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ABSTRACT

ESTIMATION AND INFERENCE FOR CONVEX FUNCTIONS AND

COMPUTATIONAL EFFICIENCY IN HIGH DIMENSIONAL STATISTICS

Ran Chen

T. Tony Cai

Optimization and statistics are intrinsically intertwined with each other. Optimization has

been the ends of some statistical problems, like estimation and inference for the minimizer

and the minimum of convex functions, and the means for other statistical problems, like

computational concerns in high dimensional statistics. In this dissertation, we consider both

optimization-related problems.

Estimation and inference for the minimizer and minimum of convex functions have been

longstanding problems with wide application in economics and health care. But existing ap-

proaches are insufficient due to their asymptotic nature and/or incapability of characterizing

function-specific difficulty. We investigate the problems under non-asymptotic frameworks

that characterize function-specific difficulty and propose adaptive computational-efficient

optimal methods. The first two parts of the dissertation address these problems, briefly

summarized as follows.

• The first part focuses on univariate convex functions. We develop computationally

efficient adaptive optimal procedures under local minimax framework and discover

a novel Uncertainty Principle that provides a fundamental limit on how well the

minimizer and minimum can be estimated simultaneously for any convex regression

function.

• The second part focuses on multivariate additive convex functions. Under function-

specific benchmarks, we propose computationally efficient optimal methods and es-

tablish their optimality.
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Computational efficiency is another optimization-related problem of increasingly importance

in statistics, especially in the AI age where the scale of data is big and the requirement on

computational time is high. To achieve the balance between running time and statisti-

cal accuracy, we propose a framework that provides theoretically guaranteed optimization

methods together with the analysis of interplay between running time and statistical ac-

curacy for a class of high-dimensional problems in the third part of the dissertation. Our

framework consists of three parts, statistical-optimization interplay analysis, which charac-

terizes optimization induced statistical error in a more essential way, optimization template

algorithm, and optimization convergence analysis. We showcase the power of our framework

through three example problems, where we get novel results for the first two and show that

our framework adapts to the degenerate case through the third example.
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CHAPTER 1

Introduction

Optimization and statistics has been increasingly intertwined in the AI age in the sense

that optimization has been both a means and an ends for many statistical problems.

Estimation of and inference for the location and size of the extremum of a nonparamet-

ric regression function has been one of the longstanding problems in statistics with wide

applications where optimization is the ends of the problem. See, for example, Kiefer and

Wolfowitz (1952); Blum (1954); Chen (1988).

The problem has been investigated in different settings. For fixed design, upper bounds for

estimating the minimum over various smoothness classes have been obtained (Muller, 1989;

Facer and Müller, 2003; Shoung et al., 2001). Belitser et al. (2012) establishes the minimax

rate of convergence over a given smoothness class for estimating both the minimizer and

minimum. For sequential design, the minimax rate for estimation of the location has been

established; see Chen et al. (1996); Polyak and Tsybakov (1990); Dippon (2003). Mokkadem

and Pelletier (2007) introduces a companion for the Kiefer–Wolfowitz–Blum algorithm in

sequential design for estimating both the minimizer and minimum.

Another related line of research is the stochastic continuum-armed bandits, which have

been used to model online decision problems under uncertainty. Applications include online

auctions, web advertising and adaptive routing. Stochastic continuum-armed bandits can

be viewed as aiming to find the maximum of a nonparametric regression function through

a sequence of actions. The objective is to minimize the expected total regret, which re-

quires the trade-off between exploration of new information and exploitation of historical

information. See, for example, Kleinberg (2004); Auer et al. (2007); Kleinberg et al. (2019).

The first two parts of this dissertation consider optimal estimation and confidence inter-

vals for the minimizer and minimum of convex functions under both the white noise and
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nonparametric regression models in a non-asymptotic minimax framework that evaluates

the performance of any procedure at individual functions. We consider univariate convex

functions in Chapter 2 and multivariate additive convex functions in Chapter 3.

In Chapter 2, we investigate the problem for univariate convex functions under the non-

asymptotic local minimax framework that evaluates the performance of any procedure at

individual functions, instead of the conventional minimax framework, which evaluates the

performance of the estimators and confidence intervals in the worst case over a large collec-

tion of functions. Non-asymptotic local minimax framework enables a much more precise

analysis than the conventional minimax framework, and brings out new phenomena in si-

multaneous estimation and inference for the minimizer and minimum. We establish a novel

Uncertainty Principle that provides a fundamental limit on how well the minimizer and min-

imum can be estimated simultaneously for any convex regression function. A similar result

holds for the expected length of the confidence intervals for the minimizer and minimum.

Under this stricter framework, we propose fully adaptive computationally efficient optimal

procedures and establish their optimality, i.e. we establish sharp minimax lower bounds

(under local minimax framework) for the estimation accuracy and expected length of the

confidence intervals for the minimizer and minimum and we establish matching statistical

upper bounds for our procedures.

Chapter 2 is based on the joint work with T.Tony Cai and Yuancheng Zhu.

In Chapter 3, we focus on multivariate additive convex functions. We study estimation of

the minimizer and both estimation and inference for the minimum under non-asymptotic

local minimax framework. For the inference of the minimizer, we use a benchmark better

characterizes the best performance any procedure can achieve at individual functions. We

establish minimax lower bounds for the estimation accuracy and expected length(volume)

for the minimizer and minimum, we propose computationally efficient optimal procedures,

and we establish optimality by showing that the statistical upper bounds match the corre-

sponding lower bounds up to a constant depending on the dimension and the pre-specified

2



probability coverage.

Optimization, in addition to being an ends for aforementioned statistical problem, is also

very much involved in finding a desired statistical estimator. Many statistical estimators

are formulated as an optimizer of a certain optimization problem, where an exact solution is

hard or unable to compute. With the increasing scale of data nowadays, this computational

cost issue becomes an increasingly important concern, especially for high-dimensional data.

Current efforts in investigating computational cost can be roughly categorized into three

kinds. One is the computational-theoretical approach, where people investigate the compu-

tational cost by categorizing problems: people want to tell whether a problem is polynomial

time computable. There are also attempts on categorizing problems in slightly different ways

(Chandrasekaran and Jordan, 2013), i.e. adding additional consideration on statistical ac-

curacy for categorizing. The second line is dealing with exploding sample size (Shender and

Lafferty, 2013; Horev et al., 2015; Sussman et al., 2015; Kpotufe and Verma, 2017), mostly

by reducing the effective sample size. The third line considers either or both statistical

accuracy and optimization running time, but separately. The style of this line is having a

statistically good estimator that is an optimizer of an optimization problem first, and then

investigating theoretically guaranteed iterative optimization method for computing this es-

timator. This separation causes many problems. Conventional optimization convergence

rate in terms of the distant to an optimizer is not the best way for characterizing the sta-

tistical behavior of the computed estimator, especially for over-parameterized cases where

multiple solution is possible. The separation of the optimization problem from the statisti-

cal problem omits many statistically important considerations, e.g. the dependence of the

convergence on dimension, the assumptions that statistical setting admits. The separation

also places many statistically important optimization problem into an inferior position due

to a different taste in optimization community.

Our approach is building a framework that provides theoretically guaranteed iterative opti-

mization algorithm and precise quantification of how iteration number affects the statistical

3



accuracy for a class of problems that admits estimators of a certain general form without

imposing artificial or hard-to-verity conditions.

Our framework consists of three parts solving two major problems, i.e. investigating

statistical-optimization interplay and developing theoretically guaranteed optimization pro-

cedure, which leads to achievement of our goal. The first part incorporates the optimization

induced error into the statistical analysis through an approximate optimization problem

rather than an approximate solution. This is a more to-the-essence way of characterizing

how optimization induced error affects statistical accuracy. This frees statistical analysis of

the computed estimator from any optimization procedure, and makes it possible to get rid

of hard-to-verify conditions facilitating optimization. The second part provides a template

algorithm. The third part provides theoretical convergence analysis of our template algo-

rithm in terms of converging to the approximate problem. In this part, our convergence

analysis considers the dependence on both iteration number and statistically important

quantities, e.g. dimension.

We apply our framework to three examples, 1-bit matrix completion (Davenport et al.,

2014), causal inference for panel data (Athey et al., 2021) and (high dimensional sparse)

linear regression with LASSO. In first two examples, we get interesting new results. For

(high dimensional sparse) linear regression with LASSO, which is a degenerate case for

our framework, we show that our framework adapts to degenerate case and gives stronger

results when stronger assumptions are valid. For causal inference of panel data, we also

sharpen the statistical analysis under the case that computational resource is unlimited,

which is the case considered in the literature (Athey et al., 2021).

1.0.1. Notation

Now we give a list of notation that we will be using through out the dissertation. We will

remind the readers of relevant notation and additional notation for each chapter in each

chapter again.

4



The cdf of the standard normal distribution is denoted by Φ. For 0 < α < 1, zα =

Φ−1(1 − α). For α = 0, zα = ∞. For two real numbers a and b, a ∧ b = min{a, b},

a ∨ b = max{a, b}. For f ∈ L2[0, 1] and r > 0, Br(f) = {g ∈ L2[0, 1] : ‖g − f‖2 ≤ r} and

∂Br(f) = {g ∈ L2[0, 1] : ‖g − f‖2 = r}.

We use ‖·‖ to denote the L2 norm for vectors, matrices (where L2 norm is Frobeneous norm),

real numbers (where L2 norm is absolute value), univariate functions and multivariate

functions, depending on the setting. We use | · | to denote the length of an interval, absolute

value for a number, and cardinal for a discrete set. We use 1{A} to denote indicator

function that takes 1 when event A happens and 0 otherwise. We use bold symbols to

denote multivariate functions, e.g. f , g, h.

We also use ‖ · ‖F in addition to ‖ · ‖ for Frobeneous norm for matrices. ‖ · ‖F is to give

special emphasis for matrices when there might be confusion. ‖ ·‖∗ stands for nuclear norm.

We use D(A‖B) = 1
d1d2

∑
i,j D(Ai,j‖Bi,j) to denote average KL divergence between d1 by

d2 probability matrix A and B for 1-bit matrix completion, where D(a‖b) = a log(ab ) +

(1 − a) log(1−a
1−b ). We use T{A} to denote the function where it takes 0 if A holds and

∞ if A does not hold. We use R(ε, C) to denote the ε neighborhood of convex set C:

R(ε, C) = {X : infZ∈C ‖X − Z‖ ≤ ε}. We use Bd(x) to denote a ball in matrices space

centered at x with radius d under Frobeneous norm. We use ProjC(P ) to denote the

projection point of P on convex set C, the projection is in terms of Euclidean distance.

5



CHAPTER 2

Estimation and Inference for Minimizer and Minimum of Convex

Functions: Optimality, Adaptivity, and Uncertainty Principles

2.1. Introduction

In this chapter, we focus on estimation and inference of the minimizer and minimum of r

univariate convex functions.

We first focus on the white noise model, which is given by

dY (t) = f(t)dt+ εdW (t), 0 ≤ t ≤ 1,

where W (t) is a standard Brownian motion, and ε > 0 is the noise level. The drift function

f is assumed to be in F , the collection of convex functions defined on [0, 1] with a unique

minimizer Z(f) = arg min0≤t≤1 f(t). The minimum value of the function f is denoted by

M(f), i.e., M(f) = min0≤t≤1 f(t) = f(Z(f)). The goal is to optimally estimate Z(f) and

M(f), as well as construct optimal confidence intervals for Z(f) and M(f). Estimation and

inference for the minimizer Z(f) and minimum M(f) under the nonparametric regression

model will be discussed later in Section 2.4.

2.1.1. Function-specific Benchmarks and Uncertainty Principle

As the first step toward evaluating the performance of a procedure at individual convex

functions in F , we define the function-specific benchmarks for estimation of the minimizer

and minimum respectively by

Rz(ε; f) = sup
g∈F

inf
Ẑ

max
h∈{f,g}

Eh|Ẑ − Z(h)|, (2.1.1)

Rm(ε; f) = sup
g∈F

inf
M̂

max
h∈{f,g}

Eh|M̂ −M(h)|. (2.1.2)
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As in (2.1.1) and (2.1.2), we use subscript ‘z’ to denote quantities related to the minimizer

and ‘m’ for the minimum throughout the paper. For any given f ∈ F , the benchmarks

Rz(ε; f) and Rm(ε; f) quantify the estimation accuracy at f of the minimizer Z(f) and

minimum M(f) against the hardest alternative to f within the function class F .

We show that Rz(ε; f) and Rm(ε; f) are the right benchmarks for capturing the estimation

accuracy at individual functions in F and will construct adaptive procedures that simulta-

neously perform within a constant factor of Rz(ε; f) and Rm(ε; f) for all f ∈ F . In addition,

it is also shown that any estimator Ẑ for the minimizer that is “super-efficient” at some

f0 ∈ F , i.e., it significantly outperforms the benchmark Rz(ε; f0), must pay a penalty at

another function f1 ∈ F and thus no procedure can uniformly outperform the benchmark.

Same holds for the estimation of the minimum.

More interestingly, the non-asymptotic local minimax framework enables us to establish a

novel Uncertainty Principle for estimating the minimizer and minimum of a convex function.

The Uncertainty Principle reveals an intrinsic tension between the task of estimating the

minimizer and that of estimating the minimum. That is, there is a fundamental limit to the

estimation accuracy of the minimizer and minimum for all functions in F and consequently

the minimizer and minimum of a convex function cannot be estimated accurately at the

same time. More specifically, it is shown that

inf
f∈F

Rz(ε; f) ·Rm(ε; f)2 ≥ Φ(−0.5)3

2
ε2, (2.1.3)

where Φ(·) is the cumulative distribution function (cdf) of the standard normal distribution.

This is akin to the Heisenberg Uncertainty Principle in physics, which states that the

velocity and the location of a particle can not be measured precisely at the same time. The

connection will be discussed in more detail in Section 2.2.

For confidence intervals with a pre-specified coverage probability, the hardness of the prob-

lem is naturally characterized by the expected length. Let Iz,α(F) and Im,α(F) be, respec-
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tively, the collection of confidence intervals for the minimizer Z(f) and the minimum M(f)

with guaranteed coverage probability 1 − α for all f ∈ F . Let L(CI) be the length of a

confidence interval CI. The minimum expected lengths at f of all confidence intervals in

Iz,α({f, g}) and Im,α({f, g}) with the hardest alternative g ∈ F for f are given by

Lz,α(ε; f) = sup
g∈F

inf
CI∈Iz,α({f,g})

EfL(CI), (2.1.4)

Lm,α(ε; f) = sup
g∈F

inf
CI∈Im,α({f,g})

EfL(CI). (2.1.5)

As in the case of estimation, we will first evaluate these benchmarks for the performance

of confidence intervals in terms of the local moduli of continuity and then construct data-

driven and computationally efficient confidence interval procedures. Furthermore, we also

establish the Uncertainty Principle for the confidence intervals,

inf
f∈F

Lz,α(ε; f) · Lm,α(ε; f)2 ≥ Cαε2. (2.1.6)

where Cα is a positive constant depending on α only. The Uncertainty Principle shows a

fundamental limit for the accuracy of simultaneous inference for the minimizer Z(f) and

minimum M(f) for any f ∈ F .

2.1.2. Adaptive Procedures

Another major step in our analysis is developing data-driven and computationally efficient

algorithms for the construction of adaptive estimators and adaptive confidence intervals as

well as establishing the optimality of these procedures at each f ∈ F .

The key idea behind the construction of the adaptive procedures is to iteratively localize the

minimizer by computing the integrals over the relevant subintervals together with a care-

fully constructed stopping rule. For estimation of the minimum and minimizer, additional

estimation procedures are added after the localization steps. For the construction of the

8



confidence intervals, another important idea is to look back a few steps before the stopping

time.

The resulting estimators, Ẑ for the minimizer Z(f) and M̂ for the minimum M(f), are

shown to attain within a constant factor of the benchmarks Rz(ε; f) and Rm(ε; f) simulta-

neously for all f ∈ F ,

Ef |Ẑ − Z(f)| ≤ CzRz(ε; f) and Ef |M̂ −M(f)| ≤ CmRm(ε; f),

for some absolute constants Cz and Cm not depending on f . The confidence intervals, CIz,α

for the minimizer Z(f) and CIm,α for the minimum M(f), are constructed and shown to

be adaptive to individual functions f ∈ F , while having guaranteed coverage probability

1− α. That is, CIz,α ∈ Iz,α(F) and CIm,α ∈ Im,α(F) and for all f ∈ F ,

EfL(CIz,α) ≤ Cz(α)Lz,α(ε; f)

EfL(CIm,α) ≤ Cm(α)Lm,α(ε; f),

where Cz(α) and Cm(α) are constants depending on α only.

2.1.3. Related Literature

In addition to estimation and inference for the location and size of the extremum of a non-

parametric regression function mentioned at the beginning of this dissertation, the problems

considered in this dissertation are also connected to nonparametric estimation and inference

under shape constraints, which have also been well studied in the literature.

Nonparametric convex regression has been investigated in various settings, ranging from

estimation and confidence bands for the whole function (Birge, 1989; Guntuboyina et al.,

2018; Hengartner and Stark, 1995; Dumbgen, 1998), to estimation and inference at a fixed

point (Kiefer, 1982; Cai et al., 2013; Cai and Low, 2015; Ghosal and Sen, 2017). Deng et al.

(2020) established limiting distributions for some local parameters of a convex regression
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function including the minimizer based on the convexity-constrained least squares (CLS)

estimator and constructed a confidence interval for the minimizer. As seen in Section 2.4.4

and further discussions in the appendix Section A.3.1, this confidence interval is suboptimal

in terms of the expected length. It is also much more computationally intensive as it requires

solving the CLS problem.

The local minimax framework characterized by the benchmarks (2.1.1)-(2.1.2) and (2.1.4)-

(2.1.5) was first developed in Cai et al. (2013) for estimation and Cai and Low (2015) for

inference for the value of a convex function at a fixed point, which is a linear functional.

The objects of interest in this dissertation, the minimizer and minimum, are nonlinear

functionals. Due to the nonlinear nature of the minimizer and minimum, the analysis is

much more challenging than for the function value at a fixed point.

Another related line of research is stochastic numerical optimization of convex functions.

Agarwal et al. (2011) studies stochastic convex optimization with bandit feedback and

proposes an algorithm that is shown to be nearly minimax optimal. Chatterjee et al.

(2016) uses the framework introduced in Cai and Low (2015) to study the local minimax

complexity of stochastic convex optimization based on queries to a first-order oracle that

produces unbiased subgradient in a rather restrictive setting.

2.1.4. Organization of this Chapter

In Section 2.2, we analyze individual minimax risks, relating them to appropriate local

moduli of continuity and more explicit alternative expression, and explain the uncertainty

principle with a discussion of the connections with the classical minimax framework. Sup-

perefficiency is also considered. In Section 2.3, we introduce the adaptive procedures for

the white noise model and show that they are optimal. In Section 2.4, we consider the

nonparametric regression model. Adaptive procedures are proposed and their optimality is

established. In addition, a summary of the numerical results is given. Section 2.5 discusses

some future directions. Two main theorems are proved in Section 2.6. To avoid interrupting
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the logic flow of main chapters, the proofs of other results are given in the Appendix Section

A.1 and Section A.2.

2.1.5. Notation

We finish this section with some notation that will be used in this chapter. The cdf of

the standard normal distribution is denoted by Φ. For 0 < α < 1, zα = Φ−1(1 − α).

For two real numbers a and b, a ∧ b = min{a, b}, a ∨ b = max{a, b}. ‖ · ‖2 denotes

the L2 norm. For f ∈ L2[0, 1] and r > 0, Br(f) = {g ∈ L2[0, 1] : ‖g − f‖2 ≤ r} and

∂Br(f) = {g ∈ L2[0, 1] : ‖g − f‖2 = r}.

2.2. Benchmarks and Uncertainty Principle

In this section, we first introduce the local moduli of continuity and use them to characterize

the four benchmarks for estimation and confidence intervals introduced in Section 2.1.1,

which are summarized in the following table:

Estimation Inference

Minimizer Z(f) Rz(ε; f) Lz,α(ε; f)

Minimum M(f) Rm(ε; f) Lm,α(ε; f).

We provide an alternative expression for the local moduli of continuity that are easier to

evaluate. The results are used to establish a novel Uncertainty Principle, which shows

an intrinsic tension between the estimation/inference accuracy for the minimizer and the

minimum for all functions in F .

11



2.2.1. Local Moduli of Continuity

For any given convex function f ∈ F , we define the following local moduli of continuity,

one for the minimizer, and the other for the minimum,

ωz(ε; f) = sup {|Z(f)− Z(g)| : ‖f − g‖2 ≤ ε, g ∈ F} , (2.2.1)

ωm(ε; f) = sup {|M(f)−M(g)| : ‖f − g‖2 ≤ ε, g ∈ F} , (2.2.2)

As in the case of a linear functional, the local moduli ωz(ε; f) and ωm(ε; f) clearly depend

on the function f and can be regarded as an analogue of the inverse Fisher Information in

regular parametric models.

The following theorem characterizes the four benchmarks for estimation and inference in

terms of the corresponding local modulus of continuity.

Theorem 2.2.1. Let 0 < α < 0.3. Then

a1ωz(ε; f) ≤ Rz(ε; f) ≤ A1ωz(ε; f), (2.2.3)

a1ωm(ε; f) ≤ Rm(ε; f) ≤ A1ωm(ε; f), (2.2.4)

bαωz(ε/3; f) ≤ Lz,α(ε; f) ≤ Bαωz(ε; f), (2.2.5)

bαωm(ε/3; f) ≤ Lm,α(ε; f) ≤ Bαωm(ε; f), (2.2.6)

where the constants a1, A1, bα, Bα can be taken as a1 = Φ(−0.5) ≈ 0.309, A1 = 1.5, bα =

0.6− 2α, and Bα = 3(1− 2α)zα.

Theorem 2.2.1 shows that the four benchmarks can be characterized in terms of the local

moduli of continuity. However, these local moduli of continuity are not easy to compute.

We now introduce two geometric quantities to facilitate further understanding of these
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benchmarks. For f ∈ F , u ∈ R and ε > 0, let fu(t) = max{f(t), u} and define

ρm(ε; f) = sup{u−M(f) : ‖f − fu‖2 ≤ ε}, (2.2.7)

ρz(ε; f) = sup{|t− Z(f)| : f(t) ≤ ρm(ε; f) +M(f), t ∈ [0, 1]}. (2.2.8)

Obtaining ρm(ε; f) and ρz(ε; f) can be viewed as a water-filling process. One adds water

into the epigraph defined by the convex function f until the “volume” (measured by ‖ · ‖2)

is equal to ε. As illustrated in Figure 2.1, ρm(ε; f) measures the depth of the water (CD),

and ρz(ε; f) captures the width of the water surface (FC). ρm(ε; f) and ρz(ε; f) essentially

quantify the flatness of the function f near its minimizer Z(f).

8 T. T. CAI, R. CHEN, AND Y. ZHU

2.1.3. Alternative Expression for Local Moduli of Continuity. So far the
lower bounds of individual minimax rates in terms of local moduli of conti-
nuity are established, indicating that the problems under consideration are
at least of these di�culties. However, we are not satisfied with the local
moduli of continuity: although they get rid of probability structures and
only depend on functions, they are too abstract as taking supremum over
the entire function space is required. Therefore, in this subsection, we ana-
lyze them further and tie those two moduli to some geometric properties of
the true function itself.

Given a convex function f and " > 0, let fu(t) = max{f(t), u}. Define
the following two geometric quantities associated with the function f :

⇢m("; f) = sup{u� f⇤ : kf � fuk2  "},(2.9)

⇢z("; f) = sup{|t� t⇤f | : f(t)  ⇢m("; f) + f⇤, t 2 [a, b]}.(2.10)

What are a and b in the above expression? [0, 1]?

f(t)

⇢z("; f)

⇢m("; f)

B

A

C

DE

F

Fig 1. Water filling process, Graphical proof of inequalities (2.15).

Obtaining ⇢m("; f) and ⇢z("; f) can be viewed as a water-filling process.
We add water into the epigraph defined by the convex function f until the
“volume” (measured by k · k2) is equal to ". ⇢m("; f) captures the depth
of the water, and ⇢z("; f) captures the width of the “surface” of the water,
as illustrated in Figure 1. In such a way, ⇢m("; f) and ⇢z("; f) essentially
quantify how flat the function is near its minimizer. The following result
ties the local moduli of continuity to this set of geometric quantities.

Proposition 2.1. Let ⇢z("; f) and ⇢m("; f) be defined in (2.9) and

Figure 2.1: Water filling process.

The geometric quantities ρm(ε; f) and ρz(ε; f) defined in (2.2.7) and (2.2.8) have the fol-

lowing properties.

Proposition 2.2.1. For 0 < c < 1, f ∈ F ,

c ≤ ρm(cε; f)

ρm(ε; f)
≤ c 2

3 and max
{

(
c

2
)

2
3 , c
}
≤ ρz(cε; f)

ρz(ε; f)
≤ 1. (2.2.9)

The following result connects the local moduli of continuity to these two geometric quanti-

ties.

Proposition 2.2.2. Let ρm(ε; f) and ρz(ε; f) be defined in (2.2.7) and (2.2.8), respectively.
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Then

ρm(ε; f) ≤ ωm(ε; f) ≤ 3ρm(ε; f), (2.2.10)

ρz(ε; f) ≤ ωz(ε; f) ≤ 3ρz(ε; f). (2.2.11)

Therefore, through the local moduli of continuity, the hardness of the estimation and infer-

ence tasks are tied to the geometry of the convex function near its minimizer. Note that as

the function gets flatter near its minimizer, ρm(ε; f) decreases while ρz(ε; f) increases. It

is useful to calculate ρm(ε; f) and ρz(ε; f) in a concrete example.

Example 2.2.1. Consider the function f(t) = |t − 1
2 |k where k ≥ 1 is a constant. We will

calculate ρm(ε; f) and then obtain ρz(ε; f) by first computing ‖f − fu‖22 and then setting

it to ε2 to solve for ρm(ε; f).

It is easy to see that in this case ‖f − fu‖22 = 4k2

(2k+1)(k+1) · u
2k+1
k . Setting ‖f − fu‖22 = ε2

yields u =
(

(2k+1)(k+1)
4k2

) k
2k+1

ε
2k

2k+1 . Hence,

ρm(ε; f) =

(
(2k + 1)(k + 1)

4k2

) k
2k+1

ε
2k

2k+1 .

To compute ρz(ε; f), note that f−1(u) = 1
2 ± u

1
k = 1

2 ±
(

(2k+1)(k+1)
4k2

) 1
2k+1

ε
2

2k+1 . Hence

ρz(ε; f) = min

{(
(2k + 1)(k + 1)

4k2

) 1
2k+1

ε
2

2k+1 ,
1

2

}
.

Proposition 2.2.2 then yields tight bounds for the local moduli of continuity ωm(ε; f) and

ωz(ε; f).

Remark 2.2.1. Note that the results obtained in Example 2.2.1 can be extended to a class

of convex functions. For f ∈ F satisfying

0 < lim
t→Z(f)

f(t)−M(f)

|t− Z(f)|k ≤ lim
t→Z(f)

f(t)−M(f)

|t− Z(f)|k <∞
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for some k ≥ 1, it is easy to show that

ωm(ε; f) ∼ ε 2k
2k+1 , ωz(ε; f) ∼ ε 2

2k+1 , as ε→ 0+.

2.2.2. Uncertainty Principle

Section 2.2.1 provides a precise characterization of the four benchmarks under the non-

asymptotic local minimax framework in terms of the local moduli of continuity and the

geometric quantities ρm(ε; f) and ρz(ε; f). These results yield a novel Uncertainty Principle.

Theorem 2.2.2 (Uncertainty Principle). Let Rz(ε; f), Rm(ε; f), Lz,α(ε; f), and Lm,α(ε; f)

be defined as in (2.1.1)–(2.1.5). Let 0 < α < 0.3. Then for any f ∈ F ,

274ε2 > Rz(ε; f) ·Rm(ε; f)2 ≥ Φ(−0.5)3

2
ε2, (2.2.12)

37 · (1− 2α)3ε2 > Lz,α(ε; f) · Lm,α(ε; f)2 ≥ (0.6− 2α)3

18
ε2. (2.2.13)

Note that the bounds in (2.2.12) and (2.2.13) are universal for all f ∈ F and show that

there is a fundamental limit to the accuracy of estimation and inference for the minimizer

and minimum of a convex function. The Uncertainty Principle in Theorem 2.2.2 is akin to

the well-known Heisenberg Uncertainty Principle in physics, which states that a particle’s

location and velocity cannot be determined precisely at the same time. The underlying

reason for the Heisenberg Uncertainty Principle is that the momentum operator for the

velocity and displacement operator for the location are non-commutative. More precisely,

the degree of uncertainty depends on the extent these two operators are related through

the Lie bracket, which can be viewed as a measure of non-commutativity. For details on

the Heisenberg Uncertainty Principle; see, for example, Griffiths and Schroeter (2018).

Our finding here states that the minimizer and the minimum of a convex function cannot

be estimated accurately at the same time. This statistical uncertainty principle comes from

an intrinsic relationship between the two operators Z(·) and M(·): For any convex function
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f ∈ F and any r > 0, there exists g ∈ ∂Br(f) ∩ F such that

|Z(g)− Z(f)| · |M(g)−M(f)|2 ≥ 1

2

(r
ε

)2
· ε2, (2.2.14)

where r/ε = ‖(f − g)/ε‖2 characterizes the probabilistic distance between the two convex

functions f and g under the white noise model. The L2 norm of the difference plays a similar

role to the Lie bracket in the Heisenberg Uncertainty Principle. In both settings, there is

a quantity determining the “entanglement” of two functionals/operators. The difference is

that the “entanglement” for quantum physics is extracted and viewed in quantum sense

while ours is extracted and viewed in probability sense.

Remark 2.2.2. To the best of our knowledge, the uncertainty principles established in this

paper are the first of their kind in nonparametric statistics in that they reveal the fun-

damental tensions between estimation/inference of different quantities. It is shown in the

appendix Section A.3.3 that similar uncertainty principles also hold for certain subclasses

of the convex functions. Note that it is not possible to establish such results using the

conventional minimax analysis where the performance is measured in the worst case over a

large parameter space.

2.2.3. Penalty for Super-efficiency

We have shown that the estimation benchmarks Rz(ε; f) and Rm(ε; f) defined in (2.1.1)

and (2.1.2) can be characterized by the local moduli of continuity. Before we show in

Section 2.3 that these benchmarks are indeed achievable by adaptive procedures, we first

prove that they cannot be essentially outperformed by any estimator uniformly over F . The

benchmarks Rz(ε; f) and Rm(ε; f) play a role analogous to the information lower bound in

the classical statistics.

Theorem 2.2.3 (Penalty for super-efficiency). For any estimator Ẑ, if Ef0 |Ẑ − Z(f0)| ≤
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γRz(ε; f0) for some f0 ∈ F and γ < 0.1, then there exists f1 ∈ F such that

Ef1(|Ẑ − Z(f1)|) ≥ 1

40

(
log

1

γ

)1/3

Rz(ε; f1). (2.2.15)

Similarly, for any estimator M̂ , if Ef0 |M̂ −M(f0)| ≤ γRm(ε; f0) for some f0 ∈ F and

γ < 0.1, then there exists f1 ∈ F such that

Ef1 |M̂ −M(f1)| ≥ 1

8

(
log

1

γ

)1/3

Rm(ε; f1). (2.2.16)

Remark 2.2.3. Theorem 2.2.3 shows that if an estimator of Z(f) or M(f) is super-efficient

at some f0 ∈ F in the sense of outperforming the benchmark by a factor of γ for some small

γ > 0, then it must be sub-efficient at some f1 ∈ F by underperforming the benchmark by

at least a factor of
(

log 1
γ

) 1
3
.

2.3. Adaptive Procedures and Optimality

We now turn to the construction of data-driven and computationally efficient algorithms for

estimation and confidence intervals for the minimizer Z(f) and minimum M(f) under the

white noise model. The procedures are shown to be adaptive to each individual function

f ∈ F in the sense that they simultaneously achieve, up to a universal constant, the

corresponding benchmarks Rz(ε; f), Rm(ε; f), Lz,α(ε; f), and Lm,α(ε; f) for all f ∈ F .

These results are much stronger than what can be obtained from a conventional minimax

analysis.

2.3.1. The Construction

There are three main building blocks in the construction of the estimators and confidence

intervals: Localization, stopping, and estimation/inference.

In the localization step, we begin with the initial interval [0, 1]. Then, iteratively, we halve
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the intervals and select one halved interval. The candidate-halved-intervals for selection

are the two resulting sub-intervals of the previously selected interval and one neighboring

halved interval, when such an interval exists, on each side. The selection rule is to choose

the one with the smallest integral of the white noise process over it. See Figure 2.2 for an

illustration of the localization step.

îj
level j

possible locations for îj

îj−1
level j − 1

tj,̂ij−1−2 tj,̂ij−1−1 tj,̂ij−1
tj,̂ij−1+1

Figure 2.2: Illustration of the localization step. At level j, the middle two intervals are the
two subintervals of the selected interval at level j − 1. One adjacent interval of the same
length on each side is added and the interval at level j is selected among these four intervals.

The second step of the construction is the stopping rule. The localization step is iterative,

so one needs to determine when there is no further gain and stop the iteration. The integral

over each selected interval is a random variable and can be viewed as an estimate of the

minimum times the length of the interval. The intuition is that, as the iteration progresses,

the bias decreases and the variance increases. As shown in Figure 2.3, the basic idea is to

use the differences of the integrals over the two neighboring intervals 5 blocks away from

the current designated interval, when such intervals exist, on both sides. If either of the

differences is smaller than 2 standard deviations, then the iteration stops.
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the iteration. The integral over each selected interval is a random variable
and can be viewed as an estimate of the minimizer times the length of the
interval. The intuition is that, as the iteration progresses, the bias decreases
and the variance increases. As shown in Figure 3, the basic idea is to use the
di↵erences of the integrals of two neighboring intervals 5 blocks away from
the current designated interval on both sides (when exist). If either of the
di↵erences is smaller than 2 standard deviations, then the iteration stops.

îj � 6

îj � 5

îj

îj + 5

îj + 6
level j

Fig 3. Illustration of thee stopping rule. Can we put the labels îj � 6 and îj +6 under the
line so that it doesn’t read like îj � 6̂ij �5? Also, it’s helpful if the font is large and darker.
We can also remove one subinterval from the left and 2 subintervals from the right.

After selecting the subinterval, the final step in the construction is the
estimation/inference for both minimum and minimizer, which will be de-
scribed separately later. The detailed construction is given as follows.

3.1.1. Sample Splitting. For technical reasons, we split the data into
three independent pieces to ensure independence of the data used in the
three steps of the construction. This is done as follows.

Let B1(t) and B2(t) be two independent standard Brownian motions, both
being independent of the observed data Y . Let

Yl(t) = Y (t) +

p
2

2
"B1(t) +

p
6

2
"B2(t),

Ys(t) = Y (t) +

p
2

2
"B1(t)�

p
6

2
"B2(t),

Ye(t) = Y (t)�
p

2"B1(t).

(3.1)

Then Yl(·), Ys(·) and Ye(·) are independent and can write

dYl(t) = f(t)dt +
p

3"dW1(t),

dYs(t) = f(t)dt +
p

3"dW2(t),

dYe(t) = f(t)dt +
p

3"dW3(t),

(3.2)

where W1, W2 and W3 are independent standard Brownian motions.

Figure 2.3: Illustration of the stopping rule.

After selecting the final subinterval, the last step in the construction is the estimation/inference

for both the minimum and minimizer, which will be described separately later. The detailed

construction is given as follows.
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Sample Splitting

For technical reasons, we split the data into three independent pieces to ensure independence

of the data used in the three steps of the construction. This is done as follows.

Let B1(t) and B2(t) be two independent standard Brownian motions, and both be indepen-

dent of the observed data Y . Let

Yl(t) = Y (t) +

√
2

2
εB1(t) +

√
6

2
εB2(t),

Ys(t) = Y (t) +

√
2

2
εB1(t)−

√
6

2
εB2(t),

Ye(t) = Y (t)−
√

2εB1(t).

(2.3.1)

Then Yl(·), Ys(·) and Ye(·) are independent and can be written as

dYl(t) = f(t)dt+
√

3εdW1(t),

dYs(t) = f(t)dt+
√

3εdW2(t),

dYe(t) = f(t)dt+
√

3εdW3(t),

(2.3.2)

where W1, W2 and W3 are independent standard Brownian motions.

We now have three independent copies: Yl is used for localization, Ys for stopping, and Ye

for the construction of the final estimator and confidence interval for the minimum.

Remark 2.3.1. If one is only interested in estimation and inference for the minimizer, the

copy Ye is not needed, and it suffices to split into two independent copies with smaller

variance and thus leads to slightly better performance. Another point is that, although

here the three processes Yl, Ys, and Ye are made to have the same noise level, it is not

necessary for the noise levels to be the same. For the simplicity and ease of presentation,

we split the original sample into three independent and homoskedastic copies for estimation

and inference for both the minimizer and minimum.
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Localization

For j = 0, 1, . . . , and i = 0, 1, . . . , 2j , let

mj = 2−j , tj,i = i ·mj , and i∗j = max{i : Z(f) ∈ [tj,i−1, tj,i]}. (2.3.3)

That is, at level j for j = 0, 1, . . . , the i∗j -th subinterval is the one containing the minimizer

Z(f). For j = 0, 1, . . . , and i = 1, 2, . . . , 2j , define

Xj,i =

∫ tj,i

tj,i−1

dYl(t),

where Yl is one of the three independent copies constructed above through sample splitting.

For convenience, we define Xj,i = +∞ for j = 0, 1, . . . , and i ∈ Z \ {1, 2, . . . , 2j}.

Let î0 = 1 and for j = 1, 2, . . . , let

îj = arg min
2̂ij−1−2≤i≤2̂ij−1+1

Xj,i.

Note that given the value of îj−1 at level j − 1, in the next iteration the procedure halves

the interval [t̂ij−1−1, t̂ij−1
] into two subintervals and selects the interval [t̂ij−1, t̂ij ] at level j

from these and their immediate neighboring subintervals. So i only ranges over 4 possible

values at level j. See Figure 2.2 for an illustration.

Stopping Rule

It is necessary to have a stopping rule to select a final subinterval constructed in the local-

ization iterations. We use another independent copy Ys constructed in the sample splitting

step to devise a stopping rule. For j = 0, 1, . . . , and i = 1, 2, . . . , 2j , let

X̃j,i =

∫ tj,i

tj,i−1

dYs(t).
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Again, for convenience, we define X̃j,i = +∞ for j = 0, 1, . . . , and i ∈ Z \ {1, 2, . . . , 2j}. Let

the statistic Tj be defined as

Tj = min{X̃j,̂ij+6 − X̃j,̂ij+5, X̃j,̂ij−6 − X̃j,̂ij−5},

where we use the convention +∞− x = +∞ and min{+∞, x} = x, for any −∞ ≤ x ≤ ∞.

The stopping rule is based on the value of Tj . It is helpful to provide some intuition before

formally defining the stopping rule. Intuitively, the algorithm should stop at a place where

the signal to noise ratio of Tj is small or where the signal is negative. Let σ2
j = 6mjε

2. It

is easy to see that, when X̃j,̂ij+6 − X̃j,̂ij+5 <∞,

X̃j,̂ij+6 − X̃j,̂ij+5

∣∣̂ij ∼ N
∫ tj,̂ij+6

tj,̂ij+5

(f(t+mj)− f(t)) dt, σ2
j

 . (2.3.4)

Note that the standard deviation σj decreases at the rate 1√
2

as j increases. We now turn

to the mean of X̃j,̂ij+6 − X̃j,̂ij+5 |̂ij . Recall the notation introduced in (2.3.3). It is easy to

see that the algorithm should stop as soon as
∫ tj,̂ij+6

tj,̂ij+5
(f(t+mj)− f(t)) dt turns negative,

since for any îj , if
∫ tj,̂ij+6

tj,̂ij+5
(f(t+mj)− f(t)) dt < 0, then |̂ij − i∗j | ≥ 5 and consequently

|̂ij1 − i∗j1 | ≥ 5 for any j1 ≥ j. When
∫ tj,̂ij+6

tj,̂ij+5
(f(t+mj)− f(t)) dt is positive, a careful

analysis in the proof shows that it shrinks at a rate faster than or equal to 1
4 as j increases.

Analogous results hold for X̃j,̂ij−6 − X̃j,̂ij−5

∣∣̂ij .
Finally, the iterations stop at level ĵ where

ĵ = min{j :
Tj
σj
≤ 2}.

The subinterval containing the minimizer Z(f) is localized to be [tĵ ,̂iĵ−1, tĵ ,̂iĵ
].
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Estimation and Inference

After the final subinterval [tĵ ,̂iĵ−1, tĵ ,̂iĵ
] is obtained, we then use it to construct estimators

and confidence intervals for Z(f) andM(f). We begin with the minimizer Z(f). The

estimator of Z(f) is given by the midpoint of the interval [tĵ ,̂iĵ−1, tĵ ,̂iĵ
], i.e.,

Ẑ =
tĵ ,̂iĵ

+ tĵ ,̂iĵ−1

2
. (2.3.5)

To construct the confidence interval for Z(f), one needs to take a few steps to the left and

to the right at level ĵ. Let Kα = d logα
log Φ(−2)e and define

L = max{0, îĵ − 12× 2Kα + 1}, U = min{2ĵ , îĵ + 12× 2Kα − 2}.

The 1− α confidence interval for Z(f) is given by

CIz,α = [tĵ,L, tĵ,U ]. (2.3.6)

For estimation of and confidence interval for the minimum M(f), define

X̄j,i =

∫ tj,i

tj,i−1

Ye(t)dt.

Let ĩĵ = îĵ + 2
(
1{X̃ĵ ,̂iĵ+6 − X̃j,̂iĵ+5 ≤ 2σj} − 1{X̃ĵ ,̂iĵ−6 − X̃j,̂iĵ−5 ≤ 2σj}

)
and define the

final estimator of the minimum M(f) by

M̂ =
1

mĵ

X̄ĵ ,̃iĵ
. (2.3.7)

We now turn to the inference for M(f). Recall that Kα = d logα
log Φ(−2)e. Compared with the

confidence interval for the minimizer, we take four more blocks on each side at the level
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(ĵ −Kα
4
− 1)+. More specifically, we define

tL = t(ĵ−Kα
4
−1)+ ,̂i(ĵ−Kα

4
−1)+

−5, tR = t(ĵ−Kα
4
−1)+ ,̂i(ĵ−Kα

4
−1)+

+4.

Set

K̃α = max{4, 2 + dlog2 (2 + zα/3)e}. (2.3.8)

Note that the indices of the intervals with tL and tR being the right end points at level

ĵ + K̃α
4

are, respectively,

iL = tL · 2ĵ+K̃α
4 and iR = tR · 2ĵ+K̃α

4 .

Note also that iR − iL = 9× 2
1+K̃α

4
+Kα

4 , which only depends on α. Define an intermediate

estimator of the minimum M(f) by

f̂1 =
1

mĵ+K̃α
4

min
iL<i≤iR

X̄ĵ+K̃α
4
,i.

Let Fn be the cumulative distribution function of ṽn = max{v1, . . . , vn}, where v1, . . . , vn
i.i.d∼

N(0, 1), and define

Sn,β = F−1
n (1− β). (2.3.9)

In other words, Sn,β is the (1 − β) quantile of the distribution of the maximum of n i.i.d.

standard normal variables. Let

flo = f̂1 − zα/4
√

3ε√
mĵ+K̃α

4

−
√

3ε√
mĵ+K̃α

4

, fhi = f̂1 + SiR−iL,α4 ·
√

3ε√
mĵ+K̃α

4

.

Then the (1− α) level confidence interval for M(f) is defined as

CIm,α = [flo, fhi]. (2.3.10)
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2.3.2. Statistical Optimality

Now we establish the optimality of the adaptive procedures constructed in Section 2.3.1.

The results show that the data-driven estimators and the confidence intervals achieves

within a constant factor of their corresponding benchmarks simultaneously for all f ∈ F .

We begin with the estimator of the minimizer.

Theorem 2.3.1 (Estimation of Minimizer). The estimator Ẑ defined in (2.3.5) satisfies

Ef |Ẑ − Z(f)| < 35ρz(ε; f) ≤ CzRz(ε; f), for all f ∈ F ,

where Cz > 0 is an absolute constant.

The following result holds for the confidence interval CIz,α.

Theorem 2.3.2 (Confidence Interval for the Minimizer). Let 0 < α < 0.3. The confidence

interval CIz,α given in (2.3.6) is a (1− α) level confidence interval for the minimizer Z(f)

and its expected length satisfies

EfL(CIz,α) ≤ (24× 2Kα − 3)× 17.5× ρz(ε; f) ≤ Cz,αLz,α(ε; f), for all f ∈ F ,

where Kα = d logα
log Φ(−2)e and Cz,α is a constant depending on α only.

Similarly, the estimator and confidence interval for the minimum M(f) are within a constant

factor of the benchmarks simultaneously for all f ∈ F .

Theorem 2.3.3 (Estimation of Minimum). The estimator M̂ defined in (2.3.7) satisfies

Ef |M̂ −M(f)| < 449ρm(ε; f) ≤ CmRm(ε; f), for all f ∈ F ,

where Cm > 0 is an absolute constant.

Theorem 2.3.4 (Confidence Interval for the Minimum). The confidence interval CIm,α

given in (2.3.10) is a (1−α) confidence interval for the minimum M(f) and when 0 < α <
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0.3, its expected length satisfies

EfL(CIm,α) ≤ cm,αρm(ε; f) ≤ Cm,αLm,α(ε; f), for all f ∈ F ,

where cm,α and Cm,α are constants depending on α only.

2.4. Nonparametric Regression

We have so far focused on the white noise model. The procedures and results presented in

the previous sections can be extended to nonparametric regression, where we observe

yi = f(xi) + σzi, i = 0, 1, 2, · · · , n, (2.4.1)

with xi = i
n , and zi

i.i.d∼ N(0, 1). The noise level σ is assumed to be known. The tasks are

the same as before: construct optimal estimators and confidence intervals for the minimizer

and minimum of f ∈ F .

2.4.1. Benchmarks and Discretization Errors

Analogous to the benchmarks for the white noise model defined in Equations (2.1.1), (2.1.2),

(2.1.4), (2.1.5), we define similar benchmarks for the nonparametric regression model (2.4.1)

with n+ 1 equally spaced observations. Denote by Iz,α,n(F) and Im,α,n(F) respectively the

collections of (1 − α) level confidence intervals for Z(f) and M(f) on a function class F

under the regression model (2.4.1) and let

R̃z,n(σ; f) = sup
g∈F

inf
Ẑ

max
h∈{f,g}

Eh|Ẑ − Z(h)|,

R̃m,n(σ; f) = sup
g∈F

inf
M̂

max
h∈{f,g}

Eh|M̂ −M(h)|,

L̃z,α,n(σ; f) = sup
g∈F

inf
CI∈Iz,α,n({f,g})

EfL(CI),

L̃m,α,n(σ; f) = sup
g∈F

inf
CI∈Im,α,n({f,g})

EfL(CI).

(2.4.2)
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Compared with the white noise model, estimation and inference for both Z(f) and M(f)

incur additional discretization errors, even in the noiseless case. See the appendix Section

A.1.9 for further discussion.

2.4.2. Data-driven Procedures

Similar to the white noise model, we first split the data into three independent copies and

then construct the estimators and confidence intervals for Z(f) and M(f) in three major

steps: localization, stopping, and estimation/inference.

Data Splitting

Let z1,0, z1,1, · · · , z1,n, z2,0, z2,1, · · · , z2,n be i.i.d. standard normal random variables, and all

be independent of the observed data {y1, ..., yn}. We construct the following three sequences:

yl,i = yi +

√
2

2
σz1,i +

√
6

2
σz2,i,

ys,i = yi +

√
2

2
σz1,i −

√
6

2
σz2,i,

ye,i = yi −
√

2σz1,i,

(2.4.3)

for i = 0, · · · , n. For convenience, let yl,i = ys,i = ye,i = ∞ for i 6∈ {0, 1, · · · , n}. It is

easy to see that these random variables are all independent with the same variance 3σ2 for

i ∈ {0, 1, · · · , n}. We will use {yl,i} for localization, {ys,i} for devising the stopping rule,

and {ye,i} for constructing the final estimation and inference procedures.

Let J = blog2(n + 1)c. For j = 0, 1, · · · , J , i = 1, 2, · · · , b n+1
2J−j−1 c, the i-th block at level j

consists of {x(i−1)2J−j , x(i−1)2J−j+1, · · · , xi·2J−j−1}. Denote the sum of the observations in

the i-th block at level j for the sequence u (u = l, s, e) as

Yj,i,u =
i·2J−j−1∑

k=(i−1)2J−j

yu,k, for u = l, s, e.
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Again, let Yj,i,u = +∞ when i ∈ Z\{1, 2, · · · , b n+1
2J−j−1 c}, for u = l, s, e.

Localization

We now use {yl,i, i = 0, · · · , n} to construct a localization procedure. Let î0 = 1, and for

j = 1, 2, · · · , J , let

îj = arg min
max{2îj−1−2,1}≤i≤min{2îj−1+1,b n+1

2J−j
c}
Yj,i,l.

This is similar to the localization step in the white noise model. In each iteration, the

blocks at the previous level are split into two sub-blocks. The i-th block at level j − 1 is

split into two blocks, the (2i− 1)-st block and 2i-th block, at level j. For a given îj−1, îj

is the subblock with the smallest sum among the two subblocks of (j − 1)-level-block îj−1

and their immediate neighboring subblocks.

Stopping Rule

Similar to the stopping rule for the white noise model, define the statistic Tj as

Tj = min{Yj,îj+6,s − Yj,îj+5,s, Yj,îj−6,s − Yj,îj−5,s}.

Let σ̃2
j = 6× 2J−jσ2. It is easy to see that when Yj,îj+6,s − Yj,îj+5,s <∞,

Yj,îj+6,s − Yj,îj+5,s|îj ∼ N(

(îj+5)2J−j−1∑
k=(îj+4)2J−j

f(xk+2J−j )− f(xk), σ̃
2
j ). (2.4.4)

Define

ǰ =

 min{j : Tj ≤ 2σ̃j} if {j : Tj ≤ 2σ̃j} ∩ {0, 1, 2, · · · , J} 6= ∅

∞ otherwise

and terminate the algorithm at level ĵ = min{J, ǰ}. So, either Tj triggers the stopping rule
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for some 0 ≤ j ≤ J or the algorithm reaches the highest possible level J .

With the localization strategy and the stopping rule, the final block, the îĵ-th block at level

ĵ, is given by {xk : (îĵ − 1)2J−ĵ ≤ k ≤ îĵ2
J−ĵ − 1}.

Estimation and Inference

After we have our final block, îĵ-th block at level ĵ, we use it to construct estimators and

confidence intervals for the minimizer Z(f) and the minimum M(f). We start with the

estimation of Z(f). The estimator of Z(f) is given as follows:

Ẑ =


− 1

2n
+

1

n
(2J−ĵîĵ − 2J−ĵ−1), ǰ <∞

1

n
arg min

îĵ−2≤i≤îĵ+2
ye,i−1 −

1

n
, ǰ =∞

(2.4.5)

To construct the confidence interval for Z(f), we take a few adjacent blocks to the left and

right of îĵ-th block at level ĵ. Let

L = max{0, îĵ − 12× 2Kα/2 + 1} and U = min{d(n+ 1)2ĵ−Je, îĵ + 12× 2Kα/2 − 2}.

When ǰ <∞, let

tlo =
2J−ĵ

n
L− 1

2n
and thi =

2J−ĵ

n
U− 1

2n
.

When ǰ = ∞, tlo and thi are calculated by the following Algorithm 1. Note that ǰ = ∞

means that the procedure is forced to end and the discretization error can be dominant.

Algorithm 1 first iteratively shrinks the original interval [tlo− 1
n , thi+

1
n ] to find the minimizer

im
n of the function f among the n+1 sample points with high probability. In each iteration,

the algorithm tests whether the slopes of the segments on both ends are positive or negative.

It shrinks the left end with negative slope (on the left), or shrinks the right end with positive

slope (on the right), or stops if no further shrinking is needed on either side.
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Note that the minimizer of any convex function with given values at these n + 1 points is

smaller than the intersection of the following two lines:

y = f(
im
n

) and y =
f( im+2

n )− f( im+1
n )

1/n
(t− im + 1

n
) + f(

im + 1

n
). (2.4.6)

Note that these two lines are determined by f( imn ), f( im+1
n ) and f( im+2

n ) only. Given the

noisy observations at these three points, im
n , im+1

n , and im+2
n , the range of these two lines

and the intersection can be inferred, and the right side of the interval can then be shrunk

accordingly.

Same is done for the left side of the confidence interval. In addition, boundary cases and

other complications need to be considered, which are handled in Algorithm 1.

Note that our construction and the theoretical results only rely on convexity. In particular,

the existence of second order derivative is not needed as it is commonly assumed in the

literature. This is an important contributing factor to optimality under the non-asymptotic

local minimax framework.
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Algorithm 1 Computing tlo and thi when ǰ =∞
L← max{1, îĵ−12×2Kα/2}−1 , U ← min{n+1, îĵ+12×2Kα/2}−1, α1 ← α

8 , α2 = α/24

Generate z3,0, z3,1 · · · , z3,n
i.i.d.∼ N(0, 1)

il ← min{{U} ∪ {i ∈ [L,U − 1] : ye,i +
√

3σz3,i − (ye,i+1 +
√

3σz3,i+1) ≤ 2
√

3σzα1}}
ir ← max{{L− 1}∪{i ∈ [L,U − 1] : ye,i +

√
3σz3,i− (ye,i+1 +

√
3σz3,i+1) ≥ −2

√
3σzα1}}

if il = U then
if il = n and ye,n−2 − ye,n−1 −

√
3σ(z3,n−2 − z3,n−1) + 2

√
6σzα2 > 0 then

tlo ←
(

(− ye,n−ye,n−1−
√

3σ(z3,n−z3,n−1)+2
√

6σzα2

n(ye,n−2−ye,n−1−
√

3σ(z3,n−2−z3,n−1)+2
√

6σzα2 )
+ n−1

n ) ∨ n−1
n

)
∧ n
n , thi ← 1

else
tlo = thi = U/n

end if
end if
if ir = L− 1 then

if ir = −1 and ye,2 − ye,1 −
√

3σ(z3,2 − z3,1) + 2
√

6σzα2 > 0 then

thi ←
(

(
ye,0 − ye,1 −

√
3σ(z3,0 − z3,1) + 2

√
6σzα2

n(ye,2 − ye,1 −
√

3σ(z3,2 − z3,1) + 2
√

6σzα2)
+

1

n
) ∨ 0

n

)
∧ 1

n
, tlo = 0

else
tlo = thi = 0

end if
end if
if (il − U)(ir − L+ 1) 6= 0 then
ilo ← (il − 1) ∨ L, ihi ← (ir + 2) ∧ U
if ihi − ilo ≥ 3 or (ihi − n)ilo = 0 then
tlo = ilo/n, thi = ihi/n

else if ye,ihi+1 − ye,ihi −
√

3σ(z3,ihi+1 − z3,ihi) ≤ −2
√

6σzα2 or ye,ilo−1 − ye,ilo −√
3σ(z3,ilo−1 − z3,ilo) ≤ −2

√
6σzα2 then

tlo = thi = (ihi + ilo)/2n
else

thi ←
(

(
ye,ihi−1 − ye,ihi −

√
3σ(z3,ihi−1 − z3,ihi) + 2

√
6σzα2

n(ye,ihi+1 − ye,ihi −
√

3σ(z3,ihi+1 − z3,ihi) + 2
√

6σzα2)
+
ihi
n

) ∨ ihi − 1

n

)
∧ ihi
n

tlo ←
(

(− ye,ilo+1 − ye,ilo −
√

3σ(z3,ilo+1 − z3,ilo) + 2
√

6σzα2

n(ye,ilo−1 − ye,ilo −
√

3σ(z3,ilo−1 − z3,ilo) + 2
√

6σzα2)
+
ilo
n

) ∨ ilo
n

)
∧ ilo + 1

n

end if
end if

The (1− α)-level confidence interval for the minimizer Z(f) is given by

CIz,α = [tlo ∧ thi, thi] (2.4.7)

We now construct the estimator and confidence interval for the minimum M(f). Let ∆ =
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1{Yĵ,îĵ+6,s − Yĵ,îĵ+5,s ≤ 2
√

6σ
√

2J−ĵ} − 1{Yĵ,îĵ−6,s − Yĵ,îĵ−5,s ≤ 2
√

6σ
√

2J−ĵ} and define

ĩĵ =

 îĵ + 2∆ if ǰ <∞

arg minîĵ−2≤i≤îĵ+2 ye,i−1 if ǰ =∞
. (2.4.8)

The estimator of M(f) is then given by the average of the observations of the copy for

estimation and inference in the ĩĵ-th block at level ĵ,

M̂ =
1

2J−ĵ
Yĵ,ĩĵ,e. (2.4.9)

To construct the confidence interval for M(f), we specify two levels js and jl, with

js = max{0, ĵ−Kα
4
− 1} and jl = min{J, ĵ + K̃α

4
},

where K̃α
4

is defined as in Equation (2.3.8). It will be shown that at level js, Z(f) is

within four blocks of the chosen block with probability at least 1− α
4 , and at level jl, with

probability at least 1− α
4 , the length of the block is no larger than ρz(

σ√
n

; f). Define

Ilo = max{1, 2jl−js(îjs − 5)}, Ihi = min{2jl−js(îjs + 4) + 1, dn+ 1

2J−jl
e}.

It can be shown that the minimizer Z(f) lies with high probability in the interval

[
2J−jl(Ilo − 1)

n
,
2J−jlIhi − 1

n
] ∩ [0, 1].

Define an intermediate estimator for M(f) by

f̂1 = min
Ilo≤i≤Ihi

1

2J−jl
Yjl,i,e.

Let

fhi = f̂1 + SIhi−Ilo+1,α
4

√
3σ√

2J−jl
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where Sn,β is defined in Equation (2.3.9) in Section 2.3. This is the upper limit of the

confidence interval, now we define the lower limit flo.

When ĵ + K̃α
4
≤ J , let

flo = f̂1 − (zα/4 + 1)

√
3σ√

2J−jl
.

When ĵ + K̃α
4
> J , we compute flo by Algorithm 2, which is based on the geometric

property of the convex function f that for any 1 ≤ k ≤ n− 2,

min{f(xk), f(xk+1)} ≥ inf
t∈[ k

n
, k+1
n

]
max

{
f(xk+2)− f(xk+1)

1/n
(t− xk+1) + f(xk+1),

f(xk)− f(xk−1)

1/n
(t− xk) + f(xk)

}
.

Algorithm 2 Computing flo when ĵ + K̃α
4
> J

H ← SIhi−Ilo+3, 1
8

√
3σ, kl ← Ilo − 1, kr ← Ihi − 2

if Ilo = 1 then
vr,0(t)← ye,2−ye,1+2H

1/n (t− 1/n) + ye,1 −H,h(0)← mint∈[0,1/n] vr,0(t), kl ← Ilo
end if
if Ihi − 1 = n then
vl,n−1(t) ← ye,n−1−ye,n−2−2H

1/n (t − n−1
n ) + ye,n−1 − H, h(n − 1) = mint∈[n−1

n
,1] vl,n−1(t),

kr ← Ihi − 3
end if
for i = kl, · · · , kr do

Define two linear functions:
vl,i(t) =

ye,i−ye,i−1−2H
1/n (t− xi) + ye,i −H , vr,i =

ye,i+2−ye,i+1+2H
1/n (t− xi+1) + ye,i+1 −H

h(i) = mint∈[xi,xi+1] max{vl,i(t), vr,i(t)}
end for
flo ← min{h(i) : Ilo − 1 ≤ i ≤ Ihi − 2} ∧ fhi

Note that h(i) in Algorithm 2 is derived from one or two linear functions, so given the

relationship of the function values at two end points of the corresponding interval, it has

an explicit form. Hence the procedure is still computationally efficient.

The (1− α)-level confidence interval for the minimum M(f) is given by

CIm,α = [flo, fhi]. (2.4.10)
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Remark 2.4.1. As mentioned in the introduction, Agarwal et al. (2011) proposes an algo-

rithm for stochastic convex optimization with bandit feedback. While both our procedures

and the method in Agarwal et al. (2011) include an ingredient trying to localize the mini-

mizer through shrinking intervals by exploiting the convexity of the underlying function, the

two methods are essentially different due to the significant differences in both the designs

and loss functions. The goal of exploiting convexity in Agarwal et al. (2011) is mainly for

deciding the direction of shrinking their intervals, while ours is mainly for deciding when to

stop and what to do after stopping.

2.4.3. Statistical Optimality

Now we establish the optimality of the adaptive procedures constructed in Section 2.4.2.

The regression model is similar to the white noise model, but with additional discretization

errors. The results show that our data-driven procedures are simultaneously optimal (up

to a constant factor) for all f ∈ F . We begin with the estimator of the minimizer.

Theorem 2.4.1 (Estimation of the Minimizer). The estimator Ẑ of the minimizer Z(f)

defined in (2.4.5) satisfies

Ef |Ẑ − Z(f)| ≤ C1R̃z,n(σ; f), for all f ∈ F , (2.4.11)

where C1 > 0 is an absolute constant.

The following result holds for the confidence interval CIz,α of Z(f).

Theorem 2.4.2. Let 0 < α < 0.3. The confidence interval CIz,α given in (2.4.7) is a

(1− α)-level confidence interval for the minimizer Z(f) and its expected length satisfies

EfL(CIz,α) ≤ C2,αL̃z,α,n(σ; f), for all f ∈ F ,

where C2,α is a constant depending on α only.

Similarly, the estimator and confidence interval for the minimum M(f) are within a constant
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factor of the benchmarks simultaneously for all f ∈ F .

Theorem 2.4.3 (estimation for the minimum). The estimator M̂ defined in (2.4.9) satisfies

Ef |M̂ −M(f)| ≤ C3R̃m,n(σ; f), for all f ∈ F ,

where C3 is an absolute constant.

Theorem 2.4.4. Let 0 < α < 0.3. The confidence interval CIm,α given in (2.4.10) is a

(1− α)-level confidence interval and its expected length satisfies

EfL(CIm,α) ≤ C4,αL̃m,α,n(σ; f), for all f ∈ F ,

where C4,α is a constant depending only on α.

2.4.4. Comparison with constrained least squares methods

The convexity-constrained least squares (CLS) estimator is perhaps the most commonly

used method for estimating a convex regression function globally. Estimation and inference

methods for the minimizer based on the CLS estimator have been proposed and investigated

in the literature (e.g., Shoung et al. (2001); Ghosal and Sen (2017); Deng et al. (2020)).

Theoretical analyses typically assume that the second or higher order derivatives exist with

an even order derivative being positive and all lower order derivatives being zero at the

minimizer. It is unclear how the CLS estimator behaves under our nonasymptotic framework

or even asymptotically in general when the underlying convex function is nonsmooth at the

minimizer. As for estimation and inference for the minimum, to the best of our knowledge,

there is no CLS based method with theoretical guarantees.

It is interesting to compare with the CLS confidence interval for the minimizer proposed

in Deng et al. (2020). Let f̂n = minf∈F
∑n

i=1 (yi − f(xi))
2 be the CLS estimator. Let m̂n

be the anti-mode of f̂n, v̂m (resp. ûm) be the first kink of f̂n to the right (resp. left) of

m̂n. Under the assumption that the second order derivative exists and is positive around
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the minimizer, Deng et al. (2020) introduces the following (1−α)-level confidence interval,

CLSCIα = [m̂n ± cmα (v̂m − ûm)] ∩ [0, 1], (2.4.12)

where cmα is a constant depending on α only.

Denote by F2 the collection of convex functions with continuous positive second order

derivative around the minimizer. Deng et al. (2020) shows that the confidence interval

CLSCIα has desired coverage probability asymptotically over F2. The following result

shows that CLSCIα defined in (2.4.12) is sub-optimal under the local minimax framework.

Proposition 2.4.1. For any sample size n ≥ 5,

sup
f∈F2

EfL(CLSCIα)

EfL(CIz,α)
=∞. (2.4.13)

This result shows that for any given n ≥ 5, there exists f ∈ F2 such that the length of the

confidence interval CLSCIα at f is much larger than the length of our proposed confidence

interval CIz,α. The non-asymptotic nature of our framework and the asymptotic nature of

CLSCIα are a key contributing factor to this phenomenon. In the appendix Section A.3.1,

through an example, we intuitively demonstrate the sub-optimality in the construction of

the CLS confidence interval. In short, only looking at the kinks does not fully utilize the

convexity property.

For estimation of the minimizer, all the existing analyses of the CLS estimator are based

on the limiting distribution under strong regularity assumptions. So they are asymptotic in

nature. For example, the rate of convergence of the CLS estimator is n−1/5 for the minimizer

of over the function class F2. It can be shown that our estimator Ẑ of the minimizer

given in (2.4.5) also achieves the same rate over F2. The properties of the CLS estimator

under the non-asymptotic local minimax framework are unclear and difficult to analyze. We

investigate the empirical performance of the CLS estimator through simulations. Simulation

results are summarized in Section 2.4.5, with details given in the appendix Section A.4.
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2.4.5. Numerical Results

The proposed algorithms are easy to implement and computationally fast. We implement

the algorithms in R and the code is available at https://github.com/chenrancece/MMCF.

The data splitting procedure in our proposed algorithm was introduced to create inde-

pendence, which is purely for technical reasons, we also include a variant of our method

without the data splitting step. That is, the original data set is used in the localization,

stopping, and estimation/inference steps. Simulation studies are carried out to investigate

the numerical performance of the proposed algorithms and this non-split variant as well as

make comparisons with the CLS confidence interval CLSCIα in (2.4.12) proposed by Deng

et al. (2020) and the CLS estimator for the minimizer. For reasons of space, we provide

a brief summary of the numerical results here and give the detailed simulation results and

discussions in the appendix Section A.4.

The simulation studies use 10 test functions with different levels of smoothness around the

minimizer, 6 sample sizes ranging from 100 to 50,000, 5 confidence levels for the confidence

intervals, and 100 replications. We compared the proposed methods, their non-split variant,

and the CLS methods in terms of computational time, average absolute error (for the

estimators), and coverage probability and length (for the confidence intervals). We also

investigated the relationship with the benchmarks when the benchmarks can be calculated

explicitly. The results can be summarized as follows.

• Computational cost: Our methods are significantly faster than CLS methods. For

small sample sizes, all methods run relatively fast. For n ≥ 5000, our procedures are

at least 10 times faster than the CLS methods for all functions. In many cases, they

are more than 100 times faster. This gap is further increased as the sample size grows.

• Confidence interval for the minimizer: Our methods achieve the nominal cov-

erage consistently and the empirical lengths are proportional to the benchmark. In

comparison, the coverage probability of CLSCIα can be far below the nominal level
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for a variety of functions, including functions that are not differentiable at the mini-

mizer or have vanishing second order derivative around the minimizer. For piecewise

linear function such as 100 · |2x− 1|, CLSCIα is long and its length remains roughly

a constant as the sample size increases, while the benchmark goes to zero.

• Estimation of the minimizer: The numerical performances of our methods and

the CLS estimator are comparable. Interestingly, in the cases where the benchmarks

can be calculated explicitly, the performance of the CLS estimator relative to the

benchmarks (and our methods) deteriorates with increasing smoothness of the func-

tion around the minimizer, while the performance of our estimator remains steady

relative to the benchmarks.

• Estimation and CI for the minimum: We are unaware of theoretically guaranteed

CLS estimator or confidence interval for the minimum, so we only examined the per-

formance of our methods. The empirical absolute error for estimator and the lengths

of the confidence intervals for the minimum exhibit linear relationship with the cor-

responding benchmarks (when calculable). The nominal coverages of the confidence

intervals are achieved in all the settings.

2.5. Discussion

In this chapter of dissertation, we studied optimal estimation and inference for the mini-

mizer and minimum of a convex function in the white noise and nonparametric regression

models under a non-asymptotic local minimax framework. It is shown in the appendix Sec-

tion A.3.2 the results obtained in this chapter can be readily used to establish the optimal

rates of convergence over the convex smoothness classes under the classical minimax frame-

work: the lower bounds under this framework can be easily transferred into the ones under

the conventional minimax framework and the optimal procedures under this framework is

automatically adaptively optimal under the conventional framework. The converse is not

true: procedures that are minimax optimal in the classical sense can be sub-optimal under
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the local minimax framework.

A key advantage of our non-asymptotic local minimax framework is that it enables the char-

acterization of the difficulty for estimating individual functions, and makes establishing the

non-supperefficiency type of results conceptually possible. Another significant advantage is

that our framework manifests novel phenomena that cannot be seen in the classical mini-

max theory. The Uncertainty Principle established in this chapter shows the fundamental

tension between the estimation accuracy for the minimizer and that for the minimum of

a convex function. Analogous results also hold for the inference accuracy. It would be in-

teresting to establish uncertainty principles in other statistical problems such as stochastic

optimization with bandit feedback under the shape constraints.

The present work can be extended in different directions. For estimation, the absolute error

was used as the loss function in this chapter of the dissertation. The results can be easily

generalized to the `q loss for q > 1. In this chapter, we focused on the minimizer and

minimum of a univariate convex function. In the next chapter, consider the multivariate

setting with the convexity constraint on individual nonzero components. It would also

be interesting to further extend to the high-dimensional sparse additive model with the

convexity constraint on individual nonzero components. It is also interesting to consider the

extremum under more general shape constraints such as s-convexity. In addition, estimation

and inference for other nonlinear functionals such as the quadratic functional, entropies, and

divergences under a similar non-asymptotic local minimax framework can be studied. We

expect the penalty-of-supperefficiency property to hold in these problems and our approach

to be particularly helpful for the construction of the confidence intervals.

We believe the non-asymptotic local minimax framework is most advantageous when the

difficulty of estimation/inference varies significantly from function to function. Another

important direction is to apply our non-asymptotic local minimax framework to other sta-

tistical models such as estimation and inference the mode and the maximum of a log concave

density function based on i.i.d. observations. We expect similar Uncertainty Principles to
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hold in this problem.

2.6. Proofs

We prove Theorems 2.2.1 and 2.2.2 here. To avoid interrupting the logic flow, other results

are proved in the appendix.

2.6.1. Proof of Theorem 2.2.1

We begin with the lower bounds by first proving that Rz(ε; f) ≥ Φ(−0.5)ωz(ε; f). The

proof for Rm(ε; f) ≥ Φ(−0.5)ωm(ε; f) is analogous and will hence be omitted.

Let f ∈ F . Let g ∈ F , which we will specify later. Take θ ∈ {1,−1} as a parameter to be

estimated and let f1 = f and f−1 = g.

Any estimator Ẑ of the minimizer Z(fθ) gives an estimator of θ by

θ̂ =
Ẑ − Z(f1)+Z(f−1)

2
Z(f1)−Z(f−1)

2

,

and therefore Eθ|Ẑ − Z(fθ)| = |Z(f1) − Z(f−1)|Eθ |θ̂−θ|2 . On the other hand, a sufficient

statistic for θ is given by

W =

∫ 1
0 (f1(t)− f−1(t))dY (t)− 1

2

∫ 1
0 (f1(t)2 − f−1(t)2)dt

ε‖f1 − f−1‖
. (2.6.1)

Let Pθ be the probability measure associated with the white noise model corresponding to

fθ. Then

W ∼ N
(
θ

2
· ‖f1 − f−1‖

ε
, 1

)
under Pθ.

Note that for any ωz(ε; f) > δ > 0 there exists hδ ∈ F such that ‖f − hδ‖2 = ε and that

|Z(f) − Z(hδ)| ≥ ωz(ε; f) − δ, we let g = hδ. Then we have Rz(ε; f) ≥ (ωz(ε; f)− δ) · r1,
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where r1 is the minimax risk of the two-point problem based on an observation X ∼ N( θ2 , 1),

r1 = inf
θ̂

max
θ=±1

Eθ
|θ̂ − θ|

2
.

It is easy to see that r1 = Φ(−0.5). Taking δ → 0+, we have Rz(ε; f) ≥ Φ(−0.5)ωz(ε; f).

So we have a1 ≥ Φ(−0.5) ≈ 0.309.

Next, we show for 0 < α < 0.3 that Lz,α(ε; f) ≥ bαωz(ε/3; f) where bα = 0.6− 2α. A lower

bound for Lm,α(ε; f) can be derived following a similar argument. We begin by recalling a

lemma from Cai and Guo (2017).

Lemma 2.6.1 (Cai and Guo, 2017). For any CI ∈ Iz,α({f, g}),

EfL(CI) ≥ |Z(f)− Z(g)|(1− 2α− TV(Pf , Pg)),

where TV denotes the total variation distance between the two distributions of the white

noise models corresponding to f and g. Similarly, for any CI ∈ Im,α({f, g}),

EfL(CI) ≥ |M(f)−M(g)|(1− 2α− TV(Pf , Pg)).

Again let g ∈ F . Then for CI ∈ Iz,α({f, g}), by Lemma 2.6.1,

EfL(CI) ≥ |Z(f)− Z(g)|(1− 2α− TV(Pf , Pg)).

It is well known that TV(Pf , Pg) ≤
√
χ2(Pf , Pg), where

χ2(Pf , Pg) =

∫ (
dPf
dPg

)2

dPg − 1

is the χ2 distance between Pf and Pg. By Girsanov’s theorem we can obtain the likelihood

ratio

dPf
dPg

= exp

(∫
f(t)− g(t)

ε2
dY (t)− 1

2

∫
f(t)2 − g(t)2

ε2
dt

)
,

40



and hence

χ2(Pf , Pg) =

∫
exp

(
2

∫
f(t)− g(t)

ε2
dY (t)−

∫
f(t)2 − g(t)2

ε2
dt

)
dPg − 1

= exp

(
−‖f − g‖

2

ε2

)
E exp

(
2

∫
f(t)− g(t)

ε
dW (t)

)
− 1

= exp

(‖f − g‖2
ε2

)
− 1.

Using it to bound the total variation distance, we get

EfL(CI) ≥ |Z(f)− Z(g)|
(

1− 2α−
√

exp

(‖f − g‖2
ε2

)
− 1

)
.

We continue by specifying g. For any ωz(ε/3; f) > δ > 0, picking g = gδ ∈ F such that ‖f−

gδ‖ = ε/3 and |Z(f)−Z(gδ)| ≥ ωz(ε/3; f)−δ, we have EfL(CI) ≥ (0.6− 2α) (ωz(ε/3; f)− δ) .

By taking δ → 0+, we have

Lz,α(ε; f) ≥ (0.6− 2α)ωz(ε/3; f).

Now we turn to the upper bounds. We introduce the following two lemmas, one for the

minimum and another for the minimizer, that will be proved later.

Lemma 2.6.2. For 0 < α ≤ 0.3 and any f ∈ F ,

Rm(ε; f) ≤ Amρm(ε; f) ≤ Amωm(ε; f), (2.6.2)

Lm,α(ε; f) ≤ Bm,αρm(ε; f) ≤ Bm,αωm(ε; f), (2.6.3)

where Am = 1.03 and 0 < Bm,α ≤ 3(1− 2α)zα.

Lemma 2.6.3. For 0 < α ≤ 0.3 and any f ∈ F ,

Rz(ε; f) ≤ Azρz(ε; f) ≤ Azωz(ε; f), (2.6.4)

Lz,α(ε; f) ≤ Bz,αρz(ε; f) ≤ Bz,αωz(ε; f), (2.6.5)
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where Az = 1.5 and 0 < Bz,α ≤ 3(1− 2α) min{zα, (2zα)2/3}.

The theorem follows as Bα ≥ max{Bz,α, Bm,α} and A1 ≥ max{Am, Az}.

Proof of Lemma 2.6.2. For any function g ∈ F , define fθ with θ ∈ {−1, 1} and f−1 = f

and f1 = g. Recall that for W defined in (2.6.1), W ∼ N(θ · ‖f1−f−1‖
2ε , 1). Let

M̂ = sign(W ) · M(g)−M(f)

2
+
M(g) +M(f)

2
.

Then Ef (|M̂ −M(f)|) = |M(f)−M(g)|Φ(−‖g−f‖2ε ) = Eg(|M̂ −M(g)|). Therefore,

Rm(ε; f) ≤ sup
g∈F
|M(f)−M(g)|Φ(−‖g − f‖

2ε
)

(i)

≤ sup
c>0

ωm(cε; f)Φ(− c
2

)

(ii)

≤ max{3ρm(ε; f) sup
0<c≤1

c
2
3 Φ(− c

2
), sup
c≥1

ωm(cε; f)Φ(− c
2

)}

(iii)

≤ max{3ρm(ε; f)Φ(−1

2
), sup
c≥1

ωm(cε; f)Φ(− c
2

)},

where (i) is due to the definition of ωm(cε; f) in Equation (2.2.2), (ii) follows from Propo-

sition 2.2.1, (iii) is due to the fact that c
2
3 Φ(− c

2) increases in c ∈ [0, 1]. Furthermore we

have,

sup
c≥1

ωm(cε; f)Φ(− c
2

)}
(iv)

≤ sup
c≥1

3ρm(cε; f)Φ(− c
2

)
(v)

≤ 3ρm(ε; f) · sup
c≥1

cΦ(− c
2

)

(vi)

≤ 3ρm(ε; f)× 0.3423
(vii)

≤ 1.03ωm(ε; f),

where (iv) is due to Proposition 2.2.2, (v) and (vii) are due to Proposition 2.2.1, and

(vi) is due to a bound for supc≥1 cΦ(− c
2), which follows from the elementary inequalities:

Φ(−c/2) ≤ 1
c

√
2
π exp (− c2

8 ) for c > 0; ∂(cΦ(−c/2))
∂c = Φ(−c/2)− c

2

√
1

2π exp (− c2

8 ) < 0 for c > 2;

and supc∈[k/100,(k+1)/100] cΦ(−c/2) ≤ 0.01(k+1)Φ(−0.01×k/2) for k = {100, 101, · · · , 200}.

Therefore, we can take Am = max{3Φ(−1/2), 1.03} = 1.03.
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For inference of the minimum, consider the following confidence interval:

CIm,α =


{M(f)} W < −zα + ‖f−g‖

2ε

{M(g)} W ≥ (zα − ‖f−g‖2ε ) ∨ (−zα + ‖f−g‖
2ε )

[M(f) ∧M(g),M(f) ∨M(g)] otherwise

.

Clearly, we have Pf (M(f) /∈ CIm,α) ≤ α and Pg(M(g) /∈ CIm,α) ≤ α. Note that for

θ ∈ {0, 1},

EfθL(CIm,α) ≤ |M(f)−M(g)|Pfθ(−zα + 0.5
‖f − g‖

ε
≤W < zα − 0.5

‖f − g‖
ε

)

≤ |M(f)−M(g)|(Φ(zα −
‖f − g‖

ε
)− α)+.

Therefore, it follows from Proposition 2.2.1 that

Lm,α(ε; f) ≤ sup
g∈F
|M(f)−M(g)|(Φ(zα −

‖f − g‖
ε

)− α)+

≤ sup
c>0

ωm(cε; f)(Φ(zα − c)− α)+

≤ max{ωm(ε; f)(Φ(zα)− α)+, sup
c>1

ωm(cε; f)(Φ(zα − c)− α)+}

= max{ωm(ε; f)(1− 2α), sup
c>1

ωm(cε; f)(Φ(zα − c)− α)+}.

Further, recalling α < 0.3, we have 2zα > 1, thus

sup
c>1

ωm(cε; f)(Φ(zα − c)− α)+ ≤ sup
c>1

3ρm(cε; f)(Φ(zα − c)− α)+

≤ 3ρm(ε; f) sup
c>1

c(Φ(zα − c)− α)+ = 3ρm(ε; f) sup
2zα>c>1

c(Φ(zα − c)− α)

(viii)

≤ 3ρm(ε; f) [(1− 2α)zα1{zα ≥ 1}+ (0.5− α) · 2zα1{zα < 1}]

≤ 3ωm(ε; f)(1− 2α)zα,

where (viii) follows from supc∈[A,B] c(Φ(zα − c)− α) ≤ B(Φ(zα − A)− α) for any 1 ≤ A ≤
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B ≤ 2zα. In conclusion,

Lm,α(ε; f) ≤ 3(1− 2α)zαρm(ε; f) ≤ 3(1− 2α)zαωm(ε; f).

Proof of Lemma 2.6.3. For any g ∈ F , consider fθ with θ ∈ {−1, 1}, f−1 = f and f1 = g.

Recall that for W defined in (2.6.1), W ∼ N(θ · ‖f1−f−1‖
2ε , 1). Let

Ẑ = sign(W ) · Z(g)− Z(f)

2
+
Z(g) + Z(f)

2
.

Then Ef (|Ẑ − Z(f)|) = |Z(f)− Z(g)|Φ(−‖g−f‖2ε ) = Eg(|Ẑ − Z(g)|). Therefore,

Rz(ε; f) ≤ sup
g∈F
|Z(f)− Z(g)|Φ(−‖g − f‖

2ε
) ≤ sup

c>0
ωz(cε; f)Φ(− c

2
)

≤ max{0.5ωz(ε; f), sup
c≥1

ωz(cε; f)Φ(− c
2

)}.
(2.6.6)

In addition,

sup
c≥1

ωz(cε; f)Φ(− c
2

)} ≤ sup
c≥1

3ρz(cε; f)Φ(− c
2

)

≤ 3 sup
c≥1

min{c, (2c) 2
3 }ρz(ε; f)Φ(− c

2
) ≤ 1.03ρz(ε; f).

(2.6.7)

Inequalities (2.6.7) and (2.6.6) together with Proposition 2.2.1 show that we can take Az =

1.5.

For inference of the minimizer, let

CIz,α =


{Z(f)} W < −zα + 0.5‖f−g‖ε

{Z(g)} W ≥ (zα − ‖f−g‖2ε ) ∨ (−zα + ‖f−g‖
2ε )

[Z(f) ∧ Z(g), Z(f) ∨ Z(g)] otherwise

.
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Clearly, we have Pf (Z(f) /∈ CIz,α) ≤ α, Pg(Z(g) /∈ CIz,α) ≤ α. For the expected length,

similar to the proof for Lemma 2.6.2, we have for θ ∈ {−1, 1},

EfθL(CIz,α) ≤ |Z(f)− Z(g)|(Φ(zα −
‖f − g‖

ε
)− α)+. (2.6.8)

Therefore

Lz,α(ε; f) ≤ sup
g∈F
|Z(f)− Z(g)|(Φ(zα −

‖f − g‖
ε

)− α)+ ≤ sup
c>0

ωz(cε; f)(Φ(zα − c)− α)+

≤ max{ωz(ε; f)(Φ(zα)− α)+, sup
c>1

ωz(cε; f)(Φ(zα − c)− α)+}

≤ max{ωz(ε; f)(1− 2α), sup
c>1

ωz(cε; f)(Φ(zα − c)− α)+}.

Note that 0 < α < 0.3 implies 2zα > 1. Hence

sup
c>1

ωz(cε; f)(Φ(zα − c)− α)+ ≤ sup
c>1

3ρz(cε; f)(Φ(zα − c)− α)+

≤ 3ρz(ε; f) sup
c>1

min{c, (2c)2/3}(Φ(zα − c)− α)+

≤ 3ρz(ε; f) max
{

(1− 2α) min{zα, (2zα)2/3}1{zα ≥ 1}, (0.5− α) min{2zα, (4zα)2/3}
}

≤ 3ρz(ε; f)(1− 2α) min{zα, (2zα)2/3}

≤ 3ωz(ε; f)(1− 2α) min{zα, (2zα)2/3}.

In conclusion, Lz,α(ε; f) ≤ 3(1− 2α) min{zα, (2zα)2/3}ωz(ε; f).

2.6.2. Proof of Theorem 2.2.2

It follows from Theorem 2.2.1 and Proposition 2.2.2 that

A3
1ωz(ε; f) · ωm(ε; f)2 ≥ Rz(ε; f) ·Rm(ε; f)2 ≥ a3

1ωz(ε; f) · ωm(ε; f)2

and

ρz(ε; f) · ρm(ε; f)2 ≤ ωz(ε; f) · ωm(ε; f)2 ≤ 27ρz(ε; f) · ρm(ε; f)2.
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Furthermore,

ε2

2
≤ ρz(ε; f) · ρm(ε; f)2 ≤ 3ε2. (2.6.9)

This can be shown as follows. Let u = ρm(ε; f) + M(f) and define fu(t) = max{f(t), u}

as in Section 2.2.1. Note that ‖f − fu‖∞ ≤ ρm(ε; f) and it follows from the definition of

ρm(ε; f) that ‖f − fu‖2 = ε. As illustrated in Figure 2.1 in Section 2.2.1 (with special

attention to the rectangle ABCD and the triangle EDF),

2ρz(ε; f) · ρm(ε; f)2 ≥
∫ 1

0
(f(t)− fu(t))2dt = ε2

≥ max

{∫ Z(f)

0
(f(t)− fu(t))2dt,

∫ 1

Z(f)
(f(t)− fu(t))2dt

}
≥ 1

3
ρz(ε; f) · ρm(ε; f)2.

To conclude, we have for any f ∈ F

274ε2 > 81A3
1ε

2 ≥ Rz(ε; f) ·Rm(ε; f)2 ≥ a3
1

2
ε2 ≥ Φ(−0.5)3

2
ε2.

Similarly, we have

Lz,α(ε; f) · Lm,α(ε; f)2 ≥ (0.6− 2α)3 · ωz(
ε

3
; f) · ωm(

ε

3
; f)2 ≥ (0.6− 2α)3

18
ε2,

and

Lz,α(ε; f) · Lm,α(ε; f)2 ≤ B3
αωz(ε; f)ωm(ε; f)2 ≤ 37 · (1− 2α)3ε2.
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CHAPTER 3

Optimal Estimation and Inference for Minimizer and Minimum of

Multivariate Additive Convex Functions

3.1. Introduction

Chapter 2 establishes minimax rates for both estimation and inference for both minimizer

and minimum under a non-asymptotic local minimax framework for univariate convex func-

tion.

In the present chapter, we consider optimal estimation and inference for the minimizer and

minimum of multivariate additive convex functions under suitable non-asymptotic frame-

work that can characterize the difficulty of the problem at individual functions.

We consider both white noise model and nonparametric regression. We first focus on the

white noise model, which is given by

dY (t) = f(t)dt + εdW(t), t ∈ [0, 1]s, (3.1.1)

where W(t) is a standard (s, 1)-Brownian sheet on [0, 1]s, ε > 0 is the noise level. The drift

function f is assume to be in Fs, the collection of s−dimensional additive convex functions

defined as follows. Function f is said to be an additive convex function if it can be written

in the following form:

f(t) = f0 +

s∑
i=1

fi(ti), t = (t1, t2, · · · , ts) ∈ [0, 1]s, (3.1.2)

where f0 is a real number and for 1 ≤ i ≤ s, fi is in F , the collection of univariate

convex functions with unique minimizer, and fi also satisfies
∫ 1

0 fi(t)dt = 0. Note that

for any function f that can be written in the aforementioned decomposition (3.1.2), the

decomposition is unique. And for s = 1, Fs = F . For clarity, we also write Yf for Y under

47



f to specify the true function. The goal is to optimally estimate the minimizer Z(f) =

arg mint∈[0,1]s f(t) and minimum M(f) = mint∈[0,1]s f(t) and also construct confidence hyper

cube for Z(f) and confidence interval for M(f). Estimation and inference for the minimizer

Z(f) and minimum M(f) under nonparametric setting will be discussed later in section 3.4.

3.1.1. Non-asymptotic Function-specific Benchmarks

The first step toward evaluating the performance of a procedure at individual convex func-

tions in Fs is to define function-specific benchmarks for estimation and inference for mini-

mizer. For estimation and inference of minimum and estimation of minimizer, we investigate

it under local minimax framework (Cai and Low, 2015), which is also used in estimation and

inference for univariate convex functions in Chapter 2. For inference of minimizer, the same

two-point local minimax framework is not as appropriate and we take a non-asymptotic

function-specific benchmark that measures exactly the best behavior that any method can

achieve.

For estimation of the minimizer, the hardness of the problem at an individual function is

naturally captured by the expected squared distance. Further, under the local minimax

framework, the benchmark is given by

Rz(ε; f) = sup
g∈Fs

inf
Ẑ

max
h∈{f ,g}

E
(
‖Ẑ − Z(h)‖2

)
. (3.1.3)

For any given f ∈ Fs, the benchmark Rz(ε; f) quantifies the estimation accuracy at f of the

minimizer Z(f) against the hardest alternative of f within the function class Fs.

For estimation of the minimum, the hardness of the problem at an individual function f

is naturally captured by the expected squared error. Further, under the local minimax

framework, it is given by

Rm(ε; f) = sup
g∈Fs

inf
M̂

max
h∈{f ,g}

Eh

(
‖M̂ −M(h)‖2

)
. (3.1.4)
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For any given function f ∈ Fs, benchmark Rm(ε; f) quantifies the estimation accuracy of

the minimum M(f) at f against the hardest alternative of f within function class Fs.

For estimation problems, we show that the benchmarks are valid good benchmarks in the

sense that if it is significantly out performed at function f ∈ Fs, then a penalty need to be

paid at another function f1 ∈ Fs. We establish sharp minimax rates for these benchmarks

and construct procedures attain the minimax rates, up to a constant factor depending on

dimension s, simultaneously for all f ∈ Fs.

For confidence hyper cube of the minimizer with a pre-specified coverage, the hardness of

the problem is naturally captured by the expected volume. Let Iz,α(S) be the collection of

confidence hyper cubes for the minimizer Z(f) with guaranteed coverage probability 1− α

for all f ∈ S. The benchmark under a non-asymptotic function-specific framework, at f , is

given by the minimum expected volume at f for all confidence hyper cube in Iz,α(Fs):

Lα,z(ε; f) = inf
CIz,α∈Iz,α(Fs)

Ef (V (CIz,α)) , (3.1.5)

where V (CIz,α) is the volume of the confidence hyper cubes. Unlike local minimax frame-

work, which measures the best a confidence hyper cube with the pre-specified probability

coverage at f and a hardest g ∈ Fs can achieve, this benchmark takes hyper cubes in

Iz,α(Fs) (i.e. it has pre-specified probability coverage for all g ∈ Fs). It is easy to see that

this benchmark depends on f and is the best that any method can achieve at f .

For confidence interval of the minimum with a pre-specified coverage, the hardness of the

problem is naturally captured by the expected length. Let Im,α(S) be the collection of

confidence intervals for the minimum M(f) with guaranteed coverage probability 1− α for

all f ∈ S. Under the local minimax framework, the benchmark is given by

Lα,m(ε; f) = sup
g∈Fs

inf
CIm,α∈Im,α({f ,g})

Ef (|CIm,α|) , (3.1.6)
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3.1.2. Projection Representation and Optimal Procedures

Another major step in our analysis is developing data-driven and computationally efficient

algorithms for the construction of estimators and confidence interval (hyper cube) as well

as establishing the optimality of these procedures at each f ∈ F .

An interesting observation is that Yf admits a projection representation,

P(Yf ) = (πππ1(Yf ), · · · ,πππs(Yf ), er(Yf )),

such that πππi(Yf ) is a sufficient statistic for fi and all elements in P(Yf ) are independent.

Also Yf can be fully recovered from P(Yf ). The estimators and confidence interval (hyper

cube) are constructed based on this observation by doing estimation and inference on each

component and carefully join them together.

The key idea behind the construction for each component of the optimal procedures is to

first iteratively localize the minimizer by comparing the integrals over relevant subinter-

vals together with a very carefully constructed stopping rule controlled by a user-specified

parameter, and then add an additional estimation/inference procedure. The final estima-

tion/inference is to carefully choose the control parameter of the component-wise stopping

rule and put together the output for each axis.

The resulting estimators, Ẑ for Z(f) and M̂ for M(f), are shown to attain within a

dimension-dependent constant of the benchmarks Rz(ε; f) Rm(ε; f) simultaneously for all

f ∈ Fs,

Ef

(
‖Ẑ − Z(f)‖2

)
≤ Cz,sRz(ε; f), (3.1.7)

Ef

(
‖M̂ −M(f)‖2

)
≤ Cm,sRm(ε; f), (3.1.8)

for constants Cz,s and Cm,s depending on dimension s only.
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The resulting confidence interval (hyper cube), CIz,α for Z(f) and CIm,α for M(f), are

shown to have the pre-specified coverage (1 − α) while having expected length (volume)

being adaptive to f and attaining within a coverage-dimension-dependent constant of the

benchmarks Lα,z(ε; f), Lα,m(ε; f) for all f ∈ Fs. That is,

Ef (V (CIz,α)) ≤ Cz,s,αLα,z(ε; f), (3.1.9)

Ef (|CIm,α|) ≤ Cm,s,αLα,m(ε; f), (3.1.10)

where Cz,s,α and Cm,s,α are constants depending on dimension s and α only.

3.1.3. Organization of this Chapter

In Section 3.2, we analyze local minimax risks, relating them to appropriate local modulus

of continuity, in turn providing rate-sharp upper and lower bounds. We also provide lower

bound for the benchmark for inference of the minimizer in Section 3.2. In Section 3.3,

we introduce projection representation of the observation, provide computationally efficient

adaptive procedures and show their optimality. In Section 3.4, we consider the nonpara-

metric regression model. We introduce the corresponding benchmarks, propose adaptive

procedures and establish the optimality. Proofs are given in appendix Section A.5.

3.1.4. Notation

We conclude this section with some notation that will be used in the section. The cdf of the

standard normal distribution is denoted by Φ. For 0 < α < 1, zα = Φ−1(1−α). For α = 0,

zα =∞. We use ‖·‖ to denote the L2 norm for vectors, univariate functions and multivariate

functions, depending on the setting. We use 1{A} to denote indicator function that takes

1 when event A happens and 0 otherwise. We use bold symbols to denote multivariate

functions, e.g. f , g, h. We use f1, · · · , fs to denote the component functions for f and f0

for constant part for f , similar convention for g, h. Let a∧ b = min{a, b}, a∨ b = max{a, b}

for real numbers a and b. We use Z(·) to denote the minimizer operator, and M(·) to denote
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the minimum operator, for both f ∈ Fs and f ∈ F . Note that we use Iz,α(S) to denote the

collection of confidence hyper cubes for the minimizer with guaranteed coverage probability

1− α for all functions in S. This can be generalized into univariate case when S ⊂ F and

the hyper cube becomes interval.

We use Im,α(S) to denote the collection of confidence intervals for the minimum with

guaranteed coverage probability 1 − α for all functions in S. This can be generalized into

univariate case when S ⊂ F .

3.2. Local Minimax Rates and Lower Bounds

In this section, we discuss the local minimax rates and the lower bound for inference of the

minimizer. We introduce the local moduli of continuity and use it to characterize the bench-

marks for estimation of minimizer and estimation and inference of minimum introduced in

Section 3.1.1. We provide rate-sharp bounds for the continuity moduli based on geometry

properties of the functions. As we use a different benchmark for inference of minimizer, we

provide lower bound of it in this section.

3.2.1. Local Modulus of Continuity.

For any given function f ∈ Fs, we define the following local moduli of continuity for the

minimizer and minimum.

ωz(ε; f) = sup{‖Z(f)− Z(g)‖2 : ‖f − g‖2 ≤ ε,g ∈ Fs} (3.2.1)

ωm(ε; f) = sup{‖M(f)−M(g)‖2 : ‖f − g‖2 ≤ ε, f ∈ Fs}, (3.2.2)

ω̃m(ε; f) = sup{‖M(f)−M(g)‖ : ‖f − g‖2 ≤ ε, f ∈ Fs}. (3.2.3)

As in the case of linear functionals or in the case of minimizer and minimum operators for

univariate convex functions, the local moduli ωz(ε; f), ωm(ε; f), ω̃m(ε; f) clearly depends on

f and can be regarded as an analogue of inverse Fisher Information in regular parametric
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model.

The following theorem characterizes the benchmarks for estimation and inference in terms

of the corresponding local moduli of continuity.

Theorem 3.2.1 (Sharp Lower Bounds). Let Rz(ε; f) be defined in (3.1.3), Rm(ε; f) be

defined in (3.1.4), and Lα,m(ε; f) be defined in (3.1.6). Let 0 < α ≤ 0.1. Then

aωz(ε; f) ≤ Rz(ε; f) ≤ Aωz(ε; f), (3.2.4)

aωm(ε; f) ≤ Rm(ε; f) ≤ Aωm(ε; f) (3.2.5)

bαω̃m(ε; f) ≤ Lα,m(ε; f) ≤ Bαω̃m(ε; f) (3.2.6)

where the constants a,A, bα, Bα can be taken as a = 0.1, A = 3.1, bα = 0.6 − α, and

Bα = 2(1− 2α)zα.

Theorem 3.2.1 shows that the benchmarks can be characterized in terms of continuity moduli

of continuity. However, this continuity moduli is hard to compute. We now recollect two

related geometry quantities to facilitate bounding the continuity moduli used in univariate

case in Chapter 2. For f ∈ F , u ∈ R and ε > 0, let fu(t) = max{f(t), u}, M(f) =

minx∈[0,1] f(x), and define

ρm(ε; f) = sup{u−min{f(x) : x ∈ [0, 1]} : ‖f − fu‖ ≤ ε}, (3.2.7)

ρz(ε; f) = sup{|t− Z(f)| : f(t) ≤ ρm(ε; f) +M(f), t ∈ [0, 1]}. (3.2.8)

With the geometric quantity ρz(ε; f), we can establish a rate-sharp bound of modulus of

continuity for the minimizer.

Theorem 3.2.2 (Geometry Representation for Modulus of Continuity for Minimzer).

Let ρz(ε; f) be defined in (3.2.8) for f ∈ F , and let f ∈ Fs. Let ωz(ε; f) be defined in

(3.2.1).Then

1

3
s−

2
3

s∑
i=1

ρz(ε; fi)
2 ≤ ωz(ε; f) ≤

s∑
i=1

9ρz(ε; fi)
2. (3.2.9)
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And for any β ≤ s, there exists f ∈ Fs such that
∑s

i=1 ρz(ε; fi)
2 = β and

ωz(ε; f) ≤ 9s−
2
3

s∑
i=1

ρz(ε; fi)
2. (3.2.10)

And for any β ≤ s, and δ0 > 0, there exists f ∈ Fs such that
∑s

i=1 ρz(ε; fi)
2 = β and

ωz(ε; f) ≥ ρz(ε; fi)2 − δ0. (3.2.11)

Theorem 3.2.2 shows that the modulus of continuity for minimizer varies within an absolute

constant multiple times of

s−
2
3

s∑
i=1

ρz(ε; fi)
2 and

s∑
i=1

ρz(ε; fi)
2,

with the order of both upper and lower bound attainable for some f ∈ Fs.

With the geometric quantity ρz(ε; f) and ρm(ε; f), we can establish a rate-sharp bound of

moduli of continuity for the minimum.

Theorem 3.2.3 (Geometry Representation for Modulus of Continuity for Minimum). Let

ρz(ε; f) be defined in (3.2.8) and ρm(ε; f) be defined in (3.2.7) for f ∈ F . Let ωm(ε; f) be

defined in (3.2.2) and ω̃m(ε; f) be defined in (3.2.3) for f ∈ Fs. Then

1

1 +
∑s

i=1(1 ∧ 2ρz(ε; fi))

s∑
i=1

ρm(ε; fi)
2 ≤ ωm(ε; f) ≤ 9(1 +

1

s
)

s∑
i=1

ρm(ε; fi)
2, (3.2.12)

√√√√ 1

1 +
∑s

i=1 (1 ∧ 2ρz(ε; fi))

s∑
i=1

ρm(ε; fi)2 ≤ ω̃m(ε; f) ≤

√√√√9(1 +
1

s
)

s∑
i=1

ρm(ε; fi)2. (3.2.13)

Theorem 3.2.3 shows that the modulus of continuity for minimum ωm(ε; f) is of the order∑s
k=1 ρm(ε; fk)

2 and ω̃m(ε; f) is of the order
√∑s

k=1 ρm(ε; fk)2 .

Now we have done establishing the local minimax rates for three tasks, we turn to estab-
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lishing the lower bound for the benchmark of inference of the minimizer.

Theorem 3.2.4 (Lower Bound for Expected Volume of Confidence Hyper Cube for Mini-

mizer). Let Lα,z(ε; f) be defined in (3.1.5) for f ∈ Fs and ρz(ε; f) be defined in (3.2.8) for

f ∈ F . Then we have

Lα,z(ε; f) ≥ Cα,sΠs
i=1ρz(ε; fi), (3.2.14)

where Cα,s is a positive constant depending on α and s.

3.2.2. Penalty for Super-efficiency

We have shown that the estimation benchmarks Rz(ε; f) and Rm(ε; f) can be characterized

by intrinsic geometric quantities of f . Now we show that these benchmarks can not be

essentially uniformly out performed. That is, if the benchmark is significantly out performed

at function f ∈ Fs, then it needs to pay a penalty at another function f1 ∈ Fs. These

benchmarks, similar to that in the univariate case, play a role analogous to the information

lower bound in the classic statistic.

Theorem 3.2.5 (Penalty for Supper-Efficiency). For any estimator of the minimizer Ẑ, if

Ef

(
‖Ẑ − Z(f)‖2

)
≤ γRz(ε; f) for f ∈ Fs and γ < γ0, where γ0 is a positive constant, then

there exists f1 ∈ Fs such that

Ef1

(
‖Ẑ − Z(f1)‖2

)
≥ cz,s(log

1

γ
)

2
3Rz(ε; f1), (3.2.15)

where cz,s is a constant depending on s only.

Similarly, for any estimator of the minimum M̂ , if Ef (|M̂−M(f)|2) ≤ γRm(ε; f) for f ∈ Fs
and γ < γ0/s, where γ0 is a positive constant, then there exists f1 ∈ Fs such that

Ef1

(
|M̂ −M(f1)|2

)
≥ cm,s(log

1

γ
)

2
3Rm(ε; f1), (3.2.16)

where cm,s is a constant depending on s only.
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3.3. Projection Representation and Adaptive Optimal Procedures.

We now turn to the construction of data-driven and computationally efficient algorithms for

estimation and inference of minimizer and minimum for white noise model. Our construction

is based on an information-preserving representation of the observation Yf , which we call

Projection Representation. We show that our procedures achieve, up to a universal constant

depending on dimension s and confidence level 1−α, the corresponding benchmarks Rz(ε; f),

Rm(ε; f), Lα,z(ε; f), Lα,m(ε; f), simultaneously for all f ∈ Fs.

3.3.1. Projection Representation.

The construction of the procedures is based on an interesting property of the observation Yf

(or Y ) that Y admits a nice information-preserving projection representation, which maps

Y to an s+ 1−tuple, where first s elements can roughly be considered as a projection of the

original stochastic process on each coordinate, and the last element is an s−dimensional

stochastic process that can be considered as a remaining error.

Definition 3.3.1 (Projection Representation). For each 1 ≤ i ≤ s, the i−th projection of

Y , πππi(Y ), is a univariate stochastic process that satisfies for 0 ≤ ai < Ai ≤ 1,

∫
[ai,Ai]

dπππi(Y ) =

∫
ti∈[ai,Ai],t−i∈[0,1]s−1

dY − (Ai − ai)
∫

[0,1]s
dY, (3.3.1)

where t−i = {t1, . . . , ti−1, ti+1, . . . ts}.

er(Y ) is a stochastic process on [0, 1]s, such that for A = [a1, A1]× [a2, A2]×· · ·× [as, As] ⊂

[0, 1]s, we have

∫
A

der(Y ) =

∫
A

dY −
s∑
i=1

Πj 6=i(Aj − aj)
∫ Ai

ai

dπππi(Y ). (3.3.2)
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The projection representation mapping P(·) of Y is

P(Y ) = (πππ1(Y ),πππ2(Y ), . . . ,πππs(Y ), er(Y )). (3.3.3)

The reasons we call it a projection representation mapping are that P(Y ) preserves all in-

formation of Y , that P(Y ) has all of its elements, the projections and error, being mutually

independent, and that its first s elements are sufficient statistics for corresponding compo-

nent function fi. More specifically, we have Proposition 3.3.1 summarizing the properties

of projection representation.

Proposition 3.3.1 (Property of Projection Representation). Let P(·) be defined as in

equation (3.3.3). Denote the class of stochastic process defined in (3.1.1) as Y. Then we

have the followings.

• P(·) is a bijection from Y to P(Y).

• P(Y ) has all elements being independent.

• πππi(Y ) is a sufficient statistic for fi, for i ∈ {1, 2, . . . , s}.

Also, it’s easy to check that er(Y ) only depends on f0, thus not carrying information for

Z(f) by itself. Instead, it carries part of the information of M(f). Note that the minimizer

Z(f) can be written as Z(f) = (Z(f1), Z(f2), . . . , Z(fs)), so its i-th element only depends on

fi. Similarly M(f) can be written as M(f) = f0 +
∑s

k=1M(fk), so each component in P(Yf )

serves as a sufficient statistics for each of the adding components of M(f). The information

preserving representation P(·) plays the role of separating the relevant information of s

coordinates into independent random variables.

3.3.2. Adaptive Procedures.

Now we are ready to introduce the construction of data-driven and computationally efficient

algorithms for estimation and confidence interval (hyper cube) for the minimum M(f) and
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the minimizer Z(f) under the white noise model in this section. The procedures constructed

in this section are shown in Section 3.3.3 to be adaptive to each individual function f ∈ Fs
in the sense that they simultaneously achieve, up to a universal constant depending on

dimension s and confidence level 1− α, the corresponding benchmarks, simultaneously for

all f ∈ Fs.

Similar to the construction in Chapter 2, we have three blocks: localization, stopping, and

estimation/inference. But since πππi(Y ) has different distribution with that in the univariate

case, and we also need to account for the dimension, our procedures are carefully tailored

to accommodate for the new challenges.

Sample Splitting

For technical reasons, we split the first s coordinates of the projection representation (i.e.

P(Y )), V = (πππ1(Y ),πππ2(Y ), . . . ,πππs(Y )), into three independent pieces to ensure indepen-

dence of the data used in the three steps.

Let B1
1(t), B2

1(t), B1
2(t), B2

2(t), . . . , B1
s (t), B2

s (t) be 2s independent standard Brownian mo-

tions that are also independent from Y . Let data vectors Vl = (vl1,v
l
2, . . . ,v

l
s), Vr =

(vr1,v
r
2, . . . ,v

r
s) and Ve = (ve1,v

e
2, . . . ,v

e
s) be defined as follows.

vli(t) = πππi(Y )(t) +

√
2

2
ε

(
B1
i (t)− t

∫ 1

0
B1
i (x)dx

)
+

√
6

2
ε

(
B2
i (t)− t

∫ 1

0
B2
i (x)dx

)
,

vri (t) = πππi(Y )(t) +

√
2

2
ε

(
B1
i (t)− t

∫ 1

0
B1
i (x)dx

)
−
√

6

2
ε

(
B2
i (t)− t

∫ 1

0
B2
i (x)dx

)
,

vei (t) = πππi(Y )(t)−
√

2ε

(
B1
i (t)− t

∫ 1

0
B1
i (x)dx

)
.

(3.3.4)

Then the concatenate vector of vectors Vl, Vr, Ve has all of its 3s elements being independent,
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and for each axis i ∈ {1, 2 . . . , s}, vli(t),v
r
i (t),v

e
i (t) can be written as

dvli(t) = fi(t)dt+
√

3εdW̃ l
i ,

dvri (t) = fi(t)dt+
√

3εdW̃ r
i ,

dvei (t) = fi(t)dt+
√

3εdW̃ e
i ,

(3.3.5)

where W̃ l
i , W̃

r
i , W̃ e

i are independent standard Brownian Bridges.

Localization

We use Vl for localization step, and for each axis k ∈ {1, 2, . . . , s}, localization is based on

vlk.

We take an iterative localization procedure similar to that in Chapter 2 on vlk. For iterations

(levels) j = 0, 1, . . . , and possible location index at jth level i = 0, 1, . . . , 2j , we denote the

sub-interval length, sub-interval end points, and the index of the sub-interval containing

the minimizer at level j to be

mj = 2−j , tj,i = i ·mj , and i∗j,k = max{i : Z(fk) ∈ [tj,i−1, tj,i]}. (3.3.6)

For j = 0, 1, . . . , and i = 1, 2, . . . , 2j , define

Xj,i,k =

∫ tj,i

tj,i−1

dvlk(t),

where vlk is one of the three independent copies constructed above through sample splitting.

For convenience, we define Xj,i,k = +∞ for j = 0, 1, . . . , and i ∈ Z \ {1, 2, . . . , 2j}.

Let î0,k = 1 and for j = 1, 2, . . . , let

îj,k = arg min
2̂ij−1−2≤i≤2̂ij−1+1

Xj,i,k.
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Note that given the value of îj−1,k at level j − 1, in the next iteration the procedure halves

the interval [t̂ij−1,k−1, t̂ij−1,k
] into two subintervals and selects the interval [t̂ij,k−1, t̂ij,k ] at

level j from these and their immediate neighboring subintervals. So i only ranges over 4

possible values at level j.

Stopping Rule

For each axis, it is necessary to have a stopping rule to select a final subinterval constructed

in the localization iterations and carry out the estimation/inference based on that. But

unlike a unified stopping rule in univariate case, we construct a series of stopping rules

based on a user select parameter ζ > 0, which we will specify later in the specific estima-

tion/inference procedures. Again, for any 1 ≤ k ≤ s, we focus on the stopping rules for

k-th axis.

We use another independent copy vrk constructed in the sample splitting step to devise the

stopping rules. For j = 0, 1, . . . , and i = 1, 2, . . . , 2j , let

X̃j,i,k =

∫ tj,i

tj,i−1

dvrk(t).

Again, for convenience, we define X̃j,i,k = +∞ for j = 0, 1, . . . , and i ∈ Z \ {1, 2, . . . , 2j}.

Let the statistic Tj,k be defined as

Tj,k = min{X̃j,̂ij,k+6,k − X̃j,̂ij,k+5,k, X̃j,̂ij,k−6,k − X̃j,̂ij,k−5,k},

where we use the convention +∞− x = +∞ and min{+∞, x} = x, for any −∞ ≤ x ≤ ∞.

The stopping rule indexed by the parameter ζ > 0 is based on the value of Tj,k. Before we

formally go into the stopping rule, it’s helpful to look at the distribution of the elements

defining Tj,k. Let σ2
j = 6mjε

2, some calculations show that when X̃j,̂ij,k+6,k − X̃j,̂ij,k+5,k <
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∞, we have

X̃j,̂ij,k+6,k − X̃j,̂ij,k+5,k

σj

∣∣∣∣∣îj,k ∼ N
mj

√
mj√

6ε
× 1

mj

∫ tj,̂ij+6,k

tj,̂ij+5,k

fk(t+mj)− fk(t)
mj

dt, 1

 .

(3.3.7)

Note that the term

Sp(j, k) =
1

mj

∫ tj,̂ij+6,k

tj,̂ij+5,k

fk(t+mj)− fk(t)
mj

dt

can be interpreted as an average slope across the interval [tj,̂ij+5,k, tj,̂ij+6,k] of the line

determined by two points (t, f(t)) and (t+mj , f(t+mj)). Basic property of convex function

shows that Sp(j, k) is non-increasing with the increasing of j, and that Sp(j, k) < 0 implies

i∗j,k ≥ îj + 5. These mean that a small number of
X̃j,̂ij,k+6,k−X̃j,̂ij,k+5,k

σj
indicates either

localization procedure’s choice of a far away sub-interval from the one minimizer lies in or

a negligible signal which implies little or no gain in continuing the localization procedure.

Analogous results hold for
X̃j,̂ij,k−6,k−X̃j,̂ij,k−5,k

σj
.

Finally, the iteration stops at level ĵ(ζ, k), where

ĵ(ζ, k) = min{j :
Tj,k
σj
≤ zζ}. (3.3.8)

The subinterval containing the minimizer Z(fk) is localized to be

[tĵ(ζ,k),̂iĵ(ζ,k),k−1, tĵ(ζ,k),̂iĵ(ζ,k),k
].

Estimation and Inference

After obtaining, for each axis k ∈ {1, 2, . . . , s}, a stopping step ĵ(ζk, k), an associated

index at the stopping step îĵ(ζk,k),k, and a final interval [tĵ(ζk,k),̂iĵ(ζk,k),k−1, tĵ(ζk,k),̂iĵ(ζk,k),k
],

61



all controlled by a parameter ζk > 0, we use them to construct estimator and confidence

interval (hyper cube) for the minimum M(f) and the minimizer Z(f).

For estimation of the minimizer, we set ζk = ζ = Φ(−2), for k ∈ {1, 2, . . . , s}. The k-th axis

of the estimator Ẑ is given by the mid point of final interval:

Ẑk =
tĵ(ζ,k),̂iĵ(ζ,k),k−1 + tĵ(ζ,k),̂iĵ(ζ,k),k

2
. (3.3.9)

The final estimator Ẑ is given by

Ẑ = (Ẑ1, Ẑ2, . . . , Ẑs), (3.3.10)

with Ẑk defined in (3.3.9).

For inference of the minimizer, we set ζk = ζ = α/s, for k ∈ {1, 2, . . . , s}. The k-th axis

CIk of the hyper cube CIz,α is given by

CIk =
[
2−ĵ(ζ,k)+1

(
îĵ(ζ,k)−1,k − 7

)
, 2−ĵ(ζ,k)+1

(
îĵ(ζ,k)−1,k + 6

)]
∩ [0, 1]. (3.3.11)

The confidence cube CI for the minimizer is give by

CIz,α = CI1 × CI2 × · · · × CIs, (3.3.12)

where CIk is defined in (3.3.11).

For estimation and inference of the minimum, let

X̄j,i,k =

∫ tj,i

tj,i−1

dvek(t),

for 1 ≤ i ≤ 2j , and +∞ for i /∈ {1, 2, · · · , 2j}.

For estimation of the minimum M(f), let ζk = ζ = Φ(−2) for k = 1, 2 · · · , s. Let the final
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index for estimator construction for k-th coordinate be

iF,k = îĵ(ζ,k)−1,k + 2

(
1{X̃ĵ(ζ,k),̂iĵ(ζ,k)+6,k − X̃ĵ(ζ,k),̂iĵ(ζ,k)+5,k ≤ 2σĵ(ζ,k)}

− 1{X̃ĵ(ζ,k),̂iĵ(ζ,k)−6,k − X̃ĵ(ζ,k),̂iĵ(ζ,k)−5,k ≤ 2σĵ(ζ,k)}
)
.

(3.3.13)

The estimator of the minimum is given by

M̂ = Y (1, 1, · · · , 1)− Y (0, 0, · · · , 0) +
s∑

k=1

2ĵ(ζ,k)X̄ĵ(ζ,k),iF,k,k
. (3.3.14)

For inference of the minimum, let ζk = ζ = α/4s for k = 1, 2 · · · , s. Define an intermediate

estimator of the minimum by

f̂1 = Y (1, 1, · · · , 1)−Y (0, 0, · · · , 0)+
s∑

k=1

2ĵ(ζ,k)+3 min
16(̂iĵ(ζ,k),k−1−7)<i≤16(̂iĵ(ζ,k),k−1+6)

X̄ĵ(ζ,k)+2,i,k.

(3.3.15)

Let Un be the cumulative distribution function of ũ = max{u1, · · · , un}, where

u1, · · · , un i.i.d∼ N(0, 1),

and define

Sn,β = U−1
n (1− β). (3.3.16)

In other words, Sn,β is the (1 − β) quantile of the distribution of the maximum of n i.i.d.

standard normal variables.

Let

fhi = f̂1 + S208,α/8s ×
√

3ε

s∑
k=1

2
ĵ(ζ,k)+3

2 + zα/8
√

3εs

flo = f̂1 − zα/4
√

3ε

√√√√1 +
s∑

k=1

2ĵ(ζ,k)+3 −
s∑

k=1

zα/4s
√

3 · 2ε · 2
ĵ(ζ,k)+3

2 .

(3.3.17)

63



Then the (1− α) level confidence interval for M(f) is

CIm,α = [flo, fhi]. (3.3.18)

3.3.3. Statistical Optimality.

In this section, we establish the optimality of the adaptive procedures constructed in Sec-

tion 3.3.2. The results show that the date driven estimators and the confidence interval

(hyper cube) achieve within a universal constant factor depending on s and α only of their

corresponding benchmarks simultaneously for all f ∈ Fs. These results are non-asymptotic

and function-specific, which are much stronger than the conventional minimax framework.

We start with estimation of the minimizer.

Theorem 3.3.1 (Estimation for Miminizer). The estimator Ẑ defined by (3.3.10) satisfies

Ef

(
‖Ẑ − Z(f)‖2

)
≤ Cz,sRz(ε; f), for all f ∈ Fs, (3.3.19)

where Cz,s > 0 is a constant depending on dimension s.

The following holds for the confidence hyper cube CIz,α.

Theorem 3.3.2 (Confidence Hyper-cube for Minimizer). For 0 < α ≤ 0.3, the confidence

hyper cube CIz,α defined by (3.3.12) is a 1−α level confidence hyper cube for the minimizer

Z(f). Its expected volume satisfies

Ef (V (CI)) ≤ Cz,s,αLα,z(ε; f),

where Cz,s,α is a positive constant depending on s and α.

Theorem 3.3.3 (Estimation for Minimum). The estimation M̂ defined in (3.3.14) satisfies

E
(

(M̂ −M(f))2
)
≤ Cm,sRm(ε; f), (3.3.20)
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where Cm,s is a positive constant depending on dimension s.

Theorem 3.3.4 (Confidence Interval for Minimum). For 0 < α ≤ 0.3, the confidence

interval defined by (3.3.18) is a 1 − α level confidence interval for the minimum M(f)

satisfying

E (|CIm,α|) ≤ Cm,s,αLα,m(ε; f), (3.3.21)

where Cm,s,α is a positive constant depending on α and s.

3.4. Nonparametric Regression

We have so far focused on the white noise model. The procedures and results presented in

the previous sections can be extended to nonparametric regression, where we observe

yi1,i2,...,is = f(i1/n, i2/n, . . . , is/n) + σzi1,i2,...,is , 0 ≤ ik ≤ n, for 1 ≤ k ≤ s, (3.4.1)

with zi1,i2,...,is
i.i.d∼ N(0, 1), f ∈ Fs. The noise level σ is assumed to be known. The tasks are

the same as before: constructing optimal estimators and confidence interval (hyper cube)

for the minimizer Z(f) and the minimum M(f), for f ∈ Fs. For simplicity of notation, we

take i = (i1, i2, . . . , is). To avoid trivial case, we suppose n ≥ 2.

3.4.1. Local Minimax Rates, Discretization Error and Separable Representation

Analogous to the benchmarks for the white noise model defined in Equations (3.1.3), (3.1.4),

(3.1.6), we define similar benchmarks for the nonparametric regression model (3.4.1) with

n + 1 equally spaced observations. Denote by Im,α,n(F) the collection of (1 − α) level

confidence intervals for M(f) on a function class F under the regression model (3.4.1) and
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let

R̃z,n(σ; f) = sup
g∈Fs

inf
Ẑ

max
h∈{f ,g}

Eh‖Ẑ − Z(h)‖2,

R̃m,n(σ; f) = sup
g∈Fs

inf
M̂

max
h∈{f ,g}

Eh(M̂ −M(h))2,

L̃m,α,n(σ; f) = sup
g∈Fs

inf
CIm,α∈Im,α,n({f ,g})

Ef |CIm,α|.

(3.4.2)

For confidence hyper cube for minimizer, denote Iz,α,n(F) the collection of (1 − α) level

confidence hyper cube on a function class F under the regression model (3.4.1) and let

L̃z,α,n(σ; f) = inf
CI∈Im,α,n(Fs)

EfV (CI). (3.4.3)

It is clear that the expected volume for confidence hyper cube of the minimizer can not be

smaller than L̃z,α,n(σ; f), which is also function-specific, i.e. depending on f .

Compared with white noise model, in addition to the difference in the probability structure

caused by discrete observations, estimation and inference for both Z(f) and M(f) incur

additional discretization errors, even in the noiseless case. See the appendix Section A.5.12

for further discussion.

Separable Representation

Analogous to the white noise model, the observation under nonparametric setting also

admits a separable representation, as defined in Definition 3.4.1.

Definition 3.4.1 (Projection Representation for Nonparametric Regression Model). For

k ∈ {1, 2, . . . , s}, the k-th projection of {yi}, πππk({yi}), is an n+ 1-long random vector,

πππk({yi}) =(∑
i:ik=1 yi

(n+ 1)s−1
−

∑
i yi

(n+ 1)s
,

∑
i:ik=2 yi

(n+ 1)s−1
−

∑
i yi

(n+ 1)s
, , . . . ,

∑
i:ik=s yi

(n+ 1)s−1
−

∑
i yi

(n+ 1)s

)
.

(3.4.4)
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er({yi}) is an s-dimension tensor with

er({yi})i1,i2,··· ,is = yi1,i2,··· ,is −
s∑

k=1

πππk({yi})ik , (3.4.5)

for 0 ≤ ik ≤ n, 1 ≤ k ≤ s.

The projection representation mapping P(·) of observation {yi} is given by

P({yi}) = (πππ1({yi}),πππ2({yi}),πππs({yi}), er({yi})). (3.4.6)

Similar to white noise model, P(·) preserves the information of {yi}; has its s+ 1 elements

being mutually independent; and separates the information for the s univariate component

functions of f into its first s random variables, as shown in Proposition 3.4.1.

Proposition 3.4.1 (Property of Projection Representation). Let P(·) be define in equation

(3.4.6). Then we have

• P(·) is invertible,

• P({yi}) has its s+ 1 elements being independent,

• πππk({yi}) is sufficient statistic for fk.

3.4.2. Optimal Procedures

Similar to the white noise model, we split the data into three independent copies and then

construct the estimators and confidence interval (hyper cube) for Z(f) and M(f) for f ∈ Fs
in three major steps: localization, stopping, and estimation/inference.

Data Splitting

Let zjk,i
i.i.d∼ N(0, 1), with 1 ≤ k ≤ s , 1 ≤ i ≤ n, 1 ≤ j ≤ 2.
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For each 1 ≤ k ≤ s, we construct the following three sequences based on πππk({yi}):

νlk,i = πππk({yi})i +
σ

(n+ 1)
s−1

2

{√
2

2

(
z1
k,i −

∑n
l=0 z

1
k,l

n+ 1

)
+

√
6

2

(
z2
k,i −

∑n
l=0 z

2
k,l

n+ 1

)}
,

νrk,i = πππk({yi})i +
σ

(n+ 1)
s−1

2

{√
2

2

(
z1
k,i −

∑n
l=0 z

1
k,l

n+ 1

)
−
√

6

2

(
z2
k,i −

∑n
l=0 z

2
k,l

n+ 1

)}
,

νek,i = πππk({yi})i −
σ

(n+ 1)
s−1

2

√
2

(
z1
k,i −

∑n
l=0 z

1
k,l

n+ 1

)
,

(3.4.7)

for i = 0, · · · , n. For convenience, let νlk,i = νrk,i = νek,i = ∞ for i /∈ {0, 1, · · · , n}. It is

easy to see that the three sequences for each axis k are independent, and the s collections

of the three sequences are also independent. For each k, we will use {νlk,·} for localization,

{νrk,·} for stopping rule, and {νek,·} for construction of the final estimation and inference

procedures.

Let J = blog2(n + 1)c. For j = 0, 1, · · · , J , i = 1, 2, · · · , b n+1
2J−j
c, the i-th block at level

j consists of { (i−1)2J−j

n , (i−1)2J−j+1
n , i·2

J−j−1
n }. Denote the sum of observations in the i-th

block at level j for the axis k, sequence u (u=l,r,e) as

Yuk,j,i =
i·2J−j−1∑

h=(i−1)2J−j

νuk,h. (3.4.8)

Again, let Yuk,j,i = +∞ when i /∈ {1, 2, · · · , b n+1
2J−j
c} for k ∈ {1, 2, · · · , s}, u ∈ {l, r, e},

j ∈ {0, 1, · · · , J}.

Localization

For k-th axis, we use {νlk,h, h ∈ {0, 1, · · · , n}} to construct a localization procedure. Let

îk,0 = 1, and for j = 1, 2, · · · , J , let

îk,j = arg min
max{2îk,j−1−2,1}≤i≤min{2îk,j−1+1,b n+1

2J−j
c}
Ylk,j,i. (3.4.9)
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This is similar to the localization step in the white noise model. In each iteration, the blocks

at the previous level are split into two sub-blocks. The i-th block at level j − 1 is split into

two blocks, the (2i − 1)-th block and the 2i-th block, at level j. For a given îk,j−1, îk,j is

the sub-block with the smallest sum (i.e. Ylk,j,i) among the two sub-blocks of îk,j−1 and

their immediate neighboring sub-blocks.

Stopping Rule

Similar to the stopping rule for the white noise model, for axis k, define the statistic Tk,j

based on the sequence Y r
k,·,· as

Tk,j = min{Yr
k,j,îk,j+6

− Yr
k,j,îk,j+5

, Yr
k,j,îk,j−6

− Yr
k,j,îk,j−5

}.

Let σ̃2
k,j = 6× 2J−j × σ2

(n+1)s−1 . It is easy to see that when Yr
k,j,îk,j+6

− Yr
k,j,îk,j+5

<∞,

Yr
k,j,îk,j+6

− Yr
k,j,îk,j+5

∣∣∣∣∣îk,j ∼ N
(îk,j+5)2J−j−1∑
h=(îk,j+4)2J−j

(
fk(

h+ 2J−j

n
)− fk(

h

n
)

)
, σ̃2

k,j

 . (3.4.10)

Similar to white noise model, we define a series of stopping rules controlled by a parameter

ζ > 0.

Define a stopping step precursor ǰk(ζ) as

ǰk(ζ) =

 min{j : Tk,j ≤ zζ σ̃k,j} if {j : Tk,j ≤ zζ σ̃k,j} ∩ {0, 1, 2, · · · , J} 6= ∅

∞ otherwise

and terminate the algorithm at level ĵk(ζ) = min{J, ǰk(ζ)}. So either Tk,j triggers the

stopping for some 0 ≤ j ≤ J or the algorithm reaches the highest possible level J.

With the localization strategy and the stopping rule, the final block, the îk,ĵk(ζ)-th block
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at level ĵk(ζ) is given by

{h
n

: (îk,ĵk(ζ) − 1)2J−ĵk(ζ) ≤ h ≤ îk,ĵk(ζ)2
J−ĵk(ζ) − 1}.

Estimation and Inference

After we have, for each axis k ∈ {1, 2, · · · , s}, our stopping step precursor ǰk(ζ), stopping

step ĵk(ζ), index associated with the stopping step îk,ĵk(ζ), and the final block, we use them

to construct estimator and confidence hyper cube for the minimizer of f ∈ Fs, as well as

estimator and confidence interval for the minimum of f ∈ Fs.

For estimation of the minimizer, let ζ = Φ(−2). The k-th coordinate of Ẑ, Ẑk, is defined as

Ẑk =


− 1

2n
+

1

n

(
2J−ĵk(ζ) − 2J−ĵk(ζ)−1

)
, ǰk(ζ) <∞

1

n
arg min

îk,J−2≤i≤îk,J+2

νek,i−1 −
1

n
, ǰk(ζ) =∞

. (3.4.11)

The final estimator Ẑ is defined as

Ẑ = (Ẑ1, Ẑ2, · · · , Ẑs), (3.4.12)

where Ẑk is defined in (3.4.11) for k ∈ {1, 2, · · · , s}.

To construct the confidence hyper cube for Z(f), for each axis k ∈ {1, . . . , s}, we set the

parameter for stopping rule to be ζk = α/2s and take a few adjacent blocks at level ĵk(ζk)−1

to the left and right of îk,ĵk(ζk)−1-th block.

Let

Lk = max{0, 2 · (îk,ĵk(α/2s)−1 − 7)}, Uk = min{2 · (îk,ĵk(α/2s) + 6), d(n+ 1)2ĵk(α/2s)−Je}.
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When ǰk(α/2s) <∞, let

tk,lo =
2J−ĵk(α/2s)

n
Lk −

1

2n
, tk,hi = min{2J−ĵk(α/2s)

n
Uk −

1

2n
, 1}. (3.4.13)

When ǰk(α/2s) =∞, tk,lo and tk,hi are calculated by the following Algorithm 3.

The key ideas of Algorithm 3 are as follows.

ǰk(α/2s) =∞ means that Tk,j never triggers the stopping, which is a strong indicator that

the signal is strong and discretization error could dominate. Algorithm 3 first specifies a

range that the minimizer lies in with high probability (e.g. 1−α/2s), and then shrinks the

interval to locate the minimizer among the grid points within the original interval. After

this step, the minimizer(s) among the grids are in the shrunk interval with high probability

(e.g. 1−3α/4s). Then in the case that shrunk interval detects only one grid-wise minimizer

(im/n) and this minimizer does not indicates a discretizatino error larger or equal than 1/n

(i.e. im = 1 or im = n − 1), we use a geometry property of convex functions to determine

the final interval. Basically, the right most possible minimizer is or is infinitely near to

the intersection of two lines : y = f(im/n), and the line joining ( im+1
n , f( im+1

n )) with

( im+2
n , f( im+2

n )). With observation νek,im , ν
e
k,im+1, ν

e
k,im+2, we can infer the intersection of

the aforementioned two lines and specify the right end point of the interval accordingly.

The k-th axis of confidence hyper cube CIz,α is given by

CIk,α = [tk,lo, tk,hi]. (3.4.14)

The (1− α)-level confidence hyper cube CIz,α is given by

CIz,α = CI1,α × CI2,α × · · · × CIs,α, (3.4.15)

where CIk,α is defined in (3.4.14).
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Algorithm 3 Computing tk,lo and tk,hi when ǰk(ζ) =∞
Lk ← max{0, 2îk,ĵk(α/2s)−1 − 15}, Uk = min{n, 2îk,ĵk(α/2s)−1 + 12}, α1 = α/8s, α2 =

α/24s

Generate z3
k,0, z

3
k,2, · · · , , z3

k,n
i.i.d.∼ N(0, 1)

il ← min{{U} ∪ {i ∈ [L,U − 1] : νek,i − νek,i+1 +

√
3σ

(n+ 1)
s−1

2

(
z3
k,i − z3

k,i+1 − 2zα1

)
≤ 0}

ir ← max{{L− 1} ∪ {i ∈ [L,U − 1] : νek,i− νek,i+1 +

√
3σ

(n+ 1)
s−1

2

(
z3
k,i − z3

k,i+1 + 2zα1

)
≥ 0}

if il ≤ ir then
tk,lo = max{0, il−1

n }, tk,hi = max{1, ir+2
n }

end if
if il = ir + 1 and il ≤ n− 2 then

if νek,il+2 − νek,il+1 −
√

3σ

(n+1)
s−1

2

(
z3
k,il+2 − z3

k,il+1 − 2
√

2zα2

)
> 0 then

thi ←


 νek,il

−νek,il+1−
√

3σ

(n+1)
s−1

2

(
z3
k,il
−z3

k,il+1−2
√

2zα2

)
n

(
νek,il+2−νek,il+1−

√
3σ

(n+1)
s−1

2

(
z3
k,il+2−z3

k,il+1−2
√

2zα2

)) + 1
n


+

+ il
n

 ∧ il+1
n

else
thi ← il

n
end if

end if
if il = ir + 1 and il ≥ n− 1 then
tk,hi = 1

end if
if il = ir + 1 and il ≥ 2 then

if νek,il−2 − νek,il−1 −
√

3σ

(n+1)
s−1

2

(
z3
k,il−2 − z3

k,il−1 − 2
√

2zα2

)
> 0 then

tk,lo ←


− νek,il

−νek,il−1−
√

3σ

(n+1)
s−1

2

(
z3
k,il
−z3

k,il−1−2
√

2zα2

)
n

(
νek,il−2−νek,il−1−

√
3σ

(n+1)
s−1

2

(
z3
k,il−2−z3

k,il−1−2
√

2zα2

))


+

+ il−1
n

 ∧ il
n

else
tk,lo ← il

n
end if

end if
if il = ir + 1 and il ≤ 1 then
tk,lo = 0

end if

Now we turn to the construction of the estimator and confidence interval for the minimum.
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We start with estimation for the minimum M(f). Let ζ = Φ(−2). For axis k, let

∆k = 1{Yr
k,j,îk,j+6

− Yr
k,j,îk,j+5

≤ zζ σ̃2
k,ĵk(ζ)

} − 1{Yr
k,j,îk,j−6

− Yr
k,j,îk,j−5

≤ zζ σ̃2
k,ĵk(ζ)

}.

The estimator for M(f) is given as follows.

We define s intermediate estimators M̂k as

M̂k =


2ĵk(ζ)−JYe

k,ĵk(ζ),îk,ĵk(ζ)+2∆k
, ǰk(ζ) <∞

min
îk,J−2≤i≤îk,J+2

νek,i−1, ǰk(ζ) =∞
. (3.4.16)

The final estimator M̂ is defined as

M̂ =
1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi}) +

s∑
k=1

M̂k. (3.4.17)

Now we continue with the confidence interval for the minimum M(f). Let ζk = ζ = α/4s.

Define the step number that will be used for constructing the interval as

jF,k =


ǰk(ζ) + 3, for ǰk(ζ) ≤ J

∞, for ǰk(ζ) =∞
(3.4.18)

Basically, we go three steps forward from the step that the test statistic Tk,j triggers the

stopping rule.

Define

Ik,lo = 2(jF,k∧J)−ĵk(ζ)+1 ×
(
îk,ĵk(ζ)−1 − 7

)
,

Ik,hi = 2(jF,k∧J)−ĵk(ζ)+1 ×
(
îk,ĵk(ζ)−1 + 6

)
+ 1

(3.4.19)

We first define 3 sets of s intermediate estimators {M̃k,md : 1 ≤ k ≤ s}, {M̃k,hi : 1 ≤ k ≤
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s}, {M̃k,lo : 1 ≤ k ≤ s} as

M̃k,md = min
Ik,lo≤i≤Ik,hi

Yek,(jF,k∧J),i × 2(jF,k∧J)−J , (3.4.20)

M̃k,hi = M̃k,md + S210,α/8s ×
√

3
σ

(n+ 1)
s−1

2

× 2
(jF,k∧J)−J

2 (3.4.21)

and

M̃k,lo = M̃k,md−
3σ(zα/4s + 1)

(n+ 1)
s−1

2

×2
jF,k−J

2 −S210,α/8s×
√

3
σ

(n+ 1)
s−1

2

×2
(jF,k∧J)−J

2 for jF,k ≤ J.

(3.4.22)

Let M̃k,lo be computed by Algorithm 4 when jF,k > J . Algorithm 4 is based on the geometric

property of the convex function f that for any 1 ≤ i ≤ n− 2,

inf
t∈[ i

n
, i+1
n

]
f(t) ≥ inf

t∈[ i
n
, i+1
n

]
max

{
fk(

i+2
n )− fk( i+1

n )

1/n
(t− i+ 1

n
) + fk(

i+ 1

n
),

fk(
i
n)− fk( i−1

n )

1/n
(t− i

n
) + fk(

i

n
)

}
.
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Algorithm 4 Computing M̃k,lo when jF,k > J

kl ← max{0, Ik,lo − 1}, kr ← min{n − 1, Ik,hi − 2},H ← Skr−kl+4, α
24s

√
3 σ

(n+1)
s−1

2
+

z α
48s

√
3σ

(n+1)
s
2

if kl = 0 then

vr,0(t)← νek,2−νek,1+2H

1/n (t− 1/n) + νek,1 −H,h(0)← mint∈[0,1/n] vr,0(t)
end if
if kr = n− 1 then

vl,n−1(t)← νek,n−1−νek,n−2−2H

1/n (t− n−1
n ) + νek,n−1 −H, h(n− 1) = mint∈[n−1

n
,1] vl,n−1(t)

end if
for i = (kl ∨ 1), · · · , (kr ∧ n− 2) do

Define two linear functions:

vl,i(t) =
νek,i − νek,i−1 − 2H

1/n
(t− i

n
) + νek,i −H,

vr,i =
νek,i+2 − νek,i+1 + 2H

1/n
(t− i+ 1

n
) + νek,i+1 −H

h(i) = mint∈[ i
n
, i+1
n

] max{vl,i(t), vr,i(t)}
end for
M̃k,lo ← min{h(i) : kl ≤ i ≤ kr} ∧ M̃k,hi

Let

M̃hi =
1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi}) +
s∑

k=1

M̃k,hi + zα/8 · 2
√

3
σ

(n+ 1)
s
2

s, (3.4.23)

M̃lo =
1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi}) +

s∑
k=1

M̃k,lo − zα/8 · 2
√

3
σ

(n+ 1)
s
2

s. (3.4.24)

The confidence interval for the minimum M(f) is given by

CIm,α = [M̃lo, M̃hi]. (3.4.25)
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3.4.3. Statistical Optimality

Now we establish the optimality of the adaptive procedures constructed in Section 3.4.2. The

results show that our procedures are simultaneously optimal (up to a constant depending

on dimension and confidence level) for f ∈ Fs in terms our benchmarks introduced in (3.4.2)

and (3.4.3).

We begin with the estimator of the minimizer.

Theorem 3.4.1 (Estimation for Minimizer). The estimator Ẑ defined in (3.4.12) satisfies

Ef

(
‖Ẑ − Z(f)‖2

)
≤ Qz,sR̃z,n(σ; f), for all f ∈ Fs (3.4.26)

where Qz,s is a positive constant depending on s.

For the confidence hyper cube CIz,α of Z(f), we have the following result.

Theorem 3.4.2 (Inference for Minimizer). For 0 < α ≤ 0.3, confidence cube CIz,α defined

in (3.4.15) is a (1−α)-level confidence cube for the minimizer Z(f) and its expected volume

satisfies

Ef (V (CIz,α)) ≤ Qz,s,αL̃z,α,n(σ; f), for all f ∈ Fs (3.4.27)

where Qz,s,α is a positive constant depending on s and α only.

Similarly, the estimator and confidence interval for the minimizer M(f) also achieve within

a constant depending on s and α of the corresponding benchmark simultaneously for all

f ∈ Fs.

Theorem 3.4.3 (Estimation for Minimum). The estimator M̂ defined in (3.4.17) satisfies

E
(
M̂ −M(f)

)2
≤ Qm,sR̃m,n(σ; f) (3.4.28)

where Qm,s is a positive constant depending on s.

Theorem 3.4.4 (Inference for Minimum). For 0 < α ≤ 0.3, the confidence interval CIm,α
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defined in (3.4.25) is a (1−α) level confidence interval for minimum M(f) and its expected

length satisfies

E(|CIm,α|) ≤ Qm,s,αL̃m,α,n(σ; f), (3.4.29)

where Qm,s,α is a positive constant depending on dimension s and α.
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CHAPTER 4

Interplay Between Statistical Accuracy and Running Time Cost: A

Framework and Examples

4.1. Introduction

With the advent of iterative methods and the increasing scale of data, computational cost

has become a great concern in addition to statistical accuracy. Approaches from differ-

ent angles have been proposed, including categorizing different methods with the triple

of sample size, computation time and statistical error (Chandrasekaran and Jordan, 2013),

computational-theoretical approach that differentiates between regions of parameters where

the problem is polynomial-time computable or not polynomial-time computable (Wang

et al., 2016; Berthet and Rigollet, 2013), reducing the effective sample size (Shender and

Lafferty, 2013; Horev et al., 2015; Sussman et al., 2015; Kpotufe and Verma, 2017), and sepa-

rately investigating both optimization running time and statistical accuracy, when the prob-

lem enjoys good properties like a certain form of strong convexity, smoothness or isotropic

property (Loh and Wainwright, 2015; Wang et al., 2017; Chen and Wainwright, 2015; Bottou

and Bousquet, 2011).

Our approach is to provide theoretically guaranteed iterative optimization algorithm and

precise quantification of how iteration number affects the statistical accuracy for a class of

problems that admits estimators of a certain general form without imposing artificial or

hard-to-verify conditions.

Our approach is different from the computational-theoretical approach in that we quantify

the affects of running time on statistical accuracy on a continuous scale rather than a binary

answer of polynomial time computability.

Compared with literature that deals with only statistical problem, only statistically rooted

optimization problem, or both optimization and statistical aspects of a statistical prob-
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lem, our approach provide theoretically guaranteed optimization procedure; our approach

provides refined optimization-wise convergence rate that considers the dimension of the sta-

tistical problem as a changing quantity rather than a constant; and our approach combines

optimization and statistic in a more intrinsic way so that we do not need artificial hard-to-

verify conditions to give theoretical guarantee for our optimization procedure in terms of

its influence on statistical accuracy.

To further illustrate this, we digress a little into the existing works.

Existing literature usually treats statistical properties and optimization properties sepa-

rately. Statistical properties (i.e. statistical convergence rate) are usually established for

a perfect solution of an optimization problem. And optimization convergence rates are

established targeting the perfect solution for a certain method. Literature attempting to

consider both aspects jointly also follow this style.

But this separation has three undesired consequences. It requires assumptions that fa-

cilitates convergence rate in the sense of conventional optimization. It gives convergence

results in the sense of conventional optimization. It deals with problems that’s considered

interesting in the sense of conventional optimization.

Those assumptions include strongly convex in some form for the objective function and the

uniqueness of the solution, among others. However, for the original statistical problems,

these assumptions are hard to verify or invalid. For example, strong convexity type con-

dition is hard to verify and always violated in statistical problems, and solutions to the

optimization problem can be multiple in over-parametrized settings like neural network and

robust Principle Component Analysis (RPCA).

One of our key observations is that these assumptions are not necessary for producing

statistically well behaved computed estimators, as we do not need to solve the optimization

problem well in the conventional way to guarantee its statistical performance — there is an

alternative way of characterizing how well the optimization problem is solved in terms of
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solution’s statistical performance. Further, solving it well in the conventional way does not

give additional help to statistical analysis.

The convergence results in the sense of conventional optimization are also not enough for

statistical consideration. In high dimensional statistics, we are essentially dealing with

a class of optimization problems with changing dimensions, and we need to know how

optimization-induced statistical error changes in terms of both iteration number and the

dimension. Conventional optimization results usually view dimension related quantity as a

constant intrinsic to the optimization problem.

Many statistically rooted optimization problems are not considered general enough or in-

teresting enough under conventional optimization sense, but the statistical problems are

important from statistical perspective. Therefore, many heuristic optimization methods

widely used in statistical literature are not nearly well understood. Many statistically good

estimators also lack optimization algorithms. And some optimization results targeting sta-

tistically rooted optimization problem generalize the problem in the way making it no longer

useful for the root statistical problem.

Our approach is free from all these problems. We propose a framework consists of three

parts. We incorporate the consideration of optimization error into the statistical analysis

through an approximate optimization problem rather than an approximate optimization

solution. We provide a template optimization algorithm. We show its convergence in terms

of converging to the optimization problem. Our convergence results takes the possibly

growing dimension and other changing geometry quantities into consideration in addition

to the iteration number. All three added together, we have a theoretically guaranteed

algorithm and a precise quantification of statistical accuracy given iteration number.

In two examples, 1-bit matrix completion (Davenport et al., 2014) and causal inference

for panel data (Athey et al., 2021), we apply our framework, which yields novel results

for both problems. And our framework can also be applied to network analysis, robust
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principle analysis, kernel ridge regression, SVM, simple neural networks, LASSO, etc. We

take LASSO for an example. LASSO in (high dimensional sparse) linear regression is a

simpler and degenerate case for our framework. Through it, we show that our framework

automatically adapt to the setting where stronger assumptions are satisfied (e.g. restricted

strong convexity).

In addition to our framework, our statistical analysis of causal inference for panel data

using matrix completion is also sharper and yields better statistical convergence rate in the

special case that the solution is perfect, which is the case considered in the literature.

4.1.1. Our framework

Our framework deals with statistical problems where the most promising estimator can be

written as a solution to an optimization problem of the form

min
X

f(X) + g(X)

s.t. X ∈ C1 ∩ C2 ∩ · · ·CJ ,
(4.1.1)

where X is an m×n parameter matrix, with vector being a special case by taking n = 1, f is

an L(ε)-smooth (optimization wise) and Lf (ε)-Lipschitz convex function on the constraint

set and its ε neighborhood (with L(ε), Lf (ε) > 0), g is a possibly non-smooth but Lg(ε)-

Lipschitz convex function on the same area (with Lg(ε) > 0), C1 to CJ are convex constraint

sets that are easy to project on. Note that f and g here are usually data dependent.

In some cases f is data dependent. Examples include negative log likelihood, sum of least

squares in high-dimensional linear regression, or the objective function in principle com-

ponent analysis (PCA). In these cases g can be penalty term or 0. In some cases, g is

data-dependent and f is the regularization term. Examples include soft support vector

machine and neural network with Relu activation function.

So this general form includes a wide range of estimators, including constrained maximum log
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likelihood estimators, penalized maximum log likelihood estimator, support vector machine,

etc.. This wide range of estimators have proved their power by achieving minimax optimality

for many statistical problems, especially in high dimensional statistics, or by achieving good

empirical performances, especially in machine learning.

Note that we do not require strong convexity, restricted strong convexity or strong convexity

of any form for f(X), which is almost a conventional assumption in the literature considering

both optimization and statistical properties. We will see later that the absence of strong

convexity is indeed very common in reality.

A specific example fitting this general form is the 1-bit matrix completion with constrained

maximum log likelihood estimators. It’s helpful to see how this concrete example fits the

general framework.

Example 4.1.1 (1-bit matrix completion). The statistical setting for 1-bit matrix completion

is as follows (Davenport et al., 2014). Given the true parameter matrix M ∈ R
d1×d2 ,

a random subset of indices Ω ⊂ [d1] × [d2] indicating the elements we observe, and a

differentiable link function l : D → [0, 1], where D ⊂ R, the observation is a matrix

Y ∈ Rd1×d2 defined as follows. Entries of Y are independent.

For (i, j) ∈ Ω,

Yi,j =


+1 with probability l(Mi,j)

−1 with probability 1− l(Mi,j)

. (4.1.2)

For (i, j) /∈ Ω, Yi,j = 0. The assumptions are as follows. M is nuclear norm bounded (

‖M‖∗ ≤ α
√
rd1d2) and element wise bounded ( ‖M‖∞ ≤ α). The random subset of indices

satisfies E|Ω| = n with each entry being chosen with probability n
d1×d2

independently.

Then the log-likelihood function of this problem is

LΩ,Y (X) =
∑

(i,j)∈Ω

(1{Yi,j = 1} log(l(Xi,j)) + 1{Yi,j = −1} log(1− l(Xi,j))). (4.1.3)
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Davenport et al. (2014) show that the minimax optimal estimator M̂ is a solution of the

following optimization problem

min
X

− LΩ,Y (X)

s.t. ‖X‖∗ ≤ α
√
rd1d2 and ‖X‖∞ ≤ α.

(4.1.4)

If we further assume twice differentiability of the link function, which is true for all link

function examples in Davenport et al. (2014), this estimator satisfies our general formulation

(4.1.1), with

f(X) = −LΩ,Y (X), g(X) = 0,

C1 = [−α, α]d1×d2 , C2 = {M ∈ Rd1×d2 |‖M‖∗ ≤ α
√
rd1d2},

Lf (ε) = sup
|x|≤ε+α

|l′(x)|
l(x)(1− l(x))

, Lg(ε) = 0, and

L(ε) = sup
|x|≤ε+α

max{|l
′′(x)l(x)− (l′(x))2|

l(x)2
,
|l′′(x)(1− l(x)) + (l′(x))2|

(1− l(x))2
}.

(4.1.5)

Remark 4.1.1. Note that in Example 4.1.1, −LΩ,Y (X) in most cases is not strongly convex,

or restricted strongly convex (Loh and Wainwright, 2015; Wang et al., 2017), hence the ap-

proach of establishing convergence in parameter space (the space of X) for the optimization

problem separated from the statistical problem, which is adopted in the literature, is not a

good, if possible, approach.

Remark 4.1.2. In the original work by Davenport et al. (2014), where Example 4.1.1 arises,

they only have a heuristic algorithm computing the solution of optimization problem (4.1.4)

with no theoretical guarantee.

Remark 4.1.3. Causal inference for panel data (Athey et al., 2021) also satisfies the general

formulation (4.1.1). We discuss it in detail in Section 4.4, where we not only develop a

theoretically guaranteed optimization algorithm and provide a precise quantification of how

iteration number comes in the statistical accuracy based on our framework, but also give

a sharper upper bound on statistical accuracy than that in Athey et al. (2021) when the
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solution is exact, all of which are interesting results on their own.

Remark 4.1.4. Lasso for linear regression is another example satisfying our framework. But

it is a severely degenerate case: it is for parameter vector; it does not have constraints;

it admits restricted strong convexity in high dimensional sparse setting. We discuss it in

detail in Section 4.5.

Remark 4.1.5. More examples fit into our framework. For the reason of space, we do not

give detailed discussion in this dissertation.

In our framework, to be free from strong convexity of any form or other artificial condi-

tions, we consider X̃ that has small violations on both constraints and minimum objective

function value. We analyze statistical property of X̃. The analysis of X̃ is independent

from any optimization procedure and it is an interface between statistical property and

optimization error, so we call this step Statistical-Optimization Interplay. Then we develop

an optimization algorithm and analyze its convergence in terms of those small vanishing

violations. Therefore, we can give a precise quantification of how number of iterations in

our algorithm translates into statistical accuracy. Given that the number of iteration is the

key bottleneck for running time and can not be reduced through parallel computing, this

shows how running time could buy statistical accuracy until the statistical limit is reached.

Statistical-Optimization Interplay

The first step of our framework is to integrate the optimization error into statistical analysis

before solving the optimization problem.

Given the data, functions f and g in optimization problem (4.1.1) are decided. The target

estimator X∗ is a solution to the optimization problem (4.1.1). But the exact solution

of optimization problem (4.1.1) can be computationally infeasible and only approximate

solutions can be computed. We need to consider the statistical property of this approximate

solution.

Instead of considering the convergence rate of the computed solution X̃ to the target es-
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timator X∗, we move the consideration of optimization to the start of statistical analysis.

We consider an approximate estimator X̃ satisfying the approximate conditions in (4.1.6)

and investigate its statistical properties. Basically, approximate conditions mean both con-

straints and optimal objective function can be violated a little (δ, δ0, δ1, · · · , δJ ≥ 0).

f(X̃) + g(X̃) ≤ f(X∗) + g(X∗) + δ,

inf
Z∈Ci

‖Z − X̃‖2 ≤ δi, for all 1 ≤ i ≤ J,

inf
Z∈C1∩C2∩···CJ

‖Z − X̃‖2 ≤ δ0.

(4.1.6)

Note that the target estimator X∗, the optimizer of Optimization Problem (4.1.1), satisfies

these inequalities with δ = δ0 = · · · = δJ = 0. When δ, δ0, · · · , δJ → 0+, the approximate

conditions are infinitely close to the original Optimization Problem (4.1.1), and when δ =

δ0 = · · · = δJ = 0, the approximate conditions define an equivalent optimization problem

as the original one. So this is a way of characterizing how close the computed estimator X̃

is to the target estimator X∗. An interesting observation is that the statistical analysis of,

or the tools used in the statistical analysis of most constrained M−estimators, a kind of

estimators satisfying the conditions of our framework, can be carried to this approximate

version estimator relatively easily. We concrete the idea in three examples, 1-bit matrix

completion, causal panel data analysis and LASSO. 1-bit matrix completion problem is

analyzed as a representation for constrained log-likelihood estimator. Causal panel data is

analyzed as a representation for constrained penalized log-likelihood estimator. Lasso is a

representation of a degenerate case for our framework, where we show that the statistical-

optimization interplay automatically adapt to simpler settings to give strong results in the

simpler setting. For causal panel data, we also sharpened the backbone statistical analysis.

And our framework is applied to the sharpened statistical analysis.

Note that in this step, we do not yet have an optimization procedure and the analysis is

entirely irrelevant to the optimization procedure. Yet the slightly violated conditions fully

characterize the statistical property of computed solution X̃ in the sense that non-violated
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version conditions are the starting point for any statistical analysis for the exact solution. So

we do not need the optimization procedure to have a traditional optimization convergence.

Existing work on considering both optimization error and statistical error (e.g. Bottou and

Bousquet (2011); Loh and Wainwright (2015)) usually considers the optimization error after

the statistical problem is fully analyzed. They consider the optimization wise convergence

rate of the computed solution to the true solution. But this approach does not work when

the true solution is hard or unable to computed well. One of such setting is when the

optimization problem has multiple solutions. Examples include neural network, which is

usually over-parametrized, and principal component analysis (PCA). People deals with the

problem of multiple solution in PCA through defining a distance that implicitly equalize

the solutions, partly leading to a huge volume of literature on non-convex optimization,

see Chi et al. (2019) for a review. Another situation that the true solution is hard to be

computed well is when the objective function does not enjoy good properties in the sense

of optimization, e.g. strong convexity of some form.

Optimization Algorithm and Convergence Analysis

The second step is to develop an optimization procedure with theoretical guarantees in

terms of convergence to an estimator satisfying inequalities (4.1.6).

We adopt a double-loop optimization procedure where the outer loop is proximal gradient

descent and the inner loop is 3-block ADMM.

We give convergence rate of the optimization procedure that considers both iteration number

and statistically important quantity (e.g. dimension). This includes the convergence rate

for inexact proximal gradient descent, convergence rate for our inner loop (3-block ADMM),

and a bound for a dimension-related geometric quantity involved in the convergence rate.

There can be variants to our optimization procedure ( e.g. using accelerated proximal

gradient descent for outer loop, using 2-block ADMM for inner loop when reducible). But
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our analysis for outer loop can be easily carried to accelerated version. And our analysis

of the geometric quantity can also be easily carried to 2-block ADMM. Another reason for

taking 3-block ADMM is that in addition to fitting our two examples, the 3-block ADMM

can serve as a building block for a general number of constraints, as is in our general

framework.

4.1.2. Related Literature

In addition to the literature mentioned at the beginning of this sections. The problems

considered in this paper is also connected to the following problems and literature.

Computational issue for low-rank matrix completion has been studied through a matrix

factorization approach which leads to nonconvex optimization problem. See, for example,

Wang et al. (2017); Jain et al. (2013); Chen and Wainwright (2015), and the overview paper,

Chi et al. (2019). In this line of research, 1-bit matrix completion problem is also correctly

studied by Chen and Wainwright (2015). However, this approach requires the exact low

rank assumption, the knowledge of the rank, and also at least one other conditions like RIP

condition (Jain et al., 2013), restricted convexity (Wang et al., 2017), and incoherence Chen

and Wainwright (2015), which are strong and hard-to-verify condition in many settings.

Further, the convergence rate for 1-bit matrix problem in Chen and Wainwright (2015)

depends on the mostly unknown incoherence, which varies greatly, and the worst case

different from the best by order.

Computational issue for M−estimator is also considered in Loh and Wainwright (2015),

where they consider Lasso type estimator. Their work deal with vectors (instead of matrices)

with restricted strong convexity (RSC) requirement. Our framework is designed for the more

general case: matrix without RSC condition. This includes the simpler setting (vector with

RSC condition). And as shown in our third example, our framework automatically adapts

to the simpler setting and provides stronger results under stronger conditions.

Schmidt et al. (2011) studied convergence rate for inexact proximal gradient and inexact
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accelerated proximal gradient when the non-smooth part is finite. But in our setting, the

existence of constraints dictates the infinity of the non-smooth part. Jiang et al. (2012)

studied inexact accelerated proximal gradient descent, but it is for linearly constrained

convex SDP.

Literature on the convergence of 3-block ADMM includes, for example, Cai et al. (2017);

Lin et al. (2018); Hong and Luo (2017); Lin et al. (2016). But they either are not applicable

to our setting (Hong and Luo, 2017; Lin et al., 2018), or establishes convergence rate on

Lagrange Functions (Cai et al., 2017), or establishes convergence rate on objective function

with results weaker than ours in its applicable setting (Lin et al., 2016). Tibshirani (2017)

considers projection on intersection of convex sets, but it is for coordinate descent and for

vectors instead of matrices, thus not applicable to our setting.

4.1.3. Organization of the Chapter

In Section 4.2 we introduce our general framework and give general results. In Section

4.3 we discuss the results of applying our framework to 1 bit matrix completion example,

where we get interesting new results. In section 4.4 we discuss the results for causal panel

data example, where in addition to applying our framework we provide tighter back-bone

statistical analysis. In Section 4.5, we discuss applying our framework to (high dimensional)

linear regression and compare with the results in literature for this degenerated setting. In

section 4.6, we discuss some directions for future work. For the reason of space, the proofs

are given in the appendix Section A.6.

4.1.4. Notation and Definition

Both ‖·‖ and ‖·‖F stand for Frobeneous norm. ‖·‖F is to give special emphasis for matrices

when there might be confusion. ‖ · ‖∗ stands for nuclear norm. We use |O| to denote the

number of elements in O when O is a set. We use D(A‖B) = 1
d1d2

∑
i,j D(Ai,j‖Bi,j) to

denote average KL divergence between d1 by d2 probability matrix A and B for 1-bit
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matrix completion, where D(a‖b) = a log(ab ) + (1−a) log(1−a
1−b ). We use T{A} to denote the

function where it takes 0 if A holds and ∞ if A does not hold. We use R(ε, C) to denote

the ε neighborhood of convex set C: R(ε, C) = {X : infZ∈C ‖X − Z‖ ≤ ε}. We use Bd(x)

to denote a ball centered at x with radius d under Frobeneous norm. We use ∨ to denote

taking max: a ∨ b = max{a, b}. We use ProjC(P ) to denote the projection point of P on

convex set C, the projection is in terms of Euclidean distance.

Now we introduce the definition of smoothness in optimization sense.

Definition 4.1.1 (Optimization-wise Smoothness). A convex function f(X) is said to be

L-smooth if for any X in the domain, there is a subgradient ∂f(X) at X such that for all

Y in the domain,

f(Y ) ≤ f(X) + ∂f(X)(Y −X) +
L

2
‖X − Y ‖2. (4.1.7)

4.2. General Framework

In this section, we introduce the general framework. The general framework has three

parts: statistical-optimization interplay, optimization-template algorithm, and optimization

convergence analysis.

4.2.1. Statistical-Optimization Interplay

In statistical-optimization interplay, we integrate the optimization consideration into the

statistical analysis by considering the statistical accuracy of an estimator coming from an

approximate optimization problem instead of just an approximate solution.

Recall that the target estimator X∗ is the solution in (4.1.1). To consider the optimization-

induced statistical error, we consider the statistical property of approximate estimator X̃

satisfying Inequalities (4.1.6). The measurements for how well the optimization problem is

eventually solved are δ, δ0, δ1, · · · , δJ .

Suppose one of the true parameters of the statistical model is Xt.
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The key ingredient for statistical-optimization interplay is an interesting but natural obser-

vation on statistical analysis of estimator of the form (4.1.1). The statistical analysis for

X∗ usually starts with the inequality

f(X∗) + g(X∗) ≤ f(Xt) + g(Xt). (4.2.1)

This inequality is usually reduced to simpler form with or without using the constraint

conditions. And then the simpler form becomes a solvable inequality for the statistical

error or the simpler form is further reduced. Typical tools for further reducing the inequality

includes empirical process, which is also where the constraints in (4.1.1) usually comes in.

A reflection on this whole procedure gives that the additive nature of (4.2.1) is untouched,

so are the constraints in (4.1.1).

These characteristics of the analysis mean that similar analysis can go through for approxi-

mate solution X̃, as it adds in the optimization errors (e.g.δ, δ0, · · · , δj) in an additive way.

Specifically, the analysis for X̃ starts with

f(X̃) + g(X̃) ≤ f(Xt) + g(Xt) + δ. (4.2.2)

Constraints also enter the analysis with an additional error term.

In this way, the focus is shifted from the final approximate solution X̃ to the approximate

optimization problem (4.1.6). We do not need strong convexity or uniqueness of the solution

or other conditions to ensure the fast proximity of the solutions. We only need proximity of

the problems, which is the only thing relevant to the statistical accuracy while being much

relaxed in terms of optimization.

As statistical analysis varies from problem to problem. We will concrete the idea of analyzing

solution satisfying the approximate optimization problem through examples in Section 4.3,

Section 4.4 and Section 4.5.
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Remark 4.2.1. In our framework, we consider problems with constraints, but it is also

applicable to the setting where there is no constraints. The problem with no constraints

is a degenerated case where we do not need to consider projection in optimization part.

We show in Section 4.5 that in a degenerate case, (high dimensional) linear regression,

our framework automatically adapts to the simpler setting and stronger conditions to give

stronger results.

Remark 4.2.2. Statistical-Optimization Interplay, the interface building optimization error

into statistical analysis before solving the optimization problem, can work alone. That

is, the optimization procedures and analysis can be replaced when needed. Further, the

statistical-optimization interplay can also be extended to Z-estimators and other type of

estimators coming from equation/inequality system, which is in my future work.

4.2.2. Template Algorithm

The second step of the framework is to have an algorithm finding X̃ satisfying (4.1.6). Our

template algorithm is a double-loop algorithm, where the outer loop is inexact proximal

gradient descent and inner loop is a 3-block ADMM to approximately compute quantities

in the outer loop. Our inner loop algorithm can be replaced and generalized to fit arbitrary

number of constraints, but to avoid unnecessary complexity while being sufficient for our

examples, we elaborate on 3-block ADMM and remark on generalized algorithm.

Outer Loop

Note that optimization problem (4.1.1) is equivalent to minimizing the following function.

F (X) = f(X) + (g(X) + T{X ∈ C1}+ T{X ∈ C2}+ · · ·+ T{X ∈ CJ}) . (4.2.3)

To minimize F (X), we do proximal gradient descent but with an “approximate” proximal

step, as shown in algorithm 4.2.1.
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Algorithm 4.2.1 (Outer Loop: Inexact Proximal Gradient Descent). Starting point is X0 ∈

C1 ∩ C2 ∩ · · · ∩ CJ . Step size is η > 0. For k ≥ 0,

Xk+0.5 = Xk − η∇f(Xk), Xk+1 = P̃roxη(g(X)+T{C1∩C2∩···∩CJ})(Xk+0.5), (4.2.4)

where P̃roxη(g(X)+T{X∈C1∩C2∩···∩CJ})(Xk+0.5) is a close approximation of

Proxη(g(X)+T{X∈C1∩C2∩···∩CJ})(Xk+0.5) =

arg min
X

(
1

2
‖X −Xk+0.5‖2F + η

(
g(X) + T{X ∈ C1 ∩ C2 ∩ · · · ∩ CJ}

))
.

(4.2.5)

Proxη(g(X)+T{X∈C1∩C2∩···∩CJ})(·) is called a proximal operator. However, we do not have an

exact solution to (4.2.5) to give Proxη(g(X)+T{X∈C1∩C2∩···∩CJ})(Xk+0.5). We only have an ap-

proximate proximal P̃roxη(g(X)+T{C1∩C2∩···∩CJ})(Xk+0.5) in the outer loop by approximately

solving the optimization problem corresponding to it, which is our inner loop.

Before we proceed to inner loop, we conclude with a remark that the approximate proximal

gradient can be replaced by its accelerated version for outer loop. But given the commonly

seen phenomenon that accelerated version of algorithms are usually less robust to errors

along the computation, we do not discuss the accelerated version for our setting. Similar

discussion can be given for accelerated version.

Inner Loop

The optimization problem that inner loop aims to solve is

min
X

(
1

2
‖X −Xk+0.5‖2F + η

(
g(X) + T{X ∈ C1 ∩ C2 ∩ · · · ∩ CJ}

))
. (4.2.6)

We can write it as

min
P

(
‖P − P0‖2F +

(
h1(P ) + h2(P ) + · · ·+ hm(P )

))
, (4.2.7)

92



where P0 equals to Xk+0.5 in (4.2.6), and hi(·) are convex functions not necessarily smooth

and potentially take infinity value. In the case J ≥ 1, at least one hi(·) takes infinity value.

We first consider the case that m = 2. In this case, Optimization Problem (4.2.7) is

equivalent to the following problem:

min
W,Z,P

‖P − P0‖2F + h1(W ) + h2(Z),

s.t.W = P,Z = P.

(4.2.8)

We take 3-block ADMM to solve this problem. The Augmented Lagrange Function for this

3-block ADMM is

Lβ(W,Z, P,Λ1,Λ2) = ‖P −P0‖2F +h1(W ) +h2(Z) +
β

2
(‖W −P +

Λ1

β
‖2F + ‖Z−P +

Λ2

β
‖2F ),

(4.2.9)

where β > 0 is the dual step size and Λ = (Λ1,Λ2) is the dual variable.

The optimization procedure for this 3 block ADMM is in algorithm 4.2.2.

Algorithm 4.2.2 (Inner loop: 3 block ADMM). The starting points are P 0 = P0, Λ0
1 = 0,

Λ0
2 = 0. The dual step size is β > 0. For k ≥ 0, the iteration steps are

W k+1 = arg min
W

Lβ(W,Zk, P k,Λk1,Λ
k
2) = arg min

W
h1(W ) +

β

2
‖W − P k +

Λk1
β
‖2F ,

Zk+1 = arg min
Z

Lβ(W k, Z, P k,Λk1,Λ
k
2) = arg min

Z
h2(Z) +

β

2
‖Z − P k +

Λk2
β
‖2F ,

P k+1 = arg min
P

Lβ(W k, Zk, P,Λk1,Λ
k
2)

= arg min
P

‖P − P0‖2F +
β

2
(‖W k+1 − P +

Λk1
β
‖2F + ‖Zk+1 − P +

Λk2
β
‖2F ),

Λk+1
1 = Λk1 + β(W k+1 − P k+1),

Λk+1
2 = Λk2 + β(Zk+1 − P k+1).

(4.2.10)

Note that when h1(·) comes from a constraint function, the update step for W is a projection
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step. Analogous result holds for h2(·).

Usually, 3-block ADMM is enough for solving most of the problems encountered in statistics,

including our two examples, as m in (4.2.7) is usually not very large. In the case that 3-

block ADMM is not enough (i.e. m ≥ 2), the reason for m ≥ 2 is that the number

of constraints is large. Then a natural way is to do recursive ADMM. For example, if

we have g = 0 and four constraints C1, C2, C3, C4, we can do a 3-block ADMM for

arg minP ‖P − P0‖2F + T{P ∈ C1 ∩ C2} + T{P ∈ C3 ∩ C4}, where in each projection step,

say on C1 ∩ C2, we can do another 3-block ADMM. This could be costly, but do-able.

Another remark is that in some cases, Optimization Problem (4.2.7) can be reduced to 2-

block ADMM. But less blocks sometimes may lead to worse performance (Lin et al., 2018)

and it’s not generalizable to more blocks, we rest with 3-block ADMM.

4.2.3. Optimization Convergence Analysis

In this section we give theoretical analysis for the algorithm-template we introduced in

Section 4.2.2.

For outer loop, we have the convergence result for inexact proximal gradient descent in

Theorem 4.2.1.

Theorem 4.2.1 (Inexact Proximal Gradient Descent). We take the inexact proximal gra-

dient descent algorithm 4.2.1. Suppose the inner loop (approximation of the proximal)

satisfies

∣∣P̃roxη(g(x)+T{x∈C1∩C2∩···∩CJ})(X)− Proxη(g(x)+T{x∈C1∩C2∩···∩CJ})(X)
∣∣ ≤ δ0 (4.2.11)

for all X ∈ R(δ0, C1 ∩ C2 ∩ · · · ∩ CJ). Suppose on R(δ0, C1 ∩ C2 ∩ · · · ∩ CJ), f is L smooth

and Lf Lipschitz,and g is Lg Lipschitz. We let step size η ≤ 1
L . Suppose X̃ has the smallest

f(X) + g(X) value among X0, X1, · · · , XK , the starting point and the results of first K
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iterations. Then we have

f(X̃) + g(X̃)− f(X∗)− g(X∗) ≤ 1

2Kη
‖X0 −X∗‖2+

(Lf + Lg)δ0 +
L

2
δ2

0 +
δ0D

η
+
δ2

0

2η
,

(4.2.12)

where D is the diameter of C1 ∩ C2 ∩ · · · ∩ CJ .

Remark 4.2.3. Schmidt et al. (2011) studied the convergence of inexact proximal gradient

descent when the non-smooth part is finite. But in the presence of constraints, although

function g is finite, the optimization problem (4.2.7) in our setting is always infinite.

Remark 4.2.4. The Lipschitz conditions needed for f and g are natural conditions satisfied

in most setting. For most non-smooth penalties, g satisfies Lipschitz condition on the entire

space. For most problems, the constraint set is compact (or contained in a compact set),

thus the smoothness and convexity of f dictates Lipschitz condition.

Now we turn to the convergence of the inner loop, 3-block ADMM.

Let W ∗, Z∗, P ∗ be true primal variables and Λ∗ = (Λ1,Λ2) be the true dual variable, i.e.

solution to the optimization problem

max
Λ1,Λ2

min
W,Z,P

Lβ(W,Z, P,Λ1,Λ2).

We have Proposition 4.2.1 for the convergence rate of the 3-block ADMM.

Proposition 4.2.1 (3 block ADMM convergence rate). Suppose we take algorithm 4.2.2

with dual step size β ≤ 6
17 , suppose P

t
= 1

t

∑t
j=1 P

j, then we have

‖P t−P ∗‖2 ≤ 1

2βt

(
β2‖Z1 − P ∗‖2 + 2β2‖P 1 − P ∗‖2 + ‖Λ1 −Λ∗‖2 +

20

3
β2‖P 1 − P0‖2

)
. (4.2.13)

Remark 4.2.5. In general, convergence for multi-block ADMM with more than two blocks

does not hold (Chen et al., 2016). Convergence in some specific settings has been studied.

But to our knowledge, no convergence rate has been established for direct 3-block ADMM

applied to our setting. In the most closely related literature, Cai et al. (2017) does not
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Figure 4.1: Illustration of geometry of dual variable

have convergence rate; the requirement on constraints in Lin et al. (2018) or Hong and Luo

(2017) does not fit our setting; Lin et al. (2016) has strict requirement on dual step size

and slower rate based on their requirement.

Note that ‖Λ1 − Λ∗‖ is involved in the convergence rate. Λ1 depends explicitly on β,

P0, h1(·) and h2(·), which can usually be easily studied and bounded, and it’s usually

relatively small in our setting. Λ∗, however, can be very large (in terms of norm) and

depends implicitly on the geometry of h1(·) and h2(·), which is dimension-dependent. But

optimization literature does not deal with it, as it is considered as a constant for a single

optimization problem. This issue is not particular to 3-block ADMM. 2-block ADMM also

involves true dual variable in the convergence rate, which is treated as constant in the

literature.

We bound ‖Λ∗‖, a geometry related quantity, by easy-to-compute geometry quantities.
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To understand the involvement of geometry intuitively, figure 4.1 takes the projection on

the intersection of two convex sets as an example for illustration. If the point to be taken

projection on, say P0, satisfies ProjC1∩C2
(P0) = A, the number of iterations needed to get

enough close to C1 ∩C2 would be relatively large, as Pk can stay far from C1 ∩C2 while it’s

already close to both C1 and C2 separately. On the other hand, when ProjC1∩C2
(P0) = B,

it would take less iterations to get enough close to B. Simple calculation show that −Λ∗1

and −Λ∗2 are subgradients for T{X ∈ C1} and T{X ∈ C2} at ProjC1∩C2
(P0), satisfying

−Λ∗1 − Λ∗2 = 2(P0 − P ∗). In figure 4.1, the purple cones at A and B show the region Λ∗1

and Λ∗2 can take value in at A and B respectively. We find bound for ‖Λ∗1‖2 + ‖Λ∗2‖2 by

finding bound for “the maximum angle” the purple cones. The purple cone (smaller cone)

at A can be considered as polar cone (Chandrasekaran and Jordan, 2013) of the smallest

cone containing C1∩C2 with A considered as origin, which at least contains the ball Bd(x).

Thus we can bound the purple cone by red cone. Same logic applies to purple cone (smaller

cone) at B. Lemma 4.2.1 gives the precise description of this intuition.

Lemma 4.2.1 (Geometry Bound). We define the generalized polar cone of convex set C at

point P to be NC(P ) = {a : 〈a, P − x〉 ≥ 0 for all x ∈ C}. Define the maximum angle of

two convex sets C1 and C2 to be

θ(C1, C2) = sup
P∈∂(C1∩C2)

sup
λ1∈NC1

(P ),λ2∈NC2
(P )

arccos (〈λ1, λ2〉),

where ∂(C1∩C2) is the boundary of C1∩C2. We define a quantity based on maximum angle

of C1 and C2 to be C(C1, C2) = 1

2 cos2(
θ(C1,C2)

2
)
, then we have

C(C1, C2) ≤ D2

2d2
,

where D = supx,y∈C1∩C2
‖x − y‖22, d = sup{d : ∃x ∈ C1 ∩ C2 such that Bd(x) ⊂ C1 ∩ C2}.

Further, suppose Λ∗ and P ∗ are the true dual variable and primal variable of the Augmented

Lagrange function (4.2.9). Then when h1(W ) = T{W ∈ C1} and h2(Z) = T{Z ∈ C2}, we
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have

‖Λ∗‖22 ≤ max{4, 4C(C1, C2)}‖P0 − P ∗‖2.

4.2.4. Remark

With the statistical-optimization interplay, algorithm-template, and optimization analysis,

we are ready to provide theoretically guaranteed algorithm for a large class of estimator

for a wide class of problems, and produce a precise analysis of how running time affects

statistical accuracy.

4.3. Application to 1 Bit Matrix Completion

In this section we apply the framework introduced in Section 4.2 to the 1 bit matrix com-

pletion example we introduced in Section 4.1.1, which yields novel results and also further

illustrates our framework.

4.3.1. Statistical-Optimization Interplay

Suppose a solution to optimization problem (4.1.4) is X∗. The approximation optimization

conditions (4.1.6) of the computed estimator X̃ in 1 bit matrix completion setting becomes

−LΩ,Y (X̃) ≤ −LΩ,Y (X∗) + δ,

‖X̃‖∞ ≤ α+ δ1, ‖X̃‖∗ ≤ α
√
rd1d2 + δ2, inf

Z∈C1∩C2

‖Z − X̃‖2 ≤ δ0,
(4.3.1)

where C1 = [−α, α]d1×d2 and C2 = {M ∈ Rd1×d2 |‖M‖∗ ≤ α
√
rd1d2}.

Our goal is to understand the statistical behavior of X̃. Applying statistical-optimization

interplay step of our framework to the statistical analysis in Davenport et al. (2014), where

X∗ is M̂ and X̃ is M̃ , gives Theorem 4.3.1, which describes how optimization-induced error

affects the statistical accuracy before solving the optimization problem.

Theorem 4.3.1. Consider 1 bit matrix completion problem introduced in Example 4.1.1.
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Let M̂ be a solution to optimization problem (4.1.4). Suppose M̃ satisfies −LΩ,Y (M̃) ≤

−LΩ,Y (M̂) + δ, ‖M̃‖∗ ≤ α
√
rd1d2 + δ2, ‖M̃‖∞ ≤ α+ δ1. Recall that D(A‖B) is the average

KL divergence between matrix A and B. Denote

Lγ = sup
|x|≤γ

|l′(x)|
l(x)(1− l(x))

(4.3.2)

for γ > 0 such that l(x) ∈ (0, 1) for |x| ≤ γ. Then we have, with probability at least

1− c1
d1+d2

,

D(l(M)‖l(M̃)) ≤ c0Lα+δ1(α
√
rd1d2 + δ2)

√
d1 + d2

nd1d2

√
1 +

(d1 + d2) log d1d2

n
+
δ

n
, (4.3.3)

c0, c1 are absolute constants that can be explicitly written out.

Remark 4.3.1. Note that in the formulation of example 4.1.1 we require link function l to

be twice differentiable in addition to mere differentiability in the original work (Davenport

et al., 2014) for fitting into our framework. But for statistical-optimization interplay, twice

differentiability is not necessary, as Theorem 4.3.1 still holds with only differentiability.

Remark 4.3.2. Note that when δ = 0, δ1 = 0 and δ2 = 0, M̃ in Theorem 4.3.1 is exactly the

target estimator and the rate is of the same order with that in Davenport et al. (2014). In

the view of approximate optimization, the target exact solution is a special case.

Remark 4.3.3. 1 bit matrix completion is a representative example for constrained M-

estimator, or more precisely, constrained maximum likelihood estimator with no penalty

term or optimization-wise smooth penalty term. Other constrained M-estimator includes

constrained kernel ridge regression and constrained version of sparse principle component

analysis.

4.3.2. Optimization Algorithm

Note that in Davenport et al. (2014), they use a heuristic method without theoretical

guarantee. Here we apply our optimization template algorithm to 1 bit matrix completion

and give results on its convergence in terms of the approximate optimization conditions.
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Note that the proximal operator Proxη(g(X)+T{X∈C1∩C2∩···∩CJ})(·) in optimization template

algorithm becomes projection operator ProjC1∩C2
(·) for 1 bit matrix completion, which

gives the outer loop in Algorithm 4.3.1.

Algorithm 4.3.1 (1-bit Matrix Completion Outer Loop: Inexact Projected Gradient De-

scent). Starting point is X0 = 0. Step size η > 0. For k ≥ 0, the iteration steps are

Xk+0.5 = Xk − η∇(−LΩ,Y (Xk)), Xk+1 = P̃rojC1∩C2
(Xk+0.5), (4.3.4)

where P̃rojC1∩C2
(Xk+0.5) is a close approximation of projection point

ProjC1∩C2
(Xk+0.5) =

arg min
X

(
‖X −Xk+0.5‖2F + T{X ∈ C1 ∩ C2}

)
.

(4.3.5)

To compute approximate projection point P̃rojC1∩C2
(P0)), we apply the template algorithm

inner loop. We know that the Augmented Lagrange Function for this 3-block ADMM is:

Lβ(W,Z, P,Λ1,Λ2) =T{W ∈ C1}+ T{Z ∈ C2}+ ‖P − P0‖2F+

β

2
(‖W − P +

Λ1

β
‖22 + ‖Z − P +

Λ2

β
‖22),

(4.3.6)

where Λ1 and Λ2 are dual variables and β is the dual update step size.

Applying the inner loop template algorithm, Algorithm 4.2.2, to 1 bit matrix completion,

gives the inner loop steps for 1 bit matrix completion in Algorithm 4.3.2.

Algorithm 4.3.2 (1-bit Matrix Completion Inner Loop: 3-block ADMM). The starting points
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are P 0 = P0,Λ0
1 = 0,Λ0

2 = 0. For k ≥ 0, the iterative steps are

W k+1 = ProjC1
(P k − 1

β
Λk1), Zk+1 = ProjC2

(P k − 1

β
Λk2),

P k+1 =
1

β + 1

(
P0 + Λk1 + Λk2 +

β

2
(W k+1 + Zk+1)

)
,

Λk+1
1 = Λk1 + β

(
W k+1 − P k+1

)
,

Λk+1
2 = Λk2 + β

(
Zk+1 − P k+1

)
.

(4.3.7)

Take the average P
k

= 1
k

∑k
i=1 P

i for the output if we end it at k-th iteration.

4.3.3. Optimization Convergence

In this section, we establish convergence rate for optimization algorithm introduced in

Section 4.3.2 in terms of the approximate optimization conditions. We apply results in

Section 4.2.3 to 1 bit matrix completion setting with appropriate modifications.

In this section, we need the assumption that the link function l for 1-bit matrix completion

is twice differentiable, as introduced in section 4.1.1. So in addition to Lipschitz constant

defined in (4.3.2), we have well defined smoothness constant for 1 bit matrix completion

example, defined as

L̃γ = sup
|x|≤γ
{|l
′′(x)l(x)− (l′(x))2|

l(x)2
,
|l′′(x)(1− l(x)) + (l′(x))2|

(1− l(x))2
}, (4.3.8)

for γ > 0 such that l(x) ∈ (0, 1) for |x| ≤ γ.

For the convergence of the outer loop, we apply Theorem 4.2.1 to 1 bit matrix completion

setting, which gives Proposition 4.3.1.

Proposition 4.3.1 (Outer loop for 1 bit matrix completion). Suppose we take projected

gradient descent, Algorithm 4.3.1, for outer loop, and the projection error in all steps sat-

isfies

‖P̃rojC1∩C2
(X)− ProjC1∩C2

(X)‖ ≤ δ0

101



. Suppose the link function l(x) is twice differentiable. Let L̃γ be defined in (4.3.8). Suppose

L̃α+δ0 ≤ L. Let Lγ be defined in (4.3.2). Let X∗ be a solution of optimization problem

(4.1.4). Take step size η = 1
L , we have

min
0≤k≤K

−LΩ,Y (Xk) ≤ −LΩ,Y (X∗) +
α2Ld1d2

2K
+ δ0(2αL

√
d1d2 + Lα+δ0 + Lδ0). (4.3.9)

To investigate the convergence for inner loop, we apply Proposition 4.2.1 and Lemma 4.2.1

in the general framework to 1 bit matrix completion example. Proposition 4.3.2 gives the

convergence for inner loop for 1 bit matrix completion.

Proposition 4.3.2 (Convergence of inner loop for 1 bit matrix completion). Suppose P ∗ =

ProjC1∩C2
(P0). Taking Algorithm 4.3.2, with dual step size β ≤ 6

17 , we have

‖P t − P ∗‖2 ≤ 1

2βt

(
7β2 + max{4, 8C(C1, C2)}+

20

3

β4

(β + 1)2

)
‖P0 − P ∗‖2, (4.3.10)

where C(C1, C2) ≤ d1d2
2 .

Combing the inner loop result, Proposition 4.3.2, and outer loop result, Proposition 4.3.1,

we have that Theorem 4.3.2 showing the overall optimization convergence in terms of ap-

proximate conditions.

Theorem 4.3.2 (Optimization: 1 bit matrix completion). Suppose we take projected gra-

dient descent, Algorithm 4.3.1, for outer loop, and 3-block ADMM, Algorithm 4.3.2, for

inner loop, where P0 in the inner loop is Xk+0.5 in the outer loop. Let Lα be defined in

(4.3.2). Let L̃α be defined in (4.3.8). If we take step size η = 1
2L̃α

, dual step size β ≤ 6
17 ,

the number of iterations of inner loop t ≥ t0, and take T iterations for outer loop, then

102



X̃ = arg minX∈{X0,X1,··· ,XT }−LΩ(X) satisfies the approximate conditions (4.3.1) with

δ ≤ α2L̃αd1d2

T
+ (4αL̃α

√
d1d2 + 2Lα)

√
1

t

√
q(β) +

2d1d2

β
+ 2L̃α

1

t

(
q(β) +

2d1d2

β

)
,

max{δ1, δ2, δ0} ≤
√

1

t

√
q(β) +

2d1d2

β
,

(4.3.11)

where q(β) = 7β
2 + 10

3
β3

(β+1)2 , u0 = max{u : Lα+u ≤ 2Lα, L̃α+u ≤ 2L̃α}, and t0 =

1
2β

(
7β2 + 4d1d2 + 20

3
β4

(β+1)2

)
(1 + Lα

u0L̃α
+ Lα

L̃α
)2.

4.3.4. Overall Result

In this section, we are ready to show how the running time affects the statistical accuracy,

as shown in Theorem 4.3.3.

Theorem 4.3.3. For 1 bit matrix completion introduced in Section 4.1.1, suppose the link

function l(x) is twice differentiable. Let L̃α be define in (4.3.8). Let Lα be defined in (4.3.2).

Suppose we take projected gradient descent, Algorithm 4.3.1, for outer loop with step size

η = 1
2L̃α

and T iterations, and 3-block ADMM, Algorithm 4.3.2, for inner loop, where P0

in the inner loop is Xk+0.5 in the outer loop. For inner loop, Algorithm 4.3.1, we take dual

step size β ≤ 6
17 and iteration number t ≥ t0, where t0 is specified later. Let M̃ be among the

starting point and resulting points in first T iterations of the outer loop, {X0, X1, · · · , XT },

such that it has the smallest −LΩ,Y (·) value. Then with probability at least 1 − c1
d1+d2

, we

have

D(l(M)‖l(M̃))

≤ 2c0Lα

(
α
√
rd1d2 +

√
1

t

√
q(β) +

2d1d2

β

)√
d1 + d2

nd1d2

√
1 +

(d1 + d2) log (d1d2)

n

+
α2L̃αd1d2

Tn
+

4αL̃α
√
d1d2 + 2Lα
n

√
1

t

√
q(β) +

2d1d2

β
+

2L̃α
n

1

t

(
q(β) +

2d1d2

β

)
.

(4.3.12)

103



where c0, c1 are absolute constants, and q(β), t0 is defined as follows.

q(β) =
7β

2
+

10

3

β3

(β + 1)2
, u0 = max{u : Lα+u ≤ 2Lα, L̃α+u ≤ 2L̃α},

t0 =
1

2β

(
7β2 + 4d1d2 +

20

3

β4

(β + 1)2

)
(1 +

Lα

u0L̃α
+
Lα

L̃α
)2.

Note that, when the computing resource in terms of running time is unlimited, mean-

ing t → ∞ and T → ∞, the rate is the same with that established in Davenport et al.

(2014). Also note that Theorem 4.3.3 gives better understanding of the roles the iter-

ation number T and t play. The running-time-induced statistical error is of the order

O

(√
1
t ·
(

Lα√
min{d1,d2}

+ αL̃α

))
+ O(α

2L̃α
T ). The running time for inner loop plays a cru-

cial role, which is reasonable as the inner-loop-error propagates down the outer loop.

There are flexibility in the choice of step sizes η, similar results can be given for other

legitimate choices of step sizes. The heuristic algorithm in Davenport et al. (2014) is a

2-block ADMM. Our framework can also be adapted to 2-block ADMM, the change in the

down-stream-convergence-analysis is to replace the 3-block convergence rate with 2-block

convergence rate and analyze the dimension-dependent geometric quantity involved there

with the insights provided by Lemma 4.2.1.

4.4. Application to Causal Inference for Panel Data

In this section, we apply our framework to the causal inference for panel data. Athey

et al. (2021) proposed an estimator of the general form (4.1.1) for causal inference for panel

data. Their statistical analysis, however, is not tight, and they do not have an optimization

procedure targeting their estimator. We provide an improved statistical analysis and apply

our framework based on our improved analysis, resulting in a theoretically guaranteed

algorithm with precise quantification of the statistical accuracy after certain running time

of user’s choice.

We take the statistical model in the work by Athey et al. (2021). The model is for panel

104



data. There are N items, which can stand for companies. The time period is T. For each

item i, there is an adoption time ti, after which item i is treated all the way to time T,

and this adoption time is set to T if never treated. They take Rubin’s potential outcome

framework. And the complete potential outcome matrix when all are assigned to the control

group is Y full,

Y full = L∗ + ε, where E(ε|L∗) = 0. (4.4.1)

The assumptions on ε are as follows. ε is independent from L∗ and the elements of ε are

σ-sub-Gaussian and independent of each other.

O is the observation-pair set indicating whether a unit (an item at a certain time) is treated.

If we let W to be defined as

Wit =


1, for (i, t) /∈ O

0, for (i, t) ∈ O
. (4.4.2)

The assumptions for O and thus W are as follows. For each row, suppose row i, there is

an adoption time ti, such that Wit = 1 for all ti < t ≤ T , ti = T if the unit never adopt

the treatment. The rows of W are independent. Condition on L∗, the adoption time ti

are independent of each other and ε. Also, |L∗|∞ ≤ Lmax, where Lmax is a positive real

number.

Then under this model, the observed controls are Yit = Y full
it , (i, t) ∈ O. For treated

elements, i.e. (i, t) /∈ O , Y full
it is missing and we let Yit = 0. The goal is to estimate L∗.

We introduce some quantities here. For item i, the probability that it’s not treated through

out is π
(i)
T = E(T{ti = T}). The minimum of this “probability of control” over N items is

pc = min1≤i≤N π
(i)
T . We use PO to denote an operator mapping N by T matrix to N by T

matrix, with each elements defined as PO(B)(i,t) = B(i,t) if (i, t) ∈ O, and 0 if (i, t) /∈ O.

Note that in this setting, the matrix W do not have independence for columns, which renders
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RIP condition and restricted strong convexity invalid. The targeted estimator (Athey et al.,

2021) is

L̂ = arg min
|L|∞≤Lmax

{ 1

|O|‖PO(Y − L)‖2F + λ‖L‖∗} (4.4.3)

So causal inference for panel data example fits our general framework (4.1.1). The smooth

convex function f , the convex-but-not-necessarily-smooth function g and the constraint set

in the general framework become follows in causal panel data setting.

f(L) =
1

|O|‖PO(Y − L)‖2F , g(L) = λ‖L‖∗, C1 = [−Lmax, Lmax]N∗T . (4.4.4)

Applying our framework to it are two sub-problem as follows.

The first sub-problem is to investigating the statistical behavior of an estimator L̃ satisfying

conditions (4.4.5).

1

|O|‖PO(Y − L̃)‖2F + λ‖L̃‖∗ ≤
1

|O|‖PO(Y − L̂)‖2F + λ‖L̂‖∗ + δ,

|L̃|∞ ≤ Lmax + δ1,

(4.4.5)

where L̂ is defined in (4.4.3).

The second sub-problem is developing theoretically guaranteed algorithm finding an L̃ sat-

isfying (4.4.5) and analyzing its convergence rate in terms of δ and δ1 in (4.4.5). Athey

et al. (2021) does not have an algorithm for L̂ in (4.4.3) and the heuristic algorithm used

there is for another target estimator.

4.4.1. Statistical-Optimization Interplay

We start with the first sub-problem.

The statistical property of the approximate estimator L̃ satisfying (4.4.5) is shown in The-

orem 4.4.1, which describes how optimization induced error affects statistical error before
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solving the optimization problem.

Theorem 4.4.1. Consider statistical model for causal inference of panel data. Suppose the

true parameter matrix L∗ has rank at most R, and the penalty parameter

λ =
13σmax{

√
N log (N + T ), 8

√
T log

3
2 (N + T )}

|O|

. Let L̂ be defined in (4.4.3). Suppose the computed estimator L̃ satisfies f(L̃) + g(L̃) ≤

f(L̂) + g(L̂) + δ and |L̃|∞ ≤ Lmax + δ1. Then with probability at least 1− 2
(N+T )2 , we have

‖L̃− L∗‖2F
NT

≤max

{
q0
Rσ2

p2
c

(N + T ) log3 (N + T )

NT
+

72

pc
δ + q1

δ(Lmax + δ1)

σpc

1

NT

+ q2
R(Lmax + δ1)2

p2
c

N + T

NT
,

132(Lmax + δ1)2

pc

log (N + T )

N

}
,

(4.4.6)

where q0, q1, q2 are constants that can be explicitly written out.

Remark 4.4.1. Note that when δ = 0 and δ1 = 0, the estimator becomes the original exact

estimator (i.e. L̂ in (4.4.3)), and our rate becomes of order

max{σ2R(
N + T

NT
)log3(N + T )

1

pc
, Lmax

log(N + T )

N
}.

This is a faster rate than that in Athey et al. (2021), which is because we sharpen the

statistical analysis of the original estimator and we apply our framework to our own analysis

of the statistical performance of the original exact estimator. If we apply our framework

directly to the analysis in Athey et al. (2021), we expect the same rate when δ and δ1 are

set to 0.

Remark 4.4.2. causal inference for panel data is a representation for constrained penal-

ized M-estimator, or more precisely, constrained penalized maximum likelihood estimator,

where the penalty term is not smooth (optimization wise). Other constrained non-smoothly-

penalized M-estimator includes Lasso with constraints, Danzig selector, elastic net, SVM,
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sparse principle component analysis in the penalized form, neural network with Relu acti-

vation function.

4.4.2. Optimization Algorithm

In this Section, we apply our algorithm template to causal inference of panel data, which

gives theoretically guaranteed optimization algorithm for causal inference of panel data.

To standardize the optimization problem for fitting into our optimization template better,

the target optimization problem can be written as

min
L

1

2
‖PO(Y − L)‖2F +

1

2
λ|O|‖L‖∗ + T{|L|∞ ≤ Lmax}. (4.4.7)

Applying general outer loop, Algorithm 4.2.1, to causal inference for panel data gives Al-

gorithm 4.4.1.

Algorithm 4.4.1 (Causal Inference for Panel Data Outer Loop: Inexact Proximal Gradient

Descent). Start from point L0 = 0. Step size is η > 0. For k ≥ 0,

Lk+0.5 = Lk − η∇(‖PO(Y − Lk)‖2F ),

Lk+1 = P̃roxη( 1
2
λ|O|‖L‖∗+T{|L|∞≤Lmax})(Lk+0.5),

(4.4.8)

where P̃rox is an approximate proximal algorithm aiming at finding the proximal of Lk+0.5,

Proxη( 1
2
λ|O|‖L‖∗+T{|L|∞≤Lmax})(Lk+0.5) =

arg min
L

(
1

2
‖L− Lk+0.5‖2 + η

(
λ|O|‖L‖∗

2
+ T{|L|∞ ≤ Lmax}

))
.

(4.4.9)

We abbreviate the approximate proximal and proximal in equation (4.4.8) and (4.4.9) as

P̃roxη(Lk+0.5) and Proxη(Lk+0.5), respectively, when there is no confusion.

For the inner loop (i.e. computing approximate proximal point P̃roxη(Lk+0.5)), we apply
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the template-algorithm, Algorithm 4.2.2.

In this setting, the Augmented Lagrange Function for 3-block ADMM with dual step size

β and Lk+0.5 replaced by P0 is

Lβ(W,Z, P ) = T{W ∈ C1}+‖Z‖∗λ|O|+‖P−P0‖2F +
β

2
(‖W−P+

Λ1

β
‖22 +‖Z−P+

Λ2

β
‖22), (4.4.10)

where Λ1 and Λ2 are dual variables.

The template inner loop, Algorithm 4.2.2, in this setting becomes Algorithm 4.4.2.

Algorithm 4.4.2 (3 block ADMM for causal inference for panel data). The starting points

are P 0 = P0, Λ0
1 = 0, Λ0

2 = 0. Dual step size is β > 0. For k ≥ 0, the iterative steps are

W k+1 = ProjC1
(P k − 1

β
Λk1), Zk+1 = thresh(P k − 1

β
Λk2,

λ|O|
β

),

P k+1 =
1

β + 1

(
P0 + Λk1 + Λk2 +

β

2
(W k+1 + Zk+1)

)
,

Λk+1
1 = Λk1 + β

(
W k+1 − P k+1

)
,

Λk+1
2 = Λk2 + β

(
Zk+1 − P k+1

)
,

(4.4.11)

where thresh(P, b) is defined as follows. Suppose the Singular value decomposition of P is

P = UDV , then thresh(P, b) = U(D − diag(b))+V . We take the average P
k

= 1
k

∑k
i=1 P

k

for the output if we end it at k-th iteration.

4.4.3. Optimization Convergence

In this section, we establish convergence rate for our optimization algorithm introduced in

Section 4.4.2 in terms of approximate optimization conditions. We apply results in Section

4.2.3 to our causal inference for panel data setting with appropriate modifications.

Applying theorem 4.2.1 to causal inference for panel data, we have Proposition 4.4.1.

Proposition 4.4.1 (outer loop for causal inference for panel data). Suppose we take the

gradient proximal algorithm, Algorithm 4.4.1, for outer loop with η = 1. Suppose the
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proximal error satisfies

|P̃roxλ|O|
2
‖L‖∗+T{L∈C1}(X)− Proxλ|O|

2
+T{L∈C1}(X)| ≤ δ0

for all X ∈ R(δ0, C1). C1 is defined in (4.4.4) and δ0 is a positive real number. Let L̂ be

the target estimator define in (4.4.3). Then we have

min
0≤k≤K

1

2
‖PO(Y − Lk)‖2F +

λ|O|
2
‖Lk‖∗ ≤

1

2
‖PO(Y − L̂)‖2F +

λ|O|
2
‖L̂‖∗

+
1

2K
‖L0 − L̂‖2 + δ2

0 + 2δ0Lmax
√
NT + C(Y )δ0 +min{

√
N,
√
T}λ|O|

2
δ0,

(4.4.12)

where C(Y ) = supL∈C1
‖PO(Y − L)‖.

For the inner loop, we have the convergence result in Proposition 4.4.2.

Proposition 4.4.2 (Convergence of inner loop for causal inference for panel data). Taking

algorithm 4.4.2, with dual step size β ≤ 6
17 , after k iterations, we have

‖P k − P ∗‖2 ≤ 1

βk

(
(3β2 + 8)‖P0 − P ∗‖2 +

(
5 +

8

3
(

β

1 + β
)2

)
(λ|O|)2 min{N,T}

+

(
β2 +

8

3
(
β2

1 + β
)2

)
‖P0 − ProjC1

(P0)‖2
)
.

(4.4.13)

Combing the inner loop result, Proposition 4.4.2, and outer loop result, Proposition 4.4.1,

we have Theorem 4.4.2 showing the overall convergence in terms of approximate conditions.

Theorem 4.4.2 (optimization : causal inference for panel data). Suppose we take proximal

gradient descent, Algorithm 4.4.1 with η = 1, for outer loop, and 3-block ADMM algorithm

4.4.2 with dual step size β ≤ 6
17 for inner loop, where P0 in the inner loop is Lk+0.5 in the

outer loop. Define four constants depending on β only, q0(β), q1(β), q2(β), q3(β), which we

will explicitly write out later. Suppose the number of iterations for inner loop k ≥ q0(β).

Suppose we take K iterations for outer loop and L̃ = arg min0≤i≤K{ 1
|O|‖PO(Y − Li)‖2F +
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λ‖Li‖∗}. Define a quantity δ(k) as

δ(k) =√
q1(β)(λ|O|)2 min{N,T}+ q2(β)C(Y )2 + q3(β) (‖Y ‖2 + 2(NT − |O|)L2

max)

k − q0(β)
.

(4.4.14)

Then we have L̃ satisfies the polluted conditions (4.4.5) with

δ1 ≤ δ(k),

δ ≤ NTL2
max

|O|K +
2δ(k)2

|O| + δ(k)

(
4Lmax

√
NT

|O| +
2C(Y )

|O| + min{
√
N,
√
T}λ

)
,

(4.4.15)

where C(Y ) = supL∈C1
‖PO(Y − L)‖. The β dependent constants are

q0(β) =

(
1

β

(
6β2 + 16 + 2β2 +

16

3
(
β2

1 + β
)2

))
, q3(β) =

1

β
(3β2 + 8),

q1(β) =
1

β

(
5 +

8

3
(

β

1 + β
)2

)
, q2(β) = β

(
2 +

16

3
(

β

1 + β
)2

)
.

4.4.4. Overall Results

In this section, we are ready to show how the running time influences the statistical accuracy,

as shown in Theorem 4.4.3.

Theorem 4.4.3. Suppose L∗ has rank at most R, and the penalty parameter

λ =
13σmax{

√
N log (N + T ), 8

√
T log

3
2 (N + T )}

|O| .

Suppose we take proximal gradient descent, Algorithm (4.4.1) with η = 1, for outer loop and

3-block ADMM, Algorithm 4.4.2, with dual step size β ≤ 6
17 , for inner loop, where P0 in the

inner loop is Lk+0.5 in the outer loop. There are constants depending on β only, namely,

q0(β), q̃1(β), q̃2(β), q̃3(β) such that for iteration number of inner loop k > q0(β), the error
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for inner loop is upper bounded by

δ(k) =

√
q̃1(β)σ2NT log3 (N + T ) + q̃2(β)‖Y ‖2 + q̃3(β)NTL2

max

k − q0(β)
. (4.4.16)

Denote L̃ to be the outcome in K iterations in outer loop that has the minimum f(L̃)+g(L̃).

There are absolute constants q0, q1, q2 such that with probability at least 1− 2
(N+T )2 ,

‖L̃− L∗‖2F
NT

≤max

{
q0
σ2R

p2
c

(
N + T

NT
) log3(N + T ) +

[
NTL2

max

|O|K +
2δ(k)2

|O| +

δ(k)

(
8Lmax

√
NT + 2‖Y ‖
|O| + min{

√
N,
√
T}λ

)]
(
72

pc
+ q1

(
Lmax + δ(k)

)
σpcNT

)

+ q2(
N + T

NT
)

√
R
(
Lmax + δ(k)

)2
p2
c

,

132
(
Lmax + δ(k)

)2 log(N + T )

Npc

}
.

(4.4.17)

Note that the optimization error induced statistical error increase is of the order O(L
2
max
K ) +

O(Lmax+σ√
k

), meaning that inner loop can be the bottle neck in terms of convergence rate to

the limit statistical accuracy. Also, note that when the computing resource is infinity, i.e.

k → ∞ and K → ∞, our results is stronger than that in the work by Athey et al. (2021).

This is because our statistical analysis is stricter and we apply our framework based on our

analysis. Our framework can also be applied directly to the problem in terms of the part

of statistical analysis of the approximate estimator (i.e. statistical-optimization interplay)

based on their original work (Athey et al., 2021), then it would lead to the same rate in the

case of infinity computing resource as that in Athey et al. (2021).
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4.5. Application to Linear Regression (LASSO)

Our framework is designed for problems considering general matrices with constraints, but

it is also applicable to vector setting without constraints, which can be considered as a

degenerate case. In this section, we show that linear regression with LASSO is such a

setting.

We show that analysis and template optimization algorithm in our framework are applicable

to (high dimensional sparse) linear regression with LASSO. The optimization algorithm con-

verges to the target LASSO estimator and we give a quantification of how iteration number

affects the statistical accuracy of the computed estimator. Further, under restricted strong

convexity condition, which holds with high probability and is considered by Loh and Wain-

wright (2015), our template algorithm applied to LASSO actually has linear convergence

rate in a certain range, which matches the optimization rate in Loh and Wainwright (2015).

Compared with Loh and Wainwright (2015), we pose less conditions, our optimization algo-

rithm is fully convergent to the target estimator (theirs is not), and in the range that their

optimization method performs well, ours is equally well.

Consider the linear model

y = Xθ∗ + w, (4.5.1)

where we observe the vector-matrix pair (y,X) ∈ Rn × Rn×d. d-dimensional vector θ∗ is

the unknown true parameter and w is the noise vector. Each row of X, xi, is i.i.d. drawn

from N(0,Σ). Noise w is independent of X. Each element of w, wi, is i.i.d drawn from

N(0, σ2). The goal is to estimate θ∗. LASSO estimator is given by

θ̂ = arg min
θ

1

2n
‖y −Xθ‖22 + λn‖θ‖1, (4.5.2)

for a chosen λn.

Under our framework (4.1.1), the smooth convex function f(·) is f(θ) = ‖y − Xθ‖22, the
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convex-not-necessarily-smooth function g(·) is g(θ) = λn‖θ‖1. And we do not have con-

straints.

The first sub-problem becomes investigating the statistical behavior of θ̃ satisfying

1

2n
‖y −Xθ̃‖22 + λn‖θ̃‖1 ≤

1

2n
‖y −Xθ̂‖22 + λn‖θ̂‖1 + δ. (4.5.3)

And the second sub-problem is the optimization problem shown in (4.5.2). Our optimization

template algorithm in Section 4.2.2 degenerates into the ordinary proximal gradient descent

algorithm.

4.5.1. Statistical-Optimization Interplay

LASSO has been intensively analyzed in the literature and the statistical behavior of θ̂

in Equation (4.5.2) is well understood. The analysis procedures of θ̂ is consistent with

our observation of the analysis of estimators following the general form (4.1.1), specifically

summarized as follows. Those analysis start with

1

2n
‖y −Xθ̂‖22 + λn‖θ̂‖1 ≤

1

2n
‖y −Xθ∗‖22 + λn‖θ∗‖1. (4.5.4)

Then with proper conditions on λn, this inequality can be easily reduced to

0 ≤ 1

2n
‖X
(
θ̂ − θ∗

)
‖22 ≤

λn
2

(
‖θ̂ − θ∗‖1 + 2‖θ∗‖1 − 1‖θ̂‖1

)
. (4.5.5)

Given that the middle part is essentially a quadratic form of θ̂ − θ∗ and the right hand

side is essentially of linear order for θ̂ − θ∗, Inequality (4.5.5) implies ‖θ̂ − θ∗‖ is upper

bounded. This is the key idea in the analysis of LASSO estimator. A careful reflection on

this procedure gives the key observation that the additive nature of the inequality (4.5.4)

is never touched throughout the analysis, which is in align with the mechanism of our

framework, meaning that analysis of LASSO estimator can be relatively easily carried to
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its approximate version solution, i.e. θ̃ satisfying (4.5.3).

Theorem 4.5.1 describes the statistical behavior of θ̃, where we can see how the optimization-

induced error affects statistical error before solving the optimization problem.

Theorem 4.5.1. Let ρ2(Σ) be the maximum diagonal entry of the covariance matrix Σ.

Under the linear regression model (4.5.1), for any sparse index set S such that the car-

dinal of S, |S| = s, denote θ∗Sc to be the vector keeping elements not in S the same and

setting those in S to be 0. Suppose c1κ ≥ 64s · c2ρ
2(Σ) log d

n , where c1, c2 are constants

and can be taken as c1 = 1/8, c2 = 50, and κ is the smallest singular value of Σ. For

λn ≥ 4σρ(Σ)
√

1 + log d
n

√
log 2(n+d)

n , θ̃ satisfying (4.5.3) satisfies the following inequality with

probability at least 1− exp (−n/32)
1−exp (−n/32) − exp(−n

2 )− 1
2(n+d) .

‖θ̃ − θ∗‖2 <
δ

2λn
√
s

+
‖θ∗Sc‖1√

s
+ (2 + 4

√
s+

1√
s

)
λn
c1κ

. (4.5.6)

Remark 4.5.1. The error bound in Theorem 4.5.1 has three terms. The first corresponds to

optimization error. The second corresponds to approximation error (how different from an

s sparse vector). The third term corresponds to estimation error associated with s unknown

coefficients. Till now, we do not need an optimization algorithm that guarantee ‖θ̃ − θ∗‖

or δ in Inequality (4.5.3) to be small. All we need is Inequality (4.5.3) for some δ. So

the optimization convergence rate for δ in Inequality (4.5.3) is possibly faster than general

optimization convergence with additional strong convexity or restricted strong convexity

conditions. We will show that this is indeed the case, which shows that the first two

parts of our framework (i.e. statistical-optimization interplay and optimization template

algorithm) automatically adapts to additional stronger conditions.

4.5.2. Optimization Algorithm and Convergence

In the absence of the constraints, our template optimization method degenerates into the

ordinary proximal gradient descent as shown in Algorithm 4.5.1.
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Algorithm 4.5.1. Starting point is θ0 = 0. Step size is η > 0. For k ≥ 0,

θk+0.5 = θk − η∇θ
(

1

2n
‖y −Xθ‖22

)
,

θk+1 = arg min
θ

(
1

2
‖θ − θk+0.5‖2 + ηλn‖θ‖1

)
.

(4.5.7)

Note that θk+1 = arg minθ
(

1
2‖θ − θk+0.5‖2 + ηλn‖θ‖1

)
has explicit expression: the i-th

element of θk+1 is (θk+1)i = sign((θk+0.5)i) · (|(θk+0.5)i| − ηλn)+, where sign(x) = −1 for

x < 0, sign(x) = 0 for x = 0 and sign(x) = 1 for x > 0.

From the convergence results of our template optimization method, i.e. Theorem 4.2.1, we

have the optimization convergence rate for Algorithm 4.5.1 in Theorem 4.5.2.

Theorem 4.5.2 (Optimization Convergence Rate). Let ‖XTX
n ‖s be the spectral norm of

XTX
n . Let step size η ≤ ‖ n

XTX
‖s for Algorithm 4.5.1. Suppose θ̃ is among θ0, θ1, · · · , θT and

has the smallest 1
2n‖y −Xθ‖22 + λn‖θ‖1 value. Then we have that

1

2n
‖y −Xθ̃‖22 + λn‖θ̃‖1 ≤

1

2n
‖y −Xθ̂‖22 + λn‖θ̂‖1 +

1

2Tη
‖θ̂‖2, (4.5.8)

where θ̂ is defined in (4.5.2).

Theorem 4.5.2 gives fully converging sub-linear convergence rate, which does not require

strong convexity of any form.

Loh and Wainwright (2015) exploits restricted strong convexity, which holds with high

probability in high dimensional sparse linear regression, and gives an algorithm with linear

convergence rate in certain region. But their convergence result is not fully converging, i.e.

optimization error does not converge to 0. We show that, under restricted strong convexity

condition, our fully converging optimization algorithm also has linear convergence rate

in certain region. Theorem 4.5.3 shows how our optimization algorithm performs under

different conditions.

Theorem 4.5.3. Under the linear regression model (4.5.1), let S be an index set with s
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elements. Suppose λn ≥ 2‖XTw
n ‖∞, and

‖Xθ‖22
n

≥ a1‖θ‖22 − a2‖θ‖21, for all θ ∈ Rd, (4.5.9)

with a2 ≤ 1
64sa1. Set the step size η = n

‖XTX‖s in Algorithm 4.5.1. Denote F (θ) =

1
2n‖Xθ‖22 + λn‖θ‖1. Suppose, F (θK) − F (θ̂) ≤ εK , where θ̂ is defined in Equation (4.5.2).

Then we have for k ≥ K,

F (θk)− F (θ̂) ≤
(

1− a1

8‖X
TX‖s
n

)k−K
+

εK + 128a2s ·
(

2‖θ∗Sc‖1√
s

+ (2 + 4
√
s+

1√
s

)
λn
c1κ

)2

+ 8a2
ε2
K

λ2
n

,

(4.5.10)

where ‖ · ‖s is spectral norm, κ is the smallest singular value of Σ, and θ∗Sc is θ∗ taking only

elements in Sc to be the same and setting others to 0.

Without above conditions except for step size η = n
‖XTX‖s in Algorithm 4.5.1 and using the

same notation, we have for k ≥ 1,

εk ≤
‖XTX‖s

n

2k
‖θ̂‖22. (4.5.11)

Inequality (4.5.10) in Theorem 4.5.3 has similar form with Theorem 3 in Loh and Wainwright

(2015), but our optimization procedure is unconstrained and does not require a pre-specified

bound for ‖θ∗‖1. We explain the results in details in remarks. In addition to Inequality

(4.5.10), we have Inequality (4.5.11), a fully converging convergence result without restricted

strong convexity requirement, which parallels Theorem (4.5.2).

Remark 4.5.2. Note that Inequality (4.5.10) is only meaningful for εK < λ2
n

8a2
. This means

the algorithm needs to start with a close enough initial point or the algorithm can get

into this region after some iterations. Similar issue exists for that considered in Loh and

Wainwright (2015). Loh and Wainwright (2015) dealt with it by posing hard constraints on
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‖θ‖1, which leads to a constrained optimization. However, this constraint is not necessary

for Lasso. As shown in Inequality (4.5.11) in Theorem 4.5.3, εK goes to zero with a rate

at least 1
K , so the algorithm will get into the region εK < λ2

n
8a2

after some iterations. Also,

without the knowledge of ‖θ∗‖1, hand-choosing constraint will likely miss the target.

Remark 4.5.3. Note that the right hand side Inequality (4.5.10) is larger than or equal

to 128a2s ·
(

2‖θ∗Sc‖1√
s

+ (2 + 4
√
s+ 1√

s
) λnc1κ

)2
. Hence this convergence result has a limit and

does not go to 0 with iteration number going to ∞. It also implies another requirement

for Inequality (4.5.10) to be meaningful: εK > 128a2s ·
(

2‖θ∗Sc‖1√
s

+ (2 + 4
√
s+ 1√

s
) λnc1κ

)2
. So

Inequality (4.5.10) does not show fully convergence of the algorithm. Result in Loh and

Wainwright (2015) has similar issue, and they established that this optimization limit is

smaller than the statistical limit as n is relatively large. Similar logic applies to our case.

This optimization limit highly depends on a2. In fact, condition (4.5.9) holds with high

probability for a1 = c1κ and a2 = c2ρ
2(Σ) log d

n . The optimization limit in our case is also a

shrinking quantity (with respect to n) times the statistical accuracy. We will see this more

clearly in Theorem 4.5.4. We now examine how large a region Inequality (4.5.10) applies

to. We need εK to satisfy

128a2s ·
(

2‖θ∗Sc‖1√
s

+ (2 + 4
√
s+

1√
s

)
λn
c1κ

)2

≤ εK ≤
λ2
n

8a2
. (4.5.12)

Note that λn in Theorem 4.5.3 needs to satisfy a lower bound condition (i.e. λn ≥

2‖XTw
n ‖∞). In fact, for λn ∼ ρ(Σ)σ

√
log(n+d)

n , the lower bound holds with high proba-

bility. As λn ∼ ρ(Σ)σ

√
log(n+d)

n , a2 ∼ ρ2(Σ) log d
n , we have (4.5.13), which shows that the

left hand side of Inequality (4.5.12) is significantly smaller than the right hand side of

Inequality (4.5.12) when the dimension is not extremely high.

128a2s ·
(

2‖θ∗Sc‖1√
s

+ (2 + 4
√
s+

1√
s

)
λn
c1κ

)2

∼ max{ log d

n
‖θ∗Sc‖1,

s2(log d)2

n2

ρ2(Σ)

κ
} λ

2
n

8a2
.

(4.5.13)

Remark 4.5.4. Inequality (4.5.10) in Theorem 4.5.3 implies the block-wise linear convergence
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rate within range [k0, k1], where

εk0 ≤
λ2
n

48a2
and εk1 ≥ 6 · 128a2s ·

(
2‖θ∗Sc‖1√

s
+ (2 + 4

√
s+

1√
s

)
λn
c1κ

)2

.

If a1 < 8‖XTX/n‖s, for k ≥ k0, let Tk = b(k−k0)/d log 1/6

log (1− a1
8‖XTX/n‖s

)
ec. If a1 ≥ 8‖XTX/n‖s,

for k ≥ k0, let Tk = k − k0. We have

F (θk)− F (θ̂) ≤ max{2−Tkεk0 , 6 · 128a2s ·
(

2‖θ∗Sc‖1√
s

+ (2 + 4
√
s+

1√
s

)
λn
c1κ

)2

}. (4.5.14)

A more detailed proof of this statement is given in the proof of Theorem 4.5.4. In fact,

Theorem 4.5.3 implies the conventional linear convergence within the range discussed in

(4.5.12) with properly chosen decay factor. But that involves much more tedious details

without giving additional insight, so we do not make that a formal assertion here.

4.5.3. Overall Results

With Theorem 4.5.1 and optimization convergence results in Theorem 4.5.3, we have The-

orem 4.5.4 describing how iteration number affects the statistical accuracy.

Theorem 4.5.4. Let ρ2(Σ) be the maximum diagonal entry of the covariance matrix Σ.

Under the linear regression model (4.5.1), for any sparse index set S such that the cardinal

of S, |S| = s, denote θ∗Sc to be the vector keeping elements not in S the same and setting

those in S to be 0. Suppose c1κ ≥ 64s · c2ρ
2(Σ) log d

n , where c1, c2 are constants and can

be taken as c1 = 1/8, c2 = 50, and κ is the smallest singular value of Σ. Suppose λn ≥

4ρ(Σ)
√

1 + log d
n

√
log 2(n+d)

n . Use Algorithm 4.5.1 with step size η = ‖XTX‖s
n . Let

K0 = d
48c2ρ

2(Σ) log d
n

(
‖θ∗‖2 +

‖θ∗Sc‖1√
s

+ (2 + 4
√
s+ 1√

s
) λnc1κ

)2
‖XTX/n‖s

2λ2
n

e. (4.5.15)
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Let

Tk =


b(k − k0)/d log 1/6

log (1− c1κ
8‖XTX/n‖s )

ec, when c1κ < 8‖XTX/n‖s

k − k0, otherwise

. (4.5.16)

Let

δk =

min

{
‖XTX/n‖s

2k

(‖θ∗Sc‖1√
s

+ (2 + 4
√
s+

1√
s

)
λn
c1κ

+ ‖θ∗‖2
)2

,

max

{
2−Tk

λ2
n

48c2ρ2(Σ) log d
n

, ρ2(Σ)
log d

n
s ·
(

2‖θ∗Sc‖1√
s

+ (2 + 4
√
s+

1√
s

)
λn
c1κ

)2

· 768c2

}

+ 1{k ≤ K0}
‖y‖22
2n

}
.

(4.5.17)

Then with probability at least 1− exp (−n/32)
1−exp (−n/32) − exp(−n

2 )− 1
2(n+d) , the following statements

holds.

‖θk − θ∗‖2 <
δk

2λn
√
s

+
‖θ∗Sc‖1√

s
+ (2 + 4

√
s+

1√
s

)
λn
c1κ

. (4.5.18)

Remark 4.5.5. Theorem 4.5.4 shows how the number of iteration affects the statistical

accuracy of the computed estimator. It shows that the error caused by optimization goes to

zero with the iteration number goes to infinity. Recall that λn ∼
√

log (n+d)
n when n ≥ log d,

which is satisfied as we do not consider extreme high dimensional case. Note that when

the computation resource is infinity, ‖θk − θ∗‖2 ∼ ‖θ∗Sc‖1√
s

+
√
s

√
log (n+d)

n . When the true

vector θ∗ is indeed s−sparse, ‖θk − θ∗‖2 ∼
√
s

√
log (n+d)

n , which is the optimal rate for high

dimensional linear regression.

Remark 4.5.6. From the expression of δk in Inequality (4.5.17) and the role of δk on sta-

tistical accuracy shown in Inequality (4.5.18), the convergence rate of error caused by opti-
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mization, F (θk)−F (θ̂)
2λn
√
s

, has convergence rate ∼ 1
k when

F (θk)− F (θ̂)

2λn
√
s

≥ λn√
s · 96c2ρ2(Σ) log d

n

∼ σ

ρ(Σ)

√
n log(n+ d)√
s log d

,

or when

F (θk)− F (θ̂)

2λn
√
s

≤768c2ρ
2(Σ) log d

n s

2λn
√
s

(
2‖θ∗Sc‖1√

s
+ (2 + 4

√
s+

1√
s

)
λn
c1κ

)2

∼ρ2(Σ)
log d

n
s

(‖θ∗Sc‖21
s
√
sλn

+
√
s
λn
κ2

)
.

Otherwise, the optimization algorithm has linear convergence rate. Considering the case

where θ∗Sc = 0, which is the conventional setting in high dimensional sparse linear re-

gression, we have that the upper and lower bound for the range where F (θk)−F (θ̂)
2λn
√
s

has

linear convergence are of the order n
s log d

κ
ρ2(Σ)

∆stat and s log d
n

ρ2(Σ)
κ ∆stat respectively, where

∆stat = (2+4
√
s+ 1√

s
) λnc1κ is the limit statistical accuracy. Therefore, our algorithm performs

as well as that in literature (e.g. Loh and Wainwright (2015)) under the classical setting, and

is fully convergent in general or in special cases (i.e. sparsity and RSC conditions), which is

not shown in Loh and Wainwright (2015) for any cases. This shows that our framework, in-

cluding statistical-optimization interplay and the template algorithm, automatically adapts

to the special cases that has simpler setting admitting stronger assumptions. The opti-

mization convergence results for the general framework, however, need to be further crafted

when additional conditions are satisfied.

Remark 4.5.7. Note that the results has X, y, and θ∗ involved. X and y are observable, so

we can adjust iteration number accordingly to guarantee the desired accuracy in terms of

θ∗. For θ∗, usually we can have a conservative upper bound for ‖θ∗‖2, hence we adjust our

iteration number accordingly for the guaranteed accuracy.

4.6. Discussion
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In the present work, we proposed a framework for considering the influence of the running

time on the statistical accuracy and applied the framework to three examples: 1-bit matrix

completion and causal inference for panel data and high dimensional sparse linear regression.

We get novel interesting novel results for the first two examples and show that our framework

adapts to the degenerate case in the third example. Our backbone statistical analysis for

causal panel data is also sharper than that in the literature. It would be interesting to see

what results can be derived when our framework is applied to other applicable problems,

like kernel ridge regression, SVM, network analysis, neural network, and more intensively

studied problems like Danzig selector and elastic net to see how the results compare.

Our framework focuses on estimators that are matrices (and vectors as a special case), but

our way of integrating optimization consideration into statistical accuracy before solving

the optimization problem can be easily carried to tensors. It would be interesting to see

how a parallel tensor version framework performs.

Our framework provides a new perspective of the relationship between computational cost

and statistical accuracy, where we quantify the value of computing resource in terms of how

much statistical accuracy it can buy, precisely and on a continuous scale. This perspec-

tive makes it possible to be used in equilibrium in economic problems, e.g. the computing

resource invested is the cost and statistical accuracy generates revenue. It would be inter-

esting to see how it works in those equilibrium and it would also be interesting to further

investigate the interplay along this perspective.

Our optimization template algorithm can fill in the blank of theoretically guaranteed op-

timization algorithm for estimators in a large class of statistical problems that fit in the

general form of our framework.

The optimization convergence analysis in our framework provides a pipeline for analyzing

an optimization problem to the level meeting statistical needs. It would be interesting to in-

vestigate the unanalyzed heuristic algorithms or finer the analysis of other statistic-induced

122



optimization problem to make the constants free from dimension or other statistically im-

portant quantities. Also, for our inner loop, we exploited and analyzed the convergence rate

of 3-block ADMM, which usually meets the need for statistical problems encountered and

can serve as building stone for more blocks, but it would be interesting to investigate the

convergence rate for direct multi-block ADMM or its variant under reasonable assumptions.
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APPENDIX

In the appendix, we give the proofs of the theorems, propositions and lemmas in the disser-

tation. We also give detailed simulation results and detailed discussions of what is briefed

in the dissertation.

A.1. Proofs of the Results in Chapter 2

This section presents the proofs of all the main results given in Chapter 2 except Theorems

2.2.1 and 2.2.2.

A.1.1. Notation, Lemmas and Basic Properties

We begin with introducing and recollecting notation that will be frequently used in the

proofs.

Note that Yl, Ys, and Ye are defined on the same probability space. We use Es to denote

the expectation with respect to the distribution of Ys and so on. We denote by i∗j the index

for the subinterval at level j that contains the minimizer Z(f) and by j̃ the index for the

level where the chosen interval is at least two blocks away from the subinterval containing

the minimizer, i.e.,

i∗j = max{i : Z(f) ∈ [tj,i−1, tj,i]},

j̃ = min{j : |̂ij − i∗j | ≥ 2}.
(A.1.1)

It is easy to see that j̃ ≥ 2, and j̃ only depends on Yl. In addition, we let

j∗ = min{j : mj ≤
ρz(ε; f)

4
}. (A.1.2)
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Then by definition ρz(ε;f)
8 < mj∗ ≤ ρz(ε;f)

4 . Furthermore, µj,i denotes the average of f on

interval [tj,i−1, tj,i], i.e.,

µj,i =
1

mj

∫ tj,i

tj,i−1

f(t)dt. (A.1.3)

Now we give a list of notations that will be used throughout the proofs of theorems in

Section 2.3, in case readers get lost in the mid of reading a proof.

i∗j = max{i : Z(f) ∈ [tj,i−1, tj,i]},

j̃ = min{j : |̂ij − i∗j | ≥ 2},

µj,i =
1

mj

∫ tj,i

tj,i−1

f(t)dt,

j∗ = min{j : mj ≤
ρz(ε; f)

4
},

Ej,i =
1
√
mj

(W2(tj,i)− 2W2(tj,i−1) +W2(tj,i−2)) ,

jw = min{j : |̂ij − i∗j | ≥ 5},

f̂ =
1

mĵ

∫ t̂i
ĵ
+∆

t̂i
ĵ
+∆−1

f(t)dt,

∆ =2
(
1{X̃ĵ ,̂iĵ+6 − X̃j,̂iĵ+5 ≤ 2σj} − 1{X̃ĵ ,̂iĵ−6 − X̃j,̂iĵ−5 ≤ 2σj}

)
.

(A.1.4)

For the white noise model, we obtain in the data splitting step three independent copies

of the observations Yl, Ys, and Ye. In our construction, they have the same variance 3ε2;

however, this is not necessary. To better show how the results depend on the variance so

that similar results can be easily derived for modified splitting procedures, in the supplement

we denote the variances for Yl, Ys, and Ye to be c2
l ε

2, c2
sε

2 and c2
eε

2 respectively.

For the regression model, the splitting procedure can also be changed and the variances

of the copies of observations for locating strategy, stopping rule and additional estimation

and inference procedures does not have to be the same, we denote γl, γs, γe to be the
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scaling factors for the three copies respectively: Var(yl,i) = γ2
l σ

2, Var(ys,i) = γ2
sσ

2, and

Var(ye,i) = γ2
eσ

2, for all i.

For the regression model, we have similar notion of the length of subinterval, the index of

the interval in which the minimizer lies, etc. The following notation will be used in the

proofs of the results for regression model.

mj =
2J−j

n
,

tj,i = i ·mj −
1

n
,

i∗j = max{i : Z(f) ∈ [tj,i−1 +
1

2n
, tj,i +

1

2n
]},

j̃ = min{min{j : |îj − i∗j | ≥ 2},∞},

j∗ = min{j : mj ≤
ρz(

σ√
n

; f)

4
},

jw = min{j :
∣∣îj − i∗j

∣∣ ≥ 5},

Yx = {yx,0, yx,1, · · · , yx,n}, for x = l, s, e,

avef (j, i) =
1

2J−j

2J−j ·i−1∑
k=2J−j(i−1)

f(xk),

Ej,i,x = Yj,i,x − avef (j, i) · 2J−j ,

f̂ = avef (ĵ, ĩĵ).

(A.1.5)

For a better logic flow, some additional notation for non-parametric regression are intro-

duced in Section A.1.9.

We also recall some of the basic properties that will be frequently used in the proofs. The

proofs will be deferred to the next section of the supplement, as all the other supporting

lemmas. We first revisit a basic property for convex functions.
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Lemma A.1.1. For a convex function f , and any 0 ≤ x1 < x2 < x3 ≤ 1, we have

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x1)

x3 − x1
≤ f(x3)− f(x2)

x3 − x2
.

Next we introduce the following lemma that helps with detailed calculation.

Lemma A.1.2. For x > 61/3, we have

2xΦ(2− (2x)
3
2

√
2/3)

xΦ(2−
√

2/3x3/2)
< 0.008,

where Φ is the CDF of a standard normal distribution.

We further introduce two quantities that will be often used in the proofs of the theorems

in Section 2.3 of the main paper. Let

Q = sup
x≥0

x2Φ(−x) and V = sup
x≥0

x2Φ(2− x), (A.1.6)

for which we have the following results.

Lemma A.1.3.

Q = sup
x≥0

x2Φ(−x) ≤ 0.169, V = sup
x≥0

x2Φ(2− x)V < 2.0555. (A.1.7)

A.1.2. Proof of Proposition 2.2.1

We start with proving for f ∈ F

c ≤ ρm(cε; f)

ρm(ε; f)
≤ c 2

3 . (A.1.8)

Proof. Without loss of generality, we assume M(f) = 0. We first prove the left hand side.
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Write

gβ(t) = max{f(t), ρm(βε; f)},

and it is not hard to see that

‖g1 − f‖2 = ε2, ‖gc − f‖2 = c2ε2. (A.1.9)

Write g̃(t) = max{f(t), cρm(ε; f)}, and suppose tl,m = min{t : g̃ ≥ f}, tr,m = max{t : g̃ ≥

f}. It holds that [tl,m, tr,m] ⊂ {t : f(t) ≤ ρm(ε; f)}. We have

‖g̃ − f‖2 =

∫ tr,m

tl,m

(cρm(ε; f)− f(t))2dt (A.1.10)

≤
∫ tr,m

tl,m

c2(ρm(ε; f)− f(t))2dt (A.1.11)

≤ c2‖g1 − f‖2 = c2ε2. (A.1.12)

Therefore, g̃ ≤ gc at all the points. cρm(ε; f) ≤ ρm(cε; f).

Now we turn to the right hand side, for which we are interested in

inf
f∈F

ρm(ε; f)

ρm(cε; f)
.

Define the left side and right side of the “water area” with “water level” ρm(cε; f) to be

xl,m = min{x : gc(x) ≥ f(x)}, xr,m = max{x : gc(x) ≥ f(x)}. (A.1.13)

We then divide the rest of the proof into four steps.

• The first step is to show that taking the infimum of ρm(ε;f)
ρm(cε;f) over F is the same as

over the function class

Fl =
{
f ∈ F : f

∣∣
[0,xl,m]

, f
∣∣
[xl,m,1]

are linear functions
}
.
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• The second step will show that it is further the same as over the function class

Fll =
{
f ∈ F : f

∣∣
[0,Z(f)]

, f
∣∣
[Z(f),1]

are piece-wise linear functions with

at most two pieces, f
∣∣
[0,xl,m]

, f
∣∣
[xr,m,1]

are linear functions
}
.

• In the third step, we define two extended function spaces

F̃c =
{
f is convex function with unique minimizer on (−∞,∞) :

f
∣∣
(−∞,0]

, f
∣∣
[1,∞)]

are linear functions, f
∣∣
[0,1]
∈ F

}
,

F̃ll =
{
f ∈ F̃c : f

∣∣
(−∞,Z(f)]

and f
∣∣
[Z(f),∞)

are piece-wise linear functions

with at most three pieces
}
.

Also, we define two extended geometric indexes ρ̃z(ε; f), ρ̃m(ε; f) for f ∈ F̃c:

ρ̃z(ε; f) = max{|t− Z(f)| : f(t) ≤ µ(ε; f)}, ρ̃m(ε; f) = µ(ε; f)−M(f),

where µ(ε; f) satisfies

‖max{µ(ε; f), f} − f‖2 = ε2.

We will show in the third step that

inf
f∈Fll

ρm(ε; f)

ρm(cε; f)
≥ inf

f∈F̃ll

ρ̃m(ε; f)

ρ̃m(cε; f)
.

• Finally, in the fourth step, we will show that

inf
f∈F̃ll

ρ̃m(ε; f)

ρ̃m(cε; f)
≥ inf

f∈F̃L

ρ̃m(ε; f)

ρ̃m(cε; f)
= c−

2
3 ,

where F̃L = {f ∈ F̃ll : f
∣∣
(−∞,Z(f)]

and f
∣∣
[Z(f),∞)

are linear functions}.

Step 1 Define a functional L1,
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L1 : F −→ Fl

f 7−→ L1(f),

(A.1.14)

where L1(f) is defined as follows. Define the right slope on the left and the left slope on the

right to be

Ls(f) = lim
η→0+

f(xl,m + η)− f(xl,m)

η
,Rs(f) = lim

η→0+

f(xr,m)− f(xr,m − η)

η
.

Both of the limits exist due to convexity. Let

(L1(f)) (t) =


f(xl,m) + Ls · (t− xl,m) 0 ≤ t < xl,m

f(t) t ∈ [xl,m, xr,m]

f(xr,m) +Rs · (t− xr,m) 1 ≥ t > xr,m

.

Without loss of generality, we assume M(f) = 0. It is clear that

ρm(cε; f) = ρm(cε;L1(f)), M(L1(f)) = 0, L1(f)(t) ≤ f(t) ∀t ∈ [0, 1].

In what follows we will prove

ρm(ε; f) ≥ ρm(ε;L1(f)). (A.1.15)

Let L̃1(f) = max{L1(f), ρm(ε; f)}, then we have

‖L̃1(f)− L1(f)‖2 =

∫ 1

0
((ρm(ε; f)− L1(f)(t))+)2 dt

≥
∫ 1

0
((ρm(ε; f)− f(t))+)2 dt

= ε2.

(A.1.16)
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Inequality (A.1.15) then follows. Therefore, we have

inf
f∈F

ρm(ε; f)

ρm(cε; f)
≥ inf

f∈F
ρm(ε;L1(f))

ρm(cε;L1(f))
≥ inf

f∈Fl

ρm(ε; f)

ρm(cε; f)
. (A.1.17)

Since Fl ⊂ F , we also have

inf
f∈F

ρm(ε; f)

ρm(cε; f)
≤ inf

f∈Fl

ρm(ε; f)

ρm(cε; f)
. (A.1.18)

This gives

inf
f∈F

ρm(ε; f)

ρm(cε; f)
= inf

f∈Fl

ρm(ε; f)

ρm(cε; f)
. (A.1.19)

Step 2 Define a functional L2,

L2 : Fl −→ Fll

f 7−→ L2(f),

(A.1.20)

where L2(f) is defined as follows. We first introduce two quantities:

l(δ; f) = min{t : f(t) ≤ δ +M(f)}, r(δ; f) = max{t : f(t) ≤ δ +M(f)}.
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When there is no confusion, we will omit f , resulting in l(δ), r(δ). Now we define four

functions l1(t), l2,δ(t), l3,δ(t), l4(t). Recall the definition of xl,m and xr,m in (A.1.13).

l1(t) =
f(xl,m)− f(0)

xl,m
t+ f(0), when xl,m > 0,

l1(t) = (t− xl,m) lim
s→0+

f(xl,m + s)− f(xl,m)

s
+ f(xl,m), when Z(f) > xl,m = 0,

l1(t) = M(f), when Z(f) = xl,m = 0,

l2,δ(t) =
δ

l(δ)− Z(f)
(t− Z(f)) +M(f), when Z(f) > 0,

l2,δ(t) = M(f), when Z(f) = 0,

l3,δ(t) =
δ

r(δ)− Z(f)
(t− Z(f)) +M(f), when Z(f) < 1,

l3,δ(t) = M(f), when Z(f) = 1,

l4(t) =
f(1)− f(xr,m)

1− xr,m
(t− xr,m) + f(xr,m), when xr,m < 1,

l4(t) = (xr,m − t) lim
s→0+

f(xr,m − s)− f(xr,m)

s
+ f(xr,m), when Z(f) < xr,m = 1,

l4(t) = M(f), when Z(f) = xr,m = 1.

(A.1.21)

With these four functions, we can define a new function h(δ; f), for 0 ≤ t ≤ 1:

(h(δ; f))(t) = max{l1(t), l2,δ(t), l3,δ(t), l4(t)}.

When there is no confusion, we will write it as h(δ). It’s obvious that

ρm(cε;h(ρm(cε; f))) ≥ ρm(cε; f), lim
δ→0+

ρm(cε;h(δ)) ≤ ρm(cε; f),

f(t) ≥ (h(δ)) (t), for 0 ≤ t < l(δ), f(t) ≤ (h(δ)) (t), for 1 ≥ t > r(δ),
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and that ρm(cε;h(δ)) increases as δ increases. Therefore, ∃δ0 ∈ (0, ρm(cε; f)] such that

ρm(cε;h(δ0)) = ρm(cε; f). We define L2(f) to be h(δ0). Since δ0 ≤ ρm(cε; f), we have

h(δ0)
∣∣
[0,1]/[xl,m,xr,m]

= f
∣∣
[0,1]/[xl,m,xr,m]

,

and since ρm(cε;h(δ0)) = ρm(cε; f), we have

{t : h(δ0) ≤ ρm(cε; f)} = [xl,m, xr,m].

Therefore,

0 =‖f − gc‖2 − ‖h(δ0)− gc‖2

=

∫ xr,m

xl,m

(
(f(t)− gc(t))2 − ((h(δ0) (t)− gc(t))2

)
dt

=

∫ xr,m

xl,m

(h− f)(2gc − f − h)dt

=

∫
(xl,m,l(δ0))∪(r(δ0),xr,m)

(h− f)+(2gc − f − h)dt

+

∫
[l(δ0),r(δ0)]

(h− f)−(2gc − f − h)dt

≤
∫

(xl,m,l(δ0))∪(r(δ0),xr,m)
2(h− f)(ρm(cε; f)− δ0)dt

+

∫
[l(δ0),r(δ0)]

2(h− f)(ρm(cε; f)− δ0)dt

≤2(ρm(cε; f)− δ0)

∫ 1

0
(h− f)dt.

(A.1.22)
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It then follows that

‖h− g1‖2 − ‖f − g1‖2

=

∫ xr,m

xl,m

(
(h− g1)2 − (f − g1)2

)
dt

=

∫ xr,m

xl,m

(h− f)(f + h− 2g1)dt

=

∫ xr,m

xl,m

(h− f)(f + h− 2gc)dt+

∫ xr,m

xl,m

2(h− f)(gc − g1)dt

=‖h− gc‖2 − ‖f − gc‖2 + 2(gc − g1)

∫ 1

0
(h− f)dt ≥ 0.

(A.1.23)

As a result, ρm(ε;h) ≤ ρm(ε; f), which is ρm(ε;L2(f)) ≤ ρm(ε; f). Finally, as we have

L2(f) ∈ Fll, we know that

inf
f∈Fl

ρm(ε; f)

ρm(cε; f)
≥ inf

f∈Fll

ρm(ε; f)

ρm(cε; f)
.

Step 3 Since functions in F̃c have unique minimizer, we know that ρ̃z(ε; f) and ρ̃m(ε; f)

exist for all ε > 0. As F̃ll ⊂ F̃c, ρ̃z(ε; f) and ρ̃m(ε; f) also exist for functions in F̃ll. Now

for each f ∈ Fll, define a class of functions L3(f) = {f̃δ1,δ2 ∈ F̃ll : δ1 > 0, δ2 > 0} such that

ρ̃m(ε; f̃δ1,δ2) ≤ ρm(ε; f), lim inf
max{δ1,δ2}→0+

ρ̃m(cε; f̃δ1,δ2) ≥ ρm(cε; f).

Furthermore, define function f̃δ1,δ2 by defining its values on three intervals (−∞, 0), [0, 1],

(1,∞). Specifically, for t ∈ [0, 1],

f̃δ1,δ2(t) = f(t),

for t ∈ (−∞, 0),

f̃δ1,δ2(t) =


f(0) +

f(xl,m)−f(0)
xl,m

t, xl,m > 0

f(0) + min{−δ−1
1 , lims→0+

f(s)−f(0)
s }t, xl,m = 0

,
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and for t ∈ (1,∞),

f̃δ1,δ2(t) =


f(1) +

f(xr,m)−f(1)
xr,m−1 (t− 1), xr,m < 1

f(1) + max{δ−1
r , lims→0+

f(1)−f(1−s)
s }(t− 1), xl,m = 1

.

Then for any ρm(cε; f) > ξ > 0,

lim
max{δ1,δ2}→0+

‖max{f̃δ1,δ2 ,M(f) + ρm(cε; f)− ξ} − f̃δ1,δ2‖

= ‖max{f,M(f) + ρm(cε; f)− ξ} − f‖ < cε.

(A.1.24)

Therefore,

lim inf
max{δ1,δ2}→0+

ρ̃m(cε; f̃δ1,δ2) ≥ ρm(cε; f)− ξ.

Since it holds for any ρm(cε; f) > ξ > 0, we have

lim inf
max{δ1,δ2}→0+

ρ̃m(cε; f̃δ1,δ2) ≥ ρm(cε; f).

For any δ1, δ2 > 0,

‖max{f̃δ1,δ2 ,M(f) + ρm(ε; f)} − f̃δ1,δ2‖ ≥ ‖max{f,M(f) + ρm(ε; f)} − f‖ ≥ ε,

which yields that

ρ̃m(ε; f̃δ1,δ2) ≤ ρm(ε; f).

Since L3(f) ⊂ F̃ll, we get

inf
f∈Fll

ρm(ε; f)

ρm(cε; f)
≥ inf

f∈F̃ll

ρ̃m(ε; f)

ρ̃m(cε; f)
.
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Step 4 Now we define several sets of functions such that F̃ll is the disjoint union of them.

Let

G̃(k1, k2) = {f ∈ F̃ll :f
∣∣
(−∞,Z(f))

is k1-piece linear function,

f
∣∣
(Z(f),∞)

is k2-piece linear function}.
(A.1.25)

Then

F̃ll =
⋃

1≤k1,k2≤3

G̃(k1, k2).

It’s easy to see that F̃L = G̃(1, 1) and that

ρ̃m(ε; f)

ρ̃m(cε; f)
= c−

2
3 , ∀f ∈ F̃L.

We are left to prove that

inf
f∈F̃ll

ρ̃m(ε; f)

ρ̃m(cε; f)
≥ inf

f∈F̃L

ρ̃m(ε; f)

ρ̃m(cε; f)
.

Let

G(k) =
⋃

k1+k2=k

G̃(k1, k2), for k = 2, 3, 4, 5, 6.

It suffices to prove that for k ≥ 3

inf
f∈G(k)

ρ̃m(ε; f)

ρ̃m(cε; f)
≥ inf

f∈G(k−1)

ρ̃m(ε; f)

ρ̃m(cε; f)
,

by proving which we will finish the final step.

Suppose the set of the turning points is St, then
∣∣St/{Z(f)}

∣∣ = k − 2 ≥ 1. Suppose

x∗ = max{x ∈ St : f(x) = max{f(t) : t ∈ St}}, tl = minSt, tr = maxSt.

Apparently x∗ 6= Z(f). Without loss of generality, assume x∗ > Z(f). Then by definition
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of x∗, f
∣∣
[x∗,∞)

is a linear function. We define a function L4(f) ∈ G(k − 1),

(L4(f)) (t) =


f(t), t < x∗

f(x∗) + lims→0+
f(x∗)−f(x∗−s)

s (t− x∗), t ≥ x∗
. (A.1.26)

When f(x∗) ≥M(f) + ρ̃m(cε; f), we have

ρ̃m(cε;L4(f)) = ρ̃m(cε; f), ρ̃m(ε;L4(f)) ≤ ρ̃m(ε; f).

When f(x∗) < M(f) + ρ̃m(cε; f), we have f(tl) ≤ f(x∗) < M(f) + ρ̃m(cε; f). Denote pl, pr

to be the left and right root of f(t) = M(f) + ρ̃m(ε; f). Then pl < xl,m < tl ≤ Z(f) < x∗ <

xr,m < pr. We have

‖max{L4(f),M(f) + ρ̃m(ε; f)} − L4(f)‖2

=

∫ x∗

pl

(M(f) + ρ̃m(ε; f)− L4(f))2dt+

1

3
lim
s→0+

s

f(x∗)− f(x∗ − s)(ρ̃m(ε; f) +M(f)− f(x∗))3.

(A.1.27)

Furthermore,

∫ x∗

pl

(M(f) + ρ̃m(ε; f)− L4(f))2dt

=

∫ x∗

pl

(M(f) + ρ̃m(ε; f)− f)2dt

=

∫ tl

pl

(M(f) + ρ̃m(ε; f)− f)2dt+

∫ x∗

tl

(M(f) + ρ̃m(ε; f)− f)2dt.

(A.1.28)

Similarly, ‖max{L4(f),M(f) + ρ̃m(cε; f)} − L4(f)‖2 can be split into 3 parts as well.

‖max{L4(f),M(f) + ρ̃m(cε; f)} − L4(f)‖2

=

∫ tl

xl,m

(M(f) + ρ̃m(cε; f)− f)2dt+

∫ x∗

tl

(M(f) + ρ̃m(cε; f)− f)2dt+

1

3
lim
s→0+

s

f(x∗)− f(x∗ − s)(ρ̃m(cε; f) +M(f)− f(x∗))3.

(A.1.29)
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For ‖max{f,M(f) + ρ̃m(cε; f)} − f‖2 and ‖max{f,M(f) + ρ̃m(ε; f)} − f‖2, they can be

split into 3 parts as well.

‖max{f,M(f) + ρ̃m(cε; f)} − f‖2

=

∫ tl

xl,m

(M(f) + ρ̃m(cε; f)− f)2dt+

∫ x∗

tl

(M(f) + ρ̃m(cε; f)− f)2dt+

1

3
lim
s→0+

s

f(x∗ + s)− f(x∗)
(ρ̃m(cε; f) +M(f)− f(x∗))3.

(A.1.30)

‖max{f,M(f) + ρ̃m(ε; f)} − f‖2

=

∫ tl

pl

(M(f) + ρ̃m(ε; f)− f)2dt+

∫ x∗

tl

(M(f) + ρ̃m(ε; f)− f)2dt+

1

3
lim
s→0+

s

f(x∗ + s)− f(x∗)
(ρ̃m(ε; f) +M(f)− f(x∗))3.

(A.1.31)

Since we have

∫ tl
pl

(M(f) + ρ̃m(ε; f)− f)2dt∫ tl
xl,m

(M(f) + ρ̃m(cε; f)− f)2dt
=

(
M(f) + ρ̃m(ε; f)− f(tl)

M(f) + ρ̃m(cε; f)− f(tl)

)3

≤
(
ρ̃m(ε; f) +M(f)− f(x∗)
ρ̃m(cε; f) +M(f)− f(x∗)

)3

,

(A.1.32)

∫ x∗
tl

(M(f) + ρ̃m(ε; f)− f)2dt∫ x∗
tl

(M(f) + ρ̃m(cε; f)− f)2dt
≤
(
ρ̃m(ε; f) +M(f)− f(x∗)
ρ̃m(cε; f) +M(f)− f(x∗)

)2

<

(
ρ̃m(ε; f) +M(f)− f(x∗)
ρ̃m(cε; f) +M(f)− f(x∗)

)3

,

(A.1.33)

and

1
3 lims→0+

s
f(x∗+s)−f(x∗)(ρ̃m(ε; f) +M(f)− f(x∗))3

1
3 lims→0+

s
f(x∗+s)−f(x∗)(ρ̃m(cε; f) +M(f)− f(x∗))3

=

(
ρ̃m(ε; f) +M(f)− f(x∗)
ρ̃m(cε; f) +M(f)− f(x∗)

)3

,

(A.1.34)

we know that

1

c2
=
‖max{f,M(f) + ρ̃m(ε; f)} − f‖2
‖max{f,M(f) + ρ̃m(cε; f)} − f‖2 ≤

(
ρ̃m(ε; f) +M(f)− f(x∗)
ρ̃m(cε; f) +M(f)− f(x∗)

)3

.
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Given that

lim
s→0+

s

f(x∗ + s)− f(x∗)
≤ lim

s→0+

s

f(x∗)− f(x∗ − s) ,

we have

‖max{L4(f),M(f) + ρ̃m(ε; f)} − L4(f)‖2
‖max{L4(f),M(f) + ρ̃m(cε; f)} − L4(f)‖2 ≥

1

c2
.

Define function (L5(f)) (t)

(L5(f)) (t) =

M(f) + ((L4(f)) (t)−M(f))
cε

‖max{L4(f),M(f) + ρ̃m(cε; f)} − L4(f)‖ .
(A.1.35)

Then

ρ̃m(cε;L5(f)) = ρ̃m(cε; f), ρ̃m(ε;L5(f)) ≤ ρ̃m(ε; f), L5(f) ∈ G(k − 1).

Thus the statement is proved.

Now let’s turn to the proof of the geometric property of the minimizer, namely, for f ∈ F ,

max{(c/2)
2
3 , c} ≤ ρz(cε; f)

ρz(ε; f)
≤ 1. (A.1.36)

Proof. The right hand side of the inequality is straightforward. For the left hand side, we

prove a stronger version,

c−2 ≥ 3

4

(
ρz(ε; f)

ρz(cε; f)

)2

+
1

4

(
ρz(ε; f)

ρz(cε; f)

)3

. (A.1.37)

Similar to Step 3 in the previous proof for the minimum, for any f ∈ F , we have a class of
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functions {f̃δ1,δ2 : δ1, δ2}, but with a bit of abuse of notation, we define f̃δ1,δ2 here as

f̃δ1,δ2(t) =


f(t), t ∈ [0, 1]

f(0) + min{−δ−1
1 , lims→0+

f(s)−f(0)
s }t, t ∈ (−∞, 0)

f(1) + max{δ−1
2 , lims→0+

f(1)−f(1−s)
s }(t− 1), t ∈ (1,∞)

.

Similarly , we have

lim
max{δ1,δ2}→0+

ρ̃z(ε; f̃δ1,δ2) = ρz(ε; f), lim
max{δ1,δ2}→0+

ρ̃z(cε; f̃δ1,δ2) = ρz(cε; f).

Hence

sup
f∈F

ρz(ε; f)

ρz(cε; f)
≤ sup

f∈F̃c

ρ̃z(ε; f)

ρ̃z(cε; f)
.

Similar to the proof of the minimum, for f ∈ F̃c, denote pl, pr to be the two roots of

f(t) = M(f) + ρ̃m(ε; f), and denote ql, qr to be the two roots of f(t) = M(f) + ρ̃m(cε; f).

Without loss of generality, we can assume pr = Z(f) + ρ̃z(ε; f). We define four quantities:

∆1 =

∫ Z(f)

pl

(ρ̃m(ε; f) +M(f)− f)2dt,

∆2 =

∫ Z(f)

ql

(ρ̃m(cε; f) +M(f)− f)2dt,

∆3 =

∫ qr

Z(f)
(ρ̃m(cε; f) +M(f)− f)2dt,

∆4 =

∫ pr

Z(f)
(ρ̃m(ε; f) +M(f)− f)2dt.

(A.1.38)

Then we know that

ε2 = ‖max{f,M(f) + ρ̃m(ε; f)} − f‖2 = ∆1 + ∆4, (A.1.39)

and that

c2ε2 = ‖max{f,M(f) + ρ̃m(cε; f)} − f‖2 = ∆2 + ∆3. (A.1.40)
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We also have

∆1

∆2
≥
(
ρ̃m(ε; f)

ρ̃m(cε; f)

)2

≥
(
pr − Z(f)

qr − Z(f)

)2

≥
(
ρ̃z(ε; f)

ρ̃z(cε; f)

)2

. (A.1.41)

Next we will prove that

∆4

∆3
≥
(
pr − Z(f)

qr − Z(f)

)3

≥
(
ρ̃z(ε; f)

ρ̃z(cε; f)

)3

.

For the ease of notation, we introduce four quantities w1 = pr − Z(f) = ρ̃z(ε; f), w2 =

qr − Z(f) ≤ ρ̃z(cε; f), v1 = ρ̃m(ε; f), v2 = ρ̃m(cε; f). Then we have

∆4

∆3
=

∫ w1

0 (v1 +M(f)− f(pr − t))2dt∫ w2

0 (v2 +M(f)− f(qr − t))2dt

=
w1

∫ 1
0 (v1 +M(f)− f(pr − w1 · t))2dt

w2

∫ 1
0 (v2 +M(f)− f(qr − w2 · t))2dt

.

(A.1.42)

We also have

M(f) + v1 − f(pr − w1 · t) = f(pr)− f(pr − w1 · t)

=
f(pr)− f(pr − w1 · t)

w1 · t
w1 · t

≥ f(qr)− f(qr − w2 · t)
w2 · t

w1 · t

=
w1

w2
(f(qr)− f(qr − w2 · t)),

(A.1.43)

where the inequality follows from convexity of f as well as the fact that pr > qr, pr−w1 · t ≥

qr − w2 · t. Continuing with inequality (A.1.42), we have

∆4

∆3
≥
w1

∫ 1
0

(
w1
w2

(f(qr)− f(qr − w2 · t))
)2
dt

w2

∫ 1
0 (f(qr)− f(qr − w2 · t))2dt

=

(
w1

w2

)3

. (A.1.44)

In addition, we have

∆3

∆2
≥ 1

3

w2

ρ̃z(cε; f)
(A.1.45)
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Therefore,

c−2 =
∆1 + ∆4

∆2 + ∆3
≥

(
w1
w2

)2
∆2 + ∆3

(
w1
w2

)3

∆2 + ∆3

≥
1 + 1

3
w2

ρ̃z(cε;f)
w1
w2

1 + 1
3

w2
ρ̃z(cε;f)

(
w1

w2

)2

≥
1 + 1

3
ρ̃z(ε;f)
ρ̃z(cε;f)

4
3

(
ρ̃z(ε; f)

ρ̃z(cε; f)

)2

=
3

4

(
ρ̃z(ε; f)

ρ̃z(cε; f)

)2

+
1

4

(
ρ̃z(ε; f)

ρ̃z(cε; f)

)3

.

(A.1.46)

Since this holds for all f ∈ F , we have

c−2 ≥ 3

4

(
sup
f∈F

ρ̃z(ε; f)

ρ̃z(cε; f)

)2

+
1

4

(
sup
f∈F

ρ̃z(ε; f)

ρ̃z(cε; f)

)3

.

A.1.3. Proof of Proposition 2.2.2

We first show that the local modulus of continuity ωz(ε; f) can be lower bounded by ρz(ε; f).

Given f and ε, define uε = sup{u : ‖f − fu‖2 ≤ ε}. Let t` and tr (t` < Z(f) < tr) be the

two end points of the interval {t : f(t) ≤ uε}, and without loss of generality let’s assume

that |tr − Z(f)| ≥ |t` − Z(f)|. This means that ρz(ε; f) = tr − Z(f). For δ ∈ (0, tr − t`),

consider function

gδ(t) = max

{
f(t), uε −

uε − f(tr − δ)
tr − t` − δ

(t− t`)
}
. (A.1.47)

It is easy to verify that g is convex, with its minimum point at tr − δ, and that ‖f − gδ‖ ≤

‖f − fuε‖ ≤ ε. See a graphical illustration in Figure A.1. Therefore, taking δ → 0 we have

ωz(ε; f) ≥ lim
δ→0

(tr − δ) = ρz(ε; f).
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f(t)

tr

tr − δ

Figure A.1: Illustration of construction of gδ, colored red in the plot

Let’s switch to upper bound. Suppose g is a function such that ‖f − g‖ ≤ ε, with minimum

point at Z(g) > Z(f). We will use proof by contradiction.

If Z(g) > Z(f) + 3ρz(ε; f), then 1 ≥ Z(f) + 3ρz(ε; f). Recycling our notation, write

t`(uε) = inf{t : f(t) ≤ uε} and tr(uε) = sup{t : f(t) ≤ uε}. Since f is a convex function, it

is continuous, hence f(tr(uε)) = uε. We have two cases: 1, g(tr(uε)) > uε, 2, g(tr(uε)) ≤ uε.

For case 1, we know g(t) > uε for tl(uε) ≤ t ≤ tr(uε), so

‖f − g‖2 >
∫ tr(uε)

tl(uε)
(uε − f(t))2dt = ε2.

For case 2, we know g(t) ≤ uε for tr(uε) ≤ t ≤ tr(uε) + 2ρz(ε; f), so

‖f − g‖2 ≥
∫ tr(uε)+2ρz(ε;f)

tr(uε)
(

uε
tr(uε)− Z(f)

(t− tr(uε)))2dt

≥ u2

(tr(uε)− Z(f))2

8ρz(ε; f)3

3
=

8

3
ρz(ε; f)u2 ≥ 4ε2

3

Either case, the there is a contradiction. Therefore, Z(g) ≤ Z(f) + 3ρz(ε; f).

Let’s now turn to ωm(ε; f) and show firstly that ωm(ε; f) ≥ ρm(ε; f). In fact, if we take the
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convex function gδ as defined in (A.1.47), we have that ‖f − gδ‖ ≤ ε and that

lim
δ→0+

min
t
gδ(t)− Z(f) = ρm(ε; f),

which completes the proof.

Next, we will show that ωm(ε; f) can be upper bounded by ρm(ε; f) up to a constant factor

of 3.

For any g ∈ F such that ‖f − g‖ ≤ ε, we can immediately obtain

M(g)−M(f) ≤ ρm(ε; f).

Otherwise, if M(g) −M(f) > ρm(ε; f), then g(t) > ρm(ε; f) + M(f) for all t, and hence

ε2 ≥ ‖f − g‖2 ≥ (M(g)−M(f)− ρm(ε; f))2(tr(uε)− tl(uε)) + ‖fuε − f‖2 > ε2.

On the other hand, we need to show the minimum value of g cannot be too small compared

to M(f). For the ease of presentation, we assume that M(f) = 0 only for this part. As in

the previous parts, we write t` = inf{t : f(t) ≤ uε}, tr = sup{t : f(t) ≤ uε}, and vε = tr−t`.

Graphically, vε is the width of the water-filling surface. Suppose that M(g) = −αuε for

some α > 0. Consider the width of the set {t : g(t) ≤ 0}, which we denote as γvε for

some γ > 0. From Figure A.2, we see that the integral ‖f − g‖22 has to contain the `2 area

of the three shaded triangles (the two triangles on the side might not exist). Given that

M(g) = −auε and |{t : g(t) ≤ 0}| = γvε, some calculation shows that

‖f − g‖2 ≥ u2
εvε ·

1

3
α2γ

(
1 +

(
1

γ
− α+ 1

α

)3

∨ 0

)

≥ ε2 · 1

3
α2γ

(
1 +

(
1

γ
− α+ 1

α

)3

∨ 0

)

where the second inequality follows from u2
εvε ≥ ε2. Fixing α and minimizing over γ, we
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have that if α > 3, ‖f − g‖2 > ε2, which is contradictory. Therefore, we have

M(f)−M(g) ≤ 3ρm(ε; f).

trt`

uε

g∗

f(t)g(t)

Figure A.2: Illustration of upper bound proof

A.1.4. Proof of Theorem 2.2.3

We will first introduce two propositions, which we will prove later. Based on these two

propositions, we will finish proving the theorem.

Proposition A.1.1 (Penalty for super-efficiency in estimation of the minimizer). For any

estimator Ẑ, if ∃f ∈ F such that Ef |Ẑ − Z(f)| ≤ cRz(ε; f), then ∃f1 ∈ F , such that

Ef1(|Ẑ − Z(f1)|) ≥ hz(c)Rz(ε; f1),

for 0 < c < 2
15 . hz(c) ≥ 1{0.0042 ≤ c < 2

15}0.111
(
1− Φ(1 + Φ−1(3c))

)
+ 1{0 < c <

0.0042}max{1
6

(
3
27

) 1
3 Φ−1(1− 3c)

2
3 , 0.111

(
1− Φ(1 + Φ−1(3c))

)
}.

Proposition A.1.2 (Penalty for super-efficiency in estimation of the minimum). For any

estimator M̂ , if ∃f ∈ F such that E|M̂ −M(f)| ≤ cRm(ε; f), then ∃f1 ∈ F , such that

Ef1 |M̂ −M(f1)| ≥ hm(c)Rm(ε; f1),
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for 0 < c < 0.1. hm(c) ≥ 1{0.1 > c ≥ Φ(−1)
2.06 }0.208118 + 1{0 < c < Φ(−1)

2.06 }z
2
3
2.06c/4.12.

In the statement of the theorem in the main paper, we use γ in the place of c, but since we

save γ for other usage in the proofs of the proposition and lemmas, we take c in the place

of the γ in the statement of the theorem in the main paper.

From Proposition A.1.1 we know that

hz(c) ≥ 0.286z
2
3
3c, for c < 0.0042.

Suppose h̄z(c) = 0.111(1−Φ(1−z3c)). Then we know that h̄z(c) decreases with c increasing,

and since we also know log
(

1
c

) 1
3 decreases with c increasing when c ∈ (0, 0.1), we know that

inf
c∈[0.0042,0.1]

h̄z(c)

log
(

1
c

) 1
3

≥ min
4≤k≤99

inf
c∈[ k

1000
, k+1
1000

]

h̄z(c)

log
(

1
c

) 1
3

≥ min
4≤k≤99

h̄z(
k+1
1000)

log
(

1000
k

) 1
3

≥ 0.0266 >
1

38
.

From Proposition A.1.2 we know that

inf
c∈[

Φ(−1)
2.06

,0.1)

hm(c)

log
(

1
c

) 1
3

≥ 0.208118

log
(

2.06
Φ(−1)

) 1
3

≥ 0.1520614 >
1

7
.

Therefore, we are only left to see the relationships between z
2
3
2.06c, z

2
3
3c with log (1

c )
1
3 . We

have the following lemma that we will prove in Section A.2 on page 201.

Lemma A.1.4. For α < 0.08, z2.06α ≥ 0.61
√

log 1/α. For α < 0.005, z3α ≥ 0.599
√

log 1/α.

Since 0.08 > Φ(−1)
2.06 , we have for c < 0.1,

hm(c) ≥ min{1

7
, 0.61

2
3 /4.12}

(
log

1

c

) 1
3

=
1

7

(
log

1

c

) 1
3

.
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For hz(c), we have, for c < 0.1,

hz(c) ≥ min{ 1

38
, 0.599

2
3

1

6

(
3

27

) 1
3

}
(

log
1

c

) 1
3

=
1

38

(
log

1

c

) 1
3

.

Now we start proving the propositions.

Proof of Proposition A.1.1. We have the following two lemmas, which we will prove in Sec-

tion A.2 on page 203 and 209.

Lemma A.1.5. For any estimator Ẑ, if ∃f ∈ F such that Ef |Ẑ −Z(f)| ≤ cρz(ε; f) , then

∃f1 ∈ F , such that

Ef1(|Ẑ − Z(f1)|) ≥ h̃z(c)ρz(ε; f1)

for c < 1. For 0 < c < 0.063, h̃z(c) ≥ 1
4

(
3
27

) 1
3 Φ−1(1− 2c)

2
3 .

Lemma A.1.6. For any estimator Ẑ, if ∃f ∈ F such that Ef |Ẑ −Z(f)| ≤ cρz(ε; f) , then

∃f1 ∈ F , such that

Ef1(|Ẑ − Z(f1)|) ≥ h̃z(c)ρz(ε; f1)

for c < 1. For 0 < c < 0.2, h̃z(c) ≥ 0.1666
(
1− Φ(1 + Φ−1(2c))

)
.

Recall that, by Lemma 2.6.3, 0.308ρz(ε; f) ≤ Rz(ε; f) ≤ 3
2ρz(ε; f). Therefore, for any

estimator Ẑ, if ∃f ∈ F such that Ef |Ẑ − Z(f)| ≤ cRz(ε; f), then ∃f1 ∈ F , such that

Ef1(|Ẑ − Z(f1)|) ≥ hz(c)Rz(ε; f1),

for c < 2
15 .

hz(c) ≥1{0.0042 ≤ c < 2

15
}0.111

(
1− Φ(1 + Φ−1(3c))

)
+

1{c < 0.0042}max{1

6

(
3

27

) 1
3

Φ−1(1− 3c)
2
3 , 0.111

(
1− Φ(1 + Φ−1(3c))

)
}.
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Proof of Proposition A.1.2. Again we introduce a lemma and prove it in Section A.2 on

page 210.

Lemma A.1.7. For any estimator M̂ , if ∃f ∈ F such that Ef |M̂ −M(f)| ≤ cρm(ε; f) ,

then ∃f1F , such that

Ef1(|M̂ −M(f1)|) ≥ h̃m(c)ρm(ε; f1)

for c < 1. For c ≤ 0.103, h̃m(c) ≥ 1{0.103 ≥ c ≥ Φ(−1)
2 }0.214362 + 1{c < Φ(−1)

2 }z
2
3
2c/4.

According to Lemma 2.6.2, we have Rm(ε; f) ≤ 1.03ρm(ε; f). Therefore, we have, for any

estimator M̂ , if ∃f ∈ F such that Ef |M̂ −M(f)| ≤ cRm(ε; f), then ∃f1 ∈ F , such that

Ef1 |M̂ −M(f1)| ≥ hm(c)Rm(ε; f1)

for c < 1. For c < 0.1, hm(c) ≥ 1{0.1 > c ≥ Φ(−1)
2.06 }0.208118 + 1{c < Φ(−1)

2.06 }z
2
3
2.06c/4.12.

A.1.5. Proof of Theorem 2.3.1

Recall that j̃ is defined in Equation (A.1.1) and only depends on Yl. We have

E(|Ẑ − Z(f)|) =E(1{ĵ < j̃}|Ẑ − Z(f)|) + E(1{ĵ ≥ j̃}|Ẑ − Z(f)|)

≤E(1{ĵ < j̃}1.5mĵ) + E(1{ĵ ≥ j̃}|Ẑ − Z(f)|).
(A.1.48)

We begin with bounding the first term.
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El,s(1{ĵ < j̃}mĵ)

=

j∗−1∑
j1=3

mj1El,s(1{ĵ < j̃, ĵ = j1}) +

∞∑
j1=j∗

mj1El,s(1{ĵ < j̃, ĵ = j1})

≤
j∗−1∑
j1=3

2j
∗−j1mj∗El,s(1{j1 < j̃, ĵ = j1}) +

∞∑
j1=j∗

mj∗El,s(1{ĵ < j̃, ĵ = j1})

≤
j∗−1∑
j1=3

2j
∗−j1mj∗El,s(1{Tj1 ≤ 2

√
6ε
√
mj1 , j1 < j̃}) +mj∗P (j∗ ≤ ĵ < j̃)

≤
j∗−1∑
j1=3

2j
∗−j1mj∗El,s(1{X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5 ≤ 2

√
6ε
√
mj1 , j1 < j̃})+

j∗−1∑
j1=3

2j
∗−j1mj∗El,s(1{X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5 ≤ 2

√
6ε
√
mj1 , j1 < j̃})+

mj∗P (j∗ ≤ ĵ < j̃)

=

j∗−1∑
j1=3

2j
∗−j1mj∗El

(
Es
(
1{X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5 ≤ 2

√
6ε
√
mj1 , j1 < j̃}|Yl

))
+

j∗−1∑
j1=3

2j
∗−j1mj∗El

(
Es
(
1{X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5 ≤ 2

√
6ε
√
mj1 , j1 < j̃}|Yl

))
+

mj∗P (j∗ ≤ ĵ < j̃).

(A.1.49)

As bounding the expectations in first two terms of the right hand side of Inequality (A.1.49)

takes similar steps, we will walk through the steps for the first term. Note that only when

îj1 + 6 ≤ 2j1 the indicator function in the expectation can take 1, so in the following we

take 1{̂ij1 + 6 ≤ 2j1} as an indicator function in the expectation without writing it out.

We introduce the following quantity for the (partly standardized) noise part of the statistic

defined in stopping-rule Section 2.3.1.

Ej,i =
1
√
mj

(W2(tj,i)− 2W2(tj,i−1) +W2(tj,i−2)) , (A.1.50)
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where W2 is define in Equation (2.3.2).

Then for 2 ≤ i ≤ 2j , we have

Ej,i ∼ N(0, 6ε2).

Hence for j1 ≤ j∗ − 1 we have

El(Es(1{X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5 ≤ 2
√

6ε
√
mj1 , j1 < j̃}|Yl))

= El(Es(1{(µj1 ,̂ij1+6 − µj1 ,̂ij1+5)
√
mj1 − 2

√
6ε ≤ −Ej1 ,̂ij1+6}|Yl)1{j1 < j̃})

≤ El(Es(1{(µj1,i∗j1+5 − µj1,i∗j1+4)
√
mj1 − 2

√
6ε ≤ −Ej1 ,̂ij1+6}|Yl)1{j1 < j̃}).

(A.1.51)

Further, for (µj1,i∗j1+5 − µj1,i∗j1+4)
√
mj1 , we have

(µj1,i∗j1+5 − µj1,i∗j1+4)
√
mj1 ≥ (

ρm(ε; f)

ρz(ε; f)
mj1)

√
mj1

= ρm(ε; f)
√
ρz(ε; f)2

3
2

(j∗−j1)

(
mj∗

ρz(ε; f)

) 3
2

≥ 1√
2
ε2

3
2

(j∗−j1)

(
mj∗

ρz(ε; f)

) 3
2

≥ 1√
2
ε2

3
2

(j∗−j1)2−
9
2 ,

(A.1.52)

where the first inequality is due to Inequality (2.6.9), and the second inequality is due to the

definition of j∗ in Equation (A.1.2). We will use both the last and second to last quantity

in Inequality (A.1.52) later. Continuing with Inequality (A.1.51), we have

El(Es(1{X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5 ≤ 2
√

6ε
√
mj1 , j1 < j̃}|Yl))

≤ El
(
Es
(
1{ 1√

2
ε2

3
2

(j∗−j1)2−
9
2

(
8mj∗

ρz(ε; f)

) 3
2

− 2
√

6ε ≤ −Ej1 ,̂ij1+6}|Yl
)
1{j1 < j̃}

)
= El

(
Φ(2− 2

3
2

(j∗−j1−3)−1 1√
3

(
8mj∗

ρz(ε; f)

) 3
2

)1{j1 < j̃}
)

≤ El
(

Φ(2− 2
3
2

(j∗−j1−3)−1 1√
3

)1{j1 < j̃}
)
.

(A.1.53)
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Note that for j1 ≤ j∗ − 5, 2 − 2
3
2

(j∗−j1−3)−1 1√
3
≤ 0. We have similar results for the

expectation in the second term of Inequality (A.1.49). Plugging them in, we have

El,s(1{ĵ < j̃}mĵ)

≤ mj∗P (j∗ ≤ ĵ < j̃) +

j∗−5∑
j1=3

2j
∗−j1mj∗Φ(2− 2

3
2

(j∗−j1−3)−1 1√
3

)El
(
1{j1 < j̃}

)
× 2+

j∗−1∑
j1=j∗−4

2j
∗−j1mj∗Φ(2− 2

3
2

(j∗−j1−3)−1 1√
3

(
8mj∗

ρz(ε; f)

) 3
2

)El
(
1{j1 < j̃}

)
× 2

≤ mj∗ × 25
j∗−6∑
j1=3

2j
∗−j1−4Φ(2− 2

3
2

(j∗−j1−4) ·
√

2

3
) + 2Φ(2− 2

3
2 ·
√

2

3
)25mj∗

+
ρz(ε; f)

8
× 16× (

3∑
k=0

2−k8mj∗

ρz(ε; f)
Φ(2−

√
2

3

(
2−k8mj∗

ρz(ε; f)

) 3
2

)) +mj∗

≤ mj∗ × 25 × 4Φ(2− 8×
√

2/3)

1− 0.008
+ 24.3mj∗ + 2ρz(ε; f)(2 + 1 + 0.5 + 0.25) +mj∗

< 24.4mj∗ + 8ρz(ε; f) ≤ 14.1ρz(ε; f).

(A.1.54)

The detailed calculations of the third inequality are based on Lemma A.1.2.

Now we can proceed with bounding the second term in Inequality (A.1.48).

E(1{ĵ ≥ j̃}|Ẑ − Z(f)|)

≤
j∗−4∑
j=1

E(1{ĵ ≥ j, j̃ = j}|Ẑ − Z(f)|) +
∞∑

j=j∗−3

E(1{ĵ ≥ j, j̃ = j}|Ẑ − Z(f)|)

≤
j∗−4∑
j=1

2j
∗−jmj∗E(1{ĵ ≥ j}(51{Xj,i∗j−3 ≤ Xj,i∗j−1}+ 41{Xj,i∗j−2 ≤ Xj,i∗j−1}

+ 41{Xj,i∗j+2 ≤ Xj,i∗j+1}+ 51{Xj,i∗j+3 ≤ Xj,i∗j+1}

+ 61{Xj,i∗j+4 ≤ Xj,i∗j+1}+ 61{Xj,i∗j−4 ≤ Xj,i∗j−1})) + 6× 8×mj∗
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≤ 2

j∗−4∑
j=1

2j
∗−jmj∗

(
4Φ(−ρm(ε; f)

ρz(ε; f)
mj

√
mj√
6ε

) + 5Φ(−2
ρm(ε; f)

ρz(ε; f)
mj

√
mj√
6ε

)+

6Φ(−3
ρm(ε; f)

ρz(ε; f)
mj

√
mj√
6ε

)
)

+ 48mj∗

≤ 48mj∗ + 2

j∗−4∑
j=1

2j
∗−jmj∗

(
4Φ(−

√
2/3(

1

8
)

3
2 × 2

3
2

(j∗−j−1))+

5Φ(−
√

2/3 · 2(
1

8
)

3
2 × 2

3
2

(j∗−j−1)) + 6Φ(−
√

2/3 · 3(
1

8
)

3
2 × 2

3
2

(j∗−j−1))
)

≤ 48mj∗ + 2mj∗

(
16Φ(−

√
2

3
)× 4 + 32Φ(−4

√
1

3
)

1

1− 2× Φ(−8
√

2
3

)

Φ(−4/
√

3)

× 4+

5× Φ(−2

√
2

3
)× 16× 1

1− 2× Φ(−8/
√

3)

Φ(−2
√

2/3)

+ 6× Φ(−
√

6)× 1

1− 2× Φ(−4
√

3)

Φ(−
√

6)

)

< 20.9ρz(ε; f).

The third to last inequality is due to the fact that Φ(−2
√

2x)
Φ(−x) decreases with x > 0 increasing.

Putting the two parts together, we have

E(|Ẑ − Z(f)|) < 35ρz(ε; f) ≤ 35

a1
Rz(ε; f). (A.1.55)

A.1.6. Proof of Theorem 2.3.2

We will start by showing that the coverage is guaranteed. Recalling that we introduced the

notation jw to denote the step that the localization procedure chooses an interval relatively

far away from the right one:

jw = min{j : |̂ij − i∗j | ≥ 5}. (A.1.56)

Then we know that |̂ijw−1 − i∗jw−1| ≤ 4, so we have that |̂ijw+k − i∗jw+k| ≤ 6 ∗ 2k+1 − 2 for
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all k ≥ −1. Now we introduce the following lemma bounding the probability of stopping at

least K + 1 steps after jw.

Lemma A.1.8. For jw defined in Equation (A.1.56), and for K ≥ 0, we have

P (ĵ ≥ jw +K + 1) ≤ Φ(−2)K .

In particular, for Kα = d logα
log Φ(−2)e, P (ĵ ≥ jw +Kα + 1) ≤ α.

Note that when ĵ ≤ jw +Kα, we have |̂iĵ − i∗ĵ | ≤ 12 · 2Kα − 2, implying that Z(f) ∈ [L,U ].

Therefore, we have

P (Z(f) ∈ CIz,α) ≥ P (ĵ ≤ jw +Kα) = 1− P (ĵ ≥ jw +Kα + 1) ≥ 1− α.

Proof of Lemma A.1.8. Now we will compute the probability that the stopping rule does

not stop K steps after jw. When jw =∞, ĵ can never be larger that jw, hence we can only

consider the event {jw <∞}.

El,s
(
1{ĵ ≥ jw +K + 1}1{jw <∞}

)
= El,s

 ∞∑
j1=3

1{ĵ ≥ j1 +K + 1}1{jw = j1}


= El

 ∞∑
j1=3

Es(1{ĵ ≥ j1 +K + 1}|Yl)1{jw = j1}


≤ El

 ∞∑
j1=3

Φ(−2)K1{jw = j1}


≤ Φ(−2)K .

(A.1.57)

The rationale for the first inequality in Equation (A.1.57) is as follows. Define the set of

all possible sequences (i.e. (i0, ..., ij1+1+K)) starting from stage 0 to the stage j1 + K + 1

that satisfies |ij − i∗j | ≤ 4 for j ≤ j1, and |ij − i∗j | ≥ 5 for j = j1 as Se(j1,K + 1).

∀s ∈ Se(j1,K + 1), denote (il, ...ih) in s as s(l, h), and denote the sequence (̂il, · · · , îh)
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produced by the localization procedure as ŝ(l, h). If l = h, we will abbreviate s(l, l) into

s(l) and ŝ(l, l) into ŝ(l). Then we know that for s ∈ Se(j1,K + 1) with s(j1) ≤ i∗j1 − 5, we

have s(j)+6 < i∗j for j = j1 +1, · · · ,K+1, therefore, µj,s(j)+6−µj,s(j)+5 ≤ 0. On the other

hand, for s ∈ Se(j1,K + 1) with s(j1) ≥ i∗j1 + 5, we have µj,s(j)−6 − µj,s(j)−5 ≤ 0. Now we

define a sign function indicating which side s(j) is on to i∗j ,

Sg(s, j) = sign{i∗j − s(j)}.

And for ease of expression, denote τj,i = W2(tj,i) −W2(tj,i−1) . Now we go back to the

analysis of the first inequality in Equation (A.1.57):

Es
(
1{ĵ ≥ j1 +K + 1}|Yl

)
1{jw = j1}

= Es
( ∑
s∈Se(j1,K+1)

1{ĵ ≥ j1 +K + 1, ŝ(0, j1 + 1 +K) = s}|Yl
)
1{jw = j1}

≤ Es
( ∑
s∈Se(j1,K+1)

1
{
min{X̃j,s(j)+6 − X̃j,s(j)+5, X̃j,s(j)−6 − X̃j,s(j)−5} ≥ 2

√
2csε
√
mj ,

∀j = j1 + 1, · · · , j1 +K
}
1{ŝ(0, j1 + 1 +K) = s}|Yl

)
1{jw = j1}

≤
∑

s∈Se(j1,K+1)

Es
(
1{X̃j,s(j)+6Sg(s,j) − X̃j,s(j)+5Sg(s,j) ≥ 2

√
2csε
√
mj ,

∀j = j1 + 1, · · · , j1 +K}1{ŝ(0, j1 + 1 +K) = s}|Yl
)

≤
∑

s∈Se(j1,K+1)

Es
(
1{mj · µj,s(j)+6Sg(s,j) −mj · µj,s(j)+5Sg(s,j) + τj,s(j)+6Sg(s,j)

− τj,s(j)+5Sg(s,j) ≥ 2
√

2csε
√
mj ,∀j = j1 + 1, · · · , j1 +K}1{ŝ(0, j1 + 1 +K) = s}|Yl

)
≤

∑
s∈Se(j1,K+1)

Es
(
1{τj,s(j)+6Sg(s,j) − τj,s(j)+5Sg(s,j) ≥ 2

√
2csε
√
mj ,

∀j = j1 + 1, · · · , j1 +K}1{ŝ(0, j1 + 1 +K) = s}|Yl
)

=
∑

s∈Se(j1,K+1)

Φ(−2)KEs
(
1{ŝ(0, j1 + 1 +K) = s}|Yl

)
= Φ(−2)K1{jw = j1}.

(A.1.58)
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Next we turn to the expected length, for which we introduce the following lemma for the

length of the confidence interval for the minimizer.

Lemma A.1.9 (Length of Confidence Interval for the Minimizer). For 0 < α < 0.3, the

expected length of the confidence interval given in (2.3.6) satisfies

E(CIz,α(Y )) ≤ (24× 2Kα − 3)× 17.5× ρz(ε; f) ≤ Cz,αLz,α(ε; f).

Proof of Lemma A.1.9. Recall that we have the following notation for indicating the stage

where the localization procedure starts choosing the interval not close enough to the tar-

geting interval:

j̃ = min{j : |̂ij − i∗j | ≥ 2}.

Now we have

E(mĵ) = E(mĵ1{ĵ ≥ j∗ − 3}) + E(mĵ1{ĵ ≤ j∗ − 4})

≤ 8mj∗ + E(mĵ1{ĵ ≥ j̃, ĵ ≤ j∗ − 4}) + E(mĵ1{ĵ ≤ j̃ − 1, ĵ ≤ j∗ − 4})

≤ 2ρz(ε; f) + E(mj̃1{j̃ ≤ ĵ ≤ j∗ − 4}) +

j∗−4∑
j=1

mjE(1{ĵ = j, j̃ ≥ j + 1}).

(A.1.59)
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We will bound the second and the third term in Equation (A.1.59) as follows:

E(mj̃1{j̃ ≤ ĵ ≤ j∗ − 4}) ≤ E(mj̃1{j̃ ≤ j∗ − 4}) ≤
j∗−4∑
j=1

mjE(1{j̃ = j})

≤
j∗−4∑
j=1

mjE(1{Xj,i∗j+3 ≤ Xj,i∗j+1, tj,i∗j+3 ≤ 1}+ 1{Xj,i∗j+2 ≤ Xj,i∗j+1, tj,i∗j+1 ≤ 1}

+ 1{Xj,i∗j−3 ≤ Xj,i∗j−1, tj,i∗j−3 ≥ mj }+ 1{Xj,i∗j−2 ≤ Xj,i∗j−1, tj,i∗j−2 ≥ mj})

+ 1{Xj,i∗j−4 ≤ Xj,i∗j−1, tj,i∗j−4 ≥ mj}+ 1{Xj,i∗j+4 ≤ Xj,i∗j+1, tj,i∗j+4 ≤ 1})

≤
j∗−4∑
j=1

2j
∗−jmj∗ × 2(Φ(−ρm(ε; f)

ρz(ε; f)
mj
√
mj

1

cl
√

2ε
) + Φ(−ρm(ε; f)

ρz(ε; f)
2mj
√
mj

1

cl
√

2ε
)

+ Φ(−ρm(ε; f)

ρz(ε; f)
3mj
√
mj

1

cl
√

2ε
))

≤
j∗−4∑
j=1

2j
∗−j ρz(ε; f)

2

(
Φ(−2

3
2

(j∗−j)(
1

8
)

3
2

1

2cl
) + Φ(−2

3
2

(j∗−j) × 2× (
1

8
)

3
2

1

2cl
)

+ Φ(−2
3
2

(j∗−j) × 3× (
1

8
)

3
2

1

2cl
)
)

= 4

j∗−4∑
j=1

2j
∗−j−3ρz(ε; f)

(
Φ(−2

3
2

(j∗−j−4)
√

2/3) + Φ(− 1√
2

2
3
2

(j∗−j−3)
√

2/3)

+ Φ(−3× 2
3
2

(j∗−j−3)
√

2/3)
)

≤ 4ρz(ε; f)×
∞∑
j=1

(2jΦ(− 1

2
√

3
2

3
2
j) + 2jΦ(− 1√

3
2

3
2
j) + 2jΦ(− 3

2
√

3
2

3
2
j)))

≤ 8ρz(ε; f)×
(
Φ(−

√
2/3) + Φ(−2

√
2/3) + Φ(−

√
6)+

[2Φ(−4/
√

3) + 2Φ(−8/
√

3) + 2Φ(−12/
√

3)]
1

1− 2
Φ(−8
√

2/3)

Φ(−4/
√

3)

)
.

(A.1.60)

The last inequality in due to Φ(−2
√

2x)
Φ(−x) decreases with x > 0 increases. Now we turn to the
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third term in Equation (A.1.59).

j∗−4∑
j=1

mjE(1{ĵ = j, j̃ ≥ j + 1})

=

j∗−4∑
j=1

mjEl
(
Es(ĵ = j|Yl)1{j̃ ≥ j + 1}

)
≤

j∗−4∑
j=1

mjEl
(
Es(X̃j,̂ij+6 − X̃j,̂ij+5 ≤ 2

√
2csε
√
mj |Yl)1{j̃ ≥ j + 1}+

Es(X̃j,̂ij−6 − X̃j,̂ij−5 ≤ 2
√

2csε
√
mj |Yl)1{j̃ ≥ j + 1}

)
≤

j∗−4∑
j=1

mjEl
(
2Φ(2− ρm(ε; f)

ρz(ε; f)
mj

√
mj

cs
√

2ε
)1{j̃ ≥ j + 1}

)
≤

j∗−4∑
j=1

2j
∗−j ρz(ε; f)

4
× 2Φ(2− 2

3
2

(j∗−j−3)

2cs
)El
(
1{j̃ ≥ j + 1}

)
≤

j∗−4∑
j=1

2j
∗−j ρz(ε; f)

4
× 2Φ(2− 2

3
2

(j∗−j−4)
√

2/3)

≤ 8ρz(ε; f)
(
Φ(2−

√
2/3) + 2Φ(2− 4/

√
3) + 4Φ(2− 8×

√
2/3)

1

1− 0.008

)
.

(A.1.61)

Combining them together, now we can turn to the original Equation (A.1.59), for which we

have

E(mĵ) < 17.5ρz(ε; f). (A.1.62)

Therefore,

E(CIz,α) ≤ (24× 2Kα − 3)× E(mĵ) ≤ (24× 2Kα − 3)× 17.5ρz(ε; f). (A.1.63)

Since Lz,α(ε; f) ≥ bαωz(ε/3; f) ≥ bαρz(ε; f)/3 when 0 < α < 0.3, we have the statement.
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A.1.7. Proof of Theorem 2.3.3

In addition to the notation introduced in the proof of Theorem 2.3.1, we define the following

bias and variance terms.

f̂ =
1

mĵ

∫ t̂i
ĵ
+∆

t̂i
ĵ
+∆−1

f(t)dt, (A.1.64)

Ẑ =
1

mĵ

(W3(t̂iĵ+∆)−W3(t̂iĵ+∆−1)), (A.1.65)

where

∆ = 2
(
1{X̃ĵ ,̂iĵ+6 − X̃j,̂iĵ+5 ≤ 2σj} − 1{X̃ĵ ,̂iĵ−6 − X̃j,̂iĵ−5 ≤ 2σj}

)
.

Therefore, we have:

El,s,e
(
(M̂ −M(f))2

)
= El,s,e

(
(f̂ −M(f))2 + Ẑ2 + 2Ẑ(f̂ −M(f))

)
= El,s

(
(f̂ −M(f))2 +

3ε2

mĵ

)
≤ El,s

(
(f̂ −M(f))2

)
+

24ε2

ρz(ε; f)
E
(
2ĵ−j

∗)
.

(A.1.66)

The second equation is because Yl, Ys and Ye are mutually independent, and taking the

conditional expectation leads to the equation.

For the second term of the right hand side of Inequality (A.1.66), we have the following

lemma that we will prove later:

Lemma A.1.10.

E(2ĵ−j
∗
) <

35

4

ρz(ε; f)ρm(ε; f)2

ε2
. (A.1.67)

For the first term of the right hand side of Inequality (A.1.66), we have
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El,s
(
(f̂ −M(f))2

)
= El,s

(
(f̂ −M(f))2

1{j̃ ≤ ĵ}
)

+ El,s
(
(f̂ −M(f))2

1{j̃ > ĵ}
)
.

(A.1.68)

And for the first term in Equation A.1.68, we have

El,s
(
(f̂ −M(f))2

1{j̃ ≤ ĵ}
)

≤ El,s
((

(f̂ − µĵ ,̂iĵ )+ + (µĵ ,̂iĵ
−M(f))

)2
1{j̃ ≤ ĵ}

)
≤ 2El,s

((
(f̂ − µĵ ,̂iĵ )+

)2
1{j̃ ≤ ĵ}

)
+ 2El,s

((
µĵ ,̂iĵ

−M(f)
)2
1{j̃ ≤ ĵ}

)
≤ 2El,s

((
(f̂ − µĵ ,̂iĵ )+

)2
1{j̃ ≤ ĵ}

)
+ 2El,s

(((
µĵ ,̂iĵ

− µj̃ ,̂ij̃
)

+
+
(
µj̃ ,̂ij̃

−M(f)
))2

1{j̃ ≤ ĵ}
)

≤ 2El,s
((

(f̂ − µĵ ,̂iĵ )+

)2
1{j̃ ≤ ĵ}

)
+ 2El,s

(
4

3

((
µĵ ,̂iĵ

− µj̃ ,̂ij̃
)

+

)2
1{j̃ ≤ ĵ}

)
+ 2El,s

(
4
(
µj̃ ,̂ij̃

−M(f)
)2
1{j̃ ≤ ĵ}

)
.

(A.1.69)

Therefore, going back to Inequality A.1.68, we have

El,s
(
(f̂ −M(f))2

)
≤ 2El,s

((
(f̂ − µĵ ,̂iĵ )+

)2
1{j̃ ≤ ĵ}

)
+ El,s

(
(f̂ −M(f))2

1{j̃ > ĵ}
)

+ 2El,s
(

4

3

((
µĵ ,̂iĵ

− µj̃ ,̂ij̃
)

+

)2
1{j̃ ≤ ĵ}

)
+ 2El,s

(
4
(
µj̃ ,̂ij̃

−M(f)
)2
1{j̃ ≤ ĵ}

)
.

(A.1.70)

To bound each term in Inequality (A.1.70), we introduce and prove the following proposition.

Proposition A.1.3.

El,s
(
(f̂ −M(f))2

1{j̃ > ĵ}
)
< 12003ρm(ε; f)2, (A.1.71)

El,s
((

(f̂ − µĵ ,̂iĵ )+

)2
1{j̃ ≤ ĵ}

)
< 13064ρm(ε; f)2, (A.1.72)

El,s
((
µj̃ ,̂ij̃

−M(f)
)2
1{j̃ ≤ ĵ}

)
< 3104ρm(ε; f)2, (A.1.73)

El,s
(((

µĵ ,̂iĵ
− µj̃ ,̂ij̃

)
+

)2
1{j̃ ≤ ĵ}

)
< 50857ρm(ε; f)2. (A.1.74)
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With proposition applied to Inequality (A.1.70) and Lemma A.1.10, and going back to

Inequality (A.1.66), we have the statement of the theorem.

Now we are left with proving Proposition A.1.3 and Lemma A.1.10. Before we proceed, we

introduce and prove a lemma

Lemma A.1.11. P (ĵ <∞) = 1.

Proof. To prove this, we only need to prove limj→∞ P (ĵ > j) = 0. Suppose j ≥ j∗+ 3. For

j1 ≥ j∗ + 2,

min{µj1 ,̂ij1+6 − µj1 ,̂ij1+5, µj1 ,̂ij1−6 − µj1 ,̂ij1−5} < 13.5mj1

ρm(ε; f)

ρz(ε; f)
.

Since

3ε2 ≥ ρz(ε; f)ρm(ε; f)2 ≥ 1

2
ε2, (A.1.75)

we have

min{µj1 ,̂ij1+6 − µj1 ,̂ij1+5, µj1 ,̂ij1−6 − µj1 ,̂ij1−5}mj1/(cs

√
2mj1ε

2)

≤ 1

cs
√

2ε
2
−3(j1−j

∗)
2 m

3
2
j∗

13.5ρm(ε; f)

ρz(ε; f)

≤
√

3

cs
√

2ρm(ε; f)
√
ρz(ε; f)

ρz(ε; f)
3
2

13.5ρm(ε; f)

ρz(ε; f)
2
−3(j1−j

∗+2)
2

≤ 13.5 · 2
−3(j1−j

∗+2)
2 .

(A.1.76)

Therefore,

P (ĵ > j)

= El
(
Es(Πj−1

j1=j∗+21{min{X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5, X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5} > 2σj1}|Yl)
)

≤ El
(

Πj−1
j1=j∗+2Φ(−2 + 13.5 · 2

−3(j1−j
∗+2)

2 )

)
< Φ(−1.85)j−j

∗−2.

(A.1.77)

Therefore, limj→∞ P (ĵ > j) ≤ limj→∞Φ(−1.85)j−j
∗−2 = 0.
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Continuing with the proof of the Proposition A.1.3, we have the following lemmas that we

will prove in the Section A.2 (page 212, 217, 219 and 221).

Lemma A.1.12.

El,s
(
(f̂ −M(f))2

1{j̃ > ĵ}
)

≤(5760V + 2)ρm(ε; f)2 + 78V ρm(ε; f)2 +
1

16
ρm(ε; f)2,

(A.1.78)

where V = supx≥0 x
2Φ(2− x).

Lemma A.1.13.

El,s
((

(f̂ − µĵ ,̂iĵ )+

)2
1{j̃ ≤ ĵ}

)
≤ 6355.2V ρm(ε; f)2, (A.1.79)

where V = supx≥0 x
2Φ(2− x).

Lemma A.1.14.

El,s
((
µj̃ ,̂ij̃

−M(f)
)2
1{j̃ ≤ ĵ}

)
< 3× (28 + 28 Φ(−1.85)

(1− Φ(−2 + 1
12))2

)ρm(ε; f)2(23
1

8
)Q,

(A.1.80)

where Q = supx≥0 x
2Φ(−x).

Lemma A.1.15.

El,s
(((

µĵ ,̂iĵ
− µj̃ ,̂ij̃

)
+

)2
1{j̃ ≤ ĵ}

)
≤ Q× 277075× ρm(ε; f)2 +Q× 23850.1× ρm(ε; f)2,

(A.1.81)

where Q = supx≥0 x
2Φ(−x).

These four lemmas combined with Lemma A.1.3 give the statement of Proposition A.1.3.

Finally we will prove Lemma A.1.10.

Proof of Lemma A.1.10. Note that this lemma is used to bound the term 8ε2c2e
ρz(ε;f)E

(
2ĵ−j

∗)
,
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so in the proof we will start with bounding this term. We have

8ε2c2
e

ρz(ε; f)
E
(
2ĵ−j

∗)
≤ 16c2

eρm(ε; f)2E
(
2ĵ−j

∗)
= 16c2

eρ
2
m

[
E(2ĵ−j

∗
1{ĵ ≤ j∗ + 2}) + E({2ĵ−j∗1{ĵ ≥ j∗ + 3})

]
≤ 64c2

eρm(ε; f)2 + 16c2
eρm(ε; f)2

(
2ĵ−j

∗
1{ĵ ≥ j∗ + 3}

)
= 64c2

eρm(ε; f)2

+ 16c2
eρm(ε; f)2El,s

( ∑
j1≥j∗+3

2j1−j
∗
1{ĵ = j1, tĵ ,̂iĵ

≤ 7ρm(ε; f)

16
+ Z(f)}

+
∑

j1≥j∗+3

2j1−j
∗
1{ĵ = j1, tĵ >

7ρm(ε; f)

16
+ Z(f)}

)
.

(A.1.82)

Now we will bound the second term and the third term in the Inequality (A.1.82). Without

loss of generality, we can assume

sup{t > Z(f) : f(t) ≤ ρm(ε; f) +M(f)} = ρz(ε; f) + Z(f),

because otherwise the following would hold

min{t < Z(f) : f(t) ≤ ρm(ε; f) +M(f)} = Z(f)− ρz(ε; f).

and one only need to flip everything around with Z(f) being the center. Then for the
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second term we have

16c2
eρm(ε; f)2El,s

( ∑
j1≥j∗+3

2j1−j
∗
1{ĵ = j1, tĵ ,̂iĵ

≤ 7ρm(ε; f)

16
+ Z(f)}

)
= 16c2

eρm(ε; f)2El,s
[ ∑
j1≥j∗+3

2j1−j
∗
1{ĵ = j1, tj1 ,̂ij1

≤ 7ρm(ε; f)

16
+ Z(f),

∀j∗ + 2 ≤ j ≤ j1 − 1, Ej,̂ij+6

1√
2csε

≥ 2−
√
mj√
2csε

(µj,̂ij+6 − µj,̂ij+5)}
]

≤ 16c2
eρm(ε; f)2

∑
j1≥j∗+3

2j1−j
∗
El
[
Es
(
1{ĵ = j1, tj1 ,̂ij1

≤ 7ρm(ε; f)

16
+ Z(f),

∀j∗ + 2 ≤ j ≤ j1 − 1, Ej,̂ij+6

1√
2cs
≥ 2−

√
mj√
2csε

(µj,̂ij+6 − µj,̂ij+5)}|Yl
)]

≤ 16c2
eρm(ε; f)2

∑
j1≥j∗+3

2j1−j
∗
El
[
1{tj1 ,̂ij1 ≤

7ρm(ε; f)

16
+ Z(f)}

Es
(
1{∀j∗ + 2 ≤ j ≤ j1 − 1, Ej,̂ij+6 ≥ 2−

√
mj√
2csε

ρm(ε; f)( 7
16ρz(ε; f) + 6mj)

ρz(ε; f)
}|Yl

)]
≤ 16c2

eρm(ε; f)2
∑

j1≥j∗+3

2j1−j
∗
El
[
1{tj1 ,̂ij1 ≤

7ρm(ε; f)

16
+ Z(f)}

Πj1−1
j=j∗+2Φ(−2 +

ρm(ε; f)
√
ρz(ε; f)

ε

2
j∗−j−2

2√
2cs

(
7

16
+ 6 ∗ 2j

∗−j−2))

]
≤ 16c2

eρm(ε; f)2
∑

j1≥j∗+3

2j1−j
∗
El
[
1{tj1 ,̂ij1 ≤

7ρm(ε; f)

16
+ Z(f)}]

Πj1−1
j=j∗+2Φ(−2 +

2
j∗−j−2

2√
2

(
7

16
+ 6 ∗ 2j

∗−j−2))

≤ 16c2
eρm(ε; f)2

∑
j1≥j∗+3

2j1−j
∗
El
[
1{tj1 ,̂ij1 ≤

7ρm(ε; f)

16
+ Z(f)}

]
Φ(−1.8)j1−j

∗−2.

(A.1.83)
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Now we go to the third term in the Inequality (A.1.82).

16c2
eρm(ε; f)2El,s

( ∑
j1≥j∗+3

2j1−j
∗
1{ĵ = j1, tĵ >

7ρm(ε; f)

16
+ Z(f)}

)
= 16c2

eρm(ε; f)2
∑

j1≥j∗+3

2j1−j
∗
El,s
(
1{ĵ = j1, tj1 >

7ρm(ε; f)

16
+ Z(f)}

)
= 16c2

eρm(ε; f)2
∑

j1≥j∗+3

2j1−j
∗
El,s
(
1{ĵ = j1, tj1 >

7ρm(ε; f)

16
+ Z(f)},

∀j∗ + 2 ≤ j ≤ j1 − 1,−Ej,̂ij−5 ≥ 2−
√
mj

cs
(µj,̂ij−6 − µj,̂ij−5)}

)
≤ 16c2

eρm(ε; f)2
∑

j1≥j∗+3

2j1−j
∗
El
[
1{tj1 >

7ρm(ε; f)

16
+ Z(f)}

Es
(
1{∀j∗ + 2 ≤ j ≤ j1 − 1,−Ej,̂ij−5

1
√
mjcsε

≥ 2}|Yl
)]

≤ 16c2
eρm(ε; f)2

∑
j1≥j∗+3

2j1−j
∗
El
[
1{tĵ >

7ρm(ε; f)

16
+ Z(f)}

]
Φ(−2)j1−j

∗−2.

(A.1.84)

Combining Inequality (A.1.83) and Inequality (A.1.84), back to the original Inequality

(A.1.82)

8ε2c2
e

ρz(ε; f)
E
(
2ĵ−j

∗)
≤ 64c2

eρm(ε; f)2 + 16c2
eρm(ε; f)2

(
∑

j1≥j∗+3

2j1−j
∗
El
[
1{tj1 ,̂ij1 ≤

7ρm(ε; f)

16
+ Z(f)}

]
Φ(−1.8)j1−j

∗−2

+
∑

j1≥j∗+3

2j1−j
∗
El
[
1{tĵ >

7ρm(ε; f)

16
+ Z(f)}

]
Φ(−2)j1−j

∗−2

)

≤ 64c2
eρm(ε; f)2 + 16c2

eρm(ε; f)2
∑

j1≥j∗+3

2j1−j
∗
Φ(−1.8)j1−j

∗−2

= 64c2
eρm(ε; f)2 + 16c2

eρm(ε; f)2 ∗ 8Φ(−1.8) ∗ 1

1− 2Φ(−1.8)

< 70c2
eρm(ε; f)2 = 210ρm(ε; f)2.

(A.1.85)
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Therefore, we have

E
(
2ĵ−j

∗) ≤ 35

4

ρm(ε; f)2ρz(ε; f)

ε
.

A.1.8. Proof of Theorem 2.3.4

We will prove the following two lemmas separately, which give rise to the theorem.

Lemma A.1.16 (Coverage of the Confidence Interval for the Minimum). For any 0 < α <

1, the confidence interval CIm,α given in (2.3.10) is a 1− α confidence interval.

Lemma A.1.17 (Length of the Confidence Interval for the Minimum). For 0 < α < 1, the

expected length of the confidence interval given in (2.3.10) satisfies

E(|fhi − flo|) ≤ cm,αρm(ε; f), for all f ∈ F ,

where cm,α is a constant depending only on α.

Further, when 0 < α < 0.3, we have

E(|fhi − flo|) ≤ cm,αρm(ε; f) ≤ Cm,αLm,α(ε; f), for all f ∈ F ,

where Cm,α is an absolute constant depending only on α.

Proof of Lemma A.1.16. Define five events:

E = {Z(f) /∈ [t(ĵ−Kα
4
−1)+ ,̂iĵ−Kα

4
−1−5, t(ĵ−Kα

4
−1)+ ,̂i(ĵ−Kα

4
−1)+

+4]}

E1 = {ĵ ≥ jw +Kα
4

+ 1}

F = {ĵ ≤ j∗ − 2− K̃α
4
}

G = {fhi < M(f)}

H = {flo > M(f)}.

(A.1.86)
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By definition {M(f) ∈ [flo, fhi]} = Gc ∩Hc. We will bound the probabilities of the above

events.

Recalling Kα = d logα
log Φ(−2)e, then with Lemma A.1.8 we have

P (ĵ ≥ jw +Kα + 1) ≤ α,

so P (E1) ≤ α
4 .

When the event Ec1 = {ĵ ≤ jw +Kα} occurs, we have

Z(f) ∈ [t(ĵ−Kα−1)+ ,̂i(ĵ−Kα−1)+
−5, t(ĵ−Kα−1)+ ,̂i(ĵ−Kα−1)+

+4],

so P (E) ≤ α
4 .

To bound P (F ), we introduce the following lemma (proved in Section A.2 page 226) showing

the procedure can not stop too early.

Lemma A.1.18. When K̃ ≥ 4, we have

P (ĵ ≤ j∗ − 2− K̃) ≤ Φ(−2
3
2

(K̃−2)− 1
2 + 2)

2

1− exp (−40)
.

Now with this lemma, and take K̃α = max{4, 2 + dlog2 (2− Φ−1(α3 ))e} > max{4, 2 +

d2
3 log2 max{2− Φ−1((1− e−40)α2 ), 1}+ 1

3e}, we know that

P (ĵ ≤ j∗ − 2− K̃α) ≤ α.

This gives P (F ) ≤ α
4 .

Now we will introduce two more lemmas that build up the remaining foundation of the

proof, which are proved in Section A.2 (page 226 and 227).
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Lemma A.1.19.

P (G
∣∣∣Z(f) ∈ [t(ĵ−Kα

4
−1)+ ,̂i(ĵ−Kα

4
−1)+

−5, t(ĵ−Kα
4
−1)+ ,̂i(ĵ−Kα

4
−1)+

+4]) ≤ α

4
. (A.1.87)

Lemma A.1.20.

P (H|Ec ∩ F c) ≤ α

4
. (A.1.88)

With these additional lemmas, we have

P (M(f) ∈ CIm,α(Y ))

≥ P (Ec ∩ F c ∩Gc ∩Hc)

≥ P (Ec1 ∩ F c ∩Gc ∩Hc)

≥ (1− P (H|Ec1 ∩ F c)− P (G|Ec1 ∩ F c))P (Ec1 ∩ F c)

≥ −P (H|Ec1 ∩ F c)P (Ec1 ∩ F c) + P (Gc ∩ Ec1 ∩ F c)

≥ −α
4
P (Ec1 ∩ F c) + P (Gc ∩ Ec1)− P ((Gc ∩ Ec1) ∩ F )

≥ −α
4

+ P (Ec1)− P (Ec1 ∩G)− P (F )

≥ −α
4

+ 1− P (E1)− P (G|Ec1)− P (F )

≥ −α
4

+ 1− α

4
− α

4
− α

4
= 1− α.

(A.1.89)

Proof of Lemma A.1.17.

E(|fhi − flo|)

= E((SiR−iL,α4 ce + zα
4
ce +

√
3)

ε√
mĵ+K̃α

4

)

< (SiR−iL,α4 + zα
4

+
√

3)
2
K̃ α

4
2 ceε√
mj∗

E(2
1
2

(ĵ−j∗))

≤ (SiR−iL,α4 + zα
4

+
√

3)2
K̃ α

4
2 ce · 4ρm(ε; f)E(2

1
2

(ĵ−j∗)).

(A.1.90)
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Similarly to the way we bound variance in Theorem 2.3.3, we have

E(2
1
2

(ĵ−j∗))

≤ 2E(1{ĵ ≤ j∗ + 2}) +E(2
1
2

(ĵ−j∗)
1{ĵ ≥ j∗ + 3})

≤ 2 + 2
√

2Φ(−1.85)
1

1− 2Φ(−1.85)

< 2.16.

(A.1.91)

According to the definition of SiR−iL,α4 , SiR−iL,α4 is decided by the following inequality

(1− Φ(−SiR−iL,α4 ))iR−iL ≥ 1− α

4
. (A.1.92)

Therefore,

SiR−iL,α4 = −Φ−1(1− (1− α

4
)

1
iR−iL ). (A.1.93)

Furthermore, we have

iR − iL

= 9× 2× 2
K̃α

4 × 2
Kα

4 ,

(A.1.94)

so we know that (SiR−iL,α4 + zα
4

+
√

3)2
K̃ α

4
2 ce only depend on α. Therefore,

E(|fhi − flo|) ≤ cm,αρm(ε; f). (A.1.95)

Since for 0 < α < 0.3, we have

ρm(ε; f) ≤ 3ρm(ε/3; f) ≤ 3

bα
Lm,α(ε; f),

we get our statement.
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A.1.9. Analysis of Lower Bounds of the Benchmarks in Regression Setting

To establish the optimality of the procedures, we need to analyze the lower bounds of the

benchmarks. Compared with the white noise model, we will incur an additional discretiza-

tion error.

Define the discretization errors for Z(f) and M(f) as

Dz(n, f) = max{Z(g) : g ∈ F , g(xi) = f(xi), i = 0, · · · , n}

−min{Z(g) : g ∈ F , g(xi) = f(xi), i = 0, · · · , n}
(A.1.96)

Dm(n, f) = max{M(g) : g ∈ F , g(xi) = f(xi), i = 0, · · · , n}

−min{M(g) : g ∈ F , g(xi) = f(xi), i = 0, · · · , n}
(A.1.97)

It is easy to see that 0 ≤ Dz(n, f) < 2
n and any value in [0, 2

n) can be taken by Dz(n, f) for

some f ∈ F .

The lower bounds for the benchmarks are given as follows.

Proposition A.1.4. Let R̃z,n(σ; f), R̃m,n(σ; f), L̃z,α,n(σ; f), L̃m,α,n(σ; f) be defined as in

(2.4.2). Suppose 0 < α < 0.3. There exist constants C̃z, C̃m, C̃z,α, C̃m,α > 0 such that for

all f ∈ F ,

R̃z,n(σ; f) ≥ C̃z sup
g∈Gn(f)

ρz(
σ√
n

; g)

(
1 ∧

√
nρz(

σ√
n

; g)

)
∨ 1

4
Dz(n, f),

R̃m,n(σ; f) ≥ C̃m sup
g∈Gn(f)

ρm(
σ√
n

; g)

(
1 ∧

√
nρz(

σ√
n

; g)

)
∨ 1

4
Dm(n, f),

L̃z,α,n(σ; f) ≥ C̃z,α sup
g∈Gn(f)

ρz(
σ√
n

; g)

(
1 ∧

√
nρz(

σ√
n

; g)

)
∨ (1− 2α)

2
Dz(n, f),

L̃m,α,n(σ; f) ≥ C̃m,α sup
g∈Gn(f)

ρm(
σ√
n

; g)

(
1 ∧

√
nρz(

σ√
n

; g)

)
∨ (1− 2α)

2
Dm(n, f),

(A.1.98)
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where

Gn(f) = {g ∈ F : g(xi) = f(xi), for all 0 ≤ i ≤ n}. (A.1.99)

Compared with the lower bounds in the white noise model, the lower bounds in the regres-

sion model contain additional discretization errors, which are in general non-vanishing for

fixed n as the noise level σ → 0.

Proof of Proposition A.1.4. Similar to white noise model. The probability density under

truth f is:

p(y0, · · · yn|f) = Πn
i=0

1√
2πσ2

exp (−(yi − f(xi))
2

2σ2
).

Hence

p(y0, · · · yn|f)

p(y0, · · · yn|g)
= exp (

∑n
i=0(f(xi)− g(xi))(2yi − f(xi)− g(xi))

2σ2
).

Let θ1 = 1, denoting the truth is f, θ2 = −1, denoting the truth is g. And suppose θ̂ is an

estimator of θ. Then we know that
∑n
i=0(f(xi)−g(xi))(yi− 1

2
f(xi)− 1

2
g(xi))

σ2 is sufficient statistic

for θ, we further standardize this statistic by ln(f, g) =
√∑n

i=0
1
n(f(xi)− g(xi))2 and σ,

W̌ =

∑n
i=0(f(xi)− g(xi))(yi − 1

2f(xi)− 1
2g(xi))

ln(f, g)
√
nσ

∼ N(θ
ln(f, g)

2 σ√
n

, 1).

Then let θ̂ = 2Ẑ−(Z(f)+Z(g))
Z(f)−Z(g) . We know that

Ef (|Ẑ − Z(f)|) = |Z(f)− Z(g)|Eθ=1(
1

2
|θ̂ − θ|),

Eg(|Ẑ − Z(g)|) = |Z(f)− Z(g)|Eθ=−1(
1

2
|θ̂ − θ|).

Therefore, similar to white noise model, we have

R̃z,n(σ; f) ≥ sup{|Z(g)− Z(f)| : ln(f, g) ≤ σ/√n}Φ(−0.5). (A.1.100)
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For minimum, similar procedure shows that

R̃m,n(σ; f) ≥ sup{|M(g)−M(f)| : ln(f, g) ≤ σ/n}Φ(−0.5). (A.1.101)

For confidence interval, for 0 < α < 0.3, similar to the white noise model, we have, for

CI ∈ Iz,α,n({f, g}),

EfL(CI) ≥ |Z(f)− Z(g)|(1− 2α− TV (Pf,n, Pg,n))

≥ |Z(f)− Z(g)|(1− 2α−
√
χ2(Pf,n, Pg,n)).

where Pf,n is the distribution of the regression model with n+1 observations corresponding

to f.

Further, we have

χ2(Pf,n, Pg,n) =∫
exp (

∑n
i=0(f(xi)− g(xi))(2yi − f(xi)− g(xi))

σ2
)p(y0, · · · yn|g)dy0dy1 · · · dyn − 1

= exp(
ln(f, g)2

σ2/n
)− 1.

(A.1.102)

Picking g ∈ F such that ln(f, g) ≤ 1
3
σ√
n

, then we have EfL(CI) ≥ (0.6− 2α)|Z(f)−Z(g)|.

Hence

L̃z,α,n(σ; f) ≥ (0.6− 2α) sup{|Z(g)− Z(f)| : ln(f, g) ≤ 1

3
σ/
√
n}. (A.1.103)

Similarly, we have

L̃m,α,n(σ; f) ≥ (0.6− 2α) sup{|M(g)−M(f)| : ln(f, g) ≤ 1

3
σ/
√
n}. (A.1.104)
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Further, we have the following lemma, which we prove in Section A.2 (page 228). Recall

that the function class of convex functions having the same values with f on x0, x1, · · · , xn
is Gn(f) = {g ∈ F : g(xi) = f(xi), i = 0, 1, · · · , n}, defined in Equation (A.1.99). Then we

know that Pg,n = Pf,n for all g ∈ Gn(f).

Lemma A.1.21. For any h ∈ Gn(f). When ρz(
σ√
6n

;h) ≥ 1/2n, let

gn,σ,h(t) = max{h(t),M(h) + ρm(
σ√
6n

;h)}.

Then we have

ln(f, gn,σ,h) ≤ σ2/n.

When ρz(
σ√
6n

;h) < 1/2n, let

gn,σ,h(t) = max{h(t),M(h) + ρm(
σ√
6n

;h)

√
2nρz(

σ√
6n

;h)},

then we will have

ln(f, gn,σ,h) ≤ σ2/n.

Let tl(h) = inf{gn,σ,h(t) > h(t)}, tr(h) = sup{gn,σ,h(t) > h(t)}, similar to the white noise

model, we know that for any δ > 0, exists gn,σ,h,δ,l, gn,σ,h,δ,r ∈ F , such that

ln(f, gn,σ,h,δ,l) ≤ σ2/n, ln(f, gn,σ,h,δ,r) ≤ σ2/n,

Z(gn,σ,h,δ,l) ≤ tl + δ, Z(gn,σ,h,δ,r) ≥ tr − δ,

and

M(gn,σ,h,δ,r) = M(gn,σ,h,δ,l) = min{ρm(
σ√
6n

;h), ρm(
σ√
6n

;h)

√
2nρz(

σ√
6n

;h)}.
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Therefore,

sup{|Z(g)− Z(f)| : ln(f, g) ≤ σ/√n, g ∈ F}

≥ sup
h∈Gn(f)

1

2
lim
δ→0+

(Z(gn,σ,h,δ,r)− Z(gn,σ,h,δ,l))

= sup
h∈Gn(f)

1

2
(tr − tl)

≥ 1

2
sup

h∈Gn(f)
ρz(

σ√
6n

;h)}(1 ∧
√

2nρz(
σ√
6n

;h))

≥ 1

2
sup

h∈Gn(f)
54−

1
4 ρz(

σ√
n

;h)

(
1 ∧

√
nρz(

σ√
n

;h)

)
,

(A.1.105)

sup{|Z(g)− Z(f)| : ln(f, g) ≤ σ/3√n, g ∈ F}

≥ sup
h∈Gn(f)

1

2
lim
δ→0+

(Z(gn,σ/3,h,δ,r)− Z(gn,σ/3,h,δ,l))

= sup
h∈Gn(f)

1

2
(tr − tl) ≥

≥ 1

2
sup

h∈Gn(f)
ρz(

σ

3
√

6n
;h)}(1 ∧

√
2nρz(

σ

3
√

6n
;h))

≥ 1

2
sup

h∈Gn(f)

1

9
6−

1
4 ρz(

σ√
n

;h)

(
1 ∧

√
nρz(

σ√
n

;h)

)
,

(A.1.106)

sup{|M(g)−M(f)| : ln(f, g) ≤ σ/√n, g ∈ F}

≥ min{ρm(
σ√
6n

;h), ρm(
σ√
6n

;h)

√
2nρz(

σ√
6n

;h)}

≥ 54−
1
4 min{ρm(

σ√
n

;h), ρm(
σ√
n

;h)

√
nρz(

σ√
n

;h)},

(A.1.107)
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and

sup{|M(g)−M(f)| : ln(f, g) ≤ σ/3√n, g ∈ F}

≥ min{ρm(
σ

3
√

6n
;h), ρm(

σ

3
√

6n
;h)

√
2nρz(

σ

3
√

6n
;h)}

≥ 1

9
6−

1
4 min{ρm(

σ√
n

;h), ρm(
σ√
n

;h)

√
nρz(

σ√
n

;h)}.

(A.1.108)

Getting back to Inequalities (A.1.100),(A.1.101), (A.1.103), (A.1.104), we have

R̃z,n(σ; f) ≥ 1

2
Φ(−0.5)54−

1
4 sup
h∈Gn(f)

ρz(
σ√
n

;h)

(
1 ∧

√
nρz(

σ√
n

;h)

)
, (A.1.109)

R̃m,n(σ; f) ≥ Φ(−0.5)54−
1
4 sup
h∈Gn(f)

ρz(
σ√
n

;h)

(
1 ∧

√
nρz(

σ√
n

;h)

)
, (A.1.110)

L̃z,α,n(σ; f) ≥ 1

2
(0.6− 2α)

1

9
6−

1
4 sup
h∈Gn(f)

ρz(
σ√
n

;h)

(
1 ∧

√
nρz(

σ√
n

;h)

)
, (A.1.111)

L̃m,α,n(σ; f) ≥ (0.6− 2α)
1

9
6−

1
4 sup
h∈Gn(f)

ρm(
σ√
n

;h)

(
1 ∧

√
nρz(

σ√
n

;h)

)
. (A.1.112)

Now we turn to the discretization error.

Since for any g ∈ Gn(f), we have
dPf,n
dPg,n

(y0, y1, · · · , yn) = 1 for all (y0, y1, · · · , yn) ∈ Rn.

Therefore, for any estimator Ẑ, we have

Eg|Ẑ − Z(g)|+ Ef |Ẑ − Z(f)| = Ef
(
|Ẑ − Z(g)|+ |Ẑ − Z(f)|

)
≥ Ef |Z(f)− Z(g)| = |Z(f)− Z(g)|.

Hence we have

R̃z,n(σ; f) ≥ 1

2
sup

g∈Gn(f)
|Z(f)− Z(g)| ≥ 1

4
Dz(n, f).

Similarly, we have R̃m,n(σ; f) ≥ 1
4Dm(n, f). For the confidence interval, we have for any
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g ∈ Gn(f), and for any CI ∈ Iz,α,n({f, g}),

EfL(CI) ≥
(
1− Pf (Z(f) 6∈ CI)− Pf (Z(g) 6∈ CI)

)
+
|Z(f)− Z(g)|

≥ (1− 2α)|Z(f)− Z(g)|.

Hence we have

L̃z,α,n(σ; f) ≥ (1− 2α) · 1

2
Dz(n, f).

Similarly, we have L̃m,α,n(σ; f) ≥ (1− 2α) · 1
2Dm(n, f).

A.1.10. Proof of Theorem 2.4.1

With Proposition A.1.4, to prove the theorem, we only need to prove the following two

propositions:

Proposition A.1.5. For Ẑ defined in (2.4.5), we have

E(|Ẑ − Z(f)|) ≤ Č1ρz(
σ√
n

; f) +
2

n
. (A.1.113)

Proposition A.1.6. For Ẑ defined in (2.4.5), if suph∈Gn(f){ρz( σ√
n

;h)} < 1
2n , we have

E(|Ẑ − Z(f)|) ≤ Č2 sup
h∈Gn(f)

ρz(
σ√
n

;h)

√
nρz(

σ√
n

;h) + Dz(n, f). (A.1.114)

Let C1 =
√

2Č1+4+Č2

C̃z
+4, where C̃z is defined in (A.1.98), gives the statement of the theorem.

We first give the main part of the proof of the two propositions and then give the proofs of

the lemmas in there.
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Proof of Proposition A.1.5.

E(|Ẑ − Z(f)|) = E(1{ĵ < j̃}
∣∣Ẑ − Z(f)

∣∣) + E(1{ĵ ≥ j̃}
∣∣Ẑ − Z(f)

∣∣)
≤ E(1{ĵ < j̃}1.5mĵ) + E(1{ĵ ≥ j̃}

∣∣Ẑ − Z(f)
∣∣) (A.1.115)

To bound the two terms, we give two lemmas below, the proofs of the lemmas are in Section

A.2 (page 228, 230).

Lemma A.1.22.

E(1{ĵ < j̃}1.5mĵ) ≤ cz1ρz(
σ√
n

; f) +
1.5

n
1{J ≤ j∗ − 3}. (A.1.116)

Lemma A.1.23.

E(1{ĵ ≥ j̃}
∣∣Ẑ − Z(f)

∣∣) ≤ cz2ρz( σ√
n

; f). (A.1.117)

Therefore,

E(|Ẑ−Z(f)|) ≤ (cz1 + cz2)ρz(
σ√
n

; f) +
1.5

n
1{J ≤ j∗−3} ≤ Č1ρz(

σ√
n

; f) +
1.5

n
. (A.1.118)

Proof of Proposition A.1.6. since suph∈Gn(f){ρz( σ√
n

;h)} < 1
2n , we know that |{i : f(xi) =

min{f(xk) : 0 ≤ k ≤ n}}| = 1. Suppose imin ∈ {i : f(xi) = min{f(xk) : 0 ≤ k ≤ n}}. Let h̃

be the piece wise linear function such that h̃(xi) = f(xi) for all 0 ≤ i ≤ n, and h̃ is linear

on all the sub-intervals [k/n, k + 1/n], for 0 ≤ k ≤ n− 1. It is clear that Z(h̃) = ximin .

176



Then we have

E(|Ẑ − Z(f)|)

≤ E(|Ẑ − Z(h̃)|) + |Z(h̃)− Z(f)|

≤ E(|Ẑ − Z(h̃)|) + Dz(n, f)

= E(1{ǰ <∞}|Ẑ − Z(h̃)|) + E(1{ǰ =∞}|Ẑ − Z(h̃)|) + Dz(n, f).

(A.1.119)

Also, we can further split the first and second terms by the {ĵ < j̃} and {ĵ ≥ j̃} to have

E(1{ǰ <∞}|Ẑ − Z(h̃)|)

= E(1{ǰ <∞}1{ǰ < j̃}|Ẑ − Z(h̃)|) + E(1{ǰ <∞}1{ǰ ≥ j̃}|Ẑ − Z(h̃)|),
(A.1.120)

and

E(1{ǰ =∞}|Ẑ − Z(h̃)|)

= E(1{ǰ =∞}1{ĵ < j̃}|Ẑ − Z(h̃)|) + E(1{ǰ =∞}1{ĵ ≥ j̃}|Ẑ − Z(h̃)|)

= E(1{ǰ =∞}1{ĵ ≥ j̃}|Ẑ − Z(h̃)|).

(A.1.121)

Therefore,

E(|Ẑ − Z(f)|)

≤ E(1{ǰ <∞}1{ǰ < j̃}|Ẑ − Z(h̃)|) + E(1{ǰ <∞}1{ǰ ≥ j̃}|Ẑ − Z(h̃)|)

+ E(1{ǰ =∞}1{ĵ ≥ j̃}|Ẑ − Z(h̃)|) + Dz(n, f)

= E(1{ǰ <∞}1{ǰ < j̃}|Ẑ − Z(h̃)|) + E(1{ĵ ≥ j̃}|Ẑ − Z(h̃)|) + Dz(n, f)

(A.1.122)

Finally, with the help of the following lemmas (proved in Section A.2, page 230, 231), we

prove the proposition.
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Lemma A.1.24.

E(1{ǰ <∞}1{ǰ < j̃}|Ẑ − Z(h̃)|) ≤ čz1ρz(
σ√
n

; h̃)

√
nρz(

σ√
n

; h̃) (A.1.123)

Lemma A.1.25.

E(1{ĵ ≥ j̃}|Ẑ − Z(h̃)|) ≤ čz2ρz(
σ√
n

; h̃)

√
nρz(

σ√
n

; h̃) (A.1.124)

A.1.11. Proof of Theorem 2.4.2

With Proposition A.1.4, we prove the theorem by proving the following three lemmas:

Lemma A.1.26 (length of the confidence interval for minimizer).

EfL(CIz,α(Y )) < C̃2,α(C0ρz(
σ√
n

; f) +
1

n
).

Lemma A.1.27. When suph∈Gn(f){ρz( σ√
n

;h)} < 1
2n , we have

EfL(CIz,α(Y )) < Č2,α sup
h∈Gn(f)

ρz(
σ√
n

;h)

√
nρz(

σ√
n

;h) + 2Dz(n, f)

Lemma A.1.28 (coverage of the confidence interval for minimizer).

P (Z(f) ∈ CIz,α(Y )) ≥ 1− α.

Let C2,α = max{ C̃2,α(C0+2)
√

2

C̃z,α
,
Č2,α

C̃z,α
+ 4

1−2α}, then we have the statement of the theorem.
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Proof of Lemma A.1.26.

EfL(CIz,α(Y ))

= E((U− L)
2J−ĵ

n
) ≤ (24× 2

Kα
2 − 3) · E(

2J−ĵ

n
)

= (24× 2
Kα

2 − 3)
2J

n
E(

j∗−1∑
j=1

2−j1{ĵ = j}+

∞∑
j=j∗

2−j1{ĵ = j})

≤ (24× 2
Kα

2 − 3)
2J

n

( j∗−1∑
j=1

2−jE(1{ĵ = j, j̃ > j}+ 1{ĵ = j, j̃ ≤ j}) + 2−j
∗)

(A.1.125)

To bound the first two terms, we will introduce two lemmas. The proofs of the lemmas are

given at Section A.2 (page 231 and 232).

Lemma A.1.29.

j∗−1∑
j=1

E(2−j1{ĵ = j, j̃ > j}) ≤ 2−j
∗
cz3 + 2−J1{J ≤ j∗ − 1}. (A.1.126)

Lemma A.1.30.
j∗−1∑
j=1

E(2−j1{ĵ = j, j̃ ≤ j}) ≤ 2−j
∗
cz4. (A.1.127)

With these lemmas, we have

EfL(CIz,α(Y ))

≤ (24× 2
Kα

2 − 3)

(
2J−j

∗

n
(cz4 + cz3 + 1) +

1

n
1{J ≤ j∗ − 1}

)
≤ C̃2,α(C0ρz(

σ√
n

; f) +
1

n
1{J ≤ j∗ − 1}),

(A.1.128)

where C̃2,α = (24× 2Kα − 3), C0 = cz3+cz4+1
4 .

Proof of Lemma A.1.27. To prove the lemma, we introduce the following lemmas while

postponing their proofs.
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Lemma A.1.31. When suph∈Gn(f){ρz( σ√
n

;h)} < 1
2n ,

E(1{ǰ <∞}L(CIz,α(Y ))) ≤ č1,α sup
h∈Gn(f)

ρz(
σ√
n

;h)

√
nρz(

σ√
n

;h). (A.1.129)

Lemma A.1.32. When suph∈Gn(f){ρz( σ√
n

;h)} < 1
2n ,

E(1{ǰ =∞}1{thi − tlo ≥
3

n
}L(CIz,α(Y ))) ≤ č2,α sup

h∈Gn(f)
ρz(

σ√
n

;h)

√
nρz(

σ√
n

;h).

(A.1.130)

Lemma A.1.33. When suph∈Gn(f){ρz( σ√
n

;h)} < 1
2n ,

E(1{ǰ =∞}1{thi − tlo <
3

n
}L(CIz,α(Y )))

≤ č3,α sup
h∈Gn(f)

ρz(
σ√
n

;h)

√
nρz(

σ√
n

;h) + 2Dz(n, f).
(A.1.131)

With these lemmas, we have the statement of Lemma A.1.27.

For the proofs of the lemmas, the main parts are in Section A.2 (page 233, 234 and 236),

but here we mention the common thing that will be used in all of them.

When suph∈Gn(f){ρz( σ√
n

;h)} < 1
2n , we know that |{k : f(xk) = min{f(xi) : 0 ≤ i ≤ n}}| =

1, we denote this unique element to be im.

Let h̃ be the piece wise linear function such that h̃(xi) = f(xi) for all 0 ≤ i ≤ n, and h̃

is linear on all the sub-intervals [k/n, k + 1/n], for 0 ≤ k ≤ n − 1. Then we know that

ρz(
σ√
n

; h̃) < 1
2n

Suppose Ye,1 = {ye,i +
√

3σz3,i : (L − 1) ∨ 0 ≤ i ≤ (U + 1) ∧ n}, Ye,2 = {ye,i −
√

3σz3,i :

(L− 1) ∨ 0 ≤ i ≤ (U + 1) ∧ n}. Then we know that Yl,Ys,Ye,1,Ye,2 are independent.

Proof of Lemma A.1.28. In this proof, to make the main idea more clear, the proofs of the
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lemmas used are postponed to Section A.2.

With a bit abuse of notation, define the following events:

E =

{
Z(f) ∈

[ (
îĵ − (6 · 2Kα/2+1 − 2)− 1

) 2J−ĵ

n
− 1

2n
,

(
îĵ + (6 · 2Kα/2+1 − 2)

) 2J−ĵ

n
− 1

2n

]
∩ [0, 1]

}

F1 =

{
il ≤ min

{
i : f(xi) = min{f(xk) : 0 ≤ k ≤ n}

}}

F2 =

{
ir + 1 ≥ max

{
i : f(xi) = min{f(xk) : 0 ≤ k ≤ n}

}}
.

(A.1.132)

For jw defined in (A.1.5), we have the following lemma (proved in Section A.2, on page

246).

Lemma A.1.34. For K ≥ 1,

Φ(ĵ ≥ jw +K + 1) ≤ Φ(−2)K . (A.1.133)

Therefore, with this lemma, we have

P (Ec) ≤ P (
∣∣i∗ĵ − îĵ

∣∣ > 6 · 2Kα
2

+1 − 2) ≤ P (1{ĵ > jw +Kα/2}) ≤
α

2
. (A.1.134)
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Therefore,

P (Z(f) 6∈ CIz,α(Y ))

= E(1{Z(f) 6∈ CIz,α(Y )}1{E}) + E(1{Z(f) 6∈ CIz,α(Y )}1{Ec})

≤ E(1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ <∞})+

E(1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}) +
α

2

= E(1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}) +
α

2

≤ E
(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}

(
1{F1 ∩ F2}+ 1{F c1}+ 1{F c2}

))
+
α

2

≤ E
(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}

)
+ E(1{E}1{ǰ =∞}(1{F c1}+ 1{F c2})) +

α

2
.

(A.1.135)

We introduce the following lemma, which is proved in Section A.2 on page 246.

Lemma A.1.35.

E(1{E}1{ǰ =∞}1{F c1}) ≤ α1,E(1{E}1{ǰ =∞}1{F c2}) ≤ α1. (A.1.136)

Therefore

P (Z(f) 6∈ CIz,α(Y )) ≤ E
(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}

)
+
α

2
+ 2α1.

(A.1.137)
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Now we turn to the only term left

E
(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}

)
= E

(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) = 0}

)
+ E

(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) 6= 0}

1{ihi − ilo ≥ 3 or (ihi − n)ilo = 0}
)

+ E
(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) 6= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)

= E
(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) = 0}

)
+ E

(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) 6= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)
.

(A.1.138)

The second equation is because when under the event E∩F1∩F2∩{ǰ =∞}∩{(il−U)(ir−

L+ 1) 6= 0} ∩ {ihi − ilo ≥ 3 or (ihi − n)ilo = 0} , Z(f) ∈ CIz,α(Y ).

We have the following lemmas, which are proved in Section A.2 on page 247 and 248.

Lemma A.1.36.

E
(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) = 0}

)
≤ 3α2E

(
1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) = 0}

)
.

(A.1.139)

Lemma A.1.37.

E
(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) 6= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)

≤ 6α2P
(
1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) 6= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)
.

(A.1.140)
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With these two lemmas, we finally have

P (Z(f) 6∈ CIz,α(Y )) ≤ 6α2 +
α

2
+ 2α1 ≤ α (A.1.141)

A.1.12. Proof of Theorem 2.4.3

With Proposition A.1.4, to prove this theorem, it’s sufficient to prove the following two

propositions:

Proposition A.1.7.

E(|M̂ −M(f)|) ≤ Č3,0ρm(
σ√
n

; f) +
√

2 (min{f(xi) : 0 ≤ i ≤ n} −M(f)) . (A.1.142)

Proposition A.1.8. When suph∈Gn(f){ρz( σ√
n

;h)} < 1
2n , we have

E(|M̂ −M(f)|) ≤ Č3 sup
h∈Gn(f)

ρm(
σ√
n

;h)

√
nρz(

σ√
n

;h)

+
√

2 (min{f(xi) : 0 ≤ i ≤ n} −M(f)) .

(A.1.143)

Let C3 =
√

2Č3,0+Č3

C̃m
+ 4
√

2 gives the statement of Theorem 2.4.3.

Proof of Proposition A.1.7. Then we will have

E((M̂ −M(f))2) = E((M̂ −M(f))2
1{ǰ <∞}+ (M̂ −M(f))2

1{ǰ =∞}). (A.1.144)
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For the first term we have

E((M̂ −M(f))2
1{ǰ <∞}) = E

((
(f̂−M(f)) + Eǰ,ĩǰ ,e

1

2J−ǰ

)2

1{ǰ <∞}
)

= E
((

f̂−M(f))2 + 2(f̂−M(f))Eǰ,ĩǰ ,e
1

2J−ǰ
+ (Eǰ,ĩǰ ,e

1

2J−ǰ
)2
)
1{ǰ <∞}

)
= E

(
(f̂−M(f))2

1{ǰ <∞}
)

+ E
(

(Eǰ,ĩǰ ,e
1

2J−ǰ
)2
1{ǰ <∞}

)
.

(A.1.145)

We introduce following two lemmas (proved in Section A.2 on page 250 and 251) to bound

the two terms.

Lemma A.1.38.

E((Eǰ,ĩǰ ,e
1

2J−ǰ
)2
1{ǰ <∞}) ≤ cm1ρm(

σ√
n

; f)2. (A.1.146)

Lemma A.1.39.

E((f̂−M(f))2
1{ǰ <∞}) ≤ cm2ρm(

σ√
n

; f)2. (A.1.147)

For the second term in Equation (A.1.144), let

i = arg min
îJ−2≤i≤îJ+2

f(xi−1),

fi = f(xi−1),

δi = ye,i−1 − f(xi−1),

η = min{δi : îJ − 2 ≤ i ≤ îJ + 2},

(A.1.148)
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then we know E(η|îJ) ≤ 0, and we have

E
(
(M̂ −M(f))2

1{ǰ =∞}
)

≤ E
(
(fi −M(f) + δi)

2
1{ǰ =∞}1{M̂ > M(f)}

)
+ E

(
(fi −M(f) + η)2

1{ǰ =∞}1{M̂ < M(f)}
)

≤ 2E
(
(fi −M(f))2

1{ǰ =∞}
)

+ 2γ2
eσ

2E(1{ǰ =∞})

+ E
(
E(η2

1{η < 0}|Yl, Ys)1{ǰ =∞}
)

≤ 2E
(
(fi −M(f))2

1{ǰ =∞}
)

+ 2γ2
eσ

2E(1{ǰ =∞}) + σ2γ2
eQ2E(1{ǰ =∞}),

(A.1.149)

where Q2 =
∫∞

0 x25Φ(x)4 1√
2π

exp (−x2

2 )dx ≤ 5
2 .

To bound it we have the following lemmas, which are proved in Section A.2 on page 263

and 264.

Lemma A.1.40.

E
(
(fi −M(f))2

1{ǰ =∞}
)

≤ cm6ρm(
σ√
n

; f)2 + (min{f(xi) : 0 ≤ i ≤ n} −M(f))2
(A.1.150)

Lemma A.1.41.

σ2E(1{ǰ =∞}) ≤ 32ρm(
σ√
n

; f)2 (A.1.151)

Combining them together, we have

E((M̂ −M(f))2)

≤ (cm1 + cm2 + 144γ2
e + 2m6)ρm(

σ√
n

; f)2 + 2 (min{f(xi) : 0 ≤ i ≤ n} −M(f))2

≤ C3,0ρm(
σ√
n

; f)2 + 2 (min{f(xi) : 0 ≤ i ≤ n} −M(f))2 .

(A.1.152)
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Therefore,

E(|M̂ −M(f)|) ≤
√

E((M̂ −M(f))2)

≤ Č3,0ρm(
σ√
n

; f) +
√

2 (min{f(xi) : 0 ≤ i ≤ n} −M(f)) .
(A.1.153)

Proof of Proposition A.1.8. Since we have

sup
h∈Gn(f)

ρm(
σ√
n

;h)

√
nρz(

σ√
n

;h) ≥ √n 1√
2

σ√
n

=
σ√
2
, (A.1.154)

we only need to prove that

E(|M̂ −M(f)|) ≤ čm1σ +
√

2 (min{f(xi) : 0 ≤ i ≤ n} −M(f)) . (A.1.155)

We recycle all the notation in the proof of Proposition A.1.7, especially in Equation (A.1.148)

and (A.2.105).

Similar to the proof of Proposition of A.1.7, we have

E((M̂ −M(f))2)

= E((f̂−M(f))2
1{ǰ <∞}) + E((Eǰ,ĩǰ ,e

1

2J−ǰ
)2
1{ǰ <∞})+

2E
(
(fi −M(f))2

1{ǰ =∞}
)

+ 2γ2
eσ

2E(1{ǰ =∞}) + σ2γ2
eQ2E(1{ǰ =∞}),

(A.1.156)

where Q2 =
∫∞

0 x2 · 5Φ(x)4 1√
2π

exp (−x2

2 )dx ≤ 5
2 .

Since we have

E((Eǰ,ĩǰ ,e
1

2J−ǰ
)2
1{ǰ <∞}) = E(

σ2

2J−ǰ
1{ǰ <∞}) ≤ σ2, (A.1.157)
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we are only left with bounding the terms: E((f̂−M(f))2
1{ǰ <∞}), E((fi−M(f))2

1{ǰ =

∞}).

We have the following two lemmas, which are proved in Section A.2 on page 264 and 269.

Lemma A.1.42.

E((f̂−M(f))2
1{ǰ <∞}) ≤ č2

m2σ
2. (A.1.158)

Lemma A.1.43.

E((fi −M(f))2
1{ǰ =∞}) ≤ č2

m3σ
2 + (min{f(xi) : 0 ≤ i ≤ n} −M(f))2 . (A.1.159)

With these lemmas, we know that

E((M̂ −M(f))2)

≤ (č2
m2 + 1 + 2č2

m3 + 2γ2
e + γ2

eQ2)σ2 + 2 (min{f(xi) : 0 ≤ i ≤ n} −M(f))2 .

(A.1.160)

Therefore, we have

E(
∣∣M̂ −M(f)

∣∣)
≤
√
č2
m2 + 1 + 2č2

m3 + 2γ2
e + γ2

eQ2σ +
√

2
(

min{f(xi) : 0 ≤ i ≤ n} −M(f)
)

= Č3
σ√
2

+
√

2
(

min{f(xi) : 0 ≤ i ≤ n} −M(f)
)
.

(A.1.161)

A.1.13. Proof of Theorem 2.4.4

With Proposition A.1.4, we prove the theorem by proving the following lemmas.

188



Lemma A.1.44 (length of the confidence interval for minimum 0).

EfL(CIm,α(Y )) ≤ Č4,αρm(
σ√
n

; f) +
√

2
(
min{f(xi) : i = 0, 1, · · · , n} − ȟ

)
,

where ȟ = inf{M(g) : g ∈ F , and g(xi) = f(xi), i = 0, 1, · · · , n}.

Lemma A.1.45 (length of the confidence interval for minimum 1). When

sup
h∈Gn(f)

{ρz(
σ√
n

;h)} < 1

2n
,

we have

EfL(CIm,α(Y )) ≤ Č5,ασ +
√

2
(
min{f(xi) : i = 0, 1, · · · , n} − ȟ

)
,

where ȟ = min{M(g) : g ∈ F , and g(xi) = f(xi), i = 0, 1, · · · , n}.

Note that when suph∈Gn(f){ρz( σ√
n

;h)} < 1
2n ,

sup
h∈Gn(f)

ρm(
σ√
n

;h)

√
nρz(

σ√
n

;h) ≥ σ√
2
,

hence with these two lemmas we know that

EfL(CIm,α(Y ))

≤ (
√

2Č4,α +
√

2Č5,α) sup
h∈Gn(f)

ρm(
σ√
n

;h)

(
1 ∧

√
nρz(

σ√
n

;h)

)
+
√

2Dm(n, f).
(A.1.162)

When 0 < α < 0.3, let

C4,α =

√
2Č4,α +

√
2Č5,α

C̃m,α
+

2
√

2

1− 2α
(A.1.163)

gives the statement with respect to the length.

Lemma A.1.46 (coverage of the confidence interval for minimum).

P (M(f) ∈ CIm,α(Y )) ≥ 1− α.
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Proof of Lemma A.1.44.

Ihi − Ilo + 1 ≤ 2 + 9 · 2jl−js ≤ 2 + 9 · 2Kα
4

+K̃α
4

+1
. (A.1.164)

Therefore,

SIhi−Ilo+1,α
4
≤ −Φ−1(

α

4(2 + 9 · 2Kα
4

+K̃α
4

+1
)
). (A.1.165)

EfL(CIm,α(Y ))

≤
(
SIhi−Ilo+1,α

4
− Φ−1(

α

4
) +
√

3
)
γeE(

σ√
2J−jl

)

+ E

(
(f̂1 − zα/4

√
3σ√

2J−jl
−
√

3σ√
2J−jl

− flo)+1{ĵ + K̃α/4 > J}
)
.

(A.1.166)

We first bound the first term.

E(
σ√

2J−jl
)

≤ E(
σ√

2
J−ĵ−K̃α

4

1{ĵ ≤ J − K̃α
4
}) + σE(1{ĵ > J − K̃α

4
})

≤ 1{j∗ + 3 ≤ J}
(
E(

σ√
2
J−ĵ−K̃α

4

1{ĵ ≤ J − K̃α
4
}) + σE(1{ĵ > J − K̃α

4
})
)

+ 1{j∗ + 2 ≥ J}σ

≤ 1{j∗ + 3 ≤ J}( σ√
2
J−j∗−K̃α

4
−3

+
J∑

j=j∗+3

σ√
2
J−j−1−K̃α

4

Φ(−2 +
1

6
)j−j

∗−2

+
σ√

2J−j∗
√

2J−j∗Φ(−2 +
1

6
)
(J−1−K̃α

4
−j∗)+)

+ 1{ 1

n
>
ρz(

σ√
n

; f)

32
}√n

√
2ρz(

σ√
n

; f)ρm(
σ√
n

; f)

= 21+
K̃ α

4
2 C̃4ρm(

σ√
n

; f) + 8ρm(
σ√
n

; f)C̄1,α.

(A.1.167)
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Now we turn to the second term,

E

(
(f̂1 − zα/4

√
3σ√

2J−jl
−
√

3σ√
2J−jl

− flo)+1{ĵ + K̃α/4 > J}
)

≤ E
(

(f̂1 − flo)+1{ĵ + K̃α/4 > J}
)

≤ E
(

(f̂1 −M(f))+1{ĵ + K̃α/4 > J}
)

+ E
(

(M(f)− flo)+1{ĵ + K̃α/4 > J}
)

≤ E
(

(M̂ −M(f))+1{ĵ + K̃α/4 > J}
)

+ E
(

(M(f)− flo)+1{ĵ + K̃α/4 > J}
)
,

(A.1.168)

where M̂ is defined in (2.4.9).

Then according to Proposition A.1.7, we have

E
(

(M̂ −M(f))+1{ĵ + K̃α/4 > J}
)
≤ Č3,0ρm(

σ√
n

; f) +
√

2 (min{f(xi) : 0 ≤ i ≤ n} −M(f)) .

(A.1.169)

Now we turn to the term E
(

(M(f)− flo)+1{ĵ + K̃α/4 > J}
)

.

For 1 ≤ k ≤ n − 2, define linear functions ṽl,k(t) =
f(xk)−f(xk−1)

1/n (t − xk) + f(xk), ṽr,k(t) =

f(xk+2)−f(xk+1)
1/n (t− xk+1) + f(xk+1). Then we know that when g is in F such that g(xi) =

f(xi), for all 0 ≤ i ≤ n, mint∈[xk,xk+1] g(t) can and can only take value in

[ min
t∈[xi,xi+1]

max{ṽl,k(t), ṽr,k(t)},min{f(xi), f(xi+1)}].

Denote h̃(k) = mint∈[xi,xi+1] max{ṽl,k(t), ṽr,k(t)}, for 1 ≤ k ≤ n− 2.

For k = 0, define linear function ṽr,0(t) = f(x2)−f(x1)
1/n (t − x1) + f(x1), and let h̃(0) =

mint∈[x0,x1] ṽr,0(t), then similarly, we know that when g is in F such that g(xi) = f(xi), for

all 0 ≤ i ≤ n, mint∈[xk,xk+1] g(t) can and can only take value in [h̃(0),min{f(x0), f(x1)}].

For k = n − 1, define linear function ṽl,n−1(t) = f(xn−1)−f(xn−2)
1/n (t − xn−1) + f(xn−1), and

let h̃(n − 1) = mint∈[n−1/n,1] ṽr,n−1(t), then similarly, we know that when g is in F such

that g(xi) = f(xi), for all 0 ≤ i ≤ n, mint∈[n−1/n,1] g(t) can and can only take value in
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[h̃(n− 1),min{f(xn−1), f(xn)}].

Now we know that

max{M(g) : g ∈ F , and g(xi) = f(xi), for all 0 ≤ i ≤ n} = min{f(xi) : 0 ≤ i ≤ n},

min{M(g) : g ∈ F , and g(xi) = f(xi), for all 0 ≤ i ≤ n} = min{h̃(i) : 0 ≤ i ≤ n− 1}.

(A.1.170)

Denote ȟ = min{h̃(i) : 0 ≤ i ≤ n− 1}, and then we have

E
(

(M(f)− flo)+1{ĵ + K̃α/4 > J}
)

≤ (M(f)− ȟ) + E
(

(ȟ− flo)+1{ĵ + K̃α/4 > J}
)

≤ (M(f)− ȟ) +

Ihi−2∑
i=Ilo−1

E
(

(h̃(i)− h(i))+1{ĵ + K̃α/4 > J}
)
.

(A.1.171)

We take the definition of δi in Equation (A.1.148): δi = ye,i−1 − f(xi−1).

For (Ilo − 1) ∨ 1 ≤ k ≤ (Ihi − 2) ∧ (n− 2), we have

E
(

(h̃(i)− h(i))+1{ĵ + K̃α/4 > J}
)

≤ E

((
min

t∈[xi,xi+1]
max{ṽl,i(t), ṽr,i(t)}−

min
t∈[xi,xi+1]

max{ṽl,i(t) + (δi+1 − δi − 2H)n(t− xi) + δi+1 −H,

ṽr,i(t) + (δi+2 − δi+3 − 2H)n(xi+1 − t) + δi+2 −H}
)

+

1{ĵ + K̃α/4 > J}
)

≤ P (ĵ + K̃α/4 > J) (E (2|δi+1|+ |δi|+ 2|δi+2|+ |δi+3|) + 3H)

≤
(

6 · γeσ
√

2

π
+ 3γeSIhi−Ilo+3, 1

8
σ

)
P (ĵ + K̃α/4 > J)

≤ C̄2,αρm(
σ√
n

; f).

(A.1.172)
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The last inequality is due to σE(ĵ + K̃α/4 > J) < E( σ√
2J−jl

) , and (A.1.167).

When Ilo = 1,

E
((

h̃(0)− h(0)
)

+
1{ĵ + K̃α/4 > J}

)
≤ E

((
min

t∈[0,1/n]
ṽr,0(t)− min

t∈[0,1/n]
(ṽr,0(t) + (δ3 − δ2 + 2H)n(t− x1) + δ2 −H)

)
+

1{ĵ + K̃α/4 > J}
)

≤ P (ĵ + K̃α/4 > J)(3H + 3γeσ

√
2

π
)

< C̄2,αρm(
σ√
n

; f).

(A.1.173)

When Ihi − 2 = n− 1,

E
((

h̃(n− 1)− h(n− 1)
)

+
1{ĵ + K̃α/4 > J}

)
≤ E

((
min

t∈[n−1
n
,1]
ṽl,n−1(t)− min

t∈[n−1
n
,1]

(ṽl,n−1(t) + (δn − δn−1 − 2H)n(t− xn−1) + δn −H)

)
+

1{ĵ + K̃α/4 > J}
)

≤ P (ĵ + K̃α/4 > J)(3H + 3γeσ

√
2

π
)

< C̄2,αρm(
σ√
n

; f).

(A.1.174)

Going back to Inequality (A.1.171), we have

E
(

(M(f)− flo)+1{ĵ + K̃α/4 > J}
)
≤ (Ihi − Ilo)C̄2,αρm(

σ√
n

; f) + (M(f)− ȟ). (A.1.175)
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Combing all the terms together, we have

EfL(CIm,α(Y )) ≤ Č4,αρm(
σ√
n

; f) +
√

2
(
min{f(xi) : 0 ≤ i ≤ n} − ȟ

)
. (A.1.176)

Proof of Lemma A.1.45. The proof of this lemma is very similar to that of lemma A.1.44.

For simplicity, we will omit the parts that are the same and only point out the places that

are different.

Similar to Inequality (A.1.166), we have

EfL(CIm,α(Y ))

≤
(
SIhi−Ilo+1,α

4
− Φ−1(

α

4
) +
√

3
)
γeE(

σ√
2J−jl

)

+ E

(
(f̂1 − zα/4

√
3σ√

2J−jl
−
√

3σ√
2J−jl

− flo)+1{ĵ + K̃α/4 > J}
)

≤
(
SIhi−Ilo+1,α

4
− Φ−1(

α

4
) +
√

3
)
γeσ+

E
(

(f̂1 −M(f))+1{ĵ + K̃α/4 > J}
)

+ E
(

(M(f)− flo)+1{ĵ + K̃α/4 > J}
)
.

(A.1.177)

For the second term, according to the definition of f̂1 and Proposition A.1.8, we have

E
(

(f̂1 −M(f))+1{ĵ + K̃α/4 > J}
)

≤ E
(

(M̂ −M(f))+1{ĵ + K̃α/4 > J}
)

≤ Č3 sup
h∈Gn(f)

ρm(
σ√
n

;h)

√
nρz(

σ√
n

;h) +
√

2 (min{f(xi) : 0 ≤ i ≤ n} −M(f)) ,

(A.1.178)

where M̂ is defined in (2.4.9).

For E
(

(M(f)− flo)+1{ĵ + K̃α/4 > J}
)

, according to the arguments in the proof of Lemma
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A.1.44, we have

E
(

(M(f)− flo)+1{ĵ + K̃α/4 > J}
)

≤ (M(f)− ȟ) +

Ihi−2∑
i=Ilo−1

E
(

(h̃(i)− h(i))+1{ĵ + K̃α/4 > J}
)
.

(A.1.179)

For (Ilo − 1) ∨ 1 ≤ k ≤ (Ihi − 2) ∧ (n− 2), we have

E
(

(h̃(i)− h(i))+1{ĵ + K̃α/4 > J}
)

≤
(

6 · γe
√

2

π
+ 3γeSIhi−Ilo+3, 1

8

)
P (ĵ + K̃α/4 > J)σ.

(A.1.180)

When Ilo = 1,

E
((

h̃(0)− h(0)
)

+
1{ĵ + K̃α/4 > J}

)
≤ P (ĵ + K̃α/4 > J)(3H + 3γeσ

√
2

π
).

(A.1.181)

When Ihi − 2 = n− 1,

E
((

h̃(n− 1)− h(n− 1)
)

+
1{ĵ + K̃α/4 > J}

)
≤ P (ĵ + K̃α/4 > J)(3H + 3γeσ

√
2

π
).

(A.1.182)

Therefore,

E
(

(M(f)− flo)+1{ĵ + K̃α/4 > J}
)

≤ (Ihi − Ilo)
(

6 · γe
√

2

π
+ 3γeSIhi−Ilo+3, 1

8

)
P (ĵ + K̃α/4 > J)σ

+ (M(f)− ȟ).

(A.1.183)
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Hence

EfL(CIm,α(Y )) ≤ Č5,ασ +
√

2
(
min{f(xi) : i = 0, 1, · · · , n} − ȟ

)
. (A.1.184)

Proof of Lemma A.1.46. Similar to the proof of lemma A.1.16, define the following events:

E = {Z(f) /∈ [
2J−jl(Ilo − 1)

n
,
2J−jlIhi − 1

n
] ∩ [0, 1]}

E1 = {ǰ ≥ jw +Kα
4

+ 1, and jw +Kα
4

+ 1 ≤ J}

F = {ǰ ≤ j∗ − 2− K̃α
4
}

G = {fhi < M(f)}

H = {flo > M(f)}.

(A.1.185)

Then we know that

Ec1 ⊂ Ec. (A.1.186)

So we have

{M(f) ∈ CIm,α(Y )} ⊃ Ec ∩ Fc ∩ Gc ∩ Hc ⊃ Ec1 ∩ Fc ∩ Gc ∩ Hc. (A.1.187)
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Then we have

P (M(f) ∈ CIm,α(Y ))

≥ P (Ec1 ∩ Fc ∩ Gc ∩ Hc)

= P (Gc ∩ Hc|Ec1 ∩ Fc)(1− P (E1)− P (F) + P (F ∩ E1))

= (1− P (G|Ec1 ∩ Fc)− P (H|Ec1 ∩ Fc)

+ P (G ∩ H|Ec1 ∩ Fc))(1− P (E1)− P (F) + P (F ∩ E1))

≥ 1− P (G|Ec1 ∩ Fc)− P (H|Ec1 ∩ Fc)− P (E1)− P (F).

(A.1.188)

According to Lemma A.1.34, we have

P (E1) = P (ĵ ≥ jw +Kα
4

+ 1, jw +Kα
4

+ 1 ≤ J)

≤ P (ǰ ≥ jw +Kα
4

+ 1, jw +Kα
4

+ 1)

≤ Φ(−2)
Kα

4 ≤ α

4
.

(A.1.189)

Similar to the proof of Lemma A.1.16, especially the proof of Lemma A.1.18, which consists

the proof of Lemma A.1.16, we have

P (F) ≤ P (ǰ ≤ j∗ − 2− K̃α
4
) ≤ α

4
. (A.1.190)

For the remaining terms in Inequality (A.1.188), we claim

Lemma A.1.47.

P (H|Ec1 ∩ Fc) ≤
α

4
. (A.1.191)

Proof. With a little abuse of notation, let A denote the event {ĵ + K̃α/4 ≤ J} in the proof
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of this lemma. Then

P (H|Ec1 ∩ Fc) =

P (H|Ec1 ∩ Fc ∩A)P (A|Ec1 ∩ Fc) + P (H|Ec1 ∩ Fc ∩Ac)(1− P (A|Ec1 ∩ Fc)).
(A.1.192)

We start with the second term, for which we introduce another lemma.

Lemma A.1.48. For h(i) defined in Algorithm 2,

P (h(i) ≤ min
t∈[xi,xi+1]

f(t) for all Ilo − 1 ≤ i ≤ Ihi − 2
∣∣Yl, Ys) ≥ 1− α/4.

Proof. We take the definition of δi in Equation (A.1.148): δi = ye,i−1 − f(xi−1). Since

P (max{|δi| : (Ilo − 1) ∨ 1 ≤ i ≤ (Ihi + 1) ∧ (n+ 1)} > H
∣∣Yl, Ys)

≤ P (max{δi : (Ilo − 1) ∨ 1 ≤ i ≤ (Ihi + 1) ∧ (n+ 1)} > H
∣∣Yl, Ys)

+ P (−min{δi : Ilo ≤ i ≤ Ihi} > H
∣∣Yl, Ys) ≤ α/4,

(A.1.193)

we have, condition on Yl, Ys, with probability at least 1−α/4, ye,i−H ≤ f(xi) and ye,i+H ≥

f(xi) for all (Ilo − 2)+ ≤ i ≤ Ihi ∨ n. With a bit of abuse of notation, let B denote the

event that ye,i − H ≤ f(xi) and ye,i + H ≥ f(xi) for all (Ilo − 2)+ ≤ i ≤ Ihi ∨ n. On

event B, for (Ilo − 1) ∨ 1 ≤ i ≤ (Ihi − 2) ∧ (n − 2), consider two linear functions ṽl,i(t) =

f(xi)−f(xi−1)
1/n (t−xi)+f(xi), ṽr,i(t) = f(xi+2)−f(xi+1)

1/n (t−xi+1)+f(xi+1), then for t ∈ [xi, xi+1],

f(t) ≥ max{ṽl,i(t), ṽr,i(t)} ≥ max{vl,i(t), vr,i(t)}, hence h(i) ≤ inft∈[xi,xi+1] f(t).

Also, on event B, if Ilo − 1 = 0, then consider the linear function ṽr,0(t) = f(x2)−f(x1)
1/n (t −

x1) + f(x1), for t ∈ [0, 1/n], f(t) ≥ ṽr,0(t) ≥ vr,0(t), hence h(0) ≤ mint∈[0,1/n] f(t).

Similarly, on event B, if Ihi − 2 = n− 1, we have h(n− 1) ≤ mint∈[n−1/n,1] f(t).
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Therefore, on event B, min{h(i) : Ilo− 1 ≤ i ≤ Ihi− 2} ≤ inft∈[xIlo−1,xIhi−1] f(t). Therefore,

P (h(i) ≤ min
t∈[xi,xi+1]

f(t) for all Ilo − 1 ≤ i ≤ Ihi − 2
∣∣Yl, Ys) ≥ P (B|Yl, Ys) ≥ 1− α/4.

(A.1.194)

Recalling that on event Ec1, we have Z(f) ∈ [xIlo−1, xIhi−1], together with the lemma, we

have

P (H|Ec1 ∩ Fc ∩Ac)

≤ P (min{h(i) : Ilo − 1 ≤ i ≤ Ihi − 2} > M(f)|Ec1 ∩ Fc ∩Ac)

= P (min{h(i) : Ilo − 1 ≤ i ≤ Ihi − 2} > min
t∈[xIlo−1,xIhi−1]

f(t)|Ec1 ∩ Fc ∩Ac) ≤ α/4.

(A.1.195)

Now we turn to the first term in Inequality (A.1.192).

{ min
Ilo≤i≤Ihi

avef (jl, i) ≤M(f) +

√
3σ√

2J−jl
} ∩ Ec1 ∩A

⊃ { min
Ilo≤i≤Ihi

avef (jl, i) ≤M(f) + ρm(
σ√
n

; f)} ∩ {jl > j∗ − 2} ∩ Ec1 ∩A

⊃ F c ∩ {jl > j∗ − 2} ∩ Ec1 ∩ {ĵ + K̃α/4 ≤ J}

⊃ Ec1 ∩A ∩ Fc.

(A.1.196)

Denote imin = arg minIlo≤i≤Ihi avef (jl, i). When there is more than one qualifying for imin,

take anyone.

Therefore,

P (H|Ec1 ∩ Fc ∩A) ≤ P (Ejl,imin,e ≥ −Φ−1(
α

4
)σγe) ≤

α

4
. (A.1.197)
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Therefore,

P (H|Ec1 ∩ Fc) ≤
α

4
. (A.1.198)

Similar to the arguments in proof of Lemma A.1.19, we have

P (G|Ec1 ∩ Fc) ≤
α

4
. (A.1.199)

Returning to the main theorem, we have,

P (M(f) ∈ CIm,α(Y )) ≥ 1− α. (A.1.200)

A.2. Proofs of Supporting Technical Lemmas for Chapter 2

We prove all the technical lemmas supporting Section A.1 in this section.

Proof of Lemma A.1.1. The inequalities are due to

f(x2)− f(x1)

x2 − x1
− f(x3)− f(x2)

x3 − x2
≤

(x3 − x1)(f(x2)− f(x1)(x3−x2)+f(x3)(x2−x1)
x3−x1

)

(x2 − x1)(x3 − x2)
≤ 0,

and

f(x3)− f(x1)

x3 − x1
=
f(x2)− f(x1)

x2 − x1
· x2 − x1

x3 − x1
+
f(x3)− f(x2)

x3 − x2
· x3 − x2

x3 − x1
.
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Proof of Lemma A.1.2. Let t = x
3
2

√
2/3− 2, then we have

2xΦ(2− (2x)
3
2

√
2/3)

xΦ(2−
√

2/3x3/2)
≤ 2

∫ −2
√

2t−(4
√

2−2)
−∞ exp (−u2

2 )du∫ −t
−∞ exp (−u2

2 )du

≤ 4
√

2

∫ −2
√

2t
−∞ exp (−u2

2 )du exp (− (4
√

2−2)2

2 )∫ −2
√

2t
−∞ exp (−u2

16 )du
< 0.008.

(A.2.1)

Proof of Lemma A.1.3. Let

q(x) = x2Φ(−x)

Then

q(x)′ = x(2Φ(−x)− x√
2π

exp (−x
2

2
)).

Taking further derivative, we know that sign((2Φ(−x) − x√
2π

exp (−x2

2 ))′) = sign(x2 − 3).

Hence q(x)′/x goes down and then goes up, its first root is the place that q(x) takes

maximum. Since q(1.19)′ > 0, q(1.2)′ < 0, we have supx>0 q(x) ≤ 1.22Φ(−1.19) <

0.168514 < 0.169. Therefore Q ≤ 1.22Φ(−1.19) < 0.169. Only in this proof, let u(x) =

x2Φ(2 − x). We have u(x)′ = x(2Φ(2 − x) − x 1√
2π

exp (− (2−x)2

2 )). Since sign((2Φ(2 −

x) − x 1√
2π

exp (− (2−x)2

2 ))′) = sign(x(x − 2) − 3), and minx>0 u(x)′ < 0 < u(1)′, we know

u(x)′ has at least 1 root. And its first root (when the root is unique, its first root is

its unique root) is where u(x) takes maximum, since u(2.18)′ > 0, u(2.19)′ < 0, we have

u(x) ≤ 2.192Φ(2− 2.18) < 2.0555. Hence V < 2.0555.

Proof of Lemma A.1.4. Since we have for t > 0,

Φ(−t) ≥ 1√
2π

t

t2 + 1
exp (−t2/2), (A.2.2)
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we set t(α) =
√

2 log (1/α)−
√

log (2 log (1/α)). So we get, for α < 0.03,

Φ(−t(α)) ≥ 1√
2π
α exp (log (2 log (1/α)) · (

√
exp (1)

1
− 1

2
))

t(α)

t(α)2 + 1

≥ α · (2 log (1/α))1.14 1√
2π

t(α)

t(α)2 + 1
.

(A.2.3)

Further, denote x = 2 log (1/α), we have

t(α)

t(α)2 + 1
x =

t(α)2

t(α)2 + 1

x

t(α)
≥ t(α)2

t(α)2 + 1

√
x > 0.6

√
x > 1.58. (A.2.4)

The inequalities are because of t(α) =
√
x − √log x, t increases with x when x > 2, and

x > 7 when α < 0.03.

Therefore, for α < 0.03

Φ(−t(α)) ≥ 0.82α. (A.2.5)

Therefore, for α ≤ 0.005, z3α ≥ t( 3
0.82α), z2.06α ≥ t(2.06

0.82α).

Note that for α < 0.02, t(α) ≥
√

log(1/α)× 0.689.

Hence for α ≤ 0.005,

z3α ≥ t(
3

0.82
α) ≥ 0.689×

√
log(0.82/3α) ≥ 0.599

√
log(1/α),

z2.06α ≥ t(
2.06

0.82
α) ≥ 0.689×

√
log(0.82/2.06α) ≥ 0.627

√
log(1/α).

(A.2.6)

We are now left with bounding

inf
α∈(0.005,0.08]

z2.06α√
log 1/α

.
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Note that both z2.06α and
√

log 1/α increases with α decreasing. Therefore,

inf
α∈(0.005,0.08]

z2.06α√
log 1/α

≥ min
5≤k≤79

z2.06 k+1
1000√

log 1000/k
≥ 0.61.

Therefore, for α < 0.08, z2.06α√
log 1/α

≥ 0.61.

Proof of Lemma A.1.5.

B

A

C

DE

F

G

P Q

H

I

J

K

M

L1

L2

L3

N

For µ that will be designated later, define xl = arg min{t : f(t) ≤ M(f) + µ}, xr =

arg min{t : f(t) ≥M(f) + µ}. Without loss of generality, we can assume xr + xl ≥ 2Z(f).

As shown in the figure, the function in bold is f, and the following points have the following
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coordinates:

F : (Z(f),M(f)) A : (xl,M(f) + µ) D : (xr,M(f) + µ) N : (xl,M(f) + 2µ) (A.2.7)

Define four linear functions:

L0(t) = M(f) + µ (AD),

L1(t) = M(f) + (t− Z(f))
µ

xl − Z(f)
(AF ),

L2(t) = M(f) + (t− Z(f))
µ

xr − Z(f)
(FD),

L3(t) = M(f) + µ+ (t− xr)
µ

xl − xr
(ND).

(A.2.8)

Define the following functions:

g1 = max(f, L0), g2 = max(f, L3), g3 = max(L1, L2, L0), g4 = max(L1, L2). (A.2.9)

Therefore, with µ increasing from 0+ to ∞, ‖g1 − f‖ and ‖g2 − f‖ increase from 0+ to ∞.

Then we know that for any given σ > 0, either ∃µ > 0, s.t. ‖g2 − f‖ = σ, or ∃µ such that

the following three things hold.

Property 1. xl(µ) + xr(µ) = 2Z(f).

Property 2. Suppose g2,l and g2,r are constructed essentially in the same way as g2 but one

on the left side (g2,l) and one on the right side (g2,r). Then (‖g2,l − f‖ − σ) · (‖g2,r −

f‖ − σ) < 0.

Property 3. And further, for the side (h ∈ {l, r}) that ‖g2,h− f‖−σ < 0, ∃µ > τh > 0 such

that for any τ ∈ (0, τh),

|xh(µ− τ)− Z(f)| ≥ |xl(µ− τ)− Z(f)|+ |xr(µ− τ)− Z(f)|
2

.
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And for the other side h̃ ∈ {l, r}/{h}, ‖g2,h̃ − f‖ − σ > 0, ∃µ > τh̃ > 0 such that for

any τ ∈ (0, τh̃),

|xh̃(µ+ τ)− Z(f)| ≥ |xl(µ+ τ)− Z(f)|+ |xr(µ+ τ)− Z(f)|
2

.

To show the main idea more clearly, we assume for the moment that for the σ that we will

designated later, there exists a µ such that on at least one side, we have ‖g2 − f‖ = σ and

use σ to denote ‖g2 − f‖. For the σ that does not have a corresponding µ, we will discuss

it later.

To lower bound ‖g1 − f‖ by a quantity related to ‖g2 − f‖, we have

‖g2 − f‖2 ≤
1

3
µ3 1

µ
Z(f)−xl −

µ
xr−xl

+ 2× 1

3
(xr − xl)× µ2 + 2× ‖g1 − f‖2

=
1

3
µ2 (Z(f)− xl)(xr − xl)

xr − Z(f)
+

2

3
µ2(xr − xl) + 2‖g1 − f‖2

≤ µ2(xr − xl) + 2× ‖g1 − f‖2 ≤ 5‖g1 − f‖2.

(A.2.10)

To lower bound ‖g3 − g4‖ with ‖g1 − f‖ or ‖g2 − f‖, we have

‖g3 − g4‖2 ≥
1

3
µ2(xr − xl) ≥

1

3
‖g1 − f‖2, (A.2.11)

and

‖g2 − f‖2

≤ 1

3
µ3 1

µ
Z(f)−xl −

µ
xr−xl

+
1

3
(xr − xl)× µ2 + ‖g1 − f‖2 + 2× µ2 × 1

2
(xr − xl)

=
1

3
µ2 4xr − xl − 3Z(f)

xr − Z(f)
(xr − xl) + ‖g1 − f‖2

≤ 5

3
µ2(xr − xl) + ‖g1 − f‖2 ≤ 8‖g3 − g4‖2.

(A.2.12)
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Define linear function g5 = max{L3, L2}, then we know that ρz(γ; g2) ≤ ρz(γ; g5),∀γ > 0.

Since we also have

γ2 =
1

3
ρm(γ; g5)3 × (

xr − xl
µ

+
xr − Z(f)

µ
),

γ2 =
1

3
ρm(γ; g4)3 × xr − xl

µ
=

1

3
ρz(γ; g4)3(

µ

xr − Z(f)
)3xr − xl

µ
,

(A.2.13)

we have

ρz(γ; g2)3 ≤ρz(γ; g5)3 =

(
ρm(γ; g5)

xr − xl
µ

)3

=
(xr−xlµ )33γ2

xr−xl
µ + xr−Z(f)

µ

=
(xr−xlµ )3ρz(γ; g4)3( µ

(xr−Z(f)))3 xr−xl
µ

xr−xl
µ + (xr−Z(f))

µ

= ρz(γ; g4)3 (xr − xl)4

(xr − Z(f))3(2xr − xl − Z(f))
≤ 16

3
ρz(γ; g4)3.

(A.2.14)

Also, we have

ρz(γ; g4) =

(
γ

‖g3 − g4‖

) 2
3

(xr − Z(f)) ≤
( √

8γ

‖g2 − f‖

) 2
3

(xr − Z(f))

≤
( √

8γ

‖g2 − f‖

) 2
3

|Z(g2)− Z(f)| =
(√

8γ

σ

) 2
3

|Z(g2)− Z(f)|.

(A.2.15)

Therefore, we have

ρz(γ; g2) ≤ 2
7
3

3
1
3

(
γ

σ
)

2
3 |Z(g2)− Z(f)|. (A.2.16)

Further we have

|Z(g2)− Z(f)| = sup{|t− Z(f)| : g1(t) = M(g1)} ≥ ρz(
1√
5
σ; f). (A.2.17)
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The σ we will specify later is no smaller than
√

5ε, and suppose σ ≥
√

5ε from now. This

gives |Z(g2)− Z(f)| ≥ ρz( 1√
5
σ; f) ≥ ρz(ε; f).

As we know, for the problem of estimation Z(h) with h ∈ {g2, f}, the following statistic is

sufficient

WS =

∫ 1
0 (g2(t)− f(t))dY (t)− 1

2

∫ 1
0 (g2(t)2 − f(t)2)dt

ε‖g2 − f‖
, (A.2.18)

and we have WS ∼ N(θ(h)‖g2−f‖
2ε , 1), with θ(g2) = 1, θ(f) = −1.

Define an event O = {|Ẑ − Z(f)| > 1
2 |Z(g2) − Z(f)|}, then we have Pf (O) ≤ 2c. This is

because we have Ef |Ẑ − Z(f)| ≤ cρz(ε; f), and |Z(g2)− Z(f)| ≥ ρz(ε; f). Since we further

have |Ẑ − Z(g2)| ≥ |Z(g2)− Z(f)| − |Ẑ − Z(f)|, the following inequalities hold

Eg2 |Ẑ − Z(g2)| ≥ Eg2

(
(|Z(g2)− Z(f)| − |Ẑ − Z(f)|)+

)
≥ Eg2

(
1{Oc}

(
|Z(g2)− Z(f)| − 1

2
ρz(ε; f)

))
≥ Φ(Φ−1(1− 2c)− ‖g2 − f‖

ε
)
1

2
|Z(g2)− Z(f)|

(A.2.19)

For c ≤ 0.0063, let σ = Φ−1(1− 2c)ε. Then σ >
√

5, thus |Z(g2)− Z(f)| ≥ ρz(ε; f).

So we have

Eg2 |Ẑ − Z(g2)| ≥ 1

4
|Z(g2)− Z(f)|

≥ 1

4

(
3

27

) 1
3

Φ−1(1− 2c)
2
3 ρz(ε; g2).

(A.2.20)

Let f1 = g2, we have the result.

Now we consider the case when σ = Φ−1(1 − 2c)ε does not have a corresponding µ. Then
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∃µ > 0 such that Property 1., Property 2. and Property 3. hold.

Without loss of generality, we assume h defined in Property 3. is r. According to Property

1., and construction of g2,l and g2,r we know that ρz(β; g2,l) = ρz(β; g2,r) for all β > 0.

Besides g2,l and g2,r, we can construct g1,l, g3,l, g4,l, g5,l similarly to g1, g3, g4, g5 on the left

hand side, and also g1,r, g3,r, g4,r, g5,r on the right hand side. Then we know that g1,l = g1,r,

g3,l = g3,r, g4,l = g4,r. According to Inequality (A.2.14) and Inequality (A.2.15), we have

|Z(g2,r)− Z(f)| = |Z(g2,l)− Z(f)| ≥
(‖g2,l − f‖√

8ε

) 3
2

ρz(ε; g4,l)

≥
(‖g2,l − f‖√

8ε

) 2
3
(

3

16

) 1
3

ρz(ε; g2,l)

=

(‖g2,l − f‖√
8ε

) 2
3
(

3

16

) 1
3

ρz(ε; g2,r)

≥
(

3

27

) 1
3

Φ−1(1− 2c)
2
3 ρz(ε; g2,r).

(A.2.21)

The last inequality is because of ‖g2,l−f‖ > σ = Φ−1(1−2c)ε, coming from Property 3. and

Property 2.. Again, since σ ≥
√

5ε, we have |Z(g2,r)− Z(f)| = |Z(g2,l)− Z(f)| ≥ ρz(ε; f),

which comes from (A.2.17).

Similar to the arguments in the case of g2, we define event O = {|Ẑ − Z(f)| > 1
2 |Z(g2,r)−

Z(f)|}, then we have Pf (O) ≤ 2c. And we have

Eg2,r |Ẑ − Z(g2,r)| ≥ Eg2,r

(
(|Z(g2,r)− Z(f)| − |Ẑ − Z(f)|)+

)
≥ Eg2,r

(
1{Oc}

(
|Z(g2,r)− Z(f)| − 1

2
ρz(ε; f)

))
≥ Φ(Φ−1(1− 2c)− ‖g2,r − f‖

ε
)
1

2
|Z(g2,r)− Z(f)|

≥ 1

4

(
3

27

) 1
3

Φ−1(1− 2c)
2
3 ρz(ε; g2,r).

(A.2.22)

We take f1 = g2,l and get the statement.

208



Proof of Lemma A.1.6. Without loss of generality, we can assume f(Z(f) + ρz(ε; f)) ≤

M(f) + ρm(ε; f). Denote xl = min{t : f(t) ≤M(f) + ρm(ε; f)}.

For 0 < δ < 1
2ρz(ε; f)), denote

gδ(t) = max
{
f(t),

M(f) + ρm(ε; f) +
f(Z(f) + ρz(ε; f)− δ)−M(f)− ρm(ε; f)

ρz(ε; f) + Z(f)− xl − δ
(t− xl)

}
.

(A.2.23)

Then ‖gδ − f‖ ≤ ε. And ρz(ε; gδ) ≤ 3ρz(ε; f).

Define event O to be O = {|Ẑ − Z(f)| ≥ 1
2ρz(ε; f)}. Then Pf (O) ≤ 2c, thus Pgδ(O) ≤

Φ(1 + Φ−1(2c)).

Therefore,

Egδ |Ẑ − Z(gδ)|

≥ Egδ

(
1{Oc}(|Z(f)− Z(gδ)| −

1

2
ρz(ε; f))+

)
≥ Pgδ(Oc)(ρz(ε; f)− δ − 1

2
ρz(ε; f))

≥ (1− Φ(1 + Φ−1(2c)))(ρz(ε; f)− δ − 1

2
ρz(ε; f))

≥ (1− Φ(1 + Φ−1(2c)))

(
1

2
− δ

ρz(ε; f)

)
+

ρz(ε; f)

≥ (1− Φ(1 + Φ−1(2c)))

(
1

2
− δ

ρz(ε; f)

)
+

ρz(ε; gδ)

3
.

(A.2.24)
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Therefore,

sup
1
2
ρz(ε;f)>δ>0

Egδ |Ẑ − Z(gδ)|
ρz(ε; gδ)

≥ lim sup
δ→0+

(1− Φ(1 + Φ−1(2c)))

3

(
1

2
− δ

ρz(ε; f)

)
+

=
1

6

(
1− Φ(1 + Φ−1(2c))

)
> 0.1666

(
1− Φ(1 + Φ−1(2c))

)
.

(A.2.25)

Note that the inequality is strict, so we have the statement.

Proof of Lemma A.1.7. Without loss of generality, we can assume

tr = max{t : f(t) ≤M(f) + ρm(γ; f)} = Z(f) + ρz(γ; f).

Denote

tl = min{t : f(t) ≤M(f) + ρm(γ; f)} = Z(f) + ρz(γ; f).

It’s apparent that tr and tl depend on γ. For 1
4ρz(γ; f) > δ > 0, define

gδ(γ; f) = max{f,M(f) + ρm(γ; f) +
f(tr − δ)−M(f)− ρm(γ; f)

tr − δ − tl
(t− tl)}.

Therefore, we know that ‖gδ(γ; f) − f‖ ≤ γ. We will use g to refer to gδ(γ; f) when there

is no ambiguity. According to the definition, we know that lim sup
δ→0+

ρm(γ; g) ≤ ρm(γ; f). We

will specify γ to be a quantity no smaller than ε, suppose γ ≥ ε from now.

Denote O = {|M̂ − M(f)| > 1
2ρm(ε; f)}. Since Ef |M̂ − M(f)| ≤ cρm(ε; f), we have

Pf (O) ≤ 2c, then we have
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Eg|M̂ −M(g)| ≥ Eg
(
1{Oc}(|M(f)−M(g)| − |M̂ −M(f)|)+

)
≥ Pg(Oc)(|M(f)−M(g)| − 1

2
ρm(ε; f))+

≥ Φ(Φ−1(1− 2c)− γ

ε
)

(
|M(f)−M(g)| − 1

2
ρm(ε; f)

)
+

= Φ(Φ−1(1− 2c)− γ

ε
)

(
ρm(γ; f)− 1

2
ρm(ε; f) + f(tr − δ)− f(tr)

)
+

.

(A.2.26)

For c ≤ 0.103, let γ = max{Φ−1(1− 2c)ε, ε}. Then γ ≥ ε.

Therefore, we have

sup
0<δ< 1

4
ρz(γ;f)

Eg|M̂ −M(g)|
ρm(ε; g)

≥ lim sup
δ→0+

Eg|M̂ −M(g)|
ρm(ε; g)

≥ lim sup
δ→0+

Φ(z2c −max{z2c, 1})(
(γ
ε

) 2
3 ρm(ε; f)− 1

2ρm(ε; f) + f(tr − δ)− f(tr))+

ρm(ε; g)

≥
Φ(z2c −max{z2c, 1})

((γ
ε

) 2
3 ρm(ε; f)− 1

2ρm(ε; f)
)

ρm(ε; f)

= Φ(z2c −max{z2c, 1})
((γ

ε

) 2
3 − 1

2

)
.

(A.2.27)

For 0.103 ≥ c ≥ Φ(−1)
2 , we have

sup
g∈F

Eg|M̂ −M(g)|
ρm(ε; g)

≥ Φ(z2c − 1)

2
> 0.214362. (A.2.28)

For c < Φ(−1)
2 , we have

sup
g∈F

Eg|M̂ −M(g)|
ρm(ε; g)

≥ 1

2

(
z

2
3
2c −

1

2

)
>
z

2
3
2c

4
. (A.2.29)

Note that for both cases, the inequality is strict, so we have the statement.
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Proof of Lemma A.1.12. Without loss of generality, we assume

sup{t > Z(f) : f(t) ≤ ρm(ε; f) +M(f)} = ρz(ε; f) + Z(f).

El,s
(
(f̂ −M(f))2

1{j̃ ≥ ĵ + 1}
)

= El,s
( j∗+1∑
j1=2

(f̂ −M(f))2
1{ĵ = j1, j̃ ≥ j1 + 1}

)
+ El,s

( ∞∑
j1=j∗+2

(f̂ −M(f))2
1{ĵ = j1, j̃ ≥ j1 + 1}

)
(A.2.30)
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Now we will first bound the first term in Inequality (A.2.30)

El,s
( j∗+1∑
j1=2

(f̂ −M(f))2
1{j̃ ≥ j1 + 1, ĵ = j1}

)
≤ El,s

( j∗+1∑
j1=2

(µj1 ,̂ij1+2 −M(f))2
1{j̃ ≥ j1 + 1, ĵ = j1,

X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√
2cs
√
mj1ε

≤ 2}
)

+ El,s
( j∗+1∑
j1=2

(µj1 ,̂ij1−2 −M(f))2
1{j̃ ≥ j1 + 1, ĵ = j1,

X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√
2cs
√
mj1ε

≤ 2}
)

+ El,s
( j∗+1∑
j1=2

(µj1 ,̂ij1
−M(f))2

1{j̃ ≥ j1 + 1, ĵ = j1,

X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√
2cs
√
mj1ε

≤ 2,
X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√

2cs
√
mj1ε

≤ 2}
)

≤ El,s
( j∗+1∑
j1=2

(µj1 ,̂ij1+2 −M(f))2
1{j̃ ≥ j1 + 1, ĵ = j1,

X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√
2cs
√
mj1ε

≤ 2}
)

+ El,s
( j∗+1∑
j1=2

(µj1 ,̂ij1−2 −M(f))2
1{j̃ ≥ j1 + 1, ĵ = j1,

X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√
2cs
√
mj1ε

≤ 2}
)

+ El,s
( j∗+1∑
j1=2

1

2

[
(µj1 ,̂ij1−2 −M(f))2 + (µj1 ,̂ij1+2 −M(f))2

]
1{j̃ ≥ j1 + 1, ĵ = j1,

X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√
2cs
√
mj1ε

≤ 2,
X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√

2cs
√
mj1ε

≤ 2}
)

≤ 3

2
El,s
( j∗+1∑
j1=2

(µj1 ,̂ij1+2 −M(f))2
1{j̃ ≥ j1 + 1,

X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√
2cs
√
mj1ε

≤ 2}
)

+
3

2
El,s
( j∗+1∑
j1=2

(µj1 ,̂ij1−2 −M(f))2
1{j̃ ≥ j1 + 1,

X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√
2cs
√
mj1ε

≤ 2}
)

=
3

2
El
( j∗+1∑
j1=2

(µj1 ,̂ij1+2 −M(f))2
1{j̃ ≥ j1 + 1}

Es
(
1{Ej1 ,̂ij1+6

1√
2csε

≤ 2− µj1 ,̂ij1+6

√
mj1√
2csε

+ µj1 ,̂ij1+5

√
mj1√
2csε
|Yl
))

+
3

2
El
( j∗+1∑
j1=2

(µj1 ,̂ij1−2 −M(f))2
1{j̃ ≥ j1 + 1}

Es
(
1{−Ej1 ,̂ij1+5

1√
2csε

≤ 2− µj1 ,̂ij1−6

√
mj1√
2csε

+ µj1 ,̂ij1−5

√
mj1√
2csε
|Yl
))
.

(A.2.31)
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Now we will bound µj1 ,̂ij1−6 − µj1 ,̂ij1−5 by an expression of µj1 ,̂ij1−2 −M(f). As we have

|̂ij1 − i∗j1 | ≤ 1, we have i∗j1 − 3 ≤ îj1 − 2 ≤ i∗j1 − 1. We have

µj1 ,̂ij1−6 − µj1 ,̂ij1−5 ≥ mj1

f(tj1 ,̂ij1−6)−M(f)

tj1 ,̂ij1−6 − Z(f)
≥ mj1

f(tj1 ,̂ij1−3)−M(f)

tj1 ,̂ij1−3 − Z(f)

≥ mj1

µj1 ,̂ij1−2 −M(f)

4mj1

≥ 1

4
(µj1 ,̂ij1−2 −M(f)).

(A.2.32)

Similarly we have

µj1 ,̂ij1+6 − µj1 ,̂ij1+5 ≥
1

4
(µj1 ,̂ij1+2 −M(f)). (A.2.33)

In addition, for j1 = j∗ and j1 = j∗ + 1 in the first term, we have

El,s

(f̂ −M(f))2
1{j̃ ≥ j1 + 1, ĵ = j1,

X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√
2cs
√
mj1ε

≤ 2}


≤ ρm(ε; f)222j∗−2j1 .
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Going back to Inequality (A.2.31),

El,s
( j∗+1∑
j1=2

(f̂ −M(f))2
1{j̃ ≥ j1 + 1, ĵ = j1}

)
≤ 1

2

(
3 ∗ ρm(ε; f)2 + 3 ∗ 1

4
ρm(ε; f)2

)
+

3

2
El
( j∗−1∑
j1=2

(µj1 ,̂ij1+2 −M(f))2
1{j̃ ≥ j1 + 1}

Es
(
1{Ej1 ,̂ij1+6

1√
2csε

≤ 2− 1

4
(µj1 ,̂ij1+2 −M(f))

√
mj1√
2csε
|Yl
))

+
3

2
El
( j∗+1∑
j1=2

(µj1 ,̂ij1−2 −M(f))2
1{j̃ ≥ j1 + 1}

Es
(
1{−Ej1 ,̂ij1−5

1√
2csε

≤ 2− 1

4
(µj1 ,̂ij1−2 −M(f))

√
mj1√
2csε
|Yl
))

=
15

8
ρm(ε; f)2 +

3

2
El
( j∗−1∑
j1=2

(µj1 ,̂ij1+2 −M(f))2
1{j̃ ≥ j1 + 1}

Φ(2− (µj1 ,̂ij1+2 −M(f))2
j∗−j1−4

2

√
mj∗√
2csε

)
)

+
3

2
El
( j∗+1∑
j1=2

(µj1 ,̂ij1−2 −M(f))2
1{j̃ ≥ j1 + 1}Φ(2− (µj1 ,̂ij1−2 −M(f))2

j∗−j1−4
2

√
mj∗√
2csε

)
)

≤ 15

8
ρm(ε; f)2 +

3

2
El
( j∗−1∑
j1=2

24+j1−j∗ 2c2
sε

2

mj∗
1{j̃ ≥ j1 + 1}

[2
j∗−j1−4

2

√
mj∗√
2csε

(µj1 ,̂ij1+2 −M(f))]2Φ(2− (µj1 ,̂ij1+2 −M(f))2
j∗−j1−4

2

√
mj∗√
2csε

)
)

+
3

2
El
( j∗+1∑
j1=2

24+j1−j∗ 2c2
sε

2

mj∗
1{j̃ ≥ j1 + 1}

[2
j∗−j1−4

2

√
mj∗

2
√

2csε
(µj1 ,̂ij1−2 −M(f))]2Φ(2− (µj1 ,̂ij1−2 −M(f))2

j∗−j1−4
2

√
mj∗

2
√

2csε
)
)

≤ 3

j∗−1∑
j1=2

24+j1−j∗ 2c2
sε

2

mj∗
V +

1

2
(3× (25 + 26)

c2
sε

2V

mj∗
) +

15

8
ρm(ε; f)2

≤ (96× 3× 8× V + 27 × 3× 9× V + 2)× ρm(ε; f)2 ≤ (5760V + 2)ρm(ε; f)2,

(A.2.34)

where V = supx≥0x
2Φ(2− x).
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Now let’s turn to the second term of Inequality (A.2.30).

El,s
( ∞∑
j1=j∗+2

(f̂ −M(f))2
1{ĵ = j1, j̃ ≥ j1 + 1}

)
≤ El,s

( ∞∑
j1=j∗+2

(µj1 ,̂ij1+2 −M(f))2
1{j̃ ≥ j1 + 1, ĵ = j1,

X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√
2cs
√
mj1ε

≤ 2,
X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√

2cs
√
mj1ε

> 2}
)

+ El,s
( ∞∑
j1=j∗+2

(µj1 ,̂ij1−2 −M(f))2
1{j̃ ≥ j1 + 1, ĵ = j1,

X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√
2cs
√
mj1ε

≤ 2,
X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√

2cs
√
mj1ε

> 2}
)

+ El,s
( ∞∑
j1=j∗+2

(µj1 ,̂ij1
−M(f))2

1{j̃ ≥ j1 + 1, ĵ = j1,

X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√
2cs
√
mj1ε

≤ 2,
X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√

2cs
√
mj1ε

≤ 2}
)

≤ 1

16
ρm(ε; f)2 + El,s

( ∞∑
j1=j∗+2

(µj1 ,̂ij1−2 −M(f))2
1{j̃ ≥ j1 + 1,

X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√
2cs
√
mjε

≤ 2,∀j∗ + 1 ≤ j ≤ j1,
X̃j,̂ij+6 − X̃j,̂ij+5√

2cs
√
mjε

> 2}
)

+ El,s
( ∞∑
j1=j∗+2

(µj1 ,̂ij1
−M(f))2

1{j̃ ≥ j1 + 1, ĵ = j1,
X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√

2cs
√
mj1ε

≤ 2,

X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√
2cs
√
mj1ε

≤ 2,
X̃j,̂ij+6 − X̃j,̂ij+5√

2cs
√
mjε

> 2, ∀j∗ + 1 ≤ j ≤ j1 − 1}
)

≤ El
( ∞∑
j1=j∗+2

(µj1 ,̂ij1−2 −M(f))2
1{j̃ ≥ j1 + 1}Es

(
1{∀j∗ + 1 ≤ j ≤ j1,

X̃j,̂ij+6 − X̃j,̂ij+5√
2cs
√
mjε

> 2,
X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√

2cs
√
mj1ε

≤ 2}|Yl
))

+
1

16
ρm(ε; f)2

+ El
( ∞∑
j1=j∗+2

(µj1 ,̂ij1
−M(f))2

1{j̃ ≥ j1 + 1}Es
(
1{
X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√

2cs
√
mj1ε

≤ 2,

∀j∗ + 1 ≤ j ≤ j1 − 1,
X̃j,̂ij+6 − X̃j,̂ij+5√

2cs
√
mjε

> 2,
X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√

2cs
√
mj1ε

≤ 2}|Yl
))
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≤ 1

16
ρm(ε; f)2 + El

( ∞∑
j1=j∗+2

(µj1 ,̂ij1−2 −M(f))2
1{j̃ ≥ j1 + 1}

[
Πj1
j=j∗+1Φ(−2 +

(µj,̂ij+6 − µj,̂ij+5)
√
mj√

2csε
)
]
Φ(2−

√
mj1(µj1 ,̂ij1−6 − µj1 ,̂ij1−5)

√
2csε

)

)
+ El

( ∞∑
j1=j∗+2

(µj1 ,̂ij1
−M(f))2

1{j̃ ≥ j1 + 1}Φ(2−
√
mj1(µj1 ,̂ij1−6 − µj1 ,̂ij1−5)

√
2csε

)

Φ(2−
√
mj1(µj1 ,̂ij1+6 − µj1 ,̂ij1+5)

√
2csε

)
[
Πj1−1
j=j∗+1Φ(−2 +

(µj,̂ij+6 − µj,̂ij+5)
√
mj√

2csε
)
])

≤ 1

16
ρm(ε; f)2 + El

( ∞∑
j1=j∗+2

(µj1 ,̂ij1−2 −M(f))2
1{j̃ ≥ j1 + 1}

[
Πj1
j=j∗+1Φ(−2 +

ρm(ε;f)
ρz(ε;f) 8mj

√
mj√

2csε
)
]
Φ(2−

√
mj1

µj1 ,̂ij1−2−M(f)

4√
2csε

)

)

+ El
( ∞∑
j1=j∗+2

(µj1 ,̂ij1
−M(f))2

1{j̃ ≥ j1 + 1}Φ(2−
√
mj1

µj1 ,̂ij1
−M(f)

2√
2csε

))

[
Πj1−1
j=j∗+1Φ(−2 +

ρm(ε;f)
ρz(ε;f) 8mj

√
mj√

2csε
)
])

≤ 1

16
ρm(ε; f)2 + El

( ∞∑
j1=j∗+2

1{j̃ ≥ j1 + 1}V 32c2
sε

2

mj1

Φ(−1.75)j1−j
∗
)

+ El
( ∞∑
j1=j∗+2

1{j̃ ≥ j1 + 1}V 8c2
sε

2

mj1

Φ(−1.75)j1−j
∗−1

)

≤ 1

16
ρm(ε; f)2 + El

( ∞∑
j1=j∗+2

1{j̃ ≥ j1 + 1}V × 32× 3× 8
ε2

ρz(ε; f)
× 2j1−j

∗
Φ(−1.75)j1−j

∗
)

+ El
( ∞∑
j1=j∗+2

1{j̃ ≥ j1 + 1}V × 24× 8
ε2

ρz(ε; f)
× 2j1−j

∗
Φ(−1.75)j1−j

∗−1

)
<

1

16
ρm(ε; f)2 + ρm(ε; f)2V × 78.

Combining the two together, we get

El,s
(
(f̂ −M(f))2

1{j̃ ≥ ĵ + 1}
)
<
(
(5760V + 2) + 78V +

1

16

)
ρm(ε; f)2. (A.2.36)
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Proof of Lemma A.1.13.

El,s
((

(f̂ − µĵ ,̂iĵ )+

)2
1{j̃ ≤ ĵ}

)
= El,s

(
(f̂ − µĵ ,̂iĵ )

2
1{j̃ ≤ ĵ, f̂ > µĵ ,̂iĵ

}
)

≤ El,s
(

(µĵ ,̂iĵ+2 − µĵ ,̂iĵ )
2
1{j̃ ≤ ĵ, µĵ ,̂iĵ+2 > µĵ ,̂iĵ

,
X̃ĵ ,̂iĵ+6 − X̃ĵ ,̂iĵ+5√

2√mĵcsε
≤ 2,

X̃ĵ ,̂iĵ−6
− X̃ĵ ,̂iĵ−5√

2√mĵcsε
> 2 if îĵ−6 ≥ 1}

)

+ El,s
(

(µĵ ,̂iĵ−2 − µĵ ,̂iĵ )
2
1{j̃ ≤ ĵ, µĵ ,̂iĵ−2 > µĵ ,̂iĵ

,
X̃ĵ ,̂iĵ−6 − X̃ĵ ,̂iĵ−5√

2√mĵcsε
≤ 2,

X̃ĵ ,̂iĵ+6
− X̃ĵ ,̂iĵ+5√

2√mĵcsε
> 2 if tĵ ,̂iĵ+6 ≤ 1}

)

≤
∞∑
j1=2

∞∑
j2=j1

(
El,s
(

(µj2 ,̂ij2+2 − µj2 ,̂ij2 )2
1{j̃ = j1, ĵ = j2,

X̃j2 ,̂ij2+6 − X̃j2 ,̂ij2+5√
2
√
mj2csε

≤ 2,

∀j∗ + 2 ≤ j ≤ j2 − 1,
X̃j,̂ij+6 − X̃j,̂ij+5√

2
√
mjcsε

> 2,
X̃j,̂ij−6 − X̃j,̂ij−5√

2
√
mjcsε

> 2, µj2 ,̂ij2+2 > µj2 ,̂ij2
}
)

+ El,s
(

(µj2 ,̂ij2−2 − µj2 ,̂ij2 )2
1{j̃ = j1, ĵ = j2,

X̃j2 ,̂ij2−6 − X̃j2 ,̂ij2−5√
2
√
mj2csε

≤ 2,

∀j∗ + 2 ≤ j ≤ j2 − 1,
X̃j,̂ij+6 − X̃j,̂ij+5√

2
√
mjcsε

> 2,
X̃j,̂ij−6 − X̃j,̂ij−5√

2
√
mjcsε

> 2, µj2 ,̂ij2−2 > µj2 ,̂ij2
}
))

≤
∞∑
j1=2

∞∑
j2=j1

(
El
(

(µj2 ,̂ij2+2 − µj2 ,̂ij2 )2
1{j̃ = j1, µj2 ,̂ij2+2 > µj2 ,̂ij2

}

Φ(2−
µj2 ,̂ij2+2 − µj2 ,̂ij2

2

√
mj2√
2csε

)

Πj2−1
j=j∗+2max{Φ(−2),Φ(−2 + (

7

16
+

6mj

ρz(ε; f)
)ρm(ε; f)

√
mj√
2csε

)}
)

+ El
(

(µj2 ,̂ij2−2 − µj2 ,̂ij2 )2
1{j̃ = j1, µj2 ,̂ij2−2 > µj2 ,̂ij2

}Φ(2−
µj2 ,̂ij2−2 − µj2 ,̂ij2

2

√
mj2√
2csε

)

Πj2−1
j=j∗+2max{Φ(−2),Φ(−2 + (

7

16
+

6mj

ρz(ε; f)
)ρm(ε; f)

√
mj√
2csε

)}
))

.
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≤
∞∑
j1=2

∞∑
j2=j1

2× El
(
1{j̃ = j1}

8c2
sε

2

mj2

V Φ(−1.85)(j2−j∗−2)+

)

≤
∞∑
j1=2

∞∑
j2=j1

2× El
(
1{j̃ = j1} × 8c2

s × 2j2−j
∗+4ρm(ε; f)2V Φ(−1.85)(j2−j∗−2)+

)

≤
∞∑
j1=2

∞∑
j2=j1

El
(
1{j̃ = j1}

)
× 210 × 3× ρm(ε; f)2V 2j2−j

∗−2Φ(−1.85)(j2−j∗−2)+

≤
∞∑
j1=2

El
(
1{j̃ = j1}

)
× 210 × 3× ρm(ε; f)2V (2× 1{j1 ≤ j∗ + 2}+

2Φ(−1.85)

1− 2Φ(−1.85)
)

≤ 211 × 3ρm(ε; f)2V × P (j̃ ≤ j∗ + 2) + 211 × 3× Φ(−1.85)
ρm(ε; f)2V

1− 2Φ(−1.85)

≤ 6355.2V ρm(ε; f)2

Proof of Lemma A.1.14. For simplicity, we denote the set for possible îj2 when j̃ = j2 to be

Op(j2) = {i∗j2−4, i∗j2−3, i∗j2−2, i∗j2 +2, i∗j2 +3, i∗j2 +4}. By the definition of j̃, it’s easy to verify

that îj̃ ∈ Op(j̃). Further, for the convenience of notation, we define Ind(j, i) = sign(i− i∗j ).

Without loss of generality, we assume

sup{t > Z(f) : f(t) ≤ ρm(ε; f) +M(f)} = ρz(ε; f) + Z(f).

El,s
(
(µj̃ ,̂ij̃

−M(f))2
1{j̃ ≤ ĵ}

)
=
∞∑
j2=2

∞∑
j1=j2

El,s
(
(µj2 ,̂ij2

−M(f))2
1{j̃ = j2, ĵ = j1}

)
=
∞∑
j2=2

∞∑
j1=j2

∑
i∈Op(j2)

El,s
(
(µj2,i −M(f))2

1{j̃ = j2, ĵ = j1, îj2 = i}
)

≤
∞∑
j2=2

∞∑
j1=j2

∑
i∈Op(j2)

El
(

(µj2,i −M(f))2
1{j̃ = j2, îj2 = i}Es

(
1{ĵ = j1}|Yl

))

≤
∞∑
j2=2

∞∑
j1=j2

∑
i∈Op(j2)

El
(

(µj2,i −M(f))2
1{j̃ = j2, îj2 = i}

(
Es
(
1{ĵ = j1}|Yl

)
1{j1 ≤ j∗ + 2}

+ 1{j1 ≥ j∗ + 3}Πj1−1
j=j∗+2max{Φ(−2),Φ(−2 + (

7

16
+

6mj

ρz(ε; f)
)ρm(ε; f)

√
mj√
2csε

)}
))
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≤
∞∑
j2=2

∑
i∈Op(j2)

El
(

(µj2,i −M(f))2
1{j̃ = j2, îj2 = i}

(
1{j2 ≤ j∗ + 2}+

1{j2 ≥ j∗ + 3}Φ(−1.85)
Φ(−2 + 1

12)j2−j
∗−3

1− Φ(−2 + 1
12)

))
≤
∞∑
j2=2

∑
i∈Op(j2)

El
(

(µj2,i −M(f))2
1{Xj2,i ≤ Xj2,i∗j2

+Ind(j2,i)}
(
1{j2 ≤ j∗ + 2}+

1{j2 ≥ j∗ + 3}Φ(−1.85)
Φ(−2 + 1

12)j2−j
∗−3

1− Φ(−2 + 1
12)

))
=
∞∑
j2=2

(
1{j2 ≤ j∗ + 2}+ 1{j2 ≥ j∗ + 3}Φ(−1.85)

Φ(−2 + 1
12)j2−j

∗−3

1− Φ(−2 + 1
12)

)
∑

i∈Op(j2)

(µj2,i −M(f))2Φ(
µj2,i∗j2+Ind(j2,i) − µj2,i√

2clε

√
mj2)

≤
∞∑
j2=2

(
1{j2 ≤ j∗ + 2}+ 1{j2 ≥ j∗ + 3}Φ(−1.85)

Φ(−2 + 1
12)j2−j

∗−3

1− Φ(−2 + 1
12)

)
∑

i∈Op(j2)

(µj2,i −M(f))2Φ(−(µj2,i −M(f))
|i− i∗j2 | − 1

|i− i∗j2 |+
1
2

√
mj2√
2clε

)

≤
∞∑
j2=2

(
1{j2 ≤ j∗ + 2}+ 1{j2 ≥ j∗ + 3}Φ(−1.85)

Φ(−2 + 1
12)j2−j

∗−3

1− Φ(−2 + 1
12)

)
∑

i∈Op(j2)

2c2
l ε

2

mj2

( |i− i∗j2 |+ 1
2

|i− i∗j2 | − 1

)2
Q

<
∞∑
j2=2

(
1{j2 ≤ j∗ + 2}+ 1{j2 ≥ j∗ + 3}Φ(−1.85)

Φ(−2 + 1
12)j2−j

∗−3

1− Φ(−2 + 1
12)

)
∗

3× 24+j2−j∗ρm(ε; f)2(23
1

8
)Q× 2

< 3× (28 + 28 Φ(−1.85)

(1− Φ(−2 + 1
12))2

)ρm(ε; f)2(23
1

8
)Q,

where

Q = sup
x≥0

x2Φ(−x).

The reason for the fourth to last inequality is as follows. Without loss of generality, we

can assume i ≥ i∗j2 + 2. Then
µj2,i−µj2,i∗j2+1

µj2,i−M(f) ≥ 1,
f(tj2,i−

1
2

)−µj2,i∗j2+1

f(tj2,i−
1
2

)−M(f)
≥ 1. Since we also have
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µj2,i ≥ f(tj2,i − 1
2), we have

µj2,i − µj2,i∗j2+1

µj2,i −M(f)
≥
f(tj2,i − 1

2)− µj2,i∗j2+1

f(tj2,i − 1
2)−M(f)

≥
∫

0,1

tj2,i − 1
2 − tj2,i∗j2 − x

tj2,i − 1
2 − Z(f)

dx

=
|i− i∗j2 | − 1

tj2,i − 1
2 − Z(f)

≥
|i− i∗j2 | − 1

|i− i∗j2 |+
1
2

.

(A.2.39)

Proof of Lemma A.1.15. First, with a bit of abuse of notation, define the events Ar, Br,

Cr, Dr to be the following (they only mean events but not constants in this proof):

Ar = {ω : îj̃+r < i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

−mj̃+r}

∪ {ω : îj̃+r > i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

+mj̃+r+1}

Br = {ω : îj̃+r < i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

−mj̃+r+1}

∪ {ω : îj̃+r > i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

}

Cr = {ω : îj̃+r < i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

}

∪ {ω : îj̃+r > i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

−mj̃+r+1}

Dr = {ω : îj̃+r < i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

+mj̃+r+1}

∪ {ω : îj̃+r > i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

−mj̃+r}

(A.2.40)

Basically, these events indicates which interval the localization procedure picks at the step

j̃+r+1, and from the highest average to the lowest average is A to D. These sets of notation

for events are only used in this proof, and in the proof of other theorem, the same notation

can denote different things.
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Still, without loss of generality, we assume

sup{t > Z(f) : f(t) ≤ ρm(ε; f) +M(f)} = ρz(ε; f) + Z(f).

El,s
((

(µĵ ,̂iĵ
− µj̃ ,̂ij̃ )+

)2
1{j̃ ≤ ĵ}

)
= El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃ )+

)2
1{j̃ ≤ ĵ − 1}

)
= El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃ )+

)2
1{j̃ ≤ ĵ − 1, A0 ∪B0 ∪ (C0 ∩ (A1 ∪B1))}

)
= El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃ )+

)2
1{j̃ ≤ ĵ − 1, A0 ∪ (B0 ∩Dc

1) ∪ (B0 ∩D1 ∩ {ĵ = j̃ + 1})}
)

+ El,s
((

(µĵ ,̂iĵ
− µj̃ ,̂ij̃ )+

)2
1{j̃ ≤ ĵ − 2, C0 ∩A1}

)
+ El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃ )+

)2
1{j̃ ≤ ĵ − 3, (C0 ∩B1) ∪ (B0 ∩D1)}

)
≤
∞∑
j2=2

∞∑
j1=j2+1

El,s
(( j1−1∑

j=j2

(µj+1,̂ij+1
− µj,̂ij )+

)2
1{ĵ = j1, j̃ = j2, A0 ∪ (B0 ∩Dc

1) ∪ (B0 ∩D1 ∩ {j1 = j2 + 1})}
)

+
∞∑
j2=2

∞∑
j1=j2+2

El,s
(( j1−1∑

j=j2

(µj+1,̂ij+1
− µj,̂ij )+

)2
1{ĵ = j1, j̃ = j2, C0 ∩A1}

)
+ El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃ )+

)2
1{ĵ ≥ j̃ + 3, (C0 ∩B1) ∪ (B0 ∩D1)}

)
≤
∞∑
j2=2

∞∑
j1=j2+1

El,s
(

2

j1−1∑
j=j2

2j−j2
(
(µj+1,̂ij+1

− µj,̂ij )+

)2
1{ĵ = j1, j̃ = j2, A0 ∪ (B0 ∩Dc

1) ∪ (B0 ∩D1 ∩ {j1 = j2 + 1})}
)

+

∞∑
j2=2

∞∑
j1=j2+2

El,s
(

2

j1−1∑
j=j2+1

2j−j2−1
(
(µj+1,̂ij+1

− µj,̂ij )+

)2
1{ĵ = j1, j̃ = j2, C0 ∩A1}

)
+ El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃ )+

)2
1{ĵ ≥ j̃ + 3, (C0 ∩B1) ∪ (B0 ∩D1)}

)
(A.2.41)

Now we will bound the sum of first two terms in Inequality (A.2.41) first. For the simplicity
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of formula’s expression, define δ0 = 1{j1 = j2 + 1}, δ = 1{j = j2},which will only be used

for the inequalities below.

=
∞∑
j2=2

∞∑
j=j2

2j+1−j2
∞∑

j1=j+1

El,s
(

(µj+1,̂ij+1
− µj,̂ij )

2
1{µj+1,̂ij+1

> µj,̂ij}1{ĵ = j1}

(
1{j̃ = j2, A0 ∪ (B0 ∩Dc

1)}+ 1{j̃ = j2, j1 = j2 + 1, j = j2, B0 ∩D1}
))

+
∞∑
j2=2

∞∑
j=j2+1

2j−j2
∞∑

j1=j+1

El,s
(

(µj+1,̂ij+1
− µj,̂ij )

2
1{µj+1,̂ij+1

> µj,̂ij}

1{j̃ = j2, C0 ∩A1}1{ĵ = j1}
)

≤
∞∑
j2=2

∞∑
j=j2

2j+1−j2El
(

(µj+1,̂ij+1
− µj,̂ij )

2
1{µj+1,̂ij+1

> µj,̂ij}

∞∑
j1=j+1

Φ(−1.85)(j2−j∗−δ0)+Φ(−2)(j1−j2−2)+

(
1{j̃ = j2, A0 ∪ (B0 ∩Dc

1)}+ 1{j̃ = j2, B0 ∩D1, j1 = j2 + 1, j = j2}
))

+

∞∑
j2=2

∞∑
j=j2+1

2j−j2El
(

(µj+1,̂ij+1
− µj,̂ij )

2
1{µj+1,̂ij+1

> µj,̂ij}1{j̃ = j2, C0 ∩A1}

∞∑
j1=j+1

Φ(−1.85)(j2−j∗)+Φ(−2)(j1−j2−2)+

)

≤
∞∑
j2=2

∞∑
j=j2

Φ(−1.85)(j2−j∗−δ)+2j+1−j2El
(

(µj+1,̂ij+1
− µj,̂ij )

2
1{µj+1,̂ij+1

> µj,̂ij}1{j̃ = j2}
)

(
1{j = j2, A0 ∪B0}(1 +

1

1− Φ(−2)
) + 1{j ≥ j2 + 1, A0 ∪ (B0 ∩Dc

1)}Φ(−2)j−j2−1

1− Φ(−2)

)
+
∞∑
j2=2

Φ(−1.85)(j2−j∗)+

∞∑
j=j2+1

2j−j2El
(

(µj+1,̂ij+1
− µj,̂ij )

2

1{µj+1,̂ij+1
> µj,̂ij}1{j̃ = j2, C0 ∩A1}

)(
Φ(−2)j−j2−1 1

1− Φ(−2)

)
(A.2.42)

Now define the set C(j, k, k + 1) to be the set of pairs (i1, i2) such that , P (̂ik+1 = i2, îk =

i1|j̃ = j) > 0, then we know that |C(j, k, k + 1)| ≤ min{10× 2k−j × 4, 6× 4k+1−j}. Then,
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continuing with the inequality we have

≤
∞∑
j2=2

∞∑
j=j2

Φ(−1.85)(j2−j∗−δ)+ · 2j+1−j2
∑

(i1,i2)∈C(j2,j,j+1)

El
(

(µj+1,i2 − µj,i1)2
1{µj+1,i2 > µj,i1}1{j̃ = j2, A0 ∪B0, îj = i1, îj+1 = i2}

)
(
1{j = j2}(1 +

1

1− Φ(−2)
) + 1{j ≥ j2 + 1}Φ(−2)j−j2−1

1− Φ(−2)

)
+
∞∑
j2=2

Φ(−1.85)(j2−j∗)+

∞∑
j=j2+1

2j−j2
∑

(i1,i2)∈C(j2,j,j+1)

El
(

(µj+1,i2 − µj,i1)2
1{µj+1,i2 > µj,i1}1{j̃ = j2, îj+1 = i2, îj = i1, C0 ∩A1}

)
(
Φ(−2)j−j2−1 1

1− Φ(−2)

)
≤
∞∑
j2=2

∞∑
j=j2

Φ(−1.85)(j2−j∗−δ)+ · 2j+1−j2
∑

(i1,i2)∈C(j2,j,j+1)

2c2
l ε

2

mj+1
Q1{µj+1,i2 > µj,i1}

(
1{j = j2}(1 +

1

1− Φ(−2)
) + 1{j ≥ j2 + 1}Φ(−2)j−j2−1

1− Φ(−2)

)
+
∞∑
j2=2

Φ(−1.85)(j2−j∗)+

∞∑
j=j2+1

2j−j2
∑

(i1,i2)∈C(j2,j,j+1)

2c2
l ε

2

mj+1
Q1{µj+1,i2 > µj,i1}

(
Φ(−2)j−j2−1 1

1− Φ(−2)

)
≤
∞∑
j2=2

∞∑
j=j2

Φ(−1.85)(j2−j∗−δ)+ · 2j+1−j2 ×min{10× 2j−j2 × 2, 6× 4j−j2 × 2}2c2
l ε

2

mj+1
Q

(
1{j = j2}(1 +

1

1− Φ(−2)
) + 1{j ≥ j2 + 1}Φ(−2)j−j2−1

1− Φ(−2)

)
+

∞∑
j2=2

Φ(−1.85)(j2−j∗)+

∞∑
j=j2+1

2j−j2 ×min{10× 2j−j2 × 2, 6× 4j−j2 × 2}2c2
l ε

2

mj+1
Q

(
Φ(−2)j−j2−1 1

1− Φ(−2)

)
=
c2
lQε

2

mj∗

∞∑
j2=2

2j2+3−j∗ × (12× (1 +
1

1− Φ(−2)
)× Φ(−1.85)(j2−j∗−1)++

Φ(−1.85)(j2−j∗)+ × 160× 1

1− Φ(−2)
× 1

1− 8Φ(−2)
)

+
c2
lQε

2

mj∗

∞∑
j2=2

Φ(−1.85)(j2−j∗)+27+j2−j∗ × 5× 1

1− Φ(−2)
× 1

1− 8Φ(−2)

<
c2
lQε

2

mj∗
2790.303× (

1

1− 2Φ(−1.85)
+ 2− 1) ≤ Q× 277075ρm(ε; f)2.
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Now we will turn to the third term in Inequality (A.2.41).

El,s
((

(µĵ ,̂iĵ
− µj̃ ,̂ij̃ )+

)2
1{ĵ ≥ j̃ + 3, (C0 ∩B1) ∪ (B0 ∩D1)}

)
≤
∞∑
j2=2

∞∑
j1=j2+3

El,s
(( j1−1∑

j=j2+2

(µj+1,̂ij+1
− µj,̂ij )+

)2
1{ĵ = j1, j̃ = j2, (C0 ∩B1) ∪ (B0 ∩D1)}

)
≤
∞∑
j2=2

∞∑
j1=j2+3

El,s
(

2

j1−1∑
j=j2+2

2j−j2−2
(
(µj+1,̂ij+1

− µj,̂ij )+

)2
1{ĵ = j1, j̃ = j2, (C0 ∩B1) ∪ (B0 ∩D1)}

)
≤
∞∑
j2=2

El
(

2
∞∑

j=j2+2

2j−j2−2
(
(µj+1,̂ij+1

− µj,̂ij )+

)2
1{j̃ = j2, (C0 ∩B1) ∪ (B0 ∩D1)} × Φ(−1.85)(j2+1−j∗)+

Φ(−2)j−j2−2

1− Φ(−2)

)
≤
∞∑
j2=2

∞∑
j=j2+2

2j−j2−1(2 · 3 · 2j−j2−2 · 2)
2c2
l ε

2

mj+1
QΦ(−1.85)(j2+1−j∗)+

Φ(−2)j−j2−2

1− Φ(−2)

=
c2
l ε

2

mj∗
Q

∞∑
j2=2

192

1− Φ(−2)
× 2j2+1−j∗ × Φ(−1.85)(j2+1−j∗)+

1

1− 8Φ(−2)

≤ c2
l ε

2

mj∗
Q

192

1− Φ(−2)
× (

1

1− 2Φ(−1.85)
+ 2− 1)

1

1− 8Φ(−2)

≤ 48Q× 192

1− Φ(−2)
× (

1

1− 2Φ(−1.85)
+ 1)

1

1− 8Φ(−2)
ρm(ε; f)2

≤ 23850.1ρm(ε; f)2Q.

(A.2.43)

The fourth inequality is because the number of possible pairs of (̂ij , îj+1) such that (C0 ∩

B1) ∪ (B0 ∩D1), µj+1,̂ij+1
> µj,̂ij , j̃ = j2, j ≥ j2 + 2, and µĵ ,̂iĵ

> µj̃ ,̂ij̃
is at most 2 × 3 ×

2j−(j2+2) × 2. Other analysis are similar to the previous one. Combining the two parts

together,

El,s
((

(µĵ ,̂iĵ
− µj̃ ,̂ij̃ )+

)2
1{j̃ ≤ ĵ}

)
≤ Q× 277075× ρm(ε; f)2 +Q× 23850.1× ρm(ε; f)2.

(A.2.44)
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Proof of Lemma A.1.18.

P (ĵ ≤ j∗ − 2− K̃)

≤ P (ĵ ≤ j∗ − 2− K̃, |̂iĵ − iĵ∗ | ≤ 4) + P (ĵ ≤ j∗ − 2− K̃, |̂iĵ − i∗ĵ | ≥ 5)

≤
j∗−2−K̃∑
j=1

P (|̂iĵ − iĵ∗ | ≤ 4, Xîĵ+6 −Xîĵ+5 ≤ 2cs
√

2ε)+

P (|̂iĵ − iĵ∗ | ≤ 4, Xîĵ−6 −Xîĵ−5 ≤ 2cs
√

2ε) + P (|̂ij−1 − i∗j−1| ≥ 2)

≤
j∗−2−K̃∑
j=1

2Φ(2− (
mj

ρz(ε; f)
)

3
2
ρm(ε; f)

√
ρz(ε; f)√

2csε
) + 2Φ(−(

mj−1

ρz(ε; f)
)

3
2
ρm(ε; f)

√
ρz(ε; f)√

2csε
)

+ 2Φ(−2(
mj−1

ρz(ε; f)
)

3
2
ρm(ε; f)

√
ρz(ε; f)√

2csε
) + 2Φ(−3(

mj−1

ρz(ε; f)
)

3
2
ρm(ε; f)

√
ρz(ε; f)√

2csε
)

(A.2.45)

< 2

j∗−2−K̃∑
j=1

(
Φ(2− 2

3
2

(j∗−j−4)− 1
2 ) + Φ(−2

3
2

(j∗−j−3)− 1
2 ) + Φ(−2

3
2

(j∗−j−3)+ 1
2 )

+ Φ(−3× 2
3
2

(j∗−j−3)− 1
2 )
)

≤ 2

∞∑
k=K̃

(
Φ(2− 2

3
2

(k−2)− 1
2 ) + Φ(−2

3
2

(k−1)− 1
2 ) + Φ(−2

3
2
k−1)

+ Φ(−3× 2
3
2

(k−1)− 1
2 )
)

≤ 2(Φ(2− 2
3
2

(K̃−2)− 1
2 )

1 + 3 exp (−44)

1− exp (−44)
)

≤ 2

1− exp (−40)
Φ(2− 2

3
2

(K̃−2)− 1
2 ).

The last three equation uses the fact that Φ(−2
√

2x) ≤ 2
√

2 exp (−7x2

2 )Φ(−x), for x > 0.
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Proof of Lemma A.1.19. For the ease of expression, we define Ẽj,i = 1√
mj

(Y3(tj,i)−Y3(tj,i−1)−∫ tj,i
tj,i−1

f(x)dx). Then Ẽj,i i.i.d∼ N(0, ε2c2
e), i = 0, 1, · · ·

P
(
G
∣∣∣Z(f) ∈ [t(ĵ−Kα

4
−1)+ ,̂i(ĵ−Kα

4
−1)+

−5, t(ĵ−Kα
4
−1)+ ,̂i(ĵ−Kα

4
−1)+

+4]
)

= P
(
f̂1 + SiR−iL,α4

ceε√
mĵ+K̃α

4

< M(f)
∣∣∣

Z(f) ∈ [t(ĵ−Kα
4
−1)+ ,̂i(ĵ−Kα

4
−1)+

−5, t(ĵ−Kα
4
−1)+ ,̂i(ĵ−Kα

4
−1)+

+4]
)

≤ P
(
M(f) +

1√
mĵ+K̃α

4

miniL<i≤iR Ẽĵ+K̃α
4
,i + SiR−iL,α4

ceε√
mĵ+K̃α

4

< M(f)
∣∣∣

Z(f) ∈ [t(ĵ−Kα
4
−1)+ ,̂i(ĵ−Kα

4
−1)+

−5, t(ĵ−Kα
4
−1)+ ,̂i(ĵ−Kα

4
−1)+

+4]
)

≤ P
(
miniL<i≤iR Ẽĵ+K̃α

4
,i + ceεSiR−iL,α4 < 0

)
≤ α

4
.

(A.2.46)

Proof of Lemma A.1.20.

P (H|Ec ∩ F c)

≤ P (f̂1 + Φ−1(
α

4
)

ceε√
mĵ+K̃α

4

−
√

3ε√
mĵ+K̃α

4

> M(f)|Ec ∩ F c)

≤ P (

∫ tĵ+K̃ α
4
,i∗
ĵ+K̃ α

4

+1

tĵ+K̃ α
4
,i∗
ĵ+K̃ α

4

f(x)
1

mĵ+K̃α
4

dx+
1√

mĵ+K̃α
4

Ẽĵ+K̃α
4
,i∗
ĵ+K̃ α

4

+1+

Φ−1(
α

4
)

ceε√
mĵ+K̃α

4

−
√

3ε√
mĵ+K̃α

4

> M(f)|Ec ∩ F c)

≤ P (Ẽĵ+K̃α
4
,i∗
ĵ+K̃ α

4

1

ce
+ Φ−1(

α

4
)ε+ ρm(ε; f)

√
mĵ+K̃α

4

−
√

3ε > 0|Ec ∩ F c)

≤ P (Ẽĵ+K̃α
4
i∗
ĵ+K̃ α

4

1

ce
+ Φ−1(

α

4
)ε+ ρm(ε; f)

√
1

2
ρz(ε; f)−

√
3ε > 0|Ec ∩ F c)

≤ α

4
.

(A.2.47)
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Proof of Lemma A.1.21. Let il = min{i : gn,σ,h(xi) > f(xi)}, ir = max{i : gn,σ,h(xi) >

f(xi)}.

We will first prove the lemma for the case ρz(
σ√
6n

;h) ≥ 1/2n.

When {i : gn,σ,h(xi) > f(xi)} = ∅, the lemma holds naturally.

When il = ir, let xl = inf{x : gn,σ,h(x) > h(x)}, xr = sup{x : gn,σ,h(x) > h(x)}, then we

have

σ2

6n
≥ ‖h− gn,σ,h‖22 ≥

1

3
(xr − xl)ρm(

σ√
6n

;h)2 ≥ 1

6

ρm( σ√
6n

;h)2

n

≥ 1

6
ln(h, gn,σ,h)2 =

1

6
ln(f, gn,σ,h)2.

When il < ir,

σ2

6n
≥ ‖h− gn,σ,h‖22 ≥

ir∑
k=il

1

3

1

2n
(h(xk)− gn,σ,h(xk))

2 ≥ 1

6
ln(h, gn,σ,h)2

=
1

6
ln(f, gn,σ,h)2.

Now we turn to the second case ρz(
σ√
6n

;h) < 1/2n.

Since ρz(
σ√
6n

;h) < 1/2n, then |{i : gn,σ,h(xi) > f(xi)}| ≤ 1. When |{i : gn,σ,h(xi) >

f(xi)}| = 0, the lemma holds naturally. When |{i : gn,σ,h(xi) > f(xi)}| = 1, we have

ln(f, gn,σ,h)2 = ln(h, gn,σ,h)2 ≤ 1

n
ρm(

σ√
6n

;h)2 · 2nρz(
σ√
6n

;h) ≤ σ2.
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Proof of Lemma A.1.22.

E(1{ĵ < j̃}1.5mĵ)

≤ E(1{ĵ < j̃}1.5mĵ1{ĵ ≤ j∗ − 3}) + E(1{ĵ < j̃}1.5mĵ1{ĵ ≥ j∗ − 2})

≤ 1.5E(1{ĵ < j̃}mĵ1{ĵ ≤ j∗ − 3}) + 1.5× ρz(
σ√
n

; f)

(A.2.48)

Also we have

E(1{ĵ < j̃}mĵ1{ĵ ≤ j∗ − 3})

≤
(j∗−3)∧(J−1)∑

j=0

E(1{ĵ = j, j̃ > j}mĵ) +
1

n
1{J ≤ j∗ − 3}

≤
(j∗−3)∧(J−1)∑

j=0

mj

(
E(1{j̃ > j, Yj,îj+6,s − Yj,îj+5,s ≤ γs2

√
2
√

2J−jσ})

+ E(1{j̃ > j, Yj,îj−6,s − Yj,îj−5,s ≤ γs2
√

2
√

2J−jσ})
)

+
1

n
1{J ≤ j∗ − 3}

≤
(j∗−3)∧(J−1)∑

j=0

mjE
(
1{j̃ > j,

√
2J−j

γs
√

2σ

(
avef (j, îj + 6)− avef (j, îj + 5)

)
≤(

Ej,îj+5,s − Ej,îj+6,s

)
√

2
√

2J−jγsσ
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Therefore,

E(1{ĵ < j̃}1.5mĵ) ≤ 1.5(cz0 + 1)ρz(
σ√
n

; f) +
3

2

1

n
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σ√
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2

1

n
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(A.2.50)

Proof of Lemma A.1.23.

E(1{ĵ ≥ j̃}
∣∣Ẑ − Z(f)

∣∣)
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σ√
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Proof of Lemma A.1.24.

E(1{ǰ <∞}1{ǰ < j̃}|Ẑ − Z(h̃)|)
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where Č = supx>0 xΦ(2− x).

Proof of Lemma A.1.25.

E(1{ĵ ≥ j̃}|Ẑ − Z(h̃)|) ≤ E(1{ĵ ≥ j̃}6mj̃)

≤
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Proof of Lemma A.1.29.

j∗−1∑
j=1
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√
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√
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Proof of Lemma A.1.30.
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(A.2.55)

Proof of Lemma A.1.31.

E(1{ǰ <∞}L(CIz,α(Y ))) ≤ (12 · 2Kα/2+1 + 1)E(
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1{ǰ <∞})
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n

 .

(A.2.56)
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We bound the two terms separately and we start with the first term.
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where Č = supt>0 tΦ(−t).

For the second term, we have
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(A.2.58)

where Q̌ = supt>0 tΦ(2− t).

Let č1,α = (6 1

1−
√

1/2
2γlČ+ 4γs · Q̌ 1

1−
√

1/2
) · (12 · 2Kα/2+1 + 1) gives the statement of Lemma

A.1.31.

Proof of Lemma A.1.32. When 2 ≤ im ≤ n − 2, thi − tlo ≥ 3
n implies that il ≤ im − 1 or
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ir ≥ im. When im ≤ 1, thi − tlo ≥ 3
n implies that ir ≥ im. When im ≥ n− 1, thi − tlo ≥ 3

n

implies that il ≤ im − 1. Therefore, we have
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3

n
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+ 1{ir ≥ im}1{ǰ =∞}1{im ≤ n− 2}
)

=
1 + 12 · 2Kα/2+1

n
E
(
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(A.2.59)

Since {U ≤ im − 1, im ≥ 2} ∪ {L ≥ im + 1, im ≤ n − 2} implies that j̃ < n, and {U ≤

im − 1} ∩ {L ≥ im + 1} = ∅, we have

E
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(A.2.60)

where Č = supt>0 tΦ(−t).

And for E(1{il ≤ im − 1}1{ǰ = ∞}1{U ≥ im, im ≥ 2} + 1{ir ≥ im}1{ǰ = ∞}1{L ≤
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im, im ≤ n− 2}), we have

E
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(A.2.61)

where Q̌2 = supt>0 xΦ(zα1 − x).

Note that U − L only depends on α, therefore,

E(1{ǰ =∞}1{thi − tlo ≥
3

n
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(A.2.62)

Proof of Lemma A.1.33. Note that when 0 < thi − tlo <
3
n , one of the following holds:

il = n = U = ir + 1, ir = −1 = L − 1 = il − 1, L + 1 ≤ il = ir + 1 ≤ U − 1, il = L = ir,

ir = U − 1 = il. We denote event

H1 = {il = n = U = ir + 1} ∪ {ir = −1 = L− 1 = il − 1} ∪ {L+ 1 ≤ il = ir + 1 ≤ U − 1},

H2 = {il = L = ir} ∪ {ir = U − 1 = il}.
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Therefore,
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(A.2.63)

We start with the second term
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(A.2.64)

Now we turn to the first term

E(1{ǰ =∞}L(CIz,α(Y ))1{H1})
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(A.2.65)
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We will bound the two terms separately, we start with the second term.
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(A.2.66)

Now we turn to the first term. We discuss the four settings: im = 0, im = n, 2 ≤ im ≤ n−2,
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(im−1)(im−n+1) = 0. Note that when (im−1)(im−n+1) = 0, Dz(n, f) ≥ 1
n . Therefore,

E
(
1{ǰ =∞}(thi − tlo)1{il = im}

(
1{il = n = U = ir + 1}
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n
1{il = im}1{(im − 1)(im − n+ 1) = 0}(
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))

≤ 2Dz(n, f).

(A.2.67)

Now we turn to the cases (im − 1)(im − n + 1) 6= 0. Note that under the event {il = n =

U = ir + 1} ∪ {ir = −1 = L− 1 = il − 1} ∪ {L+ 1 ≤ il = ir + 1 ≤ U − 1}, tlo ≤ il/n ≤ thi.

E
(
1{ǰ =∞}(thi − tlo)1{il = im}

(
1{il = n = U = ir + 1}

+ 1{ir = −1 = L− 1 = il − 1}+ 1{L+ 1 ≤ il = ir + 1 ≤ U − 1}
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(
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(
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.

(A.2.68)

Due to the symmetric nature of the procedure, the case (im−1)(im−n+1) 6= 0, and the event

{il = im}∩{il = n = U = ir+1}∪{ir = −1 = L−1 = il−1}∪{L+1 ≤ il = ir+1 ≤ U−1}

, we only need to bound the first term, and the second term shares the similar (symmetric)

bound.
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E
(
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(A.2.69)

Note that ihi = il + 1, ilo = il − 1 when {L + 1 ≤ il = ir + 1 ≤ U − 1}, and if ihi

is also so defined when {ir = −1 = L − 1 = il − 1}, then the definition of thi defined

under {ir = −1 = L − 1 = il − 1} has the same form with that defined under the case

{L+ 1 ≤ il = ir + 1 ≤ U − 1}.

Let

traw(i) =
ye,i−1 − ye,i −

√
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n .

And let
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√

6σzα2).
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Then we have
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traw(ihi) +
1

n

)
∧ 1

n

)
1{q(ihi) > 0,− 1

n
≤ traw(ihi)}

∣∣∣Yl, Ys, Ye,1)
1{ǰ =∞}1{il = im}

(
1{ir = −1 = L− 1 = il − 1}

+ 1{L+ 1 ≤ il = ir + 1 ≤ U − 1}
))

= E

(
E
(((

traw(im + 1) +
1

n

)
∧ 1

n

)
1{q(im + 1) > 0,− 1

n
≤ traw(im + 1)}

∣∣∣Yl, Ys, Ye,1)
1{ǰ =∞}1{il = im}

(
1{ir = −1 = L− 1 = il − 1}

+ 1{L+ 1 ≤ il = ir + 1 ≤ U − 1}
))

= P
(
ǰ =∞, il = im, and (ir = −1 = L− 1 = il − 1 or L+ 1 ≤ il = ir + 1 ≤ U − 1)

)
1{im ≤ n− 2}E

(((
traw(im + 1) +

1

n

)
∧ 1

n

)
1{q(im + 1) > 0,− 1

n
≤ traw(im + 1)}

)
.

(A.2.70)

Note that only when im ≤ n− 2 the above quantity is not 0 ( when im = n, it’s 0, and by

(im − n + 1)(im − 1) 6= 0, im 6= n − 1), so we take im ≤ n − 2 by default from now before

finished bounding this quantity.

Note that, when we denote ζi = ye,i − f(xi)−
√

3σz3,i, then { ζi√
6σ
} i.i.d.∼ N(0, 1), and

traw(im + 1) +
1

n
=
f(xim)− 2f(xim+1) + f(xim+2) + ζim − 2ζim+1 + ζim+2 + 4

√
6σzα2

n(f(xim+2)− f(xim+1) + ζim+2 − ζim+1 + 2
√

6σzα2)
.

(A.2.71)

Therefore, when we, with a bit abuse of the notation, denote the event A0 only in this proof
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to be the following event:

A0 =
{
ζim+2 ≥ −

f(xim+2)− f(xim+1)

6
−
√

6σzα2 ,

ζim+1 ≤
f(xim+2)− f(xim+1)

6
+
√

6σzα2 ,

ζim ≥ −
f(xim+2)− f(xim+1)

6
−
√

6σzα2

} (A.2.72)

, we have, on event A0,

traw(im + 1) +
1

n
≥ − 1

n
,

f(xim+2)− f(xim+1) + ζim+2 − ζim+1 + 2
√

6σzα2 ≥
2(f(xim+2)− f(xim+1))

3
.

With a bit abuse of notation, denote event B only in this proof to be

B = {ζim − 2ζim+1 + ζim+2 + f(xim)− 2f(xim+1) + f(xim+2) + 4
√

6σ ≥ 0}. (A.2.73)

Then on Bc ∩A0, traw(im + 1) + 1
n < 0; on B ∩A0, traw(im + 1) + 1

n ≥ 0.

Further, we have

P (Ac0)

≤ P (ζim+2 < −
f(xim+2)− f(xim+1)

6
−
√

6σzα2)

+ P (ζim+1 >
f(xim+2)− f(xim+1)

6
+
√

6σzα2)

+ P (ζim < −f(xim+2)− f(xim+1)

6
−
√

6σzα2)

= 3Φ(−f(xim+2)− f(xim+1)

6
√

6σ
− zα2) ≤ 3Φ(−

(
1

nρz(
σ√
n

; h̃)

) 3
2 1

6
√

12
− zα2)

≤ nρz(
σ√
n

; h̃)

√
nρz(

σ√
n

; h̃)18
√

12Q̌3,

(A.2.74)

where Q̌3 = supx>0 xΦ(−x− zα2).
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Therefore, we have

E

(((
traw(im + 1) +

1

n

)
∧ 1

n

)
1{q(im + 1) > 0,− 1

n
≤ traw(im + 1)}

)

= E

(((
traw(im + 1) +

1

n

)
∧ 1

n

)
1{q(im + 1) > 0,− 1

n
≤ traw(im + 1)}

(1{A0 ∩B}+ 1{A0 ∩Bc}+ 1{Ac0})
)

≤ E

((
traw(im + 1) +

1

n

)
1{A0 ∩B}

)
+

1

n
P (Ac0)

≤ E

((
traw(im + 1) +

1

n

)
1{A0 ∩B}

)
+ ρz(

σ√
n

; h̃)

√
nρz(

σ√
n

; h̃)6
√

12Q̌3.

(A.2.75)

Further, given the convexity, we know that

sup{Z(h) : h(xi) = f(xi), 0 ≤ i ≤ n} −
im
n

=
f(xim)− f(xim+1)

n(f(xim+2)− f(xim+1))
+

1

n
.

Therefore, we have

E
((

traw(im + 1) +
1

n

)
1{A0 ∩B}

)
= sup{Z(h) : h(xi) = f(xi), 0 ≤ i ≤ n} −

im
n

+

E
((

traw(im + 1)− f(xim)− f(xim+1)

n(f(xim+2)− f(xim+1))

)
1{A0 ∩B}

)
.

(A.2.76)
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Further, since on event A0, we have

traw(im + 1)− f(xim)− f(xim+1)

n(f(xim+2)− f(xim+1))
=

ζim(f(xim+2)− f(xim+1)) + ζim+1(f(xim)− f(xim+2))

n(f(xim+2)− f(xim+1) + ζim+2 − ζim+1 + 2
√

6σzα2)(f(xim+2)− f(xim+1))

+
ζim+2(f(xim+1)− f(xim)) + 2

√
6σzα2 (f(xim+2)− f(xim))

n(f(xim+2)− f(xim+1) + ζim+2 − ζim+1 + 2
√

6σzα2)(f(xim+2)− f(xim+1))

≤
(
|ζim |(f(xim+2)− f(xim+1)) + |ζim+1|(f(xim)− f(xim+2))

+ |ζim+2|(f(xim+1)− f(xim)) + 2
√

6σzα2 (f(xim+2)− f(xim))
)

1
2
3n (f(xim+2)− f(xim+1))2

≤
√

6σ
3

2n
(|ζim |+ 2|ζim+1|+ |ζim+2|+ 4zα2)

1

f(xim+2)− f(xim+1)
.

(A.2.77)

Therefore,

E
((

traw(im + 1)− f(xim)− f(xim+1)

n(f(xim+2)− f(xim+1))

)
1{A0 ∩B}

)
≤ E

(√
6σ

3

2n
(|ζim |+ 2|ζim+1|+ |ζim+2|+ 4zα2)

1

f(xim+2)− f(xim+1)
1{A0 ∩B}

)
≤ E

(√
6σ

3

2n
(|ζim |+ 2|ζim+1|+ |ζim+2|+ 4zα2)

1

f(xim+2)− f(xim+1)

)
≤
√

6σ
3

2n
(4Q̌3 + 4zα2)

1

f(xim+2)− f(xim+1)

≤ σ

ρm( σ√
n

; h̃)/nρz(
σ√
n

; h̃)

1

n

√
6(6Q̌3 + 6zα2)

≤ ρz(
σ√
n

; h̃)

√
nρz(

σ√
n

; h̃)
√

12(6Q̌3 + 6zα2),

(A.2.78)

where Q̌3 =
∫∞
−∞ |x| 1√

2π
exp (−x2/2)dx.
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Going back to Equation (A.2.69), we have

E
(
1{ǰ =∞}(thi − il/n)1{il = im}

(
1{il = n = U = ir + 1}

+ 1{ir = −1 = L− 1 = il − 1}+ 1{L+ 1 ≤ il = ir + 1 ≤ U − 1}
))

≤ ρz(
σ√
n

; h̃)

√
nρz(

σ√
n

; h̃)
√

12(6Q̌3 + 6zα2)

+ sup{Z(h) : h(xi) = f(xi), 0 ≤ i ≤ n} −
im
n
.

(A.2.79)

The first term is bounded for under the case (im − n+ 1)(im) 6= 0.

Similarly, for the second term in Equation (A.2.68), we have

E
(
1{ǰ =∞}(il/n− tlo)1{il = im}

(
1{il = n = U = ir + 1}

+ 1{ir = −1 = L− 1 = il − 1}+ 1{L+ 1 ≤ il = ir + 1 ≤ U − 1}
))

≤ ρz(
σ√
n

; h̃)

√
nρz(

σ√
n

; h̃)
√

12(6Q̌3 + 6zα2)

+
im
n
− inf{Z(h) : h(xi) = f(xi), 0 ≤ i ≤ n}.

(A.2.80)

Therefore, under the case (im − n+ 1)(im) 6= 0,

E
(
1{ǰ =∞}(thi − tlo)1{il = im}

(
1{il = n = U = ir + 1}

+ 1{ir = −1 = L− 1 = il − 1}+ 1{L+ 1 ≤ il = ir + 1 ≤ U − 1}
))

≤ ρz(
σ√
n

; h̃)

√
nρz(

σ√
n

; h̃)2
√

12(6Q̌3 + 6zα2)+

sup{Z(h) : h(xi) = f(xi), 0 ≤ i ≤ n} − inf{Z(h) : h(xi) = f(xi), 0 ≤ i ≤ n}

= ρz(
σ√
n

; h̃)

√
nρz(

σ√
n

; h̃)2
√

12(6Q̌3 + 6zα2) + Dz(n, f).

(A.2.81)
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All the cases analyzed, and all the terms added up

E(1{ǰ =∞}1{thi − tlo <
3

n
}L(CIz,α(Y )))

≤ č3,α sup
h∈Gn(f)

ρz(
σ√
n

;h)

√
nρz(

σ√
n

;h) + 2Dz(n, f).
(A.2.82)

Proof of Lemma A.1.34.

P (ĵ ≥ jw +K + 1) = E(1{ĵ ≥ jw +K + 1}1{jw <∞})

≤ E(1{∀jw + 1 ≤ j ≤ jw +K,

min{Yj,îj−6,s − Yj,îj−5,s, Yj,îj+6,s − Yj,îj+5,s} > 2γs
√

2σ
√

2J−j}1{jw <∞})

≤ Φ(−2)KE(1{jw <∞}) ≤ Φ(−2)K

(A.2.83)

The second inequality is by taking conditional expectation on the localization copy of the

observation (i.e. Yl), and the fact that for the iteration steps j such that jw+1 ≤ j ≤ jw+K

the target interval is more than 6 blocks away from the estimated one.

Proof of Lemma A.1.35. Given the symmetric nature of our procedure, we only need to

prove

E(1{E}1{ǰ =∞}1{F c1}) ≤ α1. (A.2.84)

Note that, when ǰ =∞,

E = {Z(f) ∈ [
(
îĵ − (6 · 2Kα/2+1 − 2)− 1

) 2J−ĵ

n
− 1

2n
,(

îĵ + (6 · 2Kα/2+1 − 2)
) 2J−ĵ

n
− 1

2n
] ∩ [0, 1]}

⊂ {
îĵ − (6 · 2Kα/2+1 − 2)− 2

n
< Z(f) <

îĵ + 6 · 2Kα/2+1 − 2

n
}

Let L0 = îĵ − (6 · 2Kα/2+1 − 2) − 2, U0 = îĵ + 6 · 2Kα/2+1 − 2. Hence we know that when
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L0 ≥ 1, L = L0 − 1; when U0 ≤ n− 1, U = U0 + 1.

Let im = min{k : f(xk) = min{f(xi) : 0 ≤ i ≤ n}}. Then we know that, on E, L0 ≤ im ≤

U0. And also im = n implies F1, hence we only need to consider the case im ≤ n − 1 to

compute F c1 . And {im ≤ n− 1} ∩ {L0 ≤ im ≤ U0} implies that im < U .

We also know that {ye,i+
√

3σz3,i : 0 ≤ i ≤ n}, {ye,i−
√

3σz3,i : 0 ≤ i ≤ n}, {ys,i : 0 ≤ i ≤ n},

{yl,i : 0 ≤ i ≤ n} are independent random variables.

Therefore,

E(1{E}1{ǰ =∞}1{F c1}) ≤ E

(
E
(
1{E}1{ǰ =∞}1{im < U}

1{ye,im +
√

3σz3,im − (ye,im+1 +
√

3σz3,im+1) > 2
√

3σzα1}
∣∣∣Ys, Yl)

)
≤ α1.

(A.2.85)

Proof of Lemma A.1.36. The event E ∩ {ǰ =∞} ∩ F1 ∩ F2 ∩ {(il − U)(ir − L+ 1) = 0} is

the subset of the union of the following four events:

G1 = E ∩ {ǰ =∞} ∩ F1 ∩ F2 ∩ {il = U,U 6= n},

G2 = E ∩ {ǰ =∞} ∩ F1 ∩ F2 ∩ {il = U,U = n},

G3 = E ∩ {ǰ =∞} ∩ F1 ∩ F2 ∩ {ir = L− 1, L = 0},

G4 = E ∩ {ǰ =∞} ∩ F1 ∩ F2 ∩ {ir = L− 1, L 6= 0}.

(A.2.86)

Since {U 6= n} ∩ {ǰ = ∞} means U0 ≤ U − 1 ≤ n − 2; and on E ∩ {ǰ = ∞} ∩ F1 ∩ F2 we

have il ≤ min{k : f(xk) = min{f(xi)}} and min{k : f(xk) = min{f(xi)}} ≤ U0, we know

that G1 = ∅. Similarly, we have G4 = ∅. Also, on E ∩ {ǰ = ∞} ∩ F1 ∩ F2, we know that

il ≤ ir + 1, hence we have G2 ∩G3 = ∅.

Also, on G2, we know that f(xn) = min{f(xi)} and f(xk) > min{f(xi) : 0 ≤ i ≤ n} for all

247



k, which implies that Z(f) ≥ f(xn)−f(xn−1)
n(f(xn−2)−f(xn−1)) + n−1

n .

Suppose Ye,1 = {ye,i +
√

3σz3,i : (L − 1) ∨ 0 ≤ i ≤ (U + 1) ∧ n}, Ye,2 = {ye,i −
√

3σz3,i :

(L− 1) ∨ 0 ≤ i ≤ (U + 1) ∧ n}. Then we know that Yl,Ys,Ye,1,Ye,2 are independent.

If we denote κi,1 = ye,i +
√

3σz3,i − f(xi), κi,2 = ye,i −
√

3σz3,i − f(xi), then we know that

on G2 when we further have κn,2 ≥ −
√

6σzα2 , κn−1,2 ≤
√

6σzα2 , κn−2,2 ≥ −
√

6σzα2 , then

tlo ≤ Z(f).

We have similar analysis for G3.

Hence we know that

E
(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) = 0}

)
= E

(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}1{G2}

)
+ E

(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}1{G3}

)
= E

(
E(1{tlo > Z(f)}|Yl, Ys, Ye,1)1{G2}

)
+ E

(
E(1{thi < Z(f)}|Yl, Ys, Ye,1)1{G1}

)
≤ 3α2P (G2) + 3α2P (G3)

≤ 3α2P (1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) = 0}).

(A.2.87)
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Proof of Lemma A.1.37.

E
(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) 6= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)

≤ E
(
1{Z(f) > thi}1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) 6= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)

+ E
(
1{Z(f) < tlo}1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) 6= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)
.

(A.2.88)

Given the symmetric nature of the procedure, we only need to bound the first term, the

second term shares the same bound.

Suppose Ye,1 = {ye,i +
√

3σz3,i : (L − 1) ∨ 0 ≤ i ≤ (U + 1) ∧ n}, Ye,2 = {ye,i −
√

3σz3,i :

(L− 1) ∨ 0 ≤ i ≤ (U + 1) ∧ n}. Then we know that Yl,Ys,Ye,1,Ye,2 are independent.

On the event E∩{ǰ =∞}∩F1∩F2∩{(il−U)(ir−L+1) 6= 0}∩{ihi−ilo ≤ 2, 0 < ilo, ihi < n},

we know that |{k : f(xk) = min{f(xi) : 0 ≤ i ≤ n}}| = 1, we denote this unique element

to be im. Also, on this event, we know that 2 ≤ im ≤ n − 2. Hence we know that

Z(f) ≤ f(xim )−f(xim+1)

(f(xim+2)−f(xim+1))/ 1
n

+ im+1
n . If we denote κi,1 = ye,i +

√
3σz3,i − f(xi), κi,2 =

ye,i−
√

3σz3,i−f(xi), then we know that on event E∩{ǰ =∞}∩F1∩F2∩{(il−U)(ir−L+1) 6=

0} ∩ {ihi − ilo ≤ 2, 0 < ilo, ihi < n} , if we further have κim+2,2 ≥ −
√

6σzα2 , κim+1,2 ≤
√

6σzα2 , κim,2 ≥ −
√

6σzα2 , then Z(f) ≤ thi.
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E
(
1{Z(f) > thi}1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) 6= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)

= E
(
E
(
1{Z(f) > thi}|Yl, Ys, Ye,1

)
1{E}1{ǰ =∞}1{F1 ∩ F2}

1{(il − U)(ir − L+ 1) 6= 0}1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)

= E
(
E
(
1{Z(f) > thi}|Yl, Ys, Ye,1

)
1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) 6= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}1{ilo + 1 = ihi − 1 = im}
)

≤ E
(
E
(
1{κim+2,2 < −

√
6σzα2 or κim+1,2 >

√
6σzα2 or κim,2 < −

√
6σzα2}|Yl, Ys, Ye,1

)
1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) 6= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}1{ilo + 1 = ihi − 1 = im}
)

≤ 3α2E(1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) 6= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}1{ilo + 1 = ihi − 1 = im}).

(A.2.89)

Therefore,

E
(
1{Z(f) 6∈ CIz,α(Y )}1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) 6= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)

≤ 6α2E
(
1{E}1{ǰ =∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) 6= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}1{ilo + 1 = ihi − 1 = im}
)
.

(A.2.90)
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Proof of Lemma A.1.38.

E((Eǰ,ĩǰ ,e
1

2J−ǰ
)2
1{ǰ <∞})

= E(
1

2J−ǰ
σ2γ2

e1{ǰ <∞}) = σ2γ2
e2j

∗−JE(2−j
∗+ǰ
1{ǰ <∞})

= σ2γ2
e2j

∗−J(

j∗+2∑
j=1

E(2−j
∗+j
1{ǰ = j}) +

∞∑
j=j∗+3

E(2−j
∗+j
1{ǰ = j}))

≤ σ2γ2
e2j

∗−J
(

4 +
∞∑

j=j∗+3

2−j
∗+jΦ(−2 +

13
16ρm( σ√

n
; f)
√

2J−j∗−2

σγs
√

2
)

Φ(−2 +

13
32ρm( σ√

n
; f)
√

2J−j∗−3

σγs
√

2
)(j−j∗−3)+

)
≤ σ2γ2

e2j
∗−J(4 +

∞∑
j=j∗+3

2−j
∗+jΦ(−2 +

13
√

3

γs16
√

2
2
−4
2 )Φ(−2 +

13
√

3

γs32
√

2
2
−5
2 )(j−j∗−3)+

≤ σ2γ2
e2j

∗−J(4 +
8Φ(−2 + 13

√
3

γs16
√

2
2
−4
2 )

1− Φ(−2 + 13
√

3
γs32
√

2
2
−5
2 )

)

≤ 2nρm(
σ√
n

; f)2ρz(
σ√
n

; f)γ2
e

8

nρz(
σ√
n

; f)
(4 + 8

Φ(−2 + 13
√

3
γs16
√

2
2
−4
2 )

1− Φ(−2 + 13
√

3
γs32
√

2
2
−5
2 )

)

= cm1ρm(
σ√
n

; f)2.

(A.2.91)
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Proof of Lemma A.1.39.

E((f̂−M(f))2
1{ǰ <∞})

= E
(

(f̂−M(f))2
(
1{j̃ > ǰ}+ 1{j̃ ≤ ǰ}

)
1{ǰ <∞}

)
=

j∗+1∑
j1=2

E((f̂−M(f))2
1{j̃ > ǰ = j1}) +

∞∑
j1=j∗+2

E((f̂−M(f))2
1{j̃ > ǰ = j1})

+ E
((

(f̂− avef (ǰ, îǰ))+ + (avef (ǰ, îǰ)−M(f))
)2
1{j̃ ≤ ǰ = j1}1{ǰ <∞}

)
≤

j∗+1∑
j1=2

E((f̂−M(f))2
1{j̃ > ǰ = j1}) +

∞∑
j1=j∗+2

E((f̂−M(f))2
1{j̃ > ǰ = j1})

+ 2E
((

(f̂− avef (ǰ, îǰ))+

)2
1{j̃ ≤ ǰ}1{ǰ <∞}

)
+

2E
((
avef (ǰ, îǰ)−M(f)

)2
1{j̃ ≤ ǰ}1{ǰ <∞}

)
.

(A.2.92)

We will have four lemmas to bound each term respectively. To avoid distraction, we will

defer the proofs of the lemmas to later part.

Lemma A.2.1.

j∗+1∑
j1=2

E((f̂−M(f))2
1{j̃ > ǰ = j1}) ≤ cm3ρm(

σ√
n

; f)2. (A.2.93)

Lemma A.2.2.

∞∑
j1=j∗+2

E((f̂−M(f))2
1{j̃ > ǰ = j1}) ≤ cm4ρm(

σ√
n

; f)2. (A.2.94)

Lemma A.2.3.

E(((f̂− avef (ǰ, îǰ))+)2
1{j̃ ≤ ǰ}1{ǰ <∞}) ≤ cm5ρm(

σ√
n

; f)2. (A.2.95)

Lemma A.2.4.

E((avef (ǰ, îǰ)−M(f))2
1{j̃ ≤ ǰ}1{ǰ <∞}) ≤ cm6ρm(

σ√
n

; f)2. (A.2.96)
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With these four lemmas, we know that

E((f̂−M(f))2
1{ǰ <∞}) ≤ (cm3 + cm4 + 2cm5 + 2cm6)ρm(

σ√
n

; f)2 = cm2ρm(
σ√
n

; f)2.

(A.2.97)

Now we will prove these four lemmas, For simplicity, we will not repeatedly write 1{ǰ <∞},

in the expectation, but that is the default assumption whenever ǰ appears.

Proof of Lemma A.2.1 Similarly to the white noise model, we have

j∗+1∑
j1=2

E((f̂−M(f))2
1{j̃ > ǰ = j1})

≤
j∗+1∑
j1=2

E
(

3

2

(
(avef (j1, îj1 + 2)−M(f))2

1{Yj1,îj1+6,s − Yj1,îj1+5,s ≤ 2
√

2γsσ
√

2J−j1}

+ (avef (j1, îj1 − 2)−M(f))2
1{Yj1,îj1+6,s − Yj1,îj1+5,s ≤ 2

√
2γsσ

√
2J−j1}

)
1{j̃ > j1}

)
≤

j∗+1∑
j1=2

3

2

(
(avef (j1, îj1 + 2)−M(f))2Φ(2− (avef (j1, îj1 + 2)−M(f))2

1
2

(J−j1)

3.5σγs
√

2
)

+ (avef (j1, îj1 − 2)−M(f))2Φ(2− (avef (j1, îj1 − 2)−M(f))2
1
2

(J−j1)

3.5σγs
√

2
)
)
E(1{j̃ > j1})

≤
j∗+1∑
j1=2

3 · 2j1−J(3.5
√

2σγs)
2V

≤ 6× 2j
∗+1−Jσ2 49

2
γ2
sV

≤ 48× 49× 2γ2
sV ρm(

σ√
n

; f)2 = cm3ρm(
σ√
n

; f)2.

(A.2.98)

The V in the inequalities are still the same as the V in the white noise model:

V = max
x>0

x2Φ(2− x).
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Proof of Lemma A.2.2.

∞∑
j1=j∗+2

E((f̂−M(f))2
1{j̃ > ǰ = j1})

≤
∞∑

j1=j∗+2

E
(

3

2

(
(avef (j1, îj1 + 2)−M(f))2

1{Yj1,îj1+6,s − Yj1,îj1+5,s ≤ 2
√

2γsσ
√

2J−j1}

1{∀j∗ + 1 ≤ j ≤ j1 − 1,min{Yj,îj+6,s − Yj,îj+5,s, Yj,îj−6,s − Yj,îj−5,s} > 2
√

2γsσ
√

2J−j1}

+ (avef (j1, îj1 − 2)−M(f))2
1{Yj1,îj1+6,s − Yj1,îj1+5,s ≤ 2

√
2γsσ

√
2J−j1}

1{∀j∗ + 1 ≤ j ≤ j1 − 1,min{Yj,îj+6,s − Yj,îj+5,s, Yj,îj−6,s − Yj,îj−5,s} > 2
√

2γsσ
√

2J−j1})
1{j̃ > j1}

)
≤

∞∑
j1=j∗+2

E

(
3

2

((
avef (j1, îj1 + 2)−M(f)

)2
Φ(2− (avef (j1, îj1 + 2)−M(f))2

1
2

(J−j1)

3.5σγs
√

2
)

Φ(−2 +
ρm( σ√

n
; f)2

1
2

(J−j∗−1)

σ
√

2γs
)Φ(−2 +

ρm( σ√
n

; f)2
1
2

(J−j∗−2)

σ2
√

2γs
)(j1−j∗−2)+

+ (avef (j1, îj1 − 2)−M(f))2Φ(2− (avef (j1, îj1 − 2)−M(f))2
1
2

(J−j1)

3.5σγs
√

2
)

Φ(−2 +
ρm( σ√

n
; f)2

1
2

(J−j∗−1)

σ
√

2γs
)Φ(−2 +

ρm( σ√
n

; f)2
1
2

(J−j∗−2)

σ2
√

2γs
)(j1−j∗−2)+

)
E(1{j̃ > j1})

)

≤
∞∑

j1=j∗+2

3 · 2j1−J(3.5
√

2σγs)
2V · Φ(−2 +

√
3

4γs
)Φ(−2 +

√
3

8
√

2γs
)(j1−j∗−2)+

≤ 3 · 2j∗+2−J 49

2
σ2γ2

sV Φ(−2 +
1

4
)

1

1− 2Φ(−1.9)

≤ cm4ρm(
σ√
n

; f)2.

(A.2.99)

254



Proof of Lemma A.2.3.

E(((f̂− avef (ǰ, îǰ))+)2
1{j̃ ≤ ǰ <∞})

=
J∑

j2=2

J∑
j1=j2

E
(

((f̂− avef (j1, îj1))+)2
1{j̃ = j2}1{ǰ = j1}

)

≤
J∑

j2=2

J∑
j1=j2

E
(
1{j̃ = j2}((avef (j1, îj1 + 2)− avef (j1, îj1))+)2

1{Yj1,îj1+6,s − Yj1,îj1+5,s ≤ 2
√

2γsσ
√

2J−j1}

1{∀j∗ + 2 ≤ j ≤ j1 − 1, Yj1,îj1−6,s − Yj1,îj1−5,s > 2
√

2γsσ
√

2J−j1 ,

Yj1,îj1+6,s − Yj1,îj1+5,s > 2
√

2γsσ
√

2J−j1 , if exists}

+ 1{j̃ = j2}((avef (j1, îj1 − 2)− avef (j1, îj1))+)2

1{Yj1,îj1−6,s − Yj1,îj1−5,s ≤ 2
√

2γsσ
√

2J−j1}

1{∀j∗ + 2 ≤ j ≤ j1 − 1, Yj1,îj1−6,s − Yj1,îj1−5,s > 2
√

2γsσ
√

2J−j1 ,

Yj1,îj1+6,s − Yj1,îj1+5,s > 2
√

2γsσ
√

2J−j1 , if exists}
)

≤
J∑

j2=2

J∑
j1=j2

E
(

(avef (j1, îj1 + 2)− avef (j1, îj1))2
1{avef (j1, îj1 + 2)− avef (j1, îj1) > 0}

Φ(2−
(avef (j1,îj1+2)−avef (j1,îj1 ))

2

√
2J−j1√

2γsσ
)Φ(−2 +

13
16ρm( σ√

n
; f)
√

2J−j∗−2

σγs
√

2
)(j1−j∗−2)+

1{j̃ = j2}

+ (avef (j1, îj1 − 2)− avef (j1, îj1))2
1{avef (j1, îj1 − 2)− avef (j1, îj1) > 0}

Φ(2−
(avef (j1,îj1−2)−avef (j1,îj1 ))

2

√
2J−j1√

2γsσ
)Φ(−2 +

13
16ρm( σ√

n
; f)
√

2J−j∗−2

σγs
√

2
)(j1−j∗−2)+

1{j̃ = j2}
)

(A.2.100)
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≤
J∑

j2=2

J∑
j1=j2

E
(
1{avef (j1, îj1 + 2) > avef (j1, îj1)}

23+j1−Jγ2
sσ

2V 1{j̃ = j2}Φ(−2 +
13
√

3

64
√

2γs
)(j1−j∗−2)+

+ 1{avef (j1, îj1 − 2) > avef (j1, îj1)}

23+j1−Jγ2
sσ

2V 1{j̃ = j2}Φ(−2 +
13
√

3

64
√

2γs
)(j1−j∗−2)+

)
≤ 2

J∑
j2=2

E(1{j̃ = j2})γ2
sσ

2V 25+j∗−J(1 +
1

1− 2Φ(−2 + 13
√

3
64
√

2γs
)
)

≤ cm5ρm(
σ√
n

; f)2.

Proof of Lemma A.2.4. For simplicity, in this proof, we take ǰ < ∞ by default. However,

this is not a key condition, we only need this to establish that j̃ ≤ J and j̃ ≤ ĵ.

E((avef (ǰ, îǰ)−M(f))2
1{j̃ ≤ ǰ})

≤ 2E
(((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)

+

)2
1{j̃ ≤ ǰ}

)
+ 2E

(((
avef (j̃, îj̃)−M(f)

)
+

)2
1{j̃ ≤ ǰ}

)
.

(A.2.101)

Now we introduce two lemmas that we will prove later.

Lemma A.2.5.

E
(((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)

+

)2
1{j̃ ≤ ǰ}

)
≤ cm7ρm(

σ√
n

; f)2. (A.2.102)
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Lemma A.2.6.

E
(((

avef (j̃, îj̃)−M(f)
)

+

)2
1{j̃ ≤ ǰ}

)
≤ cm8ρm(

σ√
n

; f)2. (A.2.103)

With these two lemmas, we have

E((avef (ǰ, îǰ)−M(f))2
1{j̃ ≤ ǰ}) ≤ 2(cm7+cm8)ρm(

σ√
n

; f)2 = cm6ρm(
σ√
n

; f)2. (A.2.104)

Proof of Lemma A.2.5 . Similar to the white noise model, we will first define the following

events to describe the relative location of one iteration further compared to the current one

at step j̃ + r:

Ãr ={ω : îj̃+r < i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1 − 2}

∪ {ω : îj̃+r < i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1 + 1},

B̃r ={ω : îj̃+r < i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1 − 1}

∪ {ω : îj̃+r < i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1},

C̃r ={ω : îj̃+r < i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1}}

∪ {ω : îj̃+r < i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1 − 1},

D̃r ={ω : îj̃+r < i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1 + 1}}

∪ {ω : îj̃+r < i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1 − 2}.

(A.2.105)

Basically, from Ãr to D̃r, the average of the signal are from the highest to the lowest.

257



Then we have

E
(((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)

+

)2
1{j̃ ≤ ǰ}

)
= E

(((
avef (ǰ, îǰ)− avef (j̃, îj̃)

)
+

)2
1{j̃ + 1 ≤ ǰ}

)
≤ E

(((
avef (ǰ, îǰ)− avef (j̃, îj̃)

)
+

)2
1{j̃ + 1 ≤ ǰ}(

1{Ã0 ∪ (B̃0 ∩ D̃c
1) ∪ (B̃0 ∩ D̃1 ∩ {ǰ = j̃ + 1})}

+ 1{(B̃0 ∩ D̃1) ∪ (C̃0 ∩ B̃1)}1{ǰ ≥ j̃ + 3}+ 1{C̃0 ∩ Ã1}
))

.

(A.2.106)

We will bound the three terms separately, before that, only for bounding these three terms,

denote δ = 1{j1 = j2 + 1}, δ0 = 1{j = j2}.

E
((
avef (ǰ, îǰ)− avef (j̃, îj̃)

)
+
1{j̃ + 1 ≤ ǰ}(1{Ã0 ∪ (B̃0 ∩ D̃c

1) ∪ (B̃0 ∩ D̃1 ∩ {ǰ = j̃ + 1})})
)

≤
∞∑
j2=2

∞∑
j1=j2+1

E
(

2

j1−1∑
j=j2

2j−j2
((
avef (j + 1, îj+1)− avef (j, îj)

)
+

)2

1{ǰ = j1, j̃ = j2}
(
1{Ã0 ∪ (B̃0 ∩ D̃c

1)}+ 1{B̃0 ∩ D̃1}1{j1 = j2 + 1}
))

≤
∞∑
j2=2

∞∑
j1=j2+1

j1−1∑
j=j2

2j+1−j2E
(
1{ǰ = j1}1{j̃ = j2}

(
avef (j + 1, îj+1)− avef (j, îj)

)2
1{avef (j + 1, îj+1) > avef (j, îj)}

(
1{Ã0 ∪ (B̃0 ∩ D̃c

1)}+ 1{B̃0 ∩ D̃1}1{j = j2, j1 = j + 1}
))

≤
∞∑
j2=2

∞∑
j=j2

2j+1−j2E
((
avef (j + 1, îj+1)− avef (j, îj)

)2
1{avef (j + 1, îj+1) > avef (j, îj)}

1{j̃ = j2}
∞∑

j1=j+1

Φ(−2)(j1−j2−2)+Φ(−2 +

13
16ρm( σ√

n
; f)
√

2J−j∗−2

γsσ
√

2
)(j2−j∗−δ)+

(
1{Ã0 ∪ (B̃0 ∩ D̃c

1)}+ 1{B̃0 ∩ D̃1}1{j = j2, j1 = j + 1}
))

(A.2.107)
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≤
∞∑
j2=2

∞∑
j=j2

2j+1−j2E
((
avef (j + 1, îj+1)− avef (j, îj)

)2
1{avef (j + 1, îj+1) > avef (j, îj)}

1{j̃ = j2, Ã0 ∪ B̃0}
(
1{j = j2}(1 +

1

1− Φ(−2)
) + 1{j ≥ j2 + 1}Φ(−2)j−j2−1

1− Φ(−2)

)
Φ(−2 +

13
16ρm( σ√

n
; f)
√

2J−j∗−2

γsσ
√

2
)(j2−j∗−δ0)+

)
≤
∞∑
j2=2

∞∑
j=j2

2j+1−j2
(
1{j = j2}(1 +

1

1− Φ(−2)
) + 1{j ≥ j2 + 1}Φ(−2)j−j2−1

1− Φ(−2)

)
Φ(−2 +

13
√

3

64
√

2γs
)(j2−j∗−δ0)+

E
((
avef (j + 1, îj+1)− avef (j, îj)

)2
1{avef (j + 1, îj+1) > avef (j, îj)}1{j̃ = j2, Ã0 ∪ B̃0}

)

Now define the set C(j, k) to be the set of pairs (i1, i2) such that, P (îk+1 = i2, îk = i1|j̃ =

j) > 0 and avef (j + 1, i2) > avef (j, i1). Then we know that
∣∣C(j, k)

∣∣ ≤ min{10 · 2k−j · 2, 3 ·

4k+1−j}.

E
((
avef (j + 1, îj+1)− avef (j, îj)

)2
1{avef (j + 1, îj+1) > avef (j, îj)}1{j̃ = j2, Ã0 ∪ B̃0}

)
≤

∑
(i1,i2)∈C(j2,j)

E
((
avef (j + 1, i2)− avef (j, i1)

)2
1{j̃ = j2, Ã0 ∪ B̃0}1{îj+1 = i2, îj = i1}

)
≤

∑
(i1,i2)∈C(j2,j)

E
((
avef (j + 1, i2)− avef (j, i1)

)2
1{îj+1 = i2, îj = i1}

)

≤
∑

(i1,i2)∈C(j2,j)

(
avef (j + 1, i2)− avef (j, i1)

)2
Φ(−

(
avef (j + 1, i2)− avef (j, i1)

)√
2J−j−1

γlσ
√

2
)

≤
∑

(i1,i2)∈C(j2,j)

2j+1−J · 2σ2γ2
l Q

≤ min{10 · 2j−j2 · 2, 3 · 4j+1−j2}2j+1−J · 2σ2γ2
l Q.

(A.2.108)

Still, Q = supx>0 x
2Φ(−x).
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Continue with inequality (A.2.107), we have

E
((
avef (ǰ, îǰ)− avef (j̃, îj̃)

)
+
1{j̃ + 1 ≤ ǰ}1{Ã0 ∪ B̃0}

)
≤
∞∑
j2=2

∞∑
j=j2

2j+1−j2
(
1{j = j2}(1 +

1

1− Φ(−2)
) + 1{j ≥ j2 + 1}Φ(−2)j−j2−1

1− Φ(−2)

)
Φ(−2 +

13
√

3

64
√

2γs
)(j2−j∗−δ0)+ min{10 · 2j−j2 · 2, 3 · 4j+1−j2}2j+1−J · 2σ2γ2

l Q

=

∞∑
j2=2

(
24
(
1 +

1

1− Φ(−2)

)
+

4

1− Φ(−2)

80

1− 8Φ(−2)

)
Φ(−2 +

13
√

3

64
√

2γs
)(j2−j∗−1)+2j2+2−Jσ2γ2

l Q

≤ 2j
∗−Jσ2γ2

l Q

∞∑
j2=2

(
24
(
1 +

1

1− Φ(−2)

)
+

80 4
1−Φ(−2)

1− 8Φ(−2)

)
Φ(−2 +

13
√

3

64
√

2γs
)(j2−j∗−1)+2j2−j

∗+2

≤ 8σ2γ2
l Q

nρz(
σ√
n

; f)
c̃m9
≤ ρm(

σ√
n

; f)2 · 16γ2
l Qc̃m9

= cm9
ρm(

σ√
n

; f)2

(A.2.109)
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Now let’s turn to the second term

E
((
avef (ǰ, îǰ)− avef (j̃, îj̃)

)
+
1{j̃ + 3 ≤ ǰ}1{(B̃0 ∩ D̃1) ∪ (C̃0 ∩ B̃1)}

)
≤
∞∑
j2=2

∞∑
j1=j2+3

2

j1−1∑
j=j2+2

E
(

2j−j2−2
((
avef (j + 1, îj+1)− avef (j, îj)

)
+

)2

1{ǰ = j1, j̃ = j2}1{(B̃0 ∩ D̃1) ∪ (C̃0 ∩ B̃1)}
)

≤
∞∑
j2=2

∞∑
j=j2+2

2j−j2−1
∞∑

j1=j+1

∑
(i1,i2)∈C(j2,j)

E
((

avef (j + 1, i2)− avef (j, i1)
)2

1{ǰ = j1}1{j̃ = j2}1{îj+1 = i2, îj = i1}1{(B̃0 ∩ D̃1) ∪ (C̃0 ∩ B̃1)}
)

≤
∞∑
j2=2

∞∑
j=j2+2

2j−j2−1
∑

(i1,i2)∈C(j2,j)

∞∑
j1=j+1

E
((

avef (j + 1, i2)− avef (j, i1)
)2

1{j̃ = j2}1{îj+1 = i2, îj = i1}1{(B̃0 ∩ D̃1) ∪ (C̃0 ∩ B̃1)}
)

Φ(−2)j1−j2−3Φ(−2 +

13
16ρm( σ√

n
; f)
√

2J−j∗−2

γsσ
√

2
)(j2−j∗)+

≤
∞∑
j2=2

∞∑
j=j2+2

2j−j2−1 min{20 · 2j−j2 , 3 · 4j+1−j2}2j+2−Jσ2γ2
l Q

Φ(−2)j−j2−2

1− Φ(−2)
Φ(−2 +

13
√

3

64
√

2γs
)(j2−j∗)+

= 2j
∗−Jσ2

∞∑
j2=2

2j2−j
∗
Φ(−2 +

13
√

3

64
√

2γs
)(j2−j∗)+ c̃m10

≤ cm10ρm(
σ√
n

; f)2.

(A.2.110)
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Finally, let’s look at the third term

E
((
avef (ǰ, îǰ)− avef (j̃, îj̃)

)
+
1{j̃ + 1 ≤ ǰ}1{C̃0 ∩ Ã1}

)
≤
∞∑
j2=2

∞∑
j=j2+1

2j−j2
∞∑

j1=j+1

∑
(i1,i2)∈C(j2,j)

E
((

avef (j + 1, i2)− avef (j, i1)
)2

1{ǰ = j1}1{j̃ = j2}1{îj+1 = i2, îj = i1}1{(C̃0 ∩ Ã1)}
)

≤
∞∑
j2=2

∞∑
j=j2+1

2j−j2 min{20 · 2j−j2 , 3 · 4j+1−j2}2j+2−Jσ2γ2
l Q

Φ(−2)j−j2−2

1− Φ(−2)
Φ(−2 +

13
√

3

64
√

2γs
)(j2−j∗)+

≤ 2j
∗−Jσ2c̃m11 ≤ cm11ρm(

σ√
n

; f)2
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Therefore,

E
(((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)

+

)2
1{j̃ ≤ ǰ}

)
≤ (cm9 + cm10 + cm11)ρm(

σ√
n

; f)2 = cm7ρm(
σ√
n

; f)2

(A.2.112)

Proof of Lemma A.2.6. First we define the following notation:

IH(j) = {i∗j − 4, i∗j − 3, i∗j − 2, i∗j + 2, i∗j + 3, i∗j + 4},

which denotes the possible values of îj if j = j̃.
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E
((

avef (j̃, îj̃ −M(f))
)2

1{j̃ ≤ ǰ}
)

=

J∑
j2=2

J∑
j1=j2

∑
i∈IH(j2)

E
((
avef (j2, i)−M(f)
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)
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E
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avef (j2, i)−M(f)
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E(1{ǰ = j1}
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7
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6mj
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σ√
n

; f)
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σ√
n

; f)

√
2J−j√
2γsσ
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≤
J∑
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∑
i∈IH(j2)

E
((

avef (j2, i)−M(f)
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(
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16

√
3

4
√

2γs
)j2−j

∗−2

1− Φ(−2 + 13
16

√
3

4
√

2γs
)

))

≤
J∑
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∑
i∈IH(j2)

(
avef (j2, i)−M(f)
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Φ(−
(
avef (j2, i)− avef (j2, i

∗
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+ sign(i− i∗j2))
)√

2J−j2√
2γlσ

)
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6 )j2−j
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1− Φ(−2 + 1
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)
≤

J∑
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(23
1

8
)2γ2

l σ
22j2−JQ

Φ(−2 + 1
6 )(j2−j∗−2)+

1− Φ(−2 + 1
6 )

≤ 2j
∗+2−Jσ2c̃m8

≤ cm8ρm(
σ√
n

; f)2.
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Proof of Lemma A.1.40.

E
(
(fi −M(f))2

1{ǰ =∞}
)

= (min{f(xi) : 0 ≤ i ≤ n} −M(f))2

+ E
(
(fi −M(f))2

1{ǰ =∞}1{
∣∣îJ − i∗J

∣∣ ≥ 2}
)

≤ (min{f(xi) : 0 ≤ i ≤ n} −M(f))2

+ E
(
(fîJ −M(f))2

1{ǰ =∞}1{
∣∣îJ − i∗J

∣∣ ≥ 2}
)

(A.2.114)
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In the proof of Lemma A.2.4, all the argument using properties of ǰ only uses that Tj > 2σ̃j

for j < ǰ, so for the second term, all the argument can also go through here in the case

ǰ =∞. So we have

E
(
(fi −M(f))2

1{ǰ =∞}
)
≤ cm6ρm(

σ√
n

; f)2 + (min{f(xi) : 0 ≤ i ≤ n} −M(f))2

(A.2.115)

Proof of Lemma A.1.41.

σ2E(1{ǰ =∞})

≤ σ2
1{J ≤ j∗ + 1}+ σ2E(1{ǰ =∞})1{J ≥ j∗ + 2}

< σ2 16

nρz(
σ√
n

; f)
1{J ≤ j∗ + 1}+ σ2Φ(−2 +

1

6
)J−j

∗−1

≤ 32ρm(
σ√
n

; f)2
1{J ≤ j∗ + 1}+ σ2

1
n

2J−j∗−1

n

(2Φ(−2 +
1

6
)
)J−j∗−1

1{J ≥ j∗ + 2}

≤ 32ρm(
σ√
n

; f)2
1{J ≤ j∗ + 1}+ 32ρm(

σ√
n

; f)2 · 2Φ(−2 +
1

6
)1{J ≥ j∗ + 2}

≤ 32ρm(
σ√
n

; f)2
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264



Proof of Lemma A.1.42. Similar to the proof of Lemma A.1.39, we have

E((f̂−M(f))2
1{ǰ <∞})

≤
J∑

j1=2

E((f̂−M(f))2
1{j̃ > ǰ = j1})

+ 2E
((

(f̂− avef (ǰ, îǰ))+

)2
1{j̃ ≤ ǰ}1{ǰ <∞}

)
+ 2E

((
avef (ǰ, îǰ)−M(f)

)2
1{j̃ ≤ ǰ}1{ǰ <∞}

)
.

(A.2.117)

Similar to the arguments in the proof of Lemma A.2.1, we have

J∑
j1=2

E((f̂−M(f))2
1{j̃ > ǰ = j1})

≤
J∑

j1=2

3 · 2j1−J(3.5
√

2σγs)
2V

≤ 6 · 49

2
γ2
sV σ

2 = čm4σ
2,

(A.2.118)

where V = maxx>0 x
2Φ(2− x).

Similar to the arguments in the proof of Lemma A.2.3

2E
((

(f̂− avef (ǰ, îǰ))+

)2
1{j̃ ≤ ǰ}1{ǰ <∞}

)
≤ 2

J∑
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E
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√
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√

2γs
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sσ
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√

3

64
√

2γs
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)
≤ 4

J∑
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E(1{j̃ = j2})γ2
sV 24σ2

≤ 4γ2
sV 24σ2 = čm5σ

2,
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where V = maxx>0 x
2Φ(2− x).

For the third term, we have

2E
((
avef (ǰ, îǰ)−M(f)

)2
1{j̃ ≤ ǰ}1{ǰ <∞}

)
≤ 4E

(((
avef (ǰ, îǰ)− avef (j̃, îj̃)

)
+

)2
1{j̃ ≤ ǰ <∞}

)

+ 4E

(((
avef (j̃, îj̃)−M(f)

)
+

)2
1{j̃ ≤ ǰ <∞}

)
.

(A.2.120)

Now we have the following lemmas which we will prove later:

Lemma A.2.7.

E

(((
avef (ǰ, îǰ)− avef (j̃, îj̃)

)
+

)2
1{j̃ ≤ ǰ <∞}

)
≤ čm6σ

2. (A.2.121)

Lemma A.2.8.

E

(((
avef (j̃, îj̃)−M(f)

)
+

)2
1{j̃ ≤ ǰ <∞}

)
≤ čm7σ

2. (A.2.122)

Now we can conclude that

E((f̂−M(f))2
1{ǰ <∞}) ≤ (čm4 + čm5 + 4čm6 + 4čm7)σ2 = č2

m2σ
2. (A.2.123)

Proof of A.2.7. Note that, in this lemma, we have ǰ < ∞, however, it’s not the essential,

all is needed from it is that j̃ ≤ J , which comes from j̃ ≤ ǰ <∞. The proof of this lemma

use many arguments from the proof of Lemma A.2.5 and lemmas proving it. And it can

be seen that all the use of ǰ there are that Tj > 2σ̃j for j < ǰ, and j̃ ≤ ǰ. Similar to the

arguments in the proof of Lemma A.2.5, and suppose we take all the notation there, then
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we have

E
(((

avef (ĵ, îĵ)− avef (j̃, îj̃)
)

+

)2

1{j̃ ≤ ĵ}
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)
,

(A.2.124)
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E
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Therefore,

E
(((

avef (ĵ, îĵ)− avef (j̃, îj̃)
)

+

)2
1{j̃ ≤ ĵ}

)
≤ (čm8 + čm9 + čm10)σ2.

(A.2.128)

Proof of A.2.8. The arguments in the proof of Lemma A.2.6 hold, and we only need to

change the last two inequalities to come to statement of this lemma.

More specifically

E
((

avef (j̃, îj̃ −M(f))
)2
1{j̃ ≤ ĵ}

)
≤

J∑
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(23
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Proof of Lemma A.1.43. Similar to the arguments in Lemma A.1.40, we have

E
(
(fi −M(f))2

1{ĵ =∞}
)

= (min{f(xi) : 0 ≤ i ≤ n} −M(f))2

+ E
(
(fi −M(f))2

1{ĵ =∞}1{
∣∣îJ − i∗J

∣∣ ≥ 2}
)

≤ (min{f(xi) : 0 ≤ i ≤ n} −M(f))2

+ E
(
(fîJ −M(f))2

1{ĵ =∞}1{
∣∣îJ − i∗J

∣∣ ≥ 2}
)
.

(A.2.130)

Also, since in the proof of Lemma A.2.4, and Lemma A.1.42, Lemma A.1.43, all the argu-

ment using properties of ĵ only uses that Tj > 2σ̃j for j < ĵ, so for the second term, all the

argument can also go through here in the case ĵ =∞. So we have

E
(
(fîJ −M(f))2

1{ĵ =∞}1{
∣∣îJ − i∗J

∣∣ ≥ 2}
)

≤ 2E
((

(avef (ĵ, îĵ)− avef (j̃, îj̃))+

)2
1{j̃ ≤ ĵ}

)
+ 2E

((
avef (j̃, îj̃)−M(f)

)2
1{j̃ ≤ ĵ}

)
≤ 2(čm6 + čm7)σ2.
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Therefore,

E
(
(fi −M(f))2

1{ĵ =∞}
)
≤ (min{f(xi) : 0 ≤ i ≤ n} −M(f))2 + 2(čm6 + čm7)σ2.

(A.2.132)

Let čm3 =
√

2(čm6 + čm7) gives the statement of the lemma.
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A.3. Comparison with CLS Methods and Connections with Classical Min-

imax Framework for Chapter 2

In this section, we compare our procedures with the convexity-constrained least squares

methods for the minimizer and discuss the connections with the classical minimax frame-

work. In particular, we prove that the CLS confidence interval for the minimizer proposed

in Deng et al. (2020) is sub-optimal under the local minimax framework.

A.3.1. Sub-optimality of the CLS Confidence Interval

We start with the proof of Proposition 2.4.1. It suffices to prove the following proposition

as we can set the r(n) in the following proposition to be arbitrary large.

Proposition A.3.1. For any function r(n) ≥ 1, for any integer n ≥ 5, ∃fn ∈ F2 such that

EfnL(CLSCIα)

EfnL(CIz,α)
≥ r(n). (A.3.1)

Proof. Recall that we have established

EfL(CIz,α) ≤ C2,αL̃z,α,n(σ; f), for all f ∈ F

in Theorem 2.4.2, and further, in the proof of Theorem 2.4.2, we have

EfL(CIz,α) ≤ C2,α

(
sup

h∈Gn(f)
ρz(

σ√
n

;h)

(
1 ∧

√
nρz(

σ√
n

;h)

)
+

(1− 2α)

2
Dz(n, f)

)
,

where the definition of Gn(f) is given in Equation (A.1.99). This combined with the lower

bound of local minimax length of confidence interval that we established in Proposition

A.1.4, namely

L̃z,α,n(σ; f) ≥ C̃z,α
(

sup
g∈Gn(f)

ρz(
σ√
n

; g)

(
1 ∧

√
nρz(

σ√
n

; g)

)
+

(1− 2α)

2
Dz(n, f)

)
,
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indicates that it suffices to show that for any r(n) > 0, there exists f ∈ F2 such that

EfL(CLSCIα)(
supg∈Gn(f) ρz(

σ√
n

; g)

(
1 ∧

√
nρz(

σ√
n

; g)

)
+ (1−2α)

2 Dz(n, f)

) ≥ r(n).

Note that L(CLSCIα) ≥ 1
n , we only need to find f ∈ F2 such that

Dz(n, f) ≤ 1

2nr(n)
and sup

g∈Gn(f)
ρz(

σ√
n

; g) ≤ 1

2n(r(n) + 1)
. (A.3.2)

Consider function f0(x) = 4n(r(n) + 1)
3
2 (σ + 1)|x− bn/2cn |, for which we have

Dz(n, f0) = 0, sup
g∈Gn(f0)

ρz(
σ√
n

; g) ≤ (3
4)

1
3

2

1

n(r(n) + 1)
.

The conditions mentioned in Inequality (A.3.2) are met, but f0 is not in F2. Now we will

proceed to construct f1(x) ∈ F2 such that the conditions in Inequality (A.3.2) are still met.

Let

f̃0(x) =



f0(x), x ∈ [0, 1]

f0(1) + sup
t→1−

f(1)− f(t)

1− t (x− 1), x > 1

f0(0) + sup
t→0+

f(t)− f(0)

t
x, x < 0

. (A.3.3)

Then consider the following class of transformations of f0:

T (f0; δ)(x) =

∫
f̃0(t)

1√
2π

exp (−(x− t)2

2δ2
)dt. (A.3.4)

It’s easy to check that when f0 is a convex function on [0, 1], T (f0; δ) is a convex function on

R, and that T (f0; δ) is twice differentiable with continuous positive second order derivative

around the minimizer. Also, when f0 is fixed, limδ→0+ supx∈[0,1]

∣∣T (f0; δ)(x) − f0(x)
∣∣ = 0.
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Therefore,

lim
δ→0+

sup
g∈Gn(T (f0;δ))

ρz(
σ√
n

; g) = sup
g∈Gn(f0)

ρz(
σ√
n

; g) <
1

2n(r(n) + 1)
,

and limδ→0+ Dz(n, T (f0; δ)) = Dz(n, f0) = 0.

Thus there exists δ(f0) > 0 such that T (f0; δ(f0)) satisfies conditions in Inequality (A.3.2),

which concludes the proof.

From the proof we can see the power of non-asymptotic and non-localized results. ρz(
σ√
n

; f)

is not a localized quantity while second order derivative is a localized quantify. Therefore,

the asymptotic result based on localized quantity will encounter the problem that no matter

how large n is, it’s still outside the realm of being local for some functions.

Before delving into a discussion in more depth, let’s look at a more intuitive example where

the convex least squares based confidence interval introduced in Deng et al. (2020) suffers

from a long length empirically, f(x) = 100|2x − 1|. Its length remains roughly a constant

while the benchmark apparently goes to zero as sample size goes to infinity. Note that

the empirical performance for the estimation of the minimizer is reasonable, and f lies in

the function class of CLS estimation (of the entire function), meaning that the “oracle”

CLS estimator of the entire function would be f itself. An explanation of this long length

is on the construction of the confidence interval after CLS. The length of the confidence

interval in Deng et al. (2020) is a constant multiplier (depending on confidence level) of the

distance of the two neighboring kinks around the minimizer based on the CLS estimation

of the entire function. Note that for f , the perfect estimation of f , the neighboring kinks

of the minimizer are always 0 and 1, regardless of the sample size. So it’s not surprising to

have a long length using kinks around the minimizer, which highly relies on second order

derivatives rather than exploiting more of the convexity.
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This extreme example, together with the example we provide in the proof of sub-optimality,

shows that the convex least squares ingredient of the confidence interval construction is

not only reason for sub-optimality. And Algorithm 1 provides a way to fully exploit the

convexity of the true function.

On the other hand, for the behavior of our methods under the asymptotic sense for smooth

functions (defined in Section A.3.2), we attain same rates optimal n−
1

2k+1 for minimizer,

which we will discuss more in Section A.3.2.

A.3.2. Connections with Classical Minimax Framework: Lower Bounds, Opti-

mality, and Characteristics

In this part we relate local minimax rates to classical minimax rates, which captures the

worst case for a certain function class.

Before going into details, we elaborate on general comparison. Regarding the comparison

with the classical minimax lower bound over a certain function class, the lower bound

provided by our non-asymptotic local minimax framework (applied to that function class)

is no larger than the classical one. Because in the classical minimax framework, the Le

Cam two-point reduction, in a way, can be considered as a two-point case of Assouads or

Fanos Lemma. This makes it a stricter criterion, and it preserves more information before

taking supreme over the function class (individual functions are treated individually). A

major difficulty of our non-asymptotic local minimax framework lies in the existence (and

construction) of an adaptive procedure that attain this potentially smaller benchmark. And

a key difference from the classical minimax framework is that the local minimax framework

enables the characterization of the difficulty for estimating individual functions, and makes

establishing the non-supperefficiency type of results conceptually possible.

To illustrate through an example, we focus on convex function class with additional smooth-

ness conditions, as in literature the classical minimax rates for both smooth functions and
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smooth convex functions are extensively investigated. We walk through the procedures

translating local minimax rates to classical minimax lower bounds, which has following

(additional) implications that we highlight.

• For the same class of functions, all optimal procedures under non-asymptotic local

minimax benchmarks are optimal in the classical sense.

• The local minimax rates established for one class of functions (e.g. convex functions)

can be useful for establishing classical minimax lower bounds for another function

class (e.g. smooth functions).

Last but not least, we show that the classical minimax rates for convex function class are

meaningless, which shows the advantage of non-asymptotic local minimax framework.

The smoothness condition we consider is local smoothness defined around the minimizer.

For k > 1 and B ≥ B1 > 0, the locally smooth convex function class Γ1(k;B1, B) is defined

as

Γ1(k;B1, B) = {f ∈ F : B1 ≤ lim
t→Z(f)

|f(t)− f(Z(f))|
|t− Z(f)|k ≤ lim

t→Z(f)

|f(t)− f(Z(f))|
|t− Z(f)|k ≤ B}.

(A.3.5)

Similar type of smoothness class has been considered in Shoung et al. (2001) except that

their smoothness requires the limit to exist and be exactly B (i.e. B1 = B). We will also

briefly discuss a global version of smoothness later. For the function class F ∩ Γ1(k;B1, B)

the corresponding moduli of continuity is given by, for f ∈ Γ1(k;B1, B),

ω̂z(ε; f) = sup{|Z(f)− Z(g)| : ‖f − g‖2 ≤ ε, g ∈ Γ1(k;B1, B)},

ω̂m(ε; f) = sup{|M(f)−M(g)| : ‖f − g‖2 ≤ ε, g ∈ Γ1(k;B1, B)}.
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Further, similar to the proof of Proposition 2.2.2 we can show that

ω̂z(ε; f) ≥ ρz(ε; f), ω̂m(ε; f) ≥ ρm(ε; f). (A.3.6)

We defer the proof of this inequality to the last part of this section.

Consider function f1 = B
2

∣∣t− 1
2

∣∣k, which is in Γ1(k;B1, B). Then we have that the classical

minimax rate of estimating minimum for the function class Γ1(k;B1, B) is lower bounded

by

inf
M̂

sup
f∈Γ1(k;B1,B)

Ef |M̂ −M(f)|

≥ sup
f∈Γ1(k;B1,B)

sup
g∈Γ1(k;B1,B)

inf
M̂

max
h∈{f,g}

Eh|M̂ −M(h)|

≥ sup
g∈Γ1(k;B1,B)

inf
M̂

max
h∈{f1,g}

Eh|M̂ −M(h)|

≥ a1ρm(ε; f1)

= a1cB,kε
2k

2k+1 ,

(A.3.7)

where cB,k = 2
−(k+1)
2k+1 B

1
2k+1 .

Similarly, for estimating the minimizer, take f1 = B1
2

∣∣t− 1
2

∣∣k, we have the classical minimax

rate being lower bounded by

inf
Ẑ

sup
f∈Γ1(k;B1,B)

Ef |Ẑ − Z(f)| ≥ a1

(
2

B2
1

) 1
2k+1

ε
2

2k+1 . (A.3.8)

Note that the locally smooth convex function class Γ1(k;B1, B) is a subset of locally smooth

function class, so the lower bounds for Γ1(k;B1, B) apparently hold for locally smooth

function class. From here we can see that while our local minimax rates are primarily

based on the properties of convex functions, it’s also useful for establishing lower bounds

for locally smooth function class.
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To further illustrates this point, we show that this trick is also very useful for establishing

lower bounds for estimating the minimum for globally smooth functions, which is also

intensively investigated in the literature.

The globally smooth convex function class Γ2(B, k) is defined as

Γ2(B, k) = {f ∈ F : |f(t)− f(Z(f))| ≤ B|t− Z(f)|k, ∀t ∈ [0, 1]}. (A.3.9)

Note that the globally smoothness differs from the locally smoothness in that we are not only

interested in the local behavior around the minimizer. Globally smooth convex function

class is a smaller function class when compared with locally smooth convex function class

(if we can let B1 = 0 to allow the same form).

The continuity moduli can be similarly defined as

ω̃m(ε; f) = sup {|M(f)−M(g)| : ‖f − g‖2 ≤ ε, g ∈ Γ2(B, k)} , (A.3.10)

for f ∈ Γ2(B, k).

Similarly, we can show that

ω̃m(ε; f) ≥ ρm(ε; f), (A.3.11)

the proof of which is deferred to the last part.

With Inequality (A.3.11), using similar arguments as in Inequality (A.3.7), we have that

the minimax rate for estimation of minimum for function class Γ2(B, k) is lower bounded

by a1cB,kε
2k

2k+1 (where cB,k = 2
−(k+1)
2k+1 B

1
2k+1 ), which automatically serve as a lower bound

for globally smooth function class.

The lower bounds in white noise model are closely related to the non-parametric regression

as shown before. Despite of the large volume of literature on non-parametric regression, the
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lower bounds for varies smooth classes are well known. For example, for isotropic Hölder

class, the lower bound is not known until lately (Belitser et al., 2021).

Now we proceed to see the advantage of local minimax benchmarks compared with classical

minimax rates. Consider a collection of functions fδ = δ|t − 1
2 |, for δ > 0. This collection

of functions are convex. And we have

lim
δ→0+

ρz(ε; fδ) =
1

2
,

lim
δ→+∞

ρm(ε; fδ) =∞,

which are lower bounds (up to some absolute constants) for classical minimax rates for

convex functions. Any procedure will be optimal under classical minimax framework, which

makes the classical minimax framework meaningless in this setting.

For transferring rates under our framework into classical minimax framework for the re-

gression setting, we only need to change ε into σ2

n , as the discretization error is always

dominated by the noise induced error in classical minimax framework.

Also note that for the settings that CLS estimator/CLSCI are considered in Ghosal and

Sen (2017) or Deng et al. (2020), it can be written as ∪B>0Γ1(k;B,B) for k ≥ 2 and being

and even number. Note that our procedures do not depend on B while not only achieving

the optimal minimax rate in classical sense (in terms of n) for Γ1(k;B,B) but also having

a risk/length smaller than an universal constant multiple of the lower bound for each and

every B and k. Our methods are adaptively optimal for the settings that CLS/CLSE are

investigated in.

Proof of Inequality (A.3.6) and Inequality (A.3.11). To prove ω̃m(ε; f) ≥ ρm(ε; f), we only

need to replace gδ(t) in the proof of Proposition 2.2.2 to be gδ = max{f(t),min{uε + δ(|t−

Z(f)|k − |tl − Z(f)|k), uε + δ(|t− Z(f)|k − |tr − Z(f)|k)}} when k ≥ 1, where δ < B. It is

easy to see that this new gδ ∈ Γ2(B, k), ‖gδ−f‖ ≤ ε and limδ→0 |M(gδ)−M(f)| = ρm(ε; f).
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When k < 1, we just replace the k in newly constructed gδ by 1.

To prove ω̂z(ε; f) ≥ ρz(ε; f) and ω̂m(ε; f) ≥ ρm(ε; f), without loss of generality, we assume

tr − Z(f) = ρz(ε; f). Note that k > 1. We only need to replace gδ(t) in the proof of

Proposition 2.2.2 to be g̃δ(t), which is defined in the following way: let hs(t) = B|t −

tr + δ|k + s, as when δ is small enough, ∀t > tr − δ, f(t)−f(tr−δ)
t−tr+δ is lower bounded by

lim
t→t−r

f(tr)−f(t)

2 , so ∃s such that hs(t) and gδ(t) has an intersection t1 ∈ (tl, tr − δ) and an

intersection t2 ∈ (tr − δ, tr), which satisfy hs(t) > gδ(t), ∀t ∈ (t1, t2) and hs(t) < gδ(t) for a

small neighborhood outside (t1, t2).

Let g̃δ(t) = gδ(t) ∀t ∈ [0, 1]\(t1, t2), and g̃δ(t) = hs(t) ∀t ∈ (t1, t2). Then g̃δ ∈ Γ1(k;B1, B) ∩

F , ‖g̃ − f‖ ≤ ε, limδ→0 |Z(g̃δ)− Z(f)| = ρz(ε; f), and

lim
δ→0
|M(g̃δ)−M(f)| ≥ lim

δ→0
|M(gδ)−M(f)| = ρm(ε; f).

A.3.3. More on the Uncertainty Principle

In this subsection, we discuss more on the generality of the Uncertainty Principle. We

start with the convex smoothness class we discussed in Section A.3.2. Uncertainty principle

still holds for the function class Γ1(k;B1, B), with Γ1(k;B1, B) defined in (A.3.5), which

contains all the functions f ∈ F satisfying

B1 ≤ lim
t→Z(f)

|f(t)− f(Z(f))|
|t− Z(f)|k ≤ lim

t→Z(f)

|f(t)− f(Z(f))|
|t− Z(f)|k ≤ B.

It follows from Inequality (A.3.6) that the moduli of continuity for the minimizer and

minimum over the function class Γ1(k;B1, B) have the following relationship.

ω̂z(ε; f)ω̂m(ε; f)2 ≥ ρz(ε; f)ρm(ε; f)2 ≥ ε2

2
. (A.3.12)
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So the Uncertainty Principle also holds for Γ1(k;B1, B).

Further, using the smoothing technique in Equation (A.3.4) in the proof of Proposition

A.3.1 on the examples used in constructing the lower bound in the proof of Inequality

(A.3.6), we know that the Uncertainty Principle also holds for the k-th order differentiable

convex function class for any k.

So there are many choices of subclass of the convex functions in F where the Uncertainty

Principle holds. Interested reader can further explore other possible choices. Further, since

the tension between different quantities (e.g. minimizer and minimum in our case) also

exists in other problems, we believe that similar Uncertainty Principles can be developed

in other settings.

A.3.4. The CLS Estimator under Local Minimax Framework

The results on the behavior of the convex least squares estimator are mostly based on the

limiting distribution, which are usually achieved by carrying out Taylor expansion of the

function to second order around minimizer and analysis of the empirical process. Since the

limiting distribution only holds when as sample size approaches infinity for fixed function,

similar arguments are not applicable to prove results that hold for all functions within a

class for any given sample size or when sample size grows to infinity. Also, the Taylor

expansion approach won’t work when the second order derivative does not exist at the

minimizer. Hence the tools used in establishing the performance of convex least squares

in the literature is not sufficient for investigating its behavior under our non-asymptotic

local minimax framework. The behavior of the convex least squares estimator under our

framework takes new tools and is of separate interest.

For functions twice differentiable around the minimizer with positive second order derivative

at the minimizer, under asymptotic sense (i.e. fix function f , and let sample size n go to

infinity), since the convex least squares estimator for minimizer Ẑcvx is bounded (i.e. in
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[0, 1]), from the limiting distribution (Theorem 2.9 in Deng et al. (2020)), we know that

lim sup
n→∞

E(|Ẑcvx − Z(f)|)(n/σ2)1/5 ≤
(

1

f ′′(Z(f))

)2/5

const1,

where const1 is an absolute constant, and that

lim inf
n→∞

E(|Ẑcvx − Z(f)|)(n/σ2)1/5 ≥
(

1

f ′′(Z(f))

)2/5

const2,

where const2 is another absolute constant. Note that for functions twice differentiable at

the minimizer with positive second order derivative, the key part of the benchmark for

minimizer in our framework ρz(
σ√
n

; f) is of the order (σ2/n)1/5
(

1
f ′′(Z(f))

)2/5
when n goes

to infinity. Although the benchmark has a discretization part as shown in Section A.1.9, the

reader can easily check the order is (σ2/n)1/5
(

1
f ′′(Z(f))

)2/5
when f is fixed and n goes to

infinity. In this asymptotic sense, convex least squares estimator matches our rate, which

is also the optimal rate, for functions twice differentiable at the minimizer with positive

second order derivative (the lower bound provided in Section A.3.2). However, this does

not imply optimality for Ẑcvx under our non-asymptotic framework. It is possible that there

exists a sequence of twice differentiable functions with positive second order derivative at

the minimizer such that the ratio of its risk to our benchmark is an increasing function of

sample size.

A.4. Simulation Results for Chapter 2

In this section we show simulation results comparing our algorithms to the ones based on

the convex least squares (CLS) estimator. Note that known theoretically valid CLS based

method only exist for estimation and inference of the minimizer, we make comparison on

those tasks. For estimation of the minimizer, the theoretically valid CLS based method

is taking the minimizer of the CLS estimator for the whole function. For inference of the

minimizer, we adopt the latest CLS based confidence interval proposed by Deng et al.

(2020), which is proved to enjoy good theoretical property in some restricted settings in a
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restricted sense. Since our original method introduces data splitting procedure purely for

technical reason, our attention is allocated more to the non-split version.

To sum up the comparison, first of all, our proposed methods, as being iterative and local,

run much faster than any methods based the CLS, whose complexity, in theory, according

to Simonetto (2021), scales as O(n3) for generic quadratic programming solvers or O(n2)

per iteration for first-order methods. For estimating the minimizer, the proposed method

and the CLS based method have comparable accuracy, with CLS being very sensitive to

the smoothness while our methods are steady in terms of the benchmarks when they are

computable. For inference of the minimizer, while both variants of the proposed confidence

interval achieve the nominal coverage, the CLS based confidence interval behaves poor in

either coverage or length, which isn’t surprising due to its asymptotic nature of coverage

and high dependence on second order derivative.

In addition to comparison, we also tested how our methods behave compared with our the-

oretical results, especially for tasks for minimum. Both of our methods achieve the nominal

coverage for confidence interval and all the empirical risks/empirical lengths show clear

linear relationship compared with the benchmarks when the benchmarks are computable.

A.4.1. Experiment Design

To generate the data, we set σ = 1. We carried out experiments on true functions with

different smoothness, minimizer location, symmetry, etc. We tested on sample sizes 100,

500, 1000, 5000, 10000, 50000. For confidence intervals, we take 5 confidence levels, namely

0.8, 0.9, 0.05, 0.98, 0.99, which corresponds to α = 0.2, 0.1, 0.05, 0.02, 0.01. For each true

function, each sample size, we average on 100 replicates.

For the experiment testing our methods’ behavior compared with theoretical results, we

choose functions with computable benchmarks, and sample sizes easier to test the relation-

ship, which we will discuss in detail in A.4.3. Now we focus on the general functions and
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comparison.

We implement and compare three methods, as summarized in Table A.1, as mentioned

earlier.

Method
Estimation Inference

Minimizer Minimum Minimizer Minimum

Proposed (split) ! ! ! !

Variant (non-split & stop) ! ! ! !

CLS based ! !

Table A.1: List of the methods to be compared and their applicable scenario.

We investigate the following metrics.

• Running time of the methods.

• Empirical risk for estimating the minimizer and minimum.

• Coverage and length of confidence interval for the minimizer and the minimum. In

particular, we construct confidence interval with 5 different confidence level with α

ranging from 0.2 to 0.01.

We have 10 test functions, as shown in the Equation (A.4.1). Figure A.3 shows the plots of

those functions (in the order 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 from left top to right bottom), grouped

based on the performances of all methods on those functions. Note that we include functions

of different smoothness around the minimizer (i.e. of the types x, x2, x4, exp(−1/x)),

with both symmetric and asymmetric configurations. Also we include the functions with

minimizer near boundary. Using similar arguments as in the proof of Proposition 2.4.1, we

can convolute the true function with smooth kernel enough concentrated to the center to

have a function that is smooth (i.e. differentiable to any order) and arbitrarily close to the

original true function, regardless of the smoothness of the true function. So the phenomenon

shown here also carries to the non-asymptotic region (i.e. small to medium sample size) of
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Figure A.3: Plot of true functions
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functions of any smoothness.

f1(x) =100|2x− 1|

non-differentiable, symmetric, linear

f2(x) =100|2x− 1|1{x < 0.5}+ 100|2x− 1|21{x ≥ 0.5}

non-differentiable, non-symmetric,

the right side of the minimizer is positively twice differentiable

f3(x) =100|2x− 1|1{x < 0.5}+ 100 exp (2− 1

|x− 0.5|)1{x ≥ 0.5}

non-differentiable with one side being arbitrarily differentiable

with vanishing derivatives at minimizer

f4(x) =100|10x− 1|21{x < 0.1}+ 100|10 ∗ x/9− 1/9|21{x ≥ 0.1}

differentiable, with minimizer near boundary,

with both “sided” second order derivatives being positive

f5(x) =100|10x− 1|11{x < 0.1}+ 100|10 ∗ x/9− 1/9|21{x ≥ 0.1}

non-differentiable with minimizer near boundary

(A.4.1)
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f6(x) =100(|2x− 1|)2

twice differentiable with positive second order derivative

f7(x) =100|2x− 1|21{x < 0.5}+ 100 exp (2− 1

|x− 0.5|)1{x ≥ 0.5}

differentiable but not twice differentiable,

one side being arbitrarily differentiable with vanishing derivatives at minimizer,

non-symmetric

f8(x) =100(|2x− 1|)4

fourth-order differentiable with vanishing second order derivative

f9(x) =100 exp (2− 1

|x− 0.5|)

arbitrarily differentiable with vanishing derivatives of any order

f10(x) =100 exp (2− 1

|x− 0.1|)1{x < 0.1}+ 100|10 ∗ x/9− 1/9|21{x ≥ 0.1}

differentiable, with minimizer near boundary, one side arbitrary vanishing

derivatives, another side positive second order derivative

A.4.2. Numerical Results and Comparison with CLS Methods

Now we present the simulation results using the 10 test functions. In particular, we com-

pare our methods with the CLS methods for estimation and confidence intervals for the

minimizer.

Plots and Tables Before we give a discussion of the results, we explain how we present

the results for each function. For each true function, we give the plot of the true function,

the time vs log sample size plot (for all three methods), the log empirical risk vs log sample

size plot for estimation of the minimizer, log empirical length vs log sample size plot for

inference of the minimizer, the log empirical risk vs log sample size plot for estimation
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of the minimum, and the log empirical length vs log sample size plot for inference of the

minimum. For empirical lengths, we plot for α = 0.01, other confidence levels are similar.

We also provide tables for : CLS empirical coverage for minimizer, log risk for minimizer,

and log length for minimizer for α = 0.01. The plots and tables are shown in figure A.4,

A.5, A.6, A.7, A.8, A.9, A.10, A.11, A.12, A.13, A.14, A.15, A.16, A.17, A.18, A.19, A.20,

A.21, A.22, A.23.

Estimation of Minimizer In general, our methods tie with the CLS method for estima-

tion of minimizer.

For the first five functions in Figure A.3, CLS behave better, for the functions on the third

line, the behaviors are almost equal, for the last three functions, ours behave better.

We can see that when compared with CLS estimator our methods behave better at higher

smoothness. CLS behaves better when at least one side is (almost) a linear function, which

is to the advantage of piece-wise linear approximation. Starting at both sides being twice

differentiable (not necessarily with equal second order derivative), our method becomes

equal or better. Starting with both sides have vanishing third order derivatives (i.e. x4

type function), both our methods behave better. We will show in A.4.3 that our methods

are stable compared to the benchmarks thus insensitive to the smoothness.

Inference for Minimizer For the inference of minimizer, both our methods achieve the

nominal coverage. CLS confidence interval does not achieve nominal coverage consistently.

For all the functions except the first and sixth function in Figure A.3, CLS confidence

interval miss the nominal coverage by far. In A.4.3 we will discuss more on comparison

with theoretical results for our methods.

Estimation for Minimum The plots show nice decreasing patterns. For the polynomial

type functions, we can see a nice linear relationship between log empirical risk and log

sample size, which is a good indicator of linear relationship between empirical risk and
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benchmark, as benchmark is a power function (with negative power) of sample size. More

on comparison with theoretical results is in Section A.4.3.

Inference for Minimum Both our methods achieve the nominal coverage in all settings.

The plots on empirical length show a nice decreasing pattern. Comparison with theoretical

is discussed in Section A.4.3.

Computing Time For computing time, we can see that our methods are significantly

faster than CLS based methods. For our methods, we measure the total time used for

producing all four results, while for CLS based methods, we only measure the time fitting

an CLS takes. The time for each function is the sum of time used for 100 replicates.

Although this measurement way is in favor of CLS based methods, we can still see that the

our methods take much less time.
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Figure A.6: Plots for f2(x) = 100|2x− 1|1{x < 0.5}+ 100|2x− 1|21{x ≥ 0.5}
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Figure A.7: Tables for f2(x) = 100|2x− 1|1{x < 0.5}+ 100|2x− 1|21{x ≥ 0.5}
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Figure A.8: Plots for f3(x) = 100|2x− 1|1{x < 0.5}+ 100 exp (2− 1
|x−0.5| )1{x ≥ 0.5}
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Figure A.9: Tables for f3(x) = 100|2x− 1|1{x < 0.5}+ 100 exp (2− 1
|x−0.5| )1{x ≥ 0.5}
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Figure A.10: Plots for f4(x) = 100|10x− 1|21{x < 0.1}+ 100|10 · x/9− 1/9|21{x ≥ 0.1}
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Figure A.11: Tables for f4(x) = 100|10x− 1|21{x < 0.1}+ 100|10 · x/9− 1/9|21{x ≥ 0.1}
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Figure A.12: Plots for f5(x) = 100|10x− 1|11{x < 0.1}+ 100|10 · x/9− 1/9|21{x ≥ 0.1}
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Figure A.13: Tables for f5(x) = 100|10x− 1|11{x < 0.1}+ 100|10 · x/9− 1/9|21{x ≥ 0.1}
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Figure A.14: Plots for f6(x) = 100(|2x− 1|)2
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Figure A.15: Tables for f6(x) = 100(|2x− 1|)2
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Figure A.16: Plots for f7(x) = 100|2x− 1|21{x < 0.5}+ 100 exp (2− 1
|x−0.5| )1{x ≥ 0.5}
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Figure A.17: Tables for f7(x) = 100|2x− 1|21{x < 0.5}+ 100 exp (2− 1
|x−0.5| )1{x ≥ 0.5}
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Figure A.18: Plots for f8(x) = 100(|2x− 1|)4
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Figure A.19: Tables for f8(x) = 100(|2x− 1|)4
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Figure A.20: Plots for f9(x) = 100 exp (2− 1
|x−0.5| )
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Figure A.21: Tables for f9(x) = 100 exp (2− 1
|x−0.5| )

305



0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

x

f(
x)

0 2 4 6 8 10 12

−
2

0
2

4
6

8

log(n)

lo
g 

tim
e

●

●

●

● ●

●

●

CLS based
split
non−split

1 
se

co
nd

1 
m

inu
te

1 
ho

ur

●

●

●

● ●

●

0 2 4 6 8 10 12

−
3.

8
−

3.
6

−
3.

4
−

3.
2

−
3.

0
−

2.
8

−
2.

6

log n

lo
g 

ab
s 

ris
k 

fo
r 

m
in

im
iz

er

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

● split
non−split
CLS based

●

●

●

●
●

●

0 2 4 6 8 10 12

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

log n

lo
g 

le
ng

th
 fo

r 
m

in
im

iz
er

●

●
●

●
●

●

● split
non−split
CLS based

●

●

●

●

●

●

0 2 4 6 8 10 12

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0

log n

lo
g 

ab
s 

ris
k 

fo
r 

m
in

im
um

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● split
non−split

●

● ●

●

●

●

0 2 4 6 8 10 12

0
1

2
3

log n

lo
g 

le
ng

th
 fo

r 
m

in
im

um

●
● ●

●

●

●

● split
non−split

Figure A.22: Plots for f10(x) = 100 exp (2− 1
|x−0.1| )1{x < 0.1}+ 100|10 · x/9− 1/9|21{x ≥ 0.1}
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Figure A.23: Tables for f10(x) = 100 exp (2− 1
|x−0.1| )1{x < 0.1}+ 100|10 · x/9− 1/9|21{x ≥ 0.1}
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A.4.3. Comparison with Benchmarks

In this subsection, we consider the functions where the benchmarks can be explicitly calcu-

lated. The primary task is to investigate the relationship between empirical risks/lengths

and the benchmarks.

We consider a different set of functions whose benchmarks can be easily calculated:

h1(t) = 100
∣∣t− 0.5

∣∣,
h2(t) = 200

∣∣2(t− 0.5)
∣∣ 3

2 ,

h3(t) = 200
∣∣2(t− 0.5)

∣∣2,
h4(t) = 200

∣∣2(t− 0.5)
∣∣3,

h5(t) = 200
∣∣2(t− 0.5)

∣∣4.

(A.4.2)

All other settings are the same as before except that we take roughly exponentially equally

spaced sample sizes.

We calculated the corresponding benchmarks (the discretization errors in these examples

are negligible): ρz(
√

1/n; f) and ρm(
√

1/n; f).

The plots of log risk/length vs log sample size for minimizer and minimum with refer-

ence line of benchmark are shown in Figures A.24, A.25, A.26, A.27. For estimation of

minimizer, in addition to the almost identical slope with reference line (i.e. linear relation-

ship between empirical risk and benchmark), the intercept difference of the reference line

and the log risk of non-split version ranges between 0.6472699 and 1.036388, meaning that

ρz(
√

1/n;f)

empirical risk for minimizer for non-split version ranges in [1.910318, 2.819016], implying that the

performance of non-split version is quite robust when smoothness varies.

For other three tasks, excluding the outlier points that are apparently influenced by the

truncation for confidence interval, the slopes of the methods and the reference line are
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almost identical.

The empirical performance, therefore, agree with the theoretical results.
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Figure A.24: Empirical risks for minimizer
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Figure A.25: Empirical risks for minimum
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Figure A.26: Empirical lengths for minimizer
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Figure A.27: Empirical lengths for minimum
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A.5. Proofs of the Results in Chapter 3

A.5.1. Notation

Here we recollect or introduce notation that will be used later. We use Z(f), M(f) to denote

the minimizer and minimum of function f , where f can be univariate or multivariate.

Recall that

ρm(ε; f) = max{ρ :

∫ 1

0
(max{ρ, f(t)} − f(t))2 dt ≤ ε2} −M(f)

ρz(ε; f) = max{|t− Z(f)| : f(t) ≤ ρm(ε; f) +M(f)}.
(A.5.1)

for f ∈ F .

A.5.2. Proof of Theorem 3.2.1

For the ease of notation, denote D to be [0, 1]s.

We start with minimizer. We start with lower bounds.

Let f ∈ Fs. Let g ∈ Fs, which we will specify later. Take θ ∈ {−1, 1} as parameter to be

estimated, with f1 = f and f−1 = g.

For any estimator Ẑ for estimating the minimizer, consider the projected estimator that

projects Ẑ to the line determined by Z(f) and Z(g) :

Ẑp = Z(f) + 〈Ẑ − Z(f),
Z(g)− Z(f)

‖Z(f)− Z(g)‖〉. (A.5.2)

It’s easy to see that

Ef

(
‖Ẑp − Z(f)‖2

)
≤ Ef

(
‖Ẑ − Z(f)‖2

)
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and

Eg

(
‖Ẑp − Z(g)‖2

)
≤ Eg

(
‖Ẑ − Z(g)‖2

)
.

Therefore, we only need to consider the projected estimators Ẑp for calculating Rz(ε; f).

Similarly, we only need to consider projected confidence hypercube CIp is the smallest

hypercube containing {Z(f) + 〈t−Z(f), Z(g)−Z(f)
‖Z(g)−Z(f)‖〉 : t ∈ CI} for calculating Lα,z(ε; f), as

projection does not weaken confidence level and projected hypercube has smaller hypercube-

diameter.

Note that any projected estimator Ẑp of the minimizer Z(fθ) gives an estimator of θ by

θ̂ = 〈 Ẑp −
Zp(f1)+Zp(f−1)

2

‖Zp(f1)−Zp(f−1)
2 ‖

,
Zp(f1)− Zp(f−1)

‖Zp(f1)− Zp(f−1)‖〉,

and therefore Eθ‖Ẑp−Z(fθ)‖2 = ‖Z(f1)−Z(f−1)‖2Eθ |θ̂−θ|2 . Let Pθ be the probability measure

associated with the white noise model corresponding to fθ. On the other hand, through

calculating the Radon-Nikodym derivative dP1
dP−1

(Y ) by Girsanov’s theorem,

dPf

dPg
(Y ) = exp

(∫
D

f(t)− g(t)

ε2
dY (t)− 1

2

∫
D

f(t)2 − g(t)2

ε2
dt

)
, (A.5.3)

a sufficient statistic for θ is given by

W =

∫
D(f1(t)− f−1(t))dY (t)− 1

2

∫
D(f1(t)2 − f−1(t)2)dt

ε‖f1 − f−1‖
. (A.5.4)

Then

W ∼ N
(
θ

2
· ‖f1 − f−1‖

ε
, 1

)
under Pθ.

Note that for any ωz(ε; f) > δ > 0, there exists hδ ∈ Fs such that ‖f − hδ‖ = ε and that

‖Z(f)− Z(hδ)‖2 ≥ ωz(ε; f)− δ, we let g = hδ. Then we have Rz(ε; f) ≥ (ωz(ε; f)− δ) · r2,
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where r2 is the minimax risk of the two-point problem based on an observation X ∼ N( θ2 , 1),

r2 = inf
θ̂

max
θ=±1

Eθ
|θ̂ − θ|2

4
.

Elementary calculation shows that r2 ≥ 0.1. Taking δ → 0+, we have Rz(ε; f) ≥ 0.1ωz(ε; f).

So we have a ≥ 0.1.

Now we turn to the upper bounds. We start with stating a property of ωz(ε; f) in Proposition

A.5.1.

Proposition A.5.1. Suppose f ∈ Fs, c ∈ (0, 1), then we have

ωz(ε; f) ≥ ωz(cε; f) ≥ 1

9
max

{
(
c

2
)

2
3 , c
}
ωz(ε; f). (A.5.5)

Proof. The left hand side is apparent, we will prove the right hand side. Using Proposition

A.5.3, we have

sup∑s
i=1 b

2
i≤1

s∑
i=1

ρz(bicε; fi)
2 ≤ ωz(cε; f) ≤ 9 sup∑s

i=1 b
2
i≤1

s∑
i=1

ρz(bicε; fi)
2,

sup∑s
i=1 b

2
i≤1

s∑
i=1

ρz(biε; fi)
2 ≤ ωz(ε; f) ≤ 9 sup∑s

i=1 b
2
i≤1

s∑
i=1

ρz(biε; fi)
2.

(A.5.6)

Using Proposition 2.2.1 in Chapter 2, namely

max
{

(
q

2
)

2
3 , q
}
≤ ρz(qε; f)

ρz(ε; f)
≤ 1, for q ∈ [0, 1)

, we know ρz(ε; f) is a continuous function of ε ≥ 0 for f ∈ F . So there exists (b̃1, · · · , b̃s)

and (b̄1, · · · , b̄s) attaining the suprema:

b̃i ≥ 0, for 1 ≤ i ≤ s,
s∑
i=1

b̃2i = 1,

s∑
i=1

ρz(b̃icε; fi)
2 = sup∑s

i=1 b
2
i≤1

s∑
i=1

ρz(bicε; fi)
2,

b̄i ≥ 0, for 1 ≤ i ≤ s,
s∑
i=1

b̄2i = 1,
s∑
i=1

ρz(b̄iε; fi)
2 = sup∑s

i=1 b
2
i≤1

s∑
i=1

ρz(biε; fi)
2.

(A.5.7)
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Also we have
s∑
i=1

ρz(b̃icε; fi)
2 ≤

s∑
i=1

ρz(b̃iε; fi)
2 ≤

s∑
i=1

ρz(b̄iε; fi)
2, (A.5.8)

and
s∑
i=1

ρz(b̃icε; fi)
2 ≥

s∑
i=1

ρz(b̄icε; fi)
2 ≥

s∑
i=1

max
{

(
c

2
)

2
3 , c
}
ρz(b̄iε; fi)

2. (A.5.9)

Combining equations (A.5.6), (A.5.8), (A.5.9) we have

ωz(cε; f) ≥ 1

9
max

{
(
c

2
)

2
3 , c
}
ωz(ε; f). (A.5.10)

Now we continue with the upper bounds.

Recalling W define in (A.5.4), let

Ẑ = sign(W ) · Z(f)− Z(g)

2
+
Z(f) + Z(g)

2
. (A.5.11)

Then

Ef (‖Ẑ − Z(f)‖2) = Eg(‖Ẑ − Z(g)‖2) = ‖Z(f)− Z(g)‖2Φ(−‖f − g‖
2ε

). (A.5.12)

Therefore,

Rz(ε; f) ≤ sup
f∈Fs

‖Z(f)− Z(g)‖2Φ(−‖f − g‖
2ε

)

≤ sup
c>0

ωz(cε; f)Φ(− c
2

)

≤ max{0.5ωz(ε; f), sup
c≥1

ωz(cε; f)Φ(− c
2

)}.

(A.5.13)
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In addition

sup
c≥1

ωz(cε; f)Φ(− c
2

) ≤ 9 sup
c≥1

min{(2c) 2
3 , c}Φ(− c

2
)ωz(ε; f) ≤ 3.1ωz(ε; f). (A.5.14)

Take A = 3.1 gives the result.

Now we turn to the minimum and start with estimation. We start with the lower bound.

Recall that W defined in (A.5.4) is a sufficient statistics for θ.

Then similarly to the proof of that for minimizer we have that

Rm(ε; f) ≥ aωm(ε; f). (A.5.15)

For the upper bound. We start with a proposition.

Proposition A.5.2. For c > 1, we have

ωm(cε; f) ≤ c2ωm(ε; f), ω̃m(cε; f) ≤ cω̃m(ε; f). (A.5.16)

Proof. Suppose g satisfies ‖g − f‖2 ≤ cε. Then calculation show that

|g0 − f0|2 +
s∑
i=1

‖gi − fi‖2 ≤ c2ε2, (A.5.17)

Let hi(t) = 1
cgi(t) + c−1

c fi(t). Let h(t) = 1
cg0 + c−1

c f0 +
∑s

i=1 hi(ti) Then we have that

‖h− f‖2 ≤ ε2, (A.5.18)

and that

|M(h)−M(f)| = 1

c
|M(g)−M(f)|. (A.5.19)

This gives the statement of the proposition.
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Recalling W define in (A.5.4), let

M̂ = sign(W ) · M(f)−M(g)

2
+
M(f) +M(g)

2
. (A.5.20)

Then

Ef (‖M̂ −M(f)‖2) = Eg(‖M̂ −M(g)‖2) = ‖M(f)−M(g) |2Φ(−‖f − g‖
2ε

). (A.5.21)

With Proposition A.5.2 we have that

Rm(ε; f) ≤ sup
c>0

ωm(cε; f)Φ(− c
2

) ≤ max{0.5ωm(ε; f), sup
c≥1

ωm(cε; f)Φ(− c
2

)}

≤ ωm(ε; f) max{0.5, sup
c≥1

c2Φ(− c
2

)} ≤ ωm(ε; f).

(A.5.22)

For the inference of the minimum, we again start with the lower bound.

Lα,m(ε; f) ≥ sup
g∈Fs

inf
CIm,α∈Im,α(f ,g)

Pf ({M(g),M(f)} ∈ CIm,α)|M(f)−M(g)|

≥ sup
g∈Fs,‖g−f‖≤ε

(1− α− Pf (M(g) /∈ Im,α(f ,g)))ω̃m(ε; f)

≥ (1− α− Φ(−zα + 1))ω̃m(ε; f) ≥ (0.6− α)ω̃m(ε; f).

(A.5.23)

The second to last inequality is due to Neyman-Pearson inequality.

For the upper bound, we recollect our sufficient statistics (A.5.4) and associated notation,

let

CIm,α =


{M(g)} W < −zα + 0.5‖f−g‖ε

{M(f)} W ≥ (zα − ‖f−g‖2ε ) ∨ (−zα + ‖f−g‖
2ε )

{M(f) + (M(g)−M(f)) · t : t ∈ [0, 1]} otherwise

.
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Clearly, we have Pf (M(f) /∈ CIα) ≤ α, Pg(M(g) /∈ CIα) ≤ α. For the expected squared

length, we have for θ ∈ {−1, 1},

Efθ (|CIm,α|) ≤ ‖M(f)−M(g)‖
(

Φ(zα −
‖f − g‖

ε
)− α

)
+

(A.5.24)

Efθ (|CIm,α|) ≤ max{ω̃m(ε; f) (1− 2α) , sup
c>1

ω̃m(cε; f) (Φ(zα − c)− α)+}

≤ ω̃m(ε; f) max{(1− 2α), sup
c>1

c (Φ(zα − c)− α)+}

≤ ω̃m(ε; f)(1− 2α)× 2zα.

(A.5.25)

A.5.3. Proof of Theorem 3.2.2

We start with stating two propositions, which are proved later.

Proposition A.5.3. Let ρz(ε; f) be defined in (3.2.8) for f ∈ F , and let f ∈ Fs. Then

sup∑s
i=1 b

2
i≤1

s∑
i=1

ρz(biε; fi)
2 ≤ ωz(ε; f) ≤ sup∑s

i=1 b
2
i≤1

s∑
i=1

9ρz(biε; fi)
2, (A.5.26)

where bi are non-negative.

Proposition A.5.4. Suppose fi ∈ F , for i = 1, 2, · · · , s, then we have

1

3
s−

2
3

s∑
i=1

ρz(ε; fi)
2 ≤ sup∑s

i=1 b
2
i≤1

s∑
i=1

ρz(biε; fi)
2 ≤

s∑
i=1

ρz(ε; fi)
2. (A.5.27)

And for any β ≤ s, exist (f1, · · · , fs) such that
∑s

i=1 ρz(ε; fi)
2 = β and

sup∑s
i=1 b

2
i≤1

s∑
i=1

ρz(biε; fi)
2 = s−

2
3

s∑
i=1

ρz(ε; fi)
2. (A.5.28)
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For β ≤ s, for any δ > 0, there exist (f1, · · · , fs) such that
∑s

i=1 ρz(ε; fi)
2 = β and

sup∑s
i=1 b

2
i≤1

s∑
i=1

ρz(biε; fi)
2 ≥

s∑
i=1

ρz(ε; fi)
2 − δ. (A.5.29)

Inequality (A.5.27) in Proposition A.5.4 and (A.5.26) in Proposition A.5.3 implies Inequality

3.2.9 of Theorem 3.2.2.

Construct f(t) =
∑s

i=1

∫ s
0 fi(x)dx+

∑s
i=1

(
f(ti)−

∫ s
0 fi(x)dx

)
with fi in Equation (A.5.28).

Then together with the right hand side of Inequality (A.5.26) gives Inequality (3.2.10)

of Theorem 3.2.2. Similar construct f with fi in Inequality (A.5.29) with δ0 = δ gives

Inequality (3.2.11) in Theorem 3.2.2.

Proof of Proposition A.5.3

Suppose g ∈ Fs, such that ‖g− f‖ ≤ ε, g(t) = g0 + g1(t1) + g2(t2) + · · ·+ gs(ts). Using the

continuity of ρz(ε; f) with respect to ε implied by Proposition 2.2.1 in Chapter 2, we know

there exist (b̄1, b̄2, · · · , b̄s) such that

b̄i ≥ 0, for 1 ≤ i ≤ s,
s∑
i=1

b̄2i = 1,
s∑
i=1

ρz(b̄iε; fi)
2 = sup∑s

i=1 b
2
i≤1

s∑
i=1

ρz(biε; fi)
2. (A.5.30)

We only need to prove

s∑
i=1

ρz(b̄iε; fi)
2 ≤ ωz(ε; f) ≤

s∑
i=1

9ρz(b̄iε; fi)
2. (A.5.31)

We start with proving the upper bound.
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Since ‖g − f‖ ≤ ε, we have

ε2 ≥ ‖f − g‖2 =

∫
D

(
f0 − g0 +

2∑
i=1

fi(ti)− gi(ti)
)2

dt

= (f0 − g0)2 +
s∑
i=1

∫ 1

0
(fi(t)− gi(t))2dt.

(A.5.32)

Denote b̃i =

√∫ 1
0 (fi(t)−gi(t))2dt

ε2
for 1 ≤ i ≤ s, then we have

∑s
i=1 b̃

2
i = 1.

Therefore, using Proposition 2.2.2 in Chapter 2, we have

‖Z(f)− Z(g)‖2 =

s∑
i=1

|Z(fi)− Z(gi)|2 ≤
s∑
i=1

9ρz(b̃iε; fi)
2 ≤

s∑
i=1

9ρz(b̄iε; fi)
2. (A.5.33)

For the lower bound, we construct a class of function gδ ∈ Fs, with 1
2 min1≤i≤s ρz(b̄iε; fi) >

δ > 0. We construct the constant and components: gδ,i for 0 ≤ s. Let gδ,0 = f0. For

1 ≤ i ≤ s , suppose xl,i, xr,i are left and right end points of the interval {x : fi(x) ≤

M(fi) + ρm(b̄iε; fi)}. And without loss of generality, we assume xr,i = Z(fi) + ρz(b̄iε; fi).

Define univariate convex function hδ,i as follow.

hδ,i(t) = max{fi(t), fi(xr,i − δ)−
ρm(b̄iε; fi) +M(fi)− fi(xr,i − δ)

xr,i − δ − xl,i
(t− xr,i)}. (A.5.34)

Define univariate function gδ,i as

gδ,i(t) = hδ,i(t)−
∫ 1

0
hδ,i(t)dt. (A.5.35)

Then we have
∫ 1

0 gδ,i(t)dt = 0, so the definition defines a valid gδ ∈ Fs.
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Further for i = 1, 2 · · · , s, we have

∫ 1

0
(gδ,i(t)− fi(t))2 dt =

∫ 1

0
(hδ,i(t)− fi(t))2 dt−

(∫ 1

0
hδ,i(t)dt

)2

≤ b̄2i ε2, (A.5.36)

and

|Z(gδ,i)− Z(fi)| ≥ ρz(b̄iε; fi)− δ. (A.5.37)

Therefore, we have

‖gδ − f‖2 ≤ ε2, ‖Z(gδ)− Z(f)‖2 ≥
s∑
i=1

(
ρz(b̄iε; fi)− δ

)2
. (A.5.38)

Let δ → 0+ , we have

ωz(ε; f) ≥
s∑
i=1

ρz(b̄iε; fi)
2. (A.5.39)

Proof of Proposition A.5.4

We start with the right hand side and its almost-attainability.

Since bi ∈ [0, 1] for 1 ≤ i ≤ s, we have ρz(biε; fi) ≤ ρz(ε; fi). The right hand side then

apparently hold.

We first assume β in not an integer. Let s1 = bβ − δc, s2 = β − bβc, s3 = s− dβe.

Let k1, k2, k3 > 0.

Now we start defining fi ∈ F for 1 ≤ i ≤ s.

If s1 ≥ 1, for 1 ≤ i ≤ s1, let

fi(t) = k1(t− 1

2
). (A.5.40)
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If s3 ≥ 1, for n− s3 + 1 ≤ i ≤ n let

fi(t) = k3(t− 1

2
). (A.5.41)

Let

fs1+1(t) = k2(t− 1

2
). (A.5.42)

Suppose 0 < δ < 1
2s2.

If s3 ≥ 1, choose k3 such that

ρz(ε; fn) =

√
δ

2s3
, (A.5.43)

Define s4 = s2 − δ
2 if s3 ≥ 1, otherwise s4 = s2. Choose k2 such that

ρz(ε; fs1+1) =
√
s4. (A.5.44)

Now suppose bs1+1 is the smallest b ∈ [0, 1) such that

ρz(bε; fs1+1) ≥
√
s4 −

δ

2
. (A.5.45)

If s1 ≥ 1, choose k1 such that

ρz(

√
1− b2
s1

ε; f1) = 1. (A.5.46)

It’s easy to verify that the above construction is legitimate and satisfy equation (A.5.29).

When β = n, choose large enough k such that ρz(
1√
s
ε; k(t−0.5)) = 1, and let fi = k(t−0.5)

for 1 ≤ k ≤ s.

When β ≤ n − 1 and is integer, for δ < 0.5, let s1 = β − 1, s3 = n − β,s4 = 1 − δ
2 . And
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choose k3, k2, k1 as the case where β is not integer.

Now we proceed with the left hand side.

Recalling Proposition 2.2.1 in Chapter 2, we have

sup∑s
i=1 b

2
i≤1

s∑
i=1

ρz(biε; fi)
2 ≥ sup∑s

i=1 b
2
i≤1

s∑
i=1

(b2i /4)
2
3 ρz(ε; fi)

2 ≥ 1

3

(
s∑
i=1

ρz(ε; fi)
6

) 1
3

, (A.5.47)

The last inequality take bi =
√

ρz(ε;fi)6∑s
i=1 ρz(ε;fi)6 .

Cauchy-Schwarz inequality gives

1

3

(
s∑
i=1

ρz(ε; fi)
6

) 1
3

≥ 1

3
s−

2
3

s∑
i=1

ρz(ε; fi)
2, (A.5.48)

which concludes the left hand side.

For the attainability up to constant multiple, let k > 0, which we will pick later. Let

fi(t) = k(t− 0.5) for 1 ≤ i ≤ s. Pick k > 0 such that ρz(ε; fi) =
√

β
s . Then we have that

sup∑s
i=1 b

2
i≤1

s∑
i=1

ρz(biε; fi)
2 = sup∑s

i=1 b
2
i≤1

s∑
i=1

b
4
3
i ρz(ε; fi)

2 = sup∑s
i=1 b

2
i≤1

s∑
i=1

b
4
3
i

β

s
. (A.5.49)

Through basic calculation, we have sup∑s
i=1 b

2
i≤1

∑s
i=1 b

4
3
i = s

1
3 , which gives inequality

(A.5.28).

A.5.4. Proof of Theorem 3.2.3

We start with the upper bound. Suppose ‖g − f‖ ≤ ε. Suppose g(t) = g0 +
∑s

i=1 gi(ti),

where
∫ 1

0 gi(t)dt = 0. Calculation show that ‖g − f‖ ≤ ε implies

|g0 − f0|2 +

s∑
i=1

‖gi − fi‖2 ≤ ε2. (A.5.50)
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Suppose εi = ‖gi − fi‖. Then we have that

|M(g)−M(f)|2 ≤ (|g0 − f0|+
s∑
i=1

|M(gi)−M(fi)|)2 ≤ (|g0 − f0|+
s∑
i=1

3ρm(εi; fi))
2

≤ (|g0 − f0|+
s∑
i=1

3(
εi
ε

)
4
3 ρm(ε; fi))

2

≤
(
ε2 +

s∑
i=1

ρm(ε; fi)
2

)(( |g0 − f0|
ε

)2

+
s∑
i=1

9(
εi
ε

)
8
3

)

≤
(

s∑
i=1

ρm(ε; fi)
2

)
9(s+ 1)

s
,

(A.5.51)

where the second Inequality is due to Proposition 2.2.1.

Now that we have the upper bound, we turn to the lower bound. Let

εi =
ρm(ε; fi)√∑s
j=1 ρm(ε; fj)2

√
1

1 +
∑s

i=1(1 ∧ 2ρz(ε; fi))
ε. (A.5.52)

Suppose δ > 0 is small enough quantity, which will be set going to 0 later. We construct

components of an alternative function. Without loss of generality we assume ti,l, ti,r are

the left and right end points of the interval {t : fi(t) ≤ M(fi) + ρm(εi; fi)} and that

ti,r = Z(fi) + ρz(εi; fi). Suppose gi,δ(t) = max{fi(t), fi(tl) + −δ
ti,r−ti,l (t − ti,l)}, and let

hδ(t) = f0 +
∑s

i=1 gi(ti). Then we have for small enough δ > 0,

‖hδ − f‖2 ≤ (
s∑
i=1

∫ 1

0
gi(t)dt)

2 +
s∑
i=1

ε2
i −

s∑
i=1

(

∫ 1

0
gi(t)dt)

2

≤
s∑
i=1

ε2
i (1 +

s∑
i=1

(1 ∧ 2ρz(εi; fi))) ≤ ε2.

(A.5.53)
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We also have

lim
δ→0+

(M(hδ)−M(f)) ≥
s∑
i=1

ρm(εi; fi) ≥
s∑
i=1

ρm(ε; fi)
εi
ε

≥

√√√√ s∑
i=1

ρm(ε; fi)2

√
1

1 +
∑s

i=1(1 ∧ 2ρz(ε; fi))
.

(A.5.54)

This gives the lower bound.

A.5.5. Proof of Theorem 3.2.4

inf
CIz,α∈Iz,α(Fs)

Ef (V (CIz,α))

≥ sup
g∈Fs

inf
CIz,α∈Iz,α(f ,g)

Ef (V (CIz,α))

≥ sup
g∈Fs

inf
CIz,α∈Iz,α(f ,g)

Ef (1{{Z(f), Z(g)} ⊂ CIz,α}) sup
g∈Fs

Πs
i=1|Z(gi)− Z(fi)|

≥ sup
g∈Fs

(
1− α− Φ(−zα +

‖f − g‖
ε

)

)
sup
g∈Fs

Πs
i=1|Z(gi)− Z(fi)|

(A.5.55)

Let gi,δ be constructed as follows. Without loss of generality, we assume ti,r = Z(fi) +

ρz(ε/
√
s; fi) satisfies fi(ti,r) ≤ ρm(ε/

√
s; fi) + M(fi) and ti,l is the left end point of {t :

fi(t) ≤ ρm(ε/
√
s; fi) +M(fi)}. Let

gi,δ(t) = max{fi(t),M(fi) + ρm(ε/
√
s; fi) +

−δ
ti,r − ti,l

(t− ti,l)}. (A.5.56)

Define

gδ(t) = f0 +

s∑
i=1

gi,δ(ti)−
s∑
i=1

∫ 1

0
gi,δ(t)dt.

It’s clear that

‖gδ − f‖ ≤ ε.
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It is obvious that Z(gδ,i) = Z(gi,δ).

lim
δ→0+

Πs
i=1|Z(gδ,i)− Z(fi)| ≥ Πs

i=1ρz(ε/
√
s; fi) ≥ (

1

2
√
s

)
2s
3 Πs

i=1ρz(ε; fi). (A.5.57)

Going back to Inequality (A.5.55) we have that

inf
CIz,α∈Iz,α(Fs)

Ef (V (CIz,α)) ≥ (0.6− α)(
1

2
√
s

)
2s
3 Πs

i=1ρz(ε; fi). (A.5.58)

A.5.6. Proof of Theorem 3.2.5

We prove the theorem by proving the following two propositions.

Proposition A.5.5. For any estimator of the minimizer, Ẑ, if

Ef

(
‖Ẑ − Z(f)‖2

)
≤ γRz(ε; f)

for f ∈ Fs and γ < γ0, where γ0 is a positive constant, then there exists f1 ∈ Fs such that

Ef1

(
‖Ẑ − Z(f1)‖2

)
≥ cz,s(log

1

γ
)

2
3Rz(ε; f1), (A.5.59)

where cz,s is a constant depending on s only.

Proposition A.5.6. For any estimator of the minimum, M̂ , if

Ef (|M̂ −M(f)|2) ≤ γRm(ε; f)

for f ∈ Fs and γ < γ0/s, where γ0 is a positive constant, then there exists f1 ∈ Fs such that

Ef1

(
|M̂ −M(f1)|2

)
≥ cm,s(log

1

γ
)

2
3Rm(ε; f1), (A.5.60)

where cm,s is a constant depending on s only.
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Proof of Proposition A.5.5

Let σ = Φ−1(1−6·9·2γ)ε√
5

. Let F (γ) = (σ/ε)2.

Then for γ ≤ 0.0024558/54, we have σ ≥
√

4
3ε.

Suppose (w1, w2, · · · , ws) achieves

sup∑s
j=1 w

2
j≤1,wj≥0

s∑
i

ρz(wiε; fi)
2. (A.5.61)

The compactness of {(w1, w2, · · · , ws) :
∑s

j=1w
2
j ≤ 1, wj ≥ 0} and the continuity of∑s

i ρz(wiε; fi)
2 implies that supremum is attainable. So (w1, w2, · · · , ws) is well defined.

Also, it’s easy to see that
∑s

j=1w
2
j = 1.

Denote set B as

B = {(b1, b2, · · · , bs) :
s∑
i=1

bi ≤ 1, bi ≥ max{ wi√
F (γ)

,
√

1/4s}}. (A.5.62)

It’s clear that B is not null set, and

(

√
w2

1

F (γ)
+

1

4s
,

√
w2

2

F (γ)
+

1

4s
, · · · ,

√
w2
s

F (γ)
+

1

4s
) ∈ B. (A.5.63)

Let (b1, b2, · · · , bs) achieves

sup
(b1,b2,··· ,bs)∈B

(
s∑

k=1

ρz(bk
√
F (γ)ε; fk)

2

)3 /( s∑
i=1

ρz(bi
√
F (γ)ε; fi)

4

ρm(bi
√
F (γ)ε; fi)4

)
. (A.5.64)
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Then it is clear that

(
s∑

k=1

ρz(bk
√
F (γ)ε; fk)

2

)3 /( s∑
i=1

ρz(bi
√
F (γ)ε; fi)

4

ρm(bi
√
F (γ)ε; fi)4

)

≥ min
1≤k≤s

(
ρz(bk

√
F (γ)ε; fk)

2
)3
/

(
ρz(bk

√
F (γ)ε; fk)

4

ρm(bk
√
F (γ)ε; fk)4

)

≥ min
1≤k≤s

(
1

2
b2kF (γ)ε2

)2

≥
(
F (γ)

8s
ε2

)2

,

(A.5.65)

and that
s∑

k=1

ρz(bk
√
F (γ)ε; fk)

2 ≥
s∑

k=1

ρz(wkε; fk)
2 ≥ 1

9
ωz(ε; f), (A.5.66)

where the very last inequality comes from Proposition A.5.3.

For each 1 ≤ k ≤ s, we construct f̃k.

Let xl, xr be the left and right end points of the interval {x : fk(x) ≤M(fk)+ρm(bkσ; fk)}.

Without loss of generality, suppose fk (Z(fk) + ρz(bkσ; fk)) ≤M(fk) + ρm(bkσ; fk).

Let g2,k(t) = max{fk(t), fk(xr) + M(fk)+2ρm(bkσ;fk)−fk(xr)
xl−xr (t− xr)}.

Calculation similar to that in Lemma A.1.5 shows that

‖g2,k − fk‖ ≤
√

5bk
√
F (γ)ε

ρz(η; g2,k) ≤ (
16

3
)

1
3 (

η√
b2kσ

2/3
)

2
3 ρz(bkσ; fk).

(A.5.67)

Let

g(t) = f0 +

s∑
k=1

(
g2,k(tk)−

∫ 1

0
g2,k(t)dt

)
. (A.5.68)

Then we know that

‖g − f‖ ≤ Φ−1(1− 6 · 9 · 2γ)ε, (A.5.69)
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that

‖Z(g)− Z(f)‖2 =
s∑

k=1

ρz(bkσ; fk)
2 ≥ 1

9
ωz(ε; f), (A.5.70)

and that

ωz(ε; g) ≤ 9 sup∑s
j=1 d

2
j≤1,dj≥0

s∑
k=1

ρz(djε; g2,k)
2

≤ 9 sup∑s
j=1 d

2
j≤1,dj≥0

s∑
k=1

(
16

3
)

2
3 (

dkε√
b2kσ

2/3
)

4
3 ρz(bkσ; fk)

2.

(A.5.71)

Taking derivative of
s∑

k=1

(
dk√
b2k

)
4
3 ρz(bkσ; fk)

2 (A.5.72)

with respect to

(d2
1, d

2
2, · · · , d2

s), (A.5.73)

we have (
2

3
(d2

1)−
1
3 b
− 4

3
1 ρz(b1σ; f1)2, · · · , 2

3
(d2
s)
− 1

3 b
− 4

3
s ρz(bsσ; fs)

2

)
. (A.5.74)

Note that the constraint for d2
1, d

2
2, · · · , d2

s is

s∑
k=1

d2
k = 1, d2

j ≥ 0 for 1 ≤ j ≤ s. (A.5.75)
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Therefore, we have that

s∑
k=1

(
dk√
b2k

)
4
3 ρz(bkσ; fk)

2 ≤
s∑

k=1

ρz(bkσ; fk)
6/b4k

∑s
j=1

(
ρz(bjσ; fj)

6/b4j

)
b2k


2
3

ρz(bkσ; fk)
2

≤

 s∑
j=1

ρz(bjσ; fj)
6/b4j

 1
3

≤

 s∑
j=1

σ44 · ρz(bjσ; fj)
4

ρm(bjσ; fj)4

 1
3

.

(A.5.76)

Using Inequality (A.5.65) and going back to Inequality (A.5.71), we have that

ωz(ε; g) ≤ 9 · (16 · 3)
2
3 (
ε

σ
)

4
3 · σ 4

3 · 4 1
3 (

8s

F (γ)ε2
)

2
3

s∑
k=1

ρz(bkσ; fk)
2

= 9 · (16 · 3)
2
3 · 2 8

3 (
s

F (γ)
)

2
3 ‖Z(f)− Z(g)‖2.

(A.5.77)

Recall that when we let fθ = f for θ = 1 and fθ = g for θ = −1, a sufficient statistic would

be W defined in (A.5.4).

Note that we have

Ef

(
‖Ẑ − Z(f)‖2

)
≤ γRz(ε; f) ≤ 6γωz(ε; f), (A.5.78)

where the last Inequality comes from Theorem 3.2.1.

Denote event D = {‖Ẑ − Z(f)‖ ≥ 1
18ωz(ε; f)}. Then

Pf (D) ≤ 6γωz(ε; f)
1
18ωz(ε; f)

= 108γ ≤ 0.00491163. (A.5.79)

So we have that

Pg(D) ≤ 1

2
. (A.5.80)
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Hence we have that

Eg

(
‖Ẑ − Z(g)‖2

)
≥ Eg

((
‖Z(f)− Z(g)‖ − 1

18
ωz(ε; f)

)2

+

1{Dc}
)

≥ Eg

(
1

4
‖Z(f)− Z(g)‖21{Dc}

)
≥ 1

8
‖Z(f)− Z(g)‖2

≥ 1

8

1

9
(16 · 3)−

2
3 · 2− 8

3
F (γ)

2
3

s
2
3

ωz(ε; g)

≥ 1

8

1

9
(16 · 3)−

2
3 · 2− 8

3
1

6
Rz(ε; g)

F (γ)
2
3

s
2
3

.

(A.5.81)

Note that F (γ) = z2
108γ/5, so F (γ) ∼ log( 1

γ ), so we have

Eg

(
‖Ẑ − Z(g)‖2

)
≥ cz · s−

2
3 log(

1

γ
)

2
3Rz(ε; g). (A.5.82)

for some constant cz > 0.

Letting cz,s = cz · s−
2
3 and f1 = g gives the statement of the Proposition.

Proof of Proposition A.5.6

Take σ = Φ−1(1− 108(s+ 1)2γ/s)ε.

Suppose γ ≤ 0.158655s/108(s+ 1)2. Then we know that σ > 1

Take the construction of hδ in the Proof of Theorem 3.2.3 withe noise level being σ. Then

we know that

‖hδ − f‖ ≤ σ,

lim
δ→0+

‖M(f)−M(hδ)‖2 ≥
∑s

k=1 ρm(σ; fk)
2

1 + s
≥
(σ
ε

) 4
3

∑s
k=1 ρm(ε; fk)

2

1 + s

≥ Φ−1(1− 2(s+ 1)γ)
4
3

∑s
k=1 ρm(ε;hδ,k)

2

1 + s

≥ Φ−1(1− 2(s+ 1)γ)
4
3

s

9(s+ 1)2
ωm(ε; hδ)

≥ Φ−1(1− 2(s+ 1)γ)
4
3

s

9(s+ 1)2

1

6
Rm(ε; hδ).

(A.5.83)
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Note that σ
ε > 1. Hence, there exists δ0 > 0, such that for δ0 > δ > 0, we have

‖M(f)−M(hδ)‖2 ≥
s

9(s+ 1)2
ωm(ε; f) ≥ s

54(s+ 1)2
Rm(ε; f). (A.5.84)

Denote event

D = {‖M̂ −M(f)‖2 ≥ s

108(s+ 1)2
Rm(ε; f)}. (A.5.85)

Then we know that

Pf (D) ≤ γ · 108(s+ 1)2

s
. (A.5.86)

So

Phδ(D) ≤ 1

2
. (A.5.87)

Therefore, we have that

Ehδ

(
‖M̂ −M(hδ)‖2

)
≥ Ehδ

(
(1− 1√

2
)2‖M(f)−M(hδ)‖21{Dc}

)
≥ 3− 2

√
2

4
‖M(f)−M(hδ)‖2.

(A.5.88)

From Inequality (A.5.83), we know that there exists 0 < δ1 < δ0, such that for δ < δ1, we

have

‖M(f)−M(hδ)‖2 ≥ Φ−1(1− 2(s+ 1)γ)
4
3

s

55(s+ 1)2
Rm(ε; hδ). (A.5.89)

Hence,

Ehδ

(
‖M̂ −M(hδ)‖2

)
≥ 3− 2

√
2

4
Φ−1(1− 2(s+ 1)γ)

4
3

s

55(s+ 1)2
Rm(ε; hδ). (A.5.90)

Note that Φ−1(1− 2(s+ 1)γ)
4
3 ∼ log( 1

sγ )
2
3 as γ → 0+ and that log( 1

sγ )
2
3 ≥ (log( 1

γ )/ log(s))
2
3

for γ < 1
3s , so we have the statement by taking f1 = hδ.
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A.5.7. Proof of Proposition 3.3.1

We start with the first item.

Suppose P(Y 1) = P(Y 2) for Y 1, Y 2 ∈ Y. Then for A = [a1, A1]× [a2, A2]× · · · × [as, As] ⊂

[0, 1]s, we have

∫
A

dY 1 =

∫
A

der(Y 1) +
s∑
i=1

Πj 6=i(Aj − aj)
∫ Ai

ai

dπππi(Y
1)

=

∫
A

der(Y 2) +
s∑
i=1

Πj 6=i(Aj − aj)
∫ Ai

ai

dπππi(Y
2)

=

∫
A

dY 2.

(A.5.91)

Therefore, using Dynkin’s π − λ theorem, Y 1 = Y 2.

Now we continue with the second item.

Again, from Dynkin’s π − λ theorem, we only need to prove that for any

[a1, A1], [a2, A2], · · · , [as, As] ⊂ [0, 1] and B = [b1, B1]× [b2, B2]× · · · × [bs, Bs],

the following variables are independent:

∫
[a1,A1]

dπππ1(Y ),

∫
[a2,A2]

dπππ2(Y ), · · · ,
∫

[as,As]
dπππs(Y ),

∫
[b1,B1]×[b2,B2]×[bs,Bs]

der(Y ).

Note that πππi(Y )[Ai]−πππi(Y )[ai] =
∫

[a1,A1] dπππi(Y ), but we use integral form whenever possible

to ease understanding as we have stochastic processes of different dimensions.

From the definition 3.3.1 of πππi(Y ) and er(Y ), we know that

(

∫
[a1,A1]

dπππ1(Y ),

∫
[a2,A2]

dπππ2(Y ), · · · ,
∫

[as,As]
dπππs(Y ),

∫
B

der(Y ))
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is joint normal random vector. To prove independence we only need to prove the correlations

are zero.

For 1 ≤ i < j ≤ s, we have

COV (

∫
[ai,Ai]

dπππi(Y ),

∫
[aj ,Aj ]

dπππj(Y ))

= E

((∫
ti∈[ai,Ai],t−i∈[0,1]s−1

dW − (Ai − ai)
∫

[0,1]s
dW

)
·(∫

tj∈[aj ,Aj ],t−j∈[0,1]s−1

dW − (Aj − aj)
∫

[0,1]s
dW

))

= 0.

(A.5.92)

For 1 ≤ i ≤ s, suppose Ai = {t : ti ∈ [ai, Ai], t−i ∈ [0, 1]s−1}, and V (·) denotes the volume

(length when one dimensional, area when two dimensional, etc.), we have

COV (

∫
[ai,Ai]

dπππi(Y ),

∫
B

dY )

= E

((∫
ti∈[ai,Ai],t−i∈[0,1]s−1

dW − (Ai − ai)
∫

[0,1]s
dW

)
·∫

B
dW −

s∑
j=1

Πk 6=j(Bk − bk)
∫
tj∈[bj ,Bj ],t−j∈[0,1]s−1

dW + sΠs
k=1(Bk − bk)

∫
[0,1]s

dW

)

= V (Ai ∩B)− (Ai − ai)V (B)−
∑
j 6=i

Πk 6=j(Bk − bk)(Bj − bj)(Ai − ai)

− V ([ai, Ai] ∩ [bi, Bi])Πj 6=i(Bj − bj) + s(Ai − ai)Πs
i=1(Bi − bi) + 0

= 0.

(A.5.93)

Therefore, we prove the independence.

Now we continue with the sufficiency property. Recalling the Radon-Nikodym derivative
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calculated in (A.5.3), we have that for f ,g ∈ Fs

dPf

dPg
(Y ) = exp

(∫
[0,1]s

f(t)− g(t)

ε2
dY (t)− 1

2

∫
[0,1]s

f(t)2 − g(t)2

ε2
dt

)

= exp

(
1

ε2

s∑
i=1

∫ 1

0
(fi(t)− gi(t))dπππi(Y )− 1

2ε2

∫
[0,1]s

(
f(t)2 − g(t)2

)
dt

)
.

(A.5.94)

Hence we concludes the proof.

A.5.8. Proof of Theorem 3.3.1

Recalling Theorem 3.2.1 and Theorem 3.2.2, we know that it suffices to prove that

Ef

(
‖Ẑ − Z(f)‖2

)
≤ C2

s∑
k=1

ρz(ε; f)2, (A.5.95)

for an absolute constant C2 > 0.

Since we have

Ef

(
‖Ẑ − Z(f)‖2

)
=

s∑
k=1

Ef

(
|Ẑk − Z(fk)|2

)
, (A.5.96)

we only need to prove that there is an absolute constant C2 > 0 such that for 1 ≤ k ≤ s,

Ef

(
|Ẑk − Z(fk)|2

)
≤ C2ρz(ε; fk)

2. (A.5.97)

Now we focus on any given k ∈ {1, . . . , s}.

Note that for each level j ≥ 1, the localization and stopping rule only based on the following

random variables {X̃j,i,k − X̃j,i−1,k : i = 2, . . . , 2j} ∪ {Xj,i,k −Xj,i−1,k : i = 2, . . . , 2j}.

If we construct two stochastic process ṽl and ṽr in the following way

dṽl(t) = fk(t)dt+
√

3εdW l,

dṽr(t) = fk(t)dt+
√

3εdW r,

(A.5.98)
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where W l and W r are independent Brownian Motion, and also define Oj,i,k, Õj,i,k in the

same way as Xj,i,k, X̃j,i,k with vl and vr replaced by ṽl and ṽr, then we know that the

distribution under f of the infinite dimension object Ds(X, k) that concatenate the following

vectors with j = 1, 2, . . . :

(X̃j,2,k − X̃j,1,k, X̃j,3,k − X̃j,2,k, . . . , X̃j,2j ,k − X̃j,2j−1,k,

Xj,2,k −Xj,1,k, Xj,3,k −Xj,2,k, . . . , Xj,2j ,k −Xj,2j−1,k)

(A.5.99)

is the same with that having Oj,i,k, Õj,i,k in the place of Xj,i,k, X̃j,i,k, which we call Ds(O, k).

Also note that the localization procedure, stopping procedure and construction of each

axis of the estimator goes in parallel with the univariate estimator in Chapter 2, and that

the distribution of random variables playing a role in the entire estimation procedure (i.e.

Ds(X, k) ) is the same with that of Ds(O, k).

Hence bounding Ef

(
|Ẑk − Z(fk)|2

)
here is the same with bounding Efk

(
|Z̃ − Z(fk)|2

)
with Z̃ being the estimator of the minimizer of the univariate function in the setting of

univariate case in Chapter 2.

Resort to the proof of that of Theorem 2.3.1 in Chapter 2 with the quantities bounding

|Z̃ − Z(fk)| there being replaced by the square of it, we have

Ef

(
|Ẑk − Z(fk)|2

)
≤ Efk

(
|Z̃ − Z(fk)|2

)
≤ C2ρz(ε; fk)

2, (A.5.100)

for an absolute constant C2.

A.5.9. Proof of Theorem 3.3.2

Recalling the lower bound of Lα,z(ε; f) established in Theorem 3.2.4 and Proposition 2.2.1

in Chapter 2, it suffices to prove the following two two propositions.

Proposition A.5.7 (Coverage). The confidence hyper cube CIz,α defined by (3.3.12) is an
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1− α level confidence cube for minimizer.

Proposition A.5.8 (Expected Volume). For α ≤ 0.3, and confidence hyper cube CIz,α

defined by (3.3.12), we have

Ef (V (CIz,α)) ≤ C
s
2
3

s∑
k=1

ρz(zα/sε; fk), (A.5.101)

where C3 is an absolute positive constant.

Note that ρz(zα/sε; fk) ≤ (2zα/s)
2
3 ρz(ε; fk), so these two propositions lead to the theorem.

Proof of Proposition A.5.7

By the definition of confidence hyper cube CIz,α in (3.3.12), its k-th coordinate CIk only

depend Y through πππk(Y ). So it has mutually independent coordinates. Hence we have

Pf (Z(f) ∈ CIz,α) = Πs
k=1Pf (Z(fk) ∈ CIk) ≥ Πs

k=1 inf
f∈Fs

Pf (Z(fk) ∈ CIk). (A.5.102)

So it suffices to prove that inff∈Fs Pf (Z(fk) ∈ CIk) ≥ 1− α
s .

Denote j̀k = min{j : |̂ij,k − i∗j,k| ≥ 7}.Then we have for any f ∈ Fs,

Pf (Z(fk) /∈ CIk) = Pf (j̀k < ĵ(α/s, k)) =

∞∑
j=3

Ef (Ef (1{j < ĵ(α/s, k)}|vlk)1{j̀k = j})

≤
∞∑
j=3

Ef (α/s1{j̀k = j}) ≤ α/s.

(A.5.103)

The first inequality is due to the distribution in (3.3.7) and that for the
X̃j,̂ij,k−6,k−X̃j,̂ij,k−5,k

σj
,

as well as the facts that îj,k only depends on vlk, that vlk and vrk are independent, and that

j = j̀k implies Sp(j, k) ≤ 0 or that for the left side is non-positive.

This concludes the proof.
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Proof of Proposition A.5.8

Note that the coordinates of the confidence hyper cube are independent, so we have

Ef (V (CIz,α)) = Πs
k=1Ef (‖CIk‖) , (A.5.104)

it suffice to prove that there exists an absolute constant C3 > 0 such that for any k ∈

{1, 2, . . . , s}, the following holds

Ef

(
‖CIk‖2

)
≤ C3ρz(zα/sε; fk)

2. (A.5.105)

Now we recollect and introduce some notation that indicate the levels at which the local-

ization procedure picks a interval far away from the right one.

j̃k = min{j : |̂ij,k − i∗j,k| ≥ 2},

j́k = min{j : |̂ij,k − i∗j,k| ≥ 5},

j̀k = min{j : |̂ij,k − i∗j,k| ≥ 7}.

(A.5.106)

It’s clear that for any j ≥ j̃k we have

|̂ij,k − i∗j,k| ≥ 2. (A.5.107)

We also introduce a quantity as follow.

j∗k = min{j : mj ≤
ρz(ε; fk)

4
}. (A.5.108)
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We have

Ef (‖CIk‖2)

≤ 169
∞∑
j=3

Ef (2
−2j
1{ĵ(α/s, k) = j})

≤ 169

∞∑
j=3

Ef (2
−2j
1{ĵ(α/s, k) = j, j́k ≤ j}) + 169

∞∑
j=3

Ef (2
−2j
1{ĵ(α/s, k) = j, j́k > j})

≤ 169

∞∑
j=3

Ef (2
−2j́k1{ĵ(α/s, k) = j, j́k ≤ j}) + 169

∞∑
j=3

Ef (2
−2j
1{ĵ(α/s, k) = j, j́k > j})

≤ 169Ef (2
−2j́k) + 169

∞∑
j=3

Ef (2
−2j
1{ĵ(α/s, k) = j, j́k > j}).

(A.5.109)

We will bound the two terms separately, now we start with the first term.

Note that we have j̀k ≥ j́k ≥ j̃k and that j̃k = j implies one of the following happens:

{Xj,i∗j,k+1,k ≥ Xj,i∗j,k+2,k}, {Xj,i∗j,k+1,k ≥ Xj,i∗j,k+3,k}, {Xj,i∗j,k+1,k ≥ Xj,i∗j,k+4,k},

{Xj,i∗j,k−1,k ≥ Xj,i∗j,k−2,k}, {Xj,i∗j,k−1,k ≥ Xj,i∗j,k−3,k}, {Xj,i∗j,k−1,k ≥ Xj,i∗j,k−4,k}.
(A.5.110)

Also we have for j ≥ j∗k + 3, mj > ρz(ε; fk).
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So we have

Ef (2
−2j́k)

≤ Ef (2
−2j̃k) ≤ 2−2j∗k+6 +

j∗k−4∑
j=3

2−2jEf (1{j̃k = j})

≤ 4ρz(ε; fk)
2 +

j∗k−4∑
j=3

2−2j × 2×
(

Φ(−ρm(ε; fk)

ρz(ε; fk)

(2j
∗
k−3−jρz(ε; fk))

3
2√

3ε
)+

Φ(−2
ρm(ε; fk)

ρz(ε; fk)

(2j
∗
k−3−jρz(ε; fk))

3
2√

3ε
) + Φ(−3

ρm(ε; fk)

ρz(ε; fk)

(2j
∗
k−3−jρz(ε; fk))

3
2√

3ε
)

)

≤ 4ρz(ε; fk)
2 +

j∗k−4∑
j=3

2−2j × 2×
(

Φ(−2
3(j∗k−3−j)

2
1√
2

1√
3

)+

Φ(−2× 2
3(j∗k−3−j)

2
1√
2

1√
3

) + Φ(−3× 2
3(j∗k−3−j)

2
1√
2

1√
3

)

)

≤ 4ρz(ε; fk)
2 + 32ρz(ε; fk)

2(
Φ(− 2√

3
)

1− 8
√

2 exp (−7
2 · 4

3)
+

Φ(− 4√
3
)

1− 8
√

2 exp (−7
2 · 16

3 )

+
Φ(−2

√
3)

1− 8
√

2 exp (−7
2 · 12)

)

≤ 4ρz(ε; fk)
2 + 4.5ρz(ε; fk)

2 = 8.5ρz(ε; fk)
2.

(A.5.111)

Now we turn to the second term in Inequality (A.5.109). We first define three quantities.

Let the average of fk over [tj,i−1, tj,i] to be

f̄j,i,k = 2j
∫ 2−j×i

2−j×(i−1)
fk(t)dt.

For i > 2j or i ≤ 0, define f̄j,i,k = +∞. And suppose ∞− a = ∞ for a ∈ [−∞,∞], and

min{∞, a} = a for a ∈ [−∞,∞].

Let the minimum of the difference of the two neighboring intervals be

Ξj,k = min{f̄j,i∗j,k+2,k − f̄j,i∗j,k+1,k, f̄j,i∗j,k−2,k − f̄j,i∗j,k−1,k}. (A.5.112)
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Let j(ζ, k) be the level j such that the signal part in Tj,k is relatively small, specifically

defined as follow.

j(ζ, k) = min{j : Ξj,k · 2−
j
2

1√
6ε
≤ zζ + 1}. (A.5.113)

Note that j(ζ, k) is a determined quantity depending only on ζ and fk. Recall that ĵ(α/s, k)

is the stopping level, which is a random variable.

Also note that for j ≤ j(α/s, k)− 1 we have

Ξj,k · 2−
j
2

1√
6ε
≥ 2

3(j(α/s,k)−1−j)
2 (zα/s + 1) (A.5.114)

With these quantities, we have

∞∑
j=3

2−2jEf (1{ĵ(α/s, k) = j, j́k > j})

≤ 2−2j(α/s,k)+1 +

j(α/s,k)−1∑
j=3

2−2jΦ(−(zα/s + 1)× 2
3
2

(j−j(α/s,k)+1) + zα/s)

≤ 2−2j(α/s,k)+1 + 2−2j(α/s,k)+2Φ(−1)
1

1− Φ(−2
√

2)/Φ(−1)

< 3 · 2−2j(α/s,k).

(A.5.115)

Now we introduce a lemma.

Lemma A.5.1. For j(ζ, k) defined in (A.5.113), with ζ ≤ 0.3 we have

(
6
√

2(zζ + 1)

zζ
)

2
3 ρz(zζε; fk) ≥ 2−j(ζ,k). (A.5.116)

Proof. Without loss of generality, we assume

f̄j,ij(ζ,k),k+2,k − f̄j,ij(ζ,k),k+1,k = Ξj(ζ,k).
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Let µk = min{fk(max{tj(ζ,k),i∗
j(ζ,k),k

−2, 0}), fk(tj(ζ,k),i∗
j(ζ,k),k

+1)}. Let the glo ∈ F be defined

as glo(t) = max{fk(t), µk}.

For simplicity of notation, let j0 = j(ζ, k), i∗ = i∗j(ζ,k),k.

Therefore,

‖glo − fk‖2 ≤ (µk −M(fk))
2 · 3 · 2−j0

≤ (fk(tj0,i∗+1)− fk(tj0,i∗) + fk(tj0,i∗)−M(fk))
2 · 3 · 2−j0

≤ (f̄j,i∗+2 − f̄j,i∗+1)2 · 3 · 2−j0

≤ ((zζ + 1) · 2
j0
2

√
6ε)2 · 3 · 2−j0

= 6(zζ + 1)2 × 3ε2.

(A.5.117)

Therefore,

2−j0 ≤ ρz(3
√

2(zζ + 1)ε; fk) ≤ (
6
√

2(zζ + 1)

zζ
)

2
3 ρz(zζε; fk). (A.5.118)

The last inequality is due to Proposition 2.2.1 in Chapter 2 and that zζ ≥ z0.3 = 0.524

Lemma A.5.1 combined with Inequality (A.5.115), and note that α/s ≤ 0.3 we have

∞∑
j=3

2−2jEf (1{ĵ(α/s, k) = j, j́k > j}) < 136ρz(zα/sε; fk)
2. (A.5.119)

Also note that for α ≤ 0.3, we have ρz(ε; fk) < 2.6ρz(zα/sε; fk).

Therefore both terms in Inequality A.5.109 are bounded by multiple times ρz(zα/sε; fk)
2.

We conclude the proof.
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A.5.10. Proof of Theorem 3.3.3

Recalling Theorem 3.2.1 and Theorem 3.2.2, it suffice to prove

E
(

(M̂ −M(f))2
)
≤ Cm

(
s∑

k=1

ρm(ε; fk)

)2

, (A.5.120)

for an absolute positive constant Cm.

We proceed to prove this.

Recall that ζ = Φ(−2).

Note that Y (1, 1, · · · , 1)− Y (0, 0, · · · , 0), 2ĵ(ζ,k)X̄ĵ(ζ,k),iF,k,k
for k = 1, 2, · · · , s are indepen-

dent. Therefore,

E
(

(M̂ −M(f))2
)
≤(√

E(Y (1, 1, · · · , 1)− Y (0, 0, · · · , 0)− f0)2 +
s∑

k=1

√
E
(

2ĵ(ζ,k)X̄ĵ(ζ,k),iF,k,k
−M(fk)

)2
)2

.

(A.5.121)

Recollect the notation

f̄j,i,k = 2j
∫ 2−j ·i

2−j(i−1)
fk(t)dt. (A.5.122)

Recall that the location procedure, the stopping rule and the definition of iF,k parallel

those of univariate case introduced in Chapter 2, so we have that f̄ĵ(ζ,k),iF,k,k
has the same

distribution with that of f̂ in the proof of Theorem 2.3.3 with fk being the true function.

Hence we have that

E
(
f̄ĵ(ζ,k),iF,k,k

−M(fk)
)2
≤ C̃mρm(ε; fk)

2 (A.5.123)

for all k ∈ {1, 2, · · · , s}, where C̃m is a positive absolute constant.

345



Also note that

X̄ĵ(ζ,k),iF,k,k
|(ĵ(ζ, k), iF,k) ∼ N(f̄ĵ(ζ,k),iF,k,k

, (1− 2−ĵ(ζ,k))2−ĵ(ζ,k) × 3ε2).

So we have that

E
(

2ĵ(ζ,k)X̄ĵ(ζ,k),iF,k,k
−M(fk)

)2

= E
(

2ĵ(ζ,k)X̄ĵ(ζ,k),iF,k,k
− f̄ĵ(ζ,k),iF,k,k

)2
+ E

(
f̄ĵ(ζ,k),iF,k,k

−M(fk)
)2

≤ E((1− 2−ĵ(ζ,k))2ĵ(ζ,k) × 3ε2) + C̃mρm(ε; fk)
2.

(A.5.124)

Now we will bound E(2ĵ(ζ,k) × 3ε2). Note that ζ = Φ(−2) < 0.3, so we have that

Ef (2
ĵ(ζ,k)) ≤

j(ζ,k)+3∑
j=1

Ef (ĵ(ζ, k) = j)× 2j +

∞∑
j=j(ζ,k)+4

Ef (ĵ(ζ, k) = j)× 2j

≤ 2j(ζ,k)+4 +

∞∑
j=j(ζ,k)+4

2jΦ(−zζ +
zζ + 1

64
)j−j(ζ,k)−4

≤ 2j(ζ,k)+4 + 2j(ζ,k)+4 · 1

1− 0.03
≤ 4

ρz(zζε; fk)
× 33.

(A.5.125)

The last inequality is due to Lemma A.5.3.

Going back to Inequality (A.5.121) we have that

E
(

(M̂ −M(f))2
)
≤
(
ε+

s∑
k=1

√
132

3ε2

ρz(zζε; fk)
+ C̃mρm(ε; fk)2

)2

≤
(
ε+

s∑
k=1

√
800 + C̃m × ρm(zζε; fk)

)2

≤ Cm
(

s∑
k=1

ρm(ε; fk)

)2

.

(A.5.126)
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A.5.11. Proof of Theorem 3.3.4

Recalling the lower bound for Lα,m(ε; f) established in Theorem 3.2.1 and Theorem 3.2.2,

it suffices to prove the following propositions.

Proposition A.5.9 (Coverage). The confidence interval CIm,α defined by (3.3.18) is an

1− α level confidence cube for minimum.

Proposition A.5.10 (Expected Length). For α ≤ 0.3, and confidence interval CIm,α

defined by (3.3.18), we have

Ef (|CIm,α|) ≤ C̃m,s,α
s∑

k=1

ρm(ε; fk), (A.5.127)

where C̃m,s,α is an absolute positive constant depending on s and α.

Proof of Proposition A.5.9

Recall that ζ = α/4s. Let the event A1 be

A1 =
{
Z(fk) ∈[2−ĵ(ζ,k)+1 × ·(̂iĵ(ζ,k)−1,k − 7), 2−ĵ(ζ,k)+1 × ·(̂iĵ(ζ,k)−1,k + 6)]

for all k ∈ {1, 2, · · · , s}
}
.

(A.5.128)

Then from Theorem 3.3.2 we know that P (A1) ≥ 1− α/4. Easy calculation shows that A1

can also be written as

A1 = {Z(fk) ∈ [2−ĵ(ζ,k)−3 · 16(̂iĵ(ζ,k)−1,k − 7), 2−ĵ(ζ,k)−3 · 16(̂iĵ(ζ,k)−1,k + 6)]} (A.5.129)

Let the event D2,k be

D2,k = {ĵ(α/4s, k) ≤ j(α/4s, k)− 2},

347



where j(ζ, k) is defined in (A.5.113). By definition of j(ζ, k) we know that for j ≤ j(ζ, k)−1

Ξj,k · 2−
j
2

1√
6ε

> 2
3
2

(j(ζ,k)−1−j)(zα/4s + 1). (A.5.130)

Therefore, we have

P (D2,k ∩ {|̂iĵ(ζ,k),k − i∗j(ζ,k),k| ≤ 4})

≤
j(α/4s,k)−1∑

j=1

P
(
ĵ(ζ, k) = j, |̂ij,k − i∗j,k| ≤ 4

)

≤ Φ(−zα/4s − 1)

j(α/4s,k)−1∑
j=1

P (|̂ij,k − i∗j,k| ≤ 4).

(A.5.131)

Additionally, recall j̃k defined in (A.5.106), we have

P
(
{|̂iĵ(ζ,k),k − i∗j,k| ≥ 5, ĵ(ζ, k) ≤ j(α/4s, k)− 1}

)
≤ P

(
j̃k ≤ j(α/4s, k)− 2

)
≤ 6

j(α/4s,k)−2∑
j=1

Φ(−23·(j(α/4s,k)−1−j)/2(zα/4s + 1) + zα/4s)

≤ 6× Φ(−zα/4s − 2
√

2)× 1.000001.

(A.5.132)

Therefore, for α ≤ 0.3,

P (D2,k) ≤ Φ(−zα/4s − 1) + 6.000006× Φ(−zα/4s − 2
√

2)

≤ (α/4s)×
(

4

3
· exp(−1.5) + 6.000006× 4

3
exp (−4)

)
≤ α/8s.

(A.5.133)

Note that for each k

2ĵ(ζ,k)+3 × X̄ĵ(ζ,k)+3,i,k −
∫ tĵ(ζ,k)+3,i,k

tĵ(ζ,k)+3,i−1,k

fk(t) · 2ĵ(ζ,k)+3dt

+ Y (1, 1, · · · , 1)− Y (0, 0 · · · , 0)− f0 −
√

2ε

∫ 1

0
B1
k(x)dx

∣∣∣∣∣ĵ(ζ, k)

(A.5.134)

348



for i = 1, 2, · · · , s are i.i.d N(0, 2ĵ(ζ,k)+3 × 3ε2). And

Y (1, 1, · · · , 1)− Y (0, 0 · · · , 0)− f0−
s∑

k=1

(
Y (1, 1, · · · , 1)− Y (0, 0 · · · , 0)− f0 −

√
2ε

∫ 1

0
B1
k(x)dx

)
∼ N(0, ε2((s− 1)2 + 2s)).

(A.5.135)

Hence we have that

P
(
fhi ≤M(f)

∣∣∣A1

)
≤ α

4
. (A.5.136)

Also note that on the event A1 ∩Dc
2,k, there is a random variable such that

vk|ĵ(ζ, k) ∼ N(0, 3(1− 2−ĵ(ζ,k)−3)2ĵ(ζ,k)+3ε2),

2ĵ(ζ,k)+3 min
16·(̂iĵ(ζ,k)−1,k−7)<i≤16·(̂iĵ(ζ,k)−1,k+6)

X̄ĵ(ζ,k)+3,i,k

≤M(fk) + ρm(zζε; fk) + vk

≤M(fk) +
√

3εzζ
1√

ρz(zζε; fk)
+ vk,

(A.5.137)

and v1, v2, · · · , vk are independent.

Recall Lemma A.5.1 and the definition of Dc
2,k, we have on the event A1 ∩Dc

2,k

2ĵ(ζ,k)+3 min
16·(̂iĵ(ζ,k)−1,k−7)<i≤16·(̂iĵ(ζ,k)−1,k+6)

X̄ĵ(ζ,k)+3,i,k ≤M(fk) +
√

3εzζ
1√

ρz(zζε; fk)
+ vk.

(A.5.138)

So we have that

P
(
flo ≥M(f)

∣∣∣A1 ∩
(
∩sk=1D

c
2,k

))
≤ α

4
. (A.5.139)
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Adding the components, we have

P (M(f) /∈ [flo, fhi]) ≤

P (Ac1) +
s∑

k=1

P (D2,k) + P (flo ≥M(f)
∣∣∣A1 ∩

(
∩sk=1D

c
2,k

)
) + P (fhi ≤M(f)

∣∣∣A1) ≤ α.

(A.5.140)

Proof of Proposition A.5.10

As ĵ(ζ, 1), ĵ(ζ, 2), · · · , ĵ(ζ, s) based on independent random variables, they are independent.

Hence we have

E(|fhi − flo|2) ≤
(

2
√

6ε
(
S208,α/8s + zα/4 + 2zα/4s + 2zα/8

) s∑
k=1

E(2
ĵ(zα/4s,k)

2 )

)2

. (A.5.141)

Now we will prove the following lemma.

Lemma A.5.2. For k = 1, 2, · · · , s, for ζ ≤ 0.3,

E(2
ĵ(ζ,k)

2 ) ≤ 12.7× 2
j(ζ,k)

2 , (A.5.142)

where j(ζ, k) is defined in (A.5.113).

Proof.

Ef (2
ĵ(ζ,k)

2 ) ≤
j(ζ,k)+3∑
j=1

Ef (ĵ(ζ, k) = j)× 2
j
2 +

∞∑
j=j(ζ,k)+4

Ef (ĵ(ζ, k) = j)× 2
j
2

≤ 2
j(ζ,k)+5

2 +
∞∑

j=j(ζ,k)+4

2
j
2 Φ(−zζ +

zζ + 1

64
)j−j(ζ,k)−4

≤ 2
j(ζ,k)+5

2 + 2
j(ζ,k)+4

2 × 1.74803 ≤ 12.7× 2
j(ζ,k)

2

(A.5.143)
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To bound 2
j(ζ,k)

2 , we continue with another lemma

Lemma A.5.3. For ζ ≤ 0.3, and k = 1, 2, · · · , s we have

2−j(ζ,k) ≥ 1

4
ρz(zζε; fk). (A.5.144)

Proof. Without loss of generality, assume fk(Z(fk) + ρz(zζε; fk)) ≤ ρm(zζε; fk). Suppose

2−j ≤ 1
4ρz(zζε; fk), then we have that

(f̄j,i∗j,k+2,k − f̄j,i∗j,k+1,k) · 2−
j
2

1√
6ε

≤ ρm(zζε; fk) ·
1

2

√
ρz(zζε; fk)

1√
6ε
≤ 1

2
√

2
zζ ≤ zζ + 1.

(A.5.145)

Therefore, j ≥ j(ζ, k), thus 2−j(ζ,k) ≥ 1
4ρz(zζε; fk).

Combing Lemma A.5.2 with Lemma A.5.3 and getting back to Inequality (A.5.141), we

have

E(|fhi − flo|2)

≤

2
√

6ε
(
S208,α/8s + zα/4 + 2zα/4s + 2zα/8

) s∑
k=1

12.7× 2
1√

ρz(zα/4sε; fk)

2

≤
(

8
√

3× 12.7×
(
S208,α/8s + zα/4 + 2zα/4s + 2zα/8

) 1

zα/4s

s∑
k=1

ρm(zα/4sε; fk)

)2

.

(A.5.146)

Note that

ρm(zα/4sε; fk) ≤ zα/4sρm(ε; fk), (A.5.147)

and

E(|fhi − flo|) ≤
√
E(|fhi − flo|2). (A.5.148)
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Therefore, we have the statement.

A.5.12. Analysis of Local Minimax Rates for Nonparametric Regression

In this section, we give lower bounds for the benchmarks defined in (3.4.2) and (3.4.3).

An additional complexity for the nonparametric regression is that two functions f and g

can have same values on all grid points i
n while have different minimizers or minimums. We

call this error caused by discretization discretization error :

Dz(f ;n) = supg∈Fs{‖Z(f)− Z(g)‖2 : f( i
n) = g( i

n) for all i ∈ {0, 1, . . . , n}s}, (A.5.149)

Dm(f ;n) = supg∈Fs{|M(f)−M(g)| : f( i
n) = g( i

n) for all i ∈ {0, 1, . . . , n}s}. (A.5.150)

(A.5.151)

Note that while the discretization errors are defined for f ∈ Fs, they are also well defined

for univariate convex functions by setting s = 1. With a bit abuse of notation, we use them

directly for univariate convex functions as well by plugging in univariate convex function f

in the place of the multivariate convex function f .

It’s apparent that

R̃z,n(σ; f) ≥ 1

4
Dz(f ;n), R̃m,n(σ; f) ≥ 1

4
Dm(f ;n)2, L̃m,α,n(σ; f) ≥ (1− 2α))Dm(f ;n).

(A.5.152)

For simplicity of notation, for ε > 0, we define

ϕz(ε; f) = ρz(ε; f)
(

1 ∧
√
nρz(ε; f)

)
, for f ∈ F , (A.5.153)

ϕm(ε; f) = ρm(ε; f)
(

1 ∧
√
nρz(ε; f)

)
, for f ∈ F . (A.5.154)
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Now we state the lower bounds for the benchmarks, whose proof will be given later.

R̃z,n(σ; f) ≥
(

0.1× 1
12s

∑s
k=1 ϕz(

σ

(n+1)
s
2

; fk)
2

)
∨ Dz(f ;n)

4 , (A.5.155)

L̃z,α,n(σ; f) ≥ 1−α−Φ(−zα+1)

(12s)s/2
Πs
k=1

(√
Dz(fk;n) ∨ ϕz( σ

(n+1)
s
2

; fk)

)
, (A.5.156)

R̃m,n(σ; f) ≥

 1

180

s∑
k=1

ϕm(
σ

(n+ 1)
s
2

; fk)
2 1

1 + s
n +

∑s
k=1 2ρz(

σ

(n+1)
s
2

; fk)

 ∨ 1

2
Dm(f ;n)2,

(A.5.157)

L̃m,α,n(σ; f) ≥ (1− α− Φ(−zα + 1))· 1

3
√

2

√√√√ s∑
k=1

ϕm(
σ

(n+ 1)
s
2

; fk)2

√
1

1 + s
n +

∑s
k=1 2ρz(

σ

(n+1)
s
2

; fk)
∨Dm(f ;n)

 .

(A.5.158)

Before continue with the proofs of the lower bounds (A.5.155), (A.5.156), (A.5.157), and

(A.5.158) separately, we introduce some quantities and lemmas that will be frequently used.

We introduce a function ln(·, ·). For f, g ∈ F

ln(f, g) =

√∑n
j=1(f( in)− g( in))2

n+ 1
. (A.5.159)

ln can be considered as a discrete L2 norm of the difference of function f and g.

We also have the following lemma.

Lemma A.5.4. For f ∈ F , ε > 0, and δ > 0, there exist g ∈ F such that

ln(f, g) ≤
√

6ε, (A.5.160)
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and that

|Z(f)− Z(g)| ≥ ρz(ε; f)(1 ∧
√

2nρz(ε; f))− δ,

M(g)−M(f) ≥ ρm(ε; f)(1 ∧
√

2nρz(ε; f))− δ,

g(t) ≥ f(t) for 0 ≤ t ≤ 1,

1

n+ 1

n∑
i=0

(g(
i

n
)− f(

i

n
)) ≤ ln(f, g)

√
1

n
+ 2ρz(ε; f).

(A.5.161)

Proof. Suppose η > 0 is a small number. For µ > 0, we next define convex function

gη,µ. Suppose tl,µ, tr,µ are left and right end points of {t : f(t) ≤ µ + M(f)}. When

tl,µ + tr,µ ≥ 2Z(f).

gη,µ(t) = max{f(t), µ+M(f) +
−η

tr,µ − tl,µ
(t− tl,µ)}. (A.5.162)

When tl,µ + tr,µ ≤ 2Z(f).

gη,µ(t) = max{f(t), µ+M(f) +
η

tr,µ − tl,µ
(t− tr,µ)}. (A.5.163)

For ρz(ε; f) ≥ 1
2n , we have

ln(f, gη,ρm(ε;f)) ≤
√

6‖f − g‖ ≤
√

6ε, (A.5.164)

for any η > 0. And we also have that

lim
η→0+

|Z(gη,ε)− Z(f)| ≥ ρz(ε; f). (A.5.165)

For ρz(ε; f) ≤ 1
2n , we have that

ln(f, g
η,ρm(ε;f)

√
2nρz(ε;f)

) ≤
√

6‖f − g‖ ≤
√

6ε, (A.5.166)
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for any η > 0.

lim
η→0+

|Z(g
η,ε
√

2nρz(ε;f)
)− Z(f)| ≥ ρz(ε; f)

√
2nρz(ε; f)). (A.5.167)

Let µ = ρm(ε; f)(1 ∧
√

2nρz(ε; f)).

Then we have that

ln(f, gη,µ) ≤ 6ε2,

lim
η→0+

M(gη,µ)−M(f) ≥ ρm(ε; f)(1 ∧
√

2nρz(ε; f)),

lim
η→0+

|Z(gη,µ)− Z(f)| ≥ ρz(ε; f)(1 ∧
√

2nρz(ε; f)),

gη,µ(t) ≥ f(t) for all 0 ≤ t ≤ 1,(
1

n+ 1

n∑
i=1

(gη,µ(
i

n
)− f(

i

n
))

)

≤ ln(f, gη,µ)2 |{i : gη,µ( in) > f( in)}|
n+ 1

≤ ln(f, gη,µ)2 2nρz(ε; f) + 1

n+ 1
.

(A.5.168)

Take η small enough gives the statement.

Now we continue with analyzing the probability structure of the nonparametric regression

setting.

For f ,g ∈ Fs, denote the probability distribution under f as Pf and that under g as Pg.

Then for observation {yi}, we have

log

(
Pf

Pg
({yi})

)
=

∑
i∈{0,1,··· ,n}s

(
yi(f(i)− g(i))

σ2
+
−f(i)2 + g(i)2

2σ2

)
. (A.5.169)
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If we set fθ = f1{θ = 1}+ g1{θ = −1}, then we know that

W =
∑

i∈{0,1,··· ,n}s

yi(f(i))− g(i))

σ
√∑

i∈{0,1,··· ,n}s(f(i))− g(i))2
+

−f(i)2 + g(i)2

2σ
√∑

i∈{0,1,··· ,n}s(f(i))− g(i))2

(A.5.170)

is a sufficient statistic for θ, and

W ∼ N(θ
1

2

√∑
i∈{0,1,··· ,n}s(f(i))− g(i))2/(n+ 1)s

σ/(n+ 1)
s
2

, 1). (A.5.171)

Proof of Inequality (A.5.155)

Recall Lemma A.5.4, take ε2 = σ2

6(n+1)s
1
s . Take

δ < 0.001 min
1≤k≤s

ρz(ε; fk)
(

1 ∧
√
nρz(ε; fk)

)
.

Take gk,δ to be the function satisfying (A.5.161) in Lemma A.5.4 for f = fk. Let

hk,δ(t) = gk,δ(t)−
1

n+ 1

n∑
i=0

(gk,δ(
i

n
)− fk(

i

n
)). (A.5.172)

Let

hδ(t) = f0 +

s∑
k=1

hk,δ(tk). (A.5.173)

It’s easy to check hδ ∈ Fs.

Then Lemma A.5.4 together with elementary calculation show that

√∑
i∈{0,1,··· ,n}s(f(i))− g(i))2/(n+ 1)s

σ/(n+ 1)
s
2

≤ 1, (A.5.174)
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and that

‖Z(hδ)− Z(f)‖2 ≥
s∑

k=1

(
ρz(ε; fk)

(
1 ∧

√
2nρz(ε; fk)

)
− δ
)2
. (A.5.175)

Recall that W defined in (A.5.171) is sufficient statistic for θ, we have

R̃z,n(σ; f) ≥ inf
Ẑ

max{Ef

(
‖Ẑ − Z(f)‖2

)
,Ehδ

(
‖Ẑ − Z(hδ)‖2

)
} ≥ r2‖Z(f)− Z(hδ)‖2,

≥ r2

s∑
k=1

(
ρz(ε; fk)

(
1 ∧

√
2nρz(ε; fk)

)
− δ
)2
,

(A.5.176)

where

r2 = inf
θ̂

max
θ=±1

Eθ
|θ̂ − θ|2

4
,

for W ∼ N( θ2 , 1). Elementary calculation shows that r2 > 0.1.

Now we take δ → 0+, we have that

R̃z,n(σ; f) ≥ 0.1
s∑

k=1

ρz(ε; fk)
2 (1 ∧ 2nρz(ε; fk))

≥ 0.1× 1

12s

s∑
k=1

ϕz(
σ

(n+ 1)
s
2

; fk)
2,

(A.5.177)

where the last inequality comes from Proposition 2.2.1.

Note that R̃z,n(σ; f) ≥ Dz(f ;n)
4 apparently. We concludes the proof.

Proof of Inequality (A.5.156)

Take hk,δ constructed in (A.5.172).

Let δ̃ < 0.01 be a small positive number.
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Take fk,alt,δ̃ ∈ F satisfying

fk,alt,δ̃(
i

n
) = fk(

i

n
) for 0 ≤ i ≤ n,

|Z(fk,alt,δ̃)− Z(fk)| ≥
1

2

√
(1− δ̃)Dz(fk;n).

(A.5.178)

Take

hδ,δ̃(t) = f0 +
s∑
k

(
hk,δ(tk)1{|Z(hk,δ)− Z(fk)| ≥ |Z(fk,alt,δ̃)− Z(fk)|}

+ fk,alt,δ̃(tk)1{|Z(hk,δ)− Z(fk)| < |Z(fk,alt,δ̃)− Z(fk)|}
)
.

(A.5.179)

It’s easy to check that hδ,δ̃Fs.

Then we have that √∑
i∈{0,1,··· ,n}s(f(i))− g(i))2/(n+ 1)s

σ/(n+ 1)
s
2

≤ 1, (A.5.180)

and that

‖Z(hδ,δ̃)k − Z(f)k‖ ≥
(

1

2

√
(1− δ̃)Dz(fk;n) ∨

s∑
k=1

(
ρz(ε; fk)

(
1 ∧

√
2nρz(ε; fk)

)
− δ
))

,

(A.5.181)

for k ∈ {1, 2, · · · , s}.

Therefore, we have for CIm,α ∈ Im,α,n(Fs),

Ef (V (CIm,α)) ≥(1− α− Φ(−zα + 1))×

Πs
k=1

(
1

2

√
(1− δ̃)Dz(fk;n) ∨

s∑
k=1

(
ρz(ε; fk)

(
1 ∧

√
2nρz(ε; fk)

)
− δ
))

.

(A.5.182)

Note that α ≤ 0.3 gives 1− α− Φ(−zα + 1) > 0.
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Take δ, δ̃ → 0+, we have

Ef (V (CIm,α))

≥ (1− α− Φ(−zα + 1))Πs
k=1

(
1

2

√
Dz(fk;n) ∨

(
ρz(ε; fk)

(
1 ∧

√
2nρz(ε; fk)

)))
≥ (1− α− Φ(−zα + 1))Πs

k=1

(
1

2

√
Dz(fk;n) ∨ 1√

12s
ϕz(

σ

(n+ 1)
s
2

; fk)

)
≤ (1− α− Φ(−zα + 1))(12s)−

s
2 Πs

k=1

(√
Dz(fk;n) ∨ ϕz(

σ

(n+ 1)
s
2

; fk)

)
.

(A.5.183)

Proof of Inequality (A.5.157) and Inequality (A.5.158)

Let

εk =
ϕm( σ

(n+1)
s
2

; fk)√∑s
i=1 ϕm( σ

(n+1)
s
2

; fi)2

1√
6

σ

(n+ 1)
s
2

1

1 + s
n +

∑s
i=1 2ρz(

σ

(n+1)
s
2

; fi)
. (A.5.184)

Recall Lemma A.5.4. Let δ = 0.1
s · min1≤k≤s ϕm(εk; fk). For each k ∈ {1, 2, · · · , s}, take

ε = εk, and take let gk,δ be the function g in Lemma A.5.4.

Let δ̃ < 0.01 be a small positive number.

Take fk,alt,δ̃ ∈ F satisfying

fk,alt,δ̃(
i

n
) = fk(

i

n
) for 0 ≤ i ≤ n,

|M(fk,alt,δ̃)−M(fk)| ≥
1

2
(1− δ̃)Dm(fk;n).

(A.5.185)

Let

gδ(t) = f0 +
s∑

k=1

gk,δ(tk). (A.5.186)

Clearly gδ ∈ Fs.
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With a bit abuse of notation, in this proof let

∆k =
1

n+ 1

n∑
i=0

gk,δ(
i

n
)− fk(

i

n
) (A.5.187)

Then we have that√∑
i∈{0,1,··· ,n}s(f(i))− gδ(i))2/(n+ 1)s

σ/(n+ 1)
s
2

=

√
(
∑s

k=1 ∆k)2 +
∑s

k=1 ln(fk, gk,δ)−∆k)2

σ/(n+ 1)
s
2

≤
√∑s

k=1 ln(fk, gk,δ)−∆k)2
√

1 + s
n +

∑s
k=1 2ρz(εi; fk)

σ/(n+ 1)
s
2

≤

√∑s
k=1 6ε2

k

√
1 + s

n +
∑s

k=1 2ρz(ε; fk)

σ/(n+ 1)
s
2

.

≤ 1

(A.5.188)

Also, by Lemma A.5.4, we have that

M(gδ)−M(f) =
s∑

k=1

M(gk,δ)−M(fk) ≥
s∑

k=1

ρm(εk; f)(1 ∧
√

2nρz(εk; f))− δ

≥
s∑

k=1

√
1

3

εk

σ/(n+ 1)
s
2

ϕm(
σ

(n+ 1)
s
2

; fk)− δ

≥ 1

3
√

2

√√√√ s∑
k=1

ϕm(
σ

(n+ 1)
s
2

; fk)2

√
1

1 + s
n +

∑s
k=1 2ρz(

σ

(n+1)
s
2

; fk)
− sδ.

(A.5.189)

Recall the sufficient statistic W given in (A.5.171).
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So we have

R̃m,n(σ; f) ≥ inf
M̂

max{Ef (|M̂ −M(f)|2),Egδ(|M̂ −M(gδ)|2)}

≥ r2|M(f)−M(gδ)|2,
(A.5.190)

where

r2 = inf
θ̂

max
θ=±1

Eθ
|θ̂ − θ|2

4
,

for W ∼ N( θ2 , 1). Elementary calculation shows that r2 > 0.1.

Let δ → 0+, so we have

R̃m,n(σ; f) ≥ 1

180

s∑
k=1

ϕm(
σ

(n+ 1)
s
2

; fk)
2 1

1 + s
n +

∑s
k=1 2ρz(

σ

(n+1)
s
2

; fk)
. (A.5.191)

It’s apparent that R̃m,n(σ; f) ≥ 1
4Dm(f ;n)2. This concludes the proof of Inequality (A.5.157).

We now turn to the proof of Inequality (A.5.158) .

Let δ̃ < 0.01 be a small positive number. Then there exist f̃1, f̃2 ∈ Fs such that

f̃1(
i

n
) = f(

i

n
) = f̃2(

i

n
) for i ∈ {0, 1, · · · , n}s, |M(f̃1)−M(f̃2)| ≥ (1− δ̃)Dm(f ;n),

(A.5.192)

Suppose CIm,α ∈ Im,α,n(Fs).

It’s clear that CIm,α ∈ Im,α,n({f ,gδ}), CIm,α ∈ Im,α,n({f̃2, f̃1}). Therefore, we have that

L̃m,α,n(σ; f) ≥ (1− 2α) · (1− δ̃)Dm(f ;n), (A.5.193)
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and that

L̃m,α,n(σ; f)

≥ (1− α− Φ(−zα + 1)) · |M(f)−M(gδ)|

≥ (1− α− Φ(−zα + 1)) · 1

3
√

2

√√√√ s∑
k=1

ϕm(
σ

(n+ 1)
s
2

; fk)2

√
1

1 + s
n +

∑s
k=1 2ρz(

σ

(n+1)
s
2

; fk)

− sδ.

(A.5.194)

Letting δ, δ̃ → 0+ gives Inequality (A.5.158).

A.5.13. Proof of Proposition 3.4.1

The idea of the proof is very similar to that for white noise model.

Invertibility follows from definition. Independence follows from the observation that the

concatenation of the elements is this s+ 1 tuple P({yi}) follows a joint normal distribution

and that covariance of of elements from different places of the tuple is 0. The sufficiency

rises from factorization of the probability.

A.5.14. Proof of Theorem 3.4.1

We have

Ef

(
‖Ẑ − Z(f)‖2

)
≤

s∑
k=1

Ef

(
‖Ẑk − Z(fk)‖2

)
. (A.5.195)

Note that Proposition 2.2.1 gives

ρz((zζ + 1)

√
6σ

√
n(n+ 1)

s−1
2

; fk) ≤
(

3× 4
√

3
) 2

3
ρz(

σ

(n+ 1)
s
2

; fk) (A.5.196)

for ζ ≤ Φ(−2). Also note that Dz(f ;n) =
∑s

k=1 Dz(fk;n).
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Recall the lower bound for R̃z,n(σ; f) given in Inequality (A.5.155).

So it is sufficient to prove that for ζ ≤ 0.15 the following holds

Ef

(
‖Ẑk − Z(fk)‖2

)
≤

Č2ρz((zζ + 1)

√
6σ

√
n(n+ 1)

s−1
2

; fk)
2

√
nρz((zζ + 1)

√
6σ

√
n(n+ 1)

s−1
2

; fk) ∨ 1 + 2Dz(fk;n),

(A.5.197)

for an absolute constant Č2 > 0.

Now we proceed with proving it.

First we introduce a quantity for a general ζ > 0:

ξk(ζ) = sup

{
ξ : min

{√
ξ [fk(Z(fk) + ξ)−M(fk)] ,

√
ξ [fk (Z(fk)− ξ)−M(fk)]

}
×

√
n

√
6σ/(n+ 1)

s−1
2

≤ zζ + 1

}
.

(A.5.198)

Then let

jk(ζ) = max{j :
2J−j

n
> ξk(ζ)}. (A.5.199)

We further introduce the following quantities.

i∗k,j = max{i : Z(fk) ∈
[

2J−j · (i− 1)

n
− 1

2n
,
2J−j · i
n

− 1

2n

]
}

j̃k = min
(
{j : |îk,j − i∗k,j | ≥ 2} ∪∞

)
,

j́k = min
(
{j : |îk,j − i∗k,j | ≥ 5} ∪∞

)
,

j̀k = min
(
{j : |îk,j − i∗k,j | ≥ 7} ∪∞

)
.

(A.5.200)

Then we immediately have the following facts that we summarize into a lemma.
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Lemma A.5.5. For j ≤ min{J, jk(ζ)}, we have

1

σ̃k,j

(i∗k,j+2)2J−j−1∑
h=(i∗k,j+1)2J−j

(
fk(

h

n
)− fk(

h− 2J−j

n
)

)
≥ 2

3
2

(jk(ζ)−j) (zζ + 1) , (A.5.201)

and

1

σ̃k,j

(i∗k,j−1)2J−j−1∑
h=(i∗k,j−2)2J−j

(
fk(

h− 2J−j

n
)− fk(

h

n
)

)
≥ 2

3
2

(jk(ζ)−j) (zζ + 1) . (A.5.202)

When j̃k = j, then one of the following happens

Ylk,j,i∗k,j+2 ≤ Ylk,j,i∗k,j+1, Y
l
k,j,i∗k,j+3 ≤ Ylk,j,i∗k,j+1, Y

l
k,j,i∗k,j+4 ≤ Ylk,j,i∗k,j+1,

Ylk,j,i∗k,j−2 ≤ Ylk,j,i∗k,j−1, Y
l
k,j,i∗k,j−3 ≤ Ylk,j,i∗k,j−1, Y

l
k,j,i∗k,j−4 ≤ Ylk,j,i∗k,j−1.

(A.5.203)

Now we will state three lemmas, the proofs of which are left to latter parts.

Lemma A.5.6. Suppose ζ ≤ 0.5.

Ef

(
2−2j̃k1{j̃k ≤ J}

)
≤ Č02−2jk(ζ)

(
1 ∧ 2J−jk(ζ)

)
, (A.5.204)

where Č0 = max{supx≥1 2x2Φ(−x), 2}.

Remark A.5.1. Note that the left hand side of Inequality (A.5.204) does not depend on ζ,

but we state this more general lemma.

Lemma A.5.7. Suppose ζ ≤ 0.5.

Ef

(
2−2ǰk(ζ)

1{ǰk(ζ) <∞}1{j̃k > ǰk(ζ)}
)
≤ Č02−2jk(ζ)

(
1 ∧ 2J−jk(ζ)

)
, (A.5.205)

where Č0 = max{supx≥1 2x2Φ(−x), 2}.
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Lemma A.5.8. Suppose ζ ≤ 0.5.

Ef

(
|Ẑk − Z(fk)|21{ǰk(ζ) =∞, j̃k > J}

)
≤ 64 · 2−2jk(ζ)

(
1 ∧ 2J−jk(ζ)

)
+ 2Dz(fk;n).

(A.5.206)

With these lemmas, we have that

Ef

(
|Ẑk − Z(fk)|2

)
≤ Č1 · 2−2jk(ζ)

(
1 ∧ 2J−jk(ζ)

)
+ 2Dz(fk;n), (A.5.207)

where Č1 = 64 + 2Č0.

Now we introduce the following lemma about ξk(ζ) and jk(ζ), which immediately concludes

the proof of Theorem 3.4.1.

Lemma A.5.9. For ζ > 0, we have

2ρz((zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk) ≥ ξk(ζ) ≥ 1

2
ρz((zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk). (A.5.208)

n+ 2

2
≤ 2J ≤ n+ 1. (A.5.209)

2−jk(ζ) ≤ 2n

2J
ξk(ζ) ≤ 8ρz((zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk). (A.5.210)

Proof of Lemma A.5.6

A basic property of normal tail bound is that Φ(−2
√

2x)
Φ(−x) decreases with x > 0 increasing.
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Ef

(
2−2j̃k1{j̃k ≤ J}

)
≤

J∑
j=1

2−2jk(ζ) · 2−2j+2jk(ζ)
(

Φ(−2
3
2

(jk(ζ)−j)(zζ + 1))1{j ≤ jk(ζ)}+ 1{j > jk(ζ)}
)

≤ 1{J ≤ jk(ζ)}2−2jk(ζ) · 2−2J+2jk(ζ)Φ(−2
3
2

(jk(ζ)−J)(zζ + 1))
1

1− 4Φ(−2
√

2)
Φ(−1)

+ 1{J > jk(ζ)}2−2jk(ζ)

 1

1− 4Φ(−2
√

2)
Φ(−1)

+
1

3


≤ 1{J ≤ jk(ζ)}2−2jk(ζ) · 2J−jk(ζ) sup

x≥1
2x2Φ(−x) + 2 · 1{J > jk(ζ)}2−2jk(ζ)

(A.5.211)

Let Č0 = max{supx≥1 2x2Φ(−x), 2}, then we have the lemma.

Proof of Lemma A.5.7

By our stopping rule, apparently ǰk(ζ) ≥ 1.
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Ef

(
2−2ǰk(ζ)

1{ǰk(ζ) <∞}1{j̃k > ǰk(ζ)}
)

=
J∑
j=1

2−2jEf

(
Ef

(
1{j̃k > ǰk(ζ) = j}

∣∣νlk,i))

≤
J∑
j=1

2−2jk(ζ) · 2−2j+2jk(ζ)
(

Φ(−2
3
2

(jk(ζ)−j)(zζ + 1))1{j ≤ jk(ζ)}+ 1{j > jk(ζ)}
)

≤ 1{J ≤ jk(ζ)}2−2jk(ζ) · 2−2J+2jk(ζ)Φ(−2
3
2

(jk(ζ)−J)(zζ + 1))
1

1− 4Φ(−2
√

2)
Φ(−1)

+ 1{J > jk(ζ)}2−2jk(ζ)

 1

1− 4Φ(−2
√

2)
Φ(−1)

+
1

3


≤ 1{J ≤ jk(ζ)}2−2jk(ζ) · 2J−jk(ζ) sup

x≥1
2x2Φ(−x) + 21{J > jk(ζ)}2−2jk(ζ)

(A.5.212)

Let Č0 = max{supx≥1 2x2Φ(−x), 2}, then we have the lemma.

Proof of Lemma A.5.8

Note that ǰk(ζ) =∞, j̃k > J means that

{i : fk(
i

n
) = min

l∈{0,1,··· ,n}
} ⊂ {îk,J − 3, îk,J − 2, îk,J − 1, îk,J , îk,J + 1}, (A.5.213)

and that

Z(fk) ∈ [
îk,J − 3

n
,
îk,J + 1

n
]. (A.5.214)

When jk(ζ) ≤ J , then we have 2−jk(ζ) ≥ 2−J ≥ 1
n+1 .

Ef

(
|Ẑk − Z(fk)|21{ǰk(ζ) =∞, j̃k > J}

)
≤ 16

n2

≤ 16

(
n+ 1

n

)2

2−2jk(ζ)
(

1 ∧ 2J−jk(ζ)
)
≤ 64 · 2−2jk(ζ)

(
1 ∧ 2J−jk(ζ)

)
.

(A.5.215)
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When jk(ζ) ≥ J + 1, denote im = arg mini:fk( i
n

)=minl∈{0,1,··· ,n}
| in − Ẑk|, the index of the

position at which fk is minimized while being closest to the estimator. Note that this is

deterministic when fk has unique minimizer among grid points but is a random variable

when fk has two minimizers among grid points.

Then according to Lemma A.5.5 we know that

Ef

(
|Ẑk − Z(fk)|21{ǰk(ζ) =∞, j̃k > J}

)
≤ 2Ef

(
|Ẑk −

im
n
|2
)

+ 2Dz(fk;n)

≤ 2× 16

n2
× 4Φ(−2

3
2

(jk(ζ)−J)(zζ + 1)) + 2Dz(fk;n)

≤ 128

(
n+ 1

n

)2

2−2JΦ(−2
3
2

(jk(ζ)−J)) + 2Dz(fk;n)

≤ 128

(
n+ 1

n

)2

2−2jk(ζ) · 2J−jk(ζ) · 23Φ(−
√

8) + 2Dz(fk;n)

< 10 · 2−2jk(ζ) · 2J−jk(ζ) + 2Dz(fk;n)

(A.5.216)

Hence we concludes the proof.

Proof of Lemma A.5.9

Denote

∆1,k =
1

2
ρz((zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk),

and

∆2,k = min{fk(Z(fk) + ∆1,k), fk(Z(fk)−∆1,k)} −M(fk).
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Then we have that

∆1,k∆
2
2,k

≤ ‖fk −max{fk,M(fk) + ρm((zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk)}‖2

=

(
(zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

)2

.

(A.5.217)

Denote

∆3,k = 2ρz((zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk),

and

∆4,k = min{fk(Z(fk) + ∆3,k), fk(Z(fk)−∆3,k)} −M(fk).

Clearly that

∆4,k ≥ ρm((zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk).

Then we have that

∆3,k∆
2
4,k

≥ ‖fk −max{fk,M(fk) + ρm((zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk)}‖2

=

(
(zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

)2

.

(A.5.218)

A.5.15. Proof of Theorem 3.4.2

Note that the coordinates of the hyper cube CIz,α are independence from each other, so

the following two propositions are sufficient to give the statement of the theorem.

Proposition A.5.11. For CIk,α defined in (3.4.14)

Ef (1{Z(fk) /∈ CIk,α}) ≤ α/s, (A.5.219)
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for all f ∈ Fs
Proposition A.5.12. For CIk,α defined in (3.4.14)

Ef

(
|tk,hi − tk,lo|2

)
≤ C5ρz(zα/s

σ

(n+ 1)
s
2

; fk)
2

(
1 ∧ nρz(zα/s

σ

(n+ 1)
s
2

; fk)

)
+ 9Dz(fk;n),

(A.5.220)

for all f ∈ Fs, for an absolute positive constant C5.

The reason Proposition A.5.12 implies the statement of expected volume in Theorem 3.4.2

is as follows. Proposition (A.5.12) implies that

Ef (|tk,hi − tk,lo|) ≤
√
C5 · (2zα/s) · ϕz(

σ

(n+ 1)
s
2

; fk) + 3
√
Dz(fk;n), (A.5.221)

where ϕz(·, ·) is defined in Equation (A.5.153). This further gives that

Ef (V (CIz,α)) ≤
(

3 +
√
C5 · (2zα/s)

)s
Πs
k=1

(
ϕz(

σ

(n+ 1)
s
2

; fk) ∨
√

Dz(fk;n)

)
. (A.5.222)

This combined with the lower bound for L̃z,α,n(σ; f) given in (A.5.156) gives the statement

about expected volume.

Before we continue with the proofs of the propositions, recall the quantities we defined in

Equation (A.5.200) and (A.5.199).

And we further introduce the following quantities that will be used frequently

im,l = min{i : f(
i

n
) = min

h∈{0,1,··· ,n}
f(
h

n
)}, im,r = max{i : f(

i

n
) = min

h∈{0,1,··· ,n}
f(
h

n
)}.

(A.5.223)

On the event {ǰk(α/2s) =∞}, we define a “bad” event. Let the event that first shrinking

step misses the target be

B1 = {il ≥ im,l + 1} ∪ {ir ≤ im,2 − 2}. (A.5.224)
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We will define more “bad” events in the proofs of the propositions, usually denoted by Bh

for h = 2, 3, 4, · · · .

On the event {ǰk(α/2s) =∞}, from our definition, it is clear that il ≤ ir + 1.

We recollect the quantities defined in Equations (A.5.200), (A.5.199).

Proof of Proposition A.5.11

The event that {Z(fk) /∈ CIk,α} can be partitioned into the followings

{Z(fk) /∈ CIk,α} ⊂{j̀k ≤ ĵk(α/2s)− 1}

∪
(
{j̀k ≥ ĵk(α/2s), ǰk(α/2s) =∞} ∩B1

)
∪
((
{j̀k ≥ ĵk(α/2s), ǰk(α/2s) =∞} ∩Bc

1

)
∩ {Z(fk) /∈ CIk,α}

)
.

(A.5.225)

We will bound them separately.

Ef

(
1{j̀k ≤ ĵk(α/2s)− 1}

)
≤ Ef

((
1{Tk,j̀k ≥ σ̃k,j̀k(zα/2s)}

∣∣∣νlk,·)) ≤ α/2s. (A.5.226)

On event {j̀k ≥ ĵk(α/2s), ǰk(α/2s) =∞}, we know that Lk ≤ im,l ≤ im,r ≤ Uk. Therefore,

we have

Ef

(
{j̀k ≥ ĵk(α/2s), ǰk(α/2s) =∞} ∩B1

)
≤ P (νek,im,l − ν

e
k,im,l+1 +

√
3σ

(n+ 1)
s−1

2

(
z3
k,im,l

− z3
k,im,l+1

)
> 2
√

3
σ

(n+ 1)
s−1

2

zα1)

+ P (νek,im,r−1 − νek,im,r +

√
3σ

(n+ 1)
s−1

2

(
z3
k,im,r−1 − z3

k,im,r

)
< − 2

√
3σ

(n+ 1)
s−1

2

zα1)

≤ 2α1 ≤ α/4s.

(A.5.227)

On the event {j̀k ≥ ĵk(α/2s), ǰk(α/2s) =∞}∩Bc
1, we know that only when il = ir+1 ≤ n−
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1, tk,hi < min{ im,r+1

n , 1} could happen, and only when il = ir +1 ≥ 1, tk,lo > max{ im,l−1
n , 0}

could happen. And note that im,r ≤ il = ir + 1 ≤ im,l indicates that im,l = im,r, which we

denote as im. So in the following we only consider fk with unique minimizer on grids. Also

we have in these cases il = im. We have that

Pf

((
{j̀k ≥ ĵk(α/2s), ǰk(α/2s) =∞} ∩Bc

1

)
∩ {Z(fk) /∈ CIk,α}

)
≤ Ef (1{im = il = ir + 1 ≤ n− 1, tk,hi < Z(fk)})

+ Ef (1{im = il = ir + 1 ≥ 1, tk,lo > Z(fk)}) .

(A.5.228)

The arguments bounding the two terms are similar, so we only show that for the first one.

Use tk,r to denote the intersection between the two lines

l1 : y = f(
im
n

), l2 : y(t) = f(
im + 1

n
) +

f( im+2
n )− f( im+1

n )

1/n
(t− im + 1

n
). (A.5.229)

It is clear that Z(fk) ≤ tk,r.

Basic calculation shows that

tk,r =
fk(

im
n )− fk( im+1

n )

n(fk(
im+2
n )− fk( im+1

n ))
+
im + 1

n
. (A.5.230)

It is easy to check that the distribution of

(
νek,im − νek,im+1 −

√
3σ

(n+ 1)
s−1

2

(
z3
k,im − z3

k,im+1 − 2
√

2zα2

)
,

νek,im+2 − νek,im+1 −
√

3σ

(n+ 1)
s−1

2

(
z3
k,im+2 − z3

k,im+1 − 2
√

2zα2

)) (A.5.231)
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is the same with the following

(
fk(

im
n

) +

√
6σ

(n+ 1)
s−1

2

· η0 − fk(
im + 1

n
)−

√
6σ

(n+ 1)
s−1

2

· η1 +

√
6σ

(n+ 1)
s−1

2

· 2zα2 ,

fk(
im + 2

n
) +

√
6σ

(n+ 1)
s−1

2

· η2 − fk(
im + 1

n
)−

√
6σ

(n+ 1)
s−1

2

· η1 +

√
6σ

(n+ 1)
s−1

2

· 2zα2

)
,

(A.5.232)

where η0, η1, η2
i.i.d∼ N(0, 1) and also independent from il, ir.

Note that under the event

{η0 ≥ −zα2 , η1 ≤ zα2 , η2 ≥ −zα2},

we have tk,hi ≥ tk,r. Hence we have that

Ef (1{im = il = ir + 1 ≤ n− 1, tk,hi < Z(fk)})

≤P (η0 < −zα2) + P (η1 > zα2) + P (η2 < −zα2) ≤ 3α2 =
α

8s
.

(A.5.233)

Similar arguments show that

Ef (1{im = il = ir + 1 ≥ 1, tk,lo > Z(fk)}) ≤ 3α2 =
α

8s
.

Therefore we have

Pf (Z(fk) /∈ CIk) ≤ α/2s+ 2α1 + 6α2 = α/s. (A.5.234)
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Proof of Proposition A.5.12

Ef

(
|CIk|2

)
≤ 262Ef

(
22J−2ĵk(α/2s)

n2
1{ǰk(α/2s) <∞, ǰk(α/2s) < j̃k}

)

+ 282Ef

(
22J−2j̃k

n2
1{j̃k ≤ ĵk(α/2s)}

)

+ Ef

(
|CIk|21{ǰk(α/2s) =∞, j̃k > J}

)
(A.5.235)

Recall Lemma A.5.6, A.5.7 and A.5.9, we have first two terms being bounded by multiple

times ρz((zα/2s + 1)
√

6σ

(n+1)
s−1

2
√
n

; fk)

(
1 ∧

√
nρz((zα/2s + 1)

√
6σ

(n+1)
s−1

2
√
n

; fk)

)
, specifically,

Ef

(
|CIk|2

)
≤ Č3ρz((zα/2s + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk)
2

(
1 ∧ nρz((zα/2s + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk)

)

+ Ef

(
|CIk|21{ǰk(α/2s) =∞, j̃k > J}

)
,

(A.5.236)

where Č3 > 0 is an absolute constant.

Note that
zα/2s+1

zα/s
< 4, and invoke Proposition 2.2.1 in Chapter 2, it suffices to bound the

remaining term.

We proceed to bound the remaining term. Note that

ρz(zα/8s
2
√

12σ

(n+ 1)
s−1

2
√
n

; fk) ≤
(

2
zα/8s

zα/s
· 4
√

3

√
n+ 1

n

) 2
3

ρz(zα/s
σ

(n+ 1)
s
2

; fk),

n+ 1

n
≤ 2,

zα/8s

zα/s
< 4 for α ≤ 0.3.

(A.5.237)

So it is sufficient to have the following lemma for concluding the proof.
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Lemma A.5.10.

Ef

(
|CIk|21{ǰk(α/2s) =∞, j̃k > J}

)
≤

Č4ρz(zα/8s
2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)
2

(
1 ∧ nρz(zα/8s

2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)

)
+ 9Dz(fk;n)

(A.5.238)

where Č4 > 282 is an absolute constant.

Proof. When

ρz(zα/8s
2
√

12σ

(n+ 1)
s−1

2
√
n

; fk) ≥
1

n
, (A.5.239)

lemma A.5.10 holds.

Now we consider the case that

ρz(zα/8s
2
√

12σ

(n+ 1)
s−1

2
√
n

; fk) <
1

n
. (A.5.240)

Note that this means that for i ≥ im,r,

fk(
i+ 1

n
)− fk(

i

n
) ≥ 1

n

ρm(zα/8s
2
√

12σ

(n+1)
s−1

2
√
n

; fk)

ρz(zα/8s
2
√

12σ

(n+1)
s−1

2
√
n

; fk)

≥ 1√
2
zα/8s

2
√

12σ

(n+ 1)
s−1

2

(
nρz(zα/8s

2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)

)− 3
2

.

(A.5.241)

and similarly for i ≤ im,l, we have

fk(
i− 1

n
)− fk(

i

n
) ≥ 1√

2
zα/8s

2
√

12σ

(n+ 1)
s−1

2

(
nρz(zα/8s

2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)

)− 3
2

. (A.5.242)

Note that on the event {ǰk(α/2s) = ∞, j̃k > J}, we have that Lk ≤ im,l ≤ im,r ≤ Uk. We

define a “bad” event

B2 = {il ≤ im,l − 1} ∪ {ir ≥ im,r}. (A.5.243)
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Then we know that

Pf (B2 ∩ {ǰk(α/2s) =∞, j̃k > J})

≤ 28Φ

−√2zα/8s

(
nρz(zα/8s

2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)

)− 3
2

+ zα1

 .
(A.5.244)

On the other hand, for the bad event B1 defined in (A.5.224), we have

Pf (B1 ∩ {ǰk(α/2s) =∞, j̃k > J})

≤ Φ

−√2zα/8s

(
nρz(zα/8s

2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)

)− 3
2

− zα1

 .
(A.5.245)

Note that we have zα/8s > 1 for 0 < α ≤ 1. Hence we have

Ef

(
|CIk|21{B1 ∪B2}1{ǰk(α/2s) =∞, j̃k > J}

)
≤ 282

n2
× 40Φ

−(
√

2− 1)zα/8s

(
nρz(zα/8s

2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)

)− 3
2


≤ Č5ρz(zα/8s

2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)
2

(
1 ∧ nρz(zα/8s

2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)

)
,

(A.5.246)

where Č5 = 282 × 40× supx>1 x
2Φ(−(

√
2− 1)x).

On the remaining event

(B1 ∪B2)c ∩ {ǰk(α/2s) =∞, j̃k > J},

we have that

il = im,l, ir = im,r − 1.

Now we have two cases. Case 1: im,l = im,r − 1, or im,l = im,r = 1 or im,l = im,r = n − 1.

Case 2: im,l = im,r and im,l 6= 1 and im,l 6= n− 1.
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For the case 1 , we have Dz(fk;n) ≥ 1
n2 , so we have

Ef

(
|CIk|21{(B1 ∪B2)c}1{ǰk(α/2s) =∞, j̃k > J}

)
≤ 9

n2
≤ 9Dz(fk;n).

(A.5.247)

Combining with Inequality (A.5.246), we have lemma A.5.10.

For the case 2, denote im = im,l = im,r, we have

Ef

(
|CIk|21{(B1 ∪B2)c}1{ǰk(α/2s) =∞, j̃k > J}

)
≤ Ef

(
2(tk,hi − im)2

1{(B1 ∪B2)c}1{ǰk(α/2s) =∞, j̃k > J, im ≤ n− 2}
)

+ Ef

(
2(tk,lo − im)2

1{(B1 ∪B2)c}1{ǰk(α/2s) =∞, j̃k > J, im ≥ 2}
)
.

(A.5.248)

The arguments for bounding the two terms are almost identical (flipping everything around

im), we only bound the first and second share the same bound.

Recall tk,r defined in Equation (A.5.230), for simplicity of notation, denote

D = (B1 ∪B2)c ∩ {ǰk(α/2s) =∞, j̃k > J, im ≤ n− 2}

we have

Ef

(
2(tk,hi − im)2

1{D}
)

≤ Ef

((
4(tk,hi − tk,r)2

+ + 4(tk,r −
im
n

)2

)
1{D}

)
≤ 4Dz(fk;n) + 4Ef

(
(tk,hi − tk,r)2

+1{D}
)
.

(A.5.249)

To bound the second term, we will split event D into D ∩ A and D ∩ Ac, where A is an

event define later. We will consider the expectation on these two events.

Recall the joint distribution of the quantities in the numerator and denominator of tk,hi

under (B1∪B2)c∩{ǰk(α/2s) =∞, j̃k > J, im ≤ n−2}, as explained in Equation (A.5.232),
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denote ε =
√

6σ

(n+1)
s−1

2
, when further under the event tk,hi >

im
n (the only one we need to

consider), tk,hi − tk,r is upper bounded:

tk,hi − tk,r ≤
εη0

(
fk(

im+2
n )− fk( im+1

n )
)

+ εη1

(
fk(

im
n )− fk( im+2

n )
)

+ εη2

(
fk(

im+1
n )− fk( imn )

)
n
(
fk(

im+2
n )− fk( im+1

n ) + εη2 − εη1 + 2εzα2

) (
fk(

im+2
n )− fk( im+1

n )
)

+
2zα2ε

(
fk(

im+2
n )− fk( imn )

)
n
(
fk(

im+2
n )− fk( im+1

n ) + εη2 − εη1 + 2εzα2

) (
fk(

im+2
n )− fk( im+1

n )
) .

(A.5.250)

The reason it is not an equation is due to the possibility of upper truncation if tk,hi by im+1
n

Recall that we define η0, η1, η2 in Equation (A.5.232).

Now we consider a “good” event

A = {η1 ≤
fk(

im+2
n )− fk( im+1

n )

6ε
+

1

2
εzα2 , η2 ≥ −

fk(
im+2
n )− fk( im+1

n )

6ε
− 1

2
εzα2}. (A.5.251)

Under this good event A, we have

fk(
im + 2

n
)− fk(

im + 1

n
) + εη2 − εη1 + 2εzα2 ≥

2

3

(
fk(

im + 2

n
)− fk(

im + 1

n
)

)
+ εzα2 .

(A.5.252)
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Then we have that

Ef

(
(tk,hi − tk,r)2

+1{D ∩A}
)

≤ 4
1

n2

(
ε

2
3

(
fk(

im+2
n )− fk( im+1

n )
)

+ εzα2

)2 (
1 + 4 + 1 + 16z2

α2

)

≤ 4
1

n2

 1

2
3 · 2zα/8s

(
nρz(zα/8s

2
√

12σ

(n+1)
s−1

2
√
n

; fk)

)− 3
2

+ zα/24s


2 (

6 + 16z2
α/24s

)

≤ ρz(zα/8s
2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)
2 ·
(
nρz(zα/8s

2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)

)(
13.5 + 36

(
zα/24s

zα/8s

)2
)
.

(A.5.253)

The second inequality is due to Inequality (A.5.241).

Also note that
zα/24s

zα/8s
< 2 for α < 1. Hence we have that

Ef

(
(tk,hi − tk,r)2

+1{D ∩A}
)

< 86ρz(zα/8s
2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)
2 ·
(
nρz(zα/8s

2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)

)
.

(A.5.254)

For event Ac ∩D, we have

P (Ac ∩D) ≤ 2Φ

−zα/8s
3

(
nρz(zα/8s

2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)

)− 3
2

 . (A.5.255)

Therefore we have

Ef

(
(tk,hi − tk,r)2

+1{D ∩Ac}
)

≤ 18ρz(zα/8s
2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)
2 ·
(
nρz(zα/8s

2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)

)
.

(A.5.256)

Adding up the expection on event D∩Ac and D∩A and going back to Inequality (A.5.249),

we have the first term in (A.5.248) bounded. Using similar arguments, the second term can
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be bounded by the same bound. So we have

Ef

(
|CIk|21{(B1 ∪B2)c}1{ǰk(α/2s) =∞, j̃k > J}

)
≤ 8D(fk;n) + 832ρz(zα/8s

2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)
2 ·
(
nρz(zα/8s

2
√

12σ

(n+ 1)
s−1

2
√
n

; fk)

)
.

(A.5.257)

This concludes case 2, thus the proof of the lemma.

A.5.16. Proof of Theorem 3.4.3

Note that Dm(f ;n) ≥ ∑s
k=1

(
min{fk( in) : 0 ≤ i ≤ n} −M(fk)

)
. Recall the lower bound

of L̃m,α,n(σ; f) given in Equation (A.5.157). Note that ρz(
σ

(n+1)
s
2

; fk) ≤ 1 for all k ∈

{1, 2, · · · , s}. Using Cauchy-Schwartz inequality, we know that it suffices to prove that

E
(
M̂ −M(f)

)2
≤
(
Cm

s∑
k=1

ρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)

+

s∑
k=1

(
min{fk(

i

n
) : 0 ≤ i ≤ n} −M(fk)

))2

,

(A.5.258)

for some positive absolute constant Cm.

Now we will prove this statement.

Recall that ζ = Φ(−2) < 0.1.

For simplicity of notation, denote

f̂k,i =
1

2ĵk(ζ)

2ĵk(ζ)·i−1∑
w=2ĵk(ζ)·(i−1)

fk(
w

n
).

Note that {νuk,h : 1 ≤ k ≤ s, 0 ≤ h ≤ n, u = l, r, e} are independent. So we have that
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2ĵk(ζ)−JYe
k,ĵk(ζ),îk,ĵk(ζ)+2∆k

− f̂k,îk,ĵk(ζ)+2∆k

∣∣∣∣∣(νl·,·, νr·,·) ∼ N(0, (1− 2ĵk(ζ)−J)2ĵk(ζ)−J · 3 σ2

(n+1)s−1 ).

Also recall the independence between er({yi}) and {νuk,h : 1 ≤ k ≤ s, 0 ≤ h ≤ n, u = l, r, e}.

So we have that

E
(
M̂ −M(f)

)2
≤

≤


√√√√√E

 1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi})− f0

2

+

s∑
k=1

√
E
(
M̂k −M(fk)

)2


2

≤
(√√√√√E

 1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi})

− f0

2

+

s∑
k=1

(√
E
((

M̂k − f̂k,îk,ĵk(ζ)+2∆k

)2
1{ǰk(ζ) <∞}

)

+

√
E
((

f̂k,îk,ĵk(ζ)+2∆k
−M(fk)

)2
1{ǰk(ζ) <∞}

)

+

√
E
(
1{ǰk(ζ) =∞}(M̂k −M(fk))

)2
))2

≤
(

σ

(n+ 1)
s
2

+
s∑

k=1

(√
3σ2

(n+ 1)s−1

√
E(2ĵk(ζ)−J1{ǰk(ζ) <∞})+√

E
((

f̂k,îk,ĵk(ζ)+2∆k
−M(fk)

)2
1{ǰk(ζ) <∞}

)
+√

E
((

M̂k −M(fk)
)2
1{ǰk(ζ) =∞}

)))2

.

(A.5.259)

Now we will continue with bounding the terms in Inequality (A.5.259) separately.

We introduce the following lemma, which we will prove later, to bound the first term in the

summation.

Lemma A.5.11. For ζ ≤ 0.1, we have

E(2ĵk(ζ)
1{ǰk(ζ) <∞}) ≤ 37 · 2jk(ζ) (A.5.260)
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for k = 1, 2, · · · , s, where jk(ζ) is defined in Equation A.5.199.

By definition of jk(ζ) , we know that

2J−jk(ζ)

n
> ξk(ζ). (A.5.261)

By Lemma A.5.9, we have that

2J−jk(ζ)

n
> ξk(ζ) ≥ 1

2
ρz((zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk). (A.5.262)

Recall that we have ζ < 0.1 (because ζ = Φ(−2) here).

This combined with Lemma A.5.11 we have that

E(2ĵk(ζ)−J
1{ǰk(ζ) <∞}) ≤ 37 · 2jk(ζ)−J ≤ 148

n
ρm(

σ

(n+ 1)
s
2

; fk)
2 ·
(

σ

(n+ 1)
s
2

)−2

.

(A.5.263)

The second inequality is due to that

1

2
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√
6σ

(n+ 1)
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2
√
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)2

≤ ρz((zζ + 1)
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2
√
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√
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(n+ 1)
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2
√
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; fk)
2

≤ ρz((zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk) ·
(

(zζ + 1)
√

6

√
n+ 1

n

)2

ρm(
σ

(n+ 1)
s
2

; fk)
2.

(A.5.264)

Therefore, we have the first term in the summation in Inequality (A.5.259) upper bounded,

which we summarize into the following lemma.
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Lemma A.5.12.√
3σ2

(n+ 1)s−1

√
E(2ĵk(ζ)−J1{ǰk(ζ) <∞})

≤ min

{√
3σ2

(n+ 1)s−1
,

√
3 · 148(n+ 1)
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ρm(

σ

(n+ 1)
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2

; fk)

}

≤ min

{√
6(n+ 1)

n
ρm(

σ
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; fk)

√
nρz(
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2

; fk),

√
444(n+ 1)

n
ρm(

σ

(n+ 1)
s
2

; fk)

}
.

(A.5.265)

Now we continue with bounding the second term in the summation in Inequality (A.5.259).

Note that our localization step and stopping rule for each coordinate parallel that in Chapter

2, but with noise level σ

(n+1)
s
2

. So according to Lemma A.1.39 and Lemma A.1.42, we have

that

E
((

f̂k,îk,ĵk(ζ)+2∆k
−M(fk)

)2
1{ǰk(ζ) <∞}

)
≤ min

{
cm2ρm(

σ

(n+ 1)
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2

1√
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; fk)
2, čm2

σ2

(n+ 1)s−1

}

≤ cmρm(
σ

(n+ 1)
s
2

; fk)
2

(
1 ∧ nρz(

σ

(n+ 1)
s
2

; fk)

)
,

(A.5.266)

where cm2 and čm2 are from Lemma A.1.39 and A.1.42, and cm is an absolute positive

constant.

Now we turn to the third term in the summation in Inequality (A.5.259).

Recall that {νek,h} is independent from {νlk,h}∪{νrk,h}. Let f̃k = minîk,J−2≤i≤îk,J+2 fk(
i−1
n ).

Elementary calculation show that

E
((

M̂k −M(fk)
)2
1{ǰk(ζ) =∞}

)
≤ 2 · 5 · σ2

(n+ 1)s−1
P (ǰk(ζ) =∞) + 2E

((
f̃k −M(fk)

)2
1{ǰk(ζ) =∞}

)
.

(A.5.267)
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Again, note that the localization procedure and stopping rule for each coordinate parallels

that in Chapter 2, by Lemma A.1.43 and Lemma A.1.40, we have that

E
((

f̃k −M(fk)
)2
1{ǰk(ζ) =∞}

)
≤ min{č2

m3

σ2

(n+ 1)s−1
, cm6 · 2ρm(

√
σ2

(n+ 1)s
; fk)

2}

+

(
min{fk(

i

n
) : 0 ≤ i ≤ n} −M(fk)

)2

.

(A.5.268)

And by Lemma A.1.41 we have that

σ2

(n+ 1)s−1
P (ǰk(ζ) =∞) ≤ 64ρm(

√
σ2

(n+ 1)s
; fk)

2. (A.5.269)

Also note that σ2

(n+1)s−1 ≤ 4ρm(
√

σ2

(n+1)s ; fk)
2 · nρz(

√
σ2

(n+1)s ; fk) and that

σ

(n+ 1)
s
2

≤
√

2ρm(
σ

(n+ 1)
s
2

; fk)

√
ρz(

σ

(n+ 1)
s
2

; fk).

Adding the three parts together, and going back to Inequality (A.5.259), we have that

E
(
M̂ −M(f)

)2
≤
(
Cm

s∑
k=1

ρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)

+
s∑

k=1

(
min{fk(

i

n
) : 0 ≤ i ≤ n} −M(fk)

))2

,

(A.5.270)

where Cm is a positive absolute constant. This concludes the proof of the theorem.

Now we give the proof of Lemma A.5.11.
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Proof of Lemma A.5.11

By the definition of jk(ζ), we immediately have the following facts that we summarize into

a lemma

Lemma A.5.13. For J ≥ j ≥ jk(ζ) + 5, we have that

1

σ̃k,j

(i∗k,j+14)2J−j−1∑
h=(i∗k,j+13)2J−j

(
fk(

h

n
)− fk(

h− 2J−j

n
)

)
≤ 2−2 × 2

3
2

(5+jk(ζ)−j) (zζ + 1) , (A.5.271)

or

1

σ̃k,j

(i∗k,j−13)2J−j−1∑
h=(i∗k,j−14)2J−j

(
fk(

h− 2J−j

n
)− fk(

h

n
)

)
≤ 2−2 × 2

3
2

(5+jk(ζ)−j) (zζ + 1) . (A.5.272)

Therefore, we have that

E(2ĵk(ζ)
1{ǰk(ζ) <∞})

≤ 2jk(ζ) ≤ 16 · 2jk(ζ) +
J∑

j=jk(ζ)+5

2jΦ(−zζ +
zζ + 1

4
· 2 3

2
(5+jk(ζ)−j)) ≤ 37 · 2jk(ζ).

(A.5.273)

The last inequality is based on elementary calculation.

A.5.17. Proof of Theorem 3.4.4

Recall the lower bound of L̃m,α,n(σ; f) given in Inequality (A.5.158). Using Cauchy-Schwartz

inequality, it suffices to prove the following two propositions.

Proposition A.5.13 (Coverage). For 0 < α ≤ 0.3, CIm,α defined in (3.4.25) is a 1 − α

level confidence interval for M(f).

Proposition A.5.14 (Expected Length). Suppose α ≤ 0.3. For CIm,α defined in (3.4.25),
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we have

E(|CIm,α|) ≤ Dm(f ;n) + C̄m,α,s

s∑
k=1

ρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
,

(A.5.274)

where

C̄m,α,s =
(

2
√

3S210,α/8s + 3(zα/4s + 1)
)√

8 · 148 · 2 +
(√

3S210,α/8s + 2
)
· 32+

(6 + S212,α/24s + zα/48s/
√

2) · 210 ·
√

3 · 32 + zα/84
√

6,

(A.5.275)

and Dm(f ;n) is defined in (A.5.150).

Proof of Proposition A.5.13

Denote

j∗k = jF,k ∧ J. (A.5.276)

Note that ζ = α/4s and recall Theorem 3.4.15, we have that for the event A1 defined by

A1 =

{Z(f)k ∈[
2J−ĵk(α/4s)+1

n
× (îk,ĵk(α/4s)−1 − 7)− 1

2n
,
2J−ĵk(α/4s)+1

n
× (îk,ĵk(α/4s)−1 + 6)− 1

2n
]

for k = 1, 2 · · · , s},

(A.5.277)

its probability satisfies

P (A1) ≥ 1− α/4. (A.5.278)
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Note that

{
2j
∗
k−J

Yek,j∗k,i
−

i·2J−j∗k−1∑
w=2

J−j∗
k (i−1)

fk(
w

n
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+
√

2
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(n+ 1)
s−1

2

∑n
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1
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n+ 1
+

1

(n+ 1)s

∑
i

er({yi})− f0 : 0 ≤ i ≤ n
}∣∣∣∣∣ (ĵk(ζ), îk,ĵk(ζ)

)
i.i.d∼ N(0, 2j

∗
k−J · 3 σ2

(n+ 1)s−1
),

(A.5.279)

for i = 0, 1, 2, · · · , n. This fact together with the fact that on event A1,

min
Ik,lo≤i≤Ik,hi

2j
∗
k−J

i·2J−j∗k−1∑
w=2

J−j∗
k (i−1)

fk(
w

n
) = min

0≤i≤n
2j
∗
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i·2J−j∗k−1∑
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k (i−1)

fk(
w

n
), (A.5.280)

gives

P

(
M̃k,md +

1

(n+ 1)s

∑
i

er({yi})− f0 −M(fk) +
√

2
σ

(n+ 1)
s−1
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1
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√

3σ
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× 2
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2
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≤ α/8s.

(A.5.281)

Also note that 1
(n+1)s

∑
i er({yi}) − f0 ∼ N(0, σ2

(n+1)s ), elementary calculation on the re-

mainder terms of M̃hi gives

P
(
M̃hi ≤M(f)|A1

)
≤ α

8
+
α

8
. (A.5.282)

Recollect quantities introduced in (A.5.200) and (A.5.199).

Lemma A.5.9 and the definition of jk(ζ) gives

2J−jk(ζ)

n
≤ 4ρz((zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk).
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Therefore

2
√

3(zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

√
n

2J−jk(ζ)
≥ ρm((zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk). (A.5.283)

This means for j ≥ jk(ζ) + 3,

3σ(zζ + 1)

(n+ 1)
s−1

2

√
1

2J−j
≥ ρm((zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk), (A.5.284)

and if further j ≤ J ,

min
w∈{−2,−1,0}

(i∗k,j+w+1)2J−j−1∑
h=(i∗k,j+w)2J−j

fk(
h

n
) ≤M(fk) + ρm((zζ + 1)

√
6σ

(n+ 1)
s−1

2
√
n

; fk). (A.5.285)

Now we define an event

D2,k = {ǰk(ζ) ≤ jk(ζ)− 1}. (A.5.286)

Lemma A.5.5 gives that for ζ ≤ 0.1

P (D2,k) ≤ P (j̃k ≤ jk(ζ)− 1) + P (ǰk(ζ) ≤ jk(ζ)− 1, j̃k ≥ jk(ζ))

≤ 6Φ(−zζ − 2)× 1

1− 0.001
+ Φ(−zζ − 2)

1

1− 0.001
≤ ζ · 7

1− 0.001
· exp(−4) · 4

3
≤ 0.5ζ.

(A.5.287)

Note that ζ = α/4s, hence P (D2,k) ≤ α/8s and P (∪sk=1D2,k) ≤ α/8.

Equations (A.5.279), (A.5.280), (A.5.284), (A.5.285) together with the apparent fact that

min{v1, · · · , vw} ≤ max{v1, · · · , vw}
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, we have that

P

(
M̃k,lo +

1

(n+ 1)s

∑
i

er({yi})− f0 +
√

2
σ

(n+ 1)
s−1

2

∑n
l=0 z

1
k,l

n+ 1
−M(fk) ≥ 0∣∣∣∣∣A1 ∩Dc

2,k ∩ {jF,k ≤ J}
)
≤ α/8s.

(A.5.288)

Now we introduce a lemma.

Lemma A.5.14.

P

(
M̃k,lo ≥M(fk)

∣∣∣∣∣A1 ∩Dc
2,k ∩ {jF,k ≥ J + 1}

)
≤ α/8s, (A.5.289)

for k = 1, 2, · · · , s.

Proof. We prove the inequality for any fixed k ∈ {1, 2, · · · , s}. Denote δi = νek,i − fk( in)

Note that {νe·,·} is independent with {νl·,·, νr·,·}, elementary calculation show that

P (max{|δi| : (kl−1)∨0 ≤ i ≤ (kr+2)∧n} ≤ H
∣∣∣νl·,·, νr·,·) ≥ 1−2·α/24s−2·α/48s = 1−α/8s.

(A.5.290)

Denote event

B = max{|δi| : kl ∨ 0 ≤ i ≤ kr + 2 ∧ n} ≤ H

.

On event A1, we know that kl
n ≤ Z(fk) ≤ kr+1

n .

Recall a geometric fact: for t ∈ [i/n, (i+ 1)/n], where 1 ≤ i ≤ n− 2, we have that

fk(t) ≥ max{fk(
i
n)− fk( i−1

n )

1/n
(t− i

n
) + fk(

i

n
),
fk(

i+2
n )− fk i+1

n )

1/n
(t− i+ 1

n
) + fk(

i+ 1

n
)}

(A.5.291)

and the right hand side are also attainable for some fk when {fk( in) : i = 0, 1, · · · , n} are
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given.

For 0 < t ≤ 1/n, we have that

fk(t) ≥
f(2/n)− f(1/n)

1/n
(t− 1/n) + f(1/n) (A.5.292)

and the right hand side is attainable for some fk when {fk( in) : i = 0, 1, · · · , n} are given.

For 1 > t ≤ n− 1/n, we have that

fk(t) ≥
f((n− 2)/n)− f((n− 1)/n)

1/n
(t− (n− 1)/n) + f((n− 1)/n). (A.5.293)

On event B, we have that

h(i) ≤ min
t∈[ i

n
, i+1
n

]
fk(t), (A.5.294)

for i = tl, · · · , tr.

Therefore, on event A1 ∩B, we have that

M̃k,lo ≤ fk(t). (A.5.295)

Also we have

P (A1 ∩B
∣∣A1 ∩Dc

2,k ∩ {jF,k ≥ J + 1})

= E
(
E(1{B}|{νlk,·, νrk,·})1{A1 ∩Dc

2,k ∩ {jF,k ≥ J + 1}}
)
/P (A1 ∩Dc

2,k ∩ {jF,k ≥ J + 1})

≥ 1− α/8s,

(A.5.296)

which gives the statement of the lemma.
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Write M̃lo in the form

M̃lo =

f0 +

(
(|{k : jF,k ≤ J}| − 1) ·

f0 −
1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi})

−
s∑

k=1

1{jF,k ≤ J}
√

2
σ

(n+ 1)
s−1

2

∑n
l=0 z

1
k,l

n+ 1
− zα/8 · 2

√
3

σ

(n+ 1)
s
2

s

)

+

s∑
k=1

(
M̃k,lo+

1{jF,k ≤ J}

 1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi})− f0 +
√

2
σ

(n+ 1)
s−1

2

∑n
l=0 z

1
k,l

n+ 1

),
(A.5.297)

we have

P
(
M̃lo > M(f)

∣∣∣A1 ∩
(
∩sk=1D

c
2,k

))
≤ P

((∣∣{k : jF,k ≤ J}
∣∣− 1

)f0 −
1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi})


−

s∑
k=1

1{jF,k ≤ J}
√

2
σ

(n+ 1)
s−1

2

∑n
l=0 z

1
k,l

n+ 1
− zα/8 · 2

√
3

σ

(n+ 1)
s
2

s > 0∣∣∣∣∣A1 ∩
(
∩sk=1D

c
2,k

))

+
s∑

k=1

(
P

(
M̃k,lo +

1

(n+ 1)s

∑
i

er({yi})− f0 −M(fk) ≥ 0

∣∣∣∣∣A1 ∩Dc
2,k ∩ {jF,k ≤ J}

)

× P
(
A1 ∩Dc

2,k ∩ {jF,k ≤ J}
∣∣A1 ∩

(
∩sk=1D

c
2,k

))
+ P

(
M̃k,lo ≥M(fk)

∣∣∣∣∣A1 ∩Dc
2,k ∩ {jF,k ≥ J + 1}

)

× P
(
A1 ∩Dc

2,k ∩ {jF,k ≥ J + 1}
∣∣A1 ∩

(
∩sk=1D

c
2,k

)))
.

(A.5.298)
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Inequality (A.5.288) and Lemma A.5.14 gives that the sum of the terms in the summation

is upper bounded by α/8s for each k.

For the first term, split it into summation of conditional probability on A1 ∩
(
∩sk=1D

c
2,k

)
∩

{jF,k = jk : k = 1, 2, · · · , s} times P (A1 ∩
(
∩sk=1D

c
2,k

)
∩ {jF,k = jk : k = 1, 2, · · · , s}

∣∣∣A1 ∩(
∩sk=1D

c
2,k

)
) for legitimate j. Elementary calculation show that the conditional probability

on A1 ∩
(
∩sk=1D

c
2,k

)
∩ {jF,k = jk : k = 1, 2, · · · , s} is upper bounded by α/8.

Therefore

P
(
M̃lo > M(f)

∣∣∣A1 ∩
(
∩sk=1D

c
2,k

))
≤ α/8 + α/8 = α/4.

Therefore,

P (M(f) /∈ [M̃lo, M̃hi]) ≤P (Ac1) +
s∑

k=1

P (D2,k) + P
(
M̃lo > M(f)

∣∣∣A1 ∩
(
∩sk=1D

c
2,k

))
+ P

(
M̃hi < M(f)

∣∣∣A1 ∩
(
∩sk=1D

c
2,k

))
≤ α.

(A.5.299)

Proof of Proposition A.5.14

E(M̃hi − M̃lo) =zα/8
4
√

3σ

(n+ 1)
s
2

s+

s∑
k=1

E(M̃k,hi − M̃k,lo)

≤ zα/84
√

6

s∑
k=1

ρm(
σ

(n+ 1)
s
2

; fk)

√
ρz(

σ

(n+ 1)
s
2

; fk) +

s∑
k=1

E(M̃k,hi − M̃k,lo).

(A.5.300)

Recall that Dm(f ;n) defined in (A.5.150) also applies to univariate case by setting s = 1,

more specifically,

Dm(fk;n) = min{fk(
i

n
) : 0 ≤ i ≤ n} −min{M(h) : h(

i

n
) = fk(

i

n
) for 0 ≤ i ≤ n, h ∈ F}.

(A.5.301)
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Then it is easy to see that

Dm(f ;n) =
s∑

k=1

Dm(fk;n). (A.5.302)

So it is sufficient to prove that the following holds for any k ∈ {1, 2, · · · , s}

E(M̃k,hi − M̃k,lo) ≤ Dm(fk;n) + C̃m,α,sρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
,

(A.5.303)

where

C̃m,α,s =
(

2
√

3S210,α/8s + 3(zα/4s + 1)
)√

8 · 148 · 2 +
(√

3S210,α/8s + 2
)
· 32+

(6 + S212,α/24s + zα/48s/
√

2) · 210 ·
√

3 · 32.

(A.5.304)

This gives the statement of the proposition by taking C̄m,α,s = zα/84
√

6 + C̃m,α,s.

Next we will prove Inequality (A.5.303).

We have

E(M̃k,hi − M̃k,lo) ≤

E((M̃k,hi − M̃k,lo)1{jF,k ≤ J}) + E((M̃k,hi − M̃k,lo)1{jF,k > J}).
(A.5.305)

393



For the first term we have

E((M̃k,hi − M̃k,lo)1{jF,k ≤ J})

=
(

2
√

3S210,α/8s + 3(zα/4s + 1)
) σ

(n+ 1)s−1
E(2

jF,k−J
2 1{jF,k ≤ J})

≤
(

2
√

3S210,α/8s + 3(zα/4s + 1)
) σ

(n+ 1)s−1

(
E(2

ĵk(ζ)+3−J
2 ) ∧ 1

)
≤
(

2
√

3S210,α/8s + 3(zα/4s + 1)
) σ

(n+ 1)s−1(√
8 · 148

n
ρm(

σ

(n+ 1)
s
2

; fk)2 ·
(

σ

(n+ 1)
s
2

)−2

∧ 1

)

≤
(

2
√

3S210,α/8s + 3(zα/4s + 1)
)
ρm(

σ

(n+ 1)
s
2

; fk)(√
8 · 148(n+ 1)

n
∧
√

2(n+ 1)

n

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
.

(A.5.306)

The second to last inequality is due to Inequality (A.5.263).

Let C̃m,s,α,0 =
(
2
√

3S210,α/8s + 3(zα/4s + 1)
)√

8 · 148 · 2, we have

E((M̃k,hi − M̃k,lo)1{jF,k ≤ J}) ≤ C̃m,s,α,0ρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
.

(A.5.307)

Now we turn to the second term in Equation (A.5.305). We introduce two quantities first.

f̃k = min
(Ik,lo−1)∧0≤i≤(Ik,hi−1)∨n

fk(
i

n
), ĩk,m = arg min

(Ik,lo−1)∧0≤i≤(Ik,hi−1)∨n
fk(

i

n
). (A.5.308)

Note that these two quantities depend on {νlk,·, νrk,·}.

E(
(
M̃k,hi − M̃k,lo

)
1{jF,k > J})

≤ E
((

M̃k,hi − f̃k
)

+
1{jF,k > J}

)
+ E

((
f̃k − M̃k,lo

)
+
1{jF,k > J}

)
.

(A.5.309)
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Note that

M̃k,hi ≤ νek,̃ik,m + S210,α/8s ×
√

3
σ

(n+ 1)
s−1

2

, (A.5.310)

hence we have that

E
((

M̃k,hi − f̃k
)

+
1{jF,k > J}

)
≤ P (jF,k > J)

( √
3σ

(n+ 1)
s
2

+ S210,α/8s

√
3σ

(n+ 1)
s−1

2

)
.

(A.5.311)

Lemma A.5.15.

σ

(n+ 1)
s−1

2

P (jF,k > J) ≤ 32ρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
. (A.5.312)

Proof. Recall that ζ = α/4s ≤ 0.25. According to Lemma A.5.13, we know that when

J ≥ jk(ζ) + 8,

P (jF,k > J) ≤ ΠJ−3
j=jk(ζ)+5Φ(−zζ + 2

3
2

(jk(ζ)+5−j) zζ+1

4
) < 0.4J−jk(ζ)−7. (A.5.313)

By Lemma A.5.9 and the definition of jk(ζ), we have that

0.4J−jk(ζ)−7 < 27 · 2jk(ζ)−J < 27 · 1

nξk(ζ)
≤ 28 1

nρz((zζ + 1)
√

6σ

(n+1)
s−1

2
√
n

; fk)
(A.5.314)

When nρz((zζ + 1)
√

6σ

(n+1)
s−1

2
√
n

; fk) ≥ 28, we have that

2jk(ζ)−J+8 <
1

nξk(ζ)
· 28 ≤ 29 · 1

nρz((zζ + 1)
√

6σ

(n+1)
s−1

2
√
n

; fk)
≤ 2. (A.5.315)
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Note that 2jk(ζ)−J+8 only takes integer value, hence we have jk(ζ)− J + 8 ≤ 0. Hence

σ

(n+ 1)
s−1

2

P (jF,k > J) ≤
√

2ρm(
σ

(n+ 1)
s
2

; fk) · 28 1√
nρz((zζ + 1)

√
6σ

(n+1)
s−1

2
√
n

; fk)
·
√

2

≤ 32ρm(
σ

(n+ 1)
s
2

; fk).

(A.5.316)

Also, we always have

σ

(n+ 1)
s−1

2

P (jF,k > J) ≤ σ

(n+ 1)
s−1

2

≤
√

2ρm(
σ

(n+ 1)
s
2

; fk)

√
n+ 1

n

√
nρz(

σ

(n+ 1)
s
2

; fk)

≤ 32ρm(
σ

(n+ 1)
s
2

; fk)

√
nρz(

σ

(n+1)
s
2

; fk)

28

(A.5.317)

Note that when

√
nρz( σ

(n+1)
s
2

;fk)

28 ≥ 1, we have nρz((zζ + 1)
√

6σ

(n+1)
s−1

2
√
n

; fk) ≥ 28, in which

case we have Inequality (A.5.316) holds.

So we have

σ

(n+ 1)
s−1

2

P (jF,k > J) ≤ 32ρm(
σ

(n+ 1)
s
2

; fk)

1 ∧

√
nρz(

σ

(n+1)
s
2

; fk)
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≤ 32ρm(

σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
.

(A.5.318)
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With Lemma A.5.15, going back to inequality (A.5.311), we have

E
((

M̃k,hi − f̃k
)

+
1{jF,k > J}

)
≤

(√
3S210,α/8s + 2

)
· 32ρm(

σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
.

(A.5.319)

Now we turn to the second term in Inequality (A.5.309).

We have the following lemma

Lemma A.5.16. Let Dm(fk;n) be defined in (A.5.301). Then we have

E
((

f̃k − M̃k,lo

)
+
1{jF,k > J}

)
≤Dm(fk;n) + (6 + S212,α/24s + zα/48s/

√
2) · 210 ·

√
3×

32ρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
(A.5.320)

Proof. We first recall a basic geometry property of univariate convex functions. Suppose f

is a convex function. For any 0 ≤ i ≤ j ≤ n, we have that

min
i≤l≤j

{f(
l

n
)} − min

i
n
≤t≤ j

n

f(t) ≤ min
0≤l≤n

{f(
l

n
)} − min

0≤t≤1
f(t). (A.5.321)

For 0 ≤ i ≤ n − 1, we define a reference number h̃(i), which is the smallest number a

function h could achieve on [i/n, (i+ 1)/n] when it has the same values with fk on the grid

points (i.e 0, 1/n, 2/n, · · · , 1).

h̃(i) = min
i/n≤t≤(i+1)/n

max
{
fk(

i+ 1

n
) +

fk(
i+2
n )− fk( i+1

n )

1/n
(t− i+ 1

n
),

fk(
i

n
) +

fk(
i−1
n )− fk( in)

1/n
(t− i

n
)
}
,

(A.5.322)

where f(−1/n) =∞ = f(n+1
n ) and ∞× 0 is set to 0.
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Therefore, we have that

E
((

f̃k − M̃k,lo

)
+
1{jF,k > J}

)

≤ E

E

(f̃k − min
tl≤i≤tr

h̃(i)) +

kr∑
i=kl

(h̃(i)− h(i))+

∣∣∣{νr·,·, νl·,·}
1{jF,k > J}


≤ Dm(fk;n)P (jF,k > J) + E

 kr∑
i=kl

E
(

(h̃(i)− h(i))+

∣∣∣{νr·,·, νl·,·})1{jF,k > J}

 .

(A.5.323)

Now we are left with bounding the second term.

Recollect the notation δi = νek,i − fk( in) for 0 ≤ i ≤ n, and δi = 0 for i /∈ {0, 1, · · · , n}.

Elementary calculation shows that

(h̃(i)− h(i))+ ≤ 2|δi|+ 2|δi+1|+ |δi−1|+ |δi+2|+ 3H. (A.5.324)

And note that for fixed i , δi−1, δi, δi+1, δi+2 are independent from {νl·,·, νr·,·}.

Also δi ∼ N(0, n
n+1

3σ2

(n+1)s−1 ).

Therefore, we have that

E

 kr∑
i=kl

E
(

(h̃(i)− h(i))+

∣∣∣{νr·,·, νl·,·})1{jF,k > J}
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√
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s−1

2

(6 + S212,α/24s + zα/48s/
√

2) · 210P (jF,k > J)

≤ (6 + S212,α/24s + zα/48s/
√

2) · 210 ·
√

3×

32ρm(
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(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
.

(A.5.325)

The last inequality comes from Lemma A.5.15.
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This concludes the proof of Lemma A.5.16.

Now, combining Lemma A.5.16, Inequality (A.5.309), Inequality (A.5.319) and Inequality

(A.5.307), we have that

E(M̃k,hi − M̃k,lo) ≤ Dm(fk;n) + C̃m,α,sρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
,

(A.5.326)

where

C̃m,α,s =
(

2
√

3S210,α/8s + 3(zα/4s + 1)
)√

8 · 148 · 2 +
(√

3S210,α/8s + 2
)
· 32+

(6 + S212,α/24s + zα/48s/
√

2) · 210 ·
√

3 · 32.

(A.5.327)

A.6. Proofs of the Results in Chapter 4

In this section, we give all the proofs of the results in Chapter 4. We start with proving

three overall results for our examples using statistical-optimization-interplay results and

optimization results, which are proved later. Next we prove the statistical-optimization

interplay results for our examples. Then we prove optimization results for our general

optimization template. In the end, we prove the optimization results for our examples.

A.6.1. Proof of Theorem 4.3.3

Recall Theorem 4.3.1, Theorem 4.3.2.
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According to Theorem 4.3.2, we have

δ ≤ α2L̃αd1d2

T
+ (4αL̃α

√
d1d2 + 2Lα)

√
1

t

√
q(β) +

2d1d2

β
+ 2L̃α

1

t

(
q(β) +

2d1d2

β

)
,

max{δ1, δ2, δ0} ≤
√

1

t

√
q(β) +

2d1d2

β
≤ u0,

(A.6.1)

Therefore, Lα+δ1 ≤ 2Lα.

Combing with Theorem 4.3.1 through plugging in the bounds of δ, δ1, δ2, we have the fol-

lowing holds with probability at least 1− c1
d1+d2

.

D(l(M)‖l(M̃))

≤ 2c0Lα

(
α
√
rd1d2 +

√
1

t

√
q(β) +

2d1d2

β

)√
d1 + d2

nd1d2

√
1 +

(d1 + d2) log (d1d2)

n

+
α2L̃αd1d2

Tn
+

4αL̃α
√
d1d2 + 2Lα
n

√
1

t

√
q(β) +

2d1d2

β
+

2L̃α
n

1

t

(
q(β) +

2d1d2

β

)
.

(A.6.2)

A.6.2. Proof of Theorem 4.4.3

Note that according to Theorem 4.4.2, we have

δ1 ≤√
q1(β)(λ|O|)2 min{N,T}+ q2(β)C(Y )2 + q3(β) (‖Y ‖2 + 2(NT − |O|)L2

max)

k − q0(β)
,

(A.6.3)

where q0(β), q1(β), q2(β), q3(β) are defined in Theorem 4.4.2.

Noting that

C(Y ) = sup
L∈C1

‖PO(Y − L)‖ ≤ ‖Y ‖+ Lmax

√
|O| ≤

√
2‖Y ‖2 + 2L2

max|O|, (A.6.4)
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we have

δ1 ≤√
q1(β)(λ|O|)2 min{N,T}+ (2q2(β) + q3(β)) ‖Y ‖2 + (2|O|(q2(β)− q3(β)) + 2NTq3(β))L2

max

k − q0(β)

≤
√
q1(β)(λ|O|)2 min{N,T}+ (2q2(β) + q3(β)) ‖Y ‖2 + 2NT max {q2(β), q3(β)}L2

max

k − q0(β)
.

(A.6.5)

Note that we have λ|O| ≤ 13× 8σmax{
√
N,
√
T} log

3
2 (N + T ), we have

δ1 ≤√
1042q1(β)σ2NT log3 (N + T ) + (2q2(β) + q3(β)) ‖Y ‖2 + 2NT max {q2(β), q3(β)}L2

max

k − q0(β)
.

(A.6.6)

Let q̃1(β) = 1042q1(β), q̃2(β) = 2q2(β) + q3(β), q̃3(β) = 2 max{q2(β), q3(β)}, then we have

δ1 ≤

√
q̃1(β)σ2NT log3 (N + T ) + q̃2(β)‖Y ‖2 + q̃3(β)NTL2

max

k − q0(β)
. (A.6.7)

In the proof of Theorem 4.4.2, we derive the bound for δ1 through that of δ0, the L2 distance

between the resulting approximate solution of inner loop and the target exact solution of

the inner loop. So the bound in Inequality (A.6.7) also holds for δ0. We set the upper

bound for inner loop error δ0 at iteration number k as

δ(k) =

√
q̃1(β)σ2NT log3 (N + T ) + q̃2(β)‖Y ‖2 + q̃3(β)NTL2

max

k − q0(β)
.

Invoking outer loop convergence rate, Proposition 4.4.1, similarly to the proof in Theorem

4.4.2, we have the optimization error for objective function as defined in (4.4.5) is upper
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bounded as follows.

δ ≤ NTL2
max

|O|K +
2δ(k)2

|O| + δ(k)

(
4Lmax

√
NT

|O| +
2C(Y )

|O| + min{
√
N,
√
T}λ

)
. (A.6.8)

Using

C(Y ) ≤ ‖Y ‖+ Lmax

√
|O| ≤ ‖Y ‖+ Lmax

√
NT (A.6.9)

and invoking Theorem 4.4.1 we get the statement of Theorem 4.3.3.

A.6.3. Proof of Theorem 4.5.4

Denote F (θ) =
‖Xθ‖22

2n − λn‖θ‖21.

From Inequality (A.6.145), Lemma (A.6.7), Theorem (4.5.1), we know that with probability

at least 1− exp (−n/32)
1−exp (−n/32) − exp(−n

2 )− 1
2(n+d) the following holds.

‖XTw‖∞ < 4ρ(Σ)

√
1 +

log d

n

√
log 2(n+ d)

n
, (A.6.10)

‖Xθ‖22
n

≥ c1κ‖θ‖22 − c2ρ
2(Σ)

log d

n
‖θ‖21, (A.6.11)

‖θ − θ∗‖ ≤ F (θ)− F (θ̂)

2λn
√
s

+
‖θ∗Sc‖1√

s
+ (2 + 4

√
s+

1√
s

)
λn
c1κ

, (A.6.12)

where c1, c2 are constants and can be taken as c1 = 1/8, c2 = 50.

Therefore, the condition in Theorem 4.5.3 is satisfied with

a1 = c1κ, a2 = c2ρ
2(Σ)

log d

n
. (A.6.13)

We only need to prove that under these conditions F (θk)− F (θ̂) ≤ δk holds.
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By Inequality (4.5.11) in Theorem 4.5.3 and Inequality (A.6.12) we have

F (θk)− F (θ̂) ≤ ‖X
TX/n‖s
2k

‖θ̂‖22 ≤
‖XTX/n‖s

2k

(
‖θ∗‖2 +

‖θ∗Sc‖1√
s

+ (2 + 4
√
s+

1√
s

)
λn
c1κ

)2

.

(A.6.14)

According to Inequality (A.6.160) we know that

F (θk)− F (θ̂) ≤ F (θ0)− F (θ̂) ≤ ‖y‖
2
2

2n
. (A.6.15)

For k ≥ K0, Inequality (4.5.11) and Inequality (A.6.160) gives

F (θk)− F (θ̂) ≤ F (θK0)− F (θ̂) ≤ λ2
n

48c2ρ(Σ) log d
n

. (A.6.16)

Now we are only left to prove for k ≥ K0,

F (θk)− F (θ̂) ≤

max

{
2−Tk

λ2
n

48c2ρ2(Σ) log d
n

, ρ2(Σ)
log d

n
s ·
(

2‖θ∗Sc‖1√
s

+ (2 + 4
√
s+

1√
s

)
λn
c1κ

)2

· 768c2

}
,

(A.6.17)

which is also Inequality (4.5.14) in Remark 4.5.4.

To prove this, we only need to prove that for k1 ≥ k0 and k satisfying

k ≥


k1 + d log 1/6

log (1− c1κ
8‖XTX/n‖s )

e, when c1κ < 8‖XTX/n‖s

k1 + 1, otherwise

, (A.6.18)
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the following holds

F (θk)− F (θ̂) ≤

max{1

2

(
F (θk1)− F (θ̂)

)
, ρ2(Σ)

log d

n
s ·
(

2‖θ∗Sc‖1√
s

+ (2 + 4
√
s+

1√
s

)
λn
c1κ

)2

· 768c2}.

(A.6.19)

If

F (θk)− F (θ̂) ≥ ρ2(Σ)
log d

n
s ·
(

2‖θ∗Sc‖1√
s

+ (2 + 4
√
s+

1√
s

)
λn
c1κ

)2

· 768c2, (A.6.20)

then F (θk1)− F (θ̂) ≥ ρ2(Σ) log d
n s ·

(
2‖θ∗Sc‖1√

s
+ (2 + 4

√
s+ 1√

s
) λnc1κ

)2
· 768c2.

Also, since k1 ≥ K0, we have

F (θk1)− F (θ̂) ≤ F (θK0)− F (θ̂) ≤ λ2
n

48c2ρ(Σ) log d
n

. (A.6.21)

By Inequality (4.5.10), we have

F (θk)− F (θ̂) ≤1

6

(
F (θk1)− F (θ̂)

)
+ ρ2(Σ)

log d

n
s ·
(

2‖θ∗Sc‖1√
s

+ (2 + 4
√
s+

1√
s

)
λn
c1κ

)2

· 128c2

+
8c2ρ

2(Σ) log d
n

λ2
n

λ2
n

48c2ρ(Σ) log d
n

(
F (θk1)− F (θ̂)

)
≤1

2

(
F (θk1)− F (θ̂)

)
.

(A.6.22)

Thus we concludes the proof.
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A.6.4. Proof of Theorem 4.3.1

The structure of the proof is similar to the proof of Theorem 2 in Davenport et al. (2014),

but to show how the statistical-optimization interface work, we will show in details how the

optimization error terms get into the statistical accuracy.

Let

L̄Ω,Y (X) = LΩ,Y (X)− LΩ,Y (0). (A.6.23)

Then we know that

− L̄Ω,Y (M̃) ≤ −L̄Ω,Y (M̂) + δ ≤ −L̄Ω,Y (M) + δ. (A.6.24)

We also know that

‖M̃‖∗ ≤ α
√
rd1d2 + δ2, ‖M̃‖∞ ≤ α+ δ1. (A.6.25)

We have the following lemma, which we will proof later in this section.

Lemma A.6.1. Let G ∈ Rd1×d2 be

G = {X ∈ Rd1×d2 : ‖X‖∗ ≤ α
√
rd1d2 + δ2, ‖M̃‖∞ ≤ α+ δ1} (A.6.26)

for some r ≤ min{d1, d2} and α ≥ 0. Then

P

 sup
X∈G
|L̄Ω,Y (X)− EL̄Ω,Y (X)| ≥ c̃0Lα+δ1

(
α
√
rd1d2 + δ2

)√n(d1 + d2)

d1d2
+ log (d1d2)


≤ c1

d1 + d2
,

(A.6.27)

where c̃0, c1 are absolute constants and the probability and the expectation are both over the

choice of Ω and draw of Y .
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Note that for any X we have

E
(
L̄Ω,Y (X)− L̄Ω,Y (M)

)
=

n

d1d2

∑
i,j

(
l(Mi,j) log

(
l(Xi,j)

l(Mi,j)

)
+ log

(
1− l(Xi,j)

1− l(Mi,j)

))
=− nD (l(M)‖l(X)) .

(A.6.28)

Therefore, we have

− δ

≤ L̄Ω,Y (M̃)− L̄Ω,Y (M)

= E
(
L̄Ω,Y (M̃)− L̄Ω,Y (M)

)
+
(
L̄Ω,Y (M̃)− E

(
L̄Ω,Y (M̃)

))
−
(
L̄Ω,Y (M)− E

(
L̄Ω,Y (M)

))
≤ E

(
L̄Ω,Y (M̃)− L̄Ω,Y (M)

)
+ 2 sup

X∈G

∣∣L̄Ω,Y (X)− E
(
L̄Ω,Y (X)

)∣∣
= −nD

(
l(M)‖l(M̃)

)
+ 2 sup

X∈G

∣∣L̄Ω,Y (X)− E
(
L̄Ω,Y (X)

)∣∣ ,
(A.6.29)

where G is defined in (A.6.26).

Applying Lemma A.6.1, we have that with probability at least 1− c1
d1+d2

D
(
l(M)‖l(M̃)

)
≤ 2

n
c̃0Lα+δ1

(
α
√
rd1d2 + δ2

)√n(d1 + d2)

d1d2
+ log (d1d2) +

δ

n

≤ 2c̃0Lα+δ1

(
α
√
rd1d2 + δ2

)√d1 + d2

nd1d2

√
1 +

(d1 + d2) log (d1d2)

n
+
δ

n
.

(A.6.30)

Let c0 = 2c̃0 we have the theorem.
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Proof of Lemma A.6.1

Noting that

L̄Ω,Y (X) =∑
(i,j)

1{(i, j) ∈ Ω}
(
1{Yi,j = 1} log

(
l(Xi,j)

l(0)

)
+ 1{Yi,j = −1} log

(
1− l(Xi,j)

1− l(0)

))
,

(A.6.31)

by symmetrization (i.e Lemma 6.3 in Ledoux and Talagrand (1991)) we have

E
(

sup
X∈G

|L̄Ω,Y (X)− EL̄Ω,Y (X)|h
)
≤ 2hE

(
sup
X∈G

∣∣∣∣∣∑
(i,j)

ζi,j1{(i, j) ∈ Ω}

(
1{Yi,j = 1} log

(
l(Xi,j)

l(0)

)
+ 1{Yi,j = −1} log

(
1− l(Xi,j)

1− l(0)

)) ∣∣∣∣∣
h)

,

(A.6.32)

where ζi,j are i.i.d. Rademacher random variables and the expectation is with respect to

Ω, Y and ζi,j . Next is to apply the contraction principle (i.e. Theorem 4.12 in Ledoux and

Talagrand (1991)). By the definition of Lα+δ1 and definition of G, we know that

1

Lα+δ1

log

(
l(x)

l(0)

)
and

1

Lα+δ1

log

(
1− l(x)

1− l(0)

)

are contractions that vanish at 0 within the domain of any Xi,j such that X ∈ G. Invoking

contraction principle gives

E
(

sup
X∈G
|L̄Ω,Y (X)− EL̄Ω,Y (X)|h

)

≤ 2h(2Lα+δ1)hE

 sup
X∈G

∣∣∣∣∣∑
(i,j)

ζi,j1{(i, j) ∈ Ω} (1{Yi,j = 1}Xi,j − 1{Yi,j = −1}Xi,j)

∣∣∣∣∣
h


≤ (4Lα+δ1)hE
(

sup
X∈G
|〈∆Ω ◦ Z ◦ Y,X〉|h

)
,

(A.6.33)

where Z denotes the matrix with (i, j)th element being ζi,j , ∆Ω denotes the indicator matrix

for Ω such that elements are zero when not in Ω and 1 when in Ω, and ◦ denotes Hadamard
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product. Observing that Z ◦ Y has the same distribution with Z, (Z,Z ◦ Y ) ⊥⊥ Ω and

〈A,B〉 ≤ ‖A‖op‖B‖∗, we have

E
(

sup
X∈G
|〈∆Ω ◦ Z ◦ Y,X〉|h

)
= E

(
sup
X∈G
|〈∆Ω ◦ Z,X〉|h

)
≤ E

(
sup
X∈G
‖∆Ω ◦ Z‖hop‖X‖h∗

)
=
(
α
√
rd1d2 + δ2

)h
E
(
‖∆Ω ◦ Z‖hop

)
.

(A.6.34)

Observe that Z◦∆Ω is a matrix with i.i.d. symmetric random variables, so according to The-

orem 1.1 in Seginer (2000) there is absolute constant C such that for h ≤ 2 log (max{d1, d2})

we have

E
(
‖Z ◦∆Ω‖h

)
≤ C

E

 max
1≤i≤d1

 d2∑
j=1

∆i,j

h/2
+ E

(
max

1≤j≤d2

d1∑
i=1

∆i,j

)h/2 . (A.6.35)

Note that
(
E(|f |h/2)

)2/h
is a norm for h ≥ 2 and (a+ b)1/h ≤ a1/h + b1/h, so we have

(
‖Z ◦∆Ω‖hop

)1/h

≤ C1/h


E
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+

E
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1≤j≤d2
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∆i,j
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∣∣∣∣∣
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)∣∣∣∣∣+
n
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)h/21/h

+

C1/h

E
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∣∣∣∣∣
d1∑
i=1

(
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n
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+

√
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)
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E
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d2∑
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(
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n

d1d2

)∣∣∣∣∣
)h/21/h

+

C1/h

E

( max
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d1∑
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(
∆i,j −

n

d1d2

)∣∣∣∣∣
)h/21/h

.

(A.6.36)

408



Using Bernstein’s inequality, we have for t > 0

P

∣∣∣∣∣∣
d2∑
j=1

(
∆i,j −

n

d1d2

)∣∣∣∣∣∣ > t

 ≤ 2 exp

(
− t2

2
n
d1

+ t
3

)
. (A.6.37)

For t ≥ 6n
d1

, for each i, we have

P

∣∣∣∣∣∣
d2∑
j=1

(
∆i,j −

n

d1d2

)∣∣∣∣∣∣ > t

 ≤ 2 exp (−t) = 2P(Wi > t), (A.6.38)

where W1, . . . ,Wd1 are i.i.d. exponential random variables.

Therefore,

E

( max
1≤j≤d2

∣∣∣∣∣
d1∑
i=1

(
∆i,j −

n

d1d2

)∣∣∣∣∣
)h/2

=

∫ ∞
0
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(
∆i,j −
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d1d2

)∣∣∣∣∣∣
h
 dt

≤
(

6n

d1

)h
+ 2

∫ ∞(
6n
d1

)h P
(

max
1≤i≤d1

W h
i ≥ t

)
dt

≤
(

6n

d1

)h
+ 2E

[(
max

1≤i≤d1

Wi

)h]
.

(A.6.39)

Note that for i.i.d. exponential random variables W1, . . . ,Wd1 we have

E

[(
max

1≤i≤d1

Wi

)h]
≤ E

[(
max

1≤i≤d1

W h
i − log d1

)h
+

]
+ log (d1)h

≤ 2h! + logh (d1).

(A.6.40)
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Therefore, we have

E

( max
1≤j≤d2

∣∣∣∣∣
d1∑
i=1

(
∆i,j −

n

d1d2

)∣∣∣∣∣
)h/21/h

≤ (1 +
√
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√
n

d1
+ 21/2h

(√
d1 + 21/2h

√
h
)

≤ (1 +
√

6)

√
n

d1
+
(

2 +
√

2
)√

log (d1 + d2),

(A.6.41)

where in the last inequality we use h = log (d1 + d2) ≥ 1. It’s easy to check that this choice

of h satisfies the condition required for getting Inequality (A.6.35).

Using similar argument to bound the third term in the right hand side of the last inequality

in Inequality (A.6.36), we have

(
E
[
‖∆Ω ◦ Z‖hop

])1/h
≤ C1/h

(
(1 +

√
6)

(√
n

d1
+

√
n

d2

)
+ (4 + 2

√
2)
√

log (d1 + d2)

)
≤ C1/h

√
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d1
+
n

d2
+ log (d1 + d2)

√
(1 +

√
6)2 + 4 + 2

√
2

< 9C1/h

√
n

d1
+
n

d2
+ log (d1 + d2)

(A.6.42)

Combing Inequality (A.6.33),(A.6.34),(A.6.42), we have

(
E
(

sup
X∈G
|L̄Ω,Y (X)− EL̄Ω,Y (X)|h

))1/h

≤ 4Lα+δ1

(
α
√
rd1d2 + δ2

)
× 9C1/h

√
n

d1
+
n

d2
+ log (d1 + d2).

(A.6.43)

Let t = 4Lα+δ1

(
α
√
rd1d2 + δ2

)
× 9
√

n
d1

+ n
d2

+ log (d1 + d2)× e. Then we know that

P
(

sup
X∈G
|L̄Ω,Y (X)− EL̄Ω,Y (X)| ≥ t

)
≤ C exp (−h) =

C

d1 + d2
.

(A.6.44)
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Set c̃0 = 4× 9× e, c1 = C, we have the lemma.

A.6.5. Proof of Theorem 4.4.1

Denote Ait to be the matrix with element (i, t) being 1 and others being 0. Denote εit to

the (i, t)-th element of ε. Let E =
∑

(i,t)∈O εitAit. And ‖ · ‖op denotes the operator norm

(i.e. the largest singular value).

The overall structure of the proof is similar to that in Athey et al. (2021), we have three

main lemmas, which we will prove later. The first two lemmas primarily show how the op-

timization error comes in, and for the third lemma, we do the statistical analysis differently

and have improved rate than that in Athey et al. (2021). The three lemmas are as follows.

Lemma A.6.2. For all λ ≥ 3‖E‖op/|O|,

∑
(i,t)∈O

〈Ait,L
∗ − L̃〉2
|O| ≤ 10

√
2Rλ‖L∗ − L̃‖F + 6δ. (A.6.45)

Lemma A.6.3. With probability at least 1− 1
(N+T )2 , we have

‖E‖op ≤ 4σmax{
√
N log (N + T ), 8

√
T log

3
2 (N + T )}+ σ. (A.6.46)

Lemma A.6.4. Suppose λ ≥ 3‖E‖op/|O|.

Then when ‖L̃− L∗‖2F ≥ 132(Lmax + δ1)2 × T log (N + T ) 1
pc

,

Pπ

(
‖L̃− L∗‖2F pc

6
>

∑
(i,t)∈O

〈Ait, L̃− L∗〉2 + 3648
72R

pc
(
√
N +

√
T )2(4(Lmax + δ1)2)

+
432δ(Lmax + δ1)

λ
(
√
N +

√
T )

)
≤ 1

(N + T )3

(A.6.47)

Therefore, when λ ≥ 12σmax{
√
N log (N+T ),8

√
T log

3
2 (N+T )}+3σ

|O| , if ‖L̃ − L∗‖2F ≥ 132(Lmax +
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δ1)2 × T log (N + T ) 1
pc

, then with probability at least 1− 2
(N+T )2 ,

‖L̃− L∗‖2F pc
6

≤
∑

(i,t)∈O
〈Ait, L̃− L∗〉2 + 3648

72R

pc
(
√
N +

√
T )2(4(Lmax + δ1)2)

+
432δ(Lmax + δ1)

λ
(
√
N +

√
T )

≤ 10
√

2R(λ|O|)‖L̃− L∗‖F + 6δ|O|+ 3648
72R

pc
(
√
N +

√
T )2(4(Lmax + δ1)2)

+
432δ(Lmax + δ1)

λ
(
√
N +

√
T ).

(A.6.48)

Note that

10
√

2R(λ|O|)‖L∗ − L̃‖F ≤
12× 200R (λ|O|)2

pc
+
‖L̃− L∗‖2F pc

12
, (A.6.49)

and |O| ≤ NT .

We take λ =
13σmax{

√
N log (N+T ),8

√
T log

3
2 (N+T )}

|O| .

Move the
‖L̃−L∗‖2F pc

12 term from the right hand side to the left hand side and then divide

both sides with pcNT
12 , we have there are constants q0, q1, q2, such that

‖L̃− L∗‖2F
NT

≤q0
Rσ2

p2
c

(N + T ) log3 (N + T )

NT
+

72

pc
δ + q1

δ(Lmax + δ1)

σpc

1

NT

+ q2
R(Lmax + δ1)2

p2
c

N + T

NT
.

(A.6.50)
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Proof of Lemma A.6.2

By the definition of L̃, L̂, L∗, we have

∑
(i,t)∈O

〈Yit − L̃〉2
|O| + λ|L̃|∗

≤
∑

(i,t)∈O

〈Yit − L̂〉2
|O| + λ|L̂|∗ + δ

≤
∑

(i,t)∈O

〈Yit − L∗〉2
|O| + λ|L∗|∗ + δ.

(A.6.51)

Therefore, we have

∑
(i,t)∈O

〈L∗ − L̃,Ait〉2
|O| + 2

∑
(i,t)∈O

εit〈L∗ − L̃,Ait〉
|O| ≤ λ‖L∗‖∗ − λ‖L̃‖∗ + δ. (A.6.52)

Denoting ∆ = L∗ − L̃, Inequality (A.6.52) becomes

∑
(i,t)∈O

〈∆,Ait〉2
|O| ≤ − 2

|O|〈∆,E〉+ λ‖L∗‖∗ − λ‖L̃‖∗ + δ

≤ 2

|O|‖∆‖∗‖E‖op + λ‖L∗‖∗ − λ‖L̃‖∗ + δ

≤ 5

3
λ‖∆‖∗ + δ,

(A.6.53)

the inequalities in which are due to the duality of operator norm and nuclear norm, and

the range of λ.

Now we state the following lemma, which is proved later in this section.

Lemma A.6.5. Let ∆ = L∗ − L̃ for λ ≥ 3‖E‖op/|O| Then there exist a decomposition

∆ = ∆1 + ∆2 such that

1. 〈∆1,∆2〉 = 0,
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2. rank(∆1) ≤ 2R,

3. ‖∆2‖∗ ≤ 5‖∆1‖∗ + 3δ
λ .

Now, invoking the decomposition ∆ = ∆1 + ∆2, we have

‖∆‖∗ ≤ 6‖∆1‖∗ +
3δ

λ
≤ 6
√

2R‖∆1‖F +
3δ

λ
≤ 6
√

2R‖∆‖F +
3δ

λ
. (A.6.54)

Plugging Inequality (A.6.54) back to Inequality (A.6.53), we have

∑
(i,t)∈O

〈∆,Ait〉2
|O| ≤ 10

√
2Rλ‖∆‖F + 6δ. (A.6.55)

Proof of Lemma A.6.5. Let L∗ = UN×RSR×R (VT×R)T be the singular value decompo-

sition for the at most rank R matrix L∗. Let PU = UUT , PU⊥ = U⊥(U⊥)T , PV = VVT ,

PV⊥ = V⊥(V⊥)T . Let ∆2 = PU⊥∆PV⊥ , ∆1 = ∆−∆2.

It’s easy to see that PU + PU⊥ = IN and PV + PV⊥ = IT.

Now we check the three claims for Lemma A.6.5.

〈∆1,∆2〉 = 〈∆−PU⊥∆PV⊥ ,PU⊥∆PV⊥〉

= 〈PU∆ + PU⊥∆PV,PU⊥∆PV⊥〉

= 0.

(A.6.56)

rank(∆1) = rank(PU∆ + PU⊥∆PV) ≤ rank(PU∆) + rank(PU⊥∆PV) ≤ 2R. (A.6.57)
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For the third one, note that

〈∆2,L
∗〉 = 〈PU⊥∆PV⊥ ,UN×RSR×R (VT×R)T 〉

= 0.

(A.6.58)

And Inequality (A.6.53) implies that

λ
(
‖L̃‖∗ − ‖L∗‖∗

)
≤ 2

|O|‖∆‖∗‖E‖op + δ

≤ 2

3
λ‖∆‖∗ + δ ≤ 2

3
λ (‖∆1‖∗ + ‖∆2‖∗) + δ.

(A.6.59)

The main part of the left hand sided is lower bound by

‖L̃‖∗ − ‖L∗‖∗ = ‖L∗ −∆1 −∆2‖∗ − ‖L∗‖∗ ≥ ‖L∗ −∆1‖∗ − ‖∆2‖∗ − ‖L∗‖∗

= ‖L∗‖∗ + ‖∆1‖∗ − ‖∆2‖∗ − ‖L∗‖∗ = ‖∆1‖∗ − ‖∆2‖∗.
(A.6.60)

Combining Inequality (A.6.59) and (A.6.60), we have

‖∆2‖∗ ≤ 5‖∆1‖∗ +
3δ

λ
. (A.6.61)

Proof of Lemma A.6.3

The proof is very similar to that of lemma 2 in Athey et al. (2021), but our task is to write

out the constants explicitly and have the bound as tight as possible.

Although the major parts are very similar, we still write out all the steps for completeness.

The goal is to invoke matrix version Bernstein inequality, a proof of which is in Tropp

(2012). Proposition A.6.1 states the matrix version Bernstein inequality.

Proposition A.6.1 (Matrix Bernstein Inequality). Let Z1, . . . ,ZN be independent matrices

in Rd1×d2 such that E[Zi] = 0 and ‖Zi‖op ≤ D almost surely for all i ∈ [N ]. Let σZ be such
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that

σ2
Z ≥ max

{∥∥∥∥∥
N∑
i=1

E[ZiZ
T
i ]‖op,

∥∥∥∥∥
N∑
i=1

E[ZTi Zi]

∥∥∥∥∥
op

}
.

Then, for any α ≥ 0,

P

{∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

≥ α
}
≤ (d1 + d2) exp

[ −α2

2σ2
Z + (2Dα)/3

]
. (A.6.62)

Same as the notations in Athey et al. (2021), define in dependent random matrices B1, . . . ,BN

as follows. For 1 ≤ i ≤ N , define

Bi =

ti∑
t=1

εitAit.

Then, E =
∑N

i=1 Bi and E[Bi] = 0. Define the bound D = C2σ
√
log(N + T ) for a constant

C2 that we will specify later. For each (i, t) ∈ O, let ε̄it = εit1{|εit| ≤ D}. For 1 ≤ i ≤ N ,

let Bi =
∑ti

t=1 ε̄itAit.

The σ-sub-Gaussian implies

P(|εit ≥ t|) = 2
1√
2π

∫ ∞
t

1

σ
exp (− x2

2σ2
)dx

≤ 2σ√
2π

∫ ∞
t2

2σ2

exp (−x)dx =
2σ√
2πt

exp (− t2

2σ2
).

(A.6.63)

Therefore, for α > 0,

P {‖E‖op ≥ α} ≤P


∥∥∥∥∥
B∑
i=1

Bi

∥∥∥∥∥
op

≥ α

+
∑

(i,t)∈O
P(|εit| ≥ D)

≤P


∥∥∥∥∥
B∑
i=1

Bi

∥∥∥∥∥
op

≥ α

+ |O| × 2σ√
2πD

exp (−D
2

2σ2
)

≤P


∥∥∥∥∥
B∑
i=1

Bi

∥∥∥∥∥
op

≥ α

+

√
2

π

NT

C2

√
log (N + T )

(N + T )−
C2

2
2 .

(A.6.64)
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For 1 ≤ i ≤ N , define Zi = Bi − E[Bi]. Then,

∥∥∥∥∥
N∑
i=1

Bi

∥∥∥∥∥
op

≤
∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

+

∥∥∥∥∥E
[
N∑
i=1

Bi

]∥∥∥∥∥
op

≤
∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

+

∥∥∥∥∥E
[
N∑
i=1

Bi

]∥∥∥∥∥
F

≤
∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

+
√
NT

∣∣∣∣∣E
[
N∑
i=1

Bi

]∣∣∣∣∣
∞
.

(A.6.65)

Further,

|E [ε̄it]| = |E [εit1{|εit| ≤ D}]| = |E [εit1{|εit| ≥ D}]| ≤
√
E[ε2

it]P(|εit| ≥ D)

≤ σ
√√

2

π

1

C2

√
log (N + T )

(N + T )−
C2

2
2 .

(A.6.66)

Therefore,

√
NT

∣∣∣∣∣E
[
N∑
i=1

Bi

]∣∣∣∣∣
∞
≤ σ

√√
2

π

NT

C2

√
log (N + T )

(N + T )−
C2

2
2 . (A.6.67)

Note that ‖Zi‖op ≤ 2D
√
T for all 1 ≤ i ≤ N . The only step left for invoking Proposition

A.6.1 is to calculation σZ in there.

Recall that E[(ε̄it − E[ε̄it])
2] ≤ σ2.

We have

∥∥∥∥∥
N∑
i=1

E[ZiZ
T
i ]

∥∥∥∥∥
op

≤ max
1≤i≤N

E

 ∑
t:(i,t)∈O

E[(ε̄it − E[ε̄it])
2]


≤ σ2T,

(A.6.68)
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and ∥∥∥∥∥
N∑
i=1

E[ZTi Zi]

∥∥∥∥∥
op

≤ σ2 max
1≤i≤T

N∑
j=1

P((j, i) ∈ O)

≤ σ2N.

(A.6.69)

The first inequality in Inequality (A.6.69) is due to E

{
(ε̄it − E[ε̄it])(ε̄js − E[ε̄js])

∣∣∣∣∣O
}

= 0

for (i, t) 6= (j, s).

Therefore σ2
Z = σ2 max{N,T} is a possible choice. Invoking Proposition A.6.1, we have

P


∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

≥ α

 ≤ (N + T ) exp

[
−α2

2σ2 max{N,T}+ (4C2σ
√

log (N + T )Tα)/3

]
.

(A.6.70)

Taking C2 = 3, α = max{4σ
√

max{N,T}
√

log (N + T ), 32T
1
2 (log (N + T ))

3
2σ}.

Combing Inequalities (A.6.64), (A.6.65), (A.6.67), (A.6.70), we have with probability at

least 1− 1
2(N+T )2 − 1

2(N+T )3

‖E‖op ≤ 4σmax{
√

max{N,T}
√

logN + T , 8T
1
2 (log (N + T ))

3
2 }+ σ. (A.6.71)

Proof of Lemma A.6.4

We define some additional notation here, which are similar to the additional notation in

Athey et al. (2021). Given observation set O, for every N by T matrix M, define XO(M)

and X (i)
O (M) as follows.

X (i)
O (M) = [〈Ai1,M〉, · · · , 〈Ait,M〉]T , (A.6.72)
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XO(M) =



X (1)
O (M)

·

·

·

X (N)
O (M)


. (A.6.73)

Define a L2
(Π) norm of M as

‖M‖L2
(Π)

=
√
Eπ
(
‖XO(M)‖22

)
, (A.6.74)

where Eπ is taking expectation with respect to the distribution of O.

Define the constraint set as

C(θ, η) =

{
M ∈ RN×T ∣∣‖M‖∞ ≤ 1, ‖M‖2L2

(Π)
≥ θ, ‖M‖∗ ≤

√
η‖M‖F +

3δ

2λ(Lmax + δ1)

}
.

(A.6.75)

Then according to Lemma A.6.3, we know that either

L̃− L∗

2(Lmax + δ1)
∈ C(θ,

(
6
√

2R
)2

)

or

‖ L̃− L∗

2(Lmax + δ1)
‖2L2

(Π)
≤ θ.

Observe that ‖ L̃−L∗
2(Lmax+δ1)‖2L2

(Π)

≤ θ implies ‖L̃− L∗‖2F ≤
4(Lmax+δ1)2θ

pc
.

We set θ = 33T log (N + T ).

Let ξ > 1 be a number that we will specify later. Define

C(θ, η, ρ) =

{
M ∈ C(θ, η)

∣∣∣ρ ≤ ‖M‖2L2
(Π)
≤ ρξ

}
. (A.6.76)
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We state a lemma that we will prove later in this section.

Lemma A.6.6. Suppose ξ > 1. Let

Zρ =
1

T
sup

M∈C(θ,η,ρ)
{‖M‖2L2

(Π)
− ‖XO(M)‖2}, (A.6.77)

then for t > 0,

P

(
Zρ ≥

48

T

(√
ηρξ

pc
+

3δ

2λ(Lmax + δ1)

)
(
√
N +

√
T ) + t

)
≤

exp

− t
4

log (1 + 2 log (1 +
t

96
T

(√
ηρξ
pc

+ 3δ
2λ(Lmax+δ1)

)
(
√
N +

√
T ) + ρξ

T

))

. (A.6.78)

According to Lemma A.6.6, if we set

t0 =
1

4T

(
96

(√
ηρξ

pc
+

3δ

2λ(Lmax + δ1)

)
(
√
N +

√
T ) + ρξ

)
,

t =
1

T

(
ρξ

4
+
ρ

4
+

4 ∗ 144ηξ

pc
(
√
N +

√
T )2 +

72δ

2λ(Lmax + δ1)
(
√
N +

√
T )

)
,

(A.6.79)

then we know that t0 ≤ t, so we have

P
(
M ∈ C(θ, η, ρ), ‖M‖2L2

(Π)
≥ ‖XO(M)‖2 + 48‖M‖L2

(Π)

√
ηξ

pc
(
√
N +

√
T )

+
144δ

2λ(Lmax + δ1)
(
√
N +

√
T )+

‖M‖2
L2

(Π)

4
+
‖M‖2

L2
(Π)

ξ

4
+

576ξη

pc
(
√
N +

√
T )2 +

72δ

2λ(Lmax + δ1)
(
√
N +

√
T )
)

≤ exp

(
− 1

22T
ρ(ξ + 1)− 10ηξ

pc

)
.

(A.6.80)

Given that
∞⋃
i=0

C(θ, η, θξi) = C(θ, η) (A.6.81)
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we have

P
(
M ∈ C(θ, η), ‖M‖2L2

(Π)
≥ ‖XO(M)‖2 + 48‖M‖L2

(Π)

√
ηξ

pc
(
√
N +

√
T )

+
144δ

2λ(Lmax + δ1)
(
√
N +

√
T )+

‖M‖2
L2

(Π)

4
+
‖M‖2

L2
(Π)

ξ

4
+

576ξη

pc
(
√
N +

√
T )2 +

72δ

2λ(Lmax + δ1)
(
√
N +

√
T )
)

≤ exp

(
− θ

11T
− 10ηξ

)
1

1− exp (−θ(ξ−1)
22T )

.

(A.6.82)

Note that 48‖M‖L2
(Π)

√
ηξ
pc

(
√
N +

√
T ) ≤

‖M‖2
L2

(Π)

4 + 2304 η
pc

(
√
N +

√
T )2, and ‖M‖2

L2
(Π)

≥

pc‖M‖2F , if we set ξ = 4
3 , we have

P
(pc‖M‖2F

6
≥ ‖XO(M)‖2 + 3648

η

pc
(
√
N +

√
T )2 +

216δ

2λ(Lmax + δ1)
(
√
N +

√
T )
)

≤ P
(‖M‖2L2

(Π)

6
≥ ‖XO(M)‖2 + 3648

η

pc
(
√
N +

√
T )2 +

216δ

2λ(Lmax + δ1)
(
√
N +

√
T )
)

≤ exp

(
− θ

11T

)
exp (−10η)

1− exp (− θ
66T )

.

(A.6.83)

Note that we set θ = 33T log (N + T ) and we have L̃−L∗
2(Lmax+δ1) ∈ C(θ, η) for η = 72R

according to Lemma A.6.2, so we have the Lemma A.6.4.

Proof of Lemma A.6.6 The goal here is to invoke theorem 12.9 of Boucheron et al.

(2013).

Note that ‖M‖2
L2

(Π)

− ‖XO(M)‖2 has its rows independent and

Eπ
(
Eπ(‖X (i)

O (M)‖2)− ‖X (i)
O (M)‖2

)
= 0

for all 1 ≤ i ≤ N . Although theorem 12.9 in Boucheron et al. (2013) requires countability
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of the index set, given that C(θ, η, ρ) is bounded, compact, and ‖M‖2
L2

(Π)

− ‖XO(M)‖2 is

uniformly continuous for all O, theorem 12.9 is applicable to our setting. The next steps

are to find a bound for E(Zρ) and

σ2 =
1

T 2
sup

M∈C(θ,η,ρ)

N∑
i=1

V ar(‖X (i)
O (M)‖2).

For σ2, we have

σ2 ≤ 1

T 2
sup

M∈C(θ,η,ρ)

N∑
i=1

E(‖X (i)
O (M)‖42)

≤ 1

T
sup

M∈C(θ,η,ρ)

N∑
i=1

E(‖X (i)
O (M)‖22) ≤ ρξ

T
.

(A.6.84)

For E(Zρ), suppose ζi (i = 1, · · · , N) are i.i.d. Rademacher variable, then we have, for any

τ

E(Zρ)
(i)

≤ 1

T
sup

M∈C(θ,η,ρ)

{∣∣∣∣‖M‖2L2
(Π)
− ‖XO(M)‖2

∣∣∣∣}
(ii)

≤ 2

T
E

[
sup

M∈C(θ,η,ρ)

∣∣∣ N∑
i=1

ζi‖X (i)
O (M)‖22

∣∣∣]
(iii)

≤ 4

T
E

[
sup

M∈C(θ,η,ρ)

N∑
i=1

ζi‖X (i)
O (M)‖22

]
(iv)

≤ 4

T

(
2τ2 + 2 logN(τ, θ, η, ρ) + 2 sup

M∈C(θ,η,ρ)
E(

N∑
i=1

ζi‖X (i)
O (M)‖22)

)

=
8

T

(
τ2 + logN(τ, θ, η, ρ)

)
,

(A.6.85)

where Inequality ii is due to lemma 6.3 of Ledoux and Talagrand (1991), Inequality iii is

due to

sup
M∈C(θ,η,ρ)

N∑
i=1

ζi‖X (i)
O (M)‖22 ≥ 0 (A.6.86)
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and

sup
M∈C(θ,η,ρ)

∣∣∣∣∣
N∑
i=1

ζi‖X (i)
O (M)‖22

∣∣∣∣∣ = sup
M∈C(θ,η,ρ)

∣∣∣∣∣
N∑
i=1

−ζi‖X (i)
O (M)‖22

∣∣∣∣∣
N∑
i=1

ζi‖X (i)
O (M)‖22 = −

N∑
i=1

−ζi‖X (i)
O (M)‖22.

(A.6.87)

N(τ, θ, η, ρ) in Inequality iv is the τ covering number (Wainwright, 2019) of C(θ, η, ρ), and

Inequality iv is due to typical arguments bounding empirical process that we list as follows.

Let N = N(τ, θ, η, ρ). Suppose M1, . . . ,MN is the τ− cover. Then we have

E

(
sup

M∈C(θ,η,ρ)

N∑
i=1

ζi‖X (i)
O (M)‖22

)

≤ E

(
2 sup

1≤j≤N

N∑
i=1

ζi‖X (i)
O (Mj)‖22 + 2 sup

1≤j≤N
inf

M∈C(θ,η,ρ)
‖Mj −M‖22

)

= 2 log

(
exp

(
E

(
sup

1≤j≤N

N∑
i=1

ζi‖X (i)
O (Mj)‖22

)))
+ 2τ2

≤ 2 log

 N∑
j=1

exp

{
E

(
N∑
i=1

ζi‖X (i)
O (Mj)‖22

)}+ 2τ2

= 2 logN + 2τ2.

(A.6.88)

Readers interested in more details on covering number can take Wainwright (2019) as a

reference.

Now we proceed with Inequality (A.6.85) with bounding logN(τ, θ, η, ρ).

Suppose G is a RN×T matrix with i.i.d. N(0, 1) entries. Let B1(R) = {∆ ∈ RN×T ∣∣‖∆‖∗ ≤
R}. Then C(θ, η, ρ) ⊂ B1(

√
ηρξ
pc

+ 3δ
2λ(Lmax+δ1)). Let Ñ(τ,R) be the τ -covering number of

B1(R). By Sudakov minoration (Theorem 5.20 in Wainwright (2019)), and the fact that
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packing number is no smaller than covering number, we have

√
logN(τ, θ, η, ρ) ≤

√√√√Ñ(τ,

√
ηρξ

pc
+

3δ

2λ(Lmax + δ1)
)

≤ 3

τ
E

 sup

‖∆‖∗≤
√
ηρξ
pc

+ 3δ
2λ(Lmax+δ1)

〈G,∆〉


≤

3(
√

ηρξ
pc

+ 3δ
2λ(Lmax+δ1))

τ
E(‖G‖op).

(A.6.89)

By (4.2.5) in Tropp (2015), we have

E(‖G‖op) ≤
√
N +

√
T . (A.6.90)

Therefore, taking τ =

√
3(
√
ηρξ
pc

+ 3δ
2λ(Lmax+δ1)

)

τ (
√
N +

√
T ), we have

E(Zρ) ≤
48

T

(√
ηρξ

pc
+

3δ

2λ(Lmax + δ1)

)
(
√
N +

√
T ). (A.6.91)

Now invoking theorem 12.9 of Boucheron et al. (2013) with Inequalities (A.6.91) and

(A.6.84), we have, for t > 0,

P

(
Zρ ≥

48

T

(√
ηρξ

pc
+

3δ

2λ(Lmax + δ1)

)
(
√
N +

√
T ) + t

)
≤

exp

− t
4

log (1 + 2 log (1 +
t

96
T

(√
ηρξ
pc

+ 3δ
2λ(Lmax+δ1)

)
(
√
N +

√
T ) + ρξ

T

))

. (A.6.92)
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A.6.6. Proof of Theorem 4.2.1

Write the F in Equation (4.2.3) in the following form

F (X) = f(X) + g(X) + T{X ∈ C1 ∩ C2 ∩ · · · ∩ CJ}. (A.6.93)

For ease of notation, denote C = C1 ∩ C2 ∩ · · · ∩ CJ .

Recalling that

Xk+0.5 = Xk − η∇f(Xk)

Xk+1 = P̃roxη(g(X)+T{C})(Xk+0.5),

(A.6.94)

we denote

G(Xk) =
Xk − Proxη(g(X)+T{C})(Xk+0.5)

η

G̃(Xk) =
Xk − P̃roxη(g(X)+T{C})(Xk+0.5)

η
.

(A.6.95)

Then it’s clear that

Xk+1 = Xk − ηG̃(Xk)

Proxη(g(X)+T{C})(Xk+0.5) = Xk − ηG(Xk).

(A.6.96)

Recalling the definition of Proxη(g(X)+T{C})(Xk+0.5),

Proxη(g(X)+T{C})(Xk+0.5) = arg min
X

{
1

2η
‖X −Xk+0.5‖2 + g(X) + T{X ∈ C}

}
, (A.6.97)
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we know that

0 ∈ X −Xk+0.5 + η∂g(X) + η∂T{X ∈ C}
∣∣∣∣∣
X=Xk−ηG(Xk)

. (A.6.98)

In the later part of this proof, we choose ∂g(Xk−ηG(Xk)) and ∂T{Xk−ηG(Xk) ∈ C} such

that

∂g(Xk − ηG(Xk)) + ∂T{Xk − ηG(Xk) ∈ C}+∇f(Xk)−G(Xk) = 0.

We have

f(Xk − ηG̃(Xk)) + g(Xk − ηG̃(Xk))

≤ f(Xk − ηG(Xk)) + 〈∇f(Xk − ηG(Xk)), (Xk − ηG̃(Xk))− (Xk − ηG(Xk))〉+
L

2
‖ηG̃(Xk)− ηG(Xk)‖2 + g(Xk − ηG(Xk)) + 〈∂g(Xk − ηG̃(Xk)), ηG(Xk)− ηG̃(Xk)〉

≤ f(Xk − ηG(Xk)) + g(Xk − ηG(Xk)) + Lfδ0 + Lgδ0 +
L

2
δ2

0 .

(A.6.99)

To further bound the first two terms in the right hand side, we have for any y ∈ Rn×m,

f(Xk − ηG(Xk)) + g(Xk − ηG(Xk)) + T{Xk − ηG(Xk) ∈ C}

≤ f(Xk) + 〈∇f(Xk),−ηG(Xk)〉+
L

2
‖ηG(Xk)‖2+

g(y) + 〈∂g(Xk − ηG(Xk)), Xk − ηG(Xk)− y〉

+ T{y ∈ C}+ 〈∂IXk − ηG(Xk), Xk − ηG(Xk)− y〉

≤ f(y) + 〈∇f(Xk), Xk − y − ηG(Xk)〉+
L

2
‖ηG(Xk)‖2 + g(y) + T{y ∈ C}+

〈∂g(Xk − ηG(Xk)) + ∂T{Xk − ηG(Xk) ∈ C}, Xk − ηG(Xk)− y〉

= f(y) + 〈G(Xk), Xk − y − ηG(Xk)〉+
L

2
‖ηG(Xk)‖2 + g(y) + I(y),

(A.6.100)

where the last equality is due to (A.6.98).
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If we further let y = X∗, we have

f(Xk − ηG(Xk)) + g(Xk − ηG(Xk)) + T{Xk − ηG(Xk) ∈ C}

≤ f(X∗) + g(X∗) + T{X∗ ∈ C}+ 〈G(Xk), Xk −X∗ −
ηG(Xk)

2
〉

+

(
L

2
η2 − η

2

)
‖G(Xk)‖2

= f(X∗) + g(X∗) + T{X∗ ∈ C}+
1

2η

(
‖Xk −X∗|2 − ‖Xk − ηG(Xk)−X∗‖2

)
+
η

2
(Lη − 1)‖G(Xk)‖2

≤ f(X∗) + g(X∗) + T{X∗ ∈ C}+
1

2η

(
‖Xk −X∗|2 − ‖Xk − ηG̃(Xk)−X∗‖2

)
+
δ2

0

2η
+
δ0D

η
+
η

2
(Lη − 1)‖G(Xk)‖2,

(A.6.101)

where D is the diameter of C, and the last Inequality is due to

‖Xk − ηG̃(Xk)−X∗‖2 − ‖Xk − ηG(Xk)−X∗‖2

= ‖Xk − ηG̃(Xk)−X∗ − (Xk − ηG(Xk)−X∗)‖2+

2〈
(
Xk − ηG̃(Xk)

)
− (Xk − ηG(Xk)) , Xk − ηG(Xk)−X∗〉

≤ δ2
0 + 2δ0D.

(A.6.102)

If we further let η ≤ 1
L in Inequality (A.6.101), combing with Inequality (A.6.99), and

noting that Xk − ηG(Xk), X
∗ ∈ C, we have

f(Xk+1) + g(Xk+1) ≤f(X∗) + g(X∗) +
1

2η

(
‖Xk −X∗‖2 − ‖Xk+1 −X∗‖2

)
+
δ2

0

2η
+
δ0D

η
+
L

2
δ2

0 + (Lf + Lg)δ0.

(A.6.103)

Adding up k = 0 · · ·K − 1 for Inequality (A.6.103), we have

1

K

K∑
j=1

(f(Xj) + g(Xj)) ≤ f(X∗)+g(X∗)+
1

2η
‖X0−X∗‖2 +

δ2
0

2η
+
δ0D

η
+
L

2
δ2

0 +(Lf +Lg)δ0.

(A.6.104)
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This proves the theorem. But now, we also give a variant of the theorem. Suppose X̄K =

1
K

∑K
j=1Xj , then the convexity of f and g implies that the left hand side of Inequality

(A.6.104) is larger equal to f(X̄K) + g(X̄K).

A.6.7. Proof of Proposition 4.2.1

Define the following averages:

W
t

=
1

t− 1

t∑
i=1

W i, Z
t

=
1

t− 1

t∑
i=1

Zi, P
t

=
1

t− 1

t∑
i=1

P i. (A.6.105)

Writing the constraints of optimization problem (4.2.8) in matrix form, we have

 0 −Inm Inm

− Inm 0 Inm



vec(W )

vec(Z)

vec(P )

 = 0. (A.6.106)

Note that the coefficient matrix blocks corresponding to vec(Z) and vec(P ) in the linear

constraint (A.6.106) are full column rank matrices. It suffices the conditions of Theorem

4.1 in Cai et al. (2017). Applying Inequality (4.3) in Cai et al. (2017) to our setting with

θ1(x) = h1(x), θ2(x) = h2(x), θ3(x) = ‖x− P0‖2, x′1 = W ∗, x′2 = Z∗, x′3 = P ∗, we have, for

β ≤ 6
17 ,

2βt

{[
h1(W

t
) + h2(Z

t
) + ‖P t − P0‖2 + 〈Λ∗1, (W

t − P t)〉+ 〈Λ∗2, (Z
t − P t)〉

]

−
[
h1(W ∗) + h2(Z∗) + ‖P ∗ − P0‖2 + 〈Λ∗1, (W ∗ − P ∗)〉+ 〈Λ∗2, (Z∗ − P ∗)〉

]}

≤ β2‖Z1 − Z∗‖2 + 2β2‖P 1 − P ∗‖2 + ‖Λ1 −Λ∗‖2 +
10

3
β2 ∗ 2‖P 1 − P 0‖2.

(A.6.107)
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For the left hand side, we define a function

U(W,Z, P ) = h1(W ) +h2(Z) + ‖P −P0‖2F + 〈Λ∗1,W 〉+ 〈Λ∗2, Z〉− 〈(Λ∗1 + Λ∗2), P 〉. (A.6.108)

Given that (W ∗, Z∗, P ∗), (Λ∗1,Λ
∗
2) is a solution to

max
Λ1,Λ2

min
W,Z,P

h1(W ) + h2(Z) + ‖P − P0‖2F + 〈Λ1,W 〉+ 〈Λ2, Z〉 − 〈(Λ1 + Λ2), P 〉,

we have

0 =
∂U(W,Z, P )

∂P

∣∣∣∣
W=W ∗,Z=Z∗,P=P ∗

= 2(P ∗ − P0)− (Λ∗1 + Λ∗2). (A.6.109)

Further, since U(W,Z, P ) is separable with respect to W , Z, P , we have

U(W,Z, P )− U(W ∗, Z∗, P ∗)

≥ U(W ∗, Z∗, P )− U(W ∗, Z∗, P ∗)

= ‖P − P0‖2 − ‖P ∗ − P0‖2 − (Λ∗1
T + Λ∗2

T )(P − P ∗)

= ‖P − P ∗‖2 + 〈P − P ∗, 2(P ∗ − P0)− Λ∗1 − Λ∗2〉

= ‖P − P ∗‖2.

(A.6.110)

Combining Equation (A.6.109) and (A.6.110), we have

‖P t − P ∗‖2 ≤ 1

2βt

(
β2‖Z1 − Z∗‖2 + 2β2‖P 1 − P ∗‖2 + ‖Λ1 −Λ∗‖2 +

20

3
β2‖P 1 − P 0‖2

)
.

(A.6.111)

A.6.8. Proof of Lemma 4.2.1

We begin with bounding C(C1, C2).

C(C1, C2) =
1

2 cos2( θ(C1,C2)
2 )

=
1

cos(θ(C1, C2)) + 1
. (A.6.112)
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Observe that Bd(x) ⊂ C1 ∩ C2, we have

cos(θ(C1, C2)) = inf
P∈∂(C1∩C2)

cos( sup
λ1∈NC1

(P ),λ2∈NC2
(P )

arccos (〈λ1, λ2〉))

≥ inf
P∈∂(C1∩C2)

cos( sup
λ1∈NBd(x)(P ),λ2∈NBd(x)(P )

arccos (〈λ1, λ2〉))

= inf
P∈∂(C1∩C2)

−(2
‖P − x‖2 − d2

‖P − x‖2 − 1)

≥ −1 +
2d2

D̃2
,

(A.6.113)

where D̃ = supP∈∂(C1∩C2) ‖P − x‖F .

Therefore,

C(C1, C2) ≤ D̃2

2d2
≤ D2

2d2
, (A.6.114)

where D = supP1,P2∈∂(C1∩C2) ‖P1 − P2‖F .

Now we continue with bounding dual variable Λ∗ in the case that h1(X) = T{X ∈

C1}, h2(X) = T{X ∈ C2}.

From Equation (A.6.109), we know that

4‖P ∗ − P0‖2 = ‖Λ∗1‖2 + ‖Λ∗2‖2 + 2〈Λ∗1,Λ∗2〉

≥ ‖Λ∗1‖2 + ‖Λ∗2‖2 + 2 cos(θ(C1, C2))‖Λ∗1‖‖Λ∗2‖

≥ ‖Λ∗1‖2 + ‖Λ∗2‖2 + min{0, 2 cos(θ(C1, C2))}‖Λ
∗
1‖2 + ‖Λ∗2‖2

2

≥ min{1, 1

C(C1, C2)
}(‖Λ∗1‖2 + ‖Λ∗2‖2).

(A.6.115)

Therefore, we have

‖Λ∗‖2F ≤ max{4, 4C(C1, C2)}‖P ∗ − P0‖2. (A.6.116)
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A.6.9. Proof of Proposition 4.3.1

To apply Proposition 4.2.1 to 1 bit completion matrix problem, we only need to find the

L,Lf , Lg, D and a bound for ‖X0 − X∗‖ in Proposition 4.2.1 in 1 bit matrix completion

setting and bound.

Since g = 0 in this case, we have Lg = 0. Since C1 = [−α, α]d1×d2 , we have D ≤ 2α
√
d1d2.

Easy calculation also shows sup|x|≤α+δ0
|l′(x)|

l(x)(1−l(x)) is the Lipschitz constant for the smooth

objective function −LΩ,Y (X).

Easy calculation also show that

sup
|x|≤α+δ0

{|l
′′(x)l(x)− (l′(x))2|

l(x)2
,
|l′′(x)(1− l(x)) + (l′(x))2|

(1− l(x))2
}

is the smoothness parameter for the smooth objective function −LΩ,Y (X).

Also, given that X0 = 0 and X∗ ∈ [−α, α]d1×d2 , we have ‖X0 −X∗‖2 ≤ α2d1d2.

With the step size set to be the inverse of smoothness parameter, we completes the proof

of the Proposition.

A.6.10. Proof of Proposition 4.3.2

Note that when X ∈ Rd1×d2 satisfies ‖X‖F ≤ α, we have ‖X‖∗ ≤
√
rank(X)‖X‖F ≤√

min{d1, d2}α ≤ α
√
rd1d2, and ‖X‖∞ ≤ α. Therefore, we have d ≥ α.

Note that when X ∈ [−α, α]d1×d2 , we have ‖X‖F ≤ α
√
d1d2. Therefore, D̃ ≤ α

√
d1d2,

where D̃ is defined after Inequality (A.6.113).

According to the proof of Lemma 4.2.1, when we take x in the Bd(x) there to be 0, we have

C(C1, C2) ≤ d1d2
2 .
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We continue with bounding the terms in right hand side of Inequality (4.2.13) in Proposition

4.2.1.

Recall the steps we take in Algorithm 4.3.2, then we have

‖Z1 − Z∗‖ = ‖ProjC2
(P0)− P ∗)‖ ≤ ‖P0 − P ∗‖,

‖P 1 − P ∗‖ = ‖ β

2(β + 1)
(ProjC1

(P0)− P ∗ + ProjC2
(P0)− P ∗)

+
1

β + 1
(P0 − P ∗)‖ ≤ ‖P0 − P ∗‖,

‖Λ1 −Λ∗‖2 ≤ 2‖Λ1‖2 + 2‖Λ∗‖2

≤ 2β2

∥∥∥∥∥ 1

β + 1

(
P0 +

β

2
ProjC2

(P0)− (1 +
β

2
)ProjC1

(P0)

)∥∥∥∥∥
2

+ 2β2

∥∥∥∥∥ 1

β + 1

(
P0 +

β

2
ProjC1

(P0)− (1 +
β

2
)ProjC2

(P0)

)∥∥∥∥∥
2

+ max{4, 8C(C1, C2)}‖P0 − P ∗‖2

≤ 4β2‖P0 − P ∗‖2 + max{4, 8C(C1, C2)}‖P0 − P ∗‖2,

‖P 1 − P0‖ ≤
β

2(β + 1)
‖ProjC1

(P0)− P0 + ProjC2
(P0)− P0‖ ≤

β

β + 1
‖P0 − P ∗‖.

(A.6.117)

Some of the inequalities in Inequality (A.6.117) are due to ‖P0−ProjCi(P0)‖ ≤ ‖P0−P ∗‖,

‖ProjC1
(P0)− ProjC2

(P0)‖ ≤∑2
i=1 ‖P0 − ProjCi(P0)‖.

Plugging Inequality A.6.117 back to Proposition 4.2.1, we have

‖P t − P ∗‖2 ≤ 1

2βt
(7β2 + max{4, 8C(C1, C2)}+

20

3

β4

(β + 1)2
)‖P0 − P ∗‖2

≤ 1

2βt
(7β2 + 4d1d2 +

20

3

β4

(β + 1)2
)‖P0 − P ∗‖2.

(A.6.118)
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A.6.11. Proof of Theorem 4.3.2

First, we will show that for t ≥ t0, δ0 ≤ min{u0, 1}.

We prove this by mathematical induction. For X0, X0 ∈ C1 ∩ C2, therefore δ0 ≤ u0 holds

for k=0. One thing to note is that Lα+u0 ≤ 2Lα, L̃α+u0 ≤ 2L̃α. Also, recall that η = 1
2L̃α

.

Suppose delta0 ≤ min{u0, 1} holds for k ≤ H, then for k = H + 1, we have

‖Xk − η∇f(Xk)− ProxC1∩C2(Xk)‖ ≤ ‖Xk − ProxC1∩C2(Xk)‖+ |η∇f(Xk)|

≤ u0 +
1

2L̃α
2Lα.

(A.6.119)

Therefore,

‖Xk − η∇f(Xk)− ProxC1∩C2(Xk − η∇f(Xk))‖ ≤ u0 +
Lα

L̃α
. (A.6.120)

According to Proposition 4.3.2, for

t ≥ 1

2β

(
7β2 + 4d1d2 +

20

3

β4

(β + 1)2

)
(1 +

Lα

u0L̃α
+
Lα

L̃α
)2,

we have

‖Xk+1 − ProxC1∩C2(Xk+0.5)‖2 ≤ min{u2
0, 1}. (A.6.121)

So δ0 ≤ {u0, 1} also holds for k = H + 1.

Therefore, δ0 ≤ {u0, 1} for all k. So the Lipschitz constant Lf ≤ 2Lα, and the smooth

parameter L ≤ 2L̃α for the objective function on u0 neighbor of C1 ∩ C2.

Further, we have,

δ0 ≤
√

1

t

√
1

2β

(
7β2 + 4d1d2 +

20

3

β4

(β + 1)2

)
. (A.6.122)
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According to Proposition 4.3.1, we have

δ ≤ α2L̃αd1d2

T
+ 4αL̃α

√
d1d2

√
1

t

√
1

2β

(
7β2 + 4d1d2 +

20

3

β4

(β + 1)2

)

+ 2Lα

√
1

t

√
1

2β

(
7β2 + 4d1d2 +

20

3

β4

(β + 1)2

)
+ 2L̃α

1

t

1

2β

(
7β2 + 4d1d2 +

20

3

β4

(β + 1)2

)
.

(A.6.123)

A.6.12. Proof of Proposition 4.4.1

To apply Proposition 4.2.1 to causal inference for panel data, we only need to find the

L,Lf , Lg, D and a bound for ‖X0 −X∗‖ in Proposition 4.2.1 in causal inference for panel

data.

Since C1 = [−Lmax, Lmax]N×T , we have D = 2Lmax

√
NT .

Since g(L) = λ|O|
2 |L|, we have ‖∂g‖ ≤ λ|O|

2

√
min{N,T}.

Since f(L) = 1
2‖PO(YL)‖2F , we have the smooth parameter L ≤ 1, the Lipschitz constant

Lf ≤ maxL∈C1 ‖Y − L‖F .

Also, we have ‖L0 − L̂‖ ≤ Lmax

√
NT . Recall that η = 1.

Plugging in the quantities into Proposition 4.2.1, we have

min
0≤k≤K

1

2
‖PO(Y − Lk)‖2F +

λ|O|
2
‖Lk‖∗ ≤

1

2
‖PO(Y − L̂)‖2F +

λ|O|
2
‖L̂‖∗

+
1

2K
‖L0 − L̂‖2 +

(
λ|O|

2

√
min{N,T}+ max

L∈C1

‖PO(Y − L)‖F
)
δ0

+ δ2
0 + 2Lmax

√
NTδ0.

(A.6.124)
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A.6.13. Proof of Proposition 4.4.2

We continue with bounding the terms in right hand side of Inequality (4.2.13) in Proposition

4.2.1. Recall the steps we take in Algorithm 4.4.11, we have

‖Z1 − Z∗‖ = ‖thresh(P0,
λ|O|
β

)− P ∗‖ ≤ ‖P0 − P ∗‖+
λ|O|
β

√
min{N,T},

‖P 1 − P ∗‖ ≤ ‖P0 − P ∗‖+ ‖P 1 − P0‖,

‖Λ1 −Λ∗‖2 ≤ 2
(
‖Λ1

1‖2 + ‖Λ1
2‖2 + ‖Λ∗1‖2 + ‖Λ∗2‖2

)
≤ 2(

β

1 + β
)2

(∥∥∥∥P0 − ProjC1
(P0) +

β

2

(
thresh(P0,

λ|O|
β

)− ProjC1
(P0)

)∥∥∥∥2

+

∥∥∥∥P0 − thresh(P0,
λ|O|
β

)− β

2

(
thresh(P0,

λ|O|
β

)− ProjC1
(P0)

)∥∥∥∥2
)

+ 2‖Λ∗1‖+ 2‖Λ∗2‖,

‖P 1 − P0‖ =

∥∥∥∥ β

2(β + 1)

(
ProjC1

(P0)− P0 + thresh(P0,
λ|O|
β

)− P0

)∥∥∥∥
≤ β

2(β + 1)
‖ProjC1

(P0)− P0‖+
β

2(β + 1)

λ|O|
β

√
min{N,T}.

(A.6.125)

We continue with bounding the two terms in the right hand side for ‖Λ1 −Λ∗‖2. We start

with the first term.

435



∥∥∥∥P0 − ProjC1
(P0) +

β

2

(
thresh(P0,

λ|O|
β

)− ProjC1
(P0)

)∥∥∥∥2

+

∥∥∥∥P0 − thresh(P0,
λ|O|
β

)− β

2

(
thresh(P0,

λ|O|
β

)− ProjC1
(P0)

)∥∥∥∥2

= ‖P0 − ProjC1
(P0)‖2 + ‖P0 − thresh(P0,

λ|O|
β

)‖2

+ (β +
β2

2
)‖thresh(P0,

λ|O|
β

)− ProjC1
(P0)‖2

≤ (1 + β)2

(
‖P0 − ProjC1

(P0)‖2 + ‖P0 − thresh(P0,
λ|O|
β

)‖2
)

≤ (1 + β)2

(
‖P0 − ProjC1

(P0)‖2 + min{N,T}(λ|O|
β

)2

)
.

(A.6.126)

We proceed with bounding ‖Λ∗1‖2 + ‖Λ∗2‖2.

According to Equation (A.6.109), we have

‖Λ∗1‖2 + ‖Λ∗2‖2 = ‖2(P ∗ − P0)− Λ∗2‖2 + ‖Λ∗2‖2

≤ 8‖P ∗ − P0‖2 + 3‖Λ∗2‖2.
(A.6.127)

Taking derivative with respect to Z for function U(W,Z, P ) at point (W ∗, Z∗, P ∗), we have

0 =
∂U(W,Z, P )

∂Z

∣∣∣∣
W=W ∗,Z=Z∗,P=P ∗

= ∂h2(Z∗) + Λ∗2. (A.6.128)

Observe that ∂h2(Z∗) ≤ λ|O|
√

min{N,T}, continuing with Inequality (A.6.127), we have

‖Λ∗1‖2 + ‖Λ∗2‖2 ≤ 8‖P ∗ − P0‖2 + 3(λ|O|)2 min{N,T}. (A.6.129)

Putting together Inequalities (A.6.125), (A.6.126), (A.6.129), together with Proposition
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4.2.1, we have

‖P k − P ∗‖2

≤ 1

2βk

(
2β2‖P0 − P ∗‖2 + 2(λ|O|)2 min{N,T}+ 4β2‖P0 − P ∗‖2+

4β2‖P 1 − P0‖2 + 2β2‖P0 − ProjC1
(P0)‖2 + 2 min{N,T} (λ|O|)2

+ 16‖P ∗ − P0‖2 + 6(λ|O|)2 min{N,T}+
20

3
β2‖P 1 − P0‖2

)

≤ 1

2βk

(
(6β2 + 16)‖P0 − P ∗‖2 +

(
10 + (2 +

10

3
)(

β

1 + β
)2

)
(λ|O|)2 min{N,T}

+

(
2β2 + (2 +

10

3
)

(
β2

1 + β

)2
)
‖P0 − ProjC1

(P0)‖2
)

=
1

βk

(
(3β2 + 8)‖P0 − P ∗‖2 +

(
5 +

8

3
(

β

1 + β
)2

)
(λ|O|)2 min{N,T}

+

(
β2 +

8

3
(
β2

1 + β
)2

)
‖P0 − ProjC1

(P0)‖2
)
.

(A.6.130)

A.6.14. Proof of Theorem 4.4.2

Suppose infL∈C1 ‖Lj − L‖ ≤ δ0 for j ≤ k, where k ≥ 0.

Recall that

Lk+0.5 = Lk + PO(Y − Lk), (A.6.131)

we have

‖ProjC1
(Lk+0.5)− Lk+0.5‖2 ≤ ‖ProjC1

(Lk)− Lk+0.5‖2 ≤ (C(Y ) + δ0)2 ≤ 2C(Y )2 + 2δ2
0 .

(A.6.132)
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Recalling that Proxλ|O|
2
‖L‖∗+T{L∈C1}(Lk+0.5) is defined as

arg min
L

‖L− Lk+0.5‖2 + λ|O|‖L‖∗ + T{L ∈ C1}, (A.6.133)

we have

‖Prox(Lk+0.5)− Lk+0.5‖2 + λ|O|‖Prox(Lk+0.5)‖∗ + T{Prox(Lk+0.5) ∈ C1}

≤ ‖0− Lk+0.5‖2 + λ|O|‖0‖∗ + T{0 ∈ C1} = ‖Lk+0.5‖2

≤ ‖Y ‖22 + (
√
NT − |O|Lmax + δ0)2.

(A.6.134)

Combing Proposition 4.4.1 and Proposition 4.4.2, we have for β ≤ 6
17 , then

‖Lk+1 − Prox(Lk+0.5)‖2 ≤ 1

βk

(
(3β2 + 8)

(
‖Y ‖22 + (

√
NT − |O|Lmax + δ0)2

)
+

(
5 +

8

3
(

β

1 + β
)2

)
(λ|O|)2 min{N,T}

+

(
β2 +

8

3
(
β2

1 + β
)2

)
(2C(Y )2 + 2δ2

0)

)

≤ 1

k

(
δ2

0

(
1

β

(
6β2 + 16 + 2β2 +

16

3
(
β2

1 + β
)2

))
+

1

β
(3β2 + 8)

(
‖Y ‖2 + 2(NT − |O|)L2

max

)
+

1

β

(
5 +

8

3
(

β

1 + β
)2

)
(λ|O|)2 min{N,T}+

β

(
2 +

16

3
(

β

1 + β
)2

)
C(Y )2

)
.

(A.6.135)
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Let

q0(β) =

(
1

β

(
6β2 + 16 + 2β2 +

16

3
(
β2

1 + β
)2

))
,

q1(β) =
1

β

(
5 +

8

3
(

β

1 + β
)2

)
,

q2(β) = β

(
2 +

16

3
(

β

1 + β
)2

)
,

q3(β) =
1

β
(3β2 + 8),

δ(k) =

√
q1(β)(λ|O|)2 min{N,T}+ q2(β)C(Y )2 + q3(β) (‖Y ‖2 + 2(NT − |O|)L2

max)

k − q0(β)

(A.6.136)

We show next that when k ≥ q0(β), infL∈C1 ‖Lk −L‖ ≤ δ(k) and ‖Lk+1−Prox(Lk+0.5)‖ ≤

δ(k) for all k ≥ 0. For k = 0, L0 ∈ C1, the first part claim holds. Suppose the first part of

claim holds for k ≤ k0, where k0 ≥ 0, then for k = k0 + 1,

‖Lk0+1 − Prox(Lk0+0.5)‖2

≤ 1

k

(
δ(k)2q0(β) + q1(β)(λ|O|)2 min{N,T}+ q2(β)C(Y )2

+ q3(β)
(
‖Y ‖2 + 2(NT − |O|)L2

max

))

= δ(k)2.

(A.6.137)

Since Prox(Lk0+0.5) ∈ C1, the first part of claim holds for k = k0 + 1. So the first part of

the holds for all k ≥ 0. Since Inequality A.6.137 is based on ‖Lk0 −ProjC1
(Lk0)‖ ≤ δ(k), it

holds for all k0 ≥ 0.

Therefore, for k ≥ q0(β), we have δ0 ≤ δ(k). Therefore, we know that δ1 ≤ δ(k).
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Now we proceed with bounding δ. According to Proposition 4.4.1, we have

δ ≤ 2

|O|

(
1

2K
‖L0 − L̂‖2 + δ(k)2 +

(
2Lmax

√
NT + C(Y ) + min{

√
N,
√
T}λ|O|

2

)
δ(k)

)
≤ NTL2

max

K|O| +
2δ(k)2

|O| +

(
4Lmax

√
NT

|O| +
2C(Y )

|O| + min{
√
N,
√
T}λ

)
δ(k).

(A.6.138)

This finishes the proof.

A.6.15. Proof of Theorem 4.5.1

Recall that we use ρ2(Σ) to denote the maximum diagonal entry of the covariance matrix

Σ.

It suffices to prove the following two results

Proposition A.6.2. Under the linear regression model (4.5.1), for any sparse index set S

such that the cardinal of S, |S| = s, denote θ∗Sc to be the vector keeping elements not in S

the same and setting those in S to be 0. Suppose c1κ ≥ 64s · c2ρ
2(Σ) log d

n , where c1, c2 are

constants and can be taken as c1 = 1/8, c2 = 50, and κ is the smallest singular value of Σ.

For λn ≥ 2‖XTw‖∞
n , θ̃ satisfying (4.5.3) has the following property

P (‖∆‖2 <
δ

2λn
√
s

+
‖θ∗Sc‖1√

s
+ (2 + 4

√
s+

1√
s

)
λn
c1κ

) ≥ 1− exp (−n/32)

1− exp (−n/32)
. (A.6.139)

Lemma A.6.7. For the random matrix X ∈ Rn×d, in which each row xi is drawn i.i.d.

from a N(0,Σ) distribution, its columns x̃k satisfies the following with probability at least

1− exp (− n
4ρ2(Σ)

ε),

max
1≤k≤d

‖x̃k‖22
n
≤ 2 log 2 · ρ2(Σ) +

4ρ2(Σ)

n
log d+ ε. (A.6.140)

440



For w with wi
i.i.d.∼ N(0, σ2) and w independent with X, we have that

PX,w

(
‖X

Tw

n
‖∞ < 2ρ(Σ)

√
(
log d

n
+ 1)σ

√
2 log (2d)

n
+ µ

)
≥ 1− exp (−n

2
)− exp (−nµ

2
).

(A.6.141)

Proof of Proposition A.6.2

From Inequality (4.5.3), we have

‖y −Xθ̃‖22 + λn‖θ̃‖1 ≤ ‖y −Xθ̂‖22 + λn‖θ̂‖1 + δ ≤ ‖y −Xθ∗‖22 + λn‖θ∗‖1 + δ. (A.6.142)

Denote ∆ = θ̃ − θ∗.

Therefore, we have that

0 ≤ 1

2n
‖X∆‖2 ≤‖X

Tw

n
‖∞‖∆‖1 + λn

(
‖θ∗‖1 − ‖θ̃‖1

)
+ δ

≤λn
2

(
‖∆‖1 + 2‖θ∗‖1 − 2‖θ̃‖1

)
+ δ

≤λn
2

(3‖∆S‖1 + ‖∆Sc‖1 + 2‖θ∗Sc‖1 − 2‖θ∗Sc + ∆Sc‖1) + δ

≤λn
2

(3‖∆S‖1 − ‖∆Sc‖1 + 4‖θ∗Sc‖1) + δ.

(A.6.143)

Therefore, we have

‖∆‖1 = ‖∆S‖1 +‖∆Sc‖1 ≤ 4‖∆S‖1 + 4‖θ∗Sc‖1 +
2δ

λn
≤ 4
√
s‖∆‖2 + 4‖θ∗Sc‖1 +

2δ

λn
. (A.6.144)

On the other hand, according Theorem 7.16 in Wainwright (2019), we have that with

probability at 1− exp (−n/32)
1−exp (−n/32) ,

‖X∆‖22
n

≥ c1‖
√

Σ∆‖22 − c2ρ
2(Σ)

log d

n
‖∆‖21, (A.6.145)

where c1, c2 are absolute constants and can be taken as c1 = 1/8, c2 = 50.
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Note that ‖
√

Σ∆‖22 ≥ κ‖∆‖22, going back to Inequality (A.6.143), we have

c1κ‖∆‖22 ≤c2ρ
2(Σ)

log d

n
‖∆‖21 + λn(3‖∆S‖1 − ‖∆Sc‖1 + 4‖θ∗Sc‖1) + 2δ

≤c2ρ
2(Σ)

log d

n

(
4
√
s‖∆‖2 + 4‖θ∗Sc‖1 +

2δ

λn

)2

+ λn(3‖∆S‖1 − ‖∆Sc‖1 + 4‖θ∗Sc‖1) + 2δ

≤c1κ

(‖∆‖2
2

+
δ

4λn
√
s

+
‖θ∗Sc‖1
2
√
s

)2

+ λn(3‖∆S‖1 − ‖∆Sc‖1 + 4‖θ∗Sc‖1) + 2δ

≤c1κ

(‖∆‖2
2

+
δ

4λn
√
s

+
‖θ∗Sc‖1
2
√
s

)2

+ λn(3
√
s‖∆‖2 + 4‖θ∗Sc‖1) + 2δ.

(A.6.146)

Solving the Inequality for ‖∆‖2, we have

‖∆‖2 <
δ

2λn
√
s

+
‖θ∗Sc‖1√

s
+ (2 + 4

√
s+

1√
s

)
λn
c1κ

. (A.6.147)

Proof of Lemma A.6.7

Denote νk =
‖x̃k‖22
n .

For n
2ρ2(Σ)

> λ > 0,

E(exp (λmax{νk : 1 ≤ k ≤ d})) ≤
d∑

k=1

E(exp (νkλ)) ≤ d(
1

1− 2λρ2(Σ)
n

)
n
2 . (A.6.148)

Therefore, for ∆ > 0

P (max{νk : 1 ≤ k ≤ d} > ∆) ≤ d(
1

1− 2λρ2(Σ)
n

)
n
2 exp(−λ∆). (A.6.149)
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Take λ = n
4ρ2(Σ)

, and ∆ = 2ρ2(Σ) log 2 + 4ρ2(Σ)
n log d+ ε, we have

P (max{νk : 1 ≤ k ≤ d} > ∆) ≤ exp (− n

4ρ2(Σ)
ε). (A.6.150)

Therefore, the proof of the first statement is concluded.

For the second statement, suppose max{νk : 1 ≤ k ≤ d} ≤ Cν . Then we have for λ > 0,

E

(
exp (λmax{|X̃

T
k w

n
| : 1 ≤ k ≤ d})

)
≤ 2d exp (

λ2

n
C2
νσ

2/2). (A.6.151)

Therefore, for ∆ > 0,

P (‖Xw
n
‖∞ > ∆) ≤ exp (log(2d) +

λ2

n
C2
νσ

2/2− λ∆). (A.6.152)

Take λ = n∆
C2
νσ

2 , we have

P (‖Xw
n
‖∞ > ∆) ≤ exp (log(2d)− n∆2

2C2
νσ

2
). (A.6.153)

Setting

∆ = Cνσ

√
2 log (2d)

n
+ µ, (A.6.154)

and note that Cν ≤
√

4ρ2(Σ) + 4ρ2(Σ) log d
n with probability at least 1− exp(−n

2 ), we have

the statement of second inequality of the lemma.

A.6.16. Proof of Theorem 4.5.2

It’s easy to check that

1

2n
‖y −Xθ‖22 (A.6.155)

is ‖XTX
n ‖s-smooth.
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By Theorem 4.2.1, and take δ0 = 0 gives the result.

A.6.17. Proof of Theorem 4.5.3

It’s easy to see that 1
2n‖Xθ‖22 is ‖X

TX‖s
n −smooth, where ‖ · ‖s denotes the spectral norm.

Denote L = ‖XTX‖s
n .

Note that we have an alternative expression for θk+1 for k ≥ 0:

θk+1 = arg min
θ

1

2n
‖Xθk‖22 + 〈X

TXθk
n

, θ − θk〉+
L

2
‖θ − θk‖22 + λn‖θ‖1. (A.6.156)

For simplicity we define

φk(θ) =
1

2n
‖Xθk‖22 + 〈X

TXθk
n

, θ − θk〉+
L

2
‖θ − θk‖22 + λn‖θ‖1. (A.6.157)

Theorem 10.16 in Beck (2017) gives that

F (θ)− F (θk+1) ≥ L

2
‖θ − θk+1‖22 −

L

2
‖θ − θk‖22 +D(θ, θk), (A.6.158)

where

D(θ, θk) =
1

2n
‖Xθ‖22 −

1

2n
‖Xθk‖22 − 〈

XTXθk
n

, θ − θk〉. (A.6.159)

Taking θ = θk gives

F (θk) ≥ F (θk+1) +
L

2
‖θk − θk+1‖22. (A.6.160)

Taking θ = θ∗ gives

F (θ∗)− F (θk+1) ≥ L

2
‖θ∗ − θk+1‖22 −

L

2
‖θ∗ − θk‖22 +D(θ∗, θk). (A.6.161)
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Adding up the inequality from 1 to k + 1 gives

L

2
‖θ∗‖22 ≥

k+1∑
j=1

F (θj)− F (θ∗) ≥ (k + 1)(F (θk+1)− F (θ∗)). (A.6.162)

Taking θ = θ̂, gives

F (θ̂)− F (θk+1) ≥ L

2
‖θ̂ − θk+1‖22 −

L

2
‖θ̂ − θk‖22 +D(θ̂, θk). (A.6.163)

Adding up the inequality from 1 to k + 1 gives

F (θk+1)− F (θ̂) ≤ 1

k + 1

L

2
‖θ̂‖22. (A.6.164)

This gives the second statement of the theorem.

Recalling Inequality (A.6.143), we have that

0 ≤ 3‖ (θk − θ∗)S ‖1 − ‖ (θk − θ∗)Sc ‖1 + 4‖θ∗Sc‖1 +
2(F (θk)− F (θ∗))

λn
. (A.6.165)

This gives

‖θk − θ∗‖1 ≤ 4
√
s‖θk − θ∗‖2 + 4‖θ∗Sc‖1 +

2(F (θk)− F (θ∗))
λn

. (A.6.166)

Therefore

‖θ̂−θk‖1 ≤ ‖θk−θ∗‖1+‖θ̂−θ∗‖1 ≤ 4
√
s‖θ̂−θk‖2+8

√
s‖θ̂−θ∗‖2+8‖θ∗Sc‖1+

2(F (θk)− F (θ∗))
λn

.

(A.6.167)

445



Recall the definition of φk(θ) in Equation (A.6.157). For 0 < α < 1, we have

F (θk+1) ≤ φk(θk+1) ≤ φk(αθ̂ + (1− α)θk)

≤ 1

2n
‖Xθk‖22 + α〈X

TXθk
n

, θ̂ − θk〉+
Lα2

2
‖θ̂ − θk‖22 + αλn‖θ̂‖1 + (1− α)λn‖θk‖1

≤ αF (θ̂) + (1− α)F (θk) +
Lα2

2
‖θk − θ̂‖22.

(A.6.168)

Now we will bound ‖θk − θ̂‖22.

Note that θ̂ is the minimizer of F (θ), we have

F (θk)− F (θ̂)

= F (θk)− F (θ̂)− 〈∂F (θ̂), θk − θ̂〉 ≥ D(θk, θ̂) ≥
a1

2
‖θ̂ − θk‖22 −

a2

2
‖θ̂ − θk‖21

≥ a1

2
‖θ̂ − θk‖22 −

a2

2

(
4
√
s‖θk − θ̂‖2 + 8

√
s‖θ̂ − θ∗‖2 + 8‖θ∗Sc‖1 +

2(F (θk)− F (θ∗))
λn

)2

+

(A.6.169)

Since a1 ≥ 64s · a2, we have

a1

4
‖θ̂ − θk‖22 ≤ F (θk)− F (θ̂) + a2

(
8
√
s‖θ̂ − θ∗‖2 + 8‖θ∗Sc‖1 +

2(F (θk)− F (θ∗))
λn

)2

+

.

(A.6.170)

Therefore

‖θ̂ − θk‖22 ≤
4

a1

(
F (θk)− F (θ̂)

)
+

4a2

a1
· 128

(√
s‖θ̂ − θ∗‖2 + ‖θ∗Sc‖1

)2

+
32a2

a1

(
F (θk)− F (θ∗)

λn

)2

+

.

(A.6.171)
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Let α = a1
4L in Inequality (A.6.168), we have that

F (θk+1)− F (θ̂) ≤ (1− a1

8L
)
(
F (θk)− F (θ̂)

)
+

a1

4L
· 64a2s ·

(
‖θ̂ − θ∗‖2 +

‖θ∗Sc‖1√
s

)2

+
a1 · 64a2s

64L · s

(
F (θk)− F (θ∗)

λn

)2

+

.

(A.6.172)

From Theorem 4.5.1 we have that

‖θ̂ − θ∗‖2 ≤
‖θ∗Sc‖1√

s
+ (2 + 4

√
s+

1√
s

)
λn
c1κ

. (A.6.173)

Plug in Inequality (A.6.173) into Inequality (A.6.172) and note that F (θk) − F (θ∗) ≤

F (θk)− F (θ̂) ≤ F (θK)− F (θ̂) for K ≤ k gives the statement.
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