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Abstract

Optimization and statistics are intrinsically intertwined with each other. Optimization has been the ends of
some statistical problems, like estimation and inference for the minimizer and the minimum of convex
functions, and the means for other statistical problems, like computational concerns in high dimensional
statistics. In this dissertation, we consider both optimization-related problems.Estimation and inference
for the minimizer and minimum of convex functions have been longstanding problems with wide
application in economics and health care. But existing approaches are insufficient due to their asymptotic
nature and/or incapability of characterizing function-specific difficulty. We investigate the problems under
non-asymptotic frameworks that characterize function-specific difficulty and propose adaptive
computational-efficient optimal methods. The first two parts of the dissertation address these problems,
briefly summarized as follows. « The first part focuses on univariate convex functions. We develop
computationally efficient adaptive optimal procedures under local minimax framework and discover a
novel Uncertainty Principle that provides a fundamental limit on how well the minimizer and minimum can
be estimated simultaneously for any convex regression function. * The second part focuses on
multivariate additive convex functions. Under function-specific benchmarks, we propose computationally
efficient optimal methods and establish their optimality.

Computational efficiency is another optimization-related problem of increasingly importance in statistics,
especially in the Al age where the scale of data is big and the requirement on computational time is high.
To achieve the balance between running time and statistical accuracy, we propose a framework that
provides theoretically guaranteed optimization methods together with the analysis of interplay between
running time and statistical accuracy for a class of high-dimensional problems in the third part of the
dissertation. Our framework consists of three parts, statistical-optimization interplay analysis, which
characterizes optimization induced statistical error in a more essential way, optimization template
algorithm, and optimization convergence analysis. We showcase the power of our framework through
three example problems, where we get novel results for the first two and show that our framework adapts
to the degenerate case through the third example.
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ABSTRACT

ESTIMATION AND INFERENCE FOR CONVEX FUNCTIONS AND
COMPUTATIONAL EFFICIENCY IN HIGH DIMENSIONAL STATISTICS

Ran Chen

T. Tony Cai

Optimization and statistics are intrinsically intertwined with each other. Optimization has
been the ends of some statistical problems, like estimation and inference for the minimizer
and the minimum of convex functions, and the means for other statistical problems, like
computational concerns in high dimensional statistics. In this dissertation, we consider both

optimization-related problems.

Estimation and inference for the minimizer and minimum of convex functions have been
longstanding problems with wide application in economics and health care. But existing ap-
proaches are insufficient due to their asymptotic nature and /or incapability of characterizing
function-specific difficulty. We investigate the problems under non-asymptotic frameworks
that characterize function-specific difficulty and propose adaptive computational-efficient
optimal methods. The first two parts of the dissertation address these problems, briefly

summarized as follows.

e The first part focuses on univariate convex functions. We develop computationally
efficient adaptive optimal procedures under local minimax framework and discover
a novel Uncertainty Principle that provides a fundamental limit on how well the
minimizer and minimum can be estimated simultaneously for any convex regression

function.

e The second part focuses on multivariate additive convex functions. Under function-
specific benchmarks, we propose computationally efficient optimal methods and es-

tablish their optimality.



Computational efficiency is another optimization-related problem of increasingly importance
in statistics, especially in the AT age where the scale of data is big and the requirement on
computational time is high. To achieve the balance between running time and statisti-
cal accuracy, we propose a framework that provides theoretically guaranteed optimization
methods together with the analysis of interplay between running time and statistical ac-
curacy for a class of high-dimensional problems in the third part of the dissertation. Our
framework consists of three parts, statistical-optimization interplay analysis, which charac-
terizes optimization induced statistical error in a more essential way, optimization template
algorithm, and optimization convergence analysis. We showcase the power of our framework
through three example problems, where we get novel results for the first two and show that

our framework adapts to the degenerate case through the third example.
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CHAPTER 1

Introduction

Optimization and statistics has been increasingly intertwined in the Al age in the sense

that optimization has been both a means and an ends for many statistical problems.

Estimation of and inference for the location and size of the extremum of a nonparamet-
ric regression function has been one of the longstanding problems in statistics with wide
applications where optimization is the ends of the problem. See, for example, Kiefer and

Wolfowitz (1952); Blum (1954); Chen (1988).

The problem has been investigated in different settings. For fixed design, upper bounds for
estimating the minimum over various smoothness classes have been obtained (Muller, 1989;
Facer and Miiller, 2003; Shoung et al., 2001). Belitser et al. (2012) establishes the minimax
rate of convergence over a given smoothness class for estimating both the minimizer and
minimum. For sequential design, the minimax rate for estimation of the location has been
established; see Chen et al. (1996); Polyak and Tsybakov (1990); Dippon (2003). Mokkadem
and Pelletier (2007) introduces a companion for the Kiefer-Wolfowitz-Blum algorithm in

sequential design for estimating both the minimizer and minimum.

Another related line of research is the stochastic continuum-armed bandits, which have
been used to model online decision problems under uncertainty. Applications include online
auctions, web advertising and adaptive routing. Stochastic continuum-armed bandits can
be viewed as aiming to find the maximum of a nonparametric regression function through
a sequence of actions. The objective is to minimize the expected total regret, which re-
quires the trade-off between exploration of new information and exploitation of historical

information. See, for example, Kleinberg (2004); Auer et al. (2007); Kleinberg et al. (2019).

The first two parts of this dissertation consider optimal estimation and confidence inter-

vals for the minimizer and minimum of convex functions under both the white noise and



nonparametric regression models in a non-asymptotic minimax framework that evaluates
the performance of any procedure at individual functions. We consider univariate convex

functions in Chapter 2 and multivariate additive convex functions in Chapter 3.

In Chapter 2, we investigate the problem for univariate convex functions under the non-
asymptotic local minimax framework that evaluates the performance of any procedure at
individual functions, instead of the conventional minimax framework, which evaluates the
performance of the estimators and confidence intervals in the worst case over a large collec-
tion of functions. Non-asymptotic local minimax framework enables a much more precise
analysis than the conventional minimax framework, and brings out new phenomena in si-
multaneous estimation and inference for the minimizer and minimum. We establish a novel
Uncertainty Principle that provides a fundamental limit on how well the minimizer and min-
imum can be estimated simultaneously for any convex regression function. A similar result
holds for the expected length of the confidence intervals for the minimizer and minimum.
Under this stricter framework, we propose fully adaptive computationally efficient optimal
procedures and establish their optimality, i.e. we establish sharp minimax lower bounds
(under local minimax framework) for the estimation accuracy and expected length of the
confidence intervals for the minimizer and minimum and we establish matching statistical

upper bounds for our procedures.
Chapter 2 is based on the joint work with T.Tony Cai and Yuancheng Zhu.

In Chapter 3, we focus on multivariate additive convex functions. We study estimation of
the minimizer and both estimation and inference for the minimum under non-asymptotic
local minimax framework. For the inference of the minimizer, we use a benchmark better
characterizes the best performance any procedure can achieve at individual functions. We
establish minimax lower bounds for the estimation accuracy and expected length(volume)
for the minimizer and minimum, we propose computationally efficient optimal procedures,
and we establish optimality by showing that the statistical upper bounds match the corre-

sponding lower bounds up to a constant depending on the dimension and the pre-specified



probability coverage.

Optimization, in addition to being an ends for aforementioned statistical problem, is also
very much involved in finding a desired statistical estimator. Many statistical estimators
are formulated as an optimizer of a certain optimization problem, where an exact solution is
hard or unable to compute. With the increasing scale of data nowadays, this computational

cost issue becomes an increasingly important concern, especially for high-dimensional data.

Current efforts in investigating computational cost can be roughly categorized into three
kinds. One is the computational-theoretical approach, where people investigate the compu-
tational cost by categorizing problems: people want to tell whether a problem is polynomial
time computable. There are also attempts on categorizing problems in slightly different ways
(Chandrasekaran and Jordan, 2013), i.e. adding additional consideration on statistical ac-
curacy for categorizing. The second line is dealing with exploding sample size (Shender and
Lafferty, 2013; Horev et al., 2015; Sussman et al., 2015; Kpotufe and Verma, 2017), mostly
by reducing the effective sample size. The third line considers either or both statistical
accuracy and optimization running time, but separately. The style of this line is having a
statistically good estimator that is an optimizer of an optimization problem first, and then
investigating theoretically guaranteed iterative optimization method for computing this es-
timator. This separation causes many problems. Conventional optimization convergence
rate in terms of the distant to an optimizer is not the best way for characterizing the sta-
tistical behavior of the computed estimator, especially for over-parameterized cases where
multiple solution is possible. The separation of the optimization problem from the statisti-
cal problem omits many statistically important considerations, e.g. the dependence of the
convergence on dimension, the assumptions that statistical setting admits. The separation
also places many statistically important optimization problem into an inferior position due

to a different taste in optimization community.

Our approach is building a framework that provides theoretically guaranteed iterative opti-

mization algorithm and precise quantification of how iteration number affects the statistical



accuracy for a class of problems that admits estimators of a certain general form without

imposing artificial or hard-to-verity conditions.

Our framework consists of three parts solving two major problems, i.e. investigating
statistical-optimization interplay and developing theoretically guaranteed optimization pro-
cedure, which leads to achievement of our goal. The first part incorporates the optimization
induced error into the statistical analysis through an approximate optimization problem
rather than an approximate solution. This is a more to-the-essence way of characterizing
how optimization induced error affects statistical accuracy. This frees statistical analysis of
the computed estimator from any optimization procedure, and makes it possible to get rid
of hard-to-verify conditions facilitating optimization. The second part provides a template
algorithm. The third part provides theoretical convergence analysis of our template algo-
rithm in terms of converging to the approximate problem. In this part, our convergence
analysis considers the dependence on both iteration number and statistically important

quantities, e.g. dimension.

We apply our framework to three examples, 1-bit matrix completion (Davenport et al.,
2014), causal inference for panel data (Athey et al., 2021) and (high dimensional sparse)
linear regression with LASSO. In first two examples, we get interesting new results. For
(high dimensional sparse) linear regression with LASSO, which is a degenerate case for
our framework, we show that our framework adapts to degenerate case and gives stronger
results when stronger assumptions are valid. For causal inference of panel data, we also
sharpen the statistical analysis under the case that computational resource is unlimited,

which is the case considered in the literature (Athey et al., 2021).

1.0.1. Notation

Now we give a list of notation that we will be using through out the dissertation. We will
remind the readers of relevant notation and additional notation for each chapter in each

chapter again.



The cdf of the standard normal distribution is denoted by ®. For 0 < a < 1, 2z, =
®~1(1 —a). For a = 0, 2z, = oo. For two real numbers a and b, a A b = min{a, b},
a Vb= max{a,b}. For f € Ly[0,1] and r > 0, B,(f) = {g € L2[0,1] : ||g — fll2 < r} and
OB (f) ={g € L2[0,1] : [|g — flla = 7}

We use ||-|| to denote the Ly norm for vectors, matrices (where La norm is Frobeneous norm),
real numbers (where Lo norm is absolute value), univariate functions and multivariate
functions, depending on the setting. We use |- | to denote the length of an interval, absolute
value for a number, and cardinal for a discrete set. We use 1{A} to denote indicator
function that takes 1 when event A happens and 0 otherwise. We use bold symbols to

denote multivariate functions, e.g. f, g, h.

We also use || - ||r in addition to || - || for Frobeneous norm for matrices. || - ||z is to give
special emphasis for matrices when there might be confusion. ||- ||, stands for nuclear norm.
We use D(A||B) = ﬁl@ >_i; D(Ai||Bij) to denote average KL divergence between di by
dy probability matrix A and B for 1-bit matrix completion, where D(al[b) = alog($) +
(1 — a)log(3=%). We use T{A} to denote the function where it takes 0 if A holds and
oo if A does not hold. We use R(g,C) to denote the ¢ neighborhood of convex set C:
R(e,C) = {X :infzec || X — Z|| < e}. We use By(x) to denote a ball in matrices space
centered at x with radius d under Frobeneous norm. We use Proj,(P) to denote the

projection point of P on convex set C, the projection is in terms of Euclidean distance.



CHAPTER 2

Estimation and Inference for Minimizer and Minimum of Convex

Functions: Optimality, Adaptivity, and Uncertainty Principles

2.1. Introduction

In this chapter, we focus on estimation and inference of the minimizer and minimum of r

univariate convex functions.

We first focus on the white noise model, which is given by

AV (t) = f(t)dt +edW (1), 0<t <1,

where W (t) is a standard Brownian motion, and € > 0 is the noise level. The drift function
f is assumed to be in F, the collection of convex functions defined on [0, 1] with a unique
minimizer Z(f) = argminy<;<; f(t). The minimum value of the function f is denoted by
M(f), ie., M(f) = ming<i<1 f(t) = f(Z(f)). The goal is to optimally estimate Z(f) and
M(f), as well as construct optimal confidence intervals for Z(f) and M (f). Estimation and
inference for the minimizer Z(f) and minimum M (f) under the nonparametric regression

model will be discussed later in Section 2.4.
2.1.1. Function-specific Benchmarks and Uncertainty Principle

As the first step toward evaluating the performance of a procedure at individual convex
functions in F, we define the function-specific benchmarks for estimation of the minimizer

and minimum respectively by

R.(e; f) = supinf max E,|Z — Z(h)|, (2.1.1)
geF 7 he{f.g}

Ry(e; f) = supinf max Ep|M — M(h)|. (2.1.2)
geF M he{f.g}



As in (2.1.1) and (2.1.2), we use subscript ‘z’ to denote quantities related to the minimizer
and ‘m’ for the minimum throughout the paper. For any given f € F, the benchmarks
R.(s; f) and Ry, (g; f) quantify the estimation accuracy at f of the minimizer Z(f) and

minimum M (f) against the hardest alternative to f within the function class F.

We show that R,(e; f) and Ry, (e; f) are the right benchmarks for capturing the estimation
accuracy at individual functions in F and will construct adaptive procedures that simulta-
neously perform within a constant factor of R, (g; f) and Ry, (e; f) for all f € F. In addition,
it is also shown that any estimator Z for the minimizer that is “super-efficient” at some
fo € F, ie., it significantly outperforms the benchmark R.(e; fy), must pay a penalty at
another function f; € F and thus no procedure can uniformly outperform the benchmark.

Same holds for the estimation of the minimum.

More interestingly, the non-asymptotic local minimax framework enables us to establish a
novel Uncertainty Principle for estimating the minimizer and minimum of a convex function.
The Uncertainty Principle reveals an intrinsic tension between the task of estimating the
minimizer and that of estimating the minimum. That is, there is a fundamental limit to the
estimation accuracy of the minimizer and minimum for all functions in F and consequently
the minimizer and minimum of a convex function cannot be estimated accurately at the

same time. More specifically, it is shown that

®(-0.5) ,

inf R(s /) Ry(e; f)? > ———¢ (2.1.3)

2 b
where ®(-) is the cumulative distribution function (cdf) of the standard normal distribution.
This is akin to the Heisenberg Uncertainty Principle in physics, which states that the
velocity and the location of a particle can not be measured precisely at the same time. The

connection will be discussed in more detail in Section 2.2.

For confidence intervals with a pre-specified coverage probability, the hardness of the prob-

lem is naturally characterized by the expected length. Let Z, (F) and Z,, o(F) be, respec-



tively, the collection of confidence intervals for the minimizer Z(f) and the minimum M (f)
with guaranteed coverage probability 1 — « for all f € F. Let L(CI) be the length of a
confidence interval C'I. The minimum expected lengths at f of all confidence intervals in

Z.o({f g}) and Z,,, o ({ f, g}) with the hardest alternative g € F for f are given by

L,.(e;f) =su inf E:L(CI), 2.1.4
ol& ) gG.I;CIeIz,a({fvg}) L) ( )

Liyo(e; f) =su inf EL(CI). 2.1.5
A& ) =50 e g B HED (2.1.5)

As in the case of estimation, we will first evaluate these benchmarks for the performance
of confidence intervals in terms of the local moduli of continuity and then construct data-
driven and computationally efficient confidence interval procedures. Furthermore, we also

establish the Uncertainty Principle for the confidence intervals,
finﬁ_Lz,a(a; F) - Lina(e; f)? > Cuc® (2.1.6)
€

where C,, is a positive constant depending on « only. The Uncertainty Principle shows a
fundamental limit for the accuracy of simultaneous inference for the minimizer Z(f) and

minimum M(f) for any f € F.
2.1.2. Adaptive Procedures

Another major step in our analysis is developing data-driven and computationally efficient
algorithms for the construction of adaptive estimators and adaptive confidence intervals as

well as establishing the optimality of these procedures at each f € F.

The key idea behind the construction of the adaptive procedures is to iteratively localize the
minimizer by computing the integrals over the relevant subintervals together with a care-
fully constructed stopping rule. For estimation of the minimum and minimizer, additional

estimation procedures are added after the localization steps. For the construction of the



confidence intervals, another important idea is to look back a few steps before the stopping

time.

The resulting estimators, Z for the minimizer Z (f) and M for the minimum M (f), are
shown to attain within a constant factor of the benchmarks R, (e; f) and R,,(e; f) simulta-

neously for all f € F,
Ef|Z = Z(f)] < C:Ru(e; f) and Ef|M — M(f)| < CnRun(e; f),

for some absolute constants C, and C,, not depending on f. The confidence intervals, C1, ,
for the minimizer Z(f) and CI,,, for the minimum M(f), are constructed and shown to
be adaptive to individual functions f € F, while having guaranteed coverage probability

1 —a. That is, CI, o € I, o(F) and Cly, o € Ly o F) and for all f € F,

EfL(CIZ’a) < Cz(Oé)Lz,a(E?f)

EfL(CIm@) < Cm(a)Lm,a(E;f)a

where C,(a) and C),(«) are constants depending on « only.
2.1.3. Related Literature

In addition to estimation and inference for the location and size of the extremum of a non-
parametric regression function mentioned at the beginning of this dissertation, the problems
considered in this dissertation are also connected to nonparametric estimation and inference

under shape constraints, which have also been well studied in the literature.

Nonparametric convex regression has been investigated in various settings, ranging from
estimation and confidence bands for the whole function (Birge, 1989; Guntuboyina et al.,
2018; Hengartner and Stark, 1995; Dumbgen, 1998), to estimation and inference at a fixed
point (Kiefer, 1982; Cai et al., 2013; Cai and Low, 2015; Ghosal and Sen, 2017). Deng et al.

(2020) established limiting distributions for some local parameters of a convex regression



function including the minimizer based on the convexity-constrained least squares (CLS)
estimator and constructed a confidence interval for the minimizer. As seen in Section 2.4.4
and further discussions in the appendix Section A.3.1, this confidence interval is suboptimal
in terms of the expected length. It is also much more computationally intensive as it requires

solving the CLS problem.

The local minimax framework characterized by the benchmarks (2.1.1)-(2.1.2) and (2.1.4)-
(2.1.5) was first developed in Cai et al. (2013) for estimation and Cai and Low (2015) for
inference for the value of a convex function at a fixed point, which is a linear functional.
The objects of interest in this dissertation, the minimizer and minimum, are nonlinear
functionals. Due to the nonlinear nature of the minimizer and minimum, the analysis is

much more challenging than for the function value at a fixed point.

Another related line of research is stochastic numerical optimization of convex functions.
Agarwal et al. (2011) studies stochastic convex optimization with bandit feedback and
proposes an algorithm that is shown to be nearly minimax optimal. Chatterjee et al.
(2016) uses the framework introduced in Cai and Low (2015) to study the local minimax
complexity of stochastic convex optimization based on queries to a first-order oracle that

produces unbiased subgradient in a rather restrictive setting.

2.1.4. Organization of this Chapter

In Section 2.2, we analyze individual minimax risks, relating them to appropriate local
moduli of continuity and more explicit alternative expression, and explain the uncertainty
principle with a discussion of the connections with the classical minimax framework. Sup-
perefficiency is also considered. In Section 2.3, we introduce the adaptive procedures for
the white noise model and show that they are optimal. In Section 2.4, we consider the
nonparametric regression model. Adaptive procedures are proposed and their optimality is
established. In addition, a summary of the numerical results is given. Section 2.5 discusses

some future directions. Two main theorems are proved in Section 2.6. To avoid interrupting
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the logic flow of main chapters, the proofs of other results are given in the Appendix Section

A.1 and Section A.2.

2.1.5. Notation

We finish this section with some notation that will be used in this chapter. The cdf of
the standard normal distribution is denoted by ®. For 0 < a < 1, 2z, = ®71(1 — a).
For two real numbers a and b, a A b = min{a,b}, a Vb = max{a,b}. | - |2 denotes
the Ly norm. For f € L3[0,1] and r > 0, B,(f) = {g € L2[0,1] : |lg — fll2 < r} and

0Br(f) ={g € L2[0,1] : [|g — fll2 =1}
2.2. Benchmarks and Uncertainty Principle

In this section, we first introduce the local moduli of continuity and use them to characterize
the four benchmarks for estimation and confidence intervals introduced in Section 2.1.1,

which are summarized in the following table:

Estimation  Inference

Minimizer Z(f) | R.(e; f) L.q(s;f)

Minimum M(f) | Rm(e;f)  Lm,al(e; f).
We provide an alternative expression for the local moduli of continuity that are easier to
evaluate. The results are used to establish a novel Uncertainty Principle, which shows
an intrinsic tension between the estimation/inference accuracy for the minimizer and the

minimum for all functions in F.

11



2.2.1. Local Moduli of Continuity

For any given convex function f € F, we define the following local moduli of continuity,

one for the minimizer, and the other for the minimum,

wa(e; f) = sup{|Z(f) = Z(g)| - |If —gl2 <&, g€ F}, (2.2.1)

wm(e; f) = sup{|M(f) = M(g)|:|[f —gll2<e g€ F}, (2.2.2)

As in the case of a linear functional, the local moduli w,(e; f) and wy,(&; f) clearly depend
on the function f and can be regarded as an analogue of the inverse Fisher Information in

regular parametric models.

The following theorem characterizes the four benchmarks for estimation and inference in
terms of the corresponding local modulus of continuity.

Theorem 2.2.1. Let 0 < o« < 0.3. Then

aw:(e; f) < Ru(erf) < Awws(s f), (2.2.3)
arwm(e; f) < Rm(sif) < Arwnl(e; f), (2.2.4)
baw:(e/3; f) £ Lzale; f) < Baw:(e; f), (2.2.5)
bawm(e/3; f) < Lm,a(e; f) < Bawml(e; f), (2.2.6)

where the constants ay, A1,ba, Bo can be taken as a; = ®(—0.5) ~ 0.309, A; = 1.5, by =

0.6 — 2cr, and By = 3(1 — 2a) 24,

Theorem 2.2.1 shows that the four benchmarks can be characterized in terms of the local
moduli of continuity. However, these local moduli of continuity are not easy to compute.

We now introduce two geometric quantities to facilitate further understanding of these

12



benchmarks. For f € F, w € R and € > 0, let f,(¢) = max{f(t),u} and define

Pm(5§f) :sup{u—M(f) : ||f*qu2 S&}, (2'2'7)

pz(&; ) = sup{|t = Z(f)] : f(t) < pm(e; f) + M(f), ¢ € [0,1]}. (2.2.8)

Obtaining p,,(g; f) and p.(e; f) can be viewed as a water-filling process. One adds water

¢

into the epigraph defined by the convex function f until the “volume” (measured by || - ||2)
is equal to €. As illustrated in Figure 2.1, p,,(&; f) measures the depth of the water (CD),
and p,(e; f) captures the width of the water surface (FC). pp,(e; f) and p,(e; f) essentially

quantify the flatness of the function f near its minimizer Z(f).

f@)

\/ prm (53 f)
p=(&; f) /

Figure 2.1: Water filling process.

The geometric quantities pn,(¢; f) and p,(g; f) defined in (2.2.7) and (2.2.8) have the fol-
lowing properties.

Proposition 2.2.1. For0<c< 1, f € F,

< Pmlcs f)

% c Pz(05§f)
es S )3, } < PET) (2.2.9)

2
<3 and max{(

The following result connects the local moduli of continuity to these two geometric quanti-
ties.

Proposition 2.2.2. Let p,,(c; f) and p;(c; f) be defined in (2.2.7) and (2.2.8), respectively.
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Then

pm(€; ) S wmle; f) < 3pm(es f), (2.2.10)

p=(e; f) < w.(& f) < 3p(g; f). (2.2.11)

Therefore, through the local moduli of continuity, the hardness of the estimation and infer-
ence tasks are tied to the geometry of the convex function near its minimizer. Note that as
the function gets flatter near its minimizer, p,,(e; f) decreases while p,(g; f) increases. It
is useful to calculate p,,(e; f) and p,(e; f) in a concrete example.

Ezample 2.2.1. Consider the function f(t) = [t — |¥ where k > 1 is a constant. We will
calculate p,(g; f) and then obtain p,(e; f) by first computing || f — fu||3 and then setting

it to €2 to solve for py,(e; f).

k
It is easy to see that in this case ||f — fu[3 = m SR Setting || f — full3 = €2
kL
yields u = (%) L ook Hence,

% + )(k+ 1)\ 7+ o
Pm(e;f)—<( +4]12 * )> g4I,

4k2

pti ) = minf (B D) 1)

1
S5E11 2
To compute p.(e; f), note that f~1(u) = 3 + uk = i+ (M) 1 31 Hence

Proposition 2.2.2 then yields tight bounds for the local moduli of continuity wy,(&; f) and
Wz (5; f)
Remark 2.2.1. Note that the results obtained in Example 2.2.1 can be extended to a class

of convex functions. For f € F satisfying

f@) =M(f) _ e f) = M(f)

0< lim ~———+--< lim —F—-—-"- <
sz E=Z(OIF ~ =z [t—Z()IF
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for some k > 1, it is easy to show that

2k 2
Wn(e; f) ~em+, w, (e f) ~eZ, ase — 0.

2.2.2. Uncertainty Principle

Section 2.2.1 provides a precise characterization of the four benchmarks under the non-
asymptotic local minimax framework in terms of the local moduli of continuity and the
geometric quantities p,,(&; f) and p,(e; f). These results yield a novel Uncertainty Principle.
Theorem 2.2.2 (Uncertainty Principle). Let R.(¢; f), Rm(&; f), L.o(g; f), and Ly, o(e; f)
be defined as in (2.1.1)~(2.1.5). Let 0 < a < 0.3. Then for any f € F,

27422 > Ru(e: f) - Rn(es )2 > ‘I)(_ZO'E’)?’EQ, (2.2.12)
(0.6 — 2a)3€2.

18

v

37 (1-2a)%¢? > Loo(e; f) - Lina(e; f)? (2.2.13)

Note that the bounds in (2.2.12) and (2.2.13) are universal for all f € F and show that
there is a fundamental limit to the accuracy of estimation and inference for the minimizer
and minimum of a convex function. The Uncertainty Principle in Theorem 2.2.2 is akin to
the well-known Heisenberg Uncertainty Principle in physics, which states that a particle’s
location and velocity cannot be determined precisely at the same time. The underlying
reason for the Heisenberg Uncertainty Principle is that the momentum operator for the
velocity and displacement operator for the location are non-commutative. More precisely,
the degree of uncertainty depends on the extent these two operators are related through
the Lie bracket, which can be viewed as a measure of non-commutativity. For details on

the Heisenberg Uncertainty Principle; see, for example, Griffiths and Schroeter (2018).

Our finding here states that the minimizer and the minimum of a convex function cannot
be estimated accurately at the same time. This statistical uncertainty principle comes from

an intrinsic relationship between the two operators Z(-) and M (-): For any convex function
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f € F and any r > 0, there exists g € 0B,(f) N F such that

(f)Q €2, (2.2.14)

where /e = ||(f — g)/e||2 characterizes the probabilistic distance between the two convex
functions f and g under the white noise model. The Lo norm of the difference plays a similar
role to the Lie bracket in the Heisenberg Uncertainty Principle. In both settings, there is
a quantity determining the “entanglement” of two functionals/operators. The difference is
that the “entanglement” for quantum physics is extracted and viewed in quantum sense
while ours is extracted and viewed in probability sense.

Remark 2.2.2. To the best of our knowledge, the uncertainty principles established in this
paper are the first of their kind in nonparametric statistics in that they reveal the fun-
damental tensions between estimation/inference of different quantities. It is shown in the
appendix Section A.3.3 that similar uncertainty principles also hold for certain subclasses
of the convex functions. Note that it is not possible to establish such results using the
conventional minimax analysis where the performance is measured in the worst case over a

large parameter space.
2.2.3. Penalty for Super-efficiency

We have shown that the estimation benchmarks R.(e; f) and R, (g; f) defined in (2.1.1)
and (2.1.2) can be characterized by the local moduli of continuity. Before we show in
Section 2.3 that these benchmarks are indeed achievable by adaptive procedures, we first
prove that they cannot be essentially outperformed by any estimator uniformly over F. The
benchmarks R, (g; f) and Ry, (e; f) play a role analogous to the information lower bound in
the classical statistics.

Theorem 2.2.3 (Penalty for super-efficiency). For any estimator Z, if Es,|Z — Z(fo)| <
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YR (e; fo) for some fy € F and v < 0.1, then there exists fi € F such that

R 1/3
En(Z - 2(f)) > - <1og i) R.(e: fu). (2.2.15)

Similarly, for any estimator M, if IEfO|M — M(fo)| < YRm(e; fo) for some fy € F and

v < 0.1, then there exists f1 € F such that

) 1 1 1/3
EflrM—M<f1>|>8<1og,y> Runle: f1). (2.2.16)

Remark 2.2.3. Theorem 2.2.3 shows that if an estimator of Z(f) or M (f) is super-efficient
at some fy € F in the sense of outperforming the benchmark by a factor of v for some small

~v > 0, then it must be sub-efficient at some f; € F by underperforming the benchmark by

1

at least a factor of <log %) °

2.3. Adaptive Procedures and Optimality

We now turn to the construction of data-driven and computationally efficient algorithms for
estimation and confidence intervals for the minimizer Z(f) and minimum M (f) under the
white noise model. The procedures are shown to be adaptive to each individual function
f € F in the sense that they simultaneously achieve, up to a universal constant, the
corresponding benchmarks R (e; f), Rmn(e; f), Lza(e; f), and Ly o(c; f) for all f € F.
These results are much stronger than what can be obtained from a conventional minimax

analysis.
2.3.1. The Construction

There are three main building blocks in the construction of the estimators and confidence

intervals: Localization, stopping, and estimation/inference.

In the localization step, we begin with the initial interval [0, 1]. Then, iteratively, we halve
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the intervals and select one halved interval. The candidate-halved-intervals for selection
are the two resulting sub-intervals of the previously selected interval and one neighboring
halved interval, when such an interval exists, on each side. The selection rule is to choose
the one with the smallest integral of the white noise process over it. See Figure 2.2 for an

illustration of the localization step.

level j — 1-- : : : : o

level 5 --- : : : :

possible locations for i;

Figure 2.2: Tllustration of the localization step. At level j, the middle two intervals are the
two subintervals of the selected interval at level j — 1. One adjacent interval of the same
length on each side is added and the interval at level j is selected among these four intervals.

The second step of the construction is the stopping rule. The localization step is iterative,
so one needs to determine when there is no further gain and stop the iteration. The integral
over each selected interval is a random variable and can be viewed as an estimate of the
minimum times the length of the interval. The intuition is that, as the iteration progresses,
the bias decreases and the variance increases. As shown in Figure 2.3, the basic idea is to
use the differences of the integrals over the two neighboring intervals 5 blocks away from
the current designated interval, when such intervals exist, on both sides. If either of the

differences is smaller than 2 standard deviations, then the iteration stops.
i;—5 i;+5

i

level j

i —6 i+ 6

Figure 2.3: Illustration of the stopping rule.

After selecting the final subinterval, the last step in the construction is the estimation/inference
for both the minimum and minimizer, which will be described separately later. The detailed

construction is given as follows.

18



Sample Splitting

For technical reasons, we split the data into three independent pieces to ensure independence

of the data used in the three steps of the construction. This is done as follows.

Let Bi(t) and Ba(t) be two independent standard Brownian motions, and both be indepen-

dent of the observed data Y. Let

Vi) = V(1) + LeBi) + LeBatt),

Ys(t) =Y (t) + \faBl(t) — \26532@), (2.3.1)

Yo(t) = Y(t) — V2eBi(2).

Then Y;(+), Ys() and Y.(-) are independent and can be written as

dY;(t) = f(t)dt + v/3edWy(t),
dY,(t) = f(t)dt + v/3edWs(t), (2.3.2)

dY,(t) = f(t)dt + V/3edWs(t),
where Wy, Wy and W3 are independent standard Brownian motions.

We now have three independent copies: Y] is used for localization, Y; for stopping, and Y,
for the construction of the final estimator and confidence interval for the minimum.

Remark 2.3.1. If one is only interested in estimation and inference for the minimizer, the
copy Y. is not needed, and it suffices to split into two independent copies with smaller
variance and thus leads to slightly better performance. Another point is that, although
here the three processes Y;, Y, and Y. are made to have the same noise level, it is not
necessary for the noise levels to be the same. For the simplicity and ease of presentation,
we split the original sample into three independent and homoskedastic copies for estimation

and inference for both the minimizer and minimum.
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Localization
For j =0,1,...,and i =0,1,...,27, let
m; = 27]., tji =1-m;, and Z; = max{i 1 Z(f) € [tj7i_1,tj7i]}. (2.3.3)

That is, at level j for j =0,1,..., the z';f—th subinterval is the one containing the minimizer

Z(f). For j =0,1,...,and i = 1,2,...,27, define

tj,z‘
Xji = / dY;(t),
t

-1

where Y] is one of the three independent copies constructed above through sample splitting.

For convenience, we define X;; = +oo for j =0,1,...,and i € Z\ {1,2,...,27}.

Letggzlandforj:1,2,...7let

ij = argmin X
211 —2<i<2;_1+1

Note that given the value of %j_l at level j — 1, in the next iteration the procedure halves

the interval [t; t: | into two subintervals and selects the interval [t%j_l, t%j] at level j

j—1—17 7151

from these and their immediate neighboring subintervals. So ¢ only ranges over 4 possible

values at level j. See Figure 2.2 for an illustration.
Stopping Rule

It is necessary to have a stopping rule to select a final subinterval constructed in the local-
ization iterations. We use another independent copy Ys constructed in the sample splitting

step to devise a stopping rule. For j =0,1,...,and i =1,2,...,2/, let

- tj.i
Xji= / dY; ().
t

-1

20



Again, for convenience, we define XM = +4oo for j =0,1,...,and i € Z\{1,2,...,27}. Let
the statistic T} be defined as

Ty =mind X5 6 = Xji, 050 Xjijme = Xji—sh

where we use the convention +o0o — z = +00 and min{+o0,z} = z, for any —oo < z < oo.

The stopping rule is based on the value of 7). It is helpful to provide some intuition before
formally defining the stopping rule. Intuitively, the algorithm should stop at a place where

the signal to noise ratio of Tj is small or where the signal is negative. Let 0']2- = 6mj52. It

is easy to see that, when X,

~ A tj,i‘-+6
DO G [ /t TPt my) - F(1) de, o? | (2.3.4)

],ij+5

Note that the standard deviation o; decreases at the rate % as j increases. We now turn

346 Xﬁj%ﬁj. Recall the notation introduced in (2.3.3). It is easy to

to the mean of f(j

t.
see that the algorithm should stop as soon as [, O+ mj) — f(t)) dt turns negative,

]',%]'+5

~ L ~
since for any ¢, if ft_Ji_j_:} (f(t+m;) — f(t))dt <O, then |i; — 47| > 5 and consequently
3yij
. ts
lij, — 43| = 5 for any j1 > j. When ft_Jl_J:; (f(t+m;)— f(t))dt is positive, a careful
VR

analysis in the proof shows that it shrinks at a rate faster than or equal to % as j increases.

Zj.

Analogous results hold for Xﬁj_G - Xj,ij—5

Finally, the iterations stop at levelj' where
A T
J=min{j: ~L <2}.

9j

The subinterval containing the minimizer Z(f) is localized to be [tj. o1t
" "
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Estimation and Inference

After the final subinterval [t [ £ ] is obtained, we then use it to construct estimators

—1»

and confidence intervals for Z ( f) andM (f). We begin with the minimizer Z(f). The

estimator of Z(f) is given by the midpoint of the interval [tj. o1t 2], de.,
& &
. tﬁ ;. —|— t’t A'A_,]_
7= % (2.3.5)

To construct the confidence interval for Z(f), one needs to take a few steps to the left and

to the right at level 7. Let K, = [logl%%w and define
L =max{0, i; — 12 x 2K 41}, U =min{2, i; + 12 x 28 — 2},
The 1 — a confidence interval for Z(f) is given by

CLo=[t5 . t5 ). (2.3.6)

For estimation of and confidence interval for the minimum M(f), define

tji
Xji= Ye(t)dt.

tji—1

- X

Let ; = &5 +2 (1{X ks

<20;} — 1{X - X

G- RIS < QO'j}) and define the

jl+6

final estimator of the minimum M (f) by

M=—X;; (2.3.7)

1
ms
] J

We now turn to the inference for M(f). Recall that K, = (logl%} Compared with the

confidence interval for the minimizer, we take four more blocks on each side at the level
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(- K a— 1)4. More specifically, we define

Set

Ko =max{4, 2+ [logy (2 + z4/3)]}- (2.3.8)

Note that the indices of the intervals with t; and ¢tz being the right end points at level

J+ K a are, respectively,

. j+Ka . +Ka
ZL:tL-2J 1 and ZR:tR‘QJ %.

a+K

Note also that ip — i, =9 % gl thgthy , which only depends on «. Define an intermediate

estimator of the minimum M(f) by

. 1 _
= i X’\, =, ..
h mj’ﬂ”{% iLgliléliR JHKg.i
Let F,, be the cumulative distribution function of ¥,, = max{vy,...,v,}, where vy, ..., v, i
N(0,1), and define
Sng=F, (1= 6). (2.3.9)

In other words, S, g is the (1 — 8) quantile of the distribution of the maximum of n i.i.d.

standard normal variables. Let

V3e V3e

flo:fl_za/él - ) fhi:f1+5i B B e
N N T Mk,
Then the (1 — «) level confidence interval for M (f) is defined as
ClLin.o = [fior fnil- (2.3.10)
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2.3.2. Statistical Optimality

Now we establish the optimality of the adaptive procedures constructed in Section 2.3.1.
The results show that the data-driven estimators and the confidence intervals achieves
within a constant factor of their corresponding benchmarks simultaneously for all f € F.
We begin with the estimator of the minimizer.

Theorem 2.3.1 (Estimation of Minimizer). The estimator Z defined in (2.3.5) satisfies
Ef|Z - Z(f)| < 35p:(: f) < CoRa(e; f),  for all f € F,

where C, > 0 is an absolute constant.

The following result holds for the confidence interval C'I ,.
Theorem 2.3.2 (Confidence Interval for the Minimizer). Let 0 < o < 0.3. The confidence
interval C1, o given in (2.3.6) is a (1 — a) level confidence interval for the minimizer Z(f)

and its expected length satisfies
EfL(CLo) < (24 x 2K —3) x 17.5 x p,(e; f) < Coalzale; f),  for all f € F,

where K, = [logk;g(cigﬂ and C, o s a constant depending on o only.

Similarly, the estimator and confidence interval for the minimum M ( f) are within a constant
factor of the benchmarks simultaneously for all f € F.

Theorem 2.3.3 (Estimation of Minimum). The estimator M defined in (2.3.7) satisfies
Ef|M — M(f)| < 449pm(e; f) < ConRun(es f),  for all f € F,

where Cp, > 0 is an absolute constant.
Theorem 2.3.4 (Confidence Interval for the Minimum). The confidence interval Cly, o

given in (2.3.10) is a (1 — «) confidence interval for the minimum M(f) and when 0 < a <
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0.3, its expected length satisfies
EfL(Clna) < cmapm(e; f) < Cmalmal(e; f),  forall f € F,
where ¢ o and Cy, o are constants depending on a only.

2.4. Nonparametric Regression

We have so far focused on the white noise model. The procedures and results presented in

the previous sections can be extended to nonparametric regression, where we observe

yi = f(zi) + 0z, i=0,1,2,---n, (2.4.1)

with z; = £, and 2 N (0,1). The noise level o is assumed to be known. The tasks are

the same as before: construct optimal estimators and confidence intervals for the minimizer

and minimum of f € F.
2.4.1. Benchmarks and Discretization Errors

Analogous to the benchmarks for the white noise model defined in Equations (2.1.1), (2.1.2),
(2.1.4), (2.1.5), we define similar benchmarks for the nonparametric regression model (2.4.1)
with n 4+ 1 equally spaced observations. Denote by Z. , »(§) and Z,;, o n(F) respectively the
collections of (1 — «) level confidence intervals for Z(f) and M(f) on a function class §

under the regression model (2.4.1) and let

R.n(0; f) =supinf max Ep|Z — Z(h)),
geF Z he{f.g}

Ry n(0; f) =supinf hrrﬁx}Eh]M — M(h)],
S )
g7 M AR (2.4.2)

L,on(o;f)=su inf E;L(CI),
anl( ) geg)-‘CIeIz,a,n({ﬁg}) sLed)
[N/man o; f) =sup inf E:L(CI).

o ( f) ge]‘—CIGIm,a,n({f:g}) f ( )
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Compared with the white noise model, estimation and inference for both Z(f) and M(f)
incur additional discretization errors, even in the noiseless case. See the appendix Section

A.1.9 for further discussion.
2.4.2. Data-driven Procedures

Similar to the white noise model, we first split the data into three independent copies and
then construct the estimators and confidence intervals for Z(f) and M(f) in three major

steps: localization, stopping, and estimation/inference.
Data Splitting

Let 210,211, ", 21,0, 22,0, 22,1, - , #2,n, be 1.i.d. standard normal random variables, and all

be independent of the observed data {y1, ..., yn }. We construct the following three sequences:

v2_ V6 (2.4.3)

g T g
Yei = Yi — V20214,
for i = 0,---,n. For convenience, let y;; = ys; = ye; = oo for i ¢ {0,1,--- ,n}. It is

easy to see that these random variables are all independent with the same variance 302 for
i€ {0,1,---,n}. We will use {y;;} for localization, {y,;} for devising the stopping rule,

and {y.;} for constructing the final estimation and inference procedures.

Let J = [logg(n+1)]. For j =0,1,---,J,i=1,2,---, Q}Z%J, the i-th block at level j
consists of {T(;_1)27-4, T(i—1)27-i 415" » Tio7-i—1 }. Denote the sum of the observations in
the i-th block at level j for the sequence u (u =1, s,e) as

27771

}/j,i,u = E Yu k> for u = lv S, €.
k=(i—1)27—J
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Again, let Yj;, = +oo when i € Z\{1,2,---, szfjl_lj}, foru=1,s,e.
Localization

We now use {y;,4 = 0,---,n} to construct a localization procedure. Let 1y = 1, and for

j=1,2,---,J, let

i, = arg min Yii

max{zij,l—2,1}§i§min{2ij,1+1,L;J—t1jj}

This is similar to the localization step in the white noise model. In each iteration, the
blocks at the previous level are split into two sub-blocks. The i-th block at level j — 1 is
split into two blocks, the (2i — 1)-st block and 2i-th block, at level j. For a given 1;_1, i,
is the subblock with the smallest sum among the two subblocks of (j — 1)-level-block 1,_;

and their immediate neighboring subblocks.
Stopping Rule

Similar to the stopping rule for the white noise model, define the statistic T; as

T] = mln{Yrj,ij+6,S - Y}',ij+5,s7 }/jij,&s - }/jﬁ_j,g)"g}-

Let 5]2- =6 x 277702, It is easy to see that when Yiiiv6s = Yji45s <00,

(1;+5)2777-1

Y},ij+6,s - Yj,ij+5,s’ij ~ N( Z f(xk+2lfj) - f(xk)y 5?‘)- (2-4-4)
k:(ij+4)2‘]7j

Define
min{j : T; <25;} if{j:T; <25;}N{0,1,2,---, J} #0

00 otherwise

and terminate the algorithm at level 3 = min{J, j}. So, either T; triggers the stopping rule
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for some 0 < j < J or the algorithm reaches the highest possible level J.

With the localization strategy and the stopping rule, the final block, the ij—th block at level

3, is given by {zy : (15 — 1273 <k < i32‘]_3 —1}.
Estimation and Inference

After we have our final block, ij—th block at level j, we use it to construct estimators and
confidence intervals for the minimizer Z(f) and the minimum M(f). We start with the

estimation of Z(f). The estimator of Z(f) is given as follows:

1 1

J=j= J-3-1 i
A —%%-5(2 Ji3 =277, J <00
—arg miI Yei—1— —» J =00
n I;-2<i<i;+2 n

To construct the confidence interval for Z(f), we take a few adjacent blocks to the left and

right of 15-th block at level 3. Let
L = max{0,1; — 12 x 25/2 + 1} and U= min{[(n + 1)2377], 15 + 12 x 2Kz — 2},

When j < oo, let

27-3 1 27-] 1
ty=—TL—— and tp = U— —.
n 2n n 2n

When j = oo, t;, and tp; are calculated by the following Algorithm 1. Note that j = oo

means that the procedure is forced to end and the discretization error can be dominant.

Algorithm 1 first iteratively shrinks the original interval [t;,— %, thi+ %] to find the minimizer
%’” of the function f among the n+ 1 sample points with high probability. In each iteration,
the algorithm tests whether the slopes of the segments on both ends are positive or negative.
It shrinks the left end with negative slope (on the left), or shrinks the right end with positive

slope (on the right), or stops if no further shrinking is needed on either side.
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Note that the minimizer of any convex function with given values at these n 4+ 1 points is

smaller than the intersection of the following two lines:

: im+2) _ p(imtl
y= 1) = TR IO

(t_im+1)+f(im+1

T - —). (2.4.6)

Note that these two lines are determined by f(%=), f(“2t) and f(“=*2) only. Given the

noisy observations at these three points, %’“, imrfl, and "’”n“, the range of these two lines

and the intersection can be inferred, and the right side of the interval can then be shrunk

accordingly.

Same is done for the left side of the confidence interval. In addition, boundary cases and

other complications need to be considered, which are handled in Algorithm 1.

Note that our construction and the theoretical results only rely on convexity. In particular,
the existence of second order derivative is not needed as it is commonly assumed in the
literature. This is an important contributing factor to optimality under the non-asymptotic

local minimax framework.
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Algorithm 1 Computing ¢;, and tp; when j =00

L+ max{1,13-12x2%e2} —1 U « min{n+1,15+12x2%/2} — 1, ay + &, a2 = /24

ii.d.
Generate 230,231,235, ~ N(0,1)

1 min{{U} U {’L € [L,U — 1] D Yei t+ \/502371' — (yeﬂ'_;_l + \/50237“_1) < 2\/§O’Za1}}
i < max{{L—1}U{i € [L,U—1] : ye; + \/302371- — (Ye,it1 + \/30237”1) > —2v3024,}}
if i = U then

if iy =n and Yen—2 — Yen—1 — \/30(2:3,”_2 — 23p-1) + 216024, > 0 then

te <(_ Ye,n—Ye,n—1—V30(23,n—23n—1)+2V6020, n—l) \/ n—l) A ﬂ) thi — 1
n(ye,n72_ye,nfl_\/30'(23,7172_23,7171)+2\/60'Za2) n n n

else
tlo = thi = U/n
end if
end if
if i, = L —1 then
if i, = -1 and Ye2 — Ye,1 — V30 (232 — 231) + 26024, > 0 then

Yeo — Ye,1 — V30 (230 — 231) + 26024, 1.0 1
thi — | ( +-)V—|A—tr,=0
n(yeg — Ye,1 — \/§O'(Z3’2 — 2’371) + 2\/60’2’&2) n n n
else
tip =1thi =0
end if

end if
if (it —U)(ir — L+ 1) # 0 then
1o (il—l)\/L, Ths (ir+2)/\U
if ip; — i > 3 or (ip; —n)i, =0 then
tio = ilo/N, thi = ini/m
else if  Ye 11 = Yeins — V30 (23041 — 230) < —2V6020, OF Yeify—1 = Yesity —
\/§U<Z3,izo—1 — Z3uilo) S —2\/602a2 then

tio = thi = (ini +1i10)/2n
else

v
(Yesini+1 = Yesin, — V30 (23011 — 23,0,) +2V6020,) 7 n

b o <( Yesini—1 — Yesini = V30 (23,0-1 — Z3,i0;) + 2V60 20, 4 iy i = 1) A i
n

b [ (= Yesitortl = Yeity = V30 (23,101 — 23.41,) + 2V/6024, " 2170) y o) ot 1
’ M(Yesit—1 — Yesizy — V30 (23,11 = 23,3,,) +2V6024,) 17 1

end if
end if

The (1 — a)-level confidence interval for the minimizer Z(f) is given by

CL.a = [tio A thiy thil (2.4.7)

We now construct the estimator and confidence interval for the minimum M (f). Let A =
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]]‘{}/i,ij+6,s - ij,ij‘i’f),s S 2\/60— v 2J_j} - H{ifj,ijfﬁ,s - }/j\,ij-*5,s S 2\/60 v 2J_3} a'nd deﬁne

i34+ 2A if j < o0
= . (2.4.8)

arg mln;j_2§i§j+2 Yei—1 if J =00

[
iy

The estimator of M(f) is then given by the average of the observations of the copy for

estimation and inference in the ij—th block at level j,

- 1

M= Y5, (2.4.9)

To construct the confidence interval for M(f), we specify two levels js and j;, with
js =max{0,j — Ke — 1} and j;=min{J,j+ f(%},

where f(% is defined as in Equation (2.3.8). It will be shown that at level js, Z(f) is
within four blocks of the chosen block with probability at least 1 — ¢, and at level j;, with

probability at least 1 — §, the length of the block is no larger than pz(ﬁ; f). Define

o o 1
I, = maX{L 2]l_]s(ijs - 5)}7 Ini = min{Zjl_]s(ijs + 4) +1, [%1}

It can be shown that the minimizer Z(f) lies with high probability in the interval

2=, —1) 2770, —1
(2o ), M Zn o, 1]
n n

Define an intermediate estimator for M (f) by

1

fi= min —Y; ;..
Lp<i<Iy; 27017 I0"¢

Let
-~ \/§0-
fhi = fl + Slhi—llo+1’% m
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where S, 3 is defined in Equation (2.3.9) in Section 2.3. This is the upper limit of the

confidence interval, now we define the lower limit £;,.

Whenj+[~(% < J, let

fio =11 — +1 .
lo 1 (Za/4 )\/2‘]7_31

When j + f(% > J, we compute f;, by Algorithm 2, which is based on the geometric

property of the convex function f that for any 1 < k <n — 2,

) = f(@p41)
1/n

flar) I/{L(x“) (t — ) + f(xk)} -

min{ f(xg), f(zx41)} > inf max{f(wkﬁ

te[k, k] (t = 2gy1) + f(Tht1),

Algorithm 2 Computing f;, when j + R'% > J

H + Slhi_llo+37%\/§o'7 kl — Ilo — 1, kr — Ihi -2
if I;, = 1 then
Ur,O(t) — %(t - 1/”) + Ye,1 — H7h<0) A mintE[O,l/n] UT‘,O(t)7 ky < Iio
end if
if I, — 1 =n then
Ul,n—l(t) A ye,n_1—i;;::_2—2H (t - nT_l) + Yen—1 — H, h(n - 1) = minte[ﬂﬂ] 'Ul,n—l(t)a
Ky < I —3 !
end if
for i =Fk;,--- k. do
Define two linear functions:

e,i—Ye,i—1—2H e it2—Ye i 2H
V(1) = YAV (= ) Yo — H vy = L2 (¢ — ) e — H

h(i) = Minye(z, 2, 1] max{vy;(t), vi(t)}
end for
£ min{h(i) L, —1 <1< Iy — 2} N fhi

Note that A(i) in Algorithm 2 is derived from one or two linear functions, so given the
relationship of the function values at two end points of the corresponding interval, it has

an explicit form. Hence the procedure is still computationally efficient.

The (1 — a)-level confidence interval for the minimum M (f) is given by

CIm,oc = [flm fhi]- (2410)
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Remark 2.4.1. As mentioned in the introduction, Agarwal et al. (2011) proposes an algo-
rithm for stochastic convex optimization with bandit feedback. While both our procedures
and the method in Agarwal et al. (2011) include an ingredient trying to localize the mini-
mizer through shrinking intervals by exploiting the convexity of the underlying function, the
two methods are essentially different due to the significant differences in both the designs
and loss functions. The goal of exploiting convexity in Agarwal et al. (2011) is mainly for
deciding the direction of shrinking their intervals, while ours is mainly for deciding when to

stop and what to do after stopping.
2.4.3. Statistical Optimality

Now we establish the optimality of the adaptive procedures constructed in Section 2.4.2.
The regression model is similar to the white noise model, but with additional discretization
errors. The results show that our data-driven procedures are simultaneously optimal (up
to a constant factor) for all f € F. We begin with the estimator of the minimizer.

Theorem 2.4.1 (Estimation of the Minimizer). The estimator Z of the minimizer Z(f)

defined in (2.4.5) satisfies
Es|Z — Z(f)| < C1R.nlo; f), for dll f € F, (2.4.11)

where C1 > 0 is an absolute constant.

The following result holds for the confidence interval CI, , of Z(f).
Theorem 2.4.2. Let 0 < o < 0.3. The confidence interval CI,, given in (2.4.7) is a

(1 — «@)-level confidence interval for the minimizer Z(f) and its expected length satisfies
EfL(CIz,a) S CZ,af/z,a,n(o-; f)v fOT all f € JT_"

where Cy o, is a constant depending on o only.

Similarly, the estimator and confidence interval for the minimum M ( f) are within a constant
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factor of the benchmarks simultaneously for all f € F.

Theorem 2.4.3 (estimation for the minimum). The estimator M defined in (2.4.9) satisfies
Ef|M — M(f)| < CsRpn(o; f), forall f € F,

where Cs3 is an absolute constant.
Theorem 2.4.4. Let 0 < a < 0.3. The confidence interval CI,, o given in (2.4.10) is a

(1 — «)-level confidence interval and its expected length satisfies
EfL(Clma) < Caalman(o; f), forall f € F,

where Cy o 45 a constant depending only on o.
2.4.4. Comparison with constrained least squares methods

The convexity-constrained least squares (CLS) estimator is perhaps the most commonly
used method for estimating a convex regression function globally. Estimation and inference
methods for the minimizer based on the CLS estimator have been proposed and investigated
in the literature (e.g., Shoung et al. (2001); Ghosal and Sen (2017); Deng et al. (2020)).
Theoretical analyses typically assume that the second or higher order derivatives exist with
an even order derivative being positive and all lower order derivatives being zero at the
minimizer. It is unclear how the CLS estimator behaves under our nonasymptotic framework
or even asymptotically in general when the underlying convex function is nonsmooth at the
minimizer. As for estimation and inference for the minimum, to the best of our knowledge,

there is no CLS based method with theoretical guarantees.

It is interesting to compare with the CLS confidence interval for the minimizer proposed
in Deng et al. (2020). Let f, = minger .7, (y; — f(:))? be the CLS estimator. Let 7,
be the anti-mode of f,, ¥ (resp. dy,) be the first kink of f, to the right (resp. left) of

my. Under the assumption that the second order derivative exists and is positive around
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the minimizer, Deng et al. (2020) introduces the following (1 — a)-level confidence interval,
CLSCI1, = [y £ ) (Om — Um)] N[0, 1], (2.4.12)

where ¢! is a constant depending on « only.

Denote by F5 the collection of convex functions with continuous positive second order
derivative around the minimizer. Deng et al. (2020) shows that the confidence interval
CLSCI, has desired coverage probability asymptotically over F5. The following result
shows that CLSC1I, defined in (2.4.12) is sub-optimal under the local minimax framework.

Proposition 2.4.1. For any sample size n > 5,

sup E/L(CLSCLa) = 00. (2.4.13)
rer, EfL(CI.q)

This result shows that for any given n > 5, there exists f € F» such that the length of the
confidence interval CLSC1, at f is much larger than the length of our proposed confidence
interval CI. ,. The non-asymptotic nature of our framework and the asymptotic nature of
CLSCI, are a key contributing factor to this phenomenon. In the appendix Section A.3.1,
through an example, we intuitively demonstrate the sub-optimality in the construction of
the CLS confidence interval. In short, only looking at the kinks does not fully utilize the

convexity property.

For estimation of the minimizer, all the existing analyses of the CLS estimator are based
on the limiting distribution under strong regularity assumptions. So they are asymptotic in
nature. For example, the rate of convergence of the CLS estimator is n~/% for the minimizer
of over the function class F3. It can be shown that our estimator Z of the minimizer
given in (2.4.5) also achieves the same rate over F2. The properties of the CLS estimator
under the non-asymptotic local minimax framework are unclear and difficult to analyze. We
investigate the empirical performance of the CLS estimator through simulations. Simulation

results are summarized in Section 2.4.5, with details given in the appendix Section A.4.
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2.4.5. Numerical Results

The proposed algorithms are easy to implement and computationally fast. We implement
the algorithms in R and the code is available at https://github.com/chenrancece/MMCEF.
The data splitting procedure in our proposed algorithm was introduced to create inde-
pendence, which is purely for technical reasons, we also include a variant of our method
without the data splitting step. That is, the original data set is used in the localization,
stopping, and estimation/inference steps. Simulation studies are carried out to investigate
the numerical performance of the proposed algorithms and this non-split variant as well as
make comparisons with the CLS confidence interval CLSC1I,, in (2.4.12) proposed by Deng
et al. (2020) and the CLS estimator for the minimizer. For reasons of space, we provide
a brief summary of the numerical results here and give the detailed simulation results and

discussions in the appendix Section A.4.

The simulation studies use 10 test functions with different levels of smoothness around the
minimizer, 6 sample sizes ranging from 100 to 50,000, 5 confidence levels for the confidence
intervals, and 100 replications. We compared the proposed methods, their non-split variant,
and the CLS methods in terms of computational time, average absolute error (for the
estimators), and coverage probability and length (for the confidence intervals). We also
investigated the relationship with the benchmarks when the benchmarks can be calculated

explicitly. The results can be summarized as follows.

e Computational cost: Our methods are significantly faster than CLS methods. For
small sample sizes, all methods run relatively fast. For n > 5000, our procedures are
at least 10 times faster than the CLS methods for all functions. In many cases, they

are more than 100 times faster. This gap is further increased as the sample size grows.

e Confidence interval for the minimizer: Our methods achieve the nominal cov-
erage consistently and the empirical lengths are proportional to the benchmark. In

comparison, the coverage probability of CLSCI, can be far below the nominal level
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https://github.com/chenrancece/MMCF

for a variety of functions, including functions that are not differentiable at the mini-
mizer or have vanishing second order derivative around the minimizer. For piecewise
linear function such as 100 - |2z — 1|, CLSC1I, is long and its length remains roughly

a constant as the sample size increases, while the benchmark goes to zero.

e Estimation of the minimizer: The numerical performances of our methods and
the CLS estimator are comparable. Interestingly, in the cases where the benchmarks
can be calculated explicitly, the performance of the CLS estimator relative to the
benchmarks (and our methods) deteriorates with increasing smoothness of the func-
tion around the minimizer, while the performance of our estimator remains steady

relative to the benchmarks.

e Estimation and CI for the minimum: We are unaware of theoretically guaranteed
CLS estimator or confidence interval for the minimum, so we only examined the per-
formance of our methods. The empirical absolute error for estimator and the lengths
of the confidence intervals for the minimum exhibit linear relationship with the cor-
responding benchmarks (when calculable). The nominal coverages of the confidence

intervals are achieved in all the settings.

2.5. Discussion

In this chapter of dissertation, we studied optimal estimation and inference for the mini-
mizer and minimum of a convex function in the white noise and nonparametric regression
models under a non-asymptotic local minimax framework. It is shown in the appendix Sec-
tion A.3.2 the results obtained in this chapter can be readily used to establish the optimal
rates of convergence over the convex smoothness classes under the classical minimax frame-
work: the lower bounds under this framework can be easily transferred into the ones under
the conventional minimax framework and the optimal procedures under this framework is
automatically adaptively optimal under the conventional framework. The converse is not

true: procedures that are minimax optimal in the classical sense can be sub-optimal under
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the local minimax framework.

A key advantage of our non-asymptotic local minimax framework is that it enables the char-
acterization of the difficulty for estimating individual functions, and makes establishing the
non-supperefficiency type of results conceptually possible. Another significant advantage is
that our framework manifests novel phenomena that cannot be seen in the classical mini-
max theory. The Uncertainty Principle established in this chapter shows the fundamental
tension between the estimation accuracy for the minimizer and that for the minimum of
a convex function. Analogous results also hold for the inference accuracy. It would be in-
teresting to establish uncertainty principles in other statistical problems such as stochastic

optimization with bandit feedback under the shape constraints.

The present work can be extended in different directions. For estimation, the absolute error
was used as the loss function in this chapter of the dissertation. The results can be easily
generalized to the ¢, loss for ¢ > 1. In this chapter, we focused on the minimizer and
minimum of a univariate convex function. In the next chapter, consider the multivariate
setting with the convexity constraint on individual nonzero components. It would also
be interesting to further extend to the high-dimensional sparse additive model with the
convexity constraint on individual nonzero components. It is also interesting to consider the
extremum under more general shape constraints such as s-convexity. In addition, estimation
and inference for other nonlinear functionals such as the quadratic functional, entropies, and
divergences under a similar non-asymptotic local minimax framework can be studied. We
expect the penalty-of-supperefficiency property to hold in these problems and our approach

to be particularly helpful for the construction of the confidence intervals.

We believe the non-asymptotic local minimax framework is most advantageous when the
difficulty of estimation/inference varies significantly from function to function. Another
important direction is to apply our non-asymptotic local minimax framework to other sta-
tistical models such as estimation and inference the mode and the maximum of a log concave

density function based on i.i.d. observations. We expect similar Uncertainty Principles to
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hold in this problem.
2.6. Proofs

We prove Theorems 2.2.1 and 2.2.2 here. To avoid interrupting the logic flow, other results

are proved in the appendix.
2.6.1. Proof of Theorem 2.2.1

We begin with the lower bounds by first proving that R.(e; f) > ®(—0.5)w,(e; f). The

proof for Ry, (g; f) > ®(—0.5)wm,(c; f) is analogous and will hence be omitted.

Let f € F. Let g € F, which we will specify later. Take § € {1,—1} as a parameter to be

estimated and let f; = f and f_1 = g.

Any estimator Z of the minimizer Z (fp) gives an estimator of 6 by

5 Z +Z(f_—
7 (f1) 5 (f-1)

Z(fV)=2Z(f-1)
2

0 =

and therefore Eg|Z — Z(f5)| = |Z(f1) — Z(f,1)|IE9|9—;9|. On the other hand, a sufficient
statistic for 6 is given by

Jo (1) = Fa ()Y (1) = 5 Jo (1(1)* — f1(0)*)dt.

W= A=l

(2.6.1)

Let Py be the probability measure associated with the white noise model corresponding to
fo. Then
0 —f
W ~ N < . M, 1) under Py.
2 €
Note that for any w,(g; f) > § > 0 there exists hs € F such that ||f — hs||2 = € and that

\Z(f) — Z(hs)| > w.(e; f) — 8, we let g = hs. Then we have R.(e; f) > (w.(e; f) — 0) - 1,
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where 7] is the minimax risk of the two-point problem based on an observation X ~ N (g, 1),

6—0
r1 = inf max E@’ |
g 6=+1 2

It is easy to see that ry = ®(—0.5). Taking § — 07, we have R,(¢; f) > ®(—0.5)w,(c; f).
So we have a; > ®(—0.5) ~ 0.309.

Next, we show for 0 < a < 0.3 that L, o(e; f) > baw.(g/3; f) where by, = 0.6 — 2a. A lower
bound for L,, o(&; f) can be derived following a similar argument. We begin by recalling a
lemma from Cai and Guo (2017).

Lemma 2.6.1 (Cai and Guo, 2017). For any CI € T, ,({f,9}),
EfL(CI) = |Z(f) = Z(9)|(1 — 200 = TV (Fy, Fy)),

where TV denotes the total variation distance between the two distributions of the white

noise models corresponding to f and g. Similarly, for any CI € I, o({f,9}),

EfL(CT) = [M(f) = M(9)|(1 = 2 = TV (Py, Fy)).

Again let g € F. Then for CI € Z, ,({f,9}), by Lemma 2.6.1,
BL(CT) > |2(f) - Z(g)|(1 — 20— TV(Py, By))
It is well known that TV (Py, Py) < \/x%(Py, Py), where

dPy\*
2 _ f _
X(vapg)_/<dpg> dPQ 1

is the x? distance between Py and P,. By Girsanov’s theorem we can obtain the likelihood

dPy _ f(t) —g(t) L[ f(t)?—g(t)?
d—Pg = exp </ TdY(t) - 2/52dt> ,

ratio
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and hence

X2(Pf, Py) = /exp <2/f(t)€_2g(t)dY(t) /f(t)Q;g(t)th) P, — 1
o (LY g (2 1098 )

= exp <||f;2g|2> — 1.

Using it to bound the total variation distance, we get

BL(CT) > |2(f) - Z(9) (1 20— \/ e (LL2A0) - 1> |

We continue by specifying ¢g. For any w,(e/3; f) > 6 > 0, picking g = g5 € F such that ||f —
g5l =¢/3and |Z(f)—Z(gs5)| > wz(e/3; f)—9, wehave E¢L(CT) > (0.6 — 2a) (w.(e/3; f) — ).

By taking § — 0T, we have

L.a(g f) 2 (0.6 — 2a) w2 (e/3; f).

Now we turn to the upper bounds. We introduce the following two lemmas, one for the
minimum and another for the minimizer, that will be proved later.

Lemma 2.6.2. For 0 < a <0.3 and any f € F,

Ru(eif) < Ampm(ef) < Apwn(s f), (2.6.2)

Lm,a(e; f) < Bm,ocpm(5§ f) < Bm@wm(E; f), (263)

where Ay, =1.03 and 0 < By, o < 3(1 — 2a)z,.

Lemma 2.6.3. For 0 < a<0.3 and any f € F,

R.(e5f) <Awpa(ef) < Awwa(sf), (2.6.4)

Lz,a(5§ f) < Bz,apz(5§ f) < Bz,awz(g; f), (2.6.5)
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where A, = 1.5 and 0 < B, o < 3(1 — 2a) min{z,, (224)%?}.

The theorem follows as B, > max{B; o, Bmo} and A; > max{A,,, A.}. d

Proof of Lemma 2.6.2. For any function g € F, define fy with 6 € {—1,1} and f_1 = f
and fi1 = ¢. Recall that for W defined in (2.6.1), W ~ N(6 - Hfl_g%ln, 1). Let

Then By (|M — M(f)]) = [M(f) — M(g)|®(— 1421y = B, (N1 — M(g)]). Therefore,

2e

_||g—€f||) %) sup wp (cg; f)‘I)(—E)

Ry(e; f) < sup |M(f) — M(g)|®( "0 2

geEF 2
(ii) 2 C C
< max{3pm(g; f) sup ¢3P(—=),supwn(ce; f)P(—=)}

0<c<1 27 1 2
(iif) 1 c

< max{3pn(c; f)Cb(_ﬁ)’ Scl>11i’ win(cg; f)q)(_i)}v

where (i) is due to the definition of wy,(cs; f) in Equation (2.2.2), (ii) follows from Propo-
sition 2.2.1, (iii) is due to the fact that c%Q)(—g) increases in ¢ € [0,1]. Furthermore we

have,

(iv) c. V) c
)} < sup3pm(ce; f)@(—5) < 3pm(e; f) - supc®(—5
e>1 2 e>1 2

)

C
Sup wyy, (ce; f)¢’(—§
c>1

(Vgi) 3pm(g; ) x 0.3423 (\%i) 1.03wi (g5 f),
where (iv) is due to Proposition 2.2.2, (v) and (vii) are due to Proposition 2.2.1, and
(vi) is due to a bound for sup.>; c®(—5), which follows from the elementary inequalities:
P(—c/2) < %\/gexp (—%) for ¢ > 0; W = @(—0/2)—5\/;@@ (—%) < 0forec>2;
and SupPce/100,(k+1)/100 CP(—¢/2) < 0.01(k+1)®(-0.01 x k/2) for k& = {100, 101, - - - ,200}.
Therefore, we can take A,, = max{3®(—1/2),1.03} = 1.03.
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For inference of the minimum, consider the following confidence interval:

{M(f)} W<_za+”f27*€9“

Clna =\ {M(g)} W2 (0 = L) v (2 + 1220 -

[M(f)ANM(g),M(f)V M(g)] otherwise

\

Clearly, we have Pp(M(f) ¢ Clpna) < o and Py(M(g) ¢ Clya) < a. Note that for
0 € {0,1},

Ef,L(Cln.a) < |M(f) — M(g)|Pj,(—2a + 0.5‘f;9H <W <z4—05

=4l

3

[l
)

< [M(f) = M(9)|(®(2a ) —a)y.

Therefore, it follows from Proposition 2.2.1 that

Lona(e: f) < sup |M(f) — M(g)|(@(za — =91y )

geF €

< supwp(cg; f)(P(zq — ) — )4
c>0

< max{wm (&5 £)(®(za) = @)y, supwm(ee; )(B(za = ¢) = @)1}

= max{wpn(&; f)(1 — 2a), sclillawm(ca; (@(zq — ) — )4}

Further, recalling o < 0.3, we have 2z, > 1, thus

sup win (cg; f)(P(2a — ¢) — )4 <sup3ppm(ce; [)(P(za —¢) — )
c>1 c>1

< 3pm(e: f)sup e(®(za — ¢) — @)+ = 3pm(ei /) sup e(®(za — ¢) — @)
c>1 2zq>c>1

(viii)

< 3pm(e; ) (1 —2a)201{z0 > 1} + (0.5 — @) - 22, 1{z4 < 1}]

< Bwm(g; f)(1 = 20)za,

where (viii) follows from sup.c4 ) ¢(®(2a — ) — @) < B(®(20 — A) —a) for any 1 < A <
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B < 2z,. In conclusion,

Lm.a(e; f) <3(1 —2a)zapm(e; f) < 3(1 — 20) zawm (&5 f).

Proof of Lemma 2.6.3. For any g € F, consider fy with 0 € {—1,1}, f-1 = f and f; = g.
Recall that for W defined in (2.6.1), W ~ N(6 - W, 1). Let

Then E;(1Z — Z(f)|) = |2(f) — Z(g)|@(— 1421y = By(1Z — Z(g)|). Therefore,

Ro(e: ) < sup | 207) — Z(g) o1y < up(ee: preg-5)

geF c>0 2 (2 6 6)
< maxc{0.50 (<3 f), supws (es; £)B(—3)}-
c>1
In addition,
c c
Sglfwz(css He(=3)} < sup 3pz(ce; [)@(—3)
- ~ (2.6.7)

Cc

< 3supmin{e, (20)%}pz(€; 1)o( 2) < 1.03p.(e; f).

c>1

Inequalities (2.6.7) and (2.6.6) together with Proposition 2.2.1 show that we can take A, =

1.5.

For inference of the minimizer, let

20} W < —zq +0.5124l

Clz,a — {Z(g)} W > (Za _ ||f2—69H) V (_Za + ||f2—69H) .

[Z(f)NZ(9),Z(f)V Z(g)] otherwise
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Clearly, we have Pr(Z(f) ¢ Cl..) < a,Py(Z(g) ¢ Cl.) < a. For the expected length,
similar to the proof for Lemma 2.6.2, we have for § € {—1,1},

B, L(CL o) < |2(f) - Z(a)|(®(zo — L9 ). (2.6.8)

Therefore

Loale: f) < sup | Z(F) — Z(@)|(@(za — 79— 0), < supws (e £)(@(z0 — 0) — )
geF € c>0

< max{ws (& f)(®(2a) — @), supw, (ce; )(@(za — ) — )}

c>1

< max{w,(e; f)(1 — 2c0),supwy(ce; f)(P(zq —¢) — )4 }.

c>1

Note that 0 < a < 0.3 implies 2z, > 1. Hence

supw;(cg; f)(P(zq — ¢) — )4 < sup3p.(ce; f)(P(zq — ) — )+
c>1 c>1

< 3p.(g; f) Sclig) min{c, (2¢)%3}(®(zq — ¢) — @)+

< 3p.(g; f) max {(1 — 2a) min{ z,, (Qza)Q/g}]l{za > 1}, (0.5 — a) min{2z,, (4za)2/3}}
< 3p.(g; f)(1 — 2a) min{ z,, (2za)2/3}

< 3w, (e; f)(1 — 2a) min{zq, (224)*°}.
In conclusion, L, o (g; f) < 3(1 — 2a) min{za, (224)%}w. (&; f). O
2.6.2. Proof of Theorem 2.2.2

It follows from Theorem 2.2.1 and Proposition 2.2.2 that

Adw. (e f) - wm(e; £)? = Ro(e3 f) - Rm(g; £)? = afw. (e f) - wml(e; f)?

and

P& f) - pm(e; £)? < wales f) - wmles £)2 < 27pa(e5 f) - pmles )2
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Furthermore,

62

S =& f) pmles )? < 367 (2.6.9)

This can be shown as follows. Let u = py,(e; f) + M(f) and define f,(t) = max{f(t), u}
as in Section 2.2.1. Note that ||f — fullco < pm(e; f) and it follows from the definition of
pm(e; f) that ||f — full2 = €. As illustrated in Figure 2.1 in Section 2.2.1 (with special

attention to the rectangle ABCD and the triangle EDF),

1
2:(e1 1) - pmles ) > /0 (F(t) — fult))dt = 2

Z(f) 1 1
> max {/(; (f(t) - fu(t))2dta /Z(f)(f(t) - fu(t))2dt} > gpz(g; f) ’ pm(s; f)2

To conclude, we have for any f € F

3 d(—0. 3
274e* > 81432 > R.(e; f) - Rn(e; f)? > %EQ > (55)52.

Similarly, we have

Lol ) - Linale; /)% = (0.6 = 200 - wa(=5 f) - w53 f)

and

L& f) - Lina(e; f)? < Bdw.(&; flum(e; f)? <37+ (1 - 20)%%. O
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CHAPTER 3

Optimal Estimation and Inference for Minimizer and Minimum of

Multivariate Additive Convex Functions

3.1. Introduction

Chapter 2 establishes minimax rates for both estimation and inference for both minimizer
and minimum under a non-asymptotic local minimax framework for univariate convex func-

tion.

In the present chapter, we consider optimal estimation and inference for the minimizer and
minimum of multivariate additive convex functions under suitable non-asymptotic frame-

work that can characterize the difficulty of the problem at individual functions.

We consider both white noise model and nonparametric regression. We first focus on the

white noise model, which is given by
dY (t) = f(t)dt + edW (t),t € [0, 1]°, (3.1.1)

where W(t) is a standard (s, 1)-Brownian sheet on [0, 1]°, ¢ > 0 is the noise level. The drift
function f is assume to be in Fj, the collection of s—dimensional additive convex functions
defined as follows. Function f is said to be an additive convex function if it can be written

in the following form:

£(t) = fo+ Y filti).t = (t1,ta, -+ ,ts) €[0,1]%, (3.1.2)
i=1

where fy is a real number and for 1 < 7 < s, f; is in F, the collection of univariate
convex functions with unique minimizer, and f; also satisfies fol fi(t)dt = 0. Note that
for any function f that can be written in the aforementioned decomposition (3.1.2), the

decomposition is unique. And for s = 1, s = F. For clarity, we also write Y; for Y under
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f to specify the true function. The goal is to optimally estimate the minimizer Z(f) =
arg mingco 1)+ f(t) and minimum M (f) = mingep js £(t) and also construct confidence hyper
cube for Z(f) and confidence interval for M (f). Estimation and inference for the minimizer

Z(f) and minimum M (f) under nonparametric setting will be discussed later in section 3.4.
3.1.1. Non-asymptotic Function-specific Benchmarks

The first step toward evaluating the performance of a procedure at individual convex func-
tions in Fs is to define function-specific benchmarks for estimation and inference for mini-
mizer. For estimation and inference of minimum and estimation of minimizer, we investigate
it under local minimax framework (Cai and Low, 2015), which is also used in estimation and
inference for univariate convex functions in Chapter 2. For inference of minimizer, the same
two-point local minimax framework is not as appropriate and we take a non-asymptotic
function-specific benchmark that measures exactly the best behavior that any method can

achieve.

For estimation of the minimizer, the hardness of the problem at an individual function is
naturally captured by the expected squared distance. Further, under the local minimax

framework, the benchmark is given by

R.(e;f) = sup inf max E(||Z - Z(H)|?). 3.1.3
(s:8) = sup it max E (/12— 2(h)P) (3.13)

For any given f € Fj, the benchmark R, (e;f) quantifies the estimation accuracy at f of the

minimizer Z(f) against the hardest alternative of f within the function class Fs.

For estimation of the minimum, the hardness of the problem at an individual function f
is naturally captured by the expected squared error. Further, under the local minimax

framework, it is given by

R,.(e;f) = sup inf max E M — M()|J?). 3.14
(6:8) = sup inf max By (107 — 21(0)]) (3.14)
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For any given function f € Fg, benchmark R,,(e;f) quantifies the estimation accuracy of

the minimum M (f) at f against the hardest alternative of f within function class Fs.

For estimation problems, we show that the benchmarks are valid good benchmarks in the
sense that if it is significantly out performed at function f € F;, then a penalty need to be
paid at another function f; € F;. We establish sharp minimax rates for these benchmarks
and construct procedures attain the minimax rates, up to a constant factor depending on

dimension s, simultaneously for all f € F;.

For confidence hyper cube of the minimizer with a pre-specified coverage, the hardness of
the problem is naturally captured by the expected volume. Let Z, ,(S) be the collection of
confidence hyper cubes for the minimizer Z(f) with guaranteed coverage probability 1 — «
for all f € §S. The benchmark under a non-asymptotic function-specific framework, at f, is

given by the minimum expected volume at f for all confidence hyper cube in Z, o (Fs):

Lo .(&;:f) = inf Ee (V(Cl.a)), 3.1.5
e = i E(V(CLW) (315)

where V(C1, ) is the volume of the confidence hyper cubes. Unlike local minimax frame-
work, which measures the best a confidence hyper cube with the pre-specified probability
coverage at f and a hardest g € F; can achieve, this benchmark takes hyper cubes in
Z. o (Fs) (i-e. it has pre-specified probability coverage for all g € F;). It is easy to see that

this benchmark depends on f and is the best that any method can achieve at f.

For confidence interval of the minimum with a pre-specified coverage, the hardness of the
problem is naturally captured by the expected length. Let Z,, o(S) be the collection of
confidence intervals for the minimum M (f) with guaranteed coverage probability 1 — « for

all f € S. Under the local minimax framework, the benchmark is given by

L e;f) = su inf Ee (|C1, , 3.1.6
cnl@f) = p it B () (3.16)

49



3.1.2. Projection Representation and Optimal Procedures

Another major step in our analysis is developing data-driven and computationally efficient
algorithms for the construction of estimators and confidence interval (hyper cube) as well

as establishing the optimality of these procedures at each f € F.

An interesting observation is that Y; admits a projection representation,

‘13(Yf) = (7!‘1 (Yf)7 T 771-8(1/}')7 er(}/f))a

such that m;(Yf) is a sufficient statistic for f; and all elements in (Y) are independent.
Also Yr can be fully recovered from B(Y¢). The estimators and confidence interval (hyper
cube) are constructed based on this observation by doing estimation and inference on each

component and carefully join them together.

The key idea behind the construction for each component of the optimal procedures is to
first iteratively localize the minimizer by comparing the integrals over relevant subinter-
vals together with a very carefully constructed stopping rule controlled by a user-specified
parameter, and then add an additional estimation/inference procedure. The final estima-
tion/inference is to carefully choose the control parameter of the component-wise stopping

rule and put together the output for each axis.

The resulting estimators, Z for Z(f) and M for M(f), are shown to attain within a
dimension-dependent constant of the benchmarks R, (g;f) R,,(e;f) simultaneously for all

f e Fs,

Be (12 = 2(£)|2) < CopoRe(si ), (3.1.7)

Er (|37 = M(£)|?) < Conpo B (i), (3.1.8)

for constants C s and (), s depending on dimension s only.
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The resulting confidence interval (hyper cube), CI., for Z(f) and CI,,  for M(f), are
shown to have the pre-specified coverage (1 — «) while having expected length (volume)

being adaptive to f and attaining within a coverage-dimension-dependent constant of the

benchmarks Ly ;(&;f), Lo m(e;f) for all f € F,. That is,

Eg (V(Clz,a)) < Cz,s,aLa,z (5; f)a (3.1.9)

Ef (|Clnmal) < Comsalam(e;f), (3.1.10)

where C s o and O, s« are constants depending on dimension s and « only.

3.1.3. Organization of this Chapter

In Section 3.2, we analyze local minimax risks, relating them to appropriate local modulus
of continuity, in turn providing rate-sharp upper and lower bounds. We also provide lower
bound for the benchmark for inference of the minimizer in Section 3.2. In Section 3.3,
we introduce projection representation of the observation, provide computationally efficient
adaptive procedures and show their optimality. In Section 3.4, we consider the nonpara-
metric regression model. We introduce the corresponding benchmarks, propose adaptive

procedures and establish the optimality. Proofs are given in appendix Section A.5.

3.1.4. Notation

We conclude this section with some notation that will be used in the section. The cdf of the
standard normal distribution is denoted by ®. For 0 < a < 1, 2z, = ®~'(1 — a). For a = 0,
zq = 00. We use ||-|| to denote the Lo norm for vectors, univariate functions and multivariate
functions, depending on the setting. We use 1{A} to denote indicator function that takes
1 when event A happens and 0 otherwise. We use bold symbols to denote multivariate
functions, e.g. f, g, h. We use f1,---, fs to denote the component functions for f and fj
for constant part for f, similar convention for g, h. Let a Ab = min{a, b},a Vb = max{a, b}

for real numbers a and b. We use Z(+) to denote the minimizer operator, and M (-) to denote
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the minimum operator, for both f € F; and f € F. Note that we use Z, »(S) to denote the
collection of confidence hyper cubes for the minimizer with guaranteed coverage probability
1 — « for all functions in §. This can be generalized into univariate case when & C F and

the hyper cube becomes interval.

We use Z,,(S) to denote the collection of confidence intervals for the minimum with
guaranteed coverage probability 1 — « for all functions in §. This can be generalized into

univariate case when S C F.

3.2. Local Minimax Rates and Lower Bounds

In this section, we discuss the local minimax rates and the lower bound for inference of the
minimizer. We introduce the local moduli of continuity and use it to characterize the bench-
marks for estimation of minimizer and estimation and inference of minimum introduced in
Section 3.1.1. We provide rate-sharp bounds for the continuity moduli based on geometry
properties of the functions. As we use a different benchmark for inference of minimizer, we

provide lower bound of it in this section.

3.2.1. Local Modulus of Continuity.

For any given function f € F;, we define the following local moduli of continuity for the

minimizer and minimum.

wo(e;£) = sup{||Z(F) = Z(g)[I”: |If —gll2 <e,g € Fs} (3:2.1)
wim(s;f) = sup{[[M(f) - M(g)|]”: |f —glla <& f € Fo}, (32.2)
Om(e;f) = sup{||M(f) — M(g)|| : |f — gl <e.feF} (3.2.3)

As in the case of linear functionals or in the case of minimizer and minimum operators for
univariate convex functions, the local moduli w,(e;f), wy,(e; f), Wn(e; f) clearly depends on

f and can be regarded as an analogue of inverse Fisher Information in regular parametric
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model.

The following theorem characterizes the benchmarks for estimation and inference in terms
of the corresponding local moduli of continuity.

Theorem 3.2.1 (Sharp Lower Bounds). Let R,(e;f) be defined in (3.1.3), Ry (e;f) be
defined in (3.1.4), and Lo m(e;f) be defined in (3.1.6). Let 0 < oo < 0.1. Then

aw,(e;f) < R,(5;f) < Aw,(e;f), (3.2.4)
awm(€;f) < Rp(ef) < Awp(s;f) (3.2.5)
bawm ;) < Lam(e;f) < Bawm(e; f) (3.2.6)

where the constants a, A, by, B, can be taken as a = 0.1, A = 3.1, b, = 0.6 — «a, and

B, =2(1 — 2a)z4

Theorem 3.2.1 shows that the benchmarks can be characterized in terms of continuity moduli
of continuity. However, this continuity moduli is hard to compute. We now recollect two
related geometry quantities to facilitate bounding the continuity moduli used in univariate
case in Chapter 2. For f € F, v € R and € > 0, let f,(t) = max{f(t),u}, M(f) =

mingeo 1) f(z), and define

pm(es f) = supfu — min{f(z) : 2 € [0, 1]} : |f = full < e, (3.2.7)

pz(&; f) = sup{[t = Z(f)| : f(t) < pm(e; f) + M(f), ¢ € [0,1]}. (3.2.8)

With the geometric quantity p.(g; f), we can establish a rate-sharp bound of modulus of
continuity for the minimizer.

Theorem 3.2.2 (Geometry Representation for Modulus of Continuity for Minimzer).
Let p.(e; f) be defined in (3.2.8) for f € F, and let £ € Fs. Let w,(e;f) be defined in
(3.2.1).Then

73 3 sz (e fl <w,(gf) < ZQpZ (e fZ . (3.2.9)
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And for any B < s, there exists £ € Fs such that Y ;_, p.(g; fi)* = B and

wa(es£) <9575 > pales i) (3.2.10)

And for any B < s, and 8y > 0, there exists f € Fy such that > ;_; p.(g; ;) = B and

w(e:f) > pa(e: f;)? — do. (3.2.11)

Theorem 3.2.2 shows that the modulus of continuity for minimizer varies within an absolute

constant multiple times of

s

_2 ®
s 3 sz(5§fi)2 and sz(5§ fi)27
=1 =1

with the order of both upper and lower bound attainable for some f € F.

With the geometric quantity p,(g; f) and py,(g; f), we can establish a rate-sharp bound of
moduli of continuity for the minimum.

Theorem 3.2.3 (Geometry Representation for Modulus of Continuity for Minimum). Let
pz(g;f) be defined in (3.2.8) and pm(e;f) be defined in (3.2.7) for f € F. Let wp(e;f) be
defined in (3.2.2) and &, (g;f) be defined in (3.2.3) for f € Fs. Then

S

(e: 7)) me(E;fi) < wm(ef) <91+ — me g; fz , (3.2.12)

=1

1
1+>7 ((LA2p,

s

1
14+ (1A 2p:(55 £1) ;pm(E; fi)? <

Om(&) < |90+ D) D ples 2. (3:2.13)
=1

Theorem 3.2.3 shows that the modulus of continuity for minimum w;, (¢;f) is of the order

> req Pl fr)? and @y, (g; f) is of the order \/2221 pm(€; fr)?

Now we have done establishing the local minimax rates for three tasks, we turn to estab-
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lishing the lower bound for the benchmark of inference of the minimizer.

Theorem 3.2.4 (Lower Bound for Expected Volume of Confidence Hyper Cube for Mini-
mizer). Let Ly .(e;:f) be defined in (3.1.5) for £ € Fy and p,(e; f) be defined in (3.2.8) for
f € F. Then we have

Loz (6:F) > Co sIT_ p2 (e fi), (3.2.14)

where Cq 5 5 a positive constant depending on o and s.
3.2.2. Penalty for Super-efficiency

We have shown that the estimation benchmarks R, (¢; f) and R,,(¢; f) can be characterized
by intrinsic geometric quantities of f. Now we show that these benchmarks can not be
essentially uniformly out performed. That is, if the benchmark is significantly out performed
at function f € Fy, then it needs to pay a penalty at another function f; € Fs;. These
benchmarks, similar to that in the univariate case, play a role analogous to the information
lower bound in the classic statistic.

Theorem 3.2.5 (Penalty for Supper-Efficiency). For any estimator of the minimizer Z, if
E¢ (HZ - Z(f)H2> < AR (&;f) for f € Fs and v < 9, where g is a positive constant, then

there exists f1 € Fs such that
A 1.2
Er, (12 = Z(E)IP) = c.,s(log iR 1), (3.2.15)

where ¢, s is a constant depending on s only.

Similarly, for any estimator of the minimum M, if Eg(|M — M(£)[2) < YR (e; ) for f € F,

and v < 7yo/s, where vy is a positive constant, then there exists f| € Fg such that

. 1
e, (yM - M(f1)|2> > cpm.s(log ;)%Rm(a; f), (3.2.16)

where ¢, 5 15 a constant depending on s only.
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3.3. Projection Representation and Adaptive Optimal Procedures.

We now turn to the construction of data-driven and computationally efficient algorithms for
estimation and inference of minimizer and minimum for white noise model. Our construction
is based on an information-preserving representation of the observation Yy, which we call
Projection Representation. We show that our procedures achieve, up to a universal constant
depending on dimension s and confidence level 1—q;, the corresponding benchmarks R, (¢; f),

Ry (e;f), Loz(e:f), Lom(e; f), simultaneously for all f € F.
3.3.1. Projection Representation.

The construction of the procedures is based on an interesting property of the observation Y;
(or Y) that Y admits a nice information-preserving projection representation, which maps
Y to an s+ 1—tuple, where first s elements can roughly be considered as a projection of the
original stochastic process on each coordinate, and the last element is an s—dimensional
stochastic process that can be considered as a remaining error.

Definition 3.3.1 (Projection Representation). For each 1 < i < s, the i—th projection of

Y, m;(Y), is a univariate stochastic process that satisfies for 0 < a; < A; <1,

/ dmy(Y) = / Ay — (4; — ;) / av, (3.3.1)
[ai,Ai] tie[ahAi},t_iE[O,l}S*l [071]5

where t_; = {tl, e tic1, b1, - .ts}.

er(Y) is a stochastic process on [0, 1]°, such that for A = [a1, A1] X [ag, A2] X - -+ X [as, As] C

[0,1]%, we have

/,4 der(Y) = /A dy—inj#mj—aj) / A dmi(Y). (3.3.2)
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The projection representation mapping B(-) of Y is

P(Y) = (11(Y), ma(Y), ..., ms(Y), er(Y)). (3.3.3)

The reasons we call it a projection representation mapping are that B(Y) preserves all in-
formation of Y, that B (Y") has all of its elements, the projections and error, being mutually
independent, and that its first s elements are sufficient statistics for corresponding compo-
nent function f;. More specifically, we have Proposition 3.3.1 summarizing the properties
of projection representation.

Proposition 3.3.1 (Property of Projection Representation). Let B(-) be defined as in
equation (3.3.3). Denote the class of stochastic process defined in (3.1.1) as Q). Then we

have the followings.
e B(-) is a bijection from Y to P(Y).
e B(Y) has all elements being independent.
o m;(Y) is a sufficient statistic for f;, for i€ {1,2,...,s}.

Also, it’s easy to check that er(Y) only depends on fj, thus not carrying information for
Z(f) by itself. Instead, it carries part of the information of M (f). Note that the minimizer
Z(f) can be written as Z(f) = (Z(f1), Z(f2), ..., Z(fs)), so its i-th element only depends on
fi- Similarly M (f) can be written as M (f) = fo+>_;_; M(fx), so each component in PB(Yr)
serves as a sufficient statistics for each of the adding components of M (f). The information
preserving representation () plays the role of separating the relevant information of s

coordinates into independent random variables.

3.3.2. Adaptive Procedures.

Now we are ready to introduce the construction of data-driven and computationally efficient

algorithms for estimation and confidence interval (hyper cube) for the minimum M (f) and
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the minimizer Z(f) under the white noise model in this section. The procedures constructed
in this section are shown in Section 3.3.3 to be adaptive to each individual function f € Fj
in the sense that they simultaneously achieve, up to a universal constant depending on
dimension s and confidence level 1 — «, the corresponding benchmarks, simultaneously for

all f € F;.

Similar to the construction in Chapter 2, we have three blocks: localization, stopping, and
estimation/inference. But since ;(Y") has different distribution with that in the univariate
case, and we also need to account for the dimension, our procedures are carefully tailored

to accommodate for the new challenges.
Sample Splitting

For technical reasons, we split the first s coordinates of the projection representation (i.e.
BY)), V = (m(Y),m2(Y),...,ms(Y)), into three independent pieces to ensure indepen-

dence of the data used in the three steps.

Let Bi(t), Bi(t), Bi(t), B3(t),..., BL(t), B(t) be 2s independent standard Brownian mo-
tions that are also independent from Y. Let data vectors V; = (vi,vh,...,vl), V, =

(vi,vh,...,vh) and V. = (v§,v§,...,vE) be defined as follows.

(3.3.4)

Then the concatenate vector of vectors Vi, V,., Ve has all of its 3s elements being independent,
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and for each axis i € {1,2...,s}, vi(t), vI(¢),v¢(t) can be written as

dvi(t) = fi(t)dt 4+ V/3ed WY,

Avi(t) = fi(t)dt 4+ V/3ed W], (3.3.5)

dv§(t) = fi(t)dt 4+ V/3edW¥,
where V~Vzl, W[, Wf are independent standard Brownian Bridges.
Localization

We use V] for localization step, and for each axis k € {1,2,..., s}, localization is based on

l
Vi-

We take an iterative localization procedure similar to that in Chapter 2 on Vé. For iterations
(levels) 7 = 0,1,..., and possible location index at jth level i = 0,1,...,2/, we denote the
sub-interval length, sub-interval end points, and the index of the sub-interval containing

the minimizer at level j to be
m; = 27j, tj; = 7 my, and i;,k = max{i : Z(fk) € [tj7i_1,tj7i}}. (336)
For j=0,1,...,and i = 1,2,...,27, define

tj.i
Xjik = / dvi,(t),

tji—1

where Vé is one of the three independent copies constructed above through sample splitting.

For convenience, we define X, = +oc for j =0,1,...,and i € Z\ {1,2,...,27}.

Let %Oykzland for j=1,2,..., let

Z'ng = R arg mi{l Xj,i,k‘
21:]',172§i§2ij,1+1

59



Note that given the value of %j_l,k at level 7 — 1, in the next iteration the procedure halves

the interval [t; t; | into two subintervals and selects the interval [t; | at

~ t’:
. —_ . . —1> .
-1,k 17 i1, gk =17 Vg

level j from these and their immediate neighboring subintervals. So i only ranges over 4

possible values at level j.
Stopping Rule

For each axis, it is necessary to have a stopping rule to select a final subinterval constructed
in the localization iterations and carry out the estimation/inference based on that. But
unlike a unified stopping rule in univariate case, we construct a series of stopping rules
based on a user select parameter ¢ > 0, which we will specify later in the specific estima-
tion/inference procedures. Again, for any 1 < k < s, we focus on the stopping rules for

k-th axis.

We use another independent copy v}, constructed in the sample splitting step to devise the

stopping rules. For j =0,1,...,and i = 1,2,...,27, let

- t.i
Go= [ avio.
t

Jyi—1

Again, for convenience, we define Xj,i,k = +4oo for j =0,1,...,and i € Z\ {1,2,...,27}.

Let the statistic T}, be defined as

Tip =min{ X5 or = Xii sk Xji -6k~ Xji,n—skb

where we use the convention +00 —z = +00 and min{+oo, z} = z, for any —oo < z < oco.

The stopping rule indexed by the parameter ¢ > 0 is based on the value of T} ;. Before we

formally go into the stopping rule, it’s helpful to look at the distribution of the elements

: , 2 _ ) ; X . _ X ..
defining T ;. Let o; = 6mje®, some calculations show that when Xj,z'j,k+6,k Xj,ij7k+5,k <
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00, we have

A%ﬁ$k+6k“‘xbﬁ$k+5x
gj

~

i ~ N

miym; 1/%‘»%‘%’»’“ fult +mj) = fiu(®) o) 4
Vee m m; ’

REISEN:

(3.3.7)

Note that the term

= [P e,

my R my
RERIRENS 7

can be interpreted as an average slope across the interval [t t | of the line

3545,k V4,046,

determined by two points (¢, f(¢)) and (t+mj, f(t+m;)). Basic property of convex function

shows that S,(j, k) is non-increasing with the increasing of j, and that S,(j, k) < 0 implies

Xy 6k~ XGi g 45k
7j

z;k > ’Zj + 5. These mean that a small number of indicates either

localization procedure’s choice of a far away sub-interval from the one minimizer lies in or

a negligible signal which implies little or no gain in continuing the localization procedure.

Xjﬂj’k—(},k_Xj,%jyk—s,k

Analogous results hold for >

Finally, the iteration stops at level j(C, k), where

HC k) = mingy - 25 < ). (3.3.8)
J

The subinterval containing the minimizer Z( fx) is localized to be

H}(Cvk)’l]"‘((,k),kil’ tj(évk)’ij(gvk)’k] ’

Estimation and Inference

After obtaining, for each axis k € {1,2,...,s}, a stopping step j((x, k), an associated

l)

index at the stopping step U3 () and a final interval [tj(Ck’k)’%j(gk,k),k_l’tj(gk?k)’zj‘((k,k),k
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all controlled by a parameter (; > 0, we use them to construct estimator and confidence

interval (hyper cube) for the minimum M (f) and the minimizer Z(f).

For estimation of the minimizer, we set (; = ¢ = ®(—2), for k € {1,2,...,s}. The k-th axis

of the estimator Z is given by the mid point of final interval:

2 t5(<7k)7%5(q,k),k71 + tj((!"’”‘)’/zj((’k)’k

k= 5 (3.3.9)
The final estimator Z is given by
Z=(Z,Z,...,2), (3.3.10)
with Zj, defined in (3.3.9).
For inference of the minimizer, we set (, = ¢ = «a/s, for k € {1,2,...,s}. The k-th axis
C1}, of the hyper cube C1I, , is given by
Cliy = 279 (G5 = 7)) 2700 (5 4+ 6) [ n0,1) (3.3.11)
The confidence cube C1T for the minimizer is give by
Cl,o,=CI xCly x --- x Clj, (3.3.12)

where C1, is defined in (3.3.11).

For estimation and inference of the minimum, let

_ i
Xk = / dvi (1),

tji—1
for 1 <i <27 and +oo fori ¢ {1,2,---,27}.

For estimation of the minimum M (f), let {, = ( = ®(—2) for k =1,2---,s. Let the final
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index for estimator construction for k-th coordinate be

ik = 15 p)-1k T2 <1{X5<c,k>£;<<,k>+67k = Xiemisea ok < 2en?

(3.3.13)
= U sy 6k ~ K55k 2"5(4,@})'
The estimator of the minimum is given by
M=Y(1,1,---,1) = Y(0, +Z2ﬂ “PXem ik (3.3.14)
For inference of the minimum, let {, = ( = a/4s for k = 1,2--- | s. Define an intermediate
estimator of the minimum by
s ~
fi=Y(1,1,---,1)=Y(0,0,--- ,0)+y 2ER+ min Xo i ri9in
Z 16(E3 ¢y o1 ~TV<I<16(i5 (¢ 4y 1 +6) I(CR)+2:0,
(3.3.15)
Let U, be the cumulative distribution function of & = max{us,--- ,u,}, where
UL, 5 Un Z’l\’d N(Oa 1)7
and define
Snp=U, (1~ B). (3.3.16)

In other words, Sy, 3 is the (1 — /) quantile of the distribution of the maximum of n 4.i.d.

standard normal variables.

Let
LA
A (S
fr; =1 + 5208,01/88 X \/§€ Z 22 + Za/g\/§€5

k=1

fio —fl—za/4\f5 1-1—223 ¢k)+3 _ Zza/%\f % . <k>+3‘

k=1

(3.3.17)
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Then the (1 — «) level confidence interval for M (f) is

Clma = [fio, ui]. (3.3.18)

3.3.3. Statistical Optimality.

In this section, we establish the optimality of the adaptive procedures constructed in Sec-
tion 3.3.2. The results show that the date driven estimators and the confidence interval
(hyper cube) achieve within a universal constant factor depending on s and « only of their
corresponding benchmarks simultaneously for all f € F,. These results are non-asymptotic
and function-specific, which are much stronger than the conventional minimax framework.
We start with estimation of the minimizer.

Theorem 3.3.1 (Estimation for Miminizer). The estimator 7 defined by (3.3.10) satisfies
o (HZ - Z(f)H2> < . R.(5:f), for alif € F,, (3.3.19)

where C, s > 0 is a constant depending on dimension s.

The following holds for the confidence hyper cube C1, .
Theorem 3.3.2 (Confidence Hyper-cube for Minimizer). For 0 < a < 0.3, the confidence
hyper cube C1, ,, defined by (3.3.12) is a 1 — « level confidence hyper cube for the minimizer

Z(f). Its expected volume satisfies
Ef (V(CI)) < Cz,s,aLoa,z(g; f))

where C 5 o 15 a positive constant depending on s and a.

Theorem 3.3.3 (Estimation for Minimum). The estimation M defined in (3.3.14) satisfies

E <(M . M(f))2) < ChsRon(s: ), (3.3.20)

64



where Cy, 5 15 a positive constant depending on dimension s.
Theorem 3.3.4 (Confidence Interval for Minimum). For 0 < « < 0.3, the confidence
interval defined by (3.3.18) is a 1 — « level confidence interval for the minimum M (f)
satisfying

E(|CLnal) < Cpms.aLlam(e;f), (3.3.21)

where Cy, 5.« 15 a positive constant depending on o and s.

3.4. Nonparametric Regression

We have so far focused on the white noise model. The procedures and results presented in

the previous sections can be extended to nonparametric regression, where we observe

Yiyin,is = L(@1/n,92/n, ... is/N) + 02y g, is, 0 < iy <, for 1 <k <s, (3.4.1)

i N(0,1), f € Fs. The noise level o is assumed to be known. The tasks are

WIth 2iy 35,0,
the same as before: constructing optimal estimators and confidence interval (hyper cube)
for the minimizer Z(f) and the minimum M (f), for f € F;. For simplicity of notation, we

take i = (i1,1i9,...,1s). To avoid trivial case, we suppose n > 2.

3.4.1. Local Minimax Rates, Discretization Error and Separable Representation

Analogous to the benchmarks for the white noise model defined in Equations (3.1.3), (3.1.4),
(3.1.6), we define similar benchmarks for the nonparametric regression model (3.4.1) with
n + 1 equally spaced observations. Denote by Z,, o »n(§) the collection of (1 — «) level

confidence intervals for M (f) on a function class § under the regression model (3.4.1) and
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let
R.n(0;f) = sup inf max E|Z — Z(h)|?,
gEfS Z he{fug}

Ron.n(0; ) = sup inf max E,(M — M(h))?, (3.4.2)
geFs M heifgl

L o;f) = su inf E¢|CT, .
moa.n (03 ) geﬁgcm,aezm,a,n({f,g}) £|C Lo

For confidence hyper cube for minimizer, denote Z, o »(§) the collection of (1 — ) level
confidence hyper cube on a function class § under the regression model (3.4.1) and let

L.an(o:f) = inf EeV (CI). 3.4.3
an(0: 1) crer™ ) Er (CT) (3.4.3)

It is clear that the expected volume for confidence hyper cube of the minimizer can not be

smaller than L, 4 ,(c; ), which is also function-specific, i.e. depending on f.

Compared with white noise model, in addition to the difference in the probability structure
caused by discrete observations, estimation and inference for both Z(f) and M(f) incur
additional discretization errors, even in the noiseless case. See the appendix Section A.5.12

for further discussion.
Separable Representation

Analogous to the white noise model, the observation under nonparametric setting also
admits a separable representation, as defined in Definition 3.4.1.
Definition 3.4.1 (Projection Representation for Nonparametric Regression Model). For

ke {1,2,...,s}, the k-th projection of {yi}, mx({vi}), is an n + 1-long random vector,

m({1i}) =

4.4
< D=1 Yi S D=2 i iV Doiip—s Vi DoV ) (3-4.4)

(m+1)s=t  (n+ 1) (n+ 1)t (n+1)577 T (n+ 1)t (n+1)8
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er({yi}) is an s-dimension tensor with

S
er({ti Dirin, s = Yinsino s — Y Tr({ti i (3.4.5)
k=1

for0<ip <n,1<k<s.

The projection representation mapping P(-) of observation {y;} is given by

Put) = (m({wi}), m2({vi}), ws({vi}), er({wi}))- (3.4.6)

Similar to white noise model, B(-) preserves the information of {y;}; has its s + 1 elements
being mutually independent; and separates the information for the s univariate component
functions of f into its first s random variables, as shown in Proposition 3.4.1.
Proposition 3.4.1 (Property of Projection Representation). Let B(-) be define in equation
(3.4.6). Then we have

e B(-) is invertible,
o B({vi}) has its s+ 1 elements being independent,

o m.({vi}) is sufficient statistic for f.
3.4.2. Optimal Procedures

Similar to the white noise model, we split the data into three independent copies and then
construct the estimators and confidence interval (hyper cube) for Z(f) and M (f) for f € F;

in three major steps: localization, stopping, and estimation/inference.
Data Splitting

Let 20, A" N(0,1), with 1< k<s,1<i<n, 1<j<2
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For each 1 < k < s, we construct the following three sequences based on 7 ({y;}):

o V2 > =0 Zlil V6 > =0 lel
Vllc,i =m({vi})i + —————= {2 (2112 - |+ 5 Zl%,i - | (>

(n+1)7=z n+1 n+1
2 [, 6 no22
ORI e G Y T BLN SRS T TR N
’ (n+1)7z 2 ’ n+1 2 ’ n+1
no_1
e o 1 D1=0 %k
- ) -7\ =0Tk
Vg ﬂ-k({yl})l (n+ 1)551 \[ <Zk,z n+1 ) ’
(3.4.7)
for i = 0,--- ,n. For convenience, let l/,lm = v, = vi, = o0 fori ¢ {0,1,--- ,n}. It is

easy to see that the three sequences for each axis k are independent, and the s collections
of the three sequences are also independent. For each k, we will use {V}C} for localization,
{v} .} for stopping rule, and {v} } for construction of the final estimation and inference

procedures.

Let J = |logy(n +1)|. For j = 0,1,---,J, i =1,2,--- ,L;f_ljj, the i-th block at level
(i—=1)27-7  (i—=1)27 741 .07~

j consists of {*—~—, — ) nj_l}. Denote the sum of observations in the i-th

block at level j for the axis k, sequence u (u=lr,e) as

2771
Yi= > v (3.4.8)
h=(i—1)27 7

Again, let Y} ;; = +0o when i ¢ {1,2,--- ,L;jtljj} for k € {1,2,---,s}, u € {l,r e},
je{0,1,--,J}.
Localization
For k-th axis, we use {I/]lg7h, h € {0,1,--- ,n}} to construct a localization procedure. Let
iro=1,and for j =1,2,---,J, let

ip = arg min Yéw',i' (3.4.9)

max {2y, ;1 2,1} <i<min{2iy,;1+1,[ 55 |}
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This is similar to the localization step in the white noise model. In each iteration, the blocks
at the previous level are split into two sub-blocks. The ¢-th block at level j — 1 is split into
two blocks, the (2i — 1)-th block and the 2i-th block, at level j. For a given ik,j,l, ikJ is
the sub-block with the smallest sum (i.e. wa-ji) among the two sub-blocks of ij ;1 and

their immediate neighboring sub-blocks.
Stopping Rule

Similar to the stopping rule for the white noise model, for axis k, define the statistic Ty ;
based on the sequence Y, = as

T

. o _yr o _ .
Tk"j o mln{Yk7]7lk,j+6 Yk7j7ik,j+5,Yk7jzik,j_6 Yk:.]:lk:,j_5}

Let &,%7]. =6x2/77 x # It is easy to see that when Y7 . T < o0,

Y ..
k7j71k,j+6 k7]71k77+5
(ik,;+5)2777—1

. h+ 2777 h
T r . 52
LARRIVEL PP P D DI (T B TC) I RCRRT)
h:(ik’j+4)2‘]71

Similar to white noise model, we define a series of stopping rules controlled by a parameter

¢ > 0.

Define a stopping step precursor ji(C) as

4(0) min{j : Tpj < 20} {5 Ty < 2¢0k51N{0, 1,2, T} #0
k(€)=

00 otherwise

and terminate the algorithm at level j,(¢) = min{J, jx(¢)}. So either Tj; triggers the

stopping for some 0 < j < J or the algorithm reaches the highest possible level J.

With the localization strategy and the stopping rule, the final block, the ik,jk(c)‘th block
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at level jx(C) is given by

h . s . »
{E : (lk,ﬁ'k(C) —1)27 30 << i . (C)QJ 3k 1},

k,jk

Estimation and Inference

After we have, for each axis k € {1,2,---, s}, our stopping step precursor jx({), stopping
step 3% (¢ ), index associated with the stopping step i k30 (C)? and the final block, we use them
to construct estimator and confidence hyper cube for the minimizer of f € F;, as well as

estimator and confidence interval for the minimum of f € F;.

For estimation of the minimizer, let { = ®(—2). The k-th coordinate of 7., Zy, is defined as

b + 1 <2J—jk(C) — 2J—jk(C)—1> 3r(0) < 00
N 2n n ’
Zy, = 1 1 . (3.4.11)
. e ~
— argmin v, — -, k() =
n g, 7 —2<i<ig, s+2 n
The final estimator Z is defined as
Z=(Zy, 2, , Zs), (3.4.12)

where Z, is defined in (3.4.11) for k € {1,2,--- ,s}.

To construct the confidence hyper cube for Z(f), for each axis k € {1,...,s}, we set the
parameter for stopping rule to be (;, = «/2s and take a few adjacent blocks at level j k(Ce)—1

to the left and right of ik,j'k(ck)—l‘th block.

Let

Ly, = max{0,2 (i, 5, (/201 — N} Uk = min{2+ (.5, (/25 + 6), [(n + 1)23s(@/28)=I7y,
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When ji(a/2s) < oo, let

9 —jr(/2s) 1 9J—Jk(a/2s) 1

t = — I — — .t p; =min{—Up, — —, 1} 4.1
k,lo - k= 5t min{ - Uk 2n7} (3.4.13)

When ji(a/2s) = 00, tg 1o and tg p; are calculated by the following Algorithm 3.
The key ideas of Algorithm 3 are as follows.

jr(a/2s) = oo means that T,j never triggers the stopping, which is a strong indicator that
the signal is strong and discretization error could dominate. Algorithm 3 first specifies a
range that the minimizer lies in with high probability (e.g. 1 — «/2s), and then shrinks the
interval to locate the minimizer among the grid points within the original interval. After
this step, the minimizer(s) among the grids are in the shrunk interval with high probability
(e.g. 1—3a/4s). Then in the case that shrunk interval detects only one grid-wise minimizer
(4 /n) and this minimizer does not indicates a discretizatino error larger or equal than 1/n
(i.e. ipm =1 or iy, =n — 1), we use a geometry property of convex functions to determine
the final interval. Basically, the right most possible minimizer is or is infinitely near to
the intersection of two lines : y = f(in/n), and the line joining (=l f(imtl)) with
(%, f(%)) With observation v, v, .4,V; .o, we can infer the intersection of

the aforementioned two lines and specify the right end point of the interval accordingly.

The k-th axis of confidence hyper cube C1I, , is given by
Clyo = [thio tk pil- (3.4.14)

The (1 — a)-level confidence hyper cube C1I, , is given by
Cl,o=ClioxClyqx - xClq, (3.4.15)

where Cl}, , is defined in (3.4.14).
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Algorithm 3 Computing ¢y, and g p; when ji(¢) = oo

Ly = max{0,21; 5, (4/06-1 — 15}, Up = min{n, 21, 5 09 1 + 12}, a1 = a/8s, ag =

a/24s
id.d.

Generate 2270,,2272,--- ,,zg’n ~"N(0,1)
‘ ) . . e V3o 3 3
i min{{UU{i € [L,U = 1] s vg; — v + 1 (% — Zhis1 — 2%a0) < 0}
(n+1)7=
. . e e \/go- 3 3
ir <« max{{L—1}u{ie [L,U—-1]: Vei~ Vkig1t ————7 (Zk,i — Zjit1t 2za1) >0}
(n+1)2
if i; <1, then
ij—1 ir+2
tk:,l? = max{0, =}, tj pi = max{1, %}
end if
if iy =4,+1 and iy <n — 2 then
. V3o 3 3
if I/;;Z-HQ — I/;;’Z-H_l — =T (%2 — Zhi+1 — 2\/§za2 > 0 then
(n+1)72
Vﬁ,il_yg,il+1_% (Zli,il_‘zl%,iﬁl_%/iz“?) . .
thi el +1 +aaut
i V3o 3 3 " " "
n\ VR 2 Ve 1T s—1 (zk,il+2_zk,il+1_2\/§2a2>
(n+1) 2 +
else '
thi %
end if
end if
if iy =4.+1 and 4, >n — 1 then
tehi =1
end if
if iy =14,4+1 and i; > 2 then
s e e o V3o 3 _ .3 _
if Veir—2 ~ Vki—1 (n+1)% (Zk,iz—2 Zh i1 2\@za2> > (0 then
Vﬁ,il*Vi,iFl*( f;; (Z%,il*22,1171*2ﬁ%2) - )
_ nt u—1 u
lk,lo < - : . + = A
n\ Vi 2 Vi 17— s—1 (Zk,il72_zk,ilfl_2\/§‘z0‘2)
(n+1) 2 +
else A
o < &
end if
end if
if iy=14.+1 and 4; <1 then
tkjo =0
end if

Now we turn to the construction of the estimator and confidence interval for the minimum.
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We start with estimation for the minimum M (f). Let { = ®(—2). For axis k, let
_ T _yr =2 . T _yr ~2

The estimator for M (f) is given as follows.

We define s intermediate estimators Mk as

RQ—Jye <
. 2% kajk(c);kjk(ojtzAkv Jr(¢) < o0
M = : (3.4.16)
min Vi,i-1s Jk(¢) =

ip,s—2<i<iy 42

The final estimator M is defined as

M=—1 S e({mh)+ > M (3.4.17)
k=1

S
(n+1) ic{0,1,2,- ,n}s

Now we continue with the confidence interval for the minimum M (f). Let (; = ( = o/4s.

Define the step number that will be used for constructing the interval as

, Iu(Q) +3,  for jx(¢) < J
JFk = (3.4.18)

00, for j(¢) = o0
Basically, we go three steps forward from the step that the test statistic Ty ; triggers the

stopping rule.
Define

It = 2(jF,k/\J)_3k(O+1 % (ikj (-1~ 7)
) ,JE — b

I, i = 2UFRA) =3O+ o (ik,jk(g‘)—l + 6) +1

)

(3.4.19)

We first define 3 sets of s intermediate estimators {Mk,md 1 <k <s}, {Mk,hi 1<k <
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s}, {Mk,lo 1<k <s}as

My,.g= min Y%, x UFRRNT)=J 3.4.20
k,md IkleSiSIk,hi k,(]F’k/\J),’L ’ ( )

~ ~ o UppAI)—J
My pi = Mima + S210,0/85 X \/gﬁ X2 2 (3.4.21)
(n+ 1)
and
~ ~ 30(z +1 irk—J o GppAd)—J )
My 10 = Mk,md_% X272 —8510,0/8s X V3————x27 2 for jrpr < J.
(n+ 1) (n+ 1)

(3.4.22)
Let M k1o be computed by Algorithm 4 when jgj > J. Algorithm 4 is based on the geometric

property of the convex function f that for any 1 <i <mn — 2,

, . () = il i+l i+ 1
inf t) > inf max n n /(¢ + :
ety T 2 el { Un T )RS
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Algorithm 4 Computing Mhlo when jpp > J

k; < max{0,I;, — 1}, k, < min{n — 1,1y — 2},H Skr—kl+4,ﬁ\/§7( f)s_l +
s n4 5
V3o

48s (n-i,-l)%

ro(t) <= == ——(t = 1/n) + vi; — H,h(0) < mingeo1/n) vr,0(t)
end if
if k‘T:n—lt}c}en .

Vi (£) Vk,n_fi’%w—f (t— 1) + Veno1 —H, h(n—1) = ming a1 ;) Vi n—1(t)
end if "
fori=(kVv1), -, (ks An—2)do

Define two linear functions:

€ €
Vei Vi1 — 2H

7
vi(t) = 1/n (t— g) + v — H,
Viit2 ~ Viipr T2H i+1
Vpy = —2 1/; (t— - )+ Vi — H

h(i) = ming i i1y max{vy;(t), vy (t)}
epd for .
Mk,lo — min{h(i) k<1< kr} A\ Mk,hi

hi (n + )S . { 7; 7n} ({yl}) k,hl Oé/8 ° ( )s S, ( = N )
Ml) e — . 2 :M \/77(7 3 4 24
(n + )8 . { 7; 7n} er ({yl}) ]C,ZO Za/S : 2 3( )3 S. ( Sx. )

The confidence interval for the minimum M (f) is given by

Clyo = [Mio, Mp). (3.4.25)
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3.4.3. Statistical Optimality

Now we establish the optimality of the adaptive procedures constructed in Section 3.4.2. The
results show that our procedures are simultaneously optimal (up to a constant depending
on dimension and confidence level) for f € Fs in terms our benchmarks introduced in (3.4.2)

and (3.4.3).

We begin with the estimator of the minimizer.

Theorem 3.4.1 (Estimation for Minimizer). The estimator Z defined in (3.4.12) satisfies
E¢ (HZ - Z(f)|]2> < Q. Run(o:f), for all f € F, (3.4.26)

where Q) s 1s a positive constant depending on s.

For the confidence hyper cube C1I, , of Z(f), we have the following result.

Theorem 3.4.2 (Inference for Minimizer). For 0 < a < 0.3, confidence cube C1, ,, defined
in (3.4.15) is a (1 — «)-level confidence cube for the minimizer Z(f) and its expected volume
satisfies

Ef (V(CI.4)) < Qssalsan(o;f), for all f € Fs (3.4.27)
where Qs 15 a positive constant depending on s and o only.

Similarly, the estimator and confidence interval for the minimizer M (f) also achieve within
a constant depending on s and « of the corresponding benchmark simultaneously for all
f e Fs.

Theorem 3.4.3 (Estimation for Minimum). The estimator M defined in (3.4.17) satisfies

E (M - M(f>>2 < Qm,sﬁ-m,n(o—; f) (3428)

where Qm.s 15 a positive constant depending on s.

Theorem 3.4.4 (Inference for Minimum). For 0 < a < 0.3, the confidence interval Cly, o
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defined in (3.4.25) is a (1 —«) level confidence interval for minimum M (f) and its expected
length satisfies
E(|CIn.a

) < Qm,s,aim,a,n(g; f)7 (3.4.29)

where Q. s.o 15 a positive constant depending on dimension s and o.
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CHAPTER 4

Interplay Between Statistical Accuracy and Running Time Cost: A

Framework and Examples

4.1. Introduction

With the advent of iterative methods and the increasing scale of data, computational cost
has become a great concern in addition to statistical accuracy. Approaches from differ-
ent angles have been proposed, including categorizing different methods with the triple
of sample size, computation time and statistical error (Chandrasekaran and Jordan, 2013),
computational-theoretical approach that differentiates between regions of parameters where
the problem is polynomial-time computable or not polynomial-time computable (Wang
et al., 2016; Berthet and Rigollet, 2013), reducing the effective sample size (Shender and
Lafferty, 2013; Horev et al., 2015; Sussman et al., 2015; Kpotufe and Verma, 2017), and sepa-
rately investigating both optimization running time and statistical accuracy, when the prob-
lem enjoys good properties like a certain form of strong convexity, smoothness or isotropic
property (Loh and Wainwright, 2015; Wang et al., 2017; Chen and Wainwright, 2015; Bottou

and Bousquet, 2011).

Our approach is to provide theoretically guaranteed iterative optimization algorithm and
precise quantification of how iteration number affects the statistical accuracy for a class of
problems that admits estimators of a certain general form without imposing artificial or

hard-to-verify conditions.

Our approach is different from the computational-theoretical approach in that we quantify
the affects of running time on statistical accuracy on a continuous scale rather than a binary

answer of polynomial time computability.

Compared with literature that deals with only statistical problem, only statistically rooted

optimization problem, or both optimization and statistical aspects of a statistical prob-
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lem, our approach provide theoretically guaranteed optimization procedure; our approach
provides refined optimization-wise convergence rate that considers the dimension of the sta-
tistical problem as a changing quantity rather than a constant; and our approach combines
optimization and statistic in a more intrinsic way so that we do not need artificial hard-to-
verify conditions to give theoretical guarantee for our optimization procedure in terms of

its influence on statistical accuracy.
To further illustrate this, we digress a little into the existing works.

Existing literature usually treats statistical properties and optimization properties sepa-
rately. Statistical properties (i.e. statistical convergence rate) are usually established for
a perfect solution of an optimization problem. And optimization convergence rates are
established targeting the perfect solution for a certain method. Literature attempting to

consider both aspects jointly also follow this style.

But this separation has three undesired consequences. It requires assumptions that fa-
cilitates convergence rate in the sense of conventional optimization. It gives convergence
results in the sense of conventional optimization. It deals with problems that’s considered

interesting in the sense of conventional optimization.

Those assumptions include strongly convex in some form for the objective function and the
uniqueness of the solution, among others. However, for the original statistical problems,
these assumptions are hard to verify or invalid. For example, strong convexity type con-
dition is hard to verify and always violated in statistical problems, and solutions to the
optimization problem can be multiple in over-parametrized settings like neural network and

robust Principle Component Analysis (RPCA).

One of our key observations is that these assumptions are not necessary for producing
statistically well behaved computed estimators, as we do not need to solve the optimization
problem well in the conventional way to guarantee its statistical performance — there is an

alternative way of characterizing how well the optimization problem is solved in terms of
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solution’s statistical performance. Further, solving it well in the conventional way does not

give additional help to statistical analysis.

The convergence results in the sense of conventional optimization are also not enough for
statistical consideration. In high dimensional statistics, we are essentially dealing with
a class of optimization problems with changing dimensions, and we need to know how
optimization-induced statistical error changes in terms of both iteration number and the
dimension. Conventional optimization results usually view dimension related quantity as a

constant intrinsic to the optimization problem.

Many statistically rooted optimization problems are not considered general enough or in-
teresting enough under conventional optimization sense, but the statistical problems are
important from statistical perspective. Therefore, many heuristic optimization methods
widely used in statistical literature are not nearly well understood. Many statistically good
estimators also lack optimization algorithms. And some optimization results targeting sta-
tistically rooted optimization problem generalize the problem in the way making it no longer

useful for the root statistical problem.

Our approach is free from all these problems. We propose a framework consists of three
parts. We incorporate the consideration of optimization error into the statistical analysis
through an approximate optimization problem rather than an approximate optimization
solution. We provide a template optimization algorithm. We show its convergence in terms
of converging to the optimization problem. Our convergence results takes the possibly
growing dimension and other changing geometry quantities into consideration in addition
to the iteration number. All three added together, we have a theoretically guaranteed

algorithm and a precise quantification of statistical accuracy given iteration number.

In two examples, 1-bit matrix completion (Davenport et al., 2014) and causal inference
for panel data (Athey et al., 2021), we apply our framework, which yields novel results

for both problems. And our framework can also be applied to network analysis, robust
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principle analysis, kernel ridge regression, SVM, simple neural networks, LASSO, etc. We
take LASSO for an example. LASSO in (high dimensional sparse) linear regression is a
simpler and degenerate case for our framework. Through it, we show that our framework
automatically adapt to the setting where stronger assumptions are satisfied (e.g. restricted

strong convexity).

In addition to our framework, our statistical analysis of causal inference for panel data
using matrix completion is also sharper and yields better statistical convergence rate in the

special case that the solution is perfect, which is the case considered in the literature.
4.1.1. Our framework

Our framework deals with statistical problems where the most promising estimator can be

written as a solution to an optimization problem of the form

min X X
i f(X) +g(X) .

st. XeOinCyn---Cy,

where X is an m X n parameter matrix, with vector being a special case by takingn = 1, f is
an L(e)-smooth (optimization wise) and L ¢(e)-Lipschitz convex function on the constraint
set and its € neighborhood (with L(e), L¢(e) > 0), g is a possibly non-smooth but Lg(e)-
Lipschitz convex function on the same area (with Ly(e) > 0), C; to C are convex constraint

sets that are easy to project on. Note that f and g here are usually data dependent.

In some cases f is data dependent. Examples include negative log likelihood, sum of least
squares in high-dimensional linear regression, or the objective function in principle com-
ponent analysis (PCA). In these cases g can be penalty term or 0. In some cases, g is
data-dependent and f is the regularization term. Examples include soft support vector

machine and neural network with Relu activation function.

So this general form includes a wide range of estimators, including constrained maximum log
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likelihood estimators, penalized maximum log likelihood estimator, support vector machine,
etc.. This wide range of estimators have proved their power by achieving minimax optimality
for many statistical problems, especially in high dimensional statistics, or by achieving good

empirical performances, especially in machine learning.

Note that we do not require strong convexity, restricted strong convexity or strong convexity
of any form for f(X), which is almost a conventional assumption in the literature considering
both optimization and statistical properties. We will see later that the absence of strong

convexity is indeed very common in reality.

A specific example fitting this general form is the 1-bit matrix completion with constrained
maximum log likelihood estimators. It’s helpful to see how this concrete example fits the
general framework.

Ezample 4.1.1 (1-bit matrix completion). The statistical setting for 1-bit matrix completion
is as follows (Davenport et al., 2014). Given the true parameter matrix M € R% X9,
a random subset of indices @ C [di] x [d2] indicating the elements we observe, and a
differentiable link function [ : D — [0,1], where D C R, the observation is a matrix

Y € R4*% defined as follows. Entries of Y are independent.

For (i,7) € Q,

+1 with probability I(M; ;)
Y, = . (4.1.2)
—1 with probability 1 — I(M; ;)

For (i,5) ¢ Q, Y;; = 0. The assumptions are as follows. A is nuclear norm bounded (
|M ||« < ay/rdids) and element wise bounded ( || M||oo < ). The random subset of indices

satisfies E|Q2| = n with each entry being chosen with probability ﬁ independently.

Then the log-likelihood function of this problem is

Loy(X)= Y (1{Y;; = 1}og(l(X;;)) + 1{Yi; = —1}log(1 — (X)) (4.1.3)
(4,5)€Q
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Davenport et al. (2014) show that the minimax optimal estimator M is a solution of the

following optimization problem

min  — Loy (X)
X (4.1.4)

st. | X[« < ay/rdids and || X« < a.

If we further assume twice differentiability of the link function, which is true for all link
function examples in Davenport et al. (2014), this estimator satisfies our general formulation

(4.1.1), with

C1=[—a,a]™*®  Cy={M e R"%®||M|. < ay/rdidy},
()] (4.1.5)
Li(e)= sup ————F—, L,(e) =0, and
(= -y

C o e @) = @@)?] (@)1= () + (@)
L(e)_msga { l(x)? ’ (1—1(x))?

}.

Remark 4.1.1. Note that in Example 4.1.1, —Lq y (X) in most cases is not strongly convex,
or restricted strongly convex (Loh and Wainwright, 2015; Wang et al., 2017), hence the ap-
proach of establishing convergence in parameter space (the space of X') for the optimization
problem separated from the statistical problem, which is adopted in the literature, is not a
good, if possible, approach.

Remark 4.1.2. In the original work by Davenport et al. (2014), where Example 4.1.1 arises,
they only have a heuristic algorithm computing the solution of optimization problem (4.1.4)
with no theoretical guarantee.

Remark 4.1.3. Causal inference for panel data (Athey et al., 2021) also satisfies the general
formulation (4.1.1). We discuss it in detail in Section 4.4, where we not only develop a
theoretically guaranteed optimization algorithm and provide a precise quantification of how
iteration number comes in the statistical accuracy based on our framework, but also give

a sharper upper bound on statistical accuracy than that in Athey et al. (2021) when the
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solution is exact, all of which are interesting results on their own.

Remark 4.1.4. Lasso for linear regression is another example satisfying our framework. But
it is a severely degenerate case: it is for parameter vector; it does not have constraints;
it admits restricted strong convexity in high dimensional sparse setting. We discuss it in
detail in Section 4.5.

Remark 4.1.5. More examples fit into our framework. For the reason of space, we do not

give detailed discussion in this dissertation.

In our framework, to be free from strong convexity of any form or other artificial condi-
tions, we consider X that has small violations on both constraints and minimum objective
function value. We analyze statistical property of X. The analysis of X is independent
from any optimization procedure and it is an interface between statistical property and
optimization error, so we call this step Statistical-Optimization Interplay. Then we develop
an optimization algorithm and analyze its convergence in terms of those small vanishing
violations. Therefore, we can give a precise quantification of how number of iterations in
our algorithm translates into statistical accuracy. Given that the number of iteration is the
key bottleneck for running time and can not be reduced through parallel computing, this

shows how running time could buy statistical accuracy until the statistical limit is reached.
Statistical-Optimization Interplay

The first step of our framework is to integrate the optimization error into statistical analysis

before solving the optimization problem.

Given the data, functions f and g in optimization problem (4.1.1) are decided. The target
estimator X* is a solution to the optimization problem (4.1.1). But the exact solution
of optimization problem (4.1.1) can be computationally infeasible and only approximate
solutions can be computed. We need to consider the statistical property of this approximate

solution.

Instead of considering the convergence rate of the computed solution X to the target es-
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timator X*, we move the consideration of optimization to the start of statistical analysis.
We consider an approximate estimator X satisfying the approximate conditions in (4.1.6)
and investigate its statistical properties. Basically, approximate conditions mean both con-

straints and optimal objective function can be violated a little (9, dg, d1,--- ,07 > 0).

F(X) +9(X) < f(X7) +g(X*) +3,

inf ||Z — Xy <, forall1 <i<
Zlgci H H2 =~ , Ior a 1> Ja (416)

inf HZ - X”Q S (50.
ZeCiNCaNn:---Cy

Note that the target estimator X*, the optimizer of Optimization Problem (4.1.1), satisfies
these inequalities with 6 = §g = --- = §; = 0. When 6,0¢,--- ,6; — 0T, the approximate
conditions are infinitely close to the original Optimization Problem (4.1.1), and when § =
0g = --- = 6y = 0, the approximate conditions define an equivalent optimization problem
as the original one. So this is a way of characterizing how close the computed estimator X
is to the target estimator X*. An interesting observation is that the statistical analysis of,
or the tools used in the statistical analysis of most constrained M —estimators, a kind of
estimators satisfying the conditions of our framework, can be carried to this approximate
version estimator relatively easily. We concrete the idea in three examples, 1-bit matrix
completion, causal panel data analysis and LASSO. 1-bit matrix completion problem is
analyzed as a representation for constrained log-likelihood estimator. Causal panel data is
analyzed as a representation for constrained penalized log-likelihood estimator. Lasso is a
representation of a degenerate case for our framework, where we show that the statistical-
optimization interplay automatically adapt to simpler settings to give strong results in the
simpler setting. For causal panel data, we also sharpened the backbone statistical analysis.

And our framework is applied to the sharpened statistical analysis.

Note that in this step, we do not yet have an optimization procedure and the analysis is
entirely irrelevant to the optimization procedure. Yet the slightly violated conditions fully

characterize the statistical property of computed solution X in the sense that non-violated
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version conditions are the starting point for any statistical analysis for the exact solution. So

we do not need the optimization procedure to have a traditional optimization convergence.

Existing work on considering both optimization error and statistical error (e.g. Bottou and
Bousquet (2011); Loh and Wainwright (2015)) usually considers the optimization error after
the statistical problem is fully analyzed. They consider the optimization wise convergence
rate of the computed solution to the true solution. But this approach does not work when
the true solution is hard or unable to computed well. One of such setting is when the
optimization problem has multiple solutions. Examples include neural network, which is
usually over-parametrized, and principal component analysis (PCA). People deals with the
problem of multiple solution in PCA through defining a distance that implicitly equalize
the solutions, partly leading to a huge volume of literature on non-convex optimization,
see Chi et al. (2019) for a review. Another situation that the true solution is hard to be
computed well is when the objective function does not enjoy good properties in the sense

of optimization, e.g. strong convexity of some form.

Optimization Algorithm and Convergence Analysis

The second step is to develop an optimization procedure with theoretical guarantees in

terms of convergence to an estimator satisfying inequalities (4.1.6).

We adopt a double-loop optimization procedure where the outer loop is proximal gradient

descent and the inner loop is 3-block ADMM.

We give convergence rate of the optimization procedure that considers both iteration number
and statistically important quantity (e.g. dimension). This includes the convergence rate
for inexact proximal gradient descent, convergence rate for our inner loop (3-block ADMM),

and a bound for a dimension-related geometric quantity involved in the convergence rate.

There can be variants to our optimization procedure ( e.g. using accelerated proximal

gradient descent for outer loop, using 2-block ADMM for inner loop when reducible). But
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our analysis for outer loop can be easily carried to accelerated version. And our analysis
of the geometric quantity can also be easily carried to 2-block ADMM. Another reason for
taking 3-block ADMM is that in addition to fitting our two examples, the 3-block ADMM
can serve as a building block for a general number of constraints, as is in our general

framework.

4.1.2. Related Literature

In addition to the literature mentioned at the beginning of this sections. The problems

considered in this paper is also connected to the following problems and literature.

Computational issue for low-rank matrix completion has been studied through a matrix
factorization approach which leads to nonconvex optimization problem. See, for example,
Wang et al. (2017); Jain et al. (2013); Chen and Wainwright (2015), and the overview paper,
Chi et al. (2019). In this line of research, 1-bit matrix completion problem is also correctly
studied by Chen and Wainwright (2015). However, this approach requires the exact low
rank assumption, the knowledge of the rank, and also at least one other conditions like RIP
condition (Jain et al., 2013), restricted convexity (Wang et al., 2017), and incoherence Chen
and Wainwright (2015), which are strong and hard-to-verify condition in many settings.
Further, the convergence rate for 1-bit matrix problem in Chen and Wainwright (2015)
depends on the mostly unknown incoherence, which varies greatly, and the worst case

different from the best by order.

Computational issue for M —estimator is also considered in Loh and Wainwright (2015),
where they consider Lasso type estimator. Their work deal with vectors (instead of matrices)
with restricted strong convexity (RSC) requirement. Our framework is designed for the more
general case: matrix without RSC condition. This includes the simpler setting (vector with
RSC condition). And as shown in our third example, our framework automatically adapts

to the simpler setting and provides stronger results under stronger conditions.

Schmidt et al. (2011) studied convergence rate for inexact proximal gradient and inexact
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accelerated proximal gradient when the non-smooth part is finite. But in our setting, the
existence of constraints dictates the infinity of the non-smooth part. Jiang et al. (2012)
studied inexact accelerated proximal gradient descent, but it is for linearly constrained

convex SDP.

Literature on the convergence of 3-block ADMM includes, for example, Cai et al. (2017);
Lin et al. (2018); Hong and Luo (2017); Lin et al. (2016). But they either are not applicable
to our setting (Hong and Luo, 2017; Lin et al., 2018), or establishes convergence rate on
Lagrange Functions (Cai et al., 2017), or establishes convergence rate on objective function
with results weaker than ours in its applicable setting (Lin et al., 2016). Tibshirani (2017)
considers projection on intersection of convex sets, but it is for coordinate descent and for

vectors instead of matrices, thus not applicable to our setting.
4.1.3. Organization of the Chapter

In Section 4.2 we introduce our general framework and give general results. In Section
4.3 we discuss the results of applying our framework to 1 bit matrix completion example,
where we get interesting new results. In section 4.4 we discuss the results for causal panel
data example, where in addition to applying our framework we provide tighter back-bone
statistical analysis. In Section 4.5, we discuss applying our framework to (high dimensional)
linear regression and compare with the results in literature for this degenerated setting. In
section 4.6, we discuss some directions for future work. For the reason of space, the proofs

are given in the appendix Section A.6.
4.1.4. Notation and Definition

Both ||-|| and ||- || stand for Frobeneous norm. ||-||r is to give special emphasis for matrices
when there might be confusion. || - ||« stands for nuclear norm. We use |O| to denote the
number of elements in O when O is a set. We use D(A|B) = ﬁzm D(A; ;||Bij) to

denote average KL divergence between dy by do probability matrix A and B for 1-bit
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matrix completion, where D(a||b) = alog($) + (1 —a)log(1=%). We use T{A} to denote the
function where it takes 0 if A holds and oo if A does not hold. We use R(e,C) to denote
the e neighborhood of convex set C: R(g,C) = {X :infzcc [|X — Z| < e}. We use By(x)
to denote a ball centered at x with radius d under Frobeneous norm. We use V to denote
taking max: a V b = max{a,b}. We use Proj-(P) to denote the projection point of P on

convex set C, the projection is in terms of Euclidean distance.

Now we introduce the definition of smoothness in optimization sense.

Definition 4.1.1 (Optimization-wise Smoothness). A convex function f(X) is said to be
L-smooth if for any X in the domain, there is a subgradient 0f(X) at X such that for all
Y in the domain,

FOY) < F(X) +0F(X)Y — X) + 21X~ VP, (11.7)

4.2. General Framework

In this section, we introduce the general framework. The general framework has three
parts: statistical-optimization interplay, optimization-template algorithm, and optimization

convergence analysis.
4.2.1. Statistical-Optimization Interplay

In statistical-optimization interplay, we integrate the optimization consideration into the
statistical analysis by considering the statistical accuracy of an estimator coming from an

approximate optimization problem instead of just an approximate solution.

Recall that the target estimator X* is the solution in (4.1.1). To consider the optimization-
induced statistical error, we consider the statistical property of approximate estimator X
satisfying Inequalities (4.1.6). The measurements for how well the optimization problem is

eventually solved are 6, dg, 61, ,07.

Suppose one of the true parameters of the statistical model is X;.

89



The key ingredient for statistical-optimization interplay is an interesting but natural obser-
vation on statistical analysis of estimator of the form (4.1.1). The statistical analysis for

X* usually starts with the inequality

SXF) +g(X7) < f(Xp) + 9(Xy). (4.2.1)

This inequality is usually reduced to simpler form with or without using the constraint
conditions. And then the simpler form becomes a solvable inequality for the statistical
error or the simpler form is further reduced. Typical tools for further reducing the inequality

includes empirical process, which is also where the constraints in (4.1.1) usually comes in.

A reflection on this whole procedure gives that the additive nature of (4.2.1) is untouched,

so are the constraints in (4.1.1).

These characteristics of the analysis mean that similar analysis can go through for approxi-
mate solution X, as it adds in the optimization errors (e.g.6,00,- - ,0;) in an additive way.

Specifically, the analysis for X starts with

FX) +g(X) < f(Xp) + g(Xy) +6. (4.2.2)

Constraints also enter the analysis with an additional error term.

In this way, the focus is shifted from the final approximate solution X to the approximate
optimization problem (4.1.6). We do not need strong convexity or uniqueness of the solution
or other conditions to ensure the fast proximity of the solutions. We only need proximity of
the problems, which is the only thing relevant to the statistical accuracy while being much

relaxed in terms of optimization.

As statistical analysis varies from problem to problem. We will concrete the idea of analyzing
solution satisfying the approximate optimization problem through examples in Section 4.3,

Section 4.4 and Section 4.5.
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Remark 4.2.1. In our framework, we consider problems with constraints, but it is also
applicable to the setting where there is no constraints. The problem with no constraints
is a degenerated case where we do not need to consider projection in optimization part.
We show in Section 4.5 that in a degenerate case, (high dimensional) linear regression,
our framework automatically adapts to the simpler setting and stronger conditions to give
stronger results.

Remark 4.2.2. Statistical-Optimization Interplay, the interface building optimization error
into statistical analysis before solving the optimization problem, can work alone. That
is, the optimization procedures and analysis can be replaced when needed. Further, the
statistical-optimization interplay can also be extended to Z-estimators and other type of

estimators coming from equation/inequality system, which is in my future work.
4.2.2. Template Algorithm

The second step of the framework is to have an algorithm finding X satisfying (4.1.6). Our
template algorithm is a double-loop algorithm, where the outer loop is inexact proximal
gradient descent and inner loop is a 3-block ADMM to approximately compute quantities
in the outer loop. Our inner loop algorithm can be replaced and generalized to fit arbitrary
number of constraints, but to avoid unnecessary complexity while being sufficient for our

examples, we elaborate on 3-block ADMM and remark on generalized algorithm.
Outer Loop

Note that optimization problem (4.1.1) is equivalent to minimizing the following function.

FX)=fX)+(@X)+HX e} +HX e+ +TH{X € Cy}). (4.2.3)

To minimize F(X), we do proximal gradient descent but with an “approximate” proximal

step, as shown in algorithm 4.2.1.
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Algorithm 4.2.1 (Outer Loop: Inexact Proximal Gradient Descent). Starting point is X €

CinCon---NCy. Step size is n > 0. For k > 0,

Xkros = Xp —nV f(Xp), Xiq1 = Prox,g(x)+5{cinCen--nc, ) (Xk+0.5), (4.2.4)

—~—

where Prox, ,(x)+7{xecincen--nc,}) (Xk+0.5) is a close approximation of

Prox; y(x)+z{xecincon-ncyp) (Xk+0.5) =
1 (4.2.5)
arg min <2\|X ~ Xiros| + n(g(X) FYX eCiNCN--- N CJ})) .

Prox, y(x)+5{xecinCan--nc, 1) (+) is called a proximal operator. However, we do not have an

exact solution to (4.2.5) to give Prox, (x)+z{xecincen--nc,}) (Xk+o.5). We only have an ap-

——

proximate proximal Prox, q(x)+s{cincen--nc,}) (Xkt0.5) in the outer loop by approximately

solving the optimization problem corresponding to it, which is our inner loop.

Before we proceed to inner loop, we conclude with a remark that the approximate proximal
gradient can be replaced by its accelerated version for outer loop. But given the commonly
seen phenomenon that accelerated version of algorithms are usually less robust to errors
along the computation, we do not discuss the accelerated version for our setting. Similar

discussion can be given for accelerated version.
Inner Loop

The optimization problem that inner loop aims to solve is

1
m)}n (2’X — Xk+0.5”% + n(g(X) + T{X ceCinNnCynN---N CJ})) . (4.2.6)

We can write it as

min (HP ~ B2+ (hl(P) Fho(P) + -+ hm(P)>) , (4.2.7)
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where Py equals to X405 in (4.2.6), and h;(-) are convex functions not necessarily smooth

and potentially take infinity value. In the case J > 1, at least one h;(+) takes infinity value.

We first consider the case that m = 2. In this case, Optimization Problem (4.2.7) is
equivalent to the following problem:
min || P — Py} + hi(W) + ha(Z),

w.ap (4.2.8)

stW =P, Z=P.

We take 3-block ADMM to solve this problem. The Augmented Lagrange Function for this
3-block ADMM is

A A
%WKZRAUM%#W—%@HWNWHWAH+SNW—P+BW%HM—P+5W%,
(4.2.9)

where § > 0 is the dual step size and A = (A1, Ay) is the dual variable.

The optimization procedure for this 3 block ADMM is in algorithm 4.2.2.
Algorithm 4.2.2 (Inner loop: 3 block ADMM). The starting points are P° = Py, A} = 0,

A9 = 0. The dual step size is 3 > 0. For k > 0, the iteration steps are
k41 . E pk Ak Ak . B r AT
Wh = argV[I/nmEB(VV, Z%, PP AT A5) = argml/nmhl(W) + §||W - P"+ FHF,

Ak
ZF = argmin Lg(WF, Z, P¥, AY, A%) = argmin he(Z) + gHZ —pPFy F?H%,
Z z

PFL — argmin Lg(WFk, ZF, P, A}, A}

Suin Lo b A2) (4.2.10)
Af
s

Ak
= arg min IP— Pl + g(HW’“+1 - P+ Flllfv +125 - P+ 213,

AP = AT 4 pWEH - PR,

A]2€+1 — Al2c + 5(Zk+1 o Pk—l—l)‘
Note that when hq(-) comes from a constraint function, the update step for W is a projection
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step. Analogous result holds for ha(-).

Usually, 3-block ADMM is enough for solving most of the problems encountered in statistics,
including our two examples, as m in (4.2.7) is usually not very large. In the case that 3-
block ADMM is not enough (i.e. m > 2), the reason for m > 2 is that the number
of constraints is large. Then a natural way is to do recursive ADMM. For example, if
we have ¢ = 0 and four constraints Ci, Co, C3, Cy, we can do a 3-block ADMM for
argminp || P — Py||% + T{P € C1 N Ca} + T{P € C5N Cy4}, where in each projection step,
say on C N Cq, we can do another 3-block ADMM. This could be costly, but do-able.

Another remark is that in some cases, Optimization Problem (4.2.7) can be reduced to 2-
block ADMM. But less blocks sometimes may lead to worse performance (Lin et al., 2018)

and it’s not generalizable to more blocks, we rest with 3-block ADMM.
4.2.3. Optimization Convergence Analysis

In this section we give theoretical analysis for the algorithm-template we introduced in

Section 4.2.2.

For outer loop, we have the convergence result for inexact proximal gradient descent in
Theorem 4.2.1.

Theorem 4.2.1 (Inexact Proximal Gradient Descent). We take the inexact proximal gra-
dient descent algorithm 4.2.1. Suppose the inner loop (approrimation of the prorimal)

satisfies

| Proz, (g () tzecsncane-ney by (X) = Proyguyssisecincan-nc,p(X)] <8 (4.2.11)

for all X € R(6g,C1NCoN---NCy). Suppose on R(dy,C1 NCyN---NCy), fis L smooth
and Ly Lipschitz,and g 1s Ly Lipschitz. We let step size n < % Suppose X has the smallest

f(X) + g(X) value among Xo, X1, , Xk, the starting point and the results of first K
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iterations. Then we have

" v * * 1 *
FOR) +9(%) = F(X7) = g(X*) <5 X0 = X° [P+
g L sp (4.2.12)
Zs2 207 %
(Lf+Lg)5O+260+ 1 +2777

where D is the diameter of C1NCoN---NCjy.

Remark 4.2.3. Schmidt et al. (2011) studied the convergence of inexact proximal gradient
descent when the non-smooth part is finite. But in the presence of constraints, although
function g is finite, the optimization problem (4.2.7) in our setting is always infinite.
Remark 4.2.4. The Lipschitz conditions needed for f and g are natural conditions satisfied
in most setting. For most non-smooth penalties, g satisfies Lipschitz condition on the entire
space. For most problems, the constraint set is compact (or contained in a compact set),

thus the smoothness and convexity of f dictates Lipschitz condition.

Now we turn to the convergence of the inner loop, 3-block ADMM.

Let W*, Z*, P* be true primal variables and A* = (A1, A2) be the true dual variable, i.e.
solution to the optimization problem

in Lg(W,Z. P, Ay, As).
nax min, 3(W, Z, P, A1, As)

We have Proposition 4.2.1 for the convergence rate of the 3-block ADMM.

Proposition 4.2.1 (3 block ADMM convergence rate). Suppose we take algorithm 4.2.2

6

15, suppose P = %22:1 PJ | then we have

with dual step size 8 <

_ 1 20
P =PI < o (120 = PP 20212 = PP A - AP+ P - R (4219

Remark 4.2.5. In general, convergence for multi-block ADMM with more than two blocks
does not hold (Chen et al., 2016). Convergence in some specific settings has been studied.
But to our knowledge, no convergence rate has been established for direct 3-block ADMM

applied to our setting. In the most closely related literature, Cai et al. (2017) does not
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Figure 4.1: Illustration of geometry of dual variable

have convergence rate; the requirement on constraints in Lin et al. (2018) or Hong and Luo
(2017) does not fit our setting; Lin et al. (2016) has strict requirement on dual step size

and slower rate based on their requirement.

Note that ||[A' — A*|| is involved in the convergence rate. A! depends explicitly on 8,
Py, hi(:) and ha(-), which can usually be easily studied and bounded, and it’s usually
relatively small in our setting. A*, however, can be very large (in terms of norm) and
depends implicitly on the geometry of hi(-) and ho(-), which is dimension-dependent. But
optimization literature does not deal with it, as it is considered as a constant for a single
optimization problem. This issue is not particular to 3-block ADMM. 2-block ADMM also
involves true dual variable in the convergence rate, which is treated as constant in the

literature.

We bound ||A*||, a geometry related quantity, by easy-to-compute geometry quantities.
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To understand the involvement of geometry intuitively, figure 4.1 takes the projection on
the intersection of two convex sets as an example for illustration. If the point to be taken
projection on, say Py, satisfies Projg, o, (Po) = A, the number of iterations needed to get
enough close to C7; N Cs would be relatively large, as Py can stay far from C7 N Cy while it’s
already close to both C7 and Cs separately. On the other hand, when Projo,n¢, (Fo) = B,
it would take less iterations to get enough close to B. Simple calculation show that —Aj
and —Aj5 are subgradients for T{X € C1} and T{X € (O3} at Projg,nc,(Fo), satisfying
—A7 — A3 = 2(Py — P*). In figure 4.1, the purple cones at A and B show the region A}
and A} can take value in at A and B respectively. We find bound for ||A}||? + ||A3]|? by
finding bound for “the maximum angle” the purple cones. The purple cone (smaller cone)
at A can be considered as polar cone (Chandrasekaran and Jordan, 2013) of the smallest
cone containing C; N Cy with A considered as origin, which at least contains the ball By(x).
Thus we can bound the purple cone by red cone. Same logic applies to purple cone (smaller
cone) at B. Lemma 4.2.1 gives the precise description of this intuition.

Lemma 4.2.1 (Geometry Bound). We define the generalized polar cone of convex set C at
point P to be No(P) ={a: (a,P —x) > 0 for all x € C}. Define the mazximum angle of

two convex sets C1 and Cy to be

0(Cy,C3) = sup sup arccos ((A1, A2)),
P€d(C1NC2) \1EN¢, (P),A\2€N¢, (P)
where O(C1NCy) is the boundary of C1NCy. We define a quantity based on mazimum angle
of C1 and Cy to be C(Cq,Cy)

= en we have
2 cos2(79(012’02) ) ’

D2

C(C1,C) < o2

where D = sup, yec,ne, |2 — yl3, d = sup{d : Iz € C1 N Cy such that Bq(xz) C C1 N Ca}.
Further, suppose A* and P* are the true dual variable and primal variable of the Augmented

Lagrange function (4.2.9). Then when hi(W) = T{W € C1} and ho(Z) = ${Z € Cs}, we
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have

|A[| < max{4,4C(Cr, Co)}|| Py — P*||*.

4.2.4. Remark

With the statistical-optimization interplay, algorithm-template, and optimization analysis,
we are ready to provide theoretically guaranteed algorithm for a large class of estimator
for a wide class of problems, and produce a precise analysis of how running time affects

statistical accuracy.
4.3. Application to 1 Bit Matrix Completion

In this section we apply the framework introduced in Section 4.2 to the 1 bit matrix com-
pletion example we introduced in Section 4.1.1, which yields novel results and also further

illustrates our framework.
4.3.1. Statistical-Optimization Interplay

Suppose a solution to optimization problem (4.1.4) is X*. The approximation optimization

conditions (4.1.6) of the computed estimator X in 1 bit matrix completion setting becomes

—[,Qy(X) < —,CQ’Y(X*) + 0,
(4.3.1)

[Xlloo < @+ 01, X112 < @v/rdids + 05, inf |2 = X]|> < o,

inf
cC1NCsy
where C1 = [~a, a]%*% and Cy = {M € R"*%||M|, < av/rdidz}.

Our goal is to understand the statistical behavior of X. Applying statistical-optimization
interplay step of our framework to the statistical analysis in Davenport et al. (2014), where
X*is M and X is M , gives Theorem 4.3.1, which describes how optimization-induced error
affects the statistical accuracy before solving the optimization problem.

Theorem 4.3.1. Consider 1 bit matrixz completion problem introduced in Fxample 4.1.1.
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Let M be a solution to optimization problem (4.1.4). Suppose M satisfies —,CQ’Y(M) <
—Lay (M)+6, | M|« < avrdids+0z, |M||e < a+61. Recall that D(A||B) is the average

KL divergence between matriz A and B. Denote

()|
L, = sup (4.3.2)
T ey W) (A = U(2))
for v > 0 such that l(x) € (0,1) for |x| < . Then we have, with probability at least

_ _<a
1 di+d2”’

_ & +d di +dg)logdids 0
DUM)||I(M)) < coLas, (ar/rdids + 52) /;d1d22\/1+( ] 27)1 og dids 20 s

co, c1 are absolute constants that can be explicitly written out.

Remark 4.3.1. Note that in the formulation of example 4.1.1 we require link function [ to
be twice differentiable in addition to mere differentiability in the original work (Davenport
et al., 2014) for fitting into our framework. But for statistical-optimization interplay, twice
differentiability is not necessary, as Theorem 4.3.1 still holds with only differentiability.
Remark 4.3.2. Note that when § = 0, §; = 0 and 6 = 0, M in Theorem 4.3.1 is exactly the
target estimator and the rate is of the same order with that in Davenport et al. (2014). In
the view of approximate optimization, the target exact solution is a special case.

Remark 4.3.3. 1 bit matrix completion is a representative example for constrained M-
estimator, or more precisely, constrained maximum likelihood estimator with no penalty
term or optimization-wise smooth penalty term. Other constrained M-estimator includes
constrained kernel ridge regression and constrained version of sparse principle component

analysis.
4.3.2. Optimization Algorithm

Note that in Davenport et al. (2014), they use a heuristic method without theoretical
guarantee. Here we apply our optimization template algorithm to 1 bit matrix completion

and give results on its convergence in terms of the approximate optimization conditions.
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Note that the proximal operator Prox,,(x)+s{xeccinc.n--nc,})(+) in optimization template
algorithm becomes projection operator Projc, ¢, (-) for 1 bit matrix completion, which
gives the outer loop in Algorithm 4.3.1.

Algorithm 4.3.1 (1-bit Matrix Completion Outer Loop: Inexact Projected Gradient De-

scent). Starting point is Xo = 0. Step size nn > 0. For k > 0, the iteration steps are
Xiros5 = X —nV(=Lay (Xy)), Xi+1 = Projeo, ey (Xk+05), (4.3.4)
where Pffgjcm@ (Xk+0.5) is a close approximation of projection point

Projc,ne, (Xk+0.5) =
(4.3.5)
arg;nin (HX — Xk+0.5||%ﬂ +3¥{XelC1n CQ}) .

To compute approximate projection point ﬁfgjclm@ (Po)), we apply the template algorithm

inner loop. We know that the Augmented Lagrange Function for this 3-block ADMM is:

Ls(W,Z, P, A1, Ay) =T{W € C1} +T{Z € Ca} + ||P — Po||3+
4.3.6)
SZ(W =P+ =|3+1Z-P+=13),
2(H 3 5+ |l 5 1)

where A1 and Ay are dual variables and 3 is the dual update step size.

Applying the inner loop template algorithm, Algorithm 4.2.2, to 1 bit matrix completion,
gives the inner loop steps for 1 bit matrix completion in Algorithm 4.3.2.

Algorithm 4.3.2 (1-bit Matrix Completion Inner Loop: 3-block ADMM). The starting points
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are P* = Py,AY = 0,AJ = 0. For k > 0, the iterative steps are

. 1 ] 1
W = Proje, (P* = A1), 27" = Proje, (P* — 3A3),
Pt (et e Jove s 2,
i (4.3.7)

ARFLZ ARy g (W’f+1 _ P’““) ,

ABFL Ak 4 (Z’f“ - Pk’“) .
Take the average P = % Zle P? for the output if we end it at k-th iteration.
4.3.3. Optimization Convergence

In this section, we establish convergence rate for optimization algorithm introduced in
Section 4.3.2 in terms of the approximate optimization conditions. We apply results in

Section 4.2.3 to 1 bit matrix completion setting with appropriate modifications.

In this section, we need the assumption that the link function [ for 1-bit matrix completion
is twice differentiable, as introduced in section 4.1.1. So in addition to Lipschitz constant
defined in (4.3.2), we have well defined smoothness constant for 1 bit matrix completion

example, defined as

1 @)lx) — (@) 1)1 - 1) + (@)’
|| <~ I(z)? ’ (1—1(z))2 h (4.3.8)

for v > 0 such that I(z) € (0,1) for |z| <.

For the convergence of the outer loop, we apply Theorem 4.2.1 to 1 bit matrix completion
setting, which gives Proposition 4.3.1.

Proposition 4.3.1 (Outer loop for 1 bit matrix completion). Suppose we take projected
gradient descent, Algorithm 4.5.1, for outer loop, and the projection error in all steps sat-
isfies

HPrOjClﬁCQ (X) - PTOJCNTCQ(X)H S 50
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. Suppose the link function l(z) is twice differentiable. Let I~/7 be defined in (4.3.8). Suppose

Lots, < L. Let L, be defined in (4.3.2). Let X* be a solution of optimization problem

(4.1.4). Take step size n = 1, we have

O[2Ld]_d2
Og}clﬁnK ﬁQ,Y(Xk) = ﬁQ,Y(X )+ 2K

+ 50(2011/\/ dids + La+50 + L(so) (439)
To investigate the convergence for inner loop, we apply Proposition 4.2.1 and Lemma 4.2.1
in the general framework to 1 bit matrix completion example. Proposition 4.3.2 gives the
convergence for inner loop for 1 bit matrix completion.

Proposition 4.3.2 (Convergence of inner loop for 1 bit matrix completion). Suppose P* =

Proje,nc,(Po). Taking Algorithm 4.5.2, with dual step size 3 < &, we have

Bt |2 1 2 20 p*
_ < =~_rF
P — P*| <7B + max{4,8C(C1,C2)} + 3 (B+1)

Py — P*|I? 4.3.10
<om Jip =PI, @30

where C(Cy,Cq) < d12d2.

Combing the inner loop result, Proposition 4.3.2, and outer loop result, Proposition 4.3.1,
we have that Theorem 4.3.2 showing the overall optimization convergence in terms of ap-
proximate conditions.

Theorem 4.3.2 (Optimization: 1 bit matrix completion). Suppose we take projected gra-
dient descent, Algorithm 4.3.1, for outer loop, and 3-block ADMM, Algorithm 4.3.2, for
inner loop, where Py in the inner loop is Xiyo5 in the outer loop. Let L, be defined in
(4.3.2). Let Ly be defined in (4.3.8). If we take step size n = i, dual step size f < %,

the number of iterations of inner loop t > tg, and take T iterations for outer loop, then
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X =argminyex, x,,..,x,} —La(X) satisfies the approzimate conditions (4.3.1) with

2Ladyd . 1 2didy - 1 2d1d
§< @ Latidy | (404LQM+2LQ)\[ 9(8) + == +2La> (a(B) + =7 ),
T t 15} t B
1 2d1d
max{d1, dz, 60} < \/Z qa(B) + g %,

3 ~ ~
where q(B) = % + %(Bf—il)?’ ugp = max{u : Loty < 2L, Lotu < 2L4}, and ty =

1 2 20 p* Lg Lo )2
23 (76 + 4dydz + jm) (1+ woln + K) .

(4.3.11)

4.3.4. Overall Result

In this section, we are ready to show how the running time affects the statistical accuracy,
as shown in Theorem 4.3.3.

Theorem 4.3.3. For 1 bit matrix completion introduced in Section 4.1.1, suppose the link
function 1(z) is twice differentiable. Let Ly be define in (4.3.8). Let Ly, be defined in (4.3.2).

Suppose we take projected gradient descent, Algorithm 4.3.1, for outer loop with step size

n = 2% and T iterations, and 3-block ADMM, Algorithm 4.3.2, for inner loop, where Py

in the inner loop is Xgyo5 in the outer loop. For inner loop, Algorithm 4.3.1, we take dual
step size B < % and iteration numbert > ty, where tg is specified later. Let M be among the

starting point and resulting points in first T iterations of the outer loop, {Xo, X1, , X1},

C1

such that it has the smallest —Lq y (-) value. Then with probability at least 1 — Tidy

we

have

D(U(M)|(M))

1 2d,d [dy +d dy + do) log (did
< 2oLy [ rd1d2+\/7 Q(5)+ 102 1+ 2\/1+(1+ 2)0g(12)
3 B ndyda n
a?Ladidy  daLlg/dids + 2L, \f 2dids 2L, 1 2d1ds
y O lathids | dola/id Ffae)+ 208y 2ol (o) 20,

(4.3.12)
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where ¢y, c1 are absolute constants, and q(B),to is defined as follows.

_ 7810 B3

9 + — W,UO = max{u : La+u < 2La7La+u < 2La}’

q(B) =

1 20 p* ) Lo Lo

28 < 1 3 (/B+1)2 ( uoLa La>
Note that, when the computing resource in terms of running time is unlimited, mean-
ing t — oo and T — o0, the rate is the same with that established in Davenport et al.

(2014). Also note that Theorem 4.3.3 gives better understanding of the roles the iter-

ation number T and t play. The running-time-induced statistical error is of the order

1. Lo Oé2fla . . . _
0 < : (m +al >) + O(%7=). The running time for inner loop plays a cru

cial role, which is reasonable as the inner-loop-error propagates down the outer loop.

There are flexibility in the choice of step sizes 7, similar results can be given for other
legitimate choices of step sizes. The heuristic algorithm in Davenport et al. (2014) is a
2-block ADMM. Our framework can also be adapted to 2-block ADMM, the change in the
down-stream-convergence-analysis is to replace the 3-block convergence rate with 2-block
convergence rate and analyze the dimension-dependent geometric quantity involved there

with the insights provided by Lemma 4.2.1.
4.4. Application to Causal Inference for Panel Data

In this section, we apply our framework to the causal inference for panel data. Athey
et al. (2021) proposed an estimator of the general form (4.1.1) for causal inference for panel
data. Their statistical analysis, however, is not tight, and they do not have an optimization
procedure targeting their estimator. We provide an improved statistical analysis and apply
our framework based on our improved analysis, resulting in a theoretically guaranteed
algorithm with precise quantification of the statistical accuracy after certain running time

of user’s choice.
We take the statistical model in the work by Athey et al. (2021). The model is for panel
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data. There are N items, which can stand for companies. The time period is T. For each
item i, there is an adoption time t;, after which item ¢ is treated all the way to time T,
and this adoption time is set to T if never treated. They take Rubin’s potential outcome
framework. And the complete potential outcome matrix when all are assigned to the control
group is Yf“”,

v/l — L* 4 ¢, where E(e|L*) = 0. (4.4.1)

The assumptions on € are as follows. € is independent from L* and the elements of & are

o-sub-Gaussian and independent of each other.

O is the observation-pair set indicating whether a unit (an item at a certain time) is treated.
If we let W to be defined as

1, for (i,t) ¢ O

Wy = (4.4.2)

0, for (i,t) € O

The assumptions for O and thus W are as follows. For each row, suppose row i, there is
an adoption time ¢;, such that W; = 1 for all t; < t < T, t; = T if the unit never adopt
the treatment. The rows of W are independent. Condition on L*, the adoption time t;
are independent of each other and e. Also, |L*|o < Limaz, where L., is a positive real

number.

Then under this model, the observed controls are Y;; = Yi{u”, (i,t) € O. For treated

elements, i.e. (i,t) ¢ O, Yi{u” is missing and we let Y;; = 0. The goal is to estimate L*.

We introduce some quantities here. For item i, the probability that it’s not treated through
out is W(Ti) = E(%{t; = T}). The minimum of this “probability of control” over N items is
(i)

Pe = MiNj<;<N 7r:,f . We use Py to denote an operator mapping N by T matrix to N by T

matrix, with each elements defined as Po(B)4) = By if (i,t) € O, and 0 if (4,t) ¢ O.

Note that in this setting, the matrix W do not have independence for columns, which renders
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RIP condition and restricted strong convexity invalid. The targeted estimator (Athey et al.,
2021) is

~ . 1
L = argmin {—HPO(Y—L)H%—F)\HLH*} (4.4.3)

Lo <Lumax 1€
So causal inference for panel data example fits our general framework (4.1.1). The smooth
convex function f, the convex-but-not-necessarily-smooth function g and the constraint set

in the general framework become follows in causal panel data setting.

1

= o] Po¥ - L)|[3 g(L) = AL+, C1 = [~ Lunax, Linax) . (4.4.4)

f(L)

Applying our framework to it are two sub-problem as follows.

The first sub-problem is to investigating the statistical behavior of an estimator L satisfying

conditions (4.4.5).

1 - - 1 . .
@IIPo(Y—L)II%ﬂL)\IILII* < @IIPo(Y—L)II%Jﬁ\HLH*JﬂS, i)
4.4.5

|f1|oo S Lmax + 517

where L is defined in (4.4.3).

The second sub-problem is developing theoretically guaranteed algorithm finding an L sat-
isfying (4.4.5) and analyzing its convergence rate in terms of ¢ and d¢; in (4.4.5). Athey
et al. (2021) does not have an algorithm for L in (4.4.3) and the heuristic algorithm used

there is for another target estimator.
4.4.1. Statistical-Optimization Interplay

We start with the first sub-problem.

The statistical property of the approximate estimator L satisfying (4.4.5) is shown in The-

orem 4.4.1, which describes how optimization induced error affects statistical error before
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solving the optimization problem.
Theorem 4.4.1. Consider statistical model for causal inference of panel data. Suppose the

true parameter matrix L* has rank at most R, and the penalty parameter

\_ 1o max{y/Nlog (N + 7). 8vTlog? (N + T)}
a [

. Let L be defined in (4.4.3). Suppose the computed estimator L satisfies f(L) + g(L) <

f(L) 4+ g(L) 46 and |L|ss < Limax + 01. Then with probability at least 1 — ~—2=, we have

(N+T)2>
L —L*|2 Ro2 (N +T)log® (N +T) 72 S(L 5) 1
H HF < max % Z ( + )Og ( + )+76+Q1 ( maz+ 1)
NT |2 NT De 0D NT
R(Lma:p +(51)2N+T
+q2 ; (4.4.6)
2 NT
132(Lynaz + 01)% log (N +T)
Pe N ’

where qo, q1, g2 are constants that can be explicitly written out.
Remark 4.4.1. Note that when § = 0 and d; = 0, the estimator becomes the original exact

estimator (i.e. L in (4.4.3)), and our rate becomes of order

N+T 1 log(N +T
Yo (N +T) 2, L BN £T)

2
R
max{o” R(—< e N

}.

This is a faster rate than that in Athey et al. (2021), which is because we sharpen the
statistical analysis of the original estimator and we apply our framework to our own analysis
of the statistical performance of the original exact estimator. If we apply our framework
directly to the analysis in Athey et al. (2021), we expect the same rate when ¢ and 07 are
set to 0.

Remark 4.4.2. causal inference for panel data is a representation for constrained penal-
ized M-estimator, or more precisely, constrained penalized maximum likelihood estimator,
where the penalty term is not smooth (optimization wise). Other constrained non-smoothly-

penalized M-estimator includes Lasso with constraints, Danzig selector, elastic net, SVM,

107



sparse principle component analysis in the penalized form, neural network with Relu acti-

vation function.
4.4.2. Optimization Algorithm

In this Section, we apply our algorithm template to causal inference of panel data, which

gives theoretically guaranteed optimization algorithm for causal inference of panel data.

To standardize the optimization problem for fitting into our optimization template better,

the target optimization problem can be written as

1 1
min o [[Po(V = L)[[7 + SAOML|. + T{|Lloo < Linax}- (4.4.7)

Applying general outer loop, Algorithm 4.2.1, to causal inference for panel data gives Al-
gorithm 4.4.1.
Algorithm 4.4.1 (Causal Inference for Panel Data Outer Loop: Inexact Proximal Gradient

Descent). Start from point Ly = 0. Step size is n > 0. For k& > 0,

Li+o5 = Ly = nV(|[Po(Y — Ly)[|7), (4.4.8)

—~—

L1 = Prox, oL 4Ll < Las)) (Th+0.5),

—~—

where Prox is an approximate proximal algorithm aiming at finding the proximal of Ly, 5,

Prox, (13| 0|L w4 Lo < Luna}) (L +0.5) =

4.4.9)
/1 AO|IL, (
arg min <2HL —Lyrosl>+n <| |2H H

L

+ T{|L|oo < Lmax})> .

We abbreviate the approximate proximal and proximal in equation (4.4.8) and (4.4.9) as

Prox, (Li40.5) and Prox,(Li40.5), respectively, when there is no confusion.

—

For the inner loop (i.e. computing approximate proximal point Prox,(Lx40.5)), we apply
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the template-algorithm, Algorithm 4.2.2.

In this setting, the Augmented Lagrange Function for 3-block ADMM with dual step size
B and Ly, 5 replaced by Py is

B A A
LW, Z,P) =HW € 01}+||Z||*/\\(9|+IIP—Po||%+§(HW—P+Fl||§+IIZ—P+F2||§)7 (4.4.10)

where A1 and Ay are dual variables.

The template inner loop, Algorithm 4.2.2, in this setting becomes Algorithm 4.4.2.
Algorithm 4.4.2 (3 block ADMM for causal inference for panel data). The starting points

are P* = Py, A = 0, AY = 0. Dual step size is 8 > 0. For k > 0, the iterative steps are

WHH = Proje, (P* — lA’f), 7M1 = thresh(P* — 3/\’5, A9 ),
B BB
1 B
Pk+1 — P Ak Ak: ~ k+1 Zk+1
811 < 0+ A]+ Ay + 5 (W + ) ,

(4.4.11)
AL Ak g (WkJrl _ PkH)

AR = AR 4 B (ZkJrl _ Pk+1>
where thresh(P,b) is defined as follows. Suppose the Singular value decomposition of P is

P =UDV, then thresh(P,b) = U(D — diag(b))+V. We take the average P’ = %Zle P*

for the output if we end it at k-th iteration.
4.4.3. Optimization Convergence

In this section, we establish convergence rate for our optimization algorithm introduced in
Section 4.4.2 in terms of approximate optimization conditions. We apply results in Section

4.2.3 to our causal inference for panel data setting with appropriate modifications.

Applying theorem 4.2.1 to causal inference for panel data, we have Proposition 4.4.1.
Proposition 4.4.1 (outer loop for causal inference for panel data). Suppose we take the

gradient proximal algorithm, Algorithm 4.4.1, for outer loop with n = 1. Suppose the
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proximal error satisfies

(X) (X)) < do

]S;“gx — Prox
’ %O‘HLH*%I{LECH} %J&{Lea} -

for all X € R(8y,C1). C, is defined in (4.4.4) and &y is a positive real number. Let L be

the target estimator define in (4.4.3). Then we have

Al

o1 ANO
min fHP@(Y—Lk)H%:—F 9] ~5

1 .
S Ll <€ 2P0 (Y — L)|7
0<k<K 2 2 1L —2” ol e+

1L
(4.4.12)

L [ AO
+ ol — L|? + 62 + 200 Linae VNT + C(Y )80 + min{V/N, \/T}’2|50,
where C(Y') = supreq, [[Po(Y — L)

For the inner loop, we have the convergence result in Proposition 4.4.2.
Proposition 4.4.2 (Convergence of inner loop for causal inference for panel data). Taking

algorithm 4.4.2, with dual step size § < 1%, after k iterations, we have

_ 1 8
i ((352 97— PP+ (54 5 (25 ) (IO min{.T)
(4.4.13)
o 8, B s Py 2
+( B +3(1+5) | Po — Proje, (Po)llI” |-

Combing the inner loop result, Proposition 4.4.2, and outer loop result, Proposition 4.4.1,
we have Theorem 4.4.2 showing the overall convergence in terms of approximate conditions.
Theorem 4.4.2 (optimization : causal inference for panel data). Suppose we take proximal
gradient descent, Algorithm 4.4.1 with n = 1, for outer loop, and 3-block ADMM algorithm
4.4.2 with dual step size 8 < % for inner loop, where Py in the inner loop is Liyg.5 in the
outer loop. Define four constants depending on [ only, qo(8),q1(8),q2(8), q3(B), which we
will explicitly write out later. Suppose the number of iterations for inner loop k > qo(5).

Suppose we take K iterations for outer loop and L = arg minogigK{ﬁHPO(Y — L)% +

110



A|Li||«}. Define a quantity 6(k) as

o(k) =
o ; 5 (4.4.14)
@1 (B)AON? min{ N, T} + ¢2(B)C(YV)* + g3(8) (V][> + 2(NT — [O]) L)
k—qo(B) .
Then we have L satisfies the polluted conditions (4.4.5) with
61 < 5(k)7
6 < NT L + 20(k)* +d(k) AomanV N T + 20(Y) + min{VN, VT}\ R
- oK O] O] 9 ’ ’

where C(Y') = suppec, [|[Po(Y — L)||. The B dependent constants are

2
00(B) = (; (662 +16 +28° + ?(15

B
1 B

- )2)> 43(5) = ;(352+8)
) =5 (5+ 5257 ) ) =5 (24 T 2o7).

4.4.4. Overall Results

In this section, we are ready to show how the running time influences the statistical accuracy,
as shown in Theorem 4.4.3.
Theorem 4.4.3. Suppose L* has rank at most R, and the penalty parameter

130 max{\/Nlog (N +T) S\Flog% (N+T)}
O] '

A=

Suppose we take proximal gradient descent, Algorithm (4.4.1) with n = 1, for outer loop and
3-block ADMM, Algorithm 4.4.2, with dual step size f < %, for inner loop, where Py in the
inner loop is Liyo5 in the outer loop. There are constants depending on B only, namely,

Y~ o~ —~—

90(B), q1(B), q2(B), q3(B) such that for iteration number of inner loop k > qo(f3), the error
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for inner loop is upper bounded by

) \/ 0(B)72NTlog? (N +T) + (B) V]2 + as(B)NT L3, (4.16)

k—qo(8)

Denote L to be the outcome in K iterations in outer loop that has the minimum f(f:)—l—g(i)

There are absolute constants qo, q1, qo such that with probability at least 1 — ﬁ,
IT — L*)j%
NT
o’R N+T NTL? 26(k)?
< - 1 3 N+T max
_maX{QOpg(NT)og( +T)+ Ok + 0] +
8LmaxVNT +2|Y || . 72 (Limax + 0(k))
o(k VN T i Ammax 7 V)
(k) ( 0] +min{v'N, VT (pc +q op.NT ) (4.4.17)
N (N+T)\/R(Lmax+§(k))2
BUNT p? ’
log(N +1T)
132(Lunax + 6(F)) 2220 4
2o 800250

Note that the optimization error induced statistical error increase is of the order O(%) +
O(LL\/"E“"’)7 meaning that inner loop can be the bottle neck in terms of convergence rate to
the limit statistical accuracy. Also, note that when the computing resource is infinity, i.e.
k — oo and K — oo, our results is stronger than that in the work by Athey et al. (2021).
This is because our statistical analysis is stricter and we apply our framework based on our
analysis. Our framework can also be applied directly to the problem in terms of the part
of statistical analysis of the approximate estimator (i.e. statistical-optimization interplay)
based on their original work (Athey et al., 2021), then it would lead to the same rate in the

case of infinity computing resource as that in Athey et al. (2021).
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4.5. Application to Linear Regression (LASSO)

Our framework is designed for problems considering general matrices with constraints, but
it is also applicable to vector setting without constraints, which can be considered as a
degenerate case. In this section, we show that linear regression with LASSO is such a

setting.

We show that analysis and template optimization algorithm in our framework are applicable
to (high dimensional sparse) linear regression with LASSO. The optimization algorithm con-
verges to the target LASSO estimator and we give a quantification of how iteration number
affects the statistical accuracy of the computed estimator. Further, under restricted strong
convexity condition, which holds with high probability and is considered by Loh and Wain-
wright (2015), our template algorithm applied to LASSO actually has linear convergence
rate in a certain range, which matches the optimization rate in Loh and Wainwright (2015).
Compared with Loh and Wainwright (2015), we pose less conditions, our optimization algo-
rithm is fully convergent to the target estimator (theirs is not), and in the range that their

optimization method performs well, ours is equally well.

Consider the linear model

Y= X0+, (45.1)

where we observe the vector-matrix pair (y, X) € R™ x R"*?. d-dimensional vector #* is
the unknown true parameter and w is the noise vector. Each row of X, z;, is i.i.d. drawn
from N(0,%). Noise w is independent of X. Each element of w, w;, is i.i.d drawn from

N(0,02). The goal is to estimate §*. LASSO estimator is given by
N 1 )
6 = argmin o [ly — X85 + Aul|f]]1, (4.5.2)
0 n

for a chosen \,.

Under our framework (4.1.1), the smooth convex function f(-) is f(6) = |y — X0||3, the
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convex-not-necessarily-smooth function g(-) is g(6) = A\,||f]]1. And we do not have con-

straints.

The first sub-problem becomes investigating the statistical behavior of § satisfying

1 - . 1 . R
—|ly — X012 + \, < |y — X0 + A\, . 4.5.
2nHy 015 + Aall0]1 < 2nlly 012 + An |01 + 6 (4.5.3)

And the second sub-problem is the optimization problem shown in (4.5.2). Our optimization
template algorithm in Section 4.2.2 degenerates into the ordinary proximal gradient descent

algorithm.
4.5.1. Statistical-Optimization Interplay

LASSO has been intensively analyzed in the literature and the statistical behavior of 0
in Equation (4.5.2) is well understood. The analysis procedures of 0 is consistent with
our observation of the analysis of estimators following the general form (4.1.1), specifically

summarized as follows. Those analysis start with
Ly = XOUZ + Al < o ly — X013+ Aall6” s (4.5.4)
2n 20 ~ 2n 2o ' o
Then with proper conditions on A, this inequality can be easily reduced to

0< 5 IX (6-67) I <

w‘g’

(119 = 0"l +206"111 — 11811 ) (4.5.5)

Given that the middle part is essentially a quadratic form of 6 — 0* and the right hand
side is essentially of linear order for 6 — #*, Inequality (4.5.5) implies ||§ — 6*|| is upper
bounded. This is the key idea in the analysis of LASSO estimator. A careful reflection on
this procedure gives the key observation that the additive nature of the inequality (4.5.4)
is never touched throughout the analysis, which is in align with the mechanism of our

framework, meaning that analysis of LASSO estimator can be relatively easily carried to
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its approximate version solution, i.c. 6 satisfying (4.5.3).

Theorem 4.5.1 describes the statistical behavior of 9~, where we can see how the optimization-
induced error affects statistical error before solving the optimization problem.

Theorem 4.5.1. Let p*(X) be the mazimum diagonal entry of the covariance matriz X.
Under the linear regression model (4.5.1), for any sparse index set S such that the car-
dinal of S, |S| = s, denote 0%. to be the vector keeping elements not in S the same and
setting those in S to be 0. Suppose c1k > 64s - chQ(Z)%, where c1,cy are constants

and can be taken as ¢y = 1/8,co = 50, and k is the smallest singular value of ¥. For

Ap > 40’;)(2)\/1 + %\/W, 0 satisfying (4.5.3) satisfies the following inequality with
exp (—n/32) 1

probability at least 1 — T—exp (—n/32) — exp(—5) — 2(ntd)

~ % 5 9*0 1 1 )\n

Remark 4.5.1. The error bound in Theorem 4.5.1 has three terms. The first corresponds to
optimization error. The second corresponds to approximation error (how different from an
s sparse vector). The third term corresponds to estimation error associated with s unknown
coefficients. Till now, we do not need an optimization algorithm that guarantee ||6 — 6*||
or ¢ in Inequality (4.5.3) to be small. All we need is Inequality (4.5.3) for some 4. So
the optimization convergence rate for ¢ in Inequality (4.5.3) is possibly faster than general
optimization convergence with additional strong convexity or restricted strong convexity
conditions. We will show that this is indeed the case, which shows that the first two
parts of our framework (i.e. statistical-optimization interplay and optimization template

algorithm) automatically adapts to additional stronger conditions.
4.5.2. Optimization Algorithm and Convergence

In the absence of the constraints, our template optimization method degenerates into the

ordinary proximal gradient descent as shown in Algorithm 4.5.1.
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Algorithm 4.5.1. Starting point is 8y = 0. Step size is n > 0. For k > 0,

1
Ok+05 =0k — 1V <2n”y - XHH%) ;
. (4.5.7)
Busa = avgmin (316 usosl? + Aol ).

Note that 011 = argming (3]0 — Oky0.5/> + nAn|0]l1) has explicit expression: the i-th
element of Ory1 is (Or41)i = sign((Or+05)i) - (|(Okr0.5)il — nAn),, where sign(z) = —1 for

x <0, sign(x) =0 for x =0 and sign(z) =1 for = > 0.

From the convergence results of our template optimization method, i.e. Theorem 4.2.1, we
have the optimization convergence rate for Algorithm 4.5.1 in Theorem 4.5.2.

Theorem 4.5.2 (Optimization Convergence Rate). Let HXTTXHS be the spectral norm of
%. Let step size n < ||ser ||s for Algorithm 4.5.1. Suppose 6 is among 0y, 01, - , 07 and

has the smallest 5-||y — X034+ A, ||0]|1 value. Then we have that
Ly = X+ Al < 1y — X3+ Mallfl + 62 (45.8)
mn Y 2 nlVIL =5, y 2 LalE 2Tn ’ e

where 0 is defined in (4.5.2).

Theorem 4.5.2 gives fully converging sub-linear convergence rate, which does not require

strong convexity of any form.

Loh and Wainwright (2015) exploits restricted strong convexity, which holds with high
probability in high dimensional sparse linear regression, and gives an algorithm with linear
convergence rate in certain region. But their convergence result is not fully converging, i.e.
optimization error does not converge to 0. We show that, under restricted strong convexity
condition, our fully converging optimization algorithm also has linear convergence rate
in certain region. Theorem 4.5.3 shows how our optimization algorithm performs under
different conditions.

Theorem 4.5.3. Under the linear regression model (4.5.1), let S be an index set with s
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elements. Suppose A, > 2||XTT“’HOO, and

1X01[3 2 2 d
- > a1|0]|5 — az2||0||7, for all 8 € RY, (4.5.9)
with ag < 6%3(11. Set the step size n = i %‘X” in Algorithm 4.5.1. Denote F(6) =

X
5= |1X0113 + A ||0]l1. Suppose, F(0k) — F(0) < eg, where 0 is defined in Equation (4.5.2).
Then we have for k > K,

e 2/(6%. | 1A \?
F(@@-F(é)g(l ‘“) 5K+128a25-< 5 1+(2+4\/§+)”>

- gIXTXI
gl Zle ) Vs Vs'ak
2
€
+ 8&27[(,
A%
(4.5.10)
where || - ||s s spectral norm, k is the smallest singular value of ¥, and 0%. is 0* taking only

elements in S¢ to be the same and setting others to 0.

n
IXTX][s

Without above conditions except for step size n = in Algorithm 4.5.1 and using the

same notation, we have for k > 1,

IXTX]|s

< _n 9112, 5.
S —op 19113 (4.5.11)

Inequality (4.5.10) in Theorem 4.5.3 has similar form with Theorem 3 in Loh and Wainwright
(2015), but our optimization procedure is unconstrained and does not require a pre-specified
bound for ||#*||;. We explain the results in details in remarks. In addition to Inequality
(4.5.10), we have Inequality (4.5.11), a fully converging convergence result without restricted
strong convexity requirement, which parallels Theorem (4.5.2).

Remark 4.5.2. Note that Inequality (4.5.10) is only meaningful for ex < %. This means
the algorithm needs to start with a close enough initial point or the algorithm can get
into this region after some iterations. Similar issue exists for that considered in Loh and

Wainwright (2015). Loh and Wainwright (2015) dealt with it by posing hard constraints on
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|10]]1, which leads to a constrained optimization. However, this constraint is not necessary

for Lasso. As shown in Inequality (4.5.11) in Theorem 4.5.3, e goes to zero with a rate

2
at least 7, so the algorithm will get into the region ex < 8)‘7’”‘2 after some iterations. Also,

without the knowledge of ||6*||1, hand-choosing constraint will likely miss the target.

Remark 4.5.3. Note that the right hand side Inequality (4.5.10) is larger than or equal

2[|0%cllr

NG

does not go to 0 with iteration number going to co. It also implies another requirement

2
to 128ags - ( +(2+4ys+ )cm) . Hence this convergence result has a limit and

for Inequality (4.5.10) to be meaningful: ex > 128ass- (2”9\%”1 (2+4ys+ 2 )cln> So
Inequality (4.5.10) does not show fully convergence of the algorithm. Result in Loh and
Wainwright (2015) has similar issue, and they established that this optimization limit is
smaller than the statistical limit as n is relatively large. Similar logic applies to our case.
This optimization limit highly depends on as. In fact, condition (4.5.9) holds with high
probability for a1 = ¢k and ag = CQpQ(E)%. The optimization limit in our case is also a
shrinking quantity (with respect to n) times the statistical accuracy. We will see this more

clearly in Theorem 4.5.4. We now examine how large a region Inequality (4.5.10) applies

to. We need ex to satisfy

200 Loy 2
128 . 2+4 —)— ] < < 4.5.12
s (A5 4 @raysr o2 ) <oy (4512)

Note that A, in Theorem 4.5.3 needs to satisfy a lower bound condition (i.e. A\, >

2HXZ“’HOO) In fact, for A, ~ p(X)o/ w, the lower bound holds with high proba-

bility. As A, ~ p(X)o log(ntd) g, ~ p2(2)84  we have (4.5.13), which shows that the

n n ?

left hand side of Inequality (4.5.12) is significantly smaller than the right hand side of

Inequality (4.5.12) when the dimension is not extremely high.

2[|05- 1 LA
ass < Nz +(2+4y/s + \/5) e max{——

e 1’ n? Kk  8as’

(4.5.13)

Remark 4.5.4. Inequality (4.5.10) in Theorem 4.5.3 implies the block-wise linear convergence
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rate within range [k, k1], where

2
e, < —2
o = 484y

2/|6%. 1. A \?
andsk126-128a25.< 165l ”) .

/s +(2+4\/§+ﬁ)c§

If a; < 8|XTX/n)s, for k > ko, let Ty, = | (k—ko) /[ ——8 L5 710 Ifay > 8 XTX/nls,

log (1= ST /s

for k > ko, let T), = k — kg. We have

2[|05el1
N

F(0;) — F(0) < max{2 ke, 6 - 128ays - ( F(2+ 45+

1\
\/E)cm> b (4.5.14)

A more detailed proof of this statement is given in the proof of Theorem 4.5.4. In fact,
Theorem 4.5.3 implies the conventional linear convergence within the range discussed in
(4.5.12) with properly chosen decay factor. But that involves much more tedious details

without giving additional insight, so we do not make that a formal assertion here.
4.5.3. Overall Results

With Theorem 4.5.1 and optimization convergence results in Theorem 4.5.3, we have The-
orem 4.5.4 describing how iteration number affects the statistical accuracy.

Theorem 4.5.4. Let p?(X) be the mazimum diagonal entry of the covariance matriz Y.
Under the linear regression model (4.5.1), for any sparse index set S such that the cardinal

of S, |S| = s, denote 0. to be the vector keeping elements not in S the same and setting

those in S to be 0. Suppose cik > 64s - CQpZ(E)IOEd, where c1,co are constants and can

be taken as ¢y = 1/8,co = 50, and k is the smallest singular value of ¥.. Suppose A\, >

logd [log2(n+d) , ‘ : _ IXTXs
4p(X) \/1 + %\/ BRI Use Algorithm 4.5.1 with step size n = 1=—=1=. Let

n

O! k 9*0 2
oy ) (he7fla + 15 4 (24 a5 + 1) 22 ) 7 XX/
0 ==
A2

(4.5.15)
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Let

log 1
0g1/6 1],  when ek < 8)|XTX/ns

L(k - ko)/’— — Cik )
ST X/ . (45.16)

T, = log (1

k — ko, otherwise

Let

5 =

T *
. {HX X /nlls (uescrl NPT

1A 2
.\ 6*
Tt |r2) :

log d <2ll9*cH1 1 )\n>2 }
2 S
— (X S - + (24+4v/s+ —)— | -768¢

4862p2(2)10§d P ( ) n \/g ( \/> \/5)61/4/ 2

ok NG

2
n

max {Q_Tk

k<K ||y|r§}
< Ko} 2n |-

(4.5.17)
Then with probability at least 1 — % —exp(—5) — m, the following statements
holds.
) 0% 1.\
10 — 0% [|2 < = + 195 +(24+4Vs+—)— (4.5.18)

2\n/s NG Vsiak
Remark 4.5.5. Theorem 4.5.4 shows how the number of iteration affects the statistical
accuracy of the computed estimator. It shows that the error caused by optimization goes to

log (n+d)
n

zero with the iteration number goes to infinity. Recall that A, ~ when n > logd,

which is satisfied as we do not consider extreme high dimensional case. Note that when

the computation resource is infinity, ||0p — 6*||2 ~ % + /s w. When the true
log (n+d)

vector 0* is indeed s—sparse, || — 0|2 ~ /s which is the optimal rate for high

n )
dimensional linear regression.
Remark 4.5.6. From the expression of 0 in Inequality (4.5.17) and the role of d; on sta-

tistical accuracy shown in Inequality (4.5.18), the convergence rate of error caused by opti-
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F(0x)=F(9)

mization, o has convergence rate ~ % when
F(6y) — F(6) - An o /nlog(n+ d)
20Vs T f5-96c0p2(D) 180 p(¥)  slogd
or when
F(0y) — F(A) _T68cop?(X) 85 19|07, 1A
(0x) = F(B) _T6820(%)' %% (205l oy oy )2
2An/s 2An/s Vs NEE

logd [ ||6%]? An
~p2 (% Sellt An )
pr(E)——s s\@nﬂtﬁﬂg

Otherwise, the optimization algorithm has linear convergence rate. Considering the case
where 5. = 0, which is the conventional setting in high dimensional sparse linear re-

gression, we have that the upper and lower bound for the range where EO)=FO) 15

T 25
linear convergence are of the order @%Asmt and ﬁigd@Astat respectively, where
Agtat = (24+44/s —{—%)é\l—l is the limit statistical accuracy. Therefore, our algorithm performs
as well as that in literature (e.g. Loh and Wainwright (2015)) under the classical setting, and
is fully convergent in general or in special cases (i.e. sparsity and RSC conditions), which is
not shown in Loh and Wainwright (2015) for any cases. This shows that our framework, in-
cluding statistical-optimization interplay and the template algorithm, automatically adapts
to the special cases that has simpler setting admitting stronger assumptions. The opti-
mization convergence results for the general framework, however, need to be further crafted
when additional conditions are satisfied.

Remark 4.5.7. Note that the results has X, y, and 6* involved. X and y are observable, so
we can adjust iteration number accordingly to guarantee the desired accuracy in terms of

0*. For 6*, usually we can have a conservative upper bound for ||6*||2, hence we adjust our

iteration number accordingly for the guaranteed accuracy.

4.6. Discussion
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In the present work, we proposed a framework for considering the influence of the running
time on the statistical accuracy and applied the framework to three examples: 1-bit matrix
completion and causal inference for panel data and high dimensional sparse linear regression.
We get novel interesting novel results for the first two examples and show that our framework
adapts to the degenerate case in the third example. Our backbone statistical analysis for
causal panel data is also sharper than that in the literature. It would be interesting to see
what results can be derived when our framework is applied to other applicable problems,
like kernel ridge regression, SVM, network analysis, neural network, and more intensively

studied problems like Danzig selector and elastic net to see how the results compare.

Our framework focuses on estimators that are matrices (and vectors as a special case), but
our way of integrating optimization consideration into statistical accuracy before solving
the optimization problem can be easily carried to tensors. It would be interesting to see

how a parallel tensor version framework performs.

Our framework provides a new perspective of the relationship between computational cost
and statistical accuracy, where we quantify the value of computing resource in terms of how
much statistical accuracy it can buy, precisely and on a continuous scale. This perspec-
tive makes it possible to be used in equilibrium in economic problems, e.g. the computing
resource invested is the cost and statistical accuracy generates revenue. It would be inter-
esting to see how it works in those equilibrium and it would also be interesting to further

investigate the interplay along this perspective.

Our optimization template algorithm can fill in the blank of theoretically guaranteed op-
timization algorithm for estimators in a large class of statistical problems that fit in the

general form of our framework.

The optimization convergence analysis in our framework provides a pipeline for analyzing
an optimization problem to the level meeting statistical needs. It would be interesting to in-

vestigate the unanalyzed heuristic algorithms or finer the analysis of other statistic-induced
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optimization problem to make the constants free from dimension or other statistically im-
portant quantities. Also, for our inner loop, we exploited and analyzed the convergence rate
of 3-block ADMM, which usually meets the need for statistical problems encountered and
can serve as building stone for more blocks, but it would be interesting to investigate the

convergence rate for direct multi-block ADMM or its variant under reasonable assumptions.
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APPENDIX

In the appendix, we give the proofs of the theorems, propositions and lemmas in the disser-
tation. We also give detailed simulation results and detailed discussions of what is briefed

in the dissertation.

A.1. Proofs of the Results in Chapter 2

This section presents the proofs of all the main results given in Chapter 2 except Theorems

2.2.1 and 2.2.2.
A.1.1. Notation, Lemmas and Basic Properties

We begin with introducing and recollecting notation that will be frequently used in the

proofs.

Note that Y;, Y, and Y. are defined on the same probability space. We use E; to denote
the expectation with respect to the distribution of ¥ and so on. We denote by ¢} the index
for the subinterval at level j that contains the minimizer Z(f) and by J the index for the
level where the chosen interval is at least two blocks away from the subinterval containing

the minimizer, i.e.,

z; =max{i: Z(f) € [tji-1,tji]}

(A.1.1)
j=mingj : [, = 1 = 2},
It is easy to see that j > 2, and j only depends on Y;. In addition, we let
J =min{j : m; < ,OZ(Z; f)} (A.1.2)
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Then by definition # < mjx < #. Furthermore, p;; denotes the average of f on

interval [tjﬂ'_htj,i], i.e.,

tii
= — / F(t)dt. (A.1.3)

mi Jt; 1

Now we give a list of notations that will be used throughout the proofs of theorems in

Section 2.3, in case readers get lost in the mid of reading a proof.

z;‘ =max{i: Z(f) € [tji-1,tj4]},

j=min{j : [i; —ij| > 2},
1 [l
pii = [ 10,

-
J* =min{j :m; < Pz(i; f)},

1 (A.1.4)
(Wa(tji) — 2Wa(tji-1) + Waltji-2))

Jyi—1

&ji =

m;
§% =min{j : [i; — i5] > 5},

~ t2<+A
fe / 2 pyr,

t: _
J szrA 1

A =2 (H{Xj,ij.—ﬁ—ﬁ - Xj,%3~+5 S QJj} - H{X%z;_ﬁ - Xj,%;—f) S 20']'}) .
For the white noise model, we obtain in the data splitting step three independent copies
of the observations Y}, Ys, and Y,. In our construction, they have the same variance 3¢?;
however, this is not necessary. To better show how the results depend on the variance so
that similar results can be easily derived for modified splitting procedures, in the supplement

2

we denote the variances for Y;, Ys, and Y. to be cl2€ , c2e% and ce? respectively.

For the regression model, the splitting procedure can also be changed and the variances
of the copies of observations for locating strategy, stopping rule and additional estimation

and inference procedures does not have to be the same, we denote ~;,7s,7ve to be the
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scaling factors for the three copies respectively: Var(y,;) = 7702, Var(ys;) = 7202, and

Var(ye;) = v20?, for all i.

For the regression model, we have similar notion of the length of subinterval, the index of
the interval in which the minimizer lies, etc. The following notation will be used in the

proofs of the results for regression model.

j = min{min{j : |1; — i} > 2}, 00},
p=(Jmi )
j* =min{j:m; < ZTn},
- (A.1.5)
¥ =min{j : [1; - ij| > 5},
Y, = {y$,07ym,17 te 7ym,n}7 for x = l,s,e,

27-3.i—1

avef(j, Z) - 2J1_j Z f(xk)a

k=273 (i—1)

ej,i,:z} = }/j,i,x — CL’Uef(j’ 7J) . 2‘]—3'7

f = avey(3,13).

For a better logic flow, some additional notation for non-parametric regression are intro-

duced in Section A.1.9.

We also recall some of the basic properties that will be frequently used in the proofs. The
proofs will be deferred to the next section of the supplement, as all the other supporting

lemmas. We first revisit a basic property for convex functions.
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Lemma A.1.1. For a convex function f, and any 0 < x1 < 2 < 23 < 1, we have

f(z2) — f(21) < f(z3) — f(x1) < flas) = fla2)

Tro9 — X1 r3 — I r3 — T2

Next we introduce the following lemma that helps with detailed calculation.

Lemma A.1.2. For z > 63, we have

Njw

200(2 — (22)2/2/3

)
< 0.008,
2®(2 — \/2/323/2)

where ® is the CDF of a standard normal distribution.

We further introduce two quantities that will be often used in the proofs of the theorems

in Section 2.3 of the main paper. Let

Q =supz’®(—2z) and V =supz’®(2 —z), (A.1.6)
>0 >0

for which we have the following results.

Lemma A.1.3.

Q =supz’®(—2z) <0.169, V =supz’®(2 — )V < 2.0555. (A.1.7)
>0 >0

A.1.2. Proof of Proposition 2.2.1
We start with proving for f € F
< pmlesif) _ 2 (A.1.8)
pm(e; f)

Proof. Without loss of generality, we assume M (f) = 0. We first prove the left hand side.
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Write
95(t) = max{f(t), pm(Be; f)},

and it is not hard to see that

lgr = fIZ =€ llge = fII? = . (A.1.9)

Write g(t) = max{f(t),cpm(e; f)}, and suppose t;,,, = min{t : § > f}, ty.,p, = max{t: g >
£} Tt holds that [t tr] © {£: £() < p(; £)}. We have

tr,m

i=1 = [ ot 5= ) ar (A.1.10)
l;:m

< / om(e f) - F(1)dt (A.L11)

< 02\Y|g1—f|]220252. (A.1.12)

Therefore, § < g. at all the points. cpm(e; f) < pm(cs; f).
Now we turn to the right hand side, for which we are interested in

o pm(e; f)

1n
FEF pm(ce; f)

Define the left side and right side of the “water area” with “water level” p,,(ce; f) to be

Ty = min{x : ge(x) > f(x)}, 2 m = max{z : g.(x) > f(x)}. (A.1.13)

We then divide the rest of the proof into four steps.

e The first step is to show that taking the infimum of % over F is the same as

over the function class

Fi={feF: f‘[()m e f‘[xl .y are linear functions}.
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e The second step will show that it is further the same as over the function class

Fu = {f e F: f}[o 20’ f‘[Z(f) ) are piece-wise linear functions with

at most two pieces, f ‘[0 ]’ f ‘[x are linear functions }

1]

e In the third step, we define two extended function spaces

Fe= { f is convex function with unique minimizer on (—oo, 00) :
fl(foo,()]’ f’[l,oo)} are linear functions, f‘[o,l] € .7:},
Fu = {f € Fe: f‘(—oo,Z(f)] and f|[Z(f)7oo)are piece-wise linear functions

with at most three pieces }

Also, we define two extended geometric indexes f.(e; f), pm(e; f) for f € Fo:

po(e; f) = max{|t — Z(f)|: f(t) < ple; )}, pmlss f) = ule; f) — M(f),

where pu(e; f) satisfies
lmax{pu(e; f), f} = fII* = &

We will show in the third step that

_ooom(Ef) o PmlE f)
flén;zl Pm(05§ f) = flen]gu ﬁm(&?; f)

e Finally, in the fourth step, we will show that

in f)m(g;f) > inf f)m(af) _ 2
feFu Pm(ces )~ jer, Pmlcs; f)

wln

where Fj, = {f e Fu : f‘(_oo 2(0)] and f‘[Z(f) 00y 1€ linear functions}.

Step 1 Define a functional Ly,
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Ly F — ./T"l
(A.1.14)

[ Li(f),
where Lq(f) is defined as follows. Define the right slope on the left and the left slope on the

right to be

Ls(f) = tim L@t = I @) pooo o f @) = @ =)
n—0t n =0+ n

Both of the limits exist due to convexity. Let

f@im)+Ls-(t—xrm) 0<t<x,
(L1(f) (&) = F() t € [T m, Trm)] -

f(@rm) +Rs-(t —pm) 121>z,

Without loss of generality, we assume M (f) = 0. It is clear that
pm(ce; f) = pm(ce; La(f)),  M(L1(f)) =0, Li(f)(t) < f(£) vt € [0,1].
In what follows we will prove
pm(e; f) = pm(e; Li(f))- (A.1.15)

Let Ly (f) = max{Li(f), pm(c; f)}, then we have

1
IE:0) = TP = [ (e ) = () (0))
1
> [ ontes ) = 01 d (A.1.16)

252.

130



Inequality (A.1.15) then follows. Therefore, we have

e e f) o pm(ss La(f) - ., pm(ef)
(e ) 2 s (s La() 2 A (s ) (A-117)

Since F; C F, we also have

g PmE ) e pmlES) (A.1.18)

fef,om(ca;f) fer pm(CE;f)
This gives

e pmlEf) L pm(Ef)

inf ———+ = inf ——————~. A.1.19

P (s 1) = 125 pntes: 1) (4.1.19)
Step 2 Define a functional Lo,

Ly F — Fy
(A.1.20)
fr— La(f),

where Ly(f) is defined as follows. We first introduce two quantities:

1(6; f) = min{t : f() <6+ M(f)}, r(6; f) = max{t : f(¢) <6+ M(f)}.
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When there is no confusion, we will omit f, resulting in [(§),r(5). Now we define four

functions 11 (t), l25(), l3.5(t), l4(t). Recall the definition of z;,, and x,,, in (A.1.13).

f(:El,m) B f(O)

h(t) = ZEE S (0), when i >0,
0(t) = (t = a1,0) lim f@tm + ‘2 ~ @) |ty when Z(f) > 2 = 0,
() = M(f), when Z(f) = a1, =0,

bas(t) = 577075 (= 200+ M(£), when Z(7) > 0

bo5(t) = M(f), when Z(f) = 0,

bas(t) = 57— ZU00) + M), when Z(7) < 1.

ly5(t) = M(f), when Z(f) = 1,
Iy(t) = ‘W(f — Zrm) + f(Trm), when ., <1,

l4(t) = (zr,m — t) lim f(@rm = ) = f(@rm)

s—0t S

+ f(zrm), when Z(f) < zpm =1,

la(t) = M(f), when Z(f) = xpm = 1.
(A.1.21)

With these four functions, we can define a new function A(J; f), for 0 < ¢ < 1:

(h(6; £))(#) = max{l1(t), l2,5(t), I3,5(t), la(2) }-

When there is no confusion, we will write it as h(d). It’s obvious that

pm(ces h(pm(ce; f))) 2 pmlees ), lim pm(ce; (0)) < pm(ces f),

f(t) > (h(9)) (1), for 0 <t < 1(0), f(t) < (h())(t), for 1 >t > r(9),
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and that p,,(ce; h(0)) increases as § increases. Therefore, 309 € (0, pp(ce; f)] such that
pm(ce; h(80)) = pm(ce; f). We define La(f) to be h(dp). Since dy < pp(ce; f), we have

h(do)‘[o,l}/[ml,m,xr,m} = f‘[o,u/[wl,m,xr,m]’

and since pp,(ce; h(0)) = pm(ce; f), we have

{t : h(50) < pm(CE; f)} = [xl,maxnm}'
Therefore,

0 :Hf - ch2 - Hh(éﬂ) - gc||2

= [ (00 - 0u®)? -~ ((h000) () - 9e(0)?)

l,m

-/ " = ) (20— f — Bdt

l,m

/ (h— f)o (290 — f — B)dt
(21,m,1(60))U(r(d0),2rm )

(A.1.22)
+ / (h— f)_(2g0 — f — h)dt
[1(d0),r(b0)]

<

/ 2~ 1) (pmes: ) — So)d

(xl,mal((so))u(r(ao),ivr,m)

+ 2h = f)(pmlces f) — do)dt
[l(éo)ﬂ”(éo)]

1
<pn(esi )=o) [ (h= pt.
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It then follows that

lh = gul® = 1If = g1”

= /‘:T’m <(h —g) = (f - 91)2> dt

lym

_ /j’m(h —O(f +h—2g1)dt (A.1.23)

l,m

- /xr?m(h — P)(f +h—2gc)dt + /W 2(h = f)(ge — gr)dt

I,m Tl,m

1
=||h—gc||2—||f—gc||2+2<gc—gl>/ (h— f)dt > 0.
0

As a result, pp(e;h) < pm(e; f), which is pp(e; La(f)) < pm(e; f). Finally, as we have

Lo(f) € Fi, we know that

g ACTIEN inf pm(; f)

feF pm(cs; f) — feFu pmlcs; f)

Step 3 Since functions in F, have unique minimizer, we know that . (e; f) and pp,(e; f)
exist for all € > 0. As Fyy C Fo, pz(e; f) and p(e; f) also exist for functions in Fj. Now
for each f € Fy;, define a class of functions L3(f) = {f51752 € Fy:6y>0,00 > 0} such that

(&5 F51.60) < pml; f), maxl{iglrféigi o, Pmless f51.60) = pm(es; ).

Furthermore, define function fghgz by defining its values on three intervals (—oc,0), [0, 1],
(1,00). Specifically, for ¢t € [0, 1],
f51,52 (t) = f(t),

for t € (—00,0),

_ £(0) + LELm =10 Zim > 0
f51,52 (t) = 7 )
f(O) + min{_(sl_lv lirns—>0Jr M}ta Tim = 0
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and for ¢ € (1, 00),

Trm—1

) F(1) 4 L@rm)= Iy, Ty < 1
f51,52(t) = )
F(1) + max{6;, limy_yor LTI 1y gy =1

s

Then for any py,(ce; f) > & >0,

li f M m ; - — f
(oo | K ot MF)+ pm(ees £) = &3 = fov oo (A.1.24)

= || max{f,M(f) +pm(65;f) — 5} — f” < ce.
Therefore,

Hminf  pp(ce; f5,5,) > P f)— €.
apiant Pm(ce; fo1.5,) = pm(ce; ) =€

Since it holds for any py,(ce; f) > £ > 0, we have

lim inf B (CE:; 3 > e f).
max{61,2}—0+ pm(ce; f51,6,) = pm(ces f)

For any d1,62 > 0,

I max{fs, g0, M(f) + pm(e: )} = For.dull = [lmax{f, M(f) + pm(es )} = fll > e,

which yields that

ﬁm(g; f51,52) < pm(g; f)

Since L3(f) C Fu, we get

. pm(5§f) : ﬁm(f,f)
flenffu pm(ce; f) = flen}i:” pm(ce; f)
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Step 4 Now we define several sets of functions such that Fj; is the disjoint union of them.

Let
é(k‘l, ko) =A{f € Fu:f o is ki-piece linear function,
}( o (A.1.25)
f}(Z(f) 00) is ko-piece linear function}.
Then
Fu= U Glhka).
1<k,k2<3

It’s easy to see that F = G(1,1) and that

m — 5 VfeFL.

We are left to prove that

inf ﬁm(gvf) inf ﬁm(gvf)
feFu ﬁm(CE;f) = feFL ﬁm(cg;f>

Let
Gk)y= |J Gk ko), for k=2,3,4,5,6.

ki+ko=k

It suffices to prove that for £ > 3

. pm (e f) . pm(€; f)
inf /2L > inf 2L
FeG(k) pmce; f) — reG(k—1) pm(ce; f)

)

by proving which we will finish the final step.

Suppose the set of the turning points is S¢, then ‘St/{Z(f)}‘ =k —2>1. Suppose
¥ =max{z € S: f(z) =max{f(t) : t € S¢}}, ¢ =minS;, ¢, = maxS;.

Apparently x* # Z(f). Without loss of generality, assume z* > Z(f). Then by definition
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of 2*, f

[ 00) 15 8 linear function. We define a function L4(f) € G(k — 1),

f(t)v t<x*
(La(f)) (¢) = : (A.1.26)
f(z*) + lim,_, o+ fat)=fe"=s) (t—2a*), t>uz*

S

When f(z*) > M(f) + pm(ce; f), we have
pm(ce; La(f)) = pm(ce; f)s pm(&; La(f)) < pm(e; f)-

When (%) < M(f) + pm(cs; £), we have f(t) < f(z*) < M(f) + pm(ce; ). Denote pi, pr
to be the left and right root of f(t) = M(f)+ pm(e; f). Thenpy < a2, <t; < Z(f) < 2* <

Tr.m < pr. We have

| max{La(f), M(f) + pm(e; f)} — La( )]

= [T+l ) - a0 (A.1.27)

1 im $ P . — f(z* 3
3 Jim s (s ) M) = S

(M(f) + pim(es f) = f)?dt (A.1.28)

Similarly, || max{Ls(f), M(f) + pm(ce; £)} — La(f)|* can be split into 3 parts as well.

| max{Ls(f), M(f)+ pm(ce; f)} — La(f)|1?

= [0 4 nlesif) = PP+ [T+ plesi ) - PPt (a0)

1 ‘m S 5 (e — f(2"))3
S nlesi ) M)~ )
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For || max{f, M(f) + pm(ce; )} — fII* and || max{f, M(f) + pm(e; f)} — f|I?, they can be

split into 3 parts as well.

| max{f, M(f)+ pm(ce; )} = fII”

-/ " M) + ez ) — FPde+ [0+ pntesi£) - pPaes (a0

1 S

=~ lim om (ce; — f(a®).
3.0 Pl )+ M) = @)

| max{f, M(f) + pm(e; f)} — fII”

-/ M)+ Pl ) — e+ [0t + e - P (ans)
D t

1 im 5 o (£: — f(z*)3.
3 i f(ac*+8)—f(x*)(pm(€7f)+M(f) fe)

Since we have

Jo M(f) + P £) = )%t _< M(f) + pules f) = F(8) >3
S (M(F) + pmess ) — 2t \M(f)+ pmles; f ft) (A.1.32)
<(ﬁm€f )+ M(f f(x*))3
= \pmles; )+ M(f) — f(z*))
i (M) + pnle: f) = fPdt_ (et it )
L:f*(M( + pm(ce; f £2dt — \pm(cs; f +M — f(a*) (A.1.33)
§ <ﬁ — f(a*) >3
Pm(cg; f +M — fl@))
and
3 im0t )= (Om(8 f) + M(f) = f(27))°
Ym0+ =y (Bm(esi ) + M(f) = f(a))? (A.1.34)

(pm( L f)+M(f) - f(x*>>3
pm(ce; f) + M(f) — f(a*))

we know that

1 |lmax{f, M(f) + pm(e: £)} — fII? << (;f)+M(f)—f(fL‘*))>3.

2 |max{f, M(f) + pm(ce; )} — fII2 = \Bm(ces f) + M(f) — f(z*
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Given that

. S . S
lim < lim

w0 T +3) — (@) a0+ [@) — (@ —s)

we have

[ max{La(f), M(f) + pm(ce; [)} = La())II> —

Define function (Ls(f)) (¢)

[max{La(f), M(f) + pm(e; )} = La(H* _ 1

(Ls(f)) () =
e (A.1.35)
M+ (DO = MU () M) + Pt = LaOT
Then
pm(ce; Ls(f)) = pm(csi )y pm(e; Ls(f)) < pmle f),  Ls(f) € Gk —1).
Thus the statement is proved. ]

Now let’s turn to the proof of the geometric property of the minimizer, namely, for f € F,

max{(c/2)3,c} < pelesif) . (A.1.36)

pz(& f)

Proof. The right hand side of the inequality is straightforward. For the left hand side, we

prove a stronger version,

2> Z <;:((§;J?)>2 +i <%>3. (A.1.37)

Similar to Step 3 in the previous proof for the minimum, for any f € F, we have a class of
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functions { ]Egl’gz : 01,02}, but with a bit of abuse of notation, we define f~51’52 here as

f(@), t € [0,1]

F51.6:(8) = 3 £(0) + min{—07 7, lim, g L2100y t € (—00,0) -

F(1) + max {0y ! limg_yop L=I0=04 ¢ — 1) 1 e (1,00)

S

Similarly , we have

im 0, (€; f = pz(e; f), lim 0, (ce; f = p:(ce; f).
max{él,ég}—>0+p2( f51,52) Pz( f) max{él,ég}—>0+p2( f51,52) ,Uz( f)
Hence
sup paeif) _ sup paeif)

rer p=(ce; ) T tez, Pa(ces f)

Similar to the proof of the minimum, for f € F,, denote p;,p, to be the two roots of
ft) = M(f)+ pm(e; f), and denote ¢, ¢, to be the two roots of f(t) = M(f) + pm(ce; f).

Without loss of generality, we can assume p, = Z(f) + p.(e; f). We define four quantities:

Z(f)
A= / (i ) + M(f) — £)%t,

1

Z(f)
Ay — / (mcss £) + M(f) — f)%t,

o (A.1.38)
Bo= [ Guless )+ 2a(0) - P
Z(f)
Dr
Bi= [ (nless) 4 21(0) = £t
Z(f)
Then we know that
e? = | max{f, M(f) + pm(: f)} — f* = A1 + Ay, (A.1.39)
and that
*® = [|max{f, M(f) + pm(ce; )} — fI* = Do + A, (A.1.40)
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We also have

qgcul f))zz (w—Z(f))QZ <”Z<5?f>>2. (A141)

Next we will prove that

Ay (pr - Z(f))3 . < ACE) )3
As " \g—Z(f)) T \pa(es; )
For the ease of notation, we introduce four quantities w; = p, — Z(f) = p.(&; f), w2 =

G — Z(f) < polcsi £),01 = (S5 £), v2 = pm(es: £). Then we have

Ay fo (on + M(f) = f(pr —t))%dt
Az fo7 (2 + M(f) = f(gr — 1))t

(A.1.42)
_ wi [y (o1 + M(f) = f(py — wi - t))%dt
ws [ (v2 + M(f) = f(gr — wo - ))2dt.
We also have
M(f)+v1— f(pr —w1-t) = f(pr) — f(pr —w1-1)
_ f(pr)_f(pr_wl't)wl.t
w1 - t
(A.1.43)
> f(QT)_f(QT_U)Z't)wI‘t
wy -t
= 2 (f(a) ~ Flar —ws 1))

where the inequality follows from convexity of f as well as the fact that p,. > ¢, pr —w1 -t >

gr — we - t. Continuing with inequality (A.1.42), we have

2
Ay vl (U1@) ~ fla —wa ) dt <w1>3 (A1.44)
As 7w fy (Flar) = Flar —wa - 1))%dt w2
In addition, we have
Ag 1 w2
0> 2 A.145
Ay~ 3 px(es; f) ( )
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Therefore,

s (B) ara ()

N Ao+ Asg — As + Aj

1w wi 1 pz(5f) -
RV ACILT <wl>2 RV ACT) <pz(6; ) )2 (A.1.46)
Tl gy \we/) T 3 p=(cs; f)

Since this holds for all f € F, we have

2 3
5.3 p=(g; f) 1 p=(&; f)
‘ Z4<?‘£ﬁz(ce;f)> +4(?2§ﬁz<c5;f>>

A.1.3. Proof of Proposition 2.2.2

We first show that the local modulus of continuity w,(e; f) can be lower bounded by p,(¢; f).
Given f and e, define u. = sup{u : || f — full2 < e}. Let t; and ¢, (t, < Z(f) < t,) be the
two end points of the interval {t : f(t) < u.}, and without loss of generality let’s assume
that |t, — Z(f)| > |te — Z(f)|. This means that p,(g; f) = t, — Z(f). For § € (0,t, — ty),

consider function
g5(t) = max {f(t), o= e = It =9) tg)} . (A.1.47)

It is easy to verify that g is convex, with its minimum point at ¢, — J, and that ||f — gs|| <

|f — fu.ll <e. See a graphical illustration in Figure A.1. Therefore, taking 6 — 0 we have

wz(e; f) = %i_{%(tr —06) = pz(&; f)-
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ft)

t,— 4

Figure A.1: Illustration of construction of gs, colored red in the plot

Let’s switch to upper bound. Suppose g is a function such that || f — g|| < e, with minimum

point at Z(g) > Z(f). We will use proof by contradiction.

It Z(g) > Z(f) + 3p.(e; f), then 1 > Z(f) + 3p.(e; f). Recycling our notation, write
to(ue) = inf{t : f(t) < wuc} and t,(us) = sup{t : f(¢t) < u.}. Since f is a convex function, it

is continuous, hence f(t,(u:)) = u.. We have two cases: 1, g(t,(us)) > ue, 2, g(t,(ue)) < ue.

For case 1, we know g(t) > . for ¢;(u:) <t <t,(uc), so

tr(ue)
If - gl > / = )P = £
t(ue

For case 2, we know ¢(t) < u. for t,(us) <t < t.(ue) + 2p.(e; f), so

tr(ue)+2p2 (g5 f) u
I —gl? > / (M (b ty(us)))Rdt
t

r(ue) tr(us) — Z(f)
u’ 8pz(5§f)3 8 ‘ 42
> T ZF 3~ ez

Either case, the there is a contradiction. Therefore, Z(g) < Z(f) + 3p.(g; f).

Let’s now turn to wy,(g; f) and show firstly that w,,(e; f) > pm(e; f). In fact, if we take the
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convex function gs as defined in (A.1.47), we have that ||f — gs]| < ¢ and that

lim mings5(t) — Z(f) = pm(e; f),

§—0t ¢t
which completes the proof.

Next, we will show that wy,(g; f) can be upper bounded by p,,(g; f) up to a constant factor
of 3.

For any g € F such that ||f — g|]| < &, we can immediately obtain

M(g) — M(f) < pm(e; f)-

Otherwise, if M(g) — M(f) > pm(e; f), then g(t) > pp(e; f) + M(f) for all ¢, and hence

e? > ||f — gl = (M(g) = M(f) = pm(e; £))?(tr(ue) — ti(ue)) + [ fu. — fI? > €2

On the other hand, we need to show the minimum value of g cannot be too small compared
to M(f). For the ease of presentation, we assume that M (f) = 0 only for this part. As in
the previous parts, we write ty = inf{¢ : f(t) < wu.}, t, =sup{t: f(t) < u.}, and v, = t, —ty.
Graphically, v, is the width of the water-filling surface. Suppose that M(g) = —au. for
some o > 0. Consider the width of the set {t : g(t) < 0}, which we denote as yv. for
some v > 0. From Figure A.2, we see that the integral || f — g||2 has to contain the /5 area
of the three shaded triangles (the two triangles on the side might not exist). Given that

M(g) = —au. and |{t : g(t) < 0}| = yve, some calculation shows that

1 1 1\?
||f—QIIQZU§vs-3a27<1+<—a+ ) vo)
y a
1

where the second inequality follows from u2v. > €2. Fixing o and minimizing over v, we
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have that if o > 3, ||f — g||*> > €2, which is contradictory. Therefore, we have

M(f) — M(g) < 3pml(e; f).

f)

Figure A.2: Tllustration of upper bound proof

A.1.4. Proof of Theorem 2.2.3

We will first introduce two propositions, which we will prove later. Based on these two
propositions, we will finish proving the theorem.
Proposition A.1.1 (Penalty for super-efficiency in estimation of the minimizer). For any

estimator Z, if 3f € F such that B¢|Z — Z(f)| < cR.(e; f), then 3f1 € F, such that

Ef, (1Z — Z(£1)]) > hz(c)Ra(s; 1),

for 0 < ¢ < Z. hu(c) > 1{0.0042 < ¢ < £}0.111 (1 — ®(1 4+ ®71(3¢))) + 1{0 < ¢ <
0.0042} max{} (5)

2

®1(1-3¢c)3,0.111 (1 — (1 + ©71(3¢))) }.

W=

Proposition A.1.2 (Penalty for super-efficiency in estimation of the minimum). For any

estimator M, if 3f € F such that E\M — M(f)| < cRun(e; f), then 3fy € F, such that

Ef, [M — M(f1)] = hi(c)Ru(e; f1),
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for 0 < ¢ < 0.1, hp(e) > 1{0.1 > ¢ > 2=110.208118 + 1{0 < ¢ < 2 }2206c/4 12.

In the statement of the theorem in the main paper, we use y in the place of ¢, but since we
save - for other usage in the proofs of the proposition and lemmas, we take ¢ in the place

of the v in the statement of the theorem in the main paper.

From Proposition A.1.1 we know that
2
h.(c) > 0.286%3., for ¢ < 0.0042.

Suppose h(c) = 0.111(1—®(1 —zgc)) Then we know that h,(c) decreases with c increasing,

and since we also know log ( ) 5 decreases with c increasing when ¢ € (0,0.1), we know that

h h
inf :(0) - > min inf 27(0)1
c€[0.0042,0.1] 16 (l)§ AShS99 el b B 100 (l)g
C C
h. (kL 1
> 42%13392(10)1 > 0.0266 > L
SKS 10g (1(;@00) 3

From Proposition A.1.2 we know that

hm(c) 0.208118
>
2.06
log( BT ))
2 2

Therefore, we are only left to see the relationships between 25066, Z??c

inf

1
> 0.1520614 > ~.
cel %5552 0-1) log (1) 7

Wl
=

1
with log (1)%. We
have the following lemma that we will prove in Section A.2 on page 201.

Lemma A.1.4. For a < 0.08, 22,060 > 0.61y/log 1/a. For a < 0.005, z34 > 0.5994/log 1/c.

Since 0.08 > 2(05)7 we have for ¢ < 0.1,

1 1
1 1\3 1 1\3
hm(c) > min{?,0.61%/4.12} <log ) == <log ) .
c c
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For h,(c), we have, for ¢ < 0.1,
1 1/3\3 1\: 1 1\ 3
. 2
hZ(C) > mln{%,0.59936 (27> } <log C) = % (log C) .

Now we start proving the propositions.

Proof of Proposition A.1.1. We have the following two lemmas, which we will prove in Sec-

tion A.2 on page 203 and 209.

Lemma A.1.5. For any estimator Z, if 3f € F such that Ef|Z —Z(f)| < epu(e; f) , then
df1 € F, such that

]Efl(‘ZA —Z(f)l) = ilZ(C)pz(5§ f1)
~ 1
for e < 1. For 0 <¢<0.063, h.(c) > 1 ()5 @1(1 - 20)3.
Lemma A.1.6. For any estimator Z, if 3f € F such that Ef|2 —Z(f)| <cps(e; f) , then
df1 € F, such that

Efl(‘ZA - Z(f)l) = ilZ(c)Pz(5§ f1)

forc < 1. For0<c<0.2, hy(c) >0.1666 (1 — ®(1 + &~ (2¢))) .

Recall that, by Lemma 2.6.3, 0.308p.(¢; f) < R.(e;f) < %pz(a; f). Therefore, for any
estimator Z, if 3f € F such that E;|Z — Z(f)| < cR.(e; f), then 3f; € F, such that

Ef,(|Z — Z(f1)]) = hz(c)Ru(e; f1),
for ¢ < %

h.(c) >1{0.0042 < ¢ < %}0.111 (1—@(1+@ ' (3e))) +

2

1{c < 0.0042}max{é <237> ’ & 1(1—3¢)5,0.111 (1 — ®(1 + @ '(3¢))) }.
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Proof of Proposition A.1.2. Again we introduce a lemma and prove it in Section A.2 on

page 210.

Lemma A.1.7. For any estimator M, if 3f € F such that Es|M — M(f)| < cpm(s; f)
then Af1F, such that

Ep, (1M = M(f1)]) = hin(e)pm(e; f1)

~ 2
for ¢ < 1. For ¢ <0.103, hy(c) > 1{0.103 > ¢ > 25110.214362 + 1{c < 21 )25 /4.

According to Lemma 2.6.2, we have Ry, (&; f) < 1.03py(g; f). Therefore, we have, for any
estimator M, if 3f € F such that Ef\M — M(f)| < cRn(e; f), then 3f; € F, such that

Ef, |M — M(f1)| > him(c)Rin(e; f1)

(-1 (1)1 3
for ¢ < 1. For ¢ < 0.1, hy () > 1{0.1 > ¢ > 210208118 4 1{c < LD }23 o /4.12.

O]
A.1.5. Proof of Theorem 2.3.1
Recall that j is defined in Equation (A.1.1) and only depends on Y;. We have
E(1Z = 2(N) =E(1{j < j}Z = Z(N) + EQ{ > 732 = Z())) Ais)

<E(1{j < j}1.5m;) +E(1{j = j}Z — Z(])]).

We begin with bounding the first term.
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El,s(]l{.; < §}m3)

7*=1 00

=Y mp B (15 <G, i =hD) + Y, mu B ({7 < 4,5 = i1})
Jj1=3 J1=j*
=1 5 > -

< Y mp B ({0 < J, 0 =a) + Y, mp B (G <j,j =5n})
j1=3 J1=J*
31

< Z 2J _Jlmj*El,s(]l{zjjl < 2\/65\/ mjpjl < .7}) + mJ*P(J* S] < j)
J1=3
i1

<Y Y TImp B (UK e~ X s < 2Vt < )+
j1=3 (A.1.49)
i1
S o “mBrs (X 5 g~ X5, 5 < 2V6e\/my,, 1 < jH)+
Jj1=3

mjP(j* < j < j)

i1

=D 2 hmyE, (Es(ﬂ{le,%n% = Xjpiprs < 2VBeymL 1 < j}|Yl))+
j1=3
j -1
Z 2 myEy (ES(H{XJ&,%—‘S N Xj1,%jl—5 < 2v6e Vi J1 < ]}‘m))—i_
J1=3

myP(j* < j < ).

As bounding the expectations in first two terms of the right hand side of Inequality (A.1.49)
takes similar steps, we will walk through the steps for the first term. Note that only when
%jl + 6 < 271 the indicator function in the expectation can take 1, so in the following we

take ]1{%]-1 + 6 < 271} as an indicator function in the expectation without writing it out.

We introduce the following quantity for the (partly standardized) noise part of the statistic

defined in stopping-rule Section 2.3.1.

1
Eji = - (Wa(tji) — 2Wa(tji—1) + Waltji-2)) (A.1.50)
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where W5 is define in Equation (2.3.2).
Then for 2 < i < 27, we have

gjji ~ N(O, 652).

Hence for j; < 7% — 1 we have

EZ(ES(]I{XJLEH-&-G X]1,zjl+5 < 2f€vmj17j1 < L}HYE))
= Bu(Bs(L{(hy, 3, 46 = My, +5) VM —2/6e < ¢ 5 ot <5y (ALBL)

< E(Ea ({1005 +5 — g0z, +a)y/5, — 2V62 < —€; 2 HYDL{G < 7).

Further, for (u;, — i g M., , we have
) (M]17Zj1+5 #]1,1]-1-%4)\/77

pm(s; f)
(mmh)\/miﬁ

m(€; F)N p2(g; f) 93" —j1) <pz(a f)>2 (A.1.52)

3

1 Mm% 2 1 3k - 9

> 76220 —Jj1) < J ) > 930 =i1)9—3
V2 p=(e; f) V2

(K iz +5 = P iz, +4) /Mgy >

where the first inequality is due to Inequality (2.6.9), and the second inequality is due to the
definition of j* in Equation (A.1.2). We will use both the last and second to last quantity

in Inequality (A.1.52) later. Continuing with Inequality (A.1.51), we have

El(ES(ﬂ{Xj1,ijl+6 o XJ171]1+5 = 2\/>€V ]l’Jl < JHY}))

1 Bk i\ 9 8m;«
SEZ(ES(IL{%gb(J 93 (p(?f)> —avBe < -¢, ;. +6};1/)11{31@})
1
1

—j1— 8mj* % . ~
. <®(2_22(J ]3) \/§<pz(8;f)> )ﬂ{j1<‘7}>
(o

Bax_ s 1 ~
P2 — 220 "L ) (5 < )
\/g) {1 <J}

(A.1.53)

<E
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Note that for j; < j* —5, 2 — 2%(j*7j173)71% < 0. We have similar results for the

expectation in the second term of Inequality (A.1.49). Plugging them in, we have

El,s(]l{j < j}mj)
Jj*—5

oy A ~ i* g 3 —ji-3)-1 1 1 7
<SmpP*<j<j)+ > Y T ®(2 — 230" 19) 1%)1& (L{j1 <3}) x 2+
J1=3

-1

3
Y s 1 8myjx \ 2 ~
27" T (2 — 2207131 ( ! ) JE; (1{51 < j}) x 2
j1§_4 g V3 \pz(& f) ( )

Jj*—6

L . 2 2
<myex 20 P2 - 230" =14 \/;) +2D(2— 22 - \/Q)fmj*

Jj1=3

pz(&; f) 5. 27k8m . \/5 2 k8. \ 2 .
e T E e e ) e

49(2 -8 x +/2/3
<myje x 20 % ( T 0.008 /3) +24.3mj+ + 2p,(e; f)(24+ 14 0.5+ 0.25) + m=

< 24.4mj- +8p.(e; f) < 14.1p.(e; f).

(A.1.54)
The detailed calculations of the third inequality are based on Lemma A.1.2.
Now we can proceed with bounding the second term in Inequality (A.1.48).
B(L{j 2 j}1Z - Z(f)))
j 4 )
<Y B{jzii=Z-2(H)+ Y BEQ{=57=35}Z-Z(f)
j=1 Jj=j*-3
Jj -4
< D2 I mp B 2 561X -5 < Xjis -1} +41{ X2 < Xjir 1}
j=1

T AU X2 < Xjira ) +51{ X iris < X}

F0U{ X4 < Xjirga} +61{ X504 < X 1})) +6 x 8 x my
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= (e f) \/s V6e
pm(Es f) /My
6D (—3 : + 48m
IEET
iy 1.3 3
<48mye +2 ) 20 T mye (40(—/ /3(5)% x 230" i~y 4
7j=1
-2 é 3 x 230" i 1))+6<I>(—\/2/3.3(é)% x 23" =3=D))
2 1 1
< 48mj- + 2mj- <16<I>(—\/;) x 4+ 32@(—4\/;) x4t
o(-8y/2)
~2X 3Cave)
5 X @(—2\/5) X 16 x ! 46 x &(—V6) x L
3 12 x 2088 19 x 20=4v3)
B(—21/2/3) B(—/6)

< 20.9p.(e; f)-

O(—2v2x)

The third to last inequality is due to the fact that ) decreases with > 0 increasing.

Putting the two parts together, we have

~

E(Z - Z(f)]) < 35p2(e: /) < Ru(e: f). O (A.155)
al

A.1.6. Proof of Theorem 2.3.2

We will start by showing that the coverage is guaranteed. Recalling that we introduced the
notation j* to denote the step that the localization procedure chooses an interval relatively

far away from the right one:

W

7% =min{j : |4 —i;| > 5}. (A.1.56)

Then we know that |iju_; — ijw_1| < 4, so we have that |01k — | <621 —2 for

» 3k
ijJrk
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all £ > —1. Now we introduce the following lemma bounding the probability of stopping at
least K + 1 steps after j%.

Lemma A.1.8. For j* defined in Equation (A.1.56), and for K > 0, we have
P(j > "+ K+1) < o(-2)%.

In particular, for K, = (bég%}, P(j>j"+K,+1) <a.

Note that when j < j% 4+ K, we have |§J - ’L;k| < 12.2Ke —2 implying that Z(f) € [L,U].

Therefore, we have
P(Z(f) €CLa) 2 PG <j"+Ka) =1-P([ >+ Ka+1)>1—a. O

Proof of Lemma A.1.8. Now we will compute the probability that the stopping rule does
not stop K steps after 7. When j¥ = oo, J can never be larger that j*, hence we can only

consider the event {j* < oco}.

Ey, (11{5' > v K4+ 1% < oo}>

o

=B | D 1) > 51 + K + 1}1{j" = j1}
j1=3
=B | Y E(1{j > 51+ K + 1}Y)1{j" = jr} (A.1.57)
Ji1=3

<E (D ®(=2)F1{" =i}
j1=3

< d(—2)K.

The rationale for the first inequality in Equation (A.1.57) is as follows. Define the set of
all possible sequences (i.e. (i, ...,7j,+1+K)) starting from stage 0 to the stage j; + K + 1
that satisfies [i; — [ < 4 for j < ji, and [i; —4j[ > 5 for j = ji as Se(j1, K + 1).

Vs € Se(ji, K + 1), denote (i,...ip) in s as s(I,h), and denote the sequence (i, --- ,i5)
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produced by the localization procedure as $(I,h). If [ = h, we will abbreviate s(l,[) into
s(1) and $(l,1) into §(I). Then we know that for s € Se(ji, K + 1) with s(j1) <4} —5, we
have s(j) +6 < i} for j = j1+1,--- , K +1, therefore, 1; ()16 — 1j,s(j)+5 < 0. On the other
hand, for s € Se(j1, K + 1) with s(j1) > i}, +5, we have p; 4j)—¢ — 1j5(j)—5 < 0. Now we

define a sign function indicating which side s(j) is on to i

Sg(s,j) = sign{ij — s(j)}-

And for ease of expression, denote 7;; = Wa(tj;) — Wa(t;i—1) . Now we go back to the

analysis of the first inequality in Equation (A.1.57):

E.(14) > i + K + V) 1{" = 1)

=E( > Uj=i+K+150+1+K)=sHY)1{j" =j}
seSe(ji1,K+1)

<Es( ), W{min{Xj.g)1s — Xjs()s Xjs()=6 — Xjs()—5} = 2V2¢5e/m;,
seSe(ji1,K+1)

Vi=ji4+1,-,j1+K}1{3(0,j1 + 1+ K) = s}|V))1{;* = 51}

< D B u(resates) — Kislrssa(sd) 2 2V 20s8/M5,
seSe(j1,K+1)

Vi=g1+1,,j1+K}{30,51 + 1+ K) = s}|V))

< Z Es(l{mj " ,5(5)+68g(s,5) M " H,s(j)+58g(s.5) T Tis(3)+6Sg(s.5)
seSe(ji1,K+1)

— T4,5(j)+5S9(s,5) > 2\6055\/77%',\7]' =j1+1, 51+ K}1{3(0,51 + 1 + K) = 5}|YZ)

<Y E(M{Ts()+6Sesd) — Tisl)+5Se(sd) 2 2V,
seSe(j1,K+1)

Vi=j1+1,,j1+K}N{30,51 + 1+ K) = s}|V))

= Y O(-2FE(1{5(0,j1 + 1+ K) = s}|1})
seSe(j1,K+1)

= o(—2)%1{;" = ji}.

(A.1.58)
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Next we turn to the expected length, for which we introduce the following lemma for the
length of the confidence interval for the minimizer.
Lemma A.1.9 (Length of Confidence Interval for the Minimizer). For 0 < a < 0.3, the

expected length of the confidence interval given in (2.3.6) satisfies
E(CLo(Y)) < (24 x 28 —3) x 17.5 x p.(&; ) < CoaLzals; f).

Proof of Lemma A.1.9. Recall that we have the following notation for indicating the stage
where the localization procedure starts choosing the interval not close enough to the tar-
geting interval:

j =min{j : |i; — i} > 2}.
Now we have

E(m]) = E(mj]l{§ > j*—3}) +E(m3]l{j' <-4}

<8mye + E(my1{j > j,j <j* —4}) + E(m;1{j <j — 1,5 < j* —4})

-4

<2.(e /) +E(mz1{G < <5 =4} + > mE(U{j =4,j > j+1}).
j=1

(A.1.59)
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We will bound the second and the third term in Equation (A.1.59) as follows:

=4
E(m;1{j <j <j*—4}) <E(m;1{j < j* —4}) < Y myE(1{j = j})
=1
-
< Z mE(I{ X8 < Xjirgr, Gazgs < 1+ H{ Xm0 < Xjir g, tyam g1 < 1}

+ U X3 < Xjor 1, tjar—g 2 my b4+ H{ X o < Xjir 1, 85322 > mj})
+ U X s < Xjor1, tiar—a 2 myh + W XGarga < Xjaeg, 04 < 1})
j*—4
pml(g; f) 1 pm(€; f)
< 27" Jm*><2<I> M/ + O(————"22m;./m
Z ’ (@ p(ef) jcl\/Zf) - p=(es f) cxfa)
: 1

p=(c; f) SmJWCzﬂE))

«_ipz(es f) 3 Lyz 1 35— j) 1.3 1

< 3= _950 =) (= _950 -

;2 S (=28 (5)155) + 2230 x 2 x ()i 50)

_93"=d) Ly 1
+ ®(—22 X 3 (8)22q))

= 3 1 s
_ J*—j—3 _ 95" —j—4) _ 5(*=3-3)

432 pa(e; )(@( 25 2/3) + B(~—23 2/3)

£ B(—3x 230" i) 2/3))

> 1 3. : 1 3. : 3 3.
< 4p.(&; f) ><;(2@(—2\/322’)+2j‘1>(—\/§22j)+2”<I>(—2\/§223)))
< 8pa(e; ) x (B(—v/2/3) + ®(—2/2/3) + &(—

20 (—4/V3) + 28(—8/V3) + 28(—12/V/3)] @(1_8\/%).
L= 2%y

(A.1.60)

The last inequality in due to %ng) decreases with z > 0 increases. Now we turn to the
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third term in Equation (A.1.59).

jr—4

> mE({j=4,j > j+1})

j=1
i 4

= mE(Eo(j = YD) 1{j > j +1})
j=1

=4
<> mE (Bs(X;;, 16— X545 < 2V2ee /iy YVI)1{j = j + 1}+
j=1

ES(Xj,%jfﬁ - Xj,%jﬁ% < 2ﬂcs€vmj|yl)]l{3 >j+13)
Jr—4

4 _pmlEf) VT
< 2 miB(20(2 - U m Wi 2+ 1)

(A.1.61)

j=1
g TR N
< ; 9J —Jpz(i’f) X 29(2 — 2]26:)1511 (]l{] >J+ 1})
Jjr—14
< Z 9J*—J pz(gvf) x 2@,(2 _ 25(] —3—4)M)
j=1
< 80,51 1) (B(2 = V/2/3) + 20(2 — 4/3) + 46(2 = 8 X V/2/5) 1 5o

Combining them together, now we can turn to the original Equation (A.1.59), for which we
have

E(m;) < 17.5pz(e; f). (A.1.62)

Therefore,

E(CLq) < (24 x 2K = 3) x E(m;) < (24 x 2K = 3) x 17.5p.(¢; f). (A.1.63)

Since L, o (&5 f) > baw:(e/3; f) > bap:(g; f)/3 when 0 < a < 0.3, we have the statement.
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A.1.7. Proof of Theorem 2.3.3

In addition to the notation introduced in the proof of Theorem 2.3.1, we define the following

bias and variance terms.

~ 1 [ZN
f= / T f(t)dt, (A.1.64)
m: Ji.
J s+ A—1
J
.1
3= (Wt ) = Walti 4 a1)s (A.1.65)
j
where
A=2 (]l{Xﬁ}'*G ~Xjis S 205} = ]l{Xﬁ;% X5 = 2‘7j}> '

Therefore, we have:

Epse((M = M(f))?) = Epe((f = M(£)* + 3% +23(f = M(£))
. 242 . (A.1.66)
E(27777).

m; p=(&; f)

The second equation is because Y;, Yy and Y, are mutually independent, and taking the

conditional expectation leads to the equation.

For the second term of the right hand side of Inequality (A.1.66), we have the following
lemma that we will prove later:

Lemma A.1.10.

E(ijj*) _ ?pr(E;f)SQW(E;f)2' (A.1.67)

For the first term of the right hand side of Inequality (A.1.66), we have
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El,s((f - M(f))Q)

= El,s((f - M(f))2]l{3 < j}) + El,s((f - M(f))Z]l{j > j})

(A.1.68)

And for the first term in Equation A.1.68, we have

Eis((f = M(£))*1{j < j})

< B (((F = my)+ + (35, = M(D)*14G < 3})
< 2Els< — )+ )*1{j < g}) + 2Ezs((uj,gj — M(£))*1{j < J}>
< 2Els< i

(A.1.69)
Therefore, going back to Inequality A.1.68, we have
El,s((f - M(f))Q)

< 2B, (((f = 152.)+) 20 < 3}) + Eus((F = MDY > 7)) (A.1.70)

+ 2E; (g((ﬂg@ - M3735)+>2ﬂ{3 < J}) + 2K (4(1@7;3 —M(f)*1{j < J}> :

To bound each term in Inequality (A.1.70), we introduce and prove the following proposition.

Proposition A.1.3.

Ers ((f = M(£))?1{7 > j}) < 12003p(s; f)2, (A1.71)
El’s(((f_ Hii )+ 1 < J}) < 13064pm(c; f)?, (A.1.72)
Bus ((#;,a3 - M($)"1{j < j}) < 3104pm(s; f)?, (A.1.73)

Eis <((M3,;3. = u;,g5)+>211{3 < 5}) < 50857 pm (&5 f)?. (A.1.74)
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With proposition applied to Inequality (A.1.70) and Lemma A.1.10, and going back to

Inequality (A.1.66), we have the statement of the theorem.

Now we are left with proving Proposition A.1.3 and Lemma A.1.10. Before we proceed, we
introduce and prove a lemma

Lemma A.1.11. P(j < o) = 1.

Proof. To prove this, we only need to prove lim;_,o, P(§ > j) = 0. Suppose j > j* + 3. For

n=Jj+2
: pm(g; f)
mln{/ijljjl_% - ﬂjljjl +5 ,Ujljjl —6 ,Ujhgjl _5} < 13.5m;, (5 f) .
Since
1
8% > pa(e; fom (e ) = 5%, (A.1.75)
we have

min{”jl,%jl +6 Hjl:%jl +5° Mjlﬂjl -6 ’U’jh%jl *5}mj1/(cs W)

< L m2
. o (A.1.76)
= vs p(e; )3 13:D0m{Es f) o —stnzaten 1.
=~ Cs\/épm(g'f) pz(€ f) pz(€,f)
=301 —i"+2)
<13.5-2
Therefore,
P(j > j)
=L (ES(HJI =j* +2]1{H11n{ G154 116 le’%j1+57Xj17%j1—6 _ le,ijl_g)} S 20'j1}|Yl))
—_ ( _ ) ‘ .
= <H§1 Sjr42®(-2+135- 2]1"’”2)) < B(—1.85)77"2,
(A.1.77)

Therefore, lim;_,o0 P(j > §) < lim;_y00 ®(—1.85)777"72 = 0.

160



Continuing with the proof of the Proposition A.1.3, we have the following lemmas that we
will prove in the Section A.2 (page 212, 217, 219 and 221).

Lemma A.1.12.

Ers((f = M(f)*1{j > j})

, (A.1.78)
<(5760V + 2)pm(e: £)* + T8V pm(e: )* + 15 pm (5 ),
where V = sup,sq 22 ®(2 — z).
Lemma A.1.13.
P 24 5
Bio(((F = 155.)4)° 10 < J}) < 6355.2V pun(es )2 (A.1.79)

where V = sup,~q 22®(2 — ).

Lemma A.1.14.

$(—1.85)
(1—-®(-2+ %))

Dom(E 2239)Q
(A.1.80)

Bio (55— M(D)1G < J}) <3 x (25428

J

where Q = sup, o z*®(—x).

Lemma A.1.15.

2 o
E1s <((% —m3),) Wi < j}) < Q X 277075 X p(=: )2 + Q X 238501 X (e )2,
(A.1.81)

where Q = sup, o x*®(—x).
These four lemmas combined with Lemma A.1.3 give the statement of Proposition A.1.3.

Finally we will prove Lemma A.1.10.

Proof of Lemma A.1.10. Note that this lemma is used to bound the term pii?%[g(gﬁfj*),
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so in the proof we will start with bounding this term. We have

8e2c? G
pz(&; f) ( )
< 16¢2p(e; £)PE(2")

— 16202, [E(2 7" 1{j < j* +2}) + E{2 " 1{j > j* + 3})]
< 64C§pm(5§ f)2 + 1663:0771(5; f)2(2j_j*]l{§ > 5"+ 3})

= 64¢2pm(s; f)?

(A.1.82)

e oA Tom(g;
+16¢pm(s )*Ers( Y 2V L{j =ity < ”1(6f) +Z(f)}
J125*+3

L ax A . 7Pm(5; f)
J1—7 = 4 BLELLA NS A
+ | E 2 IRY] Ji,t; > 16 —i—Z(f)})
J125*+3

Now we will bound the second term and the third term in the Inequality (A.1.82). Without

loss of generality, we can assume

sup{t > Z(f) : f(t) < pm(e; f) + M(f)} = p(&; f) + Z(f),

because otherwise the following would hold

min{t < Z(f) : f(t) < pm(e; f) + M(f)} = Z(f) = p=(&; /).

and one only need to flip everything around with Z(f) being the center. Then for the
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second term we have

16¢2 pi (&5 f) Els Z 21" 1{j = jy, t; i _M +Z(f)})

W5 16
Tpm(e; f)
- 1608pm(8 f El8|: Z 231 - ]]-{.] _.]1’ 1, z S 1%176 +Z(f)a
J1>j*+3
. o 1 V1
Vit+2<75<j1— 17€j’%j+6\/§7058 >2- m(/ﬁj,zﬁﬁ - Nj,%j+5)}}
Tpm(s; f)
<16c2pm(s; )2 Y 20 Ez[ S0 =gy, < T 2D,
J1>j*+3
. o 1 V1
Vit+2<5<j1— 1’€j’%j+6fTC5 >2-— NG (Hj,{j+6 Hjis +5)}|Y)]
7 .
<6l Y P m[, < D )
J1>2g*+3
. . V5 pm(e; £)(5p=(e; ) + 6my) }
E;(I{Vji*+2<4< 1,&. - >2— Y,
s( { J J<Jji— 446 ﬂCSE pz(E;f) }| l)
Tom(€;
< 16c2pm(e; f)? Z 2N—IR, [ﬂ{tn,zﬂ < pm1(6f) +Z(f)}
J1=23*+3
1 pm(g; )V p(g f) 7 -
H§1j+2q)( 2+ m ; z \[CS ( +6*2J 32))
Tom(e; f
<16 Y 2 E[if,, < Mf6)+z<f>}1
J1>j*+3
2]’*—1‘—2 7 L
Jj1—1 —j—2
5L 0@ (= 2+T(E+6*2J )
Tpm/(€; NPT
< 16¢§pm(€; f)2 Z 2]1 -Jj* E, [ﬂ{tgl,z“ < pm1(6f) _|_Z(f)}] <I>(—1,8)Jl J 2.
J125*+3

(A.1.83)
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Now we go to the third term in the Inequality (A.1.82).

1603pm(5;f)2El75( Z 21T 1{j = Ji,t; > Tom(c: F) +2Z(f)})

= 16
J12j*+3
— 16¢2p, (e: F)2 -3 s Tom(E )
= 16c2pm(e; )> Y 2T (145 = gty > —1 Z(f)})
J12j*+3
_1p2 .2 j1—5"* A, Tom(g; f)
- IGCer(67f> Z 2 El,s(]l{.] _Jlatjl > T+Z(f)}7
J12j*+3
" o VT
Vit+2<j<j-1, _Ejjj,g, >2- Ts(uj,gj,g - /lj72j75)}) (A.1.84)
2 m2 j1—j* C_Tpml(s f)
< 16czpml(s; f) Z 2Ry | 1{ty, > —16 T Z(f)}

1257 +3

B (1{vj* +2<j < ji—1,— zz}m)]

1
Eirims——
PTO | mjcse

SLCTACTHEDY 2jl_j*Ez[]l{t3>7pm1(g;f)+Z(f)}]‘1>(—2)jl_j*_2-
J12j5*+3

Combining Inequality (A.1.83) and Inequality (A.1.84), back to the original Inequality
(A.1.82)

2.2
8e“cs

pz(5§f)

< 64 pm(e; £)? + 16¢2pm (s f)2<

E(27")

> oI m 1ty < Dy 2] ergn
J125*+3
i Tpm(e; f) gt 2 (A.1.85)
+ Y PR |1{t; > 2D (="
J125*+3

< 642 pm(e: )2 + 162 pm(s )2 S 20T B(—1.8)0 T2
J125*+3

1
= 642 pm (5 )2 + 162 pm(e; f)? + 8D(—1.8) *

1—2®(—1.8)

<702 pm(e; )2 = 210pm(s; £)2
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Therefore, we have

w

E(29") < 5 pm(Es f)pa(e5 )

|
(©)

A.1.8. Proof of Theorem 2.3.4

We will prove the following two lemmas separately, which give rise to the theorem.
Lemma A.1.16 (Coverage of the Confidence Interval for the Minimum). For any 0 < a <
1, the confidence interval Cly, o given in (2.3.10) is a 1 — o confidence interval.

Lemma A.1.17 (Length of the Confidence Interval for the Minimum). For 0 < a < 1, the

expected length of the confidence interval given in (2.3.10) satisfies

E(|fhz - fl0|) < Cm,ozpm(s;f)v fOT’ all f S ./—",

where ¢ o s a constant depending only on c.

Further, when 0 < a < 0.3, we have

E(‘fhz - flo‘) < Cm,apm(a f) < Cm,aLm,a(€§ f)a f07" all f € fa

where Cy, o is an absolute constant depending only on «.
Proof of Lemma A.1.16. Define five events:

E=1{2()) ¢ [t(i—K%—1)+7E5,K%71—5’t(j‘—K%—l)+,i(57K%71)++4]}
Bi={j>j"+Ks+1}

F={j<j -2-Ka} (A.1.86)
G ={fn <M(f)}

H = {fio > M(f)}-
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By definition {M(f) € [fio, fri]} = G° N H¢. We will bound the probabilities of the above

events.

Recalling K, = [bgkg%w, then with Lemma A.1.8 we have

P(j>"+Ks+1)<a,

When the event E{ = {j < j* + K,} occurs, we have

Z(f) € [t(ija—l)Jr,%(]@_Ka_lM757t(}-fKa71)+,2(5_K(¥_1>++4}v

so P(E) <

[0

To bound P(F’), we introduce the following lemma (proved in Section A.2 page 226) showing

the procedure can not stop too early.

Lemma A.1.18. When K > 4, we have
Pl<j —2-R)<d(-23K2-3 49 2
- - 1 —exp (—40)°

Now with this lemma, and take K, = max{4, 2+ [log, (2 — e H(§)]} > max{4, 2+

[2logy max{2 — ®~1((1 — e710)2),1} + 1]}, we know that

This gives P(F) < §.

Now we will introduce two more lemmas that build up the remaining foundation of the

proof, which are proved in Section A.2 (page 226 and 227).
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Lemma A.1.19.

(6
P(G|Z(f) € [t(j'—K%71)+,z@,K%71)f5,tg,K%,1)%;(5_4{%71”%]) < (A.1.87)

Lemma A.1.20.

P(H|E°N F°) < %. (A.1.88)
With these additional lemmas, we have
P(M(f) € Clna(Y))
> P(E°N FCNG°N HE)
> P(E{NF°NG°NH®)
> (1 — P(H|ES N F°) — P(G|ES N F©))P(ES N F°)
> — P(H|ES 1 F¥)P(ES N F¥) + P(G° 1 B 1 F°) (A.1.89)
> —%P(Ef NFe) + P(G° N ES) — P((G°N ES) N F)
> —% + P(ES) — P(ESNG) — P(F)
> —5 41~ P(B)) - P(G|E}) - P(F)
! a
>_—41--_=_Z —1-
7 +1 11 1l—a
]
Proof of Lemma A.1.17.
E(|fri — fol)
= E((SiR—iL,%ce + Z%C@ + \/g)#)
mj-l-f(%
u (A.1.90)
QTC g 15 %
a4+ za = R(230—7")
< (Sip—iya + 22 +V3) N (22V797)
Ko

< (Sig—ip,e +2e + V3)272 e - dpp(e; fIE(2209),
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Similarly to the way we bound variance in Theorem 2.3.3, we have

]E(Q%G*j*))

1
30

\V]

<2B{j < j*+2)) + BRI > 57 +3))
(A.1.91)

<24 2V2d(—1.85)

| =

1—20(—1.85)

< 2.16.

According to the definition of 5; S; o is decided by the following inequality

R—IL, ) —iL, g

(1= ®(— S ip,2))i > 1 - %. (A.1.92)

Therefore,
1

=-o'1-(1- %)iru ). (A.1.93)

S

. (o7
R—ULs 7y

Furthermore, we have

iR —ir
_ (A.1.94)
—9x2x25 x 2%,
4
so we know that (SiniL,% +za + V3)272 ¢, only depend on a. Therefore,
E(’fhz - flo‘) < Cm,ozpm(g; f) (A'1'95)
Since for 0 < a0 < 0.3, we have
3
(e f) < 3om(e/3: f) < = Lunal&: /),
(0%
we get our statement.
L]
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A.1.9. Analysis of Lower Bounds of the Benchmarks in Regression Setting

To establish the optimality of the procedures, we need to analyze the lower bounds of the

benchmarks. Compared with the white noise model, we will incur an additional discretiza-

tion error.

Define the discretization errors for Z(f) and M (f) as

©z<n7f) :maX{Z(g) 396]:79(531‘) :f(:ljl),Z:O, 7n}

—min{Z(g) : g € F,g9(z;) = f(x;),i=0,--- ,n}

(A.1.96)

gm(nmf) :max{M(g) IQG.F,Q(Z‘Z') :f(xz)7Z:0’ 7n}

—min{M(g) : g € F,g(x;) = f(z;),i=0,--- ,n}

(A.1.97)

It is easy to see that 0 < D.(n, f) < % and any value in [0, %) can be taken by ©.(n, f) for

some f € F.

The lower bounds for the benchmarks are given as follows.

Proposition A.1.4. Let Rz,n(a; 1), mn(a 1), Zan(o 1), ma’n(a;f) be defined as in
(2.4.2). Suppose 0 < o < 0.3. There exist constants CZ,C’m,C’Z,a,C’m@ > 0 such that for
all f € F,

~ ~ g (o
R.n(0;f) > C. sup ps( < Ay [npz(—=:g ) v
veantn) VY Vi

~ ~ a g

Rm,n o;f) > Cp sup Pm ( A /npz — 4 ) m

~ ~ o o (1-— 2a

Lz,oe,n o, f) > Cz,a sup pz < npz Y ) V———"9.(n, f),
(7:1) geonin) VY V' D f)

~ ~ o o (1-— 2a
Lm,a,n(“? f) > Cina SUp P ( npz ) ) V ———"Dp(n, f),
seanin) " VY Vi

D:(n

N

(A.1.98)



where

Gn(f) ={g € F:g(xi) = f(x;), for all 0 < i < n}. (A.1.99)

Compared with the lower bounds in the white noise model, the lower bounds in the regres-
sion model contain additional discretization errors, which are in general non-vanishing for

fixed n as the noise level o — 0.

Proof of Proposition A.1.4. Similar to white noise model. The probability density under

truth f is:
()2
P+ lf) = Mgy exp (- B2 20
Hence
P(yo, -+ ynlf) Dico(f(@i) — g(@:)) Qys — f (i) — g(:))

).

— exp(

(Yo, Ynl9) 202

Let 1 = 1, denoting the truth is f, § = —1, denoting the truth is g. And suppose 0 is an

n Nl (L ) L (s
estimator of 8. Then we know that izo(f(@:) g(wl){fi” 2/ (@) =39(@0) is sufficient statistic

for 0, we further standardize this statistic by 1,(f,g) = \/Z?:o L(f(z:) — g(2:))? and o,

o o (@i) — g(xi)(yi — 5.f (@) — 39(xi)) ln(f; 9)
- e o
Then let § = W. We know that
. 1 .
Ef(1Z2 = 2(N)) = 12(f) = Z(9)|Es=1(510 — 0]),
Ey(1Z ~ 2(9))) = 12(f) ~ Z(9)|Eo=1(516 — 0]).
Therefore, similar to white noise model, we have
R n(o; f) > sup{|Z(9) — Z(f)| : ln(f, 9) < 0/\/n}®(=0.5). (A.1.100)
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For minimum, similar procedure shows that

R0 £) = sup{| M (g) — M(f)| : In(f. 9) < 0/n}(~0.5). (A.1.101)

For confidence interval, for 0 < a < 0.3, similar to the white noise model, we have, for

ClI€Z,an({f 9}),

EfL(CT) 2 |Z(f) = Z(9)|(1 = 2a = TV (Pyn, Pyn))

> 1Z2(f) = Z(9(1 = 2a = \/X*(Pn, Pyn))-

where Py, is the distribution of the regression model with n+-1 observations corresponding

to f.

Further, we have

X (P Pyn) =
| exp (a2 = fei)an = o)~ st

o2

(Yo, -+ ynlg)dyody: - - - dyn, — 1
L(f, 9)*

= exp( /n

) L.

(A.1.102)

Picking g € F such that [,,(f,g) < %ﬁ, then we have E;L(CT) > (0.6 —2a)|Z(f) — Z(g)|.

Hence

L am(o; f) > (0.6 = 2a)sup{|Z(g9) — Z(f)] : la(f,9) < %o/\/ﬁ}. (A.1.103)

Similarly, we have

Lnan(3.1) > (06— 20) sup{|M(g) ~ M(F)| - 1(f,9) < 5o/va).  (A1104)
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Further, we have the following lemma, which we prove in Section A.2 (page 228). Recall
that the function class of convex functions having the same values with f on xg,z1, -+, x,
is Go(f) ={g9 € F:g(x;) = f(x;),i =0,1,--- ,n}, defined in Equation (A.1.99). Then we
know that Py, = Py, for all g € G,(f).

Lemma A.1.21. For any h € G,(f). When p.( h) > 1/2n, let

o .
Voén’

Gnon(t) = max{h(t), M(h) + ,omw%; h)}.

Then we have

ln(fa gn,o,h) < 0'2/71.

When p,( h) <1/2n, let

g .
Vén’

o (£) = maxc{(t), M(R) + po(—=3 )

NG sh)}s

g
2npz(\/ﬁ

then we will have

ln(fﬂ gn,a,h) < U2/n.

Let t;(h) = inf{gn on(t) > h(t)},t-(h) = sup{gn,on(t) > h(t)}, similar to the white noise

model, we know that for any § > 0, exists g, 41,515 In,o.hsr € F, such that
ln(fa gn,a,h,E,l) < Uz/nv ln(fa gn,o,h,tS,r) < 02/n,
Z(Gn,ons) < ti+ 0, Z(gnonsr) = tr — 0,

and

. g o o
M(gn,a,h,é,r) = M(gn,a,h,é,l) = mln{ﬂm(ﬁ? h), pm(\/ﬁ; h) 2npz(ﬁ§ h)}
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Therefore,

sup{|Z(g) = Z(f)| : ln(f,9) < 0/V/n,g € F}

1
> sup = lm (Z(gnonor) — Z(9neohsi))
heGn (f) 2 50+

1
= sup o (tr —1) (A.1.105)
heGn(f) 2

g
sup  po(—=;h)}(1A
heGn(f) V6N

(Z.h) <1A (Z.h)
sup 54~ 4,02 np(—=; )
heGn(f) v’ vn

>

m(%m»

>

N N

sup{|Z(g9) — Z(f)| : In(f,9) < 0/3V/n,g € F}

1
> sup o lim (Z(gn,o/3,h,6,r) - Z(gn,a/ii,h,é,l))
heGn (f) 2 50+

1

= sup gty —1) 2 (A.1.106)
hegn(f)

> 2 sup pu( T HLA 200 )

-2 hegf()f) ? 3\/@’ 3vobn
1 1 1 o o h

> - sup —6 41p.(—=:h) (1/\ np:(—=; ))7
2 hegn(f) 9 vn v

sup{|M(g) — M(f)| : In(f,9) < 0/Vn,g € F}

g

>mm{pm(\/(i )pm(r h) anz(r ;h)} (A.1.107)

1 o
> 547 1 min{py, (—

npz
f
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and

sup{|M(g) — M(f)| : ln(f,9) < 0/3V/n, g € F}
Zmin{pm(%;h%pm(%;h) 2npz(ﬁ;h)} (A.1.108)

1

564 min{pn (-7 T ol )y o )

v

Getting back to Inequalities (A.1.100),(A.1.101), (A.1.103), (A.1.104), we have

~ 1 1 o o
R, n(0;f) > -®(—-0.5)54"1 sup p,(—=;h) <1 A nps ih > , A.1.109
2 hegn(f) \/ﬁ (f ) ( )
R0 f) > ®(—0.5)5471  sup Pz ( np.(——; ) (A.1.110)
heGn(f) Vn
~ 1 1 1 o o
B 0 20b s St (10 o ) (s
2 9 heGn(f Vn Vn ( )
~ 1 1 o o
Liman(o; f) > (0.6 —2a) 671 sup pp(—=;h ( W) (A.1.112)
9 hegu(r)  Vn Vn

Now we turn to the discretization error.

Since for any g € G,(f), we have 3P (Yo, Y1, ,yn) = 1 for all (yo,y1, - ,yn) € R™.

Therefore, for any estimator Z, we have

Ey\Z — Z(9)| + Bg|Z = Z()) = By (12 = Z(9)| +1Z = Z())])

> Es|Z(f) = Z(9)| = |12(f) = Z(9)|-

Hence we have

Realoi )2 5 swp 12(1) = 2(9)] = {2:(n.).
9€Gn(f)

Similarly, we have R,,,(o;f) > 1Dm(n, f). For the confidence interval, we have for any
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g € Gn(f), and for any CI € I, o n,({f, 9}),

ErL(CT) > (1= Pp(Z(f) € CI) — P(Z(9) ¢ CI))  1Z(f) — Z(g)]

> (1 =20)|2(f) = Z(9).

Hence we have

Foon(oif) > (1—20). %@Z(n, ).

Similarly, we have Ly, an(c; f) > (1 - 2a) - $Dm(n, f).

A.1.10. Proof of Theorem 2.4.1

With Proposition A.1.4, to prove the theorem, we only need to prove the following two
propositions:

Proposition A.1.5. For Z defined in (2.4.5), we have

E(1Z - Z(f)]) < Clpz(;ﬁ;in- (A.1.113)

Proposition A.1.6. For Z defined in (2.4.5), if suphegn(f){pz(%; h)} < 5=, we have

E(|Z - Z(f)]) < Co sup p.(—=;h)

o
sh) +9.(n, f). (A.1.114)
hEgn(f) \/ﬁ

npz(%

Let Cq = %—1—4, where C, is defined in (A.1.98), gives the statement of the theorem.
We first give the main part of the proof of the two propositions and then give the proofs of

the lemmas in there.
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Proof of Proposition A.1.5.

E(|Z - Z(f)]) =B(1{] < 3} Z - 2(5)|) + E(1{3 > 3}|Z - Z2())])

<E1{3 < }}1.5m3) + E1{3 > 3}Z - 2(f)))

(A.1.115)

To bound the two terms, we give two lemmas below, the proofs of the lemmas are in Section

A.2 (page 228, 230).

Lemma A.1.22.

E(1{3 < j}1.5m3) < czlpz(%; )+ %B{J <j* -3} (A.1.116)
Lemma A.1.23.
E(1{3 > 3}Z - 2(f)]) Sc,zzpz(%; ) (A.1.117)

Therefore,

A g

BZ=Z(1)) < (e +ea)po( = >+17;L51{Jsf—3}gélpz,(jﬁ;mf’. (A.1.118)

O]

Proof of Proposition A.1.6. since suphegn(f){pz(ﬁ;h)} < 5=, we know that |{i : f(z;) =
min{f(z;) : 0 < k < n}}| = 1. Suppose imin € {i : f(z;) = min{f(z) : 0 <k <n}}. Let h
be the piece wise linear function such that h(x;) = f(x;) for all 0 < i < n, and h is linear

on all the sub-intervals [k/n,k + 1/n], for 0 <k <n — 1. It is clear that Z(h) = x;,,,,.
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Then we have

E(Z —Z(f)))
<E(Z - Z(h)) +12(h) - Z(f)] (A.1.119)
<E(Z — Z(h)|) + D (n, f)

= E(1{j < 00}|Z = Z(R)]) + E(L{j = 00}|Z = Z(R)]) + D (n, [).

Also, we can further split the first and second terms by the {j < j} and {j > j} to have

E(1{j < oo}|Z — Z(h))) (A.1.120)

= E(1{j < oo}1{j < 3}|Z — Z(h)]) + B(1{j < oo}1{j > j}|Z — Z(h)]),
and
E(1{j = 00}|Z — Z(h)|)

=E(1{j = 00}1{j < JHZ — Z(h)|) + E(1{j = 00} 1{j > j}|Z — Z(h)|)  (A.L121)

= E(1{j = 0o} 1{j = 3}|Z — Z(h)).

Therefore,

E(1Z - Z(f)))
<E(1{j < 0o} 1{j < 3}HZ — Z(W)|) + E(1{j < 00} 1{j > 3} Z — Z(h)])
) ) (A.1.122)
+E(1{j = 00} 1{] > j}Z — Z(h)|) + D:(n, f)

=E(1{j < 0o}1{j < J}Z — Z(W)|) + E(1L{3 > J}|Z — Z(R)]) + D (n, [)

Finally, with the help of the following lemmas (proved in Section A.2, page 230, 231), we

prove the proposition.
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Lemma A.1.24.

E(L{j < 00} 1{j < HZ = Z(R))) < ea1po( i) npz(%; 7) (A.1.123)
Lemma A.1.25.

E(1{3 > j}Z - Z(h))) < cm(%; ) npz(%; ) (A.1.124)

]

A.1.11. Proof of Theorem 2.4.2

With Proposition A.1.4, we prove the theorem by proving the following three lemmas:

Lemma A.1.26 (length of the confidence interval for minimizer).

o 1
73]0)4‘5)-

EfL(CI,o(Y)) < ég,a(copz(f

Lemma A.1.27. When suphegn(f){pz(%; h)} < 5= , we have

EfL(CI,o(Y)) < Con sup ps(

g
—:h)
heGn(f) VN

npz(%; h) +29.(n, f)

Lemma A.1.28 (coverage of the confidence interval for minimizer).

P(Z(f)eCL.a(Y)) >1— o

éQ,a(gO+2)\/§ C:'2,a
Cz,a ’ Cz,ce

+ —2_1}, then we have the statement of the theorem.

Let C3,o = max{ T
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Proof of Lemma A.1.26.

EfL(CIZ,oc(Y))
273 o 273
=E(U—-L)=——) < (24 x 2% —3) . E(=)
n n

. .
_ Ko o2 N ojoge Cinga (A.1.125)
= (4% 278 =3)B(Y 271{3=j}+ ) 271{3 =j})

Jj=1 J=3*

K 27 = . ~ - -

<(4x278 =3) (D 2VE(1{i=4j >} +1{f=4i<ih+277)

j=1

To bound the first two terms, we will introduce two lemmas. The proofs of the lemmas are

given at Section A.2 (page 231 and 232).

Lemma A.1.29.

i1
Y EQj=4]i>j}) <2 e+ 27 1{T <5 -1} (A.1.126)
j=1

Lemma A.1.30. -
N

Y EQ{j=4]i<i}) <2 e (A.1.127)
j=1

With these lemmas, we have

o 273 1 .
2—3)< (et et )+ oI{J <] —1}> (A.1.128)

. 1
< Coa(Copa( = f) + —1{J < 3 =1}),

\/ﬁﬂ

where 627a = (24 x 2Ka —3), Cy = 7CZ3+ZZ4H. O

Proof of Lemma A.1.27. To prove the lemma, we introduce the following lemmas while

postponing their proofs.
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Lemma A.1.31. When SUPhegn(f){Pz(ﬁé h)} < %,

g

. o
E(1{j < 00} L(CI.n(Y))) < ¢1,a sup p.(—=;h),/np.(—=;h). A.1.129
({ FL(CI;a(Y))) 1hegn(f)(\/ﬁ) (\/ﬁ) ( )
Lemma A.1.32. When suphegn(f){pz(%; h)} < 5,
E(L{j = 00} L{tns — tio > “}L(CTa(Y)) < G sup pa(-=ih), [rps(~ =3 h)
J = hi —llo = — Z,0 > Cq SU 2\ =5 A== ).
n heGn(f) Vn Vn
(A.1.130)
Lemma A.1.33. When SuPhegn(f){PZ(ﬁ5 h)} < 5,
- 3
E(1{j = oo} 1{tn; — t1o < ﬁ}L(CIZ,a(Y)))
(A.1.131)

o o
<@ sup pr(—=;h),/np.(—=;h) +2D.(n, f).
o (\/ﬁ ) (\/ﬁ ) (n, f)

With these lemmas, we have the statement of Lemma A.1.27.

For the proofs of the lemmas, the main parts are in Section A.2 (page 233, 234 and 236),

but here we mention the common thing that will be used in all of them.

When suphegn(f){pz(%; h)} < o=, we know that |{k : f(zx) = min{f(z;) : 0 <i < n}}| =

1, we denote this unique element to be %,,.

Let h be the piece wise linear function such that h(z;) = f(z;) for all 0 < i < n, and h

is linear on all the sub-intervals [k/n,k + 1/n], for 0 < k < n — 1. Then we know that
po(Gih) < o

Suppose Y1 = {ye,i + \/302:372‘ c(L-1)VvO0<i<(U+1)An}, Yeo = {yei — \/§023¢ :

(L-1)v0<i<(U+1)An}. Then we know that Y;,Y,,Ye 1,Y, o are independent.

Proof of Lemma A.1.28. In this proof, to make the main idea more clear, the proofs of the
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lemmas used are postponed to Section A.2.

With a bit abuse of notation, define the following events:

2/-3 1
n 2’

E :{Z(f) € [(ii — (6-2Fa2tl 2y 1)

(35 + (6 252t — 2)) 213 — %] n[o, 1]}
(A.1.132)
Fy :{il < min {z s f(z) =min{f(zr) : 0 <k < n}}}

Fy :{ir +1> max{i s f(x) = min{f(zg) : 0 <k < n}}}

For j¥ defined in (A.1.5), we have the following lemma (proved in Section A.2, on page
246).

Lemma A.1.34. For K > 1,

O3>+ K +1) < d(-2) . (A.1.133)

Therefore, with this lemma, we have

Ka+1

P(E°) < P( > 6.2 _2) < P(1{3 > 3" + Ko o}) < % (A.1.134)

. x 2
lj: 1j
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Therefore,

P(Z(f) € CL.a(Y))
= E(1{Z(f) & CL..o (Y)Y I{E}) + E(1{Z(f) & CL..o(Y)}1{E})
< E(L{Z(f) & CL.o(Y)}L{E}1{j < co})+
E(1{Z(f) € CL..o(Y)}L{E}1L{j = co}) + %
E(1{Z(f) & CL.o(Y)}I{E}L{j = o0}) + %

E(1{Z(f) # CL.a(V)}{E}L{ = 0o} (LA N B2} + L{F{} + 1{F5}) ) + 5

IN

<E(1{Z(f) ¢ CL.a("){E}{j = o} 1{F N F3})
+E(1{B}1{j = oo (L{F{} + L{F5}) + 5.

(A.1.135)

We introduce the following lemma, which is proved in Section A.2 on page 246.

Lemma A.1.35.

E(H{E}L{j = 0o} 1{F{}) < a1, E(I{E}1{j = 0o} I{F5}) < on. (A.1.136)

Therefore

P(Z(f) ¢ CL.a(Y)) < E(IL{Z(f) ¢ CL, o(Y)Y{E}{j = oo} 1{F, N Fz}) + % + 2.
(A.1.137)
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Now we turn to the only term left

E(H{Z(f) € CL.a(V)}{E}N{j = 00} 1{Fi N Fy})
=E(1{Z(f) ¢ CL.o(")H{EN{] = 0} 1{F N B}I{ (it — U)(ir — L+1) = 0})
+E(U{Z(f) & CL.a(Y)}UE}L{ = 00} I{F N Fa}1{(it — U)(ir — L +1) # 0}
L{ini — 1o > 3 or (ins — )ity = 0})
+E(1{Z(f) ¢ CLoa(Y)}{EN{] = oo}L{F N B}1{(is — U)(iy — L +1) # 0}
Lini — 1o < 2,0 < igo,in; < n})
= E(1{Z(f) ¢ CL.a(Y)}H{E}I{j = 0o} L{F N 2} 1{(ir — U)(ir — L +1) = 0})
+E(1{Z(f) ¢ CLoa()IH{E}L{ = 00} 1{F N F}1{(it — U)(ir — L +1) # 0}
1{ini — o < 2,0 < 10, ini < n}).

(A.1.138)

The second equation is because when under the event ENFy N FyN{j = oo} N{(i;—U) (i, —
L+ 1) 75 O} N {ihi — 1o > 3 Or (ihi — n)z’lo = 0} , Z(f) € CIZ7Q(Y).
We have the following lemmas, which are proved in Section A.2 on page 247 and 248.

Lemma A.1.36.

E(1{Z(f) ¢ CLo.a(Y)}{EYL{j = 00} 1{Fy N F}1{(it — U)(iy — L +1) = 0})
(A.1.139)

< 3oF (1{j = oo} 1{Fy N Fo}1{(i; — U)(ir — L+ 1) = 0}) .
Lemma A.1.37.

E(1{Z(f) & CL.a(")H{E}L{j = oc}L{F N Ba}1{(i — U)(iy — L +1) # 0}

]l{ihi — 1 < 2, 0< Yoy thi < Tl})
(A.1.140)
< 6a2P<]l{E}]l{j’ — oo} 1{Fy N Fy}1{(iy — U) (i, — L+ 1) # 0}

L{ini — it < 2,0 < g0, ip; < n}).
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With these two lemmas, we finally have

P(Z(f) € CL,.o(Y)) < 6ag + % +20 < a (A.1.141)

A.1.12. Proof of Theorem 2.4.3

With Proposition A.1.4, to prove this theorem, it’s sufficient to prove the following two
propositions:

Proposition A.1.7.

E(|M - M(f)]) < Vg,opm%; £)+ V2 (min{f(z) 10 <i<n}— M(f)). (A.1.142)

Proposition A.1.8. When SUPhegn(f){PZ(ﬁQ h)} < 5=, we have

E(|M — M(f)]) < C (i), fnps( i
(I (1) S peonn” (\/ﬁ np(\/ﬁ ) (A.1.143)

+ V2 (min{f(a;) : 0 < i < n} — M(f)).

)

Let C3 = % + 4+/2 gives the statement of Theorem 2.4.3.

m

Proof of Proposition A.1.7. Then we will have

E((N — M(f))?) = E((M — M(f)*1{j < 00} + (¥ — M(f)*1{j = o0}).  (A.L144)
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For the first term we have

2
E((V — M())214] < o0}) = (( M+ &5s) 106 < Oo}>
= B((E - M) +2(E - M) 5, o (ej,lj,%}_j)?)ﬂ{; <o) (AL145)

=B (2~ M()P10j < o}) + ( ey I <))

We introduce following two lemmas (proved in Section A.2 on page 250 and 251) to bound

the two terms.

Lemma A.1.38.

1 5 - o 9
3 - < —; . 1.
B((€5; e 55m) Hi <oo}) < lepm(\/ﬁvf) (A.1.146)
Lemma A.1.39.
- . o
B((E = M(N)P1( < 0] < cnapn( =i ) (A1.147)
For the second term in Equation (A.1.144), let
i= argmin f(x;-1),
i]*2§i§i‘]+2
fi = F@im), (A.1.148)

0i = Ye,i—1 — f(ziz1),

n=min{§;: I, -2 <i<i;+2},
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then we know E(n|i;) <0, and we have

E((M — M(f))*1{j = oc})

<E((fi = M(f) +6:)*1{j = oo} 1{M > M(f)})
+E((fi = M(f) +m0)°1{j = 00} 1{M < M(f)})

< 2B((fi — M(£))*1{j = o0}) + 2+20°E(1{j = oc})

+E(E(n*1{n < 0}|Y;,Y,)1{j = oc})

(A.1.149)

< 2E((fi — M(£))*1{j = 00}) + 2120”E(1{j = 0o}) + 0> QE(L{j = co}),

»

where Q2 = [ $25q)($)4\/% exp (—% )dx < 3.

To bound it we have the following lemmas, which are proved in Section A.2 on page 263

and 264.

Lemma A.1.40.

E((fi = M(f))*1{j = oo})

. . | ) (A.1.150)
< cmepm(ﬁ; )7+ (min{f(z;) : 0 < i <n}— M(f))
Lemma A.1.41.
o’ E(1{j = oo}) < 32pm(%;f)2 (A.1.151)

Combining them together, we have

E((M — M(f))*)

< (Cm1 + Cma + 14492 + 2m6)pm(%; )2 4+ 2 (min{ f(z;) : 0 < i < n} — M(f))?
< Copm(—=: £)* + 2 (min{f(z:) : 0 < i <n} — M(f))?.

NG
(A.1.152)
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Therefore,

BN — M(f))) < \/E((V — M(f))?)

3,opm<%; )+ V2 (min{ f(z;) : 0 < i < n} — M(f)).

< .

Proof of Proposition A.1.8. Since we have

sup pon(—: h) (- 1o
hegn(s) VI VO V2/n

we only need to prove that

E(|M = M(f)]) < émo + V2 (min{f(z;) : 0 <i <n} — M(f)).

(A.1.153)

(A.1.154)

(A.1.155)

We recycle all the notation in the proof of Proposition A.1.7, especially in Equation (A.1.148)

and (A.2.105).

Similar to the proof of Proposition of A.1.7, we have

E((M — M(f))?)

= E((E — MU)PI{ < 0o}) + BUE o5 1] < oD+

2E((fi — M(f))*1{j = 0o}) + 2720’ E(L{j = 00}) + 0*12Q2E(L{j = oo}),

where Q2 = 2.50(x)4 ﬁexp( 5

Since we have

L )21{j < o0}) = B(-

=1{j < o0}) <o
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we are only left with bounding the terms: E((£ — M(f))?1{j < oo}), E((fi — M(f))?*1{j =
o0}).

We have the following two lemmas, which are proved in Section A.2 on page 264 and 269.

Lemma A.1.42.

E((F — M(f))*1{j < oo}) < &,50°. (A.1.158)

Lemma A.1.43.

E((fi — M(f))?1{j = oo}) < &30 + (min{f(z;) : 0 < i <n}— M(f))>.  (A.1.159)

With these lemmas, we know that

E((M — M(£))?) A1160)

< (g + 1+ 2625+ 292 +92Q2)0? + 2 (min{ f(z;) : 0 < i < n} — M(f)).

Therefore, we have

E(|M — M(f)])

<[+ 142625+ 292 +42Q00 + V2(min{f(z;) : 0 <i <n} — M(f)) (A.1.161)

:03% +V2(min{f(z;) : 0 < i <n}— M(f)).

A.1.13. Proof of Theorem 2.4.4

With Proposition A.1.4, we prove the theorem by proving the following lemmas.
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Lemma A.1.44 (length of the confidence interval for minimum 0).

o)+ V2 (min{ () 1= 0,1+ n} = ).

EfL(CIm,a(Y)) < V4,apm(\/ﬁv

where h = inf{M(g) : g € F, and g(x;) = f(x;),i =0,1,--- ,n}.

Lemma A.1.45 (length of the confidence interval for minimum 1). When

sup {pz(%;h)} < 2i

hegn(f) n

we have

E;L(CLya(Y)) < Cs00 + V2 (min{f(z;) : i =0,1,--- ,n} — h),
where h = min{M(g) : g € F, and g(x;) = f(x;),i =0,1,--- ,n}.
Note that when SUPhegn(f){Pz(ﬁé h)} < 5,

g
sup  pm(—=;h)/np:(—=;h) = —=,
heGn(f) ok SRR

hence with these two lemmas we know that

EfL(CIm,a(Y))
S 3 ” — s (A.1.162)
< 204,04 + 205,04 sup  pm(—=;h <1 Ay Inpz(—=;h > +V29,,(n, f).
( )heGn(f) (\/ﬁ ) (\/ﬁ ) (n, f)
When 0 < o < 0.3, let
2C 2C
Cio = V2Cia+ V2050 | 2V2 (A.1.163)

’ Crma 1 -2«
gives the statement with respect to the length.

Lemma A.1.46 (coverage of the confidence interval for minimum).

P(M(f) €Clpa(Y))>1—a.
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Proof of Lemma A.1.44.

Ii— Dy +1<2+49. 2070 <24 9.2Kg+Kg+ (A.1.164)
Therefore,
(6
Sti—p,a1e < =07 . ). (A.1.165)
e 4(2+9. 28T
EfL(CIm,a(Y))
< (s 2 — 27(9) + V3) 1 E(———)
= \PIpi—ILo+1,7 4 Ve Noen (A.1.166)

- V3o V3o L -
E|( (% -2, - —£3)4 15+ K> T} .
+ (( 1= % N Y ST E 1o)+ {3 + Koy > J}
We first bound the first term.
g
E
)
<E(——Z  1{<J-Ka})+0E(1{j>J - Ka})
2ij7[<% 4 4
<15 +3 < JH(E(————x1{3 < J - Ka})+0oB(1{j > J — Ka}))
J—j-Ka
2 1
+1{j*+2>J}o
J 1 (A.1.167)
U A3 Tt Y (24
2']_j*_K%—3 j=j*+3 2J—j—1—K% 6
o -~ L (J-1-Ka—j")
2/ ® (-2 + — g9
VoY= (=2+5%) £
1 Pz(ﬁ%f) o o
]l{ﬁ T}\/ﬁ QPz(%, )Pm(%,f)
Ka
2 4p(\/ﬁ?f)+p(\/ﬁ7)l,
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Now we turn to the second term,

E ((fl — Za/4 \/\2/?:.[ - \/\gfsz —f10)+ {3 + f(a/zx > J}>
( fl_flo I[{J_'_I(oz/4> J}>
<E (81— M)+ U5 + Kapa > J}) +E ((M(F) = £0)+ 15 + Kaya > J})
<E (0 = M(N)+1{3 + Kaga > J}) +E ((M(f) = £10)+ 15 + Kapa > J})
(A.1.168)

where M is defined in (2.4.9).

Then according to Proposition A.1.7, we have

S f)+ V2 (min{f(w:) : 0 <i <n} - M(f)).
(A.1.169)

(0 = M(£))+143 + Kaja > T}) < Coopm(

Now we turn to the term E <(M(f) —f10)+ {5+ f(a/4 > J})

For 1 <k < n — 2, define linear functions ;4 (t) = %(2& —xp) + fag), Orp(t) =

M(t — Tky1) + f(zk41). Then we know that when g is in F such that g(z;) =

1/n

f(z;), for all 0 <@ <n, mingepy, 4,.,)9(t) can and can only take value in

o min mase(i(8) 5-i(8)) min{ (1), £ (i)

Denote h(k) = MiNye(y; 2,4, MAX{ Uk (1), Ork(t)}, for 1T <k <n—2.

For k = 0, define linear function 0, (t) = %(t — x1) 4+ f(x1), and let h(0) =
Minye(z) 2,] Or0(t), then similarly, we know that when g is in F such that g(z;) = f(x;), for

all 0 <i <n, minypy, 4,,,9(t) can and can only take value in [A(0), min{ f(z0), f(x1)}].

For k = n — 1, define linear function v;,_1(t) = W(t — Tp—1) + f(zn-1), and
let h(n — 1) = MiNyef—1/n,1] Urn—1(t), then similarly, we know that when g is in F such

that g(z;) = f(x;), for all 0 < 4 < n, mingep,—1/n,1)9(t) can and can only take value in

191



[a(n = 1), min{ f (zn_1), f(zn)}].
Now we know that

max{M(g) : g € F, and g(x;) = f(x;), for all 0 <i <n} =min{f(z;): 0 <i<n},

min{M(g) : g € F, and g(z;) = f(z;), for all 0 < i < n} = min{h(i) : 0 <i<n—1}.

(A.1.170)
Denote A = min{h(i) : 0 < i <n — 1}, and then we have
E ((M(f) = £10)4 143 + Kopa > J})
< (M) = B)+ B ((h = 1)+ 1{3 + Koy > J}) (AL171)
<M =R+ Y E(() = h(@)+ 13 + Kaya > JT}) -
i=Ijo—1
We take the definition of ¢; in Equation (A.1.148): §; = yei—1 — f(xi—1).
For (I;, — 1) V1 <k < (Ip; —2) A (n — 2), we have
E ((h(i) = h(0))+ 1{3 + Koja > J})
< IE(( min  max{dy;(t), ii(t)}—
te[xi,mi+1]
min  max{0;;(t) + (641 — 0 — 2H)n(t — x;) + 641 — H,
tE[a:i,asi_;,_ﬂ
Ori(t) + (6ir2 — bivs — 2H)n(zi41 — ) + diyo — H}>+
(A.1.172)

ﬂ{j + Ka/él > J}>
< P(j +Ka/4 > J) (B (2[6i41| + [6i| + 2[0iv2| + [0i43]) + 3H)

(6 YeO + 3’YeS[h 1143, 10) P(j + Kva/ll > J)

7

2 cxpm

§\q
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The last inequality is due to oE(j + f(a/4 > J) < E( ), and (A.1.167).

g
V2I=i
When [;, =1,

h - h(0) H{J+Ka/4>J}>

—min (Sn0(t) + (85 — 8o+ 2H)n(t — x1) + 62 — H
( i o)~ o (o) B = G 2Hnlt = 0) + 0 ))+
LG4 e > J}> (A.1.173)

. ~ 2
<SPG+ Ky >J)3H + 3%0\/;)
~ o
< CQ,oapm(%;f)'

When I; —2=n—1,

E ((h(n 1)~ hn — 1))+ 1{3 + Koy > J})

< E( ( min = Uy ,—1(t) — min (0-1(t) + (6n — -1 — 2H)n(t — xp—1) + 0p — H)>
te
+

(2] te[m 1]

ﬂ{j + f{a/él > J}>

.- 2
<P+ Ka/4 > J)(3H + 3760\/;)
_ o
< CQ,apm(%;f)'

(A.1.174)

Going back to Inequality (A.1.171), we have

E ((M(f) = £10)+ 103 + Kaja > J}) < (i = 1) Co.apm( =3 f) + (M(f) = ). (A1.175)

vn

193



Combing all the terms together, we have

EL(Clya(Y)) < ”4,apm(%; )+ V2 (min{f(x;):0<i<n}—h).  (A.1.176)
L]

Proof of Lemma A.1.45. The proof of this lemma is very similar to that of lemma A.1.44.
For simplicity, we will omit the parts that are the same and only point out the places that

are different.

Similar to Inequality (A.1.166), we have

EfL(CIpna(Y))
< (s — 07 N(5) + VB) v E(———)
= \Plp;—L1o+1,§ 4 Ye CRET
o \/ga \/ga ~ ~
— - —f 1{j+ K A1.177

1,
< (SIM*IZO+1,% - @ 1(2) + \/g)'YeU‘i‘

E ((f1— M)+ 13 + Kajs > 1) +E (M) = £)41{3 + Kapa > T} -

For the second term, according to the definition of ; and Proposition A.1.8, we have

E (21— M(D)+1{3 + Kapa > 7})

gE((M—M(f))+J1{j + Koy > J}) (A.1.178)

< (s heSgunr()f) pm(ﬁ; h) npz(ﬁ; h) + V2 (min{f(z;) : 0 <i < n} — M(f)),

where M is defined in (2.4.9).

For E ((M(f) —f1,)+ {3 + f(’a/4 > J}), according to the arguments in the proof of Lemma
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A.1.44, we have

E (<M<f> ~ £1)+ 13 + Kapa > J})
Ip;—2

< ( + > E((hG) = h6@)+ 13 + Kapa > J}) -

i=I1,—1
For (I;, — 1) V1 <k < (Ij; —2) A (n — 2), we have

E ((h(0) = h@D)4 143 + Kopa > J})

< (6'76

o

+ 37€SIMIZO+3:§> P(j + Ka/‘l > J)o.

When [, =1,
<( o) 11{j+f(a/4>J}>
2
< P(3 +Ko[/4>J)(3H+3’ye \/;)
When I; —2=n—1,

<(ﬁn—1 n—1))+11{j+f(a/4>J}>

2
< P(3 —|—Ka/4 > J)(3H + 3.0 \/;)

Therefore,

E ((M(f) = £10)+ 143 + Kaya > J})
2 N ~
< (Ihi - Ilo) <6 : 'Ye\/;‘F 3'YeSIhi—Ilo+3,é> P(J + Ka/4 > J)O‘

+(M(f) = h).
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Hence

EfL(CLna(Y)) < Cs00 + V2 (min{f(z;) : i =0,1,--- ,n} — 71) . (A.1.184)

Proof of Lemma A.1.46. Similar to the proof of lemma A.1.16, define the following events:

J—70 _ J=qr, . _
E={2(f) ¢ 2l =) 22 i = 1y g

n n

Elz{ijw+K%+1, and j" + Ka +1 < J}

F:{jgj*—Z—f(%} (A.1.185)
G={fm < M(f)}

H= {flo > M(f)}

Then we know that

E{ C E“. (A.1.186)
So we have

{M(f) € CLua(Y)} DE°NFC NG NH® D ESNF° NG NHC (A.1.187)
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Then we have
P(M(f) € Clm,a(Y))
> P(E{NF°NG°NH)

— P(G° NH|ES N F°)(1 — P(E;) — P(F) + P(FNEy))

(A.1.188)
= (1 — P(G[ES N F¢) — P(H|ES NF°)
+ P(GNH[ES NFY))(1 — P(E1) — P(F) + P(FNEy))
> 1 — P(G|ES NF°) — P(H[ES N F) — P(Ey) — P(F).
According to Lemma A.1.34, we have
PE)=P(G=2j"+Ke+1,j"+Ka +1<J)
<SPG >3+ Ko +1,5"+ Ko +1) (A.1.189)
<o(-2)%1 < %.

Similar to the proof of Lemma A.1.16, especially the proof of Lemma A.1.18, which consists

the proof of Lemma A.1.16, we have

P(F)<P(j<j*—2-Ks)< % (A.1.190)
For the remaining terms in Inequality (A.1.188), we claim
Lemma A.1.47.
P(H[ES NF) < % (A.1.191)

Proof. With a little abuse of notation, let A denote the event {j + K, a<J } in the proof
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of this lemma. Then

P(HE{ NF¢) =
(A.1.192)
P(H|E]{ NFC N A)P(AJE{ NF°) + P(HE]{NF°N A°)(1 — P(A|E{ NF9)).

We start with the second term, for which we introduce another lemma.

Lemma A.1.48. For h(i) defined in Algorithm 2,

P(h(i) < min f(t) for all i, — 1 <4 < In; — 2|Y;,¥5) > 1 — /4.

- tE [CEZ ,"E.L'_»'_l}

Proof. We take the definition of §; in Equation (A.1.148): §; = yei—1 — f(zi—1). Since

P(max{[6;] : (I;p —1) V1 <i < (In; + 1) A(n+1)} > H|Y;, Yy)
< Pmax{6; : (Lo — 1) V1<i< (In+1)A(n+1)} > H[Y,Y,) (A.1.193)

+ P(—min{&; : I, <i < I;} > H|Y;,Y,) < a/4,

we have, condition on Y, Y, with probability at least 1—a/4, yo;—H < f(x;) and y,+H >
f(z;) for all (I;, — 2)4 < i < Ip; Vn. With a bit of abuse of notation, let B denote the
event that y.; — H < f(x;) and ye; + H > f(x;) for all (I}, —2); <@ < Ip; V. On
event B, for ([;, —1) V1 < i < (Iy; —2) A (n — 2), consider two linear functions 7;;(t) =
%(t—xi)—i—ﬂxi), Ori(t) = %(t—mi_kl)%‘f(xi_i_l), then for ¢ € [z, zi11],

f(t) > max{v;;(t), 0,;(t)} > max{v;(t),v,i(t)}, hence h(i) < infyefe; 2] f(t).

Also, on event B, if Ij, — 1 = 0, then consider the linear function v,(t) = %(2& -

r1) + f(z1), for t € [0,1/n], f(t) = Uy 0(t) > vr0(t), hence h(0) < minye(o,1/5) f(2)-

Similarly, on event B, if I; — 2 =n — 1, we have h(n — 1) < mingej,_1/n,1) f(2)-
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Therefore, on event B, min{h(i) : [j, — 1 < i < I; — 2} < infre, e ) f(t). Therefore,

P(h(i) < [min ]f(t) for all I — 1 < i < In; — 2|¥;,Ys) > P(B|Y;,Ys) > 1— a/4.
tE|Ti,Ti41
(A.1.194)
O

Recalling that on event Ef, we have Z(f) € [z, —1,2r,,—1], together with the lemma, we

have

P(HIE{NF°N AS)
< P(min{h(i) : Ijo — 1 < i < Ip; — 2} > M(f)|E{ NF°N A°)

= P(min{h(i) : [}, — 1 <i < Ip; — 2} > min F@)E{ NFe N A°) < /4.

telrr, —1,21,,-1]

(A.1.195)
Now we turn to the first term in Inequality (A.1.192).
V30
: N .
{Izo?iléllhi aves(ji, 1) < M(f) + 7\/2]7_”} NE{NA
o
O{ min aver(j,i) < M(f)+ — N{i;>3i*—2}NE{NA
(), min, aves (i) < MU+ pm( o YO > 57 = 21 0B (A.1.196)

DFN{j >3 —2}NETN{j+ Ky < J}

DESNANFC

Denote iy, = argming, ;< avey(j,i). When there is more than one qualifying for in,

take anyone.

Therefore,

PHE{NFNA) < P(¢; (A.1.197)

1)tmin,€ —

_1,« (6
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Therefore,

P(H|E] NF)

IN
| R

Similar to the arguments in proof of Lemma A.1.19, we have

P(GIES NF°) < %.

Returning to the main theorem, we have,

, (A.1.198)

(A.1.199)

P(M(f) € CIpa(Y)) >1—a. (A.1.200)

A.2. Proofs of Supporting Technical Lemmas for Chapter 2

We prove all the technical lemmas supporting Section A.l in this section.

Proof of Lemma A.1.1. The inequalities are due to

Fes) = fle1)  flas) — flas) _ (w3 — m1)(f(an) - Tommdt faaCamsn)y
To — X1 €T3 — T2 - (.’EQ — 331)(%‘3 — $2)

<0

)

and

flas) — fla1) :f(l‘2)—f(i131)_$2—$1+f($3)—f(562)_$3—$2

r3 — 1 ro — I r3 — X1 3 — X9 .%'3—1'1'
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Proof of Lemma A.1.2. Let t = x%\/2/3 — 2, then we have

2002~ (20)3/273) _ [0 exp (-4 du
x®(2 —+/2/323/2) — f:;o exp(—%)du ( )
A21
—2/2t u2 (4v/2-2)?
exp (—% )duexp (——F5—
< ayal== XI;( ﬁf) P o0
f_oo exp (—¥z)du
O

Proof of Lemma A.1.3. Let

Then

oo (=)

_ oz 2

Taking further derivative, we know that sign((2®(—z) 5= €XP (=%))) = sign(z? — 3).

q(2)" = 2(2®(-=) -

Hence ¢(z)'/x goes down and then goes up, its first root is the place that ¢(z) takes
maximum. Since ¢(1.19) > 0, ¢(1.2)) < 0, we have sup,.oq(r) < 1.22®(-1.19) <

0.168514 < 0.169. Therefore Q < 1.22®(—1.19) < 0.169. Only in this proof, let u(x) =

220(2 — ). We have u(z) = 2(20(2 — z) — :z\/%exp(—@_;y)). Since sign((2®(2 —
x) — ZE\/% exp (—%))’) = sign(z(z — 2) — 3), and ming~gu(z) < 0 < u(1)’, we know

u(z)" has at least 1 root. And its first root (when the root is unique, its first root is
its unique root) is where u(z) takes maximum, since u(2.18)" > 0,u(2.19)" < 0, we have

u(r) <2.192®(2 — 2.18) < 2.0555. Hence V' < 2.0555. O
Proof of Lemma A.1.4. Since we have for ¢t > 0,

d(—t) xp (—t2/2), (A.2.2)

1 t
>_- v
- \/27rt2+1e
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we set t(a) = y/2log (1/a) — /log (2log (1/a)). So we get, for a < 0.03,

" “ 2.3
. 1 t()
z o Rlog (1) ™ ooy
Further, denote x = 2log (1/«a), we have
tla)  ta) = t(a)?
)2 +1"  Ha)2+1t(a) = Ha)? + 1\/5 > 0.6z > 1.58. (A.2.4)

The inequalities are because of t(a) = /z — \/logz, t increases with x when x > 2, and

x > 7 when o < 0.03.
Therefore, for a < 0.03

O(—t(a)) > 0.82a. (A.2.5)
Therefore, for o < 0.005, 23, > t(&a), 29060 > t(%a).

Note that for o < 0.02, t(«) > /log(1/a) x 0.689.

Hence for o < 0.005,

3
230 > t(@a) > 0.689 x 4/log(0.82/3ca) > 0.599+/log(1/a),

2.
Z2.060 > t(o—gga) > 0.689 x 1/log(0.82/2.06a) > 0.627+/log(1/ ).

(A.2.6)

We are now left with bounding

22.06c

inf —_—
a€(0.005,0.08] | /log 1/
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Note that both 2206, and y/log 1/« increases with « decreasing. Therefore,

z k41
22.06c 2.06 7500 > 0.61

inf ————— > min —22
a€(0.005,0.08] y/log 1/av ~ 5<k<79 | /log 1000/k —

Therefore, for o < 0.08, % > 0.61.

Proof of Lemma A.1.5.

For p that will be designated later, define x; = argmin{t : f(t) < M(f) + p},z, =
argmin{t : f(t) > M(f)+ n}. Without loss of generality, we can assume z, + x; > 2Z(f).

As shown in the figure, the function in bold is f, and the following points have the following
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coordinates:

F:(Z(),M(f) At (@ M(f)+p) D (we, M(F)+p) N (w, M) +2p1) (A2.7)

Lo(t) = M(f) + p (4D),
B - 7
Li(t) = M) + (6= Z() L5 (AP, (A28
La(t) = M) + (1~ Z(D) L (FD),
Ly(t) = M)+ p+ (1 =) Ee (ND)

Define the following functions:

g1 = max(f, Lg), go = max(f, L3), g3 = max(L1, La, Lg), g4 = max(Ly, La).  (A.2.9)

Therefore, with p increasing from 0% to oo, ||g1 — f| and ||g2 — f]| increase from 07 to oco.

Then we know that for any given o > 0, either 3u > 0, s.t. ||g2 — f|| = o, or Ju such that

the following three things hold.

Property 1. x;(p) + = (1) = 2Z(f).

Property 2. Suppose go; and gz, are constructed essentially in the same way as g2 but one
on the left side (g2;) and one on the right side (g2,+). Then (||g2; — fll — ) - (|lg2,» —
fll—0) <.

Property 3. And further, for the side (h € {l,r}) that ||g2,, — f|| —0 < 0, I > 75, > 0 such

that for any 7 € (0,7),

|zi(p — 1) = Z(F) + |2 (p = 7) = Z(F)]

fan(p—7) — Z(f)| > '
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And for the other side h € {I,r}/{h}, lgo7 — fIl —o >0, 3u > 75, > 0 such that for

any 7 € (0,73,),

‘iL';L(,u-i-T) —Z(f)| > |xl(M+T) _Z(f)‘ _'2_ ’xr(:u"’_T) _Z(f)’

To show the main idea more clearly, we assume for the moment that for the o that we will
designated later, there exists a p such that on at least one side, we have ||g2 — f|| = o and
use o to denote ||ga — f||. For the o that does not have a corresponding p, we will discuss

it later.

To lower bound ||g1 — f|| by a quantity related to ||g2 — f]|, we have

1 1 1
lgs — FI? < 3p* g + 2% S (o — ) X 2 42 % g1 — fI?
Z(f) o Tr—T]
1, (Z(f )_wl)(xr—fﬂ) 2 5 2 A21
= z — Mar — (A.2.10)

< pP(ar — @) +2 % |lgr = fII* < 5llgr — fI°.
To lower bound ||g3 — g4|| with ||g1 — f|| or ||g2 — f]|, we have

1
P ey =) 2 llgr = fI%, (A.2.11)

C»D\)—‘

Hg3 —94”

and

g2 — fII?
1 1 1 1

S g 37fL +§(xr_$l) x 12+ [lg1 — fII* +2 x p? x §($r—xl)

(f)_xl Tr—Ty (A 2 12)

1 4xr_$l—3Z(f) ) 2.
3’“ _ Z(f) (xr xl) + ”91 f”
5

< g#(er =) + llgr — fI < 8llgs — 0all”
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Define linear function gs

Since we also have

= max{L3, Ly}, then we know that p.(v;g2) < p-(7;9s5),Vy > 0.

P =t x (T By ),
o - _“xl 1 a P (A.2.13)
7= 3pm(7594)" . 3P=(7394)°( T—Z(f)) T
we have
3 3 zr — )\’
p=(7;92)° <p2(7;95)° = (pm(’y;%) )
(P37
B xr—xz + fﬂr—#Z(f)
- (A.2.14)
_ (x7 Il) 02(7794) (( #(f)))gxruml
mni (@r M( )
_ . N\3 (zr —xl)4 E . \3
- pZ(’yag4) (xr — Z(f))3(2xr - Z(f)) < 3 :02(’7794) .
Also, we have
oY 2l s _
prtrion = () o= 200 < (Hm—f\l)
, g (A.2.15)
V8y \° ’
A0, = =L — Z(f)|.
< (ng-f!) 1Z(g2) — Z(f)| = < ) |Z(92) — Z(f)]
Therefore, we have ]
per502) < (13 Zl02) - 2(1) (A216)
Further we have
1Z(g2) — Z(F)| = sup{lt = Z(F)| : g1(t) = M(q1)} = pz%a; P (A.2.17)
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The ¢ we will specify later is no smaller than v/5e, and suppose o > v/5e from now. This

gives |Z(g2) — Z(f)| 2 p:(Jz05 ) = pa(e3 f).

As we know, for the problem of estimation Z(h) with h € {go, f}, the following statistic is

sufficient
Jo (g2(t) = F()AY () — L [1(g2(t)? — f(t)?)dt

WS =
ellg2 = £

, (A.2.18)
and we have WS ~ N(G(h)w, 1), with 6(g2) = 1,0(f) = —1.

Define an event O = {|Z — Z(f)| > $1Z(g2) — Z(f)|}, then we have P;(O) < 2¢. This is
because we have Ef|2 —Z(f)| < cp:(e;f), and |Z(g2) — Z(f)| > p=(e; f). Since we further
have |Z — Z(g2)| > |Z(g2) — Z(f)| = |Z — Z(f)|, the following inequalities hold

Byl Z = 2(92)] > By, ((12(02) = 2] — 12 = Z(1)])+)

> By, (100} (12000 - 2001 - 501 ) (A2.19)

g2 —fH)

> &0 (1 — 20) . %!Z(gz)—Z(f)!

For ¢ < 0.0063, let 0 = ®~!(1 — 2¢)e. Then o > /5, thus | Z(g2) — Z(f)| > p.(c; f).

So we have

Eq,|Z — Z(02)| > 11 2(02) ~ Z())
L . (A.2.20)
> i (237) d1(1 —2¢)3p.(e; 92).

Let fi = g9, we have the result.

Now we consider the case when o = ®~1(1 — 2¢)e does not have a corresponding y. Then
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Jp > 0 such that Property 1., Property 2. and Property 3. hold.

Without loss of generality, we assume h defined in Property 3. is r. According to Property
1., and construction of go; and g2, we know that p.(5;g2;) = p-(B;92,) for all g > 0.
Besides go; and g2, we can construct g1, g3, 94,1, g5, similarly to g1, g3, g4, g5 on the left
hand side, and also g1, g3,r, ga,r, g5~ On the right hand side. Then we know that g1; = g1,,,

931 = 93, g4 = gar- According to Inequality (A.2.14) and Inequality (A.2.15), we have

g2 — £l

4 )gpz(f?;gu)

Zgn,) — 2()| = | Z(g01) (f)\>(

Z(ngl—fn) <?%> e 90) .
A221

<||92\z/g—€f||> <36> (e 00)

> <237>§<1>—1(1 —2¢)3 pa(e5 g2.)-

The last inequality is because of ||ga;— f|| > 0 = ®~1(1—2c)e, coming from Property 3. and
Property 2.. Again, since o > v/5e, we have | Z(g2,) — Z(f)| = |Z(g2.1) — Z(f)| > ps(e; f),

which comes from (A.2.17).

Similar to the arguments in the case of gz, we define event O = {|Z — Z(f)| > 51Z92) —
Z(f)|}, then we have P;(O) < 2c. And we have

By |2 = 2(92,)| > By, ((1Z(92,) = Z(1) =12 = Z(1)])+)

> B, (109 (12020 - 200 - 0.0 )

loze =11 2(gs.) — ()

(A.2.22)
>®(d (1 —2¢) —

(;) o1 - 20)%)

We take f1 = go; and get the statement.

™

vV
F
W=
w\m

2(&592,)-
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Proof of Lemma A.1.6. Without loss of generality, we can assume f(Z(f) + p.(e;f)) <

M(f) + pm(; f). Denote x; = min{t : f(t) < M(f) + pm(e; )}

For 0 < 6 < $p.(e; f)), denote

gs(t) = max {f(t),

M(f)+ pm(e; f) +

FZ(f) + pa(e; f) = 8) — M(f) — pmles f) (A.2.23)

p=(&; f)+ Z(f) =2 — 6

(t — xl)}

Then ||gs — f|| <e. And p.(c;95) < 3pz(e; f).

Define event O to be O = {|Z — Z(f)| > 4p.(s; f)}. Then P;(0) < 2¢, thus Py (0) <
D(1+ & 1(20)).

Therefore,

E95|Z - Z(95)|
1
> By, (1OH1Z() - 2109 - 5p-(e5 1) )

> Py (0°)(pa(g; f) — 6 — %pz(e; )

, (A.2.24)
> (1= @14 071(20))(p=(53 f) = 6 = 5p:(55 )

> (1-00+0700) (5= L) e

> (1= ®(1+ 3 (2¢))) (; - pz(g; f)>+ ”2(53; 95).
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Therefore,

7 — 7
o EalZ—2(00)
Lo(e>ss0  P=(596)
_ -1
> limsup L= 20+ 27 (20)) (1 _ 5) (A.2.25)
§—0+ 3 2 pu(5f) +
1

=5 (1—@(1+2"(2c))) > 0.1666 (1 — ®(1 + 2 '(2c))) .

Note that the inequality is strict, so we have the statement.

Proof of Lemma A.1.7. Without loss of generality, we can assume

tr =max{t: f(t) < M(f) + pm(v; )} = Z(f) + p=(7; f)
Denote
tr=min{t : f(t) < M(f) + pm(v: )} = Z(f) + p2(: f).

It’s apparent that ¢, and t; depend on ~. For ipz(v; f) > 9 >0, define

)+f(tr_5)_M(f>_pm<7§f>

0s(71) = maxl £ 0 (4) + S bt

(t—1t)}

Therefore, we know that [|gs(v; f) — f|| <. We will use g to refer to gs(7; f) when there

is no ambiguity. According to the definition, we know that limsup pp,(7;9) < pm(7; f). We
d—0t

will specify v to be a quantity no smaller than e, suppose v > ¢ from now.

Denote O = {|M — M(f)| > Tpm(e; f)}. Since Ef|M — M(f)| < ecpm(e; f), we have

P¢(O) < 2c¢, then we have
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Ey| N — M(g)| > By ({OHIM(f) — M(g)| — |3 — M(P)))s )

> By (09)(IM(f) ~ M(g)] ~ 3om(e: )

_ 1
> a0 (1-20) - ) (101(9) - (0)| - gpn(ein))
Jr
_ 1
=081 -20 = 2) (gl ) = gonlei )+ 0 =0) = £(0)
Jr
(A.2.26)
For ¢ < 0.103, let v = max{® (1 — 2¢)e,e}. Then v > .
Therefore, we have
sup Eq|M — M(g)| > lim sup Eq|M — M(g)|
0<6<Lp.(7if) pm(€;9) 50T pm(€;9)
2
.t D (200 — max{zoe, 1})((2)® pmles f) = gpm(; f) + f(tr =) = f(tr))+
> lim sup
530+ pm(e:9) (A.2.27)
2
N P (29 — max{zg, 1}) ((%) 3 pm(e; f) — %pm(a;f))
- pm(&; f)
7\ 1
= (29, — max{zy., 1}) <<6) - 2) :
For 0.103 > ¢ > 201 we have
sup Pl = M9l D(z2e = 1) _ 914369 (A.2.28)
geEF Pm(s;g)
For ¢ < @(;1)’ we have
13— M(g)|
Ey|M — M(g 1<2 1) 23
sup —4—— 2 >~ (g8~ ) > 22 A.2.29
ber  pm(=9) 2\ 2)7 4 ( )

Note that for both cases, the inequality is strict, so we have the statement.
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Proof of Lemma A.1.12. Without loss of generality, we assume

sup{t > Z(f) : f(t) < pm(e; f) + M)} = p(&; f) + Z(f).

Eis((f = M(f)*1{j 2 j +1})

i1
:El,s( Z(f_M(f))Qﬂ{j:]bj Zjl“‘l}) (A.2.30)
J1=2
+ By ( Z (f = M(f)*1{j = j1,5 > j1 + 1})
J1=7*+2
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Now we will first bound the first term in Inequality (A.2.30)

Jr+1
Eis Z (f =M(f)*1{j > j1+ 1, = j1})
j1=2
g1 X. - - X. -
< Ca o — 21{5 > j P N L S L
< El,s(]é(ﬂh,zﬁz M(f)"1{j > j1+1,5 = ju, e S 2})
j*+1 . . . ' levgh —6 Xj17ij1—5
+El,s(2(uj1,;h,2—M(f)) H{j>ji+1,7=j, NP <2})
Jj1=2 1
i1 i
+ B (D (g, 5, — MUD)LL 2 1+ 1. = ju,
Jj1=2
i —6 le,%jl—s Xj1,2j1+6 B le,%]-1+5
<2 < 2})
V2eq mj, € V2¢q mj, €
77+l X. . - X. -
< . o 2907 S S Ji,i5,+6 Jistj,+5 <
= EZ,S(J;(“JLUIH M(f)"Hj =i +1,75=j, NI < 2})
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Now we will bound M6~ My s by an expression of i~ — M(f). As we have
sbj1 2971 771

A.' % ko /)' _ ko
lij, —47,| <1, we have i7 — 3 <ij —2 <4} — 1. We have

f(tj17f2j1 —6) - M(f)
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J1,45, —6 J1585p =9 ) tjl,%jl 6 Z(f) " tjlv%jl = Z(f) (A 2 32)
Mjh%jl—?_M(f) 1
2 g 2 42 MU
Similarly we have
1
iy +6 ~ My +5 = Z('ujl,ijlﬂ — M(f)). (4.2.33)

In addition, for j; = j* and j; = j* + 1 in the first term, we have
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Going back to Inequality (A.2.31),
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(A.2.34)

where V = sup,>or?®(2 — x).
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Now let’s turn to the second term of Inequality (A.2.30).
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Combining the two together, we get

B ((F ~ MOPLG 2 7 +1)) < ((5760V +2) + T8V 4 )pu(ei N2 (A2.36)
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Proof of Lemma A.1.13.
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Proof of Lemma A.1.14. For simplicity, we denote the set for possible ’ng when j = j5 to be

Op(ja) = {i},—4,i5,—3,i%,—2,i%,+2,i% +3,i%, +4}. By the definition of j, it’s easy to verify

that %3 € Op(j). Further, for the convenience of notation, we define I'nd(j,) = sign(i — z;)

Without loss of generality, we assume
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(A.2.38)
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where

Q = sup z°®(—xz).
x>0

The reason for the fourth to last inequality is as follows. Without loss of generality, we

> 9 Th i_/»‘jg,i;f2+1 >1 f(tjg i_%)_:u‘jQ,i;2+l > 1S 1 h
can assume 1% Z + €n W = 1, f(tmi 2) M(f) =~ 1. 1mnce we also nave
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fhjsi = f(tji — 3), we have

1 1
Moz — Mizis, +1 Fini = 3) = M.z 11 . / bjai — 3 — Ljsij, — T
Wiai = M(F) = fltyi—3)— M) ~Jox  tpi—13—2(f) (A.2.39)
i — | -1 i — | —1
= > —
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Proof of Lemma A.1.15. First, with a bit of abuse of notation, define the events A,, B,

Cy, D, to be the following (they only mean events but not constants in this proof):

A~

- Dl X = s = 1= ~ — ~
A ={w: Gr <0540 tj+r+1,1l§+r+1 t]+m;+r m]+r}
L5 S : X — . .
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(A.2.40)

Basically, these events indicates which interval the localization procedure picks at the step

j+r+1, and from the highest average to the lowest average is A to D. These sets of notation

for events are only used in this proof, and in the proof of other theorem, the same notation

can denote different things.
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Still, without loss of generality, we assume

sup{t > Z(f) : f(t) < pm(e; f) + M(f)} = p(&; f) + Z(f).
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(A.2.41)

Now we will bound the sum of first two terms in Inequality (A.2.41) first. For the simplicity
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of formula’s expression, define dp = 1{j; = jo + 1}, = 1{j = jo},which will only be used

for the inequalities below.
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(A.2.42)

Now define the set C(j, k, k + 1) to be the set of pairs (i1,i2) such that , P(igr, = io, i, =

i1]j = j) > 0, then we know that |C(j, k, k + 1)| < min{10 x 2877 x 4,6 x 4¥T1=7}, Then,
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continuing with the inequality we have
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Now we will turn to the third term in Inequality (A.2.41).
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The fourth inequality is because the number of possible pairs of (i,4;11) such that (Co N
B1) U (ByN Dy), Bty > My j =72, 7 > jo+2, and i, > i is at most 2 x 3 x
27=(2+2) % 2. Other analysis are similar to the previous one. Combining the two parts

together,

<o

B (033, - 153010 < 7))
ek (A.2.44)

< Q X 277075 X pm(e; f)? + Q x 23850.1 X p(e; £)2
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Proof of Lemma A.1.18.

<P(G<j —2-K,|i;—i5.| <4)+ P(j < j*—2— K, |i; —i%| > 5)
j*—2—K
< 2 P(li; =5 <4, X; 16— X; 45 < 2c5V/2e)+
P(liy =5 <4,X; _¢—X; 5 < 2¢,V2¢) + Plijo1 —i5_y| > 2)
J J
‘7*_2_K . < . . . < . .
S 2(1)(2_( mﬂ )%pm(g,f) pZ(Evf))+2(I)(_( m]—l )%pm(f‘:;f) pZ(E,f)>
mj—1 s pm(€; )/ p=(€5 f) mj-1 s pm(&; )V p=(&5 )
+20(—2(— )2 +20(-3 2
( (pz(5§f)) V2ese ) ( (pz(s;f)) V2cse )
(A.2.45)
_]*—2—R
<2 Z (@(2 — 9350 —1—4)—%) + @(_2%(1*—J—3)—%) + @(_2%(3'*—]—3)+%)
j=1
+®(—3 x 220 —3—3)—%)>
<2 (@(2 - 280 D7h) 4 p(—23(Dh) 4 p(—236 )
k=K
+0(—3 x 23-D74))
3(f—o)—1. 1+ 3exp(—44)
< 53 (K-2)
22(2-22 )T e (=) )
2 3 1
c 2 gp_giEah
~ 1—exp (—40)(1)(2 ’ )
The last three equation uses the fact that ®(—2v/2z) < 2v/2exp (—%Q)Q(—a;), for x > 0.
O
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Proof of Lemma A.1.19. For the ease of expression, we define g’” = \/%j(}/g(t]”i)—Yg(tjﬁ_l)—

\/:ZJ,;Z_1 f(ZE)dIE) Then g]ﬂ Z'Ld N(O,EQCE),Z. = 07 17 e

P iy <5105
(f) el (J—K%—1)+7l(57}<%—1>+—5 (J—K%—1)+’Z(57K%71)++4]

A Ce€
ZP(f1+S¢R—iL,% — <M(f)’
MRy
Z E t ~ il "[/‘ ~ ~ )
(f) [ (]_K%_1)+’Z(57K%71)+_5 (J_K%_1)+71(57K%71)++4] (A'2‘46)
1 ) 5 Ce€
< P(M(f) + mzniL<i§iR5§'+l~(g,i + SiR_iLv% < — < M(f)‘
ms i gq 1 LLLE N 9N
1 T
Z(f) € [t(j_K?f_l)Jr’%(jK%1)+_5’t(5_K?1‘_1)+72(§'K%1)++4])
, 5 o
< P(mzniL<i§ijo+[{a i + Ce€SiR_iL,% < 0) < Z
Fy
O
Proof of Lemma A.1.20.
P(H|E°NF*)
A 3
< P(h+ o (= - Y pipen )
mj-f-K% mj+K%
t5+Ka ¥ +1 1 1 _
<P(/ itRg f(@) ——dz + ——& Rt . T
Gakg it MjtKq Mtk itRg
3
—1(%) Cel o \(&: > M(f)|Ec ) Fc) (A.2.47)
\/mJ+Kg \/ijrKg
4 4
~ 1 1,& . c c
< P( j+k%’i;+k% o +o (Z)s + pm(e; f) /m3+1~(% — V3¢ > 0|E° N F°)
~ 1 «a 1
S P& gpe . — N ()e+ pmle i) 5p:(e: f) — V3 > 0|E° N FF)
AR Y P 4 2
e}
< —.
4
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Proof of Lemma A.1.21. Let ¢ = min{i : gpon(zi) > f(xi)}, ir = max{i : gnon(zi) >

f@i)}.
We will first prove the lemma for the case pz(\/%; h) > 1/2n.
When {i : gn o n(z:) > f(xi)} =0, the lemma holds naturally.

When i = i, let &y = inf{z : gp o n(x) > h(x)}, 2, = sup{z : gnon(x) > h(x)}, then we

have
2 1 o 1Pm( i h)?
1 1
> éln(hagn,o,h)2 = gln(fa gn,a,h)2~
When 4; < i,
2 ir
11
2 2 2
o = 1 = gnonllz = Z gﬁ(h(gck) = Inon(@k))” 2 Zln(h, gnon)

k=1,

ln(f, gn,a,h)Q-

= O

Now we turn to the second case pz(\/%; h) < 1/2n.

Since pz(\/%;h) < 1/2n, then [{i : gpon(xi) > f(z)} < 1. When [{i : gpon(xi) >
f(z;)}| = 0, the lemma holds naturally. When |{i : g, ».5(2i) > f(2;)}| = 1, we have

1 o o
La(f, 9no 2:lnh7 o 2<*m7§h2‘2nz7;h <o
(f gTZ, ,h) ( gn, 7h) — ’I’Lp (\/@ ) P (\/@ ) —
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Proof of Lemma A.1.22.

E(1{3 < j}1.5m3)

SE({3 < FH5my13 <37 - 3D + B < JHomyl{3 = 5 —2))  (A248)
- ~ 2 .k g
< LSE(I{j < j}m3l{j < 3" —3}) + 1.5 x Pz(ﬁ?f)
Also we have
E(1{3 < j}m;1{j < j* - 3})
(3*=3)A(J-1) ) 1
< E(1(G = .3 > jhmg) + 11{7 <37~ 3)
§=0
(G*=3)A(J-1) )
< 3 (BT > 4.Y55, 10— Vig, 50 < 22VEVE T}
§=0
B > Y5, 00 - Vg, o0 S 22VEVET D)
+ i< -3
n >]
(G*=3)N(I-1) NG
- 27— - s
< ijE(]l{j > j, ——= (aves(j,1; + 6) — aves(j,1; +5)) <
§=0 78\/§O'

(€5 — ¢ 5 ) .
J71]+575 ]71]+675 P -
. +2}) +miE(1{5 >
\/i /2‘]_]’}/30' } J {J
V27— ~ - (szi-—5s - szi-—ﬁ s)
aves(j,1; —6) —aver(j,1; —5)) < = = +2)
%ﬂa( 7035 = 6) 153 = 5)) /2027 b

1
~1 < q* —
+ - {J <j*-3}
(3*=3)A(J-1) Pm(

3 . % f) 3 \/ﬁ 1 .k
< E(1{] > j1d(2 — 2 X2+ —1{J<i*—3
< Z miE(1{j > j}&( (Lf))f%ﬁa) n{ <] }
7=0 Vvn?
=AUy oy o
< (—=: 27T 2R (145 > 20(2 — 9220 I3y 4 210 < i* —
< 2 p(\/ﬁ,f) (1{3 > j}) x 2®( o 2 )+n{J_J 3}

o 1 .
< CzOpz(%;f) + EH{J <j* -3}

(A.2.49)
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Therefore,

E(1{3 < j}1.5m3) < 1.5(ca0 + 1)p2(~—

o 31 .
=c10:2(—=; )+§51{J§J - 3}.

v
Proof of Lemma A.1.23.

E(1{j = j}|Z - 2(f)|)

< E(1{3 = j}6mj)

I ol
(2 F)23 2~
<6 ]223 p(\/ﬁ f)2 ( ool
J - z O-;
+61{J > j 2}p(\/ﬁ f)
SCZQPz(\;-ESf)

230

31
. Z21 < 9% =
N+ 5T <3 -3

vn (A.2.50)
]
Pulid) s sy Vi
=) Mye=? %0\/5) (A.2.51)
O]



Proof of Lemma A.1.24.

E(1{j < 0o}1{j < 3}Z — Z(h)))

< E(1{j < 00} 1{j < j}L.5m;)

27-i pm(Jmih) 2d=i 1
< 1.5 -20(2 — 2777
- ; " ( pe(fmih) m ’ysa\/?\/m)
I 9J—j S R 03U-i) 1
< 232 B2 — V2n ’ )
= p(Fmih)y (k) T V2075 (A.2.52)
J J—i J—
o 2777 2777 3 1
=3 3p.(—=;:h . p(2- 2
2 e ) 5y
4 o o
< 2= z 77h 2 2 SC
_;?w(\/ﬁh) npa( =2 - 2y
o o
< p:(—=;h (—=;h)e.,
>p (\/ﬁ ) np (\/ﬁ )C 1
where C' = sup, o z®(2 — ). O
Proof of Lemma A.1.25.
E(1{3 = j}|Z — Z(h)|) < E(1{F = j}6m;)
_ pm(%;h) 2J—J 2J—J 3
J ooy J S I od- Gorr=m)?
2777 p=(Fmih) m 2777 npz(=ih)
<N6 6D (— T )<Y 6 6(——— ) (A2.53)
D G Ay T B DhT 2,
o o
< p(—=;h (—=;h)c.
>p (\/ﬁ ) np (\/ﬁ )C 2
O
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Proof of Lemma A.1.29.

-1
Y EQUVI{j=43>4}) < 2771{J<j -1}
j=1
min{j*—1,J}
> B2V 000 ~ Yigene < 2V200V27 )

j=1
+1{Y,6 — Vg5 < 2V200V2T T} 1{F > j})

min{j*~ 1,7} %ﬁ?jjz‘f—j (A.2.54)
< 9t - L E(1{j > j
< ; G- =5 v B>

+271{J < j* —1}.

min{j*—1,J}

> 2 teE - el ) Lo i <5 -1
Vs

IN

j=1

<27 427 1{T <5 -1}
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Proof of Lemma A.1.30.

i1
Y EQV1{3=4]<j}
j=1

(" =3)A(I-1)

< > E@71{j=j})
Jj=1

pm(73f) 97—

(G*=3)A(J-1) . 97—
: pz(7=;:f) n
< 277 . 60 (——L :
jz_; ( V20273 )
G =3AU-1) iy ) (A.2.55)
< 277 . gP(——22F 1~
< Z (5, )
7j=1
(3*=3)A(J-1)

s sk 1 Ssk_ s
< 9-3" .93 . gP(——9253"=5=3)
}Zj (5 )

<9277 26 2 P(— 220 )

< 2_j*CZ4.

O
Proof of Lemma A.1.31.
. 2/-3 .
E(1{j < 0o} L(CI, o(Y))) < (12 - 28ar2 1 1 1)R( 1{7 < o0})
J 2] j
= (1222t + 1) N "E(1{j = j})
=3 (A.2.56)

= (12 2%t 4 1)

! . . 2/ . . 27/
D B =1{5 <iH——+ > EQ{j=j}1{3>H— |.
j=3 Jj=3
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We bound the two terms separately and we start with the first term.

J 2J j J . ) 2J—j
DB =G £ )= < 3E (m 4 < j}n>
i=3

27 2‘]_7 pm(in, ) 97=i 9J=J
<3S E@{j=j} — < 6% Jfﬁ s
j=1 j=1 Pz(ﬁa ) 2 ]\@')’IU
3
J _ 2 _
7 P 27 27 1. (A257
<> pal=ih) npz(a,h)2]i]< - ) 6 B(—(————)3— ( )
per VD vn np( =i h) np:(F=ih)" 2%
1 o =~ o~
1 o o
2y sup p(—=;h)[np.(—=;h),
1—4/1/2 hegu() VN vn
where C' = sup;~ o t®(—t).
For the second term, we have
J ) i 0]
Y EQ{j =j}1{i > j})
j=3
J ; o .7
27 pm(F=ih) 9d=i  9J=i
< e T v
n . L’ n —j <
o~ P . (A.2.58)
J J— 2 J—
o = o s i=J 2777 24— 3 1
<3202y, frpa (i )2 _) e |
]23 NG N np:(G: 1) np:(5ih) 2
o = o - 1
2 S zZ\~ — h n z 7;h s
Vs - Qp (\/ﬁ )y /TP (\/ﬁ )1 ~ i

where @) = sup;. o t®(2 — t).

Let ¢1,4 = (6 ﬁ2710+478 Q \1/%) - (12 2Ka/2! 4 1) gives the statement of Lemma
A.1.31.

Proof of Lemma A.1.32. When 2 < i, < n— 2, tp; — tjo > % implies that i < i, — 1 or
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ir > im. When ip, <1, ty; — tip > 2 implies that i, > ir,. When ip, > n — 1, ty; — tjp > 2

implies that i; < ,, — 1. Therefore, we have

E(L{j = 0o} 1{thi 10 > 2} L(CTa(Y))

1+ 12.9Kasetl .
<= E(1{i1 < i — 1}1{j = 00} 1{im > 2}
n

F1{iy > i} 1{j = 00} 1{im < 1 — 2})

1+ 12 2Ka2tl
+ E
n

iy < iy — 1}1{5 = 00} 1{U > i, iy > 2}

(140 S im = 11{J = YU < i — 1,im = 21+

+ 1{iy > iy }1{j = 00} {L > iy + 1,0, < n — 2}

F1{iy > i} 1 = 00} I{L < i, im < 10— 2}).

(A.2.59)

Since {U < ip — 1,4y > 2} U{L > 4y + 1,0, < n — 2} implies that j < n, and {U <

im — 1} N{L > iy + 1} = 0, we have

E(1it < im — D = 00} U < im — 1} + 1ip 2 i }1{j = 00} {L > iy + 1})

J J o .7 _
Pm(ﬁ,h) 9J—J 9J—Jj
<E({j<n}p) =) PG=j)<) o(- = .
]z:; ; Pz(ﬁ;h) n 277320
3
J J—j 2
<) @ —( S ) L)
j=2 npz(ﬁ, h) 2,7[
o~ o~ -
<np.(—=: (—=:h 2vC,
8

where C' = sup;~q t®(—t).

(A.2.60)

And for E(1{i; < iy, — 1}1{j = o} 1{U > ip,im > 2} + iy > i} 1{j = 0o} 1{L <
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Im,im < n —2}), we have

E(1{i1 < im — 1}1{j = 00} LU 2 i, im > 2}
F 1y > i} 1{ = 00} 1{L < i, im <11 — 2})
= E(B(L{it < im — 1}, Yo)1{j = 00} H{U = i, i > 2}

FEL{ir > i} Y0, Ys)1{j = 00} 1{L < i, im < 1 — 2})

o A.2.61
< 2(U — L) ol 1 ) e
pz(%;h) n2v/3c '
3
<2(U — L)®(~ ! L )
np(Sih)) v2a
o - o -
<np (-2 h (2 W24 -2 Oo(U — L),
np:( s h)y [re=( )V24 -2 Qo )
where Q2 = Sup;~o 2®(2a, — ).
Note that U — L only depends on «, therefore,
. 3
E(L{j = o} 1{tn — iy > S}L(CL.(Y)
. 9 .7 9 7
< CQ,aPz(%vh) npz(\/ﬁvh) (A262)
o o
<l sup p.(—=:1h)[np.(—=:h)
heGa(f) VM vn
O

Proof of Lemma A.1.33. Note that when 0 < tp; — t5, < %, one of the following holds:
qy=n=U=4+1,4,,=-1=L—-1=4—-1,L4+1<4y=4,+1<U-1,4=L=1i,,

i = U — 1 = i;. We denote event
H={i=n=U=i+1}U{i,=-1=L—-1=4—-1}U{L+1<4=4i+1<U—-1},

HQZ{il:L:iT}U{ir:U—lzil}.
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Therefore,

E(1{j = 00} 1 {tni — tio < 2} L(CL, o(Y)))
n (A.2.63)

=E (1{j = 00} L(CL.o(Y))1{H1}) + E (1{j = 0o} L(CIL.o(Y))1{H2}) .

We start with the second term
E(1{j = 0o} L(CI. o(Y))1{H>})

< E(Il{j' = 00} (tni — tio) (Lfim < L — 1} + 1{ip, > L}1{i; = L = i,.}

+ Uim > U +1} + Wim <UL = U~ 1=i2}))

o IL pm( k)9l 9T (% ﬁ) 1
=0y 60 (— . 20— - o)) (A.2.64
2 g ~ o ~
< nos(omsh) nﬂz(T sh) (127,272 1_\/QC+2 2fQ2)
\% h) npz h) (247,272 C+4 2v6Q2).

Now we turn to the first term

E(1{] = 00} L(CL. o(Y)) 1{H1})
< ]E(]l{j’ = 00} (thi — to) (1{iy =n = U =i, + 1}
—i—]l{i,,:—l:L—l:il—l}%—]l{L—i—lgil:ir—i—lgU—l}))
< E(ﬂ{j‘ = 00} (ths — tio)1{is = im }(1{iy = n = U = i, + 1} (A.2.65)
+1L{ir:—1:L—1:z'l—1}+]l{L+1gil:ir+1§U—l}))
+E(1{} — 0o (tni — tio)1{i # im}(1{iy =n = U = i, + 1}

+]l{ir:—1:L—1:iz—1}+]l{L+1Sizzir—FlSU—l})).
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We will bound the two terms separately, we start with the second term.

E(Jl{}‘ = 0o }(thi — tip) iy # im }(1{i1 = n=U =i, + 1}
+1L{z'r=—1=L—1=z',—1}+11{L+1gil:irﬂgU—l}))
< %(E(]l{j’ = oo} l{iy =n=U =iy + 1})L{ipm < n — 1}
+E(1{j = oo} 1{ir = -1 =L —1=14; — 1})1{ir, > 1}
+E(1{j = 0o} 1{iy < iy — LJU{L+1< iy =i, +1 < U —1})
+E(1{ = 0o} U{ir 2 im + BUHL+ 1< i =i +1< U~ 1}))
< 3 E

m( Unjl) .
< O MO G =D )
z \/ﬁ’

pm(-%3h) 1 o , (A.2.66)
+E(2(- (i) n\/ﬁa)]l{L = 0}1{y = co}) 1{im > 1}
+ 1{2 < iy, < n =2} (P(U < iy, j = 00)
. pm(-Z1h) 1

Em
3 1 s 1. A 97-i 5 1
<= (4q)((npz(;ﬁ;il))2 \/ﬂ) +jz;6¢((npz(;ﬁj))22%))

< pz(%;ﬁ) npz(%;ﬁ) -3+ (4v24+12y)C.

Now we turn to the first term. We discuss the four settings: i, = 0, iy, = n, 2 < iy, <N—2,
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im —1)(%, —m+1) = 0. Note that when (¢, —1)(ip, —n+1) =0, D,(n, f) > L Therefore,
( ) ) n

E(]l{j’ = 00} (thi — tio) 1{is = im} (1{iy =n = U = i, + 1}
—Hl{z;:—lzL—l:il—l}—Ir]l{L—i—lgil:ir—i—lgU—l}))
~E(1(j = 00} 21 {iy = im }1{ (i — 1)(ims — n+ 1) = 0}
n (A.2.67)
(H{ig=n=U=i,+1}+ i, =-1=L—-1=4—1}
+1{L+1§il:ir+1§U—1}))

S 2®Z(n7 f)

Now we turn to the cases (iy, — 1)(i,m, — n + 1) # 0. Note that under the event {i; = n =

Uzir+1}U{ir:—1:L—1:il—1}U{L+1Sil:ir-f—lSU—l},thSil/ngthi.

E(]l{j’ = 00} (thi — tio)1{is = im} (1{iy = n = U =i, + 1}
+1{1T:—1:L—1:¢l—1}+1{L+1gi,:irﬂgU—l}))
- ]E(]l{j’ = 00} (thi — it/n)1{i; = im}(1{is =n = U = i, + 1}
(A.2.68)
+1{ir:—1:L—1:¢l—1}+1{L+1gi,:iT+1§U—1}))
+E<1{j = 0o} (it/n — tio)1{i) = i} (M{iy =n = U = i, + 1}

+1{1T:—1:L—1:il—1}+]1{L+1Sil:ir—i-lSU—l})).

Due to the symmetric nature of the procedure, the case (i, —1)(i;,—n+1) # 0, and the event
{ii=int{i=n=U=0+1}U{i,=—1=L—-1=4—-1}U{L+1 <4 =i +1<U—-1}
, we only need to bound the first term, and the second term shares the similar (symmetric)

bound.
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E(1{j = oobts — it/m) Uit = im} (Wir =n = U =i, + 1)

+Il{ir:—1:L—1:il—1}+Il{L+1Sz’l:z’r—i-lgU—l}))
(A.2.69)
= E(1{j = oo} (tni — it/m)1{is = im}

(]l{z'r:—1:L—1:il—1}+11{L+1gil:ir+1gU—l})).

Note that ip; = 4 + 1,4, = 4 — 1 when {L+1 <4y =144+1<U- 1}, and if ip;
is also so defined when {i, = —1 = L — 1 = 4; — 1}, then the definition of ¢;; defined
under {i, = —1 = L — 1 = 4; — 1} has the same form with that defined under the case

{L+1<i=i,+1<U -1},

Let
Yeim1 — Yei — V30(23i-1 — 234) + 26024,
n(ye,iﬂ — Yei — \/30(23,i+1 - Z3,i) + 2\/60»%2)

traw(i) =

Then tp,; = ((tmw(ihz‘) + i)y @> A lhi

And let

q(1) = n(We.ir1 — Yei — V30(23101 — 23.4) + 2V60 20, ).
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Then we have
- IE(]l{j — oo} (tni — ir/n)1{i) = i)}
(1{¢T=—1:L—1:i,—1}+11{L+1gil:z’,+1gU—1})>
_ 1\ 1 ‘ 1 .
= E<E( <(t7‘aw(lhi> + Tl) A n) H{Q(Zhi) > 07 _g S traw(lhi>}‘Yl7Y57Yé,l)
1{j = oo} 1{iy = im} (1{ir = -1=L—-1=1i — 1}

+1{L+1§il:ir+1§U—1})>

= E<E( <<traw(im + 1) + i) A i) H{Q(zm + 1) > 0, _% < t'raw(im + 1)}‘YZaY57Y;3,1>
1{j = co}1{i; = im}(1{i = —1=L—-1=14 — 1}
+H{L+1§iz:ir+1§U—1})>

:P(j:oo,z'l:im, and(iT:—1:L—1=¢l—1orL+1gz'l=z'r+1gU—1))

L{im < n—2)E( <<tmw(z‘m 1)+ i) A i) Uglim +1) > 0, ~ < trau(im + 1)}).

(A.2.70)

Note that only when i, < n — 2 the above quantity is not 0 ( when ,, = n, it’s 0, and by
(ip =4+ 1) (i, — 1) # 0, iy, # n — 1), so we take i, < n — 2 by default from now before

finished bounding this quantity.

Note that, when we denote (; = ye; — f(7;) — V3023, then {ﬁ} S N(0,1), and

traw(im +1) + — = f(@i) (@i +1) + f(@in42) + Gy Cipnt1 + Gippt2 + V602 2

n n(f (Tipy2) = fF(@ip11) + Gimt2 = Cit1 + 2v/6024,)
(A.2.71)

Therefore, when we, with a bit abuse of the notation, denote the event Ag only in this proof
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to be the following event:

Ay = {Cz‘m+2 >  f(@int2) g f(@it1) N

G < L Tint?) - [@ii1) | G (A.2.72)

G >  f(@iq2) g f(@imr1) \@azw}

, we have, on event Ay,

. 1 1
traw(lm + 1) +—-> -
n n

2(f (i, +2) = f(@ip4+1))
3 .

F(@in42) = F(@imt1) + Cimt2 — i1 + 2V6020, >

With a bit abuse of notation, denote event B only in this proof to be
B ={Gip, = 21+ Cir2 + (i) = 2f (Tip11) + [ (@i 42) + V60 > 0} (A.2.73)

Then on B¢ N Ag, traw(im + 1) + £ < 0; on BN Ag, traw(im + 1) + 2 > 0.

S|=

Further, we have

P(AG)
< P(Gippt2 < S @int2) g [@in1) V6024,)
[ (@i, +2) g f (@i, +1) + Voo,

+ PG, < _f(xim+2) g f(@ipt1) _ \/éazaz,) (A.2.74)

[ (@i, 42) — f(@i,,41)
6160
g

< n,oz(%; h) n,oz(%; h)18v12Qs,

+ P(Gippy1 >

(NI

—_

= 3®(—

1
— Zay) < 30(— (npz(;ﬁ;ﬁ)) 6m—zm)

where Q3 = sup, - 2®(—2 — 2a,).
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Therefore, we have

E( <<tmw(z’m +1) + i) A i) 1{q(im + 1) > 0, —% < traw(im + 1)})
:E((Qmmm+n+;)A;ﬁmmm+n>u—;guw@m+n}
(1{Ao N B} + 1{Ay N B} + ]l{AS})) (A.2.75)

gE(@mmm+n+i)MMmBQ+;Pma

1 o - o - -
<E traw 'm 1 — | 1{A B zi;h zi;h6 12 .
< (( (in+ 1)+ &) 1o })+p<¢ﬁ ) o iV 120
Further, given the convexity, we know that
Im im) — f(@i 1
sup{Z(h) : h(z;) = f(2:),0 <i <n}— 2 = f(@i) = f@ips1) 1

n o n(f(zi,+2) = f(@i,+1))  n

Therefore, we have

. 1
E <<tmw(2m +1)+ n) 1{A4o N B}> |
= sup{Z(h) : h(w;) = f(2:),0 <7 < n} = 4 (A.2.76)

B ((tntin + 0~ i LR ) o 3y).
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Further, since on event Ay, we have

: f(@i,) = f(@i,+1)
trowlin 1) = o ais2) = Flns))
Gir (f @in+2) = f(@int1)) + CGinet1 (f (@i,) — f (@i 42))
n(f (@ip12) = f(@ipt1) + Gtz = Cimt1 + 2V6020,) (f (2iy12) — f(Ti41))
Cima2(f (@i 1) — F(4,,)) + 2V60 20, (f(2iy,42) — f(24i,))

n(f(@ip42) — f(@in41) + G2 — CGimt1 + 2V6020,) (f (i +2) — f(@in41))

< (’Cim’(f(!ﬂimw) — f@i41)) + [Cimet1 | (f (i) — F(@inis2)) (A.2.77)
+ G2 (F @i1) = f(@in)) + 2V60 20, (f (2442) — f(»”b“m)))
1

20 (f(@ips2) — f(xin41))?

3 1

f(@iv2) = f(@ipa1)

Therefore,
, S @) = f(@it1) ) )
8 ((tmw(zm T n(f(@i,+2) — f(@i,+1)) 1A N B}
<E (Véa?’(\ciu 4 2|+ Gl + 4200) 1o B})

o)
f(@ipt2) = f(@in+1)

(\[‘7 (ICim | + 21Cipnt1] + |Cippt2| +42ay)

3 1
V602 UQs + d2ea) o

2 = f\fﬁ 62,
g 065 +620.)

B) npz( ; B) \/>2(6Q3 + 6Za2)7

IN

Pm(

o

SP(% %

(A.2.78)

where Q3 = [* |$\\/% exp (—22/2)dx
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Going back to Equation (A.2.69), we have

E(ﬂ{j = 00} (thi — it/n)1{i; = im}(1{iy =n = U = i, + 1}

+1{ir:_1:L—1:il—1}+1{L+1gil:ir"i'lSU—l}))

o - 5 ; (A.2.79)
< p,(—;h (—=3h)V'12(6 624
+sup{Z(h) : h(z:) = f(2:),0 < i < n} = 2.
The first term is bounded for under the case (i, —n + 1)(iy,) # 0.
Similarly, for the second term in Equation (A.2.68), we have
E(14) = 00} (it/n — tio) it = im} (L{is = n = U = ir + 1}
+ﬂ{ir:_1:L—1:il_1}+ﬂ{L+1S’il:ir‘f'lSU—l}))
o — ) (A.2.80)
< p,(—;h (—=;h)V12(6 624
+ UM nf{Z(R) : h(x) = f(24),0 < i < nb.
n
Therefore, under the case (i —n + 1)(im) # 0,
E(14) = 00} (ths — i) Wit = im}(Wir =0 = U = iy +1}
+1{ir:_1:L—1:il—1}+l{L+1Sil:ir‘FlSU—l}))
o - o - <
< Pz(ﬁ? h) an(%; h)2V12(6Q3 + 62a,)+ (A.2.81)

sup{Z(h) : h(z;) = f(z;),0 <i < n} —inf{Z(h) : h(z;) = f(x;),0 <i<n}

J1)y [np(—=; h)2V/12(6Q3 + 620;) + Ds(n, f).

NG
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All the cases analyzed, and all the terms added up

E(1{j = 00} 1{tni — fro < 2} L(CToa(Y))

. - (A.2.82)
< éS,a sup Pz(7§ h) npz(i; h) + QQZ(TL, f)
hng(f) \/ﬁ \/ﬁ
O
Proof of Lemma A.1.34.
P(3 ="+ K +1) =E(1{] = j* + K + 1}1{j* < oc})
<E(I{Vj"+1<j<j"+K,

(A.2.83)

min{}?,irﬁ,s — Y5 56 Y546s Yj,ij+5,s} > 279,V/20v 27-7114{j" < o0})

< B(-2) E(1{3" < oc}) < B(~2)¥

The second inequality is by taking conditional expectation on the localization copy of the
observation (i.e. Y;), and the fact that for the iteration steps j such that j¥4+1 < j < j¥+ K

the target interval is more than 6 blocks away from the estimated one. O

Proof of Lemma A.1.35. Given the symmetric nature of our procedure, we only need to

prove

E(1{E}1{j = oo} 1{Ff}) < a. (A.2.84)

Note that, when j = oo,

E={Z(f) € [(I; — (6- 2%zt —2) 1) 2731
= 1z — . [e% J— I —
J n o2n’
27-3 1
- ofapatl _ g - — 1
(15 + (6 ) 2n] n[0,1]}
I: — (6-28entl _9) 2 iz 46282t 9

c {~ ( - )72 Z(f) < - -

Let Ly = ij —(6-2Kar2tl 9y 9 1) = ij + 6 - 282t _ 2 Hence we know that when
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Lo>1, L=Ly—1;when Uy <n—1,U =Uy + 1.

Let iy, = min{k : f(z) = min{f(x;) : 0 <7 < n}}. Then we know that, on E, Ly < i, <
Up. And also i, = n implies F7, hence we only need to consider the case i,, < n — 1 to

compute FY. And {i,, <n —1}N{Ly <ip, < Up} implies that i, < U.

We also know that {ye;+v3023;: 0 <i < n}, {yei—V3023,;: 0 <i<n}, {ys;: 0<i<n},

{y1; : 0 <i < n} are independent random variables.

Therefore,

E(1{E}1{j = oo} 1{Ff}) < E(E(I{E}l{j = oo} iy, < U}
(A.2.85)
WYe,ip, + \/50'23’2‘771 — Yeyim+1 + \/§UZ3,im+1) > Qﬁazal}

nm)) < an.

Proof of Lemma A.1.36. The event EN{j = oo} NFy1 N Fyn{(i; — U)(i, — L+ 1) =0} is

the subset of the union of the following four events:

Gi=En{j=cc}nFiNFnN{i=UU#n},
Go=En{j=occ}nNFiNnFnN{i=UU=n},

(A.2.86)
Gs=En{j=occ}nFNnFKN{i,=L-1,L=0}

Gi=En{j=oco}nFBiNnFn{i,=L—1,L+#0}.

Since {U #n}N{j =00} means Uy < U ~1<n—2;andon EN{j =00} N NF, we
have ¢ < min{k : f(zx) = min{f(z;)}} and min{k : f(xr) = min{f(z;)}} < Uy, we know
that G; = (). Similarly, we have G4 = (). Also, on E N {j = oo} N Fy N Fy, we know that

1 < i, + 1, hence we have G5 N G3 = (.

Also, on Go, we know that f(z,) = min{f(z;)} and f(zx) > min{f(z;) : 0 <i < n} for all
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k, which implies that Z(f) > n(]f((fn”_);){(]f(’;:_)l)) + "T_l

Suppose Ye1 = {Yei + V3023 : (L—1)V0<i < (U+1)An}, Yoo = {yei — V3023, :

(L-1)v0<i<(U+1)An}. Then we know that Y;,Y,,Ye 1,Ye o are independent.

If we denote ki1 = Ye,i + \/302372‘ — f(xi), Kig = Ye,i — \/gaz;m — f(x;), then we know that
on G2 when we further have x,2 > —\/602a2, Fn—12 < \/éaza2, Kn—22 > —\/602a2, then

tio < Z (f )
We have similar analysis for Gs.

Hence we know that

E(H{Z(f) ¢ CLoa(Y)}{E}L{j = 00} 1{F N B} 1{(i1 = U) iy — L+1) = 0})
—E(1{Z(f) ¢ CL.o(")H{E}{j = oo} 1{F N F:}1{G5})

+E(1{Z(f) & CL.o(Y)}{E}L{] = 00} 1{F 1 F2}1{G}

N——

= E(B(L{tir > Z(F)}V, Yo, Yer)1{Ga} ) + B(B(L{th: < Z(f)}Y¥0, Y, Vo) 1{C1})
< 3aaP(G2) 4+ 3a2P(G3)
< 30, P(L{E}L{j = oo} L{F\ N B} 1{(i; — U)(i, — L+ 1) = 0}).
(A.2.87)
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Proof of Lemma A.1.87.

E(1{Z(f) ¢ CLa("){E}{j = oo} {F N Ba}1{(it — U)(iy — L +1) # 0}
ﬂ{ihi — i < 2,0 < oy bhi < n})

< E(IL{Z(f) > i FU{EVL{j = oo} L{F1 N F}1{(i; — U)(ir — L + 1) # 0}
(A.2.88)

L{in — t1o < 2,0 <, ip < n}>

+ IE(]l{Z(f) < o I{EYL{j = 0o} 1{F N B }1{(i; — U)(ir — L + 1) # 0}

Lini — it < 2,0 < igo, i < n}).

Given the symmetric nature of the procedure, we only need to bound the first term, the

second term shares the same bound.

Suppose Ye1 = {ye; + V3023, : (L—1)V0<i< (U+1)An}, Yeo = {yei — V3023, :

(L—1)v0<i<(U+1)An}. Then we know that Y;,Y,Y. 1,Ye 2 are independent.

On the event Eﬂ{j = OO}ﬂFlﬂFQQ{(Z'l—U)(Z'T—L-Fl) #* O}Q{ihi—ilo < 2,0 <1, ip < n},

we know that [{k : f(zx) = min{f(z;) : 0 < i < n}}| = 1, we denote this unique element

to be i,,. Also, on this event, we know that 2 < i, < n — 2. Hence we know that

F@ip) = f (Firy+1) im+1 o L . A
2(f) = (f@imt2)—f @ip+1))/ L + If we denote ki1 = Ye,i + \/§0Z371 f(@i), mig =
Ye.i— V3023~ f(xi), then we know that on event EN{j = co}NFiNFoN{(i;—U)(i,—L+1) #
0} N {ini — i1 < 2,0 < djgyin; < n} , if we further have ki, 120 > —V60z2ay, Ki, 412 <

\/éozaz, Kipy,2 > —\/6020427 then Z(f) < tp,.
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E(H{Z(f) > tw}L{EYL{j = 00} 1{F N B} 1{(is = U)(ir — L+1) # 0}
Lini — it < 2,0 < igo,ip; < n})
= E(E(L{Z(f) > tri}l¥i, Yo, Yer ) L{EN{j = 0o} 1{F1 1 3}
L{(iy — U)(iy — L+ 1) # 0}1{in; — 1o < 2,0 < igo, ins < n}>
= E(E(H{Z(f) > thi} %0, Yo, Yea) L{ENL{ = o0} LLF 0 Fa}1{(is — U)(ir — L+1) # 0}
Wini = ito < 2,0 < itgying < n}Wito +1 = ini = 1 = i} )
< E(E(ﬂ{/@img,g < V6020, OF Kipy 119 > V6020, OF Kipy o < —V60 20, }Y1, Ve, Yot )
H{EMN{j = co}1{Fy N FR}1{(i; — U)(i, — L + 1) # 0}
Wini = ito < 2,0 < itgyins < n}Wito +1 = ini = 1 = i} )
< 3mE(1{E}1{j = oo} 1{F1 N Fy}1{(i; — U)(i, — L + 1) # 0}

Wini — 1o < 2,0 <o, < nfl{ipo +1=1ip; — 1 =1imm}).

(A.2.89)
Therefore,
E(1{Z(f) ¢ CLo.a(Y)}{E}L{j = 00} 1{Fy N B}1{(is — U)(iy — L +1) # 0}
Wini — ito < 2,0 < itgyins < n})
(A.2.90)
< 6a2E(]l{E}]1{j' = 0o} L{F N F3}1{(i — U)(ir — L+ 1) # 0}
Lini — ito < 2,0 < igosins < n}1{it + 1= ip; — 1 = im}).
O
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Proof of Lemma A.1.38.

B((€5, 0551 < o)

1 ~ sk sk > ~
= E(5;50"e 1 < oc}) = ™22 E@T V1 < o0})

ji*+2 00
= 0?22 (S BRIV =)+ ) EQIITHI{ = 4}))
Jj=1 Jj=3*+3
00 13 g . A\\/oJ—j*—2
§U2,)/32J —J(4+ Z 2] +J¢.(_2+ 167M\ /n f )
B (553 VI
oYsV/2

. ad . 13v3
< o24203 T (4 4 277 o(—2+
’ j=§+3 7516v/2
13v3 o=
8P(—2 + %16\@2 2)

13v3 o352
- ®(-2+ Y527

B(—2+

)(J’*j**3)+)

13v3
V532v/2

273 )B(—2 + 973" )i=3"=3)+

<oy 4+

)

B(—2+ 133 97
o o 8 16V2
< 2npm(%§f)2pz(7§f)72 (4+8 E

e o . =5
Vi np. (= f) 1 - @(-2+ 13525

)

g

= lepm(\/ﬁ; f)Q

(A.2.91)
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Proof of Lemma A.1.39.

=
—~
—
h!

|

M(f))*1{j < oc})

=E((F - M(F)2(143 > J} + 13 <1 < oo})
T+l

[e.o]

= E@E-MHI{G>i=nb+ Y, E(E-M)*1{j>j=n}
=2 =3 +2
+E<((f — avey(J, ij))+ + (avey (7, ij) — M(f)))z]l{j <j=41{j< oo}) (A.2.92)
j*+1 o
S EE-MA))P1G>i=ah+ >, E(@E-M()1{5>)=pn})
J1=2 J1=3*+2

+ 2E<((f - avef(j',ij))Jr)ﬂl{j < ]}]L{j < OO}>+

28 (ave (7, 35) — M())*145 < j}1{j < o0}).

We will have four lemmas to bound each term respectively. To avoid distraction, we will

defer the proofs of the lemmas to later part.

Lemma A.2.1.

T+l
Y E((E-M())1{5>i=h}) < cmgpm(%; £)2 (A.2.93)
Jj1=2
Lemma A.2.2.
S OE(E- M)A =5} < cm4pm<%; 2. (A.2.94)
J1=j*+2

Lemma A.2.3.

(£ — aves(7.3))"13 < 1145 < 20)) < e st )7 (A.2.95)
Lemma A.2.4.
B((avey (G, 35) = M(£)145 < F < 00) < emopn( =t 112 (A.2.96)
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With these four lemmas, we know that

E((f - M(f))2ﬂ{j < 00}) < (em3 + cma + 2¢cms + 20m6)l)m(%§ f)2 = CmQPm(%; f)2
(A.2.97)

Now we will prove these four lemmas, For simplicity, we will not repeatedly write ]l{j < 00},

in the expectation, but that is the default assumption whenever j appears.

Proof of Lemma A.2.1 Similarly to the white noise model, we have

j*+1
SCE(E - ML > )= i)

Jj1=2
j*+1
> Z ( avef ]17 1]1 + 2) ( )) ]l{ J1,i,+6,s }/}1,ij1+5,s < 2\/5780 v 2J_j1}
J1=2
+ (avep (i1, 1j — 2) = M(N))?I{Y}, 5, 16,5 = Y gy, 4506 < 2V270V2I701})1{5 > Jﬂ)
j*+1 . > 1 J—17 )
3 - (aver (1,1, +2) — M(f))22/"5
< —((ave ,i, +2)— M 2p(2 —
3 oven T +2) = MU P )
- 1 .
. (aves(j1, 15, —2) — M(f))220/ ) s
+ (ave ,1,, —2)— M 2p(2 — E(1{j >
(aves (. 3, —2) = M(f)*a( e DE( > ii})
i*+1 A
< >0 3-2(3.5V207,)°V
j1=2

o 49
<6 x2) +1_J0257§V

o o
<48 x 49 x 272V iy ? = cmapm(—=; [)*.
x 49 x 25 p(\/ﬁf) CJp(\/ﬁf)
(A.2.98)
The V in the inequalities are still the same as the V' in the white noise model:
V = maxz’®(2 — x).
>0
O
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Proof of Lemma A.2.2.

o0

> E(E-M(N))1{G > =q})
J1=j*+2

3 N foT—7
< Z ]E<2 ((avef(]la i, + 2) - M(f))2]]-{}/}1,ijl+6,s - ijl,ijl—i-E),s < 2\/5’780- 27 7}
J1=3*+2
:H‘{\V/J* + ]- S ] S jl - 17 min{YVj,ij-i-G,s - Y},ij+5,s7 ij,i]‘—6,S - Y‘Vj,ij—t—),s} > 2\/5750- 2J7j1}
+ (a’vef(jlv ijl - 2) ( )) ﬂ{ J1,ij,+6,8 }/jl,ijl—&—&s < 2\/5750- \ 2J_j1}

V3" +1<j <ji = Lmin{Y)s 165 = Yis 500 Yid,—6s — Yii,—5.) > 2V27s0V2/ 701}

e
)16 > i)
> 3 o 2 (aves(jr1, 15, +2) — M(f))2%(‘]—jl)
Sjlzj;+2E<2((av€f(]1,1h +2) - M(f))"®(2— 35092 )
(f’f)22( -3 (f’f)22( Y (G1mi*—2)s
(I)(_2+ oV/2s )(D(_QJF o2v/2, o
- i1, 15, —2) — M(f))2:—)
+(aves (i, B~ 2) — M(P)P(z - (LU 5a)vsf(f)> )
pun(Gs )220 pun( G 22V
P2+ V27, B2 72v/27 T
JE(L{ > ﬁ}))
N - V3 V3 G
3-2177(3.5v207,)%V - &(—2 P(—2 4+ Y2 =32+
Sﬁ:zj;ﬁ (3.5V20,) (=24 )% +8\/§%)
12749 o o 1 1
<32 Ve D)
< Cm4pm(%§ f)2
(A.2.99)
0
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Proof of Lemma A.2.3.

~

E(((2 — aves (7, 15)) 1143 < < o))
J
> B((@ - avesn, 500210 = i1l = )

J1=J2

I

<.
vl
[\

j2

M“

J
3 E(ﬂ{J = o} (aves(in, 1, +2) — aves(jn, 13,))+)°

J1=j2

R{le’ijﬁﬁvs Y45 S 2v/2y,0V2 i1}

V5" +2<j <1 = LY 5, o5 = Vi 15,5 > 2V200V27 70,

<.
Il
)

j2

le,ih%,s - leijl 455 > 2\6780@, if exists}
+ 1{j = ja}((aves(j1, i), — 2) — aves(j1,15,))+)?
(Y}, 3, g = Vi, 5,5 < 2V2750V27 701}
Y3 +2< 5 <= LY 5, o0 = Vg, 5,0 > 2V290V20700,

th;jﬁw — leijﬁg),s > 2V/2vy,0V 270 if exists})

< Z Z E((avef(jl, ijl + 2) — cwef(jl, ijl))zﬂ{avef(jl,ijl + 2) — avef(jl,ijl) > 0}
J2=2j1=j2

(fwef(jlyijl+2)*M’ef(jlyij1))m By (%= f)\/W o
(2 — 2 YD(—2 + 16 vn )(J1—J*—2)+
\/5’)/50 U’Ys\/ﬁ
1{j = j2}

+ (avef(jla ij1 - 2) - avef(jla ijl))Ql{avef(jla ijl - 2) - avef(jla i]i) > 0}
(avey (41,1 —2)—aver (j1,151)) /575 13 \/2J—i* =2
o2 — - VT (g 1 pm( i f) 13" -2)
V2v0 ovsV2

16 - 2})

(A.2.100)
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J J
<y

E(n{aveml, 20 +2) > aver(in 1)}
J2=271

2
M)(]’l—j*—2)+

P2V = o} (-2 +
Vs {J jQ} ( 64\@'}’5

+ ]l{avef(jl, ijl -2)> Cwef(jh i]i)}

22 = )2+ 00 )‘ﬁ““)

64\/573
J
~ 3 sk 1
<2) E(I{j = joP)yie? V2P (1 4 57
ja=2 1—29(—2+ 64\/573)
o
< Cm5pm(%;f)2'

Proof of Lemma A.2.4. For simplicity, in this proof, we take j < oo by default. However,

this is not a key condition, we only need this to establish that j < J and j < .

E((aver(j, 1) — M(£)*1{j < j})

< 2E<((avef(j', 1;) — avey(J, ij))+)211{5' < 5}> (A.2.101)

28 ((avey (5.3;) - (), ) 15 < 7}

Now we introduce two lemmas that we will prove later.

Lemma A.2.5.

g

E<<(6W6f(§} 15) — avey (3, ij))+>211{5 < 5}) < cm7pm(\/ﬁ;f)2. (A.2.102)
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Lemma A.2.6.

E(((avef(j ij) 7M(f))+)2]l{j Sj}) < CmSPm( 3f)2- (A-2-103)

BN

With these two lemmas, we have

E((avey(j, 15)~M(f)*1{3 < J}) < 2(cmr+cms)pm(—=

\/ﬁ;f)z _ CmGpm(%;f)? (A.2.104)

Proof of Lemma A.2.5 . Similar to the white noise model, we will first define the following
events to describe the relative location of one iteration further compared to the current one

at step 3 +r:

A ={w: i, < =21

1+r7 JHr+1 = 41j4r11 -2}

U{w: 1; <13+r’ Sl = =215, +1},

B, ={w: iz, < 13+r’ St = 215440 — 1}

U{w i, <if = 21:

j+r’ j+r+1 J+r+1}

(A.2.105)

Cr={w: 15, < 13—1—7“’ St = 2154041}

U{w: 1 , < 13+7" Spra1 = 2134_74_5_1 1},
Dy ={w: 13 <1J+T7.J+7‘+1_21J+T+1+1}}

U{w:1; o <ii s =215, — 2}

Basically, from A, to D,, the average of the signal are from the highest to the lowest.
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Then we have

E(((avef(j,ij) - avef(j,ij))+)21{j < j})

= & ((avesG3) - aves5.33)), ) 15 + 1< 53

< E(((avef(j', 1) — aves (3, ij))+>211{j r1<h) (A.2.106)
(140U (Bon D) U (Bon Dy N {j =3 +1})}

+1{(BoNn D) U(ConB)}1{j > j+3} +1{Co N Al})).

We will bound the three terms separately, before that, only for bounding these three terms,
denote 6 = 1{j1 = jo + 1}, do = 1{j = ja}.

]E((auefg, 2) — aves(5,59)) L 143+ 1< 7} (1A U (Bon D) U(Bon Dy {j =3 + 1})}))

00 ) J1—1 o 5
< Z Z E<2 Z 27*J2<(av6f(j+1,ij+1)—avef(]} ij))+>
Jj2=2j1=j2+1 J=Jj2

1{j = j1,3 = j2 }(1{Ao U (Bo N D)} + 1{Bo N D1 }1{j1 = jo + 1}))
L) oo J1—1

<> > Z2j+1_j2]E<]1{5:j1}]1{5:j2}(a”€f(j+17ij+l)_a”ef(j7ij))2

J2=2j1=J2+1 j=j2

W{aves(j +1,1;11) > aves (5, 1;)}(1{Ao U (Bo N DY)} + 1{Bo N D1 }1{j = ja, s = j + 1}))
> > ] —1. . 2> .2 2 . <> .o
<> > 2 ”E((avem +1,3551) — aves (5, 1)) Maves (G + 1,1541) > avey (5 1)}

J2=2j=j2
00 13 o . /T —i*—2
~ . . *Pm( 7f) 2 J
1{j=ja} Y., @(-20 R Dig(—24 0

)(jzfj**5)+
Ji=j+1 ¥s0V2

(1{Ao U (Bo N D)} + 1{Bo N D1 }1{j = jo, 51 = j + 1}))

(A.2.107)
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oo 0

<> 2j+1j2E((a1}ef(j +1,3541) —aves(, 1)) T{ave (G +1,3541) > avep (4, 1,)}
J2=2j=j2

V4 1( 2 g+ 1y 2

1{j = ja, Ao UBO}(IL{j =ja}(1+ 1_ : m)

1-o(-2)
%gpm(jﬁ;f)‘/w)(jzj*ﬁon)
’Yso'\/5
< Z Z 9J+1-j2 (]l{j — jz}(l + ﬁ) + ]l{] > j2+ 1}(1)1(_2();(_122;)

J2=2j=j2

B2+

13\/?: )(jz—j*—5o)+
64v/27,

. ~ P 2 . ~ S ~ . bt ~
E((aves(j+ 1,3541) = aves (. 35)) " Laves (G + 1, 3541) > aves (. ;)15 = ja, Ao U Bo})

(-2 +

Now define the set C(j, k) to be the set of pairs (i,i2) such that, P(1x41 = 2, 1r = i1]j =
J) > 0 and aves(j + 1,42) > aves(j,41). Then we know that ‘C(j, k:)’ < min{10-2%77.23.

4k+1fj}.

. > .o 2 . > .o ~ . it ™~
E((cwef(] +1,141) — aveyr(4, 1)) I{aver (5 + 1,141) > aveyr(4,1;)}1{] = j2, Ao U Bo})

< > E((avef(j—i—l,iQ) — avey(§,1)) {5 = jo, Ao U Bo}1{ij11 = iz, I; =i1}>
(i1,i2)€C(j2,5)

< Y E((aves(G+1i2) — aves (i) 1 = ia, I = in})
(i1,i2)€C(J2,7)

< Z (cwef(j—i-l,ig)—avef(j,il))
(i1,i2)€C(j2,5)

< Y e
(i1,42)€C(42,5)

2

(aver(j + 1,i2) — aves(j, il))W)

20 YioV/2

< min{10-27772 .2, 3. 4717100 H1=T 952,209

(A.2.108)

Still, @ = sup,~o 2°®(—z).
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Continue with inequality (A.2.107), we have

E((avef@,i;) ~aves(3.35) 16+ 1 3100 U B}

2)] J2—1

< 2]+1 J2 ]1 _ 1 > R S
>y (145 = ja}(1 + ( ey Tz R } —)
J2=2j=j2
O(—2+ 13\/> )(Jz 3" —00)+ mln{lO 9i—J2 2.3 4I+1— J2}2]+1 J 2027262
64+/25
- 1 4 80 13v3 . ,
= 24(1 (-2 + J2=3"=1)49ja+2—T ;2,2
JZ;( U+ =5 T ey 1o )) ( 64\f%) TNQ
-
i - 1 801—g (3 13v3 | (s _
<23 75242 24(1 + + =2 Vp(—2 + (J2=3"=1)+9j2—3"+2
- ”Qj;( () s 2) " )
82?7 o ) p )
< 70~m < Pm i f 16'7 QCmg = CmgPm i f
npz(ﬁ;f) 9 (\/’Tl ) l 9 9 (\/ﬁ )

(A.2.109)
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Now let’s turn to the second term

E((avef@ 1) —avep(3,13)) , 1{3 +3 < j}1{(Bo N D1) U (Co Bl)}>

Ji—1

< Z Z Z (21 —ja— 2( aver(j+1,141) — aves(y, ij))+>2

Jo=2j1=j2+3 jJ=ja2+2

10 = j1.3 = 2 1{(Bo n 1) U (Co 1 Bﬂ})
2
< Z Z 9J—j2—1 Z Z E<<avef(j+1,i2)—avef(j,i1)>
Jo=2 j=j2+2 J1=J+1 (i1,i2)€C(j2,7)
1{j = j1}1{3 = j2} 1{ij41 =2, I = i1} 1{(Bo N D1) U (Co N Bl)}>

< i i 9J—j2—1 Z Z <<6w€f j+1d2) — Cwef(]ﬂl)>2

J2=2 j=ja+2 (i1,i2)€C(j2,5) J1=+1 (A.2.110)
1{j = jo}1{ij41 =iz, 1; = i1}1{(Bo N D1) U (Co N Bl)}>
%pm(ﬁ; [v2l=i7=2
+
Vs0V/2

oo oo
<3 N 2t min{20- 27792 3. 47120027 5242
J2=2j=j2+2

@(72)j1—j2—3@(72 )(j2—j*)+

(I)(_Q)j_h_2q) 92 13\/> )jz j*

1- Q)(_Z) 64\/>78

13 -
— 93" 2 Z 223" P (— 64\}[%) 230 1o

Jj2=2

< leOPm(%? f)2
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Finally, let’s look at the third term
]E((cwef(j, 13) —aves(3,13)) {7 +1 < J3{Co N ;11})

Si i 97 —J2 i Z E((avef(j+1,i2)avef(j,i1))2

J2=2j=gj2+1 J1=J+1 (i1,12)€C(j2,4)

1 =145 = 2} U{E = i2, 35 = i} 1{(Co ﬂfh)})

T o o P(—2)7 722 13v3 . s
< J—J2 .9i=d2 g . gitl—j219j+2-J ;2,2 _ (G2—3")+
_Z _z: 29792 min{20 - 29772 3. 4 12 o2 Q o D) (-2 64\@%)
J2=2j=j2+1
< 2J-*7J0'26'm,11 < C'mllpm(%; )2
(A.2.111)
Therefore,
b T2 2 e ~
B ((aves(G.3) — aves(3.39), ) 165 < )
(A.2.112)
< (em9 + Cm10 + em11)Pm(—m=i ) = Cmtpm(—=; f)?
— m m m m \/ﬁ? m m \/ﬁ’
O

Proof of Lemma A.2.6. First we define the following notation:
TH(j) = {i] 4,1} = 3,1j - 2,4} + 2,17 + 3,17 + 4},

J

which denotes the possible values of 1; if j = j.
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E((avef(jij - M(f)))QJl{ﬁ gj})

- i Z E( aveg(jz, 1) — M(f))2]1{j = j2,J = J1, 15 = z})

J2=2 j1=j2 i€l H (j2)
J J 2 ~ . ‘
< Z Z (Cwef Ja2,1) M(f)) 1{j = j2, 1y, =i}

(E(]l{i = Y010 < 3%+ 21+ 10 = 5* + 3} (BQ{ = ji}[¥)A

m; o 27-3
15! o max(-20, 02+ (5 + oo i >})))

< Z > ((avef Jayi) — M(f)) 1{j = j2, 15, = i}

Jj2=24€lH(j2)

3_ V3 \ja—j -2
(=24 8 3y )

{jo <j*+2}+1{jo > 5"+ 3}
(1 <5 +2+ 1 el B

4v/2,
¢ 2 g (ves U ) = aveylia, 35, + signli = 13,))) V2T
<2 > (avef jori) = M(f)) (- ¥ -
2=24€lH(j
1{jo > +3}‘I’( 2+ )32‘3'*‘2>
< 2
(1{12 T2+ g > 5" “o27 D)
J (F2—3"=2)+ .
Z 27 0,22]2*JQ(I)( 2+ ) i 23 +27.]026m8

1—®(-2+13)

< CmSﬂm(%? f)2

(A.2.113)
O
Proof of Lemma A.1.40.
E((fi = M(f))*1{j = oo})
= (min{f(z:;) : 0 < i <n}— M(f))*
FE((fi — M(HP1{) = oo} 1{|1s - 15| > 2)) (A-2114)

< (min{f(z;): 0 <i<n}—M(f))?

+E((fz, — M(f)*1{j = 00} 1{|1s — 1} > 2})
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In the proof of Lemma A.2.4, all the argument using properties of j only uses that T; > 20,

for j < j, so for the second term, all the argument can also go through here in the case

j = 0. So we have

E((fi = M(f))*1{j = o0}) < cmapm(%; )2 + (min{f(z;) : 0 < i < n} — M(f))
(A.2.115)
O
Proof of Lemma A.1.41.
o*E(1{j = oo})
<o?M{J < §* + 1} + °E(1{j = co)1{J > j* + 2}
< UQMH{J <JF 1} +ole(—2+ é)J*J**l
1 -
<30T P UT < 5 4 1+t e 0(-2+ ) T T 2 5 4
< 32pm(%;f)211{J <3t +1) +32pm(%;f)2 20(-2+ é)]l{J > §* +2)
< 32,0m(%3 f)2
(A.2.116)
O
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Proof of Lemma A.1.42. Similar to the proof of Lemma A.1.39, we have

E((f - M(£))*1{j < o0})
J

<Y E((F-M(£)1{F > j=h})
=, (A.2.117)

+ 2B (((2 - aves (7, 37))+) 143 < J}14 < o0})

+ 2B (ave (7, 3;) - M(£))°145 < j}1{j < oo}).

Similar to the arguments in the proof of Lemma A.2.1, we have

J
Y OE(E - M()*1{3 > =i}
j1=2
< EJ: 3-2177(3.5v/20,)%V (A.2.118)
Jj1=2

49
<6- ?’732‘/02 = Cma0”,
where V = max,~ 72®(2 — z).

Similar to the arguments in the proof of Lemma A.2.3

2 (2 — avey (7, 1;))+) 13 < j}1{j < oo}
J J
<2 )
J2=2j1=J2
L\/g)(jl—j*—m
64\/5')/3

- - ; ~ 13v3 (i s
4 Uaver(i, 3, — 2) > ave (1, )12 202V = jabb(—2 -+ L0 i3 2”)
64/27,

E<ﬂ{avef(j1, 1 +2) > ave(j1,15)}2° 420 VI{] = jo}@(-2 +

J
<4 E(1{j = j2})1iV2'e?
Jjo=2

< 47521/2402 = ém502,

(A.2.119)
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where V = max,~ 72®(2 — z).

For the third term, we have

28 ((aves (7, 35) — M(1))*143 < j}1{j < oo} )

. ~ . 2 .
< 4E(<(avef(j,ij-) — avey(3J, ij))+) I{j<j< oo})

-~ . 2 -
—|—4]E<<(cwef(j,ij) —M(f))+) {j<j< oo})

Now we have the following lemmas which we will prove later:

Lemma A.2.7.
v e ~ 2 2 Iod M - 2
E ((avef(j,lj) —cwef(_],lj.))+) 1{j <j < oo} | <émeo”.

Lemma A.2.8.

E(((avef(jv ij) - M(f))+>2]l{j Sj < OO}) < ém70'2.

Now we can conclude that

E((2 — M(f))?1{j < 00}) < (Gma + ms + 4émp + 4ém7)0” = Eppo.

(A.2.120)

(A.2.121)

(A.2.122)

(A.2.123)

Proof of A.2.7. Note that, in this lemma, we have j < oo, however, it’s not the essential,

all is needed from it is that j < J, which comes from j < j < oo. The proof of this lemma

use many arguments from the proof of Lemma A.2.5 and lemmas proving it. And it can

be seen that all the use of j there are that T; > 20; for j < J, and j < j. Similar to the

arguments in the proof of Lemma A.2.5, and suppose we take all the notation there, then
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we have
B ( ((oves 3. 55) - aves (G.37), ) 145 < 53)
< ((aves3.55) ~ avesG.55),) 13+ 1< AU Bon DU (Bon Din {5 =5+ 1))

+1{(ByNDy)U(ConBy)}1{j > j+3}+1{Cy m[ll})),

(A.2.124)

B (((aver (.35) - aves(3,39),) 16+ 1< AU (Ban 5 U (Bon D10 (5 = +11) )

IN

J -l R - 2
E(g Z 97 =72 ((a’l}ef(j +1,1541) — aves (], ij))+> )
~

J=Jj2

2 j1=j2

<

J

o=
J

b=

IN

(24(1+ —

1 4 1 . )
80( ) e(-2+ B R
2

@(_2)) o) 1-80(= 64v/27,

)230’2'}/[26’2 = ém80—27

J 1 4 80
o) T To a2 1862

IN
—~

24(1 +

(A.2.125)

E(((avef(jv i5) —aves(3, if))+)21{5 +3 < FI{(Bon D) U (Co N Bﬂ})

Ji—1

JZ Z > (23 —j2— 2( avef(j+1,ij+1)_avef(j’ij))+>2

2=2j1=j2+3 j=j2+2

143 = j1,j = 2} 1{(Bon D1) U (éomél)}> (A.2.126)

J—3
, 13vV3

<9 J52 E 212 (—9 (2=3")+¢

- ( 64\/5%) o

J2=2

< ém9027
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<< aves(3, 1 — aveg(3, ij))Jr)QIl{j +1<331{C ﬂ[h})

J-1

Z_ Z 9J—J2 Z Z E((avef(j—i—l,ig)—avef(j7il)>2

Jj=j J1=J+1 (i1,i2)€C(j2,5)

103 = 31105 = 2} 1{Ej1 = in, ;= 1} 1{(Co mh)})

J—2 J-1
<2 2
J2=2j=j2+1
2)i—52=2 13v/3
27732 min{20 - 29792 3 . 47175297 +2= 52 (7@ 24 j2=3"
( R Al
< Em100”
(A.2.127)
Therefore,
s 2 Tz 2 ot 2
B (((aver(3.1) - aves (5.37)),) 15 < 3 o
2,128

< (Gms + Emg + Em10)0?

Proof of A.2.8. The arguments in the proof of Lemma A.2.6 hold, and we only need to

change the last two inequalities to come to statement of this lemma.
More specifically

E((avefG 35— M) 15 <3))

d(—2+ %)(J’z*j**m-&-
1—®(-2+13)

J
Z 27 2529727 () (A.2.129)

2
m70 " .

IN
¢
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Proof of Lemma A.1.43. Similar to the arguments in Lemma A.1.40, we have

E((fi = M(f))*1{j = oc})
= (min{f(z;) : 0 <i <n}—M(f))?

+E((fi — M(f))*1{5 = oo} 1{|1s — i}] > 2}) (A.2.130)
< (min{f(z;) : 0 < i < n} — M(f))?

+E((fz, — M()*1{] = 00} 1{|1s - 1j[ > 2}).

Also, since in the proof of Lemma A.2.4, and Lemma A.1.42, Lemma A.1.43, all the argu-
ment using properties of j only uses that T; > 24, for j < 3, so for the second term, all the

argument can also go through here in the case j = co. So we have

E((fs, — M()*1{3 = 00} 1{[1, - 13| = 2})
< 2B (((ave (3, 35) — aves(3,35))+) 143 < 3}) + 2E((aves(3,35) — M(£))*1{] < 3})

< 2(Eme + 5m7)02.

Therefore,

E((fi — M(f))*1{3 = 00}) < (min{f(;) : 0 < i < n} — M(f))* + 2(ém6 + émr)o”,
(A.2.132)

Let ¢n3 = \/2(¢me + Cm7) gives the statement of the lemma.
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A.3. Comparison with CLS Methods and Connections with Classical Min-

imax Framework for Chapter 2

In this section, we compare our procedures with the convexity-constrained least squares
methods for the minimizer and discuss the connections with the classical minimax frame-
work. In particular, we prove that the CLS confidence interval for the minimizer proposed

in Deng et al. (2020) is sub-optimal under the local minimax framework.

A.3.1. Sub-optimality of the CLS Confidence Interval

We start with the proof of Proposition 2.4.1. It suffices to prove the following proposition
as we can set the r(n) in the following proposition to be arbitrary large.

Proposition A.3.1. For any function r(n) > 1, for any integer n > 5, 3f,, € Fa such that

EfnL(CLSCIa)
EfnL(CIZ@)

> r(n). (A.3.1)
Proof. Recall that we have established
EfL(CI,q) < C’g,aiz,am(a; f), forall feF

in Theorem 2.4.2, and further, in the proof of Theorem 2.4.2, we have

o o (1—-2a)
EfL(CIz,a) < CQ,a (hesgﬁf) pz(ﬁv h) (1 N npz(%a h)) + ng(na f)) )

where the definition of G, (f) is given in Equation (A.1.99). This combined with the lower
bound of local minimax length of confidence interval that we established in Proposition

A.1.4, namely

iz,a,n(a;f) Z éz,oz < sup pz(%;g) <1 A npz(\;:ﬁag)> + T:DZ(T% f)) )

9EG(f)
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indicates that it suffices to show that for any r(n) > 0, there exists f € F3 such that

E;L(CLSCI,)

<supgegn(f) p=(7m:9) <1 A npz(jﬁ;g)> + 1349, (n, f)>

>r(n).

Note that L(CLSCI,) > -, we only need to find f € F3 such that

1 1
and sup p,( 7

onr(n) 2COulh) \/ﬁ’g) = (r(n) + 1)

D.(n, f) < (A.3.2)

3
2

Consider function fy(z) = 4n(r(n) +1)2(c + 1)z — Ln/2 |, for which we have

1
2 n(r(n)+1)

g
QZ(n7f0):Ov sup pZ( ag) <
gegn(fo f

The conditions mentioned in Inequality (A.3.2) are met, but fj is not in F». Now we will

proceed to construct fi(x) € Fa such that the conditions in Inequality (A.3.2) are still met.

Let )
fo(z), z € [0,1]
folz) = § fo(l) + sup f(li:{(t)(x -1, z>1 (A.3.3)
\ fo(0) + tsugi Wa:, x <0

Then consider the following class of transformations of fy:

T'(fo:6) /fo

It’s easy to check that when fy is a convex function on [0, 1], T'(fo; d) is a convex function on

v —1)2
exp (= n 52t) )dt. (A.3.4)

R, and that T'(fo; 0) is twice differentiable with continuous positive second order derivative

around the minimizer. Also, when fy is fixed, lims_,o+ Sup,cpg 1 1T (fo;6)(z) — fo(z)| = 0.
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Therefore,

lim  sup  pu(—=ig)= sup p(i'g)<;
6=0% geg(T(foss)) VT geguife) VR 2n(r(n) +1)

and lim5~>0+ Qz(nv T(f(]; 5)) = Qz(n7 fO) = 0.

Thus there exists d(fp) > 0 such that T'(fo; d(fo)) satisfies conditions in Inequality (A.3.2),

which concludes the proof.

From the proof we can see the power of non-asymptotic and non-localized results. pz(ﬁ; )
is not a localized quantity while second order derivative is a localized quantify. Therefore,
the asymptotic result based on localized quantity will encounter the problem that no matter

how large n is, it’s still outside the realm of being local for some functions.

Before delving into a discussion in more depth, let’s look at a more intuitive example where
the convex least squares based confidence interval introduced in Deng et al. (2020) suffers
from a long length empirically, f(z) = 100|2z — 1|. Its length remains roughly a constant
while the benchmark apparently goes to zero as sample size goes to infinity. Note that
the empirical performance for the estimation of the minimizer is reasonable, and f lies in
the function class of CLS estimation (of the entire function), meaning that the “oracle”
CLS estimator of the entire function would be f itself. An explanation of this long length
is on the construction of the confidence interval after CLS. The length of the confidence
interval in Deng et al. (2020) is a constant multiplier (depending on confidence level) of the
distance of the two neighboring kinks around the minimizer based on the CLS estimation
of the entire function. Note that for f, the perfect estimation of f, the neighboring kinks
of the minimizer are always 0 and 1, regardless of the sample size. So it’s not surprising to
have a long length using kinks around the minimizer, which highly relies on second order

derivatives rather than exploiting more of the convexity.
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This extreme example, together with the example we provide in the proof of sub-optimality,
shows that the convex least squares ingredient of the confidence interval construction is
not only reason for sub-optimality. And Algorithm 1 provides a way to fully exploit the

convexity of the true function.

On the other hand, for the behavior of our methods under the asymptotic sense for smooth
1
functions (defined in Section A.3.2), we attain same rates optimal n~ 2%+T for minimizer,

which we will discuss more in Section A.3.2.

A.3.2. Connections with Classical Minimax Framework: Lower Bounds, Opti-

mality, and Characteristics

In this part we relate local minimax rates to classical minimax rates, which captures the

worst case for a certain function class.

Before going into details, we elaborate on general comparison. Regarding the comparison
with the classical minimax lower bound over a certain function class, the lower bound
provided by our non-asymptotic local minimax framework (applied to that function class)
is no larger than the classical one. Because in the classical minimax framework, the Le
Cam two-point reduction, in a way, can be considered as a two-point case of Assouads or
Fanos Lemma. This makes it a stricter criterion, and it preserves more information before
taking supreme over the function class (individual functions are treated individually). A
major difficulty of our non-asymptotic local minimax framework lies in the existence (and
construction) of an adaptive procedure that attain this potentially smaller benchmark. And
a key difference from the classical minimax framework is that the local minimax framework
enables the characterization of the difficulty for estimating individual functions, and makes

establishing the non-supperefficiency type of results conceptually possible.

To illustrate through an example, we focus on convex function class with additional smooth-

ness conditions, as in literature the classical minimax rates for both smooth functions and
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smooth convex functions are extensively investigated. We walk through the procedures
translating local minimax rates to classical minimax lower bounds, which has following

(additional) implications that we highlight.

e For the same class of functions, all optimal procedures under non-asymptotic local

minimax benchmarks are optimal in the classical sense.

e The local minimax rates established for one class of functions (e.g. convex functions)
can be useful for establishing classical minimax lower bounds for another function

class (e.g. smooth functions).

Last but not least, we show that the classical minimax rates for convex function class are

meaningless, which shows the advantage of non-asymptotic local minimax framework.

The smoothness condition we consider is local smoothness defined around the minimizer.
For k > 1 and B > B; > 0, the locally smooth convex function class I'1 (k; By, B) is defined

as

CsBLB) — {f e FiBy <t MOZIEZU _ g 0 = F(Z0)

im < B},
e PR Ry a7 3 L

(A.3.5)

Similar type of smoothness class has been considered in Shoung et al. (2001) except that
their smoothness requires the limit to exist and be exactly B (i.e. By = B). We will also
briefly discuss a global version of smoothness later. For the function class F NI'y(k; By, B)

the corresponding moduli of continuity is given by, for f € I'1(k; B, B),

@ (&5 f) = sup{|Z(f) = Z(9)| - | = glla < &, 9 € Tu(k; B1, B)},

Wm(&; f) = sup{[M(f) = M(g)| : |f — gll2 < &,9 € T'1(k; By, B)}.
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Further, similar to the proof of Proposition 2.2.2 we can show that

@o(e5 f) 2 po(&; )y om(e; f) = pmle; f). (A.3.6)

We defer the proof of this inequality to the last part of this section.

Consider function f; = g ‘t - %|k, which is in T’y (k; By, B). Then we have that the classical
minimax rate of estimating minimum for the function class I'1(k; By, B) is lower bounded
by

inf  sup  Ef|M — M(f)|

M fel1(k;B1,B)

> sup sup  inf max E|M — M(h)|
fel(k;By,B) geT'y (k;B1,B) M he{f.g}

> sup inf max Eh|M—M(h)| (A.3.7)

g€l (k;By,B) M he{fi.g}

> alpm(5§ fl)

2k
= a1Cp kE2k+1,

—(k+1) 1
where CBE = 272k+1 B2k+1 |

Similarly, for estimating the minimizer, take f; = %!t — %‘k, we have the classical minimax

rate being lower bounded by

~ 2 TlJrl 2
inf  sup  Ef|Z-Z(f) > a (2) £2R+T (A.3.8)
Z fel1(k;B1,B) By

Note that the locally smooth convex function class I'1 (k; By, B) is a subset of locally smooth
function class, so the lower bounds for I'y(k; Bi, B) apparently hold for locally smooth
function class. From here we can see that while our local minimax rates are primarily
based on the properties of convex functions, it’s also useful for establishing lower bounds

for locally smooth function class.
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To further illustrates this point, we show that this trick is also very useful for establishing
lower bounds for estimating the minimum for globally smooth functions, which is also

intensively investigated in the literature.

The globally smooth convex function class I'o(B, k) is defined as

To(B k) ={f € F:|f(t) — f(Z(f)| < BJt — Z(f)|*,vt € [0,1]}. (A.3.9)

Note that the globally smoothness differs from the locally smoothness in that we are not only
interested in the local behavior around the minimizer. Globally smooth convex function
class is a smaller function class when compared with locally smooth convex function class

(if we can let By = 0 to allow the same form).

The continuity moduli can be similarly defined as

Wm(g; f) = sup{|M(f) = M(g)| : [If — gll2 <&,9 € T2(B, k)}, (A.3.10)

for f € I'y(B, k).

Similarly, we can show that

@m(e; f) = pmles f), (A.3.11)
the proof of which is deferred to the last part.

With Inequality (A.3.11), using similar arguments as in Inequality (A.3.7), we have that

the minimax rate for estimation of minimum for function class I'y(B, k) is lower bounded

2k —(k+1) 1 . .
by aicpre?+1 (where cpy) = 272841 B2+1), which automatically serve as a lower bound

for globally smooth function class.

The lower bounds in white noise model are closely related to the non-parametric regression

as shown before. Despite of the large volume of literature on non-parametric regression, the
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lower bounds for varies smooth classes are well known. For example, for isotropic Holder

class, the lower bound is not known until lately (Belitser et al., 2021).

Now we proceed to see the advantage of local minimax benchmarks compared with classical
minimax rates. Consider a collection of functions f; = 6|t — 3|, for § > 0. This collection

of functions are convex. And we have

1
li £; = —
Jm p.(e; fs) = 5

I  f5) =
6_13100pm(57f5) 00,

which are lower bounds (up to some absolute constants) for classical minimax rates for
convex functions. Any procedure will be optimal under classical minimax framework, which

makes the classical minimax framework meaningless in this setting.

For transferring rates under our framework into classical minimax framework for the re-
. . . o2 . . .
gression setting, we only need to change ¢ into 2-, as the discretization error is always

dominated by the noise induced error in classical minimax framework.

Also note that for the settings that CLS estimator/CLSCI are considered in Ghosal and
Sen (2017) or Deng et al. (2020), it can be written as Up~o['1(k; B, B) for k > 2 and being
and even number. Note that our procedures do not depend on B while not only achieving
the optimal minimax rate in classical sense (in terms of n) for I';(k; B, B) but also having
a risk/length smaller than an universal constant multiple of the lower bound for each and
every B and k. Our methods are adaptively optimal for the settings that CLS/CLSE are

investigated in.

Proof of Inequality (A.3.6) and Inequality (A.3.11). To prove Wy, (g; f) > pm(e; f), we only
need to replace gs(t) in the proof of Proposition 2.2.2 to be gs = max{ f(¢), min{u. + 0(|t —
ZOF —1tr— Z(H)|F),ue +0(|t — Z(F)|* — |t — Z(£)|¥)}} when k > 1, where § < B. Tt is

easy to see that this new g5 € I'a(B, k), ||lgs— f|| < € and limgs_o | M (gs) — M (f)| = pm(e; f).
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When k < 1, we just replace the k in newly constructed gs by 1.

To prove w.(e; f) > p:(&; f) and @ (e; f) > pm(e; f), without loss of generality, we assume
tr — Z(f) = p.(g;f). Note that k£ > 1. We only need to replace gs(t) in the proof of
Proposition 2.2.2 to be gs(t), which is defined in the following way: let hs(t) = B|t —
t, + 6| + s, as when ¢ is small enough, Vt > t,. — 4, =1 =0) s ower bounded by

—
lim,_ — f(tr)—f(t) . .
— , so ds such that h4(t) and gs5(¢) has an intersection t; € (¢;,t, — ) and an

intersection ty € (t, — 0, t,), which satisfy hs(t) > gs(t),Vt € (t1,t2) and hs(t) < gs(t) for a

small neighborhood outside (¢1, t2).
Let gs5(t) = gs(t) vt € [0,1]\(t1,12), and gs(t) = hs(t) VE € (t1,12). Then g5 € I'(k; B1, B) N
Fillg = Il < & lims0[Z(g5) — Z(f) = p=(&; f), and

lim [M(35) = M(f)| > lim M (g5) = M(f)] = pm(=: ).

A.3.3. More on the Uncertainty Principle

In this subsection, we discuss more on the generality of the Uncertainty Principle. We
start with the convex smoothness class we discussed in Section A.3.2. Uncertainty principle
still holds for the function class I'y(k; By, B), with I'1(k; By, B) defined in (A.3.5), which

contains all the functions f € F satisfying

FO = FZU) _ — 1f) — FZ)]
Tz S s ez S

It follows from Inequality (A.3.6) that the moduli of continuity for the minimizer and

minimum over the function class I'; (k; By, B) have the following relationship.

£2

@: (&5 Fom (e [)* = p=(&; Npm(es 1) = 5 (A.3.12)
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So the Uncertainty Principle also holds for I'y (k; By, B).

Further, using the smoothing technique in Equation (A.3.4) in the proof of Proposition
A.3.1 on the examples used in constructing the lower bound in the proof of Inequality
(A.3.6), we know that the Uncertainty Principle also holds for the k-th order differentiable

convex function class for any k.

So there are many choices of subclass of the convex functions in F where the Uncertainty
Principle holds. Interested reader can further explore other possible choices. Further, since
the tension between different quantities (e.g. minimizer and minimum in our case) also
exists in other problems, we believe that similar Uncertainty Principles can be developed

in other settings.
A.3.4. The CLS Estimator under Local Minimax Framework

The results on the behavior of the convex least squares estimator are mostly based on the
limiting distribution, which are usually achieved by carrying out Taylor expansion of the
function to second order around minimizer and analysis of the empirical process. Since the
limiting distribution only holds when as sample size approaches infinity for fixed function,
similar arguments are not applicable to prove results that hold for all functions within a
class for any given sample size or when sample size grows to infinity. Also, the Taylor
expansion approach won’t work when the second order derivative does not exist at the
minimizer. Hence the tools used in establishing the performance of convex least squares
in the literature is not sufficient for investigating its behavior under our non-asymptotic
local minimax framework. The behavior of the convex least squares estimator under our

framework takes new tools and is of separate interest.

For functions twice differentiable around the minimizer with positive second order derivative
at the minimizer, under asymptotic sense (i.e. fix function f, and let sample size n go to

infinity), since the convex least squares estimator for minimizer Z.x is bounded (i.e. in
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[0,1]), from the limiting distribution (Theorem 2.9 in Deng et al. (2020)), we know that

~

1 2/5
1i11;n_>s§pE(|chx — Z(f))(n/a?)'/® < (f,,(Z(f))> consty,

where const is an absolute constant, and that

X 1 2/5
lim inf E(| Zewx — Z(f)])(n/o?)!/? > (f,,(Z(f))> consts,

where consty is another absolute constant. Note that for functions twice differentiable at
the minimizer with positive second order derivative, the key part of the benchmark for
minimizer in our framework pz(ﬁ; f) is of the order (02/n)'/> (W)Z/5 when n goes
to infinity. Although the benchmark has a discretization part as shown in Section A.1.9, the
reader can easily check the order is (o2 /n)'/? (W)WE) when f is fixed and n goes to
infinity. In this asymptotic sense, convex least squares estimator matches our rate, which
is also the optimal rate, for functions twice differentiable at the minimizer with positive
second order derivative (the lower bound provided in Section A.3.2). However, this does
not imply optimality for Zevx under our non-asymptotic framework. It is possible that there
exists a sequence of twice differentiable functions with positive second order derivative at

the minimizer such that the ratio of its risk to our benchmark is an increasing function of

sample size.
A.4. Simulation Results for Chapter 2

In this section we show simulation results comparing our algorithms to the ones based on
the convex least squares (CLS) estimator. Note that known theoretically valid CLS based
method only exist for estimation and inference of the minimizer, we make comparison on
those tasks. For estimation of the minimizer, the theoretically valid CLS based method
is taking the minimizer of the CLS estimator for the whole function. For inference of the
minimizer, we adopt the latest CLS based confidence interval proposed by Deng et al.

(2020), which is proved to enjoy good theoretical property in some restricted settings in a
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restricted sense. Since our original method introduces data splitting procedure purely for

technical reason, our attention is allocated more to the non-split version.

To sum up the comparison, first of all, our proposed methods, as being iterative and local,
run much faster than any methods based the CLS, whose complexity, in theory, according
to Simonetto (2021), scales as O(n?) for generic quadratic programming solvers or O(n?)
per iteration for first-order methods. For estimating the minimizer, the proposed method
and the CLS based method have comparable accuracy, with CLS being very sensitive to
the smoothness while our methods are steady in terms of the benchmarks when they are
computable. For inference of the minimizer, while both variants of the proposed confidence
interval achieve the nominal coverage, the CLS based confidence interval behaves poor in
either coverage or length, which isn’t surprising due to its asymptotic nature of coverage

and high dependence on second order derivative.

In addition to comparison, we also tested how our methods behave compared with our the-
oretical results, especially for tasks for minimum. Both of our methods achieve the nominal
coverage for confidence interval and all the empirical risks/empirical lengths show clear

linear relationship compared with the benchmarks when the benchmarks are computable.

A.4.1. Experiment Design

To generate the data, we set ¢ = 1. We carried out experiments on true functions with
different smoothness, minimizer location, symmetry, etc. We tested on sample sizes 100,
500, 1000, 5000, 10000, 50000. For confidence intervals, we take 5 confidence levels, namely
0.8, 0.9, 0.05, 0.98, 0.99, which corresponds to a = 0.2,0.1,0.05,0.02,0.01. For each true

function, each sample size, we average on 100 replicates.

For the experiment testing our methods’ behavior compared with theoretical results, we
choose functions with computable benchmarks, and sample sizes easier to test the relation-

ship, which we will discuss in detail in A.4.3. Now we focus on the general functions and
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comparison.

We implement and compare three methods, as summarized in Table A.1, as mentioned

earlier.
Estimation Inference
Method Minimizer \ Minimum | Minimizer \ Minimum
Proposed (split) v v v v
Variant (non-split & stop) v v v v
CLS based v v

Table A.1: List of the methods to be compared and their applicable scenario.

We investigate the following metrics.
e Running time of the methods.
e Empirical risk for estimating the minimizer and minimum.

e Coverage and length of confidence interval for the minimizer and the minimum. In
particular, we construct confidence interval with 5 different confidence level with «

ranging from 0.2 to 0.01.

We have 10 test functions, as shown in the Equation (A.4.1). Figure A.3 shows the plots of
those functions (in the order 1,2,3,4,5,6,7,8,9, 10 from left top to right bottom), grouped
based on the performances of all methods on those functions. Note that we include functions
of different smoothness around the minimizer (i.e. of the types z, x2, z%, exp(—1/z)),
with both symmetric and asymmetric configurations. Also we include the functions with
minimizer near boundary. Using similar arguments as in the proof of Proposition 2.4.1, we
can convolute the true function with smooth kernel enough concentrated to the center to
have a function that is smooth (i.e. differentiable to any order) and arbitrarily close to the
original true function, regardless of the smoothness of the true function. So the phenomenon

shown here also carries to the non-asymptotic region (i.e. small to medium sample size) of
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functions of any smoothness.

fi(x) =100[2z — 1
non-differentiable, symmetric, linear

fo(z) =100|22 — 1|1{z < 0.5} 4 1002z — 1*1{z > 0.5}
non-differentiable, non-symmetric,
the right side of the minimizer is positively twice differentiable

fa(x) =100[2z — 1|1{z < 0.5} + 100 exp (2 — )1{z > 0.5}

_
|z — 0.5
non-differentiable with one side being arbitrarily differentiable (A.4.1)
with vanishing derivatives at minimizer
fa(x) =100[10z — 1\2]1{.% < 0.1} 4+ 100]10 * /9 — 1/9]21[{35 > 0.1}
differentiable, with minimizer near boundary,
with both “sided” second order derivatives being positive

f5(2) =100]102 — 1|"1{z < 0.1} + 100[10 * 2/9 — 1/9/*1{x > 0.1}

non-differentiable with minimizer near boundary
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fo(x) =100(]22 — 1])?
twice differentiable with positive second order derivative

fr(x) =100|2z — 1*1{z < 0.5} + 100 exp (2 — )1{z > 0.5}

_
|z —0.5]
differentiable but not twice differentiable,
one side being arbitrarily differentiable with vanishing derivatives at minimizer,
non-symmetric
fs(x) =100(|2z — 1])*
fourth-order differentiable with vanishing second order derivative
fo(x) =100exp (2 — 37_105’)

arbitrarily differentiable with vanishing derivatives of any order

fio(z) =100 exp (2 — J1{z < 0.1} + 100|110 * /9 — 1/9*1{z > 0.1}

1
|z —0.1]
differentiable, with minimizer near boundary, one side arbitrary vanishing

derivatives, another side positive second order derivative

A.4.2. Numerical Results and Comparison with CLS Methods

Now we present the simulation results using the 10 test functions. In particular, we com-
pare our methods with the CLS methods for estimation and confidence intervals for the

minimizer.

Plots and Tables Before we give a discussion of the results, we explain how we present
the results for each function. For each true function, we give the plot of the true function,
the time vs log sample size plot (for all three methods), the log empirical risk vs log sample
size plot for estimation of the minimizer, log empirical length vs log sample size plot for

inference of the minimizer, the log empirical risk vs log sample size plot for estimation
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of the minimum, and the log empirical length vs log sample size plot for inference of the
minimum. For empirical lengths, we plot for a = 0.01, other confidence levels are similar.
We also provide tables for : CLS empirical coverage for minimizer, log risk for minimizer,
and log length for minimizer for « = 0.01. The plots and tables are shown in figure A .4,
A5, A6, A7, A8, A9, A.10, A.11, A.12, A.13, A.14, A.15, A.16, A.17, A.18, A.19, A.20,
A.21, A.22, A.23.

Estimation of Minimizer In general, our methods tie with the CLS method for estima-

tion of minimizer.

For the first five functions in Figure A.3, CLS behave better, for the functions on the third

line, the behaviors are almost equal, for the last three functions, ours behave better.

We can see that when compared with CLS estimator our methods behave better at higher
smoothness. CLS behaves better when at least one side is (almost) a linear function, which
is to the advantage of piece-wise linear approximation. Starting at both sides being twice
differentiable (not necessarily with equal second order derivative), our method becomes
equal or better. Starting with both sides have vanishing third order derivatives (i.e. x*

type function), both our methods behave better. We will show in A.4.3 that our methods

are stable compared to the benchmarks thus insensitive to the smoothness.

Inference for Minimizer For the inference of minimizer, both our methods achieve the
nominal coverage. CLS confidence interval does not achieve nominal coverage consistently.
For all the functions except the first and sixth function in Figure A.3, CLS confidence
interval miss the nominal coverage by far. In A.4.3 we will discuss more on comparison

with theoretical results for our methods.

Estimation for Minimum The plots show nice decreasing patterns. For the polynomial
type functions, we can see a nice linear relationship between log empirical risk and log

sample size, which is a good indicator of linear relationship between empirical risk and
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benchmark, as benchmark is a power function (with negative power) of sample size. More

on comparison with theoretical results is in Section A.4.3.

Inference for Minimum Both our methods achieve the nominal coverage in all settings.
The plots on empirical length show a nice decreasing pattern. Comparison with theoretical

is discussed in Section A.4.3.

Computing Time For computing time, we can see that our methods are significantly
faster than CLS based methods. For our methods, we measure the total time used for
producing all four results, while for CLS based methods, we only measure the time fitting
an CLS takes. The time for each function is the sum of time used for 100 replicates.
Although this measurement way is in favor of CLS based methods, we can still see that the

our methods take much less time.
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100 500 1000 5000 10000 50000

02 1 1 099 095 094

01 1 1 099 097 0.9/
0.05 1 1 0.99 0.98 1
0.02 1 1 099 1 1
001 1 1 1 1 1

0.97
0.98
0.99
0.99
1

(a) Empirical coverage of CLS confidence interval for minimizer
100 500 1000 5000 10000 50000
split —0.053 -0.427 -0.56 -1.144 -1.315 -1.851
non-split —-0.063 -0.685 -0.959 -1.404 -1.686 -2.236
CLS based -0.808 -0.881 -1.097 -1.19 -1.228 -1.49

(b) Log empirical length of confidence interval for minimizer
100 500 1000 5000 10000 50000
split =5.332 -5.912 -6.263 -6.351 -6.63 -7.381
non-split -6.768 -6.303 -6.309 -6.724 -7.339 —-7.978
CLS based -8.112 -6.928 -7.106 —-7.495 -7.724 —-8.456

(¢) Log empirical risk for minimizer

Figure A.5: Tables for fi(x) = 1002z — 1|
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100 500 1000 5000 10000 50000
0.2 0.71 0.71 0.67 0.66 0.68 0.69
010.78 0.8 0.75 0.85 0.82 0.78
0.05 0.89 0.88 0.83 0.88 0.87 0.83
0.02 0.95 0.94 091 0.97 0.97 0.93
0.01 0.98 0.97 1

(a) Empirical coverage of CLS confidence interval for minimizer
100 500 1000 5000 10000 50000
split —0.027 -0.159 -0.255 -0.528 -0.625 -0.962
non-split —0.055 -0.321 -0.424 -0.696 -0.787 -1.081
CLS based -1.425 -1.827 -2.102 -2.187 -2.714 -2.691

(b) Log empirical length of confidence interval for minimizer
100 500 1000 5000 10000 50000
split =3.725 -4.021 -4.173 -4.475 -4.633 —-4.687
non-split —4.048 -4.139 -4.416 —-4.659 -4.784 -4.884
CLS based —-4.213 -4.469 -4.619 -5.018 -5.117 -5.392

(c¢) Log empirical risk for minimizer

Figure A.7: Tables for fo(z) = 100|2z — 1|1{z < 0.5} + 100|2z — 1|*1{z > 0.5}
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Figure A.8: Plots for f3(z) = 100|122 — 1|1{z < 0.5} + 100 exp (2
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100 500 1000 5000 10000 50000
02 0.39 0.34 042 037 037 0.38
0.1 047 0.39 0.51 043 046 0.45
0.05 0.55 0.48 0.58 0.55 0.5 0.5%4
0.02 0.69 0.68 0.72 0.75 0.67 0.79
0.01 0.88 0.89 093 091 0.88 0.94

(a) Empirical coverage of CLS confidence interval for minimizer
100 500 1000 5000 10000 50000
split —0.023 -0.053 -0.09 -0.086 -0.104 -0.156
non-split —0.056 -0.097 -0.125 -0.113 -0.142 -0.151
CLS based -1.21 -1.456 -1.477 -1.539 -1.632 -1.688
(b) Log empirical length of confidence interval for minimizer
100 500 1000 5000 10000 50000
split -2.66 -2.686 —-2.737 —2.847 -2.881 —-2.805
non-split —2.727 -2.724 -2.87 -2.909 -2.869 -2.934
CLS based -2.789 -2.821 -2.989 -2.982 -3.049 -3.187

(¢) Log empirical risk for minimizer

Figure A.9: Tables for f3(z) = 1002z — 1|1{z < 0.5} + 100 exp (2 L _)1{x > 0.5}

~ Jz—0.5]
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Figure A.10: Plots for fy(z) = 100/10z — 1]*1{z < 0.1} + 100[10 - /9 — 1/9]*1{z > 0.1}

294




100 500 1000 5000 10000 50000
0.2 0.7/ 082 0.68 086 0.72 0.73
0.1 0.84 0.8 092 081 0.86
0.05 0.93 0.93 0.88 0.94 0.83 0.87
0.02 0.97 099 0.95 0.97 094 0.94
0.01 1 0.98 0.97

(a) Empirical coverage of CLS confidence interval for minimizer
100 500 1000 5000 10000 50000
split —0.055 -0.191 -0.26 -0.485 -0.541 -0.783
non-split —-0.094 -0.277 -0.343 -0.611 -0.801 -1.003
CLS based -1.623 -1.764 -2.044 -2.224 -2.394 -2.713
(b) Log empirical length of confidence interval for minimizer
100 500 1000 5000 10000 50000
split =3.116 -3.629 -3.718 -3.997 -4.016 -4.319
non-split —=3.416 —-3.974 -3.944 -4.232 -4.199 -4.525
CLS based —-3.927 -4.242 -4.377 -4.805 -4.659 -5.014

(c¢) Log empirical risk for minimizer

Figure A.11: Tables for f4(x) = 100[10z — 1|?1{z < 0.1} + 100[10 - /9 — 1/9|?1{x > 0.1}
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Figure A.12: Plots for f5(z) = 100[/10z — 1]*1{z < 0.1} + 100[10 - /9 — 1/9]*1{z > 0.1}
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100 500 1000 5000 10000 50000
0.2 0.67 0.69 0.74 0.74 0.77
0.1 0.82 0.78 0.83 0.84 0.87 0.83
005 09 088 0.86 09 091 0.84
0.02 0.99 095 0.95 0.96 0.96 0.94
001 1 0.97 1 0.98

(a) Empirical coverage of CLS confidence interval for minimizer
100 500 1000 5000 10000 50000
split —0.07 -0.184 -0.222 -0.485 -0.607 -0.834
non-split —0.107 -0.279 -0.379 -0.65 -0.782 -1.045
CLS based -1.55 -1.88 -2.019 -2.321 -2.452 -2.715

(b) Log empirical length of confidence interval for minimizer
100 500 1000 5000 10000 50000
split =3.026 —-3.274 -3.492 -3.848 -4.022 -4.244
non-split —3.333 -3.363 -3.59 —-4.047 -4.281 -4.4
CLS based —-3.709 —-4.131 -4.408 -4.71 -4.846 -5.05

(c¢) Log empirical risk for minimizer

Figure A.13: Tables for fs5(x) = 100[10z — 1|*1{z < 0.1} + 100[10 - /9 — 1/9|?1{x > 0.1}
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100 500 1000 5000 10000 50000
0.2 0.81 0.79 082 084 0.76 0.82
0.1 0.88 092 091 091 0.89 0.93

0.05 0.96 0.96 0.97 097 0.97
002 099 099 1 099 099 0.99
001 1 1 1 1 1

(a) Empirical coverage of CLS confidence interval for minimizer
100 500 1000 5000 10000 50000
split —0.009 -0.065 -0.133 -0.324 -0.473 -0.783
non-split —0.028 -0.205 -0.287 -0.52 -0.597 -0.809
CLS based -1.584 -1.838 -1.965 -2.364 -2.391 -2.806

(b) Log empirical length of confidence interval for minimizer

100 500 1000 5000 10000 50000
split —=3.75 -4.092 -4.216 -4.528 -4.681 —-5.088
non-split —=3.993 -4.323 -4.401 -4.799 -4.956 -5.495
CLS based —-3.963 -4.257 -4.337 -4.766 —-4.831 -5.382

(c¢) Log empirical risk for minimizer

Figure A.15: Tables for fs(x) = 100(]2z — 1])?

299



f(x)

log abs risk for minimizer

log abs risk for minimum

100

80

60

40

20

-3.0 -2.8 -2.6 -2.4 -2.2

-3.2

0.0 0.2 0.4 0.6 0.8 1.0
X
—— split
—%— non-split
—8— CLS based
o
b v
. o
v v
o
o
| v
T
0 2 4 6 8 10 12
logn
7 °
v
(]
v
v
°
v
i T T T T T T
0 2 4 6 8 10 12
log n

Figure A.16: Plots for f7(z) = 1002z — 1|?1{z < 0.5} + 100 exp (2
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100 500 1000 5000 10000 50000
02 0.39 0.44 047 043 047 0.35
0.1 0.5 055 054 049 054 0.44
005 0.6 062 0.61 0.66 0.6 0.52
0.02 0.83 0.88 0.89 0.81 0.77 0.83
0.01 091 0.93 0.98 0.93 0.89 0.96

(a) Empirical coverage of CLS confidence interval for minimizer
100 500 1000 5000 10000 50000
split —0.007 -0.021 -0.028 -0.031 -0.04 -0.098
non-split —0.005 -0.042 -0.036 -0.023 -0.077 -0.113
CLS based -1.098 -1.242 -1.298 -1.415 -1.489 -1.56
(b) Log empirical length of confidence interval for minimizer
100 500 1000 5000 10000 50000
split —2.881 -2.827 -2.892 -2.924 -2.896 -3.103
non-split —2.915 -2.821 -2.908 -2.916 -2.967 -3.18
CLS based -2.688 -2.862 —-2.951 -3.015 -3.073 -3.069

(¢) Log empirical risk for minimizer

Figure A.17: Tables for f;(x) = 100|22 — 1]?1{z < 0.5} + 100 exp (2 L )1{x > 0.5}

~ Jz—0.5]
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100 500 1000 5000 10000 50000
0.2 0.57 0.61 0.67 0.56 0.56 0.62
0.1 0.82 0.83 0.82 0.83 0.77 0.82
0.05 0.89 091 091 091 09 094
0.02 0.95 095 0.96 0.96 0.95 0.96
0.01 0.96 0.98 0.97 0.97

(a) Empirical coverage of CLS confidence interval for minimizer
100 500 1000 5000 10000 50000
split O —0.008 -0.008 -0.002 -0.002 -0.04
non-split —=0.001 -0.013 -0.013 -0.002 -0.006 -0.055
CLS based -0.67 -0.836 -0.905 -1.091 -1.147 -1.363

(b) Log empirical length of confidence interval for minimizer
100 500 1000 5000 10000 50000
split —2.848 -3.003 -3.068 -3.262 —-3.302 -3.49
non-split —2.894 -3.117 -3.173 -3.368 -3.405 -3.644
CLS based -2.651 -2.896 -2.998 -3.121 -3.167 -3.411

(c¢) Log empirical risk for minimizer

Figure A.19: Tables for fs(x) = 100(]2z — 1])*
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100 500 1000 5000 10000 50000
02 044 0.39 047 046 0.46 0.33
0.1 0.73 0.66 0.712 0.76 0.74 0.69
0.05 0.89 0.84 0.84 093 091 0.86
002 0.93 09 0.92 097 0.95 0.93
0.01 095 093 096 0.97 096 0.95

(a) Empirical coverage of CLS confidence interval for minimizer

100 500 1000

split —0.003 -0.008 -0.011
non-split —0.003 -0.013 -0.016
CLS based -0.685 -0.803 -0.817

(b) Log empirical length of confidence

100 500 1000

split —2.837 -2.871 —-2.922
non-split —2.821 -2.933 -2.963
CLS based -2.526 -2.555 -2.669

5000 10000 50000
—-0.002 -0.002 -0.027
—-0.002 -0.006 -0.026
-0.869 -0.909 -1.033
interval for minimizer

5000 10000 50000
-2.991 -3.029 -3.165
-3.105 -3.094 -3.176
=2.772 —-2.799 -2.792

(¢) Log empirical risk for minimizer

Figure A.21: Tables for fo(z) = 100exp (2 — ;=557
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f(x)

log abs risk for minimizer

log abs risk for minimum

Figure A.22: Plots for fio(z) = 100 exp (2
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100 500 1000 5000 10000 50000
0.2 0.58 0.49 0.55 0.39 045 0.44
0.1 0./5 0.68 0.62 0.53 0.54 0.53
0.05 0.87 0.83 0.84 0.66 0.71 0.65
0.02 0.95 092 0.93 0.85 0.86 0.88
0.01 0.97 0.97 096 0.95 0.89 0.97

(a) Empirical coverage of CLS confidence interval for minimizer
100 500 1000 5000 10000 50000
split —0.032 -0.164 -0.201 -0.465 -0.485 -0.72
non-split —0.075 -0.249 -0.345 -0.479 -0.596 -0.819
CLS based -1.494 -1.666 —-1.727 -1.861 -1.933 -2.004
(b) Log empirical length of confidence interval for minimizer
100 500 1000 5000 10000 50000
split —=3.291 -3.526 -3.597 -3.82 -3.824 -3.796
non-split —=3.493 -3.613 -3.793 -3.774 -3.694 -3.871
CLS based -3.278 -3.319 -3.464 -3.394 -3.52 -3.616

(¢) Log empirical risk for minimizer

Figure A.23: Tables for fio(z) = 100exp (2 — ﬁ)ﬂ{x < 0.1} 4 100[10 - /9 — 1/9]?1{z > 0.1}
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A.4.3. Comparison with Benchmarks

In this subsection, we consider the functions where the benchmarks can be explicitly calcu-
lated. The primary task is to investigate the relationship between empirical risks/lengths

and the benchmarks.

We consider a different set of functions whose benchmarks can be easily calculated:

hi(t) = 100[t — 0.5],

3
2

ha(t) = 200[2(t — 0.5)

)

ha(t) = 200[2(t — 0.5)”, (A4.2)

ha(t) = 200[2(t — 0.5)°,

hs(t) = 200[2(t — 0.5)|".

All other settings are the same as before except that we take roughly exponentially equally

spaced sample sizes.

We calculated the corresponding benchmarks (the discretization errors in these examples

are negligible): p.(\/1/n; f) and pm,(y/1/n; f).

The plots of log risk/length vs log sample size for minimizer and minimum with refer-
ence line of benchmark are shown in Figures A.24, A.25, A.26, A.27. For estimation of
minimizer, in addition to the almost identical slope with reference line (i.e. linear relation-
ship between empirical risk and benchmark), the intercept difference of the reference line

and the log risk of non-split version ranges between 0.6472699 and 1.036388, meaning that
Pz( \V 1/7’L,f)

empirical risk for minimizer

for non-split version ranges in [1.910318, 2.819016], implying that the

performance of non-split version is quite robust when smoothness varies.

For other three tasks, excluding the outlier points that are apparently influenced by the

truncation for confidence interval, the slopes of the methods and the reference line are
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almost identical.

The empirical performance, therefore, agree with the theoretical results.

309



log abs risk for minimizer

log abs risk for minimizer

log abs risk for minimizer

-4

-7 -6

-8

-10

-4.0 -35 -3.0

-4.5

-2.0

-2.5

-3.0

-35

-4.0

—— split
—— non-split
benchmark

0 10 15
log n
(c) hs
—— split
—<— non-split
benchmark
°
v
T T
0 10 15

Figure A.24:

log abs risk for minimizer

log abs risk for minimizer

-6

-7

2.0

-25

-4.0 -35

-4.5

Empirical risks for minimizer

310

spiit
non-split
enchmark
°
\4
B
T T
0 10 15
log n
(b) ha
—— split
—%— non-split
benchmark
°
v
°
v
T T
0 10 15
log n




log abs risk for minimum

log abs risk for minimum

log abs risk for minimum

-1

-2

-3

-4

-5

-1

-2

-3

-4

benchmark

0 5 10
log n
(a) hy
—— split
——  non-split
benchmark
v
T T
0 10 15
log n
(c) hs
—— split
—%— non-spl
benchmar}
T T
0 10 15

log abs risk for minimum

log abs risk for minimum

-0.5 0.0 0.5

-1.0

2.0

-25

-3.0

-2

—— split
—— non-split
benchmark

Figure A.25: Empirical risks for minimum

311

log n

\4
T T
0 10 15
log n
(b) ha
—— split
—<— non-split
benchmark
T T
0 10 15




log length for minimizer

log length for minimizer

log length for minimizer

-4

-6

-8

-3

-4

-5

0.0

—— split
—— non-split
benchmark

log n

—— split
—%— non-split
benchmark

—— split
—%— non-split
benchmark

log n

(e) hs

o 4
—— split
—— non-split
- benchmark
4
[N
5 0
5
£
£
E o
5 7
<
=
2
2
> ¥ 4
g 7
w
i
o |
i
T T T T
0 5 10 15
log n
(b) he
=
o 4
—— split
—%— non-split
benchmark
=
0
]
N
£
£
3
8
s %A
<3
2
2
2
s
o
i
T T T T
0 5 10 15

log n

Figure A.26: Empirical lengths for minimizer
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A.5. Proofs of the Results in Chapter 3
A.5.1. Notation

Here we recollect or introduce notation that will be used later. We use Z(f), M (f) to denote

the minimizer and minimum of function f, where f can be univariate or multivariate.

Recall that

pmlE; f) = max{p / (max{p, (1)} — F(£))2dt < 2} — M(f) s

pz(&; f) = max{[t — Z(f)| : f(t) < pm(&; f) + M(f)}-

for f € F.
A.5.2. Proof of Theorem 3.2.1

For the ease of notation, denote D to be [0, 1]°.
We start with minimizer. We start with lower bounds.

Let f € Fs. Let g € F,, which we will specify later. Take § € {—1,1} as parameter to be

estimated, with fy =f and f_1 = g.

For any estimator Z for estimating the minimizer, consider the projected estimator that

projects Z to the line determined by Z(f) and Z(g) :
—() (A.5.2)
f

It’s easy to see that

314



and

B (12, - 2@)I1?) < Fg (12 - 2(@)|1)

Therefore, we only need to consider the projected estimators Zp for calculating R,(e;f).
Similarly, we only need to consider projected confidence hypercube C1I, is the smallest
hypercube containing {Z(f) + (t — Z(f), ég%) :t € CI} for calculating L, . (e;f), as

projection does not weaken confidence level and projected hypercube has smaller hypercube-

diameter.
Note that any projected estimator Zp of the minimizer Z(fy) gives an estimator of 6 by

7, - M Zp(f1) — Zp(f-1)

é: ) >a
B Z,(68) = Z,(E0)]

and therefore Egl| Z,— Z (f9)||? = | Z(f1)—Z(f_1) ||2E9|é%9|. Let Py be the probability measure

associated with the white noise model corresponding to fy. On the other hand, through

calculating the Radon-Nikodym derivative d‘%@’fl (Y') by Girsanov’s theorem,
d Py f(t) —g(t) 1 / f(t)* - g(t)
Y) = Y(t)— = dt A5.3
dPg( ) eXp </; 52 d ( ) 2 D 62 ? ( )

a sufficient statistic for 6 is given by

Jp(fi(t) — £1(6)dY (t) — 5 [p(Fi(t)* - ffl(t)Q)dt'

W=
ellfy — 4]

(A.5.4)

Then
6 | —f—1H71

~ N
W (2 €

) under Py.

Note that for any w,(g;f) > 0 > 0, there exists hy € Fs such that ||f — hs|| = € and that

|1Z(£) — Z(hg)||? > w,(e;f) — 6, we let g = hs. Then we have R,(e; f) > (w,(g;f) — &) - ro,
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where 79 is the minimax risk of the two-point problem based on an observation X ~ N (g, 1),

10— 6

ro = inf max Eg
6 0==*1

Elementary calculation shows that ro > 0.1. Taking 6 — 0%, we have R,(&;f) > 0.1w,(¢; ).

So we have a > 0.1.

Now we turn to the upper bounds. We start with stating a property of w, (¢; f) in Proposition
A5.1.

Proposition A.5.1. Suppose £ € Fs, c € (0,1), then we have

wy(g;f) > wy(es; £) > max{(%)%,c} wy(g; f). (A.5.5)

Nel i

Proof. The left hand side is apparent, we will prove the right hand side. Using Proposition

A.5.3, we have
S S
sup > pa(bice; fi)? Sw.(es;f) <9 sup Y pa(bice; i),
- b7 <150 R A56
s s (A.5.6)
sup Y pa(bi; i) <w.(eif) <9 sup > pa(biss i)
f 1b?§1z 1 f 1b$S11 1

Using Proposition 2.2.1 in Chapter 2, namely

q,2 p=(ge; f)
max{(f)?’,q} <=2 <1, forge0,1)
2 p=(; f) |
, we know p.(e; f) is a continuous function of € > 0 for f € F. So there exists (b1, ,bs)
and (by,--- ,bs) attaining the suprema:

b >0, f0r1<z<st2—Iszbcefl = sup szbcefz,

=1 =1 Zz 1b?<1

b; >0, for1§i§s,25?:1,2;}z(5i5;f¢)2: sup szbef,

2
P = PO e

(A5.7)
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Also we have

Z ,OZ(ZN)iCaE; f1)2 < sz(i)if‘:; fz)2 < Z pz(6i5§ fz’)2,
=1 1=1 =1

and

> palbice; £i)? = pa(bice; fi)® > ) max {(g)%ac} p-(big; fi)*.
=1 =1 =1

Combining equations (A.5.6), (A.5.8), (A.5.9) we have

Now we continue with the upper bounds.

Recalling W define in (A.5.4), let

Then

Er(|1Z — Z(£)|?) = Eg(IZ — Z(&)|*) = |1 2(F) — Z(g)|®(~

Therefore,

If — gl

Ra(e: f) < sup ||1Z(f) = Z(9) PB(— ")
fEFs €
< supw, (ce; £)(—7)
c>0 2

< max{0.5w, (¢; f), sup w, (ce; f)@(_g)}_

c>1
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In addition

Supwz(ce;f)tb(—g) < qupmin{(ZC)%,c}@(—g)wz(s; £) < 3.1w,(s; F). (A.5.14)
c>1 c>1

Take A = 3.1 gives the result.
Now we turn to the minimum and start with estimation. We start with the lower bound.
Recall that W defined in (A.5.4) is a sufficient statistics for 6.

Then similarly to the proof of that for minimizer we have that

Ry (g;f) > awn (e ). (A.5.15)

For the upper bound. We start with a proposition.

Proposition A.5.2. For c > 1, we have
wm(ce; f) < Ewm(e;f), Om(ce; ) < com(e; f). (A.5.16)
Proof. Suppose g satisfies ||g — f||2 < ce. Then calculation show that

S
90 — fol* + D llgi = fil*> < €%, (A.5.17)

i=1
Let hi(t) = Lg;(t) + <L f;(t). Let h(t) = 290 + <L fo + 37, hi(t;) Then we have that
|h — f||? < &2, (A.5.18)

and that
1
|M(h) — M(£)] = —[M(g) - M(£)]. (A.5.19)
This gives the statement of the proposition.
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Recalling W define in (A.5.4), let

- M(f)—M M)+ M
M = sign(W) - (£) 5 (&) + ( )—12_ (g) (A.5.20)
Then
~ N f — g
(10~ M(D|?) = Eg(107 ~ M(g)|) = |M(£) ~ M(g) Po(— Bl (a5.1)
With Proposition A.5.2 we have that
Ry (e;f) < supwp,(ce; f)fb(—g) < max{0.5wm(5;f),supwm(ce;f)@(—f)}
>0 2 e>1 2
. (A.5.22)
< wp(g; f) max{0.5, sup czé(—i)} < wpm(g;f).
c>1
For the inference of the minimum, we again start with the lower bound.
Lom(e;f) > sup inf Pe({M(g), M(£)} € Climo)|M(£) — M(g)|
gefs CIm,aEIm,a(fvg)
> sup (1—a—Pe(M(g) ¢ Inolf,g)))om(e; ) (A.5.23)

gEFs |lg—f([<e

>(1—a—®(—24 + 1)0m(e;f) > (0.6 — @)wm(s; ).
The second to last inequality is due to Neyman-Pearson inequality.

For the upper bound, we recollect our sufficient statistics (A.5.4) and associated notation,

let
}M@H W < —zo + 05128l
Clma = {M(f)} W > (2o — I8y v (—z, + 12l
{M(f)+ (M(g) — M(f))-t:t€[0,1]} otherwise
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Clearly, we have Pr(M(f) ¢ Cl,) < a, Pg(M(g) ¢ Cl,) < . For the expected squared

length, we have for § € {—1, 1},

B (Clnal) < 120(6) ~ Mr(g)] (20 — 281 o)
.

E¢, (|Clm,al) < max{&n(e;f) (1 — 2a) ,ilill)d)m(cs; £)(P(zq — ) — a)+}

IA
&

m (&5 ) max{(1 — 2a),scl>111)c (®(20 —c) — )}

IN

Om (g ) (1 — 2a0) X 2z,.

A.5.3. Proof of Theorem 3.2.2

We start with stating two propositions, which are proved later.

Proposition A.5.3. Let p.(g; f) be defined in (3.2.8) for f € F, and let £ € F;.

S S

sup Y pa(bies fi)? Swa(eif) < sup Y 9pa(bies i),

2 2
i= 1b1<1 =1 i= lbzgl =1

where b; are non-negative.

Proposition A.5.4. Suppose f; € F, fori=1,2,--- s, then we have

sup sz (bic; fi)* <sz & fi)?

b2§1 =1

s
i=1

1 2 u 9
TEDIECYOE
And for any B < s, exist (f1,---, fs) such that > ;_, p.(e; fi)?> = B and

SUP szbe fi))=s 3sz5fl

1 02<15
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Then

(A.5.26)

(A.5.27)

(A.5.28)



For B < s, for any 6 > 0, there exist (f1,--- , fs) such that > i_ p.(e; fi)? = B and

5up sz (bie; f3)? > sz e fi)? —o. (A.5.29)

. b2<1;

Inequality (A.5.27) in Proposition A.5.4 and (A.5.26) in Proposition A.5.3 implies Inequality
3.2.9 of Theorem 3.2.2.

Construct f(t) =37 5 fi(x)da+>"7_, (f(t:) — [y fi(z)da) with f; in Equation (A.5.28).
Then together with the right hand side of Inequality (A.5.26) gives Inequality (3.2.10)
of Theorem 3.2.2. Similar construct f with f; in Inequality (A.5.29) with §y = ¢ gives

Inequality (3.2.11) in Theorem 3.2.2.
Proof of Proposition A.5.3

Suppose g € Fs, such that [|g —f|| < e, g(t) = go + g1 (t1) + g2(t2) + - - + gs(ts). Using the
continuity of p,(e; f) with respect to e implied by Proposition 2.2.1 in Chapter 2, we know

there exist (b1, ba,- - - ,bs) such that

b; >0, for 1 <i< S,ZB? = 1,sz(5ia; fi)? = sup sz bie; f;)?. (A.5.30)
i=1 i=1 PIHRY. g e

We only need to prove

sz (bie; f, <w,(g;f) < 29,02 (bse; fl) . (A.5.31)

We start with proving the upper bound.
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Since [|g — f[| < e, we have

9 2
522!|f—g|2=/ (fo—ngfi(ti)—g@-(ti)) dt

(A.5.32)
fO - 90 + Z/ fz gz )
Denote b; = fo(fz(t)—le(t))Q for 1 <14 < s, then we have ) ? 162— 1.
& 1= (2
Therefore, using Proposition 2.2.2 in Chapter 2, we have
1Z(£) - Z(g)II” = Z Z(fi) = Z(9) <> 9pa(bies [:)* <Y 9pa(bie; fi)*. (A.5.33)
i=1 i=1

For the lower bound, we construct a class of function gs € F,, with %minlgigs pz(Eis; fi) >
0 > 0. We construct the constant and components: gs; for 0 < s. Let gs0 = fo. For
1 < i < s, suppose z;;,2,; are left and right end points of the interval {z : fi(z) <
M(f;) + pm(bic; f;)}. And without loss of generality, we assume xri = Z(fi) + p-(big; fi).
Define univariate convex function hs; as follow.

pm(bic; fi) + M(fi) — fi(z,; — 6)

Tri — 0 —x

hsi(t) = max{f;(t), fi(zr; — 6) — (t—a05)}.  (A.5.34)

Define univariate function gs; as

géz h61 / h&z (A535)

Then we have fO g5i(t)dt = 0, so the definition defines a valid g5 € Fs.

322



Further for ¢ =1,2--- , s, we have

1 1 1 2
/0 (g54(t) — fi(t))* dt = /0 (hsa(t) — fi(t))* dt — (/0 h(s’i(t)dt) <be?, (A.5.36)

and
1Z(95.4) — Z(fi)l = p=(bie; fi) — 0. (A.5.37)
Therefore, we have
les — 17 < 2. 12(85) — ZE) = Y (ps(Bie: )~ 6)° (A.5.38)
i=1
Let 6 — 07 , we have
w(&5£) > pa(bis; fi). (A.5.39)
i=1

Proof of Proposition A.5.4

We start with the right hand side and its almost-attainability.

Since b; € [0,1] for 1 < i < s, we have p,(bie; fi) < pz(g; fi). The right hand side then

apparently hold.

We first assume [ in not an integer. Let s; = |8 — ], sa =8 — |B], ss =s— [B].
Let k1, ko, k3 > 0.

Now we start defining f; € F for 1 < < s.

If s >1,for 1 <i<sq,let

fit) = ka1t — 3). (A.5.40)
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If s3>1,forn—s3+1<i<nlet

fi(t) = ks(t — %). (A.5.41)
Let
fsi+1(t) = ka(t — %). (A.5.42)

Suppose 0 < § < %82.
If s3 > 1, choose k3 such that

5
p=(&; fn) =1/ 2537 (A.5.43)

Define s4 = s9 — % if s3 > 1, otherwise s4 = s9. Choose kg such that

pz(€; fs1+1) = v/S4. (A.5.44)

Now suppose b, 11 is the smallest b € [0,1) such that

o

pz(be; fsy41) > 1/ 84 — 7 (A.5.45)

If s1 > 1, choose k1 such that
1— b2
S1

P ( efi) =1 (A.5.46)

It’s easy to verify that the above construction is legitimate and satisfy equation (A.5.29).

When 3 = n, choose large enough k such that p,(==¢; k(t—0.5)) = 1, and let f; = k(t—0.5)

S

for1 <k <s.

When g < n — 1 and is integer, for § < 0.5, let s; =8 —-1,s3=n—F,s4 =1— %. And
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choose k3, ko, k1 as the case where [ is not integer.

Now we proceed with the left hand side.

Recalling Proposition 2.2.1 in Chapter 2, we have

=

sup szbsfz > sup 262/4§ (&)=

Yo b1 Yo b1

w| =

(szs ) ) . (A.5.47)

The last inequality take b; = %-
i=1Pz(&Ji

Cauchy-Schwarz inequality gives

=)
N——
wlm

C.o\ —

;(Z po (e fi) %Z (&5 )%, (A.5.48)
=1 =1

which concludes the left hand side.

For the attainability up to constant multiple, let & > 0, which we will pick later. Let
fi(t) = k(t —0.5) for 1 <i <s. Pick k > 0 such that p.(e; f;) = \/é Then we have that

S5, 4
sup szbs fi)? = sup Zbsz fi)"= sup beg (A.5.49)

b2<1 5= b2<1 = S b1

zlz 7,11 i=1"i =

[

Through basic calculation, we have SUPy~s  p2< >l b? s3, which gives inequality

(A.5.28).
A.5.4. Proof of Theorem 3.2.3

We start with the upper bound. Suppose ||g — f|| < . Suppose g(t) = go + > ;1 9i(t),

where fo gi(t)dt = 0. Calculation show that ||g — f|| < e implies

90— fol? + > llgi — fil> < €. (A.5.50)
=1
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Suppose ¢; = ||g; — fil|. Then we have that

M(g) = M) < (lg0 — fol + 1M (g:) = MU < (g0 — fol + 3 Bom(es f:))’

(|go—fo|+Z3 3 pm(e: £))

<52+;Pm(€; i )((’90 fO‘) +29(ij)§>

o ;f@->2> Net1)

OJ

IN

IN

(A.5.51)
where the second Inequality is due to Proposition 2.2.1.

Now that we have the upper bound, we turn to the lower bound. Let

— Pm(&‘; fz) 1
. \/ijl pm(€; f;)? \/1 + 30 (1A 2p,(s; e (A.5.52)

Suppose § > 0 is small enough quantity, which will be set going to 0 later. We construct
components of an alternative function. Without loss of generality we assume ¢;;, t;, are

the left and right end points of the interval {t : fi(t) < M(f;) + pm(ci; fi)} and that

tir = Z(fi) + pz(eis fi). Suppose gig(t) = max{fi(t), fi(tr) + 7= (t — tig)}, and let

hs(t) = fo+ >_7 4 gi(t;). Then we have for small enough § > 0,

2 Zs: ! 2 ZS: 2 Zs: ! 2
[hs — £]|7 < ( i()dt)” + ;=) ([ gi(t)dt)
' z’l/o ! i:lE i=1 /0 !
<Y 1+ (1A 20:(e55 /1) < €
i=1 i=1

(A.5.53)
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We also have

6—0t

lim (M(hg) — M(f)) > me(ffi;fi) > me(sa fi)%
s ! (A.5.54)

1
LA 2p.(5; fi))

This gives the lower bound.
A.5.5. Proof of Theorem 3.2.4

inf Ee (V(CI, ,
o B (V(OLa))

= inf ¢ (V(CI
B gsél]_}?s CIz,aelrzlzya(f,g) £ ( ( Zva))

(A.5.55)

> sup inf Ee (1{{Z(f), Z(g)} C CL.a}) sup II;_|Z(g:) — Z(f:)|
geF; ClL:,a€T; o (f,8) geFs

f _
> sup (1 PN YR L - >) sup T4 Z(g:) — Z(f)]
geFs € gEFs

Let g; 5 be constructed as follows. Without loss of generality, we assume t;, = Z(f;) +
pz(e/\/s; fi) satisfies fi(tir) < pm(e//s; fi) + M(f;) and t;; is the left end point of {t :
fi(t) < pm(e/V/s; fi) + M(fi)}. Let

9i,6(t) = max{f;(t), M(fi) + pm(e/Vs: fi) + t”__ét“(t —ti1)} (A.5.56)

) )

Define

S

s 1
gs(t) = fo+ Zgiﬁ(ti) - Z/ gis(t)dt.
i=1 0

i=1

It’s clear that

lgs — £l <e.
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It is obvious that Z(gs;) = Z(gis)-

1 2
i T 20050 = 20001 2 Woapele/V5 1) > (5 2 S Tape(es ) (M550

Going back to Inequality (A.5.55) we have that

inf B (V(CLa) > (06 — a) (o) ¥ T pu(es fi). (A.5.58)

CI. 0€T,,a(Fs) 2\/s

A.5.6. Proof of Theorem 3.2.5

We prove the theorem by proving the following two propositions.

Proposition A.5.5. For any estimator of the minimizer, Z, if
Br (12 - 2(5)|) < vR.(=:9)
for £ € Fs and v < 9, where vy is a positive constant, then there exists f| € Fs such that
Er, (12 - Z(8)]?) > e (1og i)ng(g; £). (A.5.50)

where ¢, s is a constant depending on s only.

Proposition A.5.6. For any estimator of the minimum, M, if
Ee(|M — M(£)]*) < yRn(s; £)
for f € Fs and v < vo/s, where vy is a positive constant, then there exists f| € Fs such that
1

Ey, (yM - M(f1)|2> > cpm.s(log 5)%Rm(€; f), (A.5.60)

where ¢, 5 15 a constant depending on s only.
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Proof of Proposition A.5.5

Let 0 = W. Let F(v) = (0/e)?.

Then for y < 0.0024558/54, we have o > \/ga.

Suppose (w1, ws, -+ ,ws) achieves
S
sup sz(wie; fi)?. (A.5.61)
ijlwfgl,wjzo i
The compactness of {(wi,ws, - ,ws) : Zj:l wjz- < 1,w; > 0} and the continuity of
>-7 ps(wie; fi)? implies that supremum is attainable. So (w1, ws, -+ ,w;,) is well defined.
Also, it’s easy to see that > %_, w]2 =1.
Denote set B as
S W
B ={(by,ba, -+ ,bs): ¥ by <1,b; > max{———,/1/4s}}. (A.5.62)

P VE@)

It’s clear that B is not null set, and

2 2 2
wi 1 wj 1 w3 1
—— 4+ — =+, | =~ +—) EB. A5,
(\/F('y)+4$’\/F(')/)+4$7 ’ F('y)+4s)6 (4.5.63)

Let (b1, ba,- - ,bs) achieves

(b17b27"'7bs)eB F(7)€7f1)4

S 3 S . e . 4
sup (sz(bk\/F(7)€§fk)2) /(Z 5Z((IZ_ F(y)e; fi) ) (A.5.64)
k=1 i=1 Pm\Y:
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Then it is clear that

bi/F(7)e; fi)* ) (A.5.65)
)

and that
w,(g;f), (A.5.66)

Neje

S
> 02k V/F(VE; f2)? =D pa(wies fi)? >
where the very last inequality comes from Proposition A.5.3.

For each 1 < k < s, we construct fk

Let 7, z, be the left and right end points of the interval {z : fi(x) < M (fx)+ pm(bro; fr)}-

Without loss of generality, suppose fi (Z(fr) + pz(bro; fr)) < M(fx) + pm(bro; fr).

Let 92,k(t) = max{fi(t), fr(z,) + M(fe)+2pm (bio; fir) =i (zr) (t — )},

X —Tr

Calculation similar to that in Lemma A.1.5 shows that

g2 — fell < VBb/F(7)e

16 1 2 (A.5.67)
p:(m: g2) < ()3 (—===)5 p2 (buors ).
Let
S 1
g(t)=fo+ ) <92,k(tk) - / gz,k(t)dt> : (A.5.68)
k=1 0
Then we know that
lg —f| <@ H(1—-6-9-27)e, (A.5.69)
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that

1
||Z( ||2 sz ka' fk > §Wz( ; )7
and that
wz(e;8) <9 sup > pa(die; ga)?
] 1d]<1d >0k 1
16 2 dre 4
<9 sup ZH (——=——)3 pa(bros fr)*.

- 3
S5, d2<1,d;>0 5202/

Taking derivative of
S

S () by )2
k=1

C:

(df,d3, -+ ,d3),

with respect to

we have

2 o\-1,-3% 2 2 o\-1,—3 2
g(dl) 3bl pz(blg;fl) v""g(ds) 3bs pz(bso';fs) .

Note that the constraint for d?,d3,- - - ,d? is

S
Zd2:1,d§20for1§j§s.
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Therefore, we have that

IN]

L dy s [ p=(bros f1)° /bR D25, (Pz(bjg?fj)G/bﬂ ’
by

p:(bros fr.)?

Wl

W=

<3 -
= pm(bio; f)
(A.5.76)
Using Inequality (A.5.65) and going back to Inequality (A.5.71), we have that
264 4 1, 8 | 2¢
w(e:8) <9+ (16-3)5 ()5 - 05 -43(5)5 D pa(bros fi)?
o F(y)e
ot (A.5.77)
=9-(16-3)3 - 25 (——)3 | Z(F) — Z(g)|
F(v) '

Recall that when we let fy = f for # = 1 and fy = g for § = —1, a sufficient statistic would

be W defined in (A.5.4).

Note that we have

Be (12 = Z(0)|) < R-(5:8) < 6y (5 6), (A.5.78)
where the last Inequality comes from Theorem 3.2.1.

Denote event D = {||Z — Z(f)| > skw:(e;f)}. Then

Pe(D) < 6yw: (&; f)

<2 — 108y < 0.00491163. (A.5.79)
E(/JZ(E; f

So we have that

Pg(D) < (A.5.80)

N
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Hence we have that

2
Eg (17 - Z(2)|?) > B ((HZ(f) - 2(g)] - geali) ﬂ{DC})

+

> By (1120 - Z@IPLDY ) > {12(6) - Z(@)]?

. (A.5.81)
11 F(v)3
> 163528 00 (g
89 S3
2
11 _2 sl F(vy)s
> 2(16-3)73 - 275~ R, (e;
> gg(16-3)73 - 273 Ra(e;8) 2
Note that F(v) = 2%087/5, so F(ry) ~ log(%), so we have
5 _2 1.2
B (12 - Z(®)?) 2 c: 5 S low (1) 3 el ). (A.5.82)

for some constant ¢, > 0.

Letting ¢, s = ¢, - 573 and f; = g gives the statement of the Proposition.

Proof of Proposition A.5.6
Take 0 = ®~1(1 — 108(s + 1)?v/s)e.
Suppose v < 0.158655s/108(s + 1)2. Then we know that o > 1

Take the construction of hs in the Proof of Theorem 3.2.3 withe noise level being . Then

we know that

[hs — f[| <o,

1 . m\0; 2 o\ 3 s m(€: 2
lim, [V (8) = M ()2 > 2= Pm T (75 Dy ol & 11
6—0t 1+s - 145
S m ;h 2
> 671 (1= 2(s + 1))} kL= ) (A5.83)
1+ s
> & 11— 2(s + 1)7)5 ——wm(e:h
> @_1(1 —2(s+ 1)7)%;1}2 (e: hy)
a 9(s+1)26 ™0
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Note that Z > 1. Hence, there exists dp > 0, such that for do > § > 0, we have

ME) — Mhg)|2> —> o (e:£) > ——> (). A.5.84
|| ( ) ( 5)” = 9(8_1_1)2“‘) (6, )— 54(S+1)2R (5a ) ( 5.8 )
Denote event
D={|M-MD|I?> ——" R, (c:£)). A5
{ll ) > 1Og(Hl)gR (e:£)} (A.5.85)
Then we know that
1 1)2
Pe(D) <~ - 08(3;). (A.5.86)
So
1
Fay (D) < 3. (A.5.87)
Therefore, we have that
. 1
En, (1N M(by)|[?) = En, ((1 - () - M(h6)||2]l{Dc}>
(A.5.88)
3-2v2
> ——IM(f) - M (hy)|?.

From Inequality (A.5.83), we know that there exists 0 < d; < dg, such that for § < d1, we

have

ol

1M (£) — M(hg)[> > & (1 — 2(s + 1)) 55(8—11)2%(5; hs). (A.5.89)

Hence,

3—2V2
4

s
55(s 4+ 1)2

Wl

11 —2(s+ 1))

En, (|10 = M(by)[?) = Ry(e;hs).  (A5.90)

Note that ®~(1 —2(s+ 1)7)% ~ log(%)g as v — 0T and that log(é)g > (log(%)/log(s))g

for v < 3%, so we have the statement by taking f; = hy.
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A.5.7. Proof of Proposition 3.3.1

We start with the first item.

Suppose B(Y!) = P(Y?) for Y1, Y? € Q). Then for A = [a1, A1] x [ag, Ag] X -+ X [as, As] C

[0, 1], we have

A

/Adyl:Ader(yl)+gnj¢i(Aj—aj)l dm; (Y1)

(3

_/ der(YZ)—l—zs:Hj#(Aj—aj)/Ai dmy(Y?) (A.5.91)
A

i=1 @i
= / dy?.
A

Therefore, using Dynkin’s m — A theorem, Y1 = Y2,
Now we continue with the second item.

Again, from Dynkin’s m — A theorem, we only need to prove that for any
[al, Al], [CLQ, AQ], K [as, As] C [O, 1] and B = [bl, Bl] X [bg, Bg] X oo X [bS,BS],

the following variables are independent:

/ dm(Y),/ de(Y),---,/ dﬂS(Y),/ der(Y).
[al,Al] [az,AQ] [aS,AS} [bl,BﬂX[bQ,BQ}X[bS,BS}

Note that m;(Y)[A4;]—7;(Y)[a;] = f[m, m dm;(Y'), but we use integral form whenever possible

to ease understanding as we have stochastic processes of different dimensions.

From the definition 3.3.1 of m;(Y") and er(Y'), we know that

([ am) [ dmy)e [ ), [ deny))
la1,A1] [a2,Az2] (as,As] B

335



is joint normal random vector. To prove independence we only need to prove the correlations

are zero.

For 1 <14 < j <s, we have

cov(| amy). [ amw)
[a:,Aq] la;.4;]

:E(</ dW—(Al—al)/ dW)
tiE[ai,Ai],t_i€[0,1]571 [071]5

(/ dW—(Aj—aj)/ dW))
tj€la;,A;]t—;€[0,1]571 [0,1]¢

(A.5.92)

=0.

For 1 <i < s, suppose A; = {t : t; € [a;, A;],t_; € [0,1]*71}, and V/(-) denotes the volume

(length when one dimensional, area when two dimensional, etc.), we have

cov( / dmy(YV), / av)
[ai,Asl B
ti€la;, Al t—;€[0,1]5—1 [0,1]5

[BdW—iﬂk#(Bk—bk)/

dW + sIIi_ (By — bg) / dw
j=1 t;€[b;,B;],t—;€[0,1]5~1 [0,1)5

= V(AiN'B) — (Ai — a;)V(B) = Y Ty (Bi — bi) (B — bj) (Ai — a;)
i
= Vi(las, Ai] N0 [bi, Bi] )Mz (Bj — bj) + 5(Ai — ag) I (Bi — bi) + 0
= 0.
(A.5.93)

Therefore, we prove the independence.

Now we continue with the sufficiency property. Recalling the Radon-Nikodym derivative
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calculated in (A.5.3), we have that for f, g € F;

APE 1 _ o £(t) — g(t) 1 £ —e®)?
dTDg(Y) = exp </[071]s 5 dY (t) 2/[07”8 = dt)
s 1
— exp <5122/0 (fi(t) —gi(t))dm(Y)—Q;/

Hence we concludes the proof.
A.5.8. Proof of Theorem 3.3.1

Recalling Theorem 3.2.1 and Theorem 3.2.2, we know that it suffices to prove that
S
Be (12 = 2(0)12) <02 Y palsi£)? (A.5.95)
k=1

for an absolute constant Cy > 0.

Since we have

Be (12— 20°) = 3B (12 - 20P) (A.5.96)
k=1

we only need to prove that there is an absolute constant C > 0 such that for 1 < k < s,

Br (12 = Z(fo)2) < Capa(; fi) (A.5.97)

Now we focus on any given k € {1,...,s}.

Note that for each level j > 1, the localization and stopping rule only based on the following

random variables {Xj,i,k: - Xj,i—l,k 1= 2, ey 2j} @) {Xj,i,k - Xj,i—l,k 1= 2, ey 2]}.

If we construct two stochastic process v/ and v" in the following way

Avl(t) = fe(t)dt + V3edW?,
(A.5.98)

AV (t) = fe(t)dt + V/3edW",
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where W' and W7 are independent Brownian Motion, and also define Oj7i7k,(§j7i7k in the
same way as Xj,i,anj,i,k: with v/ and v" replaced by v! and ¥", then we know that the
distribution under f of the infinite dimension object Ds(X, k) that concatenate the following

vectors with j =1,2,...:

(Xjok — Xjam Xjak — Xjok - 7X‘,2j,k = X',fol,ka
j j j j j j (A.5.99)

Xjok = Xk Xjgh = X2k Xjoin — Xjoi1)

is the same with that having O;; 1, O;; 1 in the place of X ; 1, X;; 1, which we call Ds(O, k).

Also note that the localization procedure, stopping procedure and construction of each
axis of the estimator goes in parallel with the univariate estimator in Chapter 2, and that
the distribution of random variables playing a role in the entire estimation procedure (i.e.

Ds(X, k) ) is the same with that of Ds(O, k).

Hence bounding FEf <|Zk - Z(fk)|2) here is the same with bounding Ey, <|Z - Z(fk)|2>
with Z being the estimator of the minimizer of the univariate function in the setting of

univariate case in Chapter 2.

Resort to the proof of that of Theorem 2.3.1 in Chapter 2 with the quantities bounding

|Z — Z(f)| there being replaced by the square of it, we have

Br (12— Z(5)) <y (12 = Z(f)]?) < Copa(es ), (A.5.100)
for an absolute constant Cs.
A.5.9. Proof of Theorem 3.3.2

Recalling the lower bound of L, ,(¢; f) established in Theorem 3.2.4 and Proposition 2.2.1
in Chapter 2, it suffices to prove the following two two propositions.

Proposition A.5.7 (Coverage). The confidence hyper cube C1, , defined by (3.3.12) is an
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1 — « level confidence cube for minimizer.
Proposition A.5.8 (Expected Volume). For o < 0.3, and confidence hyper cube CI,
defined by (3.3.12), we have

Er (V(CLa)) < CF 3 palzayscs fo). (A.5.101)
k=1

where C3 is an absolute positive constant.

Note that p.(zq/s€; fir) < (22a/5)%pz(5; fx), so these two propositions lead to the theorem.
Proof of Proposition A.5.7

By the definition of confidence hyper cube C1I,, in (3.3.12), its k-th coordinate C1Ij only

depend Y through 71 (Y). So it has mutually independent coordinates. Hence we have
Pf(Z(f) S Clz@) = szlpf(Z(fk) S Clk) > szl fien]f' Pf(Z(fk) S ka) (A.5.102)

So it suffices to prove that infre 7, Pr(Z(f) € Cl) > 1 — <.

Denote j, = min{j : |i; — i% x| = 7}.Then we have for any f € F;,

Pe(Z(f) & Cli) = Pe(jx < j(o/s, k) = > Ee(Be(1{j < j(c/s, k) Vi) 1{Gk = j})
j=3

< ZEf(a/s]l{j’k =j}) < a/s.
=3

(A.5.103)

X. - -X.-
j,zj’k76,k ],1j7k75,k
o ’

The first inequality is due to the distribution in (3.3.7) and that for the
as well as the facts that ﬁjyk only depends on vi;, that vfg and v} are independent, and that

§ = ji implies Sp(j,k) <0 or that for the left side is non-positive.

This concludes the proof.
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Proof of Proposition A.5.8

Note that the coordinates of the confidence hyper cube are independent, so we have
Ee (V(CLa)) = i Ee (|CL]) , (A.5.104)

it suffice to prove that there exists an absolute constant C'3 > 0 such that for any k €

{1,2,...,s}, the following holds

Ee (|CIk|1%) < C3ps(2ayses fr)*- (A.5.105)
Now we recollect and introduce some notation that indicate the levels at which the local-

ization procedure picks a interval far away from the right one.

gr = min{j : [ije — 5, > 2},
o =min{j : [ijh — 5] > 5}, (A.5.106)

Je =min{j : [ij — i, > 7).

It’s clear that for any j > j, we have

ik — Tl = 2. (A.5.107)

We also introduce a quantity as follow.

Jr =min{j : m; < Pz(il,fk)} (A.5.108)
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We have

Er([|CIk]*)

< mQZEf “21{j(a/s, k) = 5})
< 16921531-‘ 205 (a/s,k) = g, gk < j}) + 1692Ef 1 (a/s, k) = 4, jk > j})
7j=3

< 169ZEf SR {j(afs, k) = 4, Jk < 5}) + 1692& “1{j(a/s, k) = j,jk > j})
7j=3

< 169B¢(272%) 4 169 ZEf(Q*Qjﬂ{j(a/s, k) =J,jk > j}).
=3

(A.5.109)
We will bound the two terms separately, now we start with the first term.
Note that we have j, > ji > jr and that j, = j implies one of the following happens:

{Xj,i;,k—kl,k > XjVi;_:k_A'_Q’k}? {Xj,i;k+1,k > Xj,i;7k+3,/€}v {Xj,i;’k—&-l,k: > Xj,i;,k+47k}a

{Xjir  —1k = Xjar 2w b AXGar —10 = Xjar b {XGar, 1 = Xjar, —ak )

(A.5.110)

Also we have for j > ji + 3, m; > p.(e; fi).
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So we have

}Ef(Q*ij)
. Jp—4
< Bp(27%k) < 27 %0 4 N 9 UE(1{j, = j})
=3
jr—4 . ) 3
2 N o2 _pmlEs i) (2K pae; fi)?
<dp.(g; fx)” + ; 277 x 2 x <<I>( PREYA) e )+
opm(E ) T Tpu (e )2 o apmlE i) (R pa (e f)?
2 2pz(e; fr) V3e )+ 3pz(5§fk) V3e )>
< dp.(g; fr)? +]§22j X 2 X <I>(—23(j’:;37j) Li)—i—
= 202\85 Jk ~ \/5\/3
3Gp-3-4) 1 1 3Gp-3-4) 1 1
2(-2) 2(- %)
Ry )2 3 V3
< 4pz(5a fk) +32pz(57fk) (1 — 8\@exp (7% %) 1_ 8\/§exp (7% 1376)
D(—2+/3)

< dp.(e; fr)? +4.5p2 (5 fr)? = 8.5p2 (5 fr)*.
(A.5.111)
Now we turn to the second term in Inequality (A.5.109). We first define three quantities.

Let the average of f; over [t;;—1,t;;] to be

277 x4
fiikg =27 / fr(t)dt.
2

—Ix(i—1)

For i > 2/ or i < 0, define szk = +00. And suppose 0o — a = oo for a € [—00, 0], and

min{oo, a} = a for a € [—o0, 0.
Let the minimum of the difference of the two neighboring intervals be

ik = min{fir rak = Fiaz 11k Fii -2 = iz, —1a}- (A.5.112)
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Let j(¢,k) be the level j such that the signal part in 7} is relatively small, specifically

defined as follow.

GG k) =min{j: T, 27— <z +1}. (A.5.113)

1
Ve ~
Note that j(¢, k) is a determined quantity depending only on ¢ and f. Recall that j(a/s, k)
is the stopping level, which is a random variable.

Also note that for j < j(a/s, k) — 1 we have

1 3(j(a/s,k)—1—j)

I D T e el GRS | A5.114
N (zas + 1) (A5114

With these quantities, we have

> 2 VE(L{j(o/s. k) = G G > 5})

=3
(a/s,k) . 3 (j—j(a/s.k)+1)
< 272j a/s,k)+1 4 272_]'@ —(24/s 4 1) x 22 j—i(a/s,k)+1 4 Zo/s
= JZ; (ass +1) /o) (A.5.115)

1

< 2—2j(a/s,k)+1 + 2—2j(0{/5,k)+2@ -1
- ( )1 — B(—2v2)/®(-1)

< 3.9-2(a/sk)

Now we introduce a lemma.

Lemma A.5.1. For j((, k) defined in (A.5.113), with ¢ < 0.3 we have

6\/5(2( + 1)

)3 pa(zce; o) > 279CGR), (A.5.116)
%

(

Proof. Without loss of generality, we assume

fj’im,k),ﬁ?vk - fj’ij(c,k),k+17k = =5(¢k)
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Let puy, = min{ fz(max{t;(¢ x);

3(C:k) sk

as gio(t) = max{fk(t), t}-
For simplicity of notation, let jo = j((, k), i* = i;(( k)b

Therefore,

g0 — fill® < (i — M(fi))? -3 279

< (fi(tioir+1) = Fe(tjoir) + fu(tjoir) — M(fi))? - 3-27%

< (fjams2 = fii41)? -3 2770
< ((2c+1)-2%6e)? - 3. 270

=6(z¢ +1)% x 32

Therefore,

6\/§(Z< + 1)

2790 < p.(3V2(2¢ + Des fi) < ( ”

)3 palzces ).

—92, 0}), fk(tj(C’k)’i;(g,k),kJrl)}' Let the o € F be defined

(A.5.117)

(A.5.118)

The last inequality is due to Proposition 2.2.1 in Chapter 2 and that z; > 293 = 0.524

Lemma A.5.1 combined with Inequality (A.5.115), and note that o/s < 0.3 we have

D 2R (1{j ()5, k) = . Gk > §}) < 136p2 (2085 fi)°

=3

Also note that for a < 0.3, we have p.(&; fr) < 2.6p.(24/5¢; fx)-

(A.5.119)

Therefore both terms in Inequality A.5.109 are bounded by multiple times p.(24/,¢; fr)?.

We conclude the proof.
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A.5.10. Proof of Theorem 3.3.3

Recalling Theorem 3.2.1 and Theorem 3.2.2, it suffice to prove

s 2
E ((M - M(f))2> < Cn, (; pm(&; fk)) : (A.5.120)

for an absolute positive constant C,.
We proceed to prove this.
Recall that ( = &(—2).

Note that Y'(1,1,---,1) = Y(0,0,---,0), 2j(<’k)Xj(§,k),z‘F7k,k for k=1,2,--- s are indepen-

dent. Therefore,

E (7 - M(£))?) <

s - 5 2
VE (LT, D) =Y (0,0,,0) = fo)? + 2 \JE (PN K500 p = M)

k=1

(A.5.121)

Recollect the notation ‘
2774

Fiik = 23'/ fre(t)de. (A.5.122)

2-3(i—1)

Recall that the location procedure, the stopping rule and the definition of if); parallel

those of univariate case introduced in Chapter 2, so we have that fﬁ'(( k) has the same

AP Kok

distribution with that of f in the proof of Theorem 2.3.3 with f; being the true function.

Hence we have that

— 2 - 9
E (Fitcanines = M(FR) < Cmpm(si fo) (A.5.123)

for all k € {1,2,---,s}, where C,, is a positive absolute constant.
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Also note that

So we have that

2
(QJ(C k) X, SCRyimk M(fk))

2 2
_ R (2 5. 7
=E (PP X fj(c,k),ip,k,k) FE (Bt pyine — M) (A.5.124)

< E((1— 273CR)2ICR)  362) 4 Crpn (e fi)2.

Now we will bound E(Zj(g’k) x 3e2). Note that ¢ = ®(—2) < 0.3, so we have that

3(¢k)+3

Ee(2OM) < ST Ee(GGR) =) x 2 + Z Ee(j(C, k) = j) x 2/

Jj=1 J=7(C,k)+4

o
A A +1.. .
< 9i(Ck)+4 29 P (— 2C T 1y i—i(Ck)—4 (A.5.125)
< + 0> (=2 + =5 )

J=5(C k) +4
. . 1 4
= 1—0.03 = ps(zce; fr)

The last inequality is due to Lemma A.5.3.

Going back to Inequality (A.5.121) we have that

2
E (07 — M(F) )_<e+z 182 fk)+émpm(5§fk)2)

(6 + Z \/800 + Cry X pim (zces fr ) (A.5.126)

)
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A.5.11. Proof of Theorem 3.3.4

Recalling the lower bound for L, (e;f) established in Theorem 3.2.1 and Theorem 3.2.2,
it suffices to prove the following propositions.

Proposition A.5.9 (Coverage). The confidence interval Cly, o defined by (3.3.18) is an
1 — «a level confidence cube for minimum.

Proposition A.5.10 (Expected Length). For a < 0.3, and confidence interval Cly, o

defined by (3.3.18), we have

S

Et (|CInal) < Comsa Y pmls fi), (A.5.127)
k=1

where C’m,&a 1s an absolute positive constant depending on s and «.
Proof of Proposition A.5.9

Recall that ( = a/4s. Let the event A; be

~ ~

A= {Z(f’“) T (i g = D 27T (5 gy + 6)] (A.5.128)

for all k € {1,2,--- ,s}}.

Then from Theorem 3.3.2 we know that P(A;) > 1 — a/4. Easy calculation shows that A;

can also be written as

Ay = {Z(f,) € 2773, 165500y 16 — 1) 9=i(Gk)=3., 16(i5c 4y 15 + 0]} (A5.129)

Let the event Dy, be

Dy = {j(a/487k) <j(a/4s k) — 2}7
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where j((, k) is defined in (A.5.113). By definition of j((, k) we know that for j < j({,k)—1

1 . .
e 2—%% > 220CR=1=D (2 0 4 1). (A.5.130)

Therefore, we have

P D2k 0 Ut5¢ k)0 — Tichynl < 43)

jla/4s,k)—1 X R
< Y PR =gl -l <4) A5131)
= 0.
jla/ds,k)—1 X
< é(_za/&s - 1) Z P(|2],]f - ’L;k| < 4)
j=1

Additionally, recall j; defined in (A.5.106), we have

P ({5 o1 — 1o = 5.5(CK) < (/4. k) = 1})
B j(a/4s,k)—2 ' '
SP(je<jla/isk)—2) <6 Y o(=280@MARTNRG 04 1)+ 20,)
j=1

< 6 X B(—24/45 — 2V2) x 1.000001.

(A.5.132)
Therefore, for o < 0.3,
P(Dsy) < ®(—2n/45 — 1) + 6.000006 x D(—z4 /45 — 2V/2)
4 4 (A.5.133)
< (a/4s) x (3 -exp(—1.5) + 6.000006 x 3 &XP (—4)) < a/8s.
Note that for each &
t~ .
~ ,k 3 _ 7(¢,k)+3,i,k ~ ,k 3
LIPS S / Fult) - 2R3
SRk (A.5.134)

1
+Y(1,1,---,1) = Y(0,0--- ,0)—fo—\/§a/0 B} (x)dz|j(¢, k)
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fori=1,2,--- s are i.i.d N(0, 23 (CR)+3 o 3¢2). And

Y(1,1,---,1) =Y (0,0---,0) — fo—

i: <Y(1,1,--- ,1)=Y(0,0---,0) — fo— \@é‘/l Bé(x)dx) ~ N(0,e2((s — 1)® + 25)).
0

(A.5.135)
Hence we have that
P (fhi < M(f)‘/h) < %. (A.5.136)
Also note that on the event Ay N DS, there is a random variable such that
Ol (G k) ~ N(0,3(1 — 277(CR =3y R¥3:2),
93 (C:k)+3 min X- ‘
160 )1 x—T)<I<16(E3 ¢ g1 5-+6) J(CR)+3,0.k
< M(fk) +ﬂm(zg€'fk) + vg (A.5.137)
< M(fk + \fé“ZC + vk,
V Pz Z§5 fk
and v, v, - ,v; are independent.
Recall Lemma A.5.1 and the definition of D3 ;, we have on the event A; N D3,
23(C’k)+3 min X- M(fr) + V3ez + vg.
. A k B S k T k
16+(i5 (¢ oy 1 o= 7)<I<16:(35 ¢ 4y _1 4 +6) (GR)+340, Vp=(2ce; fr)
(A.5.138)
So we have that
P <flo > M(f)‘Al N (ﬁileS,k)) < % (A.5.139)
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Adding the components, we have

P(M(£) ¢ [fio, fai]) <

P(A5) + 3 P(Da) + Plfiy = M(£)| A1 01 (2 D5 1)) + P(f: < M()|41) <
k=1

(A.5.140)

Proof of Proposition A.5.10

As j(¢,1),5(¢,2), -+, 7(C, s) based on independent random variables, they are independent.

Hence we have

. 2
32 /45:F)
E(‘fhz - fl0|2) < (2\@6 (S208,a/85 + “a/4 + 2204/43 + 22&/8) ZE(2 24 )) : (A5141)

Now we will prove the following lemma.

Lemma A.5.2. Fork=1,2,--- s, for ( <0.3,

(k) (¢ R)

E(Q272 )<127x273 (A.5.142)
where j(C, k) is defined in (A.5.113).
Proof.
(D) iR j > . j
Ee(272 )< Y Be(i(Gh) =) x22 4+ D Ee(i(¢, k) = j) x 22
J=1 =3 (¢,k)+4
J(Ck)+5 > i ze+ 1 e ma (A.5.143)
2 _ 26T 2N i—i(Gk)
<274 ‘Z 220 (—2¢ + =)
J=3(C.k)+4
< M5 L oM 1 74803 < 12.7 x 275"
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J(¢,k) . .
To bound 272, we continue with another lemma

Lemma A.5.3. For ( <0.3, and k=1,2,--- ,s we have
ik 5 L .
> ZPZ(ZC57 fk) (A.5.144)

Proof. Without loss of generality, assume fi,(Z(fr) + p2(2¢c€; fx)) < pm(2ce; fi;). Suppose

279 < 1p.(2¢€; fr), then we have that

J

(fj,i;f’k-i-Q,k - fjﬂ;;f’k_;’_l,k) 2272 \[8

(A.5.145)

1
< pm(2cg; fr) - 5 p=(2¢8; fr)—= < —=2c < 2+ L.

v

Therefore, j > j(¢, k), thus 2-3(Ck) > %Pz(ZCE;fk).

Combing Lemma A.5.2 with Lemma A.5.3 and getting back to Inequality (A.5.141), we

have
E(|fhi — fio]?)
2
> 1
< | 2V6e (Sas,a/8s + Zaya + 22a/as + 220s8) D 12.7 % 2
k=1 pz(Zoz/435; fk)
2
< (8\/§ x 12.7 % (5208,04/85 + Ra/4 + 2za/4s + 2204/8 me 04/455 fk)) :
Zaf4s =1
(A.5.146)
Note that
pm(za/435§ fr) < Za/4spm(€; fr), (A.5.147)
and
B([f — fiol) < v/E( i — o). (A.5.148)

351



Therefore, we have the statement.
A.5.12. Analysis of Local Minimax Rates for Nonparametric Regression

In this section, we give lower bounds for the benchmarks defined in (3.4.2) and (3.4.3).

An additional complexity for the nonparametric regression is that two functions f and g
can have same values on all grid points % while have different minimizers or minimums. We

call this error caused by discretization discretization error:

D.(f;n) = supger {1 Z(F) — Z(g)|I* : £(1) = g(L) for all i € {0,1,...,n}*}, (A.5.149)
Dm(f;n) = supger {|M(f) — M(g)] : f(1)=g(d) foralli€ {0,1,...,n}*}. (A.5.150)

(A.5.151)

Note that while the discretization errors are defined for f € Fs, they are also well defined
for univariate convex functions by setting s = 1. With a bit abuse of notation, we use them
directly for univariate convex functions as well by plugging in univariate convex function f

in the place of the multivariate convex function f.

It’s apparent that

Ren(036) 2 20.(6), Ronn(036) > 10 (E)%, Enn(036) > (1~ 20))D (5 ).
(A.5.152)
For simplicity of notation, for € > 0, we define
e:(e:) = pole: 1) (1A Vrpa(Ei D)), for f € F, (A.5.153)
om(e; f) = pm(e; f) (1 A npz(e;f)> , for f € F. (A.5.154)
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Now we state the lower bounds for the benchmarks, whose proof will be given later.

ﬁz,n(g;f) > <0 1x m Zk 1 sz( § i fr ) > Zg;n), (A5155)
I:z,oz,n(o'; f) > %HS (\/ fk:, V ‘pz 5 7fk)> (A5156)

1 1
E . 2 + L2
Rmn g, f 180 Spm s 7fk) v 2©m(f’ TL) )

+1§ 1"1’%"1'22:12/07:( Safk‘)

(n+1)3
(A.5.157)

Linan(0;f) > (1 —a— ®(—24 + 1))

1
3\f Z‘p (+1)%’f’“)2\/1+ +Zk1pz( é,fk) v Dm{fin)

(A.5.158)

Before continue with the proofs of the lower bounds (A.5.155), (A.5.156), (A.5.157), and

(A.5.158) separately, we introduce some quantities and lemmas that will be frequently used.

We introduce a function l,(-,-). For f,g € F

n ) _ g(E))2
In(f.9) = \/Z“(fr(l’ﬁ : 96" (A.5.159)

I, can be considered as a discrete Lo norm of the difference of function f and g.

We also have the following lemma.

Lemma A.5.4. For f € F, >0, and § > 0, there exist g € F such that

In(f,9) < V6e, (A.5.160)
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and that

1Z(f) — Z(g)| = p=(&; [)(L A\ 2np.(e5 f)) — 0,
M(g) — M(f) > pm(e; f)(A A/ 2np.(c; f)) — 9,

g(t) > f(t) for0 <t <1, (A.5.161)
1 n

n+HOwa¢Q»ghmw L o)

Proof. Suppose > 0 is a small number. For p > 0, we next define convex function
Gnu- Suppose t; .t , are left and right end points of {t : f(t) < p+ M(f)}. When

fp o+t > 22(1).

Gngu(t) = max{ f(t), ju+ M(f) + tw__”tw(t — )} (A.5.162)

When t;,, +t,., < 2Z(f).

Gyn(t) = max{ f(t), g+ M(f) + ———(t —t,,)}. (A.5.163)

For p.(e; f) > 5=, we have
ln(fu gn,pm(s;f)) < \/6||f - gH < \/657 (A5164)
for any 7 > 0. And we also have that

im |Z(gne) = Z(f)| = p=(&; f)- (A.5.165)

n—0t
For p.(e; f) < &, we have that

l”(f’gn,pm(af)\/m) < \/@‘f —g|l < Ve, (A.5.166)
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for any n > 0.

lim [Z(g, .. fompmery) — 2 2 p(e5 f)v/2np2(e; £))- (A.5.167)

n—0+

Let p = pm(e; f)(1 A/ 2npz(; f))-

Then we have that

ln(fa gn,u) S 6527

lim M(gyu) = M(f) = pm(e; F)A NV 2np.(e5 f)),

n—0+

im | Z(gy.) — Z(f)| > p=(e; £)(I AV 2np.(c; f)),

n—0+
(A.5.168)
Gnu(t) > f(t) forall 0 <t <1,

(ni > (o) - f(i)))

=1

i = gnau(3) > F(Y
)2 Wﬂn+1 S ln(

22npz(€§f) +1

f’gnuu‘) 7’L—|—1

< ln(fa 9n,u

Take 1 small enough gives the statement.

Now we continue with analyzing the probability structure of the nonparametric regression

setting.

For f,g € F,, denote the probability distribution under f as P and that under g as Pg.

Then for observation {y;}, we have

o (B - 3 (ML) KOs g

g
ic{0,1,- n}
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If we set fy = f1{60 =1} + gl{f = —1}, then we know that

W = yi(f(i) — (i) N ()2 + g(i)?
ie““vz; e O/ Sieo s ED) —80)2 204 /Sic 0.y (ED) — g(0)?
(A.5.170)
is a sufficient statistic for 6, and
i JF() —e(i))2/(n + 1)
o gl e () 8P/t 1 o
2 o/(n+1)2

Proof of Inequality (A.5.155)

Recall Lemma A.5.4, take £ = ﬁ% Take

§ < 0.001 min p.(e; fi) (1 AV mps(e; fk)) :

Take gj 5 to be the function satisfying (A.5.161) in Lemma A.5.4 for f = f;. Let

n

hrs(t) = grs(0) = —= S (grs(2) = Fel2)) (A5.172)
1=0
Let
hs(t) = fo+ > hra(te). (A.5.173)
k=1

It’s easy to check hs € Fs.

Then Lemma A.5.4 together with elementary calculation show that

Vg0 e (BD) — 8(0)2/ (0 + 1)
o/(n+1)3

<1, (A.5.174)

356



and that

12005) ~ 217 = 3 (ool ) (1A 20psei 1)) —6) (A.5.175)
k=1

Recall that W defined in (A.5.171) is sufficient statistic for 6, we have
= ) . A 2 7 2 2
Ren(o3£) 2 inf max(Br (112 ~ Z()|1?) En, (12 — 2(0)|)} = rall Z(£) — 2 (),

> 7 i (pz(ss ) (1 A 2np-(&; fk)) - 5>2,

k=1
(A.5.176)
where
0— 0
o= inf B
for W ~ N (g, 1). Elementary calculation shows that 75 > 0.1.
Now we take § — 0", we have that
Ron(05F) > 0.1 pa(e5 fiu)” (1A 2np2(e; fr))
L (A.5.177)
1 o
> 0.1 % =¥ (53 fx),
12s 1 (n + 1)2

where the last inequality comes from Proposition 2.2.1.

D, (f;n)

Note that R, ,(o; f) > apparently. We concludes the proof.
Proof of Inequality (A.5.156)

Take hy, s constructed in (A.5.172).

Let 6 < 0.01 be a small positive number.
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Take f, ... 5 € F satisfying

fk,alt,s(*) = fr(=) for 0 <i < mn,
" " (A.5.178)

2 e) — 20| = 5/ (1= 5)D-(fiim)

Take

hys(t) = fo+ ) (hk,5(tk)ﬂ{\z(hk,a) — Z(f) 212 (frans) — Z(fe)]}

k

(A.5.179)
+ fk,alt,S(tk)ﬂ{‘Z(hkﬁ) = Z(fr)| < ’Z(fk,altj) - Z(fk)|}>
It’s easy to check that h575]~'3.
Then we have that
Vit e ED) = 82/ (n 4 1)°
<1, (A.5.180)

o/(n+1)2

and that

12 (hy 5)k — Z(E)i] > (V(l—éwmn)v (potes fi) (1A V2002 1) —5)) ,
(A.5.181)
for k € {1,2,---,s}.

Therefore, we have for Clp, o € I a.n(Fs),

M, (W (L =0)D-(fuim) VY (pe(es fi) (1A V200.(E ) - 5)) .

(A.5.182)

Note that & < 0.3 gives 1 —a — ®(—2z4 + 1) > 0.
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Take 8,6 — 01, we have

E¢ (V(Clma))

>(1—a—®(—zo + 1), (; D.(frsn) VvV (pz(&?; fr) (1 A 2np(g; fk))>)

—_

> (1 0= 0z + D)ty (VB v V%Ssaz((nfl);-fk))

<(1—a—®(—2y +1))(12s) 211 (JTV%

2

w\m

nt1)s
(A.5.183)

Proof of Inequality (A.5.157) and Inequality (A.5.158)

Let

\/Zz 190771 U) i>2 6(n—|—1)%1+%+25112pz(( +1§afz)

Recall Lemma A.5.4. Let § = % - ming<p<s Pm(ex; fr). For each k € {1,2,--- s}, take

€ = €y, and take let g s be the function g in Lemma A.5.4.
Let 6 < 0.01 be a small positive number.

Take f, .., 5 € F satisfying

fkalté( ) fk( )f0r0<z<n

L (A.5.185)
[M(fya11.5) = M(fi)l 2 51 = 0)Dm(fi; ).
Let
= fo+ Y gralte). (A.5.186)

Clearly g5 € Fs.
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With a bit abuse of notation, in this proof let

~.

1 n .
A= o o)~ () (A.5.187)

Then we have that

V(01,0 e (B0) — 85(0)2/ (n + 1)*

o/(n+1)2
_ Vi AR+ 2 lngfk;gk,é) — Ap)?
o/(n+1)2
\/Ek Ln(frs grs) — Ag)? \/1+ + > 5=1 2Pz (€5 fx) (A.5.188)
o/(n+1)2
\/Ek 165k\/1+ + 2 k=1 20:(85 fk:)
o/(n+1)2

<1

Also, by Lemma A.5.4, we have that

M (gs) = M(£) =Y M(grs) — M(fr) >me ers /) (LA V2np.(ex; ) =6

1 €k o
TS V30/(n+1)2 (n+1)2

1 9 2 1
=3 QJZSOm((n—i—l); fi) \/1+;§+22:12pz( i) 0

+1)§’

i fi) =6

(A.5.189)

Recall the sufficient statistic W given in (A.5.171).
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So we have

R, (03£) > iﬂf}meaX{Ef(\M — M(F)?), Eg, (1M — M(gs)*)}

(A.5.190)
> 72| M(£) — M(gs)[,
where
. 10— 62
= inf E
PEWERTTT
for W ~ N (g, 1). Elementary calculation shows that ro > 0.1.
Let § — 07, so we have
B ( f)>1i: (— T f)? ! (A.5.191)
; — =5 : 5.
i 180 &= "™ )5 Y T2+ S 20:(2 =1 i)

(n +1)?

It’s apparent that Ry, ,, (03 f) > 1®,,(f; n)?. This concludes the proof of Inequality (A.5.157).

We now turn to the proof of Inequality (A.5.158) .

Let § < 0.01 be a small positive number. Then there exist f'l, f'g € F, such that

D=t =) forie 0.1, n, M(E) - ME)| > (1 - )Dn(En),

fi(
(A.5.192)

Suppose Cly.o € Iim.an(Fs)-

It’s clear that Cly.o € Iman({f,85}); Clm,a € I n({fg, fl}) Therefore, we have that

Lonan(0;£) > (1= 2a) - (1 = 0)D,(f;7n), (A.5.193)
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and that

im,a,n(0§ f)

> (1 —a—®(—2zo+ 1)) |M(f) — M(gs)|

1

o 1N T
> (- = (o + 1) 2o |3 enl =i fo) \/1+;+Zizl2pz((+1~fk)

k=1

— 80.

Letting 8,6 — 0 gives Inequality (A.5.158).
A.5.13. Proof of Proposition 3.4.1

The idea of the proof is very similar to that for white noise model.

(A.5.194)

Invertibility follows from definition. Independence follows from the observation that the

concatenation of the elements is this s+ 1 tuple P({y;}) follows a joint normal distribution

and that covariance of of elements from different places of the tuple is 0. The sufficiency

rises from factorization of the probability.
A.5.14. Proof of Theorem 3.4.1

We have

Be (12 - z(9)]?) < ZEf(nZk— () -

Note that Proposition 2.2.1 gives

(AJ\M

V6o o
Pz((ZC‘*‘l)mafk) (3><4\f) (mvfk)

for ¢ < ®(—2). Also note that D, (f;n) = > "7 _; D.(fx;n).
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Recall the lower bound for R, ,,(0;f) given in Inequality (A.5.155).

So it is sufficient to prove that for ¢ < 0.15 the following holds

Er (12— Z(f)I1?) <

. V6o V6o
C2Pz((ZC + 1)—§§ fk)2 npz((z< + 1)—5;1;fk) V14+29.(frin),
Vn(n+1)—2 Vnn+1)7=
(A.5.197)
for an absolute constant Cy > 0.
Now we proceed with proving it.
First we introduce a quantity for a general ¢ > O:
&k(C) = sup {f : min {\/g[fk:(z(fk) +&) — M(fi)],
n
VEIR(2(8) = ) = MU | x "y <1,
VBo/(n+1)%
(A.5.198)
Then let
20
3k(¢) = max{j : > & (O} (A.5.199)
We further introduce the following quantities.
. ‘ 277 (-1 1 27774 1
ip;=max{i: Z(fy) € | ——— — m'  n on }
jr = min ({] : |ik7j — i;;,j| >2} U oo) ) (A.5.200)

jr = min ({] : ]ikj - i,’;j| >5} Uoo) ,

jr = min ({] : ’ik,j — iz7j| > 7} Uoo) )

Then we immediately have the following facts that we summarize into a lemma.
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Lemma A.5.5. For j <min{J, jx(¢)}, we have

(i;j+2)2J*J‘—1
’ h — 92/ . .
(f( P Yt >)zz§<3k<<>3><z<+1>,

Ok .
k,] h:(iI:j+1)2J_]

and

(if,—12777-1

1 h—27-3 h s
Gk )3 <fk(n) fk(n)> > 2200kO=9) (0 4-1).
ki h=(i} ;—2)27~i

When jj = j, then one of the following happens
Yoo <Y Y <Y Y <Y
kzjylk +2 - kzjylk’j+17 ka]’lk,j"’_s - ku]ﬁlk’]"i_l’ k’j’lk,j+4 - km?vlk +1,

! ! ! I !
Yk] i -2 S Va1 Ykgar 3 S Vejse 1 Vhjar 4 S Yrjar o1

Now we will state three lemmas, the proofs of which are left to latter parts.

Lemma A.5.6. Suppose ( < 0.5.
Ef( “2k {3, < J}> Cp223k(0) (1/\2J—jk(<)),

where Cy = max{sup,>, 2z°®(—x), 2}.

(A.5.201)

(A.5.202)

(A.5.203)

(A.5.204)

Remark A.5.1. Note that the left hand side of Inequality (A.5.204) does not depend on (,

but we state this more general lemma.

Lemma A.5.7. Suppose ( < 0.5.

Er (27540 13e(Q) < 0o} 13k > J(O)}) < Co27 80 (1 4277340,

where Cy = max{sup,; 22°®(—z),2}.
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Lemma A.5.8. Suppose ¢ < 0.5.

E¢ (IZk — Z(fr)P1{3r(¢) = 00, jk > J}>

(A.5.206)
< 642723k (1 A 2J*jk(4)) +29.(frin).
With these lemmas, we have that
e (ka - Z(fk)\z) < ¢y 2720 (1 A 2«Hk<<>) + 29, (fiin), (A.5.207)

where Ol =64+ 200.

Now we introduce the following lemma about £x(¢) and jx(¢), which immediately concludes
the proof of Theorem 3.4.1.

Lemma A.5.9. For ¢ > 0, we have

V6o 1 V6o
2 z 1 e —— = = SFz 1 -1 . A.5.208
p=((z¢ + )(nH)SZ \/ﬁfk)>fk(0>2p ((z¢ + )(n+1) 2 \/ﬁfk) ( )
nE2 gl ot (A.5.209)
9-3k(¢) < 21 85, By Voo ). A.5.210
< 578k(C) = 8p2((z¢ + )(n+1)551\/ﬁ fi) ( )

Proof of Lemma A.5.6

A basic property of normal tail bound is that %jgﬂ decreases with x > 0 increasing.
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Ry (2*25k11{jk < J})

J
< 22—2jk(0 . 9—25+23k(¢) (q)(ng(jk(C)_j)(Zc +1I)1{j < §e(O}+1{j > Jk(C)})
j=1
1

D(—2v/2
145

< 1{J < jk(C)}2_2jk(C) ) 2—2J+2jk(C)q)(_Q%(J'k(C)—J)(zc +1))

. 1 1
. “25kQ) | —— 4 =
+ 1{J > jx()}2 (1 _4@(({(2\1?) * 3)

< 1{J < §35(¢) 3272350 277350 qup 2220 (—) + 2 1{J > j4(¢) 2723+

x>1

(A.5.211)

Let Cy = max{sup,>; 2¢°®(—z), 2}, then we have the lemma.
Proof of Lemma A.5.7

By our stopping rule, apparently jx(¢) > 1.
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Er (272O1{3x(0) < 00}1{3k > 31(O)})

_ zJ: 22, (Ef <]l{jk > jr(C) = j}\’/ilf,i))

=1

J
< ZQ—ij(C) . 9—25+23x(C) (@(_Qg(jk(C)—j)(zC +1)1{j < jr(O}+1{j > Jk(C)})
j=1

< H{J < jk(()}2_2jk(o . 2—2J+2jk(()q)(_Q%(jk(C)—J)(ZC 4 1))

+1{J > jk(o}g—?jk(é) (1 + 1)

D(—2v2
1452

(212 3
1—4 fp(_l))

<I{J < jk(c)}Q—ij(C) . 97=3k () sup 2902(1,(_3:) +o1{J > jk(C)}TQj’“(O

x>1
(A.5.212)
Let Cy = max{sup,>; 22°®(—x), 2}, then we have the lemma.
Proof of Lemma A.5.8
Note that jx(¢) = o0, jx > J means that
(o) = min  }c{ies—3 36y — 236y — Lixs, des + 1}, (A.5.213)
n’  1€{0,1,~ n}
and that
ik,J_?) ik’J‘i‘l
Z(fe) € : I (A.5.214)
n n
When j;(¢) < J, then we have 273x(0) > 27/ > n%rl
. , . 16
Er 12k = 20 PLGK(Q) = 00,36 > J}) < 5
(A.5.215)

2
<16( ") 920 (1A 2773Q) <64 272340 (17 277340)).
—_ n -
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When ji(¢) = J + 1, denote i, = argmin, (4) — 7|, the index of the

=minje{o,1,... ,n}
position at which fj is minimized while being closest to the estimator. Note that this is
deterministic when f; has unique minimizer among grid points but is a random variable

when f;, has two minimizers among grid points.

Then according to Lemma A.5.5 we know that

Er (12k — Z(f)lP1{36(0) = 00,35 > J})
< 2E¢ <|Zk — Z:;2> + 2®z(fk7n)

<2x 1—2 X 4@(—2%(j’€(<)_‘])(z< +1)) +29,(fx;n)
n
(A.5.216)

2
<128 (m) 272 9(—2304O=N)) £ 2D (1)
n

2
< 128 (n * 1) 9=23k(¢) . 9 =3k (C) . 23@(_\/§) +29.(fr;n)
n

< 102720 . 2773k L 29 _(f1in)

Hence we concludes the proof.
Proof of Lemma A.5.9

Denote

Ay = ;pz((zg + 1)m; Ir),

and

Aok = min{ fi(Z(fr) + A1k), fe(Z(fx) — A1 x)} — M(fk)-
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Then we have that

Ay kA3
Véo
< || fie — max{fi, M(fi) + pm((zc + Ty Jel} P (A.5.217)
2
(v}
(n+ 1) v
Denote
V6o
A =2 2 1 e e )
3,k P ((ZC+ >(n+1)s2 \/ﬁ fk)
and

Ay = min{ fe(Z(fr) + Az ), fe(Z(fr) — Az )} — M(fr)-

Clearly that

Buie > pml(oc 1)&; o)
Then we have that
Agp2,
> || fir — max{ fi, M (fi) + pm((2¢ + 1)&; Fi)HI? (A.5.218)

(¢ vor Y’
(o)

A.5.15. Proof of Theorem 3.4.2

Note that the coordinates of the hyper cube CI, , are independence from each other, so
the following two propositions are sufficient to give the statement of the theorem.

Proposition A.5.11. For Cly , defined in (3.4.14)

Er (1{Z(fi) ¢ Clra}) < a/s, (A.5.219)
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for all £ € F
Proposition A.5.12. For Cl , defined in (3.4.14)

g
Eg (’tk,hi - tk,lo‘g) < C5pz(zo¢/57; fk)2 (1 N npz(zoc/s

(n—i—l)% >fk)> + 99, (fr;n),

(A.5.220)

o
(n+1)2
for all £ € Fs, for an absolute positive constant Cs.

The reason Proposition A.5.12 implies the statement of expected volume in Theorem 3.4.2

is as follows. Proposition (A.5.12) implies that

E ([thni — thiol) < V/Cs - (220/s) - soz((nfl);; fi) + 3. (fesn), (A.5.221)

where @, (-, ) is defined in Equation (A.5.153). This further gives that

o

Ep (V(CLa)) < (34 V/Cs - (2207)) Ty (*Oz( (nt1)s

s fi) Vv @z(fk;n)>. (A.5.222)

This combined with the lower bound for L, 4 ,(c;f) given in (A.5.156) gives the statement

about expected volume.

Before we continue with the proofs of the propositions, recall the quantities we defined in

Equation (A.5.200) and (A.5.199).

And we further introduce the following quantities that will be used frequently

. Lt . h, i . h
U, = mini : f(-) = negiin m}f(;)},zm,r = max{i: f(~) = e i ,n}f(ﬁ)}‘
(A.5.223)

On the event {jx(a/2s) = oo}, we define a “bad” event. Let the event that first shrinking

step misses the target be

Bi = {i; > imy+ 1} U {ip <ima—2}. (A.5.224)
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We will define more “bad” events in the proofs of the propositions, usually denoted by Bj

for h =2,3,4,---.

On the event {ji(a/2s) = oo}, from our definition, it is clear that i; < i, + 1.
We recollect the quantities defined in Equations (A.5.200), (A.5.199).

Proof of Proposition A.5.11

The event that {Z(fy) ¢ Clj o} can be partitioned into the followings

{Z(f) ¢ Clra} C{ir < jr(a/25) — 1}
U ({3k = jr(a/2s), jr(a/2s) = oo} N By)

U (({3r = Jr(a/2s), jr(a/2s) = oo} N BY) N{Z(fi) ¢ Clra}) -

(A.5.225)

We will bound them separately.

Ee (1{3x < ju(e/2s) — 1}) < Eg ((n{Tkjk > &k7jk(za/25)}‘yé7,)) <a/2s.  (A.5.226)

On event {j; > jr(a/2s), ju(a/2s) = oo}, we know that Ly < ipy < i, < Ug. Therefore,
we have
E¢ ({Jk > jk(a/2s),jk(a/23) =00} N B1)

\/ga o
e e 3 3
S P(yk,im’l - yk,im’l%»l + s—1 (zk’,im,l - Zk,im‘l+1) > 2\/§ s—1 Zal)

(n+1)>2 (n+1)=z (A.5.227)
30 2/ 30
+ PWkins -1~ Vi +Ls_1 (Zl?c)imrfl _Zl::):imr) < _Ls—lzal)
o T (n+1)2 o e (n+1) 2

<201 < a/4s.

On the event {jx > jr(a/2s), jr(a/2s) = co}NBS, we know that only when i; = i, 4+1 < n—
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1, ten < min{im’TT“, 1} could happen, and only when i; =4, +1 > 1, t,;, > max{ im‘lfl,O}

n

could happen. And note that 4, , < i =i, + 1 < i,,; indicates that i,,; = #,,,, which we
denote as i,,. So in the following we only consider f; with unique minimizer on grids. Also

we have in these cases i; = i,,. We have that

Pr ({3k > Jr(@/25), jr(a/2s) = 0o} N BY) N{Z(fx) ¢ Clya})
<Ef(Wim=dr=4r +1<n— 1t n < Z(f)}) (A.5.228)
+ E¢ (]]-{lm =u=i+1=> 1’tk‘,lo > Z(fk)}) .
The arguments bounding the two terms are similar, so we only show that for the first one.

Use t, to denote the intersection between the two lines

. im+2Y _ plim+1 i
zmn+1)+f( - )1/nf( - )(t_ m:l

oy = F(C) 0 () = £ ) (A5.229)

It is clear that Z(f) < tir.

Basic calculation shows that

tyy = - . (A.5.230)
Ton(fp(imE2) — fi(tmt)) n
It is easy to check that the distribution of
V30
<V1§,z‘m - Vﬁ,imﬂ - W (le),im - Zi,im—l-l - 2\/§2a2) )
n 2
(A.5.231)

\/§O’

e e 3 3

Vkim+2 — Vkim+1 = 5 s-1 (Zk,im—l—Z = Rkyim+l T 2\/§Za2)
(n+1)=
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is the same with the following

) V6o tm + 1 V6o V6o
fk(ﬁ)+7s—1'n0_fk( = )_ s—1 s—1 2Za2,
n (n+1)= n (n+1)= (n+1)=
i + 2 V6o i+ 1 V6o V6
fk’(m + s—1 ’,72_fk’(m )_ s—1 + s—1 .22(12 Y
n (n+1)>= n (n+1)= (n+1)=
(A.5.232)
where 19, 71, 72 N (0,1) and also independent from i, ;.
Note that under the event
{770 Z _20127771 é ZazvnQ Z _Zozz}a
we have ty p; >t . Hence we have that
Ee (Wim =i =i +1<n— 1L tgn < Z(fr)}) A
o (A.5.233)
<P(Mo < —zay) + P > zay) + P(n2 < —2za,) < 3ag = "
Similar arguments show that
. . . «
E¢ (ﬂ{Zm =y=1+1> 1atk,lo > Z(fk)}) < 3ag = %
Therefore we have
Pe(Z(fi) ¢ Cl) < a/2s + 201 + 62 = o/ s. (A.5.234)
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Proof of Proposition A.5.12

E¢ (|CI,[?)
) 92J 2] (e/2s) ; . }
< 26°Eg Tl{Jk(Oz/QS) < 00, k(a/2s) < i}

) (A.5.235)
2725

+ 28°E¢ (2 —— {3 <jk(a/25)}>

+Ef (|CIk]21L{jk(a/2s) = OO,jk > J})

Recall Lemma A.5.6, A.5.7 and A.5.9, we have first two terms being bounded by multiple

times p,((2q/2s + I)L' fr) (1 A \/npz(<za/2s + 1)#

6o :
= ; = ; , specifically,
(n+1)°7 vm ey M Y

> z e —— 2 n z —\/60- N
< Csp:(( o/2s T 1) (n + 1)551\/ﬁ’fk) (1 A mnps(( a/2s T 1) (n + 1)521\/ﬁ’fk)>

+E¢ (|CLe I 1{jk(a/25) = 00, 31 > J}),

(A.5.236)

where C5 > 0 is an absolute constant.

Note that Z“fij“ < 4, and invoke Proposition 2.2.1 in Chapter 2, it suffices to bound the

remaining term.

We proceed to bound the remaining term. Note that

2
2\/ﬁ0' o /8s n+1 ’ o
pz(za/Ss—s;l;fk) < (2/ : 4\/§ ) pz(za/siﬁ;fk%
(n+1)7 /n Za/s n (n+1)2 (A.5.237)
ntl_y al8s y for a < 0.3.
n Za/s

So it is sufficient to have the following lemma for concluding the proof.
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Lemma A.5.10.

Ee¢ (’CIk‘z]]_{jk(O[/2S) = oo,jk > J}) <

A.5.238)
. 2v120 2120 (
Cup:(2Zasss—— 1 fu)* | LA NP2 (20/85—— 57— i) | +9D:(fin)
(n+1)72 /n (n+1)2 n
where Cy > 282 is an absolute constant.
Proof. When
2120 1
pz<za/88 s—1 ;fk) > -, (A5239)
()T ym
lemma A.5.10 holds.
Now we consider the case that
2v/120 1
Pz(%/&ﬁ? fr) < o (A.5.240)
n n
Note that this means that for i > i, ,,
2\/ﬁ0 .
fr( )= fe(=) = =
n TN (208s—220 ;)
(n+1)"2 vn (A.5.241)

>LZ ﬂ np (Z —f) -
V2 a/gs(n+1)% - o‘/ss(n+1)%\/fﬁ’ F

and similarly for 7 < i,,;, we have

(NI

1—1 7 1 2v/120 2v120 -
— — —— | "o Za/gs———— . A5.24
Ji - ) fk(n) 2 7 a/8s(n N ( p=(Za/s (1) m fk)) (A.5.242)

Note that on the event {ji(a/2s) = 00, jr > J}, we have that L < im < my < Up. We
define a “bad” event

By = {il < im,l — 1} U {ir > im,r}' (A.5.243)
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Then we know that

Pf(BQ N {jk(a/Qs) = oo,jk > J})

3
-3 A.5.244)
2v/12 : (
<289 _\/iza/8s an(Za/Ss%; fk) + 2oy
(n+1)7=2 /n
On the other hand, for the bad event B defined in (A.5.224), we have
Pr(By N {jr(e/2s) = 00, ji > J})
2\/120 -2 (A.5.245)
<o _ﬁza/&s npz(za/85—3;15 fk) — Zoy
(n+1)F v
Note that we have z,/3s > 1 for 0 < a < 1. Hence we have
Ef (‘ka|2]l{Bl U Bg}ﬂ{jk(a/QS) = oo,jk > J})
_3
282 2v/120 ?
< PR 400 | —(V2 - 1)2a/8s (npz(za/BsW;fk)> (A.5.246)
- 2120 2120
< Cs5p:(Zasss————3 f1)° | LA np:(Zasss——————: fr) | »
(n+1)= vn (n+1)z Vn

where C5 = 282 x 40 x sup,; 22®(—(v/2 — 1)x).
On the remaining event
(Bl U BQ)C N {jk(a/Qs) = OO,jk > J},

we have that

i = Z.m,lyir = im,r - L

Now we have two cases. Case 1: 4y, =ty — 1, OF G| = Gy = 1 OF Gy = Uy = 1 — 1.

Case 2: Uy, = Uy and i, # 1 and iy, # n — 1.
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For the case 1 , we have ©,(fi;n) > n—12, so we have

E¢ (’CIk‘Q]l{(Bl U Bg)c}]l{jk(a/Qs) = oo,jk > J})

9
< 2 < 9®z(fk§n)'

(A.5.247)

Combining with Inequality (A.5.246), we have lemma A.5.10.

For the case 2, denote iy, = i, = i, Wwe have
Et (|CIi[*1{(B1 U B2)}1{jx(v/25) = 00, 31 > J})

< E¢ (2(tk,hz’ — i) ?1{(By U B2)}1{jr(a/25) = 00, ji > Jyim < — 2}) (A.5.248)

+ Ep (2(th 0 — im)*L{(B1 U B2)}1{jx(c/25) = 00, jp > J,im > 2}).
The arguments for bounding the two terms are almost identical (flipping everything around
im), we only bound the first and second share the same bound.

Recall ¢, defined in Equation (A.5.230), for simplicity of notation, denote
D = (B1UB2)* N {jr(a/25) = 00,3k > J,im < n— 2}

we have
Et (2(tipi — im)*1{D})
< E¢ <<4(t;€,hi — )t A+ Aty — i;”)2> IL{D}) (A.5.249)

< 4D, (fiin) + 4E¢ ((trpi — thr) 2 1{D}) .

To bound the second term, we will split event D into D N A and D N A€, where A is an

event define later. We will consider the expectation on these two events.

Recall the joint distribution of the quantities in the numerator and denominator of tj p;

under (B1UB2)¢N{jr(a/25) = 00, i > J,im < n—2}, as explained in Equation (A.5.232),
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fa
(n+1)
consider), ty pi — ti, is upper bounded:

denote ¢ = —2%—, when further under the event t; > ’7*” (the only one we need to

tehi — thy <

eno (fe(E2E2) — fro(2t)) emy (fe(t) — fr(22E2)) +eny (fk(zmﬂ) fr(t2))
n (fr(t2E2) — f () eny — emy + 2e24,) (fr(22) — fr(t2t))

N 220, (fr(E2) — fr (‘)

n(fr(f2) — fr(tl) 4 eng — e+ 2624,) (fr(22E2) — fir(ftl))
(A.5.250)

The reason it is not an equation is due to the possibility of upper truncation if ¢ ,; by %
Recall that we define 19, 71,72 in Equation (A.5.232).

Now we consider a “good” event

imt2 im+1 im+2 im+1
m - m 1 m _ YmT L ]_
fk‘( n )6€fk’( n ) 5520427772 > _fk’( n )6€fk( n )_252&2}. (A5251)

A={m <

Under this good event A, we have

I + 2
n

)*fk(im;1)+6n2f6771+262a2_ (fk(zm+2) fk(im:1)>+sza2.

(A.5.252)

Ti(
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Then we have that

Eg ((trni — ter)3 1{D N A})

3

2
oo (% (fr(t=E2) — fi(ttd)) +%) (

1+4+1+1622,)
2

1 1 ,
<4— (6 + 162&/243)

’ 220{/83 <npz(za/83( 21(0 7fk)> + Ra/24s

2\/ﬁ 2\/ﬁ 24 /945 2
= pz('za/&s—sj; fk)2 : (”Pz(za/ézs(!‘l\r; fk)) (13.5 + 36 </24> ) .
n n

l\D\CAJ

win

(n—l—l)T\/ﬁ —|—1) 2 Ra/8s
(A.5.253)
The second inequality is due to Inequality (A.5.241).
Also note that “/ 24s < 2 for aw < 1. Hence we have that
E¢ ((tk,hz’ — tk,r)i]l{D N A})
/120 ) 2120 (A.5.254)
< 86pz(za/85—s;1; fe)*- npz(zoc/&%—s;l; fi) |-
(n+1)2 vn (n+1)=2vn
For event A°N D, we have
- =
Za/8s 2v/12
P(A°ND) <28 [ =L (np, (20 55— d—: fi) . (A.5.255)
3 (n+1)=2 /n
Therefore we have
E ((tini — tey)T 1{D N A%Y})
o /T30 ) v/ 130 (A.5.256)
< 18p2(2a/8s 51— fr)" - npz(za/Ssﬁa fx)
(n+1)=z \/n (n+1)72 /n

Adding up the expection on event DN A¢ and DN A and going back to Inequality (A.5.249),

we have the first term in (A.5.248) bounded. Using similar arguments, the second term can
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be bounded by the same bound. So we have

E¢ (‘C[k|2]l{(Bl U BQ)C}ﬂ{jk(Oé/QS) = OO,jk > J})

2v/120 2v/120
< 8D(fiin) + 832p: (20785 fu)* | np=(Zayss—————1 fr) | -
(n+1)2v/n (n+1)2v/n
(A.5.257)
This concludes case 2, thus the proof of the lemma.
O

A.5.16. Proof of Theorem 3.4.3

Note that D,,(F;n) > Yp_; (min{fe(L): 0 <i<n}— M(fx)). Recall the lower bound

of Ly an(o;f) given in Equation (A.5.157). Note that pz(ﬁ;fk) < 1 for all k €

{1,2,---,s}. Using Cauchy-Schwartz inequality, we know that it suffices to prove that

E (M — M(f))2 S (Cm me((n—fl);; flc) <1 A \/npz((n_fl);; fk))
h=1 ) | ,  (A.5.258)
+ Z <min{fk(:l) :0<i<n}— M(fk)) ) ;
k=1

for some positive absolute constant C,.
Now we will prove this statement.
Recall that ( = ®(—2) < 0.1.

For simplicity of notation, denote

23k(©) .1

R 1 w
i = 5500 2. )

w=23k(9).(i—1)

Note that {I/;éh :1 <k <s0<h<n,u=Ire} are independent. So we have that

380



23k (€)= JYe — £ L5, (020 (V»l,_,y?:,) ~ N(0, (1 —23x(O)- )QJk(C) J.3

k36 (Q):dy, S T20%

(n +1)S 2

Also recall the independence between er({y;}) and {v};, : 1 <k <s,0<h <n,u=1re}

So we have that

2
E
- 2
< \l er({yi}) —fo | +>_ \/E (Mk - (fk))
le{o,l,z n}s k=1
2
S J er({yi}) | — fo
16{0,1,2 ;n}s
- E A@-—klmﬂdﬂAJ 1(34(0) < oo}
l
(A.5.259)

+ \/E £y, Ajoo 20k (fk)>2 1{jr(¢) < OO})

E (103(¢ mwm—Mmm3>

- ((n+1 3 \/ n+1 - 1\/IE 23 O=1{j(Q) < co})+

\/IE <<fk71mk< r2n, — (fk)) 1{3,(C) < OO})
\/IE <<Mk - M(fk)>2 1{34(¢) = oo}>>>2'

Now we will continue with bounding the terms in Inequality (A.5.259) separately.

We introduce the following lemma, which we will prove later, to bound the first term in the
summation.

Lemma A.5.11. For ( < 0.1, we have

B2+ 1{34(¢) < oo}) < 37 - 23 (A.5.260)
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fork=1,2,--- s, where jx(C) is defined in Equation A.5.199.

By definition of j;(¢) , we know that

9J—3k(¢)

> (). (A.5.261)

By Lemma A.5.9, we have that

> ), Y27 ). A.5.262
> &(¢) > 5P ((z¢ + )(n+ Ry fx) ( )

Recall that we have ¢ < 0.1 (because ( = ®(—2) here).

This combined with Lemma A.5.11 we have that

2
E(23: O~ 1{3,(¢) < oo}) < 37 23:(O~7 < %pm(L;ﬁf)z . <(‘7> ‘

(n+1)2 n+1)2
(A.5.263)
The second inequality is due to that
2
1 \/6’0
g (w i 1)‘*5%)
V6o V6o 9
2 D)———; m((z¢ +1)————F——; 5.

< pa((z¢ + )(nH)ST\/ﬁ Ji)pm((2¢ + )(n+1)2\/ﬁfk) (A.5.264)

< pa((z¢ + 1)L; fi) - [ e+ VB T ! 2/Jm(gs; fe)?.

- (n+1)7 /n n (n+1)3

Therefore, we have the first term in the summation in Inequality (A.5.259) upper bounded,

which we summarize into the following lemma.
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Lemma A.5.12.

302 N «
T VE@HOL(G(0) < oc))
, 352 3-148(n + 1) o
gmm{ (n+1)5_1’ﬁpm((n+l)§’fk)}
) 6(n+1) o o 444(n+ 1) o

Now we continue with bounding the second term in the summation in Inequality (A.5.259).

Note that our localization step and stopping rule for each coordinate parallel that in Chapter

2, but with noise level —2—. So according to Lemma A.1.39 and Lemma A.1.42, we have

(nt1)%

that

. <(fk7ikvjk(0+2Ak - M(fk))2 1{jx(¢) < oo})

< min{ emapm(— L p 2 o (A.5.266)
>~ m2Pm (n_'_l)ggl \/ﬁ’ k) » m2<n+1)8_1 .O.

At (1 Anpz%fl);;fk)) :

< Cmpm(m

where ¢no and ¢,o are from Lemma A.1.39 and A.1.42, and ¢, is an absolute positive

constant.

Now we turn to the third term in the summation in Inequality (A.5.259).

Recall that {v} ,} is independent from {y,lg’h} U{vy s} Let fr = ming ocici, 42 fiu(21).

Elementary calculation show that

B ( (- M) 1430 = 1)

0_2

(A.5.267)

<2-5- P(jk(o:OO)+2E<(fk_M(fk))zﬂ{jk(o:OO}>‘
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Again, note that the localization procedure and stopping rule for each coordinate parallels

that in Chapter 2, by Lemma A.1.43 and Lemma A.1.40, we have that

B ( (i - 21(0) 13u0) = ) )

o? o2
< min{ézmgm,cmﬁ - 2 (4 /( " 1)S,fk) } (A.5.268)

+ (minga()s0<i <) - M(fk>)2.

And by Lemma A.1.41 we have that

o2 y o2

g D Gk(Q) = 00) < Gdpm(y [y o) (A.5.269)

2
Also note that (n—f—Ulﬁ < dppm( ﬁ; fr)? - np.( n+1 “fk) and that

Adding the three parts together, and going back to Inequality (A.5.259), we have that

E(Z\Z/—M ) S( mz,om ;,f)<1/\\/npz((n:1);;fk)>

) 2
+Z <min{fk(;):o gign}—M(fk)>> ;
k=1

(A.5.270)

where C), is a positive absolute constant. This concludes the proof of the theorem.

Now we give the proof of Lemma A.5.11.
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Proof of Lemma A.5.11

By the definition of j;(¢), we immediately have the following facts that we summarize into
a lemma

Lemma A.5.13. For J > j > jx(¢) + 5, we have that

(if ;+14)2777 -1

h h— 277 : ;
— > fu(=) = ﬁ;()) <272 x 220109 (2. 4+ 1), (A5.271)
Ok,j he (i g n n
=(if ;+13)27-J

or

(i ,—13)2777 -1

h—27-7 h 3k s .
, > (fk() - fk(n)> <272 % 220001 (20 4 1), (A5.272)
7 h=(if ;—14)27-

Ok

Therefore, we have that

E(23+©O1{34(¢) < o0})
J
< 23k (<) <16 - 23k(€) Z 23@(72( +
J=3k(C)+5

(A.5.273)

% L 2363(0-1)) < 37. 234(0),

The last inequality is based on elementary calculation.
A.5.17. Proof of Theorem 3.4.4

Recall the lower bound of L, 4. (0; f) given in Inequality (A.5.158). Using Cauchy-Schwartz
inequality, it suffices to prove the following two propositions.

Proposition A.5.13 (Coverage). For 0 < o < 0.3, Cl,y, o defined in (3.4.25) is a 1 — o
level confidence interval for M(f).

Proposition A.5.14 (Expected Length). Suppose a < 0.3. For C1,, o defined in (3.4.25),
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we have

(|Clma|) <® maszpm n+1 % f ) (1/\\/npz((n+1);fk)>’

where

Crnas = (2\/55210,a 85 + 3245 + 1)) V3148 -2+ (\/55210@ Jss + 2) .30+

(A.5.275)
(6 + S212,0/245 + Za/483/\/§) +210- /332 + Za/84\/67
and D (£5n) is defined in (A.5.150).
Proof of Proposition A.5.13
Denote
it = e A (A.5.276)

Note that ¢ = a/4s and recall Theorem 3.4.15, we have that for the event A; defined by

A =
200 oD e P i + 0 g
n JRLQ/2S 2n n Jr(o/4s)=1 2n
for k=1,2--- s},
(A.5.277)
its probability satisfies
P(A) >1—a/4. (A.5.278)
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Note that

i i w o D10 Zhy
o5 [ye . U1 v =0 %,
{ TR DR (6= FERTE

w=2""3k (i-1)

LS el — fo02i <0 Y| (3100 Eigug) HNO.2 3T
(n+1)s i Yi 0:0<1<n JENG ) 1k 5,.(0) ) 1)1
(A.5.279)

fori=0,1,2,---,n. This fact together with the fact that on event Ay,

27 k-1 P T

27} fk(%):min 2=l N fk(%), (A.5.280)

min
0<i<n —
w=2" "Ik (i—1)

Iy 10<i<Ig n; -
w=2" "3k (i—1)
gives
- 1 o E?:() Z}il
Pl M + — E e iD= fo—M + \/5 :
< k,md (n + 1)3 - r({yl}) fO (fk) (n N 1) 351 n+1
! (A.5.281)

V30
< —S210,a/8s X — 51

1S o A1> < a/8s.

o ), elementary calculation on the re-

Also note that ﬁ >ier({yi}) — fo ~ N(O, nti)®

mainder terms of Mj; gives

n %. (A.5.282)

| Q

p (Mhi < M(f)|A1) <

Recollect quantities introduced in (A.5.200) and (A.5.199).

Lemma A.5.9 and the definition of j;({) gives

9—31(0) Voo
4p. D)————F3—=: /)
< dp.((z¢c + >(n+1)7\/ﬁ Ir)

387



Therefore

/ Voo
2v/3(z¢ + 1) 57— Jk« > pm((zc +1) m7 i) (A.5.283)

This means for j > jx(¢) + 3,

3o(z —|— V6o
C 50— = m((z¢ +1) —s;;fk), (A.5.284)

and if further j < J,

(i jtw+1)2777 -1

h V6o
min > fe(=) < M(fr) + pm(z¢ + 1) ———=——: fr).  (A.5.285)
we{=2-10} h=(if j+w)27 = K (n+1)7= vn
Now we define an event
Do = {3x(¢) < jr(¢) — 1} (A.5.286)

Lemma A.5.5 gives that for { < 0.1

P(Dy) < PGk < 31(Q) = 1) + P(3r(¢) < 3r(Q) — 1,3k = 3r(Q))

1

W
IA
<
Sy
A

1-0.001 " 1-10.001

(A.5.287)

Note that ¢ = a/4s, hence P(Ds ) < a/8s and P(U;_,Day) < a/8.

Equations (A.5.279), (A.5.280), (A.5.284), (A.5.285) together with the apparent fact that

min{vy, -+, vy} < max{vy, -, Uy}
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, we have that

- 1 o >0 Zlil
P Myjo+—— er({y;}) — fo+V2 — 2 — M(fy) >0
( Ko+ 7T Z ({wi}) — fo TS (fx)
! (A.5.288)
AN Dik N {]F,k < J}) < 04/88.
Now we introduce a lemma.
Lemma A.5.14.
P (Mk,lo > M(fi)|ANDs N {jrr > J + 1}) < a/8s, (A.5.289)

fork=1,2,--- s.

Proof. We prove the inequality for any fixed k € {1,2,--- ,s}. Denote ¢; = Vii— fk(%)

Note that {v°} is independent with {1/ 1"}, elementary calculation show that

P(max{|5;] : (k—1)V0 <i < (ky+2)An} < HlY! v ) > 1-2-0/245—2-0/48s = 1—a/8s.
(A.5.290)

Denote event

B =max{|0;| : ki VO0<i<k,+2An}<H

k r
On event A1, we know that 7L < Z(fr) < %

Recall a geometric fact: for ¢ € [i/n, (i + 1)/n|, where 1 <14 < n — 2, we have that

fu(E) = fr(54) i i MR - fith) i+l i+ 1
> n n _ _ n n —
fult) 2 ma PRI Ly gy W) T )
(A.5.291)
and the right hand side are also attainable for some f; when {fk(%) :i=20,1,--- ,n} are
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given.
For 0 <t < 1/n, we have that

(2/n) = f(1/n)

fute) = FEPZICI ¢ = 1)+ 1) (A.5.292)
and the right hand side is attainable for some fj when { fk(%) :1=0,1,--- ,n} are given.
For 1 >t <mn—1/n, we have that

n—2)/n)— f((n—1)/n
fute) > KBTI vy 4 fn=nym. (a5299)
On event B, we have that
h(i) < min  fi(t), (A.5.294)
te[L, L)
for i =+t;,--- ,t,.
Therefore, on event A; N B, we have that
Mp o < fi(t). (A.5.295)

Also we have

P(Al N B‘Al N Dg,k N {]F,k >J+ 1})
=E (E(H{B}!{vé,., v, DA N D3 N {jre > J + 1}}) /P(A1 N D5y N {jrgk > J +1})
>1—a/8s,

(A.5.296)

which gives the statement of the lemma.
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Write Mlo in the form
Mlo =

fo+ ((\{kijF,kSJH—l)' (fo(nil)S > er({yi})) -
}S

ic{0,1,2,-

- o Z?ozliz o
{jrr < JIV2 — = s 23—
g (m+1)z ntl (n+1)3
S
+Z (Mk,lo+
k=1

n Zl
2. er({yi}>—f0+¢§( 7 i ’“))

ic{0,1,2,-- ,n}s + 1)7 n + 1

Wirk < J} ((ni 1)

(A.5.297)

we have
P (M > M(£)| A1 1 (M1 D5 )

< P< ({k: jre < T} 1) (fo - (n+11) > er({yi})>
i€{0,1,2,-- ,n}*
>0 Zli,l

— — Zays 23— 5> 0

(n—i—l)%

s
- ]]‘{jFJi‘ S J}\/§ s—1
k=1 (n+1)

AN (ﬂileg’k) >

+ <P <Mk,lo + (n+11)5 zi:er({yi}) —fo—M(fy) >0

k=1

AN D5 N {jrk < J}>
x P (AN DS, N {jre < JHAL N (M52 D5 )

+P (Mk,lo > M(fx)

AiNDg O {jre > J + 1}>

x P (AN D5 N{jre > J+ 1} AN (N2, D5 ) )

(A.5.298)
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Inequality (A.5.288) and Lemma A.5.14 gives that the sum of the terms in the summation

is upper bounded by «/8s for each k.

For the first term, split it into summation of conditional probability on A1 N (02:1D5,k) N
(pk = jr i k=1,2,--- s} times P(A; N (m;leng) N {jpe =jr k=12 ,s})Al N
(ﬂile%k)) for legitimate j. Elementary calculation show that the conditional probability

on A1 N (ﬂzleik) N{jrr=Jk:k=1,2,--- s} is upper bounded by a/8.

Therefore

P (Nt > M(£)| A1 0 (Vi1 D5 ) ) < /8 +a/8 = afd.

Therefore,

S

P(M(£) ¢ [Mig, Myi)) <P(AS) + " P(Do) + P (Mo > M(8)| 41 1 (0, D5))
k=1

+P (Mh < M(f)’Al N (mzleg,k)) <a.

(A.5.299)

Proof of Proposition A.5.14

430 2 ~ ~
—5+ E(Mj ni — Mo
T > E(Myp kilo)

E(Mhz - Mlo) :Za/B
(n k=1

s g o ~ ~
< Za/84\/6;pm((n+1)§a fk)\/Pz(W, fe) + ZE(Mkhz - Mk,lo)'

Recall that ©,,(f;n) defined in (A.5.150) also applies to univariate case by setting s = 1,

more specifically,

D frin) = min{fk(%) L0 <i<n}—min{M(h): h(%) = fi(L) for 0<i <m.h e F}.

(A.5.301)
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Then it is easy to see that
S

D(f5n) = D frin). (A.5.302)
k=1

So it is sufficient to prove that the following holds for any &k € {1,2,--- , s}

E(Mk,hi - Mk,l@) < gm(fk:, n) + ém,a,spm(L; fk) (1 A \/npz(a; fk)) )

(n+ 1)3 (n+ 1)5
(A.5.303)
where
Crnas = (2\/55210,a 85 + 32045 + 1)) VB 1482 + (\/55210@ Jss + 2) .32+
(A.5.304)

(6 + S212,0/245 + Za/483/\/§) 210 -v/3 - 32.

This gives the statement of the proposition by taking C_'m,ms = za/g4\@ + C’m,ms.
Next we will prove Inequality (A.5.303).
We have

E(Mp, pi — My 10) <

' ' ) ) (A.5.305)
E((My.pi — Myi0)M{jrre < J}) + E(Mgpi — My 10)1{jre > J}).
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For the first term we have

E((Mppi — My o) 1{jps < J})

<2\[5210 a/8s + 3 04/45

JF c—J

) Wjrk < J})
ig(O+3-J
<2\[8210 a/8s + 3 oz/4s +1 ) n+ 1 T 1\s—1 < (2 : ;3 ) A 1>

< (2\[5210 a/8s T 3(2ajas + 1)

(A.5.306)
148 o o \?
S (s) y
(n+1)2 (n+1)2
o
< .
= (2\/§8210,a/83 + 3(2a/4s + 1)) Pm(( PR s fr)
148(n + 1 2(n+1 o
VO LR POVEES vy
n n (n+1)2
The second to last inequality is due to Inequality (A.5.263).
Let C~1m,s,oz,0 = (2\/§5210,a/85 + 3(’204/48 + 1)) V8- 148 - 2, we have
- - ~ o
E((Mg,ni — My10)14J < J}) < Cnmsa0pm(—=; 1A z 55
(Wl = Mrao) i < TY) < Consaopm (i ( S m)
(A.5.307)

Now we turn to the second term in Equation (A.5.305). We introduce two quantities first.

= . i < . i
fr= min fe(—), ik = arg min fe(=).  (A.5.308)
(L, 10=1)AOZi<(Ik,ni—1) VR n (I,10—1)NO<i< (I i — 1)V n

Note that these two quantities depend on {ullt_, 1/2}

E(( My pi — Mk,lo) Wipe > J})

(A5,
<E((Mipi— fr) Wirk>J}) +E( (fo— Miiw) jre>J}). )
(= ) 12> ) 2 (= ) 30> )
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Note that
o

Mk,hi < V;g + S210,a/85 X \/373_1, (A.5.310)
stk,m (n+ 1) 5
hence we have that
Y 7 V3o V3o
E((Mgpn — WHirpk > J} | S PUrpe > J) | ———= + So10.a/8s———— | -
<< k,h fk)+ {]F,k }> (JF,k ) <(n n 1)5 210,0/8 (n N 1) 21

Lemma A.5.15.

(NI
[N

m+if;Pm%>vamMam;1>mm<1A¢mmOA1)Lmﬂ. (A.5.312)

Proof. Recall that ¢ = a/4s < 0.25. According to Lemma A.5.13, we know that when

J > 3k(C) +8,

P(jpy > J) <13

I3 s+ 23(jk(<>+5—j>zz—“) < 0.4773KOT, (A.5.313)

By Lemma A.5.9 and the definition of j;({), we have that

0.47-3O=T ~ o7 . 9ik()—T _ oT | 51(0 < 98 1 : (A.5.314)
NGk np,((ze + 1) —55F—;
pellc+ D) —YE—i )
When np,((z; + 1 #; > 28 we have that
(e + 1) e )
03k (O)—J+8 _ 1( ) 98 < 99 1 — <9 (A.5.315)
n&k(¢ N np,((ze +1 %; B
e+ D m )
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Note that 23#(O)=7J+8 only takes integer value, hence we have j(¢) — J + 8 < 0. Hence

g o 1
TPl > D) S Vipul ) v
n+1)2 ’ (n+1)3 —
( ) Vﬂu&«zc+1)(+nirvﬁhh)
< Szpm(m;fk)'
(A.5.316)

Also, we always have

o o
e PUre > J) < =
(n+1)2 (n+1)2
n+1
<v2 5 PN
< V2pm( mrDE i\ — \/pz R fv)  (A5.317)
o \/ Pz( évfk)
<32 —
npz( %7f)
Note that when |/ —“=— > 1, we have np.((z + 1)7,1‘%) > 28 in which

(nt+1) 2
case we have Inequality (A.5.316) holds.

So we have
T P(jpk > J) < 32pm( i lin \/npz((nf1)27fk)
(n+1)7 (n+1)3 58 o
< 2 Ul)g,fk) <1/\ npz((n_fl)g’fk)>
0
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With Lemma A.5.15, going back to inequality (A.5.311), we have

8 ((Mkhz - fk)+ Wik > J}) <
(A.5.319)

<\/§S210,a/85 + 2) : 32Pm(%3 fx) (1 N \/npz((nfl);; fk)) .

(n+1)

[Nl

Now we turn to the second term in Inequality (A.5.309).

We have the following lemma

Lemma A.5.16. Let ©,,(fx;n) be defined in (A.5.301). Then we have

E ((fk - Mk,lo>+ Wik > J}) <D (fein) + (6 + Sa12,0/245 + Za/ass/V2) - 210 - V3x

32Pm(m§ fx) (1 A \/an((n—i—l)g; fk))
(A.5.320)

Proof. We first recall a basic geometry property of univariate convex functions. Suppose f
is a convex function. For any 0 < ¢ < j < n, we have that

min {f(i)} — min f(¢) < min {f(i)} — min f(t). (A.5.321)

i<li<j ' 'n icpcd T o<i<n " 'm 0<t<1
n n

For 0 < i < n — 1, we define a reference number iL(Z), which is the smallest number a
function h could achieve on [i/n, (i + 1)/n] when it has the same values with f; on the grid

points (i.e 0,1/n,2/n,--- ,1).

- L R R it
h(l)_i/nsgéﬁtl)/nmax{fk( i 1/n == (A.5.322)
i RS- A 5
fk:(ﬁ)"‘ 1/n (t_ﬁ)}’

where f(—1/n) = oo = f(%) and co x 0 is set to 0.
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Therefore, we have that

E ((fk - Mk,lo>+ Hire > J})

kr
<E|E({(fi—,min h(i)+ > (h(i) - h(i))+’{Vf-a v} | Wirk > J} (A.5.323)
St i=k;

k-
< Du(fin) Pk > J) +E | DB ((h(0) = h@)+| {07, 1)) e > T}
1=k

Now we are left with bounding the second term.

Recollect the notation &; = v}, — fr(%) for 0 <i<n,and ¢; =0 fori ¢ {0,1,--- ,n}.

i
n

Elementary calculation shows that

(h(i) — h(3)) s < 2|6;] + 2|0i41] + |6i—1] + |0is2| + 3H. (A.5.324)

And note that for fixed i, d;—1, d;,0;+1, d;1+2 are independent from {u_l’,, Z

Also 8; ~ N(0, 3%y rifye=r)-

Therefore, we have that

B S2E (G0~ 0] 07.04) 17 > 1)

i=k;

V3o ,
——— (6 + So12.0/245 + Zayass/V2) - 210P(jpi > J)

(n+1)=
< (64 S19,0/245 + Zajass/V2) - 210 - V3x

320m(m;fk) (1 N \/an((n—&—l);;fk)) .

The last inequality comes from Lemma A.5.15.

IN

(A.5.325)

N|w
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This concludes the proof of Lemma A.5.16.

Now, combining Lemma A.5.16, Inequality (A.5.309), Inequality (A.5.319) and Inequality
(A.5.307), we have that

~ ~ ~ g g
E(M, i_Moggm yn +Cmasm755 1A Np\—""= y
(Vs = Visto) < D i) + Conastm 755 ( G
(A.5.326)
where
CN’m,a,s = (2\/§S2IO,Q/8S + 3('ch/4s + 1)) V8148 -2 + (\/§S2IO,Q/85 + 2) - 32+
(A.5.327)

(6 + Sa12,0/245 + Zayass/V2) - 210 - V/3 - 32.

A.6. Proofs of the Results in Chapter 4

In this section, we give all the proofs of the results in Chapter 4. We start with proving
three overall results for our examples using statistical-optimization-interplay results and
optimization results, which are proved later. Next we prove the statistical-optimization
interplay results for our examples. Then we prove optimization results for our general

optimization template. In the end, we prove the optimization results for our examples.
A.6.1. Proof of Theorem 4.3.3

Recall Theorem 4.3.1, Theorem 4.3.2.
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According to Theorem 4.3.2, we have

2T odid - 1 2d1d -1 2dd
< @ a2, (4aLa\/d1d2+2LQ)\[ 0(B) + 2 + 2L (a(B) + 2 ),
T t B t B
1 2dyd
max {31, 82, 5o} < \[ q(B) + ; 2 <,

Therefore, Lyis, < 2L,.

(A.6.1)

Combing with Theorem 4.3.1 through plugging in the bounds of §, 01, d2, we have the fol-

c1
di+ds”

lowing holds with probability at least 1 —

D(U(M)|((M))

1/ 2didy \  [di + dy \/ (d1 + dy) log (dydy)
< 2¢L - 1
S 42Co L (O& ledQ + \/; q(ﬁ) + B ) TLdldQ + n (A62)
a?Ladidy  4aLg/dids + 2L, \F 2dids 2L, 1 2dyds
T, T - n a(B) + 3 7 <Q(5) + 3 > .

A.6.2. Proof of Theorem 4.4.3

Note that according to Theorem 4.4.2, we have

01 <
1 (BNOD2 min{N. T} + 2(B)C( ) + as(8) (V1P + 2NT — [0 L2y (05)
k —qo(B) ’
where qo(8), q1(5), q2(B), g3(5) are defined in Theorem 4.4.2.
Noting that
) = sup IPo(Y — L)|| < |V + LmaxV/|0] < V2[[Y]2 +2L2,,]0], (A.6.4)
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we have
01 <

\/Q1(»3)()\|O|)2 min{N, T} + (2¢2(8) + ¢3(8)) Y [[* + (2|0[(g2(8) — g3(8)) + 2NT'q3(83)) L3x
k —qo(B)

< \/Q1 (B)AO)? min{ N, T'} + (2¢2(8) + ¢3(8)) [IY[|* + 2NT max {g2(8), 43(8) } Laax
- k —qo(B) .

(A.6.5)

Note that we have \|O| < 13 x 8¢ max{V/N, T} log% (N +T), we have

01 <

\/1042q1 (B)o2NTlog® (N +T) + (2q2(B) + g3(8)) V|12 + 2NT max {q2(8), 43(8)} L2,x
k —qo(B) '

(A.6.6)

—_—~ —_—~ —~—

Let ¢1(8) = 104%¢1(8), q2(8) = 2¢2(B) + q3(8), ¢3(8) = 2max{ga2(8),¢3(8)}, then we have

5 < \/q/lf/ﬁ)awmog?* (N +T) + a8)|Y]? +q7/ﬁ)NTL?nax' (A.6.7)

k —qo(B)

In the proof of Theorem 4.4.2, we derive the bound for §; through that of dg, the Lo distance
between the resulting approximate solution of inner loop and the target exact solution of
the inner loop. So the bound in Inequality (A.6.7) also holds for d;. We set the upper

bound for inner loop error dy at iteration number &k as

5(k) = \//?E)UZNTlog3 (N+T)+ mHYW + mNTLIQnaX
R k —qo(B) )

Invoking outer loop convergence rate, Proposition 4.4.1, similarly to the proof in Theorem

4.4.2, we have the optimization error for objective function as defined in (4.4.5) is upper
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bounded as follows.

5 < NTLiax | 20(k)2 5(0) <4Lmax\/ﬁ + 2000 L gV, ﬁ}A) . (A6.8)

- oK O] O] O]

Using
C(Y) < Y] + Linax /O] < Y| + LinaxVNT

and invoking Theorem 4.4.1 we get the statement of Theorem 4.3.3.

A.6.3. Proof of Theorem 4.5.4

Denote F(0) = HX9||2 — 013

(A.6.9)

From Inequality (A.6.145), Lemma (A.6.7), Theorem (4.5.1), we know that with probability

at least 1 — % —exp(—5) — St d) + 7y the following holds.

logd\/log 2(n+d)

nfﬂu<@@wﬂ+
n n

9

log d

X903
0L > comlol — ex?(2)

F(0) — F(0)  |I6xIh
2An/s Vs

16113,

1 A
+2+4Vs+—)

16 — 67| <

where ¢1, co are constants and can be taken as ¢; = 1/8, ¢y = 50.
Therefore, the condition in Theorem 4.5.3 is satisfied with

logd

a1 = Cik, Qg = CQPQ(E) -

We only need to prove that under these conditions F(6y) — F () < §; holds.
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By Inequality (4.5.11) in Theorem 4.5.3 and Inequality (A.6.12) we have

i IXTX s 500 XX/ 10511 LA
FO,) — FO) < —— 2105 < ————={ ||6* 2+4 —)— | .
(0) = F(0) < Z L0l < RPN (10 + R 4 24 avE+ o) 0
(A.6.14)
According to Inequality (A.6.160) we know that
2
F(bx) — F(0) < F(6p) — F(0) < % (A.6.15)
n
For k > Ky, Inequality (4.5.11) and Inequality (A.6.160) gives
~ ~ A2
F(0,) —F0) < Flg,) —F#) < ———2——. A.6.16
(00 = F(0) < FOr) ~ FO) < ot (A.6.16)
Now we are only left to prove for k > K,
F(0y) — F(0) <
_ A2 logd [ 2]|0%|h 1A’
maxq2 k™ 52} s-( S (244 s—i—n) ‘7680},
{ 4802p2(2)% P ( ) n \/g ( \[ \/g)clﬁ; 2
(A.6.17)
which is also Inequality (4.5.14) in Remark 4.5.4.
To prove this, we only need to prove that for k1 > kg and k satisfying
log1/6
k1 + [1 T o8 /Cm 1, when ¢1k < 8||XTX/n|s
k> o8 (1 = s, , (A.6.18)
k1 +1, otherwise
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the following holds

F(0,) — F(6) <

1

max{; (F(Hkl) - F(é)) (D) F(2+4vs+

osd, (2

n S Nz ClK
Vs Vs

If

F(r) — F(

e
~—

logd  (2]|9%
> pA(8) 2 5-( 185l 4 (94 ay5+

EIY
n NG s

2
— ] - 768
\/>)Cll€> €2,

iy w2 logd . (200%lh FRPYALS
then F'(0g,) — F(0) > p*(X)=2%s +(2+4ys+ \/g) 768c2.

Cc1K

Also, since k1 > K, we have

F(‘glﬂ) - F(é) < F(QKO) - F(é) <

By Inequality (4.5.10), we have

F(6) ~ F6) < (F(6w) ~ F(@)

logd 2)|0%c|11 1)

2 S

> : 245+ )2 ) 128
072 n o ( NG TRV \/§)cm “

802p2(2)¥ A2 .
+ g (F(0k) — F(9))

A% 48¢op(%)

<5 (Floe) - F ).

Thus we concludes the proof.
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A.6.4. Proof of Theorem 4.3.1

The structure of the proof is similar to the proof of Theorem 2 in Davenport et al. (2014),
but to show how the statistical-optimization interface work, we will show in details how the

optimization error terms get into the statistical accuracy.

Let
Loy (X)=Lay(X)— Lay(0). (A.6.23)
Then we know that
— Loy (M) < —Loy(M)+8 < —Lay (M) +4. (A.6.24)
We also know that
M« < ay/rdids + 62, || M|l < a + 6. (A.6.25)

We have the following lemma, which we will proof later in this section.

Lemma A.6.1. Let G € R%%d2 pe
G ={X € R"™% || X||, < av/rdids + 02, | M||so < o+ 61} (A.6.26)

for some r < min{d;,ds} and o > 0. Then

_ _ ~ n(dy + d
P | sup |Lay (X) —ELay (X)| > GLays, (a\/rdldQ + 52) \/ (dld?) + log (d1ds)
XeG 142

C1
< 77
~ di +da
(A.6.27)

where ¢y, c1 are absolute constants and the probability and the expectation are both over the

choice of Q and draw of Y.
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Note that for any X we have

E (Loy(X) — Lay(M))

:ﬁ 3 <Z(Mm-) log (ll((A}il]))> + log (%)) (A.6.28)

b "

— —nD (I(M)|[I(X)).

Therefore, we have

(ZQ,Y(M) - »C_Q,Y(M)> + (»C_Q,Y(M) —E (»C_Q,Y(M)>> — (Lay (M) —E (Lay(M)))

<E (ﬁQy(M) - EQy(M)) + 2 sup }[,_ny(X) —E (E_ny(X))‘
Xeq@

= =D (IM)|UID)) +2 sup Loy (X) — E (Lay (X)),
XeG

(A.6.29)
where G is defined in (A.6.26).
Applying Lemma A.6.1, we have that with probability at least 1 — 75—
D (1an)|an)
< %EOLQ+51 (a\/@ + 52) \/ W + log (dydy) + % (A.6.30)

" di+d dy +do)log (didy) &
< 2¢pLays, (am+52) W\/H( 1 2)n0g( 1 2)_|_n.

Let ¢g = 2¢y we have the theorem.
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Proof of Lemma A.6.1

Noting that

Loy (X)=
- 1[(Xij) 1 - U(Xi)
> 1{(,5) € @} ( 1{Yi; = 1} log =)+ {Yi; = —1}log | —— == | |,
— ’ 1(0) ’ 1-1(0)
(.9
(A.6.31)
by symmetrization (i.e Lemma 6.3 in Ledoux and Talagrand (1991)) we have
E <sup Loy (X) - EEQ,Y(XW) < 2’%:( sup | ¢ 1{(4,5) € 2}
XeG xea|
(A.6.32)

(07 -0 (550) a0 (2550 )

where (; ; are i.i.d. Rademacher random variables and the expectation is with respect to
2, Y and (; ;. Next is to apply the contraction principle (i.e. Theorem 4.12 in Ledoux and

Talagrand (1991)). By the definition of L, and definition of G, we know that

(i) 0 £ (i )

are contractions that vanish at 0 within the domain of any X; ; such that X € G. Invoking

contraction principle gives

E (sup Loy (X)— E,CQ’Y(X)’}Z>
XeG

h

D G0 4) € QF (1{Yiy = 13X — 1{Y;; = -1} X))
(4,9)

<AQoZOY,X>|h>,

< 2h(2La+51)hE sup
Xea

< (Ao )'E <sup |
Xeaqd

(A.6.33)

where Z denotes the matrix with (4, j)th element being ¢; ;, Aq denotes the indicator matrix

for €2 such that elements are zero when not in 2 and 1 when in €2, and o denotes Hadamard
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product. Observing that Z o Y has the same distribution with Z, (Z,Z oY) 1 Q and
(4, B) < || Allop[| Bl[+; we have

E (sup |<AQoZoY,X)|h> =E <sup (AQOZ,X>|h>
XeG@ XeG

h
<& (sup 180 0 ZILIXIE ) = (avrdda +2) B (1800 21,
XeG

(A.6.34)

Observe that ZoAg is a matrix with i.i.d. symmetric random variables, so according to The-
orem 1.1 in Seginer (2000) there is absolute constant C such that for h < 2log (max{d1, d2})

we have

1<i<dy 1<j<d2

d h/2 & h/2
E (HZ o AQHh) <C|E max ZAi’j) +E ( max Ai,j) . (A635)
=1

Note that (E(\f|h/2))2/h is a norm for h > 2 and (a + b)Y/* < a'/? + b'/" | s0 we have

d h/2
+ | E <max Ai,j)
1<5<dzs 4 -

/h
(12 0 aqlll,)

1/h

h/2
<cl/h max A i
1<]<d1 ’

Cl/h max
1<j<dy i*

c/h < max

1<]<d2 ,
=1

< ﬁ > + C/n ( [( max

\/ d1 \/ 1<j<dy |
h/2

_n

7/7] d1d2

c/h max
1<5<ds i—

(A.6.36)
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Using Bernstein’s inequality, we have for ¢ > 0

da t2
n _
P <Ai7j_> >t SQGXP( 2t>'

jz; didy T ts3

For t > 3—71‘, for each i, we have
do n
P ; <Ai,j - dldz) >t | <2exp(—t) = 2P(W; > t),

where W1, ..., Wy, are ii.d. exponential random variables.

Therefore,
@ ; h/2
E _
([ (- 2) )
[e’e] do n h
= P A — —— dt
/0 1Si<d, ; ( v d1d2>
R
6 (o]
§<n> +2/ hP<maX Wﬁzt)dt
1 (m) 1<i<d;
dy
6n\ " h
< <> + 2E < max WZ> ] .
1 1<i<d
Note that for i.i.d. exponential random variables W71, ..., Wy, we have
h h ,
: < h _
e | (i) ] =P [(m W< ogih) | 4o @)

< 2h! + log" (dy).
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Therefore, we have
4 , h/27\ V/h
el 20
<1+ \/6)\/?1+21/2h (\/a+21/2h\/ﬁ)
< (1+\/6)\/Z+ (2+\/§) Viog (dy + da),

(A.6.41)

where in the last inequality we use h = log (d; + d3) > 1. It’s easy to check that this choice

of h satisfies the condition required for getting Inequality (A.6.35).

Using similar argument to bound the third term in the right hand side of the last inequality

in Inequality (A.6.36), we have

(E [HAQ ° ZH’;le/h < ot/ ((1 +6) <\/Z+ \/Z) +(4+ m>m)

< Cl/"\/n+ 2 4 log (dy +d2)\/(1+\/6)2+4+2\/§
di  da

< 9Cl/h\/” + X 4 log (dy + da)

dy  do
(A.6.42)
Combing Inequality (A.6.33),(A.6.34),(A.6.42), we have
B B 1/h
<IE (sup |1Lay(X) — Eﬁg’y(X”h))
Xed (A.6.43)
< 4La+51 (Oz\/ rdidy + (52) X 901/h\/§ + dﬁ + log (dl + dg).
1 2

Let t = 4L44s, (a\/rdldg + 52) X 9\/% + % + log (d1 4+ d2) x e. Then we know that

P <sup Loy (X)—ELoy(X)| > t>
XeG
C

- dy +dy’

(A.6.44)

< Cexp(—h)
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Set ¢g =4 x 9 x e, c; =C, we have the lemma.

A.6.5. Proof of Theorem 4.4.1

Denote A;; to be the matrix with element (i,¢) being 1 and others being 0. Denote €;; to

the (i,¢)-th element of e. Let € =3, yco€itAi. And | - [lop denotes the operator norm

(i.e. the largest singular value).

The overall structure of the proof is similar to that in Athey et al. (2021), we have three

main lemmas, which we will prove later. The first two lemmas primarily show how the op-

timization error comes in, and for the third lemma, we do the statistical analysis differently

and have improved rate than that in Athey et al. (2021). The three lemmas are as follows.

Lemma A.6.2. For all A > 3||€||,,/|0|,

Ay, L* — L)? -
Z <t0> < 10V2R\||L* — L|| ¢ + 66.
(i,t)eO ‘ ‘

Lemma A.6.3. With probability at least 1 — ﬁ, we have

1€]lop < 40 max{\/Nlog (N + T),8VTlog2 (N + T)} + 0.

Lemma A.6.4. Suppose A > 3||€||op/|O].

Then when ||L — L*||% > 132(Lyaz + 61)? x T'log (N + T)p%;

(A.6.45)

(A.6.46)

L — L*|%p. - 2
Pr (”6”Fp > 3 (i B - L) + 3648 (VN + VT2 (AL + 61)°)
(i,t)e0O Pe
4320(Limaa + 61) 1
N <
+ 3 (\f+\/f)>_(N+T)3

(A.6.47)

3
Therefore, when ) > 12722y Nlog WHT) 8VTlog> NHTIH37 3\ F  L#(12 > 132(Longs +

0]
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61)% x T'log (N + T)piC7 then with probability at least 1 — W,

L — L*|%p. - 2
=i o 5 192+ 3648 (VN 4+ VDL 160
(i,t)eO pe
4326 (Loipaz + 0
y 28200mar £00) (/v 4 T

A
< 10V2R(\|O))||L — L*|| ¢ + 66|O| + 3648

. 4325(Ln;ax 90 (/N 1 VT,

72

C

(\/N + \/T)2(4(Lma:v + 51)2)

(A.6.48)

Note that

12 x 200R (\|O|)? N |IL — L*||3:pe

10vV2R(\ L*—L|r <
0V2R(A O] |lr < o 7

(A.6.49)

and |O| < NT.

3
We take \ = 22 max{\/wfvlz?ﬁﬁlow (N+T)}

T 1|2
Move the % term from the right hand side to the left hand side and then divide

both sides with 2 01]\27T, we have there are constants qg, g1, g2, such that

IL - L*|% _ Ro*(N+T)log’(N+T) 72 8(Linaz +61) 1
<q0— +—0+aq1
NT Dz NT Pe OPe NT (A.6.50)
N R(Limaz +61)> N+ T
q2 pg NT
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Proof of Lemma A.6.2

By the definition of L, L, L*, we have

Yi-L)* ¢
Z <(’)]> + AL,
(i,t) €O

Yu—L)?
< > Wﬂyu*m
(i,t)eO

Y; —L* 2
< > <t‘0>+/\|L*|*+5.
(i,t)eO

Therefore, we have

Z (L* — L, Ay)? ) Z e (L* — L, Ay)

(3,t)eO ‘O’ (i,t)eO |O|

Denoting A = L* — L, Inequality (A.6.52) becomes

A A2 2 -
Z 18, A < —@<A,(’3> + ALl = AL« + 6

(i,t)eO ‘O’
2 ) _
< @HAH*H@HW + AL = ALl +0
)
< SMALL A+,

< ALl = AL + .

(A.6.51)

(A.6.52)

(A.6.53)

the inequalities in which are due to the duality of operator norm and nuclear norm, and

the range of .

Now we state the following lemma, which is proved later in this section.

Lemma A.6.5. Let A = L* — L for A\ > 3||¢|l,p/|O| Then there exist a decomposition

A = A1 + Ay such that

1. (A1, Ay) =0,
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2. rank(A1) < 2R,
3. | Aallx < 5l AL+ %

Now, invoking the decomposition A = A; + As, we have

30 30 30
1AL < 6llAdfl + = < 6V2R[A1]lp + = < 6V2R[|A[lp + . (A.6.54)
Plugging Inequality (A.6.54) back to Inequality (A.6.53), we have
AL A
Z <\0t> < 10V2RA|| Al + 60. (A.6.55)

(i,t)eO

Proof of Lemma A.6.5. Let L* = UnyrSkrxr (VTxR)T be the singular value decompo-
sition for the at most rank R matrix L*. Let Py = UU7T, Py. = UL (UL, Py = VVT,

Py = VEHVHT Let Ay = PyrAPy, A = A — A,
It’s easy to see that Py + Py = In and Py + Py =1I1.

Now we check the three claims for Lemma A.6.5.

<A1, A2> == <A - PULAP\/L,PULAP\/L>
= <PUA —+ PUJ_ Apv, PUJ_ APVJ_> (A656)

=0.

rank(A1) = rank(PuA + Py APv) < rank(PyA) 4+ rank(PyLAPy) < 2R. (A.6.57)
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For the third one, note that

(Ag,L*) = (PyL APy, UnxSrxr (Vrxr)')

(A.6.58)
= 0.
And Inequality (A.6.53) implies that
- i 2
A(IEN. = 1271.) < 1ALl +5
. , (A.6.59)
< 2NIAlL 46 < XA+ [2s].) +5
The main part of the left hand sided is lower bound by
I« = L = 1L = Ay = Agfls — [L*[lx = |L* = Ayl — [ Al — |[L*|J.
(A.6.60)
= L + 1Al = [[Agfl = L7 = |Awlls = [[Az]
Combining Inequality (A.6.59) and (A.6.60), we have
30
1Azl < 5l Al + < (A.6.61)

Proof of Lemma A.6.3

The proof is very similar to that of lemma 2 in Athey et al. (2021), but our task is to write

out the constants explicitly and have the bound as tight as possible.
Although the major parts are very similar, we still write out all the steps for completeness.

The goal is to invoke matrix version Bernstein inequality, a proof of which is in Tropp
(2012). Proposition A.6.1 states the matrix version Bernstein inequality.
Proposition A.6.1 (Matrix Bernstein Inequality). Let Z,...,Zx be independent matrices

in RUX% such that E[Z;] = 0 and ||Z;|op < D almost surely for all i € [N]. Let oz be such
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that
N

ZE[ZiZiT]HOPv

i=1

N

> E[Z]Zi]

O‘% > max {
i=1

J

Then, for any a > 0,

N 2
—«
PSS 2| zap<(d+d [ } A.6.62
{ £ —a}—( 1) exp 5 e o ba) /3 ( )
1= op
Same as the notations in Athey et al. (2021), define in dependent random matrices By, ..., By

as follows. For 1 <1i < N, define

t;
B, = g Eit At
=1

Then, € = SV | B; and E[B;] = 0. Define the bound D = Cy0/log(N + T) for a constant
C5 that we will specify later. For each (i,t) € O, let &;; = e;;1{|e;t] < D}. For 1 <i < N,

let EZ = Z?:l it Ayt

The o-sub-Gaussian implies

Pz t) =21 [ Lo Ly

& =2—— —exp(———)dz

it — o ] P b 20_2
20

0o % /2 (A.6.63)
< — exp (—z)dxr = exp (——).
~ Vor 275722 V2mt 202
Therefore, for a > 0,
B JE—
P{l€llop >} <P D Bil| >ap+ > Peu > D)

i=1 op (i,t)eO

B
— 20 D?

@
I
—

op

AN
S|
M=
w

@
I
-

2 NT c3
>« +\f (N+T) 7.
T Cay/log (N +T)

op
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For 1 <i < N, define Z; = B; — E[B;]. Then,

N N [N 7

= T Bl op S e (A.6.65)
N N N N
i=1 op Li=1 R i=1 op i=1 00

Further,

|E [€i]| = [E [eal{le|] < DY = |E[eql{|es| > D}]| < \/E[e5]P(|eat| > D)
zt

o2 (A.6.66)
= g\/\/702 Vg (N +T) N+T)( 1)

Therefore,

2 NT _
ga\/ﬁczm(N+T) 5 (A.6.67)

Note that ||Z;|l,p < 2DVT for all 1 <4 < N. The only step left for invoking Proposition

N
E ZE
=1

A.6.1 is to calculation oz in there.

Recall that E[(g; — E[;4])?] < 2.

We have
N
7T _ 2
> E[ZZ]])| < max | E > El(eu — Eleu))?]
i=1 op t:(i,t)€O (A.6.68)
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and

N N
Try. 2 .o
ZE[ZZ- Zi]|| <o® max . P((4,3) € O)
i=1 op == =1 (A.6.69)
< o2N.

The first inequality in Inequality (A.6.69) is due to E {(Eit — E[gi]) (€55 — E[¢js])
for (1,1) # (j, ).

o}:o
2 2

Therefore 07, = o° max{N, T} is a possible choice. Invoking Proposition A.6.1, we have

N

>z

=1

—a?

202 max{N,T} + (4Cy0+/log (N + T)T«)/3
(A.6.70)

P

>« S(N—i—T)exp[

op

Taking Cy = 3, a = max{40\/max{N, T} /log (N + T), 3272 (log (N + T))%O'}.

Combing Inequalities (A.6.64), (A.6.65), (A.6.67), (A.6.70), we have with probability at

T 1
(N+T)2 ~ 2(N+T1)3

least 1 — 3

1€]lop < 40 max{/max{N, T}\/log N + T,8T2(log (N + T))2} + 0. (A.6.71)

Proof of Lemma A.6.4

We define some additional notation here, which are similar to the additional notation in
Athey et al. (2021). Given observation set O, for every N by T matrix M, define Xp(M)
and Xg)(M) as follows.

X5 (M) = [(Ai, M), -+, (Agy, M), (A.6.72)
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Xo(M) = : . (A.6.73)

Define a L%H) norm of M as

M2z, = y/Ex (IXo(M)[3). (A.6.74)

where E, is taking expectation with respect to the distribution of O.

Define the constraint set as

30
C6.1) = {M € RV Ml < 1IMIZ, > 6,1 < VAIMIe + gy ]

(A.6.75)
Then according to Lemma A.6.3, we know that either

L-L*

W omas +01) € € (6v2R))

or
L-L*

—— = 2, <.
||2(Lmax +51) ||L2

m
Observe that ||sA2=L 2, <0 implies |L — L*||2 < A(Lmaz+61)%0
2( L, F

Lmasx +61 ) Pc

We set 0 = 33T log (N +T).
Let € > 1 be a number that we will specify later. Define
Cl.0.0) = {MeCO.m]p< MIZ <ot} (A6.70)
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We state a lemma that we will prove later in this section.

Lemma A.6.6. Suppose & > 1. Let

1
Zp=7 s {[M[z —[XoM)|*}, (A6.77)
MEeEC(0,m,p) ()

then fort > 0,

48 np§ 36
P(Z,,ZT< o +2/\(Lmax+51)> (\/N+\/T)+t> <

(A.6.78)
t

96 36
T ( 255 + 2,\(me+51)> (VN +VT) + pTg

t
exp | — log (14 2log (1 +

)

According to Lemma A.6.6, if we set

1 np§ 30
t0:4T<96 (’/pc+2A(Lmax+61)>(m+ﬁ)+p§>’ o)

1 /pg  p | 4x144n€ 9 726
t_T<4+4+pc (\/N+\/T)+2)\(me+5l)(\/lv+\/f)>,

then we know that ¢ty < t, so we have

P(M € CO.m.p), IMIZy > KoM +48|M 5, 1 jfm/ﬁ +VT)

1446

M2, M2, € e s (4.6.80)
Tt YN VI S (VN V)
< exp <221Tp(§ +1) - 12?)-
Given that .
LJc®,n,66) =c,m) (A.6.81)

1=0
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we have

P(MecO.m), IMI3; > XD +48HM||L5H),/Z§<\/N+ VT)

1446
2)‘(Lmaa: + 51) (\/N * \/T)—’—

(1) &n 2 720
ot o (VN +VT) +—2A(me+5l)(\/ﬁ+ﬁ)>

A.6.82
M1 ( )
(Im)

1

0
< exp <— - 1077§> — .
11T 1—exp( 92(2£T1))

M2,
Note that 48|M]| ;5 VEVE +VT) £ —0 1+ 23042 (VN + VT2, and [M2, >
‘ ‘ (m

pel|M||%., if we set £ = 3, we have

IP)(chl\/Ilﬁm > [ Xo (M) + 3648]91(\@ VTR (VN \/T))

6 c 2)‘(Lmax +51)
IMIZz , 0 , 2166
< P(—5 " 2 XM + 3648 - (VN + VT)P + 5= s (VIV 4 VT))
< exp (_ 0 > exp (—10n) '
1T )1~ exp (—gg7)
(A.6.83)

Note that we set § = 33T'log (N +T) and we have ﬁ € C(0,n) for n = 72R

according to Lemma A.6.2, so we have the Lemma A.6.4.

Proof of Lemma A.6.6 The goal here is to invoke theorem 12.9 of Boucheron et al.

(2013).

Note that [M][3, — [|[Xo(M)]||* has its rows independent and
(Im)
Er (Ex (145 (M)]?) = |25 (M)]2) = 0
for all 1 <4 < N. Although theorem 12.9 in Boucheron et al. (2013) requires countability
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of the index set, given that C(6,n, p) is bounded, compact, and HM||%2 — | Xo(M)|)? is
(1)
uniformly continuous for all O, theorem 12.9 is applicable to our setting. The next steps

are to find a bound for E(Z,) and

N
]_ .
o2 = sup Var(| X5 (M)|2).
7? Mec(6,n, p); ©

For o2, we have

o < Tf W ZE 125 (V) [19)
Me )
o) (A.6.84)
J43
<= sup E(lx5 (VD) 13) <
T EC(MP); T

For E(Z,), suppose (; (i =1,---,N) are i.i.d. Rademacher variable, then we have, for any

.
i 1
E(Zp)gf sup IIMHL2 — [|Xo(M)|?
MeC(9,m,p)
(ii) 2 z)
<7 wP GillXs (M]3
| [Sang oo
(iif) 4
< ZE| sup Z@HXO ||2] (A.6.85)
MEC( :WP)Z 1
(iv) 4 9
< & (277 +2log N(7,0,m,p) +2  sup ZCZHX M)|[3)
T MEC Omp) =1

8
= T (7—2 +10gN(7—307n’p)) )

where Inequality ii is due to lemma 6.3 of Ledoux and Talagrand (1991), Inequality iii is

due to
N

sup Y GlIAS (M3 >0 (A.6.86)
MeC(0,1.0) =3
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and

sup
MeC(0,n,p)

sup

Zgux” NHE Z —G1AS (V)3
JYP
Zciuxg’( Z —Gil X8 (M3,
=1

(A.6.87)

N(7,0,n,p) in Inequality iv is the 7 covering number (Wainwright, 2019) of C(6,n, p), and
Inequality iv is due to typical arguments bounding empirical process that we list as follows.

Let 91 = N(7,0,n,p). Suppose My, ..., My is the 7— cover. Then we have

( sup ZCZHXO H2>

MeC(0,m,p)

<E (2 sup ZQHX( M,)|3+2 sup inf HMJ—M\@)

1<5< 1<j<n MeC(8,m,p)

= 2log <exp < ( sup ZQHX ||2>>> + 272 (A.6.88)

n
< 2log Zexp{ <ZQ|X(1 ”2)} + 272

=1

= 2log N + 272,
Readers interested in more details on covering number can take Wainwright (2019) as a
reference.
Now we proceed with Inequality (A.6.85) with bounding log N (7, 8,7, p).

Suppose G is a RY*T matrix with i.i.d. N(0,1) entries. Let By(R) = {A € RV*T|[|A|l. <
R}. Then C(6,n,p) C Bi( ”p£ + m). Let N (7, R) be the 7-covering number of

Bi(R). By Sudakov minoration (Theorem 5.20 in Wainwright (2019)), and the fact that
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packing number is no smaller than covering number, we have

DPec 2)\(Lmax + 51)

Vg N(r. 8.1 p) < JMT, . R

3 o ) (A.6.89)
-
A</ 25+ ox 2y
3( np§+375)
Pe 2A(Limaz+61)
< - : E([Gllop)-

By (4.2.5) in Tropp (2015), we have

E(|Gllop) < VN + VT. (A.6.90)

3 /1€ 4 35
Therefore, taking 7 = \/ (Ve 21<Lm“””+51))(\/ﬁ—|— \/T), we have

48 npé 36
E(Z, < — _ N T). A.6.91

)= 7 ( v " AL 1) | VYD) (4690
Now invoking theorem 12.9 of Boucheron et al. (2013) with Inequalities (A.6.91) and
(A.6.84), we have, for t > 0,

48 npé 36
P(ZPZT< pc+2)\(Lmam+51)> (\/N—F\/T)-Ft) <

(A.6.92)
t

)

t
exp | — log (1 +2log (1 +

Pc
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A.6.6. Proof of Theorem 4.2.1

Write the F' in Equation (4.2.3) in the following form

F(X):f(X)+g(X)+‘Z{XGC'lﬂCgﬂ-~-ﬁCJ}.

For ease of notation, denote C=C1 N CsN---NCYy.

Recalling that

Xitos = Xp —nVf(Xk)

Xg41 = Prox,gx)+3icp) (Xk+05),

we denote

_ X — Proxn(g(X)Jrg{c})(XkJrOﬁ)

G(Xy) = .
~ X, — Prox X
G(Xy) = k rOXn(g(X?;+‘I{C})( k+0.5)‘

Then it’s clear that

Xpp1 = Xy — nG(Xy)

Proxﬁ(g(X)+T{C})(Xk+0.5) = X — nG(Xyg).

Recalling the definition of Prox,4(x)+(c}) (Xk+0.5),

(A.6.93)

(A.6.94)

(A.6.95)

(A.6.96)

. 1
Prox; y(x)+3(c}) (Xk+05) = arg min {%\\X — XprosllP +9(X) +T{X € C}}7 (A.6.97)
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we know that

0 X — Xito5+n09(X) +no%{X € C} . (A.6.98)
X=X,—nG(Xg)

In the later part of this proof, we choose 0g(X —nG(Xy)) and 0F{ X —nG(X})) € C} such
that
99(Xy — nG(Xy)) + 0 Xy, — nG(Xy) € C} + Vf(Xy) — G(Xi) = 0.

We have

F(Xx —nG(Xy)) + g(Xp — nG(X}))
< f(Xk = 1G(Xk)) + (Vf(Xg = nG(Xp)), (Xy, = nG(Xx)) = (Xi — nG(Xp)))+
glln@(Xk) —nG(Xp)|1* + 9(Xg = nG (X)) + (09(Xi — nG(X4)),nG(Xk) — nG(Xx))
< J(Xy = nG(Xp)) + 9(Xs — nG(X)) + LS + Lydo + gag.
(A.6.99)

To further bound the first two terms in the right hand side, we have for any y € R™*™,

f(Xk = nG(Xg)) + 9(Xy = nG(Xy)) + HXp —nG(Xp) € C}
< f(Xk) +(VF(Xk), —nG (X)) + g\lnG(Xk)H%r

9(y) + (09(Xi — nG(Xk)), X —nG(Xx) —y)

+T{y e C} + (0IXy, — nG(Xp), Xk — nG(Xk) — v) (A.6.100)
< F(9) + (VF(X0), X~y = nG(Xi) + 2 InGOXR)I? +g(9) + Ty € Ch+

(09(Xy — nG(X)) + 0T Xy, = nG(Xy) € C}, Xi — nG(Xy) — y)

= ) + (G0, X~y — nG(X0) + 2 NG + (o) + 1(0),

where the last equality is due to (A.6.98).
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If we further let y = X*, we have

f(Xg —nG(Xy)) + g(Xp — nG(Xy)) + T{ Xy — nG(Xy) € C}

< FX*) + g(X*) + T{X* € C}+ (G(Xp), Xp — X* — nG(sz)>
+ <§n2 - Z) IG(X) 1

= J(X) +9(X) + T{X" € €} + - (16 = X7 = X = nG(X) = X'[) (As.100)
+ (L = DI GXDIP

< X))+ 9(XH)+F{X eC}+ !

oy (X0 = X = X = nG(Xi) = X°)

(53 50D Q

Ln—1)||G(X)|?

where D is the diameter of C, and the last Inequality is due to

2 = nG(Xk) = X7 = || X = nG () — X
= || Xk = nG(Xy) = X* = (X}, = nG(Xg) = X[+
i (A.6.102)
2((Xk = nG(X) ) = (X = nG(XR))  Xe = nG(Xy) = X7)

If we further let n < % in Inequality (A.6.101), combing with Inequality (A.6.99), and

noting that Xy — nG(Xy), X* € C, we have

J(Xpp1) + 9(Xp1) <FXT) +9(X7) + 2177 (I1Xe = X*1? = | Xks1 — X*|?)

2 6D L,
T g e} L L,)d.
+277+ ; +20+(f+ 9)00

(A.6.103)

Adding up k =0--- K — 1 for Inequality (A.6.103), we have

5

5D L.,
— 4+ —— 1+ =) L L,)dp.
277+ 7 +2 0+ (Lg+Lg)do

K
T 20 U0) + 9(X) < S +9(X) + 521X = X+
j=1

(A.6.104)
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This proves the theorem. But now, we also give a variant of the theorem. Suppose XX =
% Z]K:1 X, then the convexity of f and g implies that the left hand side of Inequality
(A.6.104) is larger equal to f(X5) + g(X¥).

A.6.7. Proof of Proposition 4.2.1

Define the following averages:
t

t
= ZWZ 7' = P Zzi,ﬁt = %ZPZ’. (A.6.105)
i=1

=1

Writing the constraints of optimization problem (4.2.8) in matrix form, we have

vec(W)
0 Ly Inm
- Inm 0 Inm
vec(P)

Note that the coefficient matrix blocks corresponding to vec(Z) and vec(P) in the linear
constraint (A.6.106) are full column rank matrices. It suffices the conditions of Theorem
4.1 in Cai et al. (2017). Applying Inequality (4.3) in Cai et al. (2017) to our setting with
hi(z), Oa(x) = ho(x), O3(z) = ||z — Po||?, oy = W*, 2, = Z*, 2y = P*, we have, for

01(x)
B< L,

zﬁt{ [huwt) +ha(Z') + [P = Rl + (A}, (W' = P)) + (A5, (Z' = P"))

(W) + ha(Z7) + ||P* = Ro|* + (A], (W* = P*)) + (A5, (2" — P"))

}

(A.6.107)

. 10
<2 = 27 4 287 P PP AT = AT B 2l P - PO
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For the left hand side, we define a function

U(W, Z, P) = ha (W) + ha(Z) + | P = Pyl + (A, W) + (A3, Z) — ((A] +A3), P). (A.6.108)

Given that (W*, Z*, P*), (A}, A3) is a solution to

max min hy(W) + ha(Z) + | P = Bollf + (A1, W) + (A2, Z) — (A1 + A2), P),
A1,Ao W, Z,P

we have

0— oUW, Z, P)

2(P* — Ry) — (A} + A3). (A.6.109)
opP W=W*,Z=7* P=P*
Further, since U(W, Z, P) is separable with respect to W, Z, P, we have
UW,zZ,P)—-UW* Z*, P*)
>UW*, Z*, P)—-UW™*, Z*, P¥)
=||P = P[> — ||P* = By||* — (AT + AT (P — P¥) (A.6.110)

=[P — P*|> + (P — P*,2(P* — Py) — A} — A})
=P - P*|*.
Combining Equation (A.6.109) and (A.6.110), we have

— 1 20
P = PP < o (120 = 2012+ 287171 = PP+ A - AP+ P - PR

(A.6.111)
A.6.8. Proof of Lemma 4.2.1
We begin with bounding C(Cy, C2).
O(C1Co) = —— e = ! . (A.6.112)
2 cos?(UCLCR)) cos(0(C1,C9)) + 1
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Observe that By(x) C C1 N Cy, we have

cos(0(Cy,C9)) = inf  cos sup arccos ({(A1, Ag
Ped(C1NC7) (,\161\701 (P),\2€N¢, (P) ( D)
> inf  cos( sup arccos ((A1,Az2)))
P€6(01002) AleNBd(z)(P)v/\2€NBd(z)(P) (A 6 113)
- Ped(CinCy) 1P — ||
9 2
> 142
D2
where D = Suppea(cincs) |12 — 2l F-
Therefore,
D? _ D?
< — < — A.6.114
C(C1,Co) € 55 < (A.6.114)

where D = supp, p,ca(ciney) 11 — P2l F-

Now we continue with bounding dual variable A* in the case that hi(X) = T{X €
Cl}, hQ(X) = (Z{X S CQ}

From Equation (A.6.109), we know that

A[P* = Poll* = TP + IAZ]% + 2(AT, A3)

> [[AZ[2 + [AS]2 + 2cos(8(Ch, Co)) || ASIIA]
« « A6.11
AT + A (A-6.115)

> [|AT]1? + [|A3]1* + min{0, 2 cos(6(C1, C2)) 5

1
> min{1, ——— }(||AT]|% + ||A3]]?).
> min{L, AR + 145)°)
Therefore, we have
HA*H% < max{4,4C(C1,Co)}||P* — POHQ. (A.6.116)
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A.6.9. Proof of Proposition 4.3.1

To apply Proposition 4.2.1 to 1 bit completion matrix problem, we only need to find the
L,Ly, Ly, D and a bound for || Xy — X*| in Proposition 4.2.1 in 1 bit matrix completion

setting and bound.
Since g = 0 in this case, we have L, = 0. Since C1 = [—«, a]¥1>%  we have D < 2a+/d1ds.

Easy calculation also shows sup|,j<q+s, l(cc)‘é/l(% is the Lipschitz constant for the smooth

objective function —Lq y (X).
Easy calculation also show that

sup {|l"($)l(ff)—(l'($))2| !l"(x)(l—l($))+(l'(l‘))2|}
|z|<a-+b0 I(r)? ’ (1—1(x))?

is the smoothness parameter for the smooth objective function —Lq y (X).
Also, given that Xo = 0 and X* € [—a, )% we have || Xo — X*||> < o?d1da.

With the step size set to be the inverse of smoothness parameter, we completes the proof

of the Proposition.
A.6.10. Proof of Proposition 4.3.2

Note that when X € R%*% gatisfies || X|r < «, we have | X[, < /rank(X)||X||r <
vmin{dy,ds}a < ay/rdids, and || X||oo < a. Therefore, we have d > a.

Note that when X € [—a,a]®*% we have | X||p < ay/didy. Therefore, D < av/didy,

where D is defined after Inequality (A.6.113).

According to the proof of Lemma 4.2.1, when we take = in the By(z) there to be 0, we have

C(Cy,Cy) < Gl
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We continue with bounding the terms in right hand side of Inequality (4.2.13) in Proposition

4.2.1.

Recall the steps we take in Algorithm 4.3.2, then we have

1Z* = Z*|| = |[Proje, (Po) — P*)II < [[Po — P,

B . )
Pl — P = ||——(P P)—P"+P P)) — P*
| | ”2(ﬁ+1)( r0jc, (Fo) + Proje, (Po) )
1
+——(Py— P < ||R - P,
5+1(0 < 1P |

IAT = A2 < 2| AT|7 + 2f| A%
2

< 22

<P0 + ngOJCQ (Po) — (1 + g)PrOj01 (P0)>

B+1

+ 257 (Po + gPFOJC1 (Po) = (1+ g)PfOJCQ (P0)> H

B+1
+ max{4,8C(C1,C2) }|Po — P"‘H2

< 48%|| Py — P*||* + max{4,8C(C1, Co)}|| P — P*|)%,

| Po — P~

|IPt - Ry < IProje, (Po) = Py + Proje, (Po) -

g
2+ PS5

(A.6.117)

Some of the inequalities in Inequality (A.6.117) are due to || Py — Proje, (Fo)|| < ||[Po — P*|],

IProjc, (Po) — Proje, (Po)|| < 327, 1P — Proje, (Po)|-

Plugging Inequality A.6.117 back to Proposition 4.2.1, we have

-t *2 1 2 20 54 (2
[P = P|[* < 55 (18° 4+ max{4,8C(C1. Co)} + Tz gl Po = P
90 54 (A.6.118)
*112
< 2&(75 +4d1d2+ 3 (B+1)2 )HPO—P =
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A.6.11. Proof of Theorem 4.3.2

First, we will show that for ¢ > ¢y, dg < min{ug,1}.

We prove this by mathematical induction. For Xy, Xg € C1 N Cs, therefore §y < ug holds

for k=0. One thing to note is that Lyiy, < 2L, I~/a+u0 < 2L,. Also, recall that n= 2%

e

Suppose deltay < min{ug, 1} holds for k¥ < H, then for k = H + 1, we have

[ X — 0V f(Xk) — Proxc,ne, (Xe) || < [| Xk — Proxeyne, (Xe)l| + 0V f(Xk)|

(A.6.119)
Therefore,
Lo
| Xk — nV f(Xk) — Proxe,ne, (X — nV f(Xk)|| < up + f (A.6.120)
«
According to Proposition 4.3.2, for
1 20 p4 Lo | La
t>— (76% + 4dyds t 3 Ee >1+ @ 4N
283 < (/8 + ) ( uoLq La)
we have
| X ka1 — Proxc,ne, (Xero.s)]|? < min{ud, 1}. (A.6.121)

So 99 < {up, 1} also holds for k = H + 1.

Therefore, dop < {uo, 1} for all k. So the Lipschitz constant Ly < 2L, and the smooth

parameter L < 2L, for the objective function on ug neighbor of Cy N Cs.

Further, we have,

4
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According to Proposition 4.3.1, we have

2L odvd . 1 /1 2 4
0 < O[T”—i-ﬁlal;a\/dldg\/;\/z 7,32—|—4€l1d2+70 b )

3 (B+1)2

20 p4 - 11 20 p*
+ 2L, \[\/25 75 + 4didy + — (5+1)>+2L tﬁ(w + 4dydy + — (ﬂ+1)>

(A.6.123)

A.6.12. Proof of Proposition 4.4.1

To apply Proposition 4.2.1 to causal inference for panel data, we only need to find the
L,Ly, Ly, D and a bound for || X¢o — X*| in Proposition 4.2.1 in causal inference for panel

data.

Since C1 = [~ Lmax, Lmax)¥ <7, we have D = 2LV NT.

Since g(L) = %|L|, we have ||0g|| < %\/min{]\f, T}.

Since f(L) = 3||Po(Y1)||%, we have the smooth parameter L < 1, the Lipschitz constant

Ly < maxpec, Y — L||F.
Also, we have ||Lg — L|| < LimaxV/NT. Recall that n = 1.

Plugging in the quantities into Proposition 4.2.1, we have

M. < 1)

min *HPO(Y L)l + I+

0<k<K 2
1 5
o7 1o = L[+ <2‘ min{N, T} + max [Po (Y — L)HF) s (A.6.124)
1

+ 02 4 2Lax VNTSp.

< LIPo(y L)} +
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A.6.13. Proof of Proposition 4.4.2

We continue with bounding the terms in right hand side of Inequality (4.2.13) in Proposition

4.2.1. Recall the steps we take in Algorithm 4.4.11, we have

O
|Z' — Z*|| = ||thresh(P,, |5 ‘) P*|| < ||Py — P¥|| + \/mln{N T},
1P =Pl < [Py = P*|| + [|P' = Pyl

IAY — A*|2 < 2 (AL + [ASI2 + | AT]% + | A5]%)

< 2(1fﬂ)2 < ‘

+ 2[|AT] -+ 2] Az,
B
2(B+1)

B . B AIOI
< mHPTOJcl(PO) Bl + 57— 2B+ 1) ——/min{N, T}.

2

A O
Py — Projg, (Po) + g (thresh(Po, L) — Projg, (P()))

o)l

Po — thresh(Po, )\|,BC)|) g < h(P(), )\’6(9|) Pl"OjC1 (P0)>

IIPI—Ponu (Projcl(Po) Py + thresh(Py, 2o |O| )H

(A.6.125)

We continue with bounding the two terms in the right hand side for |[A! — A*||2. We start

with the first term.
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2
Py — Projg, (Po) + g <th7‘esh(P0, Alo]

B
Py — thresh(Py, M) _8 thresh(Py, M) — Proje, (P)
8 2 B '

Aol
E

|

"

)~ Proie, (7))

2

= ||Py — Proje, (Po)||* + || Py — thresh(Py,

2
+(B+ %)ch?“eSh(PO, Mﬁo) — Proje, (Po)|?

ANO
< (148 (HPO ~ Proje, (Po)[2 + | Py — thresh(Py, |)I!2>

5
< (4 87 (IR = Profc (RO + min{V. )M

)k
(A.6.126)

We proceed with bounding [|A%|% + [|A%%.

According to Equation (A.6.109), we have

IATI? + |A3]1? = [12(P* — Po) — A3||* + [|A3])?
(A.6.127)
< 8||P* — Pol|* + 3[| A3,

Taking derivative with respect to Z for function U(W, Z, P) at point (W*, Z*, P*), we have

aU(W, Z, P)

0 =
0z W=W*,Z=27* P=P*

= 0ho(Z*) + A (A.6.128)

Observe that Oha(Z*) < A|O|y/min{N, T}, continuing with Inequality (A.6.127), we have

A1 + [|AS]? < 8| P* — Po||? + 3(\|O|)? min{ N, T}. (A.6.129)

Putting together Inequalities (A.6.125), (A.6.126), (A.6.129), together with Proposition
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4.2.1, we have

IP* — P2
1

4B°%||P* — Py||* + 26| Py — Projc, (Py)|* + 2min{ N, T} (A|O])°
x 2 2 . 20 L2 p1 2
+16]P7 = Rol|” + 6(A|O)" min{N, T} + = 57|[P" — Rl

0. 8 (A.6.130)

= %6k <(652+ 16)[| Py — P71 + <10+ 2+ 1)(Hﬁ)Q) (AJO])? min{N, T}

3
N 252+(2+10)( ik ) 1Po — Proje, (Py)|P
3 145 0 Jc, (L0

Blk<(3ﬁ2+8)!PoP*ll2 (54 3(145)?) (lOPPmin{,7)

2
<ﬁ2 i( 6 ) >||P0—P1"0J01 PO )

1+8

A.6.14. Proof of Theorem 4.4.2

Suppose infrec, ||[Lj — L|| < ég for j < k, where k > 0.

Recall that
Lito5 = L + Po(Y — Ly), (A.6.131)

we have

IProjc, (Litos) — Litosl” < [Proje, (L) — Lirosl|® < (C(Y) + 60)* < 2C(Y)? + 265
(A.6.132)
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Recalling that Prox%”L”*JF‘I{LEQ}(LHO@ is defined as

argmin ||L — Lgyo5]* + A O|||IL|« + T{L € C1}, (A.6.133)
L

we have

Prox(Li10.5) — Litos]|* + Al O|Prox(Lito5) [« + T{Prox(Liso5) € C1}

<10 = Lyso5]* + AO]||0]|« + T{0 € C1} = | Litos] (A.6.134)
< Y3+ (v/NT — |O|Limax + 60)°.
Combing Proposition 4.4.1 and Proposition 4.4.2, we have for 8 < %, then
| Ligt1 — Prox(Liso5)[* < [31k ((%2 +38) (HYH% + (VNT — |O|Lmax + 50)2>
+ (5 + 8(5)2> (AO])2 min{ N, T’}
3'1+p ’
+ (974 5257 oy + 25
3' 1+ 0
1ol 2 2 , 16 8% o A.6.135
§k<5o<ﬂ(6ﬁ +16+2B+3(1+5)>)+ ( )
565 +8) (I + 2(NT ~ |0) L) +
1 8
5 (54 525 (MO min{,7)+
16, B8 2
5 (2+ 5057 o) )
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Let

2
aw0(B) = (; (662 +16 +25% + 136<1iﬁ>2>) :
=5 (3+5G057).
0l =5 (245 (57
w(0) = 5(38° +9)
50 — [ DDNON mind V.7 + (BICE? + 0s(3) (1Y P+ 2NT ~ O] L)

k—qo(8)
(A.6.136)

We show next that when k > qo(8), infrec, ||Lr — L|| < (k) and ||Lg1 — Prox(Lgio5)]| <
d(k) for all k > 0. For k = 0, Ly € Cy, the first part claim holds. Suppose the first part of

claim holds for k < kg, where kg > 0, then for k = kg + 1,

[ Ligt1 — Prox(Lyg+o.5)

<3 (5(kz)2%(5) +a1(B)NO])? min{N, T} + ¢2(8)C(Y)?

(A.6.137)
+ QS(/B) (HY”2 + 2(NT - ’O’)L?nax) )

= 5(k)>.
Since Prox(Lg,+0.5) € C1, the first part of claim holds for k = ko + 1. So the first part of

the holds for all £ > 0. Since Inequality A.6.137 is based on [|Ly, — Projg, (L, )|| < 6(k), it
holds for all kg > 0.

Therefore, for k > qo(3), we have dy < §(k). Therefore, we know that §; < §(k).
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Now we proceed with bounding §. According to Proposition 4.4.1, we have

5 < (29’ (;(HLO — L)%+ 8(k)? + <2Lmaxm +C(Y) + min{VN, ﬁﬁ'g') 5(k>>
NTL x| 20(k)* | (ALwaxVNT  20(Y)
S T Te] ( o]t tminlv ﬁ“) o)

(A.6.138)

This finishes the proof.

A.6.15. Proof of Theorem 4.5.1

Recall that we use p?(X) to denote the maximum diagonal entry of the covariance matrix

3.

It suffices to prove the following two results
Proposition A.6.2. Under the linear regression model (4.5.1), for any sparse index set S

such that the cardinal of S, |S| = s, denote 8%. to be the vector keeping elements not in S

logd

the same and setting those in S to be 0. Suppose cik > 64s - cop? (%) =, where cy,cy are

constants and can be taken as ¢ = 1/8,co = 50, and k is the smallest singular value of X.
For A\, > ZHXT+”°°, 0 satisfying (4.5.3) has the following property
0 165l

P(IATL < g + 15

1. A exp (—n/32)
Ve 21T T e (-0 /3y

+(2+4y/s+

(A.6.139)

Lemma A.6.7. For the random matriz X € R™ %, in which each row z; is drawn i.i.d.

from a N(0,%) distribution, its columns Ty, satisfies the following with probability at least

1 —exp (_4p+@)€)f

7|3 4p*(%
max MngogQ-pz(E)—k p(2)
n

1<k<d n logd +e. (A.6.140)
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For w with w; s N(0,02) and w independent with X, we have that

Px w (\anﬂoo < 2/)(2)\/(105(1 + 1)0'\/210gn(2d) + N) >1—exp (—g) — exp (—%)
(A.6.141)

Proof of Proposition A.6.2

From Inequality (4.5.3), we have
ly = X013 + Xallfll1 < lly = XOU3 + Xallfll1 + 6 < |y — X67|3 + Xall6*[l1 + 6. (A.6.142)

Denote A = § — 0*.

Therefore, we have that

1 XTw N ~
< —nuXAH? su—uw\mul + X (16711 = 161 ) + 6
= (||A||1 +200"|1x = 2010ll1) + 5
(A.6.143)
(B35l + 1 Asells + 20105l — 2105 + Agellr) +9

BllAsly = [1Aselly + 4105 (1) +

w‘g’w‘gw

Therefore, we have

. 26 . 26
AT = [1Asl+ [ Asell < 4 As 1+ 401631+ 3= < 4v/5[[ Al +4[163c [+ = (A.6.144)

On the other hand, according Theorem 7.16 in Wainwright (2019), we have that with

exp (—n/32)

probability at 1 — T—exp (—n/32)°

X

logd
XA 5 o, |VEALR - cap(®)

1A%, (A.6.145)

where ¢1, co are absolute constants and can be taken as ¢; = 1/8, co = 50.
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Note that |[vVZA3 > k| A3, going back to Inequality (A.6.143), we have

logd
c1r]|Allf <e2p? (%)

JAIZ + Au(3lAslls — [Asells + 465 11) + 25
20
<4Vf|vxuz+—4nescul+- )

+ (315l = [8se + 483 ) + 26
A J 0.
<o (181 165,

M3lIlAS| — [|Agelly + 4]|0% 25

. +4/\m/§+ 2\/§> + A (3l Asllt — [[Asells + 4|05 l1) +
[A]l2 4 0%\ .

< ¢ .

_cm< 5 +4An\/§+ 2 s + M (3v/5]| A2 + 4|05 1) + 26

lod
<cap?(8) 2

(A.6.146)
Solving the Inequality for ||A||2, we have
[1A]l2 < 2)\:\/5 + w\i,”l +(2+4Vs+ \}5)2’; (A.6.147)

Proof of Lemma A.6.7

Denote v, = szng

For QPQL(E) > A >0,

d 1 .
E(exp (Amax{yy : 1 <k < d})) kZ:: (exp (k) < d(@)f. (A.6.148)
Therefore, for A >0
Pmax{v, :1<k<d}>A) < d(l_;pz(z))’% exp(—AA) (A.6.149)
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Take \ = ,and A = 2p?(X)log 2 + @ logd + €, we have

4p2n(2)

P(max{vg:1 <k <d}>A) <exp(—

) €). (A.6.150)

Therefore, the proof of the first statement is concluded.

For the second statement, suppose max{vy : 1 < k < d} < C,. Then we have for A\ > 0,

XTw A2
E ( exp Amax{|~2—|:1 <k <d}) | < 2dexp(=—C?c?%/2). (A.6.151)
n n
Therefore, for A > 0,
X 2
P(HTIUHOO > A) < exp (log(2d) + %0302/2 —)A). (A.6.152)

Take \ = C”Q—ﬁb we have

nA2

Xw
P(”T”OO > A) < exp (log(2d) — W)-

(A.6.153)

Setting

A =Cyoyf 210"1(260 + 1, (A.6.154)

and note that C), < \/4p2(2) + 4p2(2)184 with probability at least 1 — exp(—35), we have

n

the statement of second inequality of the lemma.
A.6.16. Proof of Theorem 4.5.2

It’s easy to check that

1
— ||y — X0|? A6.1
2nHy 15 (A.6.155)

is || &nx ||s-smooth.
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By Theorem 4.2.1, and take §y = 0 gives the result.

A.6.17. Proof of Theorem 4.5.3

It’s easy to see that %HXGH% is ”)(TTXHS

IXTX]s
L

Denote L =

Note that we have an alternative expression for 64, for £ > 0:

XTX6,

1
Or+1 = argmin 7||X9k||% +
0 n

For simplicity we define

XTX0,

1 L
o (0) = %IIXHICII% + 0 = 0) + 5110~ O3 + An 0]

Theorem 10.16 in Beck (2017) gives that

L
> =

L
23 16 — Opy1]3 — 5\\9 — 0kll3 + D(0,0y),

F(0) = F(Ox11)

where
XTX6,

1 1
D(0,0%) = 5-I1X0]3 = 5 11X03 — ¢ 0 = ).

Taking 0 = 0, gives

L
F(Qk) > F(9k+1) + EHek - 9k+1||§'

Taking 6 = 6* gives

L
> Z

* * L * *
F(07) = F(Ok41) 2 5110 —O41l3 — 5110 — 0kl + D(6", 6y,).
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L
0= Ok) + 5110 = Okl3 + Anl]1-

—smooth, where || - ||s denotes the spectral norm.

(A.6.156)

(A.6.157)

(A.6.158)

(A.6.159)

(A.6.160)

(A.6.161)



Adding up the inequality from 1 to k + 1 gives

I k+1
S 107115 > Y F(0;) = F(67) = (k+ 1)(F(6s1) — F(8Y)).
j=1

Taking 0 = é, gives

- L
F(0) = F(Ok+1) = 5
Adding up the inequality from 1 to k + 1 gives

1 L
< - =

Fl01) = F0) < 575

16115.

This gives the second statement of the theorem.

Recalling Inequality (A.6.143), we have that

0<3[ (0 = 0)g lln = [ (O = 07) g 11 + 4|05 [l +

. I . .
10 — Ory1]3 — EHG — 0xl3 + D(0, ;).

2F(0) ~ F(0°))

An

This gives

2(F () — F(6)

10k — 07ll1 < 4510k — 07[|2 + 41|05 [l + 3

Therefore

16—6kll1 < [106=0" [ +110-6" [l < 4v/5]10—0rll2+8V/5]1 66" |2+8][65: |1+
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(A.6.162)

(A.6.163)

(A.6.164)

(A.6.165)

(A.6.166)

2F(B) ~ F(6°))

An

(A.6.167)



Recall the definition of ¢ (6) in Equation (A.6.157). For 0 < a < 1, we have

F(Or11) < b(0s1) < or(ad + (1 — a)by)

XTX0), - La?
n

0 — Ok) + 7”9 = OklI3 + aXallfll1 + (1 — @) Aull6klh

1
< 5 IX03 + of
N La? 519
<aF(0) + (1 - a)F(0k) + THek — 0]z
(A.6.168)
Now we will bound ||6; — |3

Note that 6 is the minimizer of F(0), we have

F(0x) — F(6)

= F(6y) = F(0) = (OF (0), 0 — ) = D(65,0) = 110 — 04l13 — 2110 — 041

ar A a R . . 2(F(6;) — F(09)\?
> S10 - 0l — 2 (4v5100 ~ B + 8518 — 07 + s, + 2L CL=EED)
n +

(A.6.169)

Since a1 > 64s - az, we have

ar - A - i 2(F(0;) — F(6%)\?
18— 03 < F(00) ~ FO) + ax (851~ 07 + 8l s + 2O EED )

An N
(A.6.170)
Therefore
A 9 4 A 4ao A % " 2
10— 04113 <— (F(0x) — F(B)) + =22 128 (V3110 - 0" |2 + % 1)
aq ai
(A.6.171)

| 320 (F(Hk) - F(9*))2

ai )‘TL +
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Let a = 7} in Inequality (A.6.168), we have that

F(O) = F(0) < (1= £1) (F(0) = F(0)) +

_l’_

4L

a N *
2L 64ans - <H9—9 |2 + 64L - s

Vs An

From Theorem 4.5.1 we have that

1051 1A
244 —)—=.
Nz +(2+ \/§+\/§)CW

16— 6%]l2 <

Plug in Inequality (A.6.173) into Inequality (A.6.172) and note that F(6)) —

F(6;) — F(0) < F(0x) — F(0) for K < k gives the statement.
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||agc||1>2 a1 - 64ass (F(@w - F(Q*)>2

R
(A.6.172)

(A.6.173)

F(o*) <
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