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ABSTRACT 

REPLICATION IN MASSIVE OPEN ONLINE COURSE RESEARCH  

USING THE MOOC REPLICATION FRAMEWORK 

Juan Miguel L. Andres-Bray 

Ryan S. Baker 

The purpose of this dissertation was to develop and use a platform that facilitates Massive Open 

Online Course (MOOC) replication research. Replication and the verification of previously 

published findings is an essential step in the scientific process. Unfortunately, a replication crisis 

has long plagued scientific research, affecting even the field of education. As a result, the validity 

of more and more published findings is coming into question. Research on MOOCs have not 

been exempt from this. Due to a number of limiting technical barriers, MOOC literature suffers 

from such issues as contradictory findings between published works and the unconscious 

skewing of results caused by overfitting to single datasets. The MOOC Replication Framework 

(MORF) was developed to allow researchers to bypass these technical barriers. Researchers are 

able design their own MOOC analyses and have MORF conduct it for them across its massive 

store of MOOC data. The first study in this dissertation, which describes the work that went into 

building the platform that would eventually turn into MORF, conducted a feasibility study that 

aimed to investigate whether the platform was able to perform the tasks it was built for. This was 

done through the replication of previously published findings within a single dataset. The second 

study describes the initial architecture of MORF and sought to demonstrate the platform’s scaled 

feasibility to conduct large-scale replication research. This was done through the execution of a 

large-scale replication study against data from an entire University’s roster of MOOCs. Finally, the 

third study highlighted how MORF’s architecture allows for the execution of more than just 

replication studies. This was done through the execution of a novel research study that sought to 

analyze the generalizability of predictive models of completion between the countries present in 
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MORF’s expansive dataset—an important issue to address given the massive enrollment 

numbers of MOOCs from all around the world.  
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CHAPTER 1: INTRODUCTION 

Replication, or the verification of an original study’s findings in order to assess 

their robustness and generalizability (Brandt et al., 2014), is a crucial step in scientific 

inquiry, enabling researchers to better understand the reliability, validity, and merit of a 

study’s findings. Despite its importance, however, replication studies remain rare in the 

social sciences, with only 1.07% of published psychology studies from 2007 to 2012 

representing an attempt at replication (Makel, Plucker, & Hegarty, 2012, p. 537). 

Replication is even rarer in education research. A recent survey of the 100 education 

journals with the highest 5-year impact factor ratings found that only 0.13% of the 

studies published involved replication (Makel & Plucker, 2014). There are several 

reasons for this: in addition to the fact that many educational research studies are 

difficult to reproduce due to issues of cost, researchers are also faced with access 

issues in terms of the original studies’ design, method, and data. As such, a growing 

body of research across various fields of science have begun advocating for and 

implementing open science practices. Open Science (Fecher & Friesike, 2014) is a 

movement that seeks to increase transparency and access throughout each phase of 

the scientific process: study design, data collection, data analysis, and publication. One 

of the most urgent problems this movement seeks to address is the failure to replicate 

previous findings. 

Online learning provides a new source of data that provides the opportunity to 

bridge the replication gap in the field of education research through the use of open 

science practices. Perhaps the largest opportunities for replication research in online 

learning come from Massive Open Online Courses (MOOCs), which afford millions of 

learners around the world free access to a wide variety of online course topics taught by 
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professors from prestigious universities (Yuan & Powell, 2013). MOOCs’ open and 

online nature afford various stakeholders opportunities to advance the field of education. 

MOOCs are able to reach massive audiences who would not normally have had access 

to quality educational materials. The University of Pennsylvania’s offering of MOOCs, for 

example, has reached learners from over 150 countries in the world. Furthermore, 

MOOCs are known to draw in enrollment numbers in the tens of thousands per session 

(Jordan, 2014), leading to very rich and diverse datasets. Because of this, MOOCs have 

given instructors and researchers an unprecedented opportunity to study learner 

behavior at scale, affording them the opportunity to improve their course designs to 

better accommodate different cohorts of learners. Despite the size of the data generated 

by MOOCS, however, the majority of it are subject to strict regulations that seek to 

protect the privacy of learner records, i.e., the data is not freely accessible. This is a key 

reason why replication in MOOC research is not prevalent in the field.  

The MOOC Replication Framework (MORF), the development of which is 

documented in this dissertation, seeks to allow researchers to conduct replication 

research without being hindered by technical barriers through its implementation of open 

science practices involved in data collection and analysis. It seeks to afford researchers 

the opportunity to conduct end-to-end replication studies by providing them 1) access to 

massive and diverse MOOC datasets and the computational power necessary to 

conduct large-scale analyses, and 2) the ability to archive and fully preserve their entire 

codebase and runtime environment, for easy review and reuse by external research 

teams. 

In the following subsections, I discuss replication, its necessity in scientific 

research, and the replication crisis in more detail. I discuss the Open Education Science 
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movement (van der Zee & Reich, 2018) and how it seeks to address this crisis by 

making scientific research and data more easily accessible. I then discuss how MOOCs 

and MOOC data can be leveraged in addressing the replication crisis in online learning 

research. I recount a brief history of MOOCs and discuss the kind of scholarship that 

formed within the field, the majority of which has been centered around the notion of 

learner success and its different operationalizations. I then discuss the limitations that 

MOOC research continues to face in terms of generalizability to new and different data 

and contexts. Next, I explain how the replication crisis manifested in MOOC research, 

and the technical barriers that have greatly impeded the field’s replication efforts. Finally, 

I discuss the MOOC Replication Framework (the focus of this dissertation) as a solution 

to these barriers, its open science underpinnings, the goals behind its development, and 

what its key features and affordances are. 

Replication 

The repeated verification of an original study’s findings is a crucial step in 

scientific inquiry, enabling researchers to better understand the reliability, validity, and 

merit of a study’s findings. This commonly takes the form of either a reproduction or a 

replication. A study is deemed reproducible if a research team is able to obtain its 

original results through the execution of its original method and on its original dataset 

(Goodman, Fanelli, & Ioannidis, 2016). “Reproducibility is a minimum necessary 

condition for a finding to be believable and informative” (Bollen, Cacioppo, Kaplan, 

Krosnick, & Olds, 2015, p. 4). On the other hand, a study is replicable if a research team 

is able to employ the original methods as closely as possible on a new dataset in order 

to evaluate the robustness and generalizability of the original findings (Patil, Peng, & 
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Leek, 2016). Gardner, Yang, and colleagues (2018) posit that replication requires 

reproducibility, and because replications are more feasible in fields where data is not 

easily accessible by researchers outside the original team – a situation still the case in 

much of education, despite open data initiatives – the studies in this dissertation will 

focus on replication and replication studies. 

Replication is the verification of an original study’s findings in order to assess 

those findings’ robustness and generalizability (Brandt et al., 2014), and is essential in 

scientific research. Replications are used to illustrate that a study’s findings can be 

attained by different researchers in different contexts. “It is the proof that the experiment 

reflects knowledge that can be separated from the specific circumstances (such as time, 

place or persons) under which it was gained” (Schmidt, 2009, p. 3). It is the repeated 

verification of scientific results on new data, and is necessary in order to solidify scientific 

knowledge, guard against spurious results, discover the potential limitations of findings, 

and use experimental results to inform theory. Schmidt (2009) defines two notions of 

replication: direct and conceptual. Direct replications seek to validate an original study’s 

findings through repetition of its original methodology. Conceptual replications, on the 

other hand, seek to test an original study’s hypothesis or validate its findings through the 

use of different methods. 

The Replication Crisis 

Despite the importance of replication studies, they remain rare in education 

research. A 2013 survey of the 100 education journals with the highest 5-year impact 

factor ratings found that only 0.13% of studies published (221/164,589) involved 

replication (Makel & Plucker, 2014). Of these 221 studies, only 28.5% were direct 
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replications, or replications where the original study’s entire methodology was followed. 

69.2% of these were conceptual replications, or replications where different methods 

were used to analyze the original study’s hypotheses, while the remaining 2.3% had 

characteristics of both. Finally, almost half of the replication studies (48.2%) were 

conducted by the same research team that conducted the original study, and author 

overlap was found to relate significantly to the successful replication of a study’s original 

findings (Makel & Plucker, 2014, p. 5). The survey report posits that this may be due to 

authors of such replication studies benefitting from the experience from having 

conducted the original study. This may also be due to their easier access to the tools 

and data sources used. Whatever the case, this difference raises concerns regarding the 

introduction of and the need to account for potential biases in such replication studies.  

Recent evidence has shown that issues with replication are also widespread in 

the field of big data research, which covers a variety of academic disciplines including 

machine learning, artificial intelligence, and MOOC research. In a study conducted on 

400 previously published works from leading artificial intelligence venues, none of the 

papers analyzed reported all details necessary to fully replicate their work. In fact, only 

about 20-30% of the components needed to replicate the original work were reported 

(Gundersen & Kjensmo, 2017). In a study conducted on 30 previously published works 

on text mining, for example, only one of the studies provided any technical means of 

replicating their experiment, i.e., source code or an executable program (Olorisade, 

Brereton, & Andras, 2017). Lack of access to data, computational capacity, and 

implementation methods were reported as barriers to replication in the works analyzed. 

In a survey of 613 published works on computer systems, the published code 

accompanying the papers failed to run in 20% of cases. In total, 75.1% of studies 
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investigated in the study were not verifiable or replicable using the artifacts provided in 

the publication (Collberg et al., 2014).  

Studies posit that this severe lack of replication studies in education is due to 

several reasons, such as submission bias (Mackel & Plucker, 2014; Spellman, 2012), 

where neither successful or unsuccessful replication studies are publishable due to the 

focus of most publication venues on novel research; funding bias, or the fact that many 

educational research studies are simply too costly to reproduce; and methodological 

differences, where replication studies have to contend with differences in study 

populations, idiosyncrasies between the conditions set in the original study, and current 

instructional conditions. The lack of replication leads to a surprisingly large proportion of 

spurious results being widely reported, as reported on by the Open Science 

Collaboration (OSC; 2015). In their report, the OSC, which is an open collaboration of 

scientists that seeks to improve scientific values and practices, replicated a hundred 

studies from three top psychology journals. Their study found that 64% of the 

replications conducted failed to obtain statistically significant results. These findings 

highlight the importance of replication research and the need to validate published 

findings. As such, a growing body of research has begun advocating for and 

implementing open science practices. 

Open Education Science 

Open Science is a term used to describe various philosophies and goals 

regarding the future of knowledge creation and dissemination (Fecher & Friesike, 2014). 

In the pursuit of improving the quality of published science, proponents of Open Science 

seek to increase transparency and access across various fields of research through the 
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use of digital technologies and new practices. Open Education Science (van der Zee & 

Reich, 2018) is a movement that seeks to address problems of transparency and access 

specifically in education research, acknowledging the field’s “diverse disciplinary 

traditions and [its] commitment to impact in policy and practice” (p. 2). This movement 

seeks to address such issues as publication bias, lack of access to original published 

research, and the failure to replicate. The practices proposed by Open Education 

Science fall into four categories, each related to a phase in the education research cycle: 

1) open design, 2) open data, 3) open analysis, and 4) open publication.  

Open Design relates to practices involved in the creation of a study’s design and 

scope. These practices seek to make such processes more accessible to external 

readers, affording them an accurate account of the study’s hypothesis, method, and 

analysis plan, and how these evolved over the course of its execution. Such practices 

can aid in the prevention of gaming the scientific system, where hypotheses are 

generated after the study’s significant results are found. To achieve this, researchers 

from various fields observe a practice called preregistration (Gehlbach & Robinson, 

2018), a practice in which a study’s design is documented and shared publicly before it 

is conducted.  

Open Data relates to practices involved in data collection, storage, and sharing. 

These practices aim to make data and other research materials freely accessible on 

public repositories for the purposes of replication, evaluation, and scrutiny by external 

research teams or the public. Sharing data on a by-request basis has been practiced for 

decades (e.g., Wollins, 1962), but has been proven ineffective (Wicherts, Borsboom, 

Kats, & Molenaar, 2006). With the advent of newer technologies, researchers have 

begun exploring secure online data storage, where data can be freely accessed by 
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interested parties. As will be discussed in more detail in the following subsections, 

sharing data in its entirety is not always possible due to strict privacy restrictions, which 

seek to protect learner or subject confidentiality. As such, part of these practices involve 

researchers making decisions regarding what data can be shared and with whom it can 

be shared. 

Open Analysis relates to practices involved in “the systematic reproduction of 

analytic methods conducted by other researchers” (van der Zee & Reich, 2018, p. 9). 

This is commonly practiced in various fields through code sharing (e.g., animal welfare: 

Wicherts, 2017; biomedicine: Page et al., 2018), where the source code used in the 

execution of a study’s analysis are uploaded and made publicly available on online 

repositories like GitHub. Recently, education researchers have also begun using 

containerization technology, which saves a user’s entire runtime environment into an 

executable virtual machine, complete with source code, dependencies, and operating 

system (e.g., Gardner et al., 2018b). This allows for more accurate and seamless 

execution of the original study’s methodology. 

Finally, open Publication relates to practices involved in increasing public access 

to published work that would otherwise be behind a paywall. Several approaches to 

open publication include the uploading and sharing of whitepapers and publication 

preprints (e.g., Page et al., 2018)—manuscript drafts that have yet to be peer 

reviewed—on open platforms like arXiv (McKiernan, 2000); and post-publication peer 

review (Hunter, 2012), a process by which published works are indexed based on merit 

and impact. 
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Massive Open Online Courses 

Online learning provides the opportunity to bridge the replication gap in the field 

of education research through the use of open science practices. Due to their scale and 

accessibility, Massive Open Online Courses, or MOOCs, present the largest 

opportunities for replication research in online learning. The term Massive Open Online 

Course (MOOC) was coined by Dave Cormier and Bryan Alexander in reference to an 

online course taught by Stephen Downes and George Siemens (Cormier, 2008; Fini, 

2009). Downes and Siemens taught an online course on connectivism, a learning theory 

that highlights the importance of sharing and connecting with peers when learning in 

online education environments (Siemens, 2005), which attracted over 2,200 registrants 

(Fini, 2009). It was dubbed the first MOOC, specifically the first cMOOC, or connectivist 

MOOC. The cMOOC model places a premium on forming and fostering connections 

between learners as a form of knowledge building (Morrison, 2013). It builds on existing 

work on “networked practices… and distributed, many-to-many channels of 

communication” (Stewart, 2013, p. 230), as opposed to the more traditional teacher-

centric classroom. In cMOOCs, instructors typically encourage their students to engage 

in networking activities, such as discussing course material on social media platforms, 

posting and responding on blogs, and contributing to community wikis. 

The term MOOC was next used to describe a set of three courses that were 

offered by Stanford University in Fall 2011 on artificial intelligence, databases, and 

machine learning (Cooper & Sahami, 2013). These three experimental MOOCs were 

offered by the University in an effort to broaden the accessibility of their courses. These 

three MOOCs attracted over 310,000 registrants from more than 190 countries 

(Rodriguez, 2013; Jordan, 2014), and had over 43,000 completers (Ng & Widom, 2014), 
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or learners who completed all graded course materials and earned a final grade greater 

than or equal to the course passing mark (typically 70-75%). Meanwhile, the 

Massachusetts Institute of Technology (MIT), which had been offering open online 

course content since 2001 to much smaller audiences (Schroeder, 2012), announced 

and launched MITx, an initiative that offered a wide range of courses and credentials for 

those who completed, in the same year (Rodriguez, 2013). These courses followed a 

model that differed from Downes and Siemens’ cMOOC–these were instructor-directed 

and were modeled on the traditional classroom, as seen in the course materials and 

teaching methods they used (Morrison, 2013). These kinds of courses, which were later 

labeled xMOOCs or eXtended MOOCs, focused more on the “delivery of course content 

than on the participatory exploration characterized by cMOOCs,” (Stewart, 2013, p. 230) 

and relied on “information transmission, computer-marked assignments, and peer 

assessment” (Rodriguez, 2013, p. 71). Despite their difference from cMOOCs, these 

online courses continued to be referred to as MOOCs due to their massive and open 

nature. 

The xMOOC model dominated the MOOC space and MOOC research (Bozkurt, 

Akgün-Özbek, & Zawacki-Richter, 2017) due in large part to the commercial MOOC 

platforms that sprung from the Stanford and MIT MOOCs. In the years that followed the 

launching of these MOOCs, universities around the world began creating their own sets 

of MOOC offerings. By the end of 2013, over a hundred institutions had already 

partnered with leading MOOC providers like edX (Finkle & Masters, 2014) and Coursera 

(Haywood & Macleod, 2014). Since then, the number of institutions offering MOOCs has 

ballooned to more than 800 around the world, offering a total of more than 9,000 unique 

courses and pulling in a total of more than 52 million registered users across platforms 



  11 
 
 
(Shah, 2019). The magnitude of this offering and the resulting data gathered by these 

courses have created new opportunities for various MOOC stakeholders to study 

learning at scale and improve their own courses to better accommodate their diverse 

cohorts of learners (Margaryan, Bianco, & Littlejohn, 2015). 

The Attrition Problem 

In their earlier years, MOOCs were envisioned to revolutionize and cause a 

“disruptive transformation” in higher education (Reich & Ruipérez-Valiente, 2019, p. 130) 

due to the opportunity afforded to institutions and instructors to reach a global audience 

(Lowenthal, Snelson, & Perkins, 2018). Universities began offering MOOCs as 

alternatives to on-campus for-credit courses (Jaschik, 2013; Sandeen, 2013) that remote 

learners would otherwise not have access to. In 2016, edX began offering what they 

termed MicroMasters programs, which were series of graduate-level MOOCs that were 

grouped together in sequence to earn graduate-level credentials or for the purposes of 

more targeted career advancement (De La Roca et al., 2018). As such, it became 

accepted among many instructors and researchers that the primary goal in a MOOC 

should reflect the goal of a traditional college classroom: to gain mastery of the content 

of the course, traditionally demonstrated by earning a passing mark and completing the 

course (Breslow et al., 2013).  

Because both traditional classroom and MOOC instruction had these similar 

goals and metrics of success, both needed to provide learners enough support in order 

to achieve them. The differences between these two contexts, however, are that, unlike 

traditional classroom instruction, MOOCs do not require physical presence at a lecture, 

were mostly offered for free (in early years), and are open to participants with varying 
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educational goals and backgrounds, seldom having any prerequisites (Rivard, 2013). 

MOOC instructors and course teams needed to put in significantly more effort in 

reaching out to and supporting their thousands of learners (Almatrafi, Johri, & Rangwala, 

2018; Chandrasekaran, Ragupathi, Kan, & Tan, 2015), as opposed to teachers needing 

to reach and support the learners they had in the classroom. Because MOOCs were 

initially instructor-paced, i.e., content was released on a weekly basis, learners had to 

engage with the course throughout its duration in order to engage with all graded 

assessments. As such, learners coming into these MOOCs were expected to engage 

with the course, but also had complete control of the amount of time they were willing to 

invest in the endeavor. With little to no follow-up support from the majority of instructors 

or course teams, learners were bound to fall through the cracks. 

Since their emergence, MOOCs have reported low completion rates of around 

less than 10% (Rivard, 2013; Rai & Chunrao, 2016), regardless of class size. For 

example, Duke University’s MOOC on Bioelectricity in 2012 attracted over 12,000 

registrants, but only 313 learners (2.6% of the cohort) completed (Onah, Sinclair, & 

Boyatt, 2014). Similarly, the University of Toronto’s MOOC on Statistics had over 60,000 

registrants, but only about 3,000 completers (5% of the cohort) (Gibbs, 2014). In one of 

the earliest comprehensive analyses on completion in MOOCs, Jordan (2014) looked at 

the completion numbers of 221 courses, gathered from multiple sources, such as news 

articles, academic reports, and social media. 78 institutions were present in the report, 

and the majority of the courses were hosted on either Coursera (54%) or Open2Study 

(19%). Of the 221 courses investigated, the author found that completion varied from 

0.7% to 52.1%, with a median completion rate of 12.6%. The majority of learners were 

not getting the support they needed to stay engaged—likely due to the learners’ varying 
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goals in enrolling in these MOOCs (as will be discussed in later subsections)—and this 

often resulted in disengagement with the course after just one or two weeks (Jordan, 

2014). As such, researchers turned their focus to better understanding what successful 

MOOC learners looked like and how they could best support the rest of their learners. 

Successful MOOC Learners 

In finding ways to address the attrition problem, which continues in MOOCs and 

MOOC research today (e.g., Chen, Sonnert, Sadler, & Malan, 2020; Lemay & Doleck, 

2020), and bolster learner retention and completion rates, the majority of MOOC 

research turned to improving learner success in MOOCs, having initially operationalized 

success as earning a course completion certificate. Researchers investigated features 

related to individual courses, universities, platforms, and learners (Adamopoulos, 2013) 

as possible explanations of why learners were successful or not. Studies investigated 

different features relating to the MOOC’s context and the MOOC experience and how 

these related to success. Studies looked at institution features, like the prestige of the 

offering university (Ospina-Delgado & Zorio-Grima, 2016; Milligan & Littlejohn, 2017); 

course features, like perceived effectiveness of content (Hone & El Said, 2016); platform 

features, such as the website on which the course is offered (Tsironis, Katsanos, & 

Xenos, 2016); and lecture video features, such as video length (Guo, Kim, & Rubin, 

2014) and effectiveness of in-video quizzes (Brinton, Buccapatnam, Chiang, & Poor, 

2016; Kovacs, 2016).  

The majority of MOOC scholarship, however, has been more geared towards 

studying learner-related behaviors, how these related to course completion, and how the 

good behaviors could be supported, and the bad behaviors curbed. Studies investigated 
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learner interactions with different sections of the MOOC, like discussion forums, peer 

assessments, and optional course surveys, and analyzed how these related to their 

likelihood to complete or drop-out from the course. Behavior in discussion forums, 

including posting behavior, was of interest to researchers. A study that investigated the 

amount of time spent interacting with different course resources in an edX MOOC on 

Electronics found that spending more time in the discussion forums (and less 

surprisingly, the graded assessments) were significant predictors of higher final scores 

(DeBoer et al., 2013). In another study conducted on an edX course on Big Data in 

Education, which investigated different forum posting-related behaviors, the researchers 

found that posting more frequently and writing longer posts than average were 

significantly predictive of whether or not a learner completed the course (Crossley et al., 

2015). In yet another study, where discussion posts were automatically classified for 

confusion, a survival analysis was conducted to quantify the effect of confusion on 

learner dropout (Yang, Wen, Howley, Kraut, & Rosé, 2015). They found that the more 

confusion a learner expressed or was exposed to, the more likely they were to dropout. 

A number of studies also investigated how interactions in peer assessments 

related to learner completion. A study, for example, that was conducted on two 

consecutive Coursera MOOCs on Human-Computer Interaction investigated grader 

reliability, or how closely, on average, a learner grades their peer’s assignments to its 

true score, by analyzing over 63,000 peer grades (Piech et al., 2013). The authors 

present peer grading as a solution to address the limitation within MOOCs to evaluate 

and provide feedback to more complex, open-ended problems. However, they also 

report that previous studies on the topic had found high numbers of unreliable peer 

graders who give grades over 10% lower than corresponding grades given by course 
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staff. In their own study, they found what they dubbed snap graders, who spent 

significantly less time grading and were more likely to inflate the marks they gave. Being 

able to foster a network of reliable peer graders, or in the case of this study, creating an 

algorithm that is able to correct for peer grader biases and reliabilities, affords instructors 

a scalable solution to peer grading in MOOCs. The study found that the more reliable a 

learner was, the more likely they were going to continue engaging with the course.  

Finally, a number of studies also looked at survey responses, though these kinds 

of studies were conducted and published less frequently because surveys were not built-

in features in MOOCs and participation was almost always optional. A study that 

investigated Likert-scale survey responses on learner background and motivations in a 

Big Data in Education MOOC found that average self-reported self-efficacy, intention to 

follow instructor pace, and interest in course content as motivation for taking the course 

were significantly higher among completers than non-completers (Wang & Baker, 2015). 

Another study, which investigated motivations for enrolling in MOOCs, found that 22% of 

survey respondents who dropped out initially intended to complete the course, but were 

ultimately unable to due to academic and personal reasons (Gütl, Rizzardini, Chang, & 

Morales, 2014). A big majority of these respondents indicated that changes in their job, 

insufficient time, difficulty with the subject matter and unchallenging activities are some 

of the reasons for the drop-out. Yet another study, which was conducted on a MOOC on 

Learning How to Learn, surveyed its learners on their attitudes towards some of the 

course’s instructional design components (Jung, Kim, Yoon, Park, & Oakley, 2019). 

They found course content and structure to be significant predictors of the learners’ 

sense of progress towards course completion. 
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Some took these studies a step further by taking previously published findings 

and creating and implementing intervention ideas that sought to draw disengaged 

learners, or learners who had already dropped out, back to the course (Whitehill, 

Williams, Lopez, Coleman, & Reich, 2015). The researchers created detectors to find 

learners who were likely to drop out of the course, split them into control and 

experimental groups, and sent only the latter emails on a weekly basis with questions 

regarding their intent to continue with the course. Learners in the control condition did 

not receive emails and were instead used to compute the accuracy of their stopout 

classifier. These emails resulted in a significant difference in comeback rate, or the rate 

at which the learners came back to the course after getting and responding to the 

emails, between the two conditions. 

Beyond Course Completion 

MOOCs were designed as a platform wherein knowledge could be created and 

applied within the span of six to 12-week courses, with the hope that learning would 

transfer, and could thus be applied beyond it. When research into the improvement of 

course completion did not help in improving completion rates as hoped, instructors and 

researchers began investigating other forms of success, both internal and external to a 

course. Some papers, while also centering their investigations on the learner, instead 

looked at learner attributes, such as demographics (Dillahunt, Chen, & Teasly, 2014; 

Zhang et al., 2016), seeking to offer insights into the profiles of learners that take these 

courses. Dillahunt and colleagues (2014) for example, studied the demographic 

background of learners who had reported in a survey that they were taking the course 

due to the inability to afford more formal education. They found that 28% of these 
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learners had less than a 4-year degree, which was significantly different from the 15% of 

the rest of their survey respondents. Another study, by a team at Penn State University, 

investigated the demographic breakdown of their learners based on their mode of 

communication preference with their peers, i.e., synchronous (live chat) vs. 

asynchronous (blog or forum posts) (Zhang et al., 2016). They found that learners who 

were more proficient in English preferred asynchronous interactions, male learners 

significantly preferred synchronous communication than female learners, and that as 

educational attainment increased, preference for synchronous communication 

decreased. While research on learner behaviors sought to find ways to improve learner 

success (e.g., promote good behaviors and curb bad behaviors), these kinds of studies 

instead sought to offer recommendations for how future courses can be designed and 

improved on to better support the profile of the less successful learners. 

MOOCs have more recently been used to augment traditional learning 

environments through blended course designs, where MOOCs were combined with 

other forms of instruction. A recent study by Orsini-Jones & Carrascosa (2019), for 

example, reported on how the FutureLearn MOOC Becoming a Better Teacher was 

combined with English Language Teaching programs as a blended offering to learners. 

Participating in this study reportedly helped learners feel part of a global community 

(through asynchronous interactions afforded by the MOOC) and see the value of online 

collaboration in enhancing their own teaching practice. Another recent study by Wu and 

colleagues (2019), which sought to support affective development in its learners, 

combined a nine-week entrepreneurial MOOC and blended curriculum design. Their 

blended approach involved learners watching video lectures on the MOOC followed by 

face-to-face group discussions facilitated by the instructor in local classrooms. They 
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concluded that blended MOOC-classroom designs can be effective, but were a time-

consuming process. 

Beyond the MOOC 

Further studies investigated learner activities outside the MOOC platform. Such 

studies postulated that deeper insights on learning could be drawn when considering 

data outside of the course. Some studies offered predefined communities within external 

platforms as additional resources for their learners. For example, researchers from the 

University of Austin investigated the use of a Facebook group and Twitter feed 

associated with the course as a means of augmenting what is learned within the MOOC 

(Liu, McKelroy, Kang, Harron, & Liu, 2016). These additional social media spaces were 

offered as an optional means for learners to gather and discuss outside the course. 

Their quantitative and qualitative analyses of the users’ feedback and usage found that 

these social spaces provided a place for their learners to connect with their peers, share 

additional resources, and provide a space to share personal feelings or reflections in an 

informal and quick manner. 

Other studies also investigated the learners’ use of external platforms not offered 

in or provided by the course. Chen and colleagues (2016) investigated the activity of 

more than 320,000 learners on various Social Web platforms, such as StackExchange, 

GitHub, Twitter, and LinkedIn, as a way of supplementing data from the MOOC platform. 

They tracked the learners’ interactions with these platforms during and after the course. 

They sought to identify sets of traits and user attributes that either drew learners towards 

specific MOOC topics or were highly relevant to the online learning experience. The 

findings in their paper are broken down by Social Web platform, each detailing the profile 
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of learners found on these the respective platforms. On Twitter, for example, they found 

that most of their learners on the platform were in the 20–30-year-old age range and 

were mostly male (89%). When analyzing their learners on StackExchange, the authors 

studied the learners’ question/answering behavior during and after a MOOC. They found 

that questions relating to Haskell, the programming language used in the MOOC 

analyzed, dropped significantly on StackExchange after the course ended, but the 

answering remained stable, noting that their learners had turned more and more into 

answerers over time. The ability to track learners over time, beyond their interactions 

within the course, enabled them to investigate the impact of MOOCs on a learner over a 

much longer term.  

Similarly, a number of studies that have looked into the longitudinal impact of 

MOOCs on learner success recognize that post-MOOC success can be difficult to 

measure. These studies posit that the definition of success depends on the learner’s 

own goals and motivations, as many MOOC learners do not consider course completion 

to be their primary goal (Belanger & Thorton, 2013). Career advancement has also been 

cited among the primary goals of MOOC learners (Trumbore, 2020; Wang & Baker, 

2018). Wang and Baker (2018) conducted a longitudinal study that investigated post-

course career advancement. They looked at whether participants in an educational data 

mining MOOC ended up either joining a scientific community or submitting a paper to 

publication venues relevant to the course’s topic area, dubbed career advancers, and 

analyzed how these types of learners interacted with the course during its run. Trumbore 

(2020) conducted a large-scale analysis investigating learner motivation and career 

benefits across 50 Wharton MOOCs. The study looked at self-reported job-related 

benefits, like receiving a promotion, obtaining their first job, getting a raise, or starting 
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their own business. Both studies found that career advancers earned higher final scores 

than non-advancers and were more likely to have completed the course. They also 

found that advancers interacted more frequently with various course resources, like 

lecture videos, graded assessments, and discussion forums, though they surprisingly 

posted less often (Wang & Baker, 2018). Finally, Trumbore (2020) found that learners 

without college degrees were more likely to experience career benefits than those with 

degrees. 

Limitations of MOOC Research 

Despite the abundance of research on success and what success looks like in 

MOOCs, research in the field continues to suffer from limitations in infrastructure and 

access to data. Most notably, the majority of MOOC research is limited to a small 

selection of courses, often ones taught by the researchers themselves. This is due in 

most part to the lack of access to other data, as well as challenges to researchers in 

working with datasets much larger than those they are used to. While MOOCs do 

provide a great venue for conducting replication research due to the massive amount of 

data they generate, the majority of this data are subject to strict regulations that seek to 

protect the privacy of learner records. This lack of access to other, more diverse 

datasets can lead to issues of generalizability and replicability. Chapter 3 describes 

some instances of inconsistency between published works in recent years, where small-

scale studies report contradictory findings. 

While there has been some interest in data sharing within MOOCs, data-related 

barriers still persist in the field due to strict privacy regulations. Universities have access 

to data from hundreds of their own MOOCs, for example, but are unable to make them 
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publicly available, giving full access to only each session’s respective course team. EdX 

introduced the Research Data eXchange (RDX), which sought to make a limited amount 

of data from multiple universities accessible to researchers at other universities1. 

However, they also restricted the kinds of data available due to concerns of privacy, 

including key data necessary to replicating many previously published research, like 

demographic information and discussion forum posts, which commonly contain 

identifiable information2.  

Other platforms have since been developed, which seek to afford researchers 

the opportunity to improve replication and thus, validity, in MOOC research. The 

moocDB database schema was proposed and developed as a means of standardizing 

the vast amounts of data generated by multiple MOOC platforms (Veeramachaneni, 

Dernoncourt, Taylor, Pardos, & O’Reilly, 2013). It was mentioned heavily in MOOC 

scholarship as a solution to data sharing standards (e.g., Baker & Inventado, 2014; 

Pournaras, 2017; Sun et al., 2019), but was rarely used except in studies involving its 

developers (Han, Veeramachaneni, & O’Reilly, 2013). Its last published use was in (Han, 

2014).  MoocRP is an analytics tool that was developed with a goal of supporting 

replicable research (Pardos & Kao, 2015). It aimed to facilitate the replication of 

analyses in new MOOCs. However, moocRP did not achieve widespread use and its 

source code and documentation have not been updated since 2016. 

The MOOC Replication Framework, or MORF, was the first platform to offer 

researchers both the computational power to conduct fully-replicable research and 

 
 
1 https://edx.readthedocs.io/projects/devdata/en/latest/ 
2 https://edx.readthedocs.io/projects/devdata/en/latest/rdx/rdx_data.html#obfuscated-columns-in-the-auth-
user-table 
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execute-only access to data from hundreds of courses from two universities without 

compromising any restricted data (Gardner, Brooks, Andres, & Baker, 2018a). Despite 

this, however, it has not yet been used widely–the majority of the published studies 

involving MORF were conducted by the same team that developed it (e.g., Andres et al., 

2018; Gardner et al., 2018a). Its development team finished upgrades to the platform 

and its documentation very recently and have since started conducting beta testing in 

preparation for a wide relaunch. 

Another issue MOOCs—and education research in general—have to contend 

with is the fact that studies in these fields are conducted predominantly on research 

subjects from Western, educated, industrialized, rich, and democratic (WEIRD) 

societies—96% based on a 2008 survey of the top psychology journals (Arnett, 2008)—

while only accounting for 12% of the world’s population (Henrich, Heine, & Norenzayan, 

2010). These numbers cast doubt on just how well published findings will generalize to 

learners from smaller, less represented countries. 

Replication in MOOCs 

While there has been considerable research on predicting student success in 

MOOCs, relatively little assessment has been published of whether the models 

produced generalize across courses, platforms, or student cohorts. The limited number 

of replication studies on MOOCs has shown that published findings are not guaranteed 

to replicate. For example, a study that evaluated the generalizability of original findings 

of a study conducted on dropout predication in MOOCs (Xing, Chen, Stein, & 

Marcinkowski, 2016) found that only a subset of the findings replicated significantly 

across a larger sample of over 200 sessions of MOOC data (Gardner, Brooks, & Baker, 
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2019). The authors specifically investigated two of the original study’s core findings: the 

first regarding which model performed the best, and the second regarding what kinds of 

learner features performed better on these models (i.e., appended features, or the 

creation of separate feature sets per week of the course; vs. week-only features, or 

features from only the current week being investigated). Some findings even replicated 

in the opposite direction, such as the original study’s claim that a stacked ensemble of 

two classifiers outperformed either of the base classifiers–the replication study found 

that they actually performed significantly worse in four of the six cases investigated. 

Further, their study also revealed significant results which were not reported in the 

original experiment.  

Another study, which investigated the generalizability of a dropout prediction 

model, analyzed the effects of both modeling and experimental design on the 

replicability of previously published findings (Gardner, Yang, Baker, & Brooks, 2019). In 

their study, the authors first attempted a direct replication of the original study’s (Fei & 

Yeung, 2015) method. They followed its original design as closely as they were able to 

without cooperation from the original authors. They found that the model that performed 

the best in the original study (i.e., Long Short-Term Memory (LSTM) neural network 

model) was among the worst performers in the replication study. They posit that 

overfitting may have been the cause of the better performance in the original study. 

Finally, a study by researchers from the University of Edinburgh and Monash 

University conducted a direct replication that investigated the robustness and 

generalizability of one previously published state-of-the-art classification model using the 

original study’s methods and data set (Farrow, Moore, Gašević, 2019). The original 

study (Kovanović, et al., 2016) had conducted data rebalancing to account for more and 
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less represented classes in their data. The replication study sought to test the effects of 

different data rebalancing methods, but first calculated a baseline value to see if and 

how well they could attain the original paper’s findings. The study eventually found that, 

even when following the original method as closely as possible and using the same data, 

they were unable to achieve similar results; their findings had come out lower than the 

original study’s findings on every outcome metric. They posit that the original study’s 

findings may have been a result of data contamination (i.e., the same data points 

existing in both training and test sets during the model-building process) leading to 

overfitting and higher outcome metric scores. 

These initial attempts at replication research highlight how the existing body of 

research on MOOCs may be particularly unreliable, especially given that most MOOC 

studies have used small samples of data and focused on highly varying subsets of 

students from the available datasets (e.g., only students who joined in the first ten days 

of the course, have viewed at least one lecture video, completed the pre-course survey 

and the first end-of-unit exam, etc.) (Gardner & Brooks, 2018). They show how 

problematic accepting a study’s findings can be without attempting to verify them, 

especially when these may lead to interventions that alter the way learners learn and 

interact with a learning system. They highlight the importance of replication in the 

generalizability of a study’s findings. 

Barriers to Replication in MOOC Research 

Though replication has been rare in MOOC research, many publications in the 

field end by stating the need to replicate their findings across different, more diverse 

data. Due to a number of barriers that exist, researchers are rarely able to follow-up on 
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this claimed intention. This section identifies key barriers that contribute to this lack of 

general replicability in educational big data research, and, in particular, the lack of 

replication within the field of MOOC research. 

Experimental challenges with replication relate to the difficulty encountered when 

reproducing the exact experimental environment (technical or otherwise) used in the 

original study (Gundersen & Kjensmo, 2018). In MOOC research, this commonly entails 

the proper and sufficient sharing of tools and algorithms used in the development of 

machine-learned models. Over the years, researchers have asked for the open sharing 

of source code as a minimum solution to address these issues with replication (Stodden 

& Miguez, 2013). However, even when a study’s code is made available for others to 

use and build upon, other technical issues may still prevent replication in computational 

research workflows (Donoho, 2017; Kitzes, Turek, & Deniz, 2017). Even when source 

code can run error-free and is publicly shared, issues that are not resolved by code-

sharing include 1) code rot, in which source code becomes outdated or nonfunctioning 

as the syntaxes and libraries used by the code change over time (e.g., the revision of the 

implementation of an algorithm which changes the way it computes its results); and 2) 

dependency hell, in which configuring the software necessary to install or run source 

code prevents successful implementation (Boettiger, 2015). As such, researchers have 

advocated for the sharing of complete software environments, as opposed to simply 

sharing the source code used in the study, citing this as a necessary condition for 

reproducing computational results (Buckheit & Donoho, 1995). However, such open 

sharing of complete software environments remains rare in MOOC research (and in 

computer science research more broadly). 



  26 
 
 

Methodological challenges to replication reflect challenges related to the 

methods of the study, such as its procedure for model tuning or statistical evaluation. 

Much of existing work on replication focuses on technical challenges, but methodological 

issues are just as crucial to address. These include the use of biased model evaluation 

procedures (Cawley & Talbot, 2010; Varma & Simon, 2006). A common manifestation of 

such issues within prediction modeling research is seen in massive unreported searches 

during the model tuning process, in which researchers systematically test all possible 

model parameters in order to achieve better apparent performance (Henderson et al., 

2018).  

Finally, data challenges to replication relate to the availability of data. As stated 

previously, the majority of educational data are subject to strict regulations that seek to 

protect the privacy of learner data. As a result, researchers and instructors are often 

barred from making their data publicly accessible. Some have attempted to address this 

barrier. The Pittsburgh Science of Learning Center DataShop (Koedinger et al., 2010) 

and the HarvardX MOOC datasets (Hardvard-MITx, 2014), for example, have attempted 

to address this problem in educational research by only releasing limited non-

reidentifiable data, but many analyses require the original, unprocessed data for a full 

replication. As previously discussed, restricted data sharing is one of the main factors 

hindering replication analysis in MOOC research, as investigators are generally limited 

to only small samples of data, and models generated on them are often overfit to the 

data available. 
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The MOOC Replication Framework 

The MOOC Replication Framework (MORF) was designed to address technical, 

methodological, and data-related barriers to replication research in MOOCs (Gardner, 

Brooks, Andres, & Baker, 2018a) through its implementation of Open Science practices. 

In their manifesto for reproducible science, Munafò, Nosek, and colleagues (2017) 

propose a set of measures that directly target threads to reproducible science. They 

posit that the adoption, evaluation, and improvement of these measures will contribute to 

more robust scientific research. Through its implementation of Open Science practices, 

MORF is able to either support or more directly address a number of these measures. 

Specifically, MORF is able to support their proposal for collaboration and team science, 

which involve such initiative as multi-site studies and distributed data collection. These 

initiatives seek to facilitate “high-powered designs and [provide] greater potential for 

testing generalizability across the settings and populations sampled” (Munafò et al., 

2017, p. 2). MORF is able to indirectly support this through both its Open Data and Open 

Analysis practices.  

As discussed previously, Open Analysis practices seek to increase access and 

transparency to a study’s methodology. These practices help prevent gaming of the 

scientific process—for example, through p-hacking, where researchers choose only to 

publish significant results they find interesting or pleasing. They also allow external 

research teams to fully replicate original studies. MORF contributes to Open Analysis in 

a couple of ways. Its main feature is its Platform-as-a-Service (PaaS) infrastructure, 

which consists of a running instance of its back-end infrastructure coupled with 

computational resources. Its design allows researchers to design, conduct, and share 

end-to-end replication of experiments through its use and open sharing of Docker 
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containers (Boettiger, 2015). The containers, which are sent to MORF for feature 

extraction, are executable virtual machines that contain both 1) the end-user’s source 

code, and 2) the runtime environment necessary for the code to run. Containers 

submitted to MORF are automatically shared on the Docker Hub3, Docker’s public 

registry of container images. Through this process, other researchers can simply access 

these containers to conduct their own research, possibly on their own data or in their 

own research context.  

Open Data practices seek to increase access to a study’s data. Most importantly, 

these practices aid external research teams in gaining access to actionable data where 

data collection efforts would otherwise be too costly or onerous to conduct. These 

practices also aid in the execution of replication research. MORF contributes to Open 

Data by allowing end-users controlled, execute-only access to its massive data store. 

This means that while MORF’s entire dataset is available for learners to run analyses on, 

they are unable to see the actual dataset. Instead, end-users are given access to a 

sample dataset and documentation, allowing them the ability to write scripts that will 

ultimately work with MORF’s dataset. Doing this allows end-users access to a massive 

MOOC dataset while still ensuring its compliance with data privacy regulations that seek 

to protect learner confidentiality. The end-users’ scripts are submitted (as part of the 

Docker containers), which MORF then uses to perform extraction, training, testing, and 

model evaluation on the cloud. Intermediate outputs between these steps are stored 

securely on private Amazon Web Services4 buckets. End-users then received a 

controlled set of outputs sent to their email, reporting their model’s performance metrics. 

 
 
3 https://hub.docker.com/ 
4 https://aws.amazon.com/ 
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MORF more directly aids in addressing another category of Manufò et al.’s 

(2017) manifesto, which seeks to address study replication by encouraging transparency 

and open science. The initiatives under this category specifically cite Open Data and 

Open Analysis practices as a means of producing transparent and accessible evidence 

and scientific claims. 

An in-depth discussion of the platform’s initial goals and architecture can be 

found in Chapter 3. A discussion on its current architecture, which allows for direct 

replications, and a description of the available data can be found in Chapter 4. 

Purpose of the Study 

This dissertation focuses on the use of the MOOC Replication Framework 

(MORF) as a solution to the current technical barriers that exist to the conducting of 

replication studies. Specifically, this dissertation looks at how well previously published 

findings on completion in MOOCs replicate to new and different contexts. After the 

development of the platform, a feasibility study (Study 1) was first conducted to test 

whether it was able to execute the kind of research it was intended for. A usability study 

(Study 2) was then conducted to demonstrate its capability of running large-scale 

replications against multiple datasets. The final study of this dissertation (Study 3) 

sought to demonstrate what else MORF can be used for: the execution of novel, 

generalizable MOOC research. 

Study 1: Development of MORF 

This study sought to demonstrate the feasibility of the MOOC Replication 

Framework, outlining the work that went into the development of its initial architecture 



  30 
 
 
and the method it used in conducting replication. The chapter discusses the implications 

of the lack of replication in online learning and describes why MOOCs are the optimal 

platform for beginning to address this gap. In its first iteration, MORF was only able to 

conduct conceptual replication research through its implementation of an expert system 

comprised of multiple simple if-then production rules. Researchers interested in 

analyzing the replicability of their own work could transform their findings into simple if-

then formulations for MORF to ingest. In turn, MORF would return the significance of the 

replications, i.e., how significantly the relationships held-up in a new dataset. In order to 

create the initial list of findings to replicate, a literature review was conducted. 

Specifically, we were interested in published works sought to investigate the 

relationships between learner-related behaviors or attributes and course completion. 

Findings from published papers were transformed into production rules and tested 

against a new dataset different from the various datasets used in the original studies. 

Finally, a feasibility study was conducted, where the replicability of 21 previously 

published findings were analyzed on a MOOC on Big Data in Education.  

Study 2: Conduct Large-Scale Replication Using MORF  

This study sought to demonstrate MORF’s scaled feasibility through the 

execution of a large-scale replication using the platform. The study outlines MORF’s 

goals and architecture in more detail. The replicability of 15 previously published findings 

were analyzed on data from the University of Edinburgh’s entire MOOC offering on 

Coursera until 2015—a total of 29 sessions of 17 MOOCs, which attracted a total of 

514,656 registrants. A meta-analysis was then conducted in order to combine results per 
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production rule in order to obtain a single statistical significance score across all MOOC 

sessions.  

Study 3: Conduct New Research Using Replicated Findings  

This study sought to conduct research using the replicated findings from Studies 

1 and 2 as a means of demonstrating MORF’s capability of conducting novel research. 

Replicated findings were used as features in the development of completion prediction 

models, the generalizability of which were then tested between countries present in the 

dataset. Here, we utilized MORF’s new prediction modeling module, which allows for 

richer, more direct forms of replication research. A dataset involving 81 countries was 

obtained. Completion prediction models were developed per country. Their models were 

then tested on every other country in the dataset. Within-country (i.e., baseline) model 

performances and cross-country performances were then used to compute distance, a 

metric used to quantify the models’ cross-country generalizability. Finally, correlation 

mining and regression analyses were conducted to investigate the relationship between 

these model distances and different country-level measures of culture, happiness, 

wealth, and size. These analyses sought to take a close look at how significantly 

completion models built using entire MOOC datasets apply to learners from different 

geographic and cultural backgrounds.  

Overview of Chapters  

This dissertation proposal is organized into four chapters. Chapter 1 establishes 

the status of MOOC scholarship and the challenges that contribute to their lack of 

replication. A summary of the purpose of the study, a brief review of the existing MOOC 
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and replication literature, the significance and implications of the work, and the study 

designs of each of the articles included in this dissertation are provided.  

Chapter 2 presents Study 1.  

Chapter 3 presents Study 2.  

Chapter 4 presents Study 3.  

Chapter 5 provides a conclusion to this dissertation, summarizing key findings 

across the three studies. The discussion highlights how each study contributed to the 

dissertation’s overall goals. Finally, the chapter outlines MORF’s current production 

roadmap and proposes some replication and novel research that the platform’s new 

features enable. 
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Abstract 

There has been a considerable amount of research over the last few years 

devoted towards studying what factors lead to student success in online courses, 

whether for-credit or open. However, there has been relatively limited work towards 

formally studying which findings replicate across courses. In this paper, we present an 

architecture to facilitate replication of this type of research, which can ingest data from 

an edX Massively Open Online Course (MOOC) and test whether a range of findings 

apply, in their original form or slightly modified using an automated search process. We 

identify 21 findings from previously published studies on completion in MOOCs, render 

them into production rules within our architecture, and test them in the case of a single 

MOOC, using a post-hoc method to control for multiple comparisons. We find that nine 

of these previously published results replicate successfully in the current data set and 

that contradictory results are found in two cases. This work represents a step towards 

automated replication of correlational research findings at large scale. 
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Introduction 

Replication, the reproduction of a previous study in order to investigate the 

agreement between the current results and those of the original study (Brandt et al., 

2014), is highly important in scientific research. A study can be deemed reproducible if 

an independent team is able to follow its published method as closely as possible from 

start to finish and obtain a result similar to, if not exactly the same as, the original result 

(Brandt et al., 2014). As such, replication is a critical step in the process of scientific 

inquiry, enabling researchers to better understand the reliability, validity, and merit of a 

study’s findings.  

However, despite the importance of replication studies, they remain rare in the 

social sciences, with only 1.07% of published psychology studies in the previous 5 years 

representing an attempt at replication (Makel, Plucker, & Hegarty, 2012, p. 537). 

Replication is even rarer in education research. A recent survey of the 100 education 

journals with the highest 5-year impact factor ratings found that only 0.13% of the 

studies were those of replication (Makel & Plucker, 2014). There are several reasons for 

this; many educational research studies are difficult to reproduce due to issues of cost, 

as well as differences between populations and idiosyncrasies of the match between 

content and current instructional conditions. Many educational studies from the 1980s 

could no longer be easily replicated today, even if the desire to do so were present. 

That said, the problem of replication is more serious than simply a failure to 

conduct best practice. Instead, it leads to a surprisingly large proportion of spurious 

results being widely believed. One of the best estimates of how problematic the failure to 

replicate is was provided by the Open Science Collaboration (OSC; 2015), who 

replicated 100 experimental and correlational studies from three psychology journals. 
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The study compared significance and effect sizes between the original studies and their 

replications. The study reported that 64% of the replication studies failed to obtain a 

statistically significant result. Beyond this, “replication effects were half the magnitude of 

original effects (OSC, 2015, p.944).” This is a sobering finding, which brings to light the 

importance of replication research and the need to validate previous findings. Without 

replication, exploratory studies are taken as fact, which can have effects varying from 

useless to dangerous, depending on the scope of people it affects and the gravity of its 

effect.  

However, a new source of data provides the opportunity to improve on the status 

quo in at least one area of education: online learning. While modern practice in 

randomized controlled trials often involves recruiting a large and representative sample 

(Glennerster & Takavarasha, 2013), and the recruitment and research processes are 

expensive to conduct at scale (Feuer, Towne, & Shavelson, 2002), recruiting and 

studying large samples is considerably less painful in online learning platforms already 

used at scale. Commercial platforms for K-12 education are used by tens or hundreds of 

thousands of students (cf. Koedinger & Corbett, 2006; Koedinger, McLaughlin, & 

Heffernan, 2010). Perhaps the largest opportunities for replication research, however, 

come from Massive Open Online Courses (MOOCs). MOOC platforms are used by 

millions of learners around the world who obtain free access to a wide variety of online 

course topics taught by professors from prestigious universities (Yuan & Powell, 2013). 

While MOOC populations are typically biased towards individuals living in developed 

countries who already have substantial educational attainment (Yuan & Powell, 2013), 

this limitation is surely not greater than the long-term reliance by researchers on subject 
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pools of undergraduates enrolled in psychology courses at a small set of prestigious 

universities (Rozin, 2001). 

Within this paper, we focus on research that attempts to predict student MOOC 

completion, i.e., obtaining a certificate for completing the course. We picked this problem 

for several reasons. First, it is widely considered to be an area of significant concern for 

MOOCs. MOOCs have been criticized for their severely high attrition rates (Clow, 2013), 

with only about 3-10% of students successfully completing the MOOCs in which they 

register (Yang, Sinha, Adamson, & Rosé, 2013; Jordan, 2014). The process of attrition 

in MOOCs has been likened to a funnel of participation (Clow, 2013), where learners 

pass through the four stages of awareness, registration, activity, and progress, each 

stage characterized by severe drop-offs. In Clow’s model, awareness occurs when 

potential participants learn about the MOOC. A small proportion of these potential 

participants then engage in registration, signing up to take the course. A small proportion 

of registrants enter the phase of activity, actively participating in the MOOC. Finally, only 

a small proportion of active registrants make progress at their learning within the MOOC 

or complete their intended course.  

Second, it is a problem that is potentially actionable – it may be possible to 

design interventions that increase the proportion of students who succeed in MOOCs. 

For instance, in one study that sought to investigate forum participation, participants 

were randomly given different badges for posting in the course’s discussion forums 

(Anderson, Huttenlocher, Kleinberg, & Leskovec, 2014). The study found that some of 

these badges eventually improved forum participation. In another study, a random 

sample of students who had stopped-out, i.e., stopped participating in a MOOC, were 

sent emails aimed at bringing them back to the MOOC. The students who received 
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these intervention emails were significantly more likely to return to the class than 

students who did not receive the emails (Whitehill, Williams, Lopez, Coleman, & Reich, 

2015). 

Third, there is a considerable volume of published research on this problem, 

making it an attractive context to study replication in. To give just a few examples, 

Crossley and colleagues (2013) investigate the relationship between discussion forum 

features, such as the length and frequency of the students’ posts within the forum, and 

MOOC completion. Wang (2014) examined the relationship between course completion 

and student motivation as reported in a pre-course survey. DeBoer and colleagues 

(2013) correlated course completion to the amount of time spent on different online 

course resources, such as time spent on the forums and time spent on assignments. 

Thus, research concerning MOOC completion is an active area for researchers as well 

as practitioners and one in need of a replication study. 

In the following sections, we discuss the research that is incorporated into our 

model. Next, we study the modeling framework and how it is used to study replication. 

This framework was developed using a production-system framework, which represents 

existing findings in a fashion that human researchers and practitioners can understand. 

The framework can be parametrically adapted to different contexts, where slightly 

different variations of the same findings may hold. We discuss the course and data set in 

which we examined these issues, and then detail which of the previous findings hold true 

within this data set, attempting to replicate 21 previously published findings. We 

conclude with a discussion of future work, and how the work presented here can serve 

as a template for a new type of replication research in education. 
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Method 

Initial Data Set and Demographics 

We analyzed the 21 previous findings within the context of data from the 2015 

MOOC Big Data in Education MOOC (BDEMOOC), offered through edX by Teachers 

College, Columbia University. BDEMOOC covered the concepts and methods of the 

emerging field of educational data mining (Siemens & Baker, 2014), and was designed 

to be roughly equivalent to a graduate-level course. The MOOC had a total of 6,566 

registrants. Of the cohort, 1,333 participants completed part or all of at least one 

assignment, 516 had at least 1 post in the discussion forum, and 166 completed the 

MOOC and earned a certificate.  

Of the students registered, 1,088 participants took a pre-course survey, which 

contained questions about MOOC-specific motivational variables, such as familiarity with 

MOOCs as a platform and interest in the course content. The survey also included a set 

of questions geared towards the measurement of learner goal orientation (such as 

learning and performance goals), and academic efficacy (Wang, 2014). Of the survey 

respondents, 65% were male and 35% were female. A majority of these survey 

respondents fell within the age range of 25 to 44 years old (25-34 y/o: 32%, 35-44 y/o: 

27%). Most of the respondents had either a 4-year college degree (27%), a master’s 

degree (44%), or a doctoral degree (17%), and worked for a large non-profit (14%) or 

for-profit (13%) company in the education sector. 

BDEMOOC spanned 8 weeks. Weekly sessions were composed of 5 to 7 lecture 

videos and a corresponding assignment requiring students to practice methods learned 

that week using spreadsheets and data mining tools. Assignments were created and 

presented to the students using the Cognitive Tutor Authoring Tools (Aleven et al., 
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2015). This framework offered step-by-step guidance to students, including both hints 

and messages regarding specific misconceptions, as the students attempted to solve the 

assignment problems. The course also assigned weekly collaborative assignments that 

encouraged discussion among students about what they had learned that week. 

Students and teaching staff participated in forum discussions accompanying weekly 

sessions. In order to earn a certificate in the MOOC, students needed to earn a final 

grade of at least 70%. Final grades were calculated by averaging the 6 assignments with 

the highest scores out of the 8 offered to students. 

With its intelligent-tutor based assignments, weekly collaborative assignments, 

and high level of expertise and content, BDEMOOC was a somewhat atypical MOOC; 

any findings which replicate from more standard MOOCs can be thought to be quite 

robust. 

Research Synthesis 

The initial step in studying the replicability of findings in MOOCs was to compile a 

list of previous findings. MOOC literature is still in its infancy, with relatively few 

publications occurring before 2010 (see discussion in McAuley, Stewart, Siemens, & 

Downes, 2010). As such, the initial search conducted examined only work published in 

and after 2010. Within this first pass on conducting multiple replications at once, we 

focused on findings that related some aspect of the student’s attributes and behaviors to 

course completion. For example, studies that investigated characteristics other than 

those of the students (i.e., platform, course, or university characteristics) and studies that 

investigated outcomes other than engagement and course completion were dropped 

from the analysis. During the literature review, we encountered findings that required the 
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use of specific analytical tools. Where possible, we contacted the researchers and 

obtained copies of these analytical tools; analyses requiring tools not readily available to 

the researchers were dropped from the review and set aside for future work. The study 

focused on behaviors seen in the system and motivational surveys for which data was 

available. From this search, 68 papers were reviewed; the findings investigated in this 

study were drawn from 8 published articles. Twenty-one findings in total were obtained 

and analyzed. It is important to note that this paper does not attempt to be fully 

comprehensive in analyzing predictors of course completion; by explicitly studying these 

21 findings, however, this paper represents the largest-scale replication analysis (in 

terms of number of findings studied) that we are currently aware of in the field of 

education. 

The study included three papers that looked at student attributes derived from 

pre-course survey responses. One paper found that participants taking the MOOC for 

credit were more likely to complete the course (Clow, 2013). Other papers found that 

being motivated by course content and having high self-efficacy (Wang, 2014), as well 

as being certain one would master the skills to be taught in the MOOC (Wang & Baker, 

2015) were associated with completion. 

The current study also included five papers that investigated different student 

features and behaviors within the discussion forums. These papers found that writing 

longer posts (Crossley et al., 2015; Yang et al., 2013), writing more often (Crossley et 

al., 2015; Yang, Wen, Howley, Kraut, & Rosé, 2015), starting a thread, receiving replies 

on one’s thread, and replying to others’ threads (Ramesh, Goldwasser, Huang, Daumé, 

& Getoor, 2013; Yang et al., 2013; Yang et al., 2015), and just generally spending more 

time in the forums (DeBoer, Ho, Stump, Pritchard, Seaton, & Breslow, 2013) were 
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significantly associated with course completion. Crossley and colleagues (2015) also 

found a range of linguistic features associated with successful completion of MOOCs, 

such as the use of more concrete and more sophisticated words, and the use of more 

bigrams and trigrams. 

The findings from the Wang (2014), Wang & Baker (2015), and Crossley et al. 

(2015) studies all came from the previous iteration of BDEMOOC on Coursera. In his 

study introducing the funnel of participation in MOOCs, Clow (2013) conducted his 

investigation on data from three open, online learning environments: iSpot, a social 

learning community geared towards learning about nature observations, Cloudworks, a 

professional learning community for educators and educational researchers, and 

openED, a business and management MOOC (p.186). The two studies from Carnegie 

Mellon University (Yang et al., 2013; Yang et al, 2015) explore MOOC dropout rates, 

confusion, and forum features extracted from two Coursera MOOCs: one on Algebra 

and the other on Microeconomics. The study by Ramesh and colleagues (2013) 

evaluated the models they created using data from a Coursera MOOC entitled Surviving 

Disruptive Technology, which had 1,665 participants engaged in the forums, and 826 

completers. Finally, the study by De Boer and colleagues (2013) explored the impact of 

resource use and the students’ background characteristics on achievement within an 

edX MOOC entitled Circuits and Electronics. 

edX Interaction Log Data Scrub 

Log data were obtained from BDEMOOC, representing 1,252,306 student 

actions within the system. The raw edX interaction logs present data in an attribute-value 

object format, an example of which can be seen in Figure 1. Each mouse click within the 
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MOOC generates one transaction in the logs. Each transaction is treated as an object, 

and each object has multiple attributes (e.g., username, timestamp, event source). This 

format allows for the logging of hierarchical attributes (i.e., attributes within attributes) on 

multiple sublevels, which can impede analysis. As such, the raw edX interaction logs 

required pre-processing in order to get into a more analyzable format. A parser was 

developed in order to conduct this pre-processing. The parser accepts as input any 

number of log files, and returns as output a single tab-delimited text file containing all 

transactions. Tab was chosen as the delimiting character because discussion forum post 

contents can contain any number of symbols in them, like the comma and semicolon, 

which are the more common delimiters. Pre-processing the logs aided in the next step of 

feature engineering. This parser can now be re-used with other edX courses. 

 
Figure 1. Example of raw edX interaction log file. 

Feature Engineering 

The next step was to operationalize the attributes and behaviors investigated in 

the findings examined in this study. In order to replicate previous findings on the current 

data set, this step required mapping and replicating the variables seen in those previous 

papers within the BDEMOOC data. 

Feature engineering and the next step of building respective production rules 

were done simultaneously on an iterative basis. That is, the variable found in one finding 
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were engineered and the finding was turned into a production rule for execution. Once 

the production rule could be run and analyzed (see next section), the variables used in 

the next finding were engineered and the finding was turned into a production rule for 

execution, and so on. 

Production Rule System and Validation 

The current study conducted its replication analysis through the development of a 

production-system framework that represented existing findings in a fashion that human 

researchers and practitioners can easily understand, but which can be parametrically 

adapted to different contexts, where slightly different variations of the same findings may 

hold. 

The production rule system was built on Jess, an expert system programming 

language (Friedman-Hill, 2002). All findings were programmed into if-else production 

rules following the format, “If a student who is <attribute> does <operator>, then 

<outcome: completes or does not complete>.” Attributes are pieces of information about 

a student. Operators are actions a student does within the MOOC. Outcomes are, in the 

case of this study, whether or not the student in question completed the MOOC. Using 

this production rule format, this study was able to capture the set of student attributes 

and actions and combinations of them, and relate it to whether the student completed or 

not. Not all production rules had both attributes and operators. Production rules that look 

at survey responses, for example, had only attributes (e.g., whether or not the participant 

says they are likely to follow the course pace) and outcomes (i.e., whether or not the 

participant completed the MOOC). Conversely, some production rules involving forum 

posts had only operators (e.g., whether or not the participant posted on the forums more 
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frequently than the average) and outcomes. The production rule approach was chosen 

for its feasibility, its ability to directly represent findings, and its high degree of 

interpretability, attributes that previously made this approach common in efforts to make 

human-understandable models and theories of cognition (cf. Anderson, Matessa, & 

Lebiere, 1997; Laird, Newell, & Rosenbloom, 1987).  

Some production rules were parameterized, for example to determine cut-offs. In 

these cases, grid search was used to find the variant with the largest effect size, as in 

(Baker, Gowda, & Corbett, 2011). For example, in the production rule that looked at the 

participants’ intent to follow the pace set by the instructor (Table 1, Rule 4), participants 

gave answers on a scale of 0 to 5. Instead of considering only scores of 5, χ2(1, N=1088) 

= 0.044, p = 0.834, or only both scores of 4 and 5, χ2(1, N=1088) = 0.026, p = 0.872, as 

representing student certainty, the final parameter looked at scores of 3 and above, χ2(1, 

N=1088) = 4.704, p = 0.030. The same threshold was used for the production rule on 

self-efficacy (Table 1, Rule 5). In the case of Rules 12 and 13, Rule 12 was the original 

finding, i.e., participants having respondents on their threads in the discussion forum. 

However, when the production rule did not return significant findings, we created Rule 13 

as a variation of the rule, i.e., participants having more respondents on their threads than 

average. 

Each production rule returned two counts: 1) the confidence (Agrawal, Imielinski, 

& Swami, 1993), or the number of participants who fit the rule (i.e., meets both the if and 

the then statements), and 2) the conviction (Brin, Motwani, Ullman, & Tsur, 1997), the 

production rule’s counterfactual, or the number of participants who did not fit the rule, but 

still meet the rule’s outcome (i.e., does not meet if statement, but meets the then 

statement). For example, in the production rule, “If a student posts more frequently than 
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the average student, then they are more likely to complete the MOOC,” the two counts 

returned will be the number of participants that posted more than the average and 

completed the MOOC, and the number of participants who posted less than average but 

still completed the MOOC. 

A chi-square test of independence was conducted on each pair of results, i.e. 

comparing the confidence to the conviction. The chi-square test was used in order to 

determine whether the two values are significantly different from each other, and in 

doing so, determine whether the production rule or its counterfactual significantly 

generalized to the current data set. Since 21 tests were conducted (one per finding), 

Benjamini & Hochberg’s (1995) post-hoc correction method was used to weed out 

findings that were likely to be spurious, due to running many tests. This method 

produces a substitute for p-values, termed q-values, driven by controlling the proportion 

of false positives obtained via a set of tests. Whereas a p-value expresses that 5% of all 

tests may include false positives, a q-value indicates that 5% of significant tests may 

include false positives. As such, this method does not guarantee each test’s 

significance, but guarantees a low overall proportion of false positives, preventing the 

substantial over-conservatism found in methods such as the Bonferroni correction (cf. 

Perneger, 1998). 

Findings and Discussion 

The analysis was comprised of the replication of 21 findings relating to participant 

characteristics or behavior, and MOOC completion. Six production rules looked at pre-

course survey responses. These rules were only applied to the 1,088 participants who 
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had completed the survey. Participants who had failed to do so were excluded from the 

analyses of these production rules.  

Table 1. Production rule analysis results. 

# If Then Chi-square Source 

1 On survey: Taking for credit  Likely to earn 
certificate 

χ2(1, N=1088) = 0.350,  
p = 0.554 Clow, 2013 

2 On survey: Interested in MOOC 
features 

Not likely to earn 
a certificate 

χ2(1, N=1088) = 1.467,  
p = 0.226 

Wang, 2014; Wang & 
Baker, 2015 

3 On survey: Interested in course 
content 

Likely to earn 
certificate 

χ2(1, N=1088) = 2.582,  
p = 0.108 Wang, 2014 

4 On survey: Certain will master 
skills to be taught in course 

Likely to earn 
certificate 

χ2(1, N=1088) = 4.704,  
p = 0.030 Wang & Baker, 2015*** 

5 On survey: Has high self-
efficacy 

Likely to earn 
certificate 

χ2(1, N=1088) = 4.608,  
p = 0.032 Wang, 2014*** 

6 On survey: Will likely follow 
pace* 

Likely to earn 
certificate 

χ2(1, N=1088) = 12.472,  
p < 0.001 Wang & Baker, 2015 

7 In forums: Length of posts is 
longer than average 

Likely to earn 
certificate 

χ2(1, N=516) = 3.875,  
p = 0.049 

Crossley et al., 2015; 
Yang et al., 2013 

8 In forums: Number of posts is 
greater than average* 

Likely to earn 
certificate 

χ2(1, N=516) = 102.728,  
p < 0.001 

Crossley et al., 2015; 
Yang et al., 2015 

9 
In forums: Number of responses 
to others is greater than 
average* 

Likely to earn 
certificate 

χ2(1, N=516) = 74.214,  
p < 0.001 Yang et al., 2013 

10 In forums: Starts thread Likely to earn 
certificate 

χ2(1, N=516) = 0.004,  
p = 0.951 Yang et al., 2013 

11 In forums: Starts thread less 
frequently than average** 

Not likely to earn 
certificate 

χ2(1, N=516) = 63.577,  
p < 0.001 Yang et al., 2015 

12 In forums: Has respondents on 
thread 

Likely to earn 
certificate 

χ2(1, N=516) = 2.067,  
p = 0.150 Ramesh et al., 2013 

13 In forums: Has respondents on 
thread greater than average* 

Likely to earn 
certificate 

χ2(1, N=516) = 52.479,  
p < 0.001 Ramesh et al., 2013*** 

14 Participant spends more time in 
forums than average* 

Likely to earn 
certificate 

χ2(1, N=516) = 136.814,  
p < 0.001 DeBoer et al., 2013 

15 Participant spends more time on 
assignments than average* 

Likely to earn 
certificate 

χ2(1, N=1333) = 50.053,  
p < 0.001 DeBoer et al., 2013 

16 In forums: Uses more concrete 
words 

Likely to earn 
certificate 

χ2(1, N=516) = 3.537,  
p = 0.060 Crossley et al., 2015 

17 In forums: Uses more bigrams 
than average* 

Likely to earn 
certificate 

χ2(1, N=516) = 8.357,  
p = 0.004 Crossley et al., 2015 

18 In forums: Uses more trigrams 
than average* 

Likely to earn 
certificate 

χ2(1, N=516) = 9.580,  
p = 0.002 Crossley et al., 2015 

19 In forums: Uses less meaningful 
than average** 

Likely to earn 
certificate 

χ2(1, N=516) = 13.821,  
p < 0.001 Crossley et al., 2015 

20 
In forums: Uses more 
sophisticated words than 
average* 

Likely to earn 
certificate 

χ2(1, N=516) = 11.643,  
p < 0.001 Crossley et al., 2015 

21 In forums: Uses more variety of 
words than average 

Likely to earn 
certificate 

χ2(1, N=516) = 2.838,  
p = 0.092 Crossley et al., 2015 

Note. Statistically significant results in agreement with previous findings denoted by *. Statistically significant 

results representing the opposite of previous findings denoted by **. Statistically significant results 

representing re-parameterized versions of the previous findings have their sources denoted by ***. 
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Fourteen production rules examined discussion forum behaviors and content 

features. Only the 518 participants who had posted at least once in the forums were 

included in the analyses of these rules.  

Finally, one production rule looked at total time spent on assignments. Only the 

1,333 participants who started at least one assessment were included. The 21 

production rules can be found in Table 1. The significant production rules (after 

controlling for multiple comparisons) are marked with an asterisk. This signifies that a 

previously published finding replicated. Statistically significant counterfactuals are 

marked with double asterisks. This signifies that the opposite of the previously published 

result was obtained (in this case, the actual result for this data set is listed in the table, 

rather than the original finding). 

As shown in the table, only 9 of the 21 previous findings were replicated in the 

current data set. Two of the 21 previous findings actually had their counterfactual come 

out statistically significant, i.e., they had the opposite result as in previously published 

literature. 

Nine production rules replicated significantly within the current data. Rule 6 

states that if students intend to follow the pace set by the instructor, then they are likely 

to complete the course and earn a certificate. It was drawn from a study that analyzed 

survey and log data from the previous iteration of BDEMOOC (Wang & Baker, 2015). 

Rules 8, 9, and 13 look at posting behaviors: the rules state that if students post more 

frequently than average, respond to other students’ threads more frequently than 

average, and have more respondents on their own threads than average, they are more 

likely to earn a certificate. Posting and responding frequently on the forums implies an 

understanding of the topics being discussed or, at the very least, an interest to learn. 
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Rules 14 and 15 looked at the total amounts of time spent in the forums and on 

assignments, respectively. Both rules replicated significantly within the current data set, 

agreeing with previous findings that spending more time on these activities is 

characteristic of course completion. Finally, Rules 17, 18, and 20 look at linguistic 

features that were derived from the students’ discussion forum posts, analyzed using the 

Tool for the Automated Analysis of Lexical Sophistication (TAALES; Kyle & Crossley, 

2015) and the Tool for the Automatic Analysis of Cohesion (TAACO; Crossley, Kyle, & 

McNamara, in press). The rules state that if students use more bigrams than average, 

more trigrams than average, or more sophisticated words than average in their posts, 

they are more likely to complete. The three features are drawn from a longer list of 

linguistic features that were correlated with course completion in the original study 

(Crossley et al., 2015). 

Two production rules were significant, but in the reverse direction from what was 

reported in the original papers they came from. Rule 11 was drawn from a study where 

annotated confusion scores were used to predict a number of forum and confusion 

features, including the number of forum threads initiated (Yang et al., 2015). Each forum 

post was given a 1-4 Likert scale confusion score by 5 coders with reasonably high inter-

coder reliability, and the average was used as each respective post’s confusion grade.  

However, within this analysis, they determined that if students started threads more 

frequently than average, then they were less likely to complete and earn a certificate 

(Rule 11), and that students who make more posts are more likely to obtain a certificate 

(Rule 8, also seen in Crossley et al., 2015). In this paper, we do not replicate their hand-

coded confusion variable for feasibility reasons, but examine these two additional 

findings (Rule 8 and Rule 11) from that paper. In our analysis, we found that starting 
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threads less frequently than average is significantly related to a lesser likelihood of 

course completion. Students start threads for reasons other than confusion, for instance 

due to being interested in the subject matter. Rule 19 was part of a set of linguistic 

features that were correlated with course completion (Crossley et al., 2015). The rule 

originally stated that if students used more meaningful words (i.e., words with higher 

association to other words) in their discussion forum posts, they were more likely to 

complete the course. Our analysis, however, found that using fewer meaningful words 

was significantly related to course completion. 

The 11 other production rules were not statistically significant, indicating a failure 

to replicate. Interesting among these findings is that most of the production rules that 

were based on pre-course survey responses and linguistic features did not replicate in 

the current data set. They are interesting because most of these production rules were 

drawn from the three studies that used data from the previous iteration of BDEMOOC 

(Wang, 2014; Wang & Baker, 2015; Crossley et al., 2015). That is, even with the same 

intended audience, taught with the same learning design, and following the same 

progression of content, previously discovered findings did not turn up significant in the 

second iteration of the course. This finding further stresses the importance of conducting 

replication studies in order to validate a study’s results. 

Conclusion and Next Steps 

In this paper, we investigate the degree to which previously published findings on 

MOOC course completion replicate in new data. This was achieved through the 

development of a production system framework that was used to attempt the replication 

of 21 previously published findings on MOOC completion on a new data set. These 21 
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productions rules were drawn from 8 studies that sought to address the high attrition rate 

in MOOCs. Of these 21 findings, 9 were successfully replicated in the current data set (2 

were statistically significant in the opposite direction). Through the analysis conducted, 

this study contributes to the slowly growing literature on replication in the field of 

education research. It is our hope that research of this nature can eventually result in 

faster and easier replication of published findings, at scale. One limitation to this study is 

that it is only conducted in one specific MOOC. However, as mentioned earlier, 

BDEMOOC was a somewhat atypical MOOC, and any findings which replicate from 

more standard MOOCs can be thought to be quite robust. In general, we will have more 

evidence on these findings when they are replicated in a greater number of MOOCs. 

The study also contributes to the more efficient analysis of edX data through the 

creation of the first version of a pre-processing parser. The parser was developed in 

order to transform raw edX logs into tab-delimited text files, a format that is easier to 

both understand and analyze. edX and other researchers interested in using and 

analyzing edX data will be able to use the parser on edX data. We anticipate that some 

minor modifications will be needed by the parser in order to accept additional log syntax 

not present in the current data set. 

Our next steps include extending our work published here in several ways. First, 

we plan to expand the current set of variables being modeled, both in terms of predictor 

(independent) variables and outcome (dependent) variables. Our first efforts do not yet 

include findings involving data from performance on assignments or behavior during 

video-watching, two essential activities in MOOCs which have been extensively 

researched in the last three years. To accomplish this goal, we intend to conduct a more 



  51 
 
 
comprehensive literature review. The findings in published papers can then be turned 

into production rules for replication on the current data set. 

Second, we plan to expand to a greater range of data. Initially, we plan to apply 

the production rules to data from other edX courses. This should be a straightforward 

process, as the pre-processing parser was built to accept edX-format data. Once the 

pre-processed data has undergone feature engineering, the production rule system 

should execute seamlessly. With a large pool of courses, we can go beyond simple 

replication to studying how factors like course design, target and actual population, 

domain, and instructor pedagogy influence the applicability of these findings. 

Eventually, we intend to expand to data from different online learning platforms. 

More resources will be needed for the creation of pre-processing parsers for each 

platform, if none are already available or if log data is not already in an analyzable 

format (in general, this task would be facilitated by the adoption of a logging standard 

such as the MoocDB standard proposed by Veeramachaneni, Dernoncourt, Taylor, 

Pardos, & O’Reilly, 2013). This will enable us to study the findings we have seen more 

generally still, studying how the different design features of different platforms drive 

differences in the factors associated with student success.  

The long-term goal of this program of research is to take the initial steps towards 

building a theory on student success in online learning that can aid in supporting 

learners across different platforms and contexts. In order to be optimally useful and 

generative, next-generation theory on online learning needs to be able to recognize 

varied aspects of the learner and their behavior, and what to do in response to this 

information. Or, as suggested by Scandura (2014, p. 237), “Students with different 

degrees of expertise need different kinds of help at various times during the course of 
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learning.” As such, tracking students’ progress will be essential to providing support and 

instruction adapted to individual needs (e.g., Scandura, 2007). Not only will this theory 

identify potential predictors of student success, but it will also help identify possible 

moderating and mediating roles some variables may play in associations between 

predictors and success. Ultimately, developing optimal designs for learning support 

involves answering the question, “What should we do, when, and for who?” It is not 

necessary to start from scratch in determining this; there is already a considerable 

number of findings relevant to the factors and behaviors associated with student success 

in online learning. A model that identifies where these findings do and do not apply 

would be a useful step towards developing a universally-applicable theory of online 

learning, one that would both expand understanding and improve student outcomes. 
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Abstract 

Research on learner behaviors and course completion within Massive Open 

Online Courses (MOOCs) has been mostly confined to single courses, making the 

findings difficult to generalize across different data sets and to assess which contexts 

and types of courses these findings apply to. This paper reports on the development of 

the MOOC Replication Framework (MORF), a framework that facilitates the replication of 

previously published findings across multiple data sets and the seamless integration of 

new findings as new research is conducted or new hypotheses are generated. In the 

proof of concept presented here, we use MORF to attempt to replicate 15 previously 

published findings across 29 iterations of 17 MOOCs. The findings indicate that 12 of the 

15 findings replicated significantly across the data sets, and that two findings replicated 

significantly in the opposite direction. MORF enables larger-scale analysis of MOOC 

research questions than previously feasible, and enables researchers around the world 

to conduct analyses on huge multi-MOOC data sets without having to negotiate access 

to data. 
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Introduction 

Massive Open Online Courses (MOOCs) have created new opportunities to 

study how learning occurs across contexts, with millions of users registered, thousands 

of courses offered, and billions of student-platform interactions (Jordan, 2014). Both the 

popularity of MOOCs among students (Adamopoulos, 2013) and their benefits to those 

who complete them (Zhenghao et al., 2015) suggest that MOOCs present a new, easily 

scalable, and easily accessible opportunity for learning. A major criticism of MOOC 

platforms, however, is their frequently high attrition rates (Clow, 2013), with only 10% or 

fewer learners completing many popular MOOC courses (Jordan, 2015; Yang, Sinha, 

Adamson, & Rosé, 2013). As such, a majority of research on MOOCs in the past 3 years 

has been geared towards understanding and increasing student completion. 

Researchers have investigated features of individual courses, universities, platforms, 

and students (Adamopoulos, 2013) as possible explanations of why students complete 

or fail to complete.  

A majority of MOOC research has been limited to single courses, often taught by 

the researchers themselves, which is due in most part to the lack of access to other 

data, as well as challenges to researchers in working with data sets much larger than 

those they are used to. While understandable, the practice of conducting analyses on 

small samples often leads to inconsistent findings and questions about the 

generalizability and replicability of what is learned. In the context of MOOCs, for 

example, one study investigated the possibility of predicting course completion based on 

forum posting behavior in a 3D graphics course (Andersson, Arvemo, & Gellerstedt, 

2016). They found that starting threads more frequently than average was predictive of 

completion. Another study investigating this relationship in two courses on Algebra and 
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Microeconomics found the opposite to be true; participants that started threads more 

frequently were less likely to complete (Yang, Wen, Howley, Kraut, & Rosé, 2015). 

Research in single courses has the risk of producing contradictory findings which are 

difficult to resolve. Running analyses on single-course data sets limits the 

generalizability of findings, and leads to inconsistency between published reports 

(Łukasz, Sharma, Shirvani Boroujeni, & Dillenbourg, 2016). 

In another example of this problem, one study investigating the relationship 

between students’ motivations in taking the course and course completion across three 

open online learning environments found that students who were taking a course for 

credit were more likely to complete (Clow, 2013). An attempt to replicate this finding in a 

different MOOC found that this feature was not a statistically significant predictor of 

completion (Andres, Baker, Siemens, Gasević, & Spann, 2017).  

The current limited scope of much of the current research within MOOCs has led 

to several contradictory findings of this nature, duplicating the “crisis of replication” seen 

in the social psychology community (Makel & Plucker, 2014). The ability to determine 

which findings generalize across MOOCs, which findings don’t, and in what contexts 

less universal findings are relevant, will lead to trustworthy and ultimately more 

actionable knowledge about learning and engagement in MOOCs.  

While there has been some initial interest in data sharing within MOOCs, prior 

efforts have not yet changed this state of affairs. Individual universities store data on 

dozens of MOOCs, but have mostly not yet made this data available to researchers in a 

fashion that enables large-scale analysis (although individual examples of multi-MOOC 

analyses exist (cf. Kim et al., 2014; Whitehill, Williams, Lopez, Coleman, & Reich, 2015). 

The edX RDX data exchange has made limited data from multiple universities 
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accessible to researchers at other universities (edX, 2017), but has also restricted the 

data available due to concerns about privacy, restricting key data necessary to 

replicating many published analyses. The moocDB data format and moocRP analytics 

tools were developed with a goal of supporting research in this area (Pardos & Kao, 

2015). Their tool allows for the implementation of several analytic models, with the goal 

of facilitating the re-use and replication of an analysis in a new MOOC. However, the use 

of moocRP has not yet scaled beyond analyses of single MOOCs, making it uncertain 

how useful it will be for the types of broad, cross-contextual research that are needed to 

get MOOC research past its own replication crisis. 

In this paper, we present a solution that seeks to address this problem of 

replicability in the context of MOOCs. We do this by investigating the replicability of 

findings previously published in articles that leveraged learning analytics methods and 

data through the use of the MOOC Replication Framework. 

MORF: Goals and Architecture 

One of the common approaches to resolving the uncertainty caused by 

contradictory findings is to conduct meta-analyses (Schmidt & Hunter, 2014), where the 

results of several previous findings are integrated together to produce a more general 

answer to a research question. The meta-analysis research community has developed 

powerful statistical techniques for synthesizing many studies together despite incomplete 

information. By definition, however, a meta-analysis must wait on the completion of 

analyses by multiple research groups.  

An alternate approach is to collect large and diverse data sets to then test 

published findings in. Such an approach has historically been infeasible in learning 
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contexts, where data sources were, up until relatively recently, disparate, incompatible, 

and small. Even though large amounts of data have become available for individual 

intelligent tutoring systems over the last decade (Koedinger et al., 2010), the differences 

in the design of different tutoring systems and the semantics of data fields—even when 

the data field has the same name across different systems, or the systems share a 

common data format as in the Pittsburgh Science of Learning Center DataShop 

(Koedinger et al., 2010)—has made statistical analyses across multiple platforms 

relatively rare. However, analysis across large ranges of courses becomes more feasible 

for MOOCs, where a small number of providers generate huge amounts of data on 

courses with very different content, but relatively similar high-level design. 

Table 2. Courses and iteration counts. 

Course Title Number of 
Iterations 

Artificial Intelligence Planning 2 
Animal Behavior and Welfare 1 

Astrobiology 2 
AstroTech: The Science and Technology Behind Astronomical Discovery 2 

Clinical Psychology 1 
Code Yourself! An Introduction to Programming 1 

E-Learning and Digital Cultures 3 
EDIVET: Do you have what it takes to be a veterinarian? 2 

Equine Nutrition 2 
General Elections 2015 1 

Introduction to Philosophy 4 
Mental Health: A Global Priority 1 
Fundamentals of Music Theory 1 

Nudge-It 1 
Philosophy and the Sciences 2 
Introduction to Sustainability 1 

The Life and Work of Andy Warhol 2 
 

To leverage this opportunity, we have developed MORF, the MOOC Replication 

Framework, a framework for investigating research questions in MOOCs within data 
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from multiple MOOC data sets. Our goal is to determine which relationships (particularly, 

previously published findings) hold across different courses and iterations of those 

courses, and which findings are unique to specific kinds of courses and/or kinds of 

participants. In our first report on MORF (Andres et al., 2017), we discussed the MORF 

architecture and attempted to replicate 21 published findings in the context of a single 

MOOC. In this paper, we report the first large-scale use of MORF, attempting to replicate 

15 published findings in 29 iterations of 17 MOOCs, listed in Table 2. 

In its current version, MORF represents findings as production rules, a simple 

formalism previously used in work to develop human-understandable computational 

theory in psychology and education (Anderson, Matessa, & Lebiere, 1997; Laird, Newell, 

& Rosenbloom, 1987). This approach allows findings to be represented in a fashion that 

human researchers and practitioners can easily understand, but which can be 

parametrically adapted to different contexts, where slightly different variations of the 

same findings may hold. 

The production rule system used in MORF was built using Jess, an expert 

system programming language (Friedman-Hill, 2002). All findings were converted into if-

else production rules following the format, “If a student who is <attribute> does 

<operator>, then <outcome>.” Attributes are pieces of information about a student, such 

as whether a student reports a certain goal on a pre-course questionnaire. Operators are 

actions a student does within the MOOC. Outcomes can represent a number of 

indicators of student success or failure including watching a majority of videos (e.g., Kim 

et al., 2014; Sinha, Jermann, & Dillenbourg, 2014) or publishing a scientific paper after 

participating in the MOOC (e.g., Wang & Baker, 2015). In the current study, we focus on 

the most commonly-studied research question, whether or not the student in question 
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completed the MOOC. Not all production rules need to have both attributes and 

operators. For example, production rules that look at time spent in specific course pages 

may have only operators (e.g., spending more time in the forums than the average 

student) and outcomes (i.e., whether or not the participant completed the MOOC) (e.g., 

DeBoer et al., 2013).  

Each production rule returns two counts: 1) the confidence (Agrawal, Imielinski, & 

Swami, 1993), or the number of participants who fit the rule, i.e., meet both the if and the 

then statements, and 2) the conviction (Brin, Motwani, Ullman, & Tsur, 1997), the 

production rule’s counterfactual, i.e., the number of participants who match the rule’s 

then statement but not the rule’s if statement. For example, in the production rule, “If a 

student posts more frequently to the discussion forum than the average student, then 

they are more likely to complete the MOOC,” the two counts returned are the number of 

participants that posted more than the average student and completed the MOOC, and 

the number of participants who posted less than the average, but still completed the 

MOOC. As a result, for each MOOC, a confidence and a conviction for each production 

rule can be generated. 

A chi-square test of independence can then be calculated comparing each 

confidence to each conviction. The chi-square test can determine whether the two 

values are significantly different from each other, and in doing so, determine whether the 

production rule or its counterfactual significantly generalized to the data set. Odds ratio 

effect sizes per production rule are also calculated. In this study, we tested MORF on 29 

data sets obtained from the University of Edinburgh’s large MOOC program. In 

integrating across MOOCs, we choose the conservative and straightforward method of 

using Stouffer’s (1949) Z-score method to combine the results per finding across the 
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multiple MOOC data sets, to obtain a single statistical significance result across all 

MOOCs. We also report mean and median odds ratios across data sets. 

Scope of Analysis 

In a first report on MORF’s infrastructure, we attempted to replicate a set of 21 

previously published findings in a single MOOC on Big Data in Education (Andres et al., 

2017). Six findings analyzed in this first report required questionnaire data that was not 

available for the broader set of MOOCs investigated in the current study. As such, the 

current study analyzes the remaining 15 of these findings on MOOC completion across 

29 iterations of 17 different MOOCs offered through Coursera by the University of 

Edinburgh. There was a total of 514,656 registrants and 86,535,662 user events across 

these 29 MOOC data sets. 

Within the context of these MOOCs, we investigate previously published findings 

from five papers demonstrating that discussion forum behaviors were associated with 

successful course completion. This category of findings was studied for two reasons. 

First, it has importance to the design of effective MOOCs. Understanding the role that 

discussion forum participation plays in course completion is important to designing 

discussion forums that create a positive social environment that enhances learner 

success (Wen, Yang, & Rosé, 2014). Second, it represents a type of finding that has 

been difficult to investigate at scale with existing data sets, since there has been limited 

sharing of the type of discussion forum data necessary for this type of research, due to 

the difficulty of deidentifying this type of data. Prominent findings on MOOC completion 

involving time spent within the forums, as compared to other activities, were also 

considered. 



  61 
 
 

Table 3. Production rules included in the study. 

# If Then Source 

1 Participant spends more time in forums than average Likely to 
complete (DeBoer et al., 2013) 

2 Participant spends more time on assignments than 
average 

Likely to 
complete (DeBoer et al., 2013) 

3 Participant’s average length of posts is longer than 
the course average 

Likely to 
complete 

(Yang et al., 2013; 
Crossley et al., 2015)  

4 Participant posts on the forums more frequently than 
average 

Likely to 
complete 

(Yang et al., 2015; 
Crossley et al., 2015) 

5 Participant responds more frequently to other 
participants’ posts than average 

Likely to 
complete (Yang et al., 2013) 

6 Participant starts a thread Likely to 
complete (Yang et al., 2013) 

7 Participant starts threads more frequently than 
average 

Not likely to 
complete (Łukasz et al., 2016) 

8 Participant has respondents on threads they started Likely to 
complete (Ramesh et al., 2013) 

9 Participant has respondents on threads they started 
greater than average 

Likely to 
complete (Ramesh et al., 2013) 

10 Participant uses more concrete words than average Likely to 
complete (Crossley et al., 2015) 

11 Participant uses more bigrams than average Likely to 
complete (Crossley et al., 2015) 

12 Participant uses more trigrams than average Likely to 
complete (Crossley et al., 2015) 

13 Participants uses less meaningful words than 
average 

Likely to 
complete (Crossley et al., 2015) 

14 Participant uses more sophisticated words than 
average 

Likely to 
complete (Crossley et al., 2015) 

15 
Participant uses a wider variety of words than 

average 
Likely to 
complete (Crossley et al., 2015) 

Note. Previous findings are presented as production rules. The articles from which the findings were 

drawn from are also reported. 

These five past papers found that writing longer posts (Yang et al., 2013; 

Crossley et al., 2015), writing posts more often (Łukasz et al., 2016; Crossley et al., 

2015), starting a thread, receiving replies on one’s thread, and replying to others’ 

threads (Yang et al., 2013; Łukasz et al., 2016; Ramesh et al., 2013), and just generally 

spending more time in the forums and on quizzes (DeBoer et al., 2013) were 

significantly associated with course completion. The original papers on these findings 

involved one edX MOOC on Electronics (DeBoer et al., 2013), and Coursera MOOCs on 

Surviving Disruptive Technology (Ramesh et al., 2013), Algebra (Yang et al., 2013; Yang 
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et al., 2015), Microeconomics (Yang et al., 2013; Yang et al., 2015), and Big Data in 

Education (Crossley et al., 2015). The full list of findings investigated is given in Table 3. 

One area of particular interest for many MOOC researchers is learners’ failure to 

complete MOOC courses, due the problem’s importance and potential actionability. 

Completion is important even beyond the context of a single MOOC. Though not all 

MOOC learners have the goal of completion (Wilkowski, Deutsch, & Russell, 2014), 

completion is one of the best predictors of eventual participation in the community of 

practice associated with the MOOC (Wang & Baker, 2015). As such, understanding why 

learners fail to complete MOOCs may enable the design of interventions that increase 

the proportion of students who succeed in MOOCs. The studies included in this paper’s 

set of analyses sought to understand which student behaviors were significantly related 

to course completion, as a step towards designing interventions.  

In the first of these five articles, DeBoer and colleagues (2013) explored the 

impact of resource use on achievement within edX’s first MOOC, Circuits and 

Electronics, offered in Spring 2012. The class reportedly drew students from nearly 

every country in the world. The study correlated course completion to the amount of time 

spent on different online course resources, and found that time spent on the forums and 

time spent on assignments were predictive of higher overall final scores (required for 

course completion with a certificate), even when controlling for prior ability and country 

of origin. These results show that time allocation is an important predictor of student 

success in MOOCs.  

Two studies by Yang and her colleagues (2013; 2015) explored dropout rates, 

confusion, and forum posting behaviors within two Coursera MOOCs, one on Algebra 

and the other on Microeconomics. Their first study developed a survival model that 
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measured the influence of student behavior and social positioning within the discussion 

forum on student dropout rates on a week-to-week basis. The second study attempted to 

quantify the effect of behaviors indicative of confusion on participation through the 

development of another survival model. They found that the more a participant engaged 

in behaviors they believed indicative of confusion (i.e., starting threads more frequently 

than the average student), the lower their probability of retention in the course. The 

findings of these two studies on the relationship of posting behavior (i.e., starting 

threads, writing frequent and lengthy posts, and responding to others’ posts) to course 

completion are crucial to the design of MOOCs because they suggest that social factors 

are associated with a student’s propensity to drop out during their progression through a 

MOOC. 

Crossley and colleagues (2015) conducted a similar investigation on the 

relationship between discussion forum posting behaviors and MOOC completion in a 

MOOC on Big Data in Education. In their study, they also found that a range of linguistic 

features, computed through natural language processing, were associated with 

successful MOOC completion, including the use of concrete, meaningful, and 

sophisticated words, and the use of bigrams and trigrams. Concreteness is assessed 

based on how closely a word is connected to specific objects. “If one can describe a 

word by simply pointing to the object it signifies, such as the word apple, a word can be 

said to be concrete, while if a word can be explained only using other words, such as 

infinity or impossible, it can be considered more abstract” (Kyle & Crossley, 2015, p. 

762). Meaningfulness is assessed based on how related a word is to other words. 

According to the definition in (Kyle & Crossley, 2015), words like “animal,” for example, 

are likely to be more meaningful than field-specific terms like “equine”. Lexical 
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sophistication involves the “depth and breadth of lexical knowledge” (Kyle & Crossley, 

2015). It is usually assessed using word frequency indices, which look at the frequency 

by which words from multiple large-scale corpora appear in a body of text (Kyle & 

Crossley, 2015). More concrete or more sophisticated words were found to be 

associated with a greater probability of course completion, while more meaningful words 

were found to be associated with a lower probability of course completion. The findings 

of their study have important implications for how individual differences among students 

that go beyond observed behaviors (e.g., language skills and usage choices) can predict 

success.  

As mentioned, the current study attempts to replicate 15 previously published 

findings relating to participant behaviors and MOOC completion. These findings are 

presented in Table 3 as if-then production rules; the previous articles the findings were 

drawn from are also included. The findings are divided into three categories: findings 

involving data drawn from clickstream logs concerning time spent on specific activities 

within the MOOC (Rules 1-2), findings involving data drawn from the discussion forum 

that look at the participants’ posting behavior (Rules 3-9), and findings involving data 

from the forum posts that look at linguistic features of the participants’ contributions 

(Rules 10-15). The Tool for the Automated Analysis of Lexical Sophistication 1.4, or 

TAALES (Kyle & Crossley, 2015), and the Tool for the Automatic Analysis of Cohesion 

1.0, or TAACO (Crossley, Kyle, & McNamara, 2016), were used to generate the 

linguistic variables used in the analyses. 

In TAALES, sophistication is derived from word occurrence across multiple large-

scale corpora and are computed using five frequency indices: the Thorndike-Lorge 

(1944) index based on Lorge’s 4.5 million-word corpus on magazine articles, the Brown 
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(1984) index based on the 1 million-word London-Lund Corpus of English Conservation 

(Svartvik & Quirk, 1980), the Kucera-Francis (1967) index based on the Brown corpus, 

which consists of about 1 million words published in the US, the British National Corpus 

(BNC; 2007) index based on about 100 million word of written and spoken English in 

Great Britain, and the SUBTLEXus index based on a corpus of subtitles from about 8000 

films and television series in the US (Brysbaert & New, 2009). TAALES returns a 

sophistication score per corpus. The more words from these five corpuses are used, the 

higher the respective sophistication score is. For more information on these corpora, see 

(Kyle & Crossley, 2015). Bigram and trigram frequency are two other metrics of lexical 

sophistication (Kyle & Crossley, 2015), i.e., the more bigrams and trigrams used, the 

more sophisticated a body of text is. 

One production rule studied in this paper is a re-parameterized version of an 

original finding that was carried over into the current study from the first use of MORF in 

a single MOOC (Andres et al., 2017). Rule 8 was the original finding, i.e., participants 

having respondents on their threads in the discussion forum. Within (Andres et al., 

2017), we created a variant of this rule, Rule 9, participants having more respondents on 

their threads than average, due to the relatively low numbers of threads with zero 

respondents in some MOOCs. 

Using MORF 

The production rule analysis of MORF makes use of two different kinds of data: 

1) clickstream events used to analyze the rules relating to the amount of time spent in 

the forums and on the assignments, and 2) relational database forum data used to 

analyze the rules relating to forum behavior and linguistic features. MORF utilizes 
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Amazon Web Services (AWS) for data storage of the clickstream events, which are 

stored in Amazon S3 buckets, and database access for the forum-related data via 

Amazon’s Relational Database Service (RDS).  

When MORF is run, it connects securely and remotely to AWS to access all 

necessary data. The user simply needs to state which courses and course iterations 

they intend to run the production rule analysis on, and once the analysis is complete, the 

user is presented with the results of the analysis. This consists of the list of MOOCs 

currently in MORF’s data storage, whether or not each production rule replicated 

significantly within each course iteration, and the significance level and effect size for 

each analysis, as well as the overall analysis. 

Utilizing such an architecture protects data ownership by enabling users to run 

analyses without getting direct access to any of the raw data, a crucial feature in 

conducting research with data privacy limitations. Users are also able to either contribute 

their own data sets to MORF, or conduct their own analyses against MORF’s data set, 

which is currently comprised of 131 iterations of 61 MOOCs. 

Results 

The results of the 15 analyses across MOOCs can be found in Table 4, where 

each row represents the result of testing each previously published finding across the full 

set of MOOCs. The table reports each finding, again presented as an if-then production 

rule, the respective Z-scores and p-values for the analysis across MOOCs, as well as 

the number of MOOCs in which the finding significantly replicated, the number of 

MOOCs that had the counterfactual replicate, and the number of MOOCs where the 

finding failed to replicate in in either direction. Counterfactuals that are statistically 
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significant overall, across MOOCs, are marked by shaded bands. Findings that failed to 

replicate in either direction are italicized. Table 4 also reports the mean and median 

odds ratio effect sizes of each production rule across the 29 data sets. 

Table 4. Meta-Analysis results per production rule. 

Production Rules Z p + - null Odds Ratio 
Mean 

Odds Ratio 
Median 

More time in forums 26.93 < 0.001 29 0 0 27.235 12.060 
More time on 
assignments 26.93 < 0.001 29 0 0 251.979 121.349 

Longer posts than 
average 11.76 < 0.001 15 1 13 1.362 1.238 

Posts more frequently 
than average 26.04 < 0.001 27 0 2 4.667 3.406 

Responds more 
frequently than average 23.84 < 0.001 25 0 4 2.959 2.569 

Starts a thread 12.34 < 0.001 15 0 14 1.874 1.676 
Starts threads more 

frequently than 
averagea* 

26.39 < 0.001 0 27 2 4.601 3.571 

Has respondents 22.29 < 0.001 26 0 3 2.321 1.997 
Has respondents 

greater than average 22.72 < 0.001 24 0 5 2.544 2.250 

Uses more concrete 
wordsb 1.51 0.131 3 5 21 1.036 1.076 

Uses more bigrams 12.68 < 0.001 15 1 13 1.376 1.292 

Uses more trigrams 12.84 < 0.001 16 1 12 1.390 1.281 
Uses less meaningful 

words 10.18 < 0.001 16 0 13 0.799 0.782 

Uses more 
sophisticated words 17.54 < 0.001 20 0 9 1.623 1.472 

Uses wider variety of 
wordsa -4.11 < 0.001 2 13 14 0.987 0.875 

a Shaded bands indicate that our replication found the reverse of the published finding. 
b Italics represent null results.  

* All outcomes are “likely to complete,” except for the rule suffixed by an asterisk, where the 

outcome is “not likely to complete.” 

 

As shown in Table 4, two of the 15 previous findings had their counterfactuals 

come out statistically significant, i.e., they had the opposite result from the result 

previously reported. Whereas Yang and colleagues (2015) found that students who start 
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threads on the forums more frequently than the average student are less likely to 

complete, we found that in 27 cases out of 29 (with 0 positive replications and 2 null 

effects) that students who start threads less frequently are less likely to complete. Also, 

whereas Crossley and colleagues (2015) found that students who used a wider variety 

of words in their forum posts than the average student were more likely to complete, we 

found in 13 cases out of 29 (with 2 positive replications, and 14 null effects) that students 

who used a narrower variety of words were more likely to complete. Finally, one finding, 

which originally stated that students who used more concrete words in their forum posts 

than the average student were more likely to complete, failed to replicate overall in either 

direction (with 3 positive replications, and 5 negative replications). The remaining 12 of 

the 15 previous findings replicated significantly across the 29 data sets. 

Implications 

Twelve of the fifteen production rules investigated significantly replicated across 

the data sets. The previously published findings related to time spent in the forums and 

on assignments – stating that more time spent on these activities is associated with 

completion – replicated significantly across all 29 data sets. These findings indicate that 

spending more time with the course content, either through engaging in or observing the 

discussions in the forums or through engaging with the course assignments, is 

associated with completion.   

This is likely for multiple reasons. More motivated participants are likely to spend 

more time within the MOOC and are also more likely to complete. Spending more time 

with the material may also increase the chance of successful performance and 

completion. In an environment such as MOOCs, where students have the freedom to 



  69 
 
 
disengage at any point in the course, knowing that time spent in the discussion forums is 

associated with remaining engaged till completion indicates that attention should be 

spent on designing engaging and positive discussion forum experiences that encourage 

participation. 

Beyond this, most rules on posting behaviors replicated significantly across the 

29 data sets as well. These rules found that writing longer posts, writing posts more 

frequently, responding more frequently to other students’ posts, and having others 

respond more frequently to one’s own posts are all significant predictors of completion. 

Interactions among and between students and course staff, and certainly, the behavior 

of posting and responding frequently on the forums implies, at the very least, an interest 

to learn. This greater effort spent in participation in many cases is probably also 

associated with learning from one’s peers, an important aspect of MOOCs. 

One rule in this area, however, replicated significantly in the opposite direction. 

The finding originally stated that students who start threads more frequently are less 

likely to complete (Andres et al., 2017). Its counterfactual, however, which states that 

students who start threads less frequently than the average student are less likely to 

complete, replicated significantly across 27 of the 29 MOOCs. Yang and colleagues 

interpreted starting a thread as indicating confusion, and indeed, this may motivate some 

students to start threads. It is likely, however, that students start threads for many 

reasons beyond confusion, including to share ideas (Sharif & Magrill, 2015), make 

personal contact with other students (Sharif & Magrill, 2015; Milligan, Littlejohn, & 

Margaryan, 2013), and even to insult their instructor (Comer, Baker, & Wang, 2015). It 

may be valuable in future work to more thoroughly study the content of discussion 

threads in order to see if different posts have different associations to student outcomes. 
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In terms of the linguistic features of the participants’ forum posts, the analysis 

found that students more likely to complete the MOOCs produced more sophisticated 

language and used more bigrams and trigrams, but used less meaningful words, 

replicating the findings of Crossley and his colleagues (2015). However, Crossley et al.’s 

previous findings on concreteness failed to replicate (but did not replicate in reverse 

either).  

One of the findings that did replicate was the negative relationship between using 

meaningful words and course completion. Within TAALES, meaningful words are words 

with greater numbers of associations to other words, regardless of domain (DeBoer et 

al., 2013). In other words, the finding seen here—replicating (Crossley et al., 2015)—

may be because words interpreted as linguistically meaningful by TAALES may be less 

relevant to course content than other words. Using fewer meaningful words could thus 

mean that participants were using field-specific terms in their discussion posts. 

Conversing using field-specific terms could imply better understanding of the content 

being taught in the course. By contrast, lexical sophistication involves the “depth and 

breadth of lexical knowledge” (Kyle & Crossley, 2015). Word sophistication, bigram use, 

and trigram use are all measures of lexical sophistication within TAALES. The findings 

positively linking lexical sophistication to course completion, thus, imply that more 

sophisticated posts are associated with remaining engaged in the course. More 

sophisticated language may also be associated with positive understanding of the 

course content. 

One production rule turned out to be significant in the reverse direction from what 

was reported in its original article. The finding was part of a set of linguistic features that 

were correlated with course completion (Crossley et al., 2015). The rule originally states 



  71 
 
 
that participants who post on the forums using a wider variety of words than the average 

student were more likely to complete. This analysis, however, found that using a 

narrower variety of words was significantly related to course completion. One possibility 

is that students who use a considerable variety of words are not focusing on words of 

specific importance for their current course, but are instead rambling on a range of other 

(often unrelated) topics (cf. Comer et al., 2015; Wang, Yang, Wen, Koedinger, & Rosé, 

2015). 

Overall, these findings suggest that there is considerable commonality in which 

behaviors are associated with success in MOOCs, across MOOCs on a heterogeneous 

range of topics, creating the possibility that interventions that encourage specific 

behaviors from the set studied here may have positive incomes on student success, 

even in entirely new courses. 

Conclusion and Future Work 

In this paper, we investigate the degree to which previously published findings on 

MOOC course completion replicate across multiple new and different data sets. This 

was achieved through the development of the MOOC Replication Framework, or MORF, 

a framework that was used to attempt the replication of 15 previously published findings 

on MOOC completion on 29 MOOC data sets, drawn from 17 distinct courses on a 

range of topics. These 15 findings, represented as productions rules, were drawn from 5 

studies that sought to understand the high attrition rate in MOOCs. Of these 15 findings, 

12 successfully replicated across the 29 data sets, while 2 were statistically significant in 

the opposite direction. Through the development of MORF and the resulting analyses 
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conducted, this study presents a larger-scale analysis of MOOC research questions than 

previously feasible.  

Our next steps include extending our work published here in several ways. First, 

we plan to expand the current set of variables being modeled in MORF, both in terms of 

predictor (independent) variables and outcome (dependent) variables. This will enable 

us to replicate a broader range of published findings. Our first efforts do not yet include 

findings involving data from performance on assignments or behavior during video-

watching, two essential activities in MOOCs which have been extensively researched in 

the last three years. To accomplish this goal, we intend to conduct a more 

comprehensive literature review. The findings in published papers can then be turned 

into production rules for replication on the current data set.  

Second, we plan to move our framework beyond simply capturing findings that 

can be expressed and production rules, and also analyze findings that can only be 

expressed as more complex predictive models, in partnership with researchers at the 

University of Michigan. While we view production rules as a highly interpretable and 

reasonably flexible framework, more complex prediction models are already in use to 

determine which students are at risk of failing to complete a course (Kim et al., 2014; 

Whitehill et al., 2015; Wen et al., 2014). Being able to test these more complex models 

for replication as well will broaden the applicability of the MORF framework. 

Third, we plan to expand to an even greater range of data. Initially, we plan to 

apply the production rules to data from other MOOC courses. This should be a 

straightforward process as MORF is able to ingest raw edX and Coursera data 

seamlessly. At the time of this writing, we are nearing completion of the ingestion of edX 
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and Coursera data from two other universities. Eventually, we hope to add data from 

other platforms as well. 

Fourth, we intend to add to MORF a characterization of the features of the 

MOOCs themselves, towards studying whether some findings fail to replicate in specific 

MOOCs due to the differences in design, domain, or audience between MOOCs. 

Although 13 findings replicated overall, not all findings replicated in all MOOCs. 

Understanding how the features of the MOOC itself can explain differences in which 

results replicate may help us to explain some of the contradictory findings previously 

reported in single-MOOC research. With the large pool of courses MORF currently has 

access to, we intend to go beyond simple replication to study how factors like course 

design, target and actual population, domain, and instructor pedagogy influence the 

applicability of these findings. In turn, this will help us to understand which findings apply 

in which contexts, towards understanding how the different design of different MOOCs 

drive differences in the factors associated with student success.  

Fifth, and perhaps most importantly, we are currently working with colleagues at 

the University of Michigan to create an infrastructure which will enable us to share 

access to MORF – while not sharing the data sets themselves – to a broader audience. 

This will enable a broader range of researchers to access and utilize large-scale MOOC 

data to conduct generalizable research on learning in this context. By broadening the 

base of access to large-scale learning data, we can incorporate a wider variety of ideas 

and a greater amount of energy and researcher time, with the hope of eventual speeding 

progress in this emerging scientific area. 
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Abstract 

Massive Open Online Courses (MOOCs) have increased the accessibility of 

quality educational content to a wider audience across a global network. They provide 

access for students to material that would be difficult to obtain locally, and an abundance 

of data for educational researchers. Despite the international reach of MOOCs, however, 

the majority of MOOC research does not account for demographic differences relating to 

the learners’ country of origin or cultural background, which have been shown to have 

implications on the robustness of predictive models and interventions. This paper 

presents an exploration into the role of nation-level measures of culture, happiness, 

wealth, and size on the generalizability of completion prediction models across 

countries. The findings indicate that various dimensions of culture are predictive of 

cross-country model generalizability. Specifically, learners from indulgent, collectivist, 

uncertainty-accepting, or short-term oriented countries produce more generalizable 

predictive models of learner completion. 

Introduction 

Massive Open Online Courses (MOOCs) are a recent innovation within e-

learning and distance education and have increased the accessibility of quality 
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educational content to a wider audience across a global network (Adamopoulos, 2013). 

They have opened multiple opportunities for learning across different contexts, and for 

millions of users across the thousands of available courses (Shah, 2019). However, 

MOOCs have suffered from steep attrition rates since their inception (Jordan, 2014). In 

seeking to address this issue, researchers have investigated various learner-related 

features (Adamopoulos, 2013) and how these relate to the learners’ likelihood to 

complete. To this day, MOOC scholarship continues its attempt to find ways to support 

learner retention (e.g., Moore & Wang, 2021; Pereira, 2021), expressing a continued 

need for accurate prediction of learner outcomes and the resulting development of 

automated interventions.  

Despite MOOCs having a worldwide audience, however, the majority of MOOC 

research has not been able to account for the large differences in their learners’ country 

of origin or cultural background. Studies have found that learners from Western, 

educated, industrialized, rich, and democratic (WEIRD) societies account for the majority 

of research subjects in psychology—96% based on a 2008 survey of the top psychology 

journals (Arnett, 2008)—while only accounting for 12% of the world’s population (Henrich 

et al., 2010). However, because this phenomenon is often unavoidable—in MOOCs, for 

example, where the majority of courses are hosted in and offered by institutions within 

these WEIRD societies—studies thus need to turn their attention towards investigating 

how well their published findings generalize across country borders. A recent study by Li 

and colleagues (2021), for example, sought to investigate the generalizability of models 

trained on data from the United States (a WEIRD country) on data gathered from 

learners from other countries. They found that US-trained models could predict 

achievement in data from other developed countries with high accuracy but dropped 
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linearly with the other country’s degree of economic development. Investigating the 

cross-country generalizability of published findings can be a step towards better 

understanding and supporting the needs of learners from less represented countries. 

This study explores the role of demographic differences in country-level 

measures of culture, size, wealth, and national happiness within a dataset of almost 2 

million learners enrolled in Penn’s 2012-2015 selection of Coursera MOOCs. Using log 

data, this study examined learners based on the country they interacted with the MOOC 

from. Learners from the United States are the largest group of learners in the dataset 

(33%). To better contextualize this, the next most represented country, India, accounts 

for just 8% of the dataset. I examine the impact of country-level demographics on the 

generalizability of completion prediction models across diverse learner populations from 

81 different countries, as well as to identify which features and differences relate to the 

degree of generalizability seen. To our knowledge, this paper presents the broadest 

exploration yet into the role of country-level demographics on model generalizability and 

application across countries. 

Related Literature 

Cross-Country Generalizability in e-Learning Research 

Investigations into the cross-country generalizability of published findings have 

been rare across e-learning fields. Some studies have reported promising results, like a 

study by San Pedro and colleagues (2011), which reported on a successful 

generalization of carelessness models between learners in the US and in the 

Philippines. However, other studies suggest that transferring models across learner 

populations can lead to poor model performance, relative to the training country’s own 
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baseline model performance. A study that investigated help-seeking behaviors in 

intelligent tutoring systems found that help-seeking models transferred to some degree 

between learners from the US and the Philippines, but not to Costa Rica (Ogan et al., 

2015). They explained these findings to be a result of differing classroom practices 

between country sites, e.g., positing that the greater collaboration observed in Costa 

Rica resulted in help-seeking behaviors occurring outside the technology studied. They 

concluded by cautioning against the assumption that the models underlying educational 

systems will generalize across cultures and contexts. 

Need for Cross-Country Generalizability in MOOC Research 

MOOC scholarship has yet to investigate the issue of cross-country 

generalizability, likely due to a lack of access to the data or computational power 

necessary to handle such massive investigations. This is a critical avenue of research 

given findings that country of origin is significantly related to how learners engage with 

MOOCs (Liu et al., 2016; Guo & Reinecke, 2014; Kizilcec, Piech, & Schneider, 2013), 

implying that learners from different countries behave differently when interacting with 

educational systems. A study by Liu and colleagues (2016), which was conducted on a 

course on Big Data and Education, found significant differences in learner interactions 

between learners from the countries present in their dataset. Their study identified 

learner profiles based on how they participated in the MOOC (e.g., those who 

predominantly only took quizzes, only watched videos, etc.), clustered the countries in 

their dataset based on Hofstede’s (1986) cultural dimensions, and found significantly 

different learner profile compositions per cultural cluster. They posit that these 

differences may be due to differing educational traditions observed across cultures. Guo 
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and Reinecke (2014) found that learners were more or less likely to interact with the 

course in a non-linear manner (i.e., by navigating backwards to a previous module 

instead of continuing on the sequence) based on their country of origin. Specifically, 

learners from countries with lower student-teacher ratios (e.g., the US and European 

countries) were significantly more likely to interact in a non-linear manner than those 

from higher student-teacher ratios (e.g., Kenya, India).  

Ultimately, in order to better support all learners towards success, published 

findings in MOOC research need to generalize across different learner populations. This 

leads to this study’s main research question: what country-level measures lead to better 

or worse generalizability in cross-country predictive modelling? A recent review article in 

the inaugural issue of the journal Computer-Based Learning in Context (Baker, Ogan, 

Madaio, & Walker, 2019) notes that despite a small number of examples (such as the 

ones given above), this question has not been systematically investigated by the field, 

and researchers still do not have a clear idea of what factors to look at. It may be 

possible to select factors for consideration based on studies that investigate the 

effectiveness of findings across different groups of students, such as socio-economic 

status (Buolamwini & Gebru, 2018), national wealth (Kulik & Fletcher, 2016), and 

whether the student comes from a collectivist or individualist cultural background 

(Kizilcec & Cohen, 2017). Some studies have suggested that cultural and contextual 

factors and pedagogical outcomes not only matter but interrelate (see review in Baker et 

al., 2019), and their combination may dictate what content and methods are most 

appropriate for given samples and demographic groups. As such, identifying which 

measures relate or contribute to better (or worse) generalization of models across 
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countries can help us ensure that the models we use for intervention are accurate and 

appropriate for the full variety of learners being impacted around the world. 

The MOOC Replication Framework (MORF) 

This study was conducted using the MOOC Replication Framework (MORF) 

(Gardner, Brooks, Andres, & Baker, 2018), a research platform that has been developed 

with the goal of reducing technical, data, and methodological barriers to conducting 

replication studies on MOOCs. For reasons of security, privacy, and data ownership, the 

data available in MORF is not available for export or download, but instead is available 

for analysis through a secure platform governed by a data use agreement (Gardner et 

al., 2018).  

This study was conducted using learner data from the University of 

Pennsylvania. Only courses that were taught primarily in English were used in this study, 

as other courses tended to have learners from a smaller set of countries. In MOOCs 

during the time period studied, a course typically ran for a set number of weeks in which 

learners could enroll, engage in, and earn a completion certificate. Due to demand, 

some courses were offered multiple times. Each offering or instance of a course is a 

session. That is, each course could have had multiple sessions, depending on how 

many offerings were made over the period of time covered in the dataset. This dataset 

had a total of 45 courses. 27 of these courses had multiple sessions, resulting in a total 

of 98 sessions. For reasons of security, privacy, and data ownership, the data available 

in MORF is not available for export or download, but instead is available for analysis 

through a secure platform which is governed by a data use agreement (Gardner et al., 

2018). 
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The volume of data within the framework allows for the investigation of research 

questions within data from multiple MOOC datasets, with the goal of determining what 

findings hold across different courses and iterations of those courses, and which findings 

are unique to specific kinds of courses and/or kinds of participants (Andres et al., 2018). 

MORF functionality supports both predictive modelling and production rule analyses 

(Gardner et al., 2018).  

Architecture and Job Submission 

MORF allows users to conduct studies by submitting them as jobs. To do this, a 

user must first create and submit a configuration file, either using an HTTP request or 

MORF’s API. This configuration file contains job metadata and includes pointers to 1) an 

executable containerized image which encapsulates all software dependencies needed 

to run the experiment, and 2) a Python controller script that specifies the study’s high-

level workflow, such as how model training and testing should occur and whether cross-

validation should be used. The use of controller provides a single script to fully replicate 

a study, and is human-readable, providing researchers an intuitive overview of the study. 

Another core feature of MORF’s architecture is its use of executable 

containerized images as a means of overcoming technological barriers related to 

computational power and method replication. Researchers may not have access to the 

computational capacity necessary to conduct large-scale analyses; sending a 

containerized image of their study to MORF allows the platform to run the analysis on its 

own servers for them. Doing so also preserves their study’s full methodology, ensuring 

that the same data extraction and model creation is conducted across all of MORF’s 

datasets. These images are lightweight virtual machines that contain software 
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dependencies and the execution environment of an end-to-end study in a single file. 

After generating this image, the user must then upload it to a public repository. The 

image’s URL is included in the configuration file submitted to MORF, which the platform 

then fetches and executes according to the workflow specified in the controller script. 

This combination of using controller scripts and containerization allows users to work 

with whatever programming language they are most comfortable with. A more technical 

and in-depth description of the platform can be found in (Gardner et al., 2018). 

Data 

Learners from countries not present in either the Hofstede or Happiness 

databases (described below) were dropped from all analyses in the study, resulting in a 

dataset of over 1.9 million learners across a total of 81 countries (listed in Appendix A). 

Measures of National Culture 

Culture significantly impacts the way people feel, think, and in the context of 

education, the way people teach or learn and the support they need (Hofstede, 1986). 

Hofstede (2005) defines culture as a collective phenomenon that differs across various 

groups, e.g., across countries, organizations and occupations, genders, generations, 

etc. This study investigates how cross-country cultural differences relate to the 

generalizability of completion prediction models. 

This study considers two different types of measures in quantifying national 

culture: Hofstede’s cultural dimensions framework (Hofstede, Hofstede, & Minkov, 2010) 

and overall national happiness, as measured by the World Happiness Report (Helliwell, 

Richard, & Sachs, 2015). The former is among the more commonly-used cultural 
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frameworks in investigating cultural differences in computer-based learning systems 

(Baker et al., 2019). The latter, on the other hand, has never been used to directly 

investigate learning. Instead, it has been used extensively to measure psychological 

well-being (Lan, Ma, & Radin, 2019), the perceptions of which vary by country and are 

reported to significantly affect different facets of a person’s life, such as their nutrition 

and education, as well as the conditions that support a person’s continued drive to learn 

(Helliwell, Layard, & Sachs, 2012). 

Hofstede’s Cultural Dimensions 

Hofstede’s cultural dimensions are used in this study to more closely examine 

cross-cultural variations within the learner sample. This initial cultural framework of four 

dimensions was developed from the survey responses of over 100,000 participants 

across 70 countries (Hofstede et al. 2010) gathered in 1967 and 1973 on personal 

values and related sentiments (Hofstede, 2011). Additional data was gathered in the 

1980s and 2000s, which led to the calculation and addition of the fifth and sixth 

dimensions, respectively. Dimension scores, which range from 0 to 120, are currently 

available online for 107 countries or regions5. This dataset was last updated in 2015, 

which lines up with the final year the MOOCs investigated in this study were active in. 

This framework has six cultural dimensions: 

Power Distance Index (PDI). This dimension describes the distribution of power 

within organizations and institutions (including the family structure). The inequality of 

power distribution is viewed from the perspective of those with less authority within 

 
 
5 https://geerthofstede.com/research-and-vsm/dimension-data-matrix/ 
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hierarchical systems and these perceptions guide the social perceptions around 

dependence, organization, and structure within a society (Soares, Farhangmehr, & 

Shoham, 2007; Hofstede, 2011). High-scoring cultures in this dimension denote a large 

power distance, where people tend to be deferential to figures of authority and accepting 

of an unequal distribution of power. Teachers and students in a large power distance 

classroom acknowledge a power dynamic between them, where the quality of education 

relies solely on the excellence of the teacher. On the other hand, teachers and students 

see each other as equals in a small power distance classroom, where the quality of 

learning depends on the excellence of both the teacher and students. People from low 

power distance cultures readily question authority and expect to participate in decision 

making (Hofstede et al., 2010). 

Individualism vs. Collectivism (IDV). This dimension looks at the different 

focus of individual relationships within differing cultures. Within this framework, high-

scoring cultures are individualistic. People from individualistic cultures are characterized 

by a tendency to focus on their own needs and those of their immediate family. As a 

result, social ties to extended family and other individuals are relatively loose. Individuals 

within a collectivist culture (i.e., low-scoring cultures in this dimension), on the other 

hand, more often associate with larger social groups and conversely focus on the needs 

of the group rather than on their own. Collectivist cultures value loyalty and harmony 

which emerge from strong and cohesive in-groups (Hofstede, 2011). Hofstede (2011) 

contends that the purpose of learning in individualistic cultures is to learn, whereas the 

purpose of learning in collectivist cultures is to do. 

Gendered Role Index (GRI). This dimension was originally called “Masculinity 

vs. Femininity” in Hofstede’s (2011) cultural framework.  However, I have chosen instead 
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to rename this dimension “Gendered Role Index” for two reasons. First, this dimension 

focused more on a culture’s adherence to strict gender roles, describing the strict 

attribution of certain values between genders in a society and how these influence social 

dynamics. High-scoring cultures in this dimension, where gender roles were more clearly 

defined (i.e., gendered), were also found to be driven by achievement, success, 

competition, and assertiveness—values this dimension inadvertently attributed to being 

more masculine. On the other hand, low-scoring cultures in this dimension, where 

gender roles were more likely to overlap, were found to be more caring, modest, and 

focused on improving society’s quality of life—values this dimension originally attributed 

to being more feminine (Soares et al., 2007; Hofstede, 2011; Hofstede, 1998). These 

attributions of values to masculinity and femininity are the second reason I chose to 

rename the dimension. It is a complex issue outside the scope of this study, but much 

has changed since these attributions were first labeled in this cultural framework in the 

way society and academic research perceive, treat, and investigate these terms (e.g., 

Johnson, 2020; Kostas, 2021). 

Uncertainty Avoidance Index (UAI). This dimension refers to the social 

tolerance for ambiguity and uncertainty and the degree to which individuals from this 

culture would avoid such situations. This dimension involves the degree to which a 

society has developed rules for prescribed social behaviors as well as the level of 

comfort or discomfort individuals experience in unstructured situations. High-scoring 

cultures are uncertainty avoidant, and people in these cultures believe that uncertainty is 

a “continuous threat that must be fought” (Hofstede, 2011, p. 10). Avoidant cultures tend 

to minimize such situations through comprehensive behavioral and social codes and an 

adherence to a common truth (Soares et al., 2007; Hofstede, 2011; Hofstede, 1998). 
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Low-scoring cultures in this dimension, on the other hand, are uncertainty accepting, 

more tolerant of others’ opinions, and believe that while uncertainty is inherent in life, it is 

instead treated as a curiosity. As a result, accepting cultures have more relaxed rules 

and regulations. Teachers in avoidant classrooms are expected to know all the answers, 

while teachers in accepting classrooms are allowed to say, “I don’t know” (Hofstede, 

2011, p.10). 

Long-Term Orientation vs. Short-Term Normative Orientation (LTO). This 

dimension describes the inclination of a given culture to focus on future rewards with 

regard to values such as perseverance and thrift where relationships were ordered by 

social status and a sense of shame (Hofstede, 2011).  High-scoring, long-term oriented 

cultures are focused on the future and willing to delay short-term success. They place 

importance on values like thrift, perseverance, adaptability (Hofstede & Minkov, 2010). 

Lower-scoring, short-term oriented cultures, on the other hand, often give importance to 

the past and present, valuing reciprocity in social obligations, respect for tradition, 

personal steadiness, and the fulfillment of social obligations. Cultures with long-term 

orientation, on the other hand, are focused on the future and willing to delay short-term 

success. These cultures value thrift, perseverance, and adaptability (Hofstede, 2011).  

Indulgence vs. Restraint (IND). The final dimension, which was added to the 

framework in 2010, refers to the social perceptions around human desires and 

gratification in comparison to regulation and strict social norms. Hofstede (2011) reports 

that this dimension focuses on aspects not covered by the previous five, and “known 

from literature related to happiness research” (p. 15). Individuals from more indulgent 

cultures score higher on this scale and are described as having a strong sense of 

personal control, valuing leisure, and more lenient sexual norms. On the other hand, 
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individuals from more restrained cultures tend to value policing, strict social norms, and 

etiquette (Hofstede, 2011). 

These dimensions have been widely cited across multiple disciplines, including 

psychology, sociology, education, and marketing (Soares et al., 2007; Søndergaard, 

1994; Steenkamp, 2001). They have been used to analyze and explain differences in 

various behaviors in educational technology (Kizilcec & Cohen, 2017; Ogan et al., 2015). 

In their study on help-seeking model transfer between countries, Ogan and colleagues 

(2015) hypothesized that their mixed results were due to differences among the three 

countries in Hofstede’s cultural dimension on adherence to gender roles. Specifically, 

they speculated that the poor model transfer may have been due to the US and the 

Philippines both scoring high and Costa Rica scoring low. In this dimension, high-scoring 

nations are driven by competition, achievement, and success, while low-scoring nations 

are more concerned with care for others and quality of life. 

Kizilcec and Cohen (2017) investigated the efficacy of a self-regulation strategy 

between countries on opposite ends of the Hofstede’s individualism dimension. In this 

dimension, high-scoring nations tend to be more collectivist by nature, placing 

importance on the goals and well-being of the group. Low-scoring nations, on the other 

hand, were more individualistic, placing a premium on the importance of personal goals. 

The study noted that this strategy was developed in Western countries, appealing to 

more individualist tendencies. Their study found this strategy to significantly improve 

completion rates among learners from individualist countries (like the US, Australia, and 

France), but had no effect on learners from collectivist countries (like India, China, and 

Mexico). The findings of their study highlight how even highly efficacious interventions 

may be culturally bounded in their effects. 
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More recently, a study by Muthukrishna and colleagues (2020) sought to 

measure and investigate cultural distances between societies, noting the dominance of 

WEIRD subjects in psychological data—particularly from the United States. Their study 

devices a statistic to compute cultural distance using individual-level data drawn from 

responses to the World Values Survey of cultural beliefs (Inglehart et al., 2014), focusing 

primarily on cultural distance from the US. In relating their findings to Hofstede’s 

dimensions, they found that distance from the US was most strongly correlated with 

Hofstede’s individualism scale, reporting that collectivist countries were further away 

from the US on their scale. They found that countries with a larger power distance and 

more restrictive (vs. indulgent) countries were further away from the US as well. 

Gross National Happiness 

Another country-level metric considered in this study is Gross National 

Happiness (GNH) or overall societal happiness, as reported in the World Happiness 

Report (Helliwell et al., 2015), an annual publication of the United Nations Sustainable 

Development Solutions Network. This report contains an index of national happiness 

based on respondent ratings of their lives within a given country. The happiness index 

measures self-reported satisfaction across a range of dimensions including their 

country’s gross domestic product (GDP), social support, health and life expectancy, 

freedom to make life choices, generosity, and perception of corruption. Country-level 

economic variables such as unemployment and inequality are excluded from the 

calculation of the GNH since these values are not readily available across all countries 

(Helliwell et al., 2015). The GNH surveys make use of the Cantril ladder, a 

conceptualization of one’s life across the length of a ladder, with the best possible life 
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(scored with a 10) at the top of the ladder, and the worst (scored at 0), at the bottom. 

The rankings are collected from nationally representative samples. The World 

Happiness Report publishes the estimated extent to which each of the six factors 

contribute to societal happiness. For this study, the GNH values used were from 2015 to 

match both the final year the MOOCs in this study were active, and the other country-

level measures pulled, as described in the following sections. 

Additional Country-Level Measures 

In addition to pulling each country’s set of Hofstede’s cultural dimension indices 

and happiness index, the measures outlined in Table 5 were also pulled per country. 

The latter three measures were pulled from publicly available data from the World Bank6 

for the year 2015 to match the final year in which the courses in the dataset were active. 

Research Design 

In this study, I considered course completion as the metric of learner success. 

The study recognizes that not all learners enroll in MOOCs with goal of completing. For 

example, some seek to gain just enough knowledge to publish in their field (Wang & 

Baker, 2018) or attain various job-related benefits (Trumbore, 2020), while others form 

connections in order to join a professional society (Wang & Baker, 2018). Course 

completion, however, continues to be the most researched and widely used metric of 

success in MOOCs. 

 

 
 
6 https://data.worldbank.org/indicator/ 
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Table 5. Country-level measures investigated. 

Measure Definition 
Enrollment Size The current study made use of enrollment sizes by country, 

taken from the number of unique users from each country 
across the entire dataset (derived from data in MORF). 

National Population The population of a country is defined as the number of 
people living within its borders, as measured by national level 
censuses (Eurostat, 2020). 

Gross Domestic 
Product (GDP) 

The monetary value of all final goods and services produced 
within a country within a specified amount of time, most often 
a year. This value considers all production within a national 
economic zone, including goods and services produced for 
both market and nonmarket based products (e.g., defence 
and education). National GDP is often calculated by national 
statistical agencies, upheld by standards compiled by the 
World Bank (Callen, 2020). 

Per Capita GDP GDP, by itself, is highly correlated to population. GDP per 
capita approximates the standard of living of citizens of a 
given country. 

 

This study was divided into three phases. The first phase establishes best-

performing completion models per country. The second phase considers the distance 

between every country pair (i.e., a training country and a testing country), by comparing 

the cross-country model performance with the training country’s own within-country, 

baseline model performance. Finally, the third phase seeks to explore the relationship 

between the cross-country distances and several country-level measures. 

Phase 1: Within Country Models and Baseline Performances 

Methodology 

Data Cleaning and Feature Engineering 

Features were extracted by querying the MORF database. First, completion and 

country of origin were pulled per learner. Completion was assessed based on the 



  91 
 
 
learner’s achievement type. There were three possible achievement types in the dataset: 

“none”, “normal”, and “distinction.” Learners with no achievement—“none” in the 

database—were non-completers, i.e., learners who either dropped out or failed to attain 

a passing mark. “Normal” learners attained at least a passing mark in a course, while 

“distinction” learners attained a high enough mark to earn a distinction (typically a final 

grade of 85% or higher). Both “normal” and “distinction” learners were treated as 

completers.  

The learners’ IP addresses were used to geolocate their country, labelled using 

MaxMind’s GeoIP2 Precision Country Service API7. Learner IP addresses were pulled 

from clickstream data. In the cases where multiple IP addresses were used by a learner, 

the IP address that was used the most was the one attached to the learner. GeoIP2 

labels the country of an IP address based on GeoNames8 geographical data. 

Dependencies, such as overseas territories (e.g., Bonaire, Sint Eustatius, and Saba/the 

Caribbean Netherlands), and constituent countries (e.g., Curaçao, constituency of the 

Netherlands); and Areas of Special Sovereignty or autonomous territories (e.g., Puerto 

Rico, territory of the US; Saint Barthélemy, territory of France) are labelled by 

GeoNames separately from their governing countries. As such, all analyses treated 

dependencies as separate from their governing countries. 

Official start and end dates were pulled per session and were used to compute 

the total number of days each session was active. In order to conduct analyses across 

sessions, session lengths were divided into eight equal increments, ranging from 3.5 

days (i.e., three days and 12 hours) to 11.375 days (i.e., 11 days and nine hours), with a 

 
 
7 https://www.maxmind.com/en/geoip2-precision-country-service 
8 http://www.geonames.org/ 
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median of 6.125 days and a standard deviation of 2.26. Its distribution can be found in 

Figure 2. The start and end dates and times of these increments were used in 

conducting feature engineering. 

 

Figure 2. Distribution of courses by increment length in days. 

In each course, learners used several resources, e.g., the discussion forums, 

quizzes, peer assessments, and lecture videos. Each interaction was tracked in the 

course’s clickstream log, which also contained date, time, and URL information. The 

features investigated in this phase of the study are listed below. These features are 

pulled per learner and broken down by increment (Table 6). 

Each of the features were normalized through z-score transformations to account 

for the variability of session durations, likely resulting in larger raw incremental pageview 

counts for learners in longer-running courses.  Doing so also allowed for both the 

aggregation of learners by country and the comparison of learner features across course 

sessions. This was done using each feature’s respective session mean and standard 

deviation values. For example, if learners A, B, and C were the only learners in a course 

session, and A visited the forums 36 times, B visited 20 times, and C visited 41 times, 
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then the session’s mean forum visit count would be 32.333 and its standard deviation 

would be 10.970. After normalizing, Learner A’s forum visit z-score would have a value 

of 0.334, B would be -1.124, and C would be 0.790. 

Table 6. Incremental features used in building completion prediction models. 

Feature Definition 
Forum Views Total number of clicks related to any forum activity (e.g., 

viewing, posting, commenting) 
Quiz Views Total number of clicks related to any quiz activity (e.g., viewing, 

answering, submitting) 
Peer Assessment 
Views 

Total number of clicks to any peer-assessment-related activity 

Lecture Video Views Total number of clicks related to any video lecture activity (e.g., 
playing, pausing, increasing video speed, etc.) 

Days Active Total number of days active 
Forum Threads 
Started 

Total number of forum threads started 

Responses Total number of responses to others’ forum posts 
Respondents Total number of others’ responses on one’s own forum posts 
Time Spent Time spent (in seconds) in the forums, quizzes, peer 

assessment, and video lectures; actions with a computed 
duration of over one hour were treated as disengagement and 
excluded from the sum 

 

Predictive Modeling 

In order to determine the best-fitting model per country, three different classifiers 

were used to build completion prediction models using the scikit-learn and xgboost 

libraries in Python: CART, Random Forest (RF), and XGBoost (XGB). CART 

(Classification and Regression Trees) is scikit-learn’s implementation of both decision 

trees and regression trees. Since the models predicted a categorical label (i.e., 

completion), only the former was used.  Random Forest is an ensemble classifier that 

generates multiple decision trees while training a model. Its output is the class selected 

by the majority of its decision trees. It also produces a list of feature importances, which 
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can be graphed in order to visualize how important each feature is to the model’s 

classification (Zhang et al., 2019). Finally, the Extreme Gradient Boosting (XGBoost) 

classifier (Chen & Guestrin, 2016) uses an ensemble technique in which an initial, weak 

decision tree is trained, and its prediction errors are calculated. Subsequent decision 

trees are then trained iteratively to predict the error of the decision tree before them. The 

final prediction is the sum of the predictions of all the trees in the set (Chen & Guestrin, 

2016). 

Informal hyperparameter tuning was conducted on the RF and XGB classifiers in 

order to determine which value for n_estimators was optimal for the dataset. 

Hyperparameters are parameters that are set before and are used to control the 

classifier’s learning process. N_estimators, for example, is a hyperparameter used to 

determine how many trees will be used in the process of training the model. 

Hyperparameter tuning was conducted on data from three representative small 

(Mauritius, MU, N=1008), medium (Egypt, EG, N=20368), and large (GB, United 

Kingdom, N=70260) countries. Five values for n_estimators were tested per classifier: 

100 (default), 300, 500, 700, and 900. The process revealed the following to be optimal 

across all three countries, feature sets, and increments: n_estimators=700 for RF and 

n_estimators=100 for XGB. These values were then set for whenever either classifier 

was used to train and test predictive models. 

In training and testing the models, the classifiers iterated through the eight 

increments of the course in predicting learner completion, beginning with features from 

only the first increment of the course, then moving on to features from the second 

increment, and so on. At each iteration, two feature sets were tested: 1) increment-only: 

features from only the current increment (Nfeatures=13) and 2) appended: features from 
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the current and all previous increments (Nfeatures=13 * increment number). Per classifier-

feature set-increment combination, 10-fold cross-validation was conducted, repeatedly 

building the model on some learners’ data and testing it on other learners’ data. 

Stratified sampling was used in determining the folds in order to preserve completion 

rates. Fold-level models were pickled (i.e., saved to file) for the ensuing cross-country 

analysis. A total of 480 models were trained and tested per country, ten (one per fold) for 

each combination of classifier, feature set, and increment.  

The performance of each model was assessed using the Area Under the 

Receiver Operating Characteristic Curve (AUC ROC or A’), which is the probability that 

given 1 instance of ‘completed’ and 1 instance of ‘not completed’, the model is able to 

tell which instance is which. An AUC ROC of 0.5 indicates chance level of performance, 

while a value of 1 means perfect accuracy. AUC ROC scores were averaged across 

each classifier-feature set-increment combination’s respective ten folds. In order to 

determine each country’s best performing model, averaged AUC ROC scores were 

compared across increments in each classifier-feature set combination using the 

statistical testing procedure from (Fogarty, Baker, & Hudson, 2005), which utilizes the 

equivalence of the AUC ROC scores and the Wilcoxon statistic to generate a test 

statistic Z to evaluate a null hypothesis of equivalent performance between two 

predictive models, as seen in Equation (1). 

𝑍 = 𝐴𝑈𝐶 𝑅𝑂𝐶1−𝐴𝑈𝐶 𝑅𝑂𝐶2

√ 𝑆𝐸(𝐴𝑈𝐶 𝑅𝑂𝐶1)2−𝑆𝐸(𝑈𝐶 𝑅𝑂𝐶2)2  (1) 

This was performed by iteratively comparing the AUC ROC of an increment with 

the AUC ROC of all future increments. If any comparison came out significant after 

conducting a Bonferroni correction (Dunn, 1961), then that increment was not the best 
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performing model. Otherwise, if no comparisons came out significant, that increment 

provided the best performing model. Models requiring data from Increment 8 (i.e., the 

final increment) were dropped from consideration for two reasons:  

1. Having to wait for the final increment of a course was counterintuitive to 

the goal of predicting learner completion, and 

2. Models that used the appended feature set in Increment 8 outperformed 

all other incremental models 100% of the time due to their use of the data 

of the entire course run. 

The comparisons resulted in a final selection of six AUC ROC scores per 

country, one for each classifier and feature set combination. From here, the best 

performing completion prediction model was chosen per country, and its AUC ROC was 

treated in the subsequent analyses as the country’s baseline model performance. 

Relationship Mining 

Nonparametric correlations were conducted between the country’s baseline 

model performances and the set of country-level measures. The Benjamini-Hochberg 

(1995) post-hoc correction was conducted to account for the number of correlations 

conducted. 

Linear regression was then conducted to determine whether each country’s 

country-level measures were predictive of their baseline model performances. Two linear 

models were fit, the first using only the countries’ six cultural dimension indices, and the 

second using the remaining measures (i.e., happiness index, enrollment size, population 

size, GDP, and per capita GDP). Due to the high correlations between the country-level 
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measures (Table 12), stepwise backward selection was conducted to account for 

collinearities and to remove suppression effects in both linear models using the step 

function in R’s stats library. This function searches for the best possible regression 

model by iteratively selecting and dropping variables to arrive at a model with the lowest 

possible AIC (Akaike Information Criteria; Bozdogan, 1987), an estimator of a model’s 

quality relative to other models built on the same dataset. 

Results 

Baseline AUC ROC scores across the 81 countries ranged from 0.874 (Iraq) to 

0.992 (China), with a median of 0.979. The summary of a descriptive analysis of the 

predictive models can be found in Table 7. The large difference between the XGB-

appended combination and all other combinations warranted further investigation. The 

descriptive results of the breakdown of countries using the XGB-appended combination 

by best-performing increment can be seen in Table 8. As a reminder, increments span 

an eighth (i.e., 12.5%) of each course, where Increment 1 is the first eighth, Increment 2 

is the second eighth, and so on. Interestingly, despite the majority of models in this 

category performing their best using data until Increment 4 (i.e., until halfway through the 

course), countries with larger enrolment sizes required more data, as evidenced by the 

substantial leap in the mean enrolment size of countries needing data from either 

Increments 5 or 6. These numbers show that the majority of the countries’ models were 

able to predict learner completion using data until just Increment 4 (halfway through the 

course). 
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Table 7. Descriptive results of the parameters used in the best performing models. 

 Increment Only Appended Total 
Random Forest 5 18 23 (28%) 
XGBoost 5 53 58 (72%) 
Total 10 (12%) 71 (88%) 81 

Note. Parameters presented across the different combinations of classifiers (rows) and feature sets 

(columns). Each combination reports the number of countries whose best performing model used the 

respective combination. 

Table 8. Descriptive results of the increments used in the best performing XGB-appended models. 

Increment N Countries 
1 1 (2%) 
2 3 (6%) 
3 4 (8%) 
4 31 (58%) 
5 6 (11%) 
6 8 (15%) 

Note. Each row reports the number of countries 

whose best performing XGB-appended model uses  

the respective increment, N=53. 

 
Table 9. Correlation results between baseline AUC ROC scores and the country-level measures. 

Measure Correlation, rho 
Enrolment Size  0.880 * 
Gross Domestic Product  0.765 * 
Long-Term/Short-Term  0.480 * 
Per capita GDP  0.466 * 
Individualist/Collectivist  0.423 * 
Happiness  0.354 * 
Population  0.353 * 
Completion Rate  0.246 * 
Gendered Role Index  0.221 
Power Distance -0.219 
Indulgence/Restraint  0.120 
Uncertainty Avoidance -0.093 

* p<.001 and significant after Benjamini-Hochberg (1995) 

correction 
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Correlation Analysis 

Nonparametric correlations were conducted between the country’s baseline 

performances and the set of country-level measures. The Benjamini-Hochberg (1995) 

post-hoc correction was conducted to account for the number of correlations conducted. 

Results show that enrollment size was significantly positively related with baseline model 

performance (rho=.880, p<.001), suggesting that as enrollment size increased, so did 

baseline model performance. Measures of country wealth were also among the most 

strongly correlated with baseline model performance (GDP: rho=.765, p<.001; per capita 

GDP: rho=.480, p<.001), suggesting that better-performing predictive models are 

obtained by wealthier countries. Happiness (rho=.354, p=.001) and cultural dimensions 

that look at individualism/collectivism (rho=.423, p<.001) and long-term/short-term 

orientation (rho=.480, p<.001) also had significant positive relationships with model 

performance, suggesting that better-performing models were obtained for happier, more 

individualistic, and more long-term oriented countries. The full results can be found in 

Table 9. 

Regression Analysis 

In order to further investigate this relationship, linear regression was conducted 

to determine how predictive a country’s country-level measures were of their baseline 

model performance. Two linear models were fit on the country-level dataset (N=81) to 

estimate the effect of the country-level measures on each country’s baseline model 

performance.  

The first model regressed AUC ROC scores on Hofstede’s dimension indices. 

Feature selection revealed that long-term/short-term orientation (LTO; F(1, 78)=13.114, 
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p<.01) and individualism/collectivism (IDV; F(1, 78)=4.806, p=.031) were most relevant 

to model performance. A model that regressed AUC ROC scores on indices from just 

these two dimensions revealed that only long-term/short-term orientation significantly 

predicted baseline model performance (β=.39, p<.001).  

Feature selection on the country-level measures of happiness, wealth, and size, 

and revealed that a country’s self-reported happiness (F(1, 78)=20.123, p<.001) and 

population (F(1, 78)=9.796, p=.002) were most relevant to model performance. A second 

model, which was regressed on just these two measures, revealed that both were 

predictive of model performance within the full model (happiness: β=.51, p<.001; 

population: β=.31, p=.002). The results of fitting both linear models can be found in 

Table 10. 

Table 10. Within-country model performance regression results. 

Predictors β p β p 
(Intercept) -0.00 <0.001 -0.00 <0.001 
LTO 0.39 <0.001   
IDV 0.13 0.239   
Happiness   0.51 <0.001 
Population   0.31 0.002 

 

Phase 2: Cross-Country Model Distances 

Methodology 

The study next considered how models trained in Phase 1 performed when 

classifying instances from data other than the training country. First, a list of all possible 

training and testing country pairs was compiled, resulting in a total of 6480 pairs (81 

training countries x 80 testing countries). Prediction modeling in this phase iterated over 
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all train-test country pairs. In each iteration, the details of the training country’s predictive 

model were pulled (i.e., feature set and increment) and applied to the testing country’s 

dataset. Each of the training country’s 10 fold-level models were then loaded from file 

and tested on the test country data. This resulted in ten AUC ROC scores, which were 

averaged to determine the models’ cross-country performance. Finally, distances 

between country pairs were computed by subtracting the cross-country AUC ROC score 

from the training country’s baseline performance, as seen in Equation (2). Distances 

track how well the training country’s predictive model generalized to the testing country’s 

data. A negative distance implies that the model performed better cross-country, while a 

positive difference implies worse performance. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐴𝑈𝐶 𝑅𝑂𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝐴𝑈𝐶 𝑅𝑂𝐶𝑐𝑟𝑜𝑠𝑠  (2) 

Correlation Mining 

Nonparametric correlations were conducted between the cross-country AUC 

ROC scores (raw AUC scores, not differences) and the training country’s country-level 

measures. The Benjamini-Hochberg (1995) post-hoc correction was conducted to weed 

out any spurious findings that could have emerged as a result of the number of 

correlations conducted. 

Results 

Cross-country AUC ROC scores ranged from 0.747 (Iraq Mauritius) to 0.993 

(Brazil Luxembourg), with a median of 0.973 across the 6480 country pairs. 

Distances, on the other hand, ranged from -0.042 (Lebanon Ethiopia) to 0.217 

(Netherlands Mauritius), with a median distance of 0.005 across the 6480 country 
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pairs. Negative distances represent cases wherein the cross-country performance 

outperformed the training country’s baseline model performance. For example, the 

performance of Lebanon’s model on Ethiopia’s data (AUC ROC=0.976) outperformed 

Lebanon’s own baseline model performance (AUC ROC=0.935), resulting in a distance 

of -0.042. The distribution of distances can be found in Figure 3. 

 

Figure 3. Distribution of cross-country model distances. 

Correlation Mining 

Nonparametric correlations were conducted between each training country’s 

mean cross-country AUC ROC score and the training country’s country-level measures 

(Table 11). The Benjamini-Hochberg (1995) post-hoc correction was conducted to weed 

out any spurious findings that could have emerged as a result of the number of 

correlations conducted. The training country’s enrollment size (i.e., its number of training 

data points) was the most strongly correlated with mean cross-country model 

performance (rho=.846, p<.001), suggesting that, despite our hypothesis that differences 

in demographic and cultural factors lead to degraded model performance, models 
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trained on countries with a large enrollment size are able to perform well on data from 

other countries. Measures of country wealth also strongly related to mean cross-country 

performance (GDP: rho=.732, p<.001; per capita: rho=.311, p=.005), suggesting that 

wealthier countries are also able to produce more generalizable models. 

Table 11. Correlation results between cross-country model performance and training country country-level 
measures. 

Measure Correlation, rho 
Enrolment Size  0.846 ** 
Power Distance -0.019 
Individualist/Collectivist  0.265 * 
Gendered Role Index  0.320 ** 
Uncertainty Avoidance  0.035 
Long-Term/Short-Term  0.304 ** 
Indulgence/Restraint  0.189 
Gross Domestic Product  0.732 ** 
Happiness  0.201 
Population  0.430 ** 
Per Capita  0.311 ** 

* p<.05, ** p<.001 and significant after Benjamini-Hochberg 

(1995) correction. 

Phase 3: Understanding Model Distances 

In this third phase of the study, we explore the relationship between the cross-

country distances and the differences in the country-level measures in order to analyze 

how each measure relates to model generalizability. 

Methodology 

Correlation Mining 

Correlation mining (Baker, 2020) was conducted to investigate relationships that 

exist among the country-level measures. Nonparametric correlations that came out 
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significant after conducting the Benjamini-Hochberg (1995) correction were used to 

describe the profile of countries that exist in the dataset. 

Correlation mining was then conducted again to investigate whether relationships 

exist between any of the country-level measures and the cross-country distances. A data 

frame was compiled listing all train-test country pairs, and their respective country-level 

measures. Per row, the differences of each measure were computed (e.g., difference in 

the IDV cultural dimension, difference in GDP, difference in population size, etc.). 

Nonparametric correlations were then conducted between each of the differences and 

the cross-country distances using SPSS. 

Regression Analysis 

The goal of this analysis was to further investigate the relationship between the 

feature differences and the cross-country distances. Linear mixed-effects models were fit 

on the cross-country dataset (N=6480) to determine whether the set of feature 

differences was predictive of cross-country distances. Two mixed-effect models were fit 

on the data, the first using only the differences across the countries’ six cultural 

dimension indices, and the second using the differences of the remaining measures. 

Training country was set as a random factor. As was done previously, feature selection 

was conducted due to the high correlations between the cross-country measure 

differences (Table 13). Backward elimination was conducted to eliminate non-significant 

effects in both linear mixed-effects models using the step function in the lmerTest R 

library. This algorithm starts with the full model and eliminates variables iteratively, first 

across the random-effect features, then across the fixed-effect features. 



  105 
 
 
Results 

Country Profiles 

Nonparametric correlations were conducted on SPSS across all nation-level 

measures in order to investigate their relationships with one another. The Benjamini-

Hochberg (1995) post-hoc correction was used to weed out findings that were likely to 

be spurious due to the number of tests conducted. Correlation results can be found in 

Table 8. 

MOOC Presence. A country’s enrollment size (i.e., its number of data points) 

was significantly positively related to its GDP (rho=.816, p<.001) and population 

(rho=.582, p<.001), as well as two of Hofstede’s cultural dimensions: long-term vs. short-

term orientation (LTO; rho=.331, p=.003) and gender role adherence (GRI; rho=.284, 

p=.01). Further, GDP was significantly positively related to population (rho=.638, p<.001) 

and both cultural dimensions (LTO:  rho=.287, p=.009; GRI: rho=.335, p=.002). 

Together, these findings suggests that larger and wealthier countries, which are more 

long-term oriented and more strictly adhered to gender roles, are more likely to have a 

presence in MOOC platforms. Countries like the US, China, Japan, Germany, and the 

United Kingdom fit this profile of having high MOOC presence. On the opposite end of 

the spectrum, countries like Guatemala, Uruguay, Costa Rica, and Mauritius fit the 

profile of having lower MOOC presence. 

Wealthy Countries. Two other cultural dimensions were found to relate 

significantly with GDP: individualism vs. collectivism (IDV; rho=.33, p=.003) and 

indulgence vs. restraint (IVR; rho=.263, p=.018), as well as self-reported national 

happiness (rho=.28, p=.011). These findings suggest that wealthier countries are: 
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1. more populous, 

2. happier,  

3. more strictly adherent to distinct gender roles,  

4. long-term oriented, valuing thrift, perseverance, and preparing for the 

future, 

5. more individualistic, interested primarily in their own welfare and the 

welfare of their immediate family, and 

6. more indulgent, valuing leisure and the gratification of human needs. 

 

In addition to the countries with high MOOC presence listed above, which also fit 

the profile of wealthy countries, France and India are also on this list. Countries like 

Tanzania, Lebanon, Jordan, and Uganda fit the profile of less wealthy countries on the 

opposite end of the same spectrum. 

Happy Countries. Interestingly, however, national happiness was significantly 

negatively correlated with population size (rho=-.383, p<.001), suggesting that larger 

countries tend to self-report lower levels of happiness. Happiness also had significant 

relationships with various cultural dimensions. The findings suggest that happier 

countries were likely more individualistic (rho=.48, p<.001), more indulgent (rho=.336, 

p=.002), and valued a more distributed form of power—lower Power Distance Index or 

PDI—where its less powerful members of society expect to participate in decision 

making (rho=-.575, p<.001). Countries like Finland, Denmark, Norway, the Netherlands, 

and Switzerland best fit this profile of happy countries. Tanzania, Uganda, Croatia, 

Lebanon, and Bulgaria are countries on the opposite end of the spectrum, the less 

happy countries. 



  107 
 
 

Completers. Finally, a country’s completion rate (i.e., the number of completers 

divided by its enrollment size) was significantly related to its population size (rho=-.473, 

p<.001), its per capita GDP (rho=.618, p<.001), and its self-reported national happiness 

(rho=.563, p<.001), suggesting that learners from smaller, happier countries with higher 

average income are more likely to complete. Completion rate was also significantly 

correlated with a number of cultural indices: PDI (rho=-.401, p<.001), IDV (rho=.55, 

p<.001), and LTO (rho=.286, p=.01). These findings suggest that learners from countries 

that are more individualistic and long-term oriented and had more distributed views on 

hierarchy and power were likely to complete a MOOC. Countries like Luxembourg, 

Spain, the Netherlands, and Sweden best fit this profile of countries with higher 

completion rates. Bangladesh, Egypt, Morocco, Ethiopia, and Iran best fit this profile of 

countries with lower completion rates. 

Correlation Mining 

Nonparametric correlations were conducted between the cross-country distances 

and differences in the country-level measures, and the Benjamini-Hochberg (1995) post-

hoc correction was used to account for the number of comparisons conducted. 

Correlations were also conducted between distance and the absolute country-level 

measure differences in order to assess whether simply the presence of a difference 

mattered, or the direction of a difference mattered. The results of this analysis can be 

found in Table 14. 
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Table 12. Correlations between factors used to study model generalization. 

 PDI IDV GRI UAI LTO IVR GDP (B) Happy Pop Per Capita 
Enroll Size -0.045  0.231* 0.284* -0.076  0.331**  0.132  0.816**  0.173  0.582**  0.251* 
PDI   -0.554** 0.071  0.146 -0.205 -0.300** -0.153 -0.575**  0.248* -0.500** 
IDV     0.165 -0.184  0.320**  0.180  0.330**  0.480** -0.119  0.608** 
GRI       -0.137 -0.039  0.151  0.335** -0.060  0.310**  0.064 
UAI         -0.022 -0.191 -0.112  0.053 -0.102 -0.056 
LTO           -0.209  0.287**  0.175 -0.005  0.405** 
IVR              0.263*  0.336**  0.033  0.210 
GDP (B)                0.280*  0.638**  0.352** 
Happy                 -0.383**  0.769** 
Pop                   -0.423** 

* p<.05, ** p<.001 and significant after Benjamini-Hochberg (1995) correction. 

Table 13. Correlations between differences in the factors used to study model generalization. 

 
PDI IDV GRI UAI LTO IVR GDP (B) Happy Pop 

Per 
Capita 

Enroll Size 0.018  0.256** 0.258** -0.086**  0.281**  0.126**  0.805**  0.151**  0.567**  0.191** 
PDI   -0.548** 0.167**  0.221** -0.116** -0.258** -0.111** -0.518**  0.260** -0.446** 
IDV     0.146** -0.132**  0.304**  0.216**  0.361**  0.535** -0.121**  0.601** 
GRI        0.005  0.033**  0.123**  0.295** -0.078**  0.282**  0.052** 
UAI          0.006 -0.173** -0.067**  0.072** -0.122** -0.108** 
LTO           -0.184**  0.328**  0.178**  0.044**  0.358** 
IVR              0.218**  0.288** -0.003  0.209** 
GDP (B)                0.243**  0.593**  0.294** 
Happy                -0.358**  0.741** 
Pop                  -0.365** 

** p<.001 and significant after Benjamini-Hochberg (1995) correction. 

Table 14. Correlation results between cross-country model performance and training country country-level 
measures. 

Difference In Correlation with 
Difference 

Correlation with Absolute 
Difference 

Enrolment Size  0.016  0.050* 
Power Distance -0.249* -0.010 
Individualist/Collectivist  0.306* -0.014 
Gendered Role Index -0.046* -0.008 
Uncertainty Avoidance -0.057* -0.019 
Long-Term/Short-Term  0.288* -0.006 
Indulgence/Restraint -0.128* -0.009 
Gross Domestic Product  0.033*  0.006 
Happiness  0.208*  0.055* 
Population -0.142*  0.049* 
Per Capita GDP  0.296*  0.009 

* p<.001 and significant after Benjamini-Hochberg (1995) correction. 
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If the direction of a difference didn’t matter—if just the presence of a difference 

mattered—then the absolute difference analysis would have resulted in a stronger 

correlation than the difference analysis. However, these results suggest that the 

direction of difference is more important than the absolute difference in these variables 

between countries (e.g., Figure 4), except for differences in enrollment size. 

Differences in power distance, adherence to gender roles, uncertainty avoidance, 

and indulgence were significantly negatively correlated with cross-country model 

distances. These findings suggest that models trained on data from countries scoring 

high in these dimensions are likely to generalize (i.e., have a lower distance) on data 

from countries scoring low in the respective dimension, but not the other way around 

(e.g., indulgent country to restrictive country). Differences in happiness, individuality, and 

long-term orientation, on the other hand, were significantly positively correlated with 

model distance, suggesting that the lower in these dimensions the training country 

scored compared to a testing country, the more generalizable their models (e.g., less 

happy country to happier country). 

 

Figure 4. Graphical representation of distance x difference and absolute difference in measures of 
individuality. 
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Regression Analysis 

In order to further investigate the relationship between the feature differences 

and the cross-country distances, regression analyses were conducted to measure the 

effects of each country-level measure difference on cross-country distance. Two linear 

mixed-effects models were fit on the country-pair dataset (N=6480) to estimate the effect 

of the cross-country measure differences on each pair’s distance, with the pair’s training 

country as the model’s random factor. The results can be found in Table 15. The first 

model was regressed on differences related to Hofstede’s six cultural indices. After 

backward elimination, only the Gendered Role Index was dropped from the model. 

Table 15. Cross-country distance regression results. 

Predictors β p β p 
(Intercept) -0.00 <0.001 -0.00 <0.001 
Power Distance -0.18 <0.001   
Individualist/Collectivist  0.08 <0.001   
Uncertainty Avoidance  0.07 <0.001   
Long-Term/Short-Term  0.18 <0.001   
Indulgence/Restraint -0.07 <0.001   
Enroll Size   -0.14 <0.001 
Happiness    0.08 <0.001 
GDP ($B)    0.14 <0.001 
Population   -0.03 0.040 
Per Capita    0.18 <0.001 

 

In order to understand the relationships implied by the coefficients, Table 12 

contains worked examples of four cases: 

1. When the feature difference is positive and the coefficient is negative, the 

resulting effect on the predicted distance is a negative value, decreasing 

the distance, thus implying a more generalizable model from train to test 

country. 
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2. When the feature difference is negative and the coefficient is negative, 

the resulting effect on the predicted distance is a positive value, 

increasing the distance, thus implying a less generalizable model from 

train to test country. 

3. When the feature difference is positive and the coefficient is positive, the 

resulting effect on the predicted distance is a positive value, increasing 

the distance, thus implying a less generalizable model from train to test 

country. 

4. When the feature difference is negative and the coefficient is positive, the 

resulting effect on the predicted distance is a negative value, decreasing 

the distance, thus implying a more generalizable model from train to test 

country.  

Differences in views on power distance and indulgence/restraint had significant 

negative effects on the cross-country distances, as in Table 16(1). This implies that as 

the training country ranked higher in either dimension (i.e., indextrain > indextest) and the 

country pairs’ views of that dimension diverged (i.e., greater difference), the more 

generalizable the models were (i.e., the lesser the distance). In other words, these 

findings imply that data trained on learners from more indulgent countries or countries 

where a hierarchy of power is more accepted are likely to generalize on data gathered 

from their neighbors on the opposite end of the respective dimension (i.e., the more 

restrictive countries or countries that are more accepting of distributed power).   

The opposite was true for the other three dimensions (e.g., Table 16(3)): as the 

training country ranked higher in either dimension and the country pair’s views in that 

dimension diverged, the less generalizable the models were (i.e., the greater the 
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distance). This finding implies that data gathered on learners from more collectivist, 

uncertainty-accepting, and short-term oriented are more likely to generalize to their 

respective counterparts, but not the other way around. Despite the statistical significance 

of the effects of these cultural index differences, however, they only explain a very small 

percentage of the variance in the cross-country distances, R2=.101. 

Table 16. Worked examples for negative and positive cross-country distance regression coefficients. 

 Train Val Test Val Diff Val Coefficient Effect on Predicted 
Distance 

(1) 80 49 31 -0.18 -5.58 
(2) 55 77 -22 -0.18 3.96 
(3) 33 25 8 0.14 1.12 
(4) 40 83 -43 0.14 -6.02 

 

The second model was regressed on the other cross-country measure 

differences—differences in enrolment size, GDP, self-reported national happiness index, 

population, and per capita GDP. Despite the high collinearity between features (Table 

13), all differences were included in the final model. Differences in enrolment size and 

population had significant negative effects on the cross-country distance. This implies 

that the more populous the training country was, or the more learners from the training 

country were enrolled compared to the test country, the more generalizable the models 

were. Conversely, the happier or wealthier the training country was compared to the test 

country, the less generalizable the models were. As in the Hofstede model, despite the 

statistical significance of the effects of these country-level measure differences, they 

only explain a very small percentage of the variance in the cross-country distances, 

R2=.067. 
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Discussion 

In this study, we examined how country or cultural factors affect the cross-

country generalizability of predictive models in MOOC research. We did this by first 

determining each country’s earliest best performing completion prediction models. This 

was conducted to establish baseline model performance per country without using data 

from the MOOCs’ entire runtimes. Next, we determined cross-country model 

generalizability by applying each country’s completion prediction model on data from 

every other country in the dataset. This was conducted to analyze how well models 

generalized across countries in the dataset and comparing the results to baseline model 

performances. We then computed cross-country model distances as a metric of cross-

country model generalizability using the baseline and cross-country AUC ROC scores. 

The results of this analysis showed low median degradation of models when tested on 

other countries, suggesting that predictive models built on a single country’s MOOC data 

will tend to generalize when tested on MOOC learners from other countries. This could 

be due to the well-documented selection bias in those who take MOOCs (Ferrer-Mico, 

2016; Tovar et al., 2015), where the typical learner profile is that of a Western, educated 

(with at least a Bachelor’s degree), and employed male, irrespective of native language. 

Finally, distances were used to investigate the relationship between model 

generalizability and differences in various country-level metrics. In these analyses, we 

found that cross-country generalization of completion models generally performed on par 

with their baseline model performances, only degrading by half a percentage point on 

average. Results suggest that the degree to which models generalized across countries 

was significantly related to the differences in country-level measures of culture, 

happiness, wealth, and size.  
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Hofstede’s cultural dimensions were found to relate significantly to both the 

performance and generalizability of the completion prediction models. The study found 

that more individualistic (IDV) or more long-term oriented (LTO) countries were more 

likely to have better-performing within-country (baseline) models. It is worth noting that 

both indices were significantly positively correlated to the country’s GDP and enrollment 

size, suggesting that individualistic or long-term oriented countries were also likely to be 

wealthier and have a larger MOOC presence (i.e., larger training dataset).  

Further, differences in cultural views relating to power distribution (PDI), 

indulgence (IVR), individualism, and long-term orientation were significantly related to 

model generalizability. In the case of IVR, for example, models trained on a more 

indulgent country (like Mexico or Sweden) will generalize better on a more restrictive 

country, but caution should be placed when generalizing models trained on a more 

restrictive country. Ultimately, the findings suggest that training models on countries 

scoring higher in the PDI (e.g., China, the Philippines) or IVR dimensions, or lower in the 

IDV (e.g., Guatemala, Panama) or LTO (e.g., Ghana, Nigeria) dimensions, were more 

likely to produce generalizable models. Countries that fit this profile, scoring high across 

all four dimensions include Venezuela, Mexico, Ghana, and Nigeria, all of which have 

mid-range enrollment (mean=12627) and GDP (mean=$5.1B). On the other end are 

countries like Estonia, Lithuania, Latvia, and Hungary, which have both low enrollment 

(mean=4262) and GDP (mean=$0.5B). These numbers are consistent with the 

significant positive correlations between differences in IDV and LTO and differences in 

GDP and per capita GDP, which imply that as either of these scores go down (and 

contribute to making a model more generalizable), the less wealthy the country is. Both 
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groups of countries have similar average baseline model performances, AUC 

ROC=0.97. 

Gross National Happiness, or self-reported nation-level happiness, as measured 

by the World Happiness Report (Helliwell et al., 2015), was also found to relate 

significantly to both model performance and generalizability. Interestingly, while 

happiness was found to have a positive effect on model performance within and cross-

country, the difference in happiness between countries had an inverse relationship with 

model generalizability. That is, the happier a training country is compared to a testing 

country, the less generalizable the models. The relationship suggests that models 

produced using data from low-happiness countries were more likely to generalize 

compared to models produced using data from their happier neighbors. 

Finally, measures of wealth and size were also found to relate significantly to 

both model performance and generalizability. GDP, per capita, population, and 

enrollment size were all significantly related to within-country model performance, 

suggesting that larger, wealthier countries with a larger MOOC presence were likely to 

produce better-performing models. This finding is intuitive—larger and wealthier 

countries are likely to have more learners enrolled in MOOCs (as evidenced by 

significant correlations between these measures), and a standard principle in machine 

learning states that having a larger training data set ensures better model performance. 

Likewise, differences in these features all had significant effects on model 

generalizability. The relationship with differences in size metrics—population and 

enrollment size—suggests that the larger the training country is compared to the testing 

country, the more generalizable the training country’s model is. The findings related to 

differences in wealth, on the other hand, suggest that the wealthier the training country is 
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compared to a testing country, in either GDP or per capita GDP, the less likely its model 

will generalize (i.e., higher positive difference in GDP or per capita suggests higher 

distance score). 

However, despite the statistical significance of the effects of these country-level 

measure differences, they only explain a very small percentage of the variance in the 

cross-country distances. A likely explanation is that a number of other country-level 

factors are at play, ones not considered in this study. Perhaps Hofstede’s (2010) cultural 

dimension framework is not sufficient in fully describing cultural differences across 

countries, or even within countries (as explained in the Limitations section below). 

Perhaps other access or socioeconomic differences not accounted for in this study are 

also contributing to the model distances. 

Limitations 

As noted above, the study was limited by the type of success metric investigated 

in the training and testing of predictive models. MOOC scholarship has evolved from 

investigating course completion as the sole metric of learner success—learners have 

been found to come into these courses with varied goals and motivations. An early 

paper by Kizilcec and colleagues (2013) found subpopulations of learners to emerge 

based on the way they interacted with the MOOC: some just watched lecture videos, 

some just interacted with the graded assessments, while others did a combination of 

both or neither, revealing a “plurality of [learner] trajectories” (p. 7). A study by Wang and 

Baker (2018) and Trumbore (2020) described other post-course success metrics, like 

publishing or joining a professional organization in the same field, or attaining various 

job-related benefits. Because such outcome variables are typically more difficult to 
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gather—and at the scale MORF operates on, especially—our study was limited to 

investigating course completion, which is automatically tracked in all MOOC platforms, 

and continues to be the most researched and widely used metric of success in MOOCs. 

Our study was also limited by the metrics used to quantify culture. A review by 

Baker and colleagues (2019) differentiates between macro- and micro-theories of 

culture. Macro-theories of culture attempt to “categorize all groups in the world according 

to some number of cultural dimensions” (p. 2). Hofstede’s cultural dimension framework 

falls into this category of cultural theories, in addition to other widely-cited frameworks: 

the Model of National Cultural Differences (Trompenaars & Hampden-Turner, 2011) and 

the nine dimensions presented in the GLOBE study (House, Hanges, Javidan, Dorfman, 

& Gupta, 2014). Micro-theories on culture, on the other hand, seek to contextualize 

culture down to the individual-level. In these theories, culture is “embedded in particular 

actors’ specific practices and activities that take place in particular contexts” (p. 6).  They 

place an emphasis on a subject’s own cultural identity. However, because micro-

theoretical approaches to culture are limited in their generalizability (Baker et al., 2019), 

and because this granularity of data would again be difficult to gather at the scale MORF 

operates on, our study was limited to macro-views of culture—specifically Hofstede’s 

cultural dimensions. 

Conclusion and Next Steps 

The findings in this study serve as a preliminary attempt to examine relationships 

and patterns across countries more closely and introduce several new and interesting 

questions that can aid in further investigating the cross-cultural generalizability of 

predictive models. Because this study sought to answer the what—where we found that 
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differences in several country-level measures were linearly related with model 

generalizability. The wealth of data gathered and generated by this study allows for 

deeper investigations into why and how these country-level measures affect model 

generalizability.  

In order to do this, I plan to investigate similarities or differences in predictive 

models themselves (i.e., feature importances on learner interaction) and how they differ 

between country pairs across each country-level measure using different difference 

thresholds (i.e., large positive difference, small positive difference, small negative 

difference, large negative difference in each of the country-level measures). For 

example, looking at how country-pair models are similar or different in their feature 

importances where the train country was substantially more individualistic than the test 

country, cases where the train country was only marginally more individualistic than test 

country, then cases where the train country was marginally more collectivist than the test 

country, then finally cases where the train country was substantially more collectivist 

than the test country. Being able to understand how different or similar these models are 

will better contextualize our findings and give us a clearer picture of why models tend to 

generalize in the directions reported in this study. 

Second, I plan to conduct multidimensional scaling (MDS), which provides a 

visual representation of the distances among a set of objects—in the case of this study, 

cross-country model distances. This analysis will visualize how the combination of all 

these discovered relationships affects overall model generalizability (i.e., see which 

countries are closest to or farthest from each other given all these complex relationships) 

by assigning each country two dimension values (i.e., an x- and y-value), which can then 

be used to plot each country on a plane. Results from this analysis can then be used to 
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form clusters among neighboring countries, which can be used to study how different or 

similar predictive models are across countries plotted closer to or farther from one other. 

The methods used in this study provide a novel approach to examining cross-

country prediction model generalization. Understanding what, why, and how factors lead 

to generalization of predictive models between countries will not only lead to better 

informed culturally-sensitive pedagogy for learners around the world, it will also lead to a 

new and deeper understanding of how culture influences learner-computer interaction. In 

the meantime, the implications from the findings of this paper are clear: researchers 

developing and studying predictive models in MOOCs need to start accounting for 

differences in learner nationality. 
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CHAPTER 5: CONCLUSION 

Replication is a crucial step in the scientific process, as it enables researchers to 

better understand the reliability, validity, and merit of a study’s findings. However, 

despite their importance, replication studies make up only 0.13% of published education 

research (Makel & Plucker, 2014). This is due to the fact that replication research is 

often faced with access issues when it comes to the original study’s design, data, and 

methods. As such, Open Science practices have recently been getting increased 

attention across various fields of research. These practices aim to increase transparency 

and access to every facet of published research for the purposes of evaluation, 

reanalysis, and scrutiny. 

Massive Open Online Courses (MOOCs) are known to draw in enrollment 

numbers in the tens of thousands per session (Jordan, 2014). In 2020, for example, 

more than 950 universities around the world offered their own selection of MOOCs, 

reaching over 180 million learners (Shah, 2019). Due to the massive enrollment 

numbers MOOCs continue to attract, these courses have become a source of rich and 

diverse data, which provides an opportunity to bridge the replication gap in online 

learning research. However, in order to protect the privacy of learner records, most of 

this data is subject to strict access regulations. As a result, researchers commonly have 

access to data from only the MOOCs they teach and are often barred from making the 

data publicly accessible for use by others. Over the years, education researchers have 

attempted to find a solution to this issue, developing different Open Science tools and 

platforms to overcome the costs and technical barriers linked to conducting replication 

studies (e.g., Pardos & Kao, 2015; Veeramachaneni et al., 2013), though none have 

achieved widespread use. 
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Through the studies in this dissertation, I developed, upgraded, and leveraged 

the MOOC Replication Framework (MORF), a platform that facilitates conducting and 

replicating MOOC research. The platform is both a big data repository of over 13 million 

users enrolled in over 100 MOOC sessions, and a tool for conducting end-to-end 

predictive modeling research. MORF was used to facilitate both replication studies 

(Studies 1 and 2) and a novel, fully replicable study on learner completion prediction 

models (Study 3).  

MORF was first developed as a production system (Study 1) that allowed for 

conceptual replications, i.e., replications that validate a study’s findings through the use 

of different methods. The previously published findings we tested were first transformed 

into if-then formulations, and then analyzed for replicability across MORF’s database of 

MOOC sessions. Our feasibility study, which analyzed the replicability of 21 previously 

published findings in a MOOC on Big Data and Education, found that only nine findings 

(42.9%) replicated. The remaining production rules either failed to replicate (47.6%) or 

had a significant finding in the opposite direction of the original research (9.5%). Further, 

most of the production rules that failed to replicate were based on findings from studies 

that investigated the previous session of the same course. This lack of replication across 

such similar courses highlights the importance of conducting replication studies within 

MOOC research. 

In order to both assess MORF’s capacity to conduct large-scale replication 

research and investigate the replicability of these findings across a larger sample of 

data, a scaled-up version of the feasibility study was conducted (Study 2). This study 

analyzed the replicability of the previously published findings across the University of 

Edinburgh’s then-entire Coursera MOOC line-up. Of the 15 findings investigated, 80% 
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replicated significantly in the new, larger dataset. Two findings (13.3%) had their 

opposite come out significant, while only one production rule (6.67%) failed to replicate. 

Overall, these findings suggest that there is considerable commonality in which 

behaviors are associated with success in MOOCs, even across courses on a 

heterogeneous range of topics. 

In order to support more direct forms of replication, MORF was updated with a 

predictive modeling module. This module allows users to leverage an original study’s 

methods in order to validate its findings. This version of MORF utilizes containerization 

technology, which affords users the ability to fully dictate how data extraction is 

conducted. These upgrades to MORF allow users to execute their own code at scale in 

the runtime environment necessary for the code to run. This predictive modeling module 

was used in a novel study, which sought to investigate how factors relating to a learner’s 

country of origin or culture affected the cross-country generalizability of completion 

prediction models in MOOCs (Study 3). This study leveraged the previously published 

findings analyzed in the two previous studies in engineering the learner features that 

were used to train each country’s completion prediction model. Models were trained to 

determine the best performing one per country. The performance of these models were 

treated as baseline model performances per country. Models were then tested against 

every other country in the dataset to establish distances between baseline and cross-

country model performance. Finally, relationship mining was conducted between these 

distances and various country-level measures of culture, wealth, size, and happiness to 

assess which measures contributed to the cross-country generalizability of models. The 

study found that differences in these measures were linearly related to model 

generalizability. That is, how much higher a country scores in a given country-level 
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measure (e.g., wealth or cultural views) compared to another country contributes to a 

model’s generalizability. 

The studies in this dissertation have proven MORF to be a useful tool in 

addressing technical and access difficulties surrounding the execution of replication 

research through its use of Open Data and Open Analysis practices. MORF facilitates 

novel and replication research by 1) giving users access to more massive amounts of 

rich and diverse learner data unlike what has been made accessible in the past, and 2) 

storing analysis or job submission artifacts (like source code and dockerfiles, which are 

used to build a user’s runtime environment) in public repositories for purposes of 

replication and evaluation. 

Through the studies presented in this dissertation, I hope to encourage future 

replication by providing an accessible and robust platform to people interested in 

conducting research in MOOCs, which can hopefully contribute to addressing the 

replication crisis, as well as open the door to answering a wide array of new and 

interesting questions in MOOC research. 

Next Steps 

The successful execution of this dissertation’s third study is evidence that 

MORF’s new infrastructure allows users to conduct both replication and novel research. 

Upgrades to MORF, which seek to extend its capabilities, are currently in development. 

In addition to giving users the ability to run their own feature extraction on the available 

data, this new version of MORF now gives users the ability to dictate the methodology 

involved in training and testing the predictive models as well. These modifications to the 

framework give users the freedom to design their own methods surrounding cross-
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validation, feature selection, and model performance output. It also allows the controlled 

output of additional information or visualization (in addition to model performance), as 

long as no personally identifiable information is shared, using a pre-selected but 

extensive set of output functions. These modifications allow for the facilitation of a range 

of new replication and novel research studies. For example, as was done in Study 3, 

data can now be aggregated based on grouping variables other than courses and 

sessions. MORF can be used to investigate the replicability of findings across subjects, 

content areas, or course designs. Such research can contribute to better understanding 

and supporting the needs of learners across these various categories. 

While beta testing is ongoing, we are also working to achieve some high-priority 

milestones in our MORF roadmap. First, we are working on the ingestion of new MOOC 

datasets into MORF. The addition of over 130 sessions of Coursera data and over 110 

sessions of edX data will increase MORF’s already rich dataset by over 4.86 million 

learners. Because users have the freedom to program how features are extracted from 

the available raw data, users will simply need to know what each platform’s data schema 

looks like in order to properly query MORF. To this end, we are currently drafting 

documentation and putting together sample datasets we can disseminate to help users 

extract the features they need across platforms. Because most MOOC providers have 

changed the way MOOCs are offered—charging steeper fees to those who are 

interested in completing—interactions with and within MOOCs have also likely changed 

compared to the way MOOCs were used when they were first offered. The ingestion of 

this new data will allow users to conduct research using more recent MOOC datasets, 

and thus provide more meaningful insight into learner success in these courses. 
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We are also working on MORF’s interoperability with data gathered from other 

online learning platforms. This modification is the platform’s first step in incorporating 

non-MOOC data, which will aid in making more e-learning data readily available and 

facilitating a wider array of research studies and use cases. Specifically, we are working 

on integrating ASSISTments (Heffernan & Heffernan, 2014) data into our data 

repository. ASSISTments is a web-based intelligent tutoring platform that implements a 

range of diverse student supports. The ingestion of external data will allow users to 

conduct cross-platform feature extraction in courses where quizzes or assignments are 

done in ASSISTments rather than natively in either Coursera or edX, which can then 

contribute to richer predictive models. Doing so also allows users the ability to leverage 

ASSISTments’ capability of providing adaptive feedback on quizzes or assignments. 

In addition to adding the data into our repository, we are also building a pipeline 

that can automatically create user mapping tables to track user IDs between 

ASSISTments and whichever MOOC platform it was used with. Our ultimate goal in this 

endeavor is to establish whether or not external partnerships like this are feasible. If they 

are, we want to eventually partner with more online learning platforms to both make their 

data more publicly accessible (and thus be more rigorously studied). 

Finally, our roadmap also includes the addition of new modules beyond 

production rule mining and predictive modeling. We aim to support the execution of more 

descriptive analyses and the use of unsupervised learning algorithms, as well as more 

qualitative research methods, like those necessary in natural language processing and 

epistemic network analyses. These modifications will allow for an even wider range of 

MOOC research, such as the use of clustering and association rule mining analyses, or 

the use of linguistic features in the prediction of learner success—projects users had 
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sought to conduct in MORF in the past but were unable to due to the framework’s prior 

lack of support for such use cases. 

Conclusion 

The studies in this dissertation have proven the MOOC Replication Framework to 

be a useful tool in addressing the technical difficulties surrounding the execution of 

replication research through its use of Open Science practices. MORF facilitates novel 

and replication research by giving users access to more massive amounts of rich and 

diverse learner data unlike what has ever been made accessible before. Through the 

studies presented in this dissertation, I hope to encourage future replication by providing 

an accessible and robust platform to researchers interested in conducting research 

across large and representative MOOC datasets. This can contribute to addressing the 

replication crisis and open the door to answering a wide array of new and interesting 

questions in MOOC research. 
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APPENDIX 

Appendix A 

Table 17. Countries included in the Chapter 4 study and their enrollment sizes. 

Country Enrollment Size Country Enrollment Size 
United Arab Emirates 9,849 Kuwait 1,452 
Argentina 7,878 Lebanon 1,738 
Austria 4,946 Lithuania 4,997 
Australia 35,532 Luxembourg 1,084 
Bangladesh 4,186 Latvia 3,072 
Belgium 7,833 Morocco 4,710 
Bulgaria 7,945 Mauritius 1,008 
Brazil 60,892 Mexico 29,309 
Canada 68,345 Malaysia 11,595 
Switzerland 10,254 Nigeria 11,146 
Chile 6,428 Netherlands 19,483 
China 109,727 Norway 4,219 
Colombia 18,520 New Zealand 5,651 
Costa Rica 2,926 Panama 1,409 
Czech Republic 7,283 Peru 10,381 
Germany 37,713 Philippines 20,245 
Denmark 7,001 Pakistan 15,650 
Estonia 2,237 Poland 17,241 
Egypt 20,368 Portugal 13,589 
Spain 47,138 Romania 14,471 
Ethiopia 1,305 Serbia 6,024 
Finland 4,418 Russian Federation 55,165 
France 28,793 Saudi Arabia 12,016 
United Kingdom 70,260 Sudan 1,237 
Ghana 5,199 Sweden 7,762 
Greece 19,122 Singapore 27,600 
Guatemala 2,540 Slovenia 2,908 
Hong Kong 16,995 Slovak Republic 3,326 
Croatia 4,942 El Salvador 1,349 
Hungary 6,742 Thailand 11,068 
Indonesia 10,083 Turkey 15,298 
Ireland 8,200 Trinidad and Tobago 2,207 
Israel 9,701 Taiwan 15,291 
India 168,947 Tanzania 968 
Iraq 749 Uganda 1,229 
Iran 6,504 United States 635,531 
Italy 21,550 Uruguay 1,340 
Jordan 1,637 Venezuela RB 4,857 
Japan 15,034 Vietnam 15,812 
Kenya 3,417 South Africa 11,104 
South Korea 12,196   
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