
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2021

Algorithmic Analysis And Statistical Inference Of Sparse Models Algorithmic Analysis And Statistical Inference Of Sparse Models

In High Dimension In High Dimension

Zhiqi Bu
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Applied Mathematics Commons, Computer Sciences Commons, and the Statistics and

Probability Commons

Recommended Citation Recommended Citation
Bu, Zhiqi, "Algorithmic Analysis And Statistical Inference Of Sparse Models In High Dimension" (2021).
Publicly Accessible Penn Dissertations. 4978.
https://repository.upenn.edu/edissertations/4978

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/4978
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F4978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=repository.upenn.edu%2Fedissertations%2F4978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F4978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=repository.upenn.edu%2Fedissertations%2F4978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=repository.upenn.edu%2Fedissertations%2F4978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4978?utm_source=repository.upenn.edu%2Fedissertations%2F4978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4978
mailto:repository@pobox.upenn.edu

Algorithmic Analysis And Statistical Inference Of Sparse Models In High Algorithmic Analysis And Statistical Inference Of Sparse Models In High
Dimension Dimension

Abstract Abstract
The era of machine learning features large datasets that have high dimension of features. This leads to
the emergence of various algorithms to learn efficiently from such high-dimensional datasets, as well as
the need to analyze these algorithms from both the prediction and the statistical inference viewpoint. To
be more specific, an ideal model is expected to predict accurately on the unseen new data, and to provide
valid inference so as to harness the uncertainty in the model. Unfortunately, the high dimension of
features poses a great challenge on the analysis of many prevalent models, rendering them either
inapplicable or difficult to study.

This thesis leverages the approximate message passing (AMP) algorithm, the optimization theory, and
the Sorted L-One Penalized Estimation (SLOPE) to study several important problems of the sparse
models.

The first chapter introduces various ℓ_1 penalties including but not limited to the SLOPE, a relatively
new convex optimization procedure via the sorted ℓ_1 penalty, in the general machine learning
models. We then focus on the linear models and demonstrate some basic properties of SLOPE, especially
its advantages over the Lasso. Next, we cover the AMP algorithm in terms of convergence behavior and
asymptotic statistical characterization.

The second chapter extends the AMP algorithms from Lasso to SLOPE and provides an asymptotically
tight characterization of the SLOPE solution. Note that SLOPE is a relatively new convex optimization
procedure for high-dimensional linear regression via the sorted ℓ_1 penalty: the larger the rank of the
fitted coefficient, the larger the penalty. This non-separable penalty renders many existing techniques
invalid or inconclusive in analyzing the SLOPE solution. We develop an asymptotically exact
characterization of the SLOPE solution under Gaussian random designs through solving the SLOPE
problem using approximate message passing (AMP). This algorithmic approach allows us to
approximate the SLOPE solution via the much more amenable AMP iterates. Explicitly, we characterize
the asymptotic dynamics of the AMP iterates relying on a recently developed state evolution analysis for
non-separable penalties, thereby overcoming the difficulty caused by the sorted ℓ_1 penalty.
Moreover, we prove that the AMP iterates converge to the SLOPE solution in an asymptotic sense, and
numerical simulations show that the convergence is surprisingly fast. Our proof rests on a novel
technique that specifically leverages the SLOPE problem. In contrast to prior literature, our work not only
yields an asymptotically sharp analysis but also offers an algorithmic, flexible, and constructive approach
to understanding the SLOPE problem.

The third chapter builds on top of the asymptotic characterization of SLOPE to study the trade-off
between true positive proportion (TPP) and false discovery proportion (FDP) or, equivalently, between
measures of type I error and power. Assuming a regime of linear sparsity and working under Gaussian
random designs, we obtain an upper bound on the optimal trade-off for SLOPE, showing its capability of
breaking the Donoho--Tanner power limit. To put it into perspective, this limit is the highest possible
power that the Lasso, which is perhaps the most popular ℓ_1-based method, can achieve even with
arbitrarily strong effect sizes. Next, we derive a tight lower bound that delineates the fundamental limit of
sorted ℓ_1 regularization in optimally trading theFDP off for the TPP. Finally, we show that on any
problem instance, SLOPE with a certain regularization sequence outperforms the Lasso, in the sense of
having a smaller FDP, larger TPP, and smaller ℓ_2 estimation risk simultaneously. Our proofs are
based on a novel technique that reduces a calculus of variations problem to a class of infinite-
dimensional convex optimization problems and a very recent result from approximate message passing

theory.

The fourth chapter works on the practical application of SLOPE by efficiently designing the SLOPE penalty
sequence in the finite dimension, by restricting the number of unique values in the SLOPE penalty to be
small. SLOPE's magnitude-dependent regularization requires an input of penalty sequence \blam,
instead of a scalar penalty as in the Lasso case, thus making the design extremely expensive in
computation. We propose two efficient algorithms to design the possibly high-dimensional SLOPE
penalty, in order to minimize the mean squared error. For Gaussian data matrices, we propose a first-order
Projected Gradient Descent (PGD) under the Approximate Message Passing regime. For general data
matrices, we present a zeroth-order Coordinate Descent (CD) to design a sub-class of SLOPE, referred to
as the k-level SLOPE. Our CD allows a useful trade-off between accuracy and computation speed. We
demonstrate the performance of SLOPE with our designs via extensive experiments on synthetic data and
real-world datasets.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Applied Mathematics

First Advisor First Advisor
Weijie J. Su

Second Advisor Second Advisor
Qi Long

Keywords Keywords
high-dimensional statistics, linear models, machine learning, optimization algorithm, sparse models,
statistical inference

Subject Categories Subject Categories
Applied Mathematics | Computer Sciences | Statistics and Probability

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/4978

https://repository.upenn.edu/edissertations/4978

ALGORITHMIC ANALYSIS AND STATISTICAL INFERENCE OF
SPARSE MODELS IN HIGH DIMENSION

Zhiqi Bu

A DISSERTATION

in

Applied Mathematics and Computational Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2021

Supervisor of Dissertation

Weijie Su
Assistant Professor in Wharton
Statistics and Data Science

Co-Supervisor of Dissertation

Qi Long
Professor of Biostatistics in
Biostatistics and Epidemiology

Graduate Group Chairperson

Robin Pemantle, Merriam Term Professor of Mathematics

Dissertation Committee:
Edward I. George, Universal Furniture Professor Emeritus of Statistics
and Data Science
Ian J. Barnett, Assistant Professor of Biostatistics
Weijie Su, Assistant Professor in Wharton Statistics and Data Science
Qi Long, Professor of Biostatistics in Biostatistics and Epidemiology

Acknowledgments

I truly believe that the success of a Ph.D. student is attributed to many factors

beyond one’s own endeavor. Therefore, I owe thanks to so many people that are

impossible to be fully listed here, but I will give my best try.

First and foremost, I would like to thank my family. Without their support, I

would not have the opportunity to come to the United States and join the Ph.D.

program at University of Pennsylvania. Their encouragement and understanding

help me go through the hardest days and think bigger at all times.

I would like to thank my advisors, Weijie Su and Qi Long, for the constant

support on my academic research and beyond. Especially, I sincerely appreciate the

time and ideas contributed to my research, without which the completion of this

dissertation would not be possible. I especially want to thank them for their rigor

and vision in their research areas, as well as the critical insight and the abundant

experience that they passed onto me. As an old saying goes: ‘well begun is half

done’, my advisors’ guidance is key to the fruitful results of my research. Also, I

would like to thank them for the great support on my industry internship, which

ii

brought new angles to my research and directly formulated my career plan.

I am grateful to Edward I. George and Ian J. Barnett for kindly serving at my

thesis defense committee. I have enjoyed our discussion during my oral exam and

thank you for the commitment especially during the COVID period.

I would also like to thank all my collaborators. I want to thank Jason M. Klu-

sowski and Cynthia Rush for contributing heavily to the main content of this thesis.

I owe special thanks to Janardhan Kulkarni, Sergey Yekhanin and Gopi Sivakanth at

Microsoft Research for hosting my first industry internship on differentially private

algorithms. My thanks extend to Rich Caruana, Yin-Tat Lee, Ping Li, Zha Sheng,

and Yu-xiang Wang during other internships and great discussion.

I would like to express my gratitude to many friends, including Jinshuo Dong,

Yiliang Zhang, Kan Chen, Shiyun Xu, Hua Wang, Zongyu Dai, Matteo Sordello,

Qiyiwen Zhang, Xiang Zhao, Harsha Nori, Xinyu Liao, and many others, for

the academic and non-academic discussions. My thanks also go to University of

Pennsylvania, particularly my program chairs Charles Epstein and Robin Pemantle,

the program coordinator Ammarah Aftab, the academic writing staffs, and the

providers of my scholarship and grants. I am grateful to the entire community for a

great eco-system, including the editors and especially all anonymous reviewers who

are extremely helpful to improve my research.

Finally, thanks to the 2017-2021 myself, who kept up the good work and never

gave up on his style under the pressure.

iii

ABSTRACT

ALGORITHMIC ANALYSIS AND STATISTICAL INFERENCE OF SPARSE

MODELS IN HIGH DIMENSION

Zhiqi Bu

Weijie Su

Qi Long

The era of machine learning features large datasets that have high dimension of

features. This leads to the emergence of various algorithms to learn efficiently from

such high-dimensional datasets, as well as the need to analyze these algorithms from

both the prediction and the statistical inference viewpoint. To be more specific, an

ideal model is expected to predict accurately on the unseen new data, and to provide

valid inference so as to harness the uncertainty in the model. Unfortunately, the

high dimension of features poses a great challenge on the analysis of many prevalent

models, rendering them either inapplicable or difficult to study.

This thesis leverages the approximate message passing (AMP) algorithm, the

optimization theory, and the Sorted L-One Penalized Estimation (SLOPE) to study

several important problems of the sparse models.

The first chapter introduces various ℓ1 penalties including but not limited to the

SLOPE, a relatively new convex optimization procedure via the sorted ℓ1 penalty,

in the general machine learning models. We then focus on the linear models and

iv

demonstrate some basic properties of SLOPE, especially its advantages over the

Lasso. Next, we cover the AMP algorithm in terms of convergence behavior and

asymptotic statistical characterization.

The second chapter extends the AMP algorithms from Lasso to SLOPE and

provides an asymptotically tight characterization of the SLOPE solution. Note

that SLOPE is a relatively new convex optimization procedure for high-dimensional

linear regression via the sorted ℓ1 penalty: the larger the rank of the fitted coef-

ficient, the larger the penalty. This non-separable penalty renders many existing

techniques invalid or inconclusive in analyzing the SLOPE solution. We develop

an asymptotically exact characterization of the SLOPE solution under Gaussian

random designs through solving the SLOPE problem using approximate message

passing (AMP). This algorithmic approach allows us to approximate the SLOPE

solution via the much more amenable AMP iterates. Explicitly, we characterize

the asymptotic dynamics of the AMP iterates relying on a recently developed state

evolution analysis for non-separable penalties, thereby overcoming the difficulty

caused by the sorted ℓ1 penalty. Moreover, we prove that the AMP iterates converge

to the SLOPE solution in an asymptotic sense, and numerical simulations show

that the convergence is surprisingly fast. Our proof rests on a novel technique

that specifically leverages the SLOPE problem. In contrast to prior literature, our

work not only yields an asymptotically sharp analysis but also offers an algorithmic,

flexible, and constructive approach to understanding the SLOPE problem.

v

The third chapter builds on top of the asymptotic characterization of SLOPE

to study the trade-off between true positive proportion (TPP) and false discovery

proportion (FDP) or, equivalently, between measures of type I error and power.

Assuming a regime of linear sparsity and working under Gaussian random designs, we

obtain an upper bound on the optimal trade-off for SLOPE, showing its capability of

breaking the Donoho–Tanner power limit. To put it into perspective, this limit is the

highest possible power that the Lasso, which is perhaps the most popular ℓ1-based

method, can achieve even with arbitrarily strong effect sizes. Next, we derive a tight

lower bound that delineates the fundamental limit of sorted ℓ1 regularization in

optimally trading the FDP off for the TPP. Finally, we show that on any problem

instance, SLOPE with a certain regularization sequence outperforms the Lasso,

in the sense of having a smaller FDP, larger TPP, and smaller ℓ2 estimation risk

simultaneously. Our proofs are based on a novel technique that reduces a calculus of

variations problem to a class of infinite-dimensional convex optimization problems

and a very recent result from approximate message passing theory.

The fourth chapter works on the practical application of SLOPE by efficiently

designing the SLOPE penalty sequence in the finite dimension, by restricting the

number of unique values in the SLOPE penalty to be small. SLOPE’s magnitude-

dependent regularization requires an input of penalty sequence λ, instead of a

scalar penalty as in the Lasso case, thus making the design extremely expensive

in computation. We propose two efficient algorithms to design the possibly high-

vi

dimensional SLOPE penalty, in order to minimize the mean squared error. For

Gaussian data matrices, we propose a first-order Projected Gradient Descent (PGD)

under the Approximate Message Passing regime. For general data matrices, we

present a zeroth-order Coordinate Descent (CD) to design a sub-class of SLOPE,

referred to as the k-level SLOPE. Our CD allows a useful trade-off between accuracy

and computation speed. We demonstrate the performance of SLOPE with our

designs via extensive experiments on synthetic data and real-world datasets.

vii

Contents

ACKNOWLEDGEMENT ii

ABSTRACT iv

1 Introduction 1

2 Algorithmic Analysis and Statistical Estimation of SLOPE via

Approximate Message Passing 6

2.1 Introduction . 6

2.2 Algorithmic Development . 12

2.2.1 AMP Background . 14

2.2.2 Analysis of the AMP State Evolution 15

2.2.3 Threshold Calibration . 20

2.3 Asymptotic Characterization of SLOPE 23

2.3.1 AMP Recovers the SLOPE Estimate 23

2.3.2 Exact Asymptotic Characterization of the SLOPE Estimate 25

viii

2.4 Proof for Asymptotic Characterization of the SLOPE Estimate . . . 30

2.5 Proof AMP Finds the SLOPE Solutions 32

2.5.1 Preliminaries on SLOPE . 34

2.5.2 Main Technical Lemma . 39

2.6 Expansion of the AMP State Evolution Ideas 48

2.7 Verification of Main Technical Lemma Conditions 52

2.7.1 Condition (4) . 53

2.7.2 Condition (5) . 53

2.7.3 Condition (1) . 53

2.7.4 Condition (2) . 54

2.7.5 Condition (3) . 56

2.8 Discussion and Future Work . 63

2.9 Appendix . 64

2.9.1 State Evolution Analysis . 64

2.9.2 Verifying Properties (P1) and (P2) 79

2.9.3 Proof of Fact 2.2.7 . 85

2.9.4 Proof of Lemma 2.7.1 . 86

2.9.5 Proof of Lemma 2.7.3 . 89

2.9.6 Technical Details for the Condition (3) Proof 95

2.9.7 Some Useful Auxiliary Material 103

3 Characterizing the SLOPE Trade-off: A Variational Perspective

ix

and the Donoho-Tanner Limit 105

3.1 Introduction . 106

3.1.1 A peek at our results . 108

3.1.2 Organization . 112

3.2 Main results . 113

3.2.1 Bounds on the SLOPE trade-off 114

3.2.2 Breaking the Donoho–Tanner power limit 119

3.2.3 Below the Donoho–Tanner power limit 125

3.2.4 Instance-superiority of SLOPE 128

3.3 Preliminaries for Proofs . 130

3.4 Lower bound of SLOPE trade-off 135

3.4.1 Optimal prior is three-point prior 139

3.4.2 Characterizing optimal penalty analytically 141

3.4.3 Searching over optimal penalty numerically 142

3.4.4 Solving the quadratic program 144

3.4.5 Summary . 146

3.4.6 Differences between SLOPE and Lasso 147

3.5 Upper bound of SLOPE trade-off 148

3.5.1 Möbius upper bound is achievable 150

3.5.2 Infinity-or-nothing prior has FDP above upper bound 154

3.5.3 Gap between upper and lower bounds 158

x

3.6 Discussion . 161

3.7 Appendix . 163

3.7.1 When does SLOPE outperform Lasso? 163

3.7.2 Detailed preliminary results of SLOPE AMP 167

3.7.3 Bridging SLOPE and soft-thresholding 172

3.7.4 SLOPE trade-off and Möbius upper bound 177

3.7.5 Lower bound not equal to upper bound 198

3.7.6 Proving SLOPE outperforms the Lasso for fixed prior 207

3.7.7 Auxiliary proofs . 213

3.7.8 Computation of SLOPE AMP quantities 218

3.7.9 Design of SLOPE penalty under fixed prior 225

4 Efficient Designs of SLOPE Penalty Sequences in Finite Dimension228

4.1 Introduction . 228

4.1.1 Notations . 231

4.2 SLOPE penalty design under AMP regime 231

4.2.1 Computing the gradients with respect to the penalty 231

4.2.2 Projection onto non-negative decreasing vectors 235

4.2.3 Projected Gradient Descents 237

4.2.4 Transforming from α to λ 240

4.3 k-level SLOPE . 241

4.3.1 Practical penalty design for k-level SLOPE 242

xi

4.4 Experiments . 243

4.4.1 Synthetic datasets . 243

4.4.2 Real datasets for linear and logistic regression 245

4.5 Discussion . 248

4.6 Appendix . 249

4.6.1 Introduction to MMSE AMP 249

4.6.2 Analysis of Gradient in PGD for α 251

4.6.3 Analysis of Projection in PGD for α 254

xii

Chapter 1

Introduction

In this era of big data, machine learning methods are often applied on datasets with

high dimensions of features, at the scale of hundreds to millions. From a practical

perspective, large models are difficult to work with: it is time-consuming to train

and tune hyperparameters for large models; the memory cost to store and deploy can

be infeasible. As a consequence, sparse models that possess comparable performance

in comparison to the dense models are desired. This thesis focuses on applying and

analyzing ℓ1-based regularizations which are applied to modern machine learning to

obtain sparse models, starting from the classical Lasso (standing for least absolute

shrinkage and selection operator) problem that traces back to 1990s. The Lasso

problem applies an ℓ1 regularization on a linear model:

y = Xβ + w,

1

where X ∈ Rn×p is a known measurement matrix, β ∈ Rp is an unknown signal or

prior, and w ∈ Rn is the measurement noise.

The Lasso is a convex minimization problem with penalty scalar λ ∈ R,

β̂ := arg min
b

1
2∥y −Xb∥2 + λ

p∑
i=1
|b|i.

Researches have shown that Lasso enjoys many desirable properties like exact support

recovery and asymptotic consistency, under working assumptions. Especially in high

dimensions, when the ordinary least squares (OLS) fail to work due to the infinite

number of solutions, the Lasso can have a unique solution. In fact, the Lasso penalty

can be applied to a much wider class than linear models, which covers support vector

machine and neural networks. Additionally, variants of Lasso emerge to achieve

better prediction and inference performance. Some prevalent examples are elastic

net [ZH05a], adaptive Lasso [Zou06a], group Lasso [YL06a], and many others.

Recently in 2015, sorted L-One penalty estimation (SLOPE) [Bog+15a] is pro-

posed to control the false discovery rate in the case of independent predictors and

shown to achieve minimax estimation without any knowledge of the sparsity degree

of β. SLOPE is also a convex minimization problem, with a penalty vector λ ∈ Rp,

β̂ := arg min
b

1
2∥y −Xb∥2 +

p∑
i=1

λi|b|(i).

Here λ1 ≥ · · · ≥ λp ≥ 0 and |b|(1) ≥ · · · ≥ |b|(p) are the sorted absolute values of the

fitted coefficients. The idea is to penalize the larger coefficient more heavily, similar

to how tax works.

2

One challenge to analyzing the Lasso and SLOPE is that these problems do

not have closed-form solutions in general. In the past few years, the approximate

message passing (AMP) algorithm for the Lasso is proposed with an asymptotic

characterization theory. AMP is a class of computationally efficient and easy-to-

implement algorithms for a broad range of statistical estimation problems, including

compressed sensing and the LASSO. Under certain assumptions where the AMP

algorithm is guaranteed to work, the AMP theory establishes the equivalence in

distribution between the Lasso solution β̂ and a proximal operator:

β̂j = η(B + τZ;ατ),

where B is the distribution from which elements of β are i.i.d. drawn, Z is an indepen-

dent standard Gaussian, and (α, τ) are two scalars derived from the AMP algorithm.

The η function is the proximal operator which is known as the soft-thresholding

function in the case of the Lasso. With this tight characterization, statistical quanti-

ties such as true positive proportion (TPP), false discovery proportion (FDP), and

estimiation risk can be computed and analyzed.

To develop the corresponding characterization for SLOPE, we have to overcome

many technical difficulties mainly caused by the non-separability of the sorted ℓ1

norm penalty in SLOPE. To be a bit more specific, the non-separability makes

the proximal operator of SLOPE to be much less analytical than that of the Lasso

and requires us to guarantee the convergence of the AMP algorithm, as well as the

statistical characterization of SLOPE, in a more complicated way. Another challenge

3

lies in the practical application of SLOPE: the length p SLOPE penalty vector is

computationally expensive to design than a single scalar penalty in the Lasso.

In summary, this thesis tackles the above challenges and makes the following

contributions:

1. We propose the SLOPE AMP, an optimization algorithm that provably solves

the SLOPE problem (Chapter 2).

2. We present the SLOPE AMP theory that characterizes the SLOPE solution

asymptotically tightly (Chapter 2).

3. We use the characterization to analyze TPP, FDP, and estimation risk of

SLOPE. Consequently, we can describe the TPP-FDP trade-off and show that

SLOPE overcomes the Donoho-Tanner power limit, in fact achieving full power

(Chapter 3).

4. We show the outperformance of SLOPE over the Lasso in the fixed prior

scenario, by using 2-level SLOPE (Chapter 3).

5. We show SLOPE can achieve significantly smaller estimation risk than the

Lasso asymptotically. We further illustrate a practically efficient method to

design the k-level SLOPE that empirically achieves low estimation risk in the

finite dimension. (Chapter 4)

While the previous introduction mainly focuses on linear models, which are

preferred for their simplicity and interpretability in many areas such as health-

4

related data analysis and economic forecasts, we believe SLOPE and its variants

(e.g. k-level SLOPE and group SLOPE) can work compatibly with other machine

learning models.

5

Chapter 2

Algorithmic Analysis and

Statistical Estimation of SLOPE

via Approximate Message Passing

This chapter is based on "Zhiqi Bu, Jason M. Klusowski, Cynthia Rush, and Weijie

J. Su. "Algorithmic analysis and statistical estimation of SLOPE via approximate

message passing." IEEE Transactions on Information Theory 67, no. 1 (2020):

506-537.".

2.1 Introduction

Consider observing linear measurements y ∈ Rn that are modeled by the equation

y = Xβ + w, (2.1.1)

6

where X ∈ Rn×p is a known measurement matrix, β ∈ Rp is an unknown signal, and

w ∈ Rn is the measurement noise. Among numerous methods that seek to recover

the signal β from the observed data, especially in the setting where β is sparse and

p is larger than n, SLOPE has recently emerged as a useful procedure that allows

for estimation and model selection [Bog+15a]. This method reconstructs the signal

by solving the minimization problem

β̂ := arg min
b

1
2∥y −Xb∥2 +

p∑
i=1

λi|b|(i), (2.1.2)

where ∥·∥ denotes the ℓ2 norm, λ1 ≥ · · · ≥ λp ≥ 0 (with at least one strict inequality)

is a sequence of thresholds, and |b|(1) ≥ · · · ≥ |b|(p) are the order statistics of the

fitted coefficients in absolute value. The regularizer ∑λi|b|(i) is a sorted ℓ1-norm

(denoted as Jλ(b) henceforth), which is non-separable due to the sorting operation

involved in its calculation. Notably, SLOPE has two attractive features that are not

simultaneously present in other methods for linear regression including the LASSO

[Tib96a] and knockoffs [BC+15]. Explicitly, on the estimation side, SLOPE achieves

minimax estimation properties under certain random designs without requiring any

knowledge of the sparsity degree of β [SC16; BLT18]. On the testing side, SLOPE

controls the false discovery rate in the case of independent predictors [Bog+15a;

Brz+18]. For completeness, we remark that [BR08; ZF14; FN16] proposed similar

non-separable regularizers to encourage grouping of correlated predictors.

This work is concerned with the algorithmic aspects of SLOPE through the

lens of approximate message passing (AMP) [BM11a; DMM09a; Krz+12; Ran11].

7

AMP is a class of computationally efficient and easy-to-implement algorithms for a

broad range of statistical estimation problems, including compressed sensing and

the LASSO [BM11c]. When applied to SLOPE, AMP takes the following form: at

initial iteration t = 0, assign β0 = 0, z0 = y, and for t ≥ 0,

βt+1 = proxJθt
(X⊤zt + βt), (2.1.3a)

zt+1 = y −Xβt+1 + zt

n

[
∇ proxJθt

(X⊤zt + βt)
]
. (2.1.3b)

The non-increasing sequence θt is proportional to λ = (λ1, λ2, . . . , λp) and will be

given explicitly in Section 2.2. Here, proxJθ
is the proximal operator of the sorted ℓ1

norm, that is,

proxJθ
(x) := argmin

b

1
2∥x− b∥2 + Jθ(b), (2.1.4)

and ∇ proxJθ
denotes the divergence of the proximal operator (see an equivalent,

but more explicit form, of this algorithm in Section 2.2 and further discussion of

SLOPE and the prox operator in Section 2.5.1). Compared to the proximal gradient

descent (ISTA) [Cha+98; DDDM04; PB14], AMP has an extra correction term in

its residual step that adjusts the iteration in a non-trivial way and seeks to provide

improved convergence performance [DMM09a].

The empirical performance of AMP in solving SLOPE under i.i.d. Gaussian

matrix X is illustrated in Figure 2.1 and Table 2.1, which suggest the superiority of

AMP over ISTA and FISTA [BT09]—perhaps the two most popular proximal gradient

descent methods—in terms of speed of convergence in this setting. However, the vast

AMP literature thus far remains silent on whether AMP provably solves SLOPE and,

8

0.00

0.03

0.06

0.09

100 101 102 103 104
O

pt
im

iz
at

io
n

E
rr

or

AMP

FISTA

ISTA

0

250

500

750

100 100.5 101 101.5 102 102.5

Iteration

S
et

 D
iff

er
en

ce

AMP

FISTA

ISTA

Figure 2.1: Optimization errors, ||βt− β̂||2/p, and (symmetric)

set difference of supp(βt) and supp(β̂).

Optimization errors

Set Diff 10−2 10−3 10−4 10−5 10−6

ISTA 60 4048 7326 8569 9007 9161

FISTA 47 275 374 412 593 604

AMP 30 6 13 22 32 40

Table 2.1: First iteration t for which there is zero set difference or optimization error

||βt − β̂||2/p falls below a threshold.

Figure 2.1 and Table 2.1 Details: Design X is 500 × 1000 with i.i.d. N (0, 1/500)

entries. True signal β is i.i.d. Gaussian-Bernoulli: N (0, 1) with probability 0.1 and

0 otherwise. Noise variance σ2
w = 0. A careful calibration between the thresholds θt

in AMP and λ is SLOPE is used (details in Sec. 2.2).

9

if so, whether one can leverage AMP to get insights into the statistical properties of

SLOPE. This vacuum in the literature is due to the non-separability of the SLOPE

regularizer, making it a major challenge to apply AMP to SLOPE directly. In stark

contrast, AMP theory has been rigorously applied to the LASSO [BM11c], showing

both good empirical performance and nice theoretical properties of solving the

LASSO using AMP. Moreover, AMP in this setting allows for asymptotically exact

statistical characterization of its output, which converges to the LASSO solution,

thereby providing a powerful tool in fine-grained analyses of the LASSO [BEM13;

SBC17; MMB+18a; RV18].

Main contributions. In this work, we prove that the AMP algorithm (2.1.3)

solves the SLOPE problem in an asymptotically exact sense under independent

Gaussian random designs. Our proof uses the recently extended AMP theory for

non-separable denoisers [BMN20] and applies this tool to derive the state evolution

that describes the asymptotically exact behaviors of the AMP iterates βt in (2.1.3).

The next step, which is the core of our proof, is to relate the AMP estimates

to the SLOPE solution. This presents several challenges that cannot be resolved

only within the AMP framework. In particular, unlike the LASSO, the number of

nonzeros in the SLOPE solution can exceed the number of observations. This fact

imposes substantially more difficulties on showing that the distance between the

SLOPE solution and the AMP iterates goes to zero than in the LASSO case due

to the possible non-strong convexity of the SLOPE problem, even restricted to the

10

solution support. To overcome these challenges, we develop novel techniques that

are tailored to the characteristics of the SLOPE solution. For example, our proof

relies on the crucial property of SLOPE that the unique nonzero components of its

solution never outnumber the observation units.

As a byproduct, our analysis gives rise to an exact asymptotic characterization of

the SLOPE solution under independent Gaussian random designs through leveraging

the statistical aspect of the AMP theory. In more detail, the probability distribution

of the SLOPE solution is completely specified by a few parameters that are the

solution to a certain fixed-point equation in an asymptotic sense. This provides a

powerful tool for fine-grained statistical analysis of SLOPE as it was for the LASSO

problem. We note that a recent paper [HL19a]—which takes an entirely different

path—gives an asymptotic characterization of the SLOPE solution that matches

our asymptotic analysis deduced from our AMP theory for SLOPE. However, our

AMP-based approach is more algorithmic in nature and offers a more concrete

connection between the finite-sample behaviors of the SLOPE problem and its

asymptotic distribution via the computationally efficient AMP algorithm.

Paper outline. In Section 2.2 we develop an AMP algorithm for finding the

SLOPE estimator in (2.1.2). Specifically, it is through the threshold values θt in

the AMP algorithm in (2.1.3) that one can ensure the AMP estimates converge

to the SLOPE estimator with parameter λ, so in Section 2.2 we provide details

for how one should calibrate the thresholds of the AMP iterations in (2.1.3) in

11

order for the algorithm to solve SLOPE cost in (2.1.2). Then in Section 2.3, we

state theoretical guarantees showing that the AMP algorithm solves the SLOPE

optimization asymptotically and we leverage theoretical guarantees for the AMP

algorithm to exactly characterize the mean square error (more generally, any pseudo-

Lipschitz error) of the SLOPE estimator in the large system limit. This is done by

applying recent theoretical results for AMP algorithms that use a non-separable

non-linearity [BMN20], like the one in (2.1.3). Finally, Sections 2.4-2.7 prove

rigorously the theoretical results stated in Section 2.3 and we end with a discussion

in Section 2.8.

2.2 Algorithmic Development

To begin with, we state assumptions under which our theoretical results will hold

and give some preliminary ideas about SLOPE that will be useful in the development

of the AMP algorithm.

Assumptions. Concerning the linear model (2.1.1) and parameter vector in

(2.1.2), we assume:

(A1) The measurement matrix X has independent and identically-distributed

(i.i.d.) Gaussian entries that have mean 0 and variance 1/n.

(A2) The signal β has elements that are i.i.d. B, with E(B2 max{0, logB}) <∞.

(A3) The noise w is elementwise i.i.d. W , with σ2
w := E(W 2) <∞.

12

(A4) The vector λ(p) = (λ1, . . . , λp) is elementwise i.i.d. Λ, with E(Λ2) < ∞ and

min{λ(p)} > 0.

(A5) The ratio n/p approaches a constant δ ∈ (0,∞) in the large system limit, as

n, p→∞.

Remark: (A4) can be relaxed as λ1, . . . , λp having an empirical distribution that

converges weakly to probability measure Λ on R with E(Λ2) <∞ and ∥λ(p)∥2/p→

E(Λ2) and min{λ(p)} > 0. A similar relaxation can be made for the distributional

assumptions (A2) and (A3).

SLOPE preliminaries. For a vector v ∈ Rp, the divergence of the proximal

operator, ∇ proxf (v), is given by the following:

∇ proxf (v) :=
p∑

i=1

∂

∂vi

[proxf (v)]i =
(
∂

∂v1
,
∂

∂v2
, . . . ,

∂

∂vp

)
· proxf (v), (2.2.1)

where [SC16, proof of Fact 3.4],

∂[proxJλ
(v)]i

∂vj

=


sign([proxJλ

(v)]i)·sign([proxJλ
(v)]j)

#{1 ≤ k ≤ p : |[proxJλ
(v)]k| = |[proxJλ

(v)]j |} , if |[proxJλ
(v)]j| = |[proxJλ

(v)]i|,

0, otherwise.

(2.2.2)

Hence the divergence takes the simplified form

∇ proxJλ
(v) = ∥ proxJλ

(v)∥∗
0, (2.2.3)

where ∥ · ∥∗
0 counts the unique non-zero magnitudes in a vector, e.g. ∥(0, 1,−2, 0, 2)∥∗

0

= 2. This explicit form of divergence not only waives the need to use approximation

13

in calculation but also speed up the recursion, since it only depends on the proximal

operator as a whole instead of on θt−1,X, zt−1,βt−1. Therefore, we have

Lemma 2.2.1. In AMP, (2.1.3b) is equivalent to zt+1 = y −Xβt+1 + zt

δp
∥βt+1∥∗

0.

Other details and background on SLOPE and the prox operator are found in

Section 2.5.1. Now we discuss the details of an AMP algorithm that can be used for

finding the SLOPE estimator in (2.1.2).

2.2.1 AMP Background

An attractive feature of AMP is that its statistical properties can be exactly charac-

terized at each iteration t, at least asymptotically, via a one-dimensional recursion

known as state evolution [BM11a; BMN20; RV18; JM13]. Specifically, it can be

shown that the pseudo-data, meaning the input X⊤zt + βt for the estimate of the

unknown signal in (2.1.3a), is asymptotically equal in distribution to the true signal

plus independent, Gaussian noise, i.e. β + τtZ, where the noise variance τt is defined

by the state evolution. For this reason, the function used to update the estimate

in (2.1.3a), in our case, the proximal operator, proxJθt
(·), is usually referred to as a

‘denoiser’ in the AMP literature.

This statistical characterization of the pseudo-data was first rigorously shown

to be true in the case of ‘separable’ denoisers by Bayati and Montanari [BM11a],

and an analysis of the rate of this convergence was given in [RV18]. A ‘separable’

denoiser is one that applies the same (possibly non-linear) function to each element

14

of its input. Recent work [BMN20] proves that the pseudo-data has distribution

β + τtZ asymptotically, even when the ‘denoisers’ used in the AMP algorithm are

non-separable, like the SLOPE prox operator in (2.1.3a).

As mentioned previously, the dynamics of the AMP iterations are tracked by

a recursive sequence referred to as the state evolution, defined as follows. For B

elementwise i.i.d. B independent of Z ∼ N (0, Ip), let τ 2
0 = σ2

w + E[B2]/δ and for

t ≥ 0,

τ 2
t+1 = σ2

w + lim
p

1
δp

E∥proxJθt
(B + τtZ)−B∥2. (2.2.4)

Below we make rigorous the way that the recursion in (2.2.4) relates to the AMP

iteration (2.1.3).

We note that throughout, we let N (µ, σ2) denote the Gaussian density with

mean µ and variance σ2 and we use Ip to indicate a p× p identity matrix.

2.2.2 Analysis of the AMP State Evolution

As the state evolution (2.2.4) predicts the performance of the AMP algorithm (2.1.3)

(the pseudo-data, X⊤zt + βt, is asymptotically equal in distribution β + τtZ), it is

of interest to study the large t asymptotics of (2.2.4). Moreover, recall that through

the sequence of thresholds θt, one can relate the AMP algorithm to the SLOPE

estimator in (2.1.2) for a specific λ, and the explicit form of this calibration, given

in Section 2.2.3, is motivated by such asymptotic analysis of the state evolution.

It turns out that a finite-size approximation, which we denote τ 2
t (p), will be easier

15

to analyze than (2.2.4). The definition of τ 2
t+1(p) is stated explicitly in (2.2.5) below.

Throughout the work, we will define thresholds θt := ατt(p) for every iteration t

where the vector α is fixed via a calibration made explicit in Section 2.2.3. We

can interpret this to mean that within the AMP algorithm, α plays the role of

the regularizer parameter, λ. Now we define τ 2
t+1(p), for large p, as a finite-sample

approximation to (2.2.4), namely

τ 2
t+1(p) = σ2

w + 1
δp

E∥proxJατt(p)
(β + τt(p)Z)− β∥2, (2.2.5)

where the difference between (2.2.5) and the state evolution (2.2.4) is via the large

system limit in p. When we refer to the recursion in (2.2.5), we will always specify

the p dependence explicitly as τt(p). An analysis of the limiting properties (in t)

of (2.2.5) is given in Theorem 1 below, after which it is then argued that because

interchanging limits and differentiation is justified, the large t analysis of (2.2.5)

holds for (2.2.4) as well. Before presenting Theorem 1, however, we give the following

result which motivates why the AMP iteration should relate at all to the SLOPE

estimator.

Lemma 2.2.2. Any stationary point β̂ (with corresponding ẑ) in the AMP algorithm

(2.1.3a)-(2.1.3b) with θ∗ = ατ∗ is a minimizer of the SLOPE cost function in (2.1.2)

with

λ = θ∗

(
1− 1

δp

(
∇ proxJθ∗

(β̂ + X⊤ẑ)
))

= θ∗

(
1− 1

n

∥∥∥proxJθ∗
(β̂ + X⊤ẑ)

∥∥∥∗

0

)
.

Proof of Lemma 2.2.2. Denote, w := (∇ proxJθ∗
(β̂ + X⊤ẑ))/(δp). Now, by station-

16

arity,

β̂ = proxJθ∗
(β̂ + X⊤ẑ), and ẑ = y −Xβ̂ + ẑ

δp
(∇ proxJθ∗

(β̂ + X⊤ẑ)).

(2.2.6)

From (2.2.6), notice that ẑ = y−Xβ̂
1−w

. By Fact 2.5.2, X⊤ẑ ∈ ∂Jθ∗(β̂), where ∂Jθ∗(β̂)

is the subgradient of Jθ∗(·) at β̂ (a precise definition of a subgradient is given in

Section 2.5.1). Then, X⊤ẑ = X⊤(y−Xβ̂)
1−w

∈ Jθ∗(β̂), and therefore X⊤(y −Xβ̂) ∈

Jθ∗(1−w)(β̂) which is exactly the stationary condition of SLOPE with regularization

parameter λ = (1− w)θ∗, as desired.

Now we present Theorem 1, which provides results about the t asymptotics of

the recursion in (2.2.5) and its proof is given in Appendix 2.9.1. First, some notation

must be introduced: let Amin(δ) be the set of solutions to

δ = f(α),

where f(α) := 1
p

p∑
i=1

E
{(

1− |[proxJα
(Z)]i|

∑
j∈Ii

αj

)/
[D(proxJα

(Z))]i
}
.

(2.2.7)

Here ⊙ represents elementwise multiplication of vectors and for vector v ∈ Rp, D is

defined elementwise as [D(v)]i = #{j : |vj| = |vi|} if vi ̸= 0 and ∞ otherwise. Let

Ii = {j : 1 ≤ j ≤ p and |[proxJα
(Z)]j| = |[proxJα

(Z)]i|}. The expectation in (2.2.7)

is taken with respect to Z, a p-length vector of i.i.d. standard Gaussians. Finally,

for u ∈ Rm, the notation ⟨u⟩ := ∑m
i=1 ui/m and we say u is strictly larger than

v ∈ Rm if ui > vi for all elements i ∈ {1, 2, . . . ,m}. For the simple case of p = 2,

we illustrate an example of the set Amin(δ) in Figure 2.2.

17

Theorem 1. For any α strictly larger than at least one element in the set Amin(δ),

the recursion in (2.2.5) has a unique fixed point that we denote as τ 2
∗ (p). Then τt(p)→

τ∗(p) monotonically for any initial condition. Define a function F : R× Rp → R as

F
(
τ 2(p),ατ(p)

)
:= σ2

w + 1
δp

E∥proxJατ(p)
(B + τ(p)Z)−B∥2, (2.2.8)

where B is elementwise i.i.d. B independent of Z ∼ N (0, Ip), so that τ 2
t+1(p) =

F(τ 2
t (p),ατt(p)). Then | ∂F

∂τ2(p)(τ
2(p),ατ(p))|< 1 at τ(p) = τ∗(p). Moreover, for f(α)

defined in (2.2.7), we show that f(α) = δ limτ(p)→∞ dF/dτ 2(p).

Beyond providing the large t asymptotics of the state evolution sequence, notice

that Theorem 1 gives necessary conditions on the calibration vector α under which

the recursion in (2.2.5), and equivalently, the calibration detailed in Section 2.2.3

below are well-defined.

Recall that it is actually the state evolution in (2.2.4) (and not that in (2.2.5))

that predicts the performance of the AMP algorithm, and therefore we would really

like a version of Theorem 1 studying the large system limit in p. We argue that

because interchanging differentiation and the limit, the proof of Theorem 1 analyzing

(2.2.5), can easily be used to give an analogous result for (2.2.4). In particular

analyzing (2.2.4) via the strategy given in the proof of Theorem 1 requires that we

study the partial derivative of limp E∥proxJατ
(B + τZ)−B∥2/(δp), with respect to

τ 2. Indeed, to directly make use our proof for the finite-p case given in Theorem 1,

18

it is enough that

∂

∂τ 2 lim
p

E∥proxJατ
(B + τZ)−B∥2/(δp) = lim

p

∂

∂τ 2E∥proxJατ
(B + τZ)−B∥2/(δp).

(2.2.9)

Note that we already have an argument (based on dominated convergence for fixed

p, see (2.9.1) and Lemma 2.9.1) showing that

∂

∂τ 2E∥proxJατ
(B + τZ)−B∥2 = E

{
∂

∂τ 2∥proxJατ
(B + τZ)−B∥2

}
.

The next lemma gives us a roadmap for how to proceed (c.f., [Rud+64, Theorem

7.17]) to justify the interchange in (2.2.9).

Lemma 2.2.3. Suppose {gm} is a sequence of functions that converge pointwise

to g on a compact domain D and whose derivatives {g′
m} converge uniformly to a

function h on D. Then h = g′ on D.

Therefore, taking {gp} = {F(τ 2(p),ατ(p))}, it suffices to show that if

∂F
∂τ 2(p)(τ 2(p),ατ(p)) = ∂

∂τ 2(p)E∥proxJατ(p)
(B + τ(p)Z)−B∥2/(δp),

then the sequence { ∂F
∂τ2 (τ 2,ατ)}p converges uniformly as p→∞. The main tool for

proving such a result is given in the following lemma.

Lemma 2.2.4. Suppose {gm} is a sequence of L-Lipschitz functions (where L is

independent of m) that converge pointwise to a function g on a compact domain D.

Then, the convergence is also uniform on D.

19

Using this lemma, the essential idea is to show that there exists a constant

L > 0, independent of p, such that for all p and all τ1, τ2 in a bounded set

D = {τ : 0 < r ≤ |τ | ≤ R},

∣∣∣∣ ∂F
∂τ 2 (τ 2

1 ,ατ1)−
∂F
∂τ 2 (τ 2

2 ,ατ2)
∣∣∣∣ ≤ L|τ1 − τ2|.

This follows by the mean value theorem and (2.9.14), with

L = sup
p,τ∈D

| ∂
∂τ 2

∂F
∂τ 2 (τ 2,ατ)| < +∞

.

Remark 2.2.5. The boundedness of {τt(p)} is guaranteed by Proposition 2.2.6.

In particular, since α satisfies the assumption of Theorem 1, Proposition 2.2.6

guarantees λ is bounded and, consequently, so is τ (see the calibration in (2.2.10)

below).

2.2.3 Threshold Calibration

Motivated by Lemma 2.2.2 and the result of Theorem 1, we define a calibration from

the regularization parameter λ, to the corresponding threshold α used to define the

AMP algorithm. In practice, we will be given finite-length λ and then we want to

design the AMP iteration to solve the corresponding SLOPE cost. We do this by

choosing α as the vector that solves λ = λ(α) where

λ(α) := ατ∗(p)
(

1− 1
n
E∥ proxJατ∗(p)

(B + τ∗(p)Z)∥∗
0

)
, (2.2.10)

20

where B is elementwise i.i.d. B independent of Z ∼ N (0, Ip) and τ∗(p) is the limiting

value defined in Theorem 1. We note the fact that the calibration in (2.2.10) sets α

as a vector in the same direction as λ, but that is scaled by a constant value (for each

p), where the scaling constant value is τ∗(p)(1− E∥ proxJατ∗(p)
(B + τ∗(p)Z)∥∗

0/n).

In Proposition 2.2.6 we show that the calibration

(2.2.10) and its inverse λ 7→ α(λ) are well-defined

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α 2

α1

Feasible

Infeasible

Figure 2.2: Amin (black

curve) when p = 2 and

δ = 0.6.

and in Algorithm 1 we show that determining the cali-

bration is straightforward in practice.

Proposition 2.2.6. The function α 7→ λ(α) defined in

(2.2.10) is continuous on {α : f(α) < δ} for f(·) defined

in (2.2.7) with λ(Amin) = −∞ and limα→∞ λ(α) = ∞

(where the limit is taken elementwise). Therefore the

function λ 7→ α(λ) satisfying (2.2.10) exists. As p→∞,

the function α 7→ λ(α) becomes invertible (given λ, α

satisfying (2.2.10) exists uniquely). Furthermore, the

inverse function is continuous non-decreasing for any

λ > 0.

In [BM11c, Proposition 1.4 and Corollary 1.7] this is

proven rigorously for the analogous LASSO calibration

and in Appendix 2.9.1 we show how to adapt this proof to SLOPE case. This

proposition motivates Algorithm 1 which uses a bisection method to find the unique

21

α for each λ. It suffices to find two guesses of α parallel to λ that, when mapped

via (2.2.10), sandwich the true λ.

Algorithm 1 Calibration from λ→ α

1. Initialize α1 = αmin such that αminℓ ∈ Amin, where ℓ := λ/λ1; Initialize

α2 = 2α1

while L(α2) < 0 where L : R→ R;α 7→ sign(λ(αℓ)− λ) do

2. Set α1 = α2, α2 = 2α2

3. return BISECTION (L(α), α1, α2)

Remark: sign(λ(·)− λ) ∈ R is well-defined since λ(·) ∥ λ implies all entries share

the same sign. The function “BISECTION(L, a, b)” finds the root of L in [a, b] via

the bisection method.

The calibration in (2.2.10) is exact when p → ∞, so we study the mapping

between α and λ in this limit. Recall from (A4), that the sequence of vectors

{λ(p)}p≥0 are drawn i.i.d. from distribution Λ. It follows that the sequence {α(p)}p≥0

defined for each p by the finite-sample calibration (2.2.10) are i.i.d. from a distribution

A, where A satisfies E(A2) <∞, and is defined via

Λ = Aτ∗

(
1− lim

p

1
δp

E|| proxJA(p)τ∗
(B + τ∗Z)||∗0

)
, (2.2.11)

We note, moreover, that the calibrations presented in this section are well-defined:

Fact 2.2.7. The limits in (2.2.4) and (2.2.11) exist.

22

This fact is proven in Appendix 2.9.3. One idea used in the proof of Fact

2.2.7 is that the prox operator is asymptotically separable, a result shown by

[HL19a, Proposition 1]. Specifically, for sequences of input, {v(p)}, and thresholds,

{λ(p)}, having empirical distributions that weakly converge to distributions V and

Λ, respectively, then there exists a limiting scalar function h(·) := h(v(p);V,Λ)

(determined by V and Λ) of the proximal operator proxJλ
(v(p)). Further details are

given in Lemma 2.3.3 in Section 2.3. Using h(·) := h(·;B + τ∗Z,Aτ∗), this argument

implies that (2.2.4) can be represented as

τ 2
∗ := σ2

w + 1
δ
E(h(B + τ∗Z)−B)2,

and if we denote m as the Lebesgue measure, then the limit in (2.2.11) can be

represented as

P
(
B + τ∗Z ∈

{
x
∣∣∣∣ h(x) ̸= 0 and m{z | |h(z)| = |h(x)|} = 0

})
. (2.2.12)

In other words, the limit in (2.2.11) is the Lebesgue measure of the domain of the

quantile function of h for which the quantile of h assumes unique values (i.e., is not

flat).

2.3 Asymptotic Characterization of SLOPE

2.3.1 AMP Recovers the SLOPE Estimate

Here we show that the AMP algorithm converges in ℓ2 to the SLOPE estimator,

implying that the AMP iterates can be used as a surrogate for the global optimum

23

of the SLOPE cost function. The schema of the proof is similar to [BM11c, Lemma

3.1], however, major differences lie in the fact that the proximal operator used in

the AMP updates (2.1.3a)-(2.1.3b) is non-separable. We sketch the proof here, and

a forthcoming article will be devoted to giving a complete and detailed argument.

Theorem 2. Under assumptions (A1) - (A5), for the output of the AMP algorithm

in (2.1.3a) and the SLOPE estimate (2.1.2),

plim
p→∞

1
p
∥β̂ − βt∥2 = ct, where lim

t→∞
ct = 0. (2.3.1)

The proof of Theorem 2 can be found in Section 2.4. At a high level, the proof

requires dealing carefully with the fact that the SLOPE cost function, C(b) :=

1
2∥y −Xb∥2 + Jλ(b), given in (2.1.2) is not necessarily strongly convex, meaning

that we could encounter the undesirable situation where C(β̂) is close to C(β) but

β̂ is not close to β, meaning the statistical recovery of β would be poor.

In the LASSO case, one works around this challenge by showing that the (LASSO)

cost function does have nice properties when considering just the elements of the

non-zero support of βt at any (large) iteration t. In the LASSO case, the non-zero

support of β has size no larger than n < p.

In the SLOPE problem, however, it is possible that the support set has size

exceeding n, and therefore the LASSO analysis is not immediately applicable. Our

proof develops novel techniques that are tailored to the characteristics of the SLOPE

solution. Specifically, when considering the SLOPE problem, one can show nice

properties (similar to those in the LASSO case) by considering a support-like set,

24

that being the unique non-zeros in the estimate βt at any (large) iteration t. In

other words, if we define an equivalence relation x ∼ y when |x| = |y|, then entries

of AMP estimate at any iteration t are partitioned into equivalence classes. Then we

observe from (2.2.10), and the non-negativity of λ, that the number of equivalence

classes is no larger than n. We see an analogy between SLOPE’s equivalence class

(or ‘maximal atom’ as described in Appendix 2.5.1) and LASSO’s support set. This

approach allows us to deal with the lack of a strongly convex cost.

Theorem 2 ensures that the AMP algorithm solves the SLOPE problem in

an asymptotic sense. To better appreciate the convergence guarantee, it calls for

elaboration on (2.3.1). First, it implies that ∥β̂−βt∥2/p converges in probability to

a constant, say ct. Next, (2.3.1) says ct → 0 as t→∞.

2.3.2 Exact Asymptotic Characterization of the SLOPE

Estimate

A consequence of Theorem 2.4.1, is that the SLOPE estimator β̂ inherits performance

guarantees provided by the AMP state evolution, in the sense of Theorem 3 below.

Theorem 3 provides as asymptotic characterization of pseudo-Lipschitz loss between

β̂ and the truth β.

Definition 2.3.1. Uniformly pseudo-Lipschitz functions [BMN20]: For k ∈

N>0, a function ϕ : Rd → R is pseudo-Lipschitz of order k if there exists a constant

25

L, such that for a, b ∈ Rd,

∥ϕ(a)− ϕ(b)∥ ≤ L
(

1 + (∥a∥/
√
d)k−1 + (∥b∥/

√
d)k−1

)(
∥a− b∥/

√
d
)
. (2.3.2)

A sequence (in p) of pseudo-Lipschitz functions {ϕp}p∈N>0 is uniformly pseudo-

Lipschitz of order k if, denoting by Lp the pseudo-Lipschitz constant of ϕp, Lp <∞

for each p and lim supp→∞ Lp <∞.

Theorem 3. Under assumptions (A1) - (A5), for any uniformly pseudo-Lipschitz

sequence of functions ψp : Rp × Rp → R and for Z ∼ N (0, Ip),

plim
p

ψp(β̂,β) = lim
t

plim
p

EZ [ψp(proxJα(p)τt
(β + τtZ),β)],

where τt is defined in (2.2.4) and the expectation is taken with respect to Z.

Theorem 3 tells us that under uniformly pseudo-Lipschitz loss, in the large system

limit, distributionally the SLOPE optimizer acts as a ‘denoised’ version of the truth

corrupted by additive Gaussian noise where the denoising function is given by the

proximal operator, i.e. within uniformly pseudo-Lipschitz loss β̂ can be replaced

with proxJα(p)τt
(β + τtZ) for large p, t.

The proof of Theorem 3 can be found in Section 2.4. We show that Theorem 3

follows from Theorem 2 and recent AMP theory dealing with the state evolution

analysis in the case of non-separable denoisers [BMN20], which can be used to

demonstrate that the state evolution given in (2.2.4) characterizes the performance

of the SLOPE AMP (2.1.3) via pseudo-Lipschitz loss functions.

26

We note that [HL19a, Theorem 1] follows by Theorem 3 and their separability

result [HL19a, Proposition 1]. To see this, we use the following lemma that is a

simple application of the Law of Large Numbers.

Lemma 2.3.2. For any function f : Rp → R that is asymptotically separable, in

the sense that there exists some function f̃ : R→ R, such that

∣∣∣∣f(β)− 1
p

n∑
i=1

f̃(βi)
∣∣∣∣→ 0, as p→∞,

where f̃(B) is Lebesgue integrable then plimp

(
f(β)− EB[f̃(B)]

)
= 0, where B ∼

i.i.d. B.

Now to show the result [HL19a, Theorem 1], consider a special case of Theorem 3

where ψp(x,y) = 1
p

∑
ψ(xi, yi) for function ψ : R× R→ R that is pseudo-Lipschitz

of order k = 2. It is easy to show that ψp(·, ·) is uniformly pseudo-Lipschitz of order

k = 2. The result of Theorem 3 then says that

plim
p

1
p

p∑
i=1

ψ(β̂i, βi) = lim
t

plim
p

1
p

p∑
i=1

EZ [ψ([proxJα(p)τt
(β + τtZ)]i, βi)].

Then [HL19a, Theorem 1] follows by [HL19a, Proposition 1], restated below in

Lemma 2.3.3, the Law of Large Numbers, and Theorem 1. Now we restate in Lemma

2.3.3, the result given in [HL19a, Proposition 1], which says that proxJατt
(·) becomes

asymptotically separable as p→∞, for convenience.

Lemma 2.3.3 (Proposition 1, [HL19a]). For an input sequence {v(p)}, and a se-

quence of thresholds {λ(p)}, both having empirical distributions that weakly converge

27

to distributions V and Λ, respectively, then there exists a limiting scalar function h

(determined by V and Λ) such that as p→∞,

∥proxJλ(p)
(v(p))− h(v(p);V,Λ)∥2/p→ 0, (2.3.3)

where h applies h(·;V,Λ) coordinate-wise to v(p) (hence it is separable) and h is

Lipschitz(1).

Then [HL19a, Theorem 1] follows from Theorem 3 by using the asymptotic

separability of the prox operator. Namely, the result of Lemma 2.3.3 (using that

α(p)τt has an empirical distribution that converges weakly to Aτt for A defined by

(2.2.11)), along with Cauchy-Schwarz and the fact that ψ is pseudo-Lipschitz, allow

us to apply a dominated convergence argument (see Lemma 2.9.3), from which it

follows for some limiting scalar function ht as specified by Lemma 2.3.3,

1
p

∣∣∣∣ p∑
i=1

EZ [ψ([proxJα(p)τt
(β + τtZ)]i, βi)]−

p∑
i=1

EZ [ψ([ht(β + τtZ)]i, βi)]
∣∣∣∣→ 0.

Then the above allows us to apply Lemma 2.3.2 and the Law of Large Numbers to

show

plim
p

1
p

p∑
i=1

EZ [ψ([proxJα(p)τt
(β + τtZ)]i, βi)] = lim

p

1
p

p∑
i=1

EZ,B[ψ(ht([B + τtZ]i), Bi)]

= EZ,B[ψ(ht(B + τtZ), B)],

Finally we note that the result of [HL19a, Theorem 1] follows since

lim
t
EZ,B[ψ(ht(B + τtZ), B)] = EZ,B[ψ(h∗(B + τ∗Z), B)].

28

We highlight that our Theorem 3 allows the consideration of a non-asymptotic

case in t. While Theorem 1 motivates an algorithmic way to find a value τt(p) which

approximates τ∗(p) well, Theorem 3 guarantees the accuracy of such approximation

for use in practice. One particular use of Theorem 3 is to design the optimal sequence

λ that achieves the minimum τ∗ and equivalently minimum error [HL19a], though a

concrete algorithm for doing so is still under investigation.

Finally we show how we use Theorem 3 to study the asymptotic mean-square

error between the SLOPE estimator and the truth [CM19].

Corollary 2.3.4. Under assumptions (A1)−(A5), plimp∥β̂−β∥2/p = δ(τ 2
∗ −σ2

w).

Proof. Applying Theorem 3 to the pseudo-Lipschitz loss function ψ1 : Rp ×

Rp → R, defined as ψ1(x,y) = ||x − y||2/p, we find plimp
1
p
∥β̂ − β∥2 =

limt plimp
1
p
EZ [∥proxJατt

(β + τtZ) − β∥2]. The desired result follows since

limt plimp
1
p
EZ [∥proxJατt

(β + τtZ) − β∥2] = δ(τ 2
∗ − σ2

w). To see this, note that

limt δ(τ 2
t+1 − σ2

w) = δ(τ 2
∗ − σ2

w) and

plim
p

1
p
EZ [∥proxJατt

(β + τtZ)− β∥2]

= lim
p

1
p
EZ,B[∥proxJατt

(B + τtZ)−B∥2] = δ(τ 2
t+1 − σ2

w),

for B elementwise i.i.d. B independent of Z ∼ N (0, Ip). A rigorous argument for

the above requires showing that the assumptions of Lemma 2.3.2 are satisfied and

follows similarly to that used to prove property (P2) stated in Section 2.4 and

proved in Appendix 2.9.2.

29

2.4 Proof for Asymptotic Characterization of the

SLOPE Estimate

In this section we prove Theorem 3. To do this, we use a result guaranteeing that the

state evolution given in (2.2.4) characterizes the performance of the SLOPE AMP

algorithm (2.1.3b), given in Lemma 2.4.1 below. Specifically, Lemma 2.4.1 relates

the state evolution (2.2.4) to the output of the AMP iteration (2.1.3b) for pseudo-

Lipschitz loss functions. This result follows from [BMN20, Theorem 14], which

is a general result relating state evolutions to AMP algorithm with non-separable

denoisers. In order to apply [BMN20, Theorem 14], we need to demonstrate that

our denoiser, i.e. the proximal operator proxJατt
(·) defined in (2.1.4), satisfies two

additional properties labeled (P1) and (P2) below.

Define a sequence of denoisers {ηt
p}p∈N>0 where ηt

p : Rp → Rp to be those that

apply the proximal operator proxJατt
(·) defined in (2.1.4), i.e. for a vector v ∈ Rp,

define

ηt
p(v) := proxJατt

(v). (2.4.1)

(P1) For each t, denoisers ηt
p(·) defined in (2.4.1) are uniformly Lipschitz (i.e.

uniformly pseudo-Lipschitz of order k = 1) per Definition 2.3.1.

(P2) For any s, t with (Z,Z ′) a pair of length-p vectors, where for i ∈ {1, 2, . . . , p},

the pair (Zi, Z
′
i) i.i.d. ∼ N (0,Σ) with Σ any 2 × 2 covariance matrix, the

30

following limits exist and are finite.

plim
p→∞

1
p
∥β∥, plim

p→∞

1
p
EZ [β⊤ηt

p(β + Z)],

and plim
p→∞

1
p
EZ,Z′ [ηs

p(β + Z ′)⊤ηt
p(β + Z)].

We will show that properties (P1) and (P2) are satisfied for our problem in

Appendix 2.9.2.

Lemma 2.4.1. [BMN20, Theorem 14] Under assumptions (A1) - (A4), given

that (P1) and (P2) are satisfied, for the AMP algorithm in (2.1.3b) and for

any uniformly pseudo-Lipschitz sequence of functions ϕn : Rn × Rn → R and

ψp : Rp × Rp → R, let Z ∼ N (0, In) and Z ′ ∼ N (0, Ip), then

plim
n

(
ϕn(zt,w)− EZ [ϕn(w +

√
τ 2

t − σ2
wZ,w)]

)
= 0,

plim
p

(
ψp(βt + X⊤zt,β)− EZ′ [ψp(β + τtZ

′,β)]
)

= 0,

where τt is defined in (2.2.4).

We now show that Theorem 3 follows from Lemma 2.4.1 and Theorem 2.

Proof of Theorem 3. First, for any fixed n and t, the following bound uses that ψn

is uniformly pseudo-Lipschitz of order k and the Triangle Inequality,

∣∣∣∣ψp(βt,β)− ψp(β̂,β)
∣∣∣∣

≤ L
(

1 +
(∥(βt,β)∥√

2p

)k−1
+
(∥(β̂,β)∥√

2p

)k−1) 1√
2p∥β

t − β̂∥

≤ L
(

1 +
(∥βt∥√

2p

)k−1
+
(∥β̂∥√

2p

)k−1
+
(∥β∥√

2p

)k−1) 1√
2p∥β

t − β̂∥.

31

Now we take limits on either side of the above, first with respect to p and then with

respect to t. We note that the term 1√
n
∥βt − β̂∥ vanishes by Theorem 2. Then as

long as

lim
t

plim
p

(
∥βt∥/√p

)k−1
, plim

p

(
∥β̂∥/√p

)k−1
, and plim

p

(
∥β∥/√p

)k−1
,

(2.4.2)

are all finite, we have plimp ψp(β̂,β) = limt plimp ψp(βt,β). But by Theorem 2.4.1

we also know that

lim
t

plim
p

ψp(βt,β) = lim
t

plim
p

E[ψp(ηt(β + τtZ),β)],

giving the desired result.

Finally we convince ourself that the limits in (2.4.2) are finite. Since k finite,

that the third term in (2.4.2) is finite follows by property (P2). Bounds for the first

and second term are demonstrated in Lemma 2.7.1 found in Appendix 2.6.

2.5 Proof AMP Finds the SLOPE Solutions

In this section we aim to prove Theorem 2. Define the SLOPE cost function as

follows,

C(b) := 1
2∥y −Xb∥2 + Jλ(b), (2.5.1)

where Jλ(b) is the sorted ℓ1-norm. The proof of Theorem 2 relies on a technical

lemma, Lemma 2.5.5, stated in Section 2.5.2 below, that deals carefully with the fact

32

that the SLOPE cost function given in (2.5.1) is not necessarily strongly convex.

In the LASSO case, one works around this challenge by showing that the (LASSO)

cost function does have nice properties when considering just the elements of the

non-zero support of βt at any (large) iteration t, using that the non-zero support of

β has size no larger than n < p.

In the SLOPE problem, however, it is possible that the support set has size

exceeding n, and therefore the LASSO analysis is not immediately applicable. Our

proof develops novel techniques that are tailored to the characteristics of the SLOPE

solution. Specifically, when considering the SLOPE problem, one can show nice

properties (similar to those in the LASSO case) by considering a support-like set,

that being the unique non-zeros in the estimate βt at any (large) iteration t.

In other words, our strategy is to define an equivalence relation x ∼ y when

|x| = |y| and partition the entries of the AMP estimate at any iteration t into

equivalence classes. This allows us to observe, using (2.2.10) and the non-negativity

of λ, that the number of equivalence classes is no larger than n. (Recall that ∥ · ∥∗
0

counts the unique non-zero magnitudes in a vector.) We see an analogy between

SLOPE’s equivalence class (or ‘maximal atom’ as described in Section 2.5.1) and

LASSO’s support set. This approach, taken in Lemma 2.5.5 below, allows us to

deal with the fact that we are not guaranteed to have a strongly convex cost. Then

Lemma 2.5.5 is used to prove Theorem 3.

Before we state Lemma 2.5.5, we include some useful preliminary information on

33

SLOPE that will be needed for the upcoming work. In particular, we introduce in

more details the idea of equivalence classes of elements having the same magnitude,

a mapping of vector ranking denoted as Π̂, and a polytope-related mapping whose

image is the set of subgradients denoted as P. These definitions are all given in

more detail in Section 2.5.1.

2.5.1 Preliminaries on SLOPE

In general, we refer to the function C(·) stated in (2.5.1) as the SLOPE cost function

and the SLOPE estimator β̂ is the one that minimizes the SLOPE cost. We note

that the SLOPE cost function C(·) depends on both y and λ, so technically a

notation like C(y,λ)(·) would be more rigorous, however, we don’t think that dropping

the explicit dependence on (y,λ) will cause any confusion.

For a convex function f : Rp → R, we denote the subgradient of f at a point

x ∈ Rp as ∂f(x). We will be interested, particularly, in the subgradient of the

SLOPE cost ∂C(b) which forces us to study the subgradient of the SLOPE norm

∂Jλ(b). In particular,

Fact 2.5.1. ∂C(b) = −X⊤(y −Xb) + ∂Jλ(b).

We will now describe explicitly the relevant subgradient, ∂Jλ ⊂ Rp. We note that

the proximal operator given in (2.1.4) is linked to the subgradient of the SLOPE

norm in the following way.

Fact 2.5.2. If proxJλ
(v1) = v2, then v1 − v2 ∈ ∂Jλ(v2).

34

Define a function Πx : Rp → Rp to be a mapping (not necessarily unique) that

sorts its input by magnitude in descending order according to absolute values of

entries in x. For example, if x = (5, 2,−3,−5), then there are two possible such

mappings Πx(b) = (|b1|, |b4|, |b3|, |b2|) or Πx(b) = (|b4|, |b1|, |b3|, |b2|). Using this

notation, we can rewrite the SLOPE norm as Jλ(b) = λ ·Πb(b). Since such mapping

may not be unique, the inverse may not exist and we therefore define a pseudo-

inverse mapping, Π̂−1
x , that is based on the function Π̂x : Rp → {maximal atoms}.

In words, Π̂x finds the maximal atoms of ranking of the absolute values of x. Then

Π̂x corresponds to the mapping 1 2 3 4

{1, 2} 4 3 {1, 2}


with Π̂x(x) = ({5,−5}, {5,−5},−3, 2) and Π̂−1

x (λ) = ({λ1, λ2}, λ4, λ3, {λ1, λ2}).

Then it is not hard to see that there exists λ̂ ∈ Π̂−1
x (λ) such that Jλ(b) = λ ·Πb(b) =

λ̂ · |b|. In words, this says there are two equivalent ways to consider the calculation of

Jλ(b) when λ1 ≥ . . . ≥ λp ≥ 0. First λ · Πb(b) computes the inner product between

λ and the sorted magnitudes of b, and in the second case, λ̂
⊤
|b| computes the inner

product between the magnitudes of b (unsorted), with a rearrangement of the λ

vector (based on b) that pairs the values in λ with the values of |b| by magnitude.

Now we define an equivalence relation x ∼ y if |x| = |y|. Then Π̂x partitions

elements in x into different equivalence classes I. The motivation of using equivalence

classes roots from AMP. In calibrating the AMP to the SLOPE problem, we need

35

to calculate ∇ prox, which equals the number of non-zero equivalence classes. For

example, ∂ prox
∂v
|v=(1,0,−1,3) = (1

2 , 0,
1
2 , 1) has a sum of 2.

Now we note that the subgradient of the SLOPE norm can be repre-

sented using the idea of the equivalence classes. For a vector v ∈ Rp, we use the

notation vI to be the elements of the vector v belonging to equivalence class I. Then,

Fact 2.5.3.

∂Jλ(s) =


v ∈ Rp : for each equivalent class I,


if sI ̸= 0 =⇒ vI ∈ P([Π̂−1

s (λ)]I) sign(sI);

if sI = 0 =⇒ |vI | ∈ P0([Π̂−1
s (λ)]I)


.

In the above, P ,P0 are polytope-related mappings,

P(u) := {y : y = Au for some doubly stochastic matrix A}

P0(u) := {y : y = Au for some doubly sub-stochastic matrix A}

By definition, the doubly stochastic matrix, a.k.a. a Birkhoff polytope, is a square

matrix of non-negative real numbers, whose row and column sums equal 1. For

example,

A =



1/3 2/3 0

1/6 1/3 1/2

1/2 0 1/2


(2.5.2)

is a doubly stochastic matrix. Similarly, a doubly sub-stochastic matrix is defined

as a square matrix of non-negative real numbers, whose row and column sums are

36

at most 1. Note that if all entries of λ take the same value, the subgradient in

Fact 2.5.3 gives the usual subgradient of the ℓ1 norm.

Using the subgradient definition in Fact 2.5.3, consider P((λ1, λ2, λ3)), relating

to a non-zero equivalence class having three entries. Then A in (2.5.2) is one

possible matrix considered in defining the set P((λ1, λ2, λ3)) and it has the following

interpretation. The rows of A determine how the subgradient vI values are calculated

by averaging the corresponding threshold values λ, for example, the first entry of vI

is a weighted average with 1/3 its weight in λ1 and 2/3 in λ2; the second entry of vI

is a weighted average with 1/6 its weight in λ1, 1/3 in λ2, and 1/2 in λ2, etc. You

can think of this as determining the threshold each input value sI receives, as some

weighted combination of all the possible threshold values λ corresponding to this

equivalence class. Similarly, the columns of the doubly-stochastic matrix considered

in the mapping P define how the thresholds λ are spread out amongst each element

of the subgradient, for example, 1/3 of λ1’s value goes to the first element of vI , 1/6

to the second value, and 1/2 to the third value, etc.

To see why ∂Jλ(s) takes the form given in Fact 2.5.3, let’s consider again the P

used in the case that sI ̸= 0. Recall the sI looks at only the indices of s appearing

in the equivalence class I, so all elements of sI have the same absolute value. This

means that there are many ways to share the corresponding λ threshold values

among them. We can think of this as an assignment problem: assign jobs (thresholds

λ) to workers (si) where as assignment according to a doubly stochastic matrix is a

37

natural one (all workers take on the same load, and all jobs must be completed).

On the other hand, P0 does not require that the sharing of the threshold values λ

amongst the entries of sI be strict: row and/or column sums can be smaller than

one. This difference is rooted in the subgradient of ℓ1 norm: i.e. ∂|x| = sign(x) when

x ̸= 0 and ∂|x| ∈ [−1, 1] when x = 0.

For a rigorous proof of Fact 2.5.3, we refer the reader to [RW09, Exercise 8.31],

but we give a quick sketch here in the case of sI ≠ 0. The proof uses that P(u) is

a permutohedron, meaning a convex hull with vertices corresponding to permuted

entries of u. Notice that we can rewrite Jλ(s) as a finite max function Jλ(s) :

max{λ⊤f1(s), ...,λ⊤fm(s)}, where {fi(s)}1≤i≤m is the collection of all possible

permutations for the entries of |s|. Notice that the permutation that sorts the

magnitudes will be chosen by the maximum function. For such a function (see

[RW09, Exercise 8.31]) the subgradient takes the form of a convex hull of the partial

derivatives of the maximizing elements:

∂Jλ(s) ∈ conv{∇s(λ⊤fi(s)) : i ∈ A(s)} ≡ conv{f−1
i (λ) : i ∈ A(s)}, (2.5.3)

where A(s) = {i ∈ {1, 2, . . . ,m} : λ⊤fi(s) = Jλ(s)} and in our case, the partial

derivatives correspond to permutations of the thresholds. Now, without loss of

generality, let’s consider an input that has only one non-zero equivalence class,

i.e. s = (s, s, ..., s) ∈ Rd. Then clearly there are m = d! possible permutations.

Therefore,

∂Jλ(s) ∈ conv{f−1
i (λ) : i ∈ {1, 2, ..., d!}} ≡ conv{fi(λ) : i ∈ {1, 2, ..., d!}}.

38

In other words, the partial derivative lies in the set that is the convex combination of

all possible permutations of the threshold λ. By definition, this is a permutohedron.

So, in our case, the subgradient is a convex hull whose vertices are the permutated

thresholds, i.e. an image of Birkhoff polytope under the thresholds, which can be

characterized by doubly stochastic matrices.

2.5.2 Main Technical Lemma

Now we state and prove the main technical lemma that will be used to prove Theorem

2. Before we state Lemma 2.5.5, let us introduce a very important definition:

Definition 2.5.4. Given a vector v ∈ Rp, a set I ⊂ {1, . . . , p} is said to be a

maximal atom of indices of v if |vi| = |vj| for all i, j ∈ I and |vi| ≠ |vk| for i ∈ I

and all k /∈ I. With this definition in place, we define the star support of the vector

v as

supp⋆(v) := {I : I ⊂ {1, . . . , p} is a maximal atom of indices of v and vI ̸= 0}.

For example, if v = (1, 1,−1, 0, 2,−1), then supp⋆(v) = {{1, 2, 3, 6}, {5}} . Now

we state and prove Lemma 2.5.5.

Lemma 2.5.5. For constants c1, ..., c5 > 0, if the following conditions are satisfied,

(1) 1√
p
∥βt − β̂∥ ≤ c1,

(2) There exists a subgradient sg(C,βt) ∈ ∂C(βt) such that 1√
p
∥sg(C,βt)∥ ≤ ϵ,

39

(3) Let νt := X⊤(y − Xβt) + sg(C,βt) ∈ ∂Jλ(βt) (where sg(C,βt) is the

subgradient from Condition (2)). Denote st(c2) := {I ⊂ [p] : |νt
I | ⪰

[P(Π̂−1
βt (λ))]I(1 − c2)} and St(c2) := {i ∈ I : I ∈ s(c2)}, where the equiv-

alence classes, I, for both sets are defined via the AMP estimation βt, and

for a vector x ∈ Rd and a set A ⊂ Rd, the notation x ⪰ A means there

exists some y ∈ A such that x ≥ y elementwise. Then for s′ being any set

of maximal atoms in [p] with |s′| ≤ c3p and S ′ := {i ∈ I : I ∈ s′}, we have

σmin(XSt(c2)∪S′) ≥ c4.

(4) The minimum non-zero and maximum singular value of X, denoted as σ̂2
min(X)

and σ2
max(X), are bounded: i.e. σ̂2

min(X) ≥ 1
c5

and σ2
max(X) ≤ c5.

(5) Define Cx(b) = 1
2∥y −Xb∥2 + ∑p

i=1 λ̂i|bi| for some λ̂ ∈ P(Π̂−1
x (λ)). Then

C(βt) ≥ Cβt(β̂).

then for some function f(ϵ) := f(ϵ, c1, c2, c3, c4, c5) such that f(ϵ)→ 0 as ϵ→ 0,

1
√
p
∥βt − β̂∥ < f(ϵ).

We wrap up this section by proving Lemma 2.5.5. Once we have proved Lemma

2.5.5, we will be able to prove Theorem 2. The major piece of work in proving

Theorem 2 is in showing that the five assumptions of Lemma 2.5.5 are satisfied.

Then the result of Theorem 2 is immediate. We show the five assumptions are met

in Sections 2.7.1 - 2.7.5. Now we prove the Lemma.

40

Proof of Lemma 2.5.5. Throughout the proof, we denote ξ1, ξ2, . . . as functions of

the constants c1, . . . , c5 > 0 and of ϵ such that ξi(ϵ) → 0 as ϵ → 0 (we omit the

dependence of ξi on ϵ). We will think of t as a fixed iteration and we denote the

residual we are interested in studying as r = β̂ − βt.

The proof strategy is to show that 1
p
∥Xr∥2 ≤ ξ(ϵ) from which a similar result

for 1
p
∥r∥2 follows when we have control of the singular values of X as we do with

Condition (4). Structurally, the proof is similar to that in the LASSO case (cf.

[BM11c, Lemma 3.1]), with the main difference coming through Condition (3), where

we need to use star support instead of the support when bounding the minimum

singular value of a selection of columns of X.

For a fixed iteration t, let S = {i ∈ [p] : i ∈ I and I ∈ supp∗(βt)}, i.e. S is the

collection of (unique) indices belonging to the star support of the AMP estimate at

iteration t. Then for a vector v ∈ Rp we denote vS to mean the vector indexed only

over the indices in the set S and we let S̄ denote the complement of S. In what

follows, we drop the t-dependence on νt, writing ν = νt and for p-length vectors u

and v, define ⟨u,v⟩ := 1
p

∑
i uivi.

41

First,

0
(a)
≥ 1
p

(Cβt(β̂)− C(βt)) (b)= 1
2p(∥y −Xβ̂∥2 − ∥y −Xβt∥2) + ⟨λ̂, |β̂| − |βt|⟩

(c)= ⟨λ̂S, |βt
S + rS| − |βt

S|⟩+ ⟨λ̂S̄, |rS̄|⟩+ 1
2p(∥y −Xβt −Xr∥2 − ∥y −Xβt∥2)

(d)=
[
⟨λ̂S, |βt

S + rS| − |βt
S|⟩ − ⟨νS, rS⟩

]
+
[
⟨λ̂S̄, |rS̄|⟩ − ⟨νS̄, rS̄⟩

]
+ ⟨ν, r⟩

− ⟨y −Xβt,Xr⟩+ ∥Xr∥2

2p
(e)=
[
⟨λ̂S, |βt

S + rS| − |βt
S|⟩ − ⟨νS, rS⟩

]
+
[
⟨λ̂S̄, |rS̄|⟩ − ⟨νS̄, rS̄⟩

]

+ ⟨sg(C,βt), r⟩+ ∥Xr∥2

2p .

In the above, step (a) follows immediately from Condition (5) and step (b) holds

for any λ̂ ∈ P(Π̂−1
βt (λ)) by the definition of Cβt(β̂), noticing that Jλ(βt) = λ̂

⊤
|βt|

in the SLOPE cost (2.5.1) since λ̂ ∈ P(Π̂−1
βt (λ)). Below we will select a specific

λ̂ ∈ P(Π̂−1
βt (λ)) based on the definition of ν. Step (c) follows by replacing β̂ with

βt + r and noticing that βt
S̄ = 0. Step (d) follows since ⟨ν, r⟩ = ⟨νS, rS⟩+ ⟨νS̄, rS̄⟩

and step (e) from the definition of ν.

Using Conditions (1) and (2), we get by Cauchy-Schwarz

[
⟨λ̂S, |βt

S + rS| − |βt
S|⟩ − ⟨νS, rS⟩

]
+
[
⟨λ̂S̄, |rS̄|⟩ − ⟨νS̄, rS̄⟩

]
+ ∥Xr∥2

2p

≤ ∥sg(C,β
t)∥∥r∥

p
≤ c1ϵ. (2.5.4)

We now show all three terms on the left side of (2.5.4) are non-negative. The idea

is then: if all three terms are non-negative and their sum tends to 0 as ϵ → 0, it

must be true that each term tends to 0 too. The third term in (2.5.4), 1
2p
∥Xr∥2, is

42

trivially non-negative, so we focus on the first two.

To show that the other terms are non-negative, we consider choosing a specific

vector λ̂ ∈ P(Π̂−1
βt (λ)) such that on the support, λ̂S = |νS|, and off the support

λ̂S̄ ≥ |νS̄|, meaning λ̂I is parallel to |νI | for each equivalence class I of βt. That

such a λ̂ exists in the set P(Π̂−1
βt (λ)) follows since ν is a valid subgradient of Jλ(βt)

(see Fact 2.5.3).

Using this λ̂, notice that the sets defined in Condition (3) are equivalent to the

following: st(c2) := {I ⊂ [p] : |νI | ≥ (1− c2)λ̂I} and St(c2) := {i : |νi| ≥ (1− c2)λ̂i},

where both use equivalence classes, I, defined for βt. To see that this is the case,

note that if I is a non-zero equivalence class, by Fact 2.5.3, since |νI | ∈ [P(Π̂−1
βt (λ))]I ,

we know that |νI | ⪰ [P(Π̂−1
βt (λ))]I(1− c2) and similarly, since λ̂S = |νS| we know

that |νI | ≥ (1− c2)λ̂I , so I clearly belongs to st(c2) for both definitions. If I is the

zero equivalence class, if |νI | ≥ (1−c2)λ̂I then obviously |νI | ⪰ [P(Π̂−1
βt (λ))]I(1−c2)

since λ̂ ∈ P(Π̂−1
βt (λ)). In the other direction, if the non-zero equivalence class I is

such that |νI | ⪰ [P(Π̂−1
βt (λ))]I(1− c2) then there exists a vector ν̃I ∈ [P(Π̂−1

βt (λ))]I

such that |νI | ≥ ν̃I(1 − c2) elementwise. However since ν̃I ∈ [P(Π̂−1
βt (λ))]I , this

implies that |νI | ≥ (1 − c2)λ̂I is also true since λ̂I ∈ [P(Π̂−1
βt (λ))]I in the same

direction as |νI |.

To visualize the choice of λ̂, we consider an example where νI = (−1, 2) for

equivalence class I = {1, 2} with λI = (4, 1) in Figure 2.3. In the figure, the blue

shaded region indicates possible subgradient values for zero elements and the black

43

line are possible subgradients for zero elements. In this example, the equivalence

class is that for zero elements, so we notice that νI lies in the blue region. Then λI

is in the same direction as |νI | but lies on the black line (since λ̂ ∈ P(Π̂−1
βt (λ))).

0 1 2 3 4 5

0
1

2
3

4
5

∂ Jλ(b)

● b ≠ 0
b = 0

0 1 2 3 4 5
0

1
2

3
4

5

| v |

λ̂

Figure 2.3: The blue area contained by the black line segment is the set of subgradi-

ents; Red crosses are examples of νI and λ̂I correspondingly when bI = 0.

Now we would like to show that the first term in (2.5.4) is non-negative. Specifi-

cally, our choice of λ̂ gives νi = sign(βt
i)λ̂i, for each i ∈ S, and then it suffices, in

order to prove the non-negativity of ⟨λ̂S, |βt
S + rS| − |βt

S|⟩ − ⟨νS, rS⟩, to show

0 ≤ (|βt
i + ri| − |βt

i |)− sign(βt
i)ri

= (βt
i + ri) sign(βt

i + ri)− βt
i sign(βt

i)− ri sign(βt
i)

= (βt
i + ri)

[
sign(βt

i + ri)− sign(βt
i)
]
,

which follows since each (βt
i + ri) [sign(βt

i + ri)− sign(βt
i)] is either equal to 0 (when

sign(βt
i) = sign(βt

i + ri)) or equal to 2|βt
i + ri| otherwise.

44

Finally, the second term in (2.5.4) is also non-negative. It suffices to show

for each i ∈ S̄, we have 0 ≤ λ̂i|ri| − νiri, or equivalently 0 ≤ λ̂i − νi sign(ri) =

λ̂i(1 − sign(βt
i) sign(ri)) which is clearly true. Since all three terms in (2.5.4) are

non-negative and their sum tends to 0 as ϵ → 0, it must be true that each term

tends to 0,

⟨λ̂S̄, |rS̄|⟩ − ⟨νS̄, rS̄⟩ ≤ ξ1(ϵ), (2.5.5)

∥Xr∥2 ≤ pξ1(ϵ). (2.5.6)

We now make use of these inequalities to construct the bound for 1
p
∥r∥2.

Decompose r as r = r⊥ + r∥, with r∥ ∈ ker(X) and r⊥ ∈ ker⊥(X) so that

Xr = Xr⊥. We will now use (2.5.5) and (2.5.6) to obtain bounds for ∥r⊥∥2

and ∥r∥∥2. First notice that by (2.5.6) and Condition (4) we have 1
c5
∥r⊥∥2 ≤

σ̂2
min(X)∥r⊥∥2 ≤ ∥Xr⊥∥2 = ∥Xr∥2 ≤ pξ1(ϵ).

In the case ker(X) = {0}, the proof is concluded. Otherwise, we prove a similar

bound for ∥r∥∥2. To bound ∥r∥∥2, we use the fact that that this can be done if there

exists sets Q ∈ [p] and Q̄ ∈ [p]/Q such that we can bound ∥r∥
Q̄
∥2 and show a high

probability lower bound for σ2
min(XQ).

In (2.5.5), decompose rS̄ = r⊥
S̄

+ r
∥
S̄

and observe that by Cauchy Schwarz

inequality and the bound just obtained,

⟨λ̂S̄, |r⊥
S̄ |⟩ ≤

1
p
∥λ̂S̄∥∥r⊥

S̄ ∥ ≤
1
p
∥λ̂∥∥r⊥∥ ≤ 1

√
p
∥λ̂∥

√
c5ξ1(ϵ). (2.5.7)

45

Then we use the fact that

⟨λ̂S̄, |r
∥
S̄
|⟩ − ⟨νS̄, r

∥
S̄
⟩ = ⟨λ̂S̄, |rS̄ − r⊥

S̄ |⟩ − ⟨νS̄, rS̄ − r⊥
S̄ ⟩

≤ ⟨λ̂S̄, |rS̄|⟩+ ⟨λ̂S̄, |r⊥
S̄ |⟩ − ⟨νS̄, rS̄⟩+ ⟨νS̄, r

⊥
S̄ ⟩

= ⟨λ̂S̄, |rS̄|⟩+ ⟨λ̂S̄, |r⊥
S̄ |⟩ − ⟨νS̄, rS̄⟩+ ⟨λ̂S̄ sign(βt

S̄), r⊥
S̄ ⟩

≤ ⟨λ̂S̄, |r⊥
S̄ |⟩ − ⟨νS̄, rS̄⟩+ 2⟨λ̂S̄, |r⊥

S̄ |⟩,

to get from (2.5.5) and (2.5.7) that

⟨λ̂S̄, |r
∥
S̄
|⟩ − ⟨νS̄, r

∥
S̄
⟩ ≤ ξ2(ϵ). (2.5.8)

Next we would like to show

⟨λ̂S̄(c2), |r
∥
S̄(c2)|⟩ − ⟨νS̄(c2), r

∥
S̄(c2)⟩(1− c2)−1 ≥ 0. (2.5.9)

Note that it suffices again to prove this elementwise for each i ∈ S̄(c2). Specifically,

note that (1− c2)−1|νi| < λ̂i for each i ∈ S̄(c2) by the set’s definition and therefore

λ̂i|r∥
i | − νir

∥
i (1− c2)−1 ≥ |νi||r∥

i |(1− c2)−1 − νir
∥
i (1− c2)−1 ≥ 0. Therefore,

⟨λ̂S̄(c2), |r
∥
S̄(c2)|⟩

(a)
≤ 1
c2
⟨λS̄(c2), |r

∥
S̄(c2)|⟩ −

1
c2
⟨νS̄(c2), r

∥
S̄(c2)⟩

= 1
c2
⟨λ̂S̄(c2) − νS̄(c2) sign(r∥

S̄(c2)), |r
∥
S̄(c2)|⟩

(b)
≤ 1
c2
⟨λ̂S̄ − νS̄ sign(r∥

S̄
), |r∥

S̄
|⟩ = 1

c2
⟨λ̂S̄, |r

∥
S̄
|⟩ − 1

c2
⟨νS̄, r

∥
S̄
⟩

(c)
≤ c−1

2 ξ2(ϵ).

(2.5.10)

In particular, step (a) follows by (2.5.9), step (b) since S ⊆ St(c2) implies S̄t(c2) ⊆ S̄

along with the fact that λ̂S̄ − νS̄ sign(r∥
S̄
) ≥ 0 elementwise (for each i ∈ S̄, we have

46

λ̂i − νi sign(r∥
i) > 0 by λ̂i ≥ |νi|). Finally step (c) holds by (2.5.8). We now use the

bound in (2.5.10) to bound components of r∥.

In order to bound ∥r∥∥2, we would like to exploit a relationship between the ℓ1

and ℓ2 norms. To do this, we consider an ordering of the elements of the vector r∥

by magnitude. Recall that S̄t(c2) ⊆ S̄ and we first assume |S̄t(c2)| ≥ pc3/2. Now

we partition S̄t(c2) = ∪K
ℓ=1Sℓ, where (pc3/2) ≤ |Sℓ| ≤ pc3, and such that for each

i ∈ Sℓ and j ∈ Sℓ+1, it follows that |r∥
i | ≥ |r

∥
j |. Finally, define S̄+ := ∪K

ℓ=2Sℓ ⊆ S̄t(c2),

i.e. the set union of all the partitions except the first one corresponding to the

indices containing the largest elements in r∥. Now we note for any i ∈ Sℓ, we have

|r∥
i | ≤ ∥r

∥
Sℓ−1
∥/|Sℓ−1|, that is, in terms of absolute value, for any i in group ℓ, it

should be smaller than the average of all the elements in the previous group ℓ− 1.

Then,

∥r∥
S̄+
∥2 (a)=

K∑
ℓ=2
∥r∥

Sℓ
∥2

(b)
≤

K∑
ℓ=2
|Sℓ|
∥r∥

Sℓ−1
∥2

1

|Sℓ−1|2

(c)
≤ 4
pc3

K∑
ℓ=2
∥r∥

Sℓ−1
∥2

1 ≤
4
pc3

[K∑
ℓ=2
∥r∥

Sℓ−1
∥1

]2

(d)
≤ 4
pc3
∥r∥

S̄(c2)∥
2
1

(e)
≤ 4ξ2(ϵ)2p

c2
2c3(min λ̂S̄(c2))2

=: pξ3(ϵ).

(2.5.11)

In the above, step (a) follows from the definition of S̄+, step (b) from the fact

that for i ∈ Sℓ, we have |r∥
i | ≤ ∥r

∥
Sℓ−1
∥/|Sℓ−1|, step (c) since (pc3/2) ≤ |Sℓ| ≤ pc3,

and step (d) since ∑K
ℓ=2 Sℓ ⊂

∑K
ℓ=1 Sℓ = S̄t(c2). Finally step (e) follows using that

1
p

min{λ̂S̄(c2)}∥r
∥
S̄(c2)∥1 ≤ ⟨λ̂S̄(c2), |r

∥
S̄(c2)|⟩.

Now, recalling S+ = St(c2)∪S1 and |S1| ≤ pc3, by Condition (3), σmin(XS+) ≥ c4

47

and therefore,

c2
4∥r

∥
S+∥

2 ≤ σ2
min(XS+)∥r∥

S+∥
2 ≤ ∥XS+r

∥
S+∥

2 (a)= ∥XS̄+r
∥
S̄+
∥2

(b)
≤ 2c5∥r∥

S̄+
∥2. (2.5.12)

In the above, in step (a) we use that 0 = Xr∥ = XS+r
∥
S+ + XS̄+r

∥
S̄+

. In step (b)

we use Condition (4) and the fact that ∥XS̄+r
∥
S̄+
∥2 ≤ σ2

max(X)∥r∥
S̄+
∥2. Therefore,

to conclude the proof, it is sufficient to prove a bound for ∥r∥
S+∥

2.

Decomposing ∥r∥∥2 = ∥r∥
S+∥

2 + ∥r∥
S̄+
∥2, we find from (2.5.11) and (2.5.11) the

desired bound:

∥r∥∥2 ≤ ∥r∥
S+∥

2 + ∥r∥
S̄+
∥2 ≤

(2c5

c2
4

+ 1
)
∥r∥

S̄+
∥2 ≤

(2c5

c2
4

+ 1
)
pξ3(ϵ).

This finishes the proof when |S̄t(c2)| ≥ pc3/2. When |S̄t(c2)| < pc3/2, we can

take S̄+ = ∅ and S+ = [p]. Hence, the result holds as a special case of the above

inequality.

2.6 Expansion of the AMP State Evolution Ideas

In this section, we develop ideas and notation specifically for the SLOPE AMP

algorithm given in (2.1.3). Most are adapted from the work in [BMN20] that studies

general non-separable AMP algorithms. These results relate to the performance anal-

ysis of the AMP algorithm and will be useful in proving Lemma 2.5.5. Throughout

this section, we use the {ηt
p}p∈N>0 notation introduced in Section 2.4 and defined in

(2.4.1). Namely, we consider a sequence of denoisers ηt
p : Rp → Rp to be those that

48

apply the proximal operator proxJατt
(·) defined in (2.1.4), i.e. ηt

p(v) := proxJατt
(v)

for a vector v ∈ Rp.

Given w ∈ Rn and β ∈ Rp, define sequences of column vectors ht+1 ∈ Rp and

mt ∈ Rn for t ≥ 0. At each iteration t, the sequence ht+1 measures the difference

between the truth β and the pseudo-data X⊤zt + βt, that is the input to the

denoiser, and the sequence mt measures the difference between the noise w and the

AMP residual zt. Namely, define mt,ht+1: for t ≥ 0,

ht+1 = β − (X⊤zt + βt) and mt = w − zt. (2.6.1)

We next introduce a generalization to the state evolution given in (2.2.4), that

will be useful in studying the limiting properties of functions of the AMP estimates

βs and βt at different iterations s and t. To do this, we will recursively define

covariances {Σs,t}s,t≥0: for B elementwise i.i.d. ∼ B, set Σ0,0 = σ2
w + 1

δ
E[B2] and

Σ0,t+1 = σ2
w + lim

p

1
δp

E{−B⊤[ηt
p(B + τtZt)−B]}, (2.6.2)

for Zt ∼ N (0, I) independent of B. Then for each t ≥ 0, given (Σs,r)0≤s,r≤t, define

Σs+1,t+1 = σ2
w + lim

p

1
δp

E
{

[ηs
p(B + τsZs)−B]⊤[ηt

p(B + τtZt)−B]
}
, (2.6.3)

where Zs and Zr are length−p jointly Gaussian vectors, independent of B ∼ B

i.i.d. elementwise, with E[Zs] = E[Zr] = 0, E{([Zs]i)2} = E{([Zr]i)2} = 1 for any

element i ∈ [p], and E{[Zs]i[Zr]j} = Σs,r

τrτs
I{i = j}. Note that Σt,t = τ 2

t defined in

(2.2.4).

49

Using the above covariances, we have the following result that characterizes the

asymptotic empirical distributions of the difference vectors defined in (2.9.41) and

generalizes Lemma (2.4.1). This result follows by [BMN20, Theorem 1].

Lemma 2.6.1. [BMN20, Theorem 1] Assuming that Σ0,0, . . . ,Σt+1,t+1 > σ2
w, then

for any deterministic sequence ϕp : (Rp × Rn)t × Rp → R of uniformly pseudo-

Lipschitz functions of order k,

plim
p

(
ϕp(β,m0,h1, . . . ,mt,ht+1)

− E[ϕp(β,
√
τ 2

0 − σ2
wZ

′
0, τ0Z0, . . . ,

√
τ 2

t − σ2
wZ

′
t, τtZt)]

)
= 0,

for (Z0,Z1, . . . ,Zt) defined in (2.6.3) in dependent of (Z ′
0,Z

′
1, . . . ,Z

′
t) and the

expectation is taken with respect to the collection (Z0,Z
′
0,Z1,Z

′
1, . . . ,Z

′
t,Zt). We

note that Z ′
s and Z ′

r are length−n jointly Gaussian vectors, with E[Z ′
s] = E[Z ′

r] = 0,

E{([Z ′
s]i)2} = E{([Z ′

r]i)2} = 1 for any element i ∈ [n], and E{[Z ′
s]i[Z ′

r]j} = (Σs,r −

σ2
w)((τ 2

r − σ2
w)(τ 2

s − σ2
w))−1/2I{i = j}.

We use Lemma 2.6.1 to explicitly state asymptotic characterizations of AMP

quantities that will be useful in our analysis.

Lemma 2.6.2. Under the condition of Theorem 3, for zt and βt+1 defined in (2.1.3)

and the generalized state evolution sequence defined in (2.6.3),

plim
n

(1
n
∥zt − zt−1∥2 − (τ 2

t − 2Σt,t−1 + τ 2
t−1)

)
= 0, (2.6.4)

plim
p

(1
δp
∥βt+1 − βt∥2 − (τ 2

t − 2Σt,t−1 + τ 2
t−1)

)
= 0. (2.6.5)

50

Proof. The major tools in proving (2.6.4)-(2.6.5) are first recognizing that we

can write the differences zt − zt−1 and βt+1 − βt as a function of the values

(β,m0,h1, . . . ,mt,ht+1) defined in (2.9.41) and finally making an appeal to the

Law of Large Numbers. We prove (2.6.5) and (2.6.4) follows similarly.

By (2.1.3a), βt+1 − βt = ηt
p(βt + X⊤zt) − ηt−1

p (βt−1 + X⊤zt−1) = ηt
p(β −

ht+1)− ηt−1
p (β − ht). Therefore, we will appeal to Lemma 2.6.1 for the uniformly

pseudo-Lipschitz function

ϕp(β,m0,h1, . . . ,mt,ht+1)

= 1
δp
∥βt+1 − βt∥2 = 1

δp
∥ηt

p(β − ht+1)− ηt−1
p (β − ht)∥2.

We note that it easy to show that the above function is uniformly pseudo-Lipschitz,

though we don’t do this here. Then by Lemma 2.6.1,

plim
p

(1
δp
∥βt+1 − βt∥2 − 1

δp
E∥ηt

p(β − τtZt)− ηt−1
p (β − τt−1Zt−1)∥2

)
= 0. (2.6.6)

Now to prove result (2.6.4), we note that by Lemma 2.3.2,

plim
δp

1
p
E∥ηt

p(β − τtZt)− ηt−1
p (β − τt−1Zt−1)∥2

= lim
p

1
δp

E∥ηt
p(B − τtZt)− ηt−1

p (B − τt−1Zt−1)∥2,

where B ∼ B i.i.d. elementwise independent of Zt and Zt−1. The argument for

showing that the assumptions of Lemma 2.3.2 are met follows like that used in

Appendix 2.9.2 in the proof of Proposition (P2) introduced in Section 2.4. Then,

limp
1
δp
E∥ηt

p(B − τtZt)− ηt−1
p (B − τt−1Zt−1)∥2 = Σt,t − 2Σt,t−1 + Σt−1,t−1.

51

We finally state a lemma that characterizes the asymptotic value of the normalized

ℓ2 norm of the residuals in AMP algorithm (2.1.3b) following from Lemma 2.4.1.

Lemma 2.6.3. For zt defined in (2.1.3b) and τ 2
t given in (2.2.4),

plim
n

(
∥zt∥2/n− τ 2

t

)
= 0. (2.6.7)

Proof. This follows from Lemma 2.4.1, using the uniformly pseudo-Lipschitz (of order

2) sequence of functions ϕn(a, b) = 1
n
∥a∥2 to get, plimn∥zt∥2/n = plimn EZ [∥w +√

τ 2
t − σ2

wZ∥2]/n for Z ∼ N (0, I). Then the final result follows by noticing that

EZ∥w +
√
τ 2

t − σ2
wZ∥2 = ∥w∥2 + (τ 2

t − σ2
w)EZ∥Z∥2 = ∥w∥2 + n(τ 2

t − σ2
w), and

therefore, using that plimn∥w∥2/n = σ2
w by the Law of Large Numbers,

plim
n

1
n
EZ∥w +

√
τ 2

t − σ2
wZ∥2 = (τ 2

t − σ2
w) + plim

n

1
n
∥w∥2 = τ 2

t .

2.7 Verification of Main Technical Lemma Condi-

tions

We now verify that the Lemma 2.5.5 conditions 1-5 are met for the SLOPE cost

function and the associated AMP algorithm. We note that conditions 1, 4, and 5

are straightforward, so their proof is presented first. On the other hand, condition

2 and condition 3 are quite technical. Their proofs are given in Section 2.7.4 and

Section 2.7.5 below.

52

2.7.1 Condition (4)

This follows by standard limit theorems about the singular values of Wishart matrices

(see Appendix 2.9.7, Theorem H.2).

2.7.2 Condition (5)

Recall, Cx(b) = 1
2∥y−Xb∥2 +∑p

i=1 λ̂i|bi| for some λ̂ ∈ P(Π̂−1
x (λ)), and by definition,

Cx(x) = C(x) for all x. Since β̂ is the minimizer of C(·) we have C(βt) ≥ C(β̂)

and by the rearrangement inequality, Cβ̂(β̂) ≥ Cβt(β̂). Therefore, C(βt) ≥ C(β̂) =

Cβ̂(β̂) ≥ Cβt(β̂).

2.7.3 Condition (1)

Condition (1) follows, for large enough p, from Lemma 2.7.1, stated below, which

proves the asymptotic boundedness of the norms of the AMP estimates βt and the

SLOPE estimate β̂.

Lemma 2.7.1. For any parameter vector λ ∈ Rp defining a SLOPE cost as in

(2.1.2), let α = α(λ), then for t ≥ 0,

plim
p

1
p
∥βt∥2 = plim

p

1
p
EZ [∥ηt

p(β + τtZ)∥2] ≤ 2σ2
β + 2τ 2

t , (2.7.1)

for ηt
p(·) defined in (2.4.1) with σ2

β := E[B2] <∞ and σ2
β + τ 2

∗ <∞ and

plim
p

1
p
∥β̂∥2 ≤ C, (2.7.2)

53

where C := C(δ, σ2
β, σ

2
w,Bmax,Bmin, λmin) is a positive constant depending on δ, σ2

β, σ
2
w,

along with the singular values of X through Bmax ≥ limp σ
2
max(X), and Bmin ≤

limp σ̂
2
min(X), and a lower bound on the parameter values λmin := limp min(λ).

Proof. The proof is included in Appendix 2.9.4.

2.7.4 Condition (2)

Condition (2) follows from Lemma 2.7.2 stated below, for ϵ arbitrarily small when t

is large enough.

Lemma 2.7.2. Under the conditions of Theorem 3, for every iteration t, there exists

a subgradient sg(C,βt) of C defined in (2.5.1) at point βt such that almost surely,

lim
t

plim
p

1
p
∥sg(C,βt)∥2 = 0.

The proof is an adaption of [BM11c, Lemma 3.3], though, the subgradient for the

SLOPE cost function (studied extensively in Section 2.5.1) is quite different than

that of the LASSO cost and our analysis requires handling this carefully. Before we

prove Lemma 2.7.2, we state and prove a result which tells us that the asymptotic

difference between the AMP output at any two iterations t and t− 1 goes to zero in

ℓ2 norm as the algorithm runs. This result is crucial to the proof of Lemma 2.7.2.

Lemma 2.7.3. Under the condition of Theorem 3, the estimates {βt}t≥0 and

residuals {zt}t≥0 of AMP almost surely satisfy

lim
t

plim
p

1
δp
∥βt − βt−1∥2 = 0, and lim

t
plim

p

1
n
∥zt − zt−1∥2 = 0

54

Proof of Lemma 2.7.3. This result uses Lemma 2.6.2, which characterizes the large

system limit of 1
n
∥zt − zt−1∥2 and 1

δp
∥βt+1 − βt∥2 as both being equal to τ 2

t −

2Σt,t−1 + τ 2
t−1 where Σt,t−1 is the generalized state evolution sequence defined in

(2.6.3). Then Lemma 2.9.4 (which is stated and proved in Appendix 2.9.5) shows

that limt (τ 2
t − 2Σt,t−1 + τ 2

t−1) = 0.

Proof of Lemma 2.7.2. For any vector νt ∈ ∂Jλ(βt), note that νt −X⊤(y −Xβt)

is a valid subgradient belonging to the set ∂C(βt) as defined in Fact 2.5.1. Moreover,

by AMP (2.1.3b), y −Xβt = zt − wtzt−1 with wt := 1
δp

[∇ηt−1(βt−1 + X⊤zt−1)].

Therefore we can write,

νt −X⊤(y −Xβt) = νt −X⊤(zt − wtzt−1)

= νt −X⊤(zt − zt−1)− (1− wt)X⊤zt−1

= (νt − µtX
⊤zt−1)−X⊤(zt − zt−1) + (µt − (1− wt))X⊤zt−1,

(2.7.3)

where we define µt := ⟨λ,θt−1⟩/∥θt−1∥2 as the ratio of λ to θt−1 so that λ = µtθt−1

(here θt−1 := ατt−1 and recall that α is calibrated to be parallel to λ). It follows

that ∂Jλ(x) = µt ∂Jθt−1(x).

Now, by the definition of the proximal operator used in (2.1.3a) and by Fact

2.5.2, we have that (X⊤zt−1 + βt−1)− βt ∈ ∂Jθt−1(βt). Hence we choose νt to be

the specific subgradient defined by

νt = µt(X⊤zt−1 + βt−1 − βt) ∈ ∂Jλ(βt), (2.7.4)

55

which leads to νt − µtX
⊤zt−1 = µt(βt−1 − βt). Plugging into (2.7.3),

νt−X⊤(y−Xβt) = µt(βt−1−βt)−X⊤(zt−zt−1)+(µt−(1−wt))X⊤zt−1. (2.7.5)

Then taking the norm, dividing by √p, and using the triangular inequality, we have

1
√
p
∥νt −X⊤(y −Xβt)∥

≤ µt√
p
∥βt−1 − βt∥+ 1

√
p
∥X⊤(zt − zt−1)∥+ (µt − (1− wt))

√
p

∥X⊤zt−1∥.

Using Lemma 2.6.2, that σmax(X) is almost surely bounded as p→∞ (cf. Theorem

2), and that limt limp µt = 1 − limp
1
δp
E|| proxJA(p)τ∗

(B + τ∗Z)||∗0 as in (2.2.11) is

finite, the first two terms on the right side of the above → 0. Finally, for the

third term, Lemma 2.6.3 gives limt plimp ∥zt∥/√p = τ∗, and together with the

calibration formula (2.2.11), that σmax(X) is almost surely bounded as p→∞, and

the definition of w in the proof of Lemma 2.2.2, we find limt limp(µt− (1−wt)) = 0,

and thus the third term → 0. As νt − X⊤(y − Xβt) ∈ ∂C(βt), the proof is

complete.

2.7.5 Condition (3)

We take νt to be the subgradient defined in (2.7.4) and since t is fixed, we drop

the superscript t writing ν := νt. Recall the sets st(c2) and St(c2) defined in

Condition (3). Then for s′ being any set of maximal atoms in [p] with |s′| ≤ c3p and

S ′ := {i ∈ I : I ∈ s′}, we would like to show σmin(XSt(c2)∪S′) ≥ c4. This holds by

Proposition 2.7.4, stated below, whose proof is the main challenge. We state the

56

proposition and then we identify two auxiliary lemmas, Lemma 2.7.5 and 2.7.6, that

will be used to ultimately prove Proposition 2.7.4.

Proposition 2.7.4. There exist constants c2 ∈ (0, 1), c3, c4 > 0 and tmin <∞ such

that, for any t ≥ tmin, and set St defined in Condition (3)

min
s′

{
σmin(XSt(c2)∪S′) : S ′ ⊆ [p] , |s′| ≤ c3p , S

′ = {i ∈ I : I ∈ s′}
}
≥ c4

eventually almost surely as p→∞.

The proof of Proposition 2.7.4 will use two auxiliary lemmas, Lemma 2.7.5 and

2.7.6, stated below.

Lemma 2.7.5. Let the set st be measurable on the σ-algebra St generated by

{z0, . . . ,zt−1} and {β0 + X∗z0, . . . ,βt−1 + X∗zt−1} and assume |st| ≤ p(δ − c)

for some c > 0. Define St ⊆ [p] as {i ∈ I for some I ∈ st}. Then there exists

a1 = a1(c) > 0 (independent of t) and a2 = a2(c, t) > 0 (depending on t and c) such

that

min
s′

{
σmin(XSt∪S′) : S ′ ⊆ [p] , |s′| ≤ a1p , S

′ = {i ∈ I : I ∈ s′}
}
≥ a2 ,

eventually almost surely as p→∞.

Proof. The proof of Lemma 2.7.5 is given in Appendix 2.9.6. The key difference

in SLOPE case (Lemma 2.7.5) and LASSO case (cf. [BM11c, Lemma 3.4]) is the

concept of equivalence classes of indices. On a high level, the set s describes some

structure in the support space S and such structure restricts the dimension of some

linear spaces in the proof of Lemma 2.7.5.

57

Lemma 2.7.6. [BM11c, Lemma 3.5] Fix γ ∈ (0, 1) and let the sequence {St(γ)}t≥0

be defined as before. For any ξ > 0 there exists t∗ = t∗(ξ, γ) <∞ such that, for all

t2 ≥ t1 ≥ t∗ fixed, we have

1
p
|St2(γ) \ St1(γ)| < ξ , (2.7.6)

eventually almost surely as p→∞.

Proof. For LASSO, this result was given in [BM11c, Lemma 3.5], and for SLOPE,

the proof stays largely the same so we don’t repeat it here. The major difference

is that where the work in [BM11c] can appeal to AMP analysis in [BM11a], for

SLOPE, we appeal to similar results given in [BMN20] (e.g. Lemma 2.6.1).

Proof of Proposition 2.7.4. The subgradient in Condition (2) is given by sg(C,βt) :=

νt −X⊤(y −Xβt) where νt ∈ ∂Jλ(βt) is the subgradient defined in the Condition

(2) proof at Eq. (2.7.4). Recall, St(c2) = {i ∈ I : |νt
I | ⪰ P([Π̂−1

βt (λ)]I)(1− c2)}. We

include a simple visualization for the set St(c2) in Figure 2.4. We have plotted the

subgradient νt
I = (−1, 2) for (zero) equivalence class I = {1, 2} when λ = (4, 1) and

βt = (0, 0). Then indices of |νt
I |, namely (1, 2) are in St(c2) unless c2 < 0.4.

We know from the proof of Lemma 2.7.2 Eq. (2.7.4) that νt = µt(X⊤zt−1 +

βt−1 − βt) ∈ µtJθt(βt) where µt := ⟨λ,θt−1⟩/∥θt−1∥2 and λ = µtθ
t−1. Therefore,

summing over all equivalence classes I,

|st(c2)| =
∑

I

I{|νt
I | ⪰ P([Π̂−1

βt (λ)]I)(1− c2)}

=
∑

I

I
{
|βt − [X⊤zt−1]− βt−1|I ⪰ P([Π̂−1

βt (θt−1)]I)(1− c2)
}
.

(2.7.7)

58

0 1 2 3 4 5

0
1

2
3

4
5

| v |

λ̂

0 1 2 3 4 5

0
1

2
3

4
5

| v |

λ̂

Figure 2.4: Left: c2 = 0.5; Right: c2 = 0.2; Blue area is {ν ∈ ∂Jλ(0, 0) : |ν| ⪰

(1− c2)P(λ1, λ2)} and grey area is complement of blue area in ∂Jλ(0, 0).

As detailed in the proof of Lemma 2.5.5, for non-zero equivalence classes, let λ̂I = |νI |,

and for the zero equivalence class, let λ̂I ≥ |νI |, meaning λ̂I is parallel to |νI | for

each equivalence class I of βt. That such a λ̂ exists in the set P(Π̂−1
βt (λ)) follows

since ν is a valid subgradient of Jλ(βt) (see Fact 2.5.3). We can then simplify the

set definitions of st(c2) and St(c2) to be st(c2) := {I ⊂ [p] : |νI | ≥ (1− c2)λ̂I} and

St(c2) := {i : |νi| ≥ (1− c2)λ̂i}, where both use equivalence classes, I, defined for

βt. Then since λ = µtθ
t−1, we also let θ̂

t−1 be defined such that λ̂ = µtθ̂
t−1.

Therefore, by (2.7.7), |st(c2)| =
∑

I I{|βt − [X⊤zt−1] − βt−1|I ≥ θ̂
t−1
I (1 − c2)}.

In the notation of (2.9.41), βt − [X⊤zt−1] − βt−1 = ht + ηt−1(β − ht) − β and

βt = ηt−1(β − ht) and therefore by (2.7.7),

|st(c2)| =
∑

I

I
{
|ht + ηt−1(β − ht)− β|I ≥ θ̂

t−1
I (1− c2)

}
.

Now, we note that Lemma 2.6.1 implies weak convergence of the empirical dis-

59

tribution of ht to τt−1Zt−1 for Zt−1 a vector of i.i.d. standard Gaussian and τt−1

given by the state evolution (2.2.4). Therefore a careful argument using continuous

approximations to indicators gives,

plim
p

1
p

∑
I

I
{
|ht + ηt−1(β − ht)− β|I ≥ θ̂

t−1
I (1− c2)

}

= lim
p

EZt−1

{1
p

∑
I

I
{
|τt−1Zt−1 + ηt−1(β − τt−1Zt−1)− β|I ≥ θ̂

t−1
I (1− c2)

}}
,

(2.7.8)

where in the right side of the above, the equivalence classes I are taken with respect

to ηt−1(β − τt−1Zt−1) and θ̂
t−1
I as equal to or larger than |τt−1Zt−1 + ηt−1(β −

τt−1Zt−1) − β|I depending on whether I is the zero equivalence class or not. We

justify the substitution of τt−1Zt−1 for ht by approximating the sum of indicators

with a function that counts the number of elements in ηt−1(β − ht) that are strictly

greater than its neighbour. Then this function converges to a continuous and

bounded function, the function that measures the proportion of ηt−1 that is non-flat,

to which we apply the Portmanteau Theorem (cf. [HL19a], Lemma 1(b) in [BM11a]

and Lemma F.3(b) in [BM11c]).

Now, using (2.7.8), we can simplify:

plim
p

1
p
|st(c2)|

= lim
p

1
p

∑
I

P
Zt−1

(
|τt−1Zt−1 − ηt−1(β − τt−1Zt−1)− β|I ≥ θ̂

t−1
I (1− c2)

)
,

(2.7.9)

and we study the probability on the right side of the above, for a fixed equivalence

60

class I, writing ηt−1(β − τt−1Zt−1) to be ηt−1, dropping the input.

P
(
|τt−1Zt−1 + ηt−1 − β|I ≥ θ̂

t−1
I (1− c2)

)

= P
(
|τt−1Zt−1 + ηt−1 − β|I ≥ θ̂

t−1
I (1− c2), ηt−1

1 = 0
)

+ P
(
|τt−1Zt−1 + ηt−1 − β|I ≥ θ̂

t−1
I (1− c2), ηt−1

I ̸= 0
)

(a)= P
(

θ̂
t−1
I ≥ |β − τt−1Zt−1|I ≥ θ̂

t−1
I (1− c2)

)

+ P
(

θ̂
t−1
I ≥ θ̂

t−1
I (1− c2)

)
P(ηt−1

I ̸= 0).

= P
(

θ̂
t−1
I ≥ |β − τt−1Zt−1|I ≥ θ̂

t−1
I (1− c2)

)
+ P(ηt−1

I ̸= 0).

(2.7.10)

In the above, step (a) follows when ηt−1
I = [proxJθt−1 (β − τt−1Zt−1)]I = 0, since we

must have |β − τt−1Zt−1|I ≤ θ̂
t−1
I , and when ηt−1

I ≠ 0, by Fact 2.5.2 and Fact 2.5.3,

we know that |ηt−1(β − τt−1Zt−1)− (β − τt−1Zt−1)|I ∈ P([Π̂−1
ηt−1(θt−1)]I).

It obvious that one can make the first probability arbitrarily small by bringing c2

to 0. To see this, say 1 ∈ I and notice that P([Π̂−1
ηt−1(θt−1)]I) always has Lebesgue

measure 0 because it is a subset of the hyperplane {x ∈ Rp : ∑j∈I xj = ∑
j∈I θ

t−1
j }.

On the other hand, notice that

∑
I

P([ηt−1(β − τt−1Zt−1)]I ̸= 0) =
∑

I

E{I([ηt−1(β − τt−1Zt−1)]I ̸= 0)}

= EZt−1∥ηt−1(β − τt−1Zt−1)∥∗
0,

and that ηt−1 is asymptotically separable by Lemma 2.3.3. Define ht−1(x) = h(x;B+

τt−1Z,Θt−1) with Θt−1 being the distribution to which the empirical distribution of

θt−1 converges, and also define

Wt−1 :=
{
x
∣∣∣∣ ht−1(x) ̸= 0 and m{z | |ht−1(z)| = |ht−1(x)|} = 0

}

61

similarly to (2.2.12), where m is the Lebesgue measure. Then,

lim
p

1
p
EZt−1∥ηt−1(β − τt−1Zt−1)∥∗

0 = lim
p

1
p
EZt−1∥ht−1(β − τt−1Zt−1)∥∗

0

= lim
p

1
p
EZt−1

p∑
i=1

I {(βi − τt−1Zt−1,i) ∈Wt−1}

= lim
p

1
p
EZt−1,B∥ηt−1(B − τt−1Zt−1)∥∗

0,

where the last equality holds by Lemma 2.3.2.

Then (2.2.10) gives this term is smaller than δ for large t. Hence, by (2.7.9) and

(2.7.10),

plim
p

1
p
|st(c2)| = lim

p

1
p

∑
I

P
(

θ̂
t−1
I ≥ |β − τt−1Zt−1|I ≥ θ̂

t−1
I (1− c2)

)

+ lim
p

1
p
EZt−1,B∥ηt−1(B − τt−1Zt−1)∥∗

0,

Therefore, for some c > 0, choose c2 ∈ (0, 1) such that the first term on the right

side of the above is arbitrarily small along with tmin,1(c) such that the second term

is arbitrarily close to δ, meaning

lim
p

P
(

1
p
|st(c2)| < δ − c

)
= 1,

for all fixed t larger than some tmin,1(c).

For any t ≥ tmin,1(c) we can apply Lemma 2.7.5 for some a1(c), a2(c, t). Note

this doesn’t immediately give the result we use since the lower bound, a2, depends

on t. To get around this we additionally appeal to Lemma 2.7.6 that tells us after

some time t∗, the supports of the AMP estimates don’t change appreciably. Now we

fix c > 0 and consequently a1 = a1(c) is fixed. Define tmin = max(tmin,1, t∗(a1/2, c2))

62

with t∗(·) defined as in Lemma 2.7.6 and let a2 = a2(c, tmin). Then, by Lemma 2.7.5

and the fact that a2(c, t) is non-increasing in t,

min
{
σmin(XStmin (c2)∪S′) : S ′ ⊆ [p] , |s′| ≤ a1p

}
≥ a2.

In addition, by Lemma 2.7.6, |St(c2)\Stmin(c2)| ≤ pa1/2. Both events hold eventually

almost surely as p→∞. The proof completes with c3 = a1(c)/2 and c4 = a2(c, tmin),

fixed with respect to t.

2.8 Discussion and Future Work

This work develops and analyzes the dynamics of an approximate message passing

(AMP) algorithm with the purpose of solving the SLOPE convex optimization

procedure for high-dimensional linear regression. By employing recent theoretical

analysis of AMP when the non-linearities used in the algorithm are non-separable

[BMN20], as is the case for the SLOPE problem, we provide rigorous proof that

the proposed AMP algorithm finds the SLOPE solution asymptotically. Moreover

empirical evidence suggests that the AMP estimate is already very close to the

SLOPE solution even in few iterations. By leveraging our analysis showing AMP

provably solves SLOPE, we provide an exact asymptotic characterization of the

ℓ2 risk of the SLOPE estimator from the underlying truth and insight into other

statistical properties of the SLOPE estimator. Though this asymptotic analysis

of the SLOPE solution has been demonstrated in other recent work [HL19a] using

63

a different proof strategy, we believe that our AMP-based approach offers a more

concrete and algorithmic understanding of the finite-sample behavior of the SLOPE

estimator.

A limitation of this approach is that the theory assumes an i.i.d. Gaussian

measurement matrix, and moreover, the AMP algorithm can become unstable when

the measurement matrix is far from i.i.d., creating the need for heuristic techniques

to provide convergence in applications where the measurement matrix is generated

by nature (i.e., a real-world experiment or observational study). Additionally, the

asymptotical regime studied here, n/p→ δ ∈ (0,∞), requires that the number of

columns of the measurement matrix p grow at the same rate as the number of rows

n. It is of practical interest to extend the results to high-dimensional settings where

p grows faster than n.

2.9 Appendix

2.9.1 State Evolution Analysis

We first prove Theorem 1 and then provide a proof of Proposition 2.2.6.

Proving Theorem 1

Proof of Theorem 1. To begin with, we prove that F(τ 2,ατ) defined in (2.2.8) is

concave with respect to τ 2. The proof follows along the same lines as the proof of

64

[BM11c, Proposition 1.3], however, whereas the proof of [BM11c, Proposition 1.3]

proceeds by explicitly expressing the first derivative of the corresponding function

F, and then differentiating on the explicit form to get the second derivative, in

SLOPE case, because of the averaging that occurs within the proximal operation, it

is extremely difficult to similarly derive an explicit form. To work around this, we

keep all differentiation implicit. First,

∂F
∂τ 2 (τ 2,ατ) = ∂

∂τ 2

[
σ2

w + 1
δp

E∥proxJατ
(B + τZ)−B∥2

]
(a)= 1

δ
E
{ ∂

∂τ 2
1
p
∥proxJατ

(B + τZ)−B∥2
}

= 2
δp

p∑
i=1

E
{(

[proxJατ
(B + τZ)]i −Bi

) ∂

∂τ 2 [proxJατ
(B + τZ)]i

}
. (2.9.1)

We note that the interchange between the derivative (a limit) and the expectation

in step (a) of the above holds due to a dominated convergence argument that relies

on the following lemma. First we introduce a bit of notation that will be used

throughout the proof. Define an equivalence classes Ii for each index i = {1, 2, . . . , p},

defined as

Ii := {j : |[proxJατ
(B + τZ)]j| = |[proxJατ

(B + τZ)]i|}.

For any j ∈ Ii, with the above definition, Ij = Ii. In general, we use I, without

any specific index, to represent an entire equivalence class and let I indicate the

collection of unique equivalence classes.

Lemma 2.9.1.
∣∣∣∣ ∂∂τ 2

1
p
∥proxJατ

(B + τZ)−B∥2
∣∣∣∣ ≤ 1

p

∑
I∈I

1
|I|

(∑
i∈I

|sign(Bi + τZi)Zi − αi|
)2
. (2.9.2)

65

Lemma 2.9.1 will be proved below, after we solve ∂
∂τ2 [proxJατ

(B + τZ)]i.

Now we describe how the bound in Lemma 2.9.1 can be used to produce the

dominated convergence result needed in step (a) of (2.9.1). First note,

1
p
E
{∑

I∈I

1
|I|

(∑
i∈I

|sign(Bi + τZi)Zi − αi|
)2}

≤ 1
p
E
{∑

I∈I

∑
i∈I

(
|sign(Bi + τZi)Zi − αi|

)2}

≤ 2
p
E
{∑

I∈I

∑
i∈I

(Z2
i + α2

i)
}

= 2
p
E
{ ∑

i∈[p]
(Z2

i + α2
i)
}

= 2 + 2∥α∥2/p <∞

The first and second inequalities follow from (∑n
i=1 xi)2 ≤ n

∑
i x

2
i . The last inequality

comes from entries of α being finite and then ∥α∥2/p ≤ maxi α
2
i <∞. Therefore

we can invoke the dominated convergence theorem that allows the exchange of the

derivative and expectation in step (a) of (2.9.1).

Now we want to further simplify (2.9.1). For each 1 ≤ i ≤ p, we would like to

study ∂
∂τ2 [proxJατ

(B + τZ)]i. We first note that the mapping τ 2 7→ [proxJατ
(B +

τZ)]i can be considered as f(g(τ 2)), where g : R→ R2p is defined as y 7→ g(y) :=

(B + Z
√
y,α
√
y) and f : R2p → R is defined as (a, b) 7→ f(a, b) := [proxJb

(a)]i.

Hence,

∂

∂τ 2 [proxJατ
(B + τZ)]i = Jf◦g(τ 2) (a)= Jf (g(τ 2))Jg(τ 2)

=
[
∇af(g(τ 2)),∇bf(g(τ 2))

][
Z

2τ ,
α

2τ

]⊤
,

(2.9.3)

where Jh ∈ Rm×n is the Jacobian matrix of a function h : Rn → Rm and step

(a) follows by the chain rule. We denote the proximal operator using a function

66

η : R2p → Rp as η(a, b) := proxJb
(a) and consider the partial derivatives of η with

respect to its first and second arguments. Denote

∂1η(a, b) := diag
[
∂

∂a1
,
∂

∂a2
, . . . ,

∂

∂ap

]
η(a, b),

and ∂2η(a, b) := diag
[
∂

∂b1
,
∂

∂b2
, . . . ,

∂

∂bp

]
η(a, b).

(2.9.4)

Recall that the derivatives computed in ∂1η(a, b) are defined in (2.2.2), and by

anti-symmetry between two arguments, d
dbj

[η(a, b)]i = − sign([η(a, b)]j) d
daj

[η(a, b)]i.

Then using the result of (2.2.2):

∂[proxJλ
(v)]i

∂vj

= ∂[η(v,λ)]i
∂vj

= I{|[η(v,λ)]i| = |[η(v,λ)]j|} sign([η(v,λ)]i[η(v,λ)]j)
#{1 ≤ k ≤ p : |[η(v,λ)]k| = |[η(v,λ)]i|}

we have

d

daj

f(a, b) = d

daj

[η(a, b)]i = I{|[η(a, b)]i|

= |[η(a, b)]j|} sign([η(a, b)]i[η(a, b)]j)[∂1η(a, b)]i, (2.9.5)

and similarly,

d

dbj

f(a, b) = d

dbj

[η(a, b)]i = −I
{
|[η(a, b)]i|

= |[η(a, b)]j|
}

sign
(
[η(a, b)]i

)[
∂1η(a, b)

]
i
.

Now plugging the above into (2.9.3), we have

∂

∂τ 2 [proxJατ
(B + τZ)]i

= 1
2τ
[
∂1η(B + τZ,ατ)

]
i
sign

(
[η(B + τZ,ατ)]i

)
∑
j∈Ii

(
sign([η(B + τZ,ατ)]j)Zj − αj

)
(2.9.6)

67

In what follows, we drop the explicit statement of the η(·, ·) input to save space,

writing ηi to mean [η(B+τZ,ατ)]i or [∂1η]i to mean [∂1η(B+τZ,ατ)]i for example.

Using (2.9.6) in (2.9.1),

∂F
∂τ 2 (τ 2,ατ) = 1

δpτ

p∑
i=1

∑
j∈Ii

E
{

(ηi −Bi) [∂1η]i sign(ηi)(sign(ηj)Zj − αj)
}

= 1
δp

p∑
i=1

∑
j∈Ii

E
{

([∂1η]i)2 + (ηi −Bi)[∂2
1η]i

}

− 1
δpτ

p∑
i=1

∑
j∈Ii

E
{

(ηi −Bi) [∂1η]i sign(ηi)αj

}
.

(2.9.7)

where the second equality follows by Stein’s lemma for a fixed i and j ∈ Ii, namely,

for standard Gaussian Z we have E{f(Z)Z} = E{f ′(Z)} and therefore,

1
τ
E
{
[∂1η]i sign(ηi)(ηi −Bi) sign(ηj)Zj

}
= E

{
sign(ηi) sign(ηj)

[
(ηi −Bi)

d

daj

[∂1η]i + [∂1η]i
d

daj

[η]i
]}

= E
{
(ηi −Bi)[∂2

1η]i + ([∂1η]i)2
}
.

where the last step uses the definition of d
daj

[η(a, b)]i given in (2.9.5) and the fact

that d
daj

[∂1η(a, b)]i = sign(ηi) sign(ηj)[∂2
1η(a, b)]i.

Therefore, simplifying (2.9.7), we have shown

(δpτ)× ∂F
∂τ 2 (τ 2,ατ)

=
p∑

i=1
E
{
τ |Ii|

(
[∂1η]2i + (ηi −Bi)[∂2

1η]i
)
− [∂1η]i sign(ηi)(ηi −Bi)

∑
j∈Ii

αj

}
.

(2.9.8)

We now have the tools to prove Lemma 2.9.1.

68

Proof of Lemma 2.9.1. First,

∂

∂τ 2
1
p
∥proxJατ

(B + τZ)−B∥2

= 2
p

p∑
i=1

(
[proxJατ

(B + τZ)]i −Bi

)
∂

∂τ 2 [proxJατ
(B + τZ)]i.

As in the work above, we denote the proximal operator using a function η : R2p → Rp

as η(a, b) := proxJb
(a). Now from (2.9.6), denoting Ii := {j : |[η(a, b)]j| =

|[η(a, b)]i|}, again dropping the explicit statement of the η(·, ·) input to save space,

∂

∂τ 2 [proxJατ
(B + τZ)]i = 1

2τ [∂1η]i sign(ηi)
∑
j∈Ii

(sign(ηj)Zj − αj).

Therefore,
∣∣∣∣ ∂∂τ 2

1
p
∥proxJατ

(B + τZ)−B∥2
∣∣∣∣

= 1
τp

∣∣∣∣ p∑
i=1

(ηi −Bi) [∂1η]i sign(ηi)
∑
j∈Ii

(sign(ηj)Zj − αj)
∣∣∣∣.

Since the averaging operation reduces the dot product (meaning informally that for a

vector v ∈ Rp, (mean(v), ...,mean(v)) · v ≤ ∥v∥2), we have for any i ∈ {1, 2, . . . , p}

that [η(B + τZ,ατ)]i−Bi can be replaced with Bi + τZi− sign(ηi)αiτ −Bi. Using

this in the above,
∣∣∣∣ ∂∂τ 2

1
p
∥proxJατ

(B + τZ)−B∥2
∣∣∣∣

≤ 1
p

∣∣∣∣ p∑
i=1

∑
j∈Ii

(Zi − sign(ηi)αi) [∂1η]i sign(ηi)(sign(ηj)Zj − αj)
∣∣∣∣

= 1
p

∣∣∣∣ p∑
i=1

∑
j∈Ii

(sign(ηi)Zi − αi)(sign(ηj)Zj − αj) [∂1η]i
∣∣∣∣.

(2.9.9)

69

Next, using that 0 ≤ |[∂1η]i| ≤ 1/|Ii|,

∣∣∣∣ p∑
i=1

∑
j∈Ii

(sign(ηi)Zi − αi)(sign(ηj)Zj − αj) [∂1η]i
∣∣∣∣

≤
p∑

i=1

1
|Ii|

∑
j∈Ii

∣∣∣∣(sign(ηi)Zi − αi)(sign(ηj)Zj − αj)
∣∣∣∣.

Finally we make the following observation. Any equivalence class Ii is a collection

of indices j ∈ {1, 2, . . . , p} such that |[proxJατ
(B + τZ)]j| = |[proxJατ

(B + τZ)]i|,

so for any j ∈ Ii, it follows Ij = Ii. Recall, I indicates the collection of unique

equivalence classes, and we have

p∑
i=1

1
|Ii|

∑
j∈Ii

∣∣∣∣(sign(ηi)Zi − αi)(sign(ηj)Zj − αj)
∣∣∣∣

=
∑
I∈I

1
|I|

∑
i,j∈I

∣∣∣∣(sign(ηi)Zi − αi)(sign(ηj)Zj − αj)
∣∣∣∣.

Now plugging back into (2.9.9),

∣∣∣∣ ∂∂τ 2
1
p
∥proxJατ

(B + τZ)−B∥2
∣∣∣∣

≤ 1
p

∑
I∈I

1
|I|

∑
i,j∈I

∣∣∣∣(sign(ηi)Zi − αi)(sign(ηj)Zj − αj)
∣∣∣∣

= 1
p

∑
I∈I

1
|I|

(∑
j∈I

|sign(ηj)Zj − αj|
)2
.

Now considering (2.9.8), for simplicity in our future calculations, we suppress |Ii|

to 1 without loss of generality. To see this, recall that Ii := {j : |[η(B+τZ,ατ)]j| =

|[η(B + τZ,ατ)]i|} and note that when |[η(B + τZ,ατ)]j equals |[η(B + τZ,ατ)]i,

the terms will remain equal after small changes in τ . Therefore |Ii| is treated as a

70

constant in the derivative and since all operations below preserves linearity, it can

safely be assumed to be equal to 1. Note that similarly, ∑j∈Ii
αj, will pass through

future calculations as a constant. Therefore (2.9.8) becomes

(δpτ)× ∂F
∂τ 2 (τ 2,ατ)

=
p∑

i=1

[
E
{
τ([∂1η]i)2 + τ(ηi −Bi)[∂2

1η]i − αi sign(ηi)(ηi −Bi)[∂1η]i
}]
.

(2.9.10)

In what follows we will need to take care with the points (x,y) such that [∂2
1η(x,y)]i

is not equal to 0. We refer to such points as ‘kink’ points, since these are points

where the partial derivative jumps (and the second partial gradient acts like Dirac

delta function δ(x)), or in other words the points where the two (sorted, averaged)

arguments in η are equal to each other. Informally, define a ‘kink’ point as an index

where the sorted vector x matches the corresponding threshold y exactly. In LASSO,

for example, the correspond to the ‘kinks’ of the soft-thresholding function. We have

[∂2
1η(B + τZ,ατ)]i = δ(Bi + τZi − αiτ)− δ(Bi + τZi + αiτ) (2.9.11)

and

EZ,B

{
([η(B + τZ,ατ)]i −Bi)[∂2

1η(B + τZ,ατ)]i
}

= −EBEZ|B
{
Bi

[
δ(Bi + τZi − αiτ)− δ(Bi + τZi + αiτ)

]}
= −1

τ
EB

{
Bi

[
ϕ(αi −

1
τ
Bi)− ϕ(−αi −

1
τ
Bi)

]}
.

(2.9.12)

Therefore, denoting ⊙ as elementwise multiplication of vectors, by (2.9.10) and

71

(2.9.12),

(δpτ)× ∂F
∂τ 2 (τ 2,ατ)

=τE||∂1η||2 − EB

{
B⊤

[
ϕ(α− 1

τ
B)− ϕ(−α− 1

τ
B)
]}

− E
{[

α⊙ sign(η)⊙ (η −B)
]⊤
∂1η

}
.

(2.9.13)

Now we have shown the first derivative, so we consider the second derivative to

prove concavity.

Notice, however, that in order to prove concavity of F(τ 2,ατ) it suffices to show

∂
∂τ

[∂F
∂τ2 (τ 2,ατ)] ≤ 0 because ∂

∂τ2 (∂F
∂τ2) = ∂τ

∂τ2 [∂
∂τ

(∂F
∂τ2)] = 1

2τ
[∂

∂τ
(∂F

∂τ2)].

We now show ∂
∂τ

[∂F
∂τ2 (τ 2,ατ)] ≤ 0. First,

(δp)× ∂

∂τ

[
∂F
∂τ 2 (τ 2,ατ)

]

= ∂

∂τ
E||∂1η||2 −

∂

∂τ

1
τ
EB

{
B⊤

[
ϕ(α− 1

τ
B)− ϕ(−α− 1

τ
B)
]}

− ∂

∂τ

1
τ
E
{[

α⊙ sign(η)⊙ (η −B)
]⊤
∂1η

}
.

(2.9.14)

To show that (2.9.14) is ≤ 0, we find simplified representations of the three terms

on the right side. This requires the same techniques as were used to find the first

derivative above and so aren’t given in full detail.

The first term on the right side of (2.9.14) can be simplified to the following:

∂

∂τ
E||∂1η||2 = − 1

τ 2EB

{
B⊤

[
ϕ(α− 1

τ
B))− ϕ(α + 1

τ
B))

]}
. (2.9.15)

Doing so requires smart uses of the chain rule, a dominated convergence argument,

the partials in (2.9.6), and special care for the ‘kink’ points as discussed above.

Similarly, using (2.9.12), one can easily show for the third term on the right side of

72

(2.9.14),

∂

∂τ

1
τ
E
{[

α⊙ sign(η)⊙ (η −B)
]⊤
∂1η

}
≥ 1
τ 3EB

{
[α⊙B2]⊤[ϕ(α + 1

τ
B) + ϕ(α− 1

τ
B)]

}
.

(2.9.16)

Finally, using ϕ′(u) = −uϕ(u) and a dominated convergence argument, the second

term on the right side of (2.9.14) equals

− ∂

∂τ

1
τ
EB

{
B⊤

[
ϕ(α− 1

τ
B)− ϕ(−α− 1

τ
B)
]}

= 1
τ 2EB

{
B⊤

[
ϕ(α− 1

τ
B)− ϕ(−α− 1

τ
B)
]}

− 1
τ 3EB

{
(B2)⊤[(1

τ
B −α)⊙ ϕ(α− 1

τ
B)− (α + 1

τ
B)⊙ ϕ(−α− 1

τ
B)
]}
.

(2.9.17)

Now we plug (2.9.15),(2.9.16), and (2.9.17) back into (2.9.14) to show that

∂
∂τ

[∂F
∂τ2 (τ 2,ατ)] ≤ 0.

(δp)× ∂

∂τ

[
∂F
∂τ 2 (τ 2,ατ)

]

≤ − 1
τ 2EB

{
B⊤

[
ϕ(α−B/τ))− ϕ(α + B/τ))

]}
+ 1
τ 2EB

{
B⊤

[
ϕ(α−B/τ)− ϕ(−α−B/τ)

]}
− 1
τ 3EB

{
(B2)⊤[(B/τ −α)⊙ ϕ(α−B/τ)− (α + B/τ)⊙ ϕ(−α−B/τ)

]}
− 1
τ 3EB

{
[α⊙B2]⊤[ϕ(α + B/τ) + ϕ(α−B/τ)]

}

= − 1
τ 4EB

{
[B3]⊤

[
ϕ(α−B/τ)− ϕ(α + B/τ)

]}
.

(2.9.18)

We justify non-positivity of (2.9.18) by showing that the elementwise term inside the

expectation is less than or equal to 0. First assume Bi ≥ 0, then αi−Bi/τ ≤ αi+Bi/τ

and ϕ(αi −Bi/τ) ≥ ϕ(αi +Bi/τ). The other case Bi ≤ 0 follows similarly.

73

Now (2.9.18), implies ∂
∂τ

[
∂F
∂τ2 (τ 2,ατ)

]
≤ 0 and therefore, we have shown that

F(τ 2,ατ) defined in (2.2.8), is concave with respect to τ 2.

Next we show that τ 2 7→ F(τ 2,ατ) is strictly increasing. To do so, it is sufficient

to show that ∂F
∂τ2 (τ 2,ατ) is positive as τ →∞ because the concavity implies that

∂F
∂τ2 (τ 2,ατ) is non-increasing. Define f(α) := δ limτ→∞

∂F
∂τ2 (τ 2,ατ). First recall that

∂F
∂τ2 (τ 2,ατ) is given in (2.9.8). In particular,

δ
∂F
∂τ 2 (τ 2,ατ)

= 1
p

p∑
i=1

E
{
|Ii|
(

[∂1η]2i + (ηi −Bi)[∂2
1η]i

)
− 1
τ

[∂1η]i sign(ηi)(ηi −Bi)
∑
j∈Ii

αj

}
,

(2.9.19)

Then taking τ → ∞ in the above, it is easy to see that f(α) is equivalent to

setting B = 0 in η(B + τZ,ατ) and using that η(τZ,ατ) = τη(Z,α) (implying

that ∂1η(τZ,ατ) = ∂1η(Z,α)). We note that using a simplification of [∂2
1η]i as in

(2.9.11)-(2.9.12), means that this term will go to zero as τ →∞. Therefore, using

sign(η(Z,α))⊙ η(Z,α) = |η(Z,α)|,

f(α) = 1
p

p∑
i=1

E
{

[D(η(Z,α))]i([∂1η(Z,α)]i)2 − [∂1η(Z,α)]i|[η(Z,α)]i|

∑
j:|[η(Z,α)]j |=|[η(Z,α)]i|

αj

}
.

In the above we have used the following definition: for a vector v ∈ Rp, define D

elementwise as [D(v)]i := #{j : |vj| = |vi|} = |Ii| if vi ̸= 0 and ∞ otherwise. Using

that ∂1η(Z,α) = 1
D(η(Z,α)) ,

f(α) = 1
p

p∑
i=1

E
{(

1− |[η(Z,α)]i|
∑

j:|[η(Z,α)]j |=|[η(Z,α)]i|
αj

) 1
[D(η(Z,α))]i

}
(2.9.20)

74

This simplification can be efficiently computed because only |η(Z,α)| and α need

to be memorized.

Now considering (2.9.20), let α→∞ and note that since |Z| < α almost surely

as α→∞, it follows that η(Z,α) = ∂1η(Z,α) = 0. Therefore limα→∞ f(α) = 0.

By a very similar argument to the proof of concavity, it is easy to see f ′(α) < 0, and

together these facts imply f(α) > 0 for all α. The monotonicity of F is now obvious:

since F is concave (implying ∂F
∂τ2 (τ 2,ατ) is non-increasing) and strictly increasing

for τ 2 large enough, it is increasing everywhere. Moreover, the monotonicity of F

implies the monotonicity of the sequence {τ 2
t (p)}t≥0.

Finally we show that there exists a unique τ∗ such that F(τ 2
∗ ,ατ∗) = τ 2

∗ , from

which it follows that the monotone sequence {τ 2
t (p)}t≥0 converges to τ 2

∗ (p) as t→∞.

First, by (2.9.20), we know f(0) = E∥∂1η(τZ,0)∥2/p = E∥1∥2/p = 1. This, along

with the fact that f ′(α) < 0, tells us that 0 < f(α) < 1 for all α. Recall the

definition of the set Amin, namely Amin := {α : f(α) = δ}. We know that this set

is non-empty since the LASSO case shows α = (αmin, · · · , αmin) belongs to Amin

where αmin is the unique non-negative solution of (1 + α2)Φ(−α) − αϕ(α) = δ/2.

We write α ⪰ Amin to mean α is larger than at least one element in Amin, where

we consider one vector v to be larger than another vector u if vi ≥ ui for all i and

vj > uj for some j.

To complete the proof, we show that F(τ 2,ατ) > τ 2 for small enough τ 2 and

F(τ 2,ατ) < τ 2 for large enough τ 2. Therefore, there is at least one τ∗ such that

75

F(τ 2
∗ ,ατ∗) = τ 2

∗ since F is continuous in τ . It follows from the concavity of F

that the solution is unique and the sequence of iterates τ 2
t (p) converge to τ 2

∗ (p).

We first show that F(τ 2,ατ) > τ 2 for small enough τ 2. Consider the function

G(τ 2) := F(τ 2,ατ) − τ 2. Recalling the definition of F(τ 2,ατ) in (2.2.8), namely,

F(τ 2,ατ) = σ2
w + E∥proxJατ

(B + τZ) −B∥2/(δp), clearly F(0,0) = σ2
w ≥ 0 and

therefore G(0) = σ2
w ≥ 0 (with equality only if σ2

w = 0). Now we show that

F(τ 2,ατ) < τ 2 for large enough τ 2. Since f(α) is decreasing in α, for α ⪰ Amin, it

must be that f(α) < δ. Moreover, limτ→∞
∂F
∂τ2 (τ 2,ατ) = 1

δ
f(α) ≤ 1 for α ⪰ Amin.

Therefore, limτ→∞
∂G
∂τ2 (τ 2) ≤ 0 meaning G is eventually decreasing (as τ 2 grows) for

any α ⪰ Amin. Also, G(τ 2) is concave and therefore for τ 2 large enough we will

have G(τ 2) < 0, in which case F(τ 2,ατ) < τ 2.

Finally,
∣∣∣ ∂F

∂τ2 (τ 2,ατ)
∣∣∣ evaluated at at τ 2 = τ 2

∗ is upper bounded by 1 when

α ⪰ Amin, as the concavity of F implies that ∂F
∂τ2 (τ 2,ατ) is strictly decreasing in τ 2

along with limτ→∞
∂F
∂τ2 (τ 2,ατ) = 1

δ
f(α) ≤ 1 when α ⪰ Amin. If this were not the

case then there would be multiple fixed points.

Proving Proposition 2.2.6

Proof of Proposition 2.2.6. This proof is a generalized result of [BM11c, Proposition

1.4] (originally proved in [DMM11]) and [BM11c, Corollary 1.7]. Here we fixed p

and denote τ(p) as τ .

76

Recall in the proof of Theorem 1 we have shown the following facts: (A)

0 < limτ2→∞
∂F
∂τ2 (τ 2,ατ) < 1; (B) τ 2 7→ F(τ 2,ατ) is concave; (C) τ 2 7→ F(τ 2,ατ)

is strictly increasing; and (D) ∂F
∂τ2 (τ 2,ατ) evaluated at τ = τ∗, which we denote

∂F
∂τ2 (τ 2

∗ ,ατ∗) is such that 0 < ∂F
∂τ2 (τ 2

∗ ,ατ∗) < 1.

First we claim α 7→ τ 2
∗ (α) is continuously differentiable on Rp

+. This follows

from the implicit function theorem on function G(α, τ 2) := τ 2 − F(τ 2,ατ) and

from Fact (D): G is continuously differentiable and 0 < ∂G
∂τ2 < 1. Hence τ 2 can

be written as τ 2(α) which is continuously differentiable. Defining g(α, τ 2) :=

ατ
[
1 − 1

n
E∥proxJατ

(B + τZ)∥∗
0

]
, notice that λ(α) = g(α, τ 2

∗ (α)). Clearly g is

continuously differentiable in α and so is α 7→ λ(α).

In the next step, we consider α ⪰ Amin(δ) such that α→ amin for some amin ∈

Amin(δ) (denote as α ↓ Amin(δ)). We claim τ 2
∗ (α)→ +∞ as α ↓ Amin(δ). Recall,

f(α) := δ limτ→∞
∂F
∂τ2 (τ 2,ατ) (cf. Theorem 1). Then by concavity of F(τ 2,ατ) in τ ,

τ 2
∗ = F(τ 2

∗ ,ατ∗) ≥ F(0,0) + τ 2
∗ lim

τ2→∞

∂F
∂τ 2 (τ 2,ατ) = F(0,0) + 1

δ
τ 2

∗ f(α)

⇒ τ 2
∗ ≥

F(0,0)
1− f(α)/δ

Recall F(0,0) = σ2
w and f(amin) = δ for any amin ∈ Amin(δ). Hence τ 2

∗ (α)→ +∞

as α ↓ Amin(δ).

Define ℓ(α) := 1 − 1
n
E∥ proxJατ∗

(B + τ∗Z)∥∗
0. Then when τ 2

∗ (α) → +∞ as

α ↓ Amin(δ),

ℓ∗ := lim
α→amin

ℓ(α) = lim
α→amin

(
1− 1

n
E∥ proxJατ∗

(τ∗Z)∥∗
0

)
= 1− 1

n
E∥ proxJamin

(Z)∥∗
0 .

77

We claim that ℓ∗ < 0. Using the definition of the vector D and the set Amin(δ) in

(2.2.7),

ℓ∗ = 1− 1
n
E∥ proxJamin

(Z)∥∗
0 = 1− 1

δ
E
〈 1
D(proxJamin

(Z))

〉

< 1− 1
δp

∑
i

E
{ 1

[D(proxJamin
(Z))]i

(
1−

∑
j∈Ii

[amin]j · |[proxJamin
(Z)]i|

)}
= 0,

where (writing η to mean proxJamin
(Z) and D to mean D(η)) the inequality in the

above uses the fact that

1
Di

− 1
Di

(
1−

∑
j∈Ii

[αmin]j|ηi|
)

= 1
Di

∑
j∈Ii

[αmin]j|ηi| ≥ 0.

Notice in the above, the equality only holds when ηi = 0 but η ̸= 0 almost

surely. Therefore, using that λ(α) = g(α, τ 2
∗ (α)) = ατ∗(α)

[
1− 1

n
E∥proxJατ∗(α)

(B +

τ∗(α)Z)∥∗
0

]
,

lim
α↓Amin(δ)

λ(α) = ℓ∗ · lim
α↓Amin(δ)

ατ∗(α) = −∞ . (2.9.21)

Finally we consider the case α→∞ and observe τ 2
∗ (α)→ σ2

w+E{B2}/δ. To see this,

notice that F(τ 2,ατ)→ σ2
w +E{B2}/δ as α→∞ since τ 2

∗ (α) = F(τ 2
∗ (α),ατ∗(α)) is

bounded above. Moreover, since τ∗(α) is bounded, ατ∗(α) is unbounded as α→∞

and we have limα→∞ ℓ(α) = 1 whence

lim
α→∞

λ(α) = 1 · lim
α→∞

ατ∗(α) =∞ . (2.9.22)

We pause here to summarize that α 7→ λ(α) is continuously differentiable

on the domain {α : α ⪰ Amin(δ)} with λ(Amin(δ)) = −∞ and limα→∞ λ(α) = +∞.

78

Now to prove the inverse mapping λ 7→ α(λ) is continuous and non-decreasing

when p→∞, we claim that the invertibility of α 7→ λ(α) is sufficient. Precisely,

(1) invertibility implies strict monotonicity; (2) monotonicity plus (2.9.21) and

(2.9.22) implies both α 7→ λ(α) and λ 7→ α(λ) are increasing; and (3) continuity

of α 7→ λ(α) implies continuity of λ 7→ α(λ).

Now we prove the invertibility by contradiction. Assume that there are two

distinct such values α1, α2 satisfying λ̃ = λ(α1) = λ(α2). Apply Theorem 3 to

both α(λ̃) = α1,α2 with ψ(x,y) = ⟨(x−y)2⟩. Then, together with Corollary 2.3.4,

plim
p→∞

∥β̂ − β∥2/p = plim
p→∞

E⟨∥ proxJατ∗
(β + τ∗Z ; ατ∗)− β∥2

2⟩ = δ(τ 2
∗ − σ2

w) .

Since plimp→∞ ∥β̂ − β∥2/p is independent of α, the right side gives τ∗(α1) =

τ∗(α2). Next apply Theorem 3 with ψ(x,y) = ⟨|x|⟩, giving plimp→∞ ∥β̂∥1/p =

plimp→∞ E⟨∥ proxJατ∗
(β + τ∗Z ; ατ∗)∥1⟩ . Obviously, for τ∗ and p fixed, θ 7→

E⟨∥ proxJατ∗
(β + τ∗Z ; θ)∥1⟩ is strictly decreasing in θ. Therefore α1τ∗(α1) =

α2τ∗(α2) implying α1 = α2, since τ∗(α1) = τ∗(α2), which is a contradiction.

2.9.2 Verifying Properties (P1) and (P2)

In this appendix we demonstrate that the properties (P1) and (P2) given in Section

2.4 and relating to the denoiser ηt
p(·) defined in (2.4.1) are true.

Verifying Properties (P1) and (P2). Property (P1) follows since ηt
p(·) =

79

proxJατt
(·), as it is easy to show that proximal operators are Lipschitz continu-

ous with Lipschitz constant one. Namely

||ηt
p(v1)− ηt

p(v2)|| = || proxJατt
(v1)− proxJατt

(v2)|| ≤ ||v1 − v2||.

Next we show that property (P2) is true. We restate property (P2) for conve-

nience: for any s, t with (Z,Z ′) a pair of length-p vectors such that (Zi, Z
′
i) are i.id.

∼ N (0,Σ) for i ∈ [p] where Σ is any 2× 2 covariance matrix, the following limits

exist and are finite.

plim
p→∞

1
p
∥β∥, plim

p→∞

1
p
EZ [β⊤ηt

p(β + Z)],

plim
p→∞

1
p
EZ,Z′ [ηs

p(β + Z ′)⊤ηt
p(β + Z)]. (2.9.23)

We first note that the first limit in (2.9.23) exists by Assumption (A2) and the

strong law of large numbers. We focus on the other two limits. These results follow

by [HL19a, Proposition 1] given in Lemma 2.3.3 and the following lemma, which is

a classic result in probability theory.

Lemma 2.9.2 (Doob’s L1 maximal inequality, [Doo53] Chapter VII, Theorem 3.4).

Let X1, X2, . . . , Xp be a sequence of nonnegative i.i.d. random variables such that

E[X1 max{0, log(X1)}] <∞. Then,

E
[

sup
p≥1

{1
p

(X1 +X2 + · · ·+Xp)
}]
≤ e

e− 1(1 + E[X1 max{0, log(X1)}]).

Proof. Let Mp = 1
p
(X1 +X2 + · · ·+Xp). Then the sequence {Mp} is a submartingale

80

and hence by Doob’s maximal inequality,

E
[

sup
p′≥p≥1

Mp

]
≤ e

e− 1(1 + E[Mp′ max{0, log(Mp′)}]).

Note the mapping x 7→ xmax{0, log x} is convex and hence

E[Mp′ max{0, log(Mp′)}]) ≤ E[X1 max{0, log(X1)}]. The result follows by

Fatou’s lemma and by noting that supp′≥p≥1 Mp ↑ supp≥1 Mp as p′ →∞.

Before we prove that the second and third limits in (2.9.23) exist and are finite,

we state one more result that will be helpful in the proof. This result uses Lemma

2.9.2 along with a Dominated Convergence argument to study expectations taken

with respect to (Z,Z ′) like those in (2.9.23).

Lemma 2.9.3. Consider a function ψp : Rp ×Rp ×Rp → R such that for iterations

s, t ≥ 0,

1
p

∣∣∣∣ψp(β, ηs
p(β+Z), ηt

p(β+Z ′))−ψp(β, hs(β+Z), ht(β+Z ′))
∣∣∣∣→ 0, as p→∞,

(2.9.24)

where hs, ht are the unspecified functions of Lemma 2.3.3, and (Z,Z ′) are indepen-

dent Gaussian vectors having zero-mean and independent entries with finite variance.

Assume, for some constant L > 0 not depending on p,

1
p

∣∣∣∣ψp(β, ηs
p(β + Z), ηt

p(β + Z ′))− ψp(β, hs(β + Z), ht(β + Z ′))
∣∣∣∣

≤ L
(

1 + ∥β∥
2

p
+ ∥Z∥

2

p
+ ∥Z

′∥2

p

)
.

(2.9.25)

81

Then, as p→∞,

1
p

∣∣∣∣EZ,Z′

{
ψp(β, ηs

p(β +Z), ηt
p(β +Z))

}
−EZ,Z′

{
ψp(β, hs(β +Z), ht(β +Z ′))

}∣∣∣∣→ 0.

(2.9.26)

Proof. We begin by showing that EZ,Z′

{
supp≥1

1
p

∣∣∣ψp(β, ηs
p(β + Z), ηt

p(β + Z ′))
∣∣∣} <

∞. Using (2.9.25), it is clear that this expectation is finite almost surely if

E
[

sup
p≥1

{1
p
∥Z(p)∥2

}]
<∞, E

[
sup
p≥1

{1
p
∥Z ′(p)∥2

}]
<∞,

and E
[

sup
p≥1

{1
p
∥β(p)∥2

}]
<∞,

where we have made the dependence of the vectors on the dimension p explicit.

But Lemma 2.9.2 immediately implies the above since E[B2 max{0, logB}] <∞ by

assumption (A2).

Now by dominated convergence we have,

EZ,Z′

{
plim

p

1
p

∣∣∣∣ψp(β, ηs
p(β + Z), ηt

p(β + Z ′))− ψp(β, hs(β + Z), ht(β + Z ′))
∣∣∣∣}

= plim
p

1
p
EZ,Z′

∣∣∣∣ψp(β, ηs
p(β + Z), ηt

p(β + Z ′))− ψp(β, hs(β + Z), ht(β + Z ′))
∣∣∣∣

≥ plim
p

1
p

∣∣∣∣EZ,Z′

{
ψp(β, ηs

p(β + Z), ηt
p(β + Z))

}

− EZ,Z′

{
ψp(β, hs(β + Z), ht(β + Z ′))

}∣∣∣∣.
Then the above implies the desired result (2.9.26) from assumption (2.9.24).

First consider the second limit in (2.9.23). By Cauchy-Schwarz, (3.3.5) of Lemma

2.3.3 implies that
∣∣∣β⊤ηt

p(β + Z) − β⊤ht(β + Z)
∣∣∣/p → 0, as p → ∞. This follows

82

because

∣∣∣β⊤ηt
p(β + Z)− β⊤ht(β + Z)

∣∣∣/p ≤ ∥β∥∥ηt
p(β + Z)− ht(β + Z)∥/p.

Then the right side of the above → 0 with growing p because ∥β∥/√p limits to a

constant as justified above (this is the limit in (2.9.23)), and the other term → 0

by (3.3.5) of Lemma 2.3.3. This means that assumption (2.9.24) of Lemma 2.9.3

is satisfied. Assumption (2.9.25) of Lemma 2.9.3 is also satisfied since both ηt
p and

ht are Lipschitz(1), by Cauchy-Schwarz inequality. Therefore Lemma 2.9.3 implies∣∣∣EZ{β⊤ηt
p(β + Z)} − EZ{β⊤ht(β + Z)}

∣∣∣/p→ 0, as p→∞. Therefore,

plim
p→∞

EZ [β⊤ηt
p(β + Z)]/p = plim

p→∞

p∑
i=1

β0,iEZ{ht(β0,i + Zi)}/p = E[Bht(B + Z)],

where B,Z are univariate. By the Cauchy-Schwarz inequality, E[Bht(B + Z)] <∞

if E[B2] < ∞ and E[ht(B + Z)2] < ∞. Since E[B2] = σ2
β < ∞ is given by our

assumption, it suffices to show E[ht(B+Z)2] <∞. But this follows from the fact that

ht(·) is Lipschitz(1) and therefore E[ht(B + Z)2] < E[(B + Z)2] ≤ E[B2] + E[Z2] =

σ2
β + Σ11 <∞.

Finally consider the third limit in (2.9.23). Similarly to the work in studying

the second limit in (2.9.23), we will appeal to Lemma 2.9.3. First we will show that

∣∣∣ηs
p(β + Z ′)⊤ηt

p(β + Z)− hs(β + Z ′)⊤ht(β + Z)
∣∣∣/p→ 0, as p→∞,

(2.9.27)

meaning that assumption (2.9.24) of Lemma 2.9.3 is satisfied. Then, again, assump-

tion (2.9.25) of Lemma 2.9.3 is satisfied since both ηt
p(·) and ht(·) are Lipschitz(1),

using Cauchy-Schwarz.

83

Now we want to prove (2.9.27). By repeated applications of Cauchy-Schwarz it

is not hard to show,

plim
p

∣∣∣ηs
p(β + Z ′)⊤ηt

p(β + Z)− hs(β + Z ′)⊤ht(β + Z)
∣∣∣/p

≤ plim
p
∥hs(β + Z ′)∥∥ηt

p(β + Z)− ht(β + Z)∥/p

+ plim
p
∥ht(β + Z)∥∥ηs

p(β + Z ′)− hs(β + Z ′)∥/p

+ plim
p
∥ηs

p(β + Z ′)− hs(β + Z ′)∥∥ηt
p(β + Z)− ht(β + Z)∥/p.

Now, (2.9.27) follows since the right side of the above goes to 0 as p grows. This

follows since, by (3.3.5) of Lemma 2.3.3, as p→∞,

∥ηs
p(β + Z ′)− hs(β + Z ′)∥/√p→ 0 and ∥ηt

p(β + Z)− ht(β + Z)∥/√p→ 0.

Moreover, since hs(·) and ht(·) are separable, by the Law of Large Numbers,

plim
p
∥hs(β + Z ′)∥2/p = plim

p

p∑
i=1

[hs(βi + Z ′
i)]2/p = E[(hs(B + Z ′))2] <∞,

plim
p
∥ht(β + Z)∥2/p = plim

p

p∑
i=1

[ht(βi + Zi)]2/p = E[(ht(B + Z))2] <∞,

where the inequalities follow since E[(hs(B +Z ′))2] ≤ E[(B +Z ′)2] ≤ σ2
β + Σ22 <∞

and E[(ht(B + Z))2] ≤ E[(B + Z)2] ≤ σ2
β + Σ11 < ∞. This proves (2.9.27) and

therefore we can apply Lemma 2.9.3.

Then Lemma 2.9.3 implies,

∣∣∣EZ,Z′{ηs
p(β +Z ′)⊤ηt

p(β +Z)}−EZ,Z′{hs(β +Z ′)⊤ht(β +Z)}
∣∣∣/p→ 0, as p→∞.

84

But now, using the above, we find that

plim
p→∞

EZ,Z′{ηs
p(β + Z ′)⊤ηt

p(β + Z)}/p = plim
p→∞

p∑
i=1

EZ,Z′{hs(βi + Z ′
i)ht(βi + Zi)}/p

= E[hs(B + Z ′)ht(B + Z)],

where B,Z ′, and Z are univariate and E[hs(B + Z ′)ht(B + Z)] < ∞ by Cauchy-

Schwarz and the fact that hs(·) and ht(·) are Lipschitz(1). Namely, this gives the

bound
(
E[hs(B + Z ′)ht(B + Z)]

)2

≤ E[(hs(B + Z ′))2]E[(ht(B + Z))2] ≤ E[(B + Z ′)2]E[(B + Z)2]

= (E[B2] + E[Z ′2])(E[B2] + E[Z2]) = (σ2
β + Σ22)(σ2

β + Σ11) <∞.

We have now shown that property (P2) is true.

2.9.3 Proof of Fact 2.2.7

Proof. The fact follows from the asymptotic separability of the proximal operator

[HL19a, Proposition 1] (restated in Lemma 2.3.3) and the dominated convergence

theorem [Roy68] allowing for interchange of limit and expectation. We sketch the

proof of the existence of the limit in (2.2.4) (and the result for the limit in (2.2.11)

follows similarly). By Lemma 2.3.3, the weak convergence of α(p) to A, and the

Weak Law of Large Numbers, one can argue that

lim
p
∥proxJα(p)τ∗

(B + τ∗Z)−B∥2/(δp) = E{(h(B + τ∗Z)−B)2}/δ, (2.9.28)

85

where h(·) := h(·;B + τ∗Z,Aτ∗) is the unspecified, separable function of Lemma

2.3.3. This is consistent with [Lemma 29, [HL19a]]. The limit in (2.2.4) exists if

E{(h(B + τ∗Z)−B)2}/δ <∞ and

E{(h(B + τ∗Z)−B)2} ≤ 2E{h(B + τ∗Z)2 +B2} ≤ 2E{(B + τ∗Z)2 +B2}

≤ 2E{2B2 + 2τ 2
∗Z

2 +B2} = 6E{B2}+ 4τ 2
∗ <∞.

Here the first and third inequalities follow from (x− y)2 ≤ 2(x2 + y2) and the second

inequality follows from h being Lipschitz(1): |h(x)| = |h(x)−h(0)| ≤ |x−0| = |x|.

2.9.4 Proof of Lemma 2.7.1

Proof. First, the proof of (2.7.1) follows from Theorem 2.4.1. To see this, note that

by (2.1.3a), we have βt+1 = proxJθt
(X⊤zt + βt) = ηt

p(X⊤zt + βt), and therefore we

apply Theorem 2.4.1 with uniformly pseudo-Lipschitz function ψp(βt + X⊤zt,β) =

∥ηt
p(βt + X⊤zt)∥2/p to get

plim
p
∥βt∥2/p

p= plim
p

EZ [∥ηt
p(β + τtZ)∥2]/p, (2.9.29)

for Z ∼ N (0, Ip). By the Lipschitz property of ηt
p (Assumption (A4)), we have

EZ [∥ηt
p(β + τtZ)∥2] ≤ EZ [∥β + τtZ∥2] ≤ 2∥β∥2 + 2pτ 2

t . Plugging into (2.9.29), we

find plimp∥βt∥2/p
p= 2 plimp∥β∥2/p + 2τ 2

t = 2σ2
β + 2τ 2

t , where the final inequality

follows by Assumption (A2).

Now consider the β̂ result in (2.7.2). First, note that by definition C(β̂) ≤ C(0)

86

where the cost function C(·) is defined in (2.1.2). Using that

C(0) = 1
2∥y∥

2 = 1
2∥Xβ+w∥2 ≤ ∥Xβ∥2 +∥w∥2 ≤ σ2

max(X)∥β∥2 +∥w∥2, (2.9.30)

where σmax(X) is the maximum singular value of X. We note that this value,

σmax(X), is bounded almost surely as p → ∞ using standard estimates on the

singular values of random matrices since X has i.i.d. Gaussian entries by Assumption

(A1) (see, for example, [BMN20, Lemma F.2]). Therefore,

plim
p
C(β̂)/p ≤ plim

p
σ2

max(X)∥β∥2/p+ plim
p
∥w∥2/p ≤ Bmaxσ

2
β + σ2

w, (2.9.31)

where we’ve defined Bmax to be a bound on the limit of the maximum singular value,

i.e. limp σ
2
max(X) ≤ Bmax, and the final inequality holds by Assumptions (A2) and

(A3).

Now we will relate 1
p
∥β̂∥2 to 1

p
C(β̂) and other terms lower-bounded by a constant

with high probability. We write β̂ = β̂
⊥+β̂

∥ where β̂
⊥ ∈ ker(X)⊥ and β̂

∥ ∈ ker(X).

Since β̂
∥ ∈ ker(X) and ker(X) is a random subspace of size p− n = p(1− δ), by

Kashin Theorem (Theorem H.1.), we have that for some constant ν1 = ν1(δ), with

high probability

∥β̂∥∥2
2 ≤ ν1∥β̂

∥∥2
1/p. (2.9.32)

Then we have the following bound

∥β̂∥2 = ∥β̂∥∥2 + ∥β̂⊥∥2
(a)
≤ ν1∥β̂

∥∥2
1/p+ ∥β̂⊥∥2

(b)
≤ 2ν1∥β̂∥2

1/p+ (2ν1 + 1)∥β̂⊥∥2,

(2.9.33)

87

where step (a) holds by (2.9.32) and step (a) by the Triangle Inequality and Cauchy-

Schwarz as follows

∥β̂∥∥2
1 = ∥β̂ − β̂

⊥∥2
1 ≤ (∥β̂∥1 + ∥β̂⊥∥1)2 ≤ 2∥β̂∥2

1 + 2∥β̂⊥∥2
1 ≤ 2∥β̂∥2

1 + 2p∥β̂⊥∥2.

Now we bound the second term on the right side of (2.9.33). Define σ̂min(X) as

the minimum non-zero singular value of X. By standard results in linear algebra,

σ̂2
min(X)∥β̂⊥∥2 ≤ ∥Xβ̂

⊥∥2. Therefore,

σ̂2
min(X)∥β̂⊥∥2 ≤ ∥Xβ̂

⊥∥2

≤ ∥Xβ̂
⊥ − y + y∥2 ≤ 2∥y −Xβ̂

⊥∥2 + 2∥y∥2

≤ 2C(β̂) + 2C(0) ≤ 2C(0).

Therefore, using (2.9.30) and (2.9.31), we have

plim
p

1
p
∥β̂⊥∥2 ≤ plim

p

2
p
C(0)

σ̂2
min(X) ≤

2(Bmaxσ
2
β + σ2

w)
Bmin

. (2.9.34)

where we’ve defined Bmin to be a bound on the limit of the minimum non-zero

singular value, i.e. limp σ̂
2
min(X) ≥ Bmin.

Now we bound the first term on the right side of (2.9.33). Recall the definition

of the sort-ed ℓ1 norm, i.e. Jλ(b) = ∑
λi|b|(i), then using λmin := limp min(λ) to

lower bound the threshold values,

λmin∥β̂∥1 =
∑

λmin|β̂i| =
∑

λmin|β̂|(i) ≤
∑

λi|β̂|(i) = Jλ(β̂) ≤ C(β̂) ≤ C(0).

Then, using (2.9.30) and (2.9.31), we see

plim
p

1
p
∥β̂∥1 ≤ plim

p

1
λmin

(1
p
C(0)

)
≤ 1
λmin

(Bmaxσ
2
β + σ2

w). (2.9.35)

88

By (2.9.35), along with the upper bound in (2.9.33), we have

plim
p

∥β̂∥2

p
≤ 2ν1 plim

p

∥β̂∥2
1

p2 + (2ν1 + 1) plim
p

∥β̂⊥∥2

p

≤
[2ν1(Bmaxσ

2
β + σ2

w)
λmin

]2
+

2(2ν1 + 1)(Bmaxσ
2
β + σ2

w)
Bmin

.

2.9.5 Proof of Lemma 2.7.3

The proof of Lemma 2.7.3 relies on the following result, Lemma 2.9.4, about the

exponential rate of the convergence of the state evolution sequence defined in (2.6.3).

We state and prove Lemma 2.9.4, and Lemma 2.7.3 is proved afterward.

Lemma 2.9.4. Assume α > Amin(δ) and let {Σs,t}s,t≥0 be defined by the recursion

(2.6.3) with initial condition (2.6.2). Then there exists constants B1, r1 > 0 such

that for all t ≥ 0, letting τ∗ := limt τt,

|Σt,t − τ 2
∗ | ≤ B1e

−r1t, and |Σt,t+1 − τ 2
∗ | ≤ B1e

−r1t.

Proof. Throughout the proof, we use the {ηt
p}p∈N>0 notation introduced in Section 2.4

and defined in (2.4.1) with a slight modification to explicitly state the thresholds.

Namely, we consider a sequence of denoisers ηp : Rp×p → Rp to be those that apply

the proximal operator proxJατt
(·) defined in (2.1.4), i.e. ηp(v; ατt) := proxJατt

(v) for

a vector v ∈ Rp.

Then, per the definition in (2.6.3), we have

Σs+1,t+1 = σ2
w + lim

p
E
{
[ηp(B + τsZs; ατs)−B]⊤[ηp(B + τtZt; ατt)−B]

}
/(δp),

89

where B ∼ B i.i.d. elementwise, independent of length−p jointly Gaussian vectors

Zs and Zr having E[Zs] = E[Zr] = 0, with covariance E{([Zs]i)2} = E{([Zr]i)2} = 1

for any element i ∈ [p], and E{[Zs]i[Zr]j} = Σs,r

τrτs
I{i = j}. Recall, Σt,t = τ 2

t defined

in (2.2.4) and by Theorem 1 we know that {Et,t}t≥0 is monotone and converges to

τ 2
∗ as t → ∞. To prove exponential convergence of {Et−1,t}t≥0 as claimed in the

lemma statement, we construct a discrete dynamical system below.

For t ≥ 1, define the vector yt = (yt,1, yt,2, yt,3) ∈ R3 as

yt,1 ≡ Σt−1,t−1 = τ 2
t−1 , yt,2 ≡ Σt,t = τ 2

t , yt,3 ≡ Σt−1,t−1 − 2Σt,t−1 + Σt,t .(2.9.36)

A careful argument shows that the vector yt = (yt,1, yt,2, yt,3) belongs to R3
+. Essen-

tially this requires showing that a matrix RT := as in [BM11c, Lemma 5.8] is strictly

positive definite. Using the definition of the Σ recursion in (2.6.3), it is immediate

to see that this sequence is updated according to the mapping yt+1 = G(yt) where

G1(yt) ≡ yt,2 , (2.9.37)

G2(yt) ≡ σ2
w + lim

p
E
{
∥ηp(B +√yt,2Zt; α

√
yt,2)−B∥2

}
/(δp), (2.9.38)

G3(yt) ≡ lim
p

E
{
∥ηp(B +√yt,2Zt; α

√
yt,2)− ηp(B +√yt,1Zt−1; α

√
yt,1)∥2

}
/(δp),

(2.9.39)

where (Zt,Zt−1) are length−p jointly Gaussian vectors, independent of B ∼ B

i.i.d. elementwise, having E[Zt] = E[Zt−1] = 0 and with covariance E{([Zt]i)2} =

E{([Zt−1]i)2} = 1 for any element i ∈ [p], and E{[Zt]i[Zt−1]j} = Σt,t−1
τtτt−1

I{i = j}.

Notice that E{∥√yt,2Zt −
√
yt,1Zt−1∥2} = yt,3, where we emphasize that G3(yt)

90

depends on yt,3 through the covariance of Zt and Zt−1. Moreover, if σ2
w > 0, then

yt,1 and yt,2 are both strictly positive and by the map defined above it is easy to see

that yt,3 for all t ≥ 0. This mapping is defined for yt,3 ≤ 2(yt,1 + yt,2).

In the following, we will show by induction on t, for t ≥ 1, that the stronger

inequality yt,3 < (yt,1 + yt,2) holds. The initial condition implied by Eq. (2.6.2) is

y1,1 = σ2
w + E[B2]/δ, y1,2 = σ2

w + lim
p

E
{
∥ηp(B + τ0Z0; ατ0)−B∥2

}
/(δp),

y1,3 = lim
p

E
{
∥ηp(B + τ0Z0; ατ0)∥2

}
/(δp),

It follows that

y1,1 + y1,2 − y1,3 = 2σ2
w + 2 lim

p
E
{
B⊤

(
B − ηp(B + τ0Z0; ατ0)

)}
/(δp)

= 2σ2
w + 2 lim

p
EB

{
B⊤

(
B − EZ0{ηp(B + τ0Z0; ατ0)}

)}
/(δp).

Using the above, it is easy to show y1,3 < y1,1 + y1,2. This follows since EB

{
B⊤

(
B−

EZ0{η0
p(B + τ0Z0)}

)}
is asymptotically separable using Lemma 2.3.3 and because

the function x 7→ x − EZh
0(x + τ0Z) is monotone increasing. It follows that

limp EB

{
B⊤

(
B − EZ0{η0

p(B + τ0Z0)}
)}
/(δp) > 0.

Suppose that yt,3 < yt,1 + yt,2, we want to show yt+1,3 < yt+1,1 + yt+1,2. By the

induction hypothesis, E{[Zt]i[Zt−1]i} = yt,1+yt,2−yt,3
2√

yt,1yt,2
> 0, so elementwise Zt and Zt−1

91

are positively correlated.

yt+1,1 + yt+1,2 − yt+1,3

= 2σ2
w

+ lim
p

2E
{
[ηp(B +√yt,2Zt; α

√
yt,2)−B]⊤[ηp(B +√yt,1Zt−1; α

√
yt,1)−B]

}
/(δp).

(2.9.40)

Notice that x 7→ η(b + c · x ; θ) − b is monotone for any constants b and c > 0

and consider the following result: for g, a monotone function, and X1 and X2, two

positively correlated standard Gaussians, E[g(X1)g(X2)] ≥ 0. This is a special

case of a theorem in [Pit82], which shows E[g(X1)g(X2)] ≥ E[g(X1)]E[g(X2)] =

(E[g(X1)])2 > 0. Then since Zt and Zt−1 are positively correlated, E
{
[ηp(B +

√
yt,2Zt; α

√
yt,2)−B]⊤[ηp(B +√yt,1Zt−1; α

√
yt,1)−B]

}
≥ 0, which yields yt+1,3 <

(yt+1,1 + yt+1,2).

We can hereafter therefore assume yt,3 < yt,1 + yt,2 for all t.

We will consider the above iteration for arbitrary initialization y0 (satisfying

y0,3 < y0,1 + y0,2) and will show the following three facts:

Fact (i). yt,1, yt,2 → τ 2
∗ as t→∞. Further the convergence is monotone.

Fact (ii). If y0,1 = y0,2 = τ 2
∗ and y0,3 ≤ 2τ 2

∗ , then yt,1 = yt,2 = τ 2
∗ for all t and

yt,3 → 0.

Fact (iii). The Jacobian J = JG(y∗) of G at y∗ = (τ 2
∗ , τ

2
∗ , 0) has spectral

radius σ(J) < 1.

92

By simple compactness arguments, Facts (i) and (ii) imply yt → y∗ as t → ∞.

(Notice that yt,3 remains bounded since yt,3 ≤ (yt,1 + yt,2) and by the convergence of

yt,1, yt,2.) Fact (iii) implies that convergence is exponentially fast.

Proof of Fact (i). Notice that yt,2 evolves independently by yt+1,2 = G2(yt) =

F (y2,t,α
√
y2,t), with F (· , ·) the state evolution mapping introduced in (2.2.8). It

follows from Proposition 1.3 that yt,2 → τ 2
∗ monotonically for any initial condition.

Since yt+1,1 = yt,2, the same happens for yt,1.

Proof of Fact (ii). Consider the function

G∗(x) = G3(τ 2
∗ , τ

2
∗ , x) = lim

p
E
{
∥ηp(B + τ∗Zt; ατ∗)− ηp(B + τ∗Zt−1; ατ∗)∥2

}
/(δp),

where

E{[Zt]i[Zt−1]i} = yt,1 + yt,2 − yt,3

2√yt,1yt,2
= 2τ 2

∗ − x
2τ 2

∗

is no longer time-dependent. This function is defined for x ∈ [0, 2τ 2
∗]. Further

G∗ can be represented as follows in terms of the independent random vectors Z,

W ∼ N(0, I):

G∗(x) = limp
1
δp
E
{
∥ηp(B + Z

√
τ 2

∗ − 1
4x+ W (1

2
√
x); ατ∗)

−ηp(B + Z
√
τ 2

∗ − 1
4x−W (1

2
√
x); ατ∗)∥2

}
,

where

(τ∗Zt−1, τ∗Zt) d=
(
Z

√
τ 2

∗ −
1
4x−W (1

2
√
x),Z

√
τ 2

∗ −
1
4x+ W (1

2
√
x)
)
.

Obviously G∗(0) = 0. A simple Taylor expansion about the first argument around

93

B yields (recall higher derivatives of η are 0 almost everywhere)

G∗(x) = lim
p

E
{
∥ηp(B; ατ∗) +

(
Z

√
τ 2

∗ −
1
4x+ W (1

2
√
x)
)
⊙ ∂1ηp(B; ατ∗)

− ηp(B; ατ∗)−
(
Z

√
τ 2

∗ −
1
4x−W (1

2
√
x)
)
⊙ ∂1ηp(B; ατ∗)]∥2

}
/(δp)

= lim
p
xE
{
∥W ⊙ ∂1ηp(B; ατ∗)]∥2

}
/(δp) = lim

p
xE
{
∥∂1ηp(B; ατ∗)]∥2

}
/(δp).

Using the above, we study G′
∗(x). First, we can exchange the limit and dif-

ferentiation because fp(x) := xE
{
∥∂1ηp(B; ατ∗)]∥2

}
/(δp) converges uniformly to

f(x) := limp xE
{
∥∂1ηp(B; ατ∗)]∥2

}
/(δp). To see this, notice fp, f are linear in x

and defined on [0, 2τ 2
∗]. Hence for every ϵ > 0, there exists p0 such that

|fp0(x)− f(x)| = x
∣∣∣∣ 1
δp0

E
{
∥∂1ηp0(B; ατ∗)]∥2

}
− lim

p

1
δp

E
{
∥∂1ηp(B; ατ∗)]∥2

}∣∣∣∣
≤ 2τ 2

∗

∣∣∣∣ 1
δp0

E
{
∥∂1ηp0(B; ατ∗)]∥2

}
− lim

p

1
δp

E
{
∥∂1ηp(B; ατ∗)]∥2

}∣∣∣∣ < ϵ.

By uniform convergence we have,

G′
∗(x) = lim

p

1
δp

E
{
∥∂1ηp(B; ατ∗)]∥2

}
= G′

∗(0) ≤ lim
p

1
δp

p∑
i=1

E
{
[∂1ηp(B; ατ∗)]i

}
.

Hence G′
∗(0) < 1, using (2.2.10) since λ > 0. Then yt,3 = [G′

∗(0)]ty0,3 → 0 as t→∞

as claimed.

Proof of Fact (iii). By the definition of G, the Jacobian is given by

JG(y∗) =



0 1 0

0 F′(τ 2
∗) 0

a G′
∗(0) b



94

denoting F′(τ 2
∗) ≡ ∂F

∂τ2 (τ 2,ατ) evaluated at τ 2 = τ 2
∗ with a and b constants whose

values are not important to the proof. Computing the eigenvalues of the Jacobian,

we get σ(J) = max
{

F′(τ 2
∗) , G′

∗(0)
}
. Since G′

∗(0) < 1 proved above and F(τ 2
∗) < 1

by Theorem 1, the claim follows.

Proof of Lemma 2.7.3. We show that Lemma 2.7.3 follows by Lemmas 2.9.4 and

2.6.2. By Lemma 2.6.2,

plim
n

(
∥zt − zt−1∥2/n− (τ 2

t − 2Σt,t−1 + τ 2
t−1)

)
= 0,

plim
p

(
∥βt+1 − βt∥2/(δp)− (τ 2

t − 2Σt,t−1 + τ 2
t−1)

)
= 0,

and so it is sufficient to show that limt(τ 2
t − 2Σt,t−1 + τ 2

t−1) = 0. Note that this

follows from Lemma 2.9.4 since τ 2
t = Σt,t and τ 2

t−1 = Σt−1,t−1 both converge to τ 2
∗ as

does Σt,t−1.

2.9.6 Technical Details for the Condition (3) Proof

We first introduce some notation and ideas that will be used throughout the proof.

The proof is similar to [BM11c, Section 5.3], with the key difference being the

concept of equivalence classes as described in Section 2.5.1.

We now introduce a more general recursion than the AMP algorithm in (2.1.3a)-

(2.1.3b). Given w ∈ Rn and β ∈ Rp, define the column vectors ht+1, qt+1 ∈ Rp and

bt,mt ∈ Rn, recursively, for t ≥ 0 as follows, starting with initial condition β0 = 0

95

and z0 = y.

ht+1 = β − (X⊤zt + βt), qt = βt − β, bt = w − zt, mt = −zt.

(2.9.41)

Note that these definitions of ht and mt match those used in Section 2.6.

Denoting [u|v] to mean the matrix of concatenating vectors u,v horizontally,

we define

[h1 + q0| · · · |ht + qt−1]︸ ︷︷ ︸
At

= X⊤ [m0| · · · |mt−1]︸ ︷︷ ︸
Mt

,

[b0|b1 + κ1m
0| · · · |bt−1 + κt−1m

t−2]︸ ︷︷ ︸
Yt

= X [q0| · · · |qt−1]︸ ︷︷ ︸
Qt

,

(2.9.42)

where the scalars κt are defined as κt := −[∇ηt−1(β − ht−1)]/n.

Define the σ-algebra generated by b0, · · · , bt−1,m0, · · · ,mt−1,h1, · · · ,ht,

q0, · · · , qt as St. Then [BM11a; BMN20], says that the conditional distribution of

the random matrix X given St is

X|St

d= Et + P⊥
Mt

X̃P⊥
Qt
, (2.9.43)

where X̃
d= X is independent of the conditioning sigma-algebra St and Et =

E(X|St) is given by:

Et := Yt(Q⊤
t Qt)−1Q⊤

t + Mt(M⊤
t Mt)−1A⊤

t + Mt(M⊤
t Mt)−1M⊤

t Yt(Q⊤
t Qt)−1Q⊤

t .

In (2.9.43), we use the notation P⊥
Mt

= I− PMt andP⊥
Qt

= I− PQt where PQt and

PMt are orthogonal projectors onto column spaces of Qt,Mt respectively. From

now on, since t is fixed, we will drop the subscript t when it is clear. A proof of

96

(2.9.43) can be found in [BM11a, Lemma 11]. We note that there are no differences

in this conditional distribution in the nonseparable case, since the analysis (in both

cases) is just that of an i.i.d. Gaussian matrix conditional on linear constraints.

Given the above notations, we claim that Lemma 2.7.5 is implied by the following

statement.

Lemma 2.9.5. Let s be a set of maximal atoms in [p] such that |s| ≤ p(δ − γ),

for some γ > 0. Then there exists α1 = α1(γ) > 0 (independent of t) and α2 =

α2(γ, t) > 0 (depending on t and γ) with

P
{

min
∥v∥=1, supp∗(v)⊆s

∥∥∥Ev + P⊥
MX̃P⊥

Qv
∥∥∥ ≤ α2

∣∣∣∣St

}
≤ e−pα1 ,

eventually almost surely as p → ∞, with Ev = Y (Q∗Q)−1Q∗PQv +

M (M ∗M)−1X∗P⊥
Qv.

We prove such implication in the next section now.

Proof of Lemma 2.7.5. The proof is adapted from [BM11c, Section 5.3.1]. First

note that by Borel-Cantelli, it is sufficient to show that, for s measurable on St and

|s| ≤ p(δ − c) there exist a1 = a1(c) > 0 and a2 = a2(c, t) > 0, such that

P
{

min
|s′|≤a1p

min
∥v∥=1, supp∗(v)⊆s∪s′

∥Xv∥ < a2

}
≤ 1/p2 ,

for all p large enough, using σmin(XSt∪S′) = min∥v∥=1, supp∗(v)⊆s∪s′ ∥Xv∥. To shorten

notation, the set {∥v∥ = 1, supp∗(v) ⊆ s ∪ s′} is denoted v(s′). Now, conditioning

97

on St, by a union bound,

P{ min
|s′|≤a1p

min
v(s′)
∥Xv∥ < a2

∣∣∣St} ≤
∑

|s′|≤a1p

P{min
v(s′)
∥Xv∥ < a2

∣∣∣St}

≤
[a1p∑

k=1

(
p

k

)]
max

|s′|≤pa1
P{min

v(s′)
∥Xv∥ < a2

∣∣∣St} ≤ eph(a1) max
|s′|≤a1p

P{min
v(s′)
∥Xv∥ < a2

∣∣∣St} ,

(2.9.44)

where h(a) = −a log a− (1− a) log(1− a) is the binary entropy function (cf. [MS77,

Chapter 10, Corollary 9]). Therefore, using iterated expectation and (2.9.44),

P
{

min
|s′|≤a1p

min
v(s′)
∥Xv∥ < a2

}
= E

{
P
{

min
|s′|≤a1p

min
v(s′)
∥Xv∥ < a2

∣∣∣∣St

}}

≤ eph(a1)E
{

max
|s′|≤a1p

P
{

min
v(s′)
∥Xv∥ < a2

∣∣∣∣St

}}
,

Now, we fix a1 < c/2 in such a way that h(a1) ≤ 1
2α1(c

2) and let a2 = 1
2α2(c

2 , t)

where α1 and α2 are defined by Lemma 2.9.5. Then,

P
{

min
|s′|≤a1p

min
v(s′)
∥Xv∥ < a2

}

≤e
1
2 pα1(c

2)E
{

max
|s′|≤a1p

P
{

min
∥v∥=1, supp∗(v)⊆s∪s′

∥Xv∥ < 1
2α2(

c

2 , t)
∣∣∣∣St

}}

≤e
1
2 pα1(c

2) E
{

max
|s′′|≤p(δ− c

2)
P
{

min
∥v∥=1, supp∗(v)⊆s′′

∥Xv∥ < 1
2α2(

c

2 , t)
∣∣∣∣St

}}
.

Finally, using (cf. [BM11c, Lemma 5.1]),

Xv|S
d= Y (Q∗Q)−1Q∗PQv + M (M ∗M)−1X∗P⊥

Qv + P⊥
MX̃P⊥

Qv . (2.9.45)

to estimate Xv and applying Lemma 2.9.5, we get, for all p large enough,

P
{

min
|s′|≤a1p

min
v(s′)
∥Xv∥ < a2

}
≤ e

1
2 pα1 E

{
max

|s′′|≤p(δ− c
2)
e−pα1

}
≤ 1/p2 .

98

Now we prove Lemma 2.9.5, using a proof that is similar to that of [BM11c,

Section 5.3.2]. We first state some lemmas that will be used in the proof, but we

will not migrate the full proofs from [BM11c] for the sake of brevity. Instead, we

describe the key points of proofs with an emphasis on the technical differences for

the SLOPE problem and provide pointers to the original proofs.

The concept of maximal atoms are reflected in these lemmas via the sets s and

correspondingly Ps, where Ps is the p × p projector matrix onto the subspace of

vectors whose supp∗ equals s. In the LASSO case where supp∗ ≡ supp and s ≡ S,

the projector is orthogonal, but in general, we must define Ps[·, j] = 1
|I|
∑

i∈I ei for

j ∈ I where Ps[·, j] is the jth column of Ps for 1 ≤ j ≤ p and ei is the ith vector of

the standard basis. For example, when p = 4 and s = {{1}, {2, 4}},

Ps =



1 0 0 0

0 1/2 0 1/2

0 0 0 0

0 1/2 0 1/2


.

Such a projector is not necessarily orthogonal and its rank is described via |s| (the

number of equivalence classes), not via |S| (the number of non-zero elements) as

for the LASSO. We may view this projector as an orthogonal projector onto the

subspace of maximal atoms: for a maximal atom I ∈ s, the projector maps elements

whose indices belong to I onto their average value.

We begin with the auxiliary lemmas.

99

Lemma 2.9.6. [Adapted from [BM11c, Lemma 5.4]] Let s be a set of max-

imal atoms in [p] such that |s| ≤ p(δ − γ), for some γ > 0. Recall that

Ev = Y (Q⊤Q)−1Q⊤PQv + M (M⊤M)−1A⊤P⊥
Qv and consider the event

ε1 :=
{∥∥∥Ev + P⊥

MX̃P⊥
Qv

∥∥∥2
≥ γ

4δ
∥∥∥Ev − PMX̃P⊥

Qv
∥∥∥2

+ γ

4δ
∥∥∥X̃P⊥

Qv
∥∥∥2
∀v

s.t. ∥v∥ = 1 and supp∗(v) ⊆ s
}
.

Then there exists a = a(γ) > 0 such that P{ε1|St} ≥ 1− e−pa.

Sketch proof. Define an event ε̃1 as follows:

ε̃1 =
{
|(Ev − PMX̃P⊥

Qv)⊤(X̃P⊥
Qv)| ≤

(
1− γ

2δ

)1/2
∥Ev − PMX̃P⊥

Qv∥ ∥X̃P⊥
Qv∥

}
,

(2.9.46)

where the event ε̃1 is meant to hold for all v such that ∥v∥ = 1 and supp∗(v) ⊆ s.

We claim that P{ε̃1|St} ≥ 1− e−pa. To prove the claim, we use that for any v, the

unit vector X̃P⊥
Qv/∥X̃P⊥

Qv∥ belongs to the random linear space im(X̃P⊥
QPs) with

dimension at most p(δ − γ). Also, Ev − PMX̃P⊥
Qv belongs to space spanned by

the column space of the matrices M and of B where Bt = [b0| . . . |bt−1] defined in

(2.9.41) and (2.9.42), having dimension at most 2t. Applying Proposition 2.9.9 using

m = n,mλ = p(δ − γ), d = 2t and ε = (1− γ
2δ

)1/2(1− γ
δ
)1/2 gives that the event(

Ev − PMX̃P⊥
Qv

∥Ev − PMX̃P⊥
Qv∥

)⊤
X̃P⊥

Qv

∥X̃P⊥
Qv∥

≤
√
λ+ ε =

(
1− γ

2δ

)1/2
,

holds with the desired probability, proving the claim. Conditional on event (2.9.46),

one can show

∥∥∥Ev + P⊥
MX̃P⊥

Qv
∥∥∥2
≥
(

1−
(

1− γ

2δ

)1/2){∥∥∥Ev − PMX̃P⊥
Qv

∥∥∥2
+
∥∥∥X̃P⊥

Qv
∥∥∥2
}
.

100

Finally observe that 1 − (1 − γ
2δ

)1/2 ≥ γ
4δ

and therefore since event ε̃1 occurring

implies ε1 occurs, giving the desired probability of ε1 as well.

Next we estimate the term ∥X̃P⊥
Qv∥2 in the above lower bound.

Lemma 2.9.7. [Adapted from [BM11c, Lemma 5.5]] Let s be a set of maximal

atoms in [p] such that |s| ≤ p(δ − γ), for some γ > 0. Then there exists constant

c1 = c1(γ), c2 = c2(γ) such that the event

ε2 :=
{∥∥∥X̃P⊥

Qv
∥∥∥ ≥ c1(γ)∥P⊥

Qv
∥∥∥ ∀v such that supp∗(v) ⊆ s

}

holds with probability P{ε2|St} ≥ 1− e−pc2.

Sketch proof. Let V be the linear space V = im(P⊥
QPs) having dimension at most

p(δ − γ). For all v with supp∗(v) ⊆ s,

∥∥∥X̃P⊥
Qv

∥∥∥ ≥ σmin(X̃|V) ∥P⊥
Qv

∥∥∥ , (2.9.47)

where X̃|V refers to the restriction of X̃ to V . Then σmin(X̃|V) is distributed as the

minimum singular value of a Gaussian matrix of dimensions pδ × dim(V), which is

almost surely bounded away from 0 as p→∞ (see Theorem G. 2). Large deviation

estimates [Lit+05] imply that the probability that σmin is smaller than a constant

c1(γ) is exponentially small.

In the next step we estimate the norm Ev by quoting the following result.

Lemma 2.9.8. [BM11c, Lemma 5.6] There exists a constant c = c(t) > 0 such that,

defining the event,

E3 :=
{
∥EPQv∥ ≥ c(t)∥PQv∥ , ∥EP⊥

Qv∥ ≤ c(t)−1∥P⊥
Qv∥, for all v ∈ Rp

}
,(2.9.48)

101

we have that E3 holds eventually almost surely as p→∞.

Finally, we can now prove Lemma 2.9.5 with the ingredients given in Lem-

mas 2.9.6-2.9.8. We restate the proof from [BM11c, Lemma 5.3] with minor changes.

Proof of Lemma 2.9.5. We start with Lemma 2.9.8 by which we assume that event

E3 holds for some function c = c(t) (without loss of generality c < 1/2). For α2(t) > 0

small enough, let E be the event

E :=
{

min
∥v∥=1, supp∗(v)⊆s

∥∥∥Ev + P⊥
MX̃P⊥

Qv
∥∥∥ ≤ α2(t)

}
. (2.9.49)

First assume ∥P⊥
Qv∥ ≤ c2/10, from which it follows,

∥Ev − PMX̃P⊥
Qv∥ ≥ ∥EPQv∥ − ∥EP⊥

Qv∥ − ∥PMX̃P⊥
Qv∥

≥c∥PQv∥ − (c−1 + ∥X̃∥2)∥P⊥
Qv∥ ≥ c

2 −
c

10 − ∥X̃∥2
c2

10 = 2c
5 − ∥X̃∥2

c2

10 ,

where the last inequality uses ∥PQv∥ =
√

1− ∥P⊥
Qv∥2 ≥ 1/2 under the assumption

∥P⊥
Qv∥ ≤ c2/10. Therefore, using Lemma 2.9.6, we get

P{E|St} ≤ P
{2c

5 − ∥X̃∥2
c2

10 ≤
(4δ
γ

)1/2
α2(t)

∣∣∣∣St

}
+ e−pa ,

and the thesis follows from large deviation bounds on the norm ∥X̃∥2 (see [Led01])

by first taking c small enough, and then choosing α2(t) < c
5

√
γ
4δ

.

Next assume ∥P⊥
Qv∥ ≥ c2/10. By Lemma 2.9.6 and 2.9.7, we can assume

events E1 and E2 hold. Therefore
∥∥∥Ev + P⊥

MX̃P⊥
Qv

∥∥∥ ≥ (γ
4δ

)1/2∥X̃P⊥
Qv

∥∥∥ ≥
(γ

4δ
)1/2c1(γ)∥P⊥

Qv∥ , proving our thesis.

102

2.9.7 Some Useful Auxiliary Material

We collect some auxiliary results that are necessary in our proof. Most of these are

results that were initially stated in [BM11c] that we repeat here for the reader.

The following proposition is used in the proof of Lemma 2.9.6. The proof

is identical to that of [BM11c, Proposition E.1] and it follows from a standard

concentration of measure argument in [Led01]. For this reason, we don’t repeat it

here.

Proposition 2.9.9. Let V ⊆ Rm a uniformly random linear space of dimension

d. For λ ∈ (0, 1), let Pλ denote the projector onto the first mλ maximal atoms in

[m]: assume that s = {I1, ..., Id}, is the set of maximal atoms, then the jth column,

Pλ[:, j] = 1
|Ir|
∑

i∈Ir
ei if j ∈ Ir for some r ≤ mλ; otherwise Pλ[:, j] = 0. Define

Z(λ) := sup{∥Pλv∥ : v ∈ V, ∥v∥ = 1}. Then, for any ε > 0 there exists c(ε) > 0

such that, for all m large enough (and d fixed) P{|Z(κ)−
√
λ| ≥ ε} ≤ e−m c(ε).

We next state a result due to Kashin [Kas77] relating to the equivalence of ℓ2

and ℓ1 norms on random vector spaces (cf. also [BM11c, Theorem F.1]).

Theorem G.1. [Kas77] For any positive number υ there exist a universal constant

cυ such that for any n ≥ 1, with probability at least 1− 2−n, for a uniformly random

subspace Vn,υ of dimension ⌊n(1− υ)⌋, for all x ∈ Vn,υ, we have cυ∥x∥2 ≤ ∥x∥1/
√
n.

Finally we state a general result about the limit behavior of extreme singular

values of random matrices, as proved in [BY08] (cf. also [BM11c, Theorem F.2]).

103

Theorem G.2. [BY08] Let A ∈ Rn×p have i.i.d. entries with E{Aij} = 0, E{A2
ij} =

1/n, and n/p = δ. Let σmax(A) be it largest singular value, and σ̂min(A) be its

smallest non-zero singular value. Then,

lim
p→∞

σmax(A) a.s.= 1/
√
δ + 1, and lim

p→∞
σ̂min(A) a.s.= 1/

√
δ − 1.

104

Chapter 3

Characterizing the SLOPE

Trade-off: A Variational

Perspective and the

Donoho-Tanner Limit

This chapter is based on "Zhiqi Bu, Jason Klusowski, Cynthia Rush, and Weijie

J. Su. "Characterizing the SLOPE Trade-off: A Variational Perspective and the

Donoho-Tanner Limit." arXiv preprint arXiv:2105.13302 (2021).".

105

3.1 Introduction

Reconstructing the signal from noisy linear measurements is vital in many disciplines,

including statistical learning, signal processing, and biomedical imaging. In many

modern applications where the number of explanatory variables often exceeds the

number of measurements, the signal is often believed—or, wished—to be sparse in

the sense that most of its entries are zero or approximately zero. Put differently,

this means that a majority of the explanatory variables are simply irrelevant to the

response of interest.

Accordingly, a host of methods have been developed to tackle these problems

by leveraging the sparsity of signals in high-dimensional linear regression. These

methods often rely on, among others, the concept of regularization to constrain the

search space of the unknown signals. Perhaps the most influential instantiation of

this concept is ℓ1 regularization, which gives rise to the Lasso method [Tib96a]. The

optimal amount of regularization, however, hinges on the sparsity level of the signal.

Intuitively speaking, if the sparsity level is low, then more regularization should be

imposed, and vice versa (see, for example, [Abr+06]).

This intuition necessitates the development of a regularization technique that

is adaptive to the sparsity level of signals, which is typically unknown in practical

problems. To achieve this desired adaptivity, [Bog+15a] introduced sorted ℓ1 regu-

larization. This new regularization technique turns into a method called SLOPE in

106

the setting of a linear regression model

y = Xβ + w, (3.1.1)

where X is the n× p design matrix, β ∈ Rp are the regression coefficients, y ∈ Rn

is the response, and w ∈ Rn is the noise term. Explicitly, SLOPE estimates the

coefficients by solving the convex programming problem

arg min
b

1
2∥y −Xb∥2 +

p∑
i=1

λi|b|(i), (3.1.2)

where |b|(1) ≥ · · · ≥ |b|(p) are the order statistics in absolute value of b = (b1, . . . , bp)

and λ1 ≥ · · · ≥ λp ≥ 0 (with at least one strict inequality) are the regularization

parameters. The sorted ℓ1 penalty, ∑p
i=1 λi|b|(i), is a norm, and the optimization

problem for SLOPE is, therefore, convex (see also [FN16]). As an important feature,

the sorted ℓ1 norm penalizes larger entries more heavily than smaller ones. Indeed,

this regularization technique is shown to be adaptive to the degree of sparsity

level and enables SLOPE to obtain optimal estimation performance for certain

problems [SC16]. Notably, in the special case λ1 = · · · = λp, the sorted ℓ1 norm

reduces to the usual ℓ1 norm. Thus, the Lasso can be regarded as a special instance

of SLOPE.

A fundamental question, yet to be better addressed, is how to quantitatively

characterize the benefits of using the sorted ℓ1 regularization. To explore this

question, Figure 3.1 compares the model selection performance of SLOPE and the

Lasso in terms of the false discovery proportion (FDP) and true positive proportion

107

(TPP) or, equivalently, between measures of type I error and power. Needless to say,

a model is preferred if its FDP is small while its TPP is large. As the first impression

conveyed by this figure, both methods seem to undergo a trade-off between the FDP

and TPP when the TPP is below a certain limit. More interestingly, while nowhere

on the Lasso path is the TPP above a limit, which is about 0.5707 in the left plot of

Figure 3.1 and 0.4343 in the right, SLOPE is able to pass the limit toward achieving

full power. To be sure, these contrasting patterns persist even for an arbitrarily

large signal-to-noise ratio. This distinction must be attributed to the flexibility of

the SLOPE regularization sequence (λ1, . . . , λp) compared to a single value as in

the Lasso case. Recognizing this message, we are tempted to ask (1) why the use of

sorted ℓ1 regularization brings a significant benefit over ℓ1 regularization in the high

TPP regime and, equally importantly, (2) why SLOPE exhibits a trade-off between

the FDP and TPP just as the Lasso does in the low TPP regime.

3.1.1 A peek at our results

To address these two questions, in this paper we characterize the optimal trade-off

of SLOPE between the TPP and FDP, uncovering several intriguing findings of

sorted ℓ1 regularization. Assuming TPP ≈ u for 0 ≤ u ≤ 1, loosely speaking,

the trade-off curve gives the smallest possible value of the FDP of SLOPE using

any regularization sequence in the large system limit. To prepare for a rough

description of our contributions, in brief, we work in the setting where the design

108

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

TPP

F
D

P

SLOPE
Lasso

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

TPP

F
D

P

SLOPE
Lasso

Figure 3.1: Comparison between SLOPE and the Lasso in terms of the TPP–FDP

trade-off. Given an estimate β̂, define its FDP = |{j:βj=0 and β̂j ̸=0}|
|{j:β̂j ̸=0}|

and TPP =

|{j:βj ̸=0 and β̂j ̸=0}|
|{j:βj ̸=0}| . The SLOPE regularization sequence λλ,rλ,w is defined in (3.2.4),

with varying 0 < r < 1 and λ > 0, and w = 0.2 in the left plot and w = 0.3 in

the right plot. The results of the Lasso are taken over its entire solution path,

and its highest TPP is about 0.5707 in the left plot and 0.4343 in the right plot.

Left: (n, p) = (300, 1000), |{j : βj ̸= 0}|/p = 0.2, and w = 0 (noiseless); right:

(n, p) = (400, 1000), |{j : βj ̸= 0}|/p = 0.7, and w = 0. On both plots, non-zero

entries of β are i.i.d. draws from the standard normal distribution. More specifications

of the setup are detailed in Section 3.2. The result presents 10 independent trials.

109

has i.i.d. Gaussian entries and the regression coefficients β1, . . . , βp are i.i.d. draws

from a distribution that takes non-zero values with a certain probability. Notably, it

is generally nontrivial to define false discoveries in high dimensions [GHT13], which

is not an issue however in the case of independent regressors. The assumption on

the signal prior corresponds to the linear sparsity regime. In addition, we assume

that both n, p→∞ and the sampling ratio n/p converges to a constant (see more

detailed assumptions in Section 3.2). From a technical viewpoint, these assumptions

allow us to make use of tools from approximate message passing (AMP) theory

[DMM09a; BM11a].

Breaking the Donoho–Tanner power limit To explain the contrasting results

presented in Figure 3.1, we prove that under the aforementioned assumptions,

SLOPE can achieve an arbitrarily high TPP. Moving from sorted ℓ1 regularization

to ℓ1 regularization, in stark contrast, the Lasso exhibits the Donoho–Tanner (DT)

power limit when n < p and the sparsity is above a certain threshold [Don06; Don05].

Informally, the DT power limit is the largest possible power that any estimate along

the Lasso path can achieve in the large system limit. For example, in the setting of

Figure 3.1 this power limit is about 0.5676 in the left plot and 0.4401 in the right

plot. For SLOPE and a certain choice of the regularization sequence, interestingly,

we show that the asymptotic TPP-FDP trade-off of SLOPE beyond the DT power

limit is given by a simple Möbius transformation, which is shown by the blue curve

in Figure 3.2. This Möbius transformation naturally serves as an upper bound on

110

the (optimal) SLOPE trade-off curve above the DT power limit.

Lower bound via convex optimization Next, we address the second question

by lower bounding the optimal trade-off for SLOPE, followed by a comparison

between the trade-offs for the two methods in the low TPP regime. To put it into

perspective, the Lasso trade-off obtained by [SBC17] is plotted as the green solid

curve in Figure 3.2. Apart from the simple fact that the SLOPE trade-off is better

than or equal to the Lasso counterpart, however, it requires new tools to take into

account the structure of sorted ℓ1 regularization. To this end, we develop a technique

based on a class of infinite-dimensional convex optimization problems. The resulting

lower bound is shown in red in Figure 3.2. It is worth noting that the development

of this technique presents several novel ideas that might be of independent interest

for other regularization schemes.

Instance superiority of SLOPE The results illustrated so far are taken from an

optimal-case viewpoint. Moving to a more practical standpoint, we are interested in

comparing the two methods on a specific problem instance and, in particular, wish to

find a SLOPE regularization sequence that allows SLOPE to outperform the Lasso

with any given penalty parameter in terms of, for example, the TPP, the FDP, or

the ℓ2 estimation risk. Surprisingly, we prove that on any problem instance, SLOPE

can dominate the Lasso according to these three indicators simultaneously. This

comparison conveys the message that the flexibility of the sorted ℓ1 regularization

111

can turn into appreciable benefits. This result is formally stated in Theorem 6.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

TPP

F
D

P

Upper (Lasso)
Upper (Mobius)
Lower

0.20 0.25 0.30 0.35 0.40 0.45 0.50

0
.3

0
0

.3
5

0
.4

0
0

.4
5

TPP

F
D

P

Upper (Lasso)
Upper (Mobius)
Lower

Figure 3.2: Illustration of the upper bound q⋆ and lower bound q⋆ for the SLOPE

TPP–FDP trade-off. The right plot is the zoom-in of the left. Here n/p = 0.3 and

|{j : βj ̸= 0}|/p = 0.5 (see more details in the working assumptions in Section 3.2).

The Lasso trade-off curve shown in green is truncated at the DT power limit about

0.3669 [SBC17]. The optimal SLOPE trade-off curve must lie between the two

curves. Notably, the two bounds agree at TPP = 1.

3.1.2 Organization

The remainder of this paper is structured as follows. In Section 3.2, we present the

main results of this paper. Next, Section 3.3 introduces the AMP machinery at a

minimal level as a preparation for the proofs of our main results. In Section 3.4, we

detail the derivation of the lower bound based on variational calculus and infinite-

dimensional convex optimization. In Section 3.5, we specify the upper bound,

especially the part given by a Möbius transformation above the DT power limit. We

112

conclude this paper in Section 3.6 by proposing several future research directions.

Omitted proofs are relegated to the appendix.

3.2 Main results

Throughout this paper, we make the following working assumptions to specify the

design matrix X ∈ Rn×p, regression coefficients β ∈ Rp, and noise w ∈ Rn in the

linear model (3.1.1), as well as the SLOPE regularization sequence λ = (λ1, . . . , λp).

To obviate any ambiguity, we consider a sequence of problems indexed by (n, p) with

both n, p tending to infinity.

(A1) The matrix X has i.i.d. N (0, 1/n) entries. The sampling ratio n/p converges

to a constant δ > 0.

(A2) The entries of β are i.i.d. copies of a random variable Π satisfying P(Π ̸= 0) = ϵ

for a constant 0 < ϵ < 1 and E(Π2 max{0, log Π}) <∞. The noise vector w

consists of i.i.d. copies of a random variable W with bounded second moment

σ2 := E(W 2) <∞.

(A3) The SLOPE regularization sequence λ(p) = (λ1, . . . , λp) is the order statistics

of p i.i.d. realizations of a (nontrivial) non-negative random variable Λ.

Moreover, we assume that X,β, and w are independent. Notice that the sparsity

level of β is about ϵp and that each column of X has approximately a unit ℓ2 norm.

The noise variance σ2 can equal 0, meaning that our results apply to both noisy

113

and noiseless settings. In (A3), by “nontrivial” we mean that Λ is not always equal

to 0. As an aside, SLOPE is reduced to the Lasso if the distribution of Λ is a unit

probability mass at some positive value.

The working assumptions are mainly driven by their necessity in AMP the-

ory [DMM09a; BM11a], which enables the use of the recent analysis of an AMP

algorithm when applied to solve SLOPE [HL19a; Bu+20a]. Regarding (A2), the

condition P(Π ̸= 0) = ϵ, which implies linear sparsity of the regression coefficients,

is not required for AMP theory. Rather, this condition is only made so that the

TPP and FDP are well-defined. Besides, the merit of the linear sparsity regime has

been increasingly recognized in the high-dimensional literature [MMB+18b; WMZ18;

Su18; SCC19; WWM19].

3.2.1 Bounds on the SLOPE trade-off

Our main result is the characterization of a trade-off curve that teases apart asymp-

totically achievable TPP and FDP pairs from the asymptotically unachievable pairs

for SLOPE 1. For any estimate β̂, recall that its FDP and TPP are defined as

FDP = |{j : βj = 0 and β̂j ̸= 0}|
|{j : β̂j ̸= 0}|

, TPP = |{j : βj ̸= 0 and β̂j ̸= 0}|
|{j : βj ̸= 0}| ,

with the convention 0/0 = 0. When it comes to the SLOPE estimator, we use

TPP(β,λ) and FDP(β,λ) to denote its TPP and FDP, respectively.
1R code to reproduce the results, e.g., to calculate q⋆ and q⋆, is available at https://github.

com/woodyx218/SLOPE_AMP.

114

https://github.com/woodyx218/SLOPE_AMP
https://github.com/woodyx218/SLOPE_AMP

Likewise, we define the thresholded FDP and TPP, namely,

FDPξ = |{j : βj = 0 and |β̂j| > ξ}|
|{j : |β̂j| > ξ}|

, TPPξ = |{j : βj ̸= 0 and |β̂j| > ξ}|
|{j : βj ̸= 0}| ,

which reduce to FDP and TPP when ξ = 0. These thresholded versions of FDP and

TPP are introduced purely for technical reasons, and have been used in previous

work including [WWM17]. Specifically, the SLOPE estimator is known to possibly

have many elements that are very close to 0, but not strictly 0, thereby causing

FDP and TPP not to converge as expected. We refer interested readers to [HL19a,

Example 3 and Figure 3] for a concrete example that illustrates such a phenomenon.

In order for FDP and TPP to converge, we consider ξ in the set

Ξ := {ξ : P(Π̂(Π,Λ) = ξ) = 0}, (3.2.1)

where Π̂ is the limiting distribution of β̂j that will be defined in (3.3.1)..

Our main results are stated in the following two theorems, which give lower and

upper bounds on the optimal SLOPE trade-off. Taken together, they demonstrate

a fundamental separation between asymptotically achievable TPP–FDP pairs and

the unachievable pairs over all signal priors Π and SLOPE regularization sequences

λ. Note that both the upper bound q⋆ and lower bound q⋆ are defined on [0, 1] and

completely determined by ϵ and δ. The expression for q⋆ is given in (3.2.8), while q⋆

is detailed in Section 3.4.

Theorem 4 (Lower bound). Under the working assumptions, namely (A1), (A2),

and (A3), for ξ ∈ Ξ in (3.2.1), the following inequality holds with probability tending

115

to one:

FDPξ(β,λ) ≥ q⋆ (TPPξ(β,λ); δ, ϵ)− cξ,

for some positive constant cξ which tends to 0 as ξ → 0.

Theorem 5 (Upper bound). Under the working assumptions, namely (A1), (A2),

and (A3), for any 0 ≤ u ≤ 1 and ξ ∈ Ξ in (3.2.1), there exist a signal prior Π

and a SLOPE regularization prior Λ such that the following inequalities hold with

probability tending to one:

FDPξ(β,λ) ≤ q⋆ (TPPξ(β,λ); δ, ϵ) + cξ and |TPP
ξ

(β,λ)− u| ≤ cξ.

for some positive constant cξ which tends to 0 as ξ → 0.

Remark 3.2.1. Above, 0.0001 can be replaced by an arbitrarily small positive constant.

The probability is taken with respect to the randomness in the design matrix,

regression coefficients, noise, and SLOPE regularization sequence in the large system

limit n, p→∞. In relating to the assumptions made previously, this theorem holds

even for σ2 = 0, the noiseless case.

The proofs of Theorem 4 and Theorem 5 are given in Section 3.4 and Section 3.5,

respectively. Most notably, our proof of Theorem 4 starts by formulating the problem

of finding a tight lower bound as a calculus of variations problem. Relying on several

novel elements, we further reduce this problem to a class of infinite-dimensional

convex programs.

116

On the one hand, Theorem 4 says that it is impossible to achieve high power

and a low FDP simultaneously using any sorted ℓ1 regularization sequences, and

this trade-off is specified by q⋆. On the other hand, Theorem 5 demonstrates that

SLOPE can achieve at least the same trade-off as that given by q⋆ by specifying

a prior Π and a regularization sequence λ. Indeed, the proof of this theorem is

constructive in that we will show that SLOPE can come arbitrarily close to any

point on the curve q⋆ in Section 3.5. Another important observation from Theorem 5

is that SLOPE can achieve any power levels, which is not necessarily the case for ℓ1

regularization-based methods as we show in Section 3.2.2.

Informally, let qSLOPE denote the optimal SLOPE trade-off curve. That is,

qSLOPE(u) is asymptotically the minimum possible value of the FDP under the

constraint that the TPP is about u, over all possible SLOPE regularization sequences

(see formal definition in Section 3.3). Combining the two theorems above, we readily

see that the optimal SLOPE trade-off must be sandwiched between q⋆ and q⋆:

q⋆(u) ≤ qSLOPE(u) ≤ q⋆(u)

for all 0 ≤ u ≤ 1. Consequently, the sharpness of the approximation to the SLOPE

trade-off rests on the gap between the two curves, and throughout the paper, we

refer to the gap as the function u 7→ q⋆(u) − q⋆(u). Figure 3.3 illustrates several

examples of the two curves for various pairs of ϵ, δ. Importantly, the plots show

that the two bounds are very close to each other, thereby demonstrating tightness

of our bounds. In fact, the gap between q⋆ and q⋆ is an upper bound of the gap

117

between the analytical q⋆ and the true trade-off qSLOPE. Furthermore, a closer look

at the plots reveals that the two curves seem to coincide exactly when the TPP

is below a certain value. In this regard, the SLOPE trade-off might have been

uncovered exactly in this regime of TPP. Future investigation is required to obtain

a fine-grained comparison between the two curves.

Looking at Figure 3.3, the reader may wonder where the non-monotonicity

in ϵ of the trade-off curves originates from. We argue that this is due to the

DT phase transition. In the case of the Lasso, for fixed δ, the trade-off curves

are monotonically increasing in ϵ: in other words, qLasso(u; δ, ϵ1) > qLasso(u; δ, ϵ2)

whenever ϵ1 > ϵ2. However, in some settings, we empirically observe that TPP = 1

is achieved with a dense SLOPE estimator. When this occurs, qSLOPE(1) = 1− ϵ and

thus qSLOPE(1; δ, ϵ1) < qSLOPE(1; δ, ϵ2). In words, the SLOPE trade-off at TPP = 1

is monotonically decreasing in ϵ. Therefore, the patterns may not be monotone

between the TPP upper limit u⋆
DT and 1, shifting from increasing in ϵ to decreasing

in ϵ at the extreme. In short, the regime beyond DT phase limit is different for

SLOPE and when SLOPE enters this regime, breaking the monotonicity in ϵ may

occur.

To be complete, we remark that the message conveyed by these two theorems

does not contradict earlier results established for FDR control of SLOPE [Bog+13a;

Bog+15a; Brz+19; KB20]. The crucial difference between the two sides arises

from the linear sparsity assumed in the present paper, which is a clear departure

118

from the much lower sparsity level considered in the literature. In this regard, our

results complement the literature by extending our understanding of the inferential

properties of the SLOPE method to an unchartered regime.

3.2.2 Breaking the Donoho–Tanner power limit

To better appreciate the trade-off results presented in Theorem 5 for SLOPE, it is

instructive to compare them with the TPP and FDP trade-off for the Lasso, which

is arguably the most popular method leveraging ℓ1 regularization.

To put it into perspective, first recall some results concerning the optimal trade-

off between the TPP and FDP for the Lasso. A surprising fact is that under the

working assumptions,2 the Lasso cannot achieve full power even with an arbitrarily

large signal-to-noise ratio when δ < 1 (that is, X is “fat”) and the sparsity ratio ϵ is

above a threshold, which we denote by ϵ⋆(δ). The dependence of this value on δ is

specified by the parametric equations

δ = 2ϕ(s)
2ϕ(s) + s(2Φ(s)− 1) , ϵ⋆ = 2ϕ(s)− 2sΦ(−s)

2ϕ(s) + s(2Φ(s)− 1) (3.2.2)

for s > 0.3 For simplicity, henceforth (δ, ϵ) is said to be in the supercritical regime if

δ < 1, ϵ > ϵ⋆(δ). Otherwise, it is in the subcritical regime when δ < 1, ϵ ≤ ϵ⋆(δ), or

δ ≥ 1 (that is, X is “thin”). In the supercritical regime, [SBC17] proved that the
2Note that, in the case of the Lasso, (A3) is replaced by the assumption that λ > 0 is a constant.
3In the compressed sensing literature, ϵ⋆ corresponds to the sparsity level where the Donoho–

Tanner phase transition occurs [DT09b; DT09a].

119

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

TPP

F
D

P

δ=0.2
δ=0.3
δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

TPP

F
D

P

δ=0.3
δ=0.4
δ=0.5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

TPP

F
D

P

ε=0.1
ε=0.2
ε=0.5

0.0 0.2 0.4 0.6 0.8 1.0
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0
TPP

F
D

P

ε=0.1
ε=0.2
ε=0.5

Figure 3.3: Examples of the SLOPE trade-off bounds q⋆ and q⋆ for different (δ, ϵ)

pairs. Top-left: ϵ = 0.2; top-right: ϵ = 0.1; bottom-left: δ = 0.9; bottom-right:

δ = 0.1. For a given δ, note that the trade-off for SLOPE is not monotone with

respect to ϵ, which is a departure from the Lasso counterpart (see [SBC17, Figure

4]). Numerically, the upper and lower bounds seem to coincide when the TPP is

below a threshold (see more details in Figure 3.5). To give more details, in one

regime with δ = 0.1, ϵ = 0.5, the maximum gap between the upper and lower

bounds maxu[q⋆(u) − q⋆(u)] is less than 0.0235; whereas in another regime with

δ = 0.5, ϵ = 0.1, the maximum gap is always less than 0.0056.

120

highest achievable TPP of the Lasso, denoted u⋆
DT, takes the form

u⋆
DT(δ, ϵ) := 1− (1− δ)(ϵ− ϵ⋆)

ϵ(1− ϵ⋆) < 1. (3.2.3)

Throughout the paper, u⋆
DT is referred to as the DT power limit. For completeness,

in the subcritical regime the Lasso can achieve any power level. As such, we formally

set u⋆
DT(δ, ϵ) = 1 when δ < 1, ϵ ≤ ϵ⋆(δ), or δ ≥ 1.

This existing result, in conjunction with Theorem 5, immediately gives the

following contrasting result concerning the Lasso and SLOPE. We use TPPLasso(β, λ)

and FDPLasso(β, λ) to denote, respectively, the TPP and FDP of the Lasso with

penalty parameter λ. Likewise, we use TPPSLOPE(β,λ) and FDPSLOPE(β,λ) to

denote those of SLOPE as ξ → 0.

Corollary 3.2.2 (SLOPE breaks the DT power limit). In the supercritical regime,

the following conclusions hold under the working assumptions:

(a) The power of the Lasso satisfies TPPLasso(β, λ) < u⋆
DT with probability tending

to one.

(b) For any 0 ≤ u < 1, there exist a SLOPE regularization prior Λ and a signal

prior Π such that TPPSLOPE(β,λ) > u with probability tending to one.

For illustration, Figure 3.1 in the introduction reflects this distinction between

SLOPE and the Lasso with u⋆
DT(0.4, 0.7) = 0.4401 in the left plot. Another illus-

tration is Figure 3.1 right plot and Figure 3.4, which is vertically truncated at

u⋆
DT(0.3, 0.2) = 0.5676. Notice that the SLOPE breaks the DT power limit, i.e.

121

u⋆
DT < TPPSLOPE < 1, but still preserves non-trivial FDP, i.e. FDPSLOPE < 1 − ϵ,

where 1−ϵ is the FDP associated with the trivial procedure that selects all predictors.

Corollary 3.2.2 highlights the benefit of using sorted ℓ1 regularization over the

less flexible ℓ1 regularization in terms of power. This sharp distinction persists no

matter how large the effect sizes are and, therefore, it must be attributed to the

flexibility of the SLOPE regularization sequence. As is well-known, the Lasso selects

no more than n variables. Worse, a significant proportion of false variables are always

interspersed on the Lasso path in the linear sparsity regime and, therefore, even

though the Lasso can select up to n > k variables, it would always miss a fraction

of true variables, thereby imposing a limit on the power. In contrast, SLOPE does

not bear the constraint that ∥β̂∥0 ≤ n owing to the flexibility of its regularization

sequence. In fact, the corresponding constraint for SLOPE is that the number of

unique non-zero entries is no more than n [SC16]. This flexibility allows SLOPE to

have arbitrarily high power regardless of the regime (δ, ϵ) belongs to.

Moving forward, we ask which regularization prior Λ and signal prior Π are

“flexible” enough to enable SLOPE to break the DT power limit. To achieve desired

flexibility, interestingly, it only requires a simple two-level regularization sequence

for SLOPE. Consider the following two-level SLOPE regularization prior: given

constants a > b ≥ 0 and 0 < w < 1, let Λa,b,w = a with probability w and otherwise

Λa,b,w = b. The SLOPE regularization sequence drawn from this prior takes the form

λa,b,w :=
(
a, a, · · · , a︸ ︷︷ ︸

about wp

, b, b, · · · , b︸ ︷︷ ︸
about (1−w)p

)
. (3.2.4)

122

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TPP

FD
P

r=0.5
r=0.3
r=0.1

0.6 0.7 0.8 0.9 1.00.
60

0.
70

0.
80

Figure 3.4: The Möbius part of the SLOPE trade-off upper bound q⋆. The solid

curve denotes the upper bound specified by (δ, ϵ) = (0.3, 0.2). The green line is the

Lasso part of q⋆ and the blue one is the Möbius part. The numerical pairs of the

TPP and FDP are obtained from experiments that are specified by the following

parameters: n = 300, p = 1000, σ2 = 0, signal prior ΠM(ϵ⋆/ϵ) with M = 10000 in

(3.2.5) (note that ϵ⋆(0.3) = 0.087), and regularization prior λ√
M,r

√
M,w in (3.2.4)

with varying w. Each pair is averaged over 50 independent trials.

123

Next, for any M > 0 and 0 ≤ ϵ′ ≤ 1, define the following signal prior:

ΠM(ϵ′) :=



M, w.p. ϵϵ′

M−1, w.p. ϵ− ϵϵ′

0, w.p. 1− ϵ.

(3.2.5)

Henceforth in this paper, denote by βM(ϵ′) the regression coefficients sampled

from ΠM(ϵ′).

Now we are ready to state the following result, which shows that SLOPE

with the two-level regularization sequence can approach any point on the Möbius

transformation (3.2.6) arbitrarily close. This result also partially specifies the upper

bound q⋆ in Theorem 5 in the supercritical regime:

q⋆(u; δ, ϵ) = ϵ(1− ϵ)u− ϵ⋆(1− ϵ)
ϵ(1− ϵ⋆)u− ϵ⋆(1− ϵ) (3.2.6)

for u⋆
DT ≤ u ≤ 1 (above the DT power limit). Note that this function takes

the form of a Möbius transformation. Notably, taking u = 1 gives q⋆(1; δ, ϵ) =
(ϵ− ϵ⋆)(1− ϵ)

ϵ(1− ϵ⋆)− ϵ⋆(1− ϵ) = 1− ϵ, which is the FDP achieved by the trivial procedure

that simply selects all predictors..

Proposition 3.2.3. For any u⋆
DT ≤ u ≤ 1 in the supercritical regime, there exist

w such that λa,b,w and βM(ϵ⋆/ϵ) make SLOPE approach the point (u, q⋆(u)) in the

sense

lim
M→∞

lim
ξ→0

lim
n,p→∞

(TPPξ(βM(ϵ⋆/ϵ),λa,b,w),FDPξ(βM(ϵ⋆/ϵ),λa,b,w))→ (u, q⋆(u)),

where a =
√
M, b = r

√
M for a certain value 0 ≤ r ≤ 1.

124

Figure 3.4 provides a numerical example that corroborates this proposition.

This result in fact implies Theorem 5 for u⋆
DT ≤ u ≤ 1 in the supercritical regime.

Note that the first limit limn,p→∞ is taken in the sense of convergence in probability.

See more details in its proof in Section 3.5.1. It is worthwhile to mention that the

three-component mixture (3.2.5) is considered in [SBC17] for the construction of

favorable priors under sparsity constraint (see a generalization in [WYS20]). This

mixture prior is used to ensure that the effect sizes are either very strong or very

weak. In particular, Proposition 3.2.3 remains true if M and 1/M are replaced by

any value diverging to infinity and any value converging to 0, respectively.

3.2.3 Below the Donoho–Tanner power limit

Next, we continue to interpret Theorem 4 and Theorem 5, but with a focus on the

regime below the DT power limit.

First of all, the two right plots of Figure 3.5 show that the lower bound and the

upper bound are very close to each other when 0 ≤ TPP ≤ u⋆
DT (recall that u⋆

DT = 1

in the subcritical regime). As a matter of fact, the upper bound in this regime is

given by [SBC17], which showed that under the working assumptions, there exists a

function q⋆
Lasso(·; δ, ϵ) such that

FDPLasso(β, λ) ≥ q⋆
Lasso(TPPLasso(β, λ); δ, ϵ)− 0.0001

holds with probability tending to one as n, p→∞. Here 0.0001 can be replaced by

any arbitrarily small positive constant. Moreover, q⋆
Lasso is tight in the sense that the

125

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

TPP

F
D

P

Lasso Unachievable

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

TPP

F
D

P

SLOPE Unachievable

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

TPP

F
D

P

Lasso Unachievable

0.0 0.2 0.4 0.6 0.8 1.0
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0
TPP

F
D

P

SLOPE Unachievable

Figure 3.5: Examples of the TPP–FDP trade-off curve, with (δ, ϵ) = (0.3, 0.2) on the

top panel and (0.3, 0.5) on the bottom. The left plot is the Lasso trade-off curve and

the right plot describes the SLOPE trade-off gain. Neither the Lasso nor SLOPE

can approach the red regions. The gray regions are sandwiched by the upper and

lower bounds on the SLOPE trade-off.

Lasso can come arbitrarily close to any point on this curve by specifying a prior and

a penalty parameter (see refined results in [WYS20]). Recognizing that the Lasso

is an instance of SLOPE, the tightness of q⋆
Lasso allows us to set q⋆(u) = q⋆

Lasso(u)

for 0 ≤ u ≤ u⋆
DT. For information, letting t⋆(u) be the largest positive root of the

126

equation

2(1− ϵ) [(1 + x2)Φ(−x)− xϕ(x)] + ϵ(1 + x2)− δ
ϵ [(1 + x2)(1− 2Φ(−x)) + 2xϕ(x)] = 1− u

1− 2Φ(−x) , (3.2.7)

we have

q⋆(u; δ, ϵ) =



q⋆
Lasso(u; δ, ϵ) = 2(1− ϵ)Φ(−t⋆(u))

2(1− ϵ)Φ(−t⋆(u)) + ϵu
, if u ≤ u⋆

DT(δ, ϵ),

ϵ(1− ϵ)u− ϵ⋆(1− ϵ)
ϵ(1− ϵ⋆)u− ϵ⋆(1− ϵ) , if u > u⋆

DT(δ, ϵ).

(3.2.8)

Above, ϕ(·) and Φ(·) are the probability density function and cumulative distribution

function of the standard normal distribution, respectively.

Returning to the lower bound, in stark contrast, the situation becomes much

more challenging. To be sure, to obtain a lower bound requires a good understanding

of the superiority of sorted ℓ1 regularization over its usual ℓ1 counterpart. From

a theoretical viewpoint, a major difficulty in the analysis of SLOPE arises from

the non-separability of sorted ℓ1 regularization. Note that the non-separability

results from the sorting operation in the penalty term ∑p
i=1 λi|b|(i) in the SLOPE

optimization program (3.1.2). To tackle this technical issue, in this paper we

formulate the SLOPE trade-off as a calculus of variations problem and further

cast it into infinite-dimensional convex optimization problems (see more details in

Section 3.4).

In a nutshell, the flexibility of the SLOPE regularization sequence seems to

only bring up limited improvement on the trade-off between the TPP and FDP

below the DT power limit. However, the two right plots of Figure 3.5 present a

127

noticeable departure between the two bounds when the TPP is slightly below u⋆
DT.

This departure is not an artifact of our analysis. Indeed, in Section 3.5.3 we provide

a problem instance whose asymptotic TPP and FDP trade-off falls strictly between

the upper bound and the lower bound:

q⋆(u) + 0.0001 < FDP < q⋆(u)− 0.0001

and TPP ≈ u < u⋆
DT with probability tending to one.

In passing, it is worthwhile mentioning that the performance in the high power

regime is likely to carry more weight. In this sense, SLOPE overall outperforms the

Lasso in terms of the trade-off between the TPP and FDP.

3.2.4 Instance-superiority of SLOPE

An important but less-emphasized point is that the above-mentioned comparison

between the two methods is over the lower envelope of all the instance-specific

problems. In this regard, it would be too quick to conclude that the flexibility of

the penalty sequence does not gain any benefits for SLOPE, even at points where

q⋆(u) may be very close to q⋆
Lasso(u). Under the working hypotheses, indeed, we

can formally prove that SLOPE is superior to the Lasso in the sense that we can

always find a SLOPE regularization prior that strictly improves the Lasso on the

same linear regression problem in terms of both model selection and estimation.

Below, we let β̂ denote the SLOPE or the Lasso estimate, and use the subscript to

distinguish between the two methods.

128

Theorem 6. Under the working assumptions, namely (A1), (A2), and (A3), given

any bounded signal prior Π and any Lasso regularization parameter λ > 0, there exists

a SLOPE regularization Λ such that the following inequalities hold simultaneously

with probability tending to one:

(a) TPPSLOPE(β,λ) > TPPLasso(β, λ);

(b) FDPSLOPE(β,λ) < FDPLasso(β, λ);

(c) ∥β̂SLOPE(β,λ)− β∥2 < ∥β̂Lasso(β, λ)− β∥2.

This theorem shows that SLOPE can outperform the Lasso from both the model

selection and the estimation viewpoints. The proof strategy of this theorem leverages

a simple form of SLOPE regularization sequences that admits two distinct values

(see (3.2.4)). Due to space constraints, we relegate the proof of this theorem to

Section 3.7.1. It is somewhat surprising that such a simple two-level sequence can

already exploit the benefits of using SLOPE over the Lasso. Having said this, from a

practical standpoint it is not entirely clear how to select the optimal SLOPE penalty

sequence to outperform the Lasso. We leave this important direction for future

research.

As an aside, we remark that SLOPE has been shown to achieve the asymptotically

exact minimax estimation when the sparsity level is much lower than considered in

the present paper, largely owing to the adaptivity of sorted ℓ1 regularization [SC16].

When it comes to the Lasso, however, cross validation is needed to select a penalty

129

parameter that enables the Lasso to achieve similar estimation performance, which

however is not exact as the constant is not sharp [BLT18].

3.3 Preliminaries for Proofs

In this section, we collect some preliminary results about SLOPE and AMP theory

that allow us to get analytic expression of the TPP and FDP asymptotically.

Informally speaking, the AMP theory given in [Bu+20a, Theorem 3] and [HL19a,

Theorem 1] characterizes the asymptotic joint distribution of the SLOPE estimator

β̂ and the true regression coefficients β. Notably, since β̂ depends on (β,λ), when

studying asymptotic properties of β̂, we will work with their asymptotic distributions

(Π,Λ). In this way, we drop the dependence on finite-sample quantities like n, p and

the sparsity level |{j : βj ̸= 0}| and instead work with asymptotic quantities such as

(δ, ϵ) henceforth.

To be specific, under pseudo-Lipschitz functions (see [Bu+20a, Definition 3.1])

on (β̂,β), the asymptotic distribution of the SLOPE (including the Lasso) estimator

β̂, which we denote as Π̂, can be described as

Π̂ D= ηΠ+τZ,Aτ
(Π + τZ), (3.3.1)

where Z is an independent standard normal and the superscript D means "in

distribution". We will refer to η (to be introduced in (3.3.5)) as the limiting scalar

function, and (τ,A) is the unique solution to the state evolution and the calibration

130

equations

τ 2 = σ2 + 1
δ
E
(
ηΠ+τZ,Aτ

(Π + τZ)− Π
)2
, (3.3.2)

Λ D= Aτ
(

1− 1
δ
E
(
η′

Π+τZ,Aτ
(Π + τZ)

))
. (3.3.3)

In order to discuss properties of the limiting scalar function η, we first introduce

the SLOPE proximal operator on (y,θ) ∈ Rp × Rp, where θ is proportional to λ

and θ1 ≥ θ2 ≥ · · · ≥ θp ≥ 0 with at least one inequality. We define the proximal

operator as

proxJ(y; θ) := arg min
b∈Rp

{1
2∥y − b∥2 + Jθ(b)

}
, (3.3.4)

where Jθ(b) = ∑p
i=1 θi|b|(i). In the Lasso case when the penalty parameter is a

constant, the proximal operator reduces to the soft-thresholding function:

proxJ(y; θ) = ηsoft(y; θ) := sign(y) ·max{|y| − θ, 0}.

Generally speaking, the SLOPE proximal operator in (3.3.4) is adaptive and

non-separable, in the sense that an element of the output generally will depend on

all elements of the input. As a concrete example, we obtain via Algorithm 2 that

proxJ([20, 13, 10, 6, 4]; [12, 10, 5, 5, 5])

=ηsoft([20, 13, 10, 6, 4]; [12, 9, 6, 5, 5]) = [8, 4, 4, 1, 0].

On the one hand, the adaptivity arises from the fact that larger penalties are

applied to larger elements of the input. On the other hand, for example, two elements

131

of input [13, 10] are not directly thresholded by the penalty [10, 5], but rather an

averaging step is triggered by the existence of the other inputs, which gives an

effective threshold of [9, 6].

1 2 3 4 5

0
5

10
15

20

Index

y

θ

1 2 3 4 5
0

5
10

15
20

Index

y − θ

1 2 3 4 5

0
5

10
15

20

Index

proxJ(y, θ)

Figure 3.6: Illustration of how the SLOPE proximal operator can be interpreted as

using an effective threshold. The leftmost figure plots two vectors y and θ. The

middle image plots their difference y − θ and the rightmost image plots the output

of the proximal operator proxJ(y; θ).

Although the SLOPE proximal operator given in (3.3.4) is non-separable, nev-

ertheless, as introduced in [HL19a, Proposition 1], the SLOPE proximal operator

is asymptotically separable: for sequences {θ(p)} and {v(p)} growing in p with

empirical distributions that weakly converge to distributions Θ and V , respectively,

there exists a limiting scalar function η (determined by Θ and V) such that as

p→∞,
1
p
∥proxJ(v(p); θ(p))− η

V,Θ(v(p))∥2 → 0. (3.3.5)

The work in [HL19a] discusses many properties of this limiting scalar function, η.

Indeed, it can be shown to be odd, increasing, Lipschitz continuous with constant

132

1 and that it applies coordinate-wise to v(p) (hence it is separable; see [HL19a,

Proposition 2]). In more details, η
V,Θ(x) takes a scalar input, x, and performs

soft-thresholding with a penalty adaptive to x in a way that depends on V and Θ,

meaning the input-dependent penalty λV,Θ(x) such that η
V,Θ(x) = ηsoft(x;λV,Θ(x)).

More details on the adaptive penalty function that relates the SLOPE proximal

operator to the soft-thresholding function can be found in Section 3.7.3.

We now discuss in more detail the so-called state evolution and calibration

equations given in (3.3.2) and (3.3.3). We refer to A, which is defined implicitly

via (3.3.3), as the normalized penalty distribution. Notice that A only differs from

the original penalty distribution Λ by a constant factor. In fact, there exists a

one-to-one mapping between A and Λ by [Bu+20a, Proposition 2.6], allowing one to

analyze in either regime flexibly. In particular, when it is clear from the context, we

will use (Π,Λ) and (π,A) interchangeably since there exists a bijective calibration

between the original problem instance and the normalized one. Moreover, for a

fixed Π, the quantity τ(A) can be uniquely derived from (3.3.2) and, as shown in

[Bu+20a, Corollary 3.4], it can be used to characterize the estimation error via

∥β̂ − β∥/p → δ(τ 2 − σ2). In this work, we will use τ as a factor to define the

normalized prior,

π(Π,A) := Π/τ(Π,Λ).

and, in particular, when it is clear from the context, we will use (Π,Λ) and (π,A)

interchangeably since there exists a bijective calibration between the original problem

133

instance and the normalized one, provided by fixed point recursion for the state

evolution and the calibration mappings, (3.3.2) and (3.3.3). We refer the interested

readers to Section 3.7.2 for a discussion of many nice properties of this fixed point

recursion, such as the explicit form of the divergence η′.

Under the characterization of the asymptotic SLOPE distribution of (3.3.1), we

define FDP∞(Π,Λ) and TPP∞(Π,Λ) as the large system limits of FDP and TPP.

The proof of convergence in probability is given in the next lemma.

Lemma 3.3.1. Under the working assumptions, namely (A1), (A2), and (A3), for

ξ ∈ Ξ in (3.2.1), the SLOPE estimator β̂(λ) with the penalty sequence λ satisfies

FDPξ(β,λ) = |{j : |β̂j| > ξ, βj = 0}|
|{j : |β̂j| > ξ}|

P→ FDP∞
ξ (Π,Λ) :=

(1− ϵ)P
(∣∣∣∣ηπ+Z,A(Z)

∣∣∣∣ > ξ
)

P
(∣∣∣∣ηπ+Z,A(π + Z)

∣∣∣∣ > ξ
) ,

TPPξ(β,λ) = |{j : |β̂j| > ξ, βj ̸= 0}|
|{j : βj ̸= 0}|

P→ TPP∞
ξ (Π,Λ) := P

(∣∣∣∣ηπ+Z,A(π⋆ + Z)
∣∣∣∣ > ξ

)
,

where superscript P denotes convergence in probability, Z is a standard normal

independent of Π, and (τ,A) is the unique solution to the state evolution (3.3.2) and

calibration (3.3.3). Furthermore, Π⋆ := (Π|Π ̸= 0) is the signal prior distribution of

the non-zero elements.

By continuity of probability measure, we obtain

lim
ξ→0

FDP∞
ξ (Π,Λ) = FDP∞(Π,Λ) :=

(1− ϵ)P
(
η

π+Z,A(Z) ̸= 0
)

P
(
η

π+Z,A(π + Z) ̸= 0
) ,

lim
ξ→0

TPP∞
ξ (Π,Λ) = TPP∞(Π,Λ) := P

(
η

π+Z,A(π⋆ + Z) ̸= 0
)
.

(3.3.6)

134

Here, π = Π/τ is the normalized prior distribution and π⋆ := Π⋆/τ . We give the

proof of Lemma 3.3.1 in Section 3.7.4 by extending [Bog+13a, Theorem B.1].

Following the notions of FDP∞ and TPP∞ given in Lemma 3.3.1, we mathemat-

ically define the SLOPE trade-off curve as the envelope of all achievable SLOPE

(TPP∞,FDP∞) pairs:

qSLOPE(u; δ, ϵ) := inf
(Π,Λ): TPP∞(Π,Λ)=u

FDP∞(Π,Λ).

To study the SLOPE trade-off, we will make use of a critical concept, the zero-

threshold α(Π,Λ), which will be defined in Definition 3.4.1. Using the zero threshold,

the limiting values in (3.3.6) can be simplified to

TPP∞(Π,Λ) = P(|π⋆ + Z| > α(Π,Λ)),

FDP∞(Π,Λ) = 2(1− ϵ)Φ(−α(Π,Λ))
2(1− ϵ)Φ(−α(Π,Λ)) + ϵ · TPP∞(Π,Λ) .

(3.3.7)

Note from the equations above that for fixed TPP∞ = u, the formula of FDP∞ is

decreasing in α. Therefore we consider the maximum of feasible zero-thresholds,

α⋆(u) := sup
(Π,Λ): TPP∞=u

α(Π,Λ),

in order to derive the minimum FDP∞ on the SLOPE trade-off

qSLOPE(u; δ, ϵ) := 2(1− ϵ)Φ(−α⋆(u))
2(1− ϵ)Φ(−α⋆(u)) + ϵu

. (3.3.8)

3.4 Lower bound of SLOPE trade-off

The main purpose of this section is to provide a lower bound q⋆ for qSLOPE . We

accomplish this by (equivalently) giving an upper bound for α⋆(u) for fixed u,

135

which we denote as t⋆(u). As we shall see, in contrast to Lasso, our derivation for

SLOPE requires non-standard tools from the calculus of variations and quadratic

programming.

To construct the upper bound t⋆(u), we examine the state evolution (3.3.2),

which gives

τ 2 ≥ 1
δ
E
(
ηΠ+τZ,Aτ

(Π + τZ)− Π
)2

= τ 2

δ
E
(
η

π+Z,A(π + Z)− π
)2
.

Rearranging the above inequality yields the state evolution condition

E(Π,Λ) := E
(
η

π+Z,A(π + Z)− π
)2
≤ δ. (3.4.1)

Here the quantity E(Π,Λ) can be viewed as the asymptotic mean squared error

between the SLOPE estimator and the truth, scaled by 1/τ 2, since ∥β̂ − β∥/p→

τ 2E(Π,Λ) in probability by [Bu+20a, Corollary 3.4].

Before we proceed, we first introduce an important (scalar) quantity that governs

the sparsity, the TPP, and the FDP of the SLOPE estimator and will be used

throughout the paper.

Definition 3.4.1. Let (Π,Λ) be a pair of prior and penalty distributions (or, equiv-

alently, the normalized (π,A)) and suppose α(Π,Λ) is a positive number such that

η
π+Z,A(x) = 0 if and only if |x| ≤ α(Π,Λ). Then we say that α = α(Π,Λ) is the

zero-threshold.

Intuitively, the zero-threshold is a positive threshold, below which, the input is

mapped to zero. Note that the necessary condition (3.4.1) sets the feasible domain

136

of (π,A) pairs and thus prescribes limits to the zero-threshold α. In the Lasso case,

the zero-threshold is indeed equivalent to the normalized penalty scalar A; but in

SLOPE, it is a quantity derived from the normalized penalty distribution A in a

highly nontrivial manner (see Proposition 3.7.5 for details).

Next, we state another useful definition. Recall from Section 3.3 that the limiting

scalar function η of SLOPE is separable and assigns a different penalty to different

inputs. We therefore define the effective penalty function accordingly.

Definition 3.4.2. Given a normalized pair of prior and penalty (π,A), the effective

penalty function Âeff : R→ R+ is a function such that

ηsoft(x; Âeff(x)) = η
π+Z,A(x).

It is not hard to show that Âeff is well-defined. In fact, given η
π+Z,A, we can

represent Âeff via the zero-threshold from Definition 3.4.1, namely,

Âeff(x) =



x− η
π+Z,A(x) if x > α(π,A),

−x+ η
π+Z,A(x) if x < −α(π,A),

α(π,A) if |x| < α(π,A).

Equipped with this effective penalty function, we can rewrite the state evolution

condition (3.4.1) as

Fα[Âeff, pπ⋆] := E
(
ηsoft(π + Z; Âeff(π + Z))− π

)2
≤ δ,

in which the functional objective Fα is defined on the effective penalty function Âeff

as well as the probability density function of π⋆. Note here that π⋆ and π determine

137

each other uniquely since π⋆ := π|π ̸= 0. We provide an explicit expression for

Fα[Âeff, pπ⋆] in (3.7.28).

Since the constraint (3.3.2) remains the same if π is replaced by |π|, we assume

π ≥ 0 without loss of generality. We minimize Fα[Âeff, pπ⋆] over the functional space

of (Âeff, pπ⋆) through a relaxed variational problem:

min
Aeff,ρ≥0

Fα[Aeff, ρ]

s.t. Aeff(α) ≥ α,A′
eff(z) ≥ 0 for all z ≥ α,∫ ∞

0
ρ(t)dt = 1,

∫ ∞

0
[Φ(t− α) + Φ(−t− α)]ρ(t)dt = u.

(3.4.2)

Here the function Aeff is implicitly defined on [α,∞) as Aeff(z) = α for 0 ≤ z < α

and ρ is a probability measure defined on [0,∞). We remark that the constraints

for Aeff in problem (3.4.2) are derived from the properties of Âeff in Section 3.7.3,

i.e. A′
eff ≥ 0 comes from Fact 3.7.3 and the boundary condition Aeff(α) ≥ α comes

from Proposition 3.7.5. Because some additional properties of Âeff may have been

excluded in the relaxation, these constraints are only necessary and may not be

sufficient. Therefore,

min
(Âeff,pπ⋆)

Fα[Âeff, pπ⋆] ≥ min
(Aeff,ρ)

Fα[Aeff, ρ],

with the inequality possibly being strict, provided the first optimization problem

(3.4.1) is solved subject to (i) Âeff corresponds to the effective penalty in the limiting

scalar function; and (ii) pπ⋆ is a probability density function such that TPP∞ =

P(|π⋆ + Z| > α) = u.

138

Leveraging the above relaxation (3.4.2), in order to lower bound qSLOPE in (3.3.8),

we can analogously define the maximum feasible zero-threshold α⋆(u) and upper

bound it with t⋆(u) as follows:

α⋆(u) := sup
{
α : min

(Π,Λ)
Fα[Âeff, pπ⋆] ≤ δ

}
≤ t⋆(u) := sup

{
α : min

(Aeff,ρ)
Fα[Aeff, ρ] ≤ δ

}
.

(3.4.3)

With these definitions in place, we are now in a position to describe the procedure

to find the optimal prior and the optimal penalty in problem (3.4.2), given TPP∞ = u

and α(Π,Λ) = α.

3.4.1 Optimal prior is three-point prior

To solve problem (3.4.2), we must search over all possible distributions π⋆, which is

generally infeasible. To overcome this obstacle, we use the concept of extreme points

(i.e. points that do not lie on the line connecting any other two points of the same set)

to show that the optimal π⋆ for problem (3.4.2) is a two-point distribution, having

probability mass at only two non-negative (and possibly infinite) values (t1, t2). In

doing so, we significantly reduce the search domain, from infinite dimensional to

two-dimensional. Because π has an additional point mass at 0, the optimal prior

π (that can achieve minimum FDP when accompanied with the properly chosen

penalty) is a three-point prior taking values at (0, t1, t2). We recall that the two-point

π⋆ is consistent to the Lasso result in [SBC17, Section 2.5], where the optimal π⋆ is

the infinity-or-nothing distribution with t1 = 0+, t2 =∞.

139

To see that π⋆ admits a two-point form, suppose that (A∗
eff, ρ

∗) is the global

minimum of problem (3.4.2). Then clearly ρ∗ is also the global minimum of the

following linear problem (3.4.4) with linear constraints.

min
ρ≥0

Fα[A∗
eff, ρ]

s.t.
∫ ∞

0
ρ(t)dt = 1,

∫ ∞

0
[Φ(t− α) + Φ(−t− α)]ρ(t)dt = u.

(3.4.4)

Intuitively, since there are two constraints, we need two parameters (which will

be t1, t2) to characterize the minimum. We formalize this intuition in the next lemma

(proved in Appendix 3.7.7) and show that ρ∗ indeed takes the form of a sum of two

Dirac delta functions.

Lemma 3.4.3. If ρ∗ is a global minimum of problem (3.4.4), then

ρ∗(t) = p1δ(t− t1) + p2δ(t− t2)

for some constants p1, p2, t1, t2, and p1 + p2 = 1, p1, p2 ≥ 0.

The above specific form of the optimal ρ∗ allows us to search over all (t1, t2), each

pair of which uniquely corresponds to either a single-point prior ρ(t; t1, t2) = δ(t− t1)

if t1 = t2, or a two-point prior by

ρ(t; t1, t2) = p1δ(t− t1) + p2δ(t− t2),

p1(t1, t2) = u− [Φ(t2 − α) + Φ(−t2 − α)]
[Φ(t1 − α) + Φ(−t1 − α)]− [Φ(t2 − α) + Φ(−t2 − α)] ,

p2(t1, t2) = 1− p1(t1, t2),

(3.4.5)

where the last two equations come from the constraints in problem (3.4.4).

140

In light of Lemma 3.4.3, each pair (t1, t2) forms a different instantiation of

problem (3.4.2), which will be problem (3.4.6) and whose optimal penalty is denoted

by A∗
eff(·; t1, t2) so as to be explicitly dependent on (t1, t2). Before we proceed

to optimize the penalty Aeff(·; t1, t2), we assure the skeptical reader that, doing a

grid search on (t1, t2) and considering the minimal value of all programs (3.4.6)

parameterized by (t1, t2) to be equivalent to the minimal value of problem (3.4.2),

is indeed a valid approach. This claim is theoretically grounded by noting that

Fα[A∗
eff(·; t1, t2), ρ(·; t1, t2)] is continuous in (t1, t2). Continuity can be seen from a

perturbation analysis of the optimal value in problem (3.4.6). In our case, the

perturbation analysis is not hard since the constraint is independent of (t1, t2) and

Fα depends on A∗
eff in a strongly-convex manner: a small perturbation in (t1, t2)

only results in a small perturbation in A∗
eff and thus in Fα[A∗

eff(·; t1, t2), ρ(·; t1, t2)].

We refer the curious reader to a line of perturbation analysis for such optimization

problems in [BS13; Sha92; BS98].

3.4.2 Characterizing optimal penalty analytically

By Lemma 3.4.3, we reduce the multivariate non-convex problem (3.4.2) to a set of

univariate convex problems (3.4.6) over Aeff. In this section, we describe the optimal

penalty function A∗
eff(·; t1, t2), which is the solution to the problem below:

min
Aeff

Fα[Aeff, ρ(·; t1, t2)]

s.t. Aeff(α) ≥ α, A′
eff(z) ≥ 0 for all z ≥ α.

(3.4.6)

141

This is a quadratic problem with a non-holonomic constraint. To see this, we

can expand the objective functional Fα from (3.7.28) and split it into a functional

integral that involves Aeff and other terms which do not, i.e.

Fα[Aeff, ρ(·; t1, t2)] =
∫ ∞

α
L(z,Aeff)dz + ϵp1t

2
1

[
Φ(α− t1)− Φ(−α− t1)

]

+ ϵp2t
2
2

[
Φ(α− t2)− Φ(−α− t2)

]
.

This split changes our objective functional from Fα[Aeff, ρ(·; t1, t2)] to the new

functional
∫∞

α L(z,Aeff)dz with

L(z,Aeff) : = 2(1− ϵ)(z − Aeff(z))2ϕ(z)

+ ϵp1

((
z − t1 − Aeff(z)

)2
ϕ(z − t1) +

(
− z − t1 + Aeff(z)

)2
ϕ(−z − t1)

)

+ ϵp2

((
z − t2 − Aeff(z)

)2
ϕ(z − t2) +

(
− z − t2 + Aeff(z)

)2
ϕ(−z − t2)

)
.

(3.4.7)

We will numerically optimize the functional
∫∞

α L(z,Aeff)dz together with the

constraints in problem (3.4.6). In addition, although we cannot derive the analytic

form of A∗
eff(·; t1, t2) from problem (3.4.6), we can still analytically characterize it at

points z where the monotonicity constraint is non-binding (that is, when A∗
eff(·; t1, t2)

is strictly increasing in a neighborhood of z), as shown in Section 3.7.5.

3.4.3 Searching over optimal penalty numerically

To solve the functional optimization problem (3.4.6), we approximate it by a dis-

crete optimization problem via Euler’s finite difference method. Specifically, we

142

approximate the function L(z,Aeff) (and hence Fα) on a discretized uniform grid of

z and solve the resulting quadratic programming problem with linear constraints.

To this end, we denote vectors z = [α, α + ∆z, α + 2∆z, · · · , α + m∆z] and

A = [Aeff(α),Aeff(α+∆z), · · · ,Aeff(α+m∆z)] for some small ∆z and large m. Then

problem (3.4.6) is discretized into the convex quadratic program

min
Aeff

F̄α(A; t1, t2)

s.t.



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0

· · · · · · · · · · · · · · ·

0 · · · 0 −1 1



A ≥



α

0
...

0


,

(3.4.8)

in which the new objective F̄α(A; t1, t2) (derived in (3.7.29) and also presented below)

is the discretized objective of Fα[Aeff, ρ(·; t1, t2)] from problem (3.4.6).

As ∆z → 0 and m→∞, problem (3.4.8) recovers problem (3.4.6) by well-known

convergence theory for Euler’s finite difference method. To simplify the exposition,

we write the objective of problem (3.4.8) in matrix and vector notation as follows:

Q = diag
2(1− ϵ)ϕ(z) + ϵ

∑
j=1,2

pj

[
ϕ(z − tj) + ϕ(−z − tj)

] ,
d = 2(1− ϵ)zϕ(z) + ϵ

∑
j=1,2

pj

[
(z − tj)ϕ(z − tj) + (z + tj)ϕ(z + tj)

]
,

and observe that

F̄α(A; t1, t2) = (A⊤QA− 2A⊤d)∆z + ϵ
∑

j=1,2
pjt

2
j

[
Φ(α− tj)− Φ(−α− tj)

]
.

143

The discretized problem (3.4.8) is equivalent to a standard quadratic program-

ming problem, whose objective is the discrete version of
∫∞

α L(z,Aeff)dz in (3.4.7),

min
A

1
2A⊤QA−A⊤d

s.t.



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0

· · · · · · · · · · · · · · ·

0 · · · 0 −1 1



A ≥



α

0
...

0


.

(3.4.9)

3.4.4 Solving the quadratic program

Here we briefly discuss our numerical approach to solving the quadratic program

(3.4.9). Generally speaking, quadratic programming problems do not admit closed-

form solutions. However, they can be efficiently solved by classical numerical

methods, including the interior point method [Dik67; SNW12], active set method

[MY88; Fer+14] and other dual methods [GI83; FW56]. In this work, we use the

dual method in [GI83], as implemented in the R library quadprog, to solve (3.4.9).

We remark that problem (3.4.9) is not the only way to discretize problem (3.4.6)

and we now mention other approaches, which can result in better discretization

accuracy. The discretization of problem (3.4.6) contains two parts: (i) a numerical

integration to approximate the objective and (ii) a numerical differentiation to

approximate the constraints.

When formulating the quadratic programming problem (3.4.9), we chose to apply

144

the left endpoint rule to approximate the objective integral
∫∞

α L(z,Aeff)dz in (3.4.7)

by (A⊤QA− 2A⊤d)∆z, as well as the backward finite difference (with first-order

accuracy) to describe the constraint A′
eff(z) ≥ 0. Alternatively, one can use different

numerical quadratures to approximate the integral
∫∞

α L(z,Aeff)dz or use a change

of variable to approximate a different integral. We can also apply different finite

differences to discretize the monotonicity constraint in problem (3.4.6).

Numerical integration to approximate the objective

More specifically, for the approximation of the objective in problem (3.4.6), we can

alternatively apply numerical quadratures such as the trapezoid rule, Simpson’s

rule, or Gauss-Laguerre quadrature [SZ49] to improve the numerical integration for
∫∞

α L(z,Aeff)dz. On the other hand, we may use a change of variable z = x
1−x

+ α

to transform the integral
∫∞

α L(z)dz over an infinite interval [α,∞) to the integral
∫ 1

0 L
(

x
1−x

+ α
)

dx
(1−x)2 over a finite interval [0, 1]. This new integral can then be

approximated by the same left endpoint rule (or other rules) but with different Q

and d.

Numerical differentiation to approximate the constraints

As for the monotonicity constraint A′
eff(z) ≥ 0, we may alternatively use other

difference methods, e.g. the central difference, or higher-order accuracies. Doing so

will result in a different matrix that left-multiplies A in the constraint of (3.4.9).

In conclusion, different numerical integration and differentiation schemes will

145

lead to other formulations of the quadratic programming that are different from

(3.4.9). We do not pursue these additional numerical aspects in the present work.

3.4.5 Summary

To summarize everything so far, the procedure of finding the lower bound q⋆(u)

involves the following steps: fixing TPP∞ = u, we search over a line of zero-thresholds

{α}; for each α, we search over a two-dimensional finite grid of (t1, t2), each pair

defining a standard quadratic programming problem (3.4.9); we then solve the

quadratic problem and reject (t1, t2) if the minimal value of the equivalent problem

(3.4.8) is larger than δ; if all (t1, t2) are rejected, then the current zero-threshold α

is too large to be valid. We set the largest valid zero-threshold as t⋆(u) in (3.4.3)

and write the lower bound of the FDP∞ as q⋆(u) = 2(1−ϵ)Φ(−t⋆(u))
2(1−ϵ)Φ(−t⋆(u))+ϵu

. Note that

q⋆(u) > 0 for any possible t⋆(u).

We note that, in addition to minimizing FDP at a fixed TPP over all penalty-

prior pairs, our quadratic programming approach also works when the prior Π is

fixed. The fixed prior scenario has been extensively studied in [HL19a], who optimize

over the limiting scalar function η while we are optimizing over the penalty function

Aeff. Our approach adds a new angle that can be algorithmically more efficient. We

defer the details of the procedure to Section 3.7.9.

146

3.4.6 Differences between SLOPE and Lasso

We end this section by discussing why deriving the SLOPE trade-off is fundamentally

more complicated than the Lasso case. We highlight that the variational problem

(3.4.2) is non-convex, even though it is convex with respect to each variable Aeff and

ρ (i.e. it is bi-convex but non-convex). Generally speaking, approximate solutions

to non-convex problems are not accompanied by theoretical guarantees, except for

some special cases. Our bi-convex problem (3.4.2) cannot be solved by alternating

descent, namely, fixing one variable, optimizing over the other and then alternating.

Furthermore, our constraints only add another layer of complexity to the problem: in

particular, the monotonicity constraint of Aeff is non-holonomic (i.e. the constraint

A′
eff ≥ 0 does not depend explicitly on Aeff).

More precisely, the difficulty in directly solving the problem (3.4.2) is two-fold.

The first difficulty lies in the search for the optimal penalty. For the Lasso case, the

penalty distribution A and the penalty function Âeff are not adaptive to the input

and hence they both equal the zero-threshold α. Therefore, we can perform a grid

search on A ∈ R and simply optimize over ρ. However, for SLOPE, the penalty Âeff

is a function and hence it is intractable to search over the SLOPE penalty function

space. The functional form of the penalty is the reason we must rely on the calculus

of variations to study the associated optimization problem.

To demonstrate the second difficulty, we again consider the convex problem

(3.4.4), which is over the probability density function ρ, assuming the optimal

147

penalty A∗
eff has been obtained. In the Lasso case, it was shown in [SBC17, Equation

(C.2)] that the optimal π⋆ is the infinity-or-nothing distribution: P(π⋆ = 0) = 1− ϵ′

and P(π⋆ =∞) = ϵ′. In other words, given A∗
eff, we can easily derive the optimal ρ.

However, a key concavity result in [SBC17, Lemma C.1], which holds for Lasso and

determines the optimal π⋆, unfortunately breaks in SLOPE. Therefore, the optimal

form of π⋆ is inaccessible for SLOPE with existing tools, even if the optimal penalty

A∗
eff is known.

3.5 Upper bound of SLOPE trade-off

In this section, we rigorously analyze the SLOPE trade-off upper boundary curve

q⋆ (defined in (3.2.8)). As stated in Theorem 5, q⋆ takes two forms: below the DT

power limit, i.e. when TPP∞ < u⋆
DT for u⋆

DT defined in (3.2.3), we have q⋆ = q⋆
Lasso,

and beyond the DT power limit, q⋆ is a Möbius curve.

We start by giving some intuition for why the domain of q⋆ is the entire interval

[0, 1], whereas, the Lasso trade-off curve is only defined on [0, u⋆
DT). Intuitively,

SLOPE is capable of overcoming the DT power limit and achieving 100% TPP since

it is possible for SLOPE estimators to select all p features, hence, by the definition

of TPP (see Section 3.2.1), one can find a completely dense SLOPE estimator whose

TPP is automatically 1. This is not true for the Lasso, since it can select at most n

out of p features. The corresponding constraint for the SLOPE estimator follows

from the AMP calibration in (3.3.3) (discussed in detail in Section 3.7.2), namely it

148

says that the number of unique absolute values in the entries of the SLOPE estimator

is at most n out of p. However, this does not directly constrain the sparsity of

SLOPE estimator, and thus it can still be dense. In other words, the SLOPE

estimator always satisfies

number of unique non-zero magnitude |β̂i| in β̂(p) ≤ n. (3.5.1)

Notice that, in the Lasso sub-case, the above implies a direct sparsity constraint

|{i : β̂i ̸= 0}| ≤ n as just discussed, since all non-zero entries in Lasso have unique

magnitudes.

With this intuition, we are prepared to prove Theorem 5 and show that q⋆

indeed serves as an upper bound of qSLOPE . Following Proposition 3.2.3, we have the

tightness of q⋆ when u ≥ u⋆
DT. We will further discuss the proof of Proposition 3.2.3

in Section 3.5.1, but leave the full details for Section 3.7.4. The tightness of q⋆ when

u < u⋆
DT follows from the existing tightness result on the Lasso trade-off (see [SBC17,

Section 2.5]), since the Lasso is a sub-case of SLOPE and q⋆ matches the Lasso

trade-off curve for u < u⋆
DT. Hence, we have the corollary below.

Corollary 3.5.1. For any 0 ≤ u ≤ 1, there exists an ϵ′ ∈ [0, ϵ⋆/ϵ], and values

r(u) ∈ [0, 1] and w(u) ∈ [0, 1], both depending on u, such that the penalty λ =

λ√
M,r(u)

√
M,w(u) (defined in (3.2.4)) and the prior βM(ϵ′) (defined in (3.2.5)) make

SLOPE approach the point (u, q⋆(u)) in the sense

lim
M→∞

lim
ξ→0

lim
n,p→∞

(TPPξ(βM(ϵ′),λ), FDPξ(βM(ϵ′),λ))→ (u, q⋆(u)).

149

Moreover, when u < u⋆
DT, we can set r(u) = 1, without specifying w(u), and ϵ′ = ϵ′(u)

will also depend on u. When u ≥ u⋆
DT, we fix ϵ′ = ϵ⋆/ϵ and set r(u) via (3.5.2) and

w(u) via (3.5.3) below.

An interesting aspect of this result is that there are two different strategies for

attaining q⋆(u), depending on whether TPP∞ = u is above or below the DT power

limit. In both cases, we use a two-level penalty λ√
M,r(u)

√
M,w(u) and a sparse prior (see

(3.2.5)) with very small and very large non-zeros. However, when TPP∞ = u < u⋆
DT,

the strategy for attaining q⋆(u) is to vary the proportion of strong signals (which

equals ϵϵ′ and ϵ′ varies with u), but when u ≥ u⋆
DT, sharpness in the Möbius part of

q⋆ is attained by keeping the sequence of priors fixed and instead tuning the ratio

between strong and weak penalties.

The sharpness result of Corollary 3.5.1 shows that over the entire domain, q⋆

is arbitrarily closely achievable, thus, q⋆(u) must serve as the upper bound of the

minimum FDP∞, qSLOPE(u), hence we have completed the proof of Theorem 5.

3.5.1 Möbius upper bound is achievable

In this section, we will sketch the proof of Proposition 3.2.3, which is used to

prove Corollary 3.5.1 in the regime u ≥ u⋆
DT. To complement Proposition 3.2.3 and

Corollary 3.5.1, for concreteness, we give a specific prior and penalty pair in (3.2.6)

that approaches q⋆(u) when u ≥ u⋆
DT. The fully rigorous proof of Proposition 3.2.3,

together with the derivation of (r, w), is given in Section 3.7.4.

150

Before we sketch the proof, we will provide some intuition for what makes the

specific choice of priors and penalties behave effectively in terms of reducing the

FDP∞ while still driving TPP∞ to 1, in order that we are able to approach q⋆(u) for

all u ≥ u⋆
DT. We remind the reader that, because there is a one-to-one correspondence

between original instance (Π,Λ) and the normalized (π,A), we will use the two

notations interchangeably.

First, for fixed TPP∞ = u, we can reduce the FDP∞ through a smart use of the

priors defined in (3.2.5), where many elements equal 0 exactly, while some non-zero

elements are small (equal to 1/M) and others large (equal to M) with M tending

to ∞. This is the same strategy as was used for demonstrating the achievability of

the Lasso curve in [SBC17], and the intuition that we present here is based on this

analysis. Mathematically speaking, for the Lasso, [SBC17, Lemma C.1] revealed

a concave relationship in Π between the normalized estimation error E(Π,Λ) =

E(η
π+Z,A(π + Z) − π)2 in (3.4.1) and the sparsity P(η

π+Z,A(π + Z) ̸= 0), which

also depends on the pair (Π,Λ). The idea is that minimizing FDP∞ corresponds

to minimizing the sparsity (this can be seen, for example, by the relationship in

(3.5.11) where κ(Π,Λ) denotes the sparsity). Therefore, to find a prior Π that

satisfies the state evolution condition (3.4.1), while minimizing the sparsity, the

optimal (normalized) distribution for the non-zero elements, π⋆, for the Lasso case

has probability masses concentrated at the endpoints of the domain, namely 0+ and

∞. In this way, the form of the signal prior Π contributes to reducing the FDP∞ by

151

mixing the weak effects βi with the zero effects.

Combining the priors discussed above, with a special subset of the possible

penalties, namely the two-level penalties defined in (3.2.4), we are able to reduce the

FDP∞ while still increasing the TPP∞ to its maximum value of 1, hence attaining

q⋆(u) for all u ≥ u⋆
DT. Interestingly, the fact that SLOPE can do this, is through its

penalty, which mixes the weak predictors β̂i and the zero predictors (see Figure 3.10).

This mix-up is in fact triggered by the averaging step in the SLOPE proximal

operator (see Algorithm 2; the averaging is determined by the sorted ℓ1 norm in

the SLOPE problem), which creates non-zero magnitudes that are shared by some

predictors and hence maintains the quota of unique magnitudes in (3.5.1). As a

consequence, the SLOPE estimator can overcome the DT power limit (and reach

higher TPP∞) without violating the uniqueness constraint (3.5.1) on its magnitudes.

When constructing the two-level penalties just discussed, we must choose a pair

(r, w) that, respectively, defines the downweighting of the
√
M used for the smaller

penalty and the proportion of penalties getting each value. Concretely speaking, in

Proposition 3.2.3 and Corollary 3.5.1, we set

r(u) = Φ−1
(

2ϵ− ϵ⋆ − ϵu
2(ϵ− ϵ⋆)

)
/t⋆(u⋆

DT). (3.5.2)

where ϵ⋆ and u⋆
DT define the DT power limit and are given in (3.2.2)-(3.2.3) and t⋆

is defined in (3.2.7). Moreover,

w(u) = ϵ⋆ + 2(1−ϵ⋆)
1−r

[
Φ(−t⋆(u⋆

DT))− rΦ(−rt⋆(u⋆
DT))− ϕ(−t⋆(u⋆

DT))−ϕ(−rt⋆(u⋆
DT))

t⋆(u⋆
DT)

]
,

(3.5.3)

152

where r in the above is shorthand for the r(u) from (3.5.2).

Without going into details, the key reason for choosing such pair (r, w) is so

that the sequence of two-level penalties have two different penalization effects:

for one, the SLOPE estimator η
π+Z,A

(π + Z) is equivalent to a Lasso estimator

ηsoft(π + Z; t⋆(u⋆
DT)) in the sense of (3.5.4); for the other, the SLOPE estimator is

equivalent to a different Lasso estimator ηsoft(π+Z; rt⋆(u⋆
DT)) in the sense of (3.5.5).

To be precise, it can be shown that

η
π+Z,A(π + Z) P= ηsoft(π + Z; t⋆(u⋆

DT)),

and

E(η
π+Z,A(π + Z)− π)2 = E(ηsoft(π + Z; t⋆(u⋆

DT))− π)2, (3.5.4)

so when considering the asymptotic magnitude of the elements of the SLOPE

estimator, or its asymptotic estimation error (3.4.1), we can analyze the limiting

scalar function instead using a soft-thresholding function with threshold given by

t⋆(u⋆
DT). Moreover, this implies that SLOPE satisfies the state evolution constraint

(3.4.1) in a similar way to how the Lasso satisfies its corresponding state evolution

constraint.

However, analysis of the asymptotic sparsity of the SLOPE estimator or of its

asymptotic TPP and FDP, relies on the fact that one can prove

P(η
π+Z,A(π + Z) ̸= 0) = P(ηsoft(π + Z; rt⋆(u⋆

DT)) ̸= 0), (3.5.5)

153

Hence, again, instead of analyzing the limiting scalar function one can analyze a

soft-thresholding function, but now with a smaller threshold given by rt⋆(u⋆
DT) for

some 0 ≤ r ≤ 1 defined in (3.5.2). Reducing the threshold in this way functions to

improve the attainable TPP–FDP over the comparable Lasso problem by allowing

more elements in the estimate with non-zero values. We visualize the above claims

in Figure 3.10(d).

Essentially, the state evolution condition (3.4.1) must always hold, but it uses

the larger pseudo zero-threshold t⋆(u⋆
DT), while inference is conducted on the true,

but smaller, zero-threshold rt⋆(u⋆
DT). In this way, we can extend attainability of

q⋆
Lasso to attainability q⋆, while still working within the state evolution constraint

(3.4.1).

3.5.2 Infinity-or-nothing prior has FDP above upper bound

The goal of this section is to provide some intuition for the Möbius form of the curve

q⋆(u) when u is larger than the DT power limit. This will be done by demonstrating

that, in the case of infinity-or-nothing priors, with a special subset of penalties, the

SLOPE FDP∞ is always above q⋆ in Proposition 3.5.2. This also motivates the

achievability results of Section 3.5.1, as the proof given in Section 3.5.1 essentially

tries to construct prior penalty pairs such that the inequality in Proposition 3.5.2

becomes an equality. While we only consider infinity-or-nothing priors here, we

remark that in the Lasso case these are actually the optimal priors (ses [SBC17,

154

Section 2.5]), meaning that they achieve the minimum FDP∞ given TPP∞.

Proposition 3.5.2. Under the working assumptions, namely (A1), (A2), and (A3),

for ξ ∈ Ξ in (3.2.1), assuming that β is sampled i.i.d. from (3.2.5) for any ϵ′ ∈ [0, 1],

M →∞, and that λ is the order statistics of i.i.d. realization of a non-negative Λ

with P(Λ = max Λ) ≥ ϵϵ′, the following inequality holds with probability tending to

one:

FDPξ(βM(ϵ′),λ) ≥ q⋆ (TPPξ(βM(ϵ′),λ); δ, ϵ)− cξ.

for some positive constant cξ which tends to 0 as ξ → 0.

Proof of Proposition 3.5.2. As in Section 3.4, we assume π ≥ 0 without loss of

generality since the analysis holds if we replace π by |π|. Consider a subset of priors,

namely the infinity-or-nothing priors: for some ϵ′ ∈ [0, 1],

π∞(ϵ′) =


∞ w.p. ϵϵ′,

0 w.p. 1− ϵϵ′.

(3.5.6)

Although the infinity-or-nothing prior in (3.5.6) does not satisfy the assumption

(A2) that P(Π ̸= 0) = P(π ̸= 0) = ϵ, this does not affect our discussion4.

In fact, as demonstrated by Lemma 3.5.3 below, for infinity-or-nothing priors,

the state evolution constraint (3.4.1) guarantees that ϵ′ ≤ ϵ⋆/ϵ. Since ϵ⋆ is the same

for the Lasso and SLOPE, this means that the maximum proportion of ∞ signals in

the infinity-or-nothing prior is the same for both as well.
4The infinity-or-nothing prior can be approximated arbitrarily closely by a sequence of priors

that satisfy the assumption. For example, let M →∞ and consider πM (ϵ′) defined in (3.2.5).

155

Lemma 3.5.3. Under assumptions in Proposition 3.5.2, we must have ϵ′ ∈ [0, ϵ⋆/ϵ].

The proof of Lemma 3.5.3 is given in Section 3.7.4. It turns out that the DT

threshold ϵ⋆ plays an important role in understanding the relationship between the

sparsity and TPP∞. Before illustrating this relationship, we introduce the concept

of sparsity. In a finite dimension, the sparsity of SLOPE estimator is |{j : β̂j ≠ 0}|.

However, as p → ∞, the count of non-zeros will also go to infinity, meaning a

quantity like limp |{j : β̂j ̸= 0}| is not well-defined. Therefore we introduce the

asymptotic sparsity of the SLOPE estimator via the distributional characterization

in (3.3.1), denoting the limit in probability by plim,

κ(Π,Λ) := P
(
η

π+Z,A(π + Z) ̸= 0
)

= P
(
Π̂ ̸= 0

)
= plim |{j : β̂j ̸= 0}|/p. (3.5.7)

Making use of the DT threshold ϵ⋆(δ), we show in Lemma 3.5.4 that the sparsity

κ(Π,Λ) sets an upper bound on achievable TPP∞.

Lemma 3.5.4. Consider SLOPE based on the pair (Π,Λ) with Π from (3.2.5)

and set M → ∞. Then with the asymptotic sparsity 0 ≤ κ(Π,Λ) < 1, we have

TPP∞(Π,Λ) ≤ u⋆(κ(Π,Λ); ϵ, δ) where

u⋆(κ; ϵ, δ) :=


1− (1−κ)(ϵ−ϵ⋆)

ϵ(1−ϵ⋆) , if δ < 1 and ϵ > ϵ⋆(δ),

1, otherwise.

(3.5.8)

Proof of Lemma 3.5.4. We will only prove TPP∞(Π,Λ) ≤ 1 − (1−κ)(ϵ−ϵ⋆)
ϵ(1−ϵ⋆) when

δ < 1 and ϵ > ϵ⋆(δ). We note that the bound on u⋆ given in (3.5.8) when δ ≥

1 or ϵ ≤ ϵ⋆(δ) is trivial since, by definition, TPP∞(Π,Λ) ≤ 1.

156

As M → ∞ in (3.2.5), the prior π converges to the infinity-or-nothing priors

π∞(ϵ′) in (3.5.6). In addition, π⋆ = π∞(ϵ′/ϵ). By the intermediate value theorem,

there must exist some ϵ′ ∈ [0, 1] such that

TPP∞(Π,Λ) = P(|π⋆ + Z| > α) = (1− ϵ′)P(|Z| > α) + ϵ′ P(|∞+ Z| > α)

= 2(1− ϵ′)Φ(−α) + ϵ′.

Here the first equality is given by (3.3.7) and α ≡ α(Π,Λ) is the zero-threshold in

Definition 3.4.1. The second equality follows from substituting the infinity-or-nothing

π⋆. Therefore, the asymptotic sparsity in (3.5.7) is

κ(Π,Λ) = P(|π + Z| > α) = (1− ϵ)P(|Z| > α) + ϵTPP∞ = 2(1− ϵϵ′)Φ(−α) + ϵϵ′,

where the first equality follows by the definition of the zero-threshold in Defini-

tion 3.4.1, the second uses that TPP∞(Π,Λ) = P(|π⋆ + Z| > α), and the third is

the result from the previous equation.

Some rearrangement gives

Φ(−α) = κ(Π,Λ)− ϵϵ′

2(1− ϵϵ′) , and TPP∞(Π,Λ) = (1− ϵ′)(κ(Π,Λ)− ϵϵ′)
1− ϵϵ′ + ϵ′.

(3.5.9)

Simple calculus shows that the TPP∞(Π,Λ) in (3.5.9) is an increasing function of

ϵ′. To see this, notice that the derivative is (1−ϵ)(1−κ)
(1−ϵϵ′)2 ≥ 0. Given that ϵ′ ≤ ϵ⋆/ϵ by

Lemma 3.5.3, we have

TPP∞(Π,Λ) ≤
(1− ϵ⋆

ϵ
)(κ(Π,Λ)− ϵ · ϵ⋆

ϵ
)

1− ϵ · ϵ⋆

ϵ

+ ϵ⋆

ϵ
= 1− (1− κ)(ϵ− ϵ⋆)

ϵ(1− ϵ⋆) .

157

In fact, Lemma 3.5.4 is an extension of [SBC17, Lemma C.2] (restated in

Corollary 3.2.2(a)), which claims that, in the Lasso case, for all priors including

those are not infinity-or-nothing, TPP∞ ≤ u⋆(δ; ϵ, δ). In particular, we remark that

u⋆(δ; ϵ, δ) is equivalent to u⋆
DT(δ, ϵ), since any Lasso estimator has an asymptotic

sparsity no larger than δ.

As an immediate consequence of Lemma 3.5.4, we can reversely set a lower

bound on the sparsity κ(Π,Λ) given TPP∞(Π,Λ). This is achieved by inverting the

mapping in (3.5.8) and setting u⋆ = TPP∞:

κ(Π,Λ) ≥ 1− ϵ(1− TPP∞(Π,Λ))(1− ϵ⋆)
ϵ− ϵ⋆

. (3.5.10)

Finally, leveraging the lower bound on the sparsity, we can minimize the FDP∞ by

minimizing the sparsity κ(Π,Λ), since by definition

FDP∞(Π,Λ) = 1− ϵ · TPP∞(Π,Λ)
κ(Π,Λ) . (3.5.11)

Plugging (3.5.10) into (3.5.11), we finish the proof that FDP∞ ≥ q⋆(TPP∞) for

the SLOPE when we restrict the priors to be infinity-or-nothing: with TPP∞ = u,

FDP∞(Π,Λ) ≥ q⋆(u; δ, ϵ) := 1− ϵu

1− ϵ(1−u)(1−ϵ⋆)
ϵ−ϵ⋆

= ϵu(1− ϵ)− ϵ⋆(1− ϵ)
ϵu(1− ϵ⋆)− ϵ⋆(1− ϵ) .

3.5.3 Gap between upper and lower bounds

Considering Figure 3.2, we observe that the upper and lower boundary curves, q⋆ and

q⋆, can be visually and numerically close to each other, especially when TPP∞ < u⋆
DT.

158

One may wonder whether these boundaries actually coincide below the DT power

limit. We answer this question in the negative and show analytically that there

may exist pairs of (TPP∞,FDP∞) with the FDP∞ strictly below q⋆(TPP∞) when

TPP∞ < u⋆
DT. In other words, there are instances where (TPP∞,FDP∞) points lie

between the boundary curves q⋆ and q⋆.

Proposition 3.5.5. For some (δ, ϵ), there exists TPP∞ < u⋆
DT(δ, ϵ) defined in (3.2.3)

such that

q⋆(TPP∞) < FDP∞ < q⋆(TPP∞).

In the following, we prove Proposition 3.5.5 by constructing a specific problem

instance (Π,Λ) which has FDP∞ falling between the bounds. By showing that

the gap between q⋆(u) and q⋆(u) indeed exists, we rigorously demonstrate a gap

between q⋆(u) and the unknown SLOPE trade-off qSLOPE. We note that, for the

Lasso trade-off at (u, q⋆(u)), the zero-threshold α(Π, λ) = t⋆(u) (defined in (3.2.7))

exactly and the state evolution constraint (3.4.1) is binding, i.e. E(Π, λ) = δ (see

[SBC17, Lemma C.4, Lemma C.5]).

Fixing TPP∞ = u, our strategy (detailed in Section 3.7.5) is to construct (π,A)

for SLOPE such that α(π,A) = t⋆(u) as well but the state evolution constraint

(3.4.1) is not binding, i.e. E(Π,Λ) < δ. If such a construction succeeds, we can

use a strictly larger zero-threshold than t⋆(u) that can increase until E(Π,Λ) > δ.

Then, by using a larger zero-threshold, the SLOPE FDP∞ is guaranteed to be

strictly smaller than q⋆(TPP∞) by (3.3.7). Thus we will complete the proof that

159

q⋆(u) < q⋆(u) for some u < u⋆
DT.

To construct (π,A) satisfying α(π,A) = t⋆(u) with E(Π,Λ) < δ, we leverage our

empirical observation that the optimal priors π⋆, in the sense of problem (3.4.2),

which achieves the lower bound q⋆, are oftentimes either infinity-or-nothing or

constant. This motivates us to consider constant priors π⋆ = t1, for some constant

t1 (i.e. p1 = 1, t1 = t2 in (3.4.5)), and hence

π =


t1 w.p. ϵ,

0 w.p. 1− ϵ.

In fact, conditioning on α(Π,Λ) = t⋆ and TPP∞ = u, the constant t1(u) is uniquely

determined by (3.3.7):

P (|t1 + Z| > t⋆(u)) = u,

where Z is a standard normal.

Next, we use a common tool in the calculus of variations, known as the Euler-

Lagrange equation (detailed in Section 3.7.5), to construct an effective penalty

function Aeff(z) analytically on the interval [0,∞). The explicit form of Aeff(z) is

defined in (3.7.23) with α = t⋆. We emphasize that the constructed Aeff may not be

a feasible SLOPE penalty function in the sense that it may violate the constraints

in problem (3.4.6); however, if Aeff is increasing, then the optimal SLOPE effective

penalty must be Aeff, as it is the minimizer of the unconstrained version of problem

(3.4.6) and clearly satisfies the constraints. In the case that Aeff is feasible, we

compare E(Π,Λ) = Ft⋆(u)[Aeff, pt1] with δ to determine whether q⋆(u) > q⋆(u).

160

We now give a concrete example, which is elaborated in Section 3.7.5. When

δ = 0.3, ϵ = 0.2,Π⋆ = 4.9006,TPP∞ = u⋆
DT = 0.5676, the maximum Lasso zero-

threshold t⋆(u⋆
DT) = 1.1924 and the minimum Lasso FDP∞ = 0.6216. We can

construct the SLOPE penalty Aeff that has the same zero-threshold and achieves

E(Π,Λ) = 0.2773 < δ. We can further construct the SLOPE penalty with larger

zero-threshold, up to 1.2567, eventually have the SLOPE FDP∞ = 0.5954, which is

much smaller than the minimum Lasso FDP∞. In fact, our method can construct

SLOPE penalty that outperforms the Lasso trade-off for any TPP∞ ∈ (0.5283, 1],

as shown in Figure 3.14.

3.6 Discussion

In this paper, we have investigated the possible advantages of employing sorted ℓ1

regularization in model selection instead of the usual ℓ1 regularization. Focusing on

SLOPE, which instantiates sorted ℓ1 regularization, our main results are presented

by lower and upper bounds on the trade-off between false and true positive rates.

On the one hand, the two tight bounds together demonstrate that type I and

type II errors cannot both be small simultaneously using the SLOPE method with

any regularization sequences, no matter how large the effect sizes are. This is the

same situation as the Lasso [SBC17], which instantiates ℓ1 regularization. More

importantly, our results on the other hand highlight several benefits of using sorted

ℓ1 regularization. First, SLOPE is shown to be capable of achieving arbitrarily high

161

power, thereby breaking the DT power limit. For comparison, the Lasso cannot

pass the DT power limit in the supercritical regime, no matter how strong the effect

sizes are. Second, moving to the regime below the DT power limit, we provide a

problem instance where the SLOPE TPP and FDP trade-off is strictly better than

the Lasso. Third, we introduce a comparison theorem which shows that any solution

along the Lasso path can be dominated by a certain SLOPE estimate in terms of

both the TPP and FDP and the estimation risk. In other words, the flexibility of

sorted ℓ1 regularization can always improve on the usual ℓ1 regularization in the

instance-specific setting.

The assumptions underlying the above-mentioned results include the random

designs that have independent Gaussian entries and linear sparsity. In the venerable

literature on high-dimensional regression, however, a more common sparsity regime

is sublinear regimes where k/p tends to zero. As such, it is crucial to keep in mind

the distinction in the sparsity regime when interpreting the results in this paper.

From a technical viewpoint, our assumptions here enable the use of tools from AMP

theory and in particular a very recent technique for tackling non-separable penalties.

To obtain the lower bound, moreover, we have introduced several novel elements

that might be useful in establishing trade-offs for estimators using other penalties.

In closing, we propose several directions for future research. Perhaps the most

pressing question is to obtain the exact optimal trade-off for SLOPE. Regarding this

question, a closer look at Figure 3.3 and Figure 3.5 suggests that our lower and upper

162

bounds seem to coincide exactly when the TPP is small. If so, part of the optimal

trade-off would already be specified. Having shown the advantage of SLOPE over

the Lasso, a question of practical importance is to develop an approach to selecting

regularization sequences for SLOPE to realize these benefits. Next, we would

welcome extensions of our results to other methods using sorted ℓ1 regularization,

such as the group SLOPE [Brz+19]. For this purpose, our optimization-based

technique for the variational calculus problems would likely serve as an effective

tool. Recognizing that we have made heavy use of the two-level regularization

sequences in many of our results, one is tempted to examine the possible benefits

of using multi-level sequences for SLOPE [ZB21]. Finally, a challenging question

is to investigate the SLOPE trade-off under correlated design matrices; the recent

development by [CMW20] in AMP theory can be a stepping stone for this highly

desirable generalization.

3.7 Appendix

3.7.1 When does SLOPE outperform Lasso?

When studying the SLOPE tradeoff curve, we consider results that hold true for all

combinations of signal prior distribution and penalty distribution, (Π,Λ). In this

section, we will instead look at instances of fixed bounded signal prior distributions.

Although the SLOPE trade-off upper bound q⋆ is no better than the Lasso one

163

q⋆
Lasso when TPP∞ < u⋆

DT(δ), as has been studied extensively in the previous sections

of the paper, it is still possible that for a fixed prior distribution Π, the SLOPE can

outperform Lasso using a smart choice of penalty vector. We emphasize that such

cases are important, since in the real-world, the ground truth prior of the signal is

indeed unknown but fixed. In fact, we will demonstrate that the SLOPE can always

outperform Lasso in terms of the TPP, the FDP, the mean squared error (MSE).

0.0 0.1 0.2 0.3 0.4

0
.0

0
.1

0
.2

0
.3

0
.4

TPP

F
D

P

Lasso
SLOPE

0.20 0.30 0.400
.3

2
0

.3
8

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0
.4

2
0

.4
6

0
.5

0

α

M
S

E
Lasso
SLOPE

Figure 3.7: SLOPE outperforms the Lasso below the DT power limit. The red line

is the Lasso paths when Π is Bernoulli(ϵ), δ = 0.3, ϵ = 0.5, and σ = 0. The blue

region is the SLOPE (TPP∞,FDP∞), produced by Θ(ℓ, αL, 0.1) where αL ∈ (α0,∞)

is the zero-threshold shared by the Lasso and the SLOPE for all ℓ ≥ αL. The blue

dashed line is the boundary of blue region. The black dots on the red line are

specific (TPP∞,FDP∞, MSE) by the Lasso, while the dots on the blue dashed line

correspond to the Lasso dots by shape.

The proofs we provide only consider the two-level SLOPE penalty sequences of

the form λ = θλ1,λ2,w as in (3.2.4). Despite the simplicity of the penalty sequence,

164

we are already able to leverage the advantages of the flexibility of the SLOPE penalty

relative to the Lasso. We moreover believe that the advantages of the SLOPE over

the Lasso could be even greater when more general SLOPE penalty sequences are

considered, though we leave this to future work.

To be specific, we consider a Lasso pair (ΠL,ΛL) and aim to construct a corre-

sponding SLOPE pair (ΠS,ΛS) that outperforms the Lasso, under the requirement

that ΠL = ΠS = Π. We will demonstrate that, for any fixed bounded Π, each Lasso

penalty ΛL can be dominated by some two-level SLOPE penalty distributions ΛS,

in the sense that the SLOPE produces strictly better (TPP∞,FDP∞) and MSE. We

further demonstrate a method to search for such dominating SLOPE penalties ΛS

and then we reinforce these ideas with simulation results.

The theoretical result of this section can be found in Theorem 6. In specific, we

demonstrate that switching from Lasso to the simple two-level SLOPE can achieve

better TPP∞, better FDP∞ and better MSE at the same time. The full proof is in

Appendix 3.7.6 and we discuss the ideas of proof here.

In the following, we work in the normalized A or α regime (given by the AMP

calibration (3.3.3); see also the interpretations below that equation) instead of

the Λ or λ regime. The minimum α ∈ R+ such that the corresponding the Lasso

penalty λ(α) is non-negative, is denoted α0. We denote the normalized prior

πL := Π/τL < Π/τS := πS and their non-zero conditional distribution as π⋆
L, π

⋆
S

respectively. Here τL, τS are computed from the state evolution (3.3.2) of the Lasso

165

and the SLOPE.

The high-level idea of the proof is, for any Lasso penalty AL, to find a SLOPE

penalty distribution AS which has

(1) the same zero-threshold α(πS,AS) = α(πL,AL) (defined in Definition 3.4.1);

(2) a smaller τS than the Lasso τL (from Equation (3.4.1));

(3) a larger sparsity κ(Π,AS) than κ(Π,AL) (defined in Equation (3.5.7)).

To see why such AS is dominating, we can show (2) together with [Bu+20a,

Corollary 3.4], restated in (3.7.24), implies that the SLOPE MSE is strictly smaller

than the Lasso MSE.

Further results follow from the definitions of TPP and FDP: by (3.3.7), we get

TPP∞(Π,ΛS) = P(|π⋆
S + Z| > AL) > P(|π⋆

L + Z| > AL) = TPP∞(Π,ΛL),

where we have used the equal zero-threshold condition (1). Finally, we finish the

proof for the FDP∞ result by using (3.5.11) as well as the sparsity condition (3).

Using the above conditions as the searching criteria, we have designed an algo-

rithm that, for any fixed prior Π and for each Lasso penalty AL = αL, finds a superior

two-level SLOPE penalty AS = Θℓ,αL,w by searching over (ℓ, w). As presented in

Figure 3.7, the SLOPE (TPP∞,FDP∞) with two-level penalties outperforms the

Lasso path.

166

3.7.2 Detailed preliminary results of SLOPE AMP

In this section, we introduce the proximal operator of SLOPE, its limiting form

(known as the limiting scalar function, on which the SLOPE AMP algorithm is

based), and the SLOPE AMP theory relating to the state evolution and calibration

equations.

SLOPE proximal operator

We start with the definition of the proximal operator. For input y ∈ Rp, define the

proximal operator of a function f : Rp → R as

proxf (y) := arg min
b∈Rp

{1
2∥y − b∥2 + f(b)

}
.

For SLOPE, the proximal operator uses f(b) = Jθ(b) := ∑p
i=1 θi|b|(i) for some

penalty vector θ and as discussed in [Bog+15a], the SLOPE proximal operator can

be computed by Algorithm 25.

For the Lasso, the relevant proximal operator uses f(b) = θ∥b∥1 and is known

as the soft-thresholding function, which we will denote as ηsoft : Rp × R+ → Rp.

Namely, for any index i ∈ {1, 2, . . . , p}, the soft-thresholding function is defined as

[proxθ∥·∥1(y)]i = [ηsoft(y; θ)]i :=



yi − θ, if yi > θ,

yi + θ, if yi < −θ,

0, otherwise.

5The SLOPE proximal operator can be computed by R library SLOPE.

167

Algorithm 2 Solving proxJ(s; θ) by [Bog+15a, Algorithm 3]
(1). Sorting: Sort |s| in decreasing order, returning sort(|s|);

(2). Differencing: Calculate a difference sequence, S, defined as

S = sort(|s|)− θ;

(3). Averaging: Repeatedly average out strictly increasing subsequences in S

until none remains. We refer to the decreasing sequence after all the averaging as

AVE(S), and reassign

S = AVE(S);

(4). Truncating: Set negative values in the difference sequence to 0 and reassign

S = max(S, 0);

(5). Restoring: Restore the order and the sign of s from step (1) to S. Now S

with the restored order and sign is the final output.

Note that the Lasso proximal operator is indeed separable, meaning that any

element of its output depends only on the corresponding element of its input. This

generally does not hold for the SLOPE proximal operator, which renders the analysis

of SLOPE much more difficult. Nevertheless, the SLOPE proximal operator is an

asymptotically separable function (as discussed in (3.3.5)) and enables the analysis

of the input-dependent penalty, which is detailed in Section 3.7.3.

In what follows, we denote proxJ(v; λ) as the SLOPE proximal operator

168

proxJλ
(v).

SLOPE AMP algorithm

Under the working assumptions (see (A1) ∼ (A3) in Section 3.2) and using the

SLOPE proximal operator, the SLOPE optimization problem (3.1.2) can be solved

by the following AMP algorithm with any intial conditions ([Bu+20a]):

βt+1 = proxJ(X⊤zt + βt; ατt),

zt+1 = y −Xβt+1 + zt

δ

[
∇ proxJ(X⊤zt + βt; ατt)

]
,

where ∇ denotes the divergence and (α, τt) is defined in the equations known as the

state evolution and the calibration, which we will describe shortly.

It has been shown in [Bu+20a, Theorem 2] that asymptotically βt converges to

the true minimizer β̂. In addition, for uniformly pseudo-Lipschitz sequence functions

ϕp, we have from [Bu+20a, Theorem 3] that

plim
p

ϕp(β̂,β) = lim
t

plim
p

EZ [ϕp(proxJ(β + τtZ; α(p)τt),β)].

Loosely speaking, AMP theory characterizes the SLOPE estimator by

β̂
D≈ proxJ(β + τZ; ατ),

whose empirical distribution weakly converges to ηΠ+τZ,Aτ
(Π + τZ) and we describe

(A, τ) below.

169

State evolution of SLOPE AMP

Rigorously speaking, the state evolution for SLOPE is

τ 2 = σ2 + 1
δ
E
(
ηΠ+τZ;Aτ

(Π + τZ)− Π
)2

= σ2 + τ 2

δ
E
(
η

π+Z;A(π + Z)− π
)2
,

(3.7.1)

which can be solved iteratively via

τ 2
t+1 = F (τt,Aτt) = σ2 + 1

δ
E
(
ηΠ+τtZ;Aτt

(Π + τtZ)− Π
)2
,

From the algorithmic perspective of AMP, we use the finite approximation of

the state evolution,

τ 2 = F (τ,ατ) := σ2 + 1
δ
E
〈
[proxJ(β + τZ;ατ)− β]2

〉
, (3.7.2)

which can be recursively solved from the fixed point recursion τ 2
t+1(p) =

F (τt(p),ατt(p)) for each vector α ∈ Rp. Here ⟨u⟩ = ∑p
i=1 ui/p. Furthermore,

this state evolution enjoys nice convergence properties: it is shown in [Bu+20a,

Theorem 1] that {τt} converges monotonically to a unique fixed point τ , under any

initial condition.

Calibration of SLOPE AMP

For finite p, we have seen that the state evolution term τ depends on Π and

α. Therefore fixing Π, we can view τ(α) as a function of α and then gives the

calibration mapping of the SLOPE penalty λ ∈ Rp through [Bu+20a, Lemma 2.2],

λ(α) = ατ

(
1− 1

δp
E(∇ proxJ(Π + τZ; ατ))

)
, (3.7.3)

170

where the divergence of the proximal operator is defined as

∇ proxJ(v; ατ) := diag
(
∂

∂v1
,
∂

∂v2
, ...

)
· proxJ(v; ατ).

There are certain critical observations given by [Bu+20a, Lemma 2.1] and [SC16,

Proofs of Fact 3.2 and 3.3] that explain the divergence term as

∇ proxJ(v; ατ) = ∥ proxJ(v; ατ)∥∗
0,

where ∥x∥∗
0 counts the unique non-zero magnitudes in the vector x. E.g.

∥(2,−1, 1, 0)∥∗
0 = 2. This norm reduces to ℓ0 norm in the Lasso case, where

all non-zero elements in proxJ(v; ατ) have unique magnitudes. Therefore we can

express (3.7.3) as

λ(α) = ατ
(
1− 1

n
E∥ proxJ(Π + τZ; ατ)∥∗

0

)
. (3.7.4)

In the asymptotic case, the calibration lies between the original penalty distribu-

tion Λ and the normalized penalty A, to which the empirical distributions of {λ}

and {α} converge weakly:

Λ D= Aτ
(

1− 1
δ

lim
p

1
p
E∥ proxJ(Π + τZ;A(p)τ)∥∗

0

)

= Aτ
(

1− 1
δ
P
(
η

π+Z;A(π + Z) ∈ U(η
π+Z;A(π + Z))

))
,

(3.7.5)

where U(·) is defined by

U(η) :=
{
h ∈ R+ : P(|η| = h) = 0

}
.

171

This quantity represents the portion of the probability space on which |η
π+Z,A(π+

Z)| has zero probability mass. In addition, P(η ∈ U(η)) is the asymptotic proportion

of unique non-zeros in the SLOPE estimator η. For example, if η follows a Bernoulli-

Gaussian distribution with 30% probability being zero, then U = (0,∞), since the

only point mass is concentrated at 0 and P(η ∈ U(η)) = 0.7.

3.7.3 Bridging SLOPE and soft-thresholding

In this section we describe a connection between the SLOPE proximal operator and

the Lasso proximal operator, i.e. the soft-thresholding function. This connection is

built on top of the concept of effective penalty in Definition 3.4.2, which allows

one to reduce the SLOPE proximal operator to the soft-thresholding function with

an input-dependent penalty. In analyzing both bounds of the SLOPE trade-off,

q⋆ and q⋆, we use this technique so that we can study the much more amenable

soft-thresholding function in place of the SLOPE proximal operator.

Here we use ‘proxJ(v; α)’ to denote the SLOPE proximal operator and ηsoft

to denote the soft-thresholding function, both defined in Section 3.3. Note that

unlike the soft-thresholding function, the SLOPE proximal operator does not have

an explicit formula (nor does its limiting form given by the limiting scalar function

η), however it can be efficiently computed by Algorithm 2. Recall that the SLOPE

penalty vector α is decreasing and non-negative. The first result we present in

this section says that in finite dimension, we can always design an effective penalty

172

α̂(v,α), such that applying proxJ on penalty α is equivalent to applying elementwise

soft-thresholding on α̂.

Fact 3.7.1. For any α,v ∈ Rp, there exists α̂ ∈ Rp such that

proxJ(v; α) = ηsoft(v; α̂).

Proof of Fact 3.7.1. For v ≥ 0, the soft-thresholding operator is ηsoft(v; α̂) =

max(v − α̂, 0). Note that v ≥ 0 implies proxJ(v; α) ≥ 0 and [proxJ(v; α)]i ≤ vi

for every i. Then we can simply design α̂ by setting α̂ = v − proxJ(v; α). More

generally, for any v, we can set α̂ = |v| − proxJ(|v|; α) (c.f. [HL19a, Proposition

2]).

We notice that there are possibly multiple valid designs of α̂. An example would

be

proxJ([6, 5, 3, 2, 1]; [5, 2, 2, 2, 2]) = [2, 2, 1, 0, 0] = ηsoft([6, 5, 3, 2, 1]; α̂), (3.7.6)

and both α̂ = [4, 3, 2, 2, 1] or [4, 3, 2, 2, 2] give the desired result.

We remark that the asymptotic version of the above fact is established in

[HL19a, Proposition 1 and Algorithm 1]. However, we emphasize that although

the construction of α̂ is trivial once proxJ(v; α) is known beforehand, it is difficult

to derive α̂ in general: proxJ(v; α) has no explicit form and its computation is

complicated, as can be seen in Algorithm 2. Nevertheless, certain useful properties

of the effective penalty α̂ can be extracted.

173

Fact 3.7.2. Suppose v is sorted in decreasing absolute values, then α̂ agrees with

α at the non-zero entries of proxJ(v; α) where the proximal operation takes no

averaging.

Proof of Fact 3.7.2. From Algorithm 2, for each entry of v, one may think of proxJ

as either applying a soft-thresholding or applying a soft-thresholding followed by an

averaging.

In the example given in (3.7.6), the subsequence [3, 2, 1] of v experiences the

soft-thresholding with respect to the penalty subsequence [2, 2, 2]; on the other hand,

the subsequence [6, 5] experiences the soft-thresholding with respect to the penalty

subsequence [5, 2] (resulting in [1, 3]) then the averaging (resulting in [2, 2]); this

output is equivalent to [6, 5] experiencing the soft-thresholding with respect to the

effective penalty subsequence [4, 3] instead of the actual penalty subsequence [5, 2].

In other words, if vi is indeed penalized by αi without averaging, then the effective

penalty α̂i agrees with the actual penalty αi.

The above result generally does not hold when v is not sorted in decreasing

magnitudes. For instance,

proxJ([3, 5,−6]; [5, 2, 2]) = [1, 2,−2] = ηsoft([3, 5,−6]; [2, 3, 4]).

Nevertheless, we show that larger input (in magnitude) matches with larger penalties.

Fact 3.7.3. Suppose v is sorted in decreasing absolute values, so is α̂. Then larger

input will have larger effective penalty.

174

Proof of Fact 3.7.3. For the simplicity of discussion, we assume v ≥ 0. Then we

have proxJ(v; α) = max(AVE(v −α), 0) where AVE(·) is the averaging operator in

Algorithm 2. For indices where the averaging does not take place on the sequence

v − α, we have α̂i = αi from Fact 3.7.2. Clearly α̂ is decreasing on these indices

as α is decreasing by the definition of the sorted ℓ1 norm. For indices where the

averaging does take place, say the averaged magnitude is c := [proxJ(v; α)]I for

some set of indices I, then α̂i = vi − [proxJ(v; α)]i = vi − c (by Fact 3.7.1), which

is decreasing in i since vI is a decreasing subsequence.

Now that we have derived some properties of the sequence α̂ as a whole, we

will focus on a particular point of the sequence. Before we move on, we introduce a

quantile-related concept.

Definition 3.7.4. For a vector v ∈ Rp, we denote the k-th largest element in absolute

values as v(k). For a distribution V , we denote V(k) as the upper k-quantile with

k ∈ [0, 1]:

P(|V | ≥ V(k)) = k.

For example, V(0.25) is the upper quartile of |V |; V(0.5), V(0), V(1) are the median,

maximum and minimum of |V | respectively.

We show an asymptotic result that α and α̂ agree at a specific point closely

related to the zero-threshold defined in Definition 3.4.1.

Proposition 3.7.5. Suppose v(p),α(p), α̂(p) converge weakly to distributions

V,A, Â respectively, with V being a continuous distribution whose support contains

175

0. Then

Â(κ) = A(κ) = |V |(κ),

where κ is the asymptotic sparsity of the SLOPE estimator, defined in (3.5.7).

To see how this asymptotic result relates to the zero-threshold α(π,A) in Defi-

nition 3.4.1, it is helpful to consider V = π + Z (which is continuous even if π is

discrete), since the SLOPE estimator’s distribution is Π̂ = η
π+Z,A(π + Z).

Proof of Proposition 3.7.5. Then the asymptotic sparsity is

κ := plim |{i : [proxJ(v; α)]i ̸= 0}|/p = P
(
η

π+Z,A(π + Z) ̸= 0
)

= P
(
|π + Z| > α(π,A)

)
.

On the other hand, from the soft-thresholding effect of η
V,A, we have

η
V,A(V) = ηsoft(V ; Â),

and equivalently

κ = P
(
|η

V,A(V)| ≠ 0
)

= P
(
ηsoft(|V |; Â) ̸= 0

)
= P

(
|V | > Â

)
,

which indicates

|V |(κ) = Â(κ) = α(π,A).

From the proof of Fact 3.7.1 (also from [HL19a, Proposition 2]), we know

Â(κ) = |V |(κ) − ηV,A(|V |(κ)). Together with the above, it holds that η
V,A(|V |(κ)) = 0.

Notice that η
V,A is continuous, thus there must exist some interval [|V |(κ), x]

where η
V,A is not constant (i.e. penalties are not averaged), because η

V,A(|V |(κ)) = 0

but η
V,A(x) > 0. Hence by Fact 3.7.2, we obtain Â(κ) = A(κ).

176

To summarize, we can reduce the non-separable SLOPE proximal operator to

some separable soft-thresholding, asymptotically. In this way, we can alternatively

study the effective penalty used in the soft-thresholding, instead of the implicit

SLOPE proximal operator. We emphasize that Section 3.7.3 is the key to study the

SLOPE TPP-FDP trade-off bounds q⋆ and q⋆ in Section 3.4 and Section 3.5.

3.7.4 SLOPE trade-off and Möbius upper bound

In this section we provide some useful results that describe the SLOPE TPP–FDP

trade-off curve beyond the Lasso phase transition. In particular, we show that the

SLOPE state evolution and calibration constraints can be translated to analogous

constraints based on the soft-thresholding function.

Using AMP to characterize the asymptotic TPP and FDP

In this section, we give a sketch of the proof of Lemma 3.3.1, which consists of justi-

fying the use of AMP to characterize the FDP and TPP of SLOPE asymptotically.

It has been rigorously proven in [Bu+20a, Theorem 3] that 1
n

∑n
i=1 ψ([ηΠ+τZ,Aτ

(β+

τZ)]i, βi) is asymptotically equal in distribution to that of 1
n

∑n
i=1 ψ(β̂i, βi), when

ψ : R2 → R is a pseudo-Lipschitz continuous function. We would like to use this

result to analyze the FDP and TPP, where from Lemma 3.3.1 we see that

FDPξ(β,λ) = |{j : |β̂j| > ξ, βj = 0}|
|{j : |β̂j| > ξ}|

=
∑

j φV,ξ(β̂j, βj)∑
j φV,ξ(β̂j, βj) +∑

j φT,ξ(β̂j, βj)
, (3.7.7)

177

and

TPPξ(β,λ) = |{j : |β̂j| > ξ, βj ̸= 0}|
|{j : βj ̸= 0}| =

∑
j φT,ξ(β̂j, βj)∑

j 1(βj ̸= 0) , (3.7.8)

are determined by sums of discontinuous functions, φV,ξ(x, y) = 1(|x| > ξ)1(y = 0)

and φT,ξ(x, y) = 1(|x| > ξ)1(y ̸= 0), and not pseudo-Lipschitz functions. Therefore

[Bu+20a, Theorem 3] does not apply directly. Nevertheless, we are still able to use

the characterization given by AMP, as is demonstrated in Lemma 3.7.6. The proof

of Lemma 3.7.6 is an extension of the analogous result for the Lasso case given in

[SBC17, Lemma A.1]. We notice that the result of Lemma 3.3.1 is just that given in

(3.7.11).

Lemma 3.7.6. Under the working assumptions, namely (A1), (A2), and (A3), for

ξ such that P(η
π+Z,A(π + Z) = ξ) = 0, the SLOPE estimator β̂(λ) obeys

Vξ(λ)
p

:=
∑

j

φV,ξ(β̂j, βj)
p

= |{j : |β̂j| > ξ, βj = 0}|
p

P→ P(|η
π+Z,A(π + Z)| > ξ, π = 0),

(3.7.9)

Tξ(λ)
p

:=
∑

j

φT,ξ(β̂j, βj)
p

= |{j : |β̂j| > ξ, βj ̸= 0}|
p

P→ P(|η
π+Z,A(π + Z)| > ξ, π ̸= 0),

(3.7.10)

where Z is a standard normal independent of Π, (τ,A) is the unique solution to the

state evolution (3.3.2) and the calibration (3.3.3), and π = Π/τ . Consequently, we

have using the representations in (3.7.7) and (3.7.8) and the definitions of Vξ(λ)

178

and Tξ(λ) above, that

FDPξ = Vξ(λ)
Vξ(λ) + Tξ(λ)

P→ FDP∞
ξ , and TPPξ = Tξ(λ)∑

j 1(βj ̸= 0)
P→ TPP∞

ξ .

(3.7.11)

Proof of Lemma 3.7.6. The analogous result for when β̂ is a Lasso solution is proven

rigorously in [Bog+13b]. Here we adapt their proof for SLOPE. The high level idea

for the proof of (3.7.9) and (3.7.10) is to construct two series of pseudo-Lipschitz

continuous functions

φV,ξ,h(x, y) = (1−Rh(x))Qh(y) and φT,ξ,h(x, y) = (1−Rh(x))(1−Qh(y)),

that approach φV,ξ, φT,ξ as h→ 0+. Here Qh(y) = max{1− |y/h|, 0} and

Rh(x) =



0 if |x| > ξ + h

ξ+h−|x|
2h

if ξ − h < |x| < ξ + h

1 if |x| < ξ − h

.

Since for small h,

|φV,ξ,h(x, y)− φV,ξ(x, y)| ≤ 1(ξ − h < |x| < ξ + h) + 1(0 < |y| < h),

for any c > 0,

P
(∣∣∣∣∣1p

p∑
i=1

φV,ξ

(
β̂i, βi

)
− 1
p

p∑
i=1

φV,ξ,h

(
β̂i, βi

)∣∣∣∣∣ > c

)

≤P
(

1
p

p∑
i=1

1
(
ξ − h <

∣∣∣β̂i

∣∣∣ < ξ + h
)
>
c

2

)
+ P

(
1
p

p∑
i=1

1 (0 < |βi| < h) > c

2

)

179

We will show that both terms on the right hand side converge to zero as p→∞ and

then h→ 0. The second term converges to zero by the weak Law of Large Numbers.

To deal with the first term, we introduce another pseudo-Lipschitz continuous

function

Gh(x) =



1 if ξ − h < x < ξ + h

0 if x > ξ + 2h or x < ξ − 2h

x−(ξ−2h)
h

if ξ − 2h < x < ξ − h

(ξ+2h)−x
h

if ξ + h < x < ξ + 2h

which upper bounds the function 1 (< ξ − h < |x| < ξ + h). Then the AMP theory

in [Bu+20a, Theorem 3] gives

lim
p→∞

1
p

p∑
i=1

1
(
ξ − h <

∣∣∣β̂i

∣∣∣ < ξ + h
)
≤ P

(
ξ − h <

∣∣∣Π̂∣∣∣ < ξ + h
)
→ 0

as h→ 0, where Π̂ is defined in (3.3.1). Hence, one can then argue

lim
p→∞

1
p

p∑
i=1

φV,ξ(β̂i, βi) P= lim
h→0

lim
p→∞

1
p

p∑
i=1

φV,ξ,h(β̂i, βi)

P= lim
h→0

EφV,ξ,h

(
ηΠ+τZ,Aτ

(Π + τZ),Π
)

= EφV,ξ (ηΠ+τZ,Aτ (Π + τZ),Π) ,

where the second equality in the above employs the AMP results for the pseudo-

Lipschitz continuous function φV,ξ,h(·, ·). The technical aspects of the proof involve

180

making this argument rigorous. The final result follows by noticing that

EφV,ξ (ηΠ+τZ,Aτ (Π + τZ),Π) = E [1 (|ηΠ+τZ,Aτ (Π + τZ)| > ξ) 1 (Π = 0)]

= P
(
|ηΠ+τZ,Aτ

(Π + τZ)| > ξ,Π = 0
)

= P(|η
π+Z,A(π + Z)| > ξ, π = 0).

Now leveraging results (3.7.9) and (3.7.10), that give

Vξ(λ)/p P−→ P
(
|ηΠ+τZ,Aτ

(Π + τZ)| > ξ,Π = 0
)

= P(|η
π+Z,A(π + Z)| > ξ, π = 0),

Tξ(λ)/p P−→ P
(
|ηΠ+τZ,Aτ

(Π + τZ)| > ξ,Π ̸= 0
)

= P(|η
π+Z,A(π + Z)| > ξ, π ̸= 0),

and using that

P(|η
π+Z,A(π + Z)| > ξ, π = 0) = (1− ϵ)P(|η

π+Z,A(Z)| > ξ),

and

P(|η
π+Z,A(π + Z)| > ξ, π ̸= 0) = ϵP(|η

π+Z,A(π⋆ + Z)| > ξ),

where we recall π⋆ is the distribution of the non-zero part of π, we finally obtain

FDP∞
ξ (Π,Λ) = plim Vξ(λ)

Vξ(λ) + Tξ(λ)

=
(1− ϵ)P(|η

π+Z,A(Z)| > ξ)

(1− ϵ)P(|η
π+Z,A(Z)| > ξ) + ϵP

(
|η

π+Z,A(π⋆ + Z)| > ξ
) ,

TPP∞
ξ (Π,Λ) = plim Tξ(λ)

|{j : βj ̸= 0}| = P
(
|η

π+Z,A(π⋆ + Z)| > ξ
)
.

181

The result of Lemma 3.3.1 (and Lemma 3.7.6) implies that when studying the

trade-off between the FDP and TPP asymptotically, we can work with the explicit

and amenable quantities P(η
π+Z,A(Z) ̸= 0) and P(η

π+Z,A(π⋆+Z) ̸= 0), by considering

ξ → 0.

A better understanding the Donoho-Tanner threshold

In this section, we introduce an equivalent definition of the DT threshold ϵ⋆, originally

defined in (3.2.2), from a non-parametric viewpoint. This definition is necessary for

our analysis of the SLOPE trade-off upper bound q⋆ discussed in Section 3.5.

To specify the threshold ϵ⋆ when δ < 1, we consider the equation

2(1− ϵ)[(1 + x2)Φ(−x)− xϕ(x)] + ϵ(1 + x2) = δ (3.7.12)

in x > 0. Above, ϕ(·) and Φ(·) are the probability density function and cumula-

tive distribution function of the standard normal distribution, respectively. We

demonstrate the properties of (3.7.12) can be found in Figure 3.8 and Figure 3.9.

The key point we will use is that this equation has a unique positive root in x if

and only if 0 < ϵ < 1 takes a certain value ϵ⋆(δ) that depends only on δ. This unique

root is x := t⋆(u⋆
DT(δ)), as given by [SBC17, Appendix C]. Furthermore, (3.7.12) has

two roots when ϵ ≤ ϵ⋆ and no root otherwise. In fact, (3.7.12) originates from the

state evolution (3.4.1) for the Lasso when we consider the infinity-or-nothing priors

defined in (3.5.6), and it can also be found in [SBC17, Equation (C.5)].

In summary, (3.7.12) gives an equivalent representation of ϵ⋆(δ) that we will find

182

useful in the upcoming proofs. Namely, ϵ⋆(δ) is the specific value of 0 < ϵ < 1 such

that (3.7.12) has a unique root.

0 1 2 3 4−
0

.2
0

.2
0

.4
0

.6
0

.8
1

.0

x

0 1 2 3 4−
0

.2
0

.2
0

.4
0

.6
0

.8
1

.0

x

0 1 2 3 4−
0

.2
0

.2
0

.4
0

.6
0

.8
1

.0

x

0 1 2 3 4−
0

.2
0

.2
0

.4
0

.6
0

.8
1

.0

x

Figure 3.8: A plot of the function f(x) = 2(1−ϵ)[(1+x2)Φ(−x)−xϕ(x)]+ϵ(1+x2)−δ

defined in (3.7.12) for δ = 0.5 and ϵ ∈ {0.1, 0.15, ϵ⋆(δ) = 0.1928, 0.25} (from left to

right).

0.00 0.05 0.10 0.15 0.20

0
5

10
15

20
25

ε

x

ε *

Figure 3.9: A plot to demonstration the roots of (3.7.12) with δ = 0.5. Here

ϵ⋆ = 0.1928 is the dashed line and the blue area contains valid x for which the

inequality in (3.7.12) holds for each ϵ. The black solid lines are the roots. Notice

that the blue area corresponding to ϵ = 0.1 corresponds to the area under the dashed

line in leftmost plot of Figure 3.8.

183

Proof of Lemma 3.5.3

Proof of Lemma 3.5.3. For infinity-or-nothing priors where π =∞ with probability

ϵϵ′ or π = 0 with probability 1− ϵϵ′, the state evolution constraint (3.4.1) gives,

δ ≥ E
(
η

π+Z,A(π + Z)− π
)2

= P(π =∞)E
(
η

π+Z,A(π⋆ + Z)− π⋆
)2

+ P(π ̸=∞)Eη
π+Z,A(Z)2

= ϵϵ′E
(
η

π+Z,A(π⋆ + Z)− π⋆
)2

+ (1− ϵϵ′)Eη
π+Z,A(Z)2.

(3.7.13)

Using the effective penalty function Âeff defined in Definition 3.4.2, we can write

the above as

δ ≥ ϵϵ′E
(
ηsoft(π⋆ + Z; Âeff(π⋆ + Z))− π⋆

)2
+ (1− ϵϵ′)Eηsoft(Z; Âeff(Z))2.

Now, we denote the distribution Â :D= Âeff(π + Z) and in what follows we study

the distribution of Âeff(π⋆ + Z) in more detail. Using the fact that π⋆ + Z is almost

surely larger than Z (since π⋆ =∞) and Fact 3.7.3, which states SLOPE assigns

larger effective penalty to larger input, we conclude

Âeff(π⋆ + Z) D= Â
∣∣∣∣Â > Â(ϵϵ′).

which, we will shortly show, is a constant. In the above, the quantity with a

subscript, Â(ϵϵ′), is a quantile-related scalar such that P(Â > Â(ϵϵ′)) = ϵϵ′, defined

in Definition 3.7.4. In words, the larger part of Â
(

i.e. Â
∣∣∣∣Â > Â(ϵϵ′)

)
is assigned to

the larger part of the input π⋆ + Z; and Â
∣∣∣Â ≤ Â(ϵϵ′) is assigned to the input Z.

184

Furthermore, using the assumption that

ϵϵ′ ≤ P(Λ = max Λ) = P(A = max A), (3.7.14)

where the final equality follows since Λ and A only differ by a constant (see the

calibration equation (3.3.3)), we get

Â
∣∣∣Â ≥ Â(ϵϵ′)

D= A
∣∣∣A ≥ A(ϵϵ′) = A(ϵϵ′) ∈ R.

In the above, the first equality comes from the fact that the upper ϵϵ′ quantile of A

is Lasso-like, following from (3.7.14) (hence, there is no averaging in the SLOPE

proximal operator and Fact 3.7.2 applies) and the second equality also follows from

(3.7.14) as well.

Therefore, using that Âeff(π⋆ +Z) is a constant equal to A(ϵϵ′), the state evolution

constraint becomes

δ ≥ ϵϵ′E
(
ηsoft(π⋆ + Z; A(ϵϵ′))− π⋆

)2
+ (1− ϵϵ′)Eηsoft(Z; Âeff(Z))2

= ϵϵ′E(A(ϵϵ′) − Z)2 + (1− ϵϵ′)Eηsoft(Z; Âeff(Z))2

= ϵϵ′(1 + A2
(ϵϵ′)) + (1− ϵϵ′)Eηsoft(Z; Âeff(Z))2,

(3.7.15)

where the first equality follows by the definition of the soft-thresholding function

and the fact that A(ϵϵ′) is constant and the second from the fact that Z ∼ N (0, 1).

Notice that, again by Fact 3.7.3, Âeff(z) is increasing in absolute value of z, hence

Âeff(Z) ≤ sup
(
Â
∣∣∣Â ≤ Â(ϵϵ′)

)
= Â(ϵϵ′) = A(ϵϵ′),

in which the last equality holds from Fact 3.7.2, as a consequence of

lim
x↗ϵϵ′

∣∣∣∣ηπ+Z,A(π + Z)
∣∣∣∣
(x)

=∞ > sup
Z

∣∣∣∣ηπ+Z,A(Z)
∣∣∣∣ = lim

x↘ϵϵ′

∣∣∣∣ηπ+Z,A(π + Z)
∣∣∣∣
(x)
,

185

i.e. no averaging takes place at the quantile ϵϵ′ (here the limits are one-sided limits).

Additionally, we observe that ηsoft(z;x)2 is decreasing in the scalar x. Therefore, we

get

Eηsoft(Z; Âeff(Z))2 ≥ Eηsoft(Z; A(ϵϵ′))2.

Applying the above bound into (3.7.15) and then using some simple algebra to

express the soft-thresholding function, we find

δ ≥ ϵϵ′(1 + A2
(ϵϵ′)) + (1− ϵϵ′)Eηsoft(Z; A(ϵϵ′))2

= ϵϵ′(1 + A2
(ϵϵ′)) + 2(1− ϵϵ′)

[
(1 + A2

(ϵϵ′))Φ(−A(ϵϵ′))− A(ϵϵ′)ϕ(A(ϵϵ′))
]
.

(3.7.16)

Following the discussion around (3.7.12), the above inequality can only possibly

hold when ϵϵ′ ≤ ϵ⋆, or when ϵ′ ∈ [0, ϵ⋆/ϵ] as desired.

Achieving the Möbius curve of q⋆

In this section we prove Proposition 3.2.3, or in other words, we show that with the

special design of a two-level SLOPE penalty and infinity-or-nothing prior, we can

approach the Möbius part of q⋆ arbitrarily close.

Proof of Proposition 3.2.3. To give the proof, we consider a specific prior ΠM(ϵ⋆/ϵ)

as in (3.2.5) and let M → ∞. Here ϵ⋆ is defined in (3.2.2). This is equivalent to

setting the normalized prior π to the infinity-or-nothing prior π∞(ϵ⋆/ϵ), defined in

(3.5.6) as:

π∞(ϵ⋆/ϵ) =


∞ w.p. ϵ⋆,

0 w.p. 1− ϵ⋆.

(3.7.17)

186

As for the SLOPE penalty, we consider a sub-class of two-level penalty distribu-

tions Λ that satisfy P(Λ = max Λ) ≥ ϵ⋆, or in the notation of (3.2.4) we will have

w > ϵ⋆. By setting the penalty as such, we satisfy the assumption in Proposition 3.5.2

and consequently we can apply the results in Lemma 3.5.3 and Lemma 3.5.4.

Now we are ready to present the proof. For any TPP∞ = u ≥ u⋆
DT(δ), we

recall from (3.5.9) in the proof of Lemma 3.5.4 that the asymptotic sparsity κ(Π,Λ)

(defined in (3.5.7)) satisfies

κ(Π,Λ) = 1− ϵ(1− u)(1− ϵϵ′)
ϵ− ϵϵ′ . (3.7.18)

From (3.5.11), minimizing FDP∞(Π,Λ) is equivalent to minimizing κ(Π,Λ), which

from (3.7.18) we see is further equivalent to maximizing ϵ′. Since Lemma 3.5.3 states

that ϵ′ ≤ ϵ⋆/ϵ, we aim to achieve a sparsity with ϵ′ = ϵ⋆/ϵ, namely a sparsity of

κ(Π,Λ) = 1− ϵ(1− u)(1− ϵ⋆)
ϵ− ϵ⋆

, (3.7.19)

which is given in (3.5.10) as the smallest sparsity for which TPP∞ ≥ u is possible.

Therefore, we consider a specific prior ΠM(ϵ⋆/ϵ) as in (3.2.5) and let M →∞.

Then the limiting normalized prior π is the infinity-or-nothing prior defined in

(3.7.17). Next, we seek the penalty Λ that can result in the desired sparsity κ(π,A)

in (3.7.19), or equivalently, we seek the normalized version of Λ given by A, defined

via the calibration equation (3.3.3).

To find such a penalty Λ, we consider the state evolution constraint (3.4.1),

and emphasize that when achieving the desired sparsity, (3.4.1) must be satisfied

187

by the pair (π,A). We use the result of (3.7.16) and more generally, the proof of

Lemma 3.5.3 in Section 3.7.4, to give for ϵ′ = ϵ⋆/ϵ,

(1− ϵ⋆)Eηsoft(Z; A(ϵ⋆))2 + ϵ⋆(1 + A2
(ϵ⋆)) ≤ E

(
η

π+Z,A(π + Z)− π
)2
≤ δ, (3.7.20)

where again A(ϵ⋆) is a scalar defined in Definition 3.7.4, i.e., it is chosen such that

P(A > A(ϵ⋆)) = ϵ⋆. In particular, the first inequality above only holds with equality

when η
π+Z,A(Z) D= ηsoft(Z; A(ϵ⋆)), which can be seen by comparing the bounds in

(3.7.16) and (3.7.13).

From another direction, by the alternative definition of ϵ⋆ in (3.7.12), we have

(1− ϵ⋆)Eηsoft(Z;x)2 + ϵ⋆(1 + x2) ≥ δ, (3.7.21)

for all x > 0, with the equality holding only when x = t⋆(u⋆
DT(δ)), as has

been discussed in Section 3.7.4. We notice that (3.7.21) equals (3.7.12) since

Eηsoft(Z;x)2 = 2[(1 + x2)Φ(−x) − xϕ(x)]. Combining (3.7.20) and (3.7.21), we

obtain

δ
(a)
≤ (1− ϵ⋆)Eηsoft(Z; A(ϵ⋆))2 + ϵ⋆(1 + A2

(ϵ⋆))
(b)
≤ E

(
η

π+Z,A(π + Z)− π
)2 (c)
≤ δ,

which is only valid when we meet the equality conditions for all the inequalities

above. I.e, the penalty distribution A must be chosen to satisfy

(a) t⋆(u⋆
DT) = A(ϵ⋆);

(b) η
π+Z,A(Z) D= ηsoft(Z; t⋆(u⋆

DT));

188

Notice that the condition (c) is automatically satisfied when the condition (a) is

satisfied.

To design such A, it suffices to set a two-level penalty distribution A =

At⋆(u⋆
DT),rt⋆(u⋆

DT),w in (3.2.4) for carefully chosen r(u) and w(u), with w(u) > ϵ⋆.

Then the condition w(u) > ϵ⋆ gives A(ϵ⋆) = t⋆(u⋆
DT) by design, thus we satisfy the

condition (a). In words, the infinite input π⋆ + Z is assigned to match with the first

level of the two-level SLOPE penalty A.

We now turn to the more difficult condition (b) and explicitly choose r(u) and

w(u) so that it is satisfied. Before giving the exact values of r(u) and w(u) and

showing how they lead to satisfying condition (b), we take some time to further

investigate the sparsity of the SLOPE estimator, κ(π,A). Recall that the zero-

threshold, defined in Definition 3.4.1, is the value α(π,A) such that η
π+Z,A(x) = 0 if

and only if |x| ≤ α(π,A) and by Proposition 3.7.5, we know that the zero-threshold

must be equal to one of the two levels of SLOPE penalty.

Now, when w is small, few input values are subjected to the larger level of the

penalty and of those inputs, all will correspond to infinite signal prior elements.

Thus, the zero-threshold will be the smaller level of the penalty, namely it equals

rt⋆(u⋆
DT) (visualized in Figure 3.10(a)(b)). In more details, for small w(u), the value

r(u) controls the sparsity in the sense that

κ(π,A) = P
(
|π + Z| > rt⋆(u⋆

DT)
)

= ϵ⋆ + (1− ϵ⋆)P(|Z| > rt⋆(u⋆
DT)).

Following the above equation, there exists an one-to-one map between TPP∞ = u

189

and r(u) to achieve the desired sparsity of (3.7.19):

1− ϵ(1− u)(1− ϵ⋆)
ϵ− ϵ⋆

= κ(π,A) = ϵ⋆ + (1− ϵ⋆)P
(
|Z| > rt⋆(u⋆

DT)
)

= ϵ⋆ + 2(1− ϵ⋆)Φ
(
− rt⋆(u⋆

DT)
)
.

Explicitly, by rearranging the above, we conclude that the sparsity condition (3.7.19)

is satisfied if one sets

r(u) = Φ−1
(

2ϵ− ϵ⋆ − ϵu
2(ϵ− ϵ⋆)

)
/t⋆(u⋆

DT),

given that rt⋆(u⋆
DT) is the zero-threshold. In what follows, we always aim to keep

the zero-threshold at rt⋆(u⋆
DT).

As w increases, more and more input values are subjected to the larger level of

the penalty. Thus, the zero-threshold and sparsity will remain the same, taking as

values the second level of the penalty, rt⋆(u⋆
DT), and that in (3.7.19), respectively,

until w moves above a certain bound and forces the zero-threshold to increase to

the larger level of A (again by Proposition 3.7.5 the zero-threshold can only take

these two levels).

Moreover, as w increases to this bound, we observe that η
π+Z,A

(Z) becomes more

similar to ηsoft(Z; t⋆(u⋆
DT)), as demonstrated in Figure 3.10, and hence Eη

π+Z,A
(Z)2

becomes more similar to Eηsoft(Z; t⋆(u⋆
DT))2. To observe this similarity property

rigorously, notice that the quantile function of π + Z has a sharp drop at ϵ⋆ since

P(π = ∞) = ϵ⋆, which splits the quantiles corresponding to ∞ + Z and to Z.

Accordingly, Fact 3.7.3 says that for the input value corresponding to the ‘infinity’

190

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

4
5

|Z| quantile
A quantile

(a) quantile plot of |Z|, A

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

4
5

difference
−r t*(uDT

*)

(b) difference of quantiles

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

4
5

difference
−r t*(uDT

*)

(c) averaging and truncating

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

4
5

difference
−r t*(uDT

*)

(d) larger w

Figure 3.10: Fixing r and varying w within some range remains the sparsity of

the SLOPE estimator (around 0.6) but forces the SLOPE proximal operator to

approach the soft-thresholding. In other words, as w increases, the flat (averaged)

quantile of ηπ+Z,A(π + Z) takes a magnitude converging to zero. This implies

that ηZ,A∗(Z) → ηsoft(Z; t⋆(u⋆
DT)). Here π = 0,A = At⋆(u⋆

DT),rt⋆(u⋆
DT),w, δ = 0.3, ϵ =

0.2, ϵ⋆ = 0.087, t⋆(u⋆
DT) = 1.1924, u = 0.8176, r(u) = 0.3500, w(u) = 0.4819.

part of the signal, ∞+ Z, since w > ϵ⋆, the SLOPE assigns a penalty given by the

upper ϵ⋆ quantiles of A, namely
(
A|A ≥ A(ϵ⋆)

)
= A(ϵ⋆) = t⋆(u⋆

DT) and for the inputs

corresponding to the ‘nothing’ part of the signal, Z, SLOPE assigns a penalty given

191

by the lower 1− ϵ⋆ quantiles of A, denoted by

A∗(w) :=
(
A|A ≤ A(ϵ⋆)

)
= At⋆(u⋆

DT),rt⋆(u⋆
DT), w−ϵ⋆

1−ϵ⋆
.

Notice that what the above says is that a fraction, w−ϵ⋆

1−ϵ⋆ , of the ‘nothing’ signals Z

match with the large penalty t⋆(u⋆
DT) and the remaining fraction match with the

smaller penalty rt⋆(u⋆
DT). In this way, when considering just the ‘nothing’ part of

the signal, we can write η
π+Z,A(Z) D= η

Z,A∗(w)(Z)6.

We now determine the exact w(u) such that η
Z,A∗(w)(Z) D= ηsoft(Z; t⋆(u⋆

DT)), so

as to satisfy condition (b). Our strategy is to select a w(u) such that we are able to

divide the output of η
Z,A∗(w)(Z) into clearly non-zero, arbitrarily close to zero and

zero parts, so as to look like the soft-thresholding function as desired. That we can

do this is visualized in Figure 3.10 and follows from the fact that with the two-level

penalty, there will be only one flat averaged region in the output of η
Z,A∗(w)(Z),

which we want to suppress to almost zero. Denoting

P1 := P(|Z| > t⋆(u⋆
DT)), P2 := w − ϵ⋆

1− ϵ⋆
, and P3 := P(|Z| > rt⋆(u⋆

DT)),

(3.7.22)

we quantitatively define these three parts (clearly non-zero, close to zero, and zero)

as the quantiles of η
Z,A∗(w)(Z) on the probability intervals (0, P1), (P1, P3) and (P3, 1)

6Notice that, because no averaging takes place at the wp-th position, proxJ(π + Z; α) =

[proxJ(π⋆ + Z; (α1, · · · , αwp)), proxJ(Z; (αwp+1, · · · , αp))], in which [·] means concatenation.

192

respectively: i.e. we want w(u) such that

|η
Z,A∗(w)(Z)| D=



ηsoft(|Z|
∣∣∣|Z| > t⋆(u⋆

DT); t⋆(u⋆
DT)) w.p. P1

0.0001 w.p. P3 − P1

0 w.p. 1− P3

Here 0.0001 can be an arbitrarily small positive constant, which tends to 0 as

w ↗ w(u). By such a construction, we have met our goal: we have determined w(u)

such that η
Z,A∗(w)(Z) D= ηsoft(Z; t⋆(u⋆

DT)). For example, in Figure 3.10(d), P1 ≈ 0.23

and P3 ≈ 0.68. Given that the averaged sub-interval between P1 and P3 is arbitrarily

close to zero, we can write the scaled conditional expectation of |η
Z,A∗(w)(Z)| being

on the flat region as an integral of the quantile function:

∫ P2

P1
(|Z|(x) − t⋆(u⋆

DT))dx+
∫ P3

P2
(|Z|(x) − rt⋆(u⋆

DT))dx

=
∫ P3

P1
η

Z,A∗(w)(|Z|(x))dx = 0.0001(P3 − P1).

Setting w = w(u) and thus the right hand side to 0, and rearranging the equation,

∫ P3

P1
|Z|(x)dx = t⋆(u⋆

DT)(P2−P1)+rt⋆(u⋆
DT)(P3−P2) = t⋆(u⋆

DT)[(P2−P1)+r(P3−P2)],

where the left hand side is the scaled conditional expectation of the random variable

|Z| given rt⋆(u⋆
DT) < |Z| < t⋆(u⋆

DT), with an explicit form as

∫ P3

P1
|Z|(x)dx = E

(
|Z|
∣∣∣∣rt⋆(u⋆

DT) < |Z| < t⋆(u⋆
DT)
)
P (rt⋆(u⋆

DT) < |Z| < t⋆(u⋆
DT))

= E
(
Z

∣∣∣∣rt⋆(u⋆
DT) < Z < t⋆(u⋆

DT)
)
P (rt⋆(u⋆

DT) < |Z| < t⋆(u⋆
DT))

= 2ϕ(rt⋆(u⋆
DT))− 2ϕ(t⋆(u⋆

DT)),

193

in which the last equality holds from a direct calculation of the expection of a

two-sided truncated normal distribution. Hence, we have,

2ϕ(rt⋆(u⋆
DT))− 2ϕ(t⋆(u⋆

DT)) = t⋆(u⋆
DT)[(P2 − P1) + r(P3 − P2)],

which, upon rearrangement, gives

P2 = P1 − rP3

1− r − 2
(1− r)

[
ϕ(t⋆(u⋆

DT))− ϕ(rt⋆(u⋆
DT))

t⋆(u⋆
DT)

]
.

Then, plugging in the values in (3.7.22), the above simplifies to

w(u) = ϵ⋆ + 2(1−ϵ⋆)
1−r

[
Φ(−t⋆(u⋆

DT))− rΦ(−rt⋆(u⋆
DT))− ϕ(−t⋆(u⋆

DT))−ϕ(−rt⋆(u⋆
DT))

t⋆(u⋆
DT)

]
.

We claim w(u) can be uniquely determined by r(u), and w(u) is clearly larger

than ϵ⋆ as the second term is positive. To see this, we study the term in the bracket

and claim that its derivative over t⋆ is (ϕ(−t⋆)− ϕ(−rt⋆))/(t⋆)2, which is negative

and hence the term is larger than when t⋆ =∞, i.e. 0.

Combining (3.5.2) for designing r(u) and (3.5.3) for designing w(u), we can

design the two-level SLOPE penalty that, together with infinity-or-nothing prior

π∞(ϵ⋆/ϵ), approaches (u, q⋆(u)) arbitrarily close.

On a side note, if the w is larger than the specific choice in (3.5.3), i.e. when

the flat quantile in Figure 3.10 drops below zero, the SLOPE proximal operator

has the same effect as soft-thresholding and the analysis for the Lasso case follows.

Consequently, TPP∞ reduces to the interval [0, u⋆
DT). Graphically speaking, when

one fixes r and increases w from 0 to 1 (similar to Figure 3.4), the SLOPE TPP∞

194

will increase from u⋆
DT to above, until (TPP∞,FDP∞) touches the Möbius curve.

Then TPP∞ will suddenly jump below u⋆
DT, once w is larger than (3.5.3), and then

remain constant afterwards.

Achievable TPP–FDP region by SLOPE

The trade-off boundary curves q⋆ and q⋆ only provide information that splits the

entire TPP–FDP region into two parts: the possibly achievable (TPP∞,FDP∞) and

the unachievable ones. See the red and non-red regions in Figure 3.5. Although

we have shown the achievability of the upper boundary q⋆ via Proposition 3.2.3,

such achievability of the curve does not directly distinguish the achievability of the

regions, until the recent work on Lasso by [Wan+20] which gives a complete Lasso

TPP–FDP diagram.

Here we leverage the homotopy result in [Wan+20, Lemma 3.8] to bridge from

the achievability of the boundary curve to the achievability of the region. Thus we

establish the actually achievable region by SLOPE.

The idea of homotopy is quite intuitive: suppose there are two curves, Curve A

(our upper boundary curve q⋆) and Curve B (the horizontal line FDP∞ = 1− ϵ), and

a continuous transformation f moving from Curve A to B. During the movement,

f sweeps out a region whose boundaries include Curve A and B, where every single

point in this region is passed by the transforming curve during the transformation.

Formally, we have a homotopy lemma below.

195

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

TPP

F
D

P

Unachievable

Unachievable

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

TPP

F
D

P

Unachievable

Unachievable

Figure 3.11: SLOPE TPP–FDP diagram by Proposition 3.7.8. Left: (δ, ϵ) = (0.3, 0.2).

Right: (δ, ϵ) = (0.3, 0.5). The red regions are (TPP∞,FDP∞) pairs not achievable

by SLOPE nor by the Lasso, regardless of the prior distribution or the penalty

tuning. The blue regions are achievable by both the SLOPE and by the Lasso. The

green region is achievable only by the SLOPE but not by the Lasso. We note that

the boundary between the blue region and the green one is a line segment connection

(0,1) and (u⋆
DT, q

⋆(u⋆
DT)), same as given by [Wan+20] for the Lasso case. The gray

region is where the SLOPE trade-off lies in, and thus is possibly achievable by the

SLOPE but not by the Lasso.

196

Lemma 3.7.7 (Lemma 3.7, [Wan+20]). If a continuous curve is parameterized by

f : [0, 1]× [0, 1]→ R2 and if the four curves

• C1 = {f(u, 0) : 0 ≤ u ≤ 1},

• C2 = {f(u, 1) : 0 ≤ u ≤ 1},

• C3 = {f(0, s) : 0 ≤ s ≤ 1},

• C4 = {f(1, s) : 0 ≤ s ≤ 1},

join together as a simple closed curve, C := C1 ∪ C2 ∪ C3 ∪ C4, then C encloses an

interior area D, and ∀(x, y) ∈ D,∃(u, s) ∈ [0, 1] × [0, 1] such that f(u, s) = (x, y).

In other words, every point inside the region D enclosed by curve C is realizable by

some f(u, s).

Now we can show a region Dϵ,δ defined below is indeed asymptotically achievable.

This directly give the SLOPE TPP–FDP diagram in Figure 3.11.

Proposition 3.7.8. Any (TPP∞,FDP∞) in Dϵ,δ is asymptotically achievable by

the SLOPE. Here δ < 1, ϵ > ϵ⋆(δ) and Dϵ,δ is enclosed by the four curves: FDP∞ =

1− ϵ,FDP∞ = q⋆(TPP∞), TPP∞ = 0 and TPP∞ = 1.

Proof of Proposition 3.7.8. Note that (TPP∞,FDP∞) is a function of Λ, σ and Π

and hence we can denote every TPP–FDP point in [0, 1]× [0, 1] as

g = (TPP∞(Λ, σ,Π),FDP∞(Λ, σ,Π)) .

197

To characterize the boundary of the achievable region, i.e. C1, we parameterize the

(two-level) penalty distribution Λ∗(u) and the (infinity-or-nothing) prior distribution

Π∗(u), empowered by the achievability result Corollary 3.5.1 (which holds for finite

noise, including the noiseless case), such that

TPP∞(Π∗(u),Λ∗(u)) = u,

FDP∞(Π∗(u),Λ∗(u)) = q⋆(u).

Leveraging this parameterization, we define the transformation

f(u, s) = g(Λ∗(u), tan(πs2),Π∗(u)),

that is employed in Lemma 3.7.7. Therefore, C1 is the curve described by q⋆.

When the noise σ = ∞, clearly FDP∞(Λ,∞,Π) = 1 − ϵ. It follows that C2 is

FDP∞ = 1− ϵ. When TPP∞ = u = 0, this is the case that the penalty Λ =∞ and

we get C3 is TPP∞ = 0. When u = 1, we have f(1, s) = (1, 1− ϵ). This is the case

that the penalty Λ = 0 and C4 is TPP∞ = 1.

We notice that {C1, C2, C3, C4} indeed composes a closed curve. Therefore, f

sweeps from C1 to C2 and each point in Dϵ,δ is achievable by some f(u, s) by the

homotopy lemma in Lemma 3.7.7.

3.7.5 Lower bound not equal to upper bound

To complement Section 3.5.3, we give concrete examples that the upper bound q⋆

does not equal the lower bound q⋆. Visually, in Figure 3.2, it is not difficult to

198

distinguish the two bounds when TPP∞ ≥ u⋆
DT. However, when TPP∞ < u⋆

DT, the

difference can be rather small (see Figure 3.12), but we assert that, at least for some

TPP∞ < u⋆
DT, the difference indeed exists and is not a result of numerical errors.

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

u

t(
u)

uDT
*

Figure 3.12: Demonstration of t⋆(u) and t⋆(u) with δ = 0.3, ϵ = 0.2. The blue area

is valid x if (3.2.7) is an inequality with the left hand side being smaller than the

right one; the black solid line is the larger root of (3.2.7), i.e. t⋆(u), with the support

[0, u⋆
DT); the gray line is the smaller root. The red dotted line is t⋆(u), with support

[0, 1]. Note that if t⋆(u) > t⋆(u) at some u, then q⋆(u) > q⋆(u).

Characterizing the analytic SLOPE penalty

In order to characterize the optimal SLOPE penalty analytically, we discuss the

complementary slackness condition on the monotonicity constraint in problem (3.4.6).

We start with the case when the monotonicity constraint is not binding (i.e. when

A′
eff(z) > 0 for all z ≥ α). We apply the Euler-Lagrange Multilplier Theorem to

199

derive the following Euler-Lagrange equation on L(z,Aeff) defined in (3.4.7):

∂L

∂Aeff
− d

dz

∂L

∂A′
eff

= 0.

This is a necessary condition of the optimal SLOPE penalty function. Since L does

not explicitly depend on A′
eff, the Euler-Lagrange equation gives, for the optimal

SLOPE penalty function A∗
eff of problem (3.4.6),

∂L

∂Aeff
= 4(1− ϵ)(A∗

eff(z)− z)ϕ(z)

+2ϵ
∑

j=1,2
pj

[(
A∗

eff(z)− (z − tj)
)
ϕ(z − tj) +

(
A∗

eff(z)− (z + tj)
)
ϕ(z + tj)

]
= 0.

This equation can be significantly simplified: if we denote a function

H(z) := 4(1− ϵ)ϕ(z) + 2ϵ
∑

j=1,2
pj [ϕ(z − tj) + ϕ(z + tj)] ,

then the Euler-Lagrange equation above claims that

H(z)A∗
eff(z) +H ′(z) = 0,

which is equivalent to

A∗
eff(z) = −H ′(z)/H(z).

On the other hand, when the monotonicity constraint is binding (i.e. when

A′
eff(z) = 0 for all z ≥ α), clearly the penalty function A∗

eff is a constant. In short,

the optimal penalty function A∗
eff coincides with the function −H ′/H in the interval

(α,∞) when A∗
eff is strictly increasing and stays (piecewise) constant elsewhere; in

particular, A∗
eff(z) = α on [0, α].

200

Unfortunately, the conclusion so far only gives the necessary but not sufficient

condition for any penalty function to be optimal. Putting differently, the condition

is not specific enough to uniquely determine A∗
eff and thus we have to rely on the

numerical approach to find A∗
eff, as shown in Section 3.4. Nevertheless, the condition

we derived above will serve as an essential tool to build up analytic SLOPE penalty

in the following sections.

Analytic SLOPE penalty for two-point prior

Here we derive the optimal SLOPE penalty analytically for a special two-point

prior, which can be used to prove q⋆(u) < q⋆(u) for some u, including those below

the DT power limit. We review what is known for the Lasso trade-off: fixing δ, ϵ

and TPP∞ = u, the maximum Lasso zero-threshold t⋆(u) satisfies (3.2.7) and the

minimum Lasso FDP∞ is achieved at such threshold (see (3.2.8)). If for SLOPE we

can find a larger zero-threshold α than t⋆(u), then by the definition in (3.3.7):

FDP∞(Π,Λ) = 2(1− ϵ)Φ(−α)
2(1− ϵ)Φ(−α) + ϵu

for the SLOPE must be smaller than the minimum Lasso FDP∞.

We first determine the prior that we want to study. We focus on a zero-or-constant

prior

π =


t1 w.p. ϵ

0 w.p. 1− ϵ,

201

whose probability density function is pπ(t) = (1 − ϵ)δ(t) + ϵδ(t − t1) and clearly

π⋆ = t1. For the Lasso, from (3.3.7), we see that TPP∞ = u defines a unique t1 by

P(|t1 + Z| > t⋆(u)) = Φ(t1 − t⋆) + Φ(−t1 − t⋆) = u,

i.e. t1(u, δ, ϵ) only depends on u, δ and ϵ.

Now that we have determined the prior, we seek a feasible SLOPE penalty

function AS which allows a larger zero-threshold α with this prior: let

AS(z) =


α if |z| < α

max(α,−H ′
t1(z)/Ht1(z)) if |z| ≥ α,

(3.7.23)

where Ht1(z) is the function H(z) in the Section 3.7.5 but specific to our new prior,

i.e. p1 = 1, p2 = 0, t1 = t2 in (3.4.5): we get

Ht1(z) = 4(1− ϵ)ϕ(z) + 2ϵ[ϕ(z − t1) + ϕ(z + t1)].

We remark that the SLOPE penalty AS is clearly feasible for problems (3.4.2) and

(3.4.6) if it is monotonically increasing. Furthermore, this monotonicity condition

indeed holds true for some t1 and α (such that AS is increasing in z; we will give

examples shortly), for which we can show q⋆(u) < q⋆(u).

In summary, fixing (u, δ, ϵ), we can uniquely determine t1 ∈ R for the two-point

zero-or-constant prior and the maximum Lasso penalty t⋆ ∈ R+. Looking at t1, we

can construct AS using (3.7.23) on the interval (α = t⋆,∞). If furthermore AS is

increasing, then this non-constant penalty AS is feasible and must outperform the

constant penalty of the Lasso (which is t⋆), based on the Euler-Lagrange equation

202

discussed in Section 3.7.5. In consequence, the SLOPE allows strictly larger zero-

threshold α than the maximum Lasso zero-threshold t⋆, until for some α we saturate

the state evolution condition (3.4.1) by having Fα[AS, pπ⋆] = δ.

We give an example as follows for the framework described above.

An example of SLOPE FDP below the Lasso trade-off

As a concrete example of SLOPE FDP∞ being smaller than the minimum Lasso

FDP∞, i.e. q⋆
Lasso, we use δ = 0.3, ϵ = 0.2, σ = 1, u = u⋆

DT(δ, ϵ) = 0.56760 by (3.2.3).

Then the maximum Lasso zero-threshold t⋆(u) (or equivalently the Lasso penalty

AL) equals 1.19241 by (3.2.7). In this case, the Lasso FDP∞ = 0.62160 by (3.3.7).

We can compute t1(u, δ, ϵ) = 1.34864 by (3.3.7).

One can check that the function −H ′
t1/Ht1 as well as the penalty function AS in

(3.7.23) (with α set as t⋆) are indeed increasing. Hence AS is the unique optimal

SLOPE penalty that satisfies the Euler-Lagrange equation. We can analytically

compute the state evolution condition in problem (3.4.2) (see also (3.7.28) for the

formula):

Ft⋆ [AS, pπ⋆] = 2(1− ϵ)
∫ ∞

t⋆
(z − AS(z))2ϕ(z)dz + ϵ

[
t2(Φ(t⋆ − t1)− Φ(−t⋆ − t1))

+
∫ ∞

t⋆

((
z − t1 − AS(z)

)2
ϕ(z − t1) +

(
− z − t1 + AS(z)

)2
ϕ(−z − t1)

)
dz
]

=
∫ ∞

t⋆

[1
2Ht(z)AS(z)2 +H ′

t(z)AS(z)
]
dz + ϵt1

2(Φ(t⋆ − t1)− Φ(−t⋆ − t1))

+ 2(1− ϵ)
∫ ∞

t⋆
z2ϕ(z)dz + ϵ

∫ ∞

t⋆
(z − t1)2ϕ(z − t1)dz + ϵ

∫ ∞

t⋆
(z + t1)2ϕ(z + t1)dz.

Using the facts that ϕ̈(z) = (z2 − 1)ϕ(z) and ϕ̇(z) = −zϕ(z), we get

203

d
dz

(Φ(z)− zϕ(z)) = z2ϕ(z), which can be used to simplify the last three integrals:

Ft⋆ [AS, pπ⋆] =
∫ ∞

t⋆

[1
2Ht(z)AS(z)2 +H ′

t(z)AS(z)
]
dz

+ ϵt1
2(Φ(t⋆ − t1)− Φ(−t⋆ − t)) + 2(1− ϵ) [t⋆ϕ(t⋆) + Φ(−t⋆)]

+ ϵ [(t⋆ − t1)ϕ(t⋆ − t1) + Φ(−t⋆ + t1)] + ϵ [(t⋆ + t1)ϕ(t⋆ + t1) + Φ(−t⋆ − t1)] .

Together with AS(z) = max
(
t⋆,−H ′

t1(z)/Ht1(z)
)

on (t⋆,∞), this analytic quan-

tity can be calculated by numerical integration to arbitrary precision, and it gives

E(π,AS) = 0.27727 < δ. In words, at the Lasso maximum zero-threshold t⋆, the

SLOPE and the Lasso have the same FDP∞, but the SLOPE has a smaller normal-

ized estimation error E in the state evolution condition (3.4.1). Hence, this leaves a

margin to further reduce the FDP∞ before we use up the margin.

1.5 2.0 2.5 3.0 3.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ

P
(Λ

S
<

λ
)

1.0 1.5 2.0 2.5 3.0 3.5

0
.0

0
.5

1
.0

1
.5

Support

D
e

n
s
it
y
 o

f
Λ

S

Figure 3.13: Cumulative distribution function of the optimal SLOPE penalty

ΛS and probability density of its non-constant component, at (TPP∞,FDP∞) =

(0.5676, 0.6216). Here δ = 0.3, ϵ = 0.2, σ = 1,Π⋆ = 4.9006.

Up until now, we are working in the normalized regime on (π,A) and we want

to determine the original prior and penalty (Π,ΛS). To do so, we use the state

204

evolution (3.7.1) to compute τ =
√

σ2

1−E(π,AS)/δ
= 3.6337, which uniquely defines the

two-point prior via Π⋆ = t1 · τ = 4.9006. We then apply the calibration (3.7.5) to

derive ΛS and visualize the distribution in Figure 3.13.

To saturate the state evolution condition (3.4.1) so that E(π,AS) = δ, while

still fixing TPP∞ = 0.5676, we can increase the zero-threshold α from t⋆ (which is

1.19241) to 1.25672 and derive t1 = 1.41748 via (3.3.7):

P(|t1 + Z| > α) = Φ(t1 − α) + Φ(−t1 − α) = u.

Again, AS constructed by (3.7.23) is increasing and optimal. This new SLOPE

zero-threshold α implies FDP∞ = 0.5954 which is strictly smaller than the Lasso

minimum FDP∞ = 0.6216.

A new TPP threshold u†

In this section, we find the minimum TPP∞ such that we can leverage Section 3.7.5

to construct SLOPE FDP∞ below the Lasso trade-off q⋆
Lasso(TPP∞).

When TPP∞ = u and the zero-threshold α equals t⋆(u) defined in (3.2.7), the

SLOPE penalty may have a normalized estimation error E(π,AS) < δ. In the above

example, we increase the zero-threshold α until the state evolution constraint is

binding: E(π,AS) = δ, thus obtaining smaller FDP∞. From a different angle, we

can decrease u (and change q⋆(u) and t⋆(u) consequently) until E(π,AS) = δ.

To be specific, we test a general TPP∞ = u and set the zero-threshold α at t⋆(u).

Then the single point π⋆ = t1 can be computed via P(|t1 + Z| > t⋆(u)) = u and

205

the SLOPE penalty function AS is determined via (3.7.23). Lastly, we compute the

normalized estimation error E(π,AS) if AS is increasing.

We define the smallest u such that E ≤ δ as our new TPP threshold u†:

u†(δ, ϵ) := inf{u s.t. Ft⋆(u)[max(t⋆(u),−H ′
t1/Ht1), ρt1] ≤ δ

and max(t⋆(u),−H ′
t1/Ht1) is increasing}.

Here the function ρt1(t) = δ(t− t1) is the probability density function of π⋆ = t1 and

the functional F is defined in (3.7.28).

0.50 0.52 0.54 0.56 0.58 0.60

0.
56

0.
60

0.
64

TPP

FD
P

q* Lasso tradeoff
q* Mobius part
SLOPE (constant π *)

u† uDT
*

Figure 3.14: SLOPE TPP∞–FDP∞ of constant π⋆ and the new TPP threshold u†

when (δ, ϵ) = (0.3, 0.2). The green line is the Lasso trade-off q⋆ and the blue line is the

Möbius part of q⋆. The orange line is the TPP∞–FDP∞ realized by constant π⋆ and

Aeff for the maximum zero-threshold α. In this example, u† = 0.5283 < u⋆
DT = 0.5676.

Under δ = 0.3, ϵ = 0.2, we find that u† = 0.5283 < u⋆
DT = 0.5676 (visualized in

Figure 3.14). This indicates that we can show q⋆ < q⋆ for a range of u smaller than

the DT power limit. We observe that below u†, the Lasso penalty and the infinity-

206

or-nothing prior achieve smaller FDP∞ than our SLOPE penalty and constant prior,

and vice versa. We further offer graphical demonstration of the difference between

u† and u⋆
DT in Figure 3.15.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ε

T
P

P

uDT
*

u†

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

δ

T
P

P

uDT
*

u†

Figure 3.15: Comparison of u† and u⋆
DT, fixing δ = 0.5 (left) or ϵ = 0.5 (right). The

difference can be as large as 0.173 on the left plot and 0.282 on the right one.

3.7.6 Proving SLOPE outperforms the Lasso for fixed prior

Proof of Theorem 6. The proof is broken down into three pieces: we start with the

MSE, then the asymptotic TPP and lastly the asymptotic FDP 7.

SLOPE has smaller MSE Fixing any bounded prior Π and any scalar Lasso

penalty λ, we can derive the corresponding (τL, αL) from the calibration (3.7.5) and

the state evolution (3.7.1), so as to work in the normalized regime (πL,AL). The
7Theorem 6 can be generalized to further include certain unbounded signal prior Π as long as

Equation (3.7.27) is satisfied. For example, for any Gaussian or Exponential Π, the SLOPE can

outperform the Lasso.

207

quantity τ relates to the MSE by [Bu+20a, Corollary 3.4]:

plim ∥β̂ − β∥2/p = δ(τ 2 − σ2). (3.7.24)

Obviously, the SLOPE estimator has a smaller MSE than the Lasso one if and

only if τS < τL, where (τS,AS) is the solution to the SLOPE calibration (3.7.5) and

the state evolution (3.7.1).

We now illustrate that this is always feasible by carefully designing the SLOPE

penalty vector αS(p), or in the asymptotic sense, the SLOPE penalty distribution

AS. We directly work with the SLOPE AMP state evolution (3.7.1) instead of the

Lasso AMP, since SLOPE covers the Lasso as a sub-case. In particular, we consider

the two-level SLOPE of the form Aℓ,αL,w defined in (3.2.4).

Our goal is to show that for any Lasso penalty AL = αL = AαL,αL,w, we can find

a SLOPE penalty AS = Aℓ,αL,w for some sufficiently small w and ℓ > αl such that

τS < τL. In other words, among all the two-level SLOPE penalties Aℓ,αL,w with a

zero-threshold αL, we show the optimal MSE is not achieved at ℓ = αL.

To present a clear proof, we simplify the notation of proxJ(a; b) by using η(a, b),

or simply η, where a := Π+τZ and b := ατ , where α = αℓ,αL,w (defined in (3.2.4))

with ℓ ≥ αL. On convergence of the state evolution (3.7.1), we can differentiate

both sides of

τ 2 = σ2 + 1
δ

lim
p→∞

E⟨[η(Π + τZ,ατ)−Π]2⟩ = σ2 + 1
δ

lim
p→∞

E⟨[η(a, b)−Π]2⟩,

208

with respect to ℓ ∈ R. Denoting τ ′ = ∂τ
∂ℓ

, we obtain

2ττ ′ = ∂

∂ℓ

(
σ2 + 1

δ
lim

p→∞
E⟨[η(a, b)−Π]2⟩

)
= 1
δ

lim
p→∞

E
∂

∂ℓ
⟨[η(a, b)−Π]2⟩.

Then the chain rule leads to

ττ ′ = lim
p→∞

1
n

∑
j

E(ηj − Πj)
∂ηj

∂ℓ
= lim

p→∞

1
n

∑
j

E(ηj − Πj)
∑

k

[
dηj

dak

Zk
∂τ

∂ℓ
+ dηj

dbk

∂bk

∂ℓ

]
.

(3.7.25)

To investigate the derivative terms, we copy some important facts in [Bu+20a,

Appendix A] here for reader’s convenience:

d

dak

[η(a, b)]j = I{|η(a, b)|j = |η(a, b)|k} sign([η(a, b)]j[η(a, b)]k)[∂1η(a, b)]j,

d

dbk

[η(a, b)]j = −I
{
|η(a, b)|j = |η(a, b)|o(k)

}
sign

(
[η(a, b)]j

)[
∂1η(a, b)

]
j
.

where the permutation o : i→ j finds the index of the i-th largest magnitude, i.e.

|η|o(i) := |η|(i) = |η|j, and its inverse function is the rank of the magnitudes. In the

above notation, we have used (again from [Bu+20a, Appendix A])

[∂1η]j = ∂ηj

∂aj

= 1∣∣∣∣{1 ≤ k ≤ p : |ηk| = |ηj|}
∣∣∣∣ ,

which converges to 1 as p → ∞ if ηj is unique in the magnitudes of η and to 0

otherwise. In the Lasso case (i.e. ℓ = αL), each non-zero entry in |η| is indeed

209

unique, and hence we can simplify [∂1η]j to I{|η|j ̸= 0}. We now rewrite (4.6.6) as

ττ ′ = lim
p→∞

1
n

∑
j

E(ηj − Πj)
[
[∂1η]jZjτ

′ − sign(ηj)[∂1η]j
∂bo−1(j)

∂ℓ

]

= lim
p→∞

1
n

∑
j:ηj ̸=0

E(ηj − Πj)
[
Zjτ

′ − sign(ηj)
∂bo−1(j)

∂ℓ

]

= lim
p

1
n

∑
j:ηj ̸=0

E(ηj − Πj)
[
Zjτ

′ − sign(ηj)(αo−1(j)τ
′ + I{o−1(j) ≤ wp}τ)

]

= lim
p

1
n

∑
j:ηj ̸=0

E(ηj − Πj)
[
(Zj − sign(ηj)αL) τ ′ − sign(ηj)I{o−1(j) ≤ wp}τ

]
.

To summarize, we derive that

∂τ

∂ℓ
=

lim
p

1
n

∑
j:o−1(j)≤wp

E(ηj − Πj) sign(ηj)τ

lim
p

1
n

∑
j:ηj ̸=0

E(ηj − Πj) (Zj − sign(ηj)αL)− τ . (3.7.26)

The rest of the proof contains two statements: (1) We will show that the

numerator term is positive for sufficiently small w; (2) We also show that the

denominator term is always negative for any Lasso penalty αL.

To show that the numerator in (3.7.26) is positive for small w, we write

lim
p

τ

n

∑
j:o−1(j)≤wp

E(ηj − Πj) sign(ηj) =wτ
δ
E
[
(ηj − Πj) sign(ηj)

∣∣∣o−1(j) ≤ wp
]

=wτ
2

δ
E
[
(ηsoft − π) sign(ηsoft)

∣∣∣|ηsoft| ≥ qw

]
,

in which we slightly abuse the notation for the distribution η D:= ηsoft(π+Z;αL) and

define qw as the w-quantile of |ηsoft(π + Z;αL)| such that P (|η| ≥ qw) = w.

Next, simple substitution gives that it is equivalent to show

E
(
Z sign(η)

∣∣∣∣|η| ≥ qw

)
> αL. (3.7.27)

210

We notice that as w → 0, qw →∞. Hence we can always consider w small enough

that the desired inequality above holds. The full proof of this fact is referred to

Section 3.7.7.

The next step is to show that the denominator in (3.7.26) is negative, similar to

the proof in [ZB21]. By multiplying with the positive τ , the denominator becomes

lim
p

1
n

∑
j:ηj ̸=0

E(ηj − Πj) [Zj − sign(ηj)αL]− τ

∝ lim
p

1
n

∑
j:ηj ̸=0

E(ηj − Πj) [τZj − τ sign(ηj)αL]− τ 2

= lim
p

1
n

∑
j:ηj ̸=0

E(ηj − Πj)2 − τ 2

= lim
p

1
n

∑
j:ηj

E(ηj − Πj)2 − lim
p

1
n

∑
j:ηj=0

E(ηj − Πj)2 − τ 2

=− lim
p

1
n

∑
j:ηj=0

E(ηj − Πj)2 − σ2 < 0,

where the last equality follows from (3.7.24).

All in all, we finish the proof that ∂τ
∂ℓ

in (3.7.26) is negative for Aℓ,αL,w at ℓ = αL

and small w. Along this negative gradient ∂τ
∂ℓ

, increasing the first argument of

Aℓ,αL,w from ℓ = αL (the Lasso case) leads to a SLOPE penalty AS and reduces τL

to a smaller τS. Equivalently, the SLOPE MSE is strictly smaller than the Lasso MSE.

SLOPE has higher TPP To prove the TPP result, we need the SLOPE

to have smaller MSE (as shown previsouly) as well as the same zero-threshold

as the Lasso. To achieve this, we claim that, for sufficiently small w and some

211

ℓ > αL, the SLOPE zero-threshold α(Π,ΛS) is the same as the Lasso zero-threshold

α(Π,ΛL) = αL.

In fact, the two-level SLOPE Aℓ,αL,w by its levels must have the zero-threshold

as either ℓ or αL (see Proposition 3.7.5), and the zero-threshold will be αL if and

only if the sparsity κ(Π,ΛS) > w (see Fact 3.7.2). Therefore it suffices to guarantee

κ(Π,ΛS) > w. From P(|Π/τS + Z| > ℓ) ≤ κ(Π,ΛS) ≤ P(|Π/τS + Z| > αL), it is not

hard to obtain that the sparsity κ is continuous in ℓ. Hence for any w < κ(Π,ΛL),

there exists some ℓ > αL but close to αL so that the SLOPE sparsity κ(Π,ΛS) > w.

Now that we have τS < τL and α(Π,ΛS) = α(Π,ΛL), we can finish the proof

by the definition of TPP∞: intuitively, πS := Π/τS > πL := Π/τL and SLOPE

TPP∞ = P(|π⋆
S + Z| > αL) > P(|π⋆

L + Z| > αL) = the Lasso TPP∞; formally, we

show by Equation (3.3.7) that

TPP∞(Π,ΛS) = P(|π⋆
S + Z| > α(Π,ΛS)) =

∫ ∞

−∞
P(|t/τS + Z| > αL)pΠ⋆(t)dt

>
∫ ∞

−∞
P(|t/τL + Z| > αL)pΠ⋆(t)dt = P(|π⋆

L + Z| > α(Π,ΛL)) = TPP∞(Π,ΛL).

SLOPE has lower FDP To prove the FDP result, we again use the

fact that the SLOPE shares the same zero-threshold as the Lasso but has larger

212

TPP. By Equation (3.3.7),

FDP∞(Π,ΛS) = 2(1− ϵ)Φ(−α(Π,ΛS))
2(1− ϵ)Φ(−α(Π,ΛS)) + ϵTPP∞(Π,ΛS)

<
2(1− ϵ)Φ(−α(Π,ΛL))

2(1− ϵ)Φ(−α(Π,ΛL)) + ϵTPP∞(Π,ΛL) = FDP∞(Π,ΛL).

3.7.7 Auxiliary proofs

Here we give some technical proofs that have been used in this work.

Derivation of Fα in Section 3.4

We are ready to give the explicit form of the functional Fα given that the zero-

threshold is α ∈ R+. Expanding the term in the integral form, we get

Fα[Aeff, pπ⋆] := E (ηsoft(π + Z; Aeff(π + Z))− π)2

=
∫ ∞

0

∫ ∞

−∞

(
ηsoft

(
t+ z; Aeff(t+ z)

)
− t

)2
ϕ(z)dzpπ(t)dt,

where pπ is the probability density function of the normalized prior π, which is

uniquely determined by pπ⋆ in a way to be explained shortly.

We further expand the quadratic term in the inner integral, by using the fact

that η
π+Z,A(t+ z) = ηsoft(t+ z; Aeff(t+ z)) = 0 for −α ≤ t+ z ≤ α, since α is the

213

zero-threshold in Definition 3.4.1. We obtain

Fα[Aeff, pπ⋆] =
∫ ∞

0

[∫ α−t

−α−t
t2ϕ(z)dz +

∫ ∞

α−t

(
z − Aeff(t+ z)

)2
ϕ(z)dz

+
∫ −α−t

−∞

(
z + Aeff(t+ z)

)2
ϕ(z)dz

]
pπ(t)dt

=
∫ ∞

0

[
t2(Φ(α− t)− Φ(−α− t)) +

∫ ∞

α

(
z − t− Aeff(z)

)2
ϕ(z − t)dz

+
∫ ∞

α

(
− z − t+ Aeff(z)

)2
ϕ(−z − t)dz

]
pπ(t)dt.

By the definition of π⋆ in Lemma 3.3.1, we use pπ(t) = (1− ϵ)δ(t) + ϵpπ⋆(t), in

which pπ⋆(t) is the probability density function of π⋆, to write

Fα[Aeff, pπ⋆]

=2(1− ϵ)
∫ ∞

α
(z − Aeff(z))2ϕ(z)dz + ϵ

∫ ∞

0

[
t2(Φ(α− t)− Φ(−α− t))

+
∫ ∞

α

(
z − t− Aeff(z)

)2
ϕ(z − t)dz

+
∫ ∞

α

(
− z − t+ Aeff(z)

)2
ϕ(−z − t)dz

]
pπ⋆(t)dt

=2(1− ϵ)
∫ ∞

α
(z − Aeff(z))2ϕ(z)dz + ϵ

∫ ∞

0

[
t2(Φ(α− t)− Φ(−α− t))

+
∫ ∞

α

((
z − t− Aeff(z)

)2
ϕ(z − t)

+
(
− z − t+ Aeff(z)

)2
ϕ(−z − t)

)
dz
]
pπ⋆(t)dt.

(3.7.28)

Since Lemma 3.4.3 states that the optimal pπ⋆(t) takes the form ρ(t; t1, t2) =

214

p1δ(t− t1) + p2δ(t− t2) in (3.4.5), the above functional turns into

Fα[Aeff, ρ(·; t1, t2)]

=
∫ ∞

α

[
2(1− ϵ)(z − Aeff(z))2ϕ(z)

+ ϵp1

((
z − t1 − Aeff(z)

)2
ϕ(z − t1) +

(
− z − t1 + Aeff(z)

)2
ϕ(−z − t1)

)

+ ϵp2

((
z − t2 − Aeff(z)

)2
ϕ(z − t2) +

(
− z − t2 + Aeff(z)

)2
ϕ(−z − t2)

)]
dz

+ ϵp1t
2
1

[
Φ(α− t1)− Φ(−α− t1)

]
+ ϵp2t

2
2

[
Φ(α− t2)− Φ(−α− t2)

]
.

To construct the quadratic programming in problem (3.4.6), we can apply the

left endpoint rule and approximate Fα[Aeff, ρ(·; t1, t2)] by

F̄α(A; t1, t2) = 2(1− ϵ)
m∑

i=1
(zi − Ai)2ϕ(zi)∆z

+ ϵp1

m∑
i=1

(
(zi − t1 − Ai)2ϕ(zi − t1) + (−zi − t1 + Ai)2ϕ(−zi − t1)

)
∆z

+ ϵp2

m∑
i=1

(
(zi − t2 − Ai)2ϕ(zi − t2) +

(
− zi − t2 + Ai)2ϕ(−zi − t2)

)
∆z

+ ϵp1t
2
1

[
Φ(α− t1)− Φ(−α− t1)

]
+ ϵp2t

2
2

[
Φ(α− t2)− Φ(−α− t2)

]
.

(3.7.29)

Proof of Lemma 3.4.3

Proof. In general, ρ∗ can always be approximated by a sum of Dirac delta functions,

ρ∗(t) = ∑m
i=1 piδ(t− ti). In particular, since ρ∗ is a probability density function, we

require 0 < pi < 1: otherwise if for some i, pi = 1, then m = 1 and we are done.

We now show m < 3 by contradiction. The vertex principle of linear programming

states that the minimum value of the linear objective function occurs at the vertices

215

of the feasible region. Hence it suffices to show that all vertices are two-point Dirac

delta functions.

The constraints in problem (3.4.4) lead to

∑
i

pi = 1,
∑

i

pi[Φ(ti − α) + Φ(−ti − α)] = u.

Suppose m ≥ 3, then there always exists ρ′(t) = ∑m
i=1 p

′
iδ(t− ti) such that

• pi = p′
i for i > 3;

• p1 + p2 + p3 = p′
1 + p′

2 + p′
3;

• p1hα(t1) + p2hα(t2) + p3hα(t3) = p′
1hα(t1) + p′

2hα(t2) + p′
3hα(t3);

where we denote hα(ti) := Φ(ti − α) + Φ(−ti − α). In other words, we can find ρ′

such that

0 =

 1 1 1

hα(t1) hα(t2) hα(t3)







p1

p2

p3


−



p′
1

p′
2

p′
3




.

Since there are only two equations involving the three unknown variables p′
1, p

′
2 and

p′
3, in the generic case, we can represent the infinitely many ρ′ with one degree of

freedom, 

p′
1

p′
2

p′
3


=



p1

p2

p3


+ s



c1

c2

c3


,

216

using the null vector (c1, c2, c3)⊤ of the above matrix.

As 0 < p′
i < 1 for i = 1, 2, 3, we claim that for all s ∈ (−s0, s0) with some s0 > 0,

(p′
1, p

′
2, p

′
3)⊤ defined above is feasible for problem (3.4.4). In other words, suppose

we explicitly define

ρs(t) =
3∑

i=1
(pi + cis)δ(t− ti) +

∑
i>3

piδ(t− ti),

then there exists a range of s ∈ R such that ρs is feasible. However, one can easily

check that

ρ∗ = 1
2 (ρs + ρ−s)

is also a feasible solution. Hence ρ∗ is not a vertex. Contradiction.

Proof of Equation (3.7.27)

Proof. To see that for large enough qw, E
(
Z sign(η)

∣∣∣∣|η| > qw

)
≥ αL, we write

q̃w := qw + αL and study

E
(
Z sign(η)

∣∣∣∣|η| ≥ qw

)
= E

(
Z sign(η)

∣∣∣∣|π + Z| ≥ q̃w

)
.

We have

E
(
Z sign(η)

∣∣∣∣|π + Z| ≥ q̃w

)

=E
(
Z

∣∣∣∣π + Z ≥ q̃w

) P(π + Z ≥ q̃w)
P(|π + Z| ≥ q̃w) − E

(
Z
∣∣∣∣π + Z ≤ −q̃w

) P(π + Z ≤ −q̃w)
P(|π + Z| ≥ q̃w)

=
∫∞

−∞ [ϕ (t− q̃w) + ϕ (−q̃w − t)] pπ(t)dt∫∞
−∞ [Φ (t− q̃w) + Φ (−q̃w − t)] pπ(t)dt,

in which pπ(t) is the unknown but fixed probability density function of π.

217

Now we show cases where the above ratio of integrals goes to ∞ as qw → ∞

or equivalently q̃w →∞. For bounded π (in fact for priors with bounded essential

infimum and essential supreme), denoting the minimum and maximum as πmin and

πmax, then the ratio is

∫ πmax
πmin [ϕ (t− q̃w) + ϕ (−q̃w − t)] pπ(t)dt∫ πmax
πmin [Φ (t− q̃w) + Φ (−q̃w − t)] pπ(t)dt.

Using the fact that ϕ(x) + xΦ(x) > 0, we have

E
(
Z sign(η)

∣∣∣∣|π + Z| ≥ q̃w

)

>

∫ πmax
πmin [(q̃w − t)Φ (t− q̃w) + (q̃w + t)Φ (−q̃w − t)] pπ(t)dt∫ πmax

πmin [Φ (t− q̃w) + Φ (−q̃w − t)] pπ(t)dt

>

∫ πmax
πmin [(q̃w − πmax)Φ (t− q̃w) + (q̃w + πmin)Φ (−q̃w − t)] pπ(t)dt∫ πmax

πmin [Φ (t− q̃w) + Φ (−q̃w − t)] pπ(t)dt

>min{q̃w − πmax, q̃w + πmin}.

In summary, when w → 0, all qw, q̃w and E(Z sign(η)
∣∣∣|η| ≥ qw)→∞. Therefore

we have E(Z sign(η)
∣∣∣|η| ≥ qw) > αL for sufficiently small w.

3.7.8 Computation of SLOPE AMP quantities

In order to compute α and τ , e.g. for the AMP calibration or for computing the

estimation error, we need to estimate the SLOPE proximal operator in the state

evolution (3.7.2). Despite that the Monte Carlo method is easy to implement, it is

often unstable nor efficient for high-dimensional SLOPE problems, say when p is in

the order of thousands. Here we demonstrate how to approximate the normalized

218

estimation error E(Π,Λ) in a way that matches the truth asymptotically and has

satisfactory approximation error in the finite dimension (see bottom-right plot in

Figure 3.17).

Notice in this section, the prior distribution Π is general and does not necessarily

satisfy the sparsity assumption P(Π ̸= 0) = ϵ.

Approximating state evolution and calibration with quantiles

In state evolution (3.7.2), the expectation term can be difficult to evaluate because of

the ordering and the non-separability of the sorted norm. In addition, the convolution

between Π and Z also makes the estimation difficult.

We propose the following method for estimation: denote qD as discretized quantile

function of distribution D at {1
p
, 2

p
, ..., p−1

p
}. Denote Π as the true distribution of

β, Πp as p-variate Π with i.i.d. entries; π as Π/τ and πp as p-variate π with i.i.d.

entries accordingly. Similarly denote standard normals Z and Zp. Assume α ∈ Rp

is p-variate A with i.i.d. entries (in decreasing order). We can decompose

E⟨[proxJ(Πp + τZp; ατ)−Πp]2⟩

=E⟨[proxJ(Πp + τZp; ατ)]2⟩+ E⟨Π2
p⟩ −

2
p
E[proxJ(Πp + τZp; ατ)⊤Πp]

=E⟨[proxJ(Πp + τZp; ατ)]2⟩+ EΠ2 − 2
p
E[proxJ(Πp + τZp; ατ)⊤Πp]

≈⟨[proxJ(qΠ+τZ ; qAτ)]2⟩+ 1
p
q⊤

ΠqΠ −
2
p

proxJ(qΠ+τZ ; qAτ)⊤E[Πp|Πp + τZp = qΠ+τZ].

(3.7.30)

Such approximation for (3.7.30) is consistent and can be visualized in Figure 3.17.

219

This is due to the fact that the ordering and the signs do not affect the sum of

squares and the property of Riemann Stieltjes integral (see [JP12; KF75; Rud+76]).

Fact 3.7.9 (Existence of Riemann Stieltjes integral). Suppose f is continuous and

g is of bounded variation. For every ϵ > 0, there exists δ > 0 such that for every

partition P := (a = x0 < x1 < · · · < xp = b) with mesh(P) < δ, and for every choice

of points ci in [xi, xi+1], we have

∣∣∣∣∣S(P, f, g)−
∫ b

a
f(x)dg(x)

∣∣∣∣∣ < ϵ,

where S(P, f, g) := ∑p−1
i=1 f(ci)(g(xi+1)− g(xi)).

We start with the simplest second term in (3.7.30). Set f(x) = x2 and g(x) to

be cumulative distribution function of Π. Denote qi as i
p
-th quantile. Setting ci = qi

and P = (q1, ..., qp−1), then we have the approximate sum as

1
p
q⊤

ΠqΠ = S(P, f, g) = q2
1 P(q1 < Π < q2) + · · ·+ q2

p−1 P(qp−1 < Π < qp)

=
∑

i

∫ qi+1

qi

q2
i dg(x)→

∫ ∞

−∞
x2dg(x) = EΠ2.

Similarly, for the first term in (3.7.30), denote the distribution to which the empirical

distribution of proxJ(Π + τZ; ατ) converges as Π̂. By approximating the Riemann

Stieltjes integral twice, we have

⟨[proxJ(qΠ+τZ ; qAτ)]2⟩ → EΠ̂2 = plimE⟨[proxJ(Π + τZ; ατ)]2⟩.

220

For the last term in (3.7.30), we transform the term via the law of total expectation,

plim 1
p
E[proxJ(Π + τZ; ατ)⊤Π]

= lim 1
p
E[proxJ(Π + τZ; qAτ)⊤Π]

= lim 1
p
EΠ+τZ [EΠ,Z [proxJ(Π + τZ; qAτ)⊤Π

∣∣∣Π + τZ]]

= lim 1
p
EΠ,Z [proxJ(qΠ+τZ ; qAτ)⊤Π

∣∣∣Π + τZ = qΠ+τZ]

= lim 1
p

(
proxJ(qΠ+τZ ; qAτ)⊤EΠ,Z [Π

∣∣∣Π + τZ = qΠ+τZ]
)
.

Before we move on to the next section where we look at the conditional expectation

term above, we pause to remark that the approximation via quantiles can be also used

for computing the calibration (3.7.4): the calculation of E∥ proxJ(Π + τZ;Aτ)∥∗
0

can be approximated by the number of unique values in |proxJ(qΠ+τZ ; qAτ)|.

Closed-form of conditional expectation

The challenge remains on computing the vector E[Π|Π + τZ = qΠ+τZ]. We will

derive its closed-form by applying the inverse transform sampling on each entry.

The effect of approximation using our explicit form is demonstrated in Figure 3.16.

For any q ∈ R, denoting the support of Π as supp and the probability density

function as pΠ, we get

E[Π|Π + τZ = q] =
∫

supp(Π) x · 1√
2πτ

exp(− (q−x)2

2τ2)pΠ(x)dx∫
supp(Π)

1√
2πτ

exp(− (q−x)2

2τ2)pΠ(x)dx
.

221

70
71

72
73

74
75

76

p

E
st

im
at

e

1e+02 2e+02 5e+02 1e+03 2e+03 5e+03 1e+04 2e+04 5e+4

3.
44

3.
46

3.
48

3.
50

3.
52

3.
54

p

E
st

im
at

e

1e+02 2e+02 5e+02 1e+03 2e+03 5e+03 1e+04 2e+04 5e+4

11
.0

11
.2

11
.4

11
.6

11
.8

p

E
st

im
at

e

1e+02 2e+02 5e+02 1e+03 2e+03 5e+03 1e+04 2e+04 5e+4

Figure 3.16: E⟨proxJ(Π + τZ;Aτ)⊤Π⟩ estimated by the quantiles and the closed-

form conditional expectation (black dotted) against true expectation (red solid). Here

δ = 0.3 and A ∼ Exp(0.2)/10. Left: Π ∼ Exp(0.1). Middle: Π ∼ 10 · Bernoulli(0.1).

Right: Π ∼ N (2, 25).

Substitute u = q − x,

E[Π|Π + τZ = q] =q −
∫

supp(q−Π) u exp(− u2

2τ2)pΠ(q − u)du∫
supp(q−Π) exp(− u2

2τ2)pΠ(q − u)du
.

Denote sq(u) := pΠ(q− u) exp(− u2

2τ2), Sq :=
∫∞

−∞ sq(u)du. Then hq(u) = sq(u)/Sq

is a normalized density of sq. It can be viewed as a posterior density h(u|q) with a

Gaussian prior of u and pΠ(q − u) as evidence. Then

E[Π|Π + τZ = q] =q −
∫

supp(q−Π) u · sq(u)du∫
supp(q−Π) sq(u)du

=q −
∫

supp(q−Π) u · hq(u)du∫
supp(q−Π) hq(u)du = q − E[Uq|Uq ∈ supp(q − Π)],

where Uq is a univariate random variable with the density hq.

Here we derive explicit formulae when the priors are Gaussian, exponential and

Bernoulli. Two types of special generalization are worth mentioning: (1) when the

support of Π is (−∞,∞), the conditional expectation E[Uq|Uq ∈ supp(q − Π)] is

indeed unconditional and the computation is simplified; (2) the cases of discrete

222

priors can be easily derived in general besides the Bernoulli case.

Gaussian distribution When Π = N (µ, σ2), we have Π+τZ = N (µ, σ2+τ 2),

and hq(u) is the density of N ((q−µ)τ2

σ2+τ2 ,
σ2τ2

σ2+τ2). Hence

E[Π|Π + τZ = q] =q − E[Uq] = q − (q − µ)τ 2

σ2 + τ 2 = qσ2 + µτ 2

σ2 + τ 2 .

Exponential distribution When Π = Exp(c), we have Π + τZ being an

exponentially modified Gaussian (EMG) distribution. Then

sq(u) = c exp
(
−cq + c2τ 2

2

)[
1√
2πτ

exp(−(u− cτ 2)2

2τ 2)
]
,

and hq is the density of N(cτ 2, τ 2). And, denoting ξ = q−cτ2

τ
, we get

E[Π|Π + τZ = q] =q − E[Uq|Uq ∈ (−∞, q)] = q − E[Uq|Uq < q] = τ

(
ξ + ϕ(ξ)

Φ(ξ)

)
.

Discrete distribution We begin with Π = k ·Bernoulli(ϵ) and then generalize

to any discrete priors. Writing the density as (1− ϵ)δ(x) + ϵδ(x− k),we have

hq(u) ∝ [ϵδ(q − u− k) + (1− ϵ)δ(q − u)] exp(− u2

2τ 2)

= [ϵδ(u− (q − k)) + (1− ϵ)δ(u− q)] exp(− u2

2τ 2).

The last equality is true since the Dirac delta function is an even function. Hence

Uq =


q w.p. (1− ϵ) exp(− q2

2τ2)/C

q − k w.p. ϵ exp(− (q−k)2

2τ2)/C

where C = (1− ϵ) exp(− q2

2τ2) + ϵ exp(− (q−k)2

2τ2). We get

E[Π|Π + τZ = q] =q − E[Uq|Uq ∈ {q, q − k}] = q − E[Uq]

=q − q P[Uq = q]− (q − k)P[Uq = q − k].

223

where both probabilities are given above.

Remark 3.7.10. It is easy to derive the conditional expectation for any discrete

priors by writing the probability mass function as a sum of Dirac delta functions. In

general, suppose the prior takes values in a1, ...an with probability p1, ...pn, then Uq

takes values (q−ai) with probability Pi = pi exp(− (q−ai)2

2τ2)/C where C is normalizing

constant and the conditional expectation is q −∑i(q − ai)Pi.

Algorithm for state evolution term

Taking the quantile method and closed-form conditional expectation described in the

previous sections, we present the following algorithm to compute the state evolution

term efficiently.

Algorithm 3 Calculating E⟨[proxJ(Π + τZ;Aτ)−Π]2⟩ given A,Π, τ
1. Derive quantiles qA, qΠ

2. Derive D = Π + τZ by convolution and compute qD

3. Compute G = proxJ(qD; qAτ) ∈ Rp, (notice that qAτ = τqA)

4. Compute H = E[Π|Π + τZ = qD] ∈ Rp

5. Return 1
p

[
G⊤G+ q⊤

ΠqΠ − 2G⊤H
]

We give some simulation results on different dimensions. Since all three priors

show similar patterns, only the exponential prior case is plotted.

224

70
71

72
73

74
75

76

p

E
st

im
at

e

1e+02 2e+02 5e+02 1e+03 2e+03 5e+03 1e+04 2e+04 5e+4

12
8

13
0

13
2

13
4

13
6

13
8

p

E
st

im
at

e

1e+02 2e+02 5e+02 1e+03 2e+03 5e+03 1e+04 2e+04 5e+4

18
0

18
5

19
0

19
5

20
0

p

E
st

im
at

e

1e+02 2e+02 5e+02 1e+03 2e+03 5e+03 1e+04 2e+04 5e+4

16
5

17
0

17
5

18
0

18
5

p

E
st

im
at

e

1e+02 2e+02 5e+02 1e+03 2e+03 5e+03 1e+04 2e+04 5e+4

Figure 3.17: E⟨proxJ(Π + τZ;Aτ)⊤Π⟩ (top-left), E⟨[proxJ(Π + τZ;ατ)]2⟩ (top-

right), E[Π2] (bottom-left) and E⟨[proxJ(Π + τZ;Aτ)−Π]2⟩ (bottom-right) esti-

mated by the quantiles (black dotted) against true expectation (red solid). Here

σ = 0 (no noise), X ∼ N (0, 1/n), n/p = δ = 0.3,A ∼ Exp(0.2)/10,Π ∼ Exp(0.1).

3.7.9 Design of SLOPE penalty under fixed prior

This section studies the problem of minimizing FDP∞ at fixed TPP∞ = u over

all possible SLOPE penalties, when the prior Π is fixed. This problem has been

investigated extensively in [HL19a] but not via the quadratic programming approach

that we proposed in Section 3.4. We give the detailed procedure to find the SLOPE

trade-off below.

1. Given Π, we try different τ from the small to the large, which defines π := Π/τ

225

and π⋆ := Π⋆/τ . Denote the corresponding probability density function as pπ⋆ .

2. Since TPP∞ = u, we require
∫∞

0 [Φ(t − α) + Φ(−t − α)]pπ⋆(t)dt = u by the

definition of the zero-threshold α. Note that α(τ) is a unique scalar for a given

π, or equivalently τ .

3. By (3.7.28), we have the formula of Fα[Aeff, pπ] which we want to minimize

over all Aeff under the same constraints as in (3.4.6). The minimization can

again be achieved by discretization and via quadratic programming in (3.4.9),

though the forms of Q, d are different due to the more generalized form of the

prior. I.e.

min
A

1
2A⊤QA−A⊤d

s.t.



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0

· · · · · · · · · · · · · · ·

0 · · · 0 −1 1



A ≥



α(τ)

0
...

0


.

(3.7.31)

where

Q = diag
(

2(1− ϵ)ϕ(z) + ϵ
∫ ∞

0

[
ϕ(z − t) + ϕ(−z − t)

]
pπ⋆(t)dt

)
,

d = 2(1− ϵ)zϕ(z) + ϵ
∫ ∞

0

[
(z − t)ϕ(z − t) + (z + t)ϕ(z + t)

]
pπ⋆dt,

4. The smallest τ that is valid, i.e. Fα[A∗
eff, pπ⋆] ≤ δ with A∗

eff being the optimal

penalty from the above quadratic programming, can be shown to correspond

226

to the largest zero-threshold α by Fact 3.7.11.

5. The largest zero-threshold α gives the minimum FDP via (3.8):

2(1− ϵ)Φ(−α(u))
2(1− ϵ)Φ(−α(u)) + ϵu

.

Fact 3.7.11. Fixing the prior Π = πτ and under the condition
∫∞

0 [Φ(t−α)+Φ(−t−

α)]pπ⋆(t)dt = u, we have dα
dτ
< 0.

Proof of Fact 3.7.11.

E[Φ(Π/τ − α) + Φ(−Π/τ − α)] = u

=⇒ E[−(Π
τ 2 + dα

dτ
)ϕ(Π/τ − α) + (Π

τ 2 −
dα

dτ
)ϕ(−Π/τ − α)] = 0

=⇒ dα

dτ
=

E
[
−(Π

τ2)[ϕ(Π/τ − α)− ϕ(−Π/τ − α)]
]

E[ϕ(Π/τ − α) + ϕ(−Π/τ − α)] < 0.

227

Chapter 4

Efficient Designs of SLOPE Penalty

Sequences in Finite Dimension

This chapter is based on "Yiliang Zhang, and Zhiqi Bu. "Efficient designs of slope

penalty sequences in finite dimension." In International Conference on Artificial

Intelligence and Statistics, pp. 3277-3285. PMLR, 2021.".

4.1 Introduction

In sparse linear regression, we aim to find an accurate sparse estimator β̂ of the

unknown truth β from

y = Xβ + w.

Here the response y ∈ Rn, the data matrix X ∈ Rn×p, the true parameter β ∈ Rp

and the noise w ∈ Rn. Specifically, in high dimension where p > n, ordinary linear

228

regression fails to find a unique solution and L1-related regularization is usually

introduced to achieve sparse estimators, including the Lasso [Tib96b], elastic net

[ZH05b], (sparse) group Lasso [YL06b], adaptive Lasso [Zou06b] and the recent

SLOPE [Bog+15b]:

β̂(λ) = arg min
b

1
2∥y −Xb∥2

2 +
p∑

i=1
λi|b|(i) (4.1.1)

Here ∑p
i=1 λi|b|(i) is the sorted ℓ1 norm of b governed by the penalty vector λ ∈ Rp

with λ1 ≥ · · · ≥ λp ≥ 0, and |b|(i) is the ordered statistics of absolute values |bi|

such that |b|(1) ≥ · · · ≥ |b|(p). We pause here to remark that the Lasso is a sub-case

of SLOPE when λ1 = · · · = λp, since there is no need to sort and hence sorted ℓ1

norm is simply the ℓ1 norm. Generally speaking, the sorting step in the norm allows

SLOPE to work in a way similar to the taxation, assigning larger thresholds to

larger fitted coefficients.

Many desirable properties have been proven for SLOPE. For example, SLOPE

is a convex optimization that can be solved by existing gradient methods, such

as the subgradient descent and the proximal gradient descent; SLOPE achieves

minimax estimation properties without requiring knowledge of the sparsity degree

of β [SC+16]; SLOPE controls the false discovery rate in the case of independent

predictors. However, understanding the SLOPE problem is difficult. Questions such

as what posterior distribution does SLOPE solution follow, can we characterize

statistics (e.g. the false discovery rate and true positive rate) from SLOPE exactly,

whether SLOPE has better estimation error than the Lasso, are not answered until

229

recently [BLT18; Bu+20b; HL19b]. Still, the substantial difficulty imposed by the

sorted penalty impedes the general application of SLOPE for two reasons. From the

practical point of view, tuning a Rp penalty can be extremely costly for large p (e.g.

in high dimensional regression or over-parameterized neural networks) and naive

methods that work for the Lasso, such as the grid search, renders not pragmatic.

From a theoretical perspective, the sorted norm is complicated in that the effect of

thresholding of SLOPE is non-separable and data-dependent, unlike the Lasso, thus

making the analysis much involved.

In this paper, we further exploit the advantage of the data-depending penalty in

SLOPE and investigate, from the estimation error perspective, how to design the

SLOPE penalty sequence to achieve better performance.

We give a computationally efficient framework to design the SLOPE penalty

sequence λ ∈ Rp which corresponds to an estimator β̂(λ) that minimizes the

estimation error. To be more specific, we derive the gradient of penalty for SLOPE

under the Approximate Message Passing (AMP) regime [BM11b; BM11d; DMM10;

DMM09b] and propose the k-level SLOPE for the general data matrcies. In words,

k-level SLOPE is a sub-class of SLOPE, where the p elements in {λi} have only

k unique values. Under this definition, the general SLOPE is p-level SLOPE and

the Lasso is indeed 1-level SLOPE. Additionally, k-level SLOPE is a sub-class of

(k + 1)-level SLOPE, and larger k leads to better performance but requires longer

computation time. As a result, by choosing an appropriate k, we can establish a

230

trade-off between speed and accuracy. We illustrate in various experiments that

such a trade-off is of practical use as even a small k may improve the performance

non-trivially.

4.1.1 Notations

We start by introducing the proximal operator of SLOPE,

proxJθ
(y) := argmin

b

1
2∥y − b∥2 + Jθ(b), (4.1.2)

where Jθ(b) := ∑p
i=1 θi|b|(i) and the proximal operator indeed solves (4.1.1) with an

identity data matrix. This operator is the building block that is iteratively applied

to derive the SLOPE estimator in the proximal gradient descent (ISTA [DDDM04])

and in FISTA [BT09]. We note that there is no closed form of proxJθ
(x) but it can

be efficiently computed as in [Bog+15b, Algorithm 3]. Next we denote the mean

squared error (MSE) between two vectors in Rm as MSE(u,v) := ∥u − v∥2. Two

performance measures that are investigated in this work are the prediction error,

MSE(y, ŷ), and the estimation error, MSE(β, β̂).

4.2 SLOPE penalty design under AMP regime

4.2.1 Computing the gradients with respect to the penalty

We introduce a special regime of the AMP for SLOPE [Bu+20b], within which the

SLOPE estimator can be asymptotically exactly characterized. A similar regime

231

is the case when Convex Gaussian Min-max Theorem (CGMT) [CMW20; TAH18;

TOH15; TOH14] applies, which shares similar assumptions as those of AMP. We

then derive the gradient of MSE(β, β̂) with respect to the penalty λ and optimize

our penalty design iteratively. Generally speaking, AMP is a class of gradient-based

optimization algorithms that mainly work on independent Gaussian random data

matrices, offering both a sequence of estimators that converges to the true minimizer

and a distributional characterization of the latter (see [Bu+20b, Theorem 3] and

[HL19b, Theorem 1]). Here we present the five assumptions of the SLOPE AMP

[Bu+20b]:

• The data matrix X has independent and identically-distributed (i.i.d.) gaus-

sian entries that have mean 0 and variance 1/n.

• The signal β has elements that are i.i.d. and follow Π, with

E (Π2 max{0, log Π}) <∞.

• The noise w is elementwise i.i.d. and follows W , with σ2
w := E (W 2) <∞.

• The vector λ(p) = (λ1, . . . , λp) is elementwise i.i.d. and follows Λ, with

E (Λ2) <∞.

• The ratio n/p reaches a constant δ ∈ (0,∞) in the large system limit, as n

and p→∞.

232

Under these assumptions, Theorem 3 in [Bu+20b] provides an asymptotic character-

ization of β̂, which can be informally interpreted as

β̂ ≈ proxJατ
(β + τZ) (4.2.1)

in which (α, τ) are the unique solutions of two key equations, namely the calibration

and the state evolution in the AMP (or CGMT) regime (see [Bu+20b; HL19b]):

λ = ατ
(

1− 1
n
E
∥∥∥proxJατ

(β + τZ)
∥∥∥∗

0

)
(4.2.2)

τ 2 = σ2
w + 1

δp
E
∥∥∥proxJατ

(β + τZ)− β
∥∥∥2

(4.2.3)

Here we assume the noise w has variance σ2
w, ∥ · ∥∗

0 is a modified ℓ0 norm that counts

the unique non-zero absolute values in a vector and Z ∈ Rp is a vector in which

each element is i.i.d. standard normal. We denote δ := limp n/p as the aspect ratio

or sampling ratio and ϵ := limp |{j : βj ̸= 0}|/p.

Using (4.2.1), we observe that to minimize MSE(β, β̂) is equivalent to finding

desirable (α, τ). We now introduce some properties that are useful in deriving

the desirable λ, which uniquely defines (α, τ). By [Bu+20b, Proposition 2.3], the

calibration (4.2.2) describes a bijective, monotone and parallel mapping Λ1 between

α and λ [Bu+20b, Proposition 2.3], which allows us to work with α easily instead

of λ. By [Bu+20b, Theorem 1], the state evolution (4.2.3) can be solved via a fixed

point recursion, which converges to the unique solution τ(α) monotonically under

any initial condition.
1For a given α, we can use (4.2.3) to obtain a unique τ(α) and leverage (4.2.2) to obtain a

corresponding penalty vector λ(α).

233

Under AMP region, our strategy is to design λ ∈ Rp in SLOPE that, by quoting

[Bu+20b, Corollary 3.2], minimizes:

plim ∥β̂ − β∥2/p = δ(τ 2 − σ2
w)

where plim is the probability limit. Hence minimizing MSE(β, β̂) is in fact equivalent

to minimizing τ , which depends on α and leads to differentiating (4.2.3) against

each of αi for i ∈ [p]. In what follows, we view the scalar τ as a function of the

penalty α given the prior. Next, we use the gradient information to descend (with

the projection elaborated in Algorithm 4) till convergence. Once the minimizer α is

obtained, we leverage the calibration (4.2.2) to map to the corresponding λ(α).

In what follows, we shorthand proxJb
(a) by using η(a; b). In particular

proxJατ
(β+τZ) is denoted by η and we let ηj represent its j-th element. We define a

set Ij := {k : |ηk| = |ηj|}, which will be used in characterization of gradients. We also

define an inverse mapping for ranking of indices: σ : {1, . . . , p} → {1, . . . , p} such

that σ(i) = j representing |η|(i) = |ηj|. Consider a toy example η = (−2,−4, 3, 1),

then the ranking of magnitudes is (3, 1, 2, 4) whose inverse gives: σ(1) = 2, σ(2) = 3,

σ(3) = 1 and σ(4) = 4. This mapping is useful in assigning the penalties to

coefficients in β̂ due to the sorting procedure.

We state the following theorem to give a concrete form of gradients ∂τ/∂αi,

which is used in the projected gradient descent (PGD) in Algorithm 5.

234

Theorem 7. The gradients satisfy

∂τ

∂αi

= E
1

|Iσ(i)|D(α, τ)
∑

j∈Iσ(i)

(ηj − βj) sign(ηj)τ (4.2.4)

where D(α, τ) is a negative constant that is independent of index i.

Here the expectation is taken with respect to Z in η, which in turn also affects

Iσ(i). The detailed form of D(α, τ) in the denominator and the proof of Theorem

7 can be found in Appendix 4.6.2, where we also claim that D(α, τ) is always

negative. In practice, we can either set the step size st as constant or simply set

D = 1 to save computation time. We remark that, using a constant step size

and E
(∑

j∈Iσ(i)
(ηj − βj) sign(ηj)τ

)
/|Iσ(i)| as the gradient is equivalent to using a

time-dependent st = s ·D(αt, τt) and the actual gradient ∂τ
∂αi

.

4.2.2 Projection onto non-negative decreasing vectors

We notice that α (and λ) must be non-negative and decreasing, hence the vanilla

gradient descent is unsuitable for this constrained optimization problem of α. We

design a projected gradient descent (PGD) in the following. To do so, we first give

Algorithm 4 to compute the projection and establish the correctness of the algorithm

in Theorem 8.

Let S denote the set of non-negative and decreasing vectors in Rp (i.e. λ ∈ S ⇒

λi ≥ λi+1 ≥ 0, ∀i). Define the projection on to S as

ΠS(γ) = argminγ′∈S
1
2∥γ − γ′∥2

2. (4.2.5)

235

Algorithm 4 ProjectOnS (ΠS)
Input: Arbitrary sequence γ = (γ1, . . . , γp)

for i = 1, · · · , p do

▷ Identify the shortest sub-sequence {γj, . . . , γi} whose average is smaller than

its left neighbor (with γ0 =∞):

1
i− j + 1

i∑
k=j

γk ≤ γj−1

▷ Assign the average value to such sub-sequence for (γj, . . . , γi):

γj, . . . , γi ←
1

i− j + 1

i∑
k=j

γk

Output: max{γ, 0} ▷ Element-wise truncation

We show that Algorithm 4 indeed finds the minimizer of (4.2.5) and provide the

proof in Appendix 4.6.3.

Theorem 8. Given an arbitrary γ ∈ Rp as input, Algorithm 4 outputs the projection

of γ on S, that is, ΠS(γ).

On high level, the proof consists of two parts. In the first part we provide a

detailed characterization of ΠS(γ) by partitioning the index sequence {1, . . . , p}

into a number of carefully selected sub-sequences. We prove that within each sub-

sequence, ΠS(γ) takes the same value at each index, and such value is exactly the

average of the sub-sequence γ’s values at these indices. In the second part, we prove

236

that Algorithm 1 indeed finds such sub-sequences and thus operates in a way that

matches the goal of the projection ΠS(γ). The final truncation of the averaged

sequence at 0 is a trivial method to guarantee the non-negativity.

4.2.3 Projected Gradient Descents

Now that we have the gradients in Theorem 7 and the projection in Algorithm 4,

the projected gradient descent is straight-forward. In each iteration we first conduct

gradient descent using Theorem 7 and transform the sequence from α regime to λ

regime. The transformation Λ is defined in Section 2.1 using the calibration and the

state evolution in AMP. Then we project the gradient onto the constrained space S

and transform it back to α regime. The procedure is summarized in Algorithm 5.

Algorithm 5 Projected Gradient Descent (PGD)
Input: initial α0, step size {st}

for t = 1, · · · , T do

▷ Gradient descent on α and transform to λ regime

γt+1 = Λ(αt − st∇α(τ(αt)))

▷ Project onto S

λt+1 = ProjectOnS(γt+1)

▷ Transform back to α regime

αt+1 = Λ−1(λt+1)

Output: αT +1

237

10 20 30 40 50

0.
36

0.
40

0.
44

0.
48

Iterations

E
st

im
at

io
n

M
S

E PGD
PHB
PNAG

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0
.3

5
0

.4
0

0
.4

5
0

.5
0

α

E
st

im
a

tio
n

 M
S

E

Lasso
SLOPE Gaussian
SLOPE BH
SLOPE PGD

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

1
0.

00
3

0.
00

5

Probability

Q
ua

nt
ile

s
of

 λ

1
2

3
4

Q
ua

nt
ile

s
of

 α
λi

R
el

at
iv

e
F

re
qu

en
cy

0.000 0.001 0.002 0.003 0.004 0.005 0.0060.
00

0.
10

0.
20

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
αi

Figure 4.1: X i.i.d. N (0, 1/n), n = 300, p = 1000,Π is Bernoulli(ϵ), δ = n/p =

0.3, ϵ = 0.5, σw = 0. Top-left: A sample run of PGD that finds the minimizing α,

not the minimizing β̂ for SLOPE in [Bu+20b]. Additionally, we plot two gradient

descent methods with 0.9 momentum: the projected heavy ball (PHB) and the

projected Nesterov accelerated gradient. All methods use the fine-tuned Lasso

penalty as their starting points. Top-right: Red dashed line is Lasso MSE path

(each point corresponds to one Lasso penalty, as λ varies from 0 to large values);

other lines are different SLOPE MSE for a single SLOPE penalty. BH here stands

for “Benjamini and Hochberg”. Bottom-left: Best α (right y-axis) and best λ (left

y-axis) sequences found by PGD. Bottom-right: Histogram of best λ (bottom) and

α (upper) sequences found by PGD.

238

We highlight that Algorithm 5 is only one form of PGD. In fact, with a concrete

form of the gradients, we can use any off-the-shelf first-order optimizer to find α

iteratively. Some examples include projected versions of stochastic gradient descent,

Heavy Ball method [Pol64], Nesterov accelerated gradient descent [Nes83], Adagrad

[DHS11], AdaDelta [Zei12] and Adam [KB14]. We include some of these optimizers

in Figure 4.1.

To understand the convergence behavior of PGD, we need to study the convexity

of the domain S and the objective function τ . Clearly S is convex by simply applying

the definition. Unfortunately, τ(α) for SLOPE is in general non-convex: even in

the Lasso AMP regime, it is shown that τ(α) is only a quasi-convex function of α

[MMB+18b, Theorem 3.3]. We note that some non-convex problems may enjoy

desirable properties such as having unique global minimum or local minima do not

exist. As for SLOPE, the analysis on quasi-convexity of τ(α) has not been well

established but in practice, we do not observe any local minimum.

Remarkably, the gradient information that we use distinguishes our work from

[HL19b]. We pause a bit and compare our approach with theirs, as they work

under very similar assumptions as our AMP regime (in fact, both AMP and CGMT

regimes agree asymptotically). Instead of optimizing directly on τ , they propose to

optimize the proximal operator η in the functional space [HL19b, Proposition 3]: for

a fixed candidate τ , they use the finite approximation with 2048 grids to solve a

functional optimization, whose minimum is L(τ). Next, they check the feasibility of

239

the candidate τ by whether L(τ) ≤ δ(τ 2 − σ2
w). Lastly, a binary search is conducted

to find the optimal τ (smallest feasible τ) and the optimal design can be derived

from the corresponding η. In summary, this approach took a detour by using a

zeroth-order optimization algorithm, as the authors did not search over λ (or α)

directly. Our first-order algorithm overcomes the seemingly unwieldy computation

burden, especially in the high dimension when p is very large.

4.2.4 Transforming from α to λ

Once we find the desirable α with Algorithm 5, the calibration (4.2.2) allows us

to convert α to λ in the original SLOPE problem. We demonstrate in Figure 4.1

and Figure 4.2 that SLOPE can outperform the best-tuned Lasso significantly. In

Figure 1, SLOPE reduces MSE(β, β̂) from 0.473 by Lasso to 0.350 by SLOPE, a

26% improvement in the estimation error. In fact, we observe from Figure 4.2 that

SLOPE is even comparable to Minimum Mean Squared Error (MMSE; proposed by

[BM11b]) estimator, which produces the lowest MSE possible. We emphasize that

our result does not contradict [WWM19] which states that, under some conditions,

the Lasso is the optimal SLOPE. We note that the condition in [WWM19, Theorem

2] does not hold for large systems: the premise of Lasso being optimal is that the

Lasso achieves exact recovery, which requires n ∼ p log p (see [Wai09]). Therefore,

in our setting where n/p→ δ, the Lasso is incapable of achieving the exact recovery

nor outperforming general SLOPE.

240

4.3 k-level SLOPE

In this section we propose a method, described in Algorithm 6, that works on the

general linear model. I.e. our method works on arbitrary data X,y,β,w and does

not require n/p→ δ when n, p→∞.

In contrast to the AMP regime, we directly search on λ without implicitly using

α and we do not try to use the gradient information. To avoid searching in the

high dimension of λ space, we propose to restrict that the penalty λ only contains k

different non-negative values, which is denoted by (λ1, · · · , λk;S1, · · · , Sk−1). Here

λi denotes the penalty magnitude and Si represents the splitting index in [p], where

the penalty magnitudes change, i.e, Si−Si−1 entries in λ take the value λi. We note

that λi is decreasing in i while Si is increasing, guaranteeing that λ satisfies the

assumption of SLOPE. As an example in R5, λ = (7, 5, 1; 2, 3) = (7, 7, 5, 1, 1). We

name this restricted SLOPE problem as the k-level SLOPE and design the (2k − 1)

degree of freedom penalty λ, so as to only search in the reduced dimension k ≪ p.

Notice that the original SLOPE is the p-level SLOPE and the Lasso is the

1-level SLOPE. We note that k-level SLOPE is always a sub-case of (k + 1)-level

SLOPE. Therefore intuitively, by allowing k to take values other than 1 and p,

we can trade off the difficulty of designing the penalty and the accuracy gain by

employing more penalty levels. We demonstrate that empirically, the trade-off is

surprisingly encouraging: even 2 or 3 levels of penalty is sufficient to exploit the

benefit of SLOPE.

241

4.3.1 Practical penalty design for k-level SLOPE

We emphasize that in the general regime beyond AMP and CGMT, we cannot access

the gradient information nor the functional optimization in [HL19b] for two reasons:

the true β distribution is not known in real data and the data matrix X is general

(not i.i.d. with a specific variance). To design the k-level SLOPE penalty in the

real-world datasets, we propose the Coordinate Descent (CD, Algorithm 6)2 and

compare to the PGD in Algorithm 5 under the AMP and CGMT regimes in Figure

4.2.

Algorithm 6 Coordinate Descent (CD)
Input: initial λ, MSEold =∞, level k

while MSE < MSEold do

Set MSEold = MSE

for i ∈ {1, . . . , k} do

▷ Search on magnitudes λi

λi = argmin
λi∈(λi+1,λi−1)

MSE(λ1, · · · ;S1, · · ·)

for i ∈ {1, . . . , k − 1} do

▷ Search on splits Si

Si = argmin
Si∈(Si−1,Si+1)

MSE(λ1, · · · ;S1, · · ·)

Output: λ = (λ1, · · · , λk;S1, · · · , Sk−1)

2We slightly abuse the notation of MSE to mean either the estimation error (only available in

synthetic data) or the prediction error.

242

We highlight some details of Algorithm 6 that make it efficient and practical.

First of all, Algorithm 6 directly works on λ instead of α (the calibration is generally

unavailable). Second, the projection is not needed as in Algorithm 5 since λ is

decreasing and non-negative by our definition of the search domain. Third, Algorithm

6 is flexible in the following sense: (1) we can choose any order of coordinates to

successively minimize the error, e.g. by λ1, S1, λ2, S2, · · · ; (2) we can use any zeroth-

order search method such as the grid search or the binary search for the magnitudes

and splits.

4.4 Experiments

In this section, we justify the effectiveness of k-level SLOPE on various synthetic and

real datasets, on linear and logistic regression tasks. For the sake of implementation

consistency, we adopt R package SLOPE to run both Lasso and SLOPE in experiments.

Empirically, we remark that PGD and k-level CD are both significantly fast in all

experimental settings, taking only a few minutes to converge even for p = 1000.

4.4.1 Synthetic datasets

Independent case

In this experiment we investigate the performance of k-level SLOPE in the AMP

regime: data matrix X is i.i.d. N (0, 1/n), n = 300. The signal distribution Π is

243

Gaussian-Bernoulli with probability 0.5 being standard normal and 0 otherwise. We

work on a high-dimensional setting where δ = n/p = 0.3 and hence X ∈ R300×1000.

The noise σw is 0. We observe from Figure 4.2 that employing more levels of penalty

is beneficial and fast, suggesting that even a small k may be sufficient to reduce the

errors significantly.

0 5 10 15 20 25 30

0.
61

0.
63

0.
65

0.
67

Iteration

E
st

im
at

io
n

R
M

S
E

MMSE
Lasso
2−level SLOPE
SLOPE

1 2 3 4 5

0.
65

0.
67

0.
69

Number of levels
E

st
im

at
io

n
R

M
S

E

Figure 4.2: Left: the result of a single run for MMSE AMP, Lasso AMP, 2-level

SLOPE AMP (by CD) and the p-level SLOPE AMP (by PGD). Right: averaged

result over 10 independent runs of different k-level SLOPE by CD.

Dependent case

Different from the AMP regime in which each entry in the design matrix is i.i.d.

gaussian, we study the performance of 2-level SLOPE in a synthetic dataset with

features strongly correlated with each other. We include three other methods: Lasso

and SLOPE with two other designs: Benjamini Hochberg design and the MR design

proposed in [BLT18]. The data X is generated from an ARMA(1,1) model:

Xt = εt + 0.8Xt−1 + 0.8εt−1 (4.4.1)

244

where Xt denote the t-th feature and εt follows i.i.d. N (0, 1). We set Π, the

asymptotic distribution of β, to be i.i.d. Gaussian-Binomial: βi ∼ BZ with

B ∼ B(5, 0.3) and Z being standard normal. In terms of the dimension, we study

two cases (1) n = 20, p = 50; (2) n = 200, p = 500. 10-fold cross-validation MSE(y, ŷ)

are calculated for both the Lasso and SLOPE. We highlight that, different than

the previous section, we investigate the prediction error instead of the estimation

error here. Curves for MSE(y, ŷ) with different iterations in both cases are shown in

Figure 4.3. In the first case, using grid search, the optimal prediction MSE(y, ŷ) given

by Lasso is 0.128 while the optimal prediction MSE(y, ŷ) given by 2-level SLOPE

(using Algorithm 6) is 0.083. Prediction errors of SLOPE with other two penalty

sequences are also under 0.1, but worse than that of 2-level SLOPE. We observe

a 35% improvement on prediction error when using 2-level SLOPE for this case of

small sample size and dimension, compared with Lasso. In the second case, the

optimal prediction MSE(y, ŷ) given by Lasso and other two SLOPEs are no smaller

than 0.2, while that of 2-level SLOPE is 0.186, giving a 7.5% reduction in the

prediction error.

4.4.2 Real datasets for linear and logistic regression

To further demonstrate the utility of k-level SLOPE in practice, we apply the model

to real datasets, where MSE(β, β̂) is intractable, and focus on the prediction MSE(y, ŷ).

In this experiment, again we compare the performance of 2-level SLOPE in a linear

245

regression setting with three other methods we studied in Section 4.1. The dataset

we adopt is atherosclerosis cardiovascular disease (ASCVD), which records medical

information of 236 patients and their corresponding ASCVD risk score (outcome

variable). We select 1000 features out of 4216 features, which have the largest

correlation with the outcome variable. We conduct 20-fold cross-validation and

calculate the cross-validation prediction MSE(y, ŷ). Using grid search, the optimal

prediction MSE(y, ŷ) given by Lasso is 0.528. Interestingly, prediction MSE(y, ŷ) given

by other two SLOPEs are worse than that of Lasso while that given by 2-level SLOPE

(using Algorithm 6) is 0.489. This result clearly demonstrates the outperformance

of k-level SLOPE compared to Lasso and SLOPE using other penalty sequences. A

curve for MSE(y, ŷ) with different iterations is shown in Figure 4.3.

We further extend the idea of k-level SLOPE in logistic regression and justify the

results on Alzheimer’s Disease Neuroimaging Initiative (ADNI) gene dataset. The

dataset contains over 19000 genomic features of 649 patients, along with a binary

disease status (normal or ill). We select the first 300 patients in the original dataset

and 500 features out of the total features, which has the largest correlation with

the outcome variable. We conduct 10-fold cross-validation and calculate the cross-

validation prediction accuracy. Using grid search, the optimal prediction accuracy

given by Lasso is 0.62. The optimal prediction accuracy given by 2-level SLOPE

(using Algorithm 6) is 0.66.

246

2000 4000 6000 8000 10000

0.
10

0.
15

0.
20

0.
25

Iterations

P
re

di
ct

io
n

M
S

E Lasso
2−level
SLOPE
SLOPE−MR

SLOPE−BH

2000 4000 6000 8000 10000

0.
20

0.
25

0.
30

Iterations

P
re

di
ct

io
n

M
S

E

Lasso
2−level
SLOPE
SLOPE−MR

SLOPE−BH

2000 6000 10000 14000

0.
50

0.
55

0.
60

0.
65

Iterations

P
re

di
ct

io
n

M
S

E

Lasso
2−level
SLOPE
SLOPE−MR

SLOPE−BH

Figure 4.3: MSE(y, ŷ) in linear regression cases. SLOPE-MR: SLOPE using penalty

sequence suggested in [BLT18]; SLOPE-BH: SLOPE using Benjamini–Hochberg

penalty sequence in R function ‘SLOPE’. Top-left: Synthetic data with X i.i.d.

drawn from ARMA(1,1) model (4.4.1), n = 20, p = 50. Top-right: X i.i.d. drawn

from (4.4.1) with n = 200, p = 500. Bottom: the results of ASCVD dataset.

247

4.5 Discussion

In this work, we propose a framework to flexibly and efficiently design the SLOPE

penalty sequence. Under the AMP setting, our first-order PGD approach is capable of

finding the effective penalty sequence with reasonable computation budget. The key

is to use the gradient with respect to the penalty instead of using zeroth-order search

as previous works have proposed. In the practical world beyond the AMP setting,

via various experiments, we illustrate that the proposed k-level SLOPE with penalty

sequence determined by Algorithm 6 can provide decent results. Although Algorithm

6 loses the access to the first-order information when compared to Algorithm 5,

the universal ability to search good penalty is desirable for practical use, as we

can view the algorithm as a dimension-reduction trick. In many cases even 2-level

SLOPE, the simplest k-level SLOPE (other than Lasso), can outperform the Lasso

in accuracy as well as the (p-level) SLOPE in computation speed. Additionally,

our framework indeed generalizes to other high-dimensional penalty designs. Some

direct extensions include group SLOPE and weighted Lasso.

Much room is left for future study. From a theoretical perspective, the quasi-

convexity of τ(α) in AMP setting is still not well studied. The asymptotic MSE(β, β̂)

(i.e. Equation (7) in [MMB+18b]) is shown to be quasi-convex in Lasso case. However,

no such theoretical property has been shown for SLOPE. If the quasi-convexity

indeed holds true for SLOPE AMP, then we can guarantee that the minimizing λ

by PGD is indeed the global minimizer and thus claim our design is optimal.

248

It would also be interesting to develop PGD (based on AMP regime) for k-level

SLOPE, i.e. using gradient descent to find the optimal magnitudes and splits. One

could then derive a theoretical trade-off curve between the minimum τ and each k,

similarly to Figure 2 bottom subplot. This would suggest a proper choice of k for

our k-level SLOPE.

From a practical perspective, we anticipate that k-level SLOPE can also be

explored in various applications that already employ the Lasso, such as the matrix

completion, the compressed sensing and the neural network regularization.

4.6 Appendix

4.6.1 Introduction to MMSE AMP

We firstly introduce the procedure for general AMP procedure.

s(t+1) = X⊤Z(t) + β(t)

β(t+1) = η(t+1)(s(t+1))

Z(t+1) = y −Xβ(t+1) + 1
n
Z(t)[∇η(t)(s(t))]

(4.6.1)

Different η functions give different AMP, e.g. the soft-thresholding η gives the Lasso

AMP; the SLOPE proximal operator η gives the SLOPE AMP.

The MMSE AMP adopts the following denoiser η(t) [BM11b]

η
(t)
i (s) = E[β|β + τtz = si] i = 1, . . . , p

249

with z ∼ N (0, 1). In above, using the state evolution [Bu+20b], τ 2
t can be calculated

iteratively as:

τ 2
t = σ2

w + 1
δ
E[(η(t−1)(β + τt−1z)− β)2]

Assume that the measurement matrix X has i.i.d. N (0, 1/n) entries. In many

scenarios, the denoiser η(t) might be hard to calculate. Here we provide a derivation

about calculating η(t) in the Bernoulli-Gaussian case: we assume that true signal

β
i.i.d.∼ B where B is a Bernoulli-Gaussian distribution, i.e. βi = 0 with probability

e ∈ [0, 1], otherwise βi ∼ N (0, σ2
B).

E[β|β + τtz = si] = E[β|β ̸= 0,β + τtz = si]P(β ̸= 0|β + τtz = si) (4.6.2)

It’s straightforward to see that, with f denoting the corresponding probability

density function,

P(β ̸= 0|β + τtz = si) = f(β + τtz = si|β ∼ N (0, σ2
B))(1− e)

f(β + τtz = si|β ∼ N (0, σ2
B))(1− e) + f(τtz = si)e

(4.6.3)

Meanwhile. we have

E[β|β ̸= 0,β + τtz = si] = E[β|β ∼ N (0, σ2
B),β + τtz = si]

since β + τtz ∼ N (0, σ2
B + τ 2

t), conditional expectation on joint normal distribution

yields

E[β|β ∼ N (0, σ2
B),β + τtz = si] = σ2

B

σ2
B + τ 2

t

si (4.6.4)

(4.6.3) and (4.6.4) give a simple way to calculate the denoiser using (4.6.2).

250

4.6.2 Analysis of Gradient in PGD for α

Proof of Theorem 7. Minimizing the estimation error is equivalent to minimizing

τ . Since the AMP algorithms are working on the finite dimension, we analyze the

finite-size approximation of the state evolution [Bu+20b, Equation (2.5)]:

τ 2 = σ2
w + 1

δp
E
∥∥∥proxJατ

(β + τZ)− β
∥∥∥2

In finite dimensions, the expectation is taken with respect to Z. Differentiating

both sides of the state evolution with respect to αi and denoting τ ′ = ∂τ
∂αi

gives:

2ττ ′ = ∂

∂αi

(
σ2

w + 1
δp

E∥ proxJατ
(β + τZ)− β∥2

)

= 1
n

∂

∂αi

p∑
j=1

E
(
[proxJατ

(β + τZ)]j − βj

)2
(4.6.5)

Recall ηj represents the j-th element of η := proxJατ
(β + τZ). By chain rule

2ττ ′ = 2
n

p∑
j=1

E(ηj − βj)
∂ηj

∂αi

= 2
n

p∑
j=1

E(ηj − βj)
[p∑

k=1

dηj

dak

∂ak

∂αi

+ dηj

dbk

∂bk

∂αi

]

where we define ak := βk + τZk, bk := αkτ . To calculate the derivatives, we pause to

discuss forms of general derivatives of η(a, b). Define

∂1η(a, b) := diag
[
∂

∂a1
,
∂

∂a2
, . . . ,

∂

∂ap

]
η(a, b) (4.6.6)

∂2η(a, b) := diag
[
∂

∂b1
,
∂

∂b2
, . . . ,

∂

∂bp

]
η(a, b). (4.6.7)

According to [SC+16, Proof of Fact 3.4] and [Bu+20b, Proof of Theorem 1], we have

[∂1η(a, b)]j = 1
#{1 ≤ k ≤ p : |[η(a, b)]k| = |[η(a, b)]j|}

251

and that

d

dak

[η(a, b)]j =I{|η(a, b)|j = |η(a, b)|k} sign(ηjηk)[∂1η(a, b)]j

for the derivative regardng the first variable. Recall that the permutation σ :

{1, . . . , p} → {1, . . . , p} is the inverse mapping for ranking of indices such that

|η|(i) = |[η]σ(i)|. Similarly, according to [Bu+20b, Proof of Theorem 1]:

d

dbk

[η(a, b)]j = − sign([η(a, b)]σ(k))
d

daσ(k)
[η(a, b)]j

= I
{
|η(a, b)|j = |η(a, b)|σ(k)

}
sign

(
ηj

)[
∂1η(a, b)

]
j
. (4.6.8)

In addition to Ij defined in Section 2, we let Kj := {k : |ησ(k)| = |ηj|}, which is the

set of ranking indices whose corresponding entries share the same absolute value with

ηj . This notion will be used to replace the indicator term I
{
|η(a, b)|j = |η(a, b)|σ(k)

}
above. We can rewrite (4.6.6) as

2ττ ′ = 2
n

p∑
j=1

E(ηj − βj)
∑

k∈Ij

dηj

dak

∂ak

∂αi

+
∑

k∈Kj

dηj

dbk

∂bk

∂αi


= 2
n

p∑
j=1

E(ηj − βj) sign(ηj)
 1
|Ij|

∑
k∈Ij

sign(ηk)∂ak

∂αi

− 1
|Kj|

∑
k∈Kj

∂bk

∂αi


= 2
n

p∑
j=1

E(ηj − βj) sign(ηj)
 1
|Ij|

∑
k∈Ij

sign(ηk)Zkτ
′

− 1
|Kj|

∑
k∈Kj

(αkτ
′ + I{k = i}τ)

 (4.6.9)

Merging the terms containing the derivative τ ′ on one side gives

1
n

∑
j∈Iσ(i)

E(ηj − βj) sign(ηj)/|Kj|

= 1
n

p∑
j=1

E(ηj − βj) sign(ηj)
 1
|Ij|

∑
k∈Ij

sign(ηk)Zkτ
′ − 1
|Kj|

∑
k∈Kj

αkτ
′

− ττ ′

252

Notice that |Ij| = |Kj| due to σ being a permutation, we can simplify above as

∂τ

∂αi

= E
1

|Iσ(i)|D(α, τ)
∑

j∈Iσ(i)

(ηj − βj) sign(ηj)τ (4.6.10)

where D(α, τ) in the denominator is

D(α, τ) = −nτ +
p∑

j=1
E

1
|Ij|

(ηj − βj) sign(ηj)
∑
k∈Ij

(sign(ηk)Zk − ασ−1(k))

We next show that D(α, τ) is always negative. Firstly observe from (4.2.3) that

τ 2 >
1
n

p∑
j=1

E(ηj − βj)2 (4.6.11)

Now for the set Ii with a fixed index i,

∑
j∈Ii

(ηj − βj)2 ≥ 1
|Ii|

(
∑
j∈Ii

|ηj − βj|)2 (4.6.12)

≥ 1
|Ii|

(
∑
j∈Ii

(ηj − βj) sign(ηj))2 (4.6.13)

= 1
|Ii|

∑
j∈Ii

(ηj − βj) sign(ηj)
∑
k∈Ii

τZk sign(ηk)− ασ−1(k)τ (4.6.14)

≥ τ

|Ii|
∑
j∈Ii

(ηj − βj) sign(ηj)
∑
k∈Ij

Zk sign(ηk)− ασ−1(k) (4.6.15)

This in turn implies that

p∑
j=1

(ηj − βj)2 =
p∑

j=1

1
|Ij|

∑
k∈Ij

(ηk − βk)2

≥
p∑

j=1

τ

|Ij|
(ηj − βj) sign(ηj)

∑
k∈Ij

Zk sign(ηk)− ασ−1(k) (4.6.16)

Combining with (4.6.11) yields D < 0.

253

4.6.3 Analysis of Projection in PGD for α

Characterization of projection on S

We firstly prove that Algorithm 4 indeed finds the projection. To do so we firstly

provide a detailed characterization of the projection, then prove that the output

of Algorithm 4 matches the form of projection. We start by defining blocks and

segmentation blocks, upon which our proof highly relies. Suppose γ = {γ1, . . . , γp},

blocks are subsequences defined as B(γ, u) := {γu, . . . , γu+L(γ,u)−1} where length

L(γ, u) is defined as

L(γ, u) =


L∗ if L∗ ̸= ∅

p otherwise

(4.6.17)

where

L∗ ∆= min
{

1 ≤ L ≤ p− u
∣∣∣∣∀0 ≤ k ≤ p− u− L, 1

k + 1

k∑
i=0

γu+L+i <
1
L

L−1∑
i=0

γu+i

}

Roughly speaking, L(γ, u) is the minimum value of a finite set (truncated at p when

the set is empty). For each element L in this set, the average value in sequence

{γu, . . . , γu+L−1} is always larger than that of arbitrary sequence {γu+L, . . . , γu+L+k}

whose left start is γu+L. With such definition of blocks, we can now segment γ into

q ≤ p blocks:

γ = {B(γ, 1), B(γ, L(γ, 1) + 1), B(γ, L(γ, L(γ, 1) + 1) + L(γ, 1) + 1), . . . }

∆= {B1, . . . , Bq}

254

We call B1, . . . , Bq segmentation blocks for vector γ. It’s straightforward to see that

Bk = B(γ, Lk) where Lk satisfies L1 = L(γ, 1) and

Lk = L(γ,
k−1∑
i=1

Li + 1)

Our result shows that for input vector γ, its projection vector ΠS(γ) takes identical

values inside each of the segmentation blocks. Before formally stating the theorem,

We first highlight the following fact that will be frequently used in the proof of the

theorem.

Fact 4.6.1. For two sequences of length p: {ai} and {bi}, if ∑ ai = ∑
bi, then

function g(C) := ∑(bi − ai + C)2 is monotonically increasing with respect to |C|.

Proof. Notice that

∑
(bi − ai + C)2 =

∑
(bi − ai)2 +

∑
2C(bi − ai) + pC2 = pC2 +

∑
(bi − ai)2

Hence g(C) is is monotonically increasing with respect to |C|.

Theorem 9. Let B denote the segmentation block that contains γi, then

(ΠS(γ))i = max
 1
|B|

∑
γj∈B

γj, 0


Proof. The proof consists of two steps. In the first step, we prove that for each

segmentation block B, the projection of each coordinates share the same value.

That is, (ΠS(γ))i = C(B) as long as γi ∈ B. In the second step, we show that this

constant is the mean of the block truncated at 0: C(B) = max
{

1
|B|
∑

γj∈B γj, 0
}
.

255

Step 1 Without loss of generality, we consider B = B(γ, u). We know from

definition of blocks that ∀1 ≤ l ≤ L − 1, ∃kl s.t. 1
kl

∑kl
i=1 γu+l−1+i ≥ 1

l

∑l
i=1 γu+i−1.

We use induction to prove that (ΠS(γ))u = (ΠS(γ))u+l, ∀1 ≤ l ≤ L(γ, u)− 1. For

l = 1, assume (ΠS(γ))u > (ΠS(γ))u+1. Consider two cases: (i) (ΠS(γ))u > γu. (ii)

(ΠS(γ))u ≤ γu. We now show that both cases lead to contradiction and hence do

not hold. In case (i), we consider

(Π̃S(γ))i =


max{γu, (ΠS(γ))u+1} if i = u

(ΠS(γ))i otherwise

then obviously, ∣∣∣(Π̃S(γ))u − γu

∣∣∣ < |(ΠS(γ))u − γu|

which leads to that 1
2∥(Π̃S(γ))− γ∥2

2 <
1
2∥(ΠS(γ))− γ∥2

2. This contradicts to the

definition of projection. In case (ii), from definition of blocks we have that ∃k0 ≥ 1

s.t. 1
k0

∑k0
i=1 γu+i ≥ γu. Consider

(Π̃S(γ))i =


(ΠS(γ))u if i ∈ {u+ 1, . . . , u+ k0}

(ΠS(γ))i otherwise

Notice that 1
k0

∑k0
i=1 γu+i ≥ γu ≥ (ΠS(γ))u > (ΠS(γ))u+1, we have for i ∈ {u +

1, . . . , u+ k0},
∣∣∣(Π̃S(γ))i − (ΠS(γ))i

∣∣∣ is a constant independent of i and that∣∣∣∣∣∣(Π̃S(γ))i −
1
k0

k0∑
i=1

γu+i

∣∣∣∣∣∣ <
∣∣∣∣∣∣(ΠS(γ))i −

1
k0

k0∑
i=1

γu+i

∣∣∣∣∣∣
According to Fact 4.6.1, we define substitution for i ∈ {u + 1, . . . , u + k0}: bi =

1
k0

∑k0
i=1 γu+i, ai = γu+i, bi + C1 = (Π̃S(γ))i and bi + C2 = (ΠS(γ))i. Then since

256

|C1 < C2|, we have 1
2∥(Π̃S(γ))− γ∥2

2 <
1
2∥(ΠS(γ))− γ∥2

2, which contradicts to the

definition of projection.

Now assume the statement holds for 1 ≤ l ≤ l0 − 1, that is (ΠS(γ))u = · · · =

(ΠS(γ))u+l0−1, we want to prove that (ΠS(γ))u = (ΠS(γ))u+l0 . Since the projection is

on S, by definition we know (ΠS(γ))u can never be smaller than (ΠS(γ))u+l0 . We now

assume (ΠS(γ))u > (ΠS(γ))u+l0 and consider two cases: (i) (ΠS(γ))u >
1
l0

∑l0−1
i=0 γu+i.

(ii) (ΠS(γ))u ≤ 1
l0

∑l0−1
i=0 γu+i. To complete the proof, it suffices for us to show that

neither of the cases can hold without contradictions. In case (i), we consider

(Π̃S(γ))i =



max{ 1
l0

∑l0−1
j=0 γu+j, (ΠS(γ))u+l0}

if i ∈ {u, . . . , u+ l0 − 1}

(ΠS(γ))i otherwise

then obviously for i ∈ {u, . . . , u + l0 − 1},
∣∣∣(Π̃S(γ))i − (ΠS(γ))i

∣∣∣ is a constant

independent of i and that∣∣∣∣∣∣(Π̃S(γ))i −
1
l0

l0−1∑
i=0

γu+i

∣∣∣∣∣∣ <
∣∣∣∣∣∣(ΠS(γ))i −

1
l0

l0−1∑
i=0

γu+i

∣∣∣∣∣∣
According to Fact 4.6.1, using the same substitution as that in analysis of l = 1, we

have that 1
2∥(Π̃S(γ))− γ∥2

2 <
1
2∥(ΠS(γ))− γ∥2

2, which makes contradiction to the

definition of projection. In case (ii), from definition of blocks we have that ∃k0 ≥ 1

s.t. 1
k0

∑k0
i=1 γu+l0−1+i ≥ 1

l0

∑l0−1
i=0 γu+i. Now we consider

(Π̃S(γ))i =


(ΠS(γ))u if i ∈ {u+ l0, . . . , u+ l0 − 1 + k0}

(ΠS(γ))i otherwise

257

Notice that 1
k0

∑k0
i=1 γu+l0−1+i ≥ 1

l0

∑l0−1
i=0 γu+i ≥ (ΠS(γ))u > (ΠS(γ))u+l0 , we have

for i ∈ {u+ l0, . . . , u+ l0− 1 + k0},
∣∣∣(Π̃S(γ))i − (ΠS(γ))i

∣∣∣ is a constant independent

of i and that ∣∣∣∣∣∣(Π̃S(γ))i −
1
k0

k0−1∑
i=0

γu+l0+i

∣∣∣∣∣∣ <
∣∣∣∣∣∣(ΠS(γ))i −

1
k0

k0−1∑
i=0

γu+l0+i

∣∣∣∣∣∣
Again according to Fact 4.6.1, we have 1

2∥(Π̃S(γ))− γ∥2
2 <

1
2∥(ΠS(γ))− γ∥2

2, which

contradicts to the definition of projection. This implies that it can never happen

that (ΠS(γ))u > (ΠS(γ))u+l0 , which completes the induction. We have proved that

(ΠS(γ))u = · · · = (ΠS(γ))u+L(γ,u)−1
∆= C(B(u)) for each segmentation block B(u) of

vector γ.

Step 2 Now we already know that inside each segmentation block, the projection

of each coordinate is a constant C(B), we now optimize the sequence {C(Bi)}q
i=1.

According to Fact 4.6.1, inside each Bi, the optimal constant (i.e. constant gives

smallest ℓ2 error argminC≥0
1
2
∑

γj∈Bi
(γj − C)2) is : max

{
1

|Bi|
∑

γj∈Bi
γj, 0

}
. Mean-

while, it’s feasible to set

(ΠS(γ))i = max
 1
|B|

∑
γj∈B

γj, 0


since we have that max
{

1
|Bi|

∑
γj∈Bi

γj, 0
}
≥ max

{
1

|Bi+1|
∑

γj∈Bi+1 γj, 0
}

by definition

of blocks. This wraps up the proof.

Proof of Theorem 8

We next prove the validity of Algorithm 4.

258

Proof. Suppose γ has segmentation blocks B1, . . . , Bq, we firstly prove that

(ΛS(γ))i = (ΠS(γ))i for i ≤ |B1|. We let γj(t) denote the value of γj at the

moment i was assigned from t to t + 1 in Algorithm 4 (i.e. the time when first

t iterations are finished). We also let γj(0) denote the initial value of γj in the

input. Then clearly (ΛS(γ))j = max{γj(p), 0}. During the value-averaging step, the

algorithm is constantly transporting values from elements with larger index to those

with smaller. Hence it’s straightforward to see that

J∑
j=1

γj(t) ≥
J∑

j=1
γj(t− 1) (4.6.18)

for arbitrary J, t ∈ {1, . . . , p}. First assume γ1(p) = · · · = γ
L̃1

(p) > γ
L̃1+1(p).

Since Algorithm 4 only involves averaging values among subsequences, we have that
∑p

j=1 γj(p) = ∑p
j=1 γj. Moreover since γ

L̃1
(p) > γ

L̃1+1(p), there’s no value-averaging

steps between any one of the first L̃1 elements and one of the rest elements. This

implies
L̃1∑

j=1
γj(p) =

L̃1∑
j=1

γj (4.6.19)

By definition of blocks, we know that ∃k such that 1
k

∑k
i=1 γL̃1+i

≥ 1
L̃1

∑L̃1
i=1 γi = γ1(p).

By (4.6.18) we have that

1
k

k∑
i=1

γ
L̃1+i
≤ 1
k

k∑
i=1

γ
L̃1+i

(p) ≤ γ
L̃1+1(p)

Together with above, this implies that γ1(p) ≤ γ
L̃1+1(p), which contradicts to the

assumption. Hence we have that L̃1 ≥ L1.

On the other hand, if L̃1 > L1, then at the moment i is assigned to be L̃1 + 1 in

259

the algorithm (i.e. the time when first L̃1 iterations are finished), we must have that

∑L̃1
j=1 γj(L̃1 − 1)

L̃1
≥
∑L1

j=1 γj(L̃1 − 1)
L1

This implies that ∑L̃1
j=L1+1 γj(L̃1 − 1)

L̃1 − L1
≥
∑L1

j=1 γj(L̃1 − 1)
L1

(4.6.20)

By (4.6.18) we have ∑L1
j=1 γj

L1
≤
∑L1

j=1 γj(L̃1 − 1)
L1

(4.6.21)

Meanwhile at t = L̃1 − 1, the sum of first L1 terms is the same as that in γ. This

implies

L̃1∑
j=L1+1

γj(L̃1 − 1) =
L1∑

j=1
γj +

L̃1∑
j=L1+1

γj −
L1∑

j=1
γj(L̃1 − 1)

≤
L̃1∑

j=L1+1
γj

(4.6.22)

where the last inequality is given by (4.6.18). Combining (4.6.20), (4.6.21) and

((4.6.22)) yields ∑L̃1
j=L1+1 γj

L̃1 − L1
≥
∑L1

j=1 γj

L1

This contradicts to definition of L1 in (4.6.17). Hence we have that L̃1 = L1. This

means γ1(p) = · · · = γL1(p) > γL1+1(p). Recall that (ΛS(γ))j = max{γj(p), 0}, this

together with (4.6.19) yields

(ΠS(γ))1 = max
 1
|B1|

L1∑
j=1

γj, 0
 = (ΛS(γ))1

= · · · = (ΛS(γ))L1 > (ΛS(γ))L1+1

260

Now we have prove that (ΠS(γ))i = (ΛS(γ))i for i ≤ |B1| and that there is no

interaction between element in B1 and that outside B1. This implies that the

existence of B1 does not affect the rest of output values (ΛS(γ))i>|B1|. Hence we can

ignore B1 and repeat exactly the same procedure to prove that (ΠS(γ))i = (ΛS(γ))i

when |B1|+ 1 ≤ i ≤ |B2| and that there is no interactions between element in B2

and that outside B2. Iteratively we can prove ΠS(γ) = ΛS(γ)

261

Bibliography

[Abr+06] Felix Abramovich et al. “Adapting to unknown sparsity by controlling

the false discovery rate”. In: The Annals of Statistics 34.2 (2006),

pp. 584–653.

[BC+15] Rina Foygel Barber, Emmanuel J Candès, et al. “Controlling the false

discovery rate via knockoffs”. In: The Annals of Statistics 43.5 (2015),

pp. 2055–2085.

[BEM13] Mohsen Bayati, Murat A Erdogdu, and Andrea Montanari. “Estimat-

ing lasso risk and noise level”. In: Advances in Neural Information

Processing Systems. 2013, pp. 944–952.

[BLT18] Pierre C Bellec, Guillaume Lecue, and Alexandre B Tsybakov.

“SLOPE meets lasso: improved oracle bounds and optimality”. In:

The Annals of Statistics 46.6B (2018), pp. 3603–3642.

[BM11a] Mohsen Bayati and Andrea Montanari. “The dynamics of message

passing on dense graphs, with applications to compressed sensing”.

In: IEEE Trans. on Inf. Theory 57.2 (2011), pp. 764–785.

262

[BM11b] Mohsen Bayati and Andrea Montanari. “The dynamics of message

passing on dense graphs, with applications to compressed sensing”. In:

IEEE Transactions on Information Theory 57.2 (2011), pp. 764–785.

[BM11c] Mohsen Bayati and Andrea Montanari. “The LASSO risk for Gaussian

matrices”. In: IEEE Transactions on Information Theory 58.4 (2011),

pp. 1997–2017.

[BM11d] Mohsen Bayati and Andrea Montanari. “The LASSO risk for Gaussian

matrices”. In: IEEE Transactions on Information Theory 58.4 (2011),

pp. 1997–2017.

[BMN20] Raphael Berthier, Andrea Montanari, and Phan-Minh Nguyen. “State

evolution for approximate message passing with non-separable func-

tions”. In: Information and Inference: A Journal of the IMA 9.1

(2020), pp. 33–79.

[Bog+13a] Małgorzata Bogdan et al. “Statistical estimation and testing via the

sorted L1 norm”. In: arXiv preprint arXiv:1310.1969 (2013).

[Bog+13b] Małgorzata Bogdan et al. “Supplementary materials for Statistical

Estimation and Testing via the Sorted l1 Norm.” In: Available at

https: // statweb. stanford. edu/ ~candes/ publications/

downloads/ SortedL1_ SM. pdf (2013).

263

https://statweb.stanford.edu/~candes/publications/downloads/SortedL1_SM.pdf
https://statweb.stanford.edu/~candes/publications/downloads/SortedL1_SM.pdf

[Bog+15a] Małgorzata Bogdan et al. “SLOPE—Adaptive variable selection via

convex optimization”. In: The Annals of Applied Statistics 9.3 (2015),

p. 1103.

[Bog+15b] Małgorzata Bogdan et al. “SLOPE—adaptive variable selection via

convex optimization”. In: The annals of applied statistics 9.3 (2015),

p. 1103.

[BR08] Howard D Bondell and Brian J Reich. “Simultaneous regression

shrinkage, variable selection, and supervised clustering of predictors

with OSCAR”. In: Biometrics 64.1 (2008), pp. 115–123.

[Brz+18] Damian Brzyski et al. “Group SLOPE—Adaptive selection of groups

of predictors”. In: Journal of the American Statistical Association

(2018), pp. 1–15.

[Brz+19] Damian Brzyski et al. “Group SLOPE—Adaptive selection of groups

of predictors”. In: Journal of the American Statistical Association

114.525 (2019), pp. 419–433.

[BS13] J Frederic Bonnans and Alexander Shapiro. Perturbation analysis of

optimization problems. Springer Science & Business Media, 2013.

[BS98] J Frederic Bonnans and Alexander Shapiro. “Optimization problems

with perturbations: A guided tour”. In: SIAM review 40.2 (1998),

pp. 228–264.

264

[BT09] Amir Beck and Marc Teboulle. “A fast iterative shrinkage-

thresholding algorithm for linear inverse problems”. In: SIAM journal

on imaging sciences 2.1 (2009), pp. 183–202.

[Bu+20a] Zhiqi Bu et al. “Algorithmic analysis and statistical estimation of

SLOPE via approximate message passing”. In: IEEE Transactions

on Information Theory 67.1 (2020), pp. 506–537.

[Bu+20b] Zhiqi Bu et al. “Algorithmic Analysis and Statistical Estimation of

SLOPE via Approximate Message Passing”. In: IEEE Transactions

on Information Theory 67.1 (2020), pp. 506–537.

[BY08] ZD Bai and YQ Yin. “Limit of the smallest eigenvalue of a large

dimensional sample covariance matrix”. In: Advances In Statistics.

World Scientific, 2008, pp. 108–127.

[Cha+98] Antonin Chambolle et al. “Nonlinear wavelet image processing: vari-

ational problems, compression, and noise removal through wavelet

shrinkage”. In: IEEE Transactions on Image Processing 7.3 (1998),

pp. 319–335.

[CM19] Michael Celentano and Andrea Montanari. “Fundamental Barriers

to High-Dimensional Regression with Convex Penalties”. In: arXiv

preprint arXiv:1903.10603 (2019).

265

[CMW20] Michael Celentano, Andrea Montanari, and Yuting Wei. “The Lasso

with general Gaussian designs with applications to hypothesis testing”.

In: arXiv preprint arXiv:2007.13716 (2020).

[DDDM04] Ingrid Daubechies, Michel Defrise, and Christine De Mol. “An iterative

thresholding algorithm for linear inverse problems with a sparsity

constraint”. In: Communications on Pure and Applied Mathematics:

A Journal Issued by the Courant Institute of Mathematical Sciences

57.11 (2004), pp. 1413–1457.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient

methods for online learning and stochastic optimization.” In: Journal

of machine learning research 12.7 (2011).

[Dik67] II Dikin. “Iterative solution of problems of linear and quadratic

programming”. In: Doklady Akademii Nauk. Vol. 174. 4. Russian

Academy of Sciences. 1967, pp. 747–748.

[DMM09a] David L Donoho, Arian Maleki, and Andrea Montanari. “Message-

passing algorithms for compressed sensing”. In: Proceedings of the

National Academy of Sciences 106.45 (2009), pp. 18914–18919.

[DMM09b] David L Donoho, Arian Maleki, and Andrea Montanari. “Message-

passing algorithms for compressed sensing”. In: Proceedings of the

National Academy of Sciences 106.45 (2009), pp. 18914–18919.

266

[DMM10] David L Donoho, Arian Maleki, and Andrea Montanari. “Message

passing algorithms for compressed sensing: I. motivation and construc-

tion”. In: 2010 IEEE information theory workshop on information

theory (ITW 2010, Cairo). IEEE. 2010, pp. 1–5.

[DMM11] David L Donoho, Arian Maleki, and Andrea Montanari. “The noise-

sensitivity phase transition in compressed sensing”. In: IEEE Trans-

actions on Information Theory 57.10 (2011), pp. 6920–6941.

[Don05] David L. Donoho. “Neighborly polytopes and sparse solutions of

underdetermined linear equations”. In: (2005).

[Don06] David L Donoho. “High-dimensional centrally symmetric polytopes

with neighborliness proportional to dimension”. In: Discrete & Com-

putational Geometry 35.4 (2006), pp. 617–652.

[Doo53] Joseph Leo Doob. Stochastic processes. Vol. 101. New York Wiley,

1953.

[DT09a] David Donoho and Jared Tanner. “Counting faces of randomly pro-

jected polytopes when the projection radically lowers dimension”. In:

Journal of the American Mathematical Society 22.1 (2009), pp. 1–53.

[DT09b] David Donoho and Jared Tanner. “Observed universality of phase tran-

sitions in high-dimensional geometry, with implications for modern

data analysis and signal processing”. In: Philosophical Transactions of

267

the Royal Society A: Mathematical, Physical and Engineering Sciences

367.1906 (2009), pp. 4273–4293.

[Fer+14] Hans Joachim Ferreau et al. “qpOASES: A parametric active-set al-

gorithm for quadratic programming”. In: Mathematical Programming

Computation 6.4 (2014), pp. 327–363.

[FN16] Mario Figueiredo and Robert Nowak. “Ordered weighted l1 regu-

larized regression with strongly correlated covariates: Theoretical

aspects”. In: Artificial Intelligence and Statistics. 2016, pp. 930–938.

[FW56] Marguerite Frank and Philip Wolfe. “An algorithm for quadratic

programming”. In: Naval research logistics quarterly 3.1-2 (1956),

pp. 95–110.

[GHT13] Max Grazier GSell, Trevor Hastie, and Robert Tibshirani. “False vari-

able selection rates in regression”. In: arXiv preprint arXiv:1302.2303

(2013).

[GI83] Donald Goldfarb and Ashok Idnani. “A numerically stable dual

method for solving strictly convex quadratic programs”. In: Mathe-

matical programming 27.1 (1983), pp. 1–33.

[HL19a] Hong Hu and Yue M Lu. “Asymptotics and optimal designs of SLOPE

for sparse linear regression”. In: 2019 IEEE International Symposium

on Information Theory (ISIT). IEEE. 2019, pp. 375–379.

268

[HL19b] Hong Hu and Yue M Lu. “Asymptotics and optimal designs of SLOPE

for sparse linear regression”. In: 2019 IEEE International Symposium

on Information Theory (ISIT). IEEE. 2019, pp. 375–379.

[JM13] Adel Javanmard and Andrea Montanari. “State evolution for general

approximate message passing algorithms, with applications to spatial

coupling”. In: Information and Inference: A Journal of the IMA 2.2

(2013), pp. 115–144.

[JP12] Richard Johnsonbaugh and William E Pfaffenberger. Foundations of

mathematical analysis. Courier Corporation, 2012.

[Kas77] Boris Sergeevich Kashin. “Diameters of some finite-dimensional sets

and classes of smooth functions”. In: Izvestiya Rossiiskoi Akademii

Nauk. Seriya Matematicheskaya 41.2 (1977), pp. 334–351.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic

optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[KB20] Michał Kos and Małgorzata Bogdan. “On the asymptotic properties

of SLOPE”. In: Sankhya A 82.2 (2020), pp. 499–532.

[KF75] Andrey Nikolaevich Kolmogorov and Sergey Vasil’evich Fomin. Intro-

ductory real analysis. Courier Corporation, 1975.

269

[Krz+12] Florent Krzakala et al. “Probabilistic reconstruction in compressed

sensing: algorithms, phase diagrams, and threshold achieving matri-

ces”. In: J. Stat. Mech. Theory Exp. 8 (2012).

[Led01] Michel Ledoux. The concentration of measure phenomenon. 89. Amer-

ican Mathematical Soc., 2001.

[Lit+05] Alexander E Litvak et al. “Smallest singular value of random matrices

and geometry of random polytopes”. In: Advances in Mathematics

195.2 (2005), pp. 491–523.

[MMB+18a] Ali Mousavi, Arian Maleki, Richard G Baraniuk, et al. “Consistent

parameter estimation for LASSO and approximate message passing”.

In: The Annals of Statistics 46.1 (2018), pp. 119–148.

[MMB+18b] Ali Mousavi, Arian Maleki, Richard G Baraniuk, et al. “Consistent

parameter estimation for LASSO and approximate message passing”.

In: The Annals of Statistics 46.1 (2018), pp. 119–148.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The

theory of error-correcting codes. Vol. 16. Elsevier, 1977.

[MY88] Katta G Murty and Feng-Tien Yu. Linear complementarity, linear

and nonlinear programming. Vol. 3. Citeseer, 1988.

270

[Nes83] Yurii Nesterov. “A method for unconstrained convex minimization

problem with the rate of convergence O (1/kˆ 2)”. In: Doklady an

ussr. Vol. 269. 1983, pp. 543–547.

[PB14] Neal Parikh and Stephen Boyd. “Proximal algorithms”. In: Founda-

tions and Trends® in Optimization 1.3 (2014), pp. 127–239.

[Pit82] Loren D Pitt. “Positively correlated normal variables are associated”.

In: The Annals of Probability (1982), pp. 496–499.

[Pol64] Boris T Polyak. “Some methods of speeding up the convergence

of iteration methods”. In: USSR Computational Mathematics and

Mathematical Physics 4.5 (1964), pp. 1–17.

[Ran11] Sundeep Rangan. “Generalized approximate message passing for

estimation with random linear mixing”. In: Proc. IEEE Int. Symp.

Inf. Theory. 2011, pp. 2168–2172.

[Roy68] Halsey Lawrence Royden. Real analysis. Krishna Prakashan Media,

1968.

[Rud+64] Walter Rudin et al. Principles of mathematical analysis. Vol. 3.

McGraw-hill New York, 1964.

[Rud+76] Walter Rudin et al. Principles of mathematical analysis. Vol. 3.

McGraw-hill New York, 1976.

271

[RV18] Cynthia Rush and Ramji Venkataramanan. “Finite sample analysis

of approximate message passing algorithms”. In: IEEE Trans. on Inf.

Theory 64.11 (2018), pp. 7264–7286.

[RW09] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis.

Vol. 317. Springer Science & Business Media, 2009.

[SBC17] Weijie Su, Małgorzata Bogdan, and Emmanuel J Candès. “False

discoveries occur early on the Lasso path”. In: The Annals of Statistics

45.5 (2017), pp. 2133–2150.

[SC+16] Weijie Su, Emmanuel Candes, et al. “SLOPE is adaptive to unknown

sparsity and asymptotically minimax”. In: The Annals of Statistics

44.3 (2016), pp. 1038–1068.

[SC16] Weijie Su and Emmanuel J Candès. “SLOPE is adaptive to unknown

sparsity and asymptotically minimax”. In: The Annals of Statistics

44.3 (2016), pp. 1038–1068.

[SCC19] Pragya Sur, Yuxin Chen, and Emmanuel J Candès. “The likelihood

ratio test in high-dimensional logistic regression is asymptotically a

rescaled chi-square”. In: Probability Theory and Related Fields 175.1-2

(2019), pp. 487–558.

272

[Sha92] Alexander Shapiro. “Perturbation analysis of optimization problems in

Banach spaces”. In: Numerical Functional Analysis and Optimization

13.1-2 (1992), pp. 97–116.

[SNW12] Suvrit Sra, Sebastian Nowozin, and Stephen J Wright. Optimization

for machine learning. MIT Press, 2012.

[Su18] Weijie J Su. “When is the first spurious variable selected by sequential

regression procedures?” In: Biometrika 105.3 (2018), pp. 517–527.

[SZ49] Herbert E Salzer and Ruth Zucker. “Table of the zeros and weight

factors of the first fifteen Laguerre polynomials”. In: Bulletin of the

American Mathematical Society 55.10 (1949), pp. 1004–1012.

[TAH18] Christos Thrampoulidis, Ehsan Abbasi, and Babak Hassibi. “Precise

Error Analysis of Regularized M -Estimators in High Dimensions”.

In: IEEE Transactions on Information Theory 64.8 (2018), pp. 5592–

5628.

[Tib96a] Robert Tibshirani. “Regression shrinkage and selection via the lasso”.

In: Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 58.1 (1996), pp. 267–288.

[Tib96b] Robert Tibshirani. “Regression shrinkage and selection via the lasso”.

In: Journal of the Royal Statistical Society: Series B (Methodological)

58.1 (1996), pp. 267–288.

273

[TOH14] Christos Thrampoulidis, Samet Oymak, and Babak Hassibi. “The

Gaussian min-max theorem in the presence of convexity”. In: arXiv

preprint arXiv:1408.4837 (2014).

[TOH15] Christos Thrampoulidis, Samet Oymak, and Babak Hassibi. “Regular-

ized linear regression: A precise analysis of the estimation error”. In:

Proceedings of Machine Learning Research 40 (2015), pp. 1683–1709.

[Wai09] Martin J Wainwright. “Sharp thresholds for High-Dimensional and

noisy sparsity recovery using ℓ1-Constrained Quadratic Programming

(Lasso)”. In: IEEE transactions on information theory 55.5 (2009),

pp. 2183–2202.

[Wan+20] Hua Wang et al. “The complete Lasso tradeoff diagram”. In: Advances

in Neural Information Processing Systems 33 (2020).

[WMZ18] Haolei Weng, Arian Maleki, and Le Zheng. “Overcoming the limita-

tions of phase transition by higher order analysis of regularization

techniques”. In: Annals of Statistics 46.6A (2018), pp. 3099–3129.

[WWM17] Shuaiwen Wang, Haolei Weng, and Arian Maleki. “Which bridge

estimator is optimal for variable selection?” In: arXiv preprint

arXiv:1705.08617 (2017).

274

[WWM19] Shuaiwen Wang, Haolei Weng, and Arian Maleki. “Does SLOPE

outperform bridge regression?” In: arXiv preprint arXiv:1909.09345

(2019).

[WYS20] Hua Wang, Yachong Yang, and Weijie J Su. “The price of competition:

Effect size heterogeneity matters in high dimensions”. In: arXiv

preprint arXiv:2007.00566 (2020).

[YL06a] Ming Yuan and Yi Lin. “Model selection and estimation in regression

with grouped variables”. In: Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 68.1 (2006), pp. 49–67.

[YL06b] Ming Yuan and Yi Lin. “Model selection and estimation in regression

with grouped variables”. In: Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 68.1 (2006), pp. 49–67.

[ZB21] Yiliang Zhang and Zhiqi Bu. “Efficient designs of SLOPE penalty

sequences in finite dimension”. In: The 24th International Conference

on Artificial Intelligence and Statistics (2021).

[Zei12] Matthew D Zeiler. “Adadelta: an adaptive learning rate method”. In:

arXiv preprint arXiv:1212.5701 (2012).

[ZF14] Xiangrong Zeng and Mario AT Figueiredo. “Decreasing Weighted

Sorted ℓ1 Regularization”. In: IEEE Signal Processing Letters 21.10

(2014), pp. 1240–1244.

275

[ZH05a] Hui Zou and Trevor Hastie. “Regularization and variable selection

via the elastic net”. In: Journal of the royal statistical society: series

B (statistical methodology) 67.2 (2005), pp. 301–320.

[ZH05b] Hui Zou and Trevor Hastie. “Regularization and variable selection

via the elastic net”. In: Journal of the royal statistical society: series

B (statistical methodology) 67.2 (2005), pp. 301–320.

[Zou06a] Hui Zou. “The adaptive lasso and its oracle properties”. In: Journal

of the American statistical association 101.476 (2006), pp. 1418–1429.

[Zou06b] Hui Zou. “The adaptive lasso and its oracle properties”. In: Journal

of the American statistical association 101.476 (2006), pp. 1418–1429.

276

	Algorithmic Analysis And Statistical Inference Of Sparse Models In High Dimension
	Recommended Citation

	Algorithmic Analysis And Statistical Inference Of Sparse Models In High Dimension
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories

	ACKNOWLEDGEMENT
	ABSTRACT
	Introduction
	Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing
	Introduction
	Algorithmic Development
	AMP Background
	Analysis of the AMP State Evolution
	Threshold Calibration

	Asymptotic Characterization of SLOPE
	AMP Recovers the SLOPE Estimate
	Exact Asymptotic Characterization of the SLOPE Estimate

	Proof for Asymptotic Characterization of the SLOPE Estimate
	Proof AMP Finds the SLOPE Solutions
	Preliminaries on SLOPE
	Main Technical Lemma

	Expansion of the AMP State Evolution Ideas
	Verification of Main Technical Lemma Conditions
	Condition (4)
	Condition (5)
	Condition (1)
	Condition (2)
	Condition (3)

	Discussion and Future Work
	Appendix
	State Evolution Analysis
	Verifying Properties (P1) and (P2)
	Proof of Fact 2.2.7
	Proof of Lemma 2.7.1
	Proof of Lemma 2.7.3
	Technical Details for the Condition (3) Proof
	Some Useful Auxiliary Material

	Characterizing the SLOPE Trade-off: A Variational Perspective and the Donoho-Tanner Limit
	Introduction
	A peek at our results
	Organization

	Main results
	Bounds on the SLOPE trade-off
	Breaking the Donoho–Tanner power limit
	Below the Donoho–Tanner power limit
	Instance-superiority of SLOPE

	Preliminaries for Proofs
	Lower bound of SLOPE trade-off
	Optimal prior is three-point prior
	Characterizing optimal penalty analytically
	Searching over optimal penalty numerically
	Solving the quadratic program
	Summary
	Differences between SLOPE and Lasso

	Upper bound of SLOPE trade-off
	Möbius upper bound is achievable
	Infinity-or-nothing prior has FDP above upper bound
	Gap between upper and lower bounds

	Discussion
	Appendix
	When does SLOPE outperform Lasso?
	Detailed preliminary results of SLOPE AMP
	Bridging SLOPE and soft-thresholding
	SLOPE trade-off and Möbius upper bound
	Lower bound not equal to upper bound
	Proving SLOPE outperforms the Lasso for fixed prior
	Auxiliary proofs
	Computation of SLOPE AMP quantities
	Design of SLOPE penalty under fixed prior

	Efficient Designs of SLOPE Penalty Sequences in Finite Dimension
	Introduction
	Notations

	SLOPE penalty design under AMP regime
	Computing the gradients with respect to the penalty
	Projection onto non-negative decreasing vectors
	Projected Gradient Descents
	Transforming from to

	k-level SLOPE
	Practical penalty design for k-level SLOPE

	Experiments
	Synthetic datasets
	Real datasets for linear and logistic regression

	Discussion
	Appendix
	Introduction to MMSE AMP
	Analysis of Gradient in PGD for
	Analysis of Projection in PGD for

