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ABSTRACT

OPTICAL IMAGING OF TISSUE PHYSIOLOGY WITH

EXOGENOUS CONTRAST AGENTS

Sang Hoon Chong

Arjun G. Yodh

This thesis describes experiments and analyses which push the frontier per what

one can learn from optically emitting exogenous contrast agents in living tissue.

The first set of experiments concurrently measured cerebral blood flow and both

intravascular- and extravascular-tissue oxygen concentration in a rat brain during

functional activation; the new instrumentation needed to collect this information

used contrast agent phosphorescence lifetime to determine oxygen concentration and

speckle contrast imaging to probe blood flow. The concurrent measurement of multi-

ple physiological parameters with high temporal resolution (⇠7 Hz) provided a unique

opportunity to observe the interconnected dynamics of oxygen exchange, blood flow,

and cerebral oxygen metabolism. The experiments showed that initial metabolic

changes trigger a blood flow response; comprehensive theoretical modeling of the data

exposed potential weaknesses of the well-known and often-used two-compartment

oxygen di↵usion model, and the experiments as a whole introduced a new tool for

characterization of oxygen metabolism and neurovascular coupling in the brain.

The second set of experiments developed instrumentation and a simple theoreti-

cal methodology for imaging fluorescent targets in turbid media such as tissue. This

approach used the ideas of spatial frequency domain fluorescence di↵use optical to-

mography (SFD-FDOT). The new reconstruction algorithm modified the more com-

plex SFD-FDOT reconstruction method to rapidly acquire the depth of fluorescent

target(s) and then estimate the transverse margins of the fluorescent target(s). Tissue
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phantom experiments demonstrated the instrumentation and algorithm, and assessed

limitations. The new methodology could be useful for image guidance during tumor

resection surgery, and could also provide rapid and useful constraining information

for more comprehensive fluorescent tomography.
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Chapter 1

Introduction

1.1 Probing Biological Tissue with Optics

Broadly, optical techniques of many kinds have been successfully employed to in-

vestigate normal and abnormal tissues [93]. Depending on desired biological goals and

interrogation length scales, experimenters will choose a wavelength range, a measure-

ment geometry (e.g., reflection/transmission, microscopic/macroscopic, etc.), and a

suitable technology (e.g., absorption/fluorescence frequency-domain or time-domain

spectroscopy, fluorescence/phosphorescence lifetime measurement, correlation spec-

troscopy, etc.).

In this thesis, all of our experiments aim to probe “near-surface” tissues in the

reflection geometry. Thus, the light sources and detectors reside on the same (observ-

ing) side of the tissue sample. For this work, we predominantly (but not exclusively)

employ near-infrared (NIR) light. Roughly speaking, NIR light ranges from 600 nm

to 1000 nm. Compared to visible light, photons in NIR have excellent penetration

depth in tissue, ranging from millimeter to centimeter scales [36]. Thus, its use en-

ables non-invasive and minimally invasive studies of relatively deep tissues that are

typically inaccessible to traditional optical microscopies [31] and methods that rely

on single scattering (or no scattering). NIR spectroscopy (NIRS) provides access

to the absorption of major endogenous tissue chromophores (e.g., oxy- and deoxy-

hemoglobin) [111]; NIR light (pulsed or CW) can be employed to excite exogenous

1



contrast agents in tissue, which in turn can provide information about tissue oxygen

(via fluorescence lifetime measurements) [89] or information about tumor margins

(via fluorophore concentration) [144]; narrowband NIR light sources enable accurate

measurements of the speckle fluctuations of reflected light, which in turn provide

information about blood flow [38].

In this thesis, I will discuss optical instrumentation, algorithms, and experimental

schemes we have developed to probe fluorescent/phosphorescent exogenous contrast

agents in two contexts. In one study, we measure agent phosphorescence lifetime

to characterize tissue oxygen gradients in the vasculature of rat-brain cortex dur-

ing resting-state and functional activation. These experiments push the frontier of

what is known about neurovascular coupling and oxygen metabolism. In the second,

qualitatively di↵erent study, we develop fluorescence-imaging instrumentation and

algorithms to locate fluorescent targets in situations relevant for image-guided tumor

resection surgery. Note, while the central focus of both studies is on exogenous con-

trast agents, both studies also require measurement/knowledge of endogenous tissue

properties.

1.2 Optical Contrast in Tissue

1.2.1 Endogenous chromophores

The tissue contains many molecules, but only a few of these chromophores absorb

substantial amounts of light (chromophores) in the range of UV, VIS, and NIR parts

of the optical spectrum. This large absorption is a consequence of their comparatively

large concentration and oscillator strength. These chromophores are oxy- and deoxy-

hemoglobin (HbO2 and HbR respectively), water, and lipid. Importantly, as noted
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above, these chromophores collectively absorb the least amount of light in the NIR

part of the optical spectrum, and therefore this regime of minimum absorption is

traditionally referred to as the physiological window (Fig.1)). In this window, light

penetration depth in most tissues ranges from millimeters to centimeters, depending

on blood concentration.

Figure 1: Absorption coe�cient spectra of the major endogenous chromophores in
tissue. Reprinted from Fig. 1 of Ref. 36.

When NIR light propagates in tissue, it interacts with these chromophores, and it

also interacts with organelles, nuclei, cells, and their associated membranes/interfaces.

Photons are lost via chromophore absorption, and photons are scattered by the or-

ganelles, etc. In most tissues, the absorption mean free path (i.e., the reciprocal of

the absorption coe�cient µa) is long compared to the so-called reduced scattering

mean free path (i.e., the reciprocal of the reduced scattering coe�cient µ0
s), In this

regime, the di↵usion equation (with loss) is a very good approximation for photon

transport.
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Di↵use optics refers broadly to techniques that utilize the di↵usion equation as

an underlying mathematical framework to analyze the propagation of light in turbid

media, e.g., NIR light in most tissues. Our experiments in the reflection geometry,

for example, utilize models based on the di↵usion equation to predict the propaga-

tion of NIR light into and out of tissue. The model permits the determination of

the medium’s absorption (µa) and reduced scattering coe�cient (µ0
s) [36], and the

wavelength dependence of these parameters (especially µa) enables experimenters to

deduce the concentrations of the aforementioned endogenous chromophores [37].

The NIR absorption technique, i.e., NIR spectroscopy (NIRS), enables many clin-

ical and pre-clinical applications. For example, in breast cancer, tumor tissues exhibit

optical properties that di↵er from those of normal surrounding tissues as a result of

their microvasculature and metabolism; typically, for example, tumors show higher

concentrations of HbO2 and HbR compared to normal tissue. These di↵erences pro-

vide spectroscopic contrast which is useful for tomographic imaging of breast cancer

and for monitoring the response of cancer to therapy [23, 139, 21, 20, 7, 49]. In a

di↵erent vein, continuous measurement of HbO2 and HbR can inform experimenters

about the hemodynamics and oxygen dynamics in brain tissue [25]. Indeed, NIR

spectroscopy and tomography of HbO2 and HbR have been an important surrogate

for direct molecular oxygenation measurements in tissue; moreover, if integrated with

optical measurements of cerebral blood flow (CBF), it is possible to estimate cere-

bral oxygen consumption or the so-called cerebral metabolic rate of oxygen (CMRO2).

1.2.2 Exogenous contrast agents

While endogenous contrast is useful and can be probed non-invasively, there

have been significant advances in the field per development of exogenous contrast
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agents. Exogenous contrast agents must be introduced into tissue and are thus in-

vasive (potentially, minimally invasive). Their utility arises from their potential to

teach us about other properties in tissue, properties that cannot be rigorously de-

termined from endogenous contrast. For example, in our experiments on functional

activation in brain, we utilize exogenous porphyrin-based phosphorescence agents

(Oxyphors); the lifetime of their photoluminescence is sensitive to the oxygen con-

centration in tissue. Oxyphors have been applied in a variety of contexts because

their sensitivity to molecular oxygen concentration is relevant to many important

metabolic questions. Some optical technologies used thus far with Oxyphors are

two-photon microscopy [43, 51, 2, 124], fiber-based imaging [101], and camera-based

imaging [44, 120]. Deployment of the phosphorescent agent in tissue enables direct

spatiotemporal measurement of oxygen concentration, which is more direct than more

common analyses of tissue blood oxygen dynamics based on HbO2 and HbR. Typ-

ically, these exogenous contrast agents are designed to be excited by visible (green

and red) light, and they emit phosphorescence light in the NIR.

Figure 2: Example spectra of Oxyphor R4 (red) and G4 (green). (a) Absorption
spectra. (b) Relative emission spectra. Reprinted from Fig. 2 of Ref. 44.

Another useful exogenous contrast phenomenon is based on fluorescence for tu-

mor detection and characterization. This general problem is a part of the motivation
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for our di↵use optical imaging experiments. Specifically, an exogenous contrast agent

called indocyanine-green (ICG) has been FDA-approved for clinical use. Among other

things, it is the major contrast agent used for clinical angiography [126, 40]. Due to

its good fluorescent e�ciency and safety, it has also been increasingly deployed as a

fluorescent contrast agent for image-guided surgery for tumor resection [113, 6]. In

this case, the surgeon injects ICG to a patient 24 hours ahead of the tumor resection

surgery; due to various factors, the ICG molecules will preferentially accumulate in

and around tumor tissue viaits leaky vasculature. Using this so-called ICG reten-

tion e↵ect [108], the absorption and emission of ICG (and variants) in this context

have permitted tumor detection (Fig. 3). In this case, measurement of the enhanced

concentration of the agent (in space and in time) permits tumor detection and char-

acterization. Looking forward, all-out e↵orts to develop cell-specific fluorescent dyes

for better contrast are ongoing [72, 29]. Parallel e↵orts (such as ours) that aim to

improve the fidelity of fluorescent contrast imaging are vital too.

Figure 3: ICG absorption and emission spectra of 6.5µM in the blood plasma.
Reprinted from the package insert of ICG [3].
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1.3 Central Topics of this Thesis

In the remaining chapters of this thesis, two important applications of exogenous

contrast agents are utilized to probe issues at the Biophotonics frontier. Both works

enable the acquisition of important information about biological tissue. In the first

set of experiments, two phosphorescent contrast agents (Oxyphors) are deployed to

interrogate oxygen metabolism in rat brain before, during, and after functional ac-

tivation. CMRO2 is an important biomarker that we gain access to as a result. In

principle, information about CMRO2 can teach us how to assess normal and dis-

eased brain function [54, 129, 130]; furthermore, better information about CMRO2

can help us to answer fundamental questions associated with oxygen dynamics, neu-

rovascular coupling, and metabolic mechanisms in brain. Traditional measurement

paradigms for the study of CMRO2 lack the temporal, spatial, and biochemical res-

olution to fully elucidate dynamic neurological events, e.g., neurovascular coupling.

In our investigation, we introduce a new experimental platform to estimate CMRO2

with high temporal and spatial resolutions by simultaneously monitoring intra- and

extra-vascular oxygen concentration before, during, and after functional activation.

Additionally, we acquired images of cerebral blood flow (CBF) concurrently. Thus,

assessment of CMRO2 directly from Oxyphor oxygen measurements provides a novel

opportunity to compare the detailed dynamics of oxygen consumption and blood flow

with high temporal resolution.

The second set of experiments aims to estimate the depth and transverse mar-

gins of fluorescent targets in turbid media. This is an important task that, if car-

ried out rapidly enough, could be utilized by a surgeon for surgical decision-making.

Currently, image-guided tumor resection surgery has been increasingly popular due

to real-time two-dimensional image-projection guidance, i.e., a surgeon can coarsely
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distinguish near-surface tumors from normal tissue by taking two-dimensional im-

ages of tissue fluorescence. However, this technique lacks depth information which

can be critical for surgeries wherein preserving healthy normal tissue is important.

Our work builds on current Spatial Frequency Domain Fluorescence Di↵use Opti-

cal Tomography (SFD-FDOT) research. We developed an SFD-based algorithm and

instrumentation to assess the depth and transverse margins of fluorescent targets

quickly. The instrumentation and algorithm were evaluated experimentally in or-

der to take the first step toward translation to the operating room. The work can

also be useful as complimentary priori information in more comprehensive FDOT too.

1.4 Thesis Organization

In the remainder of this thesis, Chapters 2 - 4 are devoted to the first set of

experiments that seek to probe CMRO2 in rat brain by direct measurement of oxygen

concentration. Chapters 5 & 6 report the algorithm and instrumentation and testing

for a new SFD-FDOT technique for fast acquisition of depth/margin.

More specifically, Chapter 2 introduces neurovascular coupling and CMRO2. Fur-

ther, it explains why the platform we develop could be valuable for future studies of

CMRO2 (especially in comparison to existing technology). Lastly, it introduces the

theoretical framework we employ to estimate CMRO2 from our measurements. In

Chapter 3, the primary measurement techniques are introduced along with informa-

tion about detailed surgical preparation for the experiment. Chapter 4 demonstrates

the full approach, reports important results from the measurements, and discusses its

impact on the interpretation of neurovascular coupling and other biological phenom-

ena in the brain.

In Chapter 5, a brief background of the general problem is given, and the theory

of di↵use optics and then SFD-FDOT is introduced in detail. The aspects of the
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theory of SFD-FDOT needed for our experiments with fluorescent targets is then

further developed and explained. Chapter 6 reports the experimental results and

system performance through a series of phantom experiments.

Lastly, Chapter 7 summarizes the results and discussion from both experiments,

and provides brief suggestions for future work.
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Chapter 2

Hemodynamics and Oxygen Metabolism

in Rat Brain

This Chapter has been largely adapted from a pending publication: Chong, S. H.,

Ong, Y. H., El Khatib, M., Allu, S. R., Parthasarathy, A. B., Greenberg, J. H., Yodh,

A. G., & Vinogradov, S. A. (2022). Real-Time Tracking of Brain Oxygen Gradients

and Blood Flow during Functional Activation [Manuscript submitted for publication].

Department of Physics & Astronomy, University of Pennsylvania.

2.1 Neurovascular Coupling and Its Significance

A continuous oxygen supply is critical for maintaining activity in the brain [160,

17, 77]. Briefly, blood carries oxygen and distributes it into brain tissue (predomi-

nantly) via a network of capillary vessels as shown in Fig. 4 (Note, the image design

in the figure is closely related to Fig. 2 of Ref. 70.). Oxygen molecules di↵use from

the vessels into neighboring extravascular tissues down a concentration gradient [140]

which depends on the rate of oxygen consumption; in the brain, this oxygen con-

sumption rate is called the cerebral metabolic rate of oxygen (CMRO2). The oxygen

is metabolized by mitochondria to generate energy via its primary pathway, oxidative

phosphorylation [17, 22].

Even in their resting state, brain cells are active [95]. Thus, they require a supply

of oxygen at all times. However, during functional activation more oxygen is needed,

and cerebral blood flow (CBF) must rapidly respond to these changes in neuronal

10



Figure 4: Schematic of oxygen delivery from vasculature to tissue.

activity. More oxygen must be supplied to regions where more activity occurs [71].

The cascade of events connecting variation of neuronal activity to CBF response is

known as neurovascular coupling (NVC) [28]. If NVC is compromised, then the brain

can su↵er local deprivation of oxygen, which can lead to cell death, and potentially

permanent neurological disorders [77]. Therefore, comprehensive knowledge about

NVC is valuable for understanding the physiology of both healthy and abnormal

brains. One way to learn about NVC is to observe and compare hemodynamics

and oxygen dynamics in the brain during steady-state (resting-state) and during

functional activation. Information about the sequence of events following functional

activation, for example, is invaluable for ascertaining the causal connections between

various vascular and extravascular physiological parameters [60].

The pure hemodynamic parameters of importance for us (in brain) include CBF,

and the concentration of oxy- and deoxy-hemoglobin (HbO2 and HbR), or, equiva-

lently, the total hemoglobin concentration and blood oxygen saturation (THC and
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SO2). The molecular oxygen parameters of importance within the vascular system

are the bound and unbound oxygen concentration in arteries, arterioles, capillaries,

venules, and veins. For functional activation in brain, we are specifically interested

in the total (bound and unbound) oxygen concentration in the arterioles, capillaries,

and venules, which we denote Ca, Cc, and Cv, respectively. Additionally, we are in-

terested in unbound molecular oxygen parameters both outside the vascular system

(in extravascular tissue) and within the vascular system (i.e., intravascular); here we

denote unbound oxygen concentrations in the capillary intravascular space and in

the extravascular space as Ci and Ce, respectively. In our experiments, we measure

these latter unbound oxygen parameters, which in turn provide access to CMRO2 as

described quantitatively below. Additionally, in our experiments, we measure CBF.

The concurrent acquisition of CBF and CMRO2 enables us to systemically compare

hemodynamic and oxygen consumption responses.

2.2 Prior Measurements Sensitive to Oxidative

Metabolism in Brain

Quantitative assessment of CMRO2 has been of interest to the neuroscience com-

munity for many years. CMRO2 can be a useful marker for early detection of tis-

sue pathology such as in stroke [54], traumatic brain injury [129], and glioma [130].

Moreover, dynamic measurements of CMRO2 during neuronal activation provide in-

formation about the brain metabolic events that underpin functional responses [13].

Positron Emission Tomography (PET) with 15O-labeled compounds (O2, H2O, CO) is

arguably the most established method for absolute CMRO2 quantification in steady-

state [103, 66]. PET is compatible with human studies, but quantitative measurement

of CMRO2 with PET requires independent measurements of CBF and total cerebral
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blood volume (CBV), and it relies on multi-parametric models for the calculation of

CMRO2 [102, 76]. Furthermore, PET has a low temporal resolution on the order

of 2-7 minutes [45] and is, therefore, unable to reveal rapid metabolic dynamics of

cerebral tissues during neuronal activation.

For dynamic tracking of brain responses, the most widely used methods are Blood-

Oxygen-Level-Dependent functional Magnetic Resonance Imaging (BOLD fMRI) [117,

164] and functional Near-Infrared Spectroscopy (fNIRS) [47, 163, 115]. The cen-

tral parameter in both techniques is hemoglobin oxygen saturation (StO2), and, like

PET, absolute quantification of CMRO2 requires independent measurements of oxy-

gen extraction fraction (OEF), CBF, and CBV, and relies on multi-parametric mod-

els [14, 64, 164, 61, 35, 39, 25].

As a result, BOLD fMRI and fNIRS are best suited to probe relative changes in

CMRO2, albeit with resultant computed CMRO2 dynamics inherently coupled to the

dynamics of CBF. However, since CMRO2 and CBF need not change in the same

way when responding to activation, their relative timing carries valuable information

about the dynamics of NVC [65, 147], and this relative timing is inaccessible to PET,

BOLD fMRI, and fNIRS which rely on CBF for calculation of CMRO2.

Apart from techniques that evaluate cerebral hemodynamics, local CMRO2 can

also be inferred from measurements of molecular oxygen gradients around individual

vessels, for example by using di↵usion-based models such as the two-compartment

model suggested by Krogh [75]. The partial pressure of oxygen (pO2), and pO2 gra-

dients around vessels were originally measured with oxygen microelectrodes [148].

More recently, two-photon phosphorescence lifetime microscopy (2PLM) has proved

useful for spatially-resolved microscopic pO2 measurements [48]. 2PLM is mini-

mally invasive and is capable of probing pO2 at multiple locations near vessels in

the brain [118, 82]. However, mapping oxygen by 2PLM requires long observation
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times, and therefore the technique is best suited for measurements of steady-state

gradients [30, 119]. On the other hand, phosphorescence lifetime oximetry has been

used to observe stimulus-induced changes of brain pO2 [4], demonstrating capability

for measurements at speeds comparable with transients of neuronal activity. Lastly,

microelectrodes and laser Doppler have been used concurrently to track intravascu-

lar and extravascular pO2 in two selected locations, along with local CBF during

functional stimulation; together the three signals provided information sensitive to

changes in oxygen metabolism, but CMRO2 was not computed [146].

2.3 Our Approach

Here we introduce and demonstrate an all-optical imaging approach for dynamic

measurement of CMRO2. The new methodology is based on the quantification of oxy-

gen concentration gradients in the brain using two macromolecular phosphorescent

probes, Oxyphors [92, 44], placed separately in the intravascular and extravascular

compartments. These probes are carefully designed such that they do not di↵use

across the blood-brain barrier, and the chromophores in the probes have distinguish-

able optical spectra. Thus, the Oxyphors can be interrogated independently and

concurrently for direct measurement of oxygen gradients in both compartments. In

our work, we sampled oxygen gradients in rat brain cortex at a rate of ⇠ 7 Hz, but this

sampling frequency can potentially be increased > 10-fold. In parallel, we measured

the local CBF by laser speckle contrast imaging (LSCI). This combination enabled us

to correlate measured changes in CMRO2 with measured changes in CBF and thus

ascertain the timing of the physiological events that accompany neuronal activation.

The new approach is minimally invasive, o↵ers superior time-resolution (poten-

tially approaching milliseconds), and creates novel opportunities for dynamic tracking

and quantification of brain metabolism. Ultimately, with straightforward improve-
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ments in technology, it should be possible to minimize systematic quantification errors

associated with oxygen gradients, and thereby generate a robust method for in vivo

dynamic quantification of absolute CMRO2.

2.4 Oxygen Dynamics and CMRO2

In our approach, CMRO2 is estimated by direct measurement of oxygen concen-

trations in both intravascular and extravascular space. To understand how this works

in practice, in this section, we present a comprehensive theoretical model.

We use the two-compartment theory [142] to model oxygen transport from the

vasculature to the extravascular tissue; this theory enables us to estimate CMRO2 in

conjunction with the Krogh-Erlang cylinder model [75]. The variables and parame-

ters we use are defined, along with their units, in Table 1.

Table 1: Descriptions of parameters and variables.

Symbol Unit Description

Vi mL/100g Tissue Capillary (intravascular) volume per unit mass of brain tissue.

Ve mL/100g Tissue Extravascular volume per unit mass of brain tissue.

Vt mL/100g Tissue Full tissue volume(Vi + Ve) per unit mass of brain tissue.

CBF mL/s/100g Tissue Cerebral blood flow per unit mass of brain tissue.

Ca mM Arteriole O2 concentration (includes both bound and unbound to Hb).

Cc mM Capillary O2 concentration (includes both bound and unbound to Hb).

Cv mM Venule O2 concentration (includes both bound and unbound to Hb).

Ci µM Capillary O2 concentration (includes unbound O2 only).

Ce µM O2 concentration in the extravascular interstitial space of tissue.

P cm/s Permeability of O2 molecule across capillary wall.

Sc cm2/100g Tissue Surface area of capillary per unit mass of brain tissue.

CMRO2 µmoles/s/100g Tissue Cerebral metabolic rate of oxygen.
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2.4.1 Intravascular-extravascular two-compartment oxygen

transport model

The brain capillary network architecture is complex, and modeling capillary oxy-

gen (O2) dynamics is challenging. Therefore, we simplify the complex capillary struc-

ture to a simple cylindrical tube as has been done for many years (e.g., the Krogh-

Erlang Model). Our situation and model are schematically illustrated in Fig.4. In this

model, O2 is delivered by blood flowing through the penetrating arteriole, and from

there it is distributed into the complex capillary network. The blood passing through

the capillaries contains O2 dissolved in the blood plasma; this dissolved O2 is in equi-

librium with O2 bound to hemoglobin, which is described by the Hill equation [155].

Some of this O2 di↵uses into the extravascular tissue to support tissue metabolism.

O2 transport into and out of the capillary network is modeled by Eq. (2.1).

Vi
dCc(t)

dt
= CBF(t) · [Ca(t)� Cv(t)]� PSc · [Ci(t)� Ce(t)]. (2.1)

The temporal rate-of-change of O2 molecules, including both bound and unbound

to hemoglobin, in the capillary compartment volume is shown on the left-hand side

(LHS) of this equation; here Cc is the O2 molecule concentration (bound and un-

bound). Vi represents the total capillary compartment volume, i.e., the total in-

travascular volume. The temporal rate-of-change of total O2 in the capillary volume

depends on the factors on the right-hand side (RHS) of the equation above. The first

term on the RHS of Eq. (2.1) defines the net-flow of O2 molecules into the capillary

compartment; here CBF(t) is the absolute blood flow at time t. Ca and Cv are ar-

teriole and venule O2 molecule concentrations, respectively. Ca and Cv include O2

molecules bound to hemoglobin and O2 molecules dissolved in the blood plasma; they
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are in units of mM. The second term on the RHS represents the extraction rate of

O2 molecules from the capillary compartment into the extravascular tissue; here PSc

is a product of the O2 permeability, P, and the capillary surface area, Sc. Ci and

Ce represent the average O2 molecule concentration in intravascular and extravascu-

lar tissue compartments, respectively; note, Ci and Ce depend only on dissolved O2

molecules (i.e., only on unbound O2). Notice that this extraction rate of O2 from the

capillary is roughly proportional to the concentration gradient of average unbound O2

concentration between the intravascular and extravascular compartments. The per-

meability contains the di↵usion coe�cient for O2 and some e↵ective lengths (slightly

longer than the capillary radius. see Sec. 2.4.2).

A similar equation can be written for the extravascular unbound O2 molecule

concentration.

Ve
dCe(t)

dt
= PSc · [Ci(t)� Ce(t)]� CMRO2(t). (2.2)

The LHS term is the time rate of change of O2 molecules in the extravascular compart-

ment. It depends on the derivative of Ce and the extravascular compartment volume,

Ve, which is Ve = Vt � Vi, where the total tissue volume is Vt. In the extravascular

compartment equation, Eq. (2.2), the net-flow of O2 molecules includes the di↵usive

extraction of O2 from the intravascular compartment (the first term on the RHS),

and the O2 consumed by mitochondria in tissue (the second term on the RHS) whose

rate is CMRO2 by definition. Notice that this consumption rate is independent of the

amount of O2 in the compartment.

In our measurement, both intravascular and extravascular oxygen concentrations

were measured with high temporal resolution. We assume that the measurements

give Ci and Ce respectively. With this information, Equation (2.2) allows us to esti-

mate absolute CMRO2 provided that Ve and PSc are known. In practice, Ve is well
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constrained [32, 91, 121], and consequently its fractional error a↵ects CMRO2 only

marginally. However, PSc is not very well constrained. There are a few publications

in the literature wherein PSc is either directly estimated via measurement or theoret-

ically computed; prior estimates of PSc range from 35 to 230 mL/s/100g Tissue [123].

2.4.2 Theoretical modeling of PSc

Figure 5: (a) Schematic of Krogh-Erlang cylinder model. (b) Cross-section view of a
single capillary and the surrounding extravascular tissue cylindrical shell correspond-
ing to one of the coaxial cylinders in (a).

Herein, we estimate PSc based on an approach that uses Krogh’s cylinder to

model the whole tissue region (both intra- and extra-vascular tissue) as described

in Fig. 5. In this modeling, each cylindrical capillary is surrounded by a coaxial

extravascular cylindrical shell of tissue, and the closest neighboring capillary is placed

one intercapillary distance away from one another. The capillary radius is denoted

⇢1, and the tissue outer edge radius is denoted ⇢2. Oxygen escaping from the capillary

at ⇢1 will di↵use out to the edge of the extravascular tissue at ⇢2. The distance from
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the capillary wall to the tissue boundary is typically set to be about one-half of the

average inter-capillary distance. For a fractional volume of capillary, Vi/Vt, ⇢1 and ⇢2

are related via the relation below.

Vi

Vt
=

✓
⇢1
⇢2

◆2

. (2.3)

Then, the length of the cylinder can be computed using ⇢2.

L =
Vt

⇡(⇢2)2
. (2.4)

Below is the table of morphological parameters of microvasculature and tissue

with a few given volume fractions of capillary.

Table 2: Radii of capillary (⇢1), Radii of tissue cylinder (⇢2) and corresponding length
of capillary (L) are tabulated under the constraint of Vi/Vt.

⇢1 (µm) 2.0 2.5 3.0 3.5

Vi/Vt = 1%
⇢2 (µm) 20 25 30 35
L (km) 75.8 48.5 33.7 24.7

Vi/Vt = 2%
⇢2 (µm) 14 18 21 25
L (km) 152 97.0 67.4 49.5

Vi/Vt = 3%
⇢2 (µm) 12 14 17 20
L (km) 227 146 101 74.2

The other relevant physiological parameter in the model is the oxygen di↵usion

coe�cient, D. Reported D varies from 1.4 to 1.9⇥ 10�5 cm2/sec at 37oC [19, 63, 52,

135]. Note, the animals used in the cited references vary from small rodent species to

human brain tissue.

Having the geometrical and physiological parameters of microvasculature con-

strained, in steady-state, we can readily determine the concentration profile in the

extravascular tissue using the di↵usion equation in cylindrical coordinates. Assum-

ing the uniform di↵usion coe�cient in the extravascular tissue volume, solving the
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time-dependent di↵usion equation below allows us to estimate oxygen concentration

distribution in the extravascular tissue.

@C

@t
= Dr2C �M, (2.5)

where M corresponds to CMRO2 density in the extravascular tissue; that is, M =

CMRO2/Ve, M is spatially uniform in the extravascular tissue volume.

To solve this problem, we must apply boundary conditions. The di↵usive O2

molecule flux at the tissue outer cylinder boundary is assumed zero in the cylindrically

symmetric geometry, that is, dC
d⇢

��
⇢=⇢2

= 0. The other boundary condition is that

the concentration on the capillary wall edge is assumed to be Ci, i.e., the oxygen

concentration in the intravascular compartment is homogeneous. The steady-state

solution to this problem was worked out by Erlang and Krogh [75] and given in by

Popel [114] in more detail.

C(⇢) = C(⇢1) +
M

4D
(⇢2 � ⇢21)�

M⇢22
2D

ln

✓
⇢

⇢1

◆
. (2.6)

The extravascular compartment average oxygen concentration, Ce, is found by eval-

uating the integral below.

Ce =
1

Ve

Z

Ve

CdV = �M

2D

✓
⇢42ln(⇢2/⇢1)

⇢22 � ⇢21

◆
+

M

8D
(3⇢22 � ⇢21) + C(⇢1). (2.7)

Equation (2.6) predicts the extravascular O2 concentration distribution in the ra-

dial direction, and Eq. (2.7) provides its average. Figure 6 shows an exemplary

oxygen concentration profile in the extravascular cylinder in terms of corresponding

partial oxygen pressure, mmHg, as well as the volume-averaged pO2. In this exam-

ple, CMRO2 and D are set to be 3.4 µmoles/s/100g Tissue and 1.7 ⇥ 10�5 cm2/s
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Figure 6: Oxygen concentration profile along the radial distance from the wall (⇢1 = 3
µm) to the outer surface of the tissue cylinder (⇢2 = 30 µm) in Krogh cylinder model.

respectively, and the average pO2 is 22 mmHg.

Let us now summarize all of the implications of Eq. (2.7), which assumes that

Krogh’s cylinder model to describe the vascular system. Ce is a function of the mor-

phological factors of microvasculature such as ⇢1 and ⇢2, as well as the physiological

factor M/D. Thus, for a given capillary volume fraction and capillary radius, the

average O2 concentration is a function of M and D. Moreover, the measured Ci and

Ce are precisely related to CMRO2; Equation (2.7) implies that for specific Ci, Ce,

morphological factors, and di↵usion coe�cient, there exists a unique value of M , i.e.,

CMRO2.

By trivially rewriting Eq. (2.7), we obtain an expression for M (note, M =

CMRO2/Ve). Below, we fill in intermediate steps to derive this expression.

C(⇢1)� Ce =
M

2D

✓
⇢42ln(⇢2/⇢1)

⇢22 � ⇢21

◆
� M

8D
(3⇢22 � ⇢21)

=
M

2D


⇢42ln(⇢2/⇢1)

⇢22 � ⇢21
� 3⇢22 � ⇢21

4

�
; (2.8)
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M =
2D

⇢42ln(⇢2/⇢1)
⇢22�⇢21

� 3⇢22�⇢21
4

(C(⇢1)� Ce). (2.9)

Substituting Ci for C(⇢1), we obtain an expression which relates molecular O2 in the

capillary and in the extravascular tissue to oxygen metabolism.

M =
2D

⇢42ln(⇢2/⇢1)
⇢22�⇢21

� 3⇢22�⇢21
4

(Ci � Ce). (2.10)

This expression above, should remind the reader of the steady-state equation for

CMRO2, which we derived from the coupled di↵erential equations for the two com-

partments. This equation can be manipulated to define PSc. (Note, in deriving all of

the results in this section we have implicitly made the steady-state approximation.)

Since Ve is ⇡(⇢22 � ⇢21)L, we have

CMRO2 = M ⇥ Ve =
2⇡D(⇢22 � ⇢21)L

⇢42ln(⇢2/⇢1)
⇢22�⇢21

� 3⇢22�⇢21
4

(Ci � Ce) =
2⇡LD

⇢42ln(⇢2/⇢1)
(⇢22�⇢21)

2 � 3⇢22�⇢21
4(⇢22�⇢21)

(Ci � Ce).

(2.11)

Thus, the model determines PSc precisely.

PSc =
2⇡LD

G
⇣

⇢2
⇢1

⌘ , (2.12)

G
⇣

⇢2
⇢1

⌘
is a function of a ratio between capillary radius, ⇢1, and tissue radius, ⇢2.

Explicitly,

G

✓
⇢2
⇢1

◆
=

⇣
⇢2
⇢1

⌘4

ln
⇣

⇢2
⇢1

⌘

⇣
⇢2
⇢1

⌘2

� 1

�2 �
3
⇣

⇢2
⇢1

⌘2

� 1

4

⇣
⇢2
⇢1

⌘2

� 1

� . (2.13)

Eq. (2.13) depends only on the ratio of intercapillary distance to capillary diameter.
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With caveats related to the approximations/simplifications outlined above, PSc repre-

sents the oxygen mass transfer coe�cient connecting CMRO2 to the oxygen gradient

across intra- and extravascular tissue compartments. Moreover, within this model,

P and Sc can be separately defined. For example, if we take Sc to be the capillary

surface area, i.e., Sc = 2⇡⇢1L, then we generate an oxygen permeability associated

with tissues surrounding the capillary wall, i.e., P = D/
h
⇢1G

⇣
⇢2
⇢1

⌘i
. The function,

G
⇣

⇢2
⇢1

⌘
, is not significantly larger than unity for typical microvascular parameters,

e.g., it ranges from ⇠ 1.1 to ⇠ 1.6 for typical capillary diameter and separation when

Vi/Vt is between 1 and 3% (see Fig. 7)

Figure 7: G(⇢2/⇢1) as a function of ⇢2/⇢1.

The Krogh-based model also provides an explicit relationship for the extravascular

compartment relaxation time, To = Ve/PSc, in terms of ⇢1, ⇢2 and D. This timescale

arises naturally in the solution of the first order di↵erential equation, Eq. (2.2), and

can be important for the description of metabolism dynamics at early times. Inter-

estingly, the ratio of To to the mean-time, �t, for oxygen to di↵use the distance ⇢2, is

well defined in the model; the ratio To/�t is ranges from approximately 2.1 to 3.2 for

typical system parameters, and depends only weakly on ⇢2/⇢1 in the physiologically
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relevant experimental regime (i.e., Vi/Vt between 1 and 3 %). Thus, the time for the

extravascular compartment to reach a new steady-state oxygen distribution following

an impulse is 2⇥ to 3⇥ longer than the mean time it takes for oxygen to di↵use to

the extravascular tissue boundary, ⇢2.

In the next Chapter, we will select PSc based on the results of this theoretical

model (using reasonable morphological and physiological parameters), on estimates

of CMRO2 from literature, and on our experimental values of Ci and Ce.

2.4.3 Limitations of the Model

As with many biophysical models which give exact results, the present one has

potentially important limitations. For example, besides the specific numerical approx-

imations noted above, the model ignores the heterogeneous nature of the capillary

network within extravascular tissue. In practice, the capillary size, and especially

the intercapillary separation, is not uniform. A slightly more complex theory should

average over the distribution of regions with di↵erent morphologies. In this case,

even if we continue to adopt the core cylinder model, a slightly more complex the-

ory would quantitatively predict a distribution of PSc and To. Accounting for these

distributions could change the temporal metabolism dynamics, i.e., compared to re-

placing distributions by their average values. Another limitation derives from the

fact that the extravascular tissue has both neurons and other cells, and they likely

have di↵erent temporal metabolic responses to stimulation. Still another limitation

is the description of the capillary wall as a uniform extension of the inner capillary;

for example, the oxygen di↵usion coe�cient in the capillary wall could be di↵erent

from the surrounding tissues. All of these factors need to be considered in data in-

terpretation. Notably, our new methodology will make confrontation of these issues

possible.
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Chapter 3

Optical and Surgical Methods for Probing

Rat Brain Hemodynamics and Oxygen

Metabolism

This Chapter has been largely adapted from a pending publication: Chong, S. H.,

Ong, Y. H., El Khatib, M., Allu, S. R., Parthasarathy, A. B., Greenberg, J. H., Yodh,

A. G., & Vinogradov, S. A. (2022). Real-Time Tracking of Brain Oxygen Gradients

and Blood Flow during Functional Activation [Manuscript submitted for publication].

Department of Physics & Astronomy, University of Pennsylvania.

3.1 Optical Probing Techniques

Three physiological parameters were optically tracked in our experiments. The

molecular oxygen concentration in the intravascular and extravascular compartments,

Ci and Ce, respectively, were acquired using the phosphorescence lifetime oximetry

technique. Additionally, the relative variation of cerebral blood flow (CBF) was mea-

sured using the laser speckle contrast imaging (LSCI) technique. Their principles and

associated instrumentation are introduced below.

3.1.1 Two-color phosphorescence lifetime oximetry

When a molecule is excited, it returns to the ground state via multiple pathways.

Some pathways are non-radiative, and other pathways are radiative. If the radiation is
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emitted from a triplet state, then it is called phosphorescence (fluorescence radiation

is emitted from a singlet state, see Fig.8) [143]. Herein we focus on phosphorescence

phenomena.

Figure 8: Simplified Jablonski Diagram. So: Ground State, S1: Singlet State, T1:
Triplet State.

When a phosphor molecule in its triplet excited state experiences a collision with an

oxygen molecule, the collision provides a non-radiative decay path for energy to de-

part from the phosphor [156]. Therefore, the more oxygen-rich environment will lead

to the rapid decay of phosphorescence emission, while the less oxygen-rich environ-

ment results in a comparatively longer phosphorescence lifetime. This relationship is

described by the well-known Stern-Volmer relation [131].

1

⌧
=

1

⌧o
+ kq[O2], (3.1)

where ⌧ , ⌧o, kq and [O2] represent the phosphorescence lifetime, the lifetime in the

absence of oxygen, the quenching constant, and oxygen concentration respectively.

Our phosphorescence method utilizes this principle; it employs measurements of

phosphorescence lifetime to deduce molecular oxygen concentration (pO2) in the lo-
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cal microenvironment. Besides the phosphor molecule (Oxyphor), our experiments

require an excitation laser pulse, as well as a means to detect and temporally resolve

the phosphorescence photons emitted after the arrival of the excitation pulse. This

time-resolved emission signal is fit to an exponential function to determine the life-

time, which in turn provides information about molecular oxygen concentration via

a calibration curve.

The phosphorescent probes used in this study were the Oxyphors PtG4 and PtR4.

PtG4 has been used previously [80, 132, 18, 15]. PtR4 was synthesized in Sergei

Vinogradov’s laboratory specifically for this work (see Appendix A.2-4). PtR4 is

similar to the probe PdR4 [44], except that the chromophore in PtR4 is a Pt(II)

porphyrin, in place of the Pd(II) porphyrin in PdR4. The di↵erence between Pt and

Pd porphyrin-based probes has been discussed [80]. The probes were calibrated using

a setup previously described [44]. The Stern-Volmer relations for both Oxyphors R4

and G4 are illustrated in Fig. 9 (Note, the figure is reprinted from Fig. 5 of Supporting

Information in Ref. 44.)

Figure 9: Stern-Volmer Relations. (a) Oxyphor R4. (b) Oxyphor G4.

The instrument for two-color phosphorometry was constructed in-house (Fig. 1a).
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Briefly, the excitation sources are pulsed diode lasers (Power Technology) operating

at �max = 635 nm(15 mW) and �max = 517 nm(10 mW), for excitation of PtG4

and PtR4, respectively. Both diode lasers have a rise-time and fall-time of ⇠ 20 ns,

much shorter than the pulse duration. Avalanche photodiodes (APDs) are employed

for light detection (C12703-01, Hamamatsu; rise-time / fall-time ⇠ 3.4 µs). We will

use the term channel to refer to the combination of a diode laser, optical fiber for

transmitting phosphorescence light to the detector (see below), a set of optical filters,

and the APD. The instrument had two channels (Ch1, Ch2). The control of data

acquisition was performed by a digital board (NI USB-6351, National Instruments;

1 MHz), which communicated with the host computer via USB interface. The data-

acquisition and -analysis software was written in C/C++ (Qt, Nokia).

Figure 10: (a) Scheme of the experimental setup. (b) Wide-field image of the cran-
iotomy window over the somatosensory area. Scale bar: 1 mm.

The light beams from both lasers (Ch1 and Ch2) were focused by lenses (f = 60

mm, �= 12 mm) to the same spot (size of ⇠ 0.2 mm) on the brain surface; the

spot (marked in the white square in Fig. 10b) resided within the region of the cortex

responsible for forepaw responses, and it was located ⇠ 300 µm away from the probe
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injection site (seen as a greenish area). Phosphorescence signals were collected by

single-core plastic fibers (�= 4 mm, Fiberoptic Technology), whose tips were held

⇠ 2 mm from the excitation spot (Fig.10a). The phosphorescence in each channel

was passed through a series of optical filters and focused by a spherical lens (�= 10

mm) onto the APD entrance aperture. The configuration of the optical filters in the

channels is presented in Appendix A.5.

To measure pO2 in the intravascular and extravascular compartments, one phos-

phorescent probe was injected into the vasculature, and the other was injected directly

into the interstitial space of the brain tissue. A single data acquisition cycle (dura-

tion T = �t + �t) consisted of an excitation pulse (�t = 20 µs) , during which the

laser was on, followed by the phosphorescence collection period (�t = 280µs), during

which the APD current was digitized and recorded (Note, �t can be adjusted, typi-

cally between 10 and 30 µs, depending on the phosphorescence light level, but T is

always set to 300 µs). To increase the signal-to-noise ratio (SNR), multiple cycles

(N) were executed in sequence, after which the resulting data array was transferred

to the computer. The collected phosphorescence decays were averaged and analyzed

by single-exponential fitting. The single decay curves for PtR4 and PtG4 are shown

in Fig. 11. The resulting phosphorescence decay time (⌧) was converted to pO2 using

a Stern-Volmer-like equation. Note, because of the instrument response function of

the APD, the fitting conservatively only includes phosphorescence intensity data col-

lected 20 µs termination of excitation light pulse (see Fig. 11). Once a measurement

in one channel was completed, it was followed immediately by a measurement in the

other channel. The oxygen gradient (�[O2]), defined here as the di↵erence between

volume-averaged ↵i⇥ piO2 and ↵e⇥ peO2 (�[O2]= ↵i⇥ piO2 - ↵e⇥ peO2), where ↵i

and ↵e are oxygen solubility in blood plasma and in cerebrospinal fluid respectively,

was computed from the values in the two channels.
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Figure 11: Example phosphorescence emission single decay curves for (a) PtR4 and
(b) PtG4.

For typical acquisition settings (e.g., T=300 µs, N=30), the data collection time

for each channel was ⇠ 10 ms, and the data transfer/analysis required another ⇠ 10

ms. However, due to hardware limitations, the maximum repetition rate for our two-

channel acquisition was 7 Hz (⇠ 70 ms per channel). This significant “dead time” was

caused by the internal operation of the digital board, which had to undergo a reset

for each measurement cycle. In the future, with more e�cient hardware and opti-

mized collection geometry, the measurement rate can be readily increased to > 50 Hz.

3.1.2 Laser speckle contrast imaging

Temporal speckle analysis. In this section we briefly describe the theory of

dynamic light scattering as it pertains to our work. (Much of this section is written

informally and is not meant to be comprehensive; the interested reader is invited

to read more about these ideas in the cited references.) In our experiments, we

shine coherent light onto a tissue sample. The tissue contains many tiny structures

that scatter light, (e.g., nuclei, red blood cells, mitochondria). Generally, some of
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these structures are moving significantly and some are not. The di↵use reflection is

thus composed of a superposition of the scattered fields from all of these microscopic

structures in the tissue. If a single speckle (di↵raction limited spot) is collected in

reflection, then its time-dependent intensity is related to the local electric field at the

same location in the usual way:

I(t) = E(t)E⇤(t). (3.2)

Here t is time. The total electric field, E(t), can be considered to be composed of a

superposition of “micro” electric fields due, in the simplest case, to the tiny scattering

structures in the illuminated tissue. (Note, for simplicity we have assumed it to be

a scalar field.) Generally, the light can be scattered by dynamic (moving) scatterers

or by static (not moving) scatterers. Each “micro” electric field has a phase, and the

phases of the“micro” electric fields are randomly distributed and can vary with time

if the scattering structures move. (See Ref. 56 for an in-depth discussion of these

concepts.)

We are interested in the scattering structures that move significantly (the red

blood cells). The red blood cells scatter the input light to produce “micro” electric

fields with phases that vary in time; since the relative phases vary randomly in time,

the sum of the “micro” electric field fluctuate too. Thus, the total detected field, E(t),

temporally fluctuates. Of course, the corresponding total intensity will temporally

fluctuate as well. One way of characterizing these fluctuations is to measure the

(normalized) temporal intensity autocorrelation function of the intensity, g2(t).

g2(t
0) =

hI(t+ t0)I(t)it
hI(t)i2t

. (3.3)

Here, t0 is a delay time, and angled-brackets, hit , refers to an average over time t.
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In practice , it is relatively easy to measure g2(t) by photon counting techniques.

However, information about scatterer motion in the sample, such as the motions of red

blood cells, is typically derived from their influence on the (normalized) electric field

temporal autocorrelation function, g1(t0) =
|hE(t)E⇤(t+t0)it|

hE(t)E⇤(t)it
. Importantly, for Gaussian

random fields (our case), the well-known Siegert relation [87] relates g2(t0) to g1(t0).

The Siegert relation is given below.

g2(t
0) = 1 + �|g1(t0)|2. (3.4)

Typically, the � coe�cient above is a geometrical factor that depends on the number

of speckle modes reaching the detector. If only one mode is detected, then � is one;

for two modes � is one-half; etc.

The form of the electric field autocorrelation function, g1(t0), depends on ex-

perimental measurement geometry and on the nature of the scatterer motion. For

example, in our experiment the measurement is in the backscattering (reflection) ge-

ometry, and the light is not significantly scattered, i.e., the experiment is in the single

scattering regime. Moreover, the cell motion is di↵usive, i.e., the particle (cell) mean-

square displacement is Brownian-like, except that the di↵usion coe�cient di↵ers from

the traditional value computed first by Einstein, and depends instead on the shear

forces (maximum velocity) in the vessels. In this case, the electric field temporal

autocorrelation function has a particularly simple form: g1(t0) = exp(�t0/tc); tc is

the decorrelation time of the autocorrelation function which depends on the e↵ective

di↵usion coe�cient of the moving particle (cell). Note, if the light were multiply scat-

tered, but the nature of the particle/cell motion was the same, then the functional

form of g1(t0) would be di↵erent, but we could still extract similar information from

the decay of the correlation function, since we can predict the explicit form of the
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correlation function in the multiple scattering limit. A summary of various forms for

g1(t0) is provided in [8].

Before discussing our LSCI experiments in more detail, we point out a few more

features of the single speckle temporal intensity autocorrelation function. First, notice

that in the limit of long time delay wherein t0 goes to infinity, we expect g2(t0) to

approach 1. On the other hand, for t0 = 0, g2(t0) is larger than unity.

g2(0) =
hI(t)2it
hI(t)i2t

= 1 +
hI(t)2it � hI(t)i2t

hI(t)i2t
= 1 + (t)

2; (3.5)

and

t =
�t

hI(t)it
. (3.6)

Here t is called temporal speckle contrast, and �t =
q

hI(t)2it � hI(t)i2t .

Spatial speckle analysis. We next focus on LSCI, which is the correlation

method used in our experiment. In LSCI, either CMOS or CCD camera is used to

acquire an image of the sample that is comprised of many speckles. An average pixel

count, Si is recorded by the ith pixel of the camera via integration of the intensity,

Ii, over an exposure time, T , i.e.,

Si,T =
1

T

Z T

0

Ii(t)dt. (3.7)

For LSCI, we are also interested in the fluctuations associated with the speckles.

As the first step, we compute the mean and variance of Si,T , i.e., E[Si,T ] and Var[Si,T ],

respectively.

E[Si,T ] =

⌧
1

T

Z T

0

Ii(t)dt

�

s

=
1

T

Z T

0

hIi(t)is dt = hIis ; (3.8)
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Var[Si,T ] = E[(Si,T )
2]� E[Si,T ]

2 =
1

T 2

Z T

0

Z T

0

hIi(t1)Ii(t2)is dt1dt2 � hIi2s . (3.9)

Here his refers to a spatial averaging operator, and hIi(t1)Ii(t2)is might be recognized

as an ensemble averaged version of the intensity autocorrelation function. Using the

Siegert relation once more, we have hIi(t1)Ii(t2)is = hIi2s [1 + �|g1(t1 � t2)|2]. Com-

bining these ideas it is straightforward to show that

Var[Si,T ] =
� hIi2s
T 2

Z T

0

Z T

0

|g1(t1 � t2)|2dt1dt2

=
2� hIi2s
T 2

Z T

0

(T � t0)|g1(t0)|2dt0. (3.10)

The intensity-normalized variance is then,

Var[Si,T ]

hIi2s
= 2�

Z T

0

✓
1� t0

T

◆
|g1(t0)|2

dt0

T
, (3.11)

which we define as the square of the spatial speckle contrast, s. In LSCI, speckles are

imaged onto the CCD via collection optics. Depending on the imaging, a speckle may

be spread over many pixels, or a speckle might be spread over less than one pixel, or

somewhere in between. For a given imaging geometry, the minimum size of a speckle

is approximately the di↵raction-limited spot size, ⇢speckle = 2.44�(1 +M)f/#, where

�, M and f/# are the wavelength of the coherent light source, magnification and

f -number of the collection optics [10]. Therefore, the number of speckles (N) in a

pixel can be computed, i.e., N = ( Area of a pixel ) / ⇡
�⇢speckle

2

�2
.

For reflection from a homogeneous collection of microscopic scatterers undergoing

di↵usive motion, in the single-scattering limit (which is a good approximation for our
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geometry and for brain tissues), g1(t0) is well approximated as exponential, i.e.,

g1(t
0) = e�

t0
tc , (3.12)

where, in di↵usive dynamics, tc is

tc =
1

q2Deff
. (3.13)

q is the magnitude of the scattering vector, andDeff is an e↵ective di↵usion coe�cient

of the blood cells that is in proportion to the speed of the blood flow in the imaged

tissue.

Now using Eqs. (3.11) and (3.12), the spatial speckle contrast, s can be acquired.

s(T ) =

vuut�
e�2 tc

T � 1 + 2
�
tc
T

�

2
�
tc
T

�2 , (3.14)

As a consequence, for a specific camera exposure time, T , s can be related to the

characteristic decorrelation time, tc. In the limit of large exposure time, s is par-

ticularly simple. The reciprocal of tc is in proportion to the speed of the blood cells

in the tissue vasculature. In practice, it is di�cult to acquire an absolute speed,

and therefore relative changes are sought and are su�cient in most cases. The LSCI

method has been extensively validated [9, 34, 35, 69, 109, 110, 116], and the linearity

of blood flow response is well established in this geometry.

In LSCI acquisition of s requires pixel sampling. In essence, we must compute

the standard deviation and the mean of some small ensemble of pixel readouts, i.e.,

�s, and the mean readouts hIis, respectively. One could compute these parameters

using as few as one pixel (which would require many measurements in time); in the

opposite limit, one could compute these parameters using many pixels at single point

35



in time. In LSCI we are interested in obtaining images of fluctuations at high frame

rates (e.g., video rates). Thus, in practice a compromise between accuracy and spatial

resolution in the image must be made. While sampling many pixels over a broad area

will stabilize the statistical accuracy of s, the spatial resolution of the image is lost.

By contrast, sampling from smaller areas will weaken the statistical accuracy of s

but will improve the spatial resolution. The working consensus of LSCI community

is to use 7⇥ 7 array of pixels as a sliding window (which defines a spatial resolution

for the spatial contrast image) for computation of s; the 49 pixels are used to derive

a mean and standard deviation of the detected pixel intensity at each location. The

choice achieves both statistical significance and spatial resolution of the processed

image in many practical situations [10].

In our experiment, as noted previously, a coherent laser beam illuminates the

surface of the brain, and the scattered speckle from the brain is imaged onto the

CMOS camera (Fig. 12a, camera pixel size is 2040 ⇥ 2040.) in which a majority

of blood vessels are not visible except for the large veins. The detected speckle

will fluctuate due to motion in the brain, e.g., due to blood flow. Thus, in the

spatial regions with significant blood flow, speckles will fluctuate more than in spatial

regions with less blood flow. LSCI measures the speckle contrast associated with

these di↵erent regions. For our analysis, the camera exposure time was set to 5 ms,

and a 7⇥7 moving window was used to compute s at di↵erent spatial positions over

the whole raw image. For example, in Fig. 12b, the flow information derives from

the speckle contrast (the speckle variance) in each region, i.e., low and high speckle

contrasts correspond to fast and slow blood flow respectively; the red arrow indicates

a pial artery where the flow is fast, and the blue arrow indicates a region where there

is no major vessel. Note, in our experiments, the speckle contrast did not have to be

computed for the whole field of view; we only needed to investigate a smaller region
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of interest wherein functional activation occurred (marked in the white square region

of 200 µm⇥200 µm in Fig. 10b).

Figure 12: Examples of (a) a raw speckle image, and (b) speckle contrast processed
image. Scale bar indicates 1 mm.

Once  is computed, it is then related to the decorrelation time, tc whose recipro-

cal is essentially proportional to local blood flow in tissue region. In the experiments,

a diode laser (852nm, 600mW, LD852-SE600, Thorlabs) was positioned at a dis-

tance of ⇠ 20 cm from the brain surface, and its beam was directed at a ⇠ 45o

angle relative to the surface normal. The brain was imaged using a CMOS camera

(acA2040-180km, Basler AG, Germany) equipped with infinity-corrected optics. Im-

ages were acquired at the rate of 20 Hz using custom-written software (LabView,

National Instruments). The LSCI field-of-view (FOV) was quite large: 6.2 mm ⇥

6.2 mm; the FOV encompassed the functional activation region and the focal spot

used for the phosphorescence oximetry. LSCI data were analyzed to quantify relative

changes of CBF in the brain cortex [39].
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3.2 Surgical Preparation

Twelve adult male Sprague-Dawley rats (250� 400 g) were used in this study. A

rat was anesthetized via inhalation of a nitrogen:oxygen (70:30) mixture containing

isoflurane (⇠ 4% for induction, and ⇠ 1.5% for maintenance). A catheter was placed

into the left femoral artery for continuous monitoring of the arterial blood pressure.

The same catheter was used for injection of the phosphorescent probe for intravascu-

lar pO2 measurements, as well as for injections of saline to maintain hydration. The

animal’s head was fixed in a stereotaxic frame, and the intracranial pressure of the

rat brain was normalized through cisterna magna. Afterward, a cranial window was

made in the skull (6 mm⇥4 mm) over the forepaw somatosensory area (Fig. 10b) us-

ing a saline-cooled dental drill. The dura mater was removed, after which the exposed

brain surface was continuously irrigated with artificial cerebrospinal fluid heated to

⇠ 37oC (see Appendix A.1 for ingredients). After the craniotomy was completed,

↵-chloralose was administered intraperitoneally (60 mg/kg), and the isoflurane dose

was gradually decreased and then discontinued over a period of 30 min. Anesthesia

was maintained by supplemental doses of ↵-chloralose (30 mg/kg, ⇠ 1 dose/hr). Two

electrodes for electrical stimulation were inserted sub-dermally into the left forepaw

contralateral to the craniotomy site (Fig. 10a). The body temperature was monitored

with a rectal probe and was maintained at 37.4±0.2oC using a heating pad controlled

by a homeothermic monitoring system (Harvard Apparatus, MA). A detailed timeline

is summarized in Fig. 13. The animals were under the care of the University of Penn-

sylvania Laboratory Animal Resources. All studies were approved by the University

of Pennsylvania Institutional Animal Care and Use Committee.
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Figure 13: Protocol of the surgical procedure and measurement.

3.3 Experimental Sequence

First, the animal’s forepaw was stimulated using an electric current from a stim-

ulus isolator (1.5 mA, 1 ms-long pulses at 3 Hz, stimulation time 4 s), and LSCI data

was collected and analyzed [39] to locate the somatosensory cortex region within the

exposed craniotomy window before and after removal of the dura mater. Oxyphors

PtR4 and PtG4 were administered as solutions in physiological saline. PtR4 was ad-

ministered intravascularly via femoral catheter (50 µL, 200 µM), and PtG4 (0.1 µL,

300 µM) was administered by direct injection into the brain tissue using a microinjec-

tion dispenser (Picospritzer III, Parker Hannifin Precision Fluidics Division, NH) and

a micropipette (tip diameter ⇠ 15 µm). The micropipette was inserted to a depth

of 200 � 300 µm, and the Oxyphor solution was injected at a rate of ⇠ 0.1 µL/min.

Subsequently, electrical stimulation/blood flow measurement by LSCI was repeated
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to confirm that functional responses persisted. The assemblies for phosphorescence

measurements were positioned above the cranial window (Fig. 10b) and phosphores-

cence signals were measured. If necessary, the amount of intravascular probe was

increased by injecting additional solution through the catheter.

Figure 14: Scheme of the experiment protocol

Each stimulation cycle was 1 minute. The stimulation cycle consisted of 4 second

baseline monitoring, followed by the application of 4 second stimulus (1.5 mA, 1 ms-

long pulses at 3 Hz), and then a 52-second recovery. Up to 15 sequential stimulation

cycles were applied, during which lifetime and LSCI data were recorded (Fig. 14 is a

block diagram of the procedure).
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Chapter 4

Dynamics of Oxygen Metabolism and

Blood Flow in Rat Brain

This Chapter has been largely adapted from a pending publication: Chong, S. H.,

Ong, Y. H., El Khatib, M., Allu, S. R., Parthasarathy, A. B., Greenberg, J. H., Yodh,

A. G., & Vinogradov, S. A. (2022). Real-Time Tracking of Brain Oxygen Gradients

and Blood Flow during Functional Activation [Manuscript submitted for publication].

Department of Physics & Astronomy, University of Pennsylvania.

4.1 Two-color, Two-Oxyphor Measurement

Method

In our work, we demonstrated a novel application of the phosphorescence quench-

ing method [145] which facilitates concurrent measurement of oxygen concentrations

in both intravascular and extravascular compartments of rat brain. This approach en-

ables us to determine vascular oxygen gradients. Critically, we identified two dendritic

polyethyleneglycol (PEG)-coated phosphorescent probes, Oxyphors [80, 44] which do

not cross through the blood-brain barrier [118, 82, 44, 43, 132], and which have min-

imally overlapping absorption and emission spectra (see Fig. 15. The laser lines (635

nm and 517 nm) of the respective channels and the LSCI laser line (852 nm) are shown

by vertical bars. The absorption spectra are scaled by the respective extinction coef-

ficients at absorption peaks ("620(PtG4)' 1.0⇥ 105 M�1cm�1, "510(PtR4)' 2.0⇥ 104
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M�1cm�1). The emission spectra are scaled such that their areas are proportional

to the probes’ phosphorescence quantum yields (⌘PtG4 = 0.067, ⌘PtR4 = 0.052). The

emission wavelength ranges isolated by the optical filters and seen by the detectors

in Ch1 (PtG4) and Ch2 (PtR4) are shown by the shaded areas.) In our experiments,

we demonstrated that the phosphorescence lifetime signals from the two probes can

be retrieved with minimal cross-talk, and since one probe circulated in the blood

and the other resided in the extravascular space, we showed that intravascular and

extravascular pO2 can be measured concurrently.

Figure 15: Optical absorption and phosphorescence spectra of Oxyphors PtG4 (Chan-
nel 1) and PtR4 (Channel 2).

A major experimental challenge for this work was to minimize optical cross-talk

between two Oxyphors while preserving enough Oxyphor signal to derive the vascular

oxygen gradient. Although excitation of PtR4 and PtG4 Oxyphor mixtures at 635nm

produced only PtG4 phosphorescence (Fig. 15), the laser excitation at 517nm, aimed

at the Q-band of PtR4, induced a weak but non-negligible emission from PtG4. Thus,

multiple optical filters were needed to remove unwanted signals from each channel (see
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Appendix A.5); use of these filters sacrificed ⇠ 40% of the PtR4 phosphorescence

spectrum. This e↵ect, in conjunction with the lower molar extinction coe�cient and

phosphorescence quantum yield of PtR4 (Fig. 15), caused the PtR4 signal to be 10

to 15 times weaker than that of PtG4 in vitro , even when equal amounts of the

probe were dissolved in water. In vivo, this di↵erence was further exacerbated by

attenuation at 517 nm due to endogenous tissue absorption.

Thus it was necessary to increase the PtR4 concentration in brain by a factor

of 10⇥ more than PtG4. Even still, the PtR4 phosphorescence signal was ⇠ 10 to

20 times weaker than PtG4. Consequently, noise in Ch2 (Fig. 15) was significantly

higher than in Ch1, irrespective of whether PtR4 was injected into the blood or inter-

stitial space. Generally, the peO2 extravascular signal had ⇠ 3⇥ better signal-to-noise

compared to the piO2 intravascular signal, due to the optical advantages of PtG4 de-

scribed above. Despite this challenge, oxygen (pO2) readings were obtained at a rate

of 7 Hz for the two channels and were su�cient to resolve transients in respiratory

and vascular activity upon neuronal activation. In the experiments producing the

best signal-to-noise, PtR4 was delivered intravascularly. This approach permitted

us to increase PtR4 concentration via additional injections during the experiments

through the catheter, if necessary.

4.2 Longitudinal Measurement Results

An example of raw unprocessed traces of peO2 (Ch1/PtG4), piO2 (Ch2/PtR4),

and CBF during a series of stimulations is shown in Fig. 16a. Notably, we obtained

useful single-shot data-waveforms for each electrical stimulation. All three parame-

ters exhibited a sharp rise after stimulation, followed by a more gradual decrease to

baseline levels at longer times. Between each pair of stimulations, we paused record-

ing of pO2; this minimized brain exposure to excitation light and possible associated
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phototoxicity (Fig. 16b).

Figure 16: Raw unprocessed data obtained in an experiment consisting of 13 consecu-
tive forepaw stimulations, accompanied by (a) CBF, (b) piO2, and peO2 measurements
in the somatosensory area of the rat brain.

In Fig. 17, we exhibit superposed traces of peO2 synchronized at the start of the

electrical stimulation (t = 0). Each color represents a di↵erent stimulus trial, and

the stimulation period is shown by a pink rectangle (this convention is consistent

throughout Chapter 4.) Notice that immediately upon the start of stimulation, peO2

exhibits a characteristic “initial dip” caused by the rapid increase in the local oxygen

consumption by activated neurons. Remarkably, the dips could be seen in practically

all individual stimulation events. On average, the dip magnitude was approximately

9±2% of the average peak peO2; the minima occurred approximately 0.8±0.1 sec after

the onset of stimulation. Dip minima occurrence times in previous microscopy studies

are in a similar range [82, 30], but these assignments typically required averaging

of hundreds of simulation trials. In the present case, the signals were strong in

part because they originated from a large excitation volume that likely encompassed

the entire activation region. However, this volume probably included cells whose

oxygen consumption is less than that of neurons upon activation. The measured

dip amplitude should therefore be expected to fluctuate, especially since illumination
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areas could include greater/smaller volume fractions of neurons.

Figure 17: Overlapping traces of peO2.

Per quantification of oxygen gradients, the average baseline intravascular oxygen

partial pressure (piO2) was 33.5±0.5 mmHg (mean, standard deviation of the mean).

This number is on the lower side of the range of intravascular pO2 values reported

previously [118, 82, 30, 43, 94], possibly due to the use of ↵-chloralose as an anesthetic.

Anesthesia is known to have pronounced e↵ects on tissue pO2 [94, 159]. The average

baseline extravascular oxygen partial pressure (peO2) clustered around 21.3 ± 0.2

mmHg. Therefore, the resulting intra-/extra-vascular pO2 drop was 12.2±0.4 mmHg.

In previous studies of rat brain, utilizing 2PLM and isoflurane as anesthetic, pO2

drops of ⇠ 15 mmHg were seen over 25 µm distances from large single arterioles,

corresponding to the gradients of ⇠ 0.6 mmHg/µm [119]. Measurements around cap-

illaries of a rat brain using microelectrodes (with pentobarbital anesthesia) produced

somewhat lower gradients, ⇠ 0.45 mmHg [148]. In the present case, piO2 is derived

mainly from capillaries, since the total volume of blood in capillaries is larger, and
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since excitation of the phosphorescent probe in thin capillaries is much more e�cient

than in large vessels. Our measured peO2 represents a volume average over the en-

tire extravascular space within the excitation volume. If we assume that the average

intercapillary distance is 60 µm [85, 12], then our results give a gradient of ⇠ 0.8

mmHg/µm. Note, the measurements of piO2 and/or peO2 are also subject to system-

atic errors (see Section 4.4), which will need to be further analyzed/corrected for as

the method develops.

4.3 Selection of PSc and Computation of Dynamic

CMRO2

4.3.1 Data-constrained selection of PSc

For our calculations we choose PSc = 210 [mL/sec/100g tissue]. In this subsection,

we describe in detail the rationale we used to arrive at the choice, which was based

on morphological and physiological considerations in the published literature. The

reader who is not interested in these details is invited to skip to the next subsection.

The reader who is interested in this selection should read on, in part because the full

analysis exposes internal consistencies in the theory and the importance of particular

assumptions.

The cylindrical model for capillary and surrounding tissue enables determination

of PSc based on the full range of reported ⇢1, ⇢2, Vi/Vt, and D and Eq. (2.12). The

resulting “allowed” variation of PSc spans widely from 137 to 2470 mL/sec/100g

tissue. Tables 3-5 show the values of PSc (in bold) as a function of ⇢1, ⇢2, Vi/Vt, and

D; note ⇢2 is fixed by choice of ⇢1 and Vi/Vt. This potential variation of PSc thus

deduced is larger than the range of values reported in the literature, and does not
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entirely overlap with the range of values reported in the literature.

Table 3: PSc (Bold), CMRO2 vs D, ⇢1, ⇢2 for intravascular volume fraction, Vi/Vt

of 0.01(1%). PSc values [mL/sec/100g Tissue] computed from (2.12) as a function
of D [10�5cm2/sec], ⇢1 and ⇢2 [µm]. Baseline CMRO2 values [µmoles/sec/100g Tis-
sue] are computed according to (2.11) using the PSc based on di↵erent values of D
[10�5cm2/sec] and ⇢1 [µm]. The green-shaded cells correspond to baseline CMRO2

values that are consistent with a range of prior measurements.

H
H

H
H
H

H
H

D

⇢1
⇢2

2.0
20

2.5
25

3.0
30

1.4 418, 7.1 268, 4.5 186, 3.2

1.5 448, 7.6 287, 4.9 199, 3.4

1.6 478, 8.1 306, 5.2 212, 3.6

1.7 508, 9.1 325, 5.5 226, 3.8

1.8 538, 9.6 344, 5.8 239, 4.1

1.9 568, 9.6 363, 6.2 252, 4.3

Table 4: PSc (Bold), CMRO2 vs D, ⇢1, ⇢2 for intravascular volume fraction of
0.02(2%). PSc values [mL/sec/100g Tissue] computed from (2.12) as a function of
D [10�5cm2/sec], ⇢1 and ⇢2 [µm]. Baseline CMRO2 values [µmoles/sec/100g Tis-
sue] are computed according to (2.11) using the PSc based on di↵erent values of D
[10�5cm2/sec] and ⇢1 [µm]. The green-shaded cells correspond to baseline CMRO2

values that are consistent with a range of prior measurements.

H
H
H

H
H
H
H

D

⇢1
⇢2

2.0
14

2.5
18

3.0
25

3.5
28

1.4 1040, 17.9 669, 11.5 464, 8.0 341, 5.8

1.5 1120, 19.2 716, 12.3 497, 8.5 365, 6.3

1.6 1190, 20.5 764, 13.1 531, 9.1 390, 6.7

1.7 1270, 21.7 812, 13.9 564, 9.7 414, 7.1

1.8 1340, 23.0 860, 14.7 597, 10.2 439, 7.5

1.9 1420, 24.3 907, 15.5 630, 10.8 463, 7.9
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Table 5: PSc (Bold), CMRO2 vs D, ⇢1, ⇢2 for intravascular volume fraction of
0.03(3%). PSc values [mL/sec/100g Tissue] computed from (2.12) as a function of
D [10�5cm2/sec], ⇢1 and ⇢2 [µm]. Baseline CMRO2 values [µmoles/sec/100g Tis-
sue] are computed according to (2.11) using the PSc based on di↵erent values of D
[10�5cm2/sec] and ⇢1 [µm]. The green-shaded cells correspond to baseline CMRO2

values that are consistent with a range of prior measurements.

H
H
H

H
H
H
H

D

⇢1
⇢2

2.0
12

2.5
14

3.0
17

3.5
20

1.4 1820, 31.5 1170, 20.2 810, 14.0 595, 10.3

1.5 1950, 33.8 1250, 21.6 867, 15.0 637, 11.0

1.6 2080, 36.0 1330, 23.1 925, 16.0 680, 11.8

1.7 2210, 38.3 1420, 24.5 983, 17.0 722, 12.5

1.8 2340, 40.6 1500, 26.0 1040, 18.0 765, 13.2

1.9 2470, 42.8 1580, 27.4 1110, 19.0 807, 14.0

To further constrain PSc, we next utilize prior measurements of baseline (normal)

CMRO2, and our absolute measurements of intravascular and extravascular compart-

ment pO2. Specifically, our measurements of baseline intravascular and extravascular

compartment partial pressures found mean values of piO2 = 33.5 mmHg and peO2 =

21.3 mmHg (Fig. 16). Using these partial pressures, we can readily compute baseline

volume-averaged Ci and Ce. Finally, using the reported range of baseline CMRO2

and Eq. (2.11), i.e., using the result CMRO2 = PSc (Ci - Ce), we identify a much

smaller subset of PSc which satisfy Eq. (2.11) subject to published constraints on

tissue morphology and oxygen di↵usion.

These results are summarized in Tables 3 - 5, which show the predicted CMRO2

as a function of ⇢1, ⇢2, Vi/Vt, and D for the cases where 3 <CMRO2 < 7.4 [41, 134,

150, 73]. The green shaded rectangles in the tables correspond to the allowed

range of values of CMRO2. Note, PSc is given in bold text, next to CMRO2 in these

green shaded rectangles.

Taken together, our modeling and analysis suggest that PSc has a value con-

strained approximately to the range from 180 to 430 [mL/sec/100g tissue]. The
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choice of PSc amongst this range of possibilities has consequences for the magni-

tude and dynamical response of CMRO2. For our calculations we choose PSc =

210 [mL/sec/100g tissue]. In making this selection, we used morphological and

physiological parameters towards the middle of the reported ranges; for example,

D ' 1.6 ⇥ 10�5 cm2/s and ⇢1 = 3.0 µm and ⇢2 = 30 µm. Note also, this selection

of 210 mL/sec/100g tissue is similar to the value of PSc found in the only study of

rat brain [67] that had a pO2 (⇠ 25 mmHg) comparable to our experiments (⇠ 21

mmHg). Lastly, note that this choice is also within the range used in all prior stud-

ies; the prior studies suggest that PSc has a value between 35 and 230 mL/sec/100g

tissue [55, 59, 68, 112, 136, 142, 123, 67]. We caution the reader, however, because

a small change of ⇢1 and ⇢2 to 2.5 µm and 25 µm, respectively, gives PSc ⇠ 300

[mL/sec/100g tissue]. Ultimately, to ameliorate this problem, the community will

need to carry out more experiments and analyses to further constrain PSc.

4.3.2 Computation of CMRO2

With the value of PSc (210 [mL/sec/100g tissue]) now determined, estimation of

CMRO2 is mathematically straightforward using Eq. (2.2). An example of resultant

CMRO2 is given in Fig. 18a. Recall that in contrast to prior work [61, 35, 39, 4, 86],

our experiments demonstrate dynamic tracking of CMRO2 before, during, and after

stimulation based on measurements of oxygen gradients; this approach enables us to

dynamically measure CMRO2 without reliance on CBF. Importantly, we also indepen-

dently obtained concurrent traces of CBF response. Thus, our measurements provide

a unique opportunity to compare the response of all four parameters, CBF, piO2,

peO2, and CMRO2. This capability o↵ers physiologically important information not

available to other methodologies. Especially, our ability to independently determine
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Ci, Ce, and their time derivatives in Eq. (2.2) distinguishes the new methodology from

prior analyses of CMRO2 dynamics.

In previous work, because experimental determination of the derivatives, dCc/dt

in Eq. (2.1) and dCe/dt in Eq. (2.2), was di�cult or inaccessible, CMRO2 was com-

puted from only the instantaneous values of CBF and Ca - Cv [164, 61, 35, 39,

25]. Therefore, steady-state conditions were inevitably assumed, which leads to the

popular definition: CMRO2 = CBF⇥(Ca � Cv). To distinguish between the older

and present methods we introduce the terms full-dynamic and truncated-dynamic

CMRO2. Full-dynamic CMRO2 is computed from the data using the full model,

Eq (2.2) that includes the time derivative, dCe/dt. Truncated-dynamic CMRO2 is

computed using Eq. (2.2) but ignoring the time derivative, which is equivalent to

CMRO2 = CBF⇥(Ca�Cv). Additionally, inclusion of the time-derivative introduces

an exponential extravascular compartment time constant, To = Ve/PSc, which can

a↵ect relative delays between the temporal responses of piO2, peO2, CBF, and that

of CMRO2.

In practice, Ve is well constrained by previous experiments, and its variation only

marginally a↵ects CMRO2 response. By contrast, PSc a↵ects both the magnitude of

CMRO2 and its temporal dynamics, and PSc is not as well constrained by previous

experiments (i.e., compared to Ve). We illustrate these e↵ects in Fig. 19a. The

responses shown in Fig. 19a are obtained by Gaussian low-pass filtering (Fig. 18,

the raw data is marked in gray while de-noised traces are in colors, and each trace

is gaussian low-pass filtered (FWHM=300 msec) for analysis of temporal dynamics)

and averaging the 13 stimulation-induced peO2 and piO2 profiles (Fig. 16b) and,

then, solving Eq. (2.2) (with and without including the time derivative) for CMRO2

with the same inputs but di↵erent PSc. Figure 19a exhibits the variation of full-

and truncated-dynamic CMRO2 at three di↵erent numerical values of PSc (80, 210,
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Figure 18: An example of CMRO2, pO2 and CBF response to a single functional
stimulus. (a) CMRO2 was computed from pO2 data (b). (b) and (c) are single-shots
of pO2 and CBF responses respectively.

and 430 mL/sec/100g tissue). Notice that when PSc is large, the time constant To

gets shorter, and the traces of full- and truncated-dynamic CMRO2 strongly overlap;

the full-dynamic model recovers the steady-state approximation in the limit of large

PSc. However, for smaller PSc, the full-dynamic CMRO2 increasingly lags behind the

truncated-dynamic trace. This lag-e↵ect is a direct consequence of the inclusion of the

time derivative (dCe/dt). Ultimately, a novel feature of the new methodology is its

ability to directly observe and measure these delays, thereby extracting information

about the timing of physiologically-relevant events such as neurovascular coupling.

As noted above, choice of PSc is important. As described above, we used prior
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experimental measurement constraints on capillary diameter [122, 152, 91, 154, 57],

inter-capillary distance [85, 122, 79], intravascular volume fraction [122, 152, 91, 57,

125], oxygen di↵usion coe�cient [19, 63, 52, 135], and baseline CMRO2 [41, 134, 150,

73], along with the predictions of the Krogh-Erlang model, Eq. (2.12), to select an

optimal PSc of 210 mL/sec/100g tissue. This value of PSc gives a baseline absolute

CMRO2 of ⇠ 3.5 µmoles/sec/100g tissue and a peak activation absolute CMRO2

of ⇠ 6.0 µmoles/sec/100g tissue (Fig. 19a (middle panel)) from the averaged traces

obtained in the experiment shown in Fig. 16. We will use this value of PSc for the

remainder of the analysis; it gives a measurable but small dynamic versus steady-state

CMRO2 delays.

Figure 19: (a) Computed traces of full-dynamic and truncated-dynamic CMRO2 (see
the text for definitions) for three di↵erent values of parameter PSc. (b) Normalized
traces of CBF, peO2, piO2 and full-dynamic CMRO2

To put the full amplitude and temporal responses of CBF, peO2, piO2 and CMRO2

into physiological/biochemical context, we averaged the traces of CBF, peO2, piO2

and CMRO2 (from the 13 stimulations in Fig. 16 assuming PSc = 210 mL/sec/100g

tissue). In Fig. 19b, we exhibit these averaged traces normalized by their respective

pre-activation baseline values. Data in this figure illustrates how the peak responses
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vary in strength for the di↵erent variables and is discussed further below.

In Fig. 20, we exhibit these same traces (Fig. 19b) but normalized by their peak

amplitude. (This approach is similar to that chosen in other publications, e.g., Refs.

101 and 164, for timing analyses.) Figs. 20a,c show “whole” response curves; en-

largements of the responses at early times are given in Figs. 20b,d. Examination

of Figs. 20b,d permits the study of relative delays in full-dynamic versus truncated-

dynamic models at early times. Briefly, CMRO2, CBF, and the intra- and extravas-

cular pO2 increase from their baseline levels when activation initiates a rapid increase

in energy consumption by neurons and other cells. Mitochondrial oxidative phos-

phorylation is expected to respond nearly instantaneously by elevating the rate of

the ATP (adenosine triphosphate) synthesis and consequently, CMRO2. This rise

in energy consumption is the key trigger that initiates the cascade of events for all

measured parameters. Our data and analysis thus take the first steps towards the

direct confrontation of the full-dynamic versus truncated-dynamic models and their

underlying assumptions.

In Fig. 20, we see that the earliest event following stimulation is an initial rise

in CMRO2 due to local depletion of oxygen. This behavior is a manifestation of

the “initial dip” in the trace of peO2 and is apparent to varying degrees in both

full-dynamic and truncated-dynamic models.

We first consider the early-time results of the full-dynamic model (Fig. 20b). The

steep initial rise of CMRO2 is a mathematical consequence of the instantaneous value

of Ce and its time-derivative in the peO2 dip. Subsequently, we observe a flattening

of the CMRO2 response for a brief period (0.3�1.3 sec), followed by a very steep rise.

The initial rise of CMRO2, at times of order 0.3 sec (or less), triggers the vascular

response of upstream arterioles via a pathway known as neurovascular coupling [54,

65]. As a result, local CBF starts to increase and brings newly oxygenated blood
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Figure 20: Normalized traces of CMRO2, piO2, peO2 and CBF. (a,b) compares dy-
namic CMRO2 with piO2, peO2 and CBF, and (c,d) compares steady-state CMRO2

with piO2, peO2 and CBF.

into the activated region. Even with our finite temporal resolution and non-negligible

noise, the measurements clearly reveal the triggering event of CMRO2 in advance

of the rapid increase of CBF. Once triggered, CBF grows very rapidly. When CBF

reaches 20% of its peak value at ⇠ 1.4 sec, it leads piO2, peO2, and CMRO2, though

the rate-of-increase (slopes) of all variables is about the same within measurement

error. The temporal trajectory of CMRO2 over this initial time period (⇠ 1.5 sec)

is more complex than the CBF trajectory; this CMRO2 behavior is a mathematical

consequence of the changing slope around the peO2 dip and the compartment time

constant, To. After the initial transients, the CMRO2 and piO2 (due to increased

arterial blood) traces roughly overlap; they lead peO2 and lag CBF slightly.

Figures 20c,d show the results of the truncated-dynamic analysis based on the
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same input data. Recall that the time derivative is set to zero in Eq. (2.2) for the

truncated-dynamic model. In this case, CMRO2 and CBF overlap at early times. The

early changes observed are at the limits of our resolution and noise but are consistent

with CMRO2 slightly leading CBF and triggering a rapid CBF rise. The temporal

trajectory of CMRO2 over the initial time period (⇠ 1.5 s) is similar to CBF; CMRO2

and CBF traces overlap within experimental error, and they lead both piO2 and peO2.

We computed the important timescales for both models. A summary of these

timescales, i.e., ttrigger(= t9%), t20%, t50%, t90%, tpeak and tfall (the 50% decay-time

point), is given in Table 6 for each model (full- and truncated-dynamics).

Table 6: Timing of ttrigger = t9%, t20%, t50%, t90%, tpeak, and tfall, corresponding to the
9%, 20%, 50%, 90% rise during functional activation, and the peak-time and 50% fall-
time, respectively. Estimates are given for CBF, pO2 and CMRO2 (both full- and
truncated-dynamic models). The confidence interval for the timing was computed
from standard error of the mean of the set of 13 traces (in parenthesis).

Parameters t9%, sec t20%, sec t50%, sec t90%, sec tpeak, sec tfall, sec

CBF 1.0(0.2) 1.4(0.1) 2.1(0.1) 3.5(0.3) 5.0(0.4) 7.5(0.2)

piO2 1.3(0.1) 1.7(0.1) 2.6(0.1) 4.4(0.1) 5.7(0.2) 11.1(0.3)

peO2 - 2.1(0.1) 3.1(0.1) 5.2(0.3) 6.5(1.5) 11.1(0.4)

fCMRO2 0.2 (0.2) 1.6(0.2) 2.4(0.2) 3.6(0.6) 4.5(0.2) 11.5(0.5)

tCMRO2 0.8 (0.3) 1.2(0.2) 2.1(0.1) 3.5(0.2) 4.5(0.2) 10.5(0.7)

The di↵erences between full- and truncated-dynamic models at early times are in-

teresting to speculate about and o↵er new means to explore the underlying physiolog-

ical assumptions of the models. Briefly, the results based on truncated-dynamic anal-

ysis (Fig. 20d) are largely consistent with traditional expectations wherein CMRO2

leads CBF, albeit the metabolic trigger event is only marginally resolvable due to

limited signal-to-noise. The results based on full-dynamic analysis (Fig. 20b) show a

clear metabolic neurovascular trigger event, but thereafter CMRO2 appears to flatten

briefly, and then rises, exhibiting a slight lag with respect to CBF. While recognizing

55



that the finite time-resolution and measurement noise are significant, one can still ar-

gue that the observed temporal behavior for CMRO2 is di↵erent from the traditional

expectation, and since the full-dynamic model includes time derivatives, one might

expect new features to be revealed. How can we reconcile these model-dependent

CMRO2 di↵erences? One possibility is that our choice of PSc is not correct; with a

larger PSc (e.g., 430 mL/sec/100g tissue) the full-dynamic model would give an early

time temporal variation similar to the truncated-dynamic model; however, in this

case, the CMRO2 magnitudes would also be larger, and essentially all prior estimates

of PSc are ⇠ 2⇥ smaller than 430 mL/sec/100g Tissue, if not more [123]. A related

possibility is derived from capillary network heterogeneity, which the models ignore.

Network heterogeneity could lead to a distribution of PSc and thus a wider range of

compartment time constants, even for the same average capillary size and separation.

In a di↵erent vein, one might question the assumption of uniform metabolic response

in the extravascular compartment; for example, neurons consume energy, but other

cells consume energy too, and their temporal dynamics need not be the same. Such

an e↵ect could give rise to a more complex temporal variation of the CMRO2 response

at early (and late) times. At this stage, we do not advocate particular sets of assump-

tions. Rather, we emphasize that evidence from our qualitatively new methodology

takes the first steps toward a more critical examination of models/model-inputs.

The temporal behaviors exhibited on longer timescales do not strongly distinguish

the full-dynamic versus truncated-dynamic analyses. After reaching their peaks, all

four parameters gradually return to their baselines. Interestingly, while the decay

time constants of CMRO2, piO2 and peO2 are similar, the decline of CBF is steeper

than the decline of everything else (see Table 6). This observation suggests that a

signal for cessation of arterial dilation is issued close to when the functional stimulus

is terminated and the rate of increase of CMRO2 levels o↵ or begins to fall. It appears
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the system gives feedback to attenuate arterial blood supply when oxygen in the pool

is su�cient to maintain CMRO2 at an elevated level. In this regard, we note that

CMRO2 is expected to be independent of pO2 over the entire physiological range

down to very low oxygen pressures (< 1 mmHg) [17, 157, 158]. The measurements

in this peak and fall-time regime continue to suggest that the vascular responses are

triggered to change by variation of the energy state reflected by CMRO2 [160].

Finally, we return to Fig. 19b to consider the magnitude of the various functional

activation responses. We see that CMRO2 at its maximum is ⇠ 1.7⇥ its baseline,

while the respective increase in CBF is ⇠ 1.5⇥. In other experiments (n = 3, av-

eraged over 4 � 5 stimulations) the respective increases in CBF and CMRO2 were

reversed, e.g., ⇠ 1.4⇥ and 1 ⇠ 1.2⇥, respectively. The observation of a larger in-

crease in CMRO2 compared to CBF is somewhat unusual since many (but not all)

previous studies have found that CBF response exceeds CMRO2 response in mag-

nitude [61, 35, 39, 86, 88]. It is possible that the inversion seen in our experiments

was caused by some systematic measurement errors (see Section 4.4). However, we

note that this inversion is not impossible, since the amount of oxygen delivered to

the activation area, even upon a moderate increase of CBF, can still overwhelm the

demand caused by a large increase in CMRO2, due to the very high oxygen-carrying

capacity of hemoglobin. Indeed, the traces of pO2 showed characteristic “overshoots”

similar in magnitude to overshoots reported previously [30]; the overshoots have been

hypothesized to be a consequence of the anatomical structure of the brain, where

arterioles triggered by neurovascular coupling supply oxygen to a much larger volume

than the activated region [30, 160].
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4.4 Limitations

Several limitations in the current implementation of the method could cause sys-

tematic measurement errors. In the future, it should be possible to ameliorate or

account for these factors.

4.4.1 Light penetration

The optical frequencies (wavelengths) used for probing piO2 and peO2 in our ex-

periment were di↵erent (by design) to eliminate the cross-talk between the two mea-

surement channels. However, the e↵ective depth of sampling by light is wavelength-

dependent due to the endogenous absorption and scattering. Strong optical hetero-

geneity of tissue makes it di�cult to evaluate the di↵erence in the sampling depth,

but estimates based on typical brain optical properties can deliver a rough predic-

tion of the di↵erent penetration depths. Typically, this depth penetration can be

estimated using the two-point Green’s function that describes light propagation of

excitation light to the Oxyphor and then light propagation of the phosphorescence

emission to the detection surface. We employed a Monte Carlo simulation algorithm,

MCXLAB [46], to simulate the two-point Green’s function; this code incorporated

typical brain optical properties and enabled us to deduce the comparative depth

penetration of the incident excitation light and the comparative losses of escaping

phosphorescent photons. Thus we could estimate the spatial origin of the measured

signals due to the di↵erent Oxyphors. The optical properties for the simulation are

summarized in Table 7.

As a result, the e↵ective depth-penetration associated with the optical signals

due to PtR4 and PtG4 were approximately 0.7 mm and 1.6 mm, respectively. These
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Table 7: Absorption and scattering coe�cients (µa and µ0
s respectively) for simulation.

For the simulation, concentrations of HbO and HbR were set to be 60µM and 40µM
respectively.

Parameters
PtR4

(Excitation/Emission)
PtG4

(Excitation/Emission)

Wavelength (nm) 517 / 670 634 / 770

µa (cm�1) 2.50 / 0.13 0.22 / 0.10

µ0
s (cm

�1) 20 / 16 15 / 13

di↵erent e↵ective sampling volumes of the two phosphors could be a source of sys-

tematic error, for example, if the oxygen concentrations or vascular architecture vary

significantly over this range.

In the future, it should be possible to select two probes excitable at the same

wavelength, but with both having minimally overlapping phosphorescence spectra,

both in the near-infrared region. Using appropriate optical filtering, the signals of

the probes could then be sampled independently, and the di↵erence between the

probed volumes will be minimized. A selection of dendritic oxygen probes with dif-

ferent optical parameters is available for exploration [80, 44, 43] and will be tested

in the future. Another useful independent experiment could measure (for example,

using electrode techniques) the di↵erences in oxygen with depth over this range.

4.4.2 Temperature dependence of Oxyphor

Since the brain tissue after the craniotomy was exposed to room-temperature air,

a temperature gradient from the surface down was established. Both phosphores-

cence decay times and oxygen quenching parameters of the probes are temperature-

dependent [44]. Thus, the combination of the temperature gradient, which was un-

known, with the di↵erent sampling depths for the two probes (see above) could have

its own e↵ect on the measured apparent oxygen gradients. For example, at 36.5oC,
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PtG4 emission will have a lifetime of 27 µs at 40 mmHg of oxygen tension, but at

33.0oC a lifetime of 27 µs converts to 43.2 mmHg (see Fig. 21). Again, minimizing the

di↵erence between the sampling volumes should decrease the associated systematic

error.

Figure 21: Temperature-dependent PtG4 calibration curve. At a given phosphores-
cence decay time, ⌧ , a di↵erent pO2 value is assigned according to the temperature.

4.4.3 Invasive injection of Oxyphor

One of the principal strengths of all-optical methodology is its minimal invasive-

ness. However, in our experiments one of the probes had to be delivered by direct

injection into the brain tissue close to the measurement site, potentially damaging

the brain. To circumvent this problem in the future it should be possible to introduce

the extravascular pO2 probe by injection into cisterna magna [43], far away from the

measurement site and thus avoid tissue damage.
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Chapter 5

Spatial Frequency Domain Fluorescence

Di↵use Optical Tomography for

Image-guided Tumor Resection Surgery

(Background and Theory)

The background and theory development in this chapter largely adapted from a

pending publication: Chong, S. H., Markel, V. A., Parthasarathy, A. B., Ong, Y.

H., Abramson, K., Moscatelli, F. A., & Yodh, A. G. (2022). Algorithms and in-

strumentation for rapid spatial frequency domain fluorescence di↵use optical imaging

[Manuscript submitted for publication]. Department of Physics & Astronomy, Uni-

versity of Pennsylvania.

5.1 Introduction

Surgical guidance based on fluorescence imaging is rapidly becoming a method of

choice for resection of tumors [113, 42, 6], especially in neuro- [16, 83, 84, 105] and

thoracic-surgeries [106, 107]. The primary goal of surgical resection is to excise all

cancerous tissue since leftover residual tumor cells can lead to local cancer regrowth

and poor clinical outcomes [100]. Currently, surgeons rely on visual inspection, pal-

pation, or intraoperative pathology to identify tumor boundaries and residual tumor

cells; however, the specificity and spatial resolution of these methods are very lim-

ited. Fluorescence imaging addresses some of these limitations by providing spatially
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resolved, real-time contrast between tumorous and healthy tissues. The technique

relies on exogenous contrast agents that accumulate preferentially in tumors, such as

the widely-used and FDA-approved fluorophore Indocyanine Green (ICG) and some

newer cell-specific fluorophores [151]. Fluorescence light emitted by these contrast

agents helps demarcate boundaries between cancerous and healthy tissue.

Currently, fluorescence image guidance for surgical tumor-resection is accom-

plished with commercial and research-grade imaging systems [113, 104] that utilize

epi-illumination with near-infrared (NIR) light, and that image fluorescence from the

surgical scene with wide-field camera-based detectors. In practice, two-dimensional

(2D) fluorescence images from the tissue (including the tumor regions) are overlaid on

a corresponding 2D bright-field image; this method enables surgeons to ascertain the

transverse coordinate of the tumor. Since preserving normal tissue is critical for or-

gans such as brain, accurate detection of tumor margins is important beyond a rough

localization. In this regard, current fluorescence imaging still su↵ers from technical

limitations. First, 2D fluorescence imaging is most accurate only for tumors at or

near the tissue surface, and it cannot determine tumor depth. Second, di↵usion of

the fluorescent light from the tumor can make the image margins appear larger than

the actual tumor margins [62]; this e↵ect is more pronounced for sub-surface tumors.

Improved localization of the tumorous tissues in three dimensions (3D) is therefore

desirable for better surgical planning and outcomes.

To improve the localization of tumors during surgery, our work adapts a parallel

set of di↵use optical fluorescence imaging advances that predate the current commer-

cial approaches for fluorescence image guidance [23, 27, 53, 33, 1, 128, 74, 78, 50, 24,

133, 26, 137, 127]. While these early advances have rarely been deployed clinically,

they hold potential for wide-field, non-contact fluorescence imaging with real-time

processing. One of these techniques utilizes two di↵erent wavelengths of fluorescent
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emission [81] to derive information about tumor depth [161]; however, information

about tumor lateral margins is not obtained by this method. The other technique,

Spatial Frequency Domain Fluorescence Di↵use Optical Tomography (SFD-FDOT),

was used to produce 3D images of small point-like fluorophore targets [74] in vitro and

in mouse models. SFD-FDOT illuminates tissue with the continuous wave, wide-field

intensity patterns which are sinusoidally modulated at di↵erent spatial frequencies.

With this scheme, the light penetration depth is controlled by the spatial frequency,

and the wide-field image data collected at di↵erent spatial frequencies facilitates the

3D reconstruction of the fluorophore concentration. In principle, the SFD-FDOT

method allows one to acquire 3D information about the tumor depth and lateral

margins. However, prior implementations of SFD-FDOT were limited to point-like

fluorophore targets (diameter of ⇠ 2 mm) located less than ⇠ 3 mm below the surface.

Here we report on an instrument and a new rapid reconstruction algorithm for

SFD-FDOT. Our analysis builds on the spatial frequency domain approach and in-

troduces a rapid and computationally inexpensive two-step reconstruction algorithm.

In the first step, we use the variation of reflected di↵use fluorescence intensity with

respect to the spatial modulation frequency of incident light to estimate tumor depth.

Then, using the tumor depth determined in the first step, we determine the lateral

margins of the fluorophore concentration in the target plane by rapid analytical data

inversion. Herein we report the principles and details of this methodology, and we

exhibit the results from a series of SFD-FDOT phantom experiments; the experi-

ments characterize the depth accuracy and lateral spatial resolution of the method.

The findings reported below suggest that the methodology could be useful clinically

by enabling rapid tumor localization and margin assessment. Additionally, it can be

used to provide constraints for more rigorous or comprehensive fluorescence tomog-

raphy.
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5.2 Theory of Spatial Frequency Domain Di↵use

Optical Tomography

5.2.1 Light di↵usion equation in turbid media

When light propagates through an optically turbid media, such as biological tis-

sue, it interacts with the media via absorption and scattering events. When the

number of scattering events is large compared to the number of absorption events,

then it is well-known that a light di↵usion equation, Eq. (5.1), accurately describes

the spatiotemporal transport of the fluence rate in tissue [11, 149]. We write this

di↵usion equation below.

r · [D(r, t)r�(r, t)]� µa(r, t)�(r, t) + S(r, t) =
@�(r, t)

v@t
, (5.1)

D(r, t) =
1

3[µa(r, t) + µ0
s(r, t)]

, (5.2)

where �, D, S, v, µa and µ0
s represent the light fluence rate, light di↵usion coe�cient,

the input light source distribution, the speed of light, and the wavelength-dependent

absorption and reduced scattering coe�cients of light in the medium, respectively. r

and t represent the spatial Cartesian coordinate and time. For spatial frequency do-

main imaging, the source is continuous wave (CW), which makes the time-derivative

of the fluence rate vanish and leads to further simplification of the di↵usion equation.

r · [D(r)r]�(r)� µa(r)�(r) + S(r) = 0. (5.3)

Tissue is never perfectly homogeneous. Typically, D(r) and µa(r) deviate pertur-

batively from their average values D̄ and µ̄a. In this case, the solution of the di↵usion
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equation, Eq. (5.4) can be found using perturbation theory [97].

�(r) =

Z
S(r0)G(r, r0)d3r0 +

Z
G(r, r0)[r · �D(r0)r� �µa(r

0)]�(r0)d3r0; (5.4)

⇣
r2 � µ̄a

D̄

⌘
G(r, r0) = ��(r� r0)

D̄
, (5.5)

Here D(r) = D̄ + �D(r), µa(r) = µ̄a + �µa(r), and the Green’s function, G(r, r0),

satisfies the Helmholtz equation, Eq. (5.5).

The second term on the right-hand side is a convolution of the Green’s function

with a function that involves the fluence rate and the spatial heterogeneity of the

optical properties; this equation is intrinsically nonlinear when spatial heterogeneity

exists. To solve it analytically, simplifying assumptions are needed. One of the

assumptions is to assume homogeneous background optical properties. The zeroth-

order approximation of the solution, in this case, is usually su�cient to describe light

propagation in turbid media such as tissue (for NIR light).

For fluorescence imaging, two light sources and propagating di↵usive light fields

are involved. The first pertains to light that excites the fluorophore. The second per-

tains to fluorescence light emitted by the fluorophores (after they absorb the excitation

light). To distinguish the two, we use a subscript ex for any variables/parameters

relevant to the excitation light wavelength, and we use a subscript em for the emission

light wavelength. Therefore, two governing light di↵usion equations, Eqs. (5.4) and

(5.5) are needed to fully describe the process by which fluorescence light emanates

from a turbid media.

r · [Dex(r)r�ex(r)]� µa,ex(r)�ex(r) + S(r) = 0; (5.6)
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r · [Dem(r)r�em(r)]� µa,em(r)�em(r) + "⌘C(r)�ex(r) = 0. (5.7)

Here ", ⌘, and C represent the extinction coe�cient, quantum e�ciency and concen-

tration of the fluorophore at r. For both Eqs. (5.6) and (5.7), solutions can be written

in a similar form in Eq. (5.4). Each solution is nonlinear per se, and solving them

analytically is extremely di�cult (or impossible).

As noted above, a few assumptions can simplify the problem. We assume that (1)

then spatial heterogeneity of the background optical properties is negligible, and we

assume that (2) the excitation light fluence rate in the medium is not a↵ected by light

absorption of the fluorscent contrast agents (the fluorophores). These approximations

are not too bad, especially if the contrast agent concentration is low (as it usually is in

practice). With these two assumptions, we can use the lowest-order approximations

for the propagating excitation and fluorescence light fluence rates, which are:

�ex(r) =

Z

V

Gex(r, r
0)S(r0)d3r0; (5.8)

�em(r) =

Z

V

Gem(r, r
0)"⌘C(r0)�ex(r

0)d3r0. (5.9)

Here the Greens functions, Gex and Gem, satisfy Eq. (5.5) for D̄ and µ̄a for excitation

light and emission light wavelengths respectively. In essence, the perturbation in this

problem derives from the heterogeneous contrast agent spatial distribution.

5.2.2 Source types

To evaluate Eqs. (5.8) and (5.9), the source term, S(r) needs modeling. There

are four standard types of sources; (1) Continuous-wave (CW, the light intensity does

not vary over time), (2) Frequency-domain (FD, the light intensity is modulated in

time), (3) Time-resolved (TR, the input light is a pulse whose width is typically
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Figure 22: Schemes of light sources. (a) CW, (b) FD, and (c) TR light source. The
figure is reprinted from Ref. 36

.

a few picosecond scales. The output light is broadened in time), and (4) Spatial-

frequency-domain (SFD). For (1), (2), and (3), the light source is often (but not

always) provided as a point source in space, either via fiber optics or by a focused

laser-scanning system.

Figure 23: Two examples of spatially modulated light patterns. (left) An example of
lower spatial frequency (f = 0.02 mm�1) light pattern. (right) An example of higher
spatial frequency (f = 0.07 mm�1) light pattern.

The last type is particularly relevant for our work. The SFD light source uses

wide-field epi-illumination on a sample. The light intensity is spatially modulated (but

is CW in time, similar to (1) above); typically it is sinusoidally modulated in space.

Each sinusoidal pattern is associated with a spatial frequency. The light penetration

depends on the assigned spatial frequency (see Fig. 23); penetration is shallower for
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larger spatial frequencies. We model the source as the sinusoidal function varying in

space (and localized at the surface z=0).

S(r) = So[1 + Acos(k · r)]�(z). (5.10)

Alternatively, removing the constant background, and switching to complex notation,

the source can be written:

S(r) = Soe
ik·r�(z), (5.11)

where k = (kx, ky) is the wavevector of the spatial pattern.

5.2.3 Green’s function solutions in 2D Fourier space

Our analysis will use functions that vary in the transverse plane, i.e., in the x-

and y-directions. As such, we need to define forward and inverse Fourier transforms

in the transverse plane. These definitions are given below for functions f(q) and

F (⇢); we adopt the upper case variable (F ) for the real-space functions and the lower

case variable (f) for the Fourier-space functions.

f(q) =

Z

Sq

F (⇢)e�iq·⇢d2⇢; (5.12)

F (⇢) =

✓
1

2⇡

◆2 Z

S⇢

f(q)eiq·⇢d2q, (5.13)

Here ⇢ is the cartesian coordinate of a transverse plane, i.e., x and y, and q is the

corresponding Fourier variable.

Then, the Green’s function and Helmholtz equation in Eq. (5.5) can be rewritten

according to the definition of the inverse Fourier transform and the Weyl expan-
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sion [153, 90].

⇣
r2 � µ̄a

D̄

⌘Z

Sq

g(q; z, z0)eiq·(⇢�⇢0)d2q = ��(z � z0)

D̄

Z

Sq

eiq·(⇢�⇢0)d2q, (5.14)

where the constant terms of 1
2⇡ were canceled on both sides. Note, it is 2D inverse

Fourier transform that pertains to transverse directions so that only the transverse

coordinate of the Dirac delta function in the RHS of Eq.(5.5) is written in terms of

the inverse Fourier transform. Then, it is straightforward to show that Eq. (5.14) can

be simplified to Eq. (5.15).

Z

Sq

⇢
@2

@z2
� (µeff )

2 � q2
�
g(q; z, z0) +

�(z � z0)

D̄

�
eiq·(⇢�⇢0)d2q = 0, (5.15)

where (µeff )2 = 3µa(µa + µ0
s). The integrand has to be zero for all ⇢, which provides

us with a di↵erential equation of Green’s function for planar impulse at z0.


@2

@z2
�
�
Q(q)

 2
�
g(q; z, z0) = ��(z � z0)

D̄
. (5.16)

Here, Q(q) =
p

3µa(µa + µ0
s) + |q|2.

Infinite medium. For our work, we seek the Green’s function solution to

Eq. (5.16), wherein the input(i.e., the source) is confined to a plane (z0) and is per-

mitted to have sinusoidal spatial variation with wavevector q (in the plane transverse

to the z-direction). For the infinite medium, the only boundary condition is that

g(q; z, z0) ! 0 as |z � z0| ! 1. In this case,

g(q; z, z0) =
e�Q(q)|z�z0|

2D̄Q(q)
, (5.17)

Here, Q(q) =
p

3µa(µa + µ0
s) + |q|2. Note, the Green’s function solution is isotropic
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in transverse plane in the real space. The Fourier transformed Green’s function is

also symmetric in q.

Semi-infinite medium. In realistic semi-infinite medium cases, there is a

boundary between the turbid media and air. Di↵use light escapes from the media

to the air. This is the light we detect in our experiments. When it escapes, it does

not return. Therefore, other than the light source, the only radiance traveling into

the turbid medium is derived from the reflected “escaping” radiance predicted due

to Fresnel reflections. This e↵ect provides a boundary condition for the semi-infinite

medium problem, the so-called partial flux boundary condition [5].

(G+ `n̂ ·rG) |S = 0, (5.18)

where ` is called the extrapolation distance [5] (which is of order but is slightly

di↵erent from 1/µ0
s), and S is the boundary surface. When the flux is normal to the

surface, Eq. (5.18) reduces to Eq. (5.19) (again using Fourier transforms).

✓
g + `

@g

@z

◆ ����
z=0

= 0. (5.19)

The boundary conditions for the semi-infinite medium follow [98]

g(q; 0, z0)� `
@g

@z
(q; 0, z0) = 0,

g(q; z0 + ✏, z0)� g(q; z0 � ✏, z0) = 0,

@g

@z
(q; z0 + ✏, z0)� @g

@z
(q; z0 � ✏, z0) = � 1

D̄
,

g(q; z, z0) < 1, as z ! 1. (5.20)

Solving for the semi-infinite medium Green’s function is straightforward. We obtain
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the solution, Eq. (5.21). Note, as was the case for the infinite-medium solution, the

semi-infinite medium solution is also symmetric in q.

g(q; z, z0) =
1

2D̄Q(q)


e�Q(q)|z�z0| +

1� `Q(q)

1 + `Q(q)
e�Q(q)(z+z0)

�
. (5.21)

5.2.4 Fast analytic inversion algorithms for spatial frequency

domain light source

In the previous section, an expression for the SFD light source, S(r) was given.

Using the expression, Eq. (5.8), the homogeneous excitation fluence rate can be writ-

ten in a simple analytical form.

�ex(⇢, z;k) = So

Z
Gex(⇢,⇢

0, z, z0)eik·⇢
0
�(z)d3r0

= Sogex(k, z, 0)e
ik·⇢. (5.22)

gex depends on sample geometry (e.g., semi-infinite, etc.).

The emission fluence rate, �em is also readily written. Plugging Eq. (5.22) into

Eq. (5.9) gives:

�em(rd;k) = "⌘

Z

V

Gem(rd, r)C(r)�ex(r;k)d
3r. (5.23)

rd is the cartesian coordinate of the sample surface and equivalent to (xd, yd, zd).

Note, typically, in our semi-infinite space we set zd = 0.

2D Fourier transform of Eq. (5.23) renders a useful form that converts the 3D

integration to a one-dimensional integration, Eq. (5.24), that in some cases can be
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easily inverted.

'em(qd, zd = 0;k) = "⌘

Z
gem(qd, zd = 0, z)gex(k, z, 0)c(qd � k, z)dz, (5.24)

where 'em and c are 2D Fourier Transform of �em and C respectively. qd is the

Fourier variable corresponding to ⇢d = (xd, yd). By substituting q for qd � k, a final

convolution integral equation is acquired.

'em(q+ k, zd = 0;k) = "⌘

Z
�(q, zd = 0, z;k)c(q, z)dz; (5.25)

�(q, zd = 0, z;k) =

✓
`ex`em
D̄exD̄em

◆
e�[Qex(k)+Qem(q+k)]z

[1 + `exQex(k)][1 + `emQem(q+ k)]
. (5.26)

Later, we will use these results to analyze the distribution of exogenous fluorophore

targets in our tissue phantom experiment. For now, we will next describe how the

experiments are done.

5.2.5 Data acquisition and analysis

In practice, the sample surface is illuminated by a sinusoidally modulated intensity

pattern of the form as described above. In the experiment, we add three di↵erent

phases to Eq. (5.10) to realize the complex light source, Eq. (5.11).

Si(⇢d;k) =
So

2
[1 + cos(k · ⇢d + ✓i)] , i = 1, 2, 3 . (5.27)

Here ⇢d = (xd, yd), where xd and yd are Cartesian coordinates in the surface of the

sample (assumed to be a plane). The quantities So and ✓i represent the incident

intensity and the spatial phase shift of the illumination pattern. In the experimental

procedure, we use ✓1 = 0, ✓2 = 2⇡/3 and ✓3 = 4⇡/3 (this choice of phases will
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be explained below). In principle, it is possible to use general 2D modulation wave

vectors k. However, in our experiments, we modulated the incident light only along

the x-axis, so that k = (k, 0), where the spatial modulation wave number is k = 2⇡f ,

and f is the spatial frequency of the modulating sinusoid. This restriction of the

modulation wave vector is su�cient for reconstructions. The use of other modulation

directions can enhance the method but requires larger data acquisition times.

In the experiments, we typically employed 31 di↵erent spatial frequencies f vary-

ing from 0 to 0.15 mm�1. Note that, in practice, small discrepancies arise between

the set of intended and actual values of f on the phantom surface due to small devi-

ations in the estimated distance between the sample surface and the collection lens.

We determine the actual values of f by analyzing the bright-field image, and we use

these measured values of f in the reconstructions.

For each illumination pattern Si(⇢d;k), a corresponding fluorescent (intensity)

emission image Ii(⇢d;k) was recorded. The images I0, I1 and I2 were then combined

to obtain the complex fluorescent emission signal, �em(⇢d;k) according to

�em(⇢d;k) = 1
3 [2I0(⇢d;k)� I1(⇢d;k)� I2(⇢d;k)]

+ ip
3
[I2(⇢d;k)� I1(⇢d;k)] . (5.28)

This combination is well known and is needed for our analysis. Essentially, it

allows us to remove the constant background in illumination and to access information

about amplitude and phase (equivalent to that provided by illuminating the medium

with both sine and cosine functions in the spatial modulation pattern). The resultant

emission data, �em, is Fourier transformed to estimate the depth of the fluorescent

inclusion.

Estimation of target depth. The first step in the reconstruction algorithm is
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to estimate the target depth. To this end, we utilize a simplification of Eq. (5.25).

Specifically, we assume that the fluorophores are localized at a particular depth, which

we refer to as ztarget, so that c(q, z) = Ĉ(q) �(z � ztarget). In this case, Eq. (5.25)

simplifies to the following form:

'(q + k;k) = "⌘�(q + k, ztarget;k) c(q) . (5.29)

This equation can be rearranged to relate the z-dependent kernel to the measured

fluorescence emission and to the fluorophore concentration distribution. Note that,

even if the actual fluorophore distribution is more widely spread in the z-direction,

our method will derive a fairly good estimate of the depth. Specifically, with the

assumptions outlined above, and with q = 0, it is straightforward to show that, for

each spatial modulation wave vector k, we have

y(k) = A exp(�ztarget x(k)) + yo , (5.30a)

where

x(k) = Qex(k) +Qem(k) ; (5.30b)

y(k) = '(k;k)[Qex(k)`ex + 1][Qem(k)`em + 1] . (5.30c)

The dependent variable, y(k), is the normalized emission response at the modulation

wave vector k. The independent variable, x(k), can be measured or estimated; it is,

essentially, twice the reciprocal of the penetration depth, which depends on the spatial

modulation frequency. The parameter A = "⌘
⇣

`ex`em
DexDem

⌘
c(0) depends on a number

of parameters of the background medium and the fluorophores, some of which may

not be directly known or measured, but it is independent of the modulation wave
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vector k. In a data set obtained by varying k, we can view A as a constant and as an

adjustable parameter. Further, yo is an extra adjustable parameter added to account

for the noise floor in the data since the fluorescent signal does not go to zero when

|k| ! 1 (as predicted theoretically), perhaps as a result of background fluorescence

and other noise, as well as imprecision in the theoretical model. As A, we assume

that yo is independent of k.

We can now find ztarget by nonlinear fitting of the theoretical formula, Eq. (5.30a),

to the data in which A, ztarget and yo are viewed as k-independent adjustable parame-

ters. Once the depth of the target is determined, we can compute the lateral margins

of the fluorophore concentration in the plane.

Estimation of lateral margins of target. This is the second step in our

two-step algorithm. Briefly, rearranging Eq. (5.29) for c(q) and taking the inverse

2D Fourier transform, we obtain a simple reconstruction formula for the transverse

distribution of the fluorophore target in the plane z = ztarget. The obtained relation

is parameterized by k and, theoretically, any value of k can be used to obtain the

transverse distribution of the fluorophore. In the reconstructions, we have used the

k = 0 for this purpose because the signal-to-noise ratio in the fluorescence images is

best for unmodulated incident light. Therefore, we use the reconstruction formula

C(⇢, z = ztarget) =
1

"⌘

Z
�̂(q;k = 0)

�(q, ztarget;k = 0)
e�iq·⇢f�(q)

d2q

(2⇡)2
, (5.31)

where

f�(q) =
1

2⇡�2
exp

✓
� q

2

2�2

◆
(5.32)

is a Gaussian low-pass filtering kernel.

We apply f�(q) to ameliorate the e↵ects of noise and model imprecisions that ren-

der the integrand in Eq. (5.31) unreliable at high values of q. Since the denominator
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of the integrand decreases exponentially with q (see Eq. (5.26)), the contribution of

noise to the image is amplified when large values of q are used in a numerical recon-

struction. The Gaussian filter enables us to regularize Eq. (5.31). The regularization

parameter � depends on the level of noise and must be determined for each data set

separately. However, the reconstruction is so fast that it is possible to generate many

images in real-time while tuning �.

5.2.6 Nonlinear fitting

Prior to fitting, the data were normalized to the maximum value. That is, both

sides of Eq. (5.30a) were divided by y(k = 0). This allowed us to compare errors of

the fit for di↵erent data sets quantitatively. We then obtained an estimate of the flu-

orophore target depth, ztarget, from the best fit of the theoretical formula, Eq. (5.30a),

to the data points (x(k), y(k)/y(0)). We removed the first data point (with the small-

est |k|) from the fitting procedure (it will be discussed in the next chapter). For the

fitting, we used a nonlinear regression model algorithm, fitnlm (MATLAB 2022a,

The Mathworks Inc., Natick, Massachusetts, USA), and chose the initial values for

A, ztarget, and yo to be 5.0, 1.0, and 0.1, respectively.
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Chapter 6

Spatial Frequency Domain Fluorescence

Di↵use Optical Tomography for

Image-guided Tumor Resection Surgery

(Experiment, Results and Discussion)

This chapter largely adapted from a pending publication: Chong, S. H., Markel,

V. A., Parthasarathy, A. B., Ong, Y. H., Abramson, K., Moscatelli, F. A., & Yodh, A.

G. (2022). Algorithms and instrumentation for rapid spatial frequency domain fluo-

rescence di↵use optical imaging [Manuscript submitted for publication]. Department

of Physics & Astronomy, University of Pennsylvania.

6.1 Experimental Results

6.1.1 Imaging instrumentation

For testing and for eventual clinical implementation, we constructed a wide-field

imaging system that consisted of a digital micro-mirror device for illuminating the tis-

sue at di↵erent spatial frequencies, and a spectrally-separated dual camera detection

system that simultaneously records bright-field reflectance images at the excitation

wavelength of 808 nm and fluorescence images at the emission wavelength of 850 nm.

The setup is illustrated schematically in Fig. 24. The combined illumination and

imaging system was mounted on a translation stage (MN10-015-E01-13, Velmex Inc.,
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Figure 24: Schematics of the dual-camera imaging system. SM: Spatial modulator
of the excitation light, CL: Collection lens, RL: Relay lens, BS: 10:90 Beam-splitter,
BF: Bright-field camera, EM: Emission filter, FL: Fluorescence camera.

Bloomfield NY, USA) and positioned above the sample with the object distance of

32 cm. Illumination was provided by a digital light projector (FC E4500 MKII, EKB

Technologies Ltd. Bat-Yam Israel). Its intensity on the sample surface was approx-

imately 0.3 mW/cm2 for uniform (spatially unmodulated) illumination, well below

the ANSI limit for tissue damage. A digital micro-mirror device was electronically

controlled to produce spatially-modulated (at di↵erent frequencies) illumination of

the sample surface with wide-field light at 808 nm. Reflected light at the excitation

and fluorescent wavelengths was directed to two separate camera channels; further

spectral filtering was necessary to record the fluorescence image. The fluorescence

emission images recorded in the fluorescence camera are used for the reconstruction
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of the depth and the transverse margin of the fluorescent targets.

6.1.2 Experimental procedure

Background tissue was mimicked using a mixture of intralipid (Intralipid 20%,

Fresenius Kabi, Pune, Maharashtra, India), nigrosin (Acid Black, MP Biomedicals,

Santa Ana, CA, USA), and water. The background medium had a wavelength-

dependent absorption coe�cient, µa, and reduced scattering coe�cient, µ0
s. Respec-

tively, these coe�cients were 0.004 mm�1 and 0.8 mm�1 at the excitation wavelength

of 808 nm, and 0.006 mm�1 and 0.76 mm�1 at the emission wavelength of 850 nm.

The hollow cube (for containing the fluorescent target) was 3D-printed with inner side

length of 10 mm and wall thickness of 1 mm (VeroWhitePlus, Stratasys Direct Man-

ufacturing, Valencia, CA, USA), which was suspended in a tissue-simulating liquid

phantom using two posts (blue). This cube was employed to simulate the fluorescent

target(s); the cube was filled with a mixture of intralipid containing dissolved ICG

powder (IC-GREEN, Akorn Inc., Lake Forest IL, USA). The ICG concentration was

6.5 µM.

The fluorescent contrast cubes were suspended in the liquid phantom tank using

fishing lines and posts, as shown in Fig. 25. The depths of the targets were controlled

by lowering or raising the surface of the background liquid phantom in the single

target experiments (see Fig. 25a).

Both bright-field and fluorescence images were recorded with a 12-bit dynamic

range for each phase o↵set (see Fig. 26); the exposure time was increased until the

maximum count of a pixel reached approximately 4000 for unmodulated incident

light. The adjustable fluorescence camera exposure time ranged from 800 msec for

the 2 mm depth of the target to 5 sec for the 10 mm depth; these adjustments were
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Figure 25: Schemes employed for tissue phantom experiments. (a) The single-target
experiments. (b) The two-target (on the same depth) experiment. (c) The two-target
(on di↵erent depths) experiment.

needed to account for the di↵erence in detected intensity. The exposure time of the

bright-field camera was about 15 msec. Accordingly, the full acquisition time for the

deepest target was four times longer than that of the shallowest target. Fluorescence

emission data for single-target phantoms were acquired for target depths of 2, 4, 6,

8, and 10 mm.

Figure 26: Example of the measurements in case of single target located at the depth
of 2 mm (f = 0.04 mm�1). Scale bar indicates 10 mm.

For two-target phantoms, two di↵erent sets of experiments were performed. In

one set, two identical targets were placed at the same depth. This depth of the

two targets, and the lateral separation between the targets, were varied as shown in

Fig. 25b. In the second set of two-target phantom experiments, the two targets were

laterally separated by either 20 or 40 mm. The depth of one target was fixed at 2
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mm, while the depths of the other targets varied from 4 to 8 mm (Fig. 25c).

In all experiments, the data acquisition time for the fluorescence associated with

the shallowest target (2 mm depth) was ⇠ 2 min. The acquisition time for fluores-

cence associated with the deepest target (10 mm depth) was ⇠ 8 min.

6.1.3 Single-target experimental results

The depth of the fluorescence contrast target varied from 2 to 10 mm, and the

corresponding exponential fitting results are displayed in the left column of Fig. 27.

The estimated depth is marked on top of the plot along with its standard deviation.

Note, the first data point corresponding to k = 0 was not used for fittings. If

used, this data point can skew the decay constant to larger values and increase the

fitting errors significantly. Physically, we can justify the removal of this point by

recalling that the specific intensity of the light transmitted through the top interface

(tissue surface) consists of two components, sometimes referred to as di↵use and

ballistic (reduced). The ballistic photons have a relatively large energy flux near the

interface but then undergo a much faster exponential decay with depth compared to

the di↵use photons [138]. The rate of decay of both components increases as k is

increased, which results in a complex competition of the two terms. For relatively

shallow targets (i.e., depths of 2 mm to 6 mm), the ballistic term can strongly perturb

the k = 0 measurement and, perhaps, influence the next data point as well, but it

becomes negligible at larger values of k. As the target moves deeper, the influence of

the ballistic term is further diminished for all values of k. At the depths greater than

10 mm, the ballistic term can be generally neglected. In our experiments, however,

most of the targets do not satisfy this condition; the data are a↵ected by the ballistic

term, but the theory on which the reconstructions are based accounts only for the
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Figure 27: Single target experiment depth estimaion results . The target depth is 2
mm (a), 4 mm (b), 6 mm (c), 8 mm (d), and 10 mm (e).

di↵use photons which obey the single-exponent decay model, Eq. (5.30a). For these

reasons, the data point with k = 0 was excluded from the fitting procedure in all

reconstructions. In the future, a more systematic accounting of the ballistic photons

will require the use of a two-exponent decay model [138]; if successful, inclusion of

the k = 0 (and other data points with relatively small values of k) will be possible

and should increase the dynamic range of measurements, which is useful for more

accurate depth estimation.

After the target depth and its uncertainty are estimated, we determine the trans-
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verse margins of the fluorophore concentration by using Eq. (5.31). The result is

shown in Fig. 28. In each panel, the figure on the left shows the reconstructed trans-

verse images, and the yellow scale bar corresponds to 10 mm. The figure on the right

shows the transverse margin (blue) in comparison to the true margin (black).

Figure 28: Single target experiment transverse margin estimaion results . The target
depth is 2 mm (a), 4 mm (b), 6 mm (c), 8 mm (d), and 10 mm (e). Yellow scale bar
indicates 10 mm.

The resulting reconstructions depend on the regularization parameter �. If �

is too large, the resulting images typically contain significant random noise, which

renders the target unrecognizable (see Fig. 29a, ). On the other hand, if � is too small,
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the reconstructed image is only a blob (see Fig. 29c). To determine the optimum �,

we apply a weak positivity constraint on C(⇢, z = ztarget). Since C is intrinsically

positive, we require that the mean value of the normalized concentration over all

pixels is at least one standard deviation larger than zero; this roughly corresponds to

a condition that the fraction of pixels with negative values is less than 16%.

Figure 29: Transverse image of the fluorescent inclusion at 4mm depth with di↵erent
values of �. (a) A weak regularization (� = 3.77 mm�1). (b) The optimal regulariza-
tion (� = 0.46 mm�1). (c) A strong regularization (� = 0.11 mm�1).

The optimal � we choose is the maximum � satisfying this constraint. A resultant

optimized image is shown in Fig. 29b; the transverse images in the middle column of

Fig. 28b are produced using the same positivity constraint.

The lateral margin of the target was set to be the full-width-at-half-maximum
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(FWHM) contour line of this distribution (the figures on the right in each panel of

Fig. 28). To measure the discrepancy between the reconstructed and true margins,

we computed the relative width, which we define as the square root of the ratio of

the transverse target area (area confined by the blue line in the figure on the right

in each panel of Fig. 28 to the true target area (100 mm2). For the single-target

experiments, the reconstructed depth and the relative width are fairly accurate and

are summarized in Fig. 30.

Figure 30: Reconstruction results of single-target experiments. (a) Depth-estimation
results. The black dotted line has a unity slope. (b) The ratio between reconstructed
image width and the true target width as a function of depth.

6.1.4 Two-target experimental results

Transverse Separation. We first placed two identical targets in the same plane

but with varying lateral separation. The estimated depths and transverse margins

were then computed. A few examples are shown in Fig. 31 The two targets are

clearly distinguished in most cases. As expected, the ability to distinguish between

the targets is reduced as the depth is increased. However, for the range of separations

used in our experiments, we clearly observe two targets at every depth.
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Figure 31: Reconstructed transverse margin of two-target experiment. Two targets
were placed on the same depth, and it varied as well as transverse separation.

A summary of depth sensitivity and relative width is given in Figs. 32a and 32b.

Figure 32: Reconstruction results of two targets in the same vertical plane. (a) Depth-
estimation results. (b) Relative width estimation results.

Vertical Separation. The second, more challenging problem, is to reconstruct

two targets that are separated both vertically and laterally. To this end, we fixed

the lateral separations to be either 20 or 40 mm. The depth of Target 2 was fixed

at 2 mm below the surface, and the depth of Target 1 was varied taking the values
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4, 6, and 8 mm. Since the targets were well separated transversely, even when they

are located at di↵erent depths, we could safely segment the data and process each

target separately (Fig. 33). We use the minimum in the peak intensity profile along

the horizontal (dotted) line A to define the segmentation regions for the image, as

shown by the vertical (dashed) lines B in the figure. After the depth of each target

was independently estimated, we used these estimates to process the data further for

each target. We obtained the transverse fluorophore distributions by utilizing the

same algorithm as in the single target reconstructions.

Figure 33: Raw data showing substantially di↵erent emission signals from Targets 1
(deep target) and 2 (superficial target). Scale bar corresponds to 10 mm.

Reconstructions with 20 and 40 mm transverse separations are presented in

Fig. 34. Columns and rows represent the depth of Target 1 and the transverse sepa-

ration of the targets, respectively (Target 2 is fixed at the 2 mm depth). Estimated

depths are marked below each margin slice. The yellow scale bar represents a 10 mm

length in the transverse plane. The vertical scale is exaggerated for better visibility.
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Figure 34: 3D rendering of the two-target vertical separation results.

The depth-sensitivity and depth estimates for these targets (Fig. 35a) are not as

good as our results for single targets, nor for two-targets in the same vertical plane

(Figs. 30b,32b). This can be understood by noting that both the experimental acqui-

sition time and the resulting computationally processed data are di↵erent for di↵erent

target depths. As described in Chapter 5, the camera exposure times needed to ob-

tain reliable fluorescence images for deeper targets are significantly larger than those

for shallow targets. In our instrument and data collection scheme, it was not possible

to use large exposure times when a shallow target is present due to the possibility of

overexposure. We were therefore forced to use the exposure times appropriate for the

shallow target. Thus, when Target 1 is located at the depth of 10 mm, its fluorescent

signal was not detectable due to the insu�cient exposure time. Cross-talk of the
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targets located at di↵erent depths can also cause artifacts. As expected, the errors

of the transverse margins of the target are larger for smaller horizontal separations

(Fig. 35b). When the transverse separation is 20 mm, then the cross-talk from Target

2 in the segmented image of Target 1 becomes significant and produces an artifact

near the edge. When this e↵ect is severe, the transverse margins of the deeper target

are corrupted (see the last column of the first row of Fig. 34).

Figure 35: Results of the two-target experiments with vertical separations. (a) Results
for the reconstructed depth of Targets 1 and 2. The dashed line has the unity slope.
(b) Results of the relative width of Targets 1 and 2.

6.2 Discussion

We have introduced and demonstrated a simple method based on SFD-FDOT to

estimate the depth and lateral margins of fluorescent targets in turbid media in the
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reflection geometry. The present work moves beyond prior research [74] in several

ways. The targets studied are extended rather than point-like and are located as

deep as ⇠ 1 cm below the surface rather than at the shallow depths of . 3 mm.

Also, we considered multiple targets located at the same and di↵erent depths rather

than a single isolated point-like target. An important but subtle aspect of our work

that may not be apparent is that we were able to determine the depth of each target

without sensitivity to the regularization parameter (which was the case in the past);

this is because we divided the reconstruction into two steps. The first step involves a

simple fitting of the data to a single exponent, and the second step involves a straight-

forward 2D Fourier transform. Essentially, for the second step, we have utilized prior

knowledge that the fluorescence signal is mostly emitted from one particular depth,

i.e., at the top surface of the target. Approaches that do not rely on these simplifying

assumptions generally require the inversion of a severely ill-posed operator. In the

latter case, sensitivity to the regularization parameter can become strong.

6.2.1 Depth sensitivity

The simple algorithm proposed in this paper was successful in estimating the

depth of fluorescent inclusions to within approximately 1 mm of the true depth in

both single-target and two-target experiments in which the targets were at the same

depth but laterally separated. Interestingly, the estimation error was minimum at the

largest depth (Fig. 36); this observation can be attributed to the e↵ects of ballistic

photons which were briefly discussed in Sec. 6.1.3 and which were not accounted for

in the reconstructions. We mitigated the e↵ects of ballistic photons by removing the

data point with k = 0 in the fitting procedure. As noted, these points are a↵ected by

the ballistic photons more strongly, especially, in the case of shallow targets. However,
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the ballistic contribution still a↵ects the data, most seriously for the target depth of 2

mm. Naturally, as the target moves away from the surface, contributions of the fast-

decaying ballistic photons decrease, leading to better depth estimation. In the case

of two targets at di↵erent depths, the e↵ect of ballistic photons is stronger since at

least one target is always close to the surface. This, and the experimental limitations

related to the available exposure times, produced a larger error in terms of depth

estimation in this set of experiments, typically, of the order of 20% to 40% of the true

depth.

Clearly, technical improvements that can ameliorate some of the observed limita-

tions are possible in future work. By increasing the number of low spatial frequencies

used in the fitting, we can, potentially, use a more precise two-exponent model [138]

for nonlinear fitting of depth. The theoretical model in this case will account for both

ballistic and di↵use photons. This will increase the dynamic range of useful data

and reduce the systematic errors of the theoretical model. In addition to reducing

depth estimation errors of shallow targets, such improvements could enable imaging

of targets located deeper than 10 mm below the surface.

6.2.2 Transverse margins

Another important advance reported in this paper is the ability to constrain the

transverse margins of the fluorescent inclusions (tumors). For the most part, the

transverse margins of the single targets, or two targets in the same plane, overesti-

mated the true margins by 30% or less. For the two-target experiments with targets at

di↵erent depths, these margin errors were larger; the larger error in depth-estimation

propagates to the error in the transverse margin.
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Figure 36: Mean absolute errors for all depth estimation results.

6.2.3 The spatial smoothing (regularization) parameter

Figure 37 shows the average value of the optimized regularization parameter � as

a function of the target depth for single-depth reconstructions. It can be seen that

the regularization parameter tends to decrease as the target depth increases. This is

because the signal-to-noise ratio for the detected fluorescent intensity decreases as the

pathlength of light increases and the spatial waves at high spatial frequencies in the

detected intensity distribution become dominated by noise. Empirically, we note that

the value of k for which y(k) settles into the noise plateau is roughly proportional

to the optimal � (roughly, k ⇠ �). Therefore, the value of k can be considered as a

guideline for choosing the optimal �.
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Figure 37: Optimized regularization parameter � for single-depth reconstruction as a
function of the target depth.

6.2.4 Stability of the estimates

The proposed two-step reconstruction method utilizes a Green’s function formal-

ism that is a↵ected by the optical properties of the background. Therefore, errors in

the background optical properties could lead to errors in the estimation of the depth

and transverse margin of the fluorescent targets. We tested the stability of recon-

structions by introducing a ±10% error into µa and µ0
s. The resulting absolute error

of depth estimation was less than 0.8 mm, which does not significantly impact the

overall depth sensitivity. Similarly, the change in transverse margins for the targets

at the depths of 2, 4, and 6 mm was less than 2%. Thus, while it is desirable to use

accurate background optical properties, the method of this paper is found to be stable

with respect to relative errors in the optical properties with the magnitude of 10% or

less. Note, in practice these background optical properties can be readily measured

using the bright-field data sets that are simultaneously taken with the fluorescence

data.
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6.2.5 Data acquisition and reconstruction times

Since our technique does not attempt to reconstruct full 3D shapes, the time

needed to estimate the depth and transverse margins ranged from one to two seconds

(Intel(R) Core(TM) i5-8600K CPU 3.60GHz, 6 Cores). Clearly, the approximate

approach is di↵erent from the traditional analytic inversion and nonlinear image re-

construction techniques, which require computation times ranging from minutes to

hours depending on complexity. Acquisition time is the longest temporal factor in

our experiments, typically, of the order of a few minutes.

6.2.6 Limitations

The proposed SFD-FDOT estimation methodology is promising though it has the

aforementioned limitations. Notably, reconstruction of absolute fluorophore concen-

tration was not pursued; absolute concentration is not a feature currently employed for

image guidance or diagnosis. Per image guidance, the analysis assumed homogeneous

background optical properties, semi-infinite geometry, and a thin slab geometry of the

fluorescence inclusion. In practice, heterogeneous tissue optical properties in brain or

lung tissue could generate errors in the estimation of depth and transverse margin.

Even though this assumption is commonly used in di↵use optics analysis, more in

vivo work needs to be done to fully characterize these limitations. Additionally, the

instrumentation permits the determination of optical properties of tissue layers using

multiple spatial frequencies in principle [161]. This information can be used to refine

data analysis and provide guidance on the interpretation of reconstruction results in

the future.

Per the semi-infinite geometry, this approximation is fairly good for most situa-
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tions in the surgical theatre. In practice, this instrumentation can be readily modified

to concurrently measure surface profiles and thereby deduce the magnitude/character

of the assumption error; this will also provide concrete data which could be employed

to modify the current approach to perturbatively include corrections due to surface

curvature.

Per the thin slab approximation for the fluorescence inclusion, in practice, the high

absorption coe�cient of ICG will cause the top surface of the target to absorb most

of the excitation light propagating downward through the target, and consequently

the fluorescence emission will be dominated by the signal from the top surface. Thus,

the thin slab approximation is useful, as long as the user appreciates that the target

depth corresponds to the top surface of the fluorescent region. Note also, even if

tumor tissue is not flat on the top surface, the proposed technique will provide a

useful estimate of depth that is skewed toward the shallowest part of the tumor.

Another challenge is that our theory only concerns di↵use photons, not ballistic

photons. For accurate estimation near surface, it is desirable to develop a comprehen-

sive theory to account for the ballistic photon contribution. Subsequent experiments

should characterize the cost versus benefit for practical implementation of the more

complex model.

Finally, it is desirable to make measurements quickly in the operating room. In

our current setup, the longest part of the procedure is data acquisition (up to eight

minutes for the deepest occlusions). In the future, this can be improved by eliminat-

ing unnecessary (redundant) spatial modulation frequencies (at high-q) and increasing

the excitation light intensity. Note, the current light intensity on the sample surface

is smaller than the ANSI limit by the order of 3 (see Appendix A of Ref. 96).
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6.3 Summary and Outlook

We modified the SFD-FDOT technique for rapid estimation of the fluorophore

target depth and lateral margin. The new methodology was demonstrated to provide

depth sensitivity in a variety of experimental situations. The width of the target was

estimated with a reasonable negative margin, although this information became less

reliable for multiple targets with large vertical separations. These advances build upon

the prior work where the target size and depth were limited to point-like occlusions

located less than 3 mm below the surface. Moreover, the prior image reconstructions

were sensitive to the regularization parameter and the depth resolution was low.

The simple and straightforward analytic estimates proposed in the present work are

potentially attractive for neuro- and thoracic-surgeries because the technique can

rapidly and accurately deliver information about the depth and transverse margins

of a fluorescing target.

More broadly, the fluorophore target information obtained in this simple way

can provide priors to constrain more complex fluorescence tomography. Applications,

in this case, could extend beyond image guidance during tumor resection surgery.

Looking forward, the technique can be improved with more rapid and complete data

acquisition and type. Additionally, the use of improved theoretical models accounting

for the presence of ballistic light can also lead to improvements.
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Chapter 7

Summary

Optical imaging of photoluminescence from exogenous contrast agents provides

unique opportunities to measure observables that are not easily accessed. The life-

times of phosphorescent dyes enabled us to measure of oxygen concentration in the

vascular and extravascular compartments of the brain, and thereby test traditional

models for cerebral metabolism and neurovascular coupling. Moreover, fluorescence

imaging is increasingly utilized for image-guided tumor resection surgery, which has

largely relied on 2D images in reflection; our technical developments in fluorescence

imaging theory and instrumentation, and corresponding experimental demonstra-

tions, have provided advances which can improve upon current techniques for fast

characterization of tumor depth and transverse margins.

More specifically, Cerebral Metabolic Rate of Oxygen consumption (CMRO2) is a

key physiological variable that characterizes brain oxygen metabolism in steady-state

and during functional brain activation. We measured the spatiotemporal variation

of CMRO2 in steady-state and during functional activation using with two Oxyphors

(one in the vasculature and one in the extravascular tissue) for the first time. To this

end, we introduced a new optical technique for minimally-invasive real-time measure-

ment of the oxygen gradients between intravascular and extravascular tissue com-

partments of the brain using phosphorescence lifetime oximetry. The method enabled

computation and tracking of CMRO2 during functional activation with high temporal

resolution (⇠ 7 Hz), which, in principle, can be improved much more. In parallel,

we measured cerebral blood flow (CBF) using laser speckle fluctuation imaging. No-
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tably, in contrast to other approaches, our assessment of CMRO2 does not require

measurements of CBF or hemoglobin oxygen saturation thus making it possible to

compare CBF and CMRO2 as two independent variables.

Simultaneous measurement of piO2 and peO2, from which CMRO2 is deduced,

enabled us to explore traditional compartmental models of oxygen dynamics and

metabolism in a more rigorous way. In particular, we were able to analyze CMRO2

response using the full dynamic equations (with time-derivatives included) for the first

time. Thus, we could compare the predictions of the full-dynamic and the truncated-

dynamic or steady-state models using the same input data. The temporal di↵er-

ences observed at early times took first steps towards more rigorous confrontation of

the common assumptions made by the community. The truncated-dynamic CMRO2

closely followed conventional expectation with the dynamics of CBF rising nearly

simultaneously but slightly ahead of CMRO2. However, in case of the full-dynamic

CMRO2, CMRO2 rapidly rises ahead CBF, piO2 and peO2, triggering CBF response,

and then plateaus (briefly) and rises again (following CBF with a slight time-lag).

Importantly, these results depend critically on the molecular oxygen mass transfer

coe�cient, PSc for transport from inside to outside the capillaries. Our work sug-

gests that the community needs to measure this parameter better. Taken together,

the independent records of intravascular and extravascular partial pressures of oxygen

(piO2 and peO2), CBF and CMRO2 provided new information about the physiological

events that accompany neuronal activation.

In a di↵erent vein, our work with Spatial Frequency Domain Fluorescence Dif-

fuse Optical Tomography (SFD-FDOT), which was motivated by fluorescence image-

guided surgery for tumor resection, advanced the SFD field and showed how current

image-guided surgery techniques based on fluorescence can be improved per depth-

specificity and determination of lateral margins. Specifically, we demonstrated rapid
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reconstruction algorithms and associated instrumentation using the SFD-FDOT tech-

nique, but with compromises that save time and reduce computational complexity.

The algorithms utilized the variation of fluorescence intensity with respect to spatial-

modulation frequency to compute target depth. Then, using the aforementioned

depth information, the lateral margins of fluorescent targets are determined via an-

alytical inversion of the data. Both steps are computationally inexpensive and fast.

We characterized system performance in experiments with fluorescent contrast targets

embedded in tissue-simulating phantoms. Single targets (not point-like) were imaged

at varying depths as large as 1 cm, and multiple (two) targets at similar and dif-

ferent depths were also imaged. The experiments suggest that the rapid SFD-FDOT

approach could be useful in resection surgery and as a first step for more rigorous

SFD-DOT. The experiments also permitted evaluation of current limitations.

Looking forward, we can make clear progress in both arenas by addressing the

limitations discussed in Chapter 4 & 6. For simultaneous oxygen measurements,

further elucidation and accounting of systematic errors due to the di↵erent optical

depth penetration (for light excitation of the two Oxyphors) will generate more ro-

bust and reliable information about oxygen gradients between intra-/extravascular

compartments. Improvements in time-resolution by as much as 50x should also be

readily possible with better electronics. With these enhancements, further experi-

ments could shed light on oxygen metabolism study in a variety of situations, e.g.,

hypoxia, hyperoxia, hypercapnia, etc. Per the SFD-FDOT work, we next need to

apply it in clinical settings, i.e., neuro- and thoracic-surgery. This step is important

to confirm performance in vivo and to understand practical issues that could improve

instrumentation. Additionally, development of a theory to account for ballistic pho-

tons will improve depth sensitivity and multiple target experiment results.
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Appendix

This Appendix has been largely adapted from a pending publication: Chong, S. H.,

Ong, Y. H., El Khatib, M., Allu, S. R., Parthasarathy, A. B., Greenberg, J. H., Yodh,

A. G., & Vinogradov, S. A. (2022). Real-Time Tracking of Brain Oxygen Gradients

and Blood Flow during Functional Activation [Manuscript submitted for publication].

Department of Physics & Astronomy, University of Pennsylvania.

A.1 General Information

All solvents and reagents were purchased from standard commercial sources and used

as received. Polyethyleneglycol-amine monomethyl ether (MeO-PEG-NH2), Av. MW

1000, was obtained from Laysan Bio. CBzNH-AG1OH and PtTPP-OH were synthe-

sized as described previously [80, 44]. Size-exclusion chromatography (SEC) was

performed using Bio-Beads S-X1 (40� 80 µm bead size, Biorad) using THF as a mo-

bile phase. Column chromatography was performed using SelectoTM silica gel (Fisher

Scientific). Analytical thin-layer chromatography (TLC) was carried out using silica

gel matrix with a fluorescent indicator (layer thickness 200 µm) on aluminum sup-

port (SiliCycle). 1H and 13C NMR spectra were recorded on Bruker Neo400 (400.17

MHz for 1H, 100.6 MHz for 13C), UNI600 (600.1 MHz for 1H, 150.9 MHz for 13C)

and UNI500 (500.4 MHz for 1H, 125.8 MHz for 13C) spectrometers. Deuterated

solvents (CDCl3, CD2Cl2, DMSO-d6) were purchased from Cambridge Isotope Labo-

ratories, Inc. The NMR data were analyzed using MestReNova software (Mestrelab

Research). Mass spectra were recorded on a MALDI-TOF Bruker Daltonics Microflex

LRF instrument using ↵-cyano-4-hydroxycinnamicacid (CCA) as a matrix (positive-

ion mode). Samples were prepared by mixing a solution of the analyte in THF or

100



MeOH (10 µL, ⇠ 1 mM) with a solution of the matrix (100 µL, 10 mg/ml, 0.053 M)

in CH2Cl2/2-propanol (9:1). The sample, approximately 1 µL, was deposited on the

probe tip, dried and analyzed.

Artificial cerebrospinal fluid (aCSF) was supplied by the Cerebrovascular Group in

the Department of Anesthesiology and Critical Care at the University of Pennsylva-

nia. The ingredients for preparation of 1 L of aCSF are listed below: diH2O (1 L),

KCl (0.220 g), MgCl2 (0.132 g), CaCl2 (0.221 g), urea (0.402 g), dextrose (0.665 g),

NaCl (7.710 g), NaHCO3 (0.207 g / 100 mL; added on the day of use).

A.2 Synthesis of Oxyphor PtR4

CBzNH-AG1(GLuOtBu)2. To a solution of N -(benzyloxycarbonyl)-3,5-dicarboxy-

phenyl glycineamide, CBzNH-AG1OH (0.744 g, 2 mmol), in DMF (20 ml), a solution

of CDMT (0.878 g, 5.0 mmol) in DMF (4 ml) was added at 0oC, followed by immediate

addition ofN -methylmorpholine (1.1 mL, 10 mmol). The reaction mixture was stirred

at 0oC for 1 h, then a solution of glutamic acid di-tert-butyl ester hydrochloride (1.302

g, 4.4 mmol) in DMF (20 ml) was added, and the reaction mixture was stirred at room

temperature for 48 hours. The solvent was removed in vacuum, the resulting oil was

dissolved in CH2Cl2 (300 ml), washed with HCl aq. (1N, 100 ml), then with NaHCO3

aq. (10%, 2 ⇥ 100 ml) and dried over Na2SO4. The product was purified by column

chromatography (silica gel, CH2Cl2/MeOH, 25 : 1) to give the title compound as a

yellowish solid. Yield 1.22 g (78%). 1H NMR (DMSO-d6), � (ppm): 1.40 (s, 18H),

1.43 (s, 18H), 1.89�2.10 (m, 4H), 2.35 (t, J = 7.6 Hz, 4H), 3.85 (d, J = 6.0 Hz, 2H),

4.33� 4.39 (m, 2H), 5.07 (s, 2H), 7.23� 7.39 (m, 5H), 7.61 (t, J = 6.4 Hz, 1H), 8.00

(s, 1H), 8.19 (s, 2H), 8.75(d, J = 7.2 Hz, 2H ), 10.28 (s, 1H); 13C NMR (DMSO-d6),

� (ppm): 26.4, 28.1, 28.2, 31.8, 53.1, 66.0, 80.2, 81.1, 121.7, 128.20, 128.25, 128.8,
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135.5, 137.5, 139.3, 157.1, 166.9, 168.8, 171.4, 171.9; MALDI-TOF (m/z ): calcd. for

C44H62N4O13: 854.4, found: 893.5 [M+K]+.

Scheme S1. Synthesis of the Gen2 dendron NH2-AG1(GluOtBu)2.

Reagents and conditions: (a) CDMT, N -methylmorpholine, DMF, r.t., 48 h (78%);

(b) 10 wt. % palladium on carbon, THF, r.t., 14� 15 h (85%).

NH2-AG1(GluOtBu)2. CBzNH-AG1(GluOtBu)2 (1.2 g, 1.40 mmol) was dissolved

in THF:MeOH mixture (100 mL, 1:1), and the solution was deoxygenated by Ar

bubbling during 10 � 15 min. Pd/C (10 wt%, 100 mg) was added to the solution,

and the resulting mixture was flushed with hydrogen gas (H2) and left under stirring
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in H2 atmosphere (1 atm) for 14 � 15 h. The resulting mixture was passed through

a Celite 545 column and the product was washed o↵ the column with THF:MeOH

mixture (200 mL, 1 : 1). Concentrating the washings a↵orded the title compound as

a light-yellow solid. Yield: 0.86 g (85%). 1H NMR (DMSO-d6), � (ppm): 1.38 (s,

18H), 1.41 (s, 18H), 1.88-1.96 (m, 2H), 1.99-2.07 (m, 2H), 2.33 (t, J = 5.6 Hz, 4H),

3.29 (s, 2H), 4.31 � 4.35 (m, 2H), 7.99 (s, 1H), 8.23 (s, 2H), 8.72 (d, J = 6.0 Hz,

2H); 13C NMR (DMSO-d6), � (ppm): 26.4, 28.1, 28.2, 31.8, 45.9, 53.1, 80.3, 81.2,

121.5, 121.6, 135.4, 139.2, 166.9, 171.4, 172.0, 172.8; MALDI-TOF (m/z): calcd. for

C36H56N4O11: 720.4, found: 759.5 [M+K]+.

Scheme S2. Synthesis of Oxyphor PtR4.

Reagents and conditions: (a) HBTU, DIPEA, DMF, r.t., 96 h (70%); (b) TFA, DCM,
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r.t., 2 h (90%); (c) NH2-PEG (Av. MW⇠ 1000), HBTU, DIPEA, DMF, r.t., 10� 12

days (63%).

PtTPP-(AG1GluOtBu)8. To a solution of PtTPP-OH (0.040 g, 0.034 mmol) in

DMF (5 ml), HBTU (0.210 g, 0.554 mmol) was added, and the reaction mixture

was stirred for 10 min at room temperature. N,N -diisopropylethylamine (0.19 mL,

0.554 mmol) was added to the mixture, immediately followed by addition of NH2-

AG1(GluOtBu)2 (0.4 g, 0.544 mmol). The resulting mixture was stirred at r.t. for 96

h. The reaction mixture was poured into aqueous HCl (5%, 30 ml). The resulting red

precipitate was collected by centrifugation, washed with water (2⇥ 10 ml) and dried

in vacuum. After purification by SEC (S-X1, THF), the title porphyrin-dendrimer

was isolated as a red solid. Yield: 0.162 g (70%). 1H NMR (DMSO-d6), � (ppm):

1.34, 1.35 and 1.38 (s, 288H), 1.87� 2.05 (m, 32H), 2.30� 2.33 (m, 32H), 4.18 (br s,

16H), 4.31�4.35 (m, 16H), 6.62 (s, 4H), 6.86 (s, 8H), 7.99 (s, 8H), 8.21 (s, 16H), 8.71

(d, J = 6.0 Hz, 16H), 8.88� 8.92 (m, 16H), 9.01 (s, 4H), 9.34 (s, 8H), 10.4 (s, 8H).

PtTPP-(AG1GluOH)8. To a solution of PtTPP-(AG1GluOtBu)8 (0.115 g, 0.017

mmol) in dichloromethane (10 ml), trifluoroacetic acid (5 mL) was added dropwise,

and the mixture was stirred at r.t. for 2 h. The solvents were removed in a vacuum,

after which DCM (10 mL) was added and evaporated again. This procedure was

repeated twice to remove the remaining traces of TFA, after which the resulting

precipitate was dried. The product was used in the following step without further

purification. Yield: 0.076 g (90%).

Oxyphor PtR4. To a solution of PtTPP-(AG1GluOH)8 (0.075 g, 0.015 mmol) in

DMF (10 ml), HBTU (0.364 g, 0.96 mmol) was added, and the reaction mixture was

stirred for 10 min at room temperature. DIPEA (0.67 mL, 3.84 mmol) was added to
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the mixture, followed by the addition of solid mPEG-Amine (MW 1000, 0.96 g, 0.96

mmol). The reaction mixture was stirred at room temperature for 7 days. Additional

portions of HBTU (0.182 g, 0.48 mmol) and mPEG-Amine (MW 1000, 0.48 g, 0.48

mmol) were added to the mixture, and stirring continued for additional 5 days. The

reaction mixture was poured into diethyl ether (100 mL) and sonicated. The obtained

mixture was centrifuged, the supernatant was discarded, and the remaining dark red

viscous material was dissolved in THF (10 mL) and subjected to SEC (Bioard S-X1,

THF). The red-orange fraction was collected, the solvent was removed in a vacuum

and the product was dried. PtR4 was isolated as a dark red solid. Yield: 0.345 g

(63%).

A.3 Photophysical Properties of Oxyphor PtR4

Figure 38: Absorption (a) and phosphorescence (b) spectra of Oxyphor PtR4 in 50
mM phosphate bu↵er solution (pH 7.1, �ex = 512 nm).

The absorption spectrum of PtR4 recorded in 50 mM phosphate bu↵er solution

(pH 7.2) shows no traces of aggregation (Fig. 38). The photophysical properties

of Oxyphor PtR4 are summarized in Table A1. The phosphorescence emission max-

imum is 727 nm. The phosphorescence quantum yield was measured in an aqueous
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solution (phosphate bu↵er, pH 7.2, 23oC) relative to the fluorescence of rhodamine

6G (Rh6G) in EtOH (�fl = 0.94) and found to be 0.053.

Table 8: Photophysical constants of Oxyphor PtR4

Probe Absorption, nm Emissiona � / ⌧0 (µs)b

("⇥ 10�4, M�1cm�1)c �max nm
PtR4 403 (30.9) 660, 727 0.053 / 44

512 (3.2)

aThe emission spectra were recorded in 50 mM phosphate bu↵er solution (pH 7.2, 23oC), deoxy-

genated by Ar. bThe phosphorescence quantum yield (�) was determined relative to the fluorescence

of Rh6G (�fl=0.94) in EtOH; the phosphorescence lifetime at zero oxygen (⌧0) was measured using

a solution deoxygenated by Ar. cThe extinction coe�cient was determined assuming the molecular

weight of 36,410 Da.
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A.4 Oxygen Quenching Properties of Oxyphor

PtR4

Figure 39: Phosphorescence quenching plot of Oxyphor PtR4.

The oxygen quenching plots of Oxyphor PtR4 were measured in bu↵ered aqueous

solutions (20 mM phosphate, pH 7.2) in the absence and presence of bovine serum

albumin (BSA, 5%) and found to be nearly identical (Fig. 39). The data were fitted

to an empirical bi-exponential form (shown in Fig. 39), and its coe�cients were used

to convert the phosphorescence lifetime measured in vivo to pO2. The phosphores-

cence lifetime of Oxyphor PtR4 changes from ⇠ 8 µs at air saturation to ⇠ 43 µs at

zero-oxygen at (36.8oC).
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A.5 Optical Filter Configuration of Two-channel

Phosphorometer

Figure 40: Optical absorption and emission spectra of the probes and associated
laser lines and optical filters in Channels 1 and 2 of the phosphorometer. The spectral
ranges seen by the detectors (APDs) are shown by shaded areas. lp is the abbreviation
for long-pass filter, and sp is for short-pass filter.
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