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ABSTRACT

MECHANIZED REASONING ABOUT “HOW” USING FUNCTIONAL PROGRAMS

AND EMBEDDINGS

Yao Li

Stephanie Weirich

Embedding describes the process of encoding a program’s syntax and/or semantics in an-

other language—typically a theorem prover in the context of mechanized reasoning. Among

different embedding styles, deep embeddings are generally preferred as they enable the most

faithful modeling of the original language. However, deep embeddings are also the most

complex, and working with them requires additional effort. In light of that, this dissertation

aims to draw more attention to alternative styles, namely shallow and mixed embeddings, by

studying their use in mechanized reasoning about programs’ properties that are related to

“how”. More specifically, I present a simple shallow embedding for reasoning about compu-

tation costs of lazy programs, and a class of mixed embeddings that are useful for reasoning

about properties of general computation patterns in effectful programs. I show the usefulness

of these embedding styles with examples based on real-world applications.
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CHAPTER 1

Introduction

Suppose that you want to mechanically reason about a program. The program might be

written in C, Java, Haskell, Verilog, or Makefile, etc. Your first step would be to embed the

language’s syntax and/or semantics in a language that is amenable to mechanized reasoning,

such as Coq (Coq development team, 2022), Isabelle (Nipkow et al., 2002), HOL (Gordon,

2000), or F⋆ (Swamy et al., 2013a). This step is known as embeddings (Boulton et al., 1992).

We commonly categorize all embedding styles into two types following the categorization

of Boulton et al. (1992). They are: shallow embeddings, which directly use “equivalent”

terms of the embedding language to denote the original language, and deep embeddings,

which represent the original language using an abstract syntax tree (AST). Besides these

two styles, more recent works (Chlipala, 2021; Pfenning and Elliott, 1988; Prinz et al., 2022;

Washburn and Weirich, 2008) point out that there are also many embedding styles that mix

shallow and deep embeddings. I call these styles mixed embeddings.

Among these embedding styles, deep embeddings are commonly used in mechanized rea-

soning because they allow us to prove both syntactic and semantic properties, and because

we do not need to rely on the semantics of the embedding language to coincide with the

original language. However, defining and reasoning about the AST requires nontrivial effort

for most languages and the terms in deep embeddings are hard to work with in mechanized

reasoning. These limitations make deep embeddings a daunting choice.

In this dissertation, I aim to draw more attention to alternative embedding styles, namely

shallow embeddings and mixed embeddings. The dissertation is not about preferring other

embedding styles over deep embeddings though. Every embedding style has its advantages

and disadvantages, so choosing an embedding style is mostly a design decision tailored to

the requirements of each individual application. However, I believe that shallow embeddings

and mixed embeddings are more useful than most people anticipate. The belief is built on
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my experience with two projects that use shallow embeddings and mixed embeddings. These

two projects are also direct inspirations to the primary works presented in this dissertation.

This dissertation shows the usefulness of shallow and mixed embeddings by studying their use

in mechanized reasoning about programs’ properties related to “how”. I present two works:

(1) a simple shallow embedding for reasoning about computation cost of lazy programs; and

(2) a class of mixed embeddings for reasoning about general properties about computation

patterns in effectful programs. I show the usefulness of these embedding styles with examples

based on real-world applications.

1.1. Mechanized Reasoning

Mechanized reasoning allows us to verify that a program follows its specification. To me-

chanically reason about an existing program written in another language, we first embed a

mathematical model of our program’s syntax and/or semantics in a theorem prover or a proof

assistant such as Coq, Isabelle, HOL, or F⋆. A theorem prover typically contains an expres-

sive language so that we can mathematically describe the program’s correct behavior—the

description is also known as a formal specification—and for writing mechanized proofs that

would be examined by an automatic proof checker. A distinguishing appeal of the method

is that, once we establish a correctness proof of a program, we have high confidence that

the program is correct with respect to the specification such that relevant bugs are absent.

All works presented in this dissertation is based on an interactive theorem prover called

Coq (Coq development team, 2022). Coq is equipped with a dependently-typed purely

functional programming language that allows us to write rich specifications that describe a

program’s complex behaviors in detail. It also contains a tactic language for writing proof

scripts. In addition, there is a rich ecosystem built around Coq (Appel, 2022; Ringer et al.,

2019a) that includes libraries, plugins, frameworks for mechanized reasoning, etc. For these

reasons, Coq has been used in many works on mechanized reasoning, including the verified

compiler CompCert (Leroy, 2009), the verified operating system CertiKOS (Gu et al., 2019),

and the verified file system FSCQ (Chen et al., 2015), etc. These are also important reasons

2



that shallow and mixed embeddings presented in this dissertation would work nicely—as

these embedding styles enable reusing Coq’s language features and its rich ecosystem.

In this dissertation, I assume that readers already have basic familiarity with Coq. Inter-

ested readers who would like to learn about the basics of Coq should refer to the Software

Foundations textbook series (Pierce et al., 2021a,b) or other Coq textbooks such as Bertot

and Castéran (2004); Chlipala (2019, 2022).

1.2. Functional Programs

Programming is a task that demands us to simultaneously focus on the aspects of “what”

and “how”. It is important that, given an input, a program returns us the correct answer.

But that is rarely enough. We also expect the program to return the correct answer in the

right way: we want the answer to be given within a reasonable time; we want the program

to not delete our valuable files or take up all the memory; and if the program communicates

with another program, we want it to abide to an established protocol.

Functional programming, however, embraces a focus on “what”: what is a value x, what is

a function f, and what f applied to x evaluates to. We say that 1 + 0 and 1 are “equal”

because what they evaluate to are equal—even though how they evaluate to the same result

are different. This focus on “what” is a useful bias. For example, a pure functional program

is referentially transparent, which means that a value can be evaluated at any time. This

makes it possible to use evaluation strategies such as lazy evaluation (Henderson and Morris,

1976) to write compositional code (Hughes, 1989). Even for programs with effects, this is

often true for the pure part. Furthermore, the bias also makes reasoning easier, as it enables

some simple but powerful techniques like equational reasoning (Gibbons and Hinze, 2011;

Gonzalez, 2013; Vazou et al., 2018a; Wadler, 1987).

A challenge for using functional programming languages like Coq to reason about other

programs’ properties that are related to “how” is that we need a way to make the evaluation

strategy explicit. Fortunately, the solution is known: we can embed those original programs

3



using monads (Moggi, 1991; Wadler, 1992) and other classes of functors (McBride and

Paterson, 2008; Mokhov et al., 2019) that reify the evaluation strategies. We will cover this

technique in more detail in Chapter 2.

In this dissertation, I assume that readers are already familiar with basics of functional

programming, including algebraic data types (Burstall et al., 1980), type classes (Morris,

2013; Wadler and Blott, 1989), monads, etc.

1.3. Contributions

The contributions of this dissertation are as follow:

• I, along with my collaborators, build a simple shallow embedding based on a new model

of lazy evaluation (Hackett and Hutton, 2019) for reasoning about computation costs

of lazy programs (Li, Xia, and Weirich, 2021a). The embedding is based on a monad

called the clairvoyance monad, whose key definitions can be defined using around 20

lines of code in Coq. We define the embedding rules for embedding a language with

structural recursion in Coq using the clairvoyance monad. We also develop a dual

reasoning framework for analyzing the computation cost of an embedded program in

a local and modular way.

• I, along with my advisor, identify a class of mixed embeddings called Tlön embed-

dings for modeling effectful programs. Tlön embeddings are based on a class of data

structures that capture a variety of general computation patterns called program ad-

verbs (Li and Weirich, 2022a). Program adverbs are themselves composable, allowing

them to be used to specify the semantics of languages with multiple computation pat-

terns. Tlön embeddings allow flexibility in computational modeling of effects, while

retaining more information about the program’s syntactic structure.

• Both works mentioned above are accompanied by our Coq development, which have

been made publicly available as artifacts (Li and Weirich, 2022b; Li, Xia, and Weirich,

2021b). These artifacts have been reviewed by artifact evaluation committees.
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• Besides these works, I also contributed to a number of other works (Breitner, Spector-

Zabusky, Li, Rizkallah, Wiegley, Cohen, and Weirich, 2021; Koh, Li, Li, Xia, Beringer,

Honoré, Mansky, Pierce, and Zdancewic, 2019; Spector-Zabusky, Breitner, Li, and

Weirich, 2019; Zhang, Honoré, Koh, Li, Li, Xia, Beringer, Mansky, Pierce, and Zdancewic,

2021) that are direct inspirations that lead me to the primary contributions presented

in this dissertation.

1.4. Outline

The rest of the dissertation is organized as follows:

• I discuss the concept of embeddings, compare different embedding styles, and illus-

trate the use of monads as a way of reifying evaluation strategies in an embedding in

Chapter 2.

• I summarize two projects that I have contributed to in Chapter 3. I also discuss how

they formulated my views on embeddings.

• I present our work on analyzing the computation cost of lazy programs in Chapter 4.

• I present our work on mixed embeddings for effectful programs in Chapter 5.

• I list all the primary related work in Chapter 6 and talk about potential future work

in Chapter 7. I wrap up the dissertation in Chapter 8.
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CHAPTER 2

Embeddings

My focus in this dissertation is in reasoning about “how” in existing programs. Here is

the first challenge: existing programs that we would like to reason about are typically not

written in languages amenable to mechanized reasoning. These languages include most

mainstream programming languages, such as C, Java, Haskell, Verilog, or Makefile etc. In

order to reason about programs written in those languages, we need to embed the syntax

and/or semantics of that language in a theorem prover such as Coq.

In this dissertation, I use the verb “embedding” to describe the process of encoding a lan-

guage’s syntax and/or semantics using another language; I use the noun “an embedding” or

“embeddings” to describe everything involved in the embedding process.1

I show an overview of a typical embedding in Fig. 2.1. A typical embedding includes the

following components: An original program, which is the program we would like to embed;

An original language (also called the object language), which is the programming language

that the original program is written in; An embedding language (also called the meta

language or the host language), which is the programming language we use to embed the

original program; An embedding domain, which is the data type(s) we use to embed the

original program in the embedding language; embedding rules, which are “the recipe”

of how to embed an original language in an embedding domain; Finally, an embedded

program, which is the result of embedding the original program following embedding

rules. We will be using these terms for describing embeddings throughout the dissertation.

Boulton et al. (1992) categorizes embeddings into two types based on differences in their

embedding domains. They are: (1) shallow embeddings, whose embedding domain is just
1Boulton et al. (1992) use the term “semantic embedding” instead of “embedding”. I intentionally choose

not to follow the term of Boulton et al. because a semantic embedding might give a reader the wrong
impression that an embedding is all about semantics.
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Figure 2.1: An overview of an embedding.

terms of the embedding language, and (2) deep embeddings, whose embedding domain is an

abstract syntax tree (AST) with an interpreter that defines the semantics.

There are, however, not just two embedding styles. Later, many works (Chlipala, 2021;

Pfenning and Elliott, 1988; Prinz et al., 2022; Washburn and Weirich, 2008) point out

that there are also many embedding styles between shallow and deep embeddings. In this

dissertation, I call all these embedding styles mixed embeddings following the terminology

of Chlipala (2021).

To illustrate different embedding styles, let’s consider a simple language N , which encodes

an arithmetic on natural numbers. I show the syntax of N in Fig. 2.2. Semantically, we

want the arithmetic operators to have their usual semantics. For any m,n ∈ N such that

m < n, m− n is defined as 0. We use the notation J·K to represent embedding rules.

2.1. Shallow Embeddings

In our first example, we choose Coq’s built-in type nat for representing natural numbers as

the embedding domain. We show our embedding rules in Fig. 2.3. Infix operators +, - are
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literals n ∈ N
terms t, u ::= n | t+ u | t− u

Figure 2.2: The syntax of N .

Original Language: N Embedding Language: Coq

Embedding Domain:

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Embedding Rules:

JnK = n

Jt+ uK = JtK+JuK
Jt− uK = JtK-JuK

Figure 2.3: A shallow embedding from N to Coq’s nat type.

notations for Coq’s function that computes addition and subtraction of natural numbers.

For any m n : nat such that m < n, m - n is defined to return 0.

Since we use Coq’s nat type to directly encode N ’s semantics, we also call the nat type

the semantic domain of this embedding. A shallow embedding’s semantic domain coincides

with its embedding domain.

An advantage of shallow embeddings is that, since their embedding domains are terms of

the embedding language, we can reuse theories and other language mechanisms available

in the embedding language. In our example, we can directly use existing theorems (e.g.,

various arithmetic laws such as commutativity for +) in Coq’s library for nat; we can also

use tactics provided by Coq and its libraries, such as lia, a decision procedure for linear

integer arithmetic (Besson, 2006).

However, because we directly encode an original language’s semantics in a shallow embed-

ding, we do not have a structure for representing the original language’s syntax. Indeed, the

nat type used in our example can only distinguish different natural numbers—J1 + 2K and

J4− 1K are just the same thing in our embedding domain. This makes shallow embeddings

rather limiting in scenarios where we would like to state properties related to an original

program’s syntactic structure, e.g., whether an expression contains a subtraction.
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Original Language: N Embedding Language: Coq

Embedding Domain:

Inductive term : Set :=
| Lit (n : nat)
| Plus (t u : term)
| Minus (t u : term).

Embedding Rules:

JnK = Lit n

Jt+ uK = Plus JtK JuK
Jt− uK = Minus JtK JuK

Semantic Domain:

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Interpretation:

Fixpoint interp (t : term) : nat :=
match t with
| Lit b => b
| Plus t u => interp t + interp u
| Minus t u => interp t - interp u
end.

Figure 2.4: A deep embedding from N to our term type in Coq.

Another challenge for a shallow embedding is that, more often than not, there are discrepan-

cies between the original language and the embedding language that makes a direct embed-

ding not possible: there might be features in the original language that are not supported

by the embedding language, or the type checker in the original language works differently

from that of the embedding language, etc.

2.2. Deep Embeddings

Alternatively, we can make a deep embedding by defining a term data type in Coq that

represents the AST of N . We show our deep embedding of N in Fig. 2.4.

The term data type shown in Fig. 2.4 has a case for every syntax construct of N (Fig. 2.2) and

the embedding rules are a straightforward translation from one syntax to another syntax.

We still reuse Coq’s nat type for literals in N here. We can also choose to define our own

data type but that would just be isomorphic to nat. Since the term data type only encodes

the syntax, we need an additional semantic domain and an interpretation from term to the

semantic domain if we would like to reason about N ’s semantics. Figure 2.4 also shows such

an interpretation (function interp) if we choose nat as the semantic domain.

9



Compared with our previous shallow embedding, the extra term data type in our deep

embedding makes it possible to state and reason about the syntactic structure of an original

program. For example, we can define the following function that checks if a program does

not contain a subtraction:

Fixpoint no_minus (t : term) : bool :=

match t with

| Lit _ => true

| Plus t u => no_minus t && no_minus u

| Minus t u => false

end.

The infix operator && is the Boolean “and” operation defined on Coq’s bool type.

Another benefit of a deep embedding is that when we would like change the semantic domain

in our embedding, we can do that by changing the interpretation without changing the

embedding rules. Therefore, a deep embedding is more modular than a shallow embedding.

On the other hand, one main issue with a deep embedding is the extra effort required for

defining and working with the AST. Our example here is intentionally simple, but it can

quickly get complicated when we would like to add functions or let bindings, which require us

to represent and reason about variable bindings and capture-avoiding substitutions (Aydemir

et al., 2005), or when other complicated features are added. Furthermore, since an AST is—

unlike nat—not a builtin type in Coq, we would not have existing theorems or tactics that

can be directly used. Despite many existing tools (Aydemir et al., 2008; Schäfer et al., 2015;

Sewell et al., 2010) that help with this process, the task of working with a deep embedding

remains nontrivial.

2.3. Mixed Embeddings

We do not have to commit to either a shallow or a deep embedding, as we can make certain

parts of our embedding shallow while keeping other parts deep. There are many different

ways of achieving this mixture (Chlipala, 2008, 2021; Dylus et al., 2019; Harper et al., 1987;
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variables x, y, z

literals n ∈ N
terms t, u ::= x | n | t+ u | t− u | let x = t in u

Figure 2.5: The syntax of Nlet.

Original Language: Nlet

Embedding Domain:

Inductive mterm : Set :=
| Lit (n : nat)
| Plus (t u : mterm)
| Minus (t u : mterm)
| Let (t : mterm)

(u : nat -> mterm).

Semantic Domain:

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Embedding Language: Coq

Embedding Rules:

JxKρ = Lit (ρ x)

JnKρ = Lit n

Jt+ uKρ = Plus JtKρ JuKρ
Jt− uKρ = Minus JtKρ JuKρ

Jlet x = t in uKρ = Let JtKρ (fun x => JuKρ⋃{x7→x})

(x is a fresh variable in Coq)
Interpretation:

Fixpoint interp (t : mterm) : nat :=
match t with
| Lit n => n
| Plus t u => interp t + interp u
| Minus t u => interp t - interp u
| Let t u => interp (u (interp t))
end.

Figure 2.6: A mixed embedding from Nlet to our mterm type in Coq.

Honsell et al., 2001; Pfenning and Elliott, 1988; Prinz et al., 2022; Washburn and Weirich,

2008). In this part, I illustrate the style of Chlipala (2021). To make our language N more

interesting for a mixed embedding, we add variables and let bindings to it. The let bindings

are call-by-value. We name this new language Nlet. We show the syntax of Nlet in Fig. 2.5.

We would like to follow the deep-embedding style here because it allows us to reason about

syntactic structures of original programs. However, as discussed earlier, variable bindings

pose a challenge for deep embeddings. To avoid the trouble of defining and reasoning about

variable bindings, we can make let bindings shallow.
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The mixed embedding of Nlet is shown in Fig. 2.6. Our embedding domain is a custom

inductive type called mterm (stands for a “mixed term”) that adds a Let constructor compared

with term (Fig. 2.4). We do not need a constructor for variables because we use Coq’s

variables instead—The key to implement this is in the second parameter of Let: we use

Coq’s native functions to represent the scope of let bound variables.2 For example, let x =

1 + 2 in x+ 3 is represented by:

Let (Plus (Lit 1) (Lit 2))

(fun x => Plus (Lit x) (Lit 3)).

To embed Nlet using mterm in Coq, we augment our embedding rules J·K by adding a set

of mappings ρ that tracks which variable in Nlet corresponds to which variable in Coq.

Whenever there is a let binding, we create a fresh variable in Coq and add that to ρ, as

shown in the embedding rules in Fig. 2.6.

Our mixed embedding reap certain benefits of both shallow and deep embeddings. For

example, we can check if a mixed term representing a term in Nlet contains any subtractions,

similar to the deep embedding shown earlier:

Fixpoint no_minus (t : mterm) : bool :=

match t with

| Lit _ => true

| Plus t u => no_minus t && no_minus u

| Minus _ _ => false

| Let t u => no_minus t && no_minus (u 0)

end.

For Let’s second parameter u : nat -> mterm, we simply pass any natural number to it (in

this case, I pass 0), because Nlet does not have any terms that change the control flow (i.e.,

there is no if statement or pattern matching, etc.). In the meantime, our mixed embed-
2The technique is very similar to the idea behind higher-order abstract syntax (HOAS) (Harper et al.,

1987; Pfenning and Elliott, 1988). A key difference is that HOAS uses functions on the deep embedding
of terms, while we use the shallow embedding of terms here, as shown by the input type of the second
parameter of Let.
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ding avoids defining or reasoning about variable bindings or capture-avoiding substitutions,

similar to a shallow embedding.

There are, however, a few problems with our mixed embeddings as well. First, our mixed

embedding is not as modular as the deep embedding in Fig. 2.4. This is due to that the

second parameter of Let is a function on nat—this constraints that our interpretation of an

mterm to return a nat. As a consequence, our mixed embedding is restricted to a semantic

domain of nat (Fig. 2.6).

The second problem is that when we make certain parts of an embedding shallow, we might

make our embedding domain more expressive than the original language, which can be a

problem if we would like to reason about properties that rely on the original language to not

be very expressive. For example, for any term t in Nlet, let x = 0 in t and let x = 1 in t

have the same number of + or − operations. But we cannot prove this property with our

mixed embedding. Indeed, consider the following two mterms:

Example example1 :=

Let (Lit 0)

(fun x => if x =? 0 then Lit 0

else (Plus (Lit x) (Lit 2))).

Example example2 :=

Let (Lit 1)

(fun x => if x =? 0 then Lit 0

else (Plus (Lit x) (Lit 2))).

These two mterms are called exotic terms because they do not correspond to any terms in

Nlet. However, we cannot show the nonexistence of these exotic terms in Coq because mterms

are the only representation of Nlet we have available in Coq.

There are other alternatives to our mixed embedding here. One example is parametric

higher-order abstract syntax (PHOAS) (Chlipala, 2008; Washburn and Weirich, 2008). Com-
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pared with our mixed embedding, PHOAS also allows us to define and reason about functions

like no_minus, it does not limit its semantic domain, and it does not introduce exotic terms.

However, PHOAS does not offer a free implementation of capture-avoiding substitutions,

which is the main reason we present the mixed embedding of Chlipala (2021) rather than

PHOAS here.

In summary, there are many styles of mixed embeddings that allows us to reap the benefits

of both shallow and deep embeddings. However, where to draw the line between shallow and

deep embeddings can greatly impact what properties can be easily proven or what properties

can even be proven, and is a design choice that requires weighing various trade-offs.

2.4. Using Monads

As discussed earlier, functional programming languages usually “hide” evaluation strategies

such as calling conventions under the hood. To reason about “how” using functional lan-

guages, we need a way to make evaluation strategies explicit. The typical way of “reifying”

evaluation strategies is using monads. In this section, we demonstrate the way of using

monads as embedding domains to reify evaluation strategies of original languages.

Monads are a concept in category theory (Barr and Wells, 1990) and they are introduced to

programming languages research by Moggi as a way to represent “notions of computation”

in a semantics (Moggi, 1991). Based on Moggi’s work, Wadler (1992) proposes two ways

of translating a program to a monadic program that corresponds to the call-by-value and

call-by-need semantics, respectively.

Later, Petricek (2012) finds that these two ways can be unified under one abstract translation

strategy. In this part, we reformulate Petricek’s translation strategy for call-by-value and

call-by-need semantics as embedding rules.

First, we recall the definition of a monad in Coq:

Class Monad (F : Type -> Type) `{Functor F}:=

{ ret : forall {A}, A -> F A ;
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bind : forall {A B}, F A -> (A -> F B) -> F B }.

A Monad is required to define two operations: a ret operation that “wraps” a value inside

the monad, and a bind operation that “connects” two monadic computations together. No-

ticeably, the type of the bind operation “forces” its first explicit parameter of type F A to

be evaluated to pass a value to its second explicit parameter of type A -> F B, so it can be

viewed as a way of reifying evaluation orders. For convenience, we use notation x <- e1 ; e2

to represent bind e1 (fun x => e2), similar to Haskell’s do notation.

To illustrate the embedding adapted from Petricek (2012), we reuse the call-by-value lan-

guage Nlet as one of our original languages; the other one is N n
let, a call-by-name variant

of Nlet—the only difference between N n
let and Nlet is that the let bindings of N n

let is

call-by-name. We again use Coq as our embedding language. We use an abstract monad

M : Type -> Type as our embedding domain: a closed term in Nlet is translated to type M nat;

a term with one open variable is translated to type M nat -> M nat; a term with two open

variables is translated to type M nat -> M nat -> M nat, and so on. The unified embedding

rules for both Nlet and N n
let are shown in Fig. 2.7. The key to implement a call-by-value

or a call-by-name semantics lies in the definition of malias. The function has the same type

under both semantics but with different implementations, as shown in Fig. 2.7. For a call-

by-value semantics, it “forces” the computation of a parameter and returns the result; for a

call-by-name semantics, it simply returns the computation.

Is our embedding a shallow, deep, or mixed embedding? It depends on the specific monads

we use to instantiate M. Most of the common monads we have seen such as the list monads

or writer monads are computational—the embedding would be a shallow embedding if we

use any of them as the embedding domain. However, we can also instantiate the embedding

as a deep or mixed embedding, e.g., using free monads (Kiselyov and Ishii, 2015). We will

revisit the use of free monads in Chapter 3 and Chapter 5.
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Original Language:
Nlet, N n

let

Embedding Domain:

Variable M : Type -> Type.
Context `{Monad M}.
Parameter malias : forall {A},
M A -> M (M A).

Embedding Language: Coq

Embedding Rules:

JxKρ = ret (ρ x)

JnKρ = ret n

Jt+ uKρ = t <- JtKρ; u <- JuKρ; ret (t + u)

(t and u are fresh variables in Coq)
Jt− uKρ = t <- JtKρ; u <- JuKρ; ret (t - u)

(t and u are fresh variables in Coq)
Jlet x = t in uKρ = x <- malias JtKρ;

JuKρ⋃{x 7→x} x

(x is a fresh variable in Coq)
Implementation of malias for Nlet (call-by-value):

Definition malias {A} (m : M A) : M (M A) := bind m (fun x => ret (ret x)).

Implementation of malias for N n
let (call-by-name):

Definition malias {A} : M A -> M (M A) := ret.

Figure 2.7: An embedding from Nlet to monad M in Coq.

Petricek also proposes an implementation of malias that defines call-by-need semantics (Pet-

ricek, 2012). However, the implementation is in Haskell and it relies on Haskell’s effectful

ST monad transformer (Launchbury and Jones, 1995; Svenningsson, 2011), a feature that

is not supported by pure languages such as Coq, so we do not show that implementation

here. However, we will show a revision of Petricek’s uniform embedding rules that supports

reasoning about the computational cost of a call-by-need semantics in Section 4.7.

2.5. Embeddings vs. Denotational Semantics

Denotational semantics (Scott, 1970; Scott and Strachey, 1971) is a method of defining

a program’s semantics using mathematical objects. The mathematical objects we use in

programming languages research are typically lattices or domains (Scott, 1976, 1982). In its

broader sense, we can view the “essence” of a Coq embedding as a denotational semantics:

a Coq program that can be viewed as mathematical object. In this dissertation, we make

a distinction between embeddings and denotational semantics by their practical differences

discussed below:
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First, a denotational semantics is usually used to describe the semantics of a language. On

the other hand, an embedding is used to describe a program in a way that is amenable

for mechanized reasoning about certain properties. These properties might contain only

syntactic properties, or both semantic and syntactic properties.

Second, the syntax of a language is typically defined in the same host language as the defined

language’s denotational semantics, but this is not the case in an embedding other than deep

embeddings. Therefore, it is not a problem to state or reason about properties related to

a program’s syntactic structure in a denotational semantics, but it is important to consider

the issue in an embedding. For the same reason, exotic terms are a problem to embeddings,

but not to denotational semantics, because we can use the syntax to distinguish original and

exotic terms.

Third, a denotational semantics is a total mapping from well-formed syntax to semantics,

but an embedding does not need to be so. The embedding rules in an embedding can be

partial, so that we only deal with a subset of the language features. When we encounter an

expression that cannot be translated by any embedding rules, we can either require human

intervention (Danielsson, 2008; Handley et al., 2020; Spector-Zabusky et al., 2018, 2019) or

just fail to embed the program. Furthermore, it is also fine if the embedded domain does

not model the semantics of the original language 100%—as long as the embedding is useful

for proving properties that we care about.
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CHAPTER 3

Experience with Embeddings

Embeddings play important roles in two projects that I have contributed to during my Ph.D.

journey. Not surprisingly, my experience in these two projects has significantly influenced

my views on embeddings and has led me to works in this dissertation. In this chapter, I

summarize these two projects and discuss how they formulate my views on embeddings.

3.1. A Shallow Embedding of Haskell in Coq

The first project is about mechanized reasoning about Haskell code in Coq. The project

is based on hs-to-coq, a tool initially developed by Spector-Zabusky, Breitner, Rizkallah,

and Weirich (2018). One important characteristic of hs-to-coq is that it embeds Haskell in

Coq using a shallow embedding. The list of embedding rules of hs-to-coq is too large for

me to show it in this dissertation. Instead, I show an example of Haskell’s source code and

its shallow embedding in Coq using hs-to-coq in Fig. 3.1 and Fig. 3.2, respectively.

One of the appeals of a shallow embedding is that it allows mechanized reasoning to reuse

existing theorems, tactics, etc. of the embedding language. Indeed, this is the main reason

that Spector-Zabusky et al. selected a shallow embedding. They wanted to reason about

large and complex Haskell programs while reusing Coq’s rich ecosystem (Appel, 2022; Ringer

et al., 2019a) to facilitate this task.

However, one of the main challenges of using a shallow embedding in hs-to-coq is that

there are many discrepancies between Haskell and Coq. For example, Haskell is call-by-need

and its data types are coinductive; Haskell accepts non-terminating functions or complex

non-structural recursions; you can invoke effects in Haskell; the integers in Haskell are

bounded, etc. The key that contributes to hs-to-coq’s success is that it takes a pragmatic

approach that does not try to be total or absolutely faithful to Haskell’s semantics: its

embedding rules focus on inductive data types and total, terminating functions, “where the

semantics of lazy and strict evaluation, and hence of Haskell and Coq, coincide” (Danielsson
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module Control.Applicative.Successors where

data Succs a = Succs a [a] deriving (Show, Eq)

getCurrent :: Succs t -> t
getCurrent (Succs x _) = x

getSuccs :: Succs t -> [t]
getSuccs (Succs _ xs) = xs

Figure 3.1: Part of the source code of Haskell’s Successors library.

Inductive Succs a : Type := | succs : a -> list a -> Succs a.

Arguments succs {_} _ _.

Definition getCurrent {t : Type} : Succs t -> t :=
fun '(succs x _) => x.

Definition getSuccs {t : Type} : Succs t -> list t :=
fun '(succs _ xs) => xs.

Figure 3.2: The Coq code that is automatically translated from the code in Fig. 3.1 using
hs-to-coq.

et al., 2006; Spector-Zabusky et al., 2018). When a language feature of Haskell that is not

supported by hs-to-coq’s embedding rules shows up, a language called edits (Spector-

Zabusky, 2021, Chapter 4 & Chapter 8) is used so that human can guide its translation.

I joined the project around 2017 and contributed to two studies where we applied hs-to-coq

to real-world examples. The first example is the containers library, a Haskell library that

encodes data structures for finite sets and maps (Breitner et al., 2018, 2021). The second

example is parts of the Glasgow Haskell Compiler (GHC), an industrial-strength compiler

for Haskell (Spector-Zabusky et al., 2019).

Verifying containers Our first study of applying hs-to-coq to a real-world example is

verifying Haskell’s containers library (Breitner, Spector-Zabusky, Li, Rizkallah, Wiegley,

Cohen, and Weirich, 2021). The library is “the third-most depended-on package of the

Haskell package repository Hackage,” (Breitner et al., 2021, Section 2) and it is a highly-
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optimized code base with more than a decade’s history of performance tuning (Breitner

et al., 2021, Section 2.3). We show that it is possible to apply a shallow embedding to

embed a significant portion of this library in Coq, and we show the functional correctness of a

representative set of its commonly used functions based on this shallow embedding (Breitner

et al., 2021, Section 3). The specification itself is drawn from many different sources. It

describes the library’s complex behaviors in detail and is “connected to both implementations

and clients” (Breitner et al., 2021, Section 4). We did not find any bugs in reasoning

about containers, but our verification provided some new insights to both implementing

and verifying data structures in containers (Breitner et al., 2021, Section 6). In this study,

I focused on verifying a finite set library called Data.Set. I also helped with other parts

of the study, such as fixing issues in the hs-to-coq tool and co-authoring papers on this

verification effort (Breitner et al., 2018, 2021).

Our experience shows that shallow embeddings in an interactive theorem prover with a

rich ecosystem are indeed a practical approach for mechanized reasoning about large-scale

existing programs. Indeed, the containers library is no toy example: the relevant modules

of the containers library “contain 325 functions and 41 type class instances, written in 4096

lines of code (excluding comments and blank lines)” (Breitner et al., 2021, Section 3). In

total, we verified 2291 lines of Haskell and each line of Haskell roughly required 9.0 lines

of proofs (Breitner et al., 2021, Section 3). Being able to use existing interface such as

FSetInterface,3 theorems such as those derived from FSetInterface,4 and tactics such as

lia (Besson, 2006) for reasoning about the weights in weight-balanced trees (Adams, 1992;

Nievergelt and Reingold, 1973) greatly helped our verification effort. Among much great

verification effort on Haskell (Abel et al., 2005a,b; Christiansen et al., 2019; Dybjer et al.,

2004; Dylus et al., 2019; Hallgren, 2003; Vazou, 2016; Vazou et al., 2013, 2014, 2018b;

Vytiniotis et al., 2013), our work is the only one that verifies a code base at this scale with a
3https://coq.inria.fr/library/Coq.FSets.FSetInterface.html
4https://coq.inria.fr/library/Coq.FSets.FSetFacts.html
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rich specification5—another evidence that our pragmatic approach with shallow embeddings

helped greatly.

Verifying GHC In our second study, we tried to reason about a code base of an even larger

scale—but this time, we only focused on a small part of it (Spector-Zabusky, Breitner, Li, and

Weirich, 2019). The main research question was: can we still benefit from mechanized

reasoning if we only consider a small part of a large system? We chose to reason about

some of GHC’s optimizations based on its intermediate language called Core (Eisenberg,

2020; Sulzmann et al., 2007). GHC itself is very large and complex, and all its modules

are intertwined. To manage the scale of our verification effort, we needed a way to embed

a particular part of GHC while “abstracting” all others. We achieved this by utilizing the

edits language mentioned earlier to create a documented and mechanized “formalization

gap” between the original program and the embedded program (Spector-Zabusky et al.,

2019, Section 5 & Section 6). Our study showed that it is indeed useful to apply mechanized

reasoning even when there is a large formalization gap: our verification effort exhibited a

bug in GHC’s code and a bug in its comment; furthermore, our specification also offered a

documented and rigorous description of the invariants GHC maintained (Spector-Zabusky

et al., 2019, Section 4). My contribution in this study focused on verifying data structures

that represents sets of variables in Core. Similar to the previous study, I also helped with

other parts including fixing issues in the hs-to-coq tool and co-authoring a paper on this

verification effort (Spector-Zabusky et al., 2019).

Our experience suggests that we should look at the formalization gap between original

and embedding languages from a different perspective. The gap has always been considered

a critical issue with shallow embeddings. However, our study showed that, by carefully

managing the formalization gap in a documented and mechanized way, we were able to con-

trol the scale of verification effort to mechanically reason about complex real-world software
5Vazou et al. (2013) is perhaps the closest, as they verified the Data.Map module, which is the finite map

module in containers. However, their specification only describes the orders of elements in the tree data
structure underlying the module. We compare our work and Vazou et al. (2013) in more detail in Breitner
et al. (2021, Section 8.1).
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systems at scale. The experience again demonstrates the usefulness of shallow embed-

dings, as we were able to verify parts of an industrial-strength compiler based on shallow

embeddings.

However, there are a few limitations with the shallow embedding used by hs-to-coq as well.

Most notably, we cannot use hs-to-coq to reason about properties about “how” such as the

computation cost or effects. These limitations are one of the major motivations behind my

works in Chapter 4 and Chapter 5.

3.2. From C to ITrees: From a Deep Embedding to a Mixed Embedding

The other project that forms my view on embeddings is building a verified networked server.

The project is part of grand expedition called the Science of Deep Specification (Appel et al.,

2017), which aimed to connect disparate verification and testing tools to build fully verified

software stack. In our project, we aimed to build a server that runs on CertiKOS, a verified

operating system (Gu et al., 2019), and the server is compiled using CompCert, a verified C

compiler (Leroy, 2009). There were simultaneously two research questions in this project:

(1) what is the right way to specify a server’s behavior over the network, and (2) how to

connect disparate verification and testing works (more on these tools shortly).

In our first work (Koh, Li, Li, Xia, Beringer, Honoré, Mansky, Pierce, and Zdancewic, 2019),

we built a simple “swap server” (Koh et al., 2019, Section 2). The server was compiled using

CompCert and it was built on system calls provided by CertiKOS, which contained an

unverified TCP (Transmission Control Protocol) implementation along with its axiomatized

specification. In addition, we used VST, a framework based on CompCert and Hoare-

style separation logic (Appel et al., 2014) to specify and reason about the server (Koh

et al., 2019, Section 5); we used QuickChick, a property-based testing tool (Lampropoulos

and Pierce, 2021; Paraskevopoulou et al., 2015) to test our implementation as well as our

specification (Koh et al., 2019, Section 6). On the top level, we wrote a specification that

described a server’s observable behavior over a network in a straightforward way; while in

the lower levels, we described the server’s behavior in terms of low-level operations such as
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system calls; to connect the specifications at higher and lower levels, we developed a special

relation called network refinement that considers network re-orderings, etc. (Koh et al., 2019,

Section 4). To tie all these different tools and different levels of specification together, we

proposed a novel data structure called interaction trees (Koh et al., 2019, Section 3). I have

been involved in the project since the beginning of it. I contributed to many aspects of

the work, including many early explorations using other styles of programming logics and

data structures, integrating interaction trees and Hoare-style separation logic, working on

the mechanized proofs, and co-authoring the paper that describes this project (Koh et al.,

2019), etc. Later, Hengchu Zhang joined the project and scaled up the verified “swap server”

to a verified key-value server (Zhang, Honoré, Koh, Li, Li, Xia, Beringer, Mansky, Pierce,

and Zdancewic, 2021).

One important thing we learned from the experience is the usefulness of interaction

trees. Indeed, our collaborators Xia, Zakowski, He, Hur, Malecha, Pierce, and Zdancewic

later expanded on this idea and developed a library for interaction trees (Xia et al., 2020),

which was subsequently used in many projects (Foster et al., 2021; Lesani et al., 2022; Li

et al., 2021c; Silver and Zdancewic, 2021; Ye et al., 2022; Yoon et al., 2022; Zakowski et al.,

2021).

But why would interaction trees make a good data structure for connecting different ver-

ification and testing tools, and different levels of specification? Intuitively, this is because

interaction trees are a low-level but general abstraction of effects and computations. We can

use them to represent many kinds of effects (Xia et al., 2020, Section 3), we can run them

by interpreting those effects (Xia et al., 2020, Section 3), and we can use them to model

iterations and general recursions (Xia et al., 2020, Section 4). We cover these in more detail

in Koh et al. (2019, Section 3). Xia et al. provide a more in-depth dive into the theory of

interaction trees from the perspective of a denotational semantics in Xia et al. (2020).

In this section, however, I’d like to revisit the question of “why interaction trees” from a

new perspective—a perspective of embeddings. In our task of verifying a networked server
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Inductive expr : Type :=
| Econst_int: int -> type -> expr (**r integer literal *)
| Econst_float: float -> type -> expr (**r double float literal *)
| Econst_single: float32 -> type -> expr (**r single float literal *)
| Econst_long: int64 -> type -> expr (**r long integer literal *)
| Evar: ident -> type -> expr (**r variable *)
| Etempvar: ident -> type -> expr (**r temporary variable *)
| Ederef: expr -> type -> expr (**r pointer dereference (unary [*]) *)
| Eaddrof: expr -> type -> expr (**r address-of operator ([&]) *)
| Eunop: unary_operation -> expr -> type -> expr (**r unary operation *)
| Ebinop: binary_operation -> expr -> expr -> type -> expr (**r binary

operation *)
| Ecast: expr -> type -> expr (**r type cast ([(ty) e]) *)
| Efield: expr -> ident -> type -> expr (**r access to a member of a struct

or union *)
| Esizeof: type -> type -> expr (**r size of a type *)
| Ealignof: type -> type -> expr. (**r alignment of a type *)

Figure 3.3: CompCert’s embedding domain for expressions in Clight.

written in C, our first step is to embed C in Coq. This step is achieved by using CompCert,

which models a subset of C called Clight (Blazy and Leroy, 2009) using a deep embedding.

I show a code snippet of the embedding domain CompCert 3.10 uses to embed expressions

in Clight in Fig. 3.3.6 Such a deep embedding is crucial to CompCert as CompCert uses

it to prove the correctness of transformations in its compiler. However, such an embedding

would not be interesting for other verification tools such as QuickChick, nor would it be

a good way for describing a server’s observable behavior over a network, because it is too

specific to the syntax of Clight.

A shallow embedding would not be a good fit, either. This is because a shallow embedding

would be too specific to the semantics used by a particular tool or a particular level of

specification. For example, QuickChick requires its semantics to be executable but it does

not require the semantics to be defined within Coq—there is no issue in using QuickChick to

invoke a foreign function such as running an actual server written in C. On the other hand,

our high-level specification demands our semantics used for reasoning to be nondeterministic,
6https://github.com/AbsInt/CompCert/blob/v3.10/cfrontend/Clight.v
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CoInductive itree (E : Type -> Type) (R : Type) :=
| Ret (r : R)
| Vis {X : Type} (e : E X) (k : X -> itree E R)
| Tau (t : itree E R).

Definition ret {E R} : R -> itree E R := Ret.
Definition bind {E R S} (t : itree E R) (k : R -> itree E S) : itree E S :=
(cofix bind_ u := match u with

| Ret r => k r
| Tau t => Tau (bind_ t)
| Vis e k => Vis e (fun x => bind_ (k x))
end) t.

Definition trigger {E R} (e : E R) : itree E R := Vis e Ret.

Figure 3.4: The key definitions of interaction trees or itrees.

so our verification considers nondeterminism in an operating system and re-orderings in a

network, and the semantics should definitely be defined within Coq.

These requirements call for a “compromise” between a deep and a shallow embedding, so

they lead us to a mixed embedding, which is exactly what interaction trees offer. In the

end of Section 2.3, I stated that a key design choice to make in a mixed embedding is where

to draw the line between shallow and deep embeddings. Interaction trees provide a good

answer to this question in the space of effectful computation—we embed pure computations

“shallowly” and effects “deeply”.

I show the key definitions of interaction trees or itrees in Fig. 3.4.7 An interaction tree

has two parameters: an uninterpreted effect data type E : Type -> Type and a return type

R : Type. It has three constructors: a Ret constructor that “wraps” a pure computation

inside it; a Vis constructor that represents a “visible” effect followed by a continuation; and

a Tau constructor that represents a silent step. The itree data type is coinductive so it can

be used to represent potentially non-terminating programs such as networked servers.8 An

itree is a monad, as shown by the ret and bind definitions in Fig. 3.4. In fact, interaction
7The figure is adapted from Koh et al. (2019, Fig. 6) and Xia et al. (2020, Section 2.1 & Fig. 3).
8More information about coinductive data types in Coq can be found in Chlipala (2019, Chapter 5).
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Variant IO : Type -> Type :=
| Input : IO string
| Output : string -> IO unit.

Definition input : itree IO string := trigger Input.
Definition output (s : string) : itree IO unit := trigger (Output s).

Figure 3.5: An example of an effect data type.

trees are a coinductive variant of free monads (Kiselyov and Ishii, 2015). In addition, an

itree also has a trigger function, which “lifts” an effect data type to an itree.

I show an example of an effect data type in Fig. 3.5.9 The IO effect data type includes two

types of effects: an Input that takes no parameter and returns a string, and an Output that

takes a string as its parameter and returns a unit, which is Coq’s builtin type that has

only one inhabitant tt. Based on IO and with the help of the trigger function provided by

itree, we can define two “effectful” functions input and output, also shown in Fig. 3.5. These

functions, however, are uninterpreted. A separate interpreter is needed if we would like to

reason about their semantics. In other words, the effect data type is a deep embedding of an

effect.

In summary, interaction trees are a data structure that combines a shallow embedding of

pure computation and a deep embedding of effects. The level of abstraction provided by such

a mixed embedding is neither too specific to a syntax nor too specific to a semantics, which

makes it general enough to model many effectful computation models. However, a follow-up

question a reader might want to ask is: are interaction trees the only data structure suitable

for this style of mixed embeddings? The question turns out to be a direct inspiration for

my work in Chapter 5.

9The figure is adapted from Koh et al. (2019, Section 3).
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CHAPTER 4

Reasoning about the Garden of Forking Paths

This chapter references previously published paper Reasoning about the Garden of Forking

Paths (Li, Xia, and Weirich, 2021a), with adjustments to the flow and terminology. I also add

Section 4.7 that relates our work to the embeddings of Petricek (2012) (Section 2.4). All the

Coq definition, theorems, and proofs presented in this chapter can be found in a publicly

available artifact (Li et al., 2021b). I contributed to most of the work in collaboration

with my co-authors. The part on the equivalence between our clairvoyant embedding with

clairvoyant call-by-value semantics was developed and written by my co-author Li-yao Xia.

The title of the original paper is a reference to the short story The Garden of Forking Paths

by Jorge Luis Borges. In the short story, the garden of forking paths is “an infinite series

of times, in a growing, dizzying net of divergent, convergent, and parallel times” (Borges,

1941).

4.1. Introduction

Lazy evaluation (Henderson and Morris, 1976), or the call-by-need calling convention, is a

distinguishing feature in some functional programming languages—Haskell being the most

notable example. Rather than evaluating eagerly, a lazy evaluator stores computations

in a thunk and only evaluates the thunk when the data is needed. This feature avoids

unneeded computation and enables better modularity in functional programming (Hughes,

1989). However, with convenience in expressiveness comes challenge in reasoning—especially

so for cost analysis—because it’s far less obvious if, when, and how much a computation is

evaluated. We believe mechanized reasoning can help bring clarity to a semantics so intricate

and subtle.

However, embedding a lazy program is difficult. The semantics for call-by-need evaluation

is more complex than that of call-by-name or call-by-value, which can be described merely

through substitution. Traditional presentations (Josephs, 1989; Launchbury, 1993) of call-
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by-need semantics are fundamentally stateful, based on heaps that contain thunks which

must be updated during evaluation.

Rather than directly dealing with such complexity, we take advantage of a new way of model-

ing call-by-need: clairvoyant call-by-value (Hackett and Hutton, 2019). The key observation

of this new model is that although whether a term gets evaluated matters, it doesn’t matter

when in run-time cost analysis. Therefore, instead of storing the computations in a thunk,

the clairvoyant call-by-value model makes use of nondeterminism to evaluate the data in

one branch and skip evaluation in another. Eventually, one successful branch of evaluation

will faithfully model the result and cost of the call-by-need evaluation.

Based on clairvoyant evaluation, we propose a novel framework for embedding and reasoning

about computation cost of lazy programs in Coq. Our framework is based on an annotated

model similar to that of Danielsson (2008) and of Handley et al. (2020), but our work does

not require human intervention to explictly model sharing under lazy evaluation.

4.2. Motivating example

We start by providing an informal overview of our approach on a small example that exhibits

laziness. We use Coq to illustrate all examples so that all examples in this dissertation would

be in the same language. Coq is not necessarily a lazy language, but we can imagine these

Coq programs are obtained by translating from lazy Haskell programs using a tool like

hs-to-coq (Section 3.1). For reasons that we will explain in Section 4.4, these examples are

also translated to A-Normal Form (Sabry and Felleisen, 1992), but that doesn’t matter so

much here.

For a motivating example, consider the following program:

Definition p {a} (n : nat) (xs ys : list a) : list a :=

let zs := append xs ys in

take n zs.
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Fixpoint append {a} (xs ys : list a) : list a :=
match xs with
| nil => ys
| cons x xs1 => let zs := append xs1 ys in x :: zs
end.

(* returns the prefix of xs of length n or xs when n > length xs. *)
Fixpoint take {a} (n : nat) (xs : list a) : list a :=
match n, xs with
| O, _ => nil
| S _, nil => nil
| S n1, x :: xs1 => let zs := take n1 xs1 in x :: zs
end.

Figure 4.1: The pure functional definitions of append and take.

The functions append and take in this example are equivalent to their Haskell counterparts,

and their definitions are shown in Fig. 4.1. These examples use Coq’s inductively defined

lists, which are a subset of Haskell’s list type. Although working with infinite data types is

another useful application of lazy evaluation, many algorithms manipulate only finite data

structures (Okasaki, 1999). Hence, we believe inductive lists are representative of how lists

are frequently used in practice even in Haskell.

To estimate the time it takes to evaluate a program, its cost, we can start by counting the

number of steps in some operational semantics, or some proportional quantity. Let us count

function calls informally.

Lazy evaluation leads us immediately to an impasse, because it is not even clear what it

means to “run” a lazy program. Lazy programs are demand-driven, so we have to specify

some model of “demand”. A common working model is that lazy programs will be forced

during the evaluation of a whole program, but it is not so practical to reason about the

behaviors of arbitrary programs. A more useful approach is to start from a more familiar

place: call-by-value. Indeed, programs under the call-by-value evaluation strategy have a

relatively straightforward cost model. Laziness adds a twist to it: we might not need all of

the result, in which case we allow ourselves to skip some computations.
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With that new ability, we face the problem of deciding which computations to skip. This

decision inherently depends on how much of the overall result will be needed. For con-

creteness, let us require all of our example list take n (append xs ys) to be evaluated. We

start by evaluating append xs ys, unfolding the program in call-by-value. There are two

cases to consider: the length of xs may be less than n, in which case we will fully evaluate

append xs ys in length xs + 1 calls—where the final nil takes one call. Or length xs may be

greater than or equal to n, then we can stop after n calls, leaving the result of the next call

“undefined”. Either way, we will produce some partially defined list zs after at most n calls.

We then let take n zs run to the end in at most n + 1 calls, thus producing all elements

of take n (append xs ys), as we demanded initially. In total, that took at most 2 * n + 1

calls. In particular, that cost is independent of the length of xs or ys. That exemplifies one

of the core motivations of laziness: you only pay for what you need.

That idea of “call-by-value with a twist” is made formal by the concept of clairvoyant eval-

uation (Hackett and Hutton, 2019).

Clairvoyant evaluation The key to formalizing the reasoning above is to view lazy pro-

grams as nondeterministic programs. Clairvoyant evaluation works in a way similar to

nondeterministic automata, which choose one of multiple successor states by “guessing” the

path to success. In our earlier reasoning, we evaluated append xs ys using a call-by-value

semantics until we decided to stop at a point. When to stop was not decided by the state of

the program, but by a “guess” based on the clairvoyant knowledge that we would only need n

elements in the end. This intuition allows us to define a general semantics that the meaning

of a lazy program comprises all of its nondeterministic evaluations and the meaning can be

refined later in light of new external information.

The equivalence of clairvoyant evaluation to the natural heap-based definition of laziness of

Launchbury (1993) was proved by Hackett and Hutton (2019): the cost of any execution in

clairvoyant call-by-value is an upper bound of the cost in call-by-need, and there is some

clairvoyant execution whose cost is actually the same as in call-by-need.
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append [1,2,3] [4]

1 :: append [2,3] [4]

1 :: Undefined

1 :: 2 :: append [3] [4]

1 :: 2 :: Undefined

Cost = 1 Cost = 2

Figure 4.2: Parts of the nondeterministic clairvoyant call-by-value evaluation of the append

function applied to two lists [1, 2, 3] and [4].

Taking the append function as an example (recall its definition in Fig. 4.1), when it makes

a recursive call, we fork the evaluation into two branches under clairvoyant evaluation: in

branch (1), we perform the recursive call; and in branch (2), we skip that call. A skipped

call yields a placeholder value as a result, which we call ⊥ or Undefined.

Suppose that all future demands only require the first element of the result list, then

branch (2) would suffice for offering that result. However, if a future demand requests

more than that, branch (2) would fail to proceed because the requested data is Undefined.

Therefore, branch (2) would get stuck and not yield any result at all. Fortunately, there

would still be branch (1) to return the result. Furthermore, in branch (1), the append func-

tion may make another recursive call to itself, as long as the first argument list is not nil.

In that case, this branch would be once again forked into two branches. This is illustrated

by Fig. 4.2.

Although lazy programs are now interpreted nondeterministically, nondeterminism is used in

a very controlled manner. The only choices we make are whether to perform a computation
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or to skip it. This means that the value of a program, if it exists, is still unique in some

sense: the only possible changes are that parts of the value are replaced with Undefined.

If we know which branch leads to a successful evaluation for the append function, we can just

look at that branch and add its cost to obtain the total cost of the program, which gives

us a local reasoning methodology. Of course we cannot know this in advance, but there are

some reasoning principles that can help.

A dual reasoning principle We would like to have a reasoning methodology that is

both local and modular, just like what we would expect from functional programming. This

means that we should be able to use some relations to specify the behaviors of each individual

function. And when we want to reason about a program, we can just do that by composing

the relations of its functions.

We use a dual reasoning principle to achieve the locality and modularity for clairvoyant call-

by-value evaluation. First, we have a pessimistic specification that describes the behaviors of

all of the function’s nondeterministic branches. The pessimistic specification can offer us an

accurate description of functional correctness under call-by-need evaluation. However, the

specification is pessimistic because it does not rule out the branches that contain redundant

steps and would not appear in an actual call-by-need evaluation.

To be more selective in those branches, we use an optimistic specification that describes the

behaviors on a specific branch. The specification is optimistic because it can be used to

specify a more accurate bound for the cost under call-by-need evaluation.

Figure 4.3 shows the relations among a clairvoyant evaluation, a pessimistic specification,

and an optimistic specification. The tree in the middle of the figure represents the nonde-

terminism tree of clairvoyant evaluation. The gray nodes represent the end results of their

branches. A pessimistic specification specifies the nodes in the red circle. And an optimistic

specification specifies the node in the blue circle.

Getting back to append, its pessimistic specification states:
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Clairvoyant call-by-value 
nondeterminism tree

Pessimistic specification

Optimistic specification

Figure 4.3: The relations among a clairvoyant evaluation, a pessimistic specification, and
an optimistic specification.

For all the nondeterministic branches of the append function, if the branch eval-

uates successfully, it will return a cost c ∈ [1, length xs+ 1].

For simplicity, we omit the functional correctness part of the specification here. The pes-

simistic specification only specifies a coarse range for append’s costs. If we want to reason

about our earlier example p, we could not deduce that its cost would never go over n by

reasoning about append and take abstractly using their specifications. Instead, we can only

deduce that the upper bound of the cost is the length of xs and the length may be much

larger than n.

For this sort of analysis, we need the optimistic specification of append:

For any number n ∈ [1, length xs] (or n ∈ [1, length xs + 1] if xs does not

contain any undefined part),10 there exists a nondeterministic branch of the

append function that evaluates successfully and returns a cost c = n.
10When xs does not contain any undefined part, append might go over the entire list and take one extra

cost pattern matching on nil. This is the only case the cost of append will be bigger than the length of xs.
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A major difference between the pessimistic and the optimistic specifications is that the latter

does not only show a range of costs; it shows what exactly are the possible costs within this

range. With the help of this specification, we can “pick” one branch where the possible cost,

which might be much smaller than the length of xs, barely suffices for producing a list that

take needs.

Both the pessimistic and optimistic specifications can be proved on the append function. And

when reasoning about a larger program like p, all we need is to compose the specifications

of append with the specifications of other functions like take.

The missing pieces So far, we have informally discussed our methodology. The main

missing piece to develop in the rest of the chapter is to implement this methodology in the

formal environment of the Coq proof assistant.

The first step is to associate the pure functional programs with versions that track execution

costs and allow nondeterminism. It turns out that we can do that with monads using the

techniques discussed in Section 2.4. In the next section, we define the clairvoyance monad,

which distills the main features of clairvoyant evaluation. One attraction of the clairvoyance

monad is its simplicity: its core definitions consist of merely 21 nonblank, noncomment lines

of code in Coq. Then, we show embedding rules in the clairvoyance monad in Section 4.4.

The final step, in Section 4.5, is to build a program logic for the clairvoyance monad that

enables local and modular formal cost analysis in the style of optimistic and pessimistic

specifications.

4.3. The Clairvoyance Monad

The clairvoyance monad (Fig. 4.4) is a lightweight abstraction that can express the semantics

of instrumented lazy evaluation, suitable for cost analysis. Based on the ideas of clairvoyant

evaluation (Hackett and Hutton, 2019), its simplicity is largely due to the absence of higher-

order state commonly associated with laziness.
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(* A computation that produces a value of type "a" after some number of ticks. *)
Definition M (a : Type) : Type := a -> nat -> Prop.

(* A computation that takes no time and yields a single value. *)
Definition ret {a} (v : a) : M a :=
fun y n => (y, n) = (v, 0).

(* Sequence two computations and add their time. *)
Definition bind {a b} (u : M a) (k : a -> M b) : M b :=
fun y n => exists x nx ny, u x nx /\ k x y ny /\ n = nx + ny.

(* A computation with unit cost. *)
Definition tick : M unit :=
fun _ n => n = 1.

(* A thunk: either a known value or unused. *)
Inductive T (a : Type) : Type :=
| Thunk (x : a)
| Undefined.

(* Store a computation without evaluating it (zero cost). *)
Definition thunk {a} (u : M a) : M (T a) :=
fun t n => match t with

| Thunk v => u v n
| Undefined => n = 0
end.

(* Either continue computation with the value of a thunk or fail. *)
Definition forcing {a b} (t : T a) (f : a -> M b) : M b :=
match t with
| Thunk v => f v
| Undefined => fun _ _ => False
end.

(* Force a thunk. *)
Definition force {a} (t : T a) : M a := forcing t ret.

Figure 4.4: Core definitions of the clairvoyance monad M.

To model clairvoyant evaluation, we need a monad that can encode all the following three in-

gredients: (1) costs, (2) nondeterminism, and (3) failures on some nondeterministic branches.

The clairvoyance monad is the simplest monad that meets the criterion.

A computation in the clairvoyance monad, of type M a, nondeterministically yields a value v

of type a after some time n. A computation is defined as a set of such pairs (v, n), encoded

in Coq as a predicate a -> nat -> Prop. The ret of the monad yields the given value v with
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a computation cost of 0; it is a set containing only (v, 0). The bind of the monad sequences

computation by getting a result (x, nx) from the first operand u, and then feeding the value

x to the continuation k, which then yields another result (y, ny). The overall result is that

latter value paired with the total cost (y, nx + ny).

To track time, tick (Moran and Sands, 1999) is a computation with unit cost. This design

follows the same rationale as Danielsson (2008): explicit ticks make the library lightweight

and flexible to experiment with different cost models. For a given cost model, one can

ensure that ticks are added consistently by an automatic embedding. We present such a set

of embedding rules in Section 4.4.

The type of thunks T is structurally an option type. A thunk is either a known value, under

the Thunk constructor, or it is Undefined. Undefined thunks are placeholders introduced when

a computation is “skipped,” because its result won’t be needed.

For “laziness,” we add two operations to create and force thunks. Intuitively, the thunk

function stores a computation of type M a without evaluating it, and yields a thunk : a

reference to that stored computation, of type T a. The forcing function looks up that

reference to evaluate the corresponding computation and passes it to the continuation. This

result is also stored in place of the computation, so that subsequent uses of force will not

recompute the result.

In the clairvoyance model, thunk’s implementation nondeterministically chooses between

(1) running the computation, yielding any one of its results in a Thunk, and (2) skipping

it, yielding an Undefined result at no cost. The set of possible outcomes is implemented

as a predicate: it accepts any pair (Thunk v, n) such that (v, n) is accepted by the given

computation u, plus the pair (Undefined, 0).

The forcing operation accesses the result stored in a thunk and passes it to a continuation.

If there is indeed a value Thunk v, then v is the result, and we just pass it to the continuation

k. We do not need to add any costs in this step: we already paid the cost of computing
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Γ ⊢ t : M a Γ, (x : a) ⊢ s : M b

Γ ⊢ let! x := t in s : M b
let!

Γ ⊢ t : M a Γ, (xA : T a) ⊢ s : M b

Γ ⊢ let~ xA := t in s : M b
let~

Γ ⊢ f : a -> M b Γ ⊢ xA : T a

Γ ⊢ f $! xA : M b
($!)

Figure 4.5: Typing rules for let!, let~, and $!

v on the thunk’s creation. If the thunk is Undefined, then the computation fails: it has no

result, as denoted by the empty set. Note that the only way to fail among the above five

combinators is to use forcing and that thunk is the only way to produce thunks to apply

forcing to. In spite of this underlying potential for failure, computations definable with

these combinators always have at least one successful execution by never skipping a thunk.

In that sense, our combinators adequately model a total language.

The empty computation fun _ _ => False : M a could also be added to the core definitions

to represent partiality. In this chapter, we will stick to total functional programming (Turner,

2004).

When programming, we also rely on Coq notations for a few well-known monadic operations

in addition to these core definitions. The infix notation “>>” abbreviates bind with a constant

continuation:

Notation "t >> s" := (bind t (fun _ => s)).

In the clairvoyance monad, a common idiom is tick >> t to increase the cost of t by one.

Functions whose arguments are thunks are called lazy, in the sense that their arguments

may not always be defined. Otherwise they are eager. Let us define the following notations,

wrapping the monadic bind in more familiar syntax, akin to do-notation in Haskell and

overloaded let in OCaml. The infix $! is named after a standard Haskell operator which

makes a function strict. For reference, typing rules for these constructs are given in Fig. 4.5.

Notation "let! x := t in s" := (bind t (fun x => s)).

37



Notation "let~ xA := t in s" := (bind (thunk t) (fun xA => s)).

Notation "f $! xA" := (forcing xA f).

We thus view the combinator bind as an “eager” let! construct, where the bound variable x

is the result of the computation t. In contrast, a composition of bind and thunk provides a

“lazy” let~, where xA is a thunk for the “delayed” computation t. In this chapter, variables

of “lifted” types T a will be marked with a suffix “A,” to constrast with variables of “unlifted”

types a.

The definition of T has two important features. First, a thunk is merely a value, not a

location in a “heap” as it would be in natural semantics of Launchbury (1993); this is key

to the simplicity of our definitions. Second, the type constructor T can be used in inductive

type declarations and plays well with the strict positivity condition imposed on them.11

This will be essential in embedding recursive types in Section 4.4.

In the clairvoyance model, it is useful to think of thunks as a way to construct approxima-

tions (Scott, 1976). The type T a “lifts” a type a with an Undefined value which approximates

all values of type a. Recursive types may contain nested thunks, thus defining rich domains

of approximations. In the monad M, we view a lazy computation as producing an approxima-

tion of some pure, complete result; more precise approximations are more costly to compute.

That structure will be made explicit in Section 4.5.

Remark The monad M coincides with the writer monad transformer (Liang et al., 1995)

applied to the powerset monad _ -> Prop. This observation crisply summarizes the orthog-

onal roles of nondeterminism and accounting for time in the clairvoyance monad.

4.4. Shallow Embeddings in the Clairvoyance Monad

The clairvoyance monad provides us with an explicit model of laziness. To reason about

the cost of programs in a lazy language—where laziness is implicit—we embed them in the

clairvoyance monad. Our original language is a total, lazy calculus with folds, enabling
11https://coq.inria.fr/refman/language/core/inductive.html#strict-positivity
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types τ ::= τ → τ | list τ | unit

x, y, z ∈ variables
terms t, u ::= x | λx. t | t x | let x = t in u

| Nil | Cons x y | foldr t (λx y.t) z

Γ ⊢ x : list τ1 Γ ⊢ tl : τ2 Γ, y1 : τ1, y2 : τ2 ⊢ tn : τ2

Γ ⊢ foldr tl (λy1 y2. tn) x : τ2
foldr

Figure 4.6: Syntax and typing rules for λfoldr.

Jτ1 → τ2K = T Jτ1K → M Jτ2K
Jlist τK = listA JτK

Inductive listA (a : Type) : Type :=
NilA | ConsA (x1 : T a) (x2 : T (listA a)).

Figure 4.7: Embedding rules for types in λfoldr and the definition of listA.

structural recursion. Totality is arguably not a strong limitation for implementing many

algorithms: in the context of complexity analysis, termination is a necessary condition for

defining the cost of an algorithm. We name this language λfoldr. Our embedding language

is Coq and our embedding domain is the clairvoyance monad.

The syntax of λfoldr is summarized in Fig. 4.6. A primitive type of lists serves to illus-

trate how to translate algebraic data types, with structural recursion modeled by a foldr

operator. This calculus is in A-normal form (Sabry and Felleisen, 1992) to streamline the

embedding process by confining the bookkeeping of thunks to let and foldr.

In embedding types of λfoldr (Fig. 4.7), function types τ1 → τ2 are translated to function

types T Jτ1K → M Jτ2K. The argument is wrapped in a thunk, so functions may be defined on

undefined inputs. And the result is, of course, a computation. The type of lists is translated

to an inductive type where fields are wrapped in a thunk T. This type thus represents

partially defined lists, which can be seen as approximations of actual lists.
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Jlet x = t in uK = tick >> let~ x := JtK in JuK
JxK = tick >> force x

Jλx. tK = ret (fun x => JtK)
Jt xK = tick >> let! f := JtK in f x

JNilK = ret NilA

JCons x yK = ret (ConsA x y)

Jfoldr tl (λy1 y2. tn) xK = foldrA JtlK (fun y1 y2 => JtnK) x

Figure 4.8: Embedding rules for terms in λfoldr.

Fixpoint foldrA' {a b} (n : M b) (c : T a -> T b -> M b) (x' : listA a) : M b :=
tick >>
match x' with
| NilA => n
| ConsA x1 x2 =>
let~ y2 := foldrA' n c $! x2 in
c x1 y2

end.

Definition foldrA {a b} (n : M b) (c : T a -> T b -> M b) (x : T (listA a)) : M b :=
foldrA' n c $! x.

Figure 4.9: Definition of the foldrA function used in embedding foldr.

In embedding terms of λfoldr (Fig. 4.8), a well-typed term t : τ is translated to a Coq

term JtK : M JτK. We pun source variables x : a as target variables x : T JaK. A tick is

added uniformly in the interpretation of every non-value construct—this follows Hackett

and Hutton (2019): it is assumed that those constructs will be implemented in constant

time. In examples, we will simplify ticks further, as discussed later in this section.

Types guide the design of the term translation. The source Let corresponds to our lazy

let~, creating thunks, while variable expressions JxK : M JτK force the thunk denoted by the

variable x : T JτK.

The translation of foldr is defined in Fig. 4.9. A tick happens at every recursive call.

Recursive calls are thunked using the let~ construct, so that they may remain unevaluated

if the c computation doesn’t need them.
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Recursion introduces a wrinkle in our translation. Generally, function arguments x : a are

lifted to x : T JaK. However, recursive definitions in Coq must take an argument whose outer

type constructor is defined using recursion, listA a, unlike the type of thunks T (listA a).

Thus the translated foldrA is merely a wrapper around the recursive function foldrA' where

most of the work happens. Moreover, in foldrA', the subterm x2 is forced in continuation-

passing style, using forcing (under the notation $!), in order to ensure that the recursive

call to foldrA' is syntactically applied to a subterm of the initial list x'.

Equivalence with clairvoyant call-by-value Our embedding rules J·K for terms in

λfoldr are also a cost-aware denotational semantics for λfoldr. Formally, this semantics

JtK is parameterized by an environment ρ that maps the free variables of t to semantic val-

ues. The denotation JtK(ρ) : M JτK is thus a set of cost-value pairs (n, v), with n : N and

v : JτK.

Xia proved the equivalence between our denotational semantics and clairvoyant call-by-value

evaluation, the operational semantics of laziness introduced by Hackett and Hutton, which

itself was proved equivalent to the natural semantics of Launchbury (1993). Clairvoyant

call-by-value evaluation is defined as an inductive relation t, h ⇓CV
n u, h′ expressing that the

term t with an initial heap h evaluates, with cost n, to a value term u and a final heap h′.

To state this equivalence, we extend our denotation function J·K to these auxiliary syntactic

constructs: a heap h, which maps variables to terms, denotes an environment JhK, and a

(syntactic) value term u : τ , in an environment ρ, denotes a (semantic) value JuK(ρ) : JτK.

We can now state an equivalence between our denotational semantics J·K and the operational

semantics ⇓CV:

Theorem 1. For any well-typed term t in λfoldr and heap h, and for any value-cost pair

(v, n), the following propositions are equivalent.

1. (v, n) ∈ JtK(JhK).

2. There exists u and h′ such that t, h ⇓CV
n u, h′ and v = JuK(Jh′K).
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The forward direction, (1) implies (2), states the adequacy theorem: the denotational se-

mantics J·K is a subset of the operational semantics ⇓CV. Conversely, the backward direction,

(2) implies (1), states our soundness theorem: all evaluations by the operational semantics

produce denoted cost-values. Together, these results prove that our semantics is equivalent

to the operational semantics of Hackett and Hutton.

We have formalized both the denotational semantics J·K and the operational semantics ⇓CV

and proved the equivalence theorem in Coq (Li et al., 2021b). The proof, which proceeds

by induction on n for adequacy and on derivations of ⇓CV for soundness, is straightfor-

ward thanks to the simplicity of the language, notably excluding general recursion. Most

of the work is devoted to relating mutable heaps h in the operational semantics ⇓CV to

environments ρ in our denotational semantics J·K.

In addition to an operational semantics ⇓CV, Hackett and Hutton (2019) also presented

a denotational cost semantics, which we can compare to ours. First, the cost semantics of

Hackett and Hutton is defined for an untyped recursive calculus and our embedding is defined

for a typed calculus with folds—guaranteeing termination. However, since the clairvoyance

monad is based on the powerset monad _ -> Prop, we can also define a fixpoint operator (an

example is Fig. 4.10):

Fix : ((a -> M b) -> (a -> M b)) -> (a -> M b)

Such an operator could be used for the denotational semantics of a general recursive lazy

language, but at the cost of a more complex equivalence theorem. The issue is that the

unfolding lemma Fix F <-> F (Fix F) assumes the monotonicity of F, adding a significant

burden to using that operator. Without using Fix, we have only modelled a total language,

as the source language we considered above is intended to be a subset of Coq. Many

algorithms, in the functional programming literature especially, are defined using various

forms of structural recursion, so they can be embedded in our framework.
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Definition impl3 {a b c} (P P' : a -> b -> c -> Prop) : Prop :=
forall x y z, P x y z -> P' x y z.

Inductive Fix {a b} (gf : (a -> M b) -> (a -> M b)) x y n : Prop :=
| MkFix (self : a -> M b) : impl3 self (Fix gf) -> gf self x y n -> Fix gf x y n.

Figure 4.10: Possible fixpoint combinator in the clairvoyance monad M.

Second, the denotations of Hackett and Hutton are cost-value pairs that inhabit a lattice

to handle general recursion; they handle nondeterminism by joining all executions together.

However, in the denotation of Let, the cost of evaluating the binding is discarded if the body

of the Let does not depend strictly on the binding. In comparison, our semantics models

computation using sets of pairs, so the cost of every nondeterministic path is preserved.

Key to the simplicity of our approach, the core operations of our clairvoyance monad (Sec-

tion 4.3) are operations on sets; these operations do not rely on an abstract lattice structure

for values. In exchange, our semantics is less well-behaved: let~ expressions with unused

thunks generate spurious approximations. We present a dual logic that disregards such

uninformative approximations in Section 4.5.

An Example We show our translation in action on the example of append and take,

illustrating a few pragmatic tweaks to our formalization above. The original program with

pure functions in Fig. 4.1 is translated into the monadic program in Fig. 4.11. For simplicity,

we retain the use of fixpoints instead of representing all recursion with foldrA.

These definitions use the listA type from Fig. 4.7. This type is the corresponding approxi-

mation type for Coq’s list, and wraps every field in the thunk type constructor T.

The translation of recursive functions follows a similar structure to the definition of foldrA

in the previous section, since append and take are in fact specialized list folds (foldr): their

translations are wrappers for the recursive append_ and take_ where pattern-matching hap-

pens, and the recursive calls are guarded by thunks.
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Fixpoint append_ {a : Type} (xs' : listA a) (ys : T (listA a)) : M (listA a) :=
tick >>
match xs' with
| NilA => force ys
| ConsA x xs1 =>
let~ t := (fun xs1' => append_ xs1' ys) $! xs1 in
ret (ConsA x t)

end.

Definition appendA {a : Type} (xs ys : T (listA a)) : M (listA a) :=
(fun xs' => append_ xs' ys) $! xs.

Fixpoint take_ {a : Type} (n : nat) (xs' : listA a) : M (listA a) :=
tick >>
match n, xs' with
| O, _ => ret NilA
| S _, NilA => ret NilA
| S n1, ConsA x xs1 =>
let~ t := take_ n1 $! xs1 in
ret (ConsA x t)

end.

Definition takeA {a : Type} (n : nat) (xs : T (listA a)) : M (listA a) :=
take_ n $! xs.

Definition pA {a} (n : nat) (xs ys : T (listA a)) : M (listA a) :=
tick >>
let~ t := appendA xs ys in
takeA n t.

Figure 4.11: The translated code of append and take from the pure version of Fig. 4.1.

We keep the primitive representation of certain types, such as nat in the definition of take,

instead of using its Peano representation. The main reason to do so is that it makes the

resulting program simpler by denoting “primitive” operations more directly. Although this

is generally unsound for a language with pervasive laziness, this issue could be palliated by

using a strictness analysis to ensure that variables of that type are never instantiated with

⊥. Alternatively, we could consider an original language where both lifted and unlifted types

coexist—Haskell is actually such a language, although unlifted types are not commonly used

because GHC’s strictness analysis is often good enough to enable optimizations.
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The append function, of type list a -> list a -> list a, is translated to its approximate

version appendA, of type T (listA a) -> T (listA a) -> M (listA b). In other words, the

arguments are put under thunks T, and the result is produced by an explicit computation

M. This differs slightly with our formal translation where we simply translated a term t : τ

to JtK : M JτK. We can do away with that outer M because, typically, top-level functions are

values.

Finally, we translate the bodies of the functions. To match the syntax of Fig. 4.6, we

sequentialize expressions to ANF (Sabry and Felleisen, 1992) (if they are not already in this

form), so that every computation happens at a Let binding. We then translate the ANF

program to a monadic program, following Fig. 4.8.

Simplifying Ticks In our examples, we have simplified the translated code further to only

keep a single tick at the head of source function bodies. This incurs a change to the cost of

computations bounded by a multiplicative constant of the original cost. Considering that

those costs are purely abstract quantities to begin with, this seems an acceptable trade-off

to make the translated code more readable.

This simplification can be broken down in two steps. First, apply the following rewrite rules

to “float up” every tick in every subexpression:

bind t (fun x => tick >> k x) = (tick >> bind t k)

thunk (tick >> u) <= (tick >> thunk u)

where the inequality <= means in this context that every execution (x, nR) on the right-hand

side corresponds to an execution (x, nL) on the left-hand side with the same result but a

lower or equal cost nL <= nR. The equality should be interpreted as extensional equality.

That rewriting may increase the cost of programs, which is fine since we are eventually most

interested in finding upper bounds on that cost. Second, once all ticks are as high in the

program as they can be, we replace all consecutive ticks with a single one. The resulting
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“speed-up” of the computations is bounded by a constant multiplicative factor equal to the

longest chain of ticks substituted that way.

4.5. Mechanized Reasoning

A guiding principle in designing our methodology is to have reasoning rules that are both

local and modular. By local, we mean that we can reason about each function independently;

and by modular, we mean we can reason about the whole program by composing the results

of reasoning about its parts.

However, in doing so we face a challenge: clairvoyant call-by-value evaluation is an over-

approximation of call-by-need evaluation: it contains nondeterministic branches that would

not appear in an actual call-by-need evaluation. Therefore, to reason precisely about call-by-

need execution, we not only need reasoning rules that are general enough to contain many

nondeterministic results, but also selective enough to prune nondeterministic branches that

contain redundant steps.

We address this challenge with a dual specification methodology. For generality, a pessimistic

specification talks about the behaviors on all nondeterministic branches. For selectiveness,

an optimistic specification describes the behavior of specific branches.

The optimistic and pessimistic specifications The definitions of the pessimistic spec-

ification and the optimistic specification are shown in Fig. 4.12. Both are parameterized by

a specification relation r : a -> nat -> Prop which specifies a set of values and costs. A

pessimistic specification states that all nondeterministic branches of the program u satisfy

the relation r. On the other hand, the optimistic specification requires the existence of at

least one nondeterministic branch satisfying the relation r.

We use the following notations to denote these two kinds of specifications:12

Notation " u {{ r }} " := (pessimistic u r).

Notation " u [[ r ]] " := (optimistic u r).

12We omit the Coq notation levels in the code.
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Definition pessimistic {a} (u : M a) (r : a -> nat -> Prop) : Prop :=
forall x n, u x n -> r x n.

Definition optimistic {a} (u : M a) (r : a -> nat -> Prop) : Prop :=
exists x n, u x n /\ r x n.

Figure 4.12: The definitions of the pessimistic and optimistic specifications.

r x 0

(ret x) {{ r }}
ret

u {{ λx n. (k x) {{ λy m. r y (n+m) }} }}
(bind u k) {{ r }}

bind

r tt 1

tick {{ r }}
tick

u {{ r }} ∀x n, r x n → r′ x n

u {{ r′ }}
monotonicity

r Undefined 0 u {{ λx. r (Thunk x) }}
(thunk u) {{ r }}

thunk

∀x, t = Thunk x → (k x) {{ r }}
(k $! t) {{ r }}

forcing
u {{ r }} u {{ r′ }}

u {{ λx n. r x n ∧ r′ x n }}
conjunction

Figure 4.13: Reasoning rules for pessimistic specifications.

We show examples that use both pessimistic and optimistic specification in Section 4.6.

Reasoning rules We can define a set of reasoning rules for the pessimistic specification

and the optimistic specification, respectively. For each kind of specification, we build some

reasoning rules for the five basic monadic combinators (ret, bind, tick, thunk, and forcing)

described in Section 4.3. We can then reason about our programs purely based on these

reasoning rules plus a monotonicity rule.

Figure 4.13 shows the reasoning rules for pessimistic specifications. ret x satisfies the pes-

simistic specification r if the result x and the cost 0 are in the set of r. bind u k satisfies

the pessimistic specification r if all the results of u can be composed with the continuation k

such that all the final results are in the set of r. A tick satisfies the pessimistic specification

r if tt (the only value of the unit data type in Coq) and 1 are in the set of r. We also need
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r Undefined 0 ∨ u [[ λx. r (Thunk x) ]]

(thunk u) [[ r ]]
thunk

t = Thunk x (k x) [[ r ]]

(k $! t) [[ r ]]
forcing

u {{ r }} u [[ r′ ]]

u [[ λx n. r x n ∧ r′ x n ]]
conjunction

Figure 4.14: Reasoning rules for optimistic specifications.

a monotonicity rule to relax the pessimistic specification relation and a conjunction rule to

combine pessimistic specifications.

The term thunk u satisfies the pessimistic specification r if both nondeterministic branches

forked off from it satisfy the relation r. The forcing rule requires that its continuation k

satisfies the relation r when applied to the value contained in a Thunk; in the case that there

is no defined value within the thunk (i.e., forcing an Undefined), the pessimistic specification

is vacuously satisfied because the computation branch fails.

Figure 4.14 shows the reasoning rules for optimistic specifications. We omit the rules for the

ret, bind, and tick operators and the monotonicity rule here because they have the same

form as those of the pessimistic specification. There are two ways to give an optimistic

specification for thunk terms, corresponding to selecting one of the two different nondeter-

ministic branches that forked off from the thunk. In the branch where the computation is

skipped, we only need to show that Undefined and 0 are in the relation r. In the branch

where the computation is evaluated, we show that there exists a result in the computation

u such that wrapping it in a Thunk constructor satisfies the relation r. The forcing rule

requires its argument to be a defined value because forcing an Undefined results in failure.

When reasoning about a program, we need to select the proper optimistic rule at thunks so

that forcing an Undefined value never happens.

The conjunction rule for the optimistic specification is also slightly different because its

premises require both a pessimistic specification and an optimistic specification.
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Approximations Before showing how we use both the pessimistic and the optimistic

specifications for reasoning about lazy programs, we need to answer this question: in what

sense does an approximation function implement a pure function?

Recall the approximation types and pure types discussed in Section 4.4. We would like to

base our specification on pure types, as this is what we normally write as functional programs.

On the other hand, our implementation in the clairvoyance monad uses approximation types.

We can connect these approximation and pure types together. First observe that we can

inject pure types into partial types by thunking each subterm. We call the result an exact

approximation because it constructs an approximation which represents exactly the original

list.

Definition exact : list a -> listA a.

We cannot go the opposite way with a function, since approximations generally contain

less information than a full list. Instead, we generalize exact as a relation is_approx xsA xs

between a pure list xs on the right and any of its approximations on the left. A notation

turns it into an infix operator with syntax inspired by Haskell.

Definition is_approx : listA a -> list a -> Prop.

Infix "`is_approx`" := is_approx.

Approximations themselves are partially ordered, when the second is at least as defined as

the first. We also use infix notation for this relation.

Definition less_defined : listA a -> listA a -> Prop.

Infix "`less_defined`" := less_defined.

In our running example using lists, we also simplify things by using the same type a as the

type of elements for pure lists list a and list approximations listA a.
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More generally, we want to overload the function exact as well as relations is_approx and

less_defined, so that (1) their names can be reused for user-defined data types, (2) they are

automatically lifted through the thunk type constructor T.

Some properties describe and relate these three relations formally. These relations must be

defined and their properties must be proved for every user-defined approximation type; those

propositions and their proofs (which we omit) follow a common structure, so we conjecture

that they can be automated.

The less_defined relation is an order relation.

Proposition less_defined_order : Order less_defined.

The set of approximations for a pure value is downward closed.

Proposition approx_down :

xsA `less_defined` ysA -> ysA `is_approx` xs -> xsA `is_approx` xs.

The list xsA is an approximation of xs if and only if xsA is less defined than the exact

approximation of xs.

Proposition approx_exact : xsA `is_approx` xs <-> xsA `less_defined` (exact xs).

Exact approximations are maximal elements for the less_defined order.

Proposition exact_max : exact xs `less_defined` xsA -> exact xs = xsA.

A reference implementation of all the definitions shown in this section as well as proofs for

the above propositions on thunks and lists can be found in our public artifact (Li et al.,

2021b).

Functional correctness To say that our approximation function implements the pure

function, we would like two notions of correctness: (1) a partial correctness notion that

requires all the nondeterministic results of the approximation function to be approximations
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Theorem appendA_correct_partial {a} :
forall (xs ys : list a) (xsA ysA : T (listA a)),
xsA `is_approx` xs -> ysA `is_approx` ys ->
(appendA xsA ysA) {{ fun zsA _ => zsA `is_approx` append xs ys }}.

Theorem appendA_correct_pure {a} :
forall (xs ys : list a) (xsA ysA : T (listA a)),
xsA = exact xs -> ysA = exact ys ->
(appendA xsA ysA) [[ fun zsA _ => zsA = exact (append xs ys) ]].

Figure 4.15: Definitions of partial functional correctness and pure functional correctness.

of the result of the pure function; and (2) a pure correctness notion that states the existence

of a maximal approximation result that is exactly the pure function’s result.

We define the partial correctness of a function using the pessimistic specification, and the

pure correctness of a function using the optimistic specification. For example, the partial

and pure specifications of appendA (Section 4.4) are shown in Fig. 4.15. Given approximations

of two input lists xs and ys, appendA always, i.e., pessimistically, yields an approximation of

append xs ys. On the other hand, appendA optimistically yields exactly the list append xs ys

when applied to the exact approximations of xs and ys. Both theorems can be proved by

an induction over xs.

Cost specifications In this section, we show how we use both the pessimistic and the

optimistic specifications for reasoning about computation costs.

Using appendA as our running example, we first start with a pessimistic specification. Since

a pessimistic specification describes all the nondeterministic branches of a clairvoyant call-

by-value evaluation, it might contain spurious branches which overapproximate call-by-need

evaluation too much. Thus, it can only offer a loose upper bound for the computation cost.

Nevertheless, it is useful in specifying the lower bound, while we can rely on an optimistic

specification to tighten the bounds.

Taking the appendA function (Fig. 4.11) again as our example, we can give it a pessimistic

specification as follows:
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Fixpoint sizeX {a} (n0 : nat) (xs : T (listA a)) : nat :=
match xs with
| Thunk NilA => n0
| Thunk (ConsA _ xs1) => S (sizeX n0 xs1)
| Undefined => 0
end.

Definition is_defined {a} (t : T a) : Prop :=
match t with
| Thunk _ => True
| Undefined => False
end.

Figure 4.16: Definition of sizeX and is_defined.

Theorem appendA_cost_interval {a} : forall (xsA ysA : T (listA a)),

(appendA xsA ysA)

{{ fun zsA cost => 1 <= cost <= sizeX 1 xsA }}.

The xsA and ysA passed to the appendA function are approximations of the pure values xs

and ys.

The size of approximation lists, defined in Fig. 4.16,13 is a function intended purely for

reasoning, hence we name it sizeX, with a different suffix from implementations such as

appendA. It is also parameterized by the “size” of NilA, which is 0 or 1 depending on whether

its presence matters for a given specification. Here, the extra unit of time accounts for the

final call to appendA which matches on NilA.

A problem with this specification is that it gives only a range of the computation costs.

During the actual evaluation of the function p, the takeA function would never require more

than the first n elements of appendA’s resulting list, but this specification of appendA fails to

reflect that. We will only be able to compute that the combined cost has a lower bound of

3 and an upper bound of (sizeX 1 xsA)+ n+ 1, while in an actual call-by-need evaluation,
13The code in the figure has been simplified for clarity. The definition of sizeX is actually ill-formed

because the type T (listA A) is not a recursive type.
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the cost would never exceed 2n + 1. Note that the size of xsA can be bigger than n if it is

required with a higher demand elsewhere.

To address this problem, we give an optimistic specification to append. A first version states

that appendA reaches the lower bound of the interval in at least one execution.

Theorem appendA_whnf_cost {a} : forall (xsA ysA : T (listA a)),

(appendA xsA ysA)

[[ fun zsA cost => cost <= 1 ]].

The execution of appendA which satisfies that specification immediately discards the compu-

tation in the let~, producing only a result in weak head normal form (WHNF).

That specification could be strengthened to an equality cost = 1. However, it is important to

remember that results (zsA, cost) of a clairvoyant computation are formal approximations

of the behavior of a lazy program. zsA is an approximation of the function’s result, and cost

is an upper bound on its actual cost. Hence, only upper bounds on cost are meaningful

in optimistic specifications, while pessimistic specifications can assert both lower and upper

bounds. For that reason, we leave specifications of cost as inequalities even though the

simple specifications in this section are technically valid with equalities. Note also that

pessimistic upper bounds are quite fragile; they can be broken simply by adding spurious

thunks in a program.

Optimistic specifications about a single result such as appendA_whnf_cost are unhelpful in

most proofs, of course. A more expressive way to phrase optimistic specifications is to set

an arbitrary demand, raising the cost accordingly.

Examining executions of appendA more closely, we can distinguish two phases, with separate

specifications. Before reaching the end of the first list xsA, appendA computes an approxima-

tion of length n in time n, for any n smaller than the size of xsA.

Theorem appendA_prefix_cost {a} : forall n (xsA ysA : T (listA a)),

1 <= n <= sizeX 0 xsA ->
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(appendA xsA ysA) [[ fun zsA cost => n = sizeX 0 (Thunk zsA) /\ cost <= n ]].

The natural number n represents an explicit demand on the output of appendA xsA ysA: we

demand an approximation with n constructors ConsA, costing at most n units of time.

Another specification describes the execution of appendA that reaches the end of the first

list, yielding the most defined result—limited only by the possible partiality of ysA. As a

necessary condition, xsA must be an exact approximation—modulo the definedness of its

elements. Once we reach the end of the list xsA, the thunk ysA will be forced, so we require

it to be defined, using the is_defined predicate in Fig. 4.16. This guarantees that zsA will be

defined past the end of xsA, as specified by assigning a nonzero size to NilA in applications

of sizeX.14

Theorem appendA_full_cost {a} : forall (xs : list a) (xsA := exact xs) ysA,

is_defined ysA ->

(appendA xsA ysA) [[ fun zsA cost =>

length xs + sizeX 1 ysA = sizeX 1 (Thunk zsA) /\ cost <= length xs + 1 ]].

Natural numbers are not the most precise model of demand on lists: one may also specify

whether and to what extent the elements of the list in the first field of ConsA constructors

should be evaluated. In fact, approximation types such as listA are the most general way

to model demand. However, when list elements are not explicitly used, a natural number is

enough to formalize the main aspects of complexity analysis for list operations.

4.6. Case Study: Tail Recursion

We have already demonstrated our methodology on the program described in Section 4.2.

Here, we show how to apply this approach in another context: reasoning about functions

written with tail recursion. Tail recursion is a common optimization technique in the context

of an eager semantics. However, it can be a cause of performance degradation if not used

properly under lazy evaluation.
14The (xsA := exact xs) binding in the following snippet is desugared into a local definition using let.
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Tail recursive take Consider a tail recursive version of the take function from Section 4.2,

called take'. The key difference is the addition of an accumulator to its parameters:

Fixpoint take'_ {a} (n : nat) (xs : list a) (acc : list a) : list a :=

match n with

| O => rev acc

| S n' => match xs with

| nil => rev acc

| cons x xs' => take'_ n' xs' (x :: acc)

end

end.

Definition take' {a} (n : nat) (xs : list a) : list a := take'_ n xs nil.

Even though the list must be reversed in the base case, take' is better in an eager program-

ming language because the compiler can eliminate stack allocation (Friedman and Wise,

1974).

However, the original version is better for lazy evaluation, even if we ignore the cost of rev.

To get an intuition of why, consider the case where we only demand the WHNF of the

resulting list. This variant take' must go over n elements of the list before it returns the

accumulator. In comparison, the original take can immediately reveal the first element of

the resulting list in any of its pattern matching branches.

Mechanized reasoning With the help of mechanized reasoning, we can better under-

stand these functions’ difference from their specifications. In the specifications below, we

axiomatize the cost of rev used in take'_ to have a cost of 0. The axiom would not make

Coq’s logic unsound because we can define such a function in the clairvoyance monad by

not inserting ticks. We introduce this axiom so we can compare only the costs incurred

by the recursive calls on take'_ and take. With this set up, let’s look at the pessimistic

specification of take'A_, the version of take'_ written in the clairvoyance monad:15

15For simplicity, we omit the functional correctness parts of the specifications in this section.
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forall (n : nat) (xs : list a) (xsA : listA a) (acc : list a) (accA : T (listA a)),

xsA `is_approx` xs -> accA `is_approx` acc ->

(take'A_ n xsA accA) {{ fun zsA cost => cost = min n (length xs) + 1 }}.

The pessimistic specification describes a rather precise cost on all the nondeterministic

branches of take'A_. Furthermore, the cost is purely decided by the pure values n and xs—

the fact that the cost does not depend on the actual approximations zsA output by take'A_

is a sign that the function may not be making effective use of laziness.

However, to show that take is better than take', we need to show that take can cost less than

take'. What specification should we use to show that? One possibility is the pessimistic

specification. If we take this approach, we can show that the cost of takeA (take in the

clairvoyance monad) is upper bounded by n and the size of the approximation xsA:

forall (n : nat) (xs : list a) (xsA : T (listA a)),

xsA `is_approx` xs ->

(takeA n xsA) {{ fun zsA cost => cost <= min n (sizeX 0 xsA) + 1 }}.

Since approximations are always smaller than their pure values, the cost shown here is smaller

than that of take'A_—if such costs indeed exist. Unfortunately, the pessimistic specification,

which quantifies universally over all executions, does not guarantee the existence of an

execution. In fact, take'A admits no execution at all if its arguments are not sufficiently

defined, so it satisfies the above specification vacuously.

To show the existence of certain costs, we need an optimistic specification:

forall (n m : nat) (xs : list a) (xsA : T (listA a)),

1 <= m -> m <= min (n + 1) (sizeX 1 xsA) ->

xsA `is_approx` xs ->

(takeA n xsA) [[ fun zsA cost => cost = m ]].
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The pessimistic specification of take'A_ and the optimistic specification of takeA help unveil

the key difference between these two: take'A_ does not make effective use of laziness, while

the cost of takeA scales with its demand.

List reversal On the other hand, there are functions like rev that do benefit from tail

recursion. Consider a naive version without tail recursion:

Definition rev' {a} (xs : list a) : list a :=

match xs with

| nil => nil

| x :: xs' => append (rev' xs') (cons x nil)

end.

And the version with tail recursion:

Fixpoint rev_ {a} (ys : list a) (xs : list a) : list a :=

match xs with

| nil => ys

| x :: xs => rev_ (x :: ys) xs

end.

Definition rev {a} (xs : list a) : list a := rev_ nil xs.

One reason that the non-tail-recursive version is worse is that append has a non-constant

cost, which leads rev to have a cost which grows quadratically in the length of the in-

put list. However, even if we imagine a constant time version of append (e.g., difference

lists (Hughes, 1986), catenable lists (Okasaki, 1999)), this version would not be better than

the tail-recursive one. Intuitively, this is because both versions need to traverse the entire

list xs to return the first element of the resulting list, which is the last element of the input

list. If we consider the stack usage and compiler optimizations, the tail-recursive version

would be generally more efficient and does not risk causing stack overflow.
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Again we can inspect these two versions of rev formally to better understand their difference.

Like above, we axiomatize append to have a cost of 0 so that our analysis only considers the

cost incurred by the recursive calls of rev_ and rev'. This simplification makes rev' cost

less but will only strengthen our claim that rev' would not beat rev.

First, we can show a rather specific cost with the pessimistic specification of revA:

forall (xs : list a) (xsA : T (listA a)),

xsA `is_approx` xs ->

(revA xsA) {{ fun zsA cost => cost = length xs + 1 }}.

In that specification, the cost is associated with the pure input value, and is independent

of the output value, which suggests that revA does not make use of laziness. Indeed, this is

true: we must iterate over the entire list xs to get the first element of the resulting list.

We can also prove that rev'A satisfies the following pessimistic specification:

forall (xs : list a) (xsA : T (listA a)),

xsA `is_approx` xs ->

(rev'A xsA) {{ fun zsA cost => cost = length xs + 1 }}.

This specification shows that the cost of rev'A also does not depend the approximations of

xs, confirming our intuition that rev'A must also iterate over the entire list.

Left and right folds One famous example concerning laziness is the difference between

foldl and foldr. While it seems that the major difference is just their directions of folding,

they actually have rather different costs. For simplicity, let’s only consider these operations

on lists. The definitions of foldl and foldr are shown below:

Fixpoint foldl {a b} (f : b -> a -> b) (v : b) (xs : list a) : b :=

match xs with

| nil => v

| cons x xs => foldl f (f v x) xs

end.
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Fixpoint foldr {a b} (v : b) (f : a -> b -> b) (xs : list a) : b :=

match xs with

| nil => v

| cons x xs => f x (foldr v f xs)

end.

A formal analysis of these functions must also consider the cost of the function f passed into

them. For simplicity, let’s assume that f has a cost of only 1. We can then prove that the

translated versions of the above two functions satisfy the following pessimistic specification:

(** The pessimistic specification of [foldlA]. *)

forall f (xs : list a) (xsA : T (listA a)) (v : b) (vA : T bA),

(forall x y, (f x y) {{ fun bA cost => exists b, bA `is_approx` b /\ cost = 1 }}) ->

xsA `is_approx` xs -> vA `is_approx` v ->

(foldlA f vA xsA)

{{ fun zsA cost => cost >= length xs + 1 /\ cost <= 2 * length xs + 1 }}.

(** The pessimistic specification of [foldrA]. *)

forall f (xs : list a) (xsA : T (listA a)) (v : b) (vA : T bA),

(forall x y, (f x y) {{ fun bA cost => cost = 1 }}) ->

xsA `is_approx` xs -> vA `is_approx` v ->

(foldrA f vA xsA)

{{ fun zsA cost => cost >= 1 /\ cost <= 2 * sizeX 0 xsA + 1 }}.

The pessimistic specifications suggest that foldrA makes better use of laziness because its

cost is bounded by the length of approximation xsA. However, as we have discussed earlier,

we need to show that there are indeed costs lower than the lower bound of foldlA that exists

in some nondeterministic branches of foldrA. For that, we once again need to show the

optimistic specification of foldrA:

forall f (xs : list a) (xsA : T (listA a)) (v : b) (vA : T bA) n,

1 <= n -> n < sizeX 0 xsA ->

xsA `is_approx` xs -> vA `is_approx` v ->
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(forall x y, (f x y) [[ fun bA cost => cost = 1 ]]) ->

(foldrA f vA xsA) [[ fun zsA cost => cost = 2 * n ]].

(** And a special cost exists when [xs] is fully evaluated. *)

forall f (xs : list a) (xsA : T (listA a)) (v : b) (vA : T bA),

xsA = exact xs -> vA `is_approx` v -> is_defined vA ->

(forall x y, (f x y) [[ fun bA cost => cost = 1 ]]) ->

(foldrA f vA xsA) [[ fun zsA cost => cost = 2 * length xs + 1 ]].

This concludes that, under lazy evaluation, foldl and foldr have the same worst-case cost,

but foldr has a lower cost if the demand is lower.

4.7. Extension: One Embedding to Rule Them All

In this section, I generalize the embedding rules shown in Section 4.4 to a unified embed-

ding that works for computation cost analysis of call-by-value, call-by-name, and call-by-

need (clairvoyant) programs, inspired by Petricek (2012) (Section 2.4, Fig. 2.7). The unified

embedding is shown in Fig. 4.17.

In Petricek (2012), a functions of type τ1 → τ2 is translated to M Jτ1K → M Jτ2K, where

M : Type -> Type is a monad. Here, we instead translate such a function to P Jτ1K → M Jτ2K,

where P is a parameter of type Type -> Type. The embedding rules for terms are almost the

same as the rules in Section 4.4, except that we replace thunk with pack, and force with

unpack, two functions that “convert” a datatype between P and M. The definitions of these

functions depend on the evaluation strategy of the original language.

Under a call-by-value semantics, P is an identity functor, so the type of pack is equivalent to

M a -> M a and the type of unpack is equivalent to a -> M a. Our pack function simply does

nothing in this case, while unpack “wraps” a pure value inside M. In this case, a Jlet x =

t in uK is essentially translated to tick >> let! x := JtK in JuK, which forces the evaluation

of JtK before running JuK. This is also the same as the call-by-value semantics proposed by

Wadler (1992).
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Original Language: λfoldr
Embedding Language: Coq
Embedding Domain:

Variable P : Type -> Type.
Variable M : Type -> Type.
Context `{Monad M}.
Parameter pack : forall {a}, M a -> M (P a).
Parameter unpack : forall {a}, P a -> M a.

Embedding Rules:

Jlet x = t in uK = tick >> let! x := pack JtK in JuK
JxK = tick >> unpack x

Jλx. tK = ret (fun x => JtK)
Jt xK = tick >> let! f := JtK in f x

JNilK = ret NilA

JCons x yK = ret (ConsA x y)

Jfoldr tl (λy1 y2. tn) xK = foldrA JtlK (fun y1 y2 => JtnK) x
Implementation of pack for λfoldr (call-by-value):

Definition P := id.
Definition pack {a} : M a -> M (P a) := id.
Definition unpack {a} : P a -> M a := ret.

Implementation of pack for λfoldr (call-by-name):

Definition P := M.
Definition pack {a} : M a -> M (P a) := ret.
Definition unpack {a} : P a -> M a := id.

Implementation of pack for λfoldr (clairvoyant):

Definition P := T.
Definition pack {A} M a -> M (P a) := thunk.
Definition unpack {a} : P a -> M a := force.

Figure 4.17: A unified embedding for λfoldr in Coq under three different calling conventions.

Under a call-by-name semantics, P coincides with the monad M. In this case, the type

of pack is equivalent to M a -> M (M a) and its definition is essentially the same as malias

under the call-by-name semantics (Fig. 2.7). Indeed, a Jlet x = t in uK is translated

to tick >> let! x := ret JtK in JuK, which means that the computation JtK, instead of the

result of JtK, is passed to let! (i.e., bind).
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Under a call-by-need (clairvoyant) semantics, P is just T (Fig. 4.4). The embedding rules in

Fig. 4.17 is just the same as those of Fig. 4.8, if we replace pack with its definition thunk,

and unpack with its definition force.
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CHAPTER 5

Program Adverbs and Tlön Embeddings

This chapter references previously published paper Program Adverbs and Tlön Embed-

dings (Li and Weirich, 2022a), with adjustments to the flow and terminology. All the Coq

code and theorem presented in this chapter can be found in a publicly available artifact (Li

and Weirich, 2022b). I am the main contributor of the paper as well as the artifact.

The name Tlön embedding is a reference to the short story Tlön, Uqbar, Orbis Tertius by

Jorge Luis Borges. In the short story, Tlön is an imaginary world, where its parent language

does not have any nouns, but only “impersonal verbs, modified by monosyllabic suffixes (or

prefixes) with an adverbial value” (Borges, 1940).

5.1. Introduction

“Where to the draw the line?”

This is a question I proposed in Section 2.3. Where to draw the line between shallow and

deep embeddings is a design decision that one has to deliberately consider when using mixed

embeddings. Fortunately, for many effectful programs, there is a useful guideline pointed

out by research based on interaction trees (Section 3.2): modeling the pure parts of the

computation “shallowly” and the effectful parts “deeply”.

Indeed, many recent efforts have focused on mixed embeddings based on interaction trees

or their variants. Besides the works I mentioned in Section 3.2, there are also various

applications based on free monads or their variants (Capretta, 2005; Christiansen et al.,

2019; Dylus et al., 2019; Ikebuchi et al., 2022; Letan et al., 2021; McBride, 2015; Nigron and

Dagand, 2021; Piróg and Gibbons, 2014; Swamy et al., 2020).16

16In this dissertation, I use free monads to refer to the inductive version of free monads. The term includes
variants such as freer monads (Kiselyov and Ishii, 2015). I use interaction trees to specifically refer to the
coinductive variant that I talked about in Section 3.2.
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literals b ::= true | false
terms t, u ::= x | b | ¬t | t ∧ u | t ∨ u

Figure 5.1: The syntax of Bvar.

In this chapter, we further build on this idea of separating pure and effectful parts in a mixed

embedding, but inspect the following question: Why use interaction trees or free monads?

Interaction trees or free monads model one general computation pattern that is common in

many languages. However, there are other computation patterns that are not captured by

these structures.

Following this observation, we propose a new class of mixed embeddings called Tlön embed-

dings. Tlön embeddings model programs using structures called program adverbs, which are

reifications of familiar type classes (e.g., Applicative, Selective, Monad) paired with equa-

tional theories. Like free monads, these free structures can be used to combine shallowly

embedded pure computation with deeply embedded computational effects. However, pro-

gram adverbs provide choices in the semantics through the selection of the structure and

equational theory. For example, the “statically” adverb, based on applicative functors and

their free theory, models computation where control flow and data flow in the semantics are

fixed. Or, by modifying the equational theory of the free applicative structure to include

commutativity, we can describe computation that is “statically and in parallel”.

5.2. Embeddings for Effectful Programs

In this section, we first demonstrate embedding an effectful language using the different

embedding styles covered in Chapter 2. For the purpose of demonstrating program adverbs,

we consider a special scenario, where our language models a simple circuit that reads from

unknown external devices. We call the original language for modeling the circuit Bvar.

The syntax of Bvar appears in Fig. 5.1. Semantically, we want the Boolean operators to have

their usual semantics. However, Bvar can read from the variables that represent references
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to external devices and we don’t want to fix those values in the semantics. Furthermore, we

don’t know if the values are immutable: they might change over time, or they might change

after each read, etc. Since Bvar models circuits, binary operations such as ∧ and ∨ run in

parallel.

We use J·KS , J·KD, J·KM , and J·KA to represent embedding rules for embedding a term of Bvar

in shallow, deep, and two mixed embeddings, respectively.

To compare embeddings, we will use each to consider the following questions regarding Bvar:

1. Is x equivalent to x ∧ x?

2. Is x equivalent to x ∧ true?

3. Is t ∧ u equivalent to u ∧ t?

4. Is the number of variable accesses always less than or equal to 2 to the power of the

circuit’s depth?

Because we are modeling a circuit language that uses unknown external devices, we don’t

want to be able to prove or disprove property (1). This property may hold or not hold

depending on the situation. If the external devices are immutable, this property will be

true. Otherwise, we may be able to falsify it. In contrast, we would like our embedding to

give us tools to verify properties (2) and (3) because these properties should hold regardless

of the properties of our external device. The former holds because on both sides of the

equivalence relation we have only accessed the variable x once. The latter is due to circuits

run ∧ in parallel—whatever result appears in t ∧ u can also appear in u ∧ t and vice versa,

regardless of what effects could be involved in t or u. The last property (4) is a syntactic

property of the circuit.

A shallow embedding To use a shallow embedding to represent the semantics of Bvar,

we need an embedding domain/semantic domain that can represent the effects of reading

from external devices—the most common way of doing this is using monads. But which
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Original Language: Bvar

Embedding Domain:

Definition Reader (A : Type) : Type :=
(var -> bool) -> A.

Definition ret {A} (a : A) : Reader A :=
fun _ => a.

Definition bind {A B} (m : Reader A)
(k : A -> Reader B) : Reader B :=
fun v => k (m v) v.

Definition ask (k : var) : Reader bool :=
fun m => m k.

Embedding Language: Coq
Embedding Rules:

J·KS : Reader bool

JtrueKS = ret true

JfalseKS = ret false

JxKS = ask x

J¬tKS = negb <$> JtKS
Jt ∧ uKS = t'<- JtKS; u'<- JuKS;

ret (andb t' u')

Jt ∨ uKS = t'<- JtKS; u'<- JuKS;
ret (orb t' u')

Figure 5.2: A shallow embedding for Bvar.

one? A simple option is the reader monad (Jones, 1995; Wadler, 1992). We show core

definitions of a specialized reader monad in Fig. 5.2. For simplicity, we specialize the monad

so that its environment has type var -> bool. The commonly used reader monad is more

general that the type of its environment is parameterized. Of course, the reader monad is

just one possible embedding domain/semantic domain, other candidates include Dijkstra

monads (Swamy et al., 2013b), predicate transformer semantics (Swierstra and Baanen,

2019), etc.

Using the reader monad, we can prove that property (1) is true, using ≃S , the pointwise

equality of functions.

More specifically, we can prove the following Coq theorem:

forall x, ask x ≃S x1 <- ask x; x2 <- ask x; ret (andb x1 x2)

We “ask” twice on the right hand side of the equivalence to model accessing variable x twice

during program runtime. However, x1 equals to x2 in our case since nothing has changed

the global store. After proving that, the theorem can be proved via a case analysis on x1.

However, note that our proof relies on “nothing has changed the global store,” but we don’t

know if this is true, as we don’t know anything about the characteristics of the external

66



device. Indeed, property (1) should not be true if we have a device where its values change

over time: the value of x might change between two variable access. This is a problem

with our choice of semantic domain. By choosing the reader monad, we introduce more

assumptions over the semantics of Bvar, which results in proving a property that is not

supposed to be true in the original language Bvar. Although this is not a problem with the

approach of shallow embedding—we can choose a different monad than the reader monad,

the style does force us to choose a concrete semantic domain early.

Unlike property (1), property (2) is true even though we don’t know anything about the ex-

ternal device. This is because on both sides of the equivalence relation we have only accessed

the variable x once. Property (2) can be stated as follows with our shallow embedding:

forall x, ask x ≃S x1 <- ask x; ret (andb x1 true)

The proof follows from the theories of Coq’s bool type and the Reader monad. However,

even though this property should be true regardless of the external device, our mechanical

proof still relies on the assumption that the external device is immutable—this is again

because the property is stated in terms of the reader monad, which assumes that the external

environment is immutable. If we change the shallow embedding to use a different semantic

domain, we would need to prove this property again.

Property (3) is true and we can prove it to be true using our shallow embedding, but that

is just a lucky hit. Even though we know nothing about the external device, there is an

equivalence between t ∧ u and u ∧ t because the two operands t and u run in parallel in a

circuit. A proof based on our shallow embedding would, on the other hand, be based on the

wrong assumption that the external device is immutable.

We cannot state property (4) with our shallow embedding. Our shallow embedding does not

retain the syntactic structure of the original program so we cannot define a function that

calculates the depth of the circuit.

67



Original Language: Bvar

Embedding Domain:

Inductive term :=
| Var (v : var)
| Lit (b : bool)
| Neg (t : term)
| And (t : term) (u : term)
| Or (t : term) (u : term).

Embedding Language: Coq
Embedding Rules:

J·KD : term

JtrueKD = Lit true

JfalseKD = Lit false

JxKD = Var x

J¬tKD = Neg JtKD
Jt ∧ uKD = And JtKD JuKD
Jt ∨ uKD = Or JtKD JuKD

Figure 5.3: A deep embedding for Bvar.

A deep embedding In our deep embedding, we can use the term data type shown in

Fig. 5.3 as the embedding domain. Our embedding rules are shown in the same figure.

Without a semantic domain, we cannot prove any of the first three properties. This is

actually ideal for answering question (1) since we know nothing about the external device

so we should not be able to prove it (nor should we be able to prove it wrong!). However,

by leaving the entire syntax tree uninterpreted we are now unable to prove property (2) or

(3), either.

A way out of this quandary is to define a coarser equivalence relation for ASTs and use that

relation in the statement of properties (2) and (3). For example, we can interpret each term

using the reader monad (as in the shallow embedding) and use the point-wise equivalence

relation for that type. The proofs are essentially the same as the above.

However, we face a similar problem with the shallow embedding: If we would like to change

the semantic domain, we need to prove our properties again. This suggests that another

intermediate layer between deep and shallow embeddings might be helpful.

The primary benefit we have by using the deep embedding is that we can now state and

prove property (4). This is because the deep embedding gives us a representation of the

program’s original syntactic structure. This allows us to define the following function that

counts the depth of a circuit, similar to the no_minus function we define in Section 2.2:
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Original Language: Bvar

Embedding Domain:

Inductive FreeMonad (E : Type -> Type) R :=
| Ret (r : R)
| Bind {X} (m : E X)

(k : X -> FreeMonad E R).

Fixpoint bind {E A B} (m : FreeMonad E A)
(k : A -> FreeMonad E B) : FreeMonad E B :=
match m with
| Ret r => k r
| Bind m' k' =>

Bind m' (fun a => bind (k' a) k) end.

Variant DataEff : Type -> Type :=
| GetData (v : var) : DataEff bool.

Embedding Language: Coq
Embedding Rules:

J·KM : FreeMonad DataEff bool

JtrueKM = Ret true

JfalseKM = Ret false

JxKM = Bind (GetData x) Ret

J¬tKM = negb <$> JtKM
Jt ∧ uKM = t'<- JtKM; u'<- JuKM ;

Ret (andb t' u')

Jt ∨ uKM = t'<- JtKM; u'<- JuKM;

Ret (orb t' u')

Figure 5.4: A mixed embedding based on free monads.

Fixpoint depth (t : term) : nat :=

match t with

| Var _ => 0

| Lit _ => 0

| Neg t => depth t + 1

| And t u => max (depth t) (depth u) + 1

| Or t u => max (depth t) (depth u) + 1

end.

Since we assume a straightforward semantics for Bvar, the number of variable access at

runtime equals to the number of variables appeared in a term, so we can directly prove

property (4) by an induction over the term data type.

A mixed embedding based on free monads The core definitions of free monads are

in the left column of Fig. 5.4. They are very similar to interaction trees (Fig. 3.4): the Ret

constructor is the same as the Ret constructor of itree, and Bind is the same as Vis of itree.

However, FreeMonads are inductive and they do not contain a constructor that represents a

silent step.
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For any effect type, FreeMonad E is a monad as demonstrated by the Ret constructor and bind

function.17 The bind function pattern matches its first argument m and, in the case of Bind,

passes its second arguments k to the continuation of m. This “smart constructor” ensures

that binds always associate to the right.

To embed Bvar, we model reading data from external devices using the effect type DataEff.

This datatype includes only one (abstract) effect, called GetData. This constructor represents

a data retrieval with the variable v : var that returns an unknown bool. Similar to how

the term data type says nothing about the semantics of Bvar, the effect data type DataEff

says nothing about the semantics of a data read. As a result, we say that the effects are

embedded deeply in this style.

The embedding rules appear on the right side of Fig. 5.4. The translation strategy is almost

the same as embedding Bvar using the reader monad. The only exception is in the variable

case (the effectful part): here the Bind constructor marks the occurrence of the GetData effect.

In this mixed embedding, the pure parts of a Bvar program have been translated to a shallow

semantic domain, but the effectful parts remain abstract. It turns out that this separation

is useful for both questions (1) and (2).

For question (1), we cannot answer it. This is desirable since we don’t know if it’s true

without knowing more about the external device.

We can prove that property (2) is true even though the read effect is not interpreted—this

is because the property follows from the monad laws (Fig. 5.518). However, we cannot prove

property (3) because the commutativity law is not one of the monad laws.

Ideally, we would also like to state and prove property (4). However, the dynamic nature

of free monads forbids us from statically inspecting the syntactic structure of the program.
17And monad laws that can be proved in Coq.
18The >>= symbol is the infix operator for bind.
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Left identity : ret a >>= h = h a

Right identity : m >>= ret = m

Associativity : (m >>= g) >>= h = m >>= (fun x => g x >>= h)

Figure 5.5: The monad laws.

Original Language: Bvar

Embedding Domain:

Inductive ReifiedApp (E : Type -> Type) R :=
| EmbedA (e : E R)
| Pure (r : R)
| LiftA2 {X Y} (f : X -> Y -> R)
(a : ReifiedApp E X) (b : ReifiedApp E Y).

Embedding Language: Coq
Embedding Rules:

J·KA : ReifiedApp DataEff bool

JtrueKA = Pure true

JfalseKA = Pure false

JxKA = EmbedA (GetData x)

J¬tKA = negb <$> JtKA
Jt ∧ uKA = LiftA2 andb JtKA JuKA
Jt ∨ uKA = LiftA2 orb JtKA JuKA

Figure 5.6: A mixed embedding based on reified applicative functors.

Interpreting the embedding does not help us, either, since that would not preserve the

original syntactic structure.

Our success with questions (1) and (2) suggests that we have found an useful intermediate

layer between shallow and deep embeddings, but our failure in stating or proving properties

(3) and (4) indicates that we haven’t yet found the most suitable representation for this

circuit language.

Another mixed embedding based on reified applicative functors Figure 5.6 shows

a mixed embedding whose embedding domain is a type that reifies the interface of applicative

functors (Fig. 5.7). As in free monads, this datatype is parameterized by deeply embedded

abstract effects. These effects, of type E R, are recorded by the EmbedA data constructor.

However, instead of constructors for ret and bind, this datatype includes constructors for

pure and liftA2, the two operations that define applicative functors.19 The Pure constructor
19Alternatively, Applicative can also be defined by pure and another operation <*> of type

F (A -> B) -> F A -> F B, where F is an Applicative instance. These two definitions are equivalent, as
we can derive the definition of <*> from liftA2 and vice versa.
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Class Functor (F : Type -> Type) :=
{ fmap : forall {A B}, (A -> B) -> F A -> F B }.

Class Applicative (F : Type -> Type) `{Functor F} :=
{ pure : forall {A}, A -> F A ;
liftA2 : forall {A B C}, (A -> B -> C) -> F A -> F B -> F C }.

Class Selective (F : Type -> Type) `{Applicative F} :=
{ selectBy : forall {A B C}, (A -> ((B -> C) + C)) -> F A -> F B -> F C }.

Class Monad (F : Type -> Type) `{Applicative F} :=
{ ret : forall {A}, A -> F A ;
bind : forall {A B}, F A -> (A -> F B) -> F B }.

Default fmap definitions
Definition fmap_monad {m} `{Monad m} {a b} (f : a -> b) (x : m a) : m b :=
x >>= (fun y => ret (f y)).

Definition fmap_ap {t}`{Applicative t}{a b} (f: a -> b) (x : t a) : t b :=
liftA2 id (pure f) x.

Figure 5.7: Coq type classes for functors, applicative functors, selective functors, and mon-
ads, as well as default definitions of fmap.

shallowly “embeds” a pure computation into the domain, and LiftA2 “connects” two com-

putations that potentially contain effect invocations. These constructors provide a trivial

implementation of the Applicative type class for this datatype.

Our embedding uses a deep embedding of variable reads, using the EmbedA data constructor

with the DataEff type from the previous embedding. Because, as in free monads, this effect

is modeled abstractly, we cannot prove or disprove (1).

The embedding rules use the applicative interface in the datatype to translate the constants,

unary and binary operators. These components are modeled shallowly (i.e., as Boolean con-

stants and operators), but the program’s syntactic structure is retained by the translation.

However, because of the retainment, we need an additional equivalence relation to equate

semantically equivalent terms that are not syntactically equal. To prove (2), we include the

right identity law of applicative functors in the equivalence (denoted by ∼=):

∀y, (fun _ x => x) a y = f a y

liftA2 f (pure a) b ∼= b

72



This law is sufficient to show that (2) holds.

To model the parallelism of circuits, we could include the commutativity law in the equiva-

lence:

liftA2 f a b ∼= liftA2 (flip f) b a

This is sufficient to show (3). Note that this is not one of the applicative functor laws. We

defer showing the soundness of including this rule in the equivalence to Section 5.3.4.

This embedding also preserves enough of the syntax of the original program to prove (4).

To do so, we must first calculate the depth of circuits and the number of variables under

this encoding.

Fixpoint app_depth {E A} (t : ReifiedApp E A) : nat :=

match t with

| EmbedA _ => 0

| Pure _ => 0

| LiftA2 _ t u => 1 + max (app_depth t) (app_depth u)

end.

Fixpoint app_numVar {E A} (t : ReifiedApp E A) : nat :=

match t with

| EmbedA _ => 1

| Pure _ => 0

| LiftA2 _ t u => (app_numVar t) + (app_numVar u)

end.

Then we can formalize (4) in Coq as follows:

Theorem heightAndVar : forall (c : ReifiedApp DataEff bool),

app_numVar c <= Nat.pow 2 (app_depth c).

The theorem is provable by an induction over c.
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Furthermore, this embedding also allows us to reason about semantic properties that de-

pend on syntactic structures of circuits. One example is a semantics that includes a cost

model, where accessing variables is associated with a cost. Due to this, we do not want our

equivalence to equate, for example, x ∧ u ∧ t ∧ v and (x ∧ u) ∧ (t ∧ v) because they are not

equivalent in their costs when parallelization is present. Indeed, we cannot show that they

are equivalent with our embedding due to the absence of associativity in our equivalence.

Tlön embeddings Just as the reader monad models one particular effect, free monads

model one particular computation pattern. Unfortunately, that particular computation

pattern is not suitable for our Bvar example, because it does not model parallel computa-

tion (i.e., property (3)), nor does it capture the static data and control flows (i.e., prop-

erty (4)). Instead we saw that the mixed embedding in the previous subsection, based on

reified applicative functors, is a better approach.

Can we generalize the key idea even further? If we go beyond Bvar, we might need to model

other computation patterns. Are there other mixed embeddings that would be suitable for

these tasks? How might we derive them?

To that end, we identify a novel set of mixed embeddings that we call Tlön embeddings. The

goal of these embeddings is to provide flexibility in our models of effectful computation. Here,

we define effects as communications with external environment that are performed by some

explicit operations. For example, mutable states are effects which can be explicitly incurred

by operations such as get and set. For the same reason, we also consider I/O (with operations

like read, print, etc.) and exceptions (with operations like throw, etc.) as effects. We define

Tlön embeddings by identifying a set of program adverbs that specify the embedding type

and equational theory used in the embedding. For example, the embedding in Fig. 5.6 is

based on an adverb composed of the ReifiedApp type and an equational theory based on

some laws of commutative applicative functors.

The flexibility that program adverbs provide can perhaps be understood by comparing them

with effects: effects do certain actions, and program adverbs model how these actions are
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done—similar to the difference between verbs and adverbs. For example, the adverb we used

in Fig. 5.6 is called “statically and in parallel”, which states that there is a static dependency

between different effect invocations and some of these effect invocations are executed in

parallel.

In the next section, we define our set of program adverbs more precisely and discuss the

reasoning principles that they provide for effectful computation.

5.3. Program Adverbs

Program Adverbs are the building blocks of Tlön embeddings. Mathematically, they are

composed of two parts: a syntactic part, called the adverb data type, and a semantic part,

called the adverb theory. More formally, we define program adverbs as follows:

Definition 1 (Program Adverb). A program adverb is a pair (D,∼=D). D is called the adverb

data type and is parameterized by an effect E and a return type R. The ∼=D operation is

called the adverb theory of D. It is a binary operation that defines an equivalence relation

on D(E,R) for any E and R.

In the rest of the chapter, we abbreviate ∼=D as ∼= when D is clear from the context.

In Coq terms, an adverb data type D has the type (Type -> Type) -> Type -> Type. The first

parameter of Type -> Type is the effect E and it’s parameterized by its own return type; the

second parameter is the return type R. The adverb theory ∼= is a typed binary relation.

More concretely:

Class Adverb (D : (Type -> Type) -> Type -> Type) :=

{ Equiv {E R} : relation (D E R) ;

equiv {E R} : Equivalence (@Equiv E R) }.

Notation "a ∼= b" := (Equiv a b).

where D is the adverb data type, Equiv is the adverb theory ∼=, and equiv is a proof showing

that Equiv is an equivalence relation. The datatype relation is defined as:

Definition relation (A : Type) := A -> A -> Prop.
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(* Streamingly *)
Inductive ReifiedFunctor (E : Type -> Type) (R : Type) : Type :=
| EmbedF (e : E R)
| FMap {X : Type} (g : X -> R) (f : ReifiedFunctor E X).

(* Statically and StaticallyInParallel *)
Inductive ReifiedApp (E : Type -> Type) (R : Type) : Type :=
| EmbedA (e : E R)
| Pure (r : R)
| LiftA2 {X Y : Type} (f : X -> Y -> R)

(a : ReifiedApp E X) (b : ReifiedApp E Y).

(* Conditionally *)
Inductive ReifiedSelective (E : Type -> Type) (R : Type) : Type :=
| EmbedS (e : E R)
| PureS (r : R)
| SelectBy {X Y : Type} (f : X -> ((Y -> R) + R))

(a : ReifiedSelective E X) (b : ReifiedSelective E Y).

(* Dynamically *)
Inductive ReifiedMonad (E : Type -> Type) (R : Type) : Type :=
| EmbedM (e : E R)
| Ret (r : R)
| Bind {X : Type} (m : ReifiedMonad E X) (k : X -> ReifiedMonad E R).

Figure 5.8: The adverb data types

In addition to the equivalence relations, we can also define refinement relations on program

adverbs. We will show in Section 5.4.3 some adverbs with refinement relations, but equiva-

lence relations would suffice for most adverbs, so we only include them in the core definitions

of adverb theories. Refinement relations can be added on demand.

This definition is overly general, so we focus our attention only on program adverbs that are

sound according to the definition that we will develop below. Furthermore, in this chapter

we will only consider adverbs defined by reifying classes of functors.

5.3.1. Adverb Data Types and Theories

The four key adverb data types, shown in Fig. 5.8, are derived from the four type classes

shown in Fig. 5.7. We have already seen one before in the applicative embedding in Fig. 5.6.

Other definitions follow a similar pattern: the constructors of each data type include one for
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Congruence Rule

Congruence :
a1 ∼= a2 b1 ∼= b2

liftA2 f a1 b1 ∼= liftA2 f a2 b2

Applicative Functor Laws

Left Identity :
∀y, (fun _ x => x) a y = f a y

liftA2 f (pure a) b ∼= b

Right Identity :
∀x, (fun x _ => x) x b = f x b

liftA2 f a (pure b) ∼= a

Associativity :
∀x y z, f x y z = g y z x

liftA2 id (liftA2 f a b) c ∼= liftA2 (flip id) a (liftA2 g b c)

Naturality :
∀x y z, p (q x y) z = f x (g y z)

liftA2 p (liftA2 q a b) ∼= liftA2 f a . liftA2 g b

Equivalence Properties

Reflexivity :
a ∼= a

Symmetry :
a ∼= b

b ∼= a

Transitivity :
a ∼= b b ∼= c

a ∼= c

Figure 5.9: The equivalence relation for ReifiedApp.

embedding effects (of type E R) and a constructor that reifies the interface of each method

of the type class.

In addition to an adverb data type, every program adverb also comes with some theories,

defined by an equivalence relation ∼=. The purpose of the ∼= relation is to equate all compu-

tations that are semantically equivalent regardless of what effects are present.

For example, an adverb called Statically is composed of the ReifiedApp datatype with an

equational theory based on three sorts of rules: (1) a congruence rule with respect to LiftA2,

(2) the laws of applicative functors (McBride and Paterson, 2008), and (3) the equivalence

properties (i.e., reflexivity, symmetry, transitivity). We show the concrete rules in Fig. 5.9.
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Fixpoint interpA {E I : Type -> Type} `{Applicative I} {A : Type}
(interpE : forall A, E A -> I A) (t : ReifiedApp E A) : I A :=
match t with
| EmbedA e => interpE _ e
| Pure a => pure a
| LiftA2 f a b => liftA2 f (interpA interpE a) (interpA interpE b)
end.

Figure 5.10: The interpretation from ReifiedApp to any instance of the Applicative type
class.

Why do we call this adverb Statically? The data dependency in the LiftA2 constructor

of ReifiedApp shows that the data type imposes a “static” data flow and control flow on

the computation: we will always need to run both parameters of type ReifiedApp E A and

ReifiedApp E B to get the result of type ReifiedApp E C, i.e., we cannot skip either compu-

tation. In addition, neither of the two parameters depends on the result of the other, which

allows us to statically inspect either of them without running the other.

Remark The adverb data types and their associated theories form free structures similar

to those in Capriotti and Kaposi (2014); Kiselyov and Ishii (2015); Mokhov (2019); Mokhov

et al. (2019). However, one distinction is that we intentionally do not normalize the adverb

data types to preserve syntactic structures. To distinguish un-normalized free structures

and normalized free structures, we use the term reified structures to describe the former and

the term free structures to exclusively describe the latter. We defer the detailed comparison

and trade-offs between reified structures and free structures to Section 5.7.

5.3.2. Adverb Simulation

One important property of ReifiedApp is that it can be interpreted to any other instance of

the Applicative class, as long as its embedded effects can be interpreted to that instance.

We can show this via the abstract interpreter interpA shown in Fig. 5.10. The interpreter

shows that given any effect E and any instance I of Applicative, as long as we can find an

effect interpretation from E A to I A for any type A, we can interpret a ReifiedApp E A to an

I A for any type A.
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For example, we can interpret a ReifiedApp DataEff to a reader applicative functor20 (Fig. 5.2)

by supplying the following function to the parameter interpE of interpA:

Definition interpDataEff {A : Type} (e : DataEff A) : Reader A :=

match e with GetData v => ask v end.

Similarly, we can interpret ReifiedApp DataEff to other semantic domains that are applicative

functors.

Why do we care if ReifiedApp can be interpreted into any instance of Applicative? This is

because different instances of Applicative model different effects—if we have a data structure

that can be interpreted to all instances, we can develop a theory of it that can be used for

reasoning about properties that are true regardless of what effects are present.

To make the relation between an adverb data type like ReifiedApp and a class of functors

like Applicative more precise, we define the following adverb simulation relation:

Definition 2 (Adverb Simulation). Given an adverb data type D, a class of functors C,

and a transformer T on all instances of C, we say that there is an adverb simulation from

D to C under T , written D |=T C, if we can define a function that, for any effect type E,

instance F of type class C, and interpreter f from E(A) to F (A) for any type A, interprets

a value of D(E,A) to T (F )(A) for any type A.

We add some flexibility to this definition by making it parameterize over a transformer T—

we do not need this extra flexibility for now, but we will see why it is useful in Section 5.3.4.

We also define an adverb interpretation as follows:

Definition 3 (Adverb Interpretation). Given an adverb data type D, a class of functors C,

and a transformer T on all instances of C, an interpreter I that shows D |=T C is called an

adverb interpretation, and we write I ∈ D |=T C.
20Every monad is also an applicative functor, so the reader monad is also a reader applicative functor.
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Our interpA in Fig. 5.10 is an adverb interpretation. More specifically, we say that

interpA ∈ ReifiedApp |=IdT Applicative

where the IdT transformer is an identity Applicative transformer that “does nothing”. In the

rest of the chapter, when we have D |=IdT C for any D and C, we abbreviate it as D |= C.

5.3.3. Sound Adverb Theories

To know that our adverb theory is sound, i.e., it doesn’t equate computations that are not

semantically equivalent, we define the following soundness property of adverb theories:

Definition 4 (Soundness of Adverb Theories). Given a program adverb (D,∼=) and an

adverb interpretation I ∈ D |=T C, we say that the adverb theory ∼= is sound with respect to

I if there exists a lawful equivalence relation ≡ such that for all d1, d2 ∈ D,

d1 ∼= d2 =⇒ I(d1) ≡ I(d2).

Let us use idT for the transformer T for the moment. The equivalence relation ≡ on C

is lawful if they respect the congruence laws and the class laws of C. For Applicative, we

use the common applicative functor laws regarding ≡. Based on the soundness of adverb

theories, we can define the following soundness property of program adverbs with respect to

their adverb interpretations:

Definition 5 (Soundness of Program Adverbs). Given a program adverb (D,∼=) and an

adverb interpretation I ∈ D |=T C, we say that the adverb is sound if the ∼= relation is

sound with respect to I.

We can now prove that the Statically adverb is sound:

Theorem 2. The Statically adverb (RefieidApp,∼=) is sound with respect to the adverb

interpretation interpA ∈ ReifiedApp |= Applicative.
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Proof. By induction over the ∼= relation.

5.3.4. “Statically and in Parallel”

Two adverbs can use the same data type yet differ in their theories. Let’s look at a vari-

ant of the Statically adverb called StaticallyInParallel. As its name suggests, it adds

parallelization to a static computation pattern.

Recall that the two computations connected by liftA2 do not depend on each other. This

suggests that an implementation of liftA2 can choose to run them in parallel. Indeed, that

observation is one of the key ideas behind Haxl (Marlow et al., 2014).

Based on this idea, we also define the StaticallyInParallel adverb. The adverb data type

of this adverb is the same as that of Statically. However, its theory differs from Statically

in the following ways: (1) it adds the commutativity rule:

liftA2 f a b ∼= liftA2 (flip f) b a

and (2) it does not include the associativity and naturality rules (Fig. 5.9).

The addition of commutativity rule states that the order that effects are invoked does not

matter. Note that compared with other rules, the commutativity rule is not satisfied by

every applicative functor. This might suggest that we should not add it to the theory, as

it might be a theory that only holds for certain effects. Nevertheless, we can prove the

soundness of the adverb theory with respect to the following adverb simulation:

ReifiedApp |=PowerSet Applicative

The PowerSet transformer is a transformer on applicative functors and its core definitions are

shown in Fig. 5.11. The key of PowerSet is the liftA2PowerSet operation. When executed,

it creates two nondeterministic branches (indicated by the disjunction \/): on one branch,

it computes a' : I A before b' : I B, and vice versa on the other branch. Intuitively, this
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Definition PowerSet (I : Type -> Type) (A : Type) := I A -> Prop.

Definition embedPowerSet {A : Type} (a : I A) : PowerSet I A := fun r => r ≡ a.

Definition purePowerSet {A : Type} (a : A) : PowerSet I A := fun r => r ≡ pure a.

Definition liftA2PowerSet {A B C} (f : A -> B -> C)
(a : PowerSet I A) (b : PowerSet I B) : PowerSet I C :=

fun r => exists a', a a' /\ exists b', b b' /\
(liftA2 f a' b' ≡ r \/ liftA2 (flip f) b' a' ≡ r).

Definition EqPowerSet {A} : relation (PowerSet I A) :=
fun p q => forall a, p a <-> q a.

Figure 5.11: The core definitions of a powerset applicative functor transformer.

is to model the nondeterministic execution order in a parallel evaluation. Many of these

operations depend on ≡, which is the lawful ≡ relation on I.

Lemma 1. If ≡ is a lawful equivalence relation on Applicative, EqPowerSet is an equivalence

relation on PowerSet I that satisfies congruence, left identity, right identity, and commuta-

tivity laws.

Proof. By definition.

Note that EqPowerSet I does not satisfy the associativity or naturality laws. Consider that

we have liftA2PowerSet id (liftA2PowerSet f a b) c, for some f, a, b, and c: one of the

possible evaluations in this powerset is liftA2 id (liftA2 (flip f) b a) c, which does not

belong to the powerset of liftA2PowerSet (flip id) a (liftA2PowerSet g b c), for some g

that is equivalent to flip f. The case for naturality is similar. For this reason, we do

not include these two rules in ∼=. We do not know if there exists an alternative nontrivial

transformer with an equivalence relation that satisfies all the applicative laws in addition

to commutativity.

Nevertheless, we can show the following theorem with the help of Lemma 1:

Theorem 3. The adverb is sound: ReifiedApp |=PowerSet Applicative.
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Proof. We can construct an interpPowerSet ∈ ReifiedApp |=PowerSet Applicative by modify-

ing interpA (Fig. 5.10) so that it uses embedPowerSet on the EmbedA case, purePowerSet on the

Pure case, and liftA2PowerSet on the LiftA2 case. With the help of Lemma 1, we can show

that for all d1, d2 ∈ ReifiedApp,

d1 ∼= d2 =⇒ interpPowerSet(d1) ≡ interpPowerSet(d2)

where ≡ is EqPowerSet.

Intuitively, we can define StaticallyInParallel as an adverb because, even though with an

effect running computations in different order might return different results, a language can

be implemented in a parallel way such that the difference in evaluation orders is no longer

observable.

The lack of associativity and naturality rules in the theory of StaticallyInParallel might

initially sound limiting, but, as we have shown in the end of Section 5.2, it turns out to be

desirable for applications like circuits.

5.3.5. Other Basic Adverbs

Besides Statically and StaticallyInParallel, we also identify three other basic adverbs,

namely Streamingly, Conditionally, and Dynamically, defined using the adverb data types in

Fig. 5.8.

Streamingly. This program adverb simulates Functor under IdT. The most simple form of

stream processing computes the data directly as it is received. This is captured by the fmap

interface (Fig. 5.7).

Dynamically. This adverb simulates Monad (Fig. 5.7). A monad is the most expressive and

dynamic among all four classes of functors thanks to its core operation bind. Any kind of

computation can happen in the second operand and we can’t know it without knowing a

value of type A, which we can only get by running the first operand. This program adverb
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is commonly used in representing many programming language for its expressiveness, but it

also allows for the least amount of static reasoning.

Unlike Statically, this variant does not have an InParallel variant. This might be surprising

because there are many commutative monads. However, those monads are commutative

because their specific effects are commutative. We cannot define a general powerset monad

transformer that can make any monad satisfy the commutativity law.

Conditionally. We use this adverb to model conditional execution. The definition of its

adverb data type is shown in Fig. 5.8. It reifies the Selective type class (Fig. 5.7). The

signature operation of Selective is the selectBy operation. Loosely, “applying” a function

of type A -> ((B -> C) + C) to a computation of type F A gets you either F (B -> C) or F C.

In the first case, you will need to run the computation of type F B. You don’t need to run

the computation of type F B in the second case, but you can still choose to run it.

Because we can encode conditional execution with this adverb, it is more expressive than

Statically. However, the extra expressiveness also makes static analysis less accurate. Since

we cannot know statically if the computation F B in selectBy is executed, we can only get an

under-approximation (assuming that F B is not executed) and an over-approximation (as-

suming that F B is executed) of the effects that would happen, but not an exact set.

Even though we derive this adverb by reifying Selective, we do not wish to model the

adverb’s theory using the laws of selective functors. This is because the laws of selective

functors do not distinguish them from applicative functors. Indeed, every applicative functor

is also a selective functor (by running the second argument even when not required) and vice

versa, so adhering to the “default” laws do not allow us to prove more properties. Therefore,

we add one simple rule to the selective functor laws:

select (inr <$> a) b ∼= a

84



The function select has the type F (A + B) -> F (A -> B) -> F B, where F is an instance of

Selective. It is equivalent to

selectBy (fun x => match x with

| inl x => inl (fun y => y x)

| inr x => inr x

end).

This rule forces select to ignore the second argument when it does not need to be run.

However, we can no longer show that the Conditionally adverb simulates Selective by

adding this law, because ∼= is no longer an under-approximation of ≡. Instead, we show the

following adverb simulation:

ReifiedSelective |= Monad

In this way, Conditionally serves as a compromise between Statically and Dynamically. Its

adverb data type is more similar to Statically and allows for some static analysis, while its

theories are more similar to Dynamically.

5.4. Composable Program Adverbs

From a monad instance, we can derive an applicative functor instance. From an applicative

functor instance, we can derive a functor instance. We can derive a selective instance from an

applicative functor and vice versa.21 This subsumption hierarchy among classes of functors

means that we can choose the most expressive abstract interface of a data type, and that

choice automatically includes the less expressive interfaces.

However, although we can derive a “default” applicative functor from a monad, we don’t

always want to do that—e.g., we may want to define a different behavior for liftA2 than

the one derived from bind. Indeed, Haxl is one such example, where bind is defined as a

sequential operation and liftA2 is parallel so that certain tasks with no data dependencies
21This is one special thing about selective functors: every selective functor is an applicative functor and

the reverse is also true. However, separating these two classes is still useful because the automatically derived
instances might not be what we want, as discussed in Mokhov et al. (2019).

85



can be automatically parallelized (Marlow et al., 2014). In the program adverbs terminology,

the semantics of their language is composed of a “statically and in parallel” adverb and a

“dynamically” adverb.

In addition, some languages may have a part that corresponds to the “statically” adverb and

some extensions that correspond to “dynamically”. If we only use the “dynamically” adverb

to reason about programs written in this language, we lose the ability to state properties

for the “statically” subset.

We need a way to compose multiple program adverbs. Therefore, in this section, we refactor

program adverbs to composable program adverbs.

5.4.1. Uniform Treatment of Effects and Program Adverbs

Effects are commonly considered secondary to monads. This treatment of effects carries

over to the approaches based on free monads and our previous implementation of program

adverbs, where the effects are a parameter of adverb data types.

This approach works well when we use one fixed program adverb, but needs an update when

multiple adverbs are involved. This is because, in both scenarios we mentioned earlier, our

intention is not to combine program adverbs that each contain their own set of effects—we

would like the composed program adverbs to share the same set of effects. One solution is

requiring that we can only join program adverbs when they share the same set of effects,

but that would require extra machinery.

In our work, we choose to give a uniform treatment to effects and program adverbs. Fig-

ure 5.12 shows our algebra for effects and program adverbs. The algebra includes an ⊕

operator which is a disjoint union of effects and adverb data types. We define an equiva-

lence relation ≈ on effects and adverb data types as follows: for all A,B that are effects and

adverb data types, A ≈ B if there exists a bijection between A and B. Similarly, we define

an ⊎ operator for the disjoint union of adverb theories. We define an equivalence relation ⇔

on adverb theories as follows: for any adverb data type D and adverb theories P,Q, which
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effects and adverb data types A,B,C ::= Effect E | AdverbDataType D | A⊕B

adverb theories P,Q,R ::= AdverbTheory ∼=D | P ⊎Q

Properties of ⊕

Commutativity : A⊕B ≈ B ⊕A

Associativity : (A⊕B)⊕ C ≈ A⊕ (B ⊕ C)

Properties of ⊎

Commutativity : P ⊎Q ⇔ Q ⊎ P

Associativity : (P ⊎Q) ⊎R ⇔ P ⊎ (Q ⊎R)

Idempotence : P ⊎ P ⇔ P

Figure 5.12: The algebra for effects and composable program adverbs.

are adverb theories of D, P ⇔ Q if a P b ⇐⇒ a Q b for all a, b ∈ D, where ⇐⇒ is the

logical symbol for “if and only if”. Properties of this algebra are also shown in Fig. 5.12.

5.4.2. The Coq Implementation

All the adverb data types we have seen (Fig. 5.8) are recursive. When we compose these

program adverbs, we cannot simply put these inductive types into a sum type—we need

to adapt each adverb so that it recurses on the new composed adverb rather than itself.

In other words, we need extensible inductive types. However, extensible inductive types

are not directly supported by most formal reasoning systems including Coq. In fact, how

to support extensible inductive types is part of an open problem known as the expression

problem (Wadler, 1998).

In this chapter, we address the problem and implement composable adverbs in Coq using

a technique presented in Meta Theory à la Carte (MTC) (Delaware et al., 2013). The key

idea of MTC is using Church encodings of data types (d. S. Oliveira, 2009; Wadler, 1990)

instead of Coq’s native inductive types. We apply and extend this idea to define the two

least fixpoint operators Fix1 and FixRel that work on adverb data types and adverb theories,

respectively. We show the definitions of these operators in Fig. 5.13.
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Definition Alg1 (F : (Set -> Set) -> Set -> Set) (E : Set -> Set) : Type :=
forall {A : Set}, F E A -> E A.

Definition Fix1 (F : (Set -> Set) -> Set -> Set) (A : Set) :=
forall (E : Set -> Set), Alg1 F E -> E A.

Definition AlgRel {F : Set -> Set}
(R : (forall (A : Set), relation (F A)) -> forall (A : Set), relation (F A))
(K : forall (A : Set), relation (F A)) : forall (A : Set), relation (F A) :=

fun A (a b : F A) => R K _ a b -> K _ a b.
Definition FixRel {F : Set -> Set}

(R : (forall (A : Set), relation (F A)) -> forall (A : Set), relation (F A))
: forall (A : Set), relation (F A) :=
fun A (a b : F A) => forall (K : forall (A : Set), relation (F A)),

(forall (A : Set) (a b : F A), AlgRel R K _ a b) -> K _ a b.

Figure 5.13: The algebra and the least fixpoint operators for effects and adverb data
types (Alg1, Fix1), and for adverb theories (AlgRel, FixRel).

Variant Sum1 (F G : (Set -> Set) -> Set -> Set) K R :=
Inl1 (a : F K R) | Inr1 (a : G K R).

Variant SumRel {F : Set -> Set}
(P Q : (forall (A : Set), relation (F A)) -> forall (A : Set), relation (F A))
(K : forall (A : Set), relation (F A)) : forall (A : Set), relation (F A) :=

| InlRel {A : Set} {a b : F A} : P K _ a b -> SumRel P Q K _ a b
| InrRel {A : Set} {a b : F A} : Q K _ a b -> SumRel P Q K _ a b.

Notation "F ⊕ G" := (Sum1 F G).
Notation "F ⊎ G" := (SumRel F G).

Figure 5.14: The Coq definitions for the ⊕ and ⊎ operators.

We define the disjoint union ⊕ by first refactoring the types of adverb data types and effects.

We make both adverb data types and effects have the type (Set -> Set) -> Set -> Set where

the first parameter is a recursive parameter and the second parameter is a return type. We

can then define ⊕ simply as a sum type on (Set -> Set) -> Set -> Set, as shown in Fig. 5.14.

Similarly, we define ⊎ as a sum type on

(forall (A : Set), relation (F A)) -> forall (A : Set), relation (F A).m

Figure 5.15 shows the definitions of composable adverb data types. Compared with the

adverb data types in Fig. 5.8, a composable adverb data type replaces the effect parame-
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Variant ReifiedPure (K : Set -> Set) (R : Set) : Set :=
| Pure (r : R).
Variant ReifiedFunctor (K : Set -> Set) (R : Set) : Set :=
| FMap {X : Set} (g : X -> R) (f : K X).
Variant ReifiedApp (K : Set -> Set) (R : Set) : Set :=
| LiftA2 {X Y : Set} (f : X -> Y -> R)(g : K X) (a : K Y).
Variant ReifiedSelective (K : Set -> Set) (R : Set) : Set :=
| SelectBy {X Y : Set} (f : X -> ((Y -> R) + R)) (a : K X) (b : K Y).
Variant ReifiedMonad (K : Set -> Set) (R : Set) : Set :=
| Bind {X : Set} (m : K X) (g : X -> K R).

Figure 5.15: The composable adverb data types.

ter (which is named E) with a recursive parameter (which is named K) so that it “recurses”

on K instead of itself.

We also factor out the Pure constructor, a common part shared by multiple basic adverb data

types, as a separate composable adverb data type called ReifiedPure. In this way, we avoid

introducing multiple Pure constructors, e.g., by combining Statically and Conditionally.

Furthermore, we remove the Embed constructors in composable adverb data types. Thanks

to the uniform treatment of effects and program adverbs, we can now embed effects simply

by including them in K, so we have no need for those constructors.

As an example, we can define an “inductive type” T : Set -> Set that is composed of

ReifiedPure, ReifiedApp, and some effect E : (Set -> Set) -> Set -> Set as follows:

Definition T := Fix1 (ReifiedPure ⊕ ReifiedApp ⊕ E).

The T data type here is equivalent to the non-composable ReifiedApp shown in Fig. 5.8.

Adverb interpretation can be defined as an algebra of type Alg1 F E (Fig. 5.13) where F is the

adverb data type and E is the instance we are interpreting to. To apply this “interpretation

algebra” to the composed “inductive type”, we fold it over Fix1 as follows:

Definition foldFix1 {E A} (alg : Alg1 F E) (f : Fix1 F A) : E A := f _ alg.
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We define all composable adverb data types using Set rather than Type because we use the

impredicative sets extension in Coq, following MTC. The consequence of this decision is that

(1) certain types cannot inhabit Set, and (2) the extension is inconsistent with certain set of

axioms such as the axiom of unique choice together with the law of excluded middle.22 We

also develop other mechanisms like the injection type classes, the induction principles follow-

ing MTC. The interested readers can find them in MTC or our supplementary artifact (Li

and Weirich, 2022b).

Besides MTC, there are other solutions (Forster and Stark, 2020; Kravchuk-Kirilyuk et al.,

2021) that address the expression problem in theorem provers like Coq. We discuss those

alternative solutions in Section 5.7.

5.4.3. Add-on Adverbs

Another benefit of making program adverbs composable is that we can now define two

add-on adverbs, namely Repeatedly and Nondeterministically, which are not suitable as

standalone adverbs. These two adverbs reify two classes of functors, namely AppKleenePlus

and FunctorPlus, that we define ourselves. We show these classes of functors and their

reifications in Fig. 5.16. AppKleenePlus is a subclass of Applicative and represents the “Kleene

plus”.23 It is a “Kleene plus” rather than a “Kleene star” because no empty element is

defined. FunctorPlus is similar to the commonly-used Alternative and MonadPlus type classes

in Haskell, but contains no empty element and only requires itself to be a subclass of Functor.

We define these type classes’ reifications as add-on adverbs so that these adverbs can be

composed with classes of functors at different expressive levels: e.g., Repeatedly can be

composed with Statically as well as Dynamically.

We show the adverb theories of Repeatedly and Nondeterministically in Fig. 5.17. The func-

tion repeat a n repeats a for n times. Functions kplus and plus are smart constructors of

KPlus and Plus, respectively. Both of these two add-on adverbs are somewhat nondetermin-
22https://github.com/coq/coq/wiki/Impredicative-Set
23https://en.wikipedia.org/wiki/Kleene_star#Kleene_plus
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Class AppKleenePlus (F : Type -> Type) `{Applicative F} :=
{ kplus {A} : F A -> F A }.

Class FunctorPlus (F : Type -> Type) `{Functor F} :=
{ plus {A} : F A -> F A -> F A }.

(* The adverb data type for Repeatedly. *)
Variant ReifiedKleenePlus (K : Set -> Set) (R : Set) : Set :=
| KPlus : K R -> ReifiedKleenePlus K R.
(* The adverb data type for Nondeterministically. *)
Variant ReifiedPlus (K : Set -> Set) (R : Set) : Set :=
| Plus : K R -> K R -> ReifiedPlus K R.

Figure 5.16: The adverb data types of Nondeterministically and Repeatedly.

Repeat : ∀n, repeat a n ⊆ kplus a

Kplus :
a ⊆ kplus b

kplus a ⊆ kplus b

Commutativity : plus a b ∼= plus b a

Associativity : plus a (plus b c) ∼= plus (plus a b) c

Plus :
a ⊆ c b ⊆ c

plus a b ⊆ c

Left Plus : a ⊆ plus a b

Right Plus : b ⊆ plus a b

Figure 5.17: The adverb theories for Repeatedly and Nondeterministically.

istic, so one change we make to their adverb theories is adding refinement relations (⊆) in

addition to equivalence relations (∼=).

We show that these two adverbs are sound with respect to the following adverb simulations:

ReifiedKleenePlus |=PowerSet AppKleenePlus

ReifiedPlus |=PowerSet FunctorPlus

The definition of PowerSet data type is the same as that in Fig. 5.11, but we are using its

AppKleenePlus transformer and FunctorPlus transformer instances here. The core definitions
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(* FunctorPlus transformer. *)
Definition fmapPowerSet {A B : Type} (f : A -> B) (a : PowerSet I A) : PowerSet I B :=
fun r => exists a', a a' /\ fmap f a' ≡ r.

Definition plusPowerSet {A : Type} (a b : PowerSet I A) : PowerSet I A :=
fun r => a r \/ b r.

(* AppKleenePlus transformer. *)
Definition liftA2PowerSet {A B C : Type} (f : A -> B -> C)

(a : PowerSet I A) (b : PowerSet I B) : PowerSet I C :=
fun r => exists a' b', a a' /\ b b' /\ (liftA2 f a' b' ≡ r).

Fixpoint repeatPowerSet {A : Type} (a : PowerSet I A) (n : nat) : PowerSet I A :=
match n with
| 0 => a
| S n => liftA2PowerSet (fun _ x => x) a (repeatPowerSet a n)
end.

Definition kplusPowerSet {A : Type} (a : PowerSet I A) : PowerSet I A :=
fun r => exists n, repeatPowerSet a n r.

Figure 5.18: The FunctorPlus transformer instance and the AppKleenePlus transformer in-
stance of the PowerSet data type.

of these transformers are shown in Fig. 5.18. The ≡ operator stands for the lawful equivalence

relation on original functor/applicative functor I.

5.5. Example: Haxl

In this section, we show that we can use composable adverbs to capture two different compu-

tation patterns in the same library. We also demonstrate interpreting composable adverbs

to a shallow embedding in a modular way.

We illustrate these aspects via an example based on the core ideas of Haxl. Haxl is a

Haskell library developed and maintained by Meta (formerly known as Facebook) that au-

tomatically parallelizes certain operations to achieve better performance (Marlow et al.,

2014). As an example, suppose that we want to fetch data from a database and we have

a Fetch : Type -> Type data type that encapsulates the fetching effect. The key insight of

the Haxl library is to distinguish the operations of Fetch’s Monad instance and those of its

Applicative instance. When we use >>= to bind two Fetchs, those data fetches are sequential;
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Definition Update A := ((var -> val) -> A * nat).

Definition ret {A} (a : A) : Update A := fun map => (a, 0).
Definition bind {A B} (m : Update A) (k : A -> Update B) : Update B :=
fun map => match m map with

| (i, n) => match (k i map) with
| (r, n') => (r, n + n')
end

end.
Definition liftA2 {A B C} (f : A -> B -> C) (a : Update A) (b : Update B) : Update C :=
fun map => match (a map, b map) with

| ((a, n1), (b, n2)) => (f a b, max n1 n2)
end.

Definition get (v : var) : Update val := fun map => (map v, 1).

Figure 5.19: The Update datatype.

but when we use liftA2 to bind them, those data fetches are batched and will be sent to

the database together. To achieve this, it is important that the definition of liftA2 is not

equivalent to the “default” definition derived from >>=.

This design of Haxl poses a challenge to mixed embeddings based on free monads or any

other basic adverbs discussed in Section 5.3, because we need to distinguish when Applicative

operations are used and when Monad operations are used. This is exactly where composable

adverbs are useful.

In this example, we assume that we already have a translation from Haxl’s Applicative and

Monad operations to those operations in Coq. For example, tools like hs-to-coq (Spector-

Zabusky, 2021) can be adapted to implement the translation. In our embedding, we use the

following T datatype to encode the Tlön embedding of a data fetching program:

Definition T := Fix1 (ReifiedPure ⊕ ReifiedApp ⊕ ReifiedMonad ⊕ DataEff).

We use ReifiedApp to model batched operations and the theory of StaticallyInParallel to

model their parallel nature. We use ReifiedMonad to model sequential operations.

We cannot know statically how many database accesses would happen in a Haxl program,

because a program can choose to do different things depending on the result of some data
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fetch. Therefore, we need to pick an effect interpretation for DataEff to reason about this

property. In this example, we are assuming that the database does not change, so we

interpret our Tlön embedding to a shallow embedding whose semantic domain is the update

monad (Ahman and Uustalu, 2013).

The key definitions of the update monad are shown in Fig. 5.19. The update monad is

essentially a combination of a reader monad and a writer monad. In our example, the

“reader state” has type var -> val which represents an immutable key-value database we

can read from. The “writer state” is a nat, which represents the accumulated number of

database accesses. The bind operation propagates the key-value database and accumulates

the cost.

Additionally, we define a liftA2 operation, which only records the maximum number of

database accesses in one of its branches. This is not the same as the liftA2 operation that

can be automatically derived from the monad instance of Update. Furthermore, this liftA2

is commutative. Thanks to that, we can interpret T to the Update datatype without the help

of a PowerSet transformer.

Figure 5.20 shows how we interpret composed adverbs in a modular way. First, we define a

type class called AdverbAlg for interpretation algebras. We then define an interpretation from

each individual composable adverb and effect in T to Update. Finally, the interpretation from

T to Update can be automatically inferred by Coq thanks to the instance AdverbAlgSum. If we

would like to add another effect or composable adverb to T, we only need to add one more

instance of AdverbAlg and we do not need to modify any existing interpretation algebras.

Interested readers can find the full Coq implementation of the Update data type, the AdverbAlg

type class and relevant instances, along with a few simple examples in our supplementary

artifact (Li and Weirich, 2022b).
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Class AdverbAlg (D : (Set -> Set) -> Set -> Set) (I : Set -> Set) :=
{ adverbAlg : Alg1 D I }.

Instance CostApp : AdverbAlg ReifiedApp Update :=
{| adverbAlg := fun d => match d with LiftA2 f a b => liftA2 f a b end |}.

Instance CostMonad : AdverbAlg ReifiedMonad Update :=
{| adverbAlg := fun d => match d with Bind m k => bind m k end |}.

Instance CostPure : AdverbAlg ReifiedPure Update :=
{| adverbAlg := fun d => match d with Pure a => ret a end |}.

Instance CostData : AdverbAlg DataEff Update :=
{| adverbAlg := fun d => match d with GetData v => get v end |}.

Instance AdverbAlgSum D1 D2 I `{AdverbAlg D1 I} `{AdverbAlg D2 I} :
AdverbAlg (D1 ⊕ D2) I name :=
{| adverbAlg := fun a => match a with

| Inl1 a => adverbAlg a
| Inr1 a => adverbAlg a
end |}.

Figure 5.20: Interpretation algebras that interpret composable adverbs and DataEff to
Update.

5.6. Example: Revisiting the Networked Server

A common technique used in formal verification is dividing the verification into multiple

layers and establishing a refinement relation between every two layers (Gu et al., 2015; Koh

et al., 2019; Lorch et al., 2020; Zakowski et al., 2021). This approach offers better abstraction

and modularity, as at each layer, we only need to consider certain subsets of properties.

In this example, we show the usefulness of program adverbs and Tlön embeddings in a

layered approach. Specifically, we can define an intermediate-level specification that omits

implementation details about execution order, etc. Since the specification is only more non-

deterministic in its control flow, we would like our formal verification to show that an im-

plementation refines the specification without interpreting effects to a shallow embedding.

This is exactly where program adverbs and Tlön embeddings can help.

We demonstrate this vision above via a much simplified version of the networked server

presented in Section 3.2 and Koh et al. (2019). The server communicates with multiple

clients via a network interface. A client initiates a communication with the server by sending
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1 newconn ::<- accept ;;
2 IF (not (*newconn == 0)) THEN
3 newconn_rec ::=
4 connection *newconn READING ;;
5 conns ::++ newconn_rec
6 END ;;
7 FOR y IN conns DO
8 IF (y->state == WRITING) THEN
9 r ::<- write y->id *s ;;

10 y->state ::= CLOSED
11 END ;;
12 IF (y->state == READING) THEN
13 r ::<- read y->id ;;
14 IF (*r == 0) THEN
15 y->state ::= CLOSED
16 ELSE
17 s ::= *r ;;
18 y->state ::= WRITING
19 END
20 END
21 END.

(a) The implementation Impl in
NetImp.

Some
(Or (newconn ::<- accept ;;

IF (not (*newconn == 0)) THEN
newconn_rec ::=

connection *newconn READING ;;
conns ::++ newconn_rec

END)
(OneOf (conns) y
(Or (IF (y->state == WRITING) THEN

r ::<- write y->id *s ;;
y->state ::= CLOSED

END)
(IF (y->state == READING) THEN

r ::<- read y->id ;;
IF (*r == 0) THEN
y->state ::= CLOSED

ELSE
s ::= *r ;;
y->state ::= WRITING

END
END))))

(b) The intermediate layer specification Spec in
NetSpec.

Figure 5.21: The implementation and the intermediate layer specification of our networked
server.

a request that is a number. Whenever the server receives a request, it stores the number

of that request and sends back a number in its store—a client does not necessarily receive

what they sent before, because the server can interleave multiple sessions.

We show that a specific implementation of such a server refines an intermediate-level speci-

fication. We also show the refinements based on Tlön embeddings with the help of adverb

theories. Unlike Koh et al. (2019), we do not show that the implementation further refines a

higher-level specification based on observations over a network, as that is beyond the scope

of this work.

The implementation. The server is implemented using a single-process event loop (Pai

et al., 1999). Instead of processing a request and sending back a response immediately,

the server divides a session with a client into multiple steps. In each iteration of the event
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loop, the server advances the session of each request by one step, thus interleaving multiple

sessions.

We show the main loop body of our adapted version of the networked server in Fig. 5.21a.

For simplicity, we use a custom language called NetImp. NetImp supports datatypes like

booleans, natural numbers, and a special record type called connection. It has network

operations like accept, read, and write. All these operations return natural numbers, with

0 indicating failures. The language does not have a while loop but it has a FOR loop that

iterates over a list. The loop variable is implemented as a pointer that points to elements in

the list iteratively. We also use C-like notations (i.e., * and ->) for operations on pointers.

The implementation Impl maintains a list of connections called conns. Each connection in

conns is in one of the three possible states: READING, WRITING, or CLOSED. At the start of each

loop, the server checks if there is a new connection waiting to be established by calling the

non-blocking operation accept. If there is, the server creates a new connection with the

READING state and adds it to conns. The server then goes over each connection in conns: if

a connection is in the READING state, the server tries to read from the connection and updates

an internal state s with the recently read value; if a connection is in the WRITING state, the

server sends the current value of its internal state s to the connection; once a connection

enters the CLOSED state, it remains that state forever and the server will not do anything

with it—we design the server in this way for simplicity; a more realistic server should remove

closed connections from conns.

The specification. We show our specification Spec in Fig. 5.21b. Spec is written in a

language called NetSpec. NetSpec adds a few additional commands to NetImp: Some is

an unary operation that models the “Kleene plus”; Or is a binary operation that models a

nondeterministic choice; OneOf is also a nondeterministic choice, but it does so by choosing

from a list—line 8 means that we nondeterministically assign the variable y with one element

from the list in conns.
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Spec is more nondeterministic compared with Impl. At each iteration of the event loop, Impl

always first tries to accept a connection. It then goes over the list of conns in a fixed order.

Spec does not enforce order: an accept could happen immediately after another accept; we

can access elements in conns in any order and some connection might get visited more often

than others.

Tlön embeddings and the refinement proof. To show that Impl refines Spec, we

embed both NetImp and NetSpec in Coq using the embedding domain shown in Fig. 5.22.

We have already seen the first four adverbs in T. Effect NetworkEff models the effects incurred

by network operations accept, read, and write. Effect MemoryEff models the effects incurred

by assigning values to variables and retrieving values from them. Finally, effect FailEff

models when the program crashes.

We use J·KLT to denote a language L’s Tlön embedding in T. We only show how we embed

Some, Or, and OneOf in Fig. 5.22. Some is simply a kplus (from Repeatedly). Or is a plus (from

Nondeterministically) wrapped inside a kplus. OneOf xs y c is a bit complicated: we first

use get, an effectful MemoryEff operation that retrieves a value from the reference xs in the

memory, to get a list, which we also call xs and it shadows the other xs; we then fold the

list nondeterministically many times using plus over xs; each operand joined by a plus is

a set y v, an effectful MemoryEff operation that set the value v in the reference y in the

memory, followed by the embedding of command c.

We would like to show that JImplKIT ⊆ JSpecKST . Recall that ⊆ is the refinement relation

on program adverbs (Section 5.4.3). The theorem states that the Tlön embedding of our

implementation Impl in T refines the Tlön embedding of our specification Spec in T.

To show that, we first observe that Impl and Spec share some common program fragments,

e.g., lines 1–6 of Impl are the same as lines 2–7 of Spec. Indeed, there are three such

common fragments and we name them A (lines 1–6 of Impl), B (lines 8–11 of Impl), and

C (lines 12–20 of Impl), respectively. We then define three programs L1, L2, and L3 shown

in Fig. 5.23. These programs represent some intermediate layers between Impl and Spec.
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Original Language: NetImp, NetSpec
Embedding Language: Coq
Embedding Domain:

Definition T := Fix1 (ReifiedKleenePlus ⊕
ReifiedPlus ⊕
ReifiedPure ⊕
ReifiedMonad ⊕
NetworkEff ⊕
MemoryEff ⊕
FailEff).

Selected Embedding Rules:

JSome cKST = kplus JcKST
JOr c1 c2KST = kplus (plus Jc1KST Jc2KST)

JOneOf xs y cKST = get xs >>= (fun xs => kplus (foldr

(fun v s => plus (set y v >> JcKST ) s)

(pure tt) xs))

Figure 5.22: Our Tlön embedding of NetImp and NetSpec.

Definition L1 :=
A ;;
FOR y IN conns DO
B ;;
C ;;

END.

Definition L2 :=
A ;;
OneOf (conns) y
(B ;; C).

Definition L3 :=
A ;;
OneOf (conns) y

(Or B C).

Figure 5.23: Program L1 written in NetImp, and programs L2 and L3 written in NetSpec.

We prove the following theorem:

Theorem 4. JImplKIT ⊆ JL1KIT ⊆ JL2KST ⊆ JL3KST ⊆ JSpecKST .

Proof. We show JImplKIT ⊆ JL1KIT by associativity of Dynamically. Both JL1KIT ⊆ JL2KST and

JL2KST ⊆ JL3KST can be proven by an induction over conns and with the help of theories of

Dynamically, Repeatedly and Nondeterministically. Finally, we prove JL3KST ⊆ JSpecKST by

the theories of Dynamically, Repeatedly, and Nondeterministically.
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Interested readers can find the full Coq implementation of NetImp, NetSpec, the Tlön

embeddings of these two languages, the implementation Impl, the specification Spec, as well

as the full proof of Theorem 4 in our supplementary artifact (Li and Weirich, 2022b).

5.7. Discussion

The expression problem The composable program adverbs require extensible inductive

types. We implement this feature in Coq by using the Church encodings of datatypes,

following the precedent work of MTC (Delaware et al., 2013). There are several consequences

of using Church encodings instead of Coq’s original inductive datatypes.

First, we cannot make use of Coq’s language mechanisms, libraries, and plugins that make

use of Coq’s inductive types (e.g., Coq’s builtin induction principle generator, the Equa-

tions plugin (Sozeau and Mangin, 2019), the QuickChick plugin (Lampropoulos et al., 2018;

Paraskevopoulou et al., 2022), etc.). Furthermore, the extra implementation overheads in-

curred by Church encodings (e.g., proving an algebra is a functor, proving the induction

principle using dependent types, etc.) can be huge. However, this situation can be helped

by developing tools or plugins for supporting Church encodings.

The other consequence is that, following the practice of MTC, we use Coq’s impredicative set

extension. This causes two problems: (1) Certain types cannot inhabit in Set, and (2) our

Coq development is inconsistent with certain set of axioms such as the axiom of unique

choice together with the law of excluded middle, as we have discussed in Section 5.4.2.

There are alternative methods for addressing the expression problem. One option is the

meta-programming approach proposed by Forster and Stark (2020). In this approach, we can

define each composable adverb separately in a meta language and use a language plugin to

generate a combined definition in Coq. This approach does not fully address the expression

problem as extending the combined definition requires recompilation—but the amount of

code that needs to be recompiled is much smaller and the generated code uses Coq’s builtin

inductive types. Another option that has recently been explored by Kravchuk-Kirilyuk et al.
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(2021) is adding family polymorphism (Ernst, 2001) to theorem provers. These works are

promising. Unfortunately, they either lack mature tool support or is still in development

at the moment. We would like to explore these approaches in the future and composable

program adverbs might provide a good application to these approaches.

Reified vs. free structures Even though the reified structures used in adverb data

types are free structures, they are different from those free structures present in Capriotti

and Kaposi (2014); Kiselyov and Ishii (2015); Mokhov (2019); Mokhov et al. (2019). The

biggest difference between reified structures and these free structures are the parameters

they recurse on: all the reified structures recurse on both their computational parameters,

while each free structure only recurses on one of them.24 For example, comparing FreeMonad

in Fig. 5.4 and ReifiedMonad in Fig. 5.8: FreeMonad only recurses on the parameter k of

Bind, while ReifiedMonad recurses on both parameters m and k. This means that a free

structure does not just reify a class of functors, it also converts the reification to a left- or

right-associative normal form.

One advantage of the normal forms in free structure definitions is that the type class laws can

be automatically derived from definitional equality (with the help of the axiom of functional

extensionality). However, this conversion would eliminate some differences in the syntax.

Taking ReifiedApp as an example, normalizing it would result in a “list” rather than a

“binary tree”, making analyzing the depth of the tree impossible. Preserving the original

tree structure of StaticallyInParallel also plays a crucial role in our examples shown in

Section 5.2 and 5.5.

Another note is that the commonly used definition of free monads in Haskell cannot be

encoded in Coq because it is not strictly positive (Dylus et al., 2019). The common ways to

work around this problem are: (1) using containers (Dylus et al., 2019), or (2) using their

free variants (Kiselyov and Ishii, 2015; McBride, 2015; Swamy et al., 2020; Xia et al., 2020).

24With the exception of reified/free functors, since each of them has only one computational parameters
to be recursed on.
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CHAPTER 6

Related work

6.1. Embeddings

Monadic embeddings Moggi (1991) uses monads to describe computational effects and

defines various translations corresponding to different calling conventions. Wadler (1992)

follows and describes the translations for the call-by-value and call-by-name semantics, but

leaves the translation for call-by-need as an open problem. Uustalu (2002) further adds

positive inductive and coinductive types to these translations.

Petricek (2012) proposes a unified monadic embedding that can be used under all three dif-

ferent calling conventions, generalizing Wadler (1992), by defining a function called malias

which would be given different meanings under different semantics. We presented the em-

bedding of Petricek (2012) in detail in Section 2.4.

Our work in Li et al. (2021a) can be extended to a unified monadic embedding that is similar

to that of Petricek (2012), as discussed in Section 4.7.

Mixed embeddings It is known that there are many styles of embeddings between shal-

low and deep embeddings, but there is not an agreed term on describing them. In this

dissertation, we use the term mixed embeddings, which is borrowed from Chlipala (2021). I

presented an example of the style of Chlipala in Section 2.3. The style of Chlipala is also

similar to higher-order abstract syntax (HOAS) (Harper et al., 1987; Pfenning and Elliott,

1988), weak HOAS (Honsell et al., 2001), and parametric HOAS (PHOAS) (Chlipala, 2008;

Washburn and Weirich, 2008). I compare the style of Chlipala with HOAS and PHOAS

in Section 2.3. More detailed comparison among these styles can also be found in Chli-

pala (2019, Section 17.2) and Chlipala (2021). Another term deeper shallow embeddings is

proposed by Prinz et al. (2022), which shows a way of deepening any shallow embedding.
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Besides mixed embeddings, there are works that study combining or transferring among

different embedding styles (Fromherz et al., 2019; Svenningsson and Axelsson, 2012). For

example, Svenningsson and Axelsson (2012) combine the two styles by using shallow em-

beddings for the interface and deep embeddings for the core language.

6.2. Reasoning about the Garden of Forking Paths

Clairvoyant evaluation Clairvoyant evaluation was first characterized by Hackett and

Hutton (2019). The main inspiration for my contributions in Chapter 4, this work presented

an operational semantics for laziness as an alternative to the natural semantics of Launch-

bury (1993), as well as a denotational cost semantics, following precursory ideas by Maraist

et al. (1995). We have compared our translation with the semantics of Hackett and Hutton

as well as established an equivalence relation between them in Section 4.4.

Computation Cost and Laziness There is much work on mechanically reasoning about

computation costs. For example, Crary and Weirich (2000); Danielsson (2008); Hoffmann

et al. (2012); Lago (2011); Rajani et al. (2021); Wang et al. (2017) study intrinsic approaches

to formal cost analysis. Our work is in the extrinsic context.

On the extrinsic side, Charguéraud and Pottier (2019); Guéneau et al. (2018) use separation

logic for reasoning about computation costs under call-by-value evaluation using amortized

analysis. Compared to these works, our goal of reasoning about lazy pure functional pro-

grams does not require separation logic. Cost specifications could be made more modular by

hiding implementation-specific constant factors and formulating costs in asymptotic terms.

Works on formalizing asymptotic complexity include Cutler et al. (2020); Eberl (2021);

Guéneau (2019).

Danielsson (2008); Handley et al. (2020) reason about lazy functional programs in a monadic

syntax annotated with ticks. An issue in both works is that they require an explicit notion

of laziness to model sharing: for example, in practice, a list that is evaluated once will not be

evaluated again under lazy evaluation. To avoid a “double counting” of the cost in a thunk,

a pay : nat -> M a -> M (M a) combinator with an explicit representation of cost must be
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annotated in the code25. This prevents both works to be fully extrinsic in reasoning about

laziness. With the clairvoyance monad, thunks are either paid for or discarded immediately,

so it is impossible to count the cost of a thunk twice. This enables us to translate pure lazy

functions mechanically to monadic programs, and our proofs are completely extrinsic.

On the automated reasoning side, Madhavan et al. (2017) verify a purely functional subset of

Scala by translating higher-order functions to first-order programs via defunctionalization.

They also model memoization by encoding the cache as an expression that changes during

the execution of the program.

For testing lazy functions in Haskell, Sloth is a tool that automatically generates test cases

to check if a function is “unnecessarily strict” (Christiansen, 2011). This tool relies on a

“less-strict” ordering of functions. One function is less strict than another when, given the

same input, its result is less defined (Christiansen and Seidel, 2011).

Foner et al. (2018) develop a library that generates random demands on the output of a

function and instruments inputs to record induced demand. Demands take the form of

approximations whose structure is also derived from pure data types.

Haskell Although we only discuss Coq here, Haskell is also a potential target of our

approach.

The hs-to-coq tool embeds Haskell programs in Coq using shallow embeddings (Spector-

Zabusky et al., 2018). It has been used for verifying a significant portion of Haskell’s

containers library (Breitner et al., 2021) and parts of GHC (Spector-Zabusky et al., 2019),

as presented in Section 3.1 However, hs-to-coq’s pure translation cannot be used for cost

analysis so existing work using this tool has been restricted to functional correctness.

Abel et al. (2005b) and Dylus et al. (2019) respectively translate Haskell to monadic em-

beddings in Agda and Coq, based on the call-by-name translation by Moggi (1991). This is

enough to model Haskell’s partiality, but not its lazy cost semantics.
25The pay combinator is also an annotated version of malias : M a -> M (M a) (Petricek, 2012).
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Liquid Haskell augments Haskell with refinement types (Vazou, 2016) to enable formal

verification, and it has been applied to cost analysis (Handley et al., 2020). The major

difference is that our work does not require an explicit notion of laziness, as discussed earlier

in this section. Furthermore, Handley et al. (2020) verify Haskell programs written explicitly

in the tick monad; to analyze arbitrary Haskell programs, some monadic translation is

necessary.

Nondeterminism and dual logics Our optimistic and pessimistic specifications are ex-

amples of predicate transformer semantics. They date back to Dijkstra (1975), forming the

basis of much work on the verification of effectful programs in type theory (Nanevski et al.,

2008; Swamy et al., 2013b; Swierstra, 2009; Swierstra and Baanen, 2019). Our predicate

transformer semantics are two conventional effect observations (Maillard et al., 2019) from

the clairvoyance monad—a variant of the powerset monad—to the specification monads

respectively for angelic and demonic nondeterminism.

The duality between pessimistic and optimistic specifications is also the duality of Hoare

logic (Hoare, 1969) and reverse Hoare logic (de Vries and Koutavas, 2011; O’Hearn, 2020).

Those logics use sets of states to approximate program behavior. In Hoare logic, the post-

condition over-approximates the set of reachable states; in reverse Hoare logic, the postcon-

dition under-approximates the set of reachable states. Here, we show that abstractions for

angelic and demonic nondeterminism give rise, rather simply, to logics of over- and under-

approximations of time consumption. The notion of approximation underlying our logics is

formally defined as follows: a set of cost-value pairs A underapproximates a set of pairs B

if, for every (v, c) ∈ A, there exists (w, d) ∈ B which “costs less and is more defined”, i.e.,

such that d ≤ c and v ≤ w. Thus, sets of states are ordered by inclusion in Hoare logic,

whereas sets of cost-value pairs follow a more elaborate order structure in our dual logic,

based on the view that those pairs themselves are approximations of the actual behavior of

lazy programs.
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6.3. Program Adverbs and Tlön Embeddings

Free Monads and Variants Free monads (Kiselyov and Ishii, 2015) and their variants

are studied by many researchers in formal verification to reason about programs with ef-

fects. Earlier work includes the study of the delay monad (Capretta, 2005) and resumption

monads (Piróg and Gibbons, 2014). More recent work includes Letan et al. (2021), where

the authors use free monads to develop a modular verification framework based on effects

and effect handlers called FreeSpec. Christiansen et al. (2019) develop a framework based

on free monads and containers (Abbott et al., 2003) for reasoning about Haskell programs

with effects. Swierstra and Baanen (2019) interpret free monads into a predicate trans-

former semantics that is similar to Dijkstra monads; Nigron and Dagand (2021) interprets

free monads using separation logic.

On the coinductive side, Xia et al. (2020) develop a coinductive variant of free monads called

the interaction trees that can be used to reason about general recursions and nonterminating

programs in Coq. Koh et al. (2019) use interaction trees with VST (Appel et al., 2014) to

reason about networked servers. Mansky et al. (2020) use interaction trees as a lingua franca

to interface and compose higher-order separation logic in VST and a first-order verified oper-

ating system called CertiKOS (Gu et al., 2015). Zakowski et al. (2020) propose a technique

called generalized parameterized coinduction for developing equational theory for reasoning

about interaction trees. Zakowski et al. (2021) use interaction trees to define a modular,

compositional, and executable semantics for LLVM. Yoon et al. (2022) further extend the

modularity of interaction trees by extending them with layered monadic interpreters. Sil-

ver and Zdancewic (2021) connect interaction trees with Dijkstra monads (Maillard et al.,

2019) for writing termination sensitive specifications based on uninterpreted effects. Lesani

et al. (2022) use interaction trees to verify transactional objects. Foster et al. (2021) apply

interaction trees to Isabelle/HOL to produce a verification and simulation framework for

state-rich process languages, which is used by Ye et al. to give an operational semantics
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to RoboChart, a timed and probabilistic domain-specific language for robotics (Ye et al.,

2022).

Among many variants of free monads, one particular structure closely resembles program

adverbs. That is action trees defined in Swamy et al. (2020). Action trees have four construc-

tors, Act, Ret, Par, and Bind, whose types correspond to effects, ReifiedPure, ReifiedApp, and

ReifiedMonad in composable program adverbs, respectively, another evidence that program

adverbs are general models. In contrast to our work, compositionality and extensibility of

“adverbs” are not the main issue action trees try to address, so action trees are not built

in a composable way. On the other hand, action trees are embedded with separation logic

assertions, which are not the focus of Tlön embeddings or program adverbs.

Other Free Structures Other free structures are also explored by various works. Capri-

otti and Kaposi (2014) propose two variants of free applicative functors, which correspond

to the left- and right-associative variants, respectively. Xia (2019) explores defining free

applicative functors in Coq, and points out that the right associative variant is harder to

define in Coq. Milewski (2018) discusses how to derive free monoidal functors.26 Mokhov

(2019) defines the free selective applicative functors.

In the context of mechanized reasoning, one of the main inspirations of our work is Capriotti

and Kaposi (2014). They observe that the structures of free monads are not amenable to

static reasoning and propose free applicative functors. Our work takes the observation

further and identifies a class of program adverbs (and composable adverbs).

Programming Abstractions We are not the first to observe that monads are too dy-

namic for certain applications. For example, Swierstra and Duponcheel (1996) identify that

a parser that has some static features cannot be defined as a monad. Inspired by their ob-

servation, Hughes (2000) proposes a new abstract interface called arrows. The relationship

among arrows, applicative functors, monads are studied by Lindley et al. (2011). Willis

et al. (2020) observe that monads generate dynamic structures that are hard to optimize.
26Monoidal functors are equivalent to applicative functors, so they also correspond to the Statically

adverb.
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They further show that, by using applicative and selective functors instead, it is possible to

implement staged parser combinators that generate efficient parsers. Mokhov et al. (2020)

observe that the datatype of tasks in a build system (called Task in their paper) can be

parameterized by a class constraint to describe various kinds of build tasks. For example,

a Task Applicative describes tasks whose dependencies are determined statically without

running the task; and a Task Monad describes tasks with dynamic dependencies.
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CHAPTER 7

Future Work

7.1. Computation Costs of Lazy Functional Data Structures

Many lazy functional data structures require subtle and intricate analysis—and they com-

monly require amortized analysis—to understand their computation costs. Indeed, Okasaki

(1999) presents a number of such lazy functional data structures, as well as methods for

analyzing their computation costs. Finger trees (Claessen, 2020; Hinze and Paterson, 2006)

are another example that require complicated reasoning of their computation costs. Would

the clairvoyant semantics and our dual reasoning principle help with these analyses? How

do they interact with amortized analysis? And how do they interact with real-time analysis?

How do they compare with classic ways of reasoning presented in Okasaki (1999)? These are

interesting research questions that call for more efforts that dive deeper into the clairvoyant

semantics.

7.2. Extending Tlön Embeddings to Pure Programs

In this dissertation, I show the usefulness of program adverbs and Tlön embeddings in

effectful programs, but would they also be useful in pure computation?

For example, consider the purely functional FIFO queue present in Okasaki (1999, Sec-

tion 5.2). The queue is implemented using two purely functional lists: a front list and a

back list. Each time a new element is added into the queue (called enqueue), we put it into

the back list. Each time we take an element from the queue (called dequeue), we take it from

the front list. When the front list is empty, we reverse the back list and make that the new

front list. The queue does not have constant computation costs for its dequeue operation.

However, an amortized analysis can show that the queue has a constant computation cost

for dequeue “on average”.
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We cannot express this amortized property of the queue solely based on shallow embeddings.

To state this property, we need to state how many dequeue operations have happened. And

to reason about this property, we also need to rely on the fact that the queue is used in an

ephemeral manner, which means that every operation should only use the queue returned

by its last operation and no queue should be used more than once (Driscoll et al., 1989).

For these reasons, we need a syntactic representation of the queue’s operations.

In this same work, Okasaki also presents a purely functional and lazy queue that is persistent,

which means a queue can be used repeatedly (Okasaki, 1999, Section 6). Describing the

difference between this persistent queue and the ephemeral queue also requires us to have a

syntactic representation of a queue’s operations.

It would be interesting future direction to explore if we can apply the methodology of

program adverbs and Tlön embeddings to examples like these two queues, so that we can

deeply embed operations of a certain data structure while shallow embed the others.

7.3. A Library for Composable Program Adverbs

Our work on program adverbs and Tlön embeddings have been formalized in Coq and all

the Coq files are publicly available online (Li and Weirich, 2022b). However, many practical

questions still need to be addressed to make our work into a Coq library that is easy to use. In

particular, our work chooses to use the techniques presented in MTC (Delaware et al., 2013).

As I have stated in Section 5.7, the use of Church encodings in MTC means that we cannot

use Coq’s language mechanisms, libraries, and plugins that make use of Coq’s inductive

types. Furthermore, the extra implementation overheads incurred by Church encodings can

be huge. For example, the Mezzo project (Balabonski et al., 2016; Pottier and Protzenko,

2015) choose not to use the techniques presented in MTC for this reason:

We have emphasized the modular organization of the meta-theory of Mezzo. . . The

manner in which this modularity is reflected in our Coq formalization reveals

pragmatic compromises. We use monolithic inductive types. Delaware et al.
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(2013) have shown how to break inductive definitions into fragments that can

be modularly combined. This involves a certain notational and conceptual over-

head, as well as a possible loss of flexibility, so we have not followed this route.

What can we do to reduce the implementation overhead incurred by Church encodings and

the conceptual overhead of MTC? Is there a better way for Coq to support Church encodings?

There are works that aim to make certain aspects of MTC easier to use (Torrini, 2016; Torrini

and Schrijvers, 2015). However, there are still many questions awaiting exploration.

On the other hand, there are other ways to work around the expression problem besides

MTC. I have discussed two promising directions proposed by Forster and Stark (2020) and

Kravchuk-Kirilyuk et al. (2021), respectively. Alternatively, we can also consider other

methodologies such as proof reuse (Ringer et al., 2019b), etc. It is worth exploring all

alternatives and comparing them with MTC.

7.4. Other Potential Future Work

There are many other future works, such as integrating the embeddings I presented in

Chapter 4 and/or Chapter 5 with hs-to-coq; using hs-to-coq and program adverbs to

reason about effectful Haskell programs such as its concurrent queues (Jones et al., 1996);

applying program adverbs and Tlön embeddings to verification frameworks such as VST and

Iris (Jung et al., 2018); studying the connections among program adverbs, algebraic effects,

object-oriented programming, and session types (Balzer and Pfenning, 2015; Zhang et al.,

2020); and verifying concurrent and/or distributed systems based on Tlön embeddings.
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CHAPTER 8

Conclusion

In this dissertation, I present two works on mechanized reasoning about “how” using func-

tional programs and embeddings.

In the first work (Li, Xia, and Weirich, 2021a), we present a novel and simple shallow em-

bedding for mechanically reasoning about costs of lazy functional programs. The embedding

is based on a new model of lazy evaluation: clairvoyant call-by-value (Hackett and Hutton,

2019), which makes use of nondeterminism to avoid modeling mutable higher-order state in

classic models of laziness (Launchbury, 1993).

The embedding domain of our embedding is a simple clairvoyance monad. We also pro-

pose a set of embedding rules for embedding a typed calculus to programs in this monad.

Compared with the denotational semantics of Hackett and Hutton, our translation deals

with typed programs, does not rely on domain theory, and accounts for the cost of every

nondeterministic execution. We also develop dual logics over- and under-approximations

similar to those of de Vries and Koutavas (2011); Hoare (1969); O’Hearn (2020) that enable

local and modular formal reasoning of computation costs. We show the effectiveness of our

approach via several small case studies.

In the second work (Li and Weirich, 2022a), we compare different styles of embeddings and

how they impact mechanized reasoning about effectful programs. We find that, if used

properly, mixed embeddings can combine benefits of both shallow and deep embeddings,

and be effective in (1) preserving syntactic structures of original programs, (2) showing

general properties that can be proved without assumptions over external environment, and

(3) reasoning about properties in specialized semantic domains.

We propose program adverbs and Tlön embeddings, a class of structures and a style of

mixed embeddings based on these structures, that enable us to reap these benefits. Like
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free monads, program adverbs embed pure computations shallowly and effects deeply (and

abstractly, but can later be interpreted). However, various program adverbs correspond to

alternative computation patterns, and can be composed to model programs with multiple

characteristics.

Based on program adverbs, Tlön embeddings cover a wide range of programs and allow us

to reason about syntactic properties, semantic properties, and general semantic properties

with no assumption over external environment within the same embedding.
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