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ABSTRACT

THEORETICAL AND COMPUTATIONAL STUDIES OF HEAT TRANSPORT

PROCESSES IN MOLECULAR SYSTEMS

Renai Chen

Abraham Nitzan

There has been growing research interest in the field of nanoscale thermal transport

over the past two decades due its importance to a variety of fascinating applications,

such as waste heat control, improved electronic functionality, and phononics building

blocks. Much of this focus has been on solid-state systems for which advanced ex-

perimental characterizations and measurements are readily available. Molecule-based

systems, which in principle exhibit no less structural richness than solid-state sys-

tems and may show excellent energy transport capabilities, have been largely ignored

until recently. This is mostly because of the difficulties associated with measuring

heat transport on the molecular scale. However, a few recent experimental break-

throughs have brought molecular energy transport process into the spotlight, and at

the same time established measurement techniques that can be tested, verified, and

explained using theoretical tools. This dissertation examines and explores theoretical

approaches for modeling heat transport in molecular systems. Specifically, we have

developed a stochastic nonequilibrium molecular dynamics (MD) method which mim-

ics the experimental setting of substrate-bridge-substrate structure, i.e., a molecular

junction. We incorporate this approach, along with a quantum Landauer’s formalism,

into the open-source molecular simulation package–GROMACS, so that it can be ap-

plied to molecular systems with different topologies and thermal environments. Our

simulations of heat conduction in hydrocarbon-based single molecule junctions yield

excellent agreement with the recent state-of-the-art experimental data. Within the
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capacities of the new method, we have also investigated phononic interference effects

in the heat conduction characteristics of benzendithiol molecules. Using the methods

developed in this dissertation, we have mapped, for the first time, thermal fluxes

down to the atomistic level. In the context of phononic energy transport, we develop

a simulation method that integrates quantum effects into classical MD. This hybrid

method, once fully implemented, will compensate for the disadvantages of classical

approaches at low temperatures and for the difficulty in treating anharmonicites in

Landauer-type quantum transport calculations. This method will improve the pre-

dictive power of classical heat conduction simulations.

The second part of this dissertation explores an intriguing energy transport chan-

nel that has been newly discovered termed electron-transfer-induced heat transport

(ETIHT), which is distinct from traditional heat transfer mechanisms that rely purely

on molecular vibrations. We construct a theoretical model that combines the two en-

ergy transport channels (ETIHT and phononic) into one general model and then we

show analytically under certain parametric thresholds (e.g. reorganization energies)

that ETIHT dominates while other conditions may magnify the phononic contribu-

tions. Although the work in this part of the thesis is currently purely theoretical, it

may provide useful insights into future organic molecular thermoelectric devices.
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CHAPTER 1

Introduction

The idea that energy transport at the molecular level, which often manifests itself as

heat transfer, can be controlled and manipulated as we have done to electrical currents

in molecular electronics, is intriguing. There are multiple motivations behind this

idea, but the primary one is to improve the stability and functionality of nanoscale

and molecular electronics.5,6 Other more ambitious motivations include the potential

realization of phononic devices7 which may form the basic building blocks of thermal

computations in the future.

Heat conduction in molecules has become a subject of increasing interest because

of its fundamental role in transmitting and dissipating energy on the atomistic scale

as well as its technological importance in the performance and stability of molecular

nanodevices.6,8–15 The recent measurement of heat conduction in single-molecule junc-

tions16 demonstrates the development of state-of-the-art microscopic thermal probing

and measuring techniques, and potentially opens the door for unveiling the interplay

between molecular structure and thermal transport properties.

Nevertheless, the progress of technological applications using single molecules has

been slow because of the lack of understanding of the fundamental mechanisms that

govern molecular heat transport, which has been shown to behave differently than its

macroscopic counterpart. One example of this is that Fourier’s law of heat transfer is

typically violated at the atomistic level.17 Therefore, theoretical and computational

work that uncovers the basic principles of thermal transfer processes in molecular

systems are needed to advance the field. Ultimately, such studies will enhance our

overall abilities to control and harvest energy at the nanoscale when combined with
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advanced molecular engineering capacities.14,18

In molecular systems, there are mainly two different channels for transporting

energy: phononic and electron-transfer-induced. The former has attracted significant

research interest for a few decades, with many experimental and computational chal-

lenges still waiting to be fully resolved.6,7,9 The possibility of heat being transported

by electron transfer was predicted a few years ago.19 In an interesting analogue to

thermoelectric effect in the metals, the electron-induced heat transport has important

implications in molecular systems involving electron transfer (ET) processes.20,21 In

this dissertation, we will discuss research efforts that advance the understanding of

both these energy transport channels.

Understanding phononic heat transport processes in molecular junctions is a cen-

tral issue in the developing field of nanoscale heat conduction and manipulation. In

chapter two, we will give an introduction to the basic methodologies we use to study

the phononic thermal transport in molecular systems examined in the first half of the

thesis. Using a stochastic nonequilibrium molecular dynamics simulation framework,

we investigate heat transport processes in molecular junctions in the linear response

regime and beyond.

One of the innovations we have introduced is to incorporate molecular dynamics

(MD) using full molecular force fields into heat conduction simulations. This innova-

tion has been used to examine heat transport in different substrate-molecule-substrate

junction structures. An extended molecular model is used to filter Markovian heat

reservoirs through an intermediate substrate region, to provide a realistic and control-

lable effective bath spectral density. In addition, a quantum Landauer-type formalism

is also embedded into the total calculation, so as to provide a insightful comparison

as well as comprehensive understanding of the conduction processes.

As one of the initial application examples of the developed numerical tool, hy-
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drocarbon chain molecules with different bond saturation (alkanes VS. polyynes) are

chosen for our simulations. The results are not only compared to previous theoretical

studies from different groups, but also to the most recent state-of-the-art experimen-

tal data. The results obtained for alkanedithol molecules connecting gold substrates

agree with previous nonequilibrium Green’s function calculations and match recent

experimental thermal conductance measurements of single molecular junctions. For

example, our method predicts a thermal conductance of approximately 20 pW/K

for alkanedithiols, in strong agreement with experimental measurements. Analyses

obtained from different perspectives show anharmonicity, temperature, and localiza-

tion could all play roles in determining the strength of the heat conduction in the

molecules.

In the next section, we probe the effects brought by disordered interfaces (e.g. in

the form of molecular impurity) to molecular heat conduction. Simulations show a

small amount of disorder in a pure molecule (e.g. silicon replacing carbon in an alkane

chain) or structural symmetry changes (e.g. changing the bridge in a junction from a

hydrocarbon chain to a ring-chain hybridized molecule) could have significant effects

on the heat conduction across the molecules, such as causing ballistic-to-diffusive

transition.

In chapter three, we continue our study of molecular heat conduction using ring-

based aromatic molecules. An intrinsic, wave-like interference effect in the heat

conduction across benzenedithiol single-molecule junctions is uncovered. Previous

theoretical descriptions of such effects have relied on the quantum Landauer-type ex-

pression for heat transport by harmonic molecules, and such observations are some-

times referred to as “quantum interference”. We demonstrate via classical atomistic

simulations of heat conduction in benzenedithiol single-molecule junctions that at

room-temperature the interference effect is essentially classical. We also observe a
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destructive interference pattern that arises in both classical simulations and quantum

calculations, which is interesting especially because there is an analogue to this phe-

nomenon in molecular electronic conduction. At the same time, using the method we

described in the previous chapter, we demonstrate the capacity of mapping the total

heat current going through a single-molecule junction down to the level of atomic

local heat currents. This provides a clearer picture of heat fluxes in the atomic space.

In chapter four, a new computational approach is introduced to merge quantum

mechanical calculations with full-force-field classical MD simulations, using some of

the advantages of each method in one integrated way. Traditionally, there are two

basic theoretical approaches for studying heat conduction in molecular systems, par-

ticularly in a molecular junction setting: molecular dynamics (MD) and quantum

calculations (QC) based Landauer’s formalism.

Molecular dynamics has been widely used to study the thermal properties of ex-

tended systems22,23,23–32 because of the rich pool of parameterized models that include

many-body interactions and its comparatively low computational cost. Quantum cal-

culations are often employed using the harmonic approximations in the form of Lan-

dauer transport formula, and although such an approximation may be good at low

temperatures, it generally loses applicability at higher temperatures or when anhar-

monicities or scattering effects are important.16,18,33–36. As experimental techniques

targeting heat transport in single-molecule-junctions (SMJ) develop quickly,16 there

is an urgency for computational scientists to find a way of taking advantages of both

MD and QC so that heat conduction in SMJ can be accurately and systematically

investigated. In this chapter, we will show such an integration is possible, and how

it could be effectively adopted to MD simulations.

The second half of the thesis (chapter five) examines electron-transfer-induced heat

transport (ETIHT)19. A unified theory of heat transport in environments that sustain
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intersite phononic coupling and electron hopping is developed. The heat currents

generated by both phononic transport and electron transfer between donor-acceptor

sites characterized by different local temperatures are calculated and compared. Using

typical molecular parameters, we find that the magnitude of the electron-transfer-

induced heat current can be comparable to that of the standard phononic transport

for donor-acceptor pairs with efficient bidirectional electron transfer rates (relatively

small intersite distance and favorable free-energy difference). In most other situations,

phononic transport is the dominant heat transfer mechanism.

Here we describe briefly the theory of electron transfer across a thermal gradient.

Let us assume we have a molecular system consisting of two harmonic oscillator

modes (that is two parabolas allow the reaction coordinate), in which one mode is

in local equilibrium with thermal reservoir of temperature T1 and the other in local

equilibrium with thermal reservoir of temperature T2 (in general T1 6= T2). The

two modes do not interact directly, meaning the charge near site 1 only feels the

thermal environment of site 1 and the charge near site 2 also only feels the thermal

environment of site 2. Under this model setting, the ET rates across the temperature

gradient can be evaluated as37,

ka→b ∝ exp

[
− (β1ER1 + β2ER2)

(
∆Eba + ER

2ER

)2
]

(1.1)

kb→a ∝ exp

[
− (β1ER1 + β2ER2)

(
∆Eba − ER

2ER

)2
]
. (1.2)

In the above expression, the subscript a and b represent the state of the system when

the electron stays within the vicinity of site 1 before transfer, and state of the system

after the electron hops to site 2, respectively. The characteristic temperatures are

represented as βj = 1/kBTj (j=1,2). ER1 and ER2 are reorganization energies of

harmonic mode 1 and mode 2 alone, while ER is the sum of the two. ∆Eba denotes
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the free energy difference of the two mode parabolas. In the limit of zero thermal

gradient (T1 = T2 = T ), the rates above reduce to

ka→b ∝ exp

[
−β (∆Eba + ER)2

4ER

]
(1.3)

kb→a ∝ exp

[
−β (∆Eba − ER)2

4ER

]
. (1.4)

which agree with the famous Marcus theory38–40 of ET reaction.

There can be energy transport that arises from electron transfer across a temper-

ature gradient, even when the system is in a nonequilibrium steady state (SS), i.e.,

when the net charge flux between sites vanishes. Such a heat current is calculated

as37,

J
(1)
Q = −J (2)

Q = Jel
2ER1ER2 (T2 − T1)

ER1T1 + ER2T2

, (1.5)

where J
(1)
Q and J

(2)
Q are heat currents flowing out of the thermal reservoirs associated

with site 1 and site 2, respectively. Jel is the unidirectional electronic current at SS.

We may see when the two sites have same temperature, the heat current goes to zero,

which is in agreement with what would be expected under equilibrium conditions.

The finding of ETIHT in nonequilibrium molecular systems opens a new path for

energy manipulation via tuning the ET rate or by controlling chemical reactions using

engineering thermal environments.This could have important application in the de-

velopment of thermoelectric molecular devices. More details on the theory of ETIHT

and some recent applications can be found in Ref.19 and other work20,21,41,42. Chapter

five examines two the magnitude of ETIHT compares with phononic heat conduction,

providing physical insights into both these two different channels in complex molecular

systems. This will guide experimental advances toward the measurement of ETIHT.
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In summary, this dissertation will, first, give a general survey of the advances

in the nanoscale heat transport field, at the molecular level in particular, and, sec-

ond, show in detail some significant findings from our research using theoretical and

computational tools to simulate heat transport at the molecular level.
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CHAPTER 2

Phononic energy transport in molecular junctions and its molecular

dynamics simulation realization

This chapter is partly adapted from The Journal of Chemical Physics 153, 144113

(2020)

2.1 Introduction

Heat conduction in molecular junctions has become a subject of increasing inter-

est because of its fundamental role in transmitting and dissipating energy on the

molecular scale as well as its technological importance for heat management in envi-

sioned molecular nanodevices.6,8,9,11–15,43 Experimentally, such processes were inves-

tigated as vibrational energy transfer between molecular moieties that can be vibra-

tionally excited and probed,13,15,44,45 in adsorbed layers after flash heating a metal

substrate,46–49 along molecular layers connecting two solid substrates14,30,50–52 and

very recently also in single-molecule junctions.16,53 On the theoretical side, on top of

many studies of generic models aimed to examine fundamental aspects concerning the

dependence of heat transport in nanoscale systems on dimensionality, disorder and

size12,43,54, several theoretical and computational studies have investigated specific

molecular systems and structures, either by classical molecular dynamics(MD) sim-

ulations30–33,55–60 or by quantum calculations based on the harmonic approximation

that enables evaluation of heat conduction by a Landauer-like formula16,18,34–36. Such

calculations have established, in agreement to experimental observations, the ballis-

tic nature of heat transport through short hydrocarbon and similar chain molecules
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(although indications of some diffusive characters are observed in some systems with

heavier substituents15,52,61–63) as well as sensitivity to molecule-substrate binding and

mode-matching.

In the linear response regime, heat transport can be evaluated from equilibrium

MD simulations using the Green-Kubo formula22–26,64–66. Steady state MD simula-

tions may be done by imposing a temperature difference between the system edges

and evaluating the current22,23,67–69 or, in an inverted fashion, imposing a heat cur-

rent and evaluating the associated steady state temperature profile.27–29,70–72 For the

present and subsequent numerical studies of the interplay between molecular junc-

tions composition and structure and its heat transport properties, we have developed

a numerical tool (described below) that can be readily adapted to different molecules

and structures. To make it possible to address non-steady-state situations (such that

when the system experiences external driving) we have chosen to use nonequilibrium

Langevin dynamics (see, e.g.,33,73–75) where each system-bath contact is represented

by a stochastic Langevin force and corresponding damping constructed to impose the

bath temperature and its spectral properties. Our code is based on the GROningen

MAchine for Chemical Simulations (GROMACS) MD package so that it can readily

be applied to many molecular and substrate models and different force fields. Care

is taken to address the bath spectral properties, done here by using enough sub-

strate layers as part of the inner system. (Alternatively, this can be achieved by

mathematical filtering see, e.g.76 and also Appendix A.6). A unique feature of our

implementation is a model by which we compute heat fluxes between different molec-

ular units, hence obtaining a map of local temperatures and heat currents within the

molecular bridge.3

Obviously, the computational methodology discussed above is based on classi-

cal dynamics which is not generally suitable, at room temperature, for the higher
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molecular vibrations. On the other hand, such vibrations are to a good approxi-

mation harmonic. In the harmonic approximation a quantum calculation based on

a Landauer-type formula (see, e.g.18,33–36) can be done. Our code implements this

calculation as well, using the molecular normal modes and their couplings to the sub-

strates to calculate the phonon transmission, making it possible to compare quantum

and classical results and assess their reliability and relevance. This normal mode

analysis can also be used to assess the localization characters of these modes by eval-

uating their spatial extent and atomic participation ratios,77 thereby assessing the

correlation between these attributes of the molecule and its heat transport behavior.

Here we apply this tool to the study of heat transport in single alkane chains, a

system that has been studied numerically33,34 and experimentally (mostly for alkane

layers50,51,78, but very recently also for single alkane chains16). Our results serve to

test our calculations against previous work and compare them to recent experimental

results as well as to Landauer based harmonic quantum calculations. Furthermore,

we present heat conduction results also for a series of conjugated carbon chains. Such

chains are expected to be better electronic conductors79,80 but are found to be similar

to their saturated counterparts in their heat transport behavior.

Section 2.2 provides details on our simulation techniques and our code. Section 2.3

discusses the results of heat conduction properties of different types of hydrocarbon

chains within molecular junctions using such approaches, and compare them to the

existing theoretical and experimental data. Section 2.4 concludes.
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2.2 Model and Methodology

2.2.1 Classical simulations

While the energy spectrum of molecular vibrations encompasses a relatively large (0

– 0.5 eV) frequency range, high-frequency vibrations tend to be spatially localized,

thermally underpopulated and energetically above the cutoff frequency of many solid-

state substrates. For these reasons, such modes contribute little to molecular heat

transport at room temperature33. Molecular heat transport is therefore dominated

by lower frequency vibrations, for which classical dynamics provide a reasonable ap-

proximation. This behavior is further amplified by the low Debye frequency of the

substrate (gold) used in the present study. Available molecular force-fields allow

efficient representation of classical, anharmonic molecular potential energy surfaces

which are the input to the stochastic nonequilibrium MD studies described below.

In the present work we chose to represent the attributes of the thermal environ-

ment using an explicit thermal bath. As shown in Figure 2.1 we extend our molecular

system with a few atomic layers of the substrate, which can be seen as the tips of the

measuring apparatus and are usually composed of layers of metallic materials (here

gold). Such substrates are further connected to infinitely large thermal reservoirs,

acting as effective filters of the Markovian white noise.

The system under investigation is a single-molecule junction comprising either

alkanedithiolsHS(CH2)nSH of different lengths n, or their conjugated polyyneHS(−C ≡

C−)nSH counterparts, connecting gold substrates. Physically, the substrates consti-

tute the thermal baths that drive heat current through the molecular systems, however

segments of these substrate (regions II in Figure 2.1) are included in the extended

molecule and effectively act as filters for the white noise employed at the interface

between regions II and III so as to affect the molecule with the (approximately) cor-

11



Figure 2.1: A schematic diagram of the explicit bath model. Region I is the molecular
system (including thiol groups); Region II represents the interface and is comprised
of explicit layers of metallic materials; Region III are implicit baths representing the
infinitely large thermal reservoirs, exerting white noise.

rect spectral density of the physical substrate. These segments are taken as pyramids

with increasing numbers of atoms per layer (e.g. 1, 3, 6, etc., see inserts to Figure 2.2

and A.2) as we go further into the substrate. The atoms in the outermost layer are

subjected to white noise and damping related by the imposed temperatures, using

standard Langevin dynamics as outlined below. In the simulations presented in Sec-

tion 5.3 we have used for the extended molecule gold pyramids with 3 gold layers – the

smallest number needed to achieve approximate convergence of the heat conduction

behavior, see Appendix A.1 for details. Finally, to enforce the junction geometry, the

explicit substrate segment is position-restrained by a harmonic force acting on the

atoms in the outer layer.

The Universal Force Field (UFF)81 parameters are chosen throughout the simu-

lations. UFF is one of a few force fields that includes most of the atomic types and

bonds across the periodic table, and thus is suitable for organometallic junctions.

12



As the high frequency carbon-hydrogen bonds often contribute little to the overall

vibrational heat conduction, it is reasonable to compare side-by-side the effect of in-

cluding the hydrogen atoms explicitly appear in the force field (all-atom(aa) UFF

) in comparison to the unified-atom (ua) version of the same force field. Results

obtained using these force-fields are compared in Figure 2.2 and Table 2.1 The rel-

ative symmetric difference 1 between the calculation results for the two force-fields

is 4.89%, and Welch’s t-test2 is 13%. We therefore conclude that the unified-atom

approximation is acceptable for our purposes. To implement the thermal stochastic

Conductance (pW/K) SD SE.
All-Atom 20.73 7.44 0.74

Unified-Atom 21.77 6.40 0.64

Table 2.1: The heat conductance calculated for 1,6-hexanedithiol moleule connecting
gold surfaces, using the UFF all-atom and UFF unified-atom force fields. One hundred
steady-state trajectories of length 500 ps are taken for each force field. Also shown are
the standard deviation (SD) and standard error (SE) associated with this calculation.

boundary conditions, some of the atoms in region II are connected to the external

heat baths (region III in Figure 2.1), expressed by standard (constant) friction and

(delta-correlated) random fluctuations in their (Markovian Langevin) equations of

motion. The Langevin equation of motion for a particle coupled to a Markovian bath

is,

ẍi = −∂E(xi)

∂xi
− γK ẋi +R

(i)
K (t), (2.1)

where E(xi) is a mass-weighted energy as a function of the coordinate of the ith

particle xi, γK is the friction coupling to the bath K (in our case K ∈ {L,R} for the

left and right bath), and R
(i)
K (t) is the stochastic noise terms of the respective bath,

assumed independent for different connected atoms. The stochastic terms obey the

1The relative symmetric difference is δ(x, y) = |x−y|
(x+y)/2

2Welch’s t-test is η(x, y) = |E[x]−E[y]|√
σ2
x+σ

2
y

, where σx is the Standard Deviation in random variable x
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Figure 2.2: The steady-state temperature profile for 1,6-hexanedithiol, connecting
two gold substrates that are maintained at temperatures 350K and 300K, comparing
UFF all-atom and UFF unified-atom force fields. The horizontal axis is labeled by
the backbone atoms, Au-S-C-. . . -C-C-S-Au, so that “1” and “10” correspond to the
interfacial gold atoms on the two sides. The insert is the illustration of molecular
junction structure studied throughout the section (six carbons here). The white
noise thermostats are only attached to the layer of gold atoms furthest from the
alkane bridge. The error bars represent the standard error.1,2
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usual fluctuation-dissipation relations

〈
R

(i)
K (t)R

(j)
K (t′)

〉
= 2γKkBTKm

−1
i δ(t− t′)δij, (2.2)〈

R
(i)
L (t)R

(i)
R (t′)

〉
= 0, (2.3)〈

R
(i)
K (t)

〉
= 0, (2.4)

where i and j are the atoms in the outermost layers in the substrates coupled inde-

pendently to their respective baths. The underlying simplification provided by this

Markovian relaxation dynamics, implemented at the II-III interfaces of Figure 2.1, is

amended by the filtering provided by regions II so that the molecule itself is exposed

to baths that approximately replicate the actual substrate spectra.

A customized MD package built around GROMACS is developed and utilized to

conduct the simulations.82 The leap-frog algorithm (provided by GROMACS) is used

for propagation of the deterministic parts of the system, while Langevin dynamics83

is used to propagate the stochastic parts of the simulation as described above. Unless

otherwise stated, the time step is always 1 fs for all runs and the friction associated

with the coupling between the Markovian bath and outermost layer of explicit bulk

(region is II) is 1 ps−1. Initial conditions are set using different utilities such as Open

Babel 84, Avogadro 85 and other homemade programs and scripts are used for creating

input topologies and indices.

The computed classical trajectories are used to evaluate desired observables that

should be averaged over an ensemble of such trajectories obtained from different

realizations of the stochastic boundary conditions. To facilitate the calculation of

heat currents, the potential energy of the inner system, regions I and II in Figure 2.1,

is expressed as a sum of individual interaction terms V (τ), where τ refers to different
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interaction types, e.g., two-body and three-body interactions, etc., namely

Epot =
∑
τ

V (τ)({r1 . . . rn(τ)}) (2.5)

where nτ is the number of atoms involved in the interaction τ . Note that V (τ) itself is

a sum of terms in which {r1 . . . rn(τ)} are the coordinates of any group of n(τ) atoms

that can be connected by the interaction V (τ). To make it possible to define local

energies we assign parts of this interaction to the atomic constituents according to

V (τ)({r1 . . . rn(τ)}) =

n(τ)∑
j

Uτ,j({r1 . . . rn(τ)}), Uτ,j = Cτ,jV
(τ);

n(τ)∑
j

Cτ,j = 1 (2.6)

(A similar model has been explored by Torii et al.86). where the weight factors C are

chosen according to some partition scheme. This choice may reflect some physical

intuition about the system and the atoms involved in each interaction type, however

in our present calculation we use the simplest symmetric partitioning Cτ,j = n(τ)−1.

Given the arbitrariness of this choice the resulting scheme should be regarded as

informative only on a coarse-grained level, involving molecular localities larger than

a single atom or interatomic bond.

With such partitioning defined, the heat flux associated with a given atom i in

the molecular system, is given by (See Appendix A.3.1 for details)

Ji ≡
dEi
dt

=
d

dt

(
1

2
miv

2
i +

∑
τ

Uτ,i

)
=
∑
τ

∑
j 6=i

Jτ,ij, (2.7)

where the heat flux going from atom j to atom i which are connected by V (τ) is
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defined as,

Jτ,ij = Cτ,jfτ,i · vi − Cτ,ifτ,j · vj. (2.8)

where

fτ,k = −∂V
(τ)

∂rk
; k = i, j (2.9)

Eqn. (2.8) and (2.9) can be used to calculate inter-atomic heat currents.

The simulation begins by preparing the desired molecular junction structures (e.g.

insert in Figure 2.2) and optimizing their geometries by equilibration to the average

temperature of the baths. MD trajectories are generated under the given boundary

temperatures (usually 300K and 350K) until steady state is reached (usually about

a few nanosecond). With many steady state configurations (often about a thousand

steady-state trajectories of 500 ps are taken), interatomic forces and atomic velocities

sampled, the overall heat flux Jtot through a plane normal to the heat flow direction

is calculated using

Jtot =
1

N

N∑
s=1

∑
i∈L,j∈R

∑
τ

J
(s)
τ,ij, (2.10)

where i ∈ L, j ∈ R implies that atoms i and j are on different sides (left and right)

of the plane and where N is the total steady-state statistical sample number The

average thermal conductance is defined as the ratio between this quantity and the

temperature bias between the hot and cold baths,

κ =
Jtot

Thot − Tcold

. (2.11)

Furthermore, steady state heat fluxes between individual atom pairs are obtained

from Equation(2.8) (see Appendix A.3.1 for more details), which, again, should be
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regarded as reflecting exact reality only on a scale larger than individual bond lengths.

Note that the latter calculation is not limited to bonded atomic pairs. In addition,

the local temperature of each atom in the conducting molecule is calculated from the

statistically averaged kinetic energy of the atoms.

2.2.2 Quantum calculations in the harmonic approximation

When only the harmonic part of the system-bath interactions is taken into account,

the (phononic) heat current can be expressed by the Landauer-like formula6,33,34,87–90,

J =
~
2π

∫ ∞
0

T (ω) [f (ω, TL)− f (ω, TR)]ωdω (2.12)

f(ω, T ) = (e~ω/kBT − 1)−1 is the Bose-Einstein distribution function for a bath of

temperature T and T is the transmission probability. The latter can be calculated

using the Meir-Wingreen formula91

T (ω) = Tr [Gr
S(ω)ΓL(ω)Ga

S(ω)ΓR(ω)] , (2.13)

in which Ga
S = [Gr

S]†, are the advanced and retarded Green’s functions of the system

and can be written as87.

G
r/a
S (ω) = [ω2M −D − (Σ

r/a
L + Σ

r/a
R )]−1, (2.14)

while

ΓL/R(ω) = i[Σr
L/R(ω)−Σa

L/R(ω)]. (2.15)

18



In the basis of the atomic coordinates, D is the dynamical matrix (or Hessian) whose

elements are the second derivatives of the potential energy with respect to the atomic

coordinates, M is the (diagonal) matrix of atomic masses, and the self-energy matri-

ces Σ
r/a
K associated with the K bath (K ∈ L,R) are given by [Σr

K ]ij = −iωmiγK(ω)δij

This simple form expresses our modeling where the outermost gold atoms are taken

to interact individually with independent white baths.

To evaluate Eqn.2.13 one needs to obtain the Hessian matrix D. The GROMACS

software package provides utilities which construct D for the given forcefield as well

as to obtain the eigenfrequencies and eigenvectors (normal modes) of the system from

its diagonalization.

2.2.3 Quantification of mode localization

In the harmonic approximation, the contribution of any normal mode to the trans-

mission is reflected by its localization character, which may be quantified by its par-

ticipation ratio.33,77 Denote by Ck,α the coefficient for the expansion of the normal

mode coordinates {µk} in terms of the atomic ones, {xα}, i.e.

µk =
∑
α

Ck,αxα. (2.16)

Also define pk,n =
∑

α(n) |Ck,α(n)|2 where α(n) goes over all atomic coordinates (de-

grees of freedom) associated with a given carbon atom n (all hydrogens attached to

this carbon and all spatial directions). Obviously,
∑

n pk,n = 1. The participation

ratio for mode k, an estimate of the number of carbons strongly associated with this

mode, is defined by

Pk ≡
1∑
n p

2
k,n

. (2.17)

19



which is 1 if the mode is fully localized on a single atom, and equal to the number of

carbon (hydrogens as well if they are present) atoms if it equally delocalized over all

of them.

A more stringent measure of the ability of a given normal mode to transfer energy

between the two edges of the molecule can be formulated as follows. For simplicity

we focus only on the motion along the direction of heat conduction, x, and denote by

xSL and xSR x-components of coordinates of substrate (bath) atoms on the left and

right sides that connect bilinearly to the nearest molecular bridge atoms, xL and xR,

respectively. Suppose that, and let CkL and CkR be the corresponding normal mode

expansion coefficients as defined in Eqn.2.16. We show in the Appendix A.3.2 that

the response on the left contact to an imposed driving xSR(t) on the right contact

satisfies

[ẍSL]L←R(t) ∝
∫ ∞

0

dt′K(t′)xSR(t− t′), (2.18)

where

K(t) =
∑
k

CLkCkR
1

ωk
sin[ωkt]. (2.19)

This suggests that

πk ≡
CLkCkR
ωk

(2.20)

can be used as a measure for the ability of mode k to transfer energy between the two

sides.92 Below we show the coarse grained versions of Pk and πk. For any property
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Xk the coarse-grained function is defined by

X(ω) =
1

∆ω

∑
k︸︷︷︸

ωk∈ω±∆ω/2

Xk (2.21)

2.3 Results and discussion

Figure 2.3 shows the computed heat conductance of alkanes and polyyne (alternating

single and triple bonds), denoted below by − (CH2)n − and − (C)n − , respec-

tively, as function of their lengths. Figure 2.5 shows the corresponding steady state

temperature profiles in the different structures. Figure 2.4 compares the results of

heat conduction obtained from these classical simulations to those obtained in the

harmonic approximation from the Landauer-type expression (Eqn. 3.1).

Qualitative understanding of the observed heat transport behaviors can be achieved

by examining the molecular normal modes and their delocalization properties. The

normal mode spectra are displayed in Figure 2.7, while their localization proper-

ties as expressed by the participation ratios (Eqn. 2.17, coarse grained according to

Eqn. 2.21) are shown in Figure 2.8. Figures 2.9 shows the simplified transmission

property defined by Eqn. (2.20) and coarse-grained according to Eqn.( 2.21). Note

that these analyses are presented for bare, not the extended molecules, so these spec-

tral distributions reflect intrinsic molecular properties. The same analyses could of

course be done also for the extended molecules. Finally, Figure 2.10 shows the quan-

tum transmission function, Eqn. 2.13, which is a property of the junction, not just

the molecular bridge.

The following observations can be made:

(a) The results of alkanedithiol conductance in Figure 2.3 shows a close agree-

ment with the experimental results of Ref.16 as well as close similarity to the more
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sophisticated quantum results obtained in the harmonic approximation34.
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Figure 2.3: The heat conductance of junctions comprising gold substrates connected

by alkane chains and unsaturated alternating single-triple-bond carbon chains for a

temperature bias of 300K-350K, obtained from classical MD simulation and displayed

as functions of chain lengths. In the legend as well as in the figures below, structures

with − (CH2)n− and − (C)n– denote alkanes and conjugated polyyenes respectively.

The Standard Error (SE)1,2 of the computed conductance values shown in the legend

is smaller than the size of the square points in the graph.

(b) The bias (300K - 350K) exceeds the regime of validity of linear response, yet

is more realistic with respect to existing experimental setups16,50,51,78.

(c) The weak dependence of heat conduction on length (Figure 2.3 and 2.4),

particularly in the saturated chains, and the flat temperature distribution along the
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molecular chains (Figure 2.5) indicate that heat conduction in the molecules studied

is mostly ballistic. The flat temperature distribution along the molecular chain is also

associated with the observation that the temperature falls take place predominantly

at the molecule-substrate interfaces.
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Figure 2.4: Heat conductance as function of length of saturated alkane chains (upper

panel) and conjugated polyyene chains (lower panel), obtained obtained from the clas-

sical MD simulations and from Landauer-type quantum calculations (the later done

under the harmonic approximation), respectively. The gold substrates temperatures

are 350K and 300K. The classical heat conductance is defined as the ratio between

the computed steady state heat current and the (50K) temperature bias.
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Figure 2.5: Temperature profiles for some of the carbon chains shown in Figure 2.3,

obtained from the classical MD simulations. In the legend, structures with CHnand Cn

denote alkanes and conjugated polyyenes respectively. The horizontal axis is labeled

according to the index of backbone atoms, starting with the gold atom nearest to

the molecules (e.g., atom 1 and 12 for the (CH2)8 and C8 molecules, while atoms 2

and 11 of these molecules are sulfur atoms). The temperatures of the left and right

leads are set to 350K and 300K respectively. The error bars represent the SE1,2 of

the computed average temperature.

(d) The fact that the conjugated chain is less conducting than the saturated one

stands in contrast to experience from observation of electronic conduction and reflect

the fact that the saturated molecules have a higher density of low frequency modes.

(e) The close similarity of the quantum and classical results at room tempera-
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ture (Figure 2.4) indicates that classical mechanics dominates heat transport in the

molecules investigated. This arises from the fact that near room temperature only low

frequency modes can be populated. This is compounded by the low Debye frequency

of gold which introduces a natural frequency cutoff in the calculated transmission

process. The observed close similarity also indicates that the harmonic part of the

molecular forcefield (which is used in the quantum calculation) dominates the heat

transfer dynamics in these system. In fact, our classical results agree with the ex-

perimental observation somewhat better than the present quantum calculations as

well as those of Ref.34 While it is quite possible this is merely accidental, it may also

indicate a possible signature of anharmonic effects. Not surprisingly, at low temper-

ature (Figure 2.6), the classically computed heat conduction deviates strongly from

the quantum result.
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Figure 2.6: Low temperature heat conductance of alkane chains with temperature bias

25K-75K. Shown are results of from classical MD simulations and quantum Landauer-

type calculations. SE1,2 (which are smaller than the square points in the graph) is

shown for the classical stochastic simulations.

(f) The initial rise with chain length of the low temperature heat conduction of

short alkane chains seen in Figure 2.6 is similar to the observations made in Ref.33,

which was interpreted by the observation that low temperature heat conduction is

dominated by very low frequency modes that are more abundant in longer chain

molecules. Surprisingly, this trend is considerable less pronounced in the quantum

calculation. This issue deserves further study.

(g) While the difference between heat transport behavior of − (CH2)n − and

− (C)n– chains is evident from Figure 2.7 and 2.8 that show molecular modes and
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their localization properties, it should be kept in mind, as emphasized above, that

in the particular junctions and the temperature range considered, one should focus

on the low frequency mode regime for addressing this comparison, as is directly seen

from the energy dependence of the quantum transmission, Figure 2.10. Clearly, the

differences between the transmission properties − (CH2)n− and − (C)n– chains seen

in Figure 2.10 are strongly correlated with the number and localization properties of

the low frequency modes seen in the insets to the different panels of Figure 2.8.

Another expression of mode delocalization, Eqn. 2.20, which indicates the extent to

which a given mode “sees” both interfaces of the junction is seen (Figure 2.9) to also

correlates well with these observations.
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Figure 2.7: Histograms of the normal mode distribution of some representative

molecules. The x-axes are the histogram bins (frequencies in wavenumbers),and the

y-axes are the count of modes with frequency in the bin. The corresponding molecu-

lar topologies are drawn within each panel. Note that the first and last atom in each

molecule are sulfurs. The first row shows the normal mode histogram for three- and

four-layers gold pyramids (left and right columns, respectively). The following rows

depict alkanes (left) and polyyens (right) with 4, 8, and 16 carbon units, respectively.
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Figure 2.8: Product of participation ratio defined in Equation 2.17 and density of

state of the normal modes for different hydrocarbon molecules. (Smoothened as in

Eqn. 2.21 with ∆ω = 10cm−1) This quantity is displayed as function of frequency for

4-carbon chains (upper panels) and 12-carbon chains(lower panels) capped with thiol

groups. (The inserts show the same quantities plotted for the 0 − 3000cm−1 range

with smoothing parameter ∆ω = 50cm−1.)
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Figure 2.9: The end-to-end mode delocalization parameter (Eqn.2.20) calculated for

different hydrocarbon molecules and displayed as function of frequency for 4-carbon

chains (upper panels) and 12-carbon chains (lower panels) capped with thiol groups.

(The inserts shows the same quantities plotted for 0− 3000cm−1 range with smooth-

ing parameter ∆ω = 50cm−1.) Unlike Figure 2.7, in which the full force-field has

been used, the unified-atom force field (no explicit hydrogens) is used here for the

alkanedithiol chains.
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Figure 2.10: The quantum transmission function, Eqn. 2.13 displayed as function of

frequency for different hydrocarbon molecules and shown as function of frequency

for 4-carbon chains (upper panels) and 12-carbon chains (lower panels) capped with

thiol groups. Smoothing ∆ω = 10cm−1 has been applied to this spectrum. The

inserts shows the same quantities plotted for the 0−3000cm−1 range with smoothing

parameter ∆ω = 50cm−1.

Finally, recall that as explained in Section 2.2, we have built into our code the

capacity to make a rough estimate of the pathway map for energy flow between

different molecular regions. An example of such map can be seen in Figure 6 of

Ref.3. Another way to deconstruct the overall energy flow through the molecule is

to estimate the contributions of different interaction to the overall energy flow. In
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the present calculation, using Eqn. 2.8, we can determine the relative importance of

nearest neighbor (2-body interactions), next nearest neighbor (3-body interactions)

and 4-body interactions connecting carbons separated by three bonds. For saturated

alkane chain of six carbon atoms we have found that these relative contributions are

1 : 0.16 : 0.014, respectively.

2.4 Conclusion

We have developed a numerical package based on the GROMACS code for simulating

classical phononic heat conduction in molecular junctions as well as evaluating the

quantum heat conduction based on the Landauer formula for the harmonic approx-

imation to the given molecular force field. Here we used this package to evaluate

the heat conduction properties of molecular junctions comprising saturated and con-

jugated hydrocarbon chains connecting gold leads. Multiple layers of explicit gold

substrates act as filters of larger environmental white noise and bring characteristic

bath effects to the heat conducting molecular systems under investigation. Our focus

was not on achieving the highest possible accuracy of calculation but to demonstrate

the utility of the developed package on one hand and compare quantum/harmonic

and classical calculations on the same junction model as well as examine the correla-

tion between molecular heat conduction and its mode localization behavior. Still, the

close agreement between our simulations and the most recent experimental measure-

ments16 indicates that our model encompasses the molecular details most important

for this transport process. It is interesting to note that for the alkanedithiols, the

room temperature results from the classical MD simulation using the full molecular

force field agree better with the experimental results of Ref16 than the quantum cal-

culations. This may be just an accidental property of our force-field model or may

hint that at ambient conditions, the explicit treatment of quantum effects is less rel-
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evant than explicit treatment of anharmonicity. It is also notable (however not very

surprising) that while electronic conduction of polyynes is much higher than their

saturated counterparts79, we find that their thermal conductance is lower, flagging

them as potentially good candidates for thermoelectric nanomaterials.

The calculations presented in this section are done under steady state conditions.

The success of the classical room temperature calculation is gratifying since the clas-

sical code can be easily used also to investigate non-steady state situations such as

junctions driven by time dependent optical or mechanical driving. Such systems will

be subjects of our future studies.

2.5 Disorder effect on molecular thermal transport

2.5.1 Introduction

Dissimilar to the diffusive heat conduction in macroscopic materials, molecular heat

transport often shows ballistic property with constant propagating speed or insignifi-

cant temperature drop along the molecular chains. The changing sizes of the systems

with respect to the characteristic mean free paths of the heat-carrying phonons in

subsystems offers a viable general high-level explanation for the micro-to-macro tran-

sition.11 However, even with molecular systems of a few nanometers length, such a

ballistic-to-diffusive crossover may still occur under certain conditions. For example,

it has been shown to be achievable theoretically by attaching self-consistent reser-

voirs (interior heat reservoirs whose temperatures are determined self-consistently on

the criterion that average currents reach zero at the steady state) to the systems,

and the diffusion degree can be also tuned.93 Another way is to introduce disorders

(e.g. masses, bonds) into the molecular systems. Recent experiments as well as the-

oretical studies have shown altered thermal conduction properties and temperature
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distribution profiles with the presence of disordered atoms in the molecular systems.

Luckyanova et. al. have experimentally demonstrated a transition from ballistic to

diffusive thermal transport in superlattices by tunning the densities of ErAs nan-

odots at the interfaces.94 Energy redistribution have been observed within certain

chain molecules, showing altered energy transport speed at the middle of the chains,

by embedding interfacial disorders (e.g. amide group) to the original structures.95

Early theoretical studies of disorder effects on nanoscale thermal transport have

been focusing on mass disorder in low-dimensional harmonic chain lattices.96,97 Re-

cently, a new study has included force disorder as well to show cooperative effects of

phononic thermal transport.98 Nevertheless, this investigation is confined with toy-

model study, with implications still unclear to the exmperimental implementations

or actual device design. With our proven GROAMCS-based MD tool, we show the

effects atomic disorder (metallic atoms in organic molecules) may have on heat con-

duction processes under single molecule junction settings. We also demonstrate these

effects might be tuned by changing the types and portions of the disorder (group) in

the molecules.

2.5.2 Results for this section

Before we start doing MD simulations for effects on thermal (phononic) transport

on molecular systems (e.g. in the junctions) with certain force-fields, it is helpful to

first look at a simplfied case: A 1-D chain model with a single impurity (e.g. dif-

ferent masses) in the middle of the chain, in which an analytical expression based

on Landauer-type formalism can be obtained at steady-state. Such an approach will

provide us some minimal physical intuition of disorder effects and help us understand

how more complex molecular structures and junction setups might deviate from sim-

ple models.
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Chains of harmonic oscillators

The heat conduction along the mass-disordered one-dimensional harmonic crystals

has been first studied in the 70’s99–101, and later extensively analyzed by Dhar and

coworkers88,96,97. For a system with only nearest-neighbor harmonic interactions (as-

suming 1-D), the Hamiltonian can be written as:

H =
N∑
l=1

p2
l

2ml

+
N−1∑
l=1

1

2
kl (xl+1 − xl)2 +

1

2
k′
(
x2

1 + x2
N

)
(2.22)

x’s are displacements of the particles from their equilibrium position, pl and ml are

the momentum and mass of the l th particle in the system, kl is the force constants

between l th and l+1 th particles (for mass-disorder-only case, kl is set to be constant

throughout), and k′ is the pinning potential to the first and last particle on the

harmonic chain.

This is a classical system of harmonic oscillators. The steady-state heat current

solution can be obtained with the Landauer-type formula88,96, (The expression can

also be generalized to quantum system6,33).

J =
kB (TL − TR)

π

∫ ∞
−∞

dωTN(ω), (2.23)

where (see Eqn.(2.13))

T (ω) = Tr
[
G†(ω)ΓL(ω)G(ω)ΓR(ω)

]
, (2.24)

and

G−1(ω) = −Mω2 + Φ + iΓL(ω) + iΓR(ω), (2.25)
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with M being the mass matrix of all the particle masses on its diagonal, ΓL/R is

coupling matrices(see Eqn.(2.15)) and Φ is the force constants matrix.

To illustrate the model, we take a chain of 11 identical atoms, and varying the

mass of the middle atom (6th) and middle force constant (5th out of 10, between the

5th and 6th atoms). For Ohmic (or Lebwitz) bath model, in which Σ(ω) = iγω,88,97

the mass dependence of heat current can be shown in Figure 2.11. It is shown that the

heat current decrease monotonically (slow at first and faster with increased masses)

as the disorder mass (only one atom difference in the middle of the chain) on the

harmonic chain (with 11 atoms comprise the backbone) increases from identical to 20

times larger.

Meanwhile, if we set all the masses to be equal, by just varying one of the force

constants in the middle (between the 5th and 6th atoms) of the harmonic chain, we

get force-dependent heat current in Figure 2.12. In contrast to the mass dictated

disorder, the current starts increase drastically, reaches maximum when the force

constants become identical, and decrease very slowly when the force disorder grows.

Effects of disorder atoms on alkane bridged molecular junction heat con-

duction

We have carried out a series of simulations on the disorder effects to heat condcution

across alkane chain molecules in the junction. Most computational details can be

found in Section 2.2 of this thesis. We show the diffusive transport behavior may

gradually emerge through changing the mass of the impurity atom and length of the

chain, reflected on the temperature profiles (Fig. 2.13 and Fig. 2.14).

Figure 2.13 shows state-steady temperature profiles of disordered alkane chains

(the total number of the backbone atoms the chains vary from 3 to 19, as show

in the legend as well as along the x-axis in the figure). Adding disorder in this
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Figure 2.11: Heat current change of a harmonic 1-D chain, with respect to the change
of disorder mass, calculated with Landauer-type formalism. The mass of the mid-
dle atom on the chain is set to be different (disorder) to the rest of the lattice (in
this example, the 6th atom on a lattice of 11 atoms. Force constants are the same
throughout). The parameters are: force constant k=1, γ=10, m=10(ordered), TL=1,
and TR=1.5, all of which are given in reduced units with characteristic dimensions:
σ̃=1nm, τ̃=1ps, m̃=1mamu, k̃=105(kJ mol−1 nm−2) and T̃=300K. The curve is scaled
by the ordered chain case (i.e. all the masses are equal to 10m̃)
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Figure 2.12: Heat current change of a harmonic 1-D chain, with respect the change
of force constant, calculated with Landauer-type formalism. The force in the middle
of the chain is set to be different (disorder) to the rest of the lattice (in this example,
the 5th k on a lattice of 11 atoms with 10 constants). The parameters are: force
constant k=1(ordered), γ=10,m=10, TL=1, and TR=1.5, all of which are given in
reduced units with characteristic dimensions: σ̃=1nm, τ̃=1ps, m̃=1mamu, k̃ = 105

(kJ mol−1 nm−2) and T̃=300K. The curve is scaled by the ordered chain case (i.e. all
the force constants are equal to 1 k̃)
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case is done by replacing the carbon in the middle of each chain with silicon. The

first and last backbone carbons are attached to infinitely large thermal baths (i.e.

white noise) of temperature 350K to the left and temperature 300K to the right. It

is interesting to see that while the shorter chains (e.g. N=3, N=5) seem to change

their transport to largely diffusive reflected from straight temperature gradient slopes

(which is reasonable since the disorder has a bigger portion in these systems), the

longer chains show local thermal resistance, expressed as a local temperature step,

mostly in the middle, that is, near the impurity, keep the changes on the segements

before and after the disorder mild. One could expect that when the chain grow much

longer (e.g. 40 carbons or more), the transport might behave quasi-ballistically first,

interrupted in the middle disordered site (e.g. by changing energy transport velocities

suddenly), and then propagate ballistically again, just as has been observed in energy

transport of amide bridged alkyl chains experiments 95.

As we tweak the molecules further by changing the type of the atoms (from car-

bons) in the middle of the chains (Figure 2.14), we find that the heavier the impurity

mass, the larger the temperature drops at the site of the disorder. Furthermore, such

correlation is not linear. When the atomic masses of the impurities increase over 60

AMU (e.g. Pd in the figure), that is around 5 time over pure carbon atom, the drops

of the temperature profiles seem start to plateau. On the other hand, decreasing the

atomic mass (the case for boron) leads to the similar effect as increasing it. That is the

reduced impurity mass also makes the conducting chain more diffusive. One might

have noticed the overall trends observed somehow aligns with the heat currents for

the 1-D toy model (see Figure 2.11): as increased disorder undermines the total heat

currents (with steeper drops in temperatures). However, the nuances are also impor-

tant. First, if we look only at the impurity mass changes (disregarding other factors

like force constants and degrees of anharmonicity for the MD results) it seems easier
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to see noticeable changes in Figure 2.14 than what we have observed on the toy model

(the change of temperature drops for the two atoms besides the impurity is more than

doubled when carbon atom changes to silicon, while the relative current dips start

mostly after tens to a few hundreds mass differences in Figure 2.11). Second, the

curve of the harmonic model does not flatten along the increased masses(Fig. 2.11),

while the temperature discontinuity seem to converge as the impurity becomes heavier

(Fig. 2.14). The differences might be attributed to the fact that a simple substitution

of atoms introduces not only mass disorder, but also structural disorder (i.e. forces

and interaction differences). Ideally, it would be a combination of Figure 2.11 and

Figure 2.12 together with molecular geometries in order to more accurately theorize

thermal transport behaviors that could be been simulated or experimented on.
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Figure 2.13: Temperature profile for disordered alkanes of various lengths. The num-

ber of backbond atoms in the molecules are 3, 5, 7, 9, 11, 13, 15, 17, 19, respectively,

with Si sitting at the middle of every chain and the rest are carbons. The horizontal

axis is labeled according to the index of the backbone atoms. The temperatures of

the left and right baths are set at 350K and 300K respectively. The error bars are

standard errors1,2 of the temperature measurements.
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Figure 2.14: Temperature profile for disordered alkanes of 11 backbone atoms with

different elements being the 6th atom of each chain, (different elements labeled in

the legend) and rest are carbons. The horizontal axis is labeled according to the

index of the backbone atoms. The temperatures of the left and right baths are set at

350K and 300K respectively. The error bars are standard errors1,2 of the temperature

measurements. (the computed values of the errors is smaller than the size of the circle

points in the graph. So that is why bars cannot be seen for most points except the

middle impurity sites)

Substituting one atom in the chain molecules is comparatively a straightforward

way to probe the effects of impurities on heat conduction. What if a large portion (e.g.

half) of molecules is substituted or structurally altered? In what follows we present

a different compounded struture that show these effects in a broader sense (we may
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call it asymmetric effect, with half of the chain molecule replaced by a aromatic ring

molecule) than a single impurity in a structurally symmetric chain molecule.

Figure 2.15 shows three molecular structures that have the same blackbone group

number along the horizontal direction (single carbon along the chain or two vertical

(normal direction) carbons as one group circled in red as examples shown in the

figure). As we attach white bath (that is random noises based on Langevin dynamics,

parameters detailed in Section 2.2 and Appendix A) of temperature 350K to the

leftmost carbon atom and a similar bath of temperature 300K to the rightmost carbon

atom (to the rings we take the averages by put the thermostats to either one of the

two atoms that are normal to the horizonal chain direction and parallel to each other

on the outer-most side), and compute the temperature distributions at steady state.

We plot the results in Figure 2.16. We first notice that the ring pentacene seem

more ballistic (less temperature drop) than the chain undecane molecule, thus could

conduct more heat under same bias conditions. The reason besides possible artificial

introduction of thermal averaging (between the normal two carbon atoms), could be

increased heat transport channels and phonon modes that help the overall conduction.

We can also see that the asymmetric naphthalene plus hexane hybirdized structure has

significant higher temperature drops both between the left end the right end and in the

middle interface than the other two more symmetric structures (namely, undecane and

pentacene). This implies that the asymmetric structure of the compounded molecule

creates a discontinuity at the interface when the delocalized phonons travel across

the molecular bridge, which effectively acts like a single impurity in the middle of the

brdige.

43



(a)(a)

(b)

(c)

1 2 3 4 5 6 7 8 9 10 11
Figure 2.15: Configurations of molecular structures for the asymmetric interface

effects on molecular heat conduction. (a) undecane; (b) pentacene; (c) naphtha-

lene+hexane.
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Figure 2.16: Temperature profile for three molecular configurations (as labeled in

the legend) shown in Figure 2.15 and the insert. The horizontal axis is labeled

according to the index of the backbone atom groups. That is, one index is for a

single carbon group along the chain or two vertical (normal direction) carbons as

(with averaged temperature) one group for the rings circled in red as examples shown

in the Figure 2.15. The temperatures of the left and right baths are set at 350K

and 300K respectively. The error bars1,2 are standard errors of the temperature

measurements.

2.5.3 Conlcusion

We have shown the diffusive signature in heat transport may emerge from ballistic

transport in the alkane-chain based molecular junctions, by simulating heat conduc-

tion of chain molecules in which one carbon (e.g. in the middle) is replaced by other
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type of atoms (which we refer to as impurities, e.g. silicon). Similar effects could also

be achieved by replacing parts of the molecules with different types of compositions

(e.g. aromatic rings into alkane chains), creating asymmetric interfaces inside the

molecular bridges, which leads to discontinuities in steady state temperature profiles.

There have been theoretical and toy model studies discussing disorder effects in

nanoscale (in particular low-dimensional materials) thermal transport previously, but

few have reported the degree of how these disorders affect heat conductions in molec-

ular junctions that could be prepared and measured in an experimental setting. Our

MD simulations fill the gap by demonstrating the distinctions in thermal transport

among different disordered molecular species and structures. Though not a thorough

survey of all the possible molecular and disorder types, we hope through our sample

comparisons, a prescription of design principles will emerge for molecular junctions

manipulations of high and low molecular thermal conductors by controling disorders

in the molecular systems.

2.6 Calculation of energy resolved transmission

Under harmonic limit, energy transmission may also be quantified classically for the

molecular bridge systems in the study. Consider the molecular bridge segment (e.g.

alkanedithiols) as multi-atom driven damped harmonic system defined by the equation

of motion

Ẍ = −1

2
KX−GẊ + A(t) (2.26)

where X is a vector of mass weighted atomic deviations from equilibrium, K is the

Hessian matrix associated with the molecular force field, G is a damping matrix

and A(t) is a vector of externally imposed driving forces on the different atoms.

We are interested in the particular situation in which periodic forces A(t) reduce to
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Figure 2.17: One dimensional damped and driven harmonic chain

harmonic driving A cos(ωt) of the atom that in the corresponding junction is attached

to one lead, while friction, not necessary isotropic, is imposed on the atom that in the

corresponding junction is connected with the other lead. A 1-dimensional cartoon is

seen in Figure 2.17. In this 1-dimensional case A and G are

A(t) = Aeiωt =



0

0

...

a


eiωt, G =



γ 0 . . . 0

0 0 . . . 0

...
...

. . .
...

0 0 . . . 0


(2.27)

(the real part of the solution is to be used) and in the 3-dimensional case the non-zero

blocks correspond to the atom(s) that in the junction is(are) attached to the lead,

taken in the present calculation to by the sulfurs. At long time all atomic displace-

ments oscillate with the driving frequency Xj(t) = xj(ω)eiwt and the amplitudes xj

may be obtained from x = (−ω2I + 1
2
K + iωG)−1A. The dissipated energy flux

(averaged over a period) is then obtained from

J(ω) = Ẋ ·GẊ =
1

2
ω2x ·Gx (2.28)

which is just (1/2)ω2γx2
1 in the 1-dimensional example. In three dimensions, when the

lead-molecule coupling involves a single molecular atom we take x ·Gx =
∑3

k=1 γkx1k

to reflect possible anisotropy of the friction. As defined, J(ω) expresses an intrinsic

transmission property of the molecule.
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As direct examples of applying such method, we take the hydrocarbon chain

molecules whose heat conductance have been simulated in Section 2.3, and calcu-

late the energy resolved classical transmission (Figure 2.18 and 2.19) with regard to

the external driving frequencies as prescribed above. In particular, alkanedithiol (also

referred as saturated) and polyynedithiol (also referred as unsaturted) molecules are

chosen (with total backbone atoms equal to 4 and 12 respectively). The harmonic

part of the molecular force field is taken and imaginary (periodic) driving is applied

to the outer-most sulfur atoms. Such fluxes (from Eqn.(2.28)) represent the heat

transmission spectrum of the unbound molecular species itself, and in Figure 2.18 it

is plotted against the driving frequency ω. The result depends on the relative magni-

tudes of the frictions γk and in the simulations shown in Figure 2.18 we have assumed

that the friction is dominated by the motion along the S-C bond.

Though only the hydrocarbon molecular bridges are taken into account in these

two figures, the frequency resolved energy fluxes (Figure 2.18) and their accumulated

values (Figure 2.19) provide useful insights into the overall heat conduction across the

junctions without doing MD simulations. With imaginary periodic driven forces, The

transmitted energy analysis under different frequency values imply more energy is

transferred at low frequencies, aligning with the mode delocalization analysis (Figure

2.9) and transmission properties (Figure 2.10) shown in Section 2.3. Also, though it

is not immediately clear that if 4-carbon polyyne has higher conductance than 12-

carbon alkane, the overall trends of alkanes having higher conductance and shorter

hydrocarbons conducting more heat currents than longer ones, are already noticeable

by looking at the energy resolved tranmissions of these chain molecules. In general,

such analysis is effective and intuitive for most molecular structures whose thermal

transports are dominated by harmonic normal modes, we will see more results in the

light of these calculations in the next chapter on the topic of classical interference.
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Figure 2.18: Frequency resolved energy flux (arbitrary units) generated by driving
one sulfur atom the chain molecule and evaluating the heat generation per unit time
on the other sulfur taking friction γ = 20 cm−1 to affect the motion along the S-C
bond, calculated according to Eqn (2.28). N is the number of backbone carbon atoms,
and all molecules are capped with thiol groups. ”Saturated” refers to alkanedithiols,
while ”Unsaturated” refers to conjugated carbon chains with alternating single and
triple bond (polyynes). The insert in the first figure is a zoom-out of a larger y-scale
(0-1) of the same flux.
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Figure 2.19: The intergarls I(ω) =
∫ ω

0
J(ω) over the frequency resolved heat fluxes

of Figure 2.18, normalized by IN=4,saturated(3000cm−1) and displayed against ω for
the four hydrocarbon species. N is the number of backbone carbon atoms, and all
molecules are capped with thiol groups. ”Saturated” refers to alkanedithiols, while
”Unsaturated” refers to conjugated carbon chains with alternating single and triple
bond (polyynes).
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CHAPTER 3

Local Atomic Heat Currents and Classical Interference in

Single-Molecule Heat Conduction

This chapter is adapted from The Journal of Physical Chemistry Letters 11, 4261–

4268 (2020)

3.1 Introduction

Quantum interference (QI) has been often reported to play a role, sometimes im-

portant, in molecular electronic conduction.102–110 While nuclear motions (henceforth

sometimes termed phonons) usually dominate molecular heat conduction6,12,37,111–115,

calculations based on the quantum Landauer formula for heat conduction in the har-

monic molecule limit indicate that interference may affect phononic thermal conduc-

tion as well, and these observations have been also termed quantum interference.14,116

Figure 3.1 illustrates the main difference between electron and phonon transport in

molecular junctions. First, the different statistics of these carriers implies different

occupation distributions in the leads. Consequently, the corresponding transmis-

sion functions are sampled differently in the two cases and, in particular, electron

transmission can be tailored to sample a narrower energy window thereby displaying

interference effect on transport more prominently. The basic origin of interference in

both cases is the spatial structure of the conducing orbital(s) in the electronic case

or delocalized modes in the vibrational one that are both determined by atomic posi-

tions in the molecular bridge. For example, comparing commonly used tight binding

models for electronic structure to harmonic atomic structures with nearest neighbor
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Figure 3.1: Schematic diagram of electron transport (a) and vibrational energy trans-
fer (b) in molecular junctions

interactions shows a close mathematical similarity that implies similar implications of

geometrical structure to interference. Nonetheless, since phonons are classical waves,

their dynamic properties are mostly determined by classical mechanics, and it may

be expected that interference phenomena will show in classical phononic thermal

transport.

Here we examine the vibrational heat conduction behavior of a benzene molecule

connected to gold substrates via thiol bonds using classical molecular dynamics (MD)

simulations with the full molecular forcefield as well as the quantum Landauer expres-

sion with harmonic part of the same forcefield. We focus on the conduction properties

of para-, meta-, and ortho-connected rings and find considerable differences that can

be traced to interference between different phonon-transfer pathways. Remarkably,

at room temperature, the quantum and classical calculations yield qualitatively sim-

ilar results. Both show similar trends that indicate interference between conduction

pathways when comparing the heat conduction properties of para, meta, and ortho

benzenes. 1

1Such trend cannot be depicted alone by the nomral mode distributions of different molecular
configurations (Figure B.1), which are similar across the spectral densities.
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3.2 Model and methods

3.2.1 Molecular dynamics simulation

The junction model used in the simulations comprises the molecule and the explicit

leads that together form an extended inner system (referred to below as “extended

molecule”) and the thermal reservoirs (Figure 3.2). The explicit leads each have

three layers of gold atoms in a cone-like structure (one, three and nine gold atoms

in the first, second and third layer, respectively) that mimics scanning tunneling

microscope (STM) tips. The external reservoirs are equilibrium Markovian baths,

characterized by specific temperatures (TL and TR) that represent the experimentally

tuned macroscopic substrates. Unless otherwise stated, the friction associated with

the coupling between the extended molecule and the external thermal reservoir is

taken to be 1 ps−1. The stochastic MD simulation is implemented using stochastic

nonequilibrium Langevin dynamics by utilizing customized GROningen MAchine for

Chemical Simulations (GROMACS, currently version 4.5117) platform. The universal

force field (UFF) of Rappe et al.81 is employed for all the molecules in the study.

The molecular system (together with the segments of the substrates embedded in the

molecular subsystem to form an extended molecule) is first equilibrated to the average

temperature of the thermal baths starting with its minimum energy configuration,

and then brought to a nonequilibrium steady state (SS) with the two leads kept at

different temperatures. This part of the simulation is typically a few ns long. Once

SS is reached, thousands of production runs are used to get an ensemble of MD

trajectories and forces needed for the steady state heat currents.
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3.2.2 Landauer-type calculations

The quantum Landauer-type calculations are done by using the harmonic part of

the extended molecule forcefield to calculate the phonon transmission probability

T (ω) (An example, for room temperature structures, is shown in Section 2.6). The

(phononic) heat current is obtained from Landauer expression6,33,87,

J =
~
2π

∫ ∞
0

T (ω) [f (ω, TL)− f (ω, TR)]ωdω. (3.1)

Here f function is the Bose-Einstein distribution function which depends the temper-

ature of the bath, f(ω, T ) = (e~ω/kBT − 1)−1. ,and T is the transmission probability,

which in general can be shown as the trace of matrix multiplication of the Green’s

functions and spectral functions88–90. Our implementation is achieved by incorpo-

rating GROMACS utilities into home-made code. From a high-level description, the

Hessian (dynamical force matrix) of the molecular system is obtained, followed by

its diagonalization in order to get the normal modes. The eigenstates of the modes

are then used to calculate the basic quantities (e.g. self-energies, Green’s function,

etc.), which are used to evaluate T (ω). Further details on technical aspects of these

simulations are provided in Ref4.

We note that although the thermal properties of the external baths are affected by

imposing Markovian dynamics (white noise) for the relaxation at the boundary be-

tween the explicitly addressed substrate segment and the outer thermal environment,

this white noise is adequately filtered through the explicit substrate layers so that it

acts on the molecule itself with the characteristic spectral density features of the sim-

ulated gold. Results obtained using this model to simulate heat conduction through

alkanedithiol chains4 show good agreement with experimental observations16. The

fact that the filtered noise emphasize the low frequency regime is one reason why
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PL PR

TL TR

Left Reservoir Left Lead Molecule Right Lead Right Reservoir

Figure 3.2: Artist representation of a typical system studied in this work. The uni-
diretional arrows across left plane (PL) and right plane (PR) denote the direction of
heat flows. The double arrows show the connections between the exterior layer of
gold lead to the thermal reservoirs, which are characterized with temperature TL and
TR respectively.

quantum and classical results about room temperature are qualitatively similar as

shown below.

Because the classical simulation yields atomic positions, velocities and forces along

the simulated trajectories, it is evident that we can address not only the total steady

state heat current (phononic energy flux) carried by the molecule but also the en-

ergy flux associated with individual atoms. However the procedure for doing this is

not absolutely unique because to define energy currents involving individual atoms

within the molecule we need first to define individual atomic energies, a task which is

somewhat arbitrary for the potential energy because of its non-local nature. In Ref.4

we have done so by assigning portions of the potential energy to individual atoms as

follows: First identify different contributions to the potential energy associated with

atom j as Vjn (n = 2,3,. . . ) which are sums over all n-atom interaction terms in the

molecular forcefield that involve this atom. A coarse-grained description of the en-

ergy distribution between the atoms is obtained by assigning to atom j the potential

energy
∑

n n
−1Vjn. Once this choice is made, the force on the atom can be evaluated
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as well, and the rate of energy change for this atom is obtained as a product of this

force and the atom speed. This leads to the energy current between two atoms, i and

j, in the form Jij =
∑

n Jn,ij where4,86

Jn,ij = Cn,jfn,i · vi − Cn,ifn,j · vj, (3.2)

in which fn,j is the force derived from interaction Vn with respect to the coordinate

of atom j. 2

3.3 Results and discussion

The simulated total heat conductance of the benzenedithiols in the three junctions

is displayed in Figure 3.3. The steady state heat current is calculated by summing

up all the interatomic currents going through a plane perpendicular to the molecular

chain, e.g. the current JL and JR through, respectively, the planes PL and PR in

Figure 3.2, and averaging over time (after steady state was achieved) and trajectories.

The resulting averaged JL and JR are found to be the same within 0.5%. The heat

conductance is the ratio of this heat current and the temperature difference ∆T .

The non-monotonic behavior seen in Figure 3.3 as the junction structures change

from para to meta and ortho configurations obviously does not results from changing

interactions, and the possibility that interference between energy fluxes propagating

along different paths is the source of this behavior, analogous to similar observa-

tion of electronic conduction through these configurations105,110,118,119, suggests itself.

Indeed, when one of the paths is blocked as shown in Figure 3.3 for the meta configura-

tion, conduction increases. Simulations done under different conditions are consistent

with this assessment. (We have also shown a phonon transport general expression

2This choice, used to produce Figure 3.6 below has no bearing on the heat conduction calculations
shown in Figure 3.3-3.5.
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Figure 3.3: Thermal conductance of dithiolated-benzene molecules in gold-molecule-
gold junctions with different connection (para, meta, and ortho) configurations.
Shown are results from classical MD simulations and from the quantum Landauer’s
formula. The error bars represent standard errors (= standard deviation / square root
of the sample size, which is a statistical uncertainty indicator of the estimated mean
value of the conducted measurements.2). The green and black dots represent the
conduction calculated using the Landauer formula and classical MD simulations, re-
spectively, for the meta configuration in which heat transport through the site marked
X is blocked by taking the mass to be artificially large (100 carbon atom mass).
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for a nearest-neighbour harmonic model to indicate potential interference effects in

over-simplified analytical cases. Detailed in Appendix B). Figure 3.4 compares heat

conduction for three different sets of temperature biases, using both MD simulations

and Landauer’s calculations. Panel (a) shows the same results as Figure 3.3, while

(b) and (c) show results for high (600K and 650K) and low (10K and 60K) temper-

atures respectively. Figure 3.5 examines the effect of disorder, comparing the para

and meta signals from the original molecule, and from a similar molecule in which a

single hydrogen atom is replaced by a fluorine atom. The following observations can

be made:

(a) While interference is seen also in the higher temperature simulations (Fig-

ure 3.4(b)), the difference between the conductions of the para-, meta- and ortho-

configurations is smaller at this higher temperature.

(b) The classical simulations and the Landauer formula results are closer to each

other at room temperature (Figure 3.4(a)) than at 600K (Figure 3.4(b)). The reason

may be that the Landauer results are obtained for a molecular model described only

by the harmonic part of the full potential. Errors in this approximation become more

pronounced at higher temperatures where the system explore more of the anharmonic

part of its forcefield.

(c) Although the physical distance between the contact is smaller in the ortho-

and meta- configurations, the total heat current appears to be highest in the para-

connected structure, where the thermal contacts are physically furthest from each

other. Such a counterintuitive heatmap can again be taken as an indication of inter-

ference effect.

(d) At low temperature (Figure 3.4(c)) we see that the quantum result deviates

strongly from the classical calculation. Remarkably the interference pattern all but

disappears. At such low temperature only very low frequency modes contribute to the
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Figure 3.4: Thermal conductance for para-, meta- and ortho- benzenedithiol
molecules, calculated from classical MD simulations and from the Landauer expres-
sion under different temperatures: a) Thot=350K and Tcold=300K; b) Thot=650 and
Tcold=600K; c) Thot=60 and Tcold=10K. The error bars for MD represent standard
errors (as in Figure 3.3).

transport, more so in the quantum calculation. Such modes usually involve motions of

many atoms so that “transport paths” becomes less distinct, quenching interference

between paths.

(e) Introducing an impurity atom into the system has a strong effect on path

interference, as is seen in Figure 3.5. In particular, the destructive interference that

characterizes the meta structure is strongly reduced by such impurity even if it in-

volves a substitution of an hydrogen atom that by itself does not make a large effect

on the phonon transmission (however substitution by fluorine does).

A cautionary note is in place. While the configurations studied appear to be

molecular analogs of a double slit system where phonon amplitudes propagating along

different paths interfere, the actual situation is more involved as can be seen by look-

ing at real-space steady state atomic heat flows in these junctions. Figure 3.6 shows

local heat fluxes obtained from Eqn. (3.2), indicating their direction and magnitudes

by arrows of various thickness. (Local temperatures are shown in Figure B.2) These

currents take place between each atom pair, although they are naturally higher be-

tween nearest neighbors. It should be emphasized that, while partial cancellation

between currents going in (partly) in opposite directions give rise some of the ob-
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Figure 3.5: Thermal conductance for para- and meta- benzenedithiol molecules, simu-
lated for the configurations with and without replacing one hydrogen with one fluorine
at the position indicated in the molecular diagram, for the temperature bias of 300K
to 350K. Panel (a) and (b) show results from MD and Landauer calculations, respec-
tively. The error bars in Panel (a) represent standard errors (see caption of Figure
3.3).
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served trends in Figure 3.3 and 3.4, interference is also manifested in the velocities of

and total forces experienced by individual atoms, an effect not seen in this figure. The

total heat currents express a complex interplay between these forces and velocities

that eventually results in these current maps.

Furthermore, it should be kept in mind that interference is, to a large extent, a

matter of representation. In a harmonic junction heat is carried independently by

the system normal modes, and in the normal mode represetation interference be-

tween different propagation paths translate into transmission properties of individual

nodes, e.g. a node assumed by a mode at the molecule-lead bond which will render

this mode unable to contribute significantly to the heat conduction process. Figure

3.7 demonstrates this point by showing the frequency resolved classical transmis-

sion (propagating wavepacket picture and analysis on a nearest-neighbour harmonic

ring provides another perspective. Figure B.3 and Figure B.4 in Appendix B). We

have presented details of the method in Section 2.6, here we briefly explain how it

is done: We consider just the benzenedithiol species, use the harmonic part of the

molecular forcefield and focus on the two sulfur atoms. One sulfur atom (say, atom

12 in Figure 3.6a) is driven by a periodic force that makes its coordinate (deviation

from equilibrium) oscillates with frequency ω. A friction γ is applied to the motion

of the other sulfur atom (atom 11 in Figure 3.6a) thus forming a driven-damped

harmonic system (see Section 2.6). At steady state there is a constant heat flux

J(ω) =
∑

j γj〈ẋj〉2, where the sum is over directions in the local coordinate system

that defines the deviation of atom 11 from its equilibrium position. This flux rep-

resent the heat transmission spectrum of the unbound molecular species itself, and

is plotted against the driving frequency ω in Figure 3.7. The result depends on the

relative magnitudes of the frictions γj and in the simulations shown in Figure 3.7 we

have assumed that the friction is dominated by the motion along the S-C bond, which
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Figure 3.6: Heat currents maps in junctions comprising benzene molecules connecting
in (from left to right) para, meta, and ortho configurations between gold substrates,
computed by MD simulations at steady state under temperature bias of 300K and
350K on the two sides of the junction. (a). Molecular structures indicating atom
numbering that is used in panel (c). Small light gray balls, bigger dark gray balls, red
balls and yellow balls represent hydrogen, carbon, sulfur and gold atoms, respectively.
(b) A map of local heat currents calculated at steady state for the three junction
configurations. Arrows and thickness correspond to directions and magnitudes of the
local currents. (c) two-dimensional map of local currents between atoms arranged
according to the numbering shown in panel (a). Current direction is here indicated
by sign: positive corresponds to leftward or leftward-tilted flux, or for vertical flow
(for example between atom 3 and 6) – to upward flux. Note that the heat current
maps shown in (panel c) are symmetric with respect to the white dashed diagonal
line.
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Figure 3.7: Frequency resolved energy flux (arbitrary units) generated by driving one
sulfur atom of a benzenedithiol molecule and evaluating the heat generation per unit
time on the other sulfur taking friction γ = 20 cm−1 to affect the motion along the
S-C bond, calculated according to Eqn. (2.28).
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Figure 3.8: The intergarls I(ω) =
∫ ω

0
dωJ(ω) over the frequency resolved heat fluxes

of Figure 3.7, normalized by Ipara(3000 cm−1) and displayed against ω for the three
benzendithiol species.
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in the full simulations shown in Figure 3.3 and 3.4 correspond to a direction nearly

perpendicular to the gold substrate. Integrals of these spectra I(ω) =
∫ ω

0
dωJ(ω) are

shown as functions of ω in Figure 3.8, showing a trend similar to that observed in

Figure 3.3 and 3.4.

These results, which lacks information about molecule-leads binding and lead spec-

tral function, as well as mode populations, do not directly apply to the actual heat

transfer process, but they provide insight into the meaning of interference. Obviously,

when the calculated transport is resolved to emphasize the contribution of different

normal modes to the overall transmission, the “interference” concept is not neces-

sarily useful. It becomes useful when we develop understanding of transport along

individulal spatial paths, then observe that opening a path may reduce transport

rather than increase it, as was seen in Figure 3.3, or more generally, that transport

in a system comprising several paths is not a simple sum over individal paths. The

fact that this interference has a classical origin is not surprizing given the nature of

phonons as traveling waves.

3.4 Conclusion

In summary, we have computationally analyzed the heat conduction properties of

benzenedithiol based single-molecule junctions with different bridging configurations

using both classical MD simulations and quantum Landauer’s calculations. Our re-

sults indicate that the harmonic representation (used in the quantum calculations) as

well as quantum effects (neglected in the classical calculation) are of secondary impor-

tance for such junctions at room temperature. Interesting deviations between the two

calculations are found at low temperatures (where classical mechanics fails) and higher

temperatures (where the harmonic approximation, used in the quantum calculation,

fails). Comparing heat conduction trends between para-, meta- and ortho-connected
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molecules shows strong indications of the role played by interference between different

energy flow paths. This interference persists in the classical calculation, indicating

its classical origin. We have examined the manifestation of this phenomenon when

examined with frequency resolution and have pointed out that in the normal mode

basis path interference translates into transmission properties of individual normal

modes. It will be interesting to explore these types of behaviors further, to discern

quantum from classical effects and to examine, for more anharmonic systems the ef-

fect of anharmonicity. Beyond such studies, it is of interest to examine the possibility

of using interference as a tool for controlling heat conduction properties of different

molecular structures.
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CHAPTER 4

Quantum bath augmented classical simulation for heat conduction

4.1 Methodology

4.1.1 Formalism for quantum bath effects in Langevin dynamcis

Let us start with Langevin’s equation, for a simple particle at position x under the

potential V (x).

mẍ(t) = −∂V (x)

∂x
−mγẋ+R(t). (4.1)

γ is the friction term, andR(t) is the random fluctuation forces, which obeys fluctuation-

dissipation theorem,

〈R(t)R(t′)〉 = 2mγkBT δ(t− t′), (4.2)

where kB is the Boltzmann constant and T refers to the corresponding bath temper-

ature.

Now we will have some detailed analysis about the random fluctuation term.

Suppose we observed the sytem in time interval 0 ≤ t ≤ T and expand R(t) in

Fourier series.

R(t) =
n=∞∑
n=−∞

Rne
iωnt (4.3)

ωn =
2πn

T
, n = 0,±1,±2 · · · (4.4)

Rn =
1

T

∫ T

0

dtR(t)e−iωnt (4.5)
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The power spectrum can be written as40:

IR(ω) = lim
T→∞

(∑
n∈W∆ω

〈|Rn|2〉
∆ω

)
; (4.6)

where

W∆ω = {n|ω −∆ω/2 ≤ 2πn/T ≤ ω + ∆ω/2}, (4.7)

which can further change to

IR(ω) = lim
T→∞

∑
n∈W∆ω

〈|Rn|2〉δ(ω − ωn); ω =
2πn

T
. (4.8)

IR(ω)∆ω is the intensity of the random noise in the frequency range ω · · ·ω + ∆ω,

which is obtained by summing up the magnitudes of different components R2
n.

The Wiener-Khintchine theorem states:

IR(ω) =
1

2π

∫ −∞
∞

dte−iωt〈R(t)R(0)〉. (4.9)

Together with Eqn.(4.2), we get

IR =
mγkBT

π
(4.10)

Here we want to find an approximate coarse-grained frequency resolution of the heat

flux. To this end we divide the frequency axis into many segments: if the relevant

frequency domain is: 0 · · ·ωmax, then we can define ∆ω = ωmax/N (N being the

total number of segments), and the nth segment is between ωn−1 = (n − 1)∆ω and

ωn = n∆ω. For each such segment the random noise can be taken as,

Rn =

√
∆ω

mγkBT
π

(
eiω

(n)

+ e−iω
(n)
)

= 2

√
∆ω

mγkBT
π

cos(ω(n)t), (4.11)
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where ω(n) is best chosen in the middle of the segment, that is ω(n) = (n− 1/2)∆ω.

The approximation lies in the assumption that the currents obtained from these

drivings are additive, so that if we act together with two segments n and n+1 the

heat current will be the sum of the individual contributions. This is certainly so in

harmonic systems but is only an approximation for anharmonic ones. The reason why

the approximation might be feasible is that contributions from different segments will

come with random phases so that mixed signal might average to zero when average

over phases is done. Note here we do not need to calculate the frequency resolved

current. All we need is to replace the random noise with a similar one but with a

frequency dependent effective temperature.

R(t) =
∑
n

Rn(t) (4.12)

Rn = 2

√
∆ω

Mn

mγkBTeff (ω(n)
j )

π

∑
j

cos(ω
(n)
j t+ φj), (4.13)

where

Teff (ω) =
~ω/kB

e~ω/kBT − 1
(4.14)

Taking more frequencies is just like taking smaller segments. Therefore, we final

expression can be written as

Rn = 2

√
∆ω

mγkBTeff (ω(n))

π
cos(ω(n)t+ φn), R(t) =

∑
n

Rn(t) (4.15)

Different realizations of the random noise come from different choices of φn. Note that

now that we reformulated the the random noise we can do standard heat conduction

without calculating frequency resolved transmission coefficients.
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Figure 4.1: Schematic drawing of the Debye bath composed of N atoms, attaching a
bridge molecule on the left and white bath on the right.

4.1.2 Specifications of systems with Debye bath signature

To test the performance of this approach, we use an approximate Debye bath, be-

cause its spectrum behaves ω2 for small ω’s, and has a cutoff frequency (ωD) when

ω →∞. One way to characterize such a colored bath spectrum is through mathemat-

ical filtering, as we have discussed in Appendix A.6. Another way is via modifying

bath atom properties, which works well for toy model studies120 and is much more

straightforward computationally. For the purpose of this study, we will choose the

latter approach.

Suppose the colored bath is consisted of N atoms (See Fig. 4.1). We want the

atom number 0 to represent a Debye bath effect. We start by regarding the system

without the molecule. The potential for bilinear interactions can be written as (in

1-dimensional notations):

V (x0, x1, · · · , xN) =
1

2

N∑
j=1

N∑
l=1

Kjlxjxl (4.16)

d2xn
dt2

= − 1

Mn

[Kn,n+1xn+1 +Kn,n−1xn−1 +Knnxn]; n 6= 0, N (4.17)
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The last atom (N) is connected to white noise,

d2xN
dt2

=
1

MN

[KN,N−1xN−1 +KNNxN ]− γ dxN
dt

+
1

MN

R(t), (4.18)

〈R(t)R(0)〉 = 2MNγkBTδ(t). (4.19)

Go to mass-weighted coordinates,

d2yn
dt2

= −(kn,n+1yn+1 + kn,n−1yn−1 + knnyn); n 6= 0, N (4.20)

d2y0

dt2
= −(k0,1y1 + k00y0) (4.21)

d2yN
dt2

= −(kN,N−1yN−1 + kNNyN)− γ dyN
dt

+ ρ(t), (4.22)

where we have defined,

yn =
√
Mnxn, kij =

Kij√
MiMj

, knn =
Knn

Mn

, ρ(t) =
R(t)√
MN

, (4.23)

〈ρ(t)ρ(0)〉 = 2γkBTδ(t). (4.24)

Now as we transfer to Fourier space,

f(t) = f̃(ω)e−iωt + f̃(−ω)eiωt (4.25)

We have,

ω2ỹ0 = k01ỹ1 + k00ỹ0 (4.26)

ω2ỹn = kn,n+1ỹn+1 + kn,n−1ỹn−1 + knnỹn (4.27)

ω2ỹN = kN,N−1ỹN−1 + kNN ỹN − iωγỹN − ρ̃(ω). (4.28)
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We may further put them into matrix form.

My = r, (4.29)

where

r =



0

0

...

ρ̃


(4.30)

M =



k00 − ω2 k01 . . . 0

k10 k11 − ω2 k12 0

...
...

. . .
...

0 . . . kN,N−1 kNN − ω2 − iωγ


(4.31)

The matrix can be inverted analytically,

ỹ0(ω) = [M−1]0N ρ̃(ω) (4.32)

For the velocity, we have

|˜̇y0(ω)|2 = |[M−1]0N |2ω2|ρ̃(ω)|2 (4.33)

〈| ˜ρ(ω)|2〉 is the Fourier transform of the random noise ρ and is equal to40

〈| ˜ρ(ω)|2〉 =
γkBT

π
, (4.34)
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note the mass is unity in the mass-weighted representation. We then have

|˜̇y0(ω)|2 = |[M−1]0N |2ω2γkBT

π
(4.35)

The LHS is the Fourier transform of the velocity correlation function of atom 0 – the

atom seen by the molecule it connects to.

When we connect the bath spectrum density to the v-v correlation40

g(ω) =
3mN

πkBT

∫ ∞
−∞

dt〈ẋ(0)ẋ(t)〉e−iωt. (4.36)

We have the expression that takes into account the force constants matrix.

g(ω) = |[M−1]0N |2ω2 3γ

π2
(4.37)

With parameters of force constants (i.e. kij) and the coupling (γ), we can fit the

density of modes into Debye-shape (with a normalization factor C),

g(ω) = C
ω2

1 + (ω/ωD)2(N+1)
, (4.38)

which shows in the same form of the math filter method76.

As an example of the above formalism, we will use two layers (one atom for each

layer) of representative bath atoms that give rise to the eighth power of ω when fitted

into Eqn. 4.38 (derived below, with three specific tunable parameters), which could

be a roughly good estimator for the purpose of simple model investigations.

For two-atoms bath (See Fig. 4.2 the left atom, number 0, is supposed to connect

with the molecule):
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k1 k2

Figure 4.2: Schematic drawing of the Debye bath composed of 2 atoms (simplified
version of Fig 4.1)

M =

k00 − ω2 −k1

−k1 k11 − iγω − ω2

 k00 = k1, k11 = k1 + k2 (4.39)

det(M) = ω4 + iγω3 − (2k1 + k2)ω2 − iγk1ω + k1k2 (4.40)

M−1 =
1

det(M)

k1 + k2 − iγω − ω2 k1

k1 k1 − ω2

 (4.41)

|M−1|12 =
k1

det(M)
(4.42)

The denominator of (|M−1|12)2 is

ω8 + c6ω
6 + c4ω

4 + c2ω
2 + c0 (4.43)
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where

c6 = γ2 − 2(2k1 + k2) (4.44)

c4 = (2k1 + k2)2 + 2k1k2 − 2γ2k1 (4.45)

c2 = γ2k2
1 − 2k1k2(2k1 + k2) (4.46)

c0 = k2
1k

2
2 (4.47)

Under the condition, c6 = c4 = c2 = 0 and k1 6= 0 and k2 6= 0, we fit the parameters

k1 = 0.151388, k2 = 0.131483, γ = 0.868517 (4.48)

We can then go back to the expression of the density of modes,

g(ω) = (|M−1|12)2ω2 3γ

π2
(4.49)

and plot g(ω). If we assume

g(ω) = C
ω2

1 + ( ω
ωD

)8
, (4.50)

then we have

ωD = (c0)1/8 ≈ 0.375126 (4.51)

We show in Appendix C.1, the Fourier transform (Fig. C.2) of the auto-correlation

(Fig. C.1) of the of atom 0 with these fitted parameters, does act as Debye bath,

with a sharp cut-off at around one Debye frequency.
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4.2 Numerical tests

4.2.1 Equilibrium energies obtained after long-time relaxation

The first and simplest case we will check is how a single particle within the vicinity

of a thermal bath relaxes to equilibrium. We know from statistical mechanics that

the energy of the system will be characterized by the temperature of the bath for the

long run when it equilibrates with the bath.

For a harmonic oscillator, the system energy 〈E〉 ∼ kBT , if the bath is in classical

Boltzmann distribution, while 〈E〉 ∼ ~ω/(e~ω/kBT − 1)(ω being the frequency of

the oscillator), if the phonons in the bath is occupied according to quantum boson

distribution40. For an anharmonic oscillator, we take Morse potential here. The

Morse potential of a particle is

Vmor = D[e−α(x−x0) − 1]2, (4.52)

where D is the is the depth of the potential (Dissociation energy), and x0 is the

equilibrium position. α is a parameter usually defined by α =
√
mω2/2D, where ω

is the harmonic oscillating frequency at the minimum position.

For classical calculations, phase space partition function under equilibrium for the

particle can be written as

Z =
1

h

∫
dvdxe−β( 1

2
mv2+Vmor) (4.53)

where β = 1/kBT .
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The average energy is

〈E〉 =
1
h

∫
dvdx(1

2
mv2 + Vmor)e

−β( 1
2
mv2+Vmor)

Z
(4.54)

=
1

2
β−1 +

∫
dxVmore

−βVmor∫
dxe−βVmor

(4.55)

≡ 〈K〉+ 〈Vmor〉 (4.56)

For the quantum calculation, the energy levels of the so called Morse oscillator121

can be expressed as,

En = [n+
1

2
− 1

2λ
(n+

1

2
)2]~ω0 (4.57)

ω0 =

(
2Dα2

m

)1/2

, n = 0, 1, 2, . . . , (λ− 1

2
), λ =

√
2mD

α~
(4.58)

The reason why there is a upper limit of the energy level of the Morse oscillator,

that is nmax = λ − 1/2, is that the Morse potential (Eqn.(4.52)) is not infinitely

bounded. It has a dissociation energy (D), beyond which the potential energy no

longer has bound states (in another word, the molecule does not exist any more). One

can rigoriously work out the exact expression for such uppper bound by solving the

wavefunctions for the Schrodinger’s equation121, but it may also help if we intuitively

deduce it from the energy level expression itself.

En+1 − En = 1− 1

λ
(n+ 1)− 1

2λ
> 0. (4.59)

This relation has to hold obviously, since higher energy level should not “below” lower

energy level, which gives us n < λ− 3/2. Since energy levels are integers, the upper

limit nmax = λ− 1/2.
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The quantum calculation of average energy can be written,

〈E〉 =

∑
nEne

−βEn∑
n e
−βEn

. (4.60)

Now we have the analytical expressions for both classical and quantum equilib-

rium energies of harmonic and anharmonic (Morse) oscillators, we will check how the

classical constant-T MD approach and the “effective temperature”(ET) (Eq.4.14)

dynamics approach (Eq.4.15) we have developed compare to the actual values.

Fig.4.3 shows the temperature dependent total system energies at equilibrium for

different calculations and model simulations (namely, classical versus quantum). For

the harmonic oscillator (also see Fig C.3 for the simulated results) at a large bath

temperature (e.g. temperature three times larger than the oscillator frequency), the

temperature dependency of the energies all become linear (1 to 1 ratio), 〈E〉 ∼ kBT ∼

~ω/(e~ω/kBT −1), when T →∞. On the other hand, on the low temperature end, the

classical energies (either simulations or analytical results) diverge from their quantum

counterparts quickly. Specifically, while the particle energy still scales linearly to the

classical bath, the quantum effect make the energy decrease exponential (with zero-

energy taken into account), most obvious for T < 1.

Under anharmonic potential(that is Morse oscillator, more details see Appendix

C.2) we can see similar trends: The quantum results (analytical or simulated with

the effective temperature dynamics) differ more to the classical results (analytical

or simulated constant-T Langevin dynamics) at the lower temperatures, while the

two gradually converge at high-T limit. One difference between harmonic and an-

harmonic potentials to be noticed is that the anharmonic energies at equilibrium do

not proportionally depend on the bath temperatures as the harmonic potential does

(Fig.C.3).
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Figure 4.3: Equilibrium energies of a single particle in a Morse potential connected to
thermal bath of different characteristic temperatures (T indicated on the x-axis). All
dimensionaless quantities are scale with respect to the oscillating frequency (ω) of the
corresponding harmonic potential with the relation 2Dα2 = mω2 (see Appendix C.2).
Specifically, the unit for T is ~ω/kB, the unit of inverse length α is

√
mω/~ and the

energy unit is ~ω. The insert is a zoom-in of the full figure to the T range of 0 to 2.
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Figure 4.4: Schematic drawing of the diatomic molecule attached to a Debye bath sim-
ulated with two harmonically bonded atoms. The molecule is represented as number
0, connected to the bath atoms, which are parameterized according to Eqn. 4.48.

Overall, the MD simulation of modified Langevin dyanmics, which considers quan-

tum effect of the reserviors, has accounted for both high and low temperature limits

at equlibrium, by encoding a effective temperature that incorporates quantum boson

distribution into the molecular dynamics.

4.2.2 Vibrational relaxation of a diatomic molecule

Another way to check the quantum bath (ET approach) properties as well anhar-

monicity effects is by looking at the energy relaxation of a diatomic molecule near

the bath surface. Here we show the results for such a model system with different

interactions and parameters (see Fig. 4.4), and their rates of energy relaxation with

respect to bath temperature changes.

Two types of interactions are taken between the molecule and the bath (i.e. be-

tween atom 0 and 1). a). Harmonic (k01 = 0.002 as default); b). Anharmonic (Morse

potential detailed in Appendix C.2, α = 0.1 and D = 0.1 with dimensionless units

Appendix C.3). Fig. 4.5 shows energy relaxation for the harmonic diatomic oscillator

within the range of Debye spectrum. Initial states of the oscillator are sampled from

the same total energy with random displacements and velocities. The relaxation en-

ergy is calculated as statistical ensemble averages of the time-dependent total energy

changes minus the energy when the system is equilibrated to the baths. While in
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Figure 4.5: Examples of energy relaxation rates of the diatomic molecule shown in
Fig. 4.4, with classical and quantum (effetive temperature method) baths. With
internal vibration frequency about 1/4 of Debye and temperature 0.2 (~ωD/kB). The
x-axis is the evolution time. The slopes of the logarithmic fits of the energy changes
(y-axis values) are 0.000209 for the classical and 0.000207 for the quantum, which
correspond to their relaxation rates respectively.

the classical case the temperature is constant, the effective temperature for the ET

approach arises from phonons in the quantum bath that follow boson distribution.

That is why the quantum curve appears slightly higher than the classical line, because

the equilibrium energy of the augmented quantum bath is smaller caused by overall

lower effective temperature. As the energy decays exponentially, we can do logrithmic

fit to get the relaxation rates from the slopes of the fitted lines. It is shown that the

classical and quantum cases align with each other well (∼ 0.0002 in Fig. 4.5). Later

we will see it is not always the case for anharmonic oscillators.

When the of harmonic oscillator is bilinearly connected to the bath and its fre-
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quency is well below the cutoff of Debye spectrum, it is expected that the rate is

temperature-independent (See Section 13.4 in Ref40). To see the effect of Debye

colored bath, we take comparatively larger vibrational frequencies for the diatomic

molecule: 1.5 times and 3 times of Debye cut-off (Fig. 4.6). While when the inter-

nal frequency reaches 3 times larger than Debye frequency, all the relaxations cease,

because of lack of available modes from the color bath, 1.5 times higher frequency

shows some interesting effect. The harmonic versions are still flat, but the anharmonic

potential (the oscillator is connected to the bath via a Morse potential, detailed in

the Appendix C.2. The parameters are chosen so that the harmonic potential is an

approximation when the displacement of the oscillator is small from its equilibrium

position) gives higher rates, indicating the ability of the anharmonicity to creates

effective modes (Fourier components of the dynamics) outside the range of Debye

spectrum. Moreover, the quantum simulation always deviates from the classical an-

harmonic results, which is not seen in the harmonic case.

The up trend for the higher temperature (e.g. at 0.8) is not generic. We show

in the following that when the interations (molecule-bath coupling strength, i.e. k01

in Fig. 4.4) become smaller, this trend disappears (Fig. 4.7). Therefore, to be in the

linear-response regime, the coupling between the molecule and the bath has to be

smaller enough so that the broadening will not affect the results.

4.2.3 Heat conduction through a diatomic molecule

This section show results of comparison for molecular heat conduction among the

quantum augmented MD approach, constant temperature MD simulations and Lan-

dauer’s formalism4,6. Specifically, we choose a diatomic molecule which is connected

to two baths 1 of different temperatures, allowing for steady-state heat current cal-

1For simplicity, white baths are chosen here, meaning the two atoms in the molecule are directed
subjected to white random noise in Langevin’s dynamics, instead of the Debye bath as in the previous
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Figure 4.6: Relaxation rates for the diatomic molecule with respect to different tem-
peratures, under Debye bath composed of two layers of atoms shown in Fig. 4.4. Two
sets of internal vibration frequencies of 1.5ωD and 3ωD are compared to the frequency
of 0.25ω. The force constant (k01) is 0.002 in all cases. The comparative data are
all labeled in the legend, the numbers(e.g. 1.5, 0.25) denote the internal vibrational
frequencies in which the oscillators are simulated (in the anharmonic cases, the poten-
tial energies depth and characteristic lengths are chosen to be equal to the harmonic
force constants, i.e.k01 = 2α2D, details in Appendix C.2). The quantum results refer
to the “effective temperature (ET) approach”, while classical results is for traditional
constant temperature method.
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Figure 4.7: Comparisons of relaxation rates for the diatomic molecule with different
interacting/coupling strengths (k01 in the model, other parameters are the same as
in Fig. 4.6). The x-axis is temperature.
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culations.

The parameters are chosen within the range of general MD force-fields: the masses

of the two atoms are 15 A.M.U. (the mass of one carbon plus three hydrogen atoms);

the harmonic bond between the atoms is 292900 kJmol−1nm−2 (∼C-C bond); the

system-bath coupling (γ) is 1 ps−1. As for the quantum (ET approach) simulation,

the maximum sampling frequency (ωmax) is taken to be 100 ps−1 (with slicing number

of 5×104). During the MD simulations, the temperature bias is fixed to 50K, and the

temperature of the left side bath changes from low to high and always smaller than

the right bath.

Fig.4.8 summarizes the results. A few observations can be made: (a) The heat

current from constant temperature MD approach is almost T-independent across the

low, middle to high bath temperatures, as long as the bias itself is kept constant. (b)

The Landauer’s calculation reduces to about half of the value at lower temperature

limit compared to the constant temperature case (the reason it does not go to zero is

that 50K thermal bias always provides transporting phonons in the right bath even

when the left bath has close-to-zero temperature), and catches up gradually as tem-

perature rises. The trend of the ET MD simulations aligns well with the Landauer’s

results. (c) All three approaches converge to the same values, as temperature of the

left bath becomes high, which is expected that quantum effect reduces to its minimum

at the classical (high-T) limit.

Since there is only one harmonic interaction in the diatomic system, the Lan-

dauer’s calculations depict the true behavior of the system for the full temperature

range, while the constant-T Langevin’s MD results act as its approximation for high-

T limit. By showing the agreement of the quantum augmented MD method to the

section of relaxation study. There will not be considerations as to which particular internal frequency
to choose to be in the bath spectrum range.
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Figure 4.8: Heat currents for the 1-D diatomic system under three different ap-
proaches. The Landauer-type calculations are based on the normal modes in the
system, while the other two with error bars (standard deviations) are results from
MD simulations. Tconst means classical constant temperature baths while Teff refers
to the quantum augmented baths formulated in the method section. X-axis is the
temperatures for the left bath, while the right bath is always 50K higher in all the
settings. Y-axis are normalized (by Landauer’s current at 2500K) heat currents (MD
results are sampled from steady-state inter-atomic heat currents3,4) The units for the
system are: 15 a.m.u. for the atomic masses; 292900 kJmol−1nm−2 for the harmonic
bond; 1 ps−1 for the molecule-bath coupling (as in Langevin’s dynamics); and 100
ps−1 for the maximum quantum bath frequency (with 50000 small intervals).
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Landauer’s calculation, we confirm indeed this method is capable of capturing full

dynamics of the molecular heat conduction, through carefully engineering the bath

properties to introduce the boson distribution of quantum mechanical phonons.
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CHAPTER 5

Electron-transfer-induced and phononic heat transport in molecular

environments and energy partitioning in relaxation and activation

This chapter is adapted from The Journal of Chemical Physics 147, 124101 (2017)

& The Journal of Chemical Physics 149, 104103 (2018)

5.1 Introduction

The interplay between electric current and heat transfer drives energy conversion in

diverse thermoelectric applications and results in a multitude of chemical functionali-

ties which can be harnessed to perform operations in molecular devices, junctions, and

machines.122–131 Understanding the physical underpinnings of these processes and how

they can be utilized for optimal functionality is a critical focus in nonequilibrium dy-

namics. In the regime where electron dynamics are strongly coupled with the motions

of a surrounding thermal environment, charge transport between donor and acceptor

molecules is dominated by hopping-type events, and electron transfer (ET) reactions

can be described using the theory developed largely by Marcus,40,132–137 Levich,138

and Hush.139–141 So-called Marcus theory is a semiclassical theory that connects elec-

tron tunneling with transition state theory (TST),40,142–147 and gives qualitative and

sometimes quantitative predictions of reaction rates in the limit of strong electron-

phonon coupling where a system’s dynamical evolution can be described by electron

occupation probabilities on the donor and acceptor sites. Multidimensional variants

of Marcus theory have also been applied to cases where electron transport is coupled

with other reactive coordinates, such as in proton-coupled electron transfer, and also
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to reactions that involve the transfer of multiple electrons.148–157

Energy (heat) transport in metals is dominated by electronic motion. By contrast,

energy transport in molecular systems can occur through several channels depending

on the form of energy transferred. Thermal energy (heat) transport is dominated

by the phononic mechanism, i.e., the interaction and subsequent energy transfer be-

tween vibrational modes which are in contact with thermal environments of different

temperatures.99,158–168 In addition to studies that have elucidated the connection be-

tween composition, morphology and microscopic structure of different environments

and their heat conduction properties,8,10,12,45,88,169–175 many recent studies have re-

sulted in the development of molecular devices12 such as thermal transistors176–178

and thermal rectifiers162,179,180 which use heat to perform useful functions and logical

operations.

In contrast to metals, in the development of theories for charge and energy trans-

port in molecular systems, a principal postulate is the absence of direct interdepen-

dence: charge transport takes place through electron transfer while heat transport

occurs through phononic interactions. However, it has been recently shown that the

transfer of electrons between a donor and acceptor whose environments are at different

local temperatures generates a heat current solely from the electron transport.19–21 In

previous work, this ET-induced heat transport (ETIHT) has been examined between

redox molecular motifs, at molecule-metal interfaces, and in molecular junctions us-

ing two significant approximations: (a) vibrational contributions to the total heat

conduction were ignored to concentrate solely on the heat transport due to electron

transfer and (b) the nuclear modes involved in the ET process were assumed to couple

to, and to be in thermal equilibrium with, their local environments – e.g. the donor or

acceptor neighborhoods. Here, we augment this formalism to include vibrational heat

transfer by allowing mode coupling to both sites. At steady state, each mode carries
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heat currents between the environments of different local temperatures to which it

is coupled. At the same time, such modes promote electron transfer as described

by the generalized Marcus theory of Refs. 19 and 20. This augmented theory allows

comparison between the magnitude of the ET-induced and phononic heat conduction.

The remainder of the chapter is organized as follows: In Section 5.2 and the subsec-

tions therein, we discuss details of the applied model and develop a unified theory for

electron transfer, ETIHT, and phononic heat transfer by merging stochastic Langevin

dynamics with multithermal Marcus theory. Section 5.3 contains the results obtained

through application of the developed theory to different systems, with a specific focus

placed on the interplay and magnitude comparison between phononic and electron-

transfer-induced heat transport. Concluding remarks are given in Sec. 5.4, and the

outlook for future work is also discussed.

5.2 Theory of Multithermal Electron Transfer and Heat Conduction

5.2.1 System details

To examine heat conduction, electron transfer and their couplings as expressed by the

ETIHT phenomenon, we apply a model that incorporates nonequilibrium Langevin-

type stochastic dynamics into semiclassical Marcus-Levich ET theory.40,132,133,181 The

model is based on the Marcus-Levich picture of energy transfer in which a two-

state (electron on donor and electron on acceptor) electronic system is coupled to N

vibrational modes whose dynamics control the electron transfer. In departure from

the Marcus-Levich picture, each mode is assumed to be in contact with two heat bath

sites, denoted a and b, (we will henceforth take these to be the donor and acceptor

sites) with respective local temperatures Ta and Tb.
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The motion of mode i is modeled by the Langevin equation,

ẍi = −γ(i)
a ẋi − γ

(i)
b ẋi −

∂Ẽs(X)

∂xi
+ ξ(i)

a (t) + ξ
(i)
b (t), (5.1)

where X = {x1, . . . , xN}, Ẽs(X) is a mass-weighted energy surface whose geometry

depends on the electronic state s of the system, γ
(i)
a and γ

(i)
b are coupling strengths

to baths a and b, and ξ
(i)
a (t) and ξ

(i)
b (t) are stochastic noise terms of the respective

bath. The stochastic terms obey the relations

〈
ξ

(i)
K (t)ξ

(i)
K (t′)

〉
= 2γ

(i)
K kBTKm

−1
i δ(t− t′), (5.2)〈

ξ(i)
a (t)ξ

(i)
b (t′)

〉
= 0, (5.3)〈

ξ
(i)
K (t)

〉
= 0, (5.4)

where K ∈ {a, b} and 〈. . .〉 denotes an average over the realizations of the noise.

These correlations imply that the noise from each thermal source is white and is not

correlated with the noise in the other bath or the noise in any other mode. The full

dynamics of the system is described by N equations analogous to (5.1) – one for each

mode – which are represented in a diagonal basis. However, electron transfer is a

collective nuclear process involving all modes that are sensitive to the electronic oc-

cupations of the donor and acceptor sites. Consequently the modes interact through

the geometrical modification of the underlying energy surface associated with the

electronic states. Here, electronic transport and ETIHT are modeled using a multi-

thermal variant of Marcus ET theory.19,20

The system has two electronic states: A and B, which correspond to electron

localization on site a and site b, respectively. When the system is in electronic state
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A, the energy is,

EA(x1, . . . , xN) = E
(A)
0 +

N∑
i

1

2
ki

(
xi − λ(A)

i

)2

, (5.5)

and in electronic state B,

EB(x1, . . . , xN) = E
(B)
0 +

N∑
i

1

2
ki

(
xi − λ(B)

i

)2

, (5.6)

where ki is the force constant of the ith mode and E
(s)
0 : s ∈ {A,B} is the electronic

energy origin of the respective state. The factors λ
(s)
i : s ∈ {A,B} parameterize

configurational changes in the environment of the respective mode due to electron

localization on the corresponding site. The contribution to the total energy from the

ith mode when the system is in the sth state is

E(i)
s (xi) =

1

2
ki

(
xi − λ(s)

i

)2

: s ∈ {A,B}, (5.7)

and each mode is characterized by a reorganization energy (same for A → B and

B → A transitions) given by

ERi =
1

2
ki

(
λ

(A)
i − λ

(B)
i

)2

. (5.8)

The total reorganization energy for the system is

ER =
N∑
i=1

ERi. (5.9)

.

Each mode is in contact with two heat baths (a and b) with temperatures Ta 6= Tb,
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therefore, due to the thermal gradient, the system is intrinsically nonequilibrium

even when electronic equilibrium (i.e., zero net electron transfer between the sites)

has been reached. Solving the corresponding Fokker-Planck equation associated with

Eq. (5.1)158,159,165,166 yields that, at steady-state, each mode is characterized by an

effective temperature,

Ti =
γ

(i)
a Ta + γ

(i)
b Tb

γ
(i)
a + γ

(i)
b

. (5.10)

and the probability distribution in each mode will take a Gibbs form,

Pi ∝ exp
[
−βiE(i)

s (xi)
]

: s ∈ {A,B}, (5.11)

where βi = 1/kBTi, with kB being Boltzmann’s constant, and E
(i)
s (xi) is the energy

of ith mode (see Eq. (5.7)) in the sth state. Correspondingly, the total probability

distribution for the system of N modes is:

P ∝
N∏
i=1

exp
[
−βiE(i)

s (xi)
]
,

∝
N∏
i=1

exp

[
− γ

(i)
a + γ

(i)
b

kB(γ
(i)
a Ta + γ

(i)
b Tb)

E(i)
s (xi)

]
, (5.12)

with s ∈ {A,B}, which illustrates that the Boltzmann weight of each mode is char-

acterized by the respective effective temperature of that particular mode.

5.2.2 Multithermal electron transfer theory

In Refs. 19 and 20 a theory was developed to treat multithermal ET reactions and

this formalism can be adapted to treat the present model. The general form of the

ET rate in the nonadiabatic limit is40

kA→B =
〈
TA→Bv⊥

〉
PA→B, (5.13)
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where TA→B is the tunneling probability from state A to B, v⊥ is the velocity in

the direction normal to a transition surface (TS) separating reactant and product

regions, PA→B is the probability density about the TS when the system is in state A,

and 〈. . .〉 denotes a multithermal average. The TS is defined by mode configurations

that satisfy gc(x1, . . . , xN) = EB(x1, . . . , xN)−EA(x1, . . . , xN) = 0, which arises from

the requirement that energy be conserved during an ET event.

The probability about the TS for the A→ B transition is,19–21

PA→B =

∫
RN

N∏
i=1

dxi exp

[
N∑
i=1

−βi
ki
2

(
xi − λ(A)

i

)2
]

× |∇gc|δ
(
gc(x1, . . . , xN)

)
/∫

RN

N∏
i=1

dxi exp

[
N∑
i=1

−βi
ki
2

(
xi − λ(A)

i

)2
]
,

(5.14)

and for the B → A transition,

PB→A =

∫
RN

N∏
i=1

dxi exp

[
N∑
i=1

−βi
ki
2

(
xi − λ(B)

i

)2
]

× |∇gc|δ
(
gc(x1, . . . , xN)

)
/∫

RN

N∏
i=1

dxi exp

[
N∑
i=1

−βi
ki
2

(
xi − λ(B)

i

)2
]
,

(5.15)

where the factor

|∇gc| =

(
N∑
i=1

2kiERi

)1/2

, (5.16)

ensures that the δ-function constraint is unique.19,20,182 Evaluating the integrals yields

PA→B =


N∑
i=1

kiERi

2πkB

N∑
i=1

TiERi


1/2

exp

−(∆EBA + ER)2

4kB

N∑
i=1

TiERi

 , (5.17)
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and

PB→A =


N∑
i=1

kiERi

2πkB

N∑
i=1

TiERi


1/2

exp

−(∆EBA − ER)2

4kB

N∑
i=1

TiERi

 , (5.18)

where ∆EBA = −∆EAB = E
(B)
0 − E(A)

0 is the free energy difference between energy

origins of the respective states for the A → B transition. The probability densities

(and hence the ET reaction rates themselves) take the general forms derived in Refs.

19 and 20, but through their dependence on the modes effective temperatures, also

contain friction terms that arise from the Langevin description of the dynamics. Thus,

the developed expressions for the multithermal ET transfer rate directly include terms

that parameterize strengths of coupling to each bath.

The tunneling probability can be evaluated using the Landau-Zener approximation

giving

TA→B = TLZ = 1− exp

[
−2π|VA,B|2

~|∆F |v⊥

]
, (5.19)

where ~ is Planck constant, |∆F | = |∇gc| represents the force difference normal to

the TS on the potential energy surface configuration, and VA,B is the energy coupling

between diabatic surfaces. In the adiabatic limit, TLZ → 1, and in the nonadiabatic

limit a first-order approximation to (5.19) yields

TLZ =
2π|VA,B|2

~|∆F |v⊥
. (5.20)

In the nonadiabatic case, the expectation value 〈TA→Bv⊥〉 is independent of the nor-
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mal velocity and the expression for the ET rate from state A to state B is:

k
(na)
A→B =

|VA,B|2

~|∆F |

 2π
N∑
i=1

kiERi

kB
N∑
i=1

TiERi


1/2

exp

−(∆EBA + ER)2

4kB
N∑
i=1

TiERi

 , (5.21)

and from state B to state A,

k
(na)
B→A =

|VA,B|2

~|∆F |

 2π
N∑
i=1

kiERi

kB
N∑
i=1

TiERi


1/2

exp

−(∆EBA − ER)2

4kB
N∑
i=1

TiERi

 . (5.22)

The nonadiabatic rate constant is most relevant when the distance between donor and

acceptor is large, and thus the energy coupling VA,B between diabats is small. We

expect that this is the typical regime in which multithermal ET may be experimen-

tally realizable because to hold the donor and acceptor environments at appreciable

different temperatures requires such length scales. In the adiabatic limit the rate is

proportional to the average velocity in the normal direction to the TS:

k
(ad)
A→B =

〈v⊥〉
2
PA→B and k

(ad)
B→A =

〈v⊥〉
2
PB→A, (5.23)

where the normal velocity is,20

〈v⊥〉 =

(
4kB

N∑
i=1

kiTiERi

/
π|∇gc|2mi

)1/2

, (5.24)

and a pre-factor 1/2 is included in (5.23) because, under standard TST assumptions,
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on an adiabatic surface only positive velocities contribute to the reactive flux and

thus the reaction rate. In the case where Ta = Tb the multithermal rates k(na) and

k(ad) reduce to the standard Marcus expressions.39,40

5.2.3 Derivation of energy partitioning using master equations

A system is coupled linearly to N thermal baths at different temperatures: T1, T2, · · · , TN .

The relaxation rates into each bath when the system is coupled to each bath sepa-

rately are γ1, γ2, · · · , γN . We ask when the system has fluctuated to energy E above

the ground state, how much (on the average) of this energy came from each thermal

bath. Similarly, when it relaxes from E to steady state, how much energy is released

to each bath. Denote the probability to reach energy E by P (E). Suppose that just

before reaching E, the system was in a state with energy E −∆E. When coupled to

a single bath k, the rate to go up in energy is γknk(∆E) and the rate to go down is

γk[nk(∆E) + 1], where

nk(∆E) =
1

e∆E/kBTk − 1
(5.25)

The kinetic equation describing the time evolution of the of the occupation probablity

at energy level E is

Ṗ (E) =
N∑
k

γknk(∆E)P (E −∆E) +
N∑
k

γk [(nk(∆E) + 1]P (E) (5.26)

and in the steady-state limit where Ṗ (E) = 0,

−
N∑
k

γknk(∆E)P (E −∆E) =
N∑
k

γk [nk(∆E) + 1]P (E). (5.27)
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If we consider a two-level requirement, then

P (E) + P (E −∆E) = 1 (5.28)

and we get

1− P (E)

P (E)
=

N∑
k

γknke
∆E/kBTk

N∑
k

γknk

(5.29)

which implies that

P (E) =

N∑
k

γknk

N∑
k

γknk (e∆E/kBTk + 1)

(5.30)

From these equations, we deduce that energy contributed by bath k when the system

energy incresase (↑) or decrease (↓) are, respectively,

∆Ek↑ =
γknk∑N
k γknk

∆E

∆Ek↓ =− γk (nk + 1)∑N
k γk (nk + 1)

∆E

(5.31)

In the classical limit, these expressions reduce to

∆Ek↑ =
γkTk
γT

∆E

∆Ek↓ = −γkTk
γT

∆E.

(5.32)
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Figure 5.1: Schematic of the energetics of heat exchange and energy partitioning
between baths during the ascent to the transition state (shown as a circular marker)
and the descent to the energy origin of the respective state. The dashed curves
represent the energy surfaces EA and EB.

5.2.4 Electron-transfer-induced heat transport (ETIHT)

Electron transfer across a thermal gradient can induce a net heat current between

molecules,19–21 and although we have a significant understanding of the physical man-

ifestations underlying thermoelectric effects and phononic heat transport127,168,183 in

materials and molecular junctions,123,129–131,184 the interplay between electronic and

thermal currents is less understood when considering ETIHT effects in the strongly

coupled electron-phonon limit of transport. We have previously developed a theory for

the heat current induced by electron transfer in thermal heterogeneous environments

for a two-mode system in which each mode is in equilibrium with a single thermal

reservoir, and the two reservoirs have different temperatures.19 Here, we generalize

that theory to the case of multiple modes whose evolution is governed by stochastic

Langevin dynamics and each mode is coupled to multiple thermal baths.

Consider a vibrational mode i and denote a point on the TS along the correspond-

ing coordinate by xTS
i . To reach this point for the A→ B transition the mode needs
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to obtains energy Q↑Ai from the baths during the ascent to xTS
i . It will then release

energy Q↓Bi into the baths during the descent on the B surface after the electronic

transition occurs.

Similarly, for the B → A transition the mode obtains energy Q↑Bi from the baths

during the ascent to the TS and then releases energy Q↓Ai during the descent after the

B → A electronic transition. The contribution of this modes to the energy change of

the baths due to the process considered is thus given by:

QA→Bi ≡ −Q↑Ai +Q↓Bi

= −1

2
ki

(
xTS
i − λ

(A)
i

)2

+
1

2
ki

(
xTS
i − λ

(B)
i

)2

, (5.33)

QB→Ai ≡ −Q↑Bi +Q↓Ai

= −1

2
ki

(
xTS
i − λ

(B)
i

)2

+
1

2
ki

(
xTS
i − λ

(A)
i

)2

. (5.34)

where we have used the convention that energy released by the bath has a negative

sign and energy obtained by the bath has a positive sign. A schematic of these

energetics is shown in Fig. 5.1.

Electron transfer can occur at any configuration X on the TS, therefore Eqs.

(5.33) and (5.34) must be averaged of these configurations . It is an important

characteristic of the multi-thermal situation considered the the probability densities

to be on the TS when coming from the A or B sides are not equal. They are given
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by19

P ‡A→B
(
X
)

= δ(gc) exp

[
N∑
i=1

−βi
ki
2

(
xi − λ(A)

i

)2
]

/∫
RN

N∏
i

dxiδ(gc) exp

[
N∑
i=1

−βi
ki
2

(
xi − λ(A)

i

)2
]
, (5.35)

P ‡B→A
(
X
)

= δ(gc) exp

[
N∑
i=1

−βi
ki
2

(
xi − λ(B)

i

)2
]

/∫
RN

N∏
i

dxiδ(gc) exp

[
N∑
i=1

−βi
ki
2

(
xi − λ(B)

i

)2
]
. (5.36)

Averaging over all configurations on the TS using the corresponding probability den-

sities, we find that the expectation value of the total heat transferred by mode i

during the respective transitions are

〈
QA→Bi

〉
=

∫
RN

QA→Bi P ‡A→B(x1, · · · , xN)dx1 · · · dxN

=

ERi

[
∆EABTi +

N∑
k 6=i

ERk (Tk − Ti)

]
N∑
k

TkERk

,

(5.37)

and 〈
QB→Ai

〉
=

∫
RN

QB→Ai P ‡B→A(x1, · · · , xN)dx1 · · · dxN

= −
ERi

[
∆EABTi −

N∑
k 6=i

ERk (Tk − Ti)

]
N∑
k

TkERk

.

(5.38)

Equations (5.37) and (5.38) are expressions for the net heat exchange associated

with mode i in the corresponding ET processes. In Ref. 19 knowledge of these quanti-

ties was sufficient for calculating the heat transfer between baths because each mode
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was coupled specifically to a single bath. Here however the mode can be coupled to

both baths, and to translate the net heat exchange by such modes requires knowledge

of the energy partitioning between baths. Specifically, we require an answer to the fol-

lowing question: If the net heat exchange with the baths (-accumulated during ascent

plus released during descent) is Q, how is Q partitioned between the two baths?

From the kinetic master equations (detailed above) of a two-level system with

energy level spacing ∆E that is coupled to two baths we find that the fraction of

energy ∆EK that is obtained/released by the Kth bath during a state transition

is,185,186

∆EK =
γK〈nK〉

γa〈na〉+ γb〈nb〉
∆E : K ∈ {a, b} (5.39)

where

〈nK(∆E)〉 =
1

eβK∆E − 1
(5.40)

is the quantum population in equilibrium with the respective thermal bath. In the

classical limit 〈nK〉 ∼ TK , and, thus, in the limit where the Langevin dynamics of

Eq. (5.1) adequately describe the system’s evolution:

∆EK =
γKTK

γaTa + γbTb
∆E : K ∈ {a, b}, (5.41)

which states that bath K provides/absorbs γKTK/(γaTa + γbTb) of the total energy

change during each transition.

Using this partitioning during both activation and relaxation events, we arrive

at general expressions for the heat current generated into each bath at steady state
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solely from the transfer of electrons across a thermal gradient:

J
(a)
Q = Jel

N∑
i

γ
(i)
a Ta

γ
(i)
a Ta + γ

(i)
b Tb

(〈
QA→Bi

〉
+
〈
QB→Ai

〉)
,

= 2Jel

N∑
i

γ
(i)
a Ta

γ
(i)
a Ta + γ

(i)
b Tb


ERi

N∑
k 6=i

ERk (Tk − Ti)

N∑
k

TkERk

 , (5.42)

J
(b)
Q = Jel

N∑
i

γ
(i)
b Tb

γ
(i)
a Ta + γ

(i)
b Tb

(〈
QA→Bi

〉
+
〈
QB→Ai

〉)

= 2Jel

N∑
i

γ
(i)
b Tb

γ
(i)
a Ta + γ

(i)
b Tb


ERi

N∑
k 6=i

ERk (Tk − Ti)

N∑
k

TkERk

 , (5.43)

where Jel is the unidirectional electronic current at steady state. In this state, the

electronic system has reached quasi-equilibrium where the electronic state populations

p
(ss)
K : K ∈ {A,B} do not change, so that

J
(ss)
A→B = J

(ss)
B→A ≡ Jel = p

(ss)
A kA→B. (5.44)

where p
(ss)
A is the steady state probability that the system is in electronic state A.

It is easily confirmed that these currents satisfy the energy conservation condition

J
(a)
Q = −J (b)

Q .

Some insight on these results can be obtained by considering special cases. Con-

sider first a system with a single vibrational mode that is coupled to sites a and b.

The total heat energies transferred between the baths during the and A → B and
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B → A transitions are

〈
QA→Bi

〉
= ∆EAB (5.45)〈

QB→Ai

〉
= −∆EAB (5.46)

where EAB is the free energy difference between the two electronic states. These

energies cancel each other when summed to yield the total heat associated with a

“round trip” between the states, therefore there is no ET-induced heat current for a

single mode coupled to two thermal sources. One way to understand the reason for

this is to note that the single mode is associated with a single effective temperature

so the electron transfer process is not subjected to a temperature difference between

the thermal baths. Obviously, such a single mode, being coupled to two baths of

different temperatures, will contribute to the standard (phononic) heat transport

(see Sec. 5.2.5).

Next consider a two modes system. Eqs. (5.42) and (5.43) now yield

JQ = J
(a)
Q = −J (b)

Q = 2J ′el

ER1ER2 (T2 − T1)

T1ER1 + T2ER2

, (5.47)

where

J ′el = Jel

TaTb

(
γ

(1)
a γ

(2)
b − γ

(2)
a γ

(1)
b

)
(
γ

(1)
a Ta + γ

(1)
b Tb

)(
γ

(2)
a Ta + γ

(2)
b Tb

) . (5.48)

which has the same form as derived in Ref. 19, except that now the temperatures T1

and T2 and the flux J ′el are effective quantities that depend on the different system-

bath coupling strengths.

It is interesting to realize that at least two vibrational modes, characterized by

different effective temperatures and sensitive to the electronic site occupations, are

needed for ETIHT. Also notable is the nonlinear dependence of this effect on the
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temperature difference between baths and the system-bath couplings. Aside from the

system-bath coupling terms which appear explicitly in Eqs. (5.42) and (5.43), the

steady state unidirectional electron current Jel is also determined by the ET rates,

which themselves are affected by these couplings. We study these dependences in

Section 5.3.

5.2.5 Vibrational heat transfer

For a single harmonic mode i coupled to two thermal baths a and b according to the

Langevin equations (5.1)-(5.4), the vibrational heat current is158

J
(a)
Qi

= −J (b)
Qi

= kB
γ

(i)
a γ

(i)
b

γ
(i)
a + γ

(i)
b

(Tb − Ta). (5.49)

which is a classical high temperature (kBT � ~ωi) limit of a more general quantum

results162

J
(a)
Qi

= −J (b)
Qi

= ~ω
γ

(i)
a γ

(i)
b

γ
(i)
a + γ

(i)
b

(nb − na), (5.50)

valid for kBT � ~γi with

nK ≡ 〈nK〉 =
e−βK~ω

(1− e−βK~ω)
, (5.51)

where K ∈ {a, b} and 〈· · · 〉 is a thermal average. Limiting ourselves to the classical

limit, the total vibrational heat current is given by the sum over modes:

J
(a)
Q = −J (b)

Q = kB(Tb − Ta)
N∑
i=1

γ
(i)
a γ

(i)
b

γ
(i)
a + γ

(i)
b

. (5.52)

The contribution of each modes depend on the temperature difference between baths,

weighed by the mode-bath coupling strength.
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Next, we use these results to estimate the relative importance of the vibrational

and ET-induced heat conductivities in molecular systems.

5.3 Results and Discussion

To gain insights into the interplay between ETIHT and purely vibrational contri-

butions to heat transport we consider a model of two vibrational modes with the

following attributes: mode 1 is assumed to be preferably localized near site a, so its

coupling to the thermal environment near this site is stronger than its coupling to

the environment of site b. Conversely, mode 2 is more localized about site b, and

therefore more strongly coupled to that site. This also implies that mode 1 may be

more sensitive to the electronic occupation of site a while mode 2 is more affected by

the electronic occupation on site b, but this difference does not affect as such the way

these modes are expressed in the electron transfer rate between these sites because

their effect enters through the symmetric coupling
(
λ(A) − λ(B)

)2
.

In the model considered, where the coupling between the electronic and vibrational

subsystems maintains the character of the vibrational modes in the two electronic

states, the two heat transfer channels: vibrational and ETIHT, operate essentially

additively. The electron transfer process depends of course on the effective vibra-

tional temperatures, however the vibrational heat transport is not affected by the

electron transfer and is independent of molecular parameters, such as the reorga-

nization energies and the free energy difference between the electronic states, that

affect the electron transfer. The relative importance of these channels as determined

by their contributions to the heat transfer is therefore derived from their essentially

independent efficiencies.

Figure 5.2 illustrates how the heat current from the ETIHT and phononic conduc-

tion channels vary with changing reaction free energy ∆EBA and the coupling of the
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Figure 5.2: Electron-transfer-induced (solid; black) and phononic (dashed; black)
heat currents JQ (current direction from left to right) and electron transfer rates
kA→B (solid; blue) and kB→A (solid; red) as functions of the free energy difference
∆EBA. Units and scale of the heat currents and electron transfer rates are shown on
the left and right axes, respectively. The system-bath couplings are γ

(1)
a = 1.0 ps−1,

γ
(1)
b = 0.1 ps−1, γ

(2)
a = 0.1 ps−1 in both panels, and in (a) γ

(2)
b = 1.0 ps−1 and (b)

γ
(2)
b = 0.05 ps−1. Other parameters are: VA,B = 0.01 eV, ER1 = 0.06 eV, ER2 =

0.04 eV, Ta = 300 K, and Tb = 270 K.
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vibrational modes to the thermal environments of the donor and acceptor. Figure 5.3

shows the dependence of these heat transport channels on the temperature difference

between the donor and acceptor sites. The following observations can be made:

(a) In the parameters ranges examined here, the vibrational heat conduction is

∼ 5× 10−4 eV/ps, which is within the range of the heat current magnitude measured

by state-of-the-art experimental technique in molecular junctions.46,51 This also in-

dicates that an electron-transfer-induced heat current could be detected experimen-

tally. A specific case where ETIHT could be the dominant conduction mechanism is

in molecular junctions in which the phononic heat current is effectively suppressed

due to the electronic characteristics of the molecular structure.115

(b) As explained above, and seen in Fig 5.2, the phononic heat current does not

depend on ∆EBA. In contrast, the dependence of the ETIHT on this parameter is

dramatic–it peaks at ∆EBA = 0 and dies down quickly as |∆EBA| is increased. This

behavior reflects the fact that ETIHT depends on the rates of electron transfer in

both directions and is therefore maximum when both rates, D → A and A→ D , are

appreciable rather than when one rate dominates the other.

(c) The couplings between the oscillator modes and the thermal environments

of the electronic centers influences the heat transport between these centers as seen

in Fig. 5.2. Its effect on the phononic part of the heat current is obvious, and an

important effect on the electron transfer rate results from the fact that the latter

depends on the effective modes temperatures that depend on these couplings. Another

important effect of these couplings on the relative magnitudes of the ETIHT and the

purely vibrational contributions stems from their symmetry properties. In panel (b)

of Fig. 5.2, the coupling of the mode 2 to the bath b is decreased by a factor of two

with respect to panel (a) and the ETIHT current goes down by nearly an order of

magnitude. The origin of this behavior lies in the symmetry properties of the coupling
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parameters. Fig. 5.2(a) refers to the case where one mode is strongly coupled to site

a while the other mode is strongly coupled to site b, as compared to the Fig. 5.2(b)

where both modes are coupled more strongly to site a. It is the former scenario that

gives the strongest ETIHT effect. In the limit in which one mode is coupled only

to site a while the other sees only site b, i.e., γ
(1)
b = γ

(2)
a = 0, there is no direct

vibrational coupling between the thermal environments of sites a and b and the total

contribution to the heat transport comes solely from the ETIHT channel. In another

special limit where the ratios of the couplings satisfy the equalities

γ
(1)
a

γ
(2)
a

=
γ

(1)
b

γ
(2)
b

or
γ

(1)
a

γ
(1)
b

=
γ

(2)
a

γ
(2)
b

, (5.53)

the ETIHT contribution to the heat current is zero while the phononic counterpart

is nonzero and proportional to the temperature difference between sites.

(d) Variation of ∆T = Ta − Tb seen in Fig. 5.3 for various constant ∆EBA values

is expressed differently in the different heat transport channnels. While the phononic

heat current increases linearly with ∆T , increasing the temperature difference between

baths does not linearly add to the magnitude of the ETIHT current. Figure 5.3

illustrates these behaviors for different sets of system-bath couplings.

A corollary of this observation is that while the phononic heat current depends

linearly on ∆T , the non-linear response of the ETIHT current may lead to situations

(usually at small ∆T ) which it exceeds its phononic counterpart. For instance, in

the ∆EBA = 0.1 eV case in Fig. 5.3(a), the ETIHT current is less than the phononic

current for small temperature biases, while for ∆T > 150 K the ETIHT current is

greater than that generated in the phononic channel. These results imply that by

tuning the coupling strength between donor and acceptor molecules and their local

environments, the comparative magnitude of ETIHT current can be increased over
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Figure 5.3: Electron-transfer-induced and phononic heat currents JQ (current direc-
tion from left to right) as a function of temperature difference ∆T = Ta − Tb for
various values of the reaction free energy ∆EBA shown in the legend of (a). The

system-bath couplings are: γ
(1)
a = 1.0 ps−1, γ

(1)
b = 0.1 ps−1, γ

(2)
a = 0.1 ps−1 in both

panels, and in (a) γ
(2)
b = 1.0 ps−1 and (b) γ

(2)
b = 0.05 ps−1. Other parameters are:

VA,B = 0.01 eV, ER1 = 0.06 eV, ER2 = 0.04 eV, and Tb = 270 K, which is fixed.
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that of phononic heat current in some multithermal ET reactions.

5.4 Conclusions

In this chapter we have developed a theory to describe electron transfer and phononic

heat conduction, and their coupling that gives rise to electron transfer induced heat

transport (ETIHT), using a multithermal Marcus formalism merged with stochas-

tic Langevin dynamics. Application of this theory allows a comparison between the

magnitude of heat conduction from phononic and electron-transfer-induced channels

over a diverse set of reaction geometries and thermal environments. An efficient

ETIHT channel requires fast bidirectional electron exchange between the molecular

sites, which usually translates into the requirement that the free energy change as-

sociated with the electron transfer reaction is small, such as in the case of exchange

between identical sites. In such cases, situations could be found where this channel

dominates the heat transport process, however one should be cautious about his con-

clusion because we have made our comparison for modes that are strongly coupled

to both thermal environments and at the same time are also coupled to the electron

transfer process. Other heat carrying modes may be uncoupled to the electronic pro-

cess. Obviously there are also modes that couple to the electronic process but do not

carry heat (in the harmonic limit) because they are localized near their respective

environments. We note in passing that the harmonic part of the nuclear potential en-

ergy surface indeed dominates heat transport across distance scales that are relevant

for the present study.161

A system in which ETIHT could be the dominant thermal conduction mechanism

is π-stacked molecular junctions where the phononic transport channel is suppressed

by tuning specific bonding characteristics of the molecular structure.115 In the limit

that electron charge density is strongly coupled with a thermal environment, the
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results presented here will guide experimental investigation of ETIHT.

Apart from the harmonic approximation, our treatment relies on two assumptions.

First is the assumed independence of the ETIHT and the phononic contributions to

heat transfer. This assumption is valid in the limit in which the vibrational transport

mechanism does not affect the energetic distributions relevant to electron transport.

This holds at steady state for the standard model of electron transfer (parallel shifted

potential energy surfaces) except that the temperature associated with the relevant

nuclear motions has to be set as the effective temperature derived for each modes from

its coupling to the non-equilibrium environment. Second is an assumption concerning

the partitioning of energy extracted from and released into the non-equilibrium ther-

mal baths during the activated electron transfer process. This assumption, expressed

by Eq.(5.41) is derived from a master equation approach. We are currently developing

a theory of the energy partitioning from a trajectory-based picture of the dynamics,

and our preliminary results agree with the energy partitioning principle derived from

the kinetic master equations.185,186

Finally we note that the semiclassical formalism that has been implemented here is

applicable for low frequency intermolecular vibrations in the strong electron-phonon

coupling limit in which electron hopping is the dominate transport mechanism. At

low temperatures and for high molecular vibrations nuclear tunneling plays a role in

the system’s dynamical evolution, and a description of ETIHT will require a quantum

description of the nuclear dynamics. Carrying the theory to such situation is a focus

of our current work.
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CHAPTER 6

Conclusion and outlook

We have so far conducted a series of studies on the topic of heat transport processes

in molecular systems and elaborated them as the main body of this dissertation. Here

we want to summarize what we have achieved and also provide perspectives for future

research directions.

Chapter 2 introduces a numerical strategy and its implementation of investigat-

ing heat conduction processes in molecular junctions of different topologies. There we

demonstrate heat fluxes can be simulated through explicitly extended substrate layers

of the molecular junctions and show the quantities (e.g. thermal conductance) calcu-

lated at steady-state are in agreement with the most recent experimental data16 on

alkane chain molecules. Both classical MD simulations and quantum Landauer-type

calculations are embedded in the process, making the method feasible for anharmonic

systems and larger environmental temperature range. To further extend the project,

one of the future directions can be considering the inter-molecular interactions, (e.g.

similar structures shown in Figure A.4, but without taking into account chain-chain

interactions) which makes the method capable of simulating large cluster of systems

or bulks. The heat conduction in these systems will be much more complicated than

single-molecule junctions. The increased ability of numerical tools will help disentan-

gle interplays of different contributions to the overall heat conduction process.

In chapter 3 we have described an intriguing thermal transport phenomenon in

ring-based aromatic molecular systems, that is interference effect in heat conduction.

This effect is demonstrated, explored and explained using the tools we have developed

in the previous chapter. Surprisingly, the normally termed “quantum interference”
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is seen not only with Landauer’s quantum description, but also clearly shown within

classical mechanics regime for the phononic heat transport. In addition, local atomic

heat flows are visualized with the help of the energy partition scheme introduced

earlier. Interesting patterns of both increasing and decreasing currents are illustrated

throughout the benzenedithiol configurations (para-, meta-, and ortho-) upon apply-

ing of temperature biases. Many promising projects might follow along this direction

of research. More complex structures (e.g. more rings as shown in Figure B.5) could

be one probable direction, as to investigate how potential constructive/destructive

phononic inteference might interact with each other in more complex molecules. Fur-

thermore, to find out if there is a possibility of design principles (with compounds of

chemicals) that facilitates tunable nanoscale thermal device by making use of such

basic interference effect.

In chapter 4, we have shown the quantum bath effects can be integrated into

MD simulations effectively in the thermal transport simulations in the molecules,

without sacrificing all the benefits (e.g. anharmonic effects) inherited from classical

simulations. We have also elaborted on the detailed formalism of incorporating such

effects through an effective temperature reconstruction. and shown the method being

implemented in toy models.

Previously, the GROMACS-based computational toolkit that utilizes stochastic

baths and substrate filterings has been developed to simulate heat conduction across

molecular junctions of any topologies and has been shown to be relatively accurate

and powerful for room temperature settings.4 However, we see the accuracy drifts

away from its quantum benchmarks when the temperatures are pushed to a much

lower end(e.g. 25K). One of the main reasons for such a failure is the inability of clas-

sical mechanics in capturing the dominant quantum effect at low temperatures which

arises from quantum Bose-Einstein distribution. With the new method of quantum
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augmented bath dynamics, we could overcome the inherent shortcomings of the previ-

ous classical MD simulations, particularly at the limits of low-T and high-frequencies.

The future work will be completing the integration of this augmented quantum bath

approach into the existing nonequilibrium stochastic MD in the GROMACS source

code, and provide a full dynamics of quantum mechanical heat transport at the ca-

pacities of classical MD simulations in the molecular systems.

In chaper 5, we have switched our gears, discussing our research on another impor-

tant thermal transport topic in the molecular systems (e.g. electron donor-acceptor

systems), the electron-transfer-induced-heat-transport (ETIHT). The ETIHT does

not involve the interplay between vibrational modes in the molecular systems. In

this sense, the newly discovered heat transport channel is more of electronic (with

respect to phononic) in nature. By connecting the left and right sides thermal baths

with vibrational modes, we effectively bring in the phononic contribution at the same

setting of the ETIHT. Our work unveils the eletronic contribution is comparable to

that of the standard phononic transport for donor-acceptor pairs with efficient bidi-

rectional electron transfer rates, while in most other situations, phononic transport is

the dominant heat transfer mechanism. Our research mainly focus on classical Mar-

cus ET theory. A more generalized theory of ETIHT in which the nuclei are quantum

mechanical is desirable, for the applicability and generalisability of the theory to dif-

ferent molecular systems and environments. This work has been done by Dr. Cui in

our group recently, and the quantum effects are shown to be appreciable at certain

temperature range187.
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APPENDIX A

Appendix of chapter 2

A.1 Setting the substrate

The substrate is constructed in a pyramid-like shape consists of increased numbers of

gold atoms from the inner layer bridging the molecules to the outer layers connecting

the white baths (e.g. 1, 3, 6, etc.). Adding coupling of the outer layer to a white

bath and undergoing Langevin dynamics, the equation of motion becomes,

ẍi = −∂E(xi)

∂xi
− γK ẋi +R

(i)
K (t), (A.1)

where E(xi) is a mass-weighted energy as a function of the coordinate of the ith

particle xi, γK is the friction coupling to the bath K (in our case K ∈ {L,R} for the

left and right bath), and R
(i)
K (t) is the stochastic noise terms of the respective bath,

assumed independent for different connected atoms. The stochastic terms obey the

usual fluctuation-dissipation relations

〈
R

(i)
K (t)R

(j)
K (t′)

〉
= 2γKkBTKm

−1
i δ(t− t′)δij, (A.2)〈

R
(i)
L (t)R

(i)
R (t′)

〉
= 0, (A.3)〈

R
(i)
K (t)

〉
= 0, (A.4)

where i and j are the atoms in the outermost layers in the substrates coupled inde-

pendently to their respective baths.

To enforce the junction geometry, the explicit bulk is position-restrained by a
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harmonic force acting on the layer of atoms furthest from the molecule. The spring

constants of such restraints are in general set to be less than a few thousand kJ ·

mol−1 · nm−2 (� 1% of the bond stretching forces of the simulated molecules)

Figure A.1 displays, for a hexanedithiol molecule bridging between gold surfaces,

a numerical experiment is carried out with respect to the number of explicit atomic

layers used to represent the left and right gold substrates. The calculated thermal

conductance appears to plateau when three layers of explicit gold are used to represent

these substrates and simulations reported below were using such substrate models. In

agreement with this observation, a study by Zhang et. al. on self-assembled monolay-

ers showed that the effect of the baths on the molecular system is mainly due to the

first few layers of gold substrate188. Figure A.2 compare the Fourier transforms of the

velocity correlation function (essentially the density of states) of the gold atom at the

edge of the gold cluster, that in the junction is adjacent to the molecular thiol group.

While plateau is not yet quantitative, spectral densities associated with the 3 and 4-

layers clusters are similar both to each other and to the experimental vibrational DOS

for gold nanoparticles189. Note that the spectral densities in Figure A.2 are calculated

for the position-restrained clusters, which is therefore expressed in the calculated spec-

tral densities of the smaller clusters at about 40 cm−1 but appears to shift to lower

frequencies for the bigger clusters. In the calculations presented in the main text,

the gold substrates were represented by pyramids of 3 gold layers. This cost saving

choice would not yield quantitatively accurate results for the actual hydrocarbon-gold

junctions, but it suffices for our main goals of demonstrating the essentially classical

nature of the heat transport dynamics at room temperature, showing the importance

of quantum effects at low temperatures and studying the connection between mode

localization properties and molecular heat conduction. Somewhat surprisingly it has

turned out that this modeling level also perform well by quantitative measure.
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represented by a given numbers n of gold layers interacting at their far ends with

white thermal baths characterized by temperatures TL = 300K and TR = 350K. The

bars shown in the Figure are the standard errors (SE)2 of the calculated conductance.
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Figure A.2: Velocity-velocity autocorrelation functions of the only atom in the first

layer of each of four different gold clusters. The outermost layers are attached to

Markovian thermal reservoirs at temperature of 300K and the clusters are allowed

sufficient time (e.g. a few nanoseconds) to relax to the temperature of the bath. Col-

umn (a): Velocity time-autocorrelations, Cvv(t), which are normalized to the value

at t = t1 − t2 = 0; Column (b): The Fourier transforms of the corresponding corre-

lations, normalized across the whole spectra; Column (c): Artistic representation of

the corresponding gold clusters.

A.2 Additional details on molecular configuration preparation and MD

simulation procedures

There are mainly three phases in using our customized GROMACS82,117 package

to conduct simulations on heat conduction in molecular junctions, including both

classical MD and quantum Landauer transport (as illustrated in figure A.3):
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Figure A.3: Molecular heat conduction MD simulation procedure and implementation

diagram, with Landauer-type quantum calculations included.

(I) Configuration preparation. The open-source graphic cross-platform molecule

editor, Avogardro 85, is used to design the initial molecular topologies as one wishes

(e.g. alkanedithiols with three layers of gold substrates). Then these configurations

are energy minimized with Avogardro’s native utility, and saved as pdb formats, which

are eventually transformed into GROMACS’s recognizable input files (gro and top)

using Open Babel 84 with Uinversal Force Field (UFF)81 implemented as molecular

force field parameters.

(II) Production runs. Within GROMACS the molecular configurations are fur-

ther energy minimized to ensure stable structure for subsequent dynamical runs and

normal mode analysis. For MD production runs, the systems are first equilibrated

to the average temperatures of the baths (usually takes a few hundred picoseconds),

and then with a single long trajectory (a few nanoseconds) relaxed to nonequilibrium
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steady state. From the tail of this trajectory, thousands of parallel at-steady-state

trajectories are launched to get large enough statistical ensembles. At the end of this

phase, as outputs, normal modes, steady-state trajectories, and inter-atomic forces

are collected.

(III) Post-data processing. The heat currents are calculated according to the

equation in the Main text using velocities and inter-atomic forces sampled during

the steady state simulation. The Landauer-type currents are calculated through a

different channel (see the illustration in Figure A.3), by using the formalism described

here.

A.3 Derivations of heat currents and end-to-end delocalization

A.3.1 Atomic local heat fluxes

In classical mechanics, the total energy of a molecular system consists of N atoms

can be expressed as,

Etot = Ekin + Epon (A.5)

Ekin =
N∑
i=1

p2
i

2mi

Epon = V ({r1 . . . rN}),

where Ekin is the total kinetic energy which is a sum of all individual atoms, and Epon

is the potential energy which involves many body interaction of all possible atoms.

The latter in most MD force fields will be explicitly approximated to,

Epon = Vstretch + Vangle + Vdihedral + Vnonbonded, (A.6)
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which essentially contains two-body, three-body, four-body and all the typical long-

range interactions (e.g. electrostatic) within molecular systems. We introduce a

partition scheme in order to describe energy changes of each atom in the molecule,

that is, the total potential energy is additive from individual atom’s potential which

can be further expressed as a certain portion of the shared interaction terms. To

write it out mathematically,

Etot =
N∑
i

1

2
miv

2
i +

∑
τ

V (τ) =
N∑
i

1

2
miv

2
i +

∑
τ

n(τ)∑
j

Uτ,j, (A.7)

Uτ,j({r1 . . . rn(τ)}) = Cτ,jV
(τ)({r1 . . . rn(τ)}),

n(τ)∑
i

Cτ,j = 1, (A.8)

where τ is indicating different interaction terms (e.g. bond-stretching) and n(τ) is

participating atom number for that particular term. Uτ,j is potential energy of V (τ)

partitioned into atom j, with the partition coefficient Cτ,j. We then can proceed to

derive the equation of the heat flux for each atom in the molecular system.

Ji ≡
dEi
dt

=
d

dt

(
1

2
miv

2
i +

∑
τ

Uτ,i

)
(A.9)

= miv̇i · vi +
∑
τ

n(τ)∑
j=1

drj
dt

d(Uτ,i)

drj

= fi · vi −
∑
τ

n(τ)∑
j=1

Cτ,ifτ,j · vj

=
∑
τ

n(τ)∑
j=1

(δij − Cτ,i)fτ,j · vj =
∑
τ

∑
j 6=i

Jτ,ij,
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where we have defined fi to be the force acting on atom i, and fτ,j the force derived

from interaction V (τ) on atom j

fi = −∂V
∂ri

= −
∑
τ

∂V (τ)

∂ri
=
∑
τ

fτ,i, (A.10)

(It might also help to realize that the first term in eqn.(A.9) fi·vi = vi·
∑

j Cτ,j
∑

τ fτ,i)

and heat flux arose from interaction V (τ), going from atom j to atom i is defined as,

Jτ,ij = Cτ,jfτ,i · vi − Cτ,ifτ,j · vj. (A.11)

This is the core expression we use to calculate the inter-atomic heat currents which

will approach to constants when the system arrives steady-state.

A.3.2 Derivation of end-to-end delocalization parameters of energy trans-

fer

Here, we also propose another useful delocalization ”measuring factor” involving only

the anchoring atoms/groups in the molecular chains. Consider a harmonic molecular

system linearly connected to a left and right atoms that representing the first atoms

in the thermal baths. The equation of motion (EOM) for a single normal mode in

the molecular system can be expressed as

ξ̈k + ω2
kξk = aLCkLxSL + aRCkRxSR, (A.12)

CkL = 〈k|xL〉, CkR = 〈k|xR〉,

where ξk is the jth mode in the harmonic normal mode system, ωk is the corresponding

eigenfrequency, xL and xR are atomic coordinates of the left-most and right-most

atoms in the molecular system, the coefficient CkL and CkR are the projections of
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them to the normal mode j, aL and aR are constants (showing strength of the coupling

of the system to the baths). and xSL and xSR are the first atoms in the left and right

baths (substrates) that see the system.

Then the solution of the EOM has the form

ξk(t) = ξ0
k(t) + aL

∫ t

−∞
dt′Gk(t− t′)CkLxSL + aR

∫ t

−∞
dt′Gk(t− t′)CkRxSR, (A.13)

where ξ0
k(t) is the general solution of the homogeneous equation and Gk can be ex-

pressed as

Gk(t− t′) =


0 for t < t′

1
ωk

sin[ωk(t− t′)] for t > t′
(A.14)

We also have the EOM for left (right) bath atom

ẍSL = AL,bath + aLxL = AL,bath + aL
∑
k

CLkξk (A.15)

= AL,bath + aL
∑
k

[
ξ0
k(t) + aLCLkCkL

∫ t

−∞
dt′Gk(t− t′)xSL(t′)+

aRCLkCkR

∫ t

−∞
dt′Gk(t− t′)xSR(t′)

]
,

where AL,bath denotes the acceleration caused by all the forces (e.g. fluctuations and

damping) from the left side of the bath. The same goes for the right side bath xSR.

The second term on the right-hand-side can be understood as the interaction when

the left bath ”pushes” and the system and the system ”pushes” back. The third term

in the EOM is more relevant for our purposes. It shows how the left bath ”sees” the
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right bath. We will discuss this term in the following separately,

[ẍSL]L←R(t) = aLaR

∫ t

−∞
dt′K(t− t′)xSR(t′) = aLaR

∫ ∞
0

dt′K(t′)xSR(t− t′), (A.16)

where

K(t) =
∑
k

CLkCkR
1

ωk
sin[ωkt]. (A.17)

Now we start coarse-graining40of the above discrete states by writing K(t) as an

integral of a density of state (DOS) g(ω):

K(t) =

∫
dωg(ω)

CL(ω)CR(ω)

ω
sin(ωt). (A.18)

For the evaluation purposes, symmetric spectrum is assumed,

K(t) =
1

2

∫ ∞
−∞

dωg(ω)
CL(ω)CR(ω)

ω
Im[eiωt]. (A.19)

K(t) =
1

2
Im

∫ ∞
−∞

dωπ(ω)eiωt, (A.20)

where

π(ω) = g(ω)
CL(ω)CR(ω)

ω
=
∑
k

CLkCRk
ωk

δ(ω − ωk) ≡
∑
k

πkδ(ω − ωk). (A.21)

π(ω) reflects the strength of how far the left bath extends to see the right bath

in the frequency space, and is thus a reasonable quantity of measuring the delocal-

ization of the anchoring groups in the molecular system connected to the baths with
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temperature gradients.

Now we coarse grain π(ω) over a small distance of ∆ω across the spectrum, and

approximate it as

π(ω,∆ω) = N∆ω

ω+ ∆ω
2∑

ωk=ω−∆ω
2

πk, (A.22)

where N∆ω is a normalization factor pertaining to the value of ∆ω chosen. The

procedure described here can also be used to smoothen functions with steep spikes,

Assuming we want to coarse grain a function, in order to smoothen it approxi-

mately.

X̄(ω,∆ω) = N∆ω

∫ ∆ω
2

−∆ω
2

dxX(ω + x). (A.23)

The integral value should be identical whatever coarse-grain length one takes,

∫ b

a

dωX(ω) =

∫ b

a

dωX̄(ω) (A.24)

=

∫ b

a

dωN∆ω

∫ ∆ω
2

−∆ω
2

dxX(ω + x)

= N∆ω

∫ ∆ω
2

−∆ω
2

dx

∫ b

a

dωX(ω + x)

Take the infinite upper and lower bounds.

∫ ∞
−∞

dωX(ω) = N∆ω

∫ ∆ω
2

−∆ω
2

dx

∫ ∞
−∞

dωX(ω + x). (A.25)
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The function does not depend on finite shifts, and thus we have

N∆ω

∫ ∆ω
2

−∆ω
2

dx = 1, (A.26)

and therefore we obtain the normalization factor

N∆ω =
1

∆ω
. (A.27)

A.4 Supplemental MD simulation results

Figure A.4 illustrates conducting capacity with respect the change of chain (or bridge)

numbers in the molecular systems under the junction setting. Without specifically

considering intermolecular interactions, it appears the conductance increases almost

linearly with the increase of chain numbers. In the context of self-assembled monolay-

ers, the area density for alkanedithiols to the Gold substrates is around 4.5×1014/cm2,

that is approximately 4.5 molecules per nm123,190,191. If we take this value and as-

sume the intermolecular spacing is large enough such that interactions between chains

are negligible, then our result gives thermal conductivity estimation of around 65-75

MW/(m2K), which is exactly what Majumdar et. al.78 measured in the recent ex-

perment.

A.5 Supplemental Landauer-type results for hydrocarbon heat conduc-

tion

By adding layers to different alkane molecules(Figure A.6), we find

1. The presence of thiol groups enhances alkane conductance.

2. The trend of conductance increase and eventual decrease (as a function of chain
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Figure A.4: Total heat conductance for molecular systems with different chain num-
bers. The molecule unit is hexanedithiol, with number of 1, 2, 4, and 6 chains aligned
in parallel and embedded in three layers of Gold substrates in the junction. The
temperature bias is set to be 50K. The conductance is calculated by dividing the to-
tal heat currents to the temperature difference, and the total currents are calculated
as sums of currents in individual chains (intermolecular interaction is not considered
here) that go from one side of each chain to the other side. The error bars represent
Standard Error1,2.
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Figure A.5: Heat conductance of saturated carbon-backboned chain molecules with
different substitutions to hydrogens. Each species are connected with thiol groups at
the two sides of the molecules and further connected to three layers of gold substrates.
The temperatures are 300K and 350K on the right and left sides of the junction
respectively. The error bars represent Standard Error1,2.
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Figure A.6: Length-dependent thermal conductance, calculated through the Landauer
formula. The exterior-most layers of explicit bulk are coupled to white noise baths.
The conductance denotes ratio between heat current and temperature bias, with left
and right baths at 300K and 350K respectively. The triangle line has three gold
layers, in accordance with the MD simulations.
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Figure A.7: Comparison between derivative conductance and finite-bias conductance.
For the finite-bias case, bath temperatures of 300K and 350K are taken (i.e. bias
of 50K). This is compared with two derivative conductance calculations: Around a
temperature of 300K and of 350K.

length), as reported in ab-initio calculations of similar systems34, appears only

when including the layers of gold leads, explicitly.

For the choices of different conductance expressions (using the derivative form

or the finite-bias form), it turns out that the influence is negligible across a range

of alkane chain lengths (Figure A.7). The conductance at 350K is slightly higher

and 300K slightly lower, but the difference between either of them and the finite-bias

result is significantly smaller than the values of the relevant conductances themselves.

Figure A.8 shows the temperature dependence of the heat conductance of bu-

tanedithiol. Conductance increases at a higher rate until 100K, and then starts to

plateau as temperature increases further. This trend agrees with results reported for

131



0 100 200 300 400 500
Temperature (K)

0

5

10

15

20

Th
er

m
al

 C
on

du
ct

an
ce

 (p
W

/K
)

Figure A.8: Temperature dependence of the derivative Landuaer thermal conduc-
tance, for butanedithiol (HS(CH2)10SH) adsorbed on a substrate modelled by 3 layers
of explicit gold atoms.
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an same alkane34.

A.6 Debye Spectrum density generator and diatomic heat conduction

A.6.1 Introduction

Debye model is an important theoretical tool for solid state physics. But it is not

obvious how to utilizing this model to stochasitic trajectory-based simulational ap-

proaches, to study critical physical chemistry problems, such as relaxation and trans-

ports dynamics in the vicinity of solids and interfacial chemical reactions. In the

late 70s, Nitzan and co-workers has developed a computationally feasible procedure

[Ref.76] such that the overall Debye effect of the bath can be simulated a series of

random forces and a damping kernel characterized by a specific form of spectrial den-

sity, as people may have realized in Langevin dynamics, but with much more complex

structure.

Here, we realize Nitzan Debye bath formalism with Python interpreted class called

Debye Generator192. The spectrum density function, which is used to generate De-

bye spectrum effect is expressed as76,

g(ω) = N
(ω/ωD)2

1 + (ω/ωD)2n
, (A.28)

where ωD is the Debye frequency cutoff, N is a normalization constant. n is an integer

that dictates the shape of the density function. The bigger n index is, the closer the

density g(ω) approaches to the Debye spectrum. Examples of different indices give a

feeling of how n should be chosen to get a decent approximation of the Debye bath.

(see Figure A.9) We may see n does not have to go for hundreds or thousands, even

when n ≥ 8 the cutoff of the spectrum is already noticeable.

Following the model (that is, the impurity atoms and the bath lattice), the for-
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Figure A.9: Spectral densities calculated from Eqn. A.28 for different values of n.
The dashed line is Debye Spectrum.
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Figure A.10: Average decay rate plotted as a function of ω. The Debye bath is
simulated with the accuracy of n=8 in the spectrum function. (Eqn.A.28) The circles
are simulated results and the solid line is quadratic fitting of the simulated data.

malism and the recipe described in the main text and appendice of Ref[76], we are

able to construct the dissipitive friction forces, and random fluctuating forces through

the displacements (yl(t)) of the connecting atom, and reproduce the characteristics

of the Debye bath in the frequency space to a high order of accuracy.

A.6.2 Implicit bath density properties

The decay rate of a system (represented by an impurity particle here) near a Debye

bath can be evaluated using the derived equations (III.11) through (III.15) in Ref[76].

Figure A.10 shows the average decay rate of an impurity particle in the vicinity
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of a Debye bath (simulated with the spectrum density function as of Eqn.A.28) The

particle is harmonically restrained with a characteristic angular frequency ω. The

time evolution of the total particle energy (kinetic plus potential) is casted into an

expontential form,

E(ω, t) ∝ e−Γ(ω)t. (A.29)

By varying the frequency, different energy changing rates can be measured, and the

values of Γ extracted Figure A.10 is an example of such decay rate. With the accuracy

order of n=8, the energy trasferring from the system to the bath already has a basic

Debye shape (that is quadratic).

It can be shown the random replacements generated from the provided procedure

(in Section III.B of Ref[76]) satisfy the spectral function (Eqn.A.28), as a Fourier

transform of the correlation function of the time series (see Figure A.11).

We also inspect the Debye bath generator with a equilibration test, that is put a

system thermally connect to the bath, and let it relax to equilibrium (Figure A.12).

The result shows the system goes to equilibrium as expected, and the relaxation

time is around 3 pecosecond for this particular system under study. (with impurity

mass as oxygen, and bath representing mass as sulfur. Debye frequency as 2 rad/ps,

and forces connecting bath and system formed as Eqn.(II.26) in Ref[76])

A.6.3 Center of mass potential equilibrium expansion for exponential

repulsive forces

The setting here is one dimensional, we have a exponential repulsive force on the left

and on the right with a system in between. Assuming a single particle system, the

potentials for the system with the left bath and the system with the right bath can
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Figure A.11: Fourier transform of the random position autocorrelation function of
〈R(t)R(0)〉 for n=8. the circles are numerical implemented data points, and the solid
line is plotted according to Eqn. A.28.
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Figure A.12: Local temperature of a single impurity calculated from kinetic energy
ensemble, when it is put near a Debye bath with temperature of 50K.
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be expressed in general as

UL = ALe
−αL(x−yl−D/2) (A.30)

UR = ARe
−αR(yr−x−D/2) (A.31)

where x’s are positions and D is the bond length (which is fixed to make it as rigid

box for one particle).

For simplicity, let us take the left and right couplings to be symmetric, that is the

coefficients are the same, then we can write the total energy as,

U = A(e−α(x−yl−D/2) + e−α(yr−x−D/2)) (A.32)

The equilibrium postion is x0 = yl+yr
2

, expand the potential at this equilibrium posi-

tion to the second order, we have,

U(x− x0) = 2Ae−α
yr−yl−D

2 + Aα2e−α
yr−yl−D

2 (x− x0)2 + · · · (A.33)

The plot in Figure A.13 gives us an idea of how this approximation looks like.

The blue line is the original potenital shown in the eqn(A.32), while the red is the

harmonic expansion of the original potential. One can see within short range of

equilibrium position, the harmonic potential can be a rather good approximation,

though one also need to note when the boundaries (that is yl and yr) move altogether

in the simulation the shape of the potential will neither be exact nor static.

As can be seen from Eqn.A.33, the approximate force constant and angular fre-
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Figure A.13: Potentials with respect to the particle position. Equilibrium postion
is set to be at origin. position is in the unit of width of the rigid body D (The
boundaries are yl = −3 and yr = 3). Other paramters are: A = 1, α = 1.
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quency are,

kc = 2Aα2e−α
yr−yl−D

2 (A.34)

ωc =
√
kc/m (A.35)

respectively, where m is the mass of the center, and other parameters are described

as above. Now we may see here, if we want to get different ωc’s, there are different

parameters we can tune. In the following results, the parameter chosen to change is

the characteristic length (that is, yr − yl −D in the above expressions), while all the

other parameters are kept constants.

A.6.4 Bridge the formalism and parameters

Constant coupling from Debye to white noise

In reference76, a complete recipe of numerical procedure to generate Debye spectrum

has been given, in which the interaction between system and bath is taken as a general

form of U(x, yl) (x is the position of the system or impurity in the language of the

paper, and yl is dynamic displacement of the bath particle that interacts with the

system.). But the generalized Langevin equation (which is often derived under linear

coupling regime, see Chapter 8 in Book40) is wrtten as,

ẍ = − 1

m

∂V (x)

∂x
−
∫ t

0

dτZ(t− τ)ẋ(τ) +
1

m
R(t) (A.36)

Z(t) =
1

m

∑
j

c2
j

mjω2
j

cos(ωjt) (A.37)

R(t) = −
∑
j

cj

(
qj0 cos(ωjt) +

q̇j0
ωj

sin(ωjt)

)
(A.38)
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where V is the deterministic potential the system felt, Z is the memory kernel of

system-bath coupling, and R is the random force which is determined by the ran-

domness of the initial conditions of the bath particles (represented by the initial

positions qj0 and intial velocities q̇j0). As we assume the thermal bath remains in

equilibrium all the time, the initial values should be sampled from equilibrium Boltz-

mann distribution, which satisfy

〈qj0〉 = 〈q̇j0〉 = 0, 〈qj0q̇j0〉 = 0 (A.39)

1

2
mj〈q̇j0q̇j′0〉 =

1

2
mjω

2
j 〈q̇j0q̇j′0〉 =

1

2
kBTδjj′ . (A.40)

From here we can easily verify the Fluctuation-Dissipation theorem is satified as,

〈R(0)R(t)〉 = mkBTZ(t) (A.41)

When the relaxation timescale of the thermal environment is short relative to all

the characteristic system times (e.g. electronic processes, vibrational motions), the

description turns to Markovian limit in which the memory kernel in the Langevin

equation changes to

Z(t) = 2γδ(t) (A.42)

where γ is a constant.

Now let us return to Ref.76, the equation of motion for the system (or impurity)

is written as

ẍ = − 1

m

∂U [x− (reql + yl)]

∂x
(A.43)

142



Repulsive potential One way to choose the bath-system interaction is to take the

potential interaction to be exponetially repulsive,

U [x− (reql + yl)] = Ae−α((reql +yl)−x) (A.44)

where A and α are constant parameters. Now let’s expand the potential to the first

order at yl = 0 point,

ẍ = − 1

m

∂

∂x

(
U0(x, yl = 0) +

∂U

∂yl

∣∣∣
yl=0

yl

)
+ · · · (A.45)

U0(x, yl = 0) = Ae−α(reql −x) (A.46)

∂U

∂yl

∣∣∣
yl=0

= −αAe−α(reql −x) (A.47)

We do one more step approximation, that is put the x position at its equilibrium for

the second term in the right hand side of eqn(A.45) Thus, the equation of motion

becomes

ẍ = − 1

m

∂

∂x
U0(x, yl = 0) +

C

m
yl (A.48)

C = α2Ae−α(reql −x
eq) (A.49)

Harmonic potential One may also take the interaction to simply be harmonic,

U [x− (reql + yl)] =
1

2
mω2

l (x− (reql + yl))
2 (A.50)
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where ωl is anguler frequency connecting the system and the bath.

U0(x, yl = 0) =
1

2
mω2

l (x− r
eq
l )2 (A.51)

∂U

∂yl

∣∣∣
yl=0

= −mω2
l (x− r

eq
l ) (A.52)

Then the equation of motion becomes,

mẍ = −mω2
l (x− r

eq
l ) +mω2

l yl, (A.53)

in which the coefficient

C = mω2
l (A.54)

Link Debye spectrum When we look at Ref76 again, the stochastic equation for

the dynamic displacement is shown to be

yl = Rl(t)−
1

M

∫ t

0

dτ

{
∂U [x− (reql + yl)]

∂yl

}
F (t− τ) (A.55)

Rl(t) =
∑
k

S∗kl

[
zk(0) cos(ωkt) +

1

ωk
żk(0) sin(ωkt)

]
(A.56)

F (t) =
∑
k

|Skl|2
sin(ωkt)

ωk
=

∫
dωg(ω)

sin(ωt)

ω
(A.57)

where M is the mass of the representing bath particle, the second integral term at

the right hand side of the equation encapsulates the coupling between the system and

the bath, and Rl is Gaussian random process featured with colored spectrum density,
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zk and żk have the same meanings to qj and q̇j in Eqn(A.38), that is, the initial

conditions of the normal modes in the bath lattice. The second equality for F (t) is

defining a weighed density of modes g(ω) normalized to one, which can be illustrated

as following. For a possible 1-D example, the transformation matrix element Skl may

have the form as

Skl =
1√
N
eilka (A.58)

where a is the unit cell length, N being the number of atoms. Therefore while in

general, the Debye density of modes g(ω) can be normalized to N for 1-D lattice,

these two factors will cancel out in our definition, and we make g(ω) normalize to

unity for simplicity.

Substitute Eqn (A.55) into equation of motion for x (Eqn (A.48)), we get the

expression

ẍ = − 1

m

∂

∂x
U0(x, yl = 0)− C

mM

∫ t

0

dτ

{
∂U [x− (reql + yl)]

∂yl

}
F (t− τ) +

C

m
Rl(t),

(A.59)

which resembles the equation of motion (EOM) for generalized Langevin dynamics

(shown in Eqn (A.36)) in its form, that is the first term on the right is the deterministic

potential felt by the system, the second term couples the system to the bath, and the

third term originates from random properties of bath itself. Nevertheless, the two

equations are not exactly the same, especially the second term in Eqn (A.59) does

not look obvious. We might go head and equalize this term to the coupling term in

Eqn (A.36) (that is with integration of velocity and memory kernel,
∫
dτZ(t− τ)ẋ),

but that takes more work so here we choose a shortcut by focusing on random force

only, which would give same but quicker answer (we show in the Appendix ??, that
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the EOM of the stochasitc part of the system can indeed be written sum of coupling

and random forces, with exact same layout as expressed in Langevin equation).

Consider the random force in Eqn (A.56), the initial values satisfy

〈zk〉 = 〈żk〉 = 0 (A.60)

〈|zk|2〉 = kBT/Mω2
k (A.61)

〈|żk|2〉 = kBT/M, (A.62)

With all the mixed correlations go to zeros, the correlations for Rl(t) satisfies

〈Rl(t)〉 = 0 (A.63)

〈Rl(t)Rl(0)〉 =
∑
k

|Skl|2〈|zk(0)|2〉 cos(ωkt) (A.64)

=
kBT

M

∑
k

|Skl|2
cos(ωkt)

ω2
k

(A.65)

=
kBT

M

∫
dω
g(ω)

ω2
cos(ωt) (A.66)

with last equality uses same strategy as in Eqn (A.57). As we’ve chosen Debye density

of state normalizes to unity,

g(ω) = Nω2 (A.67)

we can get the normalization factor N by integrating till Debye cutoff ωD,

∫ ωD

0

g(ω)dω = N
ω3
D

3
= 1 (A.68)
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therefore N = 3
ω3
D

and

g(ω) =
3ω2

ω3
D

. (A.69)

Plug Eqn (A.69) into Eqn(A.66) and do the integral, we have,

〈Rl(t)Rl(0)〉 =
kBT

M

∫
dω
g(ω)

ω2
cos(ωt)

=
3kBT

ω3
DM

∫ ωD

0

cos(ωt)dω

=
3kBT

ω3
DM

sin(ωDt)

t
. (A.70)

In order to make connection between Debye model and white noise, the quick

approach here as we’ve mentioned earlier, is to equalize the random parts, that is

making the Debye random process to be Markovian. Specifically, to have random

forces in Eqn (A.59) the same property in Eqn (A.41)

C2〈Rl(t)Rl(0)〉 = 〈R(t)R(0)〉 = mkBTZ(t), (A.71)

We need to take long time limit (t→∞) to get the constant coupling, that is,

mkBT

∫ ∞
0

dtZ(t) =

∫ ∞
0

dt〈R(t)R(0)〉 = C2

∫ ∞
0

dt〈Rl(t)Rl(0)〉 −→ mkBTγ (A.72)

Therefore the parameterized constant coupling for the Markovian limit of the

Debye spectrum generator is,

γ =
3C2

mMω3
D

∫ ∞
0

sin(ωDt)

ωDt
d(ωDt) (A.73)

=
3C2π

2mMω3
D

,
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all the parameters of which has been defined in the above expressions.

Debye simulator normalization factor and parameterization

In the process of corporating Debye color bath model into heat conduction simula-

tion, the spectral density function we take is not the actual quadratic discontinuous

funciton, but a approximation function (Ref 76)

g(ω) = N
(ω/ωD)2

1 + (ω/ωD)2n
, (A.74)

where ωD is the Debye frequency and N is a normalization constant. The higher order

n number the better approximation one will make, but with higher computational

cost (normally n ≥ 8 makes a good approximation). Now we want to know how this

normalization factor looks like, and confirm its expression converges to Debye at large

n limit.

In Appendix B of Ref76, the authors show us N expression when normalizing to

unity,

N = 22(n−1)2 sin

(
3π

2n

) n−1∏
l=1

sin2

(
πl

2n

)/
πωD. (A.75)

In large n limit (n→∞), Eqn (A.74) reduce to

N
(ω/ωD)2

1 + (ω/ωD)2n
→ N

(
ω

ωD

)2

. (A.76)

When we compare this expression to Eqn (A.69), we have under this limit,

N =
3

ωD
. (A.77)
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Figure A.14: Numerical plot for normalization factor with respect to the value of n

Comparing to general expression for N (Eqn (A.75)), we have

NωD −→ 3; n→∞, (A.78)

and this exactly what we see (Fig A.14). Thus we confirm the accuracy of the nor-

malization factor, which can be used to parameterize couplings in MD simulation.

To get the equivalent γ coupling under spectral density in Eqn (A.74), we need

first calculate the correlation function of Rl like in Eqn (A.70),

〈Rl(t)Rl(0)〉 =
kBT

M

∫
dω
g(ω)

ω2
cos(ωt)

=N
kBT

2ω2
DM

∫ ∞
−∞

dω
1

1 + (ω/ωD)2n
eiωt, (A.79)
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replace ω/ωD with x and t′ = ωDt, and write the integral as

〈Rl(t)Rl(0)〉 =N
kBT

2ωDM

∫ ∞
−∞

dx
1

1 + x2n
eixt

′

=N
kBT

2ωDM

∫ ∞
−∞

dx
eixt

′∏2n−1
m=0

[
x− exp

(
iπ(2m+1)

2n

)] . (A.80)

Eqn (A.80) can be evaluated with complex integration by closing a contour in the

upper half complex plane.

kBT

M
Bn(t) ≡ 〈Rl(t)Rl(0)〉

=
NkBTπ

22(n−1)ωDM
∏n−1

l=1 sin2( πl
2n

)
×

∑n/2−1
m=0 e−bmt

′
[am sin(amt

′) + bm cos(amt
′)], (n even)∑(n−3)/2

m=0 e−bmt
′
[am sin(amt

′) + bm cos(amt
′)] + 1

2
e−t

′
, (n odd),

(A.81)

where,

am = cos
2m+ 1

2n
π, (A.82)

bm = sin
2m+ 1

2n
π.

Recall the equality we make for the connection between Debye random forces and

general dyanmics (Eqn (A.71)), we can make the same relation under Markovian

limit.

C2kBT

M
Bn(t) = mkBTZ(t) (A.83)

The difference between Langevin equation and its generalized form is the memory
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kernel is integrated over a long period of time (t→∞) to be a constant,

−
∫ t

0

dτZ(t− τ)ẋ −→ −γẋ. (A.84)

Thus, integrate both sides of Eqn (A.83) we arrive

γn =
C2

Mm

∫ ∞
0

Bn(t)dt (A.85)

which is the couterpart of Eqn (A.73) for the spectral density form as chosen in Eqn

(A.74).

Two cases are considered for the white noise, they are harmonic potential interac-

tion and exponential repulsive potential for the system-bath interation. The results

are shown in Fig. A.15. We see from the heat current for the harmonic chain of the

diatomic system increases as internal interaction increases until it reaches a plateau

which equals to the center of mass heat conduction that does not depend on the

internal structure. When the relative frequency goes to zero, the current also goes

to zero, which is understandable as the two atoms of the diatomic system essentially

become independent and the conduction channel is closed.
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Figure A.15: Steady state heat current with regard to the change of relative inter-
action of diatomic molecule. the blue dot is harmonic link between system and
bath, the green dot is expontential link, and the red solid line is for center of
mass as a single partcle of the diatomic system. The unit for the heat current is
kcal ·mol−1 · (48.889fs)−1
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APPENDIX B

Appendix of chapter 3

Here we provide details of computations data as supplementals to chapter 3. Though

defining the microscopic concept of temperature is itself a challenging task11, it is

straightforward to define such a characteristic quantity from our direct MD simula-

tions of the molecular heat conduction. Specifically, we obtain temperature profiles

for each atom in the molecules by calculating ensemble average of kinetic energies of

the atoms. Figure B.2 shows a detailed temperature graph of Benzendithiols with

para-, meta- and ortho- configurations. The main observation here is, regardless of

the substitutions, the major temperature drops happen at the interfaces, that is the

first layer of gold substrates. The center parts of the molecules, which consist of six

carbons as backbones are essentially homogeneous in terms of temperature changes,

which could be a sign of ballistic transport.

A simplified model is to consider a ring-bridged molecule, with only nearest-

neighbour interactions193. As shown in Figure B.3, the system can be divided into

four branches(the left, right, top and bottom), and the Hamiltonian is written as:

H =
∑

i∈nl,nt,nb,nr

1

2
k[(ui+1 − ui)2 + (ui − ui−1)2], where

−∞ ≤ nl ≤ 0

0 ≤ nt ≤ Nt

0 ≤ nb ≤ Nb

0 ≤ nr ≤ ∞,

(B.1)
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Figure B.1: Histogram of normal mode distributions of different substitutions of
benzenedithiols.
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Figure B.2: Local temperature profiles of the atoms in benzenedithiol molecules with
different substitution positions, measured from ensembles of kinetic energies of the
atoms at steady states. The unit is in Kelvin. The temperatures of the cold and hot
baths are 300K and 350K respectively. The errors represent standard error1,2.
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Figure B.3: Schematic graph of a ring molecule with only nearest-neighbour harmonic
interactions, bridged by two linear chains. The circles are atoms in the molecule, and
the dots represent the hidden numbers of atoms that are not shown. The molecule is
segregated by four branches: left, top, bottom and right. The incident wave comes
from the left (partly reflected), propagates (partically reflected) and leaves the system
from the right.

where k is the force constant which we have made to be uniform (masses are also

made the same) across the system. Nt is the number of atoms in the top branch,

and Nb is the number of atoms in the bottom branch. Their relation is Nt +Nb = N

which is the total number of atoms within the ring.

The solutions for the displacements have the following ansatz forms:

ul = (eiθnl +Ble
−iθnl)e−iωτ ,

ut = (Ate
iθnt +Bte

−iθnt)e−iωτ ,

ub = (Abe
iθnb +Bbe

−iθnb)e−iωτ ,

ur = Are
iθnre−iωτ ,

(B.2)

where the A’s and B’s are coefficients to be determined by boundary conditions, and
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θ ∈ [0, π]. The dispersion relation gives the value for ω = 2
√
k/m sin(θ/2) (which can

be obtained by substituting ur to the equation of motion). By solving the equations

of motion at the junctions (i.e. when nl = nt = nb = 0 and nt = Nt, nb = Nb, nr = 0),

the expressions for the coefficients can be found, and thus the transmission (and

reflection) probabilities for the system.

The overall transmission is T = |Ar|2, where

Ar =
(1 + eiθ)(eiθNt + eiθNb)(1− eiθN)

1 + 4eiθ + 4ei2θ − ei2θ(1+Nt) − ei2θ(1+Nb) − 2eiθN + ei2θN − 4eiθ(N+1) − 2eiθ(N+2)
.

(B.3)

It is interesting to note the resultant transmissions do not depend on the lengths of

the left and right branches, which indicates the interferences happen mainly in the

ring parts of the system.

Now for our specific case of benzenes, without considering hydrogen atoms, the

atomic numbers in the branches of the ring can be specified as Table B.1

Substituion Nt Nb N

para- 3 3 6
meta- 4 2 6
ortho- 5 1 6

Table B.1: Table for different atom numbers in the top and bottom branches of the
middle ring for benzene with different substitution positions.

Deriving from the general expressions above, we show the transmission probabil-

ities for simplified benzene model under different substitutions (Figure B.4).

The x-axis for the transmissions is an index of wavenumber, which shows wave-

length dependence of the transmission. For overall transmission (Figure B.4 the para-

configuration shows smaller changes compared meta- and ortho-, both of which show

deep decrease in probability at certain frequencies, where meta- has smaller magni-
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Figure B.4: Transmission probability for different substitutions of benzene-like (six
atoms in the backbond) based on the harmonic ring model. (a) The overall transmis-
sion from the left side to the right side; If we define total transmission ratio over the
period plot here as: The integrations of the corresponding functions divided by the
square areas when the probability equals unity, we will have in the overall transmission
figure (a) para: 34.8%, meta: 17.8%, ortho: 45.0%.

158



tudes for most range of the spectrum. This signature of destructive phonon interfer-

ence explains in a simple fashion the decrease in conductance for meta-substitution in

heat conduction. Therefore it is understandable, from such a simple model, phonon

interference can be critical for heat conduction in ring structures like benzenedithiols.

One caveat here is that this over-simplified model only acts as an indicator to the

interference effect, not to be taken as exact. For example, imagine in Figure B.4 we

assume every frequency on the x-axis has the same weight on the conduction, and

we simply integrate over the transmission, then we find the ortho- substitution has

the highest percentage (see the description in the Caption) among three, which goes

astray from our simulation results. Therefore, a elaborated calculation (e.g. Landauer

or MD) to be taken among different vibrational channels, their interplay and their

couplings to the bath spectra, to provide more accurate estimations.

Figure B.5 shows overall heat conductance for aromatic molecules with differ-

ent ring numbers. Though Benzene(dithiol) and Naphthalene(dithiol) have similar

conductance, the magnitude starts to decrease when the number increase to three

(anthracene). Therefore, an initial rough conclusion might be made that increase of

the ring number in the aromatic molecules may hinder the conduction overall, though

only to an limited extend.
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Figure B.5: Total heat conductance for Benzene-based ring molecules, that is, Ben-
zene, Naphthalene and Anthracene. Simulation details (e.g.subsrates, biaes and cou-
plings) are described in Chapter 2 and Section A.1. The error bars represent Standard
Error1,2
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APPENDIX C

Appendix of chapter 4

C.1 Explict Debye bath simulation with two atomic layers

This appendix contains additional data for chapter 4. The Debye bath features shown

here is specifically to the Debye bath simulation (versus mathematical filter Debye

bath generator, which is detailed in Appendix A.6) using two explict bath atoms in

the main text (Chapter 4), showing characteristics of the spectrum density from the

Fourier transform (Fig. C.2) of the correlation functions (Fig. C.1).

C.2 Anharmonic potential for the system-bath coupling in the toy model

The anharnomic interaction between the system molecule and the bath (the part

represented by k01 in harmonic interaction sense in Fig. 4.4) is set to be Morse

potential (consider 1-D case),

Hpot = D(e−α(x−x0) − 1)2, (C.1)

where D is the dissociation energy, and α is the inverse of the characteristic length

of the potential well. The second derivative with respect to the position is

∂2Hpot

∂x2
= −2α2De−α(x−x0)(1− 2e−α(x−x0)). (C.2)
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Figure C.1: velocity-velocity autocorrelation function of the atom 0 in Fig. 4.2
.

Taking the equilibrium position (i.e. x = x0), we have

∂2Hpot

∂x2

∣∣∣∣
x=x0

= 2α2D. (C.3)

We might therefore define an “effective force constant” for such interaction, when the

particle stays within the vicinity of the bottom of the potential surface and behave

more like a harmonic oscillator.

kmorse = 2α2D. (C.4)

In the simulations, the parameters are chosen so that kmorse = k01 (Fig. 4.4), meaning

the harmonic potential is an approximation for the anharmonic potential when the

displacement is small from the equilibrium.
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function 〈R(t)R(0)〉. The circles are numerical implemented data points, and the solid
line is analytical expression shown in the legend.
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Figure C.3: Equilibrium energies of a single harmonic oscillator connected to ther-
mal bath of different characteristic temperatures (T indicated on the x-axis). All
dimensionaless quantities are scale with respect to the oscillating frequency (ω) of
the particle. Specifically, the unit for T is ~ω/kB, and the energy unit is ~ω. The
insert is a zoom-in of the full figure to the T range of 0 to 2.
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C.3 Dimensionless units

All the dimensionless variables are defined as follows in terms of harmonic oscillator

frequency:

x̄ =
x√
~
mω

v̄ =
v√
~ω
m

ω̄n =
ωn
ω

t̄ = ωt

γ̄ =
γ

ω

T̄ =
~ω
kBT

T̄
(n)
eff =

ω̄n

eω̄n/T̄−1

D̄ =
D

~ω

ᾱ = α

√
~
mω

(C.5)
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(79) Crljen, Ž.; Baranović, G. Unusual conductance of polyyne-based molecular

wires. Phys. Rev. Lett. 2007, 98, 1–4.

(80) Garner, M. H.; Bro-Jørgensen, W.; Pedersen, P. D.; Solomon, G. C. Reverse

Bond-Length Alternation in Cumulenes: Candidates for Increasing Electronic

Transmission with Length. J. Phys. Chem. C 2018, acs.jpcc.8b05661.

(81) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M.

UFF, a full periodic table force field for molecular mechanics and molecular

dynamics simulations. Journal of the American Chemical Society 1992, 114,

10024–10035.

175



(82) Inon Sharony, Renai Chen, Abraham Nitzan, ”Heat Conduction in Molecu-

lar Junctions” software package, https://bitbucket.org/heat-conduction-mol-

junctions/workspace/projects/HCMJ, 2020.

(83) Goga, N.; Rzepiela, A. J.; de Vries, A. H.; Marrink, S. J.; Berendsen, H. J. C.

Efficient Algorithms for Langevin and DPD Dynamics. J. Chem. Theory Com-

put. 2012, 8, 3637–3649.

(84) O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.;

Hutchison, G. R. Open Babel: An open chemical toolbox. J. Cheminformatics

2011, 3, 33.

(85) Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.;

Hutchison, G. R. Avogadro: an advanced semantic chemical editor, visualiza-

tion, and analysis platform. Journal of Cheminformatics 2012, 4, 17.

(86) Torii, D.; Nakano, T.; Ohara, T. Contribution of inter- and intramolecular

energy transfers to heat conduction in liquids. J. Chem. Phys. 2008, 128 .

(87) Dhar, A.; Roy, D. Heat Transport in Harmonic Lattices. J. Stat. Phys. 2006,

125, 801–820.

(88) Dhar, A. Heat transport in low-dimensional systems. Adv. Phys. 2008, 57,

457–537.

(89) Wang, J.-S.; Wang, J.; Zeng, N. Nonequilibrium Green’s function approach to

mesoscopic thermal transport. Phys. Rev. B 2006, 74, 033408.

(90) Yamamoto, T.; Watanabe, K. Nonequilibrium Green’s Function Approach to

Phonon Transport in Defective Carbon Nanotubes. Phys. Rev. Lett. 2006, 96,

255503.

176



(91) Meir, Y.; Wingreen, N. S. Landauer formula for the current through an inter-

acting electron region. Phys. Rev. Lett. 1992, 68, 2512–2515.

(92) More generally, we may consider Kij(t) =
∑

k C
(i)
LkC

(j)
kR

1
ωk

sin[ωkt] that connect

between motion in the i direction at one end and j direction at the other.

(93) Roy, D. Crossover from ballistic to diffusive thermal transport in quantum

Langevin dynamics study of a harmonic chain connected to self-consistent reser-

voirs. Phys. Rev. E 2008, 77, 062102–3.

(94) Luckyanova, M. N. et al. Phonon localization in heat conduction. Sci. Adv.

2018, 4 .

(95) Qasim, L. N.; Atuk, E. B.; Maksymov, A. O.; Jayawickramarajah, J.;

Burin, A. L.; Rubtsov, I. V. Ballistic Transport of Vibrational Energy through

an Amide Group Bridging Alkyl Chains. J. Phys. Chem. C 2019, 123, 3381–

3392.

(96) Dhar, A. Heat conduction in the disordered harmonic chain revisited. Phys.

Rev. Lett. 2001, 86, 5882–5885.

(97) Dhar, A.; Lebowitz, J. L. Effect of phonon-phonon interactions on localization.

Phys. Rev. Lett. 2008, 100, 134301–4.

(98) Zhai, J.; Zhang, Q.; Cheng, Z.; Ren, J.; Ke, Y.; Li, B. Anomalous transparency

induced by cooperative disorders in phonon transport. Phys. Rev. B 2019, 99,

195429.

(99) Casher, A.; Lebowitz, J. L. Heat Flow in Regular and Disordered Harmonic

Chains. J. Math. Phys. 1971, 12, 1701–1711.

177



(100) Rubin, R. J.; Greer, W. L. Abnormal lattice thermal conductivity of a one-

dimensional, harmonic, isotopically disordered crystal. J. Math. Phys. 1971,

12, 1686–1701.

(101) Matsuda, H.; Ishii, K. Localization of Normal Modes and Energy Transport in

the Disordered Harmonic Chain. Prog. Theor. Phys. Suppl. 1970, 45, 56–86.

(102) Hansen, T.; Solomon, G. C. When Conductance Is Less than the Sum of Its

Parts: Exploring Interference in Multiconnected Molecules. J. Phys. Chem. C

2016, 120, 6295–6301.

(103) Hansen, T.; Solomon, G. C.; Andrews, D. Q.; Ratner, M. A. Interfering path-

ways in benzene: An analytical treatment. J. Chem. Phys. 2009, 131 .

(104) Solomon, G. C.; Andrews, D. Q.; Duyne, R. P. V.; Ratner, M. A. When Things

Are Not as They Seem: Quantum Interference Turns Molecular Electron Trans-

fer “Rules” Upside Down. J. Am. Chem. Soc. 2008, 130, 7788–7789.

(105) Solomon, G. C.; Andrews, D. Q.; Hansen, T.; Goldsmith, R. H.;

Wasielewski, M. R.; Van Duyne, R. P.; Ratner, M. A. Understanding quan-

tum interference in coherent molecular conduction. J. Chem. Phys. 2008, 129,

054701.

(106) Solomon, G. C.; Herrmann, C.; Hansen, T.; Mujica, V.; Ratner, M. A. Explor-

ing local currents in molecular junctions. Nature Chem. 2010, 2, 223–228.

(107) Garner, M. H.; Li, H.; Chen, Y.; Su, T. A.; Shangguan, Z.; Paley, D. W.;

Liu, T.; Ng, F.; Li, H.; Xiao, S.; Nuckolls, C.; Venkataraman, L.; Solomon, G. C.

Comprehensive suppression of single-molecule conductance using destructive σ-

interference. Nature 2018, 558, 416–419.

178



(108) Garner, M. H.; Solomon, G. C.; Strange, M. Tuning conductance in aromatic

molecules: Constructive and counteractive substituent effects. J. Phys. Chem.

C 2016, 120, 9097–9103.

(109) Manrique, D. Z.; Huang, C.; Baghernejad, M.; Zhao, X.; Al-Owaedi, O. A.;

Sadeghi, H.; Kaliginedi, V.; Hong, W.; Gulcur, M.; Wandlowski, T.;

Bryce, M. R.; Lambert, C. J. A quantum circuit rule for interference effects in

single-molecule electrical junctions. Nature Communications 2015, 6, 6389.

(110) Markussen, T.; Stadler, R.; Thygesen, K. S. The relation between structure

and quantum interference in single molecule junctions. Nano Lett. 2010, 10,

4260–4265.
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