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ABSTRACT

SUBLINEAR ALGORITHM AND LOWER BOUND FOR COMBINATORIAL

PROBLEMS

Yu Chen

Sanjeev Khanna

Sampath Kannan

As the scale of the problems we want to solve in real life becomes larger, the input sizes of

the problems we want to solve could be much larger than the memory of a single computer.

In these cases, the classical algorithms may no longer be feasible options, even when they

run in linear time and linear space, as the input size is too large.

In this thesis, we study various combinatorial problems in different computation models that

process large input sizes using limited resources. In particular, we consider the query model,

streaming model, and massively parallel computation model. In addition, we also study the

tradeoffs between the adaptivity and performance of algorithms in these models.

We first consider two graph problems, vertex coloring problem and metric traveling sales-

man problem (TSP). The main results are structure results for these problems, which give

frameworks for achieving sublinear algorithms of these problems in different models. We

also show that the sublinear algorithms for (∆ + 1)-coloring problem are tight.

We then consider the graph sparsification problem, which is an important technique for

designing sublinear algorithms. We give proof of the existence of a linear size hypergraph

cut sparsifier, along with a polynomial algorithm that calculates one. We also consider

sublinear algorithms for this problem in the streaming and query models.

Finally, we study the round complexity of submodular function minimization (SFM). In

particular, we give a polynomial lower bound on the number of rounds we need to compute

s − t max flow - a special case of SFM - in the streaming model. We also prove a polyno-

mial lower bound on the number of rounds we need to solve the general SFM problem in

polynomial queries.
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CHAPTER 1

Introduction

Nowadays, the total amount of data created, captured, and consumed globally increases

rapidly. Despite the storage capacity and computing power of modern computers increasing,

their growth rates are far behind the amount of data that occurs every day. The emergence

of massive data sets sometimes makes the traditional computing model unrealistic. For

example, sometimes, the input size is much larger than the storage capacity of a single

computer. In this scenario, we cannot assume that the computer has random access to the

entire input, which is usually assumed by traditional algorithms. As a result, we need to

consider sublinear computing models that use limited resources compared to the problem

size. These resource includes time, space and communication.

In this thesis, we study several fundamental combinatorial problems in sublinear comput-

ing models. Combinatorial problems appear in various domains like computer science, data

science, sociology, etc. Many combinatorial problems have many applications in different

areas. For example, the submodular function optimization problem, along with its various

important special cases such as minimum/maximum cut, maximum coverage, and matroid

intersection, has found applications in areas such as information retrieval, image segmenta-

tion, and speech analysis. With the emergence of massive data sets, some of these problems

considered tractable in the standard computing model (in other words, polynomial-time

solvable) may no longer be efficiently solvable with limited resources. Thus, it is critical

to study these problems in sublinear computation models. Can we solve these problems in

limited time, limited space, or limited communication? Or can we prove that there are no

such algorithms in these models?

Depending on the specific task and scenario, we need to consider different computational

models. For example, when space is the primary resource, we consider the streaming model,

where the goal is to design algorithms that use a small memory while processing a much
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larger input. When time is the primary resource, we consider the query model, where the

goal is to design algorithms that read a small fraction of the input and give an output by

the limiting information we get. When the input is distributed in multiple machines, we

consider different communication models such as the Alice-Bob model and the massively

parallel computation model (MPC), where the goal is to design algorithms such that the

machines only do a sublinear size of communication. So given a combinatorial problem, the

question is: can we solve the problem using limited time/space/communication? Moreover,

can we prove a matching lower bound on the time/space/communication needed to solve it?

In the rest of this chapter, we will first formally define the computational models in Sec-

tion 1.1. Then in Section 1.2, we will describe the combinatorial problems we consider in this

thesis, as well as some relevant previous work and our contributions. Finally, in Section 1.3,

we give the organization of the rest of the thesis.

1.1. Computational Models

In this section, we introduce the three models we consider in this thesis. They are streaming

model, query model, and massively parallel computation model. We introduce them and

their background one by one in the following subsections. In Section 1.1.4, we discuss the

tradeoff between the number of rounds an algorithm uses and the resources the algorithm

need in each model.

1.1.1. Streaming Model

In the case when space is the primary resource, we consider the streaming model. In stream-

ing model, the input is a sequence of items 〈a1, a2, . . . , am〉 arriving one by one. Depending

on the specific problem we are solving, the items can be different. For example, in graph

problems, the items are usually edges in the graph. In statistics problems, the items could

be the entries of a large vector or matrix. In the streaming model, the algorithm’s memory

size is much smaller than the total size of all items in the stream, so the algorithm needs

to decide which information it wants to memorize on the fly. At the end of the stream, the

algorithm needs to output the answer.
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The streaming model is usually used in scenarios where the data are generated on the fly or

are read in order. Two examples for the first scenario are the log files auto-generated during

a task and the data transmitted by a satellite. For the second scenario, one example is when

the input is stored in external memory.

In this thesis, we mainly focus on graph problems in the streaming model. For graph

problems, the items in the stream are the edges in the graph. An algorithm is a semi-

streaming if the algorithm uses Õ(n) = n ·Polylog(n) space where n is the number of vertices

in the graph. The concept of semi-streaming algorithm is introduced by Feigenbaum et

al. [117]. Since then, many fundamental graph problems have been studied in this setting.

Some examples are maximum matching [108, 117, 188, 201], minimum cut [234], shortest

path [43], maximal independent set [126] and minimum dominating set [146].

1.1.2. Query Model

In the standard computing model, the algorithm needs linear time to read the input once,

so a linear time algorithm is usually considered the best we can do when designing an

algorithm. However, when considering massive data sets, even reading the whole input once

might take a lot of time and make the algorithm impractical. In this case, we consider

the query model. In this model, the algorithm can make queries about the input through

an oracle and then output the answer based on the oracle’s results. For example, in the

submodular function minimization problem with a gound set of size N , to fully describe

the function may require Ω(2N ) bits. However, since we are guaranteed that the function

is submodular, we do not need the full picture of the function to find the minimizer. In the

query model, we allow the algorithm to query the value of a set. There are, in fact, algorithms

that only use Poly(N) queries to find the minimizer [137, 162]. Other than submodular

function minimization problem, query algorithms are also designed for submodular function

maximization [25, 27, 196] and matroid intersection [59, 77].

In graph problems, we usually consider pair query or neighbor query. The former queries

whether there is an edge between a pair of vertices, and the latter asks the oracle to return a

3



neighbor of a vertex. Although we usually allow both queries, pair queries are usually used

when the graph is dense, and neighbor queries are usually used when the graph is sparse. The

query model is first used to design sublinear algorithms for property testing on graphs [132,

133]. Later on, there are also sublinear algorithms designed for graph optimization problems,

such as minimum spanning tree [83] and maximum matching [44, 171, 218, 220, 255].

For the problems defined in a metric space, we also usually use pair query. The algorithm

can ask for the distance between two points in the metric space in this setting. Indyk [155]

designed sublinear algorithms for several metric space problems such as k-median and max-

imum TSP. Sublinear algorithms have also been designed for metric MST [100] and metric

k-nearest neighbor [101].

1.1.3. Massively Parallel Computing Model

As we discussed in the previous sections, the main challenge of massive data sets is that the

input size might be much larger than the storage of a single computer. In this case, we store

the input in multiple computers. To solve the problem, different computers communicate

with each other to figure out the answer. There are different models to address this kind

of situation. The differences among these models include how the input is distributed, how

the computers communicate, and what amount of information a computer can send/receive

in a certain amount of time.

In this thesis, we focus on the massivly parallel computing (MPC) model. In this model, each

machine has sublinear size memories. The computation proceeds in synchronous rounds.

Each machine first does computations on its own data and then sends messages to other

computers in each round. These messages will arrive at the start of the next round. The

constraint is, in each round, the total size of the message a computer sends or receives

cannot larger than its own memory. The main goal is to minimize the number of rounds

needed to compute the answer. MPC model is first introduced in [179], and refined by a

series of work [12, 42, 135]. It has been studied for many combinatorial problems such as

graph connectivity [47, 184, 229], maximum matching [15, 45, 48, 99, 128] and maximal

4



independent set [45, 126, 187].

1.1.4. Tradeoff between Round Complexity and Computational Resources

One important aspect of sublinear models is the adaptivity of the algorithms. For example,

suppose two query algorithms both use N queries. In the first algorithm, each query it asks

depends on the previous queries’ answer, and in the second algorithm, each query does not

depend on the previous answers. If the oracle could simultaneously process a large number of

queries simultaneously (or simplily there are a lot of oracles available), the second algorithm

would be much faster than the first one since it can ask its queries simultaneously. Therefore,

in some scenarios, the algorithms with less adaptivity are preferable even if they make more

queries. In this thesis, we study the tradeoff between the adaptivity of the algorithms and

the resources they use in the streaming and query models.

In the streaming model, the tradeoff is between the number of passes the algorithm reads the

stream and the memory size the algorithm uses. For many problems, allowing for multiple

passes over the stream greatly enhances the capability of stream algorithms. A striking

example is the (global) minimum cut problem: While Ω(n2) space is needed for computing

an exact minimum cut in a single pass [256], a recent result of [234] implies that a minimum

cut of an undirected unweighted graph can be computed in Õ(n) space in only two passes

over the stream1. Table 1.1 presents several other examples of this phenomenon.

In the query model, the tradeoff is between the number of rounds of the algorithm and

the total number of queries the algorithm uses. In an r-round algorithm, the queries being

asked in round i only depend on the answers of the queries in the first i− 1 rounds, and the

algorithm outputs the answer at the end of round r. The rounds-of-adaptivity versus query

complexity question has seen a lot of work on different problems such as submodular function

maximization [71, 89], monotone submodular function minimization with cardinality con-

straint [25, 27, 86, 87, 111, 112, 114, 196], and convex function minimization [70, 105, 217].
1 The result of [234] is not stated as a streaming algorithm. However, the algorithm in [234] combined

with the known graph streaming algorithms for cut sparsifiers (see, e.g. [202]) immediately imply the claimed
result.
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Problem
Multi-Pass Single-Pass

Space Apx Passes Ref Space Apx Ref

Unweighted Min-Cut Õ(n) 1 2 [234] Ω(n2) 1 [256]

Unweighted s-t Min-Cut Õ(n5/3) 1 2 [234] Ω(n2) 1 [256]

Triangle Counting Õ(m
3/2

T
) 1 + ε 4 [52] Ω(m

3

T2 ) Θ(1) [190]

Maximum Matching Õ(n) 1 + ε O(1) [201] n
1+Ω( 1

log log n
) 1

1+ln 2
[167]

Single Source Shortest Path Õ(n) 1 + ε O(1) [43] Ω(n2) 5
3

[118]

Maximal Independent Set Õ(n) − O(log logn) [126] Ω(n2) − [18]

Minimum Dominating Set Õ(n) O(logn) O(logn) [146] n2−o(1) no(1) [19]

Table 1.1: A sample of multi-pass graph streaming algorithms and corresponding single-
pass lower bounds. All results are for graphs G(V,E) with n vertices and m edges (and T
triangles).

1.2. Our Contributions

In this thesis, we consider the following problems in sublinear settings:

• (∆ + 1)-coloring problem;

• Traveling salsman problem;

• Hypergraph cut sparisification problem;

• s-t minimum cut problem;

• Lexicographically-first maximal independent set problem

• Submodular function minimization problem;

In this section, we give an overview of the results we have, and breifly discuss the related

background.
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1.2.1. Sublinear Algorithms for (∆ + 1)-Coloring Problem

A proper c-coloring of a graph G(V,E) assigns a color to every vertex from the palette

of colors {1, . . . , c} such that no edge is monochromatic, i.e., has the same color on both

endpoints. A celebrated case of graph coloring is the (∆ + 1) coloring problem where ∆ is

the maximum degree of the graph. Not only does every graph admit a (∆ + 1) coloring,

remarkably, any partial coloring of vertices of a graph can be extended to a proper (∆ + 1)

coloring of all vertices: simply pick uncolored vertices in any order and assign a color to a

vertex not yet assigned to any of its neighbors; since the max-degree is ∆, such a color always

exists. Due to these reasonings, (∆ + 1)-coloring problem admits a greedy algorithm that

runs in linear time and space - simply color the vertices one by one. In this thesis, we study

(∆ + 1)-coloring problem in sublinear models. We give sublinear algorithms for all three

models we discussed in Section 1.1. At the core of our results is a remarkably simple meta-

algorithm for the (∆ + 1) coloring problem that is based on a key sparsification result for

this problem that we establish. We prove that, if each vertex in the graph randomly samples

O(log n) colors, the graph still admits a (∆+1)-coloring scheme with high probability where

each vertex is restricted to use one of the colors it sampled. The sublinear algorithms are

then obtained by efficiently implementing this meta-algorithm in each model separately. In

particular, we design sublinear algorithms that find a (∆ + 1)-coloring scheme of a graph:

1. A single pass streaming algorithm that uses Õ(n) space.

2. A query algorithm that uses Õ(n1.5) queries.

3. An MPC algorithm that runs in two MPC rounds on machines with memory Ω̃(n).

Furthermore, our algorithms obtain essentially optimal bounds in each model considered.

Indeed, space-complexity of our streaming algorithm and round-complexity of our MPC

algorithm in are clearly optimal (to within polylog factors and constant factors, respectively).

We also prove that query and time complexity of our sublinear time algorithm is also optimal

up to polylog factors.
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These results are based on the work I did with Sepehr Assadi and Sanjeev Khanna [18].

1.2.2. Sublinear Algorithms for Metric Traveling Salesman Problem

In the metric traveling salesman problem (TSP), we are given n points in an arbitrary metric

space with an n×n matrix D specifying pairwise distances between them. The goal is to find

a simple cycle (a TSP tour) of minimum cost that visits all n points. An equivalent view of

the problem is that we are given a complete weighted undirected graph G(V,E) where the

weights satisfy triangle inequality, and the goal is to find a Hamiltonian cycle of minimum

weight. The study of metric TSP is intimately connected to many algorithmic developments,

and the poly-time approximability of metric TSP and its many natural variants are a subject

of extensive ongoing research (see, for instance, [11, 124, 178, 183, 204, 210, 238, 239, 242,

243, 246] and references within for some relatively recent developments).

In this thesis, we consider metric TSP in query model and streaming model. A standard

approach to estimating the metric TSP cost is to compute the cost of a minimum spanning

tree, and output two times this cost as the estimate of the TSP cost (since any spanning

tree can be used to create a spanning simple cycle by at most doubling the cost). In the

query model, the the cost of the minimum spanning tree can be approximated to within a

factor of (1+ε) in Õ(n) queries [100], and in streaming model, there is a natural O(n)-space

algorithm that computes a minimum spanning tree. Therefore, in both model, the cost of

metric TSP could be approximated to within a fact of (2 + ε) in near linear queries/space.

The problem is, can we break the barrier of 2 in o(n2) queries/space?

We consider two well-studied special cases of the traveling salesman problem. The first case

is graphic TSP, in which the metric is induced by an unweighted graph. The second case is

1-2 TSP, in which the distance between any pair of vertices is 1 or 2. We give a Õ(n) query

algorithm and a Õ(n) space single-pass streaming algorithm that approximate the optimal

TSP to within a factor of (2−O(1)) for each of these two cases. In addition, we also prove

a Ω̃(n2) query lower bound for approximating TSP size to within a factor of (1 + O(1)) in

these two special cases and hence the general case.
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These results are based on the work I did with Sampath Kannan and Sanjeev Khanna [90].

1.2.3. Hypergraph Cut Sparsifier

When designing sublinear algorithms for graph problems, one common method is builing a

compressed representation that preserves relevant properties of the graph. Cuts in graphs

are a fundamental object of study, and play a central role in the study of graph algorithms.

Consequently, the problem of sparsifying a graph while approximately preserving its cut

structure has been extensively studied (see, for instance, [4, 6, 7, 29, 41, 50, 130, 170, 172,

174, 175, 195, 241], and references therein). A cut-preserving sparsifier not only reduces the

space requirement for any computation, but it can also reduce the time complexity of solving

many fundamental cut, flow, and matching problems as one can now run the algorithms on

the sparsifier which may contain far fewer edges. In a seminal work, Benczúr and Karger [50]

showed that given any n-vertex undirected weighted graph G and a parameter ε ∈ (0, 1),

there is a near-linear time algorithm that outputs a weighted subgraph G′ of G of size

Õ(n/ε2) such that the weight of every cut in G is preserved to within a multiplicative

(1± ε)-factor in G′. The graph G′ is referred to as the (1± ε)-approximate cut sparsifier of

G.

In this thesis, we consider the problem of cut sparsification for hypergraphs. A hypergraph

H(V,E) consists of a vertex set V and a set E of hyperedges where each edge e ∈ E is a subset

of vertices. The rank of a hypergraph is the size of the largest edge in the hypergraph, that

is, maxe∈E |e|. Hypergraphs are a natural generalization of graphs and many applications

require estimating cuts in hypergraphs (see, for instance, [72, 73, 153, 250]). Note that

unlike graphs, an n-vertex hypergraph may contain exponentially many (in n) hyperedges.

We prove that any hypergraph has a cut sparsifier with Õ(n/ε2) edges, and also give a

polynomial algorithm that constructs one. This result improves the the size of hypergraph

cut sparsifier from Õ(n2/ε2) given by Kogan and Krauthgamer [185] and Õ(nr2/ε2) given

by Chekuri and Xu [88] where r is the maximum size of the hyperedges. Moreover, the

space bound Õ(n2) (each hyperedge may have size Θ(n)) of the cut sparsifier is also the best
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possible to within a logarithmic factor due to a recent work Kapralov et al. [169].

On the other hand, since a hyperedge can contain subset of vertices of any size, there might be

exponential number of hyperedge in a hypergraph. just reading the whole graph might take

exponential time. With the same coauthors, we study sublinear algorithms for hypergraph

sparsification using suitable oracle access to the input hypergraph. We consider the problem

in the cut query model, where we can query the size of a cut. In this model, we give an

algorithm that constructs a hypergraph cut sparsifier whose running time is polynomial in

the number of vertices and independent of the number of hyperedges. We also show that

the algorithm can be generalized to compute hypergraph spectral sparsifications.

These results are based on the works I did with Sanjeev Khanna and Ansh Nagda [91, 92].

1.2.4. A New Tool for Proving Round Complexity in Streaming Model

A vast body of work in graph streaming lower bounds concerns algorithms that make only

one or a few passes over the stream. These lower bounds are almost always obtained by

considering communication complexity of the problem with limited number of rounds of

communication which gives a lower bound on the space complexity of streaming algorithms

with proportional number of passes to the limits on rounds of communication (see e.g. [10,

138]). The communication lower bounds are then typically proved via reductions from

(variants of) the pointer chasing problem [74, 219, 223] for multi-pass lower bounds and

the indexing problem [2, 189] and boolean hidden (hyper-)matching problem [125, 244] for

single-pass lower bounds.

In the pointer chasing problem, Alice and Bob are given functions f, g : [n] → [n] and the

goal is to compute f(g(· · · f(g(0)))) for k iterations. Computing this function in less than k

rounds requires Ω̃(n/k) communication [254] (see also [106, 219, 223, 228]). The reductions

from pointer chasing to graph streaming lower bounds are based on using vertices of the

graph to encode [n] and each edge to encode a pointer [118, 141]. Directly using pointer

chasing does not imply lower bounds stronger than Ω(n) and hence variants of pointer
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chasing with multiple pointers such as multi-valued pointer chasing [118, 160] and set pointer

chasing [141], were considered. Using multiple pointers however has the undesired side effect

that the lower bound deteriorates exponentially with number of rounds. As such, these lower

bounds do not go beyond O(log n) passes even for algorithms with O(n) space.

There are however a number of results that prove lower bounds for a very large number

of passes (even close to n). Examples include lower bounds for approximating clique and

independent set [145], approximating dominating set [14], computing girth [118], estimating

the number of triangles [31, 52, 96, 164], and finding minimum vertex cover or coloring [1].

These results are all proven by considering the communication complexity of the problem

with no limits on rounds of communication. Such bounds then imply lower bounds on the

product of space and number of passes of streaming algorithms (see, e.g. [10]). The commu-

nication lower bounds themselves are proven by reductions from a handful of communication

problems, mainly the set disjointness problem [24, 30, 166, 230].

This approach suffers from two main drawbacks. Firstly, these lower bounds only exhibit

space bounds that scale with the reciprocal of the number of passes and are hence unable to

capture more nuanced space/pass trade-offs. More importantly, there is an inherit limitation

to this approach since the computational model considered here is much stronger than the

streaming model.

In this thesis, we introduce and analyze a new communication problem similar in spirit to

standard pointer chasing, which we refer to as the hidden-pointer chasing (HPC) problem.

What differentiate HPC from previous variants of pointer chasing is that the pointers are

“hidden” from players and finding each one of them requires solving another communication

problem, namely the set intersection problem, in which the goal is to find the unique element

in the intersection of players input. There are four players in HPC paired into groups of

size two each. Each pair of players inside a group shares n instances of the set intersection

problem on n elements. The intersecting element in each instance of each group “points” to

an instance in the other group. The goal is to start from a fixed instance and follow these
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pointers for a fixed number of steps.

We prove that any r-round protocol that solves HPC with (r + 1) − th iteration requires

Ω(n2/r2) communication. Given this result, we are able to prove lower bound on the number

of passes we need to solve graph problems with sublinear space. In particular, we prove that

for minimum s-t cut problem and lexicographically-first maximal independent set problem,

any p-pass streaming algorithm that solves these problems requires Ω(n2/p5) space.

These results are based on the work I did with Sepehr Assadi and Sanjeev Khanna [17].

1.2.5. Round Complexity of Submodular Function Minimization Problem

A function f : 2U → Z defined over subsets of a ground set U of N elements is submodular if

for any two sets A ⊆ B and an element e /∈ B, the marginal of e on A, that is, f(A∪e)−f(A)

is at least f(B ∪ e) − f(B). The submodular function minimization (SFM) problem is

to find a subset S minimizing f(S) given access to an evaluation oracle for the function

that returns the function value on any specified subset. SFM is a fundamental discrete

optimization problem which generalizes classic problems such as minimizing global and s-t

cuts in graphs and hypergraphs, and more recently has found applications in areas such as

image segmentation [62, 63, 186] and speech analysis [158, 159].

A remarkable fact is that SFM can be solved in polynomial time with polynomially many

queries to the evaluation oracle. This was first established by Grötschel, Lovász, and

Schrijver [137] using the ellipsoid method. Since then, a lot of work [23, 76, 78, 98,

102, 156, 157, 162, 191, 194, 221, 236] has been done trying to understand the query

complexity of SFM. The current best known algorithms are an O(N3)-query polynomial-

time and an O(N2 logN)-query exponential time algorithm by Jiang [162] building on the

works [102, 194], an Õ(N2 logM)-query and time algorithm by Lee, Sidford, and Wong [194]

where |f(S)| ≤ M for all S ⊆ U , and an Õ(NM2) query and time algorithm by Axelrod,

Liu, and Sidford [23] improving upon [78].

Any SFM algorithm accesses the evaluation oracle in rounds, where the queries made in a
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certain round depend only on the answers to queries made in previous rounds. There is a

trade-off between the number of queries (per round) made by the algorithm, and the number

of rounds needed to find the answer : there is an obvious 1-round algorithm which makes all

2N queries. All known efficient algorithms for SFM described above are highly sequential;

all of them proceed in Ω(N) rounds. From a practical standpoint, given the applications

of SFM to problems involving huge data and the availability of computing infrastructure to

perform parallel computation, the question of low-depth parallel SFM algorithms is timely.

In this thesis, we prove that we prove that any SFM algorithm with polynomial calls to the

function evaluation oracle needs Ω̃(N1/3) rounds of adaptivity, which is an exponential im-

provement of the previous bound Ω( logN
log logN ) due to Balkanski and Singer [28]. Furthermore,

we prove that if we restrict the value of the submodular function in [-1,1], any polynomial

algorithm that obtains an additive ε-approximation to the minimum function value needs

Ω̃(1/ε) rounds of adaptivity. The instance we use in the lower bound can also give the same

lower bound for the round complexity of the matroid intersection problem, a special case of

submodular function minimization.

1.3. Organization

In the rest of the thesis, we will give the high level ideas of the result we mentioned before.

We will include the full details in the full thesis. In Chapter 2, we set up the basic notations

and list common tools we use throughout the thesis. In Chapter 3, Chapter 4, we discuss

the sublinear algorithms of (∆ + 1)-coloring and traveling salseman problem. In Chapter 5

is about the hypergraph sparsifier. In Chapter 6, we prove the communication complexity

of the hidden point chasing problem, and give the reduction to maximum flow problem.

In Chapter 7, we discuss the round complexity of submodular function minimization. In

Chapter 8, we summerize the results of this thesis and discuss some open problems.
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CHAPTER 2

Background

In this section, we set up the basic notations and list common tools we use throughout the

thesis.

2.1. Graphs and Hypergraphs

For any t ≥ 1, we define [t] := {1, . . . , t}. For a tuple (X1, . . . , Xn) and integer i ∈ [n],

X<i := (X1, . . . , Xi−1) and X−i := (X1, . . . , Xi−1, Xi+1, . . . , Xn).

For a graph G = (V,E), we use V (G) := V to denote the vertices and E(G) := E to

denote the edges. For every vertex v ∈ V , N(v) denote the set of neighbors of v and

deg (v) := |N(v)| denotes the degree of v. For a set U of vertices, G[U ] denote the induced

subgraph of G on U .

We use the following standard graph theory facts.

Fact 2.1.1 (Hall’s Theorem). Suppose G = (L,R,E) is a bipartite graph s.t. ∀S ⊆ L,

|N(S)| ≥ |S|. Then there exists a matching in G that matches every vertex in L, i.e., a

left-saturating matching.

Given any weight function w : S → R≥0, we extend it to also be a function on subsets of S

so that w(S′) =
∑

e∈S′ w(e) for S′ ⊆ S.

For a weighted graph G = (V,E,w), w : E(G) → R+ is a weight function on edges in G.

For a subgraph H ⊆ G, we define w(H) =
∑

e∈E(H)w(e).

A hypergraph is defined as a pair (V,E) of vertices and edges, where each edge in E is a

subset of V . In this thesis, we allow parallel edges (that is, E is a multiset). To emphasize

this, we often refer to a graph/hypergraph as a multigraph/multihypergraph. Given a weight

function w that assigns a nonnegative weight to each edge in E, the triple (V,E,w) is a

weighted hypergraph. Notice that an unweighted graph/hypergraph can be thought of as a
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weighted graph/hypergraph with all weights equal to 1.

In this thesis, we use “graph” to refer to standard graphs with edges of size 2, and “hyper-

graph” to refer to graphs where edge sizes are arbitrary. We generally use the symbol G to

refer to standard graphs, and H to refer to hypergraphs.

A cut C = (S, S̄) of a vertex set V is any disjoint partition of V into two sets such that

neither of the sets are empty. Given a graph/hypergraphG = (V,E,w) and a cut C = (S, S̄),

we denote by δG(S) the set of the edges crossing the cut C in G. By definition, |δ(S)| is the

number of edges crossing C and w(δ(S)) is the weight/size of C. A (1± ε)-approximate cut

sparsifier of G is a graph/hypergraph G′ = (V,E′, w′) with E′ ⊆ E such that

∀S ⊆ V,
∣∣w′(δG′(S))− w(δG(S))

∣∣ ≤ εw(δG(S)).

2.2. Inequalities and Concentration Bounds

Proposition 2.2.1. For any two lists of numbers a1 ≤ a2 ≤ · · · ≤ an and b1 ≥ b2 ≥ · · · ≥ bn,∑n
i=1 aibi ≤

1
n

∑n
i=1 ai ·

∑n
i=1 bi.

Proof. The rearrangement inequality [147] states that for any list of numbers x1 ≤ · · · ≤ xn

and y1 ≤ · · · ≤ yn and any permutation σ of [n],

x1 · yn + · · ·+ xn · y1 ≤ x1 · yσ(1) + · · ·+ xn · yσ(n) ≤ x1 · y1 + · · ·+ xn · yn.

By rearrangement inequality, for any 0 ≤ j < n,

n∑
i=1

aibi ≤
n∑
i=1

aibi+j ,

where, with a slight abuse of notation, we use bi+j for i+ j > n to denote bi+j−n. As such,

n∑
i=1

aibi ≤
1

n

n−1∑
j=0

n∑
i=1

aibi+j =
1

n

n∑
i=1

(ai

n−1∑
j=0

bi+j) =
1

n

n∑
i=1

ai ·
n∑
i=1

bi
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Proposition 2.2.2 (Chernoff-Hoeffding bound). Let X1, . . . , Xn be n independent random

variables where each Xi ∈ [0, 1] and X :=
∑n

i=1Xi. For any δ ∈ (0, 1),

Pr
(
|X − E [X]| > δ · E [X]

)
≤ 2 · exp

(
−δ

2 · E [X]

3

)
.

Lemma 2.2.3 (Theorem 2.2 in [123]). Let {x1, . . . , xk} be a set of random variables, such

that for 1 ≤ i ≤ k, each xi independently takes value 1/pi with probability pi and 0 otherwise,

for some pi ∈ [0, 1]. Then for all N ≥ k and ε ∈ (0, 1],

Pr

∣∣∣∣∣∣
∑
i∈[k]

xi − k

∣∣∣∣∣∣ ≥ εN
 ≤ 2e−0.38ε2·mini pi·N

A function f(x1, . . . , xn) is called c-Lipschitz iff changing any single xi can affect the value

of f by at most c. Additionally, f is called r-certifiable iff whenever f(x1, . . . , xn) ≥ s,

there exists at most r · s variables xi1 , . . . , xir·s so that knowing the values of these variables

certifies f ≥ s.

Proposition 2.2.4 (Talagrand’s inequality; cf. [205]). Let X1, . . . , Xn be n independent

random variables and f(X1, . . . , Xn) be a c-Lipschitz and r-certifiable function. For any

t ≥ 1,

Pr
(
|f − E [f ]| > t+ 30c

√
r · E [f ]

)
≤ 4 exp

(
− t2

8c2rE [f ]

)
.

2.3. Submodular Function Minimization

A function f : 2U → Z defined over subsets of a ground set U of N elements is submodular if

for any two sets A ⊆ B and an element e /∈ B, the marginal of e on A, that is, f(A∪e)−f(A)

is at least f(B∪e)−f(B). The submodular function minimization (SFM) problem is to find
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a subset S minimizing f(S) given access to an evaluation oracle for the function that returns

the function value on any specified subset. There is an algorithm that for any submodular

function f finds a set S that minimizes the value of function f by Õ(N3) queries and Õ(N4)

time.

Theorem 2.1 ([194]). There is an algorithm for submodular function minimization with

O(n3 log2 n) queries and O(n4 logO(1) n) time where n is the size of the ground set.

Given a graph/hypergraph, for any vertex set S, the cut function f(S), defined as the weight

of edges crossing cut (S, S̄) is easily shown to be submodular.

2.4. Information Theory

For random variables X,Y, H(X) denotes the Shannon entropy of X and I(X ; Y) denotes the

mutual information. For distributions µ, ν, D(µ || ν) denotes the KL-divergence, ‖µ− ν‖tvd

denotes the total variation distance, and h(µ, ν) denotes the Hellinger distance.

For a random variable A, we use supp(A) to denote the support of A and dist(A) to denote

its distribution. When it is clear from the context, we may abuse the notation and use A

directly instead of dist(A), for example, write A ∼ A to mean A ∼ dist(A), i.e., A is sampled

from the distribution of random variable A. We denote the Shannon Entropy of a random

variable A by H(A), which is defined as:

H(A) :=
∑

A∈supp(A)

Pr (A = A) · log (1/Pr (A = A)) (2.1)

The conditional entropy of A conditioned on B is denoted by H(A | B) and defined as:

H(A | B) := E
B∼B

[H(A | B = B)] , (2.2)

where H(A | B = B) is defined in a standard way by using the distribution of A conditioned

on the event B = B in Eq (2.1). The mutual information of two random variables A and B
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is denoted by I(A ; B) and is defined as:

I(A ; B) := H(A)−H(A | B) = H(B)−H(B | A) = I(B ; A). (2.3)

The conditional mutual information I(A ; B | C) is H(A | C) − H(A | B,C) and hence by

linearity of expectation:

I(A ; B | C) = E
C∼C

[I(A ; B | C = C)] . (2.4)

When it may lead to confusion, we use the subscript dist in Hdist and Idist to mean that the

random variables in these terms are distributed according to the distribution dist.

Useful Properties of Entropy and Mutual Information

We shall use the following basic properties of entropy and mutual information throughout.

Fact 2.4.1 (cf. [97]; Chapter 2). Let A, B, C, and D be four (possibly correlated) random

variables.

1. 0 ≤ H(A) ≤ log |supp(A)|. The right equality holds iff dist(A) is uniform.

2. I(A ; B) ≥ 0. The equality holds iff A and B are independent.

3. Conditioning on a random variable can only reduce the entropy: H(A | B,C) ≤ H(A |

B). The equality holds iff A ⊥ C | B.

4. Subadditivity of entropy: H(A,B | C) ≤ H(A | C) + H(B | C).

5. Chain rule for entropy: H(A,B | C) = H(A | C) + H(B | C,A).

6. Chain rule for mutual information: I(A,B ; C | D) = I(A ; C | D) + I(B ; C | A,D).

We also use the following two standard propositions regarding the effect of conditioning on

mutual information.
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Proposition 2.4.2. For random variables A,B,C,D, if A ⊥ D | C, then,

I(A ; B | C) ≤ I(A ; B | C,D).

Proof. Since A and D are independent conditioned on C, by Fact 2.4.1-(3), H(A | C) = H(A |

C,D) and H(A | C,B) ≥ H(A | C,B,D). We have,

I(A ; B | C) = H(A | C)−H(A | C,B) = H(A | C,D)−H(A | C,B)

≤ H(A | C,D)−H(A | C,B,D) = I(A ; B | C,D).

Proposition 2.4.3. For random variables A,B,C,D, if A ⊥ D | B,C, then,

I(A ; B | C) ≥ I(A ; B | C,D).

Proof. Since A ⊥ D | B,C, by Fact 2.4.1-(3), H(A | B,C) = H(A | B,C,D). Moreover, since

conditioning can only reduce the entropy (again by Fact 2.4.1-(3)),

I(A ; B | C) = H(A | C)−H(A | B,C) ≥ H(A | D,C)−H(A | B,C)

= H(A | D,C)−H(A | B,C,D) = I(A ; B | C,D).

Finally, we also use the following simple inequality that states that conditioning on a random

variable can only increase the mutual information by the entropy of the conditioned variable.

Proposition 2.4.4. For random variables A,B and C, I(A ; B | C) ≤ I(A ; B) + H(C).
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Proof. By chain rule for mutual information (Fact 2.4.1-(6)), we can write:

I(A ; B | C) = I(A ; B,C)− I(A ; C) = I(A ; B) + I(A ; C | B)− I(A ; C)

≤ I(A ; B) + H(C | B) ≤ I(A ; B) + H(C),

where the first two equalities are by chain rule (Fact 2.4.1-(6)), the second inequality is

by definition of mutual information and its positivity (Fact 2.4.1-(2)), and the last one is

because conditioning can only reduce the entropy (Fact 2.4.1-(3)).

Measures of Distance Between Distributions

We shall make use of several measures of distance (or divergence) between distributions in

our proofs. We define these measures here and present their main properties that we use in

this thesis.

KL-divergence. For two distributions µ and ν, the Kullback-Leibler divergence between

µ and ν is denoted by D(µ || ν) and defined as:

D(µ || ν) := E
a∼µ

[
log

Prµ(a)

Prν(a)

]
. (2.5)

We have the following relation between mutual information and KL-divergence.

Fact 2.4.5. For random variables A,B,C,

I(A ; B | C) = E
(b,c)∼(B,C)

[
D(dist(A | C = c) || dist(A | B = b,C = c))

]
.

Total variation distance. We denote the total variation distance between two distribu-

tions µ and ν on the same support Ω by ‖µ− ν‖tvd, defined as:

‖µ− ν‖tvd := max
Ω′⊆Ω

(
µ(Ω′)− ν(Ω′)

)
=

1

2
·
∑
x∈Ω

|µ(x)− ν(x)| . (2.6)

We use the following basic properties of total variation distance.
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Fact 2.4.6. Suppose µ and ν are two distributions for E, then, Prµ(E) ≤ Prν(E)+‖µ−ν‖tvd.

The following Pinskers’ inequality bounds the total variation distance between two distri-

butions based on their KL-divergence,

Fact 2.4.7 (Pinsker’s inequality). For any distributions µ and ν, ‖µ−ν‖tvd ≤
√

1
2 · D(µ || ν).

Hellinger distance. For two distributions µ and ν, the Hellinger distance between µ and

ν is denoted by h(µ, ν) and is defined as:

h(µ, ν) :=

√
1

2

∑
x∈Ω

(
√
µ(x)−

√
ν(x))2 =

√
1−

∑
x∈Ω

√
µ(x)ν(x). (2.7)

The following inequalities relate Hellinger distance and total variation distance (the proof

follows from Cauchy-Schwartz).

Fact 2.4.8. For any distributions µ and ν, h2(µ, ν) ≤ ‖µ− ν‖tvd ≤
√

2 · h(µ, ν).

One can also relate Hellinger distance to the KL-divergence as follows.

Fact 2.4.9 (cf. [198]). For any distributions µ and ν, h2(µ, ν) ≤ 1
2 ·
(
D(µ || µ+ν

2 ) + D(ν || µ+ν
2 )
)
.

2.5. Communication Complexity

We consider the standard communication model of Yao [251]. We use π to denote the

protocol used by players and use CC(π) to denote the communication cost of π defined as

the worst-case bit-length of the messages communicated between the players. We further use

internal information cost [32] for protocols that measures the average amount of information

each player learns about the input of the other in the protocol, defined formally as follows.

Consider an input distribution dist and a protocol π. Let (X,Y) ∼ dist and Π denote the

random variables for the inputs and the transcript of the protocol (including the public

randomness). The information cost of π with respect to dist is ICdist(π) := Idist(Π ; X |

Y) + Idist(Π ; Y | X). As one bit of communication can only reveal one bit of information,

information cost of a protocol lower bounds its communication cost (see Proposition 2.5.4).
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Let P : X × Y → Z be a relation. Alice receives an input X ∈ X and Bob receives Y ∈ Y,

where (X,Y ) are chosen from a joint distribution dist over X × Y. We allow players to

have access to both public and private randomness. They communicate with each other by

exchanging messages such that each message depends only on the private input and random

bits of the player sending the message, and the already communicated messages plus the

public randomness. At the end, one of the players need to output an answer Z such that

Z ∈ P (X,Y ).

We use π to denote a protocol used by the players. We always assume that the protocol π can

be randomized (using both public and private randomness), even against a prior distribution

dist of inputs. For any 0 < δ < 1, we say π is a δ-error protocol for P over a distribution

dist, if the probability that for an input (X,Y ), π outputs some Z where Z /∈ P (X,Y ) is

at most δ (the probability is taken over the randomness of both the distribution and the

protocol).

Definition 2.5.1 (Communication cost). The communication cost of a protocol π on an

input distribution dist, denoted by CCdist(π), is the worst-case bit-length of the transcript

communicated between Alice and Bob in the protocol π, when the inputs are chosen from

dist.

Communication complexity of a problem P is defined as the minimum communication cost

of a protocol π that solves P on every distribution dist with probability at least 2/3.

Information complexity. There are several possible definitions of information cost of

a communication prtocol that have been considered depending on the application (see,

e.g., [30, 32, 64, 67, 75]). We use the notion of internal information cost [32] that mea-

sures the average amount of information each player learns about the input of the other

player by observing the transcript of the protocol.

Definition 2.5.2 (Information cost). Consider an input distribution dist and a protocol π.

Let (X,Y) ∼ dist denote the random variables for the input of Alice and Bob and Π be the the

22



random variable for the transcript of the protocol concatenated with the public randomness R

used by π. The (internal) information cost of π with respect to dist is ICdist(π) := Idist(Π ; X |

Y) + Idist(Π ; Y | X).

One can also define information complexity of a problem P similar to communication com-

plexity with respect to the information cost. However, we avoid presenting this definition

formally due to some subtle technical issues that need to be addressed which lead to multiple

different but similar-in-spirit definitions. As such, we state our results directly in terms of

information cost.

Note that any public coin protocol is a distribution over private coins protocols, run by

first using public randomness to sample a random string R = R and then running the

corresponding private coin protocol πR. We also use ΠR to denote the transcript of the

protocol πR. We have the following standard proposition.

Proposition 2.5.3. For any distribution dist and any protocol π with public randomness

R,

ICdist(π) = Idist(Π ; X | Y,R) + Idist(Π ; Y | X,R) = E
R∼R

[
ICdist(π

R)
]
.

Proof. By definition of internal information cost,

ICdist(π) = Idist(Π ; X | Y) + Idist(Π ; Y | X) = I(Π,R ; X | Y) + I(Π,R ; Y | X)

(Π denotes the transcript and the public randomness)

= I(R ; X | Y) + I(Π ; X | Y,R) + I(R ; Y | X) + I(Π ; Y | X,R)

(chain rule of mutual information, Fact 2.4.1-(6))

= I(Π ; X | Y,R) + I(Π ; Y | X,R)

(I(R ; X | Y) = I(R ; Y | X) = 0 since R ⊥ X,Y and Fact 2.4.1-(2))

= E
R∼R

[I(Π ; X | Y,R = R) + I(Π ; Y | X,R = R)] = E
R∼R

[
ICdist(π

R)
]
,

concluding the proof.
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The following well-known proposition relates communication cost and information cost.

Proposition 2.5.4 (cf. [67]). For any distribution dist and any protocol π: ICdist(π) ≤

CCdist(π).

Proof. Let us assume first that π only uses private randomness and thus Π only contain the

transcript. For any b ∈ [CCdist(π)], we define Πb to be the b-th bit of the transcript. We

have,

ICdist(π) = I(Π ; X | Y) + I(Π ; Y | X)

=

CCdist(π)∑
b=1

I(Πb ; X | Π<b,Y) + I(Πb ; Y | Π<b,X)

(by chain rule of mutual information in Fact 2.4.1-(6))

=

CCdist(π)∑
b=1

E
Π<b

[
I(Πb ; X | Π<b = Π<b,Y) + I(Πb ; Y | Π<b = Π<b,X)

]
.

Consider each term in the RHS above. By conditioning on Π<b, the player that transmit

Πb would become fix. If this player is Alice, then I(Πb ; Y | Π<b = Π<b,X) = 0, because

Πb is only a function of (Π<b,X) in this case; similarly, if this player is Bob, then I(Πb ; X |

Π<b = Π<b,Y) = 0. Moreover, I(Πb ; X | Π<b = Π<b,Y) ≤ H(Πb) ≤ 1 and similarly I(Πb ; Y |

Π<b = Π<b,X) ≤ 1. As such, the above term can be upper bounded by CCdist(π). To

finalize the proof, note that by Proposition 2.5.3, for any public-coin protocol π, ICdist(π) =

ER∼R

[
ICdist(π

R)
]
≤ ER∼R

[
CCdist(π

R)
]
≤ CCdist(π), where the first inequality is by the first

part of the argument.

Proposition 2.5.4 provides a convinent way of proving communication complexity lower

bounds by lower bounding information cost of any protocol.

Rectangle Property of Communication Protocols

We conclude this section by mentioning some basic properties of communication protocols.

For any protocol π and inputs x ∈ X and y ∈ Y, we define Πx,y as the transcript of the
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protocol conditioned on the input x to Alice and input y to Bob. Note that for randomized

protocols, Πx,y is a random variable which we denote by Πx,y.

The following is referred to as the rectangle property of deterministic protocols.

Fact 2.5.5 (Rectangle property). For any deterministic protocol π and inputs x, x′ ∈ X to

Alice and y, y′ ∈ Y to Bob, if Πx,y = Πx′,y′ , then Πx,y′ = Πx′,y.

Fact 2.5.5 implies that the set of inputs consistent with any transcript Πx,y of a deterministic

protocol forms a combinatorial rectangle. One can also extend the rectangle property of

deterministic protocols to randomized protocols using the following fact.

Fact 2.5.6 (Cut-and-paste property; cf. [30]). For any randomized protocol π and inputs

x, x′ ∈ X to Alice and y, y′ ∈ Y to Bob, h(Πx,y,Πx′,y′) = h(Πx,y′ ,Πx′,y).
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CHAPTER 3

Sublinear Algorithms for (∆ + 1)-Coloring

In this chapter, we study the (∆ + 1) coloring problem in the context of processing massive

graphs. The (∆ + 1) coloring problem admits a text-book greedy algorithm that runs in

linear time and space. However, when processing massive graphs, even this algorithm can be

computationally prohibitive. This is due to various limitations arising in processing massive

graphs such as requiring to process the graph with limited space in a streaming fashion or

in parallel due to storage constraints, or not having enough time for even reading the entire

input. In these scenarios, we are interested in sublinear algorithms – these are algorithms

that use computational resources that are substantially smaller than the size of the input

on which they operate. A natural question is then:

Can we design sublinear algorithms for (∆ + 1) coloring problem in modern

models of computation for processing massive graphs?

We answer this fundamental question in the affirmative for several canonical classes of sublin-

ear algorithms including (dynamic) graph streaming algorithms, sublinear time algorithms,

and massively parallel computation (MPC) algorithms. We also prove new lower bounds

to contrast the complexity of the (∆ + 1) coloring problem in these models with two other

closely related problems of maximal independent set and maximal matching (see the family

of Locally Checkable Labeling (LCL) problems [213] for more on the connection between

these problems)1.

3.1. Main Results

At the core of our results is a remarkably simple meta-algorithm for the (∆ + 1) coloring

problem that is based on a key sparsification result for this problem that we establish. The
1Another closely related LCL problem is the (2∆− 1) edge coloring problem. However, as the output in

the edge-coloring problem is linear in the input size, one cannot hope to achieve non-trivial algorithms for
this problem in models such as streaming or sublinear time algorithms, and hence we ignore this problem in
this chapter.
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sublinear algorithms are then obtained by efficiently implementing this meta-algorithm in

each model separately.

Palette Sparsification and a Meta-Algorithm for (∆ + 1) Coloring

Our approach is to “sparsify” the (∆ + 1) coloring problem to a list-coloring problem with

lists/palettes of size O(log n) for every vertex – in the list-coloring problem, every vertex

is given a list of colors and the goal is to find a proper coloring of the graph in which the

color of each vertex is chosen from its designated list. We prove the following key structural

result.

Theorem 3.1 (Palette Sparsification Theorem). Let G(V,E) be any n-vertex graph

with maximum degree ∆. Suppose for any vertex v ∈ V , we sample O(log n) colors L(v)

from {1, . . . ,∆ + 1} independently and uniformly at random. Then with high probability

there exists a proper (∆ + 1) coloring of G in which the color for every vertex v is chosen

from L(v).

In Theorem 3.1, as well as throughout the chapter, “with high probability” means with

probability 1− 1/poly(n) for some large polynomial in n.

Theorem 3.1 can be seen as a sparsification result for (∆ + 1) coloring: after sampling

O(log n) colors for each vertex, the total number of edges that share a color in their list is

only O(n · log2 (n)) with high probability; at the same time, by computing a list-coloring of

G using only these O(n · log2 (n)) edges—which is promised to exist by Theorem 3.1—we

obtain a (∆ + 1) coloring of G. As such, Theorem 3.1 provides a way of sparsifying the

graph into only Õ(n) edges, while still allowing for recovery of a (∆ + 1) coloring of the

original graph. This sparsification serves as the central tool in our sublinear algorithms for

the (∆ + 1) coloring problem.

We shall remark that, as stated, Theorem 3.1 only promise the existence of a coloring (which

can be found in exponential time), but in fact we show that there is an efficient procedure

to find the corresponding list-coloring and that this will also be used by our algorithms in
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each model.

Sublinear Algorithms for (∆ + 1) Coloring

We use Theorem 3.1 to present new sublinear algorithms for the (∆ + 1) coloring problem

which are either the first non-trivial ones or significantly improve upon the state-of-the-art.

Table 3.1 contains a summary of our sublinear algorithms and the most closely related work.

Streaming Algorithms. Our Theorem 3.1 can be used to design a single-pass semi-

streaming algorithm for the (∆ + 1) coloring problem in the most general setting of graph

streams, namely, dynamic streams that allow both insertions and deletions of edges.

Theorem 3.2. There exists a randomized single-pass dynamic streaming algorithm for the

(∆ + 1) coloring problem using Õ(n) space.

The only previous semi-streaming algorithm for (∆ + 1) coloring was in fact the folklore

O(log n)-pass streaming simulation of the standard O(log n)-round parallel (PRAM) algo-

rithms for this problem (see, e.g. the classical results of Alon, Babai, and Itai [9], and

Luby [200]). No o(n2) space single-pass streaming algorithm was known for this problem

even in insertion-only streams.

The state-of-affairs for (∆ + 1) coloring was very similar to the case of the closely related

maximal matching problem (in dynamic streams): the best known semi-streaming algorithm

for this problem on dynamic streams uses Θ(log n) passes [5, 192] and it is provably impos-

sible to solve this problem using o(n2)-space in a single pass over a dynamic stream [21]

(although this problem is trivial in insertion-only streams). We further prove a lower bound

of Ω(n2) space on the space complexity of single-pass streaming algorithms for computing

a maximal independent set even in insertion-only streams. Considering these lower bounds,

one might have guessed a similar lower bound also holds for the (∆ + 1) coloring problem.

Theorem 3.2 however is in sharp contrast to these results as it shows that (∆ + 1) coloring

indeed admits a single-pass semi-streaming algorithm.
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Model Our Results Previous Work

Streaming Õ(n) space – single pass O(n) space – O(logn) passes (folklore)

Sublinear-Time Õ(min
{
n∆, n2/∆

}
) = Õ(n3/2) time O(n∆) (text-book greedy)

MPC Õ(n) memory – O(1) rounds O(n) memory – O(log log ∆ · log∗ n) rounds [226]

Table 3.1: A summary of our sublinear algorithms and the most closely related previous
work.

Sublinear Time Algorithms. The text-book greedy algorithm for (∆ + 1) coloring runs

in time linear in the input size, i.e., O(m + n) time. Surprisingly, we show that one can

improve upon the running time of this age-old algorithm on even mildly dense graphs by

using Theorem 3.1. Before we get to state our result let us clarify the model. We assume the

standard query model for sublinear time algorithms on general graphs (see, e.g., Goldreich’s

book [131, Chapter 10]) which allow for three types of queries: (i) what is the degree of a

given vertex v, (ii) what is the i-th neighbor of a given vertex v, and (iii) whether a given

pair of vertices (u, v) are neighbor to each other or not.

Theorem 3.3. There exists a randomized Õ(n
√
n) time algorithm for the (∆ + 1) coloring

problem. Furthermore, any algorithm for this problem requires Ω(n
√
n) time.

To our knowledge, this is the first sublinear time algorithm for the (∆+1) coloring problem.

We also note that an important feature of our algorithm in Theorem 3.3 is that it is non-

adaptive, i.e., it chooses all the queries to the graph beforehand and thus queries are done

in parallel.

In yet another contrast to the (∆+1) coloring problem, we show that computing a maximal

independent set or a maximal matching requires Ω(n2) queries to the graph and hence Ω(n2)

time.

Massively Parallel Computation (MPC) Algorithms. Another application of Theo-

29



rem 3.1 is a constant-round algorithm for the (∆ + 1) coloring problem in the MPC model,

which is a common abstraction of MapReduce-style computation frameworks. In this model,

the input is partitioned across several machines with limited memory initially. Computa-

tion happens in synchronous rounds wherein the machines can communicate with each other

subject to sending and receiving messages that fit their limited local memory .

Theorem 3.4. There exists a randomized MPC algorithm for the (∆ + 1) coloring problem

in O(1) MPC rounds with Õ(n) per-machine memory and only Õ(n) global memory (beside

the input).

Two recent papers considered graph coloring problems in the MPC model. Harvey, Liaw, and

Liu [150] designed algorithms that use n1+Ω(1) memory per machine and find a (∆ + o(∆))

coloring of a given graph—an algorithmically (considerably) easier problem than (∆ + 1)

coloring in O(1) MPC rounds. Furthermore, Parter [226] designed an MPC algorithm that

uses O(n) memory per machine and Θ(n2) global memory and finds a (∆ + 1) coloring in

O(log log ∆ · log∗(n)) rounds2. Our Theorem 3.4 improves upon these results significantly:

both the number of colors and per machine memory compared to [150], and round-complexity

and global memory compared to [226].

Maximal matching and maximal independent set problems have also been studied previously

in the MPC model [5, 48, 126, 187, 192]. Currently, the best known algorithms with Õ(n)

memory per machine require O(log log n) rounds for both maximal independent set [126, 187]

and maximal matching [48], and similarly for the related problems of O(1)-approximating

the maximummatching and the minimum vertex cover [13, 15, 48, 99, 126]. Our Theorem 3.4

hence is the first example that gives a constant round MPC algorithm for one of the “classic

four local distributed graph problems”, i.e., maximal independent set, maximal matching,

(∆+1) vertex coloring, and (2∆−1) edge coloring (see, e.g. [35, 120, 222]) when the memory

per machine is as small as Õ(n).
2The algorithm of Parter [226] is stated in the Congested-Clique model, but using the well-known con-

nections between this model and the MPC model, see, e.g. [46, 126], this algorithm immediately extends to
the MPC model.
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Before we move on from this section, let us make several remarks about our sublinear

algorithms.

Optimality of Our Sublinear Algorithms. Our algorithms obtain essentially optimal bounds

in each model considered. Indeed, space-complexity of our streaming algorithm in Theo-

rem 3.2 and round-complexity of our MPC algorithm in Theorem 3.4 are clearly optimal

(to within poly-log factors and constant factors, respectively). We further prove that query

and time complexity of our sublinear time algorithm in Theorem 3.3 are also optimal up to

poly-log factors.

3.1.1. Our Techniques

The main technical ingredient of our contribution is Theorem 3.1. For intuition about this

result, consider two extreme cases: when the graph is very dense, say is a clique on ∆ + 1

vertices, and when the graph is relatively sparse, say every vertex (except one) have degree

at most ∆/2. Theorem 3.1 is easy to prove for either case albeit by using entirely different

arguments as we sketch below.

For the former case, consider the bipartite graph consisting of vertices in V on one side and

set of colors {1, . . . ,∆ + 1} on the other side, where each vertex v in the V -side is connected

to vertices in L(v) in the color-side. Using standard results from random graph theory,

one can argue that this graph with high probability has a perfect matching, thus implying

the list-coloring of G (by coloring each vertex by its “matched color”). For the latter case,

consider the following simple (distributed-style) greedy algorithm: iteratively sample a color

for every vertex from the set {1, . . . ,∆ + 1} and assign the color to the vertex if it is not

chosen by any of its neighbors so far; remove the colored vertices and repeat the same exact

process until the entire graph is colored. It is well-known (and easy to prove) that this

algorithm only requires O(log n) rounds when number of colors is a constant factor larger

than the degree. As such, the set of colors sampled in the list L(v) for vertices v ∈ V is

enough to “simulate” this algorithm in this case (note that for the purpose of this simulation,

it is crucial the colors are sampled from {1, . . . ,∆ + 1} in every iteration).
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To prove Theorem 3.1 in general, we need to interpolate between these two extreme cases.

To do so, we decomposes the graph into “sparse” and “dense” components. The proof for

coloring the sparse components then more or less follows by simulating standard distributed

algorithms in [109, 235] as discussed above. The main part, and where we concentrate bulk

of our efforts, is to prove the result for dense components. Note that in general, we can

always reduce the problem of finding a (∆ + 1) coloring to an instance of the assignment

problem on the bipartite graph V × {1, . . . ,∆ + 1} discussed above. The difference is that

we need to allow some vertices in {1, . . . ,∆ + 1} to be assigned to more than one vertex in

V when |V | > ∆ + 1 (as opposed to the case of cliques above that only required finding a

perfect matching). We show that if the original graph is “sufficiently close” to being a clique,

then with high probability, such an assignment exists in this bipartite graph and use this to

prove the existence of the desired list-coloring of G.

We remark that similar-in-spirit graph decompositions and analyzing sparse and dense parts

of the graph separately in the context of (∆ + 1) coloring have been studied previously both

in graph theory literature (see, e.g. [206, 207, 208, 231, 232]) and distributed computing

(see, e.g. [80, 148, 226]). However, both the particular decomposition we use and more

importantly the handling of the dense parts of the decomposition are entirely new to this

problem. In particular, while these previous results color the dense parts of the graph using

adaptive iterative procedures (the so-called “Rödl Nibble” [233] for former results and multi-

round distributed algorithms for the latter), our approach based the assignment problem is

nonadaptive and “one shot” and is inspired by random graph theory ideas.

Theorem 3.1 implies the sublinear algorithms we design in each model with a simple caveat:

The list-coloring problem is in general NP-hard and hence using Theorem 3.1 directly does

not allow for a polynomial time implementation of our algorithms to find the list-coloring of

the sparsified graph. To fix this, we design an algorithm based on the proof of Theorem 3.1

that given the sparsified graph, and the decomposition of the original graph used in the

proof, can find the desired list-coloring in polynomial time (in fact even linear time in the
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size of the sparsified graph).

3.1.2. Related Work

Graph coloring has a rich history in both graph theory and computer science. We refer

the interested reader to excellent texts by Molloy and Reed [205] and by Barenboim and

Elkin [36] for an extensive background on this problem.

The study of graph coloring as an algorithmic problem dates back to at least half a century

ago: Finding the minimum number of colors needed for proper coloring, i.e., the chromatic

number, is one of Karp’s 21 NP-hard problems [180] and various exponential-time algorithms

were designed for this problem since then [49, 113, 193]. It turned out it is NP-hard to even

approximate the chromatic number to within a factor of n1−ε for any constant ε > 0 [115,

257] and a series of approximation algorithms [55, 163, 249] culminated in the currently best

ratio of O(n · (log logn)2

log3 n
) [144]. On the other hand, a (∆ + 1) coloring can be found via a

simple greedy algorithm and polynomial time algorithms are also known for ∆-coloring [69,

199] and even smaller number of colors down to ≈ ∆ −
√

∆ in graphs that admit such

colorings [110, 208].

Finally, the (∆ + 1) coloring problem has been studied extensively in different models, for

instance, in distributed settings, e.g., [9, 34, 38, 80, 122, 148, 200, 235], dynamic graphs,

e.g., [33, 39, 57], and local computation algorithms, e.g., [37, 80, 225] (this is by no means

a comprehensive list).

3.1.3. Recent Developments

Independently and concurrently to our work, two other papers also considered the vertex

coloring problem in settings related to this paper. Firstly, Parter and Su [227], improving

upon the previous algorithm of Parter [226], gave O(log∗(∆))-round congested-clique and

MPC algorithms with O(n) per-machine memory for (∆ + 1) coloring. Moreover, Bera and

Ghosh [54] studied graph coloring in the streaming model and gave a single-pass algorithm

that for any ε ∈ (0, 1), outputs a (1 + ε)∆ coloring of the input graph using Õ(n/ε) space.
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Note that for the (∆ + 1) coloring problem, this algorithm requires Ω(n∆) space which is

equal to the input size.

Subsequent to our work, Alon and Assadi [8] studied graph theoretic aspects of the palette

sparsification theorem. They show that for (1 + ε)∆ coloring problem, it is sufficient and

necessary to sample O(
√

log n/ε1.5) colors per vertex. The authors also show that for triangle

free graph, it is sufficient and necessary to sample O(∆γ+
√

log n) colors per vertex to obtain

a proper O( ∆
γ log ∆)-coloring.

Also, Bera, Chakrabarti, and Ghosh [53] extended the previous work of [54] and gave sub-

linear algorithms for (κ + o(κ))-coloring of any graph with degeneracy κ in the models

considered in this paper with similar resource requirement as our algorithms. We shall re-

mark that while in every graph κ ≤ ∆, our bounds and those of [53] are incomparable as

∆ + 1 and (κ + o(κ)) are incomparable (interestingly, and in contrast to our results, the

authors of [53] also proved that obtaining (κ+ 1)-coloring via sublinear streaming or query

algorithms is not possible even though every graph admits a (κ+ 1) coloring).

For streaming algorithms, Assadi, Chen and Sun [16] consider deterministic streaming algo-

rithms for graph coloring. They show that deterministic single-pass semi-streaming stream-

ing algorithms need exponential colors available to each vertex. They also show that there

exist semi-streaming algorithms runs in two passes using O(∆2) colors and semi-streaming

algorithms runs in O(log ∆) passes using O(∆) colors. For MPC model, Chang et al. [81],

among other results, gave an O(
√

log logn) round MPC algorithm for this problem on ma-

chines with memory nΩ(1).

Finally, motivated by our impossibility results for computing MIS and maximal matching

in sublinear time, Assadi and Solomon [22] studied these problems on graphs with bounded

neighborhood independence and gave sublinear time algorithms for both problems on such

graphs.
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3.2. A Sparse-Dense Decomposition

We present our sparse-dense decomposition in this section. Similar decompositions have been

studied in graph theory starting from the influential work of [231] (see, e.g., [206, 207, 208,

231, 232]) and more recently in distributed algorithms [80, 148, 226]. Our decomposition can

be seen as “best of both worlds” in that it simultaneously provides the stronger guarantees

of the former line of work (in fact, even more nuanced than those) while also admitting a

simple algorithm for its recovery similar to the latter ones (although these work focus on its

recovery via a local algorithm while we focus on sublinear algorithms).

Lemma 3.2.1. Let ε < 1/50 and G = (V,E) be any arbitrary graph. We can decompose

the vertices of G into the sets Vsparse, C1, . . . , Ck with the following properties:

1. For every vertex v ∈ Vsparse, the total number of edges between the neighbors of v is

at most (1− ε2) ·∆2/2; we refer to these vertices as sparse vertices.

2. Each set of vertices Ci, called an almost-clique, has the following properties:

(a) (1− ε)∆ ≤ |Ci| ≤ (1 + 3ε)∆;

(b) Any vertex v ∈ Ci has at most 3ε∆ neighbors outside of Ci;

(c) Any vertex v ∈ Ci has at most 6ε∆ non-neighbors inside of Ci.

We start with some definitions first. We say that a vertex v ∈ V is sparse if there are at

most (1 − ε)∆ neighbors of u ∈ N(v) such that |N(u) ∩N(v)| ≥ (1 − ε)∆. Note that for

any sparse vertex v, the total number of edges between the neighbors of v is at most

(1− ε) ·∆2/2 + (ε∆)(1− ε) ·∆/2 = (1− ε2) ·∆2/2,

as desired by the guarantee of Vsparse in Lemma 3.2.1. Thus, we shall ensure that every

vertex in Vsparse is a sparse vertex according to the above definition (although we emphasize

that not all sparse vertices will end up in Vsparse).
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Vsparse

C1 C2 C3 Ck

6ε∆ ≥

≤ 3ε∆

Figure 3.1: Illustration of the sparse-dense-decomposition given by Lemma 3.2.1. Solid
lines denote the neighbors of vertices and dashed lines denote the non-neighbors inside the
component. Here size of each component is both upper and lower bounded by (1±Θ(ε)) ·∆.

We refer to any vertex which is not sparse as a dense vertex and let D denote the set of

dense vertices. For any dense vertex v ∈ D, we define the following set of other “similar”

vertices:

Sv := {u ∈ V | |N(u) ∩N(v)| ≥ (1− 2ε) ·∆}.

By the definition of v being dense, we have |Sv| ≥ (1− ε)∆.

Consider the following graph H over the same set of vertices V : for any two vertices u and

v, there is an edge between u and v if and only if u ∈ D and v ∈ Su or v ∈ D and u ∈ Sv

(note that an edge in H may not be an edge in G, because vertices in Sv are chosen from

all the graph not only neighbors of u). Let C1, . . . , Ck be the connected components of size

more than one in H, and let Vsparse be the isolated vertices in H. In the following, we prove

such a decomposition satisfies the conditions in Lemma 3.2.1.

We start with the following two helper claims.

Claim 3.2.2. If two vertices u, v ∈ D have a common neighbor in H, then (u, v) belongs to

H.

Proof. Let w be a common neighbor of u and v. By the definition of H, w ∈ Su and w ∈ Sv.

Now, since w ∈ Su, we have |N(w) ∩N(u)| ≥ (1 − 2ε)∆. On the other hand, since u is a
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dense vertex, it has at most ε∆ neighbors that have less than (1− ε)∆ common neighbors

with u. This means w and u have at least (1 − 3ε)∆ common neighbors Cu such that for

each z ∈ Cu, |N(z) ∩N(u)| ≥ (1 − ε)∆. By symmetry, we can also argue the same thing

for a set Cv of the vertex v.

Since ε < 1/50, we have that Cu ∩Cv is non-empty as they are both subsets of size at least

(1 − 3ε)∆ from N(w) that has size at most ∆. Let z be any vertex in this intersection.

Thus,

|N(u) ∩N(v)| ≥ |N(u) ∩N(z)| − |N(v) \N(z)| ≥ (1− ε) ·∆− ε∆ = (1− 2ε) ·∆.

Thus, u belongs to Sv and v to Su and so (u, v) is an edge in H by definition.

Claim 3.2.3. For any dense vertex v ∈ D and any u ∈ V in the connected component of v

in H, we have |N(v) ∩N(u)| ≥ (1− 4ε)∆.

Proof. We first consider the case when u is also a dense vertex, i.e., u ∈ D. We prove that

in this case, the edge (u, v) belongs to H, which is sufficient to prove the lemma as that

means we have |N(u) ∩N(v)| ≥ (1− 2ε)∆, by the definition of edges of H.

Suppose towards a contradiction that (u, v) is not in H and let (u = w1, w2, . . . , w` = v)

be the shortest path between u and v, which by our assumption has length at least three.

By the definition of H, for any edge, at least one endpoint belongs to D. Thus, there are

vertices wi and wi+2 in this path for some i ∈ [`] such that both vertices belong to D.

Since wi and wi+2 are both in D and have a common neighbor in H (namely, wi+1), we

can apply Claim 3.2.2 to get that the edge (wi, wi+2) belongs to H also. But then we can

shortcut the previous path by going from wi to wi+2 directly, contradicting that the original

path was a shortest path. Thus, (u, v) belongs to H.

Suppose now that u is not a dense vertex. Each edge inH has at least one dense endpoint and

u belongs to the connected component of v in H. Thus, there is a vertex w in this connected
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component which is both dense and also is a neighbor to u. Thus, |N(u) ∩N(w)| ≥ (1−2ε)∆

by the definition of edges of H. At the same time, by the previous part, since w is a dense

vertex, we have |N(v) ∩N(w)| ≥ (1− 2ε)∆. Putting these two together, plus the fact that

N(w) has size at most ∆ implies that |N(u) ∩N(v)| ≥ (1−4ε)∆, concluding the proof.

Proof of Lemma 3.2.1. For any vertex v ∈ D, we have |Sv| ≥ (1 − ε)∆ > 1. Since v is

neighbor to Sv in H, no singleton connected component of H can be a dense vertex. Thus,

all those components are sparse vertices and can safely be added to Vsparse, while satisfying

the condition (1) of Lemma 3.2.1.

Consider a non-singleton connected component Ci in H. Each edge in H has a dense

endpoint and thus there is a dense vertex v in Ci. As v is neighbor to Sv in H, we have

|Ci| ≥ |Sv| ≥ (1− ε)∆. This proves the lower bound in the condition (2.a). We now prove

the upper bound.

Define Uv := Ci \N(v) to be the vertices in Ci that are not from N(v). Since v is a dense

vertex, it has at least (1− ε)∆ neighbors w such that |N(w) ∩N(v)| ≥ (1− ε)∆. Any such

vertex w can have at most ε∆ neighbors outside N(v) and in particular to Uv, so these

vertices, even if we have ∆ of them, can provide at most ε∆2 edges in total to Uv. The

remaining ≤ ε∆ neighbors of v in N(v) can provide another ε∆2 edges to Uv. On the other

hand, by Claim 3.2.3, any vertex u ∈ Uv ⊆ Ci has ≥ (1 − 4ε)∆ edges to N(v), and thus

“consumes” ≥ (1−4ε)∆ edges going from N(v) to Uv. Hence, |Uv| ≤ 2ε∆2/(1−4ε)∆ < 3ε∆

for ε < 1/50. Thus, |Ci| ≤ |N(v)|+ |Uv| ≤ (1 + 3ε)∆ as desired by the condition (2.a). We

can now prove the remaining conditions easily.

We first prove condition (2.b). This time, fix a dense vertex u ∈ Ci and consider any

v ∈ Ci. If v is also dense, since u and v have a common neighbor by Claim 3.2.3, we can

apply Claim 3.2.2 to have that |N(u) ∩N(v)| ≥ (1− 2ε)∆ by the definition of H. Since all

of Su of size ≥ (1 − ε)∆ belongs to Ci, this means that v can have at most 2ε∆ neighbors

outside N(u) plus an additional ε∆ out of Su ⊆ Ci. Thus, u has ≤ 3ε∆ neighbors outside
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of Ci. On the other hand, if v is not dense, then there should be a dense vertex w ∈ Ci such

that v ∈ Sw. This forces |N(w) ∩N(v)| ≥ (1 − 2ε)∆. We can now do the same argument

as above by replacing the role of u with w, and get that v can only have ≤ 3ε∆ neighbors

out of Sw and thus out of Ci as well.

Finally, to prove condition (2.c), note that for any vertex v ∈ Ci there is another dense

vertex u ∈ Ci such that |N(v) ∩N(u)| ≥ (1 − 2ε)∆. Moreover, we already proved that Ci

can have at most 3ε∆ vertices from outside of N(u). Putting these two together, implies

that v can have at most 2ε∆ non-edges to N(u) and another 3ε∆ non-edges to Ci \N(u),

thus v has at most 5ε∆ non-neighbors in Ci. This concludes the proof of Lemma 3.2.1.

3.3. The Palette Sparsification Theorem

We prove our Theorem 3.1 (restated formally below) in this section.

Theorem 3.5 (Palette Sparsification Theorem). Let G = (V,E) be any graph with n

vertices and maximum degree ∆. Suppose for every vertex v ∈ V , we independently pick

a set L(v) of colors of size Θ(log n) uniformly at random from [∆ + 1]. Then, with high

probability, there exists a proper coloring χ : V → [∆ + 1] of G such that for all vertices

v ∈ V , χ(v) ∈ L(v).

Recall the decomposition of graph into sparse and dense parts introduced in Section 3.2.

We prove Theorem 3.5 in two parts, one for coloring the sparse vertices and one for dense

ones. The first part for coloring sparse vertices is relatively easy. Roughly speaking, sparse

vertices “can be made low-degree” by coloring a small fraction of the graph randomly (to our

knowledge, this observation was first made in [206]) and for coloring low-degree graphs we

already saw (a sketch of) an easy proof in Section 3.1.1. Indeed this part of the argument

is mostly a “simulation” of the distributed algorithms of [80, 109, 148] using the sampled

colors.

In the second part, we extend the argument to dense vertices. For these vertices, it will be

evident that the “per vertex” approach in the first part would not work and thus we work with
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a more “global” argument, one that takes into account all vertices of a single almost-clique

(in the decomposition) at the same time. We start this part with an argument that allows us

to color a sufficiently large fraction of vertices in each almost-clique at a rate of two vertices

per color (assuming the number of non-edges in the almost-clique is not too small). This

approach in turn “saves” us extra colors for coloring the remainder of the almost-clique which

brings us to the main part of the argument. Using the assignment formulation of the coloring

problem discussed already in Section 3.1.1, we reduce this problem to proving existence of

a perfect matching in certain families of “random graphs” – these are random subgraphs of

a complete bipartite graph minus an adversarially chosen “sparser” subgraph. Finally, we

prove existence of this perfect matching using ideas inspired by proofs for existence of perfect

matchings in random graphs (see, e.g. [61]) combined with some combinatorial arguments.

3.3.1. Notation and Parameters

We start with setting up our notation and parameters. For the ease of reference, let us

collect all our main parameters here (note that both ε, α are constants)3.

ε := 10−4 , α := e5 , ` :=
(
10α/ε2

)
· lnn , p :=

`

2 · (∆ + 1)
. (3.1)

For concreteness, in Theorem 3.5, we assume that every vertex v samples a list of size

` = Θ(log n). However, in some places in the argument, it would be more convenient to

assume each vertex v independently samples each color c w.p. p in L(v): This is without

loss of generality as by the choice of p, with high probability the total number of sampled

colors is < ` (when this is not the case, we can simply charge the probability of this event

to the probability of error in Theorem 3.5). As such, throughout the argument we freely

interchange between these two notions of sampling.

In the proof, we fix a dense-sparse-decomposition Vsparse, C1, . . . , Ck of G described in Sec-
3In the interest of simplifying the exposition of the proof, we made no attempt in optimizing the constants

and instead chose the most straightforward values in every step. Our result continues to hold with much
smaller constants. However, we also do not see a way to reduce the leading constant of O(logn) sampled
colors to below 1000.
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tion 3.2 for parameter ε of Eq (3.1). Recall that vertices in Vsparse are called sparse vertices

(satisfying the first condition of Lemma 3.2.1) and each Ci is referred to as an almost-clique

(satisfying the second condition in Lemma 3.2.1).

We define a partial coloring as χ : V → [∆ + 1] ∪ {⊥}: for every v ∈ V , χ(v) ∈ [∆ + 1]

means that v is colored by χ(v) and χ(v) =⊥ means v is not colored yet; moreover, for

any edge (u, v) either at least one of χ(u) =⊥ or χ(v) =⊥ holds, otherwise χ(u) 6= χ(v).

It is clear that any partial coloring in which χ(v) 6=⊥ for every v is a proper coloring. For

sampled-lists L of vertices, we say that χ is L-compatible iff χ(v) ∈ L(v) ∪ {⊥} for every v.

Under a partial coloring χ, we set Ψχ(v) ⊆ [∆ + 1] to denote the set of colors in [∆ + 1]

that are available to v, i.e., Ψχ(v) := {c ∈ [∆ + 1] | ∀u ∈ N(v) : χ(u) 6= c}. Similarly, define

degχ(v) as the degree of v to vertices u ∈ N(v) with χ(u) =⊥.

Finally, we shall assume throughout the proof that ∆ ≥ β · log n for some sufficiently large

constant β > 0 (this is needed to make some of the concentration bounds work). This

assumption is without loss of generality as otherwise sampling ∆ + 1 = O(log n) colors

would trivially lead to the desired list-coloring.

3.3.2. The Setup

The first (and the easy) part of the argument is to color sparse vertices, ignoring entirely all

the dense vertices. This will be done using the following lemma.

Lemma 3.3.1. Suppose for every vertex v ∈ Vsparse, we sample a set L(v) of ` = Θ(ε−2 ·

log n) colors independently and uniformly at random from [∆ + 1]. Then, with high proba-

bility, the induced subgraph G[Vsparse] can be properly colored from the sampled lists L(v) for

v ∈ Vsparse.

Equipped with this lemma, we can then color all vertices in V sparse
? in the decomposition

using the sampled lists in the palette sparsification theorem. For the remainder of the proof,

we fix this coloring and condition on the event of Lemma 3.3.1 (which happens w.h.p.).

41



The heart of the argument is to color almost-cliques, which is done using the following lemma

(recall that outdeg(v) for v in an almost-clique C is number of neighbors of v outside C).

Lemma 3.3.2. Let C be an almost-clique in G. Suppose for every v ∈ C, we adversarially

pick a set B(v) of size at most outdeg(v) colors from [∆ + 1] (referred to as blocked colors

for v). Now, if for every vertex v ∈ V , we sample a set L(v) of ` = Θ(ε−2 · log n) colors

independently from [∆ + 1], then, with high probability, G[C] can be properly colored from

the lists L(v) \B(v) for v ∈ C.

Let us interpret Lemma 3.3.2 as follows. Suppose an adversary colors the graph G \ C for

some almost-clique C. For each vertex v, let B(v) denote the colors used by the adversary

to color neighbors of v outside the almost-clique. Then, Lemma 3.3.2 states that even in

this case, the randomness of sampled lists L is sufficient for obtaining a proper coloring of

C w.h.p.

We shall note that while Lemma 3.3.1 works for every choice of ε ∈ (0, 1), for Lemma 3.3.2,

we need ε to be sufficiently small (and we state the necessary conditions on ε throughout

the proof explicitly) – by taking ε to be the largest value that makes Lemma 3.3.2 works

(which we show is a constant > 10−4), we would be able to combine these two lemmas and

prove Theorem 3.5 as follows.

Proof of Theorem 3.5. We first color all sparse vertices using Lemma 3.3.1. Then, we simply

go over the almost-cliques one by one and color each almost-clique C using Lemma 3.3.2 by

fixing the coloring of so-far-colored vertices in the blocked-lists (even assumed adversarially).

The fact that Lemma 3.3.2 holds even against adversarial coloring of the rest of the graph,

allows us to color C w.h.p. We iterate like this until we find a proper coloring of G. Taking

a union bound on the events of these lemmas concludes the proof.

In the following two sections, we give a proof of each of these lemmas separately.
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3.3.3. Warm-Up: Coloring Sparse Vertices (Lemma 3.3.1)

We now prove Lemma 3.3.1 (restated below).

Lemma (Restatement of Lemma 3.3.1). Suppose for every vertex v ∈ Vsparse, we sample a

set L(v) of ` = Θ(ε−2 · log n) colors independently and uniformly at random from [∆ + 1].

Then, with high probability, the induced subgraph G[Vsparse] can be properly colored from the

sampled lists L(v) for v ∈ Vsparse.

Proof of this lemma follows the familiar approach of creating “excess” colors for sparse-

vertices, hence effectively turning the problem into a one on sufficiently-low-degree graphs

(see, e.g. [80, 109, 148, 206] for different variants of this strategy). This is done by picking

a random color for each vertex from L(v) (which in turn would be a random color from

[∆ + 1]) and coloring any vertex that has no neighbor that sampled the same color. As each

sparse vertex has Ω(ε2 ·∆2) non-edges in its neighborhood, we would expect some Ω(ε2 ·∆)

non-edges to sample the same exact color on both endpoints; additionally, we expect each

vertex to retain its color with some constant probability. Hence (ignoring dependency issues

for the moment) we should also expect Ω(ε2 ·∆) colors to appear twice in the neighborhood

of v; this is enough to argue that after this step, every remaining vertex has Ω(ε2 ·∆) extra

colors compared to its remaining degree.

To conclude, we prove that sampled lists are enough to color the remaining low-degree

vertices. This is simply because no matter how the rest of the graph is colored, for a vertex

of degree (1−Ω(ε2))·∆, we have Ω(ε2 ·∆) colors that sampling even one in L(v), would allow

us to color this vertex; but, this happens with high probability once we sample Θ(ε−2 · log n)

colors per vertex.

Let us now formalize this intuition in the following two parts.

Creating Excess Colors

Consider the following process for coloring sparse vertices:
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OneShotColoring.

Input: Graph G with lists L. Output: An L-compatible partial coloring χ1.

(i) Sample a color c(v) uniformly at random from L(v) for every v ∈ V .

(ii) Let χ1(v) = c(v) if c(v) 6= c(u) for every u ∈ N(v), and otherwise χ1(v) =⊥.

Recall that Ψχ1(v) denotes the set of available colors to v under the partial coloring χ1 and

degχ1
(v) denotes the number of uncolored neighbors of v. We have,

Lemma 3.3.3. W.h.p., for every vertex v with χ1(v) =⊥, |Ψχ1(v)| ≥ degχ1
(v)+(1/α)·ε2 ·∆.

Proof. Fix any vertex v ∈ Vsparse. By Lemma 3.2.1, there are at least t := ε2 ·
(

∆
2

)
non-edges

in the neighborhood of v4. Let f1, . . . , ft denote these non-edges. Let us further define the

following random variable:

• X: number of colors in [∆ + 1] that are sampled by at least two neighbors of v and

are additionally retained by all these neighbors.

Since any color counted in X is used more than once to color a neighbor of v, we have,

|Ψχ1(v)| ≥ degχ1
(v) +X. (3.2)

We now lower bound the expectation of X and further prove it is concentrated.

Claim 3.3.4. E [X] ≥ e−4 · ε2∆.

Proof. Let us define X ′ as the number of colors that are sampled by the endpoints of exactly

one of fi’s and are retained by both endpoints. Clearly, X ≥ X ′. We thus can lower bound

X ′ instead. For every non-edge fi := (ui, wi), define the indicator random variable X ′i

where X ′i = 1 iff c(ui) = c(wi) and for all z ∈ N(v)∪N(ui)∪N(wi) \ {ui, wi}, c(z) 6= c(ui);
4If |N(v)| < ∆, we can imagine there are ∆−N(v) dummy vertices that only connects to v
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otherwise X ′i = 0. By definition, X ′ =
∑t

i=1X
′
i. We have,

Pr
[
X ′i = 1

]
= Pr

[
c(ui) = c(vi) ∧ ∀z ∈ N(ui) ∪N(vi) ∪N(v) \ {ui, vi} : c(w) 6= c(ui)

]
≥ 1

∆ + 1
·
(

1− 1

∆ + 1

)∆+(∆−1)+(∆−2)

(the color of each vertex is chosen uniformly at random from [∆ + 1] by randomness of L(v))

≥ 1

∆ + 1
· exp

(
−3.003∆

∆ + 1

)
≥ e−3.003

∆ + 1
.

(1− x ≥ e−1.001x for sufficiently small x ∈ (0, 1) and since ∆ is ω(1))

By linearity of expectation, E [X] ≥ t · e−3.003

∆ ≥ e−4 · ε2∆ as t = ε2 ·
(

∆
2

)
.

Let us now prove X is concentrated. The proof uses Talagrand’s inequality (Proposi-

tion 2.2.4) although with an interesting twist (this part is standard; see, e.g. [205, Chap-

ter 10]). We start by defining the following two additional variables:

• A: number of colors in [∆ + 1] that are sampled by at least two neighbors of v.

• D: number of colors in [∆ + 1] that are sampled by at least two neighbors of v but are

not retained by at least one of them.

Firstly, it is clear that X = A − D. Also notice that both A and D are functions of

independent random variables that define the choices of random colors c(v) for every v ∈ V .

The problem with applying Talagrand’s inequality to X directly is that it is not easily

certifiable from these variables (recall the definition from Section 2.2); however, both A and

D are Θ(1)-certifiable (for A point to two neighbors of v that sampled the color; for D

additionally point to one of the neighbors of this pair that also sampled the color, hence

not allowing one of them to retain it). They are also both Θ(1)-Lipschitz: changing choice

of one color for a vertex can only affect the two colors involved (the original one and the

changed one). As such, we can apply Talagrand’s inequality (Proposition 2.2.4) to obtain
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that (we only write the bound for A; the same exact argument works also for D):

Pr
(
|A− E [A]| ≥ E [X] /10

)
≤ exp

(
−Θ(1) · (E [X]−Θ(1)

√
∆)2

∆

)
(A ≤ ∆/2 always)

Pr
(
|A− E [A]| ≥ E [X] /10

)
≤ exp

(
−Θ(ε4) ·∆

)
� n−10.

(by Claim 3.3.4 on expected value of X and since we can assume ∆ to be � ε−4 · lnn)

As such, we obtain that w.h.p. both A and D are concentrated and thus also w.h.p.,

X = A−D ≥ E [A]− E [X] /10− (D + E [X] /10) = E [X]− E [X] /5 = (4/5) · E [X] .

As α = e5 in Eq (3.1), we are done by Claim 3.3.4 and a union bound.

Coloring the Remaining Sparse Vertices

We now color the remaining vertices in Vsparse, i.e., vertices v with χ1(v) =⊥. This is

done via the following procedure. In the following, let L′(v) denote the list L(v) minus the

sampled color c(v) that was used in OneShotColoring for vertex v.

GreedyColoring.

Input: GraphG with coloring χ1 and lists L′. Output: An L′-compatible partial coloring

χ2.

1. Let χ2 ← χ1 initially and assume an arbitrary ordering of colors in L′(v) for any v.

2. For i = 2 to ` iterations:

(a) For every vertex v ∈ Vsparse with χ2(v) =⊥, let ci(v) be the i-th color in L′(v).

(b) If ci(v) ∈ Ψχ2(v) and no vertex u in N(v) has also ci(u) = ci(v), let χ2(v) =

ci(v).

We argue that after running GreedyColoring w.h.p. all vertices in Vsparse are assigned a color,

i.e., at the end, for every v ∈ Vsparse, χ2(v) ∈ [∆ + 1].
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Lemma 3.3.5. W.h.p., after running GreedyColor, for every vertex v ∈ Vsparse, χ2(v) ∈

[∆ + 1], i.e., v is assigned a valid color.

Proof. Fix any vertex v ∈ Vsparse with χ1(v) =⊥, i.e., a one not colored by OneShotColoring.

We argue that with high probability, in one of the ` − 1 iterations of GreedyColoring, v is

assigned a color c(v) which additionally results in χ2(v) = c(v); as once a vertex is colored

we never change its color, this plus a union bound on all vertices finalizes the proof.

For every iteration i ∈ {2, . . . , `}, the color ci(v) considered by GreedyColoring is chosen

uniformly at random from [∆ + 1] minus the (at most) i − 1 colors of v in L′(v) that

are seen already (one in OneShotColoring and i − 2 in GreedyColoring). Moreover, v starts

GreedyColoring with colors in Ψ1(v) available to it (to sample from) and throughout this

process at most deg1(v) of these colors may become unavailable due to their assignment to

neighbors of v. As such,

Pr (χ2(v) is set to ci(v) | c1(v), . . . , ci−1(v)) ≥ |Ψχ1(v)| − deg1(v)− (i− 1)

∆ + 1− (i− 1)

≥ (1/α) · ε2 ·∆− (i− 1)

∆
(by Lemma 3.3.3)

≥ (1/2α) · ε2. (as ∆� i)

As such, the probability that v is never colored by GreedyColoring is

Pr (χ2(v) =⊥ after the last iteration) ≤
(

1− (1/2α) · ε2
)`−1

≤ exp
(

((1/2α) · ε2) · ((10α/ε2) · lnn− 1)
)
� n−4.

(by the choice of ` in Eq (3.1))

Taking a union bound over at most n vertices concludes the proof.

Lemma 3.3.1 now follows immediately from Lemmas 3.3.3 and 3.3.5.
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Remark 3.3.6. We remark that if our goal was to prove Theorem 3.5 for (∆+o(∆)) coloring

as opposed to (∆+1) coloring, we would only need Lemma 3.3.5 because in that case, every

vertex already has a sufficiently larger number of available colors than its degree. Hence,

the main challenge in proving Theorem 3.5 is to obtain the result for (∆ + 1) coloring.

3.3.4. Main Part: Coloring Dense Vertices (Lemma 3.3.2)

We now prove Lemma 3.3.2 (restated below).

Lemma (Restatement of Lemma 3.3.2). Let C be an almost-clique in G. Suppose for every

v ∈ C, we adversarially pick a set B(v) of size at most outdeg(v) colors from [∆+1] (referred

to as blocked colors for v). Now, if for every vertex v ∈ V , we sample a set L(v) of ` colors

independently from [∆ + 1], then, with high probability, G[C] can be properly colored from

the lists L(v) \B(v) for v ∈ C.

Before we get to the proof, let us emphasize that in the setting of Lemma 3.3.2, if one set

L(v) = [∆ + 1] (instead of the sampled list), it is easy to see that C can be colored from

the lists – this is because any partial coloring of a graph G can be extended to a (∆ + 1)

coloring of G. We will now show that even when lists L(v) are of much smaller size and are

chosen randomly, we still obtain such a coloring w.h.p.

As stated earlier, the first step in proving Lemma 3.3.2 is to “pair up vertices” inside C

that can both be colored with the same color from L(v). On the surface, this is similar to

Lemma 3.3.3 that was used for coloring sparse vertices. However, both the purpose of this

step and the approach in proving it are quite different from Lemma 3.3.3. Roughly speaking,

our goal here is to simply color enough number of vertices from the almost-clique C (at a

rate of two vertex per color) so that number of uncolored vertices in C becomes sufficiently

smaller than number of colors not assigned to vertices in C (recall that originally, |C| can be

as large as (1 + Θ(ε))∆). Once this happens, we can focus on finding a matching of colors

to vertices (at a rate of one color per vertex).

The final step of the argument is to show that there exists a matching of colors to uncolored

48



vertices of C at this point that is compatible with lists L. Recall the assignment formulation

we discussed in Section 3.1.1: we will place the remaining uncolored vertices of C in the

left-side of a bipartite graph (called the vertex-side) and the colors not assigned to C so

far on the right-side (the color-side); then we connect every vertex v in the vertex-side to

every color c in the color-side iff c ∈ L(v) \ B(v). We will prove that this graph has a left-

saturating matching (a one that matches every vertex on the left), implying that we can find

a unique color for every vertex remaining in C. We shall emphasize that in the assignment

formulation in general one may need to assign a color to multiple vertices; however, by

considering almost-cliques one at a time and performing the first step of coloring of this

almost-clique described above, we can focus on the “easier to handle” case when each color

needs to be assigned to exactly one vertex, i.e., a matching problem.

Before we move on, let us make a remark on our notation in this part.

Remark 3.3.7. Recall that in Section 3.3.1, we argued that one can alternatively consider

the process of sampling the list L(v) of each vertex v ∈ V as sampling each color c ∈ [∆ + 1]

w.p. p. In this process, we can consider two separate lists L1(v) and L2(v) for every vertex

v, where we sample each color independently w.p. p/2 in each one (this way, the probability

that a color is sampled overall is 2p/2− (p/2)2 < p). We use the lists L1(v) in the first part

of the argument and L2(v) in the second part to ensure the necessary independence between

the two parts.

Reducing Size of the Almost-Clique

For a partial coloring χ and almost-clique C, define:

• V uncolored
χ (C): uncolored vertices in C, i.e., V uncolored

χ (C) := {v ∈ C | χ(v) =⊥};

• Ψχ(C): colors not used in C, i.e., Ψχ(C) := {c ∈ [∆ + 1] | @v ∈ C,χ(v) = c};

• NE(C): set of non-edges inside C, i.e., NE(C) := {(u, v) | u, v ∈ C ∧ (u, v) /∈ E}.

We prove the following lemma in this part (recall the definition of L1(v) in Remark 3.3.7).
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Lemma 3.3.8. Consider the setting of Lemma 3.3.2. W.h.p., there exists a partial coloring

χ3 s.t:

(i) for every v ∈ C, either χ3(v) ∈ L1(v) \B(v) or χ3(v) =⊥;

(ii) |Ψχ3(C)| = (∆ + 1)−
⌊
|NE(C)|
200ε∆

⌋
;

(iii)
∣∣V uncolored
χ3

(C)
∣∣ = |V (C)| − 2 ·

⌊
|NE(C)|
200ε∆

⌋
.

(We emphasize that the randomness in this lemma is only over the lists L1 and not the

entire L.)

Lemma 3.3.8 allows us to partially color an almost-clique in a way that number of colors

used is half the number of colored vertices and both are proportional to number of non-edges

in C. This allows us to “save” extra colors. As such, the “further” C is from a (∆ + 1) clique

(hence having a larger number of non-edges), we will also have “more room” in terms of

available colors in the next step; this balancing is crucial for the next step of our proof to

work.

For the purpose of proving Lemma 3.3.8, we can focus on |NE(C)| ≥ 200ε∆; otherwise,

there is nothing to do as we can color everything in χ3 by ⊥ and satisfy the lemma trivially.

Hence, throughout this proof, we may and will assume that |NE(C)| ≥ 200ε∆ whenever

needed.

Let us further make the following key definition (see Figure 3.2 for an example).

Definition 3.3.9 (Colorful Non-Edge Matching). A matching M of non-edges in NE(C)

is called a colorful (non-edge) matching iff:

(i) For any (u, v) ∈M there exists a color cu,v ∈ (L1(u) \B(u)) ∩ (L1(v) \B(v)).

(ii) For any pairs of edge (ui, vi), (uj , vj) ∈M , cui,vi 6= cuj ,vj .

Suppose we find a colorful matching M in C. For any non-edge (ui, vi) ∈ M , we can color
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Almost-Clique Non-Edges Colorful Non-Edge Matching

Figure 3.2: Illustration of a colorful matching in Definition 3.3.9. The vertices inside each
box depict an almost-clique and remaining vertices are neighboring colored vertices that are
outside this almost-clique (and define blocked colors). The sampled list L(·) is also shown
next to each vertex. The bottom non-edge cannot be part of any colorful-matching because
the (blue) color shared by both of its endpoints is blocked for the left vertex.

both χ3(ui) = χ3(vi) = cui,vi . By Definition 3.3.9, χ3 would be a valid partial coloring of

C. Moreover,

|Ψχ3(C)| = (∆ + 1−
∣∣M ∣∣) and

∣∣∣V uncolored
χ3

(C)
∣∣∣ = |V (C)| − 2

∣∣M ∣∣ . (3.3)

Consequently, we only need to find a suitably sized M to prove Lemma 3.3.8. In order to

prove this, we give the following procedure for finding a colorful matching with a sufficiently

large size.

Let us first make one more definition in spirit of Remark 3.3.7: We further consider the

process of sampling the list L1(v) by instead sampling k := p/2q lists L1,1(v), . . . , L1,k(v)

where we sample each color c in each L1,j w.p. q := 1/
√

40ε∆ and set L1(v) := L1,1(v) ∪

. . .∪L1,k(v). By the same argument in Remark 3.3.7, this is without loss of generality. For

each list L1,j , we define:

ColorfulMatching.

Input: Almost-clique C with lists L1,j and blocked-lists B –Output: A colorful matching

M .
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1. Let NE1 := NE(C) and iterate over colors ci ∈ [∆ + 1] in an arbitrary order:

(a) If there exists f := (u, v) ∈ NEi s.t. c ∈ (L1,j(u) \ B(u)) ∩ (L1,j(v) \ B(v)),

then:

i. add f to M and let NEi+1 be NEi minus all non-edges incident on u, v;

ii. continue to iteration i+ 1.

(b) Otherwise, let NEi+1 := NEi.

It is easy to verify that M of ColorfulMatching is a colorful non-edge matching (Defini-

tion 3.3.9). We now prove that M is also sufficiently large with constant probability. We

then boost this probability of success by considering all L1,j ’s simultaneously.

Lemma 3.3.10. W.p. ≥ 1/50, for M output by ColorfulMatching,
∣∣M ∣∣ ≥ ⌊ |NE(C)|

200ε∆

⌋
.

Proof. Define t := |NE(C)| /(100ε∆). Our goal is to prove that
∣∣M ∣∣ ≥ t/2 w.p. ≥ 1/50.

For any iteration i ∈ [∆ + 1] of ColorfulMatching and any color c, we further define:

• Presenti(c): the set of non-edges in NEi that do not block c in either of the endpoints,

i.e., Presenti(c) := {(u, v) ∈ NEi | c /∈ B(u) ∪B(v)} – let presi(c) := |Presenti(c)|.

• M i: the non-edge matching M at the beginning of iteration i – let mi :=
∣∣M i

∣∣.
We first show that for most colors, pres1(c) is sufficiently large.

Claim 3.3.11. For at least ∆/2 colors c ∈ [∆ + 1], we have pres1(c) ≥ (0.9) · |NE1|.

Proof. For any f = (u, v) ∈ NE, we have,

|B(u) ∪B(v)| ≤ outdeg(u) + outdeg(v) ≤ 6ε∆.

(in Lemma 3.3.8, |B(w)| ≤ outdeg(w) and by definition of almost-cliques in Lemma 3.2.1)

52



As such,

∑
c∈[∆+1]

pres1(c) =
∑

f=(u,v)∈NE1

(∆ + 1)− |B(u) ∪B(v)| ≥
∑

f=(u,v)∈NE1

(1− 6ε) · (∆ + 1)

(by the equation above)

≥
∑

f=(u,v)∈NE1

19

20
· (∆ + 1) = |NE1| ·

19

20
· (∆ + 1).

(for ε < 1/(20 · 6) = 1/120)

As presi(c) ≤ |NE1| for all c, an application of (reverse) Markov bound implies the claim as

otherwise,

∑
c∈[∆+1]

pres1(c) < (∆/2) · |NE1|+ (∆/2) · (0.9) · |NE1| < |NE1| ·
19

20
· (∆ + 1),

contradicting the above.

We refer to each of the (∆/2) colors in Claim 3.3.11 as heavy colors. The following claim

lower bounds presi(c) for the heavy colors at the beginning of the iteration i in which

ColorfulMatching is processing them (assuming we already have not found a large enough

M).

Claim 3.3.12. For any heavy color ci ∈ [∆ + 1], if mi < t then, presi(ci) ≥ (0.75) · |NE1|.

Proof. Any non-edge f = (u, v) in M i is responsible for deleting ≤ indeg(u) + indeg(v) non-

edges of pres1(ci) from NEi (recall that indeg(·) denotes the number of non-neighbors in C).

As such,

presi(ci) ≥ pres1(ci)−mi · (indeg(u) + indeg(v)) ≥ (0.9) |NE1| − t · (12ε∆)

(by definition of heavy colors and bound on indeg(·) in Lemma 3.2.1)
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≥ (0.9) |NE1| − (|NE1| /100ε∆) · (12ε∆) > (0.75) · |NE1| ,

(by the choice of t = |NE1| /100ε∆)

finishing the proof.

We now use the above claim to say that whenever we are processing a heavy color, there is

a “good” probability that we add a new edge to M (again assuming M is already not large

enough).

Claim 3.3.13. For any heavy color ci ∈ [∆ + 1]: Pr
(
mi+1 = mi + 1 | mi < t

)
≥ (3/200) ·

|NE1| /ε∆2.

Proof. mi+1 increases tomi+1 if at least one (u, v) ∈ Presenti(ci) have ci ∈ L1,j(u)∩L1,j(v).

By a simple application of the inclusion-exclusion principle,

Pr
(
mi+1 = mi + 1 | mi < t

)
≥ Pr (at least one (u, v) ∈ Presenti(ci) have ci ∈ L1,j(u) ∩ L1,j(v))

≥
∑

(u,v)∈
Presenti(ci)

Pr (ci ∈ L1,j(u) ∩ L1,j(v))−
∑

(u,v),(u′,v′)∈
Presenti(ci)

Pr
(
ci ∈ L1,j(u) ∩ L1,j(v) ∩ L1,j(u

′) ∩ L1,j(v
′)
)
.

(3.4)

The first term above is easy to bound as each ci belongs to L1,j(u)∩L1,j(v) w.p. q2, hence,

∑
(u,v)∈

Presenti(ci)

Pr (ci ∈ L1,j(u) ∩ L1,j(v)) = presi(ci) · q2.

For the second term of Eq (3.4), there are two types of pairs of (distinct) non-edges

(u, v), (u′, v′) that we need to take into account: the ones that share exactly one endpoint

and the ones that do not share any endpoint. There are at most presi(ci) · 6ε∆ many edges

of the first type as maximum non-degree of any vertex is at most 6ε∆ by Lemma 3.2.1; there
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are also at most presi(ci)2 many edges of the second type. Hence,

∑
(u,v),(u′,v′)∈
Presenti(ci)

Pr
(
ci ∈ L1,j(u) ∩ L1,j(v) ∩ L1,j(u

′) ∩ L1,j(v
′)
)
≤ presi(ci) · 6ε∆ · q3 + presi(ci)

2 · q4.

We can plugin the above two bounds in Eq (3.4), and have,

Pr
(
mi+1 = mi + 1 | mi < t

)
≥ presi(ci) · q2 − presi(ci) · 6ε∆ · q3 − presi(ci)

2 · q4

≥ 9

10
· presi(ci) · q2 · (1− presi(ci) · q2)

(6ε∆ · q3 < (1/10) · q2 for q = 1/
√

40ε∆ and ε < 1/90)

≥ 9

10
· presi(ci) · q2 · (1− 4ε∆2 · q2)

(presi(ci) ≤ |NE1| ≤ (1/2) · (1 + 3ε)∆ · 6ε∆ ≤ 4ε∆2 by Lemma 3.2.1 for ε < 1/18)

=
9

10
· presi(ci) · q2 · (1− 4ε∆2 · 1

40ε∆2
) (by q = 1/

√
40ε∆)

≥ 4

5
· presi(ci) · q2

≥ 4

5
· (3

4
· |NE1|) ·

1

40ε∆2

(by Claim 3.3.12 and choice of q = 1/
√

40ε∆)

= (3/200) |NE1| /ε∆2,

as desired.

We are now ready to conclude the proof of Lemma 3.3.10. Let θ := (3/200) · |NE1| /ε∆2 (the

RHS of Claim 3.3.13); note that θ < 1 because |NE1| < 4ε∆2 as calculated in Claim 3.3.13.

Let Z be a random variable sampled from binomial distribution B(∆/2, θ). By Claim 3.3.13

and the fact that there are ∆/2 heavy colors, plus a straightforward coupling argument, for
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every t′ ≤ t:

Pr
(∣∣M ∣∣ ≥ t′) ≥ Pr

(
Z ≥ t′

)
. (3.5)

On the other hand, E [Z] = ∆/2 · θ = (3/400) · |NE1| /ε∆. By Chernoff bound (Proposi-

tion 2.2.2),

Pr
(
Z < (1/200) · |NE1| /ε∆

)
= Pr (Z < 2/3 · E [Z]) ≤ exp

(
−E [Z]

27

)
= exp

(
− |NE1|

3600 · ε∆

)
≤ exp

(
− 200ε∆

3600ε∆

)
(by the discussion after Lemma 3.3.8, |NE1| ≥ 200 · ε∆)

≤ exp

(
− 1

18

)
≤ (1− 1/36).

(as e−x ≤ 1− x/2 for x ∈ (0, 1/2))

As such, with probability at least 1/36 > 1/50, Z ≥ |NE1| /200ε∆. As RHS of this bound

< t and by Eq (3.5), we also obtain that with probability at least 1/50,
∣∣M ∣∣ ≥ |NE1| /200·ε∆.

We can now conclude the proof of Lemma 3.3.8 using Lemma 3.3.10 as follows.

Proof of Lemma 3.3.8. Eq (3.3) allows us to prove Lemma 3.3.8 by showing existence of a

sufficiently large colorful (non-edge) matchingM in almost-clique C (and lists L1). LetM be

the largest colorful matching C and call the event that
∣∣M ∣∣ ≥ ⌊ |NE(C)|

200ε∆

⌋
as “success”. Recall

that we partitioned the process of sampling each lists L1(v) into independently sampling

k = p/2q lists L1,1(v), . . . , L1,k(v) as described before ColorfulMatching. By Lemma 3.3.10,

each of these lists would imply the event success with w.p. at least 1/50. As such,

(
1− Pr (“success”)

)
≤ (1− 1/50)k ≤ exp

(
− p

100q

)
= exp

(
−10α · lnn ·

√
40ε ·∆

100 · ε2 · 2 · (∆ + 1)

)
(by definition of p =

(
10α/ε2

)
· lnn/(2 · (∆ + 1)) in Eq (3.1) and q = 1/

√
40ε∆)
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≤ exp (−α · lnn)� n−10.

(by a crude calculation of constants and using
√
ε < 1, ε < 1/10, and α > 10)

Hence, with high probability, we have a colorful matching M with
∣∣M ∣∣ ≥ ⌊ |NE(C)|

200ε∆

⌋
. The

lemma now follows from this and Eq (3.3) as we can simply pick the first
⌊
|NE(C)|
200ε∆

⌋
edges of

M as the colorful (non-edge) matching in Eq (3.3). This concludes the proof.

Final Coloring of the Almost-Clique

We now finalize the coloring of the almost-clique. Recall that in the previous part, we already

obtained a partial coloring χ3 of C in Lemma 3.3.8. We now extend this coloring to a proper

coloring of C entirely from lists L, satisfying the properties required by Lemma 3.3.2.

Lemma 3.3.14. Consider the setting of Lemma 3.3.2 and let χ3 be the partial coloring of

Lemma 3.3.8. With high probability, there exists a partial coloring χ4 such that for every

v ∈ V uncolored
χ3

(C), we have χ4(v) ∈ L(v) ∩Ψχ3(C) \B(v).

It is easy to see that once we have χ4 from Lemma 3.3.14 we are done as we colored every

vertex v of C from L(v) \ B(v). We prove this lemma in the rest of this part. Throughout

this section, we fix the partial coloring χ3 obtained from Lemma 3.3.8 and only consider

randomness of the lists L2(·) (recall the definition from Remark 3.3.7) which are independent

of this conditioning on χ3. To continue, we need the following key definition (see Figure 3.3

for an illustration).

Definition 3.3.15 (Sampled-Palette-Graph). We define the palette-graph G := G(L,R, E)

as the following bipartite graph:

• L := V uncolored
χ3

(C) and R := Ψχ3(C). L is called the vertex-side and R is called the

color-side.

• for any v ∈ V uncolored
χ3

(C) and c ∈ Ψχ3(C), the edge (v, c) ∈ E iff c /∈ B(v).
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Almost-Clique Sampled-Palette-Graph

Figure 3.3: Illustration of the sampled-palette-graph in Definition 3.3.15. The figure on the
left is a partially colored almost-clique plus the neighboring colored vertices that are outside
this almost-clique. The sampled list L(·) is also shown next to each vertex.

We refer to the subgraph GL2 := GL2(L,R, EL2) of G with the same vertices and edges (v, c)

where now c additionally belongs to L2(v) as the sampled-palette-graph. By definition of

L2, GL2 is obtained from G by sampling each edge w.p. p/2.

Consider the sampled-palette-graph GL2 . We show that there exists a left-saturating match-

ing (a one that matches every vertex on left, i.e., L) in this graph with high probability. Hav-

ing obtained this matching, we will be done as we can color each vertex in v ∈ V uncolored
χ3

(C)

by the color c ∈ Ψχ3(C) which v is matched to; by Definition 3.3.15 color c ∈ L(v)\B(v) and

thus this gives us a proper coloring χ4 of C from lists L(v)\B(v) as required in Lemma 3.3.14.

We start the proof by recounting the useful properties of the graph G itself (from which

GL2 is sampled) and then use these properties in the next part to show the existence of this

matching.

Claim 3.3.16. There exists an integer N ≥ 1 such that the palette-graph G(L,R, E) of C

and χ3 satisfies the following properties:

(i) |L| = N and |R| ≤ 2N ;

(ii) minimum degree of vertices in L is minv∈L degG(v) ≥ 9N/10;

(iii) for any S ⊆ L of size |S| ≥ 4N/5,
∑

v∈S degG(v) ≥ (|S| ·N)−N/3.

58



Proof. Let N :=
∣∣V uncolored
χ3

(C)
∣∣ which by definition implies that |L| = N . Let us relate N

to ∆:

N =
∣∣∣V uncolored
χ3

(C)
∣∣∣ = |V (C)| − 2 ·

⌊
|NE(C)|
200ε∆

⌋
(by Lemma 3.3.8)

≥ |V (C)| − |V (C)| · 6ε∆

200ε∆
(as indeg(v) ≤ 6ε∆ for all v ∈ C by Lemma 3.2.1)

≥ (1− ε) ·∆ · (194/200) (as |V (C)| ≥ (1− ε)∆ by Lemma 3.2.1)

≥ (3/4) ·∆. (for ε < 1/10)

On the other hand, |R| ≤ ∆ + 1 (there are ∆ + 1 colors to begin with), and hence by the

above inequality, |R| ≤ 2N . This proves Item (i).

Let us now calculate degG(v) of any vertex v ∈ L in G. We have,

degG(v) ≥ |R| − |B(v)| (any v ∈ L is connected to c ∈ R iff c /∈ B(v))

≥ |R| − outdegC(v) (|B(v)| ≤ outdegC(v) in the statement of Lemma 3.3.2)

≥ |R| −
(

∆−
(
|V (C)| − indegC(v)− 1

))
(v has exactly |V (C)| − indegC(v)− 1 neighbors inside C and at most ∆ neighbors in total)

= |R| − (∆ + 1) + |V (C)| − indegC(v) (by reorganizing the terms)

= |R| −
(
|R|+

⌊
|NE(C)|
200ε∆

⌋)
+

(
|L|+ 2 ·

⌊
|NE(C)|
200ε∆

⌋)
− indegC(v)

(by Lemma 3.3.8 as |R| = |Ψχ3(C)| and |L| =
∣∣V uncolored
χ3

(C)
∣∣)

= |L|+
⌊
|NE(C)|
200ε∆

⌋
− indegC(v).

By this equation, we have,

min
v∈L

degG(v) ≥ |L| − max
v∈V (C)

indegC(v) ≥ N − 6ε∆ (by definition of N and Lemma 3.2.1)

≥ N − 8εN ≥ 9N/10. (for ε < 1/80)

This proves Item (ii).
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Let us now prove Item (iii). Instead of proving this item directly, we prove it for a subgraph G′

of G that we define shortly; clearly, such a bound would also hold for G as degG(v) ≥ degG′(v)

for every subgraph G′ of G. As for the definition of G′, this is a subgraph obtained by

simply picking |L| +
⌊
|NE(C)|
200ε∆

⌋
− indegC(v) (RHS of the equation for degG(v) above) many

edges incident on each vertex v arbitrarily and discard the remaining edges. This way, the

maximum degree of vertices in L in G′ can be bounded as:

max
v∈L

degG′(v) ≤ |L|+
⌊
|NE(C)|
200ε∆

⌋
= N +

⌊
|NE(C)|
200ε∆

⌋
.

On the other hand, using the bound on each degG′(v),

∑
v∈L

degG′(v) ≥
∑
v∈L

(|L|+
⌊
|NE(C)|
200ε∆

⌋
− indegC(v))

= |L|2 + |L| ·
⌊
|NE(C)|
200ε∆

⌋
− 2 |NE(C)| .

By the bound on maximum degree of vertices in L in G′ and the equation above, for any set

S of size at least 4N/5,

∑
v∈S

degG′(v) ≥
∑
v∈L

degL − |L \ S| ·
(
N +

⌊
|NE(C)|
200ε∆

⌋)
≥ N2 +N ·

⌊
|NE(C)|
200ε∆

⌋
− 2 |NE(C)| − (N − |S|) ·

(
N +

⌊
|NE(C)|
200ε∆

⌋)
(as N = |L|)

= |S| ·N + |S| ·
⌊
|NE(C)|
200ε∆

⌋
− 2 |NE(C)|

≥ |S| ·N + (4N/5) ·
⌊
|NE(C)|
200ε∆

⌋
− 2 |NE(C)| . (3.6)

Let us now consider two cases. Suppose first |NE(C)| > 400ε∆; in this case, we can remove
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the b·c in the RHS above as follows and write,

RHS of Eq (3.6) ≥ |S| ·N + (4N/5) · |NE(C)|
400ε∆

− 2 |NE(C)|

(as bxc ≥ x− 1 ≥ x/2 for x ≥ 2)

≥ |S| ·N +
3 · |NE(C)|

2000ε
− 2 |NE(C)| (as ∆ ≤ 4/3N calculated above)

≥ |S| ·N. (for ε < 3/4000)

Now suppose |NE(C)| ≤ 400ε∆ instead. In this case, we can simply ignore the second term

in the RHS of Eq (3.6) and write,

RHS of Eq (3.6) ≥ |S| ·N − 2 |NE(C)| ≥ |S| ·N − 800ε∆ ≥ |S| ·N − 3200/3 · εN ≥ N2 −N/3.

(as ∆ ≤ 4/3N calculated above and for ε < 1/3200)

Hence by Eq (3.6), in both cases,
∑

v∈S degG′(v) ≥ |S| ·N −N/3, proving Item (iii).

Claim 3.3.16 describes our desired properties of the palette-graph G. As stated in Defini-

tion 3.3.15, GL2 can be seen as a pseudo-random graph obtained by independently sampling

each edge of G w.p. p/2 independently (instead of sampling each edge of a bipartite-clique in

the standard Erdős-Rényi (bipartite) random graphs). In the following, we prove that these

pseudo-random graphs have a left-saturating matching w.h.p. We shall note that existence

of a left-saturating perfect matching in truly random graphs is a standard fact (see [61])

– here we prove a generalization of this for random subgraphs of any graph that satisfies

properties of Claim 3.3.16 (the graphs in Claim 3.3.16 may be missing up to N2 +N/3 edges

of a bipartite clique and hence this extension requires a non-trivial argument).

Lemma 3.3.17. Let H(L,R,E) be a bipartite graph such that for some integer N ≤ n:

(i) |L| = N and |R| ≤ 2N ;
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(ii) minimum degree of vertices in L is at least 9N/10;

(iii) for any S ⊆ L of size |S| ≥ 4N/5,
∑

v∈S degH(v) ≥ (|S| ·N)−N/3.

Suppose H̃(L,R, Ẽ) is obtained from H by sampling each edge of E w.p. p̃ ≥ 100 lnn
N . Then,

with probability at least 1− 1/n5, H̃ has a matching that matches every vertex in L.

The proof of Lemma 3.3.17 is technical and requires a detour and hence we postpone it to

the next part to keep the flow of the current argument. Let us now show that this lemma

proves Lemma 3.3.14 and the entire proof of coloring for dense vertices (Lemma 3.3.2).

Proof of Lemma 3.3.14. As stated earlier, existence of a left-saturating matching in the

sampled palette-graph GL2 allows us to color every vertex in v ∈ V uncolored
χ3

(C) by the color

c ∈ Ψχ3(C) which v is matched to in GL2 ; by Definition 3.3.15 color c ∈ L(v) \ B(v) and

thus this gives us the desired coloring χ4 in Lemma 3.3.14. Moreover, GL2 is obtained from

G by sampling each edge of G with probability,

p

2
=

(
5α/ε2

)
· lnn

∆ + 1
≥ 100 lnn

N
.

(by Eq (3.1) for the first term and since ∆ ≤ 4/3N as calculated in Claim 3.3.16 and for ε < 1/10)

We can thus use Claim 3.3.16 and Lemma 3.3.17 (by taking H = G and H̃ = GL2 and

p̃ = p/2); this implies that GL2 has a left-saturating matching w.h.p., finalizing the proof.

Lemma 3.3.2 for coloring the almost-clique C now follows immediately from Lemma 3.3.8

and Lemma 3.3.14 as χ3 and χ4 form a proper coloring of all vertices in C. The only thing

left to do is thus proving Lemma 3.3.17 which we do in the next part.

3.3.5. Existence of Left-Saturating Matchings in Pseudo-Random Graphs

We now prove Lemma 3.3.17 restated below.
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Lemma (Restatement of Lemma 3.3.17). Let H(L,R,E) be a graph such that for some

N ≤ n:

(i) |L| = N and |R| ≤ 2N ;

(ii) minimum degree of vertices in L is at least 9N/10;

(iii) for any S ⊆ L of size |S| ≥ 4N/5,
∑

v∈S degH(v) ≥ (|S| ·N)−N/3

Suppose H̃(L,R, Ẽ) is obtained from H by sampling each edge of E w.p. p̃ ≥ 100 lnn
N . Then,

with probability at least 1− 1/n5, H̃ has a matching that matches every vertex in L.

By Hall’s Theorem in Fact 2.1.1, in order to prove Lemma 3.3.17, we only need to show

that for every set S ⊆ L,
∣∣N

H̃
(S)
∣∣ ≥ |S|. We prove this in the following by considering two

different cases based on the size of S. The first and easy case is when S is not too large; the

proof in this part follows the standard arguments for showing existence of a perfect matching

in a random graph.

Claim 3.3.18. W.h.p., for every set S ⊆ L of size |S| < 4N/5,
∣∣N

H̃
(S)
∣∣ ≥ |S|.

Proof. Fix any choice of set S ⊆ L with |S| < 4N/5 and any set T ⊆ R with |T | = |S| − 1;

we also define T := R \ T . We prove that there exists an edge in H̃ between S and T , thus

ensuring that T 6= N
H̃

(S); moreover, this happens with such a high probability that we can

take a union bound over all choices for both S and T .

Let E(S, T ) denote the set of edges between S and T in H (the base graph). We have,

∣∣E(S, T )
∣∣ ≥∑

v∈S
(degH(v)− |T |) ≥

∑
v∈S

(9N/10− 4N/5) = |S| ·N/10.

(by Item (ii) degH(v) ≥ 9N/10 and since |T | < |S| < 4N/5)

Using this, we can calculate,

Pr
(
Ẽ ∩ E(S, T ) = ∅

)
= (1− p̃)|E(S,T )|
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≤ exp
(
− 100 log n

N
· |S| ·N/10

)
= exp

(
− |S| · 10 lnn

)
.

(by definition of p̃ and equation above)

We now take a union bound over all choices of T and obtain that,

Pr
(∣∣N

H̃
(S)
∣∣ < |S|) ≤ ∑

T⊆R
|T |=|S|−1

Pr
(
Ẽ ∩ E(S, T ) = ∅

)
≤ (2N)|S| · exp

(
− |S| · 10 lnn

)

(as |R| ≤ 2N by Item (i) and |T | < |S| by definition)

≤ exp (|S| · lnn+ |S| − |S| · 10 log n)� n−8·|S|. (as N ≤ n)

We can now also take a union bound over all S by bundling them based on their size:

Pr
(
∃S :

∣∣N
H̃

(S)
∣∣ < |S| , |S| < 4N/5

)
≤
∑
S⊆L

|S|<4N/5

Pr
(∣∣N

H̃
(S)
∣∣ < |S|)

≤
4N/5−1∑
k=1

(
N

k

)
· n−8k ≤

4N/5−1∑
k=1

n−7k ≤ n−6.

(by the equation above and since
(
N
k

)
≤ Nk ≤ nk)

As such, for all sets S considered in this case, with high probability,
∣∣N

H̃
(S)
∣∣ ≥ |S|.

We now prove that even when size of S is large, i.e., is between 4N/5 and N , still the

neighborhood of S is of size at least equal to S. The proof of this part deviates from the

previous approach and instead crucially use Item (iii) of Lemma 3.3.17 that states that for

large enough S, there are many edges incident on S in H (much more than by using only

the min-degree bound in Item (ii)).

Claim 3.3.19. W.h.p., for every set S ⊆ L of size |S| ≥ 4N/5,
∣∣N

H̃
(S)
∣∣ ≥ |S|.
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Proof. Fix any choice of set S ⊆ L with |S| ≥ 4N/5. Recall that by Item (iii), we have,

∑
v∈S

degH(v) ≥ (s ·N)−N/3.

For simplicity, in this proof, we arbitrarily remove incident edges on vertices of S such that

the total number of edges incident on S becomes exactly the RHS above.

Let s := |S|, r := |R|, and define r indicator random variables X1, . . . , Xr where Xi = 1

iff vi ∈ R does not belong to N
H̃

(S). Additionally, define di as the number of edges that

vi ∈ R has to vertices in S. Let X :=
∑r

i=1Xi and note that
∣∣N

H̃
(S)
∣∣ = r − X. Hence,

our goal is to compute Pr (X > r − s). Let us define q̃ := (1 − p̃). We have the following

properties for Xi’s and di’s (the last equality is by the modification above):

∀ i ∈ [r] Pr (Xi = 1) = q̃di ;

∀ i ∈ [r] di ≤ s;
r∑
i=1

di = (s ·N)−N/3. (3.7)

Working with variables X1, . . . , Xr directly is quite cumbersome and we instead define the

random variables Y1, . . . , Yr where:

∀ i ∈ [N − 1] Pr (Yi = 1) = q̃s;

Pr (YN = 1) = q̃s−N/3;

∀ i ∈ [N + 1 : r] Pr (Yi = 1) = 1.

For some intuition, notice that random variables Yi would be equal to Xi’s if the base

graph H is such that there are N − 1 vertices with degree s to S, one vertex with degree

s−N/3, and all other vertices in R have degree zero to S (such a choice satisfies Eq (3.7)).

In the following, we first prove that such a base graph H is the “worst case example” in

proving
∣∣N

H̃
(S)
∣∣ ≥ |S| and then focus on this case directly. More formally, we prove that
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for Y =
∑r

i=1 Yi and every t ≥ 1,

Pr (Y ≥ t) ≥ Pr (X ≥ t) . (3.8)

Again for intuition, notice that in defining Y ’s and corresponding worst-case base graph H,

we simply moved degrees of all vertices in R to a minimal set of N vertices while satisfying

the degree requirements of Eq (3.7); one may expect this to be the worst-case example as

any deviation from this can only increase the chance of another vertex also joining N
H̃

(S)

while decreasing the chance of an original vertices to be in N
H̃

(S) by a lower amount. Let

us formalize this now.

We prove Eq (3.8) by showing that we can transform random variables {Xi}ri=1 into {Yi}ri=1

through multiple iterations with intermediate variables
{
Zji

}r
i=1

and degree sequences
{
dji

}r
i=1

such that Pr
(
Zji = 1

)
= q̃d

j
i always. Originally, we set Z1

i = Xi and d1
i = di. We update

Zji ’s and d
j
i ’s in iteration j to j + 1 as follows. Define two indices λ and γ:

λ ∈ arg min
i

{
dji : dji > 0

}
;

γ ∈ arg max
i

{
dji : dji < s

}
.

We then define:

Zj+1
λ : Pr

(
Zj+1
λ

)
= q̃d

j
λ−1 dj+1

λ = djλ − 1;

Zj+1
γ : Pr

(
Zj+1
γ

)
= q̃d

j
γ+1 dj+1

γ = djγ + 1;

Zj+1
i = Zji dj+1

i = dji for all i /∈ {λ, γ}

The intuition is that we are moving one edge of the base graph from vertex vλ with “small”

degree to S to vertex vγ with a “larger” degree to S without violating any constraint in

Eq (3.7).
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Through this transformation, only the variables Zj+1
λ , Zj+1

γ changed from Zjλ, Z
j
γ and the

rest are the same. As these variables are binary, we only need to show that for any t′ ∈ {1, 2},

Pr
(
Zj+1
λ + Zj+1

γ ≥ t′
)
≥ Pr

(
Zjλ + Zjγ ≥ t′

)
.

For t′ = 1,

Pr
(
Zj+1
λ + Zj+1

γ ≥ 1
)

= q̃d
j
λ−1 + q̃d

j
γ+1 − q̃d

j
λ−1+djγ+1 = q̃−1 · q̃d

j
λ + q̃ · q̃d

j
γ − q̃d

j
λ+djγ

≥ q̃d
j
λ + q̃d

j
γ − q̃d

j
λ+djγ (as q̃d

j
λ ≥ q̃d

j
γ by definition)

= Pr
(
Zjλ + Zjγ ≥ 1

)
.

For t′ = 2,

Pr
(
Zj+1
λ + Zj+1

γ ≥ 2
)

= q̃d
j
λ−1 · q̃d

j
γ+1 = q̃d

j
λ · q̃d

j
γ = Pr

(
Zjλ + Zjγ ≥ 2

)
.

As such, we obtain that for every t ≥ 1, Pr
(
Zj+1 ≥ t

)
≥ Pr

(
Zj ≥ t

)
. We can thus continue

this process iteration by iteration until we end up with variables Zji = Yi, hence proving

Eq (3.8).

Let us now finalize the proof by showing that Pr (Y > r − s) is sufficiently small (this part

is similar to the proof of Claim 3.3.18). Note that all Yi’s for i > N are already 1 and hence

there is nothing to do there. Let T be a subset of size N − s + 1 from [N ]. We prove the

probability that all Yi’s in T are also one is exponentially small so that no such T has this

property. This implies that Y ≤ (r −N) + (N − s + 1) − 1 = r − s with high probability.

In particular, for any such T ,

Pr (∀i ∈ T Yi = 1) =
∏
i∈T

Pr (Yi = 1) = (1− p̃)s·(|T |−1)+s−N/3 (by definition of Yi’s)

≤ exp
(
− p̃ · (s · (N − s+ 1)−N/3)

)
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≤ exp
(
− p̃ · (s · (N − s+ 1)) · 2/3

)
(s · (N − s+ 1) ≥ N for all s = |S| ≤ N)

≤ exp
(
− 100 lnn

N
· 8N

15
· (N − s+ 1)

)
(by the choice of p̃ and |S| ≥ 4N/5)

≤ exp
(
− 50 lnn · (N − s+ 1)

)
.

We can now take a union bound over all choices of T and obtain that,

Pr (Y > r − s) ≤
∑
T⊆[N ]

|T |=N−s+1

Pr (∀i ∈ T Yi = 1)

≤ exp
(

(N − s+ 1) · lnN
)
· exp

(
− 50 lnn · (N − s+ 1)

)
≤ n−48·(N−s+1). (as N ≤ n)

Combining this with Eq (3.8), we have that Pr
(∣∣N

H̃
(S)
∣∣ < |S|) ≤ n−48·(N−|S|+1) for a fixed

S. To conclude, we take a union bound over all S by bundling them based on their size:

Pr
(
∃S :

∣∣N
H̃

(S)
∣∣ < |S| , |S| ≥ 4N/5

)
≤
∑
S⊆L

|S|≥4N/5

Pr
(∣∣N

H̃
(S)
∣∣ < |S|)

≤
N∑

k=4N/5

(
N

N − k

)
· n−48·(N−k+1)

≤
N∑

k=4N/5

n−47·(N−k+1) ≤ n−46.

(by the equation above and since
(
N
k

)
≤ Nk ≤ nk and (N − k + 1) ≥ 1 for all k)

This concludes the proof.

Lemma 3.3.17 now follows from Claim 3.3.18 and Claim 3.3.19 and Hall’s Theorem in

Fact 2.1.1.
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3.4. Meta Algorithm

In this section, we use our palette sparsification theorem to design a “meta-algorithm” for

(∆ + 1) coloring, called ColoringAlgorithm. In the next section, we show how to implement

this algorithm in each model of sublinear computation to obtain our final algorithms.

3.4.1. The Meta-Algorithm

Our meta-algorithm ColoringAlgorithm is as follows:

ColoringAlgorithm(G,∆): A meta-algorithm for finding a (∆ + 1)-coloring in a graph

G(V,E) with maximum degree ∆.

1. Sample Θ(log n) colors L(v) uniformly at random for each vertex v ∈ V (as in Theo-

rem 3.5).

2. Define, for each color c ∈ [∆ + 1], a set χc ⊆ V where v ∈ χ iff c ∈ L(v).

3. Define Econflict as the set of all edges (u, v) where both u, v ∈ χc for some c ∈ [∆ + 1].

4. Construct the conflict graph Gconflict(V,Econflict).

5. Find a proper list-coloring of Gconflict(V,Econflict) with L(v) being the color list of vertex

v ∈ V .

We refer to ColoringAlgorithm as a “meta-algorithm” since constructing the conflict graph as

well as finding its list-coloring are unspecified steps in ColoringAlgorithm. To implement this

meta-algorithm in different models, we need to come up with an efficient way of performing

these two tasks which are model-specific and are hence not fixed in ColoringAlgorithm. The

following lemma establishes the main properties of ColoringAlgorithm.

Lemma 3.4.1. Let G(V,E) be a graph with maximum degree ∆. In ColoringAlgorithm(G,∆),

with high probability:

1. The output is a valid (∆ + 1) coloring of the graph G.

2. For any c ∈ [∆ + 1], size of χc is O(n log n/∆).
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3. The maximum degree in graph Gconflict is O(log2 n).

Proof. We show that each part holds with high probability. Taking a union bound over the

three parts finalizes the proof.

1. We apply Theorem 3.5 to the sets L(v) chosen for each v ∈ V , obtaining that with high

probability, G can be list-colored with L(v) being the list of vertex v. Now notice that

since Econflict contains all possible monochromatic edges that arise in any list-coloring

of G with lists L(·), any proper list-coloring of G is a proper list-coloring of Gconflict

and vice versa. As such, we know that Gconflict contains a proper list-coloring and this

list-coloring is also a feasible (∆ + 1) coloring of the graph G.

2. Fix any color c ∈ [∆ + 1]. Let K be the number of colors sampled by each vertex.

The probability that any specific vertex v chooses c in L(v) is K/(∆ + 1). As such,

the expected number of vertices in χc is n · K/(∆ + 1). As K = Θ(log n) and the

choice of L(·) is independent across all vertices, by Chernoff bound, the total number

of vertices in χc is with high probability 2n · K/∆ = O(n log n/∆). Taking a union

bound on all ∆ + 1 classes, finalizes the proof of this part.

3. Fix any vertex v ∈ V and again let K be the number of colors sampled by each

vertex. We fix these colors, say, c1, . . . , cK . For any neighbor of v, say u ∈ N(v)

and i ∈ [K], let Xu,i be an indicator random variable which is one iff ci ∈ L(u). Let

X :=
∑

u∈N(v)

∑K
i=1Xu,i and thus E [X] = ∆ ·K ·K/(∆ + 1) ≤ K2. Note that X is

an upper bound on degree of v in Gconflict. As the Xu,i’s are negatively correlated, by

Chernoff bound, we have that X ≤ O(K2) = O(log2 n) with high probability. Taking

a union bound on all n vertices finalizes the proof of this part.

Lemma 3.4.1 now follows from a union bound over the three events above.

Lemma 3.4.1 is sufficient for the purpose of obtaining sublinear algorithms if we do not care

about the computation time of the resulting algorithm, e.g., only aim to minimize the space
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or the query complexity of the algorithm in streaming and the query model, respectively.

Indeed, all one has to do is to construct the conflict-graph (which we show is easily doable

in each model in subsequent sections) and then simply find a proper list-coloring of it using

the chosen lists L(·).

Nevertheless, this approach on its own is not enough to obtain efficient algorithms in terms

of computation time. Our palette sparsification theorem only implies the existence of the

list-coloring in the conflict graph but list-coloring a graph with lists of size O(log n) is in

general an NP-hard problem and a-priori it is not clear how can one we color the conflict-

graph efficiently. To remedy this, we show that our palette sparsification theorem can be

made algorithmic and use this to obtain an efficient algorithm for list-coloring the conflict-

graph. In the following sections, we give a meta algorithm that computes a sparse-dense

decomposition, and gives an algorithm for list-coloring the conflict-graph given a sparse-

dense decomposition.

3.4.2. Meta Algorithm for Finding a sparse-dense decomposition

In this section, we give a meta algorithm for computing a sparse-dense decompostion, and

we will show how to implement it in the next section. Although Lemma 3.2.1 only proves the

existance of the decompostion, the proof itself gives a way to construction the decomposition.

In fact, the only information we need is the number of common neighbors between each pair

of vertices. Although it is hard to get the exact number in sublinear settings, we show that

getting an approximation of the number of common neighbors is also enough to construct a

sparse-dense decomposition with slightly worse parameters.

Our meta-algorithm DecompositionAlgorithm is as follows:

DecompositionAlgorithm(G, ε): A meta-algorithm for finding a a sparse-dense decompos-

tion given a parameter ε < 1/200.

1. Uniformly sample Θ(n log n/∆) vertices, and find all of their neighbors.
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2. For any pair of vertices (u, v), compute Com(u, v), an approximation of the number of

common neighbors between them.

3. For any vertes v, compute T (v), an approximate of the number of neighbors u such

that Com(u, v) ≥ (1− 2ε)∆.

4. Construct a set V ′ that contains all vertex v such that T (v) ≥ (1− 2ε)∆.

5. For each vertex v ∈ V ′, construct a set Sv that contains all vertices u such that

Com(u, v) ≥ (1− 7ε)∆.

6. Construct a graph G′: for any two vertices u and v, there is an edge between u and v

if and only if v ∈ Su or u ∈ Sv.

7. Output C1, . . . , Ck, the connected components of size at least 2 in G′, and Vsparse, the

set of isolate vertices in G′.

We first prove that we can get good approximation in Step 2 and Step 3 given the information

obtained from step 1.

Claim 3.4.2. In step 2, we can compute Com(u, v) to be an approximateion of the number of

common neighbors between u and v to within an additive error of ε∆ for any pair of vertices

u and v with high probability. In step 3, we can compute T (v) to be an approximation of the

number of neighbors u such that Com(u, v) ≥ (1 − 2ε)∆ to within an additive error of ε∆

with high probability.

Proof. Let VS be the vertices sampled in step 1. For any pair of vertices u and v, we

approximate the number of common neighbors by the number of common neighbors in VS .

Since |VS | = Θ(n log n/∆) and there are n vertices in total, by Chernoff bound, we can

approximate the number of common neighbors to within an additive error ε∆ with high

probability. The first half of the claim is proved by taking a union bound on all
(
n
2

)
pair of

vertics.

The second half of the claim can be proved similarly. For any vertex v, we approximate
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the number of vertices u such that u ∈ N(v) and Com(u, v) ≥ (1− 2ε)∆ by computing the

number of such vertices in VS . Again, since |VS | = Θ(n log n/∆) and there are n vertices in

total, by Chernoff bound, we can approximate the number of such u to within an additive

error ε∆ with high probability. Taking a union bound on all n vertices finalizes the proof

of the second part.

By Claim 3.4.2, the only unspecified step in DecompositionAlgorithm is the first step, and we

will implement this step in different models. The following lemma shows that the output

of DecompositionAlgorithm has similar propoties to the decompostion in Lemma 3.2.1. The

prove of the lemma is similar to the prove of Lemma 3.2.1 given Claim 3.4.2.

Lemma 3.4.3. For any ε < 1/200 and G = (V,E) be any arbitrary graph. Let ε1 = 4ε, the

output of DecompositionAlgorithm(G, ε) has the following propoties:

1. For every vertex v ∈ Vsparse, the total number of edges between the neighbors of v is at

most (1− ε2) ·∆2/2;

2. Any set of vertices Ci, called an almost-clique, has the following properties:

(a) (1− ε1)∆ ≤ |Ci| ≤ (1 + 3ε1)∆;

(b) Any vertex v ∈ Ci has at most 3ε1∆ neighbors outside of Ci;

(c) Any vertex v ∈ Ci has at most 6ε1∆ non-neighbors inside of Ci.

Proof. By Claim 3.4.2, for any pair of vertices u and v such that Com(u, v) ≤ (1− 2ε)∆, we

have |N(u) ∩N(v)| ≤ (1− ε)∆. Moreover, for any v /∈ V ′, there are at least ε∆ neighbors

of v such that Com(u, v) ≤ (1 − 2ε)∆. Thus, for any v /∈ V ′, the total number of edges

between the neighbors of v is (1− ε2) ·∆2/2.

Similarly, for any v ∈ V ′, there are at least (1 − 3ε)∆ neighbor u ∈ N(v) such that

|N(u) ∩N(v)| ≥ (1− 3ε)∆. On the other hand, for any u such that |N(u) ∩N(v)| ≥ (1−

6ε)∆, we have u ∈ Sv. Also for any u ∈ Sv, we have |N(u) ∩N(v)| ≥ (1−8ε)∆ = (1−2ε1)∆.

73



By the same proof as Claim 3.2.2, if a pair of vertices u, v ∈ V ′ has at least one common

neighbor in G′, then (u, v) ∈ G′. The remaining arguments of the proof is the same as the

proof of Lemma 3.2.1 after we get Claim 3.2.2.

To make the proof of Theorem 3.5 work using the sparse-dense decomposition given by

Lemma 3.4.3 instead of Lemma 3.2.1, we just need to work on ε1 instead of ε when coloring

almost cliques.

3.4.3. Algorithmic Palette Sparsification

In the following, we show that the proof of Theorem 3.5 can be tweaked slightly to turn

it into an efficient algorithm for list-coloring the conflict-graph assuming we are also given

the sparse-dense decomposition of the original graph G given by DecompositionAlgorithm.

In particular, we prove the following lemma.

Lemma 3.4.4. Let G(V,E) be a graph with maximum degree ∆. There exists an algo-

rithm that given the conflict-graph Gconflict with lists L(v) for each v ∈ V constructed

by ColoringAlgorithm(G,∆) plus the sparse-dense decomposition of the graph G given by

DecompositionAlgorithm, outputs a list-coloring of the graph Gconflict with lists L(·) with high

probability in Õ(n
√

∆) time.

Proof. Let Vsparse, C1, C2, . . . , Ck be the spare-dense decomposition of G as in Lemma 3.4.3.

The proof consists of three phases, which correspond to the three phases in the proof of

Theorem 3.5.

Coloring Sparse Vertices. We use the process given by the proof of Lemma 3.3.1 to

color the sparse vertices in Vsparse. We run OneShotColoring and GreedyColor with O(log n)

rounds. In OneShotColoring and each round of GC, each vertex v in Vsparse which have

not been colored picks a color in L′(v). Then we check if the color is different from all the

vertices in N(v). If so, we color v by the chosen color. So we only need to iterate over the

edges in Gconflict, which takes O(n log2 n) time. Hence, this phase of the algorithm takes

O(n log3 n) time in total.
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Initial Coloring of Almost Cliques. In this phase, for each almost-clique Ci in the

decomposition, we find a colorful matching (as in Definition 3.3.9). We run ColorfulMatching.

For each color, if we can find a pair of vertices u, v such that (u, v) is not in Gconflict, u and

v are not in the colorful matching yet, and L(u) and L(v) both contain the same color, then

we add (u, v) with this color to the colorful matching. Hence, this phase also takes Õ(n)

time.

Final Coloring of Almost-Cliques. In this phase, we color the remaining vertices inside

almost-cliques. To color these vertices, we color the almost-cliques one by one. When

coloring almost-clique Ci, we construct the palette-graph (as in Definition 3.3.15) between

the vertices and the colors, and find a maximum matching of this graph. By Claim 3.3.16 and

Lemma 3.3.17 there is a matching that pairs each vertex to an available color. To construct

the palette-graph, we need to connect each vertex v with all colors in L(v). Then we iterate

over the edges of Gconflict, delete the edges between a vertex and an unavailable color. The

construction of the palette-graph for one almost-clique takes O(∆ log2 n) time. Finding the

matching also require O(∆3/2) time by using the standard Hopcraft-Karp algorithm [152]

for bipartite matching. There are at most O(n/∆) near-cliques in G, so this phase takes at

most Õ(n
√

∆) time with high probability.

3.4.4. A Faster Algorithm for List-Coloring the Conflict Graph

Finally, we show that the post-processing step in Lemma 3.4.4 for coloring the conflict-graph

can be done in near-linear time in size of the conflict-graph, which results in an Õ(n) time

algorithm. As is evident from the proof of Lemma 3.4.4, in order to obtain such an algorithm,

we only need an algorithm for finding a maximum matching in the palette-graph in near-

linear time (the rest of the algorithm is linear-time already). While obtaining a near-linear

time algorithm for matching in general is a long standing open problem, we are helped with

the fact here that palette-graph is almost a random graph (as was exploited crucially in

the proofs of Lemma 3.3.17). In particular, it is known that Hopcroft-Karp algorithm [152]

for bipartite matching runs in near-linear time on random bipartite graphs [40, 211]. In
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the following lemma, we build on the results of [40, 211] to prove a similar result for the

palette-graphs which are almost-random graphs.

Lemma 3.4.5. Let Ci be any almost-clique in G and χ3 be the partial coloring obtained

after processing almost-cliques C1, . . . , Ci−1. With high probability (over the randomness of

the third batch), a maximum matching of the palette-graph Hi of Ci can be found in Õ(n)

time.

The proof of this lemma, similar to [40, 211] is by showing that the underlying graph has

good expansion properties and then use the fact that Hopcroft-Karp algorithms runs faster

on expanders.

Lemma 3.4.6. Let H(L,R,E) be a graph such that for some N ≤ n:

(i) |L| = N and |R| ≤ 2N ;

(ii) minimum degree of vertices in L is at least 9N/10;

(iii) for any S ⊆ L of size |S| ≥ 4N/5,
∑

v∈S degH(v) ≥ (|S| ·N)−N/3

Suppose H̃(L,R, Ẽ) is obtained from H by sampling each edge of E w.p. p̃ ≥ 400 lnn
N . Then,

with probability at least 1 − 1/n5, H̃ contains a matching that matches all vertices in L.

Furthermore, such a matching can be found in Õ(N) time.

The proof of Lemma 3.4.6 is similar to the proof of Lemma 3.3.17, except that we also prove

expansion properties of the graph, and use the idea in [40, 211] to prove the fast running

time.

We first prove that for any subset S ⊆ L and T ⊆ R that are not “too large”, the sizes of

their neighbor sets are much larger than the size of themselves. Specifically, let λ = 1.05,

for any S ⊆ L with size at most 0.82N , N
H̃

(S) ≥ λ |S|; for any T ⊆ R with size |R| − |L| <

|T | ≤ |R| − |L|+ 0.18N , N
H̃

(T ) ≥ λ(|T | − (|R| − |L|)).

The following claim proves the expansion of any small subset of L. The proof is similar to
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the proof of Claim 3.3.18, we give the proof in Section 3.4.5 for completeness.

Claim 3.4.7. W.h.p., for every set S ⊆ L of size |S| ≤ 4N/5,
∣∣N

H̃
(S)
∣∣ ≥ λ |S|.

We then prove the expansion of the subsets of R. The proof of this part is similar to the

proof of Claim 3.4.8. We give the proof in Section 3.4.6 for completeness.

Claim 3.4.8. W.h.p., for every set T ⊆ R of size |R| − |L| < |T | ≤ |R| − |L| + 0.18N ,∣∣N
H̃

(T )
∣∣ ≥ λ(|T | − |R|+ |L|).

Claim 3.4.7 and Claim 3.4.8 immediately imply that H̃ conatins a left-saturating matching

by Hall’s Theorem in Fact 2.1.1. We use Hopcroft-Karp algorithm [152] to find such a

matching. To prove the algorithm runs in Õ(N) time, we use Claim 3.4.7 and Claim 3.4.8

to argue that the lengths in of augmenting paths throughout the running of algorithm is

Õ(1), which means the algorithm only takes Õ(1) iterations.

Proof of Lemma 3.4.6. Since H has O(N2) edges and p̃ = O(log n/N), the number of edges

in H̃ is Õ(N) with high probability. From this point, we assume H̃ has Õ(N) edges and the

high probability events in Claim 3.4.7 and Claim 3.4.8 are both true.

To prove that Hopcroft-Karp algorithm finds a left-saturating matching in Õ(N) time, it

is sufficient to prove that for any partial matching with size less than N , there exists an

augmenting path of length Õ(1) in the residue graph.

Fix an arbitrary matchingM which does not match all vertices in L. For any set S ⊆ L and

T ⊆ R which only contain matched vertices, denote M(S) and M(T ) as the set of vertices

match to them.

Let S0 be the set of unmatched vertices in L, and for any integer i > 0, Si be the set of

vertices that can be reached within 2i steps in the residue graph. For any i, if |Si| ≤ 0.82N ,

by Claim 3.4.7,
∣∣N

H̃
(Si)

∣∣ ≥ λ |Si|. If N
H̃

(Si) contains no unmatched vertices in R, then

M(N
H̃

(Si)) contains the vertices that are either in Si or can be reached by the vertices in Si
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in two steps in the residue graph. So |Si+1| ≥ λ |Si|. Let k be the smallest integer such that

λk > 0.82N . One of the following two events must happen: 1. there is an unmatched vertices

inR that can be reached by S0 within 2k steps; 2. Sk > 0.82N . If the first event happen, then

there is an augmenting path of length at most 2k ≤ 2(blogλ 0.82Nc+1) = O(logN) = Õ(1).

If the first event does not happen, there is no augmenting path of length at most 2k. Let T0

be the set of unmatched vertices in R. Since the size of M is less than N , |T | > |R| − |L|.

Similarly, for any j > 0, let Tj be the set of vertices in R that can reach T0 within 2j steps

in the residue graph. For any j such that Tj ≤ 0.18N+ |R|−|L| by Claim 3.4.8,
∣∣N

H̃
(Tj)

∣∣ ≥
λ(|Tj |−|R|+|L|). If NH̃

(Tj) contains no unmatched vertices in L, thenM(N
H̃

(Tj)) contains

the matched vertices that are either in Tj or can reach the vertices in Tj in two steps in the

residue graph. So |Tj+1| ≥
∣∣M(N

H̃
(Tj))

∣∣ + |T0| ≥ λ(|Tj | − |R| + |L|) + |R| − |L|. Let ` be

the smallest integer such that λ` > 0.18N . Since l < k, for any j ≤ l, Tj can not be reached

by any unmatched vertex in the residue graph. So
∣∣N

H̃
(T`−1)

∣∣ > 0.18N , which means there

is a common vertex that is in both Sk and N
H̃

(T`−1). Let v be such a vertex, then S0 can

reach v within 2k steps, and v can reach T0 within 2`− 1 steps in the residue graph, which

means there is an augmenting path of size at most 2k + 2`− 1 = O(logN) = Õ(1).

We proved that in any residue graph, there exists an augmenting path of length Õ(1). This

means Hopcroft-Karp algorithm takes Õ(1) iterations. Since the number of edges in H̃ is

Õ(N), each iteration takes Õ(N) time. So the running time of Hopcroft-Karp algorithm is

Õ(N).

Lemma 3.4.5 immediately follows from Claim 3.3.16 and Lemma 3.4.6.

3.4.5. Proof of Claim 3.4.7

Proof. Fix any choice of set S ⊆ L with |S| ≤ 4N/5 and any set T ⊆ R with |T | = dλ |S|e−1;

we also define T := R \ T . We prove that there exists an edge in H̃ between S and T , thus

ensuring thatN
H̃

(S) is not a subset of T ; moreover, this happens with such a high probability
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that we can take a union bound over all choices for both S and T .

Let E(S, T ) denote the set of edges between S and T in H (the base graph). We have,

∣∣E(S, T )
∣∣ ≥∑

v∈S
(degH(v)− |T |) ≥

∑
v∈S

(9N/10− 1.05 · 0.82N) > |S| ·N/40.

(by Item (ii) degH(v) ≥ 9N/10 and since |T | = dλ |S|e − 1 ≤ λ |S| ≤ 1.05 · 0.82N)

Using this, we can calculate,

Pr
(
Ẽ ∩ E(S, T ) = ∅

)
= (1− p̃)|E(S,T )|

≤ exp
(
− 400 log n

N
· |S| ·N/40

)
= exp

(
− |S| · 10 lnn

)
.

(by definition of p̃ and equation above)

We now take a union bound over all choices of T and obtain that,

Pr
(∣∣N

H̃
(S)
∣∣ < λ |S|

)
≤

∑
T⊆R

|T |=dλ|S|e−1

Pr
(
Ẽ ∩ E(S, T ) = ∅

)
≤ (2N)λ|S| · exp

(
− |S| · 10 lnn

)

(as |R| ≤ 2N by Item (i) and |T | ≤ λ |S| by definition)

≤ exp (λ |S| · lnn+ λ |S| − |S| · 10 log n)� n−8·|S|. (as N ≤ n)

We can now also take a union bound over all S by bundling them based on their size:

Pr
(
∃S :

∣∣N
H̃

(S)
∣∣ < λ |S| , |S| < 4N/5

)
≤
∑
S⊆L

|S|<4N/5

Pr
(∣∣N

H̃
(S)
∣∣ < λ |S|

)

≤
4N/5∑
k=1

(
N

k

)
· n−8k ≤

4N/5∑
k=1

n−7k ≤ n−6.

(by the equation above and since
(
N
k

)
≤ Nk ≤ nk)

As such, for all sets S considered in this case, with high probability,
∣∣N

H̃
(S)
∣∣ ≥ λ |S|.
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3.4.6. Proof of Claim 3.4.8

Proof. To prove the claim, it is sufficient to prove that for any integer 0 < t ≤ 0.18N , and

for any T ⊆ R with size |T | = t+ |R| − |L|, N
H̃

(T ) ≥ λt. Let s = b|L| − λtc+ 1. We prove

that for any S ⊆ L with size |S| = s, N
H̃

(S) > N − t, which means for any S ⊆ L with

|S| = s and T ⊆ R with |T | = t + |R| − |L|, there is at least one edge between S and T in

H̃. So for any T ⊆ R with |T | = t+ |R| − |L|, N
H̃

(T ) ≥ N − s+ 1 ≥ λk.

Fix any choice of set S ⊆ L with |S| = s. Since t ≤ 0.18N and λ = 1.05, s = b|L| − λtc+1 ≥

N − λt > 4N/5. Recall that by Item (iii), we have,

∑
v∈S

degH(v) ≥ (s ·N)−N/3.

For simplicity, in this proof, we arbitrarily remove incident edges on vertices of S such that

the total number of edges incident on S becomes exactly the RHS above.

Let r := |R|, and define r indicator random variables X1, . . . , Xr where Xi = 1 iff vi ∈ R

does not belong to N
H̃

(S). Additionally, define di as the number of edges that vi ∈ R has

to vertices in S. Let X :=
∑r

i=1Xi and note that
∣∣N

H̃
(S)
∣∣ = r −X. Hence, our goal is to

compute Pr (X ≥ r −N + t). Let us define q̃ := (1 − p̃). We have the following properties

for Xi’s and di’s (the last equality is by the modification above):

∀ i ∈ [r] Pr (Xi = 1) = q̃di ;

∀ i ∈ [r] di ≤ s;
r∑
i=1

di = (s ·N)−N/3. (3.9)

Working with variables X1, . . . , Xr directly is quite cumbersome and we instead define the

random variables Y1, . . . , Yr where:

∀ i ∈ [N − 1] Pr (Yi = 1) = q̃s;
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Pr (YN = 1) = q̃s−N/3;

∀ i ∈ [N + 1 : r] Pr (Yi = 1) = 1.

For some intuition, notice that random variables Yi would be equal to Xi’s if the base graph

H is such that there are N − 1 vertices with degree s to S, one vertex with degree s−N/3,

and all other vertices in R have degree zero to S (such a choice satisfies Eq (3.9)). In the

following, we first prove that such a base graph H is the “worst case example” in proving∣∣N
H̃

(S)
∣∣ > N − t and then focus on this case directly. More formally, we prove that for

Y =
∑r

i=1 Yi and every k ≥ 1,

Pr (Y ≥ k) ≥ Pr (X ≥ k) . (3.10)

Again for intuition, notice that in defining Y ’s and corresponding worst-case base graph H,

we simply moved degrees of all vertices in R to a minimal set of N vertices while satisfying

the degree requirements of Eq (3.9); one may expect this to be the worst-case example as

any deviation from this can only increase the chance of another vertex also joining N
H̃

(S)

while decreasing the chance of an original vertices to be in N
H̃

(S) by a lower amount. Let

us formalize this now.

We prove Eq (3.10) by showing that we can transform random variables {Xi}ri=1 into

{Yi}ri=1 through multiple iterations with intermediate variables
{
Zji

}r
i=1

and degree se-

quences
{
dji

}r
i=1

such that Pr
(
Zji = 1

)
= q̃d

j
i always. Originally, we set Z1

i = Xi and

d1
i = di. We update Zji ’s and d

j
i ’s in iteration j to j+ 1 as follows. Define two indices λ and

γ:

λ ∈ arg min
i

{
dji : dji > 0

}
;

γ ∈ arg max
i

{
dji : dji < s

}
.
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We then define:

Zj+1
λ : Pr

(
Zj+1
λ

)
= q̃d

j
λ−1 dj+1

λ = djλ − 1;

Zj+1
γ : Pr

(
Zj+1
γ

)
= q̃d

j
γ+1 dj+1

γ = djγ + 1;

Zj+1
i = Zji dj+1

i = dji for all i /∈ {λ, γ}

The intuition is that we are moving one edge of the base graph from vertex vλ with “small”

degree to S to vertex vγ with a “larger” degree to S without violating any constraint in

Eq (3.9).

Through this transformation, only the variables Zj+1
λ , Zj+1

γ changed from Zjλ, Z
j
γ and the rest

are the same. As these variables are binary, we only need to show that for any k′ ∈ {1, 2},

Pr
(
Zj+1
λ + Zj+1

γ ≥ k′
)
≥ Pr

(
Zjλ + Zjγ ≥ k′

)
.

For k′ = 1,

Pr
(
Zj+1
λ + Zj+1

γ ≥ 1
)

= q̃d
j
λ−1 + q̃d

j
γ+1 − q̃d

j
λ−1+djγ+1 = q̃−1 · q̃d

j
λ + q̃ · q̃d

j
γ − q̃d

j
λ+djγ

≥ q̃d
j
λ + q̃d

j
γ − q̃d

j
λ+djγ (as q̃d

j
λ ≥ q̃d

j
γ by definition)

= Pr
(
Zjλ + Zjγ ≥ 1

)
.

For k′ = 2,

Pr
(
Zj+1
λ + Zj+1

γ ≥ 2
)

= q̃d
j
λ−1 · q̃d

j
γ+1 = q̃d

j
λ · q̃d

j
γ = Pr

(
Zjλ + Zjγ ≥ 2

)
.

As such, we obtain that for every k ≥ 1, Pr
(
Zj+1 ≥ k

)
≥ Pr

(
Zj ≥ k

)
. We can thus continue

this process iteration by iteration until we end up with variables Zji = Yi, hence proving

Eq (3.10).
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Let us now finalize the proof by showing that Pr (Y ≥ r −N + t) is sufficiently small (this

part is similar to the proof of Claim 3.3.18). Note that all Yi’s for i > N are already 1

and hence there is nothing to do there. Let I be a subset of size t from [N ]. We prove the

probability that all Yi’s in I are also one is exponentially small so that no such I has this

property. This implies that Y ≤ (r − N) + t − 1 < r − N + t with high probability. In

particular, for any such I,

Pr (∀i ∈ I Yi = 1) =
∏
i∈I

Pr (Yi = 1) = (1− p̃)s·(|I|−1)+s−N/3 (by definition of Yi’s)

≤ exp
(
− p̃ · (s · t−N/3)

)
≤ exp (−p̃ · ((4N/5) · t−N/3)) (s > 4N/5)

= exp (−p̃ · ((4N/5) · (t− 5/12)))

≤ exp
(
− p̃ · (N · t · 7/15)

)
(t ≥ 1)

≤ exp
(
− 400 lnn

N
· 7N

15
· t
)

(by the choice of p̃)

≤ exp
(
− 150 lnn · t

)
.

We can now take a union bound over all choices of I and obtain that,

Pr (Y ≥ r −N + t) ≤
∑
I⊆[N ]
|I|=t

Pr (∀i ∈ I Yi = 1)

≤ exp
(
t · lnN

)
· exp

(
− 150 lnn · t

)
≤ n−149t. (as N ≤ n)

Combining this with Eq (3.10), we have that Pr
(∣∣N

H̃
(S)
∣∣ ≤ N − t) ≤ n−149t for a fixed S.

To conclude, we take a union bound over all S with size s:

Pr
(
∃S :

∣∣N
H̃

(S)
∣∣ ≤ N − t , |S| = s

)
≤
∑
S⊆L
|S|=s

Pr
(∣∣N

H̃
(S)
∣∣ ≤ N − t)
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≤
(
N

s

)
· n−149t

≤ n−149t+N−s (since
(
N
s

)
≤ NN−s ≤ nn−s)

≤ n−146 (since s = bN − λtc+ 1 and t ≥ 1)

This menas with probability n−146, for any S ⊆ L with |S| = s, N
H̃

(S) > N − t. In other

words, for any T ⊆ R with |T | = t + r −N , N
H̃

(T ) ≥ N − s + 1 ≥ λt. Finally, we take a

union bound over all t with 1 ≤ t ≤ 0.18N :

Pr
(
∃T :

∣∣N
H̃

(T )
∣∣ < λ(|T | − r +N) , r −N < |T | ≤ r −N + 0.18N

)
≤ n−145

as N ≤ n. This concludes the proof.

3.5. Sublinear Algorithms for (∆ + 1) Coloring

We now use our palette sparsification theorem to design sublinear algorithms for (∆ + 1)

coloring in different models of computation, formalizing Theorem 3.2, Theorem 3.3, and 3.4.

3.5.1. A Single-Pass Streaming Algorithm for (∆ + 1) Coloring

We first give an application of our palette sparsification theorem in designing a dynamic

streaming algorithm for the (∆ + 1) coloring problem. In the dynamic streaming model, the

input graph is presented as an arbitrary sequence of edge insertions and deletions and the

goal is to analyze properties of the resulting graph using memory that is sublinear in the

input size, which is proportional to the number of edges in the graph. We are particularly

interested in algorithms that use O(n · polylog(n)) space, referred to as semi-streaming

algorithms.

Theorem 3.6. There exists a randomized single-pass semi-streaming algorithm that given a

graph G with maximum degree ∆ presented in a dynamic stream, with high probability finds
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a (∆ + 1) coloring of G with using Õ(n) space and Õ(n) time5.

We prove Theorem 3.6 by implementing ColoringAlgorithm and DecompositionAlgorithm in dy-

namic streams. We first implement ColoringAlgorithm. Recall that implementing ColoringAlgorithm

requires us to specify (i) how we construct the conflict-graph, and (ii) how we find a list-

coloring in this conflict graph using the lists L(·). Throughout the proof, we condition on the

high probability event in Lemma 3.4.1. We first show how to construct the conflict-graph.

To do so, we rely on the by now standard primitive of `0-samplers for sampling elements in

dynamic streams (see, e.g. [121, 165, 173]) captured in the following proposition.

Proposition 3.5.1 (`0-samplers; cf. [165, 203]). There exists an streaming algorithm that

given a subset P ⊆ V × V of pairs of vertices and an integer k ≥ 1 at the beginning of a

dynamic stream, outputs with high probability a set S of k edges from the edges in P that

appear in the final graph (it outputs all edges if their number is smaller than k). The set S

of edges can be either chosen uniformly at random with replacement or without replacement.

The space of algorithm is O(k · log3 n).

Using Proposition 3.5.1, we show how to construct the conflict graph in the streaming model.

Lemma 3.5.2. Gconflict(V,Econflict) can be constructed in Õ(n) space and polynomial time

in dynamic streams with high probability.

Proof. We construct the sets χ1, . . . , χ∆+1 and store the sets in O(n log n) space. For any

vertex v ∈ V , we define the set Pv of all edge slots between v and
⋃
c∈L(v) χc, i.e., all vertices

that may have an edge to v in Econflict, and run the algorithm in Proposition 3.5.1 with

P = Pv and parameter k = O(log2 (n)).

As we conditioned on the event in Lemma 3.4.1, the degree of each vertex is at most k in

Gconflict. Hence, by Proposition 3.5.1, with high probability, we find all neighbors of this

vertex in Gconflict. Taking a union bound over all vertices in V , with high probability, we
5Here ∆ is the maximum degree of the graph at the end of the stream and we assume no upper bound

on degree of vertices throughout the stream, which can be as large as Ω(n) even when ∆ is much smaller.
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can construct the graph Gconflict. As all these steps can be implemented in polynomial time,

we obtain the final result.

As we argued before, Lemma 3.5.2 together with Lemma 3.4.1 are already enough to achieve

a semi-streaming algorithm with exponential-time (i.e., prove Theorem 3.6 if we do not want

a polynomial time algorithm): after constructing the conflict-graph Gconflict, we can simply

use an exponential time algorithm to find a proper list-coloring of Gconflict which would be

a (∆ + 1) coloring of G by Lemma 3.4.1.

To obtain a polynomial time algorithm, we only need to implement DecompositionAlgorithm

in dynamic streams. By Claim 3.4.2, it is sufficient to implement the first step of DecompositionAlgorithm

in dynamic streams. To do so, we sample Θ(n log n/∆) vertices, and for each sampled ver-

tices, we use ∆ `0 sampler given by Proposition 3.5.1 to obtain all edges incident on them.

The space we use is Θ((n log n/∆) ·∆ · log3 n) = Õ(n). And this completes the algorithm

for Theorem 3.6. The time complexity of the algorithm follows from Lemma 3.4.5.

Removing the Assumption on Knowledge of ∆

The semi-streaming algorithm we described so far assumes the knowledge of parameter ∆

beforehand. A potential criticism to this assumption is that such an algorithm is not “truly

single-pass” as it require further knowledge about the graph than is given typically in the

streaming model. In the following, we show that this assumption can be easily avoided at a

cost of an extra O(log n) factor in the space complexity of the algorithm.

Firstly, we use O(n) space during the stream to track the degree of every vertex. This

allows us to compute ∆ precisely by the end of the stream. Next, in parallel, we run the

following algorithm for O(log n) choices of β = 2i for i ∈ [log n]: For every vertex v ∈ V , we

sample each color in 1 to β independently and w.p. Θ(log n)/β and use Proposition 3.5.1

with parameter k = Θ(log2(n)) to store up to k monochromatic edges incident on every

vertex. At the end of the stream, once we know the precise value of ∆, we consider the

choice of β such that β/2 ≤ ∆+1 ≤ β. We only consider the first ∆+1 colors among 1 to β
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and discard the remaining colors. A basic application of Chernoff bound ensures that with

high probability, for every vertex v ∈ V , we still have sampled Θ(log n) colors uniformly at

random and independently from {1, . . . ,∆ + 1}. Moreover, it is easy to see that the proof

of Lemma 3.5.2 implies that for this choice of β, we can recover the conflict-graph Gconflict

from the `0-samplers. Hence, one can immediately verify that we can apply the previous

proof and obtain a (∆ + 1) coloring of G with high probability.

To turn this algorithm into a polynomial time algorithm, we implement DecompositionAlgorithm

using the same trick of guessing ∆ through O(log n) different choices for β. For each β, we

sample Θ(n log n/β) vertices, and for each vertices, we use 2β `0 samplers to get 2β neigh-

bors of it (we get all its neighbors if its degree is at most 2β). At the end of the stream,

we choose a β such that β ≤ ∆ ≤ 2β, and thus we can obtain all neighbors of Θ(n log n/∆)

randomly sampled vertices. And thus we can get a sparse-dense decomposition and obtain

an Õ(n) time algorithm.

3.5.2. A Sublinear Time Algorithm for (∆ + 1) Coloring

We now show another application of our palette-sparsification theorem to design sublinear

algorithms. Consider the following standard query model for sublinear time algorithms on

general graphs (see, e.g., Chapter 10 of Goldreich’s book [131]): The vertex set of the graph

is V := [n] and the algorithm can make the following queries: (i) Degree queries: given

v ∈ V , outputs degree d(v) of v, (ii) Neighbor queries: given v ∈ V and i ≤ d(v), outputs

the i-th neighbor of v (the ordering of neighbors are arbitrary), and (iii) Pair queries: given

u, v ∈ V , outputs whether the edge (u, v) is in E or not. We give a sublinear time algorithm

(in size of the graph) for finding a (∆ + 1) coloring in this query model.

Theorem 3.7. There exists an algorithm that given a query access to a graph G(V,E) with

maximum degree ∆, can find a (∆ + 1) coloring of G with high probability in Õ(n
√
n) time

and queries.

We prove Theorem 3.7 by combining two separate algorithms and picking the best of the two
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depending on the value of ∆. One is the straightforward (deterministic) greedy algorithm

that takes O(n∆) time to find a (∆ + 1) coloring. This algorithm only uses neighbor

queries. We use this algorithm when ∆ ≤
√
n. The other one is an implementation of

ColoringAlgorithm in the query model which takes Õ(n2/∆) time. This algorithm only uses

pair queries. By using this algorithm when ∆ ≥
√
n, we achieve an Õ(n

√
n) time algorithm

for any graph (with potentially Ω(n2) edges), proving Theorem 3.7.

To implement ColoringAlgorithm, we need to specify (i) how to construct the conflict-graph,

and (ii) how to find a list-coloring in this conflict graph using the lists L(·). Throughout

the proof, we condition on the high probability event in Lemma 3.4.1. The first part of the

argument is quite easy as is shown below.

Claim 3.5.3. Gconflict(V,Econflict) can be constructed in O(n2 · log2 n/∆) queries and time.

Proof. As the vertices are known, we only need to construct the edges Econflict. In order to

do this, we simply query all pairs between vertices inside each set χc for c ∈ [∆ + 1]. By

Lemma 3.4.1, size of each χc is O(n log n/∆) and so we need O(n2 log2 n/∆2 · (∆ + 1)) =

O(n2 log2 n/∆) queries.

Claim 3.5.3 is already sufficient to obtain an Õ(n2/∆) query (but not time) algorithm:

by Lemma 3.4.1, ColoringAlgorithm outputs the correct answer by finding a list-coloring of

Gconflict and accessing Gconflict does not require further queries to G. However, finding such

a list-coloring problem in general is NP-hard and hence to find this coloring in sublinear

time, we need to design an algorithm which further queries the graph G to obtain addi-

tional information for performing the coloring. To do so, we just need to obtain implement

DecompositionAlgorithm as we shown in Section 3.4. To implement DecompositionAlgorithm

in query model, we just need to sample Θ(n log n/∆) random vertices, and find all their

neighbors. It requires O(n) pair queries or O(∆) neighbor queries to find all neighbors of a

vertices. So the total query complexity is Θ(n2 log n/∆) pair queries and Θ(n log n) neigh-

bor queries. After we get the spase-dense decomposition given by DecompositionAlgorithm,
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we only need Õ(n) time to color the graph.

3.5.3. An MPC Algorithm for (∆ + 1) Coloring

This section contains yet another application of our palette sparsification theorem to design

sublinear algorithms, namely a massively parallel (MPC) algorithm for (∆ + 1) coloring.

In the MPC model of [42] (see also [12, 42, 135, 179]), the input is partitioned across mul-

tiple machines which are inter-connected via a communication network. The computation

proceeds in synchronous rounds. During a round each machine runs a local algorithm on

the data assigned to the machine. No communication between machines is allowed during a

round. Between rounds, machines are allowed to communicate so long as each machine sends

or receives a communication no more than its memory. Any data output from a machine

must be computed locally from the data residing on the machine and initially the input

data is distributed across machines adversarially. The goal is to minimize the total number

of rounds subject to a small (sublinear) memory per machine and a small global memory

(beside the memory used for storing the input).

We show that ColoringAlgorithm and DecompositionAlgorithm can be easily implemented in

this model also and prove the following theorem.

Theorem 3.8. There exists a randomized MPC algorithm that given a graph G(V,E) with

maximum degree ∆ can find a (∆+1) coloring of G with high probability in O(1) MPC rounds

with Õ(n) per-machine memory and Õ(n) global memory. Furthermore, if the machines have

access to shared randomness, the algorithm only requires one MPC round.

In the following, we assume that the machines have access to shared randomness and show

how to solve the problem in only one MPC round. We then show that by spending O(1)

additional rounds, we can remove the assumption of public randomness.

The proof of this theorem is very similar to that of Theorem 3.6 and uses the close con-

nection between dynamic streaming algorithms (in particular linear sketching algorithms)

and MPC algorithms. As before, if we do not insist on achieving a polynomial time al-
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gorithm, proving Theorem 3.8 from Lemma 3.4.1 is straightforward: we sample the color

classes χ1, . . . , χ∆+1 using public randomness, and every machine sends its edges in Gconflict

to a central designated machine, called the coordinator. As the total number of edges in

Gconflict is Õ(n) by Lemma 3.4.1, we only need Õ(n) memory on the coordinator. To im-

plement DecompositionAlgorithm, we only need to sample Θ(n log n/∆) vertices, and each

machine send each edge that is incident on these vertices to the coordinator. Again, we only

need Õ(n) memory on the coordinator. The coordinator machine can then locally find a

list-coloring of the graph Gconflict and find the (∆+1) coloring in Õ(n) time by Lemma 3.4.1

and Lemma 3.4.4.

Finally, we show how to remove the public randomness. We first dedicate one machine Mv

to each vertex v of the graph and spend the first round to send all the edges incident on v to

the machine Mv. This can be done on machines of memory O(∆). In the next round, each

machine v samples the set of colors L(v) for v and sends this information to all the machines

Mu where (u, v) is an edge in the graph. This can again be done with O(∆ ·polylog(n)) size

messages and hence on machines of memory Õ(n). The machines can now send all edges in

Econflict to a central coordinator and the coordinator can construct the graph Gconflict. To

implement DecompositionAlgorithm also, the coordinate can sample Θ(n log n/∆) vertices,

and notify these machines whose corresponding vertices gets sampled. These machines

then send all its incident edges to the central coordinator, and then the coordinator do the

remaining work in Õ(n) time.

3.6. Optimality of Our Sublinear Algorithms

We now discuss the optimality of the bounds achieved by our sublinear algorithms.

Streaming Algorithms. Our dynamic streaming algorithm in Theorem 3.6 makes a sin-

gle pass over the input and uses Õ(n) space. Obviously, the number of passes of our algorithm

is optimal. Moreover, as simply storing the coloring of the graph requires Ω(n log ∆) bits,

the space of our algorithm is optimal up to poly-log factors as well. As our algorithm works

in dynamic streams, it can be directly implemented in insertion-only streams as well. More-
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over, it is straightforward to verify that the same algorithm with minor modifications can

be implemented in sliding-window streams as well by simply maintaining the conflict-graph

and deleting any of its edges that goes outside the sliding window; we omit the details.

Sublinear Time Algorithms. Our algorithm in Theorem 3.7 makes Õ(min
{
n∆, n2/∆

}
)

non-adaptive queries to the graph and uses Õ(n
√
n) time. Unlike the case for streaming

algorithms, a-priori it is not clear whether this query complexity (and runtime) is optimal or

not. However, in the following theorem whose proof appears in Section 3.6.1, we show that

this is indeed the case in a strong sense, i.e., even for O(∆)-coloring and even for algorithms

that query the graph adaptively.

Theorem 3.9. For any constant c > 1, any algorithm (possibly randomized) that outputs a

(c ·∆) coloring of an input graph with sufficiently large constant probability requires Ω(n
√
n)

queries.

MPC Algorithms. Finally, our MPC algorithm in Theorem 3.8 needs O(1) rounds (and

in fact just one round assuming access to public randomness) and Õ(n) memory per machine.

The number of rounds is asymptotically optimal in our algorithm but it seems plausible that

the memory per machine can be reduced further to nα for constant α > 0. However, an

important aspect of our algorithm is that beside the input, it only needs to use Õ(n) extra

memory (namely, has Õ(n) global memory). Again as Ω(n log ∆) global memory is needed

to simply store the output, the global memory of our algorithm is also optimal up to poly-log

factors.

3.6.1. A Query Lower Bound for (∆ + 1) Coloring

In this section, we prove Theorem 3.9 by showing that there exists a family of n-vertex

graphs such that for any constant c > 1, any randomized algorithm that outputs a valid

(c ·∆) coloring on this family with probability at least 1 − o(1), requires Ω(n
√
n) queries.

For ease of notation, we will work with graphs with 2n vertices and focus on proving that

finding a (1.99∆) coloring requires Ω(n
√
n) queries; essentially the same proof argument

also implies an identical lower bound for a (c ·∆) coloring.
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The maximum degree ∆ of each graph in our family will be
√
n+ 1. Since for large enough

n, 1.99(
√
n + 1) < 2

√
n, it suffices to show that any randomized algorithm for finding a

(2
√
n) coloring with large constant probability requires Ω(n

√
n) queries.

By Yao’s minimax principle [253], it suffices to create a distribution over graphs with 2n ver-

tices such that any deterministic algorithm requires Ω(n
√
n) queries to find a valid coloring

with probability at least 1−o(1). A graph from our distribution is generated as follows. The

vertex set is divided into
√
n+ 1 sets V0, V1, . . . , V√n where V0 has n vertices, and each set

Vi, for 1 ≤ i ≤
√
n, has exactly

√
n vertices. Furthermore, the vertices in V0 are partitioned

into
√
n sets V ′1 , V ′2 , . . . , V ′√n where each set has

√
n vertices. For any 1 ≤ i ≤

√
n, each

vertex in Vi is connected to every vertex in V ′i . Finally, we pick a random perfect matching

M inside V0. The adjacency list of each vertex in the graph is a random permutation of its

neighbor set. This completes the description of how a graph in this family is generated and

presented to the algorithm.

The algorithm is given upfront the following information: (i) the partition of the vertices

into sets V0, V1, . . . , V√n, V
′

1 , V
′

2 , . . . , V
′√
n
, (ii) degrees of all the vertices, and (iii) all edges

in the graph except the edges in the matching M . Thus the only task that remains for the

algorithm is to discover enough information about the random matching M so as to output

a valid (2
√
n) coloring with probability at least 1−o(1). This is the task we use to prove our

lower bound. The high level strategy is as follows. We first argue that by making o(n
√
n),

the algorithm is not able to find more than o(n) edges of the matching M (with constant

probability). The algorithm now has made all its queries and hence needs to commit to a

coloring of the graph. We then show that no matter what coloring the algorithm chooses at

this point, there is a non-trivial probability that one of the edges of M not queried by the

algorithm appears inside one color class (i.e., becomes monochromatic), hence invalidating

the output of the algorithm.

Lemma 3.6.1. Any algorithm does at most n
√
n/400000 queries on graphs generated by the

distribution above, outputs a valid (2
√
n) coloring with probability at most 3/4.
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We say that an edge (u, v) ∈M has been discovered if the set of queries performed thus far

uniquely identify the edge (u, v) to be in M . For any discovered edge (u, v) ∈ M , we will

say the vertices u and v have been discovered; any vertex in V0 that has not been discovered

is called an undiscovered vertex.

After t queries have been made by the algorithm, let U(t) ⊆ V0 denote the set of undiscovered

vertices in V0. Let E(t) ⊆ U(t) × U(t) denote the set of edge slots that have not yet been

queried/discovered. For any vertex w ∈ V0, we say that Q2-uncertainty of w is d if there are

at least d edges in E(t) that are incident on w.

Additionally, we say that the state of the algorithm is unsettled after t queries if there are

at least 9n
10 vertices in U(t) whose Q2-uncertainty is at least |U(t)| −

√
n

5000 ; we will say that

the state of the algorithm is settled otherwise. The proof of Lemma 3.6.1 has two parts.

In the first part, we will show that if the state of the algorithm is unsettled after all the

queries have been made, then any (2
√
n) coloring of the graph is invalid with some constant

probability. In the second part, we will prove that to make the state of the algorithm settled,

the algorithm needs Ω(n
√
n) queries with a large constant probability.

Lemma 3.6.2. Suppose we are given a graph G on n vertices such that each vertex in G

has at least n−
√
n/4000 neighbors. Then if we pick a perfect matching uniformly at random

in G, for any edge e, the probability that e is contained in the perfect matching is at most

1
n−
√
n/1000

.

Proof. For any edge (u, v) in the graph, u and v have at least n−
√
n/2000 common neighbors.

Consider any perfect matching M that contains the edge (u, v). By the assumption on the

degree of vertices in G, there are at least n/2−
√
n/2000 edges in the perfect matching M

such that both end-points of these edges are neighbors of u and v. For each pair of such

vertices (a, b), we can then obtain two perfect matching by replacing (u, v) and (a, b) with

(u, a) and (v, b) or (u, b) and (v, a). Thus for every matching M containing the edge (u, v),

we can generate a unique set of n −
√
n/1000 perfect matchings that do not contain the
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edge (u, v). It then follows that the probability that a random perfect matching contains

the edge (u, v) is at most 1
n−
√
n/1000

We now prove that if the state of the algorithm is unsettled after it finishes the queries, then

the coloring output by the algorithm is invalid with constant probability.

Lemma 3.6.3. If the state of the algorithm is unsettled after it finishes the queries, then

any (2
√
n) coloring output by the algorithm is invalid with probability at least 3/8− o(1).

We start by the following key lemma.

Lemma 3.6.4. Given a graph G on n vertices such that each vertex in G has at least

n −
√
n/4000 neighbors. If we randomly pick a perfect matching uniformly, then for each

vertex v, there are at most
√
n/9 vertices u such that the probability that (u, v) is contained

in the perfect matching is less than 99
100n .

Proof. Fix a vertex v, let Pv(u) be the probability that the edge (u, v) is contained in a

random perfect matching, it is also the probability density function of the distribution of

v’s neighbor in a random perfect matching. For any vertex u, by Lemma 3.6.2, Pv(u) ≤
1

n−
√
n/1000

< 1/n + 1
900n

√
n
. Let U be the uniform distribution over the vertices of G, then

the `1-distance between the two distributions satisfies ‖Pv − U‖1 < 1
900
√
n
. So there are

≤
√
n

9 vertices u with Pv(u) ≤ 99
100n .

Proof of Lemma 3.6.3. Since the state of the algorithm is still unsettled, there are at most

|U(t)| − 9n/10 vertices whose Q2-uncertainty is less than |U(t)| −
√
n/5000. We give the

algorithm all the edges in M incident on these vertices as well as a few additional edges

in M if needed so that the number of undiscovered vertices becomes exactly 4n/5. Let U ′

be the set of these undiscovered vertices. After this step, these undiscovered vertices have

Q2-uncertainty at least 4n/5−
√
n/5000.

Fix the output 2
√
n coloring of the graph by the algorithm. Let S ⊆ U ′ × U ′ be the set
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of pairs of vertices in U ′ that have the same color. It is not hard to verify that |S| ≥
1
2 ·

4n
5 · (

4n
5 ·

1
2
√
n
− 1) ≥ 0.15n

√
n. For any pair of vertices (u, v) ∈ S, let Xu,v be the 0/1

indicator variable that indicates (u, v) is in M . Let X =
∑

(u,v)∈S Xu,v; then Pr (X > 0) is

the probability that the coloring output by the algorithm is invalid. We will use Chebyshev’s

inequality to prove that this probability is a large enough constant.

By Lemma 3.6.4, for any vertex v ∈ U ′, there are at most
√
n/9 vertices u such that

Pr (Xu,v) <
99

100n . So

E [X] ≥ (|S| −
∣∣U ′∣∣ · (√n/9)) · (99/100n) ≥ (|S| − 0.1n

√
n) · (99/100n) ≥ 0.2 |S| /n.

Now consider any two pairs of vertices u, v and u′, v′ in S. If these two pairs share a

vertex, then at least one of the pairs does not appear as an edge in the matching M , which

means that the covariance of Xu,v and Xu′,v′ is negative. If they do not share a vertex,

then Pr
(
Xu,v ·Xu′,v′ = 1

)
is the probability that both pairs are in M . If we pick a random

matching conditioned on the event that (u, v) is in the matching, using the same argument

as in the proof of Lemma 3.6.2, the probability that (u′, v′) is picked is at most 801
800|U ′| .

So Pr
(
Xu′,v′ = 1|Xu,v = 1

)
≤ 801

800|U ′| , which means the Cov
[
Xu,v, Xu′,v′

]
≤ Pr (Xu,v = 1) ·

( 801
800|U ′| − Pr

(
Xu′,v′ = 1

)
) ≤ 0.015/ |U ′|2 ≤ 0.025/n2. So

Var [X] ≤ E [X] +
∑

(u,v),(u′,v′)∈S

0.02/n2 ≤ E [X] + 0.02 |S|2 /n2 ≤ E [X] + 5E [X]2 /8.

By Chebyshev’s inequality, Pr (X = 0) ≤ Var[X]

E[X]2
≤ 5/8 + o(1).

We next prove that to make the state of the algorithm settled, the algorithm needs Ω(n
√
n)

queries with large constant probability.

Lemma 3.6.5. If the algorithm only makes n
√
n/400000 queries, then with probability 0.9,

the state of the algorithm is unsettled.
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Proof. If the algorithm does a Q1 query, say Q1(v, k), or does a Q2 query, say Q2(u, v), then

we say that the vertex v has been queried. During the execution of the algorithm, once a

vertex v is queried
√
n/5000 times, we declare both the vertex v and the vertex u to which it

is matched in M as bad vertices, and any further queries on v or u are called useless queries.

A query which is not useless is called a useful query. After all the queries, if an undiscovered

vertex v has not been queried
√
n/5000 times, then vertex v has Q2-uncertainty at least

U(t) −
√
n/5000. So to prove the lemma, we need to prove that the total number of bad

vertices and discovered vertices is at most n/10. The number of bad vertices is at most n/20

since at most two vertices are affected by a single query. On the other hand, any discovered

vertex which is not bad must be discovered by a useful query. For a useful Q1 query, say

Q1(v, k), the probability that v is discovered in this query is at most 1√
n+1−

√
n/5000

≤ 2√
n
.

For a useful Q2 query, if the number of discovered vertices is less than n/10, then by Lemma

3.6.2, the probability that this query discover an edge in M is at most 901·10
900·9n <

1.2
n . So for

any useful query, the probability that it discovers an edge in M is at most 2√
n
. As such,

the expected number of useful queries which discover an edge in M is at most n/200000.

By Markov, this implies that the number of useful queries that discover an edge M is with

probability 0.9 at most n/20000. So the number of discovered vertices which are not bad is

at most n/10000. This in turn implies that the total number of bad vertices and discovered

vertices is less than n/10 with probability 0.9.

Proof of Lemma 3.6.1. By Lemma 3.6.3, if the algorithm only makes n
√
n/400000 queries,

then with probability 0.9 the state of the algorithm is unsettled. Conditioned on this event,

by Lemma 3.6.5, the output of the algorithm is an invalid coloring with probability at least

3/8 − o(1). So with probability 3/8 − 0.1 − o(1) ≥ 1/4, the output of any algorithm that

makes less than n
√
n/400000 queries is an invalid coloring.

Theorem 3.9 is directly implied by Lemma 3.6.1 (by modifying constants to allow for c
√
n

coloring as opposed to 2
√
n).
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CHAPTER 4

Sublinear Algorithms for Traveling Salesman Problem

In this chapter, we consider the metric traveling salesman problem in query model and

streaming model. A standard approach to estimating the metric TSP cost is to compute the

cost of a minimum spanning tree (MST), and output two times this cost as the estimate of the

TSP cost (since any spanning tree can be used to create a spanning simple cycle by at most

doubling the cost). The problem of approximating the cost of the minimum spanning tree

in sublinear time was first studied in the graph adjacency-list model by Chazelle, Rubinfeld,

and Trevisan [83]. The authors gave an Õ(dW/ε2)-time algorithm to estimate the MST

cost to within a (1 + ε)-factor in graphs where average degree is d, and all edge costs are

integers in [1..W ]. For certain parameter regimes this gives a sublinear time algorithm for

estimating the MST cost but in general, this run-time need not be sublinear. Subsequently,

in an identical setting as ours, Czumaj and Sohler [100] showed that for any ε > 0, there

exists an Õ(n/εO(1)) time algorithm that returns a (1+ε)-approximate estimate of the MST

cost when the input is an n-point metric. This result immediately implies an Õ(n/εO(1))

time algorithm to estimate the TSP cost to within a (2 + ε) factor for any ε > 0. However,

no o(n2) query algorithms are known to approximate metric TSP to a factor that is strictly

better than 2. On the other hand, there are also no known barriers that rule out existence

of (1+ε)-approximate estimation algorithms for metric TSP with Õ(n) queries for any fixed

ε > 0. In this chapter, we make progress on both algorithms and lower bounds for estimating

metric TSP cost.

4.1. Main Results

On the algorithmic side, we first consider the graphic TSP problem, an important case of met-

ric TSP that has been extensively studied in the classical setting – the metric D corresponds

to the shortest path distances in a connected unweighted undirected graph [210, 212, 239].

We give the first Õ(n) time algorithm for graphic TSP that achieves an approximation factor

strictly better than 2.
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Theorem 4.1. There is an Õ(n) time randomized algorithm that estimates the cost of

graphic TSP to within a factor of (27/14).

At a high-level, our algorithm is based on showing the following: if a graph G either lacks

a matching of size Ω(n) or has Ω(n) biconnected components (blocks), then the optimal

TSP cost is not too much better than 2n. Note that a connected unweighted instance of

graphic TSP always contains a TSP tour of cost at most 2n since the MST cost is (n − 1)

on such instances. Conversely, if the graph G has both a large matching and not too many

blocks, then we can show that the optimal TSP cost is distinctly better than 2n. Since we

do not know an efficient sublinear algorithm to estimate the number of blocks in a graph

G, we work with another quantity that serves as a proxy for this and can be estimated in

Õ(n) time. The main remaining algorithmic challenge then is to estimate sufficiently well

the size of a largest matching. This problem is very important by itself, and has received

much attention [44, 171, 218, 220, 225, 255]. Our Õ(n) query results utilize the recent result

of Behnezhad [44] who give an algorithm to 2-approximate the size of maximum matching

in Õ(n) time in the pair query model.

Our approach for estimating graphic TSP cost in sublinear time also lends itself to an

Õ(n) space streaming algorithm that can obtain an even better estimate of the cost. To

our knowledge, no estimate better than a 2-approximation was known previously. In the

streaming model, we assume that the input to graphic TSP is presented as a sequence of

edges of the underlying graph G. Any algorithm for this model, clearly also works if instead

the entries of the distance matrix are presented in the stream – an entry that is 1 corresponds

to an edge of G, and it can be ignored otherwise as a non-edge.

Theorem 4.2. There is an O(n) space randomized streaming algorithm that estimates the

cost of graphic TSP to within a factor of (11/6) in insertion-only streams.

We also consider another well-studied special case of metric TSP, namely, (1, 2)-TSP where

all distances are either 1 or 2 [3, 56, 224]. Throughout the chapter, whenever we refer to
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a graph associated with a (1, 2)-TSP instance, it refers to the graph G induced by edges

of distance 1 in our {1, 2}-metric. The cost of (1, 2)-TSP is close related to the size of

maximum matching. Thus, the matching algorithm given by Behnezhad [44] also implies an

approximation algorithm for (1, 2)-TSP.

Theorem 4.3 ([44]). There is an Õ(n) time randomized algorithm that estimates the cost

of (1, 2)-TSP to within a factor of 1.75.

We note that it is easy to show that randomization is crucial to getting better than a

2-approximation in sublinear time for both graphic TSP and (1, 2)-TSP. The algorithms

underlying Theorem 4.1, lend themselves to Õ(n) space single-pass streaming algorithms

with identical approximation guarantees. These sublinear time algorithms motivate the

natural question if analogously to metric MST, there exist sublinear time algorithms that

for any ε > 0, output a (1 + ε)-approximate estimate of TSP cost for graphic TSP and

(1, 2)-TSP in Õ(n) time. We rule out this possibility in a strong sense for both graphic TSP

and (1, 2)-TSP.

Theorem 4.4. There exists an ε0 > 0, such that any randomized algorithm that estimates

the cost of graphic TSP ((1, 2)-TSP) to within a (1 + ε0)-factor, necessarily requires Ω(n2)

queries.

This lower bound result highlights a sharp separation between the behavior of metric MST

and metric TSP problems. At a high-level, our lower bound is inspired by the work of

Bogdanov et al. [60] who showed that any query algorithm that for any ε > 0 distinguishes

between instances of parity equations (mod 2) that are either satisfiable (Yes) or at most

(1/2 + ε)-satisfiable (No), requires Ω(n) queries where n denotes the number of variables.

However, the query model analyzed in [60] is different from ours. We first show that the

lower bound of [60] can be adapted to an Ω(n2) lower bound in our model, and then show

that instances of parity equations can be converted into instances of graphic TSP (resp.

(1, 2)-TSP) such that for some ε0 > 0, any (1 + ε0)-approximation algorithm for graphic
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TSP (resp. (1, 2)-TSP), can distinguish between the Yes and No instances of the parity

equations, giving us the desired result.

Finally, similar to many classical approximation algorithms for TSP, our sublinear time

estimation algorithms utilize subroutines for estimating the size of a maximum matching in

the underlying graph. We show that this is not merely an artifact of our approach.

Theorem 4.5. For any ε ∈ [0, 1/5), any algorithm that estimates the cost of an n-vertex

instance of graphic TSP or (1, 2)-TSP to within a (1+ε)-factor, can also be used to estimate

the size of a maximum matching in an n-vertex bipartite graph to within an εn additive error,

with an identical query complexity, running time, and space usage.

This connection allows us to translate known lower bounds for matching size estimation in

various models to similar lower bounds for metric TSP cost estimation. In particular, using

the results of [20], we can show that there exists an ε0 such that any randomized single-pass

dynamic streaming algorithm for either graphic TSP or (1, 2)-TSP that estimates the cost

to within a factor of (1 + ε0), necessarily requires Ω(n2) space.

We conclude by establishing several additional lower bound results that further clarify the

query complexity of approximating TSP cost. For instance, we show that if an algorithm

can access an instance of graphic TSP by only querying the edges of the graph (via neighbor

and pair queries), then any algorithm that approximates the graphic TSP cost to a factor

better than 2, necessarily requires Ω(n2) queries. This is in sharp contrast to Theorem 4.1,

and shows that working with the distance matrix is crucial to obtaining sublinear time

algorithms for graphic TSP. We also show that even in the distance matrix representation,

the task of finding a tour that is (2− ε)-approximate for any ε > 0, requires Ω(n2) queries

for both graphic TSP and (1, 2)-TSP.

4.1.1. Other Related Work

We note here that there is an orthogonal line of research that focuses on computing an ap-

proximate solution in near-linear time when the input is presented as a weighted undirected
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graph, and the metric is defined by shortest path distances on this weighted graph. It is

known that in this model, for any ε > 0, there is an Õ(m/ε2 + n1.5/ε3) time algorithm that

computes a (3/2 + ε)-approximate solution; here n denotes the number of vertices and m

denotes the number of edges [85], and that a (3/2 + ε)-approximate estimate of the solution

cost can be computed in Õ(m/ε2) time [84]. It is not difficult to show that in this access

model, even when the input graph is unweighted (i.e. a graphic TSP instance), any algorithm

that outputs better than a 2-approximate estimate of the TSP cost, requires Ω(n+m) time

even when m = Ω(n2). Hence this access model does not admit sublinear time algorithms

that beat the trivial 2-approximate estimate.

4.2. Approximation for Graphic TSP Cost

In this section, we exploit well-known properties of biconnected graphs and biconnected

components in graphs to give an algorithm that achieves a (2 − 1
7c0

)-approximation for

graphic TSP if we have an efficient algorithm that approximates the maximum matching

size within a factor of c0. We first relate the cost of the TSP tour in a graph to the costs of

the TSP tours in the biconnected components of the graph. Next we show that if the graph

does not have a sufficiently big matching, it does not have a TSP tour whose length is much

better than 2n. We also show that if a graph has too many degree 1 vertices, or vertices of

degree 2, both whose incident edges are bridges, then it does not have a TSP tour of cost

much better than 2n. We then establish the converse - a graph that has a good matching

and not too many bad vertices (namely, vertices of degree 1 or articulation points of degree

2), then it necessarily has a TSP tour of cost much better than 2n. We design Õ(n) time

test for the second condition, allowing us to approximate the cost of an optimal graphic TSP

tour in sublinear time together with some known techniques for testing the first condition.

In what follows, we first present some basic concepts and develop some tools that will play

a central role in our algorithms.

101



4.2.1. Preliminaries

An unweighted graph G = (V,E), defines a graphic metric in V , where the distance between

any two vertices u and v is given by the length of the shortest path between u and v. The

graphic TSP is the Traveling Salesman Problem defined on such a graphic metric. In this

paper our goal is to find a non-trivial approximation to the length of the traveling salesman

tour in sublinear time in a model where we are allowed to make distance queries. In the

distance query model, the algorithm can make a query on a pair of vertices (u, v) and get

back the answer d(u, v), the distance between u and v in G.

In a connected graph G, an edge e is a bridge if the deletion of e would increase the number of

connected components of G. A connected graph with no bridge is called a 2-edge-connected

graph. A maximal 2-edge-connected subgraph of G is called a 2-edge-connected component.

The bridge-block tree of a graph is a tree such that the vertex set contains the 2-edge-

connected components and the edge set contains the bridges in the graph.

A connected graph G is called 2-vertex-connected or biconnected if when any one vertex is

removed, the resulting graph remains connected. In a graph which is not biconnected, a

vertex v whose removal increases the number of components is called an articulation point.

It is easy to prove that any biconnected graph with at least 3 vertices does not have degree

1 vertices. A well-known alternate characterization of biconnectedness is that, a graph G is

biconnected if and only if for any two distinct edges, there is a simple cycle that contains

them.

A biconnected component or block in a graph is a maximal biconnected subgraph. Any graph

G can be decomposed into blocks such that the intersection of any two blocks is either empty,

or a single articulation point. Each articulation point belongs to at least two blocks. If a

block is a single edge, then we call this block a trival block ; otherwise it is a non-trivial block.

A trival block is also a bridge in the graph. The size of a block is the number of vertices in

the block. The following lemma shows the relationship between the number of blocks and
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the sum of the sizes of the blocks.

Lemma 4.2.1. If a connected graph G has n vertices and k blocks, then the sum of the sizes

of the blocks is equal to n+ k − 1.

Proof. We prove the lemma by induction on the number k of blocks. The base case is when

k = 1. In this case, G itself is a block of size n.

For the induction step, we have k > 1 and thus the graph has at least one articulation point.

Suppose v is an arbitrary articulation point in G. Let V1, V2, . . . , Vj be the set of vertices

in the connected components of G \ {v}. We have
∑j

i=1 |Vi| = n − 1. Let G1, G2, . . . , Gj

be the subgraphs of G induced by V1 ∪ {v}, V2 ∪ {v}, . . . , Vj ∪ {v}. For any Gi, let ki be

the number of blocks in Gi, we have
∑j

i=1 ki = k. By induction hypothesis, the sum of the

sizes of blocks in Gi is |Vi|+ 1 + ki − 1 = |Vi|+ ki. So the sum of the sizes of blocks in G is∑j
i=1 |Vi|+ ki = n− 1 + k.

The block decomposition of a graph has a close relationship with the cost of graphic TSP

of the graph.

Lemma 4.2.2 (Lemma 2.1 of [209]). The cost of the graphic TSP of a connected graph

G = (V,E) is equal to the sum of the costs of the graphic TSP of all blocks in the graph.

Together these two lemmas give us a simple lower bound on the cost of the graphic TSP of

a graph G (using the fact that the cost of graphic TSP is at least the number of vertices in

the graph).

Lemma 4.2.3. If a graph G has n vertices and k blocks, then the cost of graphic TSP of G

is at least n+ k − 1.

An ear in a graph is a simple cycle or a simple path. An ear which is a path is also called

an open ear and it has two endpoints, whereas for a cycle, one vertex is designated as the

endpoint. An ear decomposition of a graph is a partition of a graph into a sequence of
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ears such the endpoint(s) of each ear (except for the first) appear on previous ears and the

internal points (the points that are not endpoints) are not on previous ears. A graph G is

biconnected if and only if G has an ear decomposition such that each ear but the first one

is an open ear [248]. An ear is nontrivial if it has at least one internal point. The following

lemma upper bounds the cost of graphic TSP of a biconnected graph.

Lemma 4.2.4 (Lemma 5.3 of [239], also a corollary of Lemma 3.2 of [210]). Given a 2-

vertex-connected graph G = (V,E) and an ear-decomposition of G in which all ears are

nontrivial, a graphic TSP tour of cost at most 4
3(|V |−1)+ 2

3π can be found in O(|V |3) time,

where π is the number of ears.

We now prove an important lemma that gives an upper bound on the cost of graphic TSP

in a biconnected graph in terms of the size of a matching in the graph.

Lemma 4.2.5. Suppose G is a biconnected graph with at least n ≥ 3 vertices. If G has a

matching M , then the cost of graphic TSP of G is at most 2n− 2− 2|M |
3 .

Proof. We first find a spanning biconnected subgraph of G that only contains 2n − 2 −M

edges, then use Lemma 4.2.4 to bound the cost of graphic TSP.

We construct a spanning biconnected subgraph G? = P0∪P1∪ . . . recursively: P0 contains a

single edge in M . If Gi−1 = P0 ∪P1 ∪ · · · ∪Pi−1 is a spanning subgraph of G, let G? = Gi−1

and finish the construction. Otherwise we construct Pi as follows. Let e be an edge in M

both whose endpoints are not in Gi−1. If there is no such edge, then let e be an arbitrary

edge such that at least one of its endpoints is not in Gi−1. Let e′ be an arbitrary edge in

Gi−1. By the alternate characterization of biconnectedness, there is a simple cycle Ci that

contains both e and e′. Let Pi be the path in Ci that contains e and exactly two vertices in

Gi−1, which are the endpoints of Pi.

Since Pi contains at least one vertex not in Gi−1, the construction always terminates. Note

that P0 ∪ P1 is a cycle, and each Pi (i > 1) is an open ear of G?. So, (P0 ∪ P1, P2, . . . ) is an
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open ear decomposition of G?, which means G? is biconnected.

Now we prove that the number of edges in G? is at most 2n− 2−M . Let ni be the number

of vertices in Gi\Gi−1. Let G−1 be the empty graph, so that n0=2. Let pi be the number

of edges in Pi and mi be the number of edges e in M such that e∩Gi 6= ∅ and e∩Gi−1 = ∅.

(Here we view an edge as a 2-vertex set.) Note that m0 = 1. Suppose G? = Gk. Then∑k
i=1 ni = n,

∑k
i=1 pi is the number of edges in G? and

∑k
i=1mi = |M |. For any i > 0, Pi

is an open ear whose internal points are not in Gi−1. So ni = pi − 1. If there is an edge

e ∈ M such that e ∩ Gi−1 = ∅, then Pi contains both endpoints of an edge in M , which

means mi ≤ ni − 1. If all edges in M already have an endpoint in Gi−1, mi = 0 ≤ ni − 1.

So in both cases, pi = ni + 1 = 2ni − (ni − 1) ≤ 2ni −mi. Also, p0 = 1 = 2n0 − 2−m0. So

the number of edges in G? is
∑k

i=0 pi ≤ 2n0 − 2−m0 +
∑k

i=1(2ni −mi) = 2n− 2− |M |.

Since (P0∪P1, P2, P3, . . . , Pk) is an open ear decomposition of G?, the number of ears in G is

k. On the other hand,
∑k

i=0 pi = 1+
∑k

i=1(ni+1) = n−1+k, we have n−1+k ≤ 2n−2−|M |,

which means k ≤ n − 1 − |M |. By Lemma 4.2.4, the cost of graphic TSP of G? is at most

4
3(n− 1) + 2

3k ≤ 2(n− 1)− 2
3 |M |.

Since G? is a subgraph of G that contains all the vertices in G, the cost of graphic TSP of

G is at most the cost of graphic TSP of G?, which is at most 2n− 2− 2
3 |M |.

4.2.2. Approximation Algorithm for Graphic TSP

In this section, we give the algorithm that approximates the cost of graphic TSP of a graph

G within a factor of less than 2.

We call a vertex v a bad vertex if v has degree 1 or is an articulation point with degree 2.

For any given δ > 0, the graphic TSP algorithm performs the following two steps.

1. Obtain an estimate α̂n of the size of maximum matching αn.

2. Obtain an estimate β̂n of the number of bad vertices βn.

105



The algorithm then output min{2n, (2− 2
7(α̂− 2β̂))n}.

To perform the second step in Õ(n) distance queries and time, we randomly sample O( 1
δ2 )

vertices. For each sampled vertex, we can obtain the degree with n queries. The following

lemma shows that we can also check whether a degree 2 vertex is an articulation point using

distance queries in O(n) time. Then by the Chernoff bound, we can approximate the number

of bad vertices with additive error O(δn) with a high constant probability.

Lemma 4.2.6. Suppose a vertex v in a connected graph G has only two neighbors u and w.

The following three conditions are equivalent:

1. v is an articulation point.

2. The edges (u, v) and (v, w) are both bridges.

3. For any vertex v′ 6= v, |d(u, v′)− d(w, v′)| = 2.

Proof. We first prove the first two conditions are equivalent. If v is an articulation point,

then v is in two different blocks. So edge (u, v) and (v, w) are in different blocks, which

means v has degree 1 in both blocks. So both blocks are trivial, which means (u, v) and

(v, w) are both bridges. If (u, v) and (v, w) are both bridges, then deleting either (u, v) or

(v, w) will disconnect u and w, which means deleting v will also disconnect u and w.

Next we prove that the third condition is equivalent to the first two. Suppose v is an

articulation point. Since v has degree 2, the graph G \ {v} has only two components, one

containing u and the other containing w. For any vertex v′ 6= v, without loss of generality,

suppose v′ is in the same component as u in G\{v}. Since (u, v) and (v, w) are both bridges

in G, any path between v′ and w contains u and v. So d(v′, w) = d(v′, u) + 2.

If v is not an articulation point, then u and w are connected in G \ {v}. Let (u =

v0, v1, v2, . . . , vk = w) be the shortest path between u and w in G \ {v}. For any ver-

tex vi on the path, the distance between vi and u (resp. w) in G \ {v} is i (resp. k − i).
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Consider the shortest path between u and vi in G. If this path does not contain v, then

it is the same as the path in G \ {v}. In this case, d(u, vi) = i. If the shortest path con-

tains v, then v must be the second last vertex on the path and w be the third last one.

In this case, d(u, vi) = k − i + 2. So d(u, vi) = min{i, k − i + 2}. Similarly, we also have

d(vi, w) = min{i + 2, k − i}. Let v′ = vbk/2c. Since |i− (k − i)| ≤ 1, we have i < k − i + 2

and k − i < i+ 2, which means |d(u, v′)− d(w, v′)| = |i− (k − i)| ≤ 2.

Next, we prove that if α is small or β is large, the cost of graphic TSP is bounded away from

n. The following lemma shows that if the size of maximum matching of a graph is small,

then the cost of the graphic TSP is large.

Lemma 4.2.7. For any ε > 0, if the maximum matching of a graph G has size at most
(1−ε)n

2 , then the cost of graphic TSP of G is at least (1 + ε)n.

Proof. Suppose the optimal TSP tour is (v0, v1, . . . , vn−1, vn = v0). Since the size of maxi-

mum matching in G is at most (1−ε)n
2 , there are at most (1−ε)n

2 edges between pairs (vi, vi+1)

where i is even (resp. odd). So there are at least εn pairs of (vi, vi+1) that have distance at

least 2, which means that the optimal cost of TSP tour of G is
∑n−1

i=1 d(vi, vi+1) ≥ n+ εn =

(1 + ε)n.

The following lemma shows that if β is large, the cost of graphic TSP is large.

Lemma 4.2.8. For any ε > 0, if a connected graph G has εn bad vertices, then the cost of

graph-TSP of G is at least (1 + ε)n− 2.

Proof. We first prove by induction on the number of vertices that a graph with k bad

vertices has k − 1 bridges. The base case is when n = 2, the graph has k = 2 bad vertices

and 1 = k − 1 bridge.

For the induction step, the graph has n vertices with n ≥ 3. If G has no degree 1 vertices,

then the graph has k articulation points with degree 2. By Lemma 4.2.6, any edge incident
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on a degree 2 articulation point is a bridge. So each bad vertex is incident on 2 bridges.

On the other hand, a bridge is incident on at most 2 vertices. So there are at least 2k
2 = k

bridges in G. Next, suppose G has degree 1 vertices. Let v be an arbitrary such vertex and

let u be its neighbor. Since G is connected and n ≥ 3, u must has degree at least 2, since

otherwise u and v are not connected to other vertices in G. Consider the graph G \ {v}, if

u is a bad vertex in G, u has degree 1 in G \ {v} and is still a bad vertex. So the number of

bad vertices in G \ {v} is k− 1. By induction hypothesis, G \ {v} has at least k− 2 bridges.

G has at least k − 1 bridges since (u, v) is also a bridge.

So G has at least εn − 1 bridges, and the number of blocks in G is at least εn − 1. By

Lemma 4.2.3, the cost of graph-TSP of G is at least n+ εn− 2 = (1 + ε)n− 2.

Finally, the following lemma shows that the cost of graphic TSP is at most (2− 2
7(α̂−2β))n.

Lemma 4.2.9. If a graph has a matching M of size α′n and the graph has βn bad vertices,

the cost of graphic TSP of G is at most (2− 2
7(α′ − 2β))n.

Proof. Let G1, G2, . . . , Gk be the block decomposition of G. Let ni be the size of Gi. If

|ni| ≥ 3, by Lemma 4.2.5, the cost of the graphic TSP of Gi is at most 2ni − 3 since any

non-empty graph has a matching of size at least 1. If |ni| = 2, then the graphic TSP of Gi

is exactly 2 = 2ni−2. Suppose G has ` non-trivial blocks. Then by Lemma 4.2.2 the cost of

graphic TSP of G is at most
∑k

i=1(2ni− 2)− `, which equals to 2n− 2− ` by Lemma 4.2.1.

Let mi be the size of maximum matching in Gi if Gi is a non-trivial block, and let mi = 0

if Gi is a trivial block. By Lemma 4.2.5, the cost of the graphic TSP of Gi is at most

2ni − 2 − 2mi
3 . For any non-trivial block Gi, M ∩ Gi is a matching in Gi. So the size of

maximum matching in Gi is at least the number of edges inM ∩Gi. So by Lemma 4.2.2 and

Lemma 4.2.1, the cost of graphic TSP of G is at most
∑k

i=1(2ni−2− 2
3mi) = 2n−2− 2

3 |M
′|,

whereM ′ is the set of edges inM that are not bridges in G. Let B be the number of bridges

in G. We have 2n− 2− 2
3 |M

′| ≤ 2n− 2− 2
3(|M | −B).
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So there are two upper bounds of the graphic TSP of G— 2n−2−` and 2n−2− 2
3(|M |−B).

Which bound is better depends on the number of bridges B.

If B ≤ (4
7α
′ + 6

7β)n, the cost of graphic TSP of G is at most

2n− 2− 2

3
(|M | −B) ≤ 2n− 2

3
(
3

7
α′ − 6

7
β)n = (2− 2

7
(α′ − 2β))n

If B > (4
7α
′ + 6

7β)n, consider the bridge-block tree T of G. T has at least B edges and

at least B + 1 vertices. Since T is a tree, there are at least B
2 vertices of degree at most

2. For any vertex vT of degree at most 2 in T , if the vertex vT represents a single vertex

v in G, then v is either a degree 1 vertex or a degree 2 articulation point in G, otherwise

vT represents a 2-edge-connected component of size at least 2 in G. So There are at least

B
2 − βn ≥ (2

7α
′ − 4

7β)n 2-edge-connected components of size at least 2. Since any 2-edge-

connected component of size at least 2 has no bridge, each such component of G contains

at least 1 non-trivial block in G, implying that ` ≥ 2
7(α′− 2β)n. So the cost of graphic TSP

of G is at most 2n− 2− ` ≤ (2− 2
7(α′ − 2β))n.

We summarize the ideas in this section and prove the following lemma.

Lemma 4.2.10. For any c0 > 1 and δ > 0, suppose α̂ ≤ α ≤ c0α̂ + δ and β̂ − δ ≤ β ≤ β̂.

Then (2 − 2
7(α̂ − 2β̂))n is an approximation of the size of graphic TSP within a factor of

2− 1
7c0

+ δ.

Proof. Let T̂ = (2− 2
7(α̂− 2β̂))n. Since β̂ ≥ β and α̂ ≤ α, by Lemma 4.2.9, T ≤ T̂ .

Then we prove that T̂ ≤ (2− 1
7c0

+ δ)T . By Lemma 4.2.7 and Lemma 4.2.8, T ≥ max{(2−

2α)n, (1 + β)n− 2}, which means

(2− 1

7c0
+ δ)T ≥ (2− 1

7c0
) max{(2− 2α)n, (1 + β)n} − 4 + δn

On the other hand, T̂ ≤ (2− 2
7( αc0−2β))n+ 6

7δn since c0α̂+δ ≤ α and β̂ ≤ β+δ. For sufficient
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large n, we have δn − 4 ≥ 6
7δn, so it is sufficient to prove that

2− 2
7

( α
c0
−2β)

max{2−2α,1+β} ≤ 2 − 1
7c0

for

any 0 ≤ α, β ≤ 1 and c0 ≥ 1.

Let γ = α
c0
−2β, 1+β = 1+( αc0 −γ)/2, so if we fix γ, max{2−2α, 1+β} is minimized when

2− 2α = 1 + ( αc0 − γ)/2. In this case α = (2+γ)c0
4c0+1 and max{2− 2α, 1 + β} = 4c0+2

4c0+1 −
2c0

4c0+1γ.

If γ ≤ 1
2c0

,

2− 2
7(α− 2β)

max{2− 2α, 1 + β}
≤

2− 2
7γ

4c0+2
4c0+1 −

2c0
4c0+1γ

=
4c0 + 1

7c0
−

2− 4c0+2
7c0

4c0+2
4c0+1 −

2c0
4c0+1γ

≤ 4c0 + 1

7c0
+ 2− 4c0 + 2

7c0
= 2− 1

7c0

If γ > 1
2c0

, 2− 2
7

(α−2β)

max{2−2α,1+β} <
2− 1

7c0
1 = 2− 1

7c0
since β ≥ 0. So T̂ ≤ (2− 1

7c0
+ δ)T .

By Lemma 4.2.10, we immediately have the following theorem.

Theorem 4.6. For any δ > 0 and c0 ≥ 1. Given a graph G with maximum matching size αn,

suppose there is an algorithm that uses pair queries, runs in t time, and with probability at

least 2/3, outputs an estimate of the maximum matching size α̂n such that α̂ ≤ α ≤ c0α̂+ δ.

Then there is an algorithm that approximates the cost of graphic TSP of G to within a factor

of 2− 1
7c0

+ δ, using distance queries, in t+ Õ(n/δ2) time with probability at least 3/5.

Proof. We first use the algorithm in the assumption to obtain an estimate α̂n of the size of

maximum matching αn. The following analysis is based on the event that this algorithm is

run successfully, which has probability 2/3.

We then sample N = 100
δ2 vertices. For each sampled vertex v, we first query the distance

between v and every vertex in G to obtain the degree of v. If v has degree 2, suppose u

and w are the neighbors of v. We query the distance from u and w to every vertex in G.

By Lemma 4.2.6, v is an articulation point if and only if there is no vertex v′ such that

|d(u, v′)− d(w, v′)| ≤ 1. So we can check if v is a bad vertex with O(n) distance queries and

time. Suppose there are βn bad vertices in G and (β̂− δ/2)N sampled vertices are bad. By
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Chernoff bound, the probability that
∣∣∣β − β̂ + δ/2

∣∣∣ > δ/2 is at most 2e
δ2N2

16 < 1/15. We

analyze the performance based on the event that β ≤ β̂ ≤ β + δ.

By Lemma 4.2.10, (2 − 2
7(α̂ − 2β̂)) is a (2 − 1

7c0
+ δ) approximation of the size of graphic

TSP of G. The probability of failure is at most 1/3 + 1/15 = 2/5.

Proof of Theorem 4.1: Behnezhad [44] gives an algorithm for matching size estimation

that only uses pair queries – given a pair of vertices, is there an edge between them? Note

that any pair query can be simulated by a single query to the distance matrix in a graphic

TSP instance.

Theorem 4.7 ([44]). For any ε > 0, there is an algorithm that uses pair queries, runs

in Õ(n/ε2) time, and with probability 2/3, outputs an estimate of the size of a maximal

matching within an additive error εn.

Substituting the above result in Theorem 4.6 and using the fact that a maximum matching

has size at most twice the size of a maximal matching (setting c0 = 2, and δ = ε), we obtain

Theorem 4.1.

4.2.3. An O(n) Space (11
6 )-Approximate Streaming Algorithm for Graphic TSP

We show here that our approach for obtaining a sublinear-time algorithm for graphic TSP

can be extended to the insertion-only streaming model to obtain for any ε > 0, an (11
6 + ε)-

approximate estimate of the graphic TSP cost using O(n/ε2) space, proving Theorem 4.2. In

the streaming model, we assume that the input to graphic TSP is presented as a sequence of

edges of the underlying graph G. Any algorithm for this model, clearly also works if instead

the entries of the distance matrix are presented in the stream instead – an entry that is 1

corresponds to an edge of G, and it can be ignored otherwise as a non-edge.

Given a stream containing edges of a graph G(V,E), our algorithm performs the following

two tasks in parallel:

• Find a maximal matching M in G – let αn denote its size.
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• Estimate the number of bridges in the maximal matching M , say βn, to within an

additive error of εn.

The algorithm outputs (2− 2
3(α− β))n as the estimated cost of graphic TSP of G.

In an insertion-only stream, it is easy to compute a maximal matching M using O(n) space:

we start with M initialized to an empty set, and add a new edge (u, v) into the matching

M iff neither u nor v are already in M . It is also easy to check if an edge e is a bridge in

insertion-only stream with O(n) space. We can do this by maintaining a disjoint-set data

structure. Whenever an edge arrives (other than e), we merge the connected components of

its endpoints. If there is only one component remaining at the end of the stream, then e is

not a bridge, and otherwise, e is a bridge.

To estimate the number of bridges in the maximal matching, we sample N = 100/ε2 edges

in the matching, and run in parallel N tests where each test determines whether or not the

sampled edge is a bridge. We use O(n/ε2) space in total since we sample N = O(1/ε2)

edges. Suppose there are β̄ sampled edges are bridges, then by Chernoff bound, β̂n = β̄|M |
N

is an approximation of βn to within additive error εn with probability at least 9/10.

As stated, this gives us a two-pass algorithm: the first pass for computing the matching M ,

and the second pass for estimating the number of bridges in M . However, we can do both

these tasks in parallel in a single pass as follows: at the beginning of the stream, we start

the process of finding connected components of graph G. Whenever an edge e is added to

M , if |M | < N , then we create a new instance Ie of the connectivity problem that ignores

the edge e. This clearly allows us to test whether or not e is a bridge. Once |M | > N , then

whenever an edge e is added to M , with probability N
|M | , we drop uniformly at random an

existing instance, say Ie′ of connectivity, and create a new instance Ie of connectivity that

only ignores edge e (we insert back the edge e′ into Ie). Since there are at most N instances

of connectivity that are running in parallel, the algorithm uses O(nN) = O(n/ε2) space.

We now prove that the algorithm gives a good approximation of the cost of graphic TSP.
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Lemma 4.2.11. If a graph G has a maximal matching M of size αn, and there are βn edges

in M that are bridges in G, then the cost of graphic TSP in G is at most (2− 2
3(α− β))n,

and at least 6
11(2− 2

3(α− β))n.

Proof. Since there are at least (α− β)n edges in the matching M that are not a bridge, by

Lemma 4.2.2 and Lemma 4.2.5, the cost of graphic TSP of G is at most (2− 2
3(α− β))n.

On the other hand, since M is a maximal matching of G, the size of maximum matching of

G is at most 2αn. By Lemma 4.2.7, the cost of graphic TSP is at least (2 − 4α)n. Graph

G also contains at least βn bridges, so by Lemma 4.2.3, the cost of graphic TSP is also at

least (1 + β)n.

To prove the lemma, it is sufficient to prove that for any 0 ≤ β ≤ α ≤ 1, we have 2− 2
3(α−

β) ≤ 11
6 max{1 + β, 2− 4α}. Let γ = α − β. 1 + β = 1 + α − γ. So max{1 + β, 2− 4α} ≥

2 − 4(1
5(1 + γ)) = 6

5 −
4
5γ. If γ ≤ 1

4 ,
2− 2

3
(α−β)

max{1+β,2−4α} ≤
2− 2

3
γ

6
5
− 4

5
γ

= 5
6 + 5

6−4γ = 11
6 . If γ > 1

4 ,

2− 2
3(α− β) < 11

6 , while max{1 + β, 2− 4α} ≥ 1 since β > 0.

By Lemma 4.2.11, the expression (2 − 2
3(α − β))n gives us an 11/6-approximate estimate

to the cost of graphic TSP of G. Since we can exactly compute α and approximate β with

additive error ε in a single-pass streaming algorithm that uses O(n/ε2) space, we have the

following theorem:

Theorem 4.8. For any ε > 0, there is a single-pass randomized streaming algorithm that

estimates the cost of graphic TSP of G to within a factor of (11
6 + ε), in an insertion-only

stream, using O(n/ε2) space with probability at least 9/10.

4.3. An Ω(n2) Query Lower Bound for Approximation Schemes

In this section, we prove that there exists an ε0 > 0, such that any query algorithm for

graphic or (1, 2)-TSP that returns a (1 + ε0)-approximate estimate of optimal cost, requires

Ω(n2) queries. In order to prove this, we design a new query model for the 3SAT problem

and show an Ω(n2) query lower bound for 3SAT in this model. We then use a reduction from
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3SAT to (1, 2)-TSP in [224] to prove the lower bound for (1, 2)-TSP; with some additional

changes, we also get an identical lower bound for graphic TSP.

The idea of proving query lower bound for APX-hard problems by reduction from 3SAT is

similar to the idea used in [60], and we follow their general approach. However, in [60], the

authors study lower bounds for problems in sparse graphs and hence the query model uses

only neighbor queries. So in their query model, the lower bound for 3SAT is Ω(n). In order

to prove an Ω(n2) query lower bound in the pair query model, we need to design a new

query model for 3SAT.

In the 3SAT problem, we are given a 3CNF instance on n variables, and the goal is to esti-

mate the largest fraction of clauses that can be satisfied by any assignment. The algorithm

is allowed to perform only one kind of query: is a variable x present in a clause c? If the

answer is yes, then the algorithm is given the full information about all variables that appear

in the clause c. The proof of the next theorem is deferred to Section 4.3.3.

Theorem 4.9. For any ε > 0, any algorithm that with probability at least 2/3 distinguishes

between satisfiable 3CNF instances and 3CNF instances where at most (7/8 + ε) fraction of

clauses can be satisfied, needs Ω(n2) queries.

4.3.1. Reduction from 3SAT to (1, 2)-TSP

We will utilize an additional property of the hard instances of 3SAT in Theorem 4.9, namely,

each variable occurs the same constant number of times where the constant only depends

on ε. We denote the number of variables by n, the number of clauses by m, and the number

of occurrences of each variable by k; thus m = kn/3.

We use the reduction in [224] to reduce a 3SAT instance to a (1, 2)-TSP instance. In this

reduction, there is a gadget for each variable and for each clause. Each of these gadgets has

size at most L = Θ(k2). Thus the (1, 2)-TSP contains N vertices where N ≤ L(n + m) =

L(k+3)n
3 . Let Gxj be the gadget of variable xj and Gci be the gadget of clause ci. There

is a ground graph which is the same for each 3SAT instance. Each variable gadget is
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connected with the gadgets for clauses that contain that variable. The reduction satisfies

the following property. If the 3SAT instance is satisfiable, then the (1, 2)-TSP instance

contains a Hamilton cycle supported only on the weight 1 edges. On the other hand, if at

most m − ` clauses can be satisfied in the 3SAT instance, the (1, 2)-TSP cost is at least

N + d`/2e. Thus there is a constant factor separation between the optimal (1, 2)-TSP cost

in the two cases. However, what remains to be shown is that any query algorithm for (1, 2)-

TSP can also be directly simulated on the underlying 3SAT instance with a similar number

of queries. The theorem below now follows by establishing this simulation.

Theorem 4.10. There is a constant ε0 such that any algorithm that approximates the (1, 2)-

TSP cost to within a factor of (1 + ε0) needs Ω(n2) queries.

Proof. We consider the following stronger queries for (1, 2)-TSP: for any query (u, v), if u

is in a vertex gadget Gxj and v is in a clause gadget Gci (or vice versa) and xj occurs in ci

in the 3SAT instance, then the algorithm is given all the edges incident on Gci . Otherwise

the algorithm just learns if the there is an edge between u and v.

Let ε = 1/16, and let the values of k, L and N correspond to this choice for ε according to

the redution in Section 4.3.1. Let ε0 = k
32(k+3)L . Consider the (1, 2)-TSP instance reduced

from the 3SAT instance generated by the hard distribution in Theorem 4.9 with ε = 1/16.

If the 3SAT instance is perfectly satisfiable, then the (1, 2)-TSP instance has a Hamilton

cycle of cost N . If the 3SAT instance satisfies at most (15/16)-fraction of clauses, then each

Hamilton cycle in the (1, 2)-TSP instance has cost at least

N + (1/8− ε)m/2 = N + (1/8− ε)kn/6 ≥ (1 +
(1/8− ε)k
2(k + 3)L

)N = (1 + ε0)N

For any query (u, v) in the (1, 2)-TSP instance, we can simulate it by at most one query

in the corresponding 3SAT instance as follows: if u is in a vertex gadget Gxj and v is in a

clause gadget Gci (or vice versa), then we make a query of xj and ci in the 3SAT instance.
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If the 3SAT query returns YES and the full information of ci, then we return all the edges

incident on Gci according to the reduction rule and the full information of ci. If the 3SAT

query returns NO or (u, v) are not in a vertex gadget and a clause gadget respectively, we

return YES if (u, v) is an edge in the ground graph and NO otherwise.

By Theorem 4.9, any algorithm that distinguishes a perfectly satisfiable 3SAT instance

from an instance where at most (15/16)-fraction of the clauses can be satisfied needs Ω(n2)

queries. So any algorithm that distinguishes a (1, 2)-TSP instance containing a Hamilton

cycle of length N from an instance that has minimum Hamilton cycle of cost (1 + ε0)N

needs Ω(n2) queries.

4.3.2. Ω(n2) Lower Bound for Graphic TSP

We can reduce an instance of (1, 2)-TSP to an instance of graphic TSP by adding a new

vertex that is adjacent to all other vertices. By doing so, any pair of vertices in the new

graph has a distance at most 2. On the other hand, the cost of graphic TSP in the new

graph differs by at most 1 from the cost of (1, 2)-TSP in the old graph. So the Ω(n2) query

lower bound for (1, 2)-TSP also holds for the graphic TSP problem.

4.3.3. An Ω(n2) Query Lower Bound for the 3SAT Problem

We first prove a lower bound of E3LIN2 problem. E3LIN2 is the problem of deciding the

satisfiability of a system of linear equations modulo 2, with three variables per equation.

We consider the following query model: the algorithm can query if an equation contains a

variable. If the answer is YES, then the algorithm is also given all the variables and the

right-hand side of the equation.

Theorem 4.11. For any ε > 0, any algorithm that distinguishes between a perfectly satisfi-

able E3LIN2 instance and an instance that satisfies at most (1/2 + ε)-fraction of equations

needs Ω(n2) queries with probability at least 2/3.
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We start by defining the hard distribution. The distribution is similar to the one in [60], but

the query model and therefore the proof are different. Every hard instance has n variables

x1, x2, . . . xn and m = kn equations e1, e2, . . . , em for some positive integer k. We construct

the following two distributions of E3LIN2.

• The distribution DNO is the distribution of NO-instance, and is generated as follows:

We first generate a random permuation σ : [1, 3m] → [1, 3m]. For each 1 ≤ i ≤ m,

we assign equation ei the variables yi1 = xdσ(3i−2)
3k

e, y
i
2 = xdσ(3i−1)

3k
e and y

i
3 = xdσ(3i)

3k
e.

The equation ei is yi1 + yi2 + yi3 = ±zi where zi is choosen to be +1 or −1 uniformly

randomly.

• The distribution DY ES is the distribution of YES-instance, and is generated as follows:

We first assign the variables to each equation with the same process as DNO. Then we

randomly choose an assignment of vaiables, say A?. Finally, for each equation ei, we

set yi1 + yi2 + yi3 = zi where zi equals the sum of yi1 + yi2 + yi3 according to assignment

A?.

Our final distribution generates an instance from the NO-distribution with probability 1/2

and an instance from the YES-distribution with probability 1/2.

If the instance is generated by DY ES , then it is satisfied by the assignment A?. The following

lemma proves that if the instance is generated by DNO, then with high probability, the at

most (1/2 + ε)-fraction of the equations can be satisfied.

Lemma 4.3.1. For any ε > 0, there exists a positive integer k, such that if an instance of

E3LIN2 is randomly chosen from DNO with n variables and m = kn equations, then with

probability 9/10, at most (1/2 + ε)-fraction of the equations can be satisfied.

Proof. Let k = 8/ε2 and so m = 8n
ε2
. Fix an assignment A. For each equation ei, the

probability that A satisfies ei is 1/2. Since in distribution DNO, the right hand side of the

equations are sampled independently, the event that A satisfies any equation is independent
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of the event of A satisfying any subset of the other equations. By the Chernoff bound, the

probability that A satisfies at least (1/2+ε)-fraction of equations is at most e−
ε2(m/2)

4 ≤ e−n.

Taking the union bound over all possible assignments A, the probability that there exists an

assignment that satisfies at least (1/2+ε)-fraction of equations is at most 2n·e−n < 1/10.

Now we prove that it is hard to distinguish between the YES and NO instances of this

distributions. Define a bipartite graph Gσ associated with the random permutation σ as

follows: there are 3m vertices on each side of Gσ, there is an edge between the ith vertex

on the left and the jth vertex on the right if and only if σi = j. Since σ is chosen uniformly

at random, Gσ is a randomly chosen perfect matching. Associate variable xi with the

(3k(i − 1) + 1)th to the (3ki)th vertices on the left and associate equation ej with the

(3j − 2)th to the (3j)th vertex on the right. A variable occurs in an equation if and only if

there is an edge between the vertices associate with the variable and the equation.

Fix an algorithm A, let EAY ES and EANO be the set of equations given to A after all the

queries to an instance generated by DY ES and DNO. Denote the knowledge graph GA as

the subgraph of Gσ induced by the equations given to A and the variables that occur in these

equations. The following lemma shows that if an algorithm only discover a small fraction of

equations, then the set of equations discovered by the algorithm has the same distribution

in the YES and NO cases with some high constant probability.

Lemma 4.3.2. For any k > 0, there exists a constant δ0 such that: if GA contains at most

3δ0n edges, then the distributions of EAY ES and EANO are identical with probability at least

9/10.

The proof of Lemma 4.3.2 is similar to the proof of Theorem 8 in [60]. We prove that the

left hand side of the equations in EAY ES and EANO are independent, and thus the distribution

of the right hand side are identical.

Proof. We first prove that there is a constant δ0 such that with probability at least 9/10,
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any set of equations of size δn ≤ δ0n contains more than 3
2δn variables. Fix a set of variables

V of size 3
2δn. For any equation e, the probability that it contains only the variables in V is

4.5kδn
3kn ·

4.5kδn−1
3kn−1 ·

4.5kδn−2
3kn−2 ≤ 4δ3. For any equation e and any set of equations E that does not

contain e, the events that e only contains variables in V and the equations in E only contain

variable in V are negatively correlated. So for any set of equations of size δn, the probability

that these equations only contain variables in V is at most (4δ3)δn = 4δnδ3δn. Taking the

union bound over all possible set of equations of size δn, the probability that one of them

only contains variables in V is at most 4δnδ3δn ·
(
kn
δn

)
≤ 4δnδ3δn · (ek/δ)δn = (4ek)δnδ2δn.

We now take the union bound over all sets of variables of size 3
2δn; the probability that

there exists a set of equations of size δn which only contains 3
2δn variables is at most

(4ek)δnδ2δn ·
(

n
1.5δn

)
≤ (4ek)δnδ2δn · (2e

3δ )1.5δn ≤ (3e2.5k)δnδ0.5δn = (40k
√
δ)δn ≤ (40k

√
δ0)δn.

Let δ0 <
1

11(40k)2 , and taking union bound over all possible sizes i ranging from 1 to δ0n,

the probability that any set of equations of size i ≤ δ0n contains more than 3
2 i variables is

at least 1−
∑δ0n

i=1( 1
11)i ≥ 9/10.

So with probability at least 9/10, any set of equations with size i ≤ δ0n contains more than

3
2 i variables, which means there is at least one variable that occurs at most once in these

equations by the pigeonhole principle. We prove that under this event, the distribution of

EAY ES and EANO are identical if GA contains at most 3δ0n edges.

Notice that the left hand side of of EAY ES and EANO are always identical, we only need to prove

that the distributions of the right hand side are identical when GA has at most 3δ0n edges.

In this case there are at most δ0n equations in EAY ES since each equation is associated with

3 vertices. Let the right hand sides of EAY ES and EANO be vectors bY ES and bNO respectively.

We prove the distributions of bY ES and bNO are identical by induction on the size of bY ES

(which is also the number of equations in EAY ES).

The base case is when there is no equation in EAY ES at all (which means the algorithm does

not discover any equation). In this case, both bY ES and bNO are empty vectors.
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In the induction step, |bY ES | = |bNO| > 0. Since the number of equations is at most δ0n,

there exists a variable v that only occurs once. Without loss of generality, suppose it occurs

in the last equation. Let b′Y ES and b′NO be the vector obtained by deleting the last entry of

bY ES and bNO respectively. By induction hypothesis, the distributions of b′Y ES and b′NO are

identical. Moreover, v only occurs in the last equation and only occurs once, the distribution

of the last entry of bY ES is uniform, independent of the other entries, so is the last entry of

dNO. So the distributions of bY ES and bNO are identical.

Next we prove that in order to discover a constant fraction of equations, we need Ω(n2)

queries.

Lemma 4.3.3. For any δ0 > 0, there exists a δ1 > 0 such that: for any algorithm that

makes at most δ1n
2 queries, GA contains at most 3δ0n edges with probability 9/10.

The proof of Lemma 4.3.3 is similar to the proof of Theorem 5.2 in [18] and we will prove it

later.

Proof of Theorem 4.11. For any ε > 0, let k, δ0, δ1 be the constant defined in Lemma 4.3.1,

Lemma 4.3.2, Lemma 4.3.3 respectively. Consider two instance IY ES and INO generated as

follows: we generate the instance IY ES by distribution DY ES , then let the left hand side of

INO be the same as the left hand side of IY ES , generate the right hand side of INO uniformly

independently for each equation. Since the process of generating the left hand side is the

same for DY ES and DNO, the distribution of INO is indeed DNO. By Lemma 4.3.1, with

probability 9/10, the INO satisfies at most (1/2 + ε)-fraction of equations. By Lemma 4.3.3,

if an algorithm makes at most δ1n
2 queries, then it discovers at most δ0n equations with

probability 9/10. Base on this event, by Lemma 4.3.2, the equations discovered by the

algorithm has the same probability of being generated by DY ES and by DNO. By the union

bound, with probability at most 7/10, INO is an instance that satisfies at most (1/2 + ε)-

fraction of the equations and the algorithm cannot distinguish between IY ES and INO.
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We use the following standard reduction from Equation to 3SAT in [151]. Given a set

of equations E , we construct a 3CNF formula Φ = F (E) as follows: For any equation

Xi +Xj +Xk = 1 in E , we add four clauses (Xi ∨Xj ∨Xk), (Xi ∨ X̄j ∨ X̄k), (X̄i ∨Xj ∨ X̄k)

and (X̄i ∨ X̄j ∨Xk) into Φ; for any equation Xi + Xj + Xk = 0 in E , we add four clauses

(X̄i ∨Xj ∨Xk), (Xi ∨ X̄j ∨Xk), (Xi ∨Xj ∨ X̄k) and (X̄i ∨ X̄j ∨ X̄k) into Φ. It is clear that

if an assigment satisfies an equation in E , then it also satisfies all of the four corresponding

clauses in Φ. Otherwise it satisfies three of the four corresponding clauses. So we have the

following lemma.

Lemma 4.3.4. For any γ ∈ (0, 1], given a set of equations E and its corresponding 3CNF

formula Φ = F (E), for any assignment A, A satisfies γ-fraction of equations in E if and

only if A satisfies (3/4 + γ/4)-fraction of clauses in Φ.

Proof of Theorem 4.9. For any 3CNF formula generated from a E3LIN2 instance E we con-

sider a stronger type of query model for 3SAT. For any query between a variable and a

clause, if the variable occurs in the clause, then the algorithm is not only given the entire

clause, but also the other 3 clauses corresponding to the same equation in E . The new query

is equivalent to the query in E3LIN2.

4.3.4. Proof of Lemma 4.3.3

The proof of Lemma 4.3.3 is similar to the proof of Theorem 5.2 in [18]. However, the

argument from [18] cannot be used in a black-box manner. So, here we present a complete

proof. The following lemma from [18] is useful.

Lemma 4.3.5 (Lemma 5.4 of [18]). Let G′(L′ ∪R′, E′) be an arbitrary bipartite graph such

that |L′| = |R′| = N , and each vertex in G′ has degree at least 2N/3. Then for any edge

e = (u, v) ∈ E′, the probability that e is contained in a perfect matching chosen uniformly

at random in G′ is at most 3/N .

Denote the vertex sets in bipartite graph Gσ as L and R. We have |L| = |R| = 3kn. Suppose
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whenever a query finds a variable inside an equation, the algorithm is not only given the

equation, but also edges incident on the vertices associated with the equation in Gσ. Then,

GA contains exactly those edges that are given to algorithm in response to the queries.

The query process can be viewed as the task of finding δ0n edges in Gσ by the following

queries between a variable xi and an equation ej : query if there is at least one edge between

U and V where U ⊂ L is the set of vertices associated with xi and V ⊂ R is the set of

vertices associated with ej . If so, the algorithm is given all edges incident on the vertices in

V . To prove the lemma, we only need to prove that finding 3δ0n edges in Gσ in this model

needs Ω(n2) queries.

For simplicity, we consider the following query model instead: a query asks if there is an

edge between a pair of vertices u and v. If so, the algorithm is given all three edges incident

on the vertices associated with the same equation as v. Any original query can be simulated

by 3k ·3 = 9k new queries. So it is sufficient to prove that we need Ω(n2) queries in the new

model.

We say that an edge (u, v) in Gσ has been discovered if the edge is given to the algorithm.

After t queries have been made by the algorithm, let LU (t) ⊆ L and RU (t) ⊆ R denote the

set of undiscovered vertices in L and R respectively. Let E(t) ⊆ LU (t)× RU (t) denote the

set of edge slots that have not yet been queried/discovered. Note that by our process for

generating Gσ, the undiscovered edges correspond to a random perfect matching between

LU (t) and RU (t) that is entirely supported on E(t).

We will analyze the performance of any algorithm by partitioning the queries into phases.

The first query by the algorithm starts the first phase, and a phase ends as soon as three

edges in Gσ have been discovered. Let Zi be a random variable that denotes the number of

queries performed in phase i of the algorithm. Thus we wish to analyze E
[∑δ0n

i=1 Zi

]
.

For any vertex w ∈ (LU (t) ∪ RU (t)), we say that the uncertainty of w is d if there are at

least d edge slots in E(t) that are incident on w.
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At time t, we say a vertex w ∈ (LU (t) ∪ RU (t)) is bad if the uncertainty of w is less than

2.5kn. Note that if at some time t none of the vertices in (LU (t) ∪ RU (t)) are bad then in

the next nk/2 time steps, the degree of any vertex in LU (t) ∪RU (t) in E(t) remains above

2kn if there is no successful query. Thus by Lemma 4.3.5, the probability that any query

made during the first nk/2 queries in the phase succeeds (in discovery of a new edge in Gσ)

is at most 3/(3kn) = 1/(kn).

We say a phase is good if at the start of the phase, there are no bad vertices, and the phase

is bad otherwise.

Proposition 4.3.6. The expected length of a good phase is at least nk/4.

Proof. If at the start of the phase i, no vertex is bad, then for the next nk/2 time steps,

the probability of success for any query is at most 1/(kn). Thus the expected number of

successes (discovery of a new edge in Gσ) in the first nk/2 time steps in a phase is at most

1/2. By Markov’s inequality, it then follows that with probability at least 1/2, there are no

successes among the first nk/2 queries in a phase. Thus the expected length of the phase is

≥ nk/4.

Note that if all phases were good, then it immediately follows that the expected number of

queries to discover 3δ0n edges is Ω(n2). To complete the proof, it remains to show that most

phases are good. For ease of analysis, we will give the algorithm additional information for

free and show that it still needs Ω(n2) queries in expectation even to discover the first 3δ0n

edges in Gσ.

Whenever the algorithm starts a bad phase, we immediately reveal to the algorithm an

undiscovered edge (u, v) in Gσ (as well as other two edges incident on the vertices associated

with the same equation as v) that is incident on an arbitrarily chosen bad vertex. Thus each

bad phase is guaranteed to consume a bad vertex (i.e., make the bad vertex discovered and

hence remove it from further consideration). On the other hand, to create a bad vertex w,
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one of the following two events needs to occur: the number of discovered edges in Gσ plus

the number of queries is at least 3kn− 2.5kn = kn/2.

Since we are restricting ourselves to analyzing the discovery of first δ0n edges in Gσ, any

vertex w that becomes bad requires at least kn/2 queries incident on it. Thus to create

K bad vertices in the first δ0n phases, we need to perform at least (K · (kn/2))/2 queries;

here the division by 2 accounts for the fact that each query reduces uncertainty for two

vertices. It now follows that if the algorithm encounters at least δ0n/2 bad phases among

the first δ0 phases, then K ≥ δ0n/2 and hence it must have already performed δ0kn
2/8

queries. Otherwise, at least δ0n/2 phases among the first δ0 phases are good, implying that

the expected number of queries is at least (δ0n/2) · (nk/4) = Ω(n2). This completes the

proof of Lemma 4.3.3 with Markov’s inequality.

4.4. A Reduction from Matching Size to TSP Cost Estimation

In this section, we give a reduction from the problem of estimating the maximum match-

ing size in a bipartite graph to the problem of estimating the optimal (1, 2)-TSP cost. An

essentially identical reduction works for graphic TSP cost using the idea described in Sec-

tion 4.3.2.

We will denote the size of the largest matching in a graph G by α(G). Given a bipartite

graph G(V,E) with n vertices on each side, we construct an instance G′(V ′, E′) of the (1, 2)-

TSP problem on 4n vertices such that the optimal TSP cost on G′ is 5n− α(G). Thus for

any ε ∈ [0, 1/5), any algorithm that can estimate (1, 2)-TSP cost to within a (1 + ε)-factor,

also gives us an estimate of the matching size in G to within an additive error of 5εn.

We will now describe our construction of the graph G′. For clarity of exposition, we will de-

scribe G′ as the graph that contains edges of cost 1 – all other edges have cost 2. Suppose the

vertex set V of G consists of the bipartition V1 = {v1
1, v

1
2, . . . , v

1
n} and V2 = {v2

1, v
2
2, . . . , v

2
n}.

We construct the graph G′ as follows: we start with the graph G, then add three sets of ver-

tices V0, V3 and V4, such that V0 = {v0
1, v

0
2, . . . , v

0
n/2} with n/2 vertices, V3 = {v3

1, v
3
2, . . . , v

3
n}
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with n vertices, and V4 = {v4
1, v

4
2, . . . , v

4
n/2} with n/2 vertices. The graph G′ will only have

edges between Vj and Vj+1 (j = {0, 1, 2, 3}). We will denote the set of edges between Vj

and Vj+1 as Ej,j+1. For any vertex v0
i ∈ V0, it connects to v1

2i−1 and v1
2i in V1. E1,2 has the

same edges as the edges in G. Each vertex v2
i ∈ V2 is connected to vertex v3

i in V3, that is,

vertices in V2 and V3 induce a perfect matching (identity matching). Finally, each vertex in

V3 is connected to all the vertices in V4. See Figure 4.1(a) for an illustration.

V0
V1 V2 V3

V4

(a) The illustration of G′.

V0
V1 V2 V3

V4

(b) The illustration of tour T , where V2 and
V3 are arranged with order (v2

f(1), . . . , v
2
f(6)) and

(v3
f(1), . . . , v

3
f(6)).

Figure 4.1: Illustration of the reduction for n = 6.

The lemmas below establish a relationship between matching size in G and (1, 2)-TSP cost

in G′.

Lemma 4.4.1. Let M be any matching in G. Then there is a (1, 2)-TSP tour T in G′ of

cost at most 5n− |M |.

Proof. Let f : [n] → [n] be any bijection from [n] to [n] such that whenever a vertex v1
i is

matched to a vertex v2
j in M , then f(i) = j. Consider the following (1, 2)-TSP tour T : each

vertex v0
i ∈ V0 connects to v1

2i−1 and v1
2i in T ; each vertex v1

i ∈ V1 connects to v0
d(i+1)/2e and

v2
f(i) in T . For any v2

f(i) ∈ V2, it connects to v1
i and v3

f(i) in T . For any vertex v3
f(i) ∈ V3, if

i > 1, it connects to v2
f(i) and v4

di/2e in T ; if i = 1, it connects to v2
f(i) and v4

n/2 in T . See

Figure 4.1(b) as an illustration. T is clearly a TSP-tour.
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All edges in T are also edges in G′ except for possibly some edges between V1 and V2. If

v1
i is matched in M , then (v1

i , v
2
f(i)) is an edge in G′, otherwise it is not in G′ and thus

has weight 2. So T only has n − |M | weight 2 edges, which means T has cost at most

4n+ n− |M | = 5n− |M |.

Lemma 4.4.2. For any (1, 2)-TSP tour T in G, T has cost at least 5n− α(G).

To prove Lemma 4.4.2, we first prove an auxiliary claim.

Claim 4.4.3. Suppose G = (V1, V2, E) is a bipartite graph which has maximum size α(G).

For any 2-degree subgraph H of G, if there are at most X vertices in V1 has degree 2 in H,

then there are at most α(G) +X vertices in V2 which have degree at least 1 in H. Similarly,

if there are at most X vertices in V2 has degree 2 in H, then there are at most α(G) + X

vertices in V1 which have degree at least 1 in H.

Proof. If there are at most X vertices in V1 has degree 2 in H. We construct H ′ by deleting

an arbitrary edge on each degree 2 vertex in V1, then construct H ′′ by deleing an arbitrary

edge on each degree 2 vertex in V2. Since H ′′ does not have degree two vertex, it is a

matching of G. So the number of degree 1 vertices in V2 in H ′′ is at most α(G). On the

other hand, any vertex in V2 which has degree at least 1 in H ′ also has degree 1 in H ′′. So

there are at most α(G) vertices of degree at least 1 in V2 in H ′. Furthermore, since there are

only X vertices of degree 2 in V1 in H, we delete at most X edges in H when constructing

H ′. So H ′ has at most X more isolate vertices in V2 than in H, which means H has at most

α(G) +X vertices with degree at least 1 in V2.

The second part of the claim follows via a similar argument as the first part of the claim.

Proof of Lemma 4.4.2. Let a01 be the number of edges in T ∩ E0,1, a2,3 be the number of

edges in T ∩ E3,4. Let GX be the intersection graph of G and T . Since the vertices in V0

only connect to the vertices in V1 in G′, and any vertex in T has degree 2, there are at

least n − a01 edges incident on V0 in T are not an edge in G′. On the other hand, since

126



any vertex in V1 is incident on at at most 1 edge in E0,1, there are at least a01 vertices in

V1 is connected to a vertex in V0 in T , which means there are at most n − a01 vertices in

V1 has degree 2 in GX . By Claim 4.4.3, there are at most n − a01 + α(G) vertices in V2

has edge in GX . For any isolate vertex in V2 in T , it has only one edge in G′ connecting to

V3, so this vertex must incident on an edge in T which is not in G′. So there are at least

n− (n− a01 + α(G)) = α(G)− a01 edges incident on V2 in T which is not in G′.

There are 2n edges incident on V3 in T , but among them, there are only a23 edges between

V2 and V3 which is also in G′, and there are at most n edges between V3 and V4 in T since

each vertex has degree only 2. So there are at least 2n−n−a23 = n−a23 edges incident on

V3 which is not in G′. On the other hand, since any vertex in V2 is incident on at at most 1

edge in E2,3, there are at least a23 vertices in V2 is connected to a vertex in V3 in T , which

means there are at most n − a23 vertices in V2 has degree 2 in GX . By Claim 4.4.3, there

are at most n − a23 + α(G) vertices in V1 has edge in GX . For any isolate vertex in V1 in

T , it has only one edge in G′ connecting to V0, so this vertex must incident on an edge in T

which is not in G′. So there are at least n− (n− a23 + α(G)) = a23 − α(G) edges incident

on V1 in T which is not in G′.

Since any edge has two endpoints, the number of edges in T but not in G′ is at least

((n − a01) + (a01 − α(G)) + (n − a23) + (a23 − α(G)))/2 = n − α(G), which means T has

cost at least 4n+ n− α(G) = 5n− α(G).

Corollary 4.4.4. For any ε ∈ [0, 1/5), any algorithm that can estimate (1, 2)-TSP cost to

within a (1 + ε)-factor, can be used to estimate the size of a largest matching in a bipartite

graph G on 2n vertices to within an additive error of 5εn.

Proof. We use the reduction above to construct a (1, 2)-TSP instance G′ on 4n vertices. By

Lemma 4.4.1 and Lemma 4.4.2, the optimal TSP cost for G′ is 5n− α(G). We now run the

(1 + ε)-approximation algorithm for (1, 2)-TSP on graph G′ (note that the reduction can

be simulated in each of neighbor query model, pair query model, and the streaming model
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without altering the asymptotic number of queries used). Suppose the output is C which

satisfies (1 − ε)(5n − α(G)) ≤ C ≤ (1 + ε)(5n − α(G)), which means 5n − α(G) − 5εn <

C < 5n− α(G) + 5εn. Let α̂ = 5n− C, we have α(G)− 5εn < α̂ < α(G) + 5εn.

4.5. Additional Lower Bound Results for Approximating Graphic and (1, 2)-

TSP Cost

In this section, we prove several additional lower bounds on approximating the costs of

graphic TSP and (1, 2)-TSP. Many of these results involve constructing a simple distribution

on graphs where some graphs in the support of the distribution have TSP tours of cost close

to n while others have cost close to 2n. We show that no deterministic algorithm can

distinguish between these two types of instances, and then invoke Yao’s principle [253] to

prove lower bounds for randomized algorithms. When the graphs in the distribution have

diameter 2, the graphic TSP instances are also instances of the (1, 2) TSP problem. Using

this approach we show an Ω(n) lower bound for both metric TSP and (1, 2)-TSP costs in

our query model.

In the standard graph query model allowing both pair queries and neighbor queries, we

show a stronger lower bound of Ω(ε2n2) for randomized algorithms that estimate the cost

of graphic TSP to within a factor of (2 − ε). This shows that the distance query model is

strictly more powerful for estimating graphic TSP cost.

Using Dirac’s theorem about the existence of Hamilton Cycles in very dense graphs, we show

an Ω(n2) lower bound for deterministic algorithms to get any approximation better than 2.

For the problem of finding a (2− ε)-approximate tour, rather than just estimating its cost,

we show an Ω(εn2) lower bound for both graphic TSP and (1, 2)-TSP.

Finally, we show a space lower bound of Ω(εn) for approximating Graphic TSP to within

2− ε in the streaming model.
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4.5.1. An Ω(n) Query Lower Bound for (2 − ε)-approximating (1, 2)-TSP and

Graphic TSP Cost

In this subsection, we show that in our query model, any randomized algorithm that approx-

imates the cost of minimum graphic TSP or (1, 2)-TSP to within a factor of 2− ε for any ε,

we need Ω(n) queries. As stated above, it suffices to create a distribution over (n+1)-vertex

graphs such that any deterministic algorithm requires Ω(n) queries to check if the cost of

minimum (1, 2)-TSP or graphic TSP is n+ 1 or 2n on this distribution.

The distribution is generated as follows: we start with a “star” graph whose vertices set

is {v0, v1, v2, . . . , vn} where v0 is connected to all other vertices. Then we pick a random

permutation π over [n]. With probability half, we connect vπ(i) and vπ(i+1), for 1 ≤ i ≤ n−1.

In this case, the resulting graph is the wheel graph. With probability half we do not join

successive vertices in π, and the resulting graph is a star graph. Since v0 is connected to

all other vertices, any two vertices have distance 1 or 2. So graphic TSP and (1, 2)-TSP are

the same in this distribution.

Lemma 4.5.1. A wheel graph admits a TSP tour of cost n + 1 while any TSP tour in a

star graph has cost at least 2n.

Proof. In a wheel graph, the tour (v0, vπ(1), vπ(2), . . . , vπ(n), v0) has cost n+ 1 since all edges

are weight 1. For any tour in a star graph, only the edges incident on v0 have weight 1. So

the cost of the tour is at least 2 + 2(n− 1) = 2n.

Lemma 4.5.2. If an algorithm only makes n/3 queries, then with probability at least 1/3,

the answer to all these queries is the same in a wheel graph and a star graph.

Proof. For any query (vi, vj), if one of vi or vj is v0, then the answer is 1 in both cases. If

none of vi or vj is v0, then the answer is 2 if the graph is the star graph. If the graph is a

wheel graph, then the answer is 1 only if i and j are adjacent to each other in π, which has

probability at most 2/n. By union bound, with probability at least 1/3, the answers of all
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these queries are the same in both cases.

By Lemma 4.5.1 and Lemma 4.5.2, we have the following lower bound for graphic TSP and

(1, 2)-TSP problem in the distance query model.

Theorem 4.12. For any ε > 0, in the distance query model, any algorithm that with

probability at least 2/3 approximates the cost of (1, 2)-TSP or graphic TSP within a factor

of (2− ε) requires Ω(n) queries.

4.5.2. An Ω(ε2n2) Query Lower Bound for (2 − 2ε)-approximating Graphic TSP

in Standard Graph Query Model

In this subsection, if an algorithm for graphic TSP is given only access to the underlying

graph G via standard graph queries, namely, pair queries, degree queries and neighbor

queries, then any randomized algorithm for approximating graphic TSP cost to within a

factor of 2− ε for any ε > 0, requires Ω(ε2n2) queries. Again by Yao’s principle, it suffices

to create a distribution over n-vertex graphs such that any deterministic algorithm requires

Ω(ε2n2) queries to distinguish between graphs where the cost of graphic TSP is n and graphs

where the graphic TSP cost is at least (2− 2ε)n− 1.

We start with a graph G with three parts: a path P with (1−2ε)n vertices, and two cliques

C1 and C2 of size εn. Let u1, u2, . . . , uεn be the vertices in C1, and v1, v2, . . . , vεn be the

vertices in C2 . Connect all vertices in C1 to an endpoint of P , and connect all vertices in

C2 to the other endpoint of P . For any vertex ui (resp. vi), we say the jth neighbor of ui

(resp. vi) is uj (resp. vj) for any j 6= i, and the ith neighbor is the endpoint of P . For any

vertex in P , we pick an arbitrary order of its neighbors. With probability half, we change

the graph to create a yes case as follows: we pick two different indices i and j from [εn]

randomly. We change the jth neighbor of ui and vi to be vj and uj respectively and the ith

neighbor of uj and vj to be vi and ui respectively. Otherwise, we do not change the graph

and say we are in no case.

Lemma 4.5.3. If we are in the yes case, then the cost of graphic TSP is n. Otherwise, the

130



cost of the graphic TSP is at least (2− 2ε)n− 1.

Proof. If we are in the yes case, consider the tour that starts at ui, and goes through the

vertices in C1 in arbitrary order (but not visiting uj immediately after ui), then goes to the

endpoint of P that connects to all vertices in C1, goes through the path P , then visits the

vertices in C2 in arbitrary order ending with vj (but not visiting vi right before vj), and

finally goes back to ui. All edges in this tour have weight 1. So the cost of this tour is n.

If we are in the no case, then all the edges in the path are bridges. So by Lemma 4.2.3, the

cost of graphic TSP is at least n+ (1− 2ε)n− 1 = (2− 2ε)n− 1.

Lemma 4.5.4. If an algorithm only makes ε2n2/4 queries, then with probability at least

1/3, the answer to these queries are the same in the yes and no cases.

Proof. The degree of the vertices are the same in both cases. So, any neighbor query has

the same answer. For any pair query or neighbor query, all queries on the vertices in P

also have the same answer. For any query on the vertices in the cliques, we say a query is

querying a pair of indices (k, `) if it is a pair query between two vertices with indices k and

`, or it is a neighbor query that queries the kth (resp. `th) neighbor of u` or v` (resp. uk

or vk). A pair query or a neighbor query has different answers in yes and no cases only

when it is querying the indices i and j that we picked when generating the yes case. Since

i and j are chosen randomly, the probability that a query is querying i and j is 2
εn(εn−1) . If

the algorithm only make ε2n2/4 queries, the probability that there is a query with different

answers in yes case and no case is at most ε2n2

2εn(εn−1) < 2/3 by union bound.

By Lemma 4.5.3 and Lemma 4.5.4, we have the following lower bound for graphic TSP

problem in the standard query model.

Theorem 4.13. For any ε > 0, if an algorithm approximates the cost of graphic TSP within

a factor of (2 − ε) with probability at least 2/3 using only degree queries, neighbor queries
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and pair queries, then it requires Ω(ε2n2) queries.

4.5.3. An Ω(n2) Query Lower Bound for Deterministic Algorithms for (1, 2)-TSP

and Graphic TSP

In this subsection, we prove that in our stronger, distance query model, any deterministic

algorithm that approximates cost of graphic TSP or (1, 2)-TSP within a factor of (2 − ε)

needs Ω(εn2) queries.

We first consider the (1, 2)-TSP problem. We prove that for any εn2/5 queries, even if all

the answers are that the distance is 2, the graph could still have a TSP of cost n+ εn.

Consider the graph H whose edge set is pairs of vertices that have not been queried. Since

there are only εn2/5 queries, there are at least (1 − ε)n vertices that have been queried at

most 2n/5 < (1−ε)n/2−1 times. These vertices has degree at least (n−1)−((1−ε)n/2−1) =

(1 + ε)n/2 in H. Let V0 be an arbitrary set that contains exactly (1− ε)n of these vertices.

The subgraph ofH induced by V0 has minimum degree at least (1+ε)n/2−εn = (1−ε)n/2 =

|V0| /2. By the following well-known theorem due to Dirac about the existence of Hamilton

cycles in dense graphs, there is a Hamilton cycle in the subgraph of H induced by V0.

Lemma 4.5.5 (Dirac [103]). Any n-vertex graph G where each vertex has degree at least

n/2 has a Hamilton cycle.

So G has a path of length (1 − ε)n that only contains weight one edges, any TSP tour

obtained by expanding this path has length at most (1 − ε)n + 2εn = (1 + ε)n. Thus it is

possible that G contains a tour of cost (1 + ε)n after εn2/5 queries.

For graphic TSP problem, we use the same trick as in Section 4.3, adding a vertex that

connects to all other vertices. This results in the same lower bound for graphic TSP as for

(1, 2)-TSP.

Theorem 4.14. Any deterministic algorithm that approximates the cost of graphic TSP or

(1, 2)-TSP to within a factor of (2− ε) using distance queries needs Ω(εn2) queries.
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4.5.4. An Ω(εn2) Lower Bound for Finding a (2 − ε)-Approximate (1, 2)-TSP or

Graphic TSP Tour

While our focus in this paper has been on estimating the cost of (1, 2)-TSP or graphic

TSP to within a factor that is strictly better than 2, we show here that if the goal were

to output an approximate (1, 2)-TSP tour or graphic TSP tour (not just an estimate of

its cost), then even with randomization, any algorithm requires Ω(εn2) distance queries to

output a (2− ε)-approximate solution for any ε > 0. We start by showing this lower bound

for (1, 2)-TSP.

We create a distribution over n-vertex graphs with (1, 2)-TSP cost (1 + o(1))n such that

with a large constant probability, any deterministic algorithm requires Ω(εn2) queries to

output a tour that contains at least 3εn weight-1 edges .

We generate the graph G with n vertices {v1, v2, . . . , vn} as follows: we first generate a

random permutation π : [n]→ [n]. For any i 6= j, if π(i) = j, then vi and vj are connected

in G.

By construction of G, it consists of vertex disjoint cycles, and each cycle in G corresponds

to a cycle in permutation π. Since the expected number of cycles in a random permutation

is equal to the nth harmonic number, which is O(log n) [134], G has a cycle cover with

O(log n) cycles in expectation. By Markov’s inequality, the number of cycles in G is o(n)

with probability 1 − o(1). If we break these cycles into paths and link them in arbitrary

order, we obtain a tour of cost at most n+o(n). So the cost of (1, 2)-TSP of G is (1+o(1))n

with probability 1− o(1).

Next, we prove that any algorithm needs Ω(n) queries to find εn edges. Construct a graph

H that only contains a perfect matching such that the ith vertex on the left is matched to

the jth vertex on the right if and only if π(i) = j.

Consider the problem of finding the edges in H by pair queries. Each pair query in G can

be simulated by at most 2 pair queries in H. Furthermore, any tour in G corresponding to a

133



perfect matching between the vertices in H. So to prove the lower bound in (1, 2)-TSP, we

only need to prove that any algorithm that output a perfect matching between the vertices

in H contains at most 3εn edges in H.

The following lemma follows from the arguments in [18] (also similar to the arguments in

Section 4.3.4) about the lower bound for finding edges in a random perfect matching.

Lemma 4.5.6 (Section 5.2 in [18]). Any algorithm needs Ω(εn2) queries to find εn edges in

a random perfect matching with sufficiently large constant probability.

Finally, we prove that if an algorithm only find εn edges in H, then any output matching

contains εn+ o(1) edges in H with large constant probability. Suppose the algorithm only

makes ε(1 − ε)(1 − 2ε)n2/3 queries, then there are at most ε(1 − ε)n vertices on the left

(resp. right) being queried at least (1 − ε)n/4 times. Let V0 be the set of vertices v in H

such that the edge incident on v is not found by the algorithm and both v and its neighbor

are not queried (1− 2ε)n/3 times. V0 contains at least (1− ε)2n > (1− 2ε)n vertices. Let

H0 be the subgraph of H induced by V0. In H0, each vertex v has 3
4 |V0| vertices u on the

other side such that the algorithm does not query the pair (u, v).

By Lemma 4.3.5, each pair of vertices in V0 contains an edge with probability O( 1
n). So for

any perfect matching between the vertices in H, any edge incident on a vertices in V0 is

also in H with probability only O( 1
n). So there are o(n) edges incident on the vertices in V0

that are also edges in H with probability 1 − o(1) by Markov’s inequality. So the perfect

matching contains at most 2εn + o(n) < 3εn edges in H with probability 1 − o(1), which

implies the same lower bound for (1, 2)-TSP.

For graphic TSP problem, we use the same trick as in Section 4.3 of adding a vertex that

connects to all vertices to prove the same lower bound as for (1, 2)-TSP.

Theorem 4.15. Any algorithm that output a graphic TSP or (1, 2)-TSP tour within a factor

of (2− ε) using distance query with with sufficiently large constant probability needs Ω(εn2)
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queries.

4.5.5. An Ω(εn) Lower Bound for (2 − ε) Approximation of Graphic TSP in the

Streaming Model

In this subsection, we prove that any single-pass streaming algorithm that approximates the

cost of graphic TSP in insertion-only streams to within a factor of (2− ε) with probability

at least 2/3 requires Ω(εn) space.

To prove the lower bound for single-pass streaming algorithm, it is sufficient to prove the

lower bound in the one-way communication model. The graphic TSP problem in the com-

munication model is the two-player communication problem in which the edge set E of a

graph G(V,E) is partitioned between Alice and Bob, and their goal is to approximate the

cost of the graphic TSP of G.

We prove the lower bound by a reduction from the Index problem, In Index, Alice is given a

bit-string x ∈ {0, 1}N , Bob is given an index k? ∈ [N ], and the goal is for Alice to send a

message to Bob so that Bob outputs xk? . It is well-known that any one-way communication

protocal that solves Index with probability 2/3 requires Ω(N) bits of communication [189].

We use the Index problem with size N = εn/4. We will construct a graph G such that the

cost of graphic TSP is at most n+ 2N if xk? = 1 and at least 2n−N − 1 if xk? = 0. Since

N = εn/4, in order to approximate the cost of graphic TSP within a factor of (2− ε), Alice

and Bob need to be able to check if the cost of graphic TSP is larger than 2n− 2N or less

than n+ 2N .

Reduction:

Given an instance of Index with size N = εn/4:

1. Alice and Bob construct the following graph G(V,E) with no communication: The

vertex set V is a union of three set P , U , W , where P = {v1, v2, . . . , vn−2N}, U =

{u1, u2, . . . , uN} and W = {w1, w2, . . . , wN}. In Alice’s graph, all vertices in P form a

path, whose endpoints are v1 and vn−2N , for any i ∈ [N ], there is an edge between ui
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and wi. Furthermore, v1 connects to all ui such that xi = 1 in her input in the Index

instance. In Bob’s graph, v1 connects to all wi for i 6= k? and wk? connects to vn−2N

instead.

2. Alice and Bob then approximate the cost of graphic TSP of the graph G using the

best protocol. Bob outputs xk? = 0 if the cost of graphic TSP is larger than 2n− 2N

and outputs xk? = 1 otherwise.

The communication cost of this protocol is at most as large as the communication complexity

of the protocol used to solve graphic TSP. Now we prove the correctness of the reduction.

Lemma 4.5.7. If xk? = 1, then the cost of graphic TSP of G is at most n+2N . If xk? = 0,

then the cost of graphic TSP of G is at least 2n−N − 1.

Proof. If xk? = 1, consider the tour that first visits the path in P from v1 to v2n−2N , then

visits wk? , uk? , then visits wi, ui for each i 6= k? in arbitrary order, and finally goes back to

v1. Since xk? = 1, uk? connects to v1. Also for each i 6= k?, wk? connects to v1, so for any i

and j 6= k?, ui and wj have distance at most 3. Since any other edge in the tour has weight

1, the cost of the tour is at most n+ (3− 1) ·N = n+ 2N .

If xk? = 0, both uk? and wk? do not connect to v1. So uk? , wk? and vn−2N form a block

in G. For any i 6= k?, both ui and wi do not connect to vn−2N . So ui, wi and v1 forms a

block in G. Furthermore, all edges in the path are bridges in G. By Lemma 4.2.3, the cost

of graphic TSP of G is at least n+N + (n− 2N)− 1 = 2n−N − 1.

Theorem 4.16. For any ε > 0, any single-pass streaming algorithm that is able to approx-

imate the cost of graphic TSP of an input graph G within a factor of 2− ε in insertion-only

streams with probability at least 2/3 requires Ω(εn) space.

Proof. Let Π be any 1/3-error one-way protocol that approximates graphic TSP within a

factor of (2− ε). By Lemma 4.5.7, we obtain a protocol for Index that errs with probability
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at most 1/3 and has communication cost at most equal to cost of Π. By the Ω(N) lower

bound on the one-way communication complexity of Index, we obtain that communication

cost of Π must be Ω(N) = Ω(εn). The theorem now follows from this argument, as one-

way communication complexity lower bounds the space complexity of single pass streaming

algorithms.
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CHAPTER 5

Near-linear Size Hypergraph Cut Sparsifier

In this chapter, we consider the problem of cut sparsification for hypergraphs. A hypergraph

H(V,E) consists of a vertex set V and a set E of hyperedges where each edge e ∈ E is a

subset of vertices. Kogan and Krauthgamer [185] initiated a study of this basic question

and showed that given any weighted hypergraph H, there is an O(mn2) time algorithm to

find a (1 ± ε)-approximate cut sparsifier of H of size Õ(nr
ε2

) where r denotes the rank of

the hypergraph. Similar to the case of graphs, the size of a hypergraph sparsifier refers

to the number of edges in the sparsifier. Since r can be as large as n, in general, this

gives a hypergraph cut sparsifier of size Õ(n2/ε2), which is a factor of n larger than the

Benczúr-Karger bound for graphs. Chekuri and Xu [88] designed a more efficient algorithm

for building a hypergraph sparsifier. They gave a near-linear time algorithm in the total

representation size (sum of the sizes of all hyperedges) to construct a hypergraph sparsifier

of size Õ(nr2/ε2) in hypergraphs of rank r, thus speeding up the run-time obtained in the

work of Kogan and Krauthgamer [185] by at least a factor of n, but at the expense of an

increased sparsifier size. It has remained an open question if the Benczúr-Karger bound is

also achievable on hypergraphs, that is, do there exist hypergraph sparsifiers with Õ(n/ε2)

edges? In this work, we resolve this question in the affirmative by giving a new polynomial-

time algorithm for creating hypergraph sparsifiers of size Õ(n/ε2).

5.1. Main Results

We prove that any hypergraph has a (1±ε)-approximate cut sparsifier with Õ(n) hyperedges.

Theorem 5.1. Given a weighted hypergraph H, for any 0 < ε < 1, there exists a randomized

algorithm that constructs a (1 ± ε)-approximate cut sparsifier of H of size O(n logn
ε2

) in

Õ(mn + n10/ε7) time with high probability; here n denotes the number of vertices and m

denotes the number of edges in the hypergraph.

It is worth to note that the space bound Õ(n2) (each hyperedge may have size Θ(n) ) is also
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the best possible to within a logarithmic factor due to a recent work [169].

As the number of hyperedges in a hypergarph could be expoential of the number of vertices n.

We also consider the hypergraph cut sparsifier problem in sublinear models. First, we note

that Theorem 5.1 also yields a Õ(n2/ε2) space streaming algorithm for building a hypergraph

sparsifier in a single-pass over an insertion-only stream. This can be done using a black-box

technique for transforming cut sparsification algorithms into streaming algorithms whose

space requirement is only slightly more than the sparsifier size (see Section 2.2 of [202]):

Lemma 5.1.1 ([202]). Given an algorithm that finds a (1± ε)-approximate cut sparsifier of

a hypergraph of size at most f(n, ε) with high probability, there exists a single-pass insertion-

only streaming algorithm to compute a (1±ε)-approximate cut sparsifier of size 2 log(m/n) ·

f(n, ε
2 log(m/n)) that stores at most 2 log2(m/n) · f(n, ε

2 log(m/n)) hyperedges at any given time

with high probability.

Corollary 5.1.2. For any 0 < ε < 1, there exists a randomized insertion only streaming al-

gorithm that constructs (1±ε)-approximate cut sparsifier of H of size O(n logn log3(m/n)
ε2

) with

high probability and stores only O(n logn log4(m/n)
ε2

) hyperedges, and hence uses O(n
2 logn log4(m/n)

ε2
)

space in the worst-case.

The above result improves upon the Õ(n3/ε2) space streaming algorithm in [185] for building

hypergraph sparsifiers in insertion-only streams. We note here that for hypergraphs of

constant rank, an Õ(n/ε2) space streaming algorithm is known [139] in dynamic streams

where both insertion and deletion of hyperedges is allowed.

We also consider the prove in query model. Since we are working with hypergraphs, we

first need to consider what type of queries are allowed. The most basic requirement is to

have the ability to efficiently evaluate the size or weight of any cut in a given hypergraph.

We assume here access to a cut value oracle, denoted as Ovalue, which takes as input a cut

C = (S, S̄), returns the size of the cut |δH(S)|. This is akin to the standard assumption in

submodular function minimization, namely, the algorithm has an oracle access to the value
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of the submodular function on any set S since the cut function is a submodular function.

However, as it turns out, it is easy to show that the access to a cut value oracle is provably

not sufficient to construct a sparsifier, regardless of the time allowed as this oracle can not

differentiate between hypergraphs where all edges have size 2 from hypergraphs where all

edges have size 31. So we also need a mechanism for accessing edges of the underlying graph.

We thus introduce a second oracle, referred to as the cut edge oracle, denoted as Oedge, which

takes as input a cut C = (S, S̄), returns a random edge crossing the cut. Given access to

both these oracles, we are indeed able to solve the problem of hypergraph sparsification in

polynomial time in n.

Theorem 5.2. Suppose we are given an unweighted hypergraph H = (V,E) that can be

accessed using the oracles Ovalue and Oedge. Then for any 0 < ε < 1, a (1± ε)-approximate

sparsifier with Õ(n/ε2) hyperedges can be constructed in O(n10/ε7) time, independent of the

number of hyperedges.

We complement the algorithmic result above by showing that just like the oracle Ovalue alone

is not sufficient to achieve the result above, the oracle Oedge alone is also not sufficient to

create a poly(n) size hypergraph sparsifier in poly(n) time.

Theorem 5.3. There is no polynomial time randomized algorithm that can use Oedge queries

alone to construct a (1 ± ε)-approximate sparsifier of an underlying hypergraph H with

probability better than o(1).

One may wonder if the oracle Oedge can be replaced with another access oracle that is used

in sublinear algorithms for standard graphs, namely, ability to access the ith neighbor of

a vertex v for any integer i that is at most the degree of v. It is easy to see that this is

essentially same as the ability to access a random edge incident on a vertex v. We can

generalize this idea to the setting of hypergraphs as follows. A neighbor query oracle in a
1For instance, the cut value oracle can not distinguish between a copy of K4 and the hypergraph that

contains all possible hyperedges of size 3 on 4 vertices. Note that this does not rule out the possibility of
efficiently constructing a data structure/sketch that can be used to answer cut queries. Our focus in this
chapter, however, is on constructing sparsifiers, namely, sparse subgraphs of the original graph that preserve
all cuts.
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hypergraph takes as input a set S ⊆ V , and returns a random edge that contains all vertices

in S if there is such an edge, and returns NIL if there is no edge. We say that a neighbor

query is a single vertex neighbor query if |S| = 1, and it is a vertex pair neighbor query if

|S| = 2. We denote the oracles that answer a single vertex neighbor query and a vertex pair

neighbor query as O1
nbr and O2

nbr respectively. We next show that the oracle Oedge can be

replaced with the oracle O2
nbr, to obtain an alternate poly(n) time implementation of the

result in Theorem 5.2.

Theorem 5.4. Given an unweighted hypergraph H = (V,E), suppose the algorithm can

access the hypergraph using Ovalue and O2
nbr, then for any 0 < ε < 1, a (1± ε)-approximate

sparsifier with Õ(n/ε2) hyperedges can be constructed in O(n10/ε7) time in n, independent

of the number of hyperedges.

In contrast to the result above, we show any algorithm that has access only to oracles Ovalue

and O1
nbr, requires exponentially many queries in the worst-case to construct a poly(n) size

sparsifier.

Theorem 5.5. There is no polynomial time randomized algorithm that can use Ovalue and

O1
nbr queries alone to construct a (1± ε)-approximate sparsifier of an underlying hypergraph

H with probability better than o(1).

5.2. Our Techniques

In this section, we breifly summerize the high-level ideas of Theorem 5.1 and Theorem 5.2.

5.2.1. High-level Ideas of Proving Theorem 5.1

First, We briefly describe the high-level idea behind the proof of Theorem 5.1. In the work

of Benczúr and Karger [50], a graph sparsifier is constructed by sampling the edges with

probabilities according to their strengths, a notion that captures the importance of an edge.

Informally speaking, any edge that is among a small number of edges crossing some cut will

have a high strength while any edge that does not participate in any small cuts will have

a low strength. Once edges are sampled in this manner, a second key element in showing
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that the (appropriately weighted) sampled graph approximately preserves every cut in the

original graph, is to establish a cut counting bound which shows that there can not be too

many cuts that are within a given factor of the minimum cut size in the graph. This allows

use of a union bound over all cuts to show that every cut is well-approximated. Kogan

and Krauthgamer [185] extend this elegant approach to constructing hypergraph sparsifiers.

Similar to [50], they construct a hypergraph sparsifier by sampling hyperedges according

to their strengths. A key point of divergence occurs in the second element, namely, the

cut counting bound. As it turns out, number of cuts that are within a given factor of the

minimum cut size, can be exponentially larger in the setting of hypergraphs2. To compensate

for this increase in the number of cuts, their algorithm samples edges at roughly r times

higher rate, resulting in a sparsifier of Õ(nr) for hypergraphs of rank r. This size bound is

essentially best possible by a direct execution of the Benczúr-Karger framework.

Our proof of Theorem 5.1 follows the high-level idea of creating a suitable probability dis-

tribution over hyperedges, and then sampling them in accordance with this distribution.

However, we construct our hyperdge sampling distribution by analyzing the interaction

among hyperdeges at a finer granularity. In particular, we start by constructing an auxiliary

graph G where for each hyperedge e in H, we add a clique Fe whose vertex set is the same

as the vertex set of the hyperedge e. The probability of sampling a hyperedge e in H is now

determined by the strengths of the edges in the clique Fe. However, for this “sparsification-

preserving coupling” between the graphs G and H to work, we can not directly use the

graph G but instead need to create a non-uniform weight assignment to the edges in G that

roughly ensures that the edges in Fe have similar strengths in G. In particular, for any

hyperedge e, the edges in Fe may get assigned weights that now range from 0 to the weight
2As a simple example (derived from an example in [185]), consider a n-vertex hypergraph that contains

a single hyperedge of size n with weight 1, as well as a clique on the n vertices such that each clique edge
has weight 1/n2. It is easy to see that the weight of a minimum cut in this graph is 1 + (n− 1)/n2 ≈ 1. On
the other hand, all possible 2n − 1 non-trivial partitions of the n vertices gives us a cut of size at most 3/2.
This is an exponential increase compared to the graph setting where it is known that the number of cuts
that are at most twice as big as the minimum cut is bounded by O(n4) [174]. Note the 2n − 1 cuts created
above not only correspond to distinct vertex partitions, but also have a distinct set of edges crossing them.
Interestingly, the maximum number of distinct minimum cuts is the same in both graphs and hypergraphs,
see, for instance, the work of Ghaffari, Karger, and Panigrahi [127].
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of the hyperedge e. This weight assignment scheme, referred to as a balanced assignment,

and an algorithm to compute it efficiently, are the key technical insights in our work. We

note that the strategy of building sparsifiers of a hypergraph by the auxiliary graph G is also

used in [29] where the authors use this strategy to construct spectral hypergraph sparsifier.

Unlike our scheme, however, the work in [29] assigns uniform weights to the edges in Fe.

We conclude our overview by summarizing the three main technical steps involved in obtain-

ing Theorem 5.1 by executing the high-level idea and described above. In the first step, we

assign weights to the edges in G so that the edges in each clique Fe have similar strengths.

In general, this task might be impossible, but we get around this by working with a weaker

condition, namely, we only require that all edges in Fe that receive a positive weight have

similar strengths. We design an iterative algorithm to achieve this goal, and show that it

converges in polynomial time. In the second step, we prove that the hypergraph sparsifier

constructed by sampling each hyperedge e according to the strengths of edges in Fe is indeed

a good sparsifier for our input hypergraph. The proof of the second step follows the frame-

work in [50] at a high-level but a key challenge is to couple together the performance of a

sparsifier in H with the performance of a sparsifier in G. Together these two steps give us

a polynomial-time algorithm for constructing a hypergraph sparsifier of size Õ(n/ε2). How-

ever, the running time of the resulting algorithm is quadratic in terms of m, the number of

hyperedges. Since in a hypergraph, the number of edges m can be exponentially larger than

n, in the third step, we present a way to speed up the algorithm so that the run-time has

only a linear dependence on m.

5.2.2. High-level Ideas of Proving Theorem 5.2

At a high-level, graph and hypergraph sparsification algorithms work by estimating the

importance of each edge in preserving cut sizes, and then sampling edges with probability

proportional to their importance and assigning them an appropriately scaled weight. The

main technical challenge in proving Theorem 5.2 is that the cut value oracle on the original

graph cannot be used to estimate cut sizes in the vertex-induced subgraphs of the original
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graph – a step that is implicit in determining importance of edges in preserving the cut

structure. This issue does not arise in normal graphs where each edge contains 2 vertices,

and the cut value oracle on the original graph indeed suffices to recover cut values in any

induced subgraph. But once we consider hypergraphs with even edges of size 3, it is easy

to show that the cut value oracle on the original graph can not distinguish between induced

subgraphs that have minimum cut value 0 and induced subgraphs where the minimum cut

value is polynomially large. We get around this issue by introducing for any subset of

vertices X, a weaker notion of pseudo cut size for approximating cut sizes in the subgraph

induced by X. The new cut size function remains submodular, and we show that it suffices

to approximate the importance of each edge to within a factor n of its true importance. We

then use the Oedge oracle to sample edges in accordance with their approximate importance.

The resulting sparsifier H ′ has poly(n) edges which we further sparsify to Õ(n/ε2) edges in

poly(n) time by applying Theorem 5.1 to H ′.

5.3. Previous Results for Cut Sparsifier

In this section, we review some concepts and results that can be found in previous works on

cut sparsifiers in standard graphs and hypergraphs, which also play important roles in our

algorithm.

Definition 5.3.1. Given a weighted graph G, a k-strong component of G is a maximal

induced subgraph of G that has minimum cut at least k.

Lemma 5.3.2 ([50]). Given a weighted graph G = (V, F,w) and some real number k, the

k-strong components of G partition V . Given another real number k′ ≥ k, the k′-strong

components of G are a refinement of the partition of k-strong components of G.

Definition 5.3.3. Given a weighted graph G = (V, F,w) and an edge f ∈ F , the strength

of f , denoted by kf , in G is the maximum value of k such that f is contained in a k-strong

component of G.

Alternatively, the strength of an edge f ∈ F is the largest minimum cut size among all
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induced subgraphs G[X] that contain f , where X ranges over all subsets of V . The following

two claims give some properties of strength of edges in a graph.

Claim 5.3.4 (Corollary 4.9 in [51]). Given a weighted graph G on n vertices, there are at

most n− 1 distinct values of edge strengths.

Claim 5.3.5 (Lemma 4.11 in [51]). For any weighted graph G = (V, F,w) on n vertices,∑
f∈F

w(f)
kf
≤ n− 1.

We can compute the strength of every edge in G by computing the global min-cut of (n−1)

induced subgraphs of G [51]. For the completeness of the argument, we prove the following

lemma in Section 5.3.2.

Lemma 5.3.6. Given a weighted graph G with n vertices andm edges. There is an algorithm

that computes the strength of each edge in Õ(mn) time with high probability.

The following cut counting lemma due to Karger [174] gives an upper bound on the number

of “small cuts” in a graph.

Lemma 5.3.7 (Corollary 8.2 in [174]). Given a weighted graph G = (V, F,w) with minimum

cut size c, for all integers α ≥ 1, the number of cuts of the graph with weight at most αc is

at most |V |2α. We will refer to such cuts as α-cuts throughout the paper.

5.3.1. Strength Based Sampling Framework

In this section, we briefly review Benczúr and Karger’s algorithm for graph sparsifiers [50, 51].

Given a graph G = (V, F,w), they construct a sparsifier Ĝ as follows: for each edge f ∈ F ,

we include f in Ĝ with probability pf = Õ(w(f)
kf

) (i.e. its weight over its strength). Every

edge f that gets sampled is assigned a weight of ŵ(f) = w(f)
pf

in Ĝ . By Claim 5.3.5, the

expected size of the sparsifier is Õ(n). For any cut C = (S, S̄) in the graph, the expected

size of ŵ(δĜ(S)) is equal to w(δG(S)). We need to give an upper bound of the probability

that
∣∣ŵ(δĜ(S))− E

[
ŵ(δĜ(S))

]∣∣ > εE
[
ŵ(δĜ(S))

]
. By concentration bounds, the larger the

size of C, the lower probability that ŵ(δĜ(S)) is far from its expectation. By Lemma 5.3.7,
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if a graph has minimum cut size c, for any integer α, the number of cuts of size at most

αc is at most n2α. So we can group the cuts in different sizes based on this α value, take

a union bound within each group, and then take a union bound over all groups to prove

that with high probability, every cut in Ĝ has size close to its expectation. This gives a

(1± ε)-approximate cut sparsifier.

Recently, Kogan and Krauthgamer [185] generalized this approach to hypergraphs by defin-

ing an analogue of edge strengths for hyperedges. Most of the analysis for standard graphs

also holds in the case of hypergraphs. The main difference is that in hypergraphs, the cut

counting bound (Lemma 5.3.7) is no longer true. Instead, the authors prove that if the min-

imum cut size of a hypergraph is c, the number of cuts with size at most αc is O(2αrn2α) for

any integer α, where r is the maximum cardinality of the edges in the hypergraph (see the

footnote on page 2 for an example showing that an exponential dependence on r is necessary

even for constant α). This increase in the number of α-cuts in turn requires edges to be

oversampled at a rate that is O(r) times higher, giving a hypergraph sparsifier of size Õ(nr).

Theorem 5.6 ([185]). Let H be a hypergraph with rank r, and let ε > 0 be an error param-

eter. Consider the hypergraph H ′ obtained by sampling each hyperedge e in H independently

with probability pe = min{1, 3((d+2) logn+r)
keε2

}, giving it weight 1/pe if included. Then with

probability at least 1−O(n−d)

1. the hypergraph H ′ has O( n
ε2

(r + log n)) edges, and

2. H ′ is a (1± ε)-approximate cut sparsifier of H.

In fact, if for each edge e, the sampling proability pe is at least 3((d+2) logn+r)
keε2

, then the

resulting graph is still a (1± ε)-approximate cut sparsifier.

Lemma 5.3.8. Let H be a hypergraph with rank r, and let ε > 0 be an error parame-

ter. Consider the hypergraph H ′ obtained by sampling each hyperedge e in H independently

with probability pe ≥ min{1, 3((d+2) logn+r)
keε2

}, giving it weight 1/pe if included. Then with
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probability at least 1−O(n−d), H ′ is a (1± ε)-approximate cut sparsifier of H.

5.3.2. Computing Exact Edge Strengths

In this section, we give for completeness an algorithm that computes the exact strength of

each edge in a graph and prove Lemma 5.3.6. Our algorithm will use as a subroutine the

following global min-cut result of Karger [176]:

Theorem 5.7 ([176]). Given a weighted graph G with n vertices and m edges, there is a

randomized algorithm that finds the minimum cut in Õ(m) time with high probability.

The algorithm for computing exact edge strengths works as follows. We start by finding a

minimum cut in the input graph G, and removing the edges in the minimum cut. We then

repeat this process in each connected components, until the graph becomes an empty graph.

Now for each edge in the graph, we output the strength of this edge as the largest min-cut

value among all connected components containing this edge, that are encountered during

the execution of the algorithm.

Lemma (Restatement of Lemma 5.3.6). Given a weighted graph G with n vertices and m

edges, there is a randomized algorithm that computes the strength of each edge exactly in

Õ(mn) time with high probability.

Proof. The above algorithm requires (n − 1) computations of global min-cut. Thus by

Theorem 5.7, the total running time is Õ(mn). We now prove that it correctly outputs

exact edge strengths. We fix an edge e, let k̄e denote the strength that our algorithm

outputs for the edge e. It is clear that k̄e ≤ ke since by the definition of k̄e, there is a

subgraph of G which contains e and has min-cut size k̄e. To show that k̄e ≥ ke also holds,

consider the induced subgraph G[X] which contains the edge e and has min-cut ke. During

the execution of our algorithm, let G[X̄] be the last connected component encountered which

fully contains X. By our choice of G[X̄], the min-cut of G[X̄] must also cut through G[X],

which means that the cut size in this step is at least the min-cut size of G[X], which is ke.

Thus by the definition of k̄e, the value of k̄e is at least the size of min-cut of G[X̄] since
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G[X̄] contains G[X] which contains e. So k̄e ≥ ke.

5.4. Construction of Near-linear Size Hypergraph Cut Sparsifiers

Similar to the previous works on graph/hypergraph sparsification, for each edge e in the

hypergraph H, we will assign a probability pe of sampling the edge in the sparsifier Ĥ. If

e is sampled, we give it weight we
pe

in the sparsifier. However, unlike [185], our probabilities

are not decided by the strength of the edge e in H. Instead, we derive these probabilities

from edge strengths in an auxiliary standard graph G, where for each hyperedge e in H, we

create a clique over the vertices of e in G such that the total weight of these clique edges is

we. The hyperedge sampling probability pe is derived from the strengths of the edges in the

associate clique in G.

To prove that the sparsifier Ĥ is valid, we compare Ĥ to the Benczúr-Karger sparsifier Ĝ of

G. For any cut C, it is not hard to see that the total weight of C in H is at least as large

as the size of C in G. Consider the cut size in Ĥ as the sum of several random variables

(each one representing an edge/hyperedge across the cut). By concentration bounds, the

higher the probability mass of these random variables, the greater is the concentration of

their sum, which means the variance of the size of C in Ĥ is at most its variance in Ĝ. So

we can use the cut-counting bound for standard graphs on Ĝ to analyze the concentration

of the hypergraph sparsifier Ĥ.

The approach of analyzing the performance of a hypergraph sparsifier through an auxiliary

standard graph is also used in [29]. The authors use it to build a spectral sparsifier of a

hypergraph. For a hyperedge e in H, like [29], a natural way of assigning its weight is to

distribute its weight uniformly among all corresponding edges in G. However, this may cause

the strengths of these edges in G to be very different. Two natural ways of assigning pe are

to let pe to be decided by the maximum inverse strength of these edges or the average inverse

strength. We can prove that deriving probabilities from the maximum inverse strength gives

us small variance in cut sizes, while deriving probabilities from the average inverse strength

results in a small number of sampled edges. However, the first approach may cause the
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number of sampled edges to be too large and the second approach cannot guarantee that

the variance of the cut sizes in Ĥ is small enough. The two examples below illustrate this.

. . .

. . .

v1 v2 vn

vn+1 vn+2 v2n

(a) Example 5.1

K
(2r)
n

K
(2r)
n

e0

e1

. . . . . . . . .

. . .

v1 vr v2r−1 vn

vn+1 vn+r v2n

(b) Example 5.2

Figure 5.1: Illustrations of Example 5.1 and Example 5.2. K
(2r)
n refers to a copy of the

complete 2r-uniform hypergraph.

Example 5.1. Consider the following hypergraph with 2n vertices v1, v2, . . . v2n: for any 1 ≤

i ≤ n, we have all
(
n
r−1

)
edges of size r containing vi and r−1 vertices in {vn+1, vn+2, . . . , v2n}.

Suppose we were to distribute the weight of each hyperedge uniformly in the auxiliary graph

G, each edge in G has weight 1/
(
r
2

)
= O(1/r2). For any 1 ≤ i ≤ n, the weighted degree of

vi in the graph G is O(1/r) ·
(
n
r−1

)
, which means for each hyperedge, some of the edges in

the associated clique in G have strength O(1/r) ·
(
n
r−1

)
. Hence if the hyperedges are sampled

according to the minimum strength of the corresponding edges in G, each hyperedge will be

sampled with probability Ω(r)

( n
r−1)

, and the expected number of edges in the sparsifier will be

Ω(nr) since there are n ·
(
n
r−1

)
hyperedges.

Example 5.2. Consider the following hypergraph with 2n vertices and hyperedge size 2r ≤ n
2 :

let V = V1 ∪ V2 where V1 = {v1, . . . , vn} and V2 = {vn+1, . . . , v2n}. The graph contains one

hyperedge e0 = {v1, . . . , v2r−1, vn+1}, and one hyperedge e1 = {v1, . . . , vr, vn+1, . . . , vn+r}.

There are also
(
n
2r

)
hyperedges in V1 and

(
n
2r

)
hyperedges in V2. Suppose we distribute the

weight of each hyperedge uniformly in the auxiliary graph G. The cut size of C = (V1, V2)

is Θ(1) in G since there are r2 + 2r − 1 edges of weight 1/
(

2r
2

)
crossing C. On the other

hand, the induced subgraphs G[V1] and G[V2] both has minimum cut size Ω(2r). So for any
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edge in G crossing the cut C, its strength is Θ(1), and other edges in G have strength Ω(2r).

Let F0 be set of edges in G corresponding to e0. About 1/r fraction of the edges in F0

have strength Θ(1) while the others have strength Ω(2r). Both
(
r
2

)
/(
∑

f∈F0
kf ) (inverse of

average) and (
∑

f∈F0

1
kf

)/
(
r
2

)
(average of inverse) are O(1/r). However, the cut C has size

2 in the hypergraph, which means in order to build a (1± ε)-approximate cut sparsifier with

ε < 1/2, the edge e0 must be included.

To solve this problem, we give an algorithm that assigns the weights of edges in G such that

for each hyperedge e, the strength of all corresponding edges in G whose weight is positive

is close to the smallest strength edge in the clique (we will formally define this idea in the

next sub-section). In this case, the maximum inverse strength is quite close to the average

inverse strength, so if pe is decided by the smallest strength (i.e. the largest inverse strength)

in the clique, both the size of the sparsifier and the variance of the cuts have the properties

we desire.

5.4.1. Construction of the Cut Sparsifier

In this section, we formalize the ideas introduced in the previous section. To simplify the

analysis, we first consider unweighted hypergraphs, and then give a simple reduction from the

weighted case to the unweighted case. Later, in Section 5.7, we present a more sophisticated

approach for handling weighted hypergraphs that gives us our final algorithm whose run-time

has only a linear dependence on m.

Let H = (V,E) be an unweighted multi-hypergraph with |V | = n and |E| = m. Our goal

is to create a (1 ± ε)-approximate cut sparsifier, given any ε ∈ (0, 1]. That is, we want to

create a weighted hypergraph Ĥ = (V, Ê, ŵ) where Ê ⊆ E such that with high probability,

for all cuts C = (S, S̄) of V ,

∣∣ŵ(δĤ(S))− |δH(S)|
∣∣ ≤ ε |δH(S)| .

In other words, the graph Ĥ preserves all cuts up to a factor of (1± ε). We will sample the
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graph Ĥ by computing a probability pe for each edge e ∈ E. Each edge e ∈ E is included

in Ĥ with probability pe, and if included, it is given a weight of ŵ(e) := 1/pe.

Given a hyperedge e ∈ E, define Fe := {{u, v} : u, v ∈ e, u 6= v} as the clique on the vertex

set of e. Let F :=
⋃
e∈E Fe be the multiset union of all such cliques. Given a weight function

wF : F → R≥0, we define G = (V, F,wF ) as the weighted multigraph induced by wF . Given

any subset Fsub ⊆ F , define F+
sub = {f ∈ Fsub : wF (f) > 0} to be subset of Fsub containing

only positive weight edges.

For all hyperedges e ∈ E, define κe := minf∈Fe kf to be the minimum strength over all

edges in its associated clique, and κmax
e := maxf∈F+

e
kf to be the maximum strength over

all positive-weighted edges in its associated clique.

Definition 5.4.1. Let γ ≥ 1 be some parameter. The weight function wF : F → R≥0 is

called a γ-balanced weight assignment if it satisfies the following two conditions for all e ∈ E

in the hypergraph H:

(1)
∑

f∈Fe w
F (f) = 1

(2) κmax
e /κe ≤ γ.

The next theorem, whose proof appears in Section 5.5, shows that there exists a γ-balanced

weight assignment for any γ ≥ 2. We say two hyperedges are distinct if the vertex sets of

these two hyperedges are not the same.

Theorem 5.8. Suppose we are given a hypergraph with n vertices and m hyperedges such

that there are at most m̄ distinct hyperedges. Then for any integer γ ≥ 2, there is an

algorithm that runs in Õ(mm̄n4) time and finds a γ-balanced weight assignment.

In fact, with a more careful analysis, we can prove the statement of Theorem 5.8 is true

for any real number γ > 1. Together with Bolzano-Weierstrass theorem and some standard

analysis, we can prove the existance of a balanced weight function even for γ = 1. See

Section 5.5.2 for more details.
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Given such a weight assignment, the theorem below, whose proof appears in Section 5.6,

shows that sampling with probabilities proportional to 1/κe gives a good sparsifier:

Theorem 5.9. Let ε ∈ (0, 1] and let d be any integer constant. Suppose wF is a γ-balanced

weight assignment of H. Consider a random subgraph Ĥ of H where each edge e ∈ E is

sampled with probability pe := min(1, 8(d+6)γ2 logn
0.38ε2κe

) and is given weight 1/pe if sampled. Let

ŵ be this weight function on the sampled edges. Then with probability at least 1 − O(n−d),

for every cut C = (S, S̄),

∣∣ŵ(δĤ(S))− |δH(S)|
∣∣ ≤ 2ε |δH(S)| .

Furthermore, the expected number of edges in Ĥ is O(γ
3n logn
ε2

).

Setting γ = 2, for any unweighted hypergraph H = (V,E), by Theorem 5.8, there exists an

algorithm that finds a γ-balanced weight assignment. Thus by Theorem 5.9, we can create

a (1± ε)-approximate cut sparsifier of H of size O(n logn
ε2

) with high probability.

The corollary below gives a simple reduction from the weighted case to the unweighted case.

Corollary 5.4.2. Given a weighted hypergraph H = (V,E,w), suppose W is the ratio of

the largest edge weight to the smallest edge weight in H. Then for any ε ∈ (0, 1], there exists

an algorithm that constructs an (1 ± ε)-approximate sparsifier of H with size O(n logn
ε2

) in

Õ(Wm2n4) time with high probability.

Proof. Without loss of generality, assume that 1/ε is an integer, and also that the weights

w are between 3/ε and 3W/ε. For every edge e ∈ E, we add bw(e)c copies of e to a multiset

E′. Since w(e) ≥ 3/ε, the number of copies of e in E′ is (w(e) ± 1), which is within the

range (1 ± ε/3) · w(e). Let Ĥ be a (1 ± ε/3)-approximate cut sparsifier of H ′ = (V,E′)

computed using Theorem 5.8 and Theorem 5.9. Then the weight of a cut in Ĥ is within a

(1± ε/3)2 factor (which is within the range (1± ε)) of its weight in H. In H ′, there are at

most Wm hyperedges and there are at most m hyperedges are distinct with each other. By

152



Theorem 5.8, the running time is Õ(Wm2n4).

We prove Theorem 5.8 in Section 5.5 and Theorem 5.9 in Section 5.6. In Section 5.7, we

speed up our algorithm so that the running time is linear in m and eliminate the dependance

of W , and thus prove Theorem 5.1.

5.5. Finding a γ-balanced Assignment

In this section, we prove Theorem 5.8, which shows that given an unweighted hypergraph

H = (V,E) with n vertices and m hyperedges, and for any integer γ ≥ 2, we can find a

γ-balanced assignment in polynomial time. Although we only consider the case when γ is

an integer for convenience, the argument can be easily generalized to the case when γ is not

an integer.

We find a γ-balanced assignment using an iterative algorithm. We start with the uniform

weight assignment. In each step, say e is an unbalanced hyperedge (i.e. e violates condition

(2) of Definition 5.4.1) where f1 and f2 are the two edges in Fe that “witness” e being

unbalanced, i.e. f1 has positive weight and kf1 > γkf2 . We move weight from f1 to f2.

Informally (we will prove this later), the strength of f1 can only decrease and the strength

of f2 can only increase as a result of this weight transition. There are two possible events

that may happen if we keep moving weight from f1 to f2: either the strength of f1 finally

moves within a γ factor of f2; or we end up moving all the weight of f1 to f2, but kf1 is

still larger than γkf2 . In either case, f1 and f2 are no longer a pair of “witnesses” to e being

unbalanced. We repeat this weight transfer until no unbalanced hyperedge remains.

Before we formally describe the algorithm, we first prove a lemma that shows how edge

strengths in a graph change when we change the weight of an edge.

Lemma 5.5.1. Let G = (V,E,w) be a weighted graph, and let G′ = (V,E,w′) be the

weighted graph obtained from G by increasing the weight of some edge f by δ. For any edge

f ′, denote by kf ′ and k′f ′ the strengths of f ′ in G and G′ respectively. Then for any edge f ′,
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1. kf ′ ≤ k′f ′ ≤ kf ′ + δ

2. If k′f ′ > kf ′ , then kf ′ ≥ kf and k′f ′ ≤ k′f

Proof. Let f ′ be an edge, and let G[Xf ′ ] be the induced subgraph of G that contains f ′ and

has minimum cut size kf ′ . Since we only increase the weight of an edge f , the minimum cut

size of G′[Xf ′ ] is at least kf ′ , which means kf ′ ≤ k′f ′ . On the other hand, since the weight of

f is increased by δ, the minimum cut size of any induced subgraph is increased by at most

δ. So k′f ′ ≤ kf ′ + δ.

Next, we prove the second part of the lemma. Let f ′ be an edge, and suppose k′f ′ > kf ′ .

Let G′[X ′f ′ ] be the induced subgraph of G′ that contains f ′ and has minimum cut size k′f ′ .

Since k′f ′ > kf ′ , the minimum cut size of G[X ′f ′ ] is strictly less than k′f ′ , which means f is

a part of some minimum cut of G[X ′f ′ ]. In particular, this implies that f is in X ′f ′ , so k
′
f is

at least the minimum cut size of G′[X ′f ′ ], which is k′f ′ .

On the other hand, letG[Xf ] be the induced subgraph ofG that contains f and has minimum

cut size kf . Consider the subgraph G[X ′f ′ ∪Xf ]. Let C = (S, S̄) be a minimum cut of this

induced subgraph, and let c be the size of C. Since this subgraph contains f ′, by definition

of strength, c is at most kf ′ . Note that X ′f ′ and Xf have nonempty intersection (they both

contain the edge f). Therefore any cut of X ′f ′ ∪ Xf must either cut through Xf , or cut

through X ′f ′ but not Xf . In the case that C cuts through X ′f ′ but not Xf , C does not cut

through f , so it has size at most c in G′[X ′f ′ ] (since the weight of all edges crossing C stays

the same). This implies that the minimum cut of G′[X ′f ′ ] is at most c, which means that

k′f ′ ≤ c ≤ kf ′ , contradicting our assumption. So it must be the case that C cuts through

the vertex set Xf , which means c is at least the minimum cut size of G[Xf ], and therefore

kf ≤ c ≤ kf ′ .

Our algorithm will maintain the invariant that all weights in the current weight assignment

graph are integer multiples of some fixed δ > 0, and the magnitude of each weight update will
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be exactly δ. In such a graph, Lemma 5.5.1 immediately implies that changing (increasing

or decreasing) the weight of some edge f by δ can only change the strength of an edge f ′ if

f and f ′ have the same strength both before and after the change.

5.5.1. The Algorithm

Now we describe the algorithm to find a γ-balanced assignment. Let δ = 1
n2 . First we assign

the initial weights winit : F → R≥0 with the following constraint: the weight of each edge in

G is an integer multiple of δ and is at least 2δ. We can always do so because each hyperedge

in H has weight 1, which is an integer multiple of δ, and the number of edges in the clique

associated with a hyperedge is at most
(
n
2

)
, which is less than 1

2δ . These initial weights give

us a set of initial edge strengths kinitf of the weighted graph Ginit = (V, F,winit). Define

K0 := minf∈F k
init
f , and define ` to be the smallest integer such that K0 · γ` is larger than

maxf∈F k
init
f . For each integer 0 ≤ i ≤ `, define Ki = K0 · γi. Note that since the weights

of all edges are integer multiples of δ, the strength of each edge is also an integer multiple

of δ, which means K0 is an integer multiple of δ. Since γ is an integer, all Ki is also integer

multiples of δ. We partition the interval I = [K0,K`] into subintervals I0, I1, I2, . . . , I`,

where Ij := (Ki−1,Ki] for i > 0, and I0 = {K0}. Note that maxf∈F k
init
f is at most the

total weight of the edges and K0 is at least 2δ, so ` is at most logγ(n2m) = O(logm). We

fix this partition for the rest of this section.

We use this partition I0, I1, I2, . . . , I` to determine how to iteratively modify these weights.

Given a real number x ∈ I, we define ind(x) to be the integer j such that x ∈ Ij . Given

a weight function wF : F → R≥0 and the corresponding edge strengths k : F → R≥0, we

say that a hyperedge e ∈ E is bad in G = (V, F,wF ) if there exist some f, f ′ ∈ Fe such

that wF (f ′) > 0 and kf < Kind(kf ′ )−1. It is clear that if a hyperedge is not bad, then it

is γ-balanced. We note that in general, as we update the weights, kf and kf ′ might not

be contained in I (so ind(k′f ) might not be defined), but as it will turn out that we will

maintain the invariant that all the edge strengths are always contained in I. We expand

this definition to ind(e) := ind(maxf∈F+
e
kf ). Note that a hyperedge e is bad if and only if

155



κe < Kind(e)−1.

We run the following algorithm: while there exist bad hyperedges, we find a bad hyperedge

e with the maximum ind(e). Let f, f ′ ∈ Fe be a pair that such wF (f ′) > 0 and kf <

Kind(kf ′ )−1. We move δ weight from f ′ to f .

EdgeBalancing: An algorithm that eliminates all bad hyperedges

1. w = winit

2. While there exists some bad hyperedge

3. Let e be the one with maximum ind(e)

4. Let fmin := arg minf∈Fe kf and fmax := arg maxf∈F+
e
kf

5. Let kmin and kmax to be the strengths of fmin and fmax, respectively

6. Increase w(fmin) by δ and decrease w(fmax) by δ

7. Return w

Note that throughout the execution of the algorithm, the weight of each edge is an integer

multiple of δ, so the strength of each edge throughout the running of the algorithm is also an

integer multiple of δ. To prove the correctness of the algorithm, we first prove an important

invariant that is maintained by the algorithm.

Claim 5.5.2. Let i equal the value of ind(e) at some iteration of the while loop. For any edge

f whose strength increased as a result of transferring the weights (Line 6), ind(kf ) < i after

executing the transfer of weights. Also, no edge f has strength less than K0 after executing

the transfer of weights.

Proof. Fix some iteration of the while loop, and let i = ind(e). By definition of ind(e) and

fmax, we have ind(kmax) = ind(e). On the other hand, since e is a bad hyperedge, we have

kmin < Ki−1, which means kmin ≤ Ki−1 − δ since kmin is an integer multiple of δ. By the

first half of Lemma 5.5.1, kfmin
is increased by at most δ, which implies that after the weight

transfer, kfmin
≤ Ki−1. By the second half of Lemma 5.5.1, for any edge f such that kf
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increases, kf ≤ kfmin
≤ Ki−1, so ind(kf ) ≤ i − 1 after the weight transfer. This concludes

the first part of the claim.

Now we prove the second part of the claim inductively. Suppose that before we change the

weights, no edge has strength less thanK0. SinceK0 ≤ kmin < Ki−1, i ≥ 2, so kmax ≥ K1+δ.

By the first half of Lemma 5.5.1, kfmax ≥ K1 after the weight transfer. By the second half

of Lemma 5.5.1, for any edge f such that kf decreases, kf ≥ kfmax ≥ K1 > K0 after the

weight change. So the second invariant still holds and this concludes the second part of the

claim.

Claim 5.5.2 essentially proves that the interval I = [K0,K`] (which was defined using the

initial graph Ginit) is the correct range of strengths to focus on. Algorithm 1 gives a γ-

balanced assignment if it terminates since there would be no bad hyperedges. Therefore,

to prove Theorem 5.8, it is sufficient to prove that the running time of Algorithm 1 is

Õ(mm̄n4). We call the tth iteration of the while loop as iteration t. The following claim is

another important invariant of Algorithm 1.

Claim 5.5.3. For any integer i, we define iteration ti as the earliest iteration that the bad

hyperedge e in the while loop has ind(e) ≤ i. Then after iteration ti, the total weight of edges

that have strength larger than Ki−1 is non-increasing.

Proof. For any t ≥ 1, we denote et as the bad hyperedge in line 3 during iteration t. We

say a hyperedge e′ is very bad if κe′ < Kind(e′)−1 − δ. We first prove that at any iteration

starting from ti, no hyperedge e′ with ind(e′) > i is very bad. We prove it by contradiction.

Suppose the statement is not true, and let t̄ ≥ ti − 1 be the first iteration such that after

iteration t̄, a hyperedge ē is very bad. At the beginning of iteration ti, by the definition of

eti , no hyperedge e′ with ind(e′) > i is bad, and hence no such hyperedge is very bad. So

t̄ ≥ ti, which means at the beginning of iteration t̄, no hyperedge e′ with ind(e′) > i is very

bad. There are two possible reasons that would cause ē to become very bad: either ind(ē)

is increased or κē is decreased during the weight transfer in iteration t̄.
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Suppose ind(ē) increases during the weight transfer in iteration t̄, and let f ∈ F+
ē be the

edge that ind(f) increases. By Lemma 5.5.1, kf increases by at most δ during iteration t̄.

On the other hand, since kf is always an integer multiple of δ, kf = Kind(f) at the beginning

of iteration t̄. Let f̂ ∈ Fet̄ be the edge whose weight is increased during iteration t̄. By

Lemma 5.5.1, kf̂ = kf = Kind(kf ) since kf̂ is an integer multiple of δ. So at the beginning

of iteration t̄, ind(et̄) ≥ ind(f) + 2 since et̄ is bad. This means

kf̂ = Kind(f) < Kind(f)+1 − δ ≤ Kind(et̄)−1 − δ

where the first inequality is because Kind(f)+1 −Kind(f) ≥ K1 −K0 = (γ − 1)K0 ≥ 2δ. So

et̄ is very bad at the beginning of iteration t̄, which contradicts the minimality of t̄.

Now consider the other possibility - κē decreases while ind(ē) does not increase during weight

transfer in iteration t̄. By Lemma 5.5.1, κē is decreased by at most δ during iteration t̄,

which means that at the beginning of iteration t̄, κē ≤ Kind(ē)−1−δ. So ē is a bad hyperedge.

On the other hand, by Lemma 5.5.1, κmax
et̄

= κē, so ind(et̄) < ind(ē), which contradicts that

et̄ is the bad hyperedge which has the maximum index at the beginning of iteration t̄.

So at any time after iteration ti, there is no very bad hyperedge e′ with ind(e′) > i.

Since the algorithm only moves the weight from a high strength edge to a low strength edge,

there is only one way that the total weight of the edges that has strength larger than Ki−1

increases: the strength of some edges increase from less than or equal to Ki−1 to larger than

Ki−1. At the beginning of any iteration t′ after ti, by Claim 5.5.2, if ind(et
′
) ≤ i, any edge

f whose strength increases has kf ≤ Ki−1. On the other hand, if ind(et
′
) > i, et′ is not very

bad, which means κet′ ≥ Ki−δ > Ki−1. So any edge f whose strength increases already has

kf > Ki−1 at the beginning of iteration t′. So the total weight of edges that has strength

larger than Ki−1 is non-increasing.

Claim 5.5.4. Algorithm 1 iterates in the while loop Õ(mn2) times.
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Proof. Throughout the running of the algorithm, for any 1 ≤ j ≤ `− 1, we define a nonneg-

ative potential function Wj as follows: before iteration tj , Wj is always equal to m; after

iteration tj , Wj equals the total weight of edges that have strength larger than Kj . Since

the total weight of all edges is m, by Claim 5.5.3, all Wj ’s are non-increasing throughout

the running of the algorithm. On the other hand, for each iteration, suppose the bad hy-

peredge e has ind(e) = i. Note that this iteration cannot be before ti. In this iteration, we

transfer δ amount of weight from an edge whose strength is larger than Ki−1 to an edge

whose strength is less than Ki−1. Furthermore, the edge whose weight increases does not

have strength larger than Ki−1 after the weight change. So Wi−1 is decreased by at least

δ. Thus, in each iteration, no Wj increases, and Wi is decreased by at least δ, which means

there are at most m ∗ `/δ = Õ(mn2) iterations since ` = O(logm).

By Claim 5.5.2 and Claim 5.5.4, Algorithm 1 correctly outputs a γ-balanced weight assign-

ment within a polynomial number of iterations.

Proof of Theorem 5.8. The multi-graph G contains O(mn2) edges, so computing the initial

weight assignment takes O(mn2) time.

In each iteration of the while loop, we need to compute the strength of all edges in G and find

the bad hyperedges with maximum index. Note that if two edges share the same endpoints,

their strengths are the same, so to compute the strength of the edges, we only need to

compute the strength on a weighted complete graph Ḡ where for each pair of vertices (u, v),

the weight of edge (u, v) is the sum of weights of edges whose endpoints are u and v in G.

By Lemma 5.3.6, we need Õ(n3) time to compute the strength of all edges in Ḡ since there

are
(
n
2

)
edges in Ḡ. Updating the weight of edges in Ḡ only takes O(1) time.

Once the strengths of all edges in Ḡ has been computed, it takes O(mn2) time to check for

each hyperedge if it is bad or not. However, if there are at most m̄ distinct hyperedges, we

can do it in O(m̄n2) time in the following way: we group the hyperedges with the same vertex

sets. For each group, we store the total weight in each edge slot, together with the identity
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of the hyperedges which have positive weight in each edge slot. To find a bad hyperedge

with the maximum index in one group, we only need to consider the edge slot that has the

maximum strength with positive weight, and check if the hyperedge that has weight in this

slot is bad. In each iteration, it takes O(m̄n2) time to find the maximum strength positive

weight edge slot in each group and takes constant time to update the information in each

edge slot.

Thus overall, each iteration takes Õ(m̄n2+n3) = Õ(m̄n2) time. So by Claim 5.5.4, Algorithm

1 runs in Õ(mm̄n4) time.

5.5.2. Proof of Existence of 1-balanced Assignment

In this section, we prove that there exists a 1-balanced weight assignment G = (V, F,w) for

every hypergraph H = (V,E). To do this, we first prove that the conclusion of Theorem 5.8

holds for all γ > 1 (as opposed to γ ≥ 2). Equivalently, we prove that Theorem 5.8 holds for

γ = 1+1/i every positive integer i. The only change needed in the algorithm is to use δ = 1
n2i

instead of δ = 1
n2 , and to ensure that K0 is at least 2iδ instead of 2δ. The rest of the proofs

are completely analogous, with the only modification being that (γ − 1)K0 ≥ 2δ no longer

follows from the fact that γ ≥ 2, but simply from the fact thatK0 is at least 2iδ = 2δ
γ−1 . Note

that the number of iterations (and hence the running time) of the algorithm is increased by

a factor of i2, since δ and ` are decreased and increased by a factor of i respectively.

For the rest of this section, it will be convenient to represent a weight assignment w :

F → R≥0 as a vector in R|F |≥0 . Additionally, given a vector w ∈ R|F |≥0 , we use kf (w), κe(w),

and κmax
e (w), and F+

e (w) to denote the value of these quantities in the weight assignment

represented by w.

Let {wi ∈ R|F |≥0} be a sequence of vectors such that wi represents a 1 + 1/i-balanced weight

assignment. We invoke the Bolzano-Weierstrass Theorem on this sequence:

Theorem 5.10 (Bolzano-Weierstrass Theorem). Every bounded sequence of vectors in Rn

has a convergent subsequence.
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Denote this convergent subsequence by {w′i ∈ R|F |}, and let w be the limit of this subse-

quence. We will use a limiting argument to show that w is 1-balanced. First we note that the

strength of an edge kf is a (1-Lipschitz) continuous function of the weight assignment. This

follows immediately from the first half of Lemma 5.5.1. Therefore lim kf (w′i) = kf (limw′i) =

kf (w). Since min is also a continuous function, this implies that

limκe(w
′
i) = lim min

f∈Fe
kf (w′i) = min

f∈Fe
lim kf (w′i) = min

f∈Fe
kf (w) = κe(w) (5.1)

We would like to be able to make a similar statement about limκmax
e (w′i), but it is not

true in general because κmax
e is not a continuous function of the weight assignment vector.

Instead, we observe that for i large enough, the set F+
e (w′i) is a superset of F+

e (w), since

the weight of any edge in F+
e (w) must eventually become positive in the sequence {w′i}. So

limκmax
e (w′i) = lim max

f∈F+
e (w′i)

kf (w′i) ≥ lim max
f∈F+

e (w)
kf (w′i)

= max
f∈F+

e (w)
lim kf (w′i) = max

f∈F+
e (w)

kf (w) = κmax
e (w) (5.2)

Here the inequality used the fact that for for large i, F+
e (w′i) ⊇ F+

e (w), and second equality

used that max is a continuous function. Combining Eq (5.1) and Eq (5.2),

κmax
e (w) ≤ limκmax

e (w′i) ≤ lim((1 + 1/i) · κe(w′i)) = 1 · κe(w),

where the second inequality holds because w′i is 1+1/i-balanced. Therefore, w is 1-balanced,

as desired.

5.6. Constructing a Cut Sparsifier from a γ-balanced Assigment

In this section, we prove Theorem 5.9, which shows that given a γ-balanced assigment wF ,

we can construct a (1± ε)-approximate cut sparsifier that contains O(γ
3n logn
ε2

) edges.

Let ρ = 8(d+6)γ2 logn
0.38ε2

, we sample each hyperedge e in H with probability pe = min{1, ρκe }. If
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an edge e is sampled, it will have weight ŵe = 1
pe

in Ĥ. We first show the expected number

of edges in the sparsifier Ĥ is small.

Claim 5.6.1. The expected number of edges in the sparsifier Ĥ is O(γ
3n logn
ε2

).

Proof. The expected number of edges in the sparsifier is

∑
e∈E

pe ≤ ρ
∑
e∈E

1

κe
= ρ

∑
e∈E

∑
f∈Fe

wF (f)

κe
= ρ

∑
e∈E

∑
f∈Fe

wF (f)

kf

kf
κe

≤ ργ
∑
e∈E

∑
f∈Fe

wF (f)

kf
= ργ

∑
f∈F

wF (f)

kf
≤ ργ(n− 1)

For the second-to-last inequality, we used that for every f ∈ Fe such that wF (f) > 0,

kf ≤ κmax
e ≤ γκe due to Definition 5.4.1. The last inequality is due to Claim 5.3.5, which

asserts that
∑

f∈F
wF (f)
kf
≤ n− 1. By definition of ρ, this is O(γ3n log n/ε2).

In the rest of this section, we prove that Ĥ is indeed a good sparsifier. This proof is inspired

by the framework of [50], who partition the edges into classes based on strength, and analyze

the performance of each class separately. Before we start, as an additional piece of notation,

given any subset of hyperedges E′ ⊆ E, we define Ê′ to be the subset of edges of E′ that

were sampled in the sparsifier.

We first group the edges by their strengths. For each integer i, let F≥i := {f ∈ F+ :

kf ≥ ρ · 2i} be the multiset of positive-weight edges with strength at least ρ · 2i. Let

E≥i := {e ∈ E : κe ≥ ρ · 2i} be the set of hyperedges with minimum strength at least ρ · 2i,

and let Emax
≥i := {e ∈ E : κmax

e ≥ ρ · 2i} be the set of hyperedges with maximum strength at

least ρ · 2i. Note that E≥i ⊆ Emax
≥i .

Let Ei := E≥i \ E≥i+1. We will prove an error bound for each Ei separately. To prove

this error bound, we define and analyze some slightly modified graphs. We first define

some modified weights wFi : F≥i → R+ and wEi : E≥i → R+ in the following way: for an

162



edge f ∈ F such that ρ · 2j ≤ kf ≤ ρ · 2j+1, wFi (f) := wF (f) · 2i−j , and for a hyperedge

e ∈ Ej , wEi (e) := 2i−j . Note that for a hyperedge e ∈ Ei, the weight of e in wEi remains 1.

Finally, define G≥i = (V, F≥i, w
F
i ), H≥i = (V,E≥i, w

E
i ), and Hmax

≥i = (V,Emax
≥i , wEi ) to be

the weighted graphs induced by these modified weights.

The following lemma proves that for any i and any cut C, the weight of the edges in Êi

which cross C is close to its expectation.

Lemma 5.6.2. Fix some integer i ≥ 0. With probability at least 1 − 4n−(d+1), for all cuts

C = (S, S̄) of V , we have that

∣∣∣ŵ(δÊi(S))− |δEi(S)|
∣∣∣ ≤ ε

γ
· wEi (δEmax

≥i
(S))

Note that this lemma is not claiming that Êi is a good sparsifier of Ei - the error term

ε
γw

E
i (δEmax

≥i
(S)) can be much larger than ε |δEi(S)|. We postpone the proof of Lemma 5.6.2

and first show why Lemma 5.6.2 completes the proof Theorem 5.9.

Proof of Theorem 5.9. In order to obtain concentration over all edges, we wish to take a

union bound over every value of i such that Ei is not empty. By Claim 5.3.4, there are at

most n− 1 such values of i.

By Lemma 5.6.2, taking a union bound over these values of i, we get that with probability

at least 1− 4n−d, for all cuts C = (S, S̄) of V and for all i,

∣∣∣ŵ(δÊi(S))− |δEi(S)|
∣∣∣ ≤ ε

γ
· wEi (δEmax

≥i
(S)) ≤ ε

γ
·
∑

j≥i−log γ

2i−j
∣∣δEj (S)

∣∣
where the last inequality is because Emax

≥i ⊆ E≥i−log γ (since κmax
e /κe ≤ γ). Note that for

all hyperedges e that do not belong to any Ei, κe ≤ ρ, so pe = 1. That is, the contribution

of these hyperedges to the error is 0. We sum the errors over edges in Ei for i ≥ 0 to obtain
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that the total error is at most

∑
i≥0

∣∣∣ŵ(δÊi(S))− |δEi(S)|
∣∣∣ ≤ ε

γ

∑
i≥0

∑
j≥i−log γ

2i−j
∣∣δEj (S)

∣∣
=
ε

γ

∑
j≥0

∣∣δEj (S)
∣∣ · ∑

i≤j+log γ

2i−j


≤ 2ε

∑
j≥0

∣∣δEj (S)
∣∣

Which is at most 2ε |δE(S)|. Here the last inequality is due to
∑

i≤j+log γ 2i−j ≤
∑∞

i=−blog γc 2−i ≤

2γ. Therefore with probability at least 1− 4n−d, for all cuts C = (S, S̄), the size of C in Ĥ

is a (1± 2ε)-approximation of the size in H.

5.6.1. Proof of Lemma 5.6.2

Before proving Lemma 5.6.2, we first make some observations. As stated before, we associate

the performance of Ĥ with the auxiliary standard graph G. The following claim states that

for any cut C, the total weight of the edges crossing C in Hmax
≥i is at least the total weights

of the edges crossing C in G≥i.

Claim 5.6.3. For any cut C = (S, S̄) of V , wEi (δEmax
≥i

(S)) ≥ wFi (δF≥i(S)).

Proof. Let e be some hyperedge, and let f ∈ Fe. If f is a member of G≥i, then e must be

a member of Hmax
≥i . Therefore if f is cut by C in G≥i, then e must be cut by C in Hmax

≥i .

Thus, ∑
f∈δG≥i (S)

wFi (f) ≤
∑

e∈δHmax
≥i

(S)

∑
f∈Fe

wFi (f) =
∑

e∈δHmax
≥i

(S)

wEi (e)

Here the equality is because for an edge e ∈ Ej , by condition (1) of γ-balanced weight

assignments,
∑

f∈Fe w
F
i (f) =

∑
f∈Fe w

F (f) · 2i−j = 2i−j = wEi (e).

In our analysis, we will independently bound the error incurred by each connected component

of G≥i. The following claim states that no hyperedge is split among two different connected
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components of G≥i.

Claim 5.6.4. For any e ∈ E≥i, the entire vertex set of e belongs to the same connected

component in G≥i.

Proof. Consider an edge e ∈ E≥i and let u, v be any two vertices in e. By definition of κe,

the strength of the edge (u, v) ∈ Fe is at least κe, so there exists some vertex set X ⊆ V

such that u, v ∈ X and the induced subgraph G[X] has min-cut size at least κe > 0.

Therefore u and v are connected by a path P such that each edge on P has positive weight.

On the other hand, since G[X] has min-cut size at least κe, which is at least ρ · 2i, all edges

f in G[X] have kf ≥ 2i. By definition of F≥i, this implies that all edges on P are in F≥i, so

u and v are connected in G≥i.

The following claim is similar to Lemma 3.2 in [50], which states that the min-cut size of

each component in G≥i is at least ρ · 2i, even with regards to the new weight function wFi .

We give the proof of this claim for completeness.

Claim 5.6.5 (Analog of Lemma 3.2 in [50]). Let AG be a connected component of G≥i.

Then the minimum cut size of AG is at least ρ · 2i.

Proof. Let A′G be the graph with the same vertex set and edge set as AG, but instead of the

modified weights wFi , we use the original weights w
F . We first claim that the strength of an

edge f in A′G is the same as its strength in G. To see this, let X ⊆ V be a set of vertices

such that f ⊆ X and the induced weighted graph G[X] has min-cut size at least kf . Let

G[X]+ denote the subgraph of G[X] that contains only positive-weight edges. Then every

edge in G[X]+ has strength at least kf ≥ ρ · 2i, which implies that G[X]+ is a (induced)

subgraph of F≥i. Since G[X]+ is connected (and A′G is a connected component), G[X]+ is

also an induced subgraph of A′G, providing a certificate that the strength of f in A′G is kf .

Next, fix a cut C = (S, S̄) of the vertex set of AG. Let f∗ be a maximum strength edge in
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δA′G(S). We claim that the total weight of strength kf∗ edges in δA′G(S) is at least kf∗ . To

see this, let X ⊆ V (A′G) be a set of vertices such that f∗ ⊆ X and the min-cut size of A′G[X]

is kf∗ . As required, all edges in A′G[X] have strength at least kf∗ , and the total weight of

such edges crossing C is at least kf∗ . Furthermore, by maximality of f∗, all edges crossing

C in A′G[X] have strength exactly kf∗ . Let j be the index such that ρ · 2j ≤ kf∗ ≤ ρ · 2j+1.

Now we bound the weight of edges crossing the cut in AG:

wFi (δAG(S)) ≥
∑

f∈δAG (S):kf=kf∗

wFi (f) =
∑

f∈δAG (S):kf=kf∗

wF (f) · 2i−j ≥ kf∗ · 2i−j ≥ ρ · 2i

To prove Lemma 5.6.2, for any cut C = (S, S̄), we deal with each connected component in

G≥i separately. For each component AG, we use concentration bound Lemma 2.2.3 together

with Claim 5.6.5 to prove that the total weights of the edges crossing C in AG is preserved

within an additive error O(max{wEi (δAH (S)), wFi (δAG(S))}) where AH is the subhypergraph

of H≥i induced by the vertex set of AG (it is well defined due to Claim 5.6.4). On the other

hand, since wEi (δEmax
≥i

(S)) dominates both wEi (δE≥i(S)) and wFi (δF≥i(S)) (by Claim 5.6.3),

by summing up the weights of the edges crossing C in different components, we are able to

prove that for the edges in Hi, the total weights of the edges crossing C is perserved within

additive error O(wEi (δEmax
≥i

(S))).

Proof of Lemma 5.6.2. Fix some connected component AG of G≥i, and let VA be the vertex

set of this component. Let C = (S, S̄) be some cut of VA. For brevity, let AH := H≥i[VA]

and A′H := Hi[VA] be the subgraphs induced by this component.

In order to apply Lemma 2.2.3, we set the random variables x1, . . . , xk to be the sampled

weights of edges in δA′H (S) (so k equals
∣∣∣δA′H (S)

∣∣∣). We setN := max{wEi (δAH (S)), wFi (δAG(S))}.

We know that for each edge e ∈ A′H , wEi (e) = 2i−i = 1, so N ≥ wEi (δAH (S)) ≥
∣∣∣δA′H (S)

∣∣∣.
Therefore N ≥ k, and we can indeed apply Lemma 2.2.3.
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Let c be the size of the minimum cut of AG. By Claim 5.6.5, we have c ≥ ρ · 2i. Now define

α :=
wFi (δAG (S))

c . Note that N is at least wFi (δAG(S)) = αc ≥ α · ρ · 2i.

Also, we have mine∈δA′
H

(S) pe = min{1,mine∈δA′
H

(S) ρ/κe} ≤ min{1, ρ/(ρ · 2i+1)} ≤ 1/2i+1.

The second-to-last inequality is because for any edge e ∈ Ei, we have that κe ≤ ρ · 2i+1, and

the last inequality is because i ≥ 0.

We apply Lemma 2.2.3 and get that

Pr
(∣∣∣ŵ(δÂ′H

(S))−
∣∣∣δA′H (S)

∣∣∣∣∣∣ ≥ ε

2γ
N

)
≤ 2 exp (−0.38ε2

4γ2
·min pe ·N)

≤ 2 exp (−0.38ε2

4γ2
· 1

2i+1
· α · 8(d+ 6)γ2 log n

0.38ε2
· 2i)

= 2n−(d+6)α

(5.3)

We now have a concentration bound which gets stronger as α increases.

Apply cut counting bound (Lemma 5.3.7) on the weighted graph AG, and we use this to

apply a union bound over all cuts C = (S, S̄) of AH such that αc ≤ wiF (δAG(S)) ≤ 2αc

to conclude that with probability at least 1 − 2n2·2α · n−(d+6)α = 1 − 2n−(d+2)α, the event

in equation (5.3) does not occur for all of these cuts. We again apply the union bound

over all values of α ≥ 1 that are powers of 2 to obtain that with probability at least

1−
∑∞

j=0 2n−(d+2)·2j ≥ 1− 4n−(d+2), for all cuts C = (S, S̄) of V (AH),

∣∣∣ŵ(δÂ′H
(S))−

∣∣∣δA′H (S)
∣∣∣∣∣∣ ≤ ε

2γ
·max{wEi (δAH (S)), wFi (δAG(S))}

≤ ε

2γ
·
(
wEi (δAH (S)) + wFi (δAG(S))

)

Now we apply another union bound over all connected components of G≥i (of which there

are at most n) and sum this error term over all components. Let C = (S, S̄) be a cut of

the entire vertex set V . By Claim 5.6.4, every hyperedge in δH≥i(S) is cut in exactly one
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such connected component. Therefore with probability at least 1 − 4n−(d+1), for all cuts

C = (S, S̄) of V ,

∣∣∣ŵ(δÊi(S))− |δEi(S)|
∣∣∣ ≤ ε

2γ
·
(
wEi (δE≥i(S)) + wFi (δF≥i(S))

)

By Claim 5.6.3 and by the fact that H≥i is a subgraph of Hmax
≥i , this is at most

ε

2γ
·
(

2 · wEi (δEmax
≥i

(S))
)

=
ε

γ
wEi (δEmax

≥i
(S))

5.7. Speeding Up the Sparsifier Construction

In this section, we complete the proof of Theorem 5.1 by speeding up our algorithm so that

its running time reduces to Õ(mn + n10/ε7) from Õ(Wm2n4) (Corollary 5.4.2). Note that

even for unweighted case (W = 1), this is a significant speed-up in dense hypergraphs.

At a high-level, the idea underlying the speed up is to reduce the general weighted problem

to one where both m and W are polynomially bounded in n. The first task is easy to

accomplish using previously known results while the second task requires some additional

ideas.

Our starting point for reducing the number of edges is the following result by Chekuri and

Xu [88] which shows that the number of edges m can be reduced to a polynomial in n in

near-linear time:

Lemma 5.7.1 (Corollary 6.3 of [88]). A (1 ± ε)-approximate cut sparsifier of a weighted

hypergraph H with O(n3/ε2) edges can be found in O(mn log2 n logm) time with high prob-

ability.

After running this algorithm, we obtain a (1± ε)-approximate cut sparsifier of H with only

O(n3/ε2) edges. Then we run the algorithm by Kogan and Krauthgamer [185] and get a
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cut-sparsifier with Õ(n2/ε2) edges.

Lemma 5.7.2 ([185]). A (1±ε)-approximate cut sparsifier of a weighted hypergraph H with

Õ(n2/ε2) edges can be found in O(mn2 + n3) time with high probability.

Since the number of hyperedges in the sparsifier given by Lemma 5.7.1 is O(n3/ε2), we

only need Õ(n5/ε2) time to run the algorithm in Lemma 5.7.2. Let H̄ = (V, Ē, w̄) be the

sparsifier.

It is worth noting that although the number of edges in H̄ is polynomial, the ratio of

maximum and minimum weight is still unbounded. In fact, even if H is unweighted, the

ratio of maximum and minimum weight of H̄ still could be as large as 2n. To solve this

problem, we group the edges by their weights. Let α = 10n2

ε3
and Ē = E1 ∪ E2 ∪ . . . where

Ei = {e ∈ Ē : w̄(e) ∈ [w0 · αi−1, w0 · αi)} where w0 is the minimum weight in H̄.

LetHi = (V,Ei, w̄) andmi = |Ei|. By Corollary 5.4.2, we only need Õ(αm2
in

4) time to build

a near-linear size (in n) sparsifier for each of Hi. However, if we combine these sparsifiers

together, the size is no longer near-linear.

Note that α ≥ 10m̄
ε where m̄ is the number of edges in H̄. Suppose a cut separates an edge

e in Hi, the sum of weights of all edges in ∪j≤i−2Ej is less than ε/10 fraction of the size

of the cut. Therefore, for any i, we can ignore the performance of the sparsifier of Hj for

j ≤ i− 2 within the connected components of Hi.

Define Eodd = E1 ∪ E3 ∪ . . . and Eeven = E2 ∪ E4 ∪ . . .. We will independently construct

sparsifiers of Hodd = (V,Eodd, w) and Heven = (V,Eeven, w) and merge them into a sparsifier

for H̄.

Lemma 5.7.3. For any 0 < ε < 1, there is an algorithm that constructs (1±ε)-approximate

cut sparsifiers for both Heven and Hodd with size O(n logn
ε2

) in Õ(n10/ε7) time with high

probability.

Without loss of generality, we focus on Heven. The algorithm builds sparsifiers for each of
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H2i one by one from higher i to lower i. Let E>2i = ∪j>iE2j and H>2i = (V,E>2i, w̄). For

each i, we first find all connected components of H>2i. Let V C
2i be a vertex set such that

each connected component (including isolated vertices) of H>2i is a “supervertex” in V C
2i .

Let EC2i be the hyperedge set such that for each edge e ∈ E2i, EC2i contains the hyperedge

e′ ⊆ V C
i with weight w̄(e′) = w̄(e) that contains all vertices in V C

i such that e contains a

vertex in the corresponding connected component. Let HC
2i = (V C

2i , E
C
2i, w̄).

For each connected component of HC
2i, we build a (1± ε

2)-approximate cut sparsifier by the

algorithm in Corollary 5.4.2. We take the union of these sparsifiers and get an ε
2 -sparsifier

ĤC
2i = (V C

2i , Ê
C
2i, ŵ) of HC

2i. Let Ĥ2i = (V, Ê2i, ŵ) be the graph “restored” from ĤC
2i, i.e.

for each edge e in E2i, e is in Ê2i if the corresponding edge e′ is in ĤC
2i. It also gets the

same weight as e′ if it is included in Ĥ2i. For any cut (S, S̄) of V2i which does not cut any

component in H>2i, the cut size in Ĥ2i and ĤC
2i are the same, and the cut size in H2i and

HC
2i are the same. In particular, this implies that Ĥ2i is a good sparsifier of H2i with respect

to all cuts that do not cut any component in H>2i.

Output Ĥeven = ∪iĤ2i as a sparsifier of Heven. By Corollary 5.4.2, the running time is

∑
i

Õ(αm2
in

4) = Õ((
∑
i

mi)
2αn4) = Õ(αm̄2n4) = Õ(n10/ε7)

Now we prove Ĥeven is indeed a good cut sparsifier of Heven. From this point, we assume the

algorithm in Corollary 5.4.2 is always successful throughout the algorithm (which happens

with high probability). We first prove that Ĥeven is indeed a (1±ε)-approximate cut sparsifier

of Heven.

Claim 5.7.4. Ĥeven is a (1± ε)-approximate cut sparsifier of Heven.

Proof. We first prove that for any i, ŵ(Ê2i) ≤ 3w̄(E2i). Equivalently, we prove that ŵ(ÊC2i) ≤

3w̄(EC2i). Let (S′, S̄′) be some cut of ĤC
2i of weight at least ŵ(ÊC2i)/2. Such a cut must exist

because the expected weight of a random cut of a graph/hypergraph is at least half of
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the total weight of the graph. Since ĤC
2i is a (1 ± ε

2)-approximate cut sparsifier of HC
2i,

ŵ(δĤC
2i

(S′)) ≤ (1 + ε
2) · w̄(δHC

2i
(S′)) ≤ 1.5 · w̄(EC2i) since ε < 1. Therefore ŵ(ÊC2i)/2 ≤

1.5 · w̄(EC2i), concluding the proof.

Now fix any cut C = (S, S̄) of V . Let i be the largest integer such that δE2i(S) 6= ∅. Since

α ≥ 10m̄
ε , w̄(δE2i(S)) is at least (1− ε

10) fraction of w̄(δEeven(S)).

Since C does not cut through any component of H>2i, ŵ(δĤ2i
(S)) is within (1± ε

2) fraction

of ŵ(δH2i(S)), which means

ŵ(δĤeven(S)) ≥ ŵ(δĤ2i
(S)) ≥ (1− 0.5ε)w̄(δH2i(S)) ≥ (1− ε)w̄(δH̄even(S))

On the other hand, since α ≥ 10m̄
ε and ŵ(Ê2j) ≤ 3w̄(E2j) for any j, we have ŵ(∪j<iÊ2j) <

0.3ε · w̄(δHeven(S)). which means

ŵ(δĤeven(S)) ≤ ŵ(δĤ2i
(S)) + 0.3ε · w̄(δEeven(S))

≤ (1 + 0.5ε)w̄(δH2i(S)) + 0.3ε · w̄(δEeven(S))

≤ (1 + ε)w̄(δH̄even(S))

The next claim shows that Ĥeven has near linear size.

Claim 5.7.5. The size of Ĥeven is O(n logn
ε2

).

Proof. For any i > 0, let ∆i = |V>2i| −
∣∣V>2(i−1)

∣∣ for all i > 0 and let |V>0| be the number

of connected components in Heven. To prove the claim, it is sufficient to prove that
∣∣∣Ê2i

∣∣∣ =

O(∆i logn
ε2

) for all i > 0.

Suppose there are ` connected components in HC
2i and their sizes are ni1, ni2, . . . , ni`. For

any j, if nij > 1, then 2(nij − 1) ≥ nij , so the size of the sparsifier of this component
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is O(
(nij−1) logn

ε2
) by Corollary 5.4.2. On the other hand, if nij = 1, the component is an

isolated vertex and we do not need to find a sparsifier for this component. So the total size

of these sparsifiers is
∣∣∣Ê2i

∣∣∣ = O(
∑`
j=1(nij−1) logn

ε2
).

For each component of HC
2i of size nij , the vertices in the component will contract to one

single vertex in V C
>2(i−1), which means

∣∣∣V C
>2(i−1)

∣∣∣ = ` =
∑̀
j=1

(nij − (nij − 1)) =
∣∣V C
>2i

∣∣− ∑̀
j=1

(nij − 1)

So
∑`

j−1(nij − 1) = ∆i, implying that
∣∣∣Ê2i

∣∣∣ = O(∆i logn
ε2

).

Lemma 5.7.3 immediately follows from Claim 5.7.4 and Claim 5.7.5. Now we are ready to

prove Theorem 5.1.

Proof of Theorem 5.1. We first apply the algorithm in Lemma 5.7.1 and Lemma 5.7.2 to

build H̄, which runs in time Õ(mn+n5/ε2). Then we build the graphs Heven and Hodd, find

(1± ε)-approximate cut sparsifiers with size O(n logn
ε2

) for each of them and take the union

of these two sparsifiers to get a (1± ε)-approximate cut sparsifier Ĥ of H̄. By Lemma 5.7.3,

this runs in time Õ(n10/ε7). So we get a (1±O(ε))-approximate cut sparsifier Ĥ of H with

size O(n logn
ε2

), in Õ(mn+ n10/ε7) time.

5.8. Sublinear Time Cut Sparsification with Cut Size and Cut Edge Sam-

pling Queries

We now present an algorithm that, given access to a hypergraph H through cut size queries

(oracle Ovalue) and queries to sample a random edge crossing a cut (oracle Oedge), outputs

a (1± ε)-approximate sparsifier with Õ(n/ε2) hyperedges in poly(n) time. At a high-level,

our algorithm will first create a poly(n) size sparsifier H1 by indirectly implementing the

algorithm underlying Theorem 5.6. We then use the algorithm in Theorem 5.1 to construct

a sparsifier H2 of H1 which has Õ(n/ε2) hyperedges. By the definition of cut sparsifier, H2

172



is also a cut sparsifier of H. We can thus focus on the construction of the sparsifier H1.

The primary challenge in simulating the algorithm of Theorem 5.6 is to sample edges ac-

cording to their strength with a small number of queries. Consider the following recursive

algorithm. We start with the graph H, and then at each step, we find the minimum cut

of the connected graph, and sample Θ((r + log n)/ε2) edges from the cut. We then recur-

sively execute this algorithm on each side of the cut. Algorithm StrengthSampling gives an

implementation of this idea.

StrengthSampling: Sampling edges with probability proportional to their strength

1. Let (S, S̄) be a minimum cut of the induced graph G[V ′]

2. Let c be the number of edges crossing (S, S̄) in G[V ′]

3. Sample an integer N ∼ B(c, 10(logn+r)
ε2c

)

4. Sample N edges from δG[V ′](S) uniformly at random, and assign each of them a

weight of ε2c
10(logn+r)

5. Delete all edges in δG[V ′](S) and recurse on each of the newly created connected

components

It is easy to see that this algorithm samples each edge independently, and that the sampling

probability is at least that of Kogan-Krauthgamer in Theorem 5.6. The challenge is that

unlike cut queries in the normal graph, it is hard to compute the cut size in an induced

subgraph of a hypergraph using only cut queries on the original graph, which is crucial as

the algorithm proceeds recursively.

We first note that this task is straightforward to do in graphs where each edge has exactly

two vertices. For any two disjoint subsets of vertices S, T , the number of edges in S × T is

1
2(|δ(S)|+ |δ(T )| − |δ(S ∪ T )|).

However, this is far from true in the hypergraph setting. The problem is that there may be

some hyperedges that intersect with each of S, T , and V \ (S ∪ T ). These edges are inside
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all of δ(S), δ(T ) and δ(S ∪ T ). We have

|δ(S)|+ |δ(T )| − |δ(S ∪ T )|

=2
∣∣{e|e ∩ S 6= ∅, e ∩ T 6= ∅, e ∩ (S ∪ T ) = ∅}

∣∣+
∣∣{e|e ∩ S 6= ∅, e ∩ T 6= ∅, e ∩ (S ∪ T ) 6= ∅}

∣∣
= |{e|e ∩ S 6= ∅, e ∩ T 6= ∅}|+

∣∣{e|e ∩ S 6= ∅, e ∩ T 6= ∅, e ∩ (S ∪ T ) = ∅}
∣∣

Example 5.3. Consider a hypergraph H that consists of three equal size sets of vertices

A,B,C, such that each hyperedge has a non-empty intersection with each of A, B, and C.

Then there are no hyperedges in H[A∪B]. But the quantity 1
2(|δ(A)|+ |δ(B)| − |δ(A ∪B)|)

is half the total number of hyperedges which could be exponentially large in n.

Example 5.4. Consider the following pair of hypergraphs on 4 vertices, say {v1, v2, v3, v4}:

the graph H1 is a (rank 2) clique on 4 vertices while the graph H2 contains every possible

edge of size 3 on these 4 vertices. It is easy to verify that the answer to every cut query

is the same on the graphs H1 and H2. Now consider the subgraph of these graphs induced

by the vertices X = {v1, v2}. In case of H1, the minimum cut in the induced subgraph is 1

while in H2, the minimum cut in the graph induced by X is 0. We can amplify this gap to

0 versus Ω(n) by taking n/4 copies of H1 in one case, and n/4 copies of H2 in the other

case, and defining X to be union of arbitrarily chosen pairs of vertices from each copy. This

means that Ovalue queries can not be used to estimate cut size in induced subgraphs to any

multiplicative factor or to better than a polynomial additive error.

To get around the challenge highlighted by examples above, we next introduce notions of

pseudo cut size over a subset of vertices and pseudo strength of hyperedges, such that the

pseudo cut sizes are easy to compute by cut queries and pseudo strength of any hyperedge

is at most a factor n larger than the strength of the hyperedge. We develop these ideas in

detail in the next subsection.
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5.8.1. Pseudo Cuts and Pseudo Strengths

Given a set of vertices X, we define ∆X(S), the pseudo cut size of a set S ⊂ X as 1
2(|δ(S)|+

|δ(X \ S)|−|δ(X)|), and define the pseudo min cut over X as a cut (S,X \S) that minimizes

∆X(S). Note that ∆X(S) is at most the number of edges that intersect both S and X \ S.

The following lemma shows that ∆X(S) is a submodular function, so we can compute the

pseudo min cut over any vertex set in poly(n) time by Theorem 2.1.

Lemma 5.8.1. For any vertex set X ⊆ V , ∆X(S) is a submodular function.

Proof. Let f1(S) be the number of edges that intersect both S and X \ S, and let f2(S)

be the number of edges that intersect both S and X \ S but are fully contained in X. By

definition, we have ∆X(S) = 1
2(f1(S) + f2(S)), so to prove that ∆X(S) is a submodular

function, it is sufficient to prove that both f1 and f2 are submodular.

Since f2 is the cut function in the induced graph H[X], it is submodular. In fact, f1 is also

the cut function of the hypergraph whose vertex set is X and edge set is {e∩X|e ∈ E}. So

f1 is also a submodular function.

For any edge e, we define the pseudo strength k′e as the largest pseudo min-cut size among

all sets X that contain e, where X ranges over all subsets of V . It is easy to see that for

any edge e, k′e is at least ke since for any set of vertices X, the minimum cut size of H[X] is

at most the pseudo min-cut size of set X. More interestingly, although Example 5.3 showed

that the pseudo min-cut size of a set X may be arbitrarily larger than the minimum cut size

of H[X], the lemma below shows that the pseudo strength of an edge is at most a factor n

larger than its strength.

Lemma 5.8.2. For any edge e, k′e ≤ nke.

Proof. Let X be any set of vertices that contains the edge e and has pseudo min-cut size k′e

in H. To prove the lemma, it is sufficient to prove that the pseudo min-cut size of X in H
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is at most nke.

Let Y = V and Ec = ∅. Consider the following iterative process: we find the minimum cut

(S, Y \S) in H[Y ]. If either S or Y \S fully contains the set X, we add all edges crossing the

cut into Ec, and set Y to be S or Y \S (whichever fully contains X), and repeat. Otherwise,

we stop the process.

After the process terminates, suppose (S, Y \ S) is the minimum cut in H[Y ]. Since the

process terminated, (S, Y \ S) must partition X. Let S′ = S ∩X, and consider the pseudo

cut (S′, X \ S′). We prove that the number of edges in H that intersect both S′ and X \ S′

(which is an upper bound on ∆X(S′)) is at most nke.

First, note that no edge e′ such that e′ 6⊆ Y and e′ /∈ Ec can intersect with the set Y ;

hence any such edge e′ also does not intersect with S′ or X \ S′. Therefore every edge

that intersects with both S′ and X \ S′ either belongs to Ec or is completely contained in

Y . During the iterative process, the set Y always fully contains e, so by the definition of

strength, the minimum cut size of H[Y ] is at most ke. This implies during each step, at

most ke edges are added into Ec. On the other hand, the process repeats at most n − 2

times, since each time the size of Y is reduced by at least 1. So |Ec| ≤ (n − 2)ke. Finally,

any edge that is fully contained in Y and intersects with both S′ and X \ S′ crosses the cut

(S, Y \S) in H[Y ], and the number of such edges is at most the minimum cut size of H[Y ],

which is at most ke. So in total, there are at most |Ec|+ ke ≤ (n− 1)ke edges that intersect

both S′ and X \ S′.

5.8.2. Sampling the Edges

We are now ready to present an algorithm that uses the cut size queries and cut edge sample

queries to sample each edge with probability inversely proportional to its strength. Specifi-

cally, we will ensure that each edge e gets sampled with probability at least n2/k′e which is at

least n/ke by Lemma 5.8.2. The algorithm is similar to StrengthSampling, but uses pseudo

cuts and pseudo strengths instead. To sample the edges, we call PesudoStrengthSampling on
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set V .

PesudoStrengthSampling: Sampling edges with probability proportional to their pseudo

strength

1. Find the pseudo min-cut (S, V ′ \ S) within the set V ′

2. Let c be |δ(S)|, the cut size of (S, V \ S)

3. Sample an integer N ∼ B(c,min{1, 10n3

ε2c
})

4. Keep sampling edges in cut (S, S̄) until we get N different hyperedges.

5. Recurse on both S and V ′ \ S

We now prove that each edge gets sampled with probability at least as large as the sampling

probability in Theorem 5.6. Fix an edge e, let S1 be the last input set that fully contains

e. For any i ≥ 1, if Si is not V , we define Si+1 to be the input set in the recursion that

generates a recursive call of the algorithm on the set Si. In other word, (Si, Si+1 \ Si) is

the pseudo min cut within set Si+1. Let (S0, S1 \ S0) be the pseudo min cut within S1,

by definition, e ∩ S0 6= ∅ and e ∩ S1 \ S0 6= ∅. When the algorithm works on set S1, e

gets sampled with probability min{1, 10n3

ε2|δ(S0)|}. If e gets sampled with probability 1, then

it is clearly as large as the probability in Theorem 5.6. Otherwise we need to prove that

n3/ |δ(S0)| = Ω((log n + r)/ke). Since n = Ω(log n + r), by Lemma 5.8.2, it is sufficient to

prove that |δ(S0)| ≤ nk′e.

Lemma 5.8.3. |δ(S0)| ≤ nk′e.

Proof. We partition the edges crossing the cut (S0, S0) into sets E1, E2, . . . such that for

any i ≥ 0, Ei is the set of edges that are fully contained in Si+1 but not in Si. Note that

|δ(S0)| =
∑

i |Ei|. Since the algorithm has at most n levels of recursion, to prove the lemma,

it is sufficient to prove |Ei| ≤ k′e for all i ≥ 0.

For any edge e′ ∈ Ei, e′ ∩ Si 6= ∅ since e′ crosses the cut (S0, S0) and S0 ⊆ Si. We also

have e′ ∩ Si+1 \ Si 6= ∅ and e′ ∩ Si+1 = ∅ since e′ is fully contained in Si+1 but not Si. So
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|Ei| ≤ ∆Si+1(Si). On the other hand, by definition of pseudo strength, k′e ≥ ∆Si+1(Si) since

e is fully contained in Si+1. Therefore, |Ei| ≤ k′e.

By Lemma 5.8.3, we proved that each edge e is sampled with probability at least the required

probability in Theorem 5.6. Next, we need to assign weights to each sampled edge.

We do this after we finish sampling. For each edge e that gets sampled, we need to know

the probability that it gets sampled. Since we sample edges from each cut independently,

we only need to know the probability that e gets sampled during each recursive call, and

that probability depends only on the size of the cut and whether e crosses the cut. So we

can compute the probability that e gets sampled during PesudoStrengthSampling.

To complete the proof of Theorem 5.2, we need to show that the running time of the whole

process is polynomial in n.

Proof of Theorem 5.2. During each call to PesudoStrengthSampling, we need Õ(n3) queries

to cut size query oracle and Õ(n4) time to figure out the pseudo min-cut within the set V ′

by Theorem 2.1 and Lemma 5.8.1. At line 4, we call cut edge sample query 10n3/ε2 times in

expectation. Total number of recursive calls to PesudoStrengthSampling is O(n), since each

time, the input set gets partitioned into two sets, and there are n sets in the end. Thus the

running time of PesudoStrengthSampling is Õ(n5 + n4/ε2).

We sample the edges in O(n) cuts, so when assigning the weights, we only need to query

the size of these O(n) cuts and calculate the probability of each sampled edge, which can

also be done in O(n) time for each edge. So the running time of assigning the weights is

Õ(n5/ε2).

After sampling the edges and assigning weights, we get a (1± ε)-approximate cut sparsifier

H1 of H with polynomial size in n. Then we run the algorithm in Theorem 5.1 to find a

(1 + ε)-approximate cut sparsifier H2 of H1 with Õ(n/ε2) number of edges in polynomial

time in n. By definition of cut sparsifier, H2 is a (1 ± ε)2-approximate cut sparsifier of H.
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Since H1 contains Õ(n4/ε2) edges, by Theorem 5.1, the running time is O(n10/ε7).

So the total running time is O(n10/ε7).

5.9. Sublinear Time Cut Sparsification with Cut Size and Pair Neighbor

Queries

In this section, we show that cut edge queries can be simulated by a poly(n) number of

cut size queries (oracle Ovalue) and pair neighbor queries (oracle O2
nbr), establishing that cut

size query oracle and pair neighbor query oracle are also sufficient to compute a (1 ± ε)-

approximate cut sparsifier in poly(n) time.

Given a pair of vertices u and v, let E({u, v}) be the set of edges that contain both u and v.

We first show how to approximate |E({u, v})| to within a factor of (1± ε) with probability

1−ξ, for some small ξ. Note that we can compute 2∆{u,v}({u}) = |E({u, v})|+ |E∩{u, v}|,

where |E ∩{u, v}| is the number of copies of the edge {u, v}. We now describe an algorithm

to approximate |E({u, v})|:

NeighborApproximation: Approximating |E({u, v})|

1. Define k = 12 log(2/ξ)/(ε2).

2. Call the oracle O2
nbr k times on (u, v), and let α̂ be the fraction of returned edges

that were {u, v}.

3. Return Ê({u, v}) := 2∆{u,v}({u}) · 1
1+α̂ .

Note that this algorithm makes k = O( log(1/ξ)
ε2

) queries.

Lemma 5.9.1. With probability at least 1− ξ, Ê({u, v}) is an approximation of |E({u, v})|

to within a factor of (1± ε).

Proof. Let α := |E∩{u,v}|
|E({u,v})| be the fraction of hyperedges that are {u, v}. The algorithm runs

a Monte Carlo simulation to approximate α by the ratio α̂. In order to prove concentration

of α̂ around α, let k′ be the total number of {u, v} edges returned, and observe that k′
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is the sum of k independent Bernoulli random variables each having probability equal to

α. By Chernoff bound, Pr[|k′ − αk| > εk/2] ≤ 2 exp(−αkε2/12α) ≤ 2 exp(−kε2/12) =

2 exp(log(ξ/2)) = ξ. Therefore with probability at least 1 − ξ, |α̂ − α| ≤ ε/2. This implies

that 1
1+α̂ ∈

1
1+α±ε/2 ⊆

1
(1±ε/2)(1+α) . Finally, we use that 1

(1∓ε/2) ⊆ (1± ε) to conclude that

1
1+α̂ ∈

1±ε
1+α , so

2∆{u,v}({u})
1 + α̂

∈ (1± ε)
2∆{u,v}({u})

1 + α
= (1± ε)|E({u, v})|.

We now describe an algorithm to sample a random edge from δ(S), simulating a response to

Oedge. We first approximate the size of E({u, v}) for each pair of vertices u ∈ S and v ∈ S̄.

Then we sample a pair of u, v with probability proportional to |E({u, v})|, sample an edge

in E({u, v}), and then decide whether we keep it or not with probability proportional to its

size. If we decide not to pick the edge, we repeat the whole process again.

NeighborSampling: Sampling an edge in δ(S)

1. For each pair of vertices u, v such that u ∈ S and v ∈ S̄, call NeighborApproximation

with ξ = 1/n20, and let Ê({u, v}) be the output

2. Sample a pair of vertices (u, v) ∈ S × S̄ with probability proportional to Ê({u, v})

3. Use the oracle O2
nbr to sample an edge e in E({u, v})

4. With probability 1
|e∩S|·|e∩S̄| , return e. Otherwise go to Step 2.

Lemma 5.9.2. With probability at least 1−1/n−10, NeighborSampling samples each edge in

δ(S) gets with probability 1±ε
|δ(S)| . The expected running time is Õ(n2/ε2).

Proof. We first condition on the |S| · |S̄| ≤ n2 events that for each pair u, v with u ∈ S

and v ∈ S̄, the estimate Ê({u, v}) was indeed in (1 ± ε) · |E({u, v})|, which happens with

probability at least 1− n2ξ > 1− 1/n−10. Now fix an edge e ∈ δ(S). The probability that
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it was sampled at a particular iteration of NeighborSampling is

∑
u∈S∩e,v∈S̄∩e

Ê({u, v})∑
(u′,v′)∈S×S̄ Ê({u′, v′})

· 1

|E({u, v})|
· 1

|e ∩ S| · |e ∩ S̄|

∈ 1∑
(u′,v′)∈S×S̄ Ê({u′, v′})

∑
u∈S∩e,v∈S̄∩e

(1± ε)
|e ∩ S| · |e ∩ S̄|

=
(1± ε)∑

(u′,v′)∈S×S̄ Ê({u′, v′})

That is, the probability of sampling each edge at any given iteration of NeighborSampling is

within (1± ε) of every other edge. Therefore the probability of sampling each edge is within

a factor of (1± ε) of every other edge.

Step 1 calls NeighborApproximation O(n2) times, so the running time is Õ(n2/ε2). At step

4, the probability that we keep the edge and finish the algorithm is at least 1/n2, so the

expected number of iterations through step 2 to 4 is at most n2. So the total running time

on step 2 to 4 is Õ(n2) in expectation.

Proof of Theorem 5.4. We run PesudoStrengthSampling, but each time it calls Oedge, we

instead run NeighborSampling twice. With high probability, each time we simulate Oedge

by NeighborSampling, the probability of any edge in the cut being sampled is within a

(1 ± ε) factor of the uniform distribution. Denote by q′e be the probability that an edge e

is sampled by this algorithm, and let qe be the probability that the edge e is sampled in

PesudoStrengthSampling. We have q′e ∈ 2(1 ± ε)qe, which is larger than pe the probability

of sampling an edge in Theorem 5.6. Also we cannot directly compute q′e, but we can

approximate it to within a factor of (1 ± ε), which only adds another (1 ± ε) factor to the

approximation achieved by the cut sparsifier.

Since the number of calls to Oedge oracle in PesudoStrengthSampling is Õ(n4/ε2). So we need

Õ(n6/ε2) = o(n10/ε7) queries to simulate these calls. So the running time of the algorithm

is still O(n10/ε7).
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5.10. Lower Bounds

In this section we show that any natural relaxation of the assumptions underlying Theo-

rem 5.2 and Theorem 5.4 rules out poly(n) time sparsification algorithms, proving Theo-

rem 5.3 and Theorem 5.5.

5.10.1. Queries Ovalue and O1
nbr Together are not Sufficient

In this section, we prove that if any randomized algorithm can only access the underlying

hypergraph via Ovalue and O1
nbr, it is not possible to find with probability better than o(1)

a (1 ± ε)-approximate cut sparsifier with only poly(n) queries, proving Theorem 5.5. We

start by showing a weaker result, as stated in the lemma below, which shows that the failure

probability of a poly(n) time algorithm must be at least 1/2− o(1), and then show how to

amplify the failure probability to 1− o(1).

Lemma 5.10.1. There is no polynomial time algorithm that can use Ovalue and O1
nbr queries

alone to construct a (1 ± ε)-approximate sparsifier of an underlying hypergraph H with

probability at least 1/2 + ξ for any constant ξ > 0.

Proof. Suppose the runtime of the algorithm is bounded by some polynomial f(n). We will

construct two graphs H1 = (V ∪V ′, E1) and H2 = (V ∪V ′, E2) with |V | = |V ′| = n and the

algorithm is shown with probability 1/2 the graph H1 and with probability 1/2 the graph

H2. We will then show that (a) any algorithm that can only access the underlying graph

using Ovalue and O1
nbr cannot distinguish between these two graphs with probability at least

1/2 + ξ for any constant ξ > 0, and (b) there exists a non-empty cut such that H1 and H2

do not have any common edges crossing the cut. Together, these properties immediately

imply the lemma .

Let u, v ∈ V and u′, v′ ∈ V ′ be two arbitrary pairs of vertices. Let E = 2V ∪ 2V
′ be the

union of the complete hypergraphs on V and V ′. We define E1 as E along with all possible

edges of size two among {u, v, u′, v′}. We define E2 as E along with all possible edges of

size 3 among {u, v, u′, v′}. It is easy to verify that for any cut, the number of edges in E1
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crossing the cut equals the number of edges in E2 crossing the cut. So any cut size query

Ovalue has the same answer in H1 and H2, and hence can not distinguish between these two

graphs, no matter the number of queries allowed.

The algorithm can additionally make at most f(n) calls to O1
nbr. But since each vertex

w ∈ V ∪V ′ has at least 2n edges incident on it, the probability that a uniformly random edge

incident on w is not in E is at most 3/2n. Using a union bound over all f(n) queries along

with the fact that 3f(n)/2n ≤ ξ for sufficiently large n, we get that for both hypergraphs,

with probability at least 1− 3f(n)/2n ≥ 1− ξ, all sampled edges are in E.

Thus conditioned on the event that all of the sampled edges are in E, the algorithm cannot

distinguish between H1 and H2. On the other hand, there are no common edges crossing

the cut (V, V ′) in H1 and H2, so to output a proper (1 ± ε)-approximate cut sparsifier,

the algorithm must distinguish between H1 and H2. Hence the probability that algorithm

succeeds is at most 1/2 + ξ.

To amplify the failure probability to 1−o(1), we can independently generate log n instances

from the distribution above with each instance containing n/ log n vertices. We now let our

underlying graph be a union of these log n instances. Any algorithm that outputs a (1± ε)-

approximate sparsifier, must successfully identify for each of the log n instances whether it is

an instance of H1 or H2. Thus the probability of success is at most (1/2 + o(1))logn = o(1).

This completes the proof of Theorem 5.5.

5.10.2. Oedge Queries Alone are not Sufficient

In this section, we prove that if the algorithm can access the hypergraph through only Oedge

queries, it is not possible to find a proper (1 ± ε)-approximate cut sparsifier with poly(n)

queries with success probability better than o(1), proving Theorem 5.3. As above, we start

by showing a weaker result, which shows that the failure probability of a poly(n) time

algorithm must be at least 1/2− o(1), and then show how to amplify the failure probability

to 1− o(1).
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We first define two distributions of hypergraphs H1 and H2 such that for any sequence of

the queries the algorithm asks to Oedge, the distribution of the answers are almost identical

regardless of whether the graph was chosen from H1 or H2.

A graph in each of the distributions H1 and H2 is generated as follows. There are n + 1

vertices v0, v1, . . . , vn and the generated graph will have 2n − n − 1 edges. If the graph is

generated by H1, then we randomly choose 2n/2 subsets of {v1, . . . , vn} with size at least 2.

If the graph is generated by H2, then we randomly choose 2n/4 subsets of {v1, . . . , vn} with

size at least 2. Then for any subset S of {v1, . . . , vn} of size at least 2, if S is chosen in the

previous step, then the edge S ∪ {v0} is in the graph, otherwise the edge S is in the graph.

The algorithm is presented with probability 1/2 a graph H generated by H1, and with prob-

ability 1/2 a graph H generated by H2, that is, the algorithm sees a graph H generated by

the distribution 1/2H1 +1/2H2. Since the cut sizes of ({v0}, {v0}) in the graph generated by

H1 and H2 are 2n/2 and 2n/4 respectively, any algorithm that outputs a (1±ε)-approximate

cut sparsifier with ε < 1 must be able to distinguish between the graphs generated by H1

and H2. However, the following lemma shows that unless the algorithm makes exponential

number of queries, it cannot distinguish between the graphs generated by H1 and H2.

Lemma 5.10.2. Any algorithm that only makes k Oedge queries where k = Poly(n) cannot

determine with probability better than 1
2 + k2

2n/4
if the underlying graph H is generated from

H1 or H2.

Thus any algorithm that makes only poly(n) Oedge queries, fails with probability at least

1/2 − o(1). To amplify the failure probability to 1 − o(1), we can as before independently

generate log n instances from the distribution above with each instance containing n/ log n

vertices. We now let our underlying graph be a union of these log n instances. Any algorithm

that outputs a (1± ε)-approximate sparsifier, must successfully identify for each of the log n

instances whether it was generated from the first distribution or the second. Thus the

probability of success is at most (1/2 + o(1))logn = o(1). This completes the proof of
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Theorem 5.3.

5.10.3. Proof of Lemma 5.10.2

Given a sequence of k Oedge queries Q = (C1, . . . , Ck), we denote by e1, . . . , ek the sequence

of random edges that are returned by the query Oedge. We first prove that for any i, if we

fix the first i − 1 answers e1, . . . , ei−1, then the distribution of edge ei is almost the same

irrespective of whether the underlying graph was sampled from H1 or H2. In particular, if

we denote these two distributions by Di1 and Di2, respectively, then we will show that the

total variation distance ‖Di1 −Di2‖tvd ≤ i
2n/4

.

Let Ci = (Si, S̄i) be the ith cut on which the algorithm makes an Oedge query. Without

loss of generality, assume that v0 ∈ Si. We first consider the case when Si 6= {v0}. In this

case, we can sample a random edge by the following two steps: we first sample a random set

S ⊆ {v1, . . . , vn} that intersects both Si and S̄i, and we then return S or S∪{v0} depending

on which edge is in the graph. We couple the random process that samples the edge in Di1

and Di2, so that in the first step, these two processes sample the same set S. If S or S∪{v0}

is among e1 . . . ei−1, then the output of Oedge is fixed, which means the distributions are

the same in both cases. If neither S nor S ∪ {v0} are among e1 . . . ei−1 and suppose there

are ` different edges among e1, . . . , ei−1 and j of them contain v0, then the probability that

the oracle returns S ∪ {v0} is 2n/2−j
2n−n−1−` when the graph is sampled from H1, and 2n/4−j

2n−n−1−`

when the graph is sampled from H2. So

‖Di1 −Di2‖tvd ≤
2n/2 − j

2n − n− 1− `
− 2n/4 − j

2n − n− 1− `
<

1

2n/4

If Si = {v0}, then the oracle returns a random edge that includes v0. Let ` be the number

of different edges among e1, . . . , ei−1 and j of them contain v0. For any subset of S ⊆ V

which contains v0 and has size at least 3, if S is an edge among e1 . . . , ei−1, then ei = S

with probability 1
2n/2

if the graph is sampled from H1, and with probability 1
2n/4

if the graph

is sampled from H2. If S \ {v0} is among the edges e1, . . . , ei−1, then the probability that
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ei = S is 0 for both cases. If neither S nor S \ {v0} are among the edges e1, . . . , ei−1, then

if the graph is generated by H1, the probability that S is in the graph is 2n/2−j
2n−n−1−` . If S

is indeed in the graph, then it gets sampled with probability 1
2n/2

. So the probability that

ei = S is 1
2n/2
· 2n/2−j

2n−n−1−` = 2n/2−j
2n/2(2n−n−1−`) . Similarly, in the case of the graph generated by

H2, the probability that ei = S is 2n/4−j
2n/4(2n−n−1−`) . Let X = 2n − n− 1, then we have

2‖Di1 −Di2‖tvd =j ·
(

1

2n/4
− 1

2n/2

)
+ (X − `) ·

(
2n/2 − j

2n/2(X − `)
− 2n/4 − j

2n/4(X − `)

)

≤j · 1

2n/4
+

(
2n/2 − j

2n/2
− 2n/4 − j

2n/4

)

≤ 2j

2n/4
≤ 2i

2n/4
.

Now we are ready to prove the lemma. Let e1
i and e2

i be the random edges sampled by

Oedge in the ith query when the graph is sampled from H1 and H2 respectively. Given a

possible answer Ak = (e1, e2, . . . , ek) to the k queries, denote by E1
i (Ak) the event that

e1
1 = e1, . . . , e

1
i = ei and by E2

i (Ak) as the event that e2
1 = e1, . . . , e

2
i = ei. Then we can

bound two times the total variation distance of the distributions of the answers when the

graph is generated by H1 and H2 as below:

∑
Ak=(e1,...,ek)

∣∣Pr (E1
k (Ak)

)
− Pr

(
E2
k (Ak)

)∣∣
=

∑
Ak=(e1,...,ek)

∣∣Pr (e1
1 = e1, . . . , e

1
k = ek

)
− Pr

(
e2

1 = e1, . . . , e
2
k = ek

)∣∣
=

∑
Ak=(e1,...,ek)

∣∣Pr (E1
k−1(Ak)

)
· Pr

(
e1
k = ek|E1

k−1(Ak)
)
− Pr

(
E2
k−1(Ak)

)
· Pr

(
e2
k = ek|E2

k−1(Ak)
)∣∣

≤
∑

Ak=(e1,...,ek)

( ∣∣Pr (E1
k−1(Ak)

)
− Pr

(
E2
k−1(Ak)

)∣∣ · Pr (e1
k = ek|E1

k−1(Ak)
)

+ Pr
(
E2
k−1(Ak)

)
·
∣∣Pr (e1

k = ek|E1
k−1(Ak)

)
− Pr

(
e2
k = ek|E2

k−1(Ak)
)∣∣ )
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=
∑

Ak−1=(e1,...,ek−1)

( ∣∣Pr (E1
k−1(Ak−1)

)
− Pr

(
E2
k−1(Ak−1)

)∣∣ ·∑
e

Pr
(
e1
k = e|E1

k−1(Ak−1)
)

+ Pr
(
E2
k−1(Ak−1)

)
·
∑
e

∣∣Pr (e1
k = e|E1

k−1(Ak−1)
)
− Pr

(
e2
k = e|E2

k−1(Ak−1)
)∣∣ )

≤
∑

Ak−1=(e1,...,ek−1)

( ∣∣Pr (E1
k−1(Ak−1)

)
− Pr

(
E2
k−1(Ak−1)

)∣∣+ Pr
(
E2
k−1(Ak−1)

)
· 2k

2n/4

)
=

∑
Ak−1=(e1,...,ek−1)

∣∣Pr (E1
k−1(Ak−1)

)
− Pr

(
E2
k−1(Ak−1)

)∣∣+
2k

2n/4

≤
∑

Ak−2=(e1,...,ek−2)

∣∣Pr (E1
k−2(Ak−2)

)
− Pr

(
E2
k−2(Ak−2)

)∣∣+
2(k − 1)

2n/4
+

2k

2n/4

. . .

≤
k∑
i=1

2i

2n/4
≤ 2k2

2n/4

Thus any algorithm that makes at most k queries can distinguish between a graph generated

from H1 and a graph generated from H2 with probability at most 1
2 + k2

2n/4
.
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CHAPTER 6

Communication Complexity of Hidden Point Chasing Problem

and its Applications

In this chapter, we give the communication complexity of hidden point chasing problem

(HPC), and its application for proving round complexity of streaming graph algorithms.

We start with reviewing the well known set intersection (Set-Int) problem and defining

hidden-pointer chasing (HPC) problem.

Set intersection (Set-Int) is a two-player communication problem in which Alice and Bob

are given sets A and B from [n], respectively, with the promise that there exists a unique

element t such that {t} = A ∩ B. The goal is for players to find the target element t.

An Ω(n) communication lower bound for Set-Int follows directly from lower bounds for set

disjointness [30, 65, 66, 166, 230]; see, e.g. [68] (this lower bound by itself is however not

useful for our application).

The hidden-pointer chasing (HPC) problem is a four-party communication problem with

players PA, PB, PC , and PD. Let X := {x1, . . . , xn} and Y := {y1, . . . , yn} be two disjoint

universes.

1. For any x ∈ X , PA and PB are given an instance (Ax, Bx) of Set-Int over the universe

Y where Ax ∩Bx = {tx} for tx ∈ Y.

2. Similarly, for any y ∈ Y, PC and PD are given an instance (Cy, Dy) of Set-Int over the

universe X where Cy ∩Dy = {ty} for ty ∈ X .

3. We define two mappings fAB : X → Y and fCD : Y → X such that:

(a) for any x ∈ X , fAB(x) = tx ∈ Y in the instance (Ax, Bx) of Set-Int.

(b) for any y ∈ Y, fCD(y) = ty ∈ X in the instance (Cy, Dy) of Set-Int.
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4. Let x1 ∈ X be an arbitrary fixed element of X known to all players. The point-

ers z0, z1, z2, z3, . . . are defined inductively as follows: z0 := x1, z1 := fAB(z0), z2 :=

fCD(z1), z3 := fAB(z2), · · · .

The k-step hidden-pointer chasing problem (HPCk) is defined as the communication problem

of finding the pointer zk. See Figure 6.1 for an illustration.

X : x1 xi xn

Y : y1 yj ynyj

Axi Bxi

xi

Cy1 Dy1

(a) The sets Axi , Bxi ⊆ Y of PA and PB for xi ∈ X ,
and Cy1 , Dy1 ⊆ X of PC and PD for y1 ∈ Y.

X : x1 xi xn

Y : y1 yj yn

(1)
(2)

(3)

(b) z0 = x1, z1 = y1, z2 = xi, z3 = yj , implying that
the answer to HPC3 in this example is yj .

Figure 6.1: Illustration of the HPC problem.

We define a phase (similar to a round) for protocols that solve HPC. In an odd (resp. even)

phase, only PC and PD (resp. PA and PB) are allowed to communicate with each other, and

the phase ends once a message is sent to PA or PB (resp. PC or PD). A protocol is called a

k-phase protocol iff it uses at most k phases.

6.1. Main Results

It is easy to see that in k + 1 phases, we can compute HPCk with O(k · n) total communi-

cation by solving the Set-Int instances corresponding to z0, z1, . . . , zk one at a time in each

phase. We prove that if we only have k phases however, solving HPCk requires a large

communication.

Theorem 6.1 (Informal). Any k-phase protocol that outputs the correct solution to HPCk

with constant probability requires Ω(n2/k2 + n) bits of communication.

Theorem 6.1 implies a new approach towards proving graph streaming lower bounds that

sits squarely in the middle of previous methods: HPC is a problem that admits an “efficient”

protocol when there is no limit on rounds of communication and yet is “hard” with even a
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polynomial limitation on number of rounds. We use this result to prove strong pass lower

bounds for some fundamental problems in graph streams via reductions from HPC.

Cut and Flow Problems. One of the main applications of Theorem 6.1 is the following

result.

Theorem 6.2. Any p-pass streaming algorithm that with a constant probability outputs the

minimum s-t cut value in a weighted graph (undirected or directed) requires Ω(n2/p5) space.

Prior to our work, the best lower bound known for this problem was an n1+Ω(1/p) space

lower bound for p-pass algorithms [141] (for weighted undirected graphs and unweighted

directed graphs). Theorem 6.2 significantly improves upon this. In particular, it implies

that Ω̃(n1/5) passes are necessary for semi-streaming algorithms, exponentially improving

upon the Ω( logn
log logn) lower bound of [141]. At the same time, Theorem 6.2 also shows that

any streaming algorithm for this problem with a small number of passes, namely polylog(n)

passes, requires Ω̃(n2) space, almost the same space as the trivial single-pass algorithm that

stores the input graph entirely.

Our Theorem 6.2 should be contrasted with the results of [234] that imply an Õ(n5/3) space

algorithm for unweighted minimum s-t cut on undirected graphs in only two passes (see

Footnote 1).

By max-flow min-cut theorem, Theorem 6.2 also implies identical bounds for computing

the value of maximum s-t flow in capacitated graphs, making progress on a question raised

in [202] regarding the streaming complexity of maximum flow in directed graphs.

Lexicographically-First Maximal Independent Set. Amaximal independent set (MIS)

returned by the sequential greedy algorithm that visits the vertices of the graph in their lex-

icographical order is called the lexicographically-first MIS. We prove the following result for

this problem.

Theorem 6.3. Any p-pass streaming algorithm that with constant probability finds a lexi-

cographically first maximal independent set of in a graph requires Ω(n2/p5) space.
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The lexicographically-first MIS has a rich history in computer science and in particular par-

allel algorithms [9, 58, 93, 200]. However, even though multiple variants of the independent

set problem have been studied in the streaming model [18, 94, 95, 126, 142, 143, 145], we are

not aware of any work on this particular problem (we remark that standard MIS problem

admits an Õ(n) space O(log log n) pass algorithm [126]). Besides being a fundamental prob-

lem in its own right, what makes this problem appealing for us is that it nicely illustrates the

power of our techniques compared to previous approaches. The lexicographically-first MIS

can be computed with O(n) communication in the two-player communication model (or for

any constant number of players) with no restriction on number of rounds by a direct simu-

lation of the sequential algorithm. Hence, this problem perfectly fits the class of problems

for which previous techniques cannot prove lower bounds beyond logarithmic passes. To our

knowledge, this is the first super-logarithmic pass lower bound for any graph problem that

admits an efficient protocol with no restriction on number of rounds.

6.1.1. Our Techniques

Our reductions take a different path than previous pointer chasing based reductions that

used edges of the graph to directly encode pointers. In particular, our hidden-pointer chasing

problem allows us encode a single pointer among Θ(n) edges and thus work with graphs

with density Ω(n2) and still keep a polynomial dependence on number of rounds in the

communication lower bound. This results in space lower bounds of the form n2/pO(1) for

p-pass streaming algorithms.

The main technical contribution is the communication complexity lower bound for HPC in

Theorem 6.1. This result is proved by combining inductive arguments for round/communication

tradeoffs (see, e.g. [219, 254]) with direct-sum arguments for information complexity (see,

e.g. [30, 32, 64, 67]) to account for the role of set intersection inside HPC. To make this

argument work, we also need to prove a stronger lower bound for set intersection than cur-

rently known results (see, e.g. [68]). In particular, we prove that any protocol that can

even slightly reduce the “uncertainty” about the intersecting element must have a “large”
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communication and information complexity.

Our new lower bound for set intersection is also proved using tools from information com-

plexity to reduce this problem to a primitive problem, namely set intersection itself on a

universe of size two. This requires a novel argument to handle the protocols for set in-

tersection that reduce the uncertainty about the intersecting element without necessarily

making much “progress” on finding this element. Another challenge is that unlike typi-

cal direct-sum results in this context, say reducing disjointness to the AND problem; see,

e.g. [30, 65, 66, 247], set intersection cannot be decomposed into independent instances of the

primitive problem (this is similar-in-spirit to challenges in analyzing information complex-

ity of set disjointness on intersecting distributions [82, 161] as opposed to (more standard)

non-intersecting ones). Finally, we prove a lower bound for the primitive problem using the

product structure of Hellinger distance for communication protocols (see, e.g. [30, 247]).

6.2. Proof Sketch of Theorem 6.1

In this section, we sketch the proof of Theorem 6.1 which is the main technical result of this

chapter. Let distSI be a hard distribution on instances (A,B) for Set-Int. In this distribution

A and B are each sets of size almost n/3 such that they intersect in a unique element in

the universe chosen uniformly at random. We define the distribution distHPC over inputs of

HPC as the distribution in which all instances (Ax, Bx) and (Cy, Dy) for x ∈ X and y ∈ Y

are sampled independently from distSI (note that distHPC is not a product distribution as

distSI is not a product distribution).

Fix any k-phase deterministic protocol πHPC for HPCk throughout this section and suppose

towards a contradiction that CC(πHPC) = o(n2/k2) (the lower bound extends to randomized

protocols by Yao’s minimax principle [252]). For any j ∈ [k], we define Πj as the set of all

messages communicated by πHPC in phase j and Π := (Π1, . . . ,Πk) as the transcript of the

protocol πHPC. We further define Z = (z1, . . . , zk), Ej := (Π<j , Z<j) for any j > 1, and

E1 = z0. We think of Ej as the information “easily known” to players at the beginning of

phase j. The main step of the proof of Theorem 6.1 is the following key lemma which we
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prove inductively.

Lemma 6.2.1 (Informal). For all j ∈ [k]: E(Ej ,Πj)

[
‖dist(Zj | Ej ,Πj)−dist(Zj)‖tvd

]
= o(1).

Lemma 6.2.1 states that if the communication cost of a protocol is “small”, i.e., is o(n2/k2),

then even after communicating the messages in the first j phases of the protocol, distribution

of zj is still “close” to being uniform. This in particular implies that at the end of the protocol,

i.e., at the end of phase k, the target pointer zk is essentially distributed as in its original

distribution (which is uniform over Y or X depending on whether k is odd or even). Hence

πHPC should not be able to find zk at the end of phase k. The proof of Theorem 6.1 follows

easily from this intuition.

Proof Sketch of Lemma 6.2.1. The first step of proof is to show that finding the target

element of a uniformly at random chosen instance of Set-Int (as opposed to an instance

corresponding to any particular pointer) in HPC is not possible with low communication.

For any x ∈ X and any y ∈ Y, define the random variables Tx ∈ Y and Ty ∈ X , which

correspond to the target elements of Set-Int on (Ax, Bx) and (Cy, Dy), respectively. The

following lemma formalizes the above statement. For simplicity, we only state it for Tx for

x ∼ UX ; an identical bound also hold for Ty for y ∼ UY .

Lemma 6.2.2 (Informal). For j ∈ [k]: E(Ej ,Πj) Ex∼UX [‖dist(Tx | Ej ,Πj)− dist(Tx)‖tvd] =

o(1).

Let us first see why Lemma 6.2.2 implies Lemma 6.2.1. The proof is by induction. Consider

some phase j ∈ [k] and suppose j is odd by symmetry. The goal is to prove that distri-

bution of Zj conditioned on (Ej ,Πj) = (z1, . . . , zj−1,Π1, . . . ,Πj−1,Πj) is close to original

distribution of Zj (on average over choices of (Ej ,Πj)). Notice that since we assumed j is

odd, Zj is a function of the inputs to PA and PB. On the other hand, in an odd phase,

only the players PC and PD communicate and hence Πj is a function of the inputs to these

players. Conditioning on Ej and using the rectangle property of deterministic protocols

(see Fact 2.5.5), together with the fact that inputs to PA, PB are independent of inputs to
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PC , PD, implies that Zj ⊥ Πj | Ej . We now have:

(i) Conditioned on zj−1, Zj is the target element of the instance (Azj−1 , Bzj−1), i.e., Zj =

Tzj−1 .

(ii) zj−1 itself is distributed according to dist(Zj−1 | Ej−1,Πj−1) (because we removed the

conditioning on Πj by the above argument).

(iii) dist(Zj−1 | Ej−1,Πj−1) is close to the uniform distribution by induction.

As such we can now simply apply Lemma 6.2.2 (by replacing x with zj−1 since they es-

sentially have the same distribution) and obtain that distribution of Zj = Tzj−1 with and

without conditioning on (Ej ,Πj) is almost the same (averaged over choices of (Ej ,Πj)),

proving the lemma.

Proof Sketch of Lemma 6.2.2 The proof of this lemma is based on a direct-sum style

argument combined with a new result that we prove for Set-Int. The direct-sum argument

implies that since x is chosen uniformly at random from n elements in X , and protocol πHPC

is communicating o(n2) bits in total, then it can only reveal o(n) bits of information about

the instance (Ax, Bx). This part follows the standard direct-sum arguments for information

complexity (see, e.g. [32, 67]) but we also need to take into account that if x is one of the

pointers we conditioned on in Ej , then πHPC may reveal more information about (Ax, Bx);

fortunately, this event happens with negligible probability for k � n and so the argument

continues to hold.

By above argument, proving Lemma 6.2.2 reduces to showing that if a protocol reveals o(n)

bits of information about an instance of Set-Int, then the distribution of the target element

varies from the uniform distribution in total variation distance by only o(1). This is the

main part of the proof of Lemma 6.2.2 and is precisely the content of our next technical

result in the following section.
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6.2.1. A New Communication Lower Bound for Set Intersection

We say that a protocol πSI ε-solves Set-Int on the distribution distSI iff it can alter the

distribution of the target element from its original distribution by at least ε in total variation

distance, i.e., EΠSI∼ΠSI

[
‖dist(T | ΠSI) − dist(T)‖tvd

]
≥ ε; here ΠSI and T are the random

variables for the transcript of the protocol (including public randomness) and the target

element, respectively.

To finish the proof of Lemma 6.2.2, we need to prove that a protocol that Ω(1)-solves

Set-Int has Ω(n) communication cost (even information cost). Note that ε-solving is an

algorithmically simpler task than finding the target element. For example, a protocol may

change the distribution of T to having (1 + ε)/n probability on n/2 elements and (1− ε)/n

probability on the remaining n/2. This ε-solves Set-Int yet the target element can only be

found with probability (1 + ε)/n in this distribution. On the other hand, any protocol that

finds the target element with probability p ∈ (0, 1) also p-solves Set-Int. Because of this, the

lower bounds mentioned before for set intersection do not suffice for our purpose. Instead,

we prove the following theorem in this paper.

Theorem 6.4 (Informal). Any protocol πSI that ε-solves Set-Int on distribution distSI has

internal information cost ICdistSI(πSI) = Ω(ε2 · n).

As information cost lower bounds communication cost (see Proposition 2.5.4), Theorem 6.4

also proves a communication lower bound for Set-Int (although we need the stronger result

for information cost in our proofs). By our discussion earlier, Theorem 6.4 can be used to

finalize the proof of Lemma 6.2.2 (and hence Theorem 6.1). We now give an overview of the

proof of Theorem 6.4.

For an instance (A,B) of Set-Int, with a slight abuse of notation, we write A := (a1, . . . , an)

and B := (b1, . . . , bn) for ai, bi ∈ {0, 1} as characteristic vector of the sets given to Alice and

Bob. Under this notation, the target element corresponds to the unique index t ∈ [n] such

that (at, bt) = (1, 1). The proof of Theorem 6.4 is based on reducing Set-Int to a special case
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of this problem on only 2 coordinates, which we define as the Pair-Int problem. In Pair-Int,

Alice and Bob are given (x1, x2) and (y1, y2) in {0, 1}2 and their goal is to find the unique

index k ∈ {1, 2} such that (xk, yk) = (1, 1). We use distPI to denote the hard distribution

for this problem which is equivalent to distSI for n = 2.

Given a protocol πSI for ε-solving Set-Int on distSI, we design a protocol πPI for finding

the index k in instances of Pair-Int sampled from distPI with probability 1/2 + Ω(ε). The

reduction is as follows.

Reduction: Alice and Bob publicly sample i, j ∈ [n] uniformly at random without re-

placement. Then, Alice sets ai = x1 and aj = x2 and Bob sets bi = y1 and bj = y2, using

their given inputs in Pair-Int. The players sample the remaining coordinates of (A,B) in

[n] \ {i, j} using a combination of public and private randomness that we explain later in

the proof sketch of Lemma 6.2.4. This sampling ensures that the resulting instance (A,B)

of Set-Int is sampled from distSI such that its target element is i when k = 1 and is j when

k = 2. After this, the players run the protocol πSI on (A,B) and let ΠSI be the transcript of

this protocol. Using this, Bob computes the distribution dist(T | ΠSI) = (p1, . . . , pn) which

assigns probabilities to elements in [n] as being the target element. Finally, Bob checks

the value of pi and pj and return k = 1 if pi > pj and k = 2 otherwise (breaking the ties

consistently when pi = pj). The remainder of the proof consists of three main steps:

(i) Proving the correctness of protocol πPI:

Lemma 6.2.3 (Informal). Protocol πPI outputs the correct answer with probability

1
2 + Ω(ε).

(ii) Proving an upper bound on “information cost” of πPI (the reason for quotations is that

strictly speaking this quantity is not the information cost of πPI but rather a lower

bound for it).

Lemma 6.2.4 (Informal). Let ΠPI denote the random variable for the transcript of

the protocol πPI and K be the random variable for the index k in distribution distPI.
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We have,

IdistPI(X1,X2 ; ΠPI | Y1,Y2,K) + IdistPI(Y1,Y2 ; ΠPI | X1,X2,K) ≤ 1

n− 1
· ICdistSI(πSI).

(iii) Proving a lower bound on “information cost” (as used in Part (ii)) of protocols for

Pair-Int:

Lemma 6.2.5. If πPI outputs the correct answer on distPI with probability at least

1
2 + Ω(ε), then,

IdistPI(X1,X2 ; ΠPI | Y1,Y2,K) + IdistPI(Y1,Y2 ; ΠPI | X1,X2,K) = Ω(ε2).

By Lemma 6.2.4, ICdistSI(πSI) is Ω(n) times larger than LHS of Lemma 6.2.5, and this,

combined with Lemma 6.2.3, implies that information cost of πSI needs to be Ω(ε2) · Ω(n),

proving Theorem 6.4.

Proof Sketch of Lemma 6.2.3. Let us again consider a protocol πSI such that dist(T |

ΠSI) is putting (1 + ε)/n mass over n/2 elements and (1− ε)/n mass on the remaining ones.

Suppose that the correct answer to the instance of Pair-Int is index 1. We know that in

this case, the index i chosen by πPI will be the target index t in the instance (A,B). A key

observation here is that the index j however can be any of the coordinates in instance (A,B)

other than the target element with the same probability. As such, parameters pi and pj used

to decide the answer in πPI are distributed as follows: pi is sampled from dist(T | ΠSI) and

hence has value (1+ε)/n with probability (1+ε)/2 and (1−ε)/n with probability (1−ε)/2.

On the other hand, pj is chosen uniformly at random from (p1, . . . , pn) and hence is (1+ε)/n

or (1 − ε)/n with the same probability of half. Thus pi > pj with probability 1/2 + Ω(ε)

and hence πPI has Ω(ε) advantage over random guessing.

The proof of Lemma 6.2.3 then formalizes the observations above and extend this argument

to any protocol πSI that ε-solves Set-Int no matter how it alters the distribution of the target
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element.

Proof Sketch of Lemma 6.2.4. We first note that the LHS in Lemma 6.2.4 is not the

internal information cost of πPI due to further conditioning on K (this term can only be

smaller than ICdistPI(πPI)). Hence, Lemma 6.2.4 is proving a “weaker” statement than a

direct-sum result for information cost of πPI based on πSI. The reason for settling for this

weaker statement has to do with the fact that the coordinates in distribution distSI are not

chosen independently (see Section 6.4.1 for more detail).

The intuition behind the proof is as follows. The LHS in Lemma 6.2.5 is the information

revealed about the input of players (in Pair-Int) averaged over choices of k = 1 and k = 2. Let

us assume k = 1 by symmetry. In this case, this quantity is simply the information revealed

about (x2, y2) by the protocol as (x1, y1) = (1, 1) and hence has no entropy. However, when

k = 1, (x2, y2) is embedded in index j, i.e., (x2, y2) = (aj , bj) and has the same distribution

as all other coordinates in A−i, B−i. As such, since the protocol πSI called inside πPI is

oblivious to the choice of j, the information revealed about (aj , bj) in average is smaller

than the information revealed by πSI about A−i, B−i (which itself is at most the information

cost of πSI) by a factor of n− 1.

This outline oversimplifies many details. One such detail is the way of ensuring a “symmetric

treatment” of both indices i and j. This is crucial for the above argument to work for

both k = 1 and k = 2 cases simultaneously, without the players knowing which index

the “averaging” of information is being done for (index j in the context of the discussion

above). The key step in making this information-theoretic argument work is the following

public-private sampling: Alice and Bob use public randomness to pick an integer ` ∈ [n− 2]

uniformly at random and then pick a set S of size ` uniformly at random from [n] \ {i, j}.

Next, the players sample ai′ and bj′ for i′ ∈ S and j′ ∈ ([n] \ {i, j}) \ S from distSI again

using public randomness. Finally, each player samples the remaining coordinates in the

input using private randomness from distSI. Figure 6.2 gives an example.
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a1 a2 x1 a4 a5 a6 x2 a8

b1 b2 y1 b4 b5 b6 y2 b8

a1 a4 a5

b2 b6 b8

i j

(a) An example with ` = 3 and S =
{1, 4, 5}:
{a1, a4, a5, b2, b6, b8} is sampled publicly.
{a2, a6, a8} and {b1, b4, b5} are sampled
privately.

a1 a2 x1 a4 a5 a6 x2 a8

b1 b2 y1 b4 b5 b6 y2 b8

a6

b1 b2 b4 b5 b8

i j

(b) An example with ` = 1 and S = {6}:
{a6, b1, b2, b4, b5, b8} is sampled publicly.
{a1, a2, a4, a5, a8} and {b6} are sampled
privately.

Figure 6.2: Illustration of the process of sampling of instances of Set-Int in πPI for n = 8.
In these examples, i = 3 and j = 7 and hence (a3, a7) = (x1, x2) and (b3, b7) = (y1, y2). of `
and S.

Proof Sketch of Lemma 6.2.5. Let Π[x1x2, y1y2] denote the transcript of the protocol

condition on the inputs (x1, x2) and (y1, y2) to Alice and Bob. Suppose towards a contra-

diction that the LHS of Lemma 6.2.5 is o(ε2). By focusing on the conditional terms when

k = 1, we can show that distribution of Π[1x′2, 1y
′
2] and Π[1x′′2 , 1y

′′
2 ] for all choices of (x′2, y

′
2)

and (x′′2, y
′′
2) in the support of distPI are quite close. This is intuitively because the informa-

tion revealed about (x2, y2) by πPI conditioned on k = 1 is small (the same result holds for

Π[x′21, y′21] and Π[x′′2 1, y′′2 1] by k = 2 terms).

Up until this point, there is no contradiction as the answer to inputs (1, ∗),(1, ∗) to Alice and

Bob is always 1 and hence there is no problem with the corresponding transcripts in Π[1∗, 1∗]

to be similar (similarly for Π[∗1, ∗1] separately). However, we combine this with the cut-and-

paste property of randomized protocols based on Hellinger distance (see Fact 2.5.6) to argue

that in fact the distribution of Π[10, 10] and Π[01, 01] are also similar. This then implies that

Π[1∗, 1∗] essentially has the same distribution as Π[∗1, ∗1]; but then this is a contradiction as

the answer to the protocol (which is only a function of the transcript) needs to be different

between these two types of inputs.
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6.3. The Set Intersection Problem

Starting from this section, we delve into the formal proofs of our results. This section

contains our new lower bound for the set intersection problem (stated informally in Theo-

rem 6.4). Recall that Set-Int is a two-player communication problem in which Alice and Bob

are given sets A and B from [n], respectively, with the promise that there exists a unique

element t such that {t} = A ∩ B. The goal is for Alice and Bob to find t, referred to as

the target element. It is sometimes more convenient to consider the characteristic vector of

sets A and B rather than the sets directly. Hence, with a slight abuse of notation, we write

A := (a1, . . . , an) ∈ {0, 1}n and B := (b1, . . . , bn) ∈ {0, 1}n where ai = 1 (resp. bi = 1)

iff the element i belongs to the set A (resp. to B). In this notation, the target element t

corresponds to the unique index where (at, bt) = (1, 1).

The Set-Int problem is closely related to the well-known set disjointness problem. It is in fact

straightforward to prove an Ω(n) lower bound on the communication complexity of Set-Int

using a simple reduction from the set disjointness problem. However, in this paper, we are

interested in an algorithmically simpler variant of this problem which we define below.

6.3.1. Problem Statement

Consider the following distribution distSI for Set-Int.

Distribution distSI on sets (A,B) from the universe [n]:

1. Define µ as the uniform distribution over the set {(0, 0), (0, 1), (1, 0)}.

2. For i ∈ [n], choose (ai, bi) independently from distribution µ.

3. Sample an element t ∈ [n] uniformly at random and change (at, bt) = (1, 1).

Rather than finding the target element t, we are only interested in slightly reducing the

“uncertainty” about its identity as formalized below.

Definition 6.3.1. We say that a protocol πSI ε-solves the Set-Int problem on the distribution
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distSI iff

E
ΠSI∼ΠSI

[
‖dist(T | ΠSI)− U[n]‖tvd

]
≥ ε, (6.1)

where T is the random variable for the target element and U[n] is the uniform distribution

on [n].

Let us first consider two “extreme examples” of a protocol that ε-solves Set-Int and see how

much communication is needed to realize each one.

Example 6.1. One way of ensuring Eq (6.1) is to have protocols that after communication

can rule out Θ(ε ·n) elements as candidates for t and leave the target element to be uniformly

distributed on the remaining n−Θ(ε · n) elements.

Intuitively, such a protocol should require a large communication as it is making a significant

“progress” towards finding the target element. Indeed, if the communication cost of this

protocol is small, we can run this protocol again on the remaining candidates and shrink

their number further, and continue doing this until we find the target element t, without

making a large communication. This contradicts the Ω(n) communication lower bound for

finding the element t exactly.

Example 6.2. Another way of satisfying Eq (6.1) is to have protocols that simply change

the probability mass of the target element t on half of the elements from 1/n to (1 + ε)/n,

and on the remaining half from 1/n to (1− ε)/n.

Analyzing the communication cost of such protocols is distinctly more delicate. On the sur-

face, it does not seem that the protocol has made much “progress” towards finding the target

element t as nearly all elements are still quite likely candidates for being the target. Hence,

to show such protocols require large communication, we now need to go beyond reducing this

problem to finding the target element t exactly. Roughly speaking, we show that to be able

to make such a change in distribution of t, the protocol needs to communicate non-trivial
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information for every potential element, hence requiring a large communication again.

In the following, we show that no matter how a protocol decides to change the variation

distance of t from its original distribution, it needs a large communication. However, we also

encourage the reader to consider our arguments in the context of the above two examples

for concreteness.

6.3.2. Communication Complexity of ε-solving Set-Int

We prove the following lower bound on the information cost of protocols for ε-solving Set-Int.

Theorem 6.5. Suppose πSI is a protocol for Set-Int on instances (A,B) sampled from distSI.

Let ΠSI denote the transcript of the protocol πSI. If EΠSI∼ΠSI

[
‖dist(T | ΠSI)− U[n]‖tvd

]
≥ ε,

i.e., πSI ε-solves Set-Int, then the internal information cost of πSI on distSI is ICdistSI(πSI) =

Ω(ε2 · n).

We shall remark that for our purpose, we crucially use the fact that the lower bound in

Theorem 6.5 is for the internal information cost and for the distribution distSI. However, as

information cost lower bounds communication cost by Proposition 2.5.4, this immediately

implies that communication complexity of Set-Int is also large, which is of independent

interest.

Corollary 6.3.2. Any protocol πSI for ε-solving Set-Int on distribution distSI needs to com-

municate Ω(ε2 · n) bits of communication, i.e., CCdist(π) = Ω(ε2 · n).

One standard approach to proving the lower bound in Theorem 6.5 is to reduce the Set-Int

problem—via a direct-sum type argument—to many instances of a simpler problem, and

then prove the lower bound for the simpler problem directly. To do so, we reduce Set-Int

to the same problem on only two coordinates, which we refer to as the pair intersection

problem, denoted by Pair-Int. In Pair-Int, Alice and Bob are given tuples (x1, x2) ∈ {0, 1}2

and (y1, y2) ∈ {0, 1}2, respectively (we also use the concise notation [x1x2, y1y2] to denote

the joint inputs to the players), with the promise that there exists a unique index k ∈ {1, 2}
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such that (xk, yk) = (1, 1). The goal is to output the index k. Note that this problem is

equivalent to Set-Int when n = 2 modulo the fact that here we actually care about finding

k as opposed to ε-solving (to avoid ambiguity, we use k to denote the target element for

Pair-Int and t for Set-Int). Consider the following distribution which is equivalent to distSI

for n = 2.

Distribution distPI on tuples (x1, x2) and (y1, y2) from {0, 1}2.

1. For i ∈ {1, 2}, choose (xi, yi) uniformly at random from distribution µ (defined in

distSI).

2. Pick k ∈ {1, 2} uniformly at random and change (xk, yk) to (1, 1).

We prove that any protocol that ε-solves Set-Int on distSI with internal information cost

o(ε2 · n) bits can be used to obtain a protocol for Pair-Int that only reveals o(ε2) bits of

information about the input (with respect to distribution distPI) but is able to solve this

problem with probability at least 1/2 + ε on distribution distPI. We then prove that such a

protocol cannot exist for Pair-Int. We should note that the notion of information revealed for

Pair-Int that we use is rather non-standard (it neither corresponds to internal information

cost nor to external information cost that are typically studied). We elaborate more on this

later in Lemma 6.3.6.

Proof of Theorem 6.5

In the following, let πSI be any protocol for Set-Int that satisfies Eq (6.1), i.e., ε-solves Set-Int

on distSI. We use this protocol to obtain a protocol πPI for Pair-Int.

Protocol πPI: The protocol for Pair-Int using a protocol πSI for Set-Int.

Input: An instance [x1x2, y1y2] ∼ distPI.

Output: k ∈ {1, 2} as the answer to Pair-Int.

1. Sampling the instance. The players create an instance (A,B) of Set-Int as follows
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(see Figure 6.2 on page 199 for an illustration):

(a) Using public coins, Alice and Bob sample i, j ∈ [n] uniformly without replace-

ment.

(b) Alice sets ai = x1 and aj = x2 and Bob sets bi = y1 and bj = y2, using their

given inputs in Pair-Int.

(c) Using public coins, Alice and Bob sample ` ∈ {0, 1, . . . , n− 2} uniformly at

random and then pick an `-subset S of [n] \ {i, j} uniformly at random. Let

S := ([n] \ {i, j}) \ S.

(d) Using public coins, Alice and Bob sample AS , BS independently from distribu-

tion µ (defined in distSI).

(e) Using private coins, Alice samples the remaining coordinates in AS so that joint

distribution of each coordinate is µ. Similarly, Bob samples the coordinates in

BS .

2. Computing the answer. Alice and Bob run the protocol πSI on (A,B) and let ΠSI

be the transcript of the protocol. They compute the answer to Pair-Int as follows:

(a) The players compute the distribution dist(T | ΠSI) = (p1, . . . , pn) where T

denotes the random variable for the target element of Set-Int.

(b) Fix a total ordering �ΠSI on [n] such that for x 6= y ∈ [n], x �ΠSI y iff px > py

or px = py and x > y. We use x ≺ΠSI y to mean y �ΠSI x.

(c) Return 1 if i �ΠSI j and 2 otherwise.

The following observations are in order. Firstly, we note that the rather peculiar way of

sampling the instances (A,B) in πPI via public and private randomness is only for the

purpose of making the information-theoretic arguments needed to reduce Set-Int to Pair-Int

work; for the purpose of correctness of the reduction, we only need the fact that these

instances are sampled from distSI as captured by the following observation.

Observation 6.3.3. For an input [x1x2, y1y2] ∼ distPI, the distribution of the instances
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(A,B) constructed in πPI is distSI, where target t = i when x1 ∧ y1 = 1 and target t = j

when x2 ∧ y2 = 1.

The following observation states a key property of the “non-target” index in distPI.

Observation 6.3.4. Conditioned on x1 ∧ y1 = 0 and any fixed choice of (A,B), the index

i in πPI is uniformly distributed on [n] \ {j} (similarly for index j if x2 ∧ y2 = 0).

Proof. Conditioned on x1 ∧ y1 = 0, the distribution of (ai, bi) in (A,B) is µ, the same as all

other indices except for j.

The proof of Theorem 6.5 consists of three main steps: bounding the error probability of

protocol πPI, analyzing the information cost of πPI in terms of information cost of πSI, and

proving a lower bound on the information cost of πPI based on its error probability. Formally,

in the first step we prove that:

Lemma 6.3.5 (Correctness of πPI). For instances sampled from distPI, πPI outputs the

correct answer with probability at least 1
2 + Ω(ε) (over the randomness of the distribution

and the protocol).

In the second step, we show that:

Lemma 6.3.6 (Information cost of πPI). Let ΠPI denote the random variable for the tran-

script of the protocol πPI and K be the random variable for the index k in distribution distPI.

We have,

IdistPI(X1,X2 ; ΠPI | Y1,Y2,K) + IdistPI(Y1,Y2 ; ΠPI | X1,X2,K) ≤ 1

n− 1
· ICdistSI(πSI).

The LHS in Lemma 6.3.6 is not the internal information cost of πPI due to further condi-

tioning on K. In fact, it is not hard to show that this quantity can only be smaller than

the internal information cost of πPI. Hence, Lemma 6.3.6 is proving a “weaker” statement
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than a direct-sum result for internal information cost of πPI based on πSI. The reason for

settling for this weaker statement has to do with the fact that the coordinates in distribution

distSI are not chosen independently and so the stronger bound does not seem to be true for

our reduction1. Nevertheless, we show in the third part of the argument that this weaker

statement suffices for our purpose.

In the final step of the proof, we prove that any protocol for Pair-Int that has a small error

probability should have a large information cost with respect to the measure in Lemma 6.3.6.

Lemma 6.3.7 (Information complexity of Pair-Int). Suppose πPI outputs the correct answer

on distPI with probability at least 1
2 + Ω(ε). Then,

IdistPI(X1,X2 ; ΠPI | Y1,Y2,K) + IdistPI(Y1,Y2 ; ΠPI | X1,X2,K) = Ω(ε2).

We prove each of these three lemmas in the following sections. Before that, we show Theo-

rem 6.5 follows easily from these lemmas.

Proof of Theorem 6.5 (assuming Lemma 6.3.5, Lemma 6.3.6, and Lemma 6.3.7). Suppose to-

wards a contradiction that πSI is a protocol that ε-solves Set-Int on distSI and has information

cost ICdistSI(πSI) = o(ε2 · n). Create the protocol πPI using πSI as described in the reduction

above. We have,

• By Lemma 6.3.5, πPI outputs the correct answer on distPI w.p. at least 1
2 + Ω(ε).

• By Lemma 6.3.6, IdistPI(X1,X2 ; ΠPI | Y1,Y2,K)+IdistPI(Y1,Y2 ; ΠPI | X1,X2,K) = o(ε2).

However, these two properties contradict Lemma 6.3.7. As such, the internal information

cost of πSI on distSI should be Ω(ε2 · n), finalizing the proof.
1Similar issues arise when analyzing information complexity of set disjointness on intersecting distribu-

tions [161] as opposed to the more standard case of non-intersecting distributions (e.g. [30, 65, 66, 247]).
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Proof of Lemma 6.3.5: Correctness of Protocol πPI

The following is a re-statement of Lemma 6.3.5 that we prove in this section.

Lemma (Restatement of Lemma 6.3.5). For an instance [x1x2, y1y2] ∼ distPI, πPI outputs

the correct answer with probability at least 1
2 + Ω(ε) (over the randomness of the distribution

and the protocol).

To give some intuition about this lemma, let us consider the Example 6.1 and Example 6.2.

Suppose the correct answer to the instance of Pair-Int is index 1 and protocol πSI that we use

in reduction is of the type described in Example 6.1. We know that the set of n−Θ(ε · n)

elements computed by distSI definitely contains element i. What can be said about element

j here? By Observation 6.3.4, the element j is chosen uniformly at random from all elements

[n] \ {i}, even conditioned on a choice of A and B. As such, with probability Θ(ε), element

j does not belong to the set of candidates for the target element computed by πSI. In this

case, protocol πPI outputs the correct answer. This allows us to infer that πPI is able to get

Θ(ε) advantage over random guessing, exactly what is asserted by Lemma 6.3.5. A similar

argument also works if protocol πSI is of the type in Example 6.2. We now prove this lemma

for general protocols.

Proof of Lemma 6.3.5. Assume x1 ∧ y1 = 1, i.e., index 1 is the correct answer to Pair-Int

(the other case is symmetric). Let (A,B) be the instance of Set-Int constructed by πPI and

let ΠSI be the transcript of the protocol πSI on (A,B) which is communicated inside πPI.

Recall that dist(T | ΠSI) = (p1, . . . , pn) is defined in πPI. Also, define I and J as the random

variables for indices i and j in πPI. We claim,

Pr (πPI errs | x1 ∧ y1 = 1) = E
ΠSI∼ΠSI|T=I

[Pr (I ≺ΠSI J | ΠSI = ΠSI,T = I)] . (6.2)

This is by construction of the protocol as x1 ∧ y1 = 1 and T = I are equivalent, and

conditioned on x1 ∧ y1 = 1, the correct answer is the index 1 which would be output by the

protocol iff i �ΠSI j.
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For any fixed transcript ΠSI, the bound in RHS of Eq (6.2) is only a function of the distri-

bution of (I, J). Hence, let us examine dist(I, J | ΠSI,T = I) = dist(I | ΠSI,T = I) · dist(J |

ΠSI,T = I = i). For any ` ∈ [n], we have,

Pr
distPI

(I = ` | ΠSI,T = I) = Pr
distSI

(target element is ` | ΠSI) = p`. (6.3)

This is simply by Observation 6.3.3 that implies instances created in πPI are sampled from

distSI and because we conditioned on T = I. On the other hand, conditioned on T = I = i,

for any ` ∈ [n] \ {i},

Pr
distPI

(J = ` | ΠSI,T = I = i) = Pr
distPI

(J = ` | T = I = i) =
1

n− 1
. (6.4)

This is by Observation 6.3.4 as ΠSI is only a function of (A,B), while J is independent of

(A,B) (conditioned on J 6= T) and is uniform on any index which is not the target element.

Now that we have determined the distribution of (I, J) (conditioned on ΠSI and T = I), our

goal is to simply bound the RHS of Eq (6.2) (for any fixed choice of ΠSI). Intuitively, we

should expect this quantity to be small as we are picking I by gravitating towards higher

rank numbers according to �ΠSI , while PJ is chosen independent of �ΠSI . We formalize this

intuition in the following.

Claim 6.3.8. Let δ := ‖dist(I | ΠSI,T = I) − U[n]‖tvd; then Pr (I ≺ΠSI J | ΠSI,T = I) ≤
1
2 − Ω(δ).

Proof of Claim 6.3.8. In the following, all random variables are conditioned on (ΠSI,T = I)

and hence with a slight abuse of notation we drop this conditioning throughout the proof.

Recall that dist(I) = (p1, . . . , pn) (by Eq (6.3)) and without loss of generality assume p1 ≤

p2 ≤ . . . ≤ pn as we can always rename the indices to obtain this property (and breaking

the ties as in the protocol πPI by the original index). As for the distribution of J, note that

for any ` ∈ [n], Pr (J ∈ [`+ 1, n] | I = `) = n−`
n−1 by Eq (6.4). Note that after this renaming,
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I ≺ΠSI J iff I < J. Hence, we have,

Pr (I ≺ΠSI J) = Pr (I < J) =
n∑
`=1

Pr (I = `)Pr(J ∈ [`+ 1, n] | I = `) =
n∑
`=1

p` ·
n− `
n− 1

.

Let k ∈ [n] be the largest index such that pk < 1/n. Define q :=
∑k

`=1 p` as the total

probability mass of indices with probability less than 1/n. We have,

δ = ‖I− U[n]‖tvd =
1

2
·
n∑
`=1

∣∣∣∣p` − 1

n

∣∣∣∣ =
1

2
·
(

(
k

n
− q) + ((1− q)− n− k

n
)
)

=
k

n
− q (6.5)

which implies that q = k
n − δ. By the equation above for Pr (I < J), we have,

Pr (I < J) =
k∑
`=1

p` ·
n− `
n− 1

+
n∑

`=k+1

p` ·
n− `
n− 1

.

Now, using the assumption that p1 ≤ p2 ≤ · · · ≤ pn and by the inequality of Proposi-

tion 2.2.1,

Pr (I < J) ≤ 1

k

k∑
`=1

p`

k∑
`=1

n− `
n− 1

+
1

n− k

n∑
`=k+1

pl

n∑
`=k+1

n− `
n− 1

=
q

k
· k · (2n− k − 1)

2n− 2
+

1− q
n− k

· (n− k − 1)(n− k)

2n− 2

= q · 2n− k − 1

2n− 2
+ (1− q) · n− k − 1

2n− 2
=
n− k − 1

2n− 2
+ q · n

2n− 2

=
1

2
− k − n · q

2n− 2
=

Eq (6.5)

1

2
− nδ

2n− 2
< 1/2− δ/2,

completing the proof.

We are now ready to finalize the proof of Lemma 6.3.5.

Pr (πPI errs | x1 ∧ y1 = 1) =
Eq (6.2)

E
ΠSI∼ΠSI|T=I

[Pr (I ≺ΠSI J | ΠSI = ΠSI,T = I)]

≤
Claim 6.3.8

E
ΠSI∼ΠSI|T=I

[
1

2
− Ω

(
‖dist(I | ΠSI = ΠSI,T = I)− U[n]‖tvd

)]
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= E
ΠSI∼ΠSI

[
1

2
− Ω

(
‖dist(T | ΠSI = ΠSI)− U[n]‖tvd

)]
(distribution of I = T and ΠSI ⊥ T = I)

≤ 1

2
− Ω(ε),

where the last inequality is because πSI ε-solves Set-Int. We can also do the same exact

analysis for the case when x2 ∧ y2 = 1, hence obtaining that Pr (πPI errs) = 1
2 − Ω(ε).

Proof of Lemma 6.3.6: Information Cost of Protocol πPI

We prove this lemma by a direct-sum type argument that shows if the (internal) information

cost of πSI is small, then protocol πPI is revealing a small information about its input assum-

ing conditioning on the target element. We emphasize that this information revealed is not

equivalent with the internal information cost as we are conditioning on some information

not known to neither Alice nor Bob. The following is a restatement of Lemma 6.3.6 that we

prove in this section.

Lemma (Restatement of Lemma 6.3.6). Let ΠPI denote the random variable for the tran-

script of the protocol πPI and K be the random variable for index k in distribution distPI. We

have,

IdistPI(X1,X2 ; ΠPI | Y1,Y2,K) + IdistPI(Y1,Y2 ; ΠPI | X1,X2,K) ≤ 1

n− 1
· ICdistSI(πSI).

The intuition behind the proof is as follows. The LHS in Lemma 6.3.6 is the information

revealed about the input of players (in Pair-Int) averaged over choices of k = 1 and k = 2.

Let us assume k = 1, as the other case is symmetric. In this case, this quantity is simply

the information revealed about (x2, y2) by the protocol as (x1, y1) = (1, 1) and hence has 0

information (once we have conditioned on the event k = 1). However, when k = 1, (x2, y2)

is embedded in index j, i.e., (x2, y2) = (aj , bj) and have the same distribution as all other

coordinates in A−i, B−i. As such, since the protocol πSI called inside πPI is oblivious to the

choice of j, the information revealed about (aj , bj) in average is smaller than the information

210



revealed by πSI about A−i, B−i (which itself is at most the internal information cost of πSI),

by a factor of n− 1 (i.e., the number of coordinates in [n] \ {i} we are averaging over).

The outline above oversimplifies many details. One such detail is the way of ensuring a

“symmetric treatment” of both indices i and j through the rather peculiar choice of public-

private sampling in πPI (via the choices of ` and S). This is crucial for the above argument

to work for both k = 1 and k = 2 cases simultaneously, without the players knowing which

index the “averaging” of information is being done for (index j in the context of the discussion

above).

Proof of Lemma 6.3.6. For simplicity of exposition, we drop the subscript distPI from all

mutual information terms with the understanding that all random variables are distributed

according to distPI (and the randomness of protocol πPI on distPI) unless explicitly stated

otherwise.

We bound the first term in LHS above (the second term can be bounded the same way).

By expanding the conditional mutual information term we have,

I(X1,X2 ; ΠPI | Y1,Y2,K) =
1

2
· I(X1,X2 ; ΠPI | Y1,Y2,K = 1)

+
1

2
· I(X1,X2 ; ΠPI | Y1,Y2,K = 2). (6.6)

We now focus on the first term in the LHS of Eq (6.6). We have,

I(X1,X2 ; ΠPI | Y1,Y2,K = 1) = I(X2 ; ΠPI | Y2,K = 1)

((X1,Y1) is always equal to (1, 1) in distPI conditioned on K = 1)

= I(X2 ; ΠSI | Y2, I, J,S, L,AS,BS,K = 1)

(πPI runs πSI with public randomness I, J,S, L,AS,BS (L is for `) and by Proposition 2.5.3)

=
∑
i 6=j

1

n(n− 1)
· I(Aj ; ΠSI | Bj , L,S,AS,BS, I = i, J = j,K = 1).

((X2,Y2) is embedded in (Aj ,Bj) conditioned on J = j)
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Recall that T denotes the unique index in [n] in instances (A,B) ∼ distSI which is equal to

(1, 1). Note that T = i conditioned on I = i and K = 1, and that conditioning on the event

T = i has the same effect on all random variables above as conditioning on the joint event

I = i,K = 1. Hence, we can write the RHS above as,

I(X1,X2 ; ΠPI | Y1,Y2,K = 1) =
1

n(n− 1)

∑
i 6=j

I(Aj ; ΠSI | Bj , L,S,AS,BS,T = i, J = j)

≤ 1

n(n− 1)

∑
i 6=j

I(Aj ; ΠSI | L, S,AS,B−i,T = i, J = j).

(as Aj ⊥ B−i | Bj (and other variables above) and hence we can apply Proposition 2.4.2)

By further expanding the conditional mutual information term in RHS over L and S,

I(X1,X2 ; ΠPI | Y1,Y2,K = 1)

≤ 1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

n−2∑
`=0

∑
S⊆[n]\{i,j}
|S|=`

1

n− 1

(
n− 2

`

)−1

(6.7)

· I(Aj ; ΠSI | AS ,B−i, L = `,S = S,T = i, J = j)

=
1

n(n− 1) · (n− 1)!

n∑
i=1

n∑
j=1
j 6=i

n−2∑
`=0

∑
S⊆[n]\{i,j}
|S|=`

((n− 2− `)!`!) · I(Aj ; ΠSI | AS ,B−i,T = i),

(6.8)

by reorganization of the terms and dropping the conditioning on events L = `,S = S, J = j

as the distribution of remaining random variables are independent of these events. We now

have the following auxiliary claim.

Claim 6.3.9. For any choice of i ∈ [n],

n∑
j=1
j 6=i

n−2∑
`=0

∑
S⊆[n]\{i,j}
|S|=`

((n− 2− `)!`!) · I(Aj ; ΠSI | AS ,B−i,T = i)
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=
∑
σ∈S−i

n−2∑
`=0

I(Aσ(`+1) ; ΠSI | Aσ(<`+1),B−i,T = i),

where S−i is the set of all permutations of [n] \ {i}.

Proof. Fix any (j, S) in the LHS. For integer ` = |S|, there are exactly ((n− 2− `)!`!)

permutations σ ∈ S−i such that (i) σ(` + 1) = j and (ii) {σ(1), . . . , σ(`)} = S. Hence,

I(Aj ; ΠSI | AS ,B−i,T = i) for (j, S) appears exactly ((n− 2− `)!`!) times in RHS as

I(Aσ(`+1) ; ΠSI | Aσ(<`+1),B−i,T = i) (for appropriate choices of σ as described above),

proving the claim.

By applying Claim 6.3.9 to the RHS of Eq (6.8), we obtain that,

I(X1,X2 ; ΠPI | Y1,Y2,K = 1)

≤ 1

n(n− 1)(n− 1)!

n∑
i=1

∑
σ∈S−i

n−2∑
`=0

I(Aσ(`+1) ; ΠSI | Aσ(<`+1),B−i,T = i)

=
1

n(n− 1)(n− 1)!

n∑
i=1

∑
σ∈S−i

I(A−i ; ΠSI | B−i,T = i)

(by chain rule of mutual information in Fact 2.4.1-(6))

=
1

n(n− 1)

n∑
i=1

I(A−i ; ΠSI | B−i,T = i) (as |S−i| = (n− 1)!)

=
1

n− 1
· I(A ; ΠSI | B,T)

(as (AT,BT) = (1, 1) in distPI and hence we can add them to the information term)

≤ 1

n− 1
· I(A ; ΠSI | B) =

1

n− 1
· IdistSI(A ; ΠSI | B),

where the last inequality is because ΠSI ⊥ T | A,B (as the transcript is only a function of

the inputs) and hence we can apply Proposition 2.4.3, and the last equality is because by

Observation 6.3.3, joint distribution of distPI and randomness of the protocol πPI is the same
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as distribution distSI. Using the same exact analysis (by switching the role of indices i and j

and noting that the rest is all symmetric), we also obtain the following bound for the second

term of Eq (6.6),

I(X1,X2 ; ΠPI | Y1,Y2,K = 2) ≤ 1

n− 1
· IdistSI(A ; ΠSI | B).

Plugging in these bounds in Eq (6.6), we obtain that,

IdistPI(X1,X2 ; ΠPI | Y1,Y2,K) ≤ 1

n− 1
· IdistSI(A ; ΠSI | B). (6.9)

Similarly, the second term in the LHS of Lemma 6.3.6 can be upper bounded using a similar

analysis (by switching the role of A and B, and S and S and noting that the rest is all

symmetric), implying the following bound:

IdistPI(Y1,Y2 ; ΠPI | X1,X2,K) ≤ 1

n− 1
· IdistSI(B ; ΠSI | A). (6.10)

Summing up the LHS and RHS in Eq (6.9) and Eq (6.10), finalizes the proof.

Proof of Lemma 6.3.7: Information Complexity of Pair-Int

We now prove the final step of the proof of Theorem 6.5. The following is a restatement of

Lemma 6.3.7.

Lemma (Restatement of Lemma 6.3.7). Suppose πPI outputs the correct answer on distPI

with probability at least 1
2 + Ω(ε). Then,

IdistPI(X1,X2 ; ΠPI | Y1,Y2,K) + IdistPI(Y1,Y2 ; ΠPI | X1,X2,K) = Ω(ε2).

The idea behind the proof of Lemma 6.3.7 is as follows. Recall that Π[x1x2, y1y2] denotes the

transcript of the protocol condition on the input being [x1x2, y1y2]. Suppose towards the

contradiction that the LHS of Lemma 6.3.7 is o(ε2) instead. By focusing on the conditional
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terms when k = 1, we can show that distribution of Π[1x′2, 1y
′
2] and Π[1x′′2 , 1y

′′
2 ] for all choices of

(x′2, y
′
2) and (x′′2, y

′′
2) in the support of distPI (basically everything except for (1, 1)) are quite

close. This is intuitively because the information revealed about (x2, y2) by πPI conditioned

on k = 1 is small. Similarly, by focusing on the k = 2 terms, we obtain the same result for

Π[x′21, y′21] and Π[x′′2 1, y′′2 1].

Up until this point, there is no contradiction as the answer to [1∗, 1∗] is always 1 and hence

there is no problem with the corresponding transcripts in Π[1∗, 1∗] to be similar (similarly for

Π[∗1, ∗1] separately). However, we combine the previous part with the cut-and-paste property

of randomized protocols (Fact 2.5.6) to argue that in fact the distribution of Π[10, 10] and

Π[01, 01] are also similar. This then basically implies that Π[1∗, 1∗] essentially has the same

distribution as Π[∗1, ∗1]; but then this is a contradiction as the answer to the protocol (which

is only a function of the transcript) needs to be different between these two types of inputs.

We now formalize the proof.

Proof of Lemma 6.3.7. The distribution of random variables below is always distPI (and the

randomness of the protocol πPI on distPI) and hence we drop the subscript distPI from all

mutual information terms. Suppose towards a contradiction that the LHS in the lemma

statement is o(ε2). As we showed in Eq (6.6) and the subsequent equation in the proof of

Lemma 6.3.6, the LHS can be written as

1

2
· (I(X2 ; ΠPI | Y2,K = 1) + I(Y2 ; ΠPI | X2,K = 1))

+
1

2
· (I(X2 ; ΠPI | Y2,K = 1) + I(Y2 ; ΠPI | X2,K = 1)) = o(ε2). (6.11)

By bounding each of the above term above separately by o(ε2) and expanding the mutual

information terms, we prove the following claim.

Claim 6.3.10. Assuming Eq (6.11),

(1) I(X2 ; ΠPI | Y2 = 0,K = 1) = o(ε2), (2) I(Y2 ; ΠPI | X2 = 0,K = 1) = o(ε2),
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(3) I(X1 ; ΠPI | Y1 = 0,K = 2) = o(ε2), (4) I(Y1 ; ΠPI | X1 = 0,K = 2) = o(ε2).

Proof. To prove the first equation, we write the first term in Eq (6.11) as follows:

I(X2 ; ΠPI | Y2,K = 1) =
2

3
· I(X2 ; ΠPI | Y2 = 0,K = 1) +

1

3
· I(X2 ; ΠPI | Y2 = 1,K = 1)

=
2

3
· I(X2 ; ΠPI | Y2 = 0,K = 1),

since for (X2,Y2) ∼ distPI | K = 1, if Y2 = 1, then X2 is always equal to 0 and hence

the second term above is zero. As the LHS of above equation is o(ε2) by Eq (6.11) (and

non-negativity of mutual information in Fact 2.4.1-(2)), we obtain the first equation in the

statement of the claim. The remaining equations can be proven exactly the same.

We now use Claim 6.3.10, to bound the distance between different transcripts of the proto-

col. Recall that Π[x1x2, y1y2] denotes the transcript of the protocol conditioned on the input

(x1, x2) to Alice, and (y1, y2) to Bob.

Claim 6.3.11. Assuming Eq (6.11),

(1) h2(Π[11, 10],Π[10, 10]) = o(ε2), (2) h2(Π[10, 11],Π[10, 10]) = o(ε2),

(3) h2(Π[11, 01],Π[01, 01]) = o(ε2), (4) h2(Π[01, 11],Π[01, 01]) = o(ε2).

Proof. We write the LHS of the first equation in Claim 6.3.10 in terms of the KL-divergence

using Fact 2.4.5. Define Π[1∗, 10] as the distribution of Π conditioned on the given value for

x1, y1, y2 (leaving out the assignment for x2). We have,

I(X2 ; ΠPI | Y2 = 0,K = 1) =
Fact 2.4.5

E
x2∼X2|Y2=0,K=1

[D(Π[1x2, 10] || Π[1∗, 10])]

=
1

2
· D(Π[10, 10] || Π[1∗, 10]) +

1

2
· D(Π[11, 10] || Π[1∗, 10])

≥
Fact 2.4.9

h2(Π[10, 10],Π[11, 10]).
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The distribution of X2 conditioned on Y2 = 0,K = 1 in distPI is uniform over {0, 1} (hence the

second equality). As such, Π[1∗, 10] = 1
2 ·
(
Π[10, 10] + Π[11, 10]

)
and so we can apply Fact 2.4.9

to obtain the last inequality. As I(X2 ; ΠPI | Y2 = 0,K = 1) = o(ε2) by Claim 6.3.10, we

obtain the first equation (note that h is symmetric). The remaining equations can be proven

similarly.

The next step is to use the cut-and-paste property (Fact 2.5.6) of randomized protocols to

prove the following claim.

Claim 6.3.12. Assuming Eq (6.11), h2(Π[10, 10],Π[01, 01]) = o(ε2).

Proof. We start with proving the following two equations first:

(1) h2(Π[11, 11],Π[10, 10]) = o(ε2), (2) h2(Π[11, 11],Π[01, 01]) = o(ε2).

For the first equation,

h2(Π[11, 11],Π[10, 10]) = h2(Π[11, 10],Π[10, 11]) (by the cut-and-paste property in Fact 2.5.6)

≤
(
h(Π[11, 10],Π[10, 10]) + h(Π[10, 10],Π[10, 11])

)2 (by triangle inequality)

≤ 2 ·
(
h2(Π[11, 10],Π[10, 10]) + h2(Π[10, 10],Π[10, 11])

)
(by Cauchy-Schwartz)

= o(ε2). (by parts (1) and (2) of Claim 6.3.11)

The second equation can be proven similarly using parts (3) and (4) of Claim 6.3.11. We

can now prove the claim as follows:

h2(Π[10, 10],Π[01, 01]) ≤
(
h(Π[10, 10],Π[11, 11]) + h(Π[11, 11],Π[01, 01])

)2 (by triangle inequality)

≤ 2 ·
(
h2(Π[10, 10],Π[11, 11]) + h2(Π[11, 11],Π[01, 01])

)
(by Cauchy-Schwartz)
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= o(ε2). (by part (1) and (2) of the equation above)

This concludes the proof.

Define I1 := {[10, 10], [11, 10], [10, 11]} and I2 := {[01, 01], [11, 01], [01, 11]} . The tuples in

I1 ∪ I2 partition all the input tuples in the support of distPI and moreover, for every tuple

in I1, the correct answer to Pair-Int is the first index, while for every tuple in I2, the correct

answer is the second index. We now bound the total variation distance between every pair

of tuples in I1 and I2.

Claim 6.3.13. Assuming Eq (6.11), for every (T1, T2) ∈ I1 × I2, ‖ΠT1 − ΠT2‖tvd = o(ε).

Proof. Proving the claim amounts to proving the following nine equations:

(1) ‖Π[10, 10] − Π[01, 01]‖tvd = o(ε),

(2) ‖Π[10, 10] − Π[11, 01]‖tvd = o(ε),

(3) ‖Π[10, 10] − Π[01, 11]‖tvd = o(ε),

(4) ‖Π[11, 10] − Π[01, 01]‖tvd = o(ε),

(5) ‖Π[11, 10] − Π[11, 01]‖tvd = o(ε),

(6) ‖Π[11, 10] − Π[01, 11]‖tvd = o(ε),

(7) ‖Π[10, 11] − Π[01, 01]‖tvd = o(ε),

(8) ‖Π[10, 11] − Π[11, 01]‖tvd = o(ε),

(9) ‖Π[10, 11] − Π[01, 11]‖tvd = o(ε),

The first equation can be proven as follows:

‖Π[10, 10] − Π[01, 01]‖tvd ≤
√

2 · h(Π[10, 10],Π[01, 01]) = o(ε),

where the inequality is by Fact 2.4.8 and the equality is by Claim 6.3.12. This proves the
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equation (1) above. Now note that,

‖Π[10, 10] − Π[11, 01]‖tvd ≤ ‖Π[10, 10] − Π[01, 01]‖tvd + ‖Π[01, 01] − Π[11, 01]‖tvd

(by triangle inequality)

≤ o(ε) +
√

2 · h(Π[01, 01],Π[11, 01])

(by equation (1) above for the first term and Fact 2.4.8 for the second)

= o(ε). (by part (3) of Claim 6.3.11)

This proves the equation (2). All the remaining equations can now be proven using a

similar argument as above by first relating the distance between the two variables to the

distance between ‖Π[10, 10] − Π[11, 01]‖tvd (which we know is o(ε) by equation (1)) using

triangle inequality, and then use Fact 2.4.8 combined with Claim 6.3.11 to bound each of

the remaining terms with o(ε).

We are now almost done. By Claim 6.3.13, if we assume Eq (6.11), then for every (T1, T2) ∈

I1 × I2, ‖ΠT1 − ΠT2‖tvd = o(ε). On the other hand, for πPI to be able to output the

correct answer with probability 1/2 + Ω(ε) (over the randomness of the protocol and the

distribution), for at least one pair (T1, T2) ∈ I1 × I2, we should have ‖ΠT1 −ΠT2‖tvd = Ω(ε)

as the output of the protocol on T1 (resp. T2) is only a function of ΠT1 (resp. ΠT2), and

hence otherwise would be the same with probability 1 − o(ε) by Fact 2.4.6. This implies

that assuming Eq (6.11), the protocol errs with probability at least 1/2 − o(ε), which is a

contradiction. Hence Eq (6.11) cannot hold

6.4. The Hidden-Pointer Chasing Problem

Recall that the hidden-pointer chasing (HPC) problem is a four-party communication prob-

lem with players PA, PB, PC , and PD defined as follows. Let X := {x1, . . . , xn} and

Y := {y1, . . . , yn} be two disjoint universes of size n each. We define HPC as follows:

1. For any x ∈ X , PA and PB are given an instance (Ax, Bx) of Set-Int over the uni-
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verse Y where Ax ∩ Bx = {tx} for a single target element tx ∈ Y. We define

A := {Ax1 , . . . , Axn} and B := {Bx1 , . . . , Bxn} as the whole input to PA and PB,

respectively.

2. For any y ∈ Y, PC and PD are given an instance (Cy, Dy) of Set-Int over the universe X

where Cy∩Dy = {ty} for a single target element ty ∈ X . We define C := {Cy1 , . . . , Cyn}

and D := {Dy1 , . . . , Dyn} as the whole input to PC and PD, respectively.

3. We define two mappings fAB : X → Y and fCD : Y → X such that:

(a) for any x ∈ X , fAB(x) = tx ∈ Y in the instance (Ax, Bx) of Set-Int.

(b) for any y ∈ Y, fCD(y) = ty ∈ X in the instance (Cy, Dy) of Set-Int.

4. Let x1 ∈ X be an arbitrary fixed element of X known to all players. The pointers

z0, z1, z2, z3, . . . are defined inductively as follows:

z0 := x1, z1 := fAB(z0), z2 := fCD(z1), z3 := fAB(z2), . . . .

For any integer k ≥ 1, the k-step hidden-pointer chasing problem, denoted by HPCk is

defined as the communication problem of finding the pointer zk. See Figure 6.1 on page 189

for an illustration.

6.4.1. Communication Complexity of HPCk

It is easy to see that in k+1 phases, we can compute HPCk with O(k·n) total communication:

we simply skip the first phase; in the second phase, PA and PB solve the Set-Int instance

(Az0 , Bz0) with O(n) communication to compute z1 = fAB(z0) and send this pointer to PC

and PD; PC and PD in the next phase compute fCD(z1) and the players continue like this

to find the pointer zk, which takes k + 1 phases in total.

In the following, we prove that if we only have k phases however, solving HPCk requires

Ω(n2/k2 + n) bits of communication.
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Theorem 6.6. For any integer k ≥ 1, any k-phase protocol that outputs the correct solution

to HPCk with constant probability requires Ω(n2/k2 + n) bits of communication.

The rest of this section is devoted to the proof of Theorem 6.6. We start with defining our

hard distribution of instances for HPCk and then use this distribution to prove the lower

bound.

A Hard Distribution for HPC

The hard distribution for HPC is simply the product of distribution distSI for every x ∈ X

and y ∈ Y.

Distribution distHPC on tuples (A,B, C,D) from the universes X and Y:

1. For any x ∈ X , sample (Ax, Bx) ∼ distSI from the universe Y independently.

2. For any y ∈ Y, sample (Cy, Dy) ∼ distSI from the universe X independently.

The following simple observation is in order.

Observation 6.4.1. Distribution distHPC is not a product distribution. However, in this

distribution:

(i) The inputs to PA and PB are independent of the inputs to PC and PD, i.e., (A,B) ⊥

(C,D).

(ii) For any x ∈ X , (Ax, Bx) is independent of all other (Ax′ , Bx′) for x′ 6= x ∈ X . Similarly

for all y, y′ ∈ Y and (Cy, Dy) and (Cy′ , Dy′).

Based on this observation, we also have the following simple property.

Proposition 6.4.2. Let πHPC be any deterministic protocol for HPCk on distHPC. Then,

for any transcript Π of πHPC, (A,B) ⊥ (C,D) | Π = Π.

Proof. Follows from the rectangle property of the protocol πHPC (Fact 2.5.5). In particular,
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the same exact argument as in the two-player case implies that if [(A1,B1), (C1,D1)] and

[(A2,B2), (C2,D2)] are mapped to the same transcript Π, then [(A1,B1), (C2,D2)] and

[(A2,B2), (C1,D1)] are mapped to Π as well. Hence, since (A,B) ⊥ (C,D) by Observa-

tion 6.4.1, the inputs corresponding to the same protocol would also be independent of each

other, namely, (A,B) ⊥ (C,D) | Π = Π.

Proof of Theorem 6.6: A Communication Lower Bound for HPCk

We prove the lower bound for any arbitrary deterministic protocol πHPC and then apply

Yao’s minimax principle [252] to extend it to randomized protocols as well. We first setup

some notation.

Notation. Fix any k-phase deterministic protocol πHPC for HPCk throughout the proof.

We use j = 1 to k to index the phases of this protocol, as well as the pointers z1, . . . , zk.

For any j ∈ [k], we define Πj as the set of all messages communicated by πHPC in phase j

and Π := (Π1, . . . ,Πk) as the transcript of the protocol πHPC.

For any x ∈ X and any y ∈ Y, we define the random variables Tx ∈ Y and Ty ∈ X ,

which correspond to the target elements of the Set-Int problem on (Ax, Bx) and (Cy, Dy),

respectively.

We further define Ej := (Π<j ,Z<j) for any j > 1 and E1 = z0, i.e., the first pointer. We can

think of Ej as the information “easily known” to all players at the beginning of phase j.

The main step of the proof of Theorem 6.6 is the following key lemma which we prove

inductively.

Lemma 6.4.3. Let CC(πHPC) := CCdistHPC(πHPC). There exists an absolute constant c > 0

such that for all j ∈ [k]:

E
(Ej ,Πj)

[
‖dist(Zj | Ej ,Πj)− dist(Zj)‖tvd

]
≤ j · c ·

(√CC(πHPC) + k · log n+ k

n

)
.
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Recall that distribution of each pointer zj is uniform over its support, i.e., over X if j is

even, and over Y if j is odd. Intuitively speaking, Lemma 6.4.3 states that if communication

cost of a protocol is “small”, i.e., is o(n2/k2), then even after communicating the messages

in the first j phases of the protocol, distribution of zj is still “close” to being uniform. In

other words, the first j phases of the protocol do not reveal “any useful information” about

zj . This in particular implies that at the end of the protocol, i.e., at the end of phase k, the

target pointer zk is still uniform and πHPC should not be able to find it. We first formalize

this inution and use it to prove Theorem 6.6 and then present a proof of Lemma 6.4.3 which

is the heart of the argument.

Proof of Theorem 6.6 (assuming Lemma 6.4.3). The Ω(n) term in the lower bound trivially

follows from the Ω(n) lower bound for set intersection (e.g. Theorem 6.5 with constant ε).

In the following we prove the first (and the main) term. Note that for this purpose, we can

assume k = o(
√
n) as otherwise the dominant term would already be the second term.

Let πHPC be any deterministic protocol for HPCk for k = o(
√
n) with communication cost

CCdistHPC(πHPC) = o(n2/k2). Recall that dist(Zk) = UX if k is even and dist(Zk) = UY if k

is odd. Let us assume by symmetry that k is even. By Lemma 6.4.3, we have,

E
(Ek,Πk)

[
‖dist(Zk | Ek,Πk)− UX ‖tvd

]
≤ k · c ·

(√CC(πHPC) + k · log n+ k

n

)
= k · c ·

(
o(

1

k
) + o(

√
log n

n3/4
) + o(

k

n
)

)
= o(

k

k
) + o(

k ·
√

log n

n3/4
) + o(

k2

n
) = o(1), (6.12)

as c is an absolute constant.

On the other hand, (Ek,Πk) contains the whole transcript Π of the protocol and hence the

output of the protocol πHPC is fixed conditioned on (Ek,Πk). We use O(Ek,Πk) to denote
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this output. We have,

Pr
(Ek,Πk)

(πHPC is correct)

= E
(Ek,Πk)

Pr
Zk|(Ek,Πk)

(Zk = O(Ek,Πk))

≤
Fact 2.4.6

E
(Ek,Πk)

[
Pr

Zk∼UX
(Zk = O(Ek,Πk)) + ‖dist(Zk | Ek,Πk)− UX ‖tvd

]
≤ 1

n
+ E

(Ek,Πk)

[
‖dist(Zk | Ek,Πk)− UX ‖tvd

]
≤

Eq (6.12)

1

n
+ o(1).

Hence, πHPC cannot output the correct solution with at least a constant probability of

success, proving the lower bound for deterministic algorithms.

To finalize, we can extend this (distributional) lower bound to randomized protocols by the

easy direction of Yao’s minimax principle [252], namely by an averaging argument that picks

the “best” choice for randomness of the protocol. This concludes the proof.

Proof of Lemma 6.4.3

The following is a restatement of Lemma 6.4.3.

Lemma (Restatement of Lemma 6.4.3). Let CC(πHPC) := CCdistHPC(πHPC). There exists an

absolute constant c > 0 such that for all j ∈ [k]:

E
(Ej ,Πj)

[
‖dist(Zj | Ej ,Πj)− dist(Zj)‖tvd

]
≤ j · c ·

(√CC(πHPC) + k · log n+ k

n

)
.

The proof of Lemma 6.4.3 consists of two main steps. We first show that finding the target

element of a uniformly at random chosen instance of Set-Int (as opposed to the instance

corresponding to any particular pointer) in HPC is not possible unless we make a large

communication. Then, we prove inductively that in each phase j, the distribution of the

pointer zj is close to uniform and hence by the argument in the first step, we should not be

able to find the target element tzj associated with zj and use this to finalize the proof. The

following lemma captures the first part.
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Lemma 6.4.4. There exists an absolute constant c > 0 such that for any j ∈ [k],

E
(Ej ,Πj)

E
x∼UX

[‖dist(Tx | Ej ,Πj)− dist(Tx)‖tvd] ≤ c ·
(√CC(πHPC) + j · log n+ j

n

)
,

E
(Ej ,Πj)

E
y∼UY

[‖dist(Ty | Ej ,Πj)− dist(Ty)‖tvd] ≤ c ·
(√CC(πHPC) + j · log n+ j

n

)
.

The proof of this lemma is based on a direct-sum style argument combined with Theorem 6.5.

For intuition, consider a protocol that uses o(n2) communication in its first j phases and

assume by way of contradiction that it can reduce the LHS of one of the equations in

Lemma 6.4.4 by Ω(1). Using a direct-sum style argument, we can then argue that the

transcript of the first j phases of this protocol only reveal o(n) bits of information about

a uniformly at random chosen instance (Ax, Bx) of Set-Int but is enough to Ω(1)-solve the

instance (Ax, Bx) (according to Definition 6.3.1), which is in contradiction with our bounds

in Theorem 6.5. Note that in this discussion, for the sake of simplicity, we neglected the role

of extra conditioning on Z<j in Ej in the LHS of equations; handling this extra conditioning

results in the extra additive factor in RHS.

Proof of Lemma 6.4.4. We only prove the first equation; the second one can be proven

analogously. Suppose towards a contradiction that this equation does not hold. We use

πHPC to design a protocol πSI that can ε-solve the Set-Int problem (Ax, Bx) for a uniformly

at random chosen x ∈ X and appropriately chosen ε ∈ (0, 1) to be determined later (see

Definition 6.3.1 for the notion of ε-solve).

Protocol πSI: The protocol for ε-solving Set-Int using a protocol πHPC for HPCk.

Input: An instance (A,B) ∼ distSI over the universe Y.

1. Sampling the instance. Alice and Bob create an instance (A,B, C,D) of HPCk

as follows (see Figure 6.3 below for an illustration):

(a) Using public coins, Alice and Bob sample an index i ∈ [n] uniformly at random,
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and Alice sets Axi = A and Bob sets Bxi = B using their given inputs in Set-Int.

(b) Using public coins, Alice and Bob sample Axj and Bxk from distSI for all j <

i < k.

(c) Using private coins, Alice samples Axk for k > i such that (Axk , Bxk) ∼ distSI.

Similarly Bob samples Bxj for j < i. This completes construction of (A,B).

(d) Using public coins, Alice and Bob sample (C,D) completely from distHPC (this

is possible by Observation 6.4.1 as (A,B) ⊥ (C,D)).

2. Computing the answer. Alice and Bob first check whether xi belongs to

z0, z1, . . . , zj−1 or not. To do so, they start computing these pointers using the

fact that for any underlying instance (Ax, Bx) ∈ (A,B) \ (Axi , Bxi) either Alice or

Bob knows the entire instance. They terminate the protocol if ever xi belongs to one

of the pointers computed so far. We use Π∗ to denote the transcript of the protocol

in this step (which is either z1, . . . , zj−1 or some prefix of it ending in xi).

3. Next, Alice and Bob run the protocol πHPC on the instance (A,B, C,D) until its

j-th phase by Alice playing PA, Bob playing PB, and both Alice and Bob simulating

PC and PD with no communication (this is possible as both Alice and Bob know

(C,D) entirely).

4. The players return ΠSI := (Π1, . . . ,Πj ,Π
∗).

Similar to the case of the sampling in protocol πPI in Section 6.3, here also the public-private

randomness sampling of the instance of HPC inside πSI is only for the sake of the information

theoretic arguments; for the rest of the analysis, we only care that the distribution of the

instances of HPC sampled in πSI is distHPC. We first determine the parameter ε for which

πSI ε-solves Set-Int.

Claim 6.4.5. πSI ε-solves Set-Int on distSI for

ε ≥ E
(Ej ,Πj)

E
x∼UX

[
‖dist(Tx | Ej ,Πj)− dist(Tx)‖tvd

]
− j

n
,
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Ax1 Ax2 Ax3 A Ax5 Ax6 Ax7 Ax8

Bx1 Bx2 Bx3 B Bx5 Bx6 Bx7 Bx8

i

Cy1 Cy2 Cy3 Cy4 Cy5 Cy6 Cy7 Cy8

Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8

Figure 6.3: Illustration of the process of sampling of instances of HPC in πSI for n =
8. In this example, i = 4 and hence (Ax4 , Bx4) = (A,B) and the players sample
{Ax1 , Ax2 , Ax3 , Bx5 , Bx6 , Bx7 , Bx8} as well as the entire C and D using public randomness.
Then, Alice samples {Ax5 , Ax6 , Ax7 , Ax8} and Bob samples {Bx1 , Bx2 , Bx3} using private
randomness, respectively.

where (Ej ,Πj ,Tx) are distributed according to distHPC.

Proof. By Definition 6.3.1, πSI ε-solves Set-Int for ε := EΠSI

[
‖dist(T | ΠSI) − dist(T)‖tvd

]
.

We thus bound the RHS of this equation. We have,

E
ΠSI

[
‖dist(T | ΠSI)− dist(T)‖tvd

]
= E

(Ej ,Πj ,ΠSI,i)

[
‖dist(Txi | ΠSI)− dist(Txi)‖tvd

]
(as T = Txi for I = i)

= E
(Ej ,Πj)

E
i

E
ΠSI|(Ej ,Πj ,i)

[
‖dist(Txi | ΠSI)− dist(Txi)‖tvd

]
(as (Ej ,Πj) ⊥ I)

= E
(Ej ,Πj)

[ n∑
i=1

1

n
E

ΠSI|(Ej ,Πj ,i)

[
‖dist(Txi | ΠSI)− dist(Txi)‖tvd

]]
(distribution of i is uniform over [n])

= E
(Ej ,Πj)

[ ∑
xi∈Z<j

1

n
· ‖dist(Txi | Z<j

′
)− dist(Txi)‖tvd
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+
∑

xi /∈Z<j

1

n
· ‖dist(Txi | Ej ,Πj)− dist(Txi)‖tvd

]
(Π∗ := Z<j

′ for some j′ < j − 1 when xi ∈ Z<j and is otherwise equal to Ej ,Πj))

= E
(Ej ,Πj)

 ∑
xi /∈Z<j

1

n
· ‖dist(Txi | Ej ,Πj)− dist(Txi)‖tvd


(Txi ⊥ Π∗ and so ‖dist(Txi | Z<j

′
)− dist(Txi)‖tvd = ‖dist(Txi)− dist(Txi)‖tvd = 0)

≥ E
(Ej ,Πj)

E
i

[
‖dist(Txi | Ej ,Πj)− dist(Txi)‖tvd

]
− j

n
.

(as total variation distance is bounded by one
∣∣Z<j∣∣ = j)

Replacing xi for i chosen randomly from [n] above by x ∼ UX concludes the proof.

The RHS in Claim 6.4.5 is the quantity we aim to bound in this lemma (minus the extra

additive j/n term). To do so, we are going to bound the internal information cost of πSI by

the communication cost of πHPC in the following claim and then use Theorem 6.5 to relate

this quantity to ε.

Claim 6.4.6. ICdistSI(πSI) = O
(
CC(πHPC)

n + j·logn
n

)
.

Proof. For any i ∈ [n], define A<i :=
{
Ax1 , . . . , Axi−1

}
, B>i :=

{
Bxi+1 , . . . , Bxn

}
. Recall

that the internal information cost of πSI is ICdistSI(πSI) := I(A ; ΠSI | B) + I(B ; ΠSI | A). In

the following, we focus on bounding the first term. The second term can be bounded exactly

the same by symmetry.

As (I,A<I,B>I, C,D) is sampled via public randomness in πSI, by Proposition 2.5.3,

I(A ; ΠSI | B) = I(A ; ΠSI | B, I,A<I,B>I, C,D) ≤ I(A ; ΠSI | B, I,A<I,B>I).

The inequality is by Proposition 2.4.3 as we now show A ⊥ (C,D) | ΠSI,B, I,A
<I,B>I (and

hence conditioning on (C,D) can only decrease the mutual information). This is because

A ⊥ (C,D) | B, I,A<I,B>I by Observation 6.4.1 and ΠSI is transcript of a deterministic
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protocol plus z1, . . . , zj obtained deterministically and hence we can apply Proposition 6.4.2.

Define a random variable Θ ∈ {0, 1} where Θ = 1 iff in Line (2) of protocol πSI, we terminate

the protocol. In other words Θ = 1 iff xi ∈ Z<j . Since A ⊥ Θ | B, I,A<I,B>I, further

conditioning on Θ can only increase the mutual information term above by Proposition 2.4.2,

hence,

I(A ; ΠSI | B) ≤ I(A ; ΠSI | B, I,A<I,B>I,Θ)

=
n− j
n
· I(A ; ΠSI | B, I,A<I,B>I,Θ = 0) +

j

n
· I(A ; ΠSI | B, I,A<I,B>I,Θ = 1)

≤ n− j
n
· I(A ; ΠSI | B, I,A<I,B>I,Θ = 0), (6.13)

since conditioned on Θ = 1, the protocol ΠSI is simple some prefix of Z<j and is hence

independent of the input (A,B) and carries no information about A (see Fact 2.4.1-(2)). We

now further bound the RHS of Eq (6.13). When Θ = 0, ΠSI = (Z<j ,Π1, . . . ,Πj) = (E<j ,Πj).

Hence, we can write,

I(A ; ΠSI | B, I,A<I,B>I,Θ = 0) ≤ I(A ; Ej ,Πj | B, I,A<I,B>I,Θ = 0)

= I(A ; Z<j | B, I,A<I,B>I,Θ = 0)

+ I(A ; Π<j ,Πj | Z<j ,B, I,A<I,B>I,Θ = 0)

(by chain rule in Fact 2.4.1-(6) and since Ej = (Π<j ,Z<j))

≤ I(A ; Π | Z<j ,B, I,A<I,B>I,Θ = 0),

as A ⊥ Z<j | Θ = 0 (and other variables) and hence the first term is zero, and in the second

term Π contains Π<j ,Πj (plus potentially other terms) and so having Π in instead can only

increase the information. By further expanding the conditional information term above,

I(A ; ΠSI | B, I,A<I,B>I,Θ = 0)

≤ E
(Z<j ,i)|Θ=0

[
I(A ; Π | B,A<i,B>i, I = i,Z<j = Z<j ,Θ = 0)

]
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= E
Z<j |Θ=0

 n∑
i=1
i/∈Z<j

1

n− j
I(Axi ; Π | Bxi ,A

<i,B>i, I = i,Z<j = Z<j ,Θ = 0)


(conditioned on Θ = 0, i is chosen uniformly at random from Z<j ; also (A,B) = (Axi ,Bxi))

= E
Z<j |Θ=0

 ∑
i/∈Z<j

1

n− j
· I(Axi ; Π | Bxi ,A

<i,B>i,Z<j = Z<j ,Θ = 0)


(we dropped the conditioning on I = i as all remaining variables are independent of this event)

= E
Z<j |Θ=0

 ∑
i/∈Z<j

1

n− j
· I(Axi ; Π | A<i,B,Z<j = Z<j ,Θ = 0)


(as Axi ⊥ B<i | Bxi ,A

<i by Observation 6.4.1 and hence we can apply Proposition 2.4.2)

≤ E
Z<j |Θ=0

[
n∑
i=1

1

n− j
· I(Axi ; Π | A<i,B,Z<j = Z<j ,Θ = 0)

]

(mutual information is non-negative by Fact 2.4.1-(2) and so we can add the terms in Z<j as well)

= E
Z<j |Θ=0

[
n∑
i=1

1

n− j
· I(Axi ; Π | A<i,B,Z<j = Z<j ,Θ = 0)

]

=
1

n− j
· E
Z<j |Θ=0

[
I(A ; Π | B,Z<j = Z<j ,Θ = 0)

]
(by chain rule in Fact 2.4.1-(6))

=
1

n− j
· I(A ; Π | B,Z<j ,Θ = 0) (by Proposition 2.4.4)

≤ 1

n− j
·
(
I(A ; Π | B,Θ = 0) + H(Z<j)

)
=

1

n− j
·
(
I(A ; Π | B) + H(Z<j)

)
(transcript of the protocol πHPC (namely Π) on input (A,B) is independent of Θ)

≤ 1

n− j
·
(
H(Π) + H(Z<j)

)
≤ CC(πHPC)

n− j
+
j · log n

n− j
.

(by sub-additivity of entropy (Fact 2.4.1-(4)) and Fact 2.4.1-(1))
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By plugging in this bound in Eq (6.13), we have that,

I(A ; ΠSI | B) ≤ n− j
n
·
(

CC(πHPC)

n− j
+
j · log n

n− j

)
=

CC(πHPC)

n
+
j · log n

n
.

By symmetry, we can also prove the same bound on I(B ; ΠSI | A). As such, we have,

I(A ; ΠSI | B) + I(B ; ΠSI | A) ≤ 2 ·
(

CC(πHPC)

n
+
j · log n

n

)
.

We shall note that strictly speaking the factor 2 above is not needed (similar to the proof of

Proposition 2.5.4) but as this factor is anyway suppressed through O-notation later in the

proof, the above bound suffices for our purpose.

Now by Claim 6.4.6, we have that

ICdistSI(πSI) = O
(CC(πHPC)

n
+
j · log n

n

)
.

Combined with Theorem 6.5, this implies that πSI can only ε-solves Set-Int for parameter ε

such that

ε2 · n = O
(CC(πHPC)

n
+
j · log n

n

)
=⇒ ε = O

(√CC(πHPC) + j · log n

n

)
.

On the other hand, by Claim 6.4.5, we know that

ε ≥ E
(Ej ,Πj)

E
x∼UX

[
‖dist(Tx | Ej ,Πj)− dist(Tx)‖tvd

]
− j

n
.

which implies

E
x∼UX

[
‖dist(Tx | Ej ,Πj)− dist(Tx)‖tvd

]
= O

(√CC(πHPC) + j · log n+ j

n

)
.

This concludes the proof.
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Before getting to the proof of Lemma 6.4.3, we also need the following simple claim based

on the rectangle property of the protocol πHPC.

Claim 6.4.7. For any j ∈ [k] and choice of (Ej ,Πj), dist(Zj | Ej ,Πj) = dist(Zj | Ej).

Proof. This is because for any j ∈ [k], Zj ⊥ Πj | Ej : Conditioned on Ej = Ej = (Z<j ,Π<j),

Πj is only a function of (A,B) if j is even and a function of (C,D) if j is odd. On the

other hand, Zj is only a function of (A,B) if j is odd and a function of (C,D) if j is even.

Finally, by Observation 6.4.1, (A,B) ⊥ (C,D) and this continues to hold even when we

condition on Ej by the rectangle property of the protocol πHPC; hence the claim follows.

We are now finally ready to prove Lemma 6.4.3.

Proof of Lemma 6.4.3. Let c be the constant in Lemma 6.4.4. We prove Lemma 6.4.3 by

induction. We start with the proof of the base case for j = 1 and then prove the inductive

step.

Base case. Recall that we defined E1 = z0 which is deterministically fixed. This, together

with Claim 6.4.7, implies that dist(Z1 | E1,Π1) = dist(Z1), which finalizes proof of the base

case.

Induction step. Let us now prove the lemma inductively for j > 1. We have,

E
(Ej ,Πj)

[
‖dist(Zj | Ej ,Πj)− dist(Zj)‖tvd

]
=

Claim 6.4.7
E
Ej

[
‖dist(Zj | Ej)− dist(Zj)‖tvd

]
= E

(Z<j ,Π<j)

[
‖dist(Zj | Z<j ,Π<j)− dist(Zj)‖tvd

]
(by definition of Ej := (Z<j ,Π<j))

= E
(Z<j ,Π<j)

[
‖dist(Tzj−1 | Z<j−1, zj−1,Π

<j)− dist(Zj)‖tvd
]
.

(by definition, the pointer Zj = Tzj−1)
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We can write the RHS above as:

E
(Ej ,Πj)

[
‖dist(Zj | Ej ,Πj)− dist(Zj)‖tvd

]
= E

(Z<j−1,Π<j)
E

zj−1∼Zj−1|(Z<j−1,Π<j)

[
‖dist(Tzj−1 | Z<j−1,Π<j)− dist(Zj)‖tvd

]
.

This is because Tzj−1 ⊥ (Zj−1 = zj−1) | Z<j−1,Π<j : if j − 1 is odd, Tzj−1 is a function of

(C,D) and if j− 1 is even, Tzj−1 is a function of (A,B). On the other hand, if j− 1 is odd,

then Zj−1 is a function of (A,B) and if even, then Zj−1 is a function of (C,D). Finally, by

Proposition 6.4.2, (A,B) ⊥ (B,D) | Π<j , proving the conditional independence.

Now notice that distribution of zj−1 in the expectation-term above is dist(Zj−1 | Ej−1,Πj−1).

By symmetry, let us assume j − 1 is odd and hence zj−1 ∈ Y. Using Fact 2.4.6 and since

total variation distance is bounded by 1 always, we can upper bound RHS above with:

E
(Ej ,Πj)

[
‖dist(Zj | Ej ,Mj)− dist(Zj)‖tvd

]
≤ E

(Z<j−1,Π<j)

[
E

(zj−1∼UY )

[
‖dist(Tzj−1 | Z<j−1,Π<j)− dist(Zj)‖tvd

]]
+ E

(Z<j−1,Π<j)
[‖dist(Zj−1 | Ej−1,Πj−1)− UY‖tvd]

= E
(Ej−1,Πj−1)

E
y∼UY

[
‖dist(Ty | Ej−1,Πj−1)− dist(Zj)‖tvd

]
+ E

(Ej−1,Πj−1)
[‖dist(Zj−1 | Ej−1,Πj−1)− dist(Zj−1)‖tvd] ,

where in the first term above we only changed the name of variable zj−1 to y and in the

second term we used dist(Zj−1) = UY . By Lemma 6.4.4, we can bound the first term and

by induction, we can bound the second one. Hence,

E
(Ej ,Πj)

[
‖dist(Zj | Ej ,Πj)− dist(Zj)‖tvd

]
≤ c ·

(√CC(πHPC) + j · log n+ j

n

)
+ (j − 1) · c ·

(√CC(πHPC) + k · log n+ k

n

)
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≤ j · c ·
(√CC(πHPC) + k · log n+ k

n

)
.

(where we replaced j ≤ k by k in the first term)

This concludes the proof.

6.5. Graph Streaming Lower Bounds

We now present our graph streaming lower bounds using reductions from the hidden-pointer

chasing problem. In particular, we prove the following two results in this section.

Theorem 6.7 (Formalizing Theorem 6.2). For any integer p ≥ 1, any p-pass streaming

algorithm that with a constant probability outputs the minimum s-t cut value in a weighted

directed or undirected graph G(V,E,w) requires Ω(n2/p5) bits of space.

By max-flow min-cut theorem, Theorem 6.7 also holds for streaming algorithms that can

compute the value of maximum s-t flow in a capacitated graph (directed or undirected).

Theorem 6.8 (Formalizing Theorem 6.3). For any integer p ≥ 1, any p-pass streaming algo-

rithm that with a constant probability outputs the lexicographically-first maximal independent

set of an undirected graph G(V,E) requires Ω(n2/p5) bits of space.

We prove Theorem 6.7 and Theorem 6.8 in Section 6.5.1 and Section 6.5.2, respectively.

6.5.1. Weighted Minimum s-t Cut Problem

We prove Theorem 6.7 by a reduction from our hidden-pointer chasing (HPC) problem. We

first give the lower bound for directed graphs and then show how to extend it using standard

techniques to undirected graphs.

We turn an instance (A,B, C,D) of HPCk over universes X and Y of n elements, into

a weighted directed graph G(V,E,w). The reduction is as follows (see Figure 6.4 for an

example):

• The vertex-set V of G is partitioned into k+ 1 layers V0, . . . , Vk each of size n plus the
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V0 V1 V2 V3

s t

Figure 6.4: Illustration of the graph in the reduction for minimum s-t cut from HPC3 with
n = 5. The black (thin) edges form input-independent gadgets while blue, red , brown,
and green (thick) edges depend on the inputs of PA, PB, PC , and PD, respectively. Marked
nodes denote the vertices corresponding to pointers z0, . . . , z3. The input-dependent edges
incident on “non-pointer” vertices are omitted. This construction has parallel edges but
Remark 6.5.5 shows how to remove them.

source and sink vertices s and t. We denote the i-th vertex in layer Vj by v
j
i .

• Define the following sequence of weights w0, w1, . . . , wk where wj := (n+ 1)k+1−j for

all j ∈ [k]. Hence, wk = (n+ 1) and wj = (n+ 1) · wj+1 for all j < k.

• The edge-set E of G contains the following input-independent edges.

– source s is connected to v0
1 with weight w(s, v0

1) = w0.

– for 0 < j ≤ k, every vertex vji in layer Vj is connected to sink t with weight

w(vji , t) = wj .

– any vertex vki in layer Vk is connected to sink t with weight w(vki , t) = i−1 (notice

that vki also has another edge of weight wk to t by the previous part).

• The edge-set E also contains the following input-dependent edges.

– for all i ∈ [n], if Axi ∈ A (resp. Bxi ∈ B) contains yi′ ∈ Y, we connect vji

in layer Vj to vj+1
i′ in layer Vj+1 with weight w(vji , v

j+1
i′ ) = wj+1 for every even

0 ≤ j < k.2

2 Note that we will add two edges between vji and vj+1
i′ iff yi′ ∈ Axi ∩ Bxi and we will keep both copies
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– for all i ∈ [n], if Cyi ∈ C (resp. Dyi ∈D) contains xi′ ∈ X , we connect vji in layer

Vj to v
j+1
i′ in layer Vj+1 with weight w(vji , v

j+1
i′ ) = wj+1 for every odd 0 < j < k.

This concludes the description of the weighted graph G(V,E,w) in the reduction. It is

straightforward to verify that this graph can be constructed from an instance (A,B, C,D)

with no communication between the players. We now prove the following key lemma which

establishes the correctness of the reduction.

Lemma 6.5.1. Let w∗ be the weight of a minimum s-t cut in graph G in the reduction. Let

the pointer zk be xi∗ (resp. yi∗) if k is even (resp. odd). Then i∗ = (w∗ mod (n+ 1)) + 1.

Proof. We prove this lemma by considering the maximum s-t flow in G and then use the

duality of maximum flow and minimum cut to conclude the proof. For the flow problem, we

assume that the capacity c(e) of an edge e = (u, v) in G is equal to the total weight of the

edges (in w) that connect u to v (recall that G may have parallel edges; see Footnote 2).

We start with some definitions. Define uj in layer Vj to be the vertex corresponding to the

pointer zj , namely, for all even (resp. odd) values of j, uj = vji where xi = zj (resp. yi = zj).

Furthermore, let P := P1 ∪ . . . ∪ Pk ∪ {P ∗} be a collection of flow paths defined as follows:

For any j ∈ [k], the set of paths Pj :=
{

(s, u0, u1, . . . , uj−1, v
j
i , t) | (uj−1, v

j
i ) ∈ E

}
and each

path in Pj carries wj units of flow; moreover, P ∗ = (s, u0, u1, . . . , uk, t) and carries i∗ − 1

units of flow. See Figure 6.5 for an illustration.

We have the following auxiliary claim.

Claim 6.5.2. For any j ∈ [k], capacity of the edge e = (uj−1, uj) is c(e) = 2wj.

Proof. Suppose uj−1 = vj−1
i and uj = vji′ and assume that j is odd; the even j case is

symmetric. Since j is odd, yi′ is contained in both Axi and Bxi . Hence, there are two

parallel edges from uj−1 to uj each of weight wj . So the capacity of (uj−1, uj) is 2wj .

of these edges in G (see also Remark 6.5.5 on how to remove the parallel edges).
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(5 + 1)4 (5 + 1)3

(5 + 1)3
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(5 + 1)2

(5 + 1)3

(5 + 1)1

(5 + 1)1

(5 + 1)2

(3− 1)

(5 + 1)

Figure 6.5: Illustration of the flow paths in P in the proof of Lemma 6.5.1 for n = 5 and
k = 3. The green edges belong to P ∗ while red and blue edges are the edges that belong
to a path in some Pj but not P ∗. The numbers denote the value of the flow sent over each
outgoing edge in the corresponding layer with the same color. The value of this flow mod
(n+ 1) is (i∗ − 1) where i∗ = 3.

We claim that P gives a maximum flow in graph G. This proves the lemma as for all j ∈ [k],

the contribution of each path in Pj to the flow mod (n+ 1) is 0. Hence P ∗ determines the

value of the flow mod (n + 1) which is (i∗ − 1) and i∗ encodes the pointer zk. The proof

consists of the following two claims that ensure feasibility and optimality of P, respectively.

Claim 6.5.3. P induces a feasible flow in G(V,E,w) with capacity we on every edge e ∈ E.

Proof. Since all the paths in P are s-t paths, for any vertex in V \ {s, t}, the amount of

flow going in that vertex is equal to the amount of flow going out of it. Hence, the flow is

preserved on all vertices in V \ {s, t}. It thus remains to prove that no edge is assigned a

flow more than its capacity.

Any edge e not in P ∗ is contained in at most one path in P. For paths in Pj , these are

edges (uj−1, v
j
i ) and (vji , t) for some j ∈ [k] and i ∈ [n]. The amount of flow on these paths

is then equal to wj = w(vji , t) by construction and hence the flow on these edges does not

exceed their capacity.

We now prove the result for edges in P ∗. First consider the edge (uk, t). There are two paths

in P that contain (uk, t): the path P ∗ that carries i∗ − 1 units of flow and the path in Pk
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that carries wk units of flow. As uk = vki∗ , the capacity of the edge (uk, t) is also wk+(i∗−1)

(as there are two edges connecting vki∗ to t with weights wk and (i∗− 1)). Hence the flow on

these edges also does not exceed their capacity.

We next prove that for every j ∈ [k], there are at most 2wj units of flow passing through

(uj−1, uj). By Claim 6.5.2, this implies that the flow on these edges does not exceed capacity.

The proof is by induction for j = k down to j = 0 in this order, where the base case is

(uk−1, uk). All the paths that contain this edge also contain (uk, t), so there are wk+i∗−1 <

2wk units of flow passing through this edge by the previous part of the argument.

For the induction step, consider the flow paths that contain (uj−1, uj). There is exactly one

path in Pj that contains this edge and that path carries wj units of flow by definition. There

are also at most n − 1 paths in Pj+1 that contain (uj−1, uj) but do not contain (uj , uj+1).

The total flow these paths are carrying is at most (n − 1) · wj+1. All other paths in P

that contain (uj−1, uj) also contain (uj , uj+1) and hence by the induction hypothesis, these

paths carry at most 2wj+1 units of flow. So the total flow going through (uj−1, uj) is at

most wj + (n− 1)wj+1 + 2wj+1 ≤ 2wj , proving the induction hypothesis.

Finally, consider the edge (s, u0). There are at most n− 1 paths in P1 that contain (s, u0)

but not (u0, u1). The total flow passing through these paths is at most (n−1) ·w1. All other

paths in P contain (u0, u1); these paths carry at most 2w1 units of flow as we proved above

by induction. So the total flow passing through (s, u0) is at most (n − 1) · w1 + 2w1 = w0

which is equal to the capacity of (s, u0).

Claim 6.5.4. There is no s-t path in the residual graph of G with respect to the flow paths

in P.

Proof. We prove by induction that in the residual graph, s can only reach uj in layer Vj

(strictly speaking, we will prove that if some other vertex in Vj is reachable from s, then the

path can only go through t, but in the end we will prove that t is not reachable from s).
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The base case trivially holds as s only has an outgoing edge to a single vertex in V0, namely,

the vertex v0
1 = u0. Furthermore, the outgoing edges of vertices in V0 do not belong to any

flow path in P. For the induction step, consider the layer Vj+1. By the induction hypothesis,

s can only reach uj in Vj . For any vertex vj+1
i which is not uj+1, if the edge (uj , v

j+1
i ) exists

in G, then it is contained in a path in Pj+1 which carries wj+1 units of flow. As the capacity

of this edge is also wj+1, the direction of this edge in the residual graph is from vj+1
i to

uj . Moreover, no outgoing edge of vj+1
i (except for the one going to t) is contained in any

path in P. This means that in the residual graph, vj+1
i is not reachable from s, proving the

induction hypothesis.

By the above argument, the only vertex reachable from s in Vk is uk. Now consider the

sink t. For any j ∈ [k], (uj , t) is contained in a path in Pj and thus its flow matches its

capacity. For edge (uk, t), there are two paths in P that contain this edge, the first one is

in Pk which carries wk units of flow and the other is P ∗ which carries i∗ − 1 units of flow.

So (uk, t) = (vki∗ , t) is also full. Thus t is not reachable from s.

Claim 6.5.3 and Claim 6.5.4 prove that P induces a maximum s-t flow in G. We are now

done as the amount of flow carried by all flow paths in P is divisible by n+ 1 except for P ∗.

This is because the flow carried by each path in Pj for j ∈ [k] is of weight wj and (n+ 1) is

a factor of wj . As the flow carried by P ∗ is i∗− 1, the total flow in P is K · (n+ 1) + (i∗− 1)

for some integer K ≥ 1. By max-flow min-cut duality, w∗ mod (n+ 1) = i∗ − 1.

We can now prove Theorem 6.7 using this reduction, the standard connection between space

complexity of streaming algorithms and communication complexity, and our communication

lower bound for hidden-pointer chasing in Theorem 6.6.

Proof of Theorem 6.7. Let A be a p-pass streaming algorithm for computing the value of a

minimum s-t cut in weighted directed graphs. To avoid confusion, in the following, we use

N to denote the number of vertices in the graph G and n for the size of universes in HPC.

Hence, our goal is to prove a lower bound of Ω(N2/p5) on the space complexity of A.
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We give a reduction from HPCk for k = 2p+ 1. Given an instance of HPCk, the players first

construct the graph G(V,E,w) in the reduction of this section based on their inputs with

no communication. Next, they create a stream σ of edges of E such that edges depending

on input to PD appear first, then PC , PB and PA in this order and input-independent edges

appear last. The players run A on σ and communicate the state of A between each other

whenever necessary to compute the value of a minimum weighted s-t cut in G.

By Lemma 6.5.1, the value of the minimum s-t cut in G immediately determines the pointer

zk, hence proving the correctness of the protocol. The number of phases and communication

cost of this protocol can be determined as follows. Each pass of the streaming algorithm

translates into at most two phases in the protocol and hence the resulting protocol has

strictly smaller than k phases. The total communication by players in this protocol is at

most O(k · S) where S denotes the space complexity of A. As such, by Theorem 6.6, we

have, k · S = Ω(n2/k2) which implies S = Ω(n2/k3). Since the total number of vertices in

the graph is N = O(k ·n) and k = Θ(p), we obtain a lower bound of Ω(N2/p5) on the space

complexity of A, finalizing the proof for the directed graphs.

To extend the results to undirected graphs, we can simply use the standard reduction of

finding a maximum flow in directed graphs to finding a maximum flow in undirected graphs

described in, for example [197] (see also Appendix C.2 in [240]). This reduction works by

turning each directed edge e = (u, v) with capacity ce in the graph to three undirected edges

{s, v}, {u, v} and {t, u} each with capacity ce. It is then easy to see that after pushing an

initial flow of (s, v, u, t) with ce units of flow on every edge (u, v), the residual graph obtained

would be equivalent to the original directed graph. Hence, solving s-t maximum flow on this

undirected graph would also solve the problem for the original directed graph (see [197, 240]

for the formal proof). As thus reduction can be done on the graph G(V,E,w) constructed

in this section with no further communication between the players, the results in this proof

extend to undirected graphs as well, finalizing the proof.

Remark 6.5.5. The reduction in this section creates a multi-graph G. However, we can
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easily transform this graph to a simple graph without changing the minimum cut value,

while increasing the number of vertices by only a constant factor. The transformation is

as follows: turn any vertex vji in layer Vj of the graph G into three vertices wji , a
j
i and

bji . Connect wji to aji and bji with edges of weight w0 (which is effectively infinity). The

input-independent edges going out of vji to t now goes out of wji to t instead. For any odd

j, any edge (vji , v
j+1
i′ ) is now turned into an edge (aji , w

j+1
i′ ) if the edge was added because

of Axi and (bji , w
j+1
i′ ) if it was added because of Bxi . We do the same for even values of j

by using Cyi and Dyi instead. It is easy to see that the weight of minimum s-t is the same

in this new graph and that this graph does not have any parallel edges anymore.

6.5.2. The Lexicographically-First MIS Problem

Proof of Theorem 6.8 is also by a reduction from the hidden-pointer chasing (HPC) problem.

We turn an instance (A,B, C,D) of HPCk over universes X and Y, into an undirected graph

G(V,E). The reduction is as follows (see Figure 6.6 for an example):

• The vertex-set V of G is partitioned into k + 1 layers V0, . . . , Vk each of size n plus a

single vertex s (hence G has (k+ 1)n+ 1 vertices). We denote the i-th vertex in layer

Vj by v
j
i . In the lexicographic order, the vertices in layer V0 appear first, followed by

vertices in V1, . . . , Vk in this order. Inside each layer Vj , the ordering is by the index,

i.e., in the order vj1, . . . , v
j
n.

• The edge-set E contains the following edges:

– vertex v0
1 is connected to all other vertices in V 0.

– for all i ∈ [n], if Axi ∈ A (resp. Bxi ∈ B) does not contain yi′ ∈ Y, we connect

vji in layer Vj to v
j+1
i′ in layer Vj+1 for every even 0 ≤ j < k.

– for all i ∈ [n], if Cyi ∈ C (resp. Dyi ∈ D) does not contain xi′ ∈ X , we connect

vji in layer Vj to v
j+1
i′ in layer Vj+1 for every odd 0 < j < k.

This concludes the description of the graph G(V,E) in the reduction. It is straightfor-
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ward to verify that this graph can be constructed from an instance (A,B, C,D) with no

communication between the players. We now establish the correctness of the reduction.

V0 V1 V2 V3

Figure 6.6: Illustration of the graph in reducing lexicographically-first MIS from HPC3 with
n = 5. The black (thin) edges incident on s are input-independent while blue, red , brown,
and green (thick) edges depend on the inputs of PA, PB, PC , and PD, respectively. The
marked nodes denote the vertices corresponding to pointers z0, . . . , z3. The edges incident
on “non-pointer” vertices are omitted. This construction has parallel edges but similar to
Remark 6.5.5, we can remove them.

Lemma 6.5.6. In the reduction above, the pointer zk = xi (resp. zk = yi) when k is even

(resp. odd) iff vki belongs to the lexicographically-first MIS of G.

Proof. LetM be the lexicographically-first MIS of G. We prove by induction that for any

even (resp. odd) j ∈ {0, 1, . . . , k}, there is a unique vertex vji from layer Vj that belongs to

M and that vertex corresponds to the pointer zj , namely, xi = zj (resp. yi = zj).

The base case is trivial since z0 = x1, v0
1 appears first in the lexicographical ordering of

vertices, and v0
1 is connected to all vertices in layer V0. We now prove the induction step.

Suppose j is even; the other case is symmetric. By induction hypothesis, vji is the unique

vertex in layer Vj that belongs toM where xi = zj . By construction of G, vji is connected

to all vertices in layer j + 1 except for the vertex vj+1
i′ , where {yi′} = Axi ∩ Bxi . Hence,

vj+1
i′ is the unique index in Vj+1 that belongs toM. The proof is concluded by noting that

zj+1 = yi′ by definition.

Proof of Theorem 6.8 now follows from Lemma 6.5.6 and Theorem 6.6 the same exact way
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as in proof of Theorem 6.7 in the last section. For completeness, we present this proof here.

Proof of Theorem 6.8. LetA be a p-pass streaming algorithm for finding the lexicographically-

first MIS of an undirected graph. To avoid confusion, in the following, we use N to denote

the number of vertices in the graph G and n for the size of universes in HPC. Hence, our

goal is to prove a lower bound of Ω(N2/p5) on the space complexity of A.

We give a reduction from HPCk for k = 2p+ 1. Given an instance of HPCk, the players first

construct the graph G(V,E) in the reduction of this section based on their inputs with no

communication. Next, they create a stream σ of edges of E such that edges depending on

input to PD appear first, then PC , PB and PA in this order and input-independent edges

appear last. The players then run A on σ and communicate the state of A between each

other whenever necessary to find the lexicographically-first MISM of G.

By Lemma 6.5.6, the vertex in layer Vk of G that belongs toM determines the pointer zk,

hence proving the correctness of the protocol. The number of phases and communication

cost of this protocol can be determined as follows. Each pass of the streaming algorithm

translates into at most two phases in the protocol and hence the resulting protocol has

strictly smaller than k phases. The total communication by players in this protocol is at

most O(k · S) where S denotes the space complexity of A. As such, by Theorem 6.6, we

have, k · S = Ω(n2/k2) which implies S = Ω(n2/k3). Since the total number of vertices in

the graph is N = O(k ·n) and k = Θ(p), we obtain a lower bound of Ω(N2/p5) on the space

complexity of A, finalizing the proof.

We also note that similar to the previous section, we can also turn the graph G in the

reduction of this section to a simple graph with no parallel edges using essentially the same

gadget. We omit the details.
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CHAPTER 7

Round Complexity for Submodular Function Minimization

In this chapter, we study the round complexity for submodular function minimization

(SFM). A study of this question was initiated by Balkanski and Singer in [28] who proved

that any polynomial query SFM algorithm must proceed in Ω( logN
log logN ) rounds. This still

leaves open the possibility of polynomial query poly-logarithmic round algorithms. Indeed

for the related problem of submodular function maximization subject to cardinality con-

straint, in a different paper [27], Balkanski and Singer showed that the correct answer is

indeed Θ̃(logN). They proved that with polynomially many queries no constant factor

approximation is possible with o
(

logN
log logN

)
rounds, while an 1/3-approximation can be ob-

tained in O(logN)-rounds1. Can the situation be the same for SFM?

7.1. Main Results

We prove a polynomial lower bound on the number of rounds needed by any polynomial

query SFM algorithm.

Theorem 7.1. For any constant δ > 0 and any 1 ≤ c ≤ N1−δ, any randomized algorithm

for SFM on an N element universe making ≤ N c evaluation oracle queries per round and

succeeding with probability ≥ 2/3 must have Ω
(

N1/3

(c logN)1/3

)
rounds-of-adaptivity. This is

true even when the range of the submodular function is {−N,−N + 1, . . . , N − 1, N}, and

even if the algorithm is only required to output the value of the minimum.

We note that a polynomial lower bound on the number of rounds holds even if the algo-

rithm is allowed to make 2N
1−δ queries per round for any δ > 0, and the lower bound on the

number of rounds is Ω̃(N1/3) for polynomial query algorithms. Our construction also proves

lower bounds on the number of rounds required for approximate submodular function mini-

mization. In this problem, one assumes via scaling that the function’s range is in [−1,+1]

and the goal is to return a set whose value is within an additive ε from the minimum. We
1This result has since been improved [25, 86, 87, 111, 112, 196]; see Section 7.1.1 for details.
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can prove an Ω̃(1/ε)-lower bound on the number of rounds required for approximate SFM.

The only previous work ruling out ε-approximate minimizers is another work of Balkanski

and Singer [26] who proved that non-adaptive algorithms, that is single round algorithms,

cannot achieve any non-trivial approximation with polynomially many queries.

The submodular functions we construct to prove Theorem 7.1 are closely related to the rank

functions of nested matroids, a special kind of laminar matroids. As a result, we prove a

similar result as in Theorem 7.1 for matroid intersection.

Theorem 7.2. For any constant δ > 0 and any 1 ≤ c ≤ N1−δ, any randomized algorithm

for matroid intersection on an N element universe making ≤ N c rank-oracle queries per

round and succeeding with probability ≥ 2/3 must have Ω
(

N1/3

(c logN)1/3

)
rounds-of-adaptivity.

This is true even when the two matroids are nested matroids, a special class of laminar

matroids, and also when the algorithm is only required to output the value of the optimum.

In particular, any algorithm making polynomially many queries to the rank oracle must have

Ω̃(N1/3) rounds of adaptivity, even to figure out the size of the largest common independent

set. That is, even the “decision” version of the question (is the largest cardinality at least

some parameter K) needs polynomially many rounds of adaptivity.

Our results shows that in the general query model, SFM and matroid intersection cannot

be solved in polynomial time in poly-logarithmic rounds, even with randomization. This

is in contrast to specific explicitly described succinct SFM and matroid intersection prob-

lems. For instance, global minimum cuts in an undirected graph is in NC [177], finding

minimum s-t-cuts with poly-bounded capacities is in RNC [181], and linear and graphic

matroid intersection is in RNC [214]. More recently, inspired by some of these special cases,

Gurjar and Rathi [140] defined a class of submodular functions called linearly representable

submodular functions and gave RNC algorithms for the same.

Our lower bounding submodular functions fall in a class introduced by Balkanski and

Singer [28] which we call partition submodular functions. Given a partition P = (P1, . . . , Pr)
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of the universe U , the value of a partition submodular function f(S) depends only on the

cardinalities of the |S ∩ Pi|’s. In particular, f(S) = h(~x) where ~x is an r-dimensional non-

negative integer valued vector with ~xi := |S ∩ Pi|, and h is a discrete submodular function

on a hypergrid. Note that when r = 1, the function h is a univariate concave function, and

when r = n we obtain general submodular functions. Thus, partition submodular functions

form a nice way of capturing the complexity of a submodular function.

The [28] functions are partition submodular and they prove an Ω(r)-lower bound for their

specific functions. Their construction idea has a bottleneck of r = O(logN), and thus cannot

prove a polynomial lower bound. Our lower bound functions are also partition submodular,

and we also prove an Ω(r) lower bound though we get r to be polynomially large in the size of

the universe. Furthermore, our partition submodular functions turn out to be closely related

to ranks of nested matroids which lead to our lower bound for parallel matroid intersection.

7.1.1. Related Work

For parallel algorithms, the depth required for the “decision” version and the “search” version

may be vastly different. In a thought provoking paper [182], Karp, Upfal and Wigderson

considered this question. In particular, they proved that any efficient algorithm that finds

a maximum independent set in a single (even a partition) matroid with access to an inde-

pendence oracle must proceed in Ω̃(N1/3) rounds. On the other hand, with access to a rank

oracle which takes S and returns r(S), the size of the largest independent set in S, there is

a simple algorithm2 which makes N queries in a single round and finds the optimal answer.

Our lower bound shows that for matroid intersection, rank oracles also suffer a polynomial

lower bound, even for the decision version of the problem. At this point, we should mention

a very recent work of Ghosh, Gurjar, and Raj [129] which showed that if there existed poly-

logarithmic round algorithms for the (weighted) decision version for matroid intersection

with rank-oracles, then in fact there exists deterministic polylogarithmic round algorithms

for the search version. A similar flavor result is also present in [214]. Unfortunately, our
2Order elements as e1, . . . , eN and query r({e1, . . . , ei}) for all i, and return the points at which the rank

changes.
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result proves that polylogarithmic depth is impossible for arbitrary matroids (even nested

ones), even when access is via rank oracles.

The rounds-of-adaptivity versus query complexity question has seen a lot of recent work

on submodular function maximization. As mentioned before, Balkanski and Singer [27] in-

troduced this problem in the context of maximizing a non-negative monotone submodular

function f(S) subject to a cardinality constraint |S| ≤ k. This captures NP-hard prob-

lems, has a sequential greedy (1− 1
e )-approximation algorithm [216], and obtaining anything

better requires [215, 245] exponentially many queries. [27] showed that obtaining even an

O
(

1
logN

)
-approximation with polynomially many queries requires Ω

(
logN

log logN

)
rounds, and

gave an O(logN)-round, polynomial query, 1
3 -approximation. Soon afterwards, several dif-

ferent groups [25, 86, 87, 111, 112, 114] gave
(
1− 1

e − ε
)
-approximation algorithms making

polynomially many queries which run in poly(logN, 1
ε )-rounds, even when the constraint on

which S to pick is made more general. More recently, Li, Liu and Vondrák [196] showed

that the dependence of the number of rounds on ε (the distance from 1 − 1/e) must be

a polynomial. Also related is the question of maximizing a non-negative non-monotone

submodular function without any constraints. It is known that a random set gives a 1
4 -

approximation, and a sequential “double-greedy” 1
2 -approximation was given by Buchbinder,

Feldman, Naor, and Schwartz [71], and this approximation factor is tight [116]. Chen, Feld-

man, and Karabasi [89] gave a nice parallel version obtaining an
(

1
2 − ε

)
-approximation in

O(1
ε )-rounds.

In the continuous optimization setting, the question of understanding the “parallel com-

plexity” of minimizing a non-smooth convex function was first studied by Nemirovski [217].

In particular, the paper studied the problem of minimizing a bounded-norm convex (non-

smooth) function over the unit `∞ ball in N -dimensions, and showed that any polynomial

query (value oracle or gradient oracle) algorithm which comes ε-close must have Ω̃(N1/3 ln(1/ε))

rounds of adaptivity. Nemirovski [217] conjectured that the lower bound should be Ω̃(N ln(1/ε)),

and this is still an open question. When the dependence on ε is allowed to be polynomial,
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then the sequential vanilla gradient descent outputs an ε-minimizer in O(1/ε2)-rounds (over

Euclidean unit norm balls), and the question becomes whether parallelism can help over

gradient descent in some regimes of ε. Duchi, Bartlett, and Wainwright [105] showed an

O(N1/4/ε)-query algorithm which is better than gradient-descent when 1
ε2
>
√
N . A match-

ing lower bound in this regime was shown recently by Bubeck et al. [70], and this paper

also gives another algorithm which has better depth dependence in some regime of ε. It

is worth noting that submodular function minimization can also be thought of as mini-

mizing the Lovász extension which is a non-smooth convex function. Unfortunately, the

domain of interest (the unit cube) has `2-radius
√
N , and the above algorithms do not im-

ply “dimension-free” ε-additive approximations for submodular function minimization. Our

work shows that Ω(1/ε)-rounds are needed, and it is an interesting open question whether a

poly(N, 1
ε )-lower bound can be shown on the number of rounds, or whether one can achieve

efficient ε-approximations in rounds independent of N .

7.2. Description of our Lower Bound Functions

We begin by formally defining partition submodular functions and some properties of such

functions. We then describe in detail the lower bound functions that we use in the proof

of Theorem 7.1.

7.2.1. Partition Submodular Functions

Let U be a universe of elements and P = (P1, . . . , Pr) be a partition of the elements of U .

Let h : Zr≥0 → R be a function whose domain is the r-dimensional non-negative integer

hypergrid. Given (P, h), one can define a set-function fP : 2U → R as follows:

fP(S) = h (|S ∩ P1|, . . . , |S ∩ Pr|) (7.1)

In plain English, the value of fP(S) is a function only of the number of elements of each

part that is present in S. We say that fP is induced by the partition P and h. A partition

submodular function is a submodular function which is induced by some partition P and

some hypergrid function h.
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A function defined by (P, h) is submodular if and only if h satisfies the same decreasing

marginal property as f . To make this precise, let us settle on some notation. Throughout

the paper, for any integer k, we use [k] to denote the set {0, 1, . . . , k}. First, note that the

domain of h is the r-dimensional hypergrid [|P1|] × [|P2|] × · · · × [|Pr|]. For brevity’s sake,

we call this dom(h). We use boldfaced letters like ~x,y to denote points in dom(h). When

we write ~x+y we imply coordinate-wise sum. Given i ∈ {1, . . . , r}, we use ei to denote the

r-dimensional vector having 1 at the ith coordinate and 0 everywhere else. The function h

induces r different marginal functions defined as

For 1 ≤ i ≤ r, ∂ih(~x) := h(~x+ ei)− h(~x) (7.2)

The domain of ∂ih is [|P1|]× [|P2|]× · · · × [|Pi| − 1]× · · · × [|Pr|].

Definition 7.2.1. We call a function h : Zr → R defined over an integer hypergrid dom(h)

(hypergrid) submodular if and only if for every 1 ≤ i ≤ r, for every ~x ∈ dom(h) with

~xi < |Pi|, and every 1 ≤ j ≤ r, we have

∂jh(~x) ≥ ∂jh(~x+ ei) (7.3)

Lemma 7.2.2. A set function fP defined by a partition P and hypergrid function h as

in (7.1) is (partition) submodular if and only if h is (hypergrid) submodular.

Proof. Let A ⊆ U and let ~x be the r-dimensional integer vector with ~xi := |A ∩ Pi|. Pick

elements e, e′ ∈ U \A. Let e ∈ Pi and e′ ∈ Pj for 1 ≤ i, j ≤ r. Note that j could be the same

as i. Then fP is submodular is equivalent to fP(A+e′)−fP(A) ≥ fP(A+e+e′)−fP(A+e),

which is equivalent to (7.3).

The following lemma shows that minima of partition submodular functions can be assumed

to take all or nothing of each part.
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Lemma 7.2.3. Let fP be a partition submodular function induced by a partition P =

(P1, . . . , Pr) and hypergrid function h. Let O be a maximal by inclusion minimizer of f .

Then, O ∩ Pi 6= ∅ implies O ∩ Pi = Pi.

Proof. Let ~x ∈ dom(h) be the vector induced by O, that is, ~xi = |O ∩ Pi| for all 1 ≤ i ≤ r.

For the sake of contradiction, assume 0 < ~xi < |Pi|. Let e1 and e2 be two arbitrary elements

in O∩Pi and Pi\O respectively. Since O is the minimizer, fP(O)−fP(O−e1) ≤ 0. Now note

that the LHS is precisely ∂ih(~x− ei). And this is also equal to f(O − e1 + e2)− f(O − e1)

and thus this is also ≤ 0. By submodularity, however, f(O + e2) − f(O) ≤ f(O − e1 +

e2) − f(O − e1), and thus we obtain f(O + e2) ≤ f(O) which contradicts that O was an

inclusion-wise maximal minimizer.

7.2.2. Suffix Functions

The lower bound functions we construct are partition submodular functions defined with

respect to a partition P = (P1, . . . , Pr) of the universe U of N elements into r parts. The

number of parts r is an odd integer whose value will be set to be Θ̃(N1/3). Each part Pi

has the same size n, where n is an even positive integer such that nr = N . The hypergrid

submodular function h : [n]r → Z which define the partition submodular function are

themselves defined using suffix functions, which we describe below.

Let g be an integer which is divisible by 4 and which is Θ̃(
√
n). That is,

(
n
2 − g

)
is “many

standard deviations” away from n
2 , and in particular, any random subset of an n-universe set

has cardinality within ±g of the expected value with all but inverse polynomial probability.

As described in the previous informal discussion, the following linear suffix functions play a

key role in the description of the marginals. Define

For any 1 ≤ t ≤ r, `t(~x) :=
r∑
s=t

(
~xs −

(n
2
− g
))
− gr

4
(7.4)

Given ~x, let a := a(~x) ∈ [r] be the odd-coordinate t ∈ [r] with the largest `t(~x), breaking

ties towards smaller indices in case of ties. Let b := b(~x) ∈ [r] be the even-coordinate t ∈ [r]

250



with the largest `t(~x), breaking ties towards smaller indices in case of ties. We call {a, b}

the largest odd-even index of ~x.

Now we are ready to describe our lower bounding functions. First define the function

h : [n]r → Z as follows

h(~x) = ‖~x‖1 −
(

max(0, `a(~x)) + max(0, `b(~x))
)

(7.5)

The above function contains the seed of the hardness, and satisfies (P1) and (P3). However,

the above function, for the precise choice of g we will finally choose, will in fact be non-

negative. To obtain the lower bounding functions which treats Pr specially, we define

h∗(~x) =


h(~x) if ~xr ≤ n

2 −
g
4

h(~x↓)−
(
~xr −

(
n
2 −

g
4

))
otherwise

where, ~x↓ :=
(
~x1, . . . , ~xr−1,min(~xr,

n

2
− g

4
)
) (7.6)

In Section 7.2.3, for completeness sake, we give a direct proof that both the functions, h

and h∗ are hypergrid submodular. However, as we show in Section 7.4, these functions arise

as sum of rank functions of particular nested matroids, and thus give a more principled

reason why these functions are submodular. In Section 7.2.4, we show that the function h

is non-negative, while h∗(0, 0, . . . , 0, n) attains a negative value of −g/2. In Section 7.2.5,

we show that i-balanced vectors, for i < r/2, cannot distinguish between h and h∗. This, in

turn, is used in Section 7.3 to prove the lower bound for parallel SFM.

7.2.3. Submodularity

We first prove that h : [n]r → Z is submodular, and then use this to prove that h∗ : [n]r → Z

is submodular. We need to prove

Lemma 7.2.4. Fix ~x and a coordinate 1 ≤ i ≤ r. Let y := ~x+ei. Let j be any arbitrary
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coordinate. Then,

∂jh(~x) ≥ ∂jh(y) (7.7)

The high-level reason why h is submodular is when one moves from ~x to y = ~x + ei, the

odd-even index {a, b} of y can only “move to the left”, that is, become smaller. Formally,

Claim 7.2.5. Let ~x be any point and let y := ~x + ei. Suppose a is the odd coordinate t

with the largest `t(~x) breaking ties towards smaller indices. Suppose a′ is the odd coordinate

t with the largest `t(y) breaking ties towards smaller indices. If a′ 6= a, then (i) a′ ≤ i < a,

and (ii) `a′(y) = `a(y). A similar statement is true for even coordinates.

Proof. First from the definition, observation that `t(y) = `t(~x) if t > i and `t(y) = `t(~x) + 1

if t ≤ i. Thus, if a′ 6= a, we must have that a′ ≤ i < a, establishing (i). Furthermore, since

a′ < a, we must have `a(~x) ≥ `a′(~x) + 1 for otherwise a′ would’ve been chosen with respect

to ~x. Since `a′(y) ≥ `a(y), again by the observation of the first line, we establish (ii).

To see how the claim helps in proving Lemma 7.2.4, it is instructive to first establish how

the marginals of the function defined in (7.5) look like. To this end, define the following

indicator functions. For any 1 ≤ t ≤ n and for any 1 ≤ i ≤ n, define

Ct(~x) =


−1 if `t(~x) ≥ 0

0 otherwise
and Cit(~x) = Ct(~x) · 1{i≥t}

where 1{i≥t} is the indicator function taking the value 1 if i ≥ t and 0 otherwise. Using

these notations, we can describe the r different marginals at ~x succinctly as

Lemma 7.2.6. Fix ~x in the domain of h. Let {a, b} be largest odd-even index of ~x. Then,

∀1 ≤ i ≤ r, ∂ih(~x) = 1 + Cia(~x) + Cib(~x) (Marginals)

In plain English, given a point ~x, one first finds the largest odd-even index {a, b} of ~x. If
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any of these function values are negative, throw them away from consideration: the suffixes

aren’t large enough. Next, given a coordinate i, the marginal ∂ih(~x) depends on where i lies

in respect to a and b (if they are still in consideration). If i is smaller than both, then the

marginal is 1, if i is smaller than one, then the marginal is 0, if i is greater than or equal

to both, the marginal is −1. Given this understanding of how the marginals look like, it is

perhaps clear why Claim 7.2.5 implies submodularity : as {a, b} move left the the marginal

of any coordinate j can only decrease when one moves to y.

Proof of Lemma 7.2.6. Fix an ~x and a coordinate i. Let y = ~x+ ei. Let’s consider h(y)−

h(~x) using (7.5), and then show it is precisely as asserted in (Marginals). First note that we

can rewrite

h(~x) = ‖~x‖1 + Ca(~x)`a(~x) + Cb(~x)`b(~x) (7.8)

Consider the expression Ca(y)`a(y) − Ca(~x)`a(~x). If i < a, then `a(y) = `a(~x), and thus

Ca(y) = Ca(~x), and thus the expression evaluates to 0. If i ≥ a, then `a(y) = `a(~x) + 1. For

the expression to contribute anything non-zero, we must have `a(y) ≥ 1 implying `a(~x) ≥ 0,

or in other words, Ca(~x) = Ca(y) = −1. And in that case, we get Ca(y)`a(y)−Ca(~x)`a(~x) =

−1. To summarize,

Ca(y)`a(y)− Ca(~x)`a(~x) =


0 if i < a or if `a(~x) < 0, that is, Ca(~x) = 0

−1 otherwise, that is, if i ≥ a and Ca(~x) = −1

In other words,

Ca(y)`a(y)− Ca(~x)`a(~x) = Cia(~x) (7.9)

Now suppose {a′, b′} are the odd-even index of y. The above discussion proves the claim

when {a′, b′} = {a, b}. Indeed, plugging (7.9) into (7.8), we get

h(y)− h(~x) = (‖y‖1 − ‖~x‖1)︸ ︷︷ ︸
=1

+Cia(~x) + Cib(~x)
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A little more care is needed to take care of the case when {a′, b′} 6= {a, b}. Suppose a 6= a′.

Then, by Claim 7.2.5, we get that a′ < i ≤ a and `a′(y) = `a(y). Thus, Ca′(y)`a′(y) −

Ca(~x)`a(~x) = Ca(y)`a(y)−Ca(~x)`a(~x) and the proof follows as in the a′ = a case. The case

b′ 6= b is similar.

Proof of Lemma 7.2.4. Let {a1, b1} be the odd-even index of ~x. Let {a2, b2} be the odd-even

index of �y. From the definition of the marginals, what we need to show is

Cja1
(~x) + Cjb1(~x) ≥ Cja2

(y) + Cjb2(y) (7.10)

We will show this term by term, and focus on a1, a2. For any 1 ≤ t ≤ r, observe that

`t(y) ≥ `t(~x), and thus Ct(~x) ≥ Ct(y). Thus if a1 = a2, we are done.

If a1 6= a2, then by Claim 7.2.5 a2 ≤ i < a1 and `a2(y) = `a1(y) ≥ `a1(~x). This implies

Ca1(~x) ≥ Ca2(y). Since a2 < a1, we get that 1{j≥a2} ≥ 1{j≥a1}. Since C is non-positive, we

get Cja1(~x) = 1{j≥a1} · Ca1(~x) ≥ 1{j≥a2} · Ca2(y) = Cja2(y).

Lemma 7.2.7. The function h∗ as defined in (7.6) is submodular

Proof. We recall the definition.

h∗(~x) =


h(~x) if ~xr ≤ n

2 −
g
4

h(~x↓)−
(
~xr −

(
n
2 −

g
4

))
otherwise

where, ~x↓ :=
(
~x1, . . . , ~xr−1,min(~xr,

n

2
− g

4
)
)

Observe,

• If j 6= r, then ∂jh∗(~x) = ∂jh(~x↓).

• If j = r, then ∂rh∗(~x) = −1 if ~xr ≥ n
2 −

g
4 , else ∂rh

∗(~x) = ∂rh(~x).

Now pick ~x ∈ [n]r, y := ~x+ ei. Since ~x↓ is coordinate wise dominated by y↓, we get that if

j 6= r,
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∂jh
∗(~x) = ∂jh(~x↓) ≥︸︷︷︸

Lemma 7.2.4

∂jh(y↓) = ∂jh
∗(y)

If j = r, then either yr ≥ n
2 −

g
4 and then ∂rh∗(~x) ≥ ∂rh

∗(y) since the RHS is −1 and the

LHS is at least that. Or, both ~xr,yr < n
2−

g
4 , and thus ∂rh∗(~x) = ∂rh(~x) ≥︸︷︷︸

Lemma 7.2.4

∂rh(y) =

∂rh
∗(y) .

7.2.4. Minimizers

Lemma 7.2.8. Suppose the parameters n, g and r chosen such that 5gr ≤ n. Let

P = (P1, . . . , Pr) be any partition with |Pi| = n for all i. Let fP be the partition

submodular function induced by (P ;h) and let f∗P be the partition submodular function

induced by (P ;h∗). Then, ∅ is the unique minimizer of fP achieving the value 0, anda

f∗P (Pr) ≤ −g
2 .

aIn fact, one can show Pr is the unique minimizer of f∗P , but that is not needed for the lower bound.

Proof. It is obvious that fP(∅) = f∗P (∅) = h(0, 0, . . . , 0) = 0. Next, observe that

f∗P (Pr) = h∗(0, 0, . . . , n) = h
(

0, 0, . . . , 0,
n

2
− g

4

)
−
(n

2
+
g

4

)

If we let z = (0, 0, . . . , 0, n2 −
g
4), then just using h(z) ≤ ‖z‖1, we get f∗P (Pr) ≤ −g

2 . Indeed,

when r ≥ 3, this is an equality since then `t(z) ≤ 0 for all t and h(z) = ‖z‖1.

Next, we establish that if 5gr ≤ n, then the minimum value fP takes is indeed 0.

From Lemma 7.2.3, we know that the maximal minimizer of h is a vector ~x∗ where ~x∗i ∈ {0, n}

for 1 ≤ i ≤ r. Now fix an arbitrary ~x with ~xi ∈ {0, n} which is different from the all zeros

vector. We claim that h(~x) > 0, which would prove the lemma. Let the number of i’s with

~xi = n among the coordinates {1, 2, . . . , r} be k ≥ 1.
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Note that for any t ≤ r,

`t(~x) =
∑
i≥t

(
~xi −

(n
2
− g
))
− gr

4
≤ (k − t+ 1) ·

(n
2

+ g
)
− gr

4

Therefore, if {a, b} are the odd-even index of ~x, we get that these `t values are at most

k ·
(
n
2 + g

)
− gr

4 and (k − 1) ·
(
n
2 + g

)
− gr

4 , respectively, since a and b are distinct (and occurs

when a = 1 and b = 2). Thus,

h∗(~x) = h(~x) > kn−max
(

0, k ·
(n

2
+ g
)
− gr

4

)
−max

(
0, (k − 1) ·

(n
2

+ g
)
− gr

4

)

If both the max terms in the expression for h turn out to be 0, then since k ≥ 1, we get

h(~x) > n. If only one of them is 0, then we get h(~x) > k
(
n
2 − g

)
+ gr

4 > 0. Otherwise, we

get that

h∗(~x) = h(~x) > kn− (2k − 1) ·
(n

2
+ g
)
− gr

2
≥︸︷︷︸

using k ≤ r

n

2
− 5gr

2
+ g >︸︷︷︸

if 5gr≤n

0

7.2.5. Suffix Indistinguishability

We now establish the key property about h and h∗ which allows us to prove a polynomial

lower bound on the rounds of adaptivity. To do so, we need a definition.

Definition 7.2.9. For 1 ≤ i < r, a point ~x ∈ [n]r is called i-balanced if ~xi− g
8 ≤ ~xj ≤ ~xi+

g
8

for all j > i.

Suffix Indistinguishability asserts that two points ~x and ~x′ which are i-balanced, have the

same norm, and which agree on the first i coordinates have the same function value. More

precisely,

Lemma 7.2.10 (Suffix Indistinguishability ). Let i < r
2 . If ~x and ~x′ are two i-balanced

points with ~xj = ~x′j for j ≤ i and ‖~x‖1 = ‖~x′‖1, then h∗(~x) = h∗(~x′) = h(~x) = h(~x′).
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Proof. We first prove Suffix Indistinguishability for h, and then show that if i < r
2 , then h

and h∗ take the same value on i-balanced points, which implies Suffix Indistinguishability for

h∗ as well (for i < r
2).

Claim 7.2.11. Let i ≤ r − 2. If ~x and ~x′ are two i-balanced points with ~xj = ~x′j for j ≤ i

and ‖~x‖1 = ‖~x′‖1, then h(~x) = h(~x′).

Proof. First note that for any t ∈ {1, 2, . . . , i+ 1}, `t(~x) = `t(~x
′); this follows from the fact

that ‖~x‖1 = ‖~x′‖1 and that ~x and ~x′ agree on the first i-coordinates.

Case 1: ~xi = ~x′i <
n
2 −

7g
8 . Since ~x and ~x′ are both i-balanced, we have ~xj , ~x′j <

n
2 −

7g
8 + g

8 =

n
2 −

3g
4 for all j ≥ i. This, in turn, implies that for any t ≥ i, `t(~x), `t(~x

′) are both

≤ gr
4 −

gr
4 = 0, since each summand in the definition (7.4) contributes at most g

4 . So the

largest odd (similarly, even) indexed `t(~x) is either negative in which case it contributes 0

to h(~x), or t ∈ {1, . . . , i + 1} in which case it subtracts `t(~x) = `t(~x
′) from ‖~x‖1 = ‖~x′‖1.

Furthermore, in the latter case, the same t is the maximize for ~x′ as well. Therefore, in

either case, h(~x) = h(~x′).

Case 2: ~xi = ~x′i ≥ n
2 −

7g
8 . Since ~x and ~x′ are both i-balanced, we have ~xj , ~x′j ≥ n

2 − g for

all j ≥ i. Thus each term in the summands of (7.4) is ≥ 0. This, in turn implies that both

the odd and the even maximizers of `t(~x), `t(~x
′), lie in {1, 2, . . . , i+ 1}. Since `t(~x) = `t(~x

′)

for all such t’s and ‖~x‖1 = ‖~x′‖1, we get that h(~x) = h(~x′).

Next, we prove that when i is bounded way from r, for any i-balanced vector ~x, we have

h∗(~x) = h(~x). This lemma is useful to prove the indistinguishability of h∗ and h.

Claim 7.2.12. If i < r
2 and ~x is i-balanced, then h∗(~x) = h(~x).

Proof. If ~xr ≤ n
2 −

g
4 , we have h∗(~x) = h(~x) by definition. So we only need to consider

the case when ~xr ≥ n
2 −

g
4 . Let k := ~xr −

(
n
2 −

g
4

)
, by definition ‖~x‖1 = ‖~x↓‖1 + k and
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h∗(~x) = h(~x↓)−k. For any 1 ≤ t ≤ r, we have `t(~x) = `t(~x↓) +k, which means that the odd

(respectively, even) index t with largest `t(~x) is the same for `t(~x↓). That is the odd-even

index {a, b} is the same for ~x and ~x↓.

Since ~x is i-balanced and ~xr ≥ n
2 −

g
4 , we have ~xi ≥ n

2 −
3g
8 , and thus, for any j ≥ i,

~xj ≥ n
2 −

g
2 . Thus, all summands in (7.4) for j ≥ i give non-negative contribution. This

means both a and b lie in {1, 2, . . . , i+ 1}. On the other hand, both `i(~x↓) and `i+1(~x↓) are

at least (r− i− 1)g2 −
gr
4 ≥ 0 since i ≤ r

2 − 1. So both `a(~x↓) and `b(~x↓) are at least 0, which

implies that both `a(~x) and `b(~x) are at least k (we only need they are ≥ 0). Therefore, we

have

h∗(~x) = h(~x↓)− k = (‖~x↓‖1 − `a(~x↓)− `b(~x↓))− k = ‖~x‖1 − `a(~x)− `b(~x) = h(~x).

Claim 7.2.11 and Claim 7.2.12 implies the Suffix Indistinguishability property of h∗ and

h.

7.3. Parallel SFM Lower bound : Proof of Theorem 7.1

We now prove lower bounds on the rounds-of-adaptivity for algorithms which make ≤ N c

queries per round for some 1 ≤ c ≤ N1−δ where δ > 0 is a constant. Let n be an even

integer and g be an integer divisible by 4 such that 800
√
cn log n ≥ g ≥ 200

√
cn log n.

Let r be the largest odd integer such that 5gr ≤ n. Finally, let N = nr. Note that

g = Θ(N1/3(c logN)2/3), r = Θ
(

N1/3

(c logN)1/3

)
, and n = Θ(N2/3(c logN)1/3). Since c ≤ N1−δ,

we get n > cN2δ/3 > c logN and thus g ≥ 200c log n.

Remark 7.3.1. It is perhaps worth reminding that we are allowing the algorithm to query

NN1−δ sets. A reader may wonder with these many queries available won’t one be able

to find the minimizer by brute force even in a single round. In the “hard functions” we

construct, the minimizer has n ≈ N1− δ
3 � N1−δ elements. And thus NN1−δ queries would

not be able to find the minimizer by enumeration over ≈ Nn sets.
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Let P = (P1, . . . , Pr) be a random equipartition of a universe U of N elements into parts

of size n. Given a subset S, let the r-dimensional vector ~x defined as ~xi := |S ∩ Pi| be

the signature of S with respect to P. We say a query S is i-balanced with respect to P if

the associated signature ~x is i-balanced. We use the following simple property of a random

equipartition.

Lemma 7.3.2. For any integer i ∈ [1, . . . , (r−1)], let P1, P2, ..., Pi−1 be a sequence of (i−1)

sets each of size n such that for 1 ≤ j ≤ (i−1), the set Pj is generated by choosing uniformly

at random n elements from U \ (P1 ∪ P2 ∪ ...Pj−1). Let S ⊂ U be any query that is chosen

with possibly complete knowledge of P1, P2, ..., Pi−1. Then if we extend P1, P2, ..., Pi−1 to a

uniformly at random equipartition (P1, ..., Pr) of U , with probability at least 1 − 1/n2c+3,

the query S is i-balanced with respect to the partition (P1, P2, ..., Pr); here the probability is

taken over the choice of Pi, Pi+1, ..., Pr.

Proof. Let V = U \ (P1 ∪ P2 ∪ ... ∪ Pi−1). For i ≤ j ≤ r, let Xj be the random variable

whose value equals |S ∩ Pj |, and let µ = E[Xj ] = |S ∩ V |/(r − i + 1) ≤ n. To prove the

assertion of the lemma, it is sufficient to show that with probability at least 1− 1/n2c+3, we

have |Xj − µ| ≤ g/16 for any j.

Note that each Xj is a sum of |V | negatively correlated 0/1 random variables. By Chernoff

bound for negatively correlated random variables [104, 154], the probability that Xj deviates

from its expectation µ by more than g/16 is at most 2e
max{− (g/16)2

3µ
,−(g/16)} ≤ 2e−10c logn ≤

1/n2c+4. By taking a union bound over all i ≤ j ≤ r, with probability at least 1− 1/n2c+3,

we have |Xj − µ| ≤ g/16 for all such j.

Now we are ready to prove Theorem 7.1 which we restate below for convenience.

Theorem 7.1. For any constant δ > 0 and any 1 ≤ c ≤ N1−δ, any randomized algorithm

for SFM on an N element universe making ≤ N c evaluation oracle queries per round and

succeeding with probability ≥ 2/3 must have Ω
(

N1/3

(c logN)1/3

)
rounds-of-adaptivity. This is
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true even when the range of the submodular function is {−N,−N + 1, . . . , N − 1, N}, and

even if the algorithm is only required to output the value of the minimum.

Proof. We use Yao’s minimax lemma. The distribution over hard functions is as follows.

First, we sample a random equipartition P of the U into r parts each of size n. Given P

and a subset S, let fP(S) := h(~x) and f∗P(S) := h∗(~x), where ~x is the signature of S with

respect to P. Select one of fP and f∗P uniformly at random. This fixes the distribution over

the functions, and this distribution is offered to a deterministic algorithm. We now prove

that any s-round deterministic algorithm with s < r
2 fails to return the correct answer with

probability > 1/3, and this would prove Theorem 7.1. In fact, we prove that with probability

≥ 1− 1/n, over the random equipartition P, the deterministic algorithm cannot distinguish

between fP and f∗P , that is, the answers to all the queries made by the algorithm is the

same on both functions. This means that the deterministic algorithm errs with probability

≥ 1
2 · (1−

1
n) > 1

3 .

An s-round deterministic algorithm performs a collection of queries Q(`) at every round

1 ≤ ` ≤ s with |Q(`)| ≤ N c ≤ n2c. Let Ans(`) denote the answers to the queries in Q(`). The

subsets queried in Q(`) is a deterministic function of the answers given in Ans(1), . . . ,Ans(`−1).

After receiving the answers to the sth round of queries, that is Ans(s), the algorithm must

return the minimizing set S. We now prove that when P is a random equipartition of U ,

then with probability 1− 1
n , the answers Ans(`) given to Q(`) are the same for fP and f∗P , if

s < r
2 .

We view the process of generating the random equipartition as a game between an ad-

versary and the algorithm where the adversary reveals the parts one-by-one. Specifically,

the process of generating the random equipartition will be such that at the start of any

round ` ∈ [1, . . . , s], the adversary has only chosen and revealed to the algorithm the parts

P1, P2, ..., P`−1, and at this stage, P`, P`+1, ..., Pr are equally likely to be any equipartition

of U \ (P1 ∪ P2 ∪ ... ∪ P`−1) into (r − ` + 1) parts. By the end of round `, the adversary

has committed and revealed to the algorithm the part P`, and the game continues with
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one caveat. In each round, there will be a small probability (at most 1/n2) with which the

adversary may “fail”. This occurs at a round ` if any query made by the algorithm on or

before round ` turns out to be not `-balanced with respect to the sampled partition at round

`. In that case, the adversary reveals all remaining parts to the algorithm (consistent with

the answers given thus far), and the game terminates in the current round ` itself with the

algorithm winning the game (that is, the algorithm can distinguish between fP and f∗P).

The probability of this failure event can be bound by s/n2 ≤ 1/n, summed over all rounds.

In absence of this failure event, by Lemma 7.2.10, we know that the answers will be the

same for fP and f∗P at the end of the algorithm, concluding the proof. We now formally

describe this process.

At the start of round 1, the adversary samples a uniformly at random equipartition of

U , say, Γ(1) = (P
(1)
1 , P

(1)
2 , ..., P

(1)
r ). The algorithm reveals its set of queries for round 1,

namely, Q(1). The adversary answers all queries in Q(1) in accordance with the partition

Γ(1). By Lemma 7.3.2, since |Q(1)| ≤ n2c, every query in Q(1) is 1-balanced with respect

to the partition Γ(1), with probability at least 1− 1/n3. If this event occurs, the adversary

reveals P (1)
1 to the algorithm, and continues to the next round. Otherwise, the adversary

reveals the entire partition Γ(1) to the algorithm and the game terminates.

At the start of round 2, the adversary samples another uniformly at random equipartition

of U , say, Γ(2) = (P
(2)
1 , P

(2)
2 , ..., P

(2)
r ) subject to the constraint P (2)

1 = P
(1)
1 . Note that Γ(2)

is a uniformly at random equipartition of U since P (1)
1 was chosen uniformly at random.

The algorithm reveals its set of queries for round 2, namely, Q(2). Again by Lemma 7.3.2,

we have that (i) every query in Q(1) is 1-balanced with respect to the partition Γ(2), with

probability at least 1− 1/n3, and (ii) every query in Q(2) is 2-balanced with respect to the

partition Γ(2), with probability at least 1−1/n3. If this event occurs, the adversary answers

all queries in Q(2) in accordance with the partition Γ(2), and the game proceeds to the next

round. The key insight here is that by Lemma 7.2.10, if a query S ∈ Q(i) is i-balanced w.r.t.

some partition (P1, ..., Pr), then the function value on the query S is completely determined
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by P1, P2, ..., Pi and |S|, and does not require knowledge of Pi+1, ..., Pr. Furthermore, the

value of fP(S) and f∗P(S) are the same. In other words, the function value on query S

remains unchanged, for both f and f∗, if we replace P := (P1, ..., Pi, Pi+1, ..., Pr) with any

other partition P ′ := (P1, ..., Pi, P
′
i+1, .., P

′
r) such that S remains i-balanced with respect to

P ′. So answers to all queries in Q(1) are the same under both partitions Γ(1) and Γ(2). On

the other hand, if either (i) or (ii) above does not occur, the adversary terminates the game

and reveals the entire partition Γ(1) to the algorithm.

In general, if the game has successfully reached round ` ≤ s, then at the start of round `, the

adversary samples a uniformly at random equipartition of U , say, Γ(`) = (P
(`)
1 , P

(`)
2 , ..., P

(`)
r )

subject to the constraints P (`)
1 = P

(1)
1 , P

(`)
2 = P

(2)
2 , ..., P

(`)
`−1 = P

(`−1)
`−1 . Once again, note

that Γ(`) is a uniformly at random equipartition of U since P (1)
1 was chosen uniformly at

random, P (2)
2 was chosen uniformly at random having fixed P (1)

1 , and so on. The algorithm

now reveals its set of queries for round `, namely, Q(`). By Lemma 7.3.2, we have that for

any fixed i ∈ [1, . . . , `], all queries in Q(i) are i-balanced with respect to the partition Γ(`)

with probability at least 1 − 1/n3 each. Thus with probability at least 1 − `/n3, for every

i ∈ [1, . . . , `], all queries in Q(i) are i-balanced with respect to the partition Γ(`). If this event

occurs, the adversary answers all queries in Q(`) with respect to the partition Γ(`), and once

again, by Lemma 7.2.10, answers to all queries in Q(1),Q(2), ...,Q(`−1) remain unchanged

if we answer them using the partition Γ(`). The game then continues to the next round.

Otherwise, with probability at most `/n3 ≤ 1/n2, the game terminates and the adversary

reveals the entire partition Γ(`−1) to the algorithm.

Summing up over all rounds 1 through s ≤ r
2 − 1, the probability that the game reaches

round s is at least 1− s/n2 ≥ 1− 1/n. This, in turn, implies that with probability ≥ 1− 1
n ,

the random equipartition P satisfies the following property : all the queries in Q(i) are

i-balanced with respect to P for all i ∈ [1..s]. Now, since s ≤ r
2 , by Claim 7.2.12 we

get that the answers Ans(1), . . . ,Ans(s) given to these queries are the same for fP and f∗P .

Hence the algorithm cannot distinguish between these two cases. This completes the proof
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of Theorem 7.1.

7.3.1. Modification to boost gap : Ω(1/ε)-lower bound for ε-approximate SFM

An inspection of the proof of Theorem 7.1 shows us that the minimum values of fP and

f∗P are 0 and −g
2 for all P’s (by Lemma 7.2.8). That is, any polynomial query algorithm

making fewer than Ω̃(N1/3) rounds of adaptivity cannot distinguish between the case when

the minimum value is 0 and minimum value is −g/2. Since g = Θ(N1/3(c logN)2/3), we

also rule out additive O(N1/3)-approximations for submodular functions whose range is

{−N,−N+1, . . . , N}. Scaling such that the range is [−1,+1], we in fact obtain an Ω̃(1/
√
ε)-

dept lower bound to obtain ε-additive approximation algorithms.

In this section we show how a small modification leads to indistinguishability between func-

tions with minimum value 0 and those with minimum value −Θ(N2/3) thus proving an

Ω̃(1
ε ) lower bound on the depth required for polynomial query ε-additive approximation

algorithms for SFM.

The difference is in the definition of h∗; we redefine it such that the minimizer is not just

Pr (or rather (0, 0, . . . , 0, n)) but P 2r
3
∪ P 2r

3
+1 ∪ · · · ∪ Pr, and the minimum value becomes

−gr
6 = −Θ(N2/3). However, it still remains indistinguishable from h if the number of rounds

is < r/2, and thus the proof of Theorem 7.1 carries word-to-word.

Define ~x↓ :=
(
~x1, . . . , ~x 2r

3
−1,min(~x 2r

3
, n2 −

g
4),min(~x 2r

3
+1,

n
2 −

g
4) . . . ,min(~xr,

n
2 −

g
4)
)
.

Then,

h∗∗(~x) = h(~x↓)−
r∑

i= 2r
3

max
(

0, ~xi −
(n

2
− g

4

))
(7.11)

Below we note the relevant changes. Let f∗∗P be the partition submodular function induced

by a partition P = (P1, . . . , Pr) with |Pi| = n, and h∗∗.

• The proof of Lemma 7.2.7 generalizes to prove h∗∗ is partition submodular. The
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two cases are j < 2r
3 and j ≥ 2r

3 . In the former case, ∂jh∗∗(~x) = ∂jh(~x↓) and

∂jh
∗∗(y) = ∂jh(y↓), and submodularity follows from submodularity of h. If j ≥ 2r

3

and yj ≥ n
2 −

g
4 , then ∂jh

∗∗(y) = −1 which implies it’s ≤ ∂jh
∗∗(~x). Otherwise, both

~xj ,yj <
n
2 −

g
4 , and then submodularity again follows from that of h.

• In Lemma 7.2.8, we can now assert f∗∗P (P 2r
3
∪ · · · ∪ Pr) = −g

2 ·
r
3 = −gr

6 .

• We assert that Lemma 7.2.10 still holds. To see this, note that the only changes

are in the proof of Claim 7.2.12 (not the statement), and we sketch this below. Let

k :=
∑r

i= 2r
3

max
(

0, ~x 2r
3
−
(
n
2 −

g
4

))
; we (still) have ‖~x‖1 = ‖~x↓‖1 + k and h∗∗(~x) =

h(~x↓)− k. Furthermore, for any 1 ≤ t ≤ 2r
3 , we have `t(~x) = `t(~x↓) + k, and so if the

odd-even index {a, b} of ~x is in {1, . . . , 2r
3 }, then {a, b} is also the odd-even index for

~x↓.

Now, if ~xt ≤ n
2 −

g
4 for all 2r

3 ≤ t ≤ r, then ~x↓ = ~x and k = 0 and h∗∗(~x) = h(~x).

So, we may assume that some ~xt > n
2 −

g
4 . And since ~x is i-balanced (for i < t), we

get (just as in the previous proof) ~xj ≥ n
2 −

g
2 for all j ≥ i. And thus, the odd-even

index {a, b} of ~x lies in {1, 2, . . . , i + 1}. The rest of the proof now proceeds exactly

as in Claim 7.2.12.

7.4. Suffix Functions, Nested Matroids, and Parallel Matroid Intersection

In this section we explain how our suffix functions, and as a result our partition submodular

functions, arise in the context of matroid intersection. This is then used to prove Theorem 7.2

which states that any efficient matroid intersection algorithm, even with access to rank

functions to the two matroids, must proceed in polynomially many rounds.

Matroids. A matroidM = (U, I) is a set-system over a universe U satisfying the following

two axioms

• I ∈ I and J ⊆ I implies J ∈ I.

• For any I, J ∈ I with |I| < |J |, there exists x ∈ J \ I such that I + x ∈ I.
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The sets in I are called independent sets of the matroid. A maximal independent set is

called a base. It is well-known that all bases have the same cardinality. There are two usual

oracles to access matroids. The first is the independence oracle which given a subset

S ⊆ U returns whether S is independent or not. The second stronger oracle, and we assume

an algorithm has access to this, is the rank oracle which given a subset S returns rkM(S)

which is the cardinality of the largest independent subset of S. It is well known that rk(S)

is a submodular function whose marginals are in {0,+1}.

Nested Matroids. Let C = {U = C1 ⊇ C2 ⊇ · · · ⊇ Cr} be a collection of nested subsets

of the universe U . Let each set Ci have an associated non-negative integer capacity capi.

Let ~cap = (cap1, . . . , capr) be the capacity vector. Then (C, ~cap) defines the following set

family which is a matroid. Such matroids are called nested matroids (see, for example, [119])

and are a special class of laminar matroids.

MC := {I ⊆ U : |I ∩ Ct| ≤ capt, 1 ≤ t ≤ r} (Nested Matroids)

Given the nested family C, there is an obvious associated partition P := (P1, P2, . . . , Pr) of

the universe U defined as Pr := Cr, the minimal subset in C, and Pj := Cj \ Cj+1 for all

1 ≤ j < r. Similarly, we define “thresholds” for each part of the partition P as τr := capr,

and τj := capj − capj+1. We use ~τ to denote the threshold vector (τ1, . . . , τr).

Observe that these definitions are interchangeable : given (P, ~τ) one gets the nested matroid

defined by (C, ~cap), where Cj =
⋃
t≥j Pt for all 1 ≤ j ≤ r, and capj =

∑
t≥j τt.

Rank of a Nested Matroid. Given a nested matroid M, let P = (P1, . . . , Pr) be the

associated partition with thresholds τ1 to τr. For simplicity, let us assume |Pi| = n for all

1 ≤ i ≤ r. Given a subset S ⊆ U , let ~x ∈ Zr≥0 be the signature of S where ~xi := |Pi ∩ S|.

Define

for any 1 ≤ t ≤ r, `t(~x) :=
r∑
s=t

(~xs − τs) (7.12)
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Note that a set S is independent if and only if `t(~x) ≤ 0 for all 1 ≤ t ≤ r. Also note the

connection with (7.4) when we set τ1 = · · · = τr−1 =
(
n
2 − g

)
and τr =

(
n
2 − g

)
+ gr

4 . The

next lemma shows how these functions define the rank of a nested matroid.
Lemma 7.4.1 (Rank of a Nested Matroid).

Let M be a nested matroid defined by (P = (P1, . . . , Pr);~τ = (τ1, . . . , τr)) where τi ≥ 0

for all i. Given any subset S ⊆ U with signature ~x, the rank of S is

rkM(S) = ‖~x‖1 −max

(
0, max

1≤a≤r
`a(~x)

)

where `t(~x) is as defined in (7.12).

Proof. The rank rkM(S), which we also denote as rkM(~x), is the cardinality of the largest

independent subset of S. This value can be found by the following linear program, which is

integral because the constraint matrix is totally unimodular.

rk(~x) := max

r∑
i=1

yi

yi ≤ ~xi, ∀i ∈ [r]∑
i≥t

yi ≤
∑
i≥t

τi, ∀t ∈ [r]

=︸︷︷︸
Duality

min

r∑
i=1

ηi~xi +

r∑
t=1

zt ·

∑
i≥t

τi


∑
t≤i

zt + ηi = 1, ∀i ∈ [r]

z, η ≥ 0

We do not impose non-negativity constraints on the yi variables in the primal because the

maximizing solution will indeed have non-negative yi’s. To see this, suppose yj < 0 and

let t ≤ j be the largest index such that
∑

i≥t yi =
∑

i≥t τi. That is, the largest indexed

constraint, among the ones containing yj , which is tight. There must be such a t for

otherwise we could increase the objective by incrementing yj . Furthermore, yt > 0 for

otherwise
∑

i≥t+1 yi =
∑

i≥t+1 τi and our t won’t be largest; this argument uses τt ≥ 0.

Now, increasing yj and decreasing yt by the same amount gives a feasible solution with the

same optimum, and continuing the above procedure, we will get to a non-negative y.
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We can massage the dual as follows. Let prefi(z) :=
∑

t≤i zt. Thus, we can rewrite ηi =

1− prefi(z), and since ηi ≥ 0, we get all prefi(z)’s, and in particular which is equivalent to,

by the non-negativity of z, the constraint ‖z‖1 ≤ 1. Therefore, we can eliminate η’s and get

rk(~x) = min
z:‖z‖1≤1

r∑
i=1

~xi · (1− prefi(z)) +

r∑
t=1

zt

∑
i≥t

τi


Next, using the observation that

∑r
t=1 zt

(∑
i≥t τi

)
=
∑r

i=1 prefi(z) · τi, we can further

simplify to get

rk(~x) = min
z:‖z‖1≤1

r∑
i=1

~xi −
r∑
i=1

prefi(z) · (~xi − τi) = ‖~x‖1 − max
z:‖z‖1≤1

r∑
t=1

zt

∑
i≥t

(~xi − τi)


︸ ︷︷ ︸

`t(~x)

The last summand maxz:‖z‖1≤1

∑r
t=1 zt`t(~x) is 0 if all `t(~x) ≤ 0 (by setting z ≡ 0), and

otherwise, it is max1≤a≤t `a(~x). This completes the proof.

The reader should notice the similarity with (7.5). We will now make the connection more

precise. Before doing so, we need another well known definition.

Duals of Matroids. Given a matroidM, the dual matroidM∗ is defined as follows

I∗ := {S ⊆ U : U \ S contains a base of M}

It is not too hard to check this is a matroid. The rank of any set in the dual matroid can

be computed using the rank of the original matroid as follows.

Lemma 7.4.2 (e.g., Theorem 39.3 in [237]). LetM be a matroid with rank function rk. Let

M∗ be its dual with corresponding rank function rk∗. Then,

∀S ⊆ U : rk∗(S) = rk(U \ S) + |S| − rk(U)
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It is not too hard to see that the dual of a nested matroid is another nested matroid whose

nesting is from the “other end”. More formally, one can prove the following.

Lemma 7.4.3. Let M be a nested matroid defined by the partition P = (P1, . . . , Pr) and

thresholds ~τ := (τ1, . . . , τr). Then, M∗ is another nested matroid defined by the reverse

partition P ′ = (Pr, Pr−1,. . . ,P2, P1) and thresholds ~τ ′ := (nr − τr, nr−1 − τr−1, . . . , n1 − τ1),

where ni := |Pi|.

Proof. Let S be a subset with signature ~x with respect to the original partition P. S is

independent inM∗ if and only if U \ S contains a base ofM. Equivalently, rkM(U \ S) =

rkM(U). Now, the latter is precisely ‖n‖1−`1(n) where n = (n1, n2, . . . , nr) is the signature

of the universe U . Let z be the signature of U \S; note that zi = ni−~xi. Thus, we get that

S is independent inM∗ if and only if

‖z‖1 −max(0, max
1≤a≤r

`a(z)) = ‖n‖1 − `1(n) ⇒︸︷︷︸
Rearranging

`1(z) = max(0, max
1≤a≤r

`a(z))

`1(z) is largest suffix if and only if all the (r−1) prefix-sums are non-negative, and `1(z) ≥ 0

implies all prefix-sums are non-negative. Thus, we get

∀1 ≤ j ≤ r,
∑
j≤t

(zj − τj) ≥ 0 ≡ ∀1 ≤ j ≤ r,
∑
j≤t

(~xj − (nj − τj)) ≤ 0

which is precisely the signature of an independent set in the nested matroid defined by

(P ′, ~τ ′).

The Hard Matroid Intersection Set-up. Let r = 2k + 1 be an odd number. Let

P = (P1, . . . , Pr) be a partition with |Pi| = n. Each part will be associated with a parameter

τi. These will be set to τ1 = · · · = τr−1 =
(
n
2 − g

)
and τr =

(
n
2 − g

)
+ gr

4 , where g, gr4 are as

described in Section 7.3.

We define three coarsenings of this partition. The first is the odd coarsening containing
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(k + 1) parts defined as follows.

Podd := (P1 ∪ P2, P3 ∪ P4, . . . , Pr−2 ∪ Pr−1, Pr)

and the associated τ -values are, as expected, the sum of the relevant τj ’s. More precisely,

they are ~τodd := (τ1+τ2, τ3+τ4, . . . , τr−2+τr−1, τr). LetModd be the nested matroid defined

by (Podd, ~τodd). The rank ofModd is given by Lemma 7.4.1 as follows; we only consider the

odd indices since r is odd.

Claim 7.4.4. Let S ⊆ U . Let ~x be the signature of S with respect to the (2k + 1)-part

partition P. Then,

rkModd
(~x) := rkModd

(S) = ‖~x‖1 −max

(
0, max

1≤a≤r, a odd
`a(~x)

)

The second coarsening is the even coarsening containing (k + 1)-parts defined as

Peven := (P1, P2 ∪ P3, P4 ∪ P5, . . . , Pr−1 ∪ Pr)

The associated τ -values are slightly different in that the first part is effectively “ignored”. The

vector of τ ’s are ~τeven := (n, τ2 + τ3, τ4 + τ5, . . . , τr−1 + τr). LetMeven be the corresponding

nested matroid defined by (Peven, ~τeven). Note that any base of Meven must contain the

whole set P1. Again using Lemma 7.4.1, the rank of this matroid is given as follows.

Claim 7.4.5. Let S ⊆ U . Let ~x be the signature of S with respect to the (2k + 1)-part

partition P. Then,

rkMeven(~x) := rkMeven(S) = ‖~x‖1 −max

(
0, max

1≤a≤r, a even
`a(~x)

)

The reason the first part does not count is because (~x1 − n) is ≤ 0, and this cannot be the

maximizer when we apply Lemma 7.4.1. And otherwise, it corresponds to an even index in
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the original partition.

Finally, the third coarsening is a refinement of Peven where the last part Pr−1∪Pr is divided

into two. That is,

P ′even := (P1, P2 ∪ P3, P4 ∪ P5, . . . , Pr−1, Pr)

The associated τ vector is ~τ ′even := (n, τ2 +τ3, τ4 +τ5, . . . , τr−1 +τr−θ, θ) for some parameter

θ, which is set to
(
n
2 −

g
4

)
. LetM′even be the nested matroid defined by (P ′even, ~τ

′
even).

Claim 7.4.6. Let S ⊆ U . Let ~x be the signature of S with respect to the (2k + 1)-part

partition P. Then,

rkM′even
(~x) := rkM′even

(S) = rkMeven(~x↓)

where, ~x↓ = (~x1, . . . , ~xr−1,min(~xr, θ)).

Proof. First observe that for any t, `t(~x) = `t(~x↓) + max(0, (~xr − θ)). Therefore, for any ~x,

the t maximizing `t(~x) also is the one maximizing `t(~x↓).

When computing rkM′even
(~x) as ‖~x‖ − max(0,maxa `a(~x)), the maximization over a is over

all even indices and also r. This leads to two cases.

Case 1: This maximizer is at a = r, that is, rkM′even
(~x) = ‖~x‖1 − max(0, ~xr − θ). In that

case, we have `a(~x) ≤ (~xr − θ) for all other a’s. Which implies `a(~x↓) ≤ 0. Therefore,

rkMeven(~x↓) = ‖~x↓‖1 = ‖~x‖1 −max(0, ~xr − θ) = rkM′even
(~x).

Case 2: This maximizer at a 6= r, that is, rkM′even
(~x) = ‖~x‖1 −max(0, `a(~x)) for some even

a. Note that this a is also the maximizer when computing rkMeven(~x↓). Therefore,

rkMeven(~x↓) = ‖~x↓‖1 −max(0, `a(~x↓)) = ‖~x↓‖1 −max(0, `a(~x)−max(0, (~xr − θ)︸ ︷︷ ︸
`r(~x)

))

If ~xr ≤ θ, we get rkMeven(~x↓) = ‖~x↓‖1 −max(0, `a(~x)) = ‖~x‖1 −max(0, `a(~x)) = rkM′even
(~x),
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where the second equality follows because ~x↓ = ~x when ~xr ≤ θ.

If ~xr > θ, then rkMeven(~x↓) = ‖~x↓‖1 − (`a(~x)− (~xr − θ)) since `a(~x) ≥ `r(~x) ≥ 0 as a is the

maximizer. Now observe that ‖~x↓‖1 = ‖~x‖1 − (~xr − θ), and so rkMeven(~x↓) = ‖~x‖ − `a(~x) =

rkM′even
(~x).

Claim 7.4.7. rkMeven(U) = rkM′even
(U).

Proof. Let n be the (n, n, . . . , n) vector. rkMeven(U) = ‖n‖1 − `2(n), and rkM′even
(U) =

rkMeven(n↓). This, in turn, is ‖n↓‖1 − `2(n↓) = (‖n‖ − (n − θ)) − (`2(n)− (n− θ)) =

‖n‖1 − `2(n).

The following lemma connects matroid intersection with submodular function minimization

for the functions described in Section 7.2.
Lemma 7.4.8. The size of the largest cardinality independent set in Modd ∩M∗even is

precisely C + minS⊆U f(S) where C = |U | − rkMeven(U) and f(S) = h(~x) with

h(~x) = ‖~x‖1 −max

(
0, max

1≤a≤r, a odd
`a(~x)

)
−max

(
0, max

1≤a≤r, a even
`a(~x)

)

and the size of the largest cardinality independent set in Modd ∩ (M′even)∗ is precisely

C + minS⊆U f
∗(S) where C = |U | − rkM′even

(U) = |U | − rkMeven(U) and f∗(S) = h∗(~x)

with

h∗(~x) =


h(~x) if ~xr ≤ θ

h(~x↓)− (~xr − θ) otherwise
where, ~x↓ := (~x1, . . . , ~xr−1,min(~xr, θ))

Proof. From Edmond’s theorem [107], we know that for any two matroidsM1 andM2, one

has

max
I∈M1∩M2

|I| = min
S⊆U

(rkM1(S) + rkM2(U \ S))

Fix a set S with signature ~x with respect to the (2k+ 1)-part partition P. By Claim 7.4.4,
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we have rkModd
(S) = rkModd

(~x) = ‖~x‖1 −max (0,max1≤a≤r, a odd `a(~x)). By Lemma 7.4.2,

we have rkM∗even
(U \ S) = rkMeven(S) + |U | − rkMeven(U) − |S| = rkMeven(~x) + C − ‖~x‖1. By

Claim 7.4.5, we have rkMeven(S) = rkMeven(~x) = ‖~x‖1 −max (0,max1≤a≤r, a even `a(~x)). And

thus,

rkModd
(S) + rkM∗even

(U \ S) = C + h(~x)

Similarly, by Lemma 7.4.2, we have rk(M′even)∗(U \S) = rkM′even
(S) + |U |− rkMeven(U)−|S| =

rkM′even
(~x) + C − ‖~x‖1. By Claim 7.4.6, the RHS equals rkMeven(~x↓) + C − ‖~x‖1. And so,

rkModd
(S) + rk(M′even)∗(U \ S)

= C + ‖~x↓‖1 −max

(
0, max

1≤a≤r, a odd
`a(~x)

)
−max

(
0, max

1≤a≤r, a even
`a(~x↓)

)

When ~xr ≤ θ, the RHS is C + h(~x). When ~xr > θ, we have `t(~x) = `t(~x↓) + (~xr − θ) for all

t, and as before, one can argue that

max

(
0, max

1≤a≤r, a odd
`a(~x)

)
= max

(
0, max

1≤a≤r, a odd
`a(~x↓)

)
+ (~xr − θ).

Which implies the RHS is C + h(~x↓)− (~xr − θ). In sum, the RHS is C + h∗(~x).

An Illustration. It is perhaps instructive to illustrate the difference in the two situations

described in Lemma 7.4.8 with a concrete example which directly describes why the largest

cardinality common independent sets are different in the two different cases. Take r = 3. Fix

a partition (P1, P2, P3) with each part having n elements each, and the size of the universe

is 3n. The τ values are (n2 − g,
n
2 − g,

n
2 − 0.25g).

Let us understand what Modd is in this case. This is generated by (P1 ∪ P2, P3) and the

threshold vector (n−2g, n2 −0.25g). So, a subset I is independent inModd iff (a) it contains

≤ n
2 − 0.25g elements from P3, and (b) ≤ 3n

2 − 2.25g elements overall.

Similarly, the matroidMeven is generated by (P1, P2 ∪P3) with the threshold vector (n, n−

1.25g). We are interested in its dual, which is also a nested matroid which, by Lemma 7.4.3
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is generated by the partition (P2∪P3, P1) with thresholds (n+ 1.25g, 0). That is, a subset I

is independent inM∗even iff (a) it contains 0 elements from P1, and (b) ≤ n+ 1.25g elements

overall.

Notice that any set I∗ which contains n
2 − 0.25g elements from P3, n2 + 1.5g elements from

P2, and 0 elements from P1 is a base of Meven which is independent in Modd. All that is

needed is that 1.5g ≤ n
2 so that there are enough items in P2 to pick from.

Finally, let us consider the matroid (M′even) and its dual. The former is a nested matroid

generated by (P1, P2, P3) with thresholds (n, n2 − g,
n
2 − 0.25g). Which, in turn, implies that

its dual is a nested matroid generated by (P3, P2, P1) with thresholds (n2 + 0.25g, n2 + g, 0).

That is, an independent set cannot contain more than n
2 + g elements from P2, thus ruling

out the I∗ described in the previous paragraph. Indeed, since Modd forces at most n
2 −

0.25g elements from P3, the largest common independent set in Modd and (M′even)∗ is at

most of size n + 0.75g elements. Which is exactly −g/2 less, as predicted by Lemma 7.4.8

and Lemma 7.2.8. Note, however, that the size of the largest independent set in (M′even)∗

is the same as that inM∗even, that is n+ 2.75g; that set picks more elements from P3. It is

the intersection withModd which prevents picking such a base of (M′even)∗.

Now we are ready to prove Theorem 7.2.

Theorem 7.2. For any constant δ > 0 and any 1 ≤ c ≤ N1−δ, any randomized algorithm

for matroid intersection on an N element universe making ≤ N c rank-oracle queries per

round and succeeding with probability ≥ 2/3 must have Ω
(

N1/3

(c logN)1/3

)
rounds-of-adaptivity.

This is true even when the two matroids are nested matroids, a special class of laminar

matroids, and also when the algorithm is only required to output the value of the optimum.

Proof of Theorem 7.2. To complete the proof of Theorem 7.2, we need one more thing.

In SFM, we have access to evaluation oracle for the function. In particular, if ~x is the

signature of a set S with respect to a partition, then we have access to h(~x). In the matroid

intersection problem, we have access to the individual ranks of each matroid. Therefore,
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we need to establish suffix-indistinguishability for each of the individual ranks. Since the

rank of the dual matroid can be simulated by the rank of the original matroid, the suffix

indistinguishability of both matroids is established by the following lemma whose proof is

very similar to that of Lemma 7.2.10.

Lemma 7.4.9. A signature ~x (with respect to the original (2k + 1)-part partition) is i-

balanced if ~xi − g
8 ≤ ~xj ≤ ~xi + g

8 . Let i < r
2 . If ~x and ~x′ are two i-balanced points with

~xj = ~x′j for j ≤ i and ‖~x‖1 = ‖~x′‖1, then (a) rkModd
(~x) = rkModd

(~x′), and (b) rkMeven(~x) =

rkMeven(~x′) = rkM′even
(~x) = rkM′even

(~x′)

Proof. As in the proof of Lemma 7.2.10, we proceed in two claims. First, we claim that for

any i ≤ r− 2, if ~x and ~x′ are i-balanced, then rkMeven(~x) = rkMeven(~x′). If ~xi = ~x′i <
n
2 −

7g
8 ,

then just as in Claim 7.2.11, all ~xj , ~x′j , for j ≥ i, are ≤ n
2 −

3g
4 , implying that the even-index

with the largest `t(·) must lie in {1, 2, . . . , i+1}. And this, due to the premise of the lemma,

implies (using Claim 7.4.5) rkMeven(~x) = rkMeven(~x′). A similar argument using odd-index

and Claim 7.4.4 proves part (a).

The proof of the second and third equality in part(b) follows as in Claim 7.2.12. We have

θ = n
2 −

g
4 . If ~xr ≤ θ, then the two ranks are the same by Claim 7.4.6. If ~xr > θ, then

since ~x is i-balanced, all ~xj ≥ n
2 −

g
2 for j ≥ i. This means the even index with the largest

`t(~x) lies in {1, . . . , i + 1}. And since i ≤ r/2, which implies that both `i(~x↓) and `i+1(~x↓)

(we look at both for we don’t know which is even, but one of them is) are ≥ 0. Therefore,

rkMeven(~x) = ‖~x‖1 − `a(~x) for some even a ≤ i+ 1, and rkM′even
(~x) = ‖~x↓‖1 − `a(~x↓) for the

same a. Since a ≤ i + 1, we get that ‖~x↓‖1 = ‖~x‖1 − k and `a(~x↓) = `a(~x) − k, where

k = ~xr − θ. In sum, we get rkMeven(~x) = rkM′even
(~x), and this, together with the previous

paragraph, implies part (b).

The proof of Theorem 7.2 then follows almost word-to-word as the proof of Theorem 7.1.

The hard distributions over the pairs of matroids are as follows. First one samples a random

equipartition P of U into (2k + 1) parts. Given P , the “odd” matroid Modd is one nested
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matroid. The other nested matroid is eitherM∗even or (M′even)∗. Note that by Lemma 7.4.3,

these duals are also nested matroids. We give the algorithm rank-oracle access to these two

matroids. As in the proof of Theorem 7.1, armed with Lemma 7.4.9, one can show that for

any s-round deterministic algorithm for s ≤ r
2 − 1, with probability ≥ 1 − 1

n , the answers

given in the case of (Modd,M∗even) and the answers given in the case of (Modd, (M′even)∗)

are exactly the same. Since the sizes of the largest common independent sets in both cases

are different, one gets the proof of Theorem 7.2.
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CHAPTER 8

Conclusion and Open Problems

In this thesis, we studied several combinatorial problems in different sublinear settings,

where the standard algorithms are hard to implement.

In particular, we first considered two classic graph problems: (∆ + 1)-coloring problem and

the graphical traveling salesman problem. We prove the upper and lower bound for these

two problems in different models. For both problems, we first prove a structure-property for

the problem, then design sublinear algorithms in different models based on the properties.

We then consider the hypergraph cut sparsifier problem. We prove the existence of a near-

linear size cut sparsifier for any hypergraph. We also consider the problem in the sublinear

case and give a query algorithm that runs in polynomial time in the number of vertices and

is independent of the number of hyperedges in the graph.

We then considered a communication problem we call hidden pointer chasing and gave a

communication lower bound. By reduction from this problem, we prove lower bounds on the

number of passes we needed to compute maximum flow and lexicographically-first maximal

independent set problem using sublinear space.

Finally, we studied the round complexity of the submodular function minimization problem

and proved a polynomial lower bound on the number of rounds we need to compute the

minimum value of a submodular function in a polynomial number of queries.

At the end of this thesis, we list several open problems that are related to the problems and

models we considered in this thesis.

8.1. Sublinear Algorithms for Graph Problems

In Chapter 4, we gave sublinear algorithms that (2−ε)-approximates the cost of a graphical

traveling salesman problem. An immediate question to ask is whether there is such an
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algorithm for the general metric TSP problem. Since the technique we used in Chapter 4

is heavily relying on the property that the metric is defined by an underlying unweighted

graph, we might need completely different ideas to general our algorithms to the general

case.

Problem 1. Are there a constant ε > 0 and a query algorithm that estimates the cost of

metric TSP to within a factor of (2− ε) by performing o(n2) queries?

As we discussed in Chapter 4, the cost of a metric minimum spanning tree can be estimated

to within a factor of (1 + ε) for any ε > 0 in Õ(n) queries. Similar to the metric TSP

problem, the cost of MST also gives a 2-approximation for the metric Steiner tree problem.

Designing sublinear algorithms for breaking the barrier of 2 for the metric TSP problem and

the metric Steiner tree problem might be closely related.

Problem 2. Are there a constant ε > 0 and a query algorithm that estimates the cost of

the metric Steiner tree to within a factor of (2− ε) by performing o(n2) queries?

8.2. Linear Size Hypergraph Sparsifier

In Chapter 5, we prove that any hypergraph admits a cut sparsifier with O(n log n) hyper-

edges, and it is easy to prove that there are hypergraphs that any sparsifier contains Ω(n)

hyperedges. Thus, the question is, can we prove that any hypergraph admits a cut sparsifier

with O(n) hyperedges?

In the case of a normal graph, it is shown that any graph has a cut sparsifier with O(n)

edges [41, 195]. This is shown by considering the more generalized spectral sparsifier prob-

lem. Thus, to answer the question of the existence of linear size hypergraph cut sparsifier,

we might need to consider the hypergraph spectral sparsifier problem. Following our work,

it is shown that any hypergraph also has a spectral sparsifier with Õ hyperedges [168].

Problem 3. Does every hypergraph have a cut/spectral sparsifier with O(n) hyperedges?
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8.3. Query Complexity of Submodular Function Minimization

In Chapter 7, we proved that if the algorithm runs in a small number of rounds, we need

exponential queries to solve submodular function minimization and matroid intersection.

However, we can design an easy Õ(N) query algorithm for the instance if we allow an un-

limited round of queries. There are still huge gaps between the upper bound and lower bound

for these two problems in the fully adaptive regime. For submodular function minimization,

the current best-known algorithms are O(N3) queries in polynomial time and Õ(N2) Queries

in exponential time [162]. For matroid intersection, the current best algorithm in the inde-

pendence query (query if a set is independent) model uses Õ(N9/5) independence queries [59]

and the best algorithm in the rank query model (query the rank of a set) uses Õ(N1.5) rank

queries [79]. However, the best lower bounds for both problems are only 2N [136, 149].

Problem 4. Can we solve submodular function minimization/matroid intersection in Õ(N)

queries? Or can we prove that any algorithm that solves submodular function minimiza-

tion/matroid intersection requires Ω(N1+ε) queries?
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