
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2022

Hyperscale Data Processing With Network-Centric Designs Hyperscale Data Processing With Network-Centric Designs

Qizhen Zhang
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhang, Qizhen, "Hyperscale Data Processing With Network-Centric Designs" (2022). Publicly Accessible
Penn Dissertations. 5043.
https://repository.upenn.edu/edissertations/5043

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/5043
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F5043&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F5043&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5043?utm_source=repository.upenn.edu%2Fedissertations%2F5043&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5043
mailto:repository@pobox.upenn.edu

Hyperscale Data Processing With Network-Centric Designs Hyperscale Data Processing With Network-Centric Designs

Abstract Abstract
Today’s largest data processing workloads are hosted in cloud data centers. Due to unprecedented data
growth and the end of Moore’s Law, these workloads have ballooned to the hyperscale level,
encompassing billions to trillions of data items and hundreds to thousands of machines per query.
Enabling and expanding with these workloads are highly scalable data center networks that connect up to
hundreds of thousands of networked servers. These massive scales fundamentally challenge the designs
of both data processing systems and data center networks, and the classic layered designs are no longer
sustainable.

Rather than optimize these massive layers in silos, we build systems across them with principled
network-centric designs. In current networks, we redesign data processing systems with network-
awareness to minimize the cost of moving data in the network. In future networks, we propose new
interfaces and services that the cloud infrastructure offers to applications and codesign data processing
systems to achieve optimal query processing performance. To transform the network to future designs,
we facilitate network innovation at scale.

This dissertation presents a line of systems work that covers all three directions. It first discusses
GraphRex, a network-aware system that combines classic database and systems techniques to push the
performance of massive graph queries in current data centers. It then introduces data processing in
disaggregated data centers, a promising new cloud proposal. It details TELEPORT, a compute pushdown
feature that eliminates data processing performance bottlenecks in disaggregated data centers, and
Redy, which provides high-performance caches using remote disaggregated memory. Finally, it presents
MimicNet, a fine-grained simulation framework that evaluates network proposals at datacenter scale with
machine learning approximation. These systems demonstrate that our ideas in network-centric designs
achieve orders of magnitude higher efficiency compared to the state of the art at hyperscale.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Computer and Information Science

First Advisor First Advisor
Vincent Liu

Second Advisor Second Advisor
Boon Thau Loo

Subject Categories Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/5043

https://repository.upenn.edu/edissertations/5043

HYPERSCALE DATA PROCESSING WITH NETWORK-CENTRIC DESIGNS

Qizhen Zhang

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2022

Co-Supervisor of Dissertation

Vincent Liu

Assistant Professor, Computer and
Information Science

Co-Supervisor of Dissertation

Boon Thau Loo

RCA Professor, Computer and In-
formation Science

Graduate Group Chairperson

Mayur Naik, Professor, Computer and Information Science

Dissertation Committee

Joseph Devietti (chair), Associate Professor, Computer and Information Science
Sebastian Angel, Raj and Neera Singh Assistant Professor, Computer and Information Science
Philip A. Bernstein, Distinguished Scientist, Microsoft Research
Ang Chen, Assistant Professor, Computer Science, Rice University
Zachary G. Ives, Adani President’s Distinguished Professor, Computer and Information
Science

HYPERSCALE DATA PROCESSING WITH NETWORK-CENTRIC DESIGNS

© COPYRIGHT

2022

Qizhen Zhang

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

To my family

iii

ACKNOWLEDGMENTS

This dissertation is possible because of many people. I take this chance to acknowledge their

contributions to its successful completion.

I first thank Vincent Liu and Boon Thau Loo. I am beyond grateful for having both of them

as my advisors. Boon took me under his wing when I decided to leave my previous graduate

school six years ago. He told me my English was as good as his when I was worried about

it before my first talk at SoCC 2017. Moments like these are countless. Boon has been an

amazing advisor since the day we first met and has always been there to guide my research,

encourage me in difficult times, and share my joy when I succeed. His interdisciplinary exper-

tise and vision across different systems areas (e.g., databases and distributed systems) inspired

this dissertation work and the spirit of my research. I feel blessed to have been working with

Vincent since he joined Penn. He introduced me to networking research and taught me ev-

erything about data center networks—the “network” in the title of this dissertation. Vincent

has been an example of both a great researcher who aims at challenging problems, designs

innovative solutions, and pushes the boundaries of human knowledge, and a great person

who is honest, kind, and true to others. I consistently benefit from his advice on thinking with

first principles. Vincent and Boon have been generous with their time and patience in helping

me finish this dissertation and become an independent researcher. I cannot think of a better

way to spend these six years than growing under their guidance.

I also thank Phil Bernstein. It has been my privilege to be mentored by him in the data

systems group at Microsoft Research and to have him on my dissertation committee. The

collaboration with Phil is essential to this dissertation and my graduate studies. We worked on

iv

disaggregated memory for remote caching in the summer of 2020, which resulted in the Redy

system (Chapter 5). We built CompuCache the next year, which augments remote caches

with computability using Spot VMs. The experience of working with Phil is undoubtedly

invaluable. Phil’s cares about both real-world impacts and technical details were crucial to

these projects and touched me deeply. Our conversations have leveled up my knowledge

of the history of the database community and Microsoft. Phil has been very supportive and

provided numerous constructive comments on my research, talks, and writings. I am indebted

to Phil for all his help.

I have also been fortunate to receive mentorship from Ang Chen. He is an exemplar of en-

thusiasm and kindness. His constant passion for systems research has been inspiring me. Ang

has helped with my research since the first GraphRex system (Chapter 2). He is also a major

contributor to the DDC project (Chapters 3 and 4). He has been heavily involved in every

stage of all these projects, from brainstorming to experiment design and paper writing. Ang

has also offered me suggestions about many other aspects of my research such as industrial

internships. My life at Penn over the years would not have been the same without him.

I am also grateful to Sebastian Angel, Joe Devietti, and Zack Ives for serving on my dis-

sertation committee and sharing their unique perspectives on this work. Sebastian has been

critical to our DDC work (Chapters 3 and 4), and his expertise was a key to the success of

that project. Joe has been an excellent chairman of my WPE-II exam and dissertation com-

mittees, providing me with valuable feedback after each defense. He also educated me in the

literature on computer architecture. I enjoyed all the conversations with him. Zack has been

providing insightful guidance on learning database systems. I am always impressed by his

knowledge of recent advances in the field, considering his heavy administrative duties. Zack

also helped me get prepared for my job search.

I have been fortunate to collaborate with a number of excellent researchers, who have

been extremely helpful. They include Akash Acharya, Hongzhi Chen, and Simran Arora for

GraphRex (Chapter 2); Yifan Cai, Xinyi Chen, Sidharth Sankhe, Zhilei Zheng, and Ke Zhong

for the DDC project (Chapters 3 and 4); Daniel Berger and Badrish Chandramouli for Redy

v

(Chapter 5); Kelvin Ng, Charles Kazer, Shen Yan, and João Sedoc for MimicNet (Chapter 6).

My appreciation goes on to the collaborators in other projects that I have worked on at Penn,

including Shivani Agarwal, Meryem Essaidi, and Tengyuan Ye for the crowdfunding prediction

project; James Cheng and Da Yan for the architectural study of graph systems.

I also deeply appreciate many others who havemade significant contributions to this work.

Chen Chen picked me up from the airport when I first arrived in the U.S. and later encour-

aged me to work on GraphRex and the DDC project. Susan Davidson read the first draft of the

GraphRex paper and sent me detailed and positive comments. Nicolas Koh has been a close

friend, and our chats sparked many interesting thoughts, especially when I worked on the

DDC project and MimicNet. Yang Li and I brainstormed on join ordering for skewed graphs,

which later helped the design of adaptive join ordering in GraphRex. Zhiyun Li and I ex-

changed thoughts about the implications of our DDC work for today’s applications. Yucheng

Lu and JiachengWumade significant implementation efforts during the revision of GraphRex.

Yizhou Shan helped us debug setup issues when we installed LegoOS for TELEPORT. Xujie

Si discussed the mathematics in GraphRex with me. Val Tannen provided valuable feedback

about the Datalog adaptation in GraphRex. Wentao Wu bolstered my interest in DDCs with

his deep insights into the benefits of this new architecture for databases. Wenchao Zhou made

encouraging comments on my DDC work and helped me get connected to industrial people

for potential applications. I also thank many other Penn folks, including Mohammad Javad

Amiri, Haoxian Chen, Leshang Chen, Max Demoulin, Soonbo Han, Yao Li, Yishuai Li, Tao

Luo, Hui Lyu, Edo Roth, Lei Shi, Nik Sultana, Chenyuan Wu, Yinjun Wu, Meng Xu, Nofel

Yaseen, Liangcheng Yu, Haoran Zhang, Yi Zhang, and Nan Zheng, for our discussions on

various database and systems topics. During my internship at MSR in the summer of 2019,

I chatted about my early-stage work on DDCs with Bailu Ding, Zhiwei Fan, Yao Lu, Tarique

Siddiqui, and Cong Yan. The conversations were inspirational.

Last but not at all least, I thank my family. Their belief in the power of education and their

support and love are the reasons I embarked onmy Ph.D. journey and had the courage to finish

it. I dedicate this dissertation to my mother, father, sister, uncles, aunts, and grandparents.

vi

ABSTRACT

HYPERSCALE DATA PROCESSING WITH NETWORK-CENTRIC DESIGNS

Qizhen Zhang

Vincent Liu and Boon Thau Loo

Today’s largest data processing workloads are hosted in cloud data centers. Due to un-

precedented data growth and the end of Moore’s Law, these workloads have ballooned to the

hyperscale level, encompassing billions to trillions of data items and hundreds to thousands

of machines per query. Enabling and expanding with these workloads are highly scalable

data center networks that connect up to hundreds of thousands of networked servers. These

massive scales fundamentally challenge the designs of both data processing systems and data

center networks, and the classic layered designs are no longer sustainable.

Rather than optimize these massive layers in silos, we build systems across themwith prin-

cipled network-centric designs. In current networks, we redesign data processing systemswith

network-awareness to minimize the cost of moving data in the network. In future networks,

we propose new interfaces and services that the cloud infrastructure offers to applications

and codesign data processing systems to achieve optimal query processing performance. To

transform the network to future designs, we facilitate network innovation at scale.

This dissertation presents a line of systems work that covers all three directions. It first

discusses GraphRex, a network-aware system that combines classic database and systems

techniques to push the performance of massive graph queries in current data centers. It then

introduces data processing in disaggregated data centers, a promising new cloud proposal.

It details TELEPORT, a compute pushdown feature that eliminates data processing perfor-

mance bottlenecks in disaggregated data centers, and Redy, which provides high-performance

caches using remote disaggregated memory. Finally, it presentsMimicNet, a fine-grained sim-

ulation framework that evaluates network proposals at datacenter scale with machine learning

approximation. These systems demonstrate that our ideas in network-centric designs achieve

orders of magnitude higher efficiency compared to the state of the art at hyperscale.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENT . iv

ABSTRACT . vii

LIST OF TABLES . xii

LIST OF ILLUSTRATIONS . xxii

CHAPTER 1 : Introduction . 1

1.1 Hyperscale Data Processing . 1

1.2 Principles of Network-centric Designs . 3

1.3 Network-centric Systems . 5

CHAPTER 2 : Hyperscale Graph Processing in Current Networks 12

2.1 Introduction . 12

2.2 Background . 16

2.3 GraphRex Query Interface . 18

2.4 Query Planning . 20

2.5 Global Operator Optimizations . 28

2.6 Evaluation . 39

2.7 Related Work . 50

2.8 Summary . 51

CHAPTER 3 : A Look at the Future—Understanding Data Processing in DDCs . . . 53

3.1 Introduction . 54

3.2 Background . 58

3.3 Overview of Executing DBMSs in DDCs . 61

3.4 Setup and Methods for Extensive Evaluation 69

viii

3.5 The Cost of Disaggregation . 73

3.6 The Elasticity of DDCs . 82

3.7 Analysis and Tuning . 93

3.8 Proposals on Improving DBMS Performance in DDCs 101

3.9 Related Work . 103

3.10 Summary . 104

CHAPTER 4 : Achieving Optimal Data Processing Performance in DDCs 106

4.1 Introduction . 107

4.2 Background . 110

4.3 Design of TELEPORT . 114

4.4 Data Synchronization . 119

4.5 Applying TELEPORT . 126

4.6 Implementation . 131

4.7 Evaluation . 132

4.8 Related Work . 144

4.9 Summary . 145

CHAPTER 5 : Realizing DDC Benefits in Today’s Clouds 146

5.1 Introduction . 147

5.2 Motivation . 149

5.3 Redy Architecture . 153

5.4 Remote Cache with RDMA . 158

5.5 SLO-Driven Configuration . 162

5.6 Remote Memory Management . 168

5.7 Evaluation . 171

5.8 FASTER with Redy . 177

5.9 Related Work . 182

5.10 Summary . 184

ix

CHAPTER 6 : Facilitating Hyperscale Network Innovation 185

6.1 Introduction . 185

6.2 Motivation . 189

6.3 Design Goals . 191

6.4 MimicNet Overview . 192

6.5 Internal Models . 198

6.6 Feeder Models . 205

6.7 Tuning and Final Simulation . 206

6.8 Prototype Implementation . 209

6.9 Evaluation . 209

6.10 Related Work . 223

6.11 Summary . 225

CHAPTER 7 : Conclusion . 226

7.1 Other Work . 228

7.2 Future Work . 229

BIBLIOGRAPHY . 231

x

LIST OF TABLES

TABLE 1.1 : Hyperscale workloads are underpinning many services. 2

TABLE 2.1 : GraphRex’s global operator optimizations and when they apply. . . . 29

TABLE 2.2 : Speedup of SHUFF and row-based compression in CC on Twitter. . . 32

TABLE 2.3 : An example of Hierarchical Deduplication with a single rack of two

servers, with two workers per server. At each successive layer of the

hierarchy, workers coordinate to deduplicate join results before in-

curring increasingly expensive communication 33

TABLE 2.4 : Hierarchical Deduplication in TC on Twitter. Dup % indicates re-

ceived duplicates. 33

TABLE 2.5 : The percentage of tuples using each join order during the first four

iterations of SG on SynTw. LR is the left-to-right join order and RL the

right-to-left order. 37

TABLE 2.6 : Comparison of adaptive and static ordering. 37

TABLE 2.7 : Evaluation of NV on Twitter. 38

TABLE 2.8 : Evaluation of CC on Twitter. 39

TABLE 2.9 : Real-world, large-scale graphs in the evaluation. 41

TABLE 2.10 : Execution time and speedup for GraphRex (G.R.) compared to Big-

Datalog (B.D.), Giraph and PowerGraph (P.G.). This table presents

results for CC and PR on four graph datasets (TW, FR, UK, CW). OOM

indicates an out-of-memory error. B.D. does not support PR. 42

TABLE 2.11 : This table presents results for TC and REACH. 42

TABLE 3.1 : MonetDB buffer pool size tuning in Linux and LegoOS 98

TABLE 3.2 : PostgreSQL join algorithm tuning in Linux and LegoOS. Algorithms

marked with ∗ are what PostgreSQL selected. 99

xi

TABLE 3.3 : Page faults in different set associativity configurations. 100

TABLE 4.1 : The components in executing a pushdown request. Grayed are factors

on what TELEPORT has no control. 140

TABLE 5.1 : APIs provided by the cache client for applications. The underlined

functions are for performing I/Os. 156

TABLE 5.2 : Variables balancing latency and throughput. 163

TABLE 6.1 : Basic set of scalable features. 201

TABLE 6.2 : Running time comparison for 20 s of simulated time of a 128 cluster,

1024 host data center. Benefits of MimicNet increase with simulated

time and the size of the network as the first two values for MimicNet

are constant. 215

xii

LIST OF ILLUSTRATIONS

FIGURE 1.1 : A data center network connects hundreds of thousands of servers. . 3

FIGURE 1.2 : Network-centric systems that this dissertation presents for addressing

challenges in hyperscale data processing. 5

FIGURE 2.1 : Performance comparison (log scale) of SSSP between declarative sys-

tems: BigDatalog and GraphRex, and low-level graph systems: Gi-

raph and PowerGraph on large graphs. All systems are run in a dat-

acenter with 6 TB RAM and 1.6 thousand cores in aggregate. . . . 13

FIGURE 2.2 : TheGraphRex architecture. A compiler generates a logical plan from

a Datalog query. The static optimizer then constructs from the log-

ical plan a datacenter-centric execution specification that is opti-

mized before the final translation to and evaluation of the physical

plan by workers. Gray lines describe dissemination of infrastructure

configurations and black lines communication for query execution. 20

FIGURE 2.3 : Distributed Semi-Naïve in GraphRex 21

FIGURE 2.4 : Vertex states in GR-DSN. 22

FIGURE 2.5 : The logical plan of CC. 23

FIGURE 2.6 : The logical plan of SG. 23

FIGURE 2.7 : The execution specification of CC. 24

FIGURE 2.8 : The execution specification of SG. 24

FIGURE 2.9 : Two potential partitionings for TC. 27

FIGURE 2.10 : Static relation partitioning. 28

FIGURE 2.11 : Column-based organization for r(V,A,B), where V is the partition

key. Shaded is compressed data for reducing the number of bytes

that we send in the network. 30

xiii

FIGURE 2.12 : An example hierarchical transfer. Each worker groups its tuples by

partition key, and sends the them first within a server, then within a

rack, and finally to their destinations. A naive system would send

directly to other racks. Colors track where the tuple was generated;

numbers indicate the partition. 31

FIGURE 2.13 : SG on an example graph. 35

FIGURE 2.14 : Hierarchical Global Aggregation in a rack. After worker-level aggre-

gation, intermediate aggregates are shuffled (1) at a server-level, and

then (2) at a rack-level. 38

FIGURE 2.15 : Aggregation query evaluation with CM. 43

FIGURE 2.16 : Multi-way join query evaluation with SG. 44

FIGURE 2.17 : Heat map of cross-server communication. 45

FIGURE 2.18 : Heat maps of traffic volume (number of bytes sent between servers,

values are log 10 scale) for CC on FR. GraphRex (b) saves 94.8%

traffic compared to the infrastructure-agnostic baseline (a). 46

FIGURE 2.19 : System performance when varying link degradations. 47

FIGURE 2.20 : System performance with varying #aggregation switches. 47

FIGURE 2.21 : The CDF of performance with random background traffic. 48

FIGURE 2.22 : Scalability with #Servers on TW. 49

FIGURE 2.23 : Scalability with #Servers on FR. 49

FIGURE 2.24 : Scalability with #Servers on UK . 49

FIGURE 3.1 : An illustration of resource disaggregation. Same type of resources

are centralized in a resource pool. Resource pools are disaggregated

and connected by a fast network. 58

xiv

FIGURE 3.2 : DBMS execution in DDCs. DBMSworkers are spawned on compute

nodes with their small local memory acting as a cache. Buffer pools

live in a remote memory pool; a storage pool stores and manages

the database files. Workers send control messages to allocate and

manage resources, and the data is transferred between memory and

storage pool (loading and spilling) and the processing and memory

pool (fetching and eviction). 62

FIGURE 3.3 : Figure (a) depicts a hash partitioning when the DBMS is running on

LegoOS. Figure (b) shows the same operation but with additional

primitives (§3.8). 65

FIGURE 3.4 : Query performance on hash indexes of TPC-H (scale factor 10) ta-

bles. LM stands for local memory. 67

FIGURE 3.5 : An optimized physical plan for TPC-H Query 5. Shaded are the

operators that use hash tables that we built in Figure 3.4. 68

FIGURE 3.6 : Execution performance of hash joins and end-to-end TPC-H Query 5. 68

FIGURE 3.7 : Summary of parameters in MonetDB and PostgreSQL. 70

FIGURE 3.8 : Peak memory usage of TPC-H queries in MonetDB. 72

FIGURE 3.9 : Peak memory usage of TPC-H queries in PostgreSQL. 72

FIGURE 3.10 : MonetDB query execution time slowdowns with 4GB local memory

in LegoOS. The baseline is a single Linux server. 74

FIGURE 3.11 : MonetDB slowdowns with 1GB local memory in LegoOS. 74

FIGURE 3.12 : MonetDB slowdowns with 64MB local memory in LegoOS. 74

FIGURE 3.13 : The simplified execution plan for Q3 in PostgreSQL. Blue operators

involve disk I/O and red operators are in memory. 76

FIGURE 3.14 : PostgreSQL cold execution time slowdowns with 4GB local memory

in LegoOS (Q20 excluded). The Baseline is a single Linux server. . 77

FIGURE 3.15 : PostgreSQL (cold) slowdowns with 1GB local memory in LegoOS. 77

FIGURE 3.16 : PostgreSQL (cold) slowdowns with 64MB local memory in LegoOS. 77

xv

FIGURE 3.17 : PostgreSQL hot execution time slowdowns with 4GB local memory

in LegoOS (Q20 excluded). The Baseline is a single Linux server. . 78

FIGURE 3.18 : PostgreSQL (hot) slowdowns with 1GB local memory in LegoOS. . 78

FIGURE 3.19 : PostgreSQL (hot) slowdowns with 64MB local memory in LegoOS. 78

FIGURE 3.20 : The slowdowns of running distributed DBMSs in a cluster compared

to a single machine of the same hardware. 79

FIGURE 3.21 : The slowdowns of LegoOS in the TPC-H throughput benchmark.

Trends are similar to the observations for single query performance. 81

FIGURE 3.22 : MonetDB performance when varying local memory size for Query 16. 83

FIGURE 3.23 : Varying local memory size for Query 5. 83

FIGURE 3.24 : Varying local memory size for Query 9. 83

FIGURE 3.25 : PostgreSQL performance (cold) when varying local memory size for

Query 6. 85

FIGURE 3.26 : Varying local memory size for Query 13. 85

FIGURE 3.27 : Varying local memory size for Query 4. 85

FIGURE 3.28 : PostgreSQL performance (hot) when varying local memory size for

Query 6. 86

FIGURE 3.29 : Varying local memory size for Query 13. 86

FIGURE 3.30 : Varying local memory size for Query 4. 86

FIGURE 3.31 : MonetDB performance when varying dataset size for Query 16. . . 87

FIGURE 3.32 : Varying dataset size for Query 5. 87

FIGURE 3.33 : Varying dataset size for Query 9. 87

FIGURE 3.34 : PostgreSQL performance (cold) when varying dataset size for Query 6. 88

FIGURE 3.35 : Varying dataset size for Query 13. 88

FIGURE 3.36 : Varying dataset size for Query 6. 88

FIGURE 3.37 : MonetDB query execution performance in Linux and LegoOS with

mixed workloads starting with cold memory. 89

FIGURE 3.38 : PostgreSQL performance with mixed workloads. 90

xvi

FIGURE 3.39 : The effect of prefetching in PostgreSQL. 92

FIGURE 3.40 : NRM in MonetDB executions with 4GB local memory. 94

FIGURE 3.41 : NRM with 1GB local memory. 94

FIGURE 3.42 : NRM with 64MB local memory. 94

FIGURE 3.43 : NRM in PostgreSQL executions with 4GB local memory. 95

FIGURE 3.44 : NRM in PostgreSQL executions with 1GB local memory. 95

FIGURE 3.45 : NRM in PostgreSQL executions with 64MB local memory. 95

FIGURE 4.1 : The benefits and cost of running DBMSs in DDCs. 108

FIGURE 4.2 : DDC performance overhead compared to a monolithic server. . . . 112

FIGURE 4.3 : A data-intensive relational operator example, selection, in DDCs. . 113

FIGURE 4.4 : TELEPORT architecture. 116

FIGURE 4.5 : Application performance in different systems and with different data

sync approaches in TELEPORT. 119

FIGURE 4.6 : The benefit of a manual data sync with syncmem when false sharing

occurs in the application. 119

FIGURE 4.7 : Preparation of the page tables before pushdown execution in the

memory pool. compute_pgs is the transmitted list of pages from the

compute pool. 121

FIGURE 4.8 : Handling compute-pool page faults during pushdown. 122

FIGURE 4.9 : Handling memory-pool page faults during pushdown. 123

FIGURE 4.10 : Performance breakdown of the query with the greatest cost of scal-

ing in DDCs in each system. For every operator/phase, we show

the times in both local and DDC executions and the remote mem-

ory accesses in the DDC. A common pattern is that there are one

or two arbitrary operators/components dominating the overall query

execution time. 126

FIGURE 4.11 : The flexibility of TELEPORT enables the pushdown of variousmemory-

intensive operators in existing systems with minimal modification. 127

xvii

FIGURE 4.12 : Original projection code in MonetDB. 128

FIGURE 4.13 : TELEPORTing this memory-intensive operator is intuitive. 129

FIGURE 4.14 : The performance improvement of pushing the operators in Qfilter to

the memory pool with TELEPORT. 133

FIGURE 4.15 : TELEPORT improves the performance of a wide range of data pro-

cessing tasks. By removing expensive data movement, TELEPORT

significantly reduces the overhead of memory disaggregation, up to

an order of magnitude speedup compared to the baseline DDC. . . 133

FIGURE 4.16 : Query speedups with large disaggregated memory pools vs. SSDs. . 136

FIGURE 4.17 : The benefits of increasing physical memory for large workloads. . . 136

FIGURE 4.18 : Pushdown performance (Q9) with different computation power set-

tings in the memory pool. 138

FIGURE 4.19 : The benefits of parallelizing the processing of concurrent pushdown

requests in the memory pool. 138

FIGURE 4.20 : The performance of different levels of pushdown. 139

FIGURE 4.21 : TELEPORT performance breakdown with different sync methods. . 141

FIGURE 4.22 : Application performance with varying levels of contention. 143

FIGURE 4.23 : The number of coherence messages in TELEPORT. 143

FIGURE 5.1 : The significance of stranded memory. 151

FIGURE 5.2 : The dynamics of stranding events. 151

FIGURE 5.3 : The impact of the RDMA configuration in Redy. 152

FIGURE 5.4 : Architecture of Redy. An application interacts with the cache client.

The global cache manager asks the data center’s VM allocator to re-

serve VMs to host the cache. Cache servers on those VMs coordinate

with the client for cache accesses. 154

FIGURE 5.5 : A region table maps a cache to VMs. 157

xviii

FIGURE 5.6 : RDMA message flow in Redy. Ring buffers enable pipeline paral-

lelism between adjacent threads. Message rings are only used when

batch size is greater than one. 158

FIGURE 5.7 : Redy optimizations effectively decrease latency. 161

FIGURE 5.8 : Effectiveness on increasing throughput. 161

FIGURE 5.9 : Configuration performance modeling. 166

FIGURE 5.10 : Online SLO-based searching in the manager. 167

FIGURE 5.11 : The latency of Redy caches with latency-optimal configurations for

different record sizes. On average, accessing records up to 4KB sizes

takes less than 5µs, close to the raw RDMA hardware speed. 172

FIGURE 5.12 : The throughput of Redy cacheswith throughput-optimal and stranded-

memory configurations. Batching small records improves the through-

put by an order of magnitude. 173

FIGURE 5.13 : Satisfying latency SLOs. 175

FIGURE 5.14 : Satisfying throughput SLOs. 175

FIGURE 5.15 : The impact of region migration on reads. 176

FIGURE 5.16 : The impact of region migration on writes. 176

FIGURE 5.17 : FASTER with Redy. New records are appended to both tiers. Reads

to records in Redy are only served by Redy. 178

FIGURE 5.18 : FASTER throughput with Redy, SMB Direct, and SSD respectively on

the YCSB benchmark when the working set is larger than local memory.179

FIGURE 5.19 : FASTER throughput when varying local memory size. 180

FIGURE 5.20 : FASTER with various local memory sizes on uniform YCSB. 181

FIGURE 5.21 : Tiered store with various remote cache sizes. 181

xix

FIGURE 6.1 : Accuracy for MimicNet’s predictions of the FCT distribution for a

range of data center sizes. Accuracy is quantified via the Wasser-

stein distance (W1) to the distribution observed in the original simu-

lation. Lower is better. Also shown are the accuracy of a flow-level

simulator (SimGrid) and the accuracy of assuming a small (2-cluster)

simulation’s results are representative. 187

FIGURE 6.2 : OMNeT++ performance on leaf-spine topologies of various size.

Even for these small cases, 5mins of simulation time can take multi-

ple days to process. Results were similar for ns-3 and other frameworks.190

FIGURE 6.3 : The end-to-end, fully automated workflow of MimicNet. 193

FIGURE 6.4 : Breakdown of traffic in a to-be-approximated cluster. MimicNet ap-

proximates all traffic that does not interact with the observable clus-

ter (dotted-red lines) using the models in the referenced sections. . 195

FIGURE 6.5 : Ground truth and LSTM-predicted drops for a one-second test set

using different loss functions. The y-axis is 1 for dropped, 0 for not.

Ground truth has 0.3% drop rate and BCE loss has 0.01%. WBCE

results in more realistic drop rates depending on the weight (w=0.6:

0.14%; w=0.9: 0.49%). 202

FIGURE 6.6 : Ground truth and LSTM-predicted latency (in seconds) for a one-

second test set using different loss functions. With each, we report

the output of the objective, MAE (listed in parentheses). Unfortu-

nately, using MAE directly as the loss function fails to capture out-

liers. Instead, Huber produces more realistic results and a better

eventual MAE score. 203

xx

FIGURE 6.7 : The accuracy of MimicNet in the baseline configuration for 2 clus-

ters and 128 clusters. Also shown are results from SimGrid and the

assumption that small-scale results are representative. W1 to ground

truth is shown in parentheses. We annotate the 99-pct value of each

metric for every approach at the tail in 128 clusters. 210

FIGURE 6.8 : Throughput Scalability. 212

FIGURE 6.9 : RTT Scalability. Flow-level simulation is too coarse-grained to pro-

vide this metric. 212

FIGURE 6.10 : Simulation running time speedup brought by MimicNet in different

sizes of data centers. In a network of 128 clusters (256 racks), Mim-

icNet reduces the simulation time from 12 days to under 30 min-

utes, achieving more than two orders of magnitude speedup. The

speedups are consistent and stable across different workloads. . . 214

FIGURE 6.11 : Simulation latency with different network sizes. 215

FIGURE 6.12 : Simulation throughput with different network sizes. 216

FIGURE 6.13 : Simulation latency with different simulation lengths. 217

FIGURE 6.14 : Simulation throughput with different simulation lengths. 217

FIGURE 6.15 : Tuning the marking threshold K in DCTCP: the configuration that

achieves the lowest 90-pct FCT is different between 2 clusters (K =

60) and 32 clusters (K = 20). MimicNet provides the same answer

as the full simulation for 32 clusters, but it is 12× faster. 218

FIGURE 6.16 : FCT distributions of Homa, DCTCP, TCP Vegas, and TCP Westwood

for a 32-cluster data center. 220

FIGURE 6.17 : Comparison of throughput distributions. 221

FIGURE 6.18 : Comparison of packet RTT distributions. 222

FIGURE 6.19 : Compute consumption in different simulation approaches. 223

xxi

FIGURE 6.20 : The impact of the window size on modeling accuracy and speed.

The BDP of the network is around 12 packets. More packets in the

window help loss descent (through epochs), but can make the train-

ing slower (training latency is per batch in Python). 224

FIGURE 6.21 : The impact of the window size on modeling (validation) accuracy

and inference latency per packet in C++. 224

xxii

CHAPTER 1

INTRODUCTION

One of the most fundamental tasks in computer science is to process data in a timely man-

ner. It is critical for nearly every computing workload and affects aspects of our lives as

diverse as health (e.g., tracking outbreaks in a pandemic [145]), finance (e.g., fast trading and

quantitative analysis [203, 232]), education (e.g., large-scale resource sharing [229]), and en-

tertainment (e.g., massive online services and recommendations [91, 269]). Data processing

systems, such as database management systems, have been known for providing easy-to-

use querying languages and achieving high performance on processing high-level queries.

Unfortunately, unprecedented data growth has meant that achieving good performance is

increasingly challenging for all of the components involved: the infrastructure must provide

massive amounts of resources, data processing systems must utilize the resources efficiently,

and even applications sometimes need different algorithm designs.

1.1 Hyperscale Data Processing

The largest data processing workloads are now hosted in cloud data centers. In recent years,

data has been growing exponentially, but hardware performance advancement has not been

able to keep up (e.g., the end of Dennard scaling and slowdown of Moore’s Law). These

two trends have forced cloud data processing workloads to balloon to the hyperscale level,

where a single query (e.g., for database analytics, graph processing, MapReduce, or machine

1

Hyperscaler Workloads

Amazon
“Each service publishes datasets to Amazon’s analytics infrastructure, in-
cluding more than 50 petabytes of data and 75,000 tables, processing
600,000 user analytics jobs each day.” [2]

Google
“The Google Search index contains hundreds of billions of webpages,
which is well over 100,000,000 gigabytes in size.” [13]

Facebook
“...our needs at Facebook with over 1.39B users and hundreds of billions
of social connections...” [79]

Alibaba
“...analytical workloads from our clients...: 10PB+ data, hundred thou-
sands of tables and trillions of rows...” [279]

Databricks
“The ability to execute rapid queries on petabyte-scale data sets using stan-
dard BI tools is a game changer...” [10]

Snowflake “Largest single table: 45 trillion rows” [23]
OpenAI “GPT-3 was trained on hundreds of billions of words” [25]

Table 1.1: Hyperscale workloads are underpinning many services.

learning) can involve billions to trillions of data items and hundreds to thousands of servers.

Table 1.1 lists a few examples of hyperscale workloads that support today’s important services.

Suchmassive workloads are enabled by data center networks, which also constantly expand in

response to workload growth. These networks are highly scalable and connect up to hundreds

of thousands of distributed machines. Figure 1.1 shows a network structure that is widely

adopted in today’s largest data centers [41, 84, 172, 245].

Many traditional design principles break down at hyperscale. A particular instance is the

classic principle of layering, in which different components of a network, from applications to

the transport and hardware, are built independently as layers and connected by well-specified

protocols. Layering has allowed people working on different components to focus on their

own systems with clear optimization goals. However, layered designs are no longer sus-

tainable at hyperscale. For instance, it is difficult for applications to know how their data

is transferred in the network with layering, so applications can make egregious decisions in

their execution models; the cloud infrastructure also performs poorly without rethinking the

interfaces and services exposed to its applications. In fact, most cloud providers already break

layering in their current architectures. For example, cloud giants are creating custom hard-

ware for their most common applications [102, 189, 268, 271], and their networking stacks

2

… … ……

…

Figure 1.1: A data center network connects hundreds of thousands of servers.

are also moving towards the user space [174, 238]. The research community, however, has

not kept up, due to the lack of systematic investigations on applying cross-layer designs to

address hyperscale challenges in data processing.

1.2 Principles of Network-centric Designs

To overcome the weaknesses of layered designs, we bridge data processing systems and data

center networks to achieve efficient data processing in cloud data centers. Our general finding

is that for large-scale data processing, the network is often either the performance bottleneck

or the leverage we can use to solve scale problems. Hence, we build systems with network-

centric designs, which concern three questions and their associated challenges as follows.

• How do data processing systems perform in current networks? Developers of data pro-

cessing systems treat the network as a black box that simply delivers messages from point

A to point B. This assumption greatly simplifies the design of distributed data process-

ing. For example, systems can ignore details like the physical placement of distributed

workers in their execution models. Data center networks have also traditionally tried to

support this assumption with a “one big switch” abstraction that it provides to applica-

tions. However, it incurs a great cost to maintain the abstraction at scale because a data

processing job that requires hundreds of machines must necessarily span multiple racks

or even clusters. Today’s data center networks are commonly oversubscribed due to cost

considerations [15, 245], meaning that the cross-rack and cross-cluster network perfor-

3

mance (bandwidth and latency) is significantly worse than that within racks and clusters.

Such data center network characteristics are important for large-scale data processing

but rarely considered in prior systems. In consequence, network communications are

becoming the primary performance bottleneck when data processing systems scale out.

• How will they perform in future networks? We envision that future data centers are

disaggregated. Disaggregated data centers (DDCs) are a promising new cloud proposal

that decouples different types of resources from monolithic servers into resource pools,

e.g., compute/CPU pool, memory pool, and storage pool, and connects these pools by a

high-speed network [109, 121, 235]. Compared to traditional server architectures, dis-

aggregation offers vast operational benefits that are particularly attractive to hyperscale

data centers. For instance, it solves the traditional bin-packing problem when assigning

virtual machines (VMs) to physical machines by making resource allocation indepen-

dent, potentially saving billion-dollar cost that is incurred by underutilized hardware

resources in current data centers. DDCs also make data center expansion easier as dif-

ferent resources can be added and managed independently. In addition, DDCs provide

hardware failure isolation and achieve better elasticity for applications.

Despite these benefits, this architecture can potentially disrupt data processing systems.

The memory disaggregation in DDCs completely separates compute and data, but data

processing systems often cache large working sets in memory during query execution

and have been designed with the assumption that memory accesses are cheap and can

be random. Hence, processing queries with these systems incurs frequent data move-

ment through the network that connects the compute and memory components, thereby

resulting in high performance overhead of disaggregation.

• How do networks evolve? To enable network innovations such as resource disaggre-

gation introduced above, we note that an essential part is to evaluate the performance

of the proposals. Unfortunately, evaluating hyperscale networks is intractable because

of their size and complexity. This is true for testbeds, where few, if any, can afford a

4

Facilitating network innovation
MimicNet [Chap. 6]

Diverse data processing tasks

Current networks Future networks

Network-aware data
processing

GraphRex [Chap. 2]

Data Processing Systems

Data Center Networks

Data processing with
resource disaggregation
DBMSs in DDCs [Chap. 3]
TELEPORT [Chap. 4]
Redy [Chap. 5]

CIDR ’20, VLDB ‘20,
SIGMOD ’22, VLDB ‘22

SIGMOD ’19

SIGCOMM ’21

Figure 1.2: Network-centric systems that this dissertation presents for addressing challenges
in hyperscale data processing.

dedicated, full-scale replica of a data center. It is also true for simulations, which while

originally designed for at-scale network evaluation, have struggled to cope with today’s

hyperscale infrastructure. For example, simulating the TCP protocol for 60 seconds in

a data center of a thousand machines takes 36 days to finish. Evaluation is becoming

the main roadblock for data center network innovation.

The principles of network-centric designs correspond to these three questions. In current

networks where the network has already been deployed and thus hard to change, we redesign

data processing systems with network-awareness to minimize communication times. In future

networks, we introduce new interfaces and services that the cloud infrastructure offers to

applications to expose radical architectural changes; meanwhile, we codesign data processing

systems to achieve optimal query processing performance by exploiting these new features.

Finally, to facilitate network transformation from current to future designs, we must propose

new network designs and be able to evaluate the performance of the proposals at scale.

1.3 Network-centric Systems

This dissertation improves the efficiency of hyperscale data processing with the systems that

we build by following the network-centric design principles. It covers all directions involved

5

and makes three thrusts: (1) network-aware data processing for addressing scaling bottlenecks

in current networks, (2) data processing with resource disaggregation for fully understanding

the behavior of data processing systems and overcoming their limitations in DDCs, a new

cloud architecture, and (3) facilitating network innovation with at-scale network evaluation.

Figure 1.2 maps out the thrusts and systems of this dissertation, which we describe as follows.

1.3.1 Network-aware Data Processing

The first thrust applies current data center domain knowledge to data processing, for which

we have built GraphRex [286], the first system that processes hyperscale graph queries by

systematically adopting network awareness.

Large-scale graph analytics is a popular example of hyperscale data processing as real-

world graphs now scale up to billions of vertices and trillions of edges. Our study on mas-

sive workloads showed that network communication dominated the times in processing large

graph queries. However, state-of-the-art systems were incapable of capturing modern data

center network characteristics and thus suffered from substantial communication cost.

This motivated our GraphRex system [281], which we developed for processing graph

queries at data center scale. GraphRex has three goals: ease of programming, querying effi-

ciency, and robustness to network dynamics. These goals are required in practice but achiev-

ing all three together is difficult. We must carefully design the query language, execution,

and optimizations with domain-specific knowledge.

GraphRex achieves the first goal with a declarative and easy-to-use query interface. The

second and third goals require it to reduce overall network traffic, especially over bottleneck

links. GraphRex introduces a set of new operators in its execution engine, called global

operators, which consider data center network characteristics. For instance, as one of the

global operators, our shuffle operator exchanges messages between workers in a topology-

aware fashion, which consolidates messages when network cost is low and compresses them

to minimize the amount of data sent through oversubscribed links. Combined, these operators

substantially level up the performance and robustness of GraphRex in data centers.

6

1.3.2 Data Processing with Resource Disaggregation

The second thrust focuses on future networks. We introduced data processing in disaggre-

gated data centers (DDCs) and conducted extensive research under this topic. Specifically,

we pioneered the rethinking of data processing system designs in DDCs [284] and, for the

first time, investigated the effect of DDCs on production systems [285]. We then proposed

TELEPORT [287], a new DDC feature that allows for optimal data processing performance.

We also developed Redy [283] with industry to harvest DDC benefits in today’s clouds. We

now introduce this line of work in greater detail.

Rethinking and understanding data processing systems in DDCs. We opened the topic with

microbenchmarks on hash operations. We showed that the separation of compute and mem-

ory, i.e., memory disaggregation, causes significant overhead for data center applications. It

happens because every data access to the main memory now translates to a network com-

munication. This overhead is particularly felt by data processing systems, which hold large

working sets in memory. We proposed a set of novel operators for reducing the overhead.

The largest public clouds are already in the transition to disaggregated architectures, in-

cluding memory disaggregation. Fully understanding DDC implications on data processing is

hence both urgent and important. We took the first step to investigate DDC effect on produc-

tion systems. By studying DBMSs, which execute memory-intensive queries, we found that

both the benefits and overhead of DDCs are substantial. On one hand, a large disaggregated

memory pool can prevent the processing of memory-intensive queries from being spilled to

secondary storage. On the other hand, network communications for remote memory accesses

are expensive for large queries.

TELEPORT: achieving optimal data processing performance in DDCs. To overcome the over-

head of DDCs and unlock all their benefits, we introduced TELEPORT, a compute pushdown

framework that enables data processing systems to offload expensive operations close to data.

It is based on disaggregated operating systems (OSes) that emulate traditional OS interfaces

to provide backward compatibility in DDCs, so that current applications can directly run to

7

harvest the benefits. With TELEPORT, applications are capable of executing light-weight but

memory-intensive operations in the memory pool. In doing so, they eliminate costly remote

memory accesses and hence achieve better performance.

TELEPORT is unique in its generality and efficiency. With a new system call, it allows ap-

plications to offload arbitrary pieces of computation by wrapping them as functions. Pushing

a function down is as simple as providing the pointers of the function and its arguments to

the memory pool. This is possible because applications’ stack, heap, and code pages all live

in the memory pool as a byproduct of disaggregated OSes. Data synchronization is critical

for TELEPORT: the compute pool caches part of the main memory, so data copies in different

pools can diverge before, during, and after a pushdown call. Without proper synchronization,

concurrent threads in the two pools may access the same memory pages without observing

each other’s updates. TELEPORT employs specialized synchronization primitives that guaran-

tee memory coherence. It only transfers data on applications’ demands, which outperforms

application-agnostic alternatives.

Redy: realizing DDC benefits in today’s clouds. With TELEPORT, DDCs provide a radical

solution to the limitations of current cloud infrastructure. Can we preharvest some of the

DDC benefits in today’s clouds? To seek the answer, we investigated the data centers of

Microsoft Azure, one of the largest cloud providers. Azure data centers have massive amounts

of unused memory, much of which is stranded because all local CPUs are allocated to VMs.

Nevertheless, stranded memory can be productively employed by accessing it via Remote

Direct Memory Access (RDMA). RDMA can access remote memory without involving remote

CPUs and bypass OS kernels for low latency. Based on these insights, we developed Redy,

a new cloud service that uses stranded memory as remote caches. It offers a lower-latency

alternative to SSDs, using disaggregated memory resources that would otherwise go to waste.

Our use of RDMA leads to two challenges. The first is performance. Tuning RDMA re-

quires complex, low-level optimizations to trade off network latency, throughput, and re-

source cost. There is no one-size-fits-all configuration. Second, stranded memory resources

are highly dynamic. They come and go depending on VM allocations. Their availability can

8

be as short as a few minutes. Providing reliable caches using dynamic memory is hard.

Redy addresses the first challenge with SLO-based configuration. It takes as input a user-

defined performance service-level objective (SLO) and uses a dynamic optimization process

to automatically find the configuration that satisfies the SLO with minimal resource cost. To

solve the dynamic challenge, we developed a dynamicmemorymanager that migrates a cache

to new stranded memory when the old memory is reclaimed by the cloud VM allocator. The

migration occurs in a way that minimizes the impact on cache performance.

1.3.3 Facilitating Network Innovation

The final thrust of this dissertation concerns network evaluation. We focused on packet-level

simulation, which was originally designed with three goals: providing performance results for

arbitrary scale with arbitrary network extensions and arbitrary user instrumentation. Unfortu-

nately, simulating data centers is prohibitive: parallelization barely works as the complexity

of the network forces simulators to serialize all simulated events; approximations such as

flow-level approaches lack accuracy and generality. We developed MimicNet [288], the first

scalable simulator that predicts the performance of data center network proposals with high

accuracy using machine learning techniques.

MimicNet assumes the popular FatTree topology, where racks of servers are connected by

a cluster network, and clusters are connected by a set of core switches. Cluster is the unit

for scaling—real-world data centers can have thousands of clusters. Based on this topology,

MimicNet works as follows. It first runs a small simulation of two clusters in full fidelity. Using

the simulation results, it trains machine learning (ML) models for approximating intra-cluster

and inter-cluster behavior. Finally, it runs an N -cluster simulation by composing (1) a single

‘observable’ cluster for user instrumentation, regardless of the total number of clusters in the

data center, and (2) N − 1 clusters that are not directly observed. All components in the ob-

servable cluster and all of the remote components with which it communicates are simulated

in full fidelity. All other behavior that is not directly observed by the user is approximated

by the trained models. In essence, MimicNet predicts the performance of a large network by

9

observing only small subsets of it. By removing the simulation of most clusters, it decreases

the simulation time by orders of magnitude.

Network complexity makes achieving high accuracy in MimicNet approximations chal-

lenging. We address this by baking data center domain knowledge into the designs of the

ML models such as their learning features and loss functions. Additionally, we allow users

to trade accuracy off for higher simulation speed by training smaller models instead of more

accurate larger ones.

1.3.4 Summary

With the above systems, this dissertation demonstrates that our ideas in network-centric de-

signs can improve the efficiency of hyperscale data processing by orders of magnitude com-

pared to the state of the art. Specifically, we evaluated GraphRex with large real-world graphs

in a data center testbed what has several terabytes of memory and thousands of CPU cores,

a scale much larger than that have been tested in prior declarative graph systems. GraphRex

proved to be two orders of magnitude faster than state-of-the-art systems under various net-

work conditions. We applied TELEPORT to three popular workloads: in-memory database,

graph processing, and MapReduce. Compared to baseline DDCs, these workloads execute

up to an order of magnitude faster with TELEPORT. In addition, TELEPORT requires little effort

from its users. We integrated Redy with a production key-value store to demonstrate its ease

of use and performance benefits. Results show that Redy caches are 20× and 8× faster than

an SSD and an RDMA baseline respectively. For MimicNet, our experiments with real-world

network traces showed that it simulates data center networks orders of magnitude faster than

full-fidelity packet-level simulation, and its results closely mimic the ground-truth. For exam-

ple, while it takes more than a month to simulate recent network innovations in a data center

of a thousand servers in full fidelity, MimicNet finishes in a few hours and its predictions are

within 5% of the true results.

The remainder of this dissertation is outlined as follows. The first part (Chapter 2) presents

GraphRex. The second part (Chapter 3, Chapter 4, and Chapter 5) focuses on data processing

10

in disaggregated data centers. It details our works on investigating database management sys-

tems in disaggregated data centers, TELEPORT, and Redy. The third part (Chapter 6) describes

MimicNet. Finally, Chapter 7 summarizes the dissertation, mentions other works that are not

covered, and discusses future directions.

11

CHAPTER 2

HYPERSCALE GRAPH PROCESSING IN CURRENT NETWORKS

In this chapter, we present GraphRex, an efficient, robust, scalable, and easy-to-program

framework for graph processing on current datacenter infrastructure. To users, GraphRex

presents a declarative, Datalog-like interface that is natural and expressive. Underneath,

it compiles those queries into efficient implementations. A key technical contribution of

GraphRex is the identification and optimization of a set of global operators whose efficiency is

crucial to the good performance of datacenter-based, large graph analysis. Our experimental

results show that GraphRex significantly outperforms existing graph analytics frameworks—

both high- and low-level—in scenarios ranging across a wide variety of graph workloads and

network conditions, sometimes by two orders of magnitude.

2.1 Introduction

Over the past decade, there has been a proliferation of graph processing systems, ranging

from low-level platforms [80, 136, 176, 183] to more recent declarative designs [241]. While

users can deploy these systems in a variety of contexts, the largest instances routinely scale

to multiple racks of servers contained in vast datacenters like those of Google, Facebook, and

Microsoft [225]. This trend of large-scale distributed data processing is likely to persist as data

continues to accumulate.

These massive deployments are in a class of their own: their size and the inherent prop-

12

1

10

100

1000

10000

Twitter (2B) Friendster (3.6B) UK2007 (3.7B) ClueWeb (42.6B)

Ex
ec
ut
io
n
tim

e
(s
)

BigDatalog
Giraph

PowerGraph
GraphRex

O
u
t
O
f
M
e
m
o
ry

Figure 2.1: Performance comparison (log scale) of SSSP between declarative systems: BigDat-
alog and GraphRex, and low-level graph systems: Giraph and PowerGraph on large graphs.
All systems are run in a datacenter with 6 TB RAM and 1.6 thousand cores in aggregate.

erties of the datacenter infrastructure present unique challenges for graph processing. To

highlight these performance issues on practical workloads, Figure 2.1 illustrates, for multi-

ple graph processing systems and billion-edge graphs, the running time of a single-source

shortest path (SSSP) query on a representative datacenter testbed. We tested four systems:

(1) BigDatalog [241], a recent system that provides a declarative interface to Spark; (2) Gi-

raph [80], a platform built on Hadoop that powers Facebook’s social graph analytics; (3)

PowerGraph [114], a highly optimized custom framework; and as a sneak preview of the

space of possible improvement (4) GraphRex, the system that this chapter presents for large-

scale datacenter-based graph processing. As the results demonstrate, while the three existing

systems are capable of scaling to billion-edge workloads, our approach leads to up to two

orders of magnitude better performance.

The above results barely scratch the surface of optimization opportunities for large-scale

graph queries in datacenters. We note two significant opportunities that are underexplored

in previous work:

Opportunity #1: The impact of graph workload characteristics. Real-world graphs exhibit

particular qualities that incur serious performance degradation if ignored. One example is

a power-law distribution with high skew, where most vertices are of fairly low degree, but a

13

few vertices have very high edge counts. Even within a single execution, the optimal query

plan may then differ depending on which vertex is being processed. Another is a proclivity to

produce redundant data, e.g., in the case of label propagation where nodes can often reach

each other via many paths. Each of these presents opportunities for optimization.

Opportunity #2: The impact of datacenter architecture. Performance can also depend heav-

ily on the underlying infrastructure. Consider the rack-based architecture of Facebook’s most

recent datacenter design [15]. Racks of servers are connected through an interconnection

network such that a given server’s bandwidth to another can differ by a factor of four depend-

ing on whether the other server is in the same rack or not. Though this type of structure is

ubiquitous in today’s datacenters due to practical design constraints [15, 245, 119], existing

processing systems (e.g., [80, 114, 241]) have largely ignored these effects, typically assuming

uniform connectivity that is not the case in modern datacenters.

The GraphRex system. To exploit these two opportunities, this chapter explores a suite of

optimization techniques specifically designed to ensure good performance for massive graph

queries running in modern datacenters. We have developed GraphRex (Graph Recursive

Execution) that significantly outperforms state-of-the-art graph processing systems.

The performance of GraphRex stems, in part, from the high-level language it presents. It

compiles Datalog queries into distributed execution plans that can be processed in amassively

parallel fashion using distributed semi-naïve evaluation [175]. While prior work has noted

that declarative abstractions based onDatalog are natural fits for graph queries [34, 241], these

systems fall short on constructing efficient physical plans that (1) scale to large graphs that

cannot fit in the memory of one machine, and (2) scale to a large number of machines where

the network is a bottleneck. GraphRex goes beyond these systems by combining traditional

query processing with network-layer optimizations. It aims to achieve the best of both worlds:

ease of programming using a declarative interface and high performance on typical datacenter

infrastructure. Our key observation is that these two goals exhibit extraordinary synergy.

We note that this synergy comes with a requirement: that the graph processing system be

aware of the underlying physical network. In a private cloud datacenter where the operator

14

has full-stack control of the application and infrastructure, visibility is trivial. In a public

cloud, the provider would likely expose GraphRex “as a service” in order to abstract away

infrastructure concerns from users.

Our contributions. This chapter makes the following contributions in the design and imple-

mentation of GraphRex:

(i) Datacenter-centric relational operators for large-scale graph processing. We have devel-

oped a collection of optimizations that, taken together, specialize relational operators for

datacenter-scale graph processing. The scope and effect of these optimizations is broad, but

their overarching goal is to reduce data and data transfer, particularly across “expensive” links

in the datacenter. These techniques, applied using knowledge of the underlying datacenter

topology and semantics of relational operators in GraphRex’s declarative language, allow us

to significantly outperform existing graph systems.

(ii) Dynamic join reordering. We also observe that graph queries may require changing join

reorderings as join selectivity is heavily influenced by node degrees; and degrees can vary

significantly across a graph. Inspired by prior work on pipelined dynamic query reoptimiza-

tions [59], we develop a distributed join operator that can dynamically adapt to changing join

selectivities as the query execution progresses along different regions of a graph.

(iii) Implementation and evaluation. We have implemented a prototype of GraphRex. Based

on evaluations on the CloudLab testbed, we observe that GraphRex has dominant efficiency

over existing declarative and low-level systems on a wide range of real-world workloads and

micro-benchmarks. GraphRex outperforms BigDatalog by factors of 11–109×, Giraph by fac-

tors of 5–26×, and PowerGraph by 3–8×. In addition, GraphRex is more robust to datacenter

network practicalities such as cross-traffic and link degradation because our datacenter-centric

operators significantly reduce the amount of traffic traversing bottleneck links.

15

2.2 Background

Today’s graph processing processing systems span multiple layers. Applications are written

in low-level languages like C++ or Java; they run on frameworks including GraphX, Giraph;

which in turn run in large datacenter deployments like those of Google, Amazon, Microsoft,

and Facebook. These systems are powerful, efficient, and robust, but difficult to program and

tune [44, 241].

2.2.1 Declarative Graph Processing

GraphRex uses Datalog as a declarative abstraction, drawing inspiration from recent work [34,

241]. Datalog is a particularly attractive choice for writing graph queries because of its natural

support for recursion—a key construct in a wide variety of graph queries [153, 233].

Datalog rules have the form p :- q1, q2, ..., qn, which can be read informally as “q1 and q2 ...

and qn implies p.” p is the head of the rule, and q1, q2, ..., qn is a list of literals that constitutes

the body of the rule. Literals are either predicates over fields (variables and constants), or

functions (formally, function symbols) applied to fields. The rules can refer to each other in

a cyclic fashion to express recursion, which is particularly useful for graph processing. We

adhere to the convention that names of predicates, function symbols and constants begin with

a lower-case letter, while variable names begin with an upper-case letter. We use predicate,

table, and relation interchangeably.

cc(A,min<A>) :- e(A,_)

cc(A,min<L>) :- cc(B,L), e(B,A)

Query 2.1: Connected Components (CC)

Our example above shows a classical graph query that computes connected components

in a graph. This query takes a set of edges e as inputs, with e(X,Y) representing an edge

from vertex X to vertex Y, and computes a cc tuple for each vertex, where the first field is

the vertex and the second is a label for the vertex. The first rule initializes the label of each

vertex with its vertex id. In the second rule, cc(A,min<L>) means that the tuples in cc are

16

grouped by A first, and in each group, the labels L are aggregated with min. The rule is

recursively evaluated so that the smallest label is passed hop by hop until all vertices in the

same connected component have the same label. An equivalent program in Spark requires

upwards of one hundred lines of code.

Partitioning graph data. Distributed graph processing requires specification of how the graph

data and relations are partitioned. Graph partitioning maps vertices (or edges) to workers,

and is useful when queries have consistent and predictable access patterns over data. In this

chapter, we assume a default graph partitioning where vertex id is hashed modulo the number

of workers, although our optimizations are not restricted to, and indeed are compatible with,

more advanced graph partitioning mechanisms. Relation partitioning refers to cases where an

attribute of a relation is selected as partition key and all of its tuples with the same partition

key are put in the same location. For example, in the CC query, cc has two attributes so it has

two potential partitionings: cc(@A,B) and cc(A,@B), where @ denotes the partition key.

2.2.2 Graph Queries in Datacenters

A crucial component for performance is an understanding of the deployment environment,

which in the case of today’s largest graph applications, refers to a datacenter. Modern datacen-

ter designs, e.g., those of Google [245], Facebook [15], and Microsoft [119], have coalesced

around a few common features, depicted in Figure 1.1, which are necessitated by practical

considerations such as scalability and cost.

At the core of all modern datacenter designs are racks of networked servers [84, 172, 245].

The servers come inmany form factors, but server racks typically contain a few dozen standard

servers connected to a single rack switch that serves as a gateway to the rest of the datacenter

network [206]. The datacenter-wide network that connects those rack switches is structured

as a multi-rooted tree, as shown in Figure 1.1. The rack switches form the leaves [41, 157].

The above architecture leads to several defining features in modern datacenter networks.

One example: oversubscription. While recent architectures strive to reduce oversubscrip-

tion [119, 41], fundamentally, cross-rack links are much longer and therefore more expensive

17

(as much as an order of magnitude) [172, 293]. As such, the tree is often thinned immediately

above the rack level, i.e., oversubscribed, and it may be oversubscribed even further higher

up. This is in contrast to racks’ internal networks, which are well connected.

The result is that servers can often overwhelm their rack switch with too much traffic. A

1:y oversubscription ratio indicates that the datacenter’s servers can generate y× more traffic

than the inter-rack network can handle.1 In essence, these networks are wagering that servers

either mostly send to others in the same rack, or rarely send traffic concurrently. In this way,

network connectivity is not uniform. Instead, datacenter networks are hierarchical, and job

placement within the network affects application performance. Ignoring these issues can lead

to poor results (see Figure 2.1).

2.3 GraphRex Query Interface

The goal of GraphRex is to provide a high-level interface with the performance of a system

tuned for datacenters. To that end, GraphRex presents a Datalog-like interface and lever-

ages an array of optimizations that reduce data and data transfer. We illustrate our variant of

Datalog with several graph queries, most of which involve recursion:

vnum(count<A>) :- e(A,B)

Query 2.2: Number of Vertices (NV)

deg(A,count) :- e(A,B)

pr(A, 1.0) :- deg(A,_)

pr(A,0.15+0.85*sum<PR/DEG>)[10] :- pr(B,PR), deg(B,DEG), e(B,A)

Query 2.3: PageRank (PR)

sg(A,B) :- e(X,A), e(X,B), A!=B

sg(A,B) :- e(X,A), sg(X,Y), e(Y,B)

Query 2.4: Same Generation (SG)

1Typical rack-level oversubscription ratios can range from 1:2 to 1:10 [245, 15]. Some public clouds
strive for 1:1, but these are in the minority [265]. Regardless, other datacenter practicalities can result
in effects similar to oversubscription.

18

tc(A,B) :- e(A,B)

tc(A,B) :- tc(A,C), e(C,B)

Query 2.5: Transitive Closure (TC)

Query 2.2 counts the number of vertices in a graph (NV). It takes as input all edge tuples

e(A,B) and does a count of all unique vertices A. Query 2.3 computes page ranks of all

vertices in a graph (PR). Query 2.4 returns the set of all vertices that are at the same generation

starting from a vertex (SG). Query 2.5 computes standard transitive closure (TC). The Datalog

variant we use has similar syntax to traditional Datalog with aggregation, where aggregate

constructs are represented as functions with variables in brackets (<>).

One extension we make to Datalog can be seen in PR: a stopping condition denoted as

“[..]” in the rule head, for rules that may not converge to a fixpoint using traditional incre-

mental evaluation of aggregates in recursive queries [108, 153, 252, 267]. For example, in

PR, instead of stopping the query when no more new tuples are generated, we can impose a

bound on the number of iterations, e.g., “[10]”.

We also note that some of our queries involve multi-way joins. For example, SG is a “same

generation” query that generates all pairs of vertices that are at the same distance from a given

vertex. For example, given the root of a tree, SG generates a tuple for each pair of vertices

which have the same depth. If the graph has cycles, a vertex can appear in different gen-

erations, significantly increasing query complexity. In existing distributed Datalog systems,

the syntactic order is the sole determinant for the evaluation strategy of these joins—they are

simply evaluated “from left to right” [241, 267]. This is because in a distributed environment,

there is no global knowledge of relations and no easy way to find the optimal join order. As

we will show later, this naive order is suboptimal in many cases, and GraphRex improves on

this by dynamically picking the best join order. Note that PR also has a multi-way join, but

there is no need of join reordering for this particular case, because the cardinalities of pr, deg

and e never change in semi-naive evaluation.

19

… … ……

Infrastructure

Declarative
Interface Compiler

Static Optimizer Runtime Optimizer

Vertex-level Executor

Coordinator Worker

Runtime Optimizer

Vertex-level Executor

Worker

…

Query

Logical Plan

Execution
Spec.

Figure 2.2: The GraphRex architecture. A compiler generates a logical plan from a Datalog
query. The static optimizer then constructs from the logical plan a datacenter-centric execu-
tion specification that is optimized before the final translation to and evaluation of the physical
plan by workers. Gray lines describe dissemination of infrastructure configurations and black
lines communication for query execution.

2.4 Query Planning

Figure 2.2 shows the overall architecture of GraphRex, consisting of a centralized coordinator

and set of workers. The coordinator first applies a graph partitioning, so that each worker

has a portion of the graph. Then during query execution, the coordinator’s Query Compiler

translates queries into a logical plan.

A Static Optimizer then generates an execution specification from that logical plan. Ex-

ecution specifications are similar to physical plans, but include our datacenter-centric global

operators. The final translation of these operators to concrete physical operators is left until

runtime, and depends on both the placement of workers in the datacenter (which is obtained

through a configuration file that describes the datacenter infrastructure) and data characteris-

tics. Each worker’s physical plan may differ.

Finally, each worker runs the Distributed Semi-Naïve (GR-DSN) algorithm designed for

very fine-grained execution, which is a distributed extension of the semi-naïve (SN) algorithm

used in Datalog evaluation [175]. In SN evaluation, tuples generated in each iteration are used

as input in the next iteration until no new tuples are generated. The distributed variant relaxes

20

1 Function Init(v):
2 NewTuplesv ← Eval(BaseRules, Γv) # Evaluate the base Datalog rules
3 AllTuplesv ← NewTuplesv # Generate initial tuples

4 Function Recur(v):
5 NewTuplesv ← Eval(RecurRules, Γv, NewTuplesv) # Evaluate the resursive rules
6 NewTuplesv ← NewTuplesv − AllTuplesv # Find new tuples
7 AllTuplesv ← AllTuplesv

⋃
NewTuplesv # Merge new tuples to all tuples

8 Function OnRecv(v):
9 NewTuplesv ← NewTuplesv

⋃
v’s received tuples # Combine all tuples for v

10 NewTuplesv ← NewTuplesv − AllTuplesv
11 AllTuplesv ← AllTuplesv

⋃
NewTuplesv

12 foreach each vertex v ∈ Vi do
13 Init(v) # Initialize all vertices in local partition
14 while no termination signal from the coordinator do
15 foreach vertex v ∈ Vi do
16 if the size of NewTuplesv > 0 then
17 Recur(v) # If there is work, perform one iteration of execution
18 if the size of NewTuplesv = 0 then
19 Sleep(v) # Otherwise, deactivate the vertex

Figure 2.3: Distributed Semi-Naïve in GraphRex

the set operations by allowing for tuple-at-a-time pipelined execution. GR-DSN is designed

for graph queries to allow massively parallel execution and tuple-level optimizations.

Specifically, the GR-DSN pseudocode is shown in Figure 2.3. Here,wi represents a worker

that stores the subgraph Vi, and each vertex v maintains its own vertex id idv and the edge

list Γv. The GR-DSN algorithm works as follows. Initially, wi initializes each vertex with

Init function (line 12-13). Specifically, wi creates a local table rv for each vertex v and

each relation r except edge relation. Recall that the logical plan already ensures that all

relations are indexable by vertex. In the Init function (line 1-3), base rules are evaluated,

which generates the initial tuple set NewTuples in each relation, and the entire tuple set

AllTuples is initialized to be the same set. wi then loops to iteratively evaluate recursive rules.

In each iteration, wi checks if new tuples were generated in last iteration (the ∆ tuples in

semi-naïve evaluation [175]) at vertex v and uses Recur function to evaluate recursive rules

21

Figure 2.4: Vertex states in GR-DSN.

one time, otherwise calls Sleep to deactivate v (line 14-19). Inside recur, the recursive

rules are evaluated based on Γv and NewTuples of last iteration to generate new NewTuples

(line 5), and then the deduplication is performed to eliminate redundant evaluation (line 6)

and the resulting tuples are merged to the entire tuple set (line 7). In the Eval function, the

corresponding part of execution plan is evaluated; and the executor consults the dynamic

optimizer to execute each global operator efficiently. In particular, A SHUFF operator sends

around new tuples according to their partition key. If a vertex v receives tuples, the callback

function OnRecv is invoked to handle the tuples. Specifically, the received tuples are merged

to NewTuplesv and deduplicated, and also added to AllTuplesv (line 8-11).

A vertex in GraphRex could be in one of three states: initialized, running and sleeping. A

vertex enters initialized after calling init to evaluate the base rules, and transitions to running

on calling recur, where the recursive rules are iteratively evaluated in GR-DSN.

A significant difference from traditional, centralized semi-naïve evaluation is that when

a vertex has no new tuples, it transitions to sleeping; if later, new tuples are received, the

vertex will be activated again and transition into running again. This design ensures that the

distributed evaluation converges globally rather than locally at a vertex level. The recursion

reaches a fixpoint when: (1) all vertices in the graph are at the sleeping state, and (2) no tuples

are being shuffled, i.e., no vertex received new tuples. The coordinator sends termination

signal to workers when either the specified number of iterations or the fixpoint is reached.

The above process occurs directly at the workers, which receive the execution specifica-

tion, generate a local physical plan, and execute it, all with the help of two components: (1)

22

��	��
�

∏	�������	�

����	���

∏	����������
⋈
����
������
��	�

∏
�	�����

Figure 2.5: The logical plan of CC.

⋈
���	�������	����

����"
∏���

��������

���
�������	���� ���	��
�

⋈
∏��� ∏	���
��

Figure 2.6: The logical plan of SG.

a Vertex-level Executor that uses GR-DSN to execute the specification until a fixpoint; and (2)

a Runtime Optimizer that optimizes each global operator locally.

2.4.1 Logical Plan

From the query, the first step in processing it is to generate a logical plan. In GraphRex, a

logical plan is a directed graph, where nodes represent relations or relational operators, and

edges represent dataflow. Figures 2.5 and 2.6 show logical plans for CC and SG, respectively.

An important part of logical plan generation in GraphRex is a Vertex Identification phase,

in which the compiler traverses the plan graph starting from the edge relations and marks

attributes whose types are vertices with a * symbol. These attributes are candidates for being

the partition key. As an example, in Figure 2.5, since both attributes in the input edge relation

e(A,B) represent vertices, they are both marked with the * symbol. Likewise, all attributes

that have a dependency to either vertex attribute A or B are also marked.

By the time we generate a physical plan, only one partition attribute will be chosen for

every relation. Later, we will denote the selected attribute by prepending an @ symbol. At this

stage, we can make the decision for two simple cases. First, if a relation r only has one vertex

attribute, then it is trivially partitioned by that attribute. Second, the edge table e is partitioned

on the first key by default so that each vertex maintains the list of outgoing neighbors. This is

a convenient placement for many practical graph applications, such as PageRank, SSSP, that

only require each vertex to know its outgoing neighbors.

All other partitioning decisions are made during the placement of the SHUFF and ROUT

23

∏	��������

����	���

∏	���
�
�	

����
�������
�	�

�������	���

���	�
� �����	��������

∏	������

∏
�	�����

Figure 2.7: The execution specification of CC.

���
�	����
���

���	!
∏��	

�������	�

���
��� ����
���

	�������������

����

�����	�

����

∏��	

���
���� �����	�

	������
�	

����

���
���

����

∏��	 ���
���	

	�����
��� 	������
��

∏
�����	 ∏
�����	

Figure 2.8: The execution specification of SG.

operators described in the following section.

2.4.2 Execution Specification

Traditional query planning proceeds directly from a logical plan to a physical plan. We iden-

tify opportunities for datacenter-centric optimization with an additional step. The core of this

process is the addition of global operators to the logical plan to form what we term an exe-

cution specification. These operators are special in that they govern communication across

workers; oversubscription, capacity constraints, and congestion mean that their efficient exe-

cution is a primary bottleneck in processing large graphs. We describe them below.

24

Join (JOIN)

Joins are one such operation that frequently incurs communication in graph processing. In

Datalog, (natural) joins are expressed as conjunctive queries. GraphRex evaluates them as

binary operations; multi-way joins are executed as a sequence of binary joins. Graphically,

we represent these as:

JOIN

In the case of binary joins, we simply insert a JOIN in lieu of the logical operator!". Recur-

sive joins, where one or more of the inputs are recursive predicates, are handled similarly to

BigDatalog [241]. Namely, if the recursion is linear, the non-recursive inputs are loaded into

a lookup table and streamed. If the recursion is non-linear, we load all but one of the recursive

inputs into a lookup table and stream the remaining input. This enables us to reduce non-

linear recursion to linear recursion from the viewpoint of a single new tuple. Figure 2.7 shows

an example of a recursive join. Multi-way joins require additional handling, as different join

orders can lead to drastically different evaluation costs. In GraphRex, multi-way joins are im-

plemented as a sequence of binary joins, where the order is chosen at runtime and per-tuple.

Existing distributed Datalog systems arbitrarily evaluate ‘left-to-right’ [241, 267]. We repre-

sent this choice in the execution specification by enumerating all possible decompositions of

the multi-way join and routing between them dynamically with the next operator.

Routing (ROUT)

The ROUT operator enables the dynamic and tuple-level multi-way join ordering mentioned

above. ROUTs take a tuple and direct it to one among multiple potential branches in the

execution specification. This operator is only used in conjunction with multi-way joins, and

is represented as:

ROUT[X,Y]

25

For example, Figure 2.8 shows the specification for SGwhere the multi-way join e !" sg !"

e in Figure 2.6 is broken into (e !" sg) !" e and e !" (sg !" e). We generate plans for the two

possible orderings and insert a ROUT operator that takes A and B as input to decide which

will result in better performance.

Aggregation (AGG)

Another important global operator is AGG, which aggregates tuples. There are three types

of aggregation in GraphRex, two of which are mapped to global operators. The one type of

aggregation that is not mapped is purely local aggregation, which operates on tuples with

the same partition key, for instance, in the left branch of Figure 2.7 (in the projection). This

type of aggregation does not need its own global operator as its evaluation does not incur

communication. The other two variants are represented as follows:

AGG[@X,min<L>] AGG[min<L>]

Left to right, (1) also operates at each vertex, but requires shuffling of inputs to compute

the relation, and (2) covers global aggregation, where a single value is obtained across the

entire graph. For (1), the semantics are similar to a purely local aggregation, but as commu-

nication is required, GraphRex will eventually rewrite the specification in order to reduce the

data sent across the oversubscribed datacenter interconnect. The right branch of Figure 2.7

demonstrates this case. For (2), aggregation is instead finalized at the coordinator. For ex-

ample, NV computes the number of vertices in the graph using a global aggregator. That

value is eventually collected by the coordinator and potentially redistributed to all workers

for subsequent use.

Shuffle (SHUFF)

Last, but arguably most important is the SHUFF operator that encompasses all network com-

munication in GraphRex.

SHUFFs are inserted into the execution specification whenever it is necessary to move

26

�������

∏���

�������

∏���

�������

�������

∏�����

����

�����	����

�����	����

(a) By the first attribute of tc.

�������

∏���

�������

∏���

��������������

∏�����

����

�����	����
�����	����

(b) By the second attribute of tc.

Figure 2.9: Two potential partitionings for TC.

SHUFF[X,@Y]

tuples from one worker to another between relations. Their placement is therefore closely

integrated with the process of relation partitioning, which instantiates the partition attribute

(@) from the set of partition candidates (*) and inserts SHUFF operators where necessary.

Conceptually, there are two scenarios that require a SHUFF. The first is when the tuples of

relation r are not generated in the location specified by r’s partition key. An example of this

is shown in Figure 2.7. The JOIN operation generates cc tuples that have a distinct partition

key (denoted by the @ sign) from the join key B. This results in the insertion of a SHUFF

operator after the join. The second scenario is when the input relations to an operator are not

partitioned on the same attribute, such as the inputs to the join operator in Figure 2.9a. In

the example, there is a join operator for tc and e on attribute C. If we partition tc on its first

attribute, as in Figure 2.9a, a SHUFF is needed to repartition the tuples in tc on the second

attribute so that the join can be evaluated.

In relation partitioning, the optimizer checks every possible partitioning and selects the

one that incurs the minimum number of SHUFFs. As a heuristic, we assume that recursive

rules are executed many times. To demonstrate this, Figure 2.9a shows the execution speci-

fication where tc is partitioned by the first key. The number of SHUFFs in the plan is 2K, as

there are two SHUFFs in each recursive rule evaluation. In comparison, the other partitioning

27

1 v_attrs← GetMarkedAttrs(r) # Get the list of marked attributes
2 if size of v_attrs = 1 then
3 PartKey(v_attrs[0]) # Mark the only attribute as the partition key
4 else
5 v ← argminv∈v_atts NumSHUFF(v) # Find v that minimizes SHUFF operators
6 PartKey(v) # Mark v as the partition key

Figure 2.10: Static relation partitioning.

of tc shown in Figure 2.9b requires fewer SHUFFs, i.e., K + 1; there is a single SHUFF for

the non-recursive rule as well as one for each recursion. Our evaluation later shows that the

latter plan provides a greater than 2× improvement.

Figure 2.10 shows the relation partitioning algorithm that we adopt in the Static Optimizer.

For each relation r, if there is only one attribute being marked as ‘*’, then r is partitioned

by that attribute, because that is the only vertex attribute that can maintain the tuples of r;

otherwise the static optimizer enumerates every possible partitioning and selects the one with

the minimum number of SHUFFs. We assume the heuristic that recursive rules are executed

many times. This assumption is reasonable as practical graph queries often run more than

one iteration because of the dense connectivity between vertices in real-world graphs.

2.5 Global Operator Optimizations

Translation from the global operator described above depends on both context and the struc-

ture of the datacenter network. Refining these operators is important as they can incur sig-

nificant performance costs in a large-scale datacenter deployment. We note that translation

of the execution specification’s classic logical operators into equivalent physical operators

follows standard database plan generation, and we omit those details for brevity.

GraphRex introduces an array of synergistic optimizations (see Table 2.1), some of which

can be used in combination, and some of which are intended as complements. Their benefits

stem from a variety of reasons, but the overarching principle is to reduce data and data transfer,

particularly across “expensive” links in the datacenter. Our results show that these techniques

28

Optimization Description

SHUFF

Columnization & Compression Leverages workload characteristics to reduce
data sent across the network on every SHUFF.

Hierarchical Network Transfer Further reduces data over ‘expensive’ links by
applying above optimization hierarchically.

JOIN/
ROUT

Join Deduplication To enforce distributed set semantics in JOINs,
when a JOIN feeds into a SHUFF, we push
deduplication into the SHUFF.

Adaptive Join Ordering To account for power-law degrees, we al-
low ROUT to dynamically order joins at tuple
level. Only used when duplicates are rare.

AGG

Hierarchical Global Aggregation Applies our datacenter-centric approach to
global aggregation.

On-path Aggregation When SHUFF comes before a local AGG, we
push the AGG down into the SHUFF to pre-
aggregate values to reduce shuffled tuples.

Table 2.1: GraphRex’s global operator optimizations and when they apply.

result in orders of magnitude better performance in typical datacenter environments.

2.5.1 Columnization and Compression

One important optimization inGraphRex applies to SHUFF. In SHUFF, tuples to be shuffled are

stored in message buffers, which are then exchanged between workers. Rather than directly

shuffling those buffers between workers, GraphRex (1) first sorts the data, (2) reorganizes

(transposes) the tuples into a column-based structure, and (3) compresses the resulting data

using the two techniques described below.

Although columnar databases are well-studied [31, 32, 33], their primary benefit in the

literature has been in reducing storage requirements. Performance benefits, on the other

hand, are traditionally dependent on access patterns [132, 182]. GraphRex instead sends

columnar data by default due to its benefits to two techniques—column unrolling and byte-

level compression—that are particularly effective on typical graph workloads.

The first technique, column unrolling, is a process where we elide columns of known low

cardinality, C, by creating C distinct columnar data stores—one for each unique value. For

29

(1, 1, 1, 2) (1, 3, 3, 3) (2, 2, 4, 1)

(1, 3, 4)
(1, 1, 2)
(2, 3, 1)
(1, 3, 2)

V A B

(1, 1, 1, 2) (1, 3, 3, 3) (2, 2, 4, 1)(1, 1, 2)
(1, 3, 2)
(1, 3, 4)
(2, 3, 1)

V A B
Sort Columnize

Compress

V A B

Figure 2.11: Column-based organization for r(V,A,B), where V is the partition key. Shaded
is compressed data for reducing the number of bytes that we send in the network.

instance, in an adaptively ordered multi-way join, each intermediate tuple must carry an ID

that denotes the join order and its place in that ordering of binary joins. In this and many other

queries, column unrolling can all but remove the storage requirement of those columns.

The second technique, byte-level compression, compresses sorted and serialized streams

using the Lempel-Ziv-class LZ4 lossless and streaming compression algorithm [17]. This pro-

cess is shown in Figure 2.11. Both sorting and columnization significantly increase the sim-

ilarity of adjacent data in typical graph applications, resulting in higher compression ratios.

More optimal algorithms exist, but LZ4 is among the fastest in terms of both compression

and decompression speed. To further reduce the overhead of this optimization, we only sort

over the partition key (V in the example of Figure 2.11). We also limit compression to large

messages, directly sending messages that are under certain size. As typical message sizes are

bimodal, any reasonable threshold will provide a similarly effective reduction of overhead (in

our infrastructure, a threshold of 128 bytes was robust).

Once the shuffle operation is finished, each worker decompresses, deserializes and trans-

poses the received data to access the tuples. We store the tuples in row form for access and

cache efficiency. We also heavily optimize memory copies, buffer reuse, and other aspects

of serialization and deserialization, but omit the details for space. Applying columnization

and compression together at a worker level brings ∼2× overall message reduction for the

CC query. However, its effectiveness in typical datacenters can be magnified by the next

optimization we propose to SHUFF operator.

30

Figure 2.12: An example hierarchical transfer. Each worker groups its tuples by partition key,
and sends the them first within a server, then within a rack, and finally to their destinations. A
naive system would send directly to other racks. Colors track where the tuple was generated;
numbers indicate the partition.

2.5.2 Hierarchical Network Transfer

GraphRex extends the benefits of the previous section by executing Hierarchical Network

Transfers as part of SHUFF. This optimization reduces transfers over the network, particularly

the oversubscribed portions.

Figure 2.12 depicts this process for a rack with two servers and two workers per server.

Specifically, message transfers occur in three steps: server-level shuffling, rack-level shuffling

and the final global shuffling. At each level, workers communicate with other workers in the

same group, and split their tuples so that each partition key is assigned to a single worker in the

group. At each step, tuples are efficiently decompressed, merge sorted, and re-compressed.

The benefit of performing this iterative shuffling and compression is that, with every stage, the

working sets of workers become increasingly homogeneous and thus more easily compressed.

To show the effect of this optimization, we present results for CC on a billion-edge Twitter

dataset running in a 40-server, 1:5 oversubscription testbed (more results are in the evalu-

ation section). Table 2.2 shows the communication/total speedup of two schemes: simple

compression (directly on tuples) and SHUFF (column-based hierarchical compression).

They are compared against a baseline that does not implement compression or infrastructure-

31

aware network transfer. Columnization combined with hierarchical network transfer creates

more total traffic, but with less going over oversubscribed links and better load balancing. In

this case, server-level shuffling reduces the data by 4.6×, and rack-level shuffling reduces the

data by 6.2× in our datacenter testbed running 20 workers per server. Together with our op-

timizations on memory management and (de)serialization, SHUFF achieves a 9.8× speedup

in communication time and 7.2× in total execution time.

Comm Total

Only compression 1.02× 1.02×
SHUFF 9.84× 7.2×

Table 2.2: Speedup of SHUFF and row-based compression in CC on Twitter.

2.5.3 Join Deduplication

JOINs are among the most expensive operations in large graph applications. One reason for

this is the prevalence of high amounts of duplicate data in real-world distributed graph joins.

For example, with TC on a social graph, users may have many common friends and thus many

potential paths to any other user.

In order to provide set-semantics for joins, previous systems perform a global deduplica-

tion on the generated tuples [241]. GraphRex instead introduces Hierarchical Deduplication,

which takes advantage of datacenter-specific communication structures to decrease the cost

of deduplication when it observes JOIN followed by a SHUFF. Note that when the results of

a JOIN are used directly (without an intermediate SHUFF), local deduplication is sufficient.

To illustrate the process of Hierarchical Deduplication, consider again the deployment

environment of Figure 2.12, where we have four workers in a single rack. Assume also that all

four workers generate the same tuples {(1,2), (2,3), (3,4), (4,5)}, where the first attribute in the

relation is the partition key. After the tuples are generated, workers insert them into a hash set

that stores all tuples they have seen thus far. This results in the local state shown in the second

column of Table 2.3. Workers on the same server then shuffle tuples among themselves, never

traversing the network. The same is done at a rack level: servers deduplicate tuples without

32

Worker Worker Level Server Level Rack Level
W1 (1,2),(2,3),(3,4),(4,5) (1,2),(3,4) (1,2)
W2 (1,2),(2,3),(3,4),(4,5) (2,3),(4,5) (2,3)
W3 (1,2),(2,3),(3,4),(4,5) (1,2),(3,4) (3,4)
W4 (1,2),(2,3),(3,4),(4,5) (2,3),(4,5) (4,5)

Table 2.3: An example of Hierarchical Deduplication with a single rack of two servers, with
two workers per server. At each successive layer of the hierarchy, workers coordinate to
deduplicate join results before incurring increasingly expensive communication

ever sending across the oversubscribed interconnect. In the end, of the 16 tuples generated in

the rack, only 4 are sent to the other rack—a factor of 4 decrease in inter-rack communication.

Queries on real-world graphs, e.g., social networks and web graphs, often exhibit even greater

duplication because of dense connectivity: in the execution of TC over Twitter, for instance,

98.5% of generated tc tuples are duplicates.

Dup % Comm Total

Baseline 98.5% 39.9 s 41.1 s
Hierarchical Deduplication 42.7% 2.7 s (14.8×) 4.3 s (9.6×)

Table 2.4: Hierarchical Deduplication in TC on Twitter. Dup % indicates received duplicates.

Table 2.4 presents the Twitter/TC result on the testbed used in the preceding section. We

can see that, for workloads with many duplicates, hierarchical deduplication efficiently re-

moves most of them. In comparison, push-down techniques at worker level and server level

only reduce the duplication ratio to 96.3% and 90.7% respectively, which shows that dedu-

plication should be performed at greater scale. The high deduplication rate of JOIN results

in a 14.8× communication speedup and 9.6× total speedup. Even for workloads with few

duplicates, the overhead of this optimization is low.

2.5.4 Adaptive Join Ordering

In the case of multi-way joins, GraphRex sometimes chooses a more aggressive optimization:

Adaptive Join Ordering. To that end, the ROUT operator decides, for every tuple, how to

order the constituent binary joins of a multi-way join. A key challenge here is predicting the

33

performance effects of choosing one order over another. One reason this can be difficult is

due to duplicates; different join orders may result in tuples that are generated on different

workers, impacting the occurrence of duplicates in unpredictable ways for the current and

future iterations.

For that reason, Adaptive Join Ordering is a complement to Join Deduplication: when the

number of duplicates is high, the latter is effective, otherwise the optimization described here

is a better choice. We rely on programmers to differentiate between the two when configuring

the query. In practice, this is typically straightforward (and akin to the configuration of com-

biners in Hadoop/Spark), but techniques such as profiling and sampling could be adopted to

automate the process in future work.

To illustrate a simple example of how join ordering can result in improved performance,

consider the evaluation of SG over the graph in Figure 2.13. Starting at the root, vertices a

and b are in the same generation, so a tuple (a, b) in sg is generated by the first rule. The

evaluation of the second rule is decided by how sg is partitioned:

• If the relation is partitioned by the first attribute, then the join is evaluated from left to

right ((e !" sg) !" e) where (a, b) is sent to a to join with Γa (the adjacency list of a)

before the intermediate tuples are shuffled to b to finish the join.

• If partitioned by the second key, then the join ordering is from right to left (e !" (sg !" e))

where Γb is sent to a to finish the join, less cost than the first order.

For this iteration, the left-to-right ordering used by existing distributed Datalog systems re-

sults in a factor of three increase in intermediate tuples compared to right-to-left. The opposite

is true for the third generation. Real-world graphs produce many such structural discrepancies

due to their power-law distributions of vertex degree. This distribution can result in substan-

tial performance discrepancies between different join orderings, even within a single relation.

Thus, static ordering—any static ordering—can result in poor performance.

Optimization target. The goal of ROUT is as follows. Let T be the bag of tuples generated

by GR-DSN query evaluation. T consists of tuples generated in every iteration, so we have

34

Figure 2.13: SG on an example graph.

T =
∑K

k=0 Tk where Tk is the bag of tuples generated in iteration k and K is the iteration

where a fixpoint is reached. ROUT’s optimization objective is:

min |T | = min
K∑

k=0

|Tk|

Intuitively, more tuples mean increased cost of tuple generation and shuffling. More for-

mally, let Tα
k be the bag of intermediate tuples—those that are generated in the intermediate

binary joins in order to complete the multi-way join—and T β
k be the bag of output tuples of

the head relation (for example, sg in SG), so Tk = Tα
k + T β

k , and we have:

min |T | = min
K∑

k=0

(|Tα
k |+ |T β

k |)

As mentioned previously, GraphRex makes an assumption that there are no duplicates

in generated tuples. Formally, this simplifies optimization in two ways. First, if there are no

duplicates, any ordering generates the same T β
k (because of the commutativity and associa-

tivity of natural joins) so |T β
k | becomes a constant. Second, the ordering of one iteration does

not affect another. This independence allows us to optimize each iteration without worrying

about later ones. With this assumption, we now have

min |T | =
K∑

k=0

min(|Tα
k |) + C (2.1)

35

where C is a constant representing the number of output tuples generated in the evaluation.

Ordering joins. With the above, GraphRex picks a tuple-level optimal ordering using a pre-

computed index. For every newly generated tuple that goes through ROUT, GraphRex enu-

merates all possible left-deep join orders, computes the cost (i.e., the number of tuples in Tα
k

that the order generates) for each order, and selects the order with the minimum cost. Then,

GraphRex sets the partition key of this tuple based on the join order, and sends it to the des-

tination for join evaluation. For example, in SG, for every new sg tuple (a, b), there are two

possible join orders: ((e !" sg) !" e) and (e !" (sg !" e)). The cost for the first order is the

degree of a because (a, b) is sent to a first for the first binary join and then Γa is sent to b for

the second binary join. Similarly, the cost for the second order is the degree of b. The degrees

of all vertices are precomputed as an index, and thus efficiently accessible at runtime.

Generality. For n-way joins, the possible options grow to
(n−1
i−1

)
, where i is the position of

the recursive predicate, e.g., e !" sg !" e is a 3-way join with sg in position 2. Note that the

recursive predicate in position 0 or n leads to only 1 ordering. GraphRex scales efficiently by

preloading necessary information as indexes whose total size grows as O(n|V |). Regardless,

typical values of n are small and there are only a small number of possible orders. We use a 4-

way join example: r(X,Y) :- e(X,A), r(A,B), e(B,C), e(C,Y). Given a new r tuple,

there are three possible left-deep join orders: (1) (((e !" r) !" e) !" e), (2) ((e !" (r !" e)) !" e),

and (3) (e !" ((r !" e) !" e)). The costs (in terms of the numbers of intermediate tuples) of

the three orders for r(v1,v2) are: (1) C1 = InDeg(v1) + InDeg(v1) × OutDeg(v2), (2)

C2 = OutDeg(v2) + InDeg(v1)×OutDeg(v2), and (3) C3 = OutDeg(v2) +Out2Deg(v2),

where InDeg(v) is v’s indegree, OutDeg(v) is v’s outdegree and Out2Deg(v) is v’s two-hop

outdegree. Therefore, the global information needed by GraphRex for this query is: the inde-

grees of all vertices, the outdegrees of all vertices and the two-hop outdegrees of all vertices,

which is O(|V |) where V is the set of vertices. When GraphRex enumerates the three orders

for a tuple, the costs of the orders can be efficiently computed using the preloaded index,

and GraphRex selects the order with minimum cost for this tuple. Similarly, the adaptive join

ordering can be extended to other values of n for n-way joins.

36

1st 2nd 3rd 4th

% of LR 77.47% 80.64% 87.65% 88.16%
% of RL 22.53% 19.36% 12.35% 11.84%

Table 2.5: The percentage of tuples using each join order during the first four iterations of SG
on SynTw. LR is the left-to-right join order and RL the right-to-left order.

Table 2.5 shows the percentages of tuples in the optimal query plan of the first four iter-

ations of SG on SynTw, a synthetic graph of Twitter follower behavior. For most tuples, LR

ordering is optimal, but for a non-negligible fraction, it is not. Because of this variability,

Table 2.6 shows that, compared to static ordering, Adaptive Join Ordering brings 2.7× and

2× speedup to communication and execution time respectively.

Comm Total

Static ordering 3.4 s 9.3 s
Adaptive Join Ordering 1.3 s (2.7×) 4.6 s (2×)

Table 2.6: Comparison of adaptive and static ordering.

2.5.5 Hierarchical Global Aggregation

There are three types of aggregations, two of which are translated to global operators. This

section describes our optimizations for the global AGG, which is used to compute and dis-

seminate a single global value to all workers via the coordinator. A naive implementation

would create a significant bottleneck at the coordinator. A classic alternative is parallel ag-

gregation, in which workers aggregate among themselves in small groups, then aggregate the

sub-aggregates, and so on. GraphRex improves this by leveraging knowledge of datacenter

network hierarchies.

Figure 2.14 shows an example of this process. First, each worker applies the aggregate

function on its vertices and computes a partial aggregated value, then it sends its partial value

to a designated aggregation master in the server. When the server master receives partial

values from all workers in the same server, it again applies the aggregate function to update

its partial value and then it sends the value to the rack master, which updates its own partial

37

Worker Worker Worker Worker

Rack Switch

Server

❶

❷

❶

Figure 2.14: Hierarchical Global Aggregation in a rack. After worker-level aggregation, inter-
mediate aggregates are shuffled (1) at a server-level, and then (2) at a rack-level.

value and finally sends that value to the global aggregation coordinator.

As in previous instances, hierarchical transmission significantly reduces traffic over the

oversubscribed network. As the computations and communications of Hierarchical Global

Aggregation are distributed at each network hierarchy, the overhead to the aggregation coordi-

nator is also reduced. Table 2.7 shows the performance of Hierarchical Global Aggregation in

the query of counting vertex number (NV) on Twitter. The baseline is infrastructure-agnostic,

which means the global aggregation is implemented in an AllReduce manner where all work-

ers send their partial aggregates to the coordinator. Hierarchical Global Aggregation results in

41× speedup in communication and reduces query processing latency from 2.26 s to 0.16 s.

Comm Total

Baseline 2.154 s 2.26 s
Hierarchical Global Aggregation 0.052 s (41.4×) 0.158 s (14.3×)

Table 2.7: Evaluation of NV on Twitter.

2.5.6 On-path Aggregation

Finally, the other AGG operator computes a value for each vertex, but requires a SHUFF

first. In this case, GraphRex pushes AGG down into SHUFF so that every worker only sends

38

aggregated tuples. The key insight is that tuples that are shuffled to the same vertex can be

pre-aggregated. On-path Aggregation again leverages hierarchical shuffling: at each level in

the network, it consolidates the tuples for the same vertices to efficiently and incrementally

apply aggregation and reduce the number of shuffled tuples.

Table 2.8 shows the performance of On-path Aggregation in CC on Twitter, where the

baseline is aggregation at the destination, which means that all tuples are shuffled through

the network first, and then aggregated. On-path Aggregation brings a 10× speedup in the

communication, and the end-to-end query processing latency is reduced by 7.8×.

Comm Total

Baseline 119.8 s 124.29 s
On-path Aggregation 11.997 s (10×) 15.97 s (7.8×)

Table 2.8: Evaluation of CC on Twitter.

2.6 Evaluation

In this section, we evaluate the performance of GraphRex with a representative set of real-

world graph datasets and queries in order to answer three high-level questions:

• How competitive is the performance of GraphRex? We compare GraphRexwith BigDat-

alog [7], which is shown to outperform other distributed declarative graph processing

systems (such as Myria [267] and SociaLite [233]), Giraph [3], and PowerGraph [114],

two highly-optimized distributed graph processing systems.

• How robust is GraphRex to datacenter network dynamics? We emulate typical network

events that affect the connectivity between servers, vary network capacity, inject back-

ground traffic following typical traffic patterns in datacenters, and test systems under

such dynamics.

• How scalable is GraphRex? We evaluate how GraphRex scales with additional data-

center resources for large-scale graph processing.

39

2.6.1 Methodology

Setup. Our CloudLab datacenter testbed consists of two racks with 20 servers per-rack. Each

server has two 10-core Intel E5-2660 2.60GHz CPUs, 160GB of DDR4 memory, and a

10Gb/s NIC. In aggregate, the testbed has 6.4 TB memory and 1.6 K CPU threads. Mirroring

modern datacenter designs [119, 245, 15], our testbed is connected using a 10Gb/s leaf-spine

network [41] with four spine switches by default, resulting in an oversubscription ratio of 1:5.

Queries. We have selected a set of representative queries to evaluate GraphRex. General

Graph Queries include Connected Components (CC, Q2.1), PageRank (PR, Q2.3), Single

Source Transitive Closure (TC, Q2.5), Single Source Shortest Path (SSSP, Q2.6), and Reachabil-

ity (REACH, Q2.7). Among those queries, CC and PR are compute-intensive and TC, SSSP and

REACH are more communication-intensive. We also evaluated local and global Aggregation

queries (CM, Q2.8) (sum and min aggregators produced similar results) as well as Multi-way

Join queries like Same Generation (SG, Q2.4).

sssp($ID,0) :- e($ID,_,_)

sssp(A,min<C1+C2>) :- sssp(B,C1), e(B,A,C2)

Query 2.6: SSSP (SSSP)

reach($ID) :- e($ID,_)

reach(A) :- reach(B), e(B,A)

Query 2.7: Reachability (REACH)

inout(A,count) :- e(A,$ID), e($ID,B)

maxcount(max<CNT>) :- inout(_,CNT)

Query 2.8: CountMax (CM)

Datasets. As shown in Table 2.9, we have selected four real-world graph datasets, all of which

contain billions of edges. Twitter and Friendster are social network graphs, and UK2007 and

ClueWeb are web graphs.

System configurations. We compare against the latest versions of in-comparison systems. We

configured these systems to achieve the best performance in our datacenter testbed. We pro-

40

Graph # Vertices # Edges Data Size
Twitter (TW) 52.6M 2B 12GB
Friendster (FR) 65.6M 3.6B 31GB
UK2007 (UK) 105.9M 3.7B 33GB
ClueWeb (CW) 978.4M 42.6 B 406GB

Table 2.9: Real-world, large-scale graphs in the evaluation.

visioned them with sufficient cores and memory and optimized other parameters, such as the

number of shuffle partitions in BigDatalog, the number of containers in Giraph, and partition

strategies in PowerGraph. When possible, we used the query implementations provided by

these systems, and implemented the remainder from scratch. Not all systems were able to

support all queries easily/efficiently; we omit those as needed. BigDatalog, for instance, has

difficulty supporting PageRank because it cannot limit the number of iterations. The original

paper [241] also omits PR. Similarly, PowerGraph cannot easily support SG, because (1) ver-

tex adjacency lists are not readily accessible, and (2) it forces message consolidation, which

would be very inefficient for SG.

2.6.2 System Performance

We first evaluate the performance of GraphRex against state-of-the-art systems in terms of

query processing times.

General graph queries. Table 2.10 and 2.11 compare the overall performance of GraphRex,

BigDatalog, PowerGraph, and Giraph across different graphs and queries. CC and PR (Ta-

ble 2.10) require more computation than TC and REACH (Table 2.11). Even in these cases,

the oversubscribed network is enough of a bottleneck that GraphRex outperforms other sys-

tems by up to an order of magnitude. Against BigDatalog and CC, this order of magnitude

improvement is consistent. PowerGraph and Giraph, due to their specialization to graph pro-

cessing, perform better than BigDatalog, but they are still significantly slower than GraphRex,

if they complete (between 3.2× and 17.3×). We note that the largest graph, CW, caused

out-of-memory issues on both BigDatalog and Giraph; our deduplication and compression

41

CC PR

G.R. B.D. Giraph P.G. G.R. B.D. Giraph P.G.

TW
Time 10.3s 119.8s 49.1s 35.6s 13.4s - 68.6s 43.2s
SpdUp 11.6× 4.7× 3.4× N/A 5.1× 3.2×

FR
Time 15.3s 278.6s 79.3s 60.5s 18.5s - 148.7s 60s
SpdUp 18.2× 5.2× 4.0× N/A 8.1× 3.2×

UK
Time 30.9s 452.8s 274.4s 164.6s 9.6s - 149.9s 73.6s
SpdUp 14.7× 8.9× 5.3× N/A 15.6× 7.7×

CW
Time 472.6s OOM 8159.5s 1808s 188.7s - OOM 668.8s
SpdUp N/A 17.3× 3.8× N/A N/A 3.5×

Table 2.10: Execution time and speedup for GraphRex (G.R.) compared to BigDatalog (B.D.),
Giraph and PowerGraph (P.G.). This table presents results for CC and PR on four graph datasets
(TW, FR, UK, CW). OOM indicates an out-of-memory error. B.D. does not support PR.

TC REACH

G.R. B.D. Giraph P.G. G.R. B.D. Giraph P.G.

TW
Time 3.1s 336.8s 50.8s 11.8s 2.8s 90s 26.7s 11.5s
SpdUp 109.4× 16.5× 3.8× 32× 9.5× 4.1×

FR
Time 5.1s 898.5s 81.8s 20.4s 5.2s 236.1s 49.01s 20.7s
SpdUp 176× 16× 4× 45.6× 9.5× 3.99×

UK
Time 18.5s 866.3s 192.1s 86.1s 17.6s 361.02s 152.6s 87.1s
SpdUp 46.9× 10.4× 4.7× 20.5× 8.7× 4.9×

CW
Time 207.4s OOM 5395.2s 978.7s 187.1s OOM 4909.7s 969.2s
SpdUp N/A 26× 4.7× N/A 26.2× 5.2×

Table 2.11: This table presents results for TC and REACH.

alleviate some issues with working set size.

Onmore communication-intensive queries, i.e., TC, SSSP and REACH,GraphRex achieves

even greater speedups. On these too, BigDatalog failed to complete on the largest graph, CW.

For TC, GraphRex outperforms BigDatalog and Giraph by up to two orders of magnitude, and

PowerGraph by more than 4× on average. Some of this stems from GraphRex’s automatic

relation partitioning. BigDatalog, by default, partitions by the first key, which happens to be

a poor choice in this case. Manually partitioning by the second key leads to 2× better per-

formance, but this is still much slower than GraphRex as it lacks our other optimizations. For

SSSP (results in Figure 2.1), GraphRex outperforms BigDatalog by 28–54× on the workloads

42

0.1

1

10

100

TW FR

Ex
ec
ut
io
n
tim

e
(s
)

BigDatalog
Giraph

PowerGraph
GraphRex

Figure 2.15: Aggregation query evaluation with CM.

BigDatalog could complete, and outforms PowerGraph and Giraph by an average of more

than 5× and 10×. Finally, for REACH, GraphRex achieves up to 45.6× higher performance

than BigDatalog and up to 26.2× speedup over PowerGraph and Giraph.

Aggregation queries. Figure 2.15 shows the results of an aggregation, CM, on TW and FR. Since

we have found similar results on UK, and BigDatalog cannot handle CW, we have omitted

these results. Here, BigDatalog performs better than Giraph, achieving 2.8× and 5× better

performance on TW and FR, respectively, similar to PowerGraph. GraphRex is almost an order

of magnitude faster than all of them as a result of our AGG global operator optimizations that

avoid the traversal of the oversubscribed network. GraphRex finishes within only one second.

Multi-way join queries. Multi-way joins are challenging even on small social network and

web graphs. Consider SG as an example: since such graphs are well-connected, all vertices

will eventually be at the same generation. This would result in an output size of |V |2, where

|V | is the number of vertices; so a small graph with 1M vertices would result in 1 T sg tuples.

Therefore, we have used three alternative datasets to evaluate SG: (1) BiasedTree, which am-

plifies the imbalance in Figure 2.13 by setting the degree of the high-degree vertices to 10K

and increasing the depth of the tree to 10, (2) SynTw, a synthesized graph simulating follower

behavior in Twitter but without cycles, and (3) Citation, which is a real-world graph of pa-

per citation relationships that we collected from public sources. While numbers of edges are

43

0.1

1

10

100

1000

10000

BiasedTree SynTw Citation

Ex
ec
ut
io
n
tim

e
(s
)

BigDatalog
Giraph

GraphRex

Figure 2.16: Multi-way join query evaluation with SG.

relatively small (0.1M, 35.7M, and 20.4M, respectively), the generated tuple sets are large:

1 B, 70M, 6B tuples during the evaluation of SG when using the best static join order.

Figure 2.16 shows our results (PowerGraph is omitted as noted earlier). For fairness, we

ensured that Giraph and BigDatalog used the best static join order for the query. Even so,

GraphRex significantly outperforms both. Adaptive Join Ordering, by picking the most effi-

cient join ordering for every tuple, reduces the number of generated tuples to 0.2M, 17M,

and 3B. The resulting performance improvement is 3.3× in the worst case, with an upper

bound of 2–3 orders of magnitude in the extreme case (BiasedTree).

Summary: This set of experiments shows that, as a declarative system, GraphRex consistently

and significantly outperforms existing systems—both declarative and low-level—particularly

on large-scale graph workloads.

2.6.3 Communication Pattern

We now analyze the communication patterns and the benefits of GraphRex’s datacenter-

centric optimizations. Figure 2.17 shows the communication cost distribution in the datacen-

ter, with three layers: (1) communications inside servers require no network traffic (the left

diagonal in the server matrix), (2) communications between servers in the same rack require

traffic to be sent intra-rack (the light blue areas), and (3) communications between servers in

44

����

�

�
 	��
��

Figure 2.17: Heat map of cross-server communication.

different racks, which incur the highest traffic cost.

Figure 2.18 compares GraphRex against the infrastructure-agnostic baseline in terms of

the communication patterns. Although the baseline has server-level locality, i.e., each worker

sends more traffic to the workers in the same server than the workers in other servers, it ignores

the network structure and treats all other servers as the same. However, the communication

pattern in GraphRex results in two benefits.

Reduced traffic: GraphRex prefers low-cost communications to reduce high-cost traffic

due to its infrastructure-aware design, minimizing the amount of inter-rack traffic by incurring

additional intra-rack communication. As a result, in this example, it reduces the traffic cost

by 94.8% compared to the naïve approach.

Fewer connections: In the baseline, every worker directly builds N − 1 connections with

all other workers for shuffling, where N is the number of parallel workers. In GraphRex, each

worker establishesW −1 connections with other workers in the same server first, whereW is

the number of workers in the same server; then, at the rack level, it establishes at most S − 1

connections with other servers in the same rack, where S is the number of servers in the same

rack. Finally, it establishes at most R−1 connections with other racks, where R is the number

of racks in the datacenter. Therefore, the number of connections that each worker builds in

GraphRex is O(W +S+R). The naïve approach, assuming that all racks have the same server

45

(a) The baseline. (b) GraphRex.

Figure 2.18: Heat maps of traffic volume (number of bytes sent between servers, values are
log 10 scale) for CC on FR. GraphRex (b) saves 94.8% traffic compared to the infrastructure-
agnostic baseline (a).

count and all servers have the same worker count, has O(W × S ×R).

Summary. The infrastructure-centric design in GraphRex minimizes traffic cost by reduc-

ing the traffic sent over bottleneck links and overall network connections.

2.6.4 Robustness to Network Dynamics

We next evaluate the robustness of GraphRex to network dynamics, which are common in

datacenter networks.

Network degradation. One such class is link degradations, where the link capabilities can

experience a sudden drop due to gray failures, faulty connections, or hardware issues [112,

292]. To emulate this, we randomly select a single rack switch uplink and throttle its capacity

to 1/10, 1/50 and 1/100 of its original capacity. Note that a degradation of a single server’s

access link would decrease performance for all systems equally. We deploy five systems

and test their performance with CC on TW (results are similar for other graphs and queries):

GraphRex, BigDatalog, Giraph, PowerGraph, and ‘GR-Baseline’, a version of GraphRex with

global operator optimizations disabled.

46

0

100

200

300

400

500

600

10 50 100

Ex
ec
ut
io
n
tim

e
(s
)

Link degradation

BigDatalog
Giraph

PowerGraph
GR-Baseline
GraphRex

Figure 2.19: System performance when vary-
ing link degradations.

0

50

100

150

200

250

4 3 2 1

Ex
ec
ut
io
n
tim

e
(s
)

#Spine switches

BigDatalog
Giraph

PowerGraph
GR-Baseline
GraphRex

Figure 2.20: System performance with vary-
ing #aggregation switches.

Figure 2.19 shows performance under different degrees of link degradation. Because

GraphRex minimizes traffic sent through bottleneck links, it is by far the most robust to degra-

dations of those links. In fact, a 1/10 degradation shows almost no effect at all (10.61 s vs.

10.3 s); even in the 1/100 case, GraphRex finishes in 17.24 s. In comparison, GraphRex-

baseline experiences significant delay, taking 140 s in the 1/10 case, and 433 s in the 1/100

case. Among all systems, PowerGraph is most sensitive to network dynamics (16× slower

than normal for the 1/100 case. Other systems are also severely impacted.

Oversubscription variation. We next evaluate the effect of over-subscription. We emulate

this by adding/removing spine switches from the testbed. Less spine switches means less

inter-rack capacity and greater over-subscription. Due to hardware constraints, we only vary

the number of switches in the spine layer from 4 to 1.

Figure 2.20 shows results for CC on TW. The over-subscription significantly degrades the

performance of other systems: PowerGraph performance drops 52% (36 s to 54 s) between

4 and 1 spine switches, BigDatalog drops 31% (120 s to 157 s), Giraph 20% (49 s to 59 s),

and GR-Baseline 23% (124 s to 152 s). For reasons similar to the prior section, GraphRex’s

performance only changes 7% (10.3s to 11.1s) over the same range.

Background traffic. Finally, since datacenters typically host multiple applications, applica-

tions often experience unpredictable “noise” in the network in the form of background traffic.

47

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

Pe
rc
en
ta
ge

(%
)

Running time (s)

GraphRex
PowerGraph

Giraph
BigDatalog

GR-Baseline

Figure 2.21: The CDF of performance with random background traffic.

To evaluate GraphRex and the other systems in its presence, we inject background traffic using

a commonly used datacenter traffic pattern [45, 46, 141]. Following the existing methodol-

ogy, we generate traffic flows from random sender/receiver pairs, with flow sizes and flow

arrival times governed by the real-world datacenter workloads [46]. Overall, we generated

five representative traffic traces, each with an average network utilization of 40%. We ran

CC on TW in each system with background traffic, and note that other query workloads have

similar findings. As Figure 2.21 shows, the performance variation is significant for other sys-

tems, with standard deviations (σ) of 3.6 (P.G.), 4.3 (Giraph), 3.9 (B.D.) and 4.2 (GR-Baseline).

GraphRex, on the other hand, achieves σ = 0.96, which is much more robust, and its perfor-

mance is significantly better than other systems, with average speedups of 4.6× (over P.G.),

5.2× (over Giraph), 10.1× (over B.D.), and 10.6× (over the baseline).

Summary: The datacenter-centric design in GraphRex increases robustness to network dy-

namics, even in harsh network conditions with significant link degradation, over-subscription,

and random background noise.

2.6.5 Scalability Analysis

Finally, we evaluate scalability compared to other systems. We examine how adding servers

to the job affects performance. Specifically, we vary the number of servers per rack in our two-

48

0

50

100

150

200

250

10 12 14 16 18 20

Ex
ec
ut
io
n
tim

e
(s
)

#Servers/rack

BigDatalog
Giraph

PowerGraph
GraphRex

Figure 2.22: Scalability with
#Servers on TW.

0

100

200

300

400

500

600

10 12 14 16 18 20

Ex
ec
ut
io
n
tim

e
(s
)

#Servers/rack

BigDatalog
Giraph

PowerGraph
GraphRex

Figure 2.23: Scalability with
#Servers on FR.

0
100
200
300
400
500
600
700
800

10 12 14 16 18 20

Ex
ec
ut
io
n
tim

e
(s
)

#Servers/rack

BigDatalog
Giraph

PowerGraph
GraphRex

Figure 2.24: Scalability with
#Servers on UK .

rack testbed from 10 to 20 with a step of 2. Figure 2.22 shows the result of running CC on TW.

For all systems, the running times decrease when more servers are added. However, more

servers per rack also leads to higher oversubscription, which poses scalability bottlenecks. As

a result, BigDatalog and PowerGraph only achieve around 1.3× speedup when we double the

number of servers; Giraph achieves a 1.8× speedup, yet it still has lower performance than

PowerGraph. In contrast, GraphRex, in our representative datacenter configuration, scales

almost linearly: 2× speedup when server count doubles.

Figures 2.23 and 2.24 present the performance of different systems for CC on FR and

UK, respectively, when the number of servers in the cluster changes. GraphRex achieves

the highest speedup when the number of servers in the datacenter doubles: 1.8× on FR

and 1.7× on UK. Although PowerGraph always achieves the best performance among other

systems, it does not scale well. Especially, on UK, its performance stops getting improved

when the number of servers in each rack is higher than 16. Adding more machines improves

the performance of Giraph and BigDatalog, but their scalability is not as good as GraphRex

which minimizes the impact from network constraints, and scales better with more resources.

49

2.7 Related Work

The first part of this dissertation focuses on large-scale graph systems. Many graph processing

systems have been proposed [286], including Pregel [183], Giraph [80], GraphX [115], Pow-

erGraph [114], GPS [228], Pregelix [70], GraphChi [152], and Chaos [224]. GraphRex adopts

a Datalog-like interface and computation model in order to explore the space of optimizations

for large graph queries running on modern datacenter infrastructure.

Declarative data analytics. SociaLite [153] and Emptyheaded [34] are Datalog systems opti-

mized for a single-machine setting. RecStep [101] and DCDatalog [272] focus on improving

the performance of Datalog execution on multi-core machines. Hive [4] and SparkSQL [56]

are distributed, but only accept SQL queries without recursion. BigDatalog [241] and Dat-

alography [198] explore an intermediate design point (Datalog compiled to SparkSQL and

GiraphUC); however, they ignore infrastructure-level optimizations and can be worse than

the systems they are built on. GraphRex instead leverages Datalog for graph-specific and

datacenter-centric optimizations, and outperforms existing systems significantly.

Adaptive query processing. The idea of adapting the optimal join plan at runtime accord-

ing to the shape of the data in GraphRex is closely related to the literature of adaptive query

processing [94]. Ripple joins [125] generalize nest-loop and hash joins to optimize online

aggregation. It interleaves the inner and outer roles of tables to adapt the join orders for ar-

riving tuples based on data properties. Eddies [59] route input tuples between operators at

runtime to eliminate the need of an offline query optimizer. They can adapt the query plan

with commutative operators to determine the optimal execution order in accordance with the

continuous and dynamic workload. State Modules [222] store tuples for base tables and sup-

port insert and probe operations that facilitate adaptive query processing with, for example,

eddies. RouLette [247] is a recent system that exploits reinforcement learning for runtime

adaptation at sharing work across multiple queries. QOOP [179] re-plans a distributed query

during its execution based on the resource availability in the cluster. Adaptive join ordering

in GraphRex is distinct in its application on real-world graphs that are often skewed. Since

50

our focus is on static graphs, the statistics that we need in order to make runtime decisions

can be efficiently pre-computed.

Shuffle optimizations. Optimizing shuffle efficiency for improving overall system perfor-

mance in large-scale data analytics has been gaining popularity recently. Camdoop [90]

proposes to use direct-connect topologies and in-network aggregation for reducing network

traffic for data-intensive applications, while others optimize shuffling for different scenarios,

including NUMA [74, 162] and serverless computing [199, 215, 220].

Network-level optimizations. Several existing proposals [39, 81, 90, 127, 133] have ex-

plored the network-level optimization of groups of related network traffic flows. [66] also

discusses the importance of modeling the network in parallel data processing. GraphRex is

distinguished by its deep level of integration with the Datalog execution model and its opti-

mizations for graph workloads.

Graph compression and deduplication. Recent work has used data compression on graphs.

Blandford et al. [68, 67] propose techniques to compactly represent graphs. Ligra+ [243]

further parallelizes these techniques. GBASE [139] and SLASHBURN [168] perform com-

pression for MapReduce to reduce storage. GraphRex is mostly related to C-Store [31], a

column-oriented database, and we have further proposed novel techniques like the com-

pressed transpose data structure.

Prior work has also explored deduplication, e.g., via MapReduce combiners [92, 278] and

mechanisms for distributed set semantics [82, 241]. Our system pursues the same goals, but

our key contribution is to adapt these techniques to create datacenter-centric optimizations

for relational operators.

2.8 Summary

This chapter proposes GraphRex, a framework that supports declarative graph queries by trans-

lating them to low-level datacenter-centric implementations that are optimized for current

networks. At its core, GraphRex identifies a set of global operators (SHUFF, JOIN/ROUT,

51

and AGG) that account for a significant portion of typical graph queries, and then heavily

optimizes them based on the underlying datacenter, using techniques such as hierarchical

deduplication, aggregation, data compression, and dynamic join orders. With a compre-

hensive evaluation, we demonstrate that GraphRex works efficiently over large graphs and

outperforms state-of-the-art systems by orders of magnitude. Generalizing our techniques to

not rely on graph-specific properties (e.g., the ability to preload join cardinalities for Adaptive

Join Ordering) is left to future work.

52

CHAPTER 3

A LOOK AT THE FUTURE—UNDERSTANDING DATA PROCESSING

IN DDCS

One recent trend of cloud data center design is resource disaggregation. Instead of having

server units with “converged” compute, memory, and storage resources, a disaggregated data

center (DDC) has pools of resources of each type connected via a network. While the systems

community has been investigating the research challenges of DDCs by designing new OS and

network stacks, the implications of DDCs for next-generation data processing systems like

database management systems (DBMSs) remain unclear.

In this chapter, we take a first step towards understanding how DDCs might affect the

design of DBMSs. DBMSs are an interesting case study for DDCs for two main reasons:

(1) DBMSs normally process data-intensive workloads and require data movement between

different resource components; and (2) disaggregation drastically changes the assumption that

DBMSs can rely on their own internal resource management.

We first discuss the potential advantages and drawbacks of DDCs in the context of data

processing, focusing on query execution performance. With a set of preliminary microbench-

marks, we show that DBMSs can experience significant performance degradation in DDCs

caused by frequent remote memory accesses.

To thoroughly investigate the query execution performance of production DBMSs in disag-

53

gregated data centers, we evaluate two popular open-source production-grade DBMSs (Mon-

etDB and PostgreSQL) and test their performance with the TPC-H benchmark in a recently

released operating system for resource disaggregation. We evaluate these DBMSs with var-

ious configurations and compare their performance with that of single-machine Linux with

the same hardware resources. Our results confirm that significant performance degradation

does occur, but, perhaps surprisingly, we also find settings in which the degradation is minor

or where DDCs actually improve performance.

Finally, we outline the research proposals for addressing the drawbacks of DDCs on sup-

porting data-intensive systems, which call for TELEPORT (Chapter 4) and Redy (Chapter 5).

3.1 Introduction

Over the past few decades, we have witnessed a number of hardware inflection points that

required rethinking the design of databases. An early example was the transition of relational

database systems (DBMSs) from mainframes to networks of workstations [52, 95]. Since then,

we have seen the rise of multicore machines, GPUs and FPGAs that augment existing compute

resources, and recent interest in non-volatile memory.

In each of the these cases, the hardware enabled DBMSs to improve their performance,

scalability, and/or reliability. We believe that we are approaching a new inflection point.

One that is fundamentally different from past ones because the change in hardware is likely to

harm—rather than improve—performance for DBMSs. This is the case with the disaggregation

of cloud data center resources [58, 140, 143, 151, 163, 164, 235].

In a fully (resource) disaggregated data center (DDC), servers are no longer built as stan-

dalone machines equipped with sufficient compute, memory, and storage to process a single

job. Instead, each resource node in a DDC is kept physically separate, with some nodes spe-

cialized for processing, others for memory, and others for storage. To complete a single task,

a compute node will need to continually “page” memory from remote nodes into and out

of its small on-board working set, write chunks to remote disks, or farm out tasks to remote

CPUs or GPUs.

54

Disaggregating resources in this way provides substantial benefits to data center operators.

It allows them to upgrade and expand each resource independently, e.g., if a new processor

technology becomes available or if the workload changes require additional CPUs. It also

allows them to prevent fragmentation and over-provisioning, e.g., if a customer requests an

unusual balance between CPU cores, RAM, and GPUs that does not fit neatly into an existing

machine. Finally, to users, disaggregation creates the illusion of a near-infinite pool of any

resource for any program.

Disaggregation has fundamental implications on the performance of data-intensive ap-

plications, not all of which are positive. For example, recent work [53] and the preliminary

study that we present with hash-based microbenchmarks in this chapter highlight the potential

performance degradation that stems from moving storage and most of memory to a remote

machine. These results, however, are not enough for understanding the effect of DDCs on real

systems because they consider only synthetic workloads and simple applications. In contrast,

DBMSs have complex software stacks; having a thorough understanding of their end-to-end

performance in a DDC is therefore critical for the design, implementation, and optimization

of DBMSs in future cloud architectures.

Further, to DDCs, database systems provide an interesting case study of the effects of disag-

gregation. At a basic level, query executions in DBMSs are typically data-intensive, involving

frequent and repeated movement of large quantities of data between disk and memory (load-

ing data from storage to main memory and spilling intermediate data to disk when memory

is limited), memory and CPU (moving data between compute units and working sets in main

memory), CPU and CPU (data shuffling between workers). In a DDC, each of these steps

requires network communication, which can impact query performance. Even so, queries,

each having unique access patterns, exhibit a great deal of diversity in their reaction to dis-

aggregation. The case study also presents an opportunity to examine modern DBMS design

in a different light. Specifically, decades of optimization and tuning on top of traditional

servers and operating systems have resulted in a series of baked-in assumptions about mem-

ory access latency, buffer management, and paging strategies. Disaggregation exposes many

55

of these fundamental assumptions.

Similarly, to DBMSs, disaggregation presents a unique set of challenges even when com-

pared to the extensive literature on production DBMS performance in new architectures, e.g.,

disaggregated storage [43, 48, 194] and remote memory [62, 96, 160]. First, unlike traditional

remote memory systems where the remote memory is treated as extra cache, disaggregation

is typically accompanied by a corresponding decrease in local memory—remote access be-

comes a necessity rather than an optimization. Second and related, in DDCs, these accesses

are mediated by the operating system and network infrastructure rather than controlled by the

application. This means that the interactions between each layer of the stack are critical to

the system’s overall performance.

In this chapter, we first lay out a series of challenges to database design that are unique to

DDC architectures, and present some preliminary benchmark results that urge the redesign

of DBMSs in DDCs: naïve query execution on DDCs results in order-of-magnitude worse

performance compared to running the same query on one of today’s monolithic servers!

We next present the first characterization and analysis of modern production database sys-

tems running on a DDC. Enabling our study is a combination of recent hardware, network,

and operating system advances that, for the first time, provide a complete disaggregated oper-

ating environment. This environment allows us to investigate the interactions between each

layer in detail.

More specifically, we evaluate queries from the TPC-H benchmark in MonetDB [19] and

PostgreSQL [218] in a variety of disaggregation settings. We find that PostgreSQL is less sensi-

tive to disaggregation than MonetDB, but PostgreSQL is also incapable of adapting to varying

levels of local memory since it delegates disk caching to the underlying OS (i.e., PostgreSQL

achieves similar performance when the compute nodes’ cache is very large and when it is

small). We also observe that without modifications to either MonetDB or PostgreSQL, DDCs

can enable these production databases to scale up and achieve high and stable performance.

This is in contrast to traditional architectures that spill to disk and introduce significant per-

formance variability. While RDMA-based DBMSs [62, 160] may achieve similar benefits, it

56

comes at the cost of an extensive redesign of these DBMSs.

In summary, this chapter makes the following contributions.

• We provide an introduction to disaggregated architectures, and explore how existing

DBMSs might be deployed in a DDC. We consider both single and parallel DBMSs.

• DBMSs have high data transfer bandwidth requirements from storage to memory, and

from memory to compute. Using a case study of a single and a parallel join operator,

we demonstrate how a naive implementation can result in multiple redundant round-

trips of memory to memory copies. We validate the actual performance degradation by

running query execution on LegoOS [235].

• For a more thorough evaluation, we use the complete TPC-H benchmark to validate that

DDC degrades the performance of DBMSs due to expensive remote memory accesses

(data movement between compute and memory components). We also identify several

scenarios where DDCs can be a better alternative for DBMSs.

• We analyze the bottlenecks of executing DBMSs on DDCs and shed light on different

ways to optimize the execution of future DBMSs in this new architecture.

• Based on our findings, we propose new hardware andOS primitives that DBMSs can use

to perform memory copies more efficiently. These primitives are inspired by decades

of work in near data processing [120, 207, 214, 273] where the memory has some

small computational ability that can be leveraged for significant gains. For example, we

propose new mechanisms that bypass the compute nodes entirely when partitioning

data in preparation for a hash join. We show that these primitives (in conjunction with

modifications to the database execution engine) apply to different parallel relational

operators and can reduce the overheads introduced by DDCs.

57

Lo
ca

l C
ac

he

Compute Pool Memory Pool

Lo
ca

l C
on

tro
lle

r
Lo

ca
l C

on
tro

lle
r

Storage Pool

Compute
Memory
Storage

Fast Network

Figure 3.1: An illustration of resource disaggregation. Same type of resources are centralized
in a resource pool. Resource pools are disaggregated and connected by a fast network.

3.2 Background

This section introduces the key architectural elements of recent DDC proposals, with a focus

on their effect on DBMS operation.

3.2.1 Disaggregated Data Centers

Resource disaggregation is an architectural style in which the resources of a data center, tra-

ditionally spread across every server, are instead partitioned into physically distinct pools of

resources connected with a fast network fabric such as RDMA over InfiniBand, as illustrated

in Figure 3.1 (slight variants exist). While today’s data centers already disaggregate storage,

a defining feature of disaggregated data centers (DDCs) is the more complete disaggregation

of resources including of memory. There are several core components in this architecture:

individual resource pools with compute elements, memory elements, and storage pools con-

nected over a low-latency resource interconnect. While pools hosting each type of resource

may also contain a small amount of other resources (e.g., low-frequency CPUs in the mem-

ory/storage pools that manage local resources and process accesses, or a modest amount of

DRAM in the compute pool that caches data), the expectation is that any computation of

58

sufficient size will require coordination across pools spanning different resource types. We

describe each of these components in more detail below.

Compute, memory, and storage pools. A compute pool consists of commodity processors

with their associated memory hierarchy (including private and shared caches) and a small

amount of local memory. This local memory is used primarily for the OS and as another

cache to improve performance [109, 235].

A memory pool is composed of a dense array of DRAM or NVRAM chips, which are

typically accompanied by a small computing element (processor, RNIC, FPGA, ASIC, etc.)

that proxies communication with the compute pool and converts network requests into reads

and writes operated on local memory nodes. This processor interacts with each memory node

through a standard MMU, and is responsible for addressing and access control. Storage pool

is structured similarly.

Resource interconnect. There are a few proposals for implementing the network that connects

different resource pools:

• Packet switching. The compute pool interacts with the memory and storage pools by

sending packets over a network of switches. The primary benefit of this approach is that

all of its components—the Ethernet switches, RNICs, and Ethernet links—are readily

available and commoditized. Compared to the other proposals, packet switches also

typically have lower latency for small individual memory requests and higher utilization.

• Circuit switching. Researchers have argued that for the large port counts and throughput

requirements of rack-scale disaggregation, packet switches will eventually become too

demanding for typical rack-level power budgets. These physical requirements have led

to the exploration of simpler circuit switches, which transmit optical or electrical signals

at the physical layer rather than parsing, processing, and buffering packets. Scheduling,

setting up, and tearing down circuits impose a performance cost to circuit switching,

but systems like Shoal [242] propose potential solutions to compensate.

• Direct connect. Finally, the compute pool can be connected directly to memory and

59

storage pools (e.g., using a 3D Torus network [89]), eliminating switches entirely. Di-

rect connect topologies are cheap, and in some cases, also efficient and low-latency.

Unfortunately, these properties depend on the provided workload as some messages

may need to traverse multiple other nodes before reaching their destination.

Regardless of how the interconnect is instantiated, we assume that any node in the com-

pute pool can access any memory node, and that accesses can be reconfigured at runtime at

fine granularity.

Benefits of resource disaggregation. As mentioned in prior work [53, 75, 89, 109, 235, 242,

259], DDCs bring significant operational benefits over traditional architectures. These benefits

include:

• Independent expansion. The hardware resources can be expanded and upgraded in-

dependently. For example, if a DDC is running low on memory, the operator can just

hot-plug more memory in the memory pool. This is more flexible and cost-efficient

than traditional data centers where an operator would need to add large servers with

additional resources that are unnecessary.

• Independent failures. Since resources are decoupled, the failure of one resource does

not signify the failure of all others. For example, it is possible for a memory node to fail,

while the associated CPU remains alive. Prior work suggests ways to recover from these

types of failures in DDCs [54].

• Independent allocation. For cloud operators, resource allocation becomes a simpler

task: packing virtual machines to DDCs simply requires identifying the appropriate re-

source pools and creating the appropriate forwarding rules in the network fabric. In

comparison, packing VMs to monolithic servers while maximizing utilization and min-

imizing resource fragmentation is an NP-hard bin-packing problem.

In exchange for those benefits, DDCs convert a subset of what used to be local memory

and device accesses to remote accesses. While the latest InfiniBand networks are undoubtedly

60

very fast (sub-600 ns latency at 200Gb/s [28]) and some proposals have advocated for new

network substrates [242], both are, nevertheless, much slower than accessing resources on

the same motherboard.

Disaggregated operating systems. A critical piece of the above architecture is the disaggre-

gated operating system. Fundamentally, the migration of memory away from compute means

that, while the compute pool may have a nominal amount of memory to store a kernel, it may

not have enough for the code segment, data segment, heap, and/or stack. In the same way,

the memory pool may have enough compute to perform address translation and basic access

control, but will not have enough to execute queries. Thus, the operation of a DDC will likely

need to be mediated through a specialized operating system.

A state-of-the-art disaggregated OS is LegoOS [235], which takes a splitkernel approach

to dividing kernel responsibilities over resource-disaggregated nodes. In LegoOS, the local

kernel on a computation node, where DBMS instructions are expected to run, is in charge

of configuring and negotiating access to external resources, and of managing a small amount

of local memory that is attached to the CPU. This memory hosts the local kernel and serves

as a cache for applications. LegoOS supports the Linux system call interface as well as an

unmodified Linux ABI, allowing users—in principle—to run unmodified Linux applications.

In this work, we take advantage of LegoOS’s interface. Unfortunately, while LegoOS is a

working research prototype that highlights the complexities of building a distributed operating

system that coordinates and manages disaggregated resources, it is not sufficiently complete

to run a real production DBMS. One of the contributions of our work is, therefore, to extend

LegoOS’s codebase with several system calls and additional functionality that is needed to

run these DBMSs. We discuss these efforts in Section 3.4.

3.3 Overview of Executing DBMSs in DDCs

How do modern DBMSs fare in a disaggregated environment? In this section, we first discuss

the operation of these systems on DDCs, and then we run microbenchmarks with hash oper-

61

Lo
ca

l C
ac

he

Compute Pool

Memory Pool

Lo
ca

l C
on

tro
lle

r
Lo

ca
l C

on
tro

lle
r

Storage Pool

DBMS
Process

DBMS
Process

DBMS
Process

DBMS
Process

Buffer Pool

Buffer Pool

Buffer Pool

Database DatabaseControl Path
Data Path

Figure 3.2: DBMS execution in DDCs. DBMS workers are spawned on compute nodes with
their small local memory acting as a cache. Buffer pools live in a remote memory pool; a
storage pool stores and manages the database files. Workers send control messages to allocate
and manage resources, and the data is transferred between memory and storage pool (loading
and spilling) and the processing and memory pool (fetching and eviction).

ators to have a preliminary view on the performance implications of DDCs, before measuring

and analyzing production DBMSs more thoroughly in subsequent sections. Our discussion

here focuses on three types of hardware used by a DBMS: CPU, random access memory, and

disk storage. Like prior work, we assume that compute nodes have a limited amount of mem-

ory and that memory/storage nodes have a limited amount of compute. Otherwise, resources

are decoupled and connected via a low-latency, high-bandwidth network.

Figure 3.2 depicts the typical execution of DBMSs when running in a DDC. A pool of

storage nodes holds the database data in persistent storage, a pool of memory nodes holds

the buffer pool of the DBMS in random access memory, and a pool of compute nodes runs

the actual DBMS processes, with the local memory of the compute nodes serving as a cache

of the buffer pool. The original copies of each process’s virtual memory, therefore, reside

entirely remotely, either in the remote memory pool, or paged onto remote disk. To execute a

query, the database tables are scanned and loaded into the buffer pool; in-memory data will

then be transferred to and from the processing and the memory pools during execution. The

62

processing and storage nodes do not exchange data directly.

The OS chooses which pages to maintain in the local memory of compute nodes using

well-known page eviction policies like LRU or FIFO—data is fetched from remote memory

on a local memory cache miss and fetched from storage on a remote memory cache miss.

We term the former remote memory accesses and the latter disk page faults to differentiate

the two in this chapter. In both cases, if a query requires data beyond what is cached in its

local memory, a kernel trap will block the execution of the query until the memory can be

fetched from the memory pool.

The overall performance cost of this additional layer in the memory hierarchy depends on

several factors. For instance, the relative size of local memory compared to the buffer pool

will determine the frequency of accesses. The interplay between the buffer pool manage-

ment strategy and the OS local memory eviction policy can also have a significant effect on

performance, as can the interaction between remote memory accesses and disk page faults,

and the pattern of accesses and the architecture of the DBMS. To illustrate one example of

the complexities of this space, consider an LRU buffer pool on top of an LRU local memory

eviction policy. When the DBMS evicts an item from the buffer pool, it might:

1. Bring a new item into a memory node from storage.

2. Bring the new item into local memory, evicting others.

3. Bring the LRU item from memory into local memory.

4. Finally, copy from local memory to the buffer pool.

Step 3 is due to the DBMS’s replacement algorithm running in the compute node. This

highlights how two in-memory buffers result in two sets of replacement policies whose inter-

action may be suboptimal, suggesting the need for the buffer pool to be aware of “cheaper”

local memory and more expensive remote memory.

63

3.3.1 Single Join Operation

Now consider a simple single-pass, single-machine join on the above architecture. Assume

two tables, A and B, are joined using a traditional hash join. Also assume that A is the bigger

of the two tables and that we have an existing hash index of B built using the join key. In a

traditional DBMS, we would scan table A, compute a hash on the join attribute for each tuple

in A, and probe the hash index of B for matches, returning the matching tuples.

In a DDC, this operation would proceed as follows.

• Initial scan of A. To perform the initial scan, a query engine on a compute node will have

to first request table A’s blocks from storage. As mentioned, this process is recursive,

involving multiple rounds of communication until the requested blocks are transferred

to the local memory of the compute node. If local memory is scarce, the compute node

may need to fetch a single block at a time; this is inefficient, but correct, as the algorithm

requires only a single block of A as its working set.

• Probing B’s hash index. When a block of A is in the compute node, the query processor

iterates through every A-tuple to probe B’s hash index. Again, a portion of B’s hash

index needs to be fetched from disk to remote memory, and then brought into the local

memory of the query processor. Recent work [38] shows that fetching entries from a

hash table stored in “far memory” is particularly expensive because of hash collisions

that requiremultiple round trips between the compute node and remotememory/storage

to traverse the hash table’s buckets. While such collisions also exist in today’s systems,

the overhead is typically dominated by disk I/O.

The join operation leads to more inefficiencies if A or B are too large to fit in remote

memory, requiring multiple passes over the data with either sort-merge or grace hash join.

3.3.2 Exchange and Symmetric Hash Join

We next consider the case of a parallel join operation. Since the local join operation is similar

to the single-machine hash join described above, we focus on the exchange operator [21, 118]

64

x

y
1. Scan A

2. Hash A

3. Send tuples

(a) Unmodified DBMS

x

y1. Scan-Hash A

2. Store A’s partitions based on hash

3. Grant partition

(b) Using Scan-Hash and Grant

Compute Memory Storage

Figure 3.3: Figure (a) depicts a hash partitioning when the DBMS is running on LegoOS. Figure
(b) shows the same operation but with additional primitives (§3.8).

followed by a parallel pipelined symmetric hash join. The hash exchange operator repartitions

the data by hashing the join attributes. Consider a join of tables A and B executed in parallel

on a number of compute nodes, each running a query processor with its own local memory.

Assume that each compute node is responsible for a subset of each table.

• Initial scan. In the initial scan, each compute node does a scan of its assigned A and

B blocks. As above, data needs to be transferred from storage to remote memory, then

from remote to local, potentially over multiple iterations if cache is limited.

• Parallel hash partitioning. Each compute node iterates through A and B tuples in its

local memory and applies a hash function on the join attribute value to determine the

destination node performing the join. The repartitioned tuples (by join key) are then

pushed to the destination node, which stores them in local memory. If needed (e.g.,

due to insufficient local memory), the destination node may need to copy these tuples

out to remote memory before it can receive more tuples. This process is bandwidth

intensive, as shown in Figure 3.3(a). Compute node x scans table A from remote storage

65

by first attempting to fetch A from remote memory. When that fetch fails, the memory

forwards that request to the remote storage. A is then scanned into the remote memory,

and then into x’s local memory. At this point, x can compute a hash on the join key, and

determine the partitions. x then sends some of the partitions over the network (via ToR)

to y, which is then responsible for those partitions. This forces y to copy those tuples

from its local memory to its remote memory.

• Pipelined symmetric hash join. Finally, each destination compute node performs a

pipelined symmetric hash join in which a local-memory hash table is built for each of

the partitions, and incoming A and B tuples are probed against the hash tables. If the

local memory is insufficient, the in-memory hash tables may also need to be continually

fetched from and evicted to remote memory. In this case, there is another round trip to

construct the hash tables in local memory (from the rehashed tuples that arrive in the

previous step) and then transfer them to remote memory.

In each of the above steps, data is repeatedly transferred between storage, remote, and

local memory—all to end up storing the data back in remote memory anyway! In Section 3.8

we show that with small modifications to the OS and the DBMS, many of these data transfers

can be avoided. We note that the above issues (and our proposed solutions) apply to other

parallel join algorithms as well.

3.3.3 Performance Challenges

To demonstrate the impact of running DBMSs over DDCs, we evaluate the performance of

hash operators in Linux and LegoOS using the TPC-H benchmark. Our testbed consists of

three RDMA-enabled CloudLab r320 machines [223] that emulate one compute node, one

memory node, and one storage node running LegoOS. All of these nodes are connected via a

56Gbps Infiniband network using Mellanox MX354A NICs and a Mellanox SX6036G switch.

Compute nodes have access to a Xeon E5-2450 (8 cores, 2.1Ghz) and memory nodes have

16GB of RAM. As the amount of local memory on compute nodes is currently undetermined,

66

0

2

4

6

8

10

12

Region (0.2KB)
Linux 2.8s

Nation (1.3KB)
Linux 2.9s

Supplier (2.9MB)
Linux 2.9s

Customer (84MB)
Linux 3.1s

Part (112MB)
Linux 3.1s

Partsupp (320MB)
Linux 5s

Order (960MB)
Linux 4.7s

Lineitem (4.3GB)
Linux 13.8s

Sl
ow

do
w
n
to
Li
nu
x

LegoOS (LM=1GB) LegoOS (LM=256MB) LegoOS (LM=64MB)

1 44 4K 57K 62K 175K

4.2M

30M

1 44 4K 57K 62K

5.5M
8.5M

37M

1 44 4K

2.5M 2.5M

5.7M

10M
40M

Figure 3.4: Query performance on hash indexes of TPC-H (scale factor 10) tables. LM stands
for local memory.

we test a range of possible values: 64MB, 256MB, and 1GB. We expect the eventual value,

as a ratio to remote memory and dataset sizes, will trend lower in the spirit of disaggregation.

LegoOS currently supports a subset of the Linux system calls, so we extended the codebase

as needed to implement a query execution engine for DBMS operations. Section 3.4 discusses

more extensions that we made to LegoOS to support production DBMSs. For comparison, we

also make our query engine compatible with Linux 3.11 and run it on a single machine with

the same compute, memory, and storage resources as the disaggregated testbed. The engine

supports hash join, hash aggregation, nested loop, filter, project, and sort operations, all of

which are needed for the TPC-H queries.

Hash table performance. Hash table performance is crucial to the execution of many DBMS

operators. Our first experiment evaluates the performance of querying hash tables in DDCs.

Figure 3.4 describes the details of the experiment and shows the results. Specifically, we run

100 million random accesses to each hash table and compare the running times of LegoOS

with different sizes of local memory (1GB, 256MB and 64MB) and Linux. The x-axis shows

each TPC-H table along with its hash index size and the performance in Linux. The y-axis

shows the slowdown in LegoOS compared to that in Linux. Each bar is labeled (above) with

the number of remote memory accesses in LegoOS. When data is larger than local memory,

the performance of accessing hash tables in LegoOS is an order of magnitude worse than in

Linux. We observed that, when the size of the hash table is within the local memory capacity,

the whole table can be cached locally and the performance slowdown of LegoOS (relative to

67

Sort

Hash Aggregation

Hash Join 4

Hash Join 3 Scan(Supplier)

Hash Join 2

Hash Join 1

Scan(Lineitem)

Scan(Order)

Nest Loop Join

Scan(Nation) Scan(Region)

Scan(Customer)

Figure 3.5: An optimized physical plan for TPC-H Query 5. Shaded are the operators that use
hash tables that we built in Figure 3.4.

0

5

10

15

20

Hash Join 1
Linux 0.091s

Hash Join 2
Linux 0.73s

Hash Join 3
Linux 5.02s

Hash Join 4
Linux 0.69s

Query Execution
Linux 6.54s

Sl
ow

do
w
n
to
Li
nu
x

LegoOS (LM=1GB)
LegoOS (LM=256MB)
LegoOS (LM=64MB)

4.1K 21K
1.1M

49K 1.2M
4.1K 22K

3.5M

60K

3.6M

4.2K

364K

9.3M

169K

9.8M

Figure 3.6: Execution performance of hash joins and end-to-end TPC-H Query 5.

Linux) is within 2×. However, when the table is larger than local memory, the corresponding

slowdown ranges from 5× to 11×, showing severe performance degradation.

Query execution performance. We next evaluate the effect of the above slowdowns on an

end-to-end TPC-H query—Query 5—the optimized plan of which (shown in Figure 3.51)

involves multiple hash joins. While we present results based on this specific query and plan,

Section 3.5 shows that the insights are general to any other DBMS query execution.

Figure 3.6 compares the query execution performance in LegoOS with different sizes of

local memory and Linux. Specifically, the x-axis shows the execution of four hash join op-

erators in Figure 3.5, the end-to-end query execution, and their performance in Linux. The

1Adopted from the optimized plan in Microsoft SQL Server [24].

68

y-axis shows the slowdown of the performance in LegoOS compared to that in Linux. Each

bar is labeled with the number of remote memory accesses in LegoOS. The results show that

when the working set of an operator can fit in local memory, the performance slowdown

can be controlled around 2×. As expected, the worst degradation is observed at Hash Join 3

where the two largest tables are joined: the slowdown relative to Linux is 3×, 7× and 18× for

LegoOS with 1GB, 256MB and 64MB local memory, respectively. This degradation results

in a slowdown of 2.7×, 6×, and 14.8×, respectively, in overall query execution. We expect

greater slowdowns in larger-scale executions.

Remote memory access. To confirm our hypothesis that the majority of the overhead in Le-

goOS (over Linux) comes from remote memory requests, we measure the number of remote

memory accesses in LegoOS. As Figures 3.4 and 3.6 depict (in the label above each bar),

LegoOS needs to constantly page remote memory for queries that require large working sets.

Summary. While limited in scope, the above experiments show that a naïve DBMS imple-

mentation on a DDC would suffer severe performance degradation.

The remainder of this chapter presents extensive exploration of the performance implica-

tions of DDCs on production DBMSs. Our results highlight the need to develop new tech-

niques to make the performance of DBMSs palatable in this brave new world, which is the

focus of Section 3.8 and the next chapter.

3.4 Setup and Methods for Extensive Evaluation

To extensively explore the implications of resource disaggregation for data processing, we now

present an in-depth characterization and analysis of the performance of production DBMSs

running on DDCs. This section details the setup of our performance measurements.

3.4.1 Testbed Setup

Our DDC testbed consists of three bare-metal servers connected by an Infiniband network

in CloudLab [223]. Both the servers and the network are the same as what we described in

69

MonetDB PostgreSQL

Execution In-memory Out-of-core
Storage Column-based Row-based

Architecture Client/Server Client/Server
Buffer pool size min(SCapacity, SDemand) Customizable

Figure 3.7: Summary of parameters in MonetDB and PostgreSQL.

Section 3.3.3. At the time of this work, we were restricted to this hardware configuration due

to LegoOS’s limited driver support, and the low availability of compatible servers in CloudLab.

To provide a fair baseline, we compare to a single Ubuntu Linux 3.11 server with the same

compute, memory, and storage resources as our DDC testbed.

Local memory configuration. Vendors and cloud providers have not yet settled on the size

of local memory in DDCs, but we expect the most cost-efficient nominal (i.e., per-CPU) sizes

to be smaller than typical DBMS buffer pools. We evaluate DDC performance on a variety of

local memory sizes ranging from low (64MB) to high (4 to 6GB) capacity to emulate different

degrees of disaggregation.

Storage. Due to hardware availability, our testbed uses hard disk drives for storage. While

SSDs would improve performance, we expect that the general trend of the disk being a bot-

tleneck in some of our experiments would still hold as our Infiniband network significantly

outperforms SSDs in both latency and throughput.

3.4.2 System Selection and Adaptation

We select two popular open-source DBMSs: MonetDB [19] (Version 11.33.11) and Post-

greSQL [218] (Version 11.5)—both are the latest versions at the time of this evaluation. We

select these two systems to represent different types of DBMSs: MonetDB is a column store,

designed to be executed in-memory; PostgreSQL is a row-based system and it adopts an out-

of-core execution model. We summarize and compare the technical parameters of MonetDB

and PostgreSQL in Figure 3.7. One parameter of interest is the buffer pool size. In MonetDB,

the system consumes as much memory as needed to match application demand (SDemand)

70

as long as it does not exceed the amount of physical memory (SCapacity). In PostgreSQL, the

buffer pool size is customizable. For both Linux and LegoOS, we tune the PostgreSQL buffer

pool size to maximize performance.

We note that LegoOS currently supports only a subset of Linux system calls. Thus, to

execute PostgreSQL and MonetDB, we spent significant effort adapting these two DBMSs to

LegoOS (for reference, PostgreSQL has ∼1.3M lines of C code, MonetDB has ∼400K lines of

C and MAL code, and the LegoOS kernel consists of ∼300K lines of C code). We highlight

three examples:

Socket bypass. LegoOS, which relies solely on RDMA for communication between nodes,

currently does not support sockets, but the client and the server communications of both

PostgreSQL and MonetDB are based on sockets. Thus, we bypass the client and directly start

the server to execute the SQL queries and benchmark the query execution performance.

Read system call. Another example is a slight difference between the implementation of the

read system call in LegoOS and Linux. When the application readsN bytes from a file, due

to disaggregation, LegoOS allocates N bytes of memory in kernel space in the compute node

to receive the data that is finally returned from the memory node (refer to the data paths in

Figure 3.2). IfN is large, the compute node can run out of memory, leaving other components

of the system hanging. We added additional functionality to address this issue.

Relative paths. The original version of LegoOS could only support absolute paths while rel-

ative paths are extensively used in the selected DBMSs; we implemented two system calls

(getcwd and chdir) in order to run MonetDB and PostgreSQL.

Additionally, we fixed several inconsistent behaviors in the way that LegoOS performs

file system operations. For example, in LegoOS, rename always unlinks the old file on the

storage node without detecting the existence of the new file, so if the new file does not exist,

then the old file is deleted, while in Linux, the old file is still safe. We note that these issues

are due to the immaturity of the current LegoOS codebase, rather than its higher-level design.

71

1

2

3

4

5

6

7

8

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

M
em

or
y
C
on
su
m
pt
io
n
(G
B)

Figure 3.8: Peak memory usage of TPC-H queries in MonetDB.

1

2

3

4

5

6

7

8

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q21 Q22

M
em

or
y
C
on
su
m
pt
io
n
(G
B)

Figure 3.9: Peak memory usage of TPC-H queries in PostgreSQL.

3.4.3 Workload Selection and Characterization

To study the implications of disaggregation on the end-to-end query execution performance

of real-world complex queries, we select the TPC-H benchmark and use all of its 22 queries,

which represent a wide range of execution patterns. Unless otherwise specified, we use a

scale factor of 10.

As discussed, memory disaggregation makes memory accesses a bottleneck for many ap-

plications in DDCs, so overall memory consumption is an important factor in this study. To

that end, we provide a characterization of the memory demands of all 22 TPC-H queries. The

72

exact demands of each query, of course, vary as each DBMS will select its own execution

plan for each query depending on a number of factors; different plans will result in different

memory usage patterns. Thus, we run the queries with the aforementioned scale factor in

MonetDB and PostgreSQL in Linux and measure the memory consumption of each query.

We note that the memory used by the OS for disk caching is not included here because it is

determined by the OS, and the OS (for example, Linux) can aggressively use available memory

for caching disk data as long as it does not affect the memory usage of the applications.

Figure 3.8 and Figure 3.9 show the measurement results for MonetDB and PostgreSQL

respectively. Note that in the case of PostgreSQL, we configured the maximum buffer pool

as 8GB to allow for sufficient OS and disk cache space, and we excluded Q20 because

it could not finish execution [213]. The memory consumption of different queries running

on a single DBMS can vary substantially, as can the consumption of a single query on two

different DBMSs. Even so, we can summarize a few patterns: (1) all queries consume more

than 200 MB of memory; (2) most queries use around the average amount of memory (2.2

GB in MonetDB and 2.8 GB in PostgreSQL); (3) a few queries use significantly more memory

(Query 1, 9, 17, 19 in MonetDB, Query 4, 9, 18, 21 in PostgreSQL) than others; and (4) a

few queries use significantly less memory (Query 11, 16, 22 in MonetDB, Query 1, 6, 15,

17, 19 in PostgreSQL) than others. We will refer back to these two figures when we analyze

experimental results in the next sections.

3.5 The Cost of Disaggregation

We evaluate the overhead of disaggregation by running both production DBMSs on LegoOS

and a traditional standalone Linux server. We equalize the amount of compute, memory, and

storage resources between LegoOS and Linux to ensure a fair comparison.

73

1

10

100

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Sl
ow

do
w
n
to
Li
nu
x

Figure 3.10: MonetDB query execution time slowdowns with 4GB local memory in LegoOS.
The baseline is a single Linux server.

1

10

100

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Sl
ow

do
w
n
to
Li
nu
x

Figure 3.11: MonetDB slowdowns with 1GB local memory in LegoOS.

1

10

100

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

176X

Sl
ow

do
w
n
to
Li
nu
x

Figure 3.12: MonetDB slowdowns with 64MB local memory in LegoOS.

3.5.1 In-memory Execution

We first evaluate MonetDB under three different local memory sizes (4GB, 1GB, and 64MB).

Before running each TPC-H query, we warm up the DB buffer pool, to remove the effect of

disk paging. For each graph, we show the slowdown relative to Linux for all 22 TPC-H queries,

where a slowdown ratio of 1 means performance is on par with Linux. In all figures, all bars

74

are augmented with 95% confidence intervals, which show that the results are stable with

low variance. We summarize our findings as follows.

4GB local memory (Figure 3.10). The slowdown is moderate: an average of 1.7× and a

median of 1.5×. The slowdown stems from fetching data from the remote buffer pool in the

memory pool to the local memory. However, LegoOS’s optimizations on memory prefetching

and lazy memory allocation keep the slowdown moderate. Moreover, because CPU is the

primary bottleneck, even though the working set of Q1 (Figure 3.8) does not fit into 4GB,

the slowdown is only 1.6×. Q9 and Q17 experience higher slowdowns (2.9× and 2.4×

respectively) because their actual working sets (once kernel, stack, and instruction cache are

included) well exceed 4GB, resulting in thrashing of local memory. Q11 has the highest

slowdown given that it is very short (it runs in 0.07 s) and a handful of memory stalls incur a

high relative slowdown.

1GB local memory (Figure 3.11). As local memory decreases, the average slowdown in-

creases because most queries utilize more than 1GB of memory. Queries with small memory

footprint (Q16, Q22) are not affected by the local memory reduction, and Q11 is also less

sensitive because, although it does spill data to remote memory, going from 4GB to 1GB

does not exacerbate the effect.

64MB local memory (Figure 3.12). The final configuration reduces local memory to only

64MB. All queries are more than 2.5× slower than their non-disaggregated executions and

ten of them have performance degradation larger than 10×. Q9 has the most extreme slow-

down of 176×. This is because Q9 adopts nested loop joins for six tables, and together with an

expression calculation, they result in frequent random accesses to the buffer pool. Those ran-

dom accesses cause extreme inefficiency when the local memory is constrained. We analyze

the slowdowns in greater detail by relating them to remote memory accesses in Section 3.7.

3.5.2 Out-of-Core Execution

We next evaluate PostgresSQL to understand the impact of out-of-core execution under two

settings: (1) execution in a cold hardware/software cache scenario (cold execution); and (2)

75

Sort

Aggregation

Hash Join

Hash

Hash Join

HashScan(Orders)

Scan(Customer)

Scan(Lineitem)

Figure 3.13: The simplified execution plan for Q3 in PostgreSQL. Blue operators involve disk
I/O and red operators are in memory.

execution after the buffer pool and caches are warmed up by running the same query multiple

times (hot execution). We differentiate between those two scenarios because PostgreSQL

heavily relies on OS mechanisms to cache recent data.

Cold execution. Figures 3.14–3.16 show the cold execution performance in LegoOS with

different sizes of local memory. In cold execution given 4GB and 1GB local memory (Fig-

ures 3.14 and 3.15), most queries have negligible slowdowns since disk I/O overshadows

the additional network latency. Consider the plan of Q3 (Figure 3.13) which consists of a

right-deep tree of a 3-way join, the tree is executed in a pipelined fashion: every time a tuple

of lineitem is scanned, it is used to join with the rest of the tree. Given the size of the

lineitem table, significant disk I/O incurred during the scan dominates the execution. This

is still true when we migrate to a disaggregated environment—disk I/O takes a longer time

than the memory stalls that fetch data from remote memory. This disk bottleneck closes the

gap between LegoOS and Linux. In the 64MB setting (Figure 3.16), the majority of queries

continue to achieve similar performance to their non-disaggregated executions, as shown in

Figure 3.16. The queries that experience higher than 2× slowdowns (e.g., Q13), do so be-

cause of unmasked memory stalls (e.g., executions that are not pipelined or that performmany

random accesses).

76

1

10

100

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Sl
ow

do
w
n
to
Li
nu
x

Figure 3.14: PostgreSQL cold execution time slowdowns with 4GB local memory in LegoOS
(Q20 excluded). The Baseline is a single Linux server.

1

10

100

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Sl
ow

do
w
n
to
Li
nu
x

Figure 3.15: PostgreSQL (cold) slowdowns with 1GB local memory in LegoOS.

1

10

100

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Sl
ow

do
w
n
to
Li
nu
x

Figure 3.16: PostgreSQL (cold) slowdowns with 64MB local memory in LegoOS.

Hot execution. Figure 3.17 shows that given 4GB local memory, average and median hot

execution slowdowns are 2× and 2.1×, respectively. At 1GB memory (Figure 3.18), the

average slowdown increases only slightly to 2.4×, indicating that the performance is still

largely bottlenecked by I/O.

These two results show an interesting effect. Although in-memory and hot out-of-core

execution both bypass disk I/O, they perform very differently in DDCs when local memory is

77

1

10

100

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Sl
ow

do
w
n
to
Li
nu
x

Figure 3.17: PostgreSQL hot execution time slowdowns with 4GB local memory in LegoOS
(Q20 excluded). The Baseline is a single Linux server.

1

10

100

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Sl
ow

do
w
n
to
Li
nu
x

Figure 3.18: PostgreSQL (hot) slowdowns with 1GB local memory in LegoOS.

1

10

100

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Sl
ow

do
w
n
to
Li
nu
x

Figure 3.19: PostgreSQL (hot) slowdowns with 64MB local memory in LegoOS.

sufficient: the latter still suffers from I/O bottlenecks while the former does not. The reason is a

gap between the efficacy of application-based disk cache management (as done by MonetDB)

and LegoOS’s disk management (as outsourced by PostgreSQL). The difference is that while

the application data can be cached locally in the processing pool, LegoOS stores its disk cache

remotely in the memory and storage pool. Consequently, MonetDB’s manual management of

the disk cache results in much better data reuse and pipelining.

78

S
lo

w
do

w
n

to
 S

in
gl

e
M

ac
hi

ne

0.1

0.5
1

5
10

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Spark Vertica

Figure 3.20: The slowdowns of running distributed DBMSs in a cluster compared to a single
machine of the same hardware.

A further reduction of local memory to 64MB results in a significant slowdown for a subset

of queries (Figure 3.19). Memory intensive queries (Q4, Q9, Q18, andQ22, cf. Figure 3.9) ex-

perience 10× slowdowns, and Q13 has a worst-case 27× slowdown. The slowdown is larger

in hot executions because they eliminate the disk I/O that masks the performance degradation

in cold executions.

3.5.3 Distributed Baseline

Next, we study how scale-out setups affect the performance of traditional, distributed DBMSs,

relying on these results to put DDC performance slowdowns into perspective. We have chosen

two highly-optimized DBMSs: Apache Spark SQL [5] v2.4.5 and Vertica [6] v9.3.0. We first

ran these systems using TPC-H (scale factor 10) in a single Linux machine, and then set up a

distributed environment using three “smaller” machines that collectively provide equivalent

hardware resources, including CPU cores, memory, and storage. We configured Spark SQL to

use NFS to access a remote storage server, ensuring the same disk I/O performance. Vertica,

however, does not support NFS, so we configured it to use the local storage on each machine.

We note that this gives the distributed setup of Vertica a slight advantage in aggregate disk

79

I/O throughput. Nevertheless, this setup paints a useful picture of the contrast of DDC and

distributed DBMS slowdowns.

Figure 3.20 shows the results for performance slowdowns of these DBMSs due to dis-

tributed execution. Overall, the distributed setup led to an average slowdown of 1.2× in

Spark and 2.3× in Vertica. Spark performs better because it has a higher sensitivity to compu-

tation than network communication [209]. Vertica, on the other hand, has more performance

variance. It is more sensitive to network communication in some queries; for example, in Q2,

Q7, and Q11, the execution incurs heavy communication between workers. In Q12, the dis-

tributed setup is even better than the single-machine setting because of good partitioning

and higher aggregate disk bandwidth. Comparing these results with DDC slowdowns (Fig-

ures 3.12, 3.16, and 3.19), we see that the overhead of scaling out is more significant in

DDCs, highlighting the need for optimizations.

3.5.4 Query Throughput

So far, we have focused on quantifying the slowdown of query completion time; we have

similar findings in query throughput. As discussed, the main bottleneck in the DDC setting

stems from memory stalls not compute parallelism—in fact, DDCs can spawn as many com-

pute workers as the resource pools allow. We, therefore, observe similar trends for query

throughput as we did for individual query completion times.

We evaluate the impact on TPC-H throughput by feeding two streams of TPC-H queries

to MonetDB and compare the respective throughput of Linux and LegoOS. Figure 3.21 shows

slowdowns in LegoOS with different local memory sizes, with the highest-level takeaway

that the trends match those in Figures 3.10–3.12 for individual queries. The DDC setting,

of course, provides new opportunities for rethinking how parallel/concurrent executions can

be further optimized. This requires redesigning the underlying OS abstractions and compute

models, which we leave for the next chapter.

80

2

4

6

8

10

12

14

4GB 1GB 64MB

Sl
ow

do
w
n
to
Li
nu
x

Local memory size

Figure 3.21: The slowdowns of LegoOS in the TPC-H throughput benchmark. Trends are
similar to the observations for single query performance.

3.5.5 Summary

The overhead of DDCs is moderate for in-memory query executions if each query’s working

set fits into the processing pool’s local memory. However, as query memory requirements

exceed the local memory, the communication overhead can result in a significant degradation

in query execution times. The degradation is even worse under frequent random accesses.

In both cases, the interaction between the OS and DBMS-level memory access patterns can

heavily influence the effect of disaggregation.

There are significant differences in disaggregation slowdowns in out-of-core vs in-memory

systems. Even within out-of-core systems, hot and cold executions vary in slowdowns as well.

Cold executions are dominated by disk I/O and hence less sensitive to the network overheads

introduced by disaggregation. Hot executions rely too heavily on default LegoOS disk cache

management, which stores the cache in remote memory. Overall, out-of-core executions are

generally less sensitive to the degree of disaggregation than in-memory executions because

they are bottlenecked by other factors, though we note that significant slowdowns can still

occur when the degree of disaggregation is extreme (for instance, Q13 in LegoOS with 64MB

local memory).

Moreover, distributed DBMSs set a good baseline for DDCs on the cost of scaling out and

81

highlight the need for codesigning DDCs and DBMSs to avoid redundancy and mismatched

execution policies, especially on data movement.

3.6 The Elasticity of DDCs

While disaggregation can introduce new overheads, a key advantage of DDCs is their elasticity—

a DDC can provision an almost arbitrary amount of resources to each process, and this pro-

visioning can expand beyond the resources contained in any one server. This elasticity can

have concrete performance benefits, preventing the DBMS from needing to spill data to disk

when it overwhelms a single machine’s capacity.

To evaluate these effects, we compare LegoOS’s efficiency to that of a monolithic server

across varying local memory capacities and working set sizes. For some of the more con-

strained local memory sizes, we note that it is unlikely that monolithic servers will be built

with such limited memory; instead, the goal of the experiments is to isolate the implications

of having a pool of remote memory that is orders of magnitude larger than local memory.

3.6.1 Versus a Constrained Monolithic Server

We begin by matching and scaling down the local memories of both the LegoOS processing

node and a monolithic server in order to emulate a case where today’s monolithic servers

are augmented with a large pool of remote memory. This is in contrast with the previous

section in which we matched the total amount of remote memory in the DDC to the memory

of the monolithic server. In some ways, the latter represents a lower bound on the relative

performance of DDCs. This subsection represents an upper bound.

As before, we fix the scale factor of the TPC-H workload at 10 and set the memory pool

capacity to 16GB, large enough for this particular workload.

In-memory execution. We select three representative queries with which to explore these

effects: Q16, Q5, and Q9. These three queries represent three different levels of sensitivity to

local memory capacity: low, medium, and high, respectively (cf. Figure 3.12). Other queries

82

0.1

1

10

100

1000

6 5 4 3 2 1 0.5

Ex
ec
ut
io
n
tim

e
(s
)

Linux total memory / LegoOS local memory (GB)

Linux LegoOS

Figure 3.22: MonetDB performance when varying local memory size for Query 16.

0.1

1

10

100

1000

6 5 4 3 2 1 0.5

Ex
ec
ut
io
n
tim

e
(s
)

Linux total memory / LegoOS local memory (GB)

Linux LegoOS

Figure 3.23: Varying local memory size for Query 5.

0.1

1

10

100

1000

6 5 4 3 2 1 0.5

Ex
ec
ut
io
n
tim

e
(s
)

Linux total memory / LegoOS local memory (GB)

Linux LegoOS

Figure 3.24: Varying local memory size for Query 9.

with similar sensitivity exhibit similar results. Figures 3.22, 3.23, and 3.24 show the execution

times of all three queries against local memory capacity in both a single server and a DDC.

As expected, the low-sensitivity query, Q16, maintains its performance across different

local memory capacities in the DDC. The monolithic server also retains its (slightly better)

performance across most memory capacities; however, when memory is very constrained,

performance suffers greatly as data is spilled to disk, with a ∼37× slowdown when memory

83

is constrained to 512MB. LegoOS is 28× faster than the monolithic server in this scenario.

The two more sensitive queries, Q5 and Q9, exhibit similar effects except that the monolithic

server slows down much earlier. In fact, for both queries, the 512MB case fails in the mono-

lithic server with an out-of-memory error. The DDC is still able to execute the queries with

a more graceful degradation in performance (but with similar scalability trends). Execution

time does rise as memory becomes very constrained, but even in that case, the DDC is con-

sistently 1–2 orders of magnitude faster as data is spilled to remote memory rather than disk.

For instance, the most sensitive query in the monolithic server at the smallest capacity that

completes, 1GB, experiences a 460× slowdown compared to LegoOS on the DDC.

Out-of-core execution. In evaluating PostgreSQL, we selected another three representative

queries: Q6, Q13, and Q4 for low, medium, and high sensitivity, respectively. These three

queries are different from the three queries chosen for MonetDB as the two DBMSs generate

different plans with different sensitivities.

Figures 3.25–3.27 show the results of cold executions in PostgreSQL for the three queries.

Unsurprisingly, the DDC performance on the low-sensitivity query is again very stable across

local memory capacities. Also like the in-memory case, the monolithic server begins to fail

in low-memory situations. For both environments, these graphs provide a fine-grained record

of performance degradation versus local memory size, showing exactly where local memory

becomes the bottleneck of the execution.

Overall, LegoOS performance is significantly more stable across local memory sizes.

There are two main reasons for this. The first is related to how query planning is done in

a DDC versus a traditional server. One of the key inputs to a query planner is the size of

memory—different memory sizes can result in significantly different plans and performance,

and a wrong choice in a plan can have bad consequences. When creating a plan for a DDC,

LegoOS presents to the DBMS the size of remote memory, rather than local memory. Sec-

ond is the aforementioned conversion of disk spills to remote memory spills. Disaggregation

thus provides an easy to understand scaling model: When disk I/O dominates the time of a

pipelined execution, disaggregation causes no harm; when memory becomes stringent in a

84

10

100

1000

10000

6 5 4 3 2 1 0.5 0.06

Ex
ec
ut
io
n
tim

e
(s
)

Linux total memory / LegoOS local memory (GB)

Linux LegoOS

Figure 3.25: PostgreSQL performance (cold) when varying local memory size for Query 6.

10

100

1000

10000

6 5 4 3 2 1 0.5 0.06

Ex
ec
ut
io
n
tim

e
(s
)

Linux total memory / LegoOS local memory (GB)

Linux LegoOS

Figure 3.26: Varying local memory size for Query 13.

10

100

1000

10000

6 5 4 3 2 1 0.5 0.06

Ex
ec
ut
io
n
tim

e
(s
)

Linux total memory / LegoOS local memory (GB)

Linux LegoOS

Figure 3.27: Varying local memory size for Query 4.

single server, disaggregation provides better performance and more graceful degradation.

Figures 3.28–3.30 present results for hot executions, which show similar trends to the cold

executions. One notable difference is that LegoOS benefits from hot executions of all three

queries due to its use of the OS disk cache for repeated loading of the same data. In contrast,

the monolithic deployment fails to show a similar improvement because there is insufficient

memory in the monolithic server to cache the largest tables used in each query.

85

10

100

1000

10000

6 5 4 3 2 1 0.5 0.06

Ex
ec
ut
io
n
tim

e
(s
)

Linux total memory / LegoOS local memory (GB)

Linux LegoOS

Figure 3.28: PostgreSQL performance (hot) when varying local memory size for Query 6.

10

100

1000

10000

6 5 4 3 2 1 0.5 0.06

Ex
ec
ut
io
n
tim

e
(s
)

Linux total memory / LegoOS local memory (GB)

Linux LegoOS

Figure 3.29: Varying local memory size for Query 13.

10

100

1000

10000

6 5 4 3 2 1 0.5 0.06

Ex
ec
ut
io
n
tim

e
(s
)

Linux total memory / LegoOS local memory (GB)

Linux LegoOS

Figure 3.30: Varying local memory size for Query 4.

3.6.2 The Impact of Dataset Size

Next, we compare how monolithic servers and DDCs scale with their workload. To do this,

we fix the memory capacity of both the monolithic server and the DDC processing node to

4GB, and we vary the scale factor (SF) of TPC-H from 2 to 20 with a step of 2.

Figures 3.31–3.33 shows the query execution times for Q16, Q5, and Q9, the same three

queries used in the previous subsection for MonetDB. As MonetDB does not require much

86

0.1

1

10

100

1000

2 4 6 8 10 12 14 16 18 20

Ex
ec
ut
io
n
tim

e
(s
)

Scale factor

Linux LegoOS

Figure 3.31: MonetDB performance when varying dataset size for Query 16.

0.1

1

10

100

1000

2 4 6 8 10 12 14 16 18 20

Ex
ec
ut
io
n
tim

e
(s
)

Scale factor

Linux LegoOS

Figure 3.32: Varying dataset size for Query 5.

0.1

1

10

100

1000

2 4 6 8 10 12 14 16 18 20

Ex
ec
ut
io
n
tim

e
(s
)

Scale factor

Linux LegoOS

Figure 3.33: Varying dataset size for Query 9.

memory to execute Q16, which joins three small tables (part, part supp, and supplier),

4GB memory is enough for even SF 20. Execution time, therefore, grows slowly with the size

of the data set in both disaggregated and non-disaggregated environments.

For the queries with higher memory sensitivity, LegoOS significantly outperforms the

monolithic server on large data sets, just as it did when we decreased local memory in Sec-

tion 3.6.1. For example, in Q5, when the SF is 16 or above, i.e., when the input size exceeds

87

1

10

100

1000

2 4 6 8 10 12 14 16 18 20

Ex
ec
ut
io
n
tim

e
(s
)

Scale factor

Linux LegoOS

Figure 3.34: PostgreSQL performance (cold) when varying dataset size for Query 6.

1

10

100

1000

2 4 6 8 10 12 14 16 18 20

Ex
ec
ut
io
n
tim

e
(s
)

Scale factor

Linux LegoOS

Figure 3.35: Varying dataset size for Query 13.

1

10

100

1000

2 4 6 8 10 12 14 16 18 20

Ex
ec
ut
io
n
tim

e
(s
)

Scale factor

Linux LegoOS

Figure 3.36: Varying dataset size for Query 6.

physical memory on the monolithic server, MonetDB runs faster in the DDC. At SF 20, the

speedup is 6.8×. This effect occurs much earlier for Q9, where SF 12 already results in DDCs

having a 27× speedup compared to the monolithic server.

PostgreSQL’s cold execution performance, shown in Figures 3.36–??, also reflects the re-

sults of Section 3.6.1. We omit hot executions as the trends are similar. In each case, Le-

goOS demonstrates comparable performance to the monolithic machine, except for mem-

88

1

10

100

1000

10000

0 10 20 30 40 50

Ex
ec
ut
io
n
tim

e
(s
)

Query number

Linux LegoOS

(a) Short-heavy workload.

1

10

100

1000

10000

0 10 20 30 40 50

Ex
ec
ut
io
n
tim

e
(s
)

Query number

Linux LegoOS

(b) Medium-heavy workload.

1

10

100

1000

10000

0 10 20 30 40 50

Ex
ec
ut
io
n
tim

e
(s
)

Query number

Linux LegoOS

(c) Long-heavy workload.

1

10

100

1000

10000

0 10 20 30 40 50

Ex
ec
ut
io
n
tim

e
(s
)

Query number

Linux LegoOS

(d) Random mix workload.

Figure 3.37: MonetDB query execution performance in Linux and LegoOS with mixed work-
loads starting with cold memory.

ory-sensitive workloads and large data sets. In these cases, monolithic server performance

degrades quickly as soon as local memory is insufficient for the working set. Finally, we

note that, in both deployments, PostgreSQL has better overall scaling effects than MonetDB,

partially due to the role of disk I/O as the bottleneck.

3.6.3 Large, Compound Workloads

Finally, we extend the above experiments to cases where the workload is large and involves

multiple query workloads. Specifically, we fix the physical memory of the monolithic server

89

10

100

1000

10000

0 10 20 30 40 50

Ex
ec
ut
io
n
tim

e
(s
)

Query number

Linux LegoOS

(a) Short-heavy workload.

10

100

1000

10000

0 10 20 30 40 50

Ex
ec
ut
io
n
tim

e
(s
)

Query number

Linux LegoOS

(b) Medium-heavy workload.

10

100

1000

10000

0 10 20 30 40 50

Ex
ec
ut
io
n
tim

e
(s
)

Query number

Linux LegoOS

(c) Long-heavy workload.

10

100

1000

10000

0 10 20 30 40 50

Ex
ec
ut
io
n
tim

e
(s
)

Query number

Linux LegoOS

(d) Random mix workload.

Figure 3.38: PostgreSQL performance with mixed workloads.

and local memory of the DDC processing nodes to 4GB, and we fix the TPC-H scale factor to

10. In this environment, we randomly draw 50 queries from the set of all 22 TPC-H queries.

We classify the queries into three categories by their execution times: short, medium, and long

queries. We control the portions of short queries (S), medium queries (M), and long queries

(L) to create four configurations: (1) short-heavy workload: 80% S, 10% M, and 10% L; (2)

medium-heavy workload: 10% S, 80% M, and 10% L; (3) long-heavy workload: 10% S,

10% M, and 80% L; and (4) random mix: each query has equal probability. After the queries

are drawn, we permute and evaluate them sequentially in MonetDB and PostgreSQL starting

from cold buffer pools, i.e., no prior cached data.

90

The results are presented in Figure 3.37 and 3.38. The x-axis denotes the query progress

within the 50-query trace. The y-axis is the cumulative execution time up to and including

that query. In the monolithic server, due to limited memory, MonetDB selects more memory-

constrained and less efficient execution plans, while in the DDC, it can take advantage of

enough memory in the memory pool to execute the queries more efficiently. For the first

few queries, MonetDB has similar performance in both deployments because of the data

loading, which is dominated by disk I/O. When more queries have been executed and the

buffer pool warms, the DDC becomes increasingly effective compared to today’s systems due

to its additional remote memory.

The effect is most pronounced in MonetDB, where the short-, medium-, long-heavy, and

mixed workloads exhibit total speedups of 6.7×, 9.9×, 7.7×, and 5.4×, respectively. These

speedups manifest quickly. For long-heavy workloads, for instance, the speedup is 3.1× at

only 5 queries and 6.1× at 25. The relative speedup of PostgreSQL is lower because it uses

out-of-core execution. The speedups range from 1.2×–1.9× across all workload mixes.

3.6.4 The Effect of Prefetching

Prefetching the data to be used in the execution from disk can mitigate the I/O bottleneck for

out-of-core systems. We evaluate this effect in PostgreSQL through the pg_prewarmmodule,

which allows the user to preload specified tables into either the OS cache or the buffer pool.

Figure 3.39 shows the results of applying this module in LegoOS with 4GB local memory. To

ease the comparison, we normalized the times of prefetching, execution after prefetching, and

hot execution to the cold execution time, and we stacked the first two to show the overhead of

prefetching. There are a few interesting findings. Overall, prefetching can effectively cache

necessary data: the performance of executions after prefetching matches the performance

of hot executions. Although the total times of prefetching and the following execution are

generally higher than cold execution times, we can leverage a large memory pool in a DDC

to make the prefetching a one-time overhead: prefetching all tables in the memory pool for

arbitrary queries.

91

0

0.5

1

1.5

2

2.5

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

N
or
m
al
iz
ed

to
C
ol
d
Ex
ec
ut
io
n Execution after prefetching

Prefetching
Hot execution

Figure 3.39: The effect of prefetching in PostgreSQL.

3.6.5 Summary

For both in-memory and out-of-core executions, the resource consolidation of DDCs can

provide applications with much more memory than a single server. For that reason, resource

disaggregation provides better and more stable performance than a single server for DBMSs

when the execution reaches the memory limit in the server and they have to spill data to disk.

The experiments of mixed workloads further validate the advantage of disaggregation in

having more resources to provision for a single program. This advantage potentially enables

DBMSs to scale to much larger workloads than when in a single server.

The disaggregated deployment can also cache additional data in thememory pool, through

either historical queries or prefetching. Better caching leads to higher performance.

In addition, we note that the advantage of DDCs does not require any changes in DBMSs.

DBMSs can be directly run in a DDC to utilize more resources, while alternative approaches

to acquiring more memory, e.g., distributed [85, 217] or RDMA-based [62, 96, 160] DBMSs

typically require drastic architectural changes.

92

3.7 Analysis and Tuning

Section 3.5 shows that with the same resource capacity, DBMS executions are slower in a

DDC than in a single server due to higher memory access latency. It also shows that this

overhead depends on both the DBMS workload and the degree of disaggregation. In this

section, we analyze this overhead through the profiling statistics we acquire in LegoOS and

consider how we might tune DBMS performance in DDCs based on this analysis. The goal

here is to gain insight into potential ways to modify the behavior of DBMSs to reduce (or mask)

the overhead of disaggregation.

3.7.1 Remote Memory Access Analysis

We measure the hardware counters for page faults and InfiniBand communication volume

between local memory and remote memory in LegoOS to estimate NRM—the amount of

remote memory data transferred (in bytes) during an execution. We first present the results

for in-memory executions in MonetDB.

In-memory execution. Figures 3.40–3.42 show NRM for the experiments in Section 3.5.1,

where we configured different local memory sizes. Figure 3.40 shows the statistics for the

setting where local memory is enough for most queries. We make two key observations: (1)

all queries have non-zero NRM ; and (2) most queries have NRM smaller than 1GB.

The first observation suggests that the overhead of disaggregation is inevitable: there are

remote memory accesses even when the local memory is larger than what an application

demands. Those remote memory accesses include program data and the initial transfer of

data into processing nodes’ local memory.

The second observation (combined with the < 2× slowdowns in Section 3.5.1) suggests

that, for most queries, the extra latency due to this overhead is smaller than the execution time

in a single server. There are, however, a few exceptions: Q17 transfers almost 10GB data and

its execution time is inflated by 2× (shown in Figure 3.10); the NRM of Q9 is 500MB, which

incurs a 2.9× slowdown. For those queries, remote memory accesses dominate the execution

93

100
101
102
103
104
105
106

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

N
R
M
(M
B)

Figure 3.40: NRM in MonetDB executions with 4GB local memory.

100
101
102
103
104
105
106

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

N
R
M
(M
B)

Figure 3.41: NRM with 1GB local memory.

100
101
102
103
104
105
106

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

N
R
M
(M
B)

Figure 3.42: NRM with 64MB local memory.

times. In fact, the impact of memory stalls on the execution time is highly dependent on

queries. As examples, Q1 and Q7 transfer 10GB and 2.3GB data, respectively, but both

of them cause a 1.6× slowdown because computation dominates the execution time. In

comparison, Q11 transfers only 8MB data, but it has a 3.3× slowdown—this suggests that

low-latency queries are more sensitive to memory stalls.

Figure 3.41 shows the results when LegoOS has 1GB local memory. The average and

94

100
101
102
103
104
105
106

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

N
R
M
(M
B)

Figure 3.43: NRM in PostgreSQL executions with 4GB local memory.

100
101
102
103
104
105
106

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

N
R
M
(M
B)

Figure 3.44: NRM in PostgreSQL executions with 1GB local memory.

100
101
102
103
104
105
106

Q
01

Q
02

Q
03

Q
04

Q
05

Q
06

Q
07

Q
08

Q
09

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

N
R
M
(M
B)

Figure 3.45: NRM in PostgreSQL executions with 64MB local memory.

median NRM has increased to 3.3GB and 1.7GB respectively, significantly higher compared

to the case with 4GB local memory. This is because most TPC-H queries consume more

than 1GB memory, as shown in Figure 3.8, and therefore across the execution, virtually all

cached data has to be transferred from the memory pool. This shows the mismatch between

DBMS execution and the current OS caching mechanism that uses LRU or its variants (e.g.,

FIFO). This mismatch results in serious performance degradation: ∼5× on average as shown

95

in Figure 3.11. When the local memory size is as low as 64MB (Figure 3.42), the average

NRM increases to 9.1GB and the median to 3.8GB, showing that the buffer pool data is

accessed multiple times. Those multiple rounds of data transfers cause an order of magnitude

performance degradation (Figure 3.12). As an extreme case, Query 9 transfers 89GB data,

causing two orders of magnitude degradation.

Out-of-core execution. For out-of-core executions in PostgreSQL, although the performance

slowdowns of cold and hot executions are very different (Figures 3.14–3.16 versus Figures 3.17–

3.19), the remote memory accesses are similar. This is because PostgreSQL relies on the OS

to cache the raw input data when it reads from files, rather than loading/storing it to virtual

memory or its buffer pool directly. LegoOS caches this disk data in memory nodes and stor-

age nodes and not in local memory. As a result, even for hot executions, the DBMS needs to

access remote memory for the cached data.

Figure 3.43 plots the results for hot executions in PostgreSQL in a DDC processing node

with 4GB local memory. The average NRM is 9GB, which is much higher than the peak

memory usage derived in Figure 3.9. The reason we did not observe an associated slowdown

in the cold executions of Section 3.5.2 is pipelined execution, which hides these accesses

by the time spent in disk I/O. The absence of good pipelining is why we do see a slowdown

of ∼2.2× in the hot executions of Section 3.5.2. Moving to limited local memory sizes (Fig-

ures 3.44 and 3.45) increases the average NRM , resulting in a 1.2× and 6.3× increase in the

average slowdown, respectively. In the latter case, the PostgreSQL buffer pool is frequently

evicted. The queries with the largest NRM (Queries 4, 9, 13, 18, 21, and 22) also have the

worst performance slowdowns (cf. Figures 3.14–3.19).

Summary. This set of experiments quantitatively evaluates the overhead of resource disaggre-

gation that comes from remote memory accesses, which, being synchronous, stall the DBMS

execution. The results also reveal two mismatches between the current OS design and the

DBMS data access patterns: (1) LRU-like local memory eviction policies are a poor fit for

DBMSs when the local memory in the processing pool is too small to cache the working set;

and (2) out-of-core executions that rely on the OS to cache raw input data from the disk can-

96

not take advantage of processing units’ local memory since the cached data is still remote to

the processing pool.

We note that the absolute numbers in this analysis are from running existing DBMSs di-

rectly in LegoOS—neither the DBMS nor LegoOS is aware of the other side. More flexible data

access granularity that leverages the patterns of DBMS workloads can improve data transfer

efficiency in LegoOS for DBMS executions, but we leave this optimization as future work.

3.7.2 Plan Optimality

Plan selection is an important function of the query planner and optimizer. We measure the

impact of different execution plans on performance. In particular, we focus on two aspects:

(1) the size of the buffer pool, and (2) the join algorithm.

Buffer pool size. The size of the buffer pool is a key determining factor for the execution plan

chosen by the DBMS. To measure the impact of this choice, we focus on MonetDB for two

reasons: (1) as an in-memory DBMS, it is more sensitive to memory size, and (2) the main

bottleneck of PostgreSQL is either disk I/O (in cold executions) or network communication

overhead incurred by fetching cached data from remote memory (in hot executions), so the

size of the buffer pool is not a dominant factor. We study three representative queries: 16, 5,

and 9, and evaluate them with the workload configured to a scale factor of 10. We vary the

buffer pool size between 16GB (enough memory), 4GB (reasonably large) and 1GB (small),

and test two LegoOS configurations: one with 4GB local memory and one with 64MB of

memory in each processing node. The baseline is a monolithic server with 16GB memory.

Table 3.1 shows the results. In the monolithic server, a larger buffer pool results in better

performance. The DDC results are similar with one exception: Q16 performs marginally

better with 1GB memory than it does with 4GB (0.7 s vs. 0.73 s), attributed to noise. We

also observed that MonetDB’s query planner had some difficulty in planning for intermediate

buffer pool sizes in Q16.

A somewhat surprising result is that, when moving to smaller buffer pool sizes compared

to available memory, the penalty to LegoOS is outsized. When data needs to be spilled out

97

Buffer Pool Size 16GB 4GB 1GB

Query 16
Linux 0.5 s 0.75 s 0.53 s

LegoOS (4GB) 0.73 s 10.78 s 0.7 s
LegoOS (64MB) 1.29 s 11.13 s 1.37 s

Query 5
Linux 1.14 s 1.14 s 5.08 s

LegoOS (4GB) 1.44 s 1.44 s 18.11 s
LegoOS (64MB) 8.72 s 8.9 s 52.74 s

Query 9
Linux 1.11 s 2.2 s 9.65 s

LegoOS (4GB) 1.7 s 10.55 s 40.81 s
LegoOS (64MB) 178.55 s 190.8 s 257.53 s

Table 3.1: MonetDB buffer pool size tuning in Linux and LegoOS

of the buffer pool, one might think that the monolithic server would need to spill to disk and

that LegoOS, spilling to the remote memory pool would gain an advantage. In fact, it is the

opposite. If the buffer pool is less than the total memory of the system, the monolithic server

can spill data to memory. That memory is local, unlike the memory to which LegoOS spills

data, which is on a remote machine. Thus, spilling data out of the buffer pool comes at a

significantly higher cost in a DDC than a traditional system.

Join algorithm. We next evaluate the performance characteristics of join algorithms. We

use PostgreSQL because it allows the user to select from three different join algorithms:

Nested-Loop Join, Merge Join, and Hash Join. We disable two of them to en-

sure that PostgreSQL selects the remaining one. For example, to use Hash Join, we set

enable_nestloop and enable_mergejoin to off. Since Q6 does not involve joins,

we evaluate only Q4 and Q13. We use Linux with 16GB memory as the baseline, config-

ure LegoOS to use a 16GB memory pool and vary the local memory size between 4GB and

64MB.

Table 3.2 shows the results. For Q13, nested-loop join cannot finish within 1 hour in both

Linux and any LegoOS setting; merge join has slightly better performance than hash join in this

query. Since merge joins incur less random accesses, they are much more efficient than hash

joins when local memory is small: merge join incurs 62GB of remote memory accesses when

the local memory is 64MB, but hash join incurs 250GB. This is an interesting observation

98

Join Algorithm Nested-Loop Merge Hash

Query 13
Linux >1h 14.45 s 15.69 s∗

LegoOS (4GB) >1h 18.34 s 18.51 s∗

LegoOS (64MB) >1h 122.84 s 373.49 s∗

Query 4
Linux 3.97 s 30.55 s 26.5 s∗

LegoOS (4GB) 15.95 s 59.34 s 57.42 s∗

LegoOS (64MB) 18.82 s 351.78 s 348.58 s∗

Table 3.2: PostgreSQL join algorithm tuning in Linux and LegoOS. Algorithms marked with ∗

are what PostgreSQL selected.

because PostgreSQL suboptimally selects hash joins when all join algorithms are enabled.

Q4 is different: nested-loop join is the best algorithm (i.e., uses the least amount of memory)

in both Linux and LegoOS. When running in LegoOS with 64MB of local memory, nested-

loop join, hash join, and merge join incur 8GB, 134GB, and 149GB of remote memory

accesses, respectively. Unlike in Q13, hash join performs slightly better than merge join in

this query. Again, PostgreSQL suboptimally chooses hash join (over nested-loop join). These

experiments show that join algorithms with small memory footprint work better in DDCs,

but current DBMSs (PostgreSQL) do not make this choice. It might be possible (and even

profitable) to design join algorithms that are tailored for DDCs.

3.7.3 OS Configuration

We now examine how changing different parameters in the underlying disaggregated OS can

affect the performance of DBMS. In the previous sections, we observe that the bulk of the

overhead comes from accessing remote memory, which could in principle be improved with

better caching. We, therefore, experiment with two key choices: the cache eviction and the

cache placement policies.

Cache eviction policy. LegoOS supports two eviction policies: FIFO and LRU. Neither one

favors DBMSs workloads. We evaluate how these policies affect the execution of MonetDB

and PostgreSQL and find that there is little difference in terms of the number and size of

remote memory accesses for both eviction policies. As one example, consider the setting

99

Set Associativity 1-way 256-way 8K-way

MonetDB 22,763,177 22,762,688 22,721,776
PostgreSQL 35,227,319 35,216,064 35,108,257

Table 3.3: Page faults in different set associativity configurations.

where the local memory size is 64MB (where eviction frequently happens) and where we use

256-way set associativity using the most memory-intensive queries in both MonetDB (Q9) and

PostgreSQL (Q4). In this setting, MonetDB with LRU incurs 22,763,745 page faults that trigger

remote memory accesses (each page has 4KB size) while FIFO incurs 22,763,053 page faults.

Similarly, in PostgreSQL, LRU is roughly the same as FIFO (35,216,064 vs. 35,216,712) and

this is consistent between cold and hot executions. However, as described in LegoOS [235],

LRU introduces lock contention on the LRU list; Query 9 in MonetDB finishes in 179.16 s

with FIFO and 181.76 s with LRU.

Cache placement policy. To evaluate the effect of cache placement policies, we vary the set

associativity for the local memory. We study 1-way, 256-way, and half of fully associative

(8K-way for 64MB local memory, the highest associativity that LegoOS supports). As in the

previous experiment, we use the most memory-intensive queries in MonetDB and PostgreSQL

and a 64MB local memory in LegoOS to magnify the effect of caching mechanisms. The

results are in Table 3.3.

We find that increasing the set associativity improves the hit rate of the local memory so

that the remote memory accesses are reduced in both MonetDB and PostgreSQL. However,

the reduction on the remote memory accesses is not significant from the lowest to the highest

associativity, and this benefit is offset by the cost of maintaining high set associativity so we do

not observe a significant difference between the execution times of different configurations.

In conclusion, switching between current configurations without resource capacity change

has little to no effect on data-intensive executions. We leave the codesign of the OS and the

DBMSs, which we believe can improve this state of affairs, for the next chapter.

100

3.8 Proposals on Improving DBMS Performance in DDCs

Despite the elastic benefits of DDCs (Section 3.6), Sections 3.3.3 and 3.5 confirm the signif-

icant overhead of disaggregation on query processing. Hence, DDCs prompt us to rethink

many aspects of DBMS design, from concurrency control to caching and buffer pool archi-

tectures. In this chapter, we focus on a small subset of these issues that affect performance.

We start with the example in Figure 3.3(a). Recall the two main issues: (1) process x’s scan

of table A leads to two network round-trips: one between x and its memory, and one between

thememory and storage. (2) process x then sends the corresponding partition tuples to process

y via the network, which must then store them into its own memory. This is particularly

problematic because communication over the network can be expensive, and because all

the data ends up in the same memory blade anyway! We make the following observation:

if x could somehow push the partitioning task to the storage node, so that the storage node

could directly place the partitions in the appropriate memory elements, we could cut most

data movement.

To achieve this, we draw inspiration from decades of work on near data processing [120,

207, 214, 273]. At a high-level, near data processing enhances memory (and in our particular

case also storage) with the ability to perform simple operations on the data. In our disaggre-

gated architecture (Figure 3.1) this is possible thanks to the small processing unit (CPU, FPGA,

ASIC, or even programmable NIC) attached to storage and memory blades that mediates all

accesses. Given this functionality, we propose a new operation that runs at the storage node

called Scan-Hash.

Scan-Hash. Scan-Hash streams through a particular table while computing a hash function on

the records’ join-key. Note that this is simple enough that it can be performed by the CPU or

ASIC on the memory and storage blades at high speed. Given this operator, process x would

issue a Scan-Hash request to its remote memory, which then does two things: (1) forwards the

request to the storage node; (2) places the results provided by the storage node in a memory

location based on the returned hash.

101

At the end of the Scan-Hash operation (Figure 3.3(b), Step 2), the corresponding partitions

are stored in memory, all under the ownership of process x (which initiated the Scan-Hash).

Note that x is not given the data: when x sends a Scan-Hash to the memory node, the memory

node simply stores the result in the appropriate memory locations and notifies x when this

task is done.

At this point, x can use thememory grant operation proposed in prior work [54]. A mem-

ory grant is essentially a way for process x to “gift” some of its remote memory pages to some

other process. It consists of x telling the memory controller to change the permissions at the

memory node to allow some other process (in this case y) to access those pages. The memory

controller then notifies y’s OS that new pages have been added to its address space, and theOS

propagates this information to y via a signal. The result is that the data is moved exactly once

during a partitioning (instead of 4 times): from the storage node into the memory node. This

technique generalizes to multiple storage nodes, multiple memory nodes, and other partition

strategies. If range partition is preferred over hash partitioning, we can generalize Scan-Hash

into a Scan-Partition operation where the application can pass in a partition function.

Collision-avoidance. At the end of the above partitioning protocol, the remote memory con-

tains partitions of records that can be used to build corresponding hash indexes. These indexes

can then be probed with records from another table to compute the join. However, as we

mention in Section 3.3, accessing hash indexes in remote memory is expensive due to the

possibility of collisions. In particular, every time there is a collision, the query processor (x

in the above example) must traverse the corresponding bucket by issuing a series of requests

to the memory controller. To avoid these costly collisions, we adopt two techniques recently

introduced by Aguilera et al. [38]: indirect addressing and HT-Trees.

Indirect addressing allows the remote memory element to automatically dereference a

pointer to determine the corresponding address to load or store, saving one network round

trip in our context. Without indirect addressing, a query processor would first have to fetch the

memory address stored at the pointer’s address, and then fetch the data (leading to two RTTs).

In anHT-Tree, leaf nodes store base pointers to hash tables (but not the hash tables themselves).

102

A query processor can cache the (small) HT-Tree locally, and leave the (large) hash indexes

in remote memory. The query processor can then: (1) retrieve a key by traversing the local

HT-Tree to obtain the base pointer of the target hash index; (2) apply the hash function to

calculate the bucket number; (3) fetch the appropriate value from the target hash and bucket

using indirect addressing to follow the pointer in the bucket.

Remote-memory aggregation. Like joins, aggregation can be potentially expensive due to

global reshuffling. In a DDC architecture, there are opportunities for in-memory aggregation

given that data is consolidated within memory blades. For example, the Scan-Hash mech-

anism above can be enhanced to hash tuples into buckets based on group-by keys, and a

reduction phase applied to each bucket to generate aggregation results. This avoids expen-

sive round-trip times to compute nodes, and in fact, allows us to avoid extensive data shuffling

within a rack. If data resides across memory blades on different racks, one can compute in-

termediate aggregates at the rack level before combining across racks.

3.9 Related Work

A significant part of this dissertation is about resource disaggregation, which offers great ben-

efits for cloud operators, but we speculate that significant changes to disaggregated OSes and

applications are crucial to achieve reasonable performance. Our work in Chapter 3 provides

the first empirical backing for such claims, with a comprehensive evaluation of production

DBMSs on a disaggregated data center setup. A key distinction from others’ work is our focus

on DBMSs, our experimental setup, and results. We remark, however, that our general call to

action—that codesign is not only desirable but necessary in this case—shares a similar ethos

to decades-old proposals to codesign OSes and DBMSs [111, 250].

Operating systems for disaggregated data centers. With the advent of DDC hardware, the

first wave of software innovation has focused on operating systems support. For example,

LegoOS [235] introduces an operating system that decouples hardware resources and con-

nects them with a fast network, while still providing the abstraction of a single machine to

103

applications, which can be run without modifications. Other proposals include new archi-

tectures [165, 166], network architectures [75, 110, 242], and data structures for remote

memory [38]. Our work is the first to explore application-level optimizations, in this case

how DBMS performance is impacted and can be improved by disaggregation.

Remote memory and distributed shared memory. Prior work has revisited the idea of remote

memory in fast data center networks [37], proposing a standard API for remote memory access

with exported files [36]; implementing generic data structures like vector, map, and queue for

remote memory by customizing hardware primitives [38]; and designing a new paging system

to avoid application modification [121]. Previous work has proposed novel memory man-

agement for DBMSs to utilize remote memories [62, 104, 160] and even provided distributed

shared memory abstraction [71, 96, 234]. While remote memory and distributed shared

memory, and disaggregation overlap in spirit, the ideas differ in that previous work assumes

that significant resources remain coupled with the compute components while disaggregated

data centers target completely separating computation and memory. This fundamental differ-

ence has implications for buffer management, cost estimation, physical executions, and other

important components in DBMSs.

Hierarchical storage management. DDCs have a richer memory and storage hierarchy than

traditional distributed environments. Existing work has investigated improving DBMSs on

hierarchical storage, such as cache-aware DBMS execution [184, 200], caching [173, 274],

and memory management for new hardware [57, 260]. We believe that the existing work

would serve as further inspiration for DDC optimizations while noting that the separation

between compute and memory represents a radical change unique to DDCs.

3.10 Summary

This chapter initiates the investigation of data processing in disaggregated data centers (DDCs),

a new cloud architecture that we believe will become essential in future data center designs.

Researchers have identified unique challenges in DDCs for the OS, network, and architecture

104

design. It is also crucial to understand the implications of DDCs for data management. We

describe why a naïve adaptation of DBMSs would lead to performance inefficiencies. Through

a set of preliminary microchbenchmarks, we validate the inefficiencies. We then conduct

a detailed study of two production DBMSs, PostgreSQL and MonetDB, to understand the

performance implications of deploying them on a disaggregated data center. We find that

a wide variety of factors come into play, including in-memory vs. out-of-core execution,

degree of disaggregation, the choice of join algorithms, and buffer pool sizes. We also find

that DDCs can actually be beneficial, in some settings, to DBMSs. Based on these findings,

we believe DDCs can be a game changer for data processing systems, advocate rethinking

how we should design these systems under the paradigm shift of resource disaggregation, and

outline possible solutions to the challenges. In the next chapter, we generalize these proposals

to anOS primitive that allows data processing systems to eliminate the performance bottleneck

in DDCs to unleash their full potentials.

105

CHAPTER 4

ACHIEVING OPTIMAL DATA PROCESSING PERFORMANCE IN DDCS

Recent proposals for the disaggregation of compute, memory, storage, and accelerators in data

centers promise substantial operational benefits. Unfortunately, for resources like memory,

this comes at the cost of performance overhead due to the potential insertion of network

latency into every load and store operation. As the results and analysis in Chapter 3 show,

this effect is particularly felt by data processing systems due to the size of their working sets,

the frequency at which they need to access memory, and the relatively low computation per

access. This performance impairment offsets the elasticity benefit of disaggregated memory.

This chapter presents TELEPORT, a compute pushdown framework for data processing

systems that run on disaggregated architectures; compared to prior work on compute push-

down, TELEPORT is unique in its efficiency and flexibility. We have developed optimization

principles for several popular data-intensive systems including a columnar in-memory DBMS,

a graph processing system, and a MapReduce system. The evaluation results show that us-

ing TELEPORT to push down simple operators improves the performance of these systems

on state-of-the-art disaggregated OSes by an order of magnitude, thus fully exploiting the

elasticity of disaggregated data centers.

106

4.1 Introduction

The hardware resources of a disaggregated data center (DDC) are partitioned into physically

distinct resource pools all connected via a fast network fabric. This disaggregation of re-

sources promises to fundamentally change the way in which we design and operate cloud

infrastructure. This distribution is not only beneficial to the operational and cost efficiency

of data centers [259], it also enables more elastic provisioning of resources that expand be-

yond a single machine. This, in particular, is attractive to data-intensive systems in which

the presence of a large memory pool can reduce the amount of data that is spilled to sec-

ondary storage, hence improving overall performance. Figure 4.1a demonstrates this benefit

empirically (using memory-intensive TPC-H queries): the ability to spill an in-memory query

execution to remote memory rather than to a local SSD results in an order of magnitude of

performance improvement when memory is constrained (more details in Chapter 3).

There have been a number of recent proposals for resource disaggregation [121, 185, 242].

Some of these propose the complete redesign of applications using novel programming mod-

els or custom DBMSs [38, 202, 219, 227, 290]. While these potentially provide good per-

formance in the face of disaggregation, they also typically require radical modifications that

block the use of legacy data, applications, and libraries. In contrast, proposals for disaggre-

gated operating systems (OSes) distribute traditional OS responsibilities while emulating the

same API/ABI. Applications can, therefore, run with minimal modification. While this, in

principle, enables the reuse of existing data-intensive systems like DBMSs and graph process-

ing systems, unfortunately, the performance effects of running these systems unmodified can

be significant, offsetting the operation, efficiency, and elasticity benefits of disaggregation.

Chapter 3 presents detailed results and analysis on the overhead of disaggregation. Here,

to demonstrate this issue, Figure 4.1b evaluates the cost of scaling incurred by DDCs. Specif-

ically, it shows the average execution time of TPC-H queries on several data center con-

figurations compared to a purely local execution that uses same resources (i.e., the same

amount of CPU, memory, and disks but all in a single high-end server). For DDCs, we ex-

ecuted MonetDB [19] on two different disaggregated platforms: LegoOS [235], the current

107

0.1

1

10

100

1000

9.3

39.5
Q
ue
ry
sp
ee
du
p

(lo
g
sc
al
e)

NVMe SSD
Base DDC
TELEPORT

(a) The benefits of DDCs.

0
1
2
3
4
5
6
7
8
9
10

1.2

2.3

5.4

1.8

Ex
ec
ut
io
n
tim

e
(n
or
m
al
iz
ed
)

SparkSQL
Vertica

MonetDB (Base DDC)
MonetDB (TELEPORT)

(b) The cost of scaling.

Figure 4.1: The benefits and cost of running DBMSs in DDCs.

state-of-the-art disaggregated OS that we investigated in Chapter 3, and TELEPORT, our pro-

posed platform. Both were configured with compute-local memory as 10% of the entire

working set. As a reference, we also show the ‘cost-of-scaling’ for two distributed in-memory

DBMSs—SparkSQL [56] and Vertica [6]—running on a more traditional configuration that

uses monolithic servers (echoing the study in Section 3.5.3).

The cost of scaling in these systems is a result of the insertion of network communica-

tion into execution—in the form of paging to/from remote memory in the case of DDCs, and

in the form of message passing in the case of distributed execution. Distributed data pro-

cessing systems—having been thoroughly optimized over decades—successfully achieve a

reasonable ‘cost of scaling’ (average costs are 1.2× and 2.3× in SparkSQL and Vertica, re-

spectively). The cost of the unmodified execution in a state-of-the-art DDC is, unfortunately,

significantly higher: 5.4× on average. As we showed in Section 3.5, this cost can, in the

worst case, balloon to two orders of magnitude for some common data analytics tasks. This

is despite OS-level optimizations in existing DDC platforms such as caching and prefetching

which, on their own, are insufficient.

How can we enable all of the operation, efficiency, and usability benefits of DDCs while

ensuring a comparable ‘cost-of-scaling’ to traditional distributed architectures? This chapter

generalizes the proposals in Section 3.8, and our answer is TELEPORT, a novel OS kernel

108

primitive for DDCs that enables—with a single system call, minimal overhead, and no other

application changes—data-intensive systems to choose where to execute their application

logic. Conceptually, TELEPORT’s primitive resembles that of compute pushdown: applica-

tions can choose to ship complete function calls to remote memory where the functions can

execute using local data. For memory-bound tasks, proximity can improve performance by

orders of magnitude. For many such operations, minimal computation is required, maintain-

ing the disaggregation of compute and data in the memory pool. As a preview of TELEPORT’s

benefits, Figure 4.1b shows that TELEPORT can significantly lower the cost of scaling with

DDCs and, as a result, can truly unlock the benefits of DDCs (Figure 4.1a).

TELEPORT differs from prior work on compute pushdown [97, 99, 113, 181, 207, 214,

249] in its focus on the novel environment of memory disaggregation, in which a process’s

entire address space resides in the remote memory pool, including the text segment, heap,

stack, and full page table—compute-local memory is nothing more than a cache. Assuming a

consistent instruction set architecture (ISA) across the compute and the memory pools (but not

necessarily homogeneous hardware), applying TELEPORT to offload a piece of computation

to the memory pool is as straightforward as pointing a process running in the memory pool to

the correct program counter, stack, and page table residing in the cache of the compute pool.

Not only is this more efficient than traditional pushdown mechanisms, it allows for the use

of pointers, complex data structures, and open files—the capabilities of a local function—

without additional user effort. TELEPORT’s target level of flexibility and ease of use also

leads to new challenges unaddressed in prior compute pushdown proposals. For instance, in

order to achieve good performance and correctness, updates must be propagated lazily, yet

correctly, so as to ensure memory consistency in the presence of distributed execution over a

shared process context.

In summary, this chapter makes the following contributions:

• We introduce the design and implementation of TELEPORT, a compute pushdown prim-

itive in the OS kernel designed for optimizing data-intensive systems for resource disag-

gregation. It presents a uniquely flexible and usable abstraction for mitigating overheads

109

from excessive remote memory accesses.

• To handle parallel threads, we describe a set of specialized synchronization primitives

(inspired by prior work on MESI cache coherence [211]) that guarantees memory coher-

ence of a logical process context shared across resource pools and multiple concurrent

threads within each pool.

• Finally, we present a set of pushdown-optimized data-intensive systems (DBMS, graph

processing, and MapReduce). Applying TELEPORT only involved the selective wrap-

ping of existing function calls with TELEPORT’s primitive. These optimized systems are

an order of magnitude faster than a state-of-the-art disaggregated OS with minimal code

changes, even when the memory pool has limited CPU capacity.

4.2 Background

We provided an extensive background on DDCs in Chapter 3. This section expands the

discussion on disaggregated OSes and generalizes the implication of DDCs to more types of

data processing systems.

4.2.1 Disaggregated Operating Systems

A disaggregated OS inherits all traditional OS concepts (program contexts, resource alloca-

tion, file systems, and isolation) and the original API/ABI. Underneath, the OS implements

these functionalities using disaggregated hardware resources. It hides the complexity of infras-

tructure changes from the data center applications, hence ensuring backward compatibility for

big software systems like DBMSs [19, 29, 56] and graph processing systems [114, 79], which

have been developed over many years and consist of up to million lines of code [12, 19, 29].

The OS approach is thus more appealing compared to alternatives that either require new

programming models [38, 202, 219, 227] or only share subsets of memory [121, 185].

Regardless of the specific architecture, disaggregated OSes allow the complete decou-

pling of compute and data. Application data in virtual memory spaces resides in the mem-

110

ory pool. The compute pool schedules and executes worker threads/processes with its local

memory caching data from the memory pool. This clean separation enables a great benefit—

independent elasticity with no extra effort, where programs can use an arbitrary number of

CPU cores and, independently, allocate arbitrary amounts of memory and storage. For exam-

ple, DBMSs can create a database of any size in the storage pool, allocate a buffer pool of any

size to hold the working set in the memory pool, and spawn any number of query execution

workers in the compute pool. Thus, to read a new piece of data from persistent storage, the

user-level process in the compute pool will trigger a page fault on its local cache. This page

fault is forwarded to the controller in the memory pool, which checks the process’s full page

table and triggers a recursive page fault that forwards the request to the storage pool. Finally,

the requested page will flow back to the CPU node in the reverse direction: the memory

controller will page in the data and update the process’s page table, and the CPU node will

bring that page into its local cache. The whole process is mediated by the disaggregated OS.

Traditional OSes would execute these operations in a single machine.

An example of this approach is LegoOS [235], which proposes a splitkernel OS. It ‘splits’

kernel responsibilities across resource-disaggregated nodes, e.g., the piece of the kernel on

each compute node manages the process and scheduling of a traditional Linux server, while

the piece on each memory node focuses primarily on memory management. While our TELE-

PORT prototype is implemented on top of LegoOS, its core ideas go beyond a specific OS and

can apply to any disaggregated OS that provides complete compute and data decoupling.

4.2.2 System Performance in DDCs

Figure 4.1 shows the benefits of DDCs’ large disaggregated memory pools but also their cost

of scaling. This cost is particularly pronounced for data processing systems due to frequent

memory accesses and the fact that local DRAM accesses are an order of magnitude faster than

network communications such as RDMA. Consider the following examples:

Database systems. This part reflects our insights in Chapter 3, especially Section 3.5. DBMSs

are designed to execute SQL queries with low latency and high throughput. Data that is

111

1

10

100

1000

10000

Q9 Q3 Q6 SSSP RE CC WC Grep

Ex
ec
ut
io
n
tim

e
(s
)

Local Execution Baseline DDC

PhoenixPowerGraphMonetDB

Figure 4.2: DDC performance overhead compared to a monolithic server.

actively used is kept in an in-memory buffer pool to avoid slow disk I/O. In DDCs, however,

query execution happens in the compute pool while the buffer pool data lives in remote

memory. This arrangement can be expensive. For example, a binary hash join (1) scans the

tuples in the outer table, (2) probes the hash index of the inner table, and (3) generates the join

results. The random accesses in step (2) can result in substantial cache misses, while step (1)

and (3) are a poor fit for typical LRU-based caching strategies [251]. Previous work [73, 235]

shows that queries can take up to two orders of magnitude longer to complete (compared to

a purely local-memory deployment) for precisely these reasons when the degree of compute-

memory disaggregation is high.

Graph processing. Systems like Pregel [183] and PowerGraph [114] process structured pointer-

based graph datasets that lead to unpredictable memory access to different parts of the input

graphs depending on the query and data characteristics. In PowerGraph, for example, every

gather-apply-scatter iteration requires a vertex to communicate with its neighbors to exchange

local data for the next round. In a traditional server, this is simply a set of local accesses; in

a DDC, each iteration requires expensive remote memory accesses for large graph states.

Data-parallel frameworks. MapReduce-like systems such as Phoenix [148] have interleaved

stages of memory-intensive operations. After each processing stage, workers exchange their

results with the next set of workers. When co-located on the same server, the communication

112

Compute Pool

C2

C0 C1 C2

Memory Pool
C0 C1 C2

(a) Executing a selection in a DDC.

Compute Pool Memory Pool

C2

C0 C1 C2

C2

(b) Offloading the selection to the memory pool saves data movement.

Figure 4.3: A data-intensive relational operator example, selection, in DDCs.

is fast; however, in a DDC, intermediate results must all be written just to be fetched back for

the next iteration [53].

Summary. In short, these memory-intensive systems have a set of core processing primitives

that are computationally lightweight but involve a high degree of memory accesses. Fig-

ure 4.2 shows the results of running typical data-intensive queries in a DDC testbed managed

by a state-of-the-art disaggregated OS. Slowdowns range from 5× up to 52.4×. Analysis in

Chapter 3 shows that remote memory accesses dominate the slowdowns of these systems,

and we argue that the slowdowns are unavoidable with a constrained cache size in the com-

pute pool. Our position is that, by optimizing the placement of computation, TELEPORT can

dramatically improve performance.

113

4.2.3 Benefits of Computation Pushdown

In this chapter, we focus on alleviating the memory bottleneck by selectively performing com-

putation pushdown from compute to memory pools. To understand the potential benefits,

consider the ‘selection’ operator mentioned in the previous section. Using MonetDB as an

example, the implementation of selection takes as input (1) a table, (2) the filter to be applied

on the tuples in the table, and (3) an optional candidate list that is the result of previous se-

lections. It performs a full sequential scan of the table and applies the filter. Every tuple that

passes the filter is then materialized to a temporary table.

Figure 4.3a depicts how this process would unfold in a DDC: assuming that the working

set does not fit in compute-local cache, the selection process needs to bring all tuples in the

original table from the buffer pool in the memory pool, resulting in massive data migration,

and thus significant execution time increase.

If, instead, we were to migrate this simple, but data-intensive compute operation to the

memory pool (Figure 4.3b), the accesses to the original table are all in situ, resulting inminimal

communication between the compute andmemory pools. Even if the computational power of

the memory pool is low, most selection filters are computationally inexpensive to run. Hence,

the memory-bound nature of the operator would ensure a performance benefit.

4.3 Design of TELEPORT

TELEPORT introduces a new system call for applications to push down arbitrary functions at

runtime in a memory-disaggregated architecture. This avoids expensive data movements.

The key observation behind TELEPORT is that the memory pool (as the backing store for

the process context in a disaggregated OS) already has the majority of the data and metadata

necessary for executing the user process—the compute pool is merely a cache and forwards

all new memory allocations, page faults, and file I/O through the memory pool. In principle,

pushdown is, thus, as simple as launching a new thread in the memory pool and reusing the

existing page table. In practice, inconsistencies between the data in the compute/memory

114

pools before and after pushdown, memory accesses by concurrent threads, and the overhead

of creating process contexts all introduce significant technical challenges to realizing this goal.

We now describe how to overcome these challenges.

4.3.1 The TELEPORT Abstraction

Using TELEPORT, user applications running in the compute pool in a DDC can push arbi-

trary functions to the memory pool. While prior work has explored, extensively, the concept

of compute pushdown in various contexts, TELEPORT is unique in its ability to provide, to

pushdown code, unfettered access to the process context of the original program in the mem-

ory pool, including the program stack, page table mappings, and code pages. Among other

benefits, this allows pushdown code the ability to use arbitrary function pointers and leverage

large, complex data structures freely.

In order to migrate execution from the compute pool to the memory pool, we introduce

a new system call:

pushdown(fn, arg, flags)

With a C-library wrapper, the call takes three parameters: fn is a pointer to the function to be

executed on the memory pool controller. arg is a pointer to an argument vector that is to be

passed to fn, which can be implemented as an array of values or a structure of arbitrary type.

In both cases, all pointers and contained pointers can be left in terms of the current virtual

address space. Also included in the parameters to the syscall is an optional flags parameter

that activates or deactivates features of the syscall, as appropriate.

Semantically, a pushdown function works just like a local function. The thread that calls

pushdown blocks until the function completes, but other threads can continue their execu-

tion. When the pushed function runs in the memory pool, TELEPORT guarantees that all data

involved is up to date, even in the presence of concurrent threads in the compute pool.

115

TE
LE

PO
RT

co

m
pu

te

in
st

an
tia

te

RP
C

 S
er

ve
r

st
ru

ct
 a

rg
_t

 {

Pa
ra

me
te

rs
 f

or

ag
gr

eg
at

io
n

}; vo
id

 f
n(

vo
id

*
ar

g)
 {

It

er
at

e
tu

pl
es

 a
nd

ag

gr
eg

at
e

re
su

lt
} vo

id
 m

ai
n(

)
{

st

ru
ct

 a
rg

_t
 a

rg
;

Co

ns
tr

uc
t

ar
g

pu

sh
do

wn
(f

n,
&a

rg
,f

la
gs

);

..
.

}

pu
sh

do
wn

(f
n,

ar
g,

fl
ag

s)

TE
LE

PO
RT

m
em

or
y

w
ak

e
up

RD
M

A
m

sg

❶

❷
❸

❹

❺

❻
❼

❽

co
m

pl
et

e

C
om

pu
te

 N
od

e
M

em
or

y
N

od
e

Da
ta

 S
yn

ch
ro

ni
za

tio
n

U
se

r S
pa

ce

Ke
rn

el
 S

pa
ce

U
se

r
Pr

og
ra

m
U

se
r

Pr
og

ra
m

st
ru

ct
 a

rg
_t

 {

Pa
ra

me
te

rs
 f

or

ag
gr

eg
at

io
n

}; vo
id

 f
n(

vo
id

*
ar

g)
 {

It

er
at

e
tu

pl
es

 a
nd

ag

gr
eg

at
e

re
su

lt
} vo

id
 m

ai
n(

)
{

st

ru
ct

 a
rg

_t
 a

rg
;

Co

ns
tr

uc
t

ar
g

pu

sh
do

wn
(f

n,
&a

rg
,f

la
gs

);

..
.

}

de
fin

e
co

m
pu

te

de
fin

e
in

pu
t

m
ov

e
th

e
co

m
pu

te

fn

(p
_a

rg
)

fn

(p
_a

rg
)

fn

(a
rg

);

Te
m

po
ra

ry
 U

se
r C

on
te

xt

at
ta

ch

Fi
gu
re
4.
4:

TE
LE
PO

R
T
ar
ch
ite
ct
ur
e.

116

4.3.2 TELEPORTing the Computation

In this subsection, we describe the operation of TELEPORT assuming perfect synchronization

of memory stores between the compute pool and memory pool. Later in Section 4.4, we

describe how synchronization is implemented in TELEPORT.

Figure 4.4 shows the process of migrating a function. When the application calls the

pushdown syscall (!), the application thread stalls and both pointers (fn and arg) are passed

to the compute-pool instance of TELEPORT in the kernel space. The instance then packs the

parameters into a pushdown request and sends it to the memory pool’s controller using an

RDMA write operation that implements a low-latency RPC mechanism (").

The RPC server on thememory controller waits for incomingmessages and, upon receiving

one, enqueues it to the workqueue of the memory-pool instance of TELEPORT and wakes up

the thread if it is sleeping (#) (when its workqueue is empty, the instance sleeps to save the

scarce compute resource in the memory pool). The TELEPORT instance dequeues a request

and instantiates a temporary user context with a new kernel thread ($).

TELEPORT attaches the temporary user context to the virtual memory space of the caller

application by borrowing the page table of the caller and setting it as the table of the newly

created user context. This procedure is akin to the POSIX vfork function in that it creates a

new process but the virtual address space, file descriptor table, and other parts of the process

image are not cloned—rather, the new process shares the resources of the original. Com-

pared to a traditional fork, this procedure is more efficient as the memory pages are neither

copied nor set to read-only. Furthermore, memory modifications are supported through the

techniques in Section 4.4 and returning from a function simply returns execution to the TELE-

PORT stub. The end result is that the temporary context is able to access any code and data

of the caller, specifically fn, arg, and any data processed by fn. Inside the context, fn is

called with arg as the input. Internally, the function dereferences the parameters from the

argument pointer and starts the execution.

After fn returns, the temporary context is recycled (%). The memory-pool instance of

TELEPORT notifies the RPC server of the completion (&), which then either processes the next

117

request in its workqueue or sleeps to free compute resources. Finally, the RPC server responds

to the request with the completion (') so that the compute instance of TELEPORT returns back

to the application ((), which continues execution.

Handling concurrent pushdown requests. Depending on the computation capabilities of the

memory pool, multiple pushdown requests can potentially execute in parallel. TELEPORT

implements this by maintaining a pool of instances that each polls the request queue managed

by the RPC server. Note that if multiple requests arrive from the same process (two or more

threads in the process called pushdown concurrently), these memory-side threads share the

same page table and context. If the compute resource is limited in the memory pool and

only one TELEPORT instance is allowed, then the concurrent requests are serialized in the

instance’s workqueue and processed one after another.

Exception and fault handling. TELEPORT must handle several types of exceptions and failure

scenarios. TELEPORTed functions are allowed to throw and catch C++ exceptions. The stub

function that wraps the call to fn in the temporary user context contains an exception handler

that the C++ runtime will detect during the stack unwinding phase. The handler catches the

exception structure and passes it back to be rethrown by the compute pool context. General

protection faults (e.g., segfaults) are also handled this way.

In TELEPORT, the pushdown function is blocking and does not time out by default.

However, applications can specify a timeout. In the event of a timeout, TELEPORT issues

a try_cancel request to the memory pool. If the request succeeds, the application is free

to execute fn directly in the compute pool, re-execute the call to pushdown, or call some

other function. Cancellation is easy if the memory pool has not yet started working on the

computation, as the request can simply be removed from the workqueue. However, if the

pushed function is already running, cancellation requires care. In particular, the process’s

memory pages need to be flushed back to the cache in the compute pool, and the instruc-

tion pointer needs to be set accordingly. In our implementation, however, the memory pool

declines to cancel requests that are running, and instead forces the application to wait until

they complete.

118

0

5

10

15

20

25

30

35

40

2.9X
3.8X

11X

Ex
ec
ut
io
n
tim

e
(s
)

Local Execution
Base DDC

TELEPORT (per process)
TELEPORT (per thread)
TELEPORT (coherence)

Figure 4.5: Application performance in dif-
ferent systems and with different data sync
approaches in TELEPORT.

0

5

10

15

20

25

30

35

40

4.6X
11X

Ex
ec
ut
io
n
tim

e
(s
)

Local Execution
Base DDC

TELEPORT (coherence)
TELEPORT (syncmem)

Figure 4.6: The benefit of a manual data sync
with syncmem when false sharing occurs in
the application.

Pushdown code that is buggy and fails to complete in the memory pool within a conser-

vative timeout is killed by TELEPORT to avoid indefinitely blocking other pushdown requests.

The corresponding pushdown function in the compute pool triggers an abort signal. Finally,

TELEPORT detects when the memory pool becomes unreachable due to a network or memory

hardware failure with a background thread that runs in the compute pool and issues heart-

beats. In the event of such failures, TELEPORT triggers a kernel panic since the main memory

is lost. We leave the handling of partial resource failures in DDCs to future work.

4.4 Data Synchronization

A critical challenge in TELEPORT is keeping the cache in the compute pool and the main

memory in the memory pool synchronized. There are a few points at which the data in the

two pools may diverge.

• Before pushdown, where the compute pool may have modifications in its local memory

that have not yet been flushed to the memory pool. Changes must be synchronized to

ensure that pushdown operates on fresh data.

• After pushdown, where the compute pool’s cachemay be stale. When execution returns

119

to the compute pool, modified pages should be synchronized back as well.

• During pushdown, concurrent threads may continue to modify pages in the compute

pool; these need to be kept coherent with the memory pool.

Without synchronization, two distinct threads Tcomp and Tpush running in the compute

and memory pools, respectively, may access the same memory pages (because the compute

pool caches pages in the main memory) without observing each other’s updates (at least until

a natural page fault). This can happen even if the threads utilize atomic operations, memory

fences, and proper lock discipline.

We note that a naïve approach to guaranteeing consistency for all threads is to migrate

the entire process and clear all memory in the compute node. While correct, this may be a

substantial overkill. For multi-threaded applications, this may result in too much computation

pushed to the memory pool, particularly if the threads handle unrelated requests. Even for

single-threaded applications, it still requires, before pushdown, the synchronous transfer of

all dirty pages from the compute node back to the memory pool and, after pushdown, the

page-by-page re-fetching of every piece of data to the compute pool (as it now contains no

cached pages).

TELEPORT instead minimizes the amount of data transmitted before, during, and after

pushdown. By default, TELEPORT does not transfer any pages when initiating a pushdown.

Instead, consistency is kept between the compute and temporary-context page tables with a

write-invalidate coherence protocol inspired by MESI [211]. Applications can also instruct

TELEPORT to use weaker memory consistency models via optional flag parameters.

To illustrate the importance of TELEPORT’s techniques, we consider a microbenchmark

involving an application with two threads: a compute-intensive thread performing arithmetic

calculations (e.g., expression evaluation in a database query) and a memory-intensive thread

randomly accessing a 50GB memory space (e.g., probing a hash table). The results of the

ablation study are in Figure 4.5. When the application runs locally in Linux, each thread

finishes in 1s. In the baseline DDC, however, execution slows to 23s because of the memory-

intensive thread. Pushdown using the above naïve, full-process approach can speed this up

120

1 Function Invalidate(pte, write):
2 if write then
3 pte.present← False # Invalidate this page
4 else
5 pte.writable← False # Write-protect this page

6 Function MemorySetup(tmp_context, compute_pgs):
7 t_mm← Clone of the caller’s full page table
8 foreach pte in t_mm do
9 c_pte← compute_pgs[pte.address] # Look up this page in the list

10 if not c_pte.present then
11 Continue # This page is not in the compute pool
12 Invalidate(pte, c_pte.writable) # Call invalidation on this page
13 Set t_mm as the active page table of tmp_context

Figure 4.7: Preparation of the page tables before pushdown execution in the memory pool.
compute_pgs is the transmitted list of pages from the compute pool.

by 2.9×. Separating the two threads and only pushing the memory-intensive thread (and only

evicting its memory) does slightly better with a 3.8× speedup over the baseline DDC. With

TELEPORT’s default coherence, however, the synchronization overhead and the gap between

local execution and DDCs are minimized, resulting in a jump up to an 11× speedup.

In this section, we describe the default protocol in detail and then expand on TELEPORT’s

memory consistency and its relaxations.

4.4.1 On-demand Memory Synchronization

TELEPORT’s protocol for synchronizing data between the compute and memory pools draws

inspiration from MESI cache coherence protocols—a classic approach in write-back caches.

Rather than processors and cache lines, however, TELEPORT implements the MESI-style pro-

tocol through careful management of the page tables in both the original compute process

and the temporary context such that, at any point in time, if there is a writable copy of the

page between the two contexts, then it is the only such copy.

Temporary-context page table construction. When the pushdown function is called, the

compute pool begins by building a list of memory pages that are either currently in local

121

1 Function ComputeOnPageFault(address, write):
2 ForwardToMemory(address, write) # Send this request to memory pool

3 Function MemoryOnPageRequest(address, write):
4 mm← process’s full page table
5 t_mm← temporary context’s page table
6 if not mm[address].present or (write and not mm[address].writable) then
7 ForwardToStorage(address, write) # Send this request to storage pool
8 pte← t_mm[address] # Get page table entry
9 Invalidate(pte, write) # Call invalidation on this page

10 ReturnToCompute(*pte) # Send this page back to compute pool

Figure 4.8: Handling compute-pool page faults during pushdown.

memory or that have an outstanding page fault request. This list of memory pages and their

write permissions are sent to the memory pool as parameters to the pushdown RPC call.

When TELEPORT instantiates the temporary context in the memory pool, it uses the list

in the procedure outlined in Figure 4.7. Specifically, when building the context, TELEPORT

clones the page table of the caller thread. This cloned page table is identical to the process’s

page table, except that any writable page in the compute pool is excluded (Figure 4.7, line 3)

and any read-only page in the compute pool is also set to read-only locally (Figure 4.7, line

5). In effect, this guarantees that the system begins with the invariant stated at the beginning

of this subsection: for each page, (a) the page is writable and only in the compute pool, (b)

the page is writable and only in the temporary context in the memory pool, or (c) the page is

read-only and can exist in any context.

Online data synchronization. TELEPORT maintains the above invariant throughout push-

down execution even as the compute pool process and the temporary context execute concur-

rently. When either side tries to read or write to a memory page without proper permissions,

a page fault is triggered to obtain the permissions.

On a compute-pool page fault, the fault is forwarded immediately to the memory pool

as normal; however, the corresponding page fault handler in the memory controller changes

slightly during pushdown (Figure 4.8, lines 3–10). Specifically, after ensuring that the page

is in the temporary context page table, the controller executes an operation similar to Fig-

122

1 Function MemoryOnPageFault(address, write):
2 mm← process’s full page table
3 t_mm← temporary context’s page table
4 if not mm[address].present or (write and not mm[address].writable) then
5 ForwardToStorage(address, write) # Send this request to storage pool
6 else
7 ForwardToCompute(address, write) # Send this request to compute pool

8 Function ComputeOnPageRequest(address, write):
9 c_mm← local page table of the caller

10 pte← c_mm[address] # Get page table entry
11 if write then
12 Evict(pte) # Invalidate this page and send it back to memory pool
13 else
14 pte.writable← False # Write-protect this page
15 NotifyMemory(address) # Notify memory pool of this write protection

Figure 4.9: Handling memory-pool page faults during pushdown.

ure 4.7, removing the page from the temporary context if the compute pool requested write

permissions, or setting it to read-only if it requested only read permissions.

Temporary-context page faults are handled similarly (Figure 4.9), except that we must

distinguish between a ‘true’ page fault, which should be forwarded to the storage pool and

a pushdown-related page fault, which invalidates the cached pages in the compute pool.

TELEPORT distinguishes this by checking the full page table and the temporary context’s page

table, both stored locally in the memory pool. Evictions from the memory pool to the storage

preserve the correct page table entry (pte) dirty bits.

When pushdown completes, the dirty bits of the temporary context’s page table should be

merged back into the full page table but no external communication is necessary.

Concurrent page faults. One key difference between TELEPORT’s protocol and that of tradi-

tional MESI implementations is the lack of either a common directory or a bus between the

members of the system, removing those components as serialization points for permission

requests. TELEPORT addresses concurrent page faults by taking advantage of the fact that for

a two-side protocol (compute and memory), each side can deduce the current state of the

system locally, so a global coordinator is unnecessary.

123

Consider the possible states of the system. For every page, each side can have one of

three permissions: ∅ for an absent page, R for read-only, and W for writable. Let system

state be denoted by the tuple of pool permissions: (compute,memory). Note that we can

disregard any state with W in either position as there will never be concurrent faults as long

as RPC messages are received and handled in FIFO order (enforced using reliable RDMA

connections). We can further disregard any state with ∅. In (∅,∅) or (∅, R), the memory

pool does not need to contact the compute pool—both are true page faults and any request

from the compute pool will be handled after the page fault is complete. (R,∅) does not exist

in our protocol.

The only state in which concurrent faults are possible is, therefore, (R,R) where both the

compute and memory pools try to acquire exclusive write access. In this situation, both sides

will note that there is an outstanding request and break the tie by favoring the memory pool.

Specifically, the memory pool, upon receiving a new page fault request before a response to

its own request arrives, will simply ignore the request. The compute pool, on the other hand,

will satisfy the memory pool’s request, wait for a predetermined amount of time t, and then

reissue the request. We favor the memory pool in order to complete the pushdown execution

as soon as possible, and we wait for t time to allow some amount of progress on the memory

pool before taking write access back. Note that in the case of thrashing when the compute

and memory pools contend on memory pages, additional backoff mechanisms would ensure

progress. However, applications should avoid data contention between the two pools for

pushdown performance.

Correctness. The correctness of our protocol follows directly from our adherence to the

Single-Writer-Multiple-Reader (SWMR) invariant [201]. Just like MESI, writes in TELEPORT

are serialized as there is ever only a single writer in the system, andwrites are propagatedwhen

the other node explicitly invalidates the writer’s exclusive ‘lock.’ Cache coherence makes our

system transparently compatible with existing data processing system architectures and their

memory consistency models.

124

4.4.2 Alternative Coherence Mechanisms

In addition to the above cache coherence protocol, TELEPORT provides support for certain

user-applied optimizations. An important optimization is an additional syncmem syscall that

manually and preemptively flushes dirty pages from the compute pool. This mechanism can

be triggered before or during pushdown and is useful if the user already knows which pages

will be accessed by fn.

TELEPORT also provides options (specified via flags) for coherence protocols that sup-

port weaker memory consistency models. These improve performance, but should be used

carefully by programmers to ensure correctness. One simple relaxation is to disable the co-

herence entirely. This might be useful, for example, if the user wants to manually synchronize

pages. An example use is to handle false sharing, which occurs when threads in the compute

and memory pool access data (either variables on the stack or allocated memory on the heap)

that are not shared but that reside on the same page. Although false sharing is uncommon,

Figure 4.6 shows that when it occurs, it can negatively affect the pushdown performance. In

this case, users can disable the coherence protocol and manually synchronize the data with

syncmem at a finer granularity.

Another relaxation follows the default coherencemechanism. Rather than removing pages

when the other pool requests write permissions, TELEPORT sets them as read-only. Effectively,

this arrangement maintains write serialization for individual memory locations, but relaxes

the guarantees of write propagation. Combined with typical processor memory consistency

models, this relaxation amounts to an implementation of Partial Store Ordering (PSO) [131].

Again, for applications that can take advantage of this relaxed consistency model (e.g., by

converting important reads to RMW instructions or memory fences to explicit synchronization

of modified page lists), it may provide better performance. Section 4.7.6 provides a more

detailed evaluation of the coherence protocol and benefits of the relaxations when the data

contention rate is high.

125

0.1

1

10

100

1000

10000

ProjectionHashJ. MergeJ.Express. Aggr. Finalize Scatter Apply Gather Map Reduce Merge

Ex
ec
ut
io
n
tim

e
(s
)

Local Execution
Baseline DDC

189GB
87GB

0.4GB 0.5GB

0.1GB

249GB

42GB

2MB

53KB

181GB

13GB 4GB

WordCount in PhoenixSSSP in PowerGraphTPC-H (Query 9) in MonetDB

Figure 4.10: Performance breakdown of the query with the greatest cost of scaling in DDCs in
each system. For every operator/phase, we show the times in both local and DDC executions
and the remote memory accesses in the DDC. A common pattern is that there are one or two
arbitrary operators/components dominating the overall query execution time.

4.5 Applying TELEPORT

In this section, we present three case studies to demonstrate the benefits of TELEPORT for data

processing: an in-memory database, a graph processing system, and MapReduce. For each

use case, we will describe how we identify functionalities to be pushed down to memory. We

focus here on identifying the general rules of thumb to determine the pushdown functionali-

ties. We find that these heuristics work well in practice, although cost-based approaches can

automate the decision-making; we leave this to future work.

4.5.1 In-memory Database

To evaluate database workloads with TELEPORT, we select MonetDB [19], a columnar in-

memory DBMS that provides high performance processing for analytical queries.

Filtering/summarization operators. Several commonly used operators such as projection,

aggregation, and selection require simple computation but process a large number of tuples.

Further, the main purpose of those operators is to filter/summarize tuples: the result set is

typically much smaller than the input (projected column in projection, matching tuples in se-

lection, and sub-aggregates in aggregation). Hence, users should push these operators down,

126

System Operator Functionality
Code
Change

Pushed
Code

MonetDB
(400K LoC)

Projection Get a subset of columns from a table. 117 51
Aggregation Apply aggregate functions over tuples. 214 60

Selection
Select tuples with filters from the input
table to a temporary table.

302 58

HashJoin
Scan the outer table, probe hash index,
and generate join results.

75 42

PowerGraph
(150K LoC)

Finalize
Partition and shuffle input graph among
the worker threads.

77 52

Scatter
Exchange and combine messages be-
tween vertices.

82 39

Gather
Aggregate messages and apply a user-
defined function.

82 39

Phoenix
(2K LoC)

MapShuffle
Shuffle map results (key-values) to the
buffers of reduce tasks.

173 28

Figure 4.11: The flexibility of TELEPORT enables the pushdown of various memory-intensive
operators in existing systems with minimal modification.

particularly when they are highly selective; similar observations were made in the context

of disaggregated storage [199, 277]. In DDCs, however, they can be pushed to the memory

pool so that the compute pool only receives the summaries for further processing.

For example, consider the following database query, Qfilter, which consists of a selection,

an aggregation, and projections:

SELECT SUM(quantity) FROM Lineitem WHERE shipdate < $DATE

By pushing down the predicate shipdate < $DATE as well as the projections of shipdate

and quantity attributes, we avoid transferring the entire Lineitem table. Note that it is

still required to transfer the matching tuples to the compute node for the SUM aggregation.

Thus, in the extreme, one could imagine TELEPORTing all operators of this query. Offloading

all operators to the memory pool would provide additional bandwidth savings, but at the

potential cost of pushdown overhead. In general, the final decision should depend on the

amount of data to be synchronized, the selectivity, and the complexity of the operators.

Complex queries. A more complex case is Query 9, the most expensive query in the TPC-H

127

void project_int(tuple *res, tuple *ref, tuple *tbl) {
// actual projection implementation

}

tuple *project_perator(tuple *ref, tuple *table) {
type t = get_type(table);
tuple *result = new_column(t, count(ref));
switch (t) {

case TYPE_int:
project_int(result, ref, table);
break;

// other types
}
return result;

}

Figure 4.12: Original projection code in MonetDB.

benchmark in Figure 4.2. Figure 4.10 breaks down its execution time in disaggregated ex-

ecution (compute-local memory is configured to be 1GB) with a scale factor of 50 into its

constituent operator types. We observe that in addition to the memory-intensive projection

operator, hash join also incurs significant remote memory accesses and bottlenecks the over-

all performance. While hash join tends to have relatively high computational requirements

when run on a traditional OS, in a DDC, it becomes severely memory-bound due to random

accesses to the hash index. As such, it is a strong candidate for pushdown, as the results

in Section 4.7 will later verify. Other operations such as merge join and expressions also

experienced degradation in disaggregation, but they are not blockers to end-to-end query

performance.

Code modification. Finally, an important criterion for pushdown is the complexity of ap-

plication changes. Figure 4.11 summarizes the amount of changes required to support each

operator pushdown in MonetDB, as well as the size of the specific pushdown function. We

observe that modifications across all operators are negligible relative to MonetDB’s code base

(∼400K LoC), and the amount of code executed in the memory pool is under 100 lines. Fig-

ures 4.12 and 4.13 show an example use of TELEPORT—a side-by-side comparison between

the original implementation of the projection operator in MonetDB and the pushdown rewrit-

128

typedef struct {
tuple *result;
tuple *ref;
tuple *table;

} arg_struct;

long fn(void *arg_) {
arg_struct *arg = (arg_struct *)arg_;
project_int(arg->result,arg->ref,arg->table);
return 0l;

}

tuple *project_operator(tuple *ref, tuple *table) {
type t = get_type(table);
tuple *result = new_column(t, count(ref));
switch (t) {

case TYPE_int:
arg_struct arg;
arg.result = result;
arg.ref = ref;
arg.table = table;
pushdown(fn, (void *)&arg, 1 << LAZY_SYNC);
break;

// other types
}
return result;

}

Figure 4.13: TELEPORTing this memory-intensive operator is intuitive.

ten version. Most of the code centers around creating and accessing arg.

Automatic query optimization. Automating the porting process is achievable via static analy-

sis and code transformation, given the structured nature of relational operators. An interesting

and challenging task is to automatically decide which operators should be pushed down at

runtime. There are general trade-offs in applying compute pushdown in DDCs: offloading an

operator close to data can reduce the cost of data movement between pools, but it can also

incur pushdown overhead, including shipping the operator, potential data synchronization,

and degraded computation power. Section 4.7.4 evaluates the impact of these trade-offs and a

potential metric for determining the viability of an operator for pushdown. We note, however,

that the optimal plan of pushdown is determined by various factors: operator characteristics,

workloads, and the DDC configuration.

129

A potential solution is a DDC-aware query optimizer that captures the resource constraints

in different resource pools and finds the optimal plan for operator placement. This chapter

focuses on the TELEPORT mechanism and leaves a full investigation of DDC query optimizer

design to future work.

4.5.2 Graph Processing

To showcase another challenging data-intensive workload, we look at PowerGraph [12], a

high-performance in-memory graph processing system. Similar to prior DDC settings [235,

266], we run PowerGraph in the compute pool and utilize multiple threads as compute work-

ers. The main graph state is in the memory pool.

To execute a graph query, PowerGraph first loads the input graph to the main memory, runs

a finalize phase to partition and shuffle the graph among multiple workers, and then iteratively

executes gather, apply, and scatter in sequence until the graph algorithm terminates. We

observe that the finalize, gather, and scatter phases are data-intensive because the vertex and

edge states in the working set are frequently (and potentially randomly) accessed. Therefore

these three phases are often a bottleneck in our setting. Using single-source shortest path

(SSSP) as an example, the scatter phase combines and sends the messages, which contain

the distances to the source, to vertices in their adjacency list for the next round of execution.

This scatter process is expensive when the working set is larger than the local cache of the

compute pool.

Figure 4.10 shows the time breakdown of this execution on a real-world social network

graph [276]. finalize and scatter account for most of the overhead, although the gather phase

can also bottleneck other applications, e.g., PageRank. All three components can be TELE-

PORTed with fewer than 100 lines of code each (see Table 4.11).

4.5.3 MapReduce

Our third use case is Phoenix [148], a native, shared-memoryMapReduce system. In Phoenix,

there aremap, reduce, andmerge phases. Themap phase performs the actual map computa-

130

tion, generates key-value records, and shuffles the records to the reduce workers. We observe

that the map phase is normally the bottleneck in a DDC because of the shuffle operation, a

data-intensive sub-component.

Revisiting Figure 4.10 (the last group), we can examine the performance breakdown of

WordCount in Phoenix. In this figure, as a point of comparison, we include reduce andmerge

execution times as well. We observe that the map phase experienced much greater remote

memory accesses compared to other phases. The map phase, however, is computationally

expensive as a whole. To push down only data-intensive operations at a finer granularity, we

further divide themap phase intomap-compute, which applies the user-defined map function

and generates key-value records, and map-shuffle, which shuffles the records among reduce

tasks, sub-phases. The map-shuffle dominates the running time in DDC execution—95% of

map time. This suggests moving the map-shuffle phase close to the data, which we achieve

with minimal code changes (see Figure 4.11); the pushdown function requires only 28 lines

of code.

4.6 Implementation

We have implemented a prototype of TELEPORT1 on top of LegoOS [16]. Similar to LegoOS,

TELEPORT uses the Mellanox mlx4 InfiniBand driver for fast network accesses and assumes

the x86-64 architecture. It consists of 6,500 lines of C code, split across the kernels for the

compute and memory pools, focusing on memory disaggregation.

Our implementation utilizes the RDMA RPCmessaging framework atop LITE [258], a two-

sided RDMA kernel module implemented by the one-sided write verb. The sender directly

writes a request with payload to the buffer on the receiver side, where a thread checks for

incoming messages. We pre-allocate and register physical memory to the network card as

RPC buffers, which are kept separate from the LegoOS buffers to provide a degree of isolation.

We describe the details of each kernel as follows.
1TELEPORT source code is available at https://github.com/eniac/TELEPORT.

131

TELEPORT compute kernel. This kernel manages application processes/threads andmaintains

a local cache of processes’ full address space. It supports the pushdown system call, sends

the request to the memory pool, and handles synchronization. As part of the latter, we needed

to add functionality to enable the compute kernel to serve incoming page faults, invalidating

the page and flushing the TLB as necessary.

To reduce network cost, our implementation adds an additional optimization to the pro-

tocol of Section 4.4. Specifically, it compresses the list of resident pages sent at the beginning

of pushdown using run-length encoding, which provides 20× reductions in the message size,

making it feasible to pack the list of pages and their permissions along with necessary meta-

data into a single RDMA message.

TELEPORT memory kernel. During pushdown, the memory kernel handles incoming RPC

requests and cache coherence. It runs a number of parallel RPC handlers to perform these

tasks—each on its own a kernel thread. This number is configurable to reflect the compute

power limitation in the memory pool. Upon receiving a pushdown request, the server en-

queues it into the workqueue of the memory-pool instance of TELEPORT and eventually pro-

cesses it in the manner described in Sections 4.3 and 4.4.

4.7 Evaluation

We conduct a comprehensive set of experiments to evaluate the benefits of TELEPORT based

on the use cases presented in Section 4.5, the trade-offs in compute pushdown, and the effi-

ciency of TELEPORT designs. We compare TELEPORT with two baselines: (1) a disaggregated

baseline, LegoOS, which incurs cost of scaling due to remote memory accesses, and (2) a

single-machine baseline, Linux, where the cost is either low when local memory is sufficient

for the workload or high when local memory is constrained and data is spilled to secondary

storage, e.g., SSDs. In all experiments, the applications, datasets, and number of CPUs used

by the applications are consistent across all platforms to ensure a fair comparison.

Experimental setup. The baremetal machines in our testbed have Intel Xeon E5-2630L CPUs

132

0

5

10

15

20

Projection Selection Aggregation

5.5X

2.4X

2.1X

Ex
ec
ut
io
n
tim

e
(s
)

Local Execution
Baseline DDC
TELEPORT

Figure 4.14: The performance improvement of pushing the operators inQfilter to the memory
pool with TELEPORT.

1

10

100

Q9 Q3 Q6 SSSP RE CC WC Grep

29.1X

3.2X 3.8X 3X 2.8X

2X

2.5X 4.7X

Ex
ec
ut
io
n
tim

e
no
rm
al
iz
ed

to
lo
ca
l

Baseline DDC
TELEPORT

PhoenixPowerGraphMonetDB

Figure 4.15: TELEPORT improves the performance of a wide range of data processing tasks. By
removing expensive data movement, TELEPORT significantly reduces the overhead of mem-
ory disaggregation, up to an order of magnitude speedup compared to the baseline DDC.

and 64GB DDR4 RAM, and run either Linux, LegoOS, or TELEPORT. The emulated DDC

cluster consists of all three types of pools: compute, memory, and storage. Machines are

connected with an InfiniBand network of NVIDIA Mellanox Connect-X3 NICs and an EDR

switch, with 56Gbps throughput and 1.2µs latency. The compute pool consists of a single

physical machine and has access to 1GB of local DDR4 memory; the memory pool and the

storage pool has a 1 TB NVMe SSD.We chose 1GB of compute-local memory per application

since many of the benefits of DDCs come from high density configurations where many CPUs

133

reside in the same pool, resulting in a modest amount of local memory per CPU.

4.7.1 The Effectiveness of TELEPORT

We first quantify the performance improvement achieved by operator pushdown for data-

intensive systems over baseline DDC. Hence, this section first focuses on the cost of disaggre-

gation. We use a default setup: the CPU cores in the compute and memory pools have the

same clock speed, but numbers of cores are different—the memory pool is limited to a sin-

gle thread; concurrent pushdown requests are serialized. Beyond the cost of disaggregation,

Section 4.7.2 showcases the elasticity of DDCs. Section 4.7.3 further investigates the impact

of the degree of disaggregation by varying CPU clock speed and the number of threads in the

memory pool.

Database microbenchmark. Our first experiment involves the syntheticQfilter query presented

in Section 4.5.1. Recall that this query involves a selection operator followed by projections

and an aggregation. During setup, we supply as input a Lineitem table with 300 million

tuples. Figure 4.14 summarizes our main findings for these operators, where the y-axis shows

the query execution times in Linux (local execution), LegoOS (baseline DDC), and TELEPORT.

We make the following observations. First, compared with the local execution, baseline DDC

adds significant overhead, experiencing 3–6× slowdowns, primarily due to paging data from

remote memory. With TELEPORT, the slowdowns are drastically reduced to less than 2×. In

fact, TELEPORT is faster than LegoOS by 2.1–5.5×. The improvements are most visible for

projection, which would otherwise have to ship many tuples from the remote memory pool

just to identify attributes of interest and apply filters.

Database TPC-H benchmark. Figure 4.15 (left figure) compares the performance of Mon-

etDB in Linux, LegoOS, and TELEPORT with the three TPC-H queries (scale factor 50) with

the longest execution times, namely Query 9 (Q9), Query 3 (Q3), and Query 6 (Q6). These

queries, as described in Section 4.5, consist of a mix of relational operators involving selec-

tions, projections, aggregations, hash and merge joins, and expression calculation.

We make the following observations. In all three queries, the significant slowdowns,

134

higher than 50× in the worst case, render the baseline DDC prohibitively costly for database

query processing in scaling out the hardware resources. Using TELEPORT, we pushed down

a subset of the most bandwidth-intensive operators that bottleneck the DDC performance to

the memory pool. The speedup improvements over LegoOS range from 3–29×. TELEPORT,

with a compute-local memory that is ∼2% of the database size (1 GB versus 50 GB), is only

slightly slower than local execution. The cost of scaling for DBMSs in DDCs with TELEPORT

is comparable to the cost in distributed DBMSs as we see in Figure 4.1b.

Graph processing. Our next experiment is on graph processing. Figure 4.15 (center figure)

summarizes the results obtained on PowerGraph for three graph queries: SSSP (single-source

shortest path), RE (single-source reachability), and CC (connected components). We use as

input a real-world social-network graph [276]. Our results show that the cost of scaling in

baseline DDC is 5×. In comparison, TELEPORT closes the gap between DDC and local exe-

cution quite noticeably, achieving 2–3× speedup over LegoOS. The primary benefits obtained

are in pushing down the scatter-gather and finalize stages, as described in Section 4.5.2.

MapReduce. Our final use case is MapReduce using the WC (WordCount) and Grep appli-

cations on a real-world NLP dataset consisting of 15 million Reddit comments2. Our ob-

servations in Figure 4.15 (right figure) are consistent with the other two systems. TELEPORT

achieves 2.5× and 4.7× performance improvements over LegoOS, significantly narrowing

the gap from local execution in Linux.

The takeaway is that TELEPORT results in up to an order of magnitude performance im-

provement over the baseline disaggregated OS and minimizes the gap between disaggregated

and traditional environments. We note that the goal is not to surpass a local execution where

resources are all centralized in a single place, but rather to narrow the performance gap to

achieve a low cost of scaling while reaping the benefits of DDCs [109, 235].

135

100

101

102

103

104

Query 9 Query 3 Query 6

Ex
ec
ut
io
n
tim

e
(s
)

TPC-H queries

Single Server
Baseline DDC
TELEPORT

Figure 4.16: Query speedups with large disaggregated memory pools vs. SSDs.

101

102

103

104

105

106

1GB 16GB 64GB 128GB
N
/A

Ex
ec
ut
io
n
tim

e
(s
)

Physical memory size

Single Server
Baseline DDC
TELEPORT

Figure 4.17: The benefits of increasing physical memory for large workloads.

4.7.2 The Benefits of Memory Disaggregation

We next compare the performance of data-intensive applications in both monolithic and DDC

deployments with varying levels of memory. We first fix the amount of local memory avail-

able to all systems to 1GB to emulate the effects that occur when processing large-scale

workloads—namely, the effects of being able to access a large remote memory pool in DDCs

instead of needing to spill data to disks in Linux. To ensure efficient disk I/O, we use an NVMe

SSD that supports 3GB/s (sequential) and 600K IOPS (random) I/O.

Figure 4.16 shows the results of processing the three most expensive queries (scale factor

2https://www.kaggle.com/reddit/reddit-comments-may-2015

136

50) in TPC-H in MonetDB. Unsurprisingly, when local memory is insufficient, LegoOS is

10×, 65×, and 80× faster than Linux with SSDs for Q9, Q3, and Q6, respectively. However,

with TELEPORT, this benefit increases to two orders of magnitude: 330×, 210×, and 310×,

respectively. In sum, TELEPORT, by offloading a small set of operations, enables memory-

intensive workloads to more efficiently take advantage of the large memory pools envisioned

by proposals for memory disaggregation.

We also evaluated the effect of TELEPORT when varying the amount of memory avail-

able in the memory pool (local memory is kept at 1GB). For this experiment, we used Q9

and increased the workload size to scale factor 200 (a 200GB database). In addition to the

baseline DDC, we again show a monolithic Linux configuration for comparison—all versions

are provided a consistent amount of memory before they need to spill to disks until 128GB,

which exceeds the memory capacity of the Linux server.

Figure 4.17 shows that with 1GB total memory 3, all platforms perform poorly. In prin-

ciple, provisioning more total memory will spill less data to disk; however, at 64GB, the

disaggregation cost in LegoOS begins to dominate the execution time, which is significantly

longer than the time in Linux. TELEPORT instead effectively minimizes this cost and achieves

a similar performance to Linux until 128GB where Linux cannot match the amount of re-

sources. TELEPORT provides 2.3× higher performance than the best Linux execution, and

31.7× higher performance than LegoOS with the same memory size. These benefits will

continue to grow as the workloads become larger.

4.7.3 Varying the Degree of Disaggregation

Our next set of experiments performs a sensitivity analysis on the degree of disaggregation

along two dimensions: (1) where the memory pool has lower CPU clock speed compared

to CPUs in the compute pool, and (2) degree of parallelism—the number of threads—in the

memory pool. We emulate these effects by throttling CPU clock rate in the memory pool and

varying the number of threads that are used to process parallel pushdown requests. Our results

3Total memory allocated in the application. The 1GB compute-local cache in the DDC is not allocatable by
applications.

137

0

5

10

15

20

25

30

35

40

500 1000 1500 2000 2500

Sp
ee
du
p
to
ba
se
lin
e
D
D
C

CPU clock speed (MHz)

Figure 4.18: Pushdown performance (Q9)
with different computation power settings in
the memory pool.

0

1

2

3

1 2 3 4

Sp
ee
du
p
to
si
ng
le
co
nt
ex
t

of user contexts

Figure 4.19: The benefits of parallelizing
the processing of concurrent pushdown re-
quests in the memory pool.

also help future DDC and hardware designers understand sweetspots in cost-performance

ratios when determining the relative costs for the disaggregated compute and memory pools.

Figure 4.18 shows the effect that computation power in thememory pool has on pushdown

execution time. We control the CPU clock speed with throttling for Q9 in the MonetDB TPC-

H benchmark (scale factor 50). As the CPU capabilities in the memory pool increases from

20% (0.4 GHz) to 100% (2.1 GHz) of the compute pool, query speedup of Q9 relative to

the baseline DDC increases as expected. Our results suggest that even at very modest CPU

speeds (0.4 GHz), emulating a memory pool with very limited compute resource and thus

a high degree of disaggregation, TELEPORT is still able to achieve a 17 × speedup over the

baseline. Moreover, at clock speeds above 1.7 GHz, the speedups level off at 29×, suggesting

there is no need to match the fastest CPU speed to reap the performance benefits of TELEPORT.

Figure 4.19 shows the effect of memory-pool parallelism on the performance of processing

concurrent pushdown calls. We evaluate a parallel aggregation query on TPC-H Lineitem

table. We maintain the same CPU speed (2.1 GHz) in both the compute and memory pools.

The application uses eight threads in the compute pool, one on each physical core. The

memory pool uses two physical cores for the user contexts, emulating a scenario where the

disaggregated memory pool does not have significant compute resource dedicated to run the

pushdown functions. The y-axis in the figure shows the speedup over a single user context, as

138

101

102

103

None Top 1 Top 4 Top 6 All

3.3X

27X 26X 24X

Ex
ec
ut
io
n
tim

e
(s
)

Level of pushdown

(a) 50% lower CPU clock rate.

101

102

103

104

None Top 1 Top 4 Top 6 All

2.6X

17.3X
25.5X

14.5X

Ex
ec
ut
io
n
tim

e
(s
)

Level of pushdown

(b) 75% lower CPU clock rate.

Figure 4.20: The performance of different levels of pushdown.

we vary the number of parallel user contexts in the memory pool on the x-axis. We find that

as the parallelism increases, it takes less time to process the eight concurrent requests as ex-

pected. However, we see diminishing returns in speedup, primarily due to context switching

overheads when scheduling more threads than there are physical cores.

4.7.4 Varying the Level of Pushdown

Recall from Section 4.5.1 that there are trade-offs in compute pushdown. We now evaluate

the impact of these trade-offs by using a metric we callmemory intensity. To compute memory

intensity, we first execute a profiling run in the baseline DDC; memory intensity is then the

139

Component Determined by

1 Pre-pushdown sync time Synchronization method, cache size
2 Request transfer time Message size, the network
3 Context setup time Synchronization method, cache size

4
Function execution User function
Online sync time Synchronization method, cache size

5 Response transfer time Message size, the network
6 Post-pushdown sync time Synchronization method, cache size

Table 4.1: The components in executing a pushdown request. Grayed are factors on what
TELEPORT has no control.

total remote memory accesses divided by the execution time (i.e., remote memory accesses

per second, RM/s). We compute memory intensity for Q9 in MonetDB and order its eight

operators by this metric. For reference, Projection has the highest intensity (110KRM/s) and

Group has the lowest (45KRM/s).

Figure 4.20a shows the performance of different levels of pushdown. We constrain the

computation power in the memory pool to be 50% of that in the compute pool. Compared

to no pushdown, offloading the most expensive operator to the memory pool brings 3× per-

formance speedup. The speedup increases to 27× when we apply TELEPORT to the top four

operators. Being too aggressive, however, backfires: the speedup decreases to 26× and 24×

when we push down the top six and all operators, respectively. This is because, for these

operators, the benefit of saving network communications does not compensate the overhead

of pushdown and a lower CPU clock rate. These effects are magnified when the computation

power in the memory pool is more constrained (Figure 4.20b).

We found that 80KRM/s is a good split for pushdown decisions in our DDC testbed. How-

ever, the optimal level of compute pushdown is determined by the operators, the workload,

and the DDC configuration. Applying TELEPORT automatically while accounting for these

parameters is a promising future direction.

140

Running time (millisecond)

Eager sync

On-demand
sync

0 1000 2000 3000 4000

Pre pushdown
Request
User context
setup
Online sync
Response
Post
pushdown

!"#$%&'(")&'(!*%&'(+%&'(!+)&'(!,",%&

!"#$%&'()$%&"!!#$%&*()$%&+()$%&",(#$

Figure 4.21: TELEPORT performance breakdown with different sync methods.

4.7.5 TELEPORT Execution Breakdown

We next quantify the benefits of on-demand synchronization methods, and provide a com-

prehensive look at the costs associated with them. Table 4.1 presents a factor analysis on the

execution time in TELEPORT for processing a pushdown call. This time consists of six parts:

(1) pre-pushdown synchronization, (2) pushdown request transfer from the compute pool to

the memory pool in the RDMA network, (3) user context setup, (4) pushdown function ex-

ecution and synchronization during the execution, (5) pushdown response transfer from the

memory pool to the compute pool via RDMA, and (6) post-pushdown synchronization. While

all parts have factors that are not controlled by TELEPORT, specifically the cache size in the

compute pool, the network, and the user function, the data synchronization method in use is

important for every part. Message sizes for (2) and (4) also vary across different methods.

Figure 4.21 summarizes our cost breakdown results for a 1 GB local memory in the com-

pute pool (user function time was excluded so that the result can be generalized). In the

figure, eager memory synchronization is a strawman that synchronizes all pages at the begin-

ning and end of pushdown function execution. The on-demand memory synchronization is

our default technique presented in Section 4.4.1. We make the following observations. In

both techniques, pre/post pushdown and user context setup are the dominant costs, though

at varying degrees. Overall, TELEPORT’s on-demand synchronization is significantly faster

141

than eager synchronization (0.3s vs. 3.5s for one pushdown call), since data is only fetched

on demand as required by the user function. Although synchronizing data on-demand re-

quires extra time in setting up the user context (yellow region in figure) because of page table

entry checking described in Section 4.4.1, its substantial savings in parts (1) (blue) and (6)

(red) reduce overall execution time by an order of magnitude. Our results suggest that a care-

ful data-synchronization approach does impact performance significantly, compared to sunk

costs that are tied to the underlying network speed.

4.7.6 Coherence Protocol Efficiency

Finally, we evaluate the efficiency of TELEPORT’s coherence protocol. We do this by ex-

tending the microbenchmark in Section 4.4. We add shared memory between the compute-

intensive thread and thememory-intensive thread, and vary the contention (where both threads

request write permissions) rate from low (0.0001%; one in a million operations) to high (1%;

one in a hundred operations).

Figure 4.22 shows the application performance in different systems when the contention

between the threads increases. As the contentions in both local execution and base DDC

are local to the threads (within the same NUMA node), increasing the contention rate barely

affects the performance. In TELEPORT with the default coherence protocol, the contention

leads to network communication. At low contention, the application completes in 2.1s. There

are observable performance changes when the contention rate reaches 0.1% (2.3s) and 1%

(3.7s). Figure 4.23 shows the number of network messages incurred by the protocol. The

average messaging latency in our coherence protocol (1.6µs) is close to the raw network

latency (1.2µs). In contentions, favoring the memory thread in tiebreaking completes the

pushdown faster: 15% improvement at 1% contention rate. Adding more threads increases

the contention correspondingly. For example, when we fix the contention rate at 0.1% per

thread, increasing the number of compute-intensive threads to four brings the execution time

up to 2.9s.

AWeakOrdering [35] relaxation avoids contention betweenwriters. Figures 4.22 and 4.23

142

0

5

10

15

20

25

30

0.0001% 0.001% 0.01% 0.1% 1%

Ex
ec
ut
io
n
tim

e
(s
)

Contention rate

Local Execution
Baseline DDC

TELEPORT (default)
TELEPORT (relaxed)

Figure 4.22: Application performance with varying levels of contention.

100
101
102
103
104
105
106
107

0.0001% 0.001% 0.01% 0.1% 1%

#C
oh
er
en
ce

m
es
sa
ge
s

Contention rate

TELEPORT (default) TELEPORT (relaxed)

Figure 4.23: The number of coherence messages in TELEPORT.

show that the performance and the number of coherence messages no longer change with

the contention rate when the application adopts the relaxation. Other relaxations work sim-

ilarly for other types of contentions, e.g., the PSO relaxation (Section 4.4.2) for contentions

between writers and readers.

In summary, the default coherence protocol of TELEPORT achieves low latency when

exchanging messages between the compute and memory pools. Hence, it can tolerate a

moderate amount of data contention without observable performance degradation. Applica-

tions can also leverage the relaxations that TELEPORT supports for weaker memory models

to avoid/manage contention directly.

143

4.8 Related Work

TELEPORT is related to the classic idea of pushing computation closer to the data [97, 99,

113, 181, 207, 214, 249]. Pushing down selection predicates is also a well-studied tech-

nique in databases, including distributed databases [61, 78, 230] and sensor networks [178].

TELEPORT’s instantiation of these prior ideas is unique owing to the memory disaggregation

setting. TELEPORT has access to a process’s entire memory address space, can compute ar-

bitrary functions, can modify the memory at will, and can dereference pointers.

Today’s cloud DBMSs already leverage storage disaggregation [1, 8, 55], which decouples

processing and data so they can scale independently; however, workers in these systems are

still constrained by their local memory—a limitation that memory disaggregation addresses.

Operator pushdown has been applied to these storage-disaggregated environments [135, 199,

215, 277]. Unfortunately, they are typically limited by the operations supported by the storage

service and, thus, relegated to simple tasks like scanning tuples. Combining TELEPORT and

storage pushdown may yield further improvements in a fully disaggregated environment.

Within the DDC and remote memory context, Semeru [266] pushes down part of the

JVM garbage collector to remote memory, while the work of Aguilera et al.[38] pushes down

pointer chasing, and StRoM [244] pushes down checksum computations to remote Smart-

NICs. KV-Direct [159] leverages FPGA-based NICs to extend RDMA with native key-value

store operation support. TELEPORT is distinct in its generality—it can be used to push down

arbitrary functions. This is possible because the stack, heap, and code pages all live remotely

as a byproduct of disaggregated OSes.

Improving database systems in DDCs is a timely topic [73, 290]. Redesigned DBMSs [73,

290] can significantly lower the overhead. DDC architectures are continuously evolving.

Keeping up with the hardware by redesigning DBMSs requires expensive investment. TELE-

PORT provides a simpler and more portable alternative for DBMSs to harvest many benefits of

DDCs. TELEPORT can also be applied to other data-intensive systems for the same advantage.

144

4.9 Summary

This chapter proposes TELEPORT, a framework that can flexibly transport a piece of compu-

tation to the memory pool for saving expensive data movement and thus improving overall

query execution for data processing systems in disaggregated data centers. Our design chal-

lenges center around ensuring consistent views on the memory space, synchronization, and

temporary context creation in a pushdown call. To use TELEPORT, applications invoke an

intuitive system call and customize it for flexibility. By applying TELEPORT to three popular

data-intensive systems, (database, graph processing system, and MapReduce), we showcase

the significant performance benefit of TELEPORT for DDCs.

145

CHAPTER 5

REALIZING DDC BENEFITS IN TODAY’S CLOUDS

High-performance data center networking is a key enabler of resource disaggregation. Among

all the alternatives, Remote Direct Memory Access (RDMA) is currently the most popular,

scalable, and production-ready fast networking technique for memory disaggregation. In

this chapter, we present Redy, a cloud service that provides high performance caches us-

ing RDMA-accessible remote memory. An application can customize the performance of

each cache with a service level objective (SLO) for latency and throughput. By using remote

memory, it can leverage stranded memory and spot VM instances to reduce the cost of its

caches and improve data center resource utilization, which is a key motivation for DDCs.

Redy automatically customizes the resource configuration for the given SLO, handles the dy-

namics of remote memory regions, and recovers from failures. The experimental evaluation

shows that Redy can deliver its promised performance and robustness under remote mem-

ory dynamics in the cloud. We augment a production key-value store, FASTER, with a Redy

cache. When the working set exceeds local memory, using Redy is significantly faster than

spilling to SSDs.

146

5.1 Introduction

5.1.1 The Case for Remote Memory as Cache

Stateful cloud services store their states on secondary storage, such as server-local SSDs or a

cloud storage service. Example storage services are database systems, key-value stores, and

JSON stores. Stateful application services embed these data management systems, such as a

directory service, document management system, or source code control system. To offer fast

response time, these types of services store a subset of their states in memory caches.

When allocating a memory cache, a server need not be limited by its local available

memory. It could use physical memory on other servers. Although remote memory has higher

access time than the server’s local memory due to network latency, there are many reasons

why it can be an attractive choice.

First, a server’s physical memory capacity is limited. It may have insufficient local memory

available for a stateful service, particularly for its peak workloads. In this case, remote memory

is the only option. Otherwise, its state has to be spilled to secondary storage, resulting in

orders-of-magnitude performance degradation.

Second, some cloud services are satisfied if they can read records in a few microseconds

(µs’s), which does not require local memory performance. This is currently impossible to

achieve with SSDs, but can be supported with fast data center networks [9].

Third, remote memory may be cheaper because it sits on lightly loaded servers. For ex-

ample, Google, Facebook, and Alibaba report that as much as 50% of server memory in data

centers is unutilized [121, 235]. An extreme case is stranded memory, which is unusable by

its local server because its cores have all been allocated to local VMs. Stranded memory is

essentially free. By using this otherwise wasted memory as a cache, a stateful service can run

on smaller servers with less server-local cache, thereby reducing cost.

A fourth reason is the trend toward dedicated and disaggregated memory servers whose

sole function is to offer memory to remote servers, as Chapters 3 and 4 and recent work [109,

121, 167, 188, 235] present. This approach is becoming more feasible due to fast data center

147

networks, whose point-to-point bandwidth is close to I/O bus bandwidth and is usually un-

derutilized [226, 280]. Cloud service providers already disaggregate compute and storage.

By disaggregating memory, they can fully benefit from this expensive resource. Most cloud

vendors have not been forthcoming about their internal usage of this capability and do not yet

support it for third-party users. However, Google recently reported that it uses disaggregated

memory in its BigQuery service [188], and Alibaba is customizing their database systems with

memory disaggregation [73, 290].

To be usable as a cache, remotememorymust be accessible with very low latency. Remote

direct memory access (RDMA) is the natural choice. RDMA is not as fast as local memory,

but it is much faster than SSDs and requires little or no CPU involvement.

Today, the typical access time for main memory is 70 nanoseconds (ns) [264]. For RDMA

it is a few µs [20, 30, 296]. For SSD it is ∼100 µs, but highly variable and often higher, due to

garbage collection and concurrent writes. Although RDMA latency is 100x better than SSD,

its bandwidth advantage is only 2x–10x (e.g., SSDs are 16-24 Gbit/s and RDMA networks are

48-200 Gbit/s). Still, the difference is significant for applications that need high-throughput

data access. Hence, RDMA-accessible remote memory is a natural choice for a cache sitting

between these two layers of the memory hierarchy.

5.1.2 Contributions

There are two main challenges in using remote memory as a cache. The first is how to tune

RDMA configurations. The choice of optimal configuration depends on the application work-

load, processor and network characteristics, and service level objective (SLO). Misconfigura-

tion can lead to poor performance. Tuning RDMA is known to be difficult. In a data center,

it must be done dynamically, since the choice of processor and network distance between

processors can vary. It is therefore important that this tuning be automated.

The second challenge is responding to changes in remote memory availability. A mem-

ory region might become unavailable because its server failed or because the memory region

allocation was evictable and the system reclaimed it for local VMs. In both cases, the appli-

148

cation that was using the cache must be dynamically reconfigured. It must operate without

the cache or migrate the cache to another remote memory region and re-populate it.

We propose Redy, a new cloud cache service that efficiently utilizes stranded and unused

server memory using RDMA. Unlike prior RDMA stores and caches, it handles failures and

reclamations and allows users to customize cache performance. It also requires minimal

changes to applications. Our contributions are as follows.

• Stranded memory analysis. We present the results of a study that shows stranded mem-

ory is significant and dynamic.

• An RDMA architecture for an SLO-basedmemory cache service. Unlike previous RDMA

systems that optimize for specific performance targets, ours enables the user to cus-

tomize the target. It automatically finds an RDMA configuration that satisfies the user-

provided SLO and minimizes resource cost.

• Dynamic memory management. Redy is elastic. It adds or removes cache regions when

client requirements and memory availability changes. It also efficiently migrates cache

regions when a remote memory region becomes unavailable.

• Implementation and evaluation with a production key-value store. We deploy Redy

with FASTER [190] to improve its performance when the hot set is larger than local

memory. We measure its improvement using the YCSB benchmark.

5.2 Motivation

5.2.1 Underutilized Cloud Memory

We take it is as given that stateful applications would benefit from more memory. There is

a lot of it in data centers, waiting to be utilized. All major data center operators and cloud

providers report that memory is highly underutilized. Studies of traces from Google [116,

257], Microsoft [88, 60], Alibaba [42, 124], and Facebook [121] report memory utilization is

149

under 50% and has strong temporal volatility. We confirm these results for unused memory,

and extend them by analyzing the dynamics of stranded memory.

Unallocated memory. We define unallocated memory as the fraction of DRAM not allocated

to any VM or container. We measured unallocated memory in 100 Azure Compute clusters

over 75 days. Compute clusters host mainstream internal and external VMworkloads and rep-

resent the majority of servers compared to storage or other specialized clusters. We selected

clusters with at least 70% of CPU cores in use. Each cluster trace contains time, duration,

resource demands, and server-ids for millions of VMs. We find strong diurnal patterns; the

typical peak-to-trough ratio is 2. At the median (across clusters and time), 46% of memory is

unallocated. The tenth and first percentile are 37% and 28%, respectively.

Stranded memory. A subset of unallocated memory is stranded. At the median, 8% of mem-

ory is stranded. This grows as more VMs and containers are allocated with more than 16%

stranded at the 90-th percentile and 23% stranded at the 99-th percentile.

We analyze the amount of stranded memory reachable via RDMA by measuring the num-

ber of network switches between a server and stranded memory. Figure 5.1 shows the result

as a CDF. Half of all servers can reach 1 TB of memory by traversing just one switch, 30 TB by

traversing three switches, and 100 TB by traversing five switches. A small fraction of servers

can even reach 1 PB. Our analysis shows that stranded memory in a public cloud is too sig-

nificant to ignore.

Stranding Duration. Figure 5.2 shows the distribution of the duration of stranded memory

events. A stranding event begins when a server allocates all CPU cores while ≥1 GB of

memory remains unallocated. It ends when a VM or container on the server terminates,

making at least one core available. We find that memory is frequently stranded and unstranded

with variable durations of minutes to hours. The median stranding event is 13 minutes, with

a 25-th percentile of 6 minutes and a 75-th percentile of 22 minutes. Our analysis shows that

the amount and duration of stranded memory are highly dynamic, making it challenging to

use it effectively.

150

0.00

0.25

0.50

0.75

1.00

1GB 10GB 100GB 1TB 10TB 100TB 1PB
Reachable Stranded Memory

C
um

ul
at

iv
e

D
is

tri
bu

tio
n 1 switch (2us)

3 switches (8us)

5 switches (50us)

Figure 5.1: The significance of stranded memory.

0.00

0.25

0.50

0.75

1.00

1min 10min 1hr 6hrs 1day
Stranding Duration

C
um

ul
at

ive
 D

is
tri

bu
tio

n

Figure 5.2: The dynamics of stranding events.

5.2.2 Diverse RDMA Configurations

We propose using this unallocated memory for RDMA-accessible remote caches. However,

optimizing RDMA’s performance is hard. Parallelization, asynchrony, thread contention,

batching, one-sided vs. two-sided operations, and CPU bottlenecks all affect RDMA through-

put and latency. Performance is also highly sensitive to the underlying hardware. Overall, it

is difficult to develop a robust solution for a variety of workloads and configurations.

For example, Figure 5.3 shows the latency and throughput of our caching system, Redy,

when writing 8-byte payloads (as in YCSB [87]) to remote memory with three different RDMA

configurations. The latency-optimal configuration has 4.1µs latency, which includes 2.9µs

151

1

10

100

1000

Latency-optimal Balanced Throughput-optimal 1

10

100

1000

La
te
nc
y
(μ
s)

Th
ro
ug
hp
ut
(m
illi
on

op
/s
)

A wide range of RDMA configurations

Latency
Throughput

Figure 5.3: The impact of the RDMA configuration in Redy.

network latency, but the throughput is only 1.2 million operations per second (MOPS). The

throughput-optimal configuration achieves 205MOPS, but the latency is 538µs. The bal-

anced configuration is in between with 14µs latency and 77MOPS. We have similar findings

for reads and other record sizes.

Many configuration parameters affect throughput, latency, and cost. They often improve

one performance metric and degrade another. For example, increasing the number of oper-

ations in each RDMA transfer (called the batch size) increases throughput but also increases

latency per operation. Increasing the number of in-flight transfers improves utilization of an

RDMA connection and hence its throughput, but it increases latency. Increasing the number

of hardware threads that service RDMA requests on the client and server increases throughput,

but also increases cost. These conflicting trade-offs imply the need for optimization.

To solve this optimization problem, we need a software architecture that can dynamically

tune these parameters, and an optimization algorithm that finds the optimal point in the pa-

rameter space. To address these challenges, we propose that the user guides the choice of

configuration by specifying an SLO consisting of the desired throughput and latency of the re-

mote cache. It is the system’s job to choose the lowest-cost RDMA configuration that satisfies

the SLO and then deploy it. Relating cache performance to application performance is out of

scope and a possible topic of future work.

152

5.3 Redy Architecture

5.3.1 Design Principles

Redy is a cache service that offers underutilized cloud resources to memory-intensive appli-

cations. Its design goals are:

1. Generality and ease of use. Redy must have a flexible interface that can be easily inte-

grated with a variety of memory-intensive cloud applications.

2. Customizable performance. Cloud applications have diverse throughput and latency

requirements. Users can customize Redy’s performance by providing SLOs for I/O

throughput and latency and trade performance for lower cost.

3. High resource utilization and minimal disruption. Redy can exploit underutilized re-

sources and stranded memory, thereby improving cloud resource utilization. This uti-

lization improvement should not disrupt existing applications.

4. Robustness to dynamics. Resource utilization changes over time. One server may be-

come busy while another becomes underutilized. Redy handles such dynamics, offering

robust service as long as resources are accessible somewhere.

5.3.2 Back End

Figure 5.4 shows the architecture of Redy. The front end is implemented by the Redy client,

which is colocated with its application. It talks to its cluster’s back end, which consists of a

global cache manager and a set of cache servers that run as VMs. We describe the back end

in this subsection and the front end in the next one.

Redy’s cache manager interacts with the cluster’s VM allocator. It tracks the available

server resources, which it uses to provision VMs. The cache manager offers three operations

for allocating a cache: Allocate, to allocate one or more VMs for a cache; Reallocate, to revise

a cache allocation; and Deallocate, to drop a cache.

153

C
ac

he
 M

an
ag

er

Re
m

ot
e

M
ac

hi
ne

 1

Re
m

ot
e

M
ac

hi
ne

 n

SS
Ds

 /
Di

sa
gg

re
ga

te
d

St
or

ag
e

C
ac

he
 C

lie
nt

Fr
on

t E
nd

Ba
ck

 E
nd

…

C
re
at
e

Re
sh

ap
e

De
le
te

Ap
pl

ic
at

io
n

Re
ad

W
rit
e

Re
ad

/W
rit
e

Re
ad

/W
rit
e

RD
M

A
C

on
fig

C
ac

he
 S

er
ve

r
(V

M
)

C
ac

he
 S

er
ve

r
(V

M
)

St
or

ag
e

La
ye

r

Al
lo
ca

te
Re

al
lo
ca

te
De

al
lo
ca

te

co
nt

ro
l o

pe
ra

tio
ns

da
ta

 o
pe

ra
tio

ns
VM

 A
llo

ca
to

r

VM
al
lo
ca

tio
n

C
on

ne
ct C
on

ne
ct

Fi
gu
re
5.
4:

A
rc
hi
te
ct
ur
e
of
R
ed
y.
A
n
ap
pl
ic
at
io
n
in
te
ra
ct
s
w
ith

th
e
ca
ch
e
cl
ie
nt
.
Th
e
gl
ob
al
ca
ch
e
m
an
ag
er
as
ks

th
e
da
ta
ce
nt
er
’s
V
M

al
lo
ca
to
r
to
re
se
rv
e
V
M
s
to
ho
st
th
e
ca
ch
e.

C
ac
he

se
rv
er
s
on

th
os
e
V
M
s
co
or
di
na
te
w
ith

th
e
cl
ie
nt
fo
r
ca
ch
e
ac
ce
ss
es
.

154

TheAllocate operation takes three parameters: the desired amount of memory, an SLO that

specifies the desired latency and throughput of reads and writes, and a duration that specifies

the likely lifetime of the cache. The SLO supports the second design goal by enabling the

application to customize the cache’s performance, for example, by specifying low latency for

an interactive application that requires fast response time or high throughput for an analytics

application that does data ingestion and query processing. A duration of infinity says that the

caller is willing to pay full price for a cache that remains active until it is explicitly deallocated

or fails. Shorter durations are meant to benefit from spot pricing of excess resources that

the cloud vendor is unable to sell at full price [49, 117, 193], thereby improving resource

utilization, the third design goal.

To process an Allocate request, the cache manager allocates one or more VMs, each of

which consists of memory and zero or more cores, and derives an RDMA configuration that

will support the requested SLO. It then returns a list of the allocated VMs and the RDMA

configuration to use to communicate with them.

If the cache manager cannot satisfy the requested combination of capacity, SLO, and du-

ration, then the Allocate request fails. The request has no effect and the cache manager returns

an exception to the client. If a VM is a spot instance, then the VM allocator is free to reclaim

the VM’s resources, e.g., to sell the resources for a higher price. In this case, the VM allo-

cator alerts the cache manager of the change and gives it time to compensate for the loss of

resources. Today’s cloud providers give an early warning of 30-120 seconds.

When the cache manager is notified that a VM failed or was reclaimed, it alerts the Redy

client, which must be able to cope with the loss. Ideally, it can provision and populate a re-

placement VM. This reconfiguration activity is a key challenge for Redy. Its solution addresses

the fourth design goal. Details are in Section 5.6.

The Reallocate operation is used to reconfigure an existing cache. The data in the cache

can be truncated or remain unchanged depending on the parameters in the reallocation. The

Deallocate operation is called to release all VM resources for a cache.

Each VM that hosts a cache runs a cache server, which is an agent that processes Connect,

155

API Function

Create(capacity, SLO, dura-
tion [, file])

Create a cache with the specified capacity, perfor-
mance SLO, and duration. Optionally populate the
cache with a prefix of the file length ’capacity’, and
return the ID of the created cache.

Read(ID, dst, addr, size, cb) Read (async) from a cache with specified address, size,
and the callback.

Write(ID, src, addr, size, cb) Write (async) to a cache with specified address, size,
and the callback.

Reshape(ID, capacity, SLO) Change the configuration of a cache with new capacity
and SLO.

Delete(ID) Delete a cache with specified ID.

Table 5.1: APIs provided by the cache client for applications. The underlined functions are
for performing I/Os.

Read, andWrite operations. These operations depend on RDMA details and are described in

Section 5.4.

5.3.3 Front End

A cache client provides a virtual storage device abstraction that supports a contiguous byte-

addressable address space. The client maps that address space to memory regions of the

cache’s VMs. The size of a memory region is configurable (1GB by default). The application

can perform a read or write operation on the device at an arbitrary address and of arbitrary

size (bounded by cache capacity). The client translates the operation into a read or write at

the corresponding offset of a memory region. This general device abstraction supports the

first design goal.

Table 5.1 lists the client’s APIs to create, manage, and access a cache. The Create function

creates a cache of a given size, performance level SLO, and duration, and optionally initializes

its content based on a file. The SLO specifies a maximum average latency and minimum

average throughput of reads and of writes. If Create can allocate the requested capacity and

the cache can satisfy the SLO and duration, then the client receives a list of VMs and the RDMA

configuration for the cache and populates it (if the file parameter is present); otherwise, it has

no effect and returns an exception.

156

Cache Address Space

byte 0 byte capacity - 1

Physical
Region 0

Physical
Region 1

Physical
Region 0

Physical
Region 0

VM 1VM 0 VM 2

Figure 5.5: A region table maps a cache to VMs.

On receiving the list of VMs, the client constructs a region table that maps the cache’s

address space [0, capacity) to memory regions on servers. It divides the address space into

virtual regions, mapping each one to a physical region on a VM (see Figure 5.5). To service

a Read or Write for cache address x, the client uses the region table to translate x into the

address on the VM where x is stored.

The two data access operations, Read and Write, are asynchronous, which is important

for performance as we explain in Section 5.4. When an I/O operation finishes, its associated

callback is invoked.

The Reshape function enables an application to change the SLO or capacity of a given

cache. There are two cases: the SLO changes or it is unchanged. In the first case, the client

calls Allocate to find new VMs of the requested size that satisfy the SLO. If it succeeds, the

client migrates the old cache to the new one, truncating the end of the cache if it shrank. Then

it deallocates the old cache. If Allocate fails, the cache is unchanged and the client returns

an exception.

In the second case, the client resizes the cache. If the cache shrank, the client truncates

it. If that frees up regions, the client calls Reallocate to notify the cache manager. If the cache

grew, the client extends the address space. If the last region has insufficient unused space,

then the client calls Reallocate to request more VMs.

If the client succeeds in reshaping the cache, it updates the region table. If it cannot

allocate enough memory from the cache manager or the SLO cannot be satisfied based on

157

Client
Thread 0

Server
Thread 0

Remote
Region 0App

Thread 0

Batch Size Client Core Count Server Core Count

Client
Thread 1

App
Thread 1

Batch Ring

Batch Ring

Cache Client

Message Ring

Message Ring

QP

QP

QP

QP

Message Ring

Message Ring

Cache Server

Remote
Region 1

Remote
Region N

…

Queue Depth

Figure 5.6: RDMA message flow in Redy. Ring buffers enable pipeline parallelism between
adjacent threads. Message rings are only used when batch size is greater than one.

current resource availability, then it returns an exception and the cache remains unchanged.

The Delete function removes a cache by sending Deallocate to the manager. Any later

access to the cache will return an exception.

5.4 Remote Cache with RDMA

This section presents the internals of a Redy cache, specifically, how it configures RDMA to

access remote memory regions. The next section describes how Redy provides customized

cache performance.

5.4.1 RDMA Background

RDMA enables an application on a VM to send requests to its NIC to read or write memory

on another VM. It uses kernel bypass, which means the application interacts directly with its

VM’s NIC. The transfers are handled entirely by the NICs, with no OS involvement.

An application talks to its NIC via one or more queue pairs (QPs), each of which consists

of two workqueues: a send queue and a receive queue for submitting and receiving requests

respectively. Each workqueue has an associated completion queue. Multiple workqueues

may share the same completion queue.

Communication can be one-sided or two-sided. With one-sided RDMA, the client appli-

158

cation directly accesses the server’s memory via read and write operations. A read operation

includes the address and length of the server data to be read and the client location where

the data should land. Conversely, a write operation includes the address and length of the

client data and the server location where the data should land. The client application polls

the completion queue for an event that indicates the operation finished.

Two-sided RDMA offers send and receive RPC-like operations in which the server CPU

processes the client’s request. Redy implements two-sided communications, but like previous

work [96, 137, 258, 296] does it using one-sided RDMA writes, since they are faster.

One-sided RDMA uses session-oriented communication. A QP can only communicate

with the QP that it connects to. Messages are delivered in order with no loss or duplicates.

5.4.2 Cache Implementation

Connection Setup. To process Create and Reshape operations or replace a failed/reclaimed

VM, the client asks the cache manager to allocate new VMs. The allocate operation returns a

list of VMs and the RDMA configuration to the client. After the client updates the region table,

it builds RDMA connections by sending a Connectmessage to the cache server on each newly

allocated VM. The message includes the number of physical regions the cache uses on the VM

and the RDMA configuration. The latter specifies how the client and server communicate:

whether communications is one-sided or two-sided, and if two-sided, then how many server

CPU cores the cache can use to process RDMA requests. The server allocates the requested

number of memory regions, registers them to the NIC, and replies with RDMA access-tokens,

one per region, that the client uses to access server memory. When the client receives replies

for all Connect messages, the cache is ready to use.

Reads and Writes. Redy implements reads and writes on a cache as remote memory accesses

(see Figure 5.6). The Read and Write APIs are asynchronous, so an application can issue

requests without waiting for previous ones to finish. The Redy client is multithreaded. Each

thread collects read and write requests from an application thread in a request batch data

structure, which it sends to the server using RDMA. The batch size is configurable from one

159

to hundreds, which we optimize based on performance SLO (details in Section 5.5).

Each server thread polls messages from one or more RDMA connections. Upon receiving

a request batch, it executes the requests on local memory regions. For a write request, the

server thread copies the request’s payload to the destination address. For a read request, it

copies the requested data from the requested memory address to the response buffer. Finally,

it sends a response batch that contains the results of all requests to the client through the same

RDMA connection on which it received the request batch.

Each client thread polls its RDMA connection to retrieve response batches. For each read

response in a batch, the client thread copies the payload to the application buffer specified

by the corresponding read request. The client invokes the callback function of each read and

write request to complete it.

Redy guarantees that all asynchronous requests are executed in order: requests from an

application thread are batched in program order, batches are delivered in order with reliable

RDMA connections, and they are processed in order by server threads.

5.4.3 Static Optimizations

Redy’s RDMA architecture is optimized with techniques that judiciously exploit RDMA char-

acteristics. Figures 5.7 and 5.8 show the effectiveness of each optimization. Unless otherwise

mentioned, latency is the time in µs to process one I/O, which is a Redy read or write call, and

throughput is the rate in MOPS. Figure 5.7 shows the median network round trip latency (light

red), and the median (dark red) and 99-percentile tail (line with a top) of overall latency. This

test uses one application thread, one client thread, and one server thread to read and write

8-byte records in a 1GB cache with a batch size of one. (Section 5.7 describes the setup and

presents more results.) The details are as follows.

Lock-free Communications. To minimize the overhead of exchanging data between threads,

we use lock-free ring buffers. Specifically, a client thread accepts I/O requests from an ap-

plication thread using a batch ring buffer, each element of which is a request batch. When

a batch becomes full and the RDMA connection is available for another RDMA operation,

160

0

10

20

30

Baseline Lock-free
communication

One-sided
RDMA verbs

Fully-loaded
QPs

Affinitized
threads

143 μs

La
te
nc
y
(μ
s)

Latency (roundtrip)
Latency (overall)

Figure 5.7: Redy optimizations effectively decrease latency.

0

0.4

0.8

1.2

Baseline Lock-free
communication

One-sided
RDMA verbs

Fully-loaded
QPs

Affinitized
threads

Th
ro
ug
hp
ut
(M
O
PS

)

Figure 5.8: Effectiveness on increasing throughput.

the client thread moves the batch to its message ring buffer, which is registered to the NIC

as RDMA buffers. There is a message ring on the server for every connection. Batch and

message rings are based on previous work on lock-free ring buffers using atomic compare-

and-swap and fetch-and-add [149] and using ring buffers for RDMA data transfer [96], but

are customized for the Redy architecture. These ring buffers allow many requests to be passed

and processed efficiently from the client to the server. This optimization eliminates data con-

tention compared to a baseline where application threads use locks to share data with client

threads, thereby reducing tail latency by 7× and improving throughput by 68.7%, as shown

in Figures 5.7 and 5.8.

161

One-sided Operations. If a request batch has only one read (or write) request, we translate

it to a one-sided read (or write). Otherwise, we use a write to send the request batch to the

message ring on the server. This optimization reduces median latency from 19µs to 12µs and

increases throughput by 45.3%.

Fully-loaded Queue Pairs. The number of in-flight RDMA operations on a connection is

called its queue depth, which we control by the message ring size. Increasing it reduces

waiting time of requests in the batch ring and thus their latency. It also increases network

utilization. Compared to one in-flight operation, a queue depth of four reduces latency to

7.1µs and increases throughput from 0.22MOPS to 0.74MOPS, a 3.4× speedup. However,

the network latency increases with queue depth due to higher traffic, e.g., comparing the

light-blue bars for one-sided RDMA and fully-loaded QPs in Figure 5.7. Although throughput

improves when we increase queue depth from four to eight, latency worsens. We measure

the performance impact of queue depth, starting from one, and choose the maximum value

that improves both latency and throughput.

NUMA-aware Affinitized Threads. OS thread scheduling can negatively affect application

performance [156, 253]. To avoid this, we pin Redy threads to physical cores in a NUMA-

aware fashion. Each client thread is affinitized to an application thread’s NUMA node, which

reduces communication overhead between threads and stabilizes communication between

client threads and the NIC. This achieves a latency of 5µs and throughput of 1.1MOPS, a

30% and 52% improvement respectively over non-affinitized threads.

5.5 SLO-Driven Configuration

5.5.1 Performance Variables

RDMA can transfer messages in just a few microseconds. At that time scale, small changes

in the instruction count, synchronization delay, memory contention, or processor cache con-

tention can greatly affect RDMA latency and throughput. These effects can be controlled by

the choice of RDMA configuration and how it is used. However, since optimal choices de-

162

Variable Description Lower Bound Upper Bound

c
the number client threads that pro-
cess request batches

1 client cores

s the number of cache server threads 0 c
b the number requests in a batch 1

⌈ 4KB
record size

⌉

q the number of in-flight operations opt. NIC spec

Table 5.2: Variables balancing latency and throughput.

pend on the size of cached records and the relative importance of latency and throughput,

the choice is necessarily workload dependent.

Based on microbenchmarks and the rich literature on RDMA performance, we have iden-

tified four variables that are the primary determinants of Redy cache performance. They are

summarized in Table 5.2. Increasing the value of each variable will increase throughput. But

it also increases network traffic, which in turn increases the latency of individual requests.

Details are as follows.

• Client core count (c) - Increasing client threads adds more computation and RDMA

connections for more parallelism. This parameter is capped by available CPU cores in

the client VM.

• Server core count (s) - Increasing threads on the remote server to process batched re-

quests reduces the load on each thread. No server threads are needed if requests are not

batched. Each client thread has one RDMA connection, and the server has at most one

thread per connection (since the bottleneck of a connection is the network, not server

compute), so we cap s at c, i.e., s ≤ c.

• Batch size (b) - Batching small requests improves network bandwidth utilization. In our

RDMA tests, bandwidth utilization and throughput stop improving beyond 4KB data

transfers. Therefore, we cap the batch size at
⌈ 4KB
record size

⌉
messages.

• Queue depth (q) - Based on the fully-loaded QP optimization, additional in-flight op-

erations improve bandwidth utilization, i.e., increasing throughput but also latency,

163

similarly to b. The upper bound is specified by the NIC, which is 16 in our testbed on

Azure HPC clusters [192].

In addition to the trade-off between latency and throughput, there is a trade-off between

performance and cost: increasing c and s increases the client and server VM cost.

5.5.2 SLO-based Search

Amajor challenge of Redy’s design is to find an RDMA configuration that satisfies each cache’s

SLO. Our solution is a two-phase search algorithm: (1) offline modeling and (2) online search-

ing. In offline modeling, we perform measurements to build a function that captures the effect

of the configuration parameters (c, s, b, q) on latency and throughput. In online searching, we

use the function to search for values of these variables that satisfy the latency and throughput

specified by the SLO. Our detailed design is below.

Configuration Space. An RDMA configuration is a tuple [c, s b, q] of configuration parameters.

Our performancemodel is a function f that maps each RDMA configuration to I/O latency and

throughput (we mix read and write performance in a model by taking the lower-performance

operation as they are almost the same in Redy except a few corner cases as we describe in

Section 5.7.):

f : (c, s, b, q)→ (latency, throughput)

Given the highest number of client coresC, the largest batch sizeB defined by the record size,

and the NIC-specific queue depth Q, the total number of configurations can be calculated as

(
C∑

c=1

(c+ 1))×B × (Q− opt.)− C × (B − 1)× (Q− opt.)

where we consider several configuration constraints: (1) the server core count is from zero

and to the client core count; (2) if there are no server threads, then batching is disabled so

the batch size is one; (3) the minimum queue depth is optimized by the fully-loaded QP

technique. Overall the configuration space is O(C2 ×B ×Q).

164

In both modeling and searching, we explore the configuration space by incrementally

increasing the value of every parameter in a resource-efficient fashion to minimize cost: ex-

plore the configurations that do not increase the hardware cost, i.e., increasing b and q, before

the configurations that do, i.e., c and s. We increase c before s to minimize use of limited

compute resources on remote memory servers, e.g., in a memory-disaggregated environment.

Formally, we define a Redy configuration space as a five-level tree. The root represents

configuration options for s, the second level for c, the third for b, the fourth for q, and the

leaves for latency and throughput. An internal node and the edges below it represents a

parameter and its values in increasing order from left to right. A root-to-leaf path represents a

configuration. A leaf is the latency and throughput of the path’s configuration.

The construction of the tree enforces the aforementioned constraints. For example, all b

nodes have only one child (b = 1) in the sub-tree of s = 0, and the c node under s = S′ has

C − S′ + 1 children (from S′ to C). To explore the space, we do a pre-order traversal to visit

configurations that require fewer server and client threads. In doing so, we are able to reduce

overall hardware cost.

Offline Modeling. We use offline measurements to build a performance model (the function

f). The model is sensitive to network latency, which varies depending the network distance

between the cache client and cache server (cf. Figure 5.1). We build a performance model for

each distance in a data-center-scale deployment. A typical data center network has three dis-

tances: one switch (intra-rack), three switches (intra-cluster), and five switches (inter-cluster).

The built-in measurement application on the client VM (the largest VM type for the deploy-

ment) allocates a server VM with enough cores (also for the largest configuration of interest).

It then creates a Redy cache with an arbitrary configuration. The client starts the modeling

by telling the manager the number of available cores for the cache, the record size, and the

NIC-specific queue depth. The manager builds the tree representing the configuration space,

with empty leaves. The manager and the client then repeatedly generate the next configu-

ration to measure (!) (see Figure 5.9), switch to that configuration, measure its latency and

throughput by performing I/O operations on the cache, and report the result to the manager

165

Server VMClient VM

Measurement
Application

Cache
Client

Cache Manager

Cache
Server

Remote
Region(c, s, b, q)

f (c, s, b, q)

❶ Configuration Generation❷Result Collection

Model Completion❸

Figure 5.9: Configuration performance modeling.

("). When the manager determines that the model is complete (#), it signals the application

to terminate.

The Challenge and Solution. The performance modeling is done offline, when Redy is de-

ployed in a new cloud RDMA environment. Still, the size of the configuration space poses a

challenge. In our testbed, a VM has up to 60 cores, of which we assume half are available to a

Redy cache, and the NIC-specific queue depth is 16. The model for 8-byte records has ∼3M

configurations per network distance. If one measurement takes a minute, including switching

to the new configuration, performing I/Os, and reporting the result, then building the model

takes over five years to finish! So we cannot measure every configuration.

Our solution applies interpolation and early termination. With interpolation, we only

measure configurations where parameter values are powers of 2, and we assume a linear

growth of latency and throughput between adjacent measured configurations. For example,

f (1, 1, 1, 3) is estimated as the mean of f (1, 1, 1, 2) and f (1, 1, 1, 4). This effectively reduces

the number of measurements to O((logC)2× logB× logQ), which is less than two thousand

configurations in the above example.

Early termination removes unnecessary measurements. Ideally, increasing the value of

each variable increases the throughput. However, due to factors such as thread and con-

nection contention, increasing a parameter might not improve throughput while increasing

latency. When this happens, we stop measuring configurations where only the value of that

particular parameter increases. For instance, if the throughput does not improve from f (4, 2,

2, 2) to f (8, 2, 2, 2), there is no point in measuring f (16, 2, 2, 2).

166

1 model← find the model for the record size
2 config← empty configuration
3 result← Traverse(model.root, SLO, config, 1) # Start the traversal from the root
4 if result = SUCCESS then
5 return config # Return the configuration that satisfies the SLO
6 return null

7 Function Traverse(node, SLO, config, level):
8 if level = 5 then
9 if node.latency > SLO.latency then

10 return INVALID # SLO can never be satisfied, so terminate
11 if node.throughput ≥ SLO.throughput then
12 return SUCCESS # SLO is just satisfied, so terminate
13 return CONTINUE # This is the last level, so terminate
14 p← the parameter at this level
15 node_result← INVALID
16 foreach child in node’s children from left to right do
17 config.p← edge value to child # Get the value for the current parameter
18 child_result← Traverse(child, SLO, config, level+1) # One level deeper
19 if child_result = SUCCESS then
20 return SUCCESS # Configuration is found, so return
21 if child_result = INVALID then
22 return node_result # Fail to satisfy SLO, so prune remaining children
23 if child_result = CONTINUE then
24 node_result← CONTINUE # Continue the exploration
25 return node_result

Figure 5.10: Online SLO-based searching in the manager.

These two optimizations reduce the number of measurements for the above example to

1000, which took only 15 hours. Section 5.7 shows the accuracy of the estimated performance

by interpolation. The resulting model will remain accurate if the hardware is stable, i.e., the

NICs and switches. When hardware changes, the model should be updated by repeating the

modeling, but we speculate that such hardware changes are infrequent, once every few years.

Online Searching. When the cache manager receives an Allocate request, it searches for a

configuration to satisfy the given SLO. It uses the algorithm sketched in Figure 5.10, which

traverses the configuration tree in pre-order with pruning to speed up the process.

Line 1 finds the model for the record size specified in the SLO. Line 2 allocates an empty

167

configuration, which is used as the current configuration during the search. Line 3 invokes

the traversal function, starting with the root of the model, s. If the traversal succeeds, then the

algorithm returns config, which is guaranteed to have the fewest server threads among all

possible configurations and thus incurs minimal cost; otherwise, it returns null (Lines 4-6).

If the current visited node is a leaf (Line 8) and the current configuration violates the

latency SLO, then the traversal function returns an “invalid” status (Lines 9-10). If latency

and throughput are satisfied, then the search returns “success” (Lines 11-12). Otherwise, the

traversal explores internal nodes (Line 13). Line 14 identifies the parameter for the current

level, and Line 15 initializes the search result as “invalid”. Then Lines 16-25 visit the children

of the current node left-to-right. For each child, it updates the current configuration parameter

with the edge value and then recursively traverses the subtree rooted at the child (Lines 17-18).

If the traversal succeeds, the search stops (Lines 19-20). If it returns “invalid”, we can safely

prune all the remaining children; since increasing the parameter value can only increase the

latency, the latency SLO is violated for all of them (Lines 21-22). Finally, if the current child

returns “continue”, then the next child is visited (Lines 23-24).

In a test to search 100 random SLOs in a space of three million configurations, pruning

reduces the number of explored leaf nodes by 25%. The average search time was only 0.027

seconds. Section 5.7 shows the quality of the returned configurations.

5.6 Remote Memory Management

5.6.1 Resource Allocation

Recall from Section 5.3 that an application invokes Create to provision a cache of a given

capacity, SLO, and duration. The cache client services the function by issuing an Allocate

with the same parameters to the cache manager.

First, the cache manager translates the capacity and SLO into an RDMA configuration for

each network distance, as described in Section 5.5.2. Then it allocates a VM whose memory

and CPU cores are sufficient for the RDMA configuration. Since RDMA configurations vary

168

with network distances, the cache manager has to find the best VM for the configuration

associated with each network distance and then choose the least expensive one.

The cache manager must choose VMs from the menu of VM sizes offered by the cloud

provider. Each VM size has fixed cores and memory. Today, providers offer relatively few

VM sizes with a high ratio of memory to cores and no VMs consisting of stranded memory.

A wider range of choices would enable the manager to choose VMs that more closely match

the desired RDMA configuration.

Since the set of VM types changes infrequently, the cache manager can maintain a static

list of VM types, with each one’s memory size and core count, and its price in each cloud

region. To service an allocation request, it identifies the VM types in the client’s data center

with enough memory and cores and chooses one that has lowest cost and is available within

the required network distance.

Beyond these static allocation strategies, there are many ways the cache manager can

optimize the choice of VMs. They depend on the optimality criteria it uses and on the VM

allocation mechanism of the cluster computing platform it runs on. We discuss these criteria

and mechanisms below. In some cases, it may be cheaper for the cache manager to select two

or more VMs that together satisfy the configuration. Each VM’s core-to-memory ratio must be

at least that of the configuration, to satisfy the SLO.

Additional cost savings are possible with a spot VM. This is an attractive choice if the cache

can be migrated within the 30-120 seconds notice before its VM is reclaimed. This constraint

argues for the use of many small VMs instead of a large one, to leave time to migrate each

VM cache. We describe migration shortly.

Recent research has shown how to predict the lifetime of spot VMs [50]. This would enable

the allocation of VMs that satisfy the requested duration. It could also suggest preemptively

migrating a VM’s cache, knowing it will likely be reclaimed soon.

At any given time, different VM types might have spot instances available. The cache man-

ager can exploit such cost-saving opportunities by periodically issuing an allocation request

for a cheap VM and migrating the cache to it when it becomes available.

169

The ability of the cache manager to optimize the choice of VMs could be improved by

enriching the VM allocator’s API. For example, to avoid having the cache manager poll for

cheap VMs, the VM allocator could offer an option to alert the cache manager when spot

VMs of a certain type become available. It could also offer an option to request the cheaper

of one large VM or several smaller VMs based on current spot pricing. VM allocation for spot

instances is an active research area. We discuss some recent work in Chapter 5.9.

5.6.2 Dynamic Memory Management

If the VM hosting a cache fails or is reclaimed, then the cache client is notified and must

allocate another cache to replace it. For a failure, the cache client can use a copy of the

cache to populate the new cache. For a reclamation, the cache client can migrate the cache’s

content to a new cache. The affected parts of cache are unavailable during recovery and

possibly during migration. Afterwards, the entire cache is available and must satisfy its SLO.

The migration period depends in part on the time to provision a new VM. This might

exceed the minimum time delay before the spot VM is reclaimed. If this risk is unacceptable

or if a VM failure is too disruptive, the cache manager could hold pre-provisioned VMs as

targets for migration. Another alternative is replicating the cache. Replica synchronization

techniques can be found in [144, 255].

The migration speed also depends on the transfer rate. A tuned RDMA transfer in Redy

can fully utilize the network bandwidth.

Migrating a Cache. To migrate the content of an existing cache to a newly allocated VM, the

cache client needs to tell the new VM to establish a bandwidth-optimized connection with

the existing cache. The new VM uses one-sided reads to copy data from the old VM. During

the migration, operations on the migrated regions should be paused until the migration is

finished. To minimize this performance impact, we employ two optimizations for reads and

writes respectively: unpaused reads and pause-on-migration writes. In unpaused reads, we

use the old VM to service read operations, and immediately switch to the new VM when the

migration is over.

170

Unlike reads, writes have to be paused during the migration. But instead of pausing all

writes (and dependent reads) to the cache, in pause-on-migration writes, we migrate regions

one by one and pause writes only to the region being migrated. After a region has been

migrated, the cache client updates its region table using the new VM and resumes paused

writes. When all regions are migrated, the client signals the old VM to terminate. Section 5.7

evaluates the impact of migration on read and write performance, with and without the opti-

mizations.

Resizing a Cache. In response to a Reshape invocation, the cache client executes operations

to grow or shrink the size of the cache. To grow a cache, the client first uses any memory

headroom available in the cache’s last VM. For additional growth, the client allocates another

VM, using the same memory-to-core ratio, batch size, and queue depth as existing VMs.

Depending on the price of spot VMs, it could be cheaper (althoughmore disruptive) to allocate

a larger VM and migrate the content of the old VM to the new one. After the new VM is

allocated, the client updates its region table. The cache client stalls I/O operations while the

cache is being resized, although the techniques in cache migration can be applied to maintain

some level of performance.

5.7 Evaluation

5.7.1 Methodology

Implementation. The implementation of Redy consists of 13700 lines of C++ code. It includes

the cache client library for applications, cache manager, cache server (shown in Figure 5.4),

and measurement application (in Figure 5.9). The client library has a Common Language

Runtime (CLR) wrapper covering all APIs in Table 5.1, to enable access by applications in

other languages, such as C#.

RDMA transfer in Redy uses the native RDMA library in Windows, NDSPI [191], which

supports all RDMA operations. NDSPI has been used to implement other efficient RDMA-

based systems, e.g., FaRM [96]. We implemented an RPC framework based on RDMA for

171

0

4

8

12

16

4 16 64 256 1024 4096 16384

La
te
nc
y
(μ
s)

Record size (bytes) - log scale

Redy (median) Redy (average) Raw (average)

(a) Read latency with record sizes from 4B to 16KB.

0

4

8

12

16

4 16 64 256 1024 4096 16384

La
te
nc
y
(μ
s)

Record size (bytes) - log scale

Redy (median) Redy (average) Raw (average)

(b) Write latency with record sizes from 4B to 16KB.

Figure 5.11: The latency of Redy caches with latency-optimal configurations for different
record sizes. On average, accessing records up to 4KB sizes takes less than 5µs, close to the
raw RDMA hardware speed.

efficient operations between clients, servers, and the manager.

Testbed Setup. We evaluate Redy on a Microsoft Azure High Performance Computing clus-

ter [192] using the Standard_HB60rs VMs. Each VM has 60 vCPUs based on two 2.0GHz

AMD EPYC 7551 processors, 228GB of memory, and a 700GB Azure premium SSD. We run

Windows Server 2019 Datacenter as the OS. Each VM is RDMA-enabled using an NVIDIA

Mellanox ConnectX-5 NIC [20].

172

0.1

1

10

100

1000

4 16 64 256 1024 4096 16384

Th
ro
ug
hp
ut
(M
O
PS

)

Record size (bytes) - log scale

Redy Redy (stranded mem) Raw

(a) Read throughput with record sizes from 4B to 16KB.

0.1

1

10

100

1000

4 16 64 256 1024 4096 16384

Th
ro
ug
hp
ut
(M
O
PS

)

Record size (bytes) - log scale

Redy Redy (stranded mem) Raw

(b) Write throughput with record sizes from 4B to 16KB.

Figure 5.12: The throughput of Redy caches with throughput-optimal and stranded-memory
configurations. Batching small records improves the throughput by an order of magnitude.

5.7.2 Overall Cache Performance

We first show the overall performance of Redy caches. In this evaluation, we vary data size

from very small records (4 bytes) to large blocks (16KB). For each size, we set up a cache with

latency-optimal and throughput-optimal configurations. The purpose of this evaluation is to

show Redy’s optimal performance for each metric and for different sizes. We compare Redy’s

cache performance with the raw RDMA network. We measure the latter using the official

benchmark tools from Mellanox [11], i.e., nd_read_lat and nd_write_lat for latency,

and nd_read_bw and nd_write_bw for throughput.

173

Figures 5.11a and 5.11b show the results of latency benchmarking for reads and writes,

respectively. Average latency is close to that of the raw network, 3-4µs, showing the effec-

tiveness of Redy’s latency optimizations described in Section 5.4.3. An interesting finding is

that the write latency is significantly lower than the read latency for records smaller than 256

bytes. This is because a small amount of data to be written can be inlined as a parameter

in the RDMA write invocation, thereby avoiding the latency of fetching the data from main

memory to the NIC through the PCIe buses. Inlining no longer works when the data exceeds

a threshold (172 bytes in our testbed), so the latency increases. In general, the latency is

steadily low until 4 KB records and increases significantly after that.

Figure 5.12 shows the results for throughput. Read and write throughput are similar. For

example, both reading and writing 16 bytes can achieve about 200 MOPS, an order of magni-

tude higher than raw network throughput, showing that Redy batching is effective at utilizing

the bandwidth. When the record size increases, throughput drops as fewer operations/second

are needed to saturate the network. But up to 256 bytes, Redy performs much better than the

raw network.

All latency-optimal configurations use one-sided memory access using no server cores,

so Redy is particularly cheap for this case. Conversely, for record sizes up to 1KB, high-

throughput configurations work best if they have a few cores to support batching.

Between latency-optimal and throughput-optimal configurations, there is a big space of

configurations that make trade-offs between latency and throughput. We let the applications

customize cache performance using their SLOs.

5.7.3 Performance Customizability

Offlinemodeling builds interpolated performancemodels whose accuracy determines whether

they can satisfy users’ SLOs. The speed of online searching determines how fast we can con-

figure a cache. To evaluate both, we measure the accuracy of the model for the three million

configurations in Section 5.5.2 and the time to search configurations for given SLOs using the

algorithm in Figure 5.10.

174

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

better
Fr
ac
tio
n

Latency (μs)

SLO
Redy Predicted

Redy Real

Figure 5.13: Satisfying latency SLOs.

0

0.2

0.4

0.6

0.8

1

0 60 120 180 240 300

better

Fr
ac
tio
n

Latency (μs)

SLO
Redy Predicted

Redy Real

Figure 5.14: Satisfying throughput SLOs.

We draw 100 performance SLOs between the lowest and highest latency and throughput

values in the model. An SLO consists of cache latency and throughput, which are drawn

independently from a uniform distribution. For each SLO, we search the configuration space

for one that Redy predicts will satisfy the SLO. We then configure the cache based on this

configuration, measure its latency and throughput, and compare them with the SLO. The

accuracy of the model is defined by how close the predicted latency and throughput mimic

the real ones. High accuracy means that the real performance will satisfy the SLO.

Figures 5.13 and 5.14 show the results for both latency and throughput. Each figure shows

three CDFs—the SLO, predicted, and real performance—of the corresponding metric. Since

we draw SLOs randomly between the lowest and highest values, the SLOs in both figures are

spread uniformly across their ranges. Figure 5.13 shows that the predicted and real latency

are close: 92µs vs. 98µs at the median, and 206µs vs. 212µs at the 95th percentile. They

are all lower than the requested latency—satisfying the SLO. Figure 5.14 shows findings for

throughput: the predicted and real throughput values are 110.5 MOPS and 110.7 MOPS

respectively at the median, both closely matching the requested throughput of 110.4 MOPS,

and are 211.5 MOPS and 219.3 MOPS at the 95th percentile, also close to the requested

211.4 MOPS. The latency of the caches is much lower than the SLOs, while the throughput

just reaches the SLOs, because the searching algorithm in Figure 5.10 starts from low-latency

low-throughput configurations and gradually moves toward high-latency and high-throughput

175

0

40

80

120

160

200

0 30 60 90 120 150 180 210 240

migrating 1 region migrating 2 regions migrating 4 regions

Th
ro
ug
hp
ut
(M
O
PS

)

Time (second)

w/ unpaused reads
w/o unpaused reads

Figure 5.15: The impact of region migration on reads.

0

40

80

120

160

200

0 30 60 90 120 150 180 210 240

migrating 1 region migrating 2 regions migrating 4 regions

Th
ro
ug
hp
ut
(M
O
PS

)

Time (second)

w/ pause-on-migration writes
w/o pause-on-migration writes

Figure 5.16: The impact of region migration on writes.

ones. This matches our cost-efficient goal: the average client and server core counts of the

resulting configurations are 7.3 and 1.5.

Redy is also fast at finding configurations. The time spent on searching for the right con-

figuration for an SLO in the space is 2µs to 0.12 s with an average of 0.027 s and a median

of 0.01 s, achieving interactive speed for cache allocation.

5.7.4 Robustness to Dynamics

When a VM that hosts a part of a cache is to be reclaimed, the cache client requests a new

VM (or multiple VMs) from the manager and migrates the affected regions using a throughput-

176

optimized configuration. In our testbed, it takes 1.09 s to online migrate a 1GB region. This

argues for using spot VMs of ≤ 27GB, to ensure they can be migrated within 30s. Thus, it is

feasible to use spot VMs that are available for only a short time, say a few minutes.

We evaluate the performance impact of region migration using a cache that consists of

seven 1GB regions. Initially, all regions are hosted in one VM. We run this cache with 8-

byte records for four minutes and migrate one, two, and four regions at the second, third, and

fourth minute respectively to a different VM.Wemeasure the throughput change. Figures 5.15

and 5.16 show that the throughput of both reads and writes drops by around 15%, 25%, and

57% in the migration of one, two, and four regions without optimizations. By contrast, the

read throughput with unpaused reads is unaffected by the migration, and the write throughput

with pause-on-migration writes decreases by at most 15%, no matter how many regions are

migrated. This demonstrates that Redy minimizes the impact of resource dynamics.

5.8 FASTER with Redy

FASTER is a high-performance open-source key-value store that is used at Microsoft and else-

where [77, 190]. It is an example of a stateful cloud service that can benefit from using a

remote cache, as discussed in Section 5.1.1. We integrate Redy with FASTER to demonstrate

its ease of use and practical value.

5.8.1 Data Organization in FASTER

FASTER runs as a multi-threaded library in the address space of an application client. It has a

hash index that maps keys to record addresses. The index is stored in the client’s memory.

FASTER stores records in a hybrid logwhere the tail of the log is stored in mainmemory and

the remainder is spilled to storage, such as a server-attached SSD or a cloud storage service.

The log is organized as a sequence of segments. The tail of the main-memory section supports

in-place updates. The rest is read-only.

A read operation looks up a record in the index and then retrieves it from memory or

177

FASTER
SSD

log headlog tail

Redy

Tiered Storage
Read
Write

Write

Figure 5.17: FASTER with Redy. New records are appended to both tiers. Reads to records in
Redy are only served by Redy.

storage. To insert a record, it is appended to the tail and added to the index. To update a

record in the read-only portion of the log, it is appended to the tail in main memory and its

index entry is updated. To free up main memory, the oldest segment of the read-only main

memory section of the log is appended to storage. To free up storage, the oldest segment is

read, its reachable records are appended to the log tail, and then it is deallocated.

5.8.2 Integrating Redy

FASTER clients access storage through an interface called IDevice, which exposes storage

as a byte-addressable sequential address space. FASTER supports tiered storage, which is a

“meta-device” that wraps a set of IDevice implementations, called tiers. Each tier is smaller

and faster than the next higher tier, and is a replica of a suffix (i.e., tail) of the higher tiers.

FASTER services a read operation from the lowest tier that has the data.

To keep the tiers consistent, an append operation is applied to all tiers. It is acknowledged

to the client after all tiers have applied the append. A user can alter this semantics via FASTER’s

commit point setting, which is the lowest tier whose commit denotes the completion of an

update. This is useful for committing quicker than the highest tier, which may be very slow.

We integrate Redy as an IDevice in this tiered storage, as the first tier (see Figure 5.17).

An SSD is the second tier, which contains the entire log. Thus, reads are serviced by Redy

if the record is stored in the Redy cache. Otherwise, it is serviced by the SSD. Cloud blob

storage could be a third tier, as a highly-available backup.

178

0

0.8

1.6

2.4

3.2

4

1 2 4

Th
ro
ug
hp
ut
(M
O
PS

)

#Application threads

Redy
SMB Direct
SSD

(a) YCSB (uniform), 8B val, 1GB local mem.

0

0.8

1.6

2.4

3.2

4

1 2 4

Th
ro
ug
hp
ut
(M
O
PS

)

#Application threads

Redy
SMB Direct
SSD

(b) YCSB (Zipf), 8B val, 1GB local mem.

0

0.8

1.6

2.4

3.2

4

1 2 4

Th
ro
ug
hp
ut
(M
O
PS

)

#Application threads

Redy
SMB Direct
SSD

(c) YCSB (Zipf), 8B val, 0.1GB local mem.

0

0.8

1.6

2.4

3.2

4

1 2 4

Th
ro
ug
hp
ut
(M
O
PS

)

#Application threads

Redy
SMB Direct
SSD

(d) YCSB (uniform), 1KB val, 1GB local mem.

Figure 5.18: FASTER throughput with Redy, SMB Direct, and SSD respectively on the YCSB
benchmark when the working set is larger than local memory.

5.8.3 Evaluation

We evaluate the performance of FASTER with Redy using the YCSB benchmark [87] in the

same cloud environment as Section 5.7. We compare with two alternatives: a device that

only uses local SSD; and a device that accesses remote memory using SMB Direct, an RDMA-

enabled file server protocol with higher throughput and lower latency than the regular Win-

dows file server [14]. Throughput is the critical metric for this benchmark, so we configure the

Redy cache for high throughput. Our YCSB database contains 250 million key-value records

(8-byte key and 8-byte value), ∼6GB in total in FASTER. Every operation is a read governed

by either a uniform distribution or a Zipfian distribution (θ = 0.99). Additionally, we use a

179

0

0.8

1.6

2.4

3.2

4

1 2 4

Th
ro
ug
hp
ut
(M
O
PS

)

#Application threads

Redy
SMB Direct
SSD

(a) YCSB (Zipf), 1KB val, 10GB local mem.

0

0.8

1.6

2.4

3.2

4

1 2 4

Th
ro
ug
hp
ut
(M
O
PS

)

#Application threads

Redy
SMB Direct
SSD

(b) YCSB (Zipf), 1KB val, 20GB local mem.

0

0.8

1.6

2.4

3.2

4

1 2 4

Th
ro
ug
hp
ut
(M
O
PS

)

#Application threads

Redy
SMB Direct
SSD

(c) YCSB (Zipf), 1KB val, 40GB local mem.

0

0.8

1.6

2.4

3.2

4

1 2 4

Th
ro
ug
hp
ut
(M
O
PS

)

#Application threads

Redy
SMB Direct
SSD

(d) YCSB (Zipf), 1KB val, 80GB local mem.

Figure 5.19: FASTER throughput when varying local memory size.

value size of 1 KB, resulting in a ∼260GB database.

Figure 5.18a shows the throughput of FASTER in MOPS on the uniform workload, with

different storage devices. In this experiment, we give FASTER 1GB of local memory, and the

remainder of the log is spilled to the device. In the tiered device, we allocate an 8GB Redy

cache so that all operations are served by Redy. When there is one thread, FASTER achieves

0.8MOPS with Redy while SMB Direct and SSD are much lower with less than 0.1MOPS.

With two threads, the throughput with Redy increases to 1.6MOPS. With SMB Direct and

SSD it improves to 0.15MOPS, but that still is 10× lower than Redy. Adding more threads

improves FASTER’s performance with all devices, but the gap between Redy and other alter-

natives remains large. Figure 5.18b shows the results with the Zipf distribution where data

180

0

2

4

6

8 4 2 1 0

Th
ro
ug
hp
ut
(M
O
PS

)

Local memory (GB)

Redy SMB Direct SSD

Figure 5.20: FASTER with various local memory sizes on uniform YCSB.

0

0.6

1.2

1.8

2.4

0 1 2 4 8

Th
ro
ug
hp
ut
(M
O
PS

)

Redy cache size (GB)

Redy on top of SSD

Figure 5.21: Tiered store with various remote cache sizes.

accesses are skewed. FASTER uses local memory to cache frequently-accessed records, which

reduces load to the devices. Hence, the throughput is higher than that with the uniform dis-

tribution for all devices. However, when we decrease the available local memory for caching

in FASTER (similarly when we increase the database size), both the absolute throughput and

the relative difference between Redy and other devices become closer to that of the uniform

distribution, as shown in Figure 5.18c.

FASTER with Redy achieves higher throughput for large records as well. Figure 5.18d

shows that with four threads, the throughput of accessing records with 1KB values is 0.9MOPS

with Redy, 8× and 20× higher than with SMB Direct and SSD respectively. Figures 5.19a–

181

5.19d show that even when the client has a local cache as large as 10GB, 20GB, 40GB, and

80GB respectively, the tail of the Zipfian distribution still bottlenecks the overall performance.

Spilling requests to Redy has at least 2× higher throughput than other cloud services, i.e., SMB

Direct and SSD storage.

Figure 5.20 varies the size of local memory used by FASTER (with four threads). With 8GB

local memory, FASTER services all (uniform) operations from local memory, achieving high

throughput of 5MOPS. When we spill the entire log to the storage device, FASTER achieves

1.4MOPS using Redy, vs. 0.15MOPS and 0.12MOPS for SMB Direct and SSD. Compared to

local memory only, the performance of FASTER with Redy decreases by 72% (vs. 97% with

SMB Direct and 98% with SSD); but it saves memory cost by 100%, since it uses stranded

memory, which is essentially free.

To show the impact of the cache size in the tiered device we vary the Redy cache size from

0 to 8GB with 1GB client local memory (Figure 5.21). As expected, performance increases

significantly when more cache is allocated.

In summary, when FASTER’s working set exceeds local memory, spilling data to a Redy

cache results in better performance than spilling to the RDMA baseline or SSD. We note

FASTER using synchronous local-memory outperforms the asynchronous device interface due

to I/O code path and context switching overheads. As new high-throughput devices such as

Redy become commonplace, we believe this is an important area for future optimization.

5.9 Related Work

Redy is an RDMA-accessible remote dynamic cache targeted for data centers. No systems

that we know of offer Redy’s SLO-based configuration and dynamic reconfiguration. We

summarize related systems and explain the differences as follows.

Cache Servers. A cache server is an in-memory distributed key-value store that supports

access by a large number of clients. It is typically used to store content that is accessed over

the Internet. Popular cache servers are Memcached [18] and Redis [22]. By contrast, Redy

182

offers inexpensive remote caches in the cloud environment. CompuCache [282] is a cloud

service that supports both data caching and compute offloading. However, since it uses RPC,

it cannot use stranded memory.

RDMA. RDMA has been a subject for research in the database, systems, and networking

communities for many years [105]. Herd [137] and FaRM [96] are RDMA-accessible key-

value stores. FaRM also supports multistep transactions, as does [63, 65]. DFI [256] provides

a data flow abstraction based on RDMA. Cai et al. [72] propose a distributed shared memory

framework with an RDMA-based memory coherence protocol. Liu et al. [169] optimize the

bandwidth of RDMA specifically for shuffles. Ziegler et al. [296] report on microbenchmarks

of RDMA. Li et al. [161] explore RDMA performance benefits to a DBMS via SMB Direct.

Redy is different from these works in its cache design that supports fine-grained data accesses

and performance customizability. Kalia et al. [138] provide RDMA developers with guidelines

for low-level RDMA optimizations. In comparison, Redy hides RDMA complexities with an

easy-to-use cache API. Kalia et al. also explore the benefit of batching, but speculatively and

only for unconnected QPs.

VM Scheduling and Migration. Redy’s cache manager uses the cluster VM scheduler to allo-

cate VMs for caches. The challenges of allocating VMs for large data centers are discussed

in [93, 126, 210, 231]. Redy’s allocator is rather unique in requiring a minimum amount of

memory that can be partitioned across multiple VMs, each VM satisfying a minimum ratio of

cores to memory.

Redy migrates cache when its VM fails or is evicted. This is similar to VM migration,

but without the need to freeze program execution to move its state. Some past work on VM

migration includes [86, 237, 246, 262]. To mitigate the effect of VM eviction, researchers

are exploring dynamic alternatives, where VMs can shrink or grow to offer all unallocated

resources on the server where it runs [50, 236]. Extending Redy’s ability to exploit dynamic

resource allocation is an interesting avenue for future work.

183

5.10 Summary

This chapter describes Redy, a cloud service that provides high performance caches using

RDMA-accessible remote memory. Redy automatically configures resources for a given la-

tency and throughput SLO and automatically recovers from failures and evictions of remote

memory regions. We integrated Redy with a production key-value store, FASTER. The experi-

mental evaluation shows that Redy can deliver its promised performance and robustness and

hence serve as an efficient solution to data center resource underutilization.

184

CHAPTER 6

FACILITATING HYPERSCALE NETWORK INNOVATION

Data centers evolve fast, with innovations like resource disaggregation that the previous part

of this dissertation focused on. Unfortunately, at-scale evaluation of new data center network

innovations is becoming increasingly intractable. This is true for both testbeds, where few can

afford a dedicated, full-scale replica of a data center, and simulations, which while originally

designed for precisely this purpose, have struggled to cope with the size of today’s networks.

This chapter presents an approach for quickly obtaining performance estimates for large

data center networks with high accuracy. Our system, MimicNet, provides users with the fa-

miliar abstraction of a fine-grained, packet-level simulation for a portion of the network while

leveraging redundancy and recent advances in machine learning to quickly and accurately

approximate portions of the network that are not directly visible. MimicNet can provide over

two orders of magnitude speedup compared to regular simulation for a data center with thou-

sands of servers. Even at this scale, MimicNet estimates of the tail FCT, throughput, and RTT

are within 5% of the true results.

6.1 Introduction

Over the years, many novel protocols and systems have been proposed to improve the per-

formance of data center networks [92, 46, 196, 122, 171, 45, 47]. Though innovative in their

approaches and promising in their results, these proposals suffer from a consistent challenge:

185

the difficulty of evaluating systems at scale. Networks, highly interconnected and filled with

dependencies, are particularly challenging in that regard—small changes in one part of the

network can result in large performance effects in others.

Unfortunately, full-sized data center testbeds that could capture these effects are pro-

hibitively expensive to build and maintain. Instead, most pre-production deployments com-

prise orders of magnitude fewer devices and fundamentally different network structures. This

is true for (1) hardware testbeds [223], which provide total control of the system, but at

very high cost; (2) emulated testbeds [208, 263, 275], which model the network but gen-

erally at the cost of scale or network effects; and (3) small regions of the production network,

which provide ‘in vivo’ accuracy but force operators to make a trade-off between scale and

safety [294, 239]. The end result is that, often, the only way to ascertain the true performance

of the system, at-scale, is to deploy it to the production network.

We note that simulation was originally intended to fill this gap. In principle, simulations

provide an approximation of network behavior for arbitrary architectures at an arbitrary scale.

In practice, however, modern simulators struggle to provide both simultaneously. As we

show in this chapter, even for relatively small networks, packet-level simulation is 3–4 orders

of magnitude slower than real-time (5min of simulated time every∼3.2 days); larger networks

can easily take months or longer to simulate. Instead, researchers often either settle for mod-

estly sized simulations and assume that performance translates to larger deployments, or they

fall back to approaches that ignore packet-level effects like flow approximation techniques.

Both sacrifice substantial accuracy.

In this chapter, we describe MimicNet, a tool for fast performance estimation of at-scale

data center networks. MimicNet presents to users the abstraction of a packet-level simulator;

however, unlike existing simulators, MimicNet only simulates—at a packet level—the traffic

to and from a single ‘observable’ cluster, regardless of the actual size of the data center. Users

can then instrument the host and network of the designated cluster to collect arbitrary statistics.

For the remaining clusters and traffic that are not directly observable, MimicNet approximates

their effects with the help of deep learning models and flow approximation techniques.

186

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

4 8 16 32 64 128

W
1
 t

o
G

ro
un

d
Tr

ut
h

Network Size (#Clusters)

Small-scale Flow-level MimicNet

Figure 6.1: Accuracy for MimicNet’s predictions of the FCT distribution for a range of data
center sizes. Accuracy is quantified via the Wasserstein distance (W1) to the distribution
observed in the original simulation. Lower is better. Also shown are the accuracy of a flow-
level simulator (SimGrid) and the accuracy of assuming a small (2-cluster) simulation’s results
are representative.

As a preview of MimicNet’s evaluation results, Figure 6.1 shows the accuracy of its Flow-

Completion Time (FCT) predictions for various data center sizes and compares it against two

common alternatives: (1) flow-level simulation and (2) running a smaller simulation and as-

suming that the results are identical for larger deployments. For each approach, we collected

the simulated FCTs of all flows with at least one endpoint in the observable cluster. We com-

pared the distribution of each approach’s FCTs to that of a full-fidelity packet-level simulation

using a W1 metric. The topology and traffic pattern were kept consistent, except in the case

of small-scale simulation where that was not possible (instead, we fixed the average load and

packet/flow size). While MimicNet is not and will never be a perfect portrayal of the original

simulation, it is 4.1× more accurate than the other methods across network sizes, all while

improving the time to results by up to two orders of magnitude.

To achieve these results, MimicNet imposes a few carefully chosen restrictions on the

system being modeled: that the data center is built on a classic FatTree topology, that per-host

network demand is predictable a priori, that congestion occurs primarily on fan-in, and that

a given host’s connections are independently managed. These assumptions provide outsized

benefits to simulator performance and the scalability of its estimation accuracy, while still

permitting application to a broad class of data center networking proposals, both at the end

187

host and in the network.

Concretely, MimicNet operates as follows. First, it runs a simulation of a small subset of

the larger data center network. Using the generated data, it trains a Mimic—an approximation

of clusters’ ‘non-observable’ internal and cross-cluster behavior. Then, to predict the perfor-

mance of anN cluster simulation, it carefully composes a single observable cluster withN−1

Mimic’ed clusters to form a packet-level generative model of a full-scale data center. Assist-

ing with the automation of this training process is a hyperparameter tuning stage that utilizes

arbitrary user-defined metrics (e.g., FCT, RTT, or average throughput) and MimicNet-defined

metrics (e.g., scale generalizability) rather than traditional metrics like L1/2 loss, which are a

poor fit for a purely generative model.

This entire process—small-scale simulation, model training/tuning, and full-scale approxi-

mation—can be orders of magnitude faster than running the full-scale simulation directly, with

only a modest loss of accuracy. For example, in a network of a thousand hosts, MimicNet’s

steps take 1h3m, 7h10m, and 25m, respectively, while full simulation takes over a week for

the same network/workload. These results hold across a wide range of network configurations

and conditions extracted from the literature. This work contributes:

• Techniques for the modeling of cluster behavior using deep-learning techniques and

flow-level approximation. Critical to the design of the Mimic models are techniques to

ensure the scalability of their accuracy, i.e., their ability to generalize to larger networks

in a zero-shot fashion.

• An architecture for composing Mimics into a generative model of a full-scale data center

network. For a set of complex protocols and real-world traffic patterns, MimicNet can

match ground-truth results orders of magnitude more quickly than otherwise possible.

For large networks, MimicNet even outperforms flow-level simulation in terms of speed

(in addition to producing much more accurate results).

• A customizable hyperparameter tuning procedure and loss function design that ensure

optimality in both generalization and a set of arbitrary user-defined objectives.

188

• Implementations and case studies of a wide variety of network protocols that stress

MimicNet in different ways.

The framework is available at: https://github.com/eniac/MimicNet.

6.2 Motivation

Modern data center networks connect up to hundreds of thousands of machines that, in ag-

gregate, are capable of processing hundreds of billions of packets per second. They achieve

this via scale-out network architectures, and in particular, FatTree networks [41, 119, 245]. In

the canonical version, the network consists of Top-of-Rack (ToR), Cluster, and Core switches.

We refer to the components under a single ToR as a rack and the components under and

including a group of Cluster switches as a cluster. A large data center might have over 100

such clusters.

The size and complexity of these networks make testing and evaluating new ideas and

architectures challenging. Researchers have explored many potential directions including

verification [51, 103, 146, 147, 180], emulation [254, 263, 275], canaries [239, 294], and

runtime monitoring [123, 291]. In reality, all of these approaches have their place in a de-

ployment workflow; however, this chapter focuses on a critical early step: pre-deployment

performance estimation using simulation.

6.2.1 Background on Network Simulation

The most popular simulation frameworks include OMNeT++ [177], ns-3 [205], and OP-

NET [26]. Each of these operates at a packet-level and are built around an event-driven

model [261] in which the operations of every component of the network are distilled into a

sequence of events that each fire at a designated ‘simulated time.’ Compared to evaluation

techniques such as testbeds and emulation, these simulators provide a number of important

advantages:

189

0.0001

0.001

0.01

0.1

0 10 20 30 40 50 60 70

Si
m

ul
at

io
n

Se
co

nd
s

/S
ec

on
d

of ToRs/Aggs

Single Thread One Machine
Two Machines Four Machines

Figure 6.2: OMNeT++ performance on leaf-spine topologies of various size. Even for these
small cases, 5mins of simulation time can take multiple days to process. Results were similar
for ns-3 and other frameworks.

• Arbitrary scale: Decoupling the system model from both hardware and timing con-

straints means that, in principle, simulations can encompass any number of devices.

• Arbitrary extensions: Similarly, with full control over the simulated behavior, users can

model any protocol, topology, design, or configuration.

• Arbitrary instrumentation: Finally, simulation allows the collection of arbitrary informa-

tion at arbitrary granularity without impacting system behavior.

In return for the above benefits, simulators trade off varying levels of accuracy compared to

a bare-metal deployment. Even so, prior work has demonstrated their value in approximating

real behavior [45, 46, 171, 221, 270].

6.2.2 Scalability of Today’s Simulators

While packet-level simulation is easy to reason about and extend, simulating large and com-

plex networks is often prohibitively slow. One reason for this is that discrete-event simulators,

in essence, take a massive distributed system and serialize it into a single event queue. Thus,

the larger the network, the worse the simulation performs in comparison.

190

Parallelization. A natural approach to improving simulation speed is parallelization, for in-

stance, with parallel DES (PDES) [107]. In PDES, the simulated network is partitioned into

multiple logical processes, where each process has its own event queue that is executed in

parallel. Eventually, of course, the processes must communicate. In particular, consistency

demands that a logical process cannot finish executing events at simulated time t unless it

can be sure that no other process will send it additional events at te < t. In these cases,

synchronization may be necessary.

Parallel execution is therefore only efficient when the logical processes can run many

events before synchronization is required, which is typically not the case for highly intercon-

nected data center networks. In fact, simulation performance often decreases in response to

parallelization (see Figure 6.2). Many frameworks instead recommend running several in-

stances with different configurations [100]. This trivially provides a proportional speedup to

aggregate simulation throughput, but does not improve the time to results.

Approximation. The other common approach is to leverage various forms of approxima-

tion. For instance, flow-level approaches [195] average the behavior of many packets to

reduce computation. Closed-form solutions [187] and a vast array of optimized custom sim-

ulators [171, 216, 221] also fall in this category. While these approaches often produce good

performance; they require deep expertise to craft and limit the metrics that one can draw from

the analysis.

6.3 Design Goals

MimicNet is based around the following design goals:

• Arbitrary scale, extensions, and instrumentation: Acknowledging the utility of packet-

level simulation in enabling flexible and rich evaluations of arbitrary network designs,

we seek to provide users with similar flexibility with MimicNet.

• Orders of magnitude faster results: Equally important, MimicNet must be able to provide

meaningful performance estimates several orders of magnitude faster than existing ap-

191

proaches. Parallelism, on its own, is not enough—we seek to decrease the total amount

of work.

• Tunable and high accuracy: Despite the focus on speed, MimicNet should produce

observations that resemble those of a full packet-level simulation. Further, users should

be able to define their own accuracymetrics and to trade this accuracy off with improved

time to results.

Explicitly not a goal of our framework is full generality to arbitrary data center topologies,

routing strategies, and traffic patterns. Instead, MimicNet makes several carefully chosen

and domain-specific assumptions (described in Section 6.4.2) that enable it to scale to larger

network sizes than feasible in traditional packet-level simulation. We argue that, in spite of

these restrictions, MimicNet can provide useful insights into the performance of large data

centers, which we validate in Section 6.9.

6.4 MimicNet Overview

MimicNet’s approach is as follows. Every MimicNet simulation contains a single ‘observable’

cluster, regardless of the total number of clusters in the data center. All of the hosts, switches,

links, and applications in this cluster as well as all of the remote applications with which

it communicates are simulated in full fidelity. All other behavior—the traffic between un-

observed clusters, their internals, and anything else not directly observed by the user—is

approximated by trained models.

While prior work has also attempted to model systems and networks (e.g., [263, 275]),

these systems tend to follow a more traditional script by (1) observing the entire system/net-

work and (2) fitting a model to the observations. MimicNet is differentiated by the insight that,

by carefully composing models of small pieces of a data center, we can accurately approxi-

mate the full data center network using only observations of small subsets of the network.

192

…
…

…
…

Da
ta

 G
en

er
at

io
n

M
od

el
 T

ra
in

in
g

Fe
at

ur
e

Ex
tra

ct
io

n
+

…
…

…
…

M
od

el
 T

es
tin

g

Le
ar

ne
d

M
od

el

H
yp

er
-p

ar
am

et
er

 T
un

in
g

…dr
op

la
te

nc
y

EC
N

…
…

…
…

La
rg

e-
sc

al
e

Si
m

ul
at

io
n

H
yp

er
-tu

ne
d

M
od

elm
an

y
cl

us
te

rs

M
L

m
od

el

❶
❷

❸

❹

❺

Fi
gu
re
6.
3:

Th
e
en
d-
to
-e
nd
,f
ul
ly
au
to
m
at
ed

w
or
kfl
ow

of
M
im
ic
N
et
.

193

6.4.1 Design

MimicNet constructs and composes models at the granularity of individual data center clus-

ters: Mimics. From the outside, Mimics resemble regular clusters. Their hosts initiate connec-

tions and exchange data with the outside world, and their networks drop, delay, and modify

that traffic according to the internal queues and logic of the cluster’s switches. However, Mim-

ics differ in that they are able to predict the effects of that queuing and protocol manipulation

without simulating or interacting with other Mimics—only with the observable cluster.

We note that the goal ofMimicNet is not to replicate the effects of any particular large-scale

simulation, just to generate results that exhibit their characteristics. It accomplishes the above

with the help of two types of models contained within each Mimic: (1) learning-based internal

models that learn the behavior of switches, links, queues, and intra-cluster cross-traffic; and

(2) flow-based feeder models that approximate the behavior of inter-cluster cross-traffic. The

latter is parameterized by the size of the data center. Together, these models take a sequence

of observable packets and their arrival times and output the cluster’s predicted effects:

• Whether the packets are dropped as a result of the queue management policy.

• When the packets egress the Mimic, given no drop.

• Where the packets egress, based on the routing table.

• The contents of the packets after traversing the Mimic, including modifications such as

TTL and ECN.

Workflow. The usage of MimicNet is depicted in Figure 6.3. It begins with a small subset of

the full simulation: just two user-defined clusters communicating with one another (!). This

full-fidelity, small-scale simulation is used to generate datasets for training (") and testing (#)

with supervised learning of the models described above. Augmenting this training phase is

a configurable hyper-parameter tuning stage in which MimicNet explores various options for

modeling with the goal of maximizing both (a) user-defined, end-to-end accuracy metrics

194

… …
Cl
us

te
r Mimic-Real

Mimic-Mimic§6.5

§6.6 §6.6

Figure 6.4: Breakdown of traffic in a to-be-approximated cluster. MimicNet approximates all
traffic that does not interact with the observable cluster (dotted-red lines) using the models in
the referenced sections.

like throughput and FCT, and (b) generalizability to larger configurations and different traffic

matrices ($).

Using the trained models, MimicNet assembles a full-scale simulation in which all of the

clusters in the network (save one) are replaced with Mimics (%). For both data generation and

large-scale simulation, MimicNet uses OMNeT++ as a simulation substrate. A key feature of

MimicNet is that the traditionally slow steps of !, ", #, and $ are all done at small scale and

are, therefore, fast as well.

Performance analysis. To understand MimicNet’s performance gains, consider the Mimic in

Figure 6.4 and the types of packets that flow through it. At a high level, there are two such

types: (1) traffic that interacts with the observable cluster (Mimic-Real), and (2) traffic that

does not (Mimic-Mimic).

As a back-of-the-envelope computation, assume that we simulate N clusters, N) 2.

Also assume that T is the total number of packets sent in the full simulation of the data center

and that p is the ratio of traffic that leaves a cluster vs. that stays within it (inter-cluster-to-intra-

cluster), 0 ≤ p ≤ 1. The number of packets that leave a single cluster in the full simulation is

then approximately Tp
N .

Because Mimics only communicate with the single observable cluster and not each other,

195

the number of packets that leave a Mimic in an approximate simulation is instead:

Tp

N(N − 1)

Thus, the total number of packets generated in a MimicNet simulation (the combination of all

traffic generated at the observable cluster and N − 1 Mimics) is:

T

N
+

(N − 1)Tp

N(N − 1)
=

T + Tp

N

The total decrease in packets generated is, therefore, a factor between N
2 and N with a bias

towardN when traffic exhibits cluster-level locality. Fewer packets and connections generated

mean less processing time and a smaller memory footprint. It also means a decrease in inter-

cluster communication, which makes the composed simulation more amenable to parallelism

than the full version.

6.4.2 Restrictions

MimicNet makes several domain-specific assumptions that aid in the scalability and accuracy

of the MimicNet approach.

• Failure-free FatTrees: MimicNet assumes a FatTree topology, where the structure of the

network is recursively defined and packets follow a strict up-down routing. This allows

it to assume symmetric bisection bandwidth and to break cluster-level modeling into

simpler subtasks.

• Traffic patterns that scale proportionally: To ensure that models trained from two clusters

scale up, MimicNet requires a per-host synthetic model of flow arrival, flow size, packet

size, and cluster-level locality that is independent of the size of the network. In other

words (at least at the host level), users should ensure that the size and frequency of

packets in the first step resemble those of the last step. We note that popular datasets

used in recent literature already adhere to this [46, 64, 171, 197].

196

• Fan-in bottlenecks: Following prior work, MimicNet assumes that the majority of con-

gestion occurs on fan-in toward the destination [134, 245]. This allows us to focus

accuracy efforts on only the most likely bottlenecks.

• Intra-host isolation: To enable the complete removal of Mimic-Mimic connections at

end hosts, MimicNet requires that connections be logically isolated from one another

inside the host—MimicNet models network effects but does not model CPU interactions

or out-of-band cooperation between connections.

MimicNet, as a first step toward large-scale network prediction is, thus, not suited for

evaluating every data center architecture or configuration. Still, we argue that MimicNet can

provide useful performance estimates of a broad class of proposals.

We also note that not all of the restrictions are necessarily fundamental. We briefly spec-

ulate on possible techniques to relax the restrictions.

Topology and routing. In principle, deep learning models could learn the behavior of

arbitrary network topologies, and even incorporate the effects of failures and more exotic

routing policies, e.g., those used in optical circuit-switched networks. This would require a

unified model instead of the ingress/egress/routing models that we currently use, which may

slow down the training and execution of the system. The only piece that would be difficult

to relax is the implicit requirement that the network be decomposed in a way that small-scale

results are representative of a subset of the larger scale simulation. Random networks, would

therefore be challenging for the MimicNet approach; however, heterogeneous but structured

networks may be possible, as described below.

Traffic patterns. The expectations of compatible traffic generators in MimicNet are care-

fully selected, and thus, would be difficult to separate from theMimicNet approach. Certainly,

MimicNet could be used on packet traces rather than the synthetic patterns used in this work

(by characterizing the trace using a distribution). We also note that it may be possible to relax

the symmetry assumption by training distinct models for different types of clusters, e.g., fron-

tend clusters, Hadoop clusters, and storage clusters. More baked-in are the requirements that

197

per-cluster traffic adhere to a consistent distribution regardless of the size of the simulation;

however, given that clusters maintain the same capacity, it is reasonable to expect that they

maintain similar demand.

Bottleneck locations. The assumption that the most common bottlenecks exist in the

downward-facing direction of a packet’s path allowsMimicNet to elide the modeling of effects

like oversubscription coming out of the hosts and core-level congestion from inter-Mimic

traffic. These could easily be added back in via similar mechanisms to inter-Mimic modelling,

but at additional performance costs.

Host-internal isolation. MimicNet’s removal of connections from the host is a large source

of improved performance as those implementations tend to be more complicated and require

more state than even switch queues. Hosts and connections also outnumber, significantly

other components in the simulation. Their removal from the network is replaced by Mimic-

Net’s constituent models, but the hosts in Mimics actually have fewer connections. The effects

of CPU contention could likely be modelled accurately. The effects of out-of-band cooper-

ation between connections, e.g., an RCP-like mechanism running on each hosts, could also

potentially be modelled with sufficient domain-expertise. Both would add to the execution

time, though the training time could be parallelized.

6.5 Internal Models

As mentioned, Mimics are composed of two types of models. The first type models internal

cluster behavior. Its goal is twofold:

• For external traffic (both Mimic-Real and Mimic-Mimic), to be able to predict how the

network of the cluster will affect the packet: whether it drops, its latency, its next hop,

and any packet modifications.

• For internal traffic (between hosts in the same Mimic), to remove it and bake its effects

into the above predictions. In other words, during inference, the model should account

for the observable effects of internal traffic without explicitly seeing it.

198

Note that not all observable effects need to be learned, especially if the result can be

computed using a simple, deterministic function, e.g., TTLs or ECMP. However, for others—

drops, latency, ECN marking, NDP truncation, and so on—the need for the models to scale to

unobserved configurations presents a unique challenge for generalizable learning. To address

the challenge, MimicNet carefully curates training data, feature sets, and models with an

explicit emphasis on ensuring that generated models are scale-independent.

6.5.1 Small-scale Observations

MimicNet begins by running a full-fidelity, but small-scale simulation to gather training data.

Simulation and instrumentation. Data generation mirrors the depiction in Figure 6.3. Users

first provide their host and switch implementations in a format that can be plugged into the

C++-based OMNeT++ simulation framework.

Using these implementations, MimicNet runs a full-fidelity simulation of two clusters con-

nected via a set of Core switches. Among these two clusters, we designate one as the cluster

to be modeled and dump a trace of all packets entering and leaving the cluster. In a FatTree

network, this amounts to instrumenting the interfaces facing the Core switches and the Hosts.

Between these two junctures are the mechanics of the queues and routers—these are what is

learned and approximated by the Mimic internal model.

Pre-processing. MimicNet takes the packet dumps and matches the packets entering and

leaving the network using identifiers from the packets (e.g., sequence numbers). Examining

the matches helps to determine the length of time it spent in the cluster and any changes to

the packet. There are two instances where a 1-to-1 matching may not be possible: loss and

multicast. Loss can be detected as a packet entering the cluster but never leaving. Multicast

must be tracked by the framework. Both can be modeled.

6.5.2 Modeling Objectives

MimicNet models the clusters’ effects as machine learning tasks. More formally, for each

packet of external traffic, i:

199

Latency regression. We model the time that i spends in the cluster’s network as a bounded

continuous random variable and set the objective to minimize the Mean Absolute Error (MAE)

between the real latency and the prediction:

min
∑

|yli − ŷli|,

where yli is (Lmax + ε) if the packet is dropped and (lat ∈ [Lmin, Lmax]) otherwise. ŷli is

the predicted latency. To improve the accuracy of this task, MimicNet uses discretization in

training latency models. Specifically, MimicNet quantizes the values using a linear strategy:

f(yl) =

⌊
yl − Lmin

Lmax − Lmin
×D

⌋

where D is the hyperparameter that controls the degree of discretization. By varying D, we

can trade off the ease of modeling and the recovery precision from discretization.

Drops and packet modification classification. For most other tasks, classification is a better

fit. For example, the prediction of a packet drop has two possible outcomes, and the objective

is to minimize Binary Cross Entropy (BCE):

min
∑
−ydi log ŷdi − (1− ydi) log(1− ŷdi)

where ydi is 1 if i is dropped and 0 otherwise, and ŷdi ∈ [0, 1] is the predicted probability that

i is dropped. Packet modifications like ECN-bit prediction share a similar objective.

Both regression and classification tasks are modeled together with a unified loss function,

which we describe in Section 6.5.4.

6.5.3 Scalable Feature Selection

With the above formulations, MimicNet must next select features that map well to the tar-

get predictions. While this is a critical step in any ML problem, MimicNet introduces an

additional constraint—that the features be scalable.

200

Feature Count

Local rack # Racks per cluster
Local server # Servers per rack

Local cluster switch # Cluster switches per cluster
Core switch traversed # Core switches

Packet size single integer value
Time since last packet single real value (discretized)

EWMA of the above feature single real value (discretized)

Table 6.1: Basic set of scalable features.

A scalable feature is one that remains meaningful regardless of the number of clusters in

the simulation. Consider a packet that enters the Mimic cluster from a Core switch and is

destined for a host within the cluster. The local index of the destination rack ([0, R) for a

cluster of R racks) would be a scalable feature as adding more clusters does not affect the

value, range, or semantics of the feature. In contrast, the IP of the source server would NOT

be a scalable feature. This is because, with just two clusters, it uniquely identifies the origin

of the packet, but as clusters are added to the simulation, never-before-seen IPs are added to

the data.

Table 6.1 lists the scalable features in a typical data center network with ECMP and TCP,

applicable to both ingress and egress packets. Other scalable features that are not listed

include priority bits, packet types, and ECN markings.

MimicNet performs two transformations on the captured features: one-hot encoding the

first four features to remove any implicit ordering of devices and discretizing the two time-

related features as in Section 6.5.2. Crucially, all of these features can quickly be determined

using only packets’ headers, switch routing tables, and the simulator itself.

6.5.4 DCN-friendly Loss Functions

The next task is to select an appropriate training loss function. Several characteristics of this

domain make it difficult to apply the objective functions of Section 6.5.2 directly.

Class imbalances. Even in heavily loaded networks, adverse events like packet drops and

201

 0

 1

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(a) Ground truth

 0

 1

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(b) Pred w/ BCE

 0

 1

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(c) Pred w/ 0.6 WBCE

 0

 1

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(d) Pred w/ 0.9 WBCE

Figure 6.5: Ground truth and LSTM-predicted drops for a one-second test set using different
loss functions. The y-axis is 1 for dropped, 0 for not. Ground truth has 0.3% drop rate and BCE
loss has 0.01%. WBCE results in more realistic drop rates depending on the weight (w=0.6:
0.14%; w=0.9: 0.49%).

ECN tagging are relatively rare occurrences. For example, Figure 6.5a shows an example

trace of drops over a one-second period in a simulation of two clusters. 99.7% of training

examples in the trace are delivered successfully, implying that a model of loss could achieve

high accuracy even if it always predicts ‘no drop.’ Figure 6.5b exemplifies this effect using an

LSTM trained using BCE loss on the same trace as above. It predicts a drop rate of almost an

order of magnitude lower than the true rate.

To address this instance of class imbalance, MimicNet takes a cost-sensitive learning ap-

proach [98] by adopting a Weighted-BCE (WBCE) loss:

$d = −(1− w)
∑

ydi log ŷ
d
i − w

∑
(1− ydi) log(1− ŷdi)

where w is the hyperparameter that controls the weight on the drop class. Figure 6.5c and

6.5d show that weighting drops can significantly improve the prediction accuracy. We note,

however, that setting w too high can also produce false positives. From our experience,

0.6∼0.8 is a reasonable range, and we rely on tuning techniques in Section 6.7.2 to find the

best w for a given network configuration and target metric.

202

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(a) Ground truth

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(b) Pred w/ MAE (1.4× 10−4)

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(c) Pred w/ MSE (3.3× 10−4)

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(d) Pred w/ Huber (1.1× 10−4)

Figure 6.6: Ground truth and LSTM-predicted latency (in seconds) for a one-second test set
using different loss functions. With each, we report the output of the objective, MAE (listed in
parentheses). Unfortunately, using MAE directly as the loss function fails to capture outliers.
Instead, Huber produces more realistic results and a better eventual MAE score.

Outliers in latencies. In latency, an equivalent challenge is accurately learning tail behavior.

For example, consider the latencies from the previous trace, shown in Figure 6.6a. While

most values are low, a few packets incur very large latencies during periods of congestion;

these outliers are important for accurately modeling the network.

Unfortunately, MAE as a loss function fails to capture the importance of these values, as

shown in the latency predictions of an MAE-based model (Figure 6.6b), which avoids predict-

ing high latencies. We note that the other common regression loss function, Mean Squared

Error (MSE), has the opposite problem—it squares the loss for each sample and produces

models that tend to overvalue outliers (Figure 6.6c).

MimicNet strikes a balance with the Huber loss [130]:

$l =
∑

Hδ(y
l
i, ŷ

l
i)

Hδ(y
l, ŷl) =

1
2(y

l − ŷl)2, if |yl − ŷl| ≤ δ,

δ|yl − ŷl|− 1
2δ

2, otherwise

where δ ∈ R+ is a hyperparameter. Essentially, the Huber loss assumes a heavy-tailed error

203

distribution and uses the squared loss and the absolute loss under different situations. Fig-

ure 6.6d shows results for a model trained with the Huber loss (δ = 1). In this particular case,

it reduces inaccuracy (measured in MAE) of the 99-pct latency from 13.2% to only 2.6%.

Combining loss functions. To combine the above loss functions during model training, Mim-

icNet normalizes all values and weights them using hyperparameters. Generally speaking, a

weight that favors latency over other metrics is preferable as regression is a harder task than

classification.

6.5.5 Generalizable Model Selection

Finally, with both features and loss functions, MimicNet can begin to model users’ clusters.

The model should be able to learn to approximate the mechanics of the queues and inter-

faces as well as cluster-local traffic and its reactions to network conditions (e.g., as a result of

congestion control).

Many models exist and the optimal choice for both speed and accuracy will depend heav-

ily on the target network. To that end, MimicNet can support any ML model. Given our

desire for generality, however, it currently leverages one particularly promising class of mod-

els: LSTMs. LSTMs have gained recent attention for their ability to learn complex underlying

relationships in sequences of data without explicit feature engineering [129].

Ingress/egress decomposition. To simplify the required models and improve training effi-

ciency, MimicNet models ingress and egress traffic separately. This approach is partially en-

abled by MimicNet’s requirement of strict up-down routing, the intrinsic modeling of cluster-

local traffic, and the assumption of fan-in congestion. While there are still some inaccuracies

that arise from this decision (e.g., the effect of shared buffers), we found that this choice was

another good speed/accuracy tradeoff for all architectures we tested. For each direction of

traffic, the LSTMs consist of an input layer and a stack of flattened, one-dimensional hidden

layers. The hidden size is #features× #packets where #packets is the number of packets in a

sample, and #features is post one-hotting.

Congestion state augmentation. While in principle, LSTMs can retain ‘memory’ between

204

predictions to learn long-term patterns, in practice, they are typically limited to memory on

the order of 10s or 100s of samples. In contrast, the traffic seen by a Mimic may exhibit

self-similarity on the order of hundreds of thousands of packets. Our problem, thus, exhibits

properties of multiscale models [83].

Because of this, we augment the LSTM model with a piece of network domain knowl-

edge: an estimation of the presence of congestion in each cluster’s network. Specifically, four

distinct states are considered: (1) little to no congestion, (2) increasing congestion as queues

fill, (3) high congestion, and (4) decreasing congestion as queues drain. These states are es-

timated by looking at the latency and drop rate of recently processed packets in the cluster.

By breaking the network up into these four coarse states, the LSTM is able to efficiently learn

patterns over these regimes, each with distinct behaviors. This feature is added to the others

in Table 6.1.

6.6 Feeder Models

While the above (internal) models can model the behavior of the queues, routers, and internal

traffic of a cluster, the complete trace of external traffic is still required to generate accurate

results. In the terminology of Figure 6.4, internal models bake in the effects of the intra-cluster

traffic, but the LSTMs are trained on all external traffic, not just Mimic-Real.

To replace the remaining non-observable traffic, the internal models are augmented with

a feeder whose role is to estimate the arrival rate of inter-Mimic traffic and inject them into the

internal model. Creating a feeder model is challenging compared to internal cluster models

as inter-Mimic traffic is not present in the small-scale simulation and varies as the simulation

scales. MimicNet addresses this by creating a parameterized and fully generative model that

uses flow-level approximation techniques to predict the packet arrival rate of Mimic-Mimic

traffic in different network sizes.

The feeder model is trained in parallel to the internal models. MimicNet first derives from

the small-scale simulation characteristic packet interarrival distributions for all external flows,

separated by their direction (ingress/egress). In our tests, we observed, as others have in the

205

past [64, 158] that simple log-normal or Pareto distributions produced reasonable approxi-

mations of these interarrival times. Nevertheless, more sophisticated feeders can be trained

and parameterized in MimicNet. During the full simulation, the feeders will take the hosts’

inter-cluster demand as a parameter, compute a time-series of active flow-level demand, and

draw packets randomly from that demand using the derived distributions.

Crucially, when feeding packets, the feeders generate ‘packets’ independently, pass their

raw feature vectors to the internal models, and immediately discard any output. This means

that internal models’ hidden state is updated as if the packets were routed without actually

incurring the costs of creating, sending, or routing them. While this approach shares the

weaknesses of other flow-level approximations, like the removal of intra-cluster traffic, these

packets are never directly measured and, thus, an approximation of their effect is sufficient.

Further, while the traffic is never placed in the surrounding queues, i.e., queues of the Core

switch or the egress queues on the Hosts; as prior work has noted, the majority of drops and

congestion are found elsewhere in the network [245].

6.7 Tuning and Final Simulation

MimicNet composesMimics into a parallelized large-scale data center simulation. In addition

to designing the internal and feeder models with scale-independence in mind, it ensures the

models survive scaling with a hyper-parameter tuning phase.

6.7.1 Composing Mimics

An N -cluster MimicNet simulation consists of a single real cluster, N − 1Mimic clusters, and

a proportional number of Core switches. The real cluster continues to use the user implemen-

tation of Section 6.5.1, but users can add arbitrary instrumentation, e.g., by dumping pcaps

or queue depths.

TheMimic clusters are constructed by taking the ingress/egress internal models and feeders

developed in the previous sections and wrapping them with a thin shim layer. The layer

206

intercepts packets arriving at the borders of the cluster, periodically takes packets from the

feeders, and queries the internal models with both to predict the network’s effects. The output

of the shim is, thus, either a packet, its egress time, and its egress location; or its absence.

Adjacent hosts and Core switches are wired directly to the Mimic, but are otherwise unaware

of any change.

Aside from the number of clusters, all other parameters are kept constant from the small-

scale to the final simulation. That includes the feeder models and traffic patterns, which take

a size parameter but fix other parameters (e.g., network load and flow size).

6.7.2 Optional Hyper-parameter Tuning

Mimicmodels contain at least a few hyper-parameters that users can optionally choose to tune:

WBCE weight, Huber loss δ, LSTM layers, hidden size, epochs, and learning rate among oth-

ers. MimicNet provides a principled method of setting these by allowing users to define their

own optimization function. This optimization function is distinct from the model objectives

or the loss functions. Instead, they can evaluate end-to-end accuracy over arbitrary behavior

in the simulation (for instance, tuning for accuracy of FCTs). Users can add hyper-parameters

or end-to-end optimization functions depending on their use cases.

For every tested parameter set, MimicNet trains a set of models and runs validation tests

to evaluate the resulting accuracy and its scale-independence. Specifically, MimicNet runs

an approximated and full-fidelity simulation on a held-out validation workload in three con-

figurations: 2, 4, and 8 clusters. It then compares the two versions using the user’s metric.

The full-fidelity comparison results are only gathered once, and the MimicNet results are

evaluated for every parameter set, but the sizes are small enough that the additional time is

nominal. Based on the user-defined metric, MimicNet uses Bayesian Optimization (BO) to

pick the next parameter set of the highest ‘prediction uncertainty’ via an acquisition function

of EI (expected improvement). BO can quickly converge on the optimal configuration.

MimicNet supports two classes of metrics natively.

MSE-based metrics. For 1-to-1 metrics, MimicNet provides a framework for computing MSE.

207

For example, when comparing the FCT of the same flow in both simulations:

MSE =
1

|Flows|
∑

f∈Flows
(realFCTf −mimicFCTf)2

A challenge in using this class of metrics is that the set of completed flows in the full-fidelity

network and MimicNet are not necessarily identical—over a finite running timespan, flow

completions that are slightly early/late can change the set of observed FCTs. To account for

this, we only compute MSE over the intersection, i.e.,

Flows = {f | (∃ realFCTf ∧ (∃ mimicFCTf)}

By default, MimicNet ignores models with overlap < 80%.

Wasserstein-based metrics. Unfortunately, not all metrics can be framed as above. Consider

per-packet latencies. While in training we assume that we can calculate a per-packet loss and

back-propagate, in reality when a drop is mistakenly predicted, the next prediction should

reflect the fact that there is one fewer packet in the network, rather than adhering to the

original packet trace. In some protocols like TCP, the loss may even cause packets to appear

in the original but not in any MimicNet version or vice versa.

MimicNet’s hyper-parameter tuning phase, therefore, allows users to test distributions,

e.g., of RTTs, FCTs, or throughput, via the Wasserstein metric. Also known as the Earth

Mover’s Distance, the metric quantifies the minimum cost of transforming one distribution

to the other [106]. Specifically, for a one-dimensional CDF, the metric (W1) is:

W1 =

∫ +∞

−∞
|CDFreal(x)− CDFmimic(x)|

W1 values are scale-dependent, with lower numbers indicating greater similarity.

208

6.8 Prototype Implementation

We have implemented a prototype of the full MimicNet workflow in C++ and Python on

top of PyTorch/ATen and the OMNeT++ [177] simulation suite. Given an OMNeT++ router

and host implementation, our prototype will generate training data, train/hypertune a set of

MimicNet models, and compose the resulting models into an optimized, full-scale simulation.

This functionality totals to an additional 25,000 lines of code.

Simulation framework. MimicNet is built on OMNeT++ v4.5 and INET v2.4 with custom

C++ modules to incorporate our machine learning models into the framework. To ensure that

the experiments are repeatable, all randomness, including the seeds for generating the traffic

are configurable. They were kept consistent between variants and changed across training,

testing, and cross validation.

Parallel execution. A side benefit MimicNet is that it significantly reduces the need for syn-

chronization in a parallel execution. In order to take advantage of this property, we parallelize

each cluster of the final simulation using an open-source PDES implementation of INET [248].

Machine learning framework. Our LSTM models are trained using PyTorch 0.4.1 and CUDA

9.2 [204, 212]. Hyperparameter tuning was done with the assistance of hyperopt [27]. At

runtime, Mimic cluster modules accept OMNeT++ packets, extract their features, perform a

forward step of the LSTMs, and forward the packet via ECMP based on the result. For speed,

our embedded LSTMs were custom-built inference engines that leverage low-level C++ and

CUDA functions from the Torch, cuDNN, and ATen libraries.

6.9 Evaluation

Our evaluation focuses on several important properties of MimicNet including: (1) its ac-

curacy of approximating the performance of data center networks, (2) the scalability of its

accuracy to large networks, (3) the speed of its approximated simulations, and (4) its utility

for comparing configurations.

209

2Clusters

0

0.
2

0.
4

0.
6

0.
81 0.
00
1

0.
01

0.
1

1
10

10
0

FractionofFlows

Fl
ow

C
om

pl
et
io
n
Ti
m
e
(s
)

G
ro
un
dt
ru
th

M
im
ic
N
et
(0
.1
08
)

Fl
ow

-le
ve
l(
0.
27
7)

(a
)F
C
T
di
st
ri
bu

tio
n

0

0.
2

0.
4

0.
6

0.
81 10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7

Fraction

Th
ro
ug
hp
ut
(B
ps
)

G
ro
un
dt
ru
th

M
im
ic
N
et
(5
25
6)

Fl
ow

-le
ve
l(
61
61
4)

(b
)T
hr
ou

gh
pu

td
is
tr
ib
ut
io
n

0

0.
2

0.
4

0.
6

0.
81

0.
01

0.
1

1

FractionofPackets

La
te
nc
y
(s
)

G
ro
un
dt
ru
th

M
im
ic
N
et
(0
.0
01
18
)

(c
)P
ac
ke
tR

TT
di
st
ri
bu

tio
n

128Clusters

0

0.
2

0.
4

0.
6

0.
81 0.
00
1

0.
01

0.
1

1
10

10
0

G
ro
un
dt
ru
th
:1
0.
77

M
im
ic
N
et
:1
0.
97

Fl
ow

-le
ve
l:
7.
53

Sm
al
l-s
ca
le
:1
2.
95

FractionofFlows

Fl
ow

C
om

pl
et
io
n
Ti
m
e
(s
)

G
ro
un
dt
ru
th

M
im
ic
N
et
(0
.1
13
)

Fl
ow

-le
ve
l(
0.
50
1)

Sm
al
l-s
ca
le
(0
.4
64
)

(d
)F
C
T
di
st
ri
bu

tio
n

0

0.
2

0.
4

0.
6

0.
81 10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7

G
ro
un
dt
ru
th
:2
13
K

M
im
ic
N
et
:2
21
K

Fl
ow

-le
ve
l:
15
8K

Sm
al
l-s
ca
le
:4
41
K

Fraction

Th
ro
ug
hp
ut
(B
ps
)

G
ro
un
dt
ru
th

M
im
ic
N
et
(7
56
1)

Fl
ow

-le
ve
l(
21
78
7)

Sm
al
l-s
ca
le
(4
21
15
)

(e
)T
hr
ou

gh
pu

td
is
tr
ib
ut
io
n

0

0.
2

0.
4

0.
6

0.
81 0.
00
01

0.
00
1

0.
01

0.
1

1
10

G
ro
un
dt
ru
th
:0
.0
30
7

M
im
ic
N
et
:0
.0
30
2

Sm
al
l-s
ca
le
:0
.0
18
3

FractionofPackets

La
te
nc
y
(s
)

G
ro
un
dt
ru
th

M
im
ic
N
et
(0
.0
02
)

Sm
al
l-s
ca
le
(0
.0
03
)

(f)
Pa
ck
et
R
TT

di
st
ri
bu

tio
n

Fi
gu
re

6.
7:

Th
e
ac
cu
ra
cy

of
M
im
ic
N
et

in
th
e
ba
se
lin
e
co
nfi
gu
ra
tio
n
fo
r
2
cl
us
te
rs
an
d
12
8
cl
us
te
rs
.
A
ls
o
sh
ow

n
ar
e
re
su
lts

fr
om

Si
m
G
ri
d
an
d
th
e
as
su
m
pt
io
n
th
at
sm

al
l-
sc
al
e
re
su
lts

ar
e
re
pr
es
en
ta
tiv
e.

W
1
to
gr
ou
nd

tr
ut
h
is
sh
ow

n
in
pa
re
nt
he
se
s.
W
e
an
no
ta
te
th
e

99
-p
ct
va
lu
e
of
ea
ch

m
et
ri
c
fo
r
ev
er
y
ap
pr
oa
ch

at
th
e
ta
il
in
12
8
cl
us
te
rs
.

210

Methodology. Our simulations all assume a FatTree topology, as described in Section 6.2. We

configured the link speed to be 100Mbps with a latency of 500µs. To scale up and down the

data center, we adjusted the number of racks/switches in each cluster as well as the number of

clusters in the data center. We note that higher speeds and larger networks were not feasible

due to the limitation of needing to evaluate MimicNet against a full-fidelity simulation, which

would have taken multiple years to produce even a single equivalent execution.

The base case uses TCP New Reno, Drop Tail queues, and ECMP. To test MimicNet’s ro-

bustness to different network architectures, we use a set of protocols: DCTCP [46], Homa [197],

TCP Vegas [69], and TCP Westwood [186] that stress different aspects of MimicNet. Our

workload uses traces from a well-known distribution also used by many recent data center

proposals [46, 197]. By default, the traffic utilizes 70% of the bisection bandwidth and the

mean flow size is 1.6MB. All experiments were run on CloudLab [223] using machines with

two Intel Xeon Silver 4114 CPUs and an NVIDIA P100 GPU. When evaluating flow-level

simulation, we use the SimGrid [76] v3.25 and its built-in FatTreeZone configured with

the same topology and traffic demands as full/MimicNet simulation.

Evaluation metrics. As mentioned in Section 6.7.2, traditional per-prediction metrics like

training loss are not useful in our context. Instead, we leverage three end-to-end metrics:

(1) FCT, (2) per-server Throughput binned into 100ms intervals, (3) and RTT. In the flow-

level simulation, FCT is computed using flow start/end times, Throughput is computed with

a custom load-tracking plugin, and RTT is not possible to compute. In MimicNet and full

simulation, all three are computed by instrumenting the hosts in the observable cluster to

track packets sends and ACK receipts. Where applicable, we compare CDFs using W1.

6.9.1 MimicNet Models Clusters Accurately

We begin by evaluating MimicNet’s accuracy when replacing a single cluster with a Mimic

before examining larger configurations in the next section. Note that in this configuration,

there is no need for feeder models. Rather, this experiment directly evaluates the effect of

replacing a cluster’s queues, routers, and cluster-local traffic with LSTMs. For this test, we use

211

0
5K

10K
15K
20K
25K
30K
35K
40K

4 8 16 32 64 128

W
1

to
 G

ro
un

d
Tr

ut
h

Network Size (#Clusters)

Small-scale Flow-level MimicNet

Figure 6.8: Throughput Scalability.

0

5.0e-4
1.0e-3
1.5e-3
2.0e-3
2.5e-3
3.0e-3
3.5e-3

4 8 16 32 64 128

W
1
to
G
ro
un
d
Tr
ut
h

Network Size (#Clusters)

Small-scale MimicNet

Figure 6.9: RTT Scalability. Flow-level simulation is too coarse-grained to provide this metric.

the baseline set of protocols described above. The final results use traffic patterns that are not

found in the training or hyper-parameter validation sets.

Figure 6.7a–Figure 6.7c show CDFs of our three metrics for this test. As the graphs show,

MimicNet achieves very high accuracy on all metrics. The LSTMs are able to learn the requi-

site long-term patterns (FCT and throughput) as well as packet RTTs. Across the entire range,

MimicNet’s CDFs adhere closely to the ground truth, i.e., the full-fidelity, packet-level sim-

ulation; just as crucial, the shape of the curve is maintained. Flow-level simulation behaves

much worse.

212

6.9.2 MimicNet’s Accuracy Scales

A key question is whether the accuracy translates to larger compositions where traffic in-

teractions become more complex and feeders are added. We answer that question using

a simulation composed of 128 clusters (full-fidelity simulation did not complete for larger

sizes). In MimicNet, 127 clusters are replaced with the same Mimics as the previous subsec-

tion. Figure 6.7d–Figure 6.7f show the resulting accuracy. There are a couple of interesting

observations.

First, while the accuracy of MimicNet estimation does decrease, the decrease is nominal.

More concretely, for FCT, throughput, and RTT, we find W1 metrics of 0.113, 7561, and

0.00158 compared to the ground truth, respectively. For reference, we also plot SimGrid

and the original 2-cluster simulation’s results. TheW1 error between 2-cluster simulation and

128-cluster groundtruth are 311%, 457%, and 70% higher than MimicNet’s values; the W1s

of FCT and throughput between SimGrid and the groundtruth are similarly high. The results

indicate that our composition methods are successfully approximating the scaling effects.

Critically, MimicNet also predicts tails well: the p99 of MimicNet’s FCT, throughput, and RTT

distributions are within 1.8%, 3.3%, and 2% of the true result.

We evaluateMimicNet’s scalability of accuracymore explicitly in Figures 6.1, 6.8, and 6.9.

Here, we plot theW1 metric of all three approaches for several data center sizes ranging from

4 to 128. Recall that the 2-cluster results essentially hypothesize that FCT, throughput, and

RTT do not change as the network scales. An upward trend on their W1 metric in all three

graphs suggests that the opposite is true. Compared to that baseline, MimicNet on average

achieves a 43% lower RTT W1 error, 78% lower throughput error, and 63% lower FCT er-

ror. In all cases, MimicNet also shows much lower variance across workloads, demonstrating

better predictability at approximating large-scale networks.

6.9.3 MimicNet Simulates Large DCs Quickly

Equally important, MimicNet can estimate performance very quickly. The multiple phases

of MimicNet—small-scale simulation, model training and hyper-parameter tuning, and large-

213

1

10

100

1000

8 clusters 16 clusters 32 clusters 64 clusters 128 clusters

M
im
ic
N
et
Sp
ee
du
p

2 racks/cluster
4 racks/cluster
8 racks/cluster

N
o
t
fi
n
is
h
e
d
in
3
m
o
n
th
s

N
o
t
fi
n
is
h
e
d
in
3
m
o
n
th
s

N
o
t
fi
n
is
h
e
d
in
3
m
o
n
th
s

Figure 6.10: Simulation running time speedup brought by MimicNet in different sizes of data
centers. In a network of 128 clusters (256 racks), MimicNet reduces the simulation time from
12 days to under 30 minutes, achieving more than two orders of magnitude speedup. The
speedups are consistent and stable across different workloads.

scale composition—each require time, but combined, they are still faster than running the

full-fidelity simulation directly. By paying the fixed costs of the first two phases, the actual

simulation can be run while omitting the majority of the traffic and network connections.

Execution time breakdown. Table 6.2 shows a breakdown of the running time of both the

full simulation and MimicNet, factored out into its three phases for the 128 cluster, 1024 host

simulation in Figure 6.1. For 20 seconds of simulated time, the full-fidelity simulator required

almost 1w 5d. In contrast, MimicNet, in aggregate, only required 8h 38m, where just 25m

was used for final simulation—a 34× speedup. Longer simulation periods or multiple runs

for different workload seeds would have led to much larger speedups.

Simulation time speedup. We focus on the non-fixed-cost component of the execution time in

order to better understand the benefits of MimicNet. Figure 6.10 shows the speedup of Mim-

icNet after the initial, fixed cost of training a cluster model. For each network configuration,

we run both MimicNet and a full simulation over the exact same sets of generated workloads.

We then report the average speedup and the standard error across those workloads.

In both systems, simulation time consists of both setup time (constructing the network,

allocating resources, and scheduling the traffic) as well as packet processing time. MimicNet

214

Factor Time

MimicNet
Small-scale simulation 1h 3m

Training and hyper-param tuning 7h 10m
Large-scale simulation 25m

Full Simulation 1w 4d 22h 25m

Table 6.2: Running time comparison for 20 s of simulated time of a 128 cluster, 1024 host
data center. Benefits of MimicNet increase with simulated time and the size of the network
as the first two values for MimicNet are constant.

101

102

103

104

105

106

107

8 16 32 64 128

O
ut

 o
f m

em
or

y

Si
m

ul
at

io
n

la
te

nc
y

(s
ec

on
ds

)

Network size (#clusters)

Single simulation
Single MimicNet w/ training

Single MimicNet
Partitioned simulation

Partitioned MimicNet

Figure 6.11: Simulation latency with different network sizes.

substantially speeds up both phases.

MimicNet can provide consistent speedups up to 675× for the largest network that full-

fidelity simulation was able to handle. Above that size, full-fidelity could not finish within

three months, while MimicNet can finish in under an hour. Somewhat surprisingly,MimicNet

is also 7× faster than flow-level approximation at this scale as SimGrid must still track all of

the Mimic-Mimic connections.

Groups of simulations. We also acknowledge that simulations are frequently run in groups, for

instance, to test different configuration or workload parameters. To evaluate this, we compare

several different approaches to running groups of simulations and evaluate them using two

metrics: (1) simulation latency, i.e., the total time it takes to obtain the full set of results, and

(2) simulation throughput, i.e., the average number of aggregate simulation seconds that can

be processed per second. We first focus on the effect of network size.

Simulation latency: For latency, N cores in a machine, and S simulation seconds, we

consider five different approaches: (1) single simulation, i.e., one full simulation that runs

215

10-5

10-4

10-3

10-2

10-1

100

8 16 32 64 128

O
ut

 o
f m

em
or

y

O
ut

 o
f m

em
or

y

Si
m

ul
at

io
n

th
ro

ug
hp

ut
(s

im
ul

at
io

n
se

co
nd

s/
se

co
nd

)

Network size (#clusters)

Single simulation
Single MimicNet w/ training

Single MimicNet
Parallel simulation

Parallel MimicNet

Figure 6.12: Simulation throughput with different network sizes.

on a single core and simulates S seconds; (2) single MimicNet w/ training, i.e., one end-

to-end MimicNet instance, running from scratch; (3) single MimicNet, i.e., one MimicNet

instance that reuses an existing model; (4) partitioned simulation, i.e., N full simulations,

each simulating S/N seconds; and (5) partitioned MimicNet, i.e., N MimicNet instances,

each simulating S/N seconds. N=20 as our machines have 20 cores.

Figure 6.11 shows the results for network sizes ranging from 8 to 128 clusters. We make

the following observations. First, when the network is relatively small, the model training

overhead in MimicNet is significant, so ‘single MimicNet w/ training’ takes longer than ‘single

simulation’ to finish. When the network size reaches 64 clusters, even when training time is

included, MimicNet runs faster than any full simulation approach. When the network is

as large as 128 clusters, MimicNet is 2-3 orders of magnitude faster than full simulations.

The results hold when partitioning, with MimicNet gaining an additional advantage in larger

simulations where the removal of the majority of packets/connections introduces substantial

gains to the memory footprint of the simulation group.

Simulation throughput: For throughput, we consider a similar set of five approaches.

Specifically, the first three are identical to (1)–(3) above, while the last two run for S seconds

to maximize throughput: (4) parallel simulation, i.e., N full simulations, each simulating S

seconds and (5) parallel MimicNet, i.e., N MimicNet instances, each simulating S seconds.

Figure 6.12 shows the throughput results for the range of network sizes. Overall, MimicNet

maintains high throughput regardless of the network size because the amount of observable

traffic is roughly constant. Single simulation, on the other hand, slows down substantially

216

101

102

103

104

105

106

107

20 80 320Si
m

ul
at

io
n

la
te

nc
y

(s
ec

on
ds

)

Simulation length (simulation seconds)

Single simulation
Single MimicNet w/ training

Single MimicNet
Partitioned simulation

Partitioned MimicNet

Figure 6.13: Simulation latency with different simulation lengths.

10-4

10-3

10-2

10-1

100

20 80 320

Si
m

ul
at

io
n

th
ro

ug
hp

ut
(s

im
ul

at
io

n
se

co
nd

s/
se

co
nd

)

Simulation length (simulation seconds)

Single simulation
Single MimicNet w/ training

Single MimicNet
Parallel simulation

Parallel MimicNet

Figure 6.14: Simulation throughput with different simulation lengths.

as the size of the network grows, and at 128 clusters, full simulation is almost five orders of

magnitude slower than the real-time. As mentioned in Section 6.2, a remedy prescribed by

many simulation frameworks is to run multiple instances of the simulation. Our results indeed

show that the throughput of parallel simulation compared to single simulation improves by

up to a factor of N . When contrasted to the scale-independent throughput of MimicNet,

however, a single instance of MimicNet overtakes even parallel simulation at 32 clusters.

Larger parallelized instances begin to suffer from the memory issues described above, but

even with unlimited memory, MimicNet would still likely outperform parallel simulation by

2–3 orders of magnitude at 128 clusters.

We also evaluate the effect of simulation length. For these experiments, we fix the network

size as 32 clusters and vary the simulation length from 20 simulation seconds to 320 simu-

lation seconds. Figures 6.13 and 6.14 show the simulation latency and throughput results,

respectively, for different simulation approaches.

The results are somewhat expected: the relative simulation speeds of different approaches

barely change with the simulation length. When simulation length increases, the latency of

217

 3

 4

 5

 6

 7

 8

K=5 K=10 K=20 K=40 K=60 K=80

90
-p

ct
 F

C
T

(s
ec

on
d)

ECN Marking Threshold (packet)

2 clusters
32 clusters

32 clusters (MimicNet)

Figure 6.15: Tuning the marking threshold K in DCTCP: the configuration that achieves the
lowest 90-pct FCT is different between 2 clusters (K = 60) and 32 clusters (K = 20). Mimic-
Net provides the same answer as the full simulation for 32 clusters, but it is 12× faster.

each approach increases correspondingly. The latency of full simulations increases slightly

slower than that of MimicNet because the constant simulation setup overhead in full simu-

lations is significantly higher than MimicNet. The relative latency eventually stabilizes—the

latency of single MimicNet is lower than that of single simulation, even when the model

training time is included in MimicNet, and partitioned MimicNet is better than partitioned

simulation. For all approaches, the simulation throughput does not change at all with the

simulation length. Similarly, single MimicNet outperforms single full simulations, and paral-

lel MimicNet outperforms parallel full simulations. The speedup of MimicNet further grows

when the simulation scales to larger networks.

6.9.4 Use Cases

MimicNet can approximate a wide range of protocols and provide actionable insights for

each. This section presents two potential use cases: (1) a method of tuning configurations of

DCTCP and (2) a performance comparison of several data center network protocols.

Configuration tuning. DCTCP leverages ECN feedback from the network to adjust congestion

windows. An important configuration parameter mentioned in the original paper is the ECN

marking threshold, K, which influences both the latency and throughput of the protocol.

Essentially, a lower K signals congestion more aggressively ensuring lower latency; how-

218

ever, aK that is too low may underutilize network bandwidth, thus limiting throughput. FCTs

are affected by both: short flows benefit from lower latency while long flows favor higher

throughput. The optimal K, thus, depends on both the network and workload. Further, a

simulation’s prescription for K has implications for its feasibility, its latency/throughput com-

parisons to other protocols, and the range of parameters that an operator might try when

deploying to production.

Figure 6.15 compares the 90-pct FCT for different Ks. Looking only at the small-scale

simulation, one may be led to believe that the optimal setting for our workload is K = 60.

Looking at the larger 32-cluster simulation tells a very different story—one where K = 60 is

among the worst of configurations tested and K = 20 is instead optimal. MimicNet success-

fully arrives at the correct conclusion.

Comparing protocols. Finally, MimicNet is accurate enough to be used to compare different

transport protocols. We implement an additional four such protocols that each stress Mim-

icNet’s modeling in different ways. Homa is a low-latency data center networking protocol

that utilizes priority queues—a challenging extra feature for MimicNet as packets can be re-

ordered. TCP Vegas is a delay-based transport protocol that serves as a stand-in for the recent

trend of protocols that are very sensitive to small changes in latency [196, 150]. TCP West-

wood is a sender-optimized TCP that measures the end-to-end connection rate to maximize

throughput and avoid congestion. DCTCP (K = 20) uses ECN bits, which add an extra feature

and prediction output compared to the other protocols. We run the full MimicNet pipeline for

each of the protocols, training separate models. We then compare their performance over the

same workload, and we evaluate the accuracy and speed of MimicNet for this comparison.

The FCT results are in Figure 6.16.

As in the base configuration, for all protocols, MimicNet can match the FCT of the full-

fidelity simulation closely. In fact, on average, the approximated 90-pct and 99-pct tails by

MimicNet are within 5% of the ground truth. Because of this accuracy, MimicNet perfor-

mance estimates can be used to gauge the rough relative performance of these protocols. For

example, the full simulation shows that the best and the worst protocol for 90-pct of FCT is

219

 0
 0.2
 0.4
 0.6
 0.8

 1

10-5 10-4 10-3 10-2 10-1 100 101 102F
ra

ct
io

n
of

 F
lo

w
s

Flow Completion Time (s)

Homa
DCTCP

TCP Vegas
TCP Westwood

(a) Ground truth of the comparison

 0
 0.2
 0.4
 0.6
 0.8

 1

10-5 10-4 10-3 10-2 10-1 100 101 102F
ra

ct
io

n
of

 F
lo

w
s

Flow Completion Time (s)

Homa
DCTCP

TCP Vegas
TCP Westwood

(b) The approximation of MimicNet.

Figure 6.16: FCT distributions of Homa, DCTCP, TCP Vegas, and TCP Westwood for a 32-
cluster data center.

Homa (3.1 s) and TCP Vegas (4.5 s); MimicNet predicts the correct order with similar values:

Homa with 3.3 s and TCP Vegas with 4.6 s. While the exact values may not be identical, Mim-

icNet can predict trends and ballpark comparisons muchmore accurately than the small-scale

baseline. It can arrive at these estimates in a fraction of the time—12× faster.

Figures 6.17 and 6.18 show throughput and packet RTT comparisons respectively. Similar

to FCT, MimicNet can closely match the throughput and RTT of a real simulation for all pro-

tocols. We can use the estimation of MimicNet to compare these protocols—not only their

general trends of throughput and RTT distributions, but also their ranking at specific points.

For example, TCP Westwood achieves the best 90 percentile throughput performance due

to its optimizations on utilizing network bandwidth; in comparison, DCTCP has the lowest

220

 0
 0.2
 0.4
 0.6
 0.8

 1

100 101 102 103 104 105 106 107

F
ra

ct
io

n

Throughput (Bps)

Homa
DCTCP

TCP Vegas
TCP Westwood

(a) The ground truth of the comparison

 0
 0.2
 0.4
 0.6
 0.8

 1

100 101 102 103 104 105 106 107

F
ra

ct
io

n

Throughput (Bps)

Homa
DCTCP

TCP Vegas
TCP Westwood

(b) The approximation of MimicNet.

Figure 6.17: Comparison of throughput distributions.

throughput at this particular point. MimicNet successfully predicts the order. The situation

in RTT, however, is the opposite: TCP Westwood now has the highest 90 percentile latency,

while DCTCP performs the best among these four protocols. This comparison is also correctly

predicted by MimicNet.

6.9.5 Compute Consumption

A potential concern in using MimicNet is its compute resource consumption: it uses GPU

resources for model training and runtime inference while the full simulations only use CPUs.

We now evaluate this aspect.

Specifically, we calculate the total number of floating-point operations (FLOPs) in both

221

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.001 0.01 0.1 1 10 100

F
ra

ct
io

n
of

 P
ac

ke
ts

Latency (s)

Homa
DCTCP

TCP Vegas
TCP Westwood

(a) The ground truth of the comparison

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.001 0.01 0.1 1 10 100

F
ra

ct
io

n
of

 P
ac

ke
ts

Latency (s)

Homa
DCTCP

TCP Vegas
TCP Westwood

(b) The approximation of MimicNet.

Figure 6.18: Comparison of packet RTT distributions.

CPUs (for both full simulations and MimicNet) and GPUs (for MimicNet only) of the simula-

tion approaches in Section 6.9.3 as their compute resource consumption. Figure 6.19 shows

the result for the evaluation of latency (similar findings in the evaluation of throughput). In-

deed, MimicNet shows significant computational load, primarily because of the use of GPUs

for training and inference. This makes its compute consumption higher than full simulations

when the network to be simulated is small, especially when the training overhead is counted.

However, in large networks, e.g., 128 clusters, the use of deep learning models in Mimic-

Net pays off by much lower simulation latency, and its total compute consumption is lower

than full simulations even with the computational overhead in training models. We leave the

further optimization on MimicNet compute consumption to future work.

222

104

105

106

107

108

109

8 16 32 64 128

O
ut

 o
f m

em
or

y

Co
m

pu
ta

tio
n

(g
ig

a
FL

O
Ps

)

Network size (#clusters)

Single simulation
Single MimicNet w/ training

Single MimicNet
Partitioned simulation

Partitioned MimicNet

Figure 6.19: Compute consumption in different simulation approaches.

6.9.6 The Impact of Model Complexity

We note that in MimicNet, a significant, domain-specific factor in model complexity is the

size of the training window. The window is a number of packets (their features) that we input

to the model. This size decides (1) the amount of data that the model learns from one sample,

and (2) the hidden size of our LSTM model. Having a larger window helps learning and

potentially improves the prediction accuracy, but at the cost of training and inference speed.

Figure 6.20 shows both of these effects on the training of an ingress model. From Fig-

ure 6.20a, we can see that a window size of only 1 packet performs very poorly, even after

several epochs. The training accuracy is quickly improved with additional packets in the win-

dow, but this comes with diminishing returns after the window size reaches the BDP of the

network (around 12 packets). Figure 6.20b shows a reverse trend for training time. This sug-

gests that the BDP of the network strikes a good balance between accuracy and speed for the

LSTM model. We also evaluated the impact of the window size on the validation accuracy

and the inference speed and made similar observations. Figure 6.21 shows the result.

6.10 Related Work

Packet-level simulation. As critical tools for networking, simulators have existed for de-

cades [155]. Popular choices include ns-3 [205, 128], OMNeT++ [177], and Mininet [154].

When simulating large networks, existing systems tend to sacrifice one of scalability or gran-

ularity. BigHouse, for instance, models data center behavior using traffic drawn from em-

223

 0.01

 0.02

 0.03

 0.04

 1 2 3 4 5 6 7 8 9 10

Tr
ai

ni
ng

 L
os

s

1 packet
2 packets
5 packets

10 packets
12 packets
20 packets

(a) Training loss descent

 0

 0.01

 0.02

Tr
ai

ni
ng

 L
at

en
cy

 (s
)

1 packet
2 packets
5 packets

10 packets
12 packets
20 packets

(b) Training latency

Figure 6.20: The impact of the window size on modeling accuracy and speed. The BDP of
the network is around 12 packets. More packets in the window help loss descent (through
epochs), but can make the training slower (training latency is per batch in Python).

 0.01

 0.02

 0.03

 0.04

 1 2 3 4 5 6 7 8 9 10

Va
lid

at
io

n
Lo

ss

1 packet
2 packets
5 packets

10 packets
12 packets
20 packets

(a) Validation loss descent

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

In
fe

re
nc

e
La

te
nc

y
(m

s)

1 packet
2 packets
5 packets

10 packets
12 packets
20 packets

(b) Inference latency

Figure 6.21: The impact of the window size on modeling (validation) accuracy and inference
latency per packet in C++.

pirically generated distributions and a model of how traffic distributions translate to a set of

performance metrics [187]. Our system, in contrast, begins with a faithful reproduction of the

target system, providing a more realistic simulation.

Emulators. Another class of tools attempts to build around real components to maintain

an additional level of realism [40, 263, 170]. Flexplane [208], for example, passes real,

production traffic through models of resource management schemes. Pantheon [275] runs

real congestion control algorithms on models of Internet paths. Unfortunately, emulation’s

dependency on real components often limits the achievable scale. Scalability limitations

224

even impact systems like DIABLO [254], which leverages FPGAs to emulate devices with

low cost, but may still require ∼$1 million to replicate a large-scale deployment.

Phased deployment. Also related are proposals such as [240, 295] reserve slices of a produc-

tion network for A/B testing. While showing true at-scale performance, they are infeasible for

most researchers.

Preliminary version. Finally, we note that a published preliminary version of this work ex-

plored the feasibility of approximating packet-level simulations using deep learning [142].

This chapter represents a substantial evolution of that work. Critical advancements include

the notion of scale-independent features, end-to-end hyper-parameter tuning methods/metrics

that promote scalability of accuracy, the addition of feeder models, improved loss function

design, and other machine learning optimizations such as discretization. These are in addi-

tion to significant improvements to the MimicNet implementation and a substantially deeper

exploration of the design/evaluation of MimicNet.

6.11 Summary

This chapter presents MimicNet, which enables fast performance estimates of large data cen-

ter networks. MimicNet exploits the symmetric, hierarchical structure of data centers to break

their simulation down into a composition of several clusters. Through judicious use of ma-

chine learning and other modeling techniques, MimicNet exhibits super-linear scaling com-

pared to full simulation while retaining high accuracy in replicating observable traffic. While

we acknowledge that there is still work to be done in making the process simpler and even

more accurate, the design presented here provides a proof of concept for the use of machine

learning and problem decomposition for the approximation of large networks.

225

CHAPTER 7

CONCLUSION

How do today’s systems perform at processing massive data on hyperscale data center infras-

tructure? Our extensive performance studies in this dissertation have provided a clear answer:

they suffer from many inefficiencies. A key observation that we make is that network commu-

nications are becoming the primary source of these inefficiencies. This is true in current data

centers, where a hierarchical and oversubscribed network connects a large number of servers.

Existing data processing systems send messages across distributed processes without consid-

ering the characteristics of the network, while it is increasingly challenging for the network to

provide a simple abstraction for many distributed servers. It is also true in future data centers,

where hardware resources are physically disaggregated. Existing data processing systems are

not aware of the novel architectural difference and end up moving excessive amounts of data

through the network. Hence, this dissertation advocates that centering the designs of data

processing systems around network communication bottlenecks is a fundamental approach

to efficient hyperscale data processing. This approach will only become more critical as the

degree of distribution continues to increase because of fast-growing data volumes and the

loose coupling between hardware components.

We summarize the contributions of this dissertation as follows.

• A hyperscale graph processing system. GraphRex proposes a set of network-aware re-

lational operators, i.e., Global Operators, that encompass a collection of optimizations

226

customized for graph processing at data center scale. These optimizations exploit the

semantics of relational operators and the underlying data center network topology to re-

duce data transfer over expensive network links. They demonstrated order-of-magnitude

communication efficiency in current data centers.

• An in-depth investigation on data processing with disaggregated memory. We con-

ducted the first in-depth study of data management systems in disaggregated data cen-

ters. Through extensive evaluation and analysis on production database systems, we

confirmed the performance overhead of disaggregation incurred by frequently moving

data through the network. We also found that the elasticity of disaggregated memory

can in fact benefit memory-intensive workloads. Our results provide important insights

on deploying and developing data processing systems in future data centers.

• A compute pushdown primitive for disaggregated data centers. TELEPORT enables

compute pushdown for disaggregated memory. It adopts a lazy data synchronization

approach to ensure pushdown efficiency. As part of the operating system, TELEPORT

requires minimal code modification on its applications. With TELEPORT, data process-

ing systems can determine how to best move computation and data in disaggregated

data centers to eliminate the high overhead of disaggregation.

• A high-performance cache with remote memory. Redy is an RDMA-accessible cache

service using remotememory. It automatically configures RDMA to satisfy user-provided

performance SLO and minimize resource cost. Redy caches are robust to remote mem-

ory dynamics. Memory-intensive applications can use Redy to improve their perfor-

mance on large workloads, as well as data center memory utilization.

• A hyperscale network evaluation framework. MimicNet adopts deep learning to ap-

proximate data center network behavior. As a packet-level simulator, it learns at small

scale and uses the learned models to compose simulations at large scale. MimicNet ar-

rives at accurate evaluation results orders of magnitude faster than existing approaches.

MimicNet can significantly speed up the data center innovation cycle.

227

7.1 Other Work

We have worked on several projects that we did not include in this dissertation. These works

focused on other aspects of data processing such as applications, cost efficiency, and fault

tolerance. We briefly describe them here.

Data science application with machine learning. Crowdfunding is a new mechanism for

connecting entrepreneurs with thousands of online investors. However, no previous studies

have investigated its effectiveness and what strategies startups should adopt to maximize their

chances. With a 7-month data collection, we tracked the activities of over 4000 startups

on AngelList, a popular crowdfunding website, Twitter, and Facebook. With the dataset, we

predicted whether startups succeed or fail in crowdfunding based on novel machine learning

techniques and features that describe startup social engagement [289].

Performance and cost analysis of graph processing. Many graph processing systems have

adopted distributed, shared-nothing architectures to run in a cluster of machines. Others ar-

gued that a single machine is often enough. There has been no consensus on which approach

is better. From a user perspective, it is difficult to select the best system given a workload.

We performed the first study of the performance and cost of state-of-the-art graph processing

systems [286]. Our analysis revealed that the systems that achieve the highest performance

are often different than those with the lowest cost. Optimality depends on the input graph,

query, and targeted metric. Our detailed analysis provides useful insights for the selection

and development of graph systems, including GraphRex.

Faster and cheaper remote caching. Remote caching systems like Redy, Redis, and mem-

cached let applications offload large states to remote servers. However, even with fast caches,

performance degradation is still significant due to the difference between local and remote

memory access latency. We proposed CompuCache [282], a new service that supports of-

floading both data and computation over the data to remote caches. CompuCache achieves

higher performance by single-round-trip offloading with server-side pointer-chasing. It also

uses spot VMs as cache servers for lowering the cost. Since spot VMs are unreliable, Com-

228

puCache reacts quickly to failures. Our experiments showed that the throughput of Compu-

Cache is 200× higher than that of Redis, achieving 126 million offloading invocations per

second with a single server.

7.2 Future Work

The network-centric systems we have built sketch out the broad picture of hyperscale data pro-

cessing and show the difficulties of achieving good performance. Many challenges remain as

both applications and infrastructure evolve. In this section, we discuss three directions where

we can extend the work presented in this dissertation by applying principled approaches to

process data in more diverse forms and in next-generation networks.

Diverse workloads as data processing. This dissertation scopes in the processing of a few

representative cloud workloads (relational databases, key-values, and graphs). Other types

of workloads are also increasingly important and can just be processed as data. One exam-

ple is processing streams from IoT (Internet of Things) devices, machine-generated logs, and

cameras, where the data is dynamic and states in the processing are unbounded.

Another popular example is machine learning (ML) applications, which are now powered

by massive models, datasets, and computing infrastructure. Distributed ML can experience

expensive network overheads in some of its critical components such as aggregating and

broadcasting parameters between workers and parameter servers in data parallel training.

ML models are becoming extremely large—up to hundreds of billions of parameters. Training

and executing such massive models as special hyperscale data processing tasks are interesting

future directions. Exploring the space for these workloads would need to involve both network

and application-specific expertise.

Emerging cloud computing paradigms like blockchains and serverless can also suffer from

network bottlenecks in data centers, e.g., transaction ordering in permissioned blockchains

and data shuffling between serverless functions. Although specific optimizations have been

proposed recently for these platforms, it is appealing to apply network-centric designs to

229

address the bottlenecks in systematic and scalable ways.

New cloud trends. An important trend in data center design is that cloud providers are aug-

menting their data centers with more domain and application-specific accelerators such as

SmartNICs, FPGAs and ASICs to meet the rapidly increasing computation demand. Another

trend is that data center networks are becoming more programmable. An example is pro-

grammable network switches, which can do more than just forwarding packets. Users can

execute awide range of operations over packets in network at line rate. Automatically optimiz-

ing data processing by universally leveraging these accelerators and programmable switches,

e.g., offloading components that are costly for end hosts, is a direction we plan to investigate.

Techniques that we developed in TELEPORT and CompuCache will likely be useful.

Next-generation Internet. Like data center networks, the Internet is becoming ultra fast. In

the coming 5G networks, edge devices can communicate with cloud servers with multi-Gbps

bandwidth. 6G is expected to be orders of magnitude faster. High-speed Internet may have

two implications. First, more data will likely be uploaded to clouds for processing with stricter

timing requirements. This would add higher pressure to both cloud infrastructure and data

processing systems. Investigating the new challenges introduced by massive load increase

from the Internet is an important direction. The other implication is that data processing jobs

can scale beyond data centers—operations can be efficiently placed on and moved between

edge devices and cloud servers. This will likely create new computing paradigms that are

much larger than today’s distributed processing. The whole Internet would work like a giant

data center, in which we can utilize global resources for data processing at any scale. Many

techniques that this dissertation has introduced may still be useful, e.g., network awareness,

caching, and automatic compute offloading, but there will be new challenges. In particular,

wide-area networks can experience great performance variation due to the mobility of edge

devices. Proposing new architectures to improve network robustness and codesigning data

processing systems to provide end-to-end guarantees are also promising directions.

230

BIBLIOGRAPHY

[1] Amazon aurora db clusters. https://docs.aws.amazon.com/AmazonRDS/
latest/AuroraUserGuide/Aurora.Overview.html.

[2] Amazon migrates 50 pb of analytics data from oracle to
aws. https://aws.amazon.com/solutions/case-studies/
amazon-migration-analytics/. Accessed in July, 2022.

[3] Apache giraph. http://giraph.apache.org/.

[4] Apache hive. https://hive.apache.org/.

[5] Apache spark - unified analytics engine for big data. https://spark.apache.org.

[6] Big data analytics on-premises, in the cloud, or on hadoop | vertica. https://www.
vertica.com.

[7] Bigdatalog. https://github.com/ashkapsky/BigDatalog.

[8] Bigquery for data warehouse practitioners. https://cloud.google.com/
solutions/bigquery-data-warehouse.

[9] Connectx-6 single/dual-port adapter supporting 200Gb/s with VPI. https://www.
nvidia.com/en-us/networking/infiniband-adapters/connectx-6
(visited on 12/24/2021).

[10] Databricks sql - customer stories. https://databricks.com/product/
databricks-sql. Accessed in July, 2022.

[11] Fabric performance tools. https://docs.mellanox.com/display/winof2/
Fabric+Performance+Utilities (visited on 12/24/2021).

[12] GraphLab PowerGraph. https://github.com/jegonzal/PowerGraph.

[13] How google search organizes information. https://www.google.com/search/
howsearchworks/how-search-works/organizing-information/. Ac-
cessed in July, 2022.

[14] Improve Performance of a File Server with SMB Direct. https://microsoft.com/
en-us/library/jj134210.aspx.

231

[15] Introducing data center fabric, the next-generation facebook data center network.
https://bit.ly/3rckiai.

[16] LegoOS. https://github.com/WukLab/LegoOS.

[17] Lz4 - extremely fast compression. http://lz4.github.io/lz4/.

[18] memcached - a distributed memory object caching system. https://memcached.
org/.

[19] MonetDB. https://www.monetdb.org/.

[20] Nvidia mellanox connectx-5 single/dual-port adapter supporting 100Gb/s with VPI.
https://www.nvidia.com/en-us/networking/infiniband-adapters/
connectx-5/ (visited on 12/24/2021).

[21] The parallelism operator (aka exchange). https://
blogs.msdn.microsoft.com/craigfr/2006/10/25/
the-parallelism-operator-aka-exchange/.

[22] Redis. https://redis.io/.

[23] The future of analytics in the cloud. https://s3.amazonaws.com/bizzabo.
file.upload/J2AUieXBSpWr2YAUqZHK_GrazianoThe%20Future%20of%
20Analytics%20-%20RMOUG.pdf. Accessed in July, 2022.

[24] TPC-H SF100 non-parallel plans, SQL Server 2008. http://www.qdpma.com/
tpch/TPCH100_Query_plans.html.

[25] Will the latest ai kill coding? https://towardsdatascience.com/
will-gpt-3-kill-coding-630e4518c04d. Accessed in July, 2022.

[26] Opnet network simulator, 2015. https://opnetprojects.com/
opnet-network-simulator/.

[27] Hyperopt, 2018. http://hyperopt.github.io/hyperopt/.

[28] Connectx-6 single/dual-port adapter supporting 200Gb/s with VPI. https://www.
mellanox.com/products/infiniband-adapters/connectx-6, 2020.

[29] Postgresql: The world’s most advanced open source relational database. https://
www.postgresql.org/, 2020.

[30] Connectx®-3 pro en single/dual-port adapters 10/40/56gbe adapters w/ pci ex-
press 3.0. https://www.mellanox.com/products/ethernet-adapters/
connectx-3-pro, 2021.

[31] Daniel J. Abadi, Samuel R. Madden, and Miguel C. Ferreira. Integrating compression
and execution in column-oriented database systems. In Proc. SIGMOD, 2006.

[32] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-stores vs. row-stores:
How different are they really? In Proc. SIGMOD, 2008.

232

[33] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel R. Madden. Material-
ization strategies in a column-oriented DBMS. In Proc. ICDE, 2007.

[34] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. Emptyheaded:
A relational engine for graph processing. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pages 431–446, 2016.

[35] Sarita V. Adve and Mark D. Hill. Weak ordering - A new definition. In Jean-Loup Baer,
Larry Snyder, and James R. Goodman, editors, Proceedings of the 17th Annual Inter-
national Symposium on Computer Architecture, Seattle, WA, USA, June 1990, pages
2–14. ACM, 1990.

[36] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,
Stanko Novakovic, Arun Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati,
Rajesh Venkatasubramanian, and Michael Wei. Remote regions: a simple abstraction
for remote memory. 2018.

[37] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,
Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and
Michael Wei. Remote memory in the age of fast networks. 2017.

[38] Marcos K. Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad Singhal. Design-
ing far memory data structures: Think outside the box. In Proceedings of the Workshop
on Hot Topics in Operating Systems (HotOS), 2019.

[39] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N. Vijaykumar. Shuf-
flewatcher: Shuffle-aware scheduling in multi-tenant mapreduce clusters. In 2014
USENIX Annual Technical Conference (USENIX ATC 14), pages 1–13, Philadelphia,
PA, 2014. USENIX Association.

[40] M. Al-Fares, R. Kapoor, G. Porter, S. Das, H. Weatherspoon, B. Prabhakar, and A. Vah-
dat. Netbump: User-extensible active queue management with bumps on the wire.
In 2012 ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS), pages 61–72, Oct 2012.

[41] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commod-
ity data center network architecture. In Proceedings of the ACM SIGCOMM 2008
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, Seattle, WA, USA, August 17-22, 2008, pages 63–74. ACM, 2008.

[42] Alibaba. Alibaba cluster trace program. https://github.com/alibaba/
clusterdata.

[43] Alibaba. ApsaraDB for POLARDB: A next-generation relational database
- Alibaba cloud. https://www.alibabacloud.com/products/
apsaradb-for-polardb, 2019.

233

[44] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Min-
lan Yu, and Ming Zhang. Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics. In Proceedings of the 14th USENIX Conference on
Networked Systems Design and Implementation, NSDI’17, pages 469–482, Berkeley,
CA, USA, 2017. USENIX Association.

[45] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan,
Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong Pan, Navindra Yadav,
and George Varghese. CONGA: distributed congestion-aware load balancing for dat-
acenters. In Fabián E. Bustamante, Y. Charlie Hu, Arvind Krishnamurthy, and Sylvia
Ratnasamy, editors, ACM SIGCOMM 2014 Conference, SIGCOMM’14, Chicago, IL,
USA, August 17-22, 2014, pages 503–514. ACM, 2014.

[46] Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data center TCP
(DCTCP). In Shivkumar Kalyanaraman, Venkata N. Padmanabhan, K. K. Ramakrishnan,
Rajeev Shorey, and Geoffrey M. Voelker, editors, Proceedings of the ACM SIGCOMM
2010 Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, New Delhi, India, August 30 -September 3, 2010, pages 63–
74. ACM, 2010.

[47] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,
and Masato Yasuda. Less is more: Trading a little bandwidth for ultra-low latency in
the data center. In Presented as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), pages 253–266, San Jose, CA, 2012.
USENIX.

[48] Amazon-Aurora. Amazon aurora - Relational database built for the cloud - AWS.
https://aws.amazon.com/rds/aurora/, 2019.

[49] Amazon Web Services. Amazon ec2 spot instances. https://aws.amazon.com/
aws-cost-management/aws-cost-optimization/spot-instances/ (vis-
ited on 12/24/2021).

[50] Pradeep Ambati, Iñigo Goiri, Felipe Vieira Frujeri, Alper Gun, Ke Wang, Brian Dolan,
Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety, Marcus Fon-
toura, and Ricardo Bianchini. Providing slos for resource-harvesting vms in cloud plat-
forms. In 14th USENIX Symposium on Operating Systems Design and Implementation,
OSDI , pages 735–751. USENIX Association, 2020.

[51] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen,
Cole Schlesinger, and David Walker. Netkat: Semantic foundations for networks. In
Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’14, pages 113–126, New York, NY, USA, 2014. ACM.

[52] T. E. Anderson, D. E. Culler, and D. Patterson. A case for NOW (Networks of Worksta-
tions). IEEE Micro, 15(1):54–64, Feb 1995.

234

[53] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. Disaggregation and the appli-
cation. 2020.

[54] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. Disaggregation and the appli-
cation. July 2020.

[55] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernandez
Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam, Umar Farooq
Minhas, Naveen Prakash, Vijendra Purohit, Hugh Qu, Chaitanya Sreenivas Ravella,
Krystyna Reisteter, Sheetal Shrotri, Dixin Tang, and Vikram Wakade. Socrates: The
new SQL server in the cloud. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June
30 - July 5, 2019, pages 1743–1756. ACM, 2019.

[56] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley,
XiangruiMeng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, andMatei Zaharia. Spark
SQL: relational data processing in spark. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne, Victoria, Australia, May
31 - June 4, 2015, pages 1383–1394, 2015.

[57] Joy Arulraj and Andrew Pavlo. How to build a non-volatile memory database man-
agement system. In Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and
Dan Suciu, editors, Proceedings of the 2017 ACM International Conference on Man-
agement of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 1753–1758. ACM, 2017.

[58] Krste Asanović. FireBox: A Hardware Building Block for 2020 Warehouse-Scale Com-
puters. 2014.

[59] Ron Avnur and JosephM. Hellerstein. Eddies: Continuously adaptive query processing.
2000.

[60] Azure. Azure public dataset. https://github.com/Azure/
AzurePublicDataset.

[61] David F. Bacon, Nathan Bales, Nicolas Bruno, Brian F. Cooper, Adam Dickinson, An-
drew Fikes, Campbell Fraser, Andrey Gubarev, Milind Joshi, Eugene Kogan, Alexander
Lloyd, Sergey Melnik, Rajesh Rao, David Shue, Christopher Taylor, Marcel van der
Holst, and Dale Woodford. Spanner: Becoming a SQL system. In Semih Salihoglu,
Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, pages 331–343. ACM, 2017.

[62] Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Kossmann. Rack-scale
in-memory join processing using RDMA. 2015.

[63] Claude Barthels, IngoMüller, Konstantin Taranov, Gustavo Alonso, and Torsten Hoefler.
Strong consistency is not hard to get: Two-phase locking and two-phase commit on
thousands of cores. Proc. VLDB Endow., 12(13):2325–2338, 2019.

235

[64] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic characteristics
of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement, 2010.

[65] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian. The
end of slow networks: It’s time for a redesign. Proc. VLDB Endow., 9(7):528–539, 2016.

[66] Spyros Blanas, Paraschos Koutris, and Anastasios Sidiropoulos. Topology-aware parallel
data processing: Models, algorithms and systems at scale. In 10th Conference on
Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands, January
12-15, 2020, Online Proceedings. www.cidrdb.org, 2020.

[67] Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash. Compact representations of
separable graphs. In Proc. SODA, 2003.

[68] Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash. An experimental analysis of a
compact graph representation. In Proc. ALENEX, 2004.

[69] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. Tcp vegas: New tech-
niques for congestion detection and avoidance. SIGCOMM Comput. Commun. Rev.,
24(4):24–35, October 1994.

[70] Yingyi Bu, Vinayak Borkar, Jianfeng Jia, Michael J. Carey, and Tyson Condie. Pregelix:
Big(ger) graph analytics on a dataflow engine. PVLDB, 8(2), 2014.

[71] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang Chen, Beng Chin
Ooi, Kian-Lee Tan, Yong Meng Teo, and Sheng Wang. Efficient distributed memory
management with RDMA and caching. PVLDB, 11(11):1604–1617, 2018.

[72] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang Chen, Beng Chin
Ooi, Kian-Lee Tan, Yong Meng Teo, and Sheng Wang. Efficient distributed memory
management with RDMA and caching. Proc. VLDB Endow., 11(11):1604–1617, 2018.

[73] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu, Xuntao
Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang, Haiqing Sun,
Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei Zhao, Yusong Gao,
Songlu Cai, Yunyang Zhang, and Jiawang Tong. Polardb serverless: A cloud native
database for disaggregated data centers. In SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20-25, 2021, pages 2477–2489. ACM,
2021.

[74] Xiang Cao, Kewal Keshaorao Panchputre, and David Hung-Chang Du. Accelerating
data shuffling inmapreduce framework with a scale-upNUMA computing architecture.
In HPC ’16.

[75] Amanda Carbonari and Ivan Beschastnikh. Tolerating Faults in Disaggregated Data-
centers. 2017.

[76] Henri Casanova, ArnaudGiersch, Arnaud Legrand, Martin Quinson, and Frédéric Suter.
Versatile, scalable, and accurate simulation of distributed applications and platforms.
Journal of Parallel and Distributed Computing, 74(10):2899–2917, June 2014.

236

[77] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J. Levandoski, James
Hunter, andMike Barnett. FASTER: A concurrent key-value store with in-place updates.
In Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein, editors, Proceedings
of the 2018 International Conference on Management of Data, SIGMOD 2018, pages
275–290. ACM, 2018.

[78] Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli, and
Michael Andrews. The memsql query optimizer: A modern optimizer for real-time
analytics in a distributed database. Proc. VLDB Endow., 9(13):1401–1412, 2016.

[79] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. One trillion edges: Graph processing at facebook-scale. Proc. VLDB
Endow., 8(12):1804–1815, 2015.

[80] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. One trillion edges: Graph processing at facebook-scale. PVLDB,
8(12):1804–1815, 2015.

[81] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, and Ion Stoica.
Managing data transfers in computer clusters with orchestra. In Proceedings of the
ACM SIGCOMM 2011 Conference, SIGCOMM ’11, pages 98–109, New York, NY,
USA, 2011. ACM.

[82] Xu Chu, Ihab F. Ilyas, and Paraschos Koutris. Distributed data deduplication. Proc.
VLDB Endow., 9(11):864–875, July 2016.

[83] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent
neural networks. arXiv preprint arXiv:1609.01704, 2016.

[84] Cisco Systems. Data Center Design Summary, August 2014. https:
//www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/Aug2014/
DataCenterDesignSummary-AUG14.pdf.

[85] Citus-Data. Citus data: Worry-free postgres. built to scale out. https://www.
citusdata.com/, 2019.

[86] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In Amin
Vahdat and David Wetherall, editors, 2nd Symposium on Networked Systems Design
and Implementation (NSDI 2005). USENIX, 2005.

[87] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In Joseph M. Hellerstein, Surajit
Chaudhuri, and Mendel Rosenblum, editors, Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA, June 10-11, 2010, pages
143–154. ACM, 2010.

[88] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura, and
Ricardo Bianchini. Resource central: Understanding and predicting workloads for im-
proved resource management in large cloud platforms. In Proceedings of the 26th

237

Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017,
pages 153–167. ACM, 2017.

[89] Paolo Costa, Hitesh Ballani, and Dushyanth Narayanan. Rethinking the network stack
for rack-scale computers. 2014.

[90] Paolo Costa, Austin Donnelly, Antony Rowstron, and Greg O'Shea. Camdoop:
Exploiting in-network aggregation for big data applications. In Presented as part of the
9th USENIX Symposium on Networked Systems Design and Implementation (NSDI
12), pages 29–42, San Jose, CA, 2012. USENIX.

[91] Enrique Dans. Netflix: Big data and playing a long game is proving a winning strategy.
https://bit.ly/3ONAbjS, 2020.

[92] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Eric A. Brewer and Peter Chen, editors, 6th Symposium onOperating System
Design and Implementation (OSDI 2004), San Francisco, California, USA, December
6-8, 2004, pages 137–150. USENIX Association, 2004.

[93] Christina Delimitrou, Daniel Sánchez, and Christos Kozyrakis. Tarcil: reconciling
scheduling speed and quality in large shared clusters. In Shahram Ghandeharizadeh,
Sumita Barahmand, Magdalena Balazinska, andMichael J. Freedman, editors, Proceed-
ings of the Sixth ACM Symposium on Cloud Computing, SoCC 2015, pages 97–110.
ACM, 2015.

[94] Amol Deshpande, Zachary G. Ives, and Vijayshankar Raman. Adaptive query process-
ing. Found. Trends Databases, 1(1):1–140, 2007.

[95] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I. Hsiao, and R. Ras-
mussen. The gamma database machine project. IEEE Trans. on Knowl. and Data Eng.,
2(1):44–62, March 1990.

[96] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Castro.
FaRM: Fast Remote Memory. 2014.

[97] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin, C. Chen,
C. Woo Kang, I. Kim, and G. Daglikoca. The architecture of the DIVA processing-in-
memory chip. 2002.

[98] Charles Elkan. The foundations of cost-sensitive learning. In Proceedings of the Sev-
enteenth International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle,
Washington, USA, August 4-10, 2001, pages 973–978, 2001.

[99] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. Mckenzie. Computa-
tional RAM: implementing processors in memory. IEEE Design & Test of Computers,
16(1), 1999.

[100] G. Ewing, Krzysztof Pawlikowski, and Donald Mcnickle. Akaroa-2: Exploiting net-
work computing by distributing stochastic simulation. Proceedings of 13th European
Simulation Multiconference, ESM’99, pages 175–181, 6 1999.

238

[101] Zhiwei Fan, Jianqiao Zhu, Zuyu Zhang, Aws Albarghouthi, Paraschos Koutris, and
Jignesh M. Patel. Scaling-up in-memory datalog processing: Observations and tech-
niques. Proc. VLDB Endow., 12(6):695–708, 2019.

[102] Daniel Firestone, Andrew Putnam, SambramaMundkur, Derek Chiou, Alireza Dabagh,
Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian M. Caulfield, Eric S. Chung,
Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Nor-
man Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Rain-
del, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivas-
tava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra Vaid,
David A. Maltz, and Albert G. Greenberg. Azure accelerated networking: Smartnics
in the public cloud. In Sujata Banerjee and Srinivasan Seshan, editors, 15th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2018, Renton,
WA, USA, April 9-11, 2018, pages 51–66. USENIX Association, 2018.

[103] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan, Ratul
Mahajan, and Todd Millstein. A general approach to network configuration analysis. In
Proceedings of the 12th USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI’15, pages 469–483, Berkeley, CA, USA, 2015. USENIX Association.

[104] Michael J. Franklin, Michael J. Carey, and Miron Livny. Global memory management in
client-server database architectures. In Li-Yan Yuan, editor, 18th International Confer-
ence on Very Large Data Bases, August 23-27, 1992, Vancouver, Canada, Proceedings,
pages 596–609. Morgan Kaufmann, 1992.

[105] Philip Werner Frey and Gustavo Alonso. Minimizing the hidden cost of RDMA. In
29th IEEE International Conference on Distributed Computing Systems (ICDCS 2009),
pages 553–560. IEEE Computer Society, 2009.

[106] Andrew Frohmader and Hans Volkmer. 1-wasserstein distance on the standard simplex.
CoRR, abs/1912.04945, 2019.

[107] Richard M. Fujimoto. Parallel discrete event simulation. In Proceedings of the 21st
Winter Simulation Conference, Washington, DC, USA, December 4-6, 1989, pages
19–28, 1989.

[108] Sumit Ganguly, Sergio Greco, and Carlo Zaniolo. Extrema predicates in deductive
databases. J. Comput. Syst. Sci., 51(2):244–259, 1995.

[109] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network Requirements for Resource
Disaggregation. 2016.

[110] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network requirements for resource
disaggregation. 2016.

[111] Jana Giceva, Gerd Zellweger, Gustavo Alonso, and Timothy Roscoe. Customized OS
support for data-processing. In Proceedings of the 12th International Workshop on

239

Data Management on New Hardware, DaMoN 2016, San Francisco, CA, USA, June
27, 2016, pages 2:1–2:6. ACM, 2016.

[112] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network fail-
ures in data centers: measurement, analysis, and implications. In Proceedings of the
ACM SIGCOMM 2011 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, Toronto, ON, Canada, August 15-19, 2011,
pages 350–361, 2011.

[113] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory: The Terasys massively
parallel PIM array. IEEE Computer, 28(4), 1995.

[114] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. In Chandu
Thekkath and Amin Vahdat, editors, 10th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012,
pages 17–30. USENIX Association, 2012.

[115] Joseph E. Gonzalez, Reynold Xin, Ankur Dave, Dan Crankshaw, Michael J. Franklin,
and Ion Stoica. GraphX: Graph processing in a distributed dataflow framework. In
OSDI, 2014.

[116] Google. Google cluster data. https://github.com/google/cluster-data.

[117] Google Cloud. Preemptible virtual machines. https://cloud.google.com/
preemptible-vms/ (visited on 12/24/2021).

[118] Goetz Graefe and et al. Extensible query optimization and parallel execution in vol-
cano. In Query Processing for Advanced Database Systems, June 1991.

[119] Albert G. Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon
Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta. VL2: a
scalable and flexible data center network. In Pablo Rodriguez, Ernst W. Biersack, Kon-
stantina Papagiannaki, and Luigi Rizzo, editors, Proceedings of the ACM SIGCOMM
2009 Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, Barcelona, Spain, August 16-21, 2009, pages 51–62. ACM,
2009.

[120] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jeong-Uk Kang
Jonghyun Yoon, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon Jeong, and
Duckhyun Chang. Biscuit: A framework for near-data processing of big data workloads.
2016.

[121] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G. Shin.
Efficient memory disaggregation with INFINISWAP. 2017.

[122] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye, and
Marina Lipshteyn. Rdma over commodity ethernet at scale. In Proceedings of the 2016
ACM SIGCOMM Conference, SIGCOMM ’16, pages 202–215, New York, NY, USA,
2016. ACM.

240

[123] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave Maltz,
Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A large-scale system for data center network latency measurement and anal-
ysis. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, pages 139–152, New York, NY, USA, 2015. ACM.

[124] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao, and Yungang
Bao. Who limits the resource efficiency of my datacenter: an analysis of alibaba dat-
acenter traces. In Proceedings of the International Symposium on Quality of Service,
IWQoS 2019, Phoenix, AZ, USA, June 24-25, 2019, pages 39:1–39:10. ACM, 2019.

[125] Peter J. Haas and Joseph M. Hellerstein. Ripple joins for online aggregation. In Alex
Delis, Christos Faloutsos, and Shahram Ghandeharizadeh, editors, SIGMOD 1999,
Proceedings ACM SIGMOD International Conference on Management of Data, June
1-3, 1999, Philadelphia, Pennsylvania, USA, pages 287–298. ACM Press, 1999.

[126] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E. Greeff, David Dion,
Star Dorminey, Shailesh Joshi, Yang Chen, Mark Russinovich, and Thomas Moscibroda.
Protean: VM allocation service at scale. In 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020,
pages 845–861. USENIX Association, 2020.

[127] Khalid Hasanov and Alexey L. Lastovetsky. Hierarchical optimization of MPI reduce
algorithms. In Parallel Computing Technologies - 13th International Conference, PaCT
2015, Petrozavodsk, Russia, August 31 - September 4, 2015, Proceedings, pages 21–
34, 2015.

[128] Thomas R. Henderson, Mathieu Lacage, and George F. Riley. Network simulations with
the ns-3 simulator. In In Sigcomm (Demo, 2008.

[129] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[130] Peter J. Huber. Robust estimation of a location parameter. In The Annals of Mathemat-
ical Statistics, pages 73–101, 1964.

[131] SPARC International Inc and David L Weaver. The SPARC architecture manual.
Prentice-Hall, 1994.

[132] Intel. Optimize data structures and memory access patterns to improve data locality.
https://goo.gl/xQ3ZGT, 2012. Intel.

[133] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram Rao, Konstantin Makarychev, and
Matthew Caesar. Network-aware scheduling for data-parallel jobs: Plan when you
can. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, pages 407–420, New York, NY, USA, 2015. ACM.

[134] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar, and
Changhoon Kim. Eyeq: Practical network performance isolation for the multi-tenant

241

cloud. In 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 12),
Boston, MA, June 2012. USENIX Association.

[135] Xiaowei Jiang, Yuejun Hu, Yu Xiang, Guangran Jiang, Xiaojun Jin, Chen Xia, Weihua
Jiang, Jun Yu, Haitao Wang, Yuan Jiang, Jihong Ma, Li Su, and Kai Zeng. Alibaba
hologres: A cloud-native service for hybrid serving/analytical processing. Proc. VLDB
Endow., 13(12):3272–3284, 2020.

[136] Maja Kabiljo, Dionysis Logothetis, Sergey Edunov, and Avery
Ching. A comparison of state-of-the-art graph processing sys-
tems. https://code.facebook.com/posts/319004238457019/
a-comparison-of-state-of-the-art-graph-processing-systems/.

[137] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA efficiently for
key-value services. In Fabián E. Bustamante, Y. Charlie Hu, Arvind Krishnamurthy,
and Sylvia Ratnasamy, editors, ACM SIGCOMM 2014 Conference, SIGCOMM’14,
Chicago, IL, USA, August 17-22, 2014, pages 295–306. ACM, 2014.

[138] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design guidelines for high
performance RDMA systems. In Ajay Gulati and Hakim Weatherspoon, editors, 2016
USENIX Annual Technical Conference, USENIX ATC 2016, Denver, CO, USA, June
22-24, 2016, pages 437–450. USENIX Association, 2016.

[139] U Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Faloutsos. GBASE:
An efficient analysis platform for large graphs. In Proc. VLDB, 2012.

[140] Kostas Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas, D. Theodoropoulos, I. Kout-
sopoulos, K. Hasharonik, D. Raho, C. Pinto, F. Espina, S. Lopez-Buedo, Q. Chen,
M. Nemirovsky, D. Roca, H. Klosx, and T. Berends. Rack-scale Disaggregated Cloud
Data Centers: The dReDBox Project Vision. 2016.

[141] Naga Praveen Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. HULA: scalable load balancing using programmable data planes. In Brighten
Godfrey and Martín Casado, editors, Proceedings of the Symposium on SDN Research,
SOSR 2016, Santa Clara, CA, USA, March 14 - 15, 2016, page 10. ACM, 2016.

[142] Charles W. Kazer, João Sedoc, Kelvin K. W. Ng, Vincent Liu, and Lyle H. Ungar. Fast
network simulation through approximation or: How blind men can describe elephants.
In Proceedings of the 17th ACMWorkshop on Hot Topics in Networks, HotNets 2018,
Redmond, WA, USA, November 15-16, 2018, pages 141–147. ACM, 2018.

[143] Kimberly Keeton. TheMachine: An Architecture forMemory-centric Computing. 2015.

[144] Bettina Kemme, Ricardo Jiménez-Peris, and Marta Patiño-Martínez. Database Replica-
tion. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2010.

[145] Jessica Kent. Big data analytics show covid-19 spread, out-
comes by region. https://healthitanalytics.com/news/
big-data-analytics-show-covid-19-spread-outcomes-by-region,
2020.

242

[146] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. Veriflow:
Verifying network-wide invariants in real time. SIGCOMM Comput. Commun. Rev.,
42(4):467–472, September 2012.

[147] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster, and
Russ Clark. Kinetic: Verifiable dynamic network control. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation, NSDI’15,
pages 59–72, Berkeley, CA, USA, 2015. USENIX Association.

[148] Christos Kozyrakis. Phoenix. https://github.com/kozyraki/phoenix.

[149] Alexander Krizhanovsky. Lock-free multi-producer multi-consumer
queue on ring buffer. https://www.linuxjournal.com/content/
lock-free-multi-producer-multi-consumer-queue-ring-buffer
(visited on 12/24/2021).

[150] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian Wu,
Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay is simple and effective for
congestion control in the datacenter. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication on the Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication, SIGCOMM ’20, page
514–528, New York, NY, USA, 2020. Association for Computing Machinery.

[151] Jay Kyathsandra and Eric Dahlen. Intel Rack Scale Architecture Overview.
http://presentations.interop.com/events/las-vegas/2013/
free-sessions---keynote-presentations/download/463, 2013.

[152] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph com-
putation on just a PC. InOSDI 2012, Hollywood, CA, USA, October 8-10, 2012, pages
31–46, 2012.

[153] Monica S. Lam, Stephen Guo, and Jiwon Seo. Socialite: Datalog extensions for efficient
social network analysis. In Proceedings of the 2013 IEEE International Conference on
Data Engineering, 2013.

[154] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: Rapid pro-
totyping for software-defined networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets-IX, pages 19:1–19:6, New York, NY,
USA, 2010. ACM.

[155] LBNL. network simulator man page. https://ee.lbl.gov/ns/man.html.

[156] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. Morsel-driven
parallelism: a numa-aware query evaluation framework for the many-core age. In
Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu, editors, International Conference on
Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages
743–754. ACM, 2014.

243

[157] Charles E. Leiserson. Fat-trees: universal networks for hardware-efficient supercomput-
ing. IEEE Trans. Comput., 34:892–901, October 1985.

[158] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-similar nature of
ethernet traffic (extended version). IEEE/ACM Transactions on Networking, 2(1):1–15,
Feb 1994.

[159] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew Put-
nam, Enhong Chen, and Lintao Zhang. KV-Direct: High-performance in-memory key-
value store with programmable NIC. 2017.

[160] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R. Narasayya. Accelerating relational
databases by leveraging remote memory and RDMA. 2016.

[161] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R. Narasayya. Accelerating rela-
tional databases by leveraging remote memory and RDMA. In Fatma Özcan, Georgia
Koutrika, and Sam Madden, editors, Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, pages 355–370. ACM, 2016.

[162] Yinan Li, Ippokratis Pandis, René Müller, Vijayshankar Raman, and Guy M. Lohman.
Numa-aware algorithms: the case of data shuffling. In CIDR’ 13.

[163] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K. Rein-
hardt, and Thomas F. Wenisch. Disaggregated Memory for Expansion and Sharing in
Blade Servers. 2009.

[164] Kevin Lim, Yoshio Turnet, Jichuan Chang, Jose Renato Santos, and Parthasarathy Ran-
ganathan. Disaggregated Memory Benefits for Server Consolidation. Technical Report
HPL-2011-31, HP Laboratories, 2011.

[165] Kevin T. Lim, Jichuan Chang, Trevor N. Mudge, Parthasarathy Ranganathan, Steven K.
Reinhardt, and Thomas F. Wenisch. Disaggregated memory for expansion and sharing
in blade servers. 2009.

[166] Kevin T. Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,
Parthasarathy Ranganathan, and Thomas F. Wenisch. System-level implications of dis-
aggregated memory. 2012.

[167] Kevin T. Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,
Parthasarathy Ranganathan, and Thomas F. Wenisch. System-level implications of
disaggregated memory. In 18th IEEE International Symposium on High Performance
Computer Architecture, HPCA 2012, New Orleans, LA, USA, 25-29 February, 2012,
pages 189–200. IEEE Computer Society, 2012.

[168] Yongsub Lim, U Kang, and Christos Faloutsos. Slashburn: Graph compression and
mining beyond caveman communities. IEEE Transactions on Knowledge & Data Engi-
neering, 26(12):3077–3089, 2014.

[169] Feilong Liu, Lingyan Yin, and Spyros Blanas. Design and evaluation of an rdma-aware
data shuffling operator for parallel database systems. ACM Trans. Database Syst.,
44(4):17:1–17:45, 2019.

244

[170] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapragada, Nuno P.
Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua Yuan. Crystalnet: Faithfully emu-
lating large production networks. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, page 599–613, New York, NY, USA, 2017. Association
for Computing Machinery.

[171] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson. F10: A
fault-tolerant engineered network, 2013.

[172] Vincent Liu, Danyang Zhuo, Simon Peter, Arvind Krishnamurthy, and Thomas Ander-
son. Subways: A case for redundant, inexpensive data center edge links. In Proceedings
of the 11th ACM Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’15, pages 27:1–27:13, New York, NY, USA, 2015. ACM.

[173] Xin Liu, Ashraf Aboulnaga, Kenneth Salem, and Xuhui Li. CLIC: client-informed
caching for storage servers. In Margo I. Seltzer and Richard Wheeler, editors, 7th
USENIX Conference on File and Storage Technologies, February 24-27, 2009, San Fran-
cisco, CA, USA. Proceedings, pages 297–310. USENIX, 2009.

[174] Savia Lobo. Google ai introduces snap, a microkernel approach to ‘host networking’.
https://bit.ly/3QhzVu3, 2019.

[175] Boon Thau Loo, Tyson Condie, Minos N. Garofalakis, David E. Gay, Joseph M. Heller-
stein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declar-
ative networking: language, execution and optimization. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Chicago, Illinois, USA,
June 27-29, 2006, pages 97–108, 2006.

[176] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph Hellerstein. Graphlab: A new framework for parallel machine learning. In
Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence,
UAI’10, pages 340–349, Arlington, Virginia, United States, 2010. AUAI Press.

[177] OpenSim Ltd. Omnet++, 2018. http://omnetpp.org.

[178] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. Tinydb:
an acquisitional query processing system for sensor networks. ACM Trans. Database
Syst., 30(1):122–173, 2005.

[179] Kshiteej Mahajan, Mosharaf Chowdhury, Aditya Akella, and Shuchi Chawla. Dynamic
query re-planning using QOOP. In Andrea C. Arpaci-Dusseau and Geoff Voelker,
editors, 13th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, pages 253–267. USENIX Asso-
ciation, 2018.

[180] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten Godfrey,
and Samuel Talmadge King. Debugging the data plane with anteater. In Proceedings
of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, pages 290–301, New York,
NY, USA, 2011. ACM.

245

[181] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart memories:
a modular reconfigurable architecture. 2000.

[182] Zoltan Majo and Thomas R. Gross. Matching memory access patterns and data place-
ment for NUMA systems. In Proc. CGO, 2012.

[183] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph pro-
cessing. In Ahmed K. Elmagarmid and Divyakant Agrawal, editors, Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 2010,
Indianapolis, Indiana, USA, June 6-10, 2010, pages 135–146. ACM, 2010.

[184] Stefan Manegold, Peter A. Boncz, and Niels Nes. Cache-conscious radix-decluster
projections. In Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J.
Miller, José A. Blakeley, and K. Bernhard Schiefer, editors, (e)Proceedings of the Thirti-
eth International Conference on Very Large Data Bases, VLDB 2004, Toronto, Canada,
August 31 - September 3 2004, pages 684–695. Morgan Kaufmann, 2004.

[185] Hasan Al Maruf andMosharaf Chowdhury. Effectively prefetching remote memory with
leap. July 2020.

[186] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren Wang. TCP
westwood: Bandwidth estimation for enhanced transport over wireless links. In
Christopher Rose, editor,MOBICOM 2001, Proceedings of the seventh annual interna-
tional conference on Mobile computing and networking, Rome, Italy, July 16-21, 2001,
pages 287–297. ACM, 2001.

[187] David Meisner, Junjie Wu, and Thomas F. Wenisch. Bighouse: A simulation infrastruc-
ture for data center systems. In IEEE International Symposium on Performance Analysis
of Systems & Software, 2012.

[188] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar,
Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava Min, Mosha Pa-
sumansky, and Jeff Shute. Dremel: A decade of interactive SQL analysis at web scale.
Proc. VLDB Endow., 13(12):3461–3472, 2020.

[189] Cade Metz. The facebook special: How intel builds custom chips for giants of the web.
https://www.wired.com/2013/05/facebook-and-intel/, 2013.

[190] Microsoft. Faster: Fast persistent recoverable log and key-value store + cache, in c#
and c++. https://microsoft.github.io/FASTER/ (visited on 12/24/2021).

[191] Microsoft. Ndspi interfaces. https://docs.microsoft.com/en-us/
previous-versions/windows/desktop/cc904391(v=vs.85).

[192] Microsoft Azure. Azure high-performance computing. https://azure.
microsoft.com/en-us/solutions/high-performance-computing/ (vis-
ited on 12/24/2021).

246

[193] Microsoft Azure. Azure spot virtual machines. https://azure.microsoft.com/
en-us/pricing/spot/ (visited on 12/24/2021).

[194] Microsoft-SQL-Database. Sql database – cloud database as a service | Microsoft Azure.
https://azure.microsoft.com/en-us/services/sql-database/, 2019.

[195] Vishal Misra, Wei-Bo Gong, and Don Towsley. Fluid-based analysis of a network of
aqm routers supporting tcp flows with an application to red. In Proceedings of the
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’00, pages 151–160, New York, NY, USA, 2000. ACM.

[196] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia
Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats. Timely:
Rtt-based congestion control for the datacenter. In Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Communication, SIGCOMM ’15, pages
537–550, New York, NY, USA, 2015. ACM.

[197] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. Homa: A
receiver-driven low-latency transport protocol using network priorities. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’18, page 221–235, New York, NY, USA, 2018. Association for Computing
Machinery.

[198] Walaa Eldin Moustafa, Vicky Papavasileiou, Ken Yocum, and Alin Deutsch. Datalog-
raphy: Scaling datalog graph analytics on graph processing systems. In 2016 IEEE In-
ternational Conference on Big Data, BigData 2016, Washington DC, USA, December
5-8, 2016, pages 56–65, 2016.

[199] Ingo Müller, Renato Marroquin, and Gustavo Alonso. Lambada: Interactive data ana-
lytics on cold data using serverless cloud infrastructure. 2020.

[200] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and Franz Färber.
Cache-efficient aggregation: Hashing is sorting. In Timos K. Sellis, Susan B. Davidson,
and Zachary G. Ives, editors, Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015, pages 1123–1136. ACM, 2015.

[201] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood. A primer on mem-
ory consistency and cache coherence, second edition. Synthesis Lectures on Computer
Architecture, 15(1):1–294, 2020.

[202] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan,
and Mark Oskin. Latency-tolerant software distributed shared memory. July 2015.

[203] Hao Ni, Xin Dong, Jinsong Zheng, and Guangxi Yu. An Introduction to Machine Learn-
ing in Quantitative Finance. WORLD SCIENTIFIC (EUROPE), 2021.

[204] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel pro-
gramming with cuda. Queue, 6(2):40–53, March 2008.

247

[205] nsnam. ns-3, 2017. http://nsnam.org.

[206] Open Compute Project. Server/SpecsAndDesigns, June 2018. http://www.
opencompute.org/wiki/Server/SpecsAndDesigns.

[207] M. Oskin, F. T. Chong, and T. Sherwood. Active pages: Acomputation model for in-
telligent memory. 1998.

[208] Amy Ousterhout, Jonathan Perry, Hari Balakrishnan, and Petr Lapukhov. Flexplane:
An experimentation platform for resource management in datacenters. In 14th USENIX
Symposium onNetworked Systems Design and Implementation (NSDI 17), pages 438–
451, Boston, MA, 2017. USENIX Association.

[209] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon Chun.
Making sense of performance in data analytics frameworks. 2015.

[210] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow: distributed,
low latency scheduling. In Michael Kaminsky and Mike Dahlin, editors, ACM SIGOPS
24th Symposium onOperating Systems Principles, SOSP ’13, pages 69–84. ACM, 2013.

[211] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for mul-
tiprocessors with private cache memories. 1984.

[212] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in pytorch. 2017.

[213] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang, Marc
Spehlmann, Hakan Memisoglu, and Saket Saurabh. Quickstep: A data platform based
on the scaling-up approach. PVLDB, 11(6):663–676, 2018.

[214] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,
and K. Yelick. A case for intelligent RAM. IEEE Micro, 17(2), 1997.

[215] Matthew Perron, Raul Castro Fernandez, David J. DeWitt, and Samuel Madden. Star-
ling: A scalable query engine on cloud functions. 2020.

[216] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishnamurthy.
Designing distributed systems using approximate synchrony in data center networks.
In Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation, 2015.

[217] Postgres-XL. Postgres-xl: Open source scalable sql database cluster. https://www.
postgres-xl.org/, 2019.

[218] PostgreSQL. PostgreSQL: The world’s most advanced open source relational database.
https://www.postgresql.org/, 2022.

[219] Russell Power and Jinyang Li. Piccolo: Building fast, distributed programs with parti-
tioned tables. USA, 2010.

248

[220] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow: Scalable
analytics on serverless infrastructure. In Jay R. Lorch and Minlan Yu, editors, NSDI’ 19,
pages 193–206. USENIX Association, 2019.

[221] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon Wis-
chik, and Mark Handley. Improving datacenter performance and robustness with mul-
tipath tcp. In Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11,
pages 266–277, New York, NY, USA, 2011. ACM.

[222] Vijayshankar Raman, Amol Deshpande, and Joseph M. Hellerstein. Using state mod-
ules for adaptive query processing. In Umeshwar Dayal, Krithi Ramamritham, and T. M.
Vijayaraman, editors, Proceedings of the 19th International Conference on Data Engi-
neering, March 5-8, 2003, Bangalore, India, pages 353–364. IEEE Computer Society,
2003.

[223] Robert Ricci, Eric Eide, and The CloudLab Team. Introducing CloudLab: Scientific in-
frastructure for advancing cloud architectures and applications. USENIX ;login:, 39(6),
December 2014.

[224] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.
Chaos: scale-out graph processing from secondary storage. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, Octo-
ber 4-7, 2015, pages 410–424, 2015.

[225] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren. Inside
the social network’s (datacenter) network. In SIGCOMM ’15, 2015.

[226] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren. Inside
the social network’s (datacenter) network. Comput. Commun. Rev., 45(5):123–137,
2015.

[227] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. AIFM:
high-performance, application-integrated far memory. In 14th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2020, Virtual Event, November
4-6, 2020, pages 315–332. USENIX Association, 2020.

[228] Semih Salihoglu and Jennifer Widom. GPS: a graph processing system. In Conference
on Scientific and Statistical Database Management, SSDBM ’13, Baltimore, MD, USA,
July 29 - 31, 2013, pages 22:1–22:12, 2013.

[229] Allison Dulin Salisbury. Impacts of moocs on higher education.
https://www.insidehighered.com/blogs/higher-ed-gamma/
impacts-moocs-higher-education?v2, 2014.

[230] Bart Samwel, John Cieslewicz, Ben Handy, Jason Govig, Petros Venetis, Chanjun
Yang, Keith Peters, Jeff Shute, Daniel Tenedorio, Himani Apte, Felix Weigel, David
Wilhite, Jiacheng Yang, Jun Xu, Jiexing Li, Zhan Yuan, Craig Chasseur, Qiang Zeng,
Ian Rae, Anurag Biyani, Andrew Harn, Yang Xia, Andrey Gubichev, Amr El-Helw,
Orri Erling, Zhepeng Yan, Mohan Yang, Yiqun Wei, Thanh Do, Colin Zheng, Goetz

249

Graefe, Somayeh Sardashti, Ahmed M. Aly, Divy Agrawal, Ashish Gupta, and Shiv-
akumar Venkataraman. F1 query: Declarative querying at scale. Proc. VLDB Endow.,
11(12):1835–1848, 2018.

[231] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
Omega: flexible, scalable schedulers for large compute clusters. In Zdenek Hanzálek,
Hermann Härtig, Miguel Castro, and M. Frans Kaashoek, editors, Eighth Eurosys Con-
ference 2013, EuroSys ’13, pages 351–364. ACM, 2013.

[232] Jonathan J.J.M. Seddon and Wendy L. Currie. A model for unpacking big data analytics
in high-frequency trading. Journal of Business Research, 70:300–307, 2017.

[233] Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. Distributed socialite: A
datalog-based language for large-scale graph analysis. PVLDB, 6(14):1906–1917,
2013.

[234] Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chatzopoulos, Alek-
sandar Dragojevic, Dushyanth Narayanan, and Miguel Castro. Fast general distributed
transactions with opacity. In Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,
Amol Deshpande, and Tim Kraska, editors, Proceedings of the 2019 International Con-
ference on Management of Data, SIGMODConference 2019, Amsterdam, The Nether-
lands, June 30 - July 5, 2019, pages 433–448. ACM, 2019.

[235] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS: A disseminated,
distributed OS for hardware resource disaggregation. 2018.

[236] Prateek Sharma, Ahmed Ali-Eldin, and Prashant J. Shenoy. Resource deflation: A new
approach for transient resource reclamation. In George Candea, Robbert van Renesse,
and Christof Fetzer, editors, Proceedings of the Fourteenth EuroSys Conference 2019,
pages 33:1–33:17. ACM, 2019.

[237] Prateek Sharma, Stephen Lee, Tian Guo, David E. Irwin, and Prashant J. Shenoy.
Spotcheck: designing a derivative iaas cloud on the spot market. In Laurent Réveillère,
Tim Harris, and Maurice Herlihy, editors, Proceedings of the Tenth European Confer-
ence on Computer Systems, EuroSys 2015, pages 16:1–16:15. ACM, 2015.

[238] Robert Sheldon. Remote direct memory access (rdma). https:
//www.techtarget.com/searchstorage/definition/
Remote-Direct-Memory-Access, 2021.

[239] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick
McKeown, and Guru Parulkar. Can the production network be the testbed? In Proceed-
ings of the 9th USENIX Conference on Operating Systems Design and Implementation,
OSDI’10, pages 365–378, Berkeley, CA, USA, 2010. USENIX Association.

[240] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick
McKeown, and Guru Parulkar. Can the production network be the testbed? In Proceed-
ings of the 9th USENIX Conference on Operating Systems Design and Implementation,
OSDI’10, pages 365–378, Berkeley, CA, USA, 2010. USENIX Association.

250

[241] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and
Carlo Zaniolo. Big data analytics with datalog queries on spark. In Proceedings of the
2016 International Conference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, pages 1135–1149, 2016.

[242] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee, Han Wang,
Rachit Agarwal, and Hakim Weatherspoon. Shoal: A Network Architecture for Disag-
gregated Racks. 2019.

[243] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. Smaller and faster: Parallel pro-
cessing of compressed graphs with Ligra+. In Proc. Data Compression Conference,
2015.

[244] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and Gustavo Alonso. Strom:
Smart remote memory. 2020.

[245] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy Bannon,
Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand Kanagala, Jeff
Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle, Stephen Stuart, and
Amin Vahdat. Jupiter rising: A decade of clos topologies and centralized control in
google’s datacenter network. In Steve Uhlig, Olaf Maennel, Brad Karp, and Jitendra
Padhye, editors, Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, SIGCOMM 2015, London, United Kingdom, August 17-21,
2015, pages 183–197. ACM, 2015.

[246] Rahul Singh, Prateek Sharma, David E. Irwin, Prashant J. Shenoy, and K. K. Ramakr-
ishnan. Here today, gone tomorrow: Exploiting transient servers in datacenters. IEEE
Internet Comput., 18(4):22–29, 2014.

[247] Panagiotis Sioulas and Anastasia Ailamaki. Scalable multi-query execution using rein-
forcement learning. In Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava,
editors, SIGMOD ’21: International Conference onManagement of Data, Virtual Event,
China, June 20-25, 2021, pages 1651–1663. ACM, 2021.

[248] Mirko Stoffers, Ralf Bettermann, James Gross, and Klaus Wehrle. Enabling distributed
simulation of omnet++ inet models. In Proceedings of the 1st OMNeT++ Community
Summit, 2014.

[249] H. S. Stone. A logic-in-memory computer. IEEE Transactions on Computers, C-19(1),
1970.

[250] Michael Stonebraker. Operating system support for database management. Commu-
nications of the ACM, 24(7), June 1981.

[251] Michael Stonebraker and Akhil Kumar. Operating system support for data management.
IEEE Database Eng. Bull., 9(3):43–50, 1986.

[252] S. Sudarshan and Raghu Ramakrishnan. Aggregation and relevance in deductive
databases. In 17th International Conference on Very Large Data Bases, September
3-6, 1991, Barcelona, Catalonia, Spain, Proceedings., pages 501–511, 1991.

251

[253] Kian-Lee Tan, Qingchao Cai, Beng Chin Ooi, Weng-Fai Wong, Chang Yao, and Hao
Zhang. In-memory databases: Challenges and opportunities from software and hard-
ware perspectives. SIGMOD Rec., 44(2):35–40, 2015.

[254] Zhangxi Tan, Zhenghao Qian, Xi Chen, Krste Asanovic, and David Patterson. Dia-
blo: A warehouse-scale computer network simulator using fpgas. In Proceedings of
the Twentieth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’15, pages 207–221, New York, NY, USA,
2015. ACM.

[255] Douglas B. Terry. Replicated Data Management for Mobile Computing. Synthesis
Lectures on Mobile and Pervasive Computing. Morgan & Claypool Publishers, 2008.

[256] Lasse Thostrup, Jan Skrzypczak, Matthias Jasny, Tobias Ziegler, and Carsten Binnig.
DFI: the data flow interface for high-speed networks. In Guoliang Li, Zhanhuai Li,
Stratos Idreos, and Divesh Srivastava, editors, SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, pages 1825–1837.
ACM, 2021.

[257] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing GeneQin, Steven
Hand, Mor Harchol-Balter, and John Wilkes. Borg: the next generation. In Angelos
Bilas, Kostas Magoutis, Evangelos P. Markatos, Dejan Kostic, and Margo I. Seltzer, edi-
tors, EuroSys ’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April 27-30,
2020, pages 30:1–30:14. ACM, 2020.

[258] Shin-Yeh Tsai and Yiying Zhang. LITE kernel RDMA support for datacenter applications.
2017.

[259] Amin Vahdat. Coming of age in the fifth epoch of distributed computing: The power
of sustained exponential growth. SIGCOMM 2020 Keynote, 2020.

[260] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi Hashida,
Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. Managing non-volatile
memory in database systems. In Gautam Das, Christopher M. Jermaine, and Philip A.
Bernstein, editors, Proceedings of the 2018 International Conference on Management
of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages
1541–1555. ACM, 2018.

[261] Andras Varga. The omnet++ discrete event simulation system. Proc. ESM’2001, 9, 01
2001.

[262] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune,
and John Wilkes. Large-scale cluster management at google with borg. In Laurent
Réveillère, TimHarris, andMaurice Herlihy, editors, Proceedings of the Tenth European
Conference on Computer Systems, EuroSys 2015, pages 18:1–18:17. ACM, 2015.

[263] K. V. Vishwanath, D. Gupta, A. Vahdat, and K. Yocum. Modelnet: Towards a datacenter
emulation environment. In 2009 IEEE Ninth International Conference on Peer-to-Peer
Computing, pages 81–82, Sep. 2009.

252

[264] Krishnaswamy Viswanathan. Intel memory latency checker. https:
//software.intel.com/content/www/us/en/develop/articles/
intelr-memory-latency-checker.html (visited on 12/24/2021).

[265] Werner Vogels. https://twitter.com/werner/status/25137574680.

[266] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh Nguyen,
Michael D. Bond, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. Semeru: A
memory-disaggregated managed runtime. 2020.

[267] Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. Asynchronous and fault-
tolerant recursive datalog evaluation in shared-nothing engines. PVLDB, 8(12):1542–
1553, 2015.

[268] Todd R. Weiss. Google launches tpu v4 ai chips. https://www.hpcwire.com/
2021/05/20/google-launches-tpu-v4-ai-chips/, 2021.

[269] Janet Wiener and Nathan Bronson. Facebook’s top open data
problems. https://research.facebook.com/blog/2014/10/
facebook-s-top-open-data-problems/, 2014.

[270] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. Design, im-
plementation and evaluation of congestion control for multipath TCP. In NSDI, 2011.

[271] Emile Witteman. Google to make its own custom server chips as
well. https://www.techzine.eu/news/infrastructure/57391/
google-to-make-its-own-custom-server-chips-as-well/, 2021.

[272] Jiacheng Wu, Jin Wang, and Carlo Zaniolo. Optimizing parallel recursive datalog eval-
uation on multicore machines. In Zachary Ives, Angela Bonifati, and Amr El Abbadi,
editors, SIGMOD ’22: International Conference onManagement of Data, Philadelphia,
PA, USA, June 12 - 17, 2022, pages 1433–1446. ACM, 2022.

[273] Sam Xi, Oreoluwa Babarinsa, Manos Athanassoulis, and Stratos Idreos. Beyond the
wall: Near-data processing for databases. In Proceedings of the International Workshop
on Data Management on New Hardware, 2015.

[274] Gala Yadgar, Michael Factor, Kai Li, and Assaf Schuster. Management of multi-
level, multiclient cache hierarchies with application hints. ACM Trans. Comput. Syst.,
29(2):5:1–5:51, 2011.

[275] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip Levis,
and Keith Winstein. Pantheon: the training ground for internet congestion-control re-
search. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 731–
743, Boston, MA, 2018. USENIX Association.

[276] J. Yang and J. Leskovec. Defining and evaluating network communities based on
ground-truth. 2012.

253

[277] Xiangyao Yu, Matt Youill, Matthew E. Woicik, Abdurrahman Ghanem, Marco Serafini,
Ashraf Aboulnaga, and Michael Stonebraker. Pushdowndb: Accelerating a DBMS us-
ing S3 computation. In Proceedings of the IEEE International Conference on Data En-
gineering (ICDE), 2020.

[278] Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. Distributed aggregation for data-
parallel computing: Interfaces and implementations. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09, pages 247–
260, New York, NY, USA, 2009. ACM.

[279] Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaoqiang Peng, Liang Lin, Sheng
Wang, Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, and Chengliang Chai. Analyticdb:
Real-time OLAP database system at alibaba cloud. Proc. VLDB Endow., 12(12):2059–
2070, 2019.

[280] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. High-resolution
measurement of data center microbursts. In Steve Uhlig and Olaf Maennel, editors,
Proceedings of the 2017 InternetMeasurement Conference, IMC 2017, London, United
Kingdom, November 1-3, 2017, pages 78–85. ACM, 2017.

[281] Qizhen Zhang, Akash Acharya, Hongzhi Chen, Simran Arora, Ang Chen, Vincent Liu,
and Boon Thau Loo. Optimizing declarative graph queries at large scale. In Peter A.
Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim Kraska, edi-
tors, Proceedings of the 2019 International Conference on Management of Data, SIG-
MOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages
1411–1428. ACM, 2019.

[282] Qizhen Zhang, Philip Bernstein, Daniel Berger, Badrish Chandramouli, Vincent Liu,
and Boon Thau Loo. Compucache: Remote computable caching using spot vms. In
12th Conference on Innovative Data Systems Research, CIDR 2022, Chaminade, CA,
USA, January 9-12, 2022, Online Proceedings. www.cidrdb.org, 2022.

[283] Qizhen Zhang, Philip A. Bernstein, Daniel S. Berger, and Badrish Chandramouli. Redy:
Remote dynamic memory cache. Proc. VLDB Endow., 15(4):766–779, 2022.

[284] Qizhen Zhang, Yifan Cai, Sebastian Angel, Vincent Liu, Ang Chen, and Boon Thau Loo.
Rethinking data management systems for disaggregated data centers. In 10th Confer-
ence on Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands,
January 12-15, 2020, Online Proceedings. www.cidrdb.org, 2020.

[285] Qizhen Zhang, Yifan Cai, Xinyi Chen, Sebastian Angel, Ang Chen, Vincent Liu, and
Boon Thau Loo. Understanding the effect of data center resource disaggregation on pro-
duction dbmss. Proceedings of the VLDB Endowment, 13(9):1568–1581, May 2020.

[286] Qizhen Zhang, Hongzhi Chen, Da Yan, James Cheng, Boon Thau Loo, and Pu-
rushotham V. Bangalore. Architectural implications on the performance and cost of
graph analytics systems. In Proceedings of the 2017 Symposium on Cloud Computing,
SoCC 2017, Santa Clara, CA, USA, September 24-27, 2017, pages 40–51. ACM, 2017.

254

[287] Qizhen Zhang, Xinyi Chen, Sidharth Sankhe, Zhilei Zheng, Ke Zhong, Sebastian Angel,
Ang Chen, Vincent Liu, and Boon Thau Loo. Optimizing data-intensive systems in
disaggregated data centers with TELEPORT. In SIGMOD ’22: International Conference
onManagement of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 1345–1359.
ACM, 2022.

[288] Qizhen Zhang, Kelvin K. W. Ng, Charles W. Kazer, Shen Yan, João Sedoc, and Vincent
Liu. Mimicnet: fast performance estimates for data center networks with machine
learning. In ACM SIGCOMM 2021 Conference, Virtual Event, USA, August 23-27,
2021, pages 287–304. ACM, 2021.

[289] Qizhen Zhang, Tengyuan Ye, Meryem Essaidi, Shivani Agarwal, Vincent Liu, and
Boon Thau Loo. Predicting startup crowdfunding success through longitudinal social
engagement analysis. In Ee-Peng Lim, Marianne Winslett, Mark Sanderson, Ada Wai-
Chee Fu, Jimeng Sun, J. Shane Culpepper, Eric Lo, Joyce C. Ho, Debora Donato, Rakesh
Agrawal, Yu Zheng, Carlos Castillo, Aixin Sun, Vincent S. Tseng, and Chenliang Li, ed-
itors, Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, CIKM 2017, Singapore, November 06 - 10, 2017, pages 1937–1946.
ACM, 2017.

[290] Yingqiang Zhang, Chaoyi Ruan, Cheng Li, Jimmy Yang, Wei Cao, Feifei Li, Bo Wang,
Jing Fang, Yuhui Wang, Jingze Huo, and Chao Bi. Towards cost-effective and elas-
tic cloud database deployment via memory disaggregation. Proc. VLDB Endow.,
14(10):1900–1912, 2021.

[291] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan, Dave
Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao, and Haitao Zheng. Packet-level telemetry
in large datacenter networks. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM ’15, pages 479–491, New York,
NY, USA, 2015. ACM.

[292] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Förster, Arvind Krish-
namurthy, and Thomas E. Anderson. Understanding and mitigating packet corruption
in data center networks. In Proceedings of the Conference of the ACM Special Inter-
est Group on Data Communication, SIGCOMM 2017, Los Angeles, CA, USA, August
21-25, 2017, pages 362–375, 2017.

[293] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Xuan Kelvin Zou,
Hang Guan, Arvind Krishnamurthy, and Thomas Anderson. RAIL: A case for redundant
arrays of inexpensive links in data center networks. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), pages 561–576, Boston,
MA, 2017. USENIX Association.

[294] Danyang Zhuo, Qiao Zhang, Xin Yang, and Vincent Liu. Canaries in the network. In
Proceedings of the 15th ACM Workshop on Hot Topics in Networks, 2016.

[295] Danyang Zhuo, Qiao Zhang, Xin Yang, and Vincent Liu. Canaries in the network. In
Proceedings of the 15th ACM Workshop on Hot Topics in Networks, 2016.

255

[296] Tobias Ziegler, Viktor Leis, and Carsten Binnig. RDMA communciation patterns.
Datenbank-Spektrum, 20(3):199–210, 2020.

256

	Hyperscale Data Processing With Network-Centric Designs
	Recommended Citation

	Hyperscale Data Processing With Network-Centric Designs
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Subject Categories

	Dissertation_QizhenZhang-V5.pdf

