontSize',12);

 set(gcf,'Color','w','Position',[1192 217 608 572]);

 set(gca,'FontSize',12)

 set(gca,'FontSize',28,'xtick',[0 pi

2*pi],'xticklabel',{'0' ,'\pi' , '2\pi'});

 xlim([0,2*pi]);

% Plot zero line

 hold off;

% saveas(gcf, fullfile(outpath,['ParaC_' strainname

'.fig']))

% saveas(gcf, fullfile(outpath,['ParaC_' strainname

'.png']))

 fprintf('trials = %d\n',numel(F)/2);

 Period_avg = mean(Period)/fps;

 Period_sem = std(Period)/sqrt(numel(Period))/fps;

 fprintf('T0 = %d,\n SEM = %d\n',Period_avg,

Period_sem);

end

 function [imax,imin] = verify_extrema(v,imax,imin)

 % get the mean amplitudes

 vmax = mean(v(imax));

 vmin = mean(v(imin));

 if vmin > vmax

 itemp = imax;

 imax = imin;

 imin = itemp;

 end

 end

shadedErrorGaussian.m
function H = shadedErrorGaussian(x, mu, sg)

%SHADEDERRORGAUSSIAN

hold on

for i = 1: numel(x)

 MU = mu{i};

 if numel(MU) == 1

 scatter(x(i), MU, 'filled',

'MarkerEdgeColor','none',...

 'MarkerFaceColor','k');

 elseif numel(MU) == 2

 scatter([x(i) x(i)], MU, 'filled',

'MarkerEdgeColor','none',...

160

 'MarkerFaceColor','k');

 end

end

hold off

end

Analysis_Tool.m
clc; clear; close all

subfoldername = 'LX703_30pct';

path = fullfile('D:\Dropbox\Paper\Compensatory reponse

mechanism\data_gait_adaptation',subfoldername);

savefilename = fullfile('D:\Dropbox\Paper\Compensatory

reponse

mechanism\data_gait_adaptation\intermediate',[subfoldername

'.mat']);

list = dir(fullfile(path, '*.mat'));

spline_p = 0.01;

numcurvpts = 100;

curvrgn = 10:30;

n_trials = numel(list);

Total_time = 0;

expo = .7;

f_data = [];

l_data = [];

th_data = [];

curv_data = [];

do_wavelength = 1;

do_saveparameters = 1;

for i = 1 : numel(list)

 fprintf('%i out of %i\n', i, numel(list))

 f = list(i).name;

 load(fullfile(path,f))

 xy = cat(3, clinex, cliney);

 iT = size(xy,1);

 iS = size(xy,2);

 % do wavelength analysis

 if do_wavelength

 indicator = curvdatafiltered;

 c2n = bsxfun(@gt, indicator, mean(indicator,

'omitnan'));

 maskhead = 0.15;

 maskneck = 0.17;

 masktail = 0.30;

 minimum_fraction_for_fit = 0.5;

 c3 = edge(single(c2n),'sobel', 0);

 [c4, numlab] = bwlabel(c3);

 numcycles2 = 0;

 okdatatmp = zeros(numlab, 1);

 normrthresh = 220;

 % draw fit limits

 figure(9);clf; imagesc(c2n);

colormap(cmap_redblue(expo));

 %

 hold on;

 % subplot(133); hold on;

 curvsigndatatmp = [];

 for n=1:numlab

 c5 = (c4 == n);

% figure(23);

% imagesc(c5); hold on;

 [y, x] = find(c5);

 % determine if this is + or - transition

 yshift = 3;

 yshifted = ceil(1+0.5*(1+sign(y-yshift)) .* (y-

yshift-1));

 curvshift = zeros(size(x));

 for jj=1:length(x)

 curvshift(jj) = indicator(yshifted(jj),

x(jj));

 end

 %

 % disp(n);

 % disp('mean(c2shift)');

 % disp(mean(curvshift));

 %

 % exclude points near head and tail for fitting

 tmp = x;

 x=x(logical((tmp>=maskhead * numcurvpts) .*

(tmp<=(1-masktail) * numcurvpts)));

 y=y(logical((tmp>=maskhead * numcurvpts) .*

(tmp<=(1-masktail) * numcurvpts)));

 if max(x) - min(x) >= (1-maskhead-

masktail)*minimum_fraction_for_fit*numcurvpts

 [p,S] = polyfit(x,y,1);

 if S.normr < normrthresh % if the curve is

close to a straight line

 if mean(curvshift) > 0

 plotcol = '-g';

 else

 plotcol = '--g';

 end

 figure(9)

 plot(polyval(p,1:numcurvpts), plotcol);

hold on;

 numcycles2 = numcycles2 + 1;

 slopedatatmp(n) = p(1);

 timedatatmp(n) = p(2);

 okdatatmp(n) = 1;

 negshift = (mean(curvshift) > 0);

 curvsigndatatmp(n) = negshift;

 xpos = 5;

 ypos = p(2)-1;

 if p(2)<1

 xpos = numcurvpts/4;

 ypos = 5;

 end

 if negshift

 xpos = 45;

 ypos = p(2) + p(1)*xpos-1;

 end

 text(xpos,ypos,num2str([numcycles2

p(1)]), 'Color', 'white'); hold on;

 end

 end

 end

 if isempty(curvsigndatatmp)

 continue;

 end

 figure(9);hold on;

 plot([0.5+maskhead*numcurvpts

0.5+maskhead*numcurvpts],[1 iT], ':k');

 plot([0.5+ (1-masktail)*numcurvpts 0.5+ (1-

masktail)*numcurvpts],[1 iT], ':k');

 xlabel(sprintf('%d out of %d', i, n_trials))

 title(strcat(num2str(sum(curvsigndatatmp)),'

positive, ', num2str(numcycles2-sum(curvsigndatatmp)),...

 ' negative. Click on bad fits, press

return'));

 badfits = ginput;

 epsilon = 4; % how close to fit you need to click

 for j=1:size(badfits,1)

 for n=1:numlab

 if okdatatmp(n)

 if abs(timedatatmp(n) +

slopedatatmp(n)*badfits(j,1) - badfits(j,2))<epsilon

 %

disp(strcat('matches #', num2str(n)));

 okdatatmp(n) = 0;

 end

 end

 end

 end

 numcycles2 = 0;

 c4b = c4;

 for n=1:numlab

 if okdatatmp(n)

 numcycles2 = numcycles2+1;

 slopedata(numcycles2) = slopedatatmp(n);

 timedata(numcycles2) = timedatatmp(n);

curvsigndata(numcycles2)=curvsigndatatmp(n);

 c4b(c4b==n) = numcycles2;

 else

 c4b(c4b==n) = 0;

 end

 end

 figure(9);clf;

 imagesc(c2n); hold on;

 plot([0.5+maskhead*numcurvpts

0.5+maskhead*numcurvpts],[1 iT], ':w');

 plot([0.5+ (1-masktail)*numcurvpts 0.5+ (1-

masktail)*numcurvpts],[1 iT], ':w');

 xlabel(sprintf('%d out of %d', i, n_trials))

 for n=1:numcycles2

 if curvsigndata(n)

 plotcol = '-g';

 else

 plotcol = '--g';

161

 end

 plot(polyval([slopedata(n)

timedata(n)],1:numcurvpts), plotcol); hold on;

 % text(5,p(2)-1,num2str([n

numcycles2 S.normr]), 'Color', 'white'); hold on;

 % if p(2)<1

 % text(5,2,num2str([n

numcycles2 S.normr]), 'Color', 'white'); hold on;

 % end

 end

 if mean(curvsigndata) ~= 0.5

 msgbox('Warning: unequal number of positive and

negative fits','','error')

 end

 title('Press return to continue');

 pause;

 figure(9)

 title('click two points separated in time by N

cycles');

 t1 = ginput(1);

 if numel(t1) <2

 continue

 end

 plot([1 numcurvpts],[t1(2) t1(2)], '-w');

 t2 = ginput(1);

 if numel(t2) <2

 continue

 end

 plot([1 numcurvpts],[t2(2) t2(2)], '-w');

 % draw fit limits

 plot([0.5+maskhead*numcurvpts

0.5+maskhead*numcurvpts],[1 iT], ':k');

 plot([0.5+ (1-masktail)*numcurvpts 0.5+ (1-

masktail)*numcurvpts],[1 iT], ':k');

 idx = sort([t1(2) t2(2)]);

 v_front_all = (c2n(:,floor(maskhead *

numcurvpts)));

 dv_front = edge(single(v_front_all),'sobel', 0);

 idx_edge = find(dv_front == 1);

 [~, loc1] = min(abs((idx(1) - idx_edge)));

 idx(1) = idx_edge(loc1);

 [~, loc2] = min(abs((idx(2) - idx_edge)));

 idx(2) = idx_edge(loc2);

 v_front = c2n(idx(1)+1: idx(2)-1,floor(maskhead *

numcurvpts));

 v3_front = edge(single(v_front),'sobel', 0);

 num_halfcycles = sum(v3_front)+1;

 answer = inputdlg(sprintf('Enter number of cycles

(suggestion: %.1f)', num_halfcycles/2));

 if isempty(answer{1})

 num_cycles = num_halfcycles/2;

 else

 num_cycles = str2double(answer{1});

 end

 period = abs(t1(2) - t2(2)) / num_cycles;

 title(strcat(num2str(num_cycles),' cycles, ',

num2str(numcycles2), ' fits'), 'Interpreter', 'None');

 for n=1:numcycles2

 if curvsigndata(n)

 plotcol = '-g';

 else

 plotcol = '--g';

 end

 plot(polyval([slopedata(n)

timedata(n)],(1:numcurvpts)), plotcol); hold on;

 end

 end

 df = diff(xy,1,2);

 lendata = zeros(size(xy,1),1);

 angles_per_trial = [];

 curvs_per_trial = [];

 for j = idx(1) : idx(2)

 if isnan(mean(curvdatafiltered(j,:)))

 continue

 end

 df2d = squeeze(df(j,:,:))';

 xy2d = squeeze(xy(j,:,:))';

 s = cumsum([0, sqrt([1 1]*(df2d.*df2d))]);

 cv = csaps(s,xy2d,spline_p);

 cv2 = fnval(cv, s)';

 df2 = diff(cv2,1,1); df2p = df2';

 splen = cumsum([0, sqrt([1 1]*(df2p.*df2p))]);

 lendata(j) = splen(end);

 cv2i = interp1(splen+.00001*(0:length(splen)-

1),cv2,...

 (0:(splen(end)-1)/(numcurvpts+1):(splen(end)-

1)));

 df2 = diff(cv2i,1,1);

 atdf2 = atan2(-df2(10:90,2), df2(10:90,1));

 theta = (mean(max(atdf2)) + mean(min(atdf2)))/2;

 xcenter = cv2i(1,1);

 ycenter = cv2i(1,2);

 center = repmat([xcenter ycenter], size(cv2i, 1),

1);

 Ro = [cos(theta) -sin(theta); sin(theta)

cos(theta)];

 % do the rotation

 cv2io = (Ro*(cv2i' - center') + center')';

 df2o = diff(cv2io,1,1);

 atdf2o = atan2(-df2o(10:90,2), df2o(10:90,1));

% angle_data(j,:) = atdf2o';

 max_angle = abs(mean(max(atdf2o)));

 % compute average of attack angle over body

coordinate and over periods

 % of cycle

 if max_angle < pi/2 * 0.95 && max_angle > 0

 angles_per_trial = [angles_per_trial;

max_angle];

 end

 end

 v = mean(curvdatafiltered(idx(1) : idx(2), curvrgn),2);

% [imax, imin] = C2_get_curvature_peaks(v,1);

% [imax, imin] = verify_extrema(v,imax,imin);

% imax(imax == iT | imax == 1) = [];

% imin(imin == iT | imin == 1) = [];

% imax(v(imax)<=0) = [];

% imin(v(imin)>=0) = [];

 ddx = floor(abs(idx(1) - idx(2))./num_cycles);

 for jj = 1 : num_cycles

 idxs = (1+(jj-1)*ddx):(jj*ddx);

 curvs_per_trial = [curvs_per_trial;

max(abs(v(idxs)))];

 end

 % number of fits

 fprintf('number of fits = %d \n', numcycles2)

 % worm length

 wormlength = mean(lendata);

 % fprintf('wormlength (spline) (pix) = %f \n',

wormlength)

 % undulation period

 % fprintf('mean period (frames) = %f \n',

period)

 period_s = period/fps;

 fprintf('mean period (sec) = %f \n',period_s)

 % undulation frequency

 % frequency = 1/period;

 % fprintf('mean frequency (frames-1) = %f \n',

frequency)

 frequency_hz = 1/period_s;

 fprintf('mean frequency (sec-1) = %f \n', frequency_hz)

 % wavevelocity

 wavevelocity = mean(1./abs(slopedata),'omitnan') *

wormlength/numcurvpts * fps;

 % fprintf('mean wave velocity (pix/sec) = %f

\n', wavevelocity)

 %

 % stdwavevelocity = std(1./abs(slopedata))*

wormlength/numcurvpts * fps;

 % fprintf('std wave velocity (pix/sec) = %f

\n', stdwavevelocity)

 % wavelength

 wavelength = wavevelocity * period_s;

 % fprintf('wavelength (pix) = %f \n',

wavelength)

 wavelength_norm = wavelength / wormlength;

 fprintf('wavelength (norm) = %f \n', wavelength_norm)

 % wavelengthdata = 1./abs(slopedata) *

wormlength/numcurvpts * period;

 % angle of attack

 halfperiod = floor(period/2);

162

 N_halfcycles =

floor(length(angles_per_trial)/halfperiod) + 1;

 for ii = 1 : N_halfcycles

 if ii<N_halfcycles

 range_period = (1 + (ii-1)*halfperiod) :

(halfperiod*ii);

 else

 range_period = (1 + (ii-1)*halfperiod) :

length(angles_per_trial);

 end

 angles_per_period(ii) =

mean(max(angles_per_trial(range_period)));

 end

 angle_attack = mean(angles_per_trial, 'omitnan');

 angle_attack_degree = angle_attack/pi*180;

 fprintf('attack angle (degree) = %f \n',

angle_attack_degree)

 % peak curvature

 curvature = mean(curvs_per_trial, 'omitnan');

 fprintf('curvature (norm) = %f \n', curvature)

 f_data = [f_data; frequency_hz];

 l_data = [l_data; wavelength_norm];

 th_data = [th_data; angle_attack_degree];

 curv_data = [curv_data; curvature];

end

f_mean_all = mean(f_data);

f_std_all = std(f_data);

f_SEM_all = f_std_all/sqrt(n_trials);

l_data(l_data>2.5) = [];

l_mean_all = mean(l_data);

l_std_all = std(l_data);

l_SEM_all = l_std_all/sqrt(n_trials);

th_mean_all = mean(th_data, 'omitnan');

th_std_all = std(th_data, 'omitnan');

th_SEM_all = th_std_all/sqrt(n_trials);

curv_mean_all = mean(curv_data, 'omitnan');

curv_std_all = std(curv_data, 'omitnan');

curv_SEM_all = curv_std_all/sqrt(n_trials);

if do_saveparameters

 save(savefilename,

'f_data','l_data','th_data','curv_data',...

 'f_mean_all','f_std_all','f_SEM_all',...

 'l_mean_all','l_std_all','l_SEM_all',...

 'th_mean_all','th_std_all','th_SEM_all',...

 'curv_mean_all','curv_std_all','curv_SEM_all')

end

function [imax,imin] = verify_extrema(v,imax,imin)

% get the mean amplitudes

vmax = mean(v(imax));

vmin = mean(v(imin));

if vmin > vmax

 itemp = imax;

 imax = imin;

 imin = itemp;

end

end

mutants.m
% close all;

clear; clc

Vis = [1390 9079]'; % Viscosity (mPa¬∑s)

pct = {'30','40'};

N = numel(Vis);

f_N2 = zeros(N,1);

f_N2_SEM = zeros(N,1);

f_dop3 = zeros(N,1);

f_dop3_SEM= zeros(N,1);

f_avkdop3 = zeros(N,1);

f_avkdop3_SEM= zeros(N,1);

f_avkTeTx = zeros(N,1);

f_avkTeTx_SEM= zeros(N,1);

f_flp1 = zeros(N,1);

f_flp1_SEM= zeros(N,1);

f_npr6 = zeros(N,1);

f_npr6_SEM= zeros(N,1);

f_smbnpr6 = zeros(N,1);

f_smbnpr6_SEM= zeros(N,1);

l_N2 = zeros(N,1);

l_N2_SEM = zeros(N,1);

l_dop3 = zeros(N,1);

l_dop3_SEM= zeros(N,1);

l_avkdop3 = zeros(N,1);

l_avkdop3_SEM= zeros(N,1);

l_avkTeTx = zeros(N,1);

l_avkTeTx_SEM= zeros(N,1);

l_flp1 = zeros(N,1);

l_flp1_SEM= zeros(N,1);

l_npr6 = zeros(N,1);

l_npr6_SEM= zeros(N,1);

l_smbnpr6 = zeros(N,1);

l_smbnpr6_SEM= zeros(N,1);

k_N2 = zeros(N,1);

k_N2_SEM = zeros(N,1);

k_dop3 = zeros(N,1);

k_dop3_SEM= zeros(N,1);

k_avkdop3 = zeros(N,1);

k_avkdop3_SEM= zeros(N,1);

k_avkTeTx = zeros(N,1);

k_avkTeTx_SEM= zeros(N,1);

k_flp1 = zeros(N,1);

k_flp1_SEM= zeros(N,1);

k_npr6 = zeros(N,1);

k_npr6_SEM= zeros(N,1);

k_smbnpr6 = zeros(N,1);

k_smbnpr6_SEM= zeros(N,1);

% K_1mPas = [8.5478; 8.7481; 8.7701; 13.1554; 12.4032;

9.1767; 9.2779];

% K_SEM_1mPas = [0.1743; 0.1936; 0.1969; 0.3115; 0.3022;

0.2447; 0.1639];

th_N2 = zeros(N,1);

th_N2_SEM = zeros(N,1);

th_dop3 = zeros(N,1);

th_dop3_SEM= zeros(N,1);

th_avkdop3 = zeros(N,1);

th_avkdop3_SEM= zeros(N,1);

th_avkTeTx = zeros(N,1);

th_avkTeTx_SEM= zeros(N,1);

th_flp1 = zeros(N,1);

th_flp1_SEM= zeros(N,1);

th_npr6 = zeros(N,1);

th_npr6_SEM= zeros(N,1);

th_smbnpr6 = zeros(N,1);

th_smbnpr6_SEM= zeros(N,1);

k2_N2 = zeros(N,1); rk_30N2 = zeros(1,1);

rk2_30N2 = zeros(1,1);

k2_dop3 = zeros(N,1); rk_30dop3 = zeros(1,1);

rk2_30dop3 = zeros(1,1);

k2_avkdop3 = zeros(N,1); rk_30avkdop3 = zeros(1,1);

rk2_30avkdop3 = zeros(1,1);

k2_avkTeTx = zeros(N,1); rk_30avkTeTx = zeros(1,1);

rk2_30avkTeTx = zeros(1,1);

k2_flp1 = zeros(N,1); rk_30flp1 = zeros(1,1);

rk2_30flp1 = zeros(1,1);

k2_npr6 = zeros(N,1); rk_30npr6 = zeros(1,1);

rk2_30npr6 = zeros(1,1);

k2_smbnpr6 = zeros(N,1); rk_30smbnpr6 = zeros(1,1);

rk2_30smbnpr6 = zeros(1,1);

pname = 'D:\Dropbox\Paper\Compensatory reponse

mechanism\data_gait_adaptation\intermediate';

Name_n2 = 'N2';

Name_dop3 = 'LX703';

Name_avkdop3 = 'ZX2201';

Name_avkTeTx = 'FQ2747';

Name_flp1 = 'PS8997';

Name_npr6 = 'ZX2037U';

Name_smbnpr6 = 'ZX2037R';

Genotypes = {'N2','dop-3','AVK:dop-3(+)','AVK::TeTx','flp-

1','npr-6','SMB:npr-6(+)'};

for i = 1 : N % N2

 filename_n2 = [Name_n2 '_' pct{i} 'pct.mat'];

 load(fullfile(pname, filename_n2))

 f_N2(i) = mean(f_data);

 f_N2_SEM(i) = std(f_data)/sqrt(numel(f_data));

 l_N2(i) = mean(l_data);

 l_N2_SEM(i) = std(l_data)/sqrt(numel(l_data));

 k_N2(i) = mean(curv_data,'omitnan');

 k2_N2(i) = mean(curv_data.^2,'omitnan');

 if i==1

 rk_30N2 = mean(1./curv_data,'omitnan');

 rk2_30N2 = mean(1./curv_data.^2,'omitnan');

 end

 k_N2_SEM(i) =

std(curv_data,'omitnan')/sqrt(numel(curv_data));

 th_N2(i) = mean(th_data, 'omitnan');

163

 th_N2_SEM(i) =

std(th_data,'omitnan')/sqrt(numel(th_data));

end

for i = 1 : N % dop-3

 filename_dop3 = [Name_dop3 '_' pct{i} 'pct.mat'];

 load(fullfile(pname, filename_dop3))

 f_dop3(i) = mean(f_data);

 f_dop3_SEM(i) = std(f_data)/sqrt(numel(f_data));

 l_dop3(i) = mean(l_data);

 l_dop3_SEM(i) = std(l_data)/sqrt(numel(l_data));

 k_dop3(i) = mean(curv_data,'omitnan');

 k2_dop3(i) = mean(curv_data.^2,'omitnan');

 if i==1

 rk_30dop3 = mean(1./curv_data,'omitnan');

 rk2_30dop3 = mean(1./curv_data.^2,'omitnan');

 end

 k_dop3_SEM(i) =

std(curv_data,'omitnan')/sqrt(numel(curv_data));

 th_dop3(i) = mean(th_data,'omitnan');

 th_dop3_SEM(i) =

std(th_data,'omitnan')/sqrt(numel(th_data));

end

for i = 1 : N % avk::dop-3

 filename_avkdop3 = [Name_avkdop3 '_' pct{i} 'pct.mat'];

 load(fullfile(pname, filename_avkdop3))

 f_avkdop3(i) = mean(f_data);

 f_avkdop3_SEM(i) = std(f_data)/sqrt(numel(f_data));

 l_avkdop3(i) = mean(l_data);

 l_avkdop3_SEM(i) = std(l_data)/sqrt(numel(l_data));

 k_avkdop3(i) = mean(curv_data,'omitnan');

 k2_avkdop3(i) = mean(curv_data.^2,'omitnan');

 if i==1

 rk_30avkdop3 = mean(1./curv_data,'omitnan');

 rk2_30avkdop3 = mean(1./curv_data.^2,'omitnan');

 end

 k_avkdop3_SEM(i) =

std(curv_data,'omitnan')/sqrt(numel(curv_data));

 th_avkdop3(i) = mean(th_data,'omitnan');

 th_avkdop3_SEM(i) =

std(th_data,'omitnan')/sqrt(numel(th_data));

end

for i = 1 : N % avk::TeTx

 filename_avkTeTx = [Name_avkTeTx '_' pct{i} 'pct.mat'];

 load(fullfile(pname, filename_avkTeTx))

 f_avkTeTx(i) = mean(f_data);

 f_avkTeTx_SEM(i) = std(f_data)/sqrt(numel(f_data));

 l_avkTeTx(i) = mean(l_data);

 l_avkTeTx_SEM(i) = std(l_data)/sqrt(numel(l_data));

 k_avkTeTx(i) = mean(curv_data,'omitnan');

 k2_avkTeTx(i) = mean(curv_data.^2,'omitnan');

 if i==1

 rk_30avkTeTx = mean(1./curv_data,'omitnan');

 rk2_30avkTeTx = mean(1./curv_data.^2,'omitnan');

 end

 k_avkTeTx_SEM(i) =

std(curv_data,'omitnan')/sqrt(numel(curv_data));

 th_avkTeTx(i) = mean(th_data,'omitnan');

 th_avkTeTx_SEM(i) =

std(th_data,'omitnan')/sqrt(numel(th_data));

end

for i = 1 : N % flp-1

 filename_flp1 = [Name_flp1 '_' pct{i} 'pct.mat'];

 load(fullfile(pname, filename_flp1))

 f_flp1(i) = mean(f_data);

 f_flp1_SEM(i) = std(f_data)/sqrt(numel(f_data));

 l_flp1(i) = mean(l_data);

 l_flp1_SEM(i) = std(l_data)/sqrt(numel(l_data));

 k_flp1(i) = mean(curv_data,'omitnan');

 k2_flp1(i) = mean(curv_data.^2,'omitnan');

 if i==1

 rk_30flp1 = mean(1./curv_data,'omitnan');

 rk2_30flp1 = mean(1./curv_data.^2,'omitnan');

 end

 k_flp1_SEM(i) =

std(curv_data,'omitnan')/sqrt(numel(curv_data));

 th_flp1(i) = mean(th_data,'omitnan');

 th_flp1_SEM(i) =

std(th_data,'omitnan')/sqrt(numel(th_data));

end

for i = 1 : N % npr-6

 filename_npr6 = [Name_npr6 '_' pct{i} 'pct.mat'];

 load(fullfile(pname, filename_npr6))

 f_npr6(i) = mean(f_data);

 f_npr6_SEM(i) = std(f_data)/sqrt(numel(f_data));

 l_npr6(i) = mean(l_data);

 l_npr6_SEM(i) = std(l_data)/sqrt(numel(l_data));

 k_npr6(i) = mean(curv_data,'omitnan');

 k2_npr6(i) = mean(curv_data.^2,'omitnan');

 if i==1

 rk_30npr6 = mean(1./curv_data,'omitnan');

 rk2_30npr6 = mean(1./curv_data.^2,'omitnan');

 end

 k_npr6_SEM(i) =

std(curv_data,'omitnan')/sqrt(numel(curv_data));

 th_npr6(i) = mean(th_data,'omitnan');

 th_npr6_SEM(i) =

std(th_data,'omitnan')/sqrt(numel(th_data));

end

for i = 1 : N % smb::npr-6

 filename_smbnpr6 = [Name_smbnpr6 '_' pct{i} 'pct.mat'];

 load(fullfile(pname, filename_smbnpr6))

 f_smbnpr6(i) = mean(f_data);

 f_smbnpr6_SEM(i) = std(f_data)/sqrt(numel(f_data));

 l_smbnpr6(i) = mean(l_data);

 l_smbnpr6_SEM(i) = std(l_data)/sqrt(numel(l_data));

 k_smbnpr6(i) = mean(curv_data,'omitnan');

 k2_smbnpr6(i) = mean(curv_data.^2,'omitnan');

 if i==1

 rk_30smbnpr6 = mean(1./curv_data,'omitnan');

 rk2_30smbnpr6 = mean(1./curv_data.^2,'omitnan');

 end

 k_smbnpr6_SEM(i) =

std(curv_data,'omitnan')/sqrt(numel(curv_data));

 th_smbnpr6(i) = mean(th_data,'omitnan');

 th_smbnpr6_SEM(i) =

std(th_data,'omitnan')/sqrt(numel(th_data));

end

figure(1);clf

F = cat(1, f_N2', f_dop3', f_avkdop3', f_avkTeTx', f_flp1',

f_npr6', f_smbnpr6');

F_SEM = cat(1, f_N2_SEM', f_dop3_SEM', f_avkdop3_SEM',

f_avkTeTx_SEM',...

 f_flp1_SEM', f_npr6_SEM', f_smbnpr6_SEM');

b = bar(F, 'grouped');

hold on

[ngroups, nbars] = size(F);

% Get the x coordinate of the bars

x = nan(nbars, ngroups);

for i = 1:nbars

 x(i,:) = b(i).XEndPoints;

end

% Plot the errorbars

errorbar(x',F,F_SEM,'k','linestyle','none');

hold off

ylabel('f (Hz)')

set(gca, 'XTickLabel',Genotypes)

legend({'1300', '10000'},'Location','northeast')

figure(2);clf

L = cat(1, l_N2', l_dop3', l_avkdop3', l_avkTeTx', l_flp1',

l_npr6', l_smbnpr6');

L_SEM = cat(1, l_N2_SEM', l_dop3_SEM', l_avkdop3_SEM',

l_avkTeTx_SEM',...

 l_flp1_SEM', l_npr6_SEM', l_smbnpr6_SEM');

b = bar(L, 'grouped');

hold on

[ngroups, nbars] = size(L);

% Get the x coordinate of the bars

x = nan(nbars, ngroups);

for i = 1:nbars

 x(i,:) = b(i).XEndPoints;

end

% Plot the errorbars

errorbar(x',L,L_SEM,'k','linestyle','none');

hold off

ylabel('\lambda/L')

set(gca, 'XTickLabel',Genotypes)

legend({'1300', '10000'},'Location','northeast')

figure(3);clf

K = cat(1, k_N2', k_dop3', k_avkdop3', k_avkTeTx', k_flp1',

k_npr6', k_smbnpr6');

% K = cat(2, K_1mPas, K);

K_SEM = cat(1, k_N2_SEM', k_dop3_SEM', k_avkdop3_SEM',

k_avkTeTx_SEM',...

 k_flp1_SEM', k_npr6_SEM', k_smbnpr6_SEM');

% K_SEM = cat(2, K_SEM_1mPas, K_SEM);

V = K(:,1);

V_SEM = K_SEM(:,1);

b = bar(V, 'grouped');

hold on

[ngroups, nbars] = size(V);

% Get the x coordinate of the bars

x = nan(nbars, ngroups);

for i = 1:nbars

 x(i,:) = b(i).XEndPoints;

end

% Plot the errorbars

errorbar(x',V,V_SEM,'k','linestyle','none');

hold off

ylabel('K')

set(gca, 'XTickLabel',Genotypes)

% legend({'1300', '10000'},'Location','northeast')

164

figure(4);clf

T = cat(1, th_N2', th_dop3', th_avkdop3', th_avkTeTx',

th_flp1', th_npr6', th_smbnpr6');

T_SEM = cat(1, th_N2_SEM', th_dop3_SEM', th_avkdop3_SEM',

th_avkTeTx_SEM',...

 th_flp1_SEM', th_npr6_SEM', th_smbnpr6_SEM');

b = bar(T, 'grouped');

hold on

[ngroups, nbars] = size(T);

% Get the x coordinate of the bars

x = nan(nbars, ngroups);

for i = 1:nbars

 x(i,:) = b(i).XEndPoints;

end

% Plot the errorbars

errorbar(x',T,T_SEM,'k','linestyle','none');

hold off

ylabel('Angle of attack, (deg)')

set(gca, 'XTickLabel',Genotypes)

legend({'1300', '10000'},'Location','northeast')

figure(5); clf % relative change of curvature

DK = (K(:,2) - K(:,1))./K(:,1);

K2_30 = cat(1, k2_N2(1)', k2_dop3(1)', k2_avkdop3(1)',

k2_avkTeTx(1)',...

 k2_flp1(1)', k2_npr6(1)', k2_smbnpr6(1)');

K2_40 = cat(1, k2_N2(2)', k2_dop3(2)', k2_avkdop3(2)',

k2_avkTeTx(2)',...

 k2_flp1(2)', k2_npr6(2)', k2_smbnpr6(2)');

rK2_30 = cat(1, rk2_30N2', rk2_30dop3', rk2_30avkdop3',

rk2_30avkTeTx',...

 rk2_30flp1', rk2_30npr6', rk2_30smbnpr6');

rK_30 = cat(1, rk_30N2', rk_30dop3', rk_30avkdop3',

rk_30avkTeTx',...

 rk_30flp1', rk_30npr6', rk_30smbnpr6');

DK_SEM = ((K(:,1) - K(:,2)).^2./(K(:,2).^2)...

 .*((K_SEM(:,1).^2+K_SEM(:,2).^2)./(K(:,1) - K(:,2)).^2

+ K_SEM(:,1).^2./K(:,2).^2)).^.5;

% DK_SEM = ((K2_40 + K2_30 - 2*K(:,1).*K(:,2)).*rK2_30 -...

% (K(:,1) - K(:,2)).^2.*rK_30.^2).^.5;

b = bar(DK);

hold on

% Plot the errorbars

errorbar(1:numel(Genotypes),DK,DK_SEM,'k','linestyle','none

');

hold off

ylabel('Adaptation Index, \Delta K/K_{low vis}')

set(gca, 'XTickLabel',Genotypes)

%%

figure(12); clf

subplot(311)

load('N2_40pct.mat')

h1 = histogram(l_data,'Normalization',

'pdf','BinWidth',0.05);

xlim([0 3])

subplot(312)

load('LX703_40pct.mat')

h2 = histogram(l_data,'Normalization',

'pdf','BinWidth',0.05);

xlim([0 3])

subplot(313)

load('ZX2201_40pct.mat')

h3 = histogram(l_data,'Normalization',

'pdf','BinWidth',0.05);

xlim([0 3])

%

%% Gaussian mixture model

figure(13); clf

load('N2_45pct.mat')

[l,vi] = ksdensity(l_data, 'Kernel','epanechnikov');

plot(vi,l); xlim([0 3])

hold on

load('LX703_45pct.mat')

[l,vi] = ksdensity(l_data, 'Kernel','epanechnikov');

plot(vi,l);

load('ZX2201_45pct.mat')

[l,vi] = ksdensity(l_data, 'Kernel','epanechnikov');

plot(vi,l);

hold off

legend({'N2','dop-3','AVK::dop-3'},'Location','southeast')

N2_dop3_rescue.m
% close all;

clear; clc

Vis = [9.2 121 1390 9079 27900]'; % Viscosity (mPa¬∑s)

pct = {'05','15','30','40','45'};

N = numel(Vis);

f_N2 = zeros(N,1);

f_N2_SEM = zeros(N,1);

f_dop = zeros(N,1);

f_dop_SEM= zeros(N,1);

f_avk = zeros(N,1);

f_avk_SEM= zeros(N,1);

l_N2 = zeros(N,1);

l_N2_SEM = zeros(N,1);

l_dop = zeros(N,1);

l_dop_SEM= zeros(N,1);

l_avk = zeros(N,1);

l_avk_SEM= zeros(N,1);

k_N2 = zeros(N,1);

k_N2_SEM = zeros(N,1);

k_dop = zeros(N,1);

k_dop_SEM= zeros(N,1);

k_avk = zeros(N,1);

k_avk_SEM= zeros(N,1);

th_N2 = zeros(N,1);

th_N2_SEM = zeros(N,1);

th_dop = zeros(N,1);

th_dop_SEM= zeros(N,1);

th_avk = zeros(N,1);

th_avk_SEM= zeros(N,1);

pname = 'C:\Users\fffei\Dropbox\Paper\Compensatory reponse

mechanism\data_gait_adaptation\intermediate';

Name_n2 = 'N2';

Name_dop = 'LX703';

Name_avk = 'ZX2201';

for i = 1 : N

 filename_n2 = [Name_n2 '_' pct{i} 'pct.mat'];

 load(fullfile(pname, filename_n2))

 f_N2(i) = mean(f_data);

 f_N2_SEM(i) = std(f_data)/sqrt(numel(f_data));

 l_N2(i) = mean(l_data);

 l_N2_SEM(i) = std(l_data)/sqrt(numel(l_data));

 k_N2(i) = mean(curv_data,'omitnan');

 k_N2_SEM(i) =

std(curv_data,'omitnan')/sqrt(numel(curv_data));

 th_N2(i) = mean(th_data, 'omitnan');

 th_N2_SEM(i) =

std(th_data,'omitnan')/sqrt(numel(th_data));

end

for i = 1 : N

 filename_dop = [Name_dop '_' pct{i} 'pct.mat'];

 load(fullfile(pname, filename_dop))

 f_dop(i) = mean(f_data);

 f_dop_SEM(i) = std(f_data)/sqrt(numel(f_data));

 l_dop(i) = mean(l_data);

 l_dop_SEM(i) = std(l_data)/sqrt(numel(l_data));

 k_dop(i) = mean(curv_data,'omitnan');

 k_dop_SEM(i) =

std(curv_data,'omitnan')/sqrt(numel(curv_data));

 th_dop(i) = mean(th_data,'omitnan');

 th_dop_SEM(i) =

std(th_data,'omitnan')/sqrt(numel(th_data));

end

for i = 1 : N

 filename_avk = [Name_avk '_' pct{i} 'pct.mat'];

 load(fullfile(pname, filename_avk))

 f_avk(i) = mean(f_data);

 f_avk_SEM(i) = std(f_data)/sqrt(numel(f_data));

 l_avk(i) = mean(l_data);

 l_avk_SEM(i) = std(l_data)/sqrt(numel(l_data));

 k_avk(i) = mean(curv_data,'omitnan');

 k_avk_SEM(i) =

std(curv_data,'omitnan')/sqrt(numel(curv_data));

 th_avk(i) = mean(th_data,'omitnan');

 th_avk_SEM(i) =

std(th_data,'omitnan')/sqrt(numel(th_data));

end

figure(1);clf

errorbar(Vis, f_N2, f_N2_SEM, '-o','MarkerSize',10)

hold on

errorbar(Vis, f_dop, f_dop_SEM, '-o','MarkerSize',10)

hold off

hold on

errorbar(Vis, f_avk, f_avk_SEM, '-o','MarkerSize',10)

hold off

ylim([0 2])

xlim([3 10^5])

xlabel('Viscosity (mPa¬∑s)')

ylabel('f (Hz)')

set(gca, 'XScale', 'log', 'XTick',[1 10 100 1000 10000

100000],'FontSize', 18, 'Box', 'off')

legend({'N2','dop-3','AVK::dop-3'},'Location','northeast')

figure(2);clf

errorbar(Vis, l_N2, l_N2_SEM, '-o','MarkerSize',10)

hold on

errorbar(Vis, l_dop, l_dop_SEM, '-o','MarkerSize',10)

165

hold off

hold on

errorbar(Vis, l_avk, l_avk_SEM, '-o','MarkerSize',10)

hold off

ylim([0.5 2])

xlim([3 10^5])

xlabel('Viscosity (mPa¬∑s)')

ylabel('\lambda/L')

set(gca, 'XScale', 'log', 'XTick',[1 10 100 1000 10000

100000], 'FontSize', 18, 'Box', 'off')

legend({'N2','dop-3','AVK::dop-3'},'Location','northeast')

figure(3);clf

errorbar(Vis, k_N2, k_N2_SEM, '-o','MarkerSize',10)

hold on

errorbar(Vis, k_dop, k_dop_SEM, '-o','MarkerSize',10)

hold off

hold on

errorbar(Vis, k_avk, k_avk_SEM, '-o','MarkerSize',10)

hold off

ylim([0 10])

xlim([3 10^5])

xlabel('Viscosity (mPa¬∑s)')

ylabel('K')

set(gca, 'XScale', 'log', 'XTick',[1 10 100 1000 10000

100000], 'FontSize', 18, 'Box', 'off')

legend({'N2','dop-3','AVK::dop-3'},'Location','southeast')

figure(4);clf

errorbar(Vis, th_N2, th_N2_SEM, '-o','MarkerSize',10)

hold on

errorbar(Vis, th_dop, th_dop_SEM, '-o','MarkerSize',10)

hold off

hold on

errorbar(Vis, th_avk, th_avk_SEM, '-o','MarkerSize',10)

hold off

ylim([0 60])

xlim([3 10^5])

xlabel('Viscosity (mPa¬∑s)')

ylabel('Angle of attack, (deg)')

set(gca, 'XScale', 'log', 'XTick',[1 10 100 1000 10000

100000], 'FontSize', 18, 'Box', 'off')

legend({'N2','dop-3','AVK::dop-3'},'Location','southeast')

%% Gaussian mixture model

load('N2_45pct.mat')

k_data_N2 = curv_data;

load('ZX2201_45pct.mat')

k_data_dop3 = curv_data;

[h,p,ci,stats] = ttest2(k_data_N2,k_data_dop3)

%%

166

BIBLIOGRAPHY

Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., and Spigler, R. (2005). The Kuramoto

model: A simple paradigm for synchronization phenomena. Reviews of Modern Physics 77, 137.

Ache, J.M., and Matheson, T. (2013). Passive joint forces are tuned to limb use in insects and

drive movements without motor activity. Current Biology 23, 1418–1426.

Akitake, B., Ren, Q., Boiko, N., Ni, J., Sokabe, T., Stockand, J.D., Eaton, B.A., and Montell, C.

(2015). Coordination and fine motor control depend on Drosophila TRPγ. Nature Communications

6, 1–13.

Alexander, R.M. (2013). Principles of animal locomotion (Princeton University Press).

Alvarez, F.J., Jonas, P.C., Sapir, T., Hartley, R., Berrocal, M.C., Geiman, E.J., Todd, A.J., and

Goulding, M. (2005). Postnatal phenotype and localization of spinal cord V1 derived interneurons.

Journal of Comparative Neurology 493, 177–192.

Andersson, O., Forssberg, H., Grillner, S., and Wallen, P. (1981). Peripheral feedback

mechanisms acting on the central pattern generators for locomotion in fish and cat. Canadian

Journal of Physiology and Pharmacology 59, 713–726.

Bamber, B.A., Beg, A.A., Twyman, R.E., and Jorgensen, E.M. (1999). The Caenorhabditis

elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. Journal of

Neuroscience 19, 5348–5359.

Bargmann, C.I. (1998). Neurobiology of the Caenorhabditis elegans genome. Science 282, 2028–

2033.

Bargmann, C.I. (2012). Beyond the connectome: how neuromodulators shape neural circuits.

167

Bioessays 34, 458–465.

Bässler, U. (1977). Sensory control of leg movement in the stick insect Carausius morosus.

Biological Cybernetics 25, 61–72.

Berri, S., Boyle, J.H., Tassieri, M., Hope, I.A., and Cohen, N. (2009). Forward locomotion of the

nematode C. elegans is achieved through modulation of a single gait. HFSP Journal 3, 186–193.

Bidaye, S.S., Bockemühl, T., and Büschges, A. (2018). Six-legged walking in insects: how CPGs,

peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms.

Journal of Neurophysiology 119, 459–475.

Blight, A.R. (1977). The Muscular Control of Vertebrate Swimming Movements. Biological

Reviews 52, 181–218.

Borgmann, A., Hooper, S.L., and Büschges, A. (2009). Sensory feedback induced by front-leg

stepping entrains the activity of central pattern generators in caudal segments of the stick insect

walking system. Journal of Neuroscience 29, 2972–2983.

Bourane, S., Duan, B., Koch, S.C., Dalet, A., Britz, O., Garcia-Campmany, L., Kim, E., Cheng, L.,

Ghosh, A., Ma, Q., et al. (2015a). Gate control of mechanical itch by a subpopulation of spinal

cord interneurons. Science 350, 550–554.

Bourane, S., Grossmann, K.S., Britz, O., Dalet, A., Del Barrio, M.G., Stam, F.J., Garcia-

Campmany, L., Koch, S., and Goulding, M. (2015b). Identification of a Spinal Circuit for Light

Touch and Fine Motor Control. Cell 160, 503–515.

Bowman, W.C. (2006). Neuromuscular block. British Journal of Pharmacology 147, S277–S286.

Bowtell, G., and Williams, T. (1991). Anguilliform body dynamics: modelling the interaction

168

between muscle activation and body curvature. Philosophical Transactions of the Royal Society

of London. Series B: Biological Sciences 334, 385–390.

Boyle, J.H., Berri, S., and Cohen, N. (2012). Gait modulation in C. elegans: an integrated

neuromechanical model. Frontiers in Computational Neuroscience 6, 10.

Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71–94.

Brodfuehrer, P.D., and Friesen, W.O. (1986). From stimulation to undulation: a neuronal pathway

for the control of swimming in the leech. Science 234, 1002–1004.

Brown, T.G. (1911). The intrinsic factors in the act of progression in the mammal. Proceedings of

the Royal Society of London. Series B, Containing Papers of a Biological Character 84, 308–319.

Bryden, J., and Cohen, N. (2008). Neural control of Caenorhabditis elegans forward locomotion:

the role of sensory feedback. Biological Cybernetics 98, 339–351.

Buchanan, J.T., and Grillner, S. (1987). Newly identified’ glutamate interneurons’ and their role in

locomotion in the lamprey spinal cord. Science 236, 312–314.

Bui, T.V., Akay, T., Loubani, O., Hnasko, T.S., Jessell, T.M., and Brownstone, R.M. (2013).

Circuits for Grasping: Spinal dI3 Interneurons Mediate Cutaneous Control of Motor Behavior.

Neuron 78, 191–204.

Büschges, A., and Mantziaris, C. (2021). Proprioception: Blurring the boundaries of central and

peripheral control. Current Biology 31, R444–R445.

Butler, V.J., Branicky, R., Yemini, E., Liewald, J.F., Gottschalk, A., Kerr, R.A., Chklovskii, D.B.,

and Schafer, W.R. (2015). A consistent muscle activation strategy underlies crawling and

swimming in Caenorhabditis elegans. Journal of the Royal Society Interface 12, 20140963.

169

Calhoun, A.J., Tong, A., Pokala, N., Fitzpatrick, J.A., Sharpee, T.O., and Chalasani, S.H. (2015).

Neural mechanisms for evaluating environmental variability in Caenorhabditis elegans. Neuron

86, 428–441.

Cang, J., and Friesen, W.O. (2000). Sensory modification of leech swimming: rhythmic activity of

ventral stretch receptors can change intersegmental phase relationships. Journal of

Neuroscience 20, 7822–7829.

Cang, J., Yu, X., and Friesen, O.W. (2001). Sensory modification of leech swimming: interactions

between ventral stretch receptors and swim-related neurons. Journal of Comparative Physiology

A 187, 569–579.

Cermak, N., Stephanie, K.Y., Clark, R., Huang, Y.-C., Baskoylu, S.N., and Flavell, S.W. (2020).

Whole-organism behavioral profiling reveals a role for dopamine in state-dependent motor

program coupling in C. elegans. Elife 9, e57093.

Chalfie, M., Sulston, J.E., White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1985). The

neural circuit for touch sensitivity in Caenorhabditis elegans. Journal of Neuroscience 5, 956–964.

Chalfie, M., White, J., and Wood, W.B. (1988). The nematode Caenorhabditis elegans (New

York: Cold Spring Harbor Laboratory Press).

Chase, D.L., Pepper, J.S., and Koelle, M.R. (2004). Mechanism of extrasynaptic dopamine

signaling in Caenorhabditis elegans. Nature Neuroscience 7, 1096–1103.

Chen, J., Friesen, W.O., and Iwasaki, T. (2011). Mechanisms underlying rhythmic locomotion:

body–fluid interaction in undulatory swimming. Journal of Experimental Biology 214, 561–574.

Chronis, N., Zimmer, M., and Bargmann, C.I. (2007). Microfluidics for in vivo imaging of neuronal

and behavioral activity in Caenorhabditis elegans. Nature Methods 4, 727–731.

170

Churgin, M.A., McCloskey, R.J., Peters, E., and Fang-Yen, C. (2017). Antagonistic serotonergic

and octopaminergic neural circuits mediate food-dependent locomotory behavior in

Caenorhabditis elegans. Journal of Neuroscience 37, 7811–7823.

Cohen, A.H., and Wallén, P. (1980). The neuronal correlate of locomotion in fish. Experimental

Brain Research 41, 11–18.

Cohen, N., and Denham, J.E. (2019). Whole animal modeling: piecing together nematode

locomotion. Current Opinion in Systems Biology 13, 150–160.

Cook, S.J., Jarrell, T.A., Brittin, C.A., Wang, Y., Bloniarz, A.E., Yakovlev, M.A., Nguyen, K.C.,

Tang, L.T.-H., Bayer, E.A., and Duerr, J.S. (2019). Whole-animal connectomes of both

Caenorhabditis elegans sexes. Nature 571, 63–71.

Croll, N.A. (1970). The behaviour of nematodes: their activity, senses and responses. The

Behaviour of Nematodes: Their Activity, Senses and Responses.

Cruse, H. (1976). The control of body position in the stick insect (Carausius morosus), when

walking over uneven surfaces. Biological Cybernetics 24, 25–33.

Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science 210, 492–498.

Deng, L., Denham, J., Arya, C., Yuval, O., Cohen, N., and Haspel, G. (2020). Inhibition underlies

fast undulatory locomotion in C. elegans. BioRxiv.

Denham, J.E., Ranner, T., and Cohen, N. (2018). Signatures of proprioceptive control in

Caenorhabditis elegans locomotion. Philosophical Transactions of the Royal Society B: Biological

Sciences 373, 20180208.

Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A.R., Kram, R., and Lehman, S. (2000). How

171

animals move: an integrative view. Science 288, 100–106.

Dietz, V. (2002). Proprioception and locomotor disorders. Nature Reviews Neuroscience 3, 781–

790.

Dietz, V., Quintern, J., and Sillem, M. (1987). Stumbling reactions in man: significance of

proprioceptive and pre-programmed mechanisms. The Journal of Physiology 386, 149–163.

Dong, X., Kheiri, S., Lu, Y., Xu, Z., Zhen, M., and Liu, X. (2021). Toward a living soft microrobot

through optogenetic locomotion control of Caenorhabditis elegans. Science Robotics 6,

eabe3950.

Donnelly, J.L., Clark, C.M., Leifer, A.M., Pirri, J.K., Haburcak, M., Francis, M.M., Samuel, A.D.,

and Alkema, M.J. (2013). Monoaminergic orchestration of motor programs in a complex C.

elegans behavior. PLoS Biology 11, e1001529.

Driscoll, M., and Kaplan, J. (1997). Mechanotransduction.

Eastwood, A.L., Sanzeni, A., Petzold, B.C., Park, S.-J., Vergassola, M., Pruitt, B.L., and

Goodman, M.B. (2015). Tissue mechanics govern the rapidly adapting and symmetrical response

to touch. Proceedings of the National Academy of Sciences 112, E6955–E6963.

Ekeberg, Ö., and Grillner, S. (1999). Simulations of neuromuscular control in lamprey swimming.

Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 354,

895–902.

Fang-Yen, C., Wyart, M., Xie, J., Kawai, R., Kodger, T., Chen, S., Wen, Q., and Samuel, A.D.

(2010). Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans.

Proceedings of the National Academy of Sciences 107, 20323–20328.

172

Fisher, N.I., Lewis, T., and Embleton, B.J. (1993). Statistical analysis of spherical data

(Cambridge university press).

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane.

Biophysical Journal 1, 445.

Flavell, S.W., Pokala, N., Macosko, E.Z., Albrecht, D.R., Larsch, J., and Bargmann, C.I. (2013).

Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C.

elegans. Cell 154, 1023–1035.

Forssberg, H. (1979). Stumbling corrective reaction: a phase-dependent compensatory reaction

during locomotion. J Neurophysiol 42, 936–953.

Forssberg, H., Grillner, S., and Rossignol, S. (1975). Phase dependent reflex reversal during

walking in chronic spinal cats. Brain Research 85, 103–107.

Forssberg, H., Grillner, S., and Rossignol, S. (1977). Phasic gain control of reflexes from the

dorsum of the paw during spinal locomotion. Brain Research 132, 121–139.

Fouad, A.D., Teng, S., Mark, J.R., Liu, A., Ji, H., Cornblath, E., and Fang-Yen, C. (2017).

Distributed rhythm generators underlie. Caenorhabditis Elegans.

Fouad, A.D., Teng, S., Mark, J.R., Liu, A., Alvarez-Illera, P., Ji, H., Du, A., Bhirgoo, P.D.,

Cornblath, E., and Guan, S.A. (2018). Distributed rhythm generators underlie Caenorhabditis

elegans forward locomotion. Elife 7, e29913.

Fouad, A.D., Liu, A., Du, A., Bhirgoo, P.D., and Fang-Yen, C. (2021). Thermal laser ablation with

tunable lesion size reveals multiple origins of seizure-like convulsions in Caenorhabditis elegans.

Scientific Reports 11, 1–9.

173

Friesen, W.O. (2009). Central Pattern Generators: Sensory Feedback. Encyclopedia of

Neuroscience.

Gao, S., Guan, S.A., Fouad, A.D., Meng, J., Kawano, T., Huang, Y.-C., Li, Y., Alcaire, S., Hung,

W., and Lu, Y. (2018). Excitatory motor neurons are local oscillators for backward locomotion.

Elife 7, e29915.

Gjorgjieva, J., Biron, D., and Haspel, G. (2014). Neurobiology of Caenorhabditis elegans

locomotion: where do we stand? Bioscience 64, 476–486.

Goulding, M. (2009). Circuits controlling vertebrate locomotion: moving in a new direction. Nat

Rev Neurosci 10, 507–518.

Graham, D. (1985). Pattern and control of walking in insects. In Advances in Insect Physiology,

(Elsevier), pp. 31–140.

Gray, J. (1933). Studies in animal locomotion: I. The movement of fish with special reference to

the eel. Journal of Experimental Biology 10, 88–104.

Gray, J., and Lissmann, H.W. (1964). The locomotion of nematodes. Journal of Experimental

Biology 41, 135–154.

Gray, J.M., Hill, J.J., and Bargmann, C.I. (2005). A circuit for navigation in Caenorhabditis

elegans. Proceedings of the National Academy of Sciences 102, 3184–3191.

Grillner, S. (2003). The motor infrastructure: from ion channels to neuronal networks. Nature

Reviews Neuroscience 4, 573–586.

Grillner, S. (2006). Biological pattern generation: the cellular and computational logic of networks

in motion. Neuron 52, 751–766.

174

Grillner, S. (2021). The execution of movement: A spinal affair. Journal of Neurophysiology 125,

693–698.

Grillner, S., and El Manira, A. (2020). Current principles of motor control, with special reference to

vertebrate locomotion. Physiological Reviews 100, 271–320.

Grillner, S., and Jessell, T.M. (2009). Measured motion: searching for simplicity in spinal

locomotor networks. Current Opinion in Neurobiology 19, 572–586.

Grillner, S., and Wallen, P. (2002). Cellular bases of a vertebrate locomotor system–steering,

intersegmental and segmental co-ordination and sensory control. Brain Research Reviews 40,

92–106.

Grillner, S., McClellan, A., and Perret, C. (1981). Entrainment of the spinal pattern generators for

swimming by mechano-sensitive elements in the lamprey spinal cord in vitro. Brain Research

217, 380–386.

Grillner, S., Hellgren, J., Menard, A., Saitoh, K., and Wikström, M.A. (2005). Mechanisms for

selection of basic motor programs–roles for the striatum and pallidum. Trends in Neurosciences

28, 364–370.

Guo, Z.V., and Mahadevan, L. (2008). Limbless undulatory propulsion on land. Proceedings of

the National Academy of Sciences 105, 3179–3184.

Gutkin, B.S., Ermentrout, G.B., and Reyes, A.D. (2005). Phase-response curves give the

responses of neurons to transient inputs. Journal of Neurophysiology 94, 1623–1635.

Han, B., Dong, Y., Zhang, L., Liu, Y., Rabinowitch, I., and Bai, J. (2017). Dopamine signaling

tunes spatial pattern selectivity in C. elegans. Elife 6, e22896.

175

Hansen, P.D., Woollacott, M.H., and Debu, B. (1988). Postural responses to changing task

conditions. Experimental Brain Research 73, 627–636.

Haspel, G., O’Donovan, M.J., and Hart, A.C. (2010). Motoneurons dedicated to either forward or

backward locomotion in the nematode Caenorhabditis elegans. Journal of Neuroscience 30,

11151–11156.

Haspel, G., Deng, L., Harreguy, M.B., and Tanvir, Z. (2020). Elegantly. In The Neural Control of

Movement, (Elsevier), pp. 3–29.

Hilde, K.L., Levine, A.J., Hinckley, C.A., Hayashi, M., Montgomery, J.M., Gullo, M., Driscoll, S.P.,

Grosschedl, R., Kohwi, Y., Kohwi-Shigematsu, T., et al. (2016). Satb2 Is Required for the

Development of a Spinal Exteroceptive Microcircuit that Modulates Limb Position. Neuron 91,

763–776.

Hills, T., Brockie, P.J., and Maricq, A.V. (2004). Dopamine and glutamate control area-restricted

search behavior in Caenorhabditis elegans. Journal of Neuroscience 24, 1217–1225.

Hobert, O. (2003). Behavioral plasticity in C. elegans: paradigms, circuits, genes. Journal of

Neurobiology 54, 203–223.

Hu, Z., Pym, E.C., Babu, K., Murray, A.B.V., and Kaplan, J.M. (2011). A neuropeptide-mediated

stretch response links muscle contraction to changes in neurotransmitter release. Neuron 71, 92–

102.

Hums, I., Riedl, J., Mende, F., Kato, S., Kaplan, H.S., Latham, R., Sonntag, M., Traunmüller, L.,

and Zimmer, M. (2016). Regulation of two motor patterns enables the gradual adjustment of

locomotion strategy in Caenorhabditis elegans. Elife 5, e14116.

Iwasaki, T., Chen, J., and Friesen, W.O. (2014). Biological clockwork underlying adaptive

176

rhythmic movements. Proceedings of the National Academy of Sciences 111, 978–983.

Izhikevich, E.M. (2007). Dynamical systems in neuroscience (MIT press).

Izquierdo, E.J., and Beer, R.D. (2018). From head to tail: a neuromechanical model of forward

locomotion in Caenorhabditis elegans. Philosophical Transactions of the Royal Society B:

Biological Sciences 373, 20170374.

Ji, H., Fouad, A.D., Teng, S., Liu, A., Alvarez-Illera, P., Yao, B., Li, Z., and Fang-Yen, C. (2021a).

Phase response analyses support a relaxation oscillator model of locomotor rhythm generation in

Caenorhabditis elegans. Elife 10, e69905.

Ji, H., Fouad, A.D., Teng, S., Liu, A., Alvarez-Illera, P., Yao, B., Li, Z., and Fang-Yen, C. (2021b).

Phase response analyses support a relaxation oscillator model of locomotor rhythm generation in

Caenorhabditis elegans. ELife 10, e69905.

Ji, H., Fouad, A., Teng, S., Liu, A., Alvarez-Illera, P., Yao, B., Li, Z., and Fang-Yen, C. (2021c).

Phase response analyses support a relaxation oscillator model of locomotor rhythm generation in

Caenorhabditis elegans (Dryad).

Johnson, C.L., Lewis, T.J., and Guy, R. (2021). Neuromechanical Mechanisms of Gait Adaptation

in C. elegans: Relative Roles of Neural and Mechanical Coupling. SIAM Journal on Applied

Dynamical Systems 20, 1022–1052.

Kaplan, H.S., Thula, O.S., Khoss, N., and Zimmer, M. (2020). Nested neuronal dynamics

orchestrate a behavioral hierarchy across timescales. Neuron 105, 562–576.

Karbowski, J., Schindelman, G., Cronin, C.J., Seah, A., and Sternberg, P.W. (2008). Systems

level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular

genetics. Journal of Computational Neuroscience 24, 253–276.

177

Kato, S., Kaplan, H.S., Schrödel, T., Skora, S., Lindsay, T.H., Yemini, E., Lockery, S., and

Zimmer, M. (2015). Global Brain Dynamics Embed the Motor Command Sequence of

Caenorhabditis elegans. Cell 163, 656–669.

Katz, D.F., Blake, J.R., and Paveri-Fontana, S.L. (1975). On the movement of slender bodies

near plane boundaries at low Reynolds number. Journal of Fluid Mechanics 72, 529–540.

Kawano, T., Po, M.D., Gao, S., Leung, G., Ryu, W.S., and Zhen, M. (2011). An imbalancing act:

gap junctions reduce the backward motor circuit activity to bias C. elegans for forward

locomotion. Neuron 72, 572–586.

Kiehn, O. (1998). Neuronal mechanisms for generating locomotor activity (New York Academy of

Sciences).

Kiehn, O. (2011). Development and functional organization of spinal locomotor circuits. Current

Opinion in Neurobiology 21, 100–109.

Kiehn, O. (2016). Decoding the organization of spinal circuits that control locomotion. Nature

Reviews Neuroscience 17, 224–238.

Kindt, K.S., Quast, K.B., Giles, A.C., De, S., Hendrey, D., Nicastro, I., Rankin, C.H., and Schafer,

W.R. (2007). Dopamine mediates context-dependent modulation of sensory plasticity in C.

elegans. Neuron 55, 662–676.

Koch, S.C., Del Barrio, M.G., Dalet, A., Gatto, G., Günther, T., Zhang, J., Seidler, B., Saur, D.,

Schüle, R., and Goulding, M. (2017). RORβ Spinal Interneurons Gate Sensory Transmission

during Locomotion to Secure a Fluid Walking Gait. Neuron 96, 1419-1431.e5.

Kratsios, P., Stolfi, A., Levine, M., and Hobert, O. (2012). Coordinated regulation of cholinergic

motor neuron traits through a conserved terminal selector gene. Nature Neuroscience 15, 205.

178

Kristan, W.B., and Calabrese, R.L. (1976). Rhythmic swimming activity in neurones of the

isolated nerve cord of the leech. Journal of Experimental Biology 65, 643–668.

Kunert, J.M., Proctor, J.L., Brunton, S.L., and Kutz, J.N. (2017). Spatiotemporal feedback and

network structure drive and encode Caenorhabditis elegans locomotion. PLoS Computational

Biology 13, e1005303.

Leifer, A.M., Fang-Yen, C., Gershow, M., Alkema, M.J., and Samuel, A.D. (2011). Optogenetic

manipulation of neural activity in freely moving Caenorhabditis elegans. Nature Methods 8, 147–

152.

Li, W., Feng, Z., Sternberg, P.W., and Xu, X.S. (2006). A C. elegans stretch receptor neuron

revealed by a mechanosensitive TRP channel homologue. Nature 440, 684–687.

Liu, Q., Chen, B., Gaier, E., Joshi, J., and Wang, Z.-W. (2006). Low conductance gap junctions

mediate specific electrical coupling in body-wall muscle cells of Caenorhabditis elegans. Journal

of Biological Chemistry 281, 7881–7889.

Lockery, S.R., Lawton, K.J., Doll, J.C., Faumont, S., Coulthard, S.M., Thiele, T.R., Chronis, N.,

McCormick, K.E., Goodman, M.B., and Pruitt, B.L. (2008). Artificial dirt: microfluidic substrates for

nematode neurobiology and behavior. Journal of Neurophysiology 99, 3136–3143.

LONG, J.H., Jr. (1998). Muscles, Elastic Energy, and the Dynamics of Body Stiffness in

Swimming Eels1. American Zoologist 38, 771–792.

López-Cruz, A., Sordillo, A., Pokala, N., Liu, Q., McGrath, P.T., and Bargmann, C.I. (2019).

Parallel multimodal circuits control an innate foraging behavior. Neuron 102, 407–419.

Marder, E., and Bucher, D. (2001). Central pattern generators and the control of rhythmic

movements. Current Biology 11, R986–R996.

179

Marder, E., and Calabrese, R.L. (1996). Principles of rhythmic motor pattern generation.

Physiological Reviews 76, 687–717.

Mayer, W.P., and Akay, T. (2018). Stumbling corrective reaction elicited by mechanical and

electrical stimulation of the saphenous nerve in walking mice. Journal of Experimental Biology

221, jeb178095.

Mclntire, S.L., Jorgensen, E., Kaplan, J., and Horvitz, H.R. (1993). The GABAergic nervous

system of Caenorhabditis elegans. Nature 364, 337–341.

McVea, D.A., and Pearson, K.G. (2007). Long-lasting, context-dependent modification of stepping

in the cat after repeated stumbling-corrective responses. J Neurophysiol 97, 659–669.

Mendes, C.S., Bartos, I., Akay, T., Márka, S., and Mann, R.S. (2013). Quantification of gait

parameters in freely walking wild type and sensory deprived Drosophila melanogaster. Elife 2,

e00231.

Milligan, B., Curtin, N., and Bone, Q. (1997). Contractile properties of obliquely striated muscle

from the mantle of squid (Alloteuthis subulata) and cuttlefish (Sepia officinalis). The Journal of

Experimental Biology 200, 2425–2436.

Morris, C., and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber.

Biophysical Journal 35, 193–213.

Mullins, O.J., Hackett, J.T., Buchanan, J.T., and Friesen, W.O. (2011). Neuronal control of

swimming behavior: comparison of vertebrate and invertebrate model systems. Progress in

Neurobiology 93, 244–269.

Nadim, F., Zhao, S., and Bose, A. (2012). A PRC description of how inhibitory feedback promotes

oscillation stability. In Phase Response Curves in Neuroscience, (Springer), pp. 399–417.

180

Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An active pulse transmission line simulating

nerve axon. Proceedings of the IRE 50, 2061–2070.

Nave, C.R. (1995). Relaxation oscillator concept.

Nelson, L.S., Rosoff, M.L., and Li, C. (1998). Disruption of a neuropeptide gene, flp-1, causes

multiple behavioral defects in Caenorhabditis elegans. Science 281, 1686–1690.

Niebur, E., and Erdös, P. (1991). Theory of the locomotion of nematodes: dynamics of undulatory

progression on a surface. Biophysical Journal 60, 1132–1146.

O’Hagan, R., Chalfie, M., and Goodman, M.B. (2005). The MEC-4 DEG/ENaC channel of

Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nature

Neuroscience 8, 43–50.

Olivares, E., Izquierdo, E.J., and Beer, R.D. (2021). A neuromechanical model of multiple network

rhythmic pattern generators for forward locomotion in C. elegans. Frontiers in Computational

Neuroscience 15, 10.

Oranth, A., Schultheis, C., Tolstenkov, O., Erbguth, K., Nagpal, J., Hain, D., Brauner, M., Wabnig,

S., Costa, W.S., and McWhirter, R.D. (2018). Food sensation modulates locomotion by dopamine

and neuropeptide signaling in a distributed neuronal network. Neuron 100, 1414–1428.

Pearce, R.A., and Friesen, W.O. (1984). Intersegmental coordination of leech swimming:

comparison of in situ and isolated nerve cord activity with body wall movement. Brain Research

299, 363–366.

Pearson, K. (2000). Motor systems. Current Opinion in Neurobiology 10, 649–654.

Pearson, K.G. (2004). Generating the walking gait: role of sensory feedback. In Progress in Brain

181

Research, (Elsevier), pp. 123–129.

Picton, L.D., Bertuzzi, M., Pallucchi, I., Fontanel, P., Dahlberg, E., Björnfors, E.R., Iacoviello, F.,

Shearing, P.R., and El Manira, A. (2021). A spinal organ of proprioception for integrated motor

action feedback. Neuron 109, 1188–1201.

Pierce-Shimomura, J.T., Chen, B.L., Mun, J.J., Ho, R., Sarkis, R., and McIntire, S.L. (2008).

Genetic analysis of crawling and swimming locomotory patterns in C. elegans. Proceedings of the

National Academy of Sciences 105, 20982–20987.

Pietras, B., and Daffertshofer, A. (2019). Network dynamics of coupled oscillators and phase

reduction techniques. Physics Reports.

Potocanac, Z., Pijnappels, M., Verschueren, S., van Dieën, J., and Duysens, J. (2016). Two-

stage muscle activity responses in decisions about leg movement adjustments during trip

recovery. J Neurophysiol 115, 143–156.

Prochazka, A., Sontag, K.-H., and Wand, P. (1978). Motor reactions to perturbations of gait:

proprioceptive and somesthetic involvement. Neuroscience Letters 7, 35–39.

Ranner, T. (2020). A stable finite element method for low inertia undulatory locomotion in three

dimensions. Applied Numerical Mathematics 156, 422–445.

Rayleigh, J.W.S.B. (1896). The theory of sound (Macmillan).

Roberts, T.J., and Azizi, E. (2011). Flexible mechanisms: the diverse roles of biological springs in

vertebrate movement. Journal of Experimental Biology 214, 353–361.

Roberts, A., Li, W.-C., and Soffe, S.R. (2010). How neurons generate behaviour in a hatchling

amphibian tadpole: an outline. Frontiers in Behavioral Neuroscience 4, 16.

182

Roseberry, T.K., Lee, A.M., Lalive, A.L., Wilbrecht, L., Bonci, A., and Kreitzer, A.C. (2016). Cell-

type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164, 526–537.

Rosenblum, M. (2018). Inferring the phase response curve from observation of a continuously

perturbed oscillator. Scientific Reports 8, 1–10.

Rossignol, S. (2006). Dubuc R, Gossard JP. Dynamic Sensorimotor Interactions in Locomotion.

Physiol Rev 86, 89–154.

Rugiero, F., Drew, L.J., and Wood, J.N. (2010). Kinetic properties of mechanically activated

currents in spinal sensory neurons. The Journal of Physiology 588, 301–314.

Sauvage, P. (2007). Etude de la locomotion chez C. elegans et perturbations mecaniques du

mouvement. PhD Thesis. PhD dissertation, Laboratoire Matiere et Systemes Compiexes (Paris,

France ….

Sawin, E.R., Ranganathan, R., and Horvitz, H.R. (2000). C. elegans locomotory rate is modulated

by the environment through a dopaminergic pathway and by experience through a serotonergic

pathway. Neuron 26, 619–631.

Schultheiss, N.W., Prinz, A.A., and Butera, R.J. (2011). Phase response curves in neuroscience:

theory, experiment, and analysis (Springer Science & Business Media).

Schwarz, J., and Bringmann, H. (2017). Analysis of the NK2 homeobox gene ceh-24 reveals

sublateral motor neuron control of left-right turning during sleep. ELife 6, e24846.

Shen, Y., Wen, Q., Liu, H., Zhong, C., Qin, Y., Harris, G., Kawano, T., Wu, M., Xu, T., and

Samuel, A.D. (2016). An extrasynaptic GABAergic signal modulates a pattern of forward

movement in Caenorhabditis elegans. Elife 5, e14197.

183

Smeal, R.M., Ermentrout, G.B., and White, J.A. (2010). Phase-response curves and

synchronized neural networks. Philosophical Transactions of the Royal Society B: Biological

Sciences 365, 2407–2422.

Smith, J.L., Chung, S.H., and Zernicke, R.F. (1993). Gait-related motor patterns and hindlimb

kinetics for the cat trot and gallop. Experimental Brain Research 94, 308–322.

Stiernagle, T. (2006). Maintenance of C. elegans (February 11, 2006), WormBook, ed. The C.

elegans Research Community, WormBook, doi/10.1895/wormbook. 1.101. 1.

Sulston, J., and Hodgkin, J. (1988). The nematode Caenorhabditis elegans.

Sulston, J., Dew, M., and Brenner, S. (1975). Dopaminergic neurons in the nematode

Caenorhabditis elegans. Journal of Comparative Neurology 163, 215–226.

Susoy, V., Hung, W., Witvliet, D., Whitener, J.E., Wu, M., Park, C.F., Graham, B.J., Zhen, M.,

Venkatachalam, V., and Samuel, A.D. (2021). Natural sensory context drives diverse brain-wide

activity during C. elegans mating. Cell 184, 5122–5137.

Svoboda, K., and Li, N. (2018). Neural mechanisms of movement planning: motor cortex and

beyond. Current Opinion in Neurobiology 49, 33–41.

Tao, L., Porto, D., Li, Z., Fechner, S., Lee, S.A., Goodman, M.B., Xu, X.S., Lu, H., and Shen, K.

(2019). Parallel Processing of Two Mechanosensory Modalities by a Single Neuron in C. elegans.

Developmental Cell 51, 617–631.

Tytell, E.D., Carr, J.A., Danos, N., Wagenbach, C., Sullivan, C.M., Kiemel, T., Cowan, N.J., and

Ankarali, M.M. (2018). Body stiffness and damping depend sensitively on the timing of muscle

activation in lampreys. Integrative and Comparative Biology 58, 860–873.

184

Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., and Martí, R. (2007). Scatter search and

local NLP solvers: A multistart framework for global optimization. INFORMS Journal on

Computing 19, 328–340.

Van der Pol, B. (1926). LXXXVIII. On “relaxation-oscillations.” The London, Edinburgh, and

Dublin Philosophical Magazine and Journal of Science 2, 978–992.

VAN DER POL, B. (1940). Biological rhythms considered as relaxation oscillations. Acta Medica

Scandinavica 103, 76–88.

Vidal-Gadea, A., Topper, S., Young, L., Crisp, A., Kressin, L., Elbel, E., Maples, T., Brauner, M.,

Erbguth, K., and Axelrod, A. (2011). Caenorhabditis elegans selects distinct crawling and

swimming gaits via dopamine and serotonin. Proceedings of the National Academy of Sciences

108, 17504–17509.

Von Stetina, S.E., Treinin, M., and Miller, D.M. (2006). The motor circuit. Int. Rev. Neurobiol 69,

125–167.

Wallace, H.R. (1968). The dynamics of nematode movement. Annual Review of Phytopathology

6, 91–114.

Wen, Q., Po, M.D., Hulme, E., Chen, S., Liu, X., Kwok, S.W., Gershow, M., Leifer, A.M., Butler,

V., and Fang-Yen, C. (2012). Proprioceptive coupling within motor neurons drives C. elegans

forward locomotion. Neuron 76, 750–761.

Wendler, G. (1968). Ein Analogmodell der Beinbewegungen eines laufenden Insekts. Kybernetik

18, 68–74.

White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1986). The structure of the nervous

system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314, 1–340.

185

Wilson, D.M. (1961). The central nervous control of flight in a locust. Journal of Experimental

Biology 38, 471–490.

WILSON, D.M., and WEIS-FOGH, T. (1962). Patterned activity of coordinated motor units,

studied in flying locusts. Journal of Experimental Biology 39, 643–667.

Windhorst, U. (2007). Muscle proprioceptive feedback and spinal networks. Brain Research

Bulletin 73, 155–202.

Winfree, A.T. (2001). The geometry of biological time (Springer Science & Business Media).

Wisleder, D., Zernicke, R.F., and Smith, J.L. (1990). Speed-related changes in hindlimb

intersegmental dynamics during the swing phase of cat locomotion. Experimental Brain Research

79, 651–660.

Wolf, H., and Pearson, K.G. (1988). Proprioceptive input patterns elevator activity in the locust

flight system. Journal of Neurophysiology 59, 1831–1853.

Woo, S.-H., Lukacs, V., De Nooij, J.C., Zaytseva, D., Criddle, C.R., Francisco, A., Jessell, T.M.,

Wilkinson, K.A., and Patapoutian, A. (2015). Piezo2 is the principal mechanotransduction channel

for proprioception. Nature Neuroscience 18, 1756–1762.

Xu, T., Huo, J., Shao, S., Po, M., Kawano, T., Lu, Y., Wu, M., Zhen, M., and Wen, Q. (2018).

Descending pathway facilitates undulatory wave propagation in Caenorhabditis elegans through

gap junctions. Proceedings of the National Academy of Sciences 115, E4493–E4502.

Yeon, J., Kim, J., Kim, D.-Y., Kim, H., Kim, J., Du, E.J., Kang, K., Lim, H.-H., Moon, D., and Kim,

K. (2018). A sensory-motor neuron type mediates proprioceptive coordination of steering in C.

elegans via two TRPC channels. PLoS Biology 16, e2004929.

186

Yu, X., and Friesen, W.O. (2004). Entrainment of leech swimming activity by the ventral stretch

receptor. Journal of Comparative Physiology A 190, 939–949.

Yu, X., Nguyen, B., and Friesen, W.O. (1999). Sensory feedback can coordinate the swimming

activity of the leech. Journal of Neuroscience 19, 4634–4643.

Zagoraiou, L., Akay, T., Martin, J.F., Brownstone, R.M., Jessell, T.M., and Miles, G.B. (2009). A

Cluster of Cholinergic Premotor Interneurons Modulates Mouse Locomotor Activity. Neuron 64,

645–662.

Zhang, Y., Narayan, S., Geiman, E., Lanuza, G.M., Velasquez, T., Shanks, B., Akay, T., Dyck, J.,

Pearson, K., Gosgnach, S., et al. (2008). V3 Spinal Neurons Establish a Robust and Balanced

Locomotor Rhythm during Walking. Neuron 60, 84–96.

Zhen, M., and Samuel, A.D. (2015). C. elegans locomotion: small circuits, complex functions.

Current Opinion in Neurobiology 33, 117–126.

	Experimental And Computational Analyses Of Locomotor Rhythm Generation And Modulation In Caenorhabditis Elegans
	Recommended Citation

	Experimental And Computational Analyses Of Locomotor Rhythm Generation And Modulation In Caenorhabditis Elegans
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	CHAPTER 1: INTRODUCTION
	BASIC ELEMENTS OF LOCOMOTOR CIRCUITS
	PROPRIOCEPTIVE CONTROL OF LOCOMOTION
	NEUROMUSCULAR COMPONENTS FOR C. ELEGANS MOTOR RHYTHM GENERATION
	PROPRIOCEPTIVE CONTROL OF C. ELEGANS MOTOR BEHAVIOR
	COMPUTATIONAL MODELS OF C. ELEGANS LOCOMOTOR BEHAVIOR
	OBJECTIVES AND OVERVIEW

	CHAPTER 2: PHASE RESPONSE ANALYSES SUPPORT A RELAXATION OSCILLATOR MODEL OF LOCOMOTOR RHYTHM GENERATION IN C. ELEGANS
	INTRODUCTION
	RESULTS
	C. ELEGANS FORWARD LOCOMOTION EXHIBITS A STABLE AND NONSINUSOIDAL LIMIT CYCLE
	TRANSIENT OPTOGENETIC INHIBITION OF HEAD MUSCLES YIELDS A SLOWLY RISING, RAPIDLY FALLING PHASE RESPONSE CURVE
	WORM MUSCLES DISPLAY A RAPID SWITCH-LIKE ALTERNATION DURING LOCOMOTION
	A RELAXATION OSCILLATION MODEL EXPLAINS NONSINUSOIDAL DYNAMICS
	RELXATION OSCILLATOR MODEL REPRODUCES RESPONSES TO TRANSIENT OPTOGENETIC INHIBITION
	RELAXATION OSCILLATOR MODEL PREDICTS PHASE RESPONSE CURVES FOR SINGLE-SIDE MUSCLE INHIBITION
	OUR MODEL IS CONSISTENT WITH THE DEPENDENCE OF WAVE AMPLITUDE AND FREQUENCY ON EXTERNAL LOAD
	EVALUATION OF ALTERNATIVE OSCILLATOR MODELS

	DISCUSSION
	METHODS
	WORM STRAINS AND CULTIVATION
	LOCOMOTION ANALYSIS
	STABILITY OF THE WORM’S HEAD OSCILLATION
	PHASE ISOCHRON MAP AND VECTOR FIELD FOR THE WORM’S HEAD OSCILLATION
	PHASE RESPONSE ANALYSIS
	PHASE RESPONSE CURVES FROM PERTURBATIONS OF OTHER BODY REGIONS
	THE RELAXATION OSCILLATOR MODEL FOR LOCOMOTOR WAVE GENERATION
	MEASURING BENDING RELAXATION TIME SCALE AND AMPLITUDE OF ACTIVE MUSCLE MOMENT
	MEASURING ACTIVE MOMENT TRANSITION TIME SCALE
	PARAMETER ESTIMATION
	MODELING WORM OSCILLATION IN VARIED ENVIRONMENTS
	ALTERNATIVE MODELS FOR LOCOMTOR WAVE GENERATION
	SIMULATION OF OPTOGENETIC INHIBITION
	OPTIMIZATION OF MODELS

	ACKNOWLEDGEMENTS

	CHAPTER 3: A PROPRIOCEPTIVE FEEDBACK CIRCUIT CONTROLS LOCOMOTOR AMPLITUDE THROUGH DOPAMINE AND NEUROPEPTIDE SIGNALING IN C. ELEGANS
	INTRODUCTION
	RESULTS
	C. ELEGANS MODULATES ANTERIOR AMPLITUDE RETROGRADELY IN RESPONSE TO THE OPTOGENETICALLY PERTURBED MIDBODY CURVATURE
	MICROFLUIDIC CONSTRAINT OF MIDBODY CAUSES INCREASE IN ANTERIOR BENDING AMPLITUDE
	CURVATURE COMPENSATION REQUIRES FUNCTIONAL DOPAMINE SIGNALING BY PDE NEURONS
	CALCIUM IMAGING SHOWS THAT PDE NEURONS RESPONSE TO MIDBODY CURVATURE
	CURVATURE COMPENSATION REQUIRES D2-LIKE DOPAMINE RECEPTOR DOP-3 IN AVK NEURONS
	FMRFAMIDE-LIKE NEUROPEPTIDE FLP-1, RELEASED BY AVK, REGULATES SMB MOTOR NEURONS VIA RECEPTOR NPR-6 TO MODULATE ANTERIOR BENDING AMPLITUDE
	CURVATURE COMPENSATION MECHANISM IS CONSISTENT WITH GAIT ADAPTATION OF BENDING AMPLITUDE IN RESPONSE TO MECHANICAL LOAD

	METHODS
	CONTACT FOR REAGENT AND RESOURCE SHARING
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	METHOD DETAILS
	MOLECULAR BIOLOGY
	BEHAVIORAL ASSAYS
	Optogenetic Manipulation Experiments
	Microfluidic-Based Experiments

	BEHAVIORAL DATA QUANTIFICATION
	General Postprocessing
	Quantifying Optogenetic Behavioral Data
	Quantifying Microfluidic Behavioral Data

	LASER ABLATION OF NEURONS
	PDE CALCIUM IMAGING IN MOVING OR PARALYZED ANIMALS

	QUANTIFICATION AND STATISTICAL ANALYSIS
	DATA AND SOFTWARE AVAILABILITY

	CHAPTER 4: CONCLUSION AND FUTURE DIRECTIONS
	CONCLUSION
	FUTURE DIRECTIONS
	IDENTIFY AND CHARACTERIZE NEURAL ELEMENTS CONVEYING PROPRIOCEPTIVE FUNCTIONS IN LOCOMOTORY RHYTHM GENERATION
	EXPLORE THRESHOLD-BASED SWITCHING MECHANISM PROPOSED IN OUR MODEL

	APPENDIX A: SUPPLEMENTAL FIGURES
	APPENDIX B: SOFTWARE CODE
	BIBLIOGRAPHY

