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ABSTRACT

SAFE PROGRAMMING OVER DISTRIBUTED STREAMS

Caleb Stanford

Rajeev Alur

The sheer scale of today’s data processing needs has led to a new paradigm of software systems

centered around requirements for high-throughput, distributed, low-latency computation. Despite

their widespread adoption, existing solutions have yet to provide a programming model with safe

semantics – and they disagree on basic design choices, in particular with their approach to parallelism.

As a result, naïve programmers are easily led to introduce correctness and performance bugs.

This work proposes a reliable programming model for modern distributed stream processing, founded

in a type system for partially ordered data streams. On top of the core type system, we propose

language abstractions for working with streams – mechanisms to build stream operators with (1) type-

safe compositionality, (2) deterministic distribution, (3) run-time testing, and (4) static performance

bounds. Our thesis is that viewing streams as partially ordered conveniently exposes parallelism

without compromising safety or determinism. The ideas contained in this work are implemented in a

series of open source software projects, including the Flumina, DiffStream, and Data Transducers

libraries.
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CHAPTER 1 : Introduction

Today, data is produced at an overwhelming rate that cannot be processed by traditional methods.

For example, Cisco has estimated in its annual white paper that data produced by people, machines,

and things is around 500 zettabytes, in contrast to a much smaller volume of data that can be

feasibly stored [79]. Researchers and industry practice have accordingly recognized the demand for

a new paradigm of computing where data is distributed (processed in parallel over many devices),

transient (processed as it arrives and discarded), and temporally structured (considered with respect

to time). This stream processing paradigm has given rise to an increasing number of modern data

processing software frameworks.1 Broadly construed, the stream processing paradigm is exemplified

not only by these dedicated frameworks, but also by many other modern systems: these include

microservices deployed in the cloud; IoT and other edge devices, which operate in response to sensor

data [245, 36]; and programmable network switches, which can be used to push some of this expensive

streaming computation into the network. Stream processing also has theoretical justification in the

streaming model of computation [204], where items arrive one at a time and are processed as they

arrive, ideally using a minimal amount of space and time per element. In this thesis, we reconsider

the stream processing paradigm through the lens of programming languages, by investigating software

abstractions which are type-safe, deterministic, and performant: that is, which save programmers

from common mistakes and ensure that the deployed program meets their intent.

1.1. Motivation

Although research in stream processing can be traced back two decades from within the database

community [14, 13, 31, 71, 33], and even earlier in programming languages and compilers [58, 250, 258],

researchers have devoted inadequate attention to software correctness (see our short paper [11]).

Today’s systems are difficult to test for correctness and debug. In the context of Apache Spark,

researchers found that bugs are time-consuming to diagnose due to a number of issues related to

distributed deployment (e.g., a bug only shows up on a particular input item out of millions, in

a particular distributed execution, or in the presence of faults) [141]. For streaming applications

in Apache Flink, user studies have demonstrated that the state of practice is limited to unit and
1E.g.: Kinesis from Amazon [242], Timely [194] and Differential Dataflow [196] from Materialize, and Spark [118],

Storm [119], and Flink [115] from the Apache Software Foundation. See Chapters 2 and 3.
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integration testing [267]. For some use cases, building and deploying a correct application in today’s

systems can require either significant expertise in distributed systems or a good deal of experience

with developing and debugging for the specific streaming framework in question. We posit that

there is therefore both a need and a research opportunity for more sophisticated testing and formal

correctness techniques. With the right abstractions and automated formal tools, programming correct

distributed applications over data streams could be much easier for inexperienced users than it is

today.

From a programming languages viewpoint, two problems stand out in particular. First, existing

systems lack safe semantics. We will elaborate on what we mean by safety when describing our

proposed model; in brief, existing systems lack fine-grained type safety with respect to differences in

streams and how they are parallelized, and lack determinism with respect to all possible parallel or

distributed executions. The requirement for determinism has been articulated since the early history

of streaming (see [251], requirement 4) but remains absent in practice.

Second, existing systems disagree on basic details about how streams are parallelized. Points of

disagreement include, but are not limited to: are stream items ordered or unordered? Are streams

parallelized explicitly (via syntax) or implicitly (by the system)? Can parallel instances of a stream

operator communicate via external state or communicate with external services? Can parallel

instances communicate with each other, through mechanisms such as broadcasting a message to all

other instances? We will discuss some of these differences in more detail in Chapter 2. In summary,

there is no common, agreed-upon semantics for stream processing. The lack of a common language

and semantics makes it difficult to design formal tool support, especially if we want the ideas to be

applicable across systems.

Besides semantic bugs, misunderstanding the details of parallelism in the system is also an easy way

to overlook performance bottlenecks. Performance is critical for stream processing systems, but is

not formally guaranteed (see e.g., [183, 93, 151, 52]); it can be less predictable and reliable than

performance at the level of hardware or operating systems.

Semantic language-level issues certainly do not constitute the only barriers to software development

in today’s stream processing systems. Many other user-facing problems are of critical importance –

to name a few, debugging tool support, boilerplate code and configuration, input and output, and
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interfacing with the operating system and with other services. We do not focus on these problems

in this thesis. However, from personal experience programming in stream processing frameworks,

we believe that the semantic language-level issues we focus on do have a significant programming

impact.

1.2. A Programming Example: Values and Barriers

To further motivate our approach, consider the following concrete minimal example. Three streams

arrive in the system: two parallel streams of values, which are integers (int), and a stream of barriers,

which are of the unit type (unit). All of these events are timestamped when they arrive. The values

are parallel in the sense that they arrive in the system in parallel at multiple nodes (in this case

two, for simplicity). The barriers all arrive in one stream at a single node. Our task is to output

the “sum of the values occurring between every two adjacent barriers.” That is, whenever a barrier

occurs, we want to output the sum of all the values with timestamp values since the previous barrier.

This computation is sometimes known as an event-based window because the window of events to

aggregate depends on the occurrence of certain events (in this case, the occurrence of a barrier) [252].

We assume in this scenario that barriers are much less frequent than values, and not parallelizable;

i.e., they require global synchronization across all nodes.

It turns out that such a parallel computation is rather subtle to program in existing systems. High-

level query libraries (e.g., based on SQL) typically don’t provide event-based windows directly but

require deriving them from expensive joins. Naïvely, one way to solve the problem is to send all

the values to the same node as the barrier, but this results in a central bottleneck and does not

exploit any parallelism. To solve the problem, one solution is to broadcast the barrier stream to all

other parallel nodes; the broadcast primitive is provided in a few systems such as Flink and Timely

Dataflow [156, 195]. Once the stream is visible from all parallel nodes, each of those streams then has

to solve only a local windowing problem. The local event-based window can be achieved in multiple

ways, depending on the system; at the core, it requires a re-timestamping operation to group value

events with respect to the barrier-window that they fall into, where the window is either identified

by a number in sequence (1 for the first window, 2 for the second, and so on) or by the timestamp

of the barrier it corresponds to. After values are timestamped appropriately, they can be added
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by-timestamp (a built-in operation in all systems) and then aggregated across parallel nodes (also

standard) for the final output at each barrier.

The value-barrier example is simple, but emblematic of the broader problem: when parallel structure

is not simply embarrassingly-parallel and requires some synchronization (in this case, synchronization

based on the barrier stream), embarrassingly-parallel abstractions fail. We claim that there is a

better way; that parallelism can be expressed in a semantically meaningful manner at a higher-level

of abstraction. Going back to the features that we want to provide in existing systems:

• Fine-grained type safety: Fundamentally, the value stream and the barrier stream are quite

different. The barrier stream arrives only at one node; the value stream arrives in parallel at

many nodes. But some existing systems do not distinguish between these two kinds of streams

at the typing level. So operations that interact between sequential streams and parallel streams

are not type-safe: a consumer expecting a sequential stream may get a parallel one at many

nodes resulting in a software bug.

• Determinism: In the “correct” computation, the output value at each barrier is a deterministic

function of the inputs (including their timestamps). In our experience it is very easy to write

this computation incorrectly and accidentally window values in a nondeterministic manner,

e.g., if events are grouped as-they-arrive instead of by timestamp. Yet the only way to detect

this sort of nondeterminism is to run the system and hope that an execution appears where

the events arrive in a different order than the timestamps indicate, which is highly unlikely

when the rate of events is sparse and only becomes likely under heavy input load. In practice

this could become a highly difficult-to-detect error in production.

• Performance: Finally, it is very easy to write a version of this computation (such as the

naïve version that sends everything to one node) that is inefficient. In an ideal world, systems

would give some formal guarantees about performance through static information known at

compile-time, and flag an error if parallelism is being ignored entirely or if there is a sequential

bottleneck.

As the value-barrier example illustrates, much of the work in this thesis stems from a desire to go

beyond primitive parallelism: where primitive parallelism includes “everything is unordered,” “every-

thing is ordered,” or “events are partitioned by key and ordered for each specific key.” Incorporating
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only these three kinds of parallelism represents the state-of-the-art, but is ad hoc and does not fare

well in examples such as the value-barrier where there is inter-dependent ordering between events.

1.3. Our Approach

This discussion and example illustrate that, fundamentally, existing systems over streams disagree on

the semantics for parallelism. In fact, they disagree on a rather more foundational question: what

is a stream? In this thesis, we investigate a view of streams as partially ordered sets. The above

example is a typical case: values are unordered with respect to each other, but ordered with respect

to barriers. We argue that viewing streams as partially ordered sets allows for safe abstractions

which are type-safe, deterministic, and performant.

We approach the problem of specifying these partial orders type-theoretically: we begin in Chapter 4

by outlining a type system for streams which serves as a foundation for the rest of the thesis. Our

type system is an abstraction over dependence relations, which are studied in concurrency theory

going back to Mazurkiewicz [192]. Historically, we defined two typing disciplines for partially ordered

streams: data-trace types [5, 9], and synchronization schemas [2]; the type system in Chapter 4 is

a modification of synchronization schemas based on our current thinking. We define stream types

and show how streams (elements of the types) can be viewed equivalently as structured data called

batches, as finite sequences up to ordering equivalence called linearizations, or as labeled partially

ordered sets (traditionally known as partially ordered multisets, or pomsets). We show that all of

these views are formally isomorphic. A key theorem is that subtyping is decidable in quadratic time.

As a prelude to the rest of the thesis, we formally define three key properties: monotonicity, type

safety, and determinism for operators over streams. We also state and prove compositionality laws

for these three properties.

In the remaining chapters, we show how to build safe abstractions over stream types. In Chapter 5

(based on material from [2]) we consider how to define operators over streams compositionally; this

amounts to a form of type-safe programming, but does not address determinism or performance. In

Chapter 6 (based on material from [8]), we consider how to automatically parallelize operators in a

way that is safe – i.e., a way that guarantees determinism. This work includes a programming model

(Dependency-Guided Synchronization), a semantics and execution model, a compiler framework,
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and a code generator; it is implemented in Flumina, a prototype streaming system in Erlang. In

Chapter 7 (based on material from [6]), we consider how to test for determinism dynamically via

differential testing [193]; this can be seen as a dynamic type-checking problem. Our core algorithm

and tool, DiffStream, can also be used more generally to check equivalence assertions between streams

at runtime.

Finally, in Chapter 8 (based on material from [4], see also [3, 1]), we address provable guarantees

about performance. This is a challenging problem in general; we consider only the sequential case,

without parallelism. In order to provide upper bounds on performance, we investigate finite-state

models of stream processing operators which have streaming algorithms for their evaluation. To

demonstrate how finite-state models are useful for streaming, we show how to compile high-level

query languages on a single machine with space and time bounds [25, 187]. Concretely, a query

of size O(n) can be compiled to a state machine which uses O(n2) time and space to process each

element of the input stream, measured in number of data accesses and data operations.

We discuss related work in more detail in Chapter 3, but a few lines of work have been important

enough to our work to mention in the introduction. The theory of Mazurkiewicz traces [192, 97]

is the basis for partially ordered streams. Kahn Process Networks [164] pioneered deterministic

concurrent dataflow programming. Among prior language proposals, StreamIt [258] constitutes a

particularly principled past language design based on Synchronous Dataflow [176]; the SPL language

at IBM has previously addressed questions of safe (deterministic) parallelism [147, 238, 148]; and the

Continuous Query Language [32, 33] has been a source of inspiration in its simplicity. On the formal

languages side, the theory of finite-state transducers in general [104, 27] and quantitative automata

in particular [240, 99, 24] have played a direct role in the development of our performance-bounded

model in Chapter 8.

1.4. Contributions

The structure of the thesis is displayed visually in Figure 1.1. In summary, our contributions are as

follows:

• We propose a foundational type system for distributed streams based on partially ordered

sets. We show that under our type system, streams can be equivalently viewed as structured
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Overview
(Chapters 1 to 3)

Stream types and
partially ordered semantics

(Chapter 4)

New; loosely based on
PODS21 Invited [2],
PLDI19 [9], and [5],

Compositionality via series-
parallel stream transformers

(Chapter 5)

from PODS21 Invited [2]

Distribution via Dependency-
Guided Synchronization

(Chapter 6)

from PPoPP22 [8]

Testing Flink programs
with DiffStream
(Chapter 7)

from OOPSLA20 [6]

Performance via
Data Transducers

(Chapter 8)

POPL19 [4]

Figure 1.1: Overview of the work included in this thesis.

hierarchical data called batches, as finite sequences of events called linearizations, or as labeled

partially ordered sets (traditionally known as pomsets). In the historical notes, we also discuss

how these closely relate to our earlier synchronization schemas [2] and data-trace types [9].

(Chapter 4)

• We show how stream operators can be defined compositionally on top of our core type system. [2]

(Chapter 5)

• We propose dependency-guided synchronization, a programming model and system for safe

(deterministic and semantics-preserving) distribution [8]. (Chapter 6)

• To detect bugs due to nondeterminism in existing stream processing applications, we propose

DiffStream, a differential testing tool [6]. In particular, we leverage the partial order viewpoint

to specify ordering requirements, and we test for violations at runtime. (Chapter 7)

• Towards streaming applications with predictable performance, we propose data transducers, a

monitoring formalism and state-machine based intermediate representation [4]. Our formalism is
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compositional, enabling compilation of high-level monitoring queries with provable performance

bounds. (Chapter 8)

Finally, Chapter 9 contains limitations, unanswered questions, and concluding remarks.

1.5. Software

The work in this thesis is implemented in a number of open-source tools available on GitHub.

• Flumina2 is a parallel programming model for stream processing with safe distribution, written

in Erlang with experiments against Flink and Timely Dataflow.

• DiffStream3 is a differential testing tool for Apache Flink.

• Data Transducers4 is an intermediate representation for streaming with formal performance

guarantees, written in Rust.

1.6. Attribution

Most of the work presented in this thesis was done in close collaboration with my advisor, Rajeev

Alur, and other coauthors: particularly Konstantinos Mamouras (for Chapter 8) and Konstantinos

Kallas and Filip Nikšić (for Chapters 6 and 7). I wrote all the included material in Chapters 1,

2, 4, 5 and 9, the material on the programming model in Chapter 6, one of the case studies and

other miscellaneous sections in Chapter 7, and almost all the material in Chapter 8. Chapter 2

incorporates material from my WPE-II written report [10] (of which I am the sole author), and

Chapter 3 integrates some text from all of the papers included in the thesis.

The software repositories Flumina and DiffStream are shared projects with my collaborators, Kon-

stantinos Kallas and Filip Nikšić. For Flumina, I contributed the experiments and infrastructure

with Timely Dataflow in Rust, the Smart Home Power Prediction case study, and documentation.

For DiffStream, I contributed the MapReduce case study and documentation. The Data Transducers

development in Rust is solely my own work.

2https://github.com/angelhof/flumina
3https://github.com/fniksic/diffstream
4https://github.com/cdstanford/data-transducers

8

https://github.com/angelhof/flumina
https://github.com/fniksic/diffstream
https://github.com/cdstanford/data-transducers
https://github.com/angelhof/flumina
https://github.com/fniksic/diffstream
https://github.com/cdstanford/data-transducers


CHAPTER 2 : Background

The fourth requirement is that a stream processing engine must
guarantee predictable and repeatable outcomes.

—Michael Stonebraker, Uğur Çetintemel, and Stan Zdonik in “The 8
Requirements of Real-Time Stream Processing,” 2005 [251]

2.1. Distributed Stream Processing Systems

Today’s de facto programming solution for programming over distributed streams is found in distributed

stream processing systems (DSPSs). Popular modern DSPSs include Apache Flink [115, 62], Timely

Dataflow [194, 203], and Apache Spark Streaming [118, 285]. A selection of these and other systems

is included in Table 2.1. There are a vast number of DSPSs beyond what can be listed here, including

many research prototypes as well as actively developed software products in widespread use. In this

chapter, we review the primary defining properties common to DSPSs, with a particular focus on

the programming model and semantics. We then discuss the limitations of the existing model and

systems.

2.1.1. Comparison with Batch Processing

To understand the emergence of DSPSs and why traditional software infrastructure is not sufficient,

note that traditional software is often based on the assumption that critical data can be stored and

then processed later. For example, much of large-scale data analytics relies on processing data in

large batches (e.g., training a machine learning model daily), such as via MapReduce jobs [94]. While

batch processing does take advantage of distributed computing resources, it does not take advantage

of the transient and temporal structure of data, and incurs data storage costs. In practice due to

these costs, most data traveling over the internet and processed by cloud services is not harvested

to its full potential. Additionally, the temporal structure of data is lost in batches, which divide

data at arbitrary boundaries in time. For example, a machine learning model that might benefit

from continuous updates is instead trained only on the data from yesterday. DSPSs offer a software

framework for writing such programs, where data processing logic is defined in a platform-independent

manner, then deployed as a distributed application over many nodes. DSPS performance is measured
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System Year Stable Release Active?
Questions on
StackOverflow

(as of 2022-06-07) [216]

Aurora 2003 [14] 2003 [262] No —

Borealis 2005 [13] 2008 [263] No —

2011 [190] 2022 [119] Yes 2564

[115, 62]

2011 2022 [128] Yes 6428

Google MillWheel 2013 [20] — No —

(Apache Spark Streaming)

2013 [285] 2022 [118] Yes 5408

[117, 211]
2013 2020 [121] Yes 81

Timely Dataflow 2013 [203] 2021 [194] Yes —

[116, 170]

2015 2021 [126] Yes 43

Figure 2.1: A selection of major distributed stream processing systems.
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in terms of latency and throughput, while batch processing performance is primarily measured in

terms of throughput only. Concretely, DSPSs aim for latency in the milliseconds and throughput in

tens of thousands of events per process per node.

2.2. Commonalities

While DSPSs differ in many substantial ways, all DSPSs in current use share the so-called dataflow

programming model. This means that the programmer writes, in some form or another, a dataflow

graph. In some systems, such as Apache Storm, the dataflow graph is written out explicitly, whereas

in others, such as Apache Flink, the graph is implicit. Additionally, systems may offer high-level

libraries for creating or composing dataflow graphs; in particular, these include libraries for complex

windowing operations and for SQL- and CQL-based streaming queries. The dataflow programming

model exposes task and pipeline parallelism; to expose additional data parallelism, DSPSs use

operator replication. Similar to how a MapReduce [94] job is implicitly parallelized, all operators in

a dataflow graph (unless configured otherwise) may be split into several copies; this is part of the

programming model as well, and affects the semantics.

2.2.1. The Dataflow Programming Model

We introduce the programming model through a simplified example based on a real-time video

analytics use case. Imagine a large-scale system of video cameras, perhaps located in several cities

throughout a country. Each video camera produces a stream of video data, at a certain frame rate

and image resolution. Suppose that we want to identify pedestrians and report to a central location

the summary of all pedestrian activity in the last 10 minutes, i.e., where pedestrians are most active.

To do so, we want to classify each image from each camera using an out-of-the-box classifier; then, to

prevent noise and to summarize the total activity, we want to aggregate the data from all classifiers

in the last 10 minutes in a particular location (e.g., one intersection or group of intersections). In the

end, we report for each location the total amount of pedestrian activity. (One could imagine taking

further steps, such as adding a smoothing filter which removes reports of pedestrian activity that

last only for a single frame, assuming that these must be erroneous.)

A dataflow pipeline for this is given in Figure 2.2. The input data consists of raw video data.

Notice that the pipeline contains only one operator at each stage; that is, we treat all input data
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input keyBy(deviceID) classify keyBy(location)
sliding window

(10 min) output

Figure 2.2: Example DSP dataflow graph for a program to classify video streams and report total
pedestrian activity.

at all cameras as a single input stream; and we write transformations over that stream. The first

transformation, keyBy(deviceID), says to partition the stream into substreams for different keys,

where each key is a device ID. Since the stream is already physically parallel by camera, this does not

have any physical effect, but it makes the parallelism visible in the dataflow. In fact, depending on

the system, this keyBy may be left implicit. The second transformation, classify, says to process

each input data item, which is a video frame, and return the classification (1 for a pedestrian, 0 for

no pedestrian). The third transformation is similar to the first, but this time we group by location,

instead of by device ID. The final transformation is the sliding window which adds up all the values

over the last 10 minutes. This is then output and could be displayed to the user as a real-time report

of activity across all locations.

In general, streaming dataflow graphs are acyclic, although some systems support ways to provide

feedback and/or support iterative (cyclic) computations. The input and output nodes in a dataflow

are special, because they interact with the external system, and can usually be of several kinds: e.g.,

taking input from a distributed file system, taking input from a live stream of data, writing output to

a file, or in general interacting with some external service which provides input or consumes output.

It is generally preferred that internal nodes do not consume input or produce output ; however, that

does not mean they are pure; they are often stateful, and may also produce logs, interact with a

stored database, etc. We summarize the following definition of a streaming dataflow graph that is

(approximately) common to all DSPS programming models.

Definition 2.2.1 (Streaming Dataflow Graph). An acyclic streaming dataflow graph (DSP dataflow

graph) consists of a set of input nodes called sources, a set of intermediate nodes called operators,

and a set of output nodes called sinks, connected by a set of directed edges which are data streams.

The nodes and edges form a directed acyclic graph (DAG). Each source node may produce data

items continuously, and each sink node consumes data items.

An operator is a possibly stateful streaming function that describes how to process an input item and

when to produce output. It does not get to choose which of its input streams to read from; rather, it
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has an input event handler which can be called on any event when it arrives. It may produce any

number of outputs for one input item, in any combination of output streams.

The number of output items produced per input item is often called the operator’s selectivity, which

may be e.g., 1 (for a map), 0−1 (for a filter), or more than 1 (for a copy). The fact that the selectivity

is not constant is a major challenge that makes scheduling DSPS applications more difficult.

2.2.2. Auto-Parallelization (Operator Replication)

DSPSs rely on three types of parallelization to achieve scalability, especially to achieve high throughput.

The first two are explicitly exposed in any acyclic streaming dataflow graph. Pipeline parallelism,

which is visible in Figure 2.2, means that different operators in a sequential pipeline can be run by

different workers, threads, or distributed nodes. Task parallelism is not shown in our example, but

means that different operators in a parallel set of disjoint tasks (parallel nodes in the dataflow) can

be run by different workers, threads, or distributed nodes. However, the arguably most important

form of parallelism for huge data sources is data parallelism, where different data items in the

same input stream are processed by different workers, threads, or distributed nodes. DSPSs use

auto-parallelization (also known as operator replication or sharding) to accomplish data parallelism,

and unlike the other two kinds of parallelism, it modifies the dataflow graph and potentially the

semantics of the program.

In our example of Figure 2.2, we want to exploit data parallelism on video streams from different

cameras. In the classify stage of the pipeline, we are classifying images from different cameras

separately, so it should be able to be run in parallel. The problem with data parallelism is that it

would be cumbersome for the programmer to expose on their own; they would be forced to explicitly

write dozens or hundreds of copies of the classify operator, and manually divide the source into

dozens or hundreds of different sources, so that each operator got its own subset of the input data.

To avoid this, DSPSs automatically replicate operators in the dataflow graph into several parallel

copies. Typically, the number of parallel copies can be configured by the programmer by setting the

level of parallelism.

On our example, a possible auto-parallelized graph produced by the system is shown in Figure 2.3.

Each operator is replicated, in this case into 3 copies. However, this does not fully describe what

happens, because we have to understand the connections between operators. If there was an edge
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input
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keyBy(deviceID)

classify
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classify

keyBy(location)

keyBy(location)
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sliding window
(10 min)

sliding window
(10 min)

sliding window
(10 min)

output

Figure 2.3: Example dataflow graph after operator replication.

before, now there are 9 possible edges, and the system must decide which of them to use, and how to

send data along the edges.

Typically there are several possible strategies, and the system chooses one based on context and/or

explicit user configuration. One strategy is round-robin, where outputs from one stage of the pipeline

are sent to the inputs of the next stage in round-robin order (so for every 3 outputs from one stage, 1

gets sent to each of the 3 operators in the following stage). A second strategy is key-based partitioning

where the operator copy that an item is sent to depends on (a hash of) a specified key. Finally, in

cases where there are the same number of parallel copies from one stage to the next, it is common to

preserve the same partitioning from one stage to the next.

The partition operator keyBy in our example dataflow graph has no effect except to force a particular

strategy for connections between stages: key-based partitioning based on the specified key. In

Figure 2.3, first we assume that the input arrives partitioned by device ID. The keyBy by device ID

then preserves such a partitioning. All future operators preserve the same partitioning, except when

there is a second keyBy by location – this operator re-partitions the data based on location instead

of device ID.

We make no assumption about the different DSPS programming models and how they handle connec-

tions between stages, except that they should obey any constraints that are explicitly programmed

by the user. We capture the allowable parallelization in an annotated DSP graph in the following

definition.

Definition 2.2.2 (Annotated Dataflow Graph and Parallelization). An annotated dataflow graph

consists of a dataflow graph annotated with, for each edge, whether the connection between parallel

operator replicas should be (1) round-robin, (2) on the basis of a particular key, (3) partition-
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preserving, or (4) unspecified. Additionally, each vertex may be labeled with a level of parallelism

that is allowed (1 for no parallelism).1

A parallelization of an annotated dataflow graph consists of a larger graph, without annotations,

where: (i) each vertex is replicated to between 1 and i copies, where i is allowed level of parallelism;

(ii) for each edge between v and v′, if v has i copies and v′ has i′ copies, the connection must be

consistent with the annotation. Specifically, (1) for round-robin items should be assigned to each

operator in turn; (2) for key-based partitioning there should exist some partitioning of the keys such

that that partition determines where a data item is sent next; (3) for partition-preserving, we must

have i = i′ and the connections are one input to one output; (4) for unspecified, each output item

from one stage may be sent to any of the operators for the next stage, as the system sees fit.

2.2.3. Streaming Runtime (Fault Tolerance and Scheduling)

Once given a parallelized dataflow graph, the primary job of a DSPS runtime is to schedule workers

in a distributed cluster so as to execute all the operators, continuously and in parallel. The goal of

the scheduler is to maximally utilize the available distributed resources, and to prevent one task from

becoming a performance bottleneck (called a straggler). In the case of stragglers, there are common

techniques for the system to respond, e.g., throttling and back-pressure.

The performance of the system is generally measured in terms of latency and throughput. Latency

is the time it takes for an output item to be produced after the input item which triggered its

production arrives in the system. Throughput is total number of input items successfully processed

per unit time. Throughput is often measured as max throughput, the maximum input rate the system

can handle before it breaks. Given fixed resources, there is always some limit to how much input the

system can handle; so max throughput is always finite. Beyond the max throughput, DSPSs offer few

guarantees about behavior, and will likely suffer increasing latency, drop data, or crash altogether.

Finally, DSPS runtimes try to provide all of this with a guarantee of fault-tolerance. Whenever a

worker is assigned to process some set of items from the input stream, the worker may fail. If this

occurs, the system must have a way to rewind back to a safe state and re-process those input items,
1Not all annotations are meaningful; for example, in the partition-preserving case, the level of parallelism should be

the same from one vertex to the next.
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or re-assign them to a new worker. It is challenging to accomplish this in a way that minimizes

overhead and also minimizes the time to recovery when experiencing a fault (see [266]).

2.3. Limitations

• Disagreeing semantics. There exists no widely accepted common semantics for distributed

stream processing. DSPS applications are always written as dataflow graphs, and there are

other common elements, but beyond this different APIs make different choices. For example,

Flink’s API assumes that data arrives in-order per-key, whereas Timely’s API does not offer

this guarantee (i.e., all data may arrive out-of-order). Specific constructs then come with

other differences, for example: whether watermarks (indicating stream progress) are explicitly

available or implicit; and whether side effects are allowed in an operator or whether the system

makes no guarantees in the presence of side effects.

• Nondeterminism. Unfortunately, auto-parallelization of stream processing applications is not

semantics-preserving [9], which results in nondeterminism due to ordering of distributed events.

If nondeterminism affects the output, it is usually undesirable as it can lead to bugs that are

difficult to identify and reproduce.

In practice, many standard operators are not affected by such reordering: e.g., commutative,

associative reduce operations or stateless maps and filters. However, most DSPSs do not enforce

annotations to determine when auto-parallelization is safe or not [238].

• Low-level state management. DSPS applications are built under the assumption that users

should not have to write state management logic on their own, instead relying on predefined

dataflow operators (e.g., maps, filters, aggregation, windowing, and SQL query libraries). In

practice, however, some streaming operations require custom logic. Examples of more complex

logic include interpolation (fill in missing input data in a temporally dependent manner),

machine learning operators (aggregate and update a statistical model), and event-dependent

windows (form a window with data-dependent start and closing times). Because of the ubiquity

of such manual state management tasks, popular APIs (including Storm, Flink, and Timely)

allow users to program operators manually, e.g., by providing a state type, an initial state,

and an update function for each input tuple. However, such operators are difficult to program
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because they must work under the auto-parallelization mentioned above. Additionally, if

the operator requires interaction with an external service or has side effects (e.g., querying

a database), state update logic has to be tolerant to unexpected behavior in case of node

failures or network communication. In practice, these behaviors can go unobserved unless

developers explicitly test for it, e.g., by introducing controlled node failures using a tool like

Chaos Monkey [267].

• Manual parallel programming. Related to state management, DSPSs also promise a programming

model where a user does not have to parallelize their application themselves. However, in

practice, many applications are difficult to parallelize and require low-level constructs: for

example, a broadcast construct is used to share important information with all other nodes.

This and similar constructs are prone to correctness bugs.

• Unpredictable performance. Because operators and input data are partitioned by the system,

users do not describe explicitly how to partition them. However, DSPSs do not offer any

concrete guarantees about the throughput or latency of the runtime. In particular, unexpected

performance bugs arise in the case that partitioning is not efficient. For instance, in an example

application processing an input stream of webpage views, if most of the views come from the

same website, partitioning by key fails and results in a performance bottleneck.

2.4. Summary: Our Viewpoint

Considered as systems, today’s stream processing systems are usually quite effective – thanks

to decades of engineering and research advances. They scale automatically across threads and

distributed devices, they are high-throughput and meet microsecond-level latency requirements,

and they seamlessly execute simple data processing tasks (e.g., windowing, mapping, grouping, and

aggregating). Considered as programming languages, however, they fall short of today’s standards. If

adopted, tools for formal correctness properties (including fine-grained type safety and determinism)

could improve the software development processes and toolchains in this space.
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CHAPTER 3 : Related Work

The sequence is represented by a function called a stream, which is
a functional analog of a coroutine. . .

—William H. Burge, 1975 [58]

Stream processing research, in particular the study of SPSs, can be
traced back at least as far as the 1960s, although not always in a

form that is immediately recognizable as such today.

—Robert Stephens, 1997 [250]

Of course, the notion of a stream as a programming abstraction has
been around for decades...

—Thies, Karczmarek, and Amarasinghe, 2002 [258]

While the previous section discussed the primary programming paradigm in current use for distributed

streams and its limitations, this section provides a more general survey of related work. We include

dataflow programming paradigms, considered broadly; correctness support for both stream and

batch data-processing; and the study of partially ordered traces in concurrency theory. We also

survey other paradigms related to streaming (functional reactive programming, concurrent and

distributed programming, state machines for streaming, and runtime monitoring). Finally, we include

a non-exhaustive list of research on systems problems (distribution, parallelization, optimization,

benchmarking, and profiling).

3.1. Dataflow Programming

3.1.1. Distributed Stream Processing Systems

Applications over streaming data can be implemented using high-performance, fault tolerant dis-

tributed stream processing systems (DSPSs), such as Apache Flink [62, 60, 115], Storm [119, 120],

Spark Streaming [285, 118], Kafka [132], Samza [211], Heron [170, 116], and Beam [127]; Timely

18



Dataflow (Naiad) [203, 194] and Differential Dataflow [196]; Microsoft StreamInsight [21] and

Trill [70]; IBM SPL [147]; Google MillWheel [20] (now replaced by Google Cloud Dataflow); Amazon

Kinesis [242]; and early systems such as Aurora [14, 262], Borealis [13, 263], STREAM [31], and Tele-

graphCQ [71].1 Stream processing is closely related to, and sometimes synonymous with, distributed

event processing [206] and complex event processing [276]. See [37] for an early (2002) report on the

status of the field. See also [250] for an even earlier (1997) report from the perspective of dataflow

languages and reactive systems.

The core programming model for DSPSs is typically based on dataflow with auto-parallelization, as

discussed in Chapter 2, and this is the primary point of comparison for this thesis. However, there

are other programming models used for streaming, including high-level query languages (often based

on SQL), extensions to the dataflow model, and extensions to stream parallelism and distribution.

3.1.2. High-level Query Languages

High-level query languages for streaming include CQL [32, 33], CACQ [186], CEDR [39], Streaming

SQL [158, 41], SamzaSQL [222], Structured Streaming [34], and StreamQRE [187]. These languages

have existed since the early history of streaming research from the databases community [251]. They

offer the promise of convenience and clean semantics, but they can be expressively limited for some

use cases (e.g., the value-barrier example discussed in the introduction), as we discuss in [8]. They

typically offer type safety with respect to the relational schema of each stream and determinism with

respect to processing order – though there are cases where determinism is not guaranteed, including

some possible implementations of CQL’s tuple-based windows where ties must be broken arbitrarily.2

Traditional query languages view streams in the sequence-of-relations model popularized by CQL,

which is limited in expressiveness compared to general partial orders. Inherently sequential operators,

such as tuple-based windows and interpolation, are awkward in the sequence-of-relations model.

In modern systems, query operators (typically including maps, windows, filters, joins, and aggregates)

are often implemented not as a separate stream management platform but as operators on top of the

core dataflow programming model, which can also support custom stateful processing and where

data need not conform to the relational schema viewpoint. The upshot of this two-layered design is
1Some relational database systems also support a limited form of streaming; for instance, streaming SQL in Apache

Calcite [42, 129] and Streaming Columns in Apache Derby [114].
2Thank you to Phillip Hilliard for this observation.
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that the parallelism present at the core dataflow programming model level is relevant even for query

languages as: (i) it dictates the extent to which streams can be distributed and optimized, and (ii) it

forces semantic requirements on the query in case determinism is required, as otherwise distribution

will not be semantics-preserving.

3.1.3. Traditional Dataflow Networks and Synchronous Languages

Dataflow programming predates stream processing. Dataflow programming as a solution to parallel

and distributed computing originated with Kahn Process Networks [164] (KPN), a deterministic

dataflow model based on the restriction that channels are FIFO queues with blocking reads and non-

blocking writes. Today’s systems wish to offer on-demand processing and avoid arbitrary buffering,

so they typically do not implement the KPN approach for streams. In addition to general KPNs,

one restriction of KPNs has been particularly influential: synchronous dataflow [176], which further

restricts the FIFO queues so that a fixed number of items are read and written on each cycle of

an operator. StreamIt [258] shows that the synchronous dataflow restriction enables aggressive

optimization and scheduling; it also somewhat alleviates the problem with blocking reads, because

the presence or absence of input and output items is always known statically. Similar to StreamIt, the

work on synchronous languages from the 90s including LUSTRE [142] and ESTEREL [46] (see [43]

for an overview) benefits from the assumption of synchrony.

The problem with traditional synchronous dataflow languages is that they cannot implement operators

which produce a non-static number of output items in response to an input – including the very most

basic such operator, filter. (The filter operator applied to an input stream discards items that do not

match a given predicate.) As a result, the synchronous model is generally considered too restrictive

today for general streaming [238].

3.1.4. Modern Dataflow Languages

A more modern take on dataflow programming is MapReduce online [81]; this exemplifies the viewpoint

that streaming dataflow graphs are like MapReduce operators chained together. Other works on

streaming specifically focusing on the programming model include SPADE [133] and Brooklet [248].

SPADE supports a fixed list of useful operators for streams, like tuple-level transformations (map,

flat-map, filter), aggregations, and streaming joins or barriers; it also incorporates some punctuation-

related operators. Brooklet is more like imperative programming, and is extremely general: it allows
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translations from CQL, StreamIt, and a (non-streaming) MapReduce like language called SawZall [227].

Another non-streaming, but popular, MapReduce-based dataflow language is FlumeJava [67].

3.1.5. Extensions to the Dataflow Model

The dataflow model is limited in its ability to express iterative or recursive queries and other

queries with periodic synchronization between nodes, leading to various extensions focused on better

expressiveness. Naiad [203, 194] proposes timely dataflow in order to support iterative computation.

We compare closely with Timely, the implementation of timely dataflow in Rust, in Chapter 6. In

brief, though Timely is very expressive it is also often quite low-level; as a result, it falls short of

automatically scaling without high-level design sacrifices (exposing implementation details to the

user). To avoid semantic issues with out-of-order data, Timely makes a simplifying assumption that

all events are unordered. However, this also necessitates extraneous buffering, complicating the

programming model in cases where order would be known between events.

As data processing applications are becoming more complex, evolving from data analytics to general

event-driven applications, some stream processing and database systems are moving from dataflow

programming to more general actor models [61, 45, 44, 243, 279]. For example, Flink has recently

released Stateful Functions, an actor-based programming model running on top of Flink [19, 125].

Actor models are very expressive, but computations need to be implemented manually as message-

passing protocols.

Other extensions to the dataflow model focus on enabling forms of synchronization between nodes or

other concurrency control, or communication with external state. Communication between parallel

nodes is disallowed in the usual formulation of dataflow auto-parallelization. For example, S-Store

and TSpoon [197, 17] extend stream processing systems with online transaction processing, which can

implement concurrency control, and Noria [136] and Nova [288] extend stream processing systems

with abstractions for operators to access shared state. Another way to deal with the problem of

communication between nodes is to use broadcast state, a low-level messaging mechanism present in

Timely [195] and Flink [156] which lets one node broadcast a message to all other parallel nodes. We

discuss our alternative solution to all of these issues related to concurrency and synchronization in

Chapter 6. In brief, our model avoids sacrificing high-level design by making the distribution of a
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program independent of the programming model; we guarantee that, subject to an assumption that

the the program satisfies some consistency conditions, the implementation is deterministic.

3.1.6. Summary

In all of the existing works on dataflow surveyed, streams are typed at a coarse-grained level: typically,

only using a construct such as Stream<T> for a stream of events of type T, and not encoding the

possible parallelization. Some languages include a few variants, such as Flink’s KeyedStream which

is parallelized by key, and CQL’s distinction between streams Stream<T> and time-series relations

Relation<T> which are created from streams using windowing operators. Compared to coarse-grained

stream types, fine-grained stream types record additional parallelization information and describe the

possible parallelization at the system level, the dataflow model level, or at the query language level.

3.2. Correctness Support for Data-Parallel Programs

3.2.1. Testing

Many previous works focus on batch processing programs written in the MapReduce [94] framework

[87, 280, 189, 76] (see also the recent survey [201]). Some work [281] goes beyond batch processing

to study testing semantic properties of operators in general dataflow or stream-processing programs.

One limitation of many of these works [87, 280, 281, 76] is that real-world MapReduce programs (and,

by extension, aggregators in stream processing programs) can be non-commutative: the empirical

study at Microsoft [277] reports that about 58% of 507 user-written reduce jobs are non-commutative,

and that most of these are most likely not buggy. The previous work on testing would erroneously

flag these programs as containing bugs due to nondeterminism (a false positive).

Differential testing [193, 139] is a well-established, lightweight, black-box method to detect bugs

in complex programs by simply comparing two programs that are supposed to be equivalent. In

Chapter 7 (DiffStream), we adopt differential testing to finding bugs due to parallelism with the goal

of avoiding the false-positives mentioned in the previous paragraph; we do succeed in avoiding false

positives in most cases, though not in a few others where nondeterminism is truly inherent to the

computation.
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Besides DiffStream, a few other dedicated testing tools for Flink now exist: Flinkspector [169] provides

unit testing; FlinkCheck [106] uses temporal logic for property-based testing; and SPOT [283] uses

symbolic execution to improve path coverage. See also [161] for further reading on this topic.

3.2.2. Static Verification

In addition to testing – a dynamic method of checking correctness – there has also been research on

the static verification of data-parallel programs. Recent work focuses on the verification of parallel

aggregators that are used in MapReduce programs; methods include automated verification and

synthesis of partial aggregators given an aggregation function [181], or parallelizing user defined

aggregators using symbolic execution [231].

We would be interested if similar ideas could be generalized to the abstractions in this thesis, rather

than just MapReduce programs; i.e., we would like to verify and synthesize operators in streaming

dataflow graphs. Note that streaming graphs are not always decomposable into aggregators, and

their parallel and sequential implementations might have significant structural differences (see the

Topic Count case study in Chapter 7), implying that the parallel implementation cannot be simply

derived from the sequential implementation.

For general stream processing, [238] has proposed an approach to ensure correct parallelization

(deterministic distribution) based on categorizing operators for properties such as statefulness

and selectivity. This is very closely related to our work on guaranteeing type-safe, deterministic

distribution; while it is practical, it could be considered ad hoc to enumerate operators into finitely

many categories. Another complication is if considering streaming graphs that interact with external

service (e.g., querying a Redis database) or complex extensions to the dataflow model including

operators like broadcast-state.

Instead of verifying user-written streaming programs, one can instead consider the problem of

correctness for systems, compilers, and implementations. Towards testing functional correctness

of a stream processing system implementation, a framework has been proposed for Microsoft

StreamInsight [230].

Overall, verifying streaming dataflows statically is an important problem for future work which is

not yet easily within our reach, and which we discuss further in Chapter 9.
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3.2.3. Empirical Studies and Debugging

Complementary to directly establishing the correctness of user-written programs, one can look at

the problem of correctness from an empirical and engineering perspective. There are a number of

empirical studies which aim to classify bugs in real-world stream- and batch-processing programs.

Of these, most [239, 167, 180, 289] have primarily focused on sources of job failures (e.g., system

crashes) or performance issues (e.g., memory use patterns and computational bottlenecks), which

are orthogonal to semantic bugs which can be found by testing. The Microsoft study [277] is the

only study we are aware of that classifies semantic bugs in user-written programs. In addition to

these studies of data-processing programs, there have been some empirical studies which interview

users about their testing and debugging needs. In [112], users of Spark are interviewed about tools

that would be useful to them, but the study focuses on human-computer interaction needs such as

data visualization and debugging tools. The more recent study [267] aims to determine how current

specialists in data stream processing applications currently implement testing. Most specialist employ

unit and integration testing, together with some techniques and tools for more sophisticated testing

(e.g., inducing node failures). Our work is motivated by the need to go beyond these standard

techniques to increase confidence in the semantic correctness of user-written programs, especially in

the presence of parallelism and out-of-order data.

Empirical studies can motivate work on visualization and debugging. Visualization includes generating

example inputs for dataflow programs showcasing typical semantic behavior [212]. Debugging includes,

e.g., setting up breakpoints, stepping through computations, and determining crash culprits [141, 213].

3.3. Partially Ordered Trace Theory

3.3.1. Mazurkiewicz Traces

Our type system builds on foundational work in concurrency theory dating back to Mazurkiewicz

[192], where partially ordered sets of events are called Mazurkiewicz traces. Mazurkiewicz traces have

been studied from the viewpoints of algebra, combinatorics, formal languages and automata, and

logic [97]. In practical applications to verification and testing of concurrent systems, they appear for

example in relation to partial order reduction [137, 223], a technique for pruning the search space of

possible execution sequences.
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Mazurkiewicz traces correspond to the view of streams as linearizations and as labeled partially

ordered sets (see Chapter 4), traditionally called partially ordered multisets (pomsets). Both of these

views and the isomorphism between them are standard and well-known in this literature. Our type

system, however, is an abstraction on top of Mazurkiewicz traces; it gives rise not to all dependence

relations, but only to certain ones that have a series-parallel structure (see Proposition 4.4.3). We

believe that the series-parallel streams constitute most useful use cases in practice, where there are

usually only perhaps one or two levels of nesting in the type. Most streams consist of events of

maybe one or two base types, with punctuation and other system events, and our types aim to cater

towards these simpler use cases.

An important technical difference is that in the theory of Mazurkiewicz traces, one usually assumes a

finite, symmetric, and reflexive dependence relation [97]. In contrast, in this thesis, we only require

it to be symmetric; it is neither finite (due to arbitrary infinite base-types and key-based parallelism)

nor reflexive (due to the relational base type). This is in order to support user-provided dependence

relations over a possibly infinite data domain, which is necessary to model common patterns in the

streaming setting. Patterns such as this one cannot be captured by a finite alphabet, and this limits

the direct application of classical work on concurrency theory over a finite dependence relation.

3.3.2. Checking Properties of Traces

Much classical research has focused on deciding properties of traces such as serializability, lineariz-

ability, sequential consistency, and data race detection. Broadly speaking, these properties are

search problems: the algorithm monitors an execution of events, and it must decide if there exists

some possible equivalent execution that witnesses the desired property. For example, race detection

involves deciding, given a sequence of events, if there is a valid reordering of the events, subject

to the constraints imposed by synchronization events, in which two specific events (representing

a potential race condition) get reordered. If there are an arbitrary number of threads then race

detection is NP-hard [207, 208] (but it is easy to decide for, say, only two traces and can be done in a

streaming manner). Similarly, checking sequential consistency of a given trace is NP-complete [134],

as is checking linearizability in general [135]. Practical tools for testing correctness of traces (e.g.,

[237, 219, 241, 274, 56, 184]) are bound by these results and explore the trade-off between soundness,

completeness, and tractability.
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In our work we don’t generally consider algorithmic problems on traces, with the exception of

Chapter 7, where we consider the algorithmic problem of checking equivalence of two Mazurkiewicz

traces (equality of streams up to re-ordering). As with our type system, we consider this problem

for general infinite-alphabet traces, rather than just those over a finite alphabet. The problem we

consider is in PTIME (for the offline variant), admits a space-optimal (though not space-bounded)

online monitoring algorithm, and to our knowledge hasn’t been explicitly articulated in existing work

on Mazurkiewicz traces.

3.4. Other Paradigms

3.4.1. Functional Reactive Programming

In the functional programming community, researchers have long investigated functional reactive

programming (FRP) [272, 210]. See also [38] for a survey and [48] for an introductory textbook. FRP

is closely related to dataflow and is suitable for streaming. The earliest work on FRP dates back to the

late 1990s, targeted for interactive graphics applications [103, 102], but FRP has persistently inspired

new formalizations and implementations [86, 83, 113, 224]. In FRP, streams are mostly sequential

objects which are processed incrementally; FRP abstracts both discrete-time and continuous-time

signals. Some research has endeavored to make FRP distributed, for example by adding mechanisms

for fault tolerance [225], type-safe clocks [59] and distributed actors [246].

3.4.2. Fork-Join Based Concurrency

Fork-join based concurrent programming [130, 174] constitutes a classical parallel programming

paradigm, relevant to Chapter 6. Fork-join parallel programming models are typically expressive

but low-level, and do not guarantee determinism or data-race freedom. Concurrent revisions [55]

guarantees determinism in the presence of concurrent updates by allowing programmers to declare

types to describe how parallel updates are merged on joins. More generally, a great many proposals

exist to make concurrent programming safe (typically not fully deterministic, but at least data-race

free); we do not attempt to survey them all here, but for a recent example and related work, see

fearless concurrency [200].
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3.4.3. Distributed Programming Models and Consistency

Monotonic lattice-based programming models, including Conflict-Free Replicated Data Types [244],

BloomL [82], and LVars [171, 172], are designed for coordination-free distributed programming. These

models guarantee strong eventual consistency, i.e., eventually all replicas will have the same state.

Partially ordered sets are an important concept in this space because consistency for replicated data

stores often relies on determining which events are unordered and can be safely executed without

coordination, and which events require global synchronization between nodes. For some examples of

this distinction, see RedBlue consistency [179], MixT [198], Gallifrey [199], Quelea [247], CISE [138],

Carol [178], Hamband [155], and Quark [165], all of which support a mix of consistency guarantees

on different operations, effectively inducing a partial order of data store operations.

3.4.4. State Machines for Data Processing

Returning from the distributed to the sequential setting, next we survey state-machine representations

for performance-sensitive data stream processing, relevant to Chapter 8.

Deterministic and nondeterministic finite-state automata [228] are foundational in streaming as they

correspond precisely to finite-memory, finite-time-per-element computations. However, they lack the

ability to perform quantitative computations that aren’t finite-state, such as e.g., simply counting

the total number of input items. The simplest studied model of quantitative finite-state computation

is weighted automata [22, 99], originally defined by Schützenberger [240]. Weighted automata extend

nondeterministic finite-state automata by annotating transitions with weights (which are elements

of an abstract semiring) and can be used for the computation of simple quantitative properties,

such as counting or summing the input items. Extensions of weighted automata include nested

weighted automata [73], which allows one level of nesting, and our related work [3], which generalizes

this to arbitrary hierarchical nesting, and was a precursor to data transducers ([4] and Chapter 8).

See [72, 74] for further discussion of quantitative models. Compared to data transducers, weighted

automata support a limited set of operations (addition and multiplication in the semiring), rather

than an arbitrary family of data types and operations on them. And while nested models recover

some of this expressiveness, they can be cumbersome to work with.

A second approach to augment classical automata with quantitative features has been with the

addition of registers that can store values from a potentially infinite set. These models are typically
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varied in two aspects: by the choice of data types and operations that are allowed for register

manipulation, and by the ability to perform tests on the registers for control flow. The literature on

data words, data/register automata, and their associated logics [166, 209, 95, 47, 50] (and extensions

such as register monitors [110]) studies words over an infinite alphabet, typically of the form (Σ×N)∗,

where Σ is a finite set of tags and N is the set of the natural numbers. They allow comparing data

values for equality, and these equality tests can affect the control flow. The work on cost-register

automata (CRA) [24] studies what happens when the control and data registers are kept separate by

allowing write access to the registers but no testing. The register model in cost-register automata

originated in streaming transducers [27, 28, 23]. As discussed in Section 8.7.1, data transducers are

expressively equivalent to CRAs, but are exponentially more succinct. Expressively and in logical

terms, both CRAs and data transducers recognize the class of streamable regular transductions [1],

which can also be defined by monadic second order logic (MSO) or attribute grammars [105, 49].

A third extension of automata relevant for quantitative computation is symbolic automata [90, 264]

and transducers [265, 89]; see [91] for an introduction. While symbolic automata do not allow all

quantitative computations (e.g., adding up a data word of values), because transitions are predicates

on input data, they can express some limited examples. One problem with weighted automata

and register automata is that sometimes may lack closure under sequential composition, because

sequential composition can be used to express non-regular properties (see [187], page 699); e.g., we

can add up left and right parentheses to accept the Dyck language, or accept sequences of increasing

numbers. Symbolic automata may be helpful to address this limitation.

3.4.5. Runtime Verification and Monitoring

Our work in Chapters 7 and 8 contributes to the large body of work on runtime verification [177, 143]

(also known as runtime monitoring), a lightweight verification paradigm which aims to identify bugs

in the output of a program as it is executed, using minimal computational resources. (The testing

problem we consider is a runtime verification problem, and the data transducers work is a language

that can be used for monitoring applications.) In typical work on runtime verification, the problem is

to detect violations of a safety property written in a logical specification language. The specification

is translated into a monitor, which executes along with the monitored system: it consumes system

events in a streaming manner and outputs the satisfaction or falsification of the specification. Linear

Temporal Logic (LTL) is the most widely used formalism for describing specifications for monitoring.
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LTL is rather limited in expressiveness, but has been extended in various ways, including quantitative

extensions. Metric Temporal Logic (MTL) has been used for monitoring real-time temporal properties

[257]. Signal Temporal Logic (STL), which extends MTL with value comparisons, has been used for

monitoring real-valued signals [96]. Computing statistical aggregates of LTL-defined properties, as in

[111], is a limited form of quantitative monitoring. The Eagle specification language [40] can also

express some quantitative monitoring properties, since it supports data-bindings. Quantitative regular

expressions are suitable for quantitative and performance-sensitive monitoring [25, 187, 284, 15] and

can be compiled to CRAs or data transducers. Finally, the synchronous languages [43] mentioned

earlier can also be used for monitoring quantitative data streams. LOLA [88, 53] is a notable example

of a synchronous language designed for runtime monitoring with close similarity to state-machine

based monitors. RTLola [108] extends LOLA to the real-time monitoring setting, rather than

synchronous monitoring.

In contrast to classical work in runtime verification and monitoring, our core type system in this

thesis models program execution traces as partially rather than totally ordered; our ultimate goal is

runtime verification abstractions which work on partially ordered streams, for which Chapter 7 is an

initial proposal, handling the simplest case of equality checks between streams.

3.5. Selected Systems Challenges

On the other side of the programming model, researchers have proposed distribution, parallelization,

optimization, benchmarking, and profiling strategies for stream programs. These can be relevant

to the programming model as they affect the sort of semantic guarantees that the system can offer

with respect to parallelism; however, the primary goal of these works is to enable efficient system

implementations.

The literature in these areas is vast; we survey only a subset. We especially focus on papers relevant

for geo-distributed performance optimization [10]: these aim to enable streaming applications over

many distributed nodes that don’t necessarily all reside in the same central cluster. This is especially

relevant for IoT applications and edge/fog computing [236, 92, 245, 268] (see also programming

models such as Mobile Fog [153]) and for applications where bandwidth is limited [270, 157, 287].
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3.5.1. Performance Benchmarking and Profiling

Towards more fine-tuned optimization, researchers have proposed many techniques for analyzing the

performance of existing systems. In particular, streaming benchmarks are invaluable for comparing

across systems. The Yahoo Streaming Benchmark [78] is widely used, though outdated in some

respects, and has motivated more modern benchmark suites [52, 183]. The DEBS Grand Challenge,

an annual contest presented by the DEBS conference [206], is another useful source of more complex

tasks and data. Performance profiling often centers on detecting performance bottlenecks, called

stragglers [182, 168]. SnailTrail exemplifies a state-of-the-art system and technique for latency

profiling and straggler detection [151].

3.5.2. Operator Placement

A fundamental problem in distribution of streaming operators, and closely related to the distribution

problem considered in Chapter 6, is operator placement where the system determines what node to

run a stream operator on. The work [63] uses constraint solving to optimize operator placement

relative to network bandwidth and other constraints. Other than [63], there are several lines of work

in job scheduling, operator placement, and optimization for DSPSs that try to be network-aware

in some fashion. Early and influential works include [18] and [226]. The first [18] is probably the

first to formalize the DSPS operator placement problem, and to explore (1) how network-awareness

can lead to more efficient query evaluation, and (2) how there is a trade-off between latency and

bandwidth use in this space. The second [226] presents a simple but effective heuristic algorithm

which treats the geo-distributed physical nodes as a system of points in a combined latency-bandwidth

space, and uses spring relaxation to find a good configuration. The work [140], similarly to [63],

encodes operator placement as a mixed integer linear program. There are a number of other related

papers on job scheduling [29, 278, 101, 275, 131], operator placement [51, 261, 233, 173], and resource

elasticity [65, 150, 64, 93].

Researchers have also modified the programming model to allow the programmer to control operator

placement. SpanEdge [234] is a primitive modification to the dataflow programming model with

tasks that should be run globally versus locally. A system very related to SpanEdge is Geelytics [77].

It modifies the dataflow programming model with scoped tasks, which have a geographic granularity

such as by site, by city, by district, or by section, and are similar to SpanEdge’s local and global
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tasks. Other than these, the paper [232] proposes a programming framework for stream processing

in a geo-distributed (at the edge) fashion. The programming framework, however, is not based on

dataflow, and is more focused on the communication mechanisms between nodes. There is also a

large body of work on programming for wireless sensor networks; see the survey [202]. In general, the

concerns in that domain have been more low-level, related to connections between sensors, mobility

of sensors, communication from one sensor to another via short hops, and so on.

3.5.3. Stream Degradation

An even more aggressive technique for optimizing distributed execution is to degrade and approximate

streams to reduce what needs to be sent over the network. The first stream processing system

to incorporate general degradation of data streams was JetStream [229]. JetStream seeks to limit

bandwidth use not just through degradation, but also “aggregation”, which refers to a data model

where data is saved and aggregated by geo-distributed nodes, and only sent when explicitly requested.

AWStream [287] uses programming knobs to control the amount of degradation that occurs for video

streams (e.g., frame rate reduction, resolution reduction, or some combination) to try to achieve a

Pareto-optimal solution between accuracy and bandwidth use. Other systems in this space include

WASP [163].

Load shedding [254, 253] can be seen as a primitive form of stream degradation. This refers to

selectively dropping tuples in response to load that is beyond capacity, in order to maintain availability

and good latency while hopefully not losing too much accuracy. For video data, for instance, load

shedding would enable frame rate reduction but would not allow resolution reduction. It is well

studied, but less flexible than what is offered by more modern systems like JetStream and AWStream.
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CHAPTER 4 : A Foundation for Streams

The purpose of abstracting is not to be vague, but to create a new
semantic level in which one can be absolutely precise.

—Edsger W. Dijkstra, 1972 [98]

This section lays the groundwork for the rest of the technical content of this dissertation: we present

our core type system for distributed streams. Our stream types are an abstraction over Mazurkiewicz

traces, studied in concurrency theory to model distributed sets of events [192, 97]. They are based on

synchronization schemas [2], which in turn evolved from our earlier work on data-trace types [5, 9].

A stream type S describes the structure of events in the stream; semantically it will denote a collection

of partially ordered traces. Formally, there are multiple ways to encode and view partially ordered

traces. First, the global view as a structured batch b : Batch(S). This is a parsed structure: for

example, if S is composed of two stream types in parallel, S1 and S2, then a batch of type S is a pair

of a stream of S1 and a stream of S2. Second, S gives rise to a type for events e : Event(S), which

are the possible individual elements in the stream. Third, S gives rise to a type for linearizations of

the stream l : Lin(S) which are sequences of events. The type of linearizations is equipped with an

equivalence relation which allows reordering of independent events. Finally, S gives rise to a type for

labeled partially ordered sets p : Poset(S), where the poset is labeled with events in a way consistent

with S.

Our main results include Propositions 4.4.2 and 4.4.5, which state that batches, linearizations and

posets are all isomorphic for any type S. Proposition 4.4.3 characterizes the equivalence relations

(on linearizations) that can arise from a stream type. Finally, Theorem 4.5.4 states that subtyping

for stream types is decidable.

To connect these abstract results to real systems, we also consider a definition of operators (similar to

the definition in Chapter 2), which are nondeterministic functions from linearizations to linearizations.

We define three key properties for operators: monotonicity, type safety, and determinism. We

connect these properties to the rest of the thesis in Figure 4.4. Propositions 4.6.4 and 4.7.1 state

compositionality laws for these properties (under sequential and parallel composition). Lastly,
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Figure 4.1: Illustrative partially ordered stream.

Theorem 4.6.2 captures why the properties matter: type-safe, deterministic operators give rise to

well-defined stream transformations – functions on batches and labeled posets.

We choose to model streams as finite objects – in contrast to the traditional view as coinductive or

infinite sequences. Though our results should adapt to the infinite setting, there are two reasons

for this choice. First, infinite streams are not necessarily useful in practice, since real streams do

eventually end – if nothing else, a DSPS will typically provide a way to take down the whole system

and flush all output, e.g. via an end-of-stream punctuation event. Second, even in cases where we

have in mind a truly infinite stream, relevant substreams still need to be finite. For example, in a

stream of values separated by barriers, each block of values should be finite to ensure progress. The

trade-off for using finite streams is that we need to recover monotonicity as a property (Section 4.6),

whereas for infinite streams monotonicity would come “for free,” since operators over infinite streams

can only work in an item-by-item fashion.

4.1. Stream Types

Definition 4.1.1. Let T denote a base type in the following grammar. A stream type is a type

defined syntactically by the following grammar:

S ::= Sync(T, S) | Par(S, S) | ParBy(T, S) | Bag(T ) | Emp

We also have the following abbreviation for a sequence of T :

Seq(T ) := Sync(T,Emp).
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�

Seq(©) Bag(4)

K

Figure 4.2: Example stream type for Figure 4.1 drawn as a tree.

The idea of this definition is to model partially ordered streams like the one visualized in Figure 4.1.

This partial order consists of a sequence of black squares � with streams in between, which is

described by the type Sync(�, S). The substream type S consists of circles and triangles combined in

parallel: Par(S1, S2). The parallel substream of circles (type S1) consists of a sequences of circles ©,

described by ParBy(K,Seq(©)). The type K in the ParBy construct is a key field K that describes

the index of the set of substreams (the key on which they are partitioned). Colors are used to indicate

different values of the field K Second, the parallel substream of triangles 4 is simply a bag, described

by Bag(4). Here the colors indicate different values of the base type; note that equal values and

unequal values are all parallel in a bag, unlike in ParBy.

Thus, overall, this illustration of a stream is described by the following type:

Sync(�,Par( ParBy(K,Seq(©)), Bag(4) )).

Figure 4.2 shows this stream type visualized as a tree. Siblings correspond to the Par(S1, S2)

constructor while the rectangular box, labeled with the key fields, corresponds to the ParBy(K,S)

constructor. A parent node corresponds to the Sync(T, S) constructor, where T is the root and S is

the forest (set of trees) of children.

This example is abstracted, but represents a practical use case such as the following example.

Example 4.1.2. Consider a stream of taxi events, where each is a GPS measurement, an indication

of a taxi ride begin or a ride end, or an end-of-hour synchronization marker. GPS data for each

taxi is a tuple type © = GPS(x: float, y: float, z: float), which indicates the type

of a GPS reading using 3-dimensional coordinates. Completed ride data is a tuple type 4 =

RideCompleted(rideID: int, passengerID: int, cost: int). Finally, end-of-hour events are

used to synchronize in time; these are a tuple type � = EndOfHour(date: date, hour: int).
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The stream shown in Figure 4.1 applies to this example where squares, circles, and triangles are events

of the corresponding tuple types as described above. The relationship between the different tuple

types is described by the stream type shown in Figure 4.2. Described from the bottom up: first, the

type S1 = ParBy(taxiID,Seq(GPS)) denotes that GPS events are partitioned by the key TaxiID and

are totally ordered for each taxi. Second, S2 = Bag(RideCompleted) denotes that RideCompleted

events are unordered, and can be considered to be a bag. Finally, S = Sync(EndOfHour,Par(S1, S2))

denotes that EndOfHour events synchronize the events in S1 and S2, each of which can be processed

in parallel as they are independent.

The partially ordered structures we have in mind (like the illustration of Figure 4.1) can be viewed

in multiple ways, and we explore this formally in the next section. In particular, we will define what

it means for a labeled partially ordered set to be a value of type S for a stream S in Section 4.2.4.

4.2. Views of Streams

4.2.1. Streams as Structured Batches

The following syntax defines concrete structured stream instances for each of the stream types, which

we call batches because they represent data collected into a static bundle.1 To define a concrete

stream instance, one either defines a pair, a sequence, or a bag (unordered multiset).

B ::= (B,B) | [B,B, . . . , B] | {B,B, . . . , B} | t : T

Batches are typed using the following typing rules:
1Thanks to Joe Cutler for this suggestion.
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b0 : Batch(S) ti : T and bi : Batch(S) for all i = 1, . . . ,m

[b0, t1, b1, t2, b2, . . . , tm, bm] : Batch(Sync(T, S))

Synch

b1 : Batch(S1) b2 : Batch(S2)

(b1, b2) : Batch(Par(S1, S2))

Par

ki : K for all i ki 6= kj for all i 6= j bi : Batch(S) nonempty for all i

{(k1, b1), (k2, b2), . . . , (kn, bn)} : Batch(ParBy(K,S))

ParBy

ti : T for all i

{t1, t2, . . . , tn} : Batch(Bag(T ))

Bag
[] : Batch(Emp)

Emp

The nonempty requirement in the ParBy means that bi must have at least one occurrence of t : T

for some base type T . We can define emptiness for batches inductively: (b1, b2) is empty iff b1 and b2

are empty; a list is empty iff all of its elements are empty; and a bag is empty iff all of its elements is

empty. The batch t : T is not empty.

In the Synch case, a batch is a list of odd length: it is formed from m synchronizing elements of type

T and m+ 1 batches of type S, for some m ≥ 0. So the batch always contains at least one initial

batch b0, followed by zero or more alternating elements of T and batches of type S. The intuition is

that a batch of type Sync(T, S) is like a string separated by commas (elements of T ), and there is a

(possibly empty) batch before the first comma and after the last comma. A possible generalization of

Sync(T, S) would be to have Sync(S1, S2) for arbitrary stream types S1 and S2, but the typing rule

for this gets a bit complicated, and we aren’t aware of a good use case for this complexity in practice.

On the other hand, it would be useful in practice to have a version of Sync(T, S) that requires the

stream to be terminated by an element of T , as this avoids the off-by-one mismatch between elements

of T and batches of S. But this requires a generalization of the type system, e.g. to add singleton

types; see Section 4.7.1.
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4.2.2. Stream Events and Dependence Relation

A stream can also be thought of as a type for individual events in isolation. Events can be either

base types or pairs. Pairs are needed to encode tuples (using values of a key type K); similar to the

ParBy case for batches, we just make the first element of the pair the value of a key type. Here is a

grammar for events:

E ::= (E,E) | t : T

We can also talk about events specific to a particular stream type: e : Event(S) means that e is a

valid event for a stream type S. Notice that there are no rules for t : Event(Emp) – there are no

events of the empty stream type.

e : T

e : Event(Sync(T, S))

Synch-1
e : Event(S)

e : Event(Sync(T, S))

Synch-2

e : Event(S1)

e : Event(Par(S1, S2))

Par-1
e : Event(S2)

e : Event(Par(S1, S2))

Par-2

k : K e : Event(S)

(k, e) : Event(ParBy(K,S))

ParBy
e : T

e : Event(Bag(T ))

Bag

We say that a stream type S is grounded if all base types T occurring in S are nonempty and disjoint.

This is useful because, for example, if we have e : Event(Par(S1, S2)), it allows us to deduce that

either e : Event(S1) or e : Event(S2), but not both. Similarly, in Sync(T, S), it implies that elements

t : T are not also events of type S. We generally have grounded types in mind for the remainder of

the chapter, but we will still explicitly state where this assumption is used. Groundedness was not

needed for the view of streams as batches in the last section, but it is often needed for the other

views.

Of course, a stream type is more than just its type of events. In addition, a stream defines a

dependence relation, a symmetric binary relation on pairs of events. The relation indicates whether
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the events should be considered ordered with respect to each other. For example, in Figure 4.1, red

circles are dependent with each other but independent of green circles; all circles are dependent with

black squares. In the figure, the arrows denote a partial order on events, where x is less than y if

there is a path left-to-right along arrows. The dependence relation gives rise to the arrows, and the

partial order is the transitive closure of the arrows. One quirk to notice is that red circles on the left

are ordered with green circles on the right, though they are not dependent; the ordering between

them is forced by transitivity.

The dependence relation e D e′ mod S means that events e and e′ are dependent with respect to

the stream type S (the events should in particular satisfy e, e′ : Event(S)). This is defined by the

following rules. Notice that there are no rules for Emp (because it has no events) nor for Bag()

(because all events in a bag are independent).

t : T e : Event(Sync(T, S))

e D t mod Sync(T, S) t D e mod Sync(T, S)

Synch
e D e′ mod S

e D e′ mod Sync(T, S)

Sub

e D e′ mod S1

e D e′ mod Par(S1, S2)

Par-1
e D e′ mod S2

e D e′ mod Par(S1, S2)

Par-2

k : K e D e′ mod S

(k, e) D (k, e′) mod ParBy(K,S)

ParBy

The dependence relation is symmetric, i.e., e D e′ mod S iff e′ D e mod S, by an easy induction on the

typing judgment. If two events e, e′ : Event(S) are not dependent, we say they are independent and

write e I e′ mod S. Dependence is constructive and decidable via the above rules, so we could have

alternatively given a typing judgment for e I e′ mod S. For completeness, such a typing judgment is

shown in Section 4.7.5 for grounded stream types. The following proposition is a sanity check:

Proposition 4.2.1. Let S be a grounded stream type. Then for any e, e′ : Event(S), exactly one of

e D e′ mod S and e I e′ mod S holds.
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Proof sketch. By induction on S. Groundedness is used to subdivide each inductive step into cases:

For example in the case S = Sync(T, S0), there are three case either e, e′ : T , e : T and e′ : Event(S0),

or e, e′ : Event(S). Each of these three cases matches exactly one rule either for D or for I.

4.2.3. Stream Linearizations and Equivalence Relation

A linearization is a sequence of events:

L ::= [E,E, . . . , E]

Notice that each event in the sequence may be different (they may even all have different types).

Linearizations support list concatenation (denoted ·) and the interleaving relation inter(l; l1, l2, . . . , lk),

meaning that l consists of l1, l2, . . . , lk interleaved in some order.

Linearizations are typed using the rule that a linearization has type S if all its elements are events

of S:

l = [e1, e2, . . . , en] ei : Event(S) for all i

l : Lin(S)

Lin

The dependence relation also gives rise to an equivalence relation on linearizations. This equivalence

relation is derived as follows:

e I e′ mod S

[e, e′] ≡ [e′, e] mod S

Indep
l1 ≡ l′1 mod S l2 ≡ l′2 mod S

l1 · l2 ≡ l′1 · l′2 mod S

Concat

l : Lin(S)

l ≡ l mod S

Refl
l ≡ l′ mod S l′ ≡ l′′ mod S

l ≡ l′′ mod S

Trans

We should immediately check that equivalence respects our typing judgment (i.e., equivalence is only

defined between well-typed linearizations):
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Proposition 4.2.2. If l ≡ l′ mod S then l : Lin(S) and l′ : Lin(S).

Proof. By induction on the typing judgment for l ≡ l′ mod S. The base case Refl and inductive

case Trans are immediate. For the base case Indep, the independence precondition is only defined

for events e, e′ : Event(S). Finally for Concat, we observe that linearizations of type S are closed

under concatenation by the definition Lin of l : Lin(S), since it states a condition on each element of

the sequence individually.

The other important thing to check immediately is that concatenation respects equivalence, but

we don’t need to prove this as it is baked into the Concat rule. The rule forces that equivalent

linearizations concatenate to get equivalent linearizations.

4.2.4. Streams as Labeled Posets

For our last view of a streams, we define the concept of labeled poset. This concept is traditionally

called a pomset, for partially ordered multiset; however, this terminology can be confusing, because

the ordering relation is on the underlying set, not on the elements of the multiset.2

A partially ordered set (s,≤) is a set s together with a binary relation ≤ on pairs of elements of s

that is reflexive, transitive, and antisymmetric.

A labeled poset over X is a partially ordered set (s,≤) together with a labeling function ` : s→ X.

We denote this (s,≤, `). (A labeled poset over X different from a poset in X because multiple

elements may be labeled with the same element of X.) Two labeled posets are equivalent if the

underlying posets are isomorphic and the isomorphism preserves the labeling `.

Now we can define labeled posets of type S. We write

(s,≤, `) : Poset(S)

if ` : s→ Event(S) such that the order is consistent with the dependence relation in the following

way:

(i) If `(x) D `(y) mod S then x ≤ y or y ≤ x; and
2A better term might be polset (for partially ordered, labeled set).
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(ii) No strictly smaller ordering (strict subset of ≤ that is still a partial order) satisfies (i).

For example, in Figure 4.1, (i) states that there must be a path between dependent events: there

must be a path between every pair of red circles, or between every triangle and black square. And

(ii) states that ≤ is minimal among orderings satisfying these conditions. For instance, there are no

arrows in each of the two bags of triangles, because these are not required by condition (i).

4.3. Examples

We illustrate the different views of streams with the example of values and barriers from Section 1.2.

The stream type corresponding to this example is

S = Sync(#,Bag(int))

where # denotes a barrier and int denotes a value (integer). Intuitively, this creates several streams

of integers in parallel, synchronized by # markers. The stream views for this example are as follows:

• A batch of type S in this case is an odd-length list, where every other element is a barrier event.

For example:

[{}] : Batch(S)

[{1, 1, 2}] : Batch(S)

[{1},#, {2}] : Batch(S)

[{1},#, {1, 1, 2},#, {}] : Batch(S)

41



• An event of type S is either a value or a barrier. Anything is dependent with barrier, but

values are not dependent with each other. For example:

1 : Event(S)

2 : Event(S)

# : Event(S)

1 D # mod S

# D # mod S

1 I 2 mod S

For example, the dependence # D # mod S is derived using the Synch rule where we take

e = t = #.

• A linearization of type S is a sequence of values and barriers. Two linearizations are equivalent

(≡) mod S if they are the same up to reordering values between adjacent barriers. For example:

[] : Lin(S)

[1, 3, 2, 1] : Lin(S)

[1,#, 2,#, 3] : Lin(S)

[1,#,#,#, 2, 1] : Lin(S)

[1, 2] ≡ [2, 1] mod S

[#, 1, 3, 2, 1,#] ≡ [#, 1, 1, 2, 3,#] mod S

We would not, however, have equivalence between [1,#] and [#, 1], since 1 and # are dependent

(don’t commute).
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• Finally, a partial order of type S consists of a partially ordered set labeled with values and

barriers in a consistent way:

1

1

# 2 #

3

1

Notice that the barrier # events are ordered with everything, and the value events are unordered

as much as possible (except for their order with #). Since partial orders are transitive, this

also implies some orderings on values; for example, the 1 and 3 in the first column are ordered

less than the 1, 2, 1 in the third column.

4.4. Isomorphism between Views

This section shows that all three views are isomorphic. The types are isomorphic in the sense that

there is a one-to-one correspondence between their elements which also preserves the structure; in

particular, we show that it preserves a concatenation operation. To define an isomorphism between

batches and linearizations, we need a flattening relation which gives, for each batch, at least one

(and possibly more than one) linearization corresponding to that batch.

4.4.1. Isomorphism between Batches and Linearizations

Definition 4.4.1 (Flattening). Let S be a stream type, and let b : Batch(S). A flattening l of b is

any linearization defined inductively on S as follows:

• If S = Emp, then b = [] and l is a flattening of b iff l = [].

• If S = Bag(H), then b is a multiset, and l is a flattening of b iff the multiset of events in l

equals b. (That is, l contains exactly the same events as b in some order. Assuming b has at

least two distinct elements, there will be multiple such flattenings.)
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• In case S = Sync(T, S′), we have b = [b0, t1, b1, t2, b2, · · · , tm, bm] for some batches bi : Batch(S′).

Then l is a flattening of b iff l = l0 · [t1] · l1 · [t2] · l2 · . . . · [tm] · lm, where li is a flattening of bi

for all i.

• In case S = Par(S1, S2), we have b = (b1, b2). Then l is a flattening of b iff l is an interleaving

of some l1, l2 where l1 is a flattening of b1 and l2 is a flattening of b2. That is, inter(l; l1, l2).

• Finally, in case S = ParBy(K,S′), we have b is a set with finitely many entries (vi, bi) for

i = 1, . . . ,m. Then l is a flattening of b iff l is an interleaving of the sequences l1, l2, . . . , lm

where li is a flattening of ti for each i. That is, inter(l; l1, l2, . . . , lm).

Proposition 4.4.2. Let S be a grounded stream type.

(1) For every linearization l : Lin(S), there exists a unique batch b such that b : Batch(S) and l is a

flattening of b. Call this batch b = parseS(l).

(2) For every batch b : Batch(S), every flattening l of b satisfies l : Lin(S).

(3) For every batch b : Batch(S), there exists at least one flattening l of b.

(4) For two linearizations l1, l2 : Lin(S) we have l1 ≡ l2 mod S iff parseS(l1) = parseS(l2)

(5) Finally, if b : Batch(S), then for any two flattenings l1, l2 of b, l1 ≡ l2 mod S.

Proof. Adapted from Appendix B of [2] (Proof of Proposition 14). By induction on S. For Bag(T ), all

five conditions state a standard correspondence between a multiset of items and its linearizations. For

Par(S1, S2) and for ParBy(K,S1), we observe that sequences over events e : Event(S) are interleavings

of events each from a subtype, and all such interleavings are equivalent with respect to ≡, by the rule

Indep. Conversely ≡ only holds between different interleavings of the same two or more sequences

up to equivalence, i.e., for parallel composition, if l ≡ l′ and l is an interleaving of l1 and l2 and l′1 is

an interleaving of l′2, then l1 ≡ l′1 and l2 ≡ l′2. This uses groundedness and can be proven inductively

on l ≡ l′ mod S.

The most interesting case is S = Sync(T, S′). Here, we essentially apply the idea that (a ∪ b)∗ =

(a∗b)∗a∗ for languages: in this context a is the type Event(S′) and b is the type T . So a sequence of

Event(S) decomposes into a sequence of subsequences over S′ delineated by T events, where there is
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one more subsequence than the number of T events. Since T events are fully dependent on everything

else (rule Synch), this decomposition is not changed by ≡, which can thus be identified with equality

on the sequence of T events together with equivalence on each Event(S′) substream. The definition

of flattening reflects this decomposition exactly.

It is worth noting that not all binary relations on pairs of Event(S) arise as a dependence relation

e D e′ mod S. In particular, the (symmetric reflexive closure of) the relations {(a, b), (b, c), (c, d)}

and {(a, b), (b, c), (c, d), (d, a)} do not have a hierarchical structure; basically, this is because none of

a, b, c, d can act as synchronizing events for the other events as each event is only dependent with

some, but not all, of the others.

The following proposition characterizes exactly the dependence relations arising from stream types,

based on these two examples.

Proposition 4.4.3. For any stream type S, the relation D (e D e′ mod S) is symmetric and

reflexive. It additionally satisfies the following restriction: D does not contain the path graph

P4 = {(a, b), (b, c), (c, d)} or the cycle graph C4 = {(a, b), (b, c), (c, d), (d, a)} when restricted to any

four events a, b, c, d.

Proof. Symmetry and reflexivity are by construction in each type constructor for D.

Suppose that we introduce a cycle C4 or path P4. It cannot have been introduced in the base case

Bag(T ), nor in parallel composition since C4 and P4 are connected; nor in ParBy(K,S) since there

are no dependencies across keys. So it must have been introduced by the Sync(T, S) construct. But

for either C4 or P4, there is no way to partition (cut) the vertices into those in T and those in S

(with at least one vertex in each partition) such that every event in the first is dependent on every

event in the second.

4.4.2. Concatenation on Batches

Because batches are isomorphic to linearizations up to equivalence (as just shown in Proposition 4.4.2),

we can define concatenation on batches. In particular, if l1 and l2 are linearizations of type S, their

concatenation l = l1 · l2 is a linearization of type S, so it has a unique parsing parseS(l) : Batch(S).
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To show that this lifts to an operation on batches b1 ◦ b2, it remains to show that this is well-defined

up to equivalence on linearizations:

Proposition 4.4.4. Let S be a grounded stream type. Then batch concatenation is well-defined

and associative: (b1 ◦ b2) ◦ b3 = b1 ◦ (b2 ◦ b3).

Proof. By the Concat rule as remarked earlier, l1 ≡ l′1 mod S and l2 ≡ l′2 mod S then l1 · l2 ≡

l′1 · l′2 mod S. Then consider flattenings l1 and l2 of b1 and b2 respectively; by Proposition 4.4.2 (3),

(5), l1 and l2 are unique up to equivalence; by the Concat rule the concatenation l1 · l2 is unique up

to equivalence; and by Proposition 4.4.2 (4) this means parseS(l1 · l2) is the same regardless of the

choice of l1 and l2.

Associativity follows by associativity of concatenation on sequences since concatenation respects

equivalence.

4.4.3. Isomorphism between Linearizations and Labeled Posets

Given any stream type S, any linearization l : Lin(S) gives rise to a labeled poset, which we call

posetS(l) as follows: if l has length n, then we let s = {1, 2, . . . , n}, and we define the labeling

function `(i) = l[i]. Then we define the ordering as follows: i <l,S j iff there is some sequence of

indices

i = i0 < i1 < . . . < im = j

such that each pair adjacent in the sequence is dependent:

l[i0] D l[i1] mod S

l[i1] D l[i2] mod S

. . .

l[im−1] D l[im] mod S.

This definition captures the property that l[i] and l[j] are ordered through some transitive closure of

dependencies between events in the linearization. And when this holds, it is impossible to reorder

the events (≡) to get l[j] before l[i]. The following proposition justifies this formally:
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Proposition 4.4.5. Let S be a grounded stream type.

(1) Let l1 : Lin(S) and l2 : Lin(S) be two linearizations. Then l1 ≡ l2 mod S iff posetS1
(l1) and

posetS2
(l2) are isomorphic.

(2) Let l : Lin(S) be a linearization; then posetS(l) : Poset(S).

(3) Let p : Poset(S); then there exists a linearization l such that p is isomorphic to posetS(l).

Proof. For (1) in the forward direction, what we need to show is that the rules for ≡ preserve

poset isomorphism. For the rule Indep the isomorphism switches e and e′ in the linearization; this

preserves the order because e and e′ are not ordered under <l,S . Refl and Trans hold because

poset isomorphism is transitive. For Concat, we construct an isomorphism between the posets on

l1 · l2 and l′1 · l′2 by combining the isomorphisms on the first half and second half. The idea is then

that any ordering in <l1·l2,S defined by i = i0 < i1 < . . . < im = j is derived from a first half of

orderings in l1, followed by a second half of orderings in l2, which is isomorphic to a segment of

orderings in l′1 followed by a segment of orderings in l′2, which implies ordering in <l′1·l′2,S . The reverse

direction requires decomposing any isomorphism by induction into a matching between the elements

of the individual linearizations such that the matching can be formed by repeated consecutive swaps,

implying equivalence via Indep, Concat, and Trans; this is the same as for data-trace types and a

full proof can be found in [9] and [5].

For (2), the crux of the statement is that our definition of <l,S precisely captures the smallest ordering

consistent with dependence D as described in the definition of a poset. Since l[i] D l[j] mod S implies

that i <l,S j or vice versa, <l,S is an ordering consistent with D, it remains to see why there is no

weaker ordering. But note that any weaker ordering would have to remove i <l,S j for some i < j as

these are the atomic constraints generating the ordering, and then it would not be consistent with D.

For (3), for an arbitrary finite labeled poset p of size n, pick any topological ordering of its elements

1, 2, 3, . . . , n, and consider the linearization l : Lin(S) defined by elements 1, 2, 3, . . . , n in that order.

The ordering arising from p must contain all pairs i <l,S j where l[i] D l[j] mod S because otherwise

i and j would be independent, violating consistency with D; and it must be the smallest ordering

containing these pairs by minimality of p.
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4.5. Subtyping

Types are most useful when they can be algorithmically checked. In this section, we define a form of

semantic subtyping: S1 is a subtype of S2, denoted S1 . S2, means that a stream of type S1 can

be interpreted as a stream of type S2 if the partial order is relaxed. For example, a sequence can be

interpreted as a bag, but not vice versa. Also, the type S2 may have additional possible events; for

example, S1 should be a subtype of Par(S1, S2). The following picture captures the notion we want

to define:
Seq(int) . Bag(int)

. .

Sync(#,Seq(int)) . Sync(#,Bag(int))

An embedding that witnesses the subtyping from Seq(int) to Sync(#,Seq(int)) is the function which

returns the same stream without any # events. Going the other way – from Sync(#,Seq(int)) to

Seq(int) – is also possible, by throwing away all # events in the stream; but we don’t allow this

direction of subtyping, as having subtyping in both directions would be semantics-breaking. So we

adopt the position that subtyping should only extend the set of possible events, not restrict it.

The following are adapted from Section 2.5 and Appendix B of [2]. The definition uses the following

subtyping relation on events: Event(S1) is a subtype of Event(S2) if for all e : Event(S1), e : Event(S2).

Definition 4.5.1 (Subtyping). For stream types S1 and S2, S1 is a subtype of S2, written S1 . S2,

if:

(i) For every base type T occurring in S1, T occurs in S2;

(ii) For all events e, if e : Event(S1), then e : Event(S2); and

(iii) For all tuples x, y : Event(S1), if x D y mod S2 then x D y mod S1.

If S1 . S2, we also say that S2 is a relaxation of S1.

Two stream types S1 and S2 are order-equivalent, denoted S1 ∼ S2, if both S1 . S2 and S2 . S1.

Proposition 4.5.2. Let S, S′ be stream types such that S . S′. Then: (1) For all l, if l : Lin(S)

then l : Lin(S′). (2) For all l1, l2, if l1 ≡ l2 mod S then l1 ≡ l2 mod S′.
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Proof. Statement (1) is direct from the fact that Event(S) is a subtype of Event(S′) and linearizations

are sequences of events. For (2), all typing rules for l1 ≡ l2 mod S′ are the same as for l1 ≡ l2 mod S

except Indep, which introduces strictly more equivalences by condition (iii) of subtyping.

This brings us to the subtyping problem for stream types. The problem is to determine, on input

two grounded stream types S1 and S2, whether S1 . S2.

Subtyping =
{
〈S1, S2〉 : S1, S2 are grounded stream types and S1 . S2.

}

To decide the above problem, technically we also need to check whether S1 and S2 are grounded. To

do this, we need to assume that deciding whether two base types are disjoint is decidable. (This would

be true, for example, if base types consist of things like int, bool, and float, or if they are named

records). We first state the groundedness result, then we get to the main theorem, Theorem 4.5.4.

Define

Groundedness =
{
〈S〉 : S is a grounded stream type.

}

Proposition 4.5.3. Assume that checking whether two base types are disjoint is decidable in O(1)

time. Then Groundedness is decidable in quadratic time.

Proof. Enumerate the base types in S: these are instances of T for Sync(T, S) or instances of K

for ParBy(K,S). There are linearly many. For each type T , check whether it empty by checking is

disjoint from itself. For each pair of base types, check whether they are disjoint.

Theorem 4.5.4. Assume that groundedness is decidable in T (n) time. Then Subtyping is decidable

in quadratic time plus 2T (n).

Proof. On input S1 and S2, first check if they are grounded; if not, reject. Then write Event(S1) as

a disjoint union of finitely many tuple types; each member of the union is a nested tuple of key fields,

followed by a payload, e.g.:

(K1, (K2, (K3, T ))).
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(Here, T occurs in some Sync(T, S) subterm, and K1, K2, and K3 are all partition-by keys in the

surrounding context for T ). We check conditions (i) and (ii) for each part of the union separately.

For (i), we know K1,K2,K3, and T should occur somewhere in S2; if not, we reject. For (ii), we

write S2 as a disjoint union similarly to S1. If K1,K2,K3, and T do not occur in the exactly the

same form, then by groundedness of S2, elements of the type (K1, (K2, (K3, T ))) cannot be elements

of S2. Additionally there is at least one such element, since groundedness also requires base types to

be nonempty. So we can reject.

At this point, we have S1 and S2 as disjoint unions where each case in the union for S1 is in one-to-one

correspondence with some case in the union for S2. We can ignore cases in the union for S2 that

are not in S1. Let C1, C2, . . . , Cm be the shared types so that Event(S1) is the disjoint union of

C1, . . . , Cm. Then for each Ci, Cj , we build a formula φ1
Ci,Cj

whose free variables are elements of Ci

and elements of Cj or fields of Ci and fields of Cj in case they are tuple types, which is true exactly

when x D y mod S1 for x : Ci and y : Cj . This is done by expanding out the cases for the dependence

relation D. In all cases, the formula built is either true or false, or derived from a subcase, except

in the ParBy(K,S) case where we get an equality constraint as an atomic formula: specifically, for

(k, e) D (k′, e′) mod ParBy(K,S) we get the constraint k = k′ (in conjunction with the recursive

formula for e D S mod S′). Altogether, each φ1
Ci,Cj

is just an atomic formula over the language of

equality. We do the same for S2 to get formulas φ2
Ci,Cj

.

Condition (iii) now becomes checking a set of implications of atomic formulas over the language of

equality, which is decidable by checking each implication φ2
Ci,Cj

→ φ1
Ci,Cj

in turn. The complexity is

quadratic because there are quadratically many pairs i, j.

As a corollary of Theorem 4.5.4, checking order-equivalence is decidable in quadratic time as it is

sufficient to check subtyping in both directions.

4.6. Monotonicity, Type Safety, and Determinism

In this section we define three key properties that are relevant to the rest of the thesis: monotonicity,

type safety, and determinism for operators over streams. First, we need an abstract model of an

operator in a stream processing system.
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Definition 4.6.1. An operator from type X to type Y is a relation F ⊆ List(X)× List(Y ) such that

each input is associated with at least one output: for every l : List(X), there exists l′ : List(Y ) such

that (l, l′) ∈ F .

Modeling the operator as a relation is necessary because it allows for nondeterministic behavior; that

is, this is a model of a concurrent system with multiple possible execution traces. The definition only

requires that there is at least one possible behavior on any given input stream.

A bit of foreshadowing: though they aren’t directly expressed as such, operators are basically the

key objects studied in Chapters 6 to 8. Chapter 5 is not quite eligible for this distinction as it only

defines functions on batches, but these can also be seen as operators by applying our isomorphism

from Section 4.4; see Theorem 4.6.3.

For the following properties, let S be an input stream type, S′ an output stream type, and F an

operator from Event(S) to Event(S′).

• Monotonicity: F is monotone if, for all (l, l′) ∈ F , if l is a prefix of m, then there exists m′

such that l′ is a prefix of m′ and (m,m′) ∈ F .

• Type safety: F is type-safe if, for all (l1, l
′
1) ∈ F and l1 ≡ l2 mod S, there exists l′2 such that

l′1 ≡ l′2 mod S′ and (l2, l
′
2) ∈ F .

• Determinism: F is deterministic up to output equivalence, or simply deterministic, if whenever

(l, l′1) ∈ F and (l, l′2) ∈ F , l′1 ≡ l′2 mod S′.

4.6.1. Examples

To illustrate monotonicity, consider the function Sum (encoded as an operator as a set of ordered

pairs), which takes in a sequence or bag of integers and outputs their sum. The input stream type is

Seq(int) or Bag(int) (either works) and the output type is Seq(int) (though there is only be one

output, so it is really a singleton). Sum is not monotonic because on input [1, 2, 3] it produces [6] and

on input [1, 2, 3, 1] it produces [7], but [6] is not a prefix of [7]. To make it monotonic, we have to add

a special symbol to trigger output: the correct function to consider is the one which maps [1, 2, 3] to

[], but maps [1, 2, 3,#] to 6. Specifically, we define SumAt which maps maps [a1, a2, a3, . . . , ak,#] + t

to [a1 + a2 + · · ·+ ak] for any integers a1, . . . , ak and any tail list t, but maps input lists with no
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Name Example I/O Input type S Output type S′ Monotone? Type-safe? Deterministic?

Sum [1, 2, 3] 7→ [6]
Seq(int)

or Bag(int)
Seq(int) No Yes Yes

SumAt
[1, 2, 3] 7→ []

[1, 2, 3,#] 7→ [6]
Sync(#,Bag(int)) Seq(int) Yes Yes Yes

Iden [1, 2, 3] 7→ [1, 2, 3] Seq(int)
Seq(int)

or Bag(int)
Yes Yes Yes

Bag(int) Seq(int) Yes No Yes

Bag(int) Bag(int) Yes Yes Yes

Reorder
[1, 2, 3] 7→ [3, 1, 2]
[1, 2, 3] 7→ [1, 2, 3]

Seq(int)
or Bag(int)

Seq(int) Yes Yes No

Seq(int)
or Bag(int)

Bag(int) Yes Yes Yes

First
[1, 2, 3] 7→ [1]

[] 7→ []
Seq(int)

Seq(int)
or Bag(int)

Yes Yes Yes

Bag(int)
Seq(int)

or Bag(int)
Yes No Yes

Last
[1, 2, 3] 7→ [3]

[] 7→ []
Seq(int)

Seq(int)
or Bag(int)

No Yes Yes

Bag(int)
Seq(int)

or Bag(int)
No No Yes

Drop
[1, 2, 3] 7→ [1, 3]
[1, 2, 3] 7→ [2]

Seq(int)
Seq(int)

or Bag(int)
Yes Yes No

Bag(int) Seq(int) Yes No No

Bag(int) Bag(int) Yes Yes No

Reverse
[1, 2, 3] 7→ [3, 2, 1]

[1] 7→ [1]
Seq(int)

Seq(int)
or Bag(int)

No Yes Yes

Bag(int) Seq(int) No No Yes

Bag(int) Bag(int) No Yes Yes

Swap
[1, 2, 3] 7→ [1, 3, 2]
[1, 2, 3] 7→ [2, 1, 3]

Seq(int) Seq(int) Yes Yes No

Seq(int)
or Bag(int)

Bag(int) Yes Yes Yes

Bag(int) Seq(int) Yes No No

Star
[1, 2] 7→ [1, 2, 1, 2]

[1, 2] 7→ [1, 2]
Seq(int)

Seq(int)
or Bag(int)

No Yes No

Bag(int) Seq(int) No No No

Bag(int) Bag(int) No Yes No

Figure 4.3: Examples of monotonicity, type safety, and determinism for a selection of stream operators
and input and output types.
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instance of # to []. (We could also choose to trigger output on every #, not just the first one.

Either way, this function is monotonic.) The function SumAt is best described using the input type

Sync(#,Bag(int)) (a sequence of bags separated by #). Its output type is Seq(int).

To illustrate type safety, consider the function Iden, which consists of all pairs (l, l), e.g., it maps

[1, 2, 3] to [1, 2, 3]. Suppose S = Bag(int) so that it allows input reorderings, that is [1, 2, 3] ≡

[1, 3, 2] mod S. Then type safety says that there should be an output on [1, 3, 2] that is equivalent to

[1, 2, 3] under S′. This holds iff [1, 2, 3] ≡ [1, 3, 2] mod S′. So this identity operator is type-safe iff S′

allows output reorderings. In particular, it is type-safe for S′ = Bag(int) but not for S′ = Seq(int).

If instead S = Seq(int), it is type-safe either way.

To illustrate determinism, it is immediate that Sum and Iden are deterministic because they are

functions. But for a less trivial example, consider the relation Reorder, which maps a list l to all

its possible reorderings: in particular, for l = [1, 2, 3], Reorder contains all six pairs

(l, l), (l, [1, 3, 2]), (l, [2, 1, 3]), (l, [2, 3, 1]), (l, [3, 1, 2]), (l, [3, 2, 1]).

Then Reorder is deterministic iff l1 ≡ l2 mod S′ for all reorderings (permutations) l1 and l2.

Concretely, it is deterministic for output type S′ = Bag(int) but not for output type S′ = Seq(int).

In short, determinism allows for multiple outputs as long as those outputs are equivalent.

It is possible for an operator to be type-safe, but not deterministic. For example, if S′ = Seq(int),

then Reorder is not deterministic, but it is still type-safe because while there are many (inequivalent)

possible outputs for each input, this set of possibilities doesn’t depend on the input.

Conversely, it is possible for an operator to be deterministic, but not type-safe. For example, consider

the first-element function First that on [1, 2, 3] returns [1] and on [2, 1, 3] returns [2]. This is

deterministic because it is a function, whether the input type S is Seq(int) or Bag(int). But if we

have S = Bag(int), so that [1, 2, 3] ≡ [2, 1, 3] mod S, then it is not type-safe, because [1] and [2] are

not equivalent outputs (not even as bags). The function Last, returning the last element instead of

the first, has the same properties except that it is also not monotone.

Finally, it is possible to be neither deterministic nor type-safe. An interesting example is Drop,

which takes the input sequence l and nondeterministically drops some number of items. Formally,
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(l, l′) ∈ Drop if l′ is any subsequence of l. For the types S = Bag(int) and S′ = Seq(int), Drop is

not type-safe. This is because, for example, [1, 2, 3] may produce output [1, 3], but it is equivalent as

a bag to [3, 2, 1] which has no corresponding equivalent output. Drop is also not deterministic for

any S and S′.

All of these examples, and a few extras, are summarized in Figure 4.3. In the table, we write l 7→ l′

for (l, l′) ∈ F . The operation Reverse reverses the input list. Notice that it is not monotone,

even in the bag-to-bag case; in this case it is essentially the identity on bags, but our monotonicity

requirement is stronger and requires that the sequential output be monotone, not just the bag output.

The operation Swap is like Reorder in that it nondeterministically disrupts the input, but only

minimally so: it may make at most one swap of two adjacent elements. Unlike Reorder, it is

not type-safe as a bag-to-sequence operation because the output behavior depends on the input

reordering. It is monotone because once a swap point is chosen, the input can always be extended

with more items.

The last item in the table, Star, is the simplest example we can think of that is neither monotone nor

deterministic, nor necessarily type-safe. It takes the input list and repeats it some nonzero number

of times (like Kleene star). As with many other operations in the table, it fails to be type-safe in the

sequence-to-bag case, but is type-safe in the others. With Star included, note that all 8 possible

choices for the 3 properties are possible, i.e., the 3 properties are fully independent. We include a

few more examples, omitted from this section, in Section 4.7.3.

4.6.2. Notes and Discussion

Why do we call the second property “type safety”? By analogy, if one defines a function on an input

type of integers modulo 5, the output should not depend on the exact choice of residue class; f(4)

and f(9) should be the same (up to output equivalence). Or to take another example, if Booleans are

represented as integers where False is 0 and True is any nonzero integer, Boolean operations are only

type-safe if they are not defined with respect to the particular choice of representation of True. In

our case, S and S′ define types with a custom equality relation ≡ on linearizations, and the property

encodes the fact that the equalities in the input transfer over to the output. This captures exactly

the property necessary for F to be interpretable as a relation between input batches and output

batches, or between input labeled posets and output labeled posets – see the following subsection.
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A second reason is that it corresponds precisely to type safety on batch types, as we will see in the

next subsection. For example, batches of the stream type Par(S1, S2) are ordered pairs of a batch

from S1 and a batch from S2. So a function defined on sequences – interleavings of arbitrary events

from S1 and S2 – is not necessarily a well typed function on ordered pairs. From this perspective,

the input to an operator – a list of events – contains more information than just an element of a

type; it also includes an arbitrary representation of that element, which an operator should really be

oblivious to.

It is important to us that determinism is strictly weaker than saying the relation is functional, because

we want to allow implementations which benefit from parallelism. That is, we do not require that for

any l there is exactly one l′ such that (l, l′) ∈ F . Instead, the output l′ only must be unique up to

output equivalence: there can be multiple (l, l′1) and (l, l′2), but only if l′1 and l′2 are equivalent.

Alternate definitions of monotonicity are possible. The Reverse and Swap examples reveal this.

Considering Reverse, it would be reasonable to define monotonicity only up to reordering, meaning

that Reverse would be monotonic as a bag-to-bag operator. To do this, in the definition of

monotonicity, we would replace sequence prefix (l is a prefix of m) with batch prefix: parseS(l) is a

prefix of parseS(m) (under batch concatenation). For Swap, note that it is monotonic, but displays

the following odd behavior: [1, 2, 3] 7→ [1, 3, 2] is possible, but [1, 2] does not map to any of the prefixes

of [1, 3, 2]. So this behavior on input [1, 2, 3] appears “out of thin air” and not in an incremental way.

Put another way, if we imagine a black-box system implementing Swap and give it elements only one

at a time, it will never truly display swapping behavior. Perhaps a better definition of Swap is that

it can either swap two elements, or drop the last element: that way [1, 2] 7→ [1] is possible, removing

the “out of thin air” new behavior after feeding in the third input item. However, these issues come

up only in considering nondeterministic functions, and do not really arise in the deterministic case.

4.6.3. Functional Characterization

If F is both type-safe and deterministic, then the following theorem says it is a well-defined function

from input streams up to equivalence to output streams up to equivalence. Equivalently, it defines a

function from input batches to output batches and a function from input labeled posets to output

labeled posets.
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Theorem 4.6.2. Let F ⊆ List(Event(S)) × List(Event(S′)) be type-safe and deterministic. Then

there exist functions f : Batch(S)→ Batch(S′) and g : Poset(S)→ Poset(S′) such that

(1) (l, l′) ∈ F implies f(parseS(l)) = parseS′(l′).

(2) (l, l′) ∈ F implies g(posetS(l)) = posetS′(l′).

Proof. (1) is an application of the isomorphism between batches and equivalence classes of lineariza-

tions (Proposition 4.4.2) and (2) is an application of the isomorphism between linearizations and

posets (Proposition 4.4.5). For (1), to define f(b) we consider any flattening l of b; by definition

of an operator F there exists some (l, l′) ∈ F , and we let f(b) = parseS′(l′). By determinism, this

definition does not depend on the choice of l′; by type safety it does not depend on the choice of

flattening l. The argument for (2) is identical except for g(p) we define l to be any total extension of

p, and we let g(p) = posetS′(l′).

A technical note: unfortunately (1) and (2) in Theorem 4.6.2 above are only forward implications.

The reverse implication might not hold if F isn’t closed under equivalence. For example, if F is

the identity function (the set of ordered pairs (l, l)) where S = S′ = Bag(T ). Then F is type-safe

and deterministic and the f and g arising in the theorem are the identity functions on batches and

posets, respectively. But the implication (l, l′) ∈ F implies f(parseS(l)) = parseS′(l′) only goes one

way; equality of sequences implies equivalence, but not vice versa. We allow this discrepancy because

we want the identity function F to be well-typed for any S and S′.

The converse of Theorem 4.6.2 is also true: any well-defined function on batches or labeled posets

is, when interpreted as a function on linearizations, both type-safe and deterministic. We state the

result for batches; the result for posets is analogous.

Theorem 4.6.3. Let f : Batch(S)→ Batch(S′) be any function, and define F to be the set of pairs

(l, l′) such that f(parseS(l)) = parseS′(l′). Then F is a type-safe, deterministic operator.

Proof. Another application of Proposition 4.4.2. For type safety, if l1 ≡ l2 mod S then parseS(l1) =

parseS(l2); therefore, (l1, l
′) ∈ F iff (l2, l

′) ∈ F for any l1, l2. For determinism, if (l, l′1) ∈ F and

(l, l′2) ∈ F then parseS′(l′1) = parseS′(l′2) (since f is a function) hence l′1 ≡ l′2 mod S′.
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The above consequences only mention type safety and determinism. The consequence of monotonicity

is that the operator not only implements a well-defined function from input batches or posets to

output batches or posets, but also is streamable in the sense that the output can be produced

incrementally. We discuss incremental operators a bit more in Section 4.7.6.

4.6.4. Compositionality Laws

In addition to the functional characterization, one way to investigate the usefulness of the three

properties is to consider how they behave when functions are composed. To cut to the chase: mono-

tonicity and type safety are compositional. Determinism + type safety together are compositional,

but determinism alone is not. This limitation of determinism as a property is because of the relaxed

requirement on determinism in the output, where it only need to be the same up to equivalence, yet

there is no reference to equivalence in the input. So it is arguable that determinism + type safety

is a more important property than plain determinism. However, defining determinism on its own

allows us to explore the rich space of different possibilities for example operators as in Figure 4.3,

where some operators are deterministic, but not type-safe.

For operators F and F ′, define F · F ′ to be relational composition:

F · F ′ :=
{

(l, l′′) | ∃l′ : (l, l′) ∈ F and (l′, l′′) ∈ F ′
}
.

The composition of operators is an operator because it is a total relation (for every input there is at

least one output). For the following theorem, we say that l′ in the definition above is the intermediate

witness for (l, l′′) ∈ F .

Proposition 4.6.4. Let S, S′, S′′ be stream types, F an operator from S to S′, and F ′ an operator

from S′ to S′′.

1. If F is monotone and F ′ is monotone, then F · F ′ is monotone.

2. If F is type-safe and F ′ is type-safe, then F · F ′ is type-safe.

3. If F is deterministic and F ′ is deterministic and type-safe, then F · F ′ is deterministic.
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Proof. For (1), let (l, l′′) ∈ F · F ′ and let l′ be the intermediate witness to the composition. Suppose

m extends l (l is a prefix of m). By monotonicity, we can find (m,m′) ∈ F such that m′ extends l′.

Then in turn, we can find (m′,m′′) ∈ F ′ such that m′′ extends l′′.

For (2), let (l1, l
′′
1 ) ∈ F ·F ′ with intermediate witness l′1. Now suppose l1 ≡ l2 mod S. By type safety,

we can find l′2 with l′1 ≡ l′2 mod S′. By type safety again, we can find l′′2 with l′′1 ≡ l′′2 mod S′′.

For (3), to show determinism let (l, l′′1 ) ∈ F · F ′ with intermediate witness l′1. Now suppose that

there is l′′2 such that (l, l′′2 ) ∈ F · F ′, and let the intermediate witness for this be l′2. Here is where

we need to apply type safety: determinism of F gives us that l′1 ≡ l′2 mod S′, but not their equality.

Type safety of F ′ pushes this through to an equivalence in S′′: applied to (l′1, l
′′
1 ), it gives us l′′3

such that (l′2, l
′′
3 ) ∈ F ′ and l′′1 ≡ l′′3 mod S′′. Now we have both (l′2, l

′′
2 ) ∈ F ′ and (l′2, l

′′
3 ) ∈ F ′ so we

can apply determinism of F ′ to get l′′2 ≡ l′′3 mod S′′. Applying transitivity of equivalence, we get

l′′1 ≡ l′′2 mod S′′ as required.

Additional compositionality laws can be given for other kinds of composition, in particular parallel

composition; see Section 4.7.2.

4.6.5. In the Context of the Remaining Chapters

Figure 4.4 shows how the properties monotonicity, type safety, and determinism relate to the

remaining chapters of the thesis. Each chapter can be thought of as considering a particular definition

of operators F , which is either a domain-specific language (DSL) or a black-box program in the case

of Chapter 7. (Note that the chapters do not define an operator by Definition 4.6.1 directly, so the

table should be understood as an informal picture, to the best of our understanding, of which formal

properties would hold if the chapter were to give an instance of Definition 4.6.1. There are likely to

be minor discrepancies if this were fleshed out formally.)

Among the different DSLs, Chapter 6 is relatively expressive as a language (in particular, it allows

arbitrary sequential programs), whereas the others are relatively restricted. If we think of an operator

as having an input type S and output type S′, some chapters only consider restricted classes of output

types S′. Monotonicity holds for every chapter. Type safety and determinism are enforced statically

for Chapters 5 and 6 and checked dynamically for a specific concurrent execution for Chapter 7.

Chapter 8 is a deterministic model but does not consider out-of-order input streams so does not
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Chapter Operator DSL (F ) Output (S′) Monotonicity? Type safety? Determinism?

5 Restricted
(SPST) Case-specific Yes

Thm. 5.5.1
Yes

(By construction)
Yes

(By construction)

6 General
(DGS program) Bag(T ) Yes

Yes
(If program
is consistent)

Thms. 6.4.4, 6.5.5

Yes
(If program
is consistent)

Thms. 6.4.4, 6.5.5

7 General
(Black-box program) Any Yes

Partial
(For a specific
runtime trace)
Thm. 7.6.8

Partial
(For a specific
runtime trace)
Thm. 7.6.8

8 Restricted
(DT or QRE-Past) Seq(T )

Yes
Thm. 8.3.1 — Yes

Figure 4.4: Monotonicity, type safety, and determinism for operators defined in the remaining
chapters. Here, F is an operator from S to S′ defined in a domain-specific language (DSL) specific
to each chapter (or any black-box program for Chapter 7). The entry — indicates that the property
is not studied for the DSL in question.

consider type safety, but the necessary requirements to ensure type safety could be considered in

future work.

4.7. Outtakes

4.7.1. Singleton Types

I originally wanted to include a construct for a singleton stream Single(T ), denoting a stream with

one element of type T . The problem with such a construct is it breaks the isomorphism described

in Section 4.4 because singleton streams are not closed under concatenation. In particular this

means that a linearization of type S isn’t just a sequence over Event(S), but rather a sequence with

some additional constraints. I would like to give a treatment of this kind of stream type in future

work, since these constraints are useful in practice. For example, when processing the output of

an aggregation operator it is often useful to know that the result has only one element. Writing
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further operations on the result of an aggregation, such as dividing a sum and a total count to get an

average (let avg = sum / count), is awkward when the arguments are streams and not known to

be singletons.

Singletons can also be used to define relations that are set types, rather than bag types. The following

abbreviation accomplishes this:

Set(T ) := ParBy(T, Single(•))

where • denotes the unit type. Currently, we use types Bag(T ) because they are, like all other

constructs, closed under concatenation.

Singleton types would be typed using rules like the following:

t : T

t : Batch(Single(T )) t : Event(Single(T )) [t] : Lin(Single(T ))

Singleton

This would require a change to to l : Lin(S) to make typing judgments specific to each stream

construct. It is not immediately clear whether we should have t D t mod Single(T ) or not; this choice

is likely immaterial because a singleton stream only ever has one item, never two that could be

dependent or independent.

Singleton stream types may require some dynamic enforcement. In particular, if an input stream to

the system is typed as a singleton, this has to be checked at runtime.

4.7.2. Additional Compositionality Laws

In Section 4.6.4, we considered only compositionality under relational composition, a.k.a. sequential

composition. This is enough to get the picture that monotonicity and type safety are generally

compositional, while determinism is only compositional with an additional type safety assumption.

It is possible to investigate other compositionality laws too, which are interesting in their own right.

The most immediate of these is the parallel, rather than sequential, composition of two operators.

Let F1 be an operator from S1 to S′1, and F2 an operator from S2 to S′2. Then we can define the
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parallel composition F1‖F2 as an operator from Par(S1, S2) to Par(S′1, S
′
2). It is defined as the set of

pairs l, l′ such that there exist (l1, l
′
1) ∈ F1 and (l2, l

′
2) ∈ F2 such that (i) l is an interleaving of l1

and l2 and (ii) l′ is an interleaving of l′1 and l′2. (See also [5], Section 3, which defines sequential and

parallel composition operators for data trace types.) This is an operator because there is at least

one output on every input, found by projecting out the input to F1 and to F2. For this definition of

parallel composition, we get the following compositionality laws; in fact, they are even stronger than

for sequential composition, because determinism is compositional as well.

Proposition 4.7.1. Let F1 be an operator from S1 to S′1, and let F2 be an operator from S2 to S′2.

Additionally assume that Par(S1, S2) and Par(S′1, S
′
2) are grounded. Then:

1. If F1 and F2 are monotone, then F1‖F2 is monotone.

2. If F1 and F2 are type-safe, then F1‖F2 is type-safe.

3. If F1 and F2 are deterministic, then F1‖F2 is deterministic.

Proof sketch. Let π1, π2, π
′
1, and π′2 denote the projection of a list to S1, S2, S

′
1, and S′2 respectively.

A basic fact about the type Par(S1, S2) is that any two interleavings of a list in S1 and a list in S2

are equivalent. For (1), if we have an extension of the input list then applying π1 and π2 we also get

extensions of each coordinate; these correspond to extensions in the output by monotonicity. The

additional output produced by F1 and F2 can be interleaved arbitrarily. For (2), for a specific output

list o, the type equivalence l ≡ m mod Par(S1, S2) can be deconstructed into a sequence of swapping

adjacent elements; we push this sequence to construct a type equivalence on π1(o) and on π2(o).

Specifically, each swap is either a swap of an element in S1 and an element in S2, which we ignore in

the output, or a swap between two elements in S1, which we push to the corresponding projection

πi(o). Then at the end we construct any interleaving we want from the outputs in S′1 and in S′2. For

(3), we fix an input l, which is an interleaving of some l1 and l2, and suppose it has two different

outputs. The first output must be an interleaving of some l′1 and l′2 and the second an interleaving of

some m′1 and m′2, by definition of the parallel composition operator, where l′1,m′1 are outputs of F1

on l1 and similarly for l′2,m′2. Then we apply determinism in each case, and lift type equivalence to

the interleaving by the rules of Par(S′1, S
′
2).
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Name Example I/O Input type S Output type S′ Monotone? Type-safe? Deterministic?

Max [4, 0, 4] 7→ [4]
Seq(int)

or Bag(int)
Seq(int) No Yes Yes

ArgMax
[4, 0, 4] 7→ [0]
[4, 0, 4] 7→ [2]

Seq(int) Seq(int) No Yes No

Bag(int) Seq(int) No No No

ArgZero
[0, 4, 0] 7→ [0]
[0, 4, 0] 7→ [2]

Seq(int) Seq(int) Yes Yes No

Bag(int) Seq(int) Yes No No

Fresh
[1, 4] 7→ [3]
[1, 4] 7→ [5]

Seq(int)
or Bag(int)

Seq(int) No Yes No

Any
[1, 4] 7→ [1]
[1, 4] 7→ [4]

Seq(int)
or Bag(int)

Seq(int) Yes Yes No

Unique
[1, 2, 3] 7→ [3]
[1, 2, 1] 7→ [2]

Seq(int)
or Bag(int)

Seq(int) No Yes Yes

DeDup
[1, 2, 3] 7→ [1, 2, 3]
[1, 2, 1] 7→ [1, 2]

Seq(int)
Seq(int)

or Bag(int)
Yes Yes Yes

Bag(int) Seq(int) Yes No Yes

Bag(int) Bag(int) Yes Yes Yes

Dup
[1, 2] 7→ [1, 1, 2]

[1, 2] 7→ [1, 1, 2, 2]
Seq(int)

Seq(int)
or Bag(int)

Yes Yes No

Bag(int) Seq(int) Yes No No

Bag(int) Bag(int) Yes Yes No

Figure 4.5: Outtakes from Figure 4.3: additional examples of monotonicity, type safety, and
determinism for stream operators.

4.7.3. Additional Operator Examples

Figure 4.5 shows some additional outtakes to add to the examples listed in Figure 4.3. Max is

the usual maximum function. ArgMax returns the index of the maximum element, or any index

if there are multiple maximums. ArgZero similarly returns the index of a zero, rather than of

the maximum. Fresh takes an input stream and returns any unique new element (not seen in the

input). Any is the dual of Fresh, and returns an element seen in the input. Unique is the famous

count-distinct function, returning the number of unique elements in the input. DeDup removes all

instances of each input element after the first, and Dup nondeterministically duplicates some number

of the input items (at-least-once behavior).
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4.7.4. Synchronization Relation

Stream linearizations in this chapter use a symmetric dependence relation e1 D e2 mod S between

pairs of events. It is also possible to formalize linearizations using a transitive, asymmetric relation

called synchronizes : “a synchronizes b” means that a is either at the same level in the hierarchy or at

a greater level; or, that a is an ancestor of b in the tree visualization of the stream type (Figure 4.2).

For example, in the figure, � synchronizes �, ©, and 4; © synchronizes © of the same key only;

and 4 doesn’t synchronize anything.

To formalize this relation, only a single change to the rules in Section 4.2.2 is required, in the Synch

case, to make it asymmetric. The modified rule is as follows:

t : T e : Event(Sync(T, S))

t D e mod Sync(T, S)

Synch-asymmetric

The symmetric version of the dependence relation can be derived from the synchronization relation

as its symmetric closure. What is interesting about the synchronization relation is that it satisfies

stronger mathematical properties, in particular it satisfies the following definition:

Definition 4.7.2. A synchronization relation is a binary relation � subject to two conditions:

1. Transitivity: if a � b and b � c then a � c.

2. If a � b and a′ � b, then either a � a′ or a′ � a.

We chose not to include the idea of synchronization relations in the chapter because the rules

for linearization equivalence only use the relation up to symmetry (see the rule Indep), so the

synchronization relation as a concept is not needed directly, and probably only serves to confuse the

reader. However, the synchronization relation may be useful for other purposes, and developing a

theory of streams with a synchronization relation could be an interesting direction for future work.

4.7.5. Omitted Typing Rules

Below we include the typing rules for e I e′ mod S, omitted from Section 4.2.2. This is simply the

complement of the relation e D e′ mod S where e, e′ : Event(S).
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e I e′ mod S

e I e′ mod Sync(T, S)

Sub-I
e1 : Event(S1) e2 : Event(S2)

e1 I e2 mod Par(S1, S2)

Par-I

e I e′ mod S1

e I e′ mod Par(S1, S2)

Par-I1
e I e′ mod S2

e I e′ mod Par(S1, S2)

Par-I2

k : K e D e′ mod S

(k, e) D (k, e′) mod ParBy(K,S)

ParBy-I1

k : K k′ : K k 6= k′ e : S e′ : S

(k, e) I (k′, e′) mod ParBy(K,S)

ParBy-I2

t : T t′ : T

t I t′ mod Bag(T )

Bag

4.7.6. Incrementality

Viewing streams as static objects (batches, linearizations, and posets) has the disadvantage that it

makes it not obvious whether a function on these objects is suitable for incremental processing. We

somewhat recovered this suitability through the monotonicity requirement on operators F . Formally,

one can show that if F is monotone, then an implementation can produce output on a prefix of the

input stream safely; when getting some later items, we know that the new output will be a suffix

of the old output, so we can produce the difference as new output. For example, the map-plus-one

function is monotone: mapping [1, 2, 3] to [2, 3, 4]. When receiving the input [1, 2], we can safely

produce the output [2, 3]; when 3 later arrives, we produce the new output [4].

It is also useful, though, to define explicitly incremental objects; stream producers and consumers

which are monotonic by definition. For example, here is a definition of a generator object which
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produces events of a stream type:

State : Type f : State→ Option<Event(S)× State>

Generator(f) : S

Generator

The later chapters will consider incremental computation more explicitly, and we generally adopt an

event-by-event view of streams for the remainder of the thesis.

4.8. Historical Notes

The stream types defined in this chapter differ from what we called synchronization schemas [2] in a

few ways. Mostly these are not conceptually fundamental differences, but they nevertheless have

some consequences. We survey each difference individually and also discuss the relationship with

data-trace types [9].

4.8.1. Base Types vs. Tuple Types

First, synchronization schemas enforce that the base types are record types (also known as named

tuples or headers). Here is the definition of header from [2], which is standard in any textbook on

relational databases:

Definition 4.8.1 (Headers and tuples). A header H consists of a unique header name α and fields

〈αi : τi〉, for 1 ≤ i ≤ n, where each αi is a field name and τi is a field type. A tuple x of type H,

denoted x : H, is of the form x = (x1, x2, . . . , xn), where each xi : τi.

In fact, synchronization schemas used a set of headers (not just a single header). For a set H of

headers, we write x : H if x : H for some H ∈ H. In the constructs Bag(T ) and Sync(T, S), T is a

set of headers.

4.8.2. Treatment of Key Fields in Key-Based Parallelism

There is also a difference in the ParBy construct ParBy(K,S). In the present treatment, we assume

that the ParBy construct explicitly adds a key of type K to the data of all events in the stream: so

note that in the definition of events e : Event(ParBy(K,S)), we have that e is an ordered pair (k, e′)

where k : K. In synchronization schemas, instead K is required to be one of the fields of all header
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base types. In particular, one advantage of this is that ParBy(K,ParBy(K,S)) is type-isomorphic

to ParBy(K,S) for synchronization schemas (while they are not type-isomorphic for our stream

types). One disadvantage is that synchronization schemas must satisfy a well-formedness condition,

meaning that within ParBy(K,S), all tuple types (headers) present in S must include the field K.

For reference, here is the definition of a well-formed schema from [2]:

Definition 4.8.2 (Well-formed schema). First, the partitioning construct ParBy(K,S) naturally

gives rise to a concept of scope for partition keys: for each partition key k ∈ K and for each header

H appearing in the schema S, we say that H is in the scope of k.

A synchronization schema S is well-formed if the following conditions hold: (1) no header H appears

in S twice, (2) if a header H is in the scope of a partition key k, then k is a field of H, i.e., k ∈ H,

and (3) if a partition schema ParBy(K,S) is in the scope of a partition key k, then k 6∈ K.

The first condition (1) is necessary for unambiguous parsing, while (2) and (3) ensure that splitting

on a key field is meaningful in a given context. Note that it is straightforward to check the conditions

necessary for a schema to be well-formed.

In our development, at least for the batch view, our stream types don’t need to satisfy any well-

formedness conditions; for equivalence with linearizations though (Proposition 4.4.2), we do need a

condition analogous to (1) (groundedness, i.e. that base types in a schema are disjoint). We don’t

need conditions (2) and (3).

4.8.3. Batches vs. Series-Parallel Streams

The batches we define (b : Batch(S)) are analogous to what were called series-parallel streams (or

SPSs) in [2], the type inhabitants for synchronization schemas. SPSs are an inductive representation

of streams that are values of these types. Due to the different treatment of ParBy, SPSs have to be

defined with a particular valuation of key fields in mind: the type S[v] is elements of the stream S

where each tuple has key values v, where v assigns a value to each key type.

Series-parallel streams: Consider the sequence of GPS events corresponding to the red taxi. The

type of this sequence is Seq(GPS)[taxiID = red]. Such a type can be viewed as a refinement type of

the schema type Seq(GPS). This type is more specialized than Seq(GPS), since all these events share

a common value of the field taxiID.
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If d : H and F is a subset of the fields of H, we write d|F for the restriction of d to contain only

those fields in F . For a set K of partition keys, K can also be considered to be a header containing

these keys as its only fields. Then, for a particular tuple v of such a header type K, for a schema S,

we use S[v] to denote the refinement of schema S to an instance where all the tuples are required to

have key values as specified by v.

Following [2], we use the following syntactic constructs to capture the structure of the desired

series-parallel streams: [x1, x2, . . . , xn] for a sequence (list), {x1, x2, . . . , xn} for a bag (with standard

bag equality semantics), 〈x1, x2〉 for a pair of x1 and x2 where x1 and x2 are thought of as parallel

instead of sequential, and v 7→ x to represent a key-indexed value.

Definition 4.8.3 (Series-Parallel Streams). Let S be a synchronization schema. A series-parallel

stream (SPS) t : S[v] for a specific instantiation of key values v : K is inductively defined as follows:

• If di : H such that di|K = v for i = 1, . . . ,m, then t = {d1, . . . dm} is an SPS of type Bag(H)[v].

• If t1 : S1[v] and t2 : S2[v], then t = 〈t1, t2〉 is an SPS of type Par(S1, S2)[v].

• If di : H such that di|K = v for i = 1, . . . ,m, and if ti : S′[v] for i = 0, 1, . . . ,m, then

t = [t0, d1, t1, . . . , dm, tm] is an SPS of type Sync(H, S′)[v].

• Suppose that K ′ is a set of partition keys disjoint from K, and that v′1, v′2, . . . , v′m : K ′ are

distinct instances of key values for K ′. Suppose t1, t2, . . . , tm are nonempty streams such that

ti : S′[vi], and let vi : K ∪K ′ to the unique valuations such that vi|K = v and vi|K′ = v′i, i.e.,

the extension of v′i with the key values in v. Then t = {v′1 7→ t1, v
′
2 7→ t2, . . . , v

′
m 7→ tm} is an

SPS of type ParBy(K ′, S′)[v].

We write t : S when K = ∅ for t : S[()], where () is the empty tuple of type K. When S[v] is clear

from the context, we write ⊥ : S[v] for the empty SPS: this abbreviates {} for S = Bag(H), 〈⊥,⊥〉

for S = Par(S1, S2), [⊥] for S = Sync(H, S′), and {} for S = ParBy(K ′, S′).

Additionally, [2] defined concatenation of series-parallel streams, denoted ◦. In our setting we instead

derive ◦ from concatenation on linearizations rather than defining it inductively.
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Definition 4.8.4 (Concatenation and Prefix Ordering for SPSs). Let t, u : S[v] be series-parallel

streams over the same schema S and key valuation v. The concatenation t ◦ u is defined inductively

on the structure of S:

• If S = Bag(H), t = {d1, . . . , dm}, and u = {e1, . . . , en}, then

t ◦ u = {d1, . . . , dm, e1, . . . , en}.

• If we have S = Sync(H, S′), t = [t0, d1, t1, . . . , dm, tm], and u = [u0, e1, u1, . . . , en, un], then

t ◦ u = [t0, d1, t1, · · · , dm, (tm ◦ u0), e1, u1, · · · , en, un].

• If S = ParBy(K,S′), then let the overlapping key values between t and u be v1, v2, . . . , vl, with

additional keys v′1, v′2, . . . , v′m in t only and v′′1 , v′′2 , . . . , v′′n in u only. If t = {v1 7→ t1, . . . , vl 7→

tl, v
′
1 7→ t′1, . . . , v

′
m 7→ t′m} and u = {v1 7→ u1, . . . , vl 7→ ul, v

′′
1 7→ u′1, . . . , v

′′
n 7→ u′n}, then

t ◦ u = { v1 7→ t1 ◦ u1, . . . , vl 7→ tl ◦ ul,

v′1 7→ t′1, . . . , v
′
m 7→ t′m,

v′′1 7→ u′1, . . . , v
′′
n 7→ u′n. }

• If S = Par(S1, S2), t = 〈t1, t2〉, and u = 〈u1, u2〉, then

t ◦ u = 〈t1 ◦ u1, t2 ◦ u2〉.

For t, u : S[v], t is said to be a prefix of u, written t � u, if there exists a series-parallel stream

t′ : S[v] such that t ◦ t′ equals u.

The following proposition was stated in [2]. It straightforwardly follows from viewing stream

concatenation as derived from concatenation of linearizations instead of as a separate operation.
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Proposition 4.8.5. For each type S[v] and for all t, t′, t′′ : S[v], the following hold: (1) t◦⊥ = ⊥◦t = t.

(2) (t ◦ t′) ◦ t′′ = t ◦ (t′ ◦ t′′). (3) t � t. (4) If t � t′ and t′ � t, then t = t′. (5) If t � t′ and t′ � t′′,

then t � t′′.

4.8.4. Reflexivity of the Dependence Relation

Just as with our streams, synchronization schemas give rise to a dependence relation on events. This

is not substantially different, but does differ in one important way: it is guaranteed in [2] to be

reflexive, that is e D e mod S for all events e : Event(S). As remarked in [2] and included below (see

Proposition 4.8.8), this has some advantages. However, we find it counterintuitive because in the

relation case, it means that events of the same value are ordered. So we have dropped it for our

stream types. The definition of dependence relation developed for synchronization schemas follows:

Definition 4.8.6 (Dependence Relation). Let S be a synchronization schema and let headers(S) be

all the headers appearing in S. The dependence relation is a binary relation on tuples of headers(S),

written xDS y for x, y : headers(S), and defined inductively as follows: (i) if S = Bag(H), then

DS is the empty set; (ii) if S = Sync(H, S′), then DS is { (x, y) | x : H or y : H or xDS′ y }; (iii) if

S = ParBy(K,S′), then DS is { (x, y) | (xDS′ y) and x|K = y|K }; and (iv) if S = Par(S1, S2), then

DS is DS1 ∪DS2 .

The dependence relation DS over the set X of tuples then gives rise to the following equivalence

relation on sequences s, s′ over X, just as we defined l ≡ l′ mod S.

Definition 4.8.7 (Equivalent sequences). Let D ⊆ X ×X be a symmetric relation. The equivalence

relation ≡D over sequences over X is the smallest equivalence relation (i.e., reflexive, symmetric, and

transitive) such that (1) commuting independent items: for all x, y ∈ X, if not xD y, then xy ≡D yx;

and (2) closure under (sequence) concatenation: for s1, s
′
1, s2, s

′
2 ∈ X∗, if s1 ≡D s′1 and s2 ≡D s′2

then s1s2 ≡D s′1s
′
2. For a schema S, two sequences s, s′ are equivalent with respect to S, written

s ≡S s′, if s ≡DS
s′.

The reflexivity of DS is not strictly necessary (we could drop it and have the empty relation in the base

case of Bag(H)), but is convenient, as it means that the dependence relation contains no extraneous

information other than what it implies about event ordering. In particular, we have the following
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proposition: for dependence relations D1 and D2, D1 = D2 iff ∀s, s′ ∈ X∗, s ≡D1 s
′ ⇐⇒ s ≡D2 s

′.

This means that if S1 and S2 are synchronization schemas, DS1
= DS2

iff ≡S1
and ≡S2

are the same.

Proposition 4.8.8. Let D1 and D2 be two dependence relations on the same set of tuples X, arising

from synchronization schema S1 and S2. Then D1 = D2 iff

∀s, s′ ∈ X∗, s ≡D1
s′ ⇐⇒ s ≡D2

s′.

In particular, if S1 and S2 are synchronization schemas, this implies DS1 = DS2 iff ≡S1 and ≡S2 are

the same equivalence relation on sequences.

Proof. The forward direction is immediate, and the backward direction follows taking any two distinct

tuples x1, x2 and considering the sequence x1x2.

Finally, [2] also defined a tight correspondence (isomorphism) between sequences and series-parallel

streams via dependence relations, which is analogous to our development in Proposition 4.4.2. Below

is Proposition 14 of [2].

Proposition 4.8.9. Let S be a synchronization schema. (1) For every sequence s of tuples of type

headers(S), there exists a unique (up to equality) t : S such that s is a flattening of t. (2) For all

sequences s1, s2 of tuples of type headers(S) and t : S, (a) if s1 ≡S s2 and s1 is a flattening of t

then s2 is a flattening of t also, and (b) if s1 and s2 are both flattenings of t then s1 ≡S s2.

Proof. By induction on S. For Bag(H), all three conditions follow by the correspondence between

a multiset of items and its linearizations. For Par(S1, S2) and for ParBy(K,S1), we observe that

sequences over tuples of headers(S) are interleavings of events each from a subschema, and all

such interleavings are equivalent with respect to ≡S ; conversely ≡S only holds between different

interleavings of the same two or more sequences up to equivalence. I.e., for parallel composition,

if s ≡S s′ and s is an interleaving of s1 and s2 and s′1 is an interleaving of s′2, then s1 ≡S1 s
′
1

and s2 ≡S2
s′2. The most interesting case is Sync(H, S1). Here, we essentially apply the idea that

(a ∪ b)∗ = (a∗b)∗a∗ for languages: in this context a is tuples of headers(S′) and b is tuples of H. So

sequences over tuples of headers(S) decompose into a sequence of subsequences over S′ delineated

by H events, where there is one more subsequence than the number of H events. Since H events
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are fully dependent on everything else, this decomposition is not changed by ≡, which can thus be

identified with equality on the sequence of H events together with equivalence on each headers(S′)

substream. The definition of flattening reflects this decomposition exactly.

4.8.5. Relationship to Data-Trace Types

Data-trace types [9] essentially correspond to the linearizations view: a data-trace type is a dependence

relation D on pairs of events, with a derived equivalence on linearizations l ≡ l′ mod S just as we

defined it, except it depends only on D and not on S. So stream types S are an abstraction over

dependence relations and thus an abstraction over data trace types. Proposition 4.4.3 shows that in

fact the abstraction loses some dependence relations and so is less general; but we have not found

the pathological cases it excludes (such as the graphs C4 and P4) to be useful in practice.

Here is the definition of a data type, dependence relation, and equivalence relation from [9], where

the latter bears close resemblance to equivalence on linearizations.

Definition 4.8.10. A data type A = (Σ, (Tσ)σ∈Σ) consists of a potentially infinite tag alphabet Σ

and a value type Tσ for every tag σ ∈ Σ. The set of elements of type A, or data items, is equal to

{(σ, d) | σ ∈ Σ and d ∈ Tσ}, which we will also denote by A. The set of sequences over A is denoted

as A∗.

A dependence relation on a tag alphabet Σ is a symmetric binary relation on Σ. We say that the tags

σ, τ are independent (w.r.t. a dependence relation D) if (σ, τ) /∈ D. For a data type A = (Σ, (Tσ)σ∈Σ)

and a dependence relation D on Σ, we define the dependence relation that is induced on A by D

as {((σ, d), (σ′, d′)) ∈ A × A | (σ, σ′) ∈ D}, which we will also denote by D. Define ≡D to be the

smallest congruence (w.r.t. sequence concatenation) on A∗ containing {(ab, ba) ∈ A∗×A∗ | (a, b) /∈ D}.

Informally, two sequences are equivalent w.r.t. ≡D if one can be obtained from the other by repeatedly

commuting adjacent items with independent tags.

Definition 4.8.11. A data-trace type is a pair X = (A,D), where A is a data type and D is a

dependence relation on the tag alphabet of A. A data trace of type X is a congruence class of the

relation ≡D. We also write X to denote the set of data traces of type X. Since the equivalence ≡D

is a congruence w.r.t. sequence concatenation, the operation of concatenation is also well-defined on

data traces: [u] · [v] = [uv] for sequences u and v, where [u] is the congruence class of u. We define
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the relation ≤ on the data traces of X as a generalization of the prefix partial order on sequences:

for data traces u and v of type X, u ≤ v iff there are u ∈ u and v ∈ v s.t. u ≤ v (i.e., u is a prefix of

v). The relation ≤ on data traces of a fixed type is a partial order.

Example 4.8.12. Suppose we want to process a stream that consists of sensor measurements and

special symbols that indicate the end of a one-second interval. The data type for this input stream

involves the tags Σ = {M, #}, where M indicates a sensor measurement and # is an end-of-second

marker. The value sets for these tags are TM = N (the natural numbers), and T# = Ut is the unit type

(singleton). So, the data type A = (Σ, TM, T#) contains measurements (M, d), where d is a natural

number, and the end-of-second symbol #.

The dependence relation D = {(M, #), (#, M), (#, #)} says that the tag M is independent of itself, and

therefore consecutive M-tagged items are considered unordered. For example, (M, 5) (M, 5) (M, 8) # (M, 9)

and (M, 8) (M, 5) (M, 5) # (M, 9) are equivalent w.r.t. ≡D.

A data trace of X can be represented as a sequence of multisets (bags) of natural numbers and

visualized as a partial order on that multiset. The trace corresponding to the sequence of data items

(M, 5) (M, 7) # (M, 9) (M, 8) (M, 9) # (M, 6) is visualized as:

(M, 5)

(M, 7)
# (M, 8)

(M, 9)

(M, 9)
# (M, 6)

In the above picture, a line from left to right indicates that the item on the right must occur after

the item on the left. The end-of-second markers # separate multisets of natural numbers. So, the

set of data traces of X has an isomorphic representation as the set Bag(N)+ of nonempty sequences

of multisets of natural numbers. In particular, the empty sequence ε is represented as ∅ and the

single-element sequence # is represented as ∅ ∅.

Key properties described in the data trace types work bear close resemblance to the properties

in Section 4.6. The notion of a data-string transduction is similar to a monotone operator; it is

a monotone function f : A∗ → B∗. (So to be precise, a data-string transduction is a monotone

functional operator.) Going further, the definition of consistency, which describes when a data-string
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transduction gives rise to a data-trace type, bears close resemblance to type safety and determinism

of operators:

Definition 4.8.13 (Consistency). Let X = (A,D) and Y = (B,E) be data-trace types. We say that

a data-string transduction f : A∗ → B∗ is (X,Y )-consistent if u ≡D v implies that f̄(u) ≡E f̄(v) for

all u, v ∈ A∗.
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CHAPTER 5 : Compositionality

The meaning of a compound expression is a function of the
meanings of its parts and of the syntactic rule by which they are

combined.

—Barbara Partee, 1984 [220], as formulated in [221]

In this section, we define SPS-transformers (SPSTs), a programming language for computations

over series-parallel streams. If synchronization schemas are provided as types for the input and

output streams of a computation, then an SPST is a (type-safe and deterministic) function from

input batches to output batches, which respects the structure given by the types. This material was

originally presented in [2] (some of it was delegated to the appendix).

The primary goal of SPSTs is to be compositional : they allow for defining operators over a stream in

a compositional way with respect to the type of that stream. Per the goals of our introduction, every

SPST should satisfy a type safety property. Formally, it should be a deterministic function from input

batches to output batches. By Theorem 4.6.3 this implies that a corresponding operator, a low-level

function from lists of input to lists of output, can be defined that is type-safe and deterministic in a

more realistic event-by-event processing sense. We will define the semantics of an SPST inductively

on the input structure; the typing judgments for this semantics in each case demonstrate type safety.

An interesting aspect of the material in this section – which we have found helpful as a way to think

about future work in this space – is the approach to achieve incremental processing by distinguishing

open and closed semantics. For each transformer, the open semantics represents a monotonically-

increasing function from input streams to output streams, i.e., an operator that satisfies monotonicity.

The closed semantics represents the semantics after the input stream is terminated, so that the

stream operator may produce some final output that is not incremental. For example, using this

distinction, the function Sum described in Figure 4.3 can be represented as a function which produces

no output in its open semantics, but produces the total sum in its closed semantics. We describe this

distinction further in Section 5.2.
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5.1. Notational Differences

The material in this section uses the definitions, notation, and terminology from [2], rather than

those from Chapter 4. Stream types are called synchronization schemas, and batches are called

series-parallel streams, or SPSs for short. In synchronization schemas, instead of base types T , there

are sets of headers H, representing the possible tuples that might occur for an event (See Section 4.8).

So if T = H = (H1, H2, H3) for example, then H1, H2, and H3 are tuple types and the events of type

T are either tuples of type H1, or tuples of type H2, or tuples of type H3. It uses the notation � for

stream prefix. This is defined using concatenation: for batches b1 and b2, we say b1 � b2 if there is

some b′1 such that b2 = b1 ◦ b′1.

5.2. Design Goals

In addition to satisfying monotonicity, type safety, and determinism as already discussed, SPSTs

should satisfy the following additional design goals. First, they should respect the parallelism in the

input and output: parallel input events should be processed in parallel, and parallel input threads

should produce parallel output events. For example, given an input which is two streams in parallel,

the computation should be written in such a way that the two streams are processed separately,

and outputs corresponding to them should be unordered. Second, to allow for the specification of

potentially complex computations, we additionally want our language to be compositional: it should

be natural to construct a computation by combining sub-computations. For example, processing a

stream of the hierarchical type Sync(H, S) should be definable, both syntactically and semantically,

in terms of existing computations defined over sub-streams of type S. Finally, any computation

in our language should be incremental (or streamable): it should process the input in one pass,

producing output incrementally.

To satisfy these design goals, we make the following technical choices. First, to satisfy the parallelism

goal, we define SPSTs to have SPSs as input and output rather than sequential objects. The input

being an SPS allows us to specify the computation to exploit parallelism, and the output being an

SPS requires that we respect parallelism when producing output events.

To understand the challenges in defining the semantics due to the interplay between streamability and

compositionality, consider a transformer P processing hierarchical streams of type S = Sync(H, S′)

75



that we would like define in terms of a transformer P ′ processing streams of type S′. Consider an

input stream t = [⊥, d, t′] of type S for an H-tuple d and stream t′ of type S′. Suppose we want

to extend the input stream t with a tuple d′. If the type of d′ is one of the headers appearing in

S′, then it really extends the sub-stream t′, and should be processed by the transformer P ′. For

incrementality, we want to make sure that, while processing d′, P ′ extends the output stream only

by adding new items. Formally, this means that the output of P ′ on the input stream t′ should be a

prefix of its output on the stream t′ ◦ d. With this motivation, we define such a semantics, which we

call open semantics, for transformers as functions from input to output streams, and ensure that it is

monotonic with respect to prefix ordering (see Theorem 5.5.1). But now suppose that the item d′ is

an H-tuple that acts as a synchronization marker for the events in the sub-stream t′. Then to process

it, the transformer P ′ should return, and let the top-level transformer P process the item d′. During

this return, the transformer P ′ can do additional computation and produce additional output items

even though the stream it has processed is still t′. This is a typical case when S′ corresponds to

key-based partitioning, and the arrival of the synchronization marker d′ triggers the reduce operation

that aggregates the results of the computations of the key-indexed sub-streams of t′. This though

requires us to define another semantics of the transformer P ′ on the input stream t′ that extends the

open semantics and includes the results of the computation upon return. We call it closed semantics

to indicate that it is applicable when the current stream is being closed. Note that the result of

computation of P on the stream [⊥, d, t′, d′,⊥] can be described by relying on the closed semantics of

P ′ on the stream t′. In terms of existing work on punctuation, the closed semantics can be thought

of as the stream output on a stream terminated by an end-of-stream marker.

Finally, an SPST is a function on pairs: it takes an initial value and an input SPS to a final

value and an output SPS. We need this for compositionality: without the initial value as input, an

SPS-transformer on a sub-stream of the input could not be initialized based on the surrounding

context. Similarly, the final value (separate from the series of output items produced) can be used to

describe a summary of the input stream to be used in the surrounding context when the computation

finishes.

We summarize all of these choices in the following definition of the interface for an SPST. We also

define subtyping for the interface, where the output is relaxed. Each of the language constructs will
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then implement this interface. In Section 5.4, we give an extended example to illustrate the formal

definitions in this section.

Definition 5.2.1 (SPS-transformer interface). An SPS-transformer (SPST) P has:

• A type denoted (X,S,X ′, S′), where X is the type for the initialization value, S is an input syn-

chronization schema, X ′ is a type for the final return value, and S′ is an output synchronization

schema. We write P : (X,S,X ′, S′).

• An open semantics denoted JP KO(x, t) = t′, where x : X is the initial value, t : S is the input

SPS, and t′ : S′ is the incrementally produced output SPS.

• A closed semantics denoted JP KC(x, t) = (x′, t′), where x′ : X ′ is the initial value, t : S is the

input SPS, x′ : X ′ is the final value, and t′ : S′ is the output SPS. We additionally enforce that

the open semantics is a prefix of the closed semantics: JP KO(x, t) � t′.

Definition 5.2.2. If S′1 . S′2 (Definition 4.5.1), then (X,S,X ′, S′1) is a subtype of (X,S,X ′, S′2). If

P : (X,S,X ′, S′1) then we also write P : (X,S,X ′, S′2). The open and closed semantics are derived

as the unique output stream given by Proposition 4.5.2.

In the remainder of the section, we give one language construct corresponding to each constructor

of the input SPS. Some additional notation: for a set of headers H, we write tup(H) for the set of

tuples x : H. For a synchronization schema S, we write sps(S) for the set of SPSs t : S. We write

bag(X) for the set of bags (multisets) of items of type X.

5.3. Syntax and Semantics

5.3.1. Relational SPST

We start with the relational SPST, which represents a standard relational operator that can be used

to process a bag of items, producing another bag of items. Relational operators are well studied

and are commonly defined using SQL and its extensions. Our design choice here is to not impose a

particular relational base language or SQL variant; instead, the relational operator is given as two

black-box functions, which define the open and closed semantics, respectively. We only require that
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these are functions on bags (i.e., independent of the input order), and that the open semantics is

monotone and a prefix of the closed semantics.

Definition 5.3.1 (Relational SPST). A relational SPST

P : (X,Bag(H), X ′,Bag(H′))

consists of two fields:

P.open : X × sps(Bag(H))→ sps(Bag(H′))

and P.closed : X × sps(Bag(H))→ X ′ × sps(Bag(H′)).

such that (1) P.open is monotone: if r1 � r2, then P.open(x, r1) � P.open(x, r2); and (2) P.open is a

prefix of P.closed: if P.closed(x, r) = (x′, r′) then P.open(x, r) � r′. The semantics of P is defined as

JP KO(x, r) = P.open(x, r) and JP KC(x, r) = P.closed(x, r).

5.3.2. Parallel SPST

We now define the inductive SPSTs. An SPST processing inputs of type Par(S1, S2) is composed

of two SPSTs running in parallel independently. The question here is, can the components SPSTs

produce tuples of the same type? The answer is yes, provided such tuples, since they get produced

independently, are summarized using a schema Bag(O), where O is a set of output headers. So the

output schema for the parallel SPST will be Par(S′1, S
′
2,Bag(O)).

Definition 5.3.2 (Parallel SPST). Let S1, S2, S
′
1, S
′
2 be schemas. A parallel SPST

P : (X,Par(S1, S2), X ′,Par(S′1, S
′
2,Bag(O′)))

consists of internal types X1, X2, X
′
1, X

′
2 and four fields:

P.left : (X1, S1, X
′
1,Par(S′1,Bag(O′))),

P.right : (X2, S2, X
′
2,Par(S′2,Bag(O′))),

P.init : X → X1 ×X2, and P.fin : X ′1 ×X ′2 → X ′.

78



The semantics of P is as follows: if we have that P.init(x) = (x1, x2), JP.leftKO(x1, t1) = 〈t′1, r′1〉, and

JP.rightKO(x2, t2) = 〈t′2, r′2〉, where r′1, r′2 : Bag(O′), and additionally JP.leftKC(x1, t1) = (x′1, 〈t′′1 , r′′1 〉)

and JP.rightKC(x2, t2) = (x′2, 〈t′′2 , r′′2 〉), then

JP KO(x1, t1) = 〈〈t′1, t′2〉, r′1 ∪ r′2〉

JP KC(x1, t1) = (P.fin(x′1, x
′
2), 〈〈t′′1 , t′′2〉, r′′1 ∪ r′′2 〉).

5.3.3. Hierarchical SPST

When the input schema is S = Sync(H, S1), we want to define the corresponding SPST P param-

eterized by a sub-SPST from S1 to S′1. The SPST P maintains its own state that gets updated

sequentially whenever any H-tuple is processed, is passed to the sub-SPST when called, and is

updated when the sub-SPST returns. The output schema of P has the same structure as the input: it

is divided into synchronizing events and non-synchronizing events. On input synchronization events,

any output tuple may be produced, including a synchronization event; but on input sub-stream

events, it would be incorrect to produce an output synchronizing event, as this would not be produced

in a consistent order. The distinction between closed and open semantics plays a key role here:

synchronizing events, when processed by P , “close” the computation of the sub-SPST. To formalize

this inductively, we introduce an auxiliary semantics JP KAux(y, t) where the output is an internal

state (rather than a final value), and in which the input stream ends with a di event, i.e., the final ti

is ⊥.

Definition 5.3.3 (Hierarchical SPST). Let S1 and S′1 be schemas, and H and H′ be a set of input

and output headers, respectively. Let S′ = Sync(H′, S′1). A hierarchical SPST

P : (X,Sync(H, S1), X ′,Sync(H′, S′1))

79



consists of internal types X1, X
′
1, Y and six fields:

P.sub : (X1, S1, X
′
1, S
′
1),

P.update : Y × tup(H)→ Y × sps(S′),

P.call : Y → X1, P.return : Y ×X ′1 → Y,

P.init : X → Y, and P.fin : Y → X ′ × sps(S′).

The auxiliary semantics of P is denoted JP KAux(y, t) = (y′, t′), where y, y′ : Y , and defined inductively

only for t of the form [t0, d1, t1, . . . , dm,⊥]. For the base case, JP KAux(y,⊥) = (y,⊥). Then inductively,

if JP KAux(y, t) = (y′, t′), t1 : S1, and d : H, and if we have P.call(y′) = x1, JP.subKC(x1, t1) = (x′1, t
′
1),

P.return(y′, x′1) = y′′, and P.update(y′′, d) = (y′′′, t′′), then JP KAux(y, t ◦ [t1, d,⊥]) = (y′′′, t′ ◦ t′1 ◦ t′′).

Given the auxiliary semantics, we define the semantics of P on a trace decomposed as t◦[t1], where the

last list item of t is an empty sub-trace. Let P.init(x) = y, JP KAux(y, t) = (y′, t′), and P.call(y′) = x1.

Additionally, let JP.subKC(x1, t1) = (x′1, t
′
1), P.return(y′, x′1) = y′′, and P.fin(y′′) = (x′, t′′). Then:

JP KO(x, t) = t′ ◦ JP.subKO(x1, t1)

JP KC(x, t) = (x′, t′ ◦ t′1 ◦ t′′).

5.3.4. Partitioned SPST

Finally, we define SPST for the partition-by case. The idea here is analogous to the parallel

composition Par(S1, S2) case: each sub-stream corresponding to a different key value may produce

output corresponding to that key value, or produce output corresponding to a common bag of tuples

O′. The partitioned SPST initializes the state of P.sub for each key with a nonempty SPS and runs

the child SPST for each (non-empty) key in parallel. We additionally need an aggregation stage

(applicable to the closed semantics only), in which we combine all of the partitioned states using a

black-box relational operator P.agg, similar to what was done in the relational SPST base case.
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Definition 5.3.4 (Partitioned SPST). Let S = ParBy(K,S1) and S′ = ParBy(K,S′1) be schemas,

and O′ a set of headers. A partitioned SPST

P : (X,ParBy(K,S1), X ′,Par(ParBy(K,S′1),Bag(O′))

consists of internal types X1, X
′
1 and three fields:

P.sub : (X1, S1, X
′
1,Par(S′1,Bag(O′))),

P.init : X × tup(K)→ X1,

and P.agg : X × bag((tup(K)×X ′1)→ X ′ × bag(tup(O′)).

For the semantics, suppose t = {v1 7→ t1, . . . , vm 7→ tm}, and for i = 1, . . . ,m, P.init(x, vi) = xi,

JP.subKC(xi, ti) = (x′i, 〈t′i, r′i〉), P.agg(x, {(v1, x1), . . . , (vm, xm)}) = (x′, r′0), and JP.subKO(xi, ti) =

〈t′′i , r′′i 〉. Then

JP KC(x, t) = (x′, 〈{v1 7→ t′1, . . . , vm 7→ t′m}, r′0 ∪ r′1 ∪ · · · ∪ r′m〉

JP KO(x, t) = 〈{v1 7→ t′′1 , . . . , vm 7→ t′′m}, r′′1 ∪ · · · ∪ r′′m〉.

5.4. Examples

To illustrate the definition of the various SPST constructs, we continue the example schema from

Figure 4.2 as the input type. For the output, suppose we want to produce two kinds of events:

EndOfHour, representing end-of-hour summaries, and Outlier, representing outlier events that should

be logged for further investigation. We describe building an SPST with this input and output, building

it bottom-up from the structure of the input schema.

We begin with an example of a relational SPST. We describe the transformation on RideCompleted

events which computes the sum of the costs of all completed hours. The interface of this SPST is

P1 : ((),Bag(RideCompleted), float, ∅). As it consumes a bag of RideCompleted events, it does

not produce any output tuples, but instead we aggregate the sum of the return costs as a single

float. For this relational base case, the computation can be written using an aggregator in a base
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relational language such as SQL. Formally, in our framework P1 is defined by two black-box functions:

P.open((), r) = ⊥ and P.closed((), {x1, . . . , xm}) = (x1 + · · ·+xm,⊥). The former component P.open

indicates that in this case no events are produced incrementally (as the input stream is processed).

The latter component P.closed indicates that the final result of the computation (after the entire

input stream is seen) is the sum of all tuples in the input relation.

Next, we describe a simple sequential SPST which processes a linear sequence of GPS events. Recall

that Seq(H) is a useful special case of hierarchical synchronization schemas that denote simple

sequences, i.e., it is the schema Sync(H,Bag(∅)). Suppose we want to compute the distance traveled

for a specific taxi given its GPS tuples; additionally, suppose we want to produce as output outlier

GPS tuples, rather than including them in the aggregation.

P2 : ((),Seq(GPS), float,Seq(Outlier))

P2 keeps the last known location for the taxi and the current distance traveled as its state, and each

time it processes a new GPS tuple, it updates both. Additionally, if the last known location is too far

from the current one (> 1 below) instead of updating state it produces the tuple as output.

P2.update((⊥, 0), gps) = ((gps.loc, 0),⊥)

P2.update((loc, d), gps) = ((gps.loc, d+ dist(gps.loc, loc))

if dist(gps.loc, loc) ≤ 1

P2.update((loc, d), gps) = ((loc, d), Outlier(loc))

otherwise

Because this is a sequential base case (a special case of hierarchical), P2.sub, P2.call, and P2.return

are trivial with no effect on the state. Finally, P2.init(()) = (⊥, 0), and P2.fin(loc, d) = (d,⊥).

Next, we define the partitioned SPST that computes the total distance traveled by all taxis (according

to the taxi example described in Figure 4.2). The interface of the SPST is

P3 : ((),ParBy(taxiID,Seq(GPS)), float,Bag(Outlier))

82



since it returns the total distance traveled by all taxis in miles. The child SPST is P2, i.e., P3.sub = P2,

However, notice that instead of a sequential output, here the output outliers are a bag: this is

because there are multiple keys (taxi IDs), so different key outputs may be unordered. Implicitly,

we are relaxing the output of P2 to be a bag instead of a sequence: this illustrates SPST subtyping

(Definition 5.2.2), in which ordered output events may be reinterpreted as unordered. The interface of

our sequential SPST is now P2 : Seq(GPS), float,Seq(Outlier)). To fit the SPST definition exactly,

we would additionally relax to Par(∅,Seq(Outlier)) (to allow both keyed and bag outputs), but

we leave this off for presentation; it is just another application of subtyping since the schemas are

equivalent. To complete the definition of P3, the aggregation produces a sum of the distances:

P3.agg(_, ds) = (sum({d | (_, d) ∈ ds}),⊥)

and P3.init initializes all child SPSTs with the unit value.

At this point, we have a partitioned SPST P3 for processing the key-partitioned GPS stream, and

we have a relational SPST P1 for processing the RideCompleted events. In order to combine these

into an overall query which also processes the EndOfHour synchronizing events, we first need to

combine these two streams in parallel. We define an SPST P4 which divides the aggregate cost by

the aggregate distance. Let S1 = ParBy(taxiID,Seq(GPS)) and S2 = Bag(RideCompleted). Then

the interface of P4 is

P4 : ((),Par(S1, S2), float,Bag(Outlier)).

The SPST calls the underlying SPSTs P1 and P3: P4.left = P3 and P4.right = P1, which return the

total distance covered by all taxis and the total cost of all completed rides in that hour, and then

simply divides to return the float ride cost per traveled mile, i.e., P.fin(dist, cost) = cost/dist.

Notice that the average value in P4 is only computed on finalization (after the entire stream is

processed). In order to produce the same averages in a streaming manner, we need synchronization

events, and this leads us to our final step: we complete the input schema in Figure 4.2 and the

example by constructing a hierarchical schema which also processes the EndOfHour synchronization

events. The schema P5 which outputs the cost per distance traveled at the end of each hour has the
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following interface:

P5 : ((),Sync(EndOfHour,Par(S1, S2)),

(),Sync(CostPerMile,Bag(Outlier)))

The SPST calls the underlying SPST P4, i.e., P5.sub = P4, which returns the cost per mile in the

last hour as a float. P4 also produces the Outlier output events. The internal state Y is the cost

per mile from the last substream. The function P5.call does not pass anything to P4, but P5.return

does consume the final float and stores it in the state. Then P5 simply outputs the float when

processing an EndOfHour tuple:

P5.update(cpm,_) = (cpm, CostPerMile(cpm)).

5.5. Monotonicity

The following is the major technical result of this chapter: for any SPST, the open semantics is

monotone in the prefix relation on partially ordered streams. This ensures that event-by-event

incremental processing is possible, though it does not define the event-by-event logic explicitly.

Theorem 5.5.1. Let P : (X,S,X ′, S′) be an SPST. Then P is monotone in the following sense: for

any x : X and t, u : S, if t � u, then JP KO(x, t) � JP KO(x, u).

Proof. The proof is by induction on P . We strengthen the hypothesis to additionally show that

the open semantics is a prefix of the closed semantics: if JP KC(x, t) = (x′, t′) then JP KO(x, t) � t′.

In addition to the definition of concatenation ◦ and prefix �, we use that � is a partial order

(Proposition 4.8.5). One of the inductive cases is subtyping as given by Definition 5.2.2.

• In the relational case, P.open is monotonic and a subset relation of P.closed by assumption.

• In the parallel case, let t = 〈t1, t2〉 and u = 〈u1, u2〉, and suppose that we have JP.leftKO(x1, t1) =

t′1, JP.leftKO(x1, u1) = u′1, JP.rightKO(x2, t2) = t′2, and JP.rightKO(x2, u2) = u′2. Applying the

inductive hypothesis, what we need to show is that if t′1 � u′1 and t′2 � u′2, then 〈t′1, t′2〉 � 〈u′1, u′2〉.

This follows by unfolding the definitions of prefix and underlying concatenation, which works
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component-wise on 〈t′1, t′2〉. The same reasoning applies to comparing the open and closed

semantics.

• In the hierarchical case, our first step is to prove that the auxiliary semantics is monotonic. For

this, we only consider when t and u each end in an empty sub-trace tm = ⊥ and um = ⊥. This

then follows by induction on the trace directly since the output is a sequence and produced one

item at a time from the closed semantics of the sub-SPST, using transitivity of �. Next for

the general case, we observe the following: for any trace ending in an empty subtrace t, and

any subtraces t1, u1 with t1 � u1, the auxiliary semantics on t is a prefix of the open semantics

on t ◦ [t1] (by definition), which is a prefix of the open semantics on t ◦ [u1] (by IH), which

is a prefix of the auxiliary semantics on t concatenated with closed sub-SPST semantics on

u1 (by definition, IH, and associativity of concatenation), which is a prefix of the auxiliary

semantics on t ◦ [u1, d,⊥] for any d (by definition). This chain of prefix relations implies the

general monotonicity for t � u, using transitivity of �. Also the auxiliary semantics on t

concatenated with closed sub-SPST semantics on u1 is a prefix of the closed semantics on

t ◦ [u1] (by definition), which gives that the open semantics is a prefix of closed.

• Next we consider the partition case. For the open semantics, P.agg does not factor in. We

consider the output on t ◦u and t in two parts: first the keyed output, and second the relational

output. (i) For the keyed output, we need to show that the output on t is a prefix of the output

on t ◦ u. There are three cases here: the key is present in both t and u, present in only t, and

present in only u. If present in both, the prefix relation holds by induction hypothesis. If only

in t, the output on t and on t ◦ u are the same as these SPS are the same for this particular

key value. If only in u, the output on t does not contain this particular key value, and so is a

prefix of the output on t ◦ u taking u′ to be the output on u for that key. (ii) For the relational

output, we consider the set of key values in t: for each such value, the output on t and on t ◦ u

produces a relation. We can ignore key values not in t (in t ◦ u only) as they only extend the

output relation for t ◦ u. Now we need to show that the relational output on t ◦ u is a superset

of the relational output on t for each of these keys, which is true by induction hypothesis.

• Finally, we consider the case of subtyping (output schema relaxation). This requires careful

application of Definition 13 from [2], Proposition 4.8.9 and Proposition 4.5.2. Using these we

derive the following lemma: given a schema, t′ � u′ is equivalent to the following statement:
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every flattening of t′ can be extended to a flattening of u′, and every flattening of u′ is equivalent

to a extension of a flattening of t′.

Given this lemma, let S and S′ be the input and output schemas, and S′′ . S′. Let t′, u′, t′′, u′′

be the output schemas for t and u: the definition of t′′ and u′′ is that all flattenings of t′ are

flattenings of t′′, and all flattenings of u′ are flattenings of u′′. We also know by IH that t′ � u′,

which we interpret in terms of flattenings by the lemma. Considering any flattening of t′′, first

we know it only contains events in headers(S′) (because the original schema output was S′),

and we can additionally show it is equivalent under S′′ to some flattening of t′; this t′ then

can be extended to a flattening of u′, so the flattening of t′′ can be extended with the same

extension to a flattening of u′′, which by the lemma implies t′′ � u′′.
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CHAPTER 6 : Distribution

Deterministic ends should be accomplished with deterministic means.

—Edward A. Lee, 2006 [175]

This section considers the problem of automatic distribution of streaming operators. Rather than

the structured representation of Chapter 5, distribution requires a more low-level representation

because it requires knowing how an operator can be parallelized. In the chapter, we will define a

programming model over streams called dependency guided synchronization and show how it can

be used to parallelize stream operators automatically. The material in this section was originally

published in [8].

Tying this into determinism are two key theorems for the chapter: Theorem 6.4.4, which states that

for the programming model, consistency implies determinism; and Theorem 6.5.5, which states that

the end-to-end system is correct and in particular, distribution is semantics-preserving. Together,

these two results achieve type safety and determinism defined in Section 4.6, because they state

formally that for all equivalent distributed input streams to the system, and for all possible choices

of a distributed implementation, and for all possible executions of that distributed implementation,

the output is the same up to reordering.

6.1. Motivation

The success of stream processing APIs based on the dataflow model can be attributed to their ability

to simplify the task of parallel programming. To accomplish this (as described in Section 2.2.2), most

APIs expose a simple but effective model of data-parallelism called sharding (auto-parallelization), in

which nodes in the dataflow graph are replicated into many parallel instances, each of which will

process a different partition of the input events. However, while sharding is intuitive for programmers,

it also implicitly limits the scope of parallel patterns that can be expressed. Specifically, it prevents

arbitrary synchronization across parallel instances since it disallows communication between them.

This is limiting in modern applications such as video processing [157] and distributed machine learning

[214], since they require both synchronization between nodes and high throughput and could therefore
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benefit from parallelization. Further evidence that sharding is limiting in practice can be found in a

collection of feature requests in state-of-the-art stream processing systems [122, 124, 123], asking

either for state management that goes beyond replication or for some form of communication between

shards. To address these needs, system developers have introduced extensions to the dataflow model

to enable specific use cases such as message broadcasting and iterative dataflows. However, existing

solutions do not generalize, as we demonstrate experimentally in Section 6.6.2. For the remainder of

applications, users are left with two unsatisfying solutions: either ignore parallelization potential,

implementing their application with limited parallelism; or circumvent the stream processing APIs

using low-level external mechanisms to achieve synchronization between parallel instances.

For example, consider a fraud detection application where the input is a distributed set of streams of

bank transaction events. Suppose we want to build an unsupervised online machine learning model

over these events which classifies events as fraudulent based on a combination of local (stream-specific)

and global (across-streams) statistical summaries. The problem with the traditional approach is that

when classifying a new event, we need access to both the local and the global summaries; but this

cannot be achieved using sharding since by default shards do not have access to a global summary.

One extension to the dataflow model, implemented in some systems [115, 194] is the broadcast pattern,

which allows the operator computing the global summary to broadcast to all other nodes. However,

broadcasting is restricted since it does not allow bidirectional communication; the global summary

needs to be both broadcast to all shards, but also updated by all shards. Cyclic dataflows are another

partial solution, but do not always solve the problem, as we show in Section 6.6.2. In practice,

applications like this one with complex synchronization requirements opt to manually implement the

required synchronization using external mechanisms (e.g. querying a separate key-value store with

strong consistency guarantees). This is error prone and, more importantly, violates the requirements

of many streaming APIs that operators need to be effect-free so that the underlying system can

provide exactly-once execution guarantees in the presence of faults.

6.2. Contributions

To address the need to combine parallelism with synchronization, we make two contributions.

First, we propose synchronization plans, a tree-based execution model which is a restricted form of

communicating sequential processes [149]. Synchronization plans are hierarchical structures that
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represent concurrent computation in which parallel nodes are not completely independent, but

communicate with their ancestors on special synchronizing events. While this solves the problem

of being able to express synchronizing parallel computations, we still need a streaming API which

exposes such parallelism implicitly rather than explicitly. For this purpose, we propose dependency-

guided synchronization (DGS), a parallel programming model which can be mapped automatically to

synchronization plans.

A DGS program consists of three components. First, the user provides a sequential implementation

of the computation; this serves to define the semantics of what they want to compute assuming the

input is processed as a sequence of events. Second, the user indicates which input events can be

processed in parallel and which require synchronization by providing a dependence relation on input

events. This relation induces a partial order on the input stream. For example, if events can be

processed completely in parallel without any synchronization, then all input events can be specified

to be independent. Third, the user provides a mechanism for parallelizing state when the input

stream contains independent events: parallelization primitives called fork and join. This model is

inspired by classical parallel programming, but has a streaming-specific semantics which describes

how a partially ordered input stream is decomposed for parallel processing.

Given a DGS program, the main technical challenge is to generate a synchronization plan, which

corresponds to a concrete implementation, that is both correct and efficient. More precisely, the

challenge lies in ensuring that a derived implementation correctly enforces the specified input

dependence relation. To achieve correctness, we formalize: (i) a set of conditions that ensure that

a program is consistent, and (ii) a notion of P -valid synchronization plans, i.e., plans that are

well-typed with respect to a given program P . To achieve efficiency, we design the framework so that

correctness is independent of which synchronization plan is chosen—as long as it is P -valid. The

idea of this separation is to enable future work on optimized query execution, in which an optimizing

component searches for an efficient synchronization plan maximizing a desired cost metric without

jeopardizing correctness. We tie everything together by proving that the end-to-end system is correct,

that is, any concrete implementation that corresponds to a P -valid plan is equivalent to a program

P that satisfies the consistency conditions.

In order to evaluate DGS, we perform a set of experiments to investigate the data parallelism

limitations of Flink [62]—a representative high-performance stream processing system—and Timely
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Dataflow [203]—a representative system with iterative computation. We show that these limits can

be partly overcome by manually implementing synchronization. However, this comes at a cost: the

code has to be specialized to the number of parallel nodes and similar implementation details, forcing

the user to sacrifice the desirable benefit of platform independence. We then develop Flumina, an

end-to-end prototype that implements DGS in Erlang [35, 269], and show that it can automatically

produce scalable implementations (through generating synchronization plans from the program)

independent of parallelism. In Section 6.7, we also evaluate programmability via two real-world case

studies. In particular, we demonstrate that the effort required—as measured by lines of code—to

achieve parallelism is minimal compared to the sequential implementation.

In summary, we make the following contributions:

• DGS: a novel programming model for parallel streaming computations that require synchro-

nization, which allows viewing input streams as partially ordered sets of events. (Section 6.4)

• Synchronization plans: a tree-based execution model for parallel streaming computations

that require synchronization, a framework for generating a synchronization plan given a DGS

program, a prototype implementation, and an end-to-end proof of correctness. (Section 6.5)

• An evaluation that demonstrates: (i) the throughput limits of automatically scaling compu-

tations on examples which require synchronization in Flink and Timely; (ii) the throughput

and scalability benefits achieved by synchronization plans over such automatically scaling

computations; and (iii) the programmability benefits of DGS for synchronization-centered

applications (Section 6.6).

Some of the material in this section (Sections 6.7 and 6.8) was published only in the extended version

of the original paper [7], as an appendix. Flumina, our implementation of DGS, is open-source and

available on GitHub1.

6.3. System Architecture

Our solution can achieve data parallelism through the architecture summarized in Figure 6.1. The

two primary abstractions (shown in blue) encode the required complex synchronization requirements
1https://github.com/angelhof/flumina

90

https://github.com/angelhof/flumina
https://github.com/angelhof/flumina


at different levels of abstractions: the DGS specification describes the computation and input depen-

dencies in a platform-independent manner, and synchronization plans express the synchronization

between processes at the implementation level, as communications between a hierarchically structured

tree of processes.

The DGS specification is split in three parts. First, the user needs to provide a sequential imple-

mentation of the program, where the input is assumed to arrive in order and one event at a time.

The sequential implementation consists of a stateful update function that can output events and

update its state every time an input event is processed. For the fraud detection example, the update

function would process bank transactions by checking if they are fraudulent and by constructing a

sketch of the previously seen transactions, and fraud detection rules by using the sketch of previously

seen transactions and the new rule to update the statistical fraud model. Second, the user provides a

dependence relation that indicates the input events for which the processing order must be preserved,

inducing a partial order on input events. For the current example, the user would simply indicate

that fraud detection rule events depend on all other events. The final part of a specification consists

of primitives that describe how to fork the state into two independent copies to allow for parallel

processing and how to join two states when synchronization is required. These primitives abstractly

represent splitting the computation into independent computations and merging the results, and are

not tied to a specific implementation.

Given a DGS specification, the mapping to the synchronization plan in our architecture is given

by a pluggable optimization component, which picks a synchronization plan based on information

about the target execution environment, e.g., the number of processing workers and the location of

the input streams. All of the induced plans are shown to be correct with respect to the sequential

specification, so the optimizer is free to pick any of them without endangering correctness. As a

starting point, we have developed a simple optimizer that tries to minimize the number of messages

exchanged between different workers using information about the execution environment and the

input streams. As a final step, the synchronization plan abstraction is deployed by the runtime

system, which among other implementation details enforces the ordering of input events based on

input dependencies, and is implemented in our DGSStream prototype.
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Programmer DGS Specification
(§6.4)

Optimizer
(§6.5.3)

Synchronization
Plan (§6.5.2)

Implementation
(§6.5.4)

Figure 6.1: DGS system architecture.

6.4. Programming Model: Dependency-Guided Synchronization

A DGS program consists of three components: a sequential implementation, a dependence relation on

input events to enforce synchronization, and fork and join parallelization primitives. In Section 6.4.3

we define program consistency, which consists of requirements on the fork and join functions to

ensure that any parallel implementation generated from the program is equivalent to the sequential

one.

6.4.1. DGS Programs

For a simple but illustrative example, suppose that we want to implement a stream processing

application that simulates a map from keys to counters, in which there are two types of input

events: increment events, denoted i(k), and read-reset events, denoted r(k), where each event has an

associated key k. On each increment event, the counter associated with that key should be increased

by one, and on each read-reset event, the current value of the counter should be produced as output,

and then the counter should be reset to zero.

Sequential implementation. In our programming model, the user first provides a sequential

implementation of the desired computation. A pseudocode version of the sequential implementation

for the example above is shown in Figure 6.2 (left); Erlang syntax has been edited for readability, and

we use s[k] as shorthand for the value associated with the key k in the map or the default value 0 if it

is not present. The pseudocode consists of (i) the state type State, i.e. the map from keys to counters,

(ii) the initial value of the state init, i.e. an empty map with no keys, and (iii) a function update, which

contains the logic for processing input events. Conceptually, the sequential implementation describes

how to process the data assuming it was all combined into a single sequential stream (e.g., sorted by

system timestamp). For example, if the input stream consists of the events i(1), i(2), r(1), i(2), r(1),

then the output would be 1 followed by 0, produced by the two r(1) (read-reset) events.

Dependence relation. To parallelize a sequential computation, the user needs to provide a

dependence relation which encodes which events are independent, and thus can be processed in

parallel, and which events are dependent, and therefore require synchronization. The dependence
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// Types
Key = Integer
Event = i(Key) | r(Key)
State = Map(Key , Integer)
Pred = Event -> Bool

// Sequential Code
init: () -> State
init() =

return emptyMap()

update: (State , Event)
-> State

update(s, (i(k), ())) =
s[k] = s[k] + 1;
return s

update(s, (r(k), ())) =
output s[k];
s[k] = 0;
return s

// Dependence Relation
depends: (Event , Event) -> Bool
depends(r(k1), r(k2)) = k1 == k2
depends(r(k1), i(k2)) = k1 == k2
depends(i(k1), r(k2)) = k1 == k2
depends(i(k1), i(k2)) = false

// Fork and Join
fork: (State , Pred , Pred)

-> (State , State)
fork(s, pred1 , pred2) =

// two forked states
s1 = init(); s2 = init()
for k in keys(s):

if pred1(r(k)):
s1[k] = s[k]

else:
// pred2(r(k)) OR
// r(k) in neither
s2[k] = s[k]

return (s1, s2)

join: (State , State) -> State
join(s1, s2) =

for k in keys(s2):
s1[k] = s1[k] + s2[k]

return s1

r(1) i(1) r(2) i(2) · · ·

Figure 6.2: DGS program implementing a map from keys to counters. The depends relation is
visualized as a graph with two keys shown; edges indicate synchronization, while non-edges indicate
opportunities for parallelism.

relation abstractly captures all the dependency patterns that appear in an application, inducing

a partial order on input events. In this example, there are two forms of independence we want to

expose. To begin with, parallelization by key is possible: the counter map could be partitioned so

that events corresponding to different sets of keys are processed independently. Moreover, each event

is processed atomically in our model, and therefore parallelizing increments on the counter of the

same key is also possible. In particular, different sets of increments for the same key can be processed

independently; we only need to aggregate the independent counts when a read-reset operation arrives.

On the other hand, read-reset events are synchronizing for a particular key; their output is affected

by the processing of increments as well as other read-reset events of that key.
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We capture this combination of parallelization and synchronization requirements by defining the

dependence relation depends in Figure 6.2 (also visualized as a graph) (see Section 6.4.2 for a formal

definition). In the program, the set of events may be symbolic (infinite): here Event is parameterized by

an integer Key. To allow for this, the dependence relation is formally a predicate on pairs of events, and

is given programmatically as a function from pairs of Event to Bool. For example, depends(r(k1), r(k2))

(one of four cases) is given symbolically as equality comparison of keys, k1 == k2. The dependence

relation should also be symmetric, i.e. e1 is in depends(e2) iff e2 is in depends(e1); the intuition is that

e1 can be processed in parallel with e2 iff e2 can be processed in parallel with e1.

Parallelization primitives: fork and join. While the dependence relation indicates the possi-

bility of parallelization, it does not provide a mechanism for parallelizing state. The parallelization is

specified using a pair of functions to fork one state into two, and to join two states into one. The

fork function additionally takes as input two predicates on events, such that the two predicates are

independent (but not necessarily disjoint): every event satisfying pred1 is independent of every event

satisfying pred2. The contract is that after the state is forked into two independent states, each

state will then only be updated using events satisfying the given predicate. A fork-join pair for our

example is shown in Figure 6.2. The join function simply adds up the counts for each key to form

the combined state. The fork function has to decide, for each key, which forked state to partition the

count to. Since read-reset operations r(k) are synchronizing, i.e., depend on all events of the same

key, and require knowing the total count, it partitions by checking which of the two forked states is

responsible for processing read-reset operations, if any.

The programming model exposes parallelism, but the implementation (Section 6.5) determines when

to call forks and joins. To do this, the implementation instantiates a synchronization plan: a tree

structure where each node is a stateful worker with a predicate indicating the set of events that it is

responsible for. Nodes that do not have an ancestor-descendant relationship process independent

but not necessarily disjoint sets of events. When a node with children needs to process an event, it

first uses join to merge the states of its children, and then it forks back its children states using the

combined predicates of its descendants, pred1 for the left subtree, and pred2 for the right subtree. The

implementation can therefore instantiate synchronization plans with different shapes and predicates to

enable different kinds of parallelism. For example, to indicate parallelization by key, the left child with

pred1 might contain all events of key 1 and the right child with pred2 might contain all events of key
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2. On the other hand, to indicate parallelization on increments, pred1 and pred2 might both contain

i(3), and in this case neither would contain r(3) (to satisfy the independence requirement). The

latter example also emphasizes that pred1 and pred2 need not be disjoint, nor need they collectively

cover all events. For the events not covered, in this case r(3), a join would need to be called before

an r(3) event can be processed. Parallelization can also be done repeatedly; the fork function can be

called again on a forked state to fork it into two sub-states, and each time the predicates pred1 and

pred2 will be even further restricted.

6.4.2. Formal Definition

A DGS program can be more general than we have discussed so far, because we allow for multiple

state types, instead of just one. The initial state must be of a certain type, but forks and joins

can convert from one state type to another: for example, forking a pair into its two components.

Additionally, each state type can come with a predicate which restricts the allowed events processed

by a state of that type. The complete programming model is summarized in the following definition.

Definition 6.4.1 (DGS program). Let Pred(T) be a given type of predicates on a type T, where

predicates can be evaluated as functions T -> Bool. A program consists of the following components:

1. A type of input events Event.

2. The dependence relation depends: Pred(Event, Event), which is symmetric: depends(e1, e2) iff

depends(e2, e1).

3. A type for output events Out.

4. Finitely many state types State_0, State_1, etc.

5. For each state type State_i, a predicate which specifies which input values this type of state

can process, denoted pred_i: Pred(Event). We require pred_0 = true.

6. A sequential implementation, consisting of a single initial state init: State_0 and for each state

type State_i, a function update_i: (State_i, Event) -> State_i. The update also produces zero

or more outputs, given by a function out_i: (State_i, Event) -> List(Out).
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init r(1) f

i(1) f

i(1)

i(1)

j

j r(1)

init r(1) i(1) i(1) i(1) r(1)

Figure 6.3: Example of a sequential (top) and parallel (bottom) execution of the program in Figure 6.2
on the input stream r(1), i(1), i(1), i(1), r(1) (f and j denote forks and joins).

7. A set of parallelization primitives, where each is either a fork or a join. A fork has type

(State_i, Pred(Event), Pred(Event)) -> (State_j, State_k),

and a join has type (State_j, State_k) -> State_i, for some i, j, and k.

Semantics. The semantics of a program can be visualized using wire diagrams, as in Figure 6.3.

Computation proceeds from left to right. Each wire is associated with (i) a state (of type State_i

for some i) and (ii) a predicate (of type Pred(Event)) which restricts the input events that this wire

can process. Input events are processed as updates to the state, which means they take one input

wire and produce one output wire, while forks take one input wire and produce two, and joins take

two input wires and produce one. Notice that the same updates are present in both sequential and

parallel executions. It is guaranteed in the parallel execution that fork and join come in pairs, like

matched parentheses. Each predicate that is given as input to the fork function indicates the set of

input events that can be processed along one of the outgoing wires. Additionally, we require that

updates on parallel wires must be on independent events. In the example, the wire is forked into two

parts and then forked again, and all three resulting wires process i(1) events. Note that r(1) events

cannot be processed at that time because they are dependent on i(1) events. More specifically, we

require that the predicate at each wire of type State_i implies pred_i, and that after each fork call,

the predicates at each resulting wire denote independent sets of events. This semantics is formalized

in the following definition.

Definition 6.4.2 (DGS Semantics). A wire is a triple using the notation 〈State_i, pred, s〉, where

State_i is a state type, s: State_i, and pred: Pred(Event) is a predicate such that pred implies pred_i.
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We give the semantics of a program through an inductively defined relation, which we denote

〈State, pred, s〉 u−→
v
〈State, pred, s’〉, where 〈State, pred, s〉 and 〈State, pred, s’〉 are the starting and

ending wires (with the same state type and predicate), u: List(Event) is an input stream, and

v: List(Out) is an output stream. Let l1 + l2 be list concatenation and let inter(l, l1, l2) be list

interleaving, as defined in Chapter 4. For e1, e2: Event, let indep(e1, e2) denote that e1 and e2 are

not dependent, i.e. not(depends(e1,e2)). There are two base cases and two inductive cases.

(1) For any State, pred, s,

〈State, pred, s〉 []−→
[]
〈State, pred, s〉.

(2) For any State, pred, s, and any e: Event, if e satisfies pred then

〈State, pred, s〉 [e]−→
out(s, e)

〈State, pred, update(s, e)〉.

(3) For any State, pred, s, s’, s’’, u, v, u’, and v’, if 〈State, pred, s〉 u−→
v
〈State, pred, s’〉 and

〈State, pred, s’〉 u’−→
v’
〈State, pred, s’’〉, then

〈State, pred, s〉 u + u’−→
v + v’

〈State, pred, s’’〉.

(4) Lastly, for any instances of State, State1, State2, pred, pred1, pred2, s, s1’, s2’, u, u1, u2,

v, v1, v2, fork, and join, suppose that (the conjunction) pred1(e1) and pred2(e2) implies

indep(e1, e2), pred1 implies pred, and pred2 implies pred. Let fork(s, pred1, pred2) = (s1, s2)

and join(s1’, s2’) = s’. If we have inter(u, u1, u2), inter(v, v1, v2), 〈State1, pred1, s1〉 u1−→
v1

〈State1, pred1, s1’〉, and 〈State2, pred2, s2〉 u2−→
v2
〈State2, pred2, s2’〉, then

〈State, pred, s〉 u−→
v
〈State, pred, s’〉.

Finally, the semantics JP K of the program P is the set of pairs (u, v) of an input stream u and an

output stream v such that 〈State_0, true, init〉 u−→
v
〈State_0, true, s’〉 for some s’.

Representing predicates. In the running example, a predicate on a type T was represented as

a function T -> Bool, but note that the programming model above allows other representation of
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predicates, for example using logical formulas. The tradeoff here is that a more general representation

allows more dependence relations to be expressible, but also complicates the implementation of

an appropriate fork function as it must accept as input more general input predicates. In our

implementation (see Section 6.5), we assume that an event consists of a pair of a Tag (relevant for

parallelization) and a Payload (used only for processing), where predicates are given as sets of tags

(or pairs of tags, for depends). This allows simpler logic in the fork function whose input predicates

are then Tag -> Bool and don’t depend on the irrelevant payload. In our example, i(k) or r(k) would

be tags (not payload) as they are relevant for parallelization.

6.4.3. Consistency Conditions

Any parallel execution is guaranteed to preserve the sequential semantics, i.e. processing all input

events in order using the update function, as long as the following consistency conditions are satisfied.

The sufficiency of these conditions is shown in Theorem 6.4.4, which states that consistency implies

determinism up to output reordering. This is a key step in the end-to-end proof of correctness in

Section 6.5.5. Consistency can be thought of as analogous to the commutativity and associativity

requirements for a MapReduce program to have deterministic output [94]: just as with MapReduce

programs, the implementation does not assume the conditions are satisfied, but if not the semantics

will be dependent on how the computation is parallelized.

Definition 6.4.3 (Consistency). A program is consistent if the following equations always hold.

join(update(s1,e),s2) = update(join(s1,s2),e) (C1)

join(fork(s,pred1,pred2)) = s (C2)

update(update(s,e1),e2)) = update(update(s,e2),e1)) (C3)

subject to the following additional qualifications. First, equation (C1) is over all the join func-

tions join: (State_j, State_k) -> State_i, events e: Event such that pred_i(e) and pred_j(e), and states

s1: State_j, s2: State_k, where update denotes the update function on the appropriate type. Addition-

ally the corresponding output on both sides must be the same:

out(s1, e) = out(join(s1, s2), e). (C4)
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Equation (C2) is over all fork functions fork: (State_i,Pred(Event),Pred(Event)) -> (State_j, State_k),

all joins join: (State_j, State_k) -> State_i, states s: State_i, and predicates pred1 and pred2. Equa-

tion (C3) is over all state types State_i, states s: State_i, and pairs of independent events indep(e1, e2)

such that pred_i(e1) and pred_i(e2). As with (C1), we also require that the outputs on both sides

agree:

out(s, e1) + out(update(s, e1), e2) = out(update(s, e2), e1) + out(s, e2). (C5)

Let us illustrate the consistency conditions for our running example (Figure 6.2). If e is an increment

event, then condition (C1) captures the fact that counting can be done in parallel: it reduces to

(s1[k] + s2[k]) + 1 = (s1[k] + 1) + s2[k]. Condition (C2) captures the fact that we preserve total

count across states when forking: it reduces to s[k] + 0 = s[k]. Condition (C3) would not be valid

for general events e1, e2, because a read-reset event does not commute with an increment of the same

key (s[k] + 1 6= s[k]), hence the restriction that indep(e1, e2). Finally, one might think that a variant

of (C1) should hold for fork in addition to join, but this turns out not to be the case: for example,

starting from s[k] = 100, an increment followed by a fork might yield the pair of counts (101, 0), while

a fork followed by an increment might yield (100, 1). It turns out however that commutativity only

with joins, and not with forks, is enough to imply Theorem 6.4.4.

Theorem 6.4.4. If P is consistent, then P is deterministic up to output reordering. That is, for all

(u, v) ∈ JP K, the multiset of events in stream v is equal to the multiset of events in spec(u) where spec

is the semantics of the sequential implementation.

Proof. We show by induction on the semantics in Definition 6.4.2 that every wire diagram is equivalent

(up to output reordering) to the sequential sequence of updates. The sequential inductive step (3)

is direct by associativity of function composition on the left and right sequence of updates (no

commutativity of updates is required). For the parallel inductive step (4), we replace the two parallel

wires with sequential wires, then apply (C1) repeatedly on the last output to move it outside of the

parallel wires, then finally apply (C2) to reduce the now trivial parallel wires to a single wire.
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6.5. Execution Model: Synchronization Plans

In this section we describe synchronization plans, which represent streaming program implementations,

and our framework for generating them from the given DGS program in Section 6.4. Generation

of an implementation can be conceptually split in two parts, the first ensuring correctness and

the second affecting performance. First a program P induces a set of P -valid, i.e. correct with

respect to it, synchronization plans. Choosing one of those plans is then an independent optimization

problem that does not affect correctness and can be delegated to a separate optimization component

(Section 6.5.3). Finally, the workers in synchronization plans need to process some incoming events

in order while some can be processed out of order (depending on the dependence relation). We

propose a selective reordering technique (Section 6.5.4) that can be used in tandem with heartbeats

to address this ordering issue. We tie everything together by providing an end-to-end proof that the

implementation is correct with respect to a consistent program P (and importantly, independent

of the synchronization plan chosen as long as it is P -valid) in Section 6.5.5. Before describing the

separate framework components, we first articulate the necessary underlying assumptions about

input streams in Section 6.5.1.

6.5.1. Preliminaries

In our model the input is partitioned in some number of input streams that could be distributed, i.e.

produced at different locations. We assume that the implementation has access to some ordering

relation O on pairs of input events (also denoted <O), and the order of events is increasing along each

input stream. This is necessary for cases where the user-written program requires that events arriving

in different streams are dependent, since it allows the implementation to progress by processing these

dependent events in order. Concretely, in our setting O is implemented using event timestamps. Note

that these timestamps do not need to correspond to real time, if this is not required by the application.

In cases where real-time timestamps are required, this can be achieved with well-synchronized clocks,

as has been done in other systems, e.g. Google Spanner [84].

Each event in each input stream is given by a quadruple 〈tg, id, ts, v〉, where tg is a tag used for

parallelization, id is a unique identifier of the input stream, ts is a timestamp, and v is a payload. Of

these, only the tag and payload are visible to the programming model in Section 6.4, and only the

tag is used in predicates and in the dependence relation. Our implementation currently requires that
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w1 { }
update – 〈 fork, join 〉

w2 { r(1), i(1) }
update

w3 { r(2) }
update – 〈 fork, join 〉

w4 { i(2)a }
update

w5 { i(2)b }
update

Figure 6.4: Example synchronization plan derived from the program in Figure 6.2 for two keys k = 2
and five input streams r(1), i(1), r(2), i(2)a, i(2)b. Implementation tags i(2)a, i(2)b both correspond
to i(2) events but are separate because they arrive in different input streams.

the number of possible tags tg is finite (e.g. up to some maximum key) as well as the number of

identifiers id.

For the rest of this section, we write events as 〈σ, ts, v〉 where the pair σ = 〈tg, id〉 is called the

implementation tag. This is a useful distinction because at the implementation level, these are the

two components that are used for parallelization. The relation depends: (Tag, Tag) -> Bool in the

program straightforwardly lifts to predicates over tags and to implementation tags.

6.5.2. Synchronization Plans

Synchronization plans are binary tree structures that encode (i) parallelism: each node of the tree

represents a sequential thread of computation that processes input events; and (ii) synchronization:

parents have to synchronize with their children to process an event. Synchronization plans are inspired

by prior work on concurrency models including fork-join concurrency [130, 174] and CSP [149]. An

example synchronization plan for the program in Figure 6.2 is shown in Figure 6.4. Each node has an

id wi, contains the set of implementation tags that it is responsible for, a state type (which is omitted

here since there is only one state type State), and a triple of update, fork, join functions. Note that a

node is responsible to process events from its set of implementation tags, but can potentially handle

all the implementation tags of its children. The leaves of the tree can process events independently

without blocking, while parent nodes can only process an input event if their children states are

joined. Nodes without a ancestor-descendant relationship do not directly communicate, but instead

learn about each other when their common ancestor joins and forks back the state.
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Definition 6.5.1 (Synchronization Plans). Given a program P , a synchronization plan is a pair

(w,par), which includes a set of workers w = {w1, . . . , wN}, together with a parent relation par ⊆

w × w, the transitive closure of which is an ancestor relation denoted as anc ⊆ w × w. Workers have

three components: (i) a state type w.state which references one of the state types of P , (ii) a set

of implementation tags w.itags that the worker is responsible for, and (iii) an update w.update and

possibly a fork-join pair w.fork and w.join if it has children.

We now define what it means for a synchronization plan to be P -valid. Intuitively, an P -valid

plan is well-typed with respect to program P , and the workers that do not have an ancestor-

descendant relationship should handle independent and disjoint implementation tags. P -validity is

checked syntactically by our framework and is a necessary requirement to ensure that the generated

implementation is correct (see Section 6.5.5).

Definition 6.5.2 (P -valid). Formally, a P -valid plan has to satisfy the following syntactic properties:

(V1) The state State_i = w.state of each worker w should be consistent with its update-fork-join

triple and its implementation tags. The update must be defined on the node state type, i.e.,

w.update : (State_i, Event) -> State_i, State_i should be able to handle the tags corresponding to

w.itags, and the fork-join pair should be defined for the state types of the node and its children.

(V2) Each pair of nodes that do not have an ancestor-descendant relation, should handle pairwise

independent and disjoint implementation tag sets, i.e., ∀w,w′ 6∈ anc(w,w′), w.itags ∩ w′.itags =

∅ ∧ indep(w.itags, w′.itags).

As an example, the synchronization plan shown in Figure 6.4 satisfies both properties; there is only one

state type that handles all tags and implementation tag sets are disjoint for ancestor-descendants. The

second property (V2) represents the main idea behind our execution model; independent events can

be processed by different workers without communication. Intuitively, in the example in Figure 6.4,

by assigning the responsibility for handling tag r(2) to node w3, its children can independently

process tags i(2)a, i(2)b that are dependent on r(2).

6.5.3. Optimization Problem

As described in the previous section, a set of P -valid synchronization plans can be derived from a DGS

program P . This decouples the optimization problem of finding a well-performing implementation,

allowing it to be addressed by an independent optimizer, which takes as input a description of the
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available computer nodes and the input streams. This design means that different optimizers could

be implemented for different performance metrics (e.g. throughput, latency, network load, energy

consumption). The design space for optimizers is vast and thoroughly exploring it is outside of the

scope of this work. For evaluation purposes, we have implemented a few simple optimizers, one

of which tries to minimize communication between workers by placing them close to their inputs.

Intuitively, it searches for divisions of the event tags into two sets such that those sets are “maximally”

independent, using those sets of tags for the initial fork, and then recursing on each independent

subset. Its design is described in more detail in Section 6.8.1.

6.5.4. Implementation

Each node of the synchronization plan can be separated into two components: an event-processing

component responsible for executing update, fork, and join calls; and a mailbox component responsible

for enforcing ordering requirements and synchronization.

Event processing. The worker processes execute the functions (update, fork, and join) associated

with the tree node. Whenever a worker is handed a message by its mailbox, it first checks if it has

any active children, and if so, it sends them a join request and waits until it receives their responses.

After receiving these responses, it executes the join function to combine their states, executes the

update function on the received event, and then executes the fork function on the new state, and

sends the resulting states to its children. In contrast, a leaf worker just executes the update function

on the received event.

Event reordering. The mailbox of each worker ensures that it processes incoming dependent

events in the correct order by implementing the following selective reordering procedure. Each

mailbox contains an event buffer and a timer for each implementation tag. The buffer holds the

events of a specific tag in increasing order of timestamps and the timer indicates the latest timestamp

that has been encountered for each tag. When a mailbox receives an event 〈σ, ts, v〉 (or a join request),

it follows the procedure described below. It first inserts it in the corresponding buffer and updates

the timer for σ to the new timestamp ts. It then initiates a cascading process of releasing events

with tags σ′ that depend on σ. During that process all dependent tags σ′ are added to a dependent

tag workset, and the buffer of each tag in the workset is checked for potential events to release. An

event e = 〈σ, ts, v〉 can be released to the worker process if two conditions hold. The timers of its

dependent tags are higher than the timestamp ts of the event (which means that the mailbox has
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already seen all dependent events up to ts, making it safe to release e), and the earliest event in each

buffer that σ depends on should have a timestamp ts′ > ts (so that events are processed in order).

Whenever an event with tag σ is released, all its dependent tags are added to the workset and this

process recurses until the tag workset is empty.

Heartbeats. As discussed in Section 6.5.1, a dependence between two implementation tags σ1 and

σ2 requires the implementation to process any event 〈σ1, ti, vi〉 after processing all events 〈σ2, tj , vj〉

with tj ≤ ti. However, with the current assumptions on the input streams, a mailbox has to wait until

it receives the earliest event 〈σ2, tj , vj〉 with tj > ti, which could arbitrarily delay event processing.

We address this issue by periodically generating heartbeat events at each producer, which are system

events that represent the absence of events on a stream. Heartbeats are interleaved together with

standard events of input streams. When a heartbeat event 〈σ, t〉 first enters the system, it is broadcast

to all the worker processes that are descendants of the worker that is responsible for tag σ. Each

mailbox that receives the heartbeat updates its timers and clears its buffers as if it has received an

event of 〈σ, t, v〉 without adding the heartbeat to the buffer to be released to the worker process.

Similar mechanisms are often used in other stream processing systems under various names, e.g.

heartbeats [162], punctuation [260], watermarks [62], or pulses [238].

In our experience, heartbeat rates are successful in improving the latency of the system unless they

are configured to be very large or very low values. For a wide range of heartbeat values (about

10-1000 per synchronization event), the performance of the system is stable and exhibits minor

variance (see more details in Section 6.8.2.

6.5.5. Proof of Correctness

We show that any implementation produced by the end-to-end framework is correct according to

the semantics of the programming model (Theorem 6.5.5). First, Definition 6.5.3 formalizes the

assumptions about the input streams outlined in Section 6.5.1, and Definition 6.5.4 defines what it

means for an implementation to be correct with respect to a sequential specification. Our definition is

inspired by the classical definitions of distributed correctness based on observational trace semantics

(e.g., [185]). However, we focus on how to interpret the independent input streams as a sequential

input, in order to model possibly synchronizing and order-dependent stream processing computations.
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Definition 6.5.3. A valid input instance consists of k input streams (finite sequences) u_1, u_2, . . . ,

u_k of type List(Event | Heartbeat), and an order relation O on input events and heartbeats, with the

following properties. (1) Monotonicity: for all i, u_i is in strictly increasing order according to <O.

(2) Progress: for all i, for each non-heartbeat input event x in u_i, for every other stream j there

exists an event or heartbeat y in u_j such that x <O y.

Given a DGS program P , the sequential specification is a function spec: List(Event) -> List(Out),

derived from the sequential implementation by applying only update and no fork and join calls.

The output specified by spec is produced incrementally (or monotonically): if u is a prefix of u’,

then spec(u) is a subset of spec(u’). Define the sort function sortO : List(List(Event | Heartbeat)) ->

List(Event) which takes k sorted input event streams and sorts them into one sequential stream,

according to the total order relation O, and drops heartbeat events.

Definition 6.5.4. A distributed implementation is correct with respect to a given sequential

specification spec: List(Event) -> List(Out), if for every valid input instance O, u_1, . . . , u_k, the set

of outputs produced by the implementation is equal to set(spec(sortO(u_1, . . . , u_k))).

Theorem 6.5.5 (implementation correctness). Any implementation produced by our framework is

correct according to Definition 6.5.4.

To prove Theorem 6.5.5, the key assumptions used are:

(1) The program is consistent, as defined in Section 6.4.3.

(2) The input streams constitute a valid input instance, as defined in Definition 6.5.3.

(3) The synchronization plan that is chosen by the optimizer is valid, as defined in Section 6.5.2.

(4) Messages that are sent between two processes in the system arrive in order and are always

received. This last assumption is ensured by the Erlang runtime.

(5) The underlying scheduler is fair, i.e. all processes get scheduled infinitely often.

The proof decomposes the implementation into the mailbox implementations and the worker im-

plementations, which are both sets of processes that given a set of input streams produce a set of

output streams. We first show that the mailboxes transform a valid input instance to a worker input
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that is correct up to reordering of independent events. Then we show that given a valid worker input,

the workers processes’ collective output is correct. The second step relies on Theorem 6.4.4 as well

as Lemma 6.5.8 which ties this to the mailbox implementations, showing that the implementation

produces a valid wire diagram according to the formal semantics of the program P . Given a valid

input instance u and a computation program P that contains in particular a sequential specification

spec: List(Event) -> List(Out), we want to show that any implementation f that is produced by our

framework is correct according to Definition 6.5.4.

Definition 6.5.6. For a valid input instance u, a worker input mu = (m1, ...,mN ) is valid with

respect to u if mi ∈ reorderDI
(filter(recwi

, sortO(u))), where reorderDI
is the set of reorderings that

preserve the order of dependent events, recw(〈σ, t, p〉) = σ ∈ atags(w) ∪ w.itags is a predicate of the

messages that each worker w receives, and atags is the set of implementation tags that are handled

by a workers ancestors, and is given by atagsw = {w′.itags : ∀w′ ∈ anc(w′, w)}.

Lemma 6.5.7. Given a valid input instance u, any worker input m produced by the mailbox

implementations (u,m) in f is valid with respect to u.

Proof. By induction on the input events of one mailbox and using assumptions (2)-(5).

Each worker w runs the update function on each event e = 〈σ, t, p〉 on its stream that it is responsible

for σ ∈ w.itags possibly producing output o: List(Out). For all events in the stream that one of its

ancestors is responsible for, it sends its state to its parent worker and waits until it receives an

updated one. The following key lemma states that this corresponds to a particular wire diagram in

the semantics of the program.

Lemma 6.5.8. Let m be the worker input to f for program P on input u, and let oi : List(Out) be

the stream of output events produced by worker i on input mi. Then there exists v: List(Out) such

that inter(v, o1, o2, . . . , oN ) and (u, v) ∈ JSK.

Proof. By induction on the worker input and using assumption (3), in particular validity condition

(V1), we first show that the worker input corresponds to a wire diagram, in particular we show that

〈State_0, true, s〉 u′

−→
v
〈State_0, true, s’〉 where v is an interleaving of o1, . . . , oN and u′ is any interleaving

of the events u′i processed by each mailbox, namely filter(recwi
, wi.itags). Applying Lemma 6.5.7,
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u is one possible interleaving of the events u′i and hence we conclude that 〈State_0, true, s〉 u−→
v

〈State_0, true, s’〉, thus (u, v) ∈ JSK.

Combining Lemma 6.5.8 and Theorem 6.4.4 then yields the end-to-end correctness theorem Theo-

rem 6.5.5.

6.6. Experimental Evaluation

In this section we conduct a set of experiments to investigate tradeoffs between data parallelism

and platform independence in stream processing APIs. That is, we want to distinguish between

parallelism that is achieved automatically and parallelism that is achieved manually at the cost of

portability when the details of the underlying platform change. To frame this discussion, we identify

a set of platform independence principles (PIP) with which to evaluate this tradeoff:

PIP1: parallelism independence. Is the program developed without regard to the number of

parallel instances, or does the program use the number of parallel instances in a nontrivial way?

PIP2: partition independence. Is the program developed without regard to the correspondence

between input data and parallel instances, or does it require knowledge of how input streams

are partitioned to be correct?

PIP3: API compliance. Does the program violate any assumptions made by the stream processing

API?

Having identified these principles, the following questions guide our evaluation:

Q1 For computations requiring synchronization, what are the throughput limits of automatic

parallelism exposed by existing stream processing APIs?

Q2 Can manual parallel implementations, i.e., implementations that may sacrifice (PIP1–3) above,

that emulate synchronization plans achieve absolute throughput improvements in existing

stream processing systems?

Q3 What is the throughput scalability of the synchronization plans that are generated automatically

by our framework?
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Q4 In summary, for each method of achieving data parallelism with synchronization, what platform

independence tradeoffs are made?

In order to study these questions, we design three applications with synchronization requirements in

Section 6.6.1. Our investigation compares three systems at different points in the implementation space

with varying APIs and performance characteristics. First, Apache Flink [115, 62] represents a well-

engineered mainstream streaming system with an expressive API. Second, the Rust implementation

of Timely Dataflow [194, 203] (Timely) represents a system with support for iterative computation.

Third, Flumina is a prototype implementation of our end-to-end framework that supports the

communication patterns observed in arbitrary synchronization plans, some of which are not supported

by the execution models of Flink and Timely.

Experimental setup. We conduct all the experiments in this section in a distributed execution

environment consisting of AWS EC2 instances. To account for the fact that AWS instances can

introduce variability in results, we chose m6g medium (1 core @2.5GHz, 4 GB) instances, which do

not use burst performance like free-tier instances. We use instances in the same region (us-east-2)

and we increase the number of instances for the scalability experiments. Communication between

nodes is managed by each respective system (the system runtime for Flink and Timely, and Erlang

for Flumina).

We configure Flink to be in true streaming mode by disabling batching (setting buffer-timeout to 0),

checkpointing, and dynamic adaptation. For Timely, it is inherent to the computational model that

events are batched by logical timestamp, and the system is not designed for event-by-event streaming,

so our data generators follow this paradigm. This results in significantly higher throughputs for

Timely, but note that these throughputs are not comparable with Flink and Flumina due to the

batching differences. Because the purpose of our evaluation is not to compare absolute performance

differences due to batching across systems, we focus on relative speedups on the same system and

how they relate to platform independence (PIP1–3).

6.6.1. Applications Requiring Synchronization

We consider three applications that require different forms of synchronization. All three of the

applications do not perform CPU-heavy computation for each event so as to expose communication

and underlying system costs in the measurements. The conclusions that we draw remain valid, since
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a computation-heavy application that would exhibit similar synchronization requirements would

scale even better with the addition of more processing nodes. The input for all three applications is

synthetically generated.

Event-based windowing. An event-based window is a window whose start and end is defined by

the occurrence of certain events. This results in a simple synchronization pattern where parallel nodes

must synchronize at the end of each window. For this application, we generate an input consisting of

several streams of integer values and a single (separate) stream of barriers. The task is to produce

an aggregate of the values between every two consecutive barriers, where between is defined based

on event timestamps. We take the aggregation to be the sum of the values. The computation is

parallelizable if there are sufficiently more value events than barrier events. In the input to our

experiments, there are 10K events in each value stream between two barriers.

Page-view join. The second application is an example of a streaming join. The input contains

2 types of events: page-view events that represent visits of users to websites, and update-page-info

events that update the metadata of a particular website and also output the old metadata when

processed by the program. All of these events contain a unique identifier identifying the website and

the goal is to join page-view events with the latest metadata of the visited page to augment them

for a later analysis. An additional assumption is that the input is not uniformly distributed among

websites, but a small number of them receive most of the page-views. To simulate this behavior in

the inputs used in our experiments, all views are distributed between two pages.

Fraud detection. Finally, the third application is a version of the ML fraud detection application

mentioned in the introduction, where the synchronization requirements are the same but the

computation is simplified. The input contains transaction events and rule events both of which

are integer values. On receiving a rule, the program outputs an aggregate of the transactions since

the last rule and a transaction is considered fraudulent if it is equivalent modulo 1000 to the sum

of the previous aggregate (simulating model retraining) and the last rule event. As in event-based

windowing, we generate 10K transaction events between every two rule events.

6.6.2. Implementations in Flink and Timely

In this section we investigate how the Flink and Timely APIs can produce scalable parallel implemen-

tations for the aforementioned applications. We iterated on different implementations resulting in a

best-effort attempt to achieve good scalability. These implementations are summarized below. For
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Figure 6.5: Flink (top) and Timely (bottom) maximum throughput increase with increasing parallel
nodes for the three applications that require synchronization. For the page-view example in Timely,
two implementations are shown: Page View uses automatic parallelism while Page View (M) is the
manual parallel implementation in Figure 6.6.

each of the implementations, we then ran an experiment where we increased the number of distributed

nodes and measured the maximum throughput of the resulting implementation (by increasing the

input rate until throughput stabilizes or the system crashes). The results are shown in Figure 6.5.

Event-based windowing. Flink’s API supports a broadcast construct that can send barrier

events to all parallel instances of the implementation, therefore being able to scale with an increasing

parallel input load. Note that Flink does not guarantee that the broadcast messages are synchronized

with the other stream events, and therefore the user-written code has to ensure that it processes

them in order. By transforming these barriers to Flink watermarks that indicate window boundaries,

we can then aggregate values of each window in parallel, and finally merge all windows to get the

global aggregate. Similarly, Timely includes a broadcast operator on streams, which sends all barrier

events to all parallel instances; then the reclock operator is used to match values with corresponding

barriers and aggregate them. Both the Flink and Timely implementations scale because the values are
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updates.broadcast().filter(move |x| {
x.name == page_partition_fun(NUM_PAGES, worker_index)

});

Figure 6.6: Snippet from the Timely manual (M) implementation of the page-view join example,
satisfying PIP1 and PIP3 but not PIP2.

much more frequent than barriers, i.e., a barrier every 10K events, and are processed in a distributed

manner.

Page-view join. The input of this application allows for data parallelism across keys, in this case

websites, but also for the same key since some keys receive most of the events. First, for both Flink

and Timely, we implemented this application using a standard keyed join, ensuring that the resulting

implementation will be parallel with respect to keys. As shown by the scalability evaluation, this

does not scale to beyond 4 nodes in the case that there are a small number of keys receiving most or

all of the events.

We wanted to investigate whether it was possible to go beyond the automatic implementations

and scale throughput for events of the same key. To study this, we provide a “manual” (M)

implementation in Timely (Figure 6.6 and Figure 6.5, bottom). Here, we broadcast update-page-info

events, then filter to only those relevant to each node, i.e. corresponding to page-views that it is

responsible for processing. A similar implementation would be possible in Flink. Unfortunately, our

implementation sacrifices PIP2, i.e., the assignment of events to parallel instances becomes part

of the application logic—there are explicit references to the physical partitioning of input streams

(page_partition_fun) and the the worker that processes each stream (worker_index). Additionally,

the implementation broadcasts all update events to all sharded nodes (not just the ones that are

responsible for them), introducing a linear synchronization overhead with the increase of the number

of nodes. An alternative choice would have been to not only broadcast events, but also keep state for

every page at every sharded replica: this would satisfy PIP2 because nodes no longer need to be

aware of which events they process, but it does not avoid the broadcasting issue and thus we would

expect performance overheads. Overall, we observe inability to automatically scale this application

without sacrificing platform independence in both Flink and Timely.

Fraud detection. The standard dataflow streaming API cannot support cross-instance synchro-

nization, and therefore we can only develop a sequential implementation of this application using

Flink’s API. Timely offers a more expressive API with iterative computation, and this allows for an
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Figure 6.7: Throughput (x-axis) and 10th, 50th, 90th percentile latencies on the y-axis for increasing
input rates (from left to right) and 12 parallel nodes. Flink (orange) is the parallel implementation
produced automatically, and Flink S-Plan (blue) is the synchronization plan implementation.

automatically scaling implementation: after aggregating local state to globally updated the learning

model, we have a cyclic loop which then sends the state back to all the nodes to process further

events. The results show that this implementation scales almost as well as the event-based window.

This effectively demonstrates the value of iterative computation in machine learning and complex

stateful workflows.

Take-away (Q1): The streaming APIs of Flink and Timely cannot automatically produce im-

plementations that scale throughput for all applications that have synchronization requirements

without sacrificing platform independence.

6.6.3. Manual Synchronization

To address Q2, we next investigate whether synchronization, implemented manually and possibly

sacrificing PIP1–3, can offer concrete throughput speedups. We focus this implementation in Flink,

and consider the two applications that Flink cannot produce parallel implementations for, namely

page-view join and fraud detection. We write a DGS program for these applications and we use our

generation framework to produce a synchronization plan for a specific parallelism level (12 nodes).

We then manually implement the communication pattern for these synchronization plans in Flink,

and we measure their throughput and latency compared to the parallel implementations that the

systems produced in Section 6.6.2. The results for both applications are shown in Figure 6.7. Flink
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public Integer joinChild(
final int subtaskId ,
final Integer state

) {
final int parentId = subtaskId / pageViewParallelism;
final int childId = subtaskId % pageViewParallelism;
joinSemaphores.get(parentId).get(childId).release();
forkSemaphores.get(parentId).get(childId)

.acquireUninterruptibly ();
return zipCode.get(parentId);

}

Figure 6.8: Snippet from the implementation of the manual synchronization join in Flink. This
implementation does not satisfy PIP1–3.

does not achieve adequate parallelism and therefore cannot handle the increasing input rate (low

throughput and high latency).

Page-view join. The synchronization plan that we implement for this application is a forest

containing a tree for each key (website) and each of these trees has leaves that process page-view

events. Each time an update event needs to be processed for a specific key, the responsible tree is

joined, processes the event, and then forks the new state back.

Fraud detection. The synchronization plan that we implement for this application is a tree that

processes rule events at its root and transactions at all of its leaves. The tree is joined in order to

process rules and is then forked back to keep processing transactions.

Implementation in Flink. In order to implement the synchronization plans in Flink we need

to introduce communication across parallel instances. We accomplish this by using a centralized

service that can be accessed by the instances using Java RMI. Synchronization between a parent

and its children happens using two sets of semaphores, J and F . A child releases its J semaphore

and acquires its F semaphore when it is ready to join, and a parent acquires its children’s J

semaphores, performs the event processing, and then releases their F semaphores (Figure 6.8). This

implementation of manual synchronization sacrifices all three platform independence principles PIP1–

3. For PIP1 and PIP2, it refers explicitly to the number of parallel instances and the partitioning

(pageViewParallelism, subtaskId, etc.). For PIP3, it is not API-compliant because it uses an

external service (semaphores) to implement synchronization, whereas Flink’s documentation requires

that operators lack side effects. This requirement is imposed because, among other considerations,
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Figure 6.9: Flumina (DGS) maximum throughput increase with increasing parallel nodes for the
three applications.

Event window Page-view join Fraud detection

Development tradeoff F TD DGS F FM TD TDM DGS F FM TD DGS

(PIP1) Parallelism independence 3 3 3 3 7 3 3 3 3 7 3 3

(PIP2) Partition independence 3 3 3 3 7 3 7 3 3 7 3 3

(PIP3) API compliance 3 3 3 3 7 3 3 3 3 7 3 3

Scaling 10x 8x 8x 2x 9x 1x 2x 8x 1x 9x 6x 8x

Figure 6.10: Development tradeoffs for each program, together with throughput scaling for 12 nodes,
in Flink (F), Flink with manual synchronization (FM), Timely (TD), Timely with manual partitioning
(TDM), and our system (DGS).

the use of semaphores might cause the program to fail in cases where work is interrupted and/or

repeated after a node failure.

Take-away (Q2): Synchronization plans achieve higher throughputs (4-8x for 12 parallel nodes)

over the automatic parallel implementations produced by Flink’s API.

6.6.4. Implementation in Flumina

To answer Q3, we implement Flumina, a prototype of our end-to-end framework that can automatically

achieve parallelism given a DGS program. Flumina receives a DGS program written in Erlang,

uses the generation framework that was described in Section 6.5 to generate a correct and efficient

synchronization plan, and then implements the plan according to the description in Section 6.5.4.

We implemented all three applications in Flumina, and measured the maximum throughput increase

with the addition of parallel nodes (Figure 6.9).
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Event-based windowing and fraud detection. The DGS program for event-based windowing

contains: (i) a sequential update function that adds incoming value events to the state, and outputs

the value of the state when processing a barrier event, (ii) a dependence relation that indicates that

all events depend on barrier events, and (iii) a fork that splits the current state in half, together

with a join that adds two states to aggregate them. The DGS program for fraud detection is the

same with the addition that the fork also duplicates the sum of the previous transaction and last

rule modulo 1000.

Page-view join. In addition to the sequential update function, the program indicates that events

referring to different keys are independent, and that page-view events of the same key are also

independent. The fork and join are very similar to the ones in Figure 6.2 and just separate the state

with respect to the keys.

Take-away (Q3): Across all three examples, Flumina produces parallel implementations that scale

throughput without sacrificing platform independence.

6.6.5. Summary: Development Tradeoffs

Finally, regarding Q4, Figure 6.10 shows all the tradeoffs that need to be made for each of the

programs in this section together with the throughput increase for 12 nodes. Note that throughput

scaling comparison is only relevant for the same system (each of which is denoted with a different

color) and not across systems due to differing sequential baselines. Of all the implementations in

Section 6.6.2, the Timely manual page-view example sacrifices PIP2. The manually synchronizing

Flink implementations in Section 6.6.3 show good throughput scaling at the cost of PIP1–3.

Take-away (Q4): Of the three APIs studied, only DGS can achieve scalable implementations

across all examples without sacrificing either parallelism independence, partition independence, or

API compliance.

6.7. Case Studies

In the next couple of subsections, we evaluate if DGS can be used for realistic application workloads.

We consider the following questions:

1. How does the performance of Flumina compare with handcrafted implementations?
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2. What is the additional programming effort necessary to achieve automatic parallelization when

using the DGS programming model?

To evaluate these questions we describe two case studies on applications taken from the literature

that have existing high-performance implementations for comparison. The first is a state-of-the-art

algorithm for statistical outlier detection, and the second is a smart home power prediction task from

the DEBS Grand Challenge competition. For question (1), the two case studies are posed in the

literature targeting different performance metrics: throughput scalability for outlier detection and

latency for the smart home task. We are able to achieve performance comparable to the existing

handcrafted implementations in both cases with respect to the targeted metric. For question (2), this

performance is achieved while putting minimal additional effort into parallelization: compared to

200-700 LoC for the sequential task, writing the fork and join primitives requires only an additional

50-60 LoC. These results support the feasibility of using DGS for practical workloads, with minimal

additional programmer effort to accomplish parallelism.

6.7.1. Statistical Outlier Detection

Reloaded [214] is a state-of-the-art distributed streaming algorithm for outlier detection in mixed

attribute datasets. It is a structurally similar to the fraud-detection example from the experimental

evaluation. The algorithm assumes a set of input streams that contain events drawn from the same

distribution. Each input stream is processed independently by a different worker with the goal of

identifying outlier events. Each worker constructs a local model of the input distribution and uses

that to flag some events as potential outliers. Whenever a user (or some other event) requests the

current outliers, the individual workers merge their states to construct a global model of the input

distribution and use that to flag the potential outlier events as definitive outliers.

We executed a network intrusion detection task from the original paper [146]. The goal of the task is

to distinguish malicious connections from a streaming dataset of simulated connections on a typical

U.S. Air Force LAN. Each connection is represented as an input event. In the experiment we varied

the number of nodes from 1-8 and we measured the execution time speedup. We executed this

experiment on a local server (Intel Xeon Gold 6154, 18 cores @3GHz, 384 GB) with the NS3 [66]

network simulator to have comparable network latency with the original paper that used a small

local cluster.
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Programmability. The sequential implementation of the algorithm in DGS consists of approxi-

mately 700 lines of Erlang code—most of which is boilerplate to manage the data structures of the

algorithm. Compared to the sequential implementation, the programming effort to achieve a parallel

implementation is a straightforward pair of fork and fljoin primitives, which amounts to 50 LoC.

Performance. DGS and synchronization plans can capture the complex synchronization pattern

that was proposed for Reloaded, achieving comparable speedup to that reported in the original

paper: almost linear (7.3× for 8 nodes), compared to 7.7× for 8 nodes by the handcrafted C++

cluster evaluation reported in the paper.

6.7.2. IoT Power Prediction

The DEBS Grand Challenge is an annual competition to evaluate how research solutions in distributed

event-based systems can perform on real applications and workloads. The 2014 challenge [159, 160]

involves an IoT task of power prediction for smart home plugs. As with the previous case study,

our goal is to see if the performance and programmability of our model and framework can be used

on a task where there are state-of-the-art results we can compare to. The problem (query 1 of the

challenge) is to predict the load of a power system in multiple granularities (per plug, per house,

per household) using a combination of real-time and historic data. We developed a solution that

follows the suggested prediction method, that involves using a weighted combination of averages from

the hour and historic average loads by the time of day. This task involves inherent synchronization:

while parallelization is possible at each of the different granularities, synchronization is then required

to bring together the historic data for future predictions. For example, if state is parallelized by plug,

then state needs to be joined in order to calculate a historic average load by household. Our program

is conceptually similar to the map from keys to counters in Section 6.4, where we maintain a map of

historical totals for various keys (plugs, houses, and households). The challenge input contains 29GB

of synthetic load measurements for 2125 plugs distributed across 40 houses, during the period of

one month. We executed our implementation on a subset of 20 of the 40 houses, which we sped up

by a factor of 360 so that the whole experiment took about 2 hours to complete. To compare with

submissions to the challenge which were evaluated on one node, we ran a parallelized computation

on one server node. To simulate the network and measure network load, we then used NS3 [66].

In the state, we maintain a set of maps of recent and historical averages for house, household, and

plug. Then, we set different houses, housek (for k between 1 and 20) to be different tags, and we
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add an end-timeslice event # at the end of every hour. The dependence relation is that end-timeslice

is dependent on everything (this is when output is produced), and that housek is dependent on itself

for every k, but independent of other houses. The fork function splits each map by house ID, and

the join function merges maps back together.

Programmability. In total, the sequential code of our solution amounted to about 200 LoC, and

the parallelization primitives (fork, join, dependence relation) were 60 LoC. We conclude that the

overhead to enable parallelization is modest compared to the sequential code.

Performance. Latency varied between 44ms (10th percentile), 51ms (median), and 75ms (90th),

and the average throughput was 104 events/ms. These results are on par with the ones reported

by that year’s grand challenge winner [205]: 6.9ms (10th) 22.5ms (median) 41.3 (90th) and 131

events/ms throughput. Note that although the dataset is the same, the power prediction method

used was different in some solutions. In this application domain, our optimizer has the advantage of

enabling edge processing: we measure only 362 MB of data sent over the network, in contrast to the

29 GB of total processed data.

6.8. Outtakes

6.8.1. Communication Optimizer

In this section we describe one of the synchronization plan optimizers that we have developed,

namely one that is based on a simple heuristic: it tries to generate a synchronization plan with a

separate worker for each input stream, and then tries to place these workers in a way that minimizes

communication between them. This optimizer assumes a network of computer nodes and takes as

input estimates of the input rates at each computer node. It searches for an P -valid synchronization

plan that maximizes the number of events that are processed by leaves; since leaves can process events

independently without blocking. The optimizer first uses a greedy algorithm that generates a graph

of implementation tags (where the edges are between dependent tags) and iteratively removes the

implementation tags with the lowest rate until it ends up with at least two disconnected components.

Example 6.8.1. For an example optimization run, consider Figure 6.4, and suppose that r(2) has

a rate of 10 and arrives at node E0, r(1), i(1) have rates of 15 and 100 respectively and arrive at

node E1, i(2)a has rate 200 and arrives at node E2, and i(2)b has rate 300 and arrives at node E3.

118



w1 { }
update – 〈 fork, join 〉

w2 { r(1), i(1) }
update

w3 { r(2) }
update – 〈 fork, join 〉

w4 { i(2)a }
update

w5 { i(2)b }
update

E0

E1

E2 E3

r(2), 10

val

i(1), 100
r(1), 15

val

i(2)a, 200

i(2)b, 300

Figure 6.11: Example synchronization plan generated in Example 6.8.1. The large gray rectangles
E0, E1, E2, E3 represent physical nodes and the incoming arrows represent input streams and their
relative rates.

Since events of different keys are independent, there are two connected components in the initial

graph—one for each key. The optimizer starts by separating them into two subtrees. It then recurses

on each disconnected component, until there is no implementation tag left, ending up with the tree

structure shown in Figure 6.4. Finally, the optimizer exhaustively tries to match this implementation

tag tree, with a sequence of forks, in order to produce a valid synchronization plan annotated with

state types, updates, forks, and joins. This generates the implementation in Figure 6.11.

6.8.2. Flumina Synchronization Latency

We also conducted an experiment to evaluate the latency of synchronization plans. We studied three

factors that affect latency: (i) the depth of the synchronization plan, (ii) the rate of events that

are processed at non-leaf nodes of the plan, and (iii) the heartbeat rate. We ran the event-based

windowing application with various configurations and the results are shown in Figure 6.12. Latency

increases linearly with the number of workers, since the more workers there are, the more messages

have to be exchanged when a barrier event occurs. Note that the latencies are higher for lower

vb-ratios since every time a barrier event occurs, all of the nodes need to synchronize. In particular,

the system cannot handle beyond 22 workers for vb-ratio of 100 (i.e. 100 forks-joins of the whole

synchronization plan per second). On the right, we see that if the heartbeat rate is too low latency

increases since worker mailboxes cannot release events quickly and therefore get filled up, only

releasing events in big batches whenever a barrier occurs.
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Figure 6.12: Flumina latency (10/50/90 percentile) on the event-based windowing application
for various configurations: Synchronization impact on latency (10/50/90 percentile) for various
configurations: (a) Varying ratios of value to barrier events (different lines) and number of parallel
nodes (x-axis). Heartbeat ratio is 1/100 the vb-ratio. The blue line stops after 22 workers. (b)
Varying ratios of value to barrier events (different lines) and heartbeat rates (x-axis). Number of
parallel nodes is fixed to 5.

6.8.3. Flumina State Checkpoints

Flumina provides a simple state checkpointing mechanism for resuming a computation in case of

faults. In contrast to other distributed stream processing systems, where the main challenge for

checkpointing state is the acquisition of consistent distributed snapshots [203, 60], performing a state

checkpoint is straightforward when the root node has joined the states of its descendants. The joined

state at that point in time (which corresponds to the timestamp of the message that triggered the

join request) is a consistent snapshot of the distributed state of the system, and therefore we get a

non-pausing snapshot acquiring mechanism for free. We have exploited this property of Flumina to

implement a programmable checkpoint mechanism that is given to the system as an option when

initializing worker processes. The checkpoint mechanism can be instantiated to save a snapshot of

the state every time the state is joined on the root node, or less frequently, depending on an arbitrary

user defined predicate. We implemented a checkpoint mechanism that produces a checkpoint every

time the root node joins its children states.

6.9. Discussion

There are a wealth of problems that we left open in this work. One problem that is not yet

adequately explored in our framework is optimization: given a DGS program, how to select a

valid synchronization plan which is most efficient according to a desired cost metric. Traditional

optimization algorithms for stream processing systems cannot be directly applied to the complex
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tree structure of synchronization plans. There are also possibilities for dynamic optimization, in

which the synchronization plan is modified online in response to profiling data from the system.

Besides optimization, the implementation of synchronization plans needs to address a plethora of

systems related issues, such as (i) the efficient management and communication of forked state in

a distributed environment, (ii) execution guarantees in the presence of faults, and (iii) supporting

performance optimizations such as batching and backpressure.

From the perspective of the structured types and type safety in Chapter 4, an important limitation

is that we only defined output up to reordering: essentially, this means that our type safety theorem

for DGS programs applies to any input type S, but only to output types S′ = Bag(T ) for some T . I

don’t believe this is fundamental; it was done to simplify the model, which already involved a fair

amount of complexity, so we didn’t want to worry about output orderings. This also means that

DGS can’t currently do sequential composition, where we feed the output of one program to another.

To explore this one needs to define the requirements on the programming model more carefully to

track not just a dependence relation on the input, but also a dependence relation on the output.

The core programming model of Section 6.4 is elegant, and one thing we have wondered is whether it

can be used to get consistency guarantees in distributed programming. Related and recent work in

consistent replicated distributed systems (e.g., RedBlue consistency [179], MixT [198], Gallifrey [199],

Hamband [155], and Quark [165]) suggests a starting point.
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CHAPTER 7 : Testing

The return on investment from random testing is good. Our rough
estimate—including faculty, staff, and student salaries, machines
purchased, and university overhead—is that each of the more than

325 bugs we reported cost less than $1,000 to find.

—Yang, Chen, Eide, and Regehr, 2011 [282]

Given the typing discipline in Chapter 4, Chapters 5 and 6 have considered ways to write well-

typed programs: programs defined compositionally, and for which they can be parallelized in a

semantics-preserving way that ensures determinism.

This section considers the problem from a different angle: suppose we have an application that is

already defined, or an input arriving from an external source; can we test empirically whether it is

well-typed and deterministic with respect to a given input and output stream type? This problem is

not easy. One issue is that the property we are interested in can be thought of as “on all executions,

the ordering of the stream is the same up to equivalence” which is a property that requires running

the program multiple times (i.e. a “hyperproperty”). We consider differential testing as a way to

address this and test at runtime whether a program satisfies its stream typing requirements.

Specifically, we consider differential testing of two output streams, up to equivalence defined by a

stream type S′. This may seem more restricted than testing whether a program is well-typed with

input type S and output type S′, but it turns out to be only more specific in some aspects, and

more general in others. To solve the type safety and determinism problem, we have to generate

two example inputs that are equivalent, feed them each to the same program P , and apply the

differential testing algorithm on the two resulting outputs. So if we also have an input generation

procedure, then we can solve the general type safety and determinism problem. But we can also

apply differential output testing to two different programs P1 and P2 (typically, a sequential version

and a parallel version), which should be equivalent, and compare their outputs.
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7.1. Motivation

Beyond the context of this thesis, the problem of ensuring correctness of distributed programs is long

established, as can be seen by the significant amount of past and ongoing work on the correctness of

distributed protocols (e.g., [68, 16, 218]), concurrent data structures (e.g., [145, 57]), and distributed

systems (e.g., [217, 273, 144]). In general, because this body of work addresses the challenges of

verification of distributed protocols and low-level primitives, it targets experts who design and

implement complex distributed systems. However, data-parallel programming frameworks, such as

stream processing systems, aim to offer a simplified view of distributed programming where low level

coordination and protocols are hidden from the programmer. This has the advantage of bringing

distributed programming to a wider audience of end-users, and at the same time it requires new tools

that can be used by such end-users (rather than just experts) to automatically test for correctness.

Unfortunately, there is limited work in testing for stream processing programs; in fact, the state of the

art in practice is unit and integration testing [267]. In order to bridge this gap and provide support

for checking correctness to end-users, we focus on the problem of differential testing for distributed

stream processing systems, that is, checking whether the outputs produced by two implementations

in response to an input stream are equivalent. Differential testing [193, 139, 107], allows for a

simple specification of the correct program behavior, in contrast to more primitive testing techniques,

where the specification is either very coarse (i.e. the application doesn’t crash) or very limited (i.e.

on a given input, the application should produce a specific output). More precisely, differential

testing allows for a reference implementation to be the specification. This is especially useful in the

context of distributed stream processing systems, since bugs introduced due to distribution can be

caught by comparing a sequential and a distributed implementation. In addition, having a reference

implementation as a specification allows testing with random inputs, since there is no need to specify

the expected output.

We identify two critical challenges in testing stream processing programs. The first challenge is dealing

with output events that are out-of-order due to parallelism. In particular, for differential testing, two

implementations might produce events at different rates, asynchronously, and out-of-order. However,

the order between specific output events might not affect the downstream consumer (e.g. events

with timestamp less than t can arrive in any order, as long as they arrive before the watermark t),
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therefore requiring our notion of equivalent streams which allows for out-of-order events. In fact,

lack of order is often desirable, since it enables parallelism. Importantly on the other hand, not all

output events are unordered, because operators in streaming dataflow graphs (in contrast to in batch

processing and MapReduce settings) often require some order to preserved (see Section 7.3). Because

of this, not all operators simply decompose into commutative/associative aggregators, and prior

solutions on testing [87, 280, 189, 76] and static verification [181, 231] for MapReduce-like programs

cannot be directly applied.

The second challenge is that stream processing systems, in contrast to batch processing systems, are

designed to process input data that would not fit in memory. As best practice, it is recommended

that applications written in these systems are tested under heavy load for long periods of time, to

match the conditions that are expected after deployment [267]. Achieving this requires that the

testing framework itself is an online algorithm, in the sense that it processes output events as they

arrive, and that the computational overhead is minimal.

7.2. Contributions

We propose a matching algorithm that incrementally compares two streams for equivalence. Following

the approach of [9], in our solution, ordering requirements between pairs of events are abstracted in

a dependence relation that indicates when the ordering of two specific events is of significance to the

output consumer. Given any dependence relation provided by the user, the algorithm determines, in

an online fashion, whether the streams are equivalent up to the reorderings allowed by the dependence

relation. We show that the algorithm is correct and that it reaches a negative verdict at the earliest

possible time (Theorem 7.6.8). We also prove that the algorithm is optimal, in the sense that it uses

a minimal amount of space: any correct online algorithm must store at least as much information

(Theorem 7.6.9).

We have implemented DiffStream, a differential testing library for Apache Flink that incorporates our

algorithm. DiffStream is implemented in Java and can be used alongside existing testing frameworks

such as JUnit [255] or in stand-alone Flink programs. In order to evaluate the effectiveness and

usability of the proposed testing framework, we have conducted a series of case studies.
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First, we evaluate the effectiveness of the framework on a set of nondeterministic MapReduce

programs from [277], adapted to the streaming setting. For some of these programs nondeterminism

constitutes a bug, while for others it is acceptable, depending on input assumptions and application

requirements. Using our framework, we demonstrate that tests can be written to successfully detect

5 out of 5 bugs (true positives), and to avoid flagging 5 out of 7 bug-free programs (false positives).

This improves on previous work [281], which would generally flag all nondeterministic programs as

buggy, thus suffering from false positives.

Second, we design two specific use cases to illustrate the benefits of using DiffStream to design and

implement parallel Flink applications. We consider a difficult-to-parallelize application which requires

event-based windowing: we show that it is significantly more difficult (requiring twice as many lines

of code) to effectively parallelize this application using Flink, and we show how our framework can

be used to test and correctly implement such an application. We also evaluate the effort needed to

write tests for an example computation with a subtle bug. The specific programs we consider are

explained in more detail in Section 7.3.

Finally, we demonstrate that the matching algorithm is efficient in practice, and can be used in an

online monitoring setting, by monitoring two implementations of the Yahoo Streaming Benchmark [78]

over the span of two hours and measuring the impact on performance. The overhead of testing is a

modest 5% reduction in maximum possible throughput, and the memory usage remains stable at less

than 500 unmatched items out of 30K items per second, reflecting the theoretical optimality of the

algorithm for this particular application.

In total, the main contributions of this work are:

• A new testing methodology for specifying ordering requirements in stream processing programs.

(Section 7.5)

• An optimal online matching algorithm for differential testing of stream processing programs

which uniformly handles data with differing ordering requirements. (Section 7.6)

• DiffStream, a differential testing library for testing Apache Flink applications based on the

online matching algorithm, together with a series of case studies to evaluate its usability and

effectiveness. (Section 7.8)
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input project(taxiID, position) keyBy(taxiID) output (Incorrect)

input keyBy(taxiID) project(taxiID, position) output (Correct)

Figure 7.1: A subtle consequence of implicit parallelism over an input stream containing taxi location
data.

DiffStream is available as an open-source repository on GitHub1.

7.3. Example Use Cases

Programs written in distributed stream processing frameworks exhibit implicit parallelism, which

can lead to subtle bugs. Programs in such frameworks are usually written as dataflow graphs, where

the edges are data streams and the nodes are streaming operators or transformations. Common

operators include stateless transformations (map), and operations that group events based on the

value of some field (key-by). For example, suppose that we have a single input stream which contains

information about rides of a taxi service: each input event (id, pos, meta) consists of a taxi identifier,

the taxi position, and some metadata. In the first stage, we want to discard the metadata component

(map) and partition the data by taxi ID (key-by). In the second stage, we want to aggregate this data

to report the total distance traveled by each taxi. Notice that the second stage is order-dependent

(events for each taxi need to arrive in order), so it is important that the first stage does not disrupt

the ordering of events for a particular taxi ID.

To make a program for the first stage of this computation in a distributed stream processing framework

such as Flink or Storm, we need to build a dataflow graph representing a sequence of transformations

on data streams. A first (natural) attempt to write the program is given in Figure 7.1 (top). Here,

the project node projects the data to only the fields we are interested in; in this case, taxiID and

position. And keyBy (also known as “group by” in SQL-like languages, or the concept of a “stream

grouping” in Storm) partitions the data stream into substreams by taxiID. Although written as

an operator, here keyBy can be thought of as modifying the stream to give it a certain property

(namely, if it is parallelized, streams should be grouped by the given key).

The first attempt is incorrect, however, because it fails to preserve the order of data for a particular

key (taxi ID), which is required for the second stage of the computation. The problem is that dataflow
1https://github.com/fniksic/diffstream
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input
get topic (per event);
count total (per topic);

emit on end-of-file

max
(over topics) output

input assign timestamp
equal to file number

get topic
(per event) key-by word window

(of 1 file)
sum

(per topic)
max

(over topics) output

Figure 7.2: A difficult-to-parallelize sequential program (top), and the correct parallel version (bottom)
over an input set of documents which arrive concatenated in a single stream.

graph operators are implicitly parallelized—here, the stateless map project is internally replicated

into several copies, and the events of the input stream are divided among the copies. Because input

events of the same key may get split across substreams, when the operator keyBy reassigns each item

to a new partition based on its key, if items of a particular key were previously split up, then they

might get reassembled in the wrong order.

This issue can be addressed by ensuring that parallelization is done only on the basis of taxiID from

the beginning of the pipeline. This can typically be accomplished by simply by reversing the project

and keyBy transformations, as in Figure 7.1 (bottom). (For example, this is done explicitly in Flink,

and the concept is the same in Storm, except that instead of an explicit keyBy operator we implicitly

construct it by setting the input stream to be grouped by key.) Although the two programs are

equivalent when the project operation is not parallelized, the second lacks the undesirable behavior

in the presence of parallelism: assuming the project operation has the same level of parallelism as

keyBy, most systems will continue to use the same partition of the stream to compute the projection,

so data for each key will be kept in-order. In particular, this works in any framework which guarantees

that the same key-based partitioning is used between stages.

We have seen that even simple programs can exhibit counterintuitive behavior. In practice, programs

written to exploit parallelism are often much more complex. To illustrate this, consider a single

input stream consisting of very large documents, where we want to assign a topic to each document.

The documents are streamed word by word and delineated by end-of-file markers. The topic of each

word is specified in a precomputed database, and the topic of a document is defined to be the most

frequent topic among words in that document.

In this second example querying the database is a costly operation, so it is desirable to parallelize by

partitioning the words within each document into substreams. However, the challenge is to do so in
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a way that allows for the end-of-file markers to act as barriers, so that we re-group and output the

summary at the end of each document. Although a sequential solution for this problem is easy, the

simplest solution we have found in Flink that exploits parallelism uses about twice as many lines

of code (Figure 7.2). The source of the complexity is that we must first use the end-of-file events

to assign a unique timestamp to each document (ignoring the usual timestamps on events used by

Flink). After these timestamps are assigned, only then is it safe to parallelize, because windowing by

timestamp later recovers the original file (set of events with a given timestamp). We also consulted

with Flink users on the Flink mailing list, and we were not able to come up with a simpler solution.

The additional complexity in developing the parallel solution, which requires changing the dataflow

structure and not simply tuning some parameter, further motivates the need for differential testing.

7.4. DiffStream

These examples motivate the need for some form of testing to determine the correctness of distributed

stream processing applications. We propose differential testing of the sequential and parallel versions.

As the parallel solution might be much more involved, this helps validate that parallelization was

done correctly and did not introduce bugs.

In the example of Figure 7.1, the programmer begins with either the correct program P1 (bottom),

or the incorrect program P ′1 (top), and wishes to test it for correctness. To do so, they write a

correct reference implementation P2; this can be done by explicitly disallowing parallelism. Most

frameworks allow the level of parallelism to be customized; e.g. in Flink, it can be disabled by calling

.setParallelism(1) on the stream. The program P1 or P2 is then viewed as a black-box reactive

system: a function from its input streams to a single output stream of events that are produced by

the program in response to input events.

However, the specification of P1 and P2 alone is not enough, because we need to know whether the

output data produced by either program should be considered unordered, ordered, or a mixture

of both. A naive differential testing algorithm might assume that output streams are out-of-order,

checking for multiset equivalence after both programs finish; but in this case, the two possible

programs P1 will both be equivalent to P2. Alternatively, it might assume that output streams are

in-order; but in this case, neither P1 nor P ′1 will be equivalent to P2, because data for different taxi
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: user input

Program Input
Program P1

Program P2

Dependence + Equality

Matching Algorithm

Result

Figure 7.3: DiffStream architecture.

IDs will be out of order in the parallel solution. To solve this, the programmer additionally specifies

a dependence relation: given two events of the output stream, it returns true if the order between

them should be considered significant. For this example, output events are dependent if they have

the same taxi ID. In general, the dependence relation can be used to describe a flexible combination

of ordered, unordered, or partially ordered data.

The end-to-end testing architecture is shown in Figure 7.3. In summary, the programmer provides:

(1) a program (i.e., streaming dataflow graph) P1 which they wish to test for correctness; (2) a

correct reference implementation P2; (3) a dependence relation which tells the tester which events

in the output stream may be out-of-order; (4) if needed, overriding the definition of equality for

output stream events (for example, this can be useful if the output items may contain timestamps or

metadata that is not relevant for the correctness of the computation); and (5) optionally, a custom

generator of input data streams, or a custom input stream—otherwise, the default generator is

used to generate random input streams. The two programs are then connected to our differential

testing algorithm, which consumes the output data, monitors whether the output streams so far are

equivalent, and reports a mismatch in the outputs as soon as possible.

7.5. Writing Specifications in DiffStream

In this section we describe how the programmer writes specifications in DiffStream. Let’s look back

at the taxi example from before. The second stage of the program computes the total distance

traveled by each taxi by computing the distance between the current and the previous location, and

adding that to a sum. For this computation to return correct results, location events for each taxi

should arrive in order in its input—a requirement that must be checked if we want to test the first

stage of the program.
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(ev1 , ev2) ->
ev1.taxiID == ev2.taxiID

(a) Specification in DiffStream

tID1 tID2 · · · tIDk · · ·

(b) Dependence visualized as a graph

Figure 7.4: Example specification in DiffStream for the taxi example. Taxi events with the same
taxiID are dependent.

(ev1 , ev2) ->
ev1.isEOD() ||
ev2.isEOD() ||
(ev1.isEOM() && ev2.isEOM()) ||
(ev1.isTaxiEv() &&
ev2.isTaxiEv() &&
ev1.taxiID == ev2.taxiID)

(a) Specification in DiffStream

tID1 tID2 · · · tIDk · · ·

EODEOM

(b) Dependence visualized as a graph

Figure 7.5: Example specification in DiffStream for the extended taxi example. Taxi events with the
same taxiID are dependent and all events are dependent with end-of-day (EOD) events.

A dependence relation is a symmetric binary relation on events of a stream with the following

semantics. If x D y, then the order of x and y in a stream is significant and reordering them gives us

two streams that are not equivalent. This could be the case if the consumer of an output stream

produces different results depending on the order of x and y. Thus, the dependence relation can be

thought of as encoding the pairwise ordering requirements of the downstream consumer.

It is often helpful to visualize dependence relations as unordered graphs, where nodes are equivalence

classes of the dependence relation. For the taxi example, the dependence relation is visualized in

Figure 7.4b, and it indicates that events with the same taxi identifier are dependent. In DiffStream,

dependence relations can be specified using a Boolean function on a pair of events. These functions

should be pure and should only depend on the fields of the two events. The DiffStream specification

of the dependence relation from Figure 7.4b is shown in Figure 7.4a.

Now let’s consider an extension of the above example where the downstream consumer computes

the total distance traveled by each taxi per day, and also computes the average daily distance by

each taxi every month. To make this possible, the output of the program under test is now extended

with special EOD (end-of-day) and EOM (end-of-month) events. The ordering requirements on this

output, while more subtle, can still be precisely specified using a dependence relation. For example,
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(ev1 , ev2) -> distance(ev1.loc , ev2.loc) < 1

Figure 7.6: Example specification in DiffStream where events are dependent if their locations are
close.

(ev1 , ev2) -> (ev1.isPunctuation() &&
ev2.timestamp < ev1.timestamp) ||

(ev2.isPunctuation() &&
ev1.timestamp < ev2.timestamp)

Figure 7.7: Example specification in DiffStream where punctuation events, used to enforce progress,
depend on other events only if the punctuation timestamp is larger.

EOD events are dependent with taxi events since all events of a specific day have to occur before the

EOD event of that day for the total daily distance to be correctly computed. On the other hand,

EOM events do not have to be dependent with taxi events since daily distances are computed on

EOD events. Therefore, an EOM event can occur anywhere between the last EOD event of the

month and the first EOD event of the next month. The DiffStream specification of the dependence

relation and its visualization are both shown in Figure 7.5.

Several frequently occurring dependence relations can be specified using a combination of the

predicates seen in the above examples. This includes predicates that check if an event is of a

specific type (e.g. isEOD(), isTaxiEv()), and predicates that check a field (possibly denoting a

key or identifier) of the two events for equality (e.g. ev1.taxiID == ev2.taxiID). However, it is

conceivable that the dependence of two events is determined based on a complex predicate on their

fields.

Another interesting dependence relation occurs in cases where output streams contain punctuation

events. Punctuations are periodic events that contain a timestamp and indicate that all events up to

that timestamp, i.e., all events ev such that ev.timestamp < punc.timestamp, have most likely

already occurred. Punctuation events allow programs to make progress, completing any computation

that was waiting for events with earlier timestamps. However, since events could be arbitrarily

delayed, some of them could arrive after the punctuation. Consider as an example a taxi that briefly

disconnects from the network and sends the events produced while disconnected after it reconnects

with the network. These events are usually processed with a custom out-of-order handler, or are

completely dropped. Therefore, punctuation events are dependent with events that have an earlier
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Input: Equality relation ≡, dependence relation D
Input: Connected stream s with π1(s) = s1 and π2(s) = s2

Require: Relations ≡ and D are compatible
1: function StreamsEquivalent(s)
2: u1, u2 ← empty logically ordered sets
3: Ghost state: p1, p2 ← empty logically ordered sets
4: Ghost state: f ← empty function p1 → p2

5: for (x, i) in s do
6: j ← 3− i
7: if x is minimal in ui and ∃y ∈ minuj : x ≡ y then
8: uj ← uj \ {y}
9: pi ← pi ∪ {x}; pj ← pj ∪ {y}

10: f ← f [x 7→ y] if i = 1 else f [y 7→ x]
11: else if ∃y ∈ uj : x D y then
12: return false
13: else
14: ui ← ui ∪ {x}
15: return (u1 = ∅ and u2 = ∅)

Figure 7.8: DiffStream algorithm: checking equivalence of two streams.

timestamp, since reordering them alters the result of the computation, while they are independent of

events with later timestamps. This can be specified in DiffStream as shown in Figure 7.7.

7.6. Differential Testing Algorithm

Algorithm 7.8 checks for equivalence of two streams. As described in the overview, the algorithm

has two main features: (i) it can check for equivalence up to any reordering dictated by a given

dependence relation, and (ii) it is online—it processes elements of the stream one at a time. In this

section we present Algorithm 7.8, our algorithm for checking equivalence of two streams. We prove

that our algorithm is correct, and we show that it is optimal in the amount of state it stores during

execution.

7.6.1. Background

Before getting to the algorithm itself, we need to introduce some terminology. A stream s is a

bounded or unbounded sequence of elements: s = 〈x1, x2, . . .〉. We write x ∈ s to denote that x is an

element of s, we write s[n] for the nth element of s, and we write s[:n] for the bounded substream of

elements up to and including the nth element.
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We follow the convention that all elements of a stream (denoted with x, y, etc.) are distinct. This is

so that we can unambiguously refer to the location of x in the stream s, and for example, say which

of x and y occurs earlier. We use x ≡ y to refer to equality of the underlying values, rather than the

elements as positioned in the stream.

Two streams s1, s2 are given as input to the algorithm as a connected stream s, which is a stream

obtained by arbitrarily interleaving the elements of s1 and s2. More precisely, the elements of the

connected stream s are of the form (x, i) such that i ∈ {1, 2} and x ∈ si. We can recover the original

streams by using projections π1 and π2: π1(s) = s1 and π2(s) = s2. Conversely, given a stream

s, we can form connected streams using injections ι1 and ι2: ι1(s) is obtained by mapping each

x ∈ s to (x, 1), and analogously, ι2(s) is obtained by mapping each x ∈ s to (x, 2). Thus, ι1(s) and

ι2(s) are characterized by π1(ι1(s)) = π2(ι2(s)) = s and π1(ι2(s)) = π2(ι1(s)) = ∅. The motivation

for connected streams comes from the fact that the streams s1 and s2 are produced by the stream

processing system asynchronously.

Next, we need to describe what it means for two streams to be equivalent. Our notion of equivalence

relies on two relations on the elements of the streams: an equality relation, denoted by ≡, and a

dependence relation, denoted by D. The equality relation is provided by the user (e.g., in Java by

overriding the method equals()) and is required to be an equivalence relation, that is, it should be

reflexive, transitive, and symmetric. For elements x and y, we write x ≡ y instead of x = y for the

equality relation to emphasize that it refers to equality on the underlying values, rather than equality

of stream elements. The dependence relation is required to be symmetric, that is, for elements x and

y, x D y implies y D x. Finally, the equality and the dependence are required to be compatible: if

x D y and x ≡ x′, then x′ D y. The three requirements—the equality being an equivalence relation,

the dependence being a symmetric relation, and the equality and dependence being compatible—need

to be ensured by the user.

Given a stream s, a dependence relation D gives rise to a logical order on the elements in s: for

elements x, y ∈ s, x logically precedes y, denoted by x < y, if x precedes y in the stream and

either x and y are dependent or they are transitively dependent—there are intermediate elements

x1, . . . , xn ∈ s given in their order of occurrence in s such that x D x1 D . . . D xn D y. It can be

shown that the logical order is irreflexive and transitive, that is, it is a strict partial order on the
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a

a b

b a

a b

a

Figure 7.9: The logical order of the stream from Example 7.6.1. Vertically aligned elements are
logically unordered, and for two elements that are not aligned, the left one logically precedes the
right one. The two leftmost elements are minimal.

elements of the stream s. Recall that this makes sense because by convention all the elements are

distinct, even though the underlying values may be equivalent according to the equality relation ≡.

Example 7.6.1. Consider a stream s = 〈a, a, b, a, a, a, b, b〉. The equality relation ≡ is given by

a ≡ a and b ≡ b, and the dependence relation D is given by a D b (and b D a). The logical order

arising from D is shown in Figure 7.9. The logical orderings between elements include s[1] < s[3],

s[3] < s[4], and s[5] < s[7]. Also s[4] ‖ s[5], s[4] ‖ s[6], and s[5] ‖ s[6]. Note that s[1] < s[4] even

though s[1] 6D s[4] (both elements are a). This is because they both depend on s[3] = b, which is in

between.

Given two streams s and s′, an equality relation ≡, and a dependence relation D, we say that s and

s′ are equivalent if they give rise to the same logical order. More precisely, we say they are equivalent

if there exists a bijective mapping f : s→ s′, called a matching, that matches equal elements and

preserves the logical order, that is, for every x, y ∈ s, f(x) ≡ x and f(x) < f(y) if and only if x < y.

In case the streams are equivalent, we write s ≡D s′, or simply s ≡ s′ if the dependence relation is

clear from the context. We call two streams that are not equivalent distinguishable.

If the two streams s and s′ are bounded, one way to think about them being equivalent is as follows:

we can get from s to s′ in finitely many steps by either swapping two adjacent logically unordered

elements or by replacing an element with another equal element. In particular, bounded equivalent

streams have the same length.

Example 7.6.2. Streams s1 = 〈a, c, b〉 and s2 = 〈c, a, b〉 are equivalent with respect to a dependence

relation given by a D b and c D b. A (unique) matching is given by f : s1[1] 7→ s2[2], s1[2] 7→ s2[1],
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and s1[3] 7→ s2[3]. Note that the same streams are not equivalent with respect to a dependence

relation where additionally a D c.

When it comes to unbounded streams, it may be impossible to algorithmically decide whether they

are equivalent or not. For example, consider s1 = 〈a, a, a, . . .〉 and s2 = 〈b, b, b, . . .〉 with a 6D b.

Clearly, s1 6≡ s2, but an algorithm processing a connected stream s with π1(s) = s1 and π2(s) = s2

one element at a time can never reach a conclusion: perhaps eventually b’s will start arriving on the

first stream, and a’s will start arriving on the second stream. However, there are situations when an

algorithm can reach a definite decision even if the streams are unbounded. We say that a connected

stream s is finitely distinguishable if there is a position n such that for every continuation s′ of s[:n],

the projected streams π1(s[:n] · s′) and π2(s[:n] · s′) are distinguishable.

Example 7.6.3. If s is a connected stream such that π1(s) = 〈a, a, b〉 and π2(s) = 〈a, b〉, and

a D b, then for no continuation of s will the two projections ever be equivalent. Thus, s is finitely

distinguishable.

Given a partial order p, we say that an element x ∈ p is minimal if no other element is less than x.

There can be multiple minimal elements in p; we denote the set of minimal elements in p by min p.

Given two partial orders p and q such that p ⊆ q, we say that p is a prefix of q if for every element

x ∈ p, p also contains all the elements that are less than x in q.

7.6.2. Algorithm Description

We now give a general specification of an online equivalence-checking algorithm. The algorithm’s

inputs are an equality relation ≡, a dependence relation D, and a connected stream s with the

projections s1 = π1(s) and s2 = π2(s). We require the equality and the dependence relations to be

compatible. The algorithm provides a procedure StreamsEquivalent that returns return true or

false to report whether or not s1 ≡ s2. The function is allowed to iterate over s exactly once.

The algorithm is correct if it has the following behavior:

(I) StreamsEquivalent returns true if and only if s is bounded and s1, s2 are equivalent.
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(II) StreamsEquivalent returns false if and only if either s is finitely distinguishable or it is

bounded and the streams s1, s2 are distinguishable. Additionally, if s is finitely distinguishable, it

returns false after processing s[n] for the first position n such that s[:n] is finitely distinguishable.

Algorithm 7.8 achieves the required behavior in the following way. Intuitively, it tries to construct a

matching to demonstrate equivalence of s1 and s2. In doing so, as part of its state it maintains two

logically ordered sets u1 and u2, both initially empty. Their role is to keep track of the unmatched

elements from s1 and s2, respectively. In addition to u1 and u2, which constitute the physical state,

the algorithm maintains the so-called “ghost state,” written in gray in Algorithm 7.8. The ghost

state need not exist in any real implementation of the algorithm; its sole purpose is to aid in proving

correctness. As part of the ghost state, the algorithm maintains two additional logically ordered sets

p1 and p2, whose role is to keep track of the successfully matched prefixes of s1 and s2. In the ghost

state, the algorithm also explicitly keeps track of the matching f : p1 → p2.

When processing a new element x from si (lines 5–14 in Algorithm 7.8), there are three distinguished

cases:

1. The element x is minimal in ui and there is a corresponding unmatched minimal element y ∈ uj

such that x ≡ y (line 7). In this case we remove y from uj . In the ghost state, we add x to pi

and y to pj , and we extend the matching f to map x to y or y to x, depending on whether

x ∈ s1 or y ∈ s1 (lines 9–10).

2. The element x depends on some unmatched element y ∈ uj (line 11). If this is the case, then

we have detected finite distinguishability and the function returns false (line 12).

3. If neither of the previous cases holds (line 13), then for every y ∈ uj , x and y are unequal and

independent. We add x to ui as an unmatched element (line 14).

If the whole connected stream has been processed and the function StreamsEquivalent did not

return false in line 12, it returns true in line 15 if and only if both sets of unmatched elements are

empty.
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Example 7.6.4. Let us demonstrate the execution of Algorithm 7.8 on streams s1 and s2 from

Example 7.6.2. Suppose the connected stream given as input is

s = 〈(a, 1), (c, 2), (c, 1), (b, 1), (a, 2), (b, 2)〉 .

At the time of processing the element s[3] = (c, 1), the first two elements have already been processed,

and both of them are unmatched: u1 = {a} and u2 = {c}. The algorithm detects that the new

element c is minimal in u1 and it can be matched with the element c ∈ u2, so it updates the matching

f with f(s1[2]) = s2[1] and removes c from u2. Next, it processes s[4] = (b, 1): the element b is

not minimal in u1 as it depends on a ∈ u1. It is also not dependent on any element in u2, as u2 is

empty. Therefore, it is added to u1, which now contains the ordering a < b. Finally, the two elements

s[5] = (a, 2) and s[6] = (b, 2) arrive precisely in the right order to be matched with the elements in

u1, and the algorithm concludes that the streams are equivalent.

If the dependence relation contained the additional dependence a D c, the processing would have

stopped at the element s[2] = (c, 2), since the element c from s2 would have been dependent on an

unmatched element a ∈ u1. And indeed, the connected stream s[:2] = 〈(a, 1), (c, 2)〉 would have been

finitely distinguishable.

7.6.3. Correctness

In order to show that the algorithm is correct, we will show that the loop in StreamsEquivalent

(lines 5–14) maintains the following invariants.

(I0) For every x ∈ u1 and y ∈ u2, x and y are unequal and independent: ∀x ∈ u1,∀y ∈ u2 : x 6≡

y ∧ x 6D y.

(I1) p1 is a prefix of s1: ∀x ∈ p1,∀y ∈ s1 : y < x⇒ y ∈ p1.

(I2) p2 is a prefix of s2: ∀x ∈ p2,∀y ∈ s2 : y < x⇒ y ∈ p2.

(I3) f : p1 → p2 is a maximal matching, that is, it is a matching and no extension f ′ : p′1 → p′2 to

proper supersets p′1 ⊃ p1 and p′2 ⊃ p2 is a matching. We also say that p1 and p2 are maximally

matched prefixes.

Lemma 7.6.5. The loop in StreamsEquivalent (lines 5–14) maintains invariants (I0)–(I3).
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Proof. Of the four invariants, the one that is least straightforward is (I3), so let us show that it

holds. In particular, let us show that after the update in lines 9–10 of Algorithm 7.8, the function

f remains a matching between p1 and p2. Clearly it is still a bijection and it maps elements in p1

to equal elements in p2. In order to show that it still preserves the logical order, we only need to

show that for every x′ ∈ p1, x′ < x if and only if f(x′) < f(x) = y. Let us show this claim in one

direction (the other one is analogous). Assume x′ < x. By definition, there exists n ≥ 1 and elements

x0, . . . , xn ∈ p1 such that x′ = x0 D x1 D . . . D xn = x. By the compatibility of ≡ and D, we also

have f(x′) = f(x0) D f(x1) D . . . D f(xn) = y. By the invariant (I2), y does not logically precede

f(xn−1), so it must be f(xn−1) < y, and finally by transitivity f(x′) < y. As for the maximality of

f , since (I3) holds at the start of the loop, any extension to f must involve the element x that is

being processed. Thus, if f can be extended, it is extended by the ghost statements in lines 9–10.

Lemma 7.6.6. In a bounded connected stream s, all maximally matched prefixes of s1 = π1(s) and

s2 = π2(s) are equivalent.

Proof. Let f : p1 → p2 and g : q1 → q2 be two maximal matchings, where p1 and q1 are prefixes of s1,

and p2 and q2 are prefixes of s2. Let u1 = s1 \ p1, u2 = s2 \ p2, and v1 = s1 \ q1, v2 = s2 \ q2 be the

corresponding unmatched elements. To show the claim, it suffices to show that p1 ≡ q1.

Clearly the identity function id : p1 ∩ q1 → p1 ∩ q1 is a matching. Let h : p′1 → q′1 be a maximal

matching between p1 and q1 that extends id; thus, p′1 and q′1 are prefixes such that p1 ∩ q1 ⊆ p′1 ⊆ p1

and p1 ∩ q1 ⊆ q′1 ⊆ q1. To show p1 ≡ q1, it suffices to show that p′1 = p1 and q′1 = q1.

First we note that for the matchings f, g, h, an analog of the invariant (I0) holds. In particular, the

sets p1 \ p′1 and q1 \ q′1, as well as v1 and v2 are pairwise independent and unequal. Moreover, let

us set p′2 = f(p′1) and q′2 = g(q′1). The sets p2 \ p′2 and q2 \ q′2 are also pairwise independent and

unequal. Let us show the claim for p1 \ p′1 and q1 \ q′1. Suppose first that x ∈ p1 \ p′1 and y ∈ q1 \ q′1

are elements such that x D y. Since x and y are both in s1, we either have x < y or y < x. If x < y,

then we have x ∈ q1 since q1 is a prefix, and consequently x ∈ p1 ∩ q1 ⊆ p′1, which is a contradiction.

Likewise, y < x leads to y ∈ q′1, which is also a contradiction. Suppose now that x ∈ p1 \ p′1 and

y ∈ q1 \ q′1 are elements such that x ≡ y. They cannot both be minimal, for we would be able to

extend h with h(x) = y. Thus, one of x and y has a logical predecessor; say x′ ∈ p1 \ p′1 is such that
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x′ < x. Without loss of generality, x′ D x. Since ≡ and D are compatible, this leads to x′ D y, which

we have just shown to be impossible.

We are now ready to prove p′1 = p1 (q′1 = q1 is analogous). For the sake of contradiction, suppose that

p′1 6= p1, that is, there exists an element x ∈ p1 \ p′1. Note that x /∈ q1, that is, x ∈ v1. We send x to

s2 via f ; we have f(x) ∈ p2 \ p′2. The element f(x) cannot be in v2 since x ∈ v1 and x ≡ f(x). The

element f(x) also cannot be in q2 \ q′2, since it is in p2 \ p′2 and f(x) ≡ f(x). Hence, f(x) ∈ q′2. Now

we pull f(x) back to s1 via g and h. Set x1 = h−1(g−1(f(x))); we have x1 ∈ p′1. Since x /∈ p′1, x1 and

x are distinct elements such that x1 ≡ x. We can continue iterating the described process. Suppose

we have defined distinct elements x1, . . . , xn ∈ p′1 for some n ≥ 1 such that x ≡ x1 ≡ . . . ≡ xn. We

send xn to s2 via f and note that neither f(xn) /∈ v2 (otherwise we would have x ∈ v1, f(xn) ∈ v2,

and x ≡ f(xn)) nor f(xn) ∈ q2 \ q′2 (otherwise we would have f(x) ∈ p2 \ p′2, f(xn) ∈ q2 \ q′2,

and f(x) ≡ f(xn)). Therefore, f(xn) ∈ q′2 and we can bring it back to s1 via g and h to get a

well-defined element xn+1 = h−1(g−1(f(xn))) ∈ p′1. Suppose xn+1 = xk for some k with 1 ≤ k ≤ n.

By removing k layers of application of h−1 ◦ g−1 ◦ f , we conclude that xn+1−k = x, which cannot be

since xn+1−k ∈ p′1 and x /∈ p′1. Therefore, xn+1 is distinct from all previously defined elements.

By defining the described process, we have shown that there are infinitely many distinct elements in

p′1, which cannot be since p′1 is a finite set. Hence, x ∈ p1 \ p′1 cannot exist in the first place, and we

have established that p1 = p′1. Analogously, we have q1 = q′1, and since p′1 ≡ q′1, we also have p1 ≡ q1.

Finally, using p1 ≡ q1 as a link, we establish that p2 ≡ p1 ≡ q1 ≡ q2, that is, all the maximally

matched prefixes in s are equivalent.

Lemma 7.6.7. If StreamsEquivalent returns false in line 12 while processing s[n] for some

n ≥ 1, then the connected stream s[:n] is finitely distinguishable.

Proof. Let s[n] = (x, 1) and assume that ProcessElement returns false in line 12 when processing

s[n]. Since the condition in line 11 was satisfied, there exists y ∈ u2 such that x D y. Without loss of

generality, let y be a minimal such element in u2.

The challenge here is that even though f can never be extended to match either x or y, it is plausible

that s[:n] can nevertheless be extended to s′ with a completely different matching that somehow

accommodates both elements. To show that such a scenario is impossible, suppose s′ is an extension
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of s[:n] such that π1(s′) = s′1 ⊇ s1, π2(s′) = s′2 ⊇ s2, and suppose g : s′2 → s′1 is a matching (it helps

to view g in the direction opposite of f). Since x D y and g(y) ≡ y, we have x D g(y), so x and

g(y) are logically ordered in s′1. There are three possibilities: g(y) = x (the elements are identical),

g(y) < x, or x < g(y).

The first possibility can easily be discarded. From g(y) = x it follows that x ≡ y. The elements x

and y cannot both be minimal elements unmatched by f , otherwise x would have been matched in

lines 7–10. Therefore, either there is x′ ∈ u1 such that x′ < x and x′ D x, or there is y′ ∈ u2 such

that y′ < y and y′ D y. In the former case we have x′ D y, contradicting the invariant (I0), and in

the latter case we have x D y′ and y′ < y, contradicting the choice of y as a minimal unmatched

element such that x D y.

The second possibility, that g(y) < x, can be discarded as follows. Set y0 = y. The element g(y0)

cannot be in u1 as that would break the invariant (I0); therefore it has to be in p1. We can send it

to p2 via f ; let y1 = f(g(y0)). Since y0 /∈ p2, y0 and y1 are distinct elements such that y0 ≡ y1. We

iterate the process: suppose we have defined the elements y1, . . . , yn ∈ p2 for some n ≥ 1 such that

all of them are equal to y0, and all of them together with y0 are distinct. Since g(yn) D x, g(yn) and

x are logically ordered. It cannot be g(yn) ≥ x, as that would imply g(yn) > g(y0) and consequently

yn > y0. But then, since yn ∈ p2 and p2 is a prefix, we would have y0 ∈ p2, which is a contradiction.

Thus, g(yn) < x and consequently g(yn) ∈ p1 due to the invariant (I0). Hence, yn+1 = f(g(yn)) is a

well-defined element such that yn+1 ∈ p2. Clearly yn+1 is distinct from y0, and yn+1 ≡ y0. Suppose

yn+1 = yk for some k with 1 ≤ k ≤ n. By “pealing off” k layers of applications of f and g, we

would get yn+1−k = y0, which is a contradiction. Therefore, the new element is distinct from every

previously defined element. We have thus defined infinitely many distinct elements in the finite set

p2, which is a contradiction. Hence, g(y) ≮ x.

The third possibility, that x < g(y), is discarded by a similar argument. The idea is again to start

from x0 = x and define an infinite sequence of distinct elements x1, x2, . . . in p1, all of which are

equal to and distinct from x0. However, the argument that shows the sequence is well-defined is

slightly different. Similarly as before, given xn for n ≥ 1 we start by arguing that g−1(xn) ∈ p2.

We first establish that g−1(xn) < y, as otherwise g−1(xn) ≥ y > g−1(x0) would imply xn > x0 and

consequently x0 ∈ p1. Next, if g−1(xn) ∈ u2, then we argue as in the first possibility: either x and

g−1(xn) can be matched, or there is x′ < x in u1 such that x′ D g−1(xn), contradicting the invariant
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(I0), or there is y′ < g−1(xn) < y in u2 such that x D y′, contradicting the minimality of y. Hence,

g−1(xn) ∈ p2 and xn+1 = f−1(g−1(xn)) is well-defined. Showing that it is distinct from previously

defined elements is done using the same argument as before. Thus, we again reach a contradiction,

and x ≮ g(y).

By discarding all three possibilities, we conclude that the extension of s[:n] to a connected stream s′

such that s′1 ≡ s′2 does not exist. Hence, s[:n] is finitely distinguishable.

Theorem 7.6.8. Algorithm 7.8 is correct.

Proof. We first show that Algorithm 7.8 satisfies the correctness condition (I). If StreamsEquiva-

lent returns true in line 15, then the whole connected stream s has been processed. Hence, s is

bounded. Moreover, in this case both u1 and u2 are empty, implying p1 = s1 and p2 = s2. Therefore,

s1 ≡ s2 follows from the invariant (I3). Conversely, if s is bounded and s1, s2 are equivalent, by

Lemma 7.6.7, StreamsEquivalent does not return false on line 12, and the loop in lines 5–14

finishes. By the invariant (I3) and Lemma 7.6.6, f must fully match s1 and s2. Hence, u1 and u2 are

empty and StreamsEquivalent returns true.

Next, we show the correctness condition (II). If StreamsEquivalent returns false, it either returns

false in line 12 and s is finitely distinguishable by Lemma 7.6.7, or it returns false in line 15. In the

latter case, s is bounded and one of u1 and u2 is not empty. Hence, s1 and s2 are distinguishable by

the invariant (I3) and Lemma 7.6.6. Conversely, if s is bounded and s1, s2 are distinguishable, by (I)

the function StreamsEquivalent does not return true, so it returns false.

It remains to show that if s is finitely distinguishable, then StreamsEquivalent returns false in

line 12 for the first position n such that s[:n] is finitely distinguishable. Clearly StreamsEquivalent

does not return false on line 12 when processing s[k] for k < n, since in that case by Lemma 7.6.7

already s[:k] would be finitely distinguishable. Let s[n] = (x, 1) and let u1 and u2 be the logically

ordered sets of unmatched elements at the start of the loop when processing s[n]. If x can be matched

with an element y ∈ minu2, then we extend s[:n] with ι1(u2 \ {y}) followed by ι2(u1), with the

elements of ui, i ∈ {1, 2} given in the order in which they appear in s[:n− 1]. Likewise, if x 6D y for

every y ∈ u2, then we extend s[:n] with ι1(u2) followed by ι2(u1 ∪ {x}). In either case, from the

invariants (I0)–(I3) it follows that Algorithm 7.8 would decide that the two streams in the extension

141



are equivalent, and since the algorithm is correct for bounded equivalent streams, the streams would

indeed be equivalent. Therefore, in both cases the connected stream s[:n] would not be finitely

distinguishable. Since s[:n] is finitely distinguishable, the only remaining option is that there exists

y ∈ u2 such that x D y, and hence StreamsEquivalent returns false in line 12 when processing

s[n].

7.6.4. Optimality

When it comes to stateful stream processing programs, space usage is an important topic. If a

stateful stream processing program inadvertently stores too much of the stream’s history, since the

stream is potentially unbounded, the program’s space usage may grow unboundedly as well. In case

of Algorithm 7.8, its space usage may indeed grow unboundedly. Since Algorithm 7.8 stores sets

of unmatched elements, it can be forced to keep the complete history of the connected stream it

takes as input. For example, this would happen on a connected stream s such that π1(s) = 〈a, a, . . .〉,

π2(s) = 〈b, b, . . .〉, with a 6≡ b and a 6D b. However, it turns out that for a correct equivalence-matching

algorithm there is no way around this: a correct equivalence-checking algorithm must store a certain

amount of unmatched elements in one way or another. In each step, Algorithm 7.8 stores minimal

sets of unmatched elements (the complements of maximally matched prefixes), and as we show in

this subsection, in this sense it is optimal.

Recall that by Lemma 7.6.6, in a bounded connected stream s with s1 = π1(s) and s2 = π2(s), all

maximally matched prefixes of s1 and s2 are equivalent. It follows that their complements—minimal

sets of unmatched elements—are equivalent as well. More precisely, let (p1, p2) and (q1, q2) be two

pairs of maximally matched prefixes such that pi, qi ⊆ si for i ∈ {1, 2}, and let ui = si \ pi and

vi = si \ qi for i ∈ {1, 2}. Then u1 ≡ v1 and u2 ≡ v2. This allows us to define up to equivalence a

function u(s) = (u1, u2), where u1 and u2 are any minimal sets of unmatched elements in s1 and s2.

We write (u1, u2) ≡ (v1, v2) to mean u1 ≡ v1 and u2 ≡ v2.

If a bounded connected stream s with u(s) = (u1, u2) is not finitely distinguishable, then an analog

of the invariant (I0) holds for u1 and u2: for every x ∈ u1 and y ∈ u2, x 6≡ y and x 6D y.

Theorem 7.6.9. Algorithm 7.8 is optimal. More precisely, let A be any other correct algorithm

for the equivalence-checking problem. If s and s′ are two bounded connected streams that are not
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finitely distinguishable, and if Algorithm 7.8 reaches a different state after processing s and s′, then

A reaches a different state after processing s and s′.

Proof. The state stored by Algorithm 7.8 on processing a string s is u(s). Suppose a correct

equivalence-checking algorithm reaches the same state after processing s and s′. Let u(s) = (u1, u2)

and u(s′) = (u′1, u
′
2). We extend both s and s′ with ι1(u2) followed by ι2(u1). It is not difficult to see

that the two connected streams in the extension of s are equivalent, and the streams in the extension

of s′ are not equivalent. However, since the algorithm is deterministic, it would come to the same

decision for both extensions, which contradicts its correctness.

7.7. Practical Bounds on Space Usage

While the space used by Algorithm 7.8 can grow with the input stream in the worst case, Theorem 7.6.9

shows that it is impossible to write an algorithm which uses a smaller amount of space. In addition to

this result, it is possible to give concrete bounds on the space usage in certain cases. Here we discuss

some patterns that we have encountered, including the examples we implemented in Section 7.8, and

how bounds on the space usage can be derived for these patterns.

The simplest pattern is differential testing of sequential outputs: both streams are completely ordered,

i.e., any two events are dependent. In this case, any differential testing algorithm must at least keep

track of the difference of the two streams seen so far (assuming their prefixes are equal). For example,

suppose both streams are sequences of integers, and one stream has seen m integers and the other has

seen n integers, where m < n. Then if the first m integers are equal, any matching algorithm must

keep track of the remaining (n−m) integers. Thus, the space usage of the algorithm is bounded

by the maximum drift between the two streams, defined as the difference in the number of events

produced. In practice, such drift is typically bounded since inputs arrive at the same rate for both

the implementations, and most systems try to ensure that no operator in the stream processing

dataflow graph lags behind the others by accumulating a large queue of unprocessed inputs. This

dependence relation pattern (and the resulting bound) occurs in the case studies of Sections 7.8.2

and 7.8.3.

A second common pattern is key-based parallelism, where events with the same key are dependent,

but events with different keys are independent. In such a case, considering the drift between the
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two streams is not enough. For example, suppose there are only two keys, a and b, and one stream

produces n as, but the other stream produces n bs. Then although the two streams are producing

the same number of items, because stream 1 never produces an a and stream 2 never produces a

b, any algorithm for correct matching must keep at least the as and the bs so far until they are

matched on the other stream. To address this, we can obtain a bound on the space by considering

the drift per key. In general, “keys” can be generalized as dependent subsets of events, and a bound

can be obtained by taking the maximum drift on any dependent subset, together with the number of

independent keys in the input. This dependence relation pattern (and the resulting bound) occur

in the case study of Section 7.8.1. Related to key-based parallelism, fully independent parallelism

(where all input events are independent) occurs in the case studies of Sections 7.8.3 and 7.8.4.

Finally, we have encountered cases where the input includes special synchronization events, such as

punctuation marks and end-of-day markers, as described in Section 7.5. These events are dependent

on all other events. If both input programs to the differential testing algorithm produce these events

at regular intervals, then the space usage becomes bounded. In particular, suppose that the frequency

of such events is at least one in every k events, and the drift restricted only to such events is d. Then

the space usage of our algorithm is at most k × d.

To ensure that bounded drift holds between the two streams in practice, one approach would be

to leverage back-pressure of the underlying system [80, 170, 75]. In particular, back-pressure may

prevent drift from growing in cases where one implementation is significantly faster than the other,

since the system would slow down the fast implementation to prevent unbounded buffering.

7.8. Evaluation

We implemented the matcher algorithm in DiffStream, a differential testing library written in Java.

The matcher can be used to test programs in any distributed stream processing system given an

output interface. For our case studies we chose Flink as the target platform because it is one of the

most widely used distributed stream processing frameworks [215]. We integrated DiffStream with

JUnit-QuickCheck [152] to support generation of streams of random input values.

Our first case study (Section 7.8.1) is used to qualitatively measure the developer effort needed to

test an application with non-trivial ordering dependency in its output. In the second case study
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(Section 7.8.2) we demonstrate that getting performance benefits from parallelization in Flink might

require an elaborate implementation and we illustrate how our tool can be used to streamline that

process. In the third case study (Section 7.8.3), we show that our framework is successful in finding

real bugs while largely avoiding false positives by adapting a set of non-deterministic MapReduce

programs from the literature [277]. The final case study (Section 7.8.4) investigates the performance

overhead when using DiffStream for online monitoring of long-running applications.

7.8.1. Taxi Distance

This case study illustrates the process that one has to follow in order to test their implementation

using our tool. Recall the taxi distance example in Section 7.3. This example shows two seemingly

equivalent implementations of the same query that produce different results in the presence of

parallelism. Here is an instantiation of that example in Flink; the first implementation preserves the

order of events for each key, while the second one does not:

inStream.keyBy("taxiID").project("taxiID", "position");

inStream.project("taxiID", "position").keyBy("taxiID");

Note that both implementations preserve the order when executed sequentially. Since such subtle

differences are difficult to spot manually, we would like to be able to test a parallel implementation

against a sequential one, before deploying it. A slightly simplified example of a test that can exercise

this bug using our framework is shown in Figure 7.10. First, the Flink execution environment is

initialized and the dataflow graph is setup. Then, a random input stream is generated and fed to

both implementations, that are finally compared using the matcher for output equivalence.

Notice that the final argument of the matcher is a lambda expression representing the dependence

relation that is expected from the consumer of the output. This specific instantiation represents the

dependence that was shown in Figure 7.4a—i.e., that two items are dependent (and thus must be

ordered) if they have the same taxiID. If the user did not want to test differences in the ordering of

the output, they can use (ev1 , ev2) -> false as the dependence relation.

In order to compare the effort required to write a test with and without using our framework, we

manually implemented a test that exercises this bug. The manually implemented matcher spans two
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public void testKeyBy() throws Exception {
StreamExecutionEnvironment env = ...;

DataStream input = generateInput(env);

StreamEquivalenceMatcher matcher =
StreamEquivalenceMatcher.createMatcher(

sequentialImpl(input), parallelImpl(input),
(ev1 , ev2) -> ev1.taxiID == ev2.taxiID);

env.execute();
matcher.assertStreamsAreEquivalent ();

}

Figure 7.10: DiffStream example code.

Java classes, totaling around 100 LoC (in contrast to the 13 LoC of the test in our framework shown

in Figure 7.10). This does not include input generation, for which we used JUnit QuickCheck. The

manually implemented matcher keeps two hashmaps—one for each implementation—that map keys

to lists, in order to encode the dependence of events of the same key. It appends each output item to

the list associated with its key. After the two implementations stop executing, it checks that the two

hashmaps represent equivalent output. Note that this manual matcher is not online, in the sense

that the two implementations have to stop producing outputs for it to make a decision. We also

implemented an online version of it by extending it with 30 more lines of code.

The important point is that the dependence relation abstraction enables the design of a reusable

testing framework that can be used for testing applications with different ordering requirements on

their outputs. In contrast, the main drawback of the manual matcher is that it is tied to a specific

ordering requirement on the output; whenever a user wants to write a test that requires a different

output dependence relation, they would have to implement a new matcher that maintains the output

in a data structure suitable for the specific dependence. This can quickly become an overhead if the

user wants to write tens or hundreds of tests for different parts of their application.

In summary, we have shown that using our tool to write a test for a stream processing application

is significantly easier than writing custom tests (∼10 LoC vs. ∼100 LoC). In addition, our tool

offers additional flexibility, as it can be used to test any two implementations just by changing the

dependence relation given to it. This flexibility reduces the effort needed to implement tests for
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an application. It also exposes ordering requirements, forcing the developer to think about them

explicitly.

7.8.2. Topic Count

The main goal of our second case study is to show that achieving parallelism in distributed stream

processing programs can be very difficult and require a drastically more complicated solution than

the sequential code. In particular, we consider the example introduced in Section 7.3, that involves

counting topics associated with words in a long document and outputting the most frequent topic

as the overall topic of the document. The documents are streamed word by word, with end-of-file

markers delineating words in different documents. In the sequential solution (Figure 7.2, top), we

process each word by querying the topic for that word, then updating the total count for that topic;

when we get end-of-file, we emit the counts. We feed this output to a second operator count max,

which finds the maximum over all topics of the count.

At first, one may think that going from a sequential to a parallel program is simply a matter of setting

the Flink’s parallelism parameter to more than 1. Unfortunately, this is not the case. Consider the

first operator in the sequential dataflow shown in Figure 7.2 (top). The problem with parallelizing

this operator is that an end-of-file marker for a particular document would only be processed by a

single sub-operator; thus the other sub-operators would not be able to properly delineate words from

this document and the next one. Another way of stating the problem is to say that even though

the words themselves are independent, they are dependent on the end-of-file markers, and thus the

obvious parallelization is not possible. A differential test that compares the sequential dataflow to

the same dataflow with parallelism set to more than 1 quickly discovers that the two versions are

indeed not equivalent.

Instead, a correct parallel solution (Figure 7.2, bottom) works as follows. We first attach logical

timestamps to each word in the input, corresponding to the number of the document that we are

currently processing. We then replace end-of-file markers, which act as explicit punctuation in the

stream, with punctuated watermarks—a mechanism in Flink that informs the dataflow operators

about the passage of logical time. Unlike the explicit end-of-file markers that cannot be shared by

multiple sub-operators, the watermarks are seamlessly propagated by the system. In effect, they

allow us to break the explicit dependence between words and end-of-file markers in the input stream,
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Speedup due to parallelism (par.)
Solution Lines of Code par. 2 par. 4 par. 6 par. 8
Sequential 68 – – – –
Correct Parallel 133 2.01 4.33 5.0 4.99

Figure 7.11: Results of the second case study on difficulty of writing parallel code.

allowing the later stages of the dataflow to be parallelized. We parallelize with key-by (keys can

be assigned arbitrarily to words), and query the database for each word. The next operator is a

tumbling window which uses the logical timestamps from earlier to form the window of events for a

single document, still parallelized. Finally, we sum up the values in each window by topic, and in the

last stage count max we find the maximum over all topics of the count.

In our search for a correct parallel solution, we consulted with Flink users on the Flink mailing list.

Several iterations of feedback were needed to find a correct parallel implementation, and this shows

that it is not obvious. Having the differential testing framework helped guide the search by quickly

dismissing wrong implementations. The final solution is the dataflow shown in Figure 7.2 (bottom),

consisting of 6 dataflow operators and twice as many lines of code as the sequential solution.

It is not necessarily true that a solution that seems parallel achieves a speed-up in practice. We

therefore finally need to measure the performance of the parallel solution to show that it indeed

takes advantage of parallelism and scales performance with the level of parallelism. We evaluated

our parallel solution on an input stream of 5 documents, each consisting of 500,000 words randomly

selected from a list of 10,000 most common English words. Each word had previously been randomly

assigned one of 20 topics, and the association had been stored in a standalone Redis key-value store.

The purpose of having the Flink program query the Redis store was to simulate a series of non-trivial

operations that would benefit by being parallelized. We executed this experiment on a server with

an Intel Xeon Gold 6154 processor and 384 GB of memory. The results of the evaluation are shown

in Figure 7.11. By increasing parallelism from 1 to 6, the execution time decreases from 80 s to 16 s

(on our setup, the benefits taper off after 6).

In summary, although there is a clear performance benefit in having a parallel solution (Figure 7.11),

the correct solution is difficult to find, as evidenced qualitatively by our search and discussions on

the Flink mailing list, and quantitatively because it has about twice as many lines of code as the
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sequential solution. Applying differential testing to the parallel solution ensures that bugs were not

introduced in the process.

7.8.3. Real-World MapReduce Programs

To determine whether our testing framework can successfully find bugs in real-world programs, we

surveyed the literature for empirical studies which have collected and categorized bugs in stream-

and batch-processing programs. We excluded works that focus on job failures and performance

issues [239, 167, 180, 289], as they do not provide examples of semantic bugs where the output might

be incorrect. In contrast, Xiao et. al. [277] study nondeterminism due to parallelism in MapReduce

jobs in production workflows, identifying both real bugs as well as several nondeterministic code

patterns which are bug-free. This empirical study provides a good starting point to evaluate whether

our framework can successfully identify the bugs, while not falsely flagging the bug-free examples.

By examining 507 custom (i.e., user-written) reduce functions, the study identifies 5 common reducer

patterns (spanning 258 of the custom reducers) which are non-commutative on general input data,

meaning that there is potential for nondeterminism in the output due to parallelism. An example

reducer pattern reported by the study is shown in Figure 7.13 (left). While the original custom

reducers are not publicly available, the 5 code patterns are nevertheless minimal test cases which

exhibit the same behavior, and a large majority of non-commutative reducers (88%) were found to

fall into these categories. However, as the study notes, there are two reasons why code written using

these patterns might not be erroneous. First, with certain input assumptions, the nondeterminism

may disappear (this is possible in 4 out of 5 patterns). Second, nondeterminism may simply be

acceptable for the particular application (this is most conceivable in 3 out of 5 patterns). We therefore

evaluate our testing framework for each of the five patterns, considering three possibilities for the

application-specific requirements: determinism (nondeterminism is not acceptable), determinism

under certain input assumptions, and no determinism required. We want to answer the following

questions, corresponding to these three possibilities:

Q1. If determinism is required on all inputs, can we write a test which successfully detects the

nondeterminism and reports a bug?

Q2. If determinism is required but only under certain input assumptions, can we write a test using

those input assumptions to avoid a false positive?

149



Application-Specific Requirements

Code pattern Determinism Determinism under
input assumptions

None
(nondeterminism acceptable)

SingleItem 3 3 n/a
IndexValuePair 3 3 n/a

MaxRow 3 3 7

FirstN 3 3 7

StrConcat 3 n/a 3

Figure 7.12: Results of the MapReduce case study. A 3 indicates successfully identifying the bug in
the first column, and successfully avoiding a false positive in the second and third columns, for each
of the 5 reducers implemented.

Q3. If determinism is not required at all, can we write a test which avoids a false positive?

For each question, we implement the reducer adapted to the streaming setting, and run DiffStream

to compare a sequential and parallel version. The results are summarized in Figure 7.12, where

columns 1, 2, and 3 correspond to the above three questions, respectively.

For example, in the IndexValuePair pattern in Figure 7.13 (left), the user wrote a reducer to

aggregate input items with two input fields, x and y, by accumulating them in a map where the

value of field x is set to the value of field y. The reducer is nondeterministic in general because

there may be multiple updates to the same field: multiple items with the same x and a different y

(which may be out-of-order due to parallelism in the map stage of MapReduce). However, if the

input satisfies a functional dependency where y is a function of x, the pattern becomes deterministic.

Without knowing the user’s intention, it may be that determinism is required, and the functional

dependency is not satisfied, in which case this code is a bug (Figure 7.12, first column); or it may

be that determinism is required, and the functional dependency is satisfied, in which case this code

is not a bug (Figure 7.12, second column). Though unlikely for this particular pattern, the study

authors also noted for some patterns that nondeterminism in the output may be acceptable, despite

the functional dependency not being satisfied (Figure 7.12, third column).

We implemented each of the 5 reducer patterns in Flink. We start by translating each reducer directly

to an aggregator (AggregateFunction in Flink); for the IndexValuePair reducer, this yields the

code in Figure 7.13 (right). To adapt the reducer to the streaming setting, a tumbling window is

applied to the input stream, and the reducer is applied to get a result for each window. We used

the same input stream item type (Item) for all examples, which contains fields x and y. Before

constructing the tumbling window, we used an identity map operator to shuffle the data for each key,
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Dictionary <int , int > dict
= new ...;

foreach (Row row in input) {
int x = row["x"].Integer;
int y = row["y"].Integer;
dict[x] = y;
// ...

}

public class IndexValuePairReducer ... {
public Map <Integer , Integer >

createAccumulator() {
return new HashMap <>();

}
...
public Map <Integer , Integer > add(

Item in, Map <Integer , Integer > outmap
) {

outmap.put(in.x, in.y);
return outmap;

}
...

}

Figure 7.13: Example MapReduce code: the IndexValuePair reducer pattern reported by the study
from production MapReduce jobs [277] (left), and our implementation of the pattern in Flink (right).

so that the order is nondeterministic (thus potentially exposing bugs due to parallelism). We then

compared the parallel version of this pipeline with the sequential one using our matcher to look for a

bug (difference in the outputs).

To evaluate Q1, we generated arbitrary input data and fed it to the sequential and parallel versions.

With enough input data (3000 input data items is sufficient), using a small number of keys and

possible input data items, our tester consistently detects the incorrectly parallelized program for all 5

patterns. Concretely, of the 5 confirmed bugs found in production code by the previous study (these

do not correspond to the 5 patterns), 4 of the 5 are of this nature, so our test cases likely would have

identified these 4 bugs.

To evaluate Q2, we use the same setup but with a custom generator for the input data items. For all

patterns except one (called StrConcat), the output is deterministic if certain assumptions are made

on the input; the custom generator enforces these assumptions. For example, for the fields x and y

which are used in the IndexValuePair example of Figure 7.13, we enforce the requirement that y is

a function of x. We show that in 4 out of 4 patterns, the output successfully passes our tester, i.e.

we avoid a false positive in these 4 scenarios.

Finally, to evaluate Q3, we look at three patterns where it is conceivable that nondeterminism in

the output is acceptable. For the first two of these, we are unable to write a test which avoids a

false positive. The MaxRow pattern involves finding the value of one field such that another field is

maximized; it is nondeterministic because there may be multiple values which achieve the maximum.
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In such a case, differential testing results in a false positive because the two programs may return

different values, even though they are both correct. Similarly, the FirstN pattern is a reducer

which discards all but the first N elements that are seen; on inputs with more than N elements,

differential testing results in a false positive for a bug. However, we can avoid the false positive

in the last StrConcat pattern. This reducer consumes a sequence of input items and concatenates

them into a single string separated by a special character (say, @). It is nondeterministic because

the concatenation is non-commutative, but it is likely that the application requirements consider

this acceptable. For this pattern, we implement a custom-defined equality on output data items

to define when strings separated by @ are equal; using this, the pattern is able to pass our tester.

Additionally, we implement a second version of StrConcat which is more suited to the streaming

setting: instead of collecting all items in a single @-separated string, we output the items as a data

stream. In this case, our tester successfully reports a bug when nondeterminism is undesirable; but

when the dependence relation is used to indicate that nondeterminism is acceptable, the test passes.

Summary. When nondeterminism is undesirable, we have written tests to successfully identify it (if

it exists) for 5 out of 5 reducer patterns. Of the reducer patterns where nondeterminism might not

be present due to input data assumptions, we show how an input data generator can be used to

cause the programs to pass our tester for 4 out of 4 patterns. Finally, in the reducer patterns where

it is conceivable that nondeterminism in the output might be acceptable, we show how using the

dependence relation or custom equality with our tester can successfully make the test pass for 1 of

the 3 patterns (StrConcat). In total, out of the scenarios where the reducer might conceivably not

be buggy (the 4 and 3 patterns just mentioned, respectively), we avoid a false positive in 5 out of 7.

7.8.4. Performance for Online Monitoring

In Sections 7.6.4 and 7.7 we discussed theoretical lower and upper bounds on DiffStream’s space

usage. We showed that DiffStream is optimal, but also that depending on the application and

dependence relation, space usage in the worst case could grow unboundedly. In this subsection we

evaluate the performance of the matcher in practice for monitoring a realistic streaming application.

We aim to demonstrate DiffStream’s applicability in online monitoring scenarios, e.g. when testing

an application under production load for bugs, or for multi-version execution—a method commonly

used to safely update production software [259, 154, 191].
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We broadly aim to answer the question: what is the overhead of the matcher? Relevant metrics are

both its memory usage (reflecting unmatched items) and its impact on the application performance

(throughput and latency). We evaluate the following three questions:

Q1. What is the effect of the equivalence matcher on the maximal throughput of the application?

Q2. What is the memory footprint of the matcher? How does the memory usage vary over time?

Q3. What is the latency of the matcher, i.e. how much time does it take for the matcher to process

a single event?

For the application, we chose the Yahoo Streaming Benchmark [78], a standard performance bench-

mark for stream processing systems. The Yahoo Streaming Benchmark implements a simple adver-

tisement processing application that receives a stream of advertisement events in the JSON format.

The events are parsed, filtered for the ad view events, joined with the ad campaign data from an

external database, aggregated over time windows, and stored into the database. The application

integrates a Kafka queue, a Flink program, and a Redis database, which makes it representative of

streaming applications which interact with external services. In our evaluation, we run a sequential

and a parallel version of the advertisement program, with the parallelism parameter set to 2. The

matcher compares the streams of the two programs after the join with the ad campaign data, but

before the aggregation. The aggregation simply counts the number of ad view events per campaign

id and per time window, so it does not depend on the order of events. Thus, we use an empty

dependence relation (all events are independent).

To answer Q1, we modified the ad event producer to steadily increase the input rate over time. We

then executed two experiments: one with the matcher and one without it. (We simulated the absence

of the matcher with a dummy matcher that ignores every event.) Both experiments started with an

input rate of 40,000 events/s and the acceleration of 10 events/s2 and ran for 2,500 seconds, allowing

the input rate to increase to 65,000 events/s. The expected ideal throughput of the matcher is 2/3 of

the input rate due to (i) the duplication for the two versions of the program, and (ii) the filtering

step, which filters approximately 2/3 of the events and leaves 1/3 that finally reach the matcher.

The measured throughput is shown in Figure 7.14a. Initially, in both experiments the measured

throughput matches the ideal throughput. After 1,737 seconds, the experiment with the matcher

reaches the throughput of 38,072 events/s, after which it rapidly drops and starts fluctuating. In
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Figure 7.14: Results of the fourth case study: performance measurements of monitoring an application
with DiffStream on the Yahoo streaming benchmark over a span of 2 hours, compared to the same
application without the DiffStream matcher.

the experiment without the matcher, the throughput continues to rise with the input rate until it

reaches 40,082 events/s after 2,023 seconds, after which it also starts fluctuating. Thus, using the

matcher results in approximately 5% decrease in the maximal throughput.

To answer Q2 and Q3, we implemented a rudimentary memory profiler that outputs the total heap

memory used by the Java Virtual Machine running the Flink program in 1-second intervals. In

addition, we measured the latencies of the matcher by measuring the time it takes to process each

event; we stored the latencies in a file during execution. We executed two experiments, with and

without the matcher, with a constant input rate of 45,000 events/s and the duration of 7,200 seconds

(2 hours). The input rate of 45,000 events/s translated into the throughput of 30,000 events/s, which

was stable during the execution.

Figure 7.14b shows a scatter plot of the memory samples taken during execution. In particular,

the total memory used by the program stays bounded throughout the duration of the experiment.

Figure 7.14c visualizes the same information in a different way: for an amount of used memory x

on the x-axis, the corresponding value on the y-axis is the fraction of memory samples that exceed
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x. The two figures together show that there is virtually no difference in the memory usage in the

two experiments. We get a more fine-grained view if we look at the number of unmatched events

that the matcher stores during execution. Figure 7.14d shows a scatter plot of samples of unmatched

events taken in 1-second intervals during execution. In particular, in almost all samples, the number

of unmatched events is below 500. This is even more clearly illustrated in Figure 7.14e, which shows

the fraction of samples exceeding the given number of unmatched events. Thus, to answer Q2, the

memory footprint of the matcher is bounded and negligible relative to the memory used otherwise

and the throughput of 30,000 events/s.

Finally, to answer Q3, Figure 7.14f shows the fraction of recorded latencies that exceed a given

number of microseconds. The mean latency is 2 microseconds. While the maximal latency is 30

milliseconds, this is rare: 98.77% of latencies are at most 10 microseconds, and > 99.99% of latencies

are at most 100 microseconds.

Summary. The results show that the overhead of running DiffStream in practice is low. First, the

matcher results in a modest 5% reduction in maximal throughput. Second, the memory usage is

stable over time and reflects the theoretical optimality for applications where drift between the two

streams is bounded: the number of unmatched elements is < 1.67% compared to the number events

that it processes. Finally, the latency of the matcher is at most 100 microseconds in > 99.99% of

cases, which competitively meets streaming performance standards.

7.9. Discussion

As presented, the input to DiffStream consists of the two programs as well as a dependence relation

which is used to describe which output events must be produced in order, and an optional custom

equality which is used to compare output events. It is also possible to view DiffStream as being a

runtime assertion checker: it checks assertions of the form

assert s1 == s2

where s1 and s2 are streams of a given stream type S, and == is stream equivalence s1 ≡ s2 mod S.

Moreover, it does this as efficiently as possible in a streaming complexity sense.
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This is how I like to view the library today; an online stream diff calculator. Given a generator and

two versions of the program under test, asserting stream equality on their outputs is the usual use

case for DiffStream. However, there are other use cases for an equality test, such as validating that a

result stream computed by two different nodes is the same.

Keeping in mind the stream-diff-calculator view, here are some possibilities for extension that I

currently think would be promising:

• First, the library could be extended not just to check equality (yes or no answer), but to

truly compute a diff between the two streams. The core algorithmic problem would be more

challenging.

• Second, the algorithm could be revised to avoid the worst-case behavior described in Section 7.7

if we relax a simple requirement: if we require that differences between the two streams are

detected with high probability, rather than necessarily. In particular, one could make use of

hash functions for this purpose. Consider the failure case where the two input streams are

bags. Rather than store the full diff of the input streams, could one just store a sum of the

hash values of each bag? It is mathematically rare for
∑
s∈S1

hash(s) =
∑
s∈S2

hash(s) unless

S1 = S2.

An honest limitation of DiffStream is that it focuses on bugs due to parallelism. In fact, this is only

a small class of all bugs; and even smaller if we exclude bugs that could be caught through unit

testing without requiring nontrivial dependence relations. In future work, it would be prudent to

target other classes of bugs, including those due to node or network faults. Additionally, we would

like to generalize the definition of correct behavior, which currently assumes that the output should

be determined up to allowed reordering and equality of data items. There are cases where this is too

strong, for instance when operations are approximate or randomized.

Another limitation of DiffStream is that it does not address the problem of input data generation,

but instead uses an off-the-shelf generator (JUnit-QuickCheck). There is an interesting problem

of generating input streams of a type S, taking into account the type of S, which we don’t really

consider in this work. To clarify, DiffStream does check for type safety and determinism, but only on

a specific example trace at a time. That is, on an input stream and an equivalent input stream, it
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can check whether the outputs are equivalent. But, as with all runtime testing techniques, this only

allows testing finitely many input traces. This is the reason for the Partial entries in Figure 4.4.

DiffStream is open source and is available on GitHub2.

2https://github.com/fniksic/diffstream
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CHAPTER 8 : Performance Bounds

It is well known that even for simple calculations it is impossible to
give an a priori upper bound on the amount of tape a Turing

machine will need for any given computation. It is precisely this
feature that renders Turing’s concept unrealistic.

—Rabin and Scott in “Finite Automata and Their Decision
Problems,” 1959 [228]

In this section we describe data transducers, an intermediate representation for modeling stream

processing operators as finite state transducers over data words [3, 4, 1]. Data transducers support

succinct constructions, making them compositional. We also describe the QRE-Past monitoring

language, which can be used for monitoring stream processing applications.

The key takeaways of this section are related to performance: data transducers as an IR allow

formal guarantees on performance. The key theorems are Theorem 8.3.1, which states streaming

evaluation of a data transducer takes linear space and time (independent of the input stream size);

and Theorem 8.3.1 which shows that a QRE-Past query can be compiled to a data transducer of

quadratic size. Putting these two results together we get formal bounds on performance for QRE-Past

queries.

Unlike the rest of the thesis, this section does not consider distribution. Providing performance

upper bounds is difficult even in the sequential case, so it is a reasonable starting point. Because it is

sequential, the model is also deterministic.

Section 8.3 introduces the model of data transducers with illustrative examples. In Section 8.5 we

consider a number of semantic operations with corresponding succinct constructions on DTs, and

we define and study the key property of restartability necessary for some of them. In Section 8.6,

we define the query language QRE-Past, and show how constructions on DTs immediately yield

modular compilation into a streaming evaluation algorithm. We also show how QRE-Past is useful

in specifying a cardiac arrhythmia detection algorithm. Section 8.7 discusses the expressiveness and

succinctness of DTs compared to cost register automata, to finite automata, and to general streaming

computations. We conclude in Section 8.8.
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8.1. Motivation

Applications ranging from network traffic engineering to runtime monitoring of autonomous control

systems require computation over data streams in an efficient and incremental manner. Declarative

programming is a particularly appealing approach to specify the desired logic in such applications

as it can provide natural and high-level constructs for processing streaming data with guaranteed

bounds on computational resources used by the compiled implementation. This has motivated the

development of a number of declarative query languages. For example, in runtime verification, a

monitor observes a sequence of events produced by a system, and issues an alert when a violation of a

safety property is detected, where the safety property is described in a temporal logic with past-time

operators such as always-in-the-past and since [188, 143]. In quantitative monitoring, a monitor

associates a numerical value with an input stream of data values, where the desired computation is

described using quantitative regular expressions (QREs) that combine regular patterns with numerical

aggregation operations such as min, max, sum, and average [25, 187, 284]. In each such case, the

declarative specification is automatically compiled into a monitor that adheres to the streaming

model of computation [204]: memory and per-item processing time is polynomial in the size of the

specification of the query and, roughly speaking, does not grow with the length of the input stream.

In existing query languages over streaming data, while a programmer can specify the desired

computation in a modular fashion using constructs of the query language, the compiler generates

monolithic code for a given query. What is lacking though is an intermediate representation for

streaming computations that supports composition operations with succinct constructions so that

high-level queries can be compiled modularly. The motivation for such a model is two-fold. From

a practical viewpoint, it can facilitate the design of new query languages. For instance, suppose

a user wants to specify a monitoring property using past-time temporal logic, where the atomic

predicates involve comparing quantitative summaries defined using QREs. Such a specification

contains combinators from two different languages (QREs and past-temporal logic), and we could

try to design a compiler from scratch for streaming evaluation of the more expressive, integrated

language. However, if we have a modular compilation algorithm for the combinators of the two

component languages, we get a compiler for the integrated language for free. From a theoretical

viewpoint, designing such a representation is a technical challenge since it needs to support both

combining values from parallel threads of computation (i.e. parallel composition) and unambiguous
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regular parsing. In particular, although QREs can be compiled into quantitative automata known as

cost register automata [24], since this compilation has provably exponential lower bound, it is not

employed by current QRE evaluation algorithms, and in fact, no existing formalism can support

modular compilation of QREs.

8.2. Contributions

The main contribution of this paper is the model of Data Transducers (DT) as this desired modular

intermediate representation for streaming computations. A data transducer processes a data stream—

a sequence of tagged data values—and produces a numerical (or Boolean) value using a fixed set of

data variables that are updated using a constant number of operations as it processes each tagged

data value. A DT can be viewed as a quantitative generalization of (unambiguous) NFAs. Whereas

an NFA configuration consists of a finite set of states, each of which is either inactive or active, a

DT configuration consists of a finite set of data variables, each of which can be inactive (undefined),

active with a value (defined), or in a special “conflict” mode (conflicted). A DT configuration thus

consists of succinctly represented finite control integrated with data values. As a DT computes by

consuming tagged data values, it updates its variables using a specified allowed set of operations. The

values of defined variables can be combined using operations to form new values, but there is also the

possibility of a “collision”. This is analogous to how two tokens of active NFA states can be merged

into one token during evaluation when they are placed on the same state. Since the merging of data

values is not in general a meaningful operation, a collision of values results in a variable being set

to conflict. Since multiple transitions can write to the same data variable while processing a single

tagged data value, and the updated value of a variable can depend on the updated values of the

others, the semantics is defined using fixed points. We show how this semantics can be implemented

by an efficient streaming algorithm for evaluation that executes a linear (in the size of DT) number

of data operations while processing each tagged data value.

The language of a DT, i.e. the set of stream histories for which its output is defined, is a regular

language over the tags of the input stream. In fact, DTs capture a robust class of functions with an

elegant logical characterization: MSO-definable string-to-DAG transformations with a special “no

backward edges” requirement. This class, which we call streamable regular transductions, has been

studied in [105, 85] [1], and the closure properties of this class, as opposed to some specific constructs

160



supported by query languages in the existing literature, guide the choice of operations over DTs for

which we seek succinct constructions.

In particular, we show that DTs are closed under quantitative concatenation, quantitative iteration,

union, and parallel composition operations, and that the corresponding constructions are succinct.

We also consider the prefix-sum operation that combines the outputs on all prefixes using a specified

aggregator; this also has a simple and succinct construction on DTs. Temporal operators such

as “always in the past”, “sometime in the past”, and “since” can be implemented using prefix-sum.

The design choices in the precise formal definition of the model turn out to be critical in these

constructions. A key restriction on DTs, which we call restartability, that is required for constructions

related to unambiguous parsing is identified. This restriction says that it is possible to “restart” the

automaton during a computation by placing new data values at its initial states. Then, although we

only need to store a single automaton configuration in memory, the output is the same as if multiple

copies of the automaton were computing independently on multiple stream suffixes as long as only

one of these copies ultimately contributes to the final output. This ability is necessary for efficient

unambiguous parsing: several parsing possibilities are explored simultaneously, but the required

space is constant.

To illustrate the benefits of modular compilation, we define a new query language, called QRE-Past,

that combines the features of past-time temporal logic and QREs. We specify a cardiac arrhythmia

detection algorithm [15, 286] in QRE-Past to illustrate how the combination of features leads to

a natural high-level specification. The theory of DTs immediately leads to a streaming evaluation

algorithm for QRE-Past, since every construct in QRE-Past maps to a corresponding construction

on component DTs without causing blow-up. In fact, there is nothing sacred about QRE-Past: the

designer of a high-level query language over streaming data for a specific domain can introduce

new combinators, in addition to the ones in this paper, as long as there are corresponding succinct

constructions on the low-level model of DTs.

Finally, while there are existing models with identical expressiveness, DTs are exponentially more

succinct (for instance, compared to unambiguous cost register automata). To gain a better under-

standing of the expressiveness and succinctness of DTs, consider a (generic) streaming algorithm that

maintains a fixed number of Boolean and data variables, and processes each tagged data value by

updating these variables by executing a loop-free code. While such algorithms capture all streaming
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computations, the class of all streaming computations is not suitable for modular specifications.

For instance, consider the quantitative concatenation operation: given transductions f and g, and

a binary data operation op, h = split(f, g, op) splits the inputs stream w uniquely into two parts

w = w1w2 and returns h(w) = op(f(w1), g(w2)). While DTs are closed under this operation, the

class of all streaming algorithms is not. We can enforce regularity of a generic streaming algorithm

by requiring, for instance, that the updates to the Boolean variables are not influenced by the values

of the data variables. We show that streaming algorithms with these restrictions can be translated to

DTs without any blow-up, thus establishing that DTs are the most succinct (up to a constant factor)

representation of streamable regular transductions. The structure of a DT—as variables ranging over

undefined/defined/conflict values and update code as a set of transitions of a particular form, as

opposed to traditional loop-free update code—not only enforces regularity, but is also what allows us

to define succinct constructions on the representation.

8.3. Data Transducers

8.3.1. Preliminaries

To model data streams we use data words. Let D be a (possibly infinite) set of data values, such as

the set of integers or real numbers, and let Σ be a finite set of tags. Then a data word is a sequence

of tagged data values w ∈ (Σ×D)∗. We write w ↓ Σ to denote the projection of w to a string in Σ∗.

We use bold u, v, w to denote data words. We reserve non-bold u, v, w for plain strings of tags in

Σ∗. We write d, di for elements of D. We use σ to denote an arbitrary tag in Σ, and in the examples

we write particular tags in typewriter font, e.g. a, b.

A signature is a tuple (D,Op), where D is a set of data values and Op is a set of allowed operations.

Each operation has an arity k ≥ 0 and is a function from Dk to D. We use Opk to denote the k-ary

operations. For instance, if D is all 64-bit integers, we might support 64-bit arithmetic, as well as

integer division and equality tests. Alternatively we might have D = N with the operations + (arity

2), min (arity 2), and 0 (arity 0). In general, we may have arbitrary user-defined operations on D.

Given a signature (D,Op), and a collection of variables Z, the set of terms Tm[Z] consists of all

syntactically correct expressions with free variables in Z, using operations Op. So min(x, 0)+min(y, 0)

and x+ x are terms over the signature (N, {+,min, 0}) with Z = {x, y}.
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We define two special values in addition to the values in D: ⊥ denotes undefined and > denotes

conflict. We let D := D ∪ {⊥,>} be the set of extended data values, and refer to elements of D as

defined. We lift Op to operations on D by thinking of ⊥ as the empty multiset, elements of D as

singleton multisets, and > as any multiset of two or more data values. The specific behavior of

op ∈ Op on values in D is illustrated in the table below for the case op ∈ Op2. We also define a union

operation t : D× D→ D: if either of its arguments is undefined it returns the other one, and in all

other cases it returns conflict. This represents multiset union. Note that d1 t d2 = > even if d1 = d2.

This is essential: it guarantees that for all operations on extended data values, whether the result is

undefined, defined, or conflict can be determined from knowing only whether the inputs are undefined,

defined, or conflict. For instance, we rely on this guarantee for the theorems in Section 8.3.5 and

for the translation from QRE-Past in Section 8.6.2. It’s not needed for most of the constructions in

Section 8.5.
t ⊥ d2 >

⊥ ⊥ d2 >

d1 d1 > >

> > > >

op ⊥ d2 >

⊥ ⊥ ⊥ ⊥

d1 ⊥ op(d1, d2) >

> ⊥ > >

D is a complete lattice, partially ordered under the relation ≤ which is defined by ⊥ ≤ d ≤ > for

all d ∈ D, and distinct elements d, d′ ∈ D are incomparable. For a finite set X, we write the set of

functions X → D as DX ; its elements are untagged data vectors, denoted x, y. The partial order

extends coordinate-wise to an ordering x ≤ y on data vectors x,y ∈ DX . All operations in Op

are monotone increasing w.r.t. this partial order. Union (t) is commutative and associative, with

identity ⊥ and absorbing element >, and all k-ary operations distribute over it.

8.3.2. Syntax

Let (D,Op) be a fixed signature. A data transducer (DT) is a 5-tuple

A = (Q,Σ,∆, I, F ),

where:
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• Q is a finite set of state variables (states for short) and Σ is a finite set of tags. We write Q′

for a copy of the variables in Q: for q ∈ Q, q′ ∈ Q′ denotes the copy. When the states of the

DT are updated, q′ will be the new, updated value of q.

• ∆ is a finite set of transitions, where each transition is a tuple (σ,X, q′, t).

– σ ∈ Σ ∪ {i}, where i /∈ Σ, and if σ = i this is a special initial transition.

– X ⊆ Q ∪Q′ is a set of source variables and q′ ∈ Q′ is the target variable.

– t ∈ Tm[X ∪ {cur}] gives a new value of the target variable given values of the source

variables and given the value of “cur”, which represents the current data value in the input

data word. Assume that cur /∈ X. We allow X to include some variables not used in t. For

initial transitions, we additionally require that X ⊆ Q′ and that cur does not appear in t.

• I ⊆ Q is a set of initial states and F ⊆ Q is a set of final states.

The number of states of A is |Q|. The size of A is the the number of states plus the total length of

all transitions (σ,X, q′, t), which includes the length of description of all the terms t.

8.3.3. Semantics

The input to a DT has two components. First, an initial vector x ∈ DI , which assigns an extended

data value to each initial state. Second, an input data word w ∈ (Σ×D)∗, which is a sequence of

tagged data values to be processed by the transducer. On input (x,w), the DT’s final output vector

is an extended data value at each of its final states. Thus, the semantics of A will be

JAK : DI × (Σ× D)∗ → DF .

A configuration is a vector c ∈ DQ. For every σ ∈ Σ, the set of transitions (σ,X, q′, t) collectively

define a function ∆σ : DQ × D → DQ: given the current configuration and the current data value

from the input data word, ∆σ produces the next configuration. We define ∆σ(c, d)(q) := c′(q′),

where c′ ∈ DQ∪Q
′∪{cur}

is the least vector satisfying c′(cur) = d; for all q ∈ Q, c′(q) = c(q); and

for all q′ ∈ Q′, c′(q′) =
⊔

(σ,X,q′,t)∈∆

JtK(c′|X), (8.1)
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x1
x2

y∆i ∆a

d1

∆b

d2

∆a

d3

∆a

d4

c4c0 c1 c2 c3

Figure 8.1: Example evaluation of a data transducer A with two initial states and one final state on
initial vector (x1,x2) and an input data word w consisting of four characters (tagged data values):
(a, d1), (b, d2), (a, d3), (a, d4), to produce output y. Here c0, c1, c2, c3, and c4 are configurations;
di ∈ D; and x1, x2, y ∈ D. Each ∆σ is a set of transitions, collectively describing the next configuration
in terms of the previous one.

where we define JtK(c′|X) to be ⊥ if there exists x ∈ X such that c′(x) = ⊥; otherwise, > if there

exists x ∈ X such that c′(x) = >; otherwise, if all variables in X are defined, then JtK(c′|X) is the

value of the expression t with variables assigned the values in c′. So, JtK(c′|X) produces ⊥ or > if

some variable in X is ⊥ or >. The above union is over all transitions with label σ and target variable

q′. Since D is a complete lattice, this least fixed point exists by the Knaster-Tarski theorem.

The case of initial transitions (∆i) is slightly different. The purpose of initial transitions is to compute

an initial configuration c0 ∈ D
Q
, given the initial vector x ∈ DI . There is no previous configuration,

and no current data value, which is why we required X ⊆ Q′ for initial transitions and cur was

not allowed. We define the function ∆i : DI → DQ with the same fixed point computation from

Equation (8.1), except that the initial states are additionally assigned values given by the vector x.

Define that x(q) = ⊥ if q /∈ I. Then define ∆i(x) = c′, where c′ is the least vector satisfying, for all

q ∈ Q, c′(q′) = x(q) t
⊔

(i,X,q′,t)∈∆JtK(c
′|X).

Now A is evaluated on input (x,w) ∈ DI × (Σ× D)∗ by starting from the initial configuration and

applying the update functions in sequence as illustrated in Figure 8.1. Finally, the output y ∈ DF is

given by y = c|F , the projection of c to the final states.

8.3.4. Streaming Evaluation Algorithm

Evaluation complexity of a data transducer depends on the underlying operations, so we give a

conditional result where the complexity is stated in terms of the number of data registers and number

of operations on those data registers.

Theorem 8.3.1. Evaluation of a data transducer A, with number of states n and size m on input

(x,w), requires O(n) data registers to store the state, and O(m) operations and additional data
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c← ∆i(x); produce output y = c|F
for each character (σ, d) in w do

for each state q ∈ Q do val(q)← c(q); val(q′)← ⊥
for each transition τ ∈ ∆σ do val(τ)← ⊥; num_undef (τ)← |X|
worklist ← Q′ ∪∆σ

while worklist is nonempty, get item from worklist and do
if item is a transition τ = (σ,X, q′, t) ∈ ∆σ : then

val(τ)← JtK(val |X)
if val(q′) 6= > then add q′ to worklist

else if item is a state q′ ∈ Q′ then
if val(q′) = ⊥ then

for each τ ∈ ∆σ with source variable q′ do num_undef (τ)← num_undef (τ)− 1

val(q′)←
⊔
τ=(σ,X,q′,t) val(τ)

for each τ ∈ ∆σ with target variable q′ do
if val(τ) ∈ D or (val(τ) = ⊥ and num_undef (τ) = 0) then add τ to worklist

for each q ∈ Q do c(q)← val(q′)

produce output y = c|F

Figure 8.2: Data transducer evaluation algorithm (Theorem 8.3.1). On input A = (Q,Σ,∆, I, F )

over (D,Op), an initial vector x ∈ DI , and a data stream w ∈ (Σ× D)∗, produces the output vector
y ∈ DF on each prefix of w.

registers to process each element in Σ× D, independent of w. The evaluation algorithm is given in

Figure 8.2.

8.3.5. Regularity

Data transducers define regular transductions on data words (see Section 8.7.1). Here, we show

regularity in a simpler sense: whether an output value is defined (or undefined, or conflict) depends

only on whether the input values are undefined, defined, or conflict, together with some regular

property of the string of tags. For data vectors x1,x2 ∈ D
X
, we say that x1 and x2 are equivalent,

and write x1 ≡ x2, if for all x ∈ X, x1(x) and x2(x) are both undefined, both defined, or both

conflict.

Theorem 8.3.2. Let A = (Q,Σ,∆, I, F ) be a DT over (D,Op). Then: (i) For all initial vectors

x1,x2 ∈ DI , and for all input words w1,w2, if x1 ≡ x2 and w1 ↓ Σ = w2 ↓ Σ, then JAK(x1,w1) ≡

JAK(x2,w2). (ii) For every equivalence class of initial vectors x and equivalence class of output

vectors y, the set of strings w ↓ Σ such that JAK(x,w) ≡ y is regular.

Proof. In evaluating a DT we may collapse all values in D to a single value ?, so each state takes

values in {⊥, ?,>}. This gives a projection from A to a DT P over the unit signature (U,UOp),

where U = {?} is a set with just one element, and UOp consists of, for each k, the unique map

ok : Uk → U. The projection homomorphically preserves the semantics. Then, (i) follows because the
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computation of P is exactly the same on x1,w1 and x2,w2, and (ii) follows because P has finitely

many possible configurations.

We can thus define the language of A to be L(A) = {w ↓ Σ | JAK(x,w) ∈ DF for some x ∈ DI},

so L(A) ⊆ Σ∗. This is the set of tag strings w ↓ Σ such that, if the initial vector of values is

all defined, after reading in w all final states are defined. We similarly define the set of strings

on which a DT is defined or conflict, on input of the same form: the extended language L(A) is

{w ↓ Σ | JAK(x,w) ∈ (D∪{>})F for some x ∈ (D∪{>})I}. An immediate corollary of Theorem 8.3.2

is that (i) L(A) is regular, (ii) L(A) is regular, and (iii) L(A) ⊆ L(A). Finally, say that DTs A1 and

A2 are equivalent if for all x1 ≡ x2 and for all w, JA1K(x1,w) ≡ JA2K(x2,w).

Theorem 8.3.3. On input DTs A1, A2, deciding if A1 and A2 are equivalent is PSPACE-complete.

Proof. We first decide if the two are not equivalent in NPSPACE. It suffices to project A1 and A2

to DTs over the unit signature, P1 and P2, as in the previous proof, and decide if P1 6≡ P2. Let

n be the number of states between P1 and P2, and let m be their combined size. The number of

configurations for P1 and P2 together is 3n. Therefore, if there is a counterexample, it is some string

over Σ of length at most 3n. Guessing the counterexample one character at a time requires linear in

n space to record the count and O(m) space to update P1 and P2 (by Theorem 8.3.1).

To show it is PSPACE-hard, it suffices to exhibit a translation from NFAs to DTs which reduces

language equality of NFAs to equivalence of DTs. Specifically, we create A with one final state which

is undefined on strings for which the NFA is undefined, and > on strings for which the NFA is defined.

The translation works by directly copying the states and transitions of the NFA, except we add two

additional transitions from accepting states of the NFA to the new final state of A.

8.4. Examples

We do not envision that DTs would be directly programmed by users, due to the conceptual difficulty

of tracking undefined, defined, and conflicted values. Rather, DTs would be a low-level, back-end

model for streaming and monitoring. The purpose of this section is mainly to illustrate, informally

and through examples, the basic features and execution semantics of the model.
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We present only acyclic DTs in this section, and we take I = ∅: all initialization is done with initial

transitions ∆i. Additionally, we use the abbreviation q′ := t to denote a transition (σ,X, q′, t), where

X is exactly the set of variables present in the term t (in contexts where σ is clear). In general, X

may include other variables unused in t, and the semantics of the transition does depend on the

unused variables as well (see §8.3.3, “Why do variables in X unused in t affect the semantics?”).

Pattern matching. DTs are based on the idea of merging data registers and finite control into

the single set of “state variables” Q. Suppose we wish to monitor a stream of a-events, b-events, and

#-events, where each a- or b-event is the price at which an item was bought, and # indicates the end

of a day. We thus have D = Q and Σ = {a, b, #}. For the operations Op, we allow +,−, ·,max,min,

division / (this must return a default value on division by 0), and integer constants. Suppose we want

to output the average price of a sliding window containing the last three a prices, which resets at the

end of the day. This is essentially a pattern match over the input tags to locate the last three, which

are then averaged. A1 in Figure 8.3 is based on this idea. The transitions listed under transitions(σ)

are those labeled with σ; we use ‖ to emphasize that the transitions are not ordered.

The machine A1 uses state variables sum1, sum2, and sum3 to keep track of the sum of the last 1, 2,

and 3 a prices (in the current day). Each variable matches a certain pattern of tags in the input

stream, namely, strings with at least 1, 2, and 3 a’s so far. In addition to pattern-matching, the

variables are updated to keep track of the sum. For example, the transition sum2′ := sum1 + cur

indicates that if sum1 was defined before then sum2 should now be defined and equal to the sum

plus the current data value. The transition avg′ := sum3′ / 3 indicates that if sum3 is now defined

(note the sum3′), then avg should be set to the average of the last three prices.

Multiple transitions with a single target. The machine A1 has a simplifying syntactic property

that for every σ ∈ Σ and for every state q′, there is only one transition q′ := t. In other words, there

is only one rule stating how to assign q′ a value. In general, there may be multiple rules, and the

resulting value of q′ will be the union (t) over all transitions. For instance, suppose we have the

same input stream over Σ = {a, b, #}, and we want to output the average price of an a-item at the

end of each day. However, if there are no a-items on a given day, we instead want to output the

average from the previous day. A machine implementation of this is provided by A2 in Figure 8.4.

In A2, sum and count store the sum of a-items and number of a-items on each day, respectively, and

are defined only if there has been at least one a. On the other hand, prev_avg stores the previous
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Q = {sum1, sum2,sum3, avg}, I = ∅, F = {avg}
transitions(i) = ∅

transitions(a) = ‖ sum1′ := cur

‖ sum2′ := sum1 + cur

‖ sum3′ := sum2 + cur

‖ avg′ := sum3′ / 3

transitions(b) = ‖ sum1′ := sum1

‖ sum2′ := sum2

‖ sum3′ := sum3

transitions(#) = ∅

Example evaluation on input

w = (a, 6)(a, 5)(a, 7)(b, 2)(a, 8)(#, 0)(b, 2)(a, 7).

w (input) sum1 sum2 sum3 avg (output)
⊥ ⊥ ⊥ ⊥

(a, 6) 6 ⊥ ⊥ ⊥
(a, 5) 5 11 ⊥ ⊥
(a, 7) 7 12 18 6.000
(b, 2) 7 12 18 ⊥
(a, 8) 8 15 20 6.667
(#, 0) ⊥ ⊥ ⊥ ⊥
(b, 2) ⊥ ⊥ ⊥ ⊥
(a, 7) 7 ⊥ ⊥ ⊥

Figure 8.3: Data transducer A1 monitoring a stream of purchase events for two types of items, tagged
a and b, and # to represent the end of each day. Throughout the day we output the average price in
a sliding window of the last three a-items. The language of strings on which A1 produces output is
(a ∪ b ∪ #)∗ab∗ab∗a.

average, but it is defined only if there has not been any a yet. (We also initialize this to 0 arbitrarily

on the very first day.) The state avg stores the output, and is only defined after a # event. The logic

of this computation involves two places where we need to have multiple transitions targeting a state.

First, on receiving an a, we set sum to be equal to the previous sum plus the current value, but we

also set it to be equal to 0 · prev_avg + cur. This works because exactly one of these two values will

be defined, and the other will be ⊥: either we have seen an a already, in which case we can update

the sum, or we haven’t seen one yet, in which case prev_avg is still defined. Second, the overall

output avg has two possible values, either sum/count or prev_avg, and again, exactly one of these

two values will be defined, and the other will be ⊥. Thus, we have designed A2 so that each union

operation (t) never produces a conflict (>).

Combining output from parallel threads of computation. Our final example attempts to

illustrate the feature which gives DTs their succinctness (see §8.7): the ability to update multiple

computations independently and then combine their results. Suppose we want to compute, at the

end of each day, the difference between the maximum price of a and the maximum price of b, if there

was at least one a and at least one b. The DT A3 in Figure 8.5 implements this computation. The

state a_init of A3 stores 0 and is only defined if we haven’t seen an a yet; similarly for b_init.
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Q = {sum, count, avg, prev_avg}, I = ∅, F = {avg}

transitions(i) = ‖ prev_avg′ := 0

transitions(a) = ‖ sum′ := prev_avg · 0 + cur

‖ sum′ := sum + cur

‖ count′ := prev_avg · 0 + 1

‖ count′ := count + 1

transitions(b) = ‖ sum′ := sum

‖ count′ := count

‖ prev_avg′ := prev_avg

transitions(#) = ‖ avg′ := sum / count

‖ avg′ := prev_avg

‖ prev_avg′ := avg′

Example evaluation on input

(b, 2)(a, 6)(b, 2)(a, 8)(a, 7)(#, 0)(b, 2)(#, 0)(a, 7)(a, 6).

w sum count avg prev_avg
(input) (output)

⊥ ⊥ ⊥ 0
(b, 2) ⊥ ⊥ ⊥ 0
(a, 6) 6 1 ⊥ ⊥
(b, 2) 6 1 ⊥ ⊥
(a, 8) 14 2 ⊥ ⊥
(a, 7) 21 3 ⊥ ⊥
(#, 0) ⊥ ⊥ 7.0 7.0
(b, 2) ⊥ ⊥ ⊥ 7.0
(#, 0) ⊥ ⊥ 7.0 7.0
(a, 7) 7 1 ⊥ ⊥
(a, 6) 13 2 ⊥ ⊥

Figure 8.4: Data transducer A2 monitoring the stream to produce, at the end of each day, either
the average price of an a-item (if there was at least one a) or the previous average (if there was no
a). When there are multiple transitions q′ := t1 and q′ := t2, the semantics is such that we assign
q′ := t1 t t2.

8.5. Constructions

Our primary interest in the DT model is to support a variety of succinct composition operations

which are not simultaneously supported by any existing model. In particular, such composition

operations can enable a quantitative monitoring language like QRE-Past in Section 8.6: language

constructs can be implemented by the compiler as constructions on DTs, rather like how (traditional)

regular expressions are compiled to nondeterministic finite automata.

For example, suppose we have DTs implementing two functions f, g : (Σ× D)∗ → D, and we would

like to implement the function f + g, which applies f and g to the input stream and adds the results.

To do so, we copy the states of the transducers for f and g, and we initialize and update the states in

parallel (they do not interfere). Then, we provide a new final state, and a single new transition which

says that the new final state should be assigned the value of the final state of f plus the value of the

final state of g. This works for every operation, and not just +: the combination of k computations

by applying a k-ary operation op ∈ Opk can be implemented by a corresponding k-ary construct on

the k underlying DTs. Moreover, the size of the DT will only be the sum of the sizes of the k DTs,

plus a constant. In contrast, even this simple operation f + g is not succinctly implementable using

the most natural existing alternative to DTs, Cost Register Automata (see Section 8.7).
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Q = {a_init, a_max, b_init, b_max, ab_diff}
I = ∅, F = {ab_diff}

transitions(i) = ‖ a_init′ := 0

‖ b_init′ := 0

transitions(a) = ‖ a_max′ := a_init + cur

‖ a_max′ := max(a_max, cur)

‖ b_max′ := b_max

‖ b_init′ := b_init

transitions(b) = ‖ b_max′ := b_init + cur

‖ b_max′ := max(b_max, cur)

‖ a_max′ := a_max

‖ a_init′ := a_init

transitions(#) = ‖ ab_diff′ := a_max− b_max

‖ a_init′ := 0

‖ b_init′ := 0

Example evaluation on input

(b, 2)(a, 6)(b, 3)(b, 1)(a, 8)(#, 0)(b, 2)(#, 0)(a, 7)(b, 1).

w a_init a_max b_init b_max ab_diff

(input) (output)

0 ⊥ 0 ⊥ ⊥
(b, 2) 0 ⊥ ⊥ 2 ⊥
(a, 6) ⊥ 6 ⊥ 2 ⊥
(b, 3) ⊥ 6 ⊥ 3 ⊥
(b, 1) ⊥ 6 ⊥ 3 ⊥
(a, 8) ⊥ 8 ⊥ 3 ⊥
(#, 0) 0 ⊥ 0 ⊥ 5

(b, 2) 0 ⊥ ⊥ 2 ⊥
(#, 0) 0 ⊥ 0 ⊥ ⊥
(a, 7) ⊥ 7 0 ⊥ ⊥
(b, 1) ⊥ 7 ⊥ 1 ⊥

Figure 8.5: Data transducer A3 monitoring the stream to produce, at the end of each day, the
difference between the maximum price of an a-item and the maximum price of a b-item.

This construction for f + g requires no assumptions about the DTs implementing f and g. However,

not all operations are this straightforward. Consider the following quantitative generalization of

concatenation. Given f : (Σ × D)∗ → D, g : (Σ × D)∗ → D, and op ∈ Op2, we wish to implement

split(f, g, op): on input w, split the input stream into two parts, w = u · v, such that f(u) 6= ⊥

and g(v) 6= ⊥ (respectively, f matches u and g matches v), and return op(f(u), g(v)). Assume

that the decomposition of w into u and v such that f(u) 6= ⊥ and g(v) 6= ⊥ is unique. In order to

naively implement this operation, on an input string w, we must not only keep track of the current

configuration of f on w, but for every split w = uv where f matches u, we must keep track of the

current configuration of g on v. If there are many possible prefixes u of w such that f(u) 6= ⊥, we

may have to keep arbitrarily many configurations of g. This naive approach is therefore impossible

using only the finite space that a DT allows, if we treat f and g only as black boxes.

What we need to avoid this is an additional structural condition on g. Rather than keeping multiple

copies of g, we would like to keep only a single configuration in memory: whenever the current prefix

matches f , restart g with new data values on its initial states (keeping any current data values as

well). To motivate this idea, consider the analogous concatenation construction for two NFAs: every

time the first NFA accepts, we are able to “restart” the second NFA by adding a token to its start

state (we don’t need an entirely new NFA every time). This property for DTs is called restartability.
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Restartable DTs are an equally expressive subclass consisting of those DTs for which restarting

computation on the same transducer does not cause interference in the output.

The set of strings that a DT “matches” is captured by its extended language, defined in Section 8.3.5.

Correspondingly, we assume that whenever a DT is restarted, the new initial vector is either all ⊥, or

all not ⊥ (in D ∪ {>}). If the output of a DT also satisfies this property (on every input it is either

all ⊥, or all not ⊥), then we say that the DT is output-synchronized. This property is required in the

concatenation and iteration constructions, but it is not as crucial to the discussion as restartability.

We begin in Section 8.5.1 by giving general constructions that do not rely on restartability. We

highlight the implemented semantics, the extended language, and the size of the constructed DT

in terms of its constituent DTs. Then in Section 8.5.2, we define restartability and use it to give

succinct constructions for unambiguous parsing operations, namely concatenation and iteration.

Moreover, we show that (under certain conditions) our operations preserve restartability, thus

enabling modular composition using the restartable DTs. We also show that checking restartability

is hard (PSPACE-complete), and we mention converting a non-restartable DT to a restartable one,

but with exponential blowup.

8.5.1. General Constructions

Notation It is convenient to introduce shorthand (ε,X, q′, t) for the union of |Σ|+ 1 transitions:

(σ,X, q′, t) for every σ ∈ Σ∪{i}. Because this includes an initial transition, this requires that X ⊆ Q′

and that cur does not appear in t. We call such a collection of transitions an epsilon transition

because, like epsilon transitions from classical automata, the transition may produce a value at its

target state on the empty data word and on every input character.

For readability, we abbreviate the type of a DT A : DI × (Σ×D)∗ → DF as A : I � F . This can be

thought of as a function from input variables I of type D to output variables F of type D, which also

consumes some data word in (Σ×D)∗ as a side effect. For sets of variables (or states) X1, X2, when

we write X1 ∪X2 we assume that the union is disjoint, unless otherwise stated.

We also define a data function to be a plain function DI → DF which is given by a collection of one

or more terms t : Tm[I] for each f ∈ F (the output value of f is then the union of the values of all
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terms). If G ⊆ F × Tm[I], then we write G : I ⇒ F to abbreviate the semantics JGK : DI → DF .

The size of G is the total length of description of all of the terms t it contains.

Parallel composition. Suppose we are given two DTs A1 = (Q1,Σ,∆1, I1, F1) and A2 =

(Q2,Σ,∆2, I2, F2), and assume that the sets of initial states are the same up to some implicit

bijections π1 : I → I1, π2 : I → I2, for a set I with |I| = |I1| = |I2|. (It is always possible to benignly

extend both DTs with extra initial states so that they match, so this assumption is not restrictive.)

We wish to define a DT which feeds the input (x,w) into both DTs in parallel. To do so, we define

A = A1 ‖ A2 to be the tuple (Q,Σ,∆, I, F ), where Q = Q1 ∪Q2 ∪ I, F = F1 ∪ F2, and

∆ = ∆1 ∪∆2 ∪
{

(ε, i′, π1(i)′, i′) : i ∈ I
}
∪
{

(ε, i′, π2(i)′, i′) : i ∈ I
}
.

Here, the transitions we added (those in ∆ but not in ∆1 or ∆2) copy values from I into both I1

and I2. This is only relevant on initialization ∆i, since after that states I will not be defined, but

we used an epsilon transition instead of just an i transition to preserve restartability, which will be

discussed in Section 8.5.2. Since we added no other transitions, the least fixed point Equation (8.1)

defining the next (or initial) configuration decomposes into the least fixed point on states Q1, and on

states Q2. It follows that the semantics satisfies JAK(x,u) = (JA1K(x,u), JA2K(x,u)). Here, (y1,y2)

denotes the vector y ∈ DF that is y1 on F1 and y2 on F2. Parallel composition is commutative and

associative. The utility of parallel composition is that it allows us to combine the outputs y1 and

y2 later on. This is accomplished by concatenation with another DT which combines the outputs

(Section 8.5.2).

Parallel composition. If A1 : I � F1 and A2 : I � F2, then A1 ‖ A2 : I � F1 ∪ F2 satisfies

JA1 ‖ A2K(x,w) = (JA1K(x,w), JA2K(x,w)),

such that size(A1 ‖ A2) = size(A1) + size(A2) +O(|I|). It therefore matches the set of tag strings

L(A1 ‖ A2) = L(A1) ∩ L(A2).

Union. Suppose we are given DTs A1 = (Q1,Σ,∆1, I1, F1) and A2 = (Q2,Σ,∆2, I2, F2), and

assume that the sets of initial and final states are the same up to some bijections: π1 : I → I1,
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π2 : I → I2, ρ1 : F → F1, ρ2 : F → F2, for sets I and F with |I| = |I1| = |I2| and |F | = |F1| = |F2|.

We wish to define a DT which feeds the input (x,w) into both DTs in parallel and returns the union

(t) of the two results. We define A = A1 t A2 = (Q,Σ,∆, I, F ) by Q = Q1 ∪Q2 ∪ I ∪ F and

∆ = ∆1 ∪∆2 ∪
{

(ε, i′, π1(i)′, i′) : i ∈ I
}

∪
{

(ε, i′, π2(i)′, i′) : i ∈ I
}

∪
{

(ε, ρ1(f)′, f ′, ρ1(f)′) : f ∈ F
}
∪
{

(ε, ρ2(f)′, f ′, ρ2(f)′) : f ∈ F
}
.

Similar to the parallel composition construction, the additional transitions here ensure that we copy

values from I into I1 and I2, and copy values from F1 and F2 into F , whenever these values are

defined. In particular, on initialization the initial vector x will be copied into I1 and I2, and on every

data word the output values y1 and y2 of A1 and A2 will be copied into the same set of final states,

so that they have to be joined by t. In particular, if both y1 and y2 are defined, the output will

be >. We see therefore that the semantics is such that JAK(x,u) = JA1K(x,u) t JA2K(x,u). Like

parallel composition, union is commutative and associative.

Union. If A1 : I � F and A2 : I � F , then A1 t A2 : I � F implements the semantics

JA1 t A2K(x,w) = JA1K(x,w) t JA2K(x,w),

s.t. size(A1 t A2) = size(A1) + size(A2) +O(|I|+ |F |). It matches L(A1 t A2) = L(A1) ∪ L(A2).

Prefix summation. Now we consider a more complex operation. Suppose we are given A1 =

(Q1,Σ,∆1, I1, F1), and a data word w, such that the output on the empty data word is y(0)
1 , the

output after receiving one character of the data word is y
(1)
1 , and in general the output after k

characters is y(k)
1 . The problem is to return the sum of these outputs: we want a DT that returns

y(i) = y
(0)
1 +· · ·+y

(i)
1 after receiving i characters. This is called the prefix sum because y(k)

1 is the value

of A on the kth prefix of the data word. In general, instead of +, we can take an arbitrary operation

which folds the outputs of A1 on each prefix. We suppose that this operation is given by a data

function G which, for some set F , is a function DF∪F1 → DF . It takes the previous “sum” y(i−1) ∈ DF ,

combines it with the new output of A1, y
(i)
1 ∈ D

F1 , and produces the next “sum” y(i) ∈ DF . So, we’ll

have G(y(i−1),y
(i)
1 ) = y(i). We want a DT that, on input initial values for I1 and initial values y(−1)
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for F , will return y(i). Formally, we convert G to a DT A2 = (Q2,Σ,∆2, I2, F2), with bijections

π : (F ∪ F1) → I2, ρ : F → F2, which only contains epsilon-transitions: for each term t in G with

variables P ⊆ (F ∪ F1) giving a value of f ∈ F , we create an epsilon transition (ε, π(P )′, ρ(f)′, t).

Then we define the prefix sum ⊕GA1 = (Q,Σ,∆, (I1 ∪ F ), F2), where Q = Q1 ∪Q2 ∪ F and

∆ = ∆1 ∪∆2 ∪
{

(ε, f ′1, π(f1)′, f ′1) : f1 ∈ F1

}
∪
{

(ε, f ′, π(f)′, f ′) : f ∈ F
}
∪
{

(σ, ρ(f), π(f)′, ρ(f)) : f ∈ F, σ ∈ Σ
}
.

First on the empty data word, the outputs F ′2 of A1 and the initial vector in F ′ are copied into

I2, and A2 produces the correct output y(0) = JGK(y(−1),y
(0)
1 ). Now, when we read in a character

in Σ × D, the final states F ′2 flow back into inputs to A2, and the new output of A1 also flows in.

Because the machine A2 was constructed to be just a set of epsilon-transitions from I2 to F2, it does

not save any internal state, but just computes the output in terms of the input again. So the next

output will be JGK(y(0),y
(1)
1 ), and then JGK(y(1),y

(2)
1 ), and so forth.

Prefix sum. If A1 : I � Z and G : F ∪Z ⇒ F , then ⊕GA1 : I ∪F � F implements the semantics

J⊕GA1K((x,y), ε) = JGK(y, JA1K(x, ε))

J⊕GA1K((x,y),w(σ, d)) = JGK(J⊕GA1K((x,y),w), JA1K(x,w(σ, d)))

such that size(⊕GA1) = size(A1) + size(G) +O(|Z|+ |F |).

Conditioning on undefined and conflict values. A DT that is constructed using the other

operations—particularly union, and concatenation and iteration from Section 8.5.2—may produce

undefined (⊥) or conflict (>) on certain inputs. In such a case, we may want to perform a computation

which conditions on whether the output is undefined, defined or conflict: for instance, we may want

to produce 1 if there is a conflict, or we may want to replace all ⊥ and > outputs with concrete

data values. (In particular, in Section 8.6, we will want to replace ⊥ and > with Boolean values.)

We give a construction for this purpose. To simplify the problem, suppose that we are given

A1 = (Q1,Σ,∆1, I1, F1), and we want to construct a DT A⊥ with no initial states, the same set of

final states, and the following behavior: for all x ∈ DI1 (not DI1), all u ∈ (Σ× D)∗, and all f1 ∈ F1,
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if JA1K(x,u)(f1) = ⊥ then JA⊥K(u)(f1) ∈ D, and otherwise, JA⊥K(u)(f1) = ⊥. Here, since I = ∅,

the first argument is omitted. We similarly want to define AD which is in D if A1 is in D, and ⊥

otherwise, and A> which is in D if A1 is >, and ⊥ otherwise. So that D is not empty, we assume

that there is some constant operation in Op0, say d? (so d? ∈ D).

The idea of the construction is that we replace Q1 with Q1 × {⊥, ?,>}. For each state q ∈ Q1, at all

times, exactly one of (q,⊥), (q, ?), and (q,>) will be d? and the other two will be ⊥. Which state is

d? should correspond to whether q was undefined, defined, or conflict. (This is adapted from the

classic trick of dealing with negation by replacing all values with pairs of either (true, false) or (false,

true).) However, in order for this to work without blowup our DT needs to be acyclic. Therefore we

begin with a preliminary stage of converting the DT to acyclic. Observe that in the semantics of

Section 8.3.3, iterating the assignment (8.1) 2n times would be sufficient to reach the fixed point,

where n is the number of states of the DT. So we create 2n copies of the states of the DT, with one

set of transitions from each copy to the next. In this preliminary stage the size of the transducer

may be squared, i.e. there is quadratic blowup. Now assuming A is acyclic, for each variable q′ ∈ Q′1,

whether q′ is undefined, defined, or conflict is a Boolean function of all the source states of transitions

that target q′; this function can be built as a Boolean circuit by adding intermediate states and

intermediate transitions, in number at most the total size of the transitions targeting q′. A⊥, AD,

and A> differ only in which states are final—F1 × {⊥}, F1 × {?}, and F1 × {>}, respectively.

Support. Let d? ∈ D. If A1 : I � F , then [A1 = ⊥] : ∅ � F , [A1 ∈ D] : ∅ � F , and

[A1 = >] : ∅� F . These constructions implement the following semantics. For all f ∈ F :

J[A1 = ⊥]K(w)(f) = d? if JA1K(x,w)(f) = ⊥ ∀x ∈ DI ; ⊥ otherwise

J[A1 ∈ D]K(w)(f) = d? if JA1K(x,w)(f) ∈ D ∀x ∈ DI ; ⊥ otherwise

J[A1 = >]K(w)(f) = d? if JA1K(x,w)(f) = > ∀x ∈ DI ; ⊥ otherwise

such that size([A1 = ⊥]) = O(size(A1)2) and likewise for the other two. Alternatively, if A1 is

acyclic, the size will only be O(size(A1)).
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8.5.2. Unambiguous Parsing and Restartability

We now want to capture the idea of restartability—that multiple threads of computation may be

replaced by updates to a single configuration—with a formal definition. Recall the example in

the introduction of split(f, g, op). During the execution of f on input w, whenever the current

prefix u of w matches, i.e. f(u) 6= ⊥, we could (naively and inefficiently) implement split(f, g, op)

by keeping a separate configuration (thread) of g from that point forward. For example, suppose

that w = (a, d1)(b, d2)(a, d3)(a, d4), and that the output of f is defined after receiving each a-

item, and undefined otherwise. Then f is defined on input (a, d1), on (a, d1)(b, d2)(a, d3), and on

(a, d1)(b, d2)(a, d3)(a, d4). Corresponding to these three inputs, we would have three threads of g: c1

on input (b, d2)(a, d3)(a, d4), c2 on input (a, d4), and c3 on input ε. Suppose that each configuration ci

includes an final state with the value of yi = op(f(u), g(v)). The value of split(f, g, op) could then

be computed as the union of the outputs from all these threads: split(f, g, op)(w) = y1 t y2 t y3.

We apply the union here because we expect the split w = u · v, where u ∈ L(f) and v ∈ L(g), to be

unique. Thus all but at most one of yi will be ⊥, and the union gives us the unique answer (if any).

A DT will be called restartable if a single configuration c can simulate the behavior of these several

configurations c1, c2, and c3. This is a relation between configurations of g and an arbitrarily

long sequence of configurations of g (we could have used a multiset instead of a sequence). The

relation c ∼ [c1, c2, c3] is intended to capture that c is observationally indistinguishable from the

sequence c1, c2, c3. For starters, we require that the output is the same: if y is the output of c,

then y = y1 t y2 t y3. But we also require that the simulation is preserved when we update the

sequence of configurations of g, by reading in a new input character and/or starting a new thread.

The definition allows the simulation to be undefined on configurations that are never reachable in an

actual execution—it need not be true that every sequence [c1, . . . , ck] is simulated by some c, but it

should be true that every sequence that can be reached by a series of updates is simulated.

With this intuition, the simulation relation on configurations of g should satisfy the following

properties (see the definition below). Property (i) addresses the base case before any input characters

are received (i.e. initialization i). Suppose that on initialization, the machine for g is started with

k ≥ 0 threads, given by initial vectors x1, . . . ,xk. (In our example, these threads would arise as the

output of f on initialization.) Then the configuration in a single copy of g on input x1 t · · · t xk

should simulate the behavior of k separate copies of g. Property (ii) requires that the simulation
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then be preserved as input characters are read in. Suppose that c ∼ [c1, . . . , ck], and we now read in

a character (σ, d) to g. Simultaneously, we start zero or more new threads represented by the vector

x (e.g., x is the new output produced by f on input (σ, d)). Then if we update and re-initialize

the initial states of c with x, that configuration should simulate updating each ci separately, and

adding one or more new threads represented by x. Finally, property (iii) says that our simulation is

sound: for every configuration which simulates a sequence of configurations, the output of the one

configuration is equal to the union of the sequence of outputs.

For property (ii) in particular, we need to define what it means to update a configuration c and

simultaneously restart new threads by placing values x on the initial states I ′. (Such an update

function is only needed for the simulating configuration, not the sequence of simulated configurations.)

For each σ ∈ Σ and for every x ∈ DI we define a generalized evaluation function ∆σ,x : DQ×D→ DQ.

This represents executing ∆σ and then starting zero or more new threads, by initializing the new

initial states with x. We modify the least fixed point definition of c′ in Equation 8.1) to include the

new initialization on states I ′: c′ is the least vector satisfying

c′(q′) = x(q) t
⊔

(σ,X,q′,t)∈∆

JtK(c′|X),

where x(q) = ⊥ if q /∈ I. This resembles the way we already incorporated x into the definition of ∆i.

We restrict the vector x in each restart to be in the space X = {⊥}I ∪ (D ∪ {>})I , which is closed

under t. Let ~⊥ be the vector with every entry equal to ⊥.

Definition 8.5.1 (Restartability). Let A = (Q,Σ,∆, I, F ) be a DT over signature (D,Op); let

C = DQ be the set of configurations of A, and [C] the set of finite lists of configurations of A. Let

X = {⊥}I ∪ (D∪ {>})I be the set of possible initializations for a restarted thread. A is restartable if

there exists a binary relation ∼⊆ C × [C] (called a “simulation”) with the following properties:

i. (Base case) For all x1, . . . ,xk ∈ X , ∆i

(⊔k
i=1 xi

)
∼ [∆i(x1), . . . ,∆i(xk)]. (If k = 0, we get

∆i(~⊥) ∼ [], where [] ∈ [C] denotes the empty list.)
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ii. (Update with restarts) For all (σ, d) ∈ (Σ× D), for all x ∈ X , and for all c, c1, c2, . . . , ck,

ĉ1, ĉ2, . . . , ĉl, if c ∼ [c1, c2, . . . , ck] and ∆i(x) ∼ [ĉ1, ĉ2, . . . , ĉl] then

∆σ,x(c, d) ∼ [∆σ(c1, d), . . . ,∆σ(ck, d), ĉ1, ĉ2, . . . , ĉl].

iii. (Implies same output) If c ∼ [c1, c2, . . . , ck], and the output vectors for these configurations

(extended data values at the final states) are y,y1,y2, . . . ,yk, respectively, then we have

y = y1 t y2 t · · · t yk.

A simple example (and counterexample) are in order. First, consider the following DT A with two

states: Q = {i, f}, Σ = {a, b}, I = {i}, F = {f}, and one transition on input a, f ′ := i+ cur. The

DT on input (x, (a, d)) returns x+ d, and on every other input is undefined. Then A is restartable.

We can represent configurations as ordered pairs (x, y), where x ∈ D is the value of i and y ∈ D is the

value of f . We define that c ∼ [c1, . . . , ck] whenever c =
⊔k
i=1 ci. Then (i), (ii), and (iii) hold. For

example, the base case says that x =
⊔k
i=1 xk, then (x,⊥) ∼ [(x1,⊥), . . . , (xk,⊥)], which is true by

definition. The intuition is that, in this simple case, we can say that a configuration of A simulates a

set of configurations (threads) if the configuration is the union of all those threads. The semantics

just takes (x, y) to (z, x) on updating and restarting with z, so it preserves this relation.

For a counterexample, consider a DT A which sums the value of a single initial state and the last a:

take Q = {i, f}, I = {i}, F = {f}, and the following transitions on input a: i′ := i, f ′ := i′ + cur.

We may represent configurations as (x, y), for the values at i, f , respectively. To see this is not

restartable, consider starting A with a single input x1 ∈ D, then reading in (a, d) and starting a

second input x2 ∈ D (i.e. applying ∆a,x2
). Starting with x1 results in the configuration (x1,⊥); then

reading in (a, d) and starting with x2 results in (>,>). However, if A were restartable, then by

property (ii), we could instead read in (a, d) and add the second input x2 separately: we thus would

have (>,>) ∼ [(x1, x1 + d), (x2,⊥)]. The problem is that this violates (iii): the output of A is >,

which is not the same as (x1 + d) t ⊥ = x1 + d.

What is relevant for properties (i), (ii), and (iii) is actually only the configurations, input, and output

up to equivalence, i.e., where we replace D with {⊥, ?,>}. There are only finitely many configurations

up to equivalence. This is why restartability is decidable (see Theorem 8.5.3).
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Concatenation Suppose we have two DTs A1 = (Q1,Σ,∆1, I1, F1) and A2 = (Q2,Σ,∆2, I2, F2),

where F1 and I2 are the same up to bijection (say, π : F1 → I2). Now we want to compute the

following parsing operation: on input (x,w), consider all splits of w into two strings, w = w1w2.

Apply A1 to (x,w1) to get a result y1, and apply A2 to (y1,w2) to get y2. Return the union (t)

over all such splits of y2. In particular, assuming there is only one way to split w = w1w2 such that

y2 does not end up being undefined, this operation splits the input string uniquely into two parts

such that A1 matches w1 and A2 matches w2, and then applies A1 and A2 in sequence.

We implement this by taking A = A1 · A2 = (Q,Σ,∆, I, F ) with Q = Q1 ∪Q2, I = I1, F = F2, and

∆ = ∆1 ∪∆2 ∪
{

(ε, {f ′1}, π(f1)′, f ′1) : f1 ∈ F1

}
.

The idea is very simple; every output of A1 (i.e. a value produced at a state in F1) should be copied

into the corresponding initial state of A2. This happens on initialization, and on every update.

However, the semantics is not so simple, because every time we read in a character, A2’s initial states

I2 are being re-initialized with new values (the values from F1).

This “re-initialization” is exactly captured by our generalized update function ∆σ,x from earlier. Let

us represent configurations of A by (c1, c2), where ci is the component restricted to Qi, i.e. the

induced configuration of Ai. Now consider an input (x,w) to A. We see that for the ith configuration

of A (c
(i)
1 , c

(i)
2 ), c(i)

1 is the same as the ith configuration of A1 on input (x,w). Moreover, if y(i)
1 is

the ith output of A1, this is used to reinitialize A2; so we see that c(i)
2 = ∆

σ,y
(i)
1

(c
(i−1)
2 , d) (where

this is the update function of A2). The output y(i)
2 = c

(i)
2 |F of A2 is the output of A.

Assume that A1 is output-synchronized : this means that each y
(i)
1 ∈ X , i.e., all values are ⊥ or all

values are in D ∪ {>}. And assume that A2 is restartable. Then the simulation relation allows us

to, at every step, replace c2 by a list of configurations where each configuration is A2 on a different

suffix of w. In particular, we recursively replace ∆
σ,y

(i)
1

(c
(i−1)
2 , d) with the list of configurations for

∆σ(c
(i−1)
2 , d) and a single new thread ∆i(y

(i)
1 ). Because y

(i)
1 ∈ X , this is guaranteed by property (ii)

of restartability. Property (iii) then implies the semantics given in the following summary.
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Concatenation. Let A1 : I � Z and A2 : Z � F , such that A1 is output-synchronized and A2 is

restartable. Then A1 · A2 : I � F implements the semantics

JA1 · A2K(x,w) =
⊔

w=w1w2

JA2K(JA1K(x,w1),w2).

such that size(A1 · A2) = size(A1) + size(A2) +O(|Z|). It matches L(A1 · A2) = L(A1) · L(A2).

Concatenation with data functions. A special case of concatenation can be described which

does not require restartability, and which we use in Section 8.6. Suppose we are given A1 =

(Q1,Σ,∆1, I1, F1) and we want to concatenate with a data function G2 : F1 ⇒ F2: on input (x,w),

return JG2K(JA1K(x,w)). This can be implemented by converting G2 into a DT A2 on states F1 ∪F2

(as in the prefix sum construction), and then simply constructing A1 ·A2. Even if A2 is not restartable,

we can see directly that on every input, the final states F2 are equal to G2 applied to the output of

A1. Similarly, if G1 : I1 ⇒ I2 and A2 : (Q2,Σ,∆2, I2, F2), then we may convert G1 into a DT A1 on

states I1 ∪ I2. Then the construction A1 · A2, on every input (x,w), returns JA2K(JG1K(x),w). We

overload the concatenation notation and write these constructions as A1 ·G2 and G1 · A2. For these

constructions, as with prefix sum, we do not write out the extended language of matched strings

explicitly.

Concatenation with data functions. If A1 : I � Z and G2 : Z ⇒ F , then A1 · G2 : I � F

implements the semantics

JA1 ·G2K(x,w) = JG2K(JA1K(x,w)),

such that size(A1 ·G2) = size(A1) + size(G2) + O(|Z|). Likewise, if G1 : I ⇒ Z and A2 : Z � F ,

then G1 · A2 : I � F implements the semantics

JG1 · A2K(x,w) = JA2K(JG1K(x),w),

such that size(G1 · A2) = size(G1) + size(A2) +O(|Z|).
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Iteration Now suppose we are given A1 = (Q1,Σ,∆1, I1, F1), where I1 and F1 are the same up to

some bijection. On input (x,w), we want to split w into w1w2w3 . . ., then apply JA1K(x,w1) to get

y1, JA1K(y1,w2) to get y2, and so on. Then, the answer is the union over all possible ways to write

w = w1w2 . . .wk of yk. Let I be a set the same size as I1, F1 with bijections π : I → I1, ρ : F → F1.

Then we implement this by taking A = (A1)
∗

= (Q,Σ,∆, I, I) with Q = Q1 ∪ I and

∆ = ∆1 ∪
{

(ε, {i′}, π(i)′, i′) : i ∈ I
}
∪
{

(ε, {ρ(i)′}, i′, ρ(i)′) : i ∈ I
}
.

The idea is again very simple; we have a set of states I that is both initial and final; we always copy

the values of these states into the input of A1 and copy the final states of A1 back into I. But the

semantics is again more complicated. Here (unlike all other constructions), we do not necessarily

preserve acyclicity. When we copy F2 into I and back into I2, this may then propagate back into F2

again. Essentially, if A1 produces output on the empty data word, then (A1)
∗ will always be >, as

this will create a cycle with least fixed point >.

We assume that A1 is both output-synchronized and restartable. We can write configurations of

A as (c,y), where c is a configuration of A1. On an input word w = (σ1, d1), . . . , (σk, dk), let

the sequence of configurations be (c0,y0), (c1,y1), . . ., (ck,yk), so the output of A is yk. Then

the least-fixed-point semantics of Equation (8.1) implies that, for i = 1, . . . , k, yi is the least

vector satisfying yi = (∆σi,yi(ci−1, di)) |F1 . Similarly, for i = 0, y0 is the least vector satisfying

y0 = (∆i(y0)) |F1
. Now we want to show by induction that ci simulates the list, over all possible

splits of w = w1w2 · · ·wk, of the configuration of A1 obtained by sequentially applying A1 k times.

The proof of the inductive step is to take the property yi = (∆σi,yi(ci−1, di)) |F1 and decompose the

configuration ∆σi,yi
(ci−1, di) using the simulation relation, and see that it simulates the list of all

splits w = w1 · · ·wk where wk has size at least 1, plus the additional initialized thread ∆i(yi).

Iteration. Let A : I � I be output-synchronized and restartable. Then A∗ : I � I satisfies

JA∗K(x,w) =
⊔

w=w1w2···wk

JAK(. . . JAK(JAK(x,w1),w2) . . . ,wk),

s.t. size(A∗) = size(A) +O(|I|). It matches L(A∗) = L(A)∗.
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Properties of restartability. All operations except “support” preserve restartability. The “output-

synchronized” property is also preserved by union, concatenation, and iteration, but is not guaranteed

with parallel composition: A1 ‖ A2 is output-synchronized only if L(A1) = L(A2).

Theorem 8.5.2. If A1 and A2 are restartable, then so are A1 ‖ A2 and A1 t A2. If A1 is

additionally output-synchronized, then A1 · A2 and A1
∗ are restartable. If A1 is restartable and

output-synchronized and additionally L(A1) = Σ∗, and if G is a data function where each output

value is given by a single term over the input values, then ⊕GA1 is restartable.

Proof. For A1 ‖ A2 and A1 t A2, we represent configurations of the machine has pairs (c1, c2), and

we define (c1, c2) ∼ [(c1,1, c2,1), . . . , (c1,k, c2,k)] if both c1 ∼ [c1,1, . . . , c1,k] and c2 ∼ [c2,1, . . . , c2,k].

For prefix sum, the restartability holds for somewhat trivial reasons: if we restart with only ~⊥,

the output is ⊥: if we restart with only one non-~⊥ thread, the output is the prefix-sum, and

if we restart with two or more non-~⊥ threads, the output is > everywhere. For concatenation,

we have configurations that are pairs (c1, c2) of a configuration in A1 and one in A2. We define

(c1, c2) ∼ [(c1,1, c2,1), . . . , (c1,k, c2,k)] if c1 ∼ [c1,1, . . . , c1,k] and there exists sequences l2,1, l2,2, . . .,

l2,k, such that c2,i simulates l2,i and c2 simulates the entire sequence of sequences, l2,1 ◦ l2,2 ◦ · · · ◦ l2,k.

The idea is that a configuration in A = A1 · A2 simulates a list of configurations where each

configuration consists of only a single thread in A1, but may have many threads in A2 (since one

thread in A1 may cause A2 to be restarted several times). However, we still need that there exists

some further simulation of the configuration in A2 into a set of individual threads, such that the

overall configuration of A2 in A simulates all of these individual threads. For iteration A = A1
∗, we

have to do this recursively. The simulation on A includes A1 but extends it to the least relation such

that whenever ci ∼ [ci,1, . . . , ci,k] for each i, if c ∼ [c1, . . . , ck] then c ∼ [ci,j ]i,j .

Theorem 8.5.3. Given a DT A as input, checking if A is restartable is PSPACE-complete.

Proof. Construct P as in the proof of Theorem 8.3.2, a DT over (u,UOp) where u = {?}. Use ci

and pi to denote configurations of A and P, respectively.

We first prove a lemma: that A is restartable iff P is restartable. The forward direction is immediate:

define the relation p ∼ [p1, p2, . . . , pk] if there exists c ∼ [c1, c2, . . . , ck] such that pi is the projection

of ci to u; then facts (i), (ii), and (iii) are homomorphically preserved. The backward direction is
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nontrivial. We need to define the simulation relation between configurations and lists of configurations.

We define the reachable relation R ⊆ C × [C] to be the minimal relation that is implied by properties

(i) and (ii), i.e. the set of pairs (c, [c1, c2, . . . , ck]) reachable from initialization followed by some

sequence of updates-with-restarts ∆σ,x. We will show that R is a simulation by showing that (iii)

holds of all reachable pairs. The key observation—which holds even if A is not restartable—is that

for every reachable pair (c, [c1, c2, . . . , ck]), c ≥ ci for all i (where ≥ is the coordinate-wise partial

ordering on data vectors defined in Section 8.3). This is proven inductively. Using this we claim that

R satisfies (iii). Let (c, [c1, c2, . . . , ck]) be reachable. Fix f ∈ F . Since P is restartable, we know that

c(f) and c1(f) t · · · t ck(f) are either both undefined, both defined, or both conflict. Thus the only

way they can be unequal (violating (iii)) is if they are both in D, and distinct. If they are both in D,

then ci(f) = ⊥ for all i except one, say cj(f) = d′. But from the key observation above, c(f) ≥ cj(f),

and since c(f), cj(f) ∈ D, we have equality c(f) ≥ cj(f).

We give a coNPSPACE algorithm to check restartability of a DT A. By the above lemma, it is

enough to work with P instead. So we need to check if there exists a reachable pair (p, [p1, . . . , pk]),

where p and pi are configurations of P , such that F (p) = F (p1) t F (p2) t · · · t F (pk). But choose k

to be minimal; then we do not need to keep track of p1, . . . , pk−1, but can instead collapse these into

a single configuration p′. Specifically, before the kth restart, suppose we are at (p′, [p′1, p
′
2, . . . , p

′
k−1]);

then rather than keeping p′1 through p′k−1, we know the output will always be the same as taking p′,

so we keep track only of p′. Using this trick, the space required to store (p, [p1, . . . , pk]) is constant:

three configurations of P. Overall, we guess a sequence of moves to get to (p′, [p′1, . . . , p
′
k−1], then

guess a sequence of moves to get to p from there, and guess a place to stop and try checking if

p(f) = p1(f)t p2(f)t · · · t pk(f) for all f ∈ F . The total space is bounded and some thread accepts

if and only if there is a counterexample, meaning the machine is not restartable.

PSPACE-hardness can be shown by a reduction from the problem of universality for NFAs. We

carefully exploit that if NFAs N1 and N2 are translated to DTs which always output ⊥ or >, and G

is a single binary operation, the DT construction (N1 ‖ N2) ·G is restartable iff there do not exist

strings u, v such that u ∈ L(N1), u /∈ L(N2), uv /∈ L(N1), uv ∈ L(N2), or vice versa.

Converting to restartable. It is shown in Theorem 8.7.1 that a DT of size m can be converted to

a deterministic CRA of size exp(m); and that a deterministic CRA of size m can be converted into a

restartable DT of size O(m). This gives a procedure to convert DT to restartable DT, unfortunately
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with exponential blowup. Fortunately, Theorem 8.5.2 guarantees that such exponential blowup does

not arise in the compilation of the QRE-Past language of Section 8.6.

8.6. The QRE-Past Monitoring Language

In this section we present the QRE-Past query language for quantitative runtime monitoring

(Quantitative Regular Expressions with Past-time temporal operators). Each query compiles to a

streaming algorithm, given as a DT, whose evaluation has precise complexity guarantees in the size

of the query. Specifically, the complexity is a quadratic number of registers and quadratic number

of operations to process each element, in the size of the query, independent of the input stream.

Our language employs several constructs from the StreamQRE language [187]. To this core set of

combinators we add the prefix-sum operation, fill and fill-with operations, and also past-time

temporal logic operators which allow querying temporal safety properties: for example, “is the average

of the last five measurements always more than two standard deviations above the average over the

last two days?” We have picked constructs which we believe to be intuitive to program and useful in

the application domains we have studied, but we do not intend them to be exhaustive; there are

many other combinators which could be defined, added to the language, and implemented using the

back-end support provided by the constructions of Section 8.5.

By compiling to the DT machine model, we show that the compiled code has the same precise

complexity guarantee of the code produced by the StreamQRE engine of [187], including the additional

temporal operators. Since compiled StreamQRE code was shown to have better throughput than

popular existing streaming engines (RxJava, Esper, and Flink) when deployed on a single machine,

this is good evidence that QRE-Past would see similar success with more flexible language constructs.

8.6.1. Syntax of QRE-Past

Expressions in the language are divided into three types: quantitative queries of two types, either

base-level (α) or top-level (β), and temporal queries (ϕ). Base-level quantitative queries specify

functions from data words to quantities (extended data values D), and are compiled to restartable

DTs with a single initial state and single final state, of quadratic size. These queries are based

on StreamQRE and the original Quantitative Regular Expressions of [25]. Top-level quantitative

queries also specify functions from data words to quantities, but the compiled DT may not be

185



α := | atom(σ, t) {σ} σ ∈ Σ, t ∈ Tm[cur]

| eps(t) {ε} t ∈ Tm[∅]

| or(α1, α2) L(α1) ∪ L(α2)

| split(α1, α2, op) L(α1) · L(α2) op ∈ Op2

| iter(α1, init , op) (L(α1))∗ init ∈ D, op ∈ Op2

| combine(α1, . . . , αk, op) L(α1) ∩ · · · ∩ L(αk) op ∈ Opk; well-typed if L(α1) = · · · = L(αk)

| prefix-sum(α1, init , op) Σ∗ init ∈ D, op ∈ Op2; well-typed if L(α1) = Σ∗

β := | α1 L(α1)

| fill(α1) L(α1) · Σ∗

| fill-with(α1, α2) L(α1) ∪ L(α2)

ϕ := | β1 comp β2 Σ∗ comp ∈ {≤,≥,=}; well-typed if L(β1) = L(β2) = Σ∗

| ϕ1 bop ϕ2 | ¬ϕ1 Σ∗ bop ∈ {∧,∨,→,↔}
| �ϕ1 | �ϕ1 | ·♦ϕ1 Σ∗

| ϕ1 Sw ϕ2 | ϕ1 Ss ϕ2 Σ∗

Figure 8.6: Summary of the QRE-Past language: syntax for quantitative queries α, β and temporal
queries ϕ. The second column gives the rate of the query as a regular expression.

restartable. Temporal queries specify functions from data words to Booleans, may be constructed

from quantitative queries, and are compiled to DTs which output Booleans. Temporal queries are

based on the operators of past-time temporal logic [188] and informed by successful existing work on

monitoring of safety properties [143], which adapts to our setting via constructions on DTs.

We model Booleans as elements in D. Thus, we assume that 0, 1 ∈ D, and that ≤,≥,= ∈ Op2: these

are comparison operations on data values returning 0 or 1. We also assume that we have Boolean

operators ¬ ∈ Op1 and ∧,∨,→,↔∈ Op2, which treat 0 as false and every d 6= 0 as true.

Each query has an associated regular rate L(α), given by a regular expression on Σ defined recursively

with the query. The rate expresses the set of strings on which the compiled DT is defined or conflict.

For temporal queries ϕ, the rate is Σ∗. We also may refer to the language L(α) ⊆ L(α), which is

the set of strings on which the compiled DT is defined. There are a few typing restrictions, mainly

constraints on the rates of the queries. Because each rate is given by a regular expression, the typing

restrictions are type-checkable in polynomial time. The typing restrictions arise in order to guarantee

restartability so that the constructions of Section 8.5 apply.
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8.6.2. Semantics and Compilation Algorithm

We describe each construction’s semantics, and how it is directly implemented as a DT. For technical

reasons, for each quantitative query (not for temporal queries) α or β we produce two DTs. The

first is Aα : X � Y , where |X| = |Y | = 1. The semantics will be such that JAαK(x,w) is the value

of query α on input w, if x is defined. So x is not really used, except to allow the machine to be

restartable (at least one initial state is needed for restarts). The second is Iα : X � Y , where

|X| = |Y | = 1, which has the following identity semantics: JIαK(x,w) = x if JAαK(x,w) ∈ D, >

if JAαK(x,w) = >, and ⊥ if JAαK(x,w) = ⊥. In particular, Iα is equivalent to Aα (definition in

Section 8.3.5). We use this second machine Iα to save values for using later. For example, to

implement split(f, g, op) we concatenate the machine for f with a machine which both saves the

output of f and starts g; then when g is finished we combine the saved output of f with the output

of g via op. We will guarantee in the translation that Iα has size only linear in the query, but Aα

has worst-case quadratic size.

Atomic expressions: atom, eps. The atomic expressions are the building blocks of all queries.

For t ∈ Tm[cur], the query atom(σ, t) matches a data word containing a single character (σ, d), and

returns t evaluated with cur = d. Similarly, the query eps(t) matches the empty data word and

returns the evaluation of t. Both of these are implementable using a DT with two states, Q = {qi, qf},

with I = {qi} and F = {qf}. Aatom(σ,t) uses one transition from {qi} to q′f with term t, and Aeps(t)

uses an epsilon transition from {q′i} to q′f with term t. These machines are restartable by a similar

argument as the example immediately following Definition 8.5.1 (alternatively, if they aren’t, just

convert to an equivalent restartable DT as in Section 8.5.2, last paragraph). The definition of Iatom(σ,t)

is the same as Aatom(σ,t) except that the term t in the transition is replaced by qi; and likewise for

Ieps(t).

Regular operators: or, split, iter. These regular operators are like traditional union, concate-

nation, and iteration (respectively), except that if the parsing of the string (data word) is not unique,

the result will be >. The union operation or(α1, α2) should match every data word that matches

either α1 or α2; if it matches only one, its value is that query, but if it matches both, its value is

>. In particular, conflict values “propagate upwards” because even if only one of α1, α2 matches, if

the value is > then the result is >. This is exactly the semantics of the DT construction Aα1 t Aα2 .
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It is restartable because Aα1 and Aα2 are restartable, by Theorem 8.5.2. Similarly, we can take

Ior(α1,α2) = Iα1
t Iα2

. Both of these constructions add only a constant to the size.

The operation split(α1, α2, op) splits a data word w into two parts, w1 ·w2, such that w1 matches

α1 and w2 matches α2. If there are multiple splits, the result is >; otherwise, the result is

op(α1(w1), α2(w2)). Here, we have to do some work to save the value of α1(w1) in the DT

construction. We implement split as Asplit(α1,α2,op) := (Aα1
· (Iα2

‖ Aα2
)) ·Gop , where Gop is a

data function with two inputs y1, y2 which returns one output op(y1, y2), where y1 is the final state

of Iα2 and y2 is the final state of Aα2 . Let’s parse what this is saying. We split the string w into two

parts w1 ·w2 such that wi ∈ L(αi), and apply α1 to the first part; for the second part, we have a

transducer which takes the output of α1 as input and produces both that value as y1, as well as the

new output of α2 as y2. Then both of these are passed to Gop which returns op(y1, y2). To define

Isplit(α1,α2,op) is easier: we take Iα1
· Iα2

.

The operation iter(α1, init , op) splits w into w1 · · ·wk such that wi ∈ L(α1) and then folds op

over the list of outputs of α1, starting from init , to get a result: for instance if k = 3, the result is

op(op(op(init , α1(w1)), α1(w2)), α1(w3)). If the parsing is not unique, the result is >. We implement

this as Aiter(α1,init,op) := Ginit · ((Iα1
‖ Aα1

) ·Gop)
∗, where Ginit is a data function which outputs

the initial value init . The idea here is that (Iα1 ‖ Aα1) · Gop takes an input, both saves it and

performs a new computation Aα1
, and then produces op of the old value and the new value. When

this is iterated, we get the desired fold operation. For Iiter(α1,init,op) we can simply take (Iα1
)
∗.

We claim that these constructions preserve restartability. For concatenation, we need that the ‖ is

output-synchronized: we need that Aα2 and Iα2 have the same rate. This is true by construction: I

is equivalent to A and only differs in that it is the identity function from input to output. So the

three DTs concatenated are all output-synchronized. Restartability is preserved because the data

function Gop is converted to a restartable DT in the concatenation construction. The size of the

concatenation construction is bounded by a quadratic polynomial because we have added additional

size equal to the size of Iα2
, which is bounded by a linear polynomial. For iteration, ‖ is similarly

only applied to equivalent DTs, and Gop is converted to a restartable DT in concatenation. As with

split, the size of our construction includes the size of Aα1
but adds a linear size due to inclusion of

Iα1
, so we preserve a quadratic bound on size. The constructions Iα1

· Iα2
and (Iα1

)
∗ preserve a

linear bound and are restartable because Iα1 and Iα2 are restartable.
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Parallel combination: combine. This is the first operation in our language which requires a

typing restriction. For combine(α1, . . . , αk, op), the computation is simple: apply every αi to the

input stream to get a result, then combine all these results via operation op. The implementation as

a DT is Acombine(α1,...,αk,op) := (Aα1 ‖ · · · ‖ Aαk
) ·Gop , where Gop applies op to the k final states

of the ‖ . For Icombine(α1,...,αk,op), we do the same thing but replace op by the term y1 (i.e. we

use Gy1 : {y1, . . . , yk} ⇒ {y} where y is the final output variable). The construction for combine is

well-defined even if the typing restriction is not satisfied, but does not preserve restartability in that

case. We use the non-restartable version in some other constructions. If the typing restriction is

satisfied, then this exactly states that the left part of the concatenation is output-synchronized, and

given that the right data function is converted to a restartable DT, restartability is preserved. The

size of both Acombine(α1,...,αk,op) and Icombine(α1,...,αk,op) are linear in the sizes of the constituent DTs,

so these constructions preserve the quadratic and linear bound on size, respectively.

Prefix sum: prefix-sum. The prefix sum prefix-sum(α1, init , op) is defined only if α1 is defined

(not conflict) on all input. Its value should be op(init , α1(ε)) on the empty string, and then fold op

over the outputs of α1 after that. This is implemented directly using the prefix-sum constructor.

Aprefix-sum(α1,init,op) := Ginit,init ·
(⊕Gop

Aα1

)
.

Here, Ginit,init is a data function to return two copies of init . We need two copies because Aα1
has

one initial state, which needs an initial value (anything in D would work just as well).

Fill operations: fill, fill-with. These operations are ways to fill in the values which are ⊥

and > with other values. This will not preserve restartability, so it is only allowed in top-level

queries; however, it is useful to do this in order to get a query defined on all input data words, so

that comparison β1 comp β2 can be applied. The query fill(α1) always returns the last defined

value returned by α1. For instance, if the sequence of outputs of α1 is ⊥,>, 3,>, 4, 5,⊥, the outputs

of fill(α1) should be ⊥,⊥, 3, 3, 4, 5, 5. The query fill-with(α1, α2), instead of outputting the

last defined value returned by α2, just outputs the value returned by α2 if α1 is not defined. So,

if α2 is the constant always returning 0, the sequence of outputs of fill-with(α1, α2) should be

0, 0, 3, 0, 4, 5, 0.

189



To accomplish these constructions, we first obtain two DTs A+ and A− which are defined when α1 is

defined and when α1 is not defined, respectively: A+ = [Iα1
∈ D] and A− = [Iα1

= ⊥] t [Iα1
= >].

Here, [= ⊥] and [= >] have quadratic blowup, but because we use I in the argument to those

constructions instead of A, A+ and A− only have quadratic size. Now, let fst, snd : D2 → D be the

first and second projection operations. Then we implement the fill operations as:

fill-with(α1, α2) := combine(Aα1
,A+, fst) t combine(Aα2

,A−, fst)

fill(α1) :=⊕G (combine(Aα1
,A+, fst) ‖ A−) ,

where G is a data function which expresses how to update the fill result based on the previous fill

result, and whether Aα1 is defined or not: if defined, we should take the new defined value, and

otherwise, we should take the old fill result.

Comparison: ≤,≥,=. The semantics of β1compβ2 is just to apply comp: for example if comp is <,

and if y1 and y2 are the outputs of β1 and β2 (which are always defined), then β1 < β2 should output

y1 < y2 (which is 0 or 1). Therefore, this construction can be implemented as combine(β1, β2, comp).

We do not need to worry about restartability for temporal queries, and we also don’t define I.

Boolean operators: ∧,∨,→,↔,¬. Similarly, the Boolean operators are implemented by applying

the corresponding operation. For example, ϕ1 ∨ ϕ2 is implemented as combine(ϕ1, ϕ2,∨).

Past-temporal operators: �,�, ·♦,Sw,Ss. These have the usual semantics on finite traces: for

example �(ϕ1) says that ϕ1 was true at the previous item, and is false initially, and ·♦(ϕ1) says

that ϕ1 was true at some point in the trace up to this point (including at the present time). The

implementation of � uses concatenation while the others all use prefix sum. Define A�(ϕ1) := Aϕ1 ·IΣ,

where we define IΣ to be a DT which matches any data word of length 1, and has the identity

semantics (returns the initial value as output). This concatenation is defined because IΣ is restartable;

it has the correct semantics because � means to look at the prefix of the input except the last

character. For the prefix-sum temporal operators, we illustrate only the example of ·♦(ϕ1); the

other cases are similar. Define a data function G which computes the truth value of ·♦(ϕ1) on input

w(σ, d) given its truth value on w and given the truth value of ϕ1 on input w(σ, d) (so, G is just

disjunction). Define A ·♦(ϕ1) := G0,0 · ⊕GAϕ1
, where G0,0 is a data function outputting two copies of

0 (false) to initialize the computation.
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Complexity of QRE-Past evaluation. Our implementations give us the following theorem. In

particular, combining with Theorem 8.3.1, the evaluation of any query on an input data stream

requires quadratically many registers and quadratically many operations per element, independent of

the length of the stream.

Theorem 8.6.1. For every well-typed base-level quantitative query α, the compilation described

above via the constructions of Section 8.5 produces a restartable DT Aα of quadratic size in the

length of the query. For every well-typed top-level quantitative query β or temporal query ϕ, the

compilation produces a DT of quadratic size which implements the semantics.

8.7. Succinctness

8.7.1. Comparison with Cost Register Automata

Cost register automata (CRAs) were introduced in [24] as a machine-based characterization of the

class of regular transductions, which is a notion of regularity that relies on the theory of MSO-definable

string-to-tree transductions. One advantage of CRAs over other approaches is that they suggest an

obvious algorithm for computing the output in a streaming manner. A CRA has a finite-state control

that is updated based only on the tag values of the input data word, and a finite set of write-only

registers that are updated at each step using the given operations. The original CRA model is a

deterministic machine, whose registers can hold data values as well as functions represented by terms

with parameters. Each register update is required to be copyless, that is, a register can appear at

most once in the right-hand-side expressions of the updates.

In [1], the class of Streamable Regular (SR) transductions is introduced, which has two equivalent

characterizations: in terms of MSO-definable string-to-dag (directed acyclic graph) transductions

without backward edges, and in terms of possibly copyful CRAs. Since the focus is on streamability,

and terms can grow linearly with the size of the input stream, the registers are restricted to hold

only values, not terms. This CRA model is expressively equivalent to DTs.

Theorem 8.7.1. The class of transductions computed by data transducers is equal to the class SR.

Proof sketch. It suffices to show semantics-preserving translations from (unambiguously nondeter-

ministic, copyful) CRAs to DTs and vice versa. Suppose A is an unambiguous CRA with states
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Q and registers X. We construct a DT B with states Q × X. In the other direction, suppose

A = (Q,Σ,∆, I, F ) is a DT. We construct a deterministic CRA B with states {⊥, ?,>}Q and vari-

ables Q. A configuration of B consists of a state in {⊥, ?,>}Q and an assignment DQ, and therefore

uniquely specifies a configuration of A. For each state in B and each σ, the transition to the next

state can be determined from the set of transitions ∆σ in A.

However, DTs—even restartable DTs—are exponentially more succinct than (unambiguously non-

deterministic, copyful) CRAs. The succinct modular constructions on DTs are not possible on

CRAs. For example, the parallel composition of CRAs requires a product construction, whereas the

parallel composition of DTs employs a disjoint union construction ( ‖ ). This is why multiple parallel

compositions of CRAs can cause an exponential blowup of the state space, but the corresponding

construction on DTs causes only a linear increase in size.

Theorem 8.7.2. For some (D,Op), (restartable) DTs can be exponentially more succinct than

CRAs.

Proof sketch. Let Σ = {σ1, . . . , σk}, D = N, and Op = {+} (addition). Suppose that Ai for

i = 1, . . . , k is a DT that outputs the sum of all values if the input contains σi, and 0 otherwise.

Notice that Ai can be implemented with two state variables. Now, A is the restartable DT with O(k)

states that adds the results of A1, . . . , Ak. A CRA that implements the same function as A needs

finite control that remembers which tags have appeared so far. This implies that the CRA needs

exponentially many states, and this is true even if unambiguous nondeterminism is allowed.

8.7.2. Comparison with Finite-State Automata

Another perspective on succinctness is to compare DTs with finite automata for expressing regular

languages. To simplify this, consider DTs over a singleton data set D = {?}, with no initial states and

one final state. Each such DT A computes a regular language L(A). If we further restrict to acyclic

DTs, they are exactly as succinct as reversed alternating finite automata (r-AFA). In particular, this

implies that acyclic DTs (and hence DTs) are exponentially more succinct than DFAs and NFAs.

An r-AFA [69, 235] consists of (Q,Σ, δ, I, F ) where the transition function δ assigns to each state in Q

a Boolean combination of the previous values of Q. For example, we could assign δ(q3) = q1∧(q2∨¬q3).

192



An r-AFA is equivalent to an AFA where the input string is read in the opposite order. The translation

from DT to r-AFA copies the states, and on each update, sets each state to be equal to the disjunction

of the transitions into it, where each transition is the conjunction of the source variables. Thus, the

total size of δ is bounded by the size of the DT. For the other direction, we first remove negation in

the standard way; then, conjunction becomes op and disjunction becomes t (multiple transitions

with a single target) in the DT.

It is known [69, 109] that L is recognized by a r-AFA with n states if and only if it is recognized by a

DFA with 2n states. This gives an exponential gap in state complexity between acyclic DTs and

finite automata, both DFAs and NFAs. To see the gap for NFAs, consider a DFA with 2n states

which has no equivalent NFA with a fewer number of states. Acyclic DTs are a special case, so DTs

are exponentially more succinct than both DFAs (uniformly) and NFAs (in the worst case).

8.7.3. Comparison with General Stream-Processing Programs

Finally, we consider a general model of computation for efficient streaming algorithms. The algorithm’s

maintained state consists of a fixed number of Boolean variables (in {0, 1}) and data variables (in

D), where the Boolean variables support all Boolean operations, but the data variables can only

be accessed or modified using operations in Op. The behavior of the algorithm is given by an

initialization function, an update function, a distinguished output data variable and a Boolean output

flag (which is set to indicate output is present). The initialization and update functions are specified

using a loop-free imperative language with the following constructs: assignments to Boolean or data

variables, sequential composition, and conditionals. This model captures all efficient (bounded space

and per-element processing time) streaming computations over a set of allowed data operations Op.

We write Stream(Op) to denote the class of such efficient streaming algorithms. The problem with

the class Stream(Op) is that it is not suitable for modular specifications. As the following theorem

shows, it is not closed under the split combinator.

Theorem 8.7.3. Let Σ = {a, b}, D = N, and let Op be the family of operations that includes

unary increment, unary decrement, the constant 0, and the binary equality predicate. Define the
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transductions f, g : (Σ× D)∗ → D ∪ {⊥} as follows:

L(f) = {w ∈ Σ∗ : |w|a = 2 · |w|b} L(g) = {w ∈ Σ∗ : |w|a = |w|b}

f(w) =


1, if w ↓ Σ ∈ L(f)

⊥, otherwise
g(w) =


1, if w ↓ Σ ∈ L(g)

⊥, otherwise

where |w|a is notation for the number of a’s that appear in w. Both f and g are streamable functions

(i.e. are computable in Stream(Op)), but h = split(f, g, (x, y) 7→ 1) is not.

Proof. Both f and g can be implemented efficiently by maintaining two counters for the number of

a’s and the number of b’s seen so far. On the other hand, any streaming algorithm that computes

h requires a linear number of bits (in the size of the stream seen so far). Specifically, consider the

behavior of such a streaming algorithm on inputs of the form a(aab|aba)nab. On these 2n distinct

inputs, each of length 3n + 3, the streaming algorithm would have to reach 2n different internal

states, because the inputs are pairwise distinguished by reading in a further string of the form bk.

Thus on inputs of size O(n) the streaming algorithm requires at least n bits to store the state. Any

streaming algorithm in Stream(Op), however, employs a finite number of integer registers whose

size (in bits) can grow only logarithmically.

Theorem 8.7.3 suggests that some restriction on the domains of transductions is necessary in order to

maintain closure under modular constructions. We therefore enforce regularity of a generic streaming

algorithm by requiring that the values of the Boolean variables depend solely on the input tags.

That is, they do not depend on the input data values or the values of the data variables. Under this

restriction, a streaming algorithm can be encoded as a DT of roughly the same size.

Theorem 8.7.4. A streaming algorithm of Stream(Op) that satisfies the regularity restriction can

be implemented by a DT over Op. This construction can be performed in linear time and space.

Proof sketch. Consider an arbitrary streaming algorithm of Stream(Op) that satisfies the regularity

restriction. Each data variable is encoded as a DT state that is always defined. Each Boolean variable

b is encoded using two DT states xb and xb̄ as follows: if b = 0 then xb = ⊥ and xb̄ = d?, and if b = 1

then xb = d? and xb̄ = ⊥, where d? is some fixed element of D.
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8.8. Discussion

The original paper did not report on an implementation, but we implemented data transducers later

as a library in Rust and it is available on GitHub1. One direction for future work is to apply this

library for either streaming operator performance bounds, query optimization, or both.

The end goal is something like this: part of the library allows writing a query using a distributed

variant of quantitative regular expressions. The query is then compiled to Timely with an input and

output synchronization schema derived from the query as part of the dataflow representation above.

While this allows for ordering guarantees, one question is how to then derive performance guarantees

for the operator as data transducer performance is only up to the cost of base operations on the base

data types. One possible approach is a combination of empirical and analytical information: using

the state machine representation we can calculate an analytical space and time bound for processing

items, and then using empirical testing we can derive running time bounds for the operators in the

graph. Another approach would be to define an abstract notion of latency and throughput in number

of steps only (without the empirical component), and use this to derive logical verification conditions

related to number of state updates required to process a single input item for each operator (latency),

and number of state updates that can be processed in parallel (throughput).

One notable operation missing from our constructions in Section 8.5 is that of sequential composition,

in which we pass the sequence of outputs of one machine as the input stream to another. This

operation is crucial to many applications, has been included in some previous presentations of

QREs [25, 187], and should be considered in future implementations of this work. We omitted it

here because it introduces notational complexity: in order to define sequential composition, both

the input and output streams need to be tagged (not just the input stream), and (at least) the

final states of a DT need to be associated with output tags. An alternative, which better matches

the implementation of QREs [187] would be to adopt ideas from the theory of symbolic automata

and transducers [100, 91]. In this case, the input and output alphabets would not be tagged, but

would both be simple sequences of data items. An important but difficult question would be to

design a model that, despite the expressiveness of symbolic transitions combined with quantitative

computation, remains closed under sequential composition.

1https://github.com/cdstanford/data-transducers
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CHAPTER 9 : Discussion

In all affairs it’s a healthy thing now and then to hang a question
mark on the things you have long taken for granted.

—Attributed to Bertrand Russell [271]

9.1. Vision

The work in this thesis proposes many abstractions for working with streams. These share some

common themes of streamability, type safety, and determinism. However, in many other ways the

projects have been quite different. A long term vision I have is to integrate them together in a library

for streaming that offers all of the benefits of the various abstractions: compositional programming

over streams, with safety-preserving automatic distribution under the hood, testing capabilities, and

formal performance bounds on operators.

9.2. Short-Term Ideas

We are working an implementation of the type system in Chapter 4 on top of Timely Dataflow [194, 203]

in Rust [256]. Timely is a promising choice because it offers a semantically sound low-level dataflow

representation, and we aim to leverage Rust’s type system for compile-time guarantees, while

generating external verification conditions to prove user programs correct. The verification conditions

should be formal and interpretable by an appropriate tool such as an SMT solver.

As discussed in Section 4.7.1, another short-term direction is to generalize the type system in Chapter 4.

The type system can be studied and generalized in several interesting ways, including Singleton

stream types, as well as incorporating other structured stream combinators such as concatenation of

stream types. More generally, it could include types that can encode patterns over a stream, and not

just sets of events and dependencies between them. These types should also support ways to define

producers and consumers for streams in an incremental way, possibly based on derivatives of regular

expressions [54, 30]. Our existing work on symbolic derivatives [12] could be a promising starting
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point; using symbolic operations is advantageous because patterns over data streams would typically

be symbolic. Derivatives have also been defined for quantitative regular expressions [26].

Another interesting direction is how to incorporate edge computing metrics into the stream processing

framework to achieve network-aware (or geo-distributed) streaming; some ideas are laid out in [10].

9.3. Long-Term Ideas

More generally, there are many opportunities for future work on distributed and data processing

systems in the online setting.

Verified dataflow programming. Today’s online dataflow programming frameworks make it too

easy for software engineers to write incorrect code. To prevent this, I am interested in designing a

library for verified dataflow. This effort would build on my work in correctness and performance

guarantees for online applications, but would require extending to other families of guarantees

(including fault tolerance) and to check the guarantees statically through an SMT or proof assistant

back-end. The desired library has to (1) formally specify the required semantics (incorporating

partial order requirements, faults, and performance bounds) and (2) expose a usable API with

minimal proof burden on the end user. Similar to existing dataflow APIs, a program would be

built by chaining together operators in sequence and in parallel (or even connected in cycles), but

each of these operators should be annotated with formal requirements on its behavior, and these

requirements should compose. One challenge is how to ensure that the formal requirements are met

by the operator logic for user-defined, stateful operators: one approach would be to generate external

verification conditions based on the formal requirements which verify the user’s code is satisfactory.

Privacy and security. Researchers are only beginning to explore the question of what privacy

and security mean for data-intensive online applications. In cases where most data is aggregated,

compressed, or thrown away after an initial pass, what are the appropriate definitions of privacy,

including differential privacy, and how can they be ensured? In particular, the differential privacy

of streaming algorithms with constant or near-constant space usage should be investigated and

quantified. This research would have a direct impact on real-world privacy guarantees if implemented

in today’s software. In the security of online applications, assumptions need to be articulated on input

data (e.g., well-formed input), data rates, and node failures in order to provide security guarantees. I

am also interested in the design and implementation of lightweight specification languages for privacy
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and security in online and cloud applications. All of these questions should be investigated from the

spectrum from theory to practice: developing new theories and formal abstractions that are missing

in this space, and demonstrating their implementation and utility through practical tools.

Query languages. Decades ago, systems and databases researchers envisioned a world where users

implement application logic with simple queries over online data (e.g., using SQL and its variants).

The increasing complexity of application logic has moved us steadily away from that goal; in practice,

most online applications require very specialized development by distributed systems experts, and

even programs written in higher-level frameworks often involve custom logic in the form of stateful

functions. Today, we need higher-level abstractions which serve the same purpose but are intuitive,

have safe semantics and are not arbitrary user-defined code. Allowing users to describe queries in

English would be an even more ambitious goal interdisciplinary with natural language processing. I

am currently investigating the design of query languages built on top of stream processing systems

to make online applications such as distributed health monitoring systems simply a matter of writing

a query and passing it to an online system.
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APPENDICES

Well-chosen, non-frivolous epigraphs can enhance a thesis.

—Dave Clarke [249]

Appendix A. Word Clouds

Here is a word cloud generated from all the text in this thesis. I used the wordcloud_cli Python tool1

on all .tex sources and sed to crudely filter out LaTeX-related words. In particular, I filtered out

comments (anything after %), commands (words starting with /), and selected arguments (contents

inside \begin, \end, \label, \ref, \cite, etc.).

And here is a word cloud for the references (bibliography) file. This only includes text in the title=

and author= fields.

1https://github.com/amueller/word_cloud
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Appendix B. Epigraph Outtakes

Elegance is not a dispensable luxury but a quality that decides
between success and failure.

—Edsger Dijkstra

Definitions belong to the definers, not the defined.

—Toni Morrison

A good concept is one that is closed (1) under arbitrary composition
(2) under recursion.

—Gilles Kahn, 1974 [164]

The restriction of finiteness appears to give a better approximation
to the idea of a physical machine. Of course, such machines cannot
do as much as Turing machines, but the advantage of being able to
compute an arbitrary general recursive function is questionable,

since very few of these functions come up in practical applications.

—Rabin and Scott

Almost every problem that you come across is befuddled with all
kinds of extraneous data of one sort or another; and if you can
bring this problem down into the main issues, you can see more

clearly what you’re trying to do.

—Claude Shannon
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