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systems they comprise. The patterns in the interactions between units are telling; pairwise interactions 
not only trivially affect pairs of units, but they also form structural and dynamic patterns with more than 
just pairs, on a larger scale of the network. Recently, network science adapted methods from graph 
theory, statistical mechanics, information theory, algebraic topology, and dynamical systems theory to 
study such complex systems. In this dissertation, we use such cutting-edge methods in network science 
to study complex distributed representational systems in two domains: cascading neural networks in the 
domain of neuroscience and concept networks in the domain of science of science. 

In the domain of neuroscience, the brain is a system that supports complex behavior by storing and 
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of millions of interacting neurons. Many recent studies measure neural activity on the scale of the whole 
brain with brain regions as units or on the scale of brain regions with individual neurons as units. While 
many studies have explored the neural correlates of behaviors on these scales, it is less explored how 
neural activity can be decomposed into low-level patterns. Network science has shown potential to 
advance our understanding of large-scale brain networks, and here, we apply network science to further 
our understanding of low-level patterns in small-scale neural networks. Specifically, we explore how the 
structure and dynamics of biological neural networks support information storage and computation in 
spontaneous neural activity in slice recordings of rodent brains. Our results illustrate the relationships 
between network structure, dynamics, and information processing in neural systems. 
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ABSTRACT

THE NETWORK SCIENCE OF DISTRIBUTED REPRESENTATIONAL SYSTEMS

Harang Ju

Dani S. Bassett

From brains to science itself, distributed representational systems store and process infor-

mation about the world. In brains, complex cognitive functions emerge from the collective

activity of billions of neurons, and in science, new knowledge is discovered by building on

previous discoveries. In both systems, many small individual units—neurons and scientific

concepts—interact to inform complex behaviors in the systems they comprise. The patterns

in the interactions between units are telling; pairwise interactions not only trivially affect

pairs of units, but they also form structural and dynamic patterns with more than just

pairs, on a larger scale of the network. Recently, network science adapted methods from

graph theory, statistical mechanics, information theory, algebraic topology, and dynamical

systems theory to study such complex systems. In this dissertation, we use such cutting-edge

methods in network science to study complex distributed representational systems in two

domains: cascading neural networks in the domain of neuroscience and concept networks in

the domain of science of science.

In the domain of neuroscience, the brain is a system that supports complex behavior by

storing and processing information from the environment on long time scales. Underlying

such behavior is a network of millions of interacting neurons. Many recent studies measure

neural activity on the scale of the whole brain with brain regions as units or on the scale

of brain regions with individual neurons as units. While many studies have explored the

neural correlates of behaviors on these scales, it is less explored how neural activity can be

decomposed into low-level patterns. Network science has shown potential to advance our un-

derstanding of large-scale brain networks, and here, we apply network science to further our

understanding of low-level patterns in small-scale neural networks. Specifically, we explore
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how the structure and dynamics of biological neural networks support information storage

and computation in spontaneous neural activity in slice recordings of rodent brains. Our

results illustrate the relationships between network structure, dynamics, and information

processing in neural systems.

In the domain of science of science, the practice of science itself is a system that discovers and

curates information about the physical and social world. For centuries, philosophers, histo-

rians, and sociologists of science have theorized about the process and practice of scientific

discovery. Recently, the field of science of science has emerged to use a more data-driven ap-

proach to quantify the process of science. However, it remains unclear how recent advances

in science of science either support or refute the various theories from the philosophies of

science. Here, we use a network science approach to operationalize theories from prominent

philosophers of science, and we test those theories using networks of hyperlinked articles in

Wikipedia, the largest online encyclopedia. Our results support a nuanced view of philoso-

phies of science—that science does not grow outward, as many may intuit, but by filling in

gaps in knowledge.

In this dissertation, we examine cascading neural networks first in Chapters 2 through 4

and then concept networks in Chapter 5. The studies in Chapters 2 to 4 highlight the

role of patterns in the connections of neural networks in storing information and performing

computations. The study in Chapter 5 describes patterns in the historical growth of concept

networks of scientific knowledge from Wikipedia. Together, these analyses aim to shed

light on the network science of distributed representational systems that store and process

information about the world.
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CHAPTER 1

General Introduction

1.1. Network science and distributed representational systems

Network science uses theories and methods from graph theory, statistical mechanics, infor-

mation theory, algebraic topology, and dynamical systems theory to study complex systems

of interacting units. In their key paper, Watts et al. (1998) demonstrated that networks

representations of many complex systems have small-world properties, where connection

patterns lie between full order and full disorder. Dynamical systems that can represented

as small world networks exhibit enhanced signal-propagation speed, computational power,

and synchronizability. Importantly, they used (i) graph theory to characterize a spectrum

of network structures, from ordered to random, (ii) data to identify “small world” networks

in real systems, and (iii) dynamical systems to model system performance as a function of

network structure. Since then, studies have quantified the network structures of complex

systems and how they relate to system performance across scholarly fields, from cell biology

and neuroscience to statistical mechanics and science of science, (Newman, 2001; Albert

et al., 2002; Barabási et al., 2004; Bassett and Bullmore, 2006; Kwak et al., 2010; Bassett

and Sporns, 2017).

In this dissertation, we will use the network science approach to study complex systems

that represent information about the environment among distributed units, which we label

as distributed representational systems, in two distinct domains: cascading neural networks

and scientific knowledge databases. First, biological neural networks represent features of

the environment among distributed units called neurons. The networks display cascades,

which are spontaneous activity that propagate across a network of synaptic connections

between neurons (Beggs and Plenz, 2003) and are poised at a regime that facilitates the

optimal storage and transmission of information across the network (Beggs, 2004; Halde-

man et al., 2005; Larremore et al., 2011). Moreover, such networks adapt to maintain such
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optimal information processing properties (Shew, Clawson, et al., 2015). Second, we explore

Wikipedia, which is the largest online encyclopedia and a database of scientific knowledge.

Such databases—instead of using networks of dynamically interacting units—store informa-

tion in units of articles, where related articles are hyperlinked to form a network of concepts.

Here, we will explore these diverse distributed representational systems from the perspective

of network science to uncover how the network structure of a system relates to its ability to

store and process information.

1.2. Network neuroscience

The “research programme” of neuroscience builds on the core concept of the neuron doc-

trine, which states that brain function is based on organized neural networks (Llinás, 2003).

Neural networks receive and process stimuli from the environment to inform cognition and

behavior, such as the visual recognition of faces (Adolphs, 2003). Thus, a central question

in neuroscience is how connections between neurons support cognition and behavior for an

organism to identify and act upon environmental stimuli. To identify environmental stim-

uli, an organism must form representations of its environment in its brain, and the scope of

representations has been experimentally demonstrated across a wide spectrum of cognitive

functions, from mapping social hierarchies to predicting future events (Summerfield et al.,

2006; Tavares et al., 2015).

To aid in the study of how organisms store, transmit, and process information, network

models distill the complexity of the brain into its units of brain regions or neurons and

their interactions across white matter connections or synapses (Bassett, Zurn, et al., 2018).

By formulating a brain or a neuronal population as a network, network neuroscience can

take advantage of theories and methods from a range of disciplines, from graph theory and

statistics to physics and engineering (Watts et al., 1998; Bassett and Sporns, 2017; Lynn

et al., 2019). For example, networks are often formulated as a connectivity matrix A, where

element aij of the matrix A scales the interaction between units i and j.
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In neuroscience, networks have been used to model neural systems primarily at two spatial

scales: a larger scale of whole brains with regions as units, and a smaller scale of neurons

as units. At the larger scale, studies have used data from tractography of white matter

connections or BOLD signals that are correlated with regional brain activity (Friston, 2011;

Hermundstad et al., 2013). Such network models have been used to understand the neu-

ral correlates of cognition and also to seek potential clinical uses (Medaglia et al., 2018;

Jeganathan et al., 2018; Cornblath et al., 2020; Stiso et al., 2019). On the smaller, cellu-

lar scale, neural connections and their underlying computational function have often been

inferred through neural dynamics (Hopfield, 1982; Ben-Yishai et al., 1995; Wang, 2002).

Using advanced techniques in network neuroscience, recent studies have characterized the

network structures of brains at a range of scales. Large-scale brain networks have been

shown to be small-world with long distance white matter connections and modular with

many anatomically and structurally distinct brain regions (Bertolero et al., 2015; Bassett

and Bullmore, 2017). On the scale of neuronal populations, neural networks are also modular

with hubs and clusters (Shimono et al., 2014). Furthermore, cortical neurons have patterns

of connectivity that are common throughout the cortex, including bidirectionally connected

neurons and higher-order network motifs (Wang, Markram, et al., 2006; Lefort et al., 2009;

Ko et al., 2011; Markram, 1997; Song et al., 2005; Perin et al., 2011).

The structure of brain networks has been shown to be critical to brain dynamics that underlie

information processing. One of the simplest models of brain activity is that of a linear system

(Kailath, 1980; Becker et al., 2018; Nozari et al., 2021). A linear system assumes that vectors

of neural activity x evolve according to pairwise connections between units, represented in a

connectivity matrix A, as x(t+1) = Ax(t)+Bu(t), where B scales inputs u(t) to the system.

A linear systems model provides closed form solutions to many properties of the system,

including controllability and stability (Kailath, 1980; Pasqualetti et al., 2014). Using these

tools, recent studies have explored how the brain may react to control by other brain regions

or exogenous stimuli (Muldoon et al., 2016; Gu et al., 2017; Tang et al., 2018; Medaglia

3



et al., 2018).

While dynamical systems theory relates network structure to dynamics, advanced techniques

in information theory and statistics have revealed relationships between network dynamics

and information processing. Network models that use transfer entropy to identify synaptic

connections have revealed common patterns in the network structures of cortical neurons,

including clusters, rich clubs, and communities (Ito et al., 2011; Shimono et al., 2014; Nigam

et al., 2016; Timme et al., 2016). Moreover, certain structural patterns, such as hubs and

rich clubs, have been found to perform most of the computation in populations of cortical

neurons (Chen et al., 2010; Faber et al., 2019). While many studies aim to determine how the

brain’s network structure may support information processing and thus cognition, it remains

challenging to directly measure the relationships between neural dynamics, connectivity, and

computation (Watts et al., 1998; Honey et al., 2007; Eliasmith et al., 2012).

1.3. Neuronal avalanches

One interesting phenomenon in which neural dynamics are tightly coupled to network

structure is that of neuronal avalanches, which we study in this dissertation. Neuronal

avalanches, first discovered in spontaneously active neurons, consist of bursts of neuronal

activity, whose spatial and temporal correlations are scale-free (Beggs and Plenz, 2003). Im-

portantly, neuronal avalanches were shown to operate in a regime with optimal information

processing properties, including optimal information transmission (Beggs and Plenz, 2003;

Shew, Yang, Yu, et al., 2011), information storage (Haldeman et al., 2005), computational

power (Bertschinger et al., 2004), and dynamic range (Kinouchi et al., 2006; Shew, Yang,

Petermann, et al., 2009; Larremore et al., 2011). The term avalanche is borrowed from

the field of statistical mechanics in which Bak et al. (1987) demonstrated self-organizing

criticality in an Abelian sandpile model. In the model, grains of sand are dropped until

they form a pile of sand; dropping a grain on the pile triggers an avalanche that ripples

down the pile. Interestingly, the statistical methanics of avalanches were shown to have
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scale-free spatial and temporal correlations such that there is no “scale”—or mathematically,

an expected value—for the duration or size (the number of units in an event) of avalanches.

Thus, distributions of size and duration of avalanches are heavy-tailed and form power laws.

Critical systems display statistics beyond power-law distributions of avalanche size and du-

ration, which can be displayed by non-critical systems. An important additional test for

criticality is the exponent relation, which states that size and duration of events should scale

proportionally (Friedman et al., 2012). Mathematically, the power law exponents, α and

τ , of the distributions of event duration d and size s, respectively, are related to the power

law exponent of cascade size given duration (Friedman et al., 2012). Recent studies use the

exponent relation to identify criticality in their experimental systems (Shew, Clawson, et al.,

2015; Ponce-Alvarez et al., 2018; Fontenele et al., 2019). However, many studies have found

that not all systems that have power law distributions in size and duration are at criticality,

such as molecular chaos models (Touboul et al., 2017). Moreover, subsampling of systems

often leads to a strong overestimation of the stability in neural systems, which should can

be corrected using multistep regression estimation (Wilting et al., 2018).

Neuronal avalanches have been demonstrated to exist in the brain across a range of experi-

mental measurements. The experimental evidence of neuronal avalanches spans a range of

methods in vitro (Beggs and Plenz, 2003; Beggs, 2004), in vivo (Gireesh et al., 2008; Peter-

mann et al., 2009; Hahn et al., 2010; Shriki et al., 2013; Bellay et al., 2015; Ponce-Alvarez

et al., 2018), and ex vivo (Shew, Clawson, et al., 2015) in a variety of organisms, including

humans. However, the hypothesis of criticality in the brain remains somewhat controversial

(Beggs and Timme, 2012; Wilting et al., 2019); some neural systems are slightly sub-critical

with “reverberating” dynamics, which has been observed in vivo from spike recordings of

cat, monkey, and rats (Wilting et al., 2018). Because a neural system often receives stimuli

from the environment that push the system out of the regime of criticality, neurons may

often reside out of criticality but quickly adapt to near criticality (Shew, Clawson, et al.,

2015).
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1.4. Neuronal cascades

The near-criticality of many neural systems begs the question: what kinds of information

processing do such systems perform? Specifically, how do the bursts of activity perform

computations beyond those of storing and relaying information? How does neural activity

synthesize and transform inputs into outputs? To set briefly aside the debate regarding

criticality in the brain, we began to use the term cascades versus avalanches to discuss

spontaneous activity without the strict requirements for criticality (Ju, Kim, et al., 2020).

A “cascade” refers to a burst of neural activity, whose continuous activity is presumed to

be due to synaptic interactions between neurons. Indeed, some recordings of neural activity

were shown to be slightly below critical in the analyses by other studies (Wilting et al., 2018)

and in our analyses (Ju, Kim, et al., 2020). The distributions of such sub-critical systems

can be modeled using an exponentially truncated power law p(x) ∼ x−αe−x/τ where τ is a

constant that modulates the exponential truncation (Denisov et al., 2016; Murphy et al.,

2019).

The network science perspective begets inquiry into the structure of networks underlying

these complex dynamics. While neural cascades at coarse time resolutions of seconds of-

ten have the appearance of a single burst of activity, cascades at finer time resolutions of

milliseconds are indeed richly varied yet stable spatiotemporal patterns of activity (Beggs,

2004). Additionally, a separate line of research observed motifs in the patterns in synaptic

connectivity in cortical neurons. For example, cortical neurons are often strongly and bidi-

rectionally connected to each other (Wang, Markram, et al., 2006; Lefort et al., 2009; Ko

et al., 2011) and form even higher-order motifs in clusters of neurons (Markram, 1997; Song

et al., 2005; Perin et al., 2011). While these motifs can theoretically support short-term

information storage (Rodriguez et al., 2001; Fiete et al., 2010; Daie et al., 2015; Brunel,

2016), the relationship between neural cascades and the information processing properties

remains unclear.
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While the avalanche literature views neuronal information processing from a statistical me-

chanics perspective—thus quantifying information processing of a system as a whole—recent

studies use state-of-the-art information theory to begin to quantify computations beyond

information storage and transmission in neural populations (Shimono et al., 2014; Nigam

et al., 2016; Faber et al., 2019; Lynn et al., 2019; Ju and Bassett, 2020). Specifically, par-

tial information decomposition was recently developed as a way to decompose information

processing from multiple sources that are independent, dependent, and synergistic (Wibral,

Priesemann, et al., 2017; Wibral, Finn, et al., 2017). Synergistic information processing

takes many inputs and maps them to outputs such that all inputs are required to determine

the output. These new advances reveal a new frontier in the study of how near-critical

neural systems may perform complex computations (Bertschinger et al., 2004).

1.5. Science of science

In addition to cascading neural networks, scientific knowledge itself is the second information

system that we will explore in this dissertation.

What is the same? What is different? How are they both distributed representational

systems? Do they differ in their representations? Do they differ in the mannner in which

those represeentations are distributeed? Why study the two together? What do you gain

that you wouldn’t have acquired if you had studied either alone. Need some narrative of

integration.

To motivate our study of the network science of scientific progress, we first visit the idea of

multiple discoveries. In 1974, Merton observed the phenomenon, or hypothesis, of multiple

discoveries which states that for many scientific discoveries, numerous groups or individuals

make the same discovery independently and contemporarenously (Merton, 1974). Many

famous discoveries were multiple discoveries. Calculus was discovered independently and

contemporaneously by Sir Isaac Newton and Gottfried Wilhelm Leibniz, and evolution was

discovered by both Charles Darwin and Alfred Russel Wallace (Merton, 1974). The phe-
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nomenon of multiple discoveries points to perhaps an intuitive “law” in scientific discovery:

certain discoveries require that, to discover them, one must have access to certain other

knowledge or materials. Newton famously professed a similar sentiment, “If I have seen

further, it is by standing on the shoulders of giants” (Newton, 1675). Conversely, access to

certain knowledge or materials may facilitate certain discoveries. So one may naturally ask

whether there are patterns to how certain sets of knowledge may lead to certain discoveries.

To begin to study whether and how existing knowledge supports discoveries, we must review

to prominent theories by philosophers of science. For centuries, scholars who have studied

scientific progress have postulated that various processes underlie scientific progress. Pop-

per, in his classic paper “Conjectures and refutations: the growth of scientific knowledge,”

described scientific progress as a sequence of theories in which previous ones are falsified

by new ideas (Popper, 1968). Then building on his work, Kuhn, Feyerabend, and Lakatos

each offered three prominent and influential philosophies of science (Kuhn et al., 2012; Fey-

erabend, 2010; Lakatos, 1968). In 1962, Kuhn described scientific progress as periods of

normal science, in which scientists “solved puzzles” within a paradigm, which is the set of

basic concepts and experimental practices of a scientific discipline (Kuhn et al., 2012). Peri-

ods of normal science are separated from one another by paradigm shifts that overturn the

paradigm. In 1970, Lakatos suggested an alternate view that scientific progress is based on

“research programmes”, in which knowledge expands from a common core set of scientific

ideas and experimental practices (Lakatos, 1968). In 1975, Feyerabend dismissed any single

mechanism for scientific progress (Feyerabend, 2010).

Recently, the field of science of science has begun to explore questions in scientific progress in

a more quantitative manner. New studies in science of science have sought to quantify and

predict scientific research and the resulting outcomes from data-driven and complex systems

perspectives (Wang, Song, et al., 2013; Clauset et al., 2017; Zeng et al., 2017; Fortunato et

al., 2018). Other studies inquire into the institutional, personal, and societal conditions that

do or do not support scientific discovery (Sinatra et al., 2016; Chemla et al., 2017; Helmer

8



et al., 2017; Astegiano et al., 2019; Wu et al., 2019; Nagaraj et al., 2020; Robinson-Garcia

et al., 2020). Despite the recent advances in data-driven studies on scientific practice, it

remains unclear whether the prominent philosophies of science are supported by currently

available sources of data on the practice of science.

In our study in science of science, we aim to begin to bridge the gap between science of

science and the prominent theories of the philosophers of science. To do so, we use methods

from network science to formulate a scientific body of knowledge as a network of concepts

and quantify patterns in the inter-concept relations (Siew et al., 2019). Recently, networks

have been useful in studying the changes in the inter-relations between concepts, as “seman-

tic networks” formed by the co-occurrences of words in books (Christianson et al., 2020).

Moreover, concept networks have proven to be powerful tools for probing questions about

the exploration of knowledge across Wikipedia articles (Lydon-Staley et al., 2021). We per-

form these analyses on hyperlinked articles from Wikipedia, the largest online encyclopedia.

Taken together, recent developments in the study of science illustrate that the time is ripe

to study patterns in scientific discovery itself through a quantitative lens.

1.6. Architecture of this thesis

In this dissertation, the overarching goal is to shed light on relationships between the struc-

ture and function of networks in distributed representational systems. Such systems use

a distributed network of units that together form representations of the environment. In

biological neural networks, distributed neurons interact to represent and model their envi-

ronment, and in science, distributed concepts refer to one another to represent and model

the physical and social world. Here, we aim to explore how patterns of network structure

relate to the function of neural networks in neuroscience and concept networks in science of

science.

In Chapter 2, we review the literature on two distinct lines of research in neuroscience:

network models and neural representations. While the former describes patterns of neural

9



interactions, the latter describes patterns of neural activity as correlates of representations of

an organism’s environment. We then propose a framework of dynamic neural representations

that unites the two fields to further our understanding of the neural models of an ever-

changing environment.

In Chapter 3, we employ a dynamic network model based on spontaneous spiking activity

from the slice recordings of mouse somatosensory cortex. We use network measures, linear

systems theory, and information theory to study the relationship between network structure

and memory capacity in neural systems. We identify network structures at both the mi-

croscopic and macroscopic scales, and demonstrated how they can support the retention of

information across time.

In Chapter 4, we expand the study of neural interactions from pairwise to triplet-wise inter-

actions by operationalizing neural “logic gates” as firing probabilities conditional on two other

neurons. In spontaneously spiking neurons in slice recordings of mouse somatosensory cortex

and rat hippocampus, we quantified non-trivial, triplet-wise interactions between neurons.

Those interactions differed across brain regions and throughout the in vitro development of

synaptic connections.

In Chapter 5, we operationalize and test theories from prominent philosophers of science

using network measures, algebraic topology, and linear systems theory. By creating concept

networks that “grow” throughout history from hyperlinked Wikipedia articles, we found that

the body of knowledge does not grow outward, as many may intuit, but rather by filling

in gaps in knowledge. Such gap-filling is also deemed important in scientific communities

as concepts that either create or fill in knowledge gaps are more influential and more often

awarded Nobel prizes.

Taken together, the studies demonstrate how the organization of systems with distributed

networks of units can represent and model the environment. In neural systems, the dis-

tributed activity of neurons interact with one another to store, compute, and transmit

10



information from environmental stimuli, and in science, distributed concepts relate to one

another to model the physical and social world. These two systems reveal two different

ways of modeling the environment—first by distributed activity and second by distributed

relations—both via a distributed network of units. These studies begin to pave the way

to better understanding the low-level relationships between network structure and function

that may eventually facilitate the engineering and control of these systems.
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CHAPTER 2

Dynamic representations in neural networks

This chapter contains work from Ju, H. and Bassett, D.S. (2020). “Dynamic representations

in networked neural systems.” Nature Neuroscience 23, 908–917.

2.1. Abstract

A group of neurons can generate patterns of activity that represent information about stim-

uli; subsequently, the group can transform and transmit activity patterns across synapses

to spatially distributed areas. Recent studies in neuroscience have begun to independently

address the two components of information processing: the representation of stimuli in neu-

ral activity and the transmission of information in networks that model neural interactions.

Yet only recently are studies seeking to link these two types of approaches. Here we briefly

review the two separate bodies of literature; we then review the recent strides made to ad-

dress this gap. We continue with a discussion of how patterns of activity evolve from one

representation to another, forming dynamic representations that unfold on the underlying

network. Our goal is to offer a holistic framework for understanding and describing neu-

ral information representation and transmission while revealing exciting frontiers for future

research.

2.2. Introduction

Organisms live in and interact with an ever-changing environment. From the microscopic

nematode searching for single molecules of food to a cat readying to pounce on a mouse,

animals must gather sensory cues to identify environmental variables that could either aid

or end their survival. Is this berry edible or poisonous? Is that the sound of a hawk waiting

to stoop or just the sound of wind through grass? Even the simplest of these questions

necessitates an internal representation of one’s environment and how that environment may
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change over time. Since the mid-20th century, experiments have used diverse sensory stimuli

and tasks to elucidate the scope of neural representations, from mapping social hierarchies

to predicting future events that impact survival (Summerfield et al., 2006; Tavares et al.,

2015).

More recently, developments in empirical methods and theory have allowed the quantifica-

tion of not only static neural representations, but also dynamic representations that evolve

appreciably in time (Gallego et al., 2018). In these dynamic representations, neural activity

follows spatiotemporal patterns that are associated with complex, dynamic abstractions,

such as remembering sequences of visual patterns or motor control (Gallego et al., 2018;

Shine et al., 2019; Chaudhuri et al., 2019). With this new knowledge come new questions

about the dynamic nature of neural representations: what kinds of dynamic abstractions

can neurons represent? And how and why do representations change over time to support

behavior?

In this Review, we posit that a fundamental understanding of neural representations may

lie in understanding the networks of interactions between neural units (Bassett and Sporns,

2017). Neural representations are thought to arise from patterns of neuronal firing (Saxena

et al., 2019); importantly, neurons do not fire in isolation. Rather, they are intricately con-

nected within a complex network of synapses on which activity propagates from one neuron

to another. By abstracting complex interactions, we can use network models, dynamical

systems theory and other approaches to understand the behaviors that emerge from neural

systems.

To begin, we briefly review recent work from the two fields of neural representations and

network models before describing efforts to bridge them. Further innovation, however, will

require new theoretical and methodological developments. Thus, we outline a general theo-

retical framework for reasoning about the dynamics of representations in networked neural

systems. To build this framework, we gather recent theories and evidence that support

mechanisms by which representations evolve over time, through intraregional dynamics and
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the interactions between intra- and inter-regional dynamics. Our hope is that by bridging

the two fields, we will facilitate the quantification and explanation of dynamic representa-

tions, which in turn will open doors to a deeper understanding of the neural computations

that underlie cognition in complex, dynamic environments.

2.3. Neural representations

Neural activity can represent a variety of physical and abstract variables in the environment.

For example, neurons in the hippocampus and entorhinal cortex can selectively activate in

response to spatial cues, such as the egocentric location of an animal or of others (Danjo et

al., 2018). Neurons in the same area are also selectively responsive to conceptual knowledge,

such as the shapes of objects (Constantinescu et al., 2016) and the social environment

(Tavares et al., 2015).

In studying neural representations, an important recent step has been to measure how a

population of neurons or voxels (i.e., volumes of brain tissue) can represent variables by

activating in a specific spatial pattern in response to a particular stimulus pattern (Saxena

et al., 2019). The encoding of representations in neural populations offers a computational

advantage over encoding in individual neurons, especially in complex cognitive tasks (Rigotti

et al., 2013; Parthasarathy et al., 2017). By observing neural populations, studies have

demonstrated that neurons can represent abstract phenomena, such as visual objects (Rigotti

et al., 2013; Stringer, Pachitariu, Steinmetz, Carandini, et al., 2019), events (Schapiro et

al., 2013), tasks (Yang et al., 2019), social cues (Levy et al., 2019), and language (Arana

et al., 2020) (Figure 2.1A). Even some trial-by-trial fluctuations in neural activity that

were once considered statistical noise are now known to be shaped by an animal’s various

physical movements (Musall et al., 2019; Stringer, Pachitariu, Steinmetz, Reddy, et al.,

2019). Whereas representations of simple, physical variables like spatial location can support

survival by guiding immediate responses to the environment, more abstract representations

can be important in building a richer model of the world, which can support survival over
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longer timescales through prediction and planning (Mobbs et al., 2020).

Figure 2.1: Neural representations and tools to analyze them. a An illustration of an
experimental setup for studying neural representations. A participant views faces (top) and
objects (bottom) while an experimenter records the subject’s neural activity. The shade of
each point indicates the activity level of voxels, and voxels can be grouped into a population,
whose activity can then be represented as a vector, x. b Methods to analyze neural activity,
as a time-series or by trials: dimensionality reduction methods identify dimensions (typically
using two or three for visualization and interpretation; d1, d2, and d3) that explain a large
portion of the observed variance in neural activity; similarity analysis methods compare
activity patterns of voxels between brain regions or experimental conditions; dynamical
methods analyze the change in activity patterns, for example, how the activity patterns of
one population, d4, change as a function of the activity patterns of another population, d5;
and other methods quantify how one type of activity pattern can transition to another type,
with each type being referred to as a ‘state’.
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To study representations in neural populations, one can operate on the single variable of

population-averaged activity or one can operate on a vector of neuronal activity within a

population (Saxena et al., 2019) (Figure 2.1B). Studies of population activity often employ

principal component analysis (PCA) (Gallego et al., 2018; Shine et al., 2019; Parthasarathy

et al., 2017; Stringer, Pachitariu, Steinmetz, Carandini, et al., 2019; Levy et al., 2019)

or linear models (Musall et al., 2019; Tang et al., 2019) to quantify the inherent dimen-

sionality of the dynamics. Interestingly, such methods and related techniques (McIntosh

et al., 2013) show that the space of population activity can be either high-dimensional

or low-dimensional. At high dimensionality, population activity encodes information more

efficiently, as in encoding visual stimuli (Parthasarathy et al., 2017; Stringer, Pachitariu,

Steinmetz, Carandini, et al., 2019), whereas at low dimensionality, activity encodes more

robustly, as in complex cognitive or motor tasks (Tavares et al., 2015; Gallego et al., 2018;

Tang et al., 2019). More modern multivariate methods, such as representational similarity

analysis (RSA) (Kriegeskorte, 2008) and multivoxel pattern analysis (MVPA) (Mahmoudi

et al., 2012), abstract representations away from precise activity patterns in favor of focusing

on the similarities between patterns across experimental conditions characterized by distinct

stimuli or tasks. Collectively, these multivariate methods capture neural representations of

population activity in individual brain regions.

Yet the question remains: how do neurons or larger neural units form, change and transmit

representations? To answer this question, a key observation may be the temporal com-

ponent of neural representations: neural activity evolves over time to represent dynamic

variables (Figure 2.1B). In the theory of hippocampal sequence learning, temporal patterns

of activity in hippocampal cell assemblies encode sequences of locations (Dragoi et al., 2006;

Epstein et al., 2017) and episodic memory through oscillatory activity (Lisman et al., 1995).

More complex trajectories of system-wide neural activity serve higher cognitive functions,

for instance, in motor and cognitive tasks (Tavares et al., 2015; Gallego et al., 2018; Taghia

et al., 2018), sometimes measured as transitions between discrete moments of activity, typ-

ically called states (Cornblath et al., 2020) (Figure 2.1B). The dynamic nature of neural
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representations prompts further discussion of how representations can evolve on a network

of synapses or white matter tracts that connect neurons and brain areas.

2.4. Network models

To understand how neural representations evolve over time, we propose that the dynamic

evolution of representations emerges from the interactions between neural units. Thus, we

briefly explore network models in neuroscience before discussing in the next section how

they may give rise to representations. Neurons (and neuron populations) are intricately

connected in a complex web of interactions, and network models abstract neural units and

their connections as a network of nodes and edges (Bassett, Zurn, et al., 2018). The pattern,

or topology, of these connections—within and across neurons, populations of neurons and

ultimately brain regions—constrains activity in complex, dynamical neural systems.

To build a network model of the brain, one can quantify either the structural connections or

the dynamic interactions between neurons or brain regions (Figure 2.2). In humans, struc-

tural connections are often estimated from the diffusion of water along white matter tracts

that connect distant brain areas (Johansen-Berg, 2013). In contrast, dynamic interactions

are reflected in the effective connectivity of a neural system, which describes the putatively

causal interactions between neural units (Friston, 2011). Approaches to estimate effective

connectivity include linear autoregressive models (Friston, 2011; Neumaier et al., 2001), in-

formation theoretic measures of transfer entropy (Ito, Hansen, et al., 2011) and probabilistic

Bayesian models of dynamic causal modeling (Friston et al., 2003). Network models of both

structural and effective connections inform how patterns of connections may mediate the

dynamic processes that flow on top of these connections (Bassett and Sporns, 2017).
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Figure 2.2: Network models abstract neural systems. a The activity of multiple
brain regions (top) or neurons (bottom), as time-series. b Model-based (top) or information
theoretic (bottom) methods capture the time-lagged interactions between pairs of nodes.
Such models can be informed by structural links between node pairs, such as synapses
between neurons or white matter tracts between large-scale brain areas. c A network model
is constructed from the pairwise functional or effective interactions, whose estimation is
depicted in B, or from pairwise structural connections (not shown).

By applying recent methods from network neuroscience (Bassett, Zurn, et al., 2018), one can

quantitatively characterize global, mesoscale and local patterns of connectivity in brain net-

works (Bassett and Sporns, 2017; Bassett, Zurn, et al., 2018). For example, many empirical

networks, including brain networks, display global architectures that lie in between those

of random and ordered networks, in a manner that is well-described by the Watts–Strogatz

small-world model (Bassett and Bullmore, 2006). Mesoscale architecture can be reflected in

modular and core–periphery structures (Sporns et al., 2016; Rombach et al., 2014), whereas

local architecture can be reflected in hubs, which can join together to form ‘rich clubs’

(Heuvel and Sporns, 2011; Bullmore et al., 2013). Collectively, network measures distill the

complex patterns of connections down to simple organizing principles across topological and

spatial scales.
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Network models have yet to give much insight into neural representations and, ultimately,

cognition—despite the fact that such models enhance our understanding of the characteris-

tics of information transmission in the brain (Summerfield et al., 2006; Avena-Koenigsberger

et al., 2018). Initial efforts suggest that short paths characteristic of small-world networks

(Bassett and Bullmore, 2006) together facilitate the spread of signals throughout a network

(Avena-Koenigsberger et al., 2018; Mišić et al., 2015). Similarly, rich clubs of local cortical

neurons propagate and process information (Faber et al., 2019). Other topological features,

such as the topological similarity between two regions, can predict functional correlations

in their activity (Bettinardi et al., 2017). These initial efforts underscore the potential for

network models to contribute much more toward our understanding of how neural represen-

tations evolve and support cognition.

2.5. Integrating neural representations and network models

While neural representations relate environmental or behavioral variables to neural activity,

network models estimate and predict changes in neural activity, and recent studies have

begun to integrate neural representations and network models. In particular, new methods

estimate inter-regional dynamical interactions using statistical relationships between activ-

ity patterns measured from functional MRI (Kriegeskorte, 2008; Anzellotti et al., 2017)

(Figure 2.3A). As representations are transmitted from one brain region to another, one

can quantify how they are transformed using a linear model (Anzellotti et al., 2017) or

similarity analysis (Kriegeskorte, 2008) (Figure 2.3B). Other multivariate methods, such as

multivariate pattern dependence (MVPD; versus the MVPA mentioned earlier), can tease

apart features of representations in a brain region, such as the low- versus high-level prop-

erties of faces in the fusiform, which are differentially transmitted to disparate brain regions

(Anzellotti et al., 2017). These and other mathematical methods, such as sheaves from al-

gebraic topology (Curry, 2014), can be applied to neural data to inform our understanding

of how activity patterns change as they are transmitted across brain regions.
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Figure 2.3: Integrating network models and neural representations. a a, Network
models abstract the interactions between brain regions with connections Θ = Θ1, ...,ΘN ,
where each connection Θi may be composed of M parameters Θi,1, ...,Θi,M . b Recent
efforts examine the transmission of representations across brain regions as transformations
of activity, transmission of information (H indicates entropy) or similarity in activity (ρ
indicates correlation).

In a similar line of inquiry, others have sought to quantify the information carried across

brain regions (Ito, Hearne, et al., 2020). Multivariate methods, such as information connec-

tivity or information transfer mapping, measure this information as the synchrony in the

discriminability of multivariate patterns (Coutanche et al., 2013). The information carried

in multivariate patterns can also be estimated using classical information-theoretic mea-

sures, such as mutual information, of spatial and temporal multivariate patterns (Shannon

et al., 1998; Ju et al., 2020). At the cellular level, empirical studies have measured non-

linear, information-theoretic dependencies between neurons (Figure 2.3B) (Ito, Hansen, et

al., 2011). Using partial information decomposition, an even more recent approach, one

can measure the shared, unique and synergistic transmission of information across neural
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networks (Faber et al., 2019; Wibral et al., 2017).

What is the mechanism by which such transformation and transmission of information oc-

curs? Anatomical pathways are a key candidate. Structural connections are robustly linked

with correlations in activity (Bansal et al., 2018; Hermundstad et al., 2013) and dynamics

(Cornblath et al., 2020). By approximating linear dynamics on those connections, one can

provide closed-form, analytic solutions to dynamical properties, such as the minimum en-

ergy to control the activity of one region from another (Kim et al., 2018), with numerical

approximations also informing potential clinical applications (Stiso et al., 2019). However,

the linear approximation may be less appropriate higher in the cortical hierarchy, where the

link between structure and activity correlations diverges (Vázquez-Rodríguez et al., 2019).

These and related studies suggest the need to understand both simple (linear) and more

complex mechanisms by which inter-regional dynamics arise from interregional structural

connections.

Efforts to meet that need will benefit from the multivariate methods discussed in the previ-

ous section, such as RSA and MVPA, which reveal that the multivariate activity patterns

within a brain area can flexibly represent environmental and task-relevant variables. More-

over, they would benefit from the new methods discussed in this section, which show ways

to estimate multivariate dynamics across brain areas. Indeed, recent work highlights the

importance both of the dynamics of representations within a brain area and the constraints

imposed on those dynamics by the underlying network. Theoretical studies have already ex-

amined how the circuitry within a neural population can support a variety of computations

(Wolf et al., 2014; Weber et al., 2019), such as Bayesian computation (Sohn et al., 2019).

Thus, understanding how neural networks form, change and transmit representations in the

brain at various scales seems fundamental to understanding the computations that underlie

cognition.
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2.6. Dynamic representations in networked neural systems

Looking forward, we posit two topics of research that may facilitate the further integration

of neural representations and network models: (1) intraregional dynamics and (2) the in-

teractions between intra- and inter-regional dynamics (Figure 2.4 and Box 1). These two

topics can inform how representations are formed, changed and transmitted along network

connections. We review disparate bodies of literature that support the integration of repre-

sentations and networks and that further hint at the insights potentially gleaned therefrom.

Then, in the next sections, we propose a theoretical framework for dynamic neural repre-

sentations in networked neural systems and review methods that have already (and not yet)

been applied to study real neural systems.

2.6.1. Intraregional dynamics

For the purposes of our discussion here, we generalize the term ‘region’ to refer to a collec-

tion of neighboring neural units, from neurons to voxels. Moreover, we draw a distinction

between the macroscopic scale of whole-brain imaging and the microscopic scale of neural

recordings, such as those using local field potentials (LFPs). At the macroscopic scale, the

multivariate methods discussed previously, such as RSA and MVPD, operate on brain ar-

eas. At the microscopic scale, a region may refer to, for example, a few hundred neurons

(Heuvel, Stam, et al., 2008). Considering the modular yet interconnected nature of brain

networks (Sporns et al., 2016; Bertolero et al., 2015), we wish to distinguish the interactions

among subsystems, which we refer to as brain regions, from the interactions within subsys-

tems. Thus, we will first discuss how a region evolves through intraregional dynamics, how

it evolves autonomously without inter-regional interactions, and then how it interacts with

other regions through inter-regional connections.

It is difficult to empirically observe autonomous, intraregional brain dynamics because each

region is continually interacting with other regions. The stronger the interactions between

brain regions, the further the interactions drive down the dimensionality of the observed
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Figure 2.4: Dynamic representations in networked neural systems. a Neural activ-
ity (left) dynamically evolves along a trajectory (dashed) in a system space with dimensions
d1 and d2. Neural network models (right) constrain dynamics by parameterizing an energy
function, thus constructing an energy landscape (illustrated by contour lines, where circular
lines indicate energy wells; for illustration purposes, we assume a smooth energy landscape).
Network models can inform the description, prediction and control of dynamic neural rep-
resentations. b Dynamics of neural representations in networks (arrows indicate time). In
autonomous, intraregional dynamics (left), network states travel along valleys. Through
inter-regional interactions (middle), network states can travel over hills. Reconfiguration of
network dynamics (right), through for example inhibition of a node (greyed), creates new
hills and valleys in the landscape. c Examples of observations of dynamics: oscillations (left)
and more complex trajectories (right). See Box 2 for details.

dynamics, to a point where one or two dimensions can explain most of the variance in neu-

ral activity. In whole-brain imaging during motor tasks, high-dimensional cortical activity

converges onto a low-dimensional manifold in mice (Chaudhuri et al., 2019) and monkeys

(Gallego et al., 2018). Despite such convergence, cortical activity can still be spatially de-

composed into linear kernels that represent uninstructed movements (Musall et al., 2019) or

into orthogonal principal components that are then integrated in performing cognitive and

motor tasks (Shine et al., 2019).

We briefly demonstrate the mathematical dependence of dimensionality of activity on the

decomposability of the network structure. If, for simplicity, we approximate neural interac-

tions as linear functions, then we can use spectral decomposition methods to find modular
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subsystems, each with an eigenvector with a large associated eigenvalue (Kailath, 1980).

If, for example, the network has two modules and dynamics are approximately linear, then

around two principal components (i.e., eigenvectors of the network’s covariance matrix) will

explain most of the variance in activity. However, in the contrasting case in which network

structure is complex or dynamics highly nonlinear, then low-dimensional representations are

unlikely to accurately account for the system’s function.

Dimensionality-reduction approaches that are commonly applied to data from multiple re-

gions can also be used to summarize intraregional dynamics. At the macroscale, for example,

one can apply dimensionality analysis to isolate the endogenous, intraregional dynamics of

individual brain regions at rest (Hermundstad et al., 2013; Fox et al., 2005) and at differing

levels of sensory deprivation (Chang et al., 2016). These data summaries of the observed

dynamics can be complemented by network models explaining how those dynamics arise

from intraregional architecture. Voxels within brain regions, for example, show non-random

correlational structures (Heuvel, Stam, et al., 2008) that could inform network models built

to make predictions about intraregional dynamics that are relevant for perception, cognition

or behavior (Figure 2.4A).

At the microscopic scale, intraregional dynamics can manifest in spontaneous cascades of

spikes in cortical tissues, often observed in vitro and in vivo (Stringer, Pachitariu, Stein-

metz, Reddy, et al., 2019; Beggs, 2004). In such neuronal avalanches, neural populations

can operate between regimes of activity decay and amplification (Wilting et al., 2019), and

they can be probed further to reveal the relationship between network structure and prop-

erties of intraregional dynamics (Ju et al., 2020). Notably, spontaneous cascades robustly

follow specific patterns of activity (Beggs, 2004), in which the neural interactions can be

mapped as a network (Ito, Hansen, et al., 2011) to make predictions about the system’s

dynamics (Figure 2.4B) (Ju et al., 2020). These cascades have been observed even in ex

vivo experiments performed on turtle brains (Shew et al., 2015), in which one can measure

intraregional dynamics before and after stimulating a separate but interacting brain region
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to observe the relationship between intra- and inter-regional dynamics.

Perhaps periodic cycles are one of the simplest examples of dynamics that are intrinsic to

the neural interactions across network connections. For example, central pattern generators

display attractor-like dynamics that are stable around a periodic cycle (Kailath, 1980). The

gastric mill circuit in crustaceans is particularly well characterized; the circuit consists of four

ganglia whose networked interactions produce very specific patterns of activity that allow

crustaceans to feed (Nusbaum et al., 2002). More generally, oscillations in neural systems

also undergo periodic attracting behavior (Figure 2.4C) (Buzsáki et al., 2004). These cortical

oscillations are observed in individual brain regions (Bartos, Vida, et al., 2007), and their

synchrony across brain regions has been linked to cognitive processes, such as attention and

memory (Joo et al., 2018).

2.6.2. Theoretical framework

Thus far, we have reviewed the dynamics of neural representations within and between

brain regions that may give rise to cognition. But how can network models help us better

understand those dynamics? We propose that they help us understand constraints on system

dynamics (Figure 2.4A). To explore this idea, we now outline a general theoretical framework

for dynamic neural representations built from recent empirical and theoretical literature.

The driving principle behind this framework is that network structure constrains the manner

in which a system evolves, or transitions, through a pattern of states (Bassett, Zurn, et al.,

2018). These transitions link together different states into a sequence that can represent

dynamic variables.

To visualize the mechanisms of state transitions, consider the energy landscape of a neural

system (Figure 2.4A) (Gu, Cieslak, et al., 2018). As in an actual topographic map, this

energy landscape can have hills that are difficult to reach and valleys toward which it is

easy to descend. Mathematically, we can represent the activity pattern of a neural system

as the configuration state of all the neural units (for example, neurons, voxels or regions).
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At a particular time t, this state is denoted by the vector xt and has an associated energy,

which formalizes the activity in a system (see Box 1 for a glossary of terms) (Kailath,

1980). The system also has network parameters Θ that mediate the interactions between

neural units and thus the difficulty with which a system can go from xt in a direction ẋt.

Thus, the energy landscape can be formulated as E = f(xt, ẋt, t; Θ), parameterized by the

network Θ (Figure 2.4A) (Hopfield et al., 1986). Importantly, this formulation reduces

the n-dimensional state space and n2-dimensional network connection space into a one-

dimensional energy function, as often used in network control theory (Kim et al., 2018; Gu,

Pasqualetti, et al., 2015). The system state traverses this energy landscape, much like a

traveler traverses a landscape of hills and valleys or, as is relevant to our discussion, the

mind traverses a landscape of cognitive possibilities.

2.6.3. Inter-regional interactions

Regions interact with one another to influence their individual dynamics. While intrare-

gional dynamics have been studied in the context of similarity and pattern dependence, we

now use our theoretical framework to consider how regions may interact with one another

(Figure 2.4B). Input from one brain region to another has been primarily studied in the

context of system control (Liu et al., 2011). The idea of system control has roots in the cog-

nitive control hypothesis, which states that higher-level processing regions exert executive

control over the states of lower-level regions (Cools et al., 2019; Badre et al., 2019) to, for

example, selectively attend to a stimulus (Lavie et al., 2004).

More recently, studies have adapted control theory to networked systems, including brain

networks, to predict which brain regions can effectively control brain activity (Kim et al.,

2018; Gu, Pasqualetti, et al., 2015; Yan et al., 2017). Dynamical systems theory provides

mathematical insight into a system’s dynamical properties, such as the stability of a swinging

pendulum, given an approximate model of the system (Kailath, 1980). Through this control

framework, Yan et al. (2017) predicted which neurons control what locomotor behaviors
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in the connectome of the nematode Caenorhabditis elegans using a linear approximation

of neural interactions. This framework can also be applied to indirect, neuroimaging mea-

surements, where the multivariate interactions between brain regions (Kriegeskorte, 2008;

Anzellotti et al., 2017) can be modeled as one brain region receiving input, or control, from

another brain region (Kim et al., 2018). Even sensory input and brain–computer interfaces

can potentially be thought of as control mechanisms, in which the whole brain is driven by

sensory or artificial stimulation (Hatsopoulos et al., 2009). According to this framework,

through control across brain regions, a system can follow state trajectories that are normally

not accessible to autonomous intraregional dynamics.

Through inter-regional interactions, one region can not only somewhat control the state

of another region along a trajectory, but also change the nature of the trajectory itself

(Figure 2.4B) (Katz et al., 1996). Consider a simple example of a network with a neuron

that receives inhibitory input from an external neuron. To reach a state in which the

neuron is active, the network would normally require little energy. However, when the

neuron receives inhibitory inputs, the neuron can no longer spike, and the network now

requires an exorbitant amount of energy to reach the same state (Barbas et al., 2007). Such

gating can modulate the interactions between intrinsic dynamics and sensory inputs or inter-

regional feedback (Stringer, Pachitariu, Steinmetz, Okun, et al., 2016; Eschbach et al., 2020;

Bartos, Manor, et al., 1999) and thus induce complex dynamics through reconfiguration of

the energy landscape.

In line with this notion of malleability of the energy landscape, recent studies have suggested

that the inter-regional correlation structure of neural systems can be dynamically reconfig-

ured. In whole-brain imaging, many studies have observed that the functional networks,

which measure correlation across brain regions, change during tasks (Cohen et al., 2008;

Bassett, Wymbs, et al., 2011; Kilteni et al., 2020), from motor skill learning to narrative

comprehension. Through these dynamic changes in functional networks, information can

be flexibly routed across neural units (Avena-Koenigsberger et al., 2018; Palmigiano et al.,
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2017; Kirst et al., 2016). On the cellular scale, gating mechanisms can explain how a net-

work can dynamically direct activity or information through various neural circuits, such as

those involved in fear learning (Krabbe et al., 2019; Cummings et al., 2020), vocalization

(Tschida et al., 2019), and locomotion (Clancy et al., 2019). Indeed, the ‘gate’ in gating the-

ory refers to a gate-like hill in an energy landscape. Many models use inhibitory circuits to

dynamically gate the flow of activity (Coleman et al., 1995; Popov et al., 2018) via shunting

inhibition, which effectively turns off the postsynaptic neurons (Borg-Graham et al., 1998).

These studies could be related to dynamic changes in the energy landscape that are deter-

mined by the underlying network structure. In addition, neural gain theories suggest that

the locus coeruleus–norepinephrine system (Aston-Jones et al., 2005) may increase average

activity in groups of neurons, thereby allowing the flexible control of functional connectivity

networks (Haider et al., 2009) and the modulation of attention and learning (Eldar et al.,

2013). Through gating or gain control, neurons external to a population can drastically

modulate the energy landscape, turning energy hills to energy valleys or vice versa.

2.6.4. Applications to real neural systems

Despite the recent progress, studies have yet to more concretely link the dynamics within and

across neural populations to cognition. By reviewing the theory and evidence surrounding

this gap in knowledge, we wish to outline current methods and to motivate new research on

how a network constrains the dynamics for neural activity within and across brain regions.

While the mathematical generality of the theoretical framework lends itself to a holistic

description of brain dynamics (Box 2), it also requires the introduction of assumptions and

approximations to begin to be applied to real neural systems. Here we discuss such methods

that have already been applied to real and theoretical neural systems, as well as methods

from other fields that have yet to be applied to neural data. Using these methods, studies

have and can give insight into the dynamic, networked underpinnings of cognition.

To model the dynamics of neural interactions across a large population of neurons, one can
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use approximations of neural dynamics that are computationally efficient or even analytically

solvable. The simplest approximation is that of a linear, time-invariant system. One can

efficiently approximate the dynamics of such systems using vector autoregression, both on

functional MRI data (Friston, 2011) and spiking data (Ju et al., 2020), or through subspace

system identification (Becker et al., 2018). After building a networked, dynamical model,

one can use the model to make predictions about system behavior, including the activity

signals themselves (Becker et al., 2018). In a framework of network control theory, a network

of structural connections between brain regions can predict the stability of activity patterns

in neuroimaging measurements during the N -back working memory task, and the stability is

modulated by D1 and D2 dopamine receptors (Nozari et al., 2021). Such linear models can

also predict a neuron’s role in controlling motor actions within the C. elegans connectome

(Yan et al., 2017) and the spread of electrocorticography (ECoG) stimulation through white

matter tracts (Stiso et al., 2019). In a bipartite, inter-regional brain network with linear

dynamics, analytical solutions exist to the minimum energy required to control one region

from another (Kim et al., 2018).

Linear, time-invariant network models can be extended with nonlinearities or stochasticity to

better model the complex behavior of neural systems. For example, in linear-threshold mod-

els, analytical solutions also exist to predict how neurons may attend selectively to stimuli

(Nozari et al., 2021). A dynamical hybrid system is another concept from dynamical sys-

tems theory that has yet to be applied to neural data. Interestingly, a hybrid system evolves

continuously with discrete, stochastic ‘jumps’ between state trajectories, like a bouncing

ball that rises and falls in an arc but exhibits inelasticity in the collision with a surface

(Henzinger, 1996). Such systems could prove useful in describing brain regions that per-

form multiple ‘functions’, made possible in part by inhibitory circuits (Coleman et al., 1995;

Popov et al., 2018).

Both linear and nonlinear models of network dynamics can be strengthened by more accu-

rate estimates of the networks themselves. One can, for example, build networks from either
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high-resolution structural connections or high-precision effective connections to obtain in-

creasingly accurate predictions of neural activity, as we have discussed previously. To more

precisely map structural connections, some have used subsampling of the shortest structural

paths between individual cortical voxels (Greene et al., 2019). The precise mapping between

cortical regions can help identify the specific inter-regional networks that underlie a range

of neurologic symptoms (Fox, 2018). Beyond simple region-to-region connections, sheaves

from algebraic topology have yet to be applied to neural data, but can determine the for-

mal mathematical maps between the multivariate activity of nodes and the inter-regional

interactions of edges (Curry, 2014).

The more detailed network models accessible to these approaches can be used within large-

scale dynamical models of brain activity to further inform the integration of representations

and networks by multivariate methods. While multivariate methods like RSA and MVPD

can be extended to describe the transmission of representations across brain areas, the exact

neural dynamics that underlie that transmission of representations remains poorly under-

stood. What could complement these empirical methods are large-scale models of brain

dynamics (Breakspear, 2017), which have been shown to exhibit neural and cognitive be-

haviors resembling those observed empirically, including propagating waves of brain activity

(Roberts et al., 2019) and a copy-and-drawing cognitive task (Eliasmith et al., 2012). We

posit that large-scale, dynamical network models of neural representations can be used hand-

in-hand with burgeoning empirical methods to reveal the neural mechanisms that give rise

to perception and cognition.

2.6.5. Dynamic representations in cognition

Finally, we review important cognitive constructs that may benefit from the framework

of dynamic neural representations. Perhaps the most fundamental representation of an

organism’s environment is one that describes the physical world in the dimensions of space

and time. Early theories of cognition describe how animals form representations of physical
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space (Danjo et al., 2018). Along another line of research, early theories describe neural

representations of physical shapes (Marr et al., 1978), and recent empirical literature reveals

how the brain gathers and processes visual information to represent an object invariant to

many features of such representations (DiCarlo et al., 2012).

More recent evidence supports the idea that the brain navigates through the physical world

similarly to the way it navigates through more abstract constructs (Epstein et al., 2017).

In episodic memory, navigation through physical space and cognitive abstractions occur

(Tavares et al., 2015; Constantinescu et al., 2016) through neural mechanisms in the pre-

frontal cortex and entorhinal cortex–hippocampal subsystems (Ekstrom et al., 2003). Atten-

tion can be framed in a similar way. Indeed, in episodic memory, one may be attending to,

or imagining (Hassabis et al., 2007), event representations of past experiences (Richmond

et al., 2017; Brunec et al., 2018), while attention is conventionally viewed as attending

to representations of the immediate environment (Chun et al., 2011). The complementary

learning systems theory offers a similar perspective, in which the cortical system learns struc-

tured ‘items’ of knowledge while the hippocampal system rapidly learns the relationships,

temporal and otherwise, between items (Kumaran et al., 2016).

While our current understanding of physical and abstract representations is as yet incom-

plete, the framework of dynamic neural representations motivates the study of how various

neural subsystems—whether neural populations or brain regions—represent aspects of the

physical world and how the subsystems interact to represent the dynamics of the physical

world. This line of investigation has been driven in part by research in core human knowl-

edge (Spelke et al., 2007). For example, intuitive physics (Battaglia et al., 2012) studies

how infants have an intuitive understanding of basic physics, such as that of falling objects

(Téglás et al., 2011). There exist models of intuitive physics, such as those in machine learn-

ing, but how the brain performs this complex though intuitive task has yet to be understood

(Kumaran et al., 2016). How does the brain form, change and ultimately extinguish the

representations of objects? By studying representations of objects with modern multivari-
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ate methods and how these representations evolve within a brain region and interact with

other brain regions, one can begin to understand the neural dynamics that support intuitive

physics and potentially more abstract cognitive tasks.

Lastly, integral to the framework is not only the dynamics within brain regions but also the

interactions of dynamics between regions, which can be modeled as a network (Figure 2.5).

This frame of thinking closely resembles that of computer architecture, in which subsystems

have particular states that change based on the states of other subsystems (Neumann, 1993).

In a computer, the rules of changing states and the rules of interaction between states are

also determined by stimuli or the states of other subsystems. While the brain is not such a

computer, its function may yet be based on subsystem representations and rules for how they

interact and transition from one representation to another. Moreover, recent developments

in artificial intelligence (AI) highlight the importance of understanding how neural networks

form representations. For example, reinforcement learning, a subfield in AI as well as in

neuroscience (Neftci et al., 2019), uses neural networks to learn abstract representations of

the environment to play complex games like Go (Silver et al., 2016) and DOTA 2 (OpenAI

et al., 2019) without human supervision. In this review, we have aimed to outline the

evidence for and methods to study the dynamic representations on neural networks that

underlie cognition and behaviors.
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Figure 2.5: Dynamic representations as trajectories in neural state space. As
we view our environment (framed box), the representations in various neural subsystems
(circled) can evolve differently (insets inside circles) and interact with others to perform
perception, cognition and behaviors.

2.7. Conclusion

Organisms interact with an ever-changing environment. Recent studies extend our under-

standing of how organisms model the world by investigating how representations change over

time and how they are transmitted across neurons and brain regions. However, further work

is required to understand the dynamics of representations; we propose that the integration

between neural representations and network models can accelerate this progress. Thus, we

build a framework for dynamic representations that describes (i) intraregional dynamics and

(ii) the interactions between intra- and inter-regional dynamics. We organize evidence from

the literature supporting these mechanisms. Finally, we review important frontiers in un-

derstanding the dynamic representations that support cognition. Altogether, the framework

of dynamic representations begins to reveal how the dynamics of neural systems support

cognition and may further elucidate the crucial crossover from matter to mind.
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CHAPTER 3

Memory in cascading neural networks

This chapter contains work from Ju, H., Kim, J.Z., Beggs, J.M., and Bassett, D.S. (2020).

“Network structure of cascading neural systems predicts stimulus propagation and recovery.”

Journal of Neural Engineering 17, 056045.

3.1. Abstract

Many neural systems display spontaneous, spatiotemporal patterns of neural activity that

are crucial for information processing. While these cascading patterns presumably arise from

the underlying network of synaptic connections between neurons, the precise contribution

of the network’s local and global connectivity to these patterns and information processing

remains largely unknown. Here, we demonstrate how network structure supports informa-

tion processing through network dynamics in empirical and simulated spiking neurons using

mathematical tools from linear systems theory, network control theory, and information

theory. In particular, we show that activity, and the information that it contains, travels

through cycles in real and simulated networks. Broadly, our results demonstrate how cas-

cading neural networks could contribute to cognitive faculties that require lasting activation

of neuronal patterns, such as working memory or attention.

3.2. Introduction

A central question in neuroscience is how connections between neurons determine patterns

of neurophysiological activity that support organism function. Networks of neurons re-

ceive incoming stimuli and perform computations to shape cognition and behavior, such as

the visual recognition of faces in regulating social behavior (Adolphs, 2003). While many

studies laud the ultimate goal of determining how the brain’s network structure supports

information processing (Watts et al., 1998; Honey et al., 2007), it remains challenging to
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empirically study the direct interactions between neural dynamics, connectivity, and compu-

tation. Indeed, neural connections and their underlying computational function have often

been inferred through neural dynamics, and formal studies probing mechanistic relations

among the three components have remained largely theoretical (Hopfield, 1982; Ben-Yishai

et al., 1995; Wang, 2002).

One characteristic empirical feature of many systems is cascading dynamics, in which neu-

rons display spontaneous bursts of activity. While these bursts may seem arbitrary, they

actually comprise stochastic cascades that follow spatiotemporal patterns of activity (Halde-

man et al., 2005). These cortical cascading dynamics have been well-characterized in the

empirical literature using a range of methods in vitro (Beggs and Plenz, 2003; Beggs, 2004),

in vivo (Gireesh et al., 2008; Petermann et al., 2009; Hahn et al., 2010; Shriki et al., 2013;

Bellay et al., 2015; Ponce-Alvarez et al., 2018), and ex vivo (Shew, Clawson, et al., 2015) in

a variety of organisms, including humans. In a complementary line of theoretical work, these

neural systems have been hypothesized to operate within a regime that maximizes informa-

tion transmission (Beggs and Plenz, 2003; Shew, Yang, Yu, et al., 2011), information storage

(Haldeman et al., 2005), computational power (Bertschinger et al., 2004), and dynamic range

(Kinouchi et al., 2006; Shew, Yang, Petermann, et al., 2009; Larremore, Shew, Ott, et al.,

2011). However, often left implicit in these analyses is the structure of the networks under-

lying such dynamics and how the structure may constrain those dynamics. Relatively recent

empirical data show evidence of specific patterns of cortical connectivity. Cortical neurons

are often strongly, bidirectionally connected to each other (Wang, Markram, et al., 2006;

Lefort et al., 2009; Ko et al., 2011), and form higher-order network motifs in clusters of neu-

rons (Markram, 1997; Song, Sjöström, et al., 2005; Perin et al., 2011), which in turn group

into communities of neurons. By forming cyclical network motifs, neurons can temporally

extend activity, thereby supporting short-term information storage (Rodriguez et al., 2001;

Fiete et al., 2010; Daie et al., 2015; Brunel, 2016) and computation (Shimono et al., 2014;

Nigam et al., 2016; Faber et al., 2019). These features of network structure have yet to be

linked to cascading dynamics and computations that are supported by those same circuits.
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Here, we address the gap in knowledge between network structure, cascading dynamics, and

information retrieval through a series of analytical and numerical analyses on simulated and

empirical data. We first show that network structure constrains system memory through sus-

tained activity by framing spike propagation as state transitions in a Markov chain (Howard,

1971). We then apply linear systems theory to predict distributions of cascade duration in

the stochastic dynamics of simulated and empirical spiking neural networks. We find that

cascades flow through cycles in the underlying network, which have been widely observed in

experiments, to contribute to long tails in distributions of cascade duration. Finally, we use

mutual information to probe the relations among network structure, cascade duration, and

the information maintained in a network in 4 commonly studied generative graph models.

Moreover, our method can accommodate networks that are both non-critical (Touboul et

al., 2010; Friedman et al., 2012; Priesemann et al., 2014; Touboul et al., 2017) and critical,

and that show avalanche behavior, characterized by power-law distributions of cascade size

(i.e., the number of neurons that spike in a cascade) and duration. Collectively, our findings

show that the network topology reported extensively in the empirical literature can produce

complex cascading dynamics through which a network can support the lasting activation of

a cluster of neurons, which in turn allows for the discrimination of stimulus patterns impli-

cated in working memory (Goldman-Rakic, 1995; Durstewitz et al., 2000; Eriksson et al.,

2015).

3.3. Mathematical Framework

3.3.1. Network formulation

We begin with the stipulation of a network as well as a dynamical process that occurs atop

the network. We formalize the notion of a network as a directed graph G = (V, E) in which

neurons are represented as nodes V = {1, · · · , n} and neuron-to-neuron connections are

represented as edges E ⊆ V ×V (Figure 3.1A). The weighted and directed adjacency matrix

A = [aij ] thus encodes the edge weights from neuron j to neuron i (Figure 3.1B).
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Figure 3.1: A linear dynamical system accurately estimates the average spiking
of neurons in a stochastic model. A An example network represented as an adjacency
matrix A. B A Markov chain of network states can accurately predict the fraction of active
cascades at time t. In 104 trials of stimulating neuron 8 in the network in panel b, the root-
mean-square error between the state-space prediction and the stochastic model is 1.2×10−4.
C Examples of simulations of cascades generated by stimulating neuron 8 in the network in
panel b.

3.3.2. Stochastic McCulloch-Pitts neuron

To model neuronal cascades, we next stipulate a stochastic, discrete-time version of the

McCulloch-Pitts neuron (McCulloch et al., 1990). In the McCulloch-Pitts model, a neuron

i receives inputs scaled by the weights of the edges and sums the scaled inputs, ai · y, to

produce an output spike yi(t) via an activation function (Figure 3.1C). Here, the activation

function is a random Bernoulli process, where probability p is the sum of the scaled inputs.

The sum of the scaled inputs ai ·y is bound by 0 and 1 such that p = min(1,max(0,ai ·y)).

The network starts at some non-random initial state y(0), which can also be interpreted as a

stimulus received at t = 0. The state of an n-neuron network is a binary vector y(t) ∈ {0, 1}n
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such that each element indicates whether a neuron fired at time t and evolves as

yi(t) ∼ B
(

min(1,max(0,ai · y))
)
, (3.1)

where B(p) is a Bernoulli process with probability p, and ai is the ith row vector of A.

3.3.3. Markov chain formulation

The model that we consider can be represented as a Markov chain with states si ∈ {0, 1}n

representing all possible patterns of spikes in the network, and with state s1 = 0 representing

the zero state. The column vector p(t) = [p1(t); · · · ; p2n(t)] = [P (y(t) = s1); · · · ;P (y(t) =

s2
n
)] represents the probability that the network exists in any state si at time t. The

transition matrix T governs

p(t) = Tp(t− 1) = T tp(0), (3.2)

where each entry T = [Tlk] = P (
[
y(t) = sl

]
|
[
y(t− 1) = sk

]
) represents the transition prob-

ability from state k to state l. See S1 Methods for details regarding the computation of the

matrix T and S1 Result for numerical validation. With the transition matrix, we can com-

pute the fundamental matrix of the Markov chain (Howard, 1971).

3.3.4. Estimation as a linear dynamical system

Because computing a Markov chain is intractable for large network sizes, we instead estimate

the process stated in Equation 3.1 using a linear dynamical system with the same parameters

A. Specifically, the average activity generated by the stochastic model can be written as

x(t) = E[y(t)]. Given equal initial states x(0) = y(0), ∀i ∈ V :
∑

j aij ≤ 1, and aij ≥ 0, it

is straightforward to show that this average network state obeys

x(t) = Ax(t− 1) (3.3)
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(see Methods for a formal proof and S2 Result for numerical validation). Equation 3.3 offers

a natural intuition: the average behavior of the stochastic model follows linear dynamics

and evolves exponentially as a function of time. Such a relationship allows the application

of rich mathematical principles of linear dynamical systems to describe average stochastic

dynamics of the model.

3.4. Results

3.4.1. Network structure constrains cascade duration

As the first step towards uncovering relations between structure and cascading dynamics, we

provide mathematical relationships between network topology and cascade duration. First,

the Markov representation above makes explicit the relationship between the network A and

the stimulus propagation and discrimination. The process stated in Equation 3.1 determines

a unique map from adjacency matrix A to transition matrix T . Given an initial distribution

of states, i.e., the stimulus patterns, p(0) = [p0(0); p1(0); · · · ], the fraction of cascades that

terminate, thereby going to the absorbing state (Howard, 1971), by time t is simply given

by the first entry of p(t). Conversely, the probability that a cascade is alive at time t is

given by P (alive, t) = 1− p0(t).

While the Markov representation gives an exact formulation of the stochastic dynamics, the

space complexity of the transition matrix is O(2n), making its computation intractable in

empirical data with hundreds of neurons. Thus, to more generally describe cascade behavior,

we use intuitions grounded in the theory of linear dynamical systems. We can decompose

the weight matrix A into eigenvalues and eigenvectors to identify the elementary modes of

activity propagation. Using the dominant eigenvalue λ1 to identify the constraint on the

dominant propagation of activity, we can estimate nonlinear, stochastic behavior with a

linear system. The dominant eigenvalue λ1 is defined as

λi ∈ eig(A) : Avi = λivi, (3.4)
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with the maximum absolute value. The dominant eigenvalue λ1 scales the dominant eigen-

vector v1, which constrains the most persistent mode, or vector, of activity propagation

(Seung, 1996; Larremore, Shew, and Restrepo, 2011; Larremore, Shew, Ott, et al., 2011),

thus quantifying the decay in activity in the network.

To numerically demonstrate the utility of the metric λ1 in explaining cascade duration

(Figure 3.2A), we simulated cascades on 104 networks with 28 nodes for 103 time steps

(see Methods and Supplementary Information for network parameters). Using maximum

likelihood estimation (MLE) (Clauset et al., 2009; Alstott et al., 2014), we fit a truncated

power law p(x) ∼ x−αe−x/τ to distributions of cascade duration (Murphy et al., 2019) and

computed τ ′ as min(dmax, τ), bounded by the maximum duration dmax (Figure 3.2B). (The

truncated power law fits the simulated and empirical data better than a power law; see

S9 Result.) Intuitively, the metric τ ′ captures the temporal scale in which activity can

propagate in a network. We found that τ ′ is monotonically correlated with λ1, with a

Spearman’s correlation coefficient ρ of 0.93 (p ≈ 0; N=104), and that α has a mean of

2.0 ± 0.14 (standard error; Figure 3.2C) (Bak et al., 1987). Notably, these relations can

inform how one would tune the network A to produce heavy-tailed distributions of cascade

duration.

Finally, we empirically tested our predictions in 25 multielectrode array (MEA) recordings

of spiking neurons in the mouse somatosensory cortex (Ito et al., 2016) and found similar

correlations between network structure and dynamics (Figure 3.2C,D). In the recordings, we

binned the spikes into 5ms bins and used MLE to fit a truncated power law and compute

τ ′. To derive λ1, we calculated an effective connectivity matrix from each recording using

first-order vector autoregression (VAR) (Neumaier et al., 2001; Schneider et al., 2001). We

found that τ ′ is monotonically correlated with λ1, as reflected in a Spearman’s ρ of 0.69

(p = 1.8 × 10−4; N = 25; Figure 3.2D). Moreover, we can simulate stochastic cascades on

the empirically derived networks and find a significant positive correlation between τ ′ and

λ1, with a Spearman’s ρ of 0.68 (p = 2.6 × 10−4; N = 25; Figure 3.2C). With a mean
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Figure 3.2: Network topology constrains cascade duration. A Cascade duration is
defined as the number of time steps t between the point at which the first spike occurs
after a time step of quiescence, and the point at which the last spike occurs, followed by
a time step of quiescence. B The distribution of cascade duration can be described by a
truncated power law, where parameter α indicates the log-log slope of the initial distribution
and τ indicates the duration of the power law on the distribution. C In simulations of the
stochastic McCulloch-Pitts (SMP) model, the dominant eigenvalue λ1 of synthetic (blue)
and empirical (red) networks monotonically scales τ ′ with Spearman’s ρ of 0.93 (p = 0;
N = 104) and 0.68 (p = 2.6 × 10−4; N = 25), respectively. Intuitively, the metric τ ′

captures the temporal scale in which activity can propagate in a network. Simulations are
run for 103 time steps. D In 25 multielectrode (MEA) recordings, the dominant eigenvalue
λ1 of empirical networks monotonically scales τ ′ with Spearman’s ρ of 0.69 (p = 1.8× 10−4;
N = 25).

α of 2.3 ± 0.1, these recordings range in their proximity to criticality (see Supplementary

Information for their exponent relations), yet their dynamics are all well-described by their

network structures. All together, these results demonstrate the dependence of the temporal

scale of activity propagation on the network structure of neural systems.
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3.4.2. Local network structures: cycles

Having demonstrated in the previous section that cascade duration can be predicted from

the network structure, we next turn to a deeper examination of which specific features

of a network’s topology and geometry can support a heavy-tailed distribution of cascade

duration. Note that we use the phrase network topology to indicate the arrangement of

binary edges and we use the phrase network geometry to indicate the distribution of edge

weights (Bassett et al., 2013). The two candidate features that we consider are (i) the

presence of cycles and (ii) the strength of connections in cycles. We will study these features

through a rewiring process on an initial set of edges.

We begin by noting that cycles support temporally extended cascades. Given a single initial

stimulus or spontaneous spike, a cascade can have a duration greater than the number of

nodes in the graph if and only if there exists at least one cycle in the network. We demon-

strate this simple intuition with an acyclic 3-node network and a cyclic 3-node network,

where each edge in both networks has a weight of 0.5 (Figure 3.3A). In simulations of 104

cascades, we found that the acyclic network produces a maximum cascade duration of 3

time steps, as expected. In contrast, using the same number of simulations on the cyclic

network, we found the much greater maximum cascade duration of 13 time steps.

Next, we show that the cascade duration scales monotonically with the prevalence of cy-

cles in a network as measured by cycle density, which we define as the number of simple

cycles divided by the number of connected edges (Figure 3.3B). To study the effect of cycle

density, we begin with a 10-node, directed acyclic graph and randomly rewire each edge

with probability p to a different target node. The directed acyclic graph has the maximum

number of edges; that is, the weight matrix is an upper triangular matrix without the diag-

onal entries. By sweeping over rewiring probabilities p = {0.0, 0.1, 0.2, ..., 1.0}, we generated

networks with different numbers of simple cycles, but the same number of edges and same

edge weights of 1
n . For each p, we simulated 104 cascades with a maximum duration of
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Figure 3.3: Cycles and strong connections facilitate long cascades. A Distribution
of cascade duration in acyclic and cyclic networks (all edges have weight 0.5). In 106 trials,
the maximum cascade durations for the acyclic and cyclic networks are 3 and 11 time steps,
respectively. B Networks with higher cycle density have longer cascades. We randomly
rewired a directed acyclic graph to produce networks of varying cycle density. Cycle density
is the number of simple cycles divided by the number of edges. C Distribution of n-cyclic
spikes in MEA recording 1 with 5ms bins. An n-cyclic spike occurs when node i fires
and then fires again after n time bins. D Neurons in mouse somatosensory cortex fire
in cycles with small refractory periods. Plot shows distribution of the average number of
n-cycles observed per cascade (9.3 × 104 ± 6.8 × 103 cascades for 25 recordings; standard
error). E A schematic of a 2-node network. We redistributed the weights from the 2-
node cycle to self-loops by ∆w. F Distributions of cascade duration for ∆w = 0.02, 0.26,
and 0.50 in the 2-node cycle. G Cycles with strong connections, at either ∆w → 0 or
∆w → 1, extend the mean duration of cascades that do not reach fixed point 1 (quadratic
fit: y = (2.7× 105)x2 − (2.7× 105)x+ (6.9× 104)). H Mean eigenvalue λ̄ tracks a network
geometry’s capacity for long-lasting cascades that do not reach the fixed point 1.

104, and we measured the slope of the linear tail of the distribution on a log-log plot. In

these simulations, we found that as a network is rewired to contain more cycles, the average

cascade duration increases (Pearson’s correlation coefficient r = 0.82, p = 1.0835 × 10−27;

N = 30; Figure 3.3B). These examples illustrate the more general rule that networks con-

taining cycles can support longer cascades and can extend the tail of the distribution of

cascade duration.
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Importantly, while structural cycles have been experimentally observed (Wang, Markram,

et al., 2006; Lefort et al., 2009; Ko et al., 2011), we here empirically validate that activ-

ity can actually propagate through cycles. A key potential constraint for cyclical activity

propagation is a large refractory period, which can impede such activity even if cycles are

structurally present (Michiels van Kessenich et al., 2016). Hence, using the same 25 MEA

recordings of spiking cortical neurons as employed previously, we measured the extent of

cyclical activity by quantifying the occurrence of n-cyclic spikes, a phenomenon which oc-

curs in a cascade when a neuron spikes again after n time bins of its previous spike. We

found that on average, 1-, 2-, 3-, and 4-cyclic spikes occur 14.5±3.1 times per cascade (with

an average of (9.3 × 104) ± (6.8 × 103) cascades for 25 recordings, standard errors; Figure

3.3C,D). With a 5ms bin width, these cyclical activity patterns are within biophysical limits

(Connors et al., 1990). Collectively, these result suggest that cyclical activity propagation is

not impeded by refractory periods and indeed occurs frequently in living neuronal systems.

3.4.3. Local network structures: connection strength

We now turn to a consideration of the distribution of edge weights. To maximize the speci-

ficity of our inferences and to generally build our intuition, we constrained ourselves initially

to simple networks that only contain a small cycle (a 2-node cycle) or that also contain one

relatively larger cycle (a 4-node cycle; see Supplementary Information). We probed the role

of weight distributions in the dynamics of the network by placing the strongest weights on

edges on one cycle and by placing the weakest weights on edges not on that cycle. Specifi-

cally, in both the 2-node and 4-node cycle networks for each simulation, we took the strong

weights initially placed on the cycle and redistributed some of their weight by ∆w to ran-

domly chosen edges that are not part of the original cycle (i.e., wstrong,new := wstrong,old−∆w

and wweak,new := wweak,old + ∆w; Figure 3.3E). Upon these new networks, we simulated the

stochastic model. We found that as the weight on the original cycle is continuously redis-

tributed away from the initial cycle and throughout the network, we observe fewer and fewer

cascades of long duration (Figure 3.3F,G).
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Across empirical studies (Beggs and Plenz, 2003; Petermann et al., 2009; Hahn et al., 2010;

Friedman et al., 2012; Poil et al., 2012; Lombardi, Herrmann, Plenz, et al., 2014; Bellay

et al., 2015; Shew, Clawson, et al., 2015; Ponce-Alvarez et al., 2018), the distributions

of avalanche duration have been described by power law functions, where the exponent is

known as the lifetime. Typical values vary from -1.0 to -2.6. We seek to show how cycle

density and edge weights in cycles together explain the topological and geometric differences

in the networks underlying the various distributions of cascade duration. As we redistributed

edge weight more uniformly in the networks, we found that mean duration of terminated

cascades increases (Figure 3.3F,G). Furthermore, as we redistributed away from the uniform

geometry, continuously increasing the range of edge weights, we again observed more and

more cascades of long duration. These observations underscore the tight coupling between

the range of edge weights, and the heavy-tailed nature of the distribution of cascade duration.

Lastly, we seek to determine whether the distribution of edge weights along cycles contribut-

ing to cascade duration is captured by eigenvalue analysis. Towards this goal, we employed

the same perturbative numerical experiments on the networks. Specifically, we found that

as the weights of the original cycle are redistributed evenly to the alternate cycle (and vice

versa), the mean duration of cascades increases monotonically with the average of eigen-

values of the network (Spearman’s rank correlation coefficients ρ = 0.99, p = 2.4 × 10−53

and r = 0.46, p = 9.0 × 10−4, respectively; N = 30; Figure 3.3H). Because the dominant

eigenvalues of the networks in these simulations are all equal to 1, the average of eigenvalues

provide a more descriptive estimation of activity propagation. Thus, this result demon-

strates how network geometry can more subtly constrain cascade duration by determining

the strength of non-dominant eigenmodes.

3.4.4. Node-specific dynamics

Even within a single network architecture, the range of cascade dynamics can vary depending

on the nodes that are stimulated, either spontaneously as the initial state of a cascade or

67



exogenously through input. Further, cascades follow precise activity patterns that are stable

for hours (Beggs, 2004). Thus, we now consider the role of the stimulus pattern on cascade

dynamics. We extend our eigenvalue analysis to estimate the role of a stimulus pattern

on stochastic cascade dynamics by calculating the magnitude of the eigenprojection of the

stimulus pattern. Because the average dynamics are explained by linear systems theory, we

then use network control theory to more accurately predict how stimulation of individual

nodes alters the dynamics of cascades.

The eigenprojection of the stimulus pattern. As a natural extension of the dominant eigen-

value analysis, we first tested whether the magnitude of the eigenprojection of the stimulus

pattern could predict cascade dynamics. Given a stimulus y(0), the eigendecomposition

of the weight matrix A into A = PDP−1 yields c = P−1y(0) as the coefficients of the

eigenmode excitation of y(0). The components of c determine how much the stimulus y(0)

projects onto the eigenvectors of A and describes the modes of average activity propaga-

tion through the network A. Then, as a predictor for mean duration, we can compute the

1-norm, or the sum of absolute values, of the eigenprojection of the stimulus pattern scaled

by the corresponding eigenvalues λ,

|c · λ|1. (3.5)

We numerically test the eigenprojection metric by simulating cascades on a 100-node,

weighted random network. The mean duration of cascades generated from the stimulation

of a single node was significantly positively correlated with the magnitude of the eigen-

projection (Pearson’s correlation coefficient r = 0.34, p = 4.5 × 10−4). To determine the

generalizability of these findings, we expanded our simulation set to include 30 random in-

stantiations of networks with the same parameters. In this broader dataset, we found that

the Pearson’s correlation coefficient was highly variable (median r = 0.23; Figure 3.4A).

Thus, we can weakly estimate the role of a stimulus pattern on cascade dynamics with

eigenvalue analysis.
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Figure 3.4: Network controllability is tightly linked with cascade duration. A
Pearson’s correlation coefficients between mean duration of cascades from the stimulation
of individual nodes and controllability measures of the respective nodes. Controllability
measures include the magnitude of the eigenprojection (ME), modal controllability (MC),
and finite average controllability (FAC). The networks here are 30 random instantiations of
weighted random graphs, each with 100 nodes and a density of around 0.2. B The same
plot as in panel a except with a bimodal distribution of weights—with 10% of connections
normally distributed with a mean of 0.9 and 90% of connections with a mean of 0.1, all with
a standard deviation of 0.1, before weight normalization. C Controllability measurements
in spiking neurons in mouse somatosensory cortex predict cascade duration. Spearman’s
correlation between the duration of each cascade and mean finite average controllability
of neurons active in its first T time bins (5ms bins) for 25 MEA recordings. See Supple-
mentary Information for individual plots. The box-plot elements, center, bottom and top
edges, whiskers, “+" symbols, indicate respectively, the median, 25th and 75th percentiles,
extremes, and outliers. Points are outliers if they are greater than q3 + 1.5× (q3− q1) or less
than q1 − 1.5× (q3 − q1), where qn is the nth quartile. Extremes are the most extreme data
that are not outliers.

Network control theory. To more accurately predict the role of a stimulus pattern on cascade

dynamics, we adopt the recently developed metrics of average and modal controllability

from network control theory (Pasqualetti et al., 2014). We hypothesized that these metrics,

previously applied to large-scale brain networks (Gu, Pasqualetti, et al., 2015; Tang, Giusti,

et al., 2017), predicts cascade duration since network control necessitates activity. In the
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same set of simulations reported above, we compared the mean cascade duration to the finite

average controllability of each node, defined as

Trace(WK), (3.6)

where WK =
∑F

τ=0A
τBK(AτBK)> is the finite controllability Gramian (see Methods). In-

tuitively, average controllability is the magnitude of the impulse response of the system when

stimulating a node. We observed that the mean cascade duration and finite average control-

lability were significantly positively correlated (Pearson’s correlation coefficient r = 0.79,

p = 2.7× 10−22). In contrast, modal controllability was not strongly correlated with mean

cascade duration (Pearson’s correlation coefficient r = −0.12, p = 0.24; see Methods for

mathematical definition). Intuitively, modal controllability is a heuristic to determine how

well a node produces activity patterns that other nodes cannot easily produce. To determine

the generalizability of these findings, we expanded our simulation set to include 30 random

instantiations of networks with the same parameters. In this broader dataset, we observed

consistent effects (median Pearson’s correlation coefficient r = 0.74 and r = −0.27 for finite

average controllability and modal controllability, respectively; Figure 3.4A). In comparing

the predictions from linear control theory with the predictions from eigendecomposition,

we note that finite average controllability is consistently more strongly correlated with the

mean cascade duration than the magnitude of the eigenprojection.

Interestingly, networks with the same topological parameters as above, but with a bimodal

distribution of weights show even stronger correlations between network control statistics

and cascade dynamics (Figure 3.4B). Such a weight distribution reduces variance in the

stochastic process, which intuitively can serve to strengthen the correlation. We observed

that the mean cascade duration and finite average controllability were significantly positively

correlated (Pearson’s correlation coefficient r = 0.87, p = 3.2× 10−32). Modal controllabil-

ity became strongly negatively correlated with mean cascade duration (Pearson’s correlation
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coefficient r = −0.50, p = 9.2×10−8). Again to determine the generalizability of these find-

ings, we expanded our simulation set to include 30 random instantiations of networks with

the same parameters. We observed consistent effects (mean Pearson’s correlation coefficients

between mean cascade duration and finite average controllability, modal controllability, and

magnitude of eigenprojection were r = 0.86, r = −0.54, and r = 0.59, respectively; Figure

3.4B). Again we note that finite average controllability is consistently more strongly cor-

related with the mean cascade duration than the magnitude of the eigenprojection. These

simulations suggest that the skewed weight distributions, as identified in the previous sec-

tion as network motifs that support long cascades, may strengthen the relationship between

network control and network dynamics. Collectively, the results illustrate that the stimulus

patterns and the network must be tailored for each other to produce the desired neural

dynamics.

Finally, we tested these predictions in empirical data and find that controllability of the

initial states is correlated with cascade duration (Figure 3.4C). In each recording from the

same MEA data used earlier from spiking neurons in the mouse somatosensory cortex, we

calculated the mean finite average controllability of all nodes active in the first {1...T} time

bins of each cascade. Mean finite average controllability is monotonically correlated with

the duration of each cascade with a median Spearman’s ρ = 0.20 for T = 1 (largest p-

value = 1.9 × 10−33) and ρ = 0.26 for T = 2 (largest p-value = 7.9 × 10−49; see Methods

for number of neurons in empirical data). It is important to remember that the cascades

are stochastic and cannot be predicted deterministically. Thus, it is notable to find any

correlation between mean finite average controllability and cascade duration in empirical

data.

3.4.5. Cascade duration allows network discriminability and stimulus recovery

If certain network topologies and stimulus patterns can produce long-lasting cascades con-

sistent with avalanche dynamics, what role can lasting cascades contribute to information
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processing? Intuitively, one cannot recover information about stimuli from cascades that

have already terminated. For lasting cascades, network states can be discriminated and can

also provide information about stimuli. Such delayed recovery of stimuli can allow the asso-

ciative learning of stimuli across temporal delays (Goldman-Rakic, 1995; Durstewitz et al.,

2000; Eriksson et al., 2015). The intuition that lasting cascades allow network discriminabil-

ity can be formalized mathematically via Equation 3.2 and 3.3. Then, with simulations, we

test the intuition that cascade dynamics support stimulus recoverability.

In the Markov formulation, the discrimination between network states y(t) propagated from

stimulus y(0) = si and from y(0) = sj depends upon the similarity between probability

vectors pi(t) = T tsi and pj(t) = T tsj . For quickly decaying systems, pi(t) and pj(t) will

both have a high probability of being in the zero state s1, inherently reducing discriminabil-

ity. Hence, the architecture of the network A constrains the amount of persisting activity

that permits discrimination of the initial spiking distribution p(0).

Network discriminability. To analytically show the relationship between cascade duration

and discriminability, we first define network discriminability as the Euclidean distance be-

tween two states d(y1(t),y2(t)) in n-dimensional space. Recall that E[y(t)] = x(t) for

stimulus x(0) from Equation 3.3. Then, given two stimuli, x1(0) and x2(0), we can cal-

culate the expected network discriminability as the distance between the expected network

states d(x1(t),x2(t)) at time t. Given that the dominant eigenvalue λ1 < 1, then x(t)

approaches the zero vector 0 as t approaches ∞. As described in previous sections, the

decay in activity is constrained by the dominant eigenvalue of the network and by the finite

average controllability of the individual node being stimulated. Thus, the rate at which both

x1(t) and x2(t) decay to 0 determines the rate at which d(x1(t),x2(t)) approaches d(0,0)

where discriminability between two network states is zero.

Stimulus recovery. To numerically show the relationship between cascade duration and

stimulus recoverability, we first define stimulus recoverability as the mutual information

I(S;Yt) between stimulus patterns s ∈ S and network states y ∈ Yt at time t (see Methods
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for details and Figure 3.5A-D for an intuitive schematic). Similar to discriminability, mutual

information between the stimuli and network states decreases with shorter cascade duration

because the Shannon entropy of the network states decreases. To probe this relation formally,

we simulated cascades with 100-node networks from 4 different graph topologies with 30

instantiations of each graph type. Consistent with our intuition, we observe that mutual

information is maintained longer when cascades last longer on average (Figure 3.5E). We

then quantified the decay in mutual information by first performing linear regression on the

mutual information as a function of time for the first 10 time steps. By calculating the

Pearson’s correlation coefficient between the slope of linear regression and the mean cascade

duration, we found that for all four graph topologies, mutual information decays faster

when the propagation of activity also decays faster (Figure 3.5F). Collectively, these results

demonstrate that stimulus recoverability is maintained longer when the cascades generated

by stimulus patterns last longer.

To link information retention back to network structure, we assessed the relation between

stimulus recoverability and the sum of eigenvalues of each network. Using the same 100-

node networks from 4 different graph topologies with 30 instantiations of each graph type,

we found a significant positive correlation between the average decay rate in mutual infor-

mation and the sum of eigenvalues, implying that network structure supports the retention

of information within the network (Pearson correlation coefficient r = 0.92, p = 1.8×10−49;

Figure 3.5G). Moreover, while all networks had similar parameters, each graph type gener-

ated distinct ranges of decay rates and sums of eigenvalues, suggesting that certain graph

types may be better suited for information retention than others (Figure 3.5H). In particu-

lar, we observe lower decay rates in mutual information and lower sum of eigenvalues in the

weighted random and modular graphs, than in the random geometric and Watts-Strogatz

graphs. Collectively, these findings demonstrate the interplay among network architecture,

network dynamics, and information processing.
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Figure 3.5: A stimulus can be well-recovered when it generates long-lasting cas-
cades. A-B A schematic showing two cascades triggered by different stimuli. C Recovery
of the stimulus using an observation of a network state during a cascade. D Failed recovery
of the stimulus. E Decay in mutual information (MI) over time. When activity from a stim-
ulus pattern lasts longer, mutual information also persists for longer for a weighted random
graph. F The linear decay rate of mutual information over the first 10 time steps plotted
against the mean cascade duration in the example weighted random graph from panel e. G
The Pearson correlation coefficients between the linear slope of decay in mutual information
over time and the mean cascade duration for four graph types: a weighted random graph
(WR), a random geometric graph (RG), a modular graph with 4 communities (M4C), and
a Watts-Strogatz graph (WS). The boxplot shows data from 30 instantiations of each graph
type, each network containing 100 nodes and characterized by a fractional connectivity of
around 0.05. The whiskers extend to the extreme data points not considered outliers, and
the outliers are plotted individually using the “+" symbol. H The mean decay rate in mutual
information for a network is correlated with the sum of eigenvalues of the network (Pearson’s
correlation coefficient r = 0.92, p = 1.8 × 10−49; N = 120). For all networks, we used a
fractional connectivity of 0.05 to show a wide range of decay rates in mutual information
(see Supplementary Information for simulations with other fractional connectivities).

3.5. Discussion

Neural systems display strikingly rich dynamics that harbor the marks of a complex under-

lying network architecture among units, from the small scale of individual neurons to the
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large scale of columns and areas (Wang, Chen, et al., 2013; Nigam et al., 2016). Cascades

are a quintessential example of such dynamics, and, when they are close to a critical regime,

are thought to allow for a diverse range of computations (Beggs and Plenz, 2003; Haldeman

et al., 2005; Kinouchi et al., 2006; Shew, Yang, Petermann, et al., 2009). Yet, precisely how

a neuronal network’s structure supports stochastic dynamics and the computations that

can arise therefrom remains unclear. Here, we seek to provide clarity using both precise

analysis of mathematical formulations and statistically rigorous assessments of numerical

experiments. We consider a generalized stochastic spiking model and demonstrate that the

time-averaged activity of this model can be treated as a linear dynamical system. From this

observation, we derive intuitions for how network structure, which estimates the patterns

in synaptic interactions, constrains cascade duration. In subsequent numerical experiments

and empirical validation, we use eigendecomposition and network control theory appropriate

for linear dynamical systems to describe how network structure and the stimulus pattern

together determine the manner in which a stimulus propagates through the network during

a neural cascade. We identify strongly connected cycles, which have been widely empiri-

cally observed, as prevalent network motifs that promote long cascade duration in neuronal

networks. Finally, we use mutual information to demonstrate that long-lasting cascades

can serve as a mechanism to allow for temporally delayed recovery of desired patterns of

stimulation. Broadly, our work blends dynamical systems theory, network control theory,

information theory, and computational neuroscience to address the wide gap in the field’s

current understanding of the relations between architecture, dynamics, and computation.

3.5.1. Biophysical implications of results

The biophysical implications of the results demonstrated here are threefold. The first im-

plication is on the scale of a local neuronal population of hundreds of neurons. On this

scale, we showed that the dominant eigenvalue of a network scales the distribution in the

duration of cascades. From a broad perspective, this result shows that complex behavior

of a neuronal population can be described by the collective pairwise interactions between
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neurons. The second implication is on the scale of a handful of neurons. On this scale,

neurons form cycles through which spikes can propagate. This result demonstrates that

the extensive empirical observation of bidirectionally connected neurons (Wang, Markram,

et al., 2006; Lefort et al., 2009; Ko et al., 2011) is integral to propagating activity in a

network. Importantly, a refractory period, which can limit cyclic activity if large enough

(Michiels van Kessenich et al., 2016), does not prohibit a cyclic propagation of activity, at

least at a temporal scale of 5ms and longer. The third implication is on the scale of indi-

vidual neurons. On this scale, the results of the eigenprojection and controllability analyses

show that a neuron propagates activity for longer if it has a large magnitude of the eigenpro-

jection or if it has high controllability. In a neuronal population, different neurons can have

different roles in performing computations depending on the topology (Faber et al., 2019).

Our results suggest that high controllability neurons may serve as “broadcasting neurons”

which, upon activation, propagate activity for a long duration to the entire network.

3.5.2. Linear form of stochastic network dynamics

Because of the inherently stochastic nature of neuronal cascades, many previous studies

have simply inferred properties about the underlying network through statistical methods

(Beggs and Plenz, 2003; Lombardi, Herrmann, Perrone-Capano, et al., 2012). An impor-

tant innovation in this study was the demonstration that the time-averaged activity of the

stochastic system has an equivalent form as a linear dynamical system. In real neuronal

systems, dynamics are non-linear, which most likely accounts for the difference in range of

τ ′ in Figures 3.2C and 3.2D. Such linear estimation of the dynamics makes available pow-

erful computational tools in matrix and linear systems theory, and allowed us to capitalize

on recent advances in network control (Liu et al., 2011; Pasqualetti et al., 2014). Network

control theory is a formal approach to modeling, predicting, and tuning the response of a

networked system to exogenous input, and has been recently applied to neural systems at

both the cellular (Yan et al., 2017; Wiles et al., 2017; Towlson et al., 2018) and regional

(Gu, Pasqualetti, et al., 2015; Tang, Giusti, et al., 2017; Cornblath et al., 2018; Jeganathan
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et al., 2018) scales (for a recent review, see (Tang and Bassett, 2018)). In these previous

efforts, linear dynamics have been assumed, whereas here such dynamics have been proven,

to be relevant for the neural system under study. Extensions of linear systems analysis,

such as observability (Chen, 1998) and optimal control (Taylor et al., 2015; Betzel et al.,

2016; Gu, Betzel, et al., 2017), follow immediately from this work and could provide added

insights into other dynamical and computational properties of neural networks. Finally, it

would be of interest to directly probe the effects of stimulation patterns defined by network

controllability statistics on information transmission in vitro or behaviors in vivo, following

work in a similar vein in large-scale human neuroimaging (Medaglia et al., 2018; Muldoon

et al., 2016; Stiso et al., 2019; Khambhati et al., 2018).

3.5.3. Topological constraints on dynamics and computation

Proving formally that network topology affects dynamics and computation is important,

but can be further complemented by providing intuitions regarding the specific features of a

network topology that are most relevant, thus explaining and guiding experimental results.

The identification of functionally relevant features of networked systems has a long history

in molecular biology (Alon, 2007), with notable efforts identifying structural motifs in tran-

scription regulation networks (Shen-Orr et al., 2002), protein-protein interaction networks

(Yeger-Lotem et al., 2004), and cellular circuits (Hart et al., 2012), which are thought to arise

spontaneously under evolutionary pressures (Kashtan et al., 2005). Significantly extending

prior statistical efforts in large-scale connectomes (Sporns et al., 2004), here we demonstrate

that specific structural motifs in the form of strongly connected cycles are topological fea-

tures that support long cascade dynamics. These structural motifs form elementary units

or building blocks of the network that can be combined to create connectivity architectures

that produce certain dynamical behaviors (Shimono et al., 2014; Nigam et al., 2016). Other

theoretical studies have also found strongly and bi-directionally connected neurons as motifs

that produce long-lasting memory (Brunel, 2016), potentially as a mechanism for attractor

dynamics (Hopfield, 1982). Importantly, empirical studies have shown that the network mo-
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tifs identified here are observed in both cortical microcircuits (Wang, Markram, et al., 2006;

Lefort et al., 2009; Ko et al., 2011; Markram, 1997; Song, Sjöström, et al., 2005; Perin et al.,

2011) and macrocircuits (Sizemore, Giusti, et al., 2018). Future work is needed to better

understand the rules by which neurons connect to one another, and to determine whether

those rules serve to increase the memory capacity of cortical networks. It would also be

interesting in the future to determine whether higher-order structural motifs, such as those

accessible to tools from algebraic topology (Giusti et al., 2016; Sizemore, Phillips-Cremins,

et al., 2018), might also play a role in the relationships between topology, dynamics, and

computation (Sizemore, Giusti, et al., 2018; Reimann et al., 2017).

3.5.4. Information theory as a performance measure

To measure information retention, we use mutual information between stimulus patterns

and network states, but it only captures a certain aspect of information processing. Mutual

information, originally developed to study communication channels (Shannon, 1948), has

proven to be a powerful tool for the study of information transmission in avalanching neural

networks (Beggs and Plenz, 2003; Shew, Yang, Yu, et al., 2011). While previous studies

of neuronal avalanches use power law statistics that suggest criticality as the theoretical

link between dynamics and information processing (Beggs and Plenz, 2003; Bertschinger

et al., 2004; Haldeman et al., 2005; Kinouchi et al., 2006; Shew, Yang, Petermann, et

al., 2009; Shriki et al., 2013; Shew, Clawson, et al., 2015), we take a more mechanistic

approach embedded in dynamical systems theory to study the relationships between network

structure, dynamics, and mutual information. While there is substantial evidence that

cortical networks frequently operate near a critical point (Friedman et al., 2012; Fontenele

et al., 2019), this is not always the case (Priesemann et al., 2014; Touboul et al., 2010;

Touboul et al., 2017); we therefore did not assume that all activity took the form of critical

avalanches. Our more generic approach allowed us to develop a framework that would apply

all cascades, critical or not. Despite its utility in studying information channels, mutual

information is unlikely to be the only useful performance measure for a neural system, given
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the numerous purported computations of cortical networks (Shew, Yang, Petermann, et

al., 2009; Timme et al., 2016). Indeed, the explanation posited here for the prevalence of

strongly connected neurons does not account for the information faculties of the rest of the

neural system. Such considerations compel further investigation into how network structure

supports other types of information processing accessible to other information theoretic

measures.

3.5.5. Methodological considerations

A few remarks are warranted on the topic of linear dynamics in neural systems. Linear

dynamics accurately predicts stochastic, cascade dynamics, and its rich mathematical prop-

erties have been used to study neural dynamics in many organisms across a wide range

of temporal and spatial scales (Liu et al., 2011; Gu, Pasqualetti, et al., 2015; Kim et al.,

2018; Yan et al., 2017). At the neuronal level, however, neural dynamics are non-linear

(Hodgkin et al., 1952). Efforts analytically demonstrating properties about non-linear sys-

tems are more limited (Motter, 2015), and thus, further study is required to more thoroughly

demonstrate the relationships shown here in a non-linear system.

3.5.6. Future directions

In closing, we note that the natural direction in which to take this work will be to consider

other types of information processing and to identify network structures and neuronal dy-

namics of different cell types that produce complex network dynamics which in turn support

such computations. Here, we demonstrate that the rich mathematical properties of linear

systems can reveal insights into the complex dynamics of non-linear, non-deterministic neu-

ral systems. In the future, we can further apply this theory to cascading and other neural

systems to ask questions about networks, their dynamics, and their computations. It would

be apt to apply this framework to cortical networks from functional, structural, and effective

connectivities and measure memory performance in terms of the network topology and dy-

namics. It would be interesting to measure differences in memory performance across brain
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regions, and to test for relationships between topological features and performance. Third

and finally, studying well-known network learning rules—such as Hebbian plasticity (Hebb,

1949) and spike-timing dependent plasticity (Song, Miller, et al., 2000)—in a dynamical sys-

tems and information theoretic framework may shed further light on the functional purpose

of these rules.

3.6. Methods

3.6.1. Synthetic network generation

We use five different commonly studied graph models from network science in our analyses

(Wu-Yan et al., 2018). The first graph model is the Weighted Random Graph model (WRG),

which is a weighted version of the canonical Erdös-Rényi model. The weight of an edge

is distributed as a geometric distribution with probability of success p. Second, we use a

Random Geometric model (RG) that is embedded in a unit cube, where the edge weights are

equal to the inverse of the Euclidean distance between two nodes. We kept only a fraction of

the shortest edges in order to achieve a desired edge density p. Third, we use aModular Graph

with 4 Communities model (MD4). Pairs of nodes within communities have an edge density

of 0.8, and nodes across communities are connected to achieve a desired edge density of p.

The edges of nodes in the same community and across communities are weighted according

to a geometric distribution with probability of success p and 1− p, respectively. Fourth, we

use aWatts-Strogatz model (WS). The model builds a ring lattice and then uniformly rewires

the network, creating a small-world architecture with a random probability of r = 0.1. Fifth,

we use a Hierarchical Modular Graph (HM). The model generates a directed network with

m hierarchical levels of modules with size s, and connection density decays as 1/En. See

Supplementary Information for a summary of the graph models used in simulations.
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3.6.2. Empirical network generation

For analysis of an empirical system, we use publicly available data derived from spiking

neurons in the mouse somatosensory cortex (Ito et al., 2016). The data contain 25 recordings,

most of which possess hundreds of neurons (min: 98, max: 594, mean: 309, total: 7735).

Each recording is 60 minutes long and was acquired at a sampling rate of 20 kHz. The

recordings were acquired from organotypic slice cultures by multielectrode arrays (MEAs),

each with 512 electrodes on a 1mm-by-2mm area.

We obtain empirical networks by calculating the effective connectivity of spiking neurons

in the empirical data (Ito et al., 2016). On the spike trains of each recording, we first

bin the spike trains into 5ms bins. With 5ms bins, we capture almost all action potential

propagation and synaptic transmission in the array area (Friedman et al., 2012; Shimono et

al., 2014; Nigam et al., 2016). In a previous study (see Supplemental Figure 7 in (Shimono

et al., 2014)), the authors use the identical multielectrode array data and show that the

distribution of delays, measured with transfer entropy, falls largely within 5ms. Then,

using the ARfit software package for MATLAB (Schneider et al., 2001), we perform vector

autoregression (VAR) for the autoregressive (AR) model:

y(t) = w +

p∑
l=1

Aly(t− l),

where y(t) is a vector representing the number of spikes for each neuron at time t, w is a

vector of intercept terms, and the matrices A1, ..., Ap ∈ Rm×m are the coefficient matrices

of the AR model (Neumaier et al., 2001). With 5ms time bins, each term of the VAR model

captures synaptic delays within 5ms. For all empirical networks, negative edge weights are

allowed to capture inhibition (Hayashi et al., 2018). We set the lower and upper bounds for

the model order, pmin and pmax, to 1 and 4, respectively. After selecting an optimal model
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order popt using Schwarz’s Bayesian Criterion (Schwarz, 1978), we compute the effective

connectivity A as the sum of the coefficient matrices A1, ..., Ap ∈n×n of the VAR model over

the model orders such that for the elements aij in A and al,ij in Al, aij =
∑popt

l=1 al,ij . The

effective connectivity A is equivalent to a linear system, which in turn equals the stochastic

McCulloch-Pitts neurons averaged across trials given the constraints laid out in Equation

3.3. One advantage of using an autoregressive model to build an effective connectivity

network, compared to, for example, a transfer entropy network, is that one can directly use

linear systems theory to analyze the linearized dynamics of the network.

3.6.3. Network analysis

We use three sets of weight distributions: a uniform distribution, a truncated normal dis-

tribution, and a bimodal distribution. In some simulations, however, we explicitly set the

weights to particular values. In a uniform distribution of weights, we set all weights equal to

1 and normalize each row. In a truncated normal distribution, we set the non-zero weights

to the upper half of a truncated normal distribution. A truncated normal distribution of

weights has been widely observed both in a theoretical context with synaptic plasticity and

in the experimental literature (Brunel et al., 2004; Iyer et al., 2013; Pehlevan et al., 2017).

Lastly, we use a skewed, bimodal distribution with a few connections centered at a normal

distribution with a large mean and most other connections centered at a normal distribu-

tion with a small mean. Bimodal distributions occur theoretically in the context of additive

synaptic plasticity (Rossum et al., 2000), and positively skewed distributions have been ob-

served experimentally (Markram et al., 1997; Feldmeyer et al., 1999; Chen et al., 2010).

Our skewed, bimodal distributions combine these two observations by having a few strong

connections. All weights are static and do not change with time t. See the Supplementary

Information for network parameters.

To calculate the cycle density of a graph, we compute the number of simple cycles divided

by the number of connected edges. A simple cycle is defined as the set of edges in a closed
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walk with no repetitions of vertices and edges, other than the starting and ending vertex.

The number of simple cycles was calculated using the networkx software package (version

2.1) on Python (version 3.7.3).

3.6.4. Simulating the Stochastic McCulloch-Pitts model

We model cascades as spikes propagating through a recurrent network (see Mathematical

Framework). For computational tractability, we set a maximum time step K for the sim-

ulations. The simulated spike counts y(t) are stored as a n-by-K matrix. All simulations

and calculations were run on MATLAB (version 2018a) provided by The MathWorks, Inc.

3.6.5. Stimulus pattern generation

We investigate the propagation of activity through a network initiated by stimulus patterns.

The stimulus pattern is set as the initial state y(0) or x(0) of a network and then propagated

forward in time according to either stochastic or linear dynamics, respectively. In our study,

we consider two ways to generate stimulus patterns. In the analysis of cascade duration

and controllability, we stimulate individual nodes by creating a set of vectors in which

the ith element of the ith vector is set at 1 and all other elements are set at 0. In the

mutual information analysis, we create a set of column vectors such that their finite average

controllability values evenly span the range of controllability values (see later section of this

Methods for definition of finite average controllability). In each of the n
m = 25 vectors, we

choosem = 4 nodes from n = 100 total nodes to stimulate such that each node that we select

is increasing in its finite average controllability value. Because finite average controllability

is highly correlated with cascade duration, such input vectors will evenly span the possible

duration of cascades.
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3.6.6. Characterizing distributions of cascade duration

We characterized the distributions of cascade duration using a truncated power law. We

used maximum likelihood estimation to estimate the power law with exponential cutoff

P (x) ∼ x−αex/τ (Clauset et al., 2009; Alstott et al., 2014). The exponent τ describes the

value of x at which the exponential cuts off the tail of the power law duration. To avoid

overgeneralizing the extent of the power law, we bound τ by the maximum duration of x

and indicate this bound value as τ ′ = min(τ,max(x)).

3.6.7. Mutual information calculation to probe stimulus recovery

To measure the capacity of a network to transfer information during a cascade, we calculated

the mutual information I(X;Y ), which quantifies the amount of information, in bits, that

one random variable X reveals about another random variable Y . Here, the two random

variables of interest are the initial network state y(0), where y(0) is a stimulus si ∈ S,

and the network states y(t) ∈ Yt at a later time t. With mutual information, we measure

the amount of information that the network states Yt at time t reveal about the stimulus

patterns S. For each stimulus pattern si, we simulated 1,000 cascades where P (si) =

P ({sj |j 6= i}) = 0.5. (See earlier Methods section on “Stimulus pattern generation”.) All

mutual information calculations were run using the MIToolbox (v3.0.1) for MATLAB (https:

//github.com/Craigacp/MIToolbox).

In the analysis of the relationship between the average cascade duration and the mutual

information, we quantify the decay in mutual information over time. We also calculate

the correlation between the decay rate of the mutual information and the predicted mean

cascade duration. For this latter calculation, first we perform a linear regression of the decay

in mutual information with respect to time. Then, we calculate the Pearson correlation

coefficient between the slope of the linear regression and the mean cascade duration.
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3.6.8. Estimation by linear dynamical systems

We prove by induction that linear dynamics estimates average behavior of the stochastic

model, i.e., E[yj(t)] = xj(t), given the same initial conditions y(0) = x(0). At t = 0, both

yj(0) and xj(0) are set as the stimulus pattern, and so, E[yj(0)] = xj(0). Now, assume

E[yj(t− 1)] = xj(t− 1), and see that xj(t) = aTj x(t− 1) = aTj E[y(t− 1)] = E[aTj y(t− 1)] =

E[yj(t)] and thus, E[yj(t)] = xj(t). To demonstrate this relation numerically, we take the

average cascades that begin with the same initial state by taking the mean of yki (t) for all

cascades k at each time step t. All cascades start with the same initial condition y(0). We

perform numerical validation in the Supplement Information.

3.6.9. Eigenvalue analysis

In our analysis of networks, we decompose the weight matrix A into eigenvalues and eigen-

vectors. Such an eigendecomposition is formalized as

A = PDP−1, (3.7)

where P is a matrix of eigenvectors as columns and D is a diagonal matrix of corresponding

eigenvalues. We calculate the absolute value of the eigenvalue with the largest absolute value

as the dominant eigenvalue λ1.

When the row sum
∑

j aij is greater than 1, the linear dynamical system does not equal the

expected value of the stochastic model. However, the eigenvalue analyses can still be useful

in describing average stochastic behavior. In particular, when λ1 > 1, the state x(t) of

the linear dynamical system can explode exponentially. While the state y(t) of a stochastic

model with the same parameters does not similarly explode exponentially, it is bound by 1

for each neuron and reaches a fixed point at 1. In this case, the states of both models, x(t)

and y(t), cannot reach quiescence at 0 and thus have infinite cascade duration.
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3.6.10. Network control theory and controllability statistics

Network control theory is a formulation of control theory for networks of interacting com-

ponents. This formulation typically consists of a set of n component nodes V = {1, · · · , n},

where the vector x(t) ∈n represents the state of node activities at time t ≥ 0. These nodes

are connected by a set of edges E ⊆ V×V, where the adjacency matrix A ∈n×n has elements

aij as the strength of the connection from node j to node i. Here, control typically refers to

a set of k inputs u(t) ∈k at time t ≥ 0 that drive the evolution of system states according

to B ∈n×k. In linear control theory, the system states evolve as

x(t+ 1) = Ax(t) +Bu(t). (3.8)

3.6.11. Finite average controllability

Motivated by a desire to understand how network architecture affects its control properties,

recent work iterates network-based metrics for control of such linear systems (Pasqualetti

et al., 2014). Particularly germane to our discussion of cascade duration is average control-

lability (Kailath, 1980; Gu, Pasqualetti, et al., 2015), defined as the H2 norm of the system’s

infinite average controllability given by

Trace[WK ] = Trace

[ ∞∑
τ=0

AτBBTATτ

]
. (3.9)

Here, we set B as a binary column vector where vector elements corresponding to the nodes

of interest are set to 1 and the remaining vector elements are set to 0; this formulation

represents an impulse of magnitude 1 to the nodes of interest. The finite average controlla-

bility (FAC) is similarly defined by taking the sum to some finite positive integer F instead

of infinity, and represents the norm of the system’s impulse response over F time steps.

Because cascades are expected to last for a finite number of time steps, we use F = 100 in

the main text, and in the supplement we show that larger and smaller values of F produce
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similar results.

3.6.12. Modal controllability

Another network-based control metric we use here is modal controllability (Pasqualetti et al.,

2014; Gu, Pasqualetti, et al., 2015). While modal controllability was originally formulated

for symmetric matrices, here we extend the definition to include asymmetric matrices. To

do this, we take the absolute value of both the eigenvalues and the eigenvector components,

which can be complex numbers in an asymmetric matrix. Thus, we define the version of

modal controllability of node i for asymmetric matrices as

φi =

n∑
j=1

(1− |λj |2)|vij |2. (3.10)

3.6.13. Finite average controllability of initial states

To predict the duration of a cascade, we can calculate the finite average controllability of an

initial state y(0) defined as the finite average controllability averaged over the nodes that

are active in the initial state,

FAC(y(0)) =
1

|y(0)|
∑

i∈{i|yi(0)=1}

FACi. (3.11)

In the same way, we also calculate the finite average controllability in empirical cascades in

the first {1...T} time bins, averaging over the active neurons in those bins.

3.7. Code and data availability

All code for simulations and analysis is publicly available at https://github.com/harangju/

cascades. All data that support the findings of this study are available in the Open Science

Framework with the identifier doi:10.17605/OSF.IO/TW69H.
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Supplementary Information

3.8. Supplementary Results

3.8.1. Numerical validation of Markov formulation

To numerically assess the constraint on cascade duration, we compared simulations of the

network in Figure 3.1A-B to the prediction P (alive, t) given by the Markov representation.

We observed little difference between the stochastic and predicted dynamics. For each of

106 trials, we stimulated single neurons at t = 1, and at each time step (from a maximum

of 100), we calculated the fraction of cascades alive and P (alive, t). We found that the

root-mean-square error (RMSE) between the Markov chain prediction and the stochastic

model was 1.2 × 10−4 (Figure 3.6). To determine the generalizability of our observations,

we extended this analysis to an ensemble of 120 networks, separated into 30 instantiations

of four different graph topologies chosen for their relevance to neuronal architectures: a

weighted random graph, a ring lattice graph, a modular graph with 4 communities, and a

Watts-Strogatz graph. For the four graph topologies, we observed that the average RMSEs

were less than 8.5×10−3. Taken together, these results indicate a tight link between network

structure A and cascade duration derived from the network dynamics T .

Figure 3.6: Numerical validation of Markov formulation. A Markov chain of network
states can accurately predict the fraction of active cascades at time t. In 104 trials of
stimulating neuron 8 in the network in panel b, the root-mean-square error between the
state-space prediction and the stochastic model is 1.2× 10−4.
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3.8.2. Numerical validation of the relationship between the linear and stochastic

models

To illustrate the relation between the stochastic and the linear model, we perform numerical

simulations of the model, and we compare simulated cascades to the average network state

estimated by a linear dynamical system. In both cases, we instantiate the dynamics on a

weighted random network comprised of 10 nodes (Figure 3.1A-B) (Garlaschelli, 2009). The

relevant network parameters for all simulations are listed in Section 3.9.1. We simulate the

stochastic model dynamics 1,000 times over 15 time steps starting with the same initial

condition y(0) (Figure 3.7A). Note that we can also consider this initial condition to be

the stimulus. We average the activity at each node and time step yj(t) across simulations

to generate a numerical estimate of the time-evolution of the average network state (Figure

1B). Then, using the linear dynamical system starting with the same initial condition x(0) =

y(0), we calculated the number of spikes per neuron per time step as an estimate of the

average network state (Figure 3.7C). We find that the difference between the states of the

linear system and of the stochastic cascading model approaches 0 as a function of trials k

(Figure 3.1D). This convergence is consistent across a range of network sizes for fixed density

(Figure 3.1E). These results illustrate the accuracy of the linear estimation of the dynamics

of the stochastic model.

3.8.3. Random redistribution from 4-node cycles to different sets of edges

In this subsection, we reproduce the results from Figure 3.3I-L in the main text, but with

different sets of edges (see Figure 3.8). The results provided here are qualitatively similar

to those shown in Figure 3.3.

3.8.4. Finite average controllability for different time periods

We demonstrate that the finite average controllability is correlated with the mean cascade

duration even with higher values of F , a parameter reflecting the time period over which
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Figure 3.7: Linear dynamical model predicts average firing rate A Examples of
simulations of cascades generated by stimulating neuron 8 in the network in panel b. B The
activity of each node and time step, averaged over 104 cascades of stimulating neuron 8 in
the network in panel a. C Linear dynamics estimates the average spike counts of stochastic
simulations in panel d. D The difference between linear dynamics and simulation average
converges to a steady-state around zero. E The differences between average simulated
spiking and estimated linear dynamics for weighted random networks of size 50, 100, 150,
200, 250, and 300 nodes, all with fractional connectivity of 0.2. The error bars indicate
standard deviations, and the means are 2.1× 10−4, −6.8× 10−5, −9.7× 10−6, −8.0× 10−5,
5.8× 10−5, and −2.1× 10−5, respectively.

the system’s average controllability is measured. In the literature (Gu et al., 2015), average

controllability is defined as Trace(WK) where WK =
∑∞

τ=0A
τBKB

T
KA

τ . Because cascades

are expected to last for a finite number of time steps, we define finite average controllability

as the trace of a finite version of the controllability Gramian, WK =
∑F

τ=0A
τBKB

T
KA

τ , as

discussed more fully in the Methods subsection of the main text. Intuitively, finite average

controllability is the finite impulse response of the system. Here, we show that higher values

of F only increase the correlation between mean cascade duration from a stimulus and the

finite average controllability of the stimulus (see Figure 3.9). For readers curious about

pragmatic concerns, we note that the estimation of finite average controllability becomes
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Figure 3.8: Strong edge weights in cycles produce long cascades. A-D Reproduction
of the results from Figure 3.3H-K with a different set of edges generated by a random seed of
2. The subpanels A, B, C, and D here correspond to subpanels H, I, J, and K of Figure 3.3.
E-H Reprorudction of the results from Figure 3.3H-K with a different set of edges generated
by a random seed of 3. I-L Reproduction of the results from Figure 3.3H-K with a different
set of edges generated by a random seed of 4. Panels M-P reproduce the results from
Figure 3.3H-K with a different set of edges generated by a random seed of 5.

much more computationally intensive as F increase.

102



Figure 3.9: Finite average controllability, estimated for a wide range of F values,
is correlated with mean cascade duration. A The Pearson’s correlation coefficient, r,
between the mean duration of cascades from a single-node stimulation and the finite average
controllability, for values of F ranging from 5 to 1,000. The networks here have a weighted
random network topology with fractional connectivity of 0.2 and a uniform distribution of
weights. B The Pearson’s correlation coefficient, r, for the same measurements as in panel
A except for a bimodal distribution of weights, as explained in the main text.

3.8.5. Mutual information decay calculations for networks with different frac-

tional connectivities

Here we reproduce the results from Figure 3.4E-J in the main text with networks of higher

fractional connectivities of 0.1 and 0.2. The networks with higher fractional connectivities

shown here display similarly high correlations between (i) the decay in mutual information

between stimuli and network state over time and (ii) the mean duration of cascades (see

Figure 3.10).

3.8.6. Collisions in cascades

One assumption of branching processes is that collisions can be ignored. Some branching

process models indeed formulate avalanches as tree structures (Lee et al., 2004). In contrast,

both our stochastic model and linear systems allow collisions. To address this discrepancy, we

assess the degree to which collisions occur in empirical data, using the same 25 multielectrode

array (MEA) recordings described in the Methods subsection. While collisions cannot be

measured directly, we measured correlation between the number of neurons active in a time
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Figure 3.10: Longer cascade duration allows stimulus recovery. A-D Decay in mutual
information (MI) over time. When activity from a stimulus pattern lasts longer, mutual
information also persists for longer. Panels show results from four graph types: a weighted
random graph, a random geometric graph, a modular graph with 4 communities, and a
Watts-Strogatz graph. The networks for these panels have fractional connectivity of 0.1
and a bimodal distribution of weights. E-H The same results are presented here as in
panels A-D for networks with a fractional connectivity of 0.2. I A boxplot of the Pearson
correlation coefficients between the linear slope of decay in mutual information over time and
the mean cascade duration. The boxplot shows data from 30 instantiations of each graph
type, each network containing 100 nodes and characterized by a fractional connectivity of
around 0.1. The box-plot elements, center, bottom and top edges, whiskers, “+" symbols,
indicate respectively, the median, 25th and 75th percentiles, extremes, and outliers. J The
same results are presented here as in panel I for networks with fractional connectivity of 0.2.

bin t and the branching parameter from one time bin t to the next t+ 1, defined s

σt =
nt+1

nt
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where nt is the number of neurons that are active at t.

If activity is diluted enough in a network such that collisions can be ignored, then there

should be little to no correlation between the number of neurons at t and the branching

parameter σt at t. However, we find a negative correlation between the two variables in

the empirical data (Figure 3.11 in this supplementary document). For the 25 recordings,

the Spearman’s rank correlation coefficient ranges from -0.64 to -0.32 (Figure 3.11B; see

example in Figure 4A). When we measure the correlation for cascades of all recordings, the

Spearman’s rank correlation coefficient is -0.41 with a p-value that cannot be distinguished

from 0. Note that the number of neurons active in each bin is much smaller than the system

size (min: 98, max: 594, mean: 309, total: 7735). This finding suggests that as more neurons

fire, spikes collide and less neurons fire in the next time bin.

Figure 3.11: Collisions may occur frequently in living neuronal systems. A The
number of active neurons at a time bin t is negatively correlated with the branching param-
eter at t in example recording 8. B All 25 recordings display a negative correlation between
the number of active neurons and the branching parameter. C Cascades for all 25 record-
ings show a negative correlation between the number of active neurons and the branching
parameter.

3.8.7. Controllability constrains cascade duration in living neuronal systems

Here, we provide individual plots of finite average controllability and cascade duration for

two of the recordings presented in Figure 3.4I. See Figure 3.12. Each point represents a

cascade, with the mean finite average controllability of its first T time bins on the x-axis

and its duration on the y-axis.
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Figure 3.12: Controllability constrains cascade duration. A-D The finite average
controllability of the first T time bins of a cascade plotted against the duration of the
cascade for recording 9. E-H The same plots as A-D for recording 16.

3.8.8. Multistep regression (MR) estimation of system stability

To understand the constraint of network structure on system stability in addition to the

constraint on cascade duration, we estimate the growth parameter of cascading dynamics

on different network structures. The growth parameter m estimates the expected number of

spikes at time t+ 1 given the number of spikes at time t. This growth parameter is like the

branching parameter of branching processes except for processes with a 1st order autoregres-

sive representation (PAR), which approximates our cascading dynamics (see Mathematical

Framework). To estimate this parameter even under subsampling, which often leads to a

strong overestimation of stability in neural systems, we use multistep regression estimation

(Wilting et al., 2018) in simulated cascading dynamics on the synthetic networks used in

Figure 3.2.

We find that as the dominant eigenvalue λ1 approach 1 (to a maximum of 0.9973), m

reaches a maximum of 0.9643, and thus, cascading dynamics become reverberating and not
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asynchronous-irregular or critical (Figure 3.13) (Wilting et al., 2018). This reverberating

behavior was also observed in in vivo spike recordings of cat, monkey, and rats (Wilting

et al., 2018). However, for networks with a dominant eigenvalue less than approximately

0.7, the MR estimator overestimated the growth parameter of the system. This is likely

due to a discrepancy of greater than an order of magnitude between the system size of

256 and a maximum cascade size of less than 10, consequently leading the estimator to

assume a smaller system size. In contrast, the dominant eigenvalue still accurately describes

the distributions of cascade duration at this range (see Results). Together, these results

suggest that (1) cascading systems are reverberating, similar to previous findings, and that

(2) dynamical systems analysis describes cascading dynamics even in conditions that are

not well described by multistep regression.

Figure 3.13: Reverberations in cascading dynamics. The growth parameter m de-
creases initially with the dominant eigenvalue λ1, but increases with λ1 when the maximum
cascade size increases above 10.

3.8.9. Comparison of models on empirical distributions of cascade duration

The distributions of cascade duration in empirical MEA recordings and simulations resemble

power laws with exponential truncations. Such distributions in granular materials have

recently been described by an exponentially truncated power law p(x) ∼ x−αe−x/τ (Denisov

et al., 2016; Murphy et al., 2019), as it can capture distributions that range from exponential

to power law. Depending on the value of the parameters (i.e., α = 0 or τ = ∞), the
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truncated power law can become an exponential or a power law, respectively. To determine

whether a truncated power law describes the distributions better than either an exponential

p(x) ∼ e−x/τ or a power law p(x) ∼ x−α, we calculated the likelihood ratios between the

models (Clauset et al., 2009; Alstott et al., 2014). We found that for all 25 MEA recordings,

the truncated power law (TPL) performs better than the exponential (E) or the power law

(PL; Figure 3.14).

Figure 3.14: Likelihood ratio test between models on empirical distributions of
cascade duration. A Boxplots of the likelihood ratios R for three models, truncated power
law (TPL), power law (PL), and exponential (E), on distributions of cascade duration from
25 MEA recordings. The likelihood ratio is positive if the first distribution (e.g., TPL in
TPL/E) is more likely and negative if the second distribution (e.g., E in TPL/E) is more
likely. B The p-value of the likelihood ratio test is less than 0.001 for all but two comparisons
for TPL/E and for all but two comparisons for PL/E but more variable for comparisons for
PL/TPL.

3.8.10. Exponent relation test for criticality

The hypothesis of criticality in the brain is still somewhat controversial because a power

law of avalanche sizes, which is the most often-used indicator of criticality, can be produced

by many mechanisms that are not critical (Beggs and Timme, 2012; Wilting et al., 2019;

Touboul et al., 2017). However, one can use the exponent relation (Friedman et al., 2012)

as a stricter test for criticality that cannot be produced by models that are not critical, such

as molecular chaos models (Touboul et al., 2017). In the exponent relation, the power law

exponents, α and τ , of the distributions of cascade duration d and size s, respectively, are

related to the power law exponent of cascade size given duration p(s|d) ∼ d1/σνz, as given
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by α−1
τ−1 = 1

σνz (Friedman et al., 2012). Recent studies have used this relation to evaluate

criticality and identify its presence in their experimental systems (Shew et al., 2015; Ponce-

Alvarez et al., 2018; Fontenele et al., 2019). Here, we used the exponent relation to test for

criticality in the 25 MEA recordings and found some recordings to be solidly in the critical

regime, with a difference between the predicted and fitted exponents |βp − βf | less than

0.01 (Figure 3.15) (Clauset et al., 2009; Marshall et al., 2016). Other recordings display

differences in exponents |βp − βf | that range from 0.01 to 3.37.

3.8.11. Mean absolute errors of VAR models

It is important to evaluate the accuracy of the trained AR model, for example in its ability

to predict neural activity of the empirical test data. Here, we report the mean absolute

errors (MAE) of the VAR models from the 25 recordings (Figure 3.16). We calculated MAE

as

MAE =
1

N(T − p)

N∑
i=1

T∑
t=p+1

|yi(t)− ŷi(t)|,

where N is the number of neurons, p is the model order, T is the number of time bins, yi(t)

is the number of spikes in bin t for neuron i, and ŷi(t) is the prediction by the VAR model

for t from p+1 to T . The minimum, mean, and maximum MAE values were 0.0067, 0.0204,

and 0.0400, respectively. These findings indicate that the trained AR model provides an

accurate prediction of neural activity in the empirical test data.

3.9. Supplementary Methods

3.9.1. Parameters used in network simulations

Table 3.1 displays parameters of the network simulations reported in the main text.
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Figure 3.15: Exponent relations for criticality in MEA recordings. Cascade size
plotted against cascade duration for 25 MEA recordings (recording number from left to
right, top to bottom). For some recordings, the predicted exponent βp = α−1

τ−1 (dashed, red
line) matches the fitted exponent βf (blue line).

3.9.2. Predicting cascade dynamics with transition matrix T

Given that ∀i ∈ V :
∑

j aij ≤ 1 and aij ≥ 0, We can predict the exact fraction of cascades

alive at time t by computing a state transition matrix from any state k to any state l. For
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Figure 3.16: Mean absolute errors of VAR models from 25 recordings.

k, l ∈ {1, ..., n}, the state transition matrix T ∈ Rl×k can be constructed by

P
([
y(t) = sl

]
|
[
y(t− 1) = sk

])
=

n∏
j=1

P
([
yj(t) = slj

]
|
[
y(t− 1) = sk

])
=

n∏
j=1

(ajsk if slj = 1 and 1− ajsk if slj = 1)

=

n∏
j

(1− slj) + (−1)s
l
j+1ajsk.

Then, at t for all l, the probability of the network being in any state is given by

P (y(t) = sl) =
n∑
k=1

P (
[
y(t− 1) = sk

]
)

P (
[
y(t) = sl

]
|
[
y(t− 1) = sk

]
).
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Figures Number of Fractional Topology Weighting
neurons connectivity

Figure 1 10 0.2 WR UN
Figure 2a-c 10 0.15 WR UN
Figure 2d-f 256 0.6, 0.1 WR, HM TG (σ=0.3,

0.14, 0.18 WS, M4C 0.4,0.5)
Figure 2 12 0.2 WR, RG, UN
extended M4C, WS
Figure 3a 3 0.2 acyclic, UN

cyclic
Figure 3b 10 0.33 DAG, WR UN
Figure 3e-h 2 1.0 cyclic sweep
Figure 3i-l 4 0.5 cyclic sweep
Figure 4a-d 100 0.2 WR UN
Figure 4e-h 100 0.2 WR BG
Figure 5e-j 100 0.2 WR, RG BG

M4C, WS

Table 3.1: Network parameters for all simulations. The graph topologies are weighted
random (WR), random geometric (RG), modular with 4 communities (M4C), Watts-
Strogatz (WS), and hierarchical modular (HM). The weight distributions are uniform (UN),
truncated Gaussian (TG), and bimodal Gaussian (BG).

3.10. Supplementary Discussion

3.10.1. Neuronal avalanches versus cascades

Neuronal avalanches are cascades of spontaneous neuronal activity that follow a power law

distribution of sizes and durations that is typical of avalanches and other critical systems

(Bak et al., 1987; Beggs and Plenz, 2003). Neuronal cascades, however, do not always

display critical behavior. While empirical distributions of cascade size seem to follow power

laws, empirical distributions of cascade duration, also referred to as life times, display a

wide range of power law exponents from -1.0 to -2.6 (Beggs and Plenz, 2003; Petermann

et al., 2009; Hahn et al., 2010; Friedman et al., 2012; Poil et al., 2012; Lombardi et al., 2014;

Bellay et al., 2015; Shew et al., 2015; Ponce-Alvarez et al., 2018). Moreover, it is clear even

without rigorous statistical methods that many empirical distributions of event duration

do not follow power laws, but more closely resemble exponential distributions. Given this
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mixture of both critical and non-critical propagation, we decided to use the term “neuronal

cascades" to refer to both types of activity; in our simulations and analyses we do not assume

that all such cascades are critical.
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CHAPTER 4

Logic in cascading neural networks

This chapter contains work from Ju, H. and Bassett, D.S. (in preparation). "Digital neural

logic.”

4.1. Abstract

Neural information processing is critical for cognition. Networks of spiking neurons underlie

information processing, and such networks are often modeled as networks of pairwise neural

interactions, in which one neuron affects another, independently of or linearly with the

influence of other neurons. Recent methods in information theory have begun to quantify the

information processed in higher-order neural interactions between more neurons. However, it

is still unclear how higher-order neural interactions can be characterized. Here, we formulate

triplet neural interactions as probabilistic logic gates to describe neural computations in

spontaneous activity in the mouse cortex and the rat hippocampus. Moreover, we find that as

neural connections develop in vitro, computations become more diverse and that these logic

gates follow a characteristic temporal pattern. Taken together, these results demonstrate

the utility of studying higher-order interactions to understand neural computation.

4.2. Introduction

Neural computation supports cognition. Recent studies have taken many approaches to

quantifying and characterizing neural computation with tools available from a variety of

fields, including information theory, dynamical systems, and statistics (Carandini et al.,

2012; Lynn and Bassett, 2019; Ju et al., 2020). Information transmission is one of the

major areas of interest, by which neurons transmit information to other neurons. Tools

from information theory have been critical in quantifying information transmission across

neurons (Vicente et al., 2011). Across brain regions, information transmission is studied
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as statistical correlations between brain areas (Friston, 1994; Kriegeskorte, 2008). Neural

memory is another aspect of neural computation that has been studied extensively. From

classical attractor models to many modern methods of neural representation, reservoirs, and

high-dimensional coding, studies have described the ways in which neurons can store and

transmit information (Rabinovich et al., 2008; Ju et al., 2020; Jaeger, 2001; Stringer et al.,

2019).

Neurons, however, cannot simply store and transmit information; they must also provide

non-trivial mappings from multiple inputs to outputs. Recent information theoretic mea-

sures have further quantified many-to-one mappings of inputs to outputs. Partial informa-

tion decomposition separates the information from multiple sources that are independent,

dependent, and synergistic (Wibral, Priesemann, et al., 2017; Wibral, Finn, et al., 2017).

This method is unique in that it measures “synergistic” information, i.e., neural activity

that can only be predicted by the combination of activity from other neurons. In modern

silicon-based computing, much of the computation is determined by multiple inputs through

logic gates and registers (Vahid, 2011).

In this study, we expand upon the quantification of neural computation from measuring an

amount of computation to characterizing the dynamics of computation. We characterize

synergistic neural computation as a “neural logic gate” and formally define a gate as the

probability of a neuron spiking conditional on the spikes of two other neurons at previous

time points. We find that neurons do indeed cluster into a characteristic patterns of firing.

Moreover, they differ across brain regions and across development in vitro. Our findings not

only shed light upon the synergistic computations that neurons perform but also open the

ways for better characterization of neural computation at the cellular scale, which can later

be composed into higher-order computations.
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4.3. Results

4.3.1. Identifying logic gates

Figure 4.1: Neural logic gates and how to find them. A An idealized logic gate
with two inputs, n1 n2, and one output n3. B A neural logic gate with two inputs, n1 n2,
each with its own lag τ1 and τ2, and one output n3. C An example of a raster matrix of a
cascade. Neurons n1 and n2 transmit spikes to neuron n3 with lags τ1 = 3ms and τ2 = 2ms,
respectively. D To more easily compute the conditional probabilities, shift neurons n1 and
n2 by lags τ1 and τ2, respectively, so that the n1, n2, and n3 are aligned. E Compute the
conditional probability P (n3|n1, n2) for all triplets (n1, n2, n3) in the set of all neurons N .
To visualize the vectors of conditional probabilities, reshape them as a 2-by-2 matrix, with
neurons n1 and n2 in each dimension. F Cluster the resultant conditional probability vectors
with hierarchical agglomerative clustering.

A logic gate is an idealized model of computation that implements a Boolean function. Logic

gates are traditionally instantiated on silicon transistors and are deterministic with negligible

temporal delays (Figure 4.1A). On neural substrates, neural activity requires axonal and

synaptic transmission over millisecond time frames (Figure 4.1B). Thus, we define a two-

input “logic gate” as the conditional probability of a target neuron t firing given two other
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source neurons s1 and s2 at, respectively, lags of τ1 and τ2 millisecond time bins before t

firing, P (t|s1, τ1, s2, τ2).

To quantify the triplet neural interactions in real neural systems, we clustered triplet condi-

tional probabilities of spontaneous spiking activity. To ensure that we detect neural inter-

dependencies at high temporal resolutions, we first binned the data into 1 millisecond time

bins. Then, we partitioned the spike times into “cascades”, or continuously active bins of

spikes (Figure 4.1C). By partitioning into cascades, we avoid calculating conditional proba-

bilities between the spontaneous start points and end points of continuous neural activity.

Then, we iterate over neurons: one target neuron and two source neurons that precede the

target by lags τ , ranging from 1 to 5 ms. To align the neurons, we shift the bins for the

source neurons n1 and n2 by τ1 and τ2, respectively (Figure 4.1D). With the shifted cascade

matrix, we compute the probability of firing for n3 conditional on the firings for n1 and n2

(Figure 4.1E), from which we form clusters of conditional probabilities (Figure 4.1F).

4.3.2. Model

To test whether our method quantifies logic gates, we first create a model of probabilistic,

two-input logic gates (Figure 4.2A). We then create a raster matrix with n neurons and b time

bins (Figure 4.2B). To model “logic gates” in the raster matrix, we set a high probability (P =

0.9) of firing for one neuron based on the states of two other neurons and a predetermined

mapping as shown in Figure 4.2A. In this simulation, we map inputs n1 and n2 to n3 as

an XOR gate, such that n3 fires when either of n1 or n2 fires, but not both. To simulate

the neurons, we spontaneously fire all neurons with a predetermined low firing rate 0.00001,

with a slightly higher firing rate 0.001 for the neurons that input to the gates (Figure 4.2B)

and with a high firing rate 0.9 for n3 depending on the states of n1 and n2.

From our simulations, we observed that we can detect arbitrary gates using conditional

probabilities. When we clustered the conditional probabilities as explained in the previ-

ous section, we obtained an “XOR” cluster that reflects the “XOR” gate in the simulation
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Figure 4.2: Model of logic gates. A Simple probabilistic model of a two-input “XOR”
logic gate. B Illustration of model simulation with n neurons for t time bins. The simulation
spontaneously fires neurons at a low, predetermined firing rate of 0.001 and models the
“XOR” gate from panel A. C By clustering triplet conditional probabilities, illustrated in
Figure 4.1, we detect the “XOR” cluster. The heatmap shows the average probability of a
target neuron t firing, conditional on whether sources s1 and s2 have fired. D The panel
shows which source neurons, out of 10 in the simulation, participated in the cluster in panel
C. We can see that only the neurons that we set as the source neurons in panel A participate
in this cluster.

(Figure 4.2C). See Figure 4.7 for all clusters. To further verify that the “XOR” cluster was

indeed a result of our “XOR” gate, we checked that the source neurons s1 and s2 for the

“XOR” cluster were 9 and 4, respectively in Figure 4.2D as in Figure 4.2A.

4.3.3. Cortical neurons

To quantify the triplet neural interactions in real neural systems, we clustered conditional

probabilities of spontaneous spiking activity of hundreds of neurons in mouse somatosensory

cortex slice cultures (Ito et al., 2016). To ensure that we detect neural inter-dependencies
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at high temporal resolutions, we first binned the data into 1 millisecond time bins. Then,

we partitioned the spike times into “cascades”, or continuously active bins of spikes. By

partitioning into cascades, we avoid calculating conditional probabilities between the spon-

taneous start and ends of continuous neural activity. Then, as explained in previous sections,

we clustered the conditional probabilities.

In our analyses, we found that cortical neurons cluster into probabilistic yet distinct logical

gates (Figure 4.3A). First, we can qualitatively describe the probabilistic logic gates. In the

subsample of 30 neurons in Figure 4.1A, we can see that in cluster 0, the target is more

likely to fire when s2 = 1 but less likely to fire when s1 = 1 at all, perhaps suggesting that

s1 in this triplet is inhibiting the target while s2 is exciting the target. We can observe that

the neurons that participate in each cluster is non-random (Figure 4.8). In cluster 1, the

target is likely to fire when neither of the sources are firing. This is also the largest cluster

with the lowest conditional probability, suggesting that this cluster results from spontaneous

activity. Clusters 2 and 5 show similar behaviors as in cluster 0. Cluster 3 is interesting

because it is an AND gate, i.e., the target fires only when both sources fire, with the highest

conditional probability. In cluster 4, the target is more likely to fire when the sources fire

and even more when both sources fire, suggesting linear dynamics between the sources and

the target.

To test whether the clusters capture statistical dependencies between neurons, we compared

clusters detected in the real data to clusters of a null model. We constructed the null model

by shuffling the spike times for spikes within each cascade. Thus, we hold constant the

firing rates of neurons and cascades statistics (Figure 4.9); the null model only removes

the statistical dependence, if there is any, between neurons. We found that that silhoutte

scores, which measure the quality of clustering, were higher for real data than for null data

in 30 subsamples in Dataset 3 (Figure 4.3B). These results suggest that real neurons in vitro

synergize to produce patterns of higher-order interactions.

Further, we compared logic gates from the real data with different null models to determine
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Figure 4.3: Logical gates in cortical neurons. A Centroids of six clusters of triplet
conditional probabilities from dataset 3 from mice somatosensory cortex. The centroids are
clustered from a random subsample of 30 neurons from 99 total neurons in the recording; the
method of choosing a random subsample was employed for computational tractability. B
Silhouette scores of 30 random subsamples, each with 30 out of 99 neurons in the recording.
Clusters obtained from real data have higher silhoutte scores than clusters obtained from
time-randomized null models, indicating that real data more clearly form clusters than
randomized data.

the dimensions of the data that are relevant for synergistic neural interactions. First, to test

whether logic gates require millisecond resolution, we averaged the conditional probabilities

across lags from 1 ms to 5 ms between the sources and each target. We found that averaging

across 1 to 5 ms lags removed any difference in synergistic interactions between the real and

null data (Figure 4.10). Secondly, to test whether cascades are important for computation,

we compared real to null data for the entire spike train without first partitioning the spike

trains into cascades (Figure 4.11). We found that without first partitioning the spike trains

into cascades, the difference in silhoutte scores between real and null data disappeared. The

results here suggest that neural computation occurs both at the millisecond timescale and

is specific to cascades.

4.3.4. Hippocampal neurons

Neurons behave differently based on their underlying network structure, which varies by

their location in the brain (Passingham et al., 2002; Bassett et al., 2017; Suárez et al.,

2020). Here, we wish to quantify how different brain areas, specifically the neocortex and
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the hippocampus, may have similar or varying behaviors in their computation (Timme et al.,

2016). To quantify neural computations in the hippocampus, we calculated the centroids of

the conditional probabilities from spontaneous spiking activity of neurons in rat hippocampal

dissociated cultures. Qualitatively, in Figure 4.4A, neurons are mostly firing when no sources

have fired, with 8694 triplets in cluster 3. Moreover, most neurons participate in this cluster

(Figure 4.4B). The other clusters are either firing when only one of the sources are firing,

as in an “XOR” gate (Figure 4.4A). These logic gates are qualitatively distinct from those

found in the neocortex.

Figure 4.4: Computations in hippocampal neurons. A Centroids of six clusters of
conditional probabilities from slices culture #3 from 30 days in vitro from rat hippocampus.
B Participation of neurons as sources 1 and 2 in cluster 3 and 4, as illustrative examples.
Most neurons participate in cluster 3, but not in cluster 4. C Conditional probabilities from
the hippocampus tend to cluster better than those from the neocortex.

To quantitatively test whether there is a differences between neural computations in the

neocortex and the hippocampus, we tested whether triplets from the two areas cluster dif-

ferentially. First, logic gates in the hippocampus have maximum values that are greater and

bimodal in distribution than in the neocortex (Figure 4.4C). Taken together, these results

suggest that different brain areas differentially map multiple inputs to outputs, which may

underlie more complex neural dynamics.
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4.3.5. In vitro neural development

While neural computations differ across brain areas, how do they change as neural networks

develop? We can quantify changes in neural computation in hippocampal slice cultures

across days in vitro. While the logic gates look qualitatively similar across days, the distri-

bution of triplets to the centroids appear over time. We found that the gate with the highest

conditional probability at s1 = 0 and s2 = 0 receives a greater distribution of triplets early

on after disassociation (Figure 4.5). However, with more days in vitro, more and more

triplets are distributed to the other logic gates. These results suggest that as synapses re-

develop after disassociation through spontaneous activity, the new connections contribute

toward the “XOR-like” gates that we see in the hippocampal slice cultures.

Figure 4.5: In vitro neural development. The probability distributions to 6 clusters
from 6 days in vitro (DIV) to 24 DIV. The probability distribution to clusters evens out as
neurons develop. Clusters have been reordered such that cluster 0 is always the one with
the highest probability where s1 = 0 and s2 = 0, as in cluster 3 in Figure 4.4A.
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4.3.6. Spatiotemporal patterns

Synergistic neural interactions do not occur in a vacuum but in a sequence of interactions

and, in this case, in cascades of spontaneous activity. To quantify the temporal correlations

between the occurrences of logic gates, we calculate a probability matrix for the transitions

between clusters. As a brief overview, we first identify the most likely gate for each spike

by determining the maximum conditional probability that a neuron spiked based on which

neurons fired 1 to 5 ms before (Figure 4.6A). Then, we compute the probability of transitions

between one cluster to another sequentially across all spikes. We found that in dataset 3 in

the cortical slice recordings, certain clusters transition with a high probability to cluster 3

but not clusters 2 and 5 (Figure 4.6B).

Figure 4.6: Cluster transition probability. A Illustration of calculating cluster transition
probabilities. B Transition probability between clusters for dataset 3 in the somatosensory
cortex slice recordings.

4.4. Discussion

Here, we expand the scope of study on neural interactions from pairwise statistical depen-

dencies to triplet neural interactions. We characterize triplet interactions by adapting the

“logic gate” from digital logic to neural systems as probabilistic, temporal conditional prob-

abilities from two source neurons to one “output” neuron. As we will discuss, this model
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is readily expanded to describe n-to-one neural interactions. We first demonstrate that

our formulation forms clusters of triplet neural interactions. Then, we show how such in-

teractions differ across brain regions and across neural development in vitro. Finally, we

briefly describe temporal patterns in sequences of clusters. Taken together, the results here

suggest that quantification of higher-order neural interactions may shed light into neural

computations.

4.4.1. triplet interactions

Many modern network models use pairwise interactions (Bassett et al., 2017). Pairwise inter-

actions can explain the behaviors of many complex systems, such as human communication

(Lynn, Papadopoulos, et al., 2019). However, higher-order neural interactions are necessary

to describe more complex neural dynamics (Wibral, Priesemann, et al., 2017; Wibral, Finn,

et al., 2017). With respect to network structure, algebraic topology formulates connections

as simplices that encompass higher-order topologies, such as a tetrahedral shape (Ghrist,

2014). With respect to neural dynamics, partial information decomposition is an innova-

tive way to quantify two-input-one-output dependencies and has been expanded to n inputs

(Ince, 2017). As we will discuss in future directions, we hope to expand triplet interactions

into higher-order n-to-one interactions.

4.4.2. Methodological limitations

We use conditional probabilities between two source neurons and one target neuron to de-

scribe neural interactions. Conditional probabilities are a simple, non-information theoretic

measure of neural interactions. One disadvantage of such a formulation is that conditional

probabilities do not discriminate between direct and indirect statistical dependencies be-

tween neurons. Information theoretic methods, such as transfer entropy, can subtract re-

dundant information (Vicente et al., 2011). Such an information theoretic approach may

also be useful in this context to parse the redundant statistical dependencies across neurons,

as does partial information decomposition (Wibral, Priesemann, et al., 2017).
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Another methodological limitation comes from the spontaneous and in vitro nature of the

neural data. Spontaneous activity is limited in its ability to reveal computations that un-

derlie cognition. Animals during behavior receive sensory inputs and exert cognition control

that affects neural dynamics (Musall et al., 2019). Though some aspects of neural dynamics

adapt to neural inputs (Shew et al., 2015), it remains a question how synergistic neural

interactions change as a function of sensory input or behaviors. Thus, it is important to

apply the methods demonstrated here to neural activity during animal behaviors to better

understand the types of computations that are required for cognition. Alternatively, electri-

cally stimulating neurons via electrodes may allow one to test the conditional probabilities

that arise during spontaneous activity.

Another limitation of our data is that the data are recordings of spontaneous activity from

slices of mice somatosensory cortex and of rat hippocampus (Timme et al., 2016; Ito et al.,

2016). While certain neural dynamics are observed in vitro, in vivo, and even ex vivo, it

remains to be seen whether the results demonstrated generalize to in vivo measurements

(Beggs and Plenz, 2003; Priesemann, Valderrama, et al., 2013; Priesemann, Wibral, et

al., 2014; Shew et al., 2015). Moreover, cascades manifest “avalanche”-like behavior whose

dynamics are near a critical point of stability (Beggs and Plenz, 2003; Priesemann, Wibral,

et al., 2014). Such neural systems are poised near a critical point of stability, in which they

have optimal information transmission and memory (Beggs, 2004; Haldeman et al., 2005;

Priesemann, Wibral, et al., 2014). Though we demonstrate in this study that avalanche

behaviors are important for forming identifiable clusters of high-order neural interactions, it

is unknown whether and how avalanche behaviors contribute to or detract from such neural

interactions.

4.4.3. Future directions

In this study, we begin to characterize higher-order neural interactions at the scale of triplets:

two source neurons and one target neuron. Such a configuration borrows from both digital
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logic gates and recent studies in partial information decomposition (Wibral, Priesemann,

et al., 2017). However, there may be even higher-order neural interactions. For example, n

neurons may project and converge to a single neuron. In such a case, triplet computations

may not capture all such neural interactions. In the future, we hope to apply methods like

the information bottleneck to determine the order of neural computation, which will also

reduce the computational burden of computing all possible triplets (Tishby et al., 2000).

In addition to higher-order neural interactions, neural computations may be composable into

sequential algorithms. In the future, we hope to test whether neural logic gates can chain

into longer sequences of computations and to quantify their higher-order characteristics.

Modern computer architectures use a sequence of low-level commands on transistors to

perform certain computations (Vahid, 2011). We hope to determine whether a parallel

exists in neurons on the cellular scale. Interestingly, such composability may accomodate

the problem of scale in neural systems: how does one relate neural activity on the cellular

level to neural activity in the regional level? By composing descriptions of neural activity

from a lower level to a higher level, one can describe coarser levels of neural description with

finer resolution data.

4.5. Methods

4.5.1. Experimental data

For analysis of a real neural system, we use publicly available data derived from slices of

spiking neurons in the mouse somatosensory cortex (Ito et al., 2016). The data contain

25 recordings, most of which possess hundreds of neurons (min: 98, max: 594, mean: 309,

total: 7735). Each recording is 60 minutes long and was acquired at a sampling rate of 20

kHz. The recordings were acquired from organotypic slice cultures by multielectrode arrays

(MEAs), each with 512 electrodes on a 1 mm-by-2 mm area.

For our analysis of neurons in the hippocampus, we use publicly available data derived from
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slices of spiking neurons in the rat hippocampus (Timme et al., 2016). Most recordings

possess about one hundred neurons (min: 3, max: 142, mean: 91, total: 39,529). Each

recording is approximately 60 minutes long and was acquired at a sampling rate of 20 kHz.

4.5.2. Computing logic gates

To compute logic gates, we first define a raster matrix from the spike times which have 0.05

ms temporal resolution. We set the duration of each time bin to 1 ms and bin each spike

for each neuron into the matrix. Then, we define a cascade as a set of continuously active

times, i.e., at least one neuron is firing in the time bin. By doing the following computations

by cascade, we can ignore any effects of spontaneous starts and stops of cascades. Moreover,

assuming that spikes have non-zero dependencies among neurons, we remove any cascades

that are lower than a predefined number of time bins, 20.

We define logic gates as the conditional probability P (t|si,l, ..., si,n) of whether a “target" t

neuron fires t = 1 conditional on multiple other “source" si,l neurons at l previous time steps

for each source. We use lags from 1 ms to 5 ms based on prior work that shows the range of

duration for spike transmission (Ito et al., 2016). We also compute logic gates by averaging

across to 1 to 5 ms lags to test whether temporal resolutions matter for the millisecond

timescale. We test this assumption with a null model. We also test the computations for

the entire raster matrix, not by cascades (Figure 4.11).

In this paper, we compute conditional probabilities of triplets in subsets of 30 neurons.

Because the complexity of the computations are O(n) = n3, any larger subsets were com-

putationally infeasible. Further optimization efforts are required to analyze larger subsets.

After we compute the conditional probabilities P (t|s1,l1 , s2,l2), we cluster the probabilities.

The conditional probabilities are vectors, with four values for the four combinations of input

states s1 and s2, i.e., (s1, s2) = (0, 0), (0, 1), (1, 0), and (1, 1). We cluster these conditional

probabilities into a predetermined number of clusters of 6 clusters in the main manuscript.
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4.5.3. Logic gate model

We simulate probabilistic logic gates to test the computation of logic gates as lagged condi-

tional probabilities. To simulate logic gates, we a priori determine probabilities of a target

neuron t conditional on the binary states of source neurons s1 and s2. Then, we simulate

neural spikes with a low firing rate of 0.0001 for all neurons and with a higher firing rate of

0.01 for neurons s1 and s2.

4.5.4. Null model

To determine what part of the data is important for a particular result, we used a few null

models that removes parts of the data. The first null model was a strict null model; it

preserved (1) firing rates, (2) spike resolution of 1 ms, and (3) cascade statistics (see SI for

cascade statistics). It shuffles the bins for spike times within cascades at 1 ms bins; thus,

this model is the strictest null model that tests whether the results actually depend on the

statistical dependencies between neurons. The two other null models loosen the preservation

of one of three data features. The second null model loosens the spike resolution of 1 ms

by averaging the conditional probabilities over 1 to 5 ms. The third null model loosens

the cascade statistics by shuffling the spike times for the whole recording, disregarding the

cascades.

4.5.5. Cluster transition probability

To calculate the transition probability from cluster to cluster, we must first map the spike

times to the “logic gate” clusters. To map each spike to “logic gates”, we identify the maxi-

mum conditional probability of a target spike, P (t|s1, s2), with spike times of other neurons

1 to 5 ms prior to the spike time of the target t. Given the sources and lags that have

the maximum conditional probability for a target, we map each spike to a cluster. Then,

we calculate the transition probability by calculating a transition probability matrix T for

which the element at row i and column j is the probability that a spike for cluster i is
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followed by a spike for cluster j.

4.6. Code and Data Availability

The code used to generate this data is fully available at https://github.com/harangju/

neuralogica. The data used in this study are publicly available at https://crcns.org/data-sets/

hc/hc-8 and https://crcns.org/data-sets/ssc/ssc-3.
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Supplementary Information

4.7. Supplementary Results

The following are supplementary figures to Chapter 4.

Figure 4.7: All cluster of the “XOR” model in the simulation shown in Figure 4.2.
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Figure 4.8: Participation of neurons in clusters. Each panel shows, on the left, the
relative number of times that a neuron participates in the cluster and, on the right, the
centroid for the logic gate for the cluster.
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Figure 4.9: Cascade statistics. The top panel shows the probability distributions of
the size (blue) and lifetime (red) of cascades with the constants 1.97 and 2.18, respectively,
for the power law p(x) ∼ x−α. The bottom panel shows the probability distributions of
the size (blue) and lifetime (red) of cascades with the power law constants 3.36 and 3.85,
respectively. Power law constants greater than 2 have an expected value and thus are not
scale-free.
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Figure 4.10: Neural logic gates require spiketimes with millisecond resolution.
The silhoutte scores for real data with lags between sources and targets averaged over 1
to 5 ms are not significantly different from those for null data whose spiketimes have been
shuffled.
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Figure 4.11: Neural logic gates require cascades. The silhoutte scores for real data
whose spiketimes are not grouped by cascades are not significantly different from those for
null data whose spiketimes have been shuffled.
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CHAPTER 5

Growth in concept networks

This chapter contains work from Ju, H., Zhou, D., Blevins, A.S., Lydon-Staley, D.M.,

Kaplan, J., Tuma, J.R., and Bassett, D.S. (2020). “The network structure of scientific

revolutions.” arXiv:2010.08381

5.1. Abstract

Philosophers of science have long questioned how collective scientific knowledge grows. Al-

though disparate answers have been posited, empirical validation has been challenging due

to limitations in collecting and systematizing large historical records. Here, we introduce

new methods to analyze scientific knowledge formulated as a growing network of articles

on Wikipedia and their hyperlinks. We demonstrate that in Wikipedia, concept networks

in subdisciplines of science do not grow by expanding from their central core to reach an

ancillary periphery. Instead, science concept networks in Wikipedia grow by creating and

filling knowledge gaps. Notably, the process of gap formation and closure may be valued

by the scientific community, as evidenced by the fact that it produces discoveries that are

more frequently awarded Nobel prizes than other processes. To determine whether and

how the gap process is interrupted by paradigm shifts, we operationalize a paradigm as a

particular subdivision of scientific concepts into network modules. Hence, paradigm shifts

are reconfigurations of those modules. The approach allows us to identify a temporal signa-

ture in structural stability across scientific subjects in Wikipedia. In a network formulation

of scientific discovery, our findings suggest that data-driven conditions underlying scien-

tific breakthroughs depend as much on exploring uncharted gaps as on exploiting existing

disciplines and support policies that encourage new interdisciplinary research.
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5.2. Significance Statement

Philosophers of science question the way science works and why. For millennia, they have

posited mechanisms and offered explanations. Several recent and particularly compelling

theories have been difficult to validate, in large part due to challenges in collecting and

systemizing large historical records. Fortunately, Wikipedia—the largest online encyclope-

dia—contains millions of articles that not only form hyperlinked networks of concepts but

also include a history of when a concept was discovered. We use this resource to formulate

the process of science in terms of knowledge growth, or—more precisely—the growth of con-

cept networks. Across scientific subjects, we demonstrate that networks in Wikipedia, as an

important and interesting case, grow both by expanding frontiers and by filling knowledge

gaps, striking a balance between bubbling out and bubbling in.

5.3. Introduction

In the philosophy of science, thinkers from disparate eras have attempted to reason about

the various processes underlying scientific progress. Some of the most compelling theories

have come from the last 50 years. For example, in 1959 Karl Popper described the devel-

opment of scientific ideas as a sequence in which previous theories are falsified (Popper,

2008). In 1962, Kuhn suggested instead that progress was best described as periods of

normal science, in which researchers “solved puzzles” within a paradigm, separated from

one another by paradigm shifts that overturn the existing paradigm (Kuhn and Hacking,

2012). In 1970, Lakatos balanced the two theories by suggesting that science progresses

according to a research programme in which knowledge expands from a common core set

of theoretical commitments and practices (Lakatos, 1978). In 1975, Feyerabend differed

from the thinkers who had come before by discounting any single mechanism for scientific

progress (Feyerabend, 2010). Even more recently, the field of science of science has begun to

use a more quantitative approach to probe the cultural, societal, institutional, and personal

conditions that support (or do not support) scientific discovery, dissemination, and impact
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(Astegiano et al., 2019; Clauset, Larremore, et al., 2017; Zeng et al., 2017; Helmer et al.,

2017; Fortunato et al., 2018; Nagaraj et al., 2020; Robinson-Garcia et al., 2020; Wang et al.,

2021).

Despite the variety of theories regarding scientific progress, such as cultural accounts of

scientific practice (Chemla et al., 2017), many suggest a dependence of new discoveries on

the existing body of knowledge. Newton writes in 1675, “If I have seen further, it is by

standing on the shoulders of giants” (Newton, 1675). Indeed, discoveries, including calculus,

are often multiples, discovered independently and contemporaneously by several scholars,

sometimes quite geographically separated (Merton, 1974). These observations prompt the

question of how an existing body of knowledge influences the discovery of new scientific

knowledge.

Here, we expand upon the concept of a body of knowledge, not as amorphous, but as com-

prised of distinct relationships between concepts. We formalize this structured body of

knowledge as a concept network whose nodes represent concepts and whose edges represent

inter-concept relations (Siew et al., 2019). Concept networks have proven to be powerful

tools for probing questions about topological structure and the exploration of knowledge

(Christianson et al., 2020; Lydon-Staley et al., 2021). To begin to study the process of

science, we build growing concept networks from Wikipedia, a free online encyclopedia (Fig-

ure 5.1A; Section 5.7). Each Wikipedia article explains a concept and contains hyperlinks

to other Wikipedia articles, thereby intuitively forming a directed network of concepts. To

formally represent this network, we treat each article as a node. Further, we treat each

hyperlink from an article’s lead section (i.e., the introduction) as a directed edge from the

hyperlinked article to the hyperlinking article. We weight the directed edges according to

the similarity between the two nodes or concepts. More specifically, we calculate the co-

sine similarity between two articles’ vector representations, which are derived from a term

frequency-inverse document frequency (tf-idf ) encoding. Focusing on the article’s history

and lead sections, we parse the earliest year associated with the concept’s discovery and
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set that year as an attribute for each node. We use this information about the year of a

concept’s discovery to create a growing network across time, adding edges at the same time

as the addition of the edges’ associated nodes.

Figure 5.1: Building a growing concept network from Wikipedia. A Each network
is made up of Wikipedia articles that are indexed by subject in the natural sciences, mathe-
matics, and the social sciences. Each node corresponds to an article; the node’s name is the
title of the article, and the node’s birth year is the first year listed in the introduction or
history sections as the year when the concept was conceived (highlighted in yellow). Each
directed edge corresponds to a hyperlink, from the article that is hyperlinked to the article
that hyperlinks. B The final concept networks display greater clustering, modularity, and
coreness than null networks constructed to reflect Fereyabend’s hypothesis that science lacks
a characteristic pattern of discovery. C By comparing the birth year of core nodes to those
of neighboring peripheral nodes, we observed that there is no clear lead-lag relationship
between a core node and its neighboring peripheral nodes. Violin plots show distributions
of the years of core nodes minus the years of neighboring peripheral nodes, for each core-
periphery edge. Some large differences (e.g., 5,000 to 10,000 years) are due to articles about
recently discovered topics referencing articles about topics discovered much earlier. Vertical
lines indicate outliers, which are less than Q1−(1.5×IQR) or greater than Q3+(1.5×IQR)
where Qn is the nth quartile and IQR = (Q3−Q1). Negative values indicate that core nodes
are discovered before their neighboring peripheral nodes, and vice versa.
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In this study, we first develop methods to operationalize the theories of the philosophers

Kuhn, Feyerabend, and Lakatos as falsifiable hypotheses using network theory. We then

test each hypothesis—from which we infer the theories that are most supported by the

data—in Wikipedia as an important and interesting case. To operationalize and test these

hypotheses, we use cutting-edge methods in network science, algebraic topology, and control

theory. Here, we find that science concept networks grow by creating and filling knowledge

gaps, a process which is valued by the scientific community. Moreover, we operationalize

a paradigm as a particular subdivision of scientific concepts into network modules and

find that paradigm shifts vary in their magnitude in a similar temporal signature across

scientific subjects. Our findings not only shed light upon the large-scale, empirical evidence

of classical philosophies of science but also demonstrate operationalizations of qualitative

social phenomena that may be readily applied in other contexts.

5.4. Results

Given the notions of characteristic patterns in discovery by Kuhn and Lakatos, or the lack

thereof by Feyerabend, we first quantified the structure of concept networks using compu-

tational tools and concepts from network science. As an initial test of Kuhn’s hypothesis

of normal science, we measured whether concepts form clusters, in which scientists “solve

puzzles” within an existing paradigm. At the node level, we operationalized this idea using

the clustering coefficient, which quantifies the local density of connections (Fagiolo, 2007);

at the network level, we operationalized this idea using modularity, which quantifies the

degree to which groups of nodes are densely connected within distinct modules (Clauset,

Newman, et al., 2004). Additionally, we used a core-periphery measure (Borgatti et al.,

2000) to assess whether networks form a “common core” as suggested by Lakatos’s research

programme, where core nodes are densely connected to each other, and where peripheral

nodes are loosely connected to the core. We compared these measures in real networks to

those in null networks that destroy existing topology through random rewiring. Random-

ized null networks may be one way to, thereby operationalizeing Fereyabend’s hypothesis
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of a lack of characteristic pattern to discovery. We found that real networks have greater

clustering coefficients, modularity, and coreness than those in the edge-rewired networks

(Figure 5.1B). These findings underscore the existence of nontrivial topological structure in

concept networks, whereby concepts can either be core to the field or peripheral to the field,

and are clustered within modules (akin to subfields).

How might the structure of concept networks arise through the course of history? Might

core concepts emerge first, followed by peripheral concepts, in a cumulative growth pattern

in which we build deeply upon foundational early discoveries in the field? Or might the

“foundational” concepts change as the field grows and changes, such that new discoveries

can sometimes replace earlier discoveries as more central to the field? To address this ques-

tion, we compared the birth year of core nodes to the birth year of neighboring peripheral

nodes. We observed that there is no clear lead-lag relationship between a core node and its

neighboring peripheral nodes (Figure 5.1C). That is, core nodes do not necessarily precede

neighboring peripheral nodes in their discovery, suggesting that the discoveries viewed as

“central” to a field can change throughout the field’s lifetime. Notably, there is similarly no

clear lead-lag relationship between core and periphery nodes within specific modules (Fig-

ure 5.5). Interestingly, a few core nodes are born consistently earlier than most peripheral

nodes. These nodes, such as the node “Hydrology” in the subject “Earth Science”, may serve

as concepts that are central to the subject as a whole and comprise a “hard inner” part of

the core (Figure 5.6). Taken together, these results point to both an outward expansion

and an inward exploration of concepts, in which the core of a research programme is often

updated by new discoveries that are influenced by discoveries that occur in the periphery.

How then does a body of knowledge grow? Thus far, we understand that real concept

networks are highly clustered and display processes of both inward and outward growth.

Might concept networks fill gaps in knowledge (Fontana et al., 2020) in a manner that

is conceptually akin to Kuhn’s puzzle-solving normal science? To test this possibility, we

formalize knowledge gaps in the language of algebraic topology (Hatcher, 2002) and assess
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the relevance of gaps to discovery. Specifically and in this mathematical parlance, a gap

corresponds to a topological cavity in any dimension n (Figure 5.2A-B; Section 5.7) (Sizemore

et al., 2018). To detect gaps within the growing concept network, we use persistent homology,

which chronicles the birth, evolution, and collapse of topological cavities across a growth

process (Zomorodian et al., 2005). In general, a cavity in a Wikipedia network is a set of

articles (i) that form a single connected component, but (ii) no article in the set connects

all articles of the cavity.

Figure 5.2: Real concept networks maintain shorter and fewer gaps. A Examples
of cavities in 0, 1, and 2 dimensions. Cavities are born when a new, added node creates a
topological gap; cavities die when the gap is closed by a new node and its edges tessellate
the gap. B Barcode for the biophysics network. The left and right points of each bar are
the birth and death times of a persistent cavity. C Illustration of our genetic model for
concept network growth and evolution. D Real networks have knowledge gaps for shorter
duration than either randomly rewired (KS = 0.24, p = 1.4× 10−188) or genetic null model
(KS = 0.20, p = 1.3 × 10−15) networks. Starred arrows indicate significantly different
distributions. E Real networks have fewer knowledge gaps that are currently present (i.e.,
that have yet to die) than random networks (KS = 0.81, p = 2.1× 10−12).
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After computing the persistent homology of real networks (Figure 5.2B), we next wished to

determine whether the observed gap formation and closure was similar to (or different from)

the same processes expected in network null models. We consider two network null models.

The first is a randomly rewired null model, in which the edges are relocated uniformly at

random. The second is a genetic null model that explicitly examines the process of scientific

discovery. The genetic null model simulates the process by which scientists learn about

existing concepts and then slowly mutates those concepts to create new ones. Importantly—

and unlike true science—the genetic null model contains no preference for how new concepts

are mutated, for example as could be operationalized by an objective or fitness function

(Figure 5.2C). The model is initialized as a subset of a real network, containing “core nodes”

that were born before a predetermined year (BC 500 in our simulations). For each node, we

iteratively mutate a tf-idf vector representation of the node’s Wikipedia article. We then

create a new node from the mutated vector and connect it to similar nodes in the network

(Section 5.7; Figure 5.7). This process continues until the number of nodes in the simulated

network is equal to that of the true network.

At this point, the topology of the real, rewired, and genetic null model networks can be

compared. We find that for persistent cavities that have already died by tmax, those in real

networks have significantly shorter lifetimes than those in either randomly rewired networks

(Kolmogorov-Smirnov statistic, KS = 0.24, p = 1.4×10−188) or genetic null model networks

(KS = 0.20, p = 1.3× 10−15) (Figure 5.2D). Further, real networks have significantly fewer

persistent cavities that are still present at tmax than randomly rewired (but not genetic)

networks (KS = 0.81, p = 2.1× 10−12; Figure 5.2E). Collectively, these results support our

hypothesis that real concept networks fill gaps more quickly than null networks and leave

fewer gaps alive at the present day, consistent with the predictions of Kuhn’s puzzle-solving

normal science.

Whereas the first part of Kuhn’s theory regards puzzle-solving, the second part regards

paradigm shifts that radically change the way scientists view concepts. In our network
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formulation, we operationalized paradigms as temporally varying modular structure, where

an “incommensurable” paradigm shift would drastically change the membership of nodes to

modules. Accordingly, we built a multilayer network with each layer containing the concept

network at each year (Bianconi, 2018) and used multilayer community detection to identify

modules at each year and understand how those modules change in constitution over years

(Mucha et al., 2010). To summarize these data, we followed prior work to calculate the

number of times that a node changes its membership to a module for each year (Figure 5.3A)

(Killick, Fearnhead, et al., 2012). Then, we performed change point detection on the number

of changes observed to identify epochs of stability in module membership (Figure 5.3B;

Section 5.7) (Killick and Eckley, 2014). We found that after an initial, short epoch of

little change, the network enters an epoch of moderate and lasting change (Figure 5.3C).

Then, the network enters a short epoch of much greater change, after which the network

stabilizes in the last epoch. This signature is not observed in randomly rewired networks

(Figure 5.8). The data demonstrate that shifts in the structure of concepts occur not as

abrupt Kuhnian reconfigurations but as gradual Lakatosian modifications (Daston, 2016).

Moreover, the findings demonstrate that subjects (or fields) display a shared signature of

structural stability and instability across time.
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Figure 5.3: Concept networks undergo a signature pattern in structural stability.
A Module membership (colored) of nodes across years for the biophysics network. B The
number of changes in module membership for the biophysics network. Dashed lines are
changepoints in epochs, and the teal line is the mean for each epoch. C The mean number
of changes within an epoch (top) and the duration of each epoch (bottom) reveals a signature
(dark green) averaged across subjects (teal).

Finally, we ask whether we can predict the perceived merit of a discovery by measuring

the node’s theoretical ability to influence a body of knowledge due to its location within

the gappy topology. We operationalize perceived merit in two ways: (i) a network-based

measure and (ii) the receipt of a Nobel prize (Szell et al., 2018; Li et al., 2019; Jin et al., 2021),

although we acknowledge the imperfect nature of the latter assessment (The Lancet, 2018).

After constructing a single network containing all nodes from all subjects, we calculated

the network’s impulse response as a measure of a node’s potential influence. Arising from

dynamical systems theory, the impulse response quantifies how much a network “responds”

to an “impulse” that perturbs one node (Figure 5.4A; Section 5.7). We observed that nodes

that more frequently participate in the birth or the death of cavities have higher impulse

responses (birth: Pearson’s correlation coefficient r = 0.36, p � 0.001; death: r = 0.38,

p � 0.001; Figure 5.4B). Importantly, such nodes are also more frequently awarded Nobel

prizes (birth: KS = 0.15, p = 4.2× 10−6; death: KS = 0.17, p = 1.2× 10−7; Figure 5.4C-
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D). Importantly, both operationalizations are higher-order measures, meaning that they do

not depend only on the connections immediately around articles for Nobel prize-winning

discoveries. These results do not imply causality in either direction yet suggest that the

network structure may reflects the real-world influence of concepts on the existing body of

knowledge.

Figure 5.4: Concept networks undergo a signature pattern in structural stability.
A Illustration of the response of a network to an impulse applied to a node. B Nodes that
more frequently participate in the birth or death of persistent cavities have higher impulse
response, which is a dynamical-systems measure of a node’s influence on a network (birth:
r = 0.36, p = 0; death: r = 0.38, p = 0). C-D Nobel prizes are more frequently awarded
for nodes that participate in the birth (panel C) and death (panel D) of persistent cavities
(birth: KS = 0.15, p = 4.2× 10−6; death: KS = 0.17, p = 1.2× 10−7). Subpanels show the
difference in cumulative frequencies (∆cf).

In summary, our findings reveal that human knowledge, in the case of articles in Wikipedia,

grows by filling gaps in knowledge, perhaps driven by the collective curiosity of individual

scientists (Merton, 1974; Golman et al., 2018), through inward and outward exploration and

gradual modifications to network structure. Moreover, knowledge discovered while creating

and filling knowledge gaps is likely to be more influential and more frequently awarded in

the scientific community.
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5.5. Model Assessment

5.5.1. Feyerabend

While Feyerabend’s theory arrived latest in chronological time (1975 vs. Kuhn’s in 1962

and Lakatos’s in 1970), we tested his hypothesis first because his ideas about the growth

of scientific knowledge are the most different from the rest. Feyerabend posits that there is

no single set of scientific methodologies employed in practice by all scientists (Feyerabend,

2010). Note that this claim stands in stark contrast to the Popperian and Kuhnian posi-

tions that science does have a characteristic pattern of discovery. Feyerabend was accepting

of—and even promoted—a competition of theories and was careful to not demarcate science

and its practice from other human endeavors, including storytelling and myth. These com-

mitments served to counter the effects of a history of power structures and the influence of

Western philosophy upon—and in justification of—science. To model Feyerabend’s theory,

we use an edge-rewiring process that produces a random network topology (Maslov et al.,

2002). It is critical to note here that we are not modeling the scientific process as a process

of random rewiring; instead, we are modeling the network structure resulting from science

without a characteristic pattern of discovery (Feyerabend’s thesis) as the culmination of a

random rewiring of connections. In comparing edge-rewired networks to their real counter-

parts, we observed that real networks often display significantly non-random clustering on

two topological scales: at the nodal scale, clustering manifests in a high clustering coeffi-

cient, whereas at the mesoscale, clustering manifests in the existence of modules and cores

(Borgatti et al., 2000; Clauset, Newman, et al., 2004; Fagiolo, 2007). Thus, a network for-

mulation of knowledge suggests that the processes underlying network growth constrain the

network topology, in opposition to Feyerabend’s theory.

Further, for Feyerabend, new significant discoveries in science come as a result of reframing

or seeing nearly all things completely anew, rather than filling otherwise well-recognized

gaps in knowledge. In contrast, in our study we have shown that novel discoveries are
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the result of new cavities being formed or filled in the network and that these cavities

are of higher-dimension, shorter period, and decreased frequency in real networks than in

random or genetic networks. Hence, our results do not support the Feyerabend position

of incommensurability and of novelty in knowledge being about a complete reconfiguration

of the concept network. These observed distinctions between the data and Feyerabend’s

predictions motivate the examination of other philosophical positions.

5.5.2. Lakatos

Lakatos hypothesized that science progresses as a research programme, which has a common

“hard core” of postulates with an auxiliary belt of hypotheses that builds upon the core

(Lakatos, 1968; Lakatos, 1978). He was interested in constructing a methodology of science

(less so, an epistemology of science) that focuses less on demarcation (what counts as science

or not) than on scientific practice. Within Lakatos’s research programme, the “hard core” is

a set of theories, practices, and commitments that most scientists would not want to give up

in their research. Auxiliary hypotheses link the “hard core” to experiments and observations.

Lakatos held that, in practice, science often chooses to modify auxiliary theories rather than

give up on any of the “hard core” set of commitments, theories, and practices.

In this study, we operationalized Lakatos’s hypothesis as growth within the core-periphery

structure of a concept network (Borgatti et al., 2000). From the perspective of network

topology, nodes in the “core” are densely connected to each other and form the topological

center of the network; in contrast, nodes in the “periphery” tend to connect to the core

but not to other peripheral nodes. In general, peripheral nodes have fewer connections

than core nodes. The core-periphery structure of a network has important implications for

the modification of scientific theories. For example, it is more difficult to modify nodes

in the core than those in the periphery because core nodes are densely connected to one

another. Similarly, it is easier to modify nodes in the periphery than those in the core

because periphery nodes are only loosely connected to the network. The core-periphery
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structure hence reflects Lakatos’s research programme with respect to both topology and

scientific modification. In our study, we observed that concept networks do indeed display

a core-periphery structure; however, we also observed that concept networks grow both

“outward”, with core nodes preceding neighboring peripheral nodes, and “inward”, with core

nodes preceded by neighboring peripheral nodes. This result supports an interesting aspect

of Lakatos’s theory of science: it is seen as a layered core with an outer layer that is often

updated by new discoveries that are influenced, in turn, by discoveries that occur in the

periphery.

5.5.3. Kuhn

Kuhn’s ideas of scientific progress posit that there are two periods of science (Kuhn and

Hacking, 2012). One period is called normal science in which scientists “solve puzzles”

within the current view of the body of knowledge, which he called a paradigm. The other

period is a paradigm shift in which the current paradigm is overturned by another. In our

study, we first operationalized “puzzle-solving” normal science as filling knowledge gaps, and

we formulated a conceptual gap as a topological cavity. Using persistent homology from the

subfield of algebraic topology in mathematics, we identified cavities within a concept network

and the times when cavities are created and destroyed throughout history (Zomorodian et al.,

2005). We observed that cavities in real networks are filled more quickly than in edge-rewired

networks or in genetic null models of knowledge growth. Moreover, real concept networks

reflecting contemporary scientific knowledge have fewer unfilled cavities and more cavities

with higher dimensions than edge-rewired or genetic null model networks. These results

suggest that scientists create and fill knowledge gaps in the course of scientific progress.

To complement our casting of normal science as creating and filling cavities, we opera-

tionalized paradigms in terms of a concept network’s modular structure. Our choice was

motivated by an appreciation of the following fact: the view that scientists hold about a

body of knowledge can depend upon how a subject is organized into parts or modules. Con-
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sider two examples. First, if a certain concept that originally exists in the fringe of a large

module can engender enough discoveries, then the concept may start a new field of study

and, at the same time, cause nodes to change their membership from the existing module

to a new module. Second, when an incommensurable paradigm shift occurs, one might ex-

pect that knowledge is reorganized into new, unrecognizable modules. In operationalizing

paradigms in terms of a concept network’s modular structure, we appreciate that paradigm

shifts would manifest as shifts in modular structure. To detect such shifts, we formulated the

growing concept network as a multilayer network wherein each layer contains the concept

network as it existed in a given year. When we detected module membership across time

(Mucha et al., 2010) and identified regimes of high or low change in module membership

(Killick, Fearnhead, et al., 2012), we observed that concept networks displayed a signature

pattern: a short period of little to no change, then a long period of small but constant

change, then a short burst of many changes, and finally, a long period of little to no change.

Importantly, these dynamics do not result in completely new modules—as one might expect

with the “incommensurability” of paradigm shifts—but rather represent gradual changes to

the existing modular structure.

Interestingly, the process of cavity filling in real networks reveals the importance of curiosity

as a catalyst for scientific progress. Kuhn recognized quite early that “normal science” would

push scientists (and knowledge formation) into a constrained and conservative path—one

that does not encourage true creativity and innovation (Kuhn, 2000). For Kuhn, the innova-

tion occurred either when iconoclastic individuals were lucky enough to uncover something

novel, or when the accumulated failures of a scientific research programme made the search

for more creative solutions necessary and better rewarded. In our study, we provide no anal-

ysis of individuals, scientific commitments, or practices. Yet, our results on cavity filling

and its propensity for being rewarded in the scientific community suggest not two disparate

periods of constrained normal science and innovative paradigm shifts but rather a single

process in which scientists are continually and collectively driven, perhaps by curiosity, to

uncover novel information that “connects the dots” among existing pieces of knowledge.
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5.6. Discussion

The question of precisely how individuals and groups “do science” has troubled scholars

for millennia. In the past century, philosophers of science have proposed several distinct

and well-defined processes whereby scientific knowledge might grow. Prominent theories

include those by Kuhn, Lakatos, and Feyerabend, which posit different patterns of growth

that are supported by historical evidence. However, progress in devising rigorous empirical

assessments of these theories has been hampered by difficulties in gathering large amounts

of historical data and in operationalizing the theories in a falsifiable way. In this study, we

formulated the body of knowledge as a concept network (Hesse, 1974) and operationalized

philosophical theories in terms of the network’s growing structure. We demonstrated that,

in the case of Wikipedia, concept networks are non-randomly organized, being characterized

by high modularity and notable clustering. The networks do not grow strictly outward,

as one might have naively expected. Rather, they expand both outward and inward. The

inward expansion manifests as a filling of network cavities, which produces concepts that are

topologically influential and more often awarded Nobel prizes. Across almost all subjects

or fields, the modular structure of concept networks morphs along a signature trajectory

of stability and instability consistent with Kuhn’s notion of a paradigm shift. Broadly, our

mathematical formulations of historical data pave the way to describe, understand, and even

potentially guide scientific progress for individuals and funding agencies (Fortunato et al.,

2018). Furthermore, our findings provide a data-driven approach to identifying novel con-

tributions, especially those by underrepresented groups whose works are typically devalued

yet are vital for vibrant scientific innovation (Reardon, 2013; Hofstra et al., 2020).

In the remainder of this section, we briefly discuss our models of Kuhn’s, Lakatos’s, and

Feyerabend’s theories using a complex systems approach, and we expand upon the insights

revealed by our findings.
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5.6.1. Feyerabend

While Feyerabend’s theory arrived latest in chronological time (1975 vs. Kuhn’s in 1962

and Lakatos’s in 1970), we tested his hypothesis first because his ideas about the growth

of scientific knowledge are the most different from the rest. Feyerabend posits that there is

no single set of scientific methodologies employed in practice by all scientists(Feyerabend,

2010). Note that this claim stands in stark contrast to the Popperian and Kuhnian posi-

tions that science does have a characteristic pattern of discovery. Feyerabend was accepting

of—and even promoted—a competition of theories and was careful to not demarcate science

and its practice from other human endeavors, including storytelling and myth. These com-

mitments served to counter the effects of a history of power structures and the influence of

Western philosophy upon—and in justification of—science. To model Feyerabend’s theory,

we use an edge-rewiring process that produces a random network topology (Maslov et al.,

2002). It is critical to note here that we are not modeling the scientific process as a process

of random rewiring; instead, we are modeling the network structure resulting from science

without a characteristic pattern of discovery (Feyerabend’s thesis) as the culmination of a

random rewiring of connections. In comparing edge-rewired networks to their real counter-

parts, we observed that real networks often display significantly non-random clustering on

two topological scales: at the nodal scale, clustering manifests in a high clustering coeffi-

cient, whereas at the mesoscale, clustering manifests in the existence of modules and cores

(Borgatti et al., 2000; Clauset, Newman, et al., 2004; Fagiolo, 2007). Thus, a network for-

mulation of knowledge suggests that the processes underlying network growth constrain the

network topology, in opposition to Feyerabend’s theory.

Further, for Feyerabend new significant discoveries in science come as a result of reframing

or seeing nearly all things completely anew, rather than filling otherwise well-recognized

gaps in knowledge. In contrast, in our study we have shown that novel discoveries are

the result of new cavities being formed or filled in the network and that these cavities

are of higher-dimension, shorter period, and decreased frequency in real networks than in
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random or genetic networks. Hence, our results do not support the Feyerabend position

of incommensurability and of novelty in knowledge being about a complete reconfiguration

of the concept network. These observed distinctions between the data and Feyerabend’s

predictions motivate the examination of other philosophical positions.

5.6.2. Lakatos

Lakatos hypothesized that science progresses as a research programme, which has a common

“hard core” of postulates with an auxiliary belt of hypotheses that builds upon the core

(Lakatos, 1968; Lakatos, 1978). He was interested in constructing a methodology of science

(less so, an epistemology of science) that focuses less on demarcation (what counts as science

or not) than on scientific practice. Within Lakatos’s research programme, the “hard core” is

a set of theories, practices, and commitments that most scientists would not want to give up

in their research. Auxiliary hypotheses link the “hard core” to experiments and observations.

Lakatos held that, in practice, science often chooses to modify auxiliary theories rather than

give up on any of the “hard core” set of commitments, theories, and practices.

In this study, we operationalized Lakatos’s hypothesis as growth within the core-periphery

structure of a concept network (Borgatti et al., 2000). From the perspective of network

topology, nodes in the “core” are densely connected to each other and form the topological

center of the network; in contrast, nodes in the “periphery” tend to connect to the core

but not to other peripheral nodes. In general, peripheral nodes have fewer connections

than core nodes. The core-periphery structure of a network has important implications for

the modification of scientific theories. For example, it is more difficult to modify nodes

in the core than those in the periphery because core nodes are densely connected to one

another. Similarly, it is easier to modify nodes in the periphery than those in the core

because periphery nodes are only loosely connected to the network. The core-periphery

structure hence reflects Lakatos’s research programme with respect to both topology and

scientific modification. In our study, we observed that concept networks do indeed display
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a core-periphery structure; however, we also observed that concept networks grow both

“outward”, with core nodes preceding neighboring peripheral nodes, and “inward”, with core

nodes preceded by neighboring peripheral nodes. This result supports an interesting aspect

of Lakatos’s theory of science: it is seen as a layered core with an outer layer that is often

updated by new discoveries that are influenced, in turn, by discoveries that occur in the

periphery.

5.6.3. Kuhn

Kuhn’s ideas of scientific progress posit that there are two periods of science (Kuhn and

Hacking, 2012). One period is called normal science in which scientists “solve puzzles”

within the current view of the body of knowledge, which he called a paradigm. The other

period is a paradigm shift in which the current paradigm is overturned by another. In our

study, we first operationalized “puzzle-solving” normal science as filling knowledge gaps, and

we formulated a conceptual gap as a topological cavity. Using persistent homology from the

subfield of algebraic topology in mathematics, we identified cavities within a concept network

and the times when cavities are created and destroyed throughout history (Zomorodian et al.,

2005). We observed that cavities in real networks are filled more quickly than in edge-rewired

networks or in genetic null models of knowledge growth. Moreover, real concept networks

reflecting contemporary scientific knowledge have fewer unfilled cavities and more cavities

with higher dimensions than edge-rewired or genetic null model networks. These results

suggest that scientists create and fill knowledge gaps in the course of scientific progress.

To complement our casting of normal science as creating and filling cavities, we opera-

tionalized paradigms in terms of a concept network’s modular structure. Our choice was

motivated by an appreciation of the following fact: the view that scientists hold about a

body of knowledge can depend upon how a subject is organized into parts or modules. Con-

sider two examples. First, if a certain concept that originally exists in the fringe of a large

module can engender enough discoveries, then the concept may start a new field of study
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and, at the same time, cause nodes to change their membership from the existing module

to a new module. Second, when an incommensurable paradigm shift occurs, one might ex-

pect that knowledge is reorganized into new, unrecognizable modules. In operationalizing

paradigms in terms of a concept network’s modular structure, we appreciate that paradigm

shifts would manifest as shifts in modular structure. To detect such shifts, we formulated the

growing concept network as a multilayer network wherein each layer contains the concept

network as it existed in a given year. When we detected module membership across time

(Mucha et al., 2010) and identified regimes of high or low change in module membership

(Killick and Eckley, 2014), we observed that concept networks displayed a signature pattern:

a short period of little to no change, then a long period of small but constant change, then

a short burst of many changes, and finally, a long period of little to no change. Importantly,

these dynamics do not result in completely new modules—as one might expect with the “in-

commensurability” of paradigm shifts—but rather represent gradual changes to the existing

modular structure.

Interestingly, the process of cavity filling in real networks reveals the importance of curiosity

as a catalyst for scientific progress. Kuhn recognized quite early that “normal science” would

push scientists (and knowledge formation) into a constrained and conservative path—one

that does not encourage true creativity and innovation (Kuhn, 2000). For Kuhn, the innova-

tion occurred either when iconoclastic individuals were lucky enough to uncover something

novel, or when the accumulated failures of a scientific research programme made the search

for more creative solutions necessary and better rewarded. In our study, we provide no anal-

ysis of individuals, scientific commitments, or practices. Yet, our results on cavity filling

and its propensity for being rewarded in the scientific community suggest not two disparate

periods of constrained normal science and innovative paradigm shifts but rather a single

process in which scientists are continually and collectively driven, perhaps by curiosity, to

uncover novel information that “connects the dots” among existing pieces of knowledge.
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5.6.4. Network science

Our effort to quantitatively evaluate philosophical theories of science was made possible by

formalizing large-scale data into well-defined expressions. In our formalization, we primarily

employed network science and algebraic topology. Using the former, we extracted graphs

from a large database of text in Wikipedia pages, and using the latter, we extracted sim-

plicial complexes from the same. Network representations are intuitive models for concepts

and conceptual relations. Such representations have previously proven useful in the study of

concept networks from Wikipedia, and in the characterization of their topology using mea-

sures of centrality, shortest paths, and clustering (Bellomi et al., 2005; Matas et al., 2017;

Lydon-Staley et al., 2021). Further, network representations can reveal patterns in data that

are not quantifiable by observing each individual pairwise interaction—in this case, individ-

ual pages or hyperlinks—but that are only quantifiable by considering the entire network

or subsection of a network. By complementing network science with algebraic topology, one

can study higher order structures in concept networks, and thereby quantify the birth and

death of topological cavities. This approach has previously proven useful in, for example,

understanding the exposition of concepts in college textbooks (Christianson et al., 2020)

and the growth of knowledge gaps in the semantic networks of toddlers (Sizemore et al.,

2018)). By modeling concept networks as units and pairwise or even higher-order relation-

ships among units, one can operationalize hypotheses about the structure of knowledge and

its change over time.

Methodological assumptions and limitations. In operationalizing the complex social process

of knowledge discovery, we made a several assumptions. Each was chosen to better enable us

to form empirically testable hypotheses. These methodological assumptions and limitations

are explained more extensively in Section 5.8 and are summarized here. First, to model

knowledge discovery, we assume that the growing Wikipedia networks model how minds

have collectively built networks of knowledge. Our study thus is not one of realism but

one of the practice of science and scientific discovery (Hesse, 1980). Correspondingly, we
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assume that collective minds, as represented by a Wikipedia network, have been shaped by

evolutionary forces to reflect the real as closely as possible.

Furthermore, we acknowledge the limitations and assumptions of modeling scientific discov-

ery as growing concept networks. First, the process of scientific discovery involves a network

of commitments and social practices in addition to the concepts themselves (Longino, 2002).

Thus, the findings presented here would best be considered complementary to qualitative

studies of theory and process. Our approach is useful because it allows us to operationalize

and quantitatively test certain dynamics in the structure of concept networks on a large

scale. Second, while the network structure is different from the process used to obtain that

structure, we aim to infer and constrain the possible processes that produced the concept

network that we see today in the structure of Wikipedia. Indeed, concepts can evolve over

time in their name or contents or can even be disconnected from the scientific canon (Shwed

et al., 2010; Foster et al., 2015).

We note the limitations in our use of Nobel prizes as a measure of impact. As a highly

subjective and often biased measure of impact (Lunnemann et al., 2019), we wish to test in

future studies the robustness of our results not only in other datasets for Nobel prizes (Li

et al., 2019) but also in other prizes (Jin et al., 2021). Moreover, while the goal of prizes

is often to award for impact among other things, the effects of Nobel prizes on scientific

practice is complex. Nobel prizes do not affect the citation impact of a Nobel laureate

(Farys et al., 2017), but they do produce more papers and entrants in the topic associated

with the scientific prize (Jin et al., 2021). Thus, scientific awards influence and are influenced

by the body of scientific knowledge.

Finally, we acknowledge limitations in the way we represent Wikipedia pages as a concept

network. First, without proper context, the title of a Wikipedia article can be ambiguous,

and it may be difficult to infer the concept to which it best relates. This limitation is

mitigated by the hyperlinks that connect a Wikipedia page to other pages; yet, even here

it is important to acknowledge that the existence of a hyperlink involves some aspect of

162



chance. Second, Wikipedia pages only reflect the current understanding of a concept and its

relation to other concepts. Third, Wikipedia itself may be laden with the predispositions of

the editors of Wikipedia regarding their philosophies of science. Moreover, their editing of

Wikipedia may be affected by their political biases (Harvard Business School et al., 2018) or

their styles of information seeking, which may influence which articles they choose to read

and later edit (Lydon-Staley et al., 2021). Fourth, Wikipedia articles may actually affect

scientific practice itself, an observation that highlights the impact of secondary source infor-

mation, especially a widely available source like Wikipedia, on primary research (Thompson

et al., 2017). Thus, understanding patterns of growth on Wikipedia as they relate to primary

sources seems ever more important.In the process of scientific development over the course

of history, concepts themselves may change. In summary, we applied the network methods

presented here to Wikipedia as an initial and interesting test case, but we look forward to

future efforts applying such methods to other datasets, primary or otherwise.

5.6.5. Future Directions

In summary, we operationalize and test the theories of prominent philosophers of science

using concept networks of Wikipedia articles. We significantly extend the state of the field

by building upon previous studies that have examined the topology of Wikipedia (Bellomi

et al., 2005; Matas et al., 2017; Yamada et al., 2020) and network principles in scientific

practices (Sinatra et al., 2016; Clauset, Larremore, et al., 2017; Fortunato et al., 2018;

Fontana et al., 2020). Moreover, we depart from prior work by using algebraic topology

to test hypotheses regarding the sociology, history, and philosophy of science in a large-

scale, empirical study. These methods can readily be applied to related questions about

the structure and dynamics of concept networks. For example, differences in language or

culture may influence the structure of concepts as encoded in Wikipedia pages. Other

investigators may use network structure and document embedding to form more accurate

and nuanced models of scientific discovery that explain the qualitative observations and

interpretations of philosophers of science. Further, the methods demonstrated here may
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reveal insights into observed gender disparities in the processes of knowledge generation and

scientific engagement (Ford et al., 2017). Our development of data-driven approaches hence

lays the groundwork for others to further describe and understand the process of scientific

discovery and its relation to diversity, equity, and inclusion.

5.7. Methods

Building growing concept networks from Wikipedia Software package for representing net-

works. We used the Python software package networkx (version 2.5) for most of our network

representation and analysis. We used the Python package igraph (version 0.8.2) for repre-

senting networks for temporal module detection (see the later Section 5.7.9).

5.7.1. Selecting articles for a subject

To build a concept network for a subject, we must first select Wikipedia articles that be-

long in a subject. Doing so in a principled manner can be difficult because there are no

inherent delineations between articles of different subjects. Fortunately, Wikipedia provides

indices of subjects, which list articles of a particular subject (https://en.wikipedia.org/wiki/

Wikipedia:Contents/Indices). We chose to explore subjects in the areas of Mathematics and

Logic, Natural and Physical Sciences, and Subdisciplines of Philosophy. For each subject,

we built a network where nodes represented articles that are listed on the subject’s index,

and where edges represented the articles’ hyperlinked connections.

5.7.2. Connecting articles (network nodes) via hyperlinks

After gathering a list of articles to include in a subject-specific network, we first create a

node for each article. Then to connect the nodes, we select hyperlinks that are in the lead

section of an article (which we will call article A for illustration; https://en.wikipedia.org/

wiki/Wikipedia:Manual_of_Style/Lead_section). We take the hyperlinks from the lead

section (i.e., the introduction) to (i) capture a concise overview of the concept, (ii) maintain
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a normal distribution of the number of hyperlinks, (iii) reduce edge density, and (iv) avoid

spurious hyperlinks to tangentially related pages. If the hyperlinks point to other articles in

the subject, we then create a directed edge from those other articles to article A. We chose

to direct edges from the hyperlinked article to the hyperlinking article because the hyper-

linked article is used to explain the hyperlinking article and thus influences the information

presented in the hyperlinking article. “Redirect” pages are redirected to the final redirected

page, and internal links (links between Wikipedia pages) do not have disambiguation. Af-

ter constructing the networks, we characterized their topological structure using network

measures; in Table 5.1 and Table 5.2 we summarize the network measures that we used.

5.7.3. Weighting network edges

We determine the weight of each edge between two articles by calculating the cosine simi-

larity between the vector of term frequency-inverse document frequencies (tf-idf ) for words

in one article and the tf-idf vector for words in the other article (Salton et al., 1975). We

compute tf-idf by multiplying a local component (term frequency) with a global component

(inverse document frequency). The measure is defined as follows:

tfidfi,j = frequencyi,j × log2
D

document_frequencyi
,

where for term i in document j, frequencyi,j is the number of times that term i occurs

in document j, D is the number of documents, and document_frequencyi is the number

of documents that contain term i. The tf-idf is a product of a token’s frequency and the

token’s inverse document frequency. Thus, common tokens appearing very frequently in

the corpus will be down-weighted whereas rare terms will be up-weighted. To account for

differences in document length, we applied a common normalization such that the Euclidean

norm of the tf-idf vector for a document became 1. After calculating the normalized tf-idf

for each token, we quantified the similarity between pairs of nodes by computing the cosine
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similarity between pairs of vectors. Thus, reciprocal links have the same weights. The cosine

similarity results in a quantification of node similarity ranging from 0 to 1; higher values

indicate greater similarity of the text between two Wikipedia pages. We use all articles in

Wikipedia as the corpus for the calculation. We use the Python package gensim to compute

tf-idf.

5.7.4. Denoting the birth year of a node

We parse the years from the lead section and from a history section if the article has one.

We denote the earliest year as the year when the node was “born” or conceived. There exist

articles that do not have years listed in either the lead or the history section. To assign

years to these articles, we first select all nodes without years whose parents (i.e., nodes with

edges that link to a node) have years. For each such node, we denote its year as the year

after the latest year of its parents. Then, we do the same for the remaining nodes without

years. If a node still does not have a year, then we denote its year as 2020. The year of each

edge is the latest year of either of its nodes. In a sensitivity analysis, we confirmed that

our results were robust to small variations in the chosen year, suggesting that our findings

were not unduly dependent on the specific algorithmic approach we employed (Figure 5.13).

In a further validation analysis, we manually inspected the identified years. Specifically, we

randomly sampled the passages containing the date from 40 pages in the following topics:

biochemistry, cognitive science, evolutionary biology, genetics, molecular biology, energy,

optics, philosophy of language, philosophy of law, philosophy of science, linguistics, software

engineering.

5.7.5. Parsing years

To better understand how we extracted the birth year of a node, here we provide additional

detail about our algorithmic approach. Specifically, to parse the years from the text, we

use regex to identify numbers that are preceded by months (e.g., “January”), prepositions of

time (e.g., “around”), conjugations (i.e., “and”), articles (i.e., “the”), and other time-related

166



words (i.e., “early”, “mid”, “late”) and followed by the words BC, BCE, or MYA. We also

parse centuries (e.g., “19th Century”) and convert them into years (e.g., 1800). We apply a

negative sign to all years or centuries followed by BC or BCE for convenience in analysis,

such that 1600 BC would become -1600. For Python implementation, see the function

filter_years(text) in module/wiki.py in the code repository.

5.7.6. Null networks

To model Feyerabend’s hypothesis of anarchical scientific progress, we used an edge-rewiring

process to construct null networks that could then be compared to real networks. Note first

that we refer to the two nodes that an edge connects as the origin node and the target

node. The rewiring process proceeds by first taking each edge and randomly selecting a new

target node exactly once. The process is similar to that developed by Maslov and Sneppen

(Maslov et al., 2002), but differs in that it does not swap the targets between pairs of nodes.

In the context of Wikipedia articles, since we create an edge from a hyperlinked article to

a hyperlinking article, we are maintaining the connection of an edge from the hyperlinked

article but changing the connection of the edge to the hyperlinking article. Thus, we maintain

degree distributions (Figure 5.9) while removing other features of the network topology.

5.7.7. Network methods

The network measures we used are summarized in Table S1. To calculate clustering coeffi-

cients, we convert a network into a weighted, undirected network and compute the clustering

coefficients of each node in the network with the Python library network (Fagiolo, 2007).

To calculate modularity, we also convert a network into a weighted, undirected network and

maximize the following modularity quality index,

Q =
1

2m

∑
ij

[Aij −
kikj
2m

]δ(gi, gj),
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where m is the number of edges in a network, A is the adjacency matrix of the network,

i and j are nodes, gi is the index of the community (or module) to which node i belongs,

and δ(gi, gj) is 1 if gi and gj are equal and 0 otherwise. We computed modularity using a

greedy algorithm implemented by the Python library networkx (Clauset, Newman, et al.,

2004). Finally, to calculate coreness, we convert a network into an unweighted, undirected

network and use the brain connectivity toolbox (Rubinov and Sporns, 2010) to determine

whether each node is a core or a periphery node, and to calculate the core-ness statistic of

the network, which is given by

QC =
1

vC

∑
i,j∈CC

(wij − γCw̄)−
∑
i,j∈Cp

(wij − γCw̄)

where Cc is the set of all nodes in the core, Cp is the set of all nodes in the periphery, wij is

the weight between nodes i and j, w̄ the average edge weight, γC is a parameter that adjusts

the size of the core, and vC is a normalization constant (Rubinov, Ypma, et al., 2015). To

compute the coreness of a thresholded network, we removed all edges with weights below

the mean weight for a particular network and compute the coreness (Fig. S11).

5.7.8. Persistent homology

In our study, we hypothesized that processes of scientific discovery create and fill gaps in

concept networks. A tool from applied algebraic topology, called persistent homology, pro-

vides a well-defined formulation of such gaps as persistent topological cavities that evolve as

a network grows (Hatcher, 2002). To calculate persistent homology for a growing network,

we first create a correspondence between k-cliques, which are all-to-all connected subnet-

works of k nodes, and (k− 1)-simplices. Simplices of increasing dimension can be described

as follows: a node is a 0-dimensional simplex, an edge is a 1-dimensional simplex, a 3-clique

is a 2-dimensional simplex, and so on for higher dimensions. Using the Python package

dionysus2, we add each clique as a simplex into a filtration at the latest year in the clique.
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A filtration is formally a nested sequence of subspaces and can be thought of as a growing

sequence of simplices. We may add more than one simplex to the filtration at each year,

resulting in cavities with a lifetime of zero, which we remove for downstream analyses. In

network terms, we are adding both nodes and edges across the filtration such that there

may not necessarily be any disconnected components in a growing network. Finally, we use

the package dionysus2 to compute a reduced matrix which defines the indices of the start

and end of cavities.

5.7.9. Temporally varying modularity

To detect modules across time, we first built a multilayer network from our growing networks.

In the multilayer network, each layer is the network reflecting concepts discovered up to that

year. Each node in a layer (e.g., at time t) is connected to the equivalent node in the next

layer (e.g., at time t+ 1) with weight 0.01. We empirically chose a low weight for the inter-

layer links to ensure that we could effectively detect changes in modularity when nodes are

only being added and not removed. We then used the Python implementation of Mucha et al.

(2010) in the software package leidenalg (version 0.8.1) to compute the modules to which

each node belongs. We set the parameter partition_type to ModularityVertexPartition to

partition the network based on the optimization of a multilayer modularity quality function,

with the interslice_weight set to 0.01, and the n_iterations set to -1; the latter choice

directs the algorithm to run iterations until there is no improvement in the modularity

quality index being optimized. The structural stability signature (Figure 5.3C) is robust to

reasonable variations in the choice of the interslice_weight (i.e., keeping the weight on

the order of 10−2 or less) (Figure 5.10). Within this range of interslice_weight values, we

find that only the magnitude—not the shape—of the signature changes.

In performing this analysis, we observed that the module membership of nodes changed at

different rates across time, with almost no changes in module membership in the second

half of the period evaluated. Hence, we hypothesized that there may be epochs of module
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stability, with greater stability observed later in history. To identify such epochs, we first

computed the number of changes in module membership across time as any time when the

module membership is different than in the previous time point. Then, we summed the

number of changes for each time point to obtain a single variable across time. Next, we used

the R implementation of binary segmentation in the software package changepoint (Killick

and Eckley, 2014). We used the function cpt.meanvar to detect changes in both mean and

variance of the signal, which is the number of changes in module membership over time.

We set the parameter method to “BinSeg” for binary segmentation, Q to 3 for the maximum

number of changepoints, and test.stat to “Poisson” for a Poisson distribution. We chose

these settings because the PELT segmentation algorithm, which selects the optimal number

of changepoints Q, selected a Q of 3 for 14 out of 28 networks, with a median and a mode

of 3 (Figure 5.11). Binary segmentation, on the other hand, allows the user to select a

value for Q. So, we used binary segmentation with a Q of 3 for consistency across subjects.

Additionally, we used a Poisson distribution because each change in module membership

occurs independent of whether a node changes module membership in the previous time

step. All other parameters were set to the default values. The algorithm then produces

three indices, one for each changepoint, giving us four epochs (Figure 5.3B-C).

5.7.10. Impulse response

To quantify the impact of an article-node on the subject network, we use the impulse response

measure from linear systems theory (Kailath, 1980). Here, the network is represented as an

adjacency matrix A such that an item aij in the matrix, with row i and column j, is the

weight of the edge from the jth node to the ith node. Then, the impulse response of node i

at time m is given by the ith diagonal element of the controllability Gramian,

WC =

K∑
m=0

AmnormBB
T (ATnorm)m,
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where Anorm is normalized by dividing by one plus the dominant eigenvalue of A, and where

B is a vector of ones (Kailath, 1980). Mathematically, this value quantifies the linearized

response of the network to the activity of a node i. The activity of the node and the

subsequent network response can be interpreted in the context of Wikipedia networks as a

conceptual influence of node i on the rest of the network.

To quantify the influence of a node on all topics using the impulse response function, we

built a large network that consisted of all nodes in all subjects under study. In addition,

we took the impulse response to a time horizon m of 5 to capture up to five steps in the

propagation of the impulse through the network. Because the dimensionality of the network

is on the order of 105, it is also computationally prohibitive to compute Am with larger

values of m. Shorter time horizons also capture the relationship between impulse response

and participation in the birth and death of cavities (Figure 5.12).

5.7.11. Nobel prizes

We used Nobel prizes in Physics, Chemistry, and Physiology or Medicine as an external mea-

sure of influence. To identify which nodes in the concept networks received Nobel prizes,

we parsed the Wikipedia articles “List of Nobel laureates in Physics”, “List of Nobel laure-

ates in Chemistry”, and “List of Nobel laureates in Physiology or Medicine”. In the section

“Laureates” for each article, there is a table of Nobel laureates that includes a rationale

column, which describes the work of a laureate that motivated the Nobel prize with hyper-

links to articles that describe the laureate’s discoveries. For example, for the scientist Maria

Skłodowska-Curie, the rationale column states, “for their joint researches on the radiation

phenomena discovered by Professor Henri Becquerel” with a hyperlink to the article “Radia-

tion”. By obtaining all hyperlinks to articles in the rationale columns, we identified nodes in

the concept networks that were Nobel prize-winning nodes. All other nodes were identified

as non-Nobel prize-winning.
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5.7.12. Data and code availability

All code is available on https://github.com/harangju/wikinet. All data used in the study

are publicly available on https://dumps.wikimedia.org/enwiki.
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Supplementary Information

5.8. Supplementary Discussion

5.8.1. Assumptions and limitations of network models of scientific knowledge

Our primary tool for testing philosophical theories of scientific progress is the formalization

of a body of knowledge into a network of concepts and their connections. This formalization

allows the quantification of the structure of knowledge at different times in history and hence

a data-intensive, statistical interpretation of philosophical theories (Leonelli, 2016). Here,

we discuss the assumptions and limitations of network models of scientific knowledge.

5.8.2. Models of minds and of reality

In this study, we assume that the growing Wikipedia networks model how minds have collec-

tively built networks of knowledge over the course of history and codified that knowledge in

hyperlinked wikis. After Pierre Duhem’s criticisms of a simple Newtonian inductive method

(i.e., the notion that science proceeds by generalizing from observations to theories) (Duhem

et al., 1996) and Karl Popper’s “Critical Rationalism” and his method of “Falsification” to

demarcate science from other forms of knowledge (Popper, 1968), most philosophers of sci-

ence in the second half of the 20th century turned to descriptions of how Science (sometimes

science without a capital “s” in Feyerabend’s case) works not only in theory but in practice.

This turn sometimes included discovery and commitments to realism—the notion that there

is a real world out there that science uncovers—but not always (Hesse, 1980). In various

works, but in particular those of Kuhn and Lakatos, attention turned away from questions

of realism and more towards the practice of science and of scientific discovery. Hence, the

growth of knowledge is cast in this light and in the terminology of theoretical propositions,

theoretical commitments, “hard core” theses, “auxiliary” hypotheses and experimental obser-

vations to describe changes in the practice of scientific research over historical time. Thus,

reality sets the boundaries of what humans and their models can discover, but the two
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spaces are not coterminous. Correspondingly, one can make the further assumption that

the mind, or collective minds as represented by a Wikipedia network, has been shaped by

evolutionary forces to reflect the real as closely as possible and lands upon one of several

possible solutions in the space of the real.

5.8.3. Concepts versus commitments and practices

A network of Wikipedia entries is different than a network of commitments, both theoretical

and empirical, or of practices, which is often described by philosophers of science. Indeed,

social and cultural values play an important role in the structuring of knowledge (Longino,

2002). Thus, we acknowledge that we formalize a body of knowledge only as its concepts

and the interconnected relationships between the concepts without an account of theory,

process, and observation. As such, the findings presented here would ideally be considered

alongside qualitative studies of theory, process, and observation for a fuller picture of the

structure of scientific knowledge. While Wikipedia networks themselves do not capture the

discussions and theoretical commitments that are integral to scientific discovery, we add

time as an additional dimension to our network analysis of concepts. Once we add time to

networks, we can see changes in the structure of scientific knowledge over time, from which

we may be able to quantitatively describe processes of scientific discovery.

5.8.4. Concepts as nodes

In a concept network, each node represents a concept and is named after the title of a

Wikipedia article. While Wikipedia articles in the hard sciences are relatively accurate

(Giles, 2005), we acknowledge some limitations of representing concepts as the titles of

Wikipedia articles. First, without the proper context, the title of a Wikipedia article by

itself can be ambiguous with respect to the concept to which it refers. Second, not ev-

ery Wikipedia article is a scientific concept; a Wikipedia article can be about other topics,

such as scientists or scientific books. Both of these limitations in the representation of

concepts, however, are mitigated by our network formulation. By linking nodes according
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to their inter-dependence (see next paragraph), we provide a context for a concept-node

with its neighboring concept-nodes. For example, the Wikipedia article on “On the Origin

of Species” contains hyperlinks to “evolutionary biology”, “biodiversity”, “common descent”,

“tree of life”, and “transmutation of species”, which help disambiguate and further define con-

cepts in networks. Moreover, corpus-based semantic analysis can provide description and

even explanation of semantics based on context (Berez et al., 2008). Lastly, while concepts

themselves may change over the course of history, we use Wikipedia articles archived at a

single time in their history, which runs this risk of obscuring how concepts slowly evolve

to form new concepts (Figure 5.7B). As the work of conceptual history (Begriffsgeschichte)

suggests, historical semantics—understanding where terms have come from and how their

meanings have changed over time—is not only important for historical reasons, it also con-

ditions contemporary thought and practice (Lloyd, 1994; Koselleck et al., 2002). Future

study would ideally situate the concept-nodes examined here in cultural-linguistic context

over time.

5.8.5. Concept relationships as edges

We formulate the relationship between concepts as the hyperlink between two Wikipedia

articles. To illustrate the intuition for this formulation, suppose that there are two Wikipedia

articles A and B. Article A hyperlinks to article B when article A uses in its description

the word or concept that is described in article B. Thus, article B influences, or even in

some case is necessary for, the description of article A, and we add an edge from article

B to article A. Hence, a network of hyperlinked articles represents a network of influence

or dependence between concepts. We acknowledge, however, that hyperlinks involve some

aspect of chance, i.e., the willingness of an editor to write a linking content page and to

hyperlink it. To ensure that only the most relevant hyperlinks are captured in the network

models, we only use hyperlinks in the “lead” introductory section of each article.
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5.8.6. Network structure versus process

The network structure is different from the process used to obtain that structure. In this

study, we aim to infer the process that produced the concept network that we see today

in the structure of Wikipedia. In fact, one may expect multiple processes to result in the

same network structure. We therefore assume that a resultant network structure sets the

boundaries to the types of processes that have built the network.

5.9. Supplementary Methods

5.9.1. Simulations of knowledge discovery

To examine the process of scientific discovery itself, rather than just the resultant structure

of a concept network, we formulated a genetic model of knowledge discovery. A model of the

discovery process is important for testing our hypothesis that the body of knowledge grows

by creating and filling cavities. The intuition for the model is that it simulates scientists

who learn about existing concepts and who slowly mutate them to form new concepts over

the course of history. Importantly, the model has no “preference” (i.e., an objective or

fitness function) that selects for certain features of new concepts. Thus, by comparing real

networks to networks produced by the genetic model, we aim to explicitly test for whether

real networks have a “preference” to fill knowledge gaps.

In simulations of knowledge discovery, we start with a subgraph of a subject network, con-

sisting of nodes whose birth years are before 1 AD. For each subsequent year, we execute

the following series of steps until either the year 2200 or the number of nodes of the model

reaches that of the real subject-network: (i) initialize seeds for new nodes, (ii) mutate seeds,

(iii) create new nodes for seeds, and (iv) connect new nodes to the model network. We

capped the simulation at the year 2200 to halt the program in the case that the model takes

a long time to, if not never, reach the number of nodes in the real subject-network.
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5.9.2. Seed initialization

Before we begin to mutate a concept-node, we must first obtain a vector representation of a

node to mutate. Thus, for all new nodes in the model network, we initialize a “seed”, which

is a copy of the tf-idf vector of the “parent”, which is a node in the model network. As noted

in the Methods section of the main text, the tf-idf vector of a node is the term-frequency

inverse-document-frequency representation of the Wikipedia article corresponding to the

node. Hence, by initializing and mutating the “seed”, we are slightly modifying a vector

representation of a Wikipedia article with each iteration.

5.9.3. Seed mutation

With seed mutations, we model how scientist research a concept by taking a previously

known concept and slightly modifying it to, for example, test a hypothesis about the known

concept. Thus, to iteratively mutate a seed, we take three steps for each seed and for each

year of the simulation: a point mutation, an insertion, and a deletion. Each step has a

certain probability of occurrence, and we base those probabilities on the statistics that we

find in real networks: a process that we explain in detail below.

First, a point mutation swaps the value of a randomly chosen element in the seed vector with

a new value for each year with probability p. The new value is drawn from the distribution

of tf-idf values in the original subject network (Figure 5.7). We set the probability p to

approximate the change in tf-idf vectors over years in the real network. To approximate this

change in tf-idf vectors, we first compute for each edge and its two nodes (i) the absolute

difference in years, which we call the year-diff, (ii) the sum of the absolute difference

between tf-idf values, which we call the sum-abs-diff, and (iii) the average absolute difference

between 105 values randomly drawn from the original distribution of tf-idf values, which

we call avg-abs-diff. Interestingly, there is a strong and statistically significant correlation

between (i) year-diff and (ii) sum-abs-diff (Figure 5.7E). This correlation suggests that

the longer the time between the discoveries of two neighboring nodes, the more different the
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nodes are in their tf-idf representations. We thus approximate the probability of a point

mutation p as the slope of the linear regression between (i) year-diff and (ii) sum-abs-diff,

normalized by dividing by (iii) avg-abs-diff.

Second, an insertion randomly selects a zero element in the tf-idf vector and inserts a new

value for each year with probability i. The new value is drawn from the distribution of

tf-idf values in the real network. An insertion is thus equivalent to adding a word into an

article. We set the probability i to approximate the change in words in an article over time.

To calculate this probability, we first compute for each edge and its two nodes, (iv) the

Manhattan distance between the two tf-idf vectors, which we call man-dist and which is

intuitively the number of different words used between the two articles. Interestingly, there

is a strong and statistically significant correlation between (i) year-diff and (iv) man-dist

(Figure 5.7F). This correlation suggests that the longer the time between the discoveries of

two neighboring nodes, the more different words are used in the two articles of each node.

This relationship reflects the correlation between (i) year-diff and (ii) sum-abs-diff that

was used to calculate the probability of point mutation p and points to the possibility of a

slow-and-steady process underlying scientific research and discoveries.

Hence, we set the probability of insertion i as half of the slope of the linear regression between

man-dist and year-diff. We use half of this slope for i because there is a third step for

mutations that mirrors insertion: deletion. A deletion selects a randomly chosen non-zero

element in the tf-idf vector and sets it to zero. Because a deletion of a tf-idf element is

equivalent to removing one word in an article, just as insertion is equivalent to adding one

word in the article, we set the probability of deletion d to the probability of insertion i.

5.9.4. Node creation

In a real network, there is a distribution of cosine similarity values between tf-idf vectors

of neighboring nodes; the mean of that distribution is around 0.3 (Figure 5.8B). In creating

nodes from seeds in the simulation, we wished to match the distribution of cosine similarities
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in the real network. To do so, when we initialize a seed, we draw a value from a normal

distribution with a mean and standard deviation of the cosine similarities of the real network.

Once the cosine similarity between a seed and its parent becomes less than the drawn value,

we add the seed as a node in the network.

5.9.5. Node connection

Once a node is added to a network, it must create connections to the rest of the network.

To imitate the same process in a real Wikipedia article, we created a title of a new node,

much like the title of a Wikipedia article. As the title, we selected ten words in each new

node with the strongest tf-idf values excluding stop words. Then, if an existing node has

a majority (i.e., six) of the words in the title, we create an edge from the new node to the

existing node. The node will then be connected to the rest of the network, and in the next

year of the simulation, the node will create a new seed on which to mutate.

5.9.6. Statistical tests for core-periphery lead-lag

As a supplement to our analysis in Figure 5.1C, we performed two-sided one-sample t-tests

for the lead-lag values for all core-periphery edges in each network with a null hypothesis

that the mean is 0. Note that the lead-lag value is defined as the year of a core node minus

the year of each of its neighboring peripheral nodes. Table 5.3 shows the t-statistic and

p-values for t-tests for all subject-networks. A negative t-statistic indicates that core nodes

are, on average, born before each of their neighboring peripheral node. Not all t-statistics

are negative, and for subjects with negative t-statistics, the maximum p-value is 0.21. Thus,

we cannot statistically conclude that in all subjects, core nodes on average precede their

neighboring peripheral nodes.
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5.9.7. Robustness of core-periphery lead-lag

To test for robustness of our core-periphery lead-lag analysis, we measured the core-periphery

lead-lag (i) within modules, (ii) for all subjects, and (iii) across epochs. First, we tested

whether knowledge indeed grows outward but within modules, in which case, the core-

periphery lead-lag for an entire network would not reveal that core nodes lead peripheral

nodes. By maximizing modularity (Newman et al., 2004) and performing core-periphery

detection (Rombach et al., 2014), we can segregate nodes by modules as well as into cores and

peripheries. Accordingly, we identified modules in each subject network using the Clauset-

Newman-Moore greedy modularity maximization (Clauset et al., 2004). Within each module

of each subject network, we identified the core and periphery nodes using the Borgatti-

Everett core-periphery detection algorithm (Borgatti et al., 2000). Then, we computed the

core-periphery lead-lag as the year of core nodes minus the year of neighboring peripheral

nodes for each core-periphery edge. In accordance with our results in Fig. 1C of the main

manuscript, we found that core nodes do not necessarily precede peripheral nodes within

modules (Figure 5.5A).

Second, we computed the core-periphery lead-lag for all core-periphery edges in all networks

to test whether core nodes precede peripheral nodes on average across all subjects (Fig-

ure 5.5B). We performed a two-sided t-test for the lead-lag values for all core-periphery

edges in all networks with a null hypothesis that the mean is 0. We obtained a t-statistic

of -58.9 (p � 0.001). Thus, on average for nodes of all subjects, core nodes precede the

periphery but clearly not always. This holistic statistical test supports a nuanced variation

to Lakatos’s original hypothesis: that while the body of scientific knowledge does not have

a “hard” core from which knowledge grows strictly outward, knowledge tends on average to

grow outward from a “soft”, malleable core.

Third, we tested the core-periphery lead-lag in a time-dependent way to ensure robustness

of our results to differences in core-periphery structure at earlier time points in a network’s

186



growth. Thus, for each subject network, we created subnetworks from the nodes that were

present at ten time points in its history. The ten time points, or epochs, were equally

spaced such that there is an equal number of unique years of nodes between each time

point. As illustrated in three example subjects (Figure 5.5C), the t-statistic becomes more

negative across epochs, suggesting that core nodes do not always precede peripheral nodes

even with core-periphery structures of a network at earlier time points in its growth. Taken

together, these supplementary analyses demonstrate the robustness of our core-periphery

growth analysis within modules, for all subjects, and across epochs.

5.9.8. Robustness of results to slight changes in years of nodes

Our analyses of cavity filling and the paradigm shift signature are sensitive to the discovery

years of the nodes. Thus, to ensure the robustness of our results to slight changes in the

estimated year of nodes, which could be due to any systematic or random errors, we again

performed our analyses for the paradigm shift signature and persistent homology but now

with networks that have years “jittered” by plus or minus one year. Assessing robustness is

important especially given that not all Wikipedia articles have a history section or a year

of discovery (Figure 5.13A). To jitter the years of real networks, we added a -1, 0, or 1,

drawn uniformly with each number having a probability of 1/3, to the year of each node in

all networks. We observed that the shape of the paradigm signature is robust to jittering in

both the magnitude and duration (Figure 5.13B). In addition, we observed that our cavity-

filling results are robust to jittering. The duration of cavities is slightly lower in jittered

networks than in real networks (KS = 0.04, p = 2.1 × 10−4; Figure 5.13C). We note that

this difference exists for short lifetimes on the order of 10 years, in contrast to the results

shown in Figure 5.2D where the differences are present for longer lifetimes on the order

of 100 and 1000 years. For the cavities that are currently present and for the dimensions

of cavities, the cumulative frequencies are the same in the jittered networks as in the real

networks (Figure 5.13D-E). These supplementary analyses demonstrate the robustness of

our results on cavity-filling and paradigm shifts to small jittering of the years of nodes.
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5.10. Supplementary Figures and Tables

Figure 5.5: Core-periphery lead-lag relationship within modules, for all subjects,
or across epochs. A Core nodes do not necessarily precede their neighboring peripheral
nodes within modules. Violin plots show distributions of the year of the core nodes minus
the year of its neighboring peripheral nodes, for each core-periphery edge. Negative values
indicate that core nodes are discovered before their neighboring peripheral nodes, and vice
versa. Vertical lines indicate outliers, which are less than Q1 − (1.5× IQR) or greater than
Q3 + (1.5 × IQR) where Qn is the nth quartile and IQR = (Q3 − Q1). B Distribution
of core-periphery lead-lag for all core-periphery edges in all subjects. While core nodes
do not always precede their neighboring peripheral nodes, core nodes do so on average
(t = −58.9, p � 0.001; null hypothesis that sample mean is 0). C Core-periphery lead-
lag plots computed for subnetworks at ten epochs in the history of each network for three
example networks. Cores do not always precede their neighboring peripheral nodes even
when core-periphery is calculated at previous time points in the history of a network.
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Figure 5.6: Some core nodes are born early while other core nodes are born after
their neighboring peripheral nodes. While most core nodes both precede and follow
their neighboring peripheral nodes, some core nodes are consistently born before neighboring
peripheral nodes. The plots show the years for nodes in the core (x-axis) against the years
for neighboring nodes in the periphery (y-axis) for nine example subjects. For each plot, a
point on the top-left side indicates that a node in the core was born before a neighboring
periphery node, whereas a point on the bottom-right side indicates that a node in the core
was born after a neighboring periphery node. The peripheral nodes that are neighboring
most core nodes are born both before and after their neighboring core nodes. Some core
nodes (points on the very top left) are born before most, if not all, of their neighboring
peripheries.
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Figure 5.7: Statistics of tf-idf vectors in an example real network. For the example
subject “Anatomy”, the statistics of the network used to inform simulations of knowledge
discovery. A Distribution of tf-idf weights on a log-log plot. B Distribution of cosine sim-
ilarity of tf-idf vectors between neighbors. C In three simulations, the model follows the
growth of the real network and shows an exponential increase in the number of nodes. D
The degree distributions in models are similar to that of the real network. E The sum of
the absolute difference in tf-idf values between neighbors plotted against the year differ-
ence between neighbors. The correlation between the quantities suggests that more distant
knowledge takes longer to discover. The vertical striations are due to temporal clusters of
discovery; for example, in panel C, we can see that there are bouts of discoveries around the
3rd century BC, and around the 2nd and 17th centuries AD. Red line indicates line of best
fit. F The Manhattan distance between tf-idf vectors between neighbors plotted against the
year difference between neighbors.
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Figure 5.8: Paradigm shift signature breaks in edge-rewired networks. The mean
number of changes within an epoch (left panel) and the duration of each epoch in time steps
(right panel) reveals a different signature (dark green) in paradigm shifts across subjects
(teal) in edge-rewired networks than that observed in the true data (see for comparison
Figure 5.3C in the main text).

Figure 5.9: Degree distributions of edge-rewired null networks. A-B The average
indegree (panel A) and average outdegree (panel B) of real concept networks compared to
their edge-rewired nulls. Note that the average indegree and outdegree are identical because
for any network, the total indegree is equivalent to the total outdegrees.
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Figure 5.10: The structural stability signature observed in Fig. 3 in the main text
is robust to changes in the interslice weight. The mean number of changes within
an epoch (left panels) and the duration of each epoch (right panels) reveals a signature
in paradigm shifts (dark green) averaged across subjects (teal) for interslice weights 0.001
(top panels) and 0.02 (bottom panels). For different interslice weights (top, bottom, and in
Figure 5.3C in the main text), the magnitude—but not the shape—of the signature changes.
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Figure 5.11: Comparison of changepoint detection using PELT versus binary
segmentation. A Distribution of optimal number of changepoints Q discovered by the
PELT algorithm for concept networks. The median and mode is 3. B-D Comparison of
changepoint detection using PELT versus binary segmentation with a Q of 3 for the networks
biophysics (panel B), electronics (panel C), and evolutionary biology (panel D). For each of
the panels B, C, and D, the top plot shows the module membership across time points,
and the bottom two plots show the number of changes in module membership. The grey
dashed lines indicate changepoints detected by either binary segmentation or PELT, and the
light green line indicates the average number of changes between each pair of changepoints.
Most changepoints detected by binary segmentation with Q of 3 matches the changepoints
detected by PELT with an optimal Q; see, for example, the electronics network in panel C.
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Figure 5.12: The shorter time horizons capture the relationship between impulse
response and participation in the birth and death of cavities. A-D The correlation
between impulse response of nodes and the frequency of participation of nodes in the birth
and death of cavities is maintained across shorter time horizons (all p � 0.001). A small
decay in correlation, from around r = 0.38 at a time horizon of 1 to r = 0.36 at a time
horizon of 5, demonstrates a robustness in the relationship between the cavity participation
and the impulse response of nodes.
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Figure 5.13: Paradigm shift signature and cavity-filling statistics are robust to
slight changes in the year of nodes. A Distribution of the fraction of nodes whose
articles have a year of discovery across subjects. B Signature in paradigm shifts (dark
green) averaged across subjects (teal) in the mean number of changes within an epoch (left
panel) and the duration of each epoch (right panel) for jittered networks. C Duration of
knowledge gaps is slightly lower in jittered networks than in real networks (KS = 0.04,
p = 2.1 × 10−4). We note that this difference exists for short lifetimes on the order of 10
years, which is in contrast to Figure 5.2D in the main text, where the differences are present
for longer lifetimes on the order of 100 and 1000 years. D The frequency of knowledge gaps
that are currently present (i.e., that have yet to die) is the same in jittered networks as in
real networks. E The frequency of cavity dimensions is the same in jittered networks as in
real networks.
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Figure 5.14: Visualizations of four example networks. A The network for the subject
cognitive science. (B) The network for the subject biochemistry. (C) The network for the
subject metereology. (D) The network for the subject earth science.
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Figure 5.15: Coreness of thresholded networks. The final concept networks display
greater coreness than edge-rewired null networks. The networks here are the same ones as
in Figure 5.1C but are thresholded such that edges with weight below the mean weight for
a particular network are removed.
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Measure Code Equation
Clustering networkx.clustering() cn = 2T (n)

kn(kn−1)
(Fagiolo, 2007) where T (n) is the number of

triangles through node n and
k(n) is the degree of node n

Modularity networkx.algorithms. Q = 1
2m

∑
ij [Aij −

kikj
2m δ(gi, gj)

(Clauset et al., 2004) community.modularity_max. where m is the number of edges,
greedy_modularity A is the adjacency matrix,
_communities() i and j are nodes, gi is the

index of the module to which
node i belongs, and δ(gi, gj) is 1

if gi = gj and 0 otherwise.
Coreness bct.core_periphery_dir() QC = 1

vC

∑
i,j∈CC

(wij − γCw̄)−
(Rubinov et al., 2015)

∑
i,j∈Cp

(wij − γCw̄)

where Cc is the set of all nodes
in the core, Cp is the set of all

nodes in the periphery, wij is the
weight between nodes i and j, w̄
is the average edge weight, γC is
a parameter that adjusts the size

of the core, and vC is
a normalization constant.

Temporal modularity leidenalg.find Q = 1
2µ

∑
ijsr[(Aijs − γs

kiskjs
2ms

)γsr

(Mucha et al., 2010) _partition_temporal() +γijCjsr]δ(gis, gjr)

where for nodes i and j in slices s
and r, 2µ =

∑
jr κjr, κjr = kjscjr,

kjs =
∑
isAijs, cjs =

∑
r Cjrs, Aijs

is the weight of the edge from i to j
in s, γs is the resolution of slice s,
ms =

∑
j kjs, γ(gi, gj) is 1 if gi

and gj are equal and 0 otherwise.
Changepoint detection cpt.meanvar() ML(τ1) = log p(y1:τ1 |Θ̂1)+

(Killick et al., 2014) log p(y(τ1+1):n|Θ̂2)

where ML is the maximum likelihood
for a given change point at τ1,
y(1 : τ1) is the signal from time 1
to τ1, and Θ̂1 is the maximum

likelihood estimate of parameters
(in our case the mean and variance).

Table 5.1: Network measures.
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Subject N Clustering Modularity Coreness
Boolean algebra 77 0.15±0.145 0.34 0.69
abstract algebra 356 0.18±0.116 0.36 0.73

accounting 115 0.14±0.158 0.44 0.68
anatomy 2043 0.12±0.104 0.56 0.72

biochemistry 1061 0.11±0.097 0.35 0.79
biophysics 463 0.10±0.161 0.59 0.94
calculus 103 0.19±0.153 0.38 0.67
chemistry 1032 0.13±0.100 0.26 0.82

cognitive science 115 0.22±0.148 0.25 0.72
commutative algebra 88 0.17±0.125 0.22 0.70
dynamical systems and 144 0.14±0.171 0.58 0.71
differential equations

earth science 103 0.25±0.144 0.33 0.69
economics 511 0.11±0.118 0.42 0.72
education 668 0.10±0.148 0.53 0.91
electronics 1145 0.10±0.114 0.44 0.85
energy 119 0.11±0.156 0.44 0.83

evolutionary biology 265 0.16±0.118 0.26 0.78
genetics 1111 0.12±0.104 0.32 0.87
geology 92 0.14±0.144 0.31 0.75
geometry 294 0.17±0.129 0.38 0.75

group theory 295 0.18±0.129 0.29 0.76
immunology 410 0.14±0.164 0.45 0.89

law 3174 0.08±0.106 0.43 0.86
linear algebra 138 0.22±0.149 0.32 0.74
linguistics 395 0.16±0.119 0.35 0.76
meteorology 626 0.13±0.138 0.44 0.81

molecular biology 395 0.15±0.119 0.27 0.77
number theory 276 0.17±0.159 0.48 0.75

optics 352 0.16±0.135 0.31 0.79
philosophy of language 235 0.15±0.169 0.44 0.85

philosophy of law 146 0.09±0.149 0.47 0.81
philosophy of mind 106 0.19±0.161 0.28 0.75
philosophy of science 357 0.14±0.161 0.45 0.84

psychology 1568 0.09±0.123 0.45 0.86
robotics 1099 0.11±0.157 0.56 0.86
sociology 630 0.07±0.112 0.46 0.77

software engineering 226 0.14±0.132 0.36 0.71

Table 5.2: Network metrics for subjects. N is the number of nodes. Errors are standard
deviations.
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Subject t-statistic p-value
Boolean algebra -1.73 4.4× 10−2

abstract algebra -11.70 4.0× 10−30

accounting -0.91 1.8× 10−1

anatomy -15.34 1.7× 10−52

biochemistry -15.30 1.1× 10−51

biophysics -3.94 4.8× 10−5

calculus -2.46 7.4× 10−3

chemistry -22.60 7.3× 10−107

cognitive science -6.62 1.4× 10−10

commutative algebra -3.03 1.4× 10−3

dynamical systems and differential equations -2.70 3.9× 10−3

earth science -0.82 2.1× 10−1

economics -4.94 4.6× 10−7

education -7.64 2.8× 10−14

electronics -19.83 5.6× 10−82

energy -2.40 8.9× 10−3

evolutionary biology 2.64 4.3× 10−3

genetics -10.58 3.9× 10−26

geology -1.14 1.3× 10−1

geometry -10.81 1.8× 10−25

group theory -11.18 3.8× 10−27

immunology -6.16 7.0× 10−10

law -27.16 2.9× 10−156

linear algebra -1.87 3.2× 10−2

linguistics -13.01 2.2× 10−36

meteorology -9.44 9.4× 10−21

molecular biology -1.67 4.7× 10−2

number theory -8.17 2.3× 10−15

optics -8.26 2.8× 10−16

philosophy of language -2.94 1.8× 10−3

philosophy of law -3.75 1.5× 10−4

philosophy of mind -7.20 1.1× 10−11

philosophy of science -4.43 5.7× 10−6

psychology -16.58 1.1× 10−59

robotics -18.37 6.8× 10−68

sociology -5.93 2.1× 10−9

software engineering -3.53 2.3× 10−4

Table 5.3: Core-periphery lead-lag t-tests for all subjects.
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CHAPTER 6

General Conclusions

6.1. Results and overall discussion

In both brains and scientific knowledge, distributed representational systems represent infor-

mation about the environment among distributed units and seek to form accurate models of

the world on which to act. In biology, neural networks support the cognition that allows or-

ganisms, including humans, to identify and behave according to stimuli in the environment.

In science, new concepts are discovered that build upon older concepts, thereby allowing

humans to more accurately understand the physical and social world. Here, we first review

the literature on network models and neural representations and then report the results of

the three studies presented in this thesis. The first two studies contribute to our under-

standing of the processing of information performed by cascading neural networks, and and

the third study contributes to the field of science of science. In what follows, we will briefly

summarize those contributions.

In the second chapter, we review dynamic representations in networked neural systems. We

first survey network models of the brain, which seek to capture the interactions between

neural units, from the scale of neurons themselves to voxels and brain regions. We then

review a separate line of research in neuroscience that quantifies patterns in neural activity

that correlate with environmental stimuli, such as faces (Adolphs, 2003). In our review,

we propose that we may further our understanding of the neural correlates of cognition by

uniting these two lines of research to study representations as they dynamically unfold on

the underlying network. We discuss methods from other fields, such as algebraic topology

and engineering, that may aid in our pursuit of these research goals.

In the third chapter, we study the relationship between the structure and dynamics of

cascading neural networks. Cascading neural systems operate at a critical regime where
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information is optimally stored and transmitted (Beggs and Timme, 2012; Wilting et al.,

2019). It is unclear, however, whether and how these information processing properties are

supported by network structure. We use methods from graph theory, linear systems theory,

and information theory to explore the links between network structure, neural dynamics,

and information processing. We find that neural networks achieve critical dynamics by

tuning the system to have an eigenvalue around 1, thus propagating certain signals for long

durations, and by using bi-directionally connected neurons, which have been widely observed

in experiments.

In the fourth chapter, we broaden the scope of neural interactions from pairwise synaptic

connections to triplet-wise interactions. Recent studies in information theory, called partial

information decomposition, have begun to use triplet-wise network motifs to explore syn-

ergistic information that requires multiple inputs to determine the output (Wibral et al.,

2017). While partial information decomposition measures synergistic information, it does

not reveal the synergistic input-output mappings that it quantifies. In this study, we adapt

the notion of logic gates from computer science to identify probabilistic logic gates in neural

systems (Vahid, 2011). Neural logic gates reveal the synergistic computations that occur in

neural systems and differ across brain regions and neural development.

In the fifth chapter, we explore the network science of historical concept networks. Philoso-

phers of science have long theorized about the processes underlying scientific discovery. It

has been challenging, however, to support or refute those theories with modern data analy-

ses due to difficulties in systematizing large historical records. Here, we use Wikipedia, the

largest online encyclopedia, and historical data in the articles to operationalize the growth of

scientific knowledge as concept networks that grow throughout history. Using these meth-

ods, we find that knowledge does not grow outward but by filling in gaps in knowledge,

which is more often influential and rewarded in the scientific community.
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6.2. General limitations

In discussing the promise of the research presented here, some critical limitations should

be noted. While neuronal avalanches have been widely observed (Beggs and Plenz, 2003;

Beggs, 2004; Gireesh et al., 2008; Petermann et al., 2009; Hahn et al., 2010; Shriki et al.,

2013; Bellay et al., 2015; Ponce-Alvarez et al., 2018; Shew et al., 2015), the methods that

we have employed were specific to in vivo recordings of mouse and rat brains. As they

differ across brain regions and across synaptic development, logic gates may differ in vitro

recordings from those found in vitro, especially since neurons in vivo are receiving real

stimulus from the environment rather than spontaneously firing. In our study, identifying

neural logic gates require millisecond resolution of neural activity and tens to hundreds of

neurons. Thus, to identify logic gates in vivo, any future studies with in vivo recordings

must also have millisecond resolution with tens to hundreds of neurons.

Another general limitation of our analyses is the use of linear models in studying both

neural and concept networks. In neural networks, while linear models are relatively good

approximations of neural activity, neurons frequently exhibit non-linear responses to inputs

(Nozari et al., 2021). Because neural firing is binary and stochastic, linear models are limited

in that they can only approximate probabilities of firing at a resolution of milliseconds. In

concept networks, we use linear models as an approximation of influence of one concept on

another. This measurement assumes that one concept can influence another concept and

that influence scales with textual similarity between documents describing the concepts.

While the linear models of concept networks were complementary analyses of influence to

our analyses using Nobel prizes, further study is required to characterize the influence from

one concept to another.

In our science of science study, an important limitation was using Wikipedia as a database

of science of history. While science articles in Wikipedia are similar in content to curated

encyclopedias, such as Encyclopædia Britannica (Giles, 2005), biases remain in encyclopedic
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articles (Ford et al., 2017; Harvard Business School et al., 2018). Interestingly, a recent

study has found through a field experiment that Wikipedia influences scientific research

itself (Thompson et al., 2017). Moreover, while the results of the study are robust to minor

perturbartions in the dates of discovery, the dates may vary based on the definitions of

discovery; it is indeed a difficult problem, even for historians of science, to determine the

exact date when a discovery was made. These limitations may be overcome by supplementing

these analyses with publication data.

6.3. Future directions

In this section, we will discuss three complementary directions that our work can be taken

in the future. A key feature of logic gates is that they are composable into machines that

perform complex computations. In modern computer architectures, logic gates are used as

blocks to build arithmetic logic units that ultimately make up the central processing unit

(CPU) of a computer (Vahid, 2011). In neuroscience, neural correlates of cognition and

behavior are studied separately from the physical properties of biological neural systems.

Thus, it is critical to identify the building blocks of neural computation that can compose

more complex computations performed by larger and larger population of neurons. Deter-

mining the atomic units of neural computation and the rules by which the units interact

may prompt a new paradigm of studying neural systems.

A more immediate direction for studying neural logic gates is to expand logic gates from

triplet-wise to even higher-order neural interactions. Recent studies have identified network

motifs in neural networks, including hubs and rich-clubs, which coincidentally perform most

of the computation in the local neuronal population (Markram, 1997; Song et al., 2005;

Perin et al., 2011; Faber et al., 2019). Thus, it seems important to characterize higher-order

neural interactions in which many neurons determine the activity of an individual neuron.

We can characterize such interactions by using the information bottleneck method, through

which we can determine which neurons are relevant to decode the firing of each neuron
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(Murphy et al., 2022). Then, we can use probabilistic logic gates, which we developed in

this dissertation, to identify the input-output mappings between neurons.

In our line of research in science of science, one future direction is to develop more accurate

models of scientific discovery. In our fifth chapter, we develop a “genetic model” of scientific

discovery in which we model scientists as randomly modifying concepts until they discover

new concepts. In the science of science literature, Sinatra et al. (2016) demonstrates that

the probability of a paper becoming highly successful, as measured by citations, is random

across the publication history of individual scientists. A natural corollary may be that the

probability of successful scientific discoveries itself is random, which would suggest that

our “genetic model” is accurate in its description of the scientific process on the level of the

individual but not on the level of a group of scientists. Thus, we can parameterize the model

with group-level statistics—for example, the size of a group that is working on a topic—to

control how quickly new concepts are discovered, which may be modeled with publication

data or funding data. Future studies in this direction may further our understanding and

control of the social and institutional processes underlying scientific discoveries.

6.4. Conclusions

This work is unified by the application of network models and other computational tools

to characterize two distributed representational systems: cascading neural networks and

scientific progress. By applying these tools, we have gained insights into how networks

govern the processing of information in their respective systems. In cascading neurons, we

identified patterns in network structures, from the scale of two to hundreds of neurons,

that support the dynamic storage and propagation of information. Moreover, we have

begun to characterize how triplets of neurons interact to perform computation, which may,

in the future, inform how computations can be composed into larger and more complex

computations that support cognition. In science articles in Wikipedia, we used concept

networks that grow across history to find that the body of knowledge grows by filling in
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gaps in knowledge. In the future, these approaches may inform more accurate models of

knowledge discovery for discoveries that have yet to be made.
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