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ABSTRACT 

THE EFFECTS OF PLATELET SIGNALING INHIBITORS ON CLOT DEVELOPMENT UNDER 

FLOW 

Yiyuan Zhang 

Scott L. Diamond 

GPVI is the first responder towards collagen surface and therefore, the role of GPVI in 

facilitating primary platelet deposition is well studied and unquestionable. However, whether it 

plays a part in secondary platelet deposition by binding with fibrin, thus facilitating further platelet 

activation remains a question. Depending on the experiment method and rationale behind it, 

different results and conclusion could be achieved, thus it calls for a method that could better 

recapitulate human blood system under in vitro setting with appropriate methods to inhibit GPVI. 

Indirect method incorporates Syk and Src family kinases (SFK) inhibitors; these 

molecules interfere with signaling from GPVI, α2β1, αIIbβ3, and GPIb-IX-V to reduce thrombotic 

risk or induce bleeding episodes. Collagen-mediated clustering of platelet GPVI results in 

phosphorylation of SFKs such as Lyn and Fyn, and active Lyn is constitutively bound to GPVI to 

allow rapid signaling. During clotting under flow, the generation of fibrin can have diverse 

influences on platelet signaling by sequestering thrombin and potentially activating GPVI 

signaling within the clot interior. These inhibitors tackle the thrombus formation at earlier stages 

since the platelets reach the activation surface. Direct inhibition of GPVI, which involves using an 

artificial anti-GPVI fragment, was used to avoid undesirable inhibition and compare the difference 

between inhibition of subsequent pathways.  

Using microfluidics, the effects of these inhibitors can be explored under defined 

hemodynamic flows and procoagulant surface triggers. Additionally, the drug may be present in 

the blood at desired time of clotting by perfusion switching to drug-treated blood. This 

experimental design allows exploration of platelet response at different stages of clotting through 

the measurement of drug potency to modulate clotting on different procoagulant surface 

conditions, interactions between various coagulation factors in plasma, and the kinetics of several 

competitive reactions to facilitate platelet recruitment, granule release and fibrin formation. 
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CHAPTER 1 – INTRODUCTION 

1.1 Thrombosis and Hemostasis 

Depending on the nature of a clot building up in the blood vessel, the process of the clot 

formation could be defined as thrombosis and hemostasis. Thrombosis occurs when blockage of 

vessel is caused by pathological reasons, such as rupture of an atherosclerotic plaque or intima 

erosion under arterial flow, or valve stasis in venous valve pocket (1). Further development of 

such conditions could lead to severe diseases such as stroke, coronary artery diseases, heart 

disease and related conditions, which are the leading causes of death around the world (2). A 

diagram of this process is shown in Figure 1-1 (1). 

 
Figure 1-1: Arterial thrombosis formation 
 

Rupture of an atherosclerotic plaque took place (A) and resulted in lipoprotein and leukocyte 
buildup inside the rupture (B), which later developed into a pathological blockage that induced 
attachment of VWF and collagen, forming activating surface for platelet (C) and eventually 
developed into a pathological thrombus plug (D). 
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In contrast, hemostasis is a normal reaction towards blood vessel injury that involves 

interruption of blood flow (3). The blood vessel contains endothelium and subendothelial matrix, 

where endothelium is in contact with blood and the anticoagulant surface maintains the blood flow 

as liquid (3). Once rupture or injury happened that lead to disintegration of endothelium, blood will 

be exposed to the procoagulant surface of subendothelial matrix, thus triggering the subsequent 

coagulation process (4). Primary platelet deposition occurs when the first arriving platelets get 

exposed to and bind activating surface containing collagen and von Willebrand Factor (VWF) (5). 

These platelets get activated, releases secondary agonists including ADP, Thromboxane A2 

(TxA2) and granules which will recruit more platelets in the blood flow and transits into secondary 

platelet deposition, where major interactions involve platelet binding of fibrinogen and crosslinking 

of fibrinogen that forms fibrin under the effect of thrombin (6). Thrombin will also further activate 

platelets on the injury site (7). This process is illustrated in Figure 1-2 (8). 

 
Figure 1-2: Process of hemostasis 
 

When injury happens (A), platelets will get attached to the activation surface (B) and get activated, 
releasing agonists to recruit more platelets in the blood flow (C). Once fibrin is polymerized, 
platelets will form a mesh structure and stabilize the blood loss on the injury site (D). 
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1.2 Platelets and the Coagulation Cascade 

 Platelets are anucleate cells generated from megakaryocytes and released into blood 

circulation, which serve as the major participants of coagulation (9). There are many receptors 

that could trigger the activation of platelets when exposed to different agonists, such as collagen, 

VWF, thrombin, ADP, and Thromboxane A2 (10,11). Downstream of these receptors are different 

activation pathways that involves many kinases such as spleen tyrosine kinase (syk), Src family 

kinases (SFK) and protein kinase C (PKC), which will be phosphorylated in different manners and 

regulates calcium ion that drives the process of platelet activation (12). The series of events are 

illustrated in Figure 1-3 (13). 

 

Figure 1-3: Platelet activation and inhibition 
 

Platelets are inhibited under normal conditions, mainly through NO produced from endothelial 
cells. When needed, platelet can be activated by collagen or VWF from injury site through 
outside-in signaling, resulting further activation by ADP, TxA2, and thrombin that triggers calcium 
mobilization which facilitates recruiting and activating other platelets. Then, inside-out signaling 
would take place, triggers granule release and phosphatidylserine (PS) exposure.  
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During this process, platelet will release granules that react with quiescent coagulation 

factors in plasma to convert them into the active form, to recruit other platelets in the blood flow 

and further reinforce the activation process of platelets (13). This series of reaction is referred as 

the coagulation cascade, and depending on the initiation event, it could start from the contact 

activation (intrinsic) pathway and the tissue factor (extrinsic) pathway. The intrinsic pathway is 

triggered by damaged surface, which coverts FXII to FXIIa with HMW kininogen and prekallekerin 

(14). The extrinsic pathway is triggered by trauma, that involves exposure of FVII to tissue factor 

and conversion to FVIIa (15). Through a series of conversion of coagulating factors, these two 

pathways will eventually undergo the common pathway, which involves conversion of FX and FV 

to their respective active forms and formation of a complex of FXa, FVa and platelet 

phospholipids that lead to the conversion of prothrombin (FII) to thrombin (IIa) (16). Thrombin 

facilitates the cleavage of fibrinogen (FI) and crosslinking to form fibrin (FIa) meshes (6,17). 

Thrombin also further amplifies the extent of platelet activation by converting FXI, FV and FXIII to 

their respective active forms (10), showing its critical role in hemostasis and thrombus formation.  

 

Figure 1-4: Coagulation cascade 

Damaged surface and trauma could trigger activation of coagulation factors in different ways, but 
both leads to formation of Xa-Va complex that converts prothrombin (II) to thrombin (IIa), which 
plays a part in cleaving fibrinogen to form fibrin polymer and further activates platelets. 
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1.3 Role of GPVI, Primary Platelet Deposition and Secondary Platelet Deposition 

Among all receptors on the surface of platelets, Glycoprotein VI (GPVI) is the first one 

that responds to exposure of collagen (18,19). Along with GPIb-V-IX complex that responds to 

VWF upon first exposure, these two receptors will trigger outside-in signaling within platelet 

through phosphorylation and calcium mobilization to achieve platelet activation and granule 

release (10,20). Up till this point, most of the interaction happens between platelets and activation 

surface, and this process is called primary platelet deposition.  

Subsequently, through outside-in signaling, α2βI
 is converted to its high affinity form to 

bind with collagen to further anchor the platelet under flow (10), while αIIbβ3 is converted to their 

high affinity form and bind with fibrinogen to attract other platelets (10,21). Granules released 

from first arriving platelets will trigger thrombin generation through the complex of FXa, FVa and 

platelet phospholipids (16); this will facilitate fibrin crosslinking and reinforce platelet activation 

through PAR1 and PAR4 (22). TXA2 and ADP generated through granule release will further 

activate platelet through TP, P2Y1 and P2Y12 receptors (22–24). This process is called secondary 

platelet deposition, for most of the interactions of platelet involves further recruitment of platelets 

to the injury site (25). 

However, there is no clear conclusion whether fibrin is an agonist of GPVI. Studies have 

proved that fibrin could act as an activator on GPVI with washed platelets (26,27), but previous 

studies also showed that fibrin dimer acts as an antagonist of platelet coagulation (28). Neither 

study was done under the effects of flow with whole blood, thus a more wholistic method that 

involves human whole blood in a microfluidics context is required to provide another angle for this 

controversy.  

1.4 Microfluidics and “Perfusion-Switch” Assay 

To facilitate the in vitro experiments with human whole blood under a flow setting to 

recapitulate a bleeding model in human body, we used our previously developed 8-channel 

microfluidic device (29). A pre-coated collagen strip on treated glass slide will serve as the 

activating surface and depending on the need to observe fibrin formation under thrombin, 

collagen strip will be incubated with tissue factor for 30 mins before the experiment (5). The flow 
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rate could be controlled by the syringe pump to recapitulate venous (100~200 s-1) or arterial 

(>500 s-1) wall shear rate (30,31). 

 

Figure 1-5: General workflow of 8-channel microfluidics experiments 

Surface patterning could include tissue factor by incubating with collagen for 30 mins for fibrin 
formation. Eight wells could load collected whole blood treated with different compounds and ran 
independent experiments at the same time. Blood switch could happen at wells upstream. 
 

 

Figure 1-6: “Perfusion-switch” assay layout 

Three streams are involved: control, condition with inhibitor, and “switch” streams that has control 
blood for the first 90 seconds of experiment, then switched to condition blood. 

 

To achieve effective GPVI inhibition during secondary platelet deposition, we introduced 

the “perfusion-switch” assay. The assay includes three conditions: control (no compound added), 

condition (compound added at the beginning of the experiment), and “switched” streams where 

control blood will be flowed for the first 90 seconds to achieve sufficient primary platelet 

deposition (switch time obtained through experiments), then switch to inhibited blood (condition) 

instantly by draining and refilling the upstream wells (32). This way, a thin layer of normal 

platelets is coated on the activating surface, but subsequent clot development is achieved by 

GPVI-inhibited whole blood, allowing us to study the interaction between GPVI and fibrin. 
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Figure 1-7: Graphic illustration of perfusion switch experiment using GPVI inhibited blood 

Control whole blood with normal platelets shows normal clot buildup (A), while inhibited whole 
blood shows clot formation with GPVI inhibition during primary and secondary deposition (B). 
Switched stream shows normal primary deposition, then switched to GPVI inhibited whole blood 
to illustrate differences in clot development during secondary deposition only, thus testify the 
interaction between fibrin and GPVI. 

 

1.5 GPVI Inhibitors: Dasatinib, GS-9973, and Anti-GPVI Fab 

There are two ways to achieve GPVI inhibition: indirect inhibition that is achieved by 

inhibiting key kinases downstream of GPVI activation pathway, or direct inhibition using selective 

antibodies. Indirect inhibition of GPVI involves Src family kinase (SFK) inhibition and spleen 

tyrosine kinase (syk) inhibition.  

Dasatinib, as a compound frequently used for treating Philadelphia leukemia, was 

observed to have a bleeding side among patients (33,34).  It is later proven to be a very potent 

SFK inhibitor that acts on several SFKs including Src, Lyn, and Fyn, which are directly 

downstream of GPVI (), thus achieving inhibition of GPVI-activation pathway. Downstream of Lyn 

A 

B 

C 
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and Fyn through immunoreceptor tyrosine-based activation motif (ITAM), syk gets 

phosphorylated and subsequently, triggers further platelet activation and calcium mobilization 

(35). GS-9973 (Entospletinib) is a newly discovered molecule that selectively inhibits syk, with a 

better permeability that requires around five minutes of incubation time for total inhibition (36,37). 

With dasatinib and GS-9973, SFK and syk could be inhibited respectively, and their role in GPVI-

inhibition in primary and secondary platelet deposition could be studied through clot formation 

under microfluidics. 

Direct inhibition will require a specific binding antibody on GPVI which will allow total 

inhibition of GPVI-activation pathway while avoiding undesired inhibition on activation pathways 

corresponding to other platelet receptors, such as α2βI, αIIbβ3, PAR1 and PAR4 (32,38). However, 

a specific antibody is difficult to come by, so in collaboration with Nieswandt research group from 

University of Würzburg, we obtained some novel anti-GPVI Fab (the Fab fragment of human 

GPVI blocking antibody (clone E12)) developed in their group to study the effect of direct 

inhibition of GPVI and its role in GPVI inhibition for primary and secondary platelet deposition 

through clot formation under microfluidics. These results will be discussed in the next chapters in 

detail. 

 
Figure 1-8: Activation pathway downstream of GPVI 

Relative location of SFK and syk downstream of GPVI, and their respective inhibitors, dasatinib 
and GS-9973. 
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CHAPTER 2 – ACHIEVING GPVI INHIBITION THROUGH DASATINIB AND GS-9973, AND 

THEIR ROLES ON DIFFERENT STAGES OF CLOT GROWTH 

2.1 Introduction: Using dasatinib and GS-9973 to inhibit GPVI signaling pathway at 

different stages of platelet deposition and observation of subsequent clot growth 

Dasatinib is a commonly used kinase inhibitor for imatinib-resistant Philadelphia 

chromosome-positive leukemias (39), chronic myelogenous leukemia (CML) and acute 

lymphoblastic leukemia (ALL) (33,40) due to its inhibition of BCR-Abl tyrosine kinase and Src 

family kinases such as Lyn, Fyn and Src (34). GS-9973 (entospletinib) is another drug targeting 

Syk for the treatment of various cancers, including diffuse large B cell lymphoma (DLBCL), 

mantle cell lymphoma (MCL), and non-Hodgkin lymphoma (NHL) (41). Fostamatinib (42), the 

prodrug of R-406 (tamatinib) (43), as inhibits Syk (42,44,45). However, along with their efficacy in 

treating various cancers, side effects of Syk or SFK targeting include bleeding (46). Recent 

research shows that these coagulation risks are caused by the inhibition effects on Syk/Src within 

platelets that are linked to platelet inhibition (46), and reduced platelet activation mediated by 

FcγRIIA (47). Alternatively, certain kinase inhibitors may have utility as antithrombotic agents 

(48,49). For example, a Syk inhibitor could interfere with signaling from GPVI (50), a2b1, aIIbb3, 

and potentially GPIb-IX-V to reduce thrombotic risk (51). 

Platelets can become activated through diverse receptors, depending on the 

procoagulant surface, the platelet location in the clot, and the elapsed time since the start of the 

clotting event. For example, the earliest arriving platelets may immediately encounter collagen 

and thrombin at the triggering surface of clotting. Platelets arriving later may encounter other clot-

adherent platelets, fibrin, and diffusible agonists such as ADP and thromboxane, but have no 

physical contact with collagen. The core-shell architecture of clots is emblematic of this 

spatiotemporal heterogeneity of receptor engagement as seen in assays of mouse laser injury 

(21) or microfluidic human blood clotting (17). Similarly, pharmacological agents may engage 

platelet targets at distinct locations or temporal stages of clotting. 

Collagen-mediated clustering of platelet GPVI results in phosphorylation of Src family 

kinases (SFKs) such as Lyn and Fyn (35). Also, active Lyn is constitutively bound to GPVI to 
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allow for rapid signaling (52). Lyn phosphorylation of ITAM domains of FcRg drives spleen 

tyrosine kinase (Syk) binding and phosphorylation at Tyr352 (35). Downstream of GPVI activation, 

phosphorylated Syk (Syk-pY352) drives activation of phospholipase Cg2 (PLCg2) and sustained 

calcium mobilization (53). With fibrinogen binding to activated platelets, outside-in signaling 

through aIIbb3 results in Src phosphorylation (Src-pY418), ultimately resulting in the generation of 

phospho-Syk and PLCg2 activation. Thrombin activation of protease activated receptors, PAR-1 

and PAR-4, drives Gaq activation of PLCb and transient calcium mobilization. During clotting 

under flow, the generation of fibrin can have diverse influences on platelet signaling by (i) 

sequestering thrombin (54,55) and potentially (ii) activating GPVI signaling within the clot interior 

(27,56,57). 

Using microfluidics, the bleeding side effects of drugs can be explored under defined 

hemodynamic flow, defined procoagulant surface triggers, and in human blood. Additionally, the 

drug may be present in the blood from the start of the clotting event or can be added acutely at a 

later time by perfusion switching to drug-treated blood. This “perfusion-switch” experimental 

design allows exploration of platelet signaling at different stages of clotting through the 

measurement of kinase inhibitor potency to modulate clotting on different procoagulant surface 

conditions. 

2.2 Materials and Methods 

2.2.1 Materials 

Reagents were obtained as follows: anti-human CD61 antibody (BD Biosciences, San 

Jose, CA. Cat#: 555754), Alexa Fluor 647–conjugated human fibrinogen (Life Technologies, 

Grand Island, NY. Cat#: F35200), Alexa Fluor 488 phospho-Src (Tyr418) polyclonal antibody 

(ThermoFisher Scientific, Waltham, MA. Cat#: 44-660A1), Dade Innovin prothrombin time (PT) 

reagent (Siemens, Malvern, PA. Cat#: B4212-40), collagen (type I; Chrono-Log, Havertown, PA. 

Cat#: 385), Sigmacote® (Millipore Sigma, Burlington, MA. Cat#: SL2-100ML), H-Gly-Pro-Arg-Pro-

OH (GPRP; Millipore Sigma, Burlington, MA. Cat#: 03-34-0001), dasatinib (Selleckchem, 

Houston, TX. Cat#: S1021), GS-9973 (entospletinib) (Selleckchem, Houston, TX. Cat#: S7523), 

Alexa Fluor 488-conjugated annexin V (ThermoFisher Scientific, Waltham, MA. Cat#: A13201), 
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GR144053 (Tocris Biosciences, Bristol, UK. Cat#: 1263), Phe-Pro-Arg-chloromethylketone 

(PPACK, Haematologic Technologies, Essex Junction, VT. Cat#: FPRCK-01) and corn trypsin 

inhibitor (CTI, Haematologic Technologies, Essex Junction, VT. Cat#: CTI-01). 

2.2.2 Preparation and characterization of collagen/TF surface 

Glass slides were rinsed with ethanol, then deionized water, and dried with filtered air. 

Sigmacote® was used to create a hydrophobic surface on the glass. A volume of 5µL of fibrillar 

collagen was perfused through a patterning channel (250 µm wide × 60 µm high) of a microfluidic 

device to create a single 250 mm-wide stripe of fibrillar collagen for all experiments, as previously 

described (29,30). For experiments without thrombin interaction, collagen was rinsed and blocked 

with 20 mL 0.5% bovine serum albumin buffer (BSA). For experiments that study the effect of 

thrombin, lipidated TF was sorbed to the collagen surface by perfusing of 5 µL of Dade Innovin 

PT reagent (20 nM stock concentration), rinsed and blocked with 20 mL 0.5% BSA, then 

incubated for 30 min without flow, as previously described (29,30). 

2.2.3 Blood collection and preparation 

Blood was obtained via venipuncture into a syringe containing either PPACK (1:100 v/v; 

final concentration of 100 µmol/L) or high concentration of CTI (40 mg/mL) from healthy donors 

who self-reported as free of alcohol use for at least 72 hr and medication for at least a week prior 

to blood collection. All donors provided informed consent under approval of the University of 

Pennsylvania Institutional Review Board. Blood was treated with anti-human CD61 antibody 

(stock concentration, 1:50 v/v [%] in whole blood) and Alexa Fluor 647-conjugated human 

fibrinogen (1 mg/mL stock solution, 1:80 v/v [%] in whole blood) immediately after blood collection 

for platelet labelling and fibrin labeling, respectively. While CD61 can bind both platelets and 

white blood cells, the platelet deposits made on collagen/TF under flow contain essentially no 

white blood cells until substantially later times.  Even at low resolution, white blood cell staining 

would be morphologically detected if it were present. Annexin V (stock concentration, 1:80 v/v [%] 

in whole blood) was added for phosphatidylserine labeling when needed. Dasatinib was dissolved 

in DMSO and diluted in Millipore water, the final concentration was 10 µM (58) (DMSO < 0.1% v/v) 

after addition to whole blood. The final concentration of DMSO in perfused blood was < 0.1% by 
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vol.  In control experiments, no effect of DMSO at 0.1 % was detected on platelet or fibrin under 

flow.  Additionally, platelet function was essentially unaltered even at 1% DMSO by vol/ (3 donors, 

10 clots per condition) (Supp. Fig. S2-5). GPRP was dissolved in Millipore water and the final 

concentration in whole blood was 5 mM. GR144053 (final concentration, 1 µM) was added to 

block α2bβ3 function for forming monolayer of clots. All experiments were initiated within 5 min 

after phlebotomy. GS-9973 was dissolved in DMSO and the final concentration was 10 µM after 

addition to whole blood.  

2.2.4 Microfluidic clotting assay on collagen surfaces with or without TF 

An 8-channel polydimethylsiloxane (PDMS) flow device was vacuum-mounted 

perpendicularly to collagen/TF surfaces forming 8 parallel-spaced prothrombotic patches (250 × 

250 µm), as previously described (23). Treated blood was perfused across the 8 channels by 

withdrawal through a single outlet. Drug-treated blood was added to the inlet reservoir without 

stopping flow, thus providing a rapid change in perfusion pharmacology within < 15 sec without 

hemodynamics crosstalk between channels during the perfusion switch.  All clotting events were 

initiated simultaneously on the chips. Initial wall shear rate was controlled by a syringe pump 

(Harvard PHD ULTRA; Harvard Apparatus, Holliston, MA) connected to the outlet on the flow 

device. For experiments using whole blood with CTI, thrombi were formed under constant flow 

rate (constant Q) condition (59). Platelet, fibrin and/or phosphatidylserine activities were 

monitored simultaneously by epifluorescence microscopy (IX81; Olympus America Inc., Center 

Valley, PA) at 10× and/or 40× magnification. Each experiment contains three 8-channel devices, 

so in total 6 independent channels/image streams were used for control, 6 channels/images were 

used for dasatinib or GS-9973 at t=0s, and 12 channels/images were used for dasatinib or GS-

9973 switch at t=90s. For each set of experiments (dasatinib/GS-9973 ± GPRP with 

PPACK/HCTI blood), blood samples from N=3 donors were taken, so in total 18 samples have 

been analyzed for control and dasatinib/GS-9973 at t=0s and 36 samples analyzed for 

dasatinib/GS-9973 at t=90s. Additionally, each clot is extremely well localized on the 250 µm x 

250 µm collagen feature and contains tens of thousands of platelets, ideal for obtaining whole clot 

fluorescence intensities (i.e. total clot mass) with time. However, since we image 24 clots 
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simultaneously, high magnification single-cell imaging or morphological analysis was not possible.  

Since we image in real time and under flow conditions, bright field imaging is also more difficult to 

quantify to obtain clot mass since the thickness of the flowing blood above the clot changes with 

time and alters the prevailing background signal for brightfield imaging. Images were captured 

with a charged coupled device camera (Hamamatsu, Bridgewater, NJ) and were analyzed with 

ImageJ software (National Institutes of Health). To avoid side-wall effects, fluorescence values 

were taken only from the central 75% of the channel.  

In some experiments, clots formed under flow conditions were prepared for fixation and 

staining to detect Src in cells. After clotting under flow, a solution of 0.5% BSA was perfused in 

the same manner as whole blood to rinse out blood and then 4% paraformaldehyde was perfused 

and incubated in the channels. Blocking buffer (3% BSA/TBST/0.1% Triton X-100) was then 

perfused and incubated for 30 min before clot staining using phospho-Src (pTyr418) polyclonal 

antibody (1:50 v/v [%] in blocking buffer). Clots were then incubated with phospho-Src antibody 

for 2 hr under room temperature or overnight under 4C. After rinsing excessive antibody with HBS, 

images of clots were then taken by the same microscope and camera at 10× and/or 40× 

magnification and analyzed with ImageJ software.  

2.3 Results 

2.3.1 Dasatinib inhibits platelet deposition on collagen, but is modulated by thrombin 

Using an 8-channel microfluidic device, PPACK-treated whole blood (± dasatinib) was 

perfused over collagen at 200 s-1 wall shear rate. In some channels of the device, perfusion was 

switched after 90 sec of clotting to PPACK-treated blood with dasatinib (10 mM). Dasatinib 

present at the start of perfusion potently limited platelet deposition to a sparse monolayer (Figs. 

2-1A, 2-2A). Switching to dasatinib-treated blood at 90 sec of flow resulted in an immediate 

ablation of subsequent platelet deposition, demonstrating the role of SFKs in both the initial 

platelet activation on collagen as well as later stages of platelet deposition. In this experiment with 

PPACK-treated whole blood and collagen (no TF) that was designed to prevent thrombin 

generation, no fibrin was detected (Fig. 2-2B). See Supp. Fig. S2-1 for dasatinib inhibition of 

phospho-Src staining in a platelet monolayer under thrombin free condition. Clearly, the potency 
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of dasatinib to block platelet accumulation when added at 90 sec was independent of antagonism 

of any signaling driven by either thrombin or fibrin, neither of which were present in the 

experiment. 

A similar perfusion-switch experiment was repeated with CTI-treated blood (± dasatinib) 

perfused over collagen/TF, a condition that robustly generates thrombin and fibrin by engagement 

of the extrinsic pathway. With thrombin generation promoted in the assay, dasatinib present at t = 

0 no longer strongly limited platelet deposition to a monolyer, but instead caused a marked delay 

and attenuation in platelet accumulation (Figs. 2-1B, 2-2C) as well as a striking inhibition of fibrin 

deposition (Figs. 2-1B, 2-2C and D). The inhibition of fibrin formation may indicate that dasatinib 

reduced the procoagulant activity of collagen-bound platelets (to be discussed later). In complete 

contrast, addition of dasatinib by perfusion-switch at 90 sec had no effect on platelet deposition or 

fibrin generation. Clearly, the generation of thrombin and/or fibrin modulated the potency of 

dasatinib (with thrombin being the likely modulator because essentially no fibrin was made with 

dasatinib present initially at t = 0). 

To investigate whether such loss-of-potency behavior was induced by thrombin or fibrin, 

the experiment was repeated with CTI-treated blood with added GPRP to allow thrombin 

generation without fibrin polymerization (Figs. 2-1C, 2-2E and F). As seen in the prior experiment 

with thrombin generation, dasatinib had no effect when added at 90 sec by perfusion switch. As 

expected, GPRP blocked fibrin polymerization in the clot.  

With thrombin generation (± GPRP), dasatinib present at t=0 reduced, but did not limit 

platelet deposition to a monolayer on collagen/TF. However, once primary deposition had 

progressed for 90 sec with full SFK signaling (no dasatinib), the subsequent platelet deposition 

and fibrin generation was completely unaffected by SFK inhibition at 90 sec, implicating the 

dominance of PAR-1/4 signaling in the growing clot after 90 sec relative to SFK-dependent 

signaling. In the absence of dasatinib, blocking fibrin polymerization with GPRP had no effect on 

platelet deposition under flow (Fig. 2-2C vs. 2-2E). Also, see Supp. Fig. S2-2. 
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Figure 2-1: The montage image of microfluidic assay at 0.75, 3.75 and 6.75 minute for 
platelet and fibrin under 10×. 

Whole blood with (A) PPACK, (B) high CTI and (C) high CTI with GPRP were perfused over (A) 
collagen or (B, C) collagen incubated with TF under venous shear rate (200 s-1). The left two 
channels are control conditions, the next two channels are control conditions with dasatinib at t = 
0 sec, and the right four channels are control conditions switched to blood with dasatinib at t = 90 
sec. Direction of blood flow is shown as the arrow. 
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Figure 2-2: The measured intensities for platelet and fibrin as a function of time for whole 
blood with PPACK, high CTI and high CTI with GPRP. 

The experiment conditions are the same as Figure 1. Platelet (A, C, E) and fibrin (B, D, F) 
intensities are measured after imaging for all conditions, respectively. The arrow in each image 
shows the time where switching of blood takes place. 
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2.3.2 The Syk inhibitor GS-9973 inhibited platelet deposition and fibrin generation on collagen 

GPVI signaling results in activation of SFKs that drive Syk phosphorylation. We explored 

the role of direct Syk inhibition using GS-9973 (Kd = 7.6 nM, no other kinase < 100 nM (60)) at 

clot initiation or added at later stages of clot growth using perfusion-switch. For PPACK-treated 

whole blood perfused over collagen (no thrombin/fibrin), GS-9973 present initially caused a 

reduction in platelet deposition (Figs. 2-3A, 2-4A), although clearly not with the potency of 

dasatinib. However, in contrast to dasatinib, a perfusion-switch at 90 sec to GS-9973-treated 

blood resulted in a modest reduction in platelet deposition, indicating a role for Syk at later stages 

of platelet deposition in the absence of thrombin and/or fibrin-driven signaling (Fig. 2-3A, 2-4B). 

Repeating this experiment with CTI-treated blood perfused over collagen/TF, GS-9973 

reduced platelet deposition and fibrin deposition when the drug was present initially (Figs. 2-3B, 

2-4C and D). In contrast to dasatinib, switch to GS-9973-treated blood at 90 sec also reduced 

platelet secondary accumulation without effect on fibrin deposition.  

To investigate the role of thrombin generation without fibrin polymerization, CTI-treated 

blood with added GPRP was perfused over collagen/TF (Figs. 2-3C, 2-4E and F). GS-9973 

reduced platelet deposition when present initiation or when added at 90 sec by perfusion-switch. 

We conclude that the Syk inhibitor GS-9973 reduced platelet deposition by inhibiting Syk 

signaling in both collagen-adherent platelets and subsequently arriving platelets, regardless of the 

presence or absence of either thrombin or fibrin mediated signaling. Again, GPRP to block fibrin 

generation had no inhibitory effect on platelet deposition (as shown in Fig. 2-4C vs. 2-4E). 
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Figure 2-3: The montage image of microfluidic assay at 0.75, 3.75 and 6.75 minute for 
platelet and fibrin under 10×. 

Whole blood with (A) PPACK, (B) high CTI and (C) high CTI with GPRP were perfused over (A) 
collagen or (B, C) collagen incubated with TF under venous shear rate (200 s-1). The left two 
channels are control conditions, the next two channels are control conditions with GS-9973 at t = 
0 sec, and the right four channels are control conditions switched to blood with GS-9973 at t = 90 
sec. Direction of blood flow is shown as the arrow. 
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Figure 2-4: The measured intensities for platelet and fibrin as a function of time for whole 
blood with PPACK, high CTI and high CTI with GPRP. 
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The experiment conditions are the same as Figure 3. Platelet (A, C, E) and fibrin (B, D, F) 
intensities are measured after imaging for all conditions, respectively. The arrow in each image 
shows the time where switching of blood takes place. 

2.3.3 Dasatinib and GS-9973 reduce phosphatidylserine (PS) exposure by collagen adherent 

platelets 

Since thrombin and collagen in combination potently induces PS exposure in platelets, 

CTI-whole blood was perfused over collagen/TF. In some experiments, secondary accumulation 

was blocked with GR144053 to inhibit fibrinogen binding to αIIbβ3. Both dasatinib and GR144053 

reduced deposition to a single sparse monolayer of platelets (Fig. 2-5). GR144053 had only 

moderate effects on PS exposure, while SFK inhibition with dasatinib caused a substantial 

reduction in PS exposure, even on a per-platelet basis (Fig. 2-5F). This could be the source of 

poor fibrin production in the presence of dasatinib as seen in Fig. 2-2D. While GS-9973 was not 

as potent of blocker of platelet deposition compared to dasatinib, GS-9973 did cause a marked 

reduction in PS exposure (Fig. 2-6). 
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Figure 2-5: The intensities of platelet, fibrin and Annexin V for all conditions under venous 
shear rate (200 s-1). 

High CTI blood was perfused over collagen incubated with TF. Dasatinib was added to inhibit Src 
and GR144053 was added to form monolayers. The montage images of clots/monolayers were 
taken for platelet, fibrin and Annexin V at 9.75 minutes under 10× (A), direction of blood flow was 
shown as the arrow. Fluorescent intensities of platelet (B) and Annexin V (C) were plotted over 
9.75 minutes for all conditions. Platelet intensities were inhibited for both presence of dasatinib 
and GR144053, but Annexin V intensity was not inhibited by the presence of GR144053. Bar 
charts of fluorescent intensities of platelet (D) and Annexin V (E) at 9.75 minutes for all conditions 
illustrate the end point comparison; Annexin V signal on per-platelet basis was achieved by 
obtaining the ratio of Annexin V/platelet signal (C); the highest ratio is obtained by monolayer 
without dasatinib, implies that primary platelet deposition is crucial for clot development. 
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Figure 2-6: The intensities of platelet, fibrin and Annexin V for all conditions under venous 
shear rate (200 s-1). 

High CTI blood was perfused over collagen incubated with TF. GS-9973 was added to inhibit Syk 
and GR144053 was added to form monolayers. The montage images of clots/monolayers were 
taken for platelet, fibrin and Annexin V at 9.75 minutes under 10× (A), direction of blood flow was 
shown as the arrow. and fluorescent intensities of platelet (B) and Annexin V (C) were plotted 
over 9.75 minutes for all conditions. Platelet intensities were inhibited for both presence of GS-
9973 and GR144053, but Annexin V intensity was not inhibited by the presence of GR144053. 
Bar charts of fluorescent intensities of platelet (D) and Annexin V (E) at 9.75 minutes for all 
conditions illustrate the end point comparison; Annexin V signal on per-platelet basis was 
achieved by obtaining the ratio of Annexin V/platelet signal (C); the highest ratio is obtained by 
monolayer without GS-9973, implies that primary platelet deposition is crucial for clot 
development. 
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2.4 Discussion   

We used microfluidic assay of human blood to evaluate the potency of kinase inhibitors 

present at the start of clotting or added acutely at 90 sec once clotting was engaged. This novel 

experimental design allowed the interrogation of signaling pathways utilized by the initial platelets 

engaging collagen (± thrombin) relative to the signaling utilized by later arriving platelets (no 

collagen, ± thrombin). The intent was not to mimic therapy, but rather to use inhibitors to explore 

signaling pathways at various times and locations during a clotting event with and without 

thrombin or fibrin.  Prior in vitro work has deployed 10 µM concentration (58). Interestingly, the 

anti-platelet action of high concentration dasatinib was mitigated when thrombin is generated. 

Strong signaling from the Src/SFK is expected in collagen-adherent platelets via GPVI 

activation pathway, but other receptors can also drive SFK activation such as a2b1, aIIbb3, P2Y12, 

and even PAR-4 during clotting (35). In the absence of thrombin, dasatinib strongly limited the 

initial deposition of platelets to a sparse monolayer (Fig. 2-2A). Dasatinib also reduced Src-

phosphorylation in collagen-adherent platelet monolayers (Supp. Fig. S2-1) and blocked platelet 

deposition when added after 90 sec of clotting in the absence of thrombin. However, dasatinib 

had a striking lack of potency when added after 90 sec of clotting in the presence of thrombin 

generation. We conclude that thrombin-driven signaling via Gaq drives platelet activation in a 

manner to substantially bypass SFK inhibition by dasatinib (See Supp. Fig. S2-3 for schematic 

model). For human blood clotting from 0 to 500 sec, there was little evidence of any role for fibrin-

mediated activation of GPVI signaling and SFK signaling: under no conditions did the absence of 

fibrin using GPRP cause a reduction in platelet deposition. Syk inhibition with GS-9973 in the 

absence of thrombin was not as potent as dasatinib. GS-9973 may have more Syk selectivity 

than other small molecule inhibitors (37,61,62).  Interestingly, GS-9973 showed a stronger 

inhibition effect at later stages of clotting than dasatinib, even in the presence of thrombin. Again, 

none of the observations with GS-9973 indicated a substantial role for fibrin-mediated signaling 

through platelet GPVI. We also conducted the same experiments with R-406 with only 2 of 5 

blood samples responding to R-406 (Supp. Fig. S2-4). The cause of donor variation is unknown, 

but suggests the possible utility of platelet testing to gage patient-specific risk to kinase inhibitor. 
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Based on our experiment results, the potency of a kinase inhibitor can depend on both the timing 

of its addition as well as the nature of the triggering surface to generate thrombin. Fibrin has 

substantial anti-thrombin I activity. Blocking fibrin with GPRP may increase local PAR1/4 

signaling, thrombin-bound GPIb-dependent SFK signaling, or thrombin-mediated feedback 

pathways (eg. FXI activation). Our observations with thrombin generation modulating the potency 

of kinase inhibitors on clotting are relevant to both off-target bleeding effects during cancer 

treatment as well as antithrombotic therapy. These observations may bring more insights on the 

mechanisms of excessive bleeding during cancer treatment, so undesired phenomena could be 

better expected and regulated. However, even with fluorescence staining, the true spatiotemporal 

dynamics of Src phosphorylation and dephosphoryaltion remain challenging to quantify within the 

small clots formed under flow using microfluidics. At present, microfluidics does not have the 

molecular resolution expected with western blotting or LCMS phosphoproteomics. 

While dasatinib and other kinase inhibitors are known to reduce GPVI-dependent clot 

growth under flow (47), their effects on late arriving platelets has not been thoroughly studied, 

and also challenging to conduct in in vivo models. For example, inhibitor tests under flow have 

been previously described (63) where blood pretreated with the BCR-abl inhibitor.  The “drug 

perfusion-switch” allowed interrogation of clot progression after the initial platelets already 

engaged in surface-driven signaling.  This novel assay allows an interrogation of a particular 

pathway in late arriving platelets that are not interacting with collagen. 

Further experiment can be done regarding concurrent medication since other BCR-ABL 

inhibitors could be used at the same time with dasatinib, and relative work has been done on 

ponatinib inhibited whole blood under flow (63). Interaction between dasatinib and other BCR-

ABL inhibitors may cause a different form of bleeding episode. Some concerns that the specificity 

of CD61 as platelet marker may not be as good as CD41, since CD61 could bind with cells such 

as leukocytes. However, the cell count of platelets is 40 times higher than that of leukocytes, and 

leukocytes do not bind with collagen. Therefore, all the CD61 signal shown on collagen strip 

could be confidently attributed to platelets. Besides, previous works done on specificity of platelet 

markers (64) mentioned that in practice CD41 and CD61 can be used interchangeably. 
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CHAPTER 3 – ACHIEVING GPVI INHIBITION THROUGH ANTI-GPVI FAB AND ITS ROLES 

ON DIFFERENT STAGES OF CLOT GROWTH1 

3.1 Introduction: Mechanisms of GPVI activation pathway and advantages of novel anti-

GPVI Fab in microfluidic assay 

Glycoprotein VI (GPVI) is a known platelet-specific receptor that binds collagen and 

subsequently activates platelets (27,28). Upon initial vessel injury collagen becomes exposed, 

allowing for GPVI binding and strong signaling in platelets. This interaction between collagen and 

platelets is crucial for primary activation and aggregation (65,66), with GPVI as a mediator for this 

process (18,67). However, recent reports demonstrate that GPVI may bind with other ligands as 

well, such as fibrin (27,56).  Thus, GPVI may have a secondary role in clot formation after 

collagen is covered by platelets, such as mediating platelet recruitment during secondary 

deposition (19) or contributing to clot contraction involving fibrin (68).  

There are a number of different previous studies that have evaluated GPVI-deficiency in 

a number of different contexts: using different anti-GPVI antibodies (4,7,15,38,68,69), indirect 

inhibition of GPVI on human platelets (32,50), in vivo GPVI-deficient mouse models (70,71), in 

vitro models with GPVI-deficient mouse blood (15,27,38,69), models with GPVI-deficient human 

blood (69,72), testing different surface activating materials (68,72), human atherosclerotic plaque 

material (7,68), microfluidic venous valve model (4), among others. Dubois, et. al. showed a 

significant decrease in platelet accumulation for GPVI-deficient mouse platelets compared to WT 

when thrombin is inhibited (70). However, Mangin, et. al. showed that when thrombin is present, 

this decrease in platelet accumulation is abolished, leading to the conclusion that thrombin is able 

to overcome GPVI-deficiency and allow thrombus formation to occur normally (71).  

Recent research has been focused on developing specific inhibitors of GPVI (18). In 

previous studies, inhibition of GPVI was mostly achieved through blocking of kinases in 

subsequent activation pathways, such as inhibition of Src Family Kinases (SFK), spleen tyrosine 

kinase (Syk) and Bruton’s tyrosine kinase (BTK) (7,49,61,73). Some of these inhibitors are 

irreversible, which serves as a “knockout” condition for GPVI. However, this method has its own 

 
1 This is a collaborative work with K. T. Trigani, K. N. Shankar and J. Crossen. 
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limitations. These kinases serve more than one role and function downstream of different platelet 

receptors (35,74). The recent development of direct inhibition of GPVI, mostly led by Watson (61) 

and Nieswandt (66,67), alleviates these concerns. Additionally, evaluation of the effects of GPVI 

inhibition under flow more accurately mimics in vivo dynamics compared to static in vitro assays 

(18). To differentiate the role of GPVI at different stages of clot formation under flow, the inhibition 

of GPVI can be controlled in a microfluidic assay, which is difficult to achieve in vivo and in 

aggregometry assays (50,65). 

 
Figure 3-1: Experiment schematic flow chart. 

Healthy donors self-reported no medication or alcohol use for 48 hours prior to the blood draw. 
Blood was collected and either HBS (control) or 10 μg/mL Anti-GPVI Fab E12 were added, 
followed by a 5-minute incubation. For microfluidic experiments, control blood was loaded into the 
left two wells, followed by Anti-GPVI Fab in the next two wells. The four wells on the right were 
switched streams by flowing over control blood for the first 90 seconds of the experiment, then 
wells were depleted and refilled with blood loaded with Anti-GPVI Fab. Epifluorescence images 
were taken during the experiment to quantify the change of fluorescent intensity over time. 
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Therefore, we aimed to investigate the role of a novel anti-GPVI Fab (the Fab fragment of 

human GPVI blocking antibody (clone E12)) developed by the Nieswandt research group under 

hemodynamic conditions using our microfluidic assay. GPVI interaction with fibrin(ogen) has 

previously been reported to play a role in arterial conditions (68,69). Lehmann, et. al. developed a 

venous thrombosis model with dimensional similarity to venous valves, showing that GPVI is 

essential for platelet activation and subsequent thrombus propagation (4). Thus, GPVI has been 

shown to play significant roles in both arterial and venous thrombus formation (26). However, we 

mostly limited this study to evaluating E12 under venous conditions rather than arterial, as arterial 

shear rates can cause clot heterogeneity and increased embolization in our microfluidic model. 

Studies conducted in this in vitro microfluidic assay have demonstrated that a perfusion-switch 

experimental design (Fig. 3-1) can be used to rapidly change conditions (32), fluids, or shear (75) 

during experiments, and to study the characteristics of clots at different stages of coagulation. We 

also utilized confocal microscopy as well as a fully resolved 3D computer simulation to validate 

our in vitro microfluidic assay results. We found that GPVI plays a role in primary and secondary 

platelet deposition, as well as fibrin polymerization, but this role is modulated/obscured by the 

presence of thrombin generation.  

3.2 Methods 

3.2.1 Materials 

Reagents were obtained as follows: anti-human CD61 antibody (BD Biosciences, San 

Jose, CA. Cat#: 555754), Alexa Fluor 647–conjugated human fibrinogen (Life Technologies, 

Grand Island, NY. Cat#: F35200), Alexa Fluor anti-human CD62P (P-Selectin) Antibody 

(BioLegend, San Diego, CA. Cat#: 304918), Alexa Fluor 546–conjugated human fibrinogen, 

Alexa Fluor 488-conjugated annexin V (ThermoFisher Scientific, Waltham, MA. Cat#: A13201), 

Dade Innovin prothrombin time (PT) reagent (Siemens, Malvern, PA. Cat#: B4212-40), collagen 

(type I; Chrono-Log, Havertown, PA. Cat#: 385), Sigmacote® (Millipore Sigma, Burlington, MA. 

Cat#: SL2-100ML), H-Gly-Pro-Arg-Pro-OH (GPRP; Millipore Sigma, Burlington, MA. Cat#: 03-34-

0001), GR144053 (Tocris Biosciences, Bristol, UK. Cat#: 1263), Phe-Pro-Arg-chloromethylketone 

(PPACK, Haematologic Technologies, Essex Junction, VT. Cat#: FPRCK-01) and corn trypsin 
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inhibitor (CTI, Haematologic Technologies, Essex Junction, VT. Cat#: CTI-01). The Fab fragment 

of human GPVI blocking antibody (clone E12) was generous gift from N. Stefano and Dr. B. 

Nieswandt from University of Würzburg. 

3.2.2 Preparation and characterization of collagen/TF surface  

Glass slides were rinsed with ethanol, then deionized water, and dried with filtered air. 

Sigmacote® was used to create a hydrophobic surface on the glass. A volume of 5µL of fibrillar 

collagen was perfused through a patterning channel (250 µm wide × 60 µm high) of a microfluidic 

device to create a single 250 μm-wide stripe of fibrillar collagen for all experiments, as previously 

described (29,30). For experiments without thrombin interaction, collagen was rinsed and blocked 

with 20 μL 0.5% bovine serum albumin (BSA) buffer. For experiments that study the effect of 

thrombin, lipidated TF was absorbed to the collagen surface by perfusing of 5 µL of Dade Innovin 

PT reagent (20 nM stock concentration), rinsed and blocked with 20 μL 0.5% BSA, then 

incubated for 30 min without flow, as previously described (29,30). 

3.2.3 Blood collection and preparation  

Blood was obtained via venipuncture into a syringe containing either PPACK (1:100 v/v; 

final concentration of 100 µmol/L) or high concentration of CTI (40 μg/mL) from healthy donors 

who self-reported as free of alcohol use for at least 72 hours and medication for at least a week 

prior to blood collection. All donors provided informed consent under approval of the University of 

Pennsylvania Institutional Review Board. Blood was treated with anti-human CD61 antibody (1:50 

v/v in whole blood) and Alexa Fluor-conjugated human fibrinogen (1.5 mg/mL stock solution, 1:80 

v/v in whole blood) immediately after blood collection for platelet labeling and fibrin labeling, 

respectively. While CD61 can bind both platelets and white blood cells, the platelet deposits 

made on collagen/TF under flow contain essentially no white blood cells until substantially later 

times.  Even at low resolution, white blood cell staining would be morphologically detected if it 

were present. Annexin V (1:80 v/v in whole blood) and P-selectin (1:50 v/v in whole blood) was 

added for phosphatidylserine labeling and alpha-granule release, respectively, when needed. 

Anti-GPVI Fab was added to collected whole blood at a final concentration of 10 μg/mL (stock 

solution 1 mg/mL, dissolved in biology grade water). GPRP (5 mM final concentration in blood) 
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and GR-144053 (1 µM final concentration in blood) were both dissolved in Millipore water. All 

experiments were initiated within 5 min after phlebotomy. 

3.2.4 Microfluidic clotting assay on collagen surfaces with or without TF  

An 8-channel polydimethylsiloxane (PDMS) flow device was vacuum-sealed 

perpendicularly to collagen/TF surfaces forming 8 parallel-spaced prothrombotic patches (250 × 

250 µm), as previously described (29,30). Under appropriate circumstances, the channel height 

used was either 60 µm or 120 µm depending on the duration of the experiment to prevent 

occlusion, but the shear rate was kept in the venous level (100 – 200 s-1). Treated blood was 

perfused across the 8 channels by withdrawal through a single outlet. Drug-treated blood was 

added to the inlet reservoir without stopping flow, thus providing a rapid change in perfusion 

pharmacology within < 15 sec without hemodynamic crosstalk between channels during the 

perfusion switch.  All clotting events were initiated simultaneously in the microfluidic device on the 

collagen strip. Initial wall shear rate was controlled by a syringe pump (Harvard PHD ULTRA / 

Harvard PHD 2000; Harvard Apparatus, Holliston, MA) connected to the outlet on the flow device. 

For experiments using whole blood with CTI, thrombi were formed under constant flow rate 

(constant Q) conditions (30). Platelet, fibrin, alpha granule and/or phosphatidylserine activities 

were monitored simultaneously by epifluorescence microscopy (IX81; Olympus America Inc., 

Center Valley, PA) at 10X magnification. For each set of experiments, blood samples from N≥3 

donors were taken. Additionally, each clot is extremely well localized on the 250 µm x 250 µm 

collagen feature and contains tens of thousands of platelets, ideal for obtaining whole clot 

fluorescence intensities (i.e. total clot mass) with time. However, since we image up to 24 clots 

simultaneously, high magnification single-cell imaging or morphological analysis was not possible.  

Since we image in real time and under flow conditions, bright field imaging is also more difficult to 

quantify to obtain clot mass since the thickness of the flowing blood above the clot changes with 

time and alters the prevailing background signal for brightfield imaging. Images were captured 

with a charged coupled device camera (Hamamatsu, Bridgewater, NJ) and were analyzed with 
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ImageJ software (National Institutes of Health). To avoid side-wall effects, fluorescence values 

were taken only from the central 75% of the channel. 

3.2.5 Confocal Microscopy   

To determine the 3-dimensional orientation of platelets, fibrin, and PS exposure, we 

utilized confocal microscopy to develop images of the clots in the microfluidic device. For confocal 

images, all clots imaged were formed under high CTI WB perfused over collagen/TF (100 s-1) for 

7.5 min. After 7.5 minutes of WB perfusion, WB was switched with BSA (+ 5mM CaCl2) and 

perfused for about 2 minutes to clear out any remaining blood in the channels. After BSA 

perfusion, any remaining BSA (+ 5mM CaCl2) in the wells was replaced with 4% 

paraformaldehyde (+ 5mM CaCl2) and perfused for about 2 minutes to fix clots and prevent 

contraction. After 2 minutes of perfusion with 4% paraformaldehyde (+ 5mM CaCl2), perfusion 

was stopped and devices were transferred to the confocal microscope, with clots still maintained 

in the 8-channel microfluidic device. Z-stack images were taken of fixed clots using the Leica TCS 

SP8 laser scanning confocal microscope at the CDB Microscopy Core at the University of 

Pennsylvania. Images were compiled to form a 3C rendering of a clot endpoint in ImageJ.  

3.2.6 3D Model of First Platelet Layer of Clot Development  

The simulation framework is an extension of a 2D model from previous work (76,77) to a 

fully spatially resolved 3D model (78) and consists of four modules: neural network (NN), lattice 

kinetic Monte Carlo (LKMC), lattice Boltzmann (LB), and finite volume method (FVM). The NN 

module used multicomponent agonist exposure data to determine intra-platelet calcium 

mobilization, which was then used to determine the extent of integrin activation and adhesiveness 

of each platelet. The NN was trained using calcium traces obtained for all single and pairwise 

combinations of six agonists at low, medium and high concentrations: ADP, thrombin, GSNO (NO 

donor), and mimetics for collagen, thromboxane, and prostacyclin, which were used to quantify 

P2Y1/P2Y12, PAR1/PAR4, guanylate cyclase, GPVI, TP, IP receptor signaling, respectively (22). 

The LKMC module constructed a rate database of all possible events, which in this case are 

platelet motion and binding events. LKMC discretized the domain into uniform hexahedrons, 

resulting in lattice points upon which platelets were placed. Subsequent platelet motion or binding 
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events were carried out at these lattice points. The rates of attachment and detachment of 

platelets to the reactive collagen/TF patch and/or to each other were a function of the activation 

state of the platelets (NN module) and the local shear rate around the platelets (LB module). The 

LB module solved the equations which described the blood flow velocity in the domain. The FVM 

module tracked local agonist concentrations (ADP and thromboxane A2) by solving the 

convection-diffusion-reaction equation for species transport. To account for the effect of wall-

derived TF, a reduced model of the coagulation cascade was used to determine the 

concentration of thrombin within the clot (79). The thrombin concentration predicted by the 

reduced model was used as an input to the NN module to estimate intracellular calcium for 

platelets within the clot core (within 15µm of the TF surface). A detailed description of the model 

along with model parameters can be obtained from Shankar, et al. (78). 

3.4 Results 

3.4.1 Direct inhibition of GPVI inhibits secondary platelet deposition without thrombin present, but 

has no effect on either primary or secondary platelet deposition with thrombin present 

Using the 8-channel microfluidic device (60 µm channel height), PPACK/Apixaban-

treated whole blood (± anti-GPVI Fab) was perfused over collagen at 200 s-1 initial wall shear rate. 

In some channels of the device, perfusion was switched after 90s of clotting to PPACK/Apixaban-

treated blood with anti-GPVI Fab (10 μg/mL). Channels with anti-GPVI Fab present from t=0s 

showed a very strong inhibition of primary platelet deposition (Fig. 3-2A to D).  The 90-sec 

perfusion-switched channels began to plateau in platelet fluorescence intensity (FI) shortly after 

switching (Fig. 2D) and the clot morphology appeared to be more heterogeneous compared to 

control. As expected, there was negligible fibrin polymerization under all conditions since 

thrombin production was strongly inhibited and tissue factor was absent (Fig. 3-2A to C, E).   

However, when similar experiments were repeated to promote thrombin generation using 

whole blood (WB) treated with high concentration of CTI (HCTI, 40 μg/mL final concentration in 

WB) perfused over collagen/TF, no difference in platelet deposition was observed in any 

condition, regardless of the time of anti-GPVI Fab present in blood flow (Fig. 3-3A to D). 

Interestingly, fibrin polymerization was inhibited when anti-GPVI Fab was present initially at t=0. 
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However, fibrin generation was not interrupted or inhibited when Fab was added later at 90-sec 

compared to control (Fig. 3-3A to C, E), consistent with thrombin generation and fibrin deposition 

being robust by 90 seconds of clotting. 

 

Figure 3-2: Inhibition of GPVI leads to decreased primary and secondary platelet 
deposition when neither thrombin nor fibrin are present. 

PPACK/Apixaban WB with and without anti-GPVI Fab was perfused over collagen at 200s-1 for 7 
minutes. In the right 4 channels, control WB was perfused for 90 seconds, with a perfusion switch 
to anti-GPVI WB at 90s. CD61 and fluorescence fibrinogen fluorophores were added to label 
platelets and fibrin, respectively, with overlay images taken at 90s (A), 225s (B), and 405s (C). 
Fluorescence intensities for platelets (D) and fibrin (E) were measured throughout the course of 
the experiments. 
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Figure 3-3: Inhibition of GPVI shows no effect on primary and secondary platelet 
deposition when both thrombin and fibrin are present. 

High CTI WB with and without anti-GPVI Fab was perfused over collagen at 200 s-1 for 7 minutes. 
In the right 4 channels, control WB was perfused for 90 seconds, with a perfusion switch to anti-
GPVI WB at 90s. CD61 and fluorescence fibrinogen fluorophores were added to label platelets 
and fibrin, respectively, with overlay images taken at 90s (A), 225s (B), and 405s (C). 
Fluorescence intensities for platelets (D) and fibrin (E) were measured throughout the course of 
the experiments. 
 

To confirm that platelet dynamics were mediated by thrombin rather than fibrin, we 

repeated the same experimental design in Figure 3-3, but this time with 5 mM of gly-pro-arg-pro 

(GPRP) added to all channels to prevent fibrin polymerization. The same degree of platelet 
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deposition was observed in all channels regardless of the presence of anti-GPVI Fab (Fig. 3-4A 

to D), while fibrin was absent in all GPRP conditions, as expected (Fig. 3-4A to C, E).  Platelet 

deposition was insensitive to Fab added at t = 0 or 90 sec when thrombin was robustly generated, 

even in the absence of fibrin. 

 
Figure 3-4: Thrombin, instead of fibrin, is the overriding factor for platelet activation when 
GPVI is inhibited. 

High CTI WB treated with GPRP, and with and without anti-GPVI Fab, was perfused over 
collagen at 200 s-1 for 7 minutes. In the right 4 channels, control WB was perfused for 90 seconds, 
with a perfusion switch to anti-GPVI WB at 90s. CD61 and fluorescence fibrinogen fluorophores 
were added to label platelets and fibrin, respectively, with overlay images taken at 90s (A), 225s 
(B), and 405s (C). Fluorescence intensities for platelets (D) and fibrin (E) were measured 
throughout the course of the experiments. 
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3.4.2 Role of fibrin in platelet activation in the presence of thrombin and anti-GPVI Fab 

To investigate the role of thrombin (± fibrin) in platelet activation and deposition, 5 mM 

GPRP or 10 μg/mL anti-GPVI Fab was added to CTI-treated WB perfused over collagen/TF 

without perfusion switching. Anti P-selectin Ab was added to WB, as P-selectin fluorescence is 

associated with the thrombin-rich inner core of a clot (75), while fluorescent fibrinogen was added 

to the left two channels to monitor the presence of fibrin under control condition (no P-selectin Ab). 

Clots with GPRP showed a quicker increase in platelet FI compared to control (Figs. 3-5A to D). 

One possible explanation for this is that there may be more freely available thrombin to act on 

platelets in the GPRP channels, since fibrin is a strong inhibitor of thrombin via antithrombin-I 

activity [27]. In that work, the enhanced generation of elutable F1.2 was observed with GPRP. 

Control conditions showed similar levels of platelet aggregation compared to WB treated with 

anti-GPVI (Figs. 3-5A to D). However, while GPRP-treated WB showed significantly (p<0.0001) 

higher P-selectin FI than control, anti-GPVI Fab treated WB showed significantly (p<0.0001) 

lower levels of P-selectin than control (Figs. 3-5C and E).  
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Figure 3-5: P-selectin level is lower for anti-GPVI Fab treated clot when both thrombin and 
fibrin are present, even though platelet fluorescence is comparable to control. 

High CTI WB treated with control (HBS), GPRP, or anti-GPVI Fab, was perfused over collagen at 
200 s-1 for 7 minutes. CD61 was added to all channels to label for platelets. In the 2 leftmost 
channels, fluorescent fibrinogen fluorophore was added to confirm the presence of fibrin, while in 
the 6 rightmost channels, P-selectin fluorophore was added to label 𝛂-granule release. Overlay 
images were taken at 90s (A), 225s (B), and 405s (C). Fluorescence intensities for platelets (D) 
and P-selectin (E) were measured throughout the course of the experiments. 
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3.4.3 The combination of annexin V and anti-GPVI Fab significantly impedes platelet deposition in 

CTI-treated WB perfused over collagen/TF 

We next wanted to evaluate the effect of anti-GPVI Fab on PS exposure in clot 

development. Annexin V binds to exposed PS on the surface of platelets; as a result, this annexin 

V binding may prevent PS on the platelet surface from fully contributing to platelet procoagulant 

activity, and ultimately delaying and/or lowering fibrin generation (9). We have previously shown 

this to be this case in our assay, where annexin V contributed to a delay in fibrin formation 

compared to when annexin V was absent (80). To investigate the effect of annexin V in the 

presence of anti-GPVI Fab, we first perfused CTI-treated WB with anti-GPVI alone, with annexin 

V alone, or with both anti-GPVI Fab and annexin V, over collagen/TF (200 s-1). Results showed 

that anti-GPVI or annexin V alone had almost no effect on platelet deposition (Fig. 3-6A to C), 

consistent with the anti-GPVI results of Fig. 3-3 and 3-4. Annexin V channels had a slight delay 

and decrease in fibrin polymerization (in agreement with ref. (80)), while anti-GPVI Fab channels 

showed inhibition of fibrin polymerization (Fig. 3-6B and D). However, when both anti-GPVI Fab 

and annexin V were present, there was a striking decrease in platelet deposition (Fig. 3-6A to C). 

Fibrin deposition was also reduced in the presence of both anti-GPVI Fab and annexin V, 

resulting in levels slightly lower than anti-GPVI Fab alone (Fig. 3-6D), all consistent with strong 

collagen signaling via GPVI in the first platelet layer, along with thrombin enhancing the 

procoagulant activity of platelets. 
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Figure 3-6: Annexin V and Anti-GPVI Fab have an additive inhibitory effect on platelet 
deposition.  

High CTI WB treated with control (HBS), anti-GPVI Fab, Annexin V, or anti-GPVI Fab + Annexin 
V, was perfused over collagen at 200 s-1 for 7 minutes. CD61 and fluorescent fibrinogen 
fluorophores were added to all channels to label for platelets and fibrin, respectively. In the 4 
leftmost channels, no Annexin V fluorophore was added, while in the 4 rightmost channels, 
Annexin V fluorophore was added to label PS exposure. Overlay images were taken at 90s (A), 
225s (B), and 405s (C). Fluorescence intensities for platelets (D) and P-selectin (E) were 
measured throughout the course of the experiments. 
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3.4.4 Anti-GPVI Fab inhibits PS exposure in clot development when added at t=0, but has little to 

no effect on PS exposure when added at later time points 

To further investigate the role of anti-GPVI in PS exposure, we performed a series of 

experiments with an elevated channel microfluidic device (120-µm channel height) at lower initial 

shear rate (100 s-1) which allows for longer duration experiments without reaching occlusion [26].  

We performed a control experiment with the 120-μm device at 100 s-1 with the same experimental 

design as in Fig. 3-6, which yielded similar results (Supp. Fig. S3-1).  Importantly, in each of the 

following experiments on collagen/TF (Figs. 3-7 to 3-10), annexin V was present, in contrast to 

Figs. 3-3 to 3-5. 

We perfused annexin V and CTI-treated WB ± anti-GPVI Fab over collagen/TF (100 s-1) 

looking at platelet, fibrin, and phosphatidylserine (PS) fluorescence. We observed normal platelet 

deposition in control and limited platelet deposition with anti-GPVI Fab present (Fig. 3-7A and D), 

and normal fibrin polymerization in control and limited fibrin polymerization with anti-GPVI Fab 

(Fig. 3-7B and E). Compared to control, we see essentially no PS exposure when anti-GPVI Fab 

is present (Fig. 3-7C and F). The difference in platelet deposition between Fig. 3-7D and Fig. 3-

3D is caused by the presence of annexin V in Fig. 3-7.   
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Figure 3-7: Inhibition of GPVI shows significantly decreases PS exposure. 

High CTI WB with and without anti-GPVI Fab was perfused over collagen at 100 s-1 for 10.5 
minutes using a microfluidic device with a 120-μm height. CD61, fluorescence fibrinogen, and 
Annexin V fluorophores were added to label platelets (A), fibrin (B), and PS exposure (C), 
respectively, with images taken at 270s and 630s. Fluorescence intensities for platelets (D), fibrin 
(E), and Annexin V (F) were measured throughout the course of the experiments. (A.U. = 
arbitrary units) 
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We then wanted to validate that the limited PS exposure in anti-GPVI channels was 

indeed due from anti-GPVI Fab rather than limited platelet deposition or fibrin polymerization. To 

do this, we compared Annexin V FI in the presence of anti-GPVI Fab, GR-144053, or GPRP. GR-

144053 inhibits αIIbβ3 integrin, thereby preventing platelet-platelet interactions and results in a 

platelet monolayer. We perfused CTI-treated WB ± GR-144053, GPRP, or anti-GPVI Fab over 

collagen/TF at an initial wall shear rate of 100 s-1. Platelet deposition was normal in control and 

GPRP, while there was reduced platelet deposition in anti-GPVI, and only a platelet monolayer in 

GR-144053 (Fig.3-8A and D). Fibrin levels were normal in control and GR-144053, while there 

was little to no fibrin in GPRP or anti-GPVI (Fig. 3-8B and E). We observed increased PS 

exposure with GR-144053 or GPRP compared to control, while anti-GPVI Fab once again had 

essentially no PS exposure (Fig. 3-8C and F).  
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Figure 3-8: Decrease in Annexin V in the presence of anti-GPVI is due from anti-GPVI, not 
limited platelet deposition or fibrin polymerization.  

High CTI WB with control (HBS), GR-144053, GPRP, or anti-GPVI Fab, was perfused over 
collagen at 100 s-1 for 10.5 minutes using a microfluidic device with a 120-μm height. CD61, 
fluorescence fibrinogen, and Annexin V fluorophores were added to label platelets (A), fibrin (B), 
and PS exposure (C), respectively, with images taken at 270s and 630s. Fluorescence intensities 
for platelets (D), fibrin (E), and Annexin V (F) were measured throughout the course of the 
experiments. (A.U. = arbitrary units) 
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We next investigated the effect of anti-GPVI Fab addition at different time points to 

determine if early or late inhibition of GPVI affected PS exposure. We perfused CTI-treated WB 

under 4 different conditions: (1) control WB with no switch, (2) control WB at 0s, followed by a 

switch to anti-GPVI WB at 30s, (3) control WB at 0s, followed by a switch to anti-GPVI WB at 90s, 

and (4) anti-GPVI WB with no switch. We found that platelet deposition was similar in conditions 

(1), (2), and (3) throughout the experiment (Fig. 3-9A and D), illustrating that anti-GPVI Fab had 

little to no effect on platelet deposition when control blood was present from the start, consistent 

with earlier results (Fig. 3-3). Fibrin polymerization was also similar among conditions (1), (2), and 

(3) throughout the experiment (Fig. 3-9B and E), also illustrating that anti-GPVI Fab had little to 

no effect on fibrin polymerization when control blood was present initially, again consistent with 

earlier results (Fig. 3-3). In terms of PS exposure, annexin V binding was fairly similar between 

conditions (1), (2), and (3), while there was essentially no PS exposure in anti-GPVI Fab at t = 0s 

condition (4) (Fig. 3-9C and F). These results demonstrate that if control WB is initially present to 

all platelet interactions with collagen, GPVI signaling, and thrombin generation, the addition of 

anti-GPVI Fab E12 at later time points has little to no effect on platelet deposition, fibrin 

polymerization, and PS exposure.   
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Figure 3-9: Effects of anti-GPVI Fab require its presence from the initiation of clot 
development in the presence of thrombin. 

High CTI WB with or without anti-GPVI Fab was perfused over collagen at 100 s-1 for 10.5 
minutes using a microfluidic device with a 120-μm height. The two middle channels started with 
control WB perfusion, with a switch to anti-GPVI WB at either 30s or 90s. CD61, fluorescence 
fibrinogen, and Annexin V fluorophores were added to label platelets (A), fibrin (B), and PS 
exposure (C), respectively, with images taken at 270s and 630s. Fluorescence intensities for 
platelets (D), fibrin (E), and Annexin V (F) were measured throughout the course of the 
experiments. (A.U. = arbitrary units) 



45 

3.4.5 The effects of anti-GPVI Fab are reversible for platelet deposition, fibrin polymerization, and 

PS exposure when switched to control blood 

We wanted to evaluate the effect of switching from anti-GPVI Fab-treated WB back to 

control WB lacking Fab. We perfused CTI-treated WB again under 4 conditions: (1) control WB 

with no switch, (2) anti-GPVI WB at t=0s, followed by a switch to control WB at 90s, (3) anti-GPVI 

WB at t=0s, followed by a switch to control WB at 270s, and (4) anti-GPVI WB with no switch. 

Platelet deposition in condition (1) formed normally, while there was limited platelet deposition in 

anti-GPVI condition (4) (Fig. 3-10A and D). In the switch conditions, both conditions initially had 

limited platelet deposition, but after about 180s post-switch, there was a significant increase in 

platelet levels in both conditions relative to condition (4). There were statistical differences in final 

fluorescence values between conditions (2) and (4) (p = 0.0032) and between conditions (3) and 

(4) (p=0.0014). After platelets levels began increasing in the switch channels, the platelet clot 

morphology was restored back to control conditions. In terms of fibrin fluorescence, we again 

observed normal fibrin formation in condition (1) and essentially no fibrin form in condition (4), as 

expected and as previously shown. In the switch channels, there was essentially no fibrin 

polymerization throughout nearly the entirety of the experiment, except at the very end where 

there was a slight increase in fibrin (Fig. 3-10B and E). Even still, these slight increases were 

found to be statistically significant compared to anti-GPVI; there were statistical differences in 

final fibrin fluorescence between conditions (2) and (4) (p=0.0009) and between conditions (3) 

and (4) (p=0.017). Lastly, annexin V levels were normal in condition (1) and essentially negligible 

in condition (4), again in agreement with previous results. In the switch conditions, annexin V was 

negligible initially, as expected, and then eventually increased after the switch to control WB. 

Again, there were statistical differences in final annexin V fluorescence between conditions (2) 

and (4) and between conditions (3) and (4) (both p<0.0001). There was again an approximate 

180s time lag between the switch and when annexin V levels began increasing in both conditions. 

This is in line with the platelet restoration time lag.  
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Figure 3-10: Effects of anti-GPVI Fab on clot development are reversible. 

High CTI WB with or without anti-GPVI Fab was perfused over collagen at 100 s-1 for 10.5 
minutes using a microfluidic device with a 120-μm height. The two middle channels started with 
anti-GPVI WB perfusion, with a switch to control WB at either 90s or 270s. CD61, fluorescence 
fibrinogen, and Annexin V fluorophores were added to label platelets (A), fibrin (B), and PS 
exposure (C), respectively, with images taken at 270s and 630s. Fluorescence intensities for 
platelets (D), fibrin (E), and Annexin V (F) were measured throughout the course of the 
experiments. (A.U. = arbitrary units) 
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3.4.6 Anti-GPVI limits platelet deposition when thrombin is inhibited at later time points 

We wanted to observe how thrombin inhibition affects platelet deposition at different time 

points in the presence of anti-GPVI. We perfused CTI-treated WB ± anti-GPVI with a switch to 

PPACK-treated WB ± anti-GPVI at either 90s, 270s, or 540s over collagen/TF at 100 s-1 for 15 

minutes (Fig. 3-11). Notably, annexin V was not present in these experiments. In channels 1 and 

2, there was only CTI-treated WB, no switch to PPACK, for the entirety of the experiment. The 

remaining channels 3-8 started with CTI-treated WB, but was then switched to PPACK-treated 

WB at 90s (channels 7 and 8), 270s (channels 5 and 6), or 540s (channels 3 and 4). “Control” 

channels (odd channels) did not have anti-GPVI present for the entirety of the experiment, while 

“anti-GPVI” channels (even channels) had anti-GPVI present for the entirety of the experiment. 

We see that platelet deposition and fibrin formation are both normal in control (no switch), while 

platelet deposition is normal for anti-GPVI (no switch), but there is reduced fibrin (Fig. 3-11A, B), 

as previously shown in Fig. 3-3. When there is switch to PPACK-treated WB at different time 

points, we see fibrin begin to plateau, or slightly decrease (Fig. 3-11B, Supp. Fig. S3-2). 

Noticeably, anti-GPVI channels all have relatively low fibrin levels regardless of switch time; 

however, adding PPACK earlier appears to further reduce/limit fibrin polymerization (Fig. 3-11B). 

There is mostly normal platelet deposition in “control” channels, although adding PPACK earlier 

(90s or 270s) appears to slightly reduce platelet deposition compared to adding PPACK later 

(540s) or not at all (Fig. 3-11A, Supp. Fig. S3-2). Platelet deposition in anti-GPVI channels 

appears to be heavily reliant on when PPACK is added; anti-GPVI (no switch) has nearly identical 

platelet deposition to control (no switch). When PPACK is added at 540s, platelet deposition is 

similar, albeit slightly lower than anti-GPVI (no switch) (Supp. Fig. S3-2). When PPACK is added 

at 270s, platelet deposition is significantly lower, and when PPACK is added at 90s, platelet 

deposition is even lower (Fig. 3-11A, Supp. Fig. S3-2).  
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Figure 3-11: Anti-GPVI limits platelet deposition when thrombin is inhibited at later time 
points. 

High CTI WB with or without anti-GPVI Fab, with a switch to PPACK WB with or without anti-
GPVI, was perfused over collagen/TF at 100 s-1 for 15 minutes using a microfluidic device with a 
120-μm height. This experiment had no annexin V present in any channels. In the 2 leftmost 
channels, CTI WB was present without (channel 1) or with (channel 2) anti-GPVI from t=0s. The 
remaining channels all started with either CTI-treated control (channels 3, 5, 7) or anti-GPVI 
(channels 4, 6, and 8) WB, with a switch at either 90s, 270s, or 540s to PPACK-treated WB. In 
the switch channels (channels 3-8), anti-GPVI or control remained constant throughout the 
experiment (i.e. channels either did or did not have anti-GPVI for the entire experiment time); the 
only change was from CTI-treated to PPACK-treated WB. CD61 and fluorescence fibrinogen 
fluorophores were added to label platelets (A) and fibrin (B) respectively, with images taken at 
270s and 630s. 
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3.4.7 Addition of annexin V to anti-GPVI WB at later time points has no effect on platelet 

deposition 

In Figure 9, we added anti-GPVI at later time points (after t=0s) to WB containing annexin 

V to see if there is an effect on platelet deposition when annexin V and anti-GPVI are added 

together, but at later times. Here, we wanted to add annexin V at later time points to anti-GPVI 

WB. We perfused CTI-treated WB + anti-GPVI (no annexin V) with a switch to anti-GPVI + 

annexin V at 30s, 90s, 270s, or 540s over collagen/TF at 100 s-1 for 15 minutes (Fig. 3-12). In the 

4 rightmost channels (channels 1-4), we repeated conditions in figure 6 (here, at 100 s-1 instead 

of 200 s-1 and in the 120-µm height device instead of the 60-µm height device), to again confirm 

that anti-GPVI and annexin V together have a strong inhibitory effect on platelet deposition, but 

not when added individually (Fig. 3-12A). In the leftmost channels, anti-GPVI is present in all 

channels throughout the experiment, but annexin V is introduced at different times: 30s (channel 

5), 90s (channel 6), 270s (channel 7), or 540s (channel 8). We see nearly identical platelet 

deposition in channels 5-8, regardless of when annexin V is added (Fig. 3-12A). In terms of fibrin 

deposition, fibrin is relatively low in channels 5-8 compared to control (channel 1); there does 

appear to be a slightly increased inhibitory effect when annexin V is added earlier (Fig. 3-12B). 

Annexin V fluorescence is very low in all switch channels relative to the Annexin V control 

(channel 2) (Fig. 3-12C). To confirm this reduction was due from anti-GPVI and not from adding 

annexin V at later time points, we performed a control experiment adding annexin V at later time 

points without anti-GPVI present (Supp. Fig. S3-4), showing that annexin V FI normally increases 

significantly when added to WB.  
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Figure 3-12: Addition of annexin V to anti-GPVI WB at later time points has no effect on 
platelet deposition. 

High CTI WB with anti-GPVI (-anx V), with a switch to anti-GPVI +anx V was perfused over 
collagen/TF at 100 s-1 for 15 minutes using a microfluidic device with a 120-μm height. The 4 
rightmost channels were conditions repeated from Fig. 6, as a control for the 4 leftmost channels. 
In the 4 leftmost channels, anti-GPVI was present from t=0s, and annexin V was not present at 
t=0s. Annexin V was then added at either 30s, 90s, 270s, or 540s. CD61, fluorescence fibrinogen, 
and Annexin V fluorophores were added to label platelets (A), fibrin (B), and PS exposure (C), 
respectively, with images taken at 360s and 900s. 
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3.4.8 Confocal microscopy confirms fibrin and PS exposure are localized to collagen surface, 

while platelet deposition occurs throughout the clot thickness 

Confocal images show an example clot from the bottom view (Fig. 3-13A), top view (Fig. 

3-13B), side view (Fig. 3-13C), and outlet view (Fig. 3-13D). These images illustrate that fibrin 

and annexin V were predominantly localized near the collagen surface, while platelets are 

distributed throughout the clot, most clearly visible at the top layer of the clot. We also took 

example orthogonal slices of the example clot (Fig. 3-13E to G) to further illustrate the localization 

of fibrin and PS exposure at the collagen surface.  

 
Figure 3-13: Representative 3D images of clot end point. 

Z-stack images were taken of preserved clots on a confocal microscope to determine the 
distribution of platelets (red), fibrin (green) and annexin (blue). (A) Bottom view of clot (on 
coverslip). (B) Top view of clot. (C) Clot side view. (D) Clot outlet view. (E) Single z plane image 
of clot with orthogonal slices pointed out (yellow lines). (F) Vertical orthogonal slice from wall to 
wall of microfluidic device channel. (G) Horizontal orthogonal slice from clot inlet to clot outlet. 
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3.4.9 3D computer model simulations of clot development illustrate crucial role of the first 90s of 

clot development in determining collagen-bound platelet deposition  

The near complete coverage of collagen with platelets typically requires 90s during clotting at 

venous shear rate. We explored the formation of the first layer of platelets (in contact with 

collagen) and the rate of deposition of subsequent layer using numerical computer simulation of 

thrombus formation in 3 dimensions. The numerical simulations captured individual platelets that 

deposited and aggregated on the reactive collagen/TF surface, their corresponding activation 

levels, the spatiotemporal distribution of ADP and TXA2, and the blood velocity profile over the 

growing clot. The simulations were able to accurately capture the evolution and morphology of 

the thrombus initiated at the reactive surface. Model predictions agreed well with fluorescent 

micrographs of thrombus formation over time observed in experiments for cases with and without 

wall-derived TF, as shown in Fig. 3-14A to C. The simulations showed that almost all platelets in 

the first platelet monolayer (in contact with the collagen/TF surface) were deposited within the first 

150s of blood perfusion without thrombin present, and within the first 90s with thrombin present 

(Fig. 3-14A to D). Following this initial period, significant platelet deposition occurred in 

subsequent platelet layers binding platelets, making it difficult for platelets binding the outer clot 

domain to interact with the collagen surface (Fig. 3-14D). A plot of the cumulative number of 

platelet-collagen collisions as a function of time showed little to no platelet-collagen collisions 

after 90s and 150s under the presence and absence of thrombin respectively (Fig. 3-14E).  
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Figure 3-14: Multiscale simulations of platelet aggregation under flow over collagen/TF. 

The first monolayer of deposited platelets and subsequent platelet layers are shown after (A) 90 s, 
(B) 225 s, and (C) 400 s of perfusion. (D) Dynamics of deposited platelet count in the first platelet 
monolayer and subsequent platelet players, and (E) cumulative platelet-collagen collisions 
observed over time.   
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3.5 Discussion 

We performed a series of in vitro experiments with human blood using a novel, direct 

GPVI inhibitor to demonstrate the role GPVI plays in primary and secondary platelet deposition 

and fibrin polymerization. We first showed that anti-GPVI Fab significantly reduced platelet 

deposition on collagen when thrombin was not present, demonstrating the role of GPVI in both 

primary and secondary platelet deposition. With thrombin present, anti-GPVI Fab treated and 

control blood had similar platelet deposition, although fibrin was inhibited with anti-GPVI Fab 

present. To confirm thrombin, not fibrin, contributed to this platelet deposition with anti-GPVI Fab 

present, we used GPRP to show that platelet deposition was still similar between anti-GPVI and 

control. P-selectin levels were lower for anti-GPVI than for control, further supporting the role of 

free, available thrombin in contributing to platelet deposition. In the presence of thrombin, the 

combination of annexin V fluorophore and anti-GPVI Fab still managed to reduce platelet 

deposition significantly lower than control, annexin V alone, or anti-GPVI alone, suggesting that 

thrombin generated specifically via PS exposure may play a significant role in contributing to 

platelet aggregation in the presence of anti-GPVI Fab.  

We observed that anti-GPVI Fab significantly reduced annexin V fluorescence nearly to 

background levels. To confirm this was due from anti-GPVI Fab rather than reduced platelet 

aggregation or fibrin inhibition, we compared the annexin V signals of anti-GPVI, GR-144053, and 

GPRP in the presence of thrombin. We saw that platelet monolayers (caused by GR-144053) and 

fibrin inhibition (caused by GPRP) resulted in similar or increased annexin V fluorescence, while 

annexin V fluorescence in the anti-GPVI condition remained near background levels. This 

demonstrated the potent effect of anti-GPVI and annexin V in limiting PS exposure. To better 

understand this synergistic effect, we performed two experiments to evaluate annexin V 

fluorescence: (1) switching from control blood to anti-GPVI blood, and (2) switching from anti-

GPVI blood to control blood. When control blood was present at the beginning of the experiment, 

platelet deposition, fibrin polymerization, and PS exposure occurred normally, even when anti-

GPVI Fab was present as early as 30s. When anti-GPVI blood was present at the beginning of 

the experiment, but there was a switch to control blood, platelets, fibrin, and annexin V slowly 
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begin to increase after the switch. This demonstrated that the effects of anti-GPVI Fab seem to 

be reversible, while anti-GPVI Fab does not seem to be effective (in the presence of thrombin) if it 

first becomes present after control clotting has already been initiated.  

Without thrombin, platelets will not deposit further if GPVI is inhibited, and formed platelet 

aggregates will undergo slight erosion based on shear or presence of anti-GPVI Fab, or both.  

This observation supports a role for GPVI signaling in a platelet deposit that is fibrin independent.  

When thrombin is present, however, GPVI plays very little in secondary deposition, and fibrin 

polymerization was not affected for channels switched to anti-GPVI treated WB. From our results 

with GPRP (Fig. 4), we can confirm the robust activation of platelets was likely induced by the 

presence of thrombin, regardless of the presence of anti-GPVI Fab.   

There was a synergistic effect of inhibition of GPVI and inhibition of exposed PS on 

lowering platelet deposition in clot development. Increased PS exposure in GR-144053 compared 

to control further demonstrates the significance of collagen in stimulating PS exposure, since 

essentially all platelets in GR-144053 are bound and stimulated via collagen. Increased PS 

exposure in the presence of GPRP compared to control demonstrates the role of freely available 

thrombin to contribute to PS exposure, and we have previously shown this before (80). Therefore, 

when collagen interactions are inhibited by anti-GPVI Fab and freely available thrombin is 

reduced by annexin V, it follows that there is very little measurable PS exposure. Our results 

support the significant role for thrombin generated via PS exposure in stimulating platelet 

deposition and continued buildup when GPVI is inhibited. Since annexin V binds exposed PS on 

the platelet surface (81,82), and PS allows for formation of the prothrombinase complex for 

conversion of prothrombin to thrombin catalyzed by Factor Xa (16), annexin V binding to PS may 

have reduced the generation of thrombin at the beginning of the clot growth, thus resulting in 

limited platelet stimulation via thrombin. Blocking collagen binding and inhibiting thrombin 

generation are both crucial for attenuating subsequent platelet deposition. 

In our perfusion-switch experiments with annexin V present, our results in Figure 3-10 

suggest that the time lag between the switch and increase in platelet fluorescence may consist of 

the removal of GPVI-inhibited platelets with control platelets. In addition, the time lag for fibrin 
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formation to be restored takes longer than for platelet deposition, which is logical since platelet 

deposition precedes fibrin polymerization in control conditions, and is in agreement with thrombin 

kinetics (68,83). These results suggest switching from anti-GPVI WB to control WB nearly allows 

for clot restoration in terms of platelet deposition and morphology, fibrin polymerization, and PS 

exposure. This is not the case when control WB is switched to anti-GPVI WB, where we see 

platelet deposition, fibrin polymerization, and annexin V remain similar to control throughout the 

experiment (Fig. 3-9). These results are in agreement with simulation results from our 3D model 

(Fig. 3-14), which illustrates that the collagen surface is essentially fully covered by the first 90 

seconds of perfusion when thrombin is present. This initial layer of platelet deposition is crucial for 

directing the development of the full clot, as seen in Fig. 3-10 when anti-GPVI WB is replaced 

with control WB, allowing normal clot development to be restored.   

Many of our findings are consistent with previous studies investigating GPVI 

deficiency/inhibition. Munnix et. al. studied the effects of an anti-GPVI JAQ1 Fab on platelet 

deposition and PS exposure in PPACK-treated WB over collagen, and in citrated mouse blood 

(+CaCl2 +TF) over collagen at 1000 s-1 (38). They also observed a significant decrease in platelet 

deposition with JAQ1 in anti-coagulated WB over collagen, similar to what we’ve seen with E12 

(Fig. 3-2). Additionally, they also observed a significant decrease in Annexin V exposure with 

JAQ1, similar to what was observed with E12 (Fig. 3-7). However, they also observed a decrease 

in platelet deposition with JAQ1 in the presence of thrombin (38), while we did not see this 

change in platelet deposition (Fig. 3-3). The reason for this should be studied further to better 

understand why E12 does not cause a decrease in platelet deposition in the presence of thrombin.  

Our results are also in agreement with Navarro, et al., where they perfused citrated whole 

blood + anti-GPVI Fab EMF-1 over collagen or collagen/TF at 1000 s-1 (84). Over collagen/TF, 

their results show that when EMF-1 is added at t=0 min, annexin V FI is significantly lower and 

fibrin polymerization is strongly inhibited compared to vehicle; however, when EMF-1 is added at 

t=2 min, annexin V and fibrin polymerization is at least restored, in accordance with our results in 

Figures 3-3 and 3-9 (84). Over collagen (thrombin not available), they observed significant 

inhibition of platelet deposition when EMF-1 was added at t=0 min, but only slightly reduced 
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platelet deposition when EMF-1 was added at t=2 min, in agreement with our results in Figure 3-2 

(84). However, it should be noted that Navarro, et al. experimental results were performed at 

arterial shear rates, as opposed to our venous shear rates in this study.  

Our results are also in agreement with experiments performed with GPVI-deficient blood. 

Nagy, et. al. demonstrated a critical role for GPVI in platelet aggregation, but not adhesion under 

non-coagulating conditions, and a critical role of GPVI in PS exposure, but not thrombus 

formation, under coagulating conditions (72). As they explain, a reason for this finding may be 

due to the presence of integrin α2β1, a secondary collagen receptor, which can support platelet 

adhesion to collagen under flow (85–87). Nagy, et. al. also show fibrin generation was inhibited in 

GPVI-deficient blood, in agreement with our findings in Figure 3-3, and that thrombin is reduced, 

but still present, in GPVI-deficient blood compared to control, which supports our findings in 

Figure 3-3 and 3-4, where we show reduced P-selectin display in anti-GPVI conditions relative to 

control; reduced thrombin levels in anti-GPVI conditions may explain this decrease in P-selectin. 

While we see similarities between E12 and other modes of GPVI inhibition, we also 

observe differences. Noticeably, although we observed some inhibition of platelet deposition, we 

did not see long term inhibition of platelet deposition at arterial flow rates (Supp. Fig. S3-S5). This 

is in contrast with studies that have evaluated GPVI inhibition previously (84,88,89). Additionally, 

Fab E12 did not significantly inhibit platelet deposition when fibrin had already formed (Fig. 3-3), 

which does not agree with previous GPVI inhibitors (90). These differences may suggest that E12 

is a more sensitive inhibitor of GPVI than previous anti-GPVI inhibitors, with its mechanism of 

action more relevant to cases that may require moderate modulation of platelet deposition.  

Here, we investigated the effect of E12 in thrombin-free or thrombin-rich environments. 

However, there exists conditions where there are low or moderate levels of thrombin. As van der 

Meijden et. al. showed, collagen can contribute to FXII-induced intrinsic pathway coagulation. 

Additional experiments should be investigated in the future to determine the effect of E12 on 

platelet deposition, fibrin formation, and PS exposure in environments where there are low to 

moderate thrombin levels (e.g. perfuse CTI-treated WB + E12 over collagen).  
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We have shown that anti-GPVI Fab has a potent effect on platelet deposition when 

thrombin is not present. With thrombin present, anti-GPVI does not limit platelet deposition, as 

thrombin is the most likely cause of normal platelet deposition. With our perfusion-switch 

experimental design, we show that the initial layer of platelets is crucial for clot development, as 

switching from control to anti-GPVI WB has little to no effect on the clot, while switching from anti-

GPVI WB to control WB restores normal clot development. Together, our results demonstrate a 

deeper understanding of the role GPVI plays in primary and secondary deposition (both in the 

presence and absence of thrombin), fibrin polymerization, alpha-granule release, and PS 

exposure. 
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CHAPTER 4 – FUTURE WORK 

4.1 NAC facilitating VWF strands cleavage and dissolving thrombus plug under arterial 

shear 

 As cardiovascular disease remains the most leading cause of death in the US (2), recent 

studies regarding arteriole thrombosis proposed a possible solution by administering N-

acetylcysteine (NAC) in hope to reduce the size of ultra-long VWF (ULVWF) (91) to mitigate, cure 

or prevent arteriole thrombosis (92). NAC has been proven to be a low-cost, safe, generic, and 

promising drug (93) for many diseases including mucolytic therapy (94), kidney disease (95), 

chronic obstructive pulmonary disease (96), etc.; however, although the antithrombic efficacy of 

NAC has been confirmed in various studies (91,92,97), the cause of its efficacy should not be 

concluded hastily to its ability to disintegrate ULVWF, since experiment results also have shown 

that NAC cannot digest VWF that was already formed under pathological shear rate (98). 

Therefore, understanding the antithrombotic effect of NAC requires a more wholistic perspective 

that includes the interactions between platelet, VWF, and all other factors that attribute to 

thrombosis formation. 

Experiments for in vitro simulation of pathological environment for formation of VWF and 

its responses to different treatment was conducted using 8-channel device with a shear inducing 

region (60μm×1000μm×45μm, W×L×H) with a square post (30μm×30μm) in the middle of each 

flow chamber. Platelet-free plasma (PFP) prepared from EDTA or PPACK treated whole blood 

was flown through the chambers and ULVWF fibers were attached on the post upon pathological 

wall shear rate (> 10,000 s-1). Anti-VWF was flowed for staining at a lower shear rate (3300 s-1), 

followed by epifluorescence microscopy. Once sufficient staining is achieved, HBS with or without 

30 mM NAC will be flown through the channels with the same shear rate (3300 s-1), and the 

integrity of VWF strands will be observed under the microscope for 380 s. Through the course of 

the whole experiment, no visual disintegration of VWF strands was observed through eight fibers 

formed this way, and the normalized florescent intensity of the fiber (intensity over time/initial 

intensity) didn’t change, as shown in Figure 4-1. 
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Figure 4-1: VWF fiber integrity upon treatment of NAC 

Both visual observations and analysis of fluorescent integrity showed NAC doesn’t digest VWF 
fiber at 30 mM 
 

Experiments for in vitro simulation of arteriole thrombosis formation and the 

antithrombotic efficacy of NAC was conducted using 8-channel device with a shear inducing 

region (60 μm×2000 μm×70 μm, W×L×H) in the middle of each flow chamber. Experiment 

conducted to ensure that NAC had no effect on VWF coated on glass slide before adding VWF 

into activation strip (Supp. Fig. S4-1). Device was vacuum-mounted perpendicularly to 

collagen/VWF surfaces forming 8 parallel-spaced prothrombotic patches (60 µm×250µm). 

PPACK-treated blood was perfused across the 8 channels by withdrawal through a single outlet 

under pathological wall shear rate (5,100 s-1). Similar perfusion-switch experiment was conducted 

that once a significant thrombosis is formed (100 s), whole blood with 30mM NAC was switched 

in some channels to observe the antithrombotic effect of NAC. Platelet and VWF were 

fluorescently tagged for epifluorescence microscopy. Images were captured with a charged 

coupled device camera and were analyzed with ImageJ software. As shown in Figure 4-2, upon 

treatment of NAC treated whole blood, thrombus plug significantly reduced size and both platelet 

and VWF signal showed decrease, yet the ratio of platelet/VWF signal showed increase for 

switched streams, meaning that VWF gets cleaned from the plug, but more platelets remained. 
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Figure 4-2: Anti-thrombus effect of NAC treated whole blood under pathological shear rate 

NAC treated whole blood showed hindered primary platelet deposition on collagen/VWF 
activation strip, while built-up thrombus plug reduced in size and eventually disappeared upon 
switching to NAC treated whole blood (a, b, c, and d). Fluorescent signals for platelet (e) and 
VWF (f) showed decrease up on switching too (shown by arrow), but the ratio of platelet/VWF 
signal increased for switched streams (g), indicating that most thrombus left was platelet. 
 

Although VWF is the dominating fiber for platelet attraction under arterial flow, it is still 

helpful to study if NAC facilitates platelet inhibition under venous flow or has any effect on fibrin 

formation. Thus, similar perfusion flow experiment was done with switch time at 90 seconds, and 

the result suggests that NAC inhibits platelet deposition and fibrin polymerization under venous 
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flow as well, as shown in Figure 4-3. This suggests that either NAC has the effect of directly 

preventing fibrin polymerization, or inhibiting thrombin formation through platelet inhibition, or both. 

 

Figure 4-3: Perfusion-switch experiment with NAC inhibited platelets under venous shear 
rate 

NAC treated whole blood showed moderate platelet inhibition, and platelets in switched stream 
stopped developing after 90 s (a, b, and c). Fibrin polymerization was inhibited as well for both 
NAC treated stream and switched stream (a, b, and d). 
 

Calcium assay was used to testify if NAC treated platelets were inhibited effectively, and 

the results show that for most agonists, NAC had inhibitory effect on platelet, although there isn’t 

much difference shown with Convulxin. Besides, since previous experiments showed that cystine 

had similar anti-thrombus effects (Supp. Fig. S4-2), similar calcium assay experiment was used 

for cystine as well (Figure 4-4). For most agonists, it showed similar trend as NAC, but for 

U46619 it showed a higher calcium level than control. Convulxin, as expected, showed no 

differences from control. 
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Figure 4-4: Calcium assay data for NAC and cystine 

For agonists ADP, SFLLRN, AYPGKF and thrombin, both NAC and cystine showed decrease in 
calcium level compared to control, while for convulxin there is no clear difference, and cystine 
showed higher level of calcium compared to control. 

 

Based on our observation, NAC does have the potential to be an anti-thrombus drug to 

alleviate arterial thrombus blockage. However, whether it will react with other common anti-

thrombus drugs, such as tPA, remains a question. Thus, experiment was done on whole blood 

treated with either tPA, NAC, or both, to see their response on the activation surface. Since tPA is 

used for fibrin digestion, which is targeting venous thrombus formation, both pathological arterial 

shear rate (5,100 s-1) (Supp. Fig. S4-3) and venous shear rate (200 s-1) (Supp. Fig. S4-4) was 

studied. Both experiments showed that NAC and tPA doesn’t offset each other’s anti-thrombus 

effect, showing the potential of NAC to be subscribed at the same time for patients. Future works 
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could be done on understanding the mechanisms of NAC on platelet and VWF to evaluate the 

potential of this molecule under a clinical setting. 

4.2 Anti-GPVI fab as a GPVI-inhibitor under arterial shear and its role for thrombus 

development 

Based on the previous experiments, the inhibitory effects of anti-GPVI fab on platelet 

deposition and thrombin generation was testified under venous shear rate. However, since GPVI 

is the first responder for collagen contact, such experiments should be done under arterial shear 

rate as well. In Chapter 3, experiments were done under arterial conditions (1,000 s-1 shear rate) 

with collagen strip as the activating surface, where no thrombin nor fibrin were present in the 

system; the results were shown in Supp. Fig. S3-9.  

Given GPVI’s dominant role in arterial shear region, additional experiment will be helpful 

using the same shear rate with collagen/VWF activation strip, to better reveal the function of 

GPVI with the effect of VWF, and the role of VWF in arterial clot growth. Furthermore, similar 

experiments could be done with a collagen/TF activation strip, so that the role of thrombin under 

arterial shear rate could be revealed as well. 

Chapter 3 also mentioned the differences between primary and secondary platelet 

deposition and how it was modulated by GPVI. To better distinguish the stages of clot growth 

contributed by these two dispositions, whole blood used for these two stages could be labeled 

with different fluorescent signal, facilitated by confocal imaging. The distinguish layers of platelet 

could quantify the critical roles of different platelets at stages for clot development under both 

venous and arterial shear rate. 
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APPENDIX – SUPPLEMENTAL FIGURES 

   

 

Supplemental Figure S2-1: Post-stain images of clot monolayers for PPACK blood flow 
over collagen at venous shear rate (200 s-1) at 6.75 minutes. 

Images were taken under 40× for both conditions without and with dasatinib for platelet and Src-
pY418 (A). Bar chart of Src-pY418 intensity for both conditions was plotted for a better 
comparison (B). 
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Supplemental Figure S2-2: Post-stain images of clots for high CTI blood with/without 
GPRP flown over collagen incubated with TF at venous shear rate (200 s-1) at 3 minutes. 

Images were taken for platelet (A), Src-pY418 (B) and fibrin (C) for both conditions under 10×; the 
left four channels are for high CTI blood, and the right four channels are for high CTI blood with 
GPRP. The platelet (D) and Src-pY18 (E) intensities were measured for both conditions, and the 
ratio of the two was calculated (F). Thicker clots obtained at 6 min endpoint were more occlusive 
of the channel and more difficult to rinse and to prepare for fluorescence staining, therefore an 
endpoint of 3 min was used for post-staining experiments. 
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Supplemental Figure S2-3: Summary figure of Syk/Src activation cascade, with inhibitors 
at different sites. 

We can see more interactions between proteins and kinases at downstream that lead to platelet 
activation in different ways.  
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Supplemental Figure S2-4: Donor responses to R-406 for PPACK treated whole blood 
perfused under venous shear rate. 

We can see inhibition effect of R-406 is very strongly donor dependent. More cases showed no 
inhibition in our assay. 
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Supplemental Figure S2-5: The dose response of DMSO at different concentrations in WB 
under 1% v/v.  

No difference was shown for either platelet or fibrin signal. 
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Supplemental Figure S3-1: Annexin V and anti-GPVI Fab have additive effect on limiting 
platelet deposition (at 100 s-1 in 120-μm device). 

High CTI WB, with and without Annexin V and anti-GPVI, was perfused over collagen/TF at 100 
s-1 in the 120-μm channel height device, with CD61, fluorescent fibrinogen, and Annexin V 
fluorophores added for platelets (A), fibrin (B), and Annexin V (C). Annexin V was not added in 
channels with (-Annexin V). Representative images were taken at the end of the experiment (10.5 
min). Fluorophores were measured throughout the course of the experiment for platelet 
fluorescence (D) and fibrin fluorescence (E). These data were taken under the same conditions 
as in Figure 6, except for the flow rate and channel height. Representative data are from 2 
individual donors (N = 2) and 4 individual clots (n = 4). (A.U. = arbitrary units). 
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Supplemental Figure S3-2: Quantitative fluorescence data from Figure 3-11. 

High CTI WB with or without anti-GPVI Fab, with a switch to PPACK WB with or without anti-
GPVI, was perfused over collagen/TF at 100 s-1 for 15 minutes using a microfluidic device with a 
120-μm height. Fluorescence intensities for platelets (A) and fibrin (B) were measured throughout 
the course of the experiments. (A.U. = arbitrary units) 
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Supplemental Figure S3-3: Quantitative fluorescence data from Figure 3-12.  

High CTI WB with anti-GPVI (-anx V), with a switch to anti-GPVI +anx V was perfused over 
collagen/TF at 100 s-1 for 15 minutes using a microfluidic device with a 120-μm height. 
Fluorescence intensities for platelets (A), fibrin (B), and annexin V (C) were measured throughout 
the course of the experiments.  
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Supplemental Figure S3-4: Annexin V has a slight inhibitory effect on fibrin polymerization 
when added at different times. 

High CTI WB with or without a switch to annexin V at either 90s, 270s, or 540s was perfused over 
collagen/TF at 100 s-1 for 15 minutes using a microfluidic device with a 120-μm height. CD61, 
fluorescence fibrinogen, and annexin V fluorophores were added to label platelets (A), fibrin (B), 
and PS exposure (C), respectively, with images taken at 360s and 900s. Fluorescence intensities 
for platelets (D), fibrin (E), and Annexin V (F) were measured throughout the course of the 
experiments. (A.U. = arbitrary units) 
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Supplemental Figure S3-5: Thrombin inhibition blocks platelet deposition when anti-GPVI 
is present, regardless of annexin V presence or absence. 

PPACK-treated WB with or without anti-GPVI Fab and with or without annexin V was perfused 
over collagen at 100 s-1 for 15 minutes using a microfluidic device with a 120-μm height. CD61, 
fluorescence fibrinogen, and annexin V fluorophores were added to label platelets (A), fibrin (B), 
and PS exposure (C), respectively, with images taken at 360s and 900s. Fluorescence intensities 
for platelets (D), fibrin (E), and Annexin V (F) were measured throughout the course of the 
experiments. (A.U. = arbitrary units) 
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Supplemental Figure S3-6: Comparison of Epifluorescence and Confocal Images. 

High CTI WB was perfused over collagen/TF for 7.5 min, with images taken using the 
epifluorescence microscope at 7.5 min (A). Then clots were fixed, as described in Methods, and 
taken to image using the confocal microscope (B). Representative confocal images are from 
12.05 μm above the collagen surface. Images include individual fluorophores for platelets, fibrin, 
and Annexin V, as well as an overlay of all three.  
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Supplemental Figure S3-7: Confocal images at different heights in the z-direction. 

Images from the same clot in Supp. Fig. S3-2 were taken at different heights in the z-direction, 
starting at the glass surface (0 μm) up to 57.84 μm above the glass surface. Images for overlay 
(A), platelets (B), fibrin (C), and Annexin V (D) are included.  
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Supplemental Figure S3-8: Quantitative analysis of confocal images at different heights in 
the z-direction. 

Images from the same clot in Supp. Fig. 3 were quantitatively analyzed for the fluorescence 
intensity for platelets (blue), fibrin (orange), and Annexin V (grey) at different heights in the z-
direction (A). Fluorescence values in each data set in (A) were divided by the respective 
maximum value in each individual data set to yield a normalized fluorescence intensity among the 
different fluorophore labels (B). (A.U.= arbitrary units) 
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Supplemental Figure S3-9: Inhibition of GPVI via E12 at arterial shear rates does not 
decrease, but delays, platelet deposition when neither thrombin nor fibrin are present. 

PPACK/Apixaban WB with and without anti-GPVI Fab was perfused over collagen at 1000 s-1 for 
7 minutes. In the right 4 channels, control WB was perfused for 90 seconds, with a perfusion 
switch to anti-GPVI WB at 90s. CD61 and fluorescence fibrinogen fluorophores were added to 
label platelets and fibrin, respectively, with overlay images taken at 90s (A), 225s (B), and 405s 
(C). Fluorescence intensities for platelets (D) and fibrin (E) were measured throughout the course 
of the experiments.  
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Supplemental Figure S3-10: Platelet monolayer forms in the presence of GR-144053. 

High CTI WB with or without GR-144053 was perfused over collagen/TF at 100 s-1 for 15 minutes 
using a microfluidic device with a 120-μm height. GR-144053 results in a monolayer of platelets 
forming on collagen, but this is difficult to see at normal exposure. Here, we increased exposure 
of images on the left (typical exposure) to the resulting images on the right (i.e. images on the left 
and right are of the same clots). The resulting images on the right better illustrate the presence of 
platelets on collagen in the presence of GR-144053.  
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Supplemental Figure S3-11: P-selectin staining of platelets treated with GR-144053. 

High CTI WB with or without GR-144053 was perfused over collagen/TF at 100 s-1 for 15 minutes 
using a microfluidic device with a 120-μm height. CD61, fluorescence fibrinogen, and P-selectin 
fluorophores were added to label platelets (A), fibrin (B), and alpha-granule release (C), 
respectively, with images taken at 270s and 630s. Fluorescence intensities for platelets (D), fibrin 
(E), and P-selectin (F) were measured throughout the course of the experiments. (A.U. = arbitrary 
units) 
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Supplemental Figure S4-1: NAC had no effect on VWF coated on glass slide before adding 
VWF into activation strip. 

PPACK treated whole blood and HBS with and without NAC was flown over pre-stained VWF 
activation strip at 5100 s-1 for 240s and no reduction of VWF signal was observed on both images 
(a) and quantified fluorescent intensity graphs (b, c and d). Control whole blood showed an 
expected increase in platelet (c) and VWF (d). 
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Supplemental Figure S4-2: Anti-thrombus effect of cysteine treated whole blood under 
pathological shear rate shows similar results of NAC 

Cysteine treated whole blood showed similar hindered primary platelet deposition on 
collagen/VWF activation strip, as well as anti-thrombus effects (a, b, c, and d). Fluorescent 
signals for platelet (e) and VWF (f) showed decrease up on switching too (shown by arrow), but 
the ratio of platelet/VWF signal is hard to visualize (g), indicating that free thiol in both cysteine 
and NAC might have similar function but still has some differences. 
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Supplemental Figure S4-3: NAC does not interact with tPA under arterial shear rate 

PPACK treated whole blood with NAC, tPA, or both, were flowed under pathological shear rate 
(5100 s-1) to see if coexistence of tPA and NAC would impede the anti-thrombus effect of NAC. 
Both images (a, b and c) and fluorescent signals for platelet (d) and VWF (e) showed NAC has a 
strong anti-thrombus effect with or without tPA, meaning that they could be used together 
clinically. 
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Supplemental Figure S4-4: NAC does not interact with tPA under arterial shear rate 

PPACK treated whole blood with NAC, tPA, or both, were flowed under venous shear rate (5100 
s-1) to see if coexistence of tPA and NAC would impede the anti-thrombus effect of NAC. Both 
images (a, b) and fluorescent signals for platelet (c), fibrin (d) and VWF (e) showed NAC has a 
strong anti-thrombus effect with or without tPA, meaning that they could be used together 
clinically. 
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