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ABSTRACT

STATISTICAL APPROACHES TO REDUCING BIAS AND IMPROVING VARIANCE

ESTIMATION IN THE PRESENCE OF COVARIATE AND OUTCOME

MEASUREMENT ERROR

Lillian Boe

Pamela A. Shaw

Large epidemiologic studies with self-reported or routinely collected electronic health records

(EHR) data are frequently being used as cost-effective ways to conduct clinical research, but

these types of data are often prone to measurement error. While large epidemiologic studies

play a crucial role in understanding the relationship between risk factors and health out-

comes, such as disease incidence, these relationships cannot be properly understood unless

methods are developed that reduce the bias caused by errors in both exposure variables

and time-to-event outcome variables. Furthermore, variance estimates for outcome model

regression parameters can be quite large in the presence of complex error-prone exposures

and outcomes, yet strategies to improve variance estimation have been given little attention

in the measurement error literature. Throughout this dissertation, we address these gaps in

the literature by developing methodology that focuses on (1) reducing the bias that occurs

from both error-prone exposures and outcomes in large epidemiologic cohort studies with pe-

riodic follow-up, (2) improving statistical efficiency by leveraging error-prone, auxiliary data

alongside validated outcome data, and (3) considering alternative, better-behaved variance

estimation strategies that may be used when techniques for adjusting for measurement error

are applied. In Chapter 2, we present a method that combines an approach for addressing

errors in event classification variables with regression calibration, a popular technique for

addressing exposure error. This method reduces the bias induced by measurement errors in

a discrete time-to-event setting. We apply our method to data from the Women’s Health

Initiative (WHI) study to evaluate the association between dietary energy and protein and
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incident diabetes. Chapter 3 develops an approach for incorporating error-prone, auxil-

iary data into the analysis of an interval-censored time-to-event outcome. Here, the key

goal is to improve statistical efficiency in the estimation of exposure-disease associations.

We extend our methodology to handle data from a complex survey design and to be used

in conjunction with regression calibration. Using this approach, we assess the association

between energy and protein and the risk of diabetes in our motivating study, the Hispanic

Community Health Study/Study of Latinos (HCHS/SOL). In Chapter 4, we propose a sand-

wich variance estimator as an approach for accounting for the uncertainty added by using

an estimated exposure when regression calibration is applied to adjust for covariate error.

This variance approach broadly applies to other two-stage regression settings. We outline a

procedure for easily computing the sandwich in standard software and assess its properties

through a numerical study and through illustrative data examples from the WHI and HCH-

S/SOL studies. Our results show that this method may have advantages over commonly

applied, resampling-based variance estimation approaches.
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CHAPTER 1

Introduction

There has recently been increasing interest in using data from large epidemiologic studies

with routinely collected electronic health records (EHR) data as cost-effective ways to con-

duct clinical research. Large, prospective cohort studies are essential for identifying risk

factors for chronic diseases (e.g. diabetes, cardiovascular disease, and pulmonary disease)

in at-risk populations, but oftentimes have methodological complexities that need to be ad-

dressed in the statistical analysis stage. In particular, large cohort studies with routinely

collected or self-reported data have the potential for measurement error. Measurement error

has been shown to impact studies focused on nutritional epidemiology, physical activity,

air pollution, HIV, and several other areas relevant to public health (Keogh et al., 2020;

Shepherd and Shaw, 2020).

Measurement errors in both covariate and outcome variables pose a considerable challenge

to the reliable estimation of exposure-disease associations in cohort studies. The impact of

covariate measurement error has been well-studied, and consequently, methods have been

developed to reduce the bias caused by errors in covariates (Carroll et al., 2006; Yi, 2017).

Specifically, regression calibration is the most widely-used approach for addressing exposure

errors, likely because it is relatively intuitive to understand and straightforward to imple-

ment. This method involves building a “calibration" model for the expected value of the true

exposure given the error-prone variable and other observed, error-free covariates (Prentice,

1982). Regression calibration is an exact fix in linear models, but only an approximate cor-

rection for non-linear models. While outcome errors in time-to-event settings have been less

studied compared to covariate errors, a few methods have been developed to address errors

in binary outcome variables in discrete time-to-event settings (Meier et al., 2003; Magaret,

2008; Gu et al., 2015). Although correcting for measurement error is needed to make valid

statistical inference, there are few methods available that simultaneously correct errors in

both covariates and outcomes (Shaw et al., 2018). One of the key goals of this dissertation is
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addressing the errors that may occur in both covariates and outcomes in large, prospective

cohort studies.

Measurement error in covariates or outcome variables can apprexiably increase the un-

certainty in study estimates. Thus, in cohort studies where there is substantial exposure

measurement error, variance estimates can be quite large. Any ways to improve the variance

estimation of outcome model regression parameters have the potential to be very impactful.

One strategy for reducing the estimated variance in these settings is to leverage all available

outcome data. In some large cohort studies, error-prone outcome variables are available

alongside gold or reference standard outcome variables. In these settings, the error-prone

data can be thought of as “auxiliary" data that may be incorporated into the analyses in

order to improve statistical efficiency. Some authors have previously considered using aux-

iliary data to improve statistical efficiency in time-to-event settings (Pepe, 1992; Zee et al.,

2015; Fleming et al., 1994). However, none of these authors have considered the setting

common to epidemiologic cohort studies in which the auxiliary, error-prone outcome is ob-

tained through periodic follow-up and thus may be observed more frequently (potentially

both before and after) the corresponding gold standard outcome variable. Additionally,

no existing methods that leverage error-prone auxiliary outcome data have considered the

setting where exposure variables may be recorded with error as well.

When methodology to address measurement error is applied, additional steps are required

in the variance estimation stage. For example, when regression calibration is used to correct

for covariate error, the standard errors of the outcome model regression parameters need to

be further adjusted for the extra uncertainty added by the calibration model step. Very little

attention has been given to the comparison of competing approaches for variance estimation

that may be used to account for this extra uncertainty, such as the sandwich variance

estimator obtained by stacking the estimating equations from the calibration and outcome

models (Boos and Stefanski, 2013). In fact, many investigators often rely on resampling-

based approaches like the popular bootstrap, despite the fact that these methods tend to be
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computationally intensive and may also result in problematic confidence intervals (Efron,

1979, 1987). Alternative variance estimation strategies like the sandwich, which may have

better performance in certain scenarios, thus warrant consideration when applying methods

like regression calibration to adjust for measurement error. In this dissertation, we also focus

on improved variance estimation in the presence of measurement error, accomplished by (1)

leveraging error-prone outcome data to improve statistical efficiency and (2) considering

alternative, less popular strategies for variance estimation when techniques for adjusting for

covariate error are applied.

In Chapter 2, we introduce a practical approach to correcting errors in covariates and a

discrete time-to-event outcome that results in nearly unbiased estimates of the regression

parameters of interest in typical applied settings. This method uses a regression calibration-

type approach to correct biases in the outcome model regression parameters when continuous

covariates are recorded with error. Our method can accommodate errors in a discrete failure

time outcome variable when the sensitivity and specificity of the error-prone outcome are

known. We apply this method to data from the Women’s Health Initiative (WHI) study to

assess the association between dietary energy, protein, and protein density (percentage of

energy from protein) and incident diabetes when both the exposure and outcome variables

are recorded by self-report and hence subject to substantial error.

In Chapter 3, we develop an augmented likelihood approach that incorporates error-prone,

auxiliary data into the analysis of a gold-standard time-to-event outcome. The key goal of

this approach is to improve statistical efficiency in the estimation of exposure-disease asso-

ciations. To properly leverage the auxiliary data, we incorporate known values of sensitivity

and specificity into our analysis to correct for the bias induced by errors in our event clas-

sification variable. This method is extended to accommodate data from a complex survey

design so that it can be applied in our motivating study, the Hispanic Community Health

Study/Study of Latinos (HCHS/SOL). The proposed method is also used in combination

with regression calibration to additionally adjust for exposure error in order to assess the
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association between energy and protein and the risk of diabetes in the HCHS/SOL cohort.

In Chapter 4, we introduce a practical approach for computing the sandwich variance esti-

mator in two-stage regression model settings, such as regression calibration, to correct for

covariate error. Regression calibration can be viewed as a two-stage model setting where

in stage 1, a calibration model is fit to a subset to estimate the expected value of the un-

observed true exposure on all study participants and in stage 2, the outcome model is fit

to this estimated exposure and other confounders of interest. The sandwich variance esti-

mator is one strategy for variance estimation that accounts for the uncertainty added by

the calibration model step and the estimated exposure. We propose the sandwich estimator

as an alternative to the popular resampling variance estimators used in practice, i.e. the

bootstrap for the case where the data are a simple random sample setting and the multiple

imputation procedure of Baldoni et al. (2021) for the case where the data are from a com-

plex survey sampling design. A key reason the sandwich variance estimator has not been

frequently implemented is the lack of available software to readily compute this estimate.

We provide code illustrating how to easily compute the sandwich variance by taking advan-

tage of existing functions from R software and we have developed functions in R, available

on GitHub, which directly compute estimates of the sandwich variance for two stage regres-

sion model settings for a wide variety of regression models. We illustrate the performance

of the sandwich alongside its competing variance estimators using a simulation study and

by applying these approaches to data from the WHI and HCHS/SOL studies. In Chapter

5, we conclude by summarizing our research and highlighting how our work contributes to

the measurement error literature. Additionally, we discuss a few important areas of future

research that have been motivated by this dissertation.

4



CHAPTER 2

An Approximate Quasi-Likelihood Approach for Error-Prone

Failure Time Outcomes and Exposures

2.1. Abstract

Measurement error arises commonly in clinical research settings that rely on data from elec-

tronic health records or large observational cohorts. In particular, self-reported outcomes are

typical in cohort studies for chronic diseases such as diabetes in order to avoid the burden of

expensive diagnostic tests. Dietary intake, which is also commonly collected by self-report

and subject to measurement error, is a major factor linked to diabetes and other chronic

diseases. These errors can bias exposure-disease associations that ultimately can mislead

clinical decision-making. We have extended an existing semiparametric likelihood-based

method for handling error-prone, discrete failure time outcomes to also address covariate

error. We conduct an extensive numerical study to compare the proposed method to the

naive approach that ignores measurement error in terms of bias and efficiency in the estima-

tion of the regression parameter of interest. In all settings considered, the proposed method

showed minimal bias and maintained coverage probability, thus outperforming the naive

analysis which showed extreme bias and low coverage. This method is applied to data from

the Women’s Health Initiative to assess the association between energy and protein intake

and the risk of incident diabetes mellitus. Our results show that correcting for errors in both

the self-reported outcome and dietary exposures leads to considerably different hazard ratio

estimates than those from analyses that ignore measurement error, which demonstrates the

importance of correcting for both outcome and covariate error.

2.2. Introduction

Chronic diseases are often recorded primarily by self-reported diagnosis in large observa-

tional cohort studies. For example, in comparison to reference (gold) standard measures for

detecting diabetes, such as fasting glucose and hemoglobin A1c (HbA1c), self-reported dia-
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betes status is inexpensive and easily attainable. However, not all people who are diagnosed

with diabetes or other conditions will self-report that they have the disease. Reasons for

failing to report having a chronic condition include failure to be diagnosed, lack of under-

standing about the disease, and a belief that the disease has gone away if it is being properly

treated (Centers for Disease Control and Prevention, 2017; Shah and Manuel, 2008). Con-

versely, a positive disease status is occasionally reported when the disease is not actually

present (Ning et al., 2016; Schneider et al., 2012). Dietary intake, which is also commonly

recorded by self-report, is thought to play a crucial role in determining the risk of chronic

diseases such as diabetes and cardiovascular disease. In nutritional epidemiology, estimates

of diet-disease associations can be distorted due to measurement error in both self-reported

dietary exposures and disease outcomes. A new analytic approach is needed to properly

relate error-prone exposures with error-prone disease outcomes of interest. In this paper, we

have extended an existing semiparametric model for handling failure time outcomes assessed

through interval-censored, error-prone measures to also address measurement error in the

exposure variable.

There is ample literature available on methods for adjusting analyses with error-prone expo-

sures in the case of time-to-event outcomes (Carroll et al., 2006). In existing epidemiological

analyses, regression calibration is one of the most popular methods for addressing covari-

ate measurement error (Shaw et al., 2018). This method relies on building a calibration

model that relates the expected value of the unobserved true exposure to the observed data.

Prentice (1982) introduced the method for time-to-event outcomes. Rosner et al. considered

it for logistic regression, where a single or multiple covariates were error-prone Rosner et al.

(1989, 1990). In non-linear models, such as Cox and logistic regression, regression cali-

bration is considered a quasi-likelihood approach as it is generally only an approximate

correction,(Buonaccorsi, 2010) but it has been observed to do well for modest β and low

event rates. (Prentice, 1982; Carroll et al., 2006) The popularity of this approach likely has

to do with the intuitive appeal of the method and the ease of implementation. The method

proposed in this manuscript uses regression calibration in order to develop an estimator that
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will correct for both covariate and outcome error.

Compared to methods for addressing covariate error, there has been notably less investiga-

tion into methods that correct for errors that occur in the time-to-event outcomes them-

selves. In epidemiologic cohort studies, the time-to-event of interest is often ascertained

through periodic follow-up, thus resulting in data captured in fixed intervals. Thus, meth-

ods that address errors in the event indicator at each interval are of particular interest.

Balasubramanian and Lagakos (2003) developed estimation methods for the distribution of

the time-to-event that consider various periods of exposure and diagnostic tests with differ-

ent levels of accuracy. Meier et al. (2003) presented an adjusted proportional hazards model

for estimating hazard ratios in discrete time survival analysis when the outcome is measured

with error. Magaret (2008) considered methods that adjusted the proportional hazards

model to incorporate data from validation subsets for the case where the sensitivity and the

specificity of the diagnostic tests are unknown. All of this existing work assumes that the

covariates included in the time-to-event analyses are error-free, which is often untrue with

clinical data.

This manuscript specifically builds on the work of Gu et al., Gu et al. (2015) which in-

troduced a semiparametric likelihood-based approach for estimating the association of co-

variates with an error-prone discrete failure time outcome. Motivated by an example from

the Women’s Health Initiative (WHI), we extend this method to incorporate a regression

calibration fix that additionally adjusts for covariate measurement error and also allows for

strata-specific baseline hazards. Our method can be applied to a study cohort that has

collected follow-up data on an error-prone disease status variable at two or more distinct

visit times and has information available at baseline on specific covariates of interest. In the

presence of covariate measurement error, the proposed method can be considered when there

is data that informs the measurement error model. We must assume that (1) information

is available regarding the sensitivity and specificity of the outcome measure (2) a second

measure of the error-prone covariate(s) is available on at least a subset.
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Section 2.3 introduces the theoretical development of the method by providing notation,

constructing the likelihood function and discussing the proposed adjustment method that

corrects for outcome and covariate error. Next, we examine the numerical performance of

the proposed method with a simulation study in Section 2.4. In Section 2.5, we apply the

proposed method to evaluate the association between dietary energy, protein, and protein

density intake and incident diabetes in a subset of women enrolled in the WHI. Finally, we

highlight the important findings of this work and discuss potential extensions in Section 2.6.

2.3. Methods

2.3.1. Notation and Time-to-Event Model

Let Ti be the unobserved time-to-event of interest for subjects i “ 1, ..., N . Consider a

study with periodic follow-up where each subject may have a slightly different visit schedule

or missed visits. Define τ1, ..., τJ as the distinct possible visit times among all N subjects.

Denote τ0 “ 0 and τJ`1 “ 8. We assume that the time to the event of interest is continuous,

but follow-up occurs at discrete visit times. The follow-up time period can then be divided

into J ` 1 disjoint intervals, listed as follows: rτ0, τ1q, rτ1, τ2q, ...rτJ , τJ`1q. Assume that

all subjects in the study are event-free at time τ0. Later, we will relax this assumption.

Let ni be the number of visits for the ith subject, which we assume is random. In our

motivating data example, each subject self-reports his or her disease status at each visit

time, potentially with error, up until the first positive. Our method can also be applied

to the more general setting for error-prone outcomes in which follow-up continues beyond

the first positive. Define Yi and ti as the random 1 ˆ ni vector of error-prone outcomes

and corresponding vector of visit times for subject i. Specifically, define Yij as 1 if the jth

error-prone outcome for ith subject is positive, and 0 otherwise. Then, the joint probability

of the observed data for the ith subject is:

fpYi, ti, niq “

J`1
ÿ

j“1

θj PrpYi, ti, ni|τj´1 ă Ti ď τjq, (2.1)

where θj “ Prpτj´1 ă Ti ď τjq.
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We make the additional assumption that conditioned on the true event time Ti, the ni

error-prone outcomes Yij are independent, i.e. PrpYi|Ti, tiq “
śni
l“1 PrpYil|Ti, tilq. Thus,

other observed error-prone outcomes do not provide additional information about a specific

error-prone outcome beyond what is already given by the true time of event. Following the

notation and logic of Balasubramanian and Lagakos, Balasubramanian and Lagakos (2003)

it can be shown that for the case of a prespecified visit schedule, the likelihood becomes:

fpYi, ti, niq “

J`1
ÿ

j“1

θj

«

ni
ź

l“1

PrpYil|τj´1 ă Ti ď τj , tlq

ff

“

J`1
ÿ

j“1

θjCij , (2.2)

where Cij “
śni
l“1 PrpYil|τj´1 ă Ti ď τj , tlq. In Appendix A.2, we show how equation (2.2)

becomes the expression for a subject’s likelihood contribution.

For ease of presentation, we calculate Cij for the case of no missed visits, but the formula

can be easily adapted to accommodate missed visits by summing up the θj for the pτj´1, τjs

that define each subject’s observational interval. We assume constant and known sensitivity

pSeq and specificity pSpq; namely, Se “ PrpYil “ 1|τj´1 ă Ti ď τj , tl ě τjq and Sp “

PrpYil “ 0|τj´1 ă Ti ď τj , tl ď τj´1q. Then, the Cij terms take the following form:

Ci1 “ Se
řni

j“1 Yij p1 ´ Seq
řni

j“1p1´Yijq,

Ci2 “ Spp1´Yi1qp1 ´ SpqYi1Se
řni

j“2 Yij p1 ´ Seq
řni

j“2p1´Yijq,

...

CipJ`1q “ Sp
řni

j“1p1´Yijq
p1 ´ Spq

řni
j“1 Yij .

Now suppose we have the proportional hazards model, Sptq “ S0ptqexppxT βX`zT βZq. We

assume that one or more covariates are recorded with error. Define X˚
i as a p´dimensional

vector of covariates of interest that may be observed with error, and Xi a corresponding

p´dimensional vector of unobserved true exposure variables. We describe the error structure

of the observed error-prone covariate X˚ in Section 2.3.2. Let Zi be a q´dimensional vector

of precisely measured covariates (i.e. error-free) that may be correlated with Xi. Define

β “ pβX , βZqT . The likelihood can be rewritten in terms of the baseline survival probabilities
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S “ pS1, S2, ..., SJ`1qT defined by the random variable T0 with survival function S0ptq, where

Sj “ PrpT0 ą τj´1q. One then has 1 “ S1 ą S2 ą ... ą SJ`1 ą 0 and Sj “
řJ`1
h“j θh. We

can define a linear pJ ` 1q ˆ pJ ` 1q transformation matrix M such that θ “ MS. Finally,

define the pNq ˆ pJ ` 1q matrix D “ CM , where CNˆpJ`1q consists of the Cij elements

defined above. Following Gu et al., Gu et al. (2015) the log-likelihood can be rewritten as:

lpS, βq “

N
ÿ

i“1

log

˜

J`1
ÿ

j“1

DijS
exppxTi βX`zTi βZq

j

¸

. (2.3)

The Dij components of the log-likelihood consist of elements of the matrix D defined above

and are functions of the observed data, pXi, Zi, Yi, tiq, as well as Se and Sp. One can

apply the usual maximum likelihood approach to solve for the unknown parameters βX , βZ ,

S2,...,SJ`1. The covariance matrix can be found by inverting the Hessian matrix. Note that

the model above introduced by Gu et al. (2015) is considered semiparametric because we

do not make any assumptions about the form of the baseline survival probabilities, Sj , for

j “ 1, ..., J ` 1.

2.3.2. Proposed Method for Outcome and Covariate Error

We now extend the above method that corrects for outcome error in the discrete proportional

hazards model to also adjust for covariate error by adopting a regression calibration type

approach. In this section, we describe the regression calibration approach for covariate

measurement error, present our proposed method to adjust for covariate and outcome error,

extend our method to accommodate a baseline hazard that varies across strata, and extend

the method to handle false negatives that are mistakenly included in the analysis.

Regression calibration for covariate error

Regression calibration is an approach to correcting biases in regression parameters when

exposure variables are recorded with error, in which a calibration equation for the unobserved

exposureX is estimated. Namely, one builds a model for EpX|X˚, Zq, whereX˚ is the error-

prone observation or surrogate for X while Z are the other precisely observed covariates in
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the outcome model (2.3). Regression calibration may be used when X˚ follows the classical

measurement error model or whenX˚ has both systematic and classical random error. These

error settings will be explained in further detail in the subsequent section. Rosner et al.

(1989) introduced a post-hoc calibration fix in the logistic regression setting when there is

measurement error in a single covariate of interest and Rosner et al. (1990) extended the

method to handle multiple error-prone covariates in logistic regression. In each of these

approaches, the calibration equation is used to correct the naive parameter estimates that

are obtained from first fitting the outcome regression that ignores the measurement error.

An asymptotic formula for the variance that incorporates the uncertainty of the calibration

equation is derived using the Delta method. We will employ a similar post-hoc calibration

fix-up for the estimator that first corrects for outcome measurement error. We further

justify why this post-hoc correction approach is expected to work well in our discrete-time

proportional hazards setting at the end of this section.

Proposed approach for outcome and covariate error

Recall that Xi is a p´dimensional vector of true, unobserved covariates, while Zi is a

q´dimensional vector of observed, precisely measured covariates possibly correlated with

Xi. Instead of observing Xi, we assume an error-prone X˚
i is observed, where X˚

i is as-

sumed to be linearly related with Xi and possibly other covariates Zi. This error model has

been commonly applied in many settings, including nutritional epidemiology (Carroll et al.,

2006; Keogh et al., 2020). The regression calibration model then takes the following form:

Xi “ δp0q ` δp1qX
˚
i ` δp2qZi ` Ui, (2.4)

where Ui is a random, mean 0 error term, which is independent of X˚
i and Zi. Equation (2.4)

directly implies that our observed, error-prone variable X˚
i follows the linear measurement

error model, i.e. X˚
i “ αp0q `αp1qXi `αp2qZi ` ei, where the random error ei is independent

of Xi and Zi (Keogh et al., 2020). Note that we also assume non-differential error, i.e. the

distribution of T conditional on pX,X˚, Zq is equal to the distribution of T conditional on
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pX,Zq. The model parameters in equation (2.4) are identifiable if we have a calibration

subset available in which we observe the error-prone measure X˚
i , as well as a measure X˚˚

i

that is unbiased for the true Xi and follows the classical measurement error model:

X˚˚
i “ Xi ` ϵi, (2.5)

where ϵi is random, mean 0 error that is independent of Xi. X˚˚ is often referred to as an

imperfect reference or alloyed gold standard Shaw et al. (2020); Spiegelman et al. (1997).

Note that ϵi are assumed to be independent of all variables in the outcome model (2.3).

Observing the exact true exposure Xi in the ancillary data is a special case of observing

X˚˚
i where the error variance is 0, and the subset is typically called a validation subset. A

special case of the linear measurement error model occurs when αp0q “ αp2q “ 0 and αp1q “ 1,

and thus the observed error-prone measurement X˚
i has classical measurement error. In this

scenario, we can estimate the parameters of the calibration model by assuming that we

observe replicates of X˚. Ancillary data of this type is typically referred to as a reliability

subset.

When a calibration or validation subset is available, one can adopt a regression calibration

type approach to further correct the regression coefficients for error in the exposure variable.

In the case of a calibration subset, we regress X˚˚
i on the error-prone exposure, X˚

i , and

other covariates of interest Zi to fit the model:

X˚˚
i “ δp0q ` δp1qX

˚
i ` δp2qZi ` Vi, (2.6)

where Vi, is random, mean 0 error. Note the model in equation (2.6) differs from that in

equation (2.4) only in that the error term Vi incorporates the extra variability introduced

by the error term in X˚˚
i . Estimates of the coefficients from fitting this linear regression

can then be used to correct the β coefficients from the time-to-event model. Following the
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approach of Rosner et al., Rosner et al. (1990) the corrected β can be found by solving:

β̂ “ β̂˚∆̂´1, (2.7)

where β̂˚ is the partially “naive" regression coefficient obtained from the time-to-event model

ignoring the error in X˚, and ∆̂, the estimated multivariate correction factor, is defined as:

∆̂ “

»

—

–

δ̂p1qpˆp δ̂p2qpˆq

0qˆp Iqˆq

fi

ffi

fl

.

(2.8)

The variance-covariance matrix Σ for β̂ is calculated using the multivariate delta method.

Assume that β̂˚ and ∆̂ are independent, which holds if the calibration subset is an indepen-

dent group of individuals from the main study (i.e. the main study data and the calibration

subset are either independent data sets or are mutually exclusive subsets of the same set

of data) and approximately holds if the number of subjects in the calibration subset, nc, is

a small percentage of the main study sample size, N (Rosner et al., 1989). Once we make

this connection, we see that we can apply the same formulas as Rosner et al. (1990) and

therefore the pj1, j2qth element of Σ̂ for β̂ is

Σ̂βpj1, j2q –

´

Â1Σ̂β˚Â
¯

j1,j2
` β̂˚Σ̂A,j1,j2 β̂

˚1

, (2.9)

where Â “ ∆̂´1, Σ̂β˚ is the corresponding estimated variance-covariance matrix, and Σ̂A,j1,j2

is described below. Note that Σ̂β˚ can be estimated from the model introduced above that

only adjusts for outcome error. The matrix Σ̂βpj1, j2q is essentially a sum of two pieces: the

first can be viewed as the contribution of the uncertainty in estimating β˚ and the second

is a contribution of the uncertainty in the calibration coefficients. Following Rosner et al.,

Rosner et al. (1990) the pi1, i2qth element of Σ̂A,j1,j2 , for i1, i2, j1, j2 “ 1, ..., w, pw “ p` qq is

Σ̂A,j1,j2 –

w
ÿ

r“1

w
ÿ

s“1

w
ÿ

t“1

w
ÿ

u“1

Âi1rÂsj1Âi2tÂuj2Covp∆̂rs, ∆̂tuq. (2.10)
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In the simple linear regression case, the post-hoc correction presented in equation (2.7)

reduces to the following familiar form: β̂ “
β̂˚

δ̂
, where β̂˚ is the estimate for β obtained

from the “naive" regression using X˚
i that ignores the error in the covariate of interest, and

δ̂ is the estimate of the attenuation coefficient from the simple linear regression correction.

Similarly, the variance estimator for this correction is easily calculated using the univariate

delta method as varpβ̂q “ 1
δ̂2
varpβ̂˚q `

β̂˚2

δ̂4
varpδ̂q.

Rosner et al. (1990) justified this proposed correction for logistic regression for small β. One

can use a Taylor series approximation to show when this method can be expected to work

similarly for the Cox proportional hazards model. Specifically, Green and Symons (1983)

used a linear Taylor series expansion to illustrate the approximate mathematical equivalence

between the logistic regression model and the Cox proportional hazards model when the

event of interest is rare, the follow-up time is short, and the baseline hazard in the Cox model

is constant. The post-hoc regression parameter correction developed for logistic regression is

expected to do similarly well for the Cox proportional hazards model for settings that uphold

these assumptions. We explore this further with a numerical study. In Appendix A.3, we

establish the asymptotic properties of our estimator. Computational details and R code for

implementing the proposed method are presented in Appendix A.1. The R code used to

implement all simulations is available on GitHub at https://github.com/lboe23/Outcome-

Error-RC.

Strata-specific baseline hazards

For a continuous failure time outcome, the proportional hazards model takes the familiar

form Sptq “ S0ptqexppxT βX`zT βZq. Under this assumption, the baseline survival function

S0ptq and baseline hazard function λ0ptq are shared by all subjects in the data. Oftentimes,

however, this assumption is invalid and we expect baseline survival to differ across groups

defined by one or more covariates. To address the issue of non-proportional hazards, we

let the survival function for a subject from stratum k be Skptq “ S0kptqexppxT βX`zT βZq,

k “ 1, ...,K, where S0kptq is the baseline survival for all individuals in stratum k.
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In a discrete proportional hazards model that incorporates stratification, we allow strata-

specific versions of the baseline survival function introduced in Section 2.3.1, such that

Sk “ pS1k, S2k, ..., SpJ`1qkqT . We can accordingly modify the log-likelihood function from

equation (2.3) to allow for stratification on one or more predictors. As in the continuous time

setting, the stratified log-likelihood for all N subjects is a simple sum of the log-likelihood

for each stratum. Now, in our discrete failure time setting, the log-likelihood function for

the Nk subjects in stratum k is given by:

lkpSk, βq “

Nk
ÿ

i“1

log

˜

J`1
ÿ

j“1

DijS
exppxTi βX`zTi βZq

jk

¸

. (2.11)

Correspondingly, the log-likelihood for all N subjects is calculated as follows:

lpSk, βq “

K
ÿ

k“1

«

Nk
ÿ

i“1

log

˜

J`1
ÿ

j“1

DijS
exppxTi βX`zTi βZq

jk

¸ff

. (2.12)

Using this likelihood, we can solve for the unknown parameters βX , βZ , S2k,...,SpJ`1qk, k “

1, ...,K and compute the estimated covariance matrix as described in Section 2.3.1. Although

the baseline survival functions are different for each stratum, the coefficients βX and βZ are

assumed to be uniform across all strata. Note, in the setting without misclassification in the

event indicator, strata should be chosen such that each stratum contains subjects with the

event of interest, as a stratum with no events does not contribute any information to the

analysis (Harrell Jr, 2015). However, with a sensitivity less than 1, events and non-events

of a stratum both contribute to the likelihood (2.12). Under this model, we can apply the

same post-hoc fix introduced in Section 2.3.2 to also correct the estimated coefficients for

exposure error.

Adjusting for false negatives at baseline

The proposed method can be modified to handle the case in which individuals with a baseline

false negative test are erroneously included into the analysis. This simple extension of the

method applies to scenarios in which subjects are only included in the study if they report
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being event-free at baseline. This extension is motivated by the analysis approach of Tinker

et al., Tinker et al. (2011) which excluded anyone with a positive self-report at baseline. To

allow for a non-zero probability of a baseline false negative test, we will now assume S1 ă 1.

Let Ri and Ei be the observed error-prone event status at baseline and the unobserved true

event status at baseline, respectively. Consider all subjects in the study that have a negative

error-prone outcome at baseline, i.e. Ri “ 0, and are therefore included in the analysis

population. Define η as the negative predictive value, or the probability that a subject with

a negative error-prone outcome is truly disease-free, i.e. η “ PrpEi “ 0|Ri “ 0q, which we

assume is constant across all N subjects. Further assume all subjects with a negative error-

prone outcome who are truly disease-free constitute a random sample of all subjects who are

truly disease-free at baseline, so that PrpYi, ti, ni|Ei “ 0, Ri “ 0q “ PrpYi, ti, ni|Ei “ 0q.

Then, the likelihood function for subject i can be expressed as follows:

fpYi, ti, niq “ PrpYi, ti, ni|Ri “ 0q

“ ηPrpYi, ti, ni|Ei “ 0, Ri “ 0q ` p1 ´ ηqPrpYi, ti, ni|Ei “ 1, Ri “ 0q

“ η
J`1
ÿ

j“1

DijS
exppxTi βX`zTi βZq

j ` p1 ´ ηqDi1S
exppxTi βX`zTi βZq

1 .

Thus, the log-likelihood for all N subjects is

lpS, βq “

N
ÿ

i“1

log

˜

Di1S
exppxTi βX`zTi βZq

1 ` η
J`1
ÿ

ją1

DijS
exppxTi βX`zTi βZq

j

¸

. (2.13)

2.4. Numerical Study

We examine the numerical performance of our proposed estimator using a simulation study.

We compare our estimator to the results from the “true" model, in which a discrete propor-

tional hazards model is fit with the true (error-free) event time and covariate values, and the

“naive" model, which fits the same model with the error-prone outcome and covariate. In

all simulations, we assume a single error-prone covariate of interest. We assume that there
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are two precisely measured covariates, which are moderately correlated with the error-prone

variable. Our results show how our estimator performs under different levels of outcome

sensitivity and specificity, error variance in the covariate, sample size, and censoring rates.

We present percent biases, average standard errors (ASE), empirical standard errors (ESE),

and 95% coverage probabilities (CP) across these various settings. Mean percent bias is

calculated as follows: β̂´β
β ˆ 100, where β is the target regression parameter of interest.

The ASE is defined as the mean of the estimated standard errors from the model, while

the ESE is the empirical standard deviation of the estimated coefficients across simulations.

Additionally, we present type I error results for βX1 “ 0 and α “ 0.05, where βX1 is the

regression parameter corresponding to the error-prone covariate.

2.4.1. Simulation Setup

We present results from 1000 simulations run in R version 3.5.2 (R Core Team, 2018). The

three covariates, X1, Z1, and Z2 were generated from a multivariate normal distribution,

all with mean 0 and a covariance matrix with all diagonal elements equal to 1 and all off-

diagonal elements equal to 0.3. We generated our error-prone covariate X˚
1 using the linear

measurement error model, X˚
1 “ α0 ` α1X1 ` α2Z1 ` α3Z2 ` e, with α0 “ 1, α1 “ 0.8,

α2 “ 0.3, and α3 “ 0.5. We assumed e „ Np0, σ2q and considered σ2 values of 0.59 and

1.72, which correspond to estimated δp1q values of approximately 0.60 and 0.30, respectively.

Later, we assess how our method performs when error is not normally distributed, but

instead e „ .4N p0, 1q ` .6N p2, 1.5q and e distributed as a t with 4 degrees of freedom

(df). For all simulations, there are N “ 1000 subjects in the main study data. We assume

our calibration subset is a random sample of nC “ 500 subjects from the main study. The

measure approximating X1 in the calibration subset, X˚˚
1 , is generated to follow the classical

measurement error model from equation (2.5), where ϵ „ N p0, 0.06q.

We considered typical settings for which regression calibration has been observed to perform

well, including a moderate βX1 and a higher censoring rate (Shaw and Prentice, 2012). The

true log hazard ratios were selected to be βX1 “ logp1.5q, βZ1 “ logp0.7q, and βZ2 “ logp1.3q.
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Later, we set βX1 “ logp3q to assess how the method performs under a more extreme

regression coefficient corresponding to the error-prone covariate. The true time-to-event

was generated from a continuous time exponential distribution. To mimic the settings of

real data, we considered a follow-up schedule with four possible visit times. To obtain

an average true censoring rate (CR) of approximately 0.90, we set the visit times to be

t2, 5, 7, 8u with baseline hazard rates of 0.012 and 0.008 for βX1 “ logp1.5q and βX1 “ logp3q,

respectively. Fixing the visit times at t1, 3, 4, 6u and baseline hazard rates at 0.094 and

0.076 for βX1 “ logp1.5q and βX1 “ logp3q, respectively, leads to an average true CR of

approximately 0.55. Note that the visit times are not required to be equally spaced. Figure

A.1 in the Appendix depicts the estimated nonparametric maximum likelihood estimators

of the survival distribution for the true and error-prone outcomes under the two CRs for

βX1 “ logp1.5q for a single simulated data set.

To assess how our method performs when the baseline hazard varies across strata, we sim-

ulate four approximately equal sized strata. For test times at t2, 5, 7, 8u, we let the four

baseline hazard rates be 0.008, 0.010, 0.011, and 0.019, which resulted in an overall censoring

rate of approximately 90%. Similarly, to obtain an overall censoring rate of approximately

55%, the baseline hazard rates for each stratum were fixed at 0.090, 0.080, 0.075, and 0.131

for visit times at t1, 3, 4, 6u.

To capture the interval in which each simulated event occurred, we created an indicator for

whether or not the current visit time was greater than the actual event time itself. This

indicator variable was “corrupted" using sensitivity and specificity values in order to create

the error-prone vector of outcomes, Yi. To mimic a diagnostic test with different levels

of accuracy, we considered the case where sensitivity “ 0.90 while specificity “ 0.80, and

sensitivity “ 0.80 while specificity “ 0.90. Later, we assess the performance of the proposed

method when a baseline negative predictive value (η) less than 1 is incorporated into the

analyses to adjust for erroneously included false negative participants. We vary η between

0.98 and 0.90. To simulate this scenario, we set the true time-to-event equal to 0 for a fixed
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proportion of subjects, η, included in the data. This represents an event time prior to the

start of the study. Additionally, we show that the proposed method can handle different

visit structures by allowing each visit to be subject to a constant, independent probability of

missingness, which mimics the Missing Completely at Random (MCAR) setting for missing

data. To simulate this, we create a binary variable indicating whether the jth visit is missing

for each subject using a fixed probability PMiss of either 0.10 or 0.40. We further assess

the method under parameters that mimic the structure of the WHI data example, with

N “ 65, 000, nC “ 500, Se “ 0.61 and Sp “ 0.995, η “ 0.96, and a censoring rate of 95%

for the error-prone discrete failure time. To simulate self-reported outcomes in the WHI

data, we stopped visit times for each subject after the first positive error-prone outcome.

Regression coefficients for the discrete time Cox proportional hazards model and the true

data can be estimated by fitting a generalized linear model assuming the binomial outcome

and complementary log-log link (Hashimoto et al., 2011).

2.4.2. Simulation Results

Tables 2.1-2.4 present estimates of mean percent bias, ASE, ESE, and 95% CP across the

various settings described above. For Table 2.1, we consider the case where βX1 “ logp1.5q.

Overall, we see that the proposed method improves over naive analyses in bias and in the

nominal coverage of 95% confidence intervals. In fact, under various different settings, the

percent bias of our parameters of interest never exceeds 5%. Additionally, we maintain

nominal coverage for a 95% confidence interval. Furthermore, our ASEs closely resemble

the ESEs, demonstrating that our standard error estimates also performed well. In contrast,

for the analyses that ignore measurement error, estimates of βX1, βZ1, and βZ2 have bias as

high as ´96.33% and attain very little coverage. Table A.1 in the Appendix further shows

results for the method that corrects for covariate error only and the method that corrects

for outcome error only under these same simulation settings. Regression parameters for the

method correcting for only covariate error have absolute mean percent biases ranging from

47.05 to 82.31, while the method correcting solely outcome error has bias ranging from 5.840

to 70.28. Unsurprisingly, the proposed method greatly improves over all three alternative
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approaches that ignore measurement error to some degree.

In Table 2.2, we set βX1 “ logp3q. The method still performs reasonably well when the

censoring rate is high (CR = 0.90), as absolute percent bias stays below 12% and nominal

coverage is maintained. However, when the censoring rate decreases to 0.55, we begin to

see an increase in bias and a steep decrease in coverage, particularly for βX1. This is

unsurprising, as regression calibration is known to break down with a larger β coefficient

and a higher event rate (Shaw and Prentice, 2012). We observe that even in the most

challenging scenarios for the proposed method, i.e. a more extreme βX1, less censoring, and

more covariate measurement error, the percent attenuation bias (coverage) was 17% p77%q

compared to 91%p0%q for the naive analysis.

In Table 2.3, we examine the relative performance of our proposed method when the error

in X˚ no longer follows a normal distribution. Here, we let the error in X˚ follow either

a t distribution with 4 df, or a mixture of two normals, as described in the simulation

setup. On average, we observe δp1q “ 0.27 when the error in X˚ follows the t distribution

and δp1q “ 0.21 when the error follows the mixture distribution, which reflects substantial

error in our simulated covariate of interest in all scenarios. Since the applied regression

calibration method assumes a first order approximation to estimate EpX|X˚, Zq, we expect

the proposed method to perform best when the error in X˚ is normally distributed. Thus,

it is unsurprising that the mean percent bias for the proposed method is a bit higher for

βX1 under these settings, particularly when the error follows a t distribution. Nonetheless,

absolute percent bias stays under 4% in all scenarios. Most intervals still come very close to

achieving the nominal level of 95% CP. Our proposed approach still outperforms the naive

method, which again shows severe bias of up to ´97.65% and poor coverage.

Table 2.4 shows the performance of the proposed method alongside the naive method in terms

of mean percent bias, ASE, ESE, and 95% CP when both approaches allow for stratification.

In this table, we revert to letting the error in X follow a normal distribution and set βX1 “

logp1.5q. We assume that there are four equally-sized strata. Similarly to what we observed
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in Table 2.1, we see that the method performs well in terms of bias and coverage. Absolute

bias for βX1, corresponding to the error-prone covariate, ranges from 0.310% to 1.893% and

is therefore quite low in all scenarios. The standard error estimator works well, as indicated

by the attainment of nominal coverage. Again, we see extremely high bias for the naive

approach, ranging from ´68.31% to ´96.68% for βX1.

Type I error results for the coefficient corresponding to the error-prone covariate are pre-

sented in Table 2.5. Type I error values ranged from 0.039 to 0.058 across different values

of Se, Sp, δp1q, and CR. With 1000 simulations, a 95% confidence interval based on the true

error rate α “ 0.05 is p0.036, 0.064q. All calculated error rates in Table 2.5 are within sim-

ulation error of the truth, indicating that type I error is preserved in the proposed method

for all settings.

Table A.2 of the Appendix demonstrates the performance of the proposed method, now in-

cluding adjustment for an imperfect baseline negative predictive value. Under different levels

of covariate error and changes to the sensitivity and specificity, the bias of our parameters

remains under 6% and nominal coverage for a 95% confidence interval is maintained, illus-

trating that the method performs well. We observe that the performance of the proposed

method surpasses that of the naive method, which shows excessive bias in the parameters

of interest, ranging from ´79.01% to ´97.33%.

In Table A.3 of the Appendix, we show that the proposed method can accommodate missed

visits. Our approach performs well in all scenarios, maintaining an absolute mean percent

bias of under 4.353% when we let each visit to be subject to either 10% or 40% missingness.

When there are missed visits, the proposed method outperforms the naive method, which

shows extreme mean percent bias of up to ´96.85%.

Finally, we present results for the simulations that mimic the structure of the WHI data in

Table A.4 of the Appendix. We see that the proposed method works well under measurement

error settings similar to that of the WHI, maintaining an absolute percent bias of under 0.8%
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for all scenarios. Again, the proposed method outperforms the naive method, in which we

see absolute percent bias as high as 89.53% for the regression parameter of interest and 0%

coverage probability for many scenarios. Similarly, the methods that correct for covariate

error only and outcome error only both show extreme bias and inadequate coverage under

these settings.

2.5. Women’s Health Initiative (WHI) Example

2.5.1. WHI Study

The Women’s Health Initiative is a collection of studies launched in 1993 that together

investigated the major causes of morbidity and mortality in US post-menopausal women

(The Women’s Health Initiative Study Group, 1998). We seek to examine the association

between energy, protein and protein density (percentage of energy from protein) intakes

with the risk of diabetes when all three exposures as well as diabetes status are self-reported

and subject to error (Neuhouser et al., 2008; Gu et al., 2015). We analyze data on post-

menopausal women aged 50-79 who participated in either the comparison arm of the Di-

etary Modification trial (DM-C) or the Observational Study (OS) and who had an average

follow-up of approximately 9 years (Ritenbaugh et al., 2003; Langer et al., 2003). Neither

women from the DM-C nor the OS received study interventions. The WHI also included the

nutritional biomarker study which collected objective recovery biomarkers for energy and

protein intake, thought to have only classical measurement error, on a subset of participants

pnC “ 544q. These biomarkers were previously used to develop calibration equations for the

self-reported intakes of energy, protein and protein density (Neuhouser et al., 2008). Using

these calibration equations, Tinker et al. (2011) reported incident diabetes hazard ratios

in this cohort for energy, protein, and protein density that were corrected for the error in

self-reported dietary exposures. Self-reported diabetes in the WHI has been reported to

be subject to error (Margolis et al., 2008). We apply our proposed method to correct for

error in both the exposure and the diabetes failure time outcome. Our goal was to answer

a similar research question as Tinker et al., Tinker et al. (2011) only to use our method
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that additionally adjusts for error in the diabetes outcome. We adopted the same exclusion

criteria as Tinker et al. (2011) in order to arrive at our final analytic data set of 65,358

participants. In short, these criteria attempt to align the characteristics of DM-C and OS

cohorts and exclude those with missing data or who reported diabetes at baseline. Baseline

was defined as the time of the first self-reported dietary assessment post-enrollment, year 1

for the DM-C and year 3 for the OS. Further details are provided in Appendix A.4.

We started with the previously developed calibration equations for dietary energy, protein,

and protein density from Neuhouser et al., Neuhouser et al. (2008) which we call our “base"

calibrations. Body mass index (BMI), age, race-ethnicity, income, and physical activity were

included in the energy calibration model; BMI, age, race-ethnicity, income, and education

for protein; and BMI, age, and smoking status for protein density. To avoid bias, regression

calibration requires the calibration model to include the same covariates as the outcome

model (Rosner et al., 1990; Kipnis et al., 2009). We only considered the form of regression

calibration in which the variables in the calibration and outcome models are exactly aligned.

Thus, we extended each base calibration to include all predictors from our outcome model.

Specifically, education, hypertension, and alcohol use were added to all calibrations. For

each of the three nutrients, the calibration equation was fit by regressing the biomarker

value pX˚˚q on the corresponding self-reported value and participant characteristics, as

described above.

In the WHI, prevalent diabetes was recorded via a self-reported questionnaire at baseline.

We consider data from 8 years of annual follow-up visits in our analyses. Only the censored

event-time was recorded in continuous time in our analytical dataset. Thus, we discretized

the available data by dividing the follow-up time into 9 possible intervals. Then, for all

65,358 women in our analytic cohort, we considered the time at which the first occurrence

of self-reported diabetes or censoring time was recorded and assumed that the occurrence

of the censored self-reported outcome happened in the annual interval that the event time

fell into. We note that in other settings our method could accommodate an increase in the
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number of time intervals if follow-up occurred more frequently than once a year (e.g. a

bi-annual visit structure).

Self-reported diabetes in the WHI was previously reported to have a sensitivity of 0.61,

specificity of 0.995, and a baseline negative predictive value of 0.96 (Gu et al., 2015). We in-

corporated these values into our analyses. We also considered a sensitivity analysis in which

we examined the results for a negative predictive value of 1 and explored cohort-specific

values of sensitivity and specificity. All diabetes risk models were adjusted by standard risk

factors, also included in the calibration equations. Additionally, we stratified our discrete

proportional hazards models on age in 10-year categories and DM-C or OS membership to

better approximate previous analyses. Because BMI may be only a mediator for energy

intake or may possibly also be an independent risk factor, it is not clear whether adjusting

for BMI in our diabetes risk model is appropriate due to the challenge of overcontrolled or

undercontrolled models, as discussed in Tinker et al. Tinker et al. (2011) Thus, we ran each

outcome model with and without BMI.

To fit the naive model, we used the binomial generalized linear model with the complemen-

tary log-log link. To fit the model corrected for covariate error only, we used this same

approach, then adopted the post-hoc matrix correction and corresponding variance adjust-

ment described in the body of this paper. We applied our proposed approach to correct for

error in both the self-reported diabetes outcome and dietary exposures. In all models, we

used log values of dietary energy, protein, and protein density. We present hazard ratios

(HR) and 95% confidence intervals (CI) associated with a 20% increase in consumption.

2.5.2. Results

Incident diabetes was reported in 3053 (4.7%) of the 65,358 participants of analytic cohort.

Table 2.6 shows the results for the three different analysis approaches. In the BMI-adjusted

analysis, the HR (95% CI) for a 20% increase in energy intake was 0.822 (0.512, 1.318) for the

proposed approach compared to 1.041 (0.758, 1.492) for the covariate-error adjusted method

and 1.002 (0.986, 1.018) for the naive approach. Note, however, that the incident diabetes
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is not significantly associated with increasing energy in any of these three models. Without

BMI in the outcome model, the proposed method estimated a HR of 1.189 (0.836, 1.692)

for a 20% increase in energy intake, compared to 1.421 (1.043, 1.938) for the covariate-error

adjusted method and 1.024 (1.008, 1.040) for the naive method. In this case, adjusting for

error in the self-reported outcome led to qualitatively different results in that the HR was

about 20% smaller and no longer significant.

When we apply the proposed method, a 20% increase in protein intake is associated with a

1.077 (0.978, 1.186) HR, compared to a HR of 1.121 (1.036, 1.213) for the covariate-error

adjusted method and 1.024 (1.010, 1.039) for the naive approach. When we do not adjust

for BMI, all three approaches result in HRs that are significantly associated with an increase

in protein consumption. For protein density, whether or not we adjust for BMI, all three

approaches show that a 20% increase in intake is positively associated with risk of diabetes.

When we adjust for BMI, the HR estimated by the proposed method, 1.266 (1.115, 1.436),

is fairly similar to the HR estimated by the method that adjusts for covariate error only,

1.243 (1.125, 1.374), and somewhat higher than the HR estimated by the naive method,

1.100 (1.064, 1.137). We note some of our HRs differ from the results reported by Tinker

et al. Tinker et al. (2011) We believe this is due to a few discrepancies in the analytical

dataset and model and is discussed further in Appendix A.4.

In Table A.5 in the Appendix, we present a WHI data analysis results table that ignores the

issue of an imperfect baseline self-report and assumes the negative predictive value is 1. For

energy and protein density, assuming baseline self-reports are perfect does not qualitatively

change our results. However, for protein, the HR (95% confidence interval) estimated by the

proposed method is 1.077 (0.978, 1.186) when the negative predictive value is set to 0.96,

but changes to 1.107 (1.025, 1.195) when the negative predictive value is set to 1. Here, we

see that because our estimate is so close to a boundary, incorporating the uncertainty at

baseline into our analyses does slightly change our results.

Since we analyzed data on participants from two different cohorts, the WHI DM-C trial and

25



the WHI OS, we investigated how cohort-specific sensitivity and specificity might impact

our HR estimates. We used a weighted-average approach to select sensitivity and specificity

values for the DM-C and OS trials such that the overall values worked out to be 0.61 and

0.995, respectively. One might hypothesize that the clinical trial (WHI DM-C) recorded

data with higher accuracy than the larger observational study (OS), though in our analysis

we also consider the possibility that sensitivity and specificity are higher for the observa-

tional study. Table A.6 in the Appendix presents the results of this analysis. We observe

that implementing slightly variable cohort-specific sensitivity and specificity values was not

enough to qualitatively impact our conclusions regarding the significance of the association

between an increase in intake of dietary energy, protein, or protein density with the risk of

diabetes.

2.6. Discussion

In settings such as large epidemiological studies, where outcomes or complex exposures are

often collected by self-report, both the exposure and outcome of interest can be subject to

measurement error. This was observed in our data example from the WHI, but has also been

observed in other cohorts where data were reliant on routinely collected electronic health

records data (Shepherd and Yu, 2011; Oh et al., 2019). This paper presents a method to

accommodate errors in continuous covariates and a discrete failure time outcome variable

when sensitivity and specificity of the error-prone outcome are known; when error rates are

unknown, our method can be used as a sensitivity analysis using hypothesized values. The

proposed method can be applied when, for a subset, there is either a gold standard measure

of the exposure or a second measure with independent, unbiased (classical) measurement

error available. For the WHI, the calibration subset containing the variable with classical

measurement error was sampled after baseline with the assumption that the measurement

error model did not change over time.

We studied the relative performance of the proposed method under various settings of sen-

sitivity, specificity, error variance of the exposure, and censoring rate, including those where
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ignoring the measurement error led to extreme bias in the regression parameters of interest.

In all settings studied, our method led to nearly unbiased estimates of the regression param-

eters, maintaining bias of less than approximately 19% for non-zero regression parameters

and generally much less bias when the underlying log-hazard parameter β was of moderate

size (e.g., logp1.5q). Furthermore, our variance estimator performed favorably, as evidenced

by the coverage probability and ASEs that closely resembled ESEs. Our variance estimator

assumes approximate independence of β̂˚ and δ̂. While we have not verified independence

of these components for all settings, even in our settings where the calibration subset was

50% of the cohort, we observed no appreciable correlation between these estimates (data not

shown). If there is concern that this approximate independence does not hold, one could

instead consider a bootstrap approach for variance estimation. For our simulations where

βX1 “ 0, we observed that type I error rates were preserved. Our adjustment for covari-

ate error relied on a regression calibration type adjustment. As expected from previous

literature, this method performs best when the regression parameter corresponding to the

error-prone covariate is of modest size, the error in the covariate is normally distributed, and

the censoring rate is high (i.e. the event of interest is rare). Our method in particular shows

more appreciable bias when the regression parameter is of large size, e.g. βX1 “ logp3q,

especially for a lower censoring rate. This method proved to be fairly robust to changes in

the distribution of the error in X studied; for more extreme deviations from normality, this

may no longer be true. Our method also performs favorably after stratifying on one or more

covariates. Lastly, the proposed method works well under simulation parameters that mimic

the structure of the WHI data. In all scenarios explored, the proposed method substantially

outperformed the naive method, which repeatedly showed severe bias and minimal cover-

age. For settings different from those studied, one might consider conducting additional

numerical studies.

The method introduced in this paper is applied to data from 65,358 post-menopausal women

enrolled in the WHI to assess the association between energy, protein, and protein density

intake and the risk of incident diabetes, adjusting for error in self-reported exposures and
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outcome. Hazard ratios obtained for all exposures were considerably different than those

from the naive analyses ignoring the error in both diabetes status and dietary intake and

those that only adjusted for error in dietary intake. In some cases, our proposed method led

to qualitatively different conclusions in that the parameter of interest was no longer statisti-

cally significant. For the case of non-differential outcome error, this stems largely from the

increased uncertainty in the results coming from the uncertain outcomes. These conclusions

demonstrate the importance of adjusting for errors in both outcomes and covariates.

Our proposed method offers a practical approach to estimating the association between

a covariate and a discrete time-to-event outcome, when both are recorded with error. A

limitation of our approach stems from the curse of dimensionality that can accompany

discrete data in settings where the visit times are irregular, which can cause the number of

parameters to grow with the number of subjects in the data. It is impractical to assume that

in a real data setting, all subjects’ visit times fall on the same schedule in the study (e.g.

exactly annually). Thus, we must make a compromise depending on how many parameters

the data can stably support. Ultimately, the data should help inform a reasonable decision

regarding the number of intervals to consider for analyses of this type. Sensitivity analyses

can be also be conducted to examine whether the number or choice of discrete time intervals

affected study estimates. In many cohort studies with long-term follow-up like the WHI,

there is a specified visit schedule in the study protocol. If all subjects adhere to this schedule

with little variation, this naturally leads to the discrete-time framework with a common set

of possible visit times across all individuals. Frequently in these studies, including the

WHI, the observed visit schedule varies across subjects. To apply the proposed method in

our WHI example, we made some simplifying assumptions. Since our analytical data set

included only the amount of time that elapsed between enrollment and the first occurrence of

self-reported diabetes or censoring time recorded on a continuous timescale, we rounded the

censored event-time to the nearest annual visit date and assumed the outcome or censoring

event occurred sometime between that visit and the prior annual visit. If data are available

on the timing of all visits, the likelihood could be adapted to allow for longer intervals
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between visits for some individuals (i.e. missed visits).

We note that for the case of self-reported data, we assume that each subject is followed up

until the first positive, as it is not expected that a new diagnosis would be subsequently

recorded. This assumption corresponds to the applied setting in which self-reported disease

incidence stops after the first positive report. However, the model by Gu et al. (2015) and

thus the proposed approach do allow for a more flexible framework and can accommodate

repeated testing. As an example, this approach can be applied to a data set containing

repeat blood test results, such as those used in monitoring for cancer relapse.

A potential limitation of our work is the reliance of the proposed method on the assumption

that given the true disease status at each visit, the error-prone outcomes are independent.

In the WHI data, we assume the self-reported outcomes are far enough apart that there

are a number of random processes affecting a subject’s knowledge and interpretation of the

outcomes questionnaire that make this independence assumption reasonable; however, this

assumption may not always be realistic, particularly for the case of self-reported data. We

note that our method is applicable more generally to settings where the error-prone outcome

of interest is not self-reported, but derived say from an objective biomarker for which this

assumption may be more reasonable. In future work, one might consider a similar framework

to the one proposed which relaxes this assumption by positing a more complex error model

for the outcome of interest, such as one with sensitivity and specificity potentially dependent

on covariates or previous responses.

The increasing reliance of clinical research on self-administered questionnaires or administra-

tive databases in epidemiological studies has led to more attention being given to methods

to correct for measurement error. Gu et al. (2015) conducted a sensitivity analysis to show

how changes in sensitivity, specificity, and negative predictive shifted the estimated hazard

ratio of statin use on the risk of incident diabetes in data from the WHI. The results showed

that the estimated hazard ratio is highly sensitive to changes in specificity and modestly

sensitive to changes in sensitivity and negative predictive value. This analysis helps illus-
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trate the importance of having accurate values of sensitivity and specificity in the proposed

method. Our sensitivity analysis showed that while varying sensitivity and specificity by

cohort did not qualitatively change the results in our particular example, the hazard ratio

estimates are much more vulnerable to changes in specificity when the event of interest is

as rare as it is in the WHI data (diabetes incidence = 4.7%). Thus, we emphasize the

importance of employing correct values of sensitivity and specificity, especially when they

might vary by some demographic factor or group membership.

This paper explored the incorporation of the negative predictive value into the analyses to

handle misclassification at baseline. Evidence suggests that some women in the WHI who

provided a negative self-report of diabetes at baseline were actually diabetic. A question of

interest is whether mistakenly excluding women who were false positives can induce bias.

It has been previously reported that when all potential confounders are adjusted for in the

outcome model and the missing at random (MAR) assumption is satisfied, missing data

should not cause bias (Groenwold et al., 2011). Furthermore, given that positive predictive

value is assumed to be quite high in the motivating data example, we did not explore the issue

further in this paper. This exclusion criteria-related matter may be more relevant in other

cohorts, particularly if the reason for exclusion is related to some unobserved characteristic.

A worthwhile extension of this work might consider incorporating covariate-specific or even

subject-specific sensitivity and specificity, particularly when these values are no longer as-

sumed to be known constants and need to be estimated along with the outcome model

parameters. Such an extension would require a validation or calibration subset to also con-

tain information on the measurement error structure of the self-reported outcome. When

the outcome is rare, such a cohort can be difficult to construct prospectively as validation

subsets are generally of fairly modest size due to cost. Efficient choices of a validation sam-

pling design and development of analysis methods that provide consistent estimates of the

target parameter are two important areas of future research.
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Table 2.1: The mean percent (%) biases, average standard errors (ASE), empirical stan-
dard errors (ESE) and coverage probabilities (CP) are given for 1000 simulated data sets
for the proposed method and naive method with βX1 “ logp1.5q, βZ1 “ logp0.7q, and
βZ2 “ logp1.3q; e is normally distributed with mean zero.

Se1“ 0.80, Sp2“ 0.90 Proposed Naive

δ̂p1q
3 CR4 β % Bias ASE ESE CP % Bias ASE ESE CP

0.60 0.90 βX1 1.616 0.200 0.204 0.950 ´88.03 0.046 0.046 0.000
βZ1 ´1.094 0.143 0.142 0.945 ´79.22 0.057 0.058 0.002
βZ2 ´3.731 0.143 0.143 0.945 ´84.07 0.057 0.054 0.021

0.55 βX1 ´1.231 0.093 0.094 0.949 ´68.11 0.038 0.038 0.000
βZ1 ´1.055 0.067 0.066 0.958 ´43.46 0.047 0.046 0.079
βZ2 ´3.018 0.066 0.065 0.957 ´53.48 0.046 0.045 0.133

0.30 0.90 βX1 1.840 0.283 0.286 0.954 ´93.88 0.033 0.033 0.000
βZ1 ´1.233 0.151 0.151 0.947 ´82.46 0.054 0.055 0.001
βZ2 ´4.212 0.151 0.150 0.945 ´79.74 0.054 0.052 0.025

0.55 βX1 ´2.246 0.131 0.133 0.940 ´84.02 0.027 0.027 0.000
βZ1 ´1.967 0.071 0.069 0.951 ´52.48 0.045 0.044 0.008
βZ2 ´3.899 0.070 0.068 0.956 ´42.08 0.045 0.044 0.306

Se “ 0.90, Sp “ 0.80 Proposed Naive

δ̂p1q CR β % Bias ASE ESE CP % Bias ASE ESE CP
0.60 0.90 βX1 0.391 0.210 0.209 0.957 ´93.08 0.037 0.037 0.000

βZ1 ´3.692 0.150 0.153 0.942 ´91.96 0.046 0.045 0.001
0.55 βX1 ´1.246 0.094 0.093 0.960 ´77.95 0.034 0.035 0.000

βZ1 ´1.188 0.068 0.067 0.951 ´61.05 0.042 0.042 0.001
βZ2 ´3.502 0.067 0.066 0.953 ´68.46 0.042 0.042 0.014

0.30 0.90 βX1 0.665 0.296 0.291 0.967 ´96.33 0.026 0.026 0.000
βZ1 ´0.963 0.158 0.160 0.951 ´90.21 0.044 0.044 0.000
βZ2 ´4.214 0.158 0.160 0.947 ´89.56 0.044 0.043 0.001

0.55 βX1 ´2.034 0.133 0.130 0.964 ´88.87 0.024 0.024 0.000
βZ1 ´1.994 0.072 0.070 0.950 ´67.22 0.040 0.040 0.000
βZ2 ´4.420 0.071 0.069 0.959 ´60.63 0.040 0.040 0.029

Se “ 1, Sp “ 1 Truth

CR β % Bias ASE ESE CP
0.90 βX1 0.163 0.108 0.109 0.944

βZ1 0.205 0.107 0.107 0.953
βZ2 ´0.586 0.107 0.109 0.949

0.55 βX1 0.639 0.052 0.052 0.948
βZ1 0.345 0.052 0.051 0.949
βZ2 ´0.383 0.052 0.052 0.952

1 Se “ Sensitivity 2 Sp “ Specificity 3 δ̂p1q “ Estimate of attenuation coefficient
4CR “ True censoring rate
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Table 2.2: The mean percent (%) biases, average standard errors (ASE), empirical stan-
dard errors (ESE) and coverage probabilities (CP) are given for 1000 simulated data sets
for the proposed method and naive method with βX1 “ logp3q, βZ1 “ logp0.7q, and
βZ2 “ logp1.3q; e is normally distributed with mean zero.

Se1“ 0.80, Sp2“ 0.90 Proposed Naive

δ̂p1q
3 CR4 β % Bias ASE ESE CP % Bias ASE ESE CP

0.60 0.90 βX1 ´3.442 0.211 0.213 0.946 ´88.61 0.047 0.048 0.000
βZ1 ´6.773 0.146 0.145 0.941 ´78.03 0.057 0.059 0.002
βZ2 ´9.280 0.145 0.142 0.948 ´88.07 0.057 0.054 0.012

0.55 βX1 ´12.71 0.111 0.101 0.752 ´72.45 0.040 0.038 0.000
βZ1 ´12.57 0.075 0.068 0.916 ´45.77 0.047 0.047 0.078
βZ2 ´14.42 0.075 0.066 0.952 ´67.90 0.047 0.045 0.032

0.30 0.90 βX1 ´4.532 0.296 0.295 0.951 ´94.26 0.033 0.033 0.000
βZ1 ´8.063 0.156 0.152 0.944 ´86.52 0.054 0.056 0.000
βZ2 ´11.64 0.155 0.149 0.951 ´77.03 0.054 0.052 0.025

0.55 βX1 ´16.88 0.154 0.137 0.766 ´86.56 0.028 0.027 0.000
βZ1 ´16.75 0.080 0.071 0.899 ´67.26 0.045 0.045 0.000
βZ2 ´18.69 0.080 0.069 0.956 ´42.46 0.045 0.044 0.299

Se “ 0.90, Sp “ 0.80 Proposed Naive

δ̂p1q CR β % Bias ASE ESE CP % Bias ASE ESE CP
0.60 0.90 βX1 ´3.581 0.220 0.221 0.945 ´93.60 0.038 0.039 0.000

βZ1 ´6.164 0.152 0.153 0.936 ´87.76 0.046 0.047 0.000
βZ2 ´8.663 0.151 0.150 0.954 ´94.13 0.046 0.045 0.000

0.55 βX1 ´12.65 0.112 0.103 0.764 ´80.88 0.035 0.035 0.000
βZ1 ´12.64 0.076 0.071 0.915 ´62.26 0.042 0.043 0.001
βZ2 ´14.65 0.076 0.068 0.939 ´78.22 0.042 0.042 0.001

0.30 0.90 βX1 ´4.585 0.309 0.298 0.963 ´96.73 0.027 0.027 0.000
βZ1 ´7.171 0.163 0.159 0.947 ´92.46 0.044 0.045 0.000
βZ2 ´11.06 0.162 0.157 0.954 ´88.01 0.044 0.043 0.000

0.55 βX1 ´16.67 0.156 0.138 0.772 ´90.62 0.025 0.024 0.000
βZ1 ´16.65 0.082 0.073 0.901 ´77.08 0.040 0.041 0.000
βZ2 ´18.86 0.081 0.070 0.943 ´60.56 0.040 0.040 0.025

Se “ 1, Sp “ 1 Truth

CR β % Bias ASE ESE CP
0.90 βX1 0.565 0.115 0.116 0.951

βZ1 ´0.222 0.108 0.108 0.949
βZ2 ´0.347 0.108 0.110 0.948

0.55 βX1 0.605 0.063 0.064 0.944
βZ1 0.264 0.054 0.054 0.952
βZ2 ´0.162 0.054 0.052 0.955

1 Se “ Sensitivity 2 Sp “ Specificity 3 δ̂p1q “ Estimate of attenuation coefficient
4CR “ True censoring rate
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Table 2.3: The mean percent (%) biases, average standard errors (ASE), empirical stan-
dard errors (ESE) and coverage probabilities (CP) are given for 1000 simulated data sets
for the proposed method and naive method with βX1 “ logp1.5q, βZ1 “ logp0.7q, and
βZ2 “ logp1.3q; e is distributed as either a t with 4 df or as .4N p0, 1q ` .6N p2, 1.5q.

Se1“ 0.80, Sp2“ 0.90 Proposed Naive

e 3 CR4 β % Bias ASE ESE CP % Bias ASE ESE CP
t5 0.90 βX1 ´2.238 0.291 0.300 0.953 ´94.50 0.031 0.031 0.000

βZ1 0.622 0.152 0.157 0.951 ´81.80 0.054 0.054 0.000
βZ2 2.529 0.152 0.148 0.957 ´76.70 0.054 0.053 0.033

0.55 βX1 ´0.646 0.140 0.153 0.940 ´85.54 0.025 0.026 0.000
βZ1 ´2.362 0.072 0.072 0.950 ´53.37 0.045 0.044 0.013
βZ2 ´3.303 0.071 0.072 0.950 ´39.35 0.044 0.044 0.335

mix6 0.90 βX1 0.394 0.335 0.330 0.955 ´95.64 0.027 0.028 0.000
βZ1 ´1.015 0.158 0.158 0.953 ´83.29 0.054 0.055 0.000
βZ2 ´0.800 0.156 0.152 0.962 ´75.25 0.054 0.056 0.055

0.55 βX1 ´1.081 0.156 0.151 0.958 ´88.74 0.022 0.022 0.000
βZ1 ´2.415 0.074 0.070 0.958 ´55.28 0.044 0.045 0.010
βZ2 ´2.083 0.073 0.070 0.964 ´36.40 0.044 0.045 0.419

Se “ 0.90, Sp “ 0.80 Proposed Naive

δ̂p1q CR β % Bias ASE ESE CP % Bias ASE ESE CP
t 0.90 βX1 ´3.792 0.305 0.316 0.942 ´96.91 0.025 0.025 0.000

βZ1 1.848 0.160 0.165 0.948 ´89.40 0.044 0.044 0.000
βZ2 3.386 0.159 0.158 0.959 ´86.97 0.044 0.044 0.000

0.55 βX1 ´1.119 0.141 0.159 0.933 ´90.02 0.023 0.024 0.000
βZ1 ´1.666 0.073 0.073 0.940 ´67.86 0.040 0.040 0.000
βZ2 ´3.048 0.072 0.074 0.944 ´58.35 0.040 0.040 0.031

mix 0.90 βX1 ´0.975 0.350 0.346 0.952 ´97.65 0.022 0.024 0.000
βZ1 ´1.354 0.166 0.162 0.961 ´90.94 0.043 0.044 0.000
βZ2 0.585 0.164 0.160 0.955 ´86.57 0.043 0.045 0.000

0.55 βX1 ´1.904 0.159 0.155 0.955 ´92.26 0.020 0.021 0.000
βZ1 ´2.590 0.075 0.072 0.954 ´69.29 0.040 0.040 0.000
βZ2 ´1.350 0.074 0.069 0.967 ´56.67 0.040 0.039 0.036

Se “ 1, Sp “ 1 Truth

CR β % Bias ASE ESE CP
0.90 βX1 0.002 0.108 0.106 0.959

βZ1 0.034 0.108 0.109 0.951
βZ2 1.032 0.107 0.106 0.961

0.55 βX1 0.395 0.053 0.052 0.952
βZ1 ´0.462 0.052 0.052 0.948
βZ2 ´0.300 0.052 0.050 0.954

1 Se “ Sensitivity 2 Sp “ Specificity
3 e refers to the distribution of the error 4CR “ True censoring rate 5 t with 4 df
6 Mixture of two normals, i.e. .4N p0, 1q ` .6N p2, 1.5q
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Table 2.4: The mean percent (%) biases, average standard errors (ASE), empirical stan-
dard errors (ESE) and coverage probabilities (CP) are given for 1000 simulated data sets
for the proposed method and naive method, when both allow for strata-specific baseline
hazards. We assume four equally-sized strata. Let βX1 “ logp1.5q, βZ1 “ logp0.7q, and
βZ2 “ logp1.3q; e is normally distributed with mean zero.

Se1“ 0.80, Sp2“ 0.90 Proposed Naive

δ̂p1q
3 CR4 β % Bias ASE ESE CP % Bias ASE ESE CP

0.60 0.90 βX1 1.893 0.202 0.199 0.961 ´88.44 0.047 0.046 0.000
βZ1 3.249 0.145 0.148 0.954 ´78.36 0.057 0.058 0.001
βZ2 ´0.263 0.144 0.151 0.946 ´81.41 0.057 0.058 0.044

0.55 βX1 ´0.489 0.094 0.089 0.965 ´68.31 0.038 0.038 0.000
βZ1 0.001 0.068 0.066 0.960 ´42.99 0.047 0.047 0.095
βZ2 ´0.885 0.067 0.066 0.958 ´52.09 0.047 0.048 0.172

0.30 0.90 βX1 1.036 0.286 0.280 0.959 ´94.20 0.033 0.033 0.000
βZ1 2.777 0.153 0.154 0.956 ´81.55 0.055 0.056 0.000
βZ2 ´0.353 0.152 0.159 0.944 ´77.15 0.055 0.056 0.046

0.55 βX1 ´1.095 0.133 0.126 0.962 ´84.08 0.027 0.027 0.000
βZ1 ´0.866 0.071 0.070 0.964 ´51.93 0.045 0.044 0.015
βZ2 ´1.897 0.071 0.069 0.960 ´40.78 0.045 0.047 0.337

Se “ 0.90, Sp “ 0.80 Proposed Naive

δ̂p1q CR β % Bias ASE ESE CP % Bias ASE ESE CP
0.60 0.90 βX1 0.986 0.214 0.217 0.949 ´93.42 0.037 0.038 0.000

βZ1 3.516 0.153 0.159 0.948 ´87.94 0.046 0.048 0.000
βZ2 0.025 0.151 0.162 0.945 ´89.97 0.046 0.047 0.002

0.55 βX1 ´0.488 0.096 0.092 0.958 ´78.24 0.034 0.034 0.000
βZ1 ´0.100 0.069 0.068 0.961 ´60.97 0.042 0.043 0.000
βZ2 ´0.953 0.068 0.067 0.957 ´67.67 0.042 0.042 0.020

0.30 0.90 βX1 ´0.310 0.301 0.303 0.951 ´96.68 0.027 0.027 0.000
βZ1 2.982 0.161 0.167 0.952 ´89.72 0.044 0.046 0.000
βZ2 0.278 0.160 0.170 0.941 ´87.53 0.044 0.045 0.002

0.55 βX1 ´1.167 0.135 0.130 0.955 ´89.05 0.024 0.024 0.000
βZ1 ´0.943 0.073 0.072 0.962 ´67.08 0.040 0.041 0.000
βZ2 ´1.921 0.072 0.071 0.958 ´59.89 0.040 0.041 0.039

Se “ 1, Sp “ 1 Truth

CR β % Bias ASE ESE CP
0.90 βX1 1.652 0.108 0.106 0.955

βZ1 2.270 0.108 0.110 0.949
βZ2 0.080 0.108 0.112 0.949

0.55 βX1 1.252 0.053 0.052 0.961
βZ1 1.153 0.053 0.052 0.961
βZ2 0.223 0.052 0.053 0.937

1 Se “ Sensitivity 2 Sp “ Specificity 3 δ̂p1q “ Estimate of attenuation coefficient
4CR “ True censoring rate
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Table 2.5: Type I error results for βX1 “ 0
are given for 1000 simulated data sets for
the proposed method. Let βX1 “ logp1.5q,
βZ1 “ logp0.7q, and βZ2 “ logp1.3q; e is
normally distributed with mean zero.

Se1 Sp2 δ̂p1q
3 CR4 Type I Error

0.80 0.90 0.30 0.55 0.048
0.90 0.042

0.60 0.55 0.058
0.90 0.042

0.90 0.80 0.30 0.55 0.043
0.90 0.039

0.60 0.55 0.049
0.90 0.044

1 Se “ Sensitivity 2 Sp “ Specificity
3 δ̂p1q “ Estimate of attenuation coeffi-
cient 4CR “ True censoring rate

Table 2.6: Hazard Ratio (HR) and 95% confidence interval (CI) estimates of incident di-
abetes for a 20% increase in consumption of energy (kcal/d), protein (g/d), and protein
density (% energy from protein/d) based on the naive method ignoring error in the out-
come and covariate, the regression calibration method that corrects for covariate error only,
and the proposed method. Here, sensitivity = 0.61, specificity = 0.995, and negative pre-
dictive value = 0.96.

HR (95% CI)
Model1 Method Adjusted for BMI2 Not Adjusted for BMI
Energy (kcal/d) Naive 1.002 (0.986, 1.018) 1.024 (1.008, 1.040)

Regression Calibration 1.041 (0.758, 1.429) 1.421 (1.043, 1.938)
Proposed 0.822 (0.512, 1.318) 1.189 (0.836, 1.692)

Protein (g/d) Naive 1.024 (1.010, 1.039) 1.051 (1.035, 1.066)
Regression Calibration 1.121 (1.036, 1.213) 1.231 (1.130, 1.342)
Proposed 1.077 (0.978, 1.186) 1.241 (1.114, 1.384)

Protein Density Naive 1.100 (1.064, 1.137) 1.128 (1.091, 1.167)
Regression Calibration 1.243 (1.125, 1.374) 1.325 (1.181, 1.486)
Proposed 1.266 (1.115, 1.436) 1.327 (1.183, 1.490)

1 Each model is adjusted for potential confounders and is stratified on age (10-year cat-
egories) and Dietary Modification trial (DM) or Observational Study (OS) cohort mem-
bership. 2 BMI = Body Mass Index pkg{m2q
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CHAPTER 3

An Augmented Likelihood Approach for the Discrete

Proportional Hazards Model Using Auxiliary and Validated

Outcome Data – with Application to the HCHS/SOL Study

3.1. Abstract

In large epidemiologic studies, it is typical for an inexpensive, non-invasive procedure to be

used to record disease status during regular follow-up visits, with less frequent assessment

by a gold standard test. Inexpensive outcome measures like self-reported disease status

are practical to obtain, but can be error-prone. Association analysis reliant on error-prone

outcomes may lead to biased results; however, restricting analyses to only data from the

less frequently observed error-free outcome could be inefficient. We have developed an

augmented likelihood that incorporates data from both error-prone outcomes and a gold

standard assessment. We conduct a numerical study to show how we can improve statistical

efficiency by using the proposed method over standard approaches for interval-censored

survival data that do not leverage auxiliary data. We extend this method for the complex

survey design setting so that it can be applied in our motivating data example. Our method

is applied to data from the Hispanic Community Health Study/Study of Latinos to assess

the association between energy and protein intake and the risk of incident diabetes. In our

application, we demonstrate how our method can be used in combination with regression

calibration to additionally address the covariate measurement error in self-reported diet.

3.2. Introduction

In large epidemiologic or clinical studies with periodic follow-up, it is often impractical to

obtain a gold standard or reference standard test on all subjects at each visit time throughout

the study. Instead, an inexpensive measures is typically used to assess the outcome of interest

at each follow-up visit , and the reference standard diagnostic test is obtained less frequently,

if at all. Compared to some reference standard diagnostic tests that may involve invasive
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or otherwise impractical biomarkers, self-reported disease status is inexpensive, noninvasive,

and relatively easy to obtain in large cohorts. However, self-reported disease status is often

prone to measurement error. For example, some studies have shown that the sensitivity and

specificity of self-reported diabetes are imperfect compared to the reference instruments of

fasting glucose and hemoglobin A1c (HbA1c).(Gu et al., 2015; Margolis et al., 2008)

There has been considerable interest in methods that use surrogate or auxiliary data to

improve the efficiency of inference for time-to-event analyses. In this context, surrogate

endpoints are defined as outcomes that are intended to replace the true, or gold standard,

outcome of interest, while auxiliary data refers to variables that are used to improve the effi-

ciency of the analysis of the gold standard endpoint.(Conlon et al., 2015) Pepe (1992)(Pepe,

1992) introduced an estimated likelihood method for general data structures in which sur-

rogate outcomes are available on all subjects and true outcomes are available on a subset.

Magaret (2008)(Magaret, 2008) extended this work to the setting of the discrete propor-

tional hazards model. Zee et al. (2015)(Zee et al., 2015) proposed a similar semiparametric

estimated likelihood approach for parameter estimation that allows for real-time validation

and does not require true and surrogate censoring times to be equal when the surrogate

outcome is censored. Fleming et al. (1994) (Fleming et al., 1994) presented an augmented

likelihood approach that incorporates auxiliary information into the proportional hazards

model for cases when true endpoints are available on all study subjects. In their method,

the likelihood can be augmented for subjects using an auxiliary (surrogate) outcome whose

true endpoints are censored prior to their auxiliary endpoints.

Several methods have been developed to correct errors in binary outcome variables for dis-

crete time-to-event settings when gold or reference standard outcome data are not available.

For these approaches, estimated values of sensitivity and specificity are incorporated into the

analysis to correct for the bias induced by errors in the event classification variable. Specif-

ically, Meier et al. (2003) (Meier et al., 2003) introduced an adjusted proportional hazards

model for estimating hazard ratios in the presence of discrete failure time data subject
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to misclassification. Gu et al. (2015) developed a likelihood-based method that models the

association of a covariate with a discrete time-to-event outcome recorded by error-prone self-

reports or imperfect diagnostic tests, assuming the proportional hazards model. Boe et al.

(2021) extended this work by incorporating regression calibration to additionally adjust for

covariate measurement error for cases in which one or more exposure variables of inter-

est are also recorded with error. Each of these methods addressed the misclassification by

incorporating externally estimated sensitivity and specificity into the estimation.

In this paper, we develop an augmented likelihood approach that incorporates error-prone

auxiliary data into the analysis of an interval-censored, gold standard assessment of a time-

to-event outcome. Our method is distinct from prior work in that we consider the setting

where subjects have both frequent follow-up with an auxiliary outcome and infrequent follow-

up with a gold standard evaluation. Our method may be applied when auxiliary outcome

data, observed through periodically collected self-reports or diagnostic tests, are available

either before or after the gold standard is scheduled to be observed. This work is motivated

by the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), a prospective

longitudinal cohort with (1) a reference standard biomarker-defined diabetes status variable,

using fasting glucose and/or hemoglobin A1c (HbA1c), available at baseline and once more

after 4-10 years, and (2) self-reported diabetes status recorded annually, up to 4 years beyond

the reference test.

We begin the next section by introducing notation and presenting the theoretical develop-

ment of our augmented likelihood function. We also extend our method to handle data from

a complex survey design and develop a sandwich variance estimator. In section 3.4, we pro-

vide an extensive numerical study to demonstrate how we can improve statistical efficiency

by using the proposed method instead of standard approaches for interval-censored survival

data that do not leverage the auxiliary data. Section 3.5 introduces the HCHS/SOL study

and illustrates the results of applying the proposed approach to this data set to assess the as-

sociation between dietary energy, protein, and protein density intake and incident diabetes.
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For this analysis, we additionally address the covariate measurement error. We conclude by

providing a discussion of our findings and potential extensions of this work in Section 3.6.

3.3. Methods

3.3.1. Notation and Time-to-Event Model

Define Ti as the unobserved, continuous event time of interest for subjects i “ 1, ..., N . We

assume the setting of a prospective cohort study where the participants follow-up occurs

at regular visit intervals (e.g. annually) and all subjects are known to be disease-free at

baseline, time τ0. Let 0 “ τ0 ă τ1 ă . . . τJ be the possible visit times among the N

subjects and τJ`1 “ 8. Thus, the possible follow-up can be broken into J ` 1 disjoint

intervals as follows: rτ0, τ1q, rτ1, τ2q, ...rτJ , τJ`1q. Let ni be the number of visits for the ith

subject, which we assume is random. We consider the setting where each subject reports

a potentially error-prone disease status at each visit until the first positive self-report or

censoring time. Let Y˚
i be the vector of error-prone binary outcomes that indicates whether

the ith subject self-reported the event at time j, and T˚
i be the corresponding vector of

visit times. More specifically, we define Y ˚
ij as the binary indicator that the jth self-report

for the ith subject is positive. Motivated by the design of the HCHS/SOL study, we assume

that a gold standard assessment of the disease is also obtained, but only once post-baseline.

Namely, we assume at time τVi , we observe ∆i, a scalar binary indicator for each subject’s

true disease status recorded by a gold standard diagnostic test, where Vi P t1, 2, ..., Ju.

Note that in some studies, the time of gold standard assessment is fixed at τVi “ τJ for all

subjects, but we allow τVi ď τJ , suggesting that follow-up by self-report may continue after

the gold standard outcome is reported. Finally, we assume that as a result of loss to follow-

up, ∆i may be missing on a subset of study subjects and define Mi as the binary variable

indicating whether ∆i is missing. We assume this outcome is missing completely at random,

though missing at random patterns could also be readily incorporated with application of a

standard inverse probability weighting approach. We can now write the joint probability of

the observed data for the ith subject as P pY˚
i ,T

˚
i ,∆i, Tiq “ P pY˚

i ,T
˚
i |∆i, TiqP p∆i, Tiq “
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řJ`1
j“1 P pY˚

i ,T
˚
i |∆i, τj´1 ă Ti ď τjqP p∆i, τj´1 ă Ti ď τjq.

Following previous work to address misclassified outcomes in the discrete proportional haz-

ards model, Boe et al. (2021); Gu et al. (2015); Balasubramanian and Lagakos (2003) we

assume the ni error-prone outcomes Y ˚
ij are conditionally independent given the true disease

status and event time Ti, such that P pY˚
i |Ti,T

˚
i ,∆iq “

śni
l“1 P pY ˚

il |Ti, T
˚
il ,∆iq. We can

re-express the joint probability of observed data for the ith subject as follows:

P pY˚
i ,T

˚
i ,∆i, Tiq “

J`1
ÿ

j“1

CijP p∆i, τj´1 ă Ti ď τjq, (3.1)

where Cij “
“
śni
l“1 P pY ˚

il |τj´1 ă Ti ď τj , T
˚
il ,∆iq

‰

. We first assume that sensitivity pSeq

and specificity pSpq are known constants and have the following definitions: Se “ PrpY ˚
il “

1|τj´1 ă Ti ď τj , T
˚
l ě τjq and Sp “ PrpY ˚

il “ 0|τj´1 ă Ti ď τj , T
˚
l ď τj´1q. Then, the Cij

are simply functions of the sensitivity and specificity. See section B.2 of the Appendix for

details.

We will now derive the likelihood contribution for subjects with observed ∆i (i.e., Mi “ 0).

For these subjects, we can rewrite the likelihood in equation 3.1 as follows:

P pY˚
i ,T

˚
i ,∆i, Tiq “

J`1
ÿ

j“1

CijP pτj´1 ă Ti ď τj |∆iqP p∆iq. (3.2)

Define θj “ Prpτj´1 ă Ti ď τjq. If at time τVi , subject i is identified as a validated positive,

then we have P p∆i “ 1q “ P pTi ď τViq “
řVi
l“1 θl and:

P pτj´1 ă Ti ď τj |∆i “ 1q “

$

’

’

&

’

’

%

θj
řVi

l“1 θl
for 1 ď j ď Vi

0 for Vi ă j ď J ` 1.

If subject i is identified to be a validated negative at time τVi , then P p∆i “ 0q “ P pTi ą
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τViq “
řJ`1
l“Vi`1 θl and:

P pτj´1 ă Ti ď τj |∆i “ 0q “

$

’

’

&

’

’

%

0 for 1 ď j ď Vi

θj
řJ`1

l“Vi`1 θl
for Vi ă j ď J ` 1.

Next, we derive the likelihood for a subject who is lost to follow-up and is missing ∆i (i.e.

Mi “ 1). In this scenario, the joint probability of observed data for the ith subject is

P pY˚
i ,T

˚
i ,∆i, Tiq “

řJ`1
j“1

«

śni
l“1 P pY ˚

il |τj´1 ă Ti ď τj , T
˚
il q

ff

P pτj´1 ă Ti ď τjq, and thus:

P pY˚
i ,T

˚
i ,∆i, Tiq “

J`1
ÿ

j“1

Cijθj . (3.3)

Define Xi as the p-dimensional vector of time-invariant covariates. We assume that X is

related with the outcome through a Cox proportional hazards model, Sptq “ S0ptqexppx1βq.

We use this model to re-express the joint probability from equations 3.2 and 3.3 and write

the likelihood in terms of the baseline survival probabilities, S “ pS1, S2, ..., SJ`1q1, where

Sj “ PrpT0 ą τj´1q and T0 is a random variable that has survival function S0ptq. Thus

1 “ S1 ą S2 ą ... ą SJ`1 ą 0 and Sj “
řJ`1
h“j θh. It is convenient to define R as the linear

pJ ` 1q ˆ pJ ` 1q transformation matrix such that θ “ RS and to define the N ˆ pJ ` 1q

matrix C that consists of the Cij terms defined above. Finally, we define the matrix D as

D “ CR. Then the log-likelihood can then be expressed as:

lpS, βq “

N
ÿ

i“1

lipS, βq “

N
ÿ

i“1

«

p1 ´Miq∆i log

˜

Vi
ÿ

j“1

DijpSjq
exppx1

iβq

¸

`

p1 ´Miqp1 ´ ∆iq log

˜

J`1
ÿ

j“Vi`1

DijpSjq
exppx1

iβq

¸

`

Mi log

˜

J`1
ÿ

j“1

DijpSjq
exppx1

iβq

¸ff

. (3.4)

41



We can solve for the unknown vector of parameters ψ using standard maximum likelihood

estimation. Define the score function Uipψq “
BlipS,βq

Bψ , where S “ pS1, S2, ..., SJ`1q1 and ψ

is the pp ` J ` 1q ˆ 1 parameter vector rβ,Ss. Let ψ̂ denote the solution to the equations
řN
i“1 Uipψq “ 0. The covariance matrix can be found by inverting the Hessian matrix.

3.3.2. Survey Design and Probability Sampling Weights

In this section, we extend our proposed method that uses both auxiliary and gold standard

outcomes to accommodate data from a complex survey sampling design, such as HCHS/SOL,

that may includes cluster-based probability sampling. We develop a weighted analogue of our

log-likelihood function from equation 3.4. Later, we outline how one might use a sandwich

variance estimator to address within-cluster correlation and stratification.

Define πi as the probability that subject i will be included in a sample, which we as-

sume is known from the survey design. Subjects are sampled with probability πi from a

population of size NPOP , resulting in a sample of size N . Design-based inference makes

the assumption that a subject sampled with a probability πi represents 1{πi subjects in

the total population. (Lumley, 2011) Thus, 1{πi becomes the sampling weight reflecting

unequal probability of selection into the sample, which will be included in the weighted

log-likelihood and score functions. The weighted log-likelihood equation becomes lπpS, βq “

řN
i“1

1
πi
lipS, βq “

řN
i“1

qlipS, βq. We can then use standard maximum likelihood theory to

solve the corresponding weighted estimating equation
řN
i“1

qUipψq “
řN
i“1

1
πi
Uipψq “ 0

for our vector of unknown parameters, ψ. To compute the variance for our estimator

that addresses within-cluster correlation and stratification, we consider the implicit dif-

ferentiation method proposed by Binder (1983).(Binder, 1983) Using a Taylor series lin-

earization, the sandwich estimator for the asymptotic variance of ψ̂ can be calculated

as v̂arrψ̂s «

´

řN
i“1

B qUipψ̂q

Bψ

¯´1

ˆcov
”

řN
i“1

qUipψ̂q

ı ´

řN
i“1

B qUipψ̂q

Bψ

¯´1

. Regularity conditions re-

quired for the consistency of v̂arrψ̂s are stated in Binder (1983).(Binder, 1983) This variance

estimate can easily be computed in R by applying vcov() to the svytotal() function from

the survey package and providing the estimator’s influence function as well as the survey

42



design. (Lumley, 2011)

3.3.3. Regression Calibration to Adjust for Covariate Measurement Error

Regression calibration is a popular analysis method for correcting bias in regression param-

eters when exposure variables are prone to error. (Prentice, 1982; Shaw et al., 2018) We will

now outline how to use regression calibration with our proposed estimator in the setting of

a complex sampling design.

Assume pX,Zq is a pp`qq-dimensional covariate in the outcome model of interest, whereXi is

a p-dimensional vector that cannot be observed without error and Zi is a q-dimensional vector

of observed, error-free covariates. Assume instead of Xi, we observe X˚
i , the corresponding

error-prone p-dimensional vector. To implement regression calibration, we build a calibration

model for X̂ “ EpX|X˚, Zq and substitute this predicted value for the unknown, unobserved

true exposure X in our outcome model. (Prentice, 1982; Keogh et al., 2020)

Measurement Error Model

We assume that the error-prone X˚
i , is linearly related with the target exposure Xi and

other error-free covariates Zi:

Xi “ δp0q ` δp1qX
˚
i ` δp2qZi ` ζi, (3.5)

where ζi is a random error term that has mean zero and variance σ2ζi and is independent of

X˚
i and Zi. Equation (3.5) is referred to as the calibration model. For ease of presentation,

we assume p “ 1. It follows that the observed, error-prone exposure X˚
i conforms to the

linear measurement error model: X˚
i “ αp0q `αp1qXi`αp2qZi`ei, where the random error ei

is independent of Xi and Zi and has mean zero and variance σ2ei . (Keogh et al., 2020) This

error model has been commonly applied to model the error in the self-reported dietary intake

exposures observed in our motivating example from the HCHS/SOL. (Keogh and White,

2014) Regression parameters in our calibration model are identifiable if, in a subset, we

observe either the true exposure, Xi, or a second error-prone observation X˚˚
i with classical
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measurement error, i.e., where X˚˚
i “ Xi ` ϵi, where ϵi is random error that is independent

of all variables, with mean 0 and variance σ2ϵi . In many settings, it is more common to

observe X˚˚
i in the ancillary data, which we call a calibration subset. We will assume a

subset is available in which we observe X˚˚
i . Note that observing the true exposure Xi is a

variation of observing X˚˚
i in which the measurement error variance σ2ϵi is equal to 0, and

such a subset is referred to as a validation subset. In some applied settings, the error-prone

measure X˚
i in the main data may only have classical measurement error, a special scenario

where αp0q “ αp2q “ 0 and αp1q “ 1 in the linear measurement error model. In this case, a

replicate measure in the ancillary data (typically called a reliability subset) will ensure that

the parameters in the calibration model are identifiable.

With the assumed calibration subset, we can regress X˚˚
i on the error-prone exposure, X˚

i ,

and other covariates of interest Zi to fit the model X˚˚
i “ δp0q ` δp1qX

˚
i ` δp2qZi `Wi, where

Wi is random, mean 0 error with variance σ2Wi
“ σ2ζi `σ2ϵi . The error term Wi in this model

now incorporates extra variability introduced by the error in X˚˚
i .

Applying Regression Calibration to the Outcome Model

Assuming that the measurement error models described above hold, we can use the predicted

values from our calibration model to substitute the first moment X̂i “ EpXi|X
˚
i , Ziq in place

of Xi in our outcome model. Regression calibration is exact in linear models; however, this

approach is only an approximate method with some bias in non-linear outcome models.

(Carroll et al., 2006) Regression calibration has been observed to perform well in various

settings, including when the regression parameter corresponding to the error-prone covariate

is of modest size and when the event under study is rare. (Prentice, 1982; Buonaccorsi,

2010) Additionally, regression calibration has been been shown to work well under these

same settings when also correcting for errors in time-to-event outcomes. (Boe et al., 2021)

As we described in Section 3.3.2, variance estimation for data from a complex survey design

often requires extra steps to address within-cluster correlation. When regression calibration

is applied, variance estimates from the outcome model need to be adjusted further to account
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for the extra uncertainty added by the calibration model step. We adopt the variance estima-

tion approach proposed by Baldoni et al. (2021)(Baldoni et al., 2021), in which the expected

value of the latent true exposure is multiply imputed for all individuals by repeatedly sam-

pling the calibration model coefficients required to estimate X̂i. New calibration coefficients

can be sampled using either (1) their estimated asymptotic parametric distribution or (2)

bootstrap resampling. At each step of the imputation, the outcome model is re-fit using the

newly calibrated values. Using this approach, the final estimate of the variance of the jth

regression coefficient β̂j can be computed as V̂ ˚
j “ 1

M

řM
m“1 V̂

pmq

j ` 1
M´1

řM
m“1

´

β̂
pmq

j ´
¯̂
βj

¯2
,

where ¯̂
βj “ 1

M

řM
m“1 β̂

pmq

j and β̂
pmq

j and V̂
pmq

j represent the estimated jth regression coef-

ficient and its estimated variance, respectively, using the m-th completed data set with

m “ 1, . . . ,M . Further details on variance estimation can be found in Baldoni et al.

(2021)(Baldoni et al., 2021) and code for implementing them is available on GitHub at

https://github.com/plbaldoni/HCHSsim.

3.3.4. Asymptotic Theory

We assume the regularity conditions of Foutz (1977) (Foutz, 1977) and apply the techniques

of Boos and Stefanski (2013) (Boos and Stefanski, 2013) for verifying asymptotic normality

of standard maximum likelihood estimators to establish the asymptotic properties of the

proposed estimator. In Section B.3 of the Appendix, we outline regularity conditions for

the following three settings: (1) the proposed method estimator is applied to data from a

simple random sample from the population; (2) the proposed method estimator is extended

to accommodate data from a complex survey design; and (3) the proposed method estimator

is extended to incorporate regression calibration in the presence of complex survey data.

3.4. Numerical Study

We now present a simulation study conducted to assess the numerical performance of the pro-

posed method compared to the standard discrete proportional hazards model approach for

the gold standard time-to-event outcome. Regression coefficients for the standard approach

are obtained by fitting a generalized linear model with a binary response and complemen-
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tary log-log link. (Hashimoto et al., 2011) We explore various settings to show when the

proposed estimator improves over the standard interval-censored approach in terms of sta-

tistical efficiency. In particular, we vary the probability that the gold standard indicator ∆i

is missing for some subjects, the censoring rate (CR) of the latent true event time at the end

of study (i.e. if ∆i had been observed for all subjects), and the sample size, N. Additionally,

we vary the missingness rate of our auxiliary outcome variable and consider different values

for our true regression parameter of interest, β, different distributions of our simulated event

times, and different values of sensitivity and specificity of the auxiliary data.

3.4.1. Simulation Setup

We first consider a set of simulations assuming a simple random sample. We simulate a single

covariate of interest from either a gamma distribution with shape and scale parameters

of 0.2 and 1, respectively (denoted Gammap0.2, 1q) or a normal distribution with mean

and variance parameters 0.2 and 1 (denoted Normalp0.2, 1q). We assume the proportional

hazards model. We fix the true log hazard ratio at β “ logp1.5q to represent a regression

coefficient of moderate size. Later, we set β “ logp3q to see how increasing the magnitude of

our regression coefficient changes our efficiency gains. Additionally, we conduct simulations

with β “ 0 to check type I error rates, where α “ 0.05. All simulations were run in R

version 4.1.0. (R Core Team, 2018)

True event times were generated from a continuous time exponential distribution. We sim-

ulated a follow-up schedule with four fixed visit times at which we collect the auxiliary

outcome variables. We assume that at year four, a gold standard outcome variable is also

recorded. To obtain average censoring rates (CR) for the latent true event of 0.9, 0.7, and

0.5, we considered baseline λb parameters of 0.023, 0.08, and 0.17, respectively, and simu-

lated our event times using parameter λ “ λb exppx1
iβq. We discretize the continuous event

times by binary event indicators for each visit time, then use sensitivity and specificity values

to “corrupt" this variable, resulting in the vector of error-prone auxiliary outcomes, Y˚
i . We

varied the accuracy of our auxiliary data by considering scenarios where sensitivity “ 0.90
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and specificity “ 0.80, as well as sensitivity “ 0.80 and specificity “ 0.90. To simulate sce-

narios in which the gold standard outcome ∆i is not observed for some subjects (Mi “ 1),

we vary the missingness rate (MR) of ∆i at 0, 0.2 and 0.4. To simulate this missingness,

we generated N variables Ui from a Uniform(0,1) distribution and then let ∆i be missing

for each subject if Ui ă MR. We vary the sample size between N “ 1000 and N “ 10, 000

subjects. When MR “ 0.0, these sample sizes are exact for the proposed approach and

the no auxiliary data approach. When MR ą 0.0, N “ 1000 and N “ 10, 000 represent

the sample sizes for the proposed approach, but the true sample sizes for the standard (no

auxiliary data) approach are smaller due to missingness in the gold standard indicator ∆.

For all settings, we conducted 1000 simulation iterations.

We then performed a set of simulations with similar settings, except we sought to examine

the performance of the proposed method with data having the structure of a complex survey

design. Code for this set of simulations was developed and described by Baldoni et al.

(2021)(Baldoni et al., 2021) and is available on GitHub at https://github.com/plbaldoni/

HCHSsim. Briefly, this simulation pipeline creates a superpopulation of nearly 200,000

individuals in 89,777 households, across 376 block groups, and 4 geographic strata and

then for each simulation iteration drew survey samples from it using a stratified three-stage

sampling scheme. The resulting simulated data sets include sampling weights, stratification

variables, and cluster indicators. To simulate our gamma covariate for this set of simulations,

we considered different shape and scale parameters for the four strata: shape1 = 0.25, scale1

= 1.25; shape2 = 0.15, scale2 = 0.75; shape3 = 0.30, scale3 = 1.50; shape4 = 0.10, scale4

= 0.50. For each block group g within a certain stratum s, we created additional covariate

differences by simulating variables ωgs from a Uniform(´0.15 ˚ shapes, 0.15 ˚ shapes) and

ρgs Uniform(´0.15 ˚ scales, 0.15 ˚ scales) distribution for s “ 1 . . . , 4. Then, the covariate

for an individual in block group g and stratum s was simulated from a Gammapshapes `

ωgs, scales`ρgsq distribution. To illustrate the performance of our method under the complex

survey design with a normally distributed covariate, we also considered variables Xi „

Normalpshapes ` ωgs, scales ` ρgsq. All other settings, including setting β “ logp1.5q and
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the generation of the event times and the missingness in the gold standard, were kept the

same between the random sample and complex survey for this set of simulations. Due to

the randomness introduced by the complex survey sampling setting, we cannot fix the total

number of individuals selected for a simulated sample, but we aimed for sample sizes of

approximately N “ 1000 and N “ 10, 000 as in prior tables.

We conducted one additional simulation that aimed to mimic the HCHS/SOL study, which

included error-prone covariates. We aimed for an average sample of approximately 12, 987 in

order to approximate the number of HCHS/SOL cohort subjects without baseline diabetes.

We assumed eight fixed visit times at which the auxiliary outcome was recorded, with a

simulated gold standard occurring at year four. Missingness in the gold standard indicator

at year four was set at MR “ 0.29, the censoring rate was fixed at roughly CR “ 90%,

and the auxiliary data missingness rate was approximately 0.20. We simulated 3 covariates

of interest: X, Z1, and Z2 to represent dietary intake, age, and body mass index (BMI),

respectively. These covariates were simulated following the data generation structure of

Baldoni et al. (2021)(Baldoni et al., 2021), where each subject’s sex (male, female) and

Hispanic/Latino background (Dominican, Puerto Rican, and other) were first simulated

from a multinomial distribution. Next, self-reported dietary intake, age, and BMI were

simulated for each combination of sex and Hispanic background following a multivariate

normal distribution, with means and covariance matrices estimated from the HCHS/SOL

Bronx field center data. We set β1 “ logp1.5q, β2 “ logp0.7q, β3 “ logp1.3q. To simulate

an error-prone covariate X˚, we use the linear measurement error model, X˚ “ αp0q `

αp1qX ` αp2qZ1 ` αp3qZ2 ` e, where αp0q “ 0.05, αp1q “ 0.50, αp2q “ 0.003, and αp3q “

0.0009. We assumed e „ Np0, σ2eq and used a σ2e value of 0.389. To represent the biomarker

subset, we take a random sample of 450 participants on which we observe a measure with

classical error, simulated as X˚˚ “ X ` ϵ, where ϵ „ Np0, σ2ϵ q and σ2ϵ “ 0.019. These

values of αp0q, αp1q, αp2q, αp3q, σ2e and σ2ϵ were chosen based on parameters fit for the self-

reported and recovery biomarker measurements for protein density in the HCHS/SOL data.

(Mossavar-Rahmani et al., 2015)
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For all simulation settings we conducted 1000 simulation iterations and report median per-

cent (%) biases, median standard errors (ASE), empirical median absolute deviation (MAD),

95% coverage probabilities (CP), and median relative efficiencies (RE), calculated as the me-

dian of the ratio of the estimated variance of the proposed method estimator to the estimated

variance of the standard approach estimator. R code used to run our simulations can be

found on GitHub at https://github.com/lboe23/AugmentedLikelihood.

3.4.2. Simulation Results

In Tables 3.1-3.5, we present results for the proposed method compared to the standard

interval-censored approach without auxiliary data. Table 3.1 shows results for the simple

random sample with the regression parameter of interest β “ logp1.5q and a gamma dis-

tributed covariate. The proposed method performs well, maintaining an absolute median

percent bias of under 2% for all settings and achieving nominal coverage for a 95% confidence

interval. We also see that our variance estimator is working properly, as our ASE values

closely approximate the MAD values. We note that substantial efficiency gains (1.2-69.9%)

result from incorporating auxiliary data into the analysis. Our method shows larger effi-

ciency gains when the missingness rate, MR, for the gold-standard indicator ∆ is higher and

when the censoring rate of the latent true event time at the end of study CR is lower. Table

B.1 in the Appendix shows a benchmark for comparing the relative efficiency gains from the

proposed method to the relative efficiency gains achieved if the gold standard were available

at all four visit times. We can directly compare the relative efficiency improvements from

the final column of Table S1 to those in the final column of Table 3.1 to see that for these

particular settings, our method retains nearly 90% of the the ideal relative efficiency.

In Table B.2 from the Appendix, we change the sensitivity and specificity values for the

auxiliary outcome and let Se “ 0.90 while Sp “ 0.80. We see that our method still performs

well with these alternate values for Se and Sp in terms of mean percent bias, standard error

estimation, and coverage probability. When MR “ 0.0, relative efficiencies are similar

between Table 3.1 (Se “ 0.80, Sp “ 0.90) and Table S2 (Se “ 0.90, Sp “ 0.80). For
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example, when CR “ 0.50 and N “ 10, 000, we have an efficiency gain of 1.186 in Table 3.1

and an efficiency gain of 1.178 in table Table S2. However, when MR ą 0, we notice more

substantial efficiency gains for Table 3.1, where sensitivity is lower and specificity is higher,

e.g. 1.677 vs. 1.549 for MR “ 0.4, CR “ 0.50 and N “ 10, 000.

Table 3.2 shows the results when the covariate of interest follows a normal distribution.

Relative efficiencies in this table range from 0.1% to 39.8%, indicating that efficiency gains

are not as high for a normally distributed covariate. We also assess the gains in relative

efficiency for the proposed method over the standard interval-censored approach for β “

logp3q in Table B.3 in the Appendix. Increasing the magnitude of our regression coefficient

leads to much larger increases in relative efficiency, ranging from 15.5% to 117%.

Table 3.3 presents results for data simulated from a complex survey. In all scenarios, the

weighted proposed estimator has minimal finite sample bias. The sandwich variance esti-

mator performs unfavorably in some settings for both the proposed and standard method,

with coverage as low as 89.9%, particularly when the sample size is small (N “ 1000) or

the CR is high. We note, problematic finite sample performance of the sandwich variance

has been observed in other settings where the number of observed events is modest and/or

the covariate is from a skewed distribution (Carroll et al., 1998). For all settings, relative

efficiency gains are observed to be quite high for the proposed method, ranging from 0.9% to

60.9%. In Table B.4 from the Appendix, we show results for data simulated from a complex

survey design using a normally distributed covariate. With a symmetrical covariate, the

sandwich variance estimator performs better, achieving empirical MADs that more closely

resemble the ASEs and obtaining coverage closer to the nominal 95% level. However, as we

observed for the random sample case, relative efficiency gains are not as large (1%-45.5%)

using a normally distributed covariate.

We present results for the simulation that mimic the data structure and complex survey

design of the HCHS/SOL study in Table 3.4. Median percent bias is -0.859% for the pro-

posed estimator and we see that applying the multiple imputation-based variance correction
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approach leads to well-behaved sandwich standard errors. We estimate a relative efficiency

gain of 44.2%, suggesting that our approach can lead to substantial variance reductions

under the data structure and measurement error settings similar to that of the HCHS/-

SOL cohort. Finally, we assess type I error results in Table 3.5. Type I error rates ranged

from 0.033 to 0.065 for different values of MR, CR, and N , indicating that type I error is

preserved in the proposed method for all observed settings.

3.5. Hispanic Community Health Study/Study of Latinos (HCHS/SOL)

Data Example

3.5.1. HCHS/SOL Study Description

The HCHS/SOL is an ongoing multicenter community-based cohort study of 16,415 self-

identified Hispanics/Latino adults aged 18-74 years recruited from randomly selected house-

holds at 4 locations in the United States (Chicago, Illinois; Miami, Florida; Bronx, New

York; San Diego, California). Households were selected using a stratified 2-stage area prob-

ability sample design. The sampling methods, design, and cohort selection for HCHS/SOL

have been described previously. (Sorlie et al., 2010; LaVange et al., 2010) The study was

designed to identify risk factors for chronic diseases including diabetes and to quantify mor-

bidity and all-cause mortality. Prevalent diabetes was recorded using a biomarker-defined

reference standard at the baseline, in-person clinical examination visit (2008-2011). The

study design was such that all participants were scheduled to be assessed for incident dia-

betes using (1) a biomarker-defined reference standard at a second clinic visit (visit 2) 4-10

years after baseline, and (2) annual telephone follow-up assessments recorded by self-report.

Participants have up to eight annual telephone follow-up calls. We found that most (ą 97%)

participants’ follow-up call dates rounded to exactly one year from the date of their prior

call, so we used the assigned annual follow-up times to define the boundaries of the follow-up

intervals. Follow-up time was divided into 9 possible intervals. To define the observation

time for the reference standard at visit 2, we rounded the time between baseline and the

second clinic visit to the nearest year. Visits that occurred after year 8 (1.51% of all visits)
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were rounded down in order to preserve the visit schedule with 9 intervals. For the interval-

censored, no auxiliary data approach, we assumed that visit 2 occurred at the same time for

all participants that had the reference standard available. Note we made this simplifying

assumption due to the lack of available software to handle the complex survey design for

the interval-censored proportional hazards model. We used this as a comparative analysis

that did not use auxiliary data.

We applied the proposed method to assess the association between energy, protein and

protein density (percentage of energy from protein) dietary intakes and the risk of diabetes in

HCHS/SOL using both the self-reported diabetes outcome (auxiliary data) and the reference

standard. The dietary exposure variables were recorded using an error-prone, self-reported

24-hour recall instrument that is believed to follow to the linear measurement error model.

A subset of 485 HCHS/SOL participants were enrolled in the Study of Latinos: Nutrition

and Physical Activity Assessment Study (SOLNAS). (Mossavar-Rahmani et al., 2015) The

SOLNAS subset included the collection of objective recovery biomarkers that conform to

the classical measurement error model and therefore can be used to develop calibration

equations for the self-reported dietary intake variables.

This work was motivated by more detailed, ongoing research looking to understand the

relationship between several dietary factors and risk of chronic diseases, including diabetes

and cardiovascular disease, in the HCHS/SOL cohort. The proposed method is applied to a

random subset of 8, 200 eligible participants, which is half of the original HCHS/SOL cohort

(N “ 16, 415). Eligibility included being diabetes-free at baseline and having complete

covariate data. Details on eligibility and the selection of our random subset are provided in

Section B.4 of the Appendix. Our calibration models for dietary energy, protein, and protein

density included age, body mass index (BMI), sex, Hispanic/Latino background, language

preference, income, and smoking status. We fit the calibration equation by regressing the

biomarker value pX˚˚q on the corresponding self-reported measure and other covariates. We

compared self-reported diabetes and the reference standard at baseline to determine that
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self-reported diabetes in HCHS/SOL has a sensitivity of 0.61 and a specificity of 0.98. We

also conduct a sensitivity analysis in which we use a sensitivity of 0.77 and a specificity of

0.92, which are the measures of agreement computed using self-reported diabetes and the

reference standard diabetes measure at visit 2.

All analyses accounted for the HCHS/SOL complex survey design. To fit the model for the

interval-censored reference standard diabetes measure from visit 2, we used the svyglm()

function from the survey package in R. (Lumley, 2011) To apply our proposed approach,

we maximized the weighted log-likelihood that included HCHS/SOL sampling weights, and

obtained design-based standard errors using the approach outlined in Section 3.3.2. The

models for both approaches are fit M times, once for each of the newly predicted intake

values X̂pmq

i from multiple imputation. The final variance estimate is computed using the

approach described in Section 3.3.3. We chose M “ 25 imputations for our analysis. In

both models, we used biomarker calibrated values of dietary energy, protein, and protein

density on the log scale. Both risk models were also adjusted by the standard risk factors

included in the calibration equations. We present hazard ratios (HR) and 95% confidence

intervals (CI) associated with a 20% increase in consumption.

3.5.2. Results

Of the 8,200 randomly selected participants, 5,922 (72.2%) had the reference standard di-

abetes status variable available at visit 2. Of participants who had visit 2 data, 5 (0.1%)

participants returned to the clinic four years post-baseline, 1490 (25.2%) returned after five

years, 3294 (55.6%) returned after six years, 739 (12.5%) returned after 7 years, and 394

(6.7%) returned after 8 years. Using the reference standard, 623 (10.5%) of the participants

with visit 2 data had incident diabetes.

Table 3.6 shows results from applying the proposed method and the standard, no auxiliary

data method to the HCHS/SOL data. The HR (95% CI) for a 20% increase in energy

intake was 1.20 (0.47, 3.11) for the proposed approach compared to 1.20 (0.41, 3.82) for

the no auxiliary data method. For energy, we observe a relative efficiency gain of 27%
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by using the proposed method. While the estimated standard error for the no auxiliary

data approach is larger compared to that of the proposed method, incident diabetes is not

significantly associated with energy intake in either approach. For protein, the HR (95% CI)

for a 20% increase in intake using the proposed method is estimated to be 1.30 (0.82, 2.06).

Comparatively, we estimate an HR (95% CI) of 1.37 (0.74, 2.51) using the no auxiliary data

approach, and estimate a corresponding relative efficiency gain of 74% using the proposed

method. When the proposed method is applied, the HR for a 20% increase in protein density

is estimated to be 1.01 (1.00, 1.02), compared to a HR of 1.01 (1.00, 1.03) for the no auxiliary

data method. Our estimated relative efficiency gain using the proposed method over the

standard approach is 63% when looking at protein density. We note that this large efficiency

gain was from relatively small absolute changes on the log-hazard scale.

In Table B.5 of the Appendix, we present results from a sensitivity analysis that applies the

proposed method using sensitivity and specificity values estimated at visit 2 (Se “ 0.77, Sp “

0.92q. For this investigation, we use the same subset of 8, 200 HCHS/SOL participants as in

the primary analysis. We observe that changing the sensitivity and specificity values does

not qualitatively change our results for any of the dietary intakes under study.

3.6. Discussion

In large cohort studies like HCHS/SOL, gold or reference standard outcome variables may

be less readily available than error-prone auxiliary outcomes. We have introduced a method

that leverages all available data by incorporating error-prone auxiliary variables into the

analysis of an interval-censored outcome. We developed methods for both a simple ran-

dom sample and complex survey design for the case of time-independent covariates. Our

results suggest that making use of auxiliary outcome data may often lead to a considerable

improvement in the efficiency of parameter estimates, particularly when the gold standard

outcome is missing for a subset of study participants. We illustrate the practical use of our

approach in a complex survey design by applying the proposed method to the HCHS/SOL

study to assess the association between energy, protein, and protein density intake and the
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risk of incident diabetes, while adjusting for error in the self-reported exposure. In HCHS/-

SOL, the reference standard diabetes outcome variable was not practical to obtain annually,

while self-reported diabetes status was easily attainable. This data example served as a

compelling setting for which our method could contribute, reducing the estimated variance

by up to 74%. In settings with substantial measurement error, where variance estimates can

be quite large, relative efficiency improvements are extremely important and may inform

cost reductions for future studies.

In the HCHS/SOL study, we observe a special case of interval-censored data in which the

reference standard outcome is only observed at one time point. This type of data is often

called current status data, or case I interval-censored data. (Zhang and Sun, 2010) In our

data example, the current status data arise due to the study design, as the reference standard

outcome was scheduled to be recorded only once at a predetermined time point post-baseline.

However, under the discrete time framework in which there is a common set of assessment

times for all individuals, our method could be easily adapted to accommodate a reference

standard status variable recorded at multiple time points. For the continuous time setting,

future work is needed to consider how our estimation methods for interval-censored data

could be extended. Several approaches have been applied for the analysis of continuous time

interval-censored data, many of which have been shown to be computationally complex.

(Zeng et al., 2016; Zhang et al., 2010; Lindsey and Ryan, 1998) These methods, however,

have not yet been adapted to handle error-prone and validated outcomes. A further extension

would be to consider approaches able to handle time-varying covariates.

The application of the proposed method required defining a set of common, discrete visit

times across participants to avoid the curse of dimensionality. We used the assigned annual

visit times to define the boundaries of the visit intervals, thus ignoring that the annual visit

may not occur on the participant’s exact anniversary date. We deemed this appropriate

because the observed visit times were generally quite close to the anniversary times. In

other settings, where the fluctuations in visit times are more extreme, one might consider
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dividing time into smaller intervals. For this approach, the choice of intervals will require

us to consider to what the extent the data can support estimating the increased number of

nuisance parameters from a finer grid. With discrete data, we must often make a pragmatic

compromise that balances the bias induced from rounding event times and the problems

that may arise from a large number of parameters. Extending our methods in a way that

does not restrict the number of possible visit times and allows for more parameters to be

stably estimated need further investigation.

One potential limitation of our analysis of the HCHS/SOL data was the assumption of con-

stant sensitivity and specificity across visit times, as there was some apparent disagreement

between these measures of accuracy at baseline compared to visit 2. We hypothesize that

this difference in agreement is primarily a result of a larger lag time since the previous gold

standard test at baseline compared to follow-up visits, but could also result from missing

data in the reference measure at visit 2 that may impact the sensitivity and specificity val-

ues. We conducted a sensitivity analysis to explore how using visit 2 rather than baseline

values of sensitivity and specificity may impact the results of our HCHS/SOL data analysis.

In this example, incorporating slightly different measures of accuracy of the self-reported

auxiliary outcome data did not substantially impact our results. However, we note that this

may not always be the case, especially for more extreme changes in sensitivity and speci-

ficity. For many real data settings, it may be unreasonable to assume that the sensitivity

and specificity of error-prone outcomes are time-invariant. Future methods might explore

the possibility of incorporating time-varying values of sensitivity and specificity. A second

potential limitation was our assumption that the gold standard outcome was missing com-

pletely at random. Using our proposed method for the complex survey design, we anticipate

an extension could be readily developed to handle the missing at random case with the use

of inverse probability weighting.

In our numerical study, we noticed that the sandwich variance estimator had some cover-

age issues in smaller sample settings using both the proposed method and the standard no
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auxiliary data approach. While the sandwich variance estimator performed better with a

normally distributed covariate, we noticed some numerical challenges when the covariate of

interest had a long-tailed distribution (e.g. the gamma distribution). The numerical lim-

itations of the sandwich variance estimator for complex survey data in non-linear models

have been discussed previously. Bias in the sandwich estimator may be encountered with

smaller sample sizes and rare outcomes, particularly for a covariate with a heavy-tailed dis-

tribution, since in these settings, the variability of regression parameters is underestimated.

(Carroll et al., 1998; Rogers and Stoner, 2015) Despite these limitations, the sandwich es-

timator may be reasonable, as coverage remained above 89%, got closer to 95% in large

samples, and it is very practical to implement.

There are several methods for variance estimation that may be considered when applying re-

gression calibration. Further steps are typically required to incorporate the extra uncertainty

added by the calibration model and make valid inference on the parameter of interest. In

practice, the bootstrap estimator is often used due to its simple implementation. For cases in

which the data are from a complex survey design like HCHS/SOL, additional considerations

are needed to account for aspects of the sampling design and the standard bootstrap variance

estimator may be less straightforward to apply. While the multiple imputation approach of

Baldoni et al. (2021)(Baldoni et al., 2021) can be applied in these scenarios, we observed

some instances of over-coverage of the 95% confidence intervals using these variance estima-

tors (data not shown). This issue is discussed by Baldoni et al. (2021)(Baldoni et al., 2021)

and is believed to be attributed to instability introduced by multicollinearity in the simulated

data. Future work may consider alternative variance estimation strategies in the presence of

regression calibration and the complex survey setting, such as a sandwich variance estimator

obtained by stacking the calibration and outcome model estimating equations.

57



Table 3.1: Simulation results are shown for exponential failure times assuming the Cox propor-
tional hazards model with X „ Gammap0.2, 1q and β “ logp1.5q. The median percent (%)
bias, median standard errors (ASE), empirical median absolute deviation (MAD) and coverage
probabilities (CP) are given for 1000 simulated data sets for the proposed method and the stan-
dard interval-censored approach that does not incorporate auxiliary data. Here, Se “ 0.80 and
Sp “ 0.90 for the auxiliary data.

Proposed No Auxiliary Data

MR1 CR2 N3 % Bias ASE MAD CP % Bias ASE MAD CP RE4

0.0 0.9 1000 -0.958 0.159 0.150 0.956 -1.402 0.160 0.155 0.951 1.012
10,000 1.351 0.048 0.050 0.947 1.279 0.048 0.051 0.951 1.010

0.7 1000 0.824 0.103 0.100 0.947 0.614 0.107 0.106 0.950 1.053
10,000 0.543 0.032 0.032 0.944 0.398 0.033 0.034 0.947 1.070

0.5 1000 1.923 0.091 0.088 0.943 2.020 0.099 0.102 0.947 1.182
10,000 0.521 0.028 0.029 0.946 0.382 0.031 0.034 0.951 1.186

0.2 0.9 1000 -1.071 0.172 0.170 0.957 -0.378 0.181 0.183 0.951 1.072
10,000 1.199 0.052 0.050 0.958 0.769 0.054 0.055 0.952 1.087

0.7 1000 1.333 0.109 0.106 0.953 0.377 0.120 0.116 0.954 1.184
10,000 0.713 0.034 0.035 0.942 0.332 0.037 0.038 0.946 1.206

0.5 1000 1.798 0.095 0.095 0.945 2.084 0.111 0.116 0.947 1.363
10,000 0.534 0.029 0.030 0.945 0.247 0.034 0.036 0.952 1.370

0.4 0.9 1000 0.256 0.189 0.188 0.959 1.178 0.213 0.222 0.959 1.195
10,000 1.444 0.056 0.057 0.951 2.122 0.062 0.064 0.960 1.221

0.7 1000 1.228 0.115 0.111 0.946 1.616 0.140 0.138 0.958 1.419
10,000 0.403 0.036 0.036 0.942 0.758 0.043 0.044 0.946 1.428

0.5 1000 1.732 0.099 0.097 0.943 3.186 0.130 0.136 0.952 1.699
10,000 0.350 0.031 0.030 0.946 0.122 0.040 0.043 0.945 1.677

1MR “ Average probability that the gold standard indicator ∆ is missing at year 4
2CR “ Average censoring rate for the latent true event time at the end of study
3N “ Sample size for proposed approach; if MR ą 0.0, sample size for no auxiliary data ap-
proach is smaller because of missingness in gold standard indicator ∆.
4RE “ median relative efficiency, calculated as the median of the ratio of the estimated vari-
ance of the standard, no auxiliary data approach estimator to the estimated variance of the
proposed method estimator , e.g. V arpβ̂Standardq

V arpβ̂Proposedq
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Table 3.2: Simulation results are shown for exponential failure times assuming the Cox pro-
portional hazards model with X „ Normalp0.2, 1q and β “ logp1.5q.The median percent (%)
bias, median standard errors (ASE), empirical median absolute deviation (MAD) and coverage
probabilities (CP) are given for 1000 simulated data sets for the proposed method and the stan-
dard interval-censored approach that does not incorporate auxiliary data. Here, Se “ 0.80 and
Sp “ 0.90 for the auxiliary data.

Proposed No Auxiliary Data

MR1 CR2 N3 % Bias ASE MAD CP % Bias ASE MAD CP RE4

0.0 0.9 1000 -0.730 0.100 0.102 0.945 -0.887 0.100 0.102 0.945 1.002
10,000 -0.199 0.032 0.032 0.952 -0.278 0.032 0.032 0.949 1.001

0.7 1000 -0.545 0.059 0.055 0.951 -0.689 0.059 0.055 0.951 1.013
10,000 0.019 0.018 0.018 0.950 0.064 0.019 0.019 0.949 1.014

0.5 1000 0.157 0.046 0.044 0.953 0.166 0.047 0.049 0.948 1.056
10,000 -0.194 0.014 0.015 0.948 -0.203 0.015 0.014 0.953 1.057

0.2 0.9 1000 -0.855 0.110 0.109 0.943 -0.940 0.112 0.110 0.944 1.044
10,000 -0.060 0.035 0.036 0.951 -0.031 0.035 0.037 0.950 1.043

0.7 1000 -0.676 0.063 0.058 0.954 -0.470 0.066 0.059 0.953 1.103
10,000 -0.020 0.020 0.019 0.953 -0.058 0.021 0.021 0.948 1.103

0.5 1000 0.072 0.049 0.050 0.954 0.583 0.053 0.054 0.939 1.184
10,000 -0.197 0.015 0.015 0.949 -0.206 0.017 0.016 0.946 1.184

0.4 0.9 1000 -1.050 0.123 0.122 0.943 0.264 0.130 0.129 0.947 1.116
10,000 -0.043 0.039 0.040 0.953 0.009 0.041 0.041 0.944 1.113

0.7 1000 -0.470 0.068 0.066 0.956 -0.385 0.076 0.074 0.949 1.253
10,000 -0.112 0.021 0.020 0.955 -0.248 0.024 0.023 0.960 1.252

0.5 1000 0.124 0.052 0.051 0.949 0.723 0.061 0.065 0.937 1.398
10,000 -0.258 0.016 0.016 0.948 -0.221 0.019 0.019 0.948 1.396

1MR “ Average probability that the gold standard indicator ∆ is missing at year 4
2CR “ Average censoring rate for the latent true event time at the end of study
3N “ Sample size for proposed approach; if MR ą 0.0, sample size for no auxiliary data ap-
proach is smaller because of missingness in gold standard indicator ∆.
4RE “ median relative efficiency, calculated as the median of the ratio of the estimated vari-
ance of the standard, no auxiliary data approach estimator to the estimated variance of the
proposed method estimator , e.g. V arpβ̂Standardq

V arpβ̂Proposedq
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Table 3.3: Simulation results are shown for data simulated to be from a complex survey with ex-
ponential failure times assuming the Cox proportional hazards model withX „ Gammapshapes`
ωgs, scales`ρgsq for an individual in block group g and stratum s and β “ logp1.5q. The median
percent (%) bias, median standard errors (ASE), median absolute deviation (MAD) and coverage
probabilities (CP) are given for 1000 simulated data sets for the weighted proposed estimator
and the weighted interval-censored approach that does not incorporate auxiliary data when both
use a sandwich variance estimator to address within-cluster correlation. Here, Se “ 0.80 and
Sp “ 0.90 for the auxiliary data.

Proposed No Auxiliary Data

MR1 CR2 N3 % Bias ASE MAD CP % Bias ASE MAD CP RE4

0.0 0.9 1000 3.528 0.137 0.155 0.903 2.591 0.140 0.161 0.901 1.009
10,000 2.643 0.044 0.045 0.923 1.970 0.044 0.044 0.937 1.029

0.7 1000 4.621 0.098 0.109 0.920 5.902 0.102 0.115 0.910 1.067
10,000 1.862 0.033 0.032 0.928 1.707 0.034 0.035 0.927 1.093

0.5 1000 4.714 0.092 0.100 0.927 4.735 0.099 0.107 0.917 1.167
10,000 1.198 0.031 0.033 0.945 0.846 0.034 0.035 0.930 1.177

0.2 0.9 1000 3.048 0.146 0.165 0.902 0.135 0.153 0.183 0.912 1.053
10,000 3.010 0.047 0.047 0.925 2.093 0.049 0.050 0.932 1.110

0.7 1000 3.695 0.103 0.113 0.922 5.268 0.113 0.132 0.903 1.225
10,000 2.438 0.034 0.035 0.926 1.823 0.038 0.038 0.919 1.218

0.5 1000 3.180 0.097 0.103 0.923 3.578 0.110 0.117 0.931 1.308
10,000 1.243 0.033 0.034 0.938 1.120 0.037 0.038 0.920 1.354

0.4 0.9 1000 4.535 0.158 0.175 0.899 0.796 0.180 0.206 0.916 1.169
10,000 2.697 0.050 0.050 0.931 1.847 0.057 0.058 0.930 1.265

0.7 1000 4.035 0.107 0.120 0.918 5.968 0.130 0.147 0.919 1.447
10,000 2.805 0.036 0.037 0.925 2.259 0.043 0.047 0.924 1.455

0.5 1000 3.168 0.099 0.111 0.932 4.136 0.126 0.149 0.927 1.573
10,000 0.945 0.034 0.035 0.935 1.106 0.043 0.043 0.924 1.609

1MR “ Average probability that the gold standard indicator ∆ is missing at year 4
2CR “ Average censoring rate for the latent true event time at the end of study
3 pNq “ Average sample size for proposed approach; if MR ą 0.0, sample size for no auxiliary
data approach is smaller because of missingness in gold standard indicator ∆.
4RE “ median relative efficiency, calculated as the median of the ratio of the estimated vari-
ance of the standard, no auxiliary data approach estimator to the estimated variance of the
proposed method estimator , e.g. V arpβ̂Standardq

V arpβ̂Proposedq
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Table 3.4: Simulation results are shown for data simulated to have a
similar structure to the complex survey design of HCHS/SOL, assuming
exponential failure times and the Cox proportional hazards model with
β “ logp1.5q. The median percent (%) bias, median standard errors
(ASE), median absolute deviation (MAD) and coverage probabilities (CP)
are given for 1000 simulated data sets for the proposed estimator and the
interval-censored approach that does not incorporate auxiliary data when
both apply regression calibration to address covariate error. Variance esti-
mation is performed using the resampling-based multiple imputation pro-
cedure of Baldoni et al. (2021).

Proposed No Auxiliary Data

% Bias ASE MAD CP % Bias ASE MAD CP RE1

-0.859 0.203 0.189 0.949 -1.470 0.244 0.237 0.950 1.442
1RE “ median relative efficiency, calculated as the median of the ratio
of the estimated variance of the standard, no auxiliary data approach
estimator to the estimated variance of the proposed method estimator ,
e.g. V arpβ̂Standardq

V arpβ̂Proposedq
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Table 3.5: Type I error results for β “ 0 are given
for 1000 simulated data sets for the proposed method
when data are simulated using exponential failure
times and assuming the Cox proportional hazards
model with X „ Gammap0.2, 1q. Here, Se “ 0.80
and Sp “ 0.90 for the auxiliary data.

Type I Error Rate

CR1 N2 MR3“ 0.0 MR “ 0.2 MR “ 0.4

0.9 1000 0.045 0.033 0.049
10,000 0.056 0.065 0.054

0.7 1000 0.043 0.049 0.061
10,000 0.047 0.045 0.048

0.5 1000 0.050 0.049 0.057
10,000 0.051 0.056 0.051

1CR “ Average censoring rate for the latent true
event time at the end of study 2N “ Sample size
for proposed approach; if MR ą 0.0, sample size
for no auxiliary data approach is smaller because of
missingness in gold standard indicator ∆.
3MR “ Average probability that the gold standard
indicator ∆ is missing at year 4
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Table 3.6: HCHS/SOL Data Analysis on a random subset pN “

8, 200q of study participants using baseline sensitivity (Se “ 0.61)
and specificity (Sp “ 0.98) values. Hazard Ratio (HR) and 95%
confidence interval (CI) estimates of incident diabetes for a 20%
increase in consumption of energy (kcal/d), protein (g/d), and
protein density (% energy from protein/d) based on the proposed
estimator and the interval-censored approach that does not incor-
porate auxiliary data.

HR (95% CI)

Model1 Proposed No Auxiliary Data RE2

Energy (kcal/d) 1.20 (0.47, 3.11) 1.20 (0.41, 3.82) 1.27
Protein (g/d) 1.30 (0.82, 2.06) 1.37 (0.74, 2.51) 1.74
Protein Density 1.01 (1.00, 1.02) 1.01 (1.00, 1.03) 1.63
1 Each model is adjusted for potential confounders including
age, body mass index (BMI), sex, Hispanic/Latino background,
language preference, education, income, and smoking status.
2RE “ relative efficiency, calculated as the ratio of the esti-
mated variance of the standard, no auxiliary data approach es-
timator to the estimated variance of the proposed method es-
timator , e.g. V arpβ̂Standardq

V arpβ̂Proposedq
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CHAPTER 4

Practical considerations for sandwich variance estimation in

two-stage regression settings

4.1. Abstract

We present a practical approach for computing the sandwich variance estimator in two-stage

regression model settings. As a motivating example for two-stage regression, we consider

regression calibration, a popular approach for addressing covariate measurement error. The

sandwich variance approach has been rarely applied in regression calibration, despite that

it requires less computation time than popular resampling approaches for variance estima-

tion, specifically the bootstrap. This is likely due to requiring specialized statistical coding.

In practice, a simple bootstrap approach with Wald confidence intervals is often applied,

but this approach can yield confidence intervals that do not achieve the nominal coverage

level. We first outline the steps needed to compute the sandwich variance estimator. We

then introduce a method of computation in R that we have developed for sandwich variance

estimation, which leverages existing R functions and can be applied in the case of a simple

random sample or complex survey design. We use a simulation study to compare the per-

formance of the sandwich to a resampling variance approach for both data settings. Finally,

we further compare these two variance estimation approaches for two data examples, the

Women’s Health Initiative (WHI) and Hispanic Community Health Study/Study of Latinos

(HCHS/SOL).

4.2. Introduction

Two stage regression models arise in several settings in epidemiology and statistics, including

those requiring correction for covariate measurement error, mediation analysis, and the use

of instrumental variables in causal inference (Keogh et al., 2020; Baron and Kenny, 1986;

Baiocchi et al., 2014). Typically, plug-in estimates for nuisance parameters are obtained in a

stage 1 regression model and, in stage 2, an outcome model reliant on these plug-in estimates
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is fit. As a motivating example, we consider regression calibration, a popular analysis

approach for correcting biases in regression coefficients induced by covariate measurement

error (Shaw et al., 2018; Prentice, 1982). When regression calibration is applied, additional

steps are required for variance estimation for the outcome model coefficients to account for

the uncertainty in the estimated, error-adjusted exposure. Usual standard errors obtained

from the outcome model are generally too small, resulting in confidence intervals that are

too narrow.

There are a few approaches for standard error estimation in two-stage regression. We con-

sider settings where the data are either from a simple random sample (SRS) from the pop-

ulation or a complex survey sampling design. For the SRS case, two common approaches

for standard error estimation rely on either a bootstrap variance estimator (Efron, 1979)

or a sandwich variance estimator obtained by stacking the calibration and outcome model

estimating equations Boos and Stefanski (2013). In practice, the bootstrap estimator is of-

ten implemented because it is fairly simple to apply (Keogh et al., 2020), but simple Wald

confidence intervals constructed using bootstrap standard error estimates can suffer from

poor coverage (Davison and Hinkley, 1997). For data from a complex survey design, valid

application of the bootstrap is much less straightforward. Baldoni et al. (2021) introduced a

multiple imputation (MI)-based procedure for variance estimation when applying regression

calibration to complex survey data. The sandwich variance estimator has also been extended

for data from a complex survey design (Binder, 1983; Lumley and Scott, 2017). Likely due

to the lack of software for specialized two-stage setting, the sandwich variance estimation

has rarely been applied in the setting of regression calibration and simple random sampling,

and we are not aware of any example in existing literature where this approach has been

used for regression calibration in a complex survey design.

In this paper, we describe how to apply the sandwich variance estimator in two-stage

regression settings. This work is motivated by applications in two cohort studies in the

US: the Women’s Health Initiative (WHI) and the Hispanic Community Health Study/S-
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tudy of Latinos (HCHS/SOL), which we describe in more detail in the next section. We

then introduce the two-stage model setting and review the stacked estimating approach

of Boos and Stefanski (2013), which provides a sandwich variance estimate for the out-

come model regression parameters. We develop a procedure that uses quantities returned

from the regression fit and other standard functions in R Software to compute the sand-

wich estimator, which can be implemented using our functions, available on GitHub at

https://github.com/lboe23/sandwich2stage. We use a simulation study to assess how the

sandwich compares to its competing variance estimators, considering scenarios in regression

calibration where the bootstrap is observed to have coverage problems. Finally, we report

the analyses of our data examples and conclude by summarizing our findings.

4.3. Motivating Data Examples

The Women’s Health Initiative (WHI), a collection of studies launched in 1993, investigated

the major causes of morbidity and mortality in US post-menopausal women aged 50-79

(The Women’s Health Initiative Study Group, 1998). It is of interest to assess the associ-

ation of incident diabetes with dietary energy, protein, and protein density consumption,

where these exposures are self-reported and thus error-prone. The WHI also included the

Nutritional Biomarker Study, in which objective recovery biomarkers for energy and protein

intake were recorded on a subset of participants Neuhouser et al. (2008). Tinker et al. (2011)

used regression calibration to correct for error in self-reported dietary energy and protein

and then evaluated the association between the calibrated dietary variables and incident di-

abetes using a Cox proportional hazards model. This study used the bootstrap for variance

estimation for the outcome model parameters. We reanalyze data from Tinker et al. (2011)

and compare the bootstrap and sandwich variance estimates.

For our complex survey setting, we consider an example from The Hispanic Community

Health Study/Study of Latinos (HCHS/SOL), an ongoing, multicenter community-based

cohort study of Hispanics/Latino adults aged 18-74 years recruited from randomly se-

lected households at 4 US field centers (Chicago, Illinois; Miami, Florida; Bronx, New
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York; San Diego, California). The HCHS/SOL cohort was recruited using a multi-stage,

probability-based sampling design. A random subset of HCHS/SOL participants were en-

rolled in the Study of Latinos: Nutrition and Physical Activity Assessment Study (SOL-

NAS), and objective recovery biomarkers were collected for several dietary components

(Mossavar-Rahmani et al., 2015). Baldoni et al. (2021) used regression calibration to cor-

rect for the measurement error in self-reported dietary potassium in the HCHS/SOL and

assessed the cross-sectional association between calibrated potassium intake and baseline

hypertension-related outcome variables. We reanalyze this data to compare the variance

estimates from MI and the sandwich.

4.4. Methods

This section begins by introducing the two-stage model setup. For ease of presentation,

we present two-stage regression in the context of regression calibration, where at stage 1,

nuisance parameters are estimated from a regression model used to adjust (calibrate) the

observed exposure, and in stage 2, an outcome regression model is fit using the plug-in

estimator from stage 1. We describe the proposed sandwich estimator and the established

competing variance estimators.

4.4.1. Notation and two-stage model setup

We consider the two-stage model setting, where a j ˆ 1 vector α and the kˆ 1 vector β are

estimated at stage 1 and stage 2, respectively. Consider a study cohort of N individuals,

either from a SRS or a complex survey. For i “ 1, . . . , N , let X˚
i be an observed, error-prone

covariate, which is assume to be linearly related with the true, unobserved exposure Xi and

other error-free covariates Zi such that

Xi “ α0 ` α1X
˚
i ` α2Zi ` Ui, (4.1)

where Ui is a random error term that is independent of all variables and has mean 0 and

variance σ2U . Suppose there is also a sub-study of size n in which X˚˚
i is observed to follow
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the classical measurement error model, i.e.

X˚˚
i “ Xi ` ϵi, (4.2)

where ϵi is a random error that is independent of all variables, with mean 0 and variance

σ2ϵ .

4.4.2. Stage 1 Model

Denote the stage 1 model of interest by fpx˚˚|x˚, z;αq, the conditional probability density

function of X˚˚
i given X˚

i and Zi. Data for the stage 1 model consist of values tX˚˚
i , X˚

i , Ziu

for the n individuals in the sub-study. Let l1pαq be the corresponding log-likelihood for the

stage 1 model. To apply regression calibration, one builds a calibration model to estimate

the average true exposure given the observed covariates, namely X̂ipαq “ EpXi|X
˚
i , Zi;αq,

which is the stage 1 model. For ease of notation, we often suppress α and use X̂i to denote

both the model X̂ipαq and the fitted value X̂ipα̂q, where the plug-in estimator α̂ is used.

The calibration model parameters may be estimated if, for a subset of individuals, Xi or

X˚˚
i , a measure containing independent classical error, is observed.

4.4.3. Stage 2 Model

Suppose we are interested in the relationship between some outcome, Yi, and the covariates

pXi, Ziq. Let gpy|x, z;α,βq be the outcome, or stage 2, model of interest, which has corre-

sponding log-likelihood function l2pβq. The stage 2 model is fit using the N observations

tYi, Xi, Ziu from the main study. When the exposure of interest is unobserved, one can

substitute the estimated X̂i in for Xi in the outcome model to obtain an estimate of the

unknown regression parameter vector, β (Prentice, 1982; Keogh et al., 2020). This is accom-

plished by using the estimated plug-in parameters, α̂, from the stage 1 model to estimate

X̂i.
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4.4.4. Variance Estimation

We now describe the different variance estimators that incorporate the uncertainty added by

the estimation of the nuisance parameters in the stage 1 model. We present the formulation

of the sandwich variance estimator (Boos and Stefanski, 2013) for the SRS and complex

survey design settings. We also review the bootstrap variance estimator (Efron, 1979) and

the MI procedure proposed by Baldoni et al. (2021).

Sandwich Variance Estimator

Case 1: Simple Random Sample

The sandwich variance estimator is obtained by stacking the calibration and outcome model

estimating equations (Boos and Stefanski, 2013). We are interested in the “stacked” param-

eter vector, θ “ pα,βq, which includes the parameters from the stage 1 and stage 2 models.

We introduce these methods for a subset of outcome models, e.g. the familiar generalized

linear model (GLM) and Cox proportional hazards model, but our technique works more

generally for any pair of stage 1 and stage 2 models in which a sandwich variance estimator

exists. We outline sufficient assumptions for sandwich variance estimation in Section C.1 in

the Appendix.

Define Uipθq as the j ` k-dimensional vector of stacked estimating equations formed for θ,

which can be broken down into the estimating equations for the stage 1 model, Ui1pθq, and

the stage 2 model, Ui2pθq. For maximum likelihood estimation, Ui1pθq and Ui2pθq are the

score functions, or the vector of first derivatives of the log-likelihood functions li1pαq and

li2pβq, respectively, with respect to the parameters being estimated. We now write Uipθq as:

Uipθq “

»

—

—

—

—

–

Ui1pθq

Ui2pθq

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

Bli1pαq

Bα

Bli2pβq

Bβ

fi

ffi

ffi

ffi

ffi

fl

. (4.3)

Estimates of our vector of unknown parameters, θ̂, can be found by solving the equations
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řN
i“1 Uipθq “ 0. Following Boos and Stefanski (2013), a sandwich estimator for the variance

of θ̂ takes the form:

V pθ̂q “ Apθ̂q´1Bpθ̂q

”

Apθ̂q´1
ıT

{N, (4.4)

where

Apθ̂q “
1

N

N
ÿ

i“1

BUipθq

Bθ

ˇ

ˇ

ˇ

ˇ

θ“θ̂

, (4.5)

and

Bpθ̂q “
1

N

N
ÿ

i“1

Uipθ̂qUipθ̂qT . (4.6)

The rj ` ks ˆ rj ` ks matrix Apθ̂q has the following form:

Apθ̂q “
1

N

N
ÿ

i“1

»

—

—

—

—

–

BUi1pθq

Bα |θ“θ̂
BUi1pθq

Bβ |θ“θ̂

BUi2pθq

Bα |θ“θ̂
BUi2pθq

Bβ |θ“θ̂

fi

ffi

ffi

ffi

ffi

fl

“
1

N

N
ÿ

i“1

»

—

—

—

—

–

BUi1pθq

Bα |θ“θ̂ 0

BUi2pθq

Bα |θ“θ̂
BUi2pθq

Bβ |θ“θ̂

fi

ffi

ffi

ffi

ffi

fl

. (4.7)

In the case of maximum likelihood estimation, the rj ˆ js upper-left quadrant, BUi1pθq

Bα |θ“θ̂,

and rkˆ ks bottom-right quadrant, BUi2pθq

Bβ |θ“θ̂, are the Hessian matrices for the stage 1 and

stage 2 models, respectively. All elements of the rjˆks upper-right quadrant, BUi1pθq

Bβ |θ“θ̂, are

0 because the stage 2 parameters are not involved in the estimating equation for the stage

1 model. The rk ˆ js elements of the bottom-left quadrant, BUi2pθq

Bα |θ“θ̂, are non-zero since

the estimated exposure X̂i in the stage 2 model relies on the α parameters from stage 1.

These derivatives can be computed directly if a closed-form solution exists or using numerical

derivatives. The rj ` ks ˆ rj ` ks matrix Bpθ̂q has the following general form:
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Bpθ̂q “
1

N

N
ÿ

i“1

»

—

—

—

—

–

Ui1pθ̂q

Ui2pθ̂q

fi

ffi

ffi

ffi

ffi

fl

«

UTi1pθ̂q UTi2pθ̂q

ff

“
1

N

N
ÿ

i“1

»

—

—

—

—

–

Ui1pθ̂qUTi1pθ̂q Ui1pθ̂qUTi2pθ̂q

Ui2pθ̂qUTi1pθ̂q Ui2pθ̂qUTi2pθ̂q

fi

ffi

ffi

ffi

ffi

fl

. (4.8)

In R, this sandwich variance estimate can be computed by (1) directly computing the ma-

trices in equation 4.4, or (2) taking advantage of convenient functions in the survey package

and readily available quantities from the fitted stage 1 and stage 2 models (Lumley, 2011).

For the latter, one must compute the influence functions of the estimator Apθ̂q´1Ũpθ̂q, where

Ũpθ̂q is the matrix of transposed estimating equation contributions, defined as:

Ũpθ̂q “

»

—

—

—

—

—

—

—

—

—

—

–

UT11pθ̂q UT12pθ̂q

UT21pθ̂q UT22pθ̂q

... ...

UT
pN´1q1pθ̂q UT

pN´1q2pθ̂q

UTN1pθ̂q UTN2pθ̂q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.9)

.

In Figure 4.1, we provide sample R code that computes V pθ̂q using the influence function

approach. Our R function assumes the stage 1 is a linear model fit using svyglm with a

gaussian response, with the resulting fit stored in stage1.model. We assume the stage 2

model is a generalized linear or Cox model fit using the svyglm or svycoxph functions,

respectively, which return the fitted model stage2.model. In Figure 4.1a, we create the

SRS survey design and provide sample model fitting statements for the stage 1 and stage

2 models. In Figure 4.1b, we show how to obtain the pieces of the matrix, Apθ̂q. The

computation of the bottom-left quadrant relies on the function stage2.alphas.estfuns(),

available on GitHub, which computes the numerical derivatives for the stage 2 estimating
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equation with respect to α. Next in Figure 4.1c, we show that the matrix Ũpθ̂q can be

obtained by stacking the estimating equation contributions for the stage 1 and stage 2

models. All stage 1 estimating equation contributions for those not in the calibration subset

are equal to 0. Finally, in Figure 4.1d we compute the influence functions by multiplying

the rN ˆ pj ` kqs matrix Ũpθ̂q by the rj ` ks ˆ rj ` ks matrix
”

Apθ̂q´1
ıT

and dividing by

the sample size, N , which are used to compute an estimate of V pθ̂q.

Case 2: Complex Survey Design

The two-stage sandwich variance estimator can easily be extended for complex survey data.

In this section, we consider designs in which the validation sub-study is nested in the full

study cohort, but it is straightforward to extend this approach for other designs. Define πi as

the probability that subject i will be included in the sample, which is known from the survey

design. A participant sampled with probability πi is assumed to represent 1{πi participants

in the total population, which becomes the sampling weight reflecting unequal probability

of selection into the sample (Lumley, 2011). Consider qUipθq “ 1
πUipθq, the vector of stacked

estimating equations formed for θ in a probability-based sampling design. As before, we

can break qUipθq down into qUi1pθq and qUi2pθq. Define ql1pαq “ 1
π l1pαq and ql2pβq “ 1

π l2pβq

as the weighted log-likelihood for the stage 1 and stage 2 models, respectively. The j ` k-

dimensional vector of stacked estimating equations is then:

qUipθq “

»

—

—

—

—

–

qUi1pθq

qUi2pθq

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

Bql1pαq

Bα

Bql2pβq

Bβ

fi

ffi

ffi

ffi

ffi

fl

. (4.10)

To obtain estimates of the unknown, design-based parameters, θ̂, one can solve
řN
i“1

qUipθq “

0. Binder (1983) applied a standard delta method argument to provide a sandwich form

for the estimated design-based variance, Vπpθ̂q “ Aπpθ̂q´1Bπpθ̂q

”

Aπpθ̂q´1
ıT

{N . Following

Lumley and Scott (2017),
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Aπpθ̂q “
1

N

N
ÿ

i“1

B qUipθq

Bθ

ˇ

ˇ

ˇ

ˇ

ˇ

θ“θ̂

(4.11)

and

Bπpθ̂q “ xvarπ

«

1

N

N
ÿ

i“1

qUipθ̂q

ff

. (4.12)

In Figure 4.2, we provide sample code illustrating how to compute the sandwich estimator for

a complex survey design with stratification, clustering, and unequal probability weighting.

We first create a hypothetical survey design object, then fit the stage 1 and stage 2 models.

Since svytotal() adds the weights, one must provide the unweighted matrix, Ũpθ̂q, which

can be accomplished by dividing the estimating functions by the weights.

For the stacked estimating equation, it is important to consider the strata arising from (1)

original sampling procedure of the survey design and (2) membership to the calibration

subset, if this wasn’t one of the original strata by design. In this setting, one can augment

the original design strata by cross-classifying the design strata with the subset indicator.

Bootstrap

Bootstrap variance estimation is often implemented in two-stage regression settings due

to its simplicity. One step that is often overlooked is ensuring that bootstrap sampling

is stratified on subset membership status. For those in the subset, tX˚
i , X

˚˚
i , Zi, Yiu is

resampled. Otherwise, tX˚
i , Zi, Yiu is resampled. The stage 1 model is then fit to the

bootstrap sample to obtain a new estimate of the exposure, which is subsequently included

in the stage 2 model fit to the bootstrap sample. Section C.2 in the Appendix includes steps

for computing bootstrap standard errors using a stratified bootstrap procedure.

Multiple Imputation

In the variance estimation approach proposed by Baldoni et al. (2021), the expected value

of the latent exposure variable is multiply imputed for all individuals in the main study by
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repeatedly sampling the stage 1 model coefficients required to estimate X̂i. New calibration

coefficients can be sampled using either their estimated asymptotic parametric distribution

or bootstrap resampling. At each step of the imputation, the outcome model is re-fit using

the newly calibrated values. Details on the steps required to use the resampling-based MI

approach are provided in Section C.3 of the Appendix.

4.5. Simulation Study

4.5.1. Setup

We use a simulation study to compare the sandwich to competing variance estimators for

the SRS and complex survey settings. We let the stage 1 model (n “ 450) and stage 2

model (N “ 1000 or N “ 10, 000) be linear and logistic regression models, respectively. We

generate two covariates, Xi and Zi, and vary the correlation between them. We simulate an

error-prone covariate X˚
i and vary the error variance σ2 between 0, 0.25, 0.50, and 1.00 to

represent cases of zero, low, moderate, and high measurement error, respectively. We also

conduct simulations to mimic complex survey data using code provided by Baldoni et al.

(2021) for simulating a superpopulation and drawing samples using a stratified complex

survey sampling scheme. Full simulation details are provided in Appendix Section C.4. In

all tables, we present median percent (%) biases, median standard errors (ASE), median

absolute deviation (MAD), and 95% coverage probabilities (CP). The ASE is the median of

the estimated standard errors, while the MAD is the empirical median absolute deviation

of the estimated regression coefficients.

4.5.2. Results

In Table 4.1, we present results for the stage 2 model fit to the true exposure Xi, the error-

prone exposure X˚
i , and the calibrated exposure X̂i when the data are simulated from a SRS.

For the regression calibration approaches, we compute model-based (naive), sandwich, and

bootstrap standard errors. Applying regression calibration reduces the absolute median bias

to under 6% in all settings. For the larger samples (N “ 10, 000), using naive standard errors

with regression calibration results in CP as low as 84%. Applying sandwich or bootstrap
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techniques gives ASEs that more closely resemble the empirical MAD values and CP closer

to 95%. In the high correlation and error settings, the bootstrap results in CP that is

too high (ą 97%), while the sandwich maintains the nominal coverage level (CP“ 95%).

Similar patterns were observed for simulations using a Cox proportional hazards model in

stage 2, where the sandwich performed well compared to the naive ASEs and occasionally

outperformed the bootstrap (Appendix Table C.1). In Table C.2 in the Appendix, we

compute CP from confidence intervals constructed using the standard Wald procedure with

bootstrap standard errors, percentiles of the bootstrap distribution, and the bias-corrected

and accelerated (BCA) bootstrap approach. In high correlation and error settings where

intervals constructed using bootstrap and sandwich standard errors resulted in CP that was

too large, the percentile and BCA bootstrap present an opportunity to improve.

In Table 4.2, we present results for data simulated to be from a complex survey. Once again,

the naive model-based standard errors are frequently too small, resulting in CP ă 95%.

Standard error estimates obtained from the sandwich are generally better-behaved that those

estimated from the resampling-based MI approach of Baldoni et al. (2021). The standard

errors estimated from MI are oftentimes too large, resulting in CP as high as 99% for the large

measurement error and high correlation case when N “ 1000. These same issues of over-

coverage were observed by Baldoni et al. (2021), which the authors attempted to mitigate

by using robust estimators for the mean and standard deviation in their calculation of the

adjusted variance. While these robust estimators did improve the estimated variances, they

did not completely address the over-coverage issues.

4.6. Reanalysis of WHI and HCHS/SOL Data

4.6.1. WHI Data Example

To assess the association between energy, protein, and protein density with the risk of

diabetes in the WHI study, we begin by developing our stage 1 models using data from the

Nutritional Biomarker Study. The stage 1 model was fit to n “ 356 sub-study participants

as a linear regression of the biomarker value pX˚˚q on the corresponding self-reported value
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pX˚q and covariates pZq. The stage 2 model included N “ 77, 805 eligible women and was

fit as a Cox proportional hazards model. Following Tinker et al. (2011), we fit the stage 2

model with and without BMI. Details on our models and analytic cohort are provided in

Section S5 of the Supplementary Materials.

Incident diabetes was reported in 4278 (5.5%) of the 77, 805 participants in the analytic

cohort. Table 4.3 presents hazard ratio (HR) estimates and 95% confidence intervals (CI)

for incident diabetes for a 20% increase in consumption of log-energy, log-protein, and log-

protein density, as well as estimated β coefficients and standard errors (SEs). In the BMI-

adjusted analysis, the HR for a 20% increase in calibrated log-energy intake was 1.54. The

naive SE estimate on the log scale, 1.37, is over 40% smaller than the sandwich SE estimates,

2.34, resulting in a 95% CI for the HR for a 20% increase in log-energy intake with the naive

SE of (0.94, 2.52), compared to (0.68, 3.51) using the sandwich. The bootstrap SE estimate

for this model is 36.97, corresponding to a 95% CI of (0, 842640) for a 20% increase in

log-energy consumption. We note that 47 (9.4%) of our 500 bootstrap replicates resulted in

|β̂| ą 10 for log-energy, which is not a practical log-HR from an epidemiologic perspective.

As an alternative, we present 95% CIs constructed using the percentile bootstrap interval,

which is (0.04, 37.17) for a 20% increase in log-energy in the BMI-adjusted model. In

this applied example, the sandwich offers a more believable standard error estimate of the

regression parameter.

Differences between the sandwich and bootstrap were not as extreme for the non-BMI ad-

justed energy analysis. Similar patterns were observed for protein, where the HR for a 20%

increase in the calibrated log-intake adjusted for BMI was 1.23, with 95% CIs of (1.08, 1.40)

for the sandwich, 1.03, 1.46) for the normal bootstrap, and (1.11, 1.52) for the percentile

bootstrap. In the BMI-adjusted models with log-protein density, the HR (95% CI) estimated

by regression calibration with the naive SE is 1.64 (1.42, 1.88) compared to CIs of (1.14,

2.34), (0.83, 3.24), (1.31, 3.93) estimated by the sandwich, normal bootstrap, and percentile

bootstrap, respectively. In this instance, using the bootstrap SE (1.91) resulted in a loss of
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statistical significance, which did not occur with the sandwich SE (1.00) or the bootstrap

percentile interval. We discuss the differences between our results and those reported by

Tinker et al. (2011) in the Supplementary Materials.

4.6.2. HCHS/SOL Data Example

In the HCHS/SOL study, we fit the stage 1 models using data from n “ 310 SOLNAS

subset members by performing a linear regression of the biomarker for log-potassium (X˚˚)

on log self-reported 24-hour recall measures (X˚) and other covariates (Z). We consider

hypertension status and systolic blood pressure outcomes, which are studied using logistic

and linear regression stage 2 models, respectively. For each model, the outcome was regressed

on the calibrated dietary exposure while adjusting for confounders. All stage 2 outcome

models were fit to a subset of N “ 8, 176 participants from the original cohort and accounted

for the HCHS/SOL survey design. Additional details on our models and the selection of this

subset are included in Section S6 of the Supplementary Materials.

Table 4.4 presents results from our re-analysis of the HCHS/SOL data. The estimated odds

ratio (OR) of hypertension for a 20% increase in calibrated log-potassium (95% CI with naive

SE) is 0.81 (0.63, 1.03). The naive SE estimate on the log scale of 0.68 is 15% and 44%

smaller than the SEs estimated by the sandwich (0.80) and MI (1.22), respectively. Similar

patterns were observed for the linear regression of systolic blood pressure on calibrated log-

potassium, where the estimated coefficient for a 20% increase was -0.58, with 95% CIs of

(-1.26, 0.10) with the naive SE, (-1.37, 0.21) for the sandwich, and (-1.78, 0.62) for MI. The

SE estimated by MI, 3.35, was more inflated compared to the sandwich SE, 2.21, for this

particular model.

4.7. Discussion

In this manuscript, we increase the practicality of the sandwich variance estimator for stan-

dard error estimation in two-stage regression settings, specifically regression calibration and

compare it to competing variance estimation methods. We use two data examples to il-

lustrate the straightforward use of the sandwich for data from a SRS and complex sur-
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vey design. We have developed R code, which we hope makes computation of the sand-

wich more accessible and convenient. For obtaining the sandwich in R, one can modify

the code provided throughout this paper or use functions from our code on GitHub at

https://github.com/lboe23/sandwich2stage, which directly compute sandwich variance es-

timates for the two-stage setting of regression calibration.

Our numerical study indicated that when the sub-study is a large percentage of the main

study, ignoring the uncertainty in the estimation of the stage 1 model parameters does

not have a large impact, resulting in well-behaved “naive" standard errors. This point is

also discussed by Keogh et al. (2020). We do encourage readers to adjust the naive model

standard errors in all two-stage regression model settings, however, as we saw that the naive

standard error will be too small in many instances.

In addition to the added computational burden, bootstrap confidence interval estimation

can suffer from poor coverage if appropriate bias-adjustment procedures are not applied to

departures from normality in the bootstrap estimates (Efron, 1987). Despite the well-known

bias and coverage problems of the standard normal Wald bootstrap confidence interval, the

BCA procedure is rarely applied in practice due to its complexity. In our data example from

the WHI, the SE estimated by the bootstrap in the BMI-adjusted analysis for energy was

quite unstable, resulting in extremely inflated 95% CIs for the calibrated energy intake ex-

posure compared to the sandwich estimator. Nonetheless, the sandwich estimator also has

some limitations, and occasionally showed coverage problems in settings with substantial

measurement error and highly correlated covariates. The BCA bootstrap procedure may

be the optimal approach for constructing 95% CIs. However, this technique can be com-

putationally prohibitive in large cohorts like the WHI. In our complex survey simulations,

standard errors calculated using MI resulted in overcoverage issues, which may be the result

of instability caused by multicollinearity in the simulated data sets (Baldoni et al., 2021).

We also observed some inflated standard errors estimated by MI compared to the sandwich

in our data example from the HCHS/SOL study. These results suggest that there can occa-
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sionally be instability in standard error estimates from the resampling-based bootstrap and

MI procedures, which can be easily avoided if a more stable estimator like the sandwich is

used for variance estimation.

This paper focused on regression calibration as a motivating example, but the issues dis-

cussed apply more broadly to any two-stage regression settings where a plug-in estimate is

obtained in stage 1 and used in the outcome model fit in stage 2. Generally speaking, in

two-stage regression settings where model-based standard errors are too small and standard

errors obtained from resampling based approaches can be unstable, the sandwich variance

estimation approach presents a well-behaved, less computationally-intensive alternative that

is straightforward to implement. The sandwich may also be extended to multi-stage regres-

sion models. One related example in the WHI is a sandwich variance estimator used in

regression calibration dietary applications when a third component to the stacked estimat-

ing equations is added for biomarker development (Prentice et al., 2021, 2022). Future work

will look at extending the software for two-stage regression settings to these multi-stage

model settings.
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Figure 4.1: Code for obtaining the sandwich matrix using functions from the survey package
for a simple random sample

(a) Code for fitting stage 1 and stage 2 models

sampdesign <- svydesign(id=~1, data=mydata)
stage1.model <-svyglm(xstarstar~xstar+z,design=sampdesign ,

family=gaussian(),subset=V==1)
sampdesign <- update(sampdesign ,xhat =predict(stage1.model ,

newdata=sampdesign$variables) )
stage2.model <- svycoxph(Surv(Time , delta) ~ xhat+z,

design=sampdesign)

(b) Code for obtaining Apθ̂q

A.upperleft <- -solve(stage1.model$naive.cov)/N
A.bottomright <- -solve(stage2.model$naive.cov)/N
A.upperright <- matrix(0,nrow=j,ncol=k)
A.bottomleft <- stage2.alphas.estfuns(alphas.stage1)
A<-rbind(cbind(A.upperleft ,A.upperright),

cbind(A.bottomleft ,A.bottomright ))
A.inv <-solve(A)

(c) Code for obtaining Ũpθ̂q

estfun.stage1 <-matrix(0,nrow=N,ncol=j)
is.calibration <- !is.na(xstarstar)
estfun.stage1[is.calibration ,] <- estfun(stage1.model)
estfun.stage2 <-as.matrix(estfun(stage2.model))
estfun.all <-cbind(estfun.stage1 ,estfun.stage2)

(d) Code for obtaining V pθ̂q

infl <- as.matrix(estfun.all)%*%t(A.inv)/N
sandwichvar <-vcov(svytotal(infl , sampdesign ))
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Figure 4.2: Code for obtaining the sandwich matrix using functions from the survey package
for a complex survey design

(a) Code for fitting stage 1 and stage 2 models

sampdesign <- svydesign(id=~PSUid , strata=~strat ,
weights=~myweights , data=mydata)

stage1.model <-svyglm(xstarstar~xstar+z,design=sampdesign ,
family=gaussian(),subset=V==1)

sampdesign <- update(sampdesign ,xhat =predict(stage1.model ,
newdata=sampdesign$variables) )

stage2.model <- svyglm(y ~ xhat+z ,
design=sampdesign ,family=binomial ())

(b) Code for obtaining Apθ̂q

A.upperleft <- -solve(stage1.model$naive.cov/
mean(stage1.model$prior.weights ))/N

A.bottomright <- -solve(stage2.model$naive.cov/
mean(stage2.model$prior.weights ))/N

A.upperright <- matrix(0,nrow=j,ncol=k)
A.bottomleft <- stage2.alphas.estfuns(alphas.stage1)
A<-rbind(cbind(A.upperleft ,A.upperright),

cbind(A.bottomleft ,A.bottomright ))
A.inv <-solve(A)

(c) Code for obtaining Ũpθ̂q

estfun.stage1 <-matrix(0,nrow=N,ncol=j)
is.calibration <- !is.na(xstarstar)
estfun.stage1[is.calibration ,] <- estfun(stage1.model)/

stage1.model$prior.weights
estfun.stage2 <-estfun(stage2.model)/

stage2.model$prior.weights
estfun.all <-cbind(estfun.stage1 ,estfun.stage2)

(d) Code for obtaining V pθ̂q

infl <- as.matrix(estfun.all)%*%t(A.inv)/N
sandwichvar <-vcov(svytotal(infl , sampdesign ))
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Table 4.1: The median percent (%) bias, median standard errors (ASE), empirical median abso-
lute deviation (MAD) and coverage probabilities (CP) for 1000 simulated data sets from a simple
random sample for a logistic regression stage 2 model fit to true exposure, naive exposure, and
calibrated exposure with naive (model-based) standard errors, sandwich standard errors, and boot-
strap standard errors. We vary the correlation between X and Z, the sample size (N), and the
measurement error variance (σ2). Sample size of the calibration subset is n “ 450.

Low Correlation High Correlation

N σ2(1) Method % Bias MAD ASE CP % Bias MAD ASE CP
1000 0.00 Truth -0.04 0.07 0.07 0.94 0.16 0.09 0.10 0.94

0.25 Naive -13.78 0.12 0.11 0.91 -42.84 0.12 0.12 0.68
RC(2) (Naive SE) -3.76 0.13 0.12 0.94 -3.28 0.21 0.20 0.94
RC(2) (Sandwich) — — 0.12 0.94 — — 0.20 0.94
RC(2) (Bootstrap) — — 0.12 0.94 — — 0.21 0.94

0.50 Naive -48.54 0.08 0.08 0.36 -68.36 0.09 0.09 0.13
RC(2) (Naive SE) -4.61 0.16 0.16 0.93 -2.90 0.28 0.27 0.94
RC(2) (Sandwich) — — 0.16 0.93 — — 0.27 0.95
RC(2) (Bootstrap) — — 0.16 0.94 — — 0.29 0.96

1.00 Naive -71.90 0.06 0.06 0.01 -83.60 0.06 0.06 0.00
RC(2) (Naive SE) -5.31 0.22 0.21 0.94 -4.73 0.37 0.37 0.94
RC(2) (Sandwich) — — 0.21 0.94 — — 0.37 0.95
RC(2) (Bootstrap) — — 0.22 0.96 — — 0.41 0.98

10000 0.00 Truth 0.05 0.02 0.02 0.94 0.05 0.03 0.03 0.94
0.25 Naive -12.28 0.04 0.03 0.69 -41.87 0.04 0.04 0.01

RC(2) (Naive SE) -1.90 0.05 0.04 0.85 -1.15 0.08 0.06 0.89
RC(2) (Sandwich) — — 0.05 0.94 — — 0.08 0.95
RC(2) (Bootstrap) — — 0.05 0.94 — — 0.08 0.96

0.50 Naive -47.61 0.03 0.03 0.00 -67.45 0.03 0.03 0.00
RC(2) (Naive SE) -2.73 0.07 0.05 0.84 -1.68 0.11 0.08 0.89
RC(2) (Sandwich) — — 0.06 0.94 — — 0.10 0.95
RC(2) (Bootstrap) — — 0.07 0.95 — — 0.11 0.96

1.00 Naive -70.93 0.02 0.02 0.00 -82.74 0.02 0.02 0.00
RC(2) (Naive SE) -2.62 0.09 0.07 0.85 -1.61 0.15 0.12 0.88
RC(2) (Sandwich) — — 0.09 0.94 — — 0.14 0.95
RC(2) (Bootstrap) — — 0.09 0.95 — — 0.17 0.97

(1) σ2 “ the variance of the random, normally distributed measurement error
(2) RC = Regression calibration
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Table 4.2: The median percent (%) bias, median standard errors (ASE), empirical median absolute
deviation (MAD) and coverage probabilities (CP) for 1000 simulated data sets from a simple
random sample for a logistic regression stage 2 model fit to true exposure, naive exposure, and
calibrated exposure with naive (model-based) standard errors, sandwich standard errors, and
MI standard errors. We vary the correlation between X and Z, the sample size (N), and the
measurement error variance (σ2). Sample size of the calibration subset is n “ 450.

Low Correlation High Correlation

N σ2(1) Method % Bias MAD ASE CP % Bias MAD ASE CP
1000 0.00 Truth 2.02 0.10 0.10 0.94 3.43 0.13 0.13 0.93

0.25 Naive -11.59 0.15 0.15 0.94 -41.68 0.17 0.16 0.82
RC(2) (Naive SE) -1.26 0.17 0.16 0.94 -1.43 0.29 0.27 0.95
RC(2) (Sandwich) — — 0.16 0.95 — — 0.27 0.95
RC(2) (MI) — — 0.17 0.95 — — 0.29 0.96

0.50 Naive -46.80 0.12 0.11 0.62 -67.54 0.12 0.12 0.38
RC(2) (Naive SE) -3.93 0.22 0.21 0.94 -1.78 0.37 0.35 0.95
RC(2) (Sandwich) — — 0.21 0.95 — — 0.36 0.96
RC(2) (MI) — — 0.22 0.97 — — 0.40 0.98

1.00 Naive -70.57 0.09 0.08 0.08 -82.62 0.09 0.09 0.04
RC(2) (Naive SE) -1.12 0.29 0.28 0.94 -3.84 0.50 0.49 0.95
RC(2) (Sandwich) — — 0.28 0.96 — — 0.51 0.97
RC(2) (MI) — — 0.31 0.98 — — 0.60 0.99

10000 0.00 Truth 0.54 0.03 0.03 0.94 0.90 0.04 0.04 0.94
0.25 Naive -11.14 0.05 0.05 0.84 -41.34 0.05 0.05 0.10

RC(2) (Naive SE) -1.82 0.06 0.05 0.88 0.15 0.11 0.09 0.90
RC(2) (Sandwich) — — 0.07 0.94 — — 0.10 0.95
RC(2) (MI) — — 0.07 0.96 — — 0.11 0.96

0.50 Naive -47.31 0.04 0.04 0.00 -67.54 0.04 0.04 0.00
RC(2) (Naive SE) -2.85 0.08 0.07 0.86 -1.48 0.14 0.12 0.89
RC(2) (Sandwich) — — 0.09 0.94 — — 0.14 0.94
RC(2) (MI) — — 0.09 0.95 — — 0.16 0.96

1.00 Naive -71.18 0.03 0.03 0.00 -82.87 0.03 0.03 0.00
RC(2) (Naive SE) -3.67 0.12 0.09 0.86 -3.77 0.19 0.16 0.89
RC(2) (Sandwich) — — 0.12 0.94 — — 0.19 0.94
RC(2) (MI) — — 0.13 0.95 — — 0.24 0.96

(1) σ2 “ the variance of the random, normally distributed measurement error
(2) RC = Regression calibration
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Table 4.3: WHI data analysis (N=77, 805) results from the Cox Proportional Hazards model
for incident diabetes with dietary exposures of energy (kcal/d), protein (g/d), and protein
density (% energy from protein). Results are shown for each stage 2 model fit to the
calibrated exposure with naive (model-based) standard errors, sandwich standard errors,
and bootstrap standard errors.

(a) Hazard ratio estimates and 95% confidence intervals (CI) for incident diabetes for a
20% increase in consumption of log-energy , log-protein, and log-protein density.

HR (95% CI)

Model1 Method Adjusted for BMI Not Adjusted for BMI
Log-Energy RC(2) (Naive SE) 1.54 (0.94, 2.52) 2.90 (2.72, 3.08)

RC(2) (Sandwich) — (0.68, 3.51) — (2.19, 3.83)
RC(2) (Boot. - Wald)(3) — (0, 842640) — (2.18, 3.86)
RC(2) (Boot. - Perc)(4) — (0.04, 37.17) — (2.29, 4.03)

Log-Protein RC(2) (Naive SE) 1.23 (1.12, 1.34) 2.12 (2.00, 2.26)
RC(2) (Sandwich) — (1.08, 1.40) — (1.60, 2.82)
RC(2) (Boot. - Wald)(3) — (1.03, 1.46) — (1.59, 2.84)
RC(2) (Boot. - Perc)(4) — (1.11, 1.52) — (1.60, 2.87)

Log-Protein RC(2) (Naive SE) 1.64 (1.42, 1.88) 1.17 (1.02, 1.33)
Density RC(2) (Sandwich) — (1.14, 2.34) — (0.25, 5.46)

RC(2) (Boot. - Wald)(3) — (0.83, 3.24) — (0.19, 6.97)
RC(2) (Boot. - Perc)(4) — (1.31, 3.93) — (0.28, 8.50)

(b) β regression parameter estimates and standard errors estimated by the Cox Proportional
Hazards model for incident diabetes for log-energy, log-protein, and log-protein density.

Adjusted for BMI Not Adjusted for BMI

Model1 Method β SE β SE
Log-Energy RC(2) (Naive SE) 2.38 1.37 5.83 0.17

RC(2) (Sandwich) — 2.34 — 0.78
RC(2) (Bootstrap) — 36.97 — 0.80

Log-Protein (g/d) RC(2) (Naive SE) 1.12 0.25 4.13 0.17
RC(2) (Sandwich) — 0.36 — 0.79
RC(2) (Bootstrap) — 0.48 — 0.82

Log-Protein RC(2) (Naive SE) 2.70 0.39 0.84 0.38
Density RC(2) (Sandwich) — 1.00 — 4.32

RC(2) (Bootstrap) — 1.91 — 5.01
(1) Each model is adjusted for potential confounders and is stratified on age in 5-year
categories, hormone therapy trial participation, and DM-C or OS membership
(2) RC = Regression calibration (3) Bootstrap with standard normal Wald-based
confidence interval (4) Percentile bootstrap confidence interval

84



Table 4.4: HCHS/SOL data analysis (N “ 8, 176) results from the linear regression of
baseline systolic blood pressure and the logistic regression of hypertension status each on
log-transformed intake of potassium. Results are shown for each stage 2 model fit to the
calibrated exposure with naive (model-based) standard errors, sandwich standard errors,
and standard errors from the multiple imputation (MI) approach of Baldoni et al. (2021).

(a) Results for a 20% increase in consumption of log-potassium are presented. For
linear regression, logp1.2qβ̂ and 95% confidence intervals (CI) are presented. For logistic
regression, odds ratio (OR) estimates of expplogp1.2qβ̂q and 95% CIs are presented.

Linear Regression Logistic Regression
Model1 Method β (95% CI) OR (95% CI)
Log-Potassium RC(2) (Naive SE) -0.58 (-1.26, 0.10) 0.81 (0.63, 1.03)

RC(2) (Sandwich) — (-1.37, 0.21) — (0.61, 1.07)
RC(2) (MI) — (-1.78, 0.62) — (0.52, 1.25)

(b) β regression parameter estimates and standard errors estimated by linear and lo-
gistic regression models for hypertension-related outcomes for log-potassium.

Linear Regression Logistic Regression
Model1 Method β SE β SE
Log-Potassium RC(2) (Naive SE) -3.17 1.90 -1.17 0.68

RC(2) (Sandwich) — 2.21 — 0.80
RC(2) (MI) — 3.35 — 1.22

(1) Each model is adjusted for potential confounders
(2) RC = Regression calibration

85



CHAPTER 5

Discussion

Large cohort studies can serve as a valuable tool for conducting epidemiologic research, such

as identifying potential risk factors that drive disease incidence. However, these types of

studies often have a mix of methodological issues, including measurement error that arises

in complex exposures like self-reported dietary intake and routinely collected outcome data

like self-reported disease status or outcomes derived from EHR. Since error-prone observa-

tions are increasingly being used in the statistical analyses of data from large cohort studies

or those reliant on EHR data, it is crucial that methodology is developed that adjusts for

errors in these variables so the resulting exposure-disease associations are estimated with-

out bias. When more precise or gold standard data are available in addition to error-prone

outcome data, then statistical methods can be applied to adjust study estimates to avoid

bias induced by the error-prone data. Additionally, when there is gold or reference stan-

dard data available, the error-prone variables can be used as auxiliary data to augment the

likelihood in the analysis of a time-to-event outcome. The primary reason for leveraging

auxiliary, error-prone outcome data is to improve statistical efficiency. Reductions in the

estimated variance of regression model parameters can be useful in settings where error is

present in complex exposures and resulting variance estimates are quite large. Ultimately,

efficiency improvements may even help drive cost reductions for future epidemiologic studies

of a similar type. Improved variance estimation strategies also needed to be considered in

settings like regression calibration, where an estimated exposure is used in place of an error-

prone exposure in an outcome model to reduce bias. The standard errors of outcome model

regression parameters must account for the uncertainty added by using the estimated expo-

sure, but the most commonly used resampling-based methods for variance estimation can

be numerically unstable, thus warranting the consideration of a better approach. Methods

in the existing statistical literature do not adequately address errors in both exposure vari-

ables and time-to-event outcome variables, nor do they focus enough on improving variance
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estimation in the presence of measurement error. In this dissertation, we have proposed sev-

eral methods to reduce the bias resulting from error-prone data as well as improve variance

estimation by leveraging auxiliary outcome data and considering improved strategies for

obtaining standard error estimates of regression parameters in two-stage regression settings

such as regression calibration.

In Chapter 2, we introduced a method that decreased the bias caused by measurement

error in covariates and event classification variables in a discrete time-to-event setting. This

method was applied to data from the Women’s Health Initiative (WHI) study to evaluate

the association between dietary energy and protein and incident diabetes. Through our

simulations and data example, we show that we obtain vastly different hazard ratio estimates

by adjusting for errors in both the outcome and covariates compared to using the heavily-

biased naïve method that ignores all errors. Our method is straightforward to implement

and offers a practical approach to achieving nearly unbiased estimates of exposure-disease

associations for settings typical of those encountered in practice.

Chapter 3 presents a method that incorporates error-prone, auxiliary data into the analysis

of an interval-censored time-to-event outcome. Our approach may be used when (1) a gold

standard outcome is available on at least a subset of study participants and (2) auxiliary

data for all participants are recorded at one or more fixed time points before or after the

gold standard is scheduled to be recorded. By incorporating auxiliary outcome data that

is correlated with a gold standard outcome into our analysis, we show that we can improve

statistical efficiency in the estimation of exposure-disease associations. We further extend

this method to accommodate data from a complex survey sampling design so that it can be

applied to our motivating study, the Hispanic Community Health Study/Study of Latinos

(HCHS/SOL). HCHS/SOL is a large, community-based cohort study of Hispanic/Latinos

in the United States (n= 16,415) consisting of participants recruited using a complex survey

design that includes unequal probability sampling, stratification, and clustering. We develop

a weighted analogue of our likelihood function and a sandwich variance estimator so that our
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method can handle data from a complex survey design. In HCHS/SOL, we are interested

in assessing the association between energy, protein, and protein density dietary intakes

and the risk of diabetes, when diabetes is recorded using both a self-reported outcome

variable (auxiliary data) and a biomarker-based reference standard variable. To address our

research question, we apply regression calibration to the proposed method to additionally

accommodate covariate error. Our simulations and data example show that by incorporating

auxiliary data into our analysis, rather than relying on standard approaches for interval

censored survival data that do not leverage auxiliary data, we can drastically reduce the

estimated variance.

We present a practical sandwich variance estimation approach for two-stage regression model

settings in Chapter 4. We consider regression calibration as the motivating setting for two-

stage modeling, where in stage 1, a plug-in estimate of the exposure is obtained, which is

subsequently used in the stage 2 outcome model. In settings like regression calibration,

model-based standard errors are typically too small, as they do not address the uncertainty

added from using an estimated exposure. Thus, variance estimation procedures like the pop-

ular bootstrap, or, alternatively, the sandwich variance estimator, are needed to account for

this extra uncertainty. In this chapter, we propose the sandwich variance estimator as a more

stable, less computationally-intensive variance estimator, which may be used for a large class

of problems and for data from either a simple random sample or a complex survey design.

We have shown through a numerical study that the sandwich may have advantages over

the bootstrap for the simple random sample and the multiple imputation-based approach

of Baldoni et al. (2021) for complex survey design settings in terms of achieving nominal

95% coverage probability. Using data examples from the WHI and the HCHS/SOL, we

compare the sandwich variance estimator to these alternative estimators to show that the

sandwich may often provide a more stable estimate of the standard error. The R code

provided throughout this chapter illustrates that it is quite straightforward to compute the

sandwich variance estimator using the stacked estimating equation approach from existing

functions in the R software. Our expectation is that the code included in this chapter, as

88



well as the package sandwich2stage on GitHub, will make sandwich variance computation

more convenient to apply and can be used in many two stage regression analyses, including

regression calibration-based applications in nutritional epidemiology.

This dissertation has inspired several areas of future research. The methods proposed in

Chapters 2 and 3 both rely on the assumption that, conditional on the true disease status at

each visit, each of the error-prone outcomes are independent. We deemed this assumption

reasonable for our motivating data examples of interest in this dissertation, since the error-

prone, self-reported binary disease status variables in both the WHI and HCHS/SOL are

recorded using a questionnaire and outcomes far enough apart in time that many random

factors may impact a participant’s response to the question. Further, this conditional in-

dependence assumption is commonly made in the discrete survival analysis literature where

error-prone outcomes are obtained via periodic follow-up (Balasubramanian and Lagakos,

2001, 2003; Meier et al., 2003; Magaret, 2008; Gu et al., 2015). Nonetheless, we note that

this may not always be a practical assumption to make in real data settings, and future work

will consider a more complex outcome error model that relaxes this assumption. In partic-

ular, one could consider letting the sensitivity and specificity of the error-prone outcomes

depend on known covariates or previous responses.

Another related extension for the methods in Chapters 2 and 3 relates to the assumption

that the sensitivity and specificity of the error-prone outcome data are known constants. For

studies like the WHI and the HCHS/SOL with a mix of analytical complications, it may be

useful to investigate the possibility of estimating the sensitivity and specificity alongside the

regression parameters of interest. In doing so, it would be important to explore how robust

the models for sensitivity and specificity are to model misspecification and any potential

identifiability issues that may result from estimating these measures of accuracy. Further

steps would be required in the variance estimation stage to account for the uncertainty of the

sensitivity and specificity estimation. This could be accomplished using techniques similar to

the ones discussed throughout this dissertation for addressing the uncertainty added by the

89



estimation of the nuisance parameters in the calibration model when regression calibration

is applied to correct for exposure error. In particular, one could use a stacked estimating

equation approach, such as an extension of the technique outlined in Chapter 4, where the

equations for estimating the sensitivity and specificity are included as additional components.

Additional areas of future work relate to the extension of the discrete time framework from

Chapters 2 and 3. In particular, work is ongoing to extend our estimation methods for

interval-censored data from the discrete time setting to the continuous failure time setting

which accommodates an outcome error framework. Another potential avenue for future

research relates to the extension of our discrete time setup in such a way that the number

of possible visit times is not restricted. In our current framework for Chapters 2 and 3,

the number of parameters to be estimated can increase with the number of subjects in our

analysis if each subjects has a different set of visit times. To avoid any numerical instability,

in the data examples, we were required to make the limiting assumptions that a common

set of visit times were observed for all participants. While this was a reasonable assumption

in the WHI and HCHS/SOL data sets where the observed visit times were, in fact, quite

close to the anniversary date for each subject, it is possible that other cohort studies with

prospective follow-up may not adhere to this pattern. Thus, we believe a useful extension

of our work will consider techniques for the stable estimation of more parameters.
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APPENDIX A

Supplementary Material for Chapter 2

A.1. R Code with illustrative example

In this section, we provide an illustrative example showing how we can use R code to apply

the proposed method. For this example, we will use a simulated data set with one error-

prone covariate (X˚
1 ) and 4 precisely-recorded covariates (Z1, Z2, Z3, Z4). Additionally, we

have periodic follow-up from 4 visits. The sensitivity, specificity, and negative predictive

value of the error-prone outcome are assumed to be 0.60, 0.98, and 0.95, respectively. This

data set can be found on GitHub at https://github.com/lboe23/Outcome-Error-RC under

the file name Simulated_Data_Example_5Cov_Long.csv.

Before we begin our analysis, we need to load the Rcpp functions that we need to compute the

likelihood and the function for the variance calculation. We use the following Rcpp functions,

which were developed by Gu et al. (2015) and can be found in the icensmis package on Cran:

“loglikC," “gradlikC," “dmat" and “getrids." The variance calculation function can be found

on the GitHub site listed above under the file name “Variance_functions.R."

As suggested by the name of our data set, the input data is in long form, where each row

represents one time point and each subject has multiple rows. Below we read our data into

R and then present the first 6 rows of the data.
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Our input dataset consists of the following variables:

• ID: a unique ID for each subject in the data set.

• subset_ind: an indicator variable representing membership in the calibration subset,

which takes the value 1 if the subject is a member of the calibration subset and 0 if

they are not. In this data example, nC “ 500 of the N “ 10, 000 total study subjects

are in the calibration subset.

• x_1_star: the error-prone covariate of interest, prone to both systematic and random

error (e.g. self-reported measure of dietary energy).

• x_1_starstar: the covariate of interest subject to classical measurement error (e.g.

biomarker of dietary energy), which is only available for members of the validation

subset (those with subset_ind “ 1).

• z_1, z_2: precisely measured continuous covariates that we wish to include in our

calibration and outcome models.
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• z_3, z_4: precisely measured binary covariates that we wish to include in our cali-

bration and outcome models.

• y: the error-prone, binary result where 1 indicates a positive test and 0 indicates a

negative test.

• t: the visit time corresponding to each error-prone test result, y.

To apply the proposed method, we will begin by fitting the calibration equations. First, we

create a new dataset that only has one row per subject and only includes the members of

the calibration subset.

Next, we will fit the calibration model by regressing the covariate measure with classical

measurement error, X˚˚
1 on the covariate with prone to more extreme error, X˚, and other

covariates, Z1, Z2, Z3, and Z4. We note that the model below corresponds to equation 2.6

of in main manuscript: X˚˚
i “ δp0q ` δp1qX

˚
i ` δp2qZi ` Vi.

We will now save the summary data from the calibration equation and use this to create

our multivariate correction factor from equation 2.8 of the main manuscript, which recall

has the following form:

∆̂ “

»

—

–

δ̂p1qpˆp δ̂p2qpˆq

0qˆp Iqˆq

fi

ffi

fl

.
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Next, we want to save the elements of the variance-covariance matrix from the calibration

equation, as this will be used later in the computation of the variance-covariance matrix

Σ for β̂. Note that we do not need the elements of the variance-covariance matrix that

correspond to the intercept term for this approach.

We will now begin the process of fitting our outcome models. As we did for the WHI data

example in the text, we will consider 3 approaches: (1) the naive method ignoring error in

the outcome and covariate, (2) the regression calibration method that corrects for error in

the covariate only, and (3) the proposed method. First, let’s assign sensitivity, specificty,

and negative predictive value.

We will now fit our first outcome model, which corresponds to the naive approach. To

estimate regression coefficients for the naive grouped continuous time Cox proportional

hazards model, we will fit a generalized linear model with a binomial outcome and assume

a complementary log-log link.
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Now we will get our data in the format required to use the proposed method. First, we will

define the formula that we want to use for our outcome model.

Now, let’s make sure our data is ordered properly before we begin calculating sum of the

likelihood components.
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Now that our data is in an appropriate form, we can calculate the D matrix, defined in

Section 2.3.1 of the main manuscript. Additionally, we calculate J and the number of rows

in D.

As we get ready to maximize our log-likelihood, we want to think of starting values for our

survival parameters. To avoid maximization problems due to the ordered constraint of the

survival parameters 1 “ S1 ą S2 ą ... ą SJ`1 ą 0, we re-parameterize these terms for

optimization. The re-parameterization that we use is a log-log transformation of survival

function for S2, and a change in log-log of the survival function for all other parameters.

We consider initial values of 0.1 for our survival parameters, then transform these based

on this re-parameterization. Additionally, we define a lower bound of ´8 for the first

re-parameterized survival function and 0 for the subsequent J ´ 1 terms.

Next, we want to create a matrix version of our covariate data which will be used in the

maximization of the log-likelihood.
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We will now maximize our log-likelihood function that corrects for outcome error only using

the “L-BFGS-B" method in the optim function. We will give the lower bound lowlam

defined above for our survival function parameter estimates and a lower bound of 8 for our

regression coefficient estimates. We will use the lami values defined above as our initial

values for our baseline survival functions. We will use the estimated regression parameters

from the naive method as our starting values for βX1, βZ1, βZ2, βZ3, and βZ4 in the proposed

method.

We can now invert the Hessian matrix to calculate Σ̂β˚ .

It is finally time to apply the proposed method. Below, we calculate our corrected vector of

estimated regression coefficients of interest, using equation 2.7 from the main manuscript:

β̂ “ β̂˚∆̂´1. Recall that we computed ∆̂ above using regression calibration.
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Lastly, we compute the variance for the proposed approach. To do this, we use the function

“Proposed_Var" from the Variance_functions.R file that we imported above. This code for

the variance calculation can accommodate 1 error-prone covariate and up to 19 precisely-

measured covariates, for a total of 20 covariates in the calibration and outcome models. The

input values for this function, in order, are the following: (1) Σ̂β˚ , the variance-covariance

matrix from the method that corrects for outcome error only; (2) the variance-covariance

matrix from the calibration model; (3) the estimated multivariate correction factor from

regression calibration, ∆̂; and (4) the estimated regression parameters obtained by fitting

the model that corrects for outcome error only.

Now, to complete our results table, we will use regression calibration to obtain the results

for the method that corrects for covariate error only:

The last step is to exponentiate our regression parameters and corresponding confidence

interval bounds and put them into a table so that we can present the results for all three

methods simultaneously. The final results are presented below:
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A.2. Derivation of equation (2)

In this section, we follow the notation and logic of Balasubramanian and Lagakos (2003) to

show how we derive the likelihood contribution for subject i in equation (2) from equation
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(1). The steps are as follows:

fpYi, ti, niq “

J`1
ÿ

j“1

Prpτj´1 ă Ti ď τjqPrpYi, ti, ni|Tiq,

“

J`1
ÿ

j“1

θj

ni
ź

l“1

Prptil, Yil|ti1, ti2, . . . , til´1, Yi1, Yi2, . . . , Yil´1, Tiq

ˆPrpni|ti1, ti2, . . . , tini , Yi1, Yi2, . . . , Yini , Tiq

“

J`1
ÿ

j“1

θj

ni
ź

l“1

Prptil|ti1, ti2, . . . , til´1, Yi1, Yi2, . . . , Yil´1, Tiq

ˆ

ni
ź

l“1

PrpYil|ti1, ti2, . . . , til´1, til, Yi1, Yi2, . . . , Yil´1, Tiq

ˆPrpni|ti1, ti2, . . . , tini , Yi1, Yi2, . . . , Yini , Tiq

where θj “ Prpτj´1 ă Ti ď τjq.

Now, by the assumption that PrpYi|Ti, tiq “
śni
l“1 PrpYil|Ti, tilq:

fpYi, ti, niq “

J`1
ÿ

j“1

θj

ni
ź

l“1

Prptil|ti1, ti2, . . . , til´1, Yi1, Yi2, . . . , Yil´1, Tiq ˆ

ni
ź

l“1

PrpYil|Ti, tilq

ˆPrpni|ti1, ti2, . . . , tini , Yi1, Yi2, . . . , Yini , Tiq

Finally, following Balasubramanian and Lagakos, Balasubramanian and Lagakos (2003) for

the case of a prespecified visit schedule, we have the following:

Prptil|ti1, ti2, . . . , til´1, Yi1, Yi2, . . . , Yil´1, Tiq

“ Prpni|ti1, ti2, . . . , tini , Yi1, Yi2, . . . , Yini , Tiq “ 1

Note, these two probabilities would also drop out of the likelihood if they did not depend on

the parameters of interest (β). Now, we arrive at equation (2) for the likelihood contribution

for the ith subject:
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fpYi, ti, niq “

J`1
ÿ

j“1

θj

ni
ź

l“1

PrpYil|τj´1 ă Ti ď τj , tlq “

J`1
ÿ

j“1

θjCij

where Cij “
śni
l“1 PrpYil|τj´1 ă Ti ď τj , tlq.

A.3. Regularity conditions

In this section, we outline sufficient regularity conditions for the proposed estimator, namely

asymptotic normality and
?
N -convergence. Recall that we have an approximate estimator

that has empirically been observed to have good properties, i.e. have minimal bias and close

to nominal coverage, when the event of interest is rare and the true parameter value is of

moderate size.

First assume that we have discrete observation times for the failure time that satisfy the

following: 0 “ τ0 ă τ1 ă τ2 ă ... ă τJ ă τJ`1 “ 8. Further, define the elements of ti, the

vector of visit times for subject i, to be a subset of tτ0, τ1, τ2, ..., τJu. Recall that we define

Sj “ PrpT ą τj´1q for j “ 1, ..., J ` 1; and τ0 “ 0, and and require that 1 “ S1 ą S2 ą

... ą SJ`1 ą 0. The previous two conditions ensure that 0 ă θj ă 1 for j “ 1, ..., J , where

θj “ Prpτj´1 ă T ď τjq. Now, assume the following: (1) tXi, X
˚
i , Zi, Ti, Yi, tiu, i “ 1, ..., N

are independent and identically distributed, where N is the number of subjects in the main

study data; and (2) nC
N Ñ p P p0, 1q, where nC is the number of subjects in the calibration

subset.

Assume that tXi, Zi, Yi, tiu, for i “ 1, ..., N follows the density fpXi,Zi,Yi, ti;ψ
0q with

the corresponding log-likelihood function lpψq “ lpXi, Zi, Yi, ti;ψq; where ψ “ rβ,Ss, β “

pβX , βZqT , S “ pS1, S2, ..., SJ`1qT , and lpψq is as defined in equation (3) of the main text,

i.e.

lpψq “ lpS, βq “

N
ÿ

i“1

log

˜

J`1
ÿ

j“1

DijS
exppxTi βX`zTi βZq

j

¸

. (A.1)
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Here, ψ0 is the vector of regression parameters of interest for the likelihood with the un-

observed true data for X. Assume the log-likelihood is twice continuously differentiable

and define l‹pψq “ lpX˚
i , Zi, Yi, ti;ψq. Let the partially naive score function be denoted

U˚
N pψq “ p1{NqBl‹pψq{Bψ, and let ψ̂˚

N to be the solution to the score equations, U˚
N pψq “ 0.

Define ψ˚ to be the vector of parameters that solves E
”

BlpX˚,Z,Y,t;ψq

Bψ

ı

“ ErU˚pψqs “ 0. ψ˚

will not generally be equal to ψ0, since the partially naive likelihood does not adjust for

the covariate error in X˚. Because ψ̂˚
N is a maximum likelihood estimator (MLE), we can

rely on standard regularity conditions to see that with probability going to one as N Ñ 8,

there exists a unique solution to the likelihood equations, ψ̂˚
N , that is consistent for ψ˚

(Foutz, 1977) and asymptotically normal.(Boos and Stefanski, 2013) Under these regularity

conditions, one has
?
Npψ̂˚

N ´ ψ˚q
d
ÝÑ N p0, Ipψ˚q´1q, (A.2)

where Ipψ˚q´1 is the Fisher information matrix.

Recall that the proposed estimator β̂ is defined as β̂˚∆̂´1, where β̂˚ is the first p`q elements

of the vector ψ̂˚
N . Since ∆̂ is a linear regression estimator, we can also appeal to standard

MLE theory to establish its consistency for the true parameter ∆0 and asymptotic normal-

ity. Finally, we need only satisfy the necessary regularity conditions for the multivariate

delta method to establish consistency and asymptotic normality of our proposed estima-

tor. In addition to the established asymptotic normality of pβ̂, ∆̂q, for gpβ,∆q “ β∆´1,

we need only that its matrix of partial order derivatives be continuous in a neighborhood

of pβ˚,∆0q.(Casella and Berger, 2002) Further assume the independence of β̂ and ∆̂, which

holds if the number of subjects in the calibration subset, nC , is a small percentage of the

main study sample size, N . Then, we have:

?
N

´

β̂˚∆̂´1 ´ β˚p∆0q´1
¯

d
ÝÑ N p0,Σq, (A.3)

where the pj1, j2qth element of Σ is defined as Σβpj1, j2q –
`

A1Σβ˚A
˘

j1,j2
` β˚ΣA,j1,j2β

˚1,
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with Σβ˚ the asymptotic variance of β̂, and A “ ∆´1 and ΣA,j1,j2 defined similarly as in

the main text.

The numerical performance of our proposed estimator has been studied extensively and

shown to perform well empirically, as described in the main manuscript. Under these stan-

dard regularity conditions, we have illustrated the asymptotic normality of our estimator in

the context of an error-prone time-to-event outcome and covariate.

A.4. Supplemental methods and discussion for Women’s Health Initiative

data example

We adopted exclusion criteria in order to obtain a final analytic data set for our analyses that

approximated that used by Tinker et al. Tinker et al. (2011) Applying these exclusion crite-

ria resulted in approximately the same cohort. We excluded anyone who reported diabetes

at baseline or during the first year of follow-up for the comparison arm of the WHI Dietary

Modification trial (DM-C) participants (n “ 724) or the first three years of follow-up for the

WHI Observational Study (OS) participants (n “ 4109). We attempted to align character-

istics of participants in the DM-C trial with those of participants in the OS by excluding the

following participants in the OS: those who had breast, colorectal, or other cancer within 10

years prior to enrollment (n “ 8677q, stroke or myocardial infarction within 6 months prior

to enrollment (n “ 155), body mass index (BMI) ă 18 (n “ 678), hypertension (systolic

blood pressure ą 200 or diastolic blood pressure ą 105)(n “ 244), reported daily energy

intake of ă 600 kcal or ą 5000 kcal (n “ 3571), ě 10 meals prepared away from home each

week (n “ 3598), a special low-fiber diet (n “ 568), a special malabsorption-related diet

(n “ 514), inadvertent weight loss of ą 15 pounds within 6 months of enrollment (n “ 594),

and reported diabetes diagnosis before age 21 at enrollment (n “ 95). Applying these exclu-

sion criteria and selecting only the participants with no missing data in the calibration and

outcome model variables, we arrived at our analytic cohort with 65,358 members. Of these

65,358 participants, 12,121 (18.5%) were from the DM-C and 53,237 (81.5%) were from the

OS.
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We note that our HRs for the case of correcting for covariate error were substantially different

than those originally reported by Tinker et al. Tinker et al. (2011) For example, Tinker et al.

(2011) reports that a HR (95% CI) of 2.41 (2.06, 2.82) was associated with a 20% increase

in energy intake when BMI was omitted from the outcome model, compared to our 1.421

(1.043, 1.938). There were several differences between these analyses that may have led

to this, including slightly different data sets. We reanalyzed our data using a continuous

Cox model and found results that were very consistent results with our discrete analysis,

so the discrete approach did not explain this difference. First, we investigated the potential

discrepancies in results that might arise from the choice of strata. In our original analysis,

we stratified our models on age in 10-year categories and DM-C or OS cohort membership,

which resulted in 6 strata. We used a continuous Cox model to assess how our results

changed when we expanded our strata to (1) age in 5-year categories and DM-C or OS cohort

membership (12 strata) or (2) age in 5-year categories, DM-C or OS cohort membership, and

hormone therapy trial arm (active estrogen, estrogen placebo, active estrogen plus progestin,

estrogen plus progestin placebo, and not randomized) for participants in the DM-C who were

also on the hormone trials (36 strata). Table A.7 compares our original results using the

discrete proportional hazards model and correcting for covariate error to the results using

the continuous time Cox proportional hazards model and allowing for either the 6, 12, or

36 strata described above. When we used a Cox model and applied the post-hoc regression

calibration approach to correct for covariate error, we obtained the following HR (95% CI)

for a 20% increase in energy intake when the model did not adjust for BMI: 6 strata, 1.333

(0.993, 1.790); 12 strata, 1.334 (0.994, 1.791); 36 strata, 1.328 (0.990, 1.780). Note that

these results are fairly consistent with those obtained for the discrete model correcting for

covariate error only (HR 1.421; 95% CI 1.043, 1.938). Furthermore, we see that our results

were not sensitive to the choice of strata.

One important difference between analyses is that we aligned the covariates between the

outcome and calibration models, but Tinker et al. (2011) did not. This alignment is neces-

sary for our approach and in general is recommended for regression calibration in order to
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avoid potential sources of bias.(Kipnis et al., 2009) We used a continuous model and a tra-

ditional regression calibration approach (non-post-hoc) to show how the results that correct

for covariate error only might differ based on the following: BMI is in (1) both the calibra-

tion and outcome model, (2) neither model, or (3) the calibration model only. The latter

case is an example of not aligning the calibration and outcome model and is not possible for

our post-hoc approach used for correcting covariate error. Results comparing these different

alignment strategies are presented in table A.8. This table presents HR estimates and 95%

confidence intervals for the discrete analysis with the post-hoc correction for covariate error,

the continuous Cox model analysis with the post-hoc correction for covariate error, and

the continuous Cox model analysis with the non-post-hoc traditional regression calibration

correction for covariate error. For analyses that include BMI in both the calibration and

outcome models, we obtain similar results for all three approaches for energy, protein, and

protein density, indicating that the choice of a discrete analysis or a post-hoc correction

does not substantially change our answer. The same is true for analyses that include BMI

in neither the calibration nor the outcome model. As we saw in the main manuscript, ad-

justing for BMI can qualitatively change our answer for methods that adjust for covariate

error only, particularly for energy intake. The results from table A.8 suggest that our results

can change even more dramatically if we include BMI in the calibration model but exclude

it from the outcome model. As an example, we see that this analysis approach results in

a HR (95% CI) for a 20% increase in energy intake of 2.768 (2.279, 3.362), suggesting a

much stronger association between intake and diabetes than seen previously. The results for

protein and protein density intake also change substantially when BMI is included in the

calibration model only.

Lastly, we were able to get similar results to Tinker et al. (2011) by adopting a similar anal-

ysis approach and adding glycemic load, a covariate that was not in our calibration model,

to our outcome model. In this case, the HR (95% CI) for a 20% increase in energy intake

was 2.803 (2.314, 3.397) in the continuous model not adjusted for BMI. Finally, we note

that discrepancies between results from our proposed approach and those of Tinker et al.
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(2011) also stem from the fact that we have both corrected for outcome error and allowed

for an imperfect specificity at baseline.
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Figure A.1: Estimated nonparametric maximum likelihood estimators (NPMLEs) of the sur-
vival distribution for the error-prone outcomes compared to true outcomes for the simulation
study, fit using the R package ‘interval.’(Fay and Shaw, 2010) Panel A corresponds to censor-
ing rate = 0.90 (baseline hazard = 0.012) with observation times p2, 5, 7, 8q. Panel B corre-
sponds to censoring rate = 0.55 (baseline hazard = 0.094) with observation times p1, 3, 4, 6q.
Vertical lines represent observation times. Simulated from data with βX1 “ logp1.5q,
βZ1 “ logp0.7q, βZ2 “ logp1.3q, e „ N p0, 1.31q, sensitivity = 0.90, and specificity = 0.80.
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Table A.1: The mean percent (%) biases, average standard errors (ASE), empirical
standard errors (ESE) and coverage probabilities (CP) are given for 1000 simulated
data sets for the proposed method, the naive method, a method that corrects for
covariate error only, and a method that corrects for outcome error only, with βX1 “

logp1.5q, βZ1 “ logp0.7q, and βZ2 “ logp1.3q; e is normally distributed with mean
zero; Sensitivity (Se)=0.80; Specificity (Sp)=0.90.

Proposed Naive

δ̂p1q
1 CR2 β % Bias ASE ESE CP % Bias ASE ESE CP

0.60 0.90 βX1 1.616 0.200 0.204 0.950 ´88.03 0.046 0.046 0.000
βZ1 ´1.094 0.143 0.142 0.945 ´79.22 0.057 0.058 0.002
βZ2 ´3.731 0.143 0.143 0.945 ´84.07 0.057 0.054 0.021

0.55 βX1 ´1.231 0.093 0.094 0.949 ´68.11 0.038 0.038 0.000
βZ1 ´1.055 0.067 0.066 0.958 ´43.46 0.047 0.046 0.079
βZ2 ´3.018 0.066 0.065 0.957 ´53.48 0.046 0.045 0.133

0.30 0.90 βX1 1.840 0.283 0.286 0.954 ´93.88 0.033 0.033 0.000
βZ1 ´1.233 0.151 0.151 0.947 ´82.46 0.054 0.055 0.001
βZ2 ´4.212 0.151 0.150 0.945 ´79.74 0.054 0.052 0.025

0.55 βX1 ´2.246 0.131 0.133 0.940 ´84.02 0.027 0.027 0.000
βZ1 ´1.967 0.071 0.069 0.951 ´52.48 0.045 0.044 0.008
βZ2 ´3.899 0.070 0.068 0.956 ´42.08 0.045 0.044 0.306

Correct Covariate Error Correct Outcome Error

δ̂p1q CR β % Bias ASE ESE CP % Bias ASE ESE CP
0.60 0.90 βX1 ´80.15 0.077 0.077 0.015 ´38.84 0.120 0.122 0.722

βZ1 ´80.62 0.055 0.056 0.001 6.019 0.146 0.148 0.944
βZ2 ´82.19 0.055 0.053 0.022 ´13.31 0.146 0.146 0.936

0.55 βX1 ´47.05 0.064 0.063 0.168 ´40.51 0.054 0.056 0.151
βZ1 ´47.15 0.046 0.045 0.042 5.840 0.067 0.068 0.942
βZ2 ´48.47 0.046 0.044 0.192 ´12.37 0.066 0.066 0.919

0.30 0.90 βX1 ´79.95 0.109 0.108 0.150 ´69.05 0.085 0.086 0.109
βZ1 ´80.62 0.058 0.058 0.003 ´10.77 0.140 0.141 0.928
βZ2 ´82.31 0.058 0.056 0.030 8.916 0.140 0.140 0.947

0.55 βX1 ´47.49 0.091 0.089 0.419 ´70.28 0.038 0.040 0.000
βZ1 ´47.53 0.049 0.047 0.059 ´11.21 0.064 0.064 0.892
βZ2 ´48.82 0.048 0.046 0.231 8.673 0.064 0.064 0.938

Truth

CR β % Bias ASE ESE CP
0.90 βX1 1.038 0.107 0.108 0.951

βZ1 2.495 0.107 0.106 0.948
βZ2 2.444 0.107 0.108 0.948

0.55 βX1 0.517 0.052 0.054 0.942
βZ1 1.471 0.052 0.053 0.951
βZ2 1.773 0.052 0.052 0.948

1 δ̂p1q “ Estimate of attenuation coefficient 2CR “ True censoring rate
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Table A.2: The mean percent (%) biases, average standard errors (ASE), empirical stan-
dard errors (ESE) and coverage probabilities (CP) are given for 1000 simulated data sets
for the proposed method and naive method with βX1 “ logp1.5q, βZ1 “ logp0.7q, and
βZ2 “ logp1.3q; e is normally distributed with mean zero. The censoring rate is fixed at
0.90. Here, we vary sensitivity, specificity, and negative predictive value.

Se1“ 0.80, Sp2“ 0.90 Proposed Naive

δ̂p1q
3 η 4 β % Bias ASE ESE CP % Bias ASE ESE CP

0.60 0.98 βX1 3.401 0.219 0.215 0.957 ´88.00 0.046 0.047 0.000
βZ1 3.644 0.157 0.157 0.958 ´79.01 0.056 0.058 0.001
βZ2 1.458 0.156 0.160 0.946 ´83.77 0.056 0.058 0.028

0.90 βX1 5.902 0.270 0.275 0.951 ´90.03 0.043 0.044 0.000
βZ1 4.952 0.194 0.196 0.946 ´82.51 0.053 0.054 0.000
βZ2 ´0.967 0.191 0.199 0.947 ´86.74 0.053 0.054 0.015

0.30 0.98 βX1 3.994 0.311 0.300 0.960 ´93.97 0.033 0.033 0.000
βZ1 3.631 0.167 0.164 0.956 ´82.33 0.054 0.055 0.000
βZ2 0.826 0.165 0.169 0.945 ´79.35 0.054 0.056 0.032

0.90 βX1 7.238 0.384 0.383 0.963 ´95.03 0.031 0.031 0.000
βZ1 5.193 0.206 0.206 0.947 ´85.29 0.051 0.052 0.000
βZ2 ´2.018 0.203 0.210 0.950 ´83.03 0.051 0.052 0.018

Se “ 0.90, Sp “ 0.80 Proposed Naive

δ̂p1q η β % Bias ASE ESE CP % Bias ASE ESE CP
0.60 0.98 βX1 2.100 0.231 0.224 0.960 ´93.58 0.037 0.037 0.000

βZ1 3.910 0.166 0.163 0.957 ´88.63 0.046 0.046 0.000
βZ2 3.037 0.164 0.167 0.949 ´90.37 0.045 0.046 0.000

0.90 βX1 3.617 0.283 0.285 0.956 ´94.44 0.036 0.036 0.000
βZ1 5.001 0.203 0.207 0.939 ´89.96 0.045 0.045 0.000
βZ2 1.572 0.200 0.205 0.955 ´91.46 0.044 0.045 0.000

0.30 0.98 βX1 1.873 0.327 0.316 0.965 ´96.87 0.026 0.027 0.000
βZ1 3.749 0.175 0.171 0.954 ´90.47 0.044 0.044 0.000
βZ2 2.754 0.173 0.175 0.954 ´87.93 0.044 0.044 0.000

0.90 βX1 3.600 0.401 0.399 0.957 ´97.33 0.026 0.026 0.000
βZ1 5.030 0.215 0.216 0.942 ´91.58 0.043 0.044 0.000
βZ2 1.134 0.212 0.216 0.953 ´89.30 0.043 0.043 0.000

Se “ 1, Sp “ 1, η “ 1 Truth

β % Bias ASE ESE CP
β1 1.962 0.108 0.112 0.936
β2 2.568 0.107 0.109 0.944
β3 1.115 0.107 0.108 0.945

1 Se “ Sensitivity 2 Sp “ Specificity 3 δ̂p1q “ Estimate of the attenuation coefficient
4 η “ Negative predictive value
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Table A.3: The mean percent (%) biases, average standard errors (ASE), empirical stan-
dard errors (ESE) and coverage probabilities (CP) are given for 1000 simulated data sets
for the proposed method and naive method with βX1 “ logp1.5q, βZ1 “ logp0.7q, and
βZ2 “ logp1.3q; e is normally distributed with mean zero. The censoring rate is fixed at
0.90. Here, we vary sensitivity, specificity, and probability of missingness at each visit.

Se1“ 0.80, Sp2“ 0.90 Proposed Naive

δ̂p1q
3 PMiss

4 β % Bias ASE ESE CP % Bias ASE ESE CP
0.60 0.10 βX1 ´0.416 0.206 0.205 0.952 ´87.80 0.048 0.049 0.000

βZ1 ´0.271 0.148 0.152 0.943 ´77.60 0.059 0.062 0.004
βZ2 ´2.974 0.148 0.154 0.945 ´80.46 0.059 0.061 0.052

0.40 βX1 ´0.031 0.243 0.244 0.955 ´85.19 0.056 0.057 0.000
βZ1 0.579 0.173 0.177 0.940 ´73.40 0.068 0.071 0.034
βZ2 ´3.283 0.173 0.180 0.942 ´76.70 0.068 0.071 0.168

0.30 0.10 βX1 ´1.732 0.292 0.292 0.952 ´94.06 0.034 0.034 0.000
βZ1 ´0.774 0.156 0.160 0.954 ´81.08 0.056 0.059 0.001
βZ2 ´2.701 0.156 0.162 0.941 ´75.82 0.057 0.059 0.063

0.40 βX1 ´1.297 0.344 0.347 0.954 ´92.82 0.040 0.040 0.000
βZ1 0.036 0.183 0.187 0.946 ´77.63 0.066 0.069 0.015
βZ2 ´3.146 0.183 0.190 0.945 ´71.04 0.066 0.069 0.190

Se “ 0.90, Sp “ 0.80 Proposed Naive

δ̂p1q PMiss β % Bias ASE ESE CP % Bias ASE ESE CP
0.60 0.10 βX1 ´1.920 0.218 0.216 0.957 ´93.38 0.039 0.037 0.000

βZ1 ´0.451 0.156 0.163 0.949 ´87.87 0.047 0.048 0.000
βZ2 ´2.801 0.156 0.164 0.941 ´89.04 0.047 0.048 0.000

0.40 βX1 ´2.470 0.264 0.268 0.958 ´91.23 0.044 0.044 0.000
βZ1 ´0.637 0.189 0.200 0.944 ´84.86 0.054 0.056 0.000
βZ2 ´0.796 0.189 0.200 0.946 ´86.60 0.054 0.055 0.012

0.30 0.10 βX1 ´3.134 0.308 0.309 0.953 ´96.85 0.028 0.026 0.000
βZ1 ´1.012 0.165 0.171 0.953 ´89.80 0.045 0.046 0.000
βZ2 ´2.576 0.165 0.174 0.944 ´86.46 0.045 0.046 0.000

0.40 βX1 ´4.353 0.374 0.384 0.955 ´95.77 0.032 0.032 0.000
βZ1 ´1.383 0.200 0.211 0.944 ´87.38 0.052 0.054 0.000
βZ2 ´0.452 0.200 0.213 0.945 ´83.22 0.052 0.053 0.015

Se “ 1, Sp “ 1, η “ 1 Truth

PMiss β % Bias ASE ESE CP
0.10 β1 0.848 0.108 0.109 0.948

β2 1.458 0.108 0.115 0.925
β3 ´1.882 0.108 0.111 0.949

0.40 β1 1.362 0.114 0.117 0.943
β2 1.824 0.114 0.123 0.929
β3 ´1.327 0.114 0.117 0.956

1 Se “ Sensitivity 2 Sp “ Specificity 3 δ̂p1q “ Estimate of the attenuation coefficient
4 PMiss “ Probability of missingness at each visit
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Table A.4: The mean percent (%) biases, average standard errors (ASE), em-
pirical standard errors (ESE) and coverage probabilities (CP) are given for 1000
simulated data sets for the proposed method, naive method, method that cor-
rects for covariate error only, and method that corrects for outcome error only
for a simulated dataset with similar features to the Women’s Health Initiative
(WHI) data. Here, Sensitivity (Se)=0.61, Specificity (Sp)=0.995, Negative Pre-
dictive Value (ηq “ 0.96, βX1 “ logp1.5q, βZ1 “ logp0.7q, βZ2 “ logp1.3q, e is
normally distributed with mean zero, and the censoring rate for the error-prone
indicator is fixed at 0.95.

Proposed Naive

δ̂p1q
1 β % Bias ASE ESE CP % Bias ASE ESE CP

0.60 βX1 ´0.294 0.057 0.058 0.943 ´79.21 0.012 0.013 0.000
βZ1 0.316 0.041 0.042 0.939 ´62.94 0.015 0.015 0.000
βZ2 ´0.578 0.040 0.041 0.941 ´68.75 0.015 0.015 0.000

0.30 βX1 ´0.186 0.082 0.084 0.950 ´89.53 0.009 0.009 0.000
βZ1 0.366 0.044 0.046 0.940 ´68.63 0.014 0.015 0.000
βZ2 ´0.786 0.044 0.044 0.941 ´61.04 0.014 0.015 0.000

Correct Covariate Error Correct Outcome Error

δ̂p1q β % Bias ASE ESE CP % Bias ASE ESE CP
0.60 βX1 ´65.51 0.022 0.022 0.000 ´39.92 0.032 0.032 0.000

βZ1 ´65.26 0.015 0.016 0.000 7.018 0.039 0.040 0.902
βZ2 ´65.55 0.015 0.016 0.000 ´9.828 0.039 0.039 0.896

0.30 βX1 ´65.48 0.031 0.032 0.000 ´69.73 0.023 0.023 0.000
βZ1 ´65.25 0.017 0.017 0.000 ´9.444 0.038 0.038 0.853
βZ2 ´65.61 0.017 0.017 0.000 12.408 0.038 0.037 0.867

Truth

β % Bias ASE ESE CP
βX1 ´0.208 0.022 0.022 0.961
βZ1 0.026 0.022 0.023 0.952
βZ2 0.200 0.022 0.022 0.947

1 δ̂p1q “ Estimate of attenuation coefficient
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Table A.5: Hazard Ratio (HR) and 95% confidence interval (CI) estimates of incident di-
abetes for a 20% increase in consumption of energy (kcal/d), protein (g/d), and protein
density (% energy from protein/d) based on the naive method ignoring error in the out-
come and covariate, the method corrected for error in the covariate only, and the proposed
method. Here, sensitivity = 0.61, specificity = 0.995, and negative predictive value = 1.

HR (95% CI)
Model1 Method Adjusted for BMI2 Not Adjusted for BMI
Energy (kcal/d) Naive 1.002 (0.986, 1.018) 1.024 (1.008, 1.040)

Regression Calibration 1.041 (0.758, 1.429) 1.421 (1.043, 1.938)
Proposed 0.973 (0.714, 1.327) 1.314 (0.992, 1.740)

Protein (g/d) Naive 1.024 (1.010, 1.039) 1.051 (1.035, 1.066)
Regression Calibration 1.121 (1.036, 1.213) 1.231 (1.130, 1.342)
Proposed 1.107 (1.025, 1.195) 1.229 (1.128, 1.339)

Protein Density Naive 1.100 (1.064, 1.137) 1.128 (1.091, 1.167)
Regression Calibration 1.243 (1.125, 1.374) 1.325 (1.181, 1.486)
Proposed 1.209 (1.100, 1.329) 1.327 (1.183, 1.490)

1 Each model is adjusted for potential confounders and is stratified on age (10-year cat-
egories) and Dietary Modification trial (DM) or Observational Study (OS) cohort mem-
bership. 2 BMI = Body Mass Index pkg{m2q

Table A.6: Sensitivity Analysis varying sensitivity and specificity of diabetes self-reports across
WHI DM-C and WHI OS participants. We consider separate models for dietary energy, protein, and
protein density. Each model is adjusted for potential confounders, including BMI, and is stratified
on age (10-year categories) and DM or OS cohort membership. We show HR estimates of incident
diabetes for a 20% increase in consumption of energy (kcal/d), protein (g/d), and protein density
(% energy from protein/d).

Sensitivity Specificity HR (95% CI)
OS DM OS DM Energy (kcal/d) Protein (g/d) Protein Density
0.5800 0.7418 0.9945 0.9972 0.970 (0.713,1.319) 1.113 (1.030,1.202) 1.193 (1.088,1.307)
0.5300 0.9614 0.9945 0.9972 0.954 (0.699,1.302) 1.114 (1.031,1.203) 1.183 (1.081,1.295)
0.6168 0.5800 0.9945 0.9972 0.938 (0.690,1.276) 1.108 (1.027,1.195) 1.199 (1.093,1.314)
0.6282 0.5300 0.9945 0.9972 0.959 (0.700,1.313) 1.106 (1.025,1.194) 1.183 (1.081,1.293)
0.5800 0.7418 0.9951 0.9945 0.974 (0.715,1.326) 1.108 (1.026,1.196) 1.206 (1.099,1.324)
0.5300 0.9614 0.9951 0.9945 0.971 (0.710,1.327) 1.110 (1.028,1.199) 1.193 (1.088,1.308)
0.6168 0.5800 0.9951 0.9945 0.972 (0.709,1.333) 1.105 (1.025,1.191) 1.173 (1.074,1.282)
0.6282 0.5300 0.9951 0.9945 0.960 (0.705,1.306) 1.108 (1.027,1.195) 1.189 (1.087,1.302)
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Table A.7: Sensitivity Analysis for different stratification strategies using a modeling ap-
proach similar to that of Tinker et al. Tinker et al. (2011) We examine hazard ratio (HR)
and 95% confidence interval (CI) estimates of incident diabetes for a 20% increase in con-
sumption of energy (kcal/d), protein (g/d), and protein density (% energy from protein/d)
based on discrete proportional hazards analyses and continuous Cox proportional hazards
models that correct for error in the covariate (X) only.

HR (95% CI)
Model1 Method Adjusted for BMI2 Not Adjusted for BMI
Energy (kcal/d) Discrete, 6 Strata3 1.041 (0.758, 1.429) 1.421 (1.043, 1.938)

Continuous, 6 Strata 0.953 (0.686, 1.323) 1.333 (0.993, 1.790)
Continuous, 12 Strata4 0.953 (0.686, 1.324) 1.334 (0.994, 1.791)
Continuous, 36 Strata5 0.952 (0.685, 1.322) 1.328 (0.990, 1.780)

Protein (g/d) Discrete, 6 Strata 1.121 (1.036, 1.213) 1.231 (1.130, 1.342)
Continuous, 6 Strata 1.104 (1.020, 1.194) 1.217 (1.117, 1.325)
Continuous, 12 Strata 1.103 (1.020, 1.193) 1.216 (1.117, 1.324)
Continuous, 36 Strata 1.104 (1.021, 1.194) 1.215 (1.116, 1.323)

Protein Density Discrete, 6 Strata 1.243 (1.125, 1.374) 1.325 (1.181, 1.486)
Continuous, 6 Strata 1.241 (1.121, 1.374) 1.325 (1.179, 1.489)
Continuous, 12 Strata 1.241 (1.122, 1.374) 1.324 (1.179, 1.487)
Continuous, 36 Strata 1.243 (1.123, 1.377) 1.324 (1.179, 1.487)

1 Each model is adjusted for potential confounders 2 BMI = Body Mass Index pkg{m2q
3 6 strata: age (10-year categories) and Dietary Modification trial (DM) or Observational
Study (OS) cohort membership 4 12 strata: age (5-year categories) and Dietary Mod-
ification trial (DM) or Observational Study (OS) cohort membership
5 36 strata: age (5-year categories), Dietary Modification trial (DM) or Observational
Study (OS) cohort membership, and hormone therapy trial arm.
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Table A.8: For model used by Tinker et al., Tinker et al. (2011), we examine the sensitivity
of results to choices of how BMI is treated in analyses. We present hazard ratio (HR) and
95% confidence interval (CI) estimates of incident diabetes for a 20% increase in consumption
of energy (kcal/d), protein (g/d), and protein density (% energy from protein/d) based on the
discrete proportional hazards model with a post-hoc correction for covariate error, the continuous
Cox model with a post-hoc correction for covariate error, and the continuous Cox model with the
non-post-hoc traditional regression calibration correction for covariate error.

HR (95% CI)
Model1 Method BMI in Both2 BMI in Neither3 Calibration Only4

Energy Disc. PHoc5 1.041 (0.758, 1.429) 1.421 (1.043, 1.938) NA
(kcal/d) Cont. PHoc6 0.953 (0.686, 1.323) 1.333 (0.993, 1.790) NA

Cont. Non-PHoc7 0.956 (0.650, 1.407) 1.290 (0.967, 1.720) 2.768 (2.279, 3.362)
Protein Disc. PHoc5 1.121 (1.036, 1.213) 1.231 (1.130, 1.342) NA
(g/d) Cont. PHoc6 1.104 (1.020, 1.194) 1.217 (1.117, 1.325) NA

Cont. Non-PHoc7 1.099 (1.009, 1.196) 1.208 (1.095, 1.333) 1.790 (1.430, 2.242)
Protein Disc. PHoc5 1.243 (1.125, 1.374) 1.325 (1.181, 1.486) NA
Density Cont. PHoc6 1.241 (1.121, 1.374) 1.325 (1.179, 1.489) NA

Cont. Non-PHoc7 1.226 (1.111, 1.352) 1.303 (1.161, 1.463) 1.049 (0.689, 1.597)
1 Each model is adjusted for potential confounders and stratified on age (10-year categories)
and Dietary Modification trial (DM) or Observational Study (OS) cohort membership.
2 BMI included in both calibration and outcome model (BMI = Body Mass Index pkg{m2q)
3 BMI included in neither the calibration nor the outcome model
4 BMI included in the calibration model but not the outcome model
5 Discrete time model using post-hoc regression calibration
6 Continuous time model using post-hoc regression calibration
7 Continuous time model using non-post-hoc regression calibration
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APPENDIX B

Supplementary Material for Chapter 3

B.1. R Code with sample data analysis

We now provide R code that illustrates how to apply the proposed method and the standard,

no auxiliary data method to a simulated data set. The simulated data mimics the complex

survey design of HCHS/SOL that includes unequal probability sampling, stratification, and

clustering. To mimic the measurement error of dietary factors in HCHS/SOL, we simulate

an error-prone covariate (X˚) and assume that we additionally have 2 error-free continuous

covariates, such as body mass index and age (Z1 and Z2). The auxiliary data outcome

variable is recorded at 8 time points, while the gold standard outcome variable is recorded

at year 4. The sensitivity and specificity of the error-prone, auxiliary data outcome are

assumed to be 0.61 and 0.98, respectively. This data set is provided on GitHub at https:

//github.com/lboe23/AugmentedLikelihood with the file name SampleData.RData.

We begin by loading in the functions required to calculate our log-likelihood and gradient.

These functions are available on the GitHub site above. This file contains two functions,

(1) log_like_proposed() which calculates the log-likelihood for the proposed method and

(2) gradient_proposed() which calculates the gradient/estimating function for the proposed

method. Both functions require a specification of the function purpose, where the options

are “SUM" or “INDIVIDUAL." icensmis package on Cran or on GitHub at https://github.

com/XiangdongGu/icensmis/blob/master/src/dataproc.cpp. Below is code that loads all of

the required functions:

source(‘PROPOSED_AUGMENTEDLIKELIHOOD_FUNCTIONS.R’)

Rcpp:: sourceCpp(‘RcppFunc.cpp’)

Rcpp:: sourceCpp(‘dataproc.cpp’)

Now we assign the sensitivity (Se) and specificity (Sp) values for the auxiliary data. We

assume these are known, fixed constants in our analysis. We will also allow for a proportion of
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the gold (reference) standard event status variables to be missing, and we fix this missingness

rate to be 20% for this analysis.

sensitivity <-0.61

specificity <-0.98

prop_m<-0.20

Now, we load in sample simulated data. The data we input is in wide form, with one row

per subject and each auxiliary data event indicator in a separate column.

load(file=paste0(’SampleData.RData’))

N<-dim(samp )[1]

We now fit the calibration model. Later, for variance estimation in the presence of regression

calibration and a complex survey design, we will use the parametric multiple imputation

procedure proposed by Baldoni et al. (2021). To do so, we need to save off the estimated

calibration model regression coefficients, corresponding estimated covariance matrix, and the

design matrix. Finally, we will create our predicted values (xhat) from regression calibration

using the “predict" statement.

samp.solnas <- samp[( solnas ==T),]

lm.lsodi <- glm(xstarstar ~ xstar+z1+z2,data=samp.solnas)

x.lsodi <- model.matrix(lm.lsodi) #X

xtx.lsodi <- t(x.lsodi)%*%x.lsodi #X‘X‘

ixtx.lsodi <- solve(xtx.lsodi) #(X‘X)^-1

samp[,xhat := predict(lm.lsodi ,newdata=samp ,’response ’)]

We now convert the data to long form, where each row represents one time point and each

subject has multiple rows. Recall that each subject in our simulated data set has 8 visits.

Then, we are going to sort the data by subject ID.

samp_long1 <-reshape(data = samp , idvar = "ID", varying =

list(true_result=

c("true_result_1", "true_result_2","true_result_3",
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"true_result_4", "true_result_5", "true_result_6",

"true_result_7","true_result_8"),

result=c("result_1","result_2","result_3",

"result_4","result_5","result_6",

"result_7","result_8")), direction="long",

v.names = c("true_result","result"),sep="_")

#order long dataset by each subject ’s ID

samp_long <- samp_long1[order(samp_long1$ID),]

Next, we create a data set with only one row per subject using the duplicated function and

applying it to the ID variable. Then, using the data with one row per subject, we save the

vector of sampling weights that will be used in the weighted analysis. Additionally, we create

a keep statement and apply a function called “after_first_pos" to removes all auxiliary data

values of “1" after the first positive from the data in long form.

GS_data <-samp_long[!duplicated(samp_long$ID),c("ID","GS_vis4")]

#Save vector of weights for this dataset

weights <-as.numeric(unlist(samp_long[!duplicated(samp_long$ID),

c("bghhsub_s2")]))

keep <-unlist(tapply(samp_long$result ,samp_long$ID,after_first_pos))

datafinal_1<-samp_long[keep ,]

Suppose we want to simulate missingness in the gold (reference) standard indicator variable,

∆i. To do so, we first set a seed so that our results are reproducible. Then, we generate

N variables called mcar from a Uniform(0,1) distribution and let ∆i be missing for each

subject if mcar ă MR.

set.seed (2548)

mcar <-runif(N,0,1)

GS_data$GS_vis4_mis <-ifelse(mcar <prop_m,NA ,GS_data$GS_vis4)
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Next, we create two datasets using the merge function: datafinal, which is the data in

long form with one row per visit, and datafinal_GS, which has one row per person for the

standard, no auxiliary data analysis.

datafinal <-merge(datafinal_1,GS_data ,by="ID")

datafinal_GS<-merge(samp_long ,GS_data[,c("ID","GS_vis4_mis")],

by="ID")

Now, we write down the formula for our outcome model including the error-prone auxiliary

data outcome and three covariates. Recall that we used regression calibration to correct

for error in one covariate, so our model includes the predicted value xhat and two precisely

recorded covariates, z1 and z2.

formula=result~xhat+z1+z2

We will now make sure our data is ordered properly before we begin calculating sum of the

likelihood components.

id <- eval(substitute(datafinal$ID), datafinal , parent.frame ())

time <-eval(substitute(datafinal$time), datafinal , parent.frame ())

result <- eval(substitute(result), datafinal , parent.frame ())

ord <- order(id , time)

if (is.unsorted(ord)) {

id <- id[ord]

time <- time[ord]

result <- result[ord]

datafinal <- datafinal[ord , ]}

utime <- sort(unique(time))

timen0 <- (time != 0)

Next, we will calculate the D matrix and C matrix for our log-likelihood using the Rcpp

functions. Additionally, we assign J, the number of auxiliary data visit times.

Dm <- dmat(id[timen0], time[timen0], result[timen0], sensitivity ,

118



specificity , 1)

Cm <- cmat(id[timen0], time[timen0], result[timen0], sensitivity ,

specificity , 1)

J <- ncol(Dm) - 1

In these next steps, we create our covariate matrix with one column per covariate (Xmat).

Intially, Xmat will be in long form, with one row per visit. We also assign nbeta (the

number of covariates/regression parameters) and uid, a unique indicator for each person’s

ID. Finally, we redefine our covariate matrix to have just one row per subject.

Xmat <- model.matrix(formula , data = datafinal)[, -1, drop = F]

beta.nm <- colnames(Xmat)

nbeta <- ncol(Xmat)

uid <- getrids(id , N)

Xmat <- Xmat[uid , , drop = F]

Now, create a unique vector (GSdelta) with only one row per person indicating whether

each person had the gold (reference) standard indicator available or not. This will be used

to calculate the proposed log-likelihood contribution for each subject based on whether

GSdelta=NA, 0 or 1. Additionally, we create the vector of observation times at which the

gold (reference) standard is recorded, called GSVis. Lastly, we create a vector of 1’s called

“noweights" which will be used to fit the proposed estimator in the unweighted analysis.

GSdelta <- datafinal[uid ,"GS_vis4_mis"]

GSVis <-rep(4,N)

noweights <-rep(1,N)

We now finalize the data set for the standard, no auxiliary data analysis using the unique

IDs only such that data has N rows. This is the final dataset for standard, no auxiliary

data analysis analysis that omits anyone who is missing the gold standard.

IC_data <-datafinal_GS[!duplicated(datafinal_GS$ID),c("result",

"true_result","GS_vis4","GS_vis4_mis","BGid", "strat",
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"bghhsub_s2","xstar","xhat","z1","z2")]

IC_GS_datafinal <-IC_data[complete.cases(IC_data$GS_vis4_mis),]

Now, we create starting values for our survival parameters. First, to avoid maximization

problems due to the ordered constraint of the survival parameters, we re-parameterize these

in terms of a log-log transformation of survival function for S2, and a change in log-log of the

survival function for all other parameters S3 . . . SJ`1. We consider initial values of 0.1 for

our survival parameters, then transform these based on this re-parameterization. We also

define lower and upper bounds for our survival parameters. Our lower bound is infinity for

the first re-parameterized survival function and 0 for the subsequent J´1 terms. Our upper

bound is infinity for all terms. Finally, we create a vector parmi consisting of a starting

value for beta, and starting values for re-parameterized survival parameters.

initsurv <- 0.1

lami <- log(-log(seq(1, initsurv , length.out = J + 1)[ -1]))

lami <- c(lami[1], diff(lami))

tosurv <- function(x) exp(-exp(cumsum(x)))

lowlam <- c(-Inf , rep(0, J - 1))

lowerLBFGS <- c(rep(-Inf , nbeta),lowlam)

upperLBFGS <- c(rep(Inf , nbeta+J))

parmi <- c(rep(0.5, nbeta),lami)

Now, we create survey designs using survey package for the two models: the proposed

method, with all N subjects, and the standard, no auxiliary data analysis model which

excludes subjects missing the gold standard variable.

samp_design_reg = svydesign(id=~BGid , strata=~strat ,

weights=~bghhsub_s2 , data=IC_GS_datafinal)

samp_design_reg_complete = svydesign(id=~BGid , strata=~strat ,

weights=~bghhsub_s2 , data=IC_data)

Finally, we fit the proposed method and the standard, no auxiliary data approach with the
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weights from the survey design. One may consider the functions optim() or nlminb() for

maximization of the log-likelihood in R.

proposed_fit_data_weight <-optim(par=parmi , fn=log_like_proposed ,

gr=gradient_proposed ,lower = lowerLBFGS ,upper=upperLBFGS ,

method = "L-BFGS -B",N,J,nbeta ,Dm ,Cm ,Xmat ,GSdelta ,GSVis ,

weights=weights ,purpose="SUM",hessian=TRUE)

inverted_hessian <-solve(proposed_fit_data_weight$hessian)

proposed_fit_data_weight_GS<-svyglm(GS_vis4~xhat+z1+z2 ,

family=quasibinomial(link="cloglog"),data=IC_GS_datafinal ,

design=samp_design_reg)

Next, we calculate a matrix of estimating equation contributions for all individuals. We want

the unweighted matrix, because the function svytotal() adds the weights later. Then, we

compute the influence functions by multiplying this matrix by the inverse of the hessian

matrix. Finally, we obtain design-based standard errors using the variance approach of

Binder (1983) and functions from the survey package by providing the influence function

and survey design to vcov(svytotal()) (Lumley, 2011).

U_prop1 <-gradient_proposed(proposed_fit_data_weight$par ,N,J,nbeta ,

Dm ,Cm ,Xmat ,GSdelta ,GSVis ,weights=noweights ,purpose="INDIVIDUAL")

infl1 <- U_prop1%*%inverted_hessian

mySandVar <- vcov(svytotal(infl1 ,samp_design_reg_complete ,

influence=TRUE))

We now save the estimated parameters, including the estimated regression coefficients and

corresponding standard error estimates.

beta1est_aux_w<- proposed_fit_data_weight$par[1]

sandVar <- sqrt(diag(mySandVar ))[1]

fitsum_truth4Year <-summary(proposed_fit_data_weight_GS)

beta1est_truth4Year <-fitsum_truth4Year$coefficients["xhat" ,1]
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beta1se_truth4Year <-fitsum_truth4Year$coefficients["xhat" ,2]

The final step of our analysis is to use the parametric multiple imputation procedure of

Baldoni et al. (2021) to compute the variance that accounts for the extra uncertainty added

by the calibration model step. Code for implementing this procedure is available on GitHub

at https://github.com/plbaldoni/HCHSsim and involves sampling the calibration model co-

efficients using their asymptotic parametric distribution M times, resulting in M sets of

calibration coefficients. Then, we are able to estimate M predicted covariate (xhat) values,

X̂
pmq

i . Finally, we fit the outcome models each M times, once for each of the newly predicted

intake values X̂pmq

i from multiple imputation. We choseM “ 25 imputations for our analysis.

We present full code that applies the procedure of Baldoni et al. (2021) to the proposed esti-

mator fit to simulated data on GitHub at https://github.com/lboe23/AugmentedLikelihood

in the code file “Sample_Data_Analysis_Final.R" This full code for running the multiple

imputation variance procedure involves running all of the above code in a multiple imputa-

tion loop, and thus to avoid redundancy we have chosen to omit it here. On GitHub, we

have also provided the output from applying this parametric multiple imputation procedure,

titled “SampleAnalysis_MIVarianceResults.RData". Below, we load in this output so that

we can obtain our final variance calculations.

load(file=paste0(’SampleAnalysis_MIVarianceResults.RData’))

output_mi<-as.data.frame(matrix(unlist(list_mi), ncol=5, byrow=T))

colnames(output_mi)<-c("Imp","beta_proposed_mi","se_proposed_mi",

"beta_standard_mi","se_standard_mi")

Now, let’s use this output to calculate the final estimate of the variance of the regression

coefficient β̂ from each model as: V̂ ˚ “ 1
M

řM
m“1 V̂

pmq ` 1
M´1

řM
m“1

´

β̂pmq ´
¯̂
β

¯2
, where

¯̂
β “ 1

M

řM
m“1 β̂

pmq and β̂pmq and V̂ pmq represent the estimated regression coefficient and its

estimated variance, respectively, using the m-th completed data set with m “ 1, . . . ,M . Re-

call that this formula for computing variance estimates accounting for regression calibration

were described in Section 2.3.2 from the main manuscript. Following Baldoni et al. (2021),
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we use robust estimators for the mean and standard deviation in this equation, specifically

the median and the median absolute deviation:

MI_Var <-function(V,betas ){

var <-(median(V)+(mad(betas )^2))

return(sqrt(var))

}

se_proposed_final <-MI_Var(( output_mi$se_proposed_mi)^2,

output_mi$beta_proposed_mi)

se_standard_final <-MI_Var(( output_mi$beta_standard_mi)^2,

output_mi$beta_standard_mi)

Now, we can use our estimated regression coefficients and their corresponding standard

errors to construct a table with estimated hazard ratios (HR) and 95% confidence intervals

(CI) associated with a 20% increase in consumption. We will also include relative efficiency

calculations in our table, computed as the ratio of the estimated variance of the standard,

no auxiliary data approach estimator to the estimated variance of the proposed method

estimator, e.g. V arpβ̂Standardq

V arpβ̂Proposedq
:

myfinaltable <-cbind(paste(round(exp(beta1est_aux_w*log (1.2)) ,2) ,"(",

round(exp(beta1est_aux_w -1.96*se_proposed_final)^log (1.2),2),",",

round(exp(beta1est_aux_w+1.96*se_proposed_final)^log (1.2),2),")"),

paste(round(exp(beta1est_truth4Year*log (1.2)) ,2) ,"(",

round(exp(beta1est_truth4Year -1.96*se_standard_final)^log (1.2) ,2) ,

",",

round(exp(beta1est_truth4Year +1.96*se_standard_final)^log (1.2) ,2) ,

")"),round((se_standard_final ^2)/(se_proposed_final ^2) ,2))

Below are our final results from the table we just constructed:
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HR (95% CI)

Proposed No Auxiliary Data RE

1.07 (0.99, 1.16) 1.08 (0.98, 1.19) 1.51

B.2. Details of C terms in the likelihood

In Section 2.1 of the main text, we introduce the likelihood contributions for all individuals

in terms of Cij “
“
śni
l“1 P pY ˚

il |τj´1 ă Ti ď τj , T
˚
il ,∆iq

‰

, which is simply a function of the

sensitivity pSeq and specificity pSpq of the auxiliary data. Recall that we assume constant

and known sensitivity pSeq and specificity pSpq, defined as Se “ PrpY ˚
il “ 1|τj´1 ă Ti ď

τj , T
˚
l ě τjq and Sp “ PrpY ˚

il “ 0|τj´1 ă Ti ď τj , T
˚
l ď τj´1q. It is then straightforward to

see that 1 ´ Se “ PrpY ˚
il “ 0|τj´1 ă Ti ď τj , T

˚
l ě τjq and 1 ´ Sp “ PrpY ˚

il “ 1|τj´1 ă Ti ď

τj , T
˚
l ď τj´1qIn this section, we provide the general form of the Cij terms for the case of

no missed visits. The formula introduced below could be modified to allow for missed visits

by summing up all terms θj “ Prpτj´1 ă Ti ď τjq across the pτj´1, τjs defining a subject’s

observational interval. For the case of J total visits for all N subjects, the Cij terms take

the following form:

Ci1 “ Se
řni

j“1 Y
˚
ij p1 ´ Seq

řni
j“1p1´Y ˚

ij q,

Ci2 “ Spp1´Yi1qp1 ´ SpqYi1Se
řni

j“2 Y
˚
ij p1 ´ Seq

řni
j“2p1´Y ˚

ij q,

...

CipJ`1q “ Sp
řni

j“1p1´Y ˚
ij q

p1 ´ Spq
řni

j“1 Y
˚
ij .

As an example, consider subject i “ 1 who has observed auxiliary data vector Y˚
i “

r0, 0, 0, 1s corresponding to annual visit time vector T˚
i “ r1, 2, 3, 4s. Suppose the visit

times among all N subjects are also rτ0 “ 0, τ1 “ 1, τ2 “ 2, τ3 “ 3, τ4 “ 4, τ5 “ 8s. Then,

for subject i with ni “ J “ 4 and j “ 1, we have:

124



C11 “

4
ź

l“1

P pY ˚
1l |τ0 ă T1 ď τ1, T

˚
1l,∆1q

C11 “ P pY ˚
11|τ0 ă T1 ď τ1, T

˚
11,∆1q ˆ P pY ˚

12|τ0 ă T1 ď τ1, T
˚
12,∆1q ˆ

P pY ˚
13|τ0 ă T1 ď τ1, T

˚
13,∆1q ˆ P pY ˚

14|τ0 ă T1 ď τ1, T
˚
14,∆1q

C11 “ P pY ˚
11 “ 0|τ0 ă T1 ď τ1, T

˚
11 ě τ1,∆1q ˆ P pY ˚

12 “ 0|τ0 ă T1 ď τ1, T
˚
12 ě τ1,∆1q ˆ

P pY ˚
13 “ 0|τ0 ă T1 ď τ1, T

˚
13 ě τ1,∆1q ˆ P pY ˚

14 “ 1|τ0 ă T1 ď τ1, T
˚
14 ě τ1,∆1q

C11 “ p1 ´ Seq ˆ p1 ´ Seq ˆ p1 ´ Seq ˆ Se

Then, following a similar procedure for j “ 2, . . . , 5, we see that for subject 1,

C11 “ Sep1 ´ Seq3,

C12 “ SpSep1 ´ Seq2,

C13 “ Sp2Sep1 ´ Seq,

C14 “ Sp3Se

C15 “ Sp3p1 ´ Spq.

B.3. Regularity conditions for asymptotic normality

We now provide sufficient regularity conditions for the proposed estimator to be asymp-

totically normal and achieve a
?
N -convergence rate. We assume the following throughout

this section: (1) tTi,∆i, Y
˚
i , T

˚
i ,Mi, Xi, X

˚
i , Ziu is a vector of independent and identically

distributed random variables for i “ 1, ..., N , where N is the number of subjects in the

main study data; (2) Ti is the latent, unobserved continuous failure time of interest for

subject i; (3) the proportional hazards model holds for the latent true event time, such

that Sptq “ S0ptqexppx1βq; (4) the auxiliary outcome status (Y ˚
i ) is observed at ni follow-
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up times T ˚
i “ pti1, ..., tiniq that are a subset of J+1 possible observation times satisfying

0 “ τ0 ă τ1 ă τ2 ă ... ă τJ ă τJ`1 “ 8; and (3) τVi is the observation time for the

gold standard event status variable ∆i, where τVi P tτ0, τ1, τ2, ..., τJu; (5) τVi is the gold

standard assessment time for individual i, where τVi P tτ0, τ1, τ2, ..., τJu and ∆i is the corre-

sponding gold standard event status variable; (6) the binary variable Mi P t0, 1u indicates

whether ∆i is missing; (7) Xi is the p-dimensional true covariate vector of interest with

corresponding error-prone vector X˚
i , while Zi is the additionally observed q-dimensional

vector of error-free covariates, where all covariates are random variables with finite variance.

In the main text, we define θj “ Prpτj´1 ă Ti ď τjq and Sj “
řJ`1
h“j θh “ PrpT ą τj´1q for

j “ 1, ..., J ` 1. Additionally, we require that 1 “ S1 ą S2 ą ... ą SJ`1 ą 0, ensuring that

0 ă θj ă 1 for j “ 1, . . . , J .

B.3.1. Proposed estimator for random sample

First, we consider the case where the data are assumed to be a simple random sample from

the population and the covariates of interest are recorded precisely (i.e. error-free). The

log-likelihood function lpψq “ lpTi,∆i, Y
˚
i , T

˚
i ,Mi, Xi;ψq is defined in Section 2.1, equation

2.4 from the main text as:

lpψq “ lpS, βq “

N
ÿ

i“1

lipS, βq “

N
ÿ

i“1

«

p1 ´Miq∆i log

˜

Vi
ÿ

j“1

DijpSjq
exppx1

iβq

¸

`

p1 ´Miqp1 ´ ∆iq log

˜

J`1
ÿ

j“Vi`1

DijpSjq
exppx1

iβq

¸

`

Mi log

˜

J`1
ÿ

j“1

DijpSjq
exppx1

iβq

¸ff

. (B.1)

where ψ “ rβ,Ss and S “ pS1, S2, ..., SJ`1q1. Recall that we define the score function as

Uipψq “
Blipψq

Bψ . The proposed estimator in this setting, ψ̂, is found by solving the score

equation
řN
i“1 Uipψq “ 0. Let ψ0 be the true vector of regression parameters of interest
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that solves E
”

Blpψq

Bψ

ı

“ E
”

řN
i“1 Uipψq

ı

“ 0. Now, further assume that the log-likelihood

lpψq “ lpTi,∆i, Y
˚
i , T

˚
i ,Mi, Xi;ψq is twice continuously differentiable with respect to ψ such

that there exists an invertible Hessian matrix (Foutz, 1977). We additionally assume the

regularity conditions made by Foutz (1977) for establishing consistency and uniqueness of

our estimator. Then, appealing to standard maximum likelihood estimation (MLE) theory,

with probability going to one as N Ñ 8, ψ̂ is a unique solution to the likelihood equations

that is consistent for ψ0 and asymptotically normal (Boos and Stefanski, 2013). Specifically,

one has:
?
Npψ̂ ´ ψ0q

d
ÝÑ N p0,Vpψ0qq, (B.2)

where Vpψ0q is the Fisher information matrix, denoted by “ Ipψ0q´1.

B.3.2. Proposed estimator for complex survey design

We now state the additional regularity conditions needed for the proposed method estimator

to accommodate data from a complex survey sampling design by using a weighted log-

likelihood function and a sandwich variance estimator to address within-cluster correlation.

Recall from section 2.2 that a sample of N subjects is drawn from a population of size

NPOP resulting in the sampling probability πi. Following Lumley and Scott (2017), we

assume that N Ñ 8 and N
NPOP

Ñ p P p0, 1q. Additionally assume that πi is known

for the subjects in the sample and is bounded away from 0. The weighted log-likelihood

equation of the main text is written as follows: lπpS, βq “
řN
i“1

1
πi
lipS, βq “

řN
i“1

qlipS, βq.

The weighted proposed estimator ψ̂π may be found by solving the weighted score equation,
řN
i“1

qUipψπq “
řN
i“1

1
πi
Uipψπq “ 0. Then, as before, ψ0

π is the solution to E
”

Blπpψπq

Bψπ

ı

“

E
”

řN
i“1

qUipψπq

ı

“ 0. Following the same logic applied for the random sample case and

since ψ̂π is also a maximum likelihood estimator, we have:

?
Npψ̂π ´ ψ0

πq
d
ÝÑ N p0,Vpψ0

πqq, (B.3)
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where Vpψ0
πq can be approximated using the implicit differentiation method of Binder (1983).

To use this variance estimation approach, assume that
řN
i“1

qUipψπq is suitably smooth such

that ψ̂π can be implicitly defined as a function of
řN
i“1

qUipψπq. Further assume that the

derivative matrix for qUi is full rank, invertible, and a continuous function of ψπ. Then, we

can use a Taylor expansion of Ui at ψ̂π “ ψ0
π to arrive at the following estimator for the

asymptotic variance of ψ̂π: V̂rψ̂πs «

´

řN
i“1

B qUipψ̂πq

Bψπ

¯´1

ˆcov
”

řN
i“1

qUipψ̂πq

ı ´

řN
i“1

B qUipψ̂πq

Bψπ

¯´1

.

Details and theoretical justification are provided in Binder (1983).

B.3.3. Proposed estimator for complex survey design and regression calibration

First assume that the error-free covariatesXi and Zi are available for all sampled individuals,

such that our log-likelihood lπ,X,Zpψq “ lpTi,∆i, Y
˚
i , T

˚
i ,Mi, Xi, Zi;ψq takes the following

form:

lπ,X,Zpψq “

N
ÿ

i“1

1

πi
l˚i pS, βq “

N
ÿ

i“1

«

p1 ´Miq∆i log

˜

Vi
ÿ

j“1

DijpSjq
exppx1

iβX`z1
iβZq

¸

`

p1 ´Miqp1 ´ ∆iq log

˜

J`1
ÿ

j“Vi`1

DijpSjq
exppx1

iβX`z1
iβZq

¸

`

Mi log

˜

J`1
ÿ

j“1

DijpSjq
exppx1

iβX`z1
iβZq

¸ff

, (B.4)

where ψ “ rβ,Ss, β “ pβX , βZq1, and S “ pS1, S2, ..., SJ`1q1. Adopting the arguments

from sections B.3.1 and B.3.2, the weighted proposed estimator ψ̂π,X,Z found by solving the

weighted score equation
řN
i“1

qUipψπ,X,Zq “
řN
i“1

1
πi
Uipψπ,X,Zq “ 0 can also be shown to

be consistent for the true parameter ψ̂0
π and asymptotically normal. These arguments only

apply to settings in which the true covariate Xi is used in the proposed method instead of

X̂i.

We will now make similar arguments of consistency and asymptotic normality for a new

version of our log-likelihood that incorporates regression calibration. Begin by assuming
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that nC
N Ñ p P p0, 1q, where nC is the number of subjects in the calibration subset. Recall

that we assume the classical measurement error model, X˚˚
i “ Xi` ϵi, where ϵi „ Np0, σ2ϵiq,

as introduced in Section 2.3.1 from the main manuscript. Assume also that the following

linear calibration model from the main manuscript holds: X˚˚
i “ δp0q `δp1qX

˚
i `δp2qZi`Wi,

where the random measurement error term Wi „ Np0, σ2Wi
q. Define δ “ pδp0q, δp1q, δp2qq.

Then, since the vector of estimated nuisance parameters δ̂ is a linear regression estimator,

we can appeal to standard MLE theory to establish that it is consistent for the true vector of

parameters δ0 and asymptotically normal. To apply regression calibration, the first moment

X̂i “ EpXi|δ, X
˚
i , Ziq is imputed in place of Xi in our outcome model. To establish asymp-

totic normality of our regression calibration estimator, we first assume δ is known and solve

the following weighted log-likelihood equation l˚π,X˚,Zpψq “ lpTi,∆i, Y
˚
i , T

˚
i ,Mi, X

˚
i , Zi;ψq:

l˚π,X˚,Zpψq “

N
ÿ

i“1

1

πi
l˚i pS, βq “

N
ÿ

i“1

«

p1 ´Miq∆i log

˜

Vi
ÿ

j“1

DijpSjq
exppx̂1

iβX`z1
iβZq

¸

`

p1 ´Miqp1 ´ ∆iq log

˜

J`1
ÿ

j“Vi`1

DijpSjq
exppx̂1

iβX`z1
iβZq

¸

`

Mi log

˜

J`1
ÿ

j“1

DijpSjq
exppx̂1

iβX`z1
iβZq

¸ff

, (B.5)

where ψ “ rβ,Ss, β “ pβX , βZq1, and S “ pS1, S2, ..., SJ`1q1. We assume that distributions

of the variables are such that when Xi is replaced by X̂i, the log-likelihood l˚π,X˚,Zpψq “

lpTi,∆i, Y
˚
i , T

˚
i ,Mi, X

˚
i , Zi;ψq remains continuously differentiable with respect to ψ and

that the Hessian matrix is still invertible. As before, we solve the weighted score equation
řN
i“1

qU˚
i pψπ,X˚,Zq “

řN
i“1

1
πi
U˚
i pψπ,X˚,Zq “ 0 in order to obtain our weighted proposed

estimator, ψ̂˚
π,X˚,Z . Under regularity conditions described previously, ψ˚

π will be a unique,

consistent solution to the vector of equations E
”

Bl˚π pψπ,X˚,Zq

Bψπ

ı

“ E
”

řN
i“1

qU˚
i pψπ,X˚,Zq

ı

“ 0.

In general, ψ˚
π is not the same as ψ0

π, as the parameter estimates from regression cali-

bration are viewed as an approximation (Buonaccorsi, 2010). Using the techniques of
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Boos and Stefanski (2013) once again, we can verify the asymptotic normality our estimator

ψ̂˚
π,X˚,Z , i.e.:

?
Npψ̂˚

π,X˚,Z ´ ψ˚
πq

d
ÝÑ N p0,Vpψ˚

πqq. (B.6)

The regularity in equation B.6 depends on known nuisance parameter vector δ from the error

model. With the additional usual regularity assumptions for linear regression that guarantee

a consistent and asymptotically normal estimator for δ̂, the regularity of our calibration

estimator will still hold using this plug-in estimator for δ by appealing to Theorem 5.31

in Van der Vaart (2000). The variance Vpψ˚
πq is estimated using the multiple imputation

procedure introduced by Baldoni et al. (2021) described in the main text. When regression

calibration is applied to the proposed method to adjust for covariate error, our estimator is

only approximate but has been empirically shown to have minimal bias and good coverage

probability when the true regression parameter is modest in size and the event of interest

under study is rare.

B.4. Supplemental details for HCHS/SOL data example

We adopted the same exclusion criteria used in the ongoing clinical investigation that seeks to

understand the relationship between several dietary intake variables and the risk of chronic

diseases in the HCHS/SOL cohort. We excluded any participants who reported diabetes

or unknown status at baseline (N “ 3428), had missing covariate data (N “ 373), or had

no auxiliary follow-up (N “ 551), resulting in 12, 317 eligible participants. To mimic the

planned analysis of the clinical investigation, for the 351 subjects in the data who reported

a positive diabetes status after one or more missed annual follow-up calls, we imputed that

the event happened at the midpoint of the missed follow-up times. For most subjects with

a missed call, subjects subsequently reported no diabetes diagnosis had occurred since the

last call and so a negative disease status was imputed for the prior follow-up calls. The

proposed method is applied to a subset of 8, 200 HCHS/SOL cohort participants, including
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all eligible SOLNAS subset participants (N “ 420) and HCHS/SOL participants from pri-

mary sampling units (PSUs) with 4 or fewer members (N “ 282). The remaining subset

members were selected by taking a random sample of 7498 participants that had not yet

been selected.
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Table B.1: Simulation results are shown for exponential failure times assuming the Cox pro-
portional hazards model with X „ Gammap0.2, 1q and β “ logp1.5q for (1) the grouped time
survival approach that uses the true outcome data from all periodic visits and (2) the standard
interval-censored approach that does not incorporate auxiliary data. The median percent (%)
bias, median standard errors (ASE), empirical median absolute deviation (MAD) and coverage
probabilities (CP) are given for 1000 simulated data sets.

Gold Standard Every Year Gold Standard Year 4 Only
(No Auxiliary Data)

MR1 CR2 N3 % Bias ASE MAD CP % Bias ASE MAD CP RE4

0.0 0.9 1000 -2.015 0.158 0.151 0.953 -1.402 0.160 0.155 0.951 1.019
10,000 1.025 0.048 0.050 0.948 1.279 0.048 0.051 0.951 1.022

0.7 1000 0.207 0.100 0.095 0.950 0.614 0.107 0.106 0.950 1.104
10,000 0.466 0.031 0.031 0.942 0.398 0.033 0.034 0.947 1.137

0.5 1000 1.061 0.084 0.082 0.938 2.020 0.099 0.102 0.947 1.361
10,000 0.503 0.026 0.026 0.954 0.382 0.031 0.034 0.951 1.370

0.2 0.9 1000 0.863 0.164 0.160 0.953 -0.378 0.181 0.183 0.951 1.190
10,000 1.493 0.049 0.052 0.945 0.769 0.054 0.055 0.952 1.197

0.7 1000 1.966 0.103 0.108 0.939 0.377 0.120 0.116 0.954 1.319
10,000 1.524 0.032 0.035 0.936 0.332 0.037 0.038 0.946 1.336

0.5 1000 3.572 0.087 0.095 0.920 2.084 0.111 0.116 0.947 1.607
10,000 2.453 0.027 0.029 0.914 0.247 0.034 0.036 0.952 1.606

0.4 0.9 1000 1.935 0.176 0.181 0.944 1.178 0.213 0.222 0.959 1.411
10,000 1.595 0.053 0.053 0.941 2.122 0.062 0.064 0.960 1.411

0.7 1000 2.100 0.110 0.117 0.927 1.616 0.140 0.138 0.958 1.586
10,000 2.379 0.034 0.039 0.913 0.758 0.043 0.044 0.946 1.586

0.5 1000 6.148 0.093 0.106 0.911 3.186 0.130 0.136 0.952 1.911
10,000 4.344 0.029 0.030 0.885 0.122 0.040 0.043 0.945 1.893

1MR “ Average probability that the gold standard indicator ∆ is missing at year 4
2CR “ Average censoring rate for the latent true event time at the end of study
3N “ Sample size for proposed approach; if MR ą 0.0, sample size for no auxiliary data ap-
proach is smaller because of missingness in gold standard indicator ∆.
4RE “ median relative efficiency, calculated as the median of the ratio of the estimated vari-
ance of the standard, no auxiliary data approach estimator to the estimated variance of the
proposed method estimator , e.g. V arpβ̂Standardq

V arpβ̂Proposedq
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Table B.2: Simulation results are shown for exponential failure times assuming the Cox pro-
portional hazards model with X „ Gammap0.2, 1q, β “ logp1.5q, and values of Se “ 0.90 and
Sp “ 0.80 for the auxiliary data. The median percent (%) bias, median standard errors (ASE),
empirical median absolute deviation (MAD) and coverage probabilities (CP) are given for 1000
simulated data sets for the proposed method and the standard interval-censored approach that
does not incorporate auxiliary data.

Proposed No Auxiliary Data

MR1 CR2 N3 % Bias ASE MAD CP % Bias ASE MAD CP RE4

0.0 0.9 1000 -0.810 0.160 0.151 0.953 -1.402 0.160 0.155 0.951 1.011
10,000 1.501 0.048 0.049 0.954 1.279 0.048 0.051 0.951 1.007

0.7 1000 0.914 0.104 0.099 0.952 0.614 0.107 0.106 0.950 1.043
10,000 0.391 0.032 0.032 0.945 0.398 0.033 0.034 0.947 1.065

0.5 1000 1.598 0.091 0.091 0.943 2.020 0.099 0.102 0.947 1.172
10,000 0.433 0.028 0.029 0.947 0.382 0.031 0.034 0.951 1.178

0.2 0.9 1000 -1.283 0.175 0.177 0.956 -0.378 0.181 0.183 0.951 1.040
10,000 0.970 0.053 0.052 0.952 0.769 0.054 0.055 0.952 1.050

0.7 1000 0.273 0.111 0.115 0.957 0.377 0.120 0.116 0.954 1.135
10,000 0.604 0.034 0.034 0.947 0.332 0.037 0.038 0.946 1.152

0.5 1000 1.462 0.097 0.097 0.942 2.084 0.111 0.116 0.947 1.306
10,000 0.478 0.030 0.031 0.948 0.247 0.034 0.036 0.952 1.316

0.4 0.9 1000 -1.054 0.197 0.201 0.958 1.178 0.213 0.222 0.959 1.109
10,000 1.388 0.059 0.059 0.953 2.122 0.062 0.064 0.960 1.127

0.7 1000 0.739 0.121 0.120 0.957 1.616 0.140 0.138 0.958 1.278
10,000 0.762 0.037 0.038 0.952 0.758 0.043 0.044 0.946 1.306

0.5 1000 2.252 0.103 0.104 0.942 3.186 0.130 0.136 0.952 1.553
10,000 0.550 0.032 0.033 0.949 0.122 0.040 0.043 0.945 1.549

1MR “ Average probability that the gold standard indicator ∆ is missing at year 4
2CR “ Average censoring rate for the latent true event time at the end of study
3N “ Sample size for proposed approach; if MR ą 0.0, sample size for no auxiliary data ap-
proach is smaller because of missingness in gold standard indicator ∆.
4RE “ median relative efficiency, calculated as the median of the ratio of the estimated vari-
ance of the standard, no auxiliary data approach estimator to the estimated variance of the
proposed method estimator , e.g. V arpβ̂Standardq

V arpβ̂Proposedq
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Table B.3: Simulation results are shown for exponential failure times assuming the Cox pro-
portional hazards model with X „ Gammap0.2, 1q and β “ logp3q. The median percent (%)
bias, median standard errors (ASE), empirical median absolute deviation (MAD) and coverage
probabilities (CP) are given for 1000 simulated data sets for the proposed method and the stan-
dard interval-censored approach that does not incorporate auxiliary data. Here, Se “ 0.80 and
Sp “ 0.90 for the auxiliary data.

Proposed No Auxiliary Data

MR1 CR2 N3 % Bias ASE MAD CP % Bias ASE MAD CP RE4

0.0 0.9 1000 0.627 0.126 0.121 0.961 0.937 0.135 0.136 0.950 1.155
10,000 0.032 0.039 0.040 0.940 0.150 0.042 0.042 0.939 1.162

0.7 1000 1.082 0.114 0.118 0.953 0.657 0.130 0.134 0.949 1.274
10,000 0.207 0.036 0.035 0.946 0.301 0.041 0.043 0.955 1.281

0.5 1000 0.393 0.122 0.120 0.951 0.517 0.147 0.151 0.952 1.474
10,000 0.302 0.038 0.038 0.954 0.164 0.046 0.046 0.950 1.458

0.2 0.9 1000 1.088 0.132 0.130 0.955 1.493 0.151 0.149 0.955 1.286
10,000 0.175 0.041 0.042 0.939 0.124 0.047 0.046 0.944 1.298

0.7 1000 1.243 0.119 0.118 0.955 1.213 0.145 0.149 0.950 1.464
10,000 0.285 0.037 0.038 0.951 0.436 0.045 0.048 0.955 1.473

0.5 1000 0.505 0.126 0.124 0.950 0.502 0.165 0.179 0.939 1.724
10,000 0.165 0.040 0.039 0.950 0.041 0.052 0.051 0.948 1.708

0.4 0.9 1000 1.011 0.141 0.140 0.949 1.840 0.175 0.184 0.952 1.515
10,000 0.049 0.044 0.044 0.950 0.084 0.054 0.053 0.954 1.522

0.7 1000 1.275 0.125 0.125 0.948 1.897 0.168 0.180 0.944 1.789
10,000 0.115 0.039 0.041 0.958 0.509 0.052 0.053 0.956 1.792

0.5 1000 0.692 0.130 0.134 0.944 2.561 0.193 0.205 0.942 2.174
10,000 0.215 0.041 0.042 0.948 -0.140 0.060 0.058 0.949 2.118

1MR “ Average probability that the gold standard indicator ∆ is missing at year 4
2CR “ Average censoring rate for the latent true event time at the end of study
3N “ Sample size for proposed approach; if MR ą 0.0, sample size for no auxiliary data ap-
proach is smaller because of missingness in gold standard indicator ∆.
4RE “ median relative efficiency, calculated as the median of the ratio of the estimated vari-
ance of the standard, no auxiliary data approach estimator to the estimated variance of the
proposed method estimator , e.g. V arpβ̂Standardq

V arpβ̂Proposedq
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Table B.4: Simulation results are shown for data simulated to be from a complex survey with ex-
ponential failure times assuming the Cox proportional hazards model withX „ Normalpshapes`
ωgs, scales`ρgsq for an individual in block group g and stratum s and β “ logp1.5q. The median
percent (%) bias, median standard errors (ASE), median absolute deviation (MAD) and coverage
probabilities (CP) are given for 1000 simulated data sets for the weighted proposed estimator
and the weighted interval-censored approach that does not incorporate auxiliary data when both
use a sandwich variance estimator to address within-cluster correlation. Here, Se “ 0.80 and
Sp “ 0.90 for the auxiliary data.

Proposed No Auxiliary Data

MR1 CR2 N3 % Bias ASE MAD CP % Bias ASE MAD CP RE4

0.0 0.9 1000 -4.213 0.122 0.139 0.933 -4.642 0.124 0.138 0.938 1.018
10,000 -3.293 0.042 0.041 0.933 -3.285 0.042 0.041 0.936 1.010

0.7 1000 -0.778 0.078 0.081 0.936 -0.983 0.079 0.080 0.932 1.024
10,000 -0.239 0.026 0.028 0.937 -0.331 0.026 0.028 0.937 1.029

0.5 1000 -0.459 0.062 0.066 0.936 -0.516 0.065 0.067 0.932 1.066
10,000 -0.210 0.020 0.021 0.938 -0.225 0.021 0.022 0.941 1.087

0.2 0.9 1000 -3.237 0.133 0.152 0.926 -3.294 0.137 0.157 0.937 1.055
10,000 -3.275 0.046 0.045 0.942 -3.160 0.047 0.047 0.941 1.058

0.7 1000 -1.547 0.083 0.085 0.929 -1.153 0.088 0.094 0.931 1.117
10,000 -0.530 0.027 0.028 0.939 -0.194 0.029 0.029 0.937 1.124

0.5 1000 -0.194 0.066 0.070 0.932 -0.558 0.072 0.076 0.930 1.190
10,000 -0.143 0.021 0.022 0.946 -0.086 0.024 0.024 0.941 1.230

0.4 0.9 1000 -2.592 0.149 0.167 0.924 -2.799 0.155 0.165 0.930 1.108
10,000 -2.977 0.051 0.050 0.934 -2.789 0.054 0.054 0.932 1.131

0.7 1000 -0.665 0.090 0.091 0.930 -0.173 0.101 0.108 0.933 1.266
10,000 -0.564 0.029 0.031 0.939 -0.337 0.033 0.035 0.947 1.286

0.5 1000 0.471 0.070 0.072 0.926 0.081 0.082 0.089 0.920 1.407
10,000 -0.193 0.023 0.024 0.947 -0.063 0.027 0.029 0.941 1.455

1MR “ Average probability that the gold standard indicator ∆ is missing at year 4
2CR “ Average censoring rate for the latent true event time at the end of study
3 pNq “ Average sample size for proposed approach; if MR ą 0.0, sample size for no auxiliary
data approach is smaller because of missingness in gold standard indicator ∆.
4RE “ median relative efficiency, calculated as the median of the ratio of the estimated vari-
ance of the standard, no auxiliary data approach estimator to the estimated variance of the
proposed method estimator , e.g. V arpβ̂Standardq

V arpβ̂Proposedq
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Table B.5: Sensitivity analysis using HCHS/SOL data on a subset
of study participants with visit 2 sensitivity (Se “ 0.77) and speci-
ficity (Sp “ 0.92) values. Hazard Ratio (HR) and 95% confidence
interval (CI) estimates of incident diabetes for a 20% increase in
consumption of energy (kcal/d), protein (g/d), and protein den-
sity (% energy from protein/d) based on the proposed estimator
and the interval-censored approach that does not incorporate aux-
iliary data.

HR (95% CI)

Model1 Proposed No Auxiliary Data RE2

Energy (kcal/d) 1.26 (0.49, 3.24) 1.20 (0.41, 3.82) 1.27
Protein (g/d) 1.37 (0.88, 2.14) 1.37 (0.74, 2.51) 1.85
Protein Density 1.01 (1.00, 1.03) 1.01 (1.00, 1.03) 1.43
1 Each model is adjusted for potential confounders including
age, body mass index (BMI), sex, Hispanic/Latino background,
language preference, education, income, and smoking status.
2RE “ relative efficiency, calculated as the ratio of the esti-
mated variance of the standard, no auxiliary data approach es-
timator to the estimated variance of the proposed method es-
timator , e.g. V arpβ̂Standardq

V arpβ̂Proposedq
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APPENDIX C

Supplementary Material for Chapter 4

C.1. Sufficient Assumptions for Sandwich Variance Estimation

The stacked estimating equation framework outlined in the prior section may be considered

for any regular, asymptotically linear estimators. As illustrated in the prior sections, this

includes any parametric maximum likelihood estimators, as well as the Cox proportional

hazards model estimator. This framework does not apply, however, to a range of machine

learning models, including Lasso and Random Forest. Here, we outline mild regularity con-

ditions required for the estimators from stage 1 and stage 2 in order to apply the proposed

sandwich variance estimator. Specifically, if we assume that the vector of estimated nuisance

parameters, α̂, from Stage 1 is a regular, asymptotically linear estimator (e.g. a linear regres-

sion estimator), the regularity conditions specified by Foutz (1977) can be used to establish

the consistency and uniqueness of this estimator. For the case of a standard maximum

likelihood estimator, we may appeal to standard maximum likelihood estimation (MLE)

theory to show that α̂ is a unique solution to the likelihood equations that is consistent

and asymptotically normal (Boos and Stefanski, 2013). Additionally consider an outcome

model of interest and suppose all covariates are observed without error. For a generalized

linear model, one can appeal to this same standard MLE theory to establish the consis-

tency, uniqueness, and asymptotic normality of the outcome model estimator, β̂. When the

outcome model is a Cox proportional hazards model, the techniques of Andersen and Gill

(1982) may be used to establish consistency and asymptotic normality of β̂.

We can make sufficient, typical regularity assumptions for our stage 1 and stage 2 models

to ensure that we have a consistent and asymptotically normal estimator for α̂. A common

but not necessary assumption is that n
N Ñ p P p0, 1q, where n is the number of subjects in

the calibration subset. More complex assumptions may also be considered (Särndal et al.,

2003). The regularity of our estimator β̂ from stage 2 will still hold using a plug-in estimator
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for α by appealing to Theorem 5.31 in Van der Vaart (2000).

C.2. Steps for Computing Bootstrap Standard Errors

Below we have outlined the steps for computing bootstrap standard errors, as commonly

applied in the context of regression calibration, using a stratified bootstrap procedure:

1. Choose a number of bootstrap samples to perform (e.g. B “ 500)

2. For each bootstrap sample,

(a) Draw a stratified bootstrap sample with replacement of size N : First, draw a

sample with replacement of size n from those in the subset only. Then, draw a

sample with replacement of size N ´ n from the non-subset members.

(b) Fit the regression calibration (stage 1) model on the bootstrap sample.

(c) Use the calibration model fit to the bootstrap sample to get an estimate of the

exposure, X̂pbq
i , on all main study participants, for b “ 1, . . . , B.

(d) Fit the outcome regression (stage 2) model using the bootstrap sample with X̂pbq
i

to obtain an estimate of the bth regression model parameters, βpbq.

3. Repeat step (2) B times.

4. For an estimate of the adjusted standard error, compute the standard deviation of the

B bootstrap estimates of the regression parameter, β “ pβp1q, ..., βpBqq.

C.3. Steps for Computing Multiple Imputation-Based Standard Errors

Below we have outlined the steps for computing standard errors using the resampling-based

multiple imputation approach of Baldoni et al. (2021):

1. Choose a number of imputations to perform (e.g. M “ 25)

2. For each imputation,
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(a) Draw a bootstrap sample with replacement of size n from those in the subset

only. Assuming the calibration subset is a simple random sample of the main

study, select individuals in the sample with equal probability.

(b) Fit the regression calibration (stage 1) model on the bootstrap sample.

(c) Use the calibration model fit to the bootstrap sample to get an estimate of the

exposure, X̂pmq

i , on all main study participants, for m “ 1, . . . ,M .

(d) Fit the outcome regression (stage 2) model using X̂pmq

i and other covariates Z to

obtain an estimate of the mth regression model parameters, βpmq.

3. Repeat step (2) M times.

4. For an estimate of the adjusted standard error of β̂, compute V̂ ˚ “ 1
M

řM
m“1 V̂

pmq `

1
M´1

řM
m“1

´

β̂pmq ´
¯̂
β

¯2
, where ¯̂

β “ 1
M

řM
m“1 β̂

pmq and β̂pmq and V̂ pmq represent the

estimated regression coefficient and its estimated variance, respectively, using the m-th

completed data set.

Baldoni et al. (2021) also considered robust estimators for the mean and standard deviation

used to compute the adjusted variance in step 4. Specifically, for robustness to skewed

estimates, the median and median absolute deviation were used. Further details on the

multiple imputation-based variance estimator are described in Baldoni et al. (2021) and code

for implementing this procedure is available on GitHub at https://github.com/plbaldoni/

HCHSsim.

C.4. Details on Simulation Study to Illustrate Performance of Sandwich

Variance Estimator

We conducted a simulation study to show how the sandwich variance approach and com-

peting estimators perform under various different settings. We simulate two covariates, Xi

and Zi, from a multivariate normal distribution with mean 0 and a covariance matrix with

all diagonal elements equal to 1. We vary the off-diagonal elements between 0.3 and 0.7 to
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represent low and high correlation, respectively, between the two covariates. Next, we as-

sume the logistic regression model, pi “ P pYi “ 1q “
exppβ0`βXXi`βZZiq

1`exppβ0`βXXi`βZZiq
and fix β0 “ 0.2,

βX “ logp1.5q, and βZ “ logp0.7q. In epidemiologic settings, βX “ logp1.5q represents a

log-odds ratio corresponding to the exposure of interest of a moderate size. To simulate the

binary outcome Yi, we generated N variables Uni from a Uniform(0,1) distribution and then

let Yi “ 1 if Uni ă pi and 0 otherwise.

Later, we run a set of simulations for the random sample case designed to assess the perfor-

mance of the proposed sandwich variance estimator when a Cox proportional hazards model

is considered as our stage 2 model. To simulate this outcome, we generated event times from

a continuous time exponential distribution with parameter λ “ 0.23 exppβXXi ` βZZiq,

where βX “ logp1.5q and βZ “ logp0.7q. We let our censoring time be 2 such that any

subject who experienced the event prior to this time was assumed to have experienced the

event of interest. Assigning these parameters resulted in an event rate that approximated

that for our logistic regression outcome model, roughly 38%.

Our error-prone covariate X˚
i is simulated to represent a hypothetical dietary intake variable

using the following linear measurement error model, X˚
i “ δ0 ` δ1Xi ` δ2Zi ` ei, where

δX “ 0.20, δX “ 0.37 and δZ “ 0.15. We let ei „ Np0, σ2q and considered σ2 values of 0,

0.25, 0.50, and 1.00 to represent cases of zero, low, moderate, and high measurement error.

We assume that our hypothetical biomarker subset is a random sample of n “ 450 subjects

from the main study. Our simulated hypothetical biomarker of interest, X˚˚
i , is generated

to follow the classical measurement error model X˚˚
i “ Xi ` ϵi, and we let ϵ „ Np0, 0.2q.

In our simulation studies designed to mimic the structure the complex survey design data

setting, all data generation settings besides the sampling structure were kept the same,

including the simulation of Xi, X˚
i , X˚˚

i , Zi, and Yi. In a complex survey sampling scheme

of this type, it was not possible to fix the total number of individuals selected for a simulated

sample exactly, but we were able to obtain sample sizes of approximately N “ 1000 and

N “ 10, 000.
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For all settings studied, we conducted 1000 simulation iterations. Simulations for the simple

random sample which computed standard error estimates using the bootstrap used B “

500 bootstrap samples. Confidence intervals in Tables 1 and S1 are constructed using the

typically applied Wald confidence interval computed using bootstrap standard errors. For

simulations from the complex survey design, we used M “ 25 imputations when applying

the multiple imputation based procedure of Baldoni et al. (2021).

C.5. Supplementary Details on the WHI Data Analysis

To fit the stage 1 model in the WHI data analysis, we modified calibration models that

were previously developed for self-reported intakes of energy, protein, and protein density

by Neuhouser et al. (2008) and used by Tinker et al. (2011) to obtain incident diabetes

hazard ratios in the WHI cohort. Specifically, since the regression calibration approach

requires the calibration model to include the same set of covariates as the outcome model in

order to avoid bias (Kipnis et al., 2009), we expanded the set of covariates from the former

calibration models to include all confounding variables that will be included in our outcome

model. All stage 1 models therefore included body mass index (BMI), age, race-ethnicity,

income, education, physical activity in units of metabolic equivalent tasks per week, smoking

status, alcohol consumption, hypertension, history of cardiovascular disease, family history

of diabetes, and hormone use.

Incident diabetes in the WHI was recorded using a self-reported questionnaire at annual

follow-up visits. As in Tinker et al. (2011), we consider the Cox proportional hazards model

for our stage 2 model, stratified on age in 5-year categories, hormone therapy trial partic-

ipation, and DM-C or OS membership. All stage 2 models for diabetes were adjusted by

the same set of confounders included in the stage 1 models. We also stratified our stage

2 models on age in 5-year categories, hormone therapy trial participation, and DM-C or

OS membership. Following Tinker et al. (2011), we fit two versions of the stage 2 model,

one which is adjusted for BMI and the other which is not. This issue, which is discussed

by Tinker et al. (2011), relates to the fact that BMI may be a mediator of the relationship
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between energy intake and diabetes. We compare model-based standard errors (naive SE)

to those estimated by the proposed sandwich estimator introduced in the main paper and

the standard bootstrap procedure using B “ 500 bootstrap samples.

We consider data from women who participated in either the comparison arm of the Dietary

Modification trial (DM-C) or the Observational Study (OS) in the WHI (Ritenbaugh et al.,

2003; Langer et al., 2003). Note that neither women from the DM-C nor the OS received

study interventions. By adopting the same exclusion criteria described by Tinker et al.

(2011), we obtained a final analytic data set of 77, 805 participants. These criteria essentially

attempt to align the characteristics of participants in the DM-C and OS cohorts as well as

exclude any women with missing data or who reported diabetes at baseline. In our analysis,

baseline was defined as the time of the first self-reported dietary assessment post-enrollment,

year 1 for the DM-C and year 3 for the OS.

Following Tinker et al. (2011), we excluded women who reported diabetes at baseline or

during the first year of follow-up for the comparison arm of the WHI Dietary Modification

trial (DM-C) participants (n “ 724) or the first three years of follow-up for the WHI

Observational Study (OS) participants (n “ 4109). In an attempt to align characteristics of

women in the DM-C trial with those of women in the OS, the following women in OS were

also excluded: those who had breast, colorectal, or other cancer within 10 years prior to

enrollment (n “ 8677q, stroke or myocardial infarction within 6 months prior to enrollment

(n “ 155), body mass index (BMI) ă 18 (n “ 678), hypertension (systolic blood pressure

ą 200 or diastolic blood pressure ą 105)(n “ 244), reported daily energy intake of ă 600 kcal

or ą 5000 kcal (n “ 3571), ě 10 meals prepared away from home each week (n “ 3598), a

special low-fiber diet (n “ 568), a special malabsorption-related diet (n “ 514), inadvertent

weight loss of ą 15 pounds within 6 months of enrollment (n “ 594), and diabetes diagnosis

recorded before age 21 at enrollment (n “ 95). After applying these criteria and including

only the participants with no missing data from the stage 1 and stage 2 model variables,

we obtained our analytic cohort with 77, 805 participants. Of these 77, 805 women, 19, 945
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(25.6%) were from the DM-C and 57, 860 (74.4%) were from the OS. Our stage 1 models

included 356 eligible women from the Nutritional Biomarker Study who did not have missing

data.

Our estimated hazard ratios for all models were somewhat different than those reported

by Tinker et al. (2011). Specifically, when BMI was excluded from the outcome model,

Tinker et al. (2011) showed that a HR (95% CI) of 2.41 (2.06, 2.82) was associated with

a 20% increase in energy intake, which differs slightly from our 2.88 (2.16, 3.85) with ad-

justed standard errors estimated by the bootstrap. These differences may be explained by

a few discrepancies in our analysis and our analytic cohort. Specifically, even after applying

the same exclusion criteria and considering only participants with complete data, we had

a slightly different data set with 19, 968 DM-C and 57, 860 OS participants, compared to

Tinker et al. (2011) whose analytic data set contained 19, 111 DM-C and 55, 044 OS par-

ticipants for a total of 74, 155 in the analysis. One major difference between our analysis

approach and that of Tinker et al. (2011) related to the variables included in the stage 1 and

stage 2 models. We chose to include the same set of confounders, Z, in the stage 1 and stage

2 models, while Tinker et al. (2011) included a set of confounders in the stage 2 outcome

model that were not included in the stage 1 model. In general, aligning the set of variables

in the stage 1 and stage 2 models is recommended to avoid potential bias and may explain

some of the differences in the observed results (Kipnis et al., 2009). Finally, we note that

Tinker et al. (2011) included the variables glycemic index and glycemic load in their stage

2 models. We chose to exclude these variables from all models due to numerical instability

that they created when added to the stage 1 models, potentially due to correlation with

other variables.

C.6. Supplementary Details on the HCHS/SOL Data Analysis

In our reanalysis of the HCHS/SOL data, we fit our stage 1 model to n “ 310 SOLNAS

participants, excluding any SOLNAS participants who were ineligible for the stage 2 analysis

from having had a previous diagnosis of high blood pressure or hypertension or making use
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of antihypertensive medication. This sample also excluded 11 SOLNAS participants who

had extreme biomarker or self-reported values for sodium. Our stage 2 analysis of the

HCHS/SOL data included 8, 176 participants from the original HCHS/SOL cohort (N “

16, 415). We started with the subset used by Baldoni et al. (2021), which was constructed

by taking a random sample of 8, 208 HCHS/SOL participants and excluding 83 participants

who had missing covariate data. For our sample, we considered these 8, 176 participants

with complete data, then added back the remaining 51 eligible SOLNAS ancillary study

participants who were not selected by the original random sample.

While the convention in the HCHS/SOL study has previously been to ignore the survey

design in the fitting of the stage 1 model, we chose to account for the design in the model,

a decision that was made to better capture the variability in the complex survey design. To

account for the survey design in the stage 1 model, we subset the parent cohort HCHS/SOL

survey design to the participants int the SOLNAS substudy. As described in the main

manuscript, attention must be paid to assigning the strata when using data from a complex

survey design. For this analysis, we specified the strata as the cross-classification of the

subset indicator, Vi, with the strata variables from the HCHS/SOL design. Since SOLNAS

is not a nested subset by design, special consideration was required to determine the strata

to be used in this data example. The parent HCHS/SOL study included multi-level strata,

where the top level was field center, while SOLNAS was only stratified by field center. Thus,

our best approximation for determining the strata in this data example was to use the full

set of multi-level strata for those not in the SOLNAS subset (Vi “ 0) and just the field

center for those in the SOLNAS subset (Vi “ 1).

The confounding variables of interest, Zi used in our stage 1 and stage 2 models are body

mass index (BMI), age, Hispanic/Latino background, income, education, physical activity,

smoking status, alcohol consumption, field center, language preference, sex, nativity, family

history of cardiovascular health disease, and hypercholesterolemia. All analyses used log-

transformed biomarkers for sodium and potassium and log-transformed self-reported 24-hour
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recall measures. The outcome variables of hypertension and systolic blood pressure were

recorded at the HCHS/SOL baseline, in-person clinical examination visit (2008-2011). We

consider standard errors estimated by the model (Naive SE), the sandwich, and the MI

procedure with M “ 25 imputations.

C.7. Sandwich Variance Example: Regression Calibration Applied to Lo-

gistic Regression

In this section, we use an example to illustrate how one might derive the stacked estimating

equations, Uipθq, and Apθ̂q and Bpθ̂q matrices in order to obtain a sandwich variance esti-

mator. For this example, we consider the setting in which regression calibration is applied

to a logistic regression outcome model. Consider the logistic regression outcome model in-

troduced in Section 4.4.3 of the main manuscript. Our parameter vector of interest, which

includes the nuisance parameters from the stage 1 model and our stage 2 outcome regression

model parameters is then: θ “ pα0, αX , αZ , β0, βX , βZq. We can then use the M-estimation

approach of Boos and Stefanski (2013) to obtain the vector of stacked estimating equations

for the parameter vector θ as follows:
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(C.1)

Note that since X̂i “ EpX˚˚
i |X˚

i , Ziq “ α0 ` αXX
˚
i ` αZZi, we have:
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As described in the main manuscript, the estimates θ̂ can be found by solving the equations
řN
i“1 Uipθq “ 0. A sandwich estimator for the variance of θ̂ can then be obtained as:

V pθ̂q “ Apθ̂q´1Bpθ̂q

”

Apθ̂q´1
ıT

(C.2)

where

Apθ̂q “

N
ÿ

i“1

BUipθq

Bθ
|θ“θ̂ (C.3)

and

Bpθ̂q “

N
ÿ

i“1

UipθqUipθqT (C.4)

For our example where regression calibration is applied using a linear (stage 1) model to

a logistic regression (stage 2) outcome model, we can explicitly define these matrices as

follows:
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Table C.1: Simulation results are shown for the Cox proportional hazards regression model (event
rate = 0.38) for data simulated to be from a simple random sample. The median percent (%) bias,
median standard errors (ASE), empirical median absolute deviation (MAD) and coverage proba-
bilities (CP) are given for 1000 simulated data sets for the outcome model fit to true exposure,
naive exposure, calibrated exposure with naive (model-based) standard errors, calibrated exposure
with standard errors from the sandwich approach, and calibrated exposure with standard errors
from the bootstrap approach (B “ 500 bootstrap samples). We vary the correlation between the
error-prone and precisely-measured covariates (0.3 or 0.7), the sample size (N), and the measure-
ment error variance (σ2). Sample size of the calibration subset is n “ 450.

Low Correlation High Correlation

N σ2(1) Method % Bias MAD ASE CP % Bias MAD ASE CP
1000 0.00 Truth 0.10 0.05 0.05 0.94 0.21 0.07 0.07 0.94

0.25 Naive -12.36 0.08 0.08 0.91 -42.22 0.09 0.09 0.52
RC(2) (Naive SE) -2.06 0.09 0.09 0.94 -2.54 0.15 0.15 0.95
RC(2) (Sandwich) — — 0.09 0.95 — — 0.16 0.95
RC(2) (Bootstrap) — — 0.10 0.95 — — 0.16 0.96

0.50 Naive -48.12 0.07 0.06 0.16 -67.79 0.07 0.07 0.02
RC(2) (Naive SE) -2.88 0.12 0.12 0.94 -3.04 0.21 0.20 0.95
RC(2) (Sandwich) — — 0.12 0.95 — — 0.21 0.96
RC(2) (Bootstrap) — — 0.13 0.95 — — 0.22 0.96

1.00 Naive -71.15 0.05 0.05 0.00 -82.64 0.05 0.05 0.00
RC(2) (Naive SE) -2.90 0.16 0.16 0.94 -4.26 0.29 0.28 0.95
RC(2) (Sandwich) — — 0.17 0.95 — — 0.29 0.97
RC(2) (Bootstrap) — — 0.17 0.96 — — 0.32 0.98

10000 0.00 Truth -0.03 0.02 0.02 0.96 -0.29 0.02 0.02 0.96
0.25 Naive -12.42 0.03 0.03 0.52 -42.27 0.03 0.03 0.00

RC(2) (Naive SE) -2.81 0.04 0.03 0.82 -2.38 0.06 0.05 0.87
RC(2) (Sandwich) — — 0.04 0.94 — — 0.06 0.96
RC(2) (Bootstrap) — — 0.04 0.95 — — 0.07 0.96

0.50 Naive -47.64 0.02 0.02 0.00 -67.70 0.02 0.02 0.00
RC(2) (Naive SE) -3.32 0.05 0.04 0.81 -2.88 0.08 0.06 0.85
RC(2) (Sandwich) — — 0.05 0.95 — — 0.09 0.96
RC(2) (Bootstrap) — — 0.06 0.95 — — 0.09 0.96

1.00 Naive -70.94 0.01 0.02 0.00 -82.85 0.01 0.02 0.00
RC(2) (Naive SE) -3.22 0.08 0.05 0.81 -2.77 0.12 0.09 0.86
RC(2) (Sandwich) — — 0.07 0.95 — — 0.12 0.96
RC(2) (Bootstrap) — — 0.08 0.95 — — 0.14 0.97

(1) σ2 “ the variance of the random, normally distributed measurement error
(2) RC = Regression calibration
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Table C.2: Simulation results are shown for logistic regression (event rate = 0.38) for the
outcome model fit to true exposure, naive exposure, calibrated exposure with naive (model-
based) standard errors, calibrated exposure with standard errors from the sandwich approach,
and calibrated exposure with standard errors from the bootstrap approach, with bootstrap
confidence intervals constructed in 3 ways for B “ 1000 bootstrap samples. The median
percent (%) bias, median standard errors (ASE), empirical median absolute deviation (MAD)
and coverage probabilities (CP) are given for 1000 simulated data sets with N “ 1000 each.
We vary the correlation between the error-prone and precisely-measured covariates (0.3 or 0.7)
and the measurement error variance (σ2). Sample size of the calibration subset is n “ 450.

Low Correlation High Correlation

σ2(1) Method % Bias MAD ASE CP % Bias MAD ASE CP
0.00 Truth 0.04 0.07 0.07 0.94 0.16 0.09 0.10 0.94
0.25 Naive -13.78 0.12 0.11 0.91 -42.84 0.12 0.12 0.68

RC(2) (Naive SE) -3.76 0.13 0.12 0.94 -3.28 0.21 0.20 0.94
RC(2) (Sandwich) — — 0.12 0.94 — — 0.20 0.94
RC(2) (Boot. - Wald)(3) — — 0.12 0.94 — — 0.21 0.94
RC(2) (Boot. - Perc)(4) — — 0.12 0.93 — — 0.21 0.93
RC(2) (Boot. - BCA)(5) — — 0.12 0.94 — — 0.21 0.94

0.50 Naive -48.54 0.08 0.08 0.36 -68.36 0.09 0.09 0.13
RC(2) (Naive SE) -4.61 0.16 0.16 0.93 -2.90 0.28 0.27 0.94
RC(2) (Sandwich) — — 0.16 0.93 — — 0.27 0.95
RC(2) (Boot. - Wald)(3) — — 0.16 0.94 — — 0.29 0.96
RC(2) (Boot. - Perc)(4) — — 0.16 0.93 — — 0.29 0.94
RC(2) (Boot - BCA)(5) — — 0.16 0.93 — — 0.29 0.94

1.00 Naive -71.90 0.06 0.06 0.01 -83.60 0.06 0.06 0.00
RC(2) (Naive SE) -5.31 0.22 0.21 0.94 -4.73 0.37 0.37 0.94
RC(2) (Sandwich) — — 0.21 0.94 — — 0.37 0.95
RC(2) (Boot. - Wald)(3) — — 0.22 0.96 — — 0.41 0.98
RC(2) (Boot. - Perc)(4) — — 0.22 0.92 — — 0.41 0.94
RC(2) (Boot. - BCA)(5) — — 0.22 0.93 — — 0.41 0.94

(1) σ2 “ the variance of the random, normally distributed measurement error
(2) RC = Regression calibration
(3) Bootstrap with standard normal Wald-based confidence interval
(4) Percentile bootstrap confidence interval
(5) Bias-corrected and accelerated (BCA) bootstrap interval
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