
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2021

Rv-Enabled Framework For Self-Adaptive Software Rv-Enabled Framework For Self-Adaptive Software

Teng Zhang
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhang, Teng, "Rv-Enabled Framework For Self-Adaptive Software" (2021). Publicly Accessible Penn
Dissertations. 5006.
https://repository.upenn.edu/edissertations/5006

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/5006
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F5006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F5006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5006?utm_source=repository.upenn.edu%2Fedissertations%2F5006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5006
mailto:repository@pobox.upenn.edu

Rv-Enabled Framework For Self-Adaptive Software Rv-Enabled Framework For Self-Adaptive Software

Abstract Abstract
Software systems keep increasing in scale and complexity, requiring ever more effort to design, build,
test, and deploy. Systems are integrated from separately developed modules. Over the life of a system,
individual modules may be updated, which may allow incompatibilities between modules to slip in.
Consequently, many faults in a software system are often discovered after the system is built and
deployed.

Runtime verification (RV) is a collection of dynamic techniques for detecting faults of software systems.
An executable monitor is constructed from a formally specified property of the system being checked
(denoted as the target system) and is run over a stream of observations (events) to check whether the
property is satisfied or not. Although existing tools are able to specify and monitor properties efficiently, it
is still challenging to apply RV to large-scale real-world applications. From the perspective of monitoring
requirements, we need a formalism that can describe both high and low-level behaviors of the target
system. Complexity of the target program also brings some issues. For instance, it may contain a set of
loosely-coupled components which may be added or removed dynamically. Correspondingly, monitoring
requirements are often defined upon asynchronous observations that carry data of which the domain
scale up along with expansion of the target system. How to conveniently specify these properties and
generate monitors that can check them efficiently is a challenge.

Beyond detecting faults, self-adaptive software is desirable for tolerating faults or unexpected
environment changes during execution. By equipping monitors with reflexive adaptation actions, runtime
enforcement (RE) can be used to improve robustness of the system. However, there is little work on
analyzing possible interference between the implementation of adaptation actions and the target
program.

In this thesis, we present SMEDL, a RV framework using a specification language designed for high
usability with respect to expressiveness, efficiency and flexible deployment. The property specification is
composed of a set of communicating monitors described in the form of EFSMs (extend finite state
machines). High-level properties can be straightforwardly transformed into SMEDL specifications while
actions can be specified in transitions to express low-level imperative behaviors. Deployment of monitors
can be explicitly specified to support both centralized and distributed software. Based on dynamically
scalable monitor structure, we propose a novel method to efficiently check parametric properties that rely
on the data events carry. To tackle challenges of monitoring timing properties in an asynchronous
environment, we propose a conceptual monitor architecture that clearly separates monitoring of time
intervals from the rest of property checking.

To support software adaptation, we extend the SMEDL framework to specify enforcement specifications,
generate implementations and instrument them into the target system. Analysis of interference between
the adaptation implementation and the target system can be performed statically based on Hoare-logic.
Instead of building a whole new proof for the target system globally, we present a method to generate
local proof obligations for better scalability.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Computer and Information Science

First Advisor First Advisor
Oleg V. Sokolsky

Second Advisor Second Advisor
Insup Lee

Subject Categories Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/5006

https://repository.upenn.edu/edissertations/5006

RV-ENABLED FRAMEWORK FOR SELF-ADAPTIVE SOFTWARE

Teng Zhang

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2021

Co-Supervisor of Dissertation Co-Supervisor of Dissertation

Oleg Sokolsky, Research Professor
of Computer and Information Science

Insup Lee, Professor
of Computer and Information Science

Graduate Group Chairperson

Mayur Naik, Professor of Computer and Information Science

Dissertation Committee

Mayur Naik, Professor of Computer and Information Science

Rajeev Alur, Professor of Computer and Information Science

Stephanie Weirich, Professor of Computer and Information Science

Klaus Havelund, Senior Research Scientist of Jet Propulsion Laboratory

RV-ENABLED FRAMEWORK FOR SELF-ADAPTIVE SOFTWARE

c© COPYRIGHT

2021

Teng Zhang

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 4.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/4.0/

http://creativecommons.org/licenses/by-nc-sa/4.0/

Dedicated this work to my wife Meiyuan, without whom I would never have gotten this far.

iii

ACKNOWLEDGEMENT

I would like to express my most gratitude to my advisors, Prof. Oleg Sokolsky and Prof. Insup Lee.

Their invaluable advice, continuous support, and patience have helped me go through all the time

of my research and daily life. This dissertation would not be possible without them.

I would like to thank colleagues I was fortunate to work with. I got tremendous help from Peter

Gebhard and Dominick Pastore during the development of the SMEDL tool. When I was having

a hard time working on Coq, John Wiegley, Theophilos Giannakopoulos and Clément Pit-Claudel

gave me a lot of advice on how to go through the steepest part of the learning curve. Gregory

Eakman provided real-world case studies, which inspired us to develop new features of SMEDL.

We also worked closely with the team from GrammaTech, including Cameron Swords, Zak Fry,

Lucja Kot and Jim Inoue, to refactor the API design in the tool and apply SMEDL to more fields

such as software adaptation.

Along the way of this journey to the Ph.D. degree, I was also very lucky to meet lifelong friends,

including Jyh-Jing, Wei-Hsi, Jizhou, Ang, Chuwei and many more. They have not only helped me

a lot in life but also given me some great advice in research.

Finally, I would love to devote my deepest gratefulness to my family and loved ones. In particular,

I would like to thank my wife, Meiyuan, who was the first one to encourage me to pursue Ph.D.

degree. After we got married, she gave up her career opportunity back home and accompanied me

at Penn for 6 years. Without her support, I would have never reached this far.

iv

ABSTRACT

RV-ENABLED FRAMEWORK FOR SELF-ADAPTIVE SOFTWARE

Teng Zhang

Oleg Sokolsky

Insup Lee

Software systems keep increasing in scale and complexity, requiring ever more effort to design,

build, test, and deploy. Systems are integrated from separately developed modules. Over the life of

a system, individual modules may be updated, which may allow incompatibilities between modules

to slip in. Consequently, many faults in a software system are often discovered after the system is

built and deployed.

Runtime verification (RV) is a collection of dynamic techniques for detecting faults of software sys-

tems. An executable monitor is constructed from a formally specified property of the system being

checked (denoted as the target system) and is run over a stream of observations (events) to check

whether the property is satisfied or not. Although existing tools are able to specify and monitor

properties efficiently, it is still challenging to apply RV to large-scale real-world applications. From

the perspective of monitoring requirements, we need a formalism that can describe both high and

low-level behaviors of the target system. Complexity of the target program also brings some issues.

For instance, it may contain a set of loosely-coupled components which may be added or removed

dynamically. Correspondingly, monitoring requirements are often defined upon asynchronous ob-

servations that carry data of which the domain scale up along with expansion of the target system.

How to conveniently specify these properties and generate monitors that can check them efficiently

is a challenge.

Beyond detecting faults, self-adaptive software is desirable for tolerating faults or unexpected en-

vironment changes during execution. By equipping monitors with reflexive adaptation actions,

runtime enforcement (RE) can be used to improve robustness of the system. However, there is little

v

work on analyzing possible interference between the implementation of adaptation actions and the

target program.

In this thesis, we present SMEDL, a RV framework using a specification language designed for high

usability with respect to expressiveness, efficiency and flexible deployment. The property specifica-

tion is composed of a set of communicating monitors described in the form of EFSMs (extend finite

state machines). High-level properties can be straightforwardly transformed into SMEDL spec-

ifications while actions can be specified in transitions to express low-level imperative behaviors.

Deployment of monitors can be explicitly specified to support both centralized and distributed soft-

ware. Based on dynamically scalable monitor structure, we propose a novel method to efficiently

check parametric properties that rely on the data events carry. To tackle challenges of monitoring

timing properties in an asynchronous environment, we propose a conceptual monitor architecture

that clearly separates monitoring of time intervals from the rest of property checking.

To support software adaptation, we extend the SMEDL framework to specify enforcement specifica-

tions, generate implementations and instrument them into the target system. Analysis of interference

between the adaptation implementation and the target system can be performed statically based on

Hoare-logic. Instead of building a whole new proof for the target system globally, we present a

method to generate local proof obligations for better scalability.

vi

Contents

ACKNOWLEDGEMENT . iv

ABSTRACT . v

LIST OF TABLES . xii

LIST OF ILLUSTRATIONS . xiii

CHAPTER 1 : Introduction . 1

1.1 Challenges . 2

1.1.1 Specification language and code generation 2

1.1.2 Monitoring complex properties . 3

1.1.3 Software adaptation . 4

1.2 Contributions . 4

1.3 Structure . 6

CHAPTER 2 : State of the Art . 8

2.1 Introduction to runtime verification . 8

2.2 RV techniques . 10

2.2.1 RV formalisms . 10

2.2.2 Monitor deployment . 11

2.2.3 Decentralized and distributed runtime verification 12

2.2.4 Correctness and verification of runtime monitors 13

2.2.5 Parametric monitoring . 15

2.2.6 Stream processing . 16

2.2.7 Summary . 17

2.3 Self-adaptive software . 17

vii

2.3.1 Model-based methods . 18

2.3.2 Model-free methods . 19

2.3.3 Runtime enforcement . 20

2.3.4 Summary . 22

CHAPTER 3 : Scenario-based Meta Event Description Language 23

3.1 Single monitor: design, semantics and correct-by construction code generation . . 24

3.1.1 Definitions . 25

3.1.2 An Operational Semantics of SMEDL . 27

3.1.3 Towards a well-formed monitor specification 31

3.1.4 Code generation by refinement using Fiat 35

3.1.5 Case Study . 39

3.2 SMEDL monitoring system . 43

3.2.1 System design . 43

3.2.2 Monitoring architecture . 45

3.2.3 Semantics of synchronous set . 47

3.2.4 Case Study . 51

3.2.5 Discussion . 55

3.3 Summary . 56

CHAPTER 4 : Parametric Monitoring Using SMEDL 57

4.1 Preliminaries . 58

4.1.1 Common definitions and notations. 58

4.1.2 Parametric trace slicing using MOP . 60

4.1.3 Parametric slicing using QEA . 61

4.2 Expressing trace slicing of MOP using SMEDL 62

4.2.1 Transformation from MOP to SMEDL 62

4.2.2 Correctness proof of transformation . 65

4.3 Expressing trace slicing of QEA using SMEDL 69

viii

4.3.1 Encoding aggregation semantics in SMEDL 72

4.3.2 Enhancement of aggregation monitors . 79

4.4 Summary . 83

CHAPTER 5 : Implementation and Evaluation . 85

5.1 Implementation of synchronous sets . 85

5.2 Tool evaluation . 87

5.2.1 Evaluation of online monitoring . 87

5.2.2 Evaluation of offline monitoring . 89

5.3 Optimization . 92

5.3.1 Optimization intuitions . 94

5.4 Evaluation of monitor deployment on time overhead 97

5.5 Summary . 98

CHAPTER 6 : Monitoring Time Interval . 99

6.1 Motivating examples . 101

6.2 System Architecture and preliminaries . 104

6.2.1 Architecture . 105

6.2.2 Preliminaries . 106

6.3 Setting the Interval Deadline . 107

6.3.1 Patterns of setting timer . 107

6.3.2 Scheme of setting deadline . 108

6.4 Monitoring Procedure . 112

6.5 Summary . 114

CHAPTER 7 : Reflexive Adaptation Framework . 116

7.1 Extension of SMEDL framework for software adaptation 116

7.1.1 Introduction to edit automata . 117

7.1.2 Encoding of edit automata . 118

7.1.3 Code generation of adaptation actions . 120

ix

7.2 Verification of adaptation actions . 124

7.2.1 Target program and annotation language 127

7.2.2 Weakest precondition calculus in Frama-C 128

7.2.3 Formal description of our approach . 129

7.2.4 Construction of the proof obligation . 133

7.2.5 Name unifying process . 134

7.2.6 Case study . 136

7.3 Summary . 139

CHAPTER 8 : Conclusion . 141

8.1 Overview of work . 141

8.2 Future directions . 142

APPENDIX . 145

A.1 Concrete syntax of SMEDL . 145

A.2 SMEDL examples . 147

BIBLIOGRAPHY . 167

x

List of Tables

TABLE 1 : Predicates for well-formedness . 32

TABLE 2 : Comparison between stream processing and SMEDL 55

TABLE 3 : Common notations . 59

TABLE 4 : State update of SMEDL monitors given τ0 64

TABLE 5 : Bindings generated by QEA [14] . 71

TABLE 6 : Bindings generated by SMEDL . 71

TABLE 7 : Transitions of aMonpx (p1 , ..., px−1) for the universal quantifier 73

TABLE 8 : Bindings generated using SMEDL . 79

TABLE 9 : Bindings generated using QEA . 79

TABLE 10 : Transitions of frontend(px) . 80

TABLE 11 : Transitions of backendpx () . 80

TABLE 12 : Added transitions of aMonpx (p1 , ..., px−1) 80

TABLE 13 : Execution time of SMEDL and RV-monitor in Watertank 88

TABLE 14 : Execution time of SMEDL and RV-monitor in UnsafeFile 89

TABLE 15 : Execution time of SMEDL and RV-monitor in BasicCar 90

TABLE 16 : Size of SMEDL specifications . 92

TABLE 17 : Comparison between SMEDL and QEA 92

TABLE 18 : Comparison between SMEDL and MonPoly 92

TABLE 19 : Comparison of monitors with/without final states for NestedCommand and

GrantCancel . 95

TABLE 20 : Comparison between the tree and hash map implementation on time effi-

ciency . 96

TABLE 21 : Comparison of synchronous and asynchronous monitoring 98

TABLE 22 : Summary of deadline setting scheme 110

xi

List of Figures

FIGURE 1 : Monitoring/adaptation architecture . 2

FIGURE 2 : Contributions . 5

FIGURE 3 : State machine of the Iterator HasNext policy 9

FIGURE 4 : Code generation process . 37

FIGURE 5 : State machine of parsing character class 40

FIGURE 6 : Monitoring architecture for the tracker monitor 53

FIGURE 7 : Labelled FSM and SMEDL monitors for Example 1 64

FIGURE 8 : QEA and SMEDL specification of CandidateSelection 70

FIGURE 9 : Connections between SMEDL monitors for Example 2 74

FIGURE 10 : QEA and SMEDL specification for Broadcast 79

FIGURE 11 : Communication architecture of monitors for broadcast 81

FIGURE 12 : Architecture of synchronous set . 86

FIGURE 13 : Using AVL trees as instance store . 87

FIGURE 14 : Execution time of SMEDL and RV-monitor in Watertank 89

FIGURE 15 : Execution time of SMEDL and RV-monitor in UnsafeFile 89

FIGURE 16 : Execution time of SMEDL and RV-monitor in BasicCar 90

FIGURE 17 : Profiling of the SMEDL monitor for UnsafeMapIter 93

FIGURE 18 : Profiling of the SMEDL monitor for UnsafeFile 93

FIGURE 19 : Using hash map instance store . 96

FIGURE 20 : Evaluation of interval operators . 101

FIGURE 21 : Monitoring time intervals of aU[t1,t2]b 104

FIGURE 22 : Architecture for monitoring time intervals 105

FIGURE 23 : Scheme of setting deadlines for non-recurrent and recurrent intervals . . 108

xii

FIGURE 24 : Structure for the IntervalHandler . 113

FIGURE 25 : Architecture of the response framework 117

FIGURE 26 : Policy of the Iterator as a state machine 117

FIGURE 27 : Two enforcement specification for the policy in Figure 26 118

FIGURE 28 : SMEDL specification for the edit automata in Figure 27 (b) 123

FIGURE 29 : adaptation mapping for iterator-enforcer 123

FIGURE 30 : Original code block . 124

FIGURE 31 : Instrumentation of the adaptation action 124

FIGURE 32 : Overview of the assume-guarantee framework and our approach to as-

surance . 125

FIGURE 33 : Original code of find . 127

FIGURE 34 : Suppression . 127

FIGURE 35 : Insertion . 127

FIGURE 36 : Original program P . 136

FIGURE 37 : P’ with an extra assignment . 136

FIGURE 38 : Proof obligation VC and VC ′ before name unification 136

FIGURE 39 : Dependency graphs for P and P’ . 136

FIGURE 40 : Proof obligation VC of P at L . 137

FIGURE 41 : Data structure of iterator . 137

FIGURE 42 : Predicates for next and hasNext . 138

FIGURE 43 : Verification condition VC of the original program at L2 139

FIGURE 44 : Verification condition VC ′ of the instrumented program at L2 139

xiii

CHAPTER 1 : Introduction

Modern software systems are increasing in scale and complexity. Systems are integrated from sepa-

rately developed modules, both vertically and horizontally. Distributed computation are extensively

used in the integration of modules. Over the life of a system, modules will be updated, replaced and

added to fit the fast-evolving requirements. All these complexities make software systems easier to

fail, which may lead to serious consequences.

Testing is widely used to detect defects before deployment. However, it cannot guarantee the soft-

ware is free of bugs and it is hard to apply testing in a post-deployment manner. In contrast, formal

methods use mathematical model to guarantee full correctness of the system. However, formal

verification becomes intractable as the system becomes more complicated. Moreover, for systems

constructed by components which are treated as black boxes, some problems may happen during

runtime because of incompatibility with the environment or malicious attacks. Thus, flaws in a

software system are often discovered after the system is built and deployed.

Runtime verification (RV) is a kind of dynamic technique widely used for detecting flaws of soft-

ware systems. The objective of RV is to check if a run of the system, usually abstracted as a trace

of events extracted from an execution, satisfies or violates certain properties. It can be applied in

multiple phases of software development. During the development phase, RV can be treated as a

testing technique to find bugs by detecting violation of properties. After deployment, it can be used

to analyze executions of the target system for diagnosis or generate alerts when the system behaves

abnormally.

To further improve the robustness of a system in reaction to internal failures or environment changes

dynamically, the concept of self-adaptive software has been brought up. Compared to sophisticated

techniques which usually rely on system models or heuristics of existing error handling mecha-

nisms, runtime enforcement (RE) specifies actions in an enforcement monitor (EM) to guarantee

satisfaction of properties in event traces. By instrumenting actions back to the system, software

adaptation can be achieved. This pattern can be used as sanitizers between two systems or policy

1

enforcers to guarantee correct use of APIs in the target system. The adaptation is reflexive in a sense

that instrumented actions are pre-defined and would not permanently solve the problems. However,

they can be used as effective temporary repairs and are more feasible for validation.

In this thesis, we aim to propose a RV-enabled software adaptation framework. Figure 1 illustrates

the architecture. Monitor specifications are created from properties, which are then compiled into

runtime monitors. During runtime, the monitor observes the event trace obtained from the target

system and generates verdicts on whether the property is violated. To support software adapta-

tion, program actions can also be generated and integrated into the target system. Applying our

framework to real-world software systems need to overcome challenges from multiple aspects.

Figure 1: Monitoring/adaptation architecture

1.1. Challenges

1.1.1. Specification language and code generation

First, we want the specification language that can describe a variety of properties for complex soft-

ware systems and correct and efficient monitor code can be synthesis from the monitor specification.

In this thesis, we study the following challenges.

Properties with multiple forms. Many formalisms for runtime verification are suitable to describe

2

high level properties, such as API policies or protocols. Efficiency of monitoring is guaranteed

by well-designed algorithms. For a property involving imperative operations such as arithmetic or

logic aggregation, writing a specification in a high level formalism is more challenging, especially

for a user with less experience in those formalisms. Instead, using general programming language

is more intuitive. However, efficiency depends on the concrete implementation. It is desirable to

have a formalism to describe multiple forms of properties in a unified and elegant way.

Properties for complex software. For complex software such as a component-based system, a prop-

erty may rely on compositional behaviors of multiple components. Using a single monitor to collect

observations from different components may incur prohibitive overheads and interfere with system

operation. It is more sensible to implement a global property as a set of local monitors of which

local verdicts are combined together during execution. As a result, the technique should provide a

modular-style specification language and generate monitors that can be deployed in a flexible way.

Correctness of monitor implementations. Executable monitors are generated from property specifi-

cations. Informal code generation processes are error-prone and may lead to serious consequences.

How to bridge the gap between the specification and the implementation is a challenge.

1.1.2. Monitoring complex properties

Beyond the language and code generation, properties to be monitored also brings challenges. In the

thesis, we focus on two types of complicated properties, parametric properties and timing properties.

Monitoring parametric properties. Properties of large-scale systems are often parametric, which

means events in a trace may carry data of which the domains expand along with scaling of the

system. As an example, we want to guarantee that the iterator of a collection created from a map

must not be used after the map has been updated in a program. During execution, maps, collec-

tions and iterator objects may be created dynamically. The monitor needs to recognize relationship

among them and track their behavior. These properties can be specified and monitored using multi-

ple techniques [75], such as temporal based formalism, stream-processing and trace slicing. These

techniques have subtle differences on expressing parametric properties and the monitoring algo-

3

rithms. For instance, MOP (monitoring oriented programming) [101] and QEA (quantified event

automata) [14] both uses the trace slicing method but adopt different slicing semantics. While QEA

can express more parametric properties, it is less efficient than MOP [112]. Due to their difference

view on parametric properties, it is hard to achieve both expressiveness and efficiency by directly

extending either of them. It is thus desirable to have a technique that provides a common ground to

describe parametric properties in a unified way and implement parametric monitoring in a flexible

fashion, which would not only help people understand distinctions between multiple techniques, but

also pave the way towards more efficient monitoring algorithms.

Monitoring timing properties. Timing properties are often defined in the form of checking one event

occurring after another event within certain time bound or counting the number of events that oc-

cur during an interval of time. In both cases, a monitor needs to not only evaluate the logic of the

property but also determine whether events fall within a given time interval. Correctly monitor-

ing interval is challenging in an asynchronous setting where monitors and the target system have

different clock and event delivery delays are introduced by unstable network.

1.1.3. Software adaptation

For software adaptation, since enforcement actions may change the state of the program, correct-

ness is a vital issue to handle. Existing work on runtime enforcement have studied principles of

specifying enforcement and generate implementations that comply with the specification, there is

little work on analyzing how a poor implementation of actions or ill-formed instrumentation may

influence execution the target program. We need to define a reasonable correctness criteria, express

possible behavior changes after integrating adaptation actions into the target system and statically

decide whether the instrumented target system still meets the correctness criteria.

1.2. Contributions

Aiming to solve challenges stated above, we make the following contributions, as shown in Figure 2.

SMEDL: a RV framework. We propose a new formalism, SMEDL (Scenario-based Meta Event

4

Figure 2: Contributions

Description Language) for property specification [136]. A SMEDL specification is composed of a

set of single monitor specifications connecting with each other. Each single monitor is described

as composition of EFSMs (extend finite state machines), which is suitable for describing not only

high-level temporal properties, but also low-level properties described as explicit state transitions

with imperative actions such as logic or arithmetic computations. In the architecture description,

users can flexibly specify how monitors are deployed with the target system or communication

between monitors, either synchronously or asynchronously. During runtime, monitor instances can

be instantiated potentially multiple times to form a dynamically scaling monitor network. The

notion of monitor network provides a unified way to compose verdicts of properties and by nature

facilitates flexible deployment of monitors to adapt to a variety of software systems such as single

process programs and distributed software [138]. To bridge the gap between the specification and

the monitor implementation, we formalize the semantics of single monitor execution using Coq[25]

to generate the executable code, which is guaranteed to progress in reaction to incoming events

and generate deterministic verdicts [139]. To demonstrate usability of our technique, we conduct

performance evaluations. We focus on time efficiency of monitor implementations. We compare our

technique to representative RV tools in both online and offline settings against multiple benchmark

programs and properties. We then profile execution of SMEDL monitors and present intuitions of

5

optimization from both the perspectives of language design and implementation. Finally, we study

how deployment of monitors influence time overheads.

Monitoring parametric properties using SMEDL. By using dynamically scalable monitor net-

work, SMEDL provides a natural and general way to express and monitor parametric properties. To

demonstrate this idea, we encode the trace slicing algorithm of MOP by proposing a transformation

from MOP to SMEDL. Then, by transforming from QEA specifications into SMEDL monitor net-

work, we can monitor QEA properties more efficiently by applying the trace slicing algorithm of

MOP.

Monitoring timing properties in asynchronous environments. We study how to monitor time

intervals in an asynchronous environment parameterized by network delay, clock skew and clock

rate, and propose a mechanism to separate monitoring of time intervals from the rest of property

checking [137].

Reflexive adaptation framework. We extend the SMEDL framework to enable runtime software

adaptation. The enforcement specification is expressed as SMEDL monitors with a map from ab-

stract events to concrete adaptation actions. We define the semantic rules to express how adaptation

actions may change the behavior of the target program and present a method to generate implemen-

tations of actions and integrate them into the program. Based on this implementation, we propose a

Hoare-logic based method to verify non-interference of adaptation implementation with respect to

the target system. Because proof obligations are generated locally at each instrumentation point, our

method can be scaled up to multiple instrumentation points without considering possible inference

among actions.

1.3. Structure

The thesis is organized as below. Chapter 2 surveys related work on runtime verification and soft-

ware adaptation. Chapter 3 presents SMEDL as the specification language. Chapter 4 presents

a novel method to specify and monitor parametric properties using SMEDL monitor network. De-

pending on the knowledge on parametric monitoring, we put the performance evaluation of SMEDL

6

in Chapter 5. Chapter 6 studies monitoring timing properties in asynchronous environments and pro-

poses a conceptual monitor architecture that clearly separates monitoring of time intervals from the

rest of property checking. Chapter 7 extends SMEDL to support software adaptation and presents

a Hoare-logic-based method to verify correctness of adaptation implementations with respect to the

execution of the target program. Chapter 8 makes conclusions and discusses future work.

7

CHAPTER 2 : State of the Art

This chapter gives an introduction to the background of the thesis, including a brief account and

state of the arts of runtime verification and software adaptation.

2.1. Introduction to runtime verification

Runtime verification (RV), also referred to as runtime monitoring, is a kind of technique for check-

ing properties against behaviors of systems. This section first introduces key concepts of RV and

then presents typical applications of runtime verification.

Observations, events, and traces. In RV, behavior of a system is usually represented as a trace

of observations obtained from a system execution. Representative types of observations include

samples and updates of a system state, calls to functions and transfer of program controls. These

observations are abstracted as events. The choice of abstraction is determined by the property we

care and knowledge and assumptions about the target system to be monitored. For instance, an

event can be an atomic proposition on a state variable or a snap shot of the system state. A trace

is a sequence of events produced by execution of the system, which can be potentially extended

indefinitely.

Properties and specification languages. A property is a set of traces. RV techniques usually pro-

vide a specification language (also referred to as a formalism) to describe properties. Specification

languages can be divided into two styles: declarative and operational style [15]. In declarative-style

formalisms, such as temporal logic and its variants, specifications describe what to monitor, which

are suitable for high-level behaviors. Operational-style formalisms, such as automata-based lan-

guages, describe monitoring logic in an imperative way. It is also possible to transform temporal

formula into automata [63].

Monitoring system. Figure 1 captures process of runtime monitoring. Monitor specifications are

created from properties, which are then synthesized into runtime monitors. A monitor can be ei-

ther encoded as a data structure to be interpreted by a monitoring algorithm or compiled into pro-

8

grams [9]. Monitors can check execution of a system and generate verdicts in an online manner

when the system is running or in an offline manner by consuming an event trace from a log file.

In either case, instrumentation is necessary as an interface between the system and the monitor.

Not shown in the figure, the instrumentation script specifies how to instrument the target program

and map from interesting observations into events to be handled by monitors. Instrumentation

techniques then analyze the program, at the source code level using AOP (aspect oriented program-

ming) [84] or using binary analysis, and integrate the code that generates event traces during runtime

into the target program.

Application of runtime verification. Here we give two representative examples to illustrate that

RV can be applied to verify both high and low-level behavior of a system.

Case 1: Correctness of using library APIs. Many programs rely on standard libraries which provide

APIs to manipulate complicated data structures or control concurrent behaviors. These APIs usually

come with a specification. Some of them are propositions on the input and output while others

are temporal policies on the order of using them. Legunsen et al. [92] formalize specifications

of standard Java APIs using the RV tool JavaMOP [81] and check whether the specifications are

satisfied in 200 in open-source projects. For instance, the Iterator HasNext property states that each

call to next on an Iterator object must be preceded by a call to hasNext. The monitor specification

of this policy can be expressed as a state machine, as shown in Figure 3. If next is called at the state

ready st, the monitor detects this violation by transforming into the state error.

Figure 3: State machine of the Iterator HasNext policy

Case 2: Quality of the tracking application. This example comes from in the RINGS project, led

9

by BAE Systems. The project focuses on a target tracking application, developed by BAE Systems

and continuously evolved over a period of over 15 years. A tracking application receives data from

a number of sensors that supply information about observed objects, and contains algorithms that

parse sensor inputs and compose observations into tracks, i.e., sequences of points representing

position of an object over time. There are a number of metrics that characterize track output quality.

These metrics, collected using a sliding window time interval, include average duration of a track

observed in a time interval and the number of observations of objects that are not associated with

any track. A monitor can be modeled to collect observations, compute metrics and raise an alarm

when significant changes are observed.

2.2. RV techniques

2.2.1. RV formalisms

Many RV techniques have been proposed based on temporal logic. Havelund and Roşu [73] present

rewriting-based algorithms for past and future time LTL (linear temporal logic) formula. Bauer et

al. [22] propose a 3-value logic LTL3 for runtime verification LTL and TLTL (timed linear temporal

logic) formula. A third verdict ? is introduced to denote that the result of an extension of the current

prefix of the event trace is not decidable yet. This is particularly useful when monitoring properties

that are not pure safety. Some tools such as JPAX [74], DIANA [125] and RiTHM [105] use LTL

or extension of LTL as the formalism to describe properties to monitor.

Another powerful formalism is the rule system. The specification is composed of a set of rules.

Upon receiving events, rules are evaluated to trigger removal of old rules and add of new ones. EA-

GLE [11] is a rule-based monitoring system which are expressive to describe multiple formalisms

such as past and future time LTL, interval logics and extended regular expressions. To improve ef-

ficiency and usability, RuleR [13] is presented to describe properties as executable low-level rules.

Several tools and techniques have also been derived such as LogScope [12], TraceContract [10],

LogFire [71] and data automata [70].

Automata-based techniques directly describe how properties are monitored and suitable for describ-

10

ing low-level behaviors. In MaC (monitoring and checking) [87], MEDL (meta event description

language) is used to describe monitoring requirements in the form of state transitions triggered by

events. Larva [40] uses DATE (dynamic automata with timers and events) [39] to describe proper-

ties. Aktug and Naliuka [3] present ConSpec, an automata-based policy language whose semantics

is described as security automata [122]. Its specifications can be generated into inline monitors for

recognizing security properties [4]. MOP [101] supports using FSM (finite state machine) to de-

scribe properties. Reger et al. [115] present MARQ to monitor Java programs, which uses QEA [14]

as the formalism to specify parametric properties.

2.2.2. Monitor deployment

Monitors may be deployed synchronously or asynchronously with the target system. Synchronous

monitors block execution of the target system until validity of an observation is confirmed. Syn-

chronous instrumentation can be implemented using AOP. While suitable for safety- and security-

related contexts, synchronous monitoring might sometimes incur high execution overhead for the

target system when execution of the monitoring logic is time-consuming. Moreover, when mon-

itoring multiple programs running in different processes, synchronization is not realistic. In this

case, asynchronous deployment comes into play, which is usually implemented by communication

middleware [132] or shared buffer [85]. The downside of asynchronous monitoring may come from

several aspects: 1) it is difficult to locate the point where the violation happens; 2) the overhead of

asynchronous monitoring depends on the underlying communication mechanism, which is harder

to predict and may require more efforts to optimize; and 3) timing properties are harder to check

when the clock relation between the target system and the monitor cannot be described accurately.

Consequently, flexible deployment of monitors is desirable for a RV technique to support different

monitoring requirements in different environments. Thanks to the separation between the moni-

tor specification and deployment, many RV techniques such as MOP and Larva support generating

both synchronous or asynchronous monitors. Some existing techniques also support hybrid mon-

itoring. Colombo et al. [41] propose an architecture allowing for switching between synchronous

and asynchronous monitoring. PolyLarva [42] supports hybrid monitoring of Java programs. Val-

11

our [7] supports dynamic instantiation and hybrid monitoring. detectEr [59] is an actor-based [2]

RV tool for monitoring distributed Erlang programs. A hybrid instrumentation technique used by

detectEr is presented by Cassar and Francalanza [32] to dynamically switch between synchronous

and asynchronous monitoring, which would reduce the overhead by minimizing the synchronous

instrumentation while ensuring timely detections.

2.2.3. Decentralized and distributed runtime verification

Design and implementation of component based systems is hard, especially when modules are de-

ployed in asynchronous environments. Many studies have been proposed to describe properties and

generating monitors for these systems. According to whether there exists a global clock between

monitors and the target program, there are two categories: decentralized and distributed monitor-

ing [121].

In decentralized monitoring, a monitoring requirement is fulfilled by coordination between a set

of monitors. All monitors share the same clock so that a global order between events can be de-

termined. Bauer and Falcone [21] propose a decentralized LTL monitoring algorithm. There are

multiple processes which generate different predicates for a formula. To monitor the whole formula

locally, the algorithm generates a monitor for each process. Monitors communicate with each other

using synchronous communication. At each global tick, each local monitor decides whether a ver-

dict can be generated. If not, it will request results of predicates from other processes. Falcone et

al. [54] further generalize the algorithm to support monitoring regular language in a decentralized

way. Automata is used to specify local monitors. At each step, the local monitor either gets the

update from the component to which it attaches or receives state updates from other monitors. If the

information is not enough, it will send state update to other monitors. Colombo and Falcone [38]

present another decentralized algorithm for LTL monitoring, which forms a hierarchical network of

local monitors according to the structure of the formula statically. During execution, the state of a

formula is updated after receiving the update on its sub formulas. El-Hokayem and Falcone [51]

present algorithms for monitoring decentralized specifications where monitors can be attached to

various components.

12

Different from decentralized monitoring, distributed monitoring does not assume existence of a

global clock. Mansouri-Samani and Sloman [100] present a rule-based language to monitor dis-

tributed systems. Given a maximum communication delay, the framework can delay the application

of rules and reorder events. Sen et al [125] present a distributed algorithm for monitoring PT-

DTL (past time distributed temporal logic), which extends of past time LTL by adding operators to

specify formula or values to be computed remotely by other nodes. An algorithm for synthesizing

distributed monitors is presented, which relies on knowledge vectors. Each process contains a copy

of the vector. The monitor can always obtain the newest evaluation from other processes by knowl-

edge vectors. Francalanza et al. [60] present mDPI, a location-aware π-calculus [102] extension for

monitoring distributed systems. Multiple forms of monitoring strategies are presented and evaluated

in which one method use migration of monitors to support dynamic architectures. Zhou et al. [141]

present DMaC (distributed MaC), which extends MaC system with declarative networking to sup-

port checking safety properties of network protocols. The protocol is expressed as NDlog (network

datalog) rules [98].

2.2.4. Correctness and verification of runtime monitors

Trustiness of runtime monitors is a vital issue because they are responsible for generating warn-

ing and recovery actions correctly when the properties are violated. There are multiple aspects of

correctness. If a specification is modeled from a property, guaranteeing that the specification cor-

rectly describes the property is important. Some sophisticated monitoring algorithms have been

proposed to improve efficiency but correctness of the algorithm must be proved. For some tech-

niques, specifications are transformed into executable monitor code to be inlined with the target

program. Verification of compliance between the implementation and the specification is necessary.

Representative work on verification on runtime monitors are introduced below.

Laurent et al. [89] present a model checking framework to verify correctness of specifications writ-

ten in Copilot language [109]. Correctness of a monitor specification is described using invariant

properties. A k-induction based model-checker is then applied to check whether the invariant is

preserved. The method is useful when the specification is complicated and some invariants should

13

be discovered and verified to improve trustiness of the specification. However, it requires efforts to

write the correct invariants.

Blech et al. [29] present a framework for certified RV using Coq theorem prover [25]. The paper

states correctness of monitors from three aspects: instrumentation, integration and compliance of

the property specification. The system, system with instrumentation and system with monitor are

described as functions to the set of traces. The instrumentation correctness is defined on the equiva-

lence between on the original and instrumented system with respect to projections of system states

and concrete events. The integration correctness is defined with respect to non-interference between

the monitor and the instrumented system. Monitor correctness is defined on the equivalence of the

language. The paper further explores the issue of compliance for the properties described as regular

expressions. Both regular expressions and monitor functions are formalized in Coq and preservation

of a simulation relation between them is proved inductively. The corresponding relation between

concrete and abstract events are also proved.

For formalization and correctness proof of monitoring algorithms, Schneider et al. [123] formalize

the monitoring algorithm of MFOTL (metric first order temporal logic) using Isabelle/HOL proof

assistant [107] and prove its correctness by establishing an invariant to preserved at each step of the

algorithm and verifying that the verdicts generated reflect MFOTL’s semantics.

A lot of RV techniques support automatic synthesis of monitors from the property specification

and the correctness of synthesis algorithm should be verified. For instance, correctness of the syn-

thesis algorithm for generating automata-based monitors have been proved [62, 124]. Francalanza

and Seychell [59] present an automated procedure for synthesizing concurrent monitors for Erlang

programs from the property expressed using a subset of HML (Hennessy Milner logic). Due to

non-determinism of execution of concurrent programs, correctness of a monitor is defined based on

the property violation of a system with respect to an execution. Then, correctness of the synthesis

is proved from aspects of violation detectability, detection preservation and monitor separability.

Mitsch and Platzer [103] present ModelPlex, a RV framework for CPS systems. The method as-

14

sumes a verified model of a CPS system of which the non-determined number of executions pre-

serves a post-condition given a pre-condition. Soundness and computability of the synthesis algo-

rithm are proved.

Finkbeiner et al. [56] propose a verifying compiler that can generate verification conditions as

the correctness criteria along with the Rust implementation of Lola monitors [44], which are then

proved by the Viper toolkit [104]. Functional correctness, memory safety and termination can be

proved in this framework.

2.2.5. Parametric monitoring

Software systems often expand in the sense of data or control by creating new instances of data

structure, thread or process. Observations (events) generated from these dynamically scalable struc-

tures are attached with identities as attributes of events to distinguish them. Parametric properties

are defined on traces of events with attribute bindings. Due to their dynamic nature, parametric

properties are hard to be verified statically [34]. Many RV techniques support monitoring para-

metric properties [75]. Several formalisms of temporal logic have been proposed for parametric

monitoring such as JLO (Java logical observer) [130], LTL-FO+ [67], LTLFO [23], MFOTL [18]

and monitor modulo theories [46].

Goubault-Larrecq and Olivain present Orchids [65], an intrusion detection tool. Monitors can by

dynamically spawned reacting to possible beginnings of attacks. Yamagata et al. [134] present a

formalism CSPE for monitoring concurrent systems. Parametric properties are expressed by recur-

sive parametric processes. Extended from Lola, Lola 2.0 [55] supports parameterized templates and

dynamic generation of event streams for parametric monitoring of complex security properties in

network traffic.

In our work, we focus on parametric monitoring by trace slicing, which partitions a whole trace into

sub traces according the attribute values they carry. Non-parametric properties are then checked

against the sub traces. Allan et al. [5] first implements trace slicing in Tracematches to sup-

port event matching with values of parameters. MOP implements an efficient trace slicing al-

15

gorithm [34] for parametric monitoring, which has also been used in other tools such as RV-

monitor [99], MOVEC [35] and QEA. QEA checks parametric properties using the same trace

slicing mechanism with MOP. However, parameters can be quantified by a nested list of universal

and existential quantifiers. As a result, QEA is more expressive than MOP in parametric monitoring

but less in time efficiency due to the difference in the binding semantics. We will further study this

difference in Chapter 4.

There is also work on exploring the relation between specification techniques for parametric mon-

itoring. Reger and Rydeheard [114] present a transformation from QEA to rule-based system and

differences between these two techniques with respect to parametric monitoring are highlighted.

Reger et al. [113] present a subset of syntactic fragments in first-order temporal logic that are slice-

able and transform them into automata for slicing. The core of parametric monitoring is using

indexing to access states for an incoming event [72].

2.2.6. Stream processing

Stream processing [8] is a technique to handle data flow at large scale. A stream processing sys-

tem is usually composed of a set of nodes. On each node, operations such as union, join, filter

and arithmetic computation can be specified. Nodes are connected to form a DAG to transform

event streams. Compared to traditional batch processing, stream processing can efficiently deal

with real-time data and it is suitable to be used in event-driven applications. Many stream process-

ing frameworks, such as Storm [1], Flink [31] and Spark [135] have been proposed. With support of

stream operators, properties over data streams can be conveniently described in stream processing

programs and the mature framework makes it suitable to handle large-scale data. However, because

general stream processing frameworks handle large-scale data in a distributed way, which requires

more sophisticated control and brings more runtime overhead, it is not suitable when the target sys-

tem is not at large scale. To monitor properties over data streams, many stream runtime verification

(SRV) techniques have been proposed such as Lola [44] and its successor Lola 2.0 [55], Striver [64],

TeSSLa [94], Copilot [109] and Quantitative regular expressions (QREs) [6]. They have different

application targets and thus make different assumptions over streams and provide different language

16

features. For instance, Lola is a DSL for specifying properties for synchronous systems. Each data

point comes with a timestamp and different streams are synchronized by a global clock. Lola 2.0

gets rid of the global clock and provides sliding window expressions to aggregate events for time

intervals. Moreover, as already mentioned above, dynamic generation of event streams to support

large-scale inputs. More complicated properties such as network traffic can be described. QRE is

a specification language for complex numerical queries over data streams. Stream composition and

arithmetic operators such as sum and average are supported.

2.2.7. Summary

In this section, we have introduced some representative studies on runtime verification. To monitor

a variety of properties for different types of systems, existing studies focus on multiple aspects such

as design of specification languages, monitoring algorithms, decomposition of specifications and

deciding deployment of monitors. However, fulfilling two requirements introduced in Section 2.1

is still challenging for many existing RV techniques. In Chapter 3, we present a new formalism,

SMEDL for RV which utilizes automata to specify properties at multiple abstract levels. A compli-

cated monitoring requirement can be decomposed into a set of monitors that can communicate with

each other during runtime. Moreover, users can specify deployment of monitors in a flexible way.

To bridge the gap between the monitor specification and the implementation, we propose a method

to generate correct-by-construct implementation of monitors using Coq theorem prover and the

Fiat framework. In Chapter 4, we present a novel method to use dynamically scalable SMEDL

monitor network for parametric monitoring. In Chapter 6, we will also study monitoring timing

properties in distributed environments where network delay and clock difference need to be taken

into consideration.

2.3. Self-adaptive software

Software adaptation is a technique to enable software to dynamically adjust changes during execu-

tion. According to the objective of adaptation, there are four types of goals [119]: self-configuration,

self-optimization, self-healing and self-protection. We will first introduce work on general tech-

17

niques for adaptation, which are divided into two categories, method-based and model-free meth-

ods. Then, we present work on runtime enforcement, which uses monitoring techniques to detect

violation of properties during runtime and then generates reflexive actions to prevent software fail-

ure or malicious attacks.

2.3.1. Model-based methods

The adaptation process contains four steps, monitor, analyze, plan, and execute, which require

knowledge of the target system (referred as MAPE-K [82]). In model-based software adaptation, a

model provides hints on when and how to apply adaptation actions and guarantees correctness of

the adaptation. Both architecture and behavior models can be used in the adaptation.

The rainbow framework [61] uses style-specific software architectures and a reusable infrastructure

to support self-adaptation. An architecture model contains properties to be maintained during exe-

cution. After a violation is observed and analyzed, repairs are conducted which would change the

architecture. MADAM [57] uses architecture models to realize software adaptation. The adaptation

is implemented as a middleware, which monitors user and system contexts and uses an architecture

model to decide whether adaptation is needed and how to apply it. Utility functions are used to

decide when to switch between implementations to achieve the adaptation goal. The application

variant with the highest utility will be chosen. ActivFORMS [79] is an adaptation technique which

implements the MAPE-K loop formally and supports changing goals at runtime. Models of timed

automata can be executed by a virtual machine so that no coding is required.

Studies introduced above can support sophisticated adaptation actions. However, a large fraction

of software failures, especially ones depending on the environment and concurrent behaviors can

be solved by simply rebooting the system. Microreboot [30] uses local recovery to increase the

availability of Java-based Internet systems. Compared to global recovery, local recovery is more

efficient and potentially has less influence to the user. However, the only type of actions microreboot

supports is restarting a subset of components. Sözer et al. [128] propose the Flora framework

to support local recovery based on decomposition of component-based system. Components are

18

partitioned based on the independent relation and the cost to execute restarting operation. During

execution, Flora will detect whether failure happens in each partition and only reboots the failing

ones.

Easwaran et al. [49] explore a control-theoretic view of software adaptation and present an archi-

tecture for steering of discrete event system [111]. The steering architecture contains a system, a

monitor and a steerer. The system is modeled as a transition system receiving activation or deacti-

vation signals sent from the steerer. Activation signals carry the actions to be executed in the system

and deactivation signals halt the specified actions. Monitors are used to return possible violations

that the system may encounter so that the steerer can generate actions to prevent the violation. The

communication delay between the system and the controller is handled as a control problem under

partial observation.

2.3.2. Model-free methods

Model-free methods do not require systematic knowledge on the system or the environment. AS-

SURE [126] is a system introducing rescue points that recover from unanticipated problems from

known error conditions. Prior to deployment, ASSURE uses fuzzing to discover candidate rescue

points. During execution, when a fault is detected, ASSURE analyzes the fault, selects a proper

rescue point and then produces a patch. The patch instantiates a rescue point inside the application

to avoid the fault. Ares [66] also tries to leverage existing error handlers to recover from unex-

pected errors. It intercepts the exception handling of the underlying JVM. A synthesizer generates

a set of candidate solutions by analyzing the exception type and the call stack. Java PathFinder

then analyzes candidates and ranks them to choose the most viable one to patch. Nielebock [106]

presents an API-specific program repair mechanism. The method utilizes API information from the

erroneous code to search for API usage patterns from which patches can then be generated. Kim

et al. [86] extend MaC with a feedback capability. Steering specification includes the target objects

and actions to be executed. When the system deviation is detected by the runtime checker, actions

are invoked and transferred to the target system and executed when the system is ready.

19

2.3.3. Runtime enforcement

Runtime enforcement (RE) extends runtime verification with the ability to transform from an input

event trace to an output trace that follows the specification. Some EMs (enforcement monitors) are

utilized as the interface to generate property-compliant data for two systems communicating with

each other using events. Reference monitors [68], on the other hand, intercept actions generated

from the target system and generates actions to change the state of the program directly to prevent

violation of the property. There have been many studies focusing on multiple perspectives of RE

from specifications to principles of RE. Some representative ones are introduced below.

The initial formalism of RE is security automata (SA) [122], which is a büchi automata with partial

transition functions. When a security automata receives an event, it checks whether there is a defined

transition. If so, the transition is executed and the target system can continue execution. Otherwise,

the target system will be halted. SA needs to memorize potentially unbounded execution history.

Fong [58] presents SHA (shallow history automaton) which only tracks what events have been

received without recording the order among them. Although strictly less expressiveness than SA,

SHA requires less memory and can still enforce some famous security policies such that the Chinese

Wall policy. Sometimes, security related method calls to be enforced will return value, Ligatti and

Reddy [95] present MRA (mandatory result automata) which is used as an interface between the

untrusted application and the executing system. The MRA sends valid calls from the application to

the system and returns valid results generated from the system back to the application. Under certain

environments where MRAs can explicitly observe termination of the application and the executing

system always return results, MRAs can enforce action-life properties.

SA can only enforce safety properties. Ligatti et al. [96] present edit automaton which supports

suppressing and inserting actions. Renewal properties can be enforced by edit automata [97]. Re-

newal properties contain all safety and certain liveness properties. Falcone et al. [52] present GEM

(generalized enforcement monitors) with finite control states and a memory device. Store and dump

operations are supported to memorize events and re-insert them when necessary. GEM can enforce

response properties which expect good things should happen infinitely often. Response properties

20

coincide with renewal properties [53]. Bielova and Massacci [28] study enforcement of iterative

properties. Informally, a property is iterative if concatenation of two property-compliant traces still

satisfy the property. They present iterative suppression automata to remove invalid subparts of the

trace.

RE mechanism has been used to implement security policies. Bauer et al. present Polymer [24],

a system using edit automata to specify and compose security policies for Java programs. Another

application of runtime enforcement lies in the usage control policy. El-Harake et al. [50] apply

enforcement techniques to block advertisements embedded in the Android applications. Riganelli

et al. [117] introduce proactive library for API usage in the Android ecosystem. At the develop-

ment phase, developers model usage policies as edit automata, which will be compiled into policy

enforcer which guarantees correct API usage by intercepting API calls from applications to the

libraries.

Since enforcement mechanisms may directly change behavior of the target system, correctness is

an important issue. Current studies focus on two aspects. The first aspect is defined on the spec-

ification, which says soundness and transparency must be guaranteed by an EM [96]. Soundness

means the output of an EM must comply with the property while transparency means a correct input

trace should not be altered. For EMs of safety properties, two principles can be satisfied directly

since the prefix of a trace must also satisfy the property. For properties having invalid prefixes,

we want to output a correct trace that is as close as to the input trace. The notion of precise and

effective enforcement are defined. Precise enforcement requires that if the input trace is valid, the

output trace must not be modified. Effective enforcement is based on equivalence relation between

executions. One instantiation of equivalence relation is the longest valid prefix [52]. Bielova and

Massacci [27] distinguish different ways of executing suppression and insertion actions. An All-Or-

Nothing automaton stores invalid prefix until the stored trace complies with the property while a late

automaton only outputs some valid prefix. They also discuss the case where soundness and trans-

parency are too strict to define bad traces [26]. Distance between two traces are used to measure

closeness between two traces and boundedness and predictability are defined as a weaker notion of

21

soundness and transparency.

The second aspect is the gap between the specification and the implementation. Several studies

have been proposed to verify correctness of in-line monitors. Hamlen et al. [69] present MOBILE,

a framework to certify monitors on Microsoft .NET architectures using type theory. The method

assumes a security property is defined correctly but the rewriter, which is responsible for generating

the implementation, cannot be trusted. The compliance of property is checked by type-checking

rules defined upon bytecode programs. Aktug et al. [4] present a proof-carrying monitor inlining

mechanism for Java Virtual Machine. The inlining correctness is described using the annotations in

the form of Hoare logic. A ghost monitor represents the policy specification, which is transformed

into checks before and after security-related calls. The proof of state synchronization between the

ghost monitor and the in-line monitor is built locally as pre- and post-condition for each relevant

program points. Using the verification condition checker, the adherence proof is validated. Sridhar

and Hamlen [129]. design and implement a model checking framework for the correctness of in-

line reference monitor. The method assumes that the in-line monitor is generated and integrated into

the ActionScript bytecode programs by an untrusted third-party. The verifier non-deterministically

explores the untrusted code and obtains an abstract machine describing the behavior of the monitor.

The model checker then verifies whether the abstract states comply with the security property. The

soundness and convergence of the abstract machine is proved.

2.3.4. Summary

Runtime enforcement has been used to either prevent the system from property violation or gener-

ate reflexive fixes. Compared to general techniques which require models or existing error handling

mechanism, RE is light-weighted and easy to validate. However, even though existing techniques

have provided ways to check transparency and soundness of a formalism and compliance between

the specification and the implementation, there is little work on interference between the target

system and the implementation of adaptation actions. In Chapter 7, we will extend SMEDL to sup-

port reflexive adaptation actions and present an initial work on verifying correctness of adaptation

actions with respect to the target system.

22

CHAPTER 3 : Scenario-based Meta Event Description Language

This chapter presents Scenario-based Meta Event Language (SMEDL) as a formalism to express

monitoring logic. The formalism is divided into two parts: single monitor specifications and archi-

tecture descriptions. A single monitor specification is composed of a set of EFSMs which share data

states and synchronize with each other using internal events. In Section 3.1, we formally define the

specification language and propose a method to generate correct-by-construction implementation of

single monitors. By using single monitors, many properties can be expressed from ones describing

high-level temporal relations to ones involving primitive computations and state updates. To further

conveniently describe and efficiently check properties of component-based systems that may scale

during runtime, in Section 3.2, we use single monitor specifications as building blocks to construct

a more complicated monitoring system as a monitor network. An architecture description specifies

flows of information between monitors. Monitor deployment and communication between moni-

tors can also be described. A single monitor specification is extended to carry identities to support

dynamic instantiation of instances on demand. The semantics of dynamic instantiation of monitor

instances and synchronized collaboration of monitors will be proposed.

To make this chapter more self-contained, we first introduce terminologies, notations and defini-

tions. Sets are denoted by single uppercase letter or strings starting with a capital letter. The power

set of S is denoted as 2S or P(S). Lowercase letters or strings are used to denote variables or

values. Symbols may be attached with subscripts of natural numbers. The symbol→ will be over-

loaded when defining a function space, mapping or transition. The symbol ⇁ denotes a partial

function. When denoting the internal structure of a set, we will use curly brackets. Comprehension

notation is used to describe the condition to be satisfied in the set. The tuple is represented using

angled brackets or parentheses. We use θ to denote a map, which can be expanded using the no-

tation [x1 7→ v1, x2 7→ v2...]. We use the operation θ[x1] to return v1. The symbol = is used for

assignment or equality. The symbol ≡ is used for equivalence relation or definition. Dot notation

and subscripts are used to represent the relation between the element and the tuple to which it be-

longs. For instance, for a tuple T ≡ 〈A,B〉, the field B of T can be denoted either as T.B or BT .

23

Dot notation is also used to concatenate lists and the empty list will be denoted by ε.

3.1. Single monitor: design, semantics and correct-by construction code generation

A SMEDL single monitor specification is an entity that can be used to describe a complete moni-

toring requirement or as a building block to form a monitor network to describe more complicated

properties. By using a higher-level specification language than common programming languages,

monitors can succinctly describe what monitors should do: implementation details are crucial for

performance, but they can be determined separately, along with a proof of preservation of seman-

tics between the specification and implementation. One challenge is to design semantic rules that

can be used smoothly in the specification, while remaining amenable to refinement so that such

preservation can be proved without excess difficulty.

Additionally, to generate a correct monitor, we have to ensure that the monitor specification is

well-formed. This thesis focuses on two properties: responsiveness and determinism. Informally,

responsiveness means the monitor always returns a result when fed with an event, which is important

because if a monitor gets stuck during the execution, it cannot receive events from the system and

catch property violations. Moreover, a synchronous monitor that gets stuck or aborts will directly

influence execution of the target system. Determinism ensures that the monitor always produces the

same output given the same input and the state. The code generation process needs to detect and

reject any “bad” monitor specifications that may behave non-deterministically during runtime.

In this section, we first present the definition of single monitors. Then, we present an operational

semantics for SMEDL monitors written in a relational way which ensures that the functionality of a

specification and its implementation are separated. Based on the semantics, we define a predicate on

the definition of SMEDL monitors to ensure responsiveness and determinism. Finally, we present

a method for generating correct-by-construction implementations of single monitors. Our method

is based on Fiat [47], a deductive synthesis framework embedded in the Coq theorem prover. Users

start by embedding their DSL (domain specific language) into Coq, so that each DSL program is

understood as a mathematical description of the set of results it may return. Using stepwise refine-

24

ment, each program can be translated into a correct-by-construction executable implementation. A

case study illustrating the usability of the code generation will be presented1.

3.1.1. Definitions

A SMEDL monitor is a reactive entity interacting with the environment by receiving and generating

events. A monitor is composed of a set of scenarios. Each scenario is an EFSM reacting to events.

Scenarios interact with each other using shared state variables or by triggering execution of other

scenarios through raised events. Each transition is labeled with a triggering event and attached to

a boolean expression as the guard condition and a list of actions to be executed after the transition.

Primitive data types such as integer, float and boolean types and arithmetic and logical operations

are supported in SMEDL. The definition of the monitor is given below.

Definition 1 (Monitor) A monitor M is a triple 〈V,E, S〉, where V is a set of state variables; E is

a set of event declarations and S is a non-empty set of scenarios.

Definition 2 (Event declaration) An event declaration is a triple 〈evName, attributeTypes, event

Type〉 where evName is the name of the event, attributeTypes is a list of data types for the

attributes of the event; eventType is an enumeration of three values: imported , exported and

internal to denote how the event is used in the monitor specification.

Imported events are received from the environment to trigger execution of the monitor; exported

events are raised within the monitor and sent to the environment; internal events are also raised

within the monitor but are only seen and processed within a given monitor.

Definition 3 (Scenario) A scenario of a monitorM is an EFSM 〈St,Σ, ι, ψ, F 〉, where St , F , ι are

respectively a set of states, a set of final states and the initial state; Σ is the alphabet—events that

can trigger the transitions of M , which is a subset of M .E; ψ is a set of transitions. All scenarios

are assumed to be complete with respect to transitions.

Definition 4 (Transition) A transition is a 4-tuple 〈qsrc, qdst , ev ,A〉 where qsrc and qdst are the

1https://github.com/PRECISE/smedl-fiat-code

25

source and target state of the transition; ev is an event instance that triggers the transition; A is a

list of actions to be executed after the transition.

Definition 5 (Event Instance) An event instance of a transition tr is a 3-tuple 〈event , eventArgs, g

〉 where event is a reference to the event declaration, eventArgs is a list of variables that are local

to tr and g is the guard condition of tr .

For each event instance ev of the transition tr defined in the scenario sce, ev.event ∈ sce.Σ. Moreover,

the data type of local variables in eventArgs are implicitly declared in ev.event.attributeTypes. We

will use the notation qsrc
ev{A}−→ ev .g qdst to denote the transition 〈qsrc, qdst , ev ,A〉.

Supported actions are state update and raising events. In state update actions, state variables or local

variables can be updated by normal arithmetic or logical operations. Events to be raised must be an

internal or exported event.

Definition 6 (State Update) A state update action is a tuple 〈v, expr〉 where v is the variable to be

updated and expr is the expression computing the value to be assigned to v.

Definition 7 (Event Raising) A event raising action is a tuple 〈e, exprList〉 where e is the name

of the event to be raised and exprList is a list of expressions to be computed and bound to the

attributes of e.

To give an illustrative example of a single monitor, the SMEDL specification for Iterator HasNext

of Case 1 in Section 2.1 is given below. Note that self-looping transitions are omitted. Three events

create, next and hasNext represent operations of creating an iterator, calling to the next and hasNext

API. The attribute b is the return value of hasNext. If the call to next is made at the ready st

state, the monitor will raise an exported event error to indicate the violation of the API policy. The

concrete syntax of single monitors is given in Appendix A.1.1.

26

object IteratorHasNext

events:

imported create();

imported next();

imported hasNext(int);

exported error(int);

scenarios:

main:

init_st -> create() -> ready_st;

ready_st -> hasNext(b) when (b == 1) -> next_st;

next_st -> next() -> ready_st;

ready_st -> next() {raise error();} -> error_st;

3.1.2. An Operational Semantics of SMEDL

This section presents an operational semantics for a single monitor, which is represented as transi-

tions between configurations.

Definition 8 (Configuration) A configuration of a monitor M is a five-tuple 〈MS ,DS ,PD ,EX ,

SC 〉 where

• MS is a mapping from M.S to their current states;

• DS is a well-typed function M.V → Val where Val is the set of values;

• PD is a set of pending events to trigger transitions within M in the current macro-step;

• EX is a set of raised exported events;

• SC is a set of scenarios that have been executed during the current macro-step.

Each configuration conf relates to a monitor M, denoted as confM . The subscript is omitted when-

ever the context is clear. Each element in PD and EX is a raised event, which is defined below.

For both raised events and event instances, we abuse the word type to state their relation with the

corresponding event declaration. For a well-typed raised event e, all values of e.valList should be

compatible with types specified in e.event.attributeTypes.

27

Definition 9 (Raised Event) A raised event is a tuple 〈event , valList〉 where event is a reference

to the event declaration and valList is a list of values.

To trigger a transition, its event instance ei must be matched with a raised event e in PD and local

variables ei .eventArgs are bound to e.valList . A function bind(ei , e) is defined to generate a

mapping θ from ei .eventArgs to corresponding values in e.valList . For succinct representation,

we will use the terminology event to denote the concept of event declaration, event instance and

raised event.

Definition 10 (bind function) bind(ei, e) returns a mapping θ where ei.event = e.event ∧ θ[nj] =

vj for all variables nj ∈ ei .eventArgs and its corresponding value vj ∈ e.valList at the same

position in the list.

When an imported event is sent to a monitor, state transitions within the monitor are triggered.

Actions attached to transitions may raise internal or exported events. Internal events are used to

trigger further transitions in other scenarios. After all triggered transitions are completed, exported

events are output and the monitor waits for the next imported event. This process is denoted as three

levels of transitions. At the highest level, a macro-step, denoted as conf
e
⇀ conf ′, represents that

the evolution of a monitor from conf to conf ′ by an imported event e. A macro-step is constructed

by chaining a series of consecutive micro-steps, denoted as conf
e
↪→ conf ′. Each micro-step is a

synchronous composition of a set of scenario-steps on scenarios with the same triggering event.

At the lowest level, each scenario-step, denoted as conf
e−→ conf ′, is applied to a scenario. Each

scenario can take at most one scenario-step in each macro-step so that there are no infinite interac-

tions between scenarios. For constructing three types of transitions, basic rule, synchronoy rule and

chain merge rule are proposed below. The semantic rules have been encoded in Coq. For succinct

representation, type checking rules, evaluation of expressions and sequence rules performed on a

list of actions are omitted.

Basic rule. The basic rule is applied to a scenario whenever a transition is triggered by a pending

event. In the definition below, the scenario performing the transition is denoted as mh, conf denotes

28

the configuration before applying the rule, and conf ′mh denotes the configuration after applying the

rule on mh. The union operator ∪ is overloaded for generating the union of two mappings. The

function eval(expr ,m) evaluates expr given a mapping m from variables to values.

tr : s1
ei{a}−→ c s2 tr ∈ mh.δ

MSconf (mh) = s1 mh /∈ SCconf

e ∈ PDconf θ = bind(ei , e)

DSex = DSconf ∪ θ eval(c,DSex) = true

〈DS ′,PD ′,EX ′〉 = updateConfig(a,DSex)

conf ′mh = 〈MSconf [mh 7→ s2],DS ′, (PDconf \ {e}) ∪ PD ′,EXconf ∪ EX ′,SCconf ∪ {mh}〉

conf
e−→ conf ′mh

When receiving an event e, tr is the enabled transition in mh from s1 to s2 by ei which matches

e. To execute the transition, the following preconditions must be satisfied: 1) current state of mh is

s1 and 2) c, the guard condition of tr, is evaluated to true given the current data state which is the

union of DS and the mapping θ from local variables in ei to attribute values stored in e, 3) e is in

PD, and 4) mh is not in SC.

When tr is taken, mh transitions to s2 and is put into SC and e is removed from PD. By executing

actions in a under the context DSex (represented by the function updateConfig), DS is updated to

DS’; and raised events are respectively added to PD and EX according their types.

Synchrony rule. One or more scenarios may be enabled by a triggering event from the same source

configuration. The basic rule creates new configurations for each scenario by taking these transi-

tions. The synchrony rule then combines scenario’s resulting configuration into a new configuration.

Combination of two configurations conf1 and conf2 under the origin configuration conf is defined

below.

29

• ∀mh ∈ S,

MS conf ′(mh) =

MS conf1 (mh) ,MS conf1 (mh) = MS conf2 (mh)

MS conf1 (mh) ,MS conf1 (mh) 6= MS conf (mh)

MS conf2 (mh) ,MS conf2 (mh) 6= MS conf (mh)

• ∀v ∈ V ,

DS conf ′(v) =

DS conf1 (v), DS conf1 (v) = DS conf2 (v)

DS conf1 (v), DS conf1 (v) 6= DS conf (v)

DS conf2 (v), DS conf2 (v) 6= DS conf (v)

• PDconf ′= PDconf1 ∪ PDconf2

• EX conf ′= EX conf1 ∪ EX conf2

• SC conf ′=SC conf1 ∪ SC conf2

The synchrony rule given below is used to create a micro-step. confs is the set of target configu-

rations obtained from the basic rule given a source configuration conf and an event e. MergeAll

combines each configuration in confs into a new configuration by repeatedly combining configura-

tions pairwise. The micro-step from c to c′ by e is denoted as c
e
↪→ c′.

confs = {confmh |conf
e−→ confmh}

conf
e
↪→ MergeAll(confs)

Chain merge rule. The objective of the chain merge rule is to construct a macro-step, which is the

transitive closure of micro-steps. Case (1) shows that a micro-step triggered by an imported event is

the basic case. The corresponding source configuration is denoted as an initial configuration, which

is defined below. The inductive case is shown in case (2). Note that all internal events are forgotten

because they are not observable from the outside of the monitor. There is no restriction on how to

choose the next event from pending events of conf’. Note that integer subscripts are attached in the

chain merge rule to indicate the number of micro-steps from the initial configuration to the current

30

configuration, which will be used to prove the responsiveness property below.

conf
e1
↪→ conf ′

conf
e1
⇀1 conf ′

e1 .event .eventType = imported (1)

conf
e1
⇀n conf ′

conf ′
e2
↪→ conf ′′

conf
e1
⇀n+1 conf ′′

(2)

3.1.3. Towards a well-formed monitor specification

To bridge the gap between the semantic rules and the monitor implementation, we need to overcome

some challenges. Firstly, the basic and the synchrony rule are encoded as partial functions in Coq,

which means some restrictions are necessary to make sure their application always succeeds. Sec-

ondly, the chain merge rule is defined relationally because it does not specify which event to choose

from PD to trigger the next micro-step, nor does it guarantee termination during the combination of

micro-steps. To derive a computable version, which must terminate because of restrictions in Coq,

the chaining process must terminate normally each time given an imported event. Moreover, all

possible implementations of the chain merge rule must be equivalent in the sense of verdicts they

produce given the same input and the same state. To summarize, a monitor must satisfy two proper-

ties, responsiveness and determinism. To describe a state that a monitor can stay after a macro-step,

we define the concept of an initial configuration and a final configuration.

Definition 11 (Initial Configuration) A configuration conf is an initial configuration if 1) SCconf

= ∅ and 2) PDconf = {e} where e is an imported event.

Definition 12 (Final Configuration) A configuration conf is a final configuration if 1) SCconf 6= ∅

and 2) PDconf = ∅.

Definition 13 (Responsiveness) A monitor M is responsive iff for any two of its configurations

confM and conf ′M and an imported event e that satisfies the relation confM
e
⇀n conf ′M , if M cannot

take any micro-step from conf ′M , then conf ′M is a final configuration and n is equal to or less than

31

|M.S|.

Definition 14 (Determinism) A monitor M is deterministic iff given the configuration confM ,

conf ′M and conf ′′M , if confM
e
⇀ conf ′M , confM

e
⇀ conf ′′M and both conf ′M and conf ′′M are final, then

conf ′M = conf ′′M .

As a side note, we can make informal connection from the evolution of configurations to the theory

of abstract rewriting system (ARS) [88] where configurations and micro-step are the alphabet and

the binary relation of an ARS. Responsiveness and determinism correspond to the strong normaliz-

ing and confluent property. Although we will not formalize this connection in this work, some idea

will be used below to prove the determinism property of a monitor.

Table 1 lists predicates on the syntactic structure of a monitor, which are divided into three categories

indicating which parts of the semantic rules are influenced. Note that subscript is used to denote the

relation between a tuple and its fields.

Table 1: Predicates for well-formedness
Classification Name Definition

Scenario-step level
P1

∀s ∈ SM , ∀tr1 tr2 ∈ δs, qsrctr1 = qsrctr2 ∧
ev tr1 .event = ev tr2 .event
⇒ gev tr1

= ¬gev tr2

Micro-step level P2
∀v ∈ VM ,∀s1 s2 ∈ SM , updateVar(v , s1) ∧
updateVar(v , s2)⇒ Σs1 ∩ Σs2 = ∅

Macro-step level

P3 ∀e ∈ EM , eventTypee =
imported ∨ eventTypee = internal ⇒ ∃s, s ∈
SM ∧ e ∈ Σs

P4 ∀e e1 e2 ∈ EM , e1 6= e2 ∧ e ⇑M e1 ∧ e ⇑M e2 ⇒
¬∃s, s ∈ SM ∧ e1 ∈ Σs ∧ e2 ∈ Σs

P5 ∀e e1 ∈ EM , eventTypee = imported ∧ e 6=
e1 ∧ e ⇑M e1⇒ ¬∃s, s ∈ SM ∧ e ∈ Σs ∧ e1 ∈ Σs

P6
∀e ∈ EM , ∀ s1 s2 ∈ SM , raiseEv(s1 , e) ∧
raiseEv(s2 , e) ∧ s1 6= s2 ⇒
¬∃e′ ∈ EM , trigSce(s1 , e ′) ∧ trigSce(s2 , e ′)

P7 ∀e ∈ EM , s ∈ SM , stp ∈ δs,
noDuplicatedRaise(e, s, stp)

P8 ∀e1 e2 ∈ EM , ∀v ∈ VM ,
∃e,noDependency(e, e1, e2)
∧updateVarEv(v ,e1) ⇒ ¬updateVarEv(v ,e2) ∧
¬usedVarEv(v ,e2)

32

P1 guarantees that exactly one transition is triggered for a scenario during the application of the

basic rule, by an event from the alphabet for that scenario. P2 guarantees that when applying

the synchrony rule to construct a micro-step, scenarios that share the same triggering event never

update the same variable. updateVar(v , sce) means that variable v is updated by actions from the

transitions of scenario sce.

The tricky part is that all pending events must be consumed at the end of each macro-step, i.e. there

are no pending events when all available scenarios have finished execution and that the execution of

a monitor never gets stuck because of a mismatch between enabled scenarios and pending events.

P3 guarantees that all imported events or internal events can trigger execution of some scenarios.

P4 and P5 ensure that imported or internal events that may be raised in the same macro-step cannot

directly trigger execution of the same scenario. e ⇑M e1 means that e1 is raised by the actions

of transitions transitively triggered by e. P6 and P7 guarantee that in each macro-step, an internal

event cannot be raised multiple times. raiseEv(sce, e) means that the actions of transitions defined

in sce contain raising e. trigSce(sce, e) means that e may transitively trigger a transition of sce.

noDuplicatedRaise(e, sce, stp) means that e can only be raised once in stp of sce.

The chain merge rule does not specify an order for the chaining of micro-steps. If a monitor is

not well defined, the result of a macro-step could be non-deterministic. P1 ensures scenario-level

determinism. P4 to P7 also prevent some behaviors that may lead to non-determinism. We define

a proposition noDependency(e, e1 , e2) ≡ eventTypee = imported ∧ e ⇑M e1 ∧ e ⇑M e2 ∧

¬e1 ⇑eM e2 ∧ ¬e2 ⇑eM e1. This means that e1 and e2 may be raised in the macro-step triggered

by imported event e, and that during this macro-step, e1 can not transitively raise e2, and vice

versa. P8 guarantees that updating a state variable is mutually exclusive. updateVarEv(v , e) and

usedVarEv(v , e) respectively mean that v may be updated and used in any actions transitively

triggered by e.

We use the notation Pi(M) to represent that a monitor M satisfies predicate Pi . A well-formed

monitor satisfies the eight predicates defined above, Wellformed(M) ≡
∧

1≤i≤8 Pi(M).

33

Given a monitor that is well-formed, and starts execution from an initial configuration, we can now

prove that it always reaches a final configuration deterministically within a bounded number of

micro-steps, as described in Theorem 15 and Theorem 16 below:

Theorem 15 A well-formed monitor M is responsive.

Theorem 16 A well-formed monitor M is deterministic.

To prove Theorem 15, we need to first prove that the number of micro-steps taken within a macro-

step is bounded. Because each scenario can only transition once during each macro-step, and at

least one scenario executes in each micro-step, the number of micro-steps to be taken is bounded

by the number of scenarios in the monitor. So we first prove that |SCconf | strictly increases in a

micro-step.

Lemma 17 Given two configurations conf conf ′ and an event e, if conf
e
↪→ conf ′, then |SC conf | <

|SC conf ′ |.

With Lemma 17 and the fact that SC confM is a subset of |SM |, we can prove that the number of

micro-steps taken by a well-formed monitor in a macro-step is bounded by the number of scenarios:

Lemma 18 Given a well-formed monitor M , two of its configurations confM and conf ′M and an

imported event e, if confM
e
⇀n conf ′M , then n ≤ |SM |.

Next we need to prove that a well-formed monitor cannot be stuck in a non-final state:

Lemma 19 Given a well-formed monitor M , two of its configurations confM and conf ′M and an

imported event e, if confM
e
⇀n conf ′M and conf ′M is not a final configuration, then M can take a

micro-step on all of its pending events from conf ′M .

With the three core lemmas presented above, and other auxiliary lemmas, Theorem 15 can be proved

by using the idea of confluence in rewriting systems. First, we prove the diamond lemma defined

below:

Lemma 20 (Diamond) Given a well-formed monitor M , if confM is an initial configuration or

34

there exists a configuration oconf such that oconf
e
⇀ confM , and confM

e1
↪→ conf1M and confM

e2
↪→

conf2M , then there exists a configuration conf ′M such that conf1M
e2
↪→ conf ′M and conf2M

e1
↪→

conf ′M .

The precondition of Lemma 20 on the source configuration is used to guarantee that the transition is

performed from a legal configuration. Then, by induction on the number of micro-steps to be taken

by two transition chains, we can prove the confluence lemma:

Lemma 21 (Confluence) Given a well-formed monitorM , if confM
e
⇀ conf1M , confM

e
⇀ conf2M

, there exists a configuration conf ′M such that conf1M ↪→∗ conf ′M and conf2M ↪→∗ conf ′M .

Transition ↪→∗ represents multiple micro-steps. Lemma 21 ensures that if an initial configuration

conf can transition into two non-final configurations conf1 and conf2 , then they can always transi-

tion back to the same configuration. Using Lemma 21 and the fact that a final configuration cannot

take any micro-step, Theorem 16 can be proved.

With these two theorems, we can always pick an implementation that will not get stuck or aborts

abnormally for a well-formed monitor and all implementations generate the same verdicts as long

as their behaviors follow the semantic rules. In the next section, we will use Fiat to generate an

implementation by refinement.

3.1.4. Code generation by refinement using Fiat

Overview of Fiat. Stepwise refinement derives executable programs from nondeterministic specifi-

cations. In each step, some details of the computation are decided upon, proceeding this way until a

computable program is derived. Each refinement step must not introduce new behavior: the values

that a refined program may produce must be a subset of the values allowed by the specification.

Fiat is a stepwise refinement framework, providing a semi-automatic way of deriving correct and

efficient programs. Here semi means that while the derivation process is automatic, it depends on

manually verified refinement lemmas, specific to the domain that Fiat is applied to. Readers can

refer to [47, 36, 133] for more information.

35

Key syntax structures in Fiat. In Fiat, specifications are logical predicates characterizing allow-

able output values. These specifications are called computations, and written in the non-determinism

monad: deterministic programs can be lifted into computations using the ret combinator, computa-

tions can be sequenced using the bind combinator (written “x← c1; c2(x)”), and a nondeterministic

choice operator written {a|P a} is used to describe programs that may return any value satisfying

a logical predicate P . Concretely, the result of binding two computations c1 and c2 as shown above

is simply the set {y|∃x, x ∈ c1 ∧ y ∈ c2(x)}.

Fiat computations are organized into an ADT (abstract data type), a structure used to encapsulate a

set of operations on an internal data type. In Fiat, an ADT contains an internal representation type

rep, a list of constructors for creating values of rep, and a list of methods operating on values of

rep. A well-typed ADT guarantees that rep is opaque to client programs using the operations of the

ADT.

Refinement calculus in Fiat. Refinement in Fiat is the process of transforming an ADT into a

more deterministic one, involving refining all constructors and methods defined in it and picking an

efficient internal representation using data refinement [76] of rep. When refining an expression, a

partial relation c1 ⊇ c2 must be preserved for each refinement step, meaning that the possible values

of expression c2 must be a subset of the possible values of expression c1. For the data refinement,

changes of internal representation are justified using a user-selected abstraction relation, so that

if the internal states of two ADTs are related, calling their methods must preserve the relation and

produce the same client-visible outputs. Adding the abstraction relation r to the partial relation⊇ of

refinement on expression, Fiat uses ⊇r to represent the relation to be preserved for each refinement

step: I1 ⊇r I2 ⊇r ... ⊇r Ii where I1 is the initial ADT and Ii is a fully refined (i.e. deterministic)

ADT.

Figure 4 gives an overview of the code generation process. The initial ADT describes the basic

behavior of monitors using semantic rules defined in the previous section. Then, the ADT is refined

by proving a sharpening theorem, wherein the representation type, constructors and methods of

the ADT are refined. The refinement of methods involves picking a specific implementation and

36

proving that⊇r is preserved between the specification and the implementation. The implementation

is parameterized by a specific monitor definition given a starting state (configuration) and proof of

well-formedness of that monitor. Executable code such as OCaml or Haskell can then be extracted

from this definition.

Figure 4: Code generation process

Definition of an ADT. The monitor ADT describes the common process of handling imported

events using the semantic rules defined in the previous section. The definition of this ADT is given

below.2

Definition confSpec : ADT _ := Def ADT {

rep := configuration M,

Def Constructor0 newS : rep := { c : configuration M | readyConfig c },,

Def Method1 processEventS (r : rep) (e: raisedEvent | raisedAsImported M e) :

rep * list raisedEvent :=

{ p : rep * list raisedEvent

| exists conf’ econf,

chainMergeTrans r conf’ econf (‘ e) (fst p) (snd p) }

}.

The configuration of a given monitor M is used as the representation type for the ADT. Instead of

constructing a concrete value, Constructor newS specifies that the starting state of a monitor should
2Some notations such as Def, Constructor and Method, are defined in Fiat

37

be a ready configuration. A ready configuration has empty sets for PD and SC, indicating that the

monitor is ready to receive an imported event for the next macro-step. The method processEventS

specifies the non-deterministic action of taking a macro-step. The first parameter r represents the

current ready state of the monitor and the second parameter e is the imported event triggering the

macro-step. The return value is a tuple of a ready configuration that reflects the updated state of the

monitor after the macro-step and a list of raised exported events. The semantic rules from previous

sections were defined in a relational way to conveniently specify this method, since relations easily

model non-deterministic functions. To adapt the chain merge rule to the interface of processEventS,

chainMergeTrans is defined below:

Definition chainMergeTrans {M : monitor} (conf conf’ econf: configuration M)

(e: raisedEvent) (rconf: configuration M) (events: list raisedEvent) : Prop :=

configTrans conf conf’ /\

chainMerge conf’ econf e /\

finalConfig econf /\

configTransRev econf rconf /\

events = EX econf.

configTrans conf conf’ represents the transformation from the ready configuration conf to initial

configuration conf’; chainMerge conf’ econf e is the Coq definition of conf ′
e
⇀ econf with the

number of steps taken omitted; and configTransRev represents the transformation from econf to a

new ready configuration rconf. events is the set of exported events raised in this macro-step.

Refinement process. Refinement using Fiat requires proving the theorem FullySharpened

(confSpec M), parameterized over some monitor definition M. The implementation is wrapped in

the proof object of the theorem. The first step refines the representation type. Here we choose the

same representation type—the configuration of monitor M—in the implementation. As a result, the

abstraction relation r is plain equality. Constructor newS is refined by choosing a ready configura-

tion conf for monitor M, given by the starting state of monitor M. Just like parameter M, conf also

needs to be provided to generate a concrete, executable monitor. To refine method processEventS,

we need to provide a deterministic function that preserves the semantics of applying the chain merge

rule. Preservation of the specification’s semantics for this function is given by the lemma below:

38

Lemma ProcessEventRefined M (C : configuration M) (W : Wellformed M)

(Cor:readyConfig C) (e: raisedEvent) (P : raisedAsImported M e) :

refine { p : configuration M * list raisedEvent

| exists conf’ econf, chainMergeTrans C conf’ econf e (fst p) (snd p) }

(ret (macroStepReadyFinal W Cor P (length (S M)))).

macroStepReadyFinal is a function which takes a ready configuration C and returns a new ready

configuration and list of exported events. Here we choose a straightforward implementation: a

fixpoint function that picks the first event from PD of the current configuration to trigger the next

micro-step. Note that in the Coq definition, we use a list to represent the set, and due to the pred-

icates establishing well-formedness, PD can never have duplicate events. The number of times the

semantic function gets invoked is bounded by the number of scenarios in M. Provided that M is

well-formed, it is guaranteed that the resulting configuration is a final configuration. The lemma

ProcessEventRefined establishes that the return value is a subset of the results obtained by applying

chainMergeTrans used in the original ADT. From the proof object of the theorem, an executable

version of processEventS can be obtained.

It is worth noting that, the semantics of SMEDL can be directly expressed as a Coq function for

generating the Haskell code by native Coq. But through Fiat, we can refine from the SMEDL

semantics in relational style into a more efficient implementation by changing the data structure for

configuration, handling pending events more wisely, etc. Moreover, refinement can be conducted in

a more mechanical and extensible way in Fiat than using native Coq.

3.1.5. Case Study

A general event processing function is generated by refinement, parameterized by: a specific mon-

itor specification, its well-formedness proof and a starting, ready state for that monitor. Therefore,

to obtain a correct-by-construction monitor, one needs to 1) write a monitor definition M; 2) prove

that M is well-formed; and 3) specify a starting state. A Haskell program is then be extracted, from

which a monitor is implemented by adding glue code to receive events from the target system. This

section uses a real-world monitoring requirement to illustrate the usability of this method.

39

SMEDL specification. The monitoring requirement comes from a known vulnerability (CVE-

2017-9228),3 in Oniguruma v6.2.0 [108] which is related to incorrect parsing of character classes

in regular expressions, resulting in a crash due to access of an uninitialized variable. A character

class is a pattern that represents a set of characters that is matched by a single character in the

stream, if and only if that character belongs to the set. To parse a character set such as “[0-5]”,

a state machine is implemented, as shown in Figure 5. Omitted from the figure, transitions in the

state machine are triggered by tokens read by the parser and guarded with addition conditions.

For instance, the transition to the RANGE state requires a look-ahead token to recognize the ‘-’

character.

Figure 5: State machine of parsing character class

Based on the parsing state machine, and agnostic of the specific vulnerability, a SMEDL monitor is

constructed. Part of the SMEDL specification (denoted as parseCC) is given below. We concentrate

on a policy which says that the VALUE state cannot be reached from the START state when we

expect to parse a character class next. There are two scenarios in parseCC. The scenario main mod-

els the transitions of the parsing state machine. The scenario check class tracks whether to parse

a POSIX character class next. Imported events starting with state to represent the transitions.

The imported event inClass and outClass represent beginning and exiting of setting the next state

to handle character classes. The monitor can detect the violation of this policy by raising the event

error when the state of main transitions to VALUE while the state variable in class is equal to 1.

We encode this specification in Coq, which will then be generated into executable code.

object parseCC

state:

int in_class = 0;

events:

imported inClass();//enter next_state_class

imported outClass();//exit next_state_class

3https://nvd.nist.gov/vuln/detail/CVE-2017-9228

40

imported state_to_start();//state is set to START

imported state_to_value();//state is set to VALUE

imported state_to_range();//state is set to RANGE

imported state_to_complete();//state is set to COMPLETE

exported error(int);

scenarios:

main:

START -> state_to_value() when (in_class != 1) -> VALUE;

START -> state_to_value() when (in_class == 1)

{raise error(0);} -> START;

VALUE -> state_to_value() -> VALUE;

VALUE -> state_to_range() -> RANGE;

VALUE -> state_to_start() -> START;

...

check_class:

idle -> inClass() when (in_class == 0)

{in_class = 1;} -> idle;

idle -> outClass() when (in_class == 1)

{in_class = 0;} -> idle;

Proof of well-formedness. Proving the well-formedness of a monitor seems hard because there are

multiple sub predicates needed to be proved and type correctness needs to be checked. However,

we have implemented decision procedures to check whether a monitor satisfies P1 to P3. Rest of

them can be proved using the auxiliary lemmas and tactics. The LOC of the proof is less than 1K of

Gallina and Ltac code, which takes about 30 minutes to finish.

Construction of the Haskell monitor. The core building block of a parseCC-based monitor is

given below. processEventS is the general event handling function refined from the Fiat ADT. The

Parameter r contains the information to be used by parseCC: the proof of well-formedness (denoted

as Well ParseCC) and a starting state. Parameter e is the imported, triggering event for parseCC.

Definition parseCC_processEvent (r : ComputationalADT.cRep

program Well_ParseCC configuration1_ready)

(e: raisedEvent | raisedAsImported parseCC e) :=

processEventS r e.

41

After a Haskell program is extracted, the monitor is constructed by adding glue code for receiving

events from the target system. We compile the Haskell code into an object file and expose two

functions to be instrumented into the target program. The type signature of these two Haskell

functions are given below:

cInitialRep :: IO (Ptr ())

cHandleImported :: CString -> Ptr () -> IO (Ptr ())

Both functions rely on the extracted Haskell code. cInitialRep provides a starting state for the

monitor. chandleImported takes the name of an imported event, and the current state of the monitor,

and returns a new state with any exported events printed out. The target system is responsible for

recording this state update transparently. Using the Haskell compiler, both an object file and a C

header file are generated. The header file contains the C API of the two functions, which are called

in the source code of Oniguruma. When an incorrect transition occurs in the library, an alarm is

raised and printed to the screen.

The difficult part of deriving a monitor is its proof of well-formedness, which can be simplified using

the provided decision procedures and tactics. Other steps are easily implemented using common

procedures. The methodology presented here provides an straightforward way to implement correct-

by-construction monitors. One concern of using formal techniques is the manual effort involved

in proof work. In our development, proofs are divided into two parts: one part includes proofs

used during the refinement process, and auxiliary tactics and decision procedures for proving the

well-formedness of any monitor; the other part is the proof of well-formedness for a particular

monitor. The raw LOC in Coq for the first part of proof (excluding the Fiat code) is about 30k lines.

However, to apply the technique, users only need prove well-formedness of their particular monitor,

which is not labor-intensive given the help of auxiliary tactics and lemmas. Therefore, we assert

that generating correct runtime monitors using a proof assistant is a feasible task.

42

3.2. SMEDL monitoring system

In the previous section, we have proposed SMEDL to describe properties in a single monitor. Com-

plicated requirements can be specified in a modular way as communicating scenarios, which are

convenient to design and organize. However, as software systems and properties become increas-

ingly complicated, it is still intractable to solely use single monitors to fulfill all monitoring re-

quirements. For instance, a property of a distributed system requires analyzing behaviors of sub

components but observations from different components are independent with each other. In this

case, rather than gathering all observations using a single monitor, it is more sensible to use monitors

to check sub components locally and then aggregate verdicts in a downstream monitor. Moreover,

target systems may evolve during runtime by extending dynamic data structure instances, adding or

removing components. As presented in Chapter 4, many properties for such kind of system rely not

only on the event order by also on the attribute values of which the domain are expanded during

runtime. To handle them, it is desirable to equip monitors with ability to dynamically scale to-

gether with the target system. In this section, we propose SMEDL monitoring system as a monitor

network. The SMEDL specification language is extended to express monitoring logic as a collec-

tion of monitors and monitoring architecture as flows of information between the target system and

monitors. The system supports synchronous as well as asynchronous deployment of monitors and

dynamic instantiation of monitors on demand. We will first introduce the overall system design

and salient features. Then, we will define the architecture description and present a semantics of

synchronous monitor network.

3.2.1. System design

Modular property specification. In order to effectively monitor a property in a large-scale dis-

tributed system, SMEDL allows us to specify properties in a modular fashion. In this way, a com-

plex property can be decomposed into a set of monitoring modules that collectively implement

the monitor for the overall property. A common pattern for modular specification is partitioning a

global property for a distributed system into a set of locally deployed modules that operate on local

observations of each process in the distributed system and convey results of local processing to the

43

global module that computes the overall result.

Monitor coordination and communication. After a complicated monitoring requirement is de-

composed into multiple monitors, coordination between monitors needs to be achieved by commu-

nication. The flow of interactions between monitors depends on the property and how it is parti-

tioned into modules. Specification of the monitoring architecture, described below, makes these

flows explicit.

Synchronous and asynchronous deployment. We specify the logic of each monitor module and,

separately, how this module is to be deployed. Often, the user has a choice of deploying the same

module synchronously or asynchronously, so decoupling the logic of the module from its deploy-

ment strategy increases flexibility of the framework. Deployment of monitors also influences how

monitors communicate with each other.

Dynamic monitor instantiation. Large-scale software systems typically contain many similar

components that can be added and removed dynamically. Monitors can be instantiated according to

the scaling of the target system.

Separation of property specification from observation extraction. A monitor specification de-

scribes, among other things, what observations are needed by the monitor in order to do its job.

In order to deploy monitors, we also need to know how to extract these observations from the tar-

get system. Extraction of observations can be performed in many different ways, for example by

instrumenting source code or binaries of system components, by snooping on the system bus, or

even offline, reading from a recorded trace. Over time, the target system may evolve and offer new

ways of observation extraction, or different variants of system component implementations may re-

quire different placement of instrumentation probes. It is important to accommodate these changes

in the monitoring setup with as little disruption as possible. SMEDL separates monitoring logic

from observation extraction using an event-based API, so that events can be raised in a specified

format by an appropriate extraction technology. In our work, we have experimented with several

such technologies, such as AspectC [37] for instrumenting C source code and a dynamic translation

44

tool for capturing observations from binary code. The extracted event can either be delivered to a

synchronous monitor by calling an monitor API or to an asynchronous monitor by communication

middleware such as RabbitMQ [116].

3.2.2. Monitoring architecture

Before introducing the monitor architecture, we first extend the definition of a monitor with a name

and identity parameters (also referred to as parameter variables or just parameters). Choosing differ-

ent parameter values allow us to have multiple monitor instances. To distinguish between a monitor

and its instance, we also use the terminology monitor type to refer a monitor. To describe commu-

nication between monitors while hiding the internal structure of the monitoring logic, we define the

interface for a monitor.

Definition 22 (Monitor interface) A monitor interface is a triple 〈monName, paras,EvInterface〉

where monName is the name of the monitor; paras is a list of typed parameter variables;

EvInterface is a list of imported and exported events of the monitor.

Monitoring architecture is a directed graph that represents communication between monitors (or

monitors and the target system) that involve in a monitoring requirement. Nodes of the graph have

ports that correspond to events that the node can consume or produce. Ports of monitor nodes

match the interface of the monitor. Ports of the target system node represent observations that

are obtained from it. Edges in the graph represent communication flows from exported events of

one node to imported events of another node. Nodes in a monitoring architecture are partitioned

into synchronous sets. Monitors within a synchronous set use a single thread of control while

communication between synchronous sets is asynchronous. During runtime, a monitor instance

may be created either statically at the beginning of a monitored run of the system or dynamically

when new values of parameters are discovered. The formal definition is given below.

Definition 23 (Architecture description) An architecture description is a triple 〈MonDef ,Sync

Def ,Channel〉 where MonDef is a set of monitor interfaces; SyncDef partitions monitors in

MonDef into synchronous sets; and Channel is a set of event connection specifications .

45

An event connection specification is a tuple 〈SrcMon, SrcEv, TarMon, TarEv, MonArgs, EvArgs〉,

which specifies how an exported event SrcEv of a source monitor (or the target system) SrcMon is

delivered to a target monitor TarMon as its an imported event TarEv. MonArgs (EvArgs) is a set

of PatternExpr specifying how to bind a parameter variable in the target monitor or an attribute

of the target event with a value from the source monitor or the source event. Each parameter of a

monitor or an attribute of an event corresponds to an index according to its position in the parameter

or attribute list, starting from 0. A PatternExpr is a tuple 〈targetIdx, source, sourceIdx〉, meaning

that the parameter value of TarMon (in MonArgs) or the attribute value of TarEv (in EvArgs) with

index targetIdx must be matched to the parameter value of source with index sourceIdx. source

can be either SrcMon or SrcEv. To correctly bind values, the type information of parameters and

event attributes carried by MonDef are used. Moreover, all attributes in EvArgs must be assigned

with a value. If all parameters are assigned with a value for MonArgs, the connection is unicast

because at most one instance can be the recipient. For multicast actions, one or more positions can

be assigned with an wildcard expression so that multiple instances may receive the event. For a

unicast connection, TarEv is also called an (implicit) creation event of TarMon because it is used to

create an instance when there is no instance that can consume the incoming event.

For example, an event connection specification (mon1 , e1 (x , y),mon2 , e2 (z),MonArgs : {(0 ,

mon1 , 0), (1 , e1 , 0)},EvArgs : {(0 , e1 , 1)}) specifies that instances of mon1 send e1 to mon2

as e2 . Note that type information of monitors and events are omitted here. When an event instance

e1 (x1 , y1) is sent from an monitor instance mon1 (a1), the monitor instance mon2 (a1 , x1) re-

ceives it as e2 (y1) as the specification requires that the first and second parameter of mon2 re-

spectively match to the first parameter of mon1 and the first attribute of e1 and the attribute of e2

matches to the second attribute of e1 . If there is no instance of mon2 parameterized with (a1 , x1),

mon2 (a1 , x1) will be created. The concrete syntax of the architecture description is given in Ap-

pendix A.1.2.

46

3.2.3. Semantics of synchronous set

Monitors in a monitor network are partitioned into synchronous sets in SyncDef. Monitors belong-

ing to the same set communicate with each other synchronously. This section formally defines

the semantics for a synchronous set. We first define a monitor instance as a tuple 〈monName,

parasBinding〉 where monName is the name of the monitor and parasBinding is a map from paras

to values they are bound to. For a raised event, we extend its definition with monInst to de-

note the monitor instance that raises it. The dynamic state of an instance is still represented by

a configuration and the configuration of a monitor M is a partial function monConfigM from

instances of M to configurations. The configuration of a synchronous set MSet is defined as

setConfigMSet = {monConfigM |M ∈ MSet}.

With our definitions in place, we now describe the semantics in three parts: first, we define the local

rules for handling an event for a specific a monitor. Since an event may be delivered to multiple

monitor types, we define the set rules for handling an event for a set of monitors. We finally define

the global rules to coordinate execution of an entire synchronous set. Each semantic rule takes the

architecture description arch as an implicit parameter.

Local rules. The local rules describes the behavior of a monitor M handling an event ei.

getInfo(monConfigM , ei , arch) = (ids, type, e)

monConfigM ↓idse,type(monConfig ′M , l)

monConfigM ↗ei (monConfig ′M , l)

[local-step]

The function getInfo(M , ei , arch) retrieves instances of M that consume ei by looking up the

appropriate event connection definition in arch. ei carries the information of the SrcMon and SrcEv

while M is the target monitor TarMon. All matched instances of M are stored in ids. Note that

if there is no corresponding instance, ids represents parameters of the instance to be created. ei

is mapped to the raised event e to be consumed by ids. Moreover, by checking MonArgs of the

matched connection, we can also know whether it is unicast or multicast. Stored in type, we will

use it to apply different semantic rules below.

47

The second portion of the rule above the line is defined in terms of the relation ↓idse,type , which we

define in terms of the action type we will perform. For presentation purposes, we will condense the

type arguments to U and M, corresponding to unicast and multicast respectively.

Unicast actions. The semantic rules for a unicast connection are defined in two cases. If the

instance already exists, unicast events proceed as:

ids ∈ dom(monConfigM)

monConfigM (ids) = conf

conf
e
⇀ conf ′

monConfigM ↓{ids}e,U (monConfigM [ids 7→ conf ′], {(e ′, ids)|e ′ ∈ conf ′.EX })
[unicast-no-create]

The condition guarantees that the instance ids already exists and the corresponding configuration is

conf . By taking a macro-step, the state of the instance ids is updated to conf ′. The raised exported

events are extended with ids .

If the monitor instance does not exist, we must first create an instance with ids before performing

the macro-step, as shown in the rule below.

ids 6∈ dom(monConfigM)

initDefaultConf (ids) = conf

conf
e
⇀ conf ′

monConfigM ↓{ids}e,U (monConfigM [ids 7→ conf ′], {(e ′, ids)|e ′ ∈ conf ′.EX })
[unicast-create]

Finally, as part of the reduction, we update monConfig with this resultant instance and return any

events that macro-step produced.

Multicast actions. Multicast connections may need to update a number of objects over the course

of reduction. To this end, we define multicast operations. The first sub-rule addresses the case where

there is no instance.

monConfigM ↓∅e,M (monConfigM , ∅)
[multicast-base]

48

The second case is defined by using the unicast rule on each single instance. Note that the final

union I1 ∪ I2 will be a disjoint union as each entry in I is parameterized by the ids used to create it.

monConfigM ↓{ids}e,U (newConfigM , I1)

newConfigM ↓reste,M (finalConfigM , I2)

monConfigM ↓{ids}∪reste,M (finalConfigM , I1 ∪ l2)

[multicast-big-step]

Set rules. Multiple monitors may handle an incoming event. To achieve parametric monitoring

presented in Chapter 4, we need to specify an order between monitors. The order is decided by

relation of parameters between monitors. For two monitors, m1 and m2, if a parameter variable p

of m1 matches with a parameter value q of m2 in an event connection specification regardless of

whether m1 and m2 are the source of the target monitor, we say p relates to q. Here we require

that the relation of parameters for two monitors are fixed, which means if p of m1 relates to q

of m2, there is no other parameters in m2 (m1) that matches with p (q). The partial order (≤)

between monitors are defined upon relation of parameters between two monitors. For two sets

of parameters θ1 and θ2 for respectively for m1 and m2 , if all parameters of θ1 are related to

parameters in θ2, we have m1 ≤ m2 . Then, we can order monitors in the synchronous set MSet

in the monTypeListMSet according to this partial relation: if m1 ≤ m2 , the index of m2 is less

than m1 in it. During execution, if an event can be handled by multiple monitors, the monitor with

smaller index in monTypeList will handle this event before ones that with a larger index.

To this end, we define set rules as reduction relations over set configurations as follows. We first

inductively define ⇒MLst
MSet , the basic set configuration reduction relation for MLst , which is a sub

list of monTypeListMSet .

The set of raised events L is divided into two parts L1 and L2. L1 is the set of events to be consumed

by monitors in MSet while L2 are events to be sent to other synchronous sets. Note that the dot

operator appends two lists and MSet .monName denotes all names of the monitors in the set MSet .

49

monConfigM ↗ei (monConfig ′M ,L)

L2 = L \ L1 L1 = {eo|eo ∈ L ∧ ∃ch, ch ∈ arch.Channel∧

ch.SrcMon ∈ MSet .monName ∧ ch.SrcEv = eo.event .evName}

setConfig ′
ei⇒

monTypeList ′

MSet (setConfig ′′,L′1 ,L
′
2)

setConfig ′ ∪ {monConfigM }
ei⇒

M ::monTypeList ′

MSet

(setConfig ′′ ∪ {monConfig ′M },L1 .L
′
1 ,L2 ∪ L′2)

[set-reduce-inductive]

setConfig
ei⇒

[]

MSet (setConfig ,nil , ∅)
[set-reduce-base]

The sub rule set-reduce states that the execution of the set rule starts by picking up monitors in

the synchronous set MSet that can consume ei . The function sort is to sort monitors in MSet

according to the partial order ≤.

ML = {M |M ∈ MSet ∧ ∃ch, ch ∈ arch.Channel∧

ch.SrcEv = ei .event .evName ∧ ch.TarMon = M .monName

∧ch.SrcMon = ei .monInst .monName}

monTypeListMSet = sort(ML)

setConfig
ei⇒

monTypeListMSet

MSet (setConfig ′,L1 ,L2)

setConfig
ei⇒MSet (setConfig ′,L1 ,L2)

[set-reduce]

Global rules. The global rule for the synchronous set MSet is defined as the update of configura-

tions carrying two event collections: one to be consumed within the synchronous set and the other

one to be sent to the environment:

(setConfig , evQueue, exSet) ⇓MSet (setConfig ′, evQueue ′, exSet ′)

setConfig and setConfig ′ are configurations of MSet before and after applying our global rules;

evQueue and evQueue ′ are the queue of events to be consumed within the monitor before and after

a step; and exSet and exSet ′ are the sets of events to be sent to the environment. Note that each

element of evQueue is a set of events, which is obtained when applying the local rule. This relation

has two reduction rules indicating how to retrieve the next event instance to process and how to

50

remove an empty event instance set.

The first rule represents fetching a single event from the head of the queue, triggering its execution

and adding any resultant external events to the back of the external set:

setConfig
e⇒MSet (setConfig ′,L′1 ,L

′
2)

(setConfig , ({e} ∪ C) :: L1 ,L2) ⇓MSet (setConfig ′,C :: L1 .L
′
1 ,L

′
2 ∪ L2)

We can observe that this rule leaves flexibility on which event to fetch next. As a future work,

we would adopt the similar method to define predicates on the structure of a synchronous set to

guarantee determinism. The second rule specifies how to proceed when the first event set in the

incoming event queue is empty, moving down the list of events:

(setConfig , ({}) :: L1 ,L2) ⇓MSet (setConfig ,L1 ,L2)

Note that nil is a valid list, and so {} :: nil will reduce to nil, cleaning up the remaining empty set in

the queue. If evQueue is empty, events in exQueue will be sent to the environment. Then, another

event from the environment can be sent to evQueue . The overall top level rule for the evolution of

synchronous set is then defined as below. With this rule, we can abstract each synchronous set as an

atomic entity when defining semantics of a monitor network with multiple synchronous sets.

(setConfig , {e} :: nil , ∅) ⇓MSet (setConfig ′, {},L)

setConfig ⇓eMSet (setConfig ′,L)

[synchronous-set-evolution]

3.2.4. Case Study

To further motivate the design of SMEDL and illustrate its usability, we apply SMEDL to Case 2

in Section 2.1. More examples can be found in Appendix A.2 and corresponding explanations of

them will be given in Chapter 5. Consider the design of a track duration monitor. Recall that a track

is observed as a sequence of timestamped points. Each new point added to the track results in a

track event. The monitor consumes the track events and calculates the average duration of tracks

over sliding windows. Here we use SMEDL to specify this requirement. Compared to high-level

51

languages, monitoring logic can be expressed described by communicating monitors. Concerns of

computation and sliding window can be separated. Compared to general framework, using well-

designed DSL may also reduce the chance to make mistakes.

For the concrete design, because each track event carries the track identifier, there is a local monitor

for each track that calculates duration of the track in the current window and, at each window bound-

ary, sends the value to the global monitor to calculate the metric for all tracks. As tracks are added

by the application, new track monitors are instantiated. To implement calculation of track duration

over a sliding window, the window is partitioned into a series of sub windows, each represented by a

separate monitor. A window manager monitor for each track handles moving of sub windows, while

the aggregator monitor combines calculations from each sub window into the overall track duration

within the whole window. The architecture of the monitor is shown in Figure 6 (a). Some events

are not shown for clarity, including ones that are sent from the environment to trigger execution of

the monitor network. Each box represents a monitor, with types of monitor parameters shown in

brackets. Edges represent events exchanged by monitors. Each edge is annotated with parameter

matching that determines replication of event flows when new instances are created. Consider, for

example, the track event raised by WindowManager and consumed by Subwindow. The matching

ties the first parameter of the WindowManager instance raising the event to the first parameter of

the Subwindow instance receiving the event. Since Subwindow has the second parameter, not bound

by the matching, the connection is a fan-out, when the track event is received by all instances of

Subwindow for that track. By contrast, event metric sub represents a fan-in, when events raised by

any sub window for a track are delivered to the instance of Aggregator for that track. Finally, metric

events raised by any instances of Aggregator are delivered to the same Metric monitor, which is not

parameterized. The add track event is sent to Metric whenever a new instance of WindowManager

is created. An instance of the architecture for two tracks, and two sub windows in a window, is

shown in Figure 6 (b).

We illustrate a single monitor specification using a simplified version of Aggregator, shown below.

A number of state variables are defined. It has two imported events, one representing a report from

52

Figure 6: Monitoring architecture for the tracker monitor

a sub window and the other used for initialization, and one exported event, representing the track

duration calculated at the window boundary. It also has a number of internal events, described

below. Monitoring logic is represented by a collection of scenarios. In this example, each scenario

has a single state. Each transition in a scenario is triggered by an imported or internal event and

can happen only if a guard is satisfied. Guards are predicates over state variables of the monitor

and attributes of the triggering events. When a transition occurs, a series of actions is executed,

each of which either updates a state variable or raises an exported or internal event. For clarity,

we do not show details of the guards and elide most of the actions. We can see that each scenario

performs a certain check represented as a guard. For example, the check can determine whether the

track started or was dropped within the current window, and updates the state variables accordingly.

Then, an internal event is raised to trigger the next check.

On deployment of the monitor network. There are multiple ways of how four monitors coordinate

with each other. If all of them are placed in the same synchronous set, the behavior is determined by

the semantics of synchronous set proposed above. For instance, when a new track is observed, a new

instance of WindowManager is created, which then sends an add track event to Metrics. During this

process, WindowManager will not receive any events from the environment until Metrics finishes its

53

execution. However, if WindowManager and Metrics are not in the same synchronous set, they can

execute in parallel and there is no order guarantee between events delivered to a monitor instance.

For instance, the timeout event (not shown in Figure 5) is consumed by WindowManager to move

the sliding window. At the same time, it triggers the computation of metrics for each track as well.

Metrics receives the verdict from Aggregator for each track and computes an average value of them.

However, if a new track is observed and Metrics receives an add track event before collecting all

verdicts from existing aggregators, the final verdict will be incorrect because the number of tracks

stored in Metrics reflects the new track. Whether this behavior happens depends on the underlying

mechanism of asynchronous communication, which is out of the scope of this thesis.

object Aggregator

state:

int msg_cnt = 0;

int event_cnt = 0;

boolean g1, g2, g3;

float observed_time = 0;

events:

imported initial(int, float, int, int);

imported metric_sub(int, float, float, int);

internal checkNum();

internal i1(int, float, float);

internal i2(float, float);

internal i3(float);

internal output();

exported metric(int, float);

scenarios:

initialization:

init -> initial(ts, sub_w, sub_size, prob) {...} -> init;

accumulation:

start -> metric_sub(n, ft, lt, flag) {msg_cnt = msg_cnt + 1; g1 = ...; raise i1(n, ft, lt); } -> start;

chk_n:

in -> i1(n, ft, lt) when (g1) {event_cnt = event_cnt + n; g2 = ..; raise i2(ft, lt); } -> in;

else {event_cnt = event_cnt + n; raise checkNum();} -> in;

check_ft:

in -> i2(ft, lt) when (g2) {...; g3 = ..; raise i3(lt)} -> in;

else {raise i3(lt)} -> in;

check_lt:

in -> i3(lt) when (g3) {...; raise checkNum();} -> in;

else {raise checkNum();} -> in;

check_num:

in -> checkNum() {observed_time = ...; raise output();...;} -> in;

output:

in -> output() {raise metric(event_cnt, observed_time); ...;} -> in;

54

3.2.5. Discussion

The form of SMEDL monitor network is similar to general stream processing programs in the sense

that single monitors transform the input events into output events and multiple monitors can coor-

dinate with each other to achieve an overall monitor requirement by forming into a DAG. However,

they are different in many aspects such as expressiveness, deployment of the system and the form

of target programs, as shown in Table 2. From the perspective of expressiveness, stream process-

ing frameworks support built-in transform operators such as sliding windows while users need to

model operators as monitor specifications, like the case 2 illustrated above. Moreover, stream pro-

cessing frameworks can handle large scale data with support of mature architecture and efficient

implementation. However, SMEDL also has its advantages. SMEDL supports both synchronous

and asynchronous deployment of monitors. Moreover, the implementation of a SMEDL monitor

does not rely on heavy-weight runtime specifically designed for distributed systems. For instance,

the monitor for Case 2 can handle thousands of dynamically created tracks very efficiently without

using multiple processes or threads. In Chapter 5, we will further demonstrate efficiency of SMEDL

monitors.

Table 2: Comparison between stream processing and SMEDL
Sstream processing framework SMEDL

Expressiveness predefined transform operators transform operators defined manually
Deployment asynchronous deployment synchronous and asynchronous deployment
Target program suitable for large scale systems support for different sizes of programs

As stated in Section 2.2.6, SRV techniques are good at monitoring properties over data streams. For

instance, QRE supports operations over streams at the language level while users need to manually

encode them in SMEDL specifications. Moreover, the synthesis algorithm of QRE can generate effi-

cient implementation from succinct specifications. However, using state machine as the formalism,

SMEDL specifications are imperative and thus more intuitive, especially for users who are more

familiar with general programming languages.

55

3.3. Summary

In this chapter, we proposed a specification language, SMEDL for runtime verification. Composed

of a set of EFSMs, the single monitor specification can describe different forms of properties. To

bridge the gap between the specification and the implementation, we proposed a method of correct-

by-construction code generation for SMEDL monitors using the Fiat framework. We further ex-

tended SMEDL with an architecture description which specifies how single monitors communicate

with each other to form a dynamically scalable monitor network. In the next chapter, we will present

a method to use a monitor network to efficiently monitor parametric properties.

56

CHAPTER 4 : Parametric Monitoring Using SMEDL

Many real-world programs may scale in the sense of data or control, probably by creating new

instances of data structure, thread or process. These instances are usually distinguished by identities.

In the event-based RV, when events are extracted from operations of these instances, identity values

are also attached to them as attributes. We denote these events as parametric events. Defined upon

traces with parametric events, parametric properties not only depend on event order in the trace

but also on the attribute values of events. As an example, the UnsafeMapIter [101] property shown

below says an iterator of a collection created from a map is not allowed to be used after the map has

been updated. The property is described as a regular expression and the alphabets of this property

are parametric events: createC (m, c) denotes creation of a collection c, the key set of a map m;

createI (c, i) is creation of iterator i from c; updateM (m) is update of m; and useI (i) is use of i.

Example 1 (UnsafeMapIter):

createC (m, c)updateM (m)∗createI (c, i)useI (i)∗updateM (m)+useI (i)

When a monitor inspects event attributes during verification, we call it a parametric monitor which

checks parametric properties. These properties can be monitored using multiple techniques [75]

such as first-order temporal logic [18], monitoring modulo theories [46], rule-based system [114],

stream processing [44] and trace slicing [5]. These techniques describe and check parametric prop-

erties in different ways and it is hard to directly compare them with respect to expressiveness and

efficiency. In the previous section, we proposed the SMEDL framework, which utilizes dynami-

cally scalable monitor networks to specify and check different types of properties for complicated

software systems. In this chapter, we propose a common ground for parametric monitoring using

SMEDL. More specifically, we focus on the trace slicing. The core idea of trace slicing is to slice a

parametric event trace into sub traces according to event parameters. Each sub trace is constructed

based on a binding from parameter variables to values and is checked against a non-parametric prop-

erty. A trace slicing algorithm is implemented in MOP [101], which provides an efficient indexing

mechanism to reduce monitoring overhead on both time and memory usage. QEA [14] adopts a

57

similar slicing mechanism but further supports aggregation of sub traces by explicit quantification

of parameter variables. However, it requires full combinations of parameters across all values in

their domains, which is different from MOP. Although it is in general more expressive, it is less

efficient in memory and time overhead because more instances may be maintained.

We present a novel perspective of parametric trace slicing based on SMEDL. Intuitively, we pro-

pose a method to naturally describe parametric trace slicing and the aggregation semantics using a

dynamically scalable monitor network. In this chapter, we :

• introduce preliminaries, including common notations and trace slicing monitoring of MOP

and QEA. (Section 4.1)

• present a method to encode the trace slicing semantics by transforming from MOP to SMEDL

with a formal proof of correctness. (Section 4.2)

• propose two syntactic fragments of QEA that can be transformed into equivalent SMEDL

monitors and by applying the MOP slicing algorithm encoded in SMEDL, QEA properties

can be efficiently monitored. (Section 4.3)

4.1. Preliminaries

4.1.1. Common definitions and notations.

Although definitions and notations related to trace slicing have been defined in MOP [34] and

QEA [14], for self-containment and unification of terminologies, some common notations in both

MOP and QEA are given in Table 3.

The relation between a parametric event type e(x̄) and the ground event e(v̄) is built by θ where θ

is a partial function X ⇁ Val of which the domain dom(θ) = x̄ and θ(x̄) = v̄. θ is also called as a

binding or a parameter instance . We will use the notation e(θ) to denote a parametric event from

which the event type e(x̄) and the ground event e(v̄) can be obtained.

The following definitions are used to describe relations between bindings:

58

Variables Var Set of all variables
X,W ⊂ Var Parameter Sets
x,w ∈ Var

Values Val Set of all values

Events Σ Σ ∩Var = ∅
Trace Sets Σ∗

Parametric Event (e, x̄), e(x̄) e ∈ Σ, x̄ ⊂ Var
Ground Event (e, v̄), e(v̄) e ∈ Σ, v̄ ⊂ Val

Events Σ(X) {e(x̄)|e ∈ Σ, x̄ ⊆ X}
Σ〈X〉 {e(v̄)|e(x̄) ∈ Σ(X), ground}

Traces τ ≡ e(v̄)

Table 3: Common notations

Definition 24 (Containment) If dom(θ1) ⊆ (⊂) dom(θ2) and θ1(x) = θ2(x) for all x∈ dom(θ1),

we say θ1 has equal or less (proper less) information than θ2 , denoted as θ1 v (@) θ2.

Definition 25 (Compatible) Two bindings θ1 and θ2 are compatible with each other (denoted θ1 ∼

θ2) when θ1(x) is equal to θ2(x) for all x ∈ dom(θ1) ∩ dom(θ2),

Definition 26 (Consistent) Given a set of bindings Θ, if for any two bindings θ1 ∈ Θ and θ2 ∈ Θ

, we have θ1 ∼ θ2, then Θ is consistent.

Definition 27 (Combination) The combination between two bindings θ1 and θ2 is defined as fol-

lows: if θ1 ∼ θ2, θ1tθ2(x) = θ1(x) if x ∈ dom(θ1); θ1tθ2(x) = θ2(x) if x ∈ dom(θ2); θ1tθ2(x)

is undefined if x is undefined in θ1 and θ2. θ1 t θ2 is the least upper bound (lub) of θ1 and θ2. We

can also lift the lub operator to a set of bindings [112]: tΘ ≡ θ1 t ...t θk where Θ = {θ1, ..., θk}.

Definition 28 (Lub-closed) A set of bindings Θ is lub-closed iff for any Θ′ ⊆ Θ, if Θ′ is consistent,

tΘ′ ∈ Θ.

We also define a predicate max (θ1 ,Θ , θ) which says θ1 is a maximal binding in Θ that has equal

or less information than θ:

max (θ1 ,Θ , θ) ≡ θ1 v θ ∧ θ1 ∈ Θ ∧ (∀θ2 , (θ2 ∈ Θ ∧ θ2 v θ) =⇒ θ2 v θ1)

59

4.1.2. Parametric trace slicing using MOP

In MOP, a slice is defined with respect to a parameter instance: given a parameter instance θ and

a parametric trace τ ∈ Σ〈X〉∗, a θ-trace slice τ �θ∈ Σ∗ is a non-parametric trace. Each non-

parametric event e ∈ τ �θ corresponds to a parametric event e(θ′) ∈ τ where θ′ v θ. According to

the definition, all events of which parameters are not compatible with θ or have more information

than θ will not be in the θ-trace slice. A parametric property is a function of which the domain is a

parametric trace. It outputs a map from parameter instances to boolean verdicts, which is obtained

by checking against the non-parametric property for each slice sub trace.

A MOP monitor M(X) is a five-tuple 〈St ,Σ (X), ι, σ : St × Σ (X)→ St ,F 〉 where X is a set of

parameter variables, St is a set of states, Σ (X) is a set of parametric events, ι is the initial state, σ

is the transition function and F is a set of final states.4 MOP achieves parametric slicing using an

algorithm C〈X〉 [34], presented as Algorithm 1 below. Parameterized with an parameter monitor

M (X), Algorithm 1 maintains and updates ∆ and U reacting to the incoming parametric event e(θ).

∆ stores states for parameter instances while U maps a parameter instance θ to all instances in the

domain of ∆ that have more information than θ. If θ is not defined in ∆, the algorithm adds θ to ∆

by setting the state of the largest binding defined in ∆ that is less informative than θ by traversing

in the reverse topological order (line 7 - 10). If there is no such binding and e is a creation event, θ

is added to ∆ by assigning the initial state ι to it.

After θ has been added to ∆, it will be used to create bindings by extending the existing compatible

bindings in ∆ (line 13 - 16). Finally, e updates ∆(θ) and all instances that are more informative

than θ (line 17). We can prove that the domain of ∆ is lub-closed, which will be used below when

proving the relation between MOP and SMEDL.

Lemma 29 dom(∆) is lub-closed.

Proof(sketch): the proof is performed by induction on the length of the input trace τ . The basic step

is straightforward since the domain of ∆ only has one element after receiving the event e(θ). In

4We modify the original definition of M(X) in [101] by adding events with parameter variables.

60

Algorithm 1 C〈X〉(M = 〈St,Σ(X), ι, σ, γ〉)
1: mapping ∆ : [[X ⇁ V al] ⇁ St]
2: mapping U : [[X ⇁ V al]→ Pf ([X ⇁ V al])]
3: ∆(θ)← undefined for any θ ∈ [X ⇁ V al]
4: U(θ)← ∅ for any θ ∈ [X ⇁ V al]
5: procedure MAIN(e(θ))
6: if ∆(θ) undefined then
7: for θm @ θ (in reversed topological order) do
8: if ∆(θm) defined then goto 9
9: if ∆(θm) defined then

10: defineTo(θ,θm)
11: else if e is a creation event then
12: defineNew(θ)
13: for θm @ θ (in reversed topological order) do
14: for θcomp ∈ U(θm) compatible with θ do
15: if ∆(θcomp t θ) undefined then
16: defineTo(θcomp t θ,θcomp)

17: foreach θ′ ∈ {θ} ∪ U(θ) do ∆(θ′)← σ(∆(θ′), e) endfor
18: procedure DEFINENEW(θ)
19: ∆(θ)← ι
20: for θ′′ @ θ do U(θ′′)← U(θ′′) ∪ {θ}
21: procedure DEFINETO(θ, θ′)
22: ∆(θ)← ∆(θ′)
23: for θ′′ @ θ do U(θ′′)← U(θ′′) ∪ {θ}

the inductive step, suppose after consuming a trace τ , dom(∆) is lub-closed. After receiving e(θ),

if θ ∈ dom(∆), dom(∆) is unchanged. Otherwise, given an arbitrary Θ ′ ⊆ dom(∆′) where ∆′ is

updated from ∆ by receiving e(θ), if there exists a set of bindings Θ′′ ⊆ Θ′ and Θ′′∩dom(∆) = ∅,

then there exists θ′′ ∈ Θ′′ is constructed by combining θ with an existing binding in dom(∆).

It is then easy to deduce that there exists Θ1 ⊆ dom(∆) that tΘ′ ≡ θ t (tΘ1). According to

Algorithm 1, U(∅) = dom(∆) after handling τ . Therefore, θ will be combined with all compatible

bindings in dom(∆) and the result bindings are in dom(∆′). On the other hand, due to the inductive

hypothesis, tΘ1 ∈ dom(∆), so tΘ′ ≡ θ t (tΘ1) ∈ dom(∆′). �

4.1.3. Parametric slicing using QEA

A QEA (quantified event automata) Q(Λ) contains two parts. Q is an event automaton (EA) and

Λ ∈ ({∀,∃} × vars(Q) × Guard)∗ is a list of quantifiers with guards of boolean expressions on

61

parameters. An EA is an EFSM in which transitions are enriched with guard and assignments to

local variables; vars(Q) is the set of parameter variables appearing in Q.

QEA uses trace slicing to accomplish parametric monitoring. The big-step semantics for acceptance

for a parametric property for QEA is illustrated below [14]. θ1 † θ2 overrides the value in θ1 by θ2;

g(θ) is the guard condition over the quantified variable; Q(θ) is an event automaton Q with its

variables instantiated by θ; τ ↓Q(θ) is the projection of a trace τ over Q(θ); L(Q(θ)) is the set of

traces accepted by Q(θ). Bindings are generated by inductively traversing the derived domain of

each variable in the nested quantifiers. A full binding is a binding where all parameters in Λ are

bound with values. The verdict is computed over verdicts of all created full bindings.

Definition 30 (Acceptance in QEA) A QEA Q(Λ) accepts a ground trace τ if τ |=〈〉 Λ where |=θ

is defined as:

τ |=θ (∀x : g)Λ′ iff ∀ d ∈ dom(τ)(x), if g(θ†〈x→ d〉) then τ |=θ†〈x→d〉 Λ′.

τ |=θ (∃x : g)Λ′ iff there exists d ∈ dom(τ)(x), if g(θ † 〈x → d〉) then τ |=θ†〈x→d〉 Λ′.

τ |=θ ε iff τ ↓Q(θ)∈ L(Q(θ)).

4.2. Expressing trace slicing of MOP using SMEDL

This section presents how SMEDL expresses the trace slicing semantics by proposing a transforma-

tion from a MOP monitor to a SMEDL monitor network. We prove that the monitoring network in

SMEDL is equivalent to Algorithm 1 with respect to trace slicing.

4.2.1. Transformation from MOP to SMEDL

Intuitively, MOP slices a trace of parametric events into sub traces, which is identified by a bind-

ing of parameter variables. By analyzing M(X) statically, we can know which parameters will

be combined together and how bindings are generated. Each possible combination of parameters

corresponds to a single SMEDL monitor and the connection between two monitors represent the be-

havior of creating a new binding by extending an existing one. Consequently, M(X) is transformed

62

into a set of SMEDL monitor specifications. Since each state in M(X) may be mapped to states

in multiple SMEDL monitors, we borrow the idea of labelled FSM [114] to label each state with

sets of parameters and transitions in it expand the sets of parameters in the target state based on the

parameters in the transition. A labelled FSM LM (X) is a five-tuple 〈LSt ,Σ (X), (ι, {}), φ,LF 〉

where LSt = St × 2X is a set of labelled states and LF and φ are defined as the smallest sets

satisfying the following relation:

〈(q ,S), e(x), (q ′,S ∪ x)〉 ∈ φ if 〈q , e(x), q ′〉 ∈ σ

(q ,S) ∈ LF if q ∈ F

We use Example 1 to give an intuition of the algorithm. The labelled FSM is shown in Figure 7

(a). In the remainder of this chapter, all shaded states are final states while white ones are non-final

states. All self-looping transitions are omitted in the figure. The correspondence between the la-

belled FSM and the SMEDL specification (illustrated in Figure 7 (b)) is represented by numbers

marked at the transitions. The idea for our algorithm is that we identify connected components in

LM (X) with the same set of parameters in labels and factor them out into separate SMEDL moni-

tors, along with transitions between the states in the connected component. Transitions between the

connected components are turned into events transferred between the SMEDL monitors, captured

by the monitoring architecture. Due to the feature of labelled FSMs, the target state of a transition

must have equal or more parameters than the source state. For instance, transitions (4), (5) and

(6) and all implicit self-looping transitions connect component with the same set of parameters.

Transitions (1), (2) and (3), on the other hand, expand the set of parameters, which are transformed

into two transitions as shown Figure 7 (b). The one in the monitor with less parameter informa-

tion (fewer number of parameters) raises an event to trigger the transition in the monitor with more

information.

When feeding the event trace τ0 : updateM (m1), createC (m1 , c1), createC (m2 , c2), createI (c1 ,

i1), useI (i1) [101] to the SMEDL monitors, state update of the monitor mc and mci is given in

63

Figure 7: Labelled FSM and SMEDL monitors for Example 1

Table 4. Note that mon0 is omitted because it has only one instance and always stays at the initial

state. In MOP, each event is equipped with a field flag to indicate whether this event can start

a monitoring process. As stated in the specification [101], updateM does not start the process,

thus no instance is created. createC (m1 , c1) and createC (m2 , c2) are received by mon0 , which

creates two instances of mc. createI (c1 , i1) triggers the creation of mci(m1 , c1 , i1) by sending

createMCI(i1) to mci. mci(m1 , c1 , i1) is in state 3 after creation. useI (i1) triggers a self-loop

transition in mci(m1 , c1 , i1) and creates an instance of mci(m2 , c2 , i1) by extending mc(m2 , c2).

Table 4: State update of SMEDL monitors given τ0
updateM(m1) createC(m1,c1) createC(m2,c2) createI(c1,i1) useI(i1)

∅ mc(m1, c1):2
mc(m1, c1):2
mc(m2, c2):2

mc(m1, c1):2
mc(m2, c2):2
mci(m1, c1, i1):3

mc(m1, c1):2
mc(m2, c2):2
mci(m1, c1, i1):3
mci(m2, c2, i1):2

The formal transformation process is given in Algorithm 2, which creates a SMEDL specification

S (W) from LM (W). S (W) is a tuple 〈SMon, arch〉 where SMon is a map from a set of pa-

rameters to the corresponding parametric monitors and arch is an architecture description. A single

SMEDL monitor in S (W), smon(W ′), is an FSM 〈Stsmon ,Σsmon , ιsmon , ψsmon : Stsmon × Σsmon

→ Stsmon × (Σ (W) ∪ {null}),Fsmon〉 where W ′ ⊆ W . Each transition in ψsmon takes the form

〈q , e(x), q ′, r〉 where r is either an event to be raised after the transition or null. We use the dot op-

erator to access the elements of tuples. It is worth noting that the SMEDL specification introduced

here is compatible with the definition given in Chapter 3: the FSM is a scenario in each monitor and

the parameter set W ′ corresponds to the field paras of the monitor interface in Section 3.2.2, but

without order because each parameter has a name and the order does not matter.

64

The process performs by traversing transitions in LM (W). Note that f is the flag to denote whether

the event can start the monitoring process. From line 4 to 10, the SMEDL monitor mon1 parame-

terized byW1 is obtained by either from SMon or creating a new one. When creating a new monitor

type, its initial state is ι of LM if W1 is empty; otherwise, a dummy initial state s0 is created. For

the SMEDL with no parameters (denoted as mon0), only one instance will be created at the begin-

ning of the execution. As a result, its execution starts with ι. Monitors with non-empty parameters

are created from mon0 or other monitors and the creation event will trigger the transition from the

initial state s0 in the created instance as shown below.

If W1 and W2 are identical (line 11 to 17), the transition is directly mapped to mon1 . If W1 is not

identical to W2, instances of mon2 (W2) are created by instances of mon1 (W1) through e . The

condition at line 19 is used to avoid creating mon2 from mon0 using an event that cannot start the

monitoring process. Then, mon2 (W2) is obtained (line 19 to 23). To represent the behavior of

extension of parameters, two transitions are added respectively to mon1 and mon2 . The transition

added to mon1 receives e and raises crEv . The event crEv creates an instance of mon2 when

the instance does not exist and transitions from s0 to q′. Note that each monitor may have multiple

creation events. Each crEv is identified by x, as stated at line 24. As a side note, the order of moni-

tors in monTypeList can also be determined in the process: mon2 (W2) is put before mon1 (W1)

in monTypeList . Communication between mon1 and mon2 through crEv is specified in the ar-

chitecture description (line 33 - 37). Finally, monitors in SMon are completed (line 38) by adding

self-looping dummy transitions.

4.2.2. Correctness proof of transformation

In Algorithm 1, ∆ : [[X ⇁ V] ⇁ St] maps from a parameter instance to its current state. In

SMEDL, there is no explicit concept or notation for slicing. Instead, slicing is achieved by dynamic

evolution of monitor network. Configurations are used represent slices and the corresponding state.

We abuse the terminology configuration to denote a mapping from monitor instances to St . The

range of configuration is St because monitor instances never stay at the initial state except for

mon0 , whose initial state belongs to St . The equivalence relation between ∆ and configuration is

65

Algorithm 2 Transformation from labelled FSM to SMEDL
1: procedure TRANSFORMATION2SMEDL(LM = 〈LSt ,Σ (W), (ι, {}), φ,LF 〉)
2: SMon ← ∅, arch ← ∅
3: for 〈(q ,W1), e(x , f), (q ′,W2)〉 ∈ φ do
4: mon1 ← SMon.get(W1)
5: if mon1 == null then
6: if W1 == ∅ then
7: mon1 ← 〈{ι}, ∅, ι, ∅, ∅〉
8: else
9: mon1 ← 〈{s0}, ∅, s0 , ∅, ∅〉

10: SMon.put(W1 ,mon1)

11: if W1 == W2 then
12: mon1 .St ← mon1 .St ∪ {q , q ′},mon1 .Σ ← mon1 .Σ ∪ {e(x)},
13: mon1 .ψ ← mon1 .ψ ∪ {〈q , e(x), q ′,null〉}
14: if q ∈ LF then
15: mon1 .F ← mon1 .F ∪ {q}
16: if q′ ∈ LF then
17: mon1 .F ← mon1 .F ∪ {q ′}
18: else
19: if W1 6= ∅ ‖ f == true then
20: mon2 ← SMon.get(W2)
21: if mon2 == null then
22: mon2 ← 〈{s0}, ∅, s0 , ∅, ∅〉
23: SMon.put(W2 ,mon2)

24: crEv ← (creationEvName(x),W2 , true)
25: mon1 .St ← mon1 .St ∪ {q},mon1 .Σ ← mon1 .Σ ∪ {e(x)},
26: mon1 .ψ ← mon1 .ψ ∪ {〈q , e(x), q , crEv〉}
27: mon2 .St ← mon2 .S ∪ {q ′},mon2 .Σ ← mon2 .Σ ∪ {crEv},
28: mon2 .ψ ← mon2 .ψ ∪ {〈mon2 .ι, crEv , q ′,null〉}
29: if q ∈ LF then
30: mon1 .F ← mon1 .F ∪ {q}
31: if q′ ∈ LF then
32: mon2 .F ← mon2 .F ∪ {q ′}
33: patterns ← ∅
34: for i ∈ range(0 , |W1 | − 1) do
35: patterns ← patterns ∪ {i ,mon1 , i}
36: patterns ← patterns ∪ {i , crEv , i}
37: arch ← arch ∪ {〈mon1 , crEv ,mon2 , crEv , patterns〉}
38: SMon ← completeFSM (SMon)
39: return (SMon, arch)

66

defined below. Note that we use m(x) to denote the monitor type m when x is its parameters. An

instance of m with binding θ is denoted as m(θ). If the monitor type is not important, we also use

θ to denote the monitor instance.

Definition 31 Let ∆ be a mapping from parameter instances to monitor states of a MOP monitor

and config be the configuration of a SMEDL monitor network. ∆ is equivalent to config (denoted as

∆ ≡ config) if : 1) for each θ ∈ dom(∆) and ∆(θ) = s, there exists an instance θ ∈ dom(config)

that config(θ) = s; and 2) for each θ ∈ dom(config) where θ 6= ∅ and config(θ) = s , θ ∈ dom(∆)

and ∆(θ) = s .

Suppose a SMEDL specification MonSMEDL is constructed from a MOP monitor Monmop , the

relation of states between them are described as the theorem below:

Theorem 32 Given an event trace τ , if ∆ is the state of MonMOP computed by C〈X〉 and config is

the state of MonSMEDL computed according to the semantics of the SMEDL monitor network, then

∆ ≡ config .

The theorem states that the SMEDL monitor network obtained by the transformation above imple-

ments the trace slicing of MOP. The proof of Theorem 32 is performed by induction on the length

of trace τ and then comparing the state update between Monmop and MonSMEDL given a new

incoming event.

Proof (sketch): Basic step. Suppose τ = {e(θ, f)} where θ is the parameter binding and f is the

flag field mentioned above. If f is true, C〈X〉 creates a mapping [θ 7→ σ(ι, e)] and puts it into ∆.

If θ is empty, no new instance needs to be created because mon0 , the monitor with no parameters,

exists at the beginning of execution. If θ is not empty, mon0 receives e and creates a monitor

instance mon(θ). In both case, mon0 and mon will be updated in consistent with σ according to

the transformation. If f is false, e is ignored in C〈X〉. In SMEDL, there is no transition triggered

by e and no instance is created. Consequently, the equivalence relation holds in the basic step.

Inductive step. Suppose after consuming a trace τ , the state of Monmop is ∆ and the state of

67

MonSMEDL is config and ∆ ≡ config according to the inductive hypothesis. After an event e(θ, f)

is consumed, Monmop is updated to ∆′ and MonSMEDL is updated to config ′. We want to prove

that ∆′ ≡ config ′. There are two cases:

case 1: ∆(θ) is defined. According to the inductive hypothesis, for any θ1 ∈ dom(∆) and ∆(θ1) =

s1, θ1 ∈ dom(config) and config(θ1) = s1 . If θ1 is equal to or has more parameter information

than θ, we assume ∆′(θ1) = s2 where s2 = σ(s1, e), denoted as tr. According to Algorithm 2

(line 13), tr is directly added to the monitor instance θ1, which leads to the same state update such

that config ′(θ1) = s2 . If θ1 does not have more information than θ, ∆′(θ1) = ∆(θ1) = s1. A

corresponding creation event e′ is raised for a monitor m(dom(θ1 t θ)). However, according to

Lemma 29, ∆(θ1 ∪ θ) must have been defined so there must have already existed a corresponding

instance of m defined in config . e will trigger an equivalent transition in it as stated above while e′

will trigger a self-loop transition because a monitor is constructed completely in Algorithm 2. As a

result, ∆′ ≡ config ′.

case 2: ∆(θ) is not defined. C〈X〉 first tries to find an existing parameter instance θ′ which is

maximal among all instances with less parameter information than θ and temporarily set state of

θ to ∆(θ′). If no such θ′ is found and f is true, instance of θ is created with the initial state

ι. Otherwise, no instance will be created. Then, θ is used to create new instances by extending

existing compatible bindings in ∆ in reversed topological order of parameter information. Finally,

each θ′ defined in ∆ that has equal or more parameter information than θ are updated with e.

In SMEDL, updating and extending is conducted in the similar way. We need to prove that 1) an

equivalent instance for θ is created; and 2) equivalent instances by extending parameter of existing

instances are created; 3) updates of instances by e(θ, f) are also equivalent.

Suppose we have mon(dom(θ)) in monTypeList. For 1), we need to consider the case in which f

is true, which means there exists a creation event e′ raised from mon0 when it receives e. However,

because e is dispatched to monitors in reversed topological order of parameter information enforced

in monTypeList and mon0 is the last element in monTypeList,mon(θ) will be created by mon0 only

68

when there are no existing instances from which mon(θ) can be created. Furthermore, the behavior

of creating mon(θ) from mon0 and updating its state is equivalent to the behavior of Algorithm 1

at line 19 and line 17.

For 2), the target is to prove dom(config ′) = dom(∆′). In Algorithm 1, θ is combined with all

compatible instances in dom(∆). As a result, given an arbitrary instance θ′ ∈ dom(∆), if θ ∼

θ′ ∧ θ 6v θ′, a parameter instance θ t θ′ is defined by extending from an instance θ′′ ∈ dom(∆) that

θ t θ′ = θ t θ′′. Note that θ′ may be identical to θ′′ or not. Since SMEDL monitors are complete,

an instance parameterized by θ t θ′ will be generated by extending an existing instance because θ′

and θ′′ exist in the domain of config due to the inductive hypothesis.

For 3), we need to prove the state equivalence between them. For an arbitrary instance θ′ ∈

dom(∆′), there are two cases. If θ′ ∈ dom(∆), e(θ) update its state when θ v θ′. Line 12 and

13 in Algorithm 2 guarantees that config ′(θ′) = ∆′(θ′). If θ′ is a newly created instance, it must

take the form θ1 t θ where θ1 is either empty or θ1 ∈ dom(∆). We have ∆′(θ′) = σ(∆(θ2), e)

where max (θ2 , dom(∆), θ′) because the traversal is performed in the reverse topological order of

the parameter information. For SMEDL, multiple creation events may be raised to create an instance

parameterized by θ′. The inductive hypothesis and the semantics of the monitor network guarantees

that it is extended from θ2. Since config(θ2) = ∆(θ2), config ′(θ′) = σ(∆(θ2), e) = ∆′(θ′). �

Discussion on the specification size. Each MOP specification is transformed into a set of SMEDL

monitors. Suppose there are n parameters, there are at most 2n SMEDL monitor specifications.

Although the size of specification is exponential to the number of parameters, it is still acceptable

because the number of parameters for a parametric property is usually small.

4.3. Expressing trace slicing of QEA using SMEDL

A QEA Q(Λ) contains two parts. Q is an EFSM and Λ ∈ ({∀, ∃}×vars(Q))∗ is a list of quantified

parameters (quantifier list for short) where vars(Q) is the set of parameter variables appearing in Q.

QEA adopts a similar slicing strategy to MOP. However, unlike MOP, in which parametric property

is a mapping from sub traces to verdicts, QEA aggregates the results of all full bindings. The

69

interpretation of a quantifier list in QEA leads to a significant difference between QEA and MOP in

generating bindings: QEA stores any binding that can be built from the derived domain that has a

non-empty projection.

Example 2 (CandidateSelection) [14]: for every voter there must exist a party that the voter is a

member of, and the voter must rank all candidates for that party. The QEA specification, denoted as

Qcan , is illustrated Figure 8 (a). There are three quantified variables, v (voter), c (candidate) and p

(party) and three parametric events member, candidate and rank. The third parameter r of rank is an

unquantified variable. Self-looping transitions are omitted. We impose a restriction on event order

of traces: all candidate events always happen after all member events and all rank events happen

after all candidate events, which hints that candidate is the event to start the monitoring process.

Figure 8: QEA and SMEDL specification of CandidateSelection

When feeding the event trace τ : member(tom,red), member(ali,blue), candidate(jim,red), candi-

date(flo,red), candidate(don,blue), rank(tom,jim,1), rank(ali,don,1), rank(tom, flo, 2), Qcan gen-

erates the set of full bindings as shown in Table 5. QEA generates bindings from combinations

across the domain of each parameter, except for ones that are not compatible with any incoming

events. Consequently, 9 full bindings are generated by Qcan . Then the overall verdict is computed

by aggregating the verdicts of each full binding based on the big-step semantics. However, not all

bindings represent the genuine relation between voters, parties and candidates. For instance, the

triple (tom, red , don) states that don belongs to the party red , which is not true for τ .

We transform the FSM of Qcan into the SMEDL specification Scan , as shown in Figure 8 (b). Since

candidate is the only event to start the monitoring process, there is no specification for (c, p) or

(v , c). When feeding τ , Scan only generates three bindings, as illustrated in Table 6. We can observe

70

voter party candidate state
tom red jim 4
tom red flo 4
tom red don 2
tom blue don 1
ali red jim 1
ali red flo 1
ali blue jim 2
ali blue flo 2
ali blue don 4

Table 5: Bindings generated by QEA [14]

voter party candidate state
tom red jim 4
tom red flo 4
ali blue don 4

Table 6: Bindings generated by SMEDL

that these three bindings correctly represent the relations between voters, parties and candidates.

Furthermore, if we perform proper logical aggregation over these three bindings, as stated below,

the identical verdict with the QEA monitor can be obtained. This result hints that SMEDL monitors

may be able to monitor properties of QEA while generating fewer bindings.

In this section, we present a transformation from QEA (denoted as Q(Λ)) to SMEDL (denoted

as S (Λ)). Each SMEDL monitor in S is denoted as qMon(l) where l ⊆ Λ. The transformation

contains two steps, transformation of the EFSM and the quantified parameter list. For the EFSM,

Algorithm 2 is directly used. The semantics of quantifiers over parameters is encoded as a SMEDL

monitors for aggregation. The intuition is to generate aggregation monitors for each parameter,

which are connected in a list according to the position in the quantifier list. Verdicts will be grouped

according to the parameter values of bindings that generate them. The universal and existential

quantifier are respectively implemented by conjunction and disjunction over grouped verdicts.

We encode the algorithm of MOP for trace slicing in SMEDL. As a result, an equivalent relation

between QEA and SMEDL specifications cannot be built in general. However, we specify two

subsets of QEA specifications that can generate identical verdicts. In the first case (Section 4.3.1),

if all parameters are universally quantified and all bindings that are not created in the SMEDL

monitor are guaranteed to stay at a final state (the verdict returns true), the SMEDL monitor only

needs to aggregate the verdicts of full bindings it maintains. In the second case (Section 4.3.2), if

all bindings that are not created in the SMEDL monitor are guaranteed to stay at a non-final state,

we can get identical results through enhancing aggregation monitors for all universally quantified

variables by checking the size of the domain and the number of values appearing. If two values are

71

different, it means there would exist a binding that is only maintained by the QEA monitors. Since

the corresponding verdict is false, the final verdict is also false.

4.3.1. Encoding aggregation semantics in SMEDL

The big-step semantics of QEA can be described as a function VerdictQEA(Q , τ) ≡ Πv1∈dom(p1)

Πv2∈dom(p2)...Πvn∈dom(pn)(F (∆τ
Q(v1 , v2 , ..., vn))) where (v1 , v2 , ..., vn) ∈ dom(∆τ

Q). Πpx is ∧

(∨) when the corresponding quantifier of a parameter variable px in Q is ∀ (∃). By default,

dom(∆τ
Q) ≡ dom(p1)× ...× dom(pn). We abuse the notation ∆t

Q as the mapping from bind-

ings to states when fed with the trace t. t may be omitted when the context is clear. We also reuse

the symbol F and define F (s) to map a state s to true (false) if it is a final (non-final) state.

Similarly, VerdictSMEDL computes the verdict from the SMEDL specification S: VerdictSMEDL(S ,

τ) ≡ Πv1∈dom(p1) Πv2∈dom(p2)...Πvn∈dom(pn)(F (configτS (v1 , v2 , ..., vn))) where (v1 , v2 , ..., vn) is

a full binding and (v1 , v2 , ..., vn) ∈ dom(configτS). configτS is the mapping from bindings to the

states when fed with the trace τ . The domain of configτS contains generated full bindings. When the

context is clear, τ is omitted.

The abstract function VerdictSMEDL is implemented as a set of aggregation monitors. Intuitively,

we group full bindings that has the same value over the sub list of parameters p1 , p2 , ..., pn−1 .

Logical conjunction (disjunction) is performed over the verdicts of bindings in the same group

when pn is universally (existentially) quantified. The verdicts obtained at this level will be further

grouped based on the value of sub list p1 , p2 , ...pn−2 . This process is repeated in a hierarchical

way until getting the final verdict. Following this idea, each aggregation monitor takes the form

aMonpx (p1 , p2 , ...px−1) for each parameter px except for p1 because aMonp1 () has no parameters.

The aMonpx (p1 , ..., px−1) is an FSM 〈Stsmon : {ι1 , ι2},Σ : {countx , resultx}, ιsmon : ι1 , σsmon ,

Fsmon : {ι1}〉. Two input events countx and resultx are sent from the upstream aggregation monitor

aMonpx+1 . countx indicates the number of results to receive while each resultx (..., b) carries the

verdict value b of a binding where the values of p1 , p2 , ..., px−1 match the parameter values of

aMonpx . For the universal quantifier, the conjunction over verdicts carried in the resultx is defined

72

Table 7: Transitions of aMonpx (p1 , ..., px−1) for the universal quantifier
source event guard action target
ι1 countx (p1 , .., px) countpx == 0 countpx = 1 ; raise countx−1 (p1 , ..., px−1); ι1
ι1 countx (p1 , .., px) countpx ! = 0 countpx + +; ι1
ι1 resultx (p1 , ..., px , b) countpx > 1 && b countpx −−; ι1
ι1 resultx (p1 , ..., px , b) countpx == 1 && b countpx −−; raise resultx−1 (p1 , ..., px−1 , b) ι1
ι1 resultx (p1 , ..., px , b) !b countpx −−; raise resultx−1 (p1 , ..., px−1 , b) ι2

as the transition set σsmon in Table 7. The action in the first transition indicates that countx−1 is

the creation event of aMonpx−1 . The aggregation for the existential quantifier can be defined in a

similar way with disjunction over verdicts collected from the upstream monitor.

The aggregation monitors are chained in the reversal order of Λ from the fully-bound monitor

qMon(Λ) down to aMonp1 (). During execution, whenever a new instance of qMon(Λ) is created,

corresponding aggregation monitor instances are created or updated. The specification of qMon(Λ)

is updated as follows: 1) for each state s, a transition (s, end(), s, {resultn(p1 , ..., pn , b)}) is added

where b is true/false when s is a final/non-final state; and 2) for each transition triggered by a cre-

ation event, an action of raising the event countn(p1 , ..., pn) is added. Upon receiving the event

end , verdicts generated by instances of qMon(Λ) are sent to corresponding instances of aMonpn to

triggering the computation of aggregation.

Figure 9 illustrates the architecture of the monitor network of Scan . mon0 , mvp and mvcp corre-

spond to the monitors in Figure 8. The aMonc(v , p) and aMonv () monitors perform the conjunc-

tions to implement the universal quantifier for c and v while aMonp(v) implements the semantics

of the existential quantifier for p. After merging the verdicts generated by the bindings illustrated in

Table 6 using these aggregation monitors, we can get the same verdict with QEA.

Comparison of SMEDL and QEA. The difference between VerdictQEA and VerdictSMEDL comes

from creation and maintenance of bindings. Given a trace τ , bdSMEDL(S (Λ), τ) and fullbdSMEDL(S

(Λ), τ) respectively denote the set of monitor instances and instances bound with all parameters

generated from S by consuming τ . bdQEA(Q(Λ), τ) and fullbdQEA(Q(Λ), τ) denote the set of

bindings and full bindings in QEA. When the context is clear, Λ and τ are omitted. It is obvious that

bdSMEDL(S) ⊆ bdQEA(Q) and fullbdSMEDL(S) ⊆ fullbdQEA(Q). infer(Q ,S , τ) (fullInfer(Q ,S ,

73

Figure 9: Connections between SMEDL monitors for Example 2

τ)) are inferred (full) bindings that do not have corresponding monitor instances in SMEDL.

The relation between QEA and SMEDL are studied by comparing VerdictQEA and VerdictSMEDL.

Lemma 33 states that for a binding that appears in both SMEDL and QEA, the state of that binding

between SMEDL and QEA are identical.

Lemma 33 Suppose Q(Λ) is a QEA specification and S(Λ) is the corresponding SMEDL specifi-

cation. For each binding θ ∈ bdSMEDL(S , τ), configS (θ) == ∆Q(θ).

Proof (sketch): by Theorem 32, we already proved that dom(configS) = dom(∆) and for each

binding θ ∈ dom(∆), ∆(θ) = configS (θ) where ∆ is the mapping from bindings to states in Al-

gorithm 1. Since QEA follows the same semantics on updating existing bindings and creating

new bindings from existing ones, we have ∆Q(θ) = ∆(θ) for each θ ∈ dom(∆). Moreover

bdSMEDL(S , τ) ⊆ dom(∆Q). As a result, for each binding θ ∈ bdSMEDL(S , τ), configS (θ) = ∆Q

(θ). �

Using Lemma 33, we only need to consider the state of inferred bindings. Whether VerdictQEA and

VerdictSMEDL generate the identical result depends on the characteristics of the inferred bindings.

Lemma 34 states that for a QEA specification Q of which all parameters are universally quantified,

if all inferred full bindings are created and stay at a final state by consuming an input trace τ , Q and

S generates the same verdict for τ .

Lemma 34 For a QEA specification Q(Λ) of which all parameters are universally quantified and

74

its corresponding SMEDL monitor S, given an input trace τ , if ∀θ ∈ fullInfer(Q ,S , τ),∆Q(θ) ==

true , then VerdictQEA(Q , τ) == VerdictSMEDL(S , τ).

Proof (sketch): because all quantifiers are universal, and the verdict of all inferred bindings are all

true, both VerdictSMEDL and VerdictQEA are equivalently reduced to computing conjunction over

bindings belonging to fullbdSMEDL(S (Λ), τ), which means VerdictQEA(Q , τ) = VerdictSMEDL

(S , τ). �.

To prove Theorem 37, we first prove Lemma 35 and Lemma 36, which respectively state the rela-

tion between inferred bindings and SMEDL monitor instances and the property of the inferred full

bindings.

Lemma 35 Given a QEA specification Q(Λ), its corresponding SMEDL specification S and an in-

put trace τ , for a binding θ ∈ infer(Q ,S , τ) that does not project to an empty trace, if ∆τ
Q(θ) == s ,

there must exist a binding W that max (W , bdSMEDL(S , τ), θ) ∧ configτS (W) == s .

Proof (sketch): The proof is performed by induction on the input trace τ .

Base step: if τ has only one event e(θ′), there are no inferred bindings.

Inductive step: given an input trace τ0, ∃θ ∈ infer(Q ,S , τ0) that ∆τ0
Q (θ) = s . There exists a

binding W that max (W , bdSMEDL(S , τ0), θ) ∧ configτ0S (W) = s . When an event e(θ′) arrives,

we first consider cases where θ′ is treated as a whole. τ is obtained by appending e to τ0.

1) θ′ v θ: e triggers a transition for θ that ∆τ
Q(θ) = s ′. For W , if θ′ v W , the same transition

is triggered so that configτS (W) = s ′ and max (W , bdSMEDL(S , τ), θ) still holds because for any

other binding W ′ ∈ bdSMEDL(S , τ0) ∧W ′ vW , W ′ t θ′ v W . Otherwise, a new binding W ′ ≡

W t θ′ v θ is created and configτS (W ′) = s ′. Since W is maximal in S with respect to θ and

θ′ v θ, max (W ′, bdSMEDL(S , τ), θ) still holds.

2) θ v θ′: e will not update θ in Q and W in S and no other bindings that have less information in

W will be updated either.

75

3) θ′ ∼ θ: a new binding θtθ′ is created inQ and ∆τ
Q(θ t θ′) = s ′. In S, A new binding (Wtθ′) v

(θ t θ′) is created and configτS (W t θ′) = s ′. Moreover, max (W t θ′, bdSMEDL(S , τ), θ t θ′)

holds.

4) θ′ 6∼ θ: θ′ will not trigger the transition for θ so both ∆τ
Q(θ) and configτS (W) are equal to

s. max (W , bdSMEDL(S , τ), θ) still holds because W ′ t θ′ 6v θ for any binding W ′ v θ that is

compatible with θ′.

QEA also creates bindings by adding a subset of θ′. Suppose a binding θ′′ v θ′ is compatible with

θ while θ′ is not. A new inferred binding θ t θ′′ is created and ∆Q(θ t θ′′) = s because e is not

projected to this binding. There is no corresponding monitor instance θ t θ′′ created in S. As a

result, max (W , bdSMEDL(S , τ), θ t θ′′) holds and configτS (W) = s . �.

Lemma 36 Given a QEA specification Q(Λ) of which all parameters are universally quantified

and its corresponding SMEDL specification S, if

∀λ ∈ dom(S .SMon) ∧ λ ⊂ Λ,S .SMon(λ).Stsmon\{s0} ⊆ S .SMon(λ).Fsmon ,

then ∀θ ∈ fullInfer(Q ,S , τ),F (∆τ
Q(θ)) == true for any arbitrary input trace τ .

Proof (sketch): the proof is performed by induction on the length of τ .

Base step: when the event trace has only one event e(θ′), there is no inferred full bindings.

Inductive step: suppose ∀θ ∈ fullInfer(Q ,S , τ0),F (∆τ0
Q (θ)) = true holds. When an event e(θ′)

arrives, we analyze the evolution of infer(Q ,S) and fullInfer(Q ,S). We use τ to denote τ0 ap-

pended with e. As stated above, e(θ′) may 1) update state of an existing binding; 2) create a new

binding of θ′; 3) create new bindings by extending existing bindings.

For 1), if e updates a partial binding or the target state is a final state, nothing changes; if e updates

a full binding θ ∈ fullInfer(Q ,S , τ0) by a transition tr from a final state s to a non-final state

s′ such that ∆τ
Q(θ) = s ′, we know that based on Lemma 35, there exists a binding W in S that

76

max (W , bdSMEDL(S , τ0), θ) ∧ configτ0S (W) = s . Then, given e(θ′), a new instanceW ′ ≡W tθ′

is created in S and configτS (W ′) = s′. Since a non-final state only appears in the fully-instantiated

monitor, θ′ and W are compatible with θ, W ′ = θ, which means θ /∈ fullInfer(Q ,S , τ). As a

result, the post condition holds for τ .

For 2), according to the slicing semantics of QEA and SMEDL, we need to find two bindings WS

and WQ that satisfy the predicate max (WS , bdSMEDL(S , τ0), θ′) and max (WQ , bdQEA(S , τ0), θ′).

We only need to consider the case in which WQ ∈ infer(Q ,S , τ0). Based on Lemma 35, we know

that WS v WQ and ∆τ0
Q (WQ) = configτ0S (WS). When fed with e(θ′), new bindings WQ t θ′ =

WS t θ′ = θ′ are created. Neither the domain or range of fullInfer(Q ,S , τ) will not be updated.

As a result, the post condition holds for τ .

For 3), e(θ′) can extend bindings in infer(Q ,S , τ0) in two ways. We will use θ′′ to denote the

generated binding. In the first way, θ′′ is created by treating θ′ as a unbreakable entity following

the slicing strategy used in SMEDL. The projected sub trace of θ′′ will contain e. If θ′′ is a non-full

binding or F (∆τ
Q(θ′′)) = true , nothing changes. If F (∆τ

Q(θ′′)) = false , we can use the similar

way presented in 1) to prove that θ′′ ∈ bdSMEDL so that θ′′ /∈ fullInfer(Q ,S , τ). In the second way,

θ′′ is created from an existing binding θ ∈ bdQEA that is not compatible with θ′. Therefore, θ′′ is

an inferred binding and the project sub trace for θ′′ will not include e. ∆τ
Q(θ′′) = ∆τ0

Q (θ) holds. In

both ways, the post condition holds. �

Theorem 37 Given a QEA specification Q(Λ) of which all parameters are universally quantified

and its corresponding SMEDL specification S, if

∀λ ∈ dom(S .SMon) ∧ λ ⊂ Λ,S .SMon(λ).Stsmon \ {s0} ⊆ S .SMon(λ).Fsmon

then VerdictQEA(Q , τ) ≡ VerdictSMEDL(S , τ) for any arbitrary input trace τ .

Proof (sketch): since Q only contains universally quantified parameters, VerdictQEA and

VerdictSMEDL are computed by conjunction over verdicts of all generated full bindings. Lemma 33

indicates that all shared full bindings betweenQ and S generate identical verdicts. From Lemma 36,

77

we know that verdicts of all inferred full bindings are true. As a result, VerdictQEA(Q , τ) =

VerdictSMEDL(S , τ) for any arbitrary input trace τ because of Lemma 34. �

Note on Example 2. Example 2 does not satisfy the syntactic restrictions on the precondition of

Theorem 37. We give a trace that leads to different results in QEA and SMEDL: member(v1 , p1),

candidate(c1 , p1), member(v1 , p2). QEA outputs true while SMEDL outputs false on this trace.

The reason is that a referred full binding (v , p2 , c1) is created in QEA and stays at the final state

2. To achieve equivalent result in SMEDL, we need to add a transition in mvp(v , p) to trigger the

creation of instances of aMonc(v , p) so that the verdict of a non-full binding mvp(v1 , p2) can be

counted. As a future work, we will modify the definition of VerdictSMEDL and the aggregation

monitor to relax syntactic restriction on QEA so that more QEA properties such as Example 2 can

be monitored using SMEDL.

Discussion on the specification size and memory overhead of SMEDL monitors. Same with the

transformation of MOP, the upper bound of the number of SMEDL monitors transformed from the

event automaton is exponential to the number of parameters. The number of aggregation monitors

is equal to the number of parameters. During execution, the memory overhead of SMEDL monitors

include partial and full bindings and instances of aggregation monitors. As stated above, the number

of full bindings of QEA is asymptotically O(np1 ∗ np2 ∗ ... ∗ npk) where npk is the domain size of

parameter pk. For SMEDL, the upper bound of number of full bindings is the same but in most

cases fewer bindings would be generated, especially when parameters are related. For instance,

each voter or candidate only corresponds to one party in Example 2. The number of full bindings

is about O(nvoter ∗ (ncandidate/nparty)) given that the number of candidates for each party is the

same. The number of instances for the aggregation monitors is proportional to the number of full

bindings and each instance maintains state variables such as count and result . Consequently, when

parameters are related by the semantics defined in events, SMEDL may maintain fewer instances,

potentially leading to less memory overhead.

78

sender receiver state
A B 4
A C 4
B C 4

Table 8: Bindings generated using SMEDL

sender receiver state
A B 4
A C 4
B B 2
B C 4

Table 9: Bindings generated using QEA

4.3.2. Enhancement of aggregation monitors

In this section, we consider cases where all inferred bindings are guaranteed to stay at a non-final

state at the end of execution. We modify the aggregation monitor to count the domain of each

parameter to infer the state of bindings that are not available for the SMEDL specification during

runtime.

Example 3 (Broadcast) [114]: for every sender s and receiver r, after s sends a message it should

wait for an acknowledgement from r before sending again. The QEA and SMEDL specification are

shown in Figure 10. Suppose the input trace τ ′ is send(A), send(B), ack(B ,A), ack(C ,A), ack(

C ,B), SMEDL and QEA respectively generate three and four full bindings, as shown in Table 8

and Table 9. Because the binding [r 7→ B , s 7→ B] stays at a non-final state, the verdict generated

by SMEDL and QEA are different. The least information needed for the SMEDL specification to

generate the identical verdict includes 1) the size of the derived domain for the receiver and 2) the

implicit knowledge on the verdict of all inferred bindings. For 1), we define counter monitors to

keep track of the derived domain for parameters. For 2), we impose syntactic restrictions on the

QEA specification such that all inferred bindings always stay at a non-final state.

Figure 10: QEA and SMEDL specification for Broadcast

79

Table 10: Transitions of frontend(px)
source event guard action target
ι1 e(.., px , ...) true raise addpx (); ι1

Table 11: Transitions of backendpx ()
source event guard action target
ι1 addpx () true dom sizepx + +; ι1
ι1 end() true raise sizepx (dom sizepx); ι1

Counter monitors. For each universally quantified parameter px, we define a counter monitor

cMonpx to keep track of the domain size of px. The cMonpx monitor is divided into two monitors.

As stated in Table 10, the monitor frontend(px) receives all input events of S containing px as pa-

rameters and creates new instances whenever a new value of px is observed. The backendpx monitor

keeps track of the domain size of px by receiving addpx raised by each instance of frontend(px).

The domain size is sent to the corresponding aggregation monitor aMonpx by receiving the event

end .

The aMonpx monitor also needs to be modified as shown in Table 12. Two added transitions are trig-

gered by sizepx (dom sizepx) which carries the size of the domain of px raised from backendpx ().

If the size of the domain is not equal to the number of values bound in the bindings generated by

S , the result will be false. sizepx must be received before any result events so that comparison of

domain size can be done before aggregating the result. To enforce this order, the event end is deliv-

ered to the counter monitor, which sends sizepx to the corresponding aggregation monitor aMonpx .

Then, one of the aggregation monitor raises the trigger event to trigger the execution of qMon(Λ).

Figure 11 illustrates the communication pattern among functional and aggregation monitors. The

diagram broadcast(r , s) represents the functional monitors illustrated in Figure 10 (b). Note that

mon2 (r , s) is modified to receive the trigger event to output events countr and resultr to aMonr .

To analyze the behavior of the enhanced aggregation monitor, we first update the definition of

VerdictSMEDL by adding the operation on checking the size of derived domain against the number of

Table 12: Added transitions of aMonpx (p1 , ..., px−1)
source event guard action target
ι1 sizepx (dom sizepx); countpx == dom sizepx raise trigger() ι1
ι1 sizepx (dom sizepx); countpx ! = dom sizepx raise resultx−1 (p1 , ..., px−1 , false) ι3

80

values observed in the generated bindings: VerdictdomSMEDL(S , τ) ≡ Πv1∈dom(p1)...Πvn∈dom(pn)(F (

configS (v1 , v2 , ..., vn))) ∧px∈uniQ (∧inst∈aMonpx .inst(inst .countpx == inst .dom sizepx)) where

(v1 , v2 , ..., vn) ∈ fullbdSMEDL(S (Λ), τ). uniQ denotes the set of universally quantified parame-

ters of Q. The symbol aMonpx .inst denotes the set of instances of aMonpx . The symbol countpx

and dom sizepx are the state variables defined in aMonpx above. The aggregation monitors with

counter monitors implement VerdictdomSMEDL.

Figure 11: Communication architecture of monitors for broadcast

Similar to the previous section, we can prove Theorem 38 that VerdictdomSMEDL(S , τ) and VerdictQEA

(Q , τ) can generate the identical result on an arbitrary input trace τ when the QEA specification Q

is transformed into S where all partial monitors only have are non-final states. Note that because

Example 3 satisfies the syntactic restriction on the QEA specification in this theorem, the QEA and

the SMEDL monitors can always generate identical results.

Theorem 38 Given a QEA specification Q(Λ) and its corresponding SMEDL specification S, if

∀λ ∈ dom(S .SMon) ∧ λ ⊂ Λ,∀st ∈ S .SMon(λ).Stsmon , st /∈ S .SMon(λ).Fsmon

then VerdictQEA(Q , τ) == VerdictdomSMEDL(S , τ) for any arbitrary input trace τ .

To prove Theorem 38, we prove the relation between VerdictdomSMEDL and inferred full bindings in

Lemma 39. Then in Lemma 40, we prove that VerdictQEA(Q , τ) = VerdictdomSMEDL(S , τ) if all

inferred full bindings return false.

81

Lemma 39 For a QEA specification Q(Λ) with at least one universally quantified parameter and

the corresponding SMEDL monitor S, given an input trace τ , fullbdQEA(Q , τ) 6= ∅ iff there exists

a universally quantified parameter px of which an instance inst of its aggregation monitor satisfies

the property that inst .countpx 6= inst .dom sizepx .

Proof (sketch): (⇒): suppose inst .countpx 6= inst .dom sizepx for an instance inst ≡ aMonpx (v1

, v2 , ..., vx−1) where v1 to vx−1 are values for parameter p1 to px−1 that appear in front of px in the

parameter list. There must exist a value vx in the domain of px that there are no full bindings of

which the parameter values are v1 to vx for p1 to px. According to the big step semantics of QEA,

these bindings will be generated and they belong to fullbdQEA(Q , τ).

(⇐): Suppose θ ≡ (v1, ..., vn−1, vn) ∈ fullbdQEA(Q , τ) where n is the length of Λ. There is no

monitor instance in qMon(v1 , ..., vn) ∈ S . Since countpn for the instance aMonpn (v1 , ..., vn−1)

is updated whenever a new instance of qMon(Λ) is generated, it will be smaller than dom sizepn .

�

Lemma 40 For a QEA specification Q(Λ) and its corresponding SMEDL specification S, given an

input trace τ , if ∀θ ∈ fullInfer(Q ,S , τ),∆Q(θ) == false , then VerdictQEA(Q , τ) ==

VerdictdomSMEDL(S , τ).

Proof (sketch): if fullInfer(Q ,S , τ) = ∅, VerdictdomSMEDL(S , τ) ≡ Πv1∈dom(p1)Πv2∈dom(p2)...

Πvn∈dom(pn)(F (configS (v1 , v2 , ..., vn))). Since VerdictdomSMEDL and VerdictQEA are computed

based on the same set of full bindings, they are equivalent.

If fullInfer(Q ,S , τ) 6= ∅ and there is at least one universally quantified variable, according to

Lemma 39, VerdictdomSMEDL and VerdictQEA are both evaluated to false. In the case where all vari-

ables are existentially quantified and all inferred full bindings return false, VerdictdomSMEDL(S , τ) is

true if there is a binding in θ such that configS (θ) = true . Based on Lemma 33, ∆Q(θ) = true

so VerdictQEA(Q , τ) = true . If there is no binding θ such that configS (θ) = true , corresponding

bindings in Q are false. Since all inferred full bindings are also false, VerdictQEA(Q , τ) = false .

�

82

Similar to Lemma 36, Lemma 41 is proved by induction on the input trace. Since final states can

only appear in the fully-bound monitor in S, if a full binding is created or transitions to a final state

in Q, there must exist a corresponding monitor instance in S. Theorem 38 can then be proved by

using Lemma 40 and Lemma 41.

Lemma 41 Given a QEA specification Q(Λ) and its corresponding SMEDL specification S, if

∀λ ∈ dom(S .SMon) ∧ λ ⊂ Λ,∀st ∈ S .SMon(λ).Stsmon , st /∈ S .SMon(λ).Fsmon

then ∀θ ∈ fullInfer(Q ,S , τ), F (∆τ
Q(θ)) == false for any arbitrary input trace τ .

Proof (sketch): the proof can be performed in a similar way with Lemma 36 by induction on τ . �

Discussion on the specification size and memory overhead of SMEDL monitors. We need to

consider the counter monitors cMon . For the specification size, in the worst case, each param-

eter corresponds to one cMon . During execution, number of instances for the counter monitors

is asymptotically O(np1 + np2 + ...+ npk), which is smaller than multiplication over the sizes of

each parameter when most parameters have a domain of which the size is greater than 1.

4.4. Summary

In this chapter, we presented a novel method to encode trace slicing using a SMEDL monitor net-

work. We first proved that SMEDL monitor network can express the efficient slicing algorithm

of MOP by proposing a transformation from MOP and SMEDL. Then, we defined two syntactic

fragments of QEA from which equivalent SMEDL monitors can be generated. As a future work,

it would be useful to formalize the relationship with MOP and QEA in Coq. By transforming into

SMEDL monitors, QEA properties can be efficiently monitored. In Chapter 5, we will perform

experiments to illustrate time efficiency of using SMEDL to monitor parametric properties. Due to

the limitation of the language design, SMEDL cannot express all QEA properties. By analyzing

Example 2, however, we see potential to further loosen the syntactic restrictions to support more

QEA properties. We also note that the size of monitoring specifications in SMEDL can grow as

83

we avoid partial instantiations with multiple monitors. We believe that we can resort to monitor

templates and automatic transformation to compensate for the increased specification size.

84

CHAPTER 5 : Implementation and Evaluation

In Chapter 3, we formally defined the language and generate correct-by-construction Haskell im-

plementation for single monitors using Coq. We have also developed a compiler that generates

executable C code from SMEDL specifications 5. Full language features such as monitor network

and flexible deployment are supported. As for the time efficiency, the C monitor is 10 time faster

than the Haskell version for the case study in Section 3.1.5. In this chapter, we will first present

the implementation of a synchronous set (Section 5.1). Then, we compare our technique to rep-

resentative tools (Section 5.2) with respect to time efficiency. By profiling execution of monitors,

we discover bottleneck of the monitor code and propose intuitions for optimization from both the

perspective of language design and implementation (Section 5.3). We will also study how moni-

tor synchronous and asynchronous deployment influence the time overhead (Section 5.4). SMEDL

specifications of benchmarks used in this Chapter are given in the Appendix A.2.

5.1. Implementation of synchronous sets

In SMEDL, multiple monitors can be organized as a synchronous set. For implementation, commu-

nication among monitors in the same synchronous set is implemented as function calls which use

queue to control event dispatching. Figure 12 illustrates the architecture of a synchronous set. Exe-

cution of a synchronous set is controlled by a global wrapper, which realizes the semantics proposed

in Section 3.2. A global wrapper maintains two queues, InnerQueue and OutputQueue. InnerQueue

stores events that are consumed within the synchronous set while OutputQueue stores events that

will be sent to the environment. Exported events raised during execution of monitors are added to

the InnerQueue or/and the OutputQueue accordingly. When an event e from the environment is

enqueued to the InnerQueue, the global wrapper fetches e from the head of the InnerQueue and

dispatches it to monitors that can handle it. As stated in Chapter 4, if multiple monitors can handle

e, calls are made sequentially according to the order specified in monTypeList. This calling order

guarantees that a new instance of monitor is always created from an existing instance with the most
5https://github.com/PRECISE/SMEDL

85

informative identities, which is necessary for parametric monitoring. Each monitor handles e by

its local wrapper, which tries to retrieve monitor instances from the instance store that can handle

e according to the architecture description. If there is no existing instance that handles e and the

event connection is unicast, a new instance is created by the local wrapper and inserted to the store.

Then, the local wrapper updates the state of each fetched instance by executing the monitoring logic.

Events raised from instances are enqueued to InnerQueue if they are to be consumed by monitors in

the synchronous set or the OutputQueue if they are sent to monitors in a different synchronous set

or just raised as an alarm. The execution continues until the InnerQueue becomes empty, meaning

that all monitors have finished their execution in reaction to the arrival of e. Then events in the

OutputQueue will be sent out to the environment by the global wrapper.

Figure 12: Architecture of synchronous set

Instance store. As shown below, retrieving and inserting of instances are intensive. To achieve

efficient monitoring, it is important to make each such operation fast, especially when there are

million of instances to maintain. If all instances are stored in a linear data structure, the average

retrieving time would be quadratic to the number of instances if the number of instances is also

linear to the length of the trace. Instead, we use binary trees to store references to the monitor

instance, as illustrated in Figure 13. For each parameter p, an AVL tree is maintained. Each node

in the tree is the head node of a list of references to the instances that have the same value on p.

For each node, all its descendant nodes on its left sub tree have less identity value while the right

86

sub tree stores nodes linking to instances with larger identity value. When the local wrapper tries to

retrieve an instance (or multiple instances), it starts with searching the AVL tree of a non-wildcard

parameter. Then, linear search is performed to filter based rest of the parameters. As illustrated in

the experiment below, tree structures lead to much better performance than the linear structure.

Figure 13: Using AVL trees as instance store

5.2. Tool evaluation

This section evaluates the SMEDL framework by comparing to RV-monitor [99] for online moni-

toring and QEA and MonPoly [19] for offline monitoring. Implemented in Java, RV-monitor uses

the same formalism as JavaMOP. It can generate C and Java monitors for online monitoring. Imple-

mented in OCaml, MonPoly checks properties described in MFOTL formulas. All experiments in

this section are done under the following platform: Xeon(R) Gold 6148 CPU at 2.40GHz, 750GB

memory, running Ubuntu 18.04 LTS 64-bit operating system.

5.2.1. Evaluation of online monitoring

Online evaluation is performed over three benchmark programs: Watertank, BasicCar and Unsafe-

File.

• The program Watertank is a controller of water tank, which simulates the behavior of updating

water tanks based on the commands read from the environment. The monitor checks whether

the incoming commands follow the operational policy such as the valve of a tanker cannot be

87

opened when the tank is not in service.

• The program BasicCar simulates the behavior of a car such as start, stop, acceleration, toggle

of lights and wipers. The monitor checks whether the program follows the policy of car

operation.

• The program UnsafeFile opens a series of files and write texts into them. The monitor checks

whether all file descriptors are closed at the end of execution and no writing operations are

performed after the file is closed.

For each program, we measure execution time of the original program and monitors at 10 different

input scales (number of instances), which is linear to the size of the event trace and the number

of instances created. At each input, the result is obtained by averaging over 10 executions. The

result is shown in Table 13, Table 14 and Table 15. We can observe that the runtime overheads

of SMEDL monitors in these examples are reasonable because 1) SMEDL monitors are efficient

and 2) instrumentation sites in these programs are sparse. As for comparison with RV-monitor,

SMEDL performs better than RV-monitor in Watertank for all inputs except for the case where the

instance number is 1000. Moreover, as shown in Figure 14, Figure 15 and Figure 16, SMEDL

monitors achieve nearly linear increment of execution time along with the length of the trace while

RV-monitors are quadratic because it uses lists to store instances.

Table 13: Execution time of SMEDL and RV-monitor in Watertank
trace size instance number original program time(s) SMEDL time(s) RV-monitor time(s)

1495 1000 9.718 0.011 0.007
3084 2000 18.956 0.023 0.030
4535 3000 30.120 0.036 0.065
5935 4000 40.640 0.050 0.117
7532 5000 53.210 0.062 0.181
8909 6000 66.152 0.076 0.262
10510 7000 80.260 0.092 0.357
11946 8000 95.765 0.104 0.468
13489 9000 110.270 0.119 0.590
14960 10000 126.530 0.132 0.734

88

Figure 14: Execution time of SMEDL and RV-monitor in Watertank

Table 14: Execution time of SMEDL and RV-monitor in UnsafeFile
trace size instance number original program time(s) SMEDL time(s) RV-monitor time(s)

0.5M 500 0.722 0.278 0.928
1M 1000 1.534 0.566 3.706

1.5M 1500 2.247 0.868 8.336
2M 2000 2.998 1.188 14.709

2.5M 2500 4.154 1.474 22.366
3M 3000 5.043 1.789 30.793

3.5M 3500 5.998 2.199 40.126
4M 4000 6.998 2.591 50.206

4.5M 4500 9.285 2.815 61.371
5M 5000 10.526 3.171 72.628

Figure 15: Execution time of SMEDL and RV-monitor in UnsafeFile

5.2.2. Evaluation of offline monitoring

Offline monitoring is performed over 7 properties against QEA and 3 properties against MonPoly.

All properties and traces are from the competition on runtime verification in 20146 and 2016.7

• QEA-GrantCancel: every resource should only be held by at most one task at any one time
6https://gitlab.inria.fr/crv14/benchmarks/-/tree/master/OFFLINE
7https://crv.liflab.ca/wiki/index.php/Offline track

89

Table 15: Execution time of SMEDL and RV-monitor in BasicCar
trace size instance number original program time(s) SMEDL time(s) RV-monitor time(s)

60000 10000 0.722 0.018 0.637
120000 20000 1.366 0.036 4.607
180000 30000 2.003 0.055 12.850
240000 40000 2.708 0.072 23.031
300000 50000 3.251 0.095 38.015
360000 60000 4.055 0.113 54.345
420000 70000 4.614 0.132 76.007
480000 80000 5.233 0.155 99.731
540000 90000 5.859 0.178 130.110
600000 100000 6.562 0.192 155.580

Figure 16: Execution time of SMEDL and RV-monitor in BasicCar

and if a resource is granted to a task, it must be cancelled before being granted to another

task.

• QEA-NestedCommand: every command issued later must succeed before previously issued

ones.

• QEA-ResourceLifeCycle: a resource goes through three stages of free, requested and granted

in sequence.

• QEA-RespectConflict: resources that are in conflict with each other cannot be granted at the

same time.

• QEA-Auction: the auction process follows certain policies such as: 1) each bid is strictly

larger than the previous bid; 2) an item is sold if the last bid amount is greater than the initial

price; 3) an item can only be sold in the auction for once; and so on.

90

• QEA-CandidateSelection: Example 2 in Section 4.3.

• QEA-SqlSanitizer: every string derived from an input string is sanitized before use.

• MonPoly-Banking-1: executed transactions of any customer must be reported within at most

5 days if the transferred money exceeds a given threshold of $2,000.

• MonPoly-Banking-2: executed transactions of any customer must be authorized by some em-

ployee between 2 to 20 days before they are executed if the transferred money a exceeds a

given threshold of $2,000.

• MonPoly-Publish: 1) any report must be approved prior to its publication; 2) the person who

publishes the report must be an accountant and the person who approves the publication must

be the accountant’s manager; 3) the approval must happen within at most 10 days before the

publication.

We transform QEA specifications and MFOTL formulas into SMEDL monitors. The transforma-

tion from QEA has been discussed in Chapter 4. There is no existing work on transformation from

MFOTL formulas into EFSMs so we manually translate these examples by considering the inten-

tion of the property and the semantics of MFOTL. Correctness of the transformation is justified by

testing against several traces. The size of the SMEDL specification for the benchmark properties

are illustrated in Table 16. The column monitor# represents the number of monitors in the specifi-

cation; max parameter # represents the max number of parameters among all monitors; connection

represents the number of connections defined in the architecture file. We can observe that Candi-

ateSelection, SqlSantitizer and Publish are more complicated than others in number of monitors or

event connections.

The experiment is performed by measuring execution time and maximum memory allocated for

monitors during execution. The comparison between SMEDL and QEA is illustrated in Table 17.

Among 7 properties, SMEDL outperforms QEA in 6 of them in time efficiency and SMEDL uses

less memory than QEA. Although it is not totally fair to compare monitors implemented in C and

91

Table 16: Size of SMEDL specifications
property monitor# max parameter # connection #
QEA-GrantCancel 1 1 2

QEA-NestedCommand 2 2 6

QEA-ResourceLifeCycle 1 1 6
QEA-RespectConflict 2 2 6
QEA-Auction 1 1 4
QEA-CandidateSelection 4 3 10
QEA-SqlSanitizer 2 2 11
MonPoly-Banking-1 1 1 2
MonPoly-Banking-2 1 1 2
MonPoly-Publish 6 3 16

Java, the result still demonstrates that SMEDL is competitive tool for offline monitoring.

Table 17: Comparison between SMEDL and QEA
property trace size QEA time(s) QEA mem (KB) SMEDL time SMEDL mem (KB) speedup
GrantCancel 1M 2.357 1079924 1.994 1874 1.18
NestedCommand 1200 1.371 537018 0.018 1897 76.17
ResourceLifeCycle 1M 2.487 1364046 1.915 2749 1.30
RespectConflict 1M 3.887 1429354 3.123 1966 1.24
Auction 84643 0.436 149437 0.251 2440 1.74
CandidateSelection 977997 26850 37973789 3135 2127146 8.56
SqlSanitizer 9447751 9.6 1929383 41.413 1843685 0.23

The comparison between SMEDL and MonPoly is illustrated in Table 18. The result shows that

SMEDL performs better or approximately equally in Banking-1 and Banking-2 where the size of

SMEDL specification is small. For Publish, MonPoly performs much better than SMEDL. In the

next section, we explore some directions to further optimize SMEDL monitors.

Table 18: Comparison between SMEDL and MonPoly
property trace size MonPoly time(s) MonPoly mem(KB) SMEDL time(s) SMEDL mem(KB) speedup
Banking-1 320424 4.270 20281 0.951 11052 4.49
Banking-2 323308 0.703 14319 0.785 11843 0.90
Publish 57404 14.375 416793 1517 1003576 0.01

5.3. Optimization

Figure 12 indicates that execution of a monitor network can be divided into three disjoint parts: op-

erations on the global queue; store operations, including fetching and insertion of created instances;

and execution of monitoring logic. To analyze the bottleneck of monitor performance, we profiled

execution of SMEDL monitors to analyze how each part contributes to the execution time. Two

representative patterns are discovered, as shown in the results of two benchmarks UnsafeMapIter

92

(Example 1 in Chapter 4) and UnsafeFile respectively in Figure 17 and Figure 18. The X-axis repre-

sents the overall execution time of monitors while the Y-axis represents the number of fully-bound

instances created during execution. Note that the trace length is linear to the number of instances.

We can observe that in UnsafeMapIter, insert and fetch operation take respectively 50% and 25%

of the overall execution time; in UnsafeFile, fetch operation takes 55% of the overall execution time

while insertion operation can be negligible. The reason is that in UnsafeMapIter, both partial and

fully-bound instances are created and each instance is queried only once. In UnsafeFile, on the

other hand, each monitor instance is queried one thousand times because of the writing operation.

However, in both cases, store operations dominate more execution time than queue and monitoring

logic, which admits some optimization possibility.

Figure 17: Profiling of the SMEDL monitor for UnsafeMapIter

Figure 18: Profiling of the SMEDL monitor for UnsafeFile

93

5.3.1. Optimization intuitions

The overall execution time of store operations depend on two factors: 1) the number of operations

to execute and 2) the time to execute each operation. For 1), we introduce explicit creation events

that avoid useless fetch operations; for 2), we introduce the concept of final states to remove useless

instances. At the implementation level, we use the hash map to achieve (nearly) constant time

insertion and retrieval of instances.

Avoidance of unnecessary retrieving operations. To motivate this feature, we recall the Candi-

dateSelection property, which requires that for each voter, there must exist a party of which the voter

is a member and all candidates of that party must be ranked by the voter. The example trace we used

in the experiment 8 is distributed as follows: the first 343,135 member(v,p) indicate the relation be-

tween the voter (v) and the party (p); then the next 6,759 candidate(c,p) represent the information

between the candidate (c) and the party (p). Because there are no duplicated events, the triple (v,c,p)

is created by the only pair of member and voter. After all triples are created, the rest are rank(v, c,

r) for ranking the candidate c as r by the voter v. The SMEDL specification contains one partial

monitor mvp(v , p) and one full monitor mvcp(v , p). Instances of mvcp is created by receiving the

event createVCP . In the implementation, createVCP is an implicit creation event, which means it

will trigger the local wrapper of mvcp to retrieve a matching instance before creating it. However,

if the trace does not contain duplicated events, createVCP always creates a new instance because

no such instance has been created. As a result, the verdict would not change if we remove retrieving

operation in the local wrapper when receiving createVCP . We incorporate this change to the code

and the execution time is 19 minutes, which is much faster than the original implementation. To

generalize this idea, we extend the architecture description language with explicit creation events.

In contrast to implicit creation events, which creates an instance after failing to retrieve an instance,

an explicit creation event directly creates an instance without triggering execution of monitoring

logic. Formal definition and use of an explicit creation event and analysis on how the time overhead

would be improved are left as future work.
8https://crv.liflab.ca/wiki/index.php/Offline Team2 Benchmark2

94

Final states. When the execution time of retrieving an instance depends on the size of the instance

store, it is desirable to maintain as few instances as possible. We introduce the concept of final

states, which are specified for a scenario. For an instance, if all scenarios in which final states are

defined reach to a final state,it will be automatically removed. To evaluate the effect of final states,

we experiment against NestedCommand and GrantCancel. The experimental result is illustrated

in Table 19. For NestedCommand, the monitor with final states performs better because fewer

instances are maintained during execution. In contrast, the monitor with final states performs worse

for GrantCancel. The reason is that the event to grant a resource appears repeatedly in the trace.

As a result, monitor instances that have been removed may be created later, which leads to more

store operations. From these two examples, we could find that if a monitor can reach to a sink state

and the trace does not have any event that may trigger creation of this instance after it is removed,

setting sink states as final states can improve time efficiency.

Table 19: Comparison of monitors with/without final states for NestedCommand and GrantCancel
Property trace length without final states(s) with final states(s) speedup
NestedCommand 500 0.008 0.005 1.60
NestedCommand 1200 0.018 0.007 2.57
GrantCancel 100000 0.25 0.28 0.89
GrantCancel 500000 1.02 1.13 0.90

Hash map for instance store. We have used AVL trees as the data structure to store instances,

which performs much better than linear search. However, when retrieving an instance by multiple

parameters, only the first parameter is searched through the tree while others are filtered in a linear

way, which would lead to significant performance degradation. To overcome this drawback, we

implement hash maps to store monitor instances, as shown in Figure 19. Suppose the monitor has

two parameter variables, p and q, For each subset of non-wildcard parameter combinations, p, q

and (p, q), a hash map is created. Within a hash map, all the instances with the same identities in

the subset are stored in a list (represented by dot line arrows). For the hashing mechanism, robin

hood hashing [33] with linear probe is adopted. To compared two ways of instance store, suppose

an event with p and q arrives. The monitor using the tree would search from either the tree of p or

q to obtain a list of instances. Then, linear search is performed on the list using the value of the

other parameter. In contrast, the monitor with the hash map would directly query the hash map for

95

the pair of p and q. From this example, we can observe that the hash map implementation is more

efficient for searching among multiple parameters because it avoids unnecessary linear search and

the search space is smaller.

Figure 19: Using hash map instance store

To demonstrate this observation, we perform experiments over 6 case studies on the execution time,

as shown in Table 20. The hash map version outperforms the original version in all of them. For

CandidateSelection and Publish, the performance improvement is significant while the boost for

Banking-1 and Banking-2 are small. The extent of improvement is related to the operations on

retrieving instances by multiple parameters. In Banking-1 and Banking-2, instances are retrieved by

one parameter. In contrast, there are respectively 4 and 3 monitors in the specification of Publish

and CandidateSelection that have multiple parameters, which lead to many more operations on

linear search. In general, we can expect more performance gain when the specification is more

complicated with respect to the number of monitors with multiple parameters.

Table 20: Comparison between the tree and hash map implementation on time efficiency
property trace size tree time(s) hash map time(s) speedup
Auction 84643 0.251 0.23 1.09

CandidateSelection 977997
1141.0
(explicit creation events) 16.02 71.22

SqlSanitizer 9447751 41.413 25.56 1.62
Banking-1 320424 0.951 0.827 1.15
Banking-2 323308 0.785 0.78 1.01
Publish 57404 1517 1.974 768.49

96

5.4. Evaluation of monitor deployment on time overhead

For online monitoring, monitors may be deployed with the target program synchronously or asyn-

chronously. For synchronous deployment, the target system needs to pause the execution and trans-

fer control to the monitor thus any property violation can be detected timely. For asynchronous

deployment, on the other hand, the target system proceeds its execution after invoking APIs to de-

liver events to the monitor using asynchronous communication. Asynchronous monitoring is useful

when the monitor needs to receive events from sources that do not work in the same process or

even the same machine. Moreover, asynchronous monitoring may also provide with possibility to

reduce the time overhead [32]. The SMEDL framework provides flexible ways to deploy moni-

tors. Synchronous and asynchronous communication are respectively implemented as API calls and

RabbitMQ communication middleware. This section compares performance of synchronous and

asynchronous monitoring with respect to time efficiency. All experiments in this section are done

under the following platform: 2.5 GHz Intel Core i7, 16GB memory, running Ubuntu 18.04 LTS

64-bit operating system.

The evaluation is performed agains three benchmark programs, UnsafeGrant, UnsafeMapIter and

TrackQuality. The property UnsafeGrant states that a source can only be released after it has been

granted and all resources are released at the end of execution. The program TrackQuality simulates

behavior of generating track data from multiple sources, which has been introduced in Section 3.2.4.

The monitor computes statistics for each track in a sliding window divided by timestamps of events

and merge them together to check the quality of sensor data.

The experiment measures execution time of synchronously instrumented monitors and calling the

RabbitMQ API respectively. The result shown in Table 21 reveals that synchronous monitoring

incurs less time overhead in all benchmarks. Calling the RabbitMQ API and related preparation

actions such as generation of a message are more time-consuming than monitor execution on aver-

age when handling each event. However, the ratio of asynchronous time to synchronous time varies

among them. For UnsafeGrant, synchronous monitoring is 20 times faster than asynchronous com-

munication while the difference in TrackQuality is narrower. The specification of UnsafeGrant only

97

has one monitor specification in which all transitions do not contain any actions such as updates of

state variables or arithmetic computations. Moreover, almost all events delivered to the monitor

have only one receiving instance. The specification of TrackQuality, on the other hand, has 6 mon-

itors and one event can trigger multiple transitions in different monitors with arithmetic and state

update actions. As result, synchronous monitoring is less efficient for TrackQuality. In general,

multiple factors such as the monitor structure, the distribution of events and the time overhead of

calling monitoring or communication APIs may influence the time overhead of online monitoring.

Table 21: Comparison of synchronous and asynchronous monitoring
trace length sync time(s) async time(s) async/sync

UnsafeGrant 60000 0.060 1.206 20.10
UnsafeGrant 150000 0.143 2.777 19.42
UnsafeMapIter 60000 0.052 0.756 14.54
UnsafeMapIter 150000 0.140 1.919 13.71
TrackQuality 1200300 2.553 30.765 12.05
TrackQuality 2000500 4.187 49.860 11.91

5.5. Summary

In this chapter we presented the implementation of the SMEDL framework and demonstrated time

efficiency of our technique on large-scaled input by comparing with representative RV tools for

both online and offline monitoring. We then profiled execution of monitors and proposed intuition

of optimization from the perspective of language and data structure design. Finally, we compare the

current implementation of synchronous and asynchronous monitoring, which could give us hints on

how to decide monitor deployment with awareness of time overhead.

98

CHAPTER 6 : Monitoring Time Interval

Timing properties describe the behavior of one event occurring after another event within certain

time bound or counting the number of events that occur during an interval of time. In both cases,

a monitor needs to not only evaluate the logic of the property but also determine whether events

fall within a given time interval. Monitoring timing properties is challenging in the situation where

the target system and the monitor are deployed in an asynchronous environment. The asynchronous

approach makes monitoring more difficult, due to the network delay and the difference between

the system and the monitor clocks. However, by using the monitor clock that is different from the

system clock, we may be able to detect that timing behavior of the target system is incorrect because

the system clock is wrong.

Although SMEDL monitoring systems supports asynchronous deployment of monitors, explicit

clocks cannot be explicitly expressed. In this chapter, we propose a method to clearly separate

monitoring of time intervals from the rest of property checking. With this framework, SMEDL can

focus on describing monitoring logic without worrying about clocks.

Compatible with SMEDL, we assume the property is checked in an event-driven fashion. To enable

checking of the timing in this way, we extend the set of events with a new kind of event that repre-

sents the end of a time interval, which we call interval closure. Now, we can reduce time checking

to temporal ordering: if a system event arrives before the closure event, it occurred within the time

interval, while if the closure event arrives first, the system event is outside of the interval. In order to

produce closure events in the right order, we introduce the interval handler module into the monitor.

The second aspect addressed is the design of the interval handler. We note two particular design

considerations for the handler: one is correctness and the other is timeliness. On the one hand, the

handler needs to correctly monitor intervals, in the sense that it should close an interval – that is,

raise the closure event – only after any event occurring within the interval has been received. In

the presence of uncertainty, correct monitoring is possible only if the handler waits long enough

to make sure it has seen all relevant events. On the other hand, closing the interval too late may

99

increase unnecessary resource consumption for monitoring, which should be avoided. Moreover,

we should know what the tight one is, in order to be certain that the deadline to be set is larger than

the tight one. It is therefore important to set the monitoring deadline as small as possible under the

premise that correctness of the closure is guaranteed.

To summarize, this chapter addresses the following problem: “Given an asynchronous environment

with uncertain communication delay and imperfect clock synchronization between target system and

monitor, under what conditions can correctness of monitoring time intervals be ensured and how to

achieve it?”

We consider three parameters of monitoring setup, network delay, clock skew and clock rate, and

study how they influence monitoring time intervals. We explore the parameter space and present a

scheme for setting the deadline of monitoring for each interval. We then introduce an algorithm that

the interval handler uses to monitor intervals.

Related work. Sammapun [120] considers properties represented with time-bound operators and

analyzes several different implementations of checking properties based on timer and heartbeats

with bounded or unbounded network delay. However, clock rate and clock skew were not taken

into consideration. Lee and Davidson [90] propose algorithms for implementing timed synchronous

communication among processes having different clocks such that all processes will decide whether

the communication is successful within their own absolute deadlines and they agree on the same de-

cision. Two communication schemes, multiple senders with one receiver and N-way communication

were analyzed. They further analyze the performance of two algorithms of timed synchronous com-

munication using probabilistic models [91]. Pinisetty et al. [110] propose a paradigm of runtime

enforcement using time retardants on events to ensure that a system satisfies timed properties. Ja-

hanian et al. study the runtime monitoring of time constraints specified by RTL (real-time logic) in

the distributed real-time system [80]. However, the monitoring procedure of time intervals was not

discussed. They further raise the problem of imprecise timestamps of traces influencing the correct

verification of the properties specified by MTL (metric temporal logic) formulas [17]. The paper

gave the conclusion that certain MTL fragments can be verified by existing monitors for precise

100

Figure 20: Evaluation of interval operators

traces over traces with imprecise timestamps.

6.1. Motivating examples

Several kinds of commonly used timed specifications involve reasoning over time intervals. We note

that, while the logic of evaluating these properties over a stream of events is different, it invariably

involves reasoning about intervals of time given in the specification and whether the timestamp of

a given observation falls within an interval or outside of it. As we discuss below, parameters of the

monitoring setup, such as clock skew or the latency of delivering observations to the monitor, have

an impact on how this reasoning should be performed. We therefore want to separate the logic of

property evaluation, which depends only on the semantics of the specification language, and interval

management, which depends on properties of the monitoring setup.

To illustrate our approach, we first briefly revisit two of them: LTL with interval operators and

interval statistics.

LTL with time-bound operators. In LTL, operator Until (U), Weak-until (W) and R (Release)

are used to specify properties in a trace. For instance, property φ1Uφ2 is satisfied in a trace if φ1

is satisfied at each location of the trace until φ2 is satisfied at a certain point. The verdict cannot

be given to this property until getting the result from the verification of φ2. To restrict the time

of getting the result, the time-bound operator is utilized [120]. If we want to express the property

that φ2 becomes satisfied within 5 time units from the current time and φ1 remains true within the

interval, the formula is written as φ1U[0,5]φ2.

101

In many runtime verification approaches [85, 13, 118], temporal operators are evaluated in an event-

driven fashion. Arriving events, which could be observations from the target system or results of sub

formula evaluation, trigger changes in the operator evaluation status. We want to extend the same

approach to interval operators. Consider, for example, evaluation of the bounded-until aU[0,t1]b,

where a and b are target system observations. As Figure 20 (a) shows, evaluation of the operator is

a state machine that takes as inputs events a, b, and c. Event not a represents the absence of a. We

refer to the event c as the interval closure, which denotes that t1 time units have elapsed. Note that

t1 is measured in the sense of perfect clock, which may be different from the clock on the system

and the monitor side due to the clock skew. Evaluation is activated by an arrival of a, and while

further occurrences of a arrive, the state of the evaluation is unresolved. As soon as not a arrives,

or if the interval is closed, the operator evaluates to false, denoted by raising an event f . But if b

arrives before the interval is closed, the operator evaluates to true and an event t is raised. In this

way, evaluation of the operator does not depend on the value of the time bound and does not need

direct access to the clock. It is straightforward to extend this scheme to cover intervals of the form

[t1, t2], as well as cover other commonly used temporal operators. Note that to monitor aU[t1,t2]b

we consider intervals [0, t1) and [t1, t2]. When b arrives, we determine, which of the two intervals it

falls into, or if it is outside of both. For technical reasons that will be discussed later, we open both

intervals when a arrives.

Interval statistics. Some properties needs to collect statistics over a time interval. These properties

can be represented in a similar way as SQL queries using aggregate operators [16]. For instance,

Sum[0,t1](occur(e)) >= b) specifies the property of the number of occurrences of event e over

the time interval [0,t1] is equal or greater than b. Figure 20 (b) shows the evaluation scheme for this

operator in a fashion similar to the previous case. Variable count increases with arrivals of event e.

When interval closure event c arrives, the interval is closed. An event t is raised if count is greater

or equal than b; otherwise an event f is raised.

In contrast to interval operators discussed above, calculation of interval statistics is different in

the sense that intervals are recurrent. On the system side, once an interval ends, the next one is

102

immediately started and statistics calculation continues for the next interval, effectively partitioning

the time line into intervals of the same size, starting from some initial event. We can view recurrent

intervals as an extension of the two-interval case above.

Checking example. Figure 21 shows a concrete scenario for monitoring of aU[t1,t2]b when system

events can be delivered with a delay. Assume first that the clocks in both the system and the monitor

are perfect. On the monitor side, we begin processing when the event a arrives at relative time 0.

To correctly evaluate this property, the monitor needs to tell whether b falls within i1 = [0, t1) or

within i2 = [t1, t2]. Suppose an event b is raised before t1 but is delayed more than a was and thus

arrives after the time t1 on the monitor side. Thus, at t1 the monitor cannot yet conclude that i1 has

expired. From the monitor perspective, i1 and i2 overlap; that is, an incoming event may belong to

either interval. However, once we see the timestamp of b, we can tell whether it belongs to i1 or

i2. Therefore, we do not need to measure duration of i1 or i2 on the monitor side. Now consider

the case when b does not arrive within i2. In order to conclude that b did not arrive in time, the

monitor has to wait. Eventually, another event with a large enough timestamp may arrive and the

monitor may be able to make the conclusion based on that. But what if it arrives after a very long

time or, worse, if the missing b was meant to be the last observation? To proceed in a more timely

fashion, the monitor has to use a timer. This timer, essentially, sets the deadline for b to arrive. This

observation underlies our monitoring approach: we use the timer only to safely close the interval,

while all other conclusions – whether the interval has started and whether an event is within the

interval – are made based on event timestamps.

Apart from the network delay, the clock rate of the system and the monitor also influence interval

monitoring. Using the same example above, assume first that there is no clock skew and delivery

delay is ranged from 0 to 1 in the sense of the perfect clock. Suppose the clock rate of the perfect

clock rp is 1, clock rate of the system rs is 0.5 and clock rate of the monitor rm is within range

[0.8, 1.5]. Interval i1 to be monitored is [0, 6] measured by the perfect clock and the monitor begins

monitoring it at time 0. To guarantee that all events occurring in i1 arrive before the monitor finishes

monitoring this interval, the deadline of monitoring is set at time 10.5 of the monitor clock, as in the

103

Figure 21: Monitoring time intervals of aU[t1,t2]b

worst case, an event occurs at 3 of system clock (corresponding to time 6 in the sense of the perfect

clock as the clock rate is 0.5) arrives at time 10.5 of the monitor clock with the largest delay. If the

actual rate of rm is 1.5, when an event b happens at time 3.1 of the system clock and the network

delay is 0.2 then, it arrives at the monitor at time 9.6 (calculated by 3.1*3 + 0.2*1.5). However,

since we know the clock rate of the system is 0.5, the time on the perfect clock will be 6.2, which is

larger than 6. Therefore, even if b arrives when the monitor is monitoring the interval, the monitor

can still determine b does not belong to it. This example suggests that the deadline for monitoring

an interval depends only on the duration of the interval and the relationship between the monitoring

clock and the perfect clock, but not on the system clock. At the same time, to determine whether

an event is within an interval depends on the relationship between the system clock and the perfect

clock, but not on the monitor clock. We will make this intuition precise below.

6.2. System Architecture and preliminaries

In this section, we will present the architecture for monitoring time intervals. Then some prelimi-

naries are given, including definitions of some key concepts and parameters of monitoring setup to

be explored.

104

6.2.1. Architecture

Figure 22 illustrates the architecture for monitoring time intervals. To separate the logic of time

management, a module IntervalHandler is introduced into the monitor between the target system

and the property checker. Both the IntervalHandler and checker run under the monitor clock. The

checker can be implemented in SMEDL or other event-driven RV tools. It receives two types of

events from the IntervalHandler, one is the original events for property evaluation. Another is a

special event interval closure introduced above, which is used to acknowledge to the checker the

end of a time interval.

Figure 22: Architecture for monitoring time intervals

A checker correctly evaluates the property for a time interval i if all events occurring in i are de-

livered to the checker when the property is being evaluated. In the ideal situation, when events are

delivered from the system to the monitor immediately and there is no timing uncertainty, this can be

easily achieved by setting the timer in the IntervalHandler for the duration of i. Any event arriving

before the timer expires would be within i, while any event arriving after it expires is outside i.

Expiration of the timer immediately raises the closure event. If events can be delayed, however, this

approach may clearly result in incorrect checking. The closure event must be delayed to accommo-

date for late events. In order to close the interval in a timely manner, we need to set a deadline for

raising the closure event that would guarantee correct monitoring and minimize the delay in closing

the interval. According to the duration on the time interval and parameters of the monitoring setup,

the IntervalHandler calculates the deadline for each interval. When the current time at the monitor

reaches the deadline, the IntervalHandler sends an interval closure event to the checker to finish the

evaluation of the property for this interval.

The deadline discussed above is useful in another way. If events arrive out of order, they also should

be re-ordered according to their timestamps before being passed on to the checker which, as we

105

discussed above, does not reason about time. In our approach, the IntervalHandler is storing events

in a queue in the timestamp order and uses the same deadline to release events from the queue to

the checker. We discuss event reordering further in Section 6.4.

6.2.2. Preliminaries

Time model. There are three time domains assumed: Tm for the monitor clock, Ts for the system

clock and Tp for the perfect clock. The monitor takes streams of events as input. Events are times-

tamped using the system clock in the time domain Ts. The system and monitor clock may be skewed

and run at different rates. In addition, there may be unpredictable delays in delivering events from

the target system to the monitor. As a result, event timestamps are not directly comparable with

readings of the monitor clock. Moreover, elements in the time domain Tm and Ts are totally or-

dered. An event stream ET is a sequence of timestamped observations 〈(o1, t1), (o2, t2), ...〉, where

oi is a value observed at time ti ∈ Ts. The perfect clock cp in Tp is used to measure the length of

the time interval being monitored.

Time interval is a period of time between two events, the duration of which is measured by the

perfect clock. In the remainder of this chapter, when we refer the interval on the system, we use

“start” and “end” to denote the beginning and ending of the interval. On the monitor side, an interval

is “opened” or “closed” by the monitor. A closed interval i that starts at t1 and ends at t2 is denoted

as i[t1,t2]. For an event e originated from the system and an interval i, if t1 ≤ te ≤ t2, then e ∈ i[t1,t2]

where te is the timestamp of e. Note that if we don’t care about events occurring on the bound(s),

the interval could also be half-open or open and the denotation will be modified accordingly.

Network delay, denoted as nd, represents the time to send the event from the system to the monitor.

The absolute value of the delay is measured in the sense of perfect clock.

Clock rate is the interval of the finest time unit. It is assumed that the clock rate of cp, denoted as

rp, is 1. The clock rate of the system and the monitor are respectively denoted as rs and rm. If rs

(rm) is greater than 1, then the system (monitor) clock runs ahead of the perfect clock.

106

Clock skew, denoted as ts, represents the time difference tm − ts between the monitor and the

system where ts is the time of the system and tm is the time of the monitor. Here we assume that

time synchronization is periodically conducted between (1) the system clock and the perfect clock

and (2) the monitor clock and the perfect clock.

6.3. Setting the Interval Deadline

In this section, we explore the parameter space of network delay, clock skew and clock rate and

identify several cases where correctness of monitoring can be ensured. For each case, we describe

how to calculate the deadline for closing the interval. The monitor uses this deadline to set the

timer; when the timer expires, we can be certain that no further events belonging to this interval can

arrive and the closure event is sent to the checker. Patterns of setting the timer for non-recurrent and

recurrent intervals are presented respectively. Case analysis on the three parameters is conducted.

6.3.1. Patterns of setting timer

We rely on timers to determine when an interval can be closed. The timers are set differently based

on whether the interval is recurrent or non-recurrent, shown in Figure 23. Note that the clock rate

of the system rs is used to calculate the actual time on the system side.

Non-recurrent intervals. Here we only consider the case involving two consecutive intervals

such as the property aU[t1,t2]b. In aU[t1,t2]b, two intervals, [0, t1) and [t1, t2], are involved. The

monitor begins checking [0, t1) and [t1, t2] when a arrives and two corresponding timers are set to

close the intervals.

Recurrent intervals. As the number of intervals to be monitored is unbounded, only the timer for

the first interval is set. Then every time an interval is closed, the timer for closing the next interval

is set with a proper monitoring deadline. In the following section, we will denote the duration of

the recurrent interval as d.

In order to set the deadline as accurate as possible, two steps have to be done. The first step is

to estimate the time on the monitor side when an event e occurs on the system side, denoted as

107

Figure 23: Scheme of setting deadlines for non-recurrent and recurrent intervals

t0 in Figure 23. The second step is to calculate deadlines for each monitor based on t0, which is

introduced below.

6.3.2. Scheme of setting deadline

Here we give the case analysis with varying the values of the clock rate, network delay and clock

skew with the assumption of bounded network delay. Figure 23 illustrates the scheme of setting

deadline for non-recurrent and recurrent intervals. The time when the initial event e occurs on the

system side is denoted as initTsys , measured by the system clock and initTM is the time at the

monitor when e arrives at the monitor.

The monitor begins the monitoring process at initTM . For the non-recurrent case, ddl1 and ddl2

for interval [0, t1) and [t1, t2] need to be calculated. Then, as the timers are set at initTM with a

relative value, deadline for [0, t1) is set with value ddl1 − initTM + t0 and deadline for [t1, t2] is

set with value ddl2 − initTM + t0. For the recurrent case, the deadline for the first interval can

be calculated in a similar way to the non-recurrent case: ddl is calculated according to the duration

of interval and the monitoring setup and the deadline for the first interval is ddl − initTM + t0.

From the second interval, timers are set with a period inter. The reason the first interval is different

from the rest of them is that for the initial event e, we know the exact time when e arrives at the

monitor, but for the rest of intervals, we only consider the worst case where the last event for a

interval occurs at the boundary and the delay for the delivery is the maximum value of the network

108

delay. In the following case analysis, we will estimate the value of t0 and calculate ddl1 and ddl2

for the non-recurrent case; ddl and inter for the recurrent case.

Case 1 : rs = 1, rm = 1, nd = 0. In this case, interval durations of the system and monitor are

identical and there is no delay, so t0 = initTM . For the case of non-recurrent intervals, ddl1 and

ddl2 are respectively t1 and t2. For the case of recurrent intervals, ddl and inter have the same

value d since there is no network delay.

Case 2 : rs = 1, rm = 1, nd is fixed and known. In this case, clock skew ts can be directly

calculated by initTM − initTsys − nd and t0 = initTsys + ts. For the case of non-recurrent

intervals, ddl1 and ddl2 are respectively t1 +nd and t2 +nd since events occurring at the boundary

of these two intervals have the delay of nd. For the case of recurrent intervals, ddl is set to d+ nd,

similar to the case of the non-recurrent interval. The value of inter is set to d because the interval

is of length d and the network delay has already been taken into consideration when calculating the

deadline of the first interval.

Case 3 : rs = 1, rm = 1, nd ∈ [b1, b2], ts is known. As ts is known, t0 = initTsys + ts. We only

need to consider the worst case in which network delay has the maximum value, which is when an

event e with timestamp t arrives on the monitor side at t+ b2. The least delay b1 is not relevant for

computing deadlines. For the case of non-recurrent intervals, ddl1 and ddl2 are respectively t1 + b2

and t2 + b2. For the case of recurrent intervals, ddl is d+ b2 and inter has value d.

Case 4 : rs = 1, rm = 1, nd ∈ [b1, b2], ts is unknown. The analysis is similar to the case 3 but t0

cannot be determined precisely since ts is unknown and network delay is not fixed. Consequently,

we approximate its value using the network delay. The worst case is when the value of t0 is as late

as possible. Therefore, we set t0 = initTM − b1. The same formulas setting deadlines used in case

3 are also used here.

Case 5: rs is fixed, rm ∈ [r3, r4], nd ∈ [b1, b2], ts at time initTsys is known. Like in case 3, t0 is

calculated using the formula t0 = initTsys + ts. Because of the clock rate difference between the

system and the monitor, clock skew may change. However, since we do not compare time values

109

Table 22: Summary of deadline setting scheme

Monitoring setup
Non-recurrent Recurrent

t0 ddl1 ddl2 ddl inter

rs = 1, rm = 1, nd = 0 initTM t1 t2 d
drs = 1, rm = 1, nd is fixed and

known, ts is known
initTsys+
ts

t1 + nd t2 + nd d+ nd

rs = 1, rm = 1, nd ∈ [b1, b2],
ts is known

initTsys+
ts

t1 + b2 t2 + b2 d+ b2

rs = 1, rm = 1, nd ∈ [b1, b2],
ts is unknown

initTM−
b1

rs is fixed, rm ∈ [r3, r4], nd ∈
[b1, b2], ts at time initTsys is
known

initTsys+
ts

(t1+b2)∗
r4

(t2+b2)∗
r4

(d+ b2) ∗ r4 d ∗ r4

rs is fixed, rm ∈ [r3, r4], nd ∈
[b1, b2], ts is unknown

initTM−
b1 ∗ r3

between the system and the monitor anywhere else, the value of the clock skew does not affect

calculations of the deadline value. To cover the worst case of event arrival when calculating the

deadline, rm and nd need to be at their upper bounds. For the case of non-recurrent intervals, ddl1

and ddl2 are respectively (t1 + b2) ∗ r4 and (t2 + b2) ∗ r4. For the case recurrent intervals, ddl has

value (d+ b2) ∗ r4 and inter has value d ∗ r4.

Case 6: rs is fixed, rm ∈ [r3, r4], nd ∈ [b1, b2], ts is unknown. Similar with case 4, we need to

approximate t0 using its maximum value: initTM − b1 ∗ r3. The formulas used in case 5 are used

in this case.

One can observe that case 5 and 6 are generalization of special cases 1 to 4 and there is no conflicts

between them. The summary of case analysis on deadline setting is shown in Table 22. We can prove

that given monitoring setup in case 5 and 6, correctness of monitoring intervals can be guaranteed,

shown in Lemma 42.

Lemma 42 (Correctness of Monitoring Interval for Setup in Case 5 and 6) If rs is fixed, rm is

fixed and known with in the range [r3, r4] and nd ∈ [b1, b2], we can always set a deadline for

monitored intervals as illustrated in Table 22, such that all events of the interval will fall within the

110

deadline.

Proof(sketch): Based on whether ts is known at the beginning of monitoring process, we split into

two cases corresponding to case 5 and 6 above. Here we give the sketch for proving the case of

monitoring non-recurrent intervals [0, t1). The proof for interval [t1, t2] and recurrent intervals is

similar. Recall that t0 is the estimated time, by the monitor clock, when the initial event occurs on

the system side. The deadline is set in two steps, illustrated in Figure 23, and we argue correctness

of these two steps separately. First, we compute the largest possible value for t0 and this is correct

because 1) if ts known, we can calculate the accurate time t0 of the monitor given the timestamp of

initTsys when the initial event occurs on the system side; and 2) if ts is not known, we compute t0

having the maximum value using the initTM and the lower bound of nd. Then, we set the deadline

relative to t0 and we do it correctly because we over-estimate the deadline with the upper bound

of rm and nd. We then compare the deadline with tr, the relative time between initTsys and the

latest possible arrival time of the event occurring at t1 at the monitor. The value of tr is t1 + b2

in the sense of perfect clock. Translating deadline to the perfect time scale, the value would be

(t1 + b2) ∗ r4/rm, which is greater than or equal to tr. Since t0 is equal to or greater than the time

when the initial event occurring within the interval, we can always ensure that all events will fall

within the deadline. �

Lemma 42 can be extended to Theorem 43 describing sufficient condition for correctly monitoring

time intervals.

Theorem 43 (Correctness of Monitoring Interval) If rs is fixed, rm is fixed and known with in the

range [r3, r4] and nd is bounded, we can set a deadline for each monitored interval as illustrated

in Table 22 such that all events of the interval will arrive at the monitor within the deadline.

Proof(sketch): The proof proceeds by case analysis of entries in Table 22. Note that cases 1-4 are

special cases of 5 and 6 and need not be considered separately. The union of the monitoring setup

conditions in Table 22 is exactly the premise of the theorem. Therefore, correctness of cases 5 and

6, established by Lemma 42, proves the theorem. �

111

6.4. Monitoring Procedure

This section presents the procedure for monitoring time intervals using the scheme of setting moni-

toring deadline proposed in the previous section. The procedure describes operation of the Interval-

Handler introduced in Section 6.2.1.

The procedure relies on two key functions. First, calculateDeadline sets the deadline for each

interval according to Section 6.3. Second, getInterval is given an event and returns an interval to

which this event belongs, as follows. Given an event e with the timestamp t and initTsys which

indicates the occurring time of the initial event, we need to get the interval that e belongs to. With the

condition that the rate of the system rs is fixed, the interval can be determined. For the non-recurrent

interval, if t−initTsys < t1∗rs, e belongs to the interval [0, t1); if t1∗rs ≤ t−initTsys ≤ t2∗rs, e

belongs to the interval [t1, t2]; otherwise, e falls out of these two intervals. For the recurrent interval,

the interval is calculated using the formula b(t− initTsys)/(d ∗ rs)c. As stated below, each interval

is identified by an integer according to the order, starting from 0.

Figure 24 shows the detailed structure of the IntervalHandler and how it connects to the Property

Checker . The IntervalHandler is responsible for managing intervals and the checker evaluates

the logic of the property. Note that the monitoring process is slightly different between the cases

of in-order-delivery and out-of-order delivery. The IntervalList is the data structure representing

intervals of interest. In the non-recurrent case, there are the two intervals [0, t1) and [t1, t2]. In the

recurrent case, if in-order delivery is assumed, we just need to remember the earliest non-closed

interval. For out-of-order delivery, the IntervalList needs to remember all non-closed intervals for

which at least one event has been received. We also associate a data structure eventQueue(i) for

each interval i in the IntervalList: each arrived event is put into the corresponding eventQueue

ordered by the timestamp. Once the interval i is closed — that is, no more events from this interval

can arrive, — the IntervalHandler sends all events in the eventQueue(i) to the checker, followed by

the interval closure event.

In the IntervalHandler, intervalManager is used to relay events from the system and manage in-

112

Figure 24: Structure for the IntervalHandler

tervals. It first examines whether the received event e is the initial event arriving at the monitor.

If so, it computes the deadline and sets the timer for the first interval. According to the setting of

network delay, clock rate and clock skew, calculateDeadline computes the deadline using the value

of initialTS , initialTM as well as the left and right boundary of the interval. The second attribute

of setTimer is the index of the corresponding interval upon which the timer is set. In the case of

properties involving two non-recurrent intervals, two timers with corresponding deadlines need to

be set. Then, the interval i that e belongs to is computed. If in-order delivery is assumed, the current

interval being evaluated by the checker, denoted as i′, is obtained from the IntervalList by calling

the procedure getLeastOpenedInt . If i is not equal to i′, i′ is closed and the corresponding timer

will also be unset. Event e is then sent to the checker. If out-of-order delivery is assumed, it is put

into corresponding eventQueue(i).

void intervalManager (){

while(true) {

Interval i;

Event e = receiveEvent();

if (initialEvent(e)){

initialTS = e.getSystemTimeStamp();

initialTM = getcurrentTime();

deadline = calculateDeadline();

setTimer(deadline,0);

}

i = getInterval(e);

if (out-of-order-delivery){

113

addQueue(e,eventQueue(i));

}else{

i’ = getLeastOpenedInt();

if(i != i’){

closeInt(i’);

unsetTimer(i’);

}

PropertyChecker.handlingEvents([e]);

}

}

Procedure closeInt(i) is responsible for closing the interval i, which is called when the correspond-

ing timer is up or an event for the next interval has arrived in the case of in-order delivery. It first

calculates the deadline for the next interval i + 1 to be evaluated and sets the corresponding timer.

For the case of non-recurrent interval, the timer is not reset. Then events in eventQueue(i) are sent

to the checker if out-of-order delivery is assumed. Finally, intervalClosure(i) is called to close the

interval i and modify the IntervalList. For the case of recurrent interval, interval i is removed from

the IntervalList and i+ 1 is set as the earliest non-closed interval if in-order delivery is assumed.

void closeInt(integer i){

ddl = calculateDeadline();

setTimer(ddl, i+1);

if (out-of-order-delivery){

liste = getEventsForQueue(eventQueue(i));

PropertyChecker.handlingEvents(liste);

}

intervalClosure(i);

}

6.5. Summary

This section presented an approach to monitoring of time intervals in an event-driven fashion. To

do this, we introduced an interval closure event, with the property that all events that fall into the

interval occur before the interval closure. The two challenges are (1) correctness of the procedure

and (2) timeliness of the event closure. To address these two challenges, we offered a procedure

to determine when all events that can fit into the interval have been observed. The answer to this

114

question depends on parameters of monitoring setup, namely network delay, clock skew between

the system and the monitor and clock rates of the two. We performed case analysis and show how

to close intervals in different cases.

115

CHAPTER 7 : Reflexive Adaptation Framework

Runtime enforcement (RE) is a dynamic technique to guarantee satisfaction of formally specified

properties in event traces. EMs (enforcement monitors), synthesized from these specifications, de-

scribe how to transform event streams using abstract adaptation actions (also referred to as enforce-

ment actions) to preserve properties. During execution, EMs intercept actions generated from the

target system and change the state of the program for adaptation. Although pre-defined adaptation

actions are usually trivial and would not permanently solve the problems, they can be used as tem-

porary repairs and are more feasible for validation compared to more sophisticated methods. In

this chapter, we will extend SMEDL as an adaptation framework. Then, we present a method to

statically verify correctness of actions with respect to the execution of the target program.

7.1. Extension of SMEDL framework for software adaptation

The architecture of the extended framework is illustrated in Figure 25. In the setting of online mon-

itoring, program behaviors are extracted as events and delivered to monitors. For software adapta-

tion, event delivery is bi-directional: events raised from monitors are transformed into executable

adaptation actions, which are inserted at specified program points during runtime. In Section 2.3.3,

we have briefly introduced several formalisms for runtime enforcement, which have different ca-

pabilities to transform input event streams. Among those formalisms, edit automata [96] has been

successfully applied to enforce properties in Java [24] and Android applications [117]. Moreover,

composition of multiple EMs has been studied. However, there is little work on analyzing interfer-

ence between the adaptation actions and the target program. In this section, we encode edit automata

using SMEDL. Furthermore, we present an initial work on it by defining an operational semantics to

describe how the target program behaves after the integration of adaptation actions. We then further

propose a method to generate the implementation of adaptation actions and instrument them into

the target program.

116

Figure 25: Architecture of the response framework

7.1.1. Introduction to edit automata

Figure 26 illustrates the automaton of the policy Iterator hasNext, which says that next needs to be

called when hasNext returns true and next cannot be called when the corresponding collection object

has been modified. If a program breaks this policy by calling next without checking accessibility of

the memory cell to be traversed, it may abort abnormally due to undefined behaviors. To enforce

this specification, one can either insert a call to hasNext or suppress the call to next if hasNext has

not been called, which can be described using edit automata.

Figure 26: Policy of the Iterator as a state machine

Figure 27 illustrates two edit automata as the EMs to enforce the policy in Figure 26. When the

iterator is created, each EM is initialized to the ready state. Each transition is decorated with a pair

117

of input event e and output event el, denoted e/el , which means that whenever e is received, the

automaton takes the transition and outputs el. The event hasNextTrue and hasNextFalse respec-

tively represent that the call to hasNext returns true and false. The event checkedNext represents

conditional execution of next when hasNext returns true. Figure 27 (a) suppresses every call to next

in the ready state while Figure 27 (b) inserts a call to hasNext and executes next when it returns true.

Moreover, both EMs suppress all next calls after the corresponding collection has been modified.

Figure 27: Two enforcement specification for the policy in Figure 26

Definition 44 (Edit automaton) An edit automaton is a tuple (A, Q, q0, δ) where A is an action set;

Q is a set of states; q0 is an initial state; δ is a partial function Q × A ⇁ Q × A∗ that transforms

an input action into a list of actions to emit and updates the state:

• (q , a)→ (q ′, a) (nop)

• (q , a)→ (q ′, ·) (suppression)

• (q , a)→ (q ′, σ; a) (insertion)

• (q , a)→ (q ′, a ′) (replacement)

7.1.2. Encoding of edit automata

Edit automata can be encoded in a SMEDL monitor M monitor by defining a partial function

adapation mapping : M .E ⇁ AdapationActions that maps events to a set of adaptation

Actions where

118

adaptationAction := insert(action block)|suppress(n)|replace(n, action block)

The types of adaptationAction correspond to the actions of edit automata. action block contains

a list of statements of general programming languages. The parameter n in suppress resp. replace

indicates that the next n statements will be skipped resp. replaced with the code specified in the

action block.

Operational semantics of adaptation actions. Since adaptation actions may change the state of

the target program, we need to formally describe their behavior in the target program. First, we

define an action-step to be applied after the macro-step is taken to obtain the actions to be executed:

conf
e
⇀ conf ′

∀re ′ ∈ EXconf , re
′.event /∈ dom(adaptation mapping)

conf ↪→e (conf ′, ·)
(1)

conf
e
⇀ conf ′

re ∈ EXconf ′ ∧ adaptation mapping(re.event) = action

∀re ′ ∈ EXconf ∧ re ′ 6= re, re ′.event 6= re.event ∧ re ′.event /∈ dom(adaptation mapping)

conf ↪→e (conf ′, action)

(2)

Rule (1) states the case in which there is no raised event that can map to an adaptation action.

Rule (2) restricts that there must only exist one event that can trigger an adaptation action. It is

straightforward to extend the rules of synchronous set to maintain this restriction. Combination of

multiple adaptation actions is left as future work.

To describe how generated actions influence the execution of the target program, we define a set of

semantic rules for the target program with respect to the monitor execution. Here are some assump-

tions on the setting: 1) the monitor has been synchronously instrumented to the target program;

2) the monitor execution is abstracted by calling call monitor and the process of extracting the

event e has been omitted; 3) instrumentation of adaptation actions will not cause compilation errors.

For simplicity, our work does not support abort and goto and the monitor is not called in the

adaptation actions.

119

We overload the operator ⇓ to represent the evaluation rule. The program state is an tuple (δ, conf)

where δ is the store of the program state while conf is the monitor configuration. The evalua-

tion relation 〈C , δ, conf 〉 ⇓ (δ′, conf ′) says that starting in configuration (δ, conf), the program is

evaluated to (δ′, conf ′) after executing the program statement C.

Since the program state and monitor state are disjoint, the monitor execution will not interfere with

the target program if no adaptation actions are generated, as shown in the rule nop. The rule insertion

states that τ , the code block of the adaptation action block generated by the monitor execution, will

be executed at the instrumentation point. The rule suppression states that the next n statements after

the instrumentation points will be skipped. The rule replacement suppresses the next n statements

and then execute τ .

conf ↪→e (conf ′, ·)

〈call monitor(e), δ, conf 〉 ⇓ (δ, conf ′)

(nop)

conf ↪→e (conf ′, insert(τ))

〈τ, δ, conf ′〉 ⇓ (δ′, conf ′)

〈call monitor(e), δ, conf 〉 ⇓ (δ′, conf ′)

(insertion)

conf ↪→e (conf ′, suppress(n))

〈call monitor(e); stmt1 ; ...; stmtn , δ, conf 〉 ⇓ (δ, conf ′)

(suppression)

conf ↪→e (conf ′, replace(n, τ))

〈τ, δ, conf ′〉 ⇓ (δ′, conf ′)

〈call monitor(e); stmt1 ; ...; stmtn , δ, conf 〉 ⇓ (δ′, conf ′)

(replacement)

7.1.3. Code generation of adaptation actions

In our current setting, adaptation actions are always executed at instrumentation points where the

monitor API is called and the code to be suppressed or replaced is statically determined. This section

presents a procedure that generates the adaptation code that are instrumented into the target system.

Note that the code to be constructed is C-like pseudo code, which can be easily transformed into

120

executed code.

Given an imported event, there may be multiple possibilities of which action block will be executed

and the restriction in the semantics guarantees that at most one event that maps to adaptation actions

is raised. Algorithm 3 computes a code template for each imported event. For the input parameters,

mon is a monitor specification; action map is an adaptation mapping ; call monitors is a map

from imported events to corresponding monitor APIs. The algorithm traverses all imported events

defined in mon (line 3). The procedure computeDependency (line 6) computes a set of exported

events that may be raised by transitions triggered directly or indirectly by e. The corresponding

action block can be obtained from action map (line 8). The variable max is used to store the

largest code block that may be suppressed or replaced (line 9-10). Action blocks are added to

action lst (line 11). The implementation of call monitor e , the monitor API for e, is updated

to add return value (line 13). As presented below, the return value decides which action block to

execute. The procedure buildReturnVal constructs the code to generate the return value, which

is the index of the corresponding action in action lst that the exported event maps to. For each

imported event e, the code template is constructed (line 14).

Algorithm 3 Construction of template for adaptation actions
1: procedure CONSTRUCTTEMPLATE(mon, action map, call monitors)
2: switch map ← ∅
3: for e ∈ mon.ImportedEvents do
4: max ← 0
5: action lst ← ∅
6: exported evset ← computeDependency(mon, e)
7: for ev ∈ exported evset do
8: action ← action map(ev)
9: if (action = suppress(n)||action = replace(n,)) && max < n then

10: max ← n

11: action lst ← action lst .append(action)

12: call monitor e ← call monitors(e)
13: call monitor e ← call monitor e.code.append(buildReturnVal(action lst))
14: codeTemplate ← 〈call monitor e,max , action lst〉
15: switch map ← switch map ∪ [e 7→ codeTemplate]
16:

return switch map

After computing the code template for each imported event, Algorithm 4 generates the code for

121

each instrumentation point in the program. Note that instrumentation of the monitor API is omitted.

For the input parameters, prog is the target program to be instrumented; switch map is the code

template generated by Algorithm 3; and instru map is the map from the instrumentation point

(represented as a line number in the program) to the corresponding imported event extracted at it.

The algorithm proceeds by traversing all instrumentation points (line 2). At line 4, the code block

(denoted as code) to be replaced by the code block switch is obtained. c.subList(n1 ,n2) returns

a list of statements of c from line n1 (included) to n2 (excluded). As its name indicated, switch is

a code block in the form of a switch structure. The guard condition of switch is the return value

of call monitor e (line 5), which is decided by the event raised by the monitor. Then, for each

action that may be triggered by e, a corresponding case is constructed (line 7-15). For insertion

(line 9), the action τ is inserted before code. For suppression, the first n statements of code are

removed (line 11). For replacement, the first n statements of code are replaced by τ (line 13).

Note that n is smaller or equal to max . The condition for each case is the index value (idx) in the

action lst of the template, which is consistent with the return value of the monitor API constructed

in Algorithm 3. After switch is constructed, it replaces code in prog (line 16). Note that the position

is p + 1 because the monitor API would be instrumented at p.

Algorithm 4 Instrumentation of the adaptation implementation into the target program
1: procedure INSTRUMENTACTIONS(prog , switch map, instru map)
2: for (p, e) ∈ instru map do
3: codeTemplate ← switch map(e)
4: code ← prog .subList(p, p + codeTemplate.max)
5: switch.guard ← codeTemplate.call monitor e
6: idx ← 0
7: for action ∈ codeTemplate.action lst do
8: if action = insert(τ) then
9: new code ← τ.append(code)

10: else if action = suppress(n) then
11: new code ← prog .subList(p + n, p + codeTemplate.max)
12: else if action = replace(n, τ) then
13: new code ← τ.append(prog .subList(p + n, p + codeTemplate.max))

14: switch.cases ← switch.cases.append(idx ,new code)
15: idx ← idx + 1

16: prog .remove(p, code).insert(p + 1 , switch)
return prog

122

Figure 28: SMEDL specification for the edit automata in Figure 27 (b)

object enforceIterator;
events:

imported next();
imported hasNextTrue();
imported hasNextFalse();
imported modify();
exported suppress();
exported checkedNext();

scenarios:
main:

ready -> next() {raise checkedNext();} -> ready;
ready -> hasNextTrue() -> next;
next -> next() -> ready;
next -> modify() -> modified;
ready -> modify() -> modified;
modified -> next() {raised suppress();} -> modified;

Figure 29: adaptation mapping for iterator-enforcer

suppress => suppress(1);
checkedNext => replace(1, checkNextBlock);
checkNextBlock{

if(hasNext(&i)){
value = next(&i);

}
}

We use the iterator policy in Figure 26 to illustrate how to specify an adaptation specification and

generate the code to be inserted in the target program. Figure 28 is the SMEDL specification for

the edit automata in Figure 27 (b) (denoted as iterator-enforcer). The exported event checkedNext

and suppress correspond to the adaptation action triggered at the state modified and next . The

adaptation mapping and the action block are shown in Figure 29.

Figure 30 is a code block that uses the iterator API. By analyzing iterator-enforcer, we know that

there are two adaptation actions that may be triggered by the API next. As stated above, return value

of the monitor call decides which action to execute. The monitor API, call monitor next , may

return two values, 0 and 1, corresponding to suppress and checkedNext in iterator-enforcer. The

code is instrumented into the program as shown in Figure 31. Note that although checkNextBlock is

not parameterized with the iterator, it can be achieved by connecting the parameter of the monitor

to the parameter in the action block. We will leave it as future work.

123

Figure 30: Original code block

...
int value = 0;
while(k < n){

value = next(&i);
if(value == v) {

idx = i.iterator_pointer-1;
}
k++;

Figure 31: Instrumentation of the adaptation
action

...
int value = 0;
while(k < n){

int ret = call_monitor_next(&i);
switch(ret){

case 0: break;
case 1:

if(hasNext(&i)){
value = next(&i);

}
break;

}
if (value == v) {

idx = i.iterator_pointer-1;
}

k++;
}

As mentioned in Section 2.3.3, correctness is an important issue for runtime adaptation. At the spec-

ification level, soundness and transparency are two principles [96], which has been well-studied [96,

52, 27, 83, 26]. At the level of implementation, existing works have used type-theory [69], theorem

proving [4] and model checking [129] to guarantee that the implementation of monitor code follows

the semantics of the specification. In Chapter 3, we have also proposed a correct-by-construction

code generation of monitor code from Coq. However, there is little work, to the best of our knowl-

edge, on analyzing how a poor implementation of an action or ill-formed instrumentation may

interfere with the application. The next section presents an approach to solve this problem.

7.2. Verification of adaptation actions

To further motivate this problem, we consider a use case of an application that uses a library API.

Figure 32 illustrates assume-guarantee reasoning to verify correctness of an application that uses an

external library through a well-defined API. Such a correctness proof contains two parts. The first

part, performed on the application itself, proves functional correctness of the application with re-

spect to given API specifications. The second part, performed on the library, is to prove correctness

of API specifications. Modular verification [78] can usually tie these two parts together if the pre-

124

condition of the API can be easily checked at each call site. However, for many APIs, correctness of

the specification depends on whether the application adheres to a behavioral policy over sequences

of API calls, e.g. in the form of an automaton such as the one shown in Figure 26 that illustrates the

policy of using iterator.

Figure 32: Overview of the assume-guarantee framework and our approach to assurance

Instead of statically proving compliance of the policy, which requires sophisticated interactions

between the application and the library, users can use runtime enforcement to enforce the policy. In

this way, they only need to focus on proving correctness of the application and the synthesis and

integration of EMs can be fully automated. However, a poorly implemented action may interfere

with the application and do harm, e.g. infinite loop due to ill-formed instrumentation.

To analyze the influence of actions, we define correctness of enforcement actions with respect to

the specification of the original application, which means that, given the application code instru-

mented with the actions, we can still construct the proof for the same specification. We assume that

functional correctness of the program is described as pre- and post-conditions and proved by gen-

erating verification conditions using weakest precondition calculus. These verification conditions

(also denoted as proof obligations) are discharged by theorem provers or proof assistants. When

analyzing correctness of the enforcement action, a straightforward way is to reconstruct the proof

obligation globally using a theorem prover. However, this method cannot be easily scaled up to

multiple instrumentation points because it assumes that any enforcement action may influence the

program globally. Each time a new instrumentation point is added to the program, proof must be

reconstructed globally. We consider a way of incrementally updating the proof of the original ap-

plication to take into account effects of instrumentation, reusing most of proof obligations in the

125

original proof. Proof at each instrumentation point can then be constructed independently without

influencing other parts of the program. We introduce a method for such an incremental update of

the proof and specify restrictions that make such an update possible.

Motivating example. We use a variant of the find algorithm in the C++ Standard Library [127]

which implements sequential search for an array. Instead of searching through the array directly,

the iterator is used, as shown in Figure 33. The behavioral specification language ACSL (ANSI/ISO

C Specification Language) [20] is used to describe the property of the program. The program uses

the iterator i1 to traverse the target array and checks whether the value v is in that array. A flag

array is traversed by i2. When the value of the cell in the flag array (denoted as b in the program)

is not zero, the corresponding cell in the target array can be accessed. The parameter n is the upper

bound of the number of elements to be searched. The loop invariant states that if idx is not -1, the

corresponding cell in the array is equal to v. The loop also has a variant specifying the decrement

of an integer expression at each loop execution to guarantee termination. The specification of next

(which is given in Section 7.2.6) guarantees that the call to next always returns the next value in the

array given that the iterator has not reached the last element. Figure 34 and Figure 35 respectively

implement the adaptation actions in Figure 27 (a) and (b). To save space, only the first call to

next is enforced. We adopt the pattern proposed in Chapter 7.1.3 but instead of using the switch

structure, we use the ITE (if-then-else) structure. If the return value is 1, enforcement actions will

be executed; otherwise, the program code is executed as before. The suppression implementation in

Figure 34 mistakenly includes the increment of i in the else branch, which breaks the loop variant

and makes the program unable to terminate. Figure 35 gives a correct implementation.

Our method aims at detecting interference of adaptation implementations. It is worth noting that

there may be no universally correct implementation, and if the program was implemented differ-

ently, a different implementation may be correct. We assume that adaptation implementations to be

verified have been instrumented to the target program at a specified program point.

126

Figure 33: Original code of find
int find(iterator i1,

iterator i2, int n, int v)
{
int i = 0;
int idx = -1;
/*@
loop invariant idx != -1
==>i1.iterator_c.array[idx]==v;
loop variant n-i;

*/
while(i < n){
L1:
int b = next(&i2);
if(b){

L2:
int value = next(&i1);
if (value == v) {

idx = i1.iterator_pointer-1;
}

}
i++;

}
return idx;

}

Figure 34: Suppression
int find(iterator i1,

iterator i2, int n, int v)
{
int i = 0;
int idx = -1;
/*@

loop invariant idx != -1
==>i1.iterator_c.array[idx]==v;
loop variant n-i;

*/
while(i < n){

L1:
int b = 0;
if(call_monitor_next(&i2)){

//suppression
}else{

b = next(&i2);
if(b){

L2:
int value = next(&i1);
if (value == v) {

idx = i1.
iterator_pointer-1;

}
}
i++;

}
}
return idx;

}
%\end{figure}

Figure 35: Insertion
int find(iterator i1,

iterator i2, int n, int v)
{
int i = 0;
int idx = -1;
/*@

loop invariant idx != -1
==>i1.iterator_c.array[idx]==v;

loop variant n-i;

*/
while(i < n){
L1:

int b = 0;
if(call_monitor_next(&i2)){

if(hasNext(i2))
b = next(&i2);

else
b = 0;

}else{
b = next(&i2);

}
if(b){

L2:
int value = next(&i1);
if (value == v) {
idx = i1.
iterator_pointer-1;

}
}
i++;

}
return idx;
}

7.2.1. Target program and annotation language

We consider the program being verified and enforced to be a function written in a subset of C lan-

guage. The program starts with a set of variable definitions with initialization. Variables can be

either primary or struct variables. Statements include simple assignments, ITE, while-loop and

return. goto, break or continue are not supported. There is only one exit point for the pro-

gram. The right-hand-side (rhs) of the assignment can be normal arithmetic or logical expressions

or a function call. All terms in the expression are either literal values or variables. Enforcement ac-

tions are implemented either as program instructions to be inserted or control structure to suppress

execution of existing instructions in the application. To avoid complexity when applying the weak-

est precondition calculus, actions must not free existing heap space or change the value of existing

pointer variables. Furthermore, auxiliary variables defined for the enforcement actions must only

be accessed locally.

We use a subset of ACSL to annotate the target program and specify properties. The grammar is

127

given below. Annotations can be added as function contracts, assertions or loop invariants. The

function contract is decorated as a set of pre- and post-conditions. Assertions are inserted before

any C statement or at the end of blocks. Loop invariants are added at the head of the while loop.

Each loop can also have a loop variant with an integer term that must be decreased in each loop

execution. The assigns clause specifies memory locations that can be modified by the function.

〈function-contract〉 ::= 〈requires-clause〉* 〈simple-clause〉*

〈requires-clause〉 ::= ‘requires’ 〈predicate〉 ‘;’

〈simple-clause〉 ::= 〈assigns-clause〉 | 〈ensures-clause〉

〈assigns-clause〉 ::= ‘assigns’ 〈locations〉 ‘;’

〈ensures-clause〉 ::= ‘ensures’ 〈predicate〉 ‘;’

〈locations〉 ::= 〈location〉 (, 〈location〉)* | \nothing

〈assertion〉 ::= ‘assert’ 〈predicate〉 ‘;’

〈loop-annot〉 ::= 〈loop-invariant〉* 〈loop − variant〉?

〈loop-invariant〉 ::= ‘loop invariant’ 〈predicate〉 ;

〈loop-variant〉 ::= ‘loop variant’ 〈term〉;

7.2.2. Weakest precondition calculus in Frama-C

We use Hoare logic [77] and the weakest precondition (WP) calculus to construct the proof. The

implementation of the WP calculus in Frama-C is presented to fluently transition to the subsequent

section for the methodology. We implement the verification method in the Frama-C (FRAmework

for Modular Analysis of C code) tool developed by the CEA LIST and Inria. The WP plugin of

Frama-C performs the weakest precondition calculus to transform properties into a set of first-order

logic formula as proof obligations, which can then be discharged either using SMT solvers such as

Alt-ergo [43], Z3 [45] or interactive proof assistants such as Coq [25].

Although the method we are proposing is based on general Hoare logic, some technical details in

the design of the algorithm are specific to the implementation of WP calculus in Frama-C. The

128

WP plugin computes the verification condition by traversing the control flow graph (CFG) of the

program and applying the WP calculus from the post condition of the program. A CFG of a function

is a 4-tuple 〈G,E, S, T 〉 where G is a set of nodes representing program elements; E is a set of

edges representing the transfer of control; S is the start node and T is the end node. Multiple types

of nodes are defined according to the corresponding program elements. Annotations are attached to

edges. For each function, the WP plugin traverses the CFG backwardly from the end node to the

start node and applies the WP rules to generate verification conditions for each node and edge. The

verification condition at each node (edge) is computed by first obtaining the verification condition

from its adjacent edges (node) and updating it with the information at the current node or edge.

During traversal, each assignment is transformed into an SSA (single static assignment) before

applying the WP rule. Therefore, predicates in the verification condition use variable instances.

A variable instance takes the form var idx where var is a variable and idx is its integer index.

Whenever a variable is updated in an assignment, a new variable instance is created by incrementing

the index. Multiple variable instances and the SSA transformation introduce technical challenges to

our approach, which will be addressed in Section 7.2.5.

The verification condition is defined as a tuple 〈Σ ,VCS 〉 where Σ maps variables to variable in-

stances to obtain the next variable instance when transforming into SSA. Moreover, at each program

point, each variable instance in Σ also represents the state of that variable. We will use σ to refer an

instance of Σ. VCS is a set of sub-obligations. The post condition of a function contract, assertions,

the precondition of function calls and loop invariants are added as sub-obligations during traversal

of the CFG. When applying the WP rules, replacement of variables and update of logic formula are

performed by adding hypotheses to the post condition. Thus, each sub-obligation is represented as

a tuple 〈hyps, goal〉 where hyps and goal are respectively the hypothesis and the proof goal.

7.2.3. Formal description of our approach

We study the program that uses API calls and its correctness has been proved in the Hoare proof

system given that the API specification is validated. Enforcement actions are instrumented in the

program to guarantee satisfaction of the API policy. We then need to prove that the instrumented

129

enforcement actions do not break the proof of the original program. The core idea is that if the

instrumented enforcement actions influence the program only locally, the original proof is still valid

when the implication relation between the verification condition of the original and modified pro-

gram at the instrumentation point can be proved.

For notation, the original program is denoted as F and the instrumented program is denoted as F ′.

Enforcement actions are instrumented at the program point s. We assume the enforcement action

to be instrumented is insertion of a series of actions acts at s. For suppression or replacement

of instructions, the only difference is how to obtain the verification condition for F and F ′. The

correctness property of the program is specified by a pre-condition (denoted as pre) and a post-

condition (denoted as post).

We assume that the correctness criteria ofF , which is defined as the proof obligation pre =⇒ WP(

F , post), has been proved. For F ′, instead of generating the proof obligation pre =⇒ WP(F ′,

post) globally, the method we are taking is to extract the proof obligation VC and VC ′ for F and

F ′ at s. If the proof obligation VC =⇒ VC ′ can be discharged, the instrumented actions do not

break the correctness of the program which has been justified by the original proof. To prove this

statement, the following lemma is defined.

Lemma 45 Given a block statement S and two verification conditions VC and VC’ such that VC

=⇒ VC ′, then WP(S ,VC) =⇒ WP(S ,VC ′).

Proof (sketch): trivially by structural induction on S �

Theorem 46 Assume programs F and F’, F’ is F with actions added at some point s and that

pre =⇒ WP(F , post). If there exist some verification conditions VC, VC’ at point s in F and F’

(respectively) such that VC =⇒ VC ′, then pre =⇒ WP(F ′, post).

Proof (sketch): assume pre =⇒ WP(F , post). Proof proceeds by structural induction on F at s.

We present three representative cases; the others follow directly.

Case 1 (Block Statement): the instrumentation point s is located between block statements S1 and

130

S2 , such that pre =⇒ WP(F , post) is equal to pre =⇒ WP(S1 ,WP(S2 , post)). We take VC

to be WP(S2 , post) so pre =⇒ WP(F , post) is equal to pre =⇒ WP(S1 ,VC). Next, note

that F ′ is S1 ; acts; S2 , and so pre =⇒ WP(F ′, post) is equal to pre =⇒ WP(S1 ,WP(acts,

WP(S2 , post))). We take VC ′ to be WP(acts,WP(S2 , post)). Then, if VC =⇒ VC ′, by

Lemma 45, WP(S1 ,VC) =⇒ WP(S1 ,VC ′), and thus we can conclude pre =⇒ WP(S1 ,

VC ′), which is precisely pre =⇒ WP(F ′, post).

Case 2 (ITE Statement): assume F takes the form S1 ; If (b) {S2 ; S3} else {S4 ; S5};. WP(F ,

post) can be transformed into WP(S1 , b =⇒ (WP(S2 ; S3 , post)) ∧ ¬b =⇒ (WP(S4 ; S5 ,

post)). Suppose for F ′, enforcement actions acts are inserted between S2 and S3 . WP(F ′, post)

can be transformed into WP(S1 , b =⇒ (WP(S2 ; acts; S3 , post)) ∧ ¬b =⇒ (WP(S4 ; S5 ,

post)). We take VC and VC ′ to be WP(S3 , post) and WP(acts,WP(S3 , post)). If VC =⇒

VC ′, WP(S2 ,WP(S3 , post)) =⇒ WP(S2 ,WP(acts; S3 , post)) holds because of Lemma 45,

which means WP(F , post) =⇒ WP(F ′, post) holds. Since pre =⇒ WP(F , post), pre =⇒

WP(F ′,

post).

Case 3 (Loop Statement): the instrumentation is performed in the while loop. Assume F takes the

form S1 ; while(b){S2 ; S3} and s is located between S2 and S3 . Similar to the previous case, we

need to prove that WP(while(b){S2 ; S3}, post) =⇒ WP(while(b){S2 ; acts; S3}, post). Ac-

cording to the rule for the while loop, we only need to consider the case of invariant preservation,

which can be reduced to case 2. �

Theorem 46 proves correctness of using local implication at one single instrumentation point. Since

the construction of implication uses only the local information, the method is insensitive to the

number of instrumentation points, as justified by Lemma 47 and Theorem 48.

Lemma 47 Assume program blocks C and C’, where C’ is C with actions added at n program

points, s1 , s2 , ..., sn . If there exist some verification conditions VC1 ,VC ′1 , ...,VCn ,VC ′n respec-

tively at point s1 , s2 , ..., sn in C and C’ such that VCk =⇒ VC ′k for all k from 1 to n, then

131

WP(C , post) =⇒ WP(C ′, post) where post is the post condition of C.

Proof (sketch): Without loss of generality, the program block C takes the form C1 ; S1 ; S2 ; C2

where C1 ,S1 ,S2 ,C2 are block statements. Denote post as the post condition ofC. After insertion

of actions, we obtain C ′ as C1 ′; act1 ; S1 ; S2 ; act2 ; C2 ′ where act1 and act2 are enforcement ac-

tions and C1 ′ and C2 ′ are also modified from C1 and C2 by instrumenting enforcement actions. S1

and S2 are not inserted with any actions. Proof proceeds by induction on the size of the code block

such that the lemma holds for all sub blocks of C with existing program points. As a result, we have

WP(C , post) =⇒ WP(C ′, post). The goal is to prove that after insertion of act between S1 and

S2 , WP(C , post) =⇒ WP(C ′′, post) where C ′′ ≡ C1 ′; act1 ; S1 ; act ; S2 ; act2 ; C2 ′. Based

on the hypothesis and Lemma 45, WP(act ; S2 ; C2 , post) =⇒ WP(act ; S2 ; act2 ; C2 ′, post).

Based on the precondition on the local implication, WP(S2 ; C2 , post) =⇒ WP(act ; S2 ; C2 ,

post). As a result, WP(S2 ; C2 , post) =⇒ WP(act ; S2 ; act2 ; C2 ′, post). By applying the same

strategy, we can prove that WP(S1 ; S2 ; C2 , post) =⇒ WP(act1 ; S1 ; act ; S2 ; act2 ; C2 ′, post).

Due to Lemma 45, WP(C1 ′; S1 ; S2 ; C2 , post) =⇒ WP(C1 ′; act1 ; S1 ; act ; S2 ; act2 ; C2 ′, post

). Moreover, WP(C1 ,WP(S1 ; S2 ; C2 , post)) =⇒ WP(C1 ′,WP(S1 ; S2 ; C2 , post)) because

of the inductive hypothesis. As result, WP(C , post) =⇒ WP(C ′′, post). �

Theorem 48 Assume programs F and F’, F’ is F with actions added at n program points s1 , ..., sn

and that pre =⇒ WP(F , post). If there exist some verification conditions VC1 ,VC ′1 , ...,VCn ,

VC ′n respectively at point s1 , s2 , ..., sn in F and F’ such that VCk =⇒ VC ′k for all k from 1 to n,

then pre =⇒ WP(F ′, post).

Proof: From Lemma 47, WP(F , post) =⇒ WP(F ′, post). Since pre =⇒ WP(F , post), pre

=⇒ WP(F ′, post). �.

We present a method to construct the local implication for each instrumentation point below. With

Theorem 48, correctness of the program is preserved as long as each obligation can be discharged.

To encode the method into Frama-C, several technical challenges need to be overcome. Sec-

tion 7.2.4 presents the overall process for generating the proof obligations. Section 7.2.5 points

132

out the name clashing problem and presents a method to unify names through data dependency

graph.

7.2.4. Construction of the proof obligation

This section presents construction of the proof obligation. We assume the proof obligation of the

original program has been constructed and discharged. Algorithm 5 is defined below. VC is a map

from the program point to the verification condition of the original program at that point. type is the

type of the enforcement action, which can be either suppression , insertion or replacement . If the

action type is suppression, the code block from s to s′ is removed where s′ is the point after s in the

program order; if the action type is insertion, the code block act is inserted at s; if the action type is

replacement, the code block from s to s′ is replaced by act . G is the CFG of the original program,

which will be used to unify names as presented below.

First, the proof obligation at the point s in the original program is obtained by accessing the map

VC . The overall obligation structure is represented as a tuple of σ and a set of sub-obligations

denoted as vcs . Recall that σ is the map from variables to variable instances. Based on σ, we can

obtain the CFG at s in the original program from G, denoted as subG . Then, the proof obligation

for the modified program (denoted as (σ′, vcs ′)) and the corresponding CFG (denoted as subG ′)

are obtained based on the type of action. If the action type is suppression , (σ′, vcs ′) and subG ′

are simply the verification condition and CFG at s′. If act is inserted at s, (σ′, vcs ′) is computed

using the WP calculus while subG ′ at s can then be computed by taking into consideration act . The

definitions of updateCFG and graphAt are omitted. The logic for replacement is similar except

that the proof obligation is computed from s′ instead of s. After obtaining the verification condition

and CFG for the original and modified program, names of the variable instances are unified by the

process presented below. Both vcs update (for the original program) and vcs update ′ (for the

modified program) comply with Sigma .

Each sub-obligation of the original program is converted into a predicate by conjunction over its

hypotheses and goal using the function conj . The local implication is constructed by adding this

133

predicate as a hypothesis in sub-obligations of the modified program. Note that the dot operator

represents the list concatenation. The generated proof obligation can then be discharged. Note that

more sophisticated analysis can be done to decide whether a verification condition in vcs update

may be helpful in proving the sub-obligation in vcs update ′, which is out of the scope of this

thesis. We also assume that preconditions of API calls are not added as sub-obligations because

they are supposed to be enforced by the EM.

Algorithm 5 Construction of proof obligation
1: procedure CONSTRUCTVC(F , s, s ′, type, act ,VC ,G)
2: (σ, vcs)← VC [s]
3: subG ← graphAt(σ,G)
4: if type == insertion then
5: (σ′, vcs ′)←WP(act , σ, vcs)
6: subG ′ ← updateCFG(act , subG)
7: else
8: if type == suppression then
9: (σ′, vcs ′)← VC [s ′]

10: subG ′ ← graphAt(σ′,G)
11: else
12: if type == replacement then
13: (σ′′, vcs ′′)← VC [s ′]
14: subG ′′ ← graphAt(σ′′,G)
15: (σ′, vcs ′)←WP(act , σ′′, vcs ′′)
16: subG ′ ← updateCFG(act , subG ′′)

17: (Sigma, vcs update, vcs update ′)← nameUnify(σ, vcs, σ′, vcs ′, subG , subG ′)
18: for vc ∈ vcs update do
19: hypo ← conj (vc.hyps.[vc.goal])
20: for vc2 ∈ vcs update ′ do
21: vc2 .hyps ← vc2 .hyps.hypo

return (Sigma, vcs update ′)

7.2.5. Name unifying process

Verification conditions from the original and the instrumented program are generated in different

contexts. Restrictions on the implementation of enforcement actions guarantee that the stack and

heap space are compatible between two versions of the program. However, the meaning of variable

instances is not consistent. Two code snippets (denoted as P and P ′) are given in Figure 36 and

Figure 37 to illustrate this problem. P ′ has an extra assignment to the variable sum at the label L

134

comparing to P . If we compute the verification condition for these two programs from the assertion

(denoted as VC and VC ′), two verification conditions will have different variable instances for the

variable sum, as shown in Figure 38. However, when we combine VC and VC ′ together, the state of

sum at Lmust be identical. As a result, we need to rename sum 1 and sum 2 into a common name.

After renaming the independent variable instances, others are renamed subsequently following the

data dependency. Generalizing this idea, we propose a name unifying process. The core idea is to

generate a common set of variable instances that are independent from other variables and variable

instances appearing in the obligations at the instrumentation point. All dependent variable instances

can then be renamed by simply increasing the index according to the order of data dependency

relations. We begin from the definition of data dependency graph over variable instances.

The dependency graph for the program to the instrumentation point s is constructed by analyzing

each SSA when traversing the CFG from the post condition of the function to s. The left-hand-side

(lhs) of the SSA depends on all variable instances appearing at the rhs of the SSA. We also need to

consider the dependency relation specified in the auxiliary predicates generated for the function call

and the ITE structure. For the function call x = f (args), x depends on the return value of function

call. The post condition in the function contract may also define dependency relation between the

return value and actual parameters. For the ITE structure, equality predicates are generated to

specify the identical program state at the beginning of two branches. These predicates are also

used to create the dependency graph. The dependency graph is guaranteed to be acyclic due to the

properties of SSA construction. Figure 39 (a) and (b) respectively illustrate the dependency graph

for P and P ′.

To unify the name, we first find independent variable instances from two graphs and then rename

them into a fresh name. Following this rule, sum 1 and sum 2 for variable sum in Figure 39 (a)

and (b) are renamed into sum 3. Then, other variable instances can be renamed by traversing two

graphs independently in a breadth-first manner. Variable j does not need to be renamed because its

occurrences in two programs are consistent with respect to indices. The result of VC and VC ′ is

illustrated in Figure 40. Note that we only use primary variables in the example. Although there

135

Figure 36: Original program P

L:
sum = sum + j*2;

//@ assert even(sum);
return 0;

}

Figure 37: P’ with an extra assignment

L:
sum = sum + j*2;
sum = sum + j*2;

//@ assert even(sum);
return 0;

}

Figure 38: Proof obligation VC and VC ′ before name unification

VC: (sum_0 = sum_1 + j_0*2) -> (even sum_0)
VC‘: (sum_1 = sum_2 + j_0*2) /\ (sum_0 = sum_1 + j_0*2) -> (even sum_0)

are no fundamental difficulties to extend the method to fully support aliases and heap structures, we

will leave it as future work.

Figure 39: Dependency graphs for P and P’

7.2.6. Case study

We have implemented the method in Frama-C version 20.0. We use the variant of the find function

illustrated in Figure 33 as the case study to demonstrate the application of our method.

The data structure of Iterator is defined in Figure 41. An iterator contains iterator c, the array it

points to. The field iterator pointer denotes the next available index to access and iterator size

stores the size of the array. The specifications of the iterator API are defined in Figure 42. Defined

as the predicate p next , the specification of next requires that the iterator point is less than the

size of the array to traverse, the return value is equal to the cell referred by the pointer and the

136

Figure 40: Proof obligation VC of P at L

VC: (sum_4 = sum_3 + j_0*2) -> (even sum_4)
VC‘: (sum_5 = sum_3 + j_0*2) /\ (sum_6 = sum_5 + j_0*2) -> (even sum_6)

pointer is increased by 1. Similarly, the specification of hasNext guarantees that the call returns 1

only when the pointer is smaller than the size of the array. The clause assigns is used to restrict

variables that can be modified by the function.

Figure 41: Data structure of iterator

typedef struct {
int iterator_pointer;
int iterator_size;
collection iterator_c;

}Iterator;

To illustrate the application of our technique, we first prove the loop invariant in Figure 33 using

Frama-C and then insert instructions to enforce the precondition of API specification of next at

call sites L1 and L2 . By applying Theorem 48, we can build local implication and verify each

of them independently. We assume the instrumented code block is an ITE structure that calls

call monitor next as shown in Figure 34 and Figure 35. While the if branch contains the

actual enforcement actions to be verified, the code block in the else branch is identical to the

one replaced by this ITE structure. As a result, we will ignore the else branch and generate

verification conditions only for the if branch in the following discussion.

We first focus on L1 at which the value b is computed by calling next . For the enforcement action,

we can either suppress the call to next or insert a call to hasNext. In both cases, the variable b

needs to be assigned with a default value. However, because the proof target says if idx is not

equal to -1, the value in the corresponding cell in the target array must be equal to v, the value of

b actually does not influence the proof. As a result, neither suppression nor insertion will break

the original proof. Nevertheless, if the instrumentation is incorrect, the proof will be broken. For

instance, the instrumentation in Figure 34 mistakenly moves the action of updating the variable

i in the else branch. When we try to prove the increment of i at each pass of the loop, the

constructed local implication would take the form old(i) + 1 > old(i) =⇒ i > old(i) where the

137

Figure 42: Predicates for next and hasNext

predicate p_next(iterator *i, iterator *j, integer v) =
v == j->c[j->iterator_pointer]
&& i ->iterator_pointer == j->iterator_pointer + 1;

*/
/*@

predicate p_hasNext(iterator *i, integer v)=
\result==1 ==> i->iterator_pointer < i.iterator_size
&& \result == 0 ==> i ->iterator_pointer >= i.iterator_size;

*/

/*@
requires i -> iterator_pointer < i.iterator_size;
ensures p_next(i, \old(i), \result);
assigns i -> iterator_pointer;

*/
int next(Iterator *i);

/*@
ensures p_hasNext(i, v);
assigns \nothing;

*/
int hasNext(Iterator *i);

pre- and post-condition are respectively the proof obligation at L1 for the original and the modified

program. Since this obligation cannot be discharged, the user could discover that the instrumentation

is problematic.

To demonstrate usability of constructing the local proof, we prove correctness of the implementa-

tion of insertions at L2 using Coq. For the call to next at L2 , we insert a call to hasNext as the

condition to check before calling next and subsequent instructions. We denote the proof obligation

at L2 for the original and the modified program as VC and VC ′, as shown in Figure 43 and 44, rep-

resented using the syntax of Coq. Since no instruction will be executed when hasNext returns false

and instructions from L1 to L2 is orthogonal to the loop invariant to be proved, the precondition

generated from the function call hasNext and the verification condition are removed.

Accessing to the field of iterator pointer of iter is represented as the expression iterator pointer

iter . branch e1 e2 e3 returns the value of e2 (e3) if e1 is evaluated to true (false). collection arr

ay c represents the array pointed by c in which c is the field iterator c of the iterator type. next 0

and next 2 represent the return value of calling next in two versions of the code block. v 3 and

v 4 indicate that the pointer value may be changed during the call of next . x 0 and x 1 are used

138

Figure 43: Verification condition VC of the
original program at L2

let x_0 := iterator_pointer iter_12 in
(iter_10 = iter_11)

/\ (value_3=next_0)
/\ (x_0=(1+ iterator_pointer iter_11))
/\ (p_next iter_12 iter_11 next_0)
/\ (branch ((value_3=v%Z))
(x_0=(1+idx_7)%Z) (idx_6=idx_7) % Z)

/\ ({|
iterator_c := iterator_c iter_11;
iterator_size :=
iterator_size iter_11;

iterator_pointer := (v_3)%Z
|}=iter_12)

/\ ((idx_7 <> -1)->
((((collection_array (iterator_c

iter_12))))
.[(idx_7)%Z] = v)

Figure 44: Verification condition VC ′ of the
instrumented program at L2

let x_1 := iterator_pointer iter_14 in
(idx_9 <> -1) -> ((idx_6=idx_8)
/\ (iter_10=iter_13)
/\ (value_4=next_2)
/\ (x_1= (1+ (iterator_pointer

iter_13)))
/\ (p_next iter_14 iter_13 next_2)
/\ ({|

iterator_c := iterator_c iter_13;
iterator_size := iterator_size

iter_13;
iterator_pointer := (v_4)%Z
|}=iter_14)

/\ (branch ((value_4=v%Z))
(x_1=(1+idx_9)%Z)
(idx_8=idx_9) % Z))

-> ((((collection_array (iterator_c
iter_14))))

.[(idx_9)%Z] = v)

for succinct representation. Other identifiers taking the form a b represent the instance of variable

awith index b. Variable names have been unified and verification conditions in VC have been refac-

tored as conjunctions as stated in Algorithm 5. Then VC is integrated as the precondition of VC ′.

To prove VC ′ in Coq using the information give in VC , we need to prove 1) iter 12 is equivalent

to iter 14 with respect to the array they traverse and 2) idx 7 is identical to idx 9. Recall that

the specification of next defined in Figure 42 guarantees that only the field iterator pointer will

be changed, so 1) can be proved. 2) can also be proved trivially be rewriting terms. This is what

we expect because the code at the branch where hasNext returns to true is identical to the original

code. As a result, VC ′ can be proved in Coq by solely unfolding the definition and rewriting terms.

On the other hand, building the proof obligation globally would make the user prove the same tar-

get from scratch or revising the existing proof, which requires duplicated work. It would be more

problematic for complicated proof obligations.

7.3. Summary

In this chapter, we have extended the SMEDL framework to support specifying actions to be instru-

mented into the target program for reflexive adaptation. Exported events raised from the monitor

are mapped to adaptation actions such as insertion of code block and suppression or replacement

139

of subsequent statements in the program. The semantic rules that consider the execution of adapta-

tion actions were defined. Implementation and instrumentation of actions were proposed based on

which a framework to verify the implementation of enforcement actions with respect to functional

correctness of the target program was proposed. We presented a method to construct a proof obli-

gation locally. If the generated obligation can be discharged, the enforcement action will not break

the correctness proof of the original program. To connect verification conditions obtained from two

programs, we proposed a name unifying algorithm.

140

CHAPTER 8 : Conclusion

In this thesis, we have presented a framework for efficient runtime verification and software adap-

tation. In this chapter, we summarize the contributions and discuss possible research directions.

8.1. Overview of work

SMEDL framework for runtime verification. In chapter 3, we proposed SMEDL, a formalism for

runtime verification. A SMEDL specification is composed of a set of single monitor specifications

connecting with each other following the specification defined in the architecture description. Sin-

gle monitors use automata-based formalism for describing properties at multiple abstraction levels

while a dynamically scalable monitor network is used to specify more sophisticated requirements.

We implemented our framework in two ways. To monitor a critical system which treats correctness

over performance, we utilized the Fiat framework to generate correct-by-construction monitor im-

plementations by refinement from the mechanized semantics of single monitors. When efficiency is

more important, C programs are generated as monitors. The evaluation in chapter 5 illustrates that

it outperforms many existing RV tools in both online and offline settings.

Parametric monitoring using SMEDL. Parametric properties are widely used to describe behavior

of large-scale systems. In chapter 4, we proposed a novel perspective of parametric monitoring using

monitor network. By model transformation, we demonstrated that SMEDL can express the trace

slicing algorithm in MOP. We then proposed a method to encode a quantified parameter list of QEA

specifications as aggregation monitors. For a subset of QEA specifications, SMEDL monitors can

generate identical verdicts more efficiently, which was demonstrated in chapter 5.

Monitoring time interval in asynchronous environments. Asynchronous deployment is neces-

sary for monitoring distributed systems. However, under network delay and clock discrepancy,

monitoring properties with time intervals is challenging. In chapter 6, we made initial efforts to

parameterize the model of communication between a system and a monitor, which takes into con-

sideration network delay, clock rate and clock skew. Based on this model, we proposed an interval

141

closure event and a method to decide which interval an incoming event belongs to. With this mech-

anism, users can separate concerns of monitoring intervals from the rest of property checking.

Reflexive adaptation framework. In chapter 7, we proposed an extension of SMEDL for reflexive

software adaptation. Users can specify a map between events raised from a monitor and adapta-

tion actions, including insertion, suppression or replacement of code blocks in the target program.

We further defined the semantic rules to describe possible interference between the instrumented

adaptation actions and the target program. To formally verify correctness of the adaptation imple-

mentation with respect to execution of the target program, we proposed a Hoare-logic based method

to construct proof obligation locally, which has been implemented in the Frama-C framework.

8.2. Future directions

Asynchronous monitor network. In this thesis, we do not study behavior of asynchronous monitor

network. Current implementations of asynchronous monitoring rely on underlying communication

middleware, which do not have a formal semantics. Borrowing the idea from actor-based monitoring

system [59] and generating Erlang programs [131] for asynchronous communication could be a

promising direction.

Parallelization of SMEDL. In chapter 5, we have demonstrated time efficiency of SMEDL. How-

ever, there is still a lot of room for further optimization and one promising direction is paralleliza-

tion within a synchronous set, which could be achieved at two levels. At the monitor level, multiple

monitors handle an incoming event sequentially, which conforms to the semantics of trace slicing.

However, two monitors can execute in parallel if they are not related through common parameters.

At the instance level, parallel updates of instances of a monitor may also improve efficiency. It

would be interesting to explore parallelization of SMEDL monitors and study how to guarantee

compliance between the semantics and the implementation.

Overhead-aware deployment of SMEDL monitors. SMEDL supports hybrid deployment of

monitors to achieve balance between overhead and performance. However, current setting requires

users to decide the architecture manually. We have proposed an initial idea [140] to decide de-

142

ployment of a hierarchical monitor structure by analyzing the overhead brought by asynchronous

communication and monitoring logic. It would be interesting to explore a general mechanism or

process to achieve optimized deployment of monitors in an automatic or semi-automatic way.

Towards a more realistic method for monitoring time intervals. Our work in monitoring time

intervals has two limitations. First, we can exactly determine when we have seen all the events only

if the network delay is bounded. Second, we assume that we can precisely determine whether a given

event is within the bounds of an interval or outside. In general, neither of these two assumptions

are true. This means that the monitoring procedure needs to be augmented to accommodate the

uncertainty. It would be interesting to explore a more realistic model for analyzing behaviors of

monitors in asynchronous environments. For instance, if the network delay is unbounded, we can

consider more widely used self-similar traffic models [93]. With this approach we can have a

monitoring procedure with probabilistic guarantees of correctness. We will consider a three-valued

semantics for the temporal logic, with the “unknown” value corresponding to an error, which may

happen when we discover an event that belongs to an already-closed interval. Another issue comes

from uncertainty in the system clock rate, which would lead to wrong decision on which interval the

incoming event belongs to. In this case, we can also use a 3-valued semantics, with the third value

representing the uncertainty whether the event occurs before or after the interval closure event. It

remains to be seen whether the two three-valued approaches – the one capturing an error and the one

capturing the ordering uncertainty – can be combined together in an effective checking procedure.

Software adaptation at multiple levels. Software adaptation involves both high-level repair pro-

cess and low-level reflexive enforcement actions. In our work, we have integrated into SMEDL

low-level enforcement actions. High-level repair may utilize more information such as sophisti-

cated program profiling from multiple executions to synthesize repair solution. These two types

of adaptation could have influence on each other. On one direction, execution of enforcement ac-

tions may give hints to the high-level repair. On the other direction, the modified code may require

changes to monitors. It would be interesting to study how to combine them to achieve software

adaptation with good performance.

143

Fully mechanized semantics and proofs. In this work, we have proposed the formal semantics of

synchronous aspect of SMEDL and several theorems and lemmas. However, only the semantics of

single monitors and related theorems in Section 3.1 have been encoded in Coq. It would be useful

to mechanize the semantics of the whole SMEDL language and all proofs proposed in the thesis.

144

APPENDIX

A.1. Concrete syntax of SMEDL

A.1.1. Syntax of the single monitor specification

The EBNF (Extended Backus-Naur Form) of single monitors is given below. Some common defi-

nitions such as types and expressions are omitted. Not mentioned in the thesis, users can import C

header files which provide side-effect-free helper functions. In the definition of a scenario, there is

an optional field to state final states , which have been discussed in Chapter 5. In the definition of

event declaration , the comma is used as the delimiter of multiple event signature.

〈start〉 ::= 〈declaration〉 [〈helper list〉] [〈state section〉] 〈event section〉 〈scenario section〉

〈declaration〉 ::= ‘object’ 〈identifier〉 ‘;’

〈helper list〉 ::= {〈helper definition〉}*

〈helper definition〉 ::= ‘#include’ 〈helper filename〉

〈state section〉 ::= ‘state:’ {〈state declaration〉}*

〈state declaration〉 ::= 〈identifier〉 [‘=’ 〈signed literal〉] ‘;’

〈event section〉 ::= ‘events:’ {〈event declaration〉}*

〈event declaration〉 ::= (‘imported’ | ‘internal’ | ‘exported’)

‘,’.{〈event signature〉}+ ’;’

〈event signature〉 ::= 〈identifier〉 ‘(’ 〈type list〉 ‘)’

〈scenario section〉 ::= ‘scenarios:’ {scenario}*

〈scenario〉 ::= 〈identifier〉 ‘:’ [‘finalstate’ 〈identifier〉 ‘;’] {〈transition〉}*

〈transition〉 ::= 〈identifier〉 ‘->’ 〈step definition list〉 [〈else definition〉] ‘;’

〈step definition list〉 ::= 〈step definition〉 ‘->’ 〈step definition list〉

| 〈step definition〉 ‘->’ 〈identifier〉

〈step definition〉 ::= 〈step event definition〉 [‘when’ ‘(’ expression ‘)’] [〈action list〉]

〈else definition〉 ::= ‘else’ [〈action list〉] ‘->’ 〈identifier〉

145

〈step event definition〉 ::= identifier ‘(’ 〈identifier list〉 ‘)’ ;

〈action list〉 ::= ‘{’ 〈action inner list〉 ‘}’

〈action inner list〉 ::= 〈action〉 ‘;’ 〈action inner list〉 | 〈action〉 | ()

〈action〉 ::= 〈assignment〉 | 〈raise stmt〉

〈assignment〉 ::= 〈identifier〉 ‘=’ 〈expression〉

〈raise stmt〉 ::= ‘raise’ 〈identifier〉 ‘(’ 〈expression list〉 ‘)’ ;

〈expression list〉 ::= ‘,’.{〈expression〉}*

A.1.2. Syntax of the architecture description

The architecture description imports files of all single monitor specifications for type checking.

Then, the interface of all monitors are declared. Note that identities of a monitor are defined as a list

of types without names, which means they cannot be used in monitoring logic. In the definition of

event connection specification, wild cards are represented by ‘*’. An identity parameter of a monitor

and an attribute of an event are respectively represented by #.n and $.n where n is the position in

the parameter or attribute list. Synchronous set is specified in syncset decl .

〈start〉 ::= 〈declaration〉 ‘;’ {(〈import stmt〉 | 〈monitor decl〉 | 〈event decl〉 | 〈syncset decl〉

| 〈connection defn〉)‘;’}*

〈declaration〉 ::= ‘system’ 〈identifier〉

〈import stmt〉 ::= ‘import’ 〈smedl filename〉

〈monitor decl〉 ::= ‘monitor’ 〈identifier〉 ‘(’ 〈type list〉 ‘)’ [‘as’ 〈identifier〉]

〈event decl〉 ::= ‘event’ 〈identifier〉 ‘(’ 〈type list〉 ‘)’

〈syncset decl〉 ::= ‘syncset’ 〈identifier〉 ‘{’ 〈identifier list〉 ‘}’

〈connection defn〉 ::= [〈identifier〉 ‘:’] 〈source spec〉 ‘=>’ 〈target spec〉

〈source spec〉 ::= [〈identifier〉 ‘.’] 〈identifier〉

〈target spec〉 ::= 〈target event〉

146

〈target event〉 ::= 〈identifier〉 [‘[’ 〈wildcard parameter list〉 ‘]’] ‘.’ 〈identifier〉 [‘(’

〈parameter list〉 ‘)’]

〈wildcard parameter list〉 ::= ‘,’.{〈wildcard parameter〉}*

〈parameter list〉 ::= ‘,’.{〈parameter〉}*

〈wildcard parameter〉 ::= 〈parameter〉 | ‘*’

〈parameter〉 ::= ‘#.’ 〈natural〉 | ‘$.’ 〈natural〉

〈natural〉 ::= /[0-9]+/

A.2. SMEDL examples

This section lists SMEDL specifications appearing in Chapter 5. Watertank and TrackQuality are

not included. Each specification contains a set of single monitor specifications and an architecture

description when the specification contains multiple monitors. For simplicity, import stmt clause

in the architecture descriptions are omitted.

A.2.1. BasicCar

The policy of a car is modeled as a SMEDL specification Car below. When the policy is violated,

an exported event violation is raised.

147

object Car;

events:

imported toggle_lights();

imported toggle_wipers();

imported accelerate();

imported create();

imported destroy();

exported violation();

scenarios:

sce1:

init -> create() -> start;

init -> toggle_lights() {raise violation();} -> init;

init -> toggle_wipers() {raise violation();} -> init;

init -> accelerate() {raise violation();} -> init;

init -> destroy() {raise violation();} -> init;

start -> toggle_lights() -> start;

start -> toggle_wipers() -> start;

start -> accelerate() -> start;

start -> create() {raise violation();} -> start;

start -> destroy() -> done;

done -> create() -> start;

done -> toggle_lights() {raise violation();} -> done;

done -> toggle_wipers() {raise violation();} -> done;

done -> accelerate() {raise violation();} -> done;

done -> destroy() {raise violation();} -> done;

A.2.2. UnsafeFile

The monitor UnsafeFile checks whether file operations are legal. The end event is used to test

whether the file has been closed when the program exits.

148

object UnsafeFile;

events:

imported open();

imported close();

imported put();

imported end();

exported violation();

scenarios:

sce1:

init -> open() -> start;

init -> close() {raise violation();} -> init;

init -> put() {raise violation();} -> init;

start -> put() -> start;

start -> close() -> done;

start -> open() {raise violation();} -> start;

done -> put() {raise violation();} -> done;

start -> end() {raise violation();} -> start;

A.2.3. GrantCancel

The monitor GrantCancelResource detects a violation of the GrantCancel property when a resource

is granted multiple times or cancelled by a task not owning it. The monitor keeps track of granting

and canceling of a resource to a task. As a result, the number of instances corresponds to the number

of resources during runtime.

object GrantCancelResource;

state:

int task;

events:

imported grant(int);

imported cancel(int);

exported violation();

scenarios:

main:

free -> grant(granted_task) {task = granted_task;} -> granted;

granted -> grant(granted_task) {raise violation();} -> granted;

granted -> cancel(granted_task) when (granted_task == task) -> free

else {raise violation();} -> granted;

149

A.2.4. NestedCommand

The specification has two monitors. FirstCommand is created whenever a new command is issued.

A command issued later will be combined with all existing commands by creating an instance

of CommandPair. If an previously issued command succeeds before an later one, a violation is

detected.

object FirstCommand;

events:

imported command(int);

imported success();

exported second_command(int);

scenarios:

export_pairs:

finalstate done;

running -> command(id) {raise second_command(id);} -> running;

running -> success() -> done;

object CommandPair;

events:

imported first_success();

imported second_success();

exported violation();

scenarios:

main:

finalstate done;

both_running -> second_success() -> done;

both_running -> first_success() {raise violation();} -> done;

150

system NestedCommands;

monitor FirstCommand(int);

monitor CommandPair(int, int);

cmd1: command => FirstCommand[*].command($0);

cmd1: command => FirstCommand($0);

cmd2: FirstCommand.second_command => CommandPair(#0, $0);

succ: succeed => CommandPair[*, $0].second_success();

succ: succeed => CommandPair[$0, *].first_success();

succ: succeed => FirstCommand[$0].success();

A.2.5. ResourceLifeCycle

The monitor Resource raises a violation event if three stages of a resource are not issued in order.

The end event is used to check whether a resource is eventually cancelled when the program exits.

151

object Resource;

state:

int task;

events:

imported request();

imported deny();

imported grant();

imported cancel();

imported rescind();

imported end();

exported violation();

scenarios:

main:

free -> request() -> requested;

free -> deny() {raise violation();} -> fail;

free -> grant() {raise violation();} -> fail;

free -> rescind() {raise violation();} -> fail;

free -> cancel() {raise violation();} -> fail;

free -> end() -> pass;

requested -> deny() -> free;

requested -> grant() -> granted;

requested -> request() {raise violation();} -> fail;

requested -> rescind() {raise violation();} -> fail;

requested -> cancel() {raise violation();} -> fail;

requested -> end() -> pass;

granted -> cancel() -> free;

granted -> rescind() -> granted;

granted -> request() {raise violation();} -> fail;

granted -> deny() {raise violation();} -> fail;

granted -> grant() {raise violation();} -> fail;

granted -> end() {raise violation();} -> fail;

A.2.6. RespectConflict

To monitor behavior of two conflicting entities (denoted as A and B) with respect to the resource,

we need to use two monitors RespectA and RespectB. Both of them are Respect but with reversed

identities, as shown in the architecture description RespectArch. If a resource has been granted to

either A and B, it cannot be granted to the other one. Moreover, a resource can only be cancelled by

152

the entity to which it has been granted to.

object Respect;

state:

int state;

int pre;

int post;

events:

imported conflict(int, int);

imported grant(int);

imported cancel(int);

exported violation();

scenarios:

main:

s1 -> conflict(pr, po) {pre = pr; post = po; state = -1;} -> s1;

s1 -> grant(v) when (state == -1 && v == pre) {state = pre;} -> s1;

s1 -> grant(v) when (state == -1 && v == post) {state = post;} -> s1;

s1 -> grant(v) when (state != -1) {raise violation();} -> s1;

s1 -> cancel(v) when (state != v) {raise violation();} -> s1;

s1 -> cancel(v) when (state == v) {state = -1;} -> s1;

system RespectArch;

monitor RespectA(int, int) as Respect;

monitor RespectB(int, int) as Respect;

con: conflict => RespectA[$0, $1].conflict($0, $1);

con: conflict => RespectB[$1, $0].conflict($1, $0);

gr: grant => RespectA[$0, *].grant($0);

gr: grant => RespectB[*, $0].grant($0);

cl: cancel => RespectA[$0, *].cancel($0);

cl: cancel => RespectB[*, $0].cancel($0);

153

A.2.7. Auction

object Auctionmonitor;

state:

float reserve_price;

float current_price = 0;

float duration;

float days_passed = 0;

events:

imported create_auction(int, int, int);

imported bid(int, int);

imported sold(int);

imported end_of_day();

exported alarm_recreation();

exported alarm_low_bid();

exported alarm_sold_early();

exported alarm_not_sold();

exported alarm_action_after_end();

exported alarm_action_before_start();

scenarios:

main:

init -> create_auction(item, minimum, period) {reserve_price = minimum; duration = period;} -> bidding;

bidding -> bid(item, amount) {current_price = amount;} -> above_reserve;

bidding -> sold(item) {raise alarm_sold_early();} -> error;

bidding -> end_of_day() when (days_passed < duration - 1) {days_passed++;} -> bidding

else -> done;

bidding -> create_auction(item, minimum, period) {raise alarm_recreation();} -> error;

above_reserve -> sold(item) when (current_price < reserve_price) {raise alarm_low_bid();} -> error

else -> done;

above_reserve -> bid(item, amount) when (amount > current_price) {current_price = amount;} -> above_reserve;

above_reserve -> end_of_day() when (days_passed < duration - 1) {days_passed++;} -> above_reserve

else -> done;

above_reserve -> create_auction(item, minimum, period) {raise alarm_recreation();} -> error;

done -> end_of_day() -> done;

done -> bid(item, amount) {raise alarm_action_after_end();} -> error;

done -> sold(item) {raise alarm_action_after_end();} -> error;

done -> create_auction(item, minimum, period) {raise alarm_recreation();} -> error;

A.2.8. CandidateSelection

The specification principally follows Figure 8 (b) and Figure 9 with slight modifications such as

removal of mon0 and combination of mvp and aMonc .

154

object Mvp;

state:

int canNum = 0;

events:

imported member(string, string);//(voter, party)

imported candidate(string, string);//(candidate, party)

imported countcan();//(voter, party)

imported valid();//(voter, party)

imported end();

internal check();

exported createVCP(string);//(voter, candidate, party)

exported result(int);

exported addP();

scenarios:

sce:

init -> member(v, p) {raise addP();} -> start;

start -> member(v, p) -> start;

start -> candidate(c, p) {raise createVCP(c); canNum = canNum + 1; } -> start;

sce1:

start -> valid() {canNum = canNum - 1;} -> start;

start -> end() {raise check();} -> start;

sce2:

start -> check() when (canNum == 0) {raise result(1); canNum = 0;} -> start;

start -> check() when (canNum > 0) {raise result(0); canNum = 0;} -> start;

object Mvcp;

events:

imported createVCP();//(voter, candidate, party)

imported rank(string, string, int);//(voter, candidate, rank)

exported valid();//(voter, party)

scenarios:

sce:

init -> createVCP() -> start;

start -> rank(v, c, i) {raise valid();} -> end;

155

object AMonP;

state:

int pNum = 0;

int res = 0;

events:

imported addP();

imported inRes(int);

internal check();

exported result(int);//

exported addV();

scenarios:

sce:

init -> addP() {pNum = pNum + 1; raise addV(); } -> start;

start -> addP() {pNum = pNum + 1; } -> start;

sce1:

start -> inRes(i) when (pNum > 1) {res = res + i; pNum = pNum - 1; } -> start;

start -> inRes(i) when (pNum == 1) {res = res + i; raise check(); pNum = pNum - 1;

} -> start;

sce2 :

start -> check() when (res > 0) {raise result(1);} -> start;

start -> check() when (res == 0) {raise result(0);} -> start;

156

object AMonV;

state:

int vNum = 0;

int vNumTemp = 0;

int res = 0;

events:

imported addV();

imported inRes(int);

exported result(int);

scenarios:

sce:

start -> addV() {vNum ++; } -> start;

sce1:

init -> inRes(i) when (vNum > 1) {res = res + i; vNumTemp = vNum; vNum --; } -> start;

init -> inRes(i) when (vNum == 1) {res = i - vNum; raise result(res); vNum = 0;}

-> start;

start -> inRes(i) when (vNum > 1) {res = res + i; vNum --; } -> start;

start -> inRes(i) when (vNum == 1) { res = res + i - vNumTemp; raise result(res);

vNum = 0;} -> init;

system CanSys;

monitor Mvp(string, string);

monitor Mvcp(string, string, string);

monitor AMonP(string);

monitor AMonV();

ch1: member => Mvp[$1, $0].member($0, $1);

ch2: candidate => Mvp[$1,*].candidate($0,$1);

ch3: end => Mvp[*,*].end;

ch5: Mvcp.valid => Mvp[#2,#1].valid;

ch6: Mvp.createVCP => Mvcp[$0, #1, #0].createVCP;

ch7: rank => Mvcp[$1, $0, *].rank($0, $1, $2);

ch8: Mvp.addP => AMonP[#1].addP;

ch9: Mvp.result => AMonP[#1].inRes($0);

ch10: AMonP.addV => AMonV.addV;

ch11: AMonP.result => AMonV.inRes($0);

157

A.2.9. SqlSanitizer

An instance of Sql input is created for an input not derived from any other ones. For a derived

input, an instance of Sql derived is created, which is parameterized by the identity of the original

and the derived input. An input can also be derived from another derived input, which is modeled

by the last transition in Sql derived. The operation of sanitization can be propagated from an input

to its descendants.

object Sql_input;

state:

int is_san = 0;

events:

imported input(int);

imported sanitize();

imported use();

imported derive(int);

exported derivation_out(int);

exported propagate_sanitization();

exported violation();

scenarios:

main:

s1 -> input(s) -> s2;

s2 -> use() when (is_san == 0) {raise violation();} -> s2;

s2 -> sanitize() {is_san = 1; raise propagate_sanitization();} -> s2;

s2 -> derive(t) {raise derivation_out(t);} -> s2;

158

object Sql_derived;

state:

int is_san = 0;

events:

imported sanitize();

imported use();

imported derive(int);

imported derivation_in(int, int);

exported derivation_out(int);

exported propagate_sanitization();

exported violation();

scenarios:

main:

s1 -> derivation_in(t, s) -> s2;

s2 -> use() when (is_san == 0) {raise violation();} -> s2;

s2 -> sanitize() {is_san = 1; raise propagate_sanitization();} -> s2;

s2 -> derive(t) {raise derivation_out(t);} -> s2;

system Sql_sanitize;

monitor Sql_input(int);

monitor Sql_derived(int,int);

ch1: input => Sql_input[$0].input($0);

ch2: derive => Sql_input[$0].derive($1);

ch2: derive => Sql_derived[$0, *].derive($1);

ch3: use => Sql_input[$0].use;

ch3: use => Sql_derived[$0, *].use;

ch4: sanitise => Sql_input[$0].sanitize;

ch4: sanitise => Sql_derived[$0, *].sanitize;

ch5: Sql_input.derivation_out => Sql_derived[$0, #0].derivation_in($0, #0);

ch7: Sql_input.propagate_sanitization => Sql_derived[*, #0].sanitize;

ch8: Sql_derived.propagate_sanitization => Sql_derived[*, #0].sanitize;

ch9: Sql_derived.derivation_out => Sql_derived[$0, #0].derivation_in($0, #0);

A.2.10. Banking-1

The MFOTL formula of this property is ALWAYS FORALL c, t, a. trans(c,t,a) AND 2000 < a

IMPLIES EVENTUALLY[0,6) report(t). MonPoly explicitly handles time and all events are attached

159

with a timestamp, which makes it efficient to check properties with time intervals. In contrast,

SMEDL monitors do not have an internal clock to count ticks, which will lead to incorrect result or

delay in outputting verdicts. To handle this issue, we insert a tick event between two consecutive

events with increased timestamp. Whenever TransactionReport receives a tick event, it will check

the time difference between the current timestamp and the timestamp of the last transaction (stored

in the state variable t0).

object TransactionReport;

state:

int t0;

events:

imported trans(int, int, int, int);

imported report(int, int);

imported tick(int);

exported violation();

scenarios:

main:

s1 -> trans(ts, c, t, a) when (a > 2000) {t0 = ts;} -> s2;

s1 -> report(ts, t) -> s1;

s2 -> report(ts, t) when (ts - t0 > 5) {raise violation();} -> s1

else -> s1;

s2 -> tick(ts) when(ts - t0 > 5) {raise violation();} -> s1;

A.2.11. Banking-2

The MFOTL formula of this property is ALWAYS FORALL c, t, a. trans(c,t,a) AND 2000 < a

IMPLIES ONCE[2,21) EXISTS e. auth(e,t). The tricky part is that multiple auth events may arrive

and as long as one of them satisfies the timing requirement, the property is not violated. However,

SMEDL monitors do not directly support arrays or dynamic data structure. To solve this issue, we

use an integer typed window to represent a list of consecutive timestamps. A bit is set when an auth

happens at that timestamp. The least (most) significant bit represents the left (right) boundary of

the window and t0 and t1 are the corresponding time stamps. A violation is raised when a trans

event arrives: 1) before any auth events or 2) less than 2 days after the earliest auth event or greater

than 20 days after the latest auth event. When an auth event arrives, the right boundary of the

160

window is updated and the corresponding bit is set with its timestamp. For the left boundary, 1)

if the timestamp is 20 days greater than the left boundary but not 20 days greater than the right

boundary, the left boundary moves right to its nearest time that corresponds to an auth event; 2) if

the timestamp is 20 days greater than the right boundary, the window size shrinks to 1. Note that

there is a corner case in which the transaction happens 1 day after the nearest authorization and the

next earliest authorization happens more than 20 days ago. In that case, a violation event is also

raised.

object TransAuth;

#include "helper.h"

state:

int t0;

int t1;

int window;

events:

imported trans(int, int, int);

imported auth(int, int);

internal check(int, int, int);

exported violation();

scenarios:

main:

s1 -> auth(ts, t) {t0 = ts; t1 = ts; window = 1;} -> s2;

s1 -> trans(ts, t, a) when (a > 2000) {raise violation();} -> s1;

s2 -> trans(ts, t, a) when (a > 2000 && (ts - t0 < 2 ||

ts - t1 > 20)) {raise violation();} -> s2

else {raise check(ts, t0 + log2((window - 1) & -(window - 1), a);}-> s2;

s2 -> auth(ts, t) when (ts - t0 <= 20) {t1 = ts;

window = window | (1 << (ts - t0));} -> s2;

s2 -> auth(ts, t) when (ts - t0 > 20 && ts - t1 <= 20) {t0 = t0 + log2((window - 1)

& -(window - 1)); t1 = ts;

window = window | (1 << (ts - t0));} -> s2;

s2 -> auth(ts,t) when (ts - t1 > 20) {t0 = ts; t1 = ts; window = 1;} -> s2;

corner:

s1 -> check(ts, n, a) when (a > 2000 && ts - t1 == 1 && ts - t0 > 20 && n == t1)

{raise violation();} -> s1

161

A.2.12. Publish

The MFOTL formula of this property is ALWAYS FORALL a, f. publish(a,f) IMPLIES (NOT

acc F(a) SINCE[0,*) acc S(a)) AND ONCE[0,10] EXISTS m. (NOT mgr F(m,a) SINCE[0,*)

mgr S(m,a)) AND approve(m,f). acc S(A) and acc F(A) indicate starting and ending of A being

an accountant; mgr S(M,A) and mgr F(M,A) indicate starting and ending of M being a manager

of A. The property says that if a publishes a report f, then a must be an accountant and there must

exist an approval from m within 10 days before publishing and m must be the manager of a when

the approval happens. The property is violated in the following cases: 1) a report f is published by

a person a who is not an accountant; 2) there is no approval of f within the specified range; 3) there

is no approval of f from a person m who is the manager of a who publishes f.

Parameterized by a person a (not used in the monitoring logic), Account keeps track of the status of

a. When state is 1, a is not an accountant. The state is sent to Validation through is acc, which is

required when a publishes a report.

object Accountant;

state:

int state;

events:

imported acc_S();

imported acc_F();

imported checkAcc(int, int);

exported is_acc(int, int, int);

scenarios:

main:

s1 -> acc_S() {state = 0;} -> s1;

s1 -> acc_F() {state = 1;} -> s1;

s1 -> checkAcc(m, f) {raise is_acc(m, f, state);} -> s1;

Similar to Account, Manager(m) is parameterized by a pair of (m, a): m is the manager of a iff state

is 0. Whenever m approves a report f, we send the status of (m, a) to Validation.

162

object Manager;

state:

int state;

events:

imported mgr_S();

imported mgr_F();

imported internal_approve(int);

exported createValidation(int, int);

scenarios:

main:

s1 -> mgr_S() {state = 0; } -> s1;

s1 -> mgr_F() {state = 1; } -> s1;

s1 -> internal_approve(f) {raise createValidation(f, state);} -> s1;

Parameterized by a report f, Approve does three things: 1) raise final result to indicate violation

of the property when a report f is not approved before publishing; 2) creation of an instance of

Aggregation(f) and 3) trigger execution of Manager and Internal Approve when f is approved by a

manager.

object Approve;

events:

imported approve(int, int, int);

imported publish(int, int, int);

exported internal_approve(int, int, int);

exported create_aggregator();

exported final_result(int);

scenarios:

main:

s0 -> approve(ts, m, f) {raise create_aggregator();

raise internal_approve(ts, m, f); } -> s1;

s0 -> publish(ts, a, f) {raise final_result(1);} -> s1;

s1 -> approve(ts, m, f) {raise internal_approve(ts, m, f);} -> s1;

Internal Approve is parameterized by (m, f). When m approves f, an incr event is sent to Aggre-

gation to count the number of managers that have approved f. The state variable t0 stores the time

of approval. When f is approved, it raises an event internal publish(a, v) in which a is the ac-

countant that publishes f and v is 0 (1) when the nearest approval (does not) happen within 10 days

163

before publishing. check acc is sent to Accountant to check whether a is an accountant at the time

of publishing, as shown above.

object Internal_Approve;

state:

int t0;

events:

imported internal_approve(int);

imported publish(int, int, int);

exported internal_publish(int, int);

exported check_acc(int);

exported check_mgr(int);

exported incr();

scenarios:

main:

s1 -> internal_approve(ts) {t0 = ts; raise incr();} -> s1;

s1 -> publish(ts, a, f) when (ts < t0 || ts - t0 > 10)

{raise internal_publish(a, 1); } -> s1

else {raise internal_publish(a, 0); raise check_acc(a);} -> s1;

Validation is parameterized by (m, a, f). Variable state is 0 iff m is the manager of a. The attribute

of internal publish and acc result are explained above. If the attribute of violation is 0, the triple

satisfies the relation specified in the property.

object Validation;

state:

int state;

events:

imported internal_publish(int);

imported createValidation(int);

imported acc_result(int);

exported violation(int);

scenarios:

main:

s1 -> createValidation(st) {state = st;} -> s1;

s1 -> internal_publish(v) when (state == 1 || v == 1) {raise violation(1);} -> s1

else -> s3;

s3 -> acc_result(v) {raise violation(v);} -> s1;

164

Aggregation collects results from Validation. For each report f, we only need to find one pair of (m,

a) that satisfies of the property. Note that we do not consider how to reset the state of monitors after

a verdict for a report has been output.

object Aggregation;

state:

int num = 0;

int num0;

events:

imported create_aggregator();

imported violation(int);

imported incr();

exported final_result(int);

scenarios:

main:

s0 -> create_aggregator() -> s1;

s1 -> incr() {num = num + 1;} -> s1;

s1 -> violation(v) when (v == 0) -> s3;

s1 -> violation(v) when (v == 1 && num > 1) {num0 = num - 1;} -> s2;

s1 -> violation(v) when (v == 1 && num == 1) {raise final_result(1);} -> s1;

s2 -> violation(v) when (v == 1 && num0 > 1) {num0 = num0 - 1;} -> s2;

s2 -> violation(v) when (v == 1 && num0 == 1) {raise final_result(1);} -> s1;

s2 -> violation(v) when (v == 0) -> s3;

165

system Publish;

monitor Accountant(int);

monitor Manager(int, int);

monitor Approve(int);

monitor Internal_Approve(int, int);

monitor Validation(int, int, int);

monitor Aggregation(int);

syncset Pub {Accountant, Manager, Approve, Internal_Approve, Validation, Aggregation};

ch1: acc_S => Accountant[$1].acc_S;

ch2: acc_F => Accountant[$1].acc_F;

ch3: mgr_S => Manager[$1, $2].mgr_S;

ch4: mgr_F => Manager[$1, $2].mgr_F;

ch5: approve => Approve[$2].approve($0, $1, $2);

ch6: publish => Approve[$2].publish($0, $1, $2);

ch6: publish => Internal_Approve[*, $2].publish($0, $1, $2);

ch7: Accountant.is_acc => Validation[$0,$1,#0].acc_result($2);

ch9: Approve.internal_approve => Internal_Approve[$1,#0].internal_approve($0);

ch9: Approve.internal_approve => Manager[$1,*].internal_approve($2);

ch10: Approve.create_aggregator => Aggregation[#0].create_aggregator;

ch11: Internal_Approve.internal_publish => Validation[#0, #1, $0].internal_publish($1);

ch12: Internal_Approve.check_acc => Accountant[$0].checkAcc(#0, #1);

ch14: Internal_Approve.incr => Aggregation[#1].incr;

ch15: Validation.violation => Aggregation[#1].violation($0);

ch17: Manager.createValidation => Validation[#0,$0,#1].createValidation($1);

A.2.13. UnsafeMapIter

The specification follows Figure 7 with slight modifications: 1) mon0 is removed and 2) useI is not

dispatched to MC.

166

object MC;

events:

imported createC();//mid, cid

imported createI(pointer);//cid, iid

exported createMCI(pointer);

scenarios:

sce1:

init -> createC() -> start;

start ->createI(i) {raise createMCI(i);} -> start;

object MCI;

events:

imported createMCI();//iid

imported updateM();//mid

imported useI();//iid

exported violation();

scenarios:

sce1:

init -> createMCI() -> start;

start -> useI() -> start;

start -> updateM() -> updateM;

updateM -> useI() {raise violation();} -> error;

system MapArch;

monitor MC(pointer, pointer);

monitor MCI(pointer, pointer, pointer);

syncset sync {MC, MCI};

ch1: createC => MC[$0,$1].new_mc;

ch2: createI => MC[*,$0].createI($1);

ch3: MC.createMCI => MCI[#0,#1,$0].createMCI;

ch4: updateM=> MCI[$0,*,*].updateM;

ch5: useI=> MCI[*,*,$0].useI;

167

BIBLIOGRAPHY

[1] Apache storm. https://storm.apache.org/. Accessed: 2021-09-23.

[2] Gul A Agha. Actors: A model of concurrent computation in distributed systems. Technical
report, Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab, 1985.

[3] Irem Aktug and Katsiaryna Naliuka. ConSpec—a formal language for policy specification.
Science of Computer Programming, 74(1-2):2–12, 2008.

[4] Irem Aktug, Mads Dam, and Dilian Gurov. Provably correct runtime monitoring. In Interna-
tional Symposium on Formal Methods, pages 262–277. Springer, 2008.

[5] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,
Ondřej Lhoták, Oege De Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble.
Adding trace matching with free variables to AspectJ. In ACM SIGPLAN Notices, volume 40,
pages 345–364. ACM, 2005.

[6] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular programming for quanti-
tative properties of data streams. In European Symposium on Programming, pages 15–40.
Springer, 2016.

[7] Shaun Azzopardi, Christian Colombo, Jean-Paul Ebejer, Edward Mallia, and Gordon J Pace.
Runtime verification using Valour. RV-CuBES, 2017.

[8] Roger S Barga, Jonathan Goldstein, Mohamed Ali, and Mingsheng Hong. Consistent stream-
ing through time: A vision for event stream processing. arXiv preprint cs/0612115, 2006.

[9] Howard Barringer and Klaus Havelund. Internal versus external DSLs for trace analysis. In
International Conference on Runtime Verification, pages 1–3. Springer, 2011.

[10] Howard Barringer and Klaus Havelund. TraceContract: A Scala DSL for trace analysis. In
International Symposium on Formal Methods, pages 57–72. Springer, 2011.

[11] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based runtime
verification. In International Conference on Verification, Model Checking, and Abstract In-
terpretation, pages 44–57. Springer, 2004.

[12] Howard Barringer, Alex Groce, Klaus Havelund, and Margaret Smith. Formal analysis of
log files. Journal of aerospace computing, information, and communication, 7(11):365–390,
2010.

[13] Howard Barringer, David Rydeheard, and Klaus Havelund. Rule systems for run-time moni-
toring: from Eagle to RuleR. Journal of Logic and Computation, 20(3):675–706, 2010.

[14] Howard Barringer, Ylies Falcone, Klaus Havelund, Giles Reger, and David Rydeheard.
Quantified event automata: Towards expressive and efficient runtime monitors. In Inter-
national Symposium on Formal Methods, pages 68–84. Springer, 2012.

168

https://storm.apache.org/

[15] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to runtime
verification. In Lectures on Runtime Verification, pages 1–33. Springer, 2018.

[16] David Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zălinescu. Monitoring of tempo-
ral first-order properties with aggregations. In International Conference on Runtime Verifica-
tion, pages 40–58. Springer, 2013.

[17] David Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zălinescu. On real-time monitor-
ing with imprecise timestamps. In International Conference on Runtime Verification, pages
193–198. Springer, 2014.

[18] David Basin, Felix Klaedtke, Samuel Müller, and Eugen Zălinescu. Monitoring metric first-
order temporal properties. Journal of the ACM (JACM), 62(2):15, 2015.

[19] David A Basin, Felix Klaedtke, and Eugen Zalinescu. The MonPoly monitoring tool. RV-
CuBES, 3:19–28, 2017.

[20] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick Moy,
and Virgile Prevosto. ACSL: ANSI C specification language, 2008.

[21] Andreas Bauer and Ylies Falcone. Decentralised LTL monitoring. In International Sympo-
sium on Formal Methods, pages 85–100. Springer, 2012.

[22] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for LTL and
TLTL. ACM Transactions on Software Engineering and Methodology (TOSEM), 20(4):14,
2011.

[23] Andreas Bauer, Jan-Christoph Küster, and Gil Vegliach. From propositional to first-order
monitoring. In International Conference on Runtime Verification, pages 59–75. Springer,
2013.

[24] Lujo Bauer, Jay Ligatti, and David Walker. Composing security policies with Polymer. In
ACM SIGPLAN Notices, volume 40, pages 305–314. ACM, 2005.

[25] Yves Bertot and Pierre Castéran. Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer Science & Business Media, 2013.

[26] Nataliia Bielova and Fabio Massacci. Predictability of enforcement. In International Sym-
posium on Engineering Secure Software and Systems, pages 73–86. Springer, 2011.

[27] Nataliia Bielova and Fabio Massacci. Do you really mean what you actually enforced? In-
ternational Journal of Information Security, 10(4):239–254, 2011.

[28] Nataliia Bielova and Fabio Massacci. Iterative enforcement by suppression: Towards practi-
cal enforcement theories. Journal of Computer Security, 20(1):51–79, 2012.

[29] Jan Olaf Blech, Ylies Falcone, and Klaus Becker. Towards certified runtime verification. In
International Conference on Formal Engineering Methods, pages 494–509. Springer, 2012.

169

[30] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando Fox.
Microreboot–a technique for cheap recovery. arXiv preprint cs/0406005, 2004.

[31] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache flink: Stream and batch processing in a single engine. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, 36(4), 2015.

[32] Ian Cassar and Adrian Francalanza. On synchronous and asynchronous monitor instrumen-
tation for actor-based systems. arXiv preprint arXiv:1502.03514, 2015.

[33] Pedro Celis, Per-Ake Larson, and J Ian Munro. Robin hood hashing. In 26th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1985), pages 281–288. IEEE, 1985.

[34] Feng Chen and Grigore Roşu. Parametric trace slicing and monitoring. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
246–261. Springer, 2009.

[35] Zhe Chen, Zhemin Wang, Yunlong Zhu, Hongwei Xi, and Zhibin Yang. Parametric runtime
verification of C programs. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 299–315. Springer, 2016.

[36] Adam Chlipala, Benjamin Delaware, Samuel Duchovni, Jason Gross, Clément Pit-Claudel,
Sorawit Suriyakarn, Peng Wang, and Katherine Ye. The end of history? using a proof assis-
tant to replace language design with library design. In SNAPL’17: 2nd Summit on Advances
in Programming Languages, 2017.

[37] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Using AspectC to improve
the modularity of path-specific customization in operating system code. In Proceedings of
the 8th European software engineering conference held jointly with 9th ACM SIGSOFT in-
ternational symposium on Foundations of Software Engineering, pages 88–98, 2001.

[38] Christian Colombo and Yliès Falcone. Organising LTL monitors over distributed systems
with a global clock. Formal Methods in System Design, 49(1-2):109–158, 2016.

[39] Christian Colombo, Gordon J Pace, and Gerardo Schneider. Dynamic event-based runtime
monitoring of real-time and contextual properties. In International Workshop on Formal
Methods for Industrial Critical Systems, pages 135–149. Springer, 2008.

[40] Christian Colombo, Gordon J Pace, and Gerardo Schneider. LARVA—safer monitoring of
real-time Java programs (tool paper). In 2009 Seventh IEEE International Conference on
Software Engineering and Formal Methods, pages 33–37. IEEE, 2009.

[41] Christian Colombo, Gordon J Pace, and Patrick Abela. Compensation-aware runtime moni-
toring. In International Conference on Runtime Verification, pages 214–228. Springer, 2010.

[42] Christian Colombo, Adrian Francalanza, Ruth Mizzi, and Gordon J Pace. PolyLarva: run-
time verification with configurable resource-aware monitoring boundaries. In International
Conference on Software Engineering and Formal Methods, pages 218–232. Springer, 2012.

170

[43] Sylvain Conchon, Albin Coquereau, Mohamed Iguernlala, and Alain Mebsout. Alt-Ergo 2.2.
In SMT Workshop: International Workshop on Satisfiability Modulo Theories, 2018.

[44] Ben d’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd Finkbeiner,
Henny B Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: Runtime monitoring of syn-
chronous systems. In Temporal Representation and Reasoning, 2005. TIME 2005. 12th In-
ternational Symposium on, pages 166–174. IEEE, 2005.

[45] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[46] Normann Decker, Martin Leucker, and Daniel Thoma. Monitoring modulo theories. Inter-
national Journal on Software Tools for Technology Transfer, 18(2):205–225, 2016.

[47] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. Fiat: Deductive
synthesis of abstract data types in a proof assistant. In ACM SIGPLAN Notices, volume 50,
pages 689–700. ACM, 2015.

[48] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and Damien
Zufferey. P: safe asynchronous event-driven programming. ACM SIGPLAN Notices, 48(6):
321–332, 2013.

[49] Arvind Easwaran, Sampath Kannan, and Oleg Sokolsky. Steering of discrete event systems:
Control theory approach. Electronic Notes in Theoretical Computer Science, 144(4):21–39,
2006.

[50] Khalil El-Harake, Ylies Falcone, Wassim Jerad, Mattieu Langet, and Mariem Mamlouk.
Blocking advertisements on android devices using monitoring techniques. In International
Symposium On Leveraging Applications of Formal Methods, Verification and Validation,
pages 239–253. Springer, 2014.

[51] Antoine El-Hokayem and Yliès Falcone. Monitoring decentralized specifications. In Pro-
ceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Anal-
ysis, pages 125–135. ACM, 2017.

[52] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. Synthesizing enforcement
monitors wrt. the safety-progress classification of properties. In International Conference on
Information Systems Security, pages 41–55. Springer, 2008.

[53] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can you verify and en-
force at runtime? International Journal on Software Tools for Technology Transfer, 14(3):
349–382, 2012.

[54] Yliès Falcone, Tom Cornebize, and Jean-Claude Fernandez. Efficient and generalized decen-
tralized monitoring of regular languages. In International Conference on Formal Techniques
for Distributed Objects, Components, and Systems, pages 66–83. Springer, 2014.

171

[55] Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem Torfah. A stream-
based specification language for network monitoring. In International Conference on Run-
time Verification, pages 152–168. Springer, 2016.

[56] Bernd Finkbeiner, Stefan Oswald, Noemi Passing, and Maximilian Schwenger. Verified rust
monitors for lola specifications. In International Conference on Runtime Verification, pages
431–450. Springer, 2020.

[57] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil Lund, and Eli Gjor-
ven. Using architecture models for runtime adaptability. IEEE software, 23(2):62–70, 2006.

[58] Philip WL Fong. Access control by tracking shallow execution history. In IEEE Symposium
on Security and Privacy, 2004. Proceedings. 2004, pages 43–55. IEEE, 2004.

[59] Adrian Francalanza and Aldrin Seychell. Synthesising correct concurrent runtime monitors.
Formal Methods in System Design, 46(3):226–261, 2015.

[60] Adrian Francalanza, Andrew Gauci, and Gordon J Pace. Distributed system contract moni-
toring. The Journal of Logic and Algebraic Programming, 82(5-7):186–215, 2013.

[61] David Garlan, S-W Cheng, A-C Huang, Bradley Schmerl, and Peter Steenkiste. Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer, 37(10):46–54,
2004.

[62] MCW Geilen. On the construction of monitors for temporal logic properties. Electronic
Notes in Theoretical Computer Science, 55(2):181–199, 2001.

[63] Dimitra Giannakopoulou and Klaus Havelund. Automata-based verification of temporal
properties on running programs. In Automated Software Engineering, 2001.(ASE 2001).
Proceedings. 16th Annual International Conference on, pages 412–416. IEEE, 2001.

[64] Felipe Gorostiaga and César Sánchez. Striver: Stream runtime verification for real-
time event-streams. In International Conference on Runtime Verification, pages 282–298.
Springer, 2018.

[65] Jean Goubault-Larrecq and Julien Olivain. A smell of ORCHIDS. In International Workshop
on Runtime Verification, pages 1–20. Springer, 2008.

[66] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Jian Lü, and Zhendong Su. Automatic runtime
recovery via error handler synthesis. In 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 684–695. IEEE, 2016.

[67] Sylvain Hallé and Roger Villemaire. Runtime enforcement of web service message contracts
with data. IEEE Transactions on Services Computing, 5(2):192–206, 2012.

[68] Kevin W Hamlen, Greg Morrisett, and Fred B Schneider. Computability classes for enforce-
ment mechanisms. Technical report, Cornell University, 2003.

172

[69] Kevin W Hamlen, Greg Morrisett, and Fred B Schneider. Certified in-lined reference moni-
toring on. net. In Proceedings of the 2006 workshop on Programming languages and analysis
for security, pages 7–16. ACM, 2006.

[70] Klaus Havelund. Monitoring with data automata. In International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation, pages 254–273. Springer, 2014.

[71] Klaus Havelund. Rule-based runtime verification revisited. International Journal on Software
Tools for Technology Transfer, 17(2):143–170, 2015.

[72] Klaus Havelund and Giles Reger. Specification of parametric monitors. In Formal Modeling
and Verification of Cyber-Physical Systems, pages 151–189. Springer, 2015.

[73] Klaus Havelund and Grigore Roşu. Monitoring programs using rewriting. In Proceed-
ings 16th Annual International Conference on Automated Software Engineering (ASE 2001),
pages 135–143. IEEE, 2001.

[74] Klaus Havelund and Grigore Roşu. Synthesizing monitors for safety properties. In Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 342–356. Springer, 2002.

[75] Klaus Havelund, Giles Reger, Daniel Thoma, and Eugen Zălinescu. Monitoring events that
carry data. In Lectures on Runtime Verification, pages 61–102. Springer, 2018.

[76] Jifeng He, CAR Hoare, and Jeff W Sanders. Data refinement refined resume. In European
Symposium on Programming, pages 187–196. Springer, 1986.

[77] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576–580, 1969.

[78] Charles Antony Richard Hoare. Proof of correctness of data representations. In Programming
methodology, pages 269–281. Springer, 1978.

[79] M Usman Iftikhar and Danny Weyns. Activforms: Active formal models for self-adaptation.
In Proceedings of the 9th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pages 125–134. ACM, 2014.

[80] Farnam Jahanian, Ragunathan Rajkumar, and Sitaram CV Raju. Runtime monitoring of
timing constraints in distributed real-time systems. Real-Time Systems, 7(3):247–273, 1994.

[81] Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Roşu. JavaMOP:
Efficient parametric runtime monitoring framework. In 2012 34th International Conference
on Software Engineering (ICSE), pages 1427–1430. IEEE, 2012.

[82] Jeffrey O Kephart and David M Chess. The vision of autonomic computing. Computer, 36
(1):41–50, 2003.

173

[83] Raphael Khoury and Nadia Tawbi. Corrective enforcement: A new paradigm of security
policy enforcement by monitors. ACM Transactions on Information and System Security
(TISSEC), 15(2):10, 2012.

[84] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In European conference on
object-oriented programming, pages 220–242. Springer, 1997.

[85] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: a run-time as-
surance approach for Java programs. Formal Methods in Systems Design, 24(2):129–155,
March 2004.

[86] Moonjoo Kim, Insup Lee, Usa Sammapun, Jangwoo Shin, and Oleg Sokolsky. Monitor-
ing, checking, and steering of real-time systems. Electronic Notes in Theoretical Computer
Science, 70(4):95–111, 2002.

[87] Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg Sokolsky. Java-
MaC: A run-time assurance approach for Java programs. Formal methods in system design,
24(2):129–155, 2004.

[88] Jan Willem Klop. Term rewriting systems. Centrum voor Wiskunde en Informatica, 1990.

[89] Jonathan Laurent, Alwyn Goodloe, and Lee Pike. Assuring the guardians. In Runtime Veri-
fication, pages 87–101. Springer, 2015.

[90] Insup Lee and Susan B Davidson. Adding time to synchronous process communications.
IEEE transactions on computers, 100(8):941–948, 1987.

[91] Insup Lee and Susan B. Davidson. A performance analysis of timed synchronous communi-
cation primitives. IEEE Transactions on Computers, 39(9):1117–1131, 1990.

[92] Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu, Grigore Roşu, and Darko Marinov. How
good are the specs? a study of the bug-finding effectiveness of existing java api specifica-
tions. In 2016 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 602–613. IEEE, 2016.

[93] Will E Leland, Murad S Taqqu, Walter Willinger, and Daniel V Wilson. On the self-similar
nature of Ethernet traffic. In ACM SIGCOMM Computer Communication Review, volume 23,
pages 183–193. ACM, 1993.

[94] Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and Alexander Schramm.
Tessla: runtime verification of non-synchronized real-time streams. In Proceedings of the
33rd Annual ACM Symposium on Applied Computing, pages 1925–1933, 2018.

[95] Jay Ligatti and Srikar Reddy. A theory of runtime enforcement, with results. In European
Symposium on Research in Computer Security, pages 87–100. Springer, 2010.

174

[96] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement mechanisms for
run-time security policies. International Journal of Information Security, 4(1-2):2–16, 2005.

[97] Jay Ligatti, Lujo Bauer, and David Walker. Run-time enforcement of nonsafety policies.
ACM Transactions on Information and System Security (TISSEC), 12(3):19, 2009.

[98] Boon Thau Loo, Joseph M Hellerstein, Ion Stoica, and Raghu Ramakrishnan. Declarative
routing: extensible routing with declarative queries. ACM SIGCOMM Computer Communi-
cation Review, 35(4):289–300, 2005.

[99] Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O?Neil Meredith, Tra-
ian Florin Şerbănuţă, and Grigore Roşu. RV-Monitor: Efficient parametric runtime verifi-
cation with simultaneous properties. In International Conference on Runtime Verification,
pages 285–300. Springer, 2014.

[100] Masoud Mansouri-Samani and Morris Sloman. GEM: A generalized event monitoring lan-
guage for distributed systems. Distributed Systems Engineering, 4(2):96, 1997.

[101] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Roşu. An
overview of the MOP runtime verification framework. International Journal on Software
Tools for Technology Transfer, 14(3):249–289, 2012.

[102] Robin Milner. Communicating and mobile systems: the pi calculus. Cambridge university
press, 1999.

[103] Stefan Mitsch and André Platzer. ModelPlex: Verified runtime validation of verified cyber-
physical system models. Formal Methods in System Design, 49(1-2):33–74, 2016.

[104] Peter Müller, Malte Schwerhoff, and Alexander J Summers. Viper: A verification infras-
tructure for permission-based reasoning. In International conference on verification, model
checking, and abstract interpretation, pages 41–62. Springer, 2016.

[105] Samaneh Navabpour, Yogi Joshi, Wallace Wu, Shay Berkovich, Ramy Medhat, Borzoo
Bonakdarpour, and Sebastian Fischmeister. RiTHM: a tool for enabling time-triggered run-
time verification for C programs. In Proceedings of the 2013 9th Joint Meeting on Founda-
tions of Software Engineering, pages 603–606. ACM, 2013.

[106] Sebastian Nielebock. Towards API-specific automatic program repair. In Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software Engineering, pages
1010–1013. IEEE Press, 2017.

[107] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant
for higher-order logic, volume 2283. Springer Science & Business Media, 2002.

[108] Oniguruma contributors. Oniguruma. https://github.com/kkos/oniguruma,
2018. Accessed: 2018-03-27.

175

https://github.com/kkos/oniguruma

[109] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: a hard real-
time runtime monitor. In International Conference on Runtime Verification, pages 345–359.
Springer, 2010.

[110] Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marchand, Antoine Rollet, and
Omer Nguena Timo. Runtime enforcement of timed properties revisited. Formal Methods in
System Design, 45(3):381–422, 2014.

[111] Peter J Ramadge and W Murray Wonham. Supervisory control of a class of discrete event
processes. SIAM journal on control and optimization, 25(1):206–230, 1987.

[112] Giles Reger. Automata based monitoring and mining of execution traces. PhD thesis, Uni-
versity of Manchester, 2014.

[113] Giles Reger and David Rydeheard. From first-order temporal logic to parametric trace slicing.
In Runtime Verification, pages 216–232. Springer, 2015.

[114] Giles Reger and David Rydeheard. From parametric trace slicing to rule systems. In Inter-
national Conference on Runtime Verification, pages 334–352. Springer, 2018.

[115] Giles Reger, Helena Cuenca Cruz, and David Rydeheard. MarQ: monitoring at runtime with
QEA. In International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 596–610. Springer, 2015.

[116] Alexis Richardson et al. Introduction to RabbitMQ. Google UK, available at http://www. rab-
bitmq. com/resources/google-tech-talk-final/alexis-google-rabbitmq-talk. pdf, retrieved on
Mar, 30:33, 2012.

[117] Oliviero Riganelli, Daniela Micucci, and Leonardo Mariani. Policy enforcement with proac-
tive libraries. In 2017 IEEE/ACM 12th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), pages 182–192. IEEE, 2017.

[118] Grigore Roşu and Klaus Havelund. Rewriting-based techniques for runtime verification.
Automated Software Engineering, 12(2):151–197, 2005.

[119] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research chal-
lenges. ACM transactions on autonomous and adaptive systems (TAAS), 4(2):14, 2009.

[120] Usa Sammapun. Monitoring and checking of real-time and probabilistic properties. PhD
thesis, University of Pennsylvania, 2009.

[121] César Sánchez, Gerardo Schneider, Wolfgang Ahrendt, Ezio Bartocci, Domenico Bianculli,
Christian Colombo, Yliés Falcone, Adrian Francalanza, Srdan Krstić, JoHao M Lourenço,
et al. A survey of challenges for runtime verification from advanced application domains
(beyond software). arXiv preprint arXiv:1811.06740, 2018.

[122] Fred B Schneider. Enforceable security policies. Technical report, Cornell University, 1999.

176

[123] Joshua Schneider, David Basin, Srdan Krstić, and Dmitriy Traytel. A formally verified moni-
tor for metric first-order temporal logic. In International Conference on Runtime Verification,
pages 310–328. Springer, 2019.

[124] Koushik Sen, Grigore Roşu, and Gul Agha. Generating optimal linear temporal logic mon-
itors by coinduction. In Annual Asian Computing Science Conference, pages 260–275.
Springer, 2003.

[125] Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Roşu. Efficient decentralized moni-
toring of safety in distributed systems. In Proceedings of the 26th International Conference
on Software Engineering, pages 418–427. IEEE Computer Society, 2004.

[126] Stelios Sidiroglou, Oren Laadan, Carlos Perez, Nicolas Viennot, Jason Nieh, and Angelos D
Keromytis. Assure: automatic software self-healing using rescue points. ACM SIGARCH
Computer Architecture News, 37(1):37–48, 2009.

[127] Richard Smith. Working draft, standard for programming language C++ n4659. Google Inc,
pages 03–21, 2017.

[128] Hasan Sözer, Bedir Tekinerdoğan, and Mehmet Akşit. FLORA: A framework for decompos-
ing software architecture to introduce local recovery. Software: practice and experience, 39
(10):869–889, 2009.

[129] Meera Sridhar and Kevin W Hamlen. Model-checking in-lined reference monitors. In In-
ternational Workshop on Verification, Model Checking, and Abstract Interpretation, pages
312–327. Springer, 2010.

[130] Volker Stolz and Eric Bodden. Temporal assertions using AspectJ. Electronic Notes in
Theoretical Computer Science, 144(4):109–124, 2006.

[131] Hans Svensson and Lars-Åke Fredlund. A more accurate semantics for distributed Erlang.
In Proceedings of the 2007 SIGPLAN workshop on ERLANG Workshop, pages 43–54, 2007.

[132] Alvaro Videla and Jason JW Williams. RabbitMQ in action: distributed messaging for ev-
eryone. Manning, 2012.

[133] John Wiegley and Benjamin Delaware. Using Coq to write fast and correct Haskell. In
Proceedings of the 10th ACM SIGPLAN International Symposium on Haskell, pages 52–62.
ACM, 2017.

[134] Yoriyuki Yamagata, Cyrille Artho, Masami Hagiya, Jun Inoue, Lei Ma, Yoshinori Tanabe,
and Mitsuharu Yamamoto. Runtime monitoring for concurrent systems. In International
Conference on Runtime Verification, pages 386–403. Springer, 2016.

[135] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin, et al.
Apache spark: a unified engine for big data processing. Communications of the ACM, 59
(11):56–65, 2016.

177

[136] Teng Zhang, Peter Gebhard, and Oleg Sokolsky. SMEDL: combining synchronous and asyn-
chronous monitoring. In International Conference on Runtime Verification, pages 482–490.
Springer, 2016.

[137] Teng Zhang, John Wiegley, Insup Lee, and Oleg Sokolsky. Monitoring time intervals. In
International Conference on Runtime Verification, pages 330–345. Springer, 2017.

[138] Teng Zhang, Gregory Eakman, Insup Lee, and Oleg Sokolsky. Flexible monitor deployment
for runtime verification of large scale software. In International Symposium on Leveraging
Applications of Formal Methods, pages 42–50. Springer, 2018.

[139] Teng Zhang, John Wiegley, Theophilos Giannakopoulos, Gregory Eakman, Clément Pit-
Claudel, Insup Lee, and Oleg Sokolsky. Correct-by-construction implementation of runtime
monitors using stepwise refinement. In International Symposium on Dependable Software
Engineering: Theories, Tools, and Applications, pages 31–49. Springer, 2018.

[140] Teng Zhang, Greg Eakman, Insup Lee, and Oleg Sokolsky. Overhead-aware deployment
of runtime monitors. In International Conference on Runtime Verification, pages 375–381.
Springer, 2019.

[141] Wenchao Zhou, Oleg Sokolsky, Boon Thau Loo, and Insup Lee. DMaC: Distributed mon-
itoring and checking. In International Workshop on Runtime Verification, pages 184–201.
Springer, 2009.

178

	Rv-Enabled Framework For Self-Adaptive Software
	Recommended Citation

	Rv-Enabled Framework For Self-Adaptive Software
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Subject Categories

	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Challenges
	Contributions
	Structure

	State of the Art
	Introduction to runtime verification
	RV techniques
	Self-adaptive software

	Scenario-based Meta Event Description Language
	Single monitor: design, semantics and correct-by construction code generation
	SMEDL monitoring system
	Summary

	Parametric Monitoring Using SMEDL
	Preliminaries
	Expressing trace slicing of MOP using SMEDL
	Expressing trace slicing of QEA using SMEDL
	Summary

	Implementation and Evaluation
	Implementation of synchronous sets
	Tool evaluation
	Optimization
	Evaluation of monitor deployment on time overhead
	Summary

	Monitoring Time Interval
	Motivating examples
	System Architecture and preliminaries
	Setting the Interval Deadline
	Monitoring Procedure
	Summary

	Reflexive Adaptation Framework
	Extension of SMEDL framework for software adaptation
	Verification of adaptation actions
	Summary

	Conclusion
	Overview of work
	Future directions

	
	APPENDIX
	Concrete syntax of SMEDL
	SMEDL examples

	BIBLIOGRAPHY

