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ABSTRACT 

HUMAN DIMENSIONS OF BUILDING PERFORMANCE: SENSING, MODELING, AND 

PREDICTING INDOOR ENVIRONMENTAL QUALITY 

Nan Ma 

William W. Braham 

The indoor environment critically affects occupant health and comfort, especially since 

humans spend most of the day indoors. Meanwhile, occupant activities, preferences, and 

behaviors may contribute to a significant amount of building energy consumption. The 

focus of environmental buildings shifted from automated systems to a paradigm of 

collective environmental design since the second half of the 20th century, emphasizing 

human dimensions in building performance, which allows occupants to participate as 

active/passive actuators and sensors. Concurrently, increased environmental awareness 

further spurred the green building movement intending to encourage more high-

performance buildings. The question remains as to whether high-performance buildings 

are also healthy buildings. This dissertation aims to cast new light on how environmental 

design and building systems work for people as well as how building sensors and human 

senses work together to inform the organization and optimization of various 

performance targets such as sustainability, public health, and resiliency. Special 

attention is given to the non-visual environment attempting to facilitate human-in-the-

loop of the building design and operation processes. In order to achieve this goal, 

environmental monitoring, data analysis, and human subject recruitments are developed 

to characterize the human dimension of building performance. 
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CHAPTER 1: INTRODUCTION 

1.1. On the Historical Context of the Built Environment and Health 

Theories about how cities shape the health of residents have existed since ancient times. 

Vitruvius suggested that cities be founded so that they maximize their access to helpful 

sea breezes and minimize the health effects from foul-smelling swamps (Vitruvius 1960). 

In the 19th century, researchers paid increasing attention to the matter of health in the 

indoor environment and concluded that ventilation is an influential factor of 

environmental health (Bedford 1936; Janssen 1999). In the course of the 19th and 20th 

centuries, building systems such as heating, ventilation, air-conditioning (HVAC), and 

lighting have been developed to provide, control, and maintain a comfortable and 

healthy indoor environment (Fitch 1975; Cooper 1998). A remarkable study of the late 

19th century revealed the importance of the indoor environments of homes on human 

health (Carnelley et al. 1887). The study in Scotland showed that living and sleeping in 

crowded rooms, with elevated levels of CO2, microbes, and volatile organic compounds 

(VOCs), meant earlier death from diarrhea, measles, premature birth, bronchitis, 

pneumonia, and accidents. Since then, scientific discussions have been focusing on 

whether indoor air is an important route for the spread of infections. Many studies in the 

1930s and 1940s demonstrated that airborne particles carried and transmitted the 

bacteria of measles, tuberculosis, chickenpox, anthrax, influenza, smallpox, to a large 

extent (Wells 1934; Riley, Murphy, and Riley 1978). IAQ and ventilation settings for 

health concerns attracted much attention up until 1950 (Sundell and för Miljömedicin 

1994). In the London smog episode of 1952, the dwelling residents closed the windows to 

prevent bad air from getting in, but the indoor air caused significantly high mortality rate 
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during this period of time. Since then, indoor air consequently received more attention 

than outdoor air (Bell, Davis, and Fletcher 2004). 

The middle of the twentieth century was also an era where engineers believed that 

machines could solve and do everything. Typical buildings were constructed with large 

single-glazed windows, fully operated with mechanical systems, open plans, and high-

ceilings leading to problems of thermal comfort and health (i.e., improper thermal 

controls among zones; heat gains in summer; heat losses in winter) (Bedford 1936; 

Janssen 1999). Many researchers in the field of thermal comfort have attempted to 

quantify the relationship among the physical parameters of the environment, the 

physiological parameters of people, and the perception of comfort expressed by people 

themselves. One of most influential models was developed by Povl Ole Fanger during 

this period of time (Fanger 1970).  

In 1973, the energy crisis impacted energy consumption in buildings. In order to reduce 

energy consumption, fresh air supply volumes were minimized and building envelopes 

became tighter to reduce infiltration. This decrease in fresh air supply created problems 

with IAQ, especially in office buildings. It triggered the modern scientific history of 

studying indoor air which started in the 1970s with a question: “did indoor air pose a 

threat to health as did outdoor air?” Soon it was recognized that indoor air was a critical 

aspect of the built environment for health (including comfort) (Sundell 2017). From 

1982, the World Health Organization (WHO) used the term Sick Building Syndrome 

(SBS) to label a range of human health symptoms associated with poor IAQ. Recently, 

the COVID-19 pandemic outbreak taught us again that buildings could increase the 

spread of infectious viruses due to spatial configuration, air circulation patterns, and 

human-building interactions. Understanding the relationship between the built 
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environment and health risks can ensure better decision making when we design future 

indoor spaces, to be prepared for the next pandemic. 

1.2. Two Kinds of Effects of Occupants on Building Performance 

As architects, we design high-performance buildings to decrease building energy use and 

provide the benefits of greater comfort, health, and usability to occupants. In these 

buildings, control technologies have advanced over the past decades, and there has been 

a tendency for building designers to increase automation to mitigate energy inefficient 

occupant behaviors. However, overly automated buildings come at a great risk: occupant 

tolerance for discomfort is substantially reduced if occupants as actuators (controllers) 

are disabled. Recent work in social science and psychology and suggest that these 

theories could help us understand occupant behavior in buildings. In this section I bring 

together the related social science research to paint a picture of occupants as sensors and 

actuators in the built environment. 

One theory in the social science literature that sheds light on the “occupant as actuator” 

is Robert White’s Motivation reconsidered: The concept of competence (White 1959). 

White described a human motive to exercise control for its own sake. White further 

concluded that mankindhas an intrinsic need to obtain a sense of mastery over their 

environment. The notion that people are motivated to feel like effective agents capable of 

influencing the events in their environment was also promoted by Jerry M. Burger 

(Burger 1992). Burger called this kind of motive the “desire for control”. Burger believes 

that mankind’s desire for control is a general personality trait, but also acknowledges 

that this motive is not present to the same extent in all people. In the book, he explained 

that “….as we all know, someone who is highly motivated to make the decisions…, and to 

demonstrate his or her ability to conquer any and all challenging tasks. On the other 
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hand, … someone shows little of these inclinations and who seems more than willing to 

allow others to make decisions…” (p. 6). The book is devoted to the message that people 

generally prefer to have some ability to control what happens to them. 

Putting Burger’s theory in the human-in-the-loop context, this is why many building 

managers implemented dummy controls to let the building occupants change the 

environment psychologically, particularly for the occupants who express high desire for 

control. This placebo effect provided the illusion of control to tenants without 

compromising on the system’s efficiency. Some building occupants are more inclined to 

adjust thermostats using more energy to meet their thermal comfort needs, while some 

building occupants drink cold or hot liquids to mitigate thermal discomfort. Hong et al. 

(Hong et al. 2017) observed these differences of energy-related adaptive and non-

adaptive actions, and categorized these behaviors into three levels: 1) austerity – 

occupants are proactive in saving energy, 2) standard – average occupants, and 3) 

wasteful – occupants do not care about energy use. As explained by Nicol and 

Humphreys’ principle (Nicol and Humphreys) – ‘‘people react in ways which tend to 

restore their comfort’’. People naturally try to avoid unpleasant conditions and look for 

pleasant ones. 

Michel Cabanac (Cabanac 1971) introduced the term “alliesthesia” in his publication of 

Physiological role of pleasure to explain human adaptation. “Alliesthesia” explains that 

“a given stimulus can induce a pleasant or unpleasant sensation depending on the 

subject’s internal state” (p. 1107). The term “alliesthesia” is composed of two words 

“allios” meaning “changed” and "esthesia" meaning “sensation”. In the article, Cabanac 

also believes that skin temperature is a human peripheral signal in thermal sensation 

and the skin detectors can “translate this thermal signal into a nervous message 

describing local temperature and its changes” (p. 1104). However, if we can also look at 
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the extent to which people engage in active efforts to deal with the situation, many other 

external drivers such as economic, cultural, regulatory issues, people do not receive, 

perceive, and respond the same way owning to the physical, physiological, and 

psychological differences between people. 

In summary, there is a general agreement that occupants are effective sensors and most 

of the time, we can sense temperature much better than a thermostat especially to decide 

the right temperature for themselves. On the other hand, occupants regularly behave as 

actuators to mitigate their thermal discomfort, such as opening/closing windows, 

adjusting thermostats, changing clothes, and so forth. The resultant actions could impact 

the indoor environment and building HVAC, and plug load system energy consumptions, 

while self-adaptive behaviors can lead to some energy conservation. No matter what the 

energy-using or non-energy-using behaviors that the occupants take,  these kinds of 

occupants take an active role when they inhabit in the buildings. At the same time, 

occupant behavior has passive impacts on the building indoor environment by 

generating heat and CO2 which can indirectly affect building performance as well. By 

acknowledging these two effects and roles, occupant behavior is an important part of the 

social-technical system. Energy use in buildings should be considered a social problem 

as much as a technological one. Architects have to think not just how buildings should be 

designed, but also how buildings will be commissioned and used when they are occupied. 

Occupants behave in more complex ways than designers account for and machine 

learning models can capture, we have to ask and put insight into: what technologies and 

innovations we can encourage building occupants to be more environmentally engaged? 
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1.3. Variables and Modeling Techniques 

Modeling and predicting environmental variables to characterize IAQ for occupants’ 

health and thermal comfort has long been an important topic. Health and thermal 

comfort are commonly quantified using analytical models (Ma, Aviv, et al. 2021). 

Analytical models are those which are based on a mathematical solution of governing 

equations, including empirical and deterministic models. Empirical models are derived 

by fitting a stream of data to define the relationship between independent variables and 

outcome variables leading to an approximation to analytic formulae, including 

measurement and system noise. By contrast, deterministic models are exact solutions 

formulated from a hypothesis and one or more assumptions. This type of model 

supposes that the underlying mechanisms in the variability of parameters are well-

defined such as thermodynamic and mass-transfer rules. In building science, developing 

a deterministic model necessitates detailed and complex input data such as 

characteristics of building envelope, building configurations, and outdoor levels of the 

target pollutants. Such models provide a reference to understand the underlying 

mechanisms, estimate their dependent relations, and identify related variables. One 

weakness of deterministic analysis is the difficulty of retrieving adequate information to 

assemble a model, particularly in complex buildings and especially when the interaction 

of occupants with the environment is included. 

It is important to note that empirical and analytical models developed with machine 

learning techniques show a robust capacity for providing insights into setting 

environmental systems, taking multiple referred variables into account to audit building 

performance, allowing the occupant to adjust and make corresponding plans. Machine 

learning and statistical models that have been widely used include decision trees 

(classification and regression trees), random forests, support vector machine (SVM), 
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various regression models, k-nearest neighbors (KNN), reinforcement learning (RL), and 

artificial neural networks (ANN). All of these studies showed  promise, though the input 

variables and output variable might be chosen differently. However, it is worth noting 

that the uncertainty and stochasticity of occupant behavior can be troublesome and can 

limit predictive performance in practice. Previous studies found that the dynamic 

responses of occupants to indoor climates affect IAQ and thermal experience. Behavior 

has consequences for building performance, namely energy use and environmental 

quality in the buildings over time. Multiple studies have demonstrated that integrating 

occupant behavior such as thermostat adjustments (Ghahramani, Jazizadeh, and 

Becerik-Gerber 2014), personal comfort system control (Kim et al. 2018), and interaction 

with window systems (Tan and Deng 2020) provides more data points, captures an 

individual’s distinctive thermal characteristics, and enhances the reliability and 

reproducibility of models. 

In addition to the uncertainty of occupant behavior, many other sources of uncertainty 

contribute to the precision of thermal comfort and IAQ models. As concluded by Wang et 

al. (Wang et al. 2018), these sources include inter-individual and intra-individual 

differences, uncertainty in objective instrumental measurement, and subjective 

evaluation principles. Even further, many unmeasurable or indirect influencing factors 

are driving thermal comfort and IAQ. For example, occupants’ social and cultural 

experiences, physical properties of the building design, and open plan office space 

configuration may not be universally quantifiable. All of these circumstances increase the 

prediction uncertainty of deterministic data-driven models. Bayesian computation can 

be more effective in calibrating thermal parameters, IAQ forecast, and building energy 

models. The Bayesian approach allows us to synthesize prior knowledge and available 

measurements into a unified modeling framework. Modeling methods such as Bayesian 
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linear regression, Bayesian hierarchical modeling, and Bayesian neural network (Ma, 

Chen, et al. 2021) offer a way to express and quantify uncertainty. The models and 

methods described above will lay the foundations for this dissertation research 

methodology and enable the progress of the studies referring to healthy building, IEQ 

analysis, and energy system optimization. 

1.4. Research Objectives:  The Vision on the Four Parts 

People are the central and fundamental measure in architecture and buildings are 

designed to fulfill people’s biological needs (Olgyay 1963). Prior to technical solutions 

(i.e., environmental systems), the pre-modern buildings had very little alternatives but 

had to rely on building forms and materials against hostile climates (Fitch and Branch 

1960). These passive/vernacular buildings mixed with man’s inventiveness 

demonstrated a primitive approach to the climate response. These buildings are 

completely driven and operated by people. The dialogue between people and place was 

evoked (Figure 1. 1). 

 

Figure 1. 1: The dialogue between people and buildings. 

As HVAC took over the conditioning of the indoor spaces, the media of architecture and 

climate also began to shift (Barber 2020). The invention of control systems such as the 

thermostat that can automatically decide when to heat or when to cool became hugely 

important in lots of buildings designed in the mid-20th century. Architectural examples 

such as Seagram Building designed by Mies van der Roh and the United Nations 
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Headquarters developed by Oscar Niemeyer and Le Corbusier exemplify that people 

inside buildings are not favored and involved in the building management (Figure 1. 2). 

People cannot control and change the way that how the building is heated or cooled. The 

only intervention they can take is to adjust the shades. It turns out that people struggled 

with the physical environment and experienced uncomfortable a lot of the time. If this 

piece of history taught architects and designers any lessons, I believe it is rethinking and 

reflecting on this total relationship among people, building, and environmental system. 

 

Figure 1. 2: People inside buildings are not involved in the building management. 

While air conditioning has seemingly taken over the built environment, understanding 

the interactions of the four elements - building, people, environmental system, and 

sensors – appear to be particularly critical. The modeling methods, simulation tools, and 

diagnostic and sensing devices are advanced in the contemporary discourse. More efforts 

should be made to bring these different trajectories of research together. 

Almost all buildings are expected to satisfy the often-divergent environmental 

requirements of the people and the necessities of shelter. We have to admit that there is 
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no “one size fits all.” People’s desire for control (acting as an actuator) conflicts with the 

increased automation of the environmental system (cutting people out of the loop), 

making it difficult to reconcile contradictory requirements. Such conflicts must be 

studied, understood, and resolved, though they involve factors that are subjective and 

objective, dynamic and static, theoretical and practical. As illustrated in Figure 1. 3, the 

main goal of this dissertation is to get the human-system-building to work together 

better and when appropriate, to let sensors stand in for people. By monitoring the 

building and people, this doctoral dissertation aims to put more information here in 

order to bring people back to the loop and facilitate four parts working together in our 

contemporary architecture practice.  

 

Figure 1. 3: A schematic overview of the dissertation research objectives. 
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1.5. Dissertation Chapter Overview 

Chapter 1 introduces the dissertation. Chapter 2 examines what factors are worth 

measuring if we want the human-building-system to work together by performing a 

critical review on analytical models. Chapter 3 looks at different part of the loop 

illustrated in Figure 1. 1 and aims to examine how occupants as environmental 

controllers influence building performance and how to improve building thermal 

performance by quantifying the uncertainty of occupants’ adaptive thermal behavior. 

Chapter 4 investigates how the physical IoT sensors could stand in for people to evaluate 

indoor health risks if people cannot sense the colorless and odorless air pollutants, such 

as ozone. This chapter also rethinks the role of the building envelope more than just 

separating the physical boundary between indoor and outdoor but preventing outdoor 

pollutant penetration. Chapter 5 focuses on how environmental parameters determine 

children’s sleep quality using subjective questionnaires and polysomnographic measures. 

Chapter 6 reflects the general discussion on human dimensions of building performance 

and outlooks the future research directions. 

 

  



12 

1.6. References 

Barber, Daniel A. 2020. Modern Architecture and Climate: Design before Air 
Conditioning. Princeton University Press. 

Bedford, Thomas. 1936. "The Warmth Factor in Comfort at Work. A Physiological Study 
of Heating and Ventilation." The Warmth Factor in Comfort at Work. A 
Physiological Study of Heating and Ventilation. (76). 

Bell, Michelle L, Devra L Davis, and Tony Fletcher. 2004. "A retrospective assessment of 
mortality from the London smog episode of 1952: the role of influenza and 
pollution." Environmental health perspectives 112 (1): 6-8. 

Burger, Jerry M. 1992. Desire for control : personality, social, and clinical perspectives. 
New York :: Plenum Press. 

Cabanac, Michel. 1971. "Physiological Role of Pleasure: A stimulus can feel pleasant or 
unpleasant depending upon its usefulness as determined by internal signals." 
Science 173 (4002): 1103-1107. 

Carnelley, Thos., John Scott Haldane, A. M. Anderson, and Henry Enfield Roscoe. 1887. 
"IV. The carbonic acid, organic matter, and micro-organisms air, more especially 
of dwellings and schools." Philosophical Transactions of the Royal Society of 
London. (B.) 178: 61-111. 

Cooper, Gail. 1998. Air-conditioning America : engineers and the controlled environment, 
1900-1960. Baltimore: Johns Hopkins University Press. 

Fanger, Poul O. 1970. Thermal comfort: analysis and applications in environmental 
engineering. New York: McGraw-Hill. 

Fitch, James Marston. 1975. American building: the environmental forces that shape it. 
2d ed., rev. and enl. ed. New York: Schocken Books. 

Fitch, James Marston, and Daniel P Branch. 1960. "Primitive architecture and climate." 
Scientific American 203 (6): 134-145. 

Ghahramani, Ali, Farrokh Jazizadeh, and Burcin Becerik-Gerber. 2014. "A knowledge 
based approach for selecting energy-aware and comfort-driven HVAC temperature 
set points." Energy and Buildings 85: 536-548. 

Hong, Tianzhen, Da Yan, Simona D'Oca, and Chien-fei Chen. 2017. "Ten questions 
concerning occupant behavior in buildings: The big picture." Building and 
Environment 114: 518-530. 

Janssen, J. E. 1999. "The history of ventilation and temperature control." ASHRAE 
Journal 41 (10): 48-70. 

Kim, Joyce, Yuxun Zhou, Stefano Schiavon, Paul Raftery, and Gail Brager. 2018. "Personal 
comfort models: Predicting individuals' thermal preference using occupant 



13 

heating and cooling behavior and machine learning." Building and Environment 
129: 96-106. 

Ma, Nan, Dorit Aviv, Hongshan Guo, and William W. Braham. 2021. "Measuring the right 
factors: A review of variables and models for thermal comfort and indoor air 
quality." Renewable and Sustainable Energy Reviews 135: 110436. 

Ma, Nan, Liang Chen, Jian Hu, Paris Perdikaris, and William W. Braham. 2021. "Adaptive 
behavior and different thermal experiences of real people: A Bayesian neural 
network approach to thermal preference prediction and classification." Building 
and Environment 198: 107875. 

Nicol, J. F., and M. A. Humphreys. 2002. "Adaptive thermal comfort and sustainable 
thermal standards for buildings." Energy and Buildings 34 (6): 563-572. 

Olgyay, Victor. 1963. Design with climate: bioclimatic approach to architectural 
regionalism. Princeton, N.J.: Princeton University Press. 

Riley, EC, G Murphy, and RL Riley. 1978. "Airborne spread of measles in a suburban 
elementary school." American Journal of Epidemiology 107 (5): 421-432. 

Sundell, Jan. 2017. "Reflections on the history of indoor air science, focusing on the last 
50 years." Indoor Air 27 (4): 708-724. 

Sundell, Jan, and Stockholm Institutet för Miljömedicin. 1994. On the association 
between building ventilation characteristics, some indoor environmental 
exposures, some allergic manifestations and subjective symptom reports. 
Munksgaard. 

Tan, Zijing, and Xiang Deng. 2020. "An optimised window control strategy for naturally 
ventilated residential buildings in warm climates." Sustainable Cities and Society 
57: 102118. 

Vitruvius, M Pollio. 1960. The ten books on architecture, translated by Morris Hicky 
Morgan. New York, NY: Dover publications. 

Wang, Jingyi, Zhe Wang, Richard de Dear, Maohui Luo, Ali Ghahramani, and Borong Lin. 
2018. "The uncertainty of subjective thermal comfort measurement." Energy and 
Buildings 181: 38-49. 

Wells, WF. 1934. "On air-borne infection: Study II. Droplets and droplet nuclei." 
American journal of Epidemiology 20 (3): 611-618. 

White, Robert W. 1959. "Motivation reconsidered: the concept of competence." 
Psychological review 66 (5): 297. 



14 

CHAPTER 2: MEASURING THE RIGHT FACTORS 

 

Figure 2. 1: An overview of human-building-and-system 

Discussing the human dimensions of building performance starts with an exploration in 

fundamental models and variables, explored in this chapter and adapted from (Ma et al. 

2021). As illustrated in Figure 2. 1, this chapter focuses on what factors are worth 

measuring if we want the human-building-and system work together. We can measure 

numerous factors in the buildings, but what are the variables that play a critical role in 

delivering thermal comfort and indoor air quality if we prioritize people’s needs and 

wellbeing in that loop. The summary and understanding presented in this chapter are 

the foundation for showing that indoor air quality (IAQ) has a powerful impact on 

human health and thermal comfort. This chapter is intended for practicing architects 

and engineers to determine what they need to measure when they carry out the field 

investigations. 

Buildings determine the quality of the living environment, and thermal comfort and 

occupant wellbeing are primary indicators of their success (Mendell et al. 2002). In the 
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indoor environment, ventilation systems play an important role in IAQ and reducing 

occupant discomfort. Their purpose is to remove airborne pollutants and/or dilute their 

concentration to acceptable levels (Y. Li, Leung, G. M., Tang, J. W., Yang, X. , Chao, C. 

Y., Lin, J. Z., Lu, J. W., Nielsen, P. V., Niu, J. , Qian, H. , Sleigh, A. C., Su, H. J., Sundell, 

J. , Wong, T. W. and Yuen, P. L. 2007; Chenari, Dias Carrilho, and Gameiro da Silva 

2016). In many circumstances, ventilation is also used to maintain acceptable 

temperature and relative humidity (Carrer et al. 2015), which are among the largest 

energy consumers in buildings (d’Ambrosio Alfano et al. 2014). One way to increase 

energy efficiency and manage indoor health and comfort is through modeling and 

predicting the prevalence of indoor air pollutants while buildings are being designed. 

The problem is multidimensional and extremely complex, and it has attracted 

researchers from a variety of fields and disciplines to work on solutions; which 

nevertheless remain a challenge (Yin et al. 2010; Okochi and Yao 2016). Ventilation 

system modeling is generally covered in the field of building control. On the other hand, 

understanding occupant health and comfort is conducted by scientific communities 

focused on thermal comfort, epidemiology, and public health. Alignment of occupant 

health and comfort with ventilation control requires a synthesis between these two fields. 

Therefore, investigating what variables of occupant health and comfort are required in 

the modeling of ventilation systems is a critical step toward energy reduction and 

building control. 

The reliance on heating, ventilation, and air conditioning (HVAC) systems in working, 

living, and learning environments have resulted in increased energy usage. Nearly 50% 

of building sector energy is used to maintain indoor health and thermal comfort 

conditions (L. Yang, Yan, and Lam 2014). Many articles in the literature assessed control 

strategies or building sensing systems on the performance of HVAC components. For 
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example, Wang et al. (Wang, Kuckelkorn, and Liu 2017) presented diverse low energy 

methodologies on controlled components, controlled parameters, control mode, and 

control algorithms. Vakiloroaya et al. (Vakiloroaya et al. 2014) evaluated various 

technologies in modeling machinal configurations and component combinations to 

compare energy performance of HVAC systems and more recently, Afroz et al. (Afroz et 

al. 2018) summarized the implementation of state-of-the-art techniques in selecting 

appropriate modeling processes for HVAC control system. Due to the fuzzy nature of 

thermal comfort and indoor environmental quality, other studies investigated fuzzy logic 

controllers (Kolokotsa et al. 2006), fuzzy proportional integral derivative (PID) 

controllers (Carvajal, Chen, and Ogmen 2000), and adaptive fuzzy PD controller 

(Calvino et al. 2004) to maintain a thermally comfortable condition. However, these 

studies focused on energy conservation and standard variables, namely thermal comfort 

metrics and IAQ indices, as primary input and control variables. Occupant wellbeing is 

too often viewed as an energy cost and this means that occupant related variables and 

their associated building design variables remain negligible. This situation calls for a 

clarification of the effective variables. 

2.1. Background 

A number of recent review papers established the connection between ventilation for 

thermal comfort and ventilation for health outcomes. For example, Djongyang et al. 

(Djongyang, Tchinda, and Njomo 2010) reviewed ventilation systems designed for 

thermal comfort based on mathematical modeling of heat transfer. Park and Nagy (Park 

and Nagy 2018) identified a research gap between thermal comfort and building control 

(e.g. ventilation) through the historical development of current systems. Connecting 

ventilation and associated health problems, Fisk (Fisk 2017) argued that increased 

ventilation rates in schools accelerate variability of elevated indoor humidity levels, 
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bringing higher risks of indoor mold growth and increasing thermal discomfort in hot 

and humid climates. Sundell et al.’s (Sundell et al. 2011) study indicated that 

inappropriately low ventilation rates are a contributing factor, raising risks for sick 

building syndrome (SBS) and respiratory infections. Li et al. (Y. Li, Leung, G. M., Tang, 

J. W., Yang, X. , Chao, C. Y., Lin, J. Z., Lu, J. W., Nielsen, P. V., Niu, J. , Qian, H. , Sleigh, 

A. C., Su, H. J., Sundell, J. , Wong, T. W. and Yuen, P. L. 2007) substantiated an 

association among ventilation rates, airflow, and the airborne transmission of infectious 

diseases. As demonstrated in numerous additional studies, ventilation systems are a 

critical means for governing IAQ and comfort management. 

Further studies related to three main topics - wellbeing, energy, and building sensing 

systems – have developed different forms of physics-based models to approximate the 

behavior of environmental systems. Enescu (Enescu 2017) reviewed thermal comfort 

models and discussed the integrations of intelligent control methods such as fuzzy and 

hybrid control. The review study conducted by André et al. (André, De Vecchi, and 

Lamberts 2020), investigated personal comfort models for user-centered environmental 

control, considering energy impact and optimization algorithms. Jung and Jazizadeh 

(Jung and Jazizadeh 2019) proposed a review taxonomy for human-in-the-loop HVAC 

operations and summarized machine learning and probabilistic modeling for pattern 

recognition with respect to the dimensions of occupancy, comfort, and energy efficiency.  

In addition to reviews on thermal comfort models, Wei et al. (Wei et al. 2019) reviewed 

state-of-the-art of IAQ predictions using statistical models such as partial least squares, 

generalized linear models, and Bayesian hierarchical models. Liu et al. (Zhe Liu, Ye, and 

Little 2013) assessed the existing physically based models for predicting the emission of 

organic compounds and the study results suggested that the application of these models 

require more reliable validation. Other than the physics-based models, Cheng et al. 
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(Cheng, Niu, and Gao 2012) coupled representative thermal comfort models to 

computational fluid dynamic (CFD) numerical simulation and evaluated the reliability 

and stability of determining thermal comfort in asymmetrical environments. They 

highlighted the challenge and complexity of coupling between the model and CFD 

simulation, which is usually reserved for specialized inquiries. It is notable that the 

deterministic models implemented through numerical simulation provide vital 

information on independent variables, and valuable feedback on system interactions 

during the design process. These are distinct from the modeling techniques used in 

environmental systems based on time-series of data. A holistic review of measuring right 

factors to improve the interaction of forecasting techniques, comfort, and IAQ is not yet 

available. 

Health and thermal comfort are commonly measured using analytical models. Analytical 

models are those which are based on a mathematical solution of governing equations, 

including empirical and deterministic models. Empirical models are derived by fitting a 

stream of data to define the relationship between independent variables and outcome 

variables leading to an approximation to analytic formulae, including measurement and 

system noise. By contrast, deterministic models are exact solutions formulated from a 

hypothesis and one or more assumptions. This type of model supposes that the 

underlying mechanisms in variability of parameters is well-defined such as examples of 

thermodynamic and mass-transfer rules. In building science, developing a deterministic 

model necessitates detailed and complex input data such as characteristics of the 

building envelope, building configurations, and outdoor levels of the target pollutants. 

Such models provide a reference to understand the underlying mechanisms, estimate 

their dependent relations, and identify related variables. One weakness of deterministic 

analysis is the difficulty of retrieving adequate information to assemble a model, 
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particularly in complex buildings and especially when the interaction of occupants with 

the environment is included (Carreira et al. 2018; Zhao et al. 2014). In the meantime, 

empirical models developed with machine learning (ML) techniques have a robust 

capacity for providing insights into controlling ventilation systems, taking multiple 

referred variables into account during the design stage and the auditing of building 

performance, allowing the occupant to adjust and make corresponding plans. Among 

many ML techniques, artificial neural network (ANN) has the advantage of mapping the 

non-linear dependency of inputs and outputs and performing well for continuous data. 

Reinforcement learning (RL) has substantiated the capacity of learning human 

responses and preferences with a great applicability in complex realistic environments 

(Dalamagkidis et al. 2007; Vázquez-Canteli and Nagy 2019). 

Before ML techniques, the control system for guaranteeing thermal comfort in most 

buildings is the thermostat, which only measures sensible air temperature, neglecting 

humidity, contaminant concentrations, air speed, and other environmental factors. More 

recent buildings have added the CO2 sensor, which serves as a proxy measurement of 

occupancy and air exchange rates. In other words, most of the buildings are dumb and 

only are able to measure a few variables. ML techniques can interact with more 

datapoints and process more measurements of indoor environments. This raises the key 

question of this study, which variables are worth measuring?  

2.2. Analytical Models of Thermal Comfort 

Currently, there are two major thermal metrics that researchers and standards use to 

determine a proper thermal environment for occupants: steady-state approach (Section 

2.2.1) and adaptive comfort approach (Section 2.2.2). Fanger’s steady-state model 

derived from experimental data of college‐age students collected in a climate chamber 
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based on the principle of heat balance, which is now the default model of assessing 

occupants’ thermal comfort for building design and operation. The temperature 

fluctuation was minimized in the chamber and the experiment was conducted for a 3-

hour period in winter. Participants wore standardized clothing and performed 

standardized activities. Using a different approach, the adaptive models were developed 

from field study data and are expressed in a linear regression that relates supply air 

temperature to outdoor temperature or outdoor meteorological variables. They provide 

an alternate comfort model for naturally ventilated buildings. 

2.2.1. Overview of Steady-state Models 

For indoor thermal comfort, Fanger’s steady-state model is widely accepted for 

describing thermal perception of  near-sedentary occupants in air-conditioned spaces 

(Van Hoof 2008). Fanger assumed that the human body strives towards thermal 

equilibrium between the heat generated, consumed, and transferred to the environment. 

The general aim of Fanger’s model is to predict the mean thermal sensation and the 

percentage of dissatisfaction of a given group of people in the environment, represented 

through the indices Predicted Mean Vote-Predicted Percentage Dissatisfied (PMV–PPD) 

in accordance with a seven-point scale of thermal sensation (P.O. Fanger 1970; P. Fanger 

1967). The PMV model encompasses the most important variables that affect the thermal 

comfort state: four measurable environment variables (dry-bulb air temperature 𝑇𝑇𝑑𝑑𝑑𝑑, air 

velocity 𝑣𝑣𝑎𝑎, air humidity 𝐻𝐻, and mean radiant temperature 𝑇𝑇𝑀𝑀𝑀𝑀) and two personal 

variables (metabolic rate and clothing insulation). This chapter focuses on the IAQ-

related variables and their impacts on thermal comfort and health. Therefore the human 

parameters put forward by Fanger will not be analyzed. 
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The purpose of introducing 𝑇𝑇𝑀𝑀𝑀𝑀 is to quantify the equivalent temperature of radiant 

fluxes of the indoor environment received by the human body (Guo et al. 2020; 2013). It 

is worth noting that Fanger’s computation of 𝑇𝑇𝑀𝑀𝑀𝑀 only reports thermal radiation 

transferred by the walls and 𝑇𝑇𝑀𝑀𝑀𝑀 is oversimplified by averaging the temperatures taken at 

different surfaces in an unchanging condition: 
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where: 

𝑇𝑇𝑖𝑖  = simulated or measured surface 𝑖𝑖 temperature, oC; 

𝑆𝑆𝑖𝑖 = surface 𝑖𝑖 areas, m2.  

In addition, the expression of the PMV index shown in the standard (2005) is contingent 

on the following quantities. All the related quantities are visualized in Figure 2. 2. 

 
𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑓𝑓(𝑀̇𝑀 , 𝑊̇𝑊 , 𝑓𝑓𝑐𝑐𝑐𝑐 ,𝑝𝑝𝑎𝑎,𝑇𝑇𝑑𝑑𝑑𝑑,𝑇𝑇𝑐𝑐𝑐𝑐 ,ℎ𝑐𝑐) (Error! 

Bookmark 
not 

defined.2.2) 

where: 

𝑀̇𝑀 = the metabolic rate, W/m2; 

𝑊̇𝑊 = effective mechanical work/power, W/m2; 

𝑓𝑓𝑐𝑐𝑐𝑐 = the ratio of clothing surface area to the exposed surface area; 

𝑝𝑝𝑎𝑎 = vapor pressure of water; 

𝑇𝑇𝑐𝑐𝑐𝑐  = the clothing surface temperature, oC; 

𝑇𝑇𝑑𝑑𝑑𝑑  = dry bulb temperature, oC; 

ℎ𝑐𝑐 = the heat exchange by evaporation on the skin, oC; 
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The extended explanation and formulation of the PMV index are elucidated in (Croitoru 

et al. 2015). The PMV index is also approximated and derived empirically by accounting 

for the occupant exposure time (2013):  

 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛼𝛼𝑝𝑝 ⋅ 𝑇𝑇𝑑𝑑𝑑𝑑 + 𝛽𝛽𝑝𝑝 ⋅ 𝑝𝑝𝑎𝑎 + 𝛿𝛿𝑝𝑝 (2.3) 

where: 

𝛼𝛼𝑝𝑝, 𝛽𝛽𝑝𝑝, 𝛿𝛿𝑝𝑝 = the correlative coefficients for indoor environments. 

Other than 𝑇𝑇𝑀𝑀𝑀𝑀, the rationale for including the rest of the ambient parameters proposed 

by Fanger such as air temperature 𝑇𝑇𝑎𝑎, air speed 𝑣𝑣𝑎𝑎, humidity 𝐻𝐻 (sometimes captured with 

relative humidity 𝑅𝑅𝑅𝑅) is that the human thermoregulatory system maintains thermal 

equilibrium with multiple pathways of heat exchange. The air velocity 𝑣𝑣𝑎𝑎 [m/s] is the 

distance that air flows per unit time. The air velocity has a considerable effect on 

discomfort conditions, especially when it is higher than 40 ft/min (0.203 m/s) (Singh et 

al. 2002). Moreover, the air velocity across the building material surface will affect the 

convective mass transfer coefficient of formaldehyde and other organic compounds (Ye, 

Won, and Zhang 2015). 

The relative humidity 𝑅𝑅𝑅𝑅 is the ratio of water vapor pressure to maximal quantity of 

water vapor pressure embodied in the air at a given temperature (Singh et al. 2002), 

which is regularly expressed in percentage. In the indoor environment, 𝑅𝑅𝑅𝑅 is dependent 

on 𝑇𝑇𝑎𝑎 and the quantity of water vapor contained in the air. For human comfort the 

building system control  must maintain 𝑅𝑅𝑅𝑅 within a moderate range, low enough to be 

comfortable but high enough to avoid the effects of very dry air on skin and respiration. 

A number of research outcomes showed that 𝑅𝑅𝑅𝑅 can strongly affect thermal comfort 

(2013; Wolkoff 2018; P.O. Fanger 1970), IAQ perception (Rupp, Vásquez, and Lamberts 

2015; Fang et al. 2004), occupant health (Wolkoff 2018; Fang et al. 2004), and energy 
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usage (L. Yang, Yan, and Lam 2014; Wan et al. 2009). These scientific studies indicated 

that ventilation control plays an important role in striking a balance between humidity 

and air temperature to deliver comfort for the occupants. 

 

Figure 2. 2: Variables identified from Fanger’s steady-state model. 

2.2.2. Overview of Adaptive Models 

Adaptive models are derived from field studies that determine the actual acceptability of 

the thermal environment. These have shown that the PMV index is not recommended for 

the prediction of mean thermal comfort when occupants are under spatially non‐uniform 

thermal conditions such as naturally ventilated buildings, due to a large discrepancy 

between the predicted PMV and actual thermal sensation votes (X. Yang et al. 2015; 

Ioannou, Itard, and Agarwal 2018). The calculated PMV likely underestimates or 

overestimates the performance of thermal environment for its occupants (Han et al. 

2007; Ioannou, Itard, and Agarwal 2018; Gilani, Khan, and Pao 2015). One way to 

explain the discrepancy is that the description of thermal comfort often conforms with 

physiological acclimatization (B. Li et al. 2010). These physiological changes occur 
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within an individual, modifying thermoregulatory system settings to respond to 

continuous exposure caused by environmental heat stress (Prek 2005).   

Modified PMV indices were then introduced and called Adaptive Predicted Mean Vote 

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎). The 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 method addresses the thermal comfort in a warm environment and 

essentially computes “the same optimum operative temperature as the analytic PMV 

approach, but uses mean outdoor effective temperature as the only input instead of the 

usual four inputs (𝑅𝑅𝑅𝑅, 𝑣𝑣𝑎𝑎, clothing insulation, metabolic rate,) required by the analytic 

PMV method” (de Dear, Brager, and Cooper 1997).  Yao et al. (Yao, Li, and Liu 2009) 

investigated and developed the correlative relation between 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and PMV in the case 

of buildings with natural ventilation: 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = (𝑃𝑃𝑃𝑃𝑉𝑉−1 + 𝛽𝛽)−1 (2.4) 

The term 𝛽𝛽 in Eq. (2.4) is recognized as “adaptive coefficient” in buildings with natural 

ventilation, and stands for the ratio of impact between psychology, behavior, and the 

physical stimulus. The implementation of adaptive coefficient 𝛽𝛽 aims to correct and 

adjust the PMV model itself to reduce overestimations and/or underestimations 

(Holopainen et al. 2014). Other field studies further determined 𝛽𝛽 to be more specific by 

taking consideration of cold (Yao, Li, and Liu 2009) and warm conditions (Gao, Wang, 

and Wargocki 2015), buildings in free-running period of time (Baker and Standeven 

1996), or buildings in a hot and humid climate region (Han et al. 2007). 

Another adaptive model is the New Predicted Mean Vote (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) introduced by 

Humphreys and Nicol (Humphreys and Fergus Nicol 2002), which aims to match the 

predicted PMV results with actual thermal sensation voted by occupants in air-
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conditioned buildings (Rupp, Vásquez, and Lamberts 2015). The 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 model expressed 

in (Humphreys and Fergus Nicol 2002) is shown as: 

 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝛾𝛾 ⋅ 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃_𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (2.5) 

where 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃_𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is an empirically fit model defined as: 

 
𝑓𝑓𝑃𝑃𝑃𝑃𝑉𝑉𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = −4.03 + 0.0949 ⋅ 𝑇𝑇𝑜𝑜𝑜𝑜 + 0.00584 ⋅ 𝑅𝑅𝑅𝑅% + 1.201 ⋅ 𝑀̇𝑀 ⋅ 𝑓𝑓𝑐𝑐𝑐𝑐

+ 0.000838 ⋅ 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜2  
(2.6) 

This model assesses the relation among the operation temperature 𝑇𝑇𝑜𝑜𝑜𝑜, relative humidity 

𝑅𝑅𝑅𝑅%, metabolic rate 𝑀̇𝑀, the ratio of clothing surface area to the exposed surface area 𝑓𝑓𝑐𝑐𝑐𝑐, 

and the outdoor mean air temperature 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜. The operative temperature is determined 

and affected by the mean radiant temperature 𝑇𝑇𝑀𝑀𝑀𝑀 and air temperature 𝑇𝑇a (Atmaca, 

Kaynakli, and Yigit 2007). Study in (Butera 1998) expresses the relation of these three 

parameters into a mathematical equation, if 𝑇𝑇𝑀𝑀𝑀𝑀 is less than 4 oC apart from 𝑇𝑇𝑎𝑎 and 

airflow is lower than 0.2m/s: 

 𝑇𝑇𝑜𝑜𝑜𝑜 = (𝑇𝑇𝑎𝑎 + 𝑇𝑇𝑀𝑀𝑀𝑀)/2 (2.7) 

Another equation to establish the relationship among 𝑇𝑇𝑀𝑀𝑀𝑀, 𝑇𝑇𝑎𝑎 and 𝑇𝑇𝑜𝑜𝑜𝑜 is presented in 

(d’Ambrosio Alfano et al. 2014) and this model is included in the ASHRAE 55 standards 

(American Society of Heating, Refrigerating and Air-Conditioning Engineers) as well 

(2013): 

 𝑇𝑇𝑜𝑜𝑜𝑜 = α𝑇𝑇𝑎𝑎 + (1 − α)𝑇𝑇𝑀𝑀𝑀𝑀 (2.8) 

where α is a correction coefficient dependent on the air speed. 

Apart from the aforementioned models, Nicol and Humphreys (Nicol and Humphreys 

2002) included exposure time as a factor as well as occupants’ actions to specify 

thermally comfortable temperature, for example opening a window and taking off 
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clothes. The equation for the exponentially weighted running mean at time 𝑡𝑡 is written 

as: 

 𝑇𝑇𝑎𝑎(𝑡𝑡) = (1 − α)(𝑇𝑇𝑡𝑡−1 + α𝑇𝑇𝑡𝑡−2 + α2𝑇𝑇𝑡𝑡−3. . . ) (2.9) 

where α is a constant (α ∈ [0,1)), 𝑇𝑇𝑎𝑎(𝑡𝑡) represents the running mean temperature at time 

𝑡𝑡, 𝑇𝑇𝑡𝑡 is collected as the mean temperature in a time-series 𝑡𝑡 at equal intervals. 𝑇𝑇𝑡𝑡−𝑛𝑛 is the 

instantaneous temperature at previous 𝑛𝑛 time-intervals.  Figure 2. 3 diagrammatically 

illustrates the key variables used in adaptive models. 

 

Figure 2. 3: Variables identified from adaptive comfort models. 

2.2.3. Application and Limitations 

Fanger’s method became the basis of the ISO 7730 (2005), still used in practice , and of 

the ASHRAE 55 standard (2013). Table 2. 1 and Table 2. 2 present the permissible range 

of operative temperature that concluded from the steady-state studies. 

Table 2. 1. ISO 7730 recommended 𝑇𝑇𝑜𝑜𝑜𝑜 for occupants doing sedentary activity. 
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Season Clothing insulation Metabolic rate Optimal 𝑇𝑇𝑜𝑜𝑜𝑜 (°C) 𝑇𝑇𝑜𝑜𝑜𝑜 ranges (°C) 

Summer 0.5 1.2 24.5 23-26 

Winter 1.0 1.2 22 20-24 

Table 2. 2. ASHRAE 55 recommended 𝑇𝑇𝑜𝑜𝑜𝑜 for occupants doing sedentary activity at 50% 

RH and average 𝑣𝑣𝑎𝑎 less than 0.15 m/s. 

Season Clothing insulation Metabolic rate Optimal 𝑇𝑇𝑜𝑜𝑜𝑜 (°C) 𝑇𝑇𝑜𝑜𝑝𝑝 ranges (°C) 

Summer 0.5 1.2 24.5 23-26 

Winter 0.9 1.2 22 20-23.5 

 

Both steady-state and adaptive models have limitations. The steady-state models have 

high uncertainty of thermal comfort predictions even if air temperature, air velocity and 

relative humidity are measured, due to the inaccurate estimation on occupants’ clothing 

insulation and metabolic rate. Up to this point, the table-lookup method is the most used 

approach to approximate these factors. This can introduce severely biased estimates, 

since the calculated value of clothing insulation differs if different methods were used to 

measure clothing area, the body surface area and clothing circumference and then infer 

the insulation value. Moreover, Kingma and van Marken Lichtenbelt (Kingma and van 

Marken Lichtenbelt 2015) claimed that the enumerated metabolic rate in the standards 

badly needs to be recalibrated. For practical applications, Gilani et al.  (Gilani, Khan, and 

Pao 2015)  compared validation of the steady-state model in air-conditioned and 

naturally ventilated buildings and found that the model underestimates thermal 

sensation by 13% in summer and overestimates by 35% in winter. 

The simplicity of adaptive comfort models gives rise to the concerns of oversimplifying 

inter-individual variability of adaption and the validation of models was supported by 

data acquired from occupants in naturally ventilated buildings. Moreover, the impacts of 

other environmental factors on human adaptability were neglected. Nguyen et al. 
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(Nguyen, Singh, and Reiter 2012) conducted field surveys and found that the adaptive 

model introduced a large bias of indoor temperature setting due to the ignorance of air 

velocity and humidity. Halawa and Van Hoof (Halawa and Van Hoof 2012) stated that 

the adaptive comfort metric is not accurate when 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 is colder than 10 °C and hotter 

than 33 °C.  

2.3. Analytical Models of Indoor Air Quality 

The gold standards of healthy IAQ were challenged by researchers from time to time. 

Many countries’ national organizations and authentic agencies have stipulated 

guidelines. A comprehensive summary of standards and guidelines as developed by 

various worldwide organizations is presented in Abdul-Wahab et al.’s review study 

(Abdul-Wahab et al. 2015). World Health Organization (WHO) and the United States’ 

key standards involved in setting IAQ will be summarized in this section as well (Table 2. 

3). As noted above, this study focuses on the typical contaminants which exist in a 

majority of indoor environments and poses the greatest risk to health. Contaminants like 

carbon monoxide and Radon are not covered because they usually accumulate at high 

levels in particular spaces (e.g., kitchen and basement). Other contaminates such as 

mold are not discussed in this study since they are difficult to detect with environmental 

monitoring and require daily observations to measure. 

Table 2. 3. The primary IAQ standards and guidelines stipulated by WHO and the United States’ authentic agencies. 

Organization Reference 

American Society of Heating, Refrigerating and 
Air Conditioning Engineer (ASHRAE) 

("American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE)" 2016) 

Occupational Safety and Health 
Administration (OSHA) 

("Occupational Safety Health Administration (OSHA)" 
2014;  "United States Environmental Protection Agency 

(EPA)" 2010) 

US Environmental Protection Agency (EPA) 
("United States Environmental Protection Agency 

(EPA)" 2010;  "United States Environmental Protection 
Agency (EPA)" 2004) 
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World Health Organization (WHO) ("World Health Organization (WHO)" 2010;  "World 
Health Organization (WHO)" 2006) 

2.3.1. Models of Determining Carbon Dioxide Concentrations 

Carbon Dioxide (CO2) level is of great importance in the IAQ and is often used as the 

proxy for ventilation rates (Fisk 2017). CO2 concentrations indicate IAQ acceptability, air 

exchange suitability, and whether adequate fresh air is being supplied to the indoor 

spaces in buildings (Apte 2000). The concentration of CO2 in buildings can be higher 

than outdoors in magnitude, typically ranging from 350 to 2,500 parts per million (ppm) 

(Seppänen, Fisk, and Mendell 1999), but in some cases reaching 4,000–4,500 ppm or 

even higher (Bekö et al. 2010; Shaughnessy et al. 2006). Sick building syndrome (SBS) 

symptoms correlated by elevated CO2 levels include headache (Dan Norbäck and 

Nordström 2008; Azuma et al. 2015), fatigue (X. Zhang et al. 2017), eye irritation 

symptoms (Azuma et al. 2015), neuro-physiologic symptoms (i.e. lack of concentration 

(Muscatiello et al. 2015), cognitive performance (Allen et al. 2016), decision-making 

(Satish et al. 2012)), upper and lower respiratory tract symptoms (Mentese et al. 2015). 

WHO and different organizations in the United States have suggested different limit 

values as listed in Table 2. 4. 

Table 2. 4. Standards and guidelines for limiting values of CO2. 

Organization Value Ref 

ASHRAE 
No more than 700 ppm above outdoor 

concentration 
600 ppm (high level of comfort) 

("American Society of Heating, 
Refrigerating and Air-Conditioning 

Engineers (ASHRAE)" 2016) 

OSHA 600-1,000 ppm (preferred) ("Occupational Safety Health 
Administration (OSHA)" 2014) 

EPA 800 ppm (acceptable) 

("United States Environmental 
Protection Agency (EPA)" 2010;  
"United States Environmental 

Protection Agency (EPA)" 2004) 

WHO 1,000 ppm ("World Health Organization 
(WHO)" 2010) 
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From a practical point of view, CO2 concentration is often taken as an approximate 

surrogate for levels of occupant-generated pollutants (X. Zhang et al. 2017), and for 

estimating a proper ventilation rate per occupant (Apte 2000). There are a variety of 

methods for the CO2 concentration estimations in a well-mixed space, as described in 

some studies (T. Lu et al. 2010; Griffiths and Eftekhari 2008; Ng et al. 2011): 

 
𝐶𝐶𝐶𝐶𝑂𝑂2(𝑡𝑡) = 𝐶𝐶0 +

𝐺𝐺
𝑄𝑄

+ (𝐶𝐶0 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 −
𝐺𝐺
𝑄𝑄

) 𝑒𝑒−
𝑄𝑄
𝑉𝑉𝑡𝑡 

(2.10) 

where: 

𝐺𝐺 = the generation rate of CO2, m3/s; 

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = outdoor CO2 concentrations, ppm; 

𝐶𝐶0 = indoor CO2 concentrations at time 0, ppm; 

𝑄𝑄 = the volume of air flows into a space per unit time, m3/s; 

𝑉𝑉 = the volume of indoor air, m3; 

𝑡𝑡 = time, s. 

The exponential term in Eq.10 is neglectable when CO2 concentration ultimately reaches 

a steady state (Eq. 2.11). The system then can be simplified and computed to 

approximate a building ventilation operation as: 

 
𝐶𝐶𝐶𝐶𝑂𝑂2(𝑡𝑡) =

𝑁𝑁(𝑡𝑡)𝐺𝐺(𝑡𝑡)
1.8𝑄𝑄(𝑡𝑡)

+ 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) 
(2.11) 

where: 

𝐺𝐺(𝑡𝑡) = CO2 generated by each occupant at time 𝑡𝑡; 

𝑄𝑄 = the volume of air flows into a space per unit time, m3/s; 

𝑁𝑁(𝑡𝑡) = a number of occupants in the space at time 𝑡𝑡; 

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = outdoor CO2 concentration at time 𝑡𝑡.  

Eq. 10 and 11 model the temporal evolution of CO2 concentration and capture a general 

trend to reflect future fluctuations. However, these two models require multiple 



31 

observations recorded sequentially over time, for example, real-time occupancy 

monitoring. Apart from that, Chan et al. (Chan et al. 2015) used the following equation to 

predict the steady-state indoor CO2 concentrations, 𝐶𝐶𝑖𝑖𝑖𝑖 [ppm]2., given the CO2 

generation rate 𝐺𝐺 [L/s-person]. The equation introduced by Chan el al. uses similar 

factors but without the time evolution. 

 
𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 +

𝐺𝐺 ⋅ 𝑁𝑁
𝑄𝑄

 
(2.12) 

where: 

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = the outdoor CO2 concentrations, ppm; 

𝑄𝑄 = the outdoor airflow rate, m3/h; 

𝑁𝑁 = the number of occupants in the space. 

To summarize, studies on computing and modeling CO2 concentration in the built 

environment identified a number of variables (Figure 2. 4), such as CO2 generation rate 

𝐺𝐺, outdoor CO2 concentrations 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜, the volume flow rate 𝑄𝑄, room volume 𝑉𝑉 and number 

of occupants in a room 𝑁𝑁. The concentration of CO2 is rarely constant in an indoor 

environment and must be evaluated regularly, since the occupancy (CO2 generation rate) 

varies. The effectiveness of ventilation is the same as the dilution of CO2 (Seppänen, Fisk, 

and Mendell 1999). Other than investigations on CO2 concentration and its impact on 

occupants’ wellbeing, Ramalho et al.’s (Ramalho et al. 2015) study results indicated that 

CO2 concentration could be used as an IAQ proxy and averaged concentration of CO2 had 

a positive and significant association with PM2.5  and PM10  levels. 
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Figure 2. 4: Variables identified from models of CO2 concentration computation. 

2.3.2. Indoor Airborne Contaminants 

Indoor air pollution and its adverse health effects attracted much attention from the late 

1960s (Samet, Marbury, and Spengler 1987). Reduced ventilation rates and airtight 

buildings for the sake of energy conservation resulted in building-related illness and 

other adverse effects on human health (Sundell 2004). Although the impact of indoor air 

pollution on many health effects remains controversial, epidemiologic and clinical 

research has identified some health problems closely related to the common pollutants 

found in indoor environments, particularly particulate matter (PM), nitrogen dioxide 

(NO2), ozone and volatile organic compounds (VOCs). 

Models of Determining Particulate Matter Concentrations 

Airborne PM has been recognized as one of the most health-relevant air contaminants. 

PM is a complex mixture of solid and/or liquid particles suspended in air and varies in 

size, shape and composition ("United Nations Environment Programme and the World 

Health Organization" 2013; R. Zhang et al. 2015;  "World Health Organization (WHO)" 
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2013). Kim et al.’s (K.-H. Kim, Kabir, and Kabir 2015) extensive review analyzed a 

number of epidemiological studies and consistently suggested a strong association 

between exposure to ambient PM, and diminished total lung capacity and increased risks 

of chronic obstructive pulmonary diseases. EPA regulated particles mainly in two sizes 

following their predicted penetration capacity into healthy lung tissue as either: 1) coarse 

inhalable particles (PM10) with an aerodynamic diameter of 10 micrometers and smaller, 

or 2) fine inhalable particles (PM2.5) with an aerodynamic diameter of 2.5 micrometers 

and smaller ("United States Environmental Protection Agency (EPA)" 2010). Given that 

there is a significant inter-individual difference in responding to a given exposure, it 

appears unlikely that any guidelines would provide complete protection for every 

individual. The guideline values recommended by WHO and the US agencies listed in 

Table 2. 5. 

Table 2. 5. Standards for guidance values of PM2.5. 

Organization PM2.5 Value PM10 Value Ref 

ASHRAE 

3,000 μg/m3 for a 8h average at 
ceiling height 

65 μg/m3 for a 24h average in 
breathing zone 

150 μg/m3 for a 24h 
average 

("American Society of 
Heating, Refrigerating and 
Air-Conditioning Engineers 

(ASHRAE)" 2016) 

OSHA 5,000 μg/m3 for a 8h average 150 μg/m3 for a 24h 
average 

("Occupational Safety 
Health Administration 

(OSHA)" 2014) 

EPA 60 μg/m3 for a 24h average 150 μg/m3 for a 24h 
average 

("United States 
Environmental Protection 

Agency (EPA)" 2004) 

WHO 25 μg/m3 for a 24h average 50 μg/m3 for a 24h 
average 

("World Health 
Organization (WHO)" 

2006) 

 

There is no single model well-suited for addressing all issues of concerns due to the 

essentially complicated system of particles, although all deterministic methods were 

developed on the basis of a fundamental principle - mass conservation. According to 
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(Nazaroff 2004), Figure 2. 5 diagrammatically illustrates the material‐balance approach 

and depicts some processes that determine indoor particle concentrations associated 

with the effectiveness of ventilation or air transportation capacity. 

 

Figure 2. 5: Reproduced schematic representation of indoor particle dynamic processes from (Nazaroff 2004). 

As suggested by Figure 4, it is assumed that mechanical supply, natural ventilation, and 

infiltration are the only pathways that affect indoor particle levels and the particles are 

attributed uniformly throughout the indoor space, sequentially mass conservation would 

be written into this governing equation for the concentration of indoor particles: 

𝑑𝑑(𝐶𝐶𝑖𝑖𝑖𝑖𝑉𝑉)
𝑑𝑑𝑑𝑑

= 𝐸𝐸 + 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜[𝑄𝑄𝑠𝑠(1 − 𝜂𝜂𝑠𝑠) + 𝑄𝑄𝑁𝑁 + 𝑄𝑄𝐿𝐿𝑃𝑃] − 𝐶𝐶𝑖𝑖𝑖𝑖[𝑄𝑄𝐹𝐹𝜂𝜂𝐹𝐹 + 𝜉𝜉𝜉𝜉 + (𝑄𝑄𝑆𝑆 + 𝑄𝑄𝑁𝑁 + 𝑄𝑄𝐿𝐿)] 
 

(2.13) 

where: 

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = outdoor particles concentrations, µg/m3; 

𝑄𝑄𝑠𝑠 = the flow rate of mechanical supply, m3/h; 

𝑄𝑄𝑁𝑁 = the flow rate of natural ventilation, m3/h; 

𝑄𝑄𝐿𝐿 = the flow rate of leakage (infiltration), m3/h; 



35 

𝑃𝑃 = the penetration rate of leakage flow path; 

𝜂𝜂𝑆𝑆 = single-pass removal efficiency filtered by mechanically operated supply; 

𝑄𝑄𝐹𝐹 = the flow rate of a particle‐control filter, m3/h; 

𝜂𝜂𝐹𝐹 = single-pass removal efficiency of a particle‐control filter; 

𝐸𝐸 = emission source rate, µg/h; 

𝜉𝜉 = a deposition rate of particles onto room surfaces, h−1; 

𝑉𝑉 = space volume, m3; 

𝐶𝐶𝑖𝑖𝑖𝑖 = indoor particles concentrations, µg/m3. 

Eq. 2.13 is the most widely used model to estimate indoor particle levels in typical 

processes, since it directly solves the net rate of particle accumulation by subdividing 

particle behaviors into different pathways. On the other hand, it assumes these are the 

only pathways that transport particles. The calculated results are highly contingent on 

𝜂𝜂𝑆𝑆, 𝜂𝜂𝐹𝐹, 𝑃𝑃, 𝐸𝐸, and 𝛽𝛽 and may vary largely with different particle size. Therefore, Eq. 13 is 

not a direct representation of the entire particle mass in the air. To eliminate such 

concern, Madureira et al.’s study (Madureira, Paciência, and De Oliveira Fernandes 

2012) focused on PM10 dose rates which were calculated using the following model to 

assess health risks and this equation was validated in other published studies as well 

(Castro et al. 2011; Fonseca et al. 2014; Kalaiarasan et al. 2009): 

 
𝐷𝐷 =

𝐵𝐵𝑅𝑅𝑊𝑊𝑊𝑊

𝐵𝐵𝐵𝐵
⋅ 𝐶𝐶𝑊𝑊𝑊𝑊 ⋅ 𝑂𝑂𝑂𝑂 ⋅ 𝑁𝑁𝑡𝑡 

(2.14) 

where: 

𝐷𝐷 = age-dependent dose rate, μg/kg/day; 

𝐵𝐵𝐵𝐵𝑊𝑊𝑊𝑊 = age-dependent weighted average breathing rate, L/min; 

𝐵𝐵𝐵𝐵 = age-dependent body weight, kg; 

𝐶𝐶𝑊𝑊𝑊𝑊 = weighted average values of PM10 concentrations, μg/L;  
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𝑂𝑂𝑂𝑂 = occupancy factor for effective dose; 

𝑁𝑁𝑡𝑡 = the total amount of minutes spent indoors per day, min/day. 

The model concluded in Madureira et al.’s study also indicated the need to collect 

occupant data and then established the corresponding profile to better offer health and 

comfort centered building control system (Naylor, Gillott, and Lau 2018). 

Models of Determining Nitrogen Dioxide Concentrations 

Nitrogen Dioxide (NO2) is a well-known air pollutant with evidence of adverse health 

effects independent of other common pollutants such as PM. Since NO2 is the pollutant 

negatively associated with wind speed, some studies have shown that NO2 level may be 

used as an indicator of air stagnation in a local microclimate (Dan Norbäck et al. 2017; 

Ito, Thurston, and Silverman 2007). Ito et al. (Ito, Thurston, and Silverman 2007; 

Cesaroni et al. 2013) further posited that NO2 can be a surrogate marker of the outdoor 

air contaminants concentration, particularly for the buildings located in traffic-related 

areas. Norback et al. (D. Norbäck et al. 2000) investigated the respiratory health aspects 

of NO2 in twelve primary schools in central Sweden and reported the statistical 

significance of nasal congestion and mucosal inflammation. They claimed that the 

ventilation flow rate was the leading cause of such problems. The setting for the flow 

rates should be lower than the hygienic standards in the classrooms. In general, 

inconsistencies and uncertainties remain in the NO2 epidemiology, with reported studies 

of respiratory-associated health outcomes ranging both positive and negative 

associations (Faustini, Rapp, and Forastiere 2014). WHO and the US have issued the 

limit values of NO2 (Table 2. 6) and established requirements for the time duration.  
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A number of studies analyzed how the outdoor NO2 penetrated into the indoor 

environment and investigated indoor to outdoor (I/O) NO2 ratios. Challoner and Gill 

(Avril Challoner and Gill 2014) found that the indoor NO2 concentration is mainly 

determined by the surface removal rate and outdoor level of NO2 if there is no indoor 

NO2 source and derived a model as: 

 𝐼𝐼
𝑂𝑂

=
𝐸𝐸𝑋𝑋

𝐸𝐸𝑋𝑋 + 𝐾𝐾𝑁𝑁𝑁𝑁2
 

(2.15) 

where: 

𝐸𝐸𝑋𝑋 = air exchange rate, h-1; 

𝐾𝐾𝑁𝑁𝑁𝑁2 = the constant removal rate of the surface. 

𝐾𝐾𝑁𝑁𝑁𝑁2 is material-dependent and its value ranges from 0.80 to 1.45 h-1. Challoner and Gill 

further observed that the I/O ratio is significantly large overnight, even the nighttime 

outdoor concentrations decreased dramatically. This indicated that the benefit of 

increasing 𝐸𝐸𝑋𝑋 at night flushes out indoor NO2. Other than that, more specific relationship 

between ventilation control and NO2 distribution is under development, given the 

restrictions where level of NO2 is significantly correlated with other pollutants such as 

PM, ozone, and carbon monoxide. Available deterministic analysis on indoor NO2 

concentrations is drawn from the multi-pollutant models (Hesterberg et al. 2009; 

Faustini, Rapp, and Forastiere 2014).  

Table 2. 6. Standards for guidance values of NO2 

Organization Value  Ref 

ASHRAE 3 ppm for a 8h average  
("American Society of Heating, Refrigerating 
and Air-Conditioning Engineers (ASHRAE)" 

2016) 

OSHA 5 ppm at ceiling level  ("Occupational Safety Health Administration 
(OSHA)" 2014) 

EPA 5,600 μg/m3 for a 8h average  ("United States Environmental Protection 
Agency (EPA)" 2004) 
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WHO 200 μg/m3 for a 1h average  ("World Health Organization (WHO)" 2010) 

 

Models of Determining Ozone Concentrations 

Out of numerous air contaminates, ozone tends to have the most significant health 

effects and a wide array of recent works has focused on the role of ozone in the indoor 

climate (Apte, Buchanan, and Mendell 2008; Walker and Sherman 2013). The primary 

source of ozone in the indoor environment is ascribed to the outdoor ozone penetration 

through the building envelope (Walker and Sherman 2013). The entry of outdoor ozone 

into the indoors depends on a number of factors, including the outdoor ozone variations, 

airflow velocity, air exchange rates, surface removal rates, and chemical reaction 

probabilities on the surfaces or in the air (Lai, Karava, and Chen 2015; Chan et al. 2015). 

Weschler (C. J. Weschler 2000) quantified the ratio between indoor and outdoor ozone 

concentration at a constant air exchange rate as: 

 𝐼𝐼
𝑂𝑂

=
𝐸𝐸𝑋𝑋

𝐾𝐾𝑑𝑑(𝐴𝐴/𝑉𝑉) + 𝐸𝐸𝑋𝑋
 

 

(2.16) 

where: 

𝐸𝐸𝑋𝑋 = air exchange rate, h-1; 

𝐾𝐾𝑑𝑑 = the deposition velocity of ozone, m/h; 

𝐴𝐴 = total surface area, m2; 

𝑉𝑉 = the volume of the room, m3. 

Similar to the indoor NO2 estimation method, Weschler claimed that the I/O ratio for 

ozone can be computed by the ratio of the air exchange rate to the sum of the air 

exchange rate and the surface removal rate, 𝐾𝐾𝑑𝑑(𝐴𝐴/𝑉𝑉). Weschler further modified the 

equation in his later papers for cases in which no significant indoor ozone sources can be 

found (Charles J. Weschler 2006). If it is assumed that indoor ozone concentration is 
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primarily influenced by 𝐸𝐸𝑋𝑋 [h-1] and the surface removal rate 𝐾𝐾𝑚𝑚 [h-1] stays constant, then 

I/O can be approximated from: 

 𝐼𝐼
𝑂𝑂

=
𝐸𝐸𝑋𝑋

𝐸𝐸𝑋𝑋 + 𝐾𝐾𝑚𝑚
 

 

(2.17) 

By contrast, Lai et al. (Lai, Karava, and Chen 2015) considered potential indoor sources 

of generating ozone but neglected the chemical possibilities between ozone and other 

chemicals. They developed a new I/O model expressed by the continuity equation: 

 𝑑𝑑𝐶𝐶𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝐸𝐸𝑋𝑋 ⋅ 𝑃𝑃 ⋅ 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 − (𝑎𝑎 + 𝐾𝐾)𝐶𝐶𝑖𝑖𝑖𝑖 + 𝐺𝐺 (2.18) 

where: 

𝐶𝐶𝑖𝑖𝑖𝑖 = the indoor ozone concentration, ppb; 

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = the outdoor ozone concentration, ppb; 

𝑡𝑡 = time, hours; 

𝐸𝐸𝑋𝑋 = the air exchange rate, h-1; 

𝑃𝑃 = the penetration factor of outdoor ozone via infiltration; 

𝐾𝐾 = surface removal rate, h-1; 

𝐺𝐺 = the generation rate of indoor ozone, ppb/h. 

Building envelope is a key contributor to ozone reduction indoors and it is worth noting 

that human body has certain absorption capacity due to the reactions with skin. Fadeyi 

et al. (Fadeyi et al. 2013) estimated the values of deposition velocity 𝑣𝑣𝑑𝑑 between 14.4 m/h 

and 22.3 m/h per person under the assumption of a 1.7m2 body surface. The proportion 

of removed ozone by humans is computed from: 

 
𝐾𝐾𝑚𝑚 = 𝑁𝑁 ⋅ 𝑣𝑣𝑑𝑑_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋅

𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑉𝑉

 
(2.19) 

where: 

𝑁𝑁 = the number of people in the room; 

𝑣𝑣𝑑𝑑_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = the deposition velocity per person, m/h; 
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𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = the body surface per person, m2; 

𝑉𝑉 = the volume of the room, m3. 

For a typical classroom scenario (N=20-30, 𝑉𝑉=240m3, 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=1.7m2, 𝑣𝑣𝑑𝑑_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=5–22 

m/h), removal rates 𝑘𝑘𝑚𝑚 range between 0.7 h-1 and 4.7 h-1 . Under these conditions, 

occupants may act as sinks for absorbing over half of indoor ozone. 

The above-listed models indicate that the importance of proper indoor ventilation and 

the ventilation system of buildings helps moderate ozone deposition velocity and 

reaction probability. The I/O ratio approximation methods directly present the 

relationship between indoor and outdoor concentrations and have a potential to rapidly 

calculate indoor concentrations if the outdoor concentrations are known and retrievable. 

On the other hand, such models cause the problem of over/underestimates if the weather 

stations are not close enough to the monitored buildings, since ozone is a highly reactive 

gas. In addition, these models hold a strong assumption regarding the absence of indoor 

sources and residential houses may comply with the assumption. As ozone 

concentrations increase dramatically and it associated health impacts become severe, 

WHO sets 100 µg/m3 for an 8-hour daily average. However, the US national institutes do 

not specify the threshold, only recommends that ozone levels in air introduced to indoor 

spaces be reduced to “as low as reasonably achievable” ("American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE)" 2011).  

2.3.3. Summary of IAQ-Related Analytical Model Variables 

Table 2. 7 summarizes variables considered in the above-mentioned analytical models. 

These input variables are organized in accordance with the different phases of buildings - 

design phase, construction phase, and occupancy phase. For example, in the architecture 

community, the designers investigate the environmental conditions and then make 
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design decisions such as room geometry, spatial configuration, and material settings. 

The HVAC engineering community contributes to the system design and operation. 

However, dealing with the uncertainties in the design stage of buildings is a complicated 

task to counterbalance various variables, which in turn are subject to many constraints. 

Data-driven modeling techniques employ a variety of relevant variables as inputs and 

derive them as one response to make appropriate design recommendations. 

Deterministic methods rely on thermodynamic or mass-transfer rules for detailed 

modeling and analysis, while ML algorithms do not perform such analysis, and instead 

learn from the historical or available data for addressing future prevalence. 

Table 2. 7. Summary of input variables of IAQ-related occupants wellbeing. 

Subgroupsa Variables of IAQ-related thermal comfort and healthb Topicsc 

Environmental 
survey Outdoor temperature (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜) TC 

 Wind velocity (𝑣𝑣𝑎𝑎) TC+H 

 Outdoor relative humidity (𝑅𝑅𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜) H 

 Outdoor contaminants concentration (𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜) H 

Design 

Room dimensionsd (Dim) H 

Ceiling height (H) H 

Total surface area (A) TC+H 

 Penetration factor through envelope/door (P) H 

Material 
selection Radiant temperature (𝑇𝑇𝑀𝑀𝑀𝑀) TC 

 Temperature of surfacee (𝑇𝑇𝑖𝑖) TC 

Operation 

Indoor relative humidity (𝑅𝑅𝐻𝐻𝑖𝑖𝑖𝑖) TC+H 

Volume flow rate (Natural, Mechanical, Infiltration) (Q) TC+H 

Indoor temperature (𝑇𝑇𝑎𝑎) TC+H 

Air densityf (𝜌𝜌) H 

Contaminants generation/deposition/removal concentrations/rates (G) H 

Number of occupants (N) H 

Exposure time (t) TC+H 

Air exchange rate (𝐸𝐸𝑋𝑋) H 
a Total eighteen input variables are arranged based on the different phases of buildings; 
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b The listed variables are given its abbreviation in parentheses to keep consist in Nomenclature, figures and 

tables; 

c TC and H represent that this variable stem from topics of thermal comfort and health respectively; TC+H 

means thermal comfort and health fields both echo and cover this variable; 

d Analytical models uses volume of a space more often, while it is determined from size of the space and 

ceiling height; 

e Temperature of surface implies for surface temperatures of each material in accordance to air temperature; 

f Air density is hardly measurable, but is correlated with air pressure, temperature, humidity and dew point. 

2.4. Thermal Comfort and Health Defined Data-Driven Ventilation System 

Variables concerned in thermal comfort models have been used to execute control 

strategies for ventilation system settings, while incorporating concerns of IAQ-related 

health outcomes have not been truly developed. Various data-driven modeling based on 

ML techniques has been employed to predict thermal comfort, the concentrations of 

indoor pollutants, building energy efficiency and enhance human-building interaction. 

Models have been used including support vector machine (S. Chen, Mihara, and Wen 

2018; Shan et al. 2019; Zhao et al. 2014), neural networks (Machairas, Tsangrassoulis, 

and Axarli 2014; Ayata, Arcaklıoğlu, and Yıldız 2007), logistic regression (Daum, Haldi, 

and Morel 2011), Gaussian process (Cheung et al. 2017), reinforcement learning (Barrett 

and Linder 2015; Y. Chen et al. 2018), and Bayesian inference (Tian et al. 2018). The 

results showed significantly improved predictive accuracy (17-40%) compared to 

deterministic methods computation (PMV, adaptive comfort, total energy consumption), 

reinforcing the need for a data-mining approach to predict indoor climate. 

Along with the aforementioned analytical models, this section will discuss artificial 

neural networks and reinforcement learning applications and what variables are missing 

in these two ML algorithms for delivering a healthy and comfortable indoor 
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environment. These two robust algorithms help capture complex nonlinear and 

multivariable interactions, provide optimal policies of the output, and obtain occupant 

feedback about their perception as an ongoing part of building operations. 

2.4.1. Overview of Artificial Neural Network (ANN) 

Artificial neural networks (ANN) have been applied widely in HVAC system dynamic 

modeling, prediction, control and operation to tackle ill-defined non-linear problems in 

a supervised learning manner (Afroz et al. 2018). A typical ANN is composed of a large 

number of interconnected nodes (neurons) and structured with input, hidden, and 

output layers in a chain connection. Information is received by the neurons on input 

layer, trained and learned on the hidden layer by minimizing errors, and projected as an 

outcome variable on the output layer (e.g., the indoor air temperature) (Goodfellow, 

Bengio, and Courville 2016). An ANN also contains the various weights between its 

nodes which are adjustable towards the optimal values of the output. Information flows 

forward through the network is the process of feedforward propagation, while back-

propagation (BP) allows information flows backwards through the network to change 

weights in order to compute gradient (Elbayoumi, Ramli, and Fitri Md Yusof 2015; 

Goodfellow, Bengio, and Courville 2016). BP is a fine-tuning learning algorithm and has 

the capacity of storing a plenty of mapping relations of input-output to improve the 

performance of ANN. Figure 2. 6 is an example referring to whether the ventilation 

system settings are satisfactory. A multilayer perceptron (MLP) is a class of ANN 

utilizing BP for training. The Levenberg–Marquardt (LM) is an efficient regularization 

technique and improves the convergence speed to a minimize mean square error (MSE) 

for non-linear problems by training this network (Mba, Meukam, and Kemajou 2016). 
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The use of ANN gains wide appeal on building energy conservation in the indoor 

environment applications. Control and prediction of thermal environment factors are 

first in order of magnitude, while fewer studies focus on the prevalence of air 

contaminates or IAQ associated health risks. Predicting indoor air temperature is the 

most used one in thermal and in ventilation control strategies. 

  
Figure 2. 6: Architecture of an ANN model for defining ventilation systems. 

Moon et al. (Jin Woo Moon, Yoon, and Kim 2013) proposed an ANN-based model to 

forecast indoor air temperature changes. This model helps to control building’s opening 

at different weather conditions and saves energy under unpredictable outdoor 

conditions. Moon et al.’s (Jin Woo Moon and Jung 2016a) another study structured an 

ANN model to define the right time to turn on HVAC in residential buildings by 

predicting indoor temperature, to avoid unnecessary energy consumption during the 

non-occupied period. It also helps maintain comfortable indoors in the periods of 

occupancy. Ashtiani et al. (Ashtiani, Mirzaei, and Haghighat 2014) dealt with the worst-

case scenario during the heat waves by forecasting indoor air temperature based on 

urban climatic conditions and resolved predictions near to the acceptable thermal 

comfort in the indoor environment. By contrast, a limited number of studies, e.g. (Mba, 

Meukam, and Kemajou 2016; Mustafaraj, Lowry, and Chen 2011; T. Lu and Viljanen 



45 

2008; Özbalta, Sezer, and Yildiz 2012) used ANN to predict indoor temperature and 

relative humidity, despite many studies had revealed that relative humidity is a critical 

indicator of IAQ, health risks, and building energy efficiency. It lacks in the literature due 

to its complicated mechanism (Rupp, Vásquez, and Lamberts 2015). In line with Zhang 

et al. (Q. Zhang et al. 2005), humidity also affects one’s perception of IAQ such that they 

developed an ANN-based air-handling unit to control indoor relative humidity and 

temperature. 

Moreover, extensive studies predicted occupant thermal comfort and demonstrated 

corresponding control strategies following the comfort metric (i.e., temperature range (S. 

Kim, Lee, and Moon 2014; J. W. Moon, Chin, and Kim 2013; Jin Woo Moon and Kim 

2010), 7-point ASHRAE scale (W. Liu, Lian, and Zhao 2007), PMV-PPD (Zhou and 

Haghighat 2009; Escandón et al. 2019; Buratti et al. 2014) and psychrometric charts 

(Deng and Chen 2018)). Only three studies validated and verified the proposed ANN 

models using a survey or actual votes: Buratti et al. (Buratti, Vergoni, and Palladino 

2015) collected thermal sensation votes from occupants by giving questionnaires to valid 

the trained ANN model as an alternative tool for predicting thermal sensation. Sofuoglu 

(Sofuoglu 2008) surveyed the field to have pollutant concentrations, and occupant 

symptoms were collected by questionnaires to predict an index of SBS prevalence. Von 

Grabe (von Grabe 2016) used a dataset comprising a large number of observations of 

individual thermal sensation votes under varying conditions. The assembled neural 

network model predicted the distribution of thermal sensation votes with high accuracy. 

It is worth noting that Liu et al. (W. Liu, Lian, and Zhao 2007) implemented an ANN-

based evaluation model to connect individual thermal comfort with the control of the air 

conditioner. 
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Control of opening strategies and the outdoor airflow rate to mitigate indoor conditions 

is another critical issue. Moon et al. (J. W. Moon, Chin, and Kim 2013) proposed an 

optimized ANN model experimenting with multiple opening strategies that evolved in 

double skin envelopes and effectively forecasted indoor temperatures. Li et al. (N. Li et 

al. 2012) proposed a dynamic ANN model for direct expansion (DX) air conditioning 

system, connecting the air temperature and humidity controlled by the DX air-

conditioned system with various supply fan speeds. 

It is evident that many studies accounted for the entire building floor as a single zone or 

conducted research only on a single room to develop the model. However, Huang et al. 

(Huang, Chen, and Hu 2015) developed a new ANN-model-based modeling approach for 

the airport, inputting the variables such as ventilation and mechanical cooling settings, 

outdoor climate conditions, and heat transfer among adjacent zones. They found that 

taking convective heat transfer among zones into account offers more accurate 

prediction results. In a similar approach, Garnier et al. (Garnier et al. 2014) established 

an ANN model for multiple zones based on a predictive control strategy to constrain 

thermal discomfort in a non-residential building. The results suggested that the 

consideration of heat transfer between the adjacent areas optimizes energy efficiency and 

satisfies thermal comfort. Spindler and Norford (Spindler and Norford 2009) predicted 

indoor temperature for a mixed-mode building by introducing a multi-zone ANN-based 

model. The research outcomes indicated that the prediction accuracy outperformed 

other studies’ if taking the heat exchange into account. 

2.4.2. ANN-Based Model for Predicting IAQ 

In addition to the prediction of thermal comfort, researchers also attempted to predict 

indoor pollutant concentrations despite a small quantity. Elbayoumi et al. (Elbayoumi, 
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Ramli, and Fitri Md Yusof 2015) predicted seasonal indoor levels of PM2.5  and PM2.5-10 in 

naturally ventilated schools through inputting variables of meteorological (temperature, 

humidity and wind speed) and measured indoor data (concentrations of PM2.5, PM2.5-10, 

CO and CO2). The study results indicated that ANN behaves more robust when PM 

sources are the primary contaminant in the outdoor environment. Dai et al. (Dai et al. 

2019) proposed an ANN model to examine the effect of natural ventilation on pollutant 

mitigation during nighttime. Challoner et al. (A. Challoner, Pilla, and Gill 2015) 

developed an ANN-based model to predict IAQ based on the outdoor measurements and 

concluded that indoor NO2 concentrations are predictable to a high degree of accuracy. A 

study on particle dispersion prediction in a ventilated room was conducted in (Gheziel et 

al. 2016) using MLP with inputting variables such as the diameter of the aerosol particle, 

the velocity at the air inlet, air density, coordinates of the distance between the entrance 

and the exit of an area and particle duration in the room. Liu et al. (Zhijian Liu, Li, and 

Cao 2017) predicted the level of indoor airborne bacteria with measuring IAQ variables 

of indoor PM2.5, PM10, CO2, temperature, and RH. 

Studies conducted in (Ascione et al. 2017; Asadi et al. 2014) have attempted to employ 

ANN models to improve either energy efficiency or occupant wellbeing in retrofit 

scenarios. Some other studies have focused on the feasibility and effectiveness of 

controlling natural ventilation in residential buildings. For example, Stavrakakis et al. 

(Stavrakakis et al. 2010) predicted thermal comfort in naturally ventilated houses. Dai et 

al. (Dai et al. 2019) predicted indoor CO2 concentrations at night based on natural 

ventilation rate. Ayata et al. (Ayata, Arcaklıoğlu, and Yıldız 2007) used the simulated 

data to design an ANN model for the prediction of indoor air velocities in naturally 

ventilated office spaces, and one of significant findings of this study was that a 

rectangular building with 1:1.7-dimensional ratio is the most desirable configuration for 
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natural ventilation in a moderate climate region. Zhou and Haghighat  (Zhou and 

Haghighat 2009) improved design and operation of a ventilation system by controlling 

the flow rate, supply air temperature and other variables. This approach resulted in 

enhancing thermal comfort and IAQ without sacrificing the energy costs of ventilation. 

2.4.3. Summary of ANN-Defined System 

In (Jin Woo Moon and Jung 2016b; Nasruddin et al. 2019; Zamora-Martínez et al. 2013; 

Asadi et al. 2014; Zhou and Haghighat 2009; Dai et al. 2019; Ayata, Arcaklıoğlu, and 

Yıldız 2007), the study results implied a clear opportunity here to enhance health and 

comfort while lessening energy use. These outcomes also demonstrated the significance 

of indoor pollutant concentrations and thermal comfort predictions in improving 

building energy efficiency. 

The frequency of input variables used in ANN models is shown in Figure 2. 7. The studies 

for achieving occupant wellbeing and energy conservation are typically computed with 

outdoor and indoor air temperature and relative humidity measures. In contrast, design-

related factors and field measures are less common. In the first place, indoor air science 

is applied after the design phase of buildings and mainly aims to diagnose and resolve 

indoor environmental problems following general guidelines for HVAC equipment and 

health effects. Secondly, the meteorological and field measurements of air temperature 

and relative humidity are relatively straightforward, making them readily available for 

scientific use. Most studies overlook that the effect of indoor air temperature is linked to 

air velocity, surface temperature, and mean radiant temperature. These related factors 

are rarely incorporated in ANN models, which could benefit from the use of different 

environmental factors, since the selection of the model is done empirically and tested 

against past data. 
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Figure 2. 7: The frequency of input variables for the study of IAQ-related health, thermal comfort and energy 

efficient ventilation system using ANNs. 

2.4.4. Overview of Reinforcement Learning 

Reinforcement learning (RL) behaves agent-environment interactions. The agents learn 

sequential actions and discover an optimal policy π (Figure 2. 8) (Sutton and Barto 

2018). Q-learning is a model-free RL algorithm learning the policy and then inform the 

agent to execute an action under a specific state for any Markov decision process (MDP) 

problems (Watkins and Dayan 1992). RL involves an environment and an agent, and the 

agent takes a set of actions 𝑎𝑎 ∈ 𝐴𝐴 to update the environment from one state 𝑠𝑠 ∈ 𝑆𝑆 to 

another state 𝑠𝑠′. A state-action value function 𝑄𝑄(𝑠𝑠,𝑎𝑎) referred as Q-factor calculates the 

quality of a state-action and describes the expected discounted reward from time 𝑡𝑡 on. 
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𝑄𝑄(𝑠𝑠,𝑎𝑎) = �𝛾𝛾𝑡𝑡−𝑇𝑇
∞

𝑡𝑡=𝑇𝑇

𝑟𝑟𝑡𝑡(𝑠𝑠,𝑎𝑎), 𝛾𝛾 ∈ [0,1] 
(2.20) 

Q-learning operates the reward 𝑟𝑟𝑡𝑡(𝑠𝑠,𝑎𝑎) and its feedback value reflects the expected 

choice of control objectives. In the problem of defining ventilation systems, it determines 

a linear form for the received reward value under consideration of energy usage, comfort, 

and health in Eq. 2.25. The iterative process will leverage 𝑤𝑤𝐸𝐸, 𝑤𝑤𝐶𝐶, and 𝑤𝑤𝐻𝐻 to propose an 

optimal combination scheme. 

 𝑟𝑟𝑡𝑡(𝑠𝑠,𝑎𝑎) = 𝑤𝑤𝐸𝐸 ⋅ 𝑓𝑓(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) + 𝑤𝑤𝐶𝐶 ⋅ 𝑔𝑔(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑤𝑤𝐻𝐻 ⋅ ℎ(ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ) (2.21) 

 

Figure 2. 8: The RL based agent interacts with the environment to optimize the environmental conditions. 

2.4.5. RL-Based Model for Predicting Human Wellbeing 

Many studies have paid attention to increasing energy conservation. However, 

occupants’ health and thermal comfort, stochastic occupancy and occupant behavior are 

rarely concerned in formulating a model. Chen et al. (Y. Chen et al. 2018) implemented 

Q-learning on control of operable windows synergizing the mechanical ventilation 

system for energy and discomfort minimization in Miami and Los Angeles. Likewise, Yu 

and Dexter (Z. Yu and Dexter 2010) optimized both the energy efficiency and thermal 

comfort in a building complying with occupant behaviors. Dalamagkidis et al. 

(Dalamagkidis et al. 2007) attempted to lessen the discomfort, improve air quality in 

addition to energy saving by implementing RL to operate controllers. Valladares et al. 
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(Valladares et al. 2019) balanced the needs of thermal comfort and IAQ while using the 

least amount of energy from ventilation fans. Along with these RL applications, the agent 

has a superior PMV and temperature range control while consuming about 4–5% less 

energy. 

In addition to this, de Gracia et al. (de Gracia et al. 2015) emphasized conserving 

building energy solely using RL techniques to control a ventilated façade with phase 

change material (PCM), and results showed the net electrical energy savings. Lu et al. (S. 

Lu et al. 2019) focused on maximizing comfort and implemented Q-learning into HVAC 

control, reaching comfortable temperature ranges for occupants after training with 100 

episodes. Most importantly, the RL algorithm also helped make decisions on weaning of 

mechanical ventilation and dosing in Intensive Care Units (ICUs) to obtain the optimal 

treatment (C. Yu, Liu, and Zhao 2019). 

2.4.6. Summary of RL-Defined System 

Figure 2. 9 summarizes and shows the frequency of corresponding input variables. As 

can be seen, air temperature variables including both indoor and outdoor temperature 

are the most used variables. None of the studies used surface temperature or air density. 

Compared with ANN based prediction models, a limited number of related studies were 

identified. More studies using RL were from the fields of electrical energy storage, 

electric vehicles, and home appliances (Vázquez-Canteli and Nagy 2019). RL has 

advantages when applied in a complex environment because of its model-free nature. As 

a feature of RL, it offers the potential to learn by the trial-and-error. The iterative loop 

corrects and adjusts any undesired ventilation conditions incorporating the occupant 

preferences, feedback, and needs. 
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Figure 2. 9: The frequency of input variables for the study of IAQ-related health, thermal comfort and energy 

efficient ventilation system using RL. 

2.5. Conclusion 

Other than the standard temperature and humidity variables used for thermal comfort 

metrics and IAQ indices, which factors are also worth measuring? To respond to this 

question, this chapter has presented an overview of variables extracted from empirical 

and deterministic methods used in the fields of indoor air science, thermal comfort, and 

health. Next it reviewed the applicability of these input variables to predict thermal 

comfort and IAQ effects. Understanding the importance and effectiveness of the 

variables will facilitate the development of solutions to minimize negative impacts. In 

other words, a correct selection of variables should enhance the precision of predictions 
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by using the results from traditional analytical models. A summary of the key findings in 

this review is listed below: 

Eighteen critical variables are extracted from the literature including outdoor 

temperature, wind velocity, outdoor relative humidity, outdoor contaminants 

concentration, room dimensions, ceiling height, total surface area, penetration factor 

through envelope/door, radiant temperature, surface temperature, indoor relative 

humidity, volume flow rate (natural, mechanical, infiltration),  indoor temperature, air 

density, contaminants generation/ deposition/ removal rates, number of occupants, 

exposure time, and air exchange rate. These variables are determined in different phases 

of the building life cycle - design, construction, and occupancy phase. 

Among the critical factors, a limited number of studies have examined the spatial 

configuration of buildings, such as room dimension, ceiling height, and total surface area 

to adjust control system or to incorporate into modeling. Most studies consider 

temperature-dependent variables, particularly air temperature for the ease of 

measurement and the sake of comparison, evaluation, and validation. They often 

overlook that the effects of air temperature are linked to air velocity, surface 

temperature, and mean radiant temperature. Among the various models applied in 

HVAC, ANNs are the most commonly used, while RL is more efficient model for 

improving occupant-environment interaction. The variables used to construct well-

performing ANN and RL models resonate with and reinforce evidence and variables 

from analytical models. 

Most of the outcomes of ML methods emphasize indoor temperature prediction within a 

range of PMV-PPD, omitting relative humidity and neglecting the validation of thermal 

comfort predictions through occupant questionnaires. Very few studies attempted to 
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investigate the future prevalence of indoor air pollutants. As noted by many authors, 

improving occupant wellbeing in addition to energy conservation should be the goal of 

future development. 

Although 18 critical factors are identified in the analytical literature, there has been no 

study implementing all of them in ML models to test their effect on the accuracy of 

prediction due to the absence of monitoring capability. Because the field measurement of 

air temperature is relatively straightforward, other ambient environmental variables 

have been neglected. In addition to large datasets, future studies should test different 

variable combinations to develop truly effective models. ANN usually produces a strong 

correlation between decision variables and the objective function. In this regard, sample 

adequacy, data quality, and variability are critical. However, many studies substituted 

simulated data for field-collected data to test the proposed models, but those results 

need to be confirmed in a comprehensive study with surveys of occupant experience.  

Three main topics – wellbeing, energy, and building sensing system – are critical for 

configuring building systems for indoor environments, but buildings can be smarter. 

With all the empirical and deterministic models that have been developed, there is an 

abundance of evidence about the critical factors to monitor. ML techniques can be used 

to make buildings better. There is a need for more responsive and smarter ventilation 

systems to  maintain thermal comfort and enhance health, while reducing energy use. 

Current thermal comfort and indoor health standards are too narrowly defined. ML 

techniques could even be used to investigate and incorporate many more of the factors in 

the built environment, such as warm and cool wall colors, color temperature of lighting, 

the presence of plants, the visual experience of a space, and how these potential variables 

contribute to long-term occupants’ wellbeing. In so doing, building design, control and 
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energy management can more actively incorporate the large amounts of knowledge 

generated by architecture, health, IAQ, and thermal comfort communities. 
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CHAPTER 3: PUTTING PEOPLE IN THE LOOP 

 

Figure 3. 1: Human as sensors and actuators. 

The building performance historically overlooked human wellbeing and occupants’ 

adaptive behavior also often overlook in the thermal comfort modeling. In addition, 

various observed and unquantifiable factors affect the thermal comfort of occupants in 

indoor environments and can lead to high uncertainty in the prediction and classification 

of their thermal preferences. The behavioral adaptation of occupants, by operating 

window systems for example, changes their thermal experience and expectations and 

therefore contributes to even higher prediction uncertainty. As this chapter title 

suggests, this chapter adapted from (Ma, Chen, et al. 2021) looks at a part of this loop 

and aims to examine how occupants as environmental controllers influence building 

performance. 

Many uncertainty sources contribute to the precision of thermal comfort models. As 

concluded by Wang et al. (Z. Wang et al.), these sources include inter-individual and 

intra-individual differences, uncertainty in objective instrumental measurement, and 
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subjective evaluation principles. The goal of this chapter is to use a Bayesian approach to 

incorporate these unquantifiable (unmeasurable) variables with observed (measurable) 

variables to improve occupant thermal preference prediction and classification. In 

addition, this chapter offers the following contributions to the field of thermal comfort 

modeling: 1) constructing a variety of structures to evaluate the model performance; 2) 

quantifying uncertainty in thermal preference prediction and classification probability; 

3) assessing new variables (i.e., window opening/closing behavior and thermal 

sensation) that may improve thermal preference classification and prediction; 4) 

comparing Bayesian neural network with conventional thermal comfort models. 

3.1. Uncertainty and Limitations in Thermal Preference Prediction 

Providing a thermally comfortable indoor environment has been shown to contribute 

positively to occupant’s productivity (Seppänen and Fisk 2006), health (Xiong et al. 

2015; Ma, Aviv, et al. 2021), and wellbeing (Lamb and Kwok 2016). Thermal comfort is 

also of great theoretical and practical importance to architecture and environmental 

system design. It forms the foundation for sustainable design and if miscalculated can 

result in an exaggerated need for the operation of Heating, Ventilation, and Air 

Conditioning (HVAC) systems (Costa et al. 2013).  

To improve the prediction of building thermal comfort, a number of studies have applied 

machine learning algorithms to correlate environmental measurements and occupant’s 

self-reported feedback about their comfort. For example, random forest (Lu et al. 2019), 

support vector machine (SVM) (Chaudhuri et al. 2018), decision tree (Shetty et al. 2019), 

and transfer learning (Gao et al. 2020) are implemented to mine data and improve 

predictive performance. All of these studies showed a promising direction, though the 

input variables and comfort measures might be chosen differently. However, the 
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uncertainty and stochasticity of occupant behavior can be troublesome and limit 

predictive performance in practice. Previous studies also found that the dynamic 

responses of occupants to indoor climates change their thermal sensation. Adaptive 

behavior impacts thermal experience, reducing the discomfort tolerance of occupants 

(Deng and Chen 2018; Shahzad et al. 2018; Sun et al. 2018; Liu et al. 2017). Previous 

research has demonstrated that integrating occupant adaptive behavior such as 

thermostat adjustments (Ghahramani, Jazizadeh, and Becerik-Gerber 2014), personal 

comfort system control (Kim et al. 2018), and interaction with window system (Tan and 

Deng 2020) provides more data points, captures an individual’s distinctive thermal 

characteristics, and therefore enhances the reliability and reproducibility of models. 

Research shows a number of variables that influence thermal preference prediction are 

inherently uncertain yet critical, such as clothing insulation level (Havenith, Holmér, and 

Parsons 2002), age difference (Z. Wang, Zhang, et al. 2020; Jiang et al. 2020), the 

stochasticity of occupant heating/cooling behavior (Kim et al. 2018), human adaptations 

to the environment (Indraganti 2010), thermal sensation (Shahzad et al. 2018), and non-

uniformity of the thermal environment (Ma, Aviv, et al. 2021). Considering these cases, 

thermal environment variables-based models might not be comprehensive enough to 

predict occupant thermal preference accurately. Even further, a recent review study 

(Schweiker et al. 2020) found that unmeasurable or indirect influencing factors are 

driving occupants’ thermal preference. For example, occupants’ social and cultural 

experiences, physical properties of the building design, and open plan office space 

configuration may not be universally quantifiable. Moreover, the data collection process 

is costly and labor-intensive given the number of sensors needed, the appropriate sample 

size of monitoring duration, and occupant participation required. All of these 

circumstances increase the prediction uncertainty of deterministic data-driven models. 
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Optimization techniques are used to minimize the error between observed and predicted 

values, where the approach does not incorporate the presence of prior knowledge when 

modeling. It is known that occupants who experience “cool (-2)” thermal sensation are 

very likely to vote “prefer warmer (+1)” for their thermal preference. Another example of 

prior knowledge is that the Gaussian distribution can be used to specify the probability 

distribution for all uncertain variables in the field of thermal comfort (Auffenberg, Stein, 

and Rogers 2015; Lee et al. 2017; Laftchiev and Nikovski 2016). In contrast, previous 

studies imposed categorical distributions (also called generalized Bernoulli distributions) 

to condition the multiclass response variable with an observed noise (Lork et al. 2020; 

Cho et al. 2020; Francis et al. 2019).  

Given the nature of inter-individual differences (“variance of comfort responses between 

people”) and intra-individual variability (“how an individual feels in the same 

environment on different occasions”) (Z. Wang et al. 2018), it is important to 

acknowledge that different individuals perceive the thermal stress differently and prefer 

different thermal conditions. This is a fully Bayesian mechanism. The conventional 

methods where deterministic approaches are adopted do not have the capacity of aiding 

thermal environment design by covering more possibilities and counting possible 

variances. 

Much research in recent years has implemented Bayesian inference by incorporating 

prior knowledge and considering the uncertainty to develop probability distributions of 

occupants’ thermal demands. Wong et al. (Wong, Mui, and Cheung 2014) employed 

Bayesian estimation to approach occupant thermal responses and compare it with 

Fanger’s model prediction. Lee et al. (Lee et al. 2017) clustered occupants into different 

groups considering individuals’ thermal characteristics and then proposed a new 

Bayesian algorithm to infer thermal preference profiles of occupants. Langevin et al. 
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(Langevin, Wen, and Gurian 2013) implemented Bayesian linear regression models with 

different sampling methods to predict seven-point thermal sensation, acceptability, and 

preference distributions for office building occupants. Wang and Hong  (Z. Wang and 

Hong 2020) also used a Bayesian linear regression method focusing on office buildings 

to approximate the comfortable temperature ranges and investigate the proper 

thermostat set points. 

3.2. ASHRAE Global Thermal Comfort Database II 

To clarify our overall research approach, Figure 3. 2 is a flowchart demonstrating data 

preprocessing, sampling methods, model structure, and model performance evaluation. 

More detailed explanations of each step are presented in the following sections. 

 

Figure 3. 2: The workflow of overall research design. 

3.2.1. Dataset Description 

The dataset used in this chapter is the ASHRAE Global Thermal Comfort Database II 

(Ličina et al. 2018), which consists of objective environmental monitoring and “right-
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now-right-here” subjective measures from 107,463 occupants. Each occupant has 45 

variables containing information about the ambient environment, the subject’s 

subjective evaluation, personal parameters, and building characteristics. We excluded 

samples collected in nursing homes for two reasons. First, opening or closing windows is 

usually unlikely for the seniors living in nursing homes for safety purposes (Chau et al. 

2018). Second, older people are less responsive to thermal environment changes than 

younger people due to the loss of cognitive functions (van Hoof et al. 2017; Ma et al. 

2017; Chau et al. 2018; Noguchi et al. 2018). Our focus is on offices (n=55,238), 

classrooms (n=12,755), and multifamily housing (n=10,120), which leaves 78,113 data 

points from the original database and formed our sub-dataset. 

Figure 3. 3 visualizes how environmental, personal, and behavior-related factors drive 

the diversity and variability in thermal preference votes. We represented the distribution 

of outdoor monthly air temperature (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜), air temperature (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖), relative humidity 

(RH), air velocity (𝑣𝑣), age, window, operative temperature (𝑇𝑇𝑜𝑜𝑜𝑜), subject’s weight (SW), 

and thermal sensation (TS) relating to 3-point thermal preference votes in the sub-

dataset. The overlapping area of three distributions indicates a variability between 

individual thermal preference. Taking the example of the air temperature distribution 

plot: occupants vote different scale values for their thermal preference although they are 

exposed to an indoor environment with the same temperature of 25 degrees. A 

substantial number of occupants appear to prefer a “no change” condition, while a 

considerable number of persons either prefer cooler or warmer. As shown in the 

distribution plot of age, the occupants vote for different thermal preferences though they 

are at the same age and in the same air temperature (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = 25.5°C) and air velocity (𝑣𝑣 = 

0.1m/s). Similar to the rest of the plots in Figure 3, the distribution of cooler and warmer 

preference votes always overlaps with no change votes. These observation are consistent 
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with other study results (Khalid et al. 2018, 2019) and emphasize  that the variation 

cannot be overlooked when predicting occupant thermal preference and implies that 

there could be unobserved variables 𝐳𝐳 related back to the individual thermal 

expectations. 

 

Figure 3. 3: Distribution of three thermal preference classes over the selected variables. 

3.2.2. Data Preprocessing 

The entire sub-dataset was preprocessed to meet the criteria of data mining before 

implementing BNN algorithms. The following preprocessing steps were carried out: 1) 

dropping all the not applicable (NA) data in the outcome variable of thermal preference 
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and window states; 2) one-hot encoding – conversion of categorical variables; 3) missing 

data imputation; 4) normalization. 

We dropped samples with the missing target variable for the sake of reducing the error 

from the imputation method and maintaining the underlying pattern of the true label. 

We also removed all missing inputs of window states on account of the significant 

uncertainty and unpredictable nature of an individual occupant behavior (Yan et al. 

2015). Since the entry of the BNN algorithm needs numerical inputs, we encoded 

categorical variables such as sex, season, building type, and thermal preference to the 

numerical representation. Note that the current dataset is imbalanced with the “prefer 

cooler” labeled class (n = 5,825), “prefer no change” class (n = 10,046), and “prefer 

warmer” class (n = 2,938). To avoid this imbalance, we randomly resampled the “prefer 

no change” class to 5,000 samples (i.e., down-sampling). 

The ASHRAE Global Thermal Comfort Database II is made up of a spectrum of 

measurements in various studies conducted by different research groups, therefore it is 

not uncommon to have a substantial number of missing values in the dataset. We used 

median imputation to handle the missing values since it is fair to assume that the 

missing values are close to the median value of the distribution if data is missing at 

random. Before the dataset was split up into training and validation datasets, the 

instances in the dataset were normalized to regularize the measurements in different 

scales and improve the numerical stability. The 𝑖𝑖th occupant with 𝑗𝑗th features formed 𝑥𝑥𝑖𝑖𝑖𝑖 

in the training dataset were normalized using Eq. 3.1 where  𝜇𝜇𝑗𝑗 denotes the mean of 𝑗𝑗th 

feature over all observations of the training data, and 𝜎𝜎𝑗𝑗 represents the corresponding 

standard deviation. 
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𝑥𝑥𝑖𝑖𝑖𝑖′ =

𝑥𝑥𝑖𝑖𝑖𝑖  −  𝜇𝜇𝑗𝑗
𝜎𝜎𝑗𝑗

 (3.1) 

Since the feature space is high-dimensional, extreme gradient boosting (XGBoost) as one 

of the state-of-the-art ensemble approaches is used to evaluate the importance of each 

variable. XGBoost is a scalable, parallelizable, and effective algorithm to rank features 

and typically outperforms other methods (Chen and Guestrin 2016). 

3.3. Bayesian Neural Network Modeling Methodology 

3.3.1. A Brief Theory of Bayesian Inference and Bayesian Neural Network 

To overcome challenges discussed above, we present a Bayesian approach to classify and 

predict thermal preference labels. Bayesian models aim to extract and deduce properties 

about a probability distribution from data using Bayes’ theorem Eq.3.2.  

  𝑝𝑝(𝜽𝜽|𝒟𝒟) =
𝑝𝑝(𝒟𝒟|𝜽𝜽) × 𝑝𝑝(𝜽𝜽)

𝑝𝑝(𝒟𝒟)  (3.2) 

where 𝜽𝜽 represents a set of free model parameters that need to be calibrated using a 

dataset 𝒟𝒟. A prior distribution over 𝜽𝜽 is denoted 𝑝𝑝(𝜽𝜽) and this distribution represents 

our knowledge on how the data are generated before observing them. 𝑝𝑝(𝜽𝜽|𝒟𝒟) known as 

posterior distribution summarizes uncertainty quantities of parameter values that best 

explain the observed data. The likelihood function 𝑝𝑝(𝒟𝒟|𝜽𝜽) expresses how likely the 

observed dataset 𝒟𝒟 is given by different setting of 𝜽𝜽. and 𝑝𝑝(𝒟𝒟) normalizes the posterior 

distribution with a valid probability density. 

Bayesian inference is selected as a tool in this study to infer occupants’ thermal 

preference for two reasons. First, Bayesian inference provides a natural approach to 

quantify uncertainty or stochasticity in estimating model parameters when occupant 

behavioral adaptation and inter- and intra-variabilities are accounted to design thermal 
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environment. Second, the Bayesian approach can help us account for the effect of 

unobserved variables including the universally unquantifiable factors which also 

influence occupants’ thermal preference (e.g., occupants’ social and cultural 

experiences). 

Bayesian inference for neural networks has gained significant attention. In this study, we 

aim to extend the application of Bayesian neural networks (BNN) in predicting the 

thermal preference of a large group of individuals. Here we refer BNN to a neural 

network that is trained to fit observed data using Bayesian inference by considering that 

the network’s parameters (i.e., its weights and biases) are random according to a prior 

probability distribution (Neal 2012). Different types of neural networks have varying 

methods to learn from data and update network’s weights in training procedure (H. 

Wang and Yeung 2016). A typical neural network’s weights are considered to be 

deterministic and a single point estimate for them is obtained once the model has been 

trained. In contrast, the weights of a BNN are represented by probability distributions 

over possible values, rather than assuming a single point estimate after training. The 

network distribution of weights informs model performance uncertainty by evaluating its 

variance. Figure 3. 4 illustrates the difference between a deterministic neural network 

and a BNN. The left one is a typical neural network showing that each weight has a fixed 

value. The right one is a BNN where each weight is assigned a probability distribution 

with mean and variance. 
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Figure 3. 4: (Left) A typical neural network; (Right) A Bayesian neural network. 

3.3.2. BNN Algorithm for Inference and Sampling 

To be able to compute the various probability distributions, we assume that 𝑖𝑖th sample 

has the following properties in Bayesian inference process: 1) each 𝑝𝑝𝑖𝑖 can be sampled; 2) 

the pointwise probability density function (PDF) of each 𝑝𝑝𝑖𝑖 is computable; 3) each 𝑝𝑝𝑖𝑖 is 

differentiable with respect to the model parameters 𝜽𝜽. 

We now view a neural network as a probabilistic model. Our dataset 𝒟𝒟 is comprised of 

{(𝐱𝐱𝑛𝑛, y𝑛𝑛)} where each datapoint has features 𝐱𝐱 ∈ 𝑅𝑅𝑑𝑑 and y𝑛𝑛 ∈ 𝑅𝑅. The likelihood for each 

datapoint is written as: 

 𝑝𝑝(y𝑛𝑛 | 𝐳𝐳, 𝐱𝐱𝑛𝑛,𝜎𝜎2 ) = Normal (y𝑛𝑛 | 𝐍𝐍𝐍𝐍(𝐱𝐱𝑛𝑛; 𝐳𝐳),𝜎𝜎2 ) 

𝑝𝑝(𝐳𝐳)  =  Normal (𝐳𝐳 | 𝟎𝟎, 𝐈𝐈) 

 

(3.4) 

(3.5) 

 

where NN represents a neural network whose weights and biases form the latent 

variables 𝐳𝐳. We set the prior on the weights and biases 𝐳𝐳 followed a standard normal 

distribution. For our multiclassification task, we aim to classify the occupants into three 

classes: “prefer warmer”, “prefer no change”, and “prefer cooler”. Note that 𝑝𝑝(y𝑛𝑛|𝐱𝐱𝑛𝑛,𝜽𝜽) is 

a discrete distribution which requires to convert output values y𝑛𝑛 into probabilities using 



80 

a softmax function (Eq.3.6). Softmax rescales the probability of each class to fall in the 

range between 0 and 1 and add up to 1. The highest probability computed by softmax 

among the three thermal preference classes will be the predictive class output. 

 
softmax(𝑥𝑥𝑖𝑖) =

exp(𝑥𝑥𝑖𝑖)
∑ exp�𝑥𝑥𝑗𝑗�𝑛𝑛
𝑗𝑗=1

 (3.6) 

Performing Bayesian inference on a neural network requires the posterior distribution of 

the network weights and biases given the training data 𝑝𝑝(𝜽𝜽 |𝒟𝒟). However, direct 

computation of the exact posterior distribution is intractable even if we use a graphical 

model to simplify the distribution (Blundell et al. 2015). Mathematically, the predictive 

distribution of an unknown label 𝐲𝐲� on a validation data item 𝐱𝐱� is given as:  

 𝑝𝑝(𝐲𝐲� |𝐱𝐱�) = 𝔼𝔼𝑝𝑝�𝜽𝜽 �𝒟𝒟� [𝑝𝑝(𝐲𝐲� |𝐱𝐱�,𝜽𝜽)] (3.7) 

 

As Eq.3.7 indicates, the distribution answers predictive queries about unobserved data 

where the expectation is taken across the data generating distribution. Instead, we need 

to use variational inference for parameterizing Bayesian posterior distributions. Our goal 

is to find the optimal parameter 𝜽𝜽 where it means we need to infer the posterior over the 

latent variable 𝐳𝐳. Variational inference offers a way to find 𝜽𝜽𝑚𝑚𝑚𝑚𝑚𝑚 and then to approximate 

𝑝𝑝𝜃𝜃max
(𝐳𝐳|𝐱𝐱) by introducing a parameterized distribution 𝑞𝑞𝜙𝜙(𝐳𝐳) (Graves 2011) where 𝜙𝜙 is 

known as the variational parameters. Suppose that the variational posterior is a 

Gaussian distribution with a diagonal covariance matrix over the latent space, we used 

the Evidence Lower Bound (ELBO) to move the variational distribution as close as 

possible to the exact posterior where each training iteration can take a correct step in 𝜃𝜃 −

𝜙𝜙 space (Dean et al. 2012): 

 ELBO(𝜙𝜙) = 𝔼𝔼𝑞𝑞𝜙𝜙(𝐳𝐳)�log𝑝𝑝θ (𝐱𝐱, 𝐳𝐳) − log𝑞𝑞𝜙𝜙 (𝐳𝐳)� (3.8) 
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Note that the variational distribution is parametrically distributed, therefore we can 

compute Monte Carlo estimates of this quantity. The dissimilarity between 

approximating distribution 𝑞𝑞𝜙𝜙(𝐳𝐳)  and the true posterior 𝑝𝑝θ(𝐳𝐳|𝐱𝐱) is given by Kullback-

Leibler (KL) divergence. Minimizing the dissimilarity KL [𝑞𝑞||𝑝𝑝] can be turned into an 

optimization problem if we seek to push the log evidence higher (in expectation) by 

taking stochastic gradient steps to minimize the ELBO objective. Calibrating the 

variational parameters 𝜙𝜙 is done using the Adaptive Moment Estimation (Adam) 

optimizer that can adaptively adjust 𝜙𝜙: 

 log𝑝𝑝θ (𝐱𝐱) − ELBO(𝜙𝜙) = KL �𝑞𝑞𝜙𝜙(𝐳𝐳)||𝑝𝑝𝜃𝜃(𝐳𝐳|𝐱𝐱)� 

𝜙𝜙∗ = arg max𝜙𝜙 ELBO(𝜙𝜙) 

(3.9) 

(3.10) 

All the models described in this chapter used Python (version 3.6) in a Jupyter Notebook 

environment on Google Colab with GPU acceleration. The models were implemented 

using PyTorch (version 1.6.0) (Paszke et al. 2017) and Pyro (version 1.5.1) (Bingham et 

al. 2019) to execute probabilistic programming. 

3.3.3. BNN Model Performance Evaluation 

To mitigate biases and overfitting during model training, the K-fold cross-validation 

technique was applied to randomly split an entire dataset into 5 exclusive subsets with a 

roughly equal number of data points. The following criteria are used to evaluate the 

performance of the BNN models on classifying and predicting thermal preference: 

• Prediction accuracy: In our multi-class case, prediction accuracy is given by the 

total number of correct predictions across all classes out of the total number of 

predictions. Prediction accuracy is one of the most important evaluation metrics 

to show how accurate our classification model is. 
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• Weighted average F1-score: In the multi-class prediction, we used weighted 

average F1-score to calculate metrics for each class and get their average 

weighted by finding the number of truly predicted instances. 

• AUC: The Area Under the Receiver Operating Characteristic (ROC) Curve was 

used to evaluate a scoring classifier at multiple cutoffs. The average AUC of all 

possible pairwise combinations of classes was computed (Hand and Till 2001). 

• Adjusted rand index (ARI): It measures similarity between two classes by 

considering all sample pairs and counting pairs allocated in the same or different 

classes in the truly predicted classes (Hubert and Arabie 1985). A higher score 

means the identified classes are more identical. 

3.4. Results and Discussion 

3.4.1. Important Features Selection 

The state-of-the-art XGBoost algorithm was implemented to filter unnecessary variables 

for developing a Bayesian-inferred thermal preference model. The XGBoost technique 

has been proven its superior on different kinds of non-linear classification problems, but 

very limited application in thermal comfort studies (Chen and Guestrin 2016; Z. Wang, 

Wang, et al. 2020). The importance score used in the XGBoost algorithm is known as F-

score, where a variable represented more information for classification will be weighted 

with a higher F-score. The F-score computation is based on the number of times a 

variable is used for splitting, weighted by the squared improvement to the model as a 

result of each split, and averaged over all possibilities (Chen and Guestrin 2016). The F-

score computed by the XGBoost algorithm can treat continuous and discrete variables as 

inputs equally to rank the variables. This property powers discrete subjective measures 
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collected from the occupants which can weight as important as continuous 

environmental monitoring data when ranking the variable importance. Not all the 

variables that the ASHRAE Global Thermal Comfort Database II has were ranked due to 

a very high proportion of missing data such as globe temperature (97.5%) and radiant 

temperature (97.5%), even though researchers have shown their importance. We did not 

impute estimated values to replace these variables with a high missing rate. If substantial 

information is incomplete, the generalizability of a model will be weakened as the 

impustation is based on available data points to generate. 

As a result, the XGBoost algorithm was implemented over 31 variables and Figure 3. 5 

displays the feature ranking results ordered by its importance. The top 15 significant 

variables include 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, TS, 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖_ℎ, 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖, 𝑐𝑐𝑐𝑐𝑐𝑐, 𝑇𝑇𝑔𝑔𝑔𝑔_ℎ, RH, 𝑇𝑇𝑜𝑜𝑜𝑜, AMP, 𝑣𝑣, SW, TSA, Age, TC, and 

HS. It is worth noting that the feature of window operation was not selected by XGBoost 

within the top 15. Despite this, the feature of window states was manually inputted into 

the BNN model since plenty of studies have highlighted its important role in learning 

individual’s thermal preference based on their interaction with controllable comfort 

systems (Kim et al. 2018), improving building energy performance to sustain desired 

indoor environmental quality (L. Wang and Greenberg 2015), and identifying occupant 

adaptation to thermal conditions (Trebilcock, Soto-Muñoz, and Piggot-Navarrete 2020). 
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Figure 3. 5: Feature importance analysis by implementing the XGBoost algorithm. The larger F-score, the 
more important the feature is. 

Table 3. 1 shows the descriptive statistics of the 16 features that were identified for 

training the BNN model. In general, large variances are found in all of the 

environmental, personal and behavior variables. The dispersion of each variable presents 

a source of uncertainty or variability and leads to classification errors. This fact means 

that deterministic models cannot estimate the natural variability of environmental 

variables and capture inter and intra-variabilities in thermal preference. 

Table 3. 1. Statistical summary of the 16 input features. 

Category XGBoost Selected 
variables Unit Minimum Maximum Mean Standard 

deviation 

Outdoor 
Environment 

Outdoor monthly air 
temperature (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜) °C -16.80 43.60 23.95 8.50 
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Indoor 
Environment 

Air temperature at 1.1m 
above the floor (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖_ℎ) °C 14.60 39.80 25.43 2.21 

Air temperature (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖) °C 13.90 45.30 25.74 3.86 

Globe temperature at 
1.1m above the floor 

(𝑇𝑇𝑔𝑔𝑔𝑔_ℎ) 
°C 

13.30 39.80 26.88 2.70 

Relative humidity (RH) % 13.70 88.80 52.59 14.56 

Operative temperature 
(𝑇𝑇𝑜𝑜𝑜𝑜) °C 

15.60 35.50 24.18 1.45 

Air velocity (𝑣𝑣) m/s 0.00 6.54 0.22 0.37 

Behavioral 
adaptation 

Window operation 
(WO) open/close 0.00 1.00 0.36 0.48 

Personal 
thermal 

characteristics 

Clothing insolation 
(𝑐𝑐𝑐𝑐𝑐𝑐) clo 0.00 2.24 0.67 0.25 

Subject’s weight (SW) kg 35.00 150.00 65.86 11.70 

Age - 6.00 75.00 36.26 10.06 

Subjective 
measures 

Thermal comfort (TC) 

From 1 (very 
uncomfortable) 

to 6 (very 
comfortable) 

1.00 6.00 4.92 0.73 

Thermal sensation 
acceptability 

0 
(unacceptable), 
1 (acceptable) 

   0.00 1.00 0.85 0.35 

Thermal sensation (TS) From -3 (cold) 
to +3 (hot) 

-3.00 3.00 0.15 1.13 

Humidity sensation 
(HS) 

From -3 (very 
humid) to +3 

(very dry) 

-3.00 3.00 0.005 0.36 

Air movement 
preference (AMP) 

less, no 
change, more 

0.00 2.00 0.41 0.57 

 

3.4.2. BNN Model Configuration and Performance Evaluation 

Designing an appropriate neural network architecture is problem and dataset dependent. 

To get started, the Rectified Linear Unit (ReLU) was added between the successive 

hidden layers as the activation function to introduce non-linearity into the neuron’s 

output. A batch size of 64 was used as the number of samples from the training dataset 

to estimate the error gradient. Different learning rates for Adam optimizer setup were 

tested (e.g., 0.001, 0.01, 0.1) and monitored ELBO loss on both training and validation 

datasets to diagnose the error gradient of the model optimization in the learning process. 
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Figure 3. 6 illustrates how learning rates affect model convergence based on a BNN 

model structure configured with one hidden layer (hidden units = 16) in the thermal 

preference prediction scenario. The left plot in Figure 6 shows a good fit as the training 

and validation loss gradually increases to a point of stability and has a minimum 

difference between the two final loss values. The middle and right plots demonstrate 

noisy movements around the training and validation loss where each iteration takes a 

too large step size moving forward due to a large learning rate. The learning rate of Adam 

optimizer was setup as 0.001 to tune the BNN model to find an optimal number of 

hidden neurons and hidden layers. 

 

Figure 3. 6: Comparison of the BNN model convergence with learning rate of 0.001, 0.01, and 0.1. 

The BNN was trained with different structures for 200 epochs. Table 3. 2 summarizes 

the prediction accuracy and uncertainty of BNN as well as the results of model 

performance evaluation for developing Bayesian-inferred thermal preference model. We 

report and compare the predictive performance with the average predicted cross-

validated results and how uncertainty that different model structures can overcome. The 

last three columns show the model performance under different evaluation metrics. 

Table 3. 2. Predictive performance with different BNN architectures. 

Network 
structure 

Hidden 
layers 

Average 
training 
accuracy 

Average 
validation 
accuracy 

Prediction 
uncertainty AUC ARI 

Weighted 
average 
F1-score 
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(number of 
hidden 

neurons) 

(16) 1 0.702 0.687 0.009 0.834 0.312 0.693 

(32) 1 0.703 0.676 0.008 0.813 0.282 0.671 

(64) 1 0.709 0.661 0.007 0.801 0.259 0.654 

(128) 1 0.716 0.633 0.006 0.775 0.216 0.621 

(16, 8) 2 0.691 0.682 0.010 0.816 0.285 0.677 

(16, 16) 2 0.693 0.686 0.011 0.805 0.281 0.674 

(32, 8) 2 0.668 0.655 0.011 0.807 0.272 0.668 

(32, 16) 2 0.677 0.666 0.007 0.804 0.261 0.659 

(32, 32) 2 0.672 0.662 0.002 0.799 0.259 0.657 

(8, 8, 8) 3 0.703 0.693 0.008 0.838 0.311 0.698 

(16, 8, 8) 3 0.688 0.681 0.008 0.817 0.292 0.673 

(16, 16, 8) 3 0.679 0.673 0.012 0.803 0.275 0.668 

(32, 8, 8) 3 0.671 0.662 0.003 0.779 0.250 0.649 

(32, 16, 8) 3 0.673 0.660 0.010 0.793 0.255 0.653 

(32, 32, 16) 3 0.677 0.654 0.003 0.792 0.257 0.653 

(64, 32, 16) 3 0.662 0.626 0.012 0.777 0.230 0.631 

 

In terms of predictive accuracy on validation datasets, the BNN made up of 3 hidden 

neuron layers with 8 hidden nodes in each layer (i.e., (8, 8, 8)) displays the highest 

performance (cross-validated mean accuracy = 0.693), followed by a BNN architecture 

with a hidden layer comprising 16 units (i.e., (16)). The middle tier is the networks with 

large neuron size in one hidden layer or relatively large neuron size in multiple hidden 

layers. The worst two predictive network structures are (128) and (64, 32, 16). It is not 

surprising that a single-layer network or multi-layer neural network configured with a 

relatively large neuron size in the hidden layer leading to an overfitting problem. 

Regarding the BNN model performance uncertainty as shown in Table 2, the (8, 8, 8) 

configured BNN presents a considerably narrower range of prediction uncertainty (SD = 

0.008), while the wider ranges of standard deviation (SD = 0.012) are observed in BNN 

net made up of (16, 16, 8) and (64, 32, 16). With regards to the model classification 
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performance, it is evident from the ARI results that a single-layered BNN with 16 hidden 

neurons is the highest-ranking network (ARI = 0.312) but is just slightly better than a 

BNN net structured with (8, 8, 8) (ARI = 0.311). Likewise, these two model 

configurations perform similarly in terms of AUC with a very small difference. The (8, 8, 

8) BNN net has the highest weighted average F1-score, which indicates that the model 

gains success of classifying thermal preference classes. 

As observed in the training and validation accuracy difference, the networks with high 

training accuracy are not necessarily consistent with its cross-validated accuracy, AUC, 

ARI, and F1-score. A better predictive accuracy does not always improve the model 

classification performance. It is important to test the learning rates and compare 

different BNN architectures in line with a variety of performance evaluation metrics. 

Depending on the application and problem that the model targets, other perspectives 

affect the design decision on BNN model structure, such as the computational cost, 

computational speed, and scalability. For our study’s objectives, the correctness of 

classifying occupant thermal preference and how certain/uncertain the BNN model can 

reach determine our model refinement. Overall, the BNN architecture with 3 hidden 

layers and 8 hidden neurons in each layer (i.e., 8, 8, 8) performs reasonably well in all 

cases. In the following sections, we focus on this BNN model to explore how 

classification uncertainties of the model impact thermal preference prediction. 

3.4.3. Uncertainty Quantification in Prediction and Classification Probability 

In order to digest the BNN model’s classification errors, a Sankey plot was created to 

visualize the nexus of true labels and predicted labels (see Figure 3. 7). The Sankey plot’s 

left color nodes represent the actual classes and the right color nodes show the predicted 

classes. The color nodes and flows have a width proportional to the quantity of data 
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points. As illustrated by Figure 8, the cooler preferences are mostly forecasted to “prefer 

no change,” with fewer incorrectly predicted as “prefer no change” class and even fewer 

predicted as “prefer warmer.” However, over half (51.3%) of the warmer preferences are 

predicted to prefer “no change” and “cooler.” Most of the “no change” votes are predicted 

correctly. About 25% and 10% of “no change” votes are predicted as “prefer cooler” and 

“prefer warmer” classes, respectively. The comparison of the prediction performance 

over each class implies that our BNN model classification on “prefer cooler” class is 

superior to “no change” and “warmer” preference with 83.7% correct prediction rate, 

followed by no change preference with 63.9 percentage correct and then warmer 

preference with 48.7% correct predictions. 

 

Figure 3. 7: The number of correct and incorrect predictions classified by the BNN model. 

Beyond this, the Bayesian method offers two outstanding properties: providing 

predictive class probabilities instead of the deterministic class label predictions and 

offering the standard deviation of the posterior predictive to reflect the degrees of the 
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uncertainty. We present the results as a raincloud plot which combines an illustration of 

data distribution and box plots overlapped with jittered raw data. As displayed in Figure 

3. 8, the plot shows the variability of the predictive probabilities for three thermal 

preference classes along with the predictive uncertainty. The “prefer cooler” class is the 

only one containing an outlier, which indicates these posterior predictive probabilities 

differ significantly from the rest. The probability values are primarily concentrated in the 

high possibility areas which are in the range of 0.9-1.0, as shown in the thick parts. The 

predictive uncertainty of “prefer cooler” class is densely clustered between 0.0-0.05 and 

this interprets a low degree of uncertainty. The BNN model has fairly high confidence to 

classify cooler preference class in most cases given observed and unobserved variables. 

Thinking of its practical application in winter months in the built environment, the 

model classifies the occupants in the cooler comfort zone where less energy would be 

required to keep a slightly cooler condition. 

 

Figure 3. 8: Variation of posterior predictive mean probability and uncertainty of each class label. 

In terms of no change and warmer preference class, we can observe a visible spread of 

these two classes’ posterior predictive probability. The box plot of class “prefer no 

change” is more skewed to the right, indicating that the values concentrate at the high 

probability end of the scale. By contrast, class “prefer warmer” has a squeezed and quite 

flat distribution of peak probability values between 0.8-1.0. The distribution shape 
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implies that occupants experience different thermal stress and take corresponding 

behavior actions occurring an equiprobability to be classified as “prefer warmer” class. 

As evident from the right plot in Figure 3. 9, “prefer warmer” class has a minimum 

variation in predictive uncertainty, while it has the highest level of uncertainty and over 

half of the predictive uncertainty ranges between 0.2-0.4. We visualize how the BNN 

model performs across all occupants in relation to predictive probability and uncertainty 

in a scatterplot. As can be seen from the fitted regression lines in Figure 10, the 

predictive class probability and the deviation of prediction are not following a nonlinear 

relationship. These three regression lines created the boundary region show that the 

majority (75.8%) of predicted thermal preference classes has predictive probabilities 

greater than 0.7 and uncertainties lower than 0.35. The BNN that classified occupants as 

“prefer warmer” has a lower predictive class probability and higher uncertainty, whereas 

the “prefer cooler” class has a higher predictive mean probability and lower classification 

uncertainty. The BNN model’s uncertainty can be concisely quantified with a high 

posterior predictive mean probability. In general, the BNN model for classifying cooler 

preference outperforms no change and warmer preference. 

  

Figure 3. 9: Posterior predictive mean probability and predictive uncertainty across all occupants. 
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3.4.4. Understanding Variable Importance 

Understanding the effect of variables on a model’s predictive power helps reduce the cost 

of collecting data related to occupants’ thermal comfort when conducting a field study. 

However, testing the importance of all selected features and their possible combinations 

is time-consuming and computationally expensive. We then grouped 16 XGBoost-

selected variables based on the category that they belong to. We used a stepwise 

approach to run the BNN model by updating or adding a new variable group until all 

variable combinations were tested. We monitored the model performance at the same 

time to understand the minimum number of measurements that one needs to collect but 

also have robust predictive performance. The results of model runs are given in Table 3. 

3 and visualized in Figure 3. 10. The order of testing different variable combinations 

follows the data collection efforts during the field study. In this case, the easily 

obtainable variables were input to the model first. The outdoor and indoor environment 

data were investigated first, because they are fundamental measures and are 

automatically streamed by sensors. Occupant interaction with the window system 

requires additional sensor installation, therefore it was tested in the second place. Both 

personal thermal characteristics and subjective measures involve the most efforts as they 

require an Institutional Review Board (IRB) approval and occupants’ survey 

participation. 

Table 3. 3. The BNN model performance is tested with different variable combinations.  

Combination 
groups 

Variable 
Combinations* 

Training 
accuracy 

Validation 
accuracy AUC ARI 

Weighted 
average F1-

score 

COMB 1 O+I 0.552 0.540 0.703 0.127 0.526 

COMB 2 O+I+B 0.572 0.568 0.712 0.138 0.549 

COMB 3 O+I+P 0.557 0.549 0.702 0.120 0.533 

COMB 4 O+I+SM 0.688 0.684 0.818 0.288 0.679 

COMB 5 O+I+B+P 0.561 0.551 0.708 0.122 0.531 
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COMB 6 O+I+P+SM 0.696 0.687 0.822 0.310 0.693 

COMB 7 O+I+B+SM 0.692 0.686 0.824 0.321 0.700 

COMB 8 O+I+B+P+SM 0.703 0.689 0.831 0.311 0.698 

*Note: The category that a variable belongs to is clarified in Table 1. ‘O’ and ‘I’ in this 

table refer to outdoor and indoor environment measurements, respectively. ‘B’ stands 

for behavioral adaptation. ‘P’ points to personal thermal characteristics, and ‘SM’ 

refers to subjective measures. 

It is evident from the results that there is a marked performance improvement when 

occupant window opening/closing behavior is added (COMB 2) upon outdoor and 

indoor environment measures (COMB 1). This finding is in line with previous studies in 

the field (Park et al. 2020; Damiati et al. 2016; Mustapa et al. 2016; Zaki et al. 2017) 

where they also reported the importance of inputting occupant adaptive behavior to 

predict thermal comfort. A small improvement is noted here (COMB 3) when individual 

thermal characteristics are included. A substantial increase occurred in COMB 4 for 

validation accuracy, AUC, ARI, and weighted average F1-score highlights that subjective 

measures are very important features. Not surprisingly, having subjective measures 

together with behavioral adaptation (COMB 7) provides even better model performance. 

These findings extend those of Deng and Chen’s (Deng and Chen 2018), confirming that 

adaptive behavior changes occupant perception of thermal surroundings and is 

beneficial for thermal preference prediction and classification. 
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Figure 3. 10: The BNN model performance with different variable combinations. 

The similar model results of COMB 6 and COMB 7 could be explained by the variations 

of proximity to a window and radiant temperature asymmetry, which are not recorded in 

the ASHRAE Global Thermal Comfort Database II, yet implicitly are embodied in the 

‘right-now-right-here’ subjective measures. Lyons et al.’s (Lyons, Arasteh, and Huizenga 

2000) study outcomes also support the idea that occupants’ location towards and/or 

away from a window can adversely affect thermal sensation regardless of the window 

open or close state. Occupants may prefer and experience different thermal conditions 
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even if the room is maintained at a comfortable temperature. However, the surveyed 

subjective measures can offset the weakness of personal thermal characteristics or 

window opening behavior by not considering the asymmetry of radiant temperature. 

This analysis on variable importance indicates that the BNN model improvement of 

thermal preference prediction gained from surveying “the condition of mind that 

expresses satisfaction with the thermal environment” (ASHRAE 2013) and linking it to 

occupant behavioral adaptation. Most notably, this is the first study to our knowledge 

implementing Bayesian inference on neural network to explore thermal preference 

prediction performance. 

3.4.5. Comparing BNN to PMV and Adaptive Model 

We employed the pythermalcomfort (version 1.3.3) (Tartarini and Schiavon 2020) to 

compute the PMV and adaptive model aligned with calculation methods proposed in 

ASHRAE 55 (ASHRAE 2013). As the PMV model is a steady-state model that is 

developed through climate chamber experiments, we used static values and field 

measurements of air temperature (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖), relative humidity (𝑅𝑅𝑅𝑅), and operative 

temperature (𝑇𝑇𝑜𝑜𝑜𝑜). The static values include thermal insulation of clothing (𝑐𝑐𝑐𝑐𝑐𝑐 = 0.6), 

sedentary metabolic rate (met = 1.0), stand still air velocity (𝑣𝑣 = 0.1m/s). Radiant 

temperature (𝑇𝑇𝑀𝑀𝑀𝑀) is a critical factor of the PMV model, for which the ASHRAE database 

has a high missing rate. Therefore, we implemented the following equation derived by 

Butera to compute 𝑇𝑇𝑀𝑀𝑀𝑀: 

 𝑇𝑇𝑜𝑜𝑜𝑜 = (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑀𝑀𝑀𝑀)/2 (3.22) 

Note that 𝑇𝑇𝑀𝑀𝑀𝑀 and 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 defined in the ASHRAE standard are only applicable to those 

greater than 10°C and less than 40°C, respectively. Measurements that are not within the 

ranges were removed. In order to compare the results of PMV with respect to thermal 
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preference votes on the same scale, we adopted Ghahramani et al.’s (Ghahramani, Tang, 

and Becerik-Gerber 2015) developed rules to transform PMV’s value into thermal 

preference classes: PMV between -0.5 and 0.5 is “prefer no change”; 𝑃𝑃𝑃𝑃𝑃𝑃 < −0.5 is 

“prefer warmer”; 𝑃𝑃𝑃𝑃𝑃𝑃 > 0.5 is “prefer cooler”. In compliance with ASHRAE 55, the 

adaptive model applies to outdoor air temperatures greater than 10°C and less than 

33.5°C and air speeds slower than 2m/s. As a consequence, we excluded the 

meteorological and air velocity data that are outside the thresholds. To convert adaptive 

thermal comfort into a thermal preference scale, we assumed that 𝑇𝑇𝑜𝑜𝑜𝑜 fell in the range of 

80% acceptability limits is regarded as “prefer no change”. If 𝑇𝑇𝑜𝑜𝑜𝑜 is greater than the 

acceptable comfort temperature for 80% occupants, we converted it to “prefer cooler”. 

Likewise, we converted the condition into “prefer warmer” if 𝑇𝑇𝑜𝑜𝑜𝑜 is less than the lower 

acceptability limit. 

Table 3. 4. Comparing the BNN model to conventional thermal comfort models.  

 Prediction accuracy ARI Weighted average F1-score 

PMV model 0.334 0.013 0.395 

Adaptive model 0.383 0 0.523 

BNN model 0.693 0.311 0.698 

 

Table 3. 4. Comparing the BNN model to conventional thermal comfort models. 

summarizes the PMV and adaptive model’s performance on prediction accuracy, ARI, 

and weighted average F1-score. AUC score is not computable in this case since the 

probability of the class with the greater label is unknown. The PMV and adaptive model 

predict thermal preference slightly better than taking a random guess (0.333). The PMV 

model’s ARI score is very low and adaptive model’s is equal to 0. This phenomenon could 

be explained by an extremely imbalanced class prediction. However, the weighted 

average F1-score accounts for the label imbalance, potentially leading to a better score 
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for adaptive model evaluation. It appears from these reported results that our Bayesian 

inferred thermal preference model provides compelling evidence for the prediction and 

classification. This model appears to be effective and accurate if subjective measures and 

behavioral adaptation variables are incorporated. 

3.5. Conclusion 

In this chapter, BNN models were developed using the ASHRAE Global Thermal 

Comfort Database II in order to provide reliable thermal preference predictions based on 

environmental measurements, personal thermal characteristics, subjective measures, 

and behavioral adaptation. The BNN models were configured with different 

architectures to test their performance and investigated their associated model 

predictive uncertainty for each thermal preference class. From our results, the BNN 

model structured 3 hidden neuron layers with 8 hidden nodes in each layer (i.e., 8, 8, 8) 

produced the average accuracy of 0.693 as the best performing configuration. The 

developed BNN model in this chapter demonstrated a promising capacity of forecasting 

“prefer cooler” class. Its corresponding posterior predictive probabilities are in the high 

possibility regions and the predictive uncertainty is densely clustered in the range of 0-

0.05, indicating a high level of predictive certainty. 

Although the Bayesian inferred thermal preference model is able to represent occupants’ 

future thermal expectations accurately, we have to acknowledge that there is no “one size 

fits all”. It is even harder to design environmental systems to meet 100% thermal 

satisfaction for all occupants in high-performance buildings. In this sense, this chapter 

demonstrates that the importance of accounting for the actions that people take to make 

themselves comfortable (e.g., opening and closing windows). This finding emphasizes 

that high-performance buildings need more information about people. “Putting people 
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in the loop” helps get better thermal preference predictions with more data related to 

people. 
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CHAPTER 4: MAKING VISIBLE THE INVISIBLE 

 

Figure 4. 1: The physical IoT sensors stand in for people. 

The building envelope provides a physical barrier and separates the indoor and outdoor 

environments which consists of fenestration (doors and windows), roofs, walls, and 

insulations. Since a building envelope separates the unconditioned exterior environment 

from the conditioned interior space, it is one of the key factors that impact building 

energy performance. Architects intentionally select the proper materials and design the 

envelopes to alter local climate and enhance the indoor environment by adjusting the 

walls and windows. Meanwhile, the unintentional airflows of building envelope offer 

pathways for outdoor contaminants penetrating into the indoor environment. Adapted 

from (Ma et al. 2022), this chapter aims to unpack how the physical IoT sensors could 

stand in for people to evaluate the indoor health risks if building occupants cannot sense 

these colorless and odorless air pollutants, such as ozone. Given this background, this 

study focuses on the envelope design of typical residential houses in the urban area of 

Philadelphia and performs a preliminary evaluation of the health risks of indoor ozone 

exposure. To that end, this chapter investigates the extent to which that ozone penetrates 
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and cumulates in occupied houses by taking the following steps: (1) analyze the temporal 

variability of indoor and outdoor ozone concentrations during occupied periods; (2) 

assess the relationship between indoor ozone concentration and associated factors (i.e. 

building characteristics, design and environmental features) in the urban environment; 

and (3) test models to infer indoor ozone concentration using different variable 

combinations. 

4.1. Building Envelope Responses to Urban Ozone Pollution 

Ozone is widely recognized to be one of the important air pollutants that yields risk 

factor for global health. It is one of two primary pollutants (along with fine particulate 

matter) that is consistently evaluated in the Global Burden of Diseases Study (Cohen et 

al. 2017) as well as being one of six criteria pollutants regulated by the United States 

Environmental Protection Agency (EPA) National Ambient Air Quality Standards 

(NAAQS). Long-term exposure to ozone has been linked to decreased pulmonary 

function (Levy et al. 2001; Mudway and Kelly 2000), increased asthma incidence (Fann 

et al. 2012), cardiovascular disease (Anenberg et al. 2010), and other respiratory diseases 

(Dockery and Pope 1994). Considering all these health risks, the American Society of 

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) recommends that 

ozone concentrations in air introduced to indoor spaces be reduced to “as low as 

reasonably achievable” (ASHRAE 2016). 

In the urban environments, ozone is generated by the photochemical reaction products 

of nitrogen oxides (NOx) and volatile organic compounds (VOCs) under exposure to 

sunlight. NOx is a direct byproduct of fossil fuel combustion, particularly from vehicles, 

while VOCs come from transportation and other natural emissions from vegetation. 

Outdoor ozone concentrations are significantly elevated during the summer and climate 
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change will further exacerbate this problem because higher temperatures accelerate 

ozone formation (Chang, Hao, and Sarnat 2014; Zhong, Lee, and Haghighat 2017). The 

phenomenon of an urban heat island (UHI) attributes to higher air temperatures in 

urban core areas than in rural areas and therefore, intensifies the urban ozone pollution 

(Liang et al. 2022).  

Ozone primarily originates in outdoor air while exposures occur mainly indoors given 

that people spend most of their time in the built environment. Building envelopes are 

partially but incompletely protective against the indoor exposure to ozone. Outdoor air 

with higher ozone concentration flowing through the building envelope’s cracks and gaps 

- in unintended air infiltration - is the primary source of indoor ozone (Weschler 2000). 

Building factors can influence indoor ozone concentrations and therefore ozone 

exposures. The amount of ozone inhalation is cumulatively determined not only by 

urban ozone pollution levels but also by how much ozone enters and persists in occupied 

buildings. While the interiors of commercial and civic buildings tend to be mechanically 

ventilated, residential houses are more often naturally ventilated. Buildings without 

mechanical ventilation systems appear to be affected by outdoor concentrations of ozone 

through infiltration (Lai, Karava, and Chen 2015). The infiltration of outdoor ozone into 

indoor environments through the building envelope depends on several factors, 

including the building fabric, the permeability of building envelopes, building geometry, 

weather, and urban environment conditions. In addition, the age of buildings and 

various housing characteristics, such as the size of window openings and crack geometry, 

are also associated with indoor ozone concentrations (Salonen, Salthammer, and 

Morawska 2018).  

However, a limited number of recent studies were found in the archival literature 

investigating indoor exposures to ozone in normally occupied residential houses in the 
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U.S. urban environments (Ma, Aviv, et al. 2021; Nazaroff and Weschler 2021). To our 

knowledge, very rare studies explored the implication of building envelope design 

variables on outdoor ozone penetration. The field investigations in the previous studies 

have not been conducted in the most ozone polluted cities as identified by the American 

Lung Association’s 2020 State of the Air (American Lung Association 2020). The urban 

ozone pollution in the Philadelphia-Reading-Camden (PA-NJ-DE-MD metro area, called 

the greater Philadelphia area) are consistently unhealthy, and the city of Philadelphia is 

among the nation’s 25 worst ozone-polluted cities. Given this background, this study 

focuses on the envelope design of typical residential houses in the urban area of 

Philadelphia and performs a preliminary evaluation of the health risks of indoor ozone 

exposure. 

4.2. Material and Methods 

4.2.1. Houses Description and On-Site Measurements 

The hourly outdoor ozone data in the unit of parts per million (ppm) were retrieved from 

the United States EPA’s AirNow station web (https://www.airnow.gov). This is the only 

monitoring site within a reasonable distance of the study area. In addition, a HOBO 

weather station (Onset Computer Corporation, Bourne, MA, USA) was set up on a 

building roof within the study area reporting outdoor air temperature, relative humidity, 

wind speed, and solar radiation. The monitored houses and meteorological stations are 

provided in Figure 4. 2. 

https://www.airnow.gov/
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Figure 4. 2: Locations of study houses and meteorological stations in Philadelphia. 

Four exterior walls (ENV A, ENV B, ENV C, and ENV D) located in the urban area of 

Philadelphia were selected for the field studies. The selected envelopes were built 

between the 1860s and 1930s without major renovations or refurbishment. During the 

monitoring period of time, we did not ask the building occupants to limit their behaviors 

such as window opening habits since it is known that human-building interactions tend 

to cause uncertainties in the IAQ performance and modeling (Cho et al. 2020; Ma, Chen, 

et al. 2021). We took a thorough home investigation for each site and did not find any 

photocopiers or printers in the study houses. It is important acknowledge because it 

indicates no significant indoor ozone emission source. We used a UV-absorbance ozone 

monitor with 1 min sampling time intervals (Model 202, 2B Technologies Inc.; Accuracy: 

1.5 ppb). The ozone analyzer measures concentrations between 0 and 250 ppm by the 

principle of UV absorption at 254 nm. In addition to ozone measurements, we also 

recorded a set of IAQ variables such as CO2 concentrations by using an infrared 

absorption CO2 monitor (Telaire 7001, Amphenol Inc; Range: 0 - 2500 ppm, accuracy: ± 

50 ppm), PM2.5 with AirVisual Pro (IQAir; Range: 400 - 10,000 ppm), and Volume flow 

rates were measured by a hot-wire anemometer (9545, TSI Incorporated, Shoreview, 

MN, USA; Range: 0 – 30m/s, accuracy: ± 0.01 m/s). All devices were manufacturer-

calibrated before every field monitoring. Table 4. 1 summarizes the study envelopes 
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characteristics and sampling period, including general building information and 

envelope design variables. All envelopes are rectangular and straight from floor to 

ceiling, except ENV4 which was designed in a hexagonal-shaped wall for sweeping views. 

The geometric configurations of the envelope design are shown in Figure 4. 3. 

Table 4. 1. Building characteristics of inspected and measured envelopes. 

Wall 
ID1 

House 
ID 

Year of 
construction 

Exterior 
wall 

finishes 

Thickness 
of the 
wall 

(mm) 

Wall 
surface 

area 
(m2) 

Window 
perimeter 

(m) 

Length-
to-

width 
ratio 

Window-to-
wall ratio 

ENV1 House A 1863 Stucco 280 13.26 10.08 1.555 0.213 

ENV2 House B 1935 Brick 420 12.47 10.18 1.624 0.222 

ENV3 House C 1915 Brick 320 16.36 18.72 2.085 0.298 

ENV4 House A 1863 

Painted 
fiber 

cement 
siding 

250 7.31 9.48 1.008 0.951 

1 Window was replaced in 2015 for the ENV3 and the ENV4 had a glass patio door replacement in 

2018. 
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Figure 4. 3: The geometric configuration of (a) ENV1, (b) ENV2, (c) ENV3, and (d) ENV 4. The dimensions 

are in the meters. 

4.2.2. Infiltration Rate Determination and Tracer Gas Experiment 

CO2 tracer gas analysis was conducted to determine the bulk air infiltration/exfiltration 

rate for the building envelopes. This is a well-established technique that has been applied 

many times in the literature (Cui et al. 2015). The tracer gas experiments for this study 

were conducted in test houses when they were unoccupied, mitigating concerns of indoor 
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CO2 generation. The windows and doors were also closed to better evaluate the impact of 

unintended air infiltration. To facilitate the tracer gas analysis, a series of controlled CO2 

releases were performed in each of the buildings. CO2 was released from a regulator 

connected to a compressed CO2 cylinder (∼25 kg full) until the indoor CO2 concentration 

was measured to be 2,500 ppm, at which point the valve to the cylinder was closed. Next, 

a fan was turned on for 5 minutes to mix the air in the space, ensuring a consistent CO2 

concentration through the indoor air. The indoor CO2 concentration was continuously 

recorded every minute using a Telaire 7001 CO2 monitor connected to an Onset HOBO 

U12 data-logger. The experiment was concluded when the CO2 concentration stepped 

down at about the same background level (less than 700 ppm). The tracer gas analysis 

relies on describing the overall shape of the decay curve; therefore, the high CO2 

concentration data was more than enough to characterize the air infiltration rate. 

4.2.3. Data Analysis 

All of the statistical tests and models were described in this chapter using R Studio 

(version 3.5.2). The initial analysis compared the exposure to indoor ozone with building 

characteristics, design variables, and environmental features using Pearson correlation 

analyses (also known as Pearson’s r) (Eq. 4.1). 

𝑥̅𝑥 and 𝑦𝑦� are the means of the data. The Pearson’s r ranges between -1 and 1. If the 

absolute value of r is close to 1, this implies that x and y are nearly linearlly correlated. If 

r is a negative number, it indicates that a negative linear correlation is observsed 

between 𝑥𝑥 and 𝑦𝑦. If r is close to 0, then it presents that 𝑥𝑥 and 𝑦𝑦 do not have a linear 

correlation. 

 𝑟𝑟 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1

 (4.1) 
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Additionally, quantitative estimates of indoor ozone exposures and the impact of the 

design and environmental variables on indoor ozone exposure were derived. The mixed 

effect model’s marginal R-squared value was computed to assess the goodness of fit. The 

higher R-squared value means the model has a better fit for data. A supervised forward 

stepwise procedure was adopted to adjust the multivariate model. Only the outcome 

variable that remained statistically significant was included in the final model. All tests 

were two-sided and statistical significance was acknowledged for p-values below 0.05. A 

p-value less than 0.01 was selected to identify statistically significant relationships and 

minimize false positives. Further, a p-value less than 0.001 was used to determine the 

strongest relationship. 

4.3. Results and Discussion 

4.3.1. Tracer Gas Test Results 

In line with the trace grace decay results in the study houses, the CO2 concentration was 

measured as it decayed back down to the benchmark levels over a few hours. The ASTM 

E741 standard suggests that to transform the CO2 readings into the natural logarithm 

expression (ASTM 2017) and the exponential decay curve would turn into a linear form. 

The best linear fit can be derived and the regression slope describes the air infiltration 

rate of the envelope. Table 4. 2 reports the linear model fits and computed infiltration 

rate. In summary, the goodness-of-the-fit is quite good with R-squared values between 

0.894 and 0.992. It indicates that the CO2 concentration decay can describe the trace 

gas experiment results. ASHRAE 90.1 recommends an infiltration rate of at least 0.03 

m3/h for residential buildings, and the results of the tracer gas study show that these 

houses are above that threshold (ASHRAE 2004). This would suggest that average 
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houses would expect to experience even higher levels of indoor ozone concentration than 

were observed in the test houses. 

Table 4. 2: Tracer gas test results of all envelopes. 

Wall ID Test 
duration (h) 

Infiltration rate 
𝑁𝑁 (h-1) 

R-
squared MSE Std. Error 

ENV1 2.93 0.4360 0.9661 0.0048 1.028E-04 

ENV2 2.37 0.4390 0.8942 0.0108 1.127E-04 

ENV3 3.60 0.3523 0.9920 0.0011 3.587E-05 

ENV4 4.02 0.2124 0.9334 0.0097 9.088E-05 

4.3.2. Variations in Indoor and Outdoor Ozone Concentrations 

The temporal profile of indoor and outdoor ozone concentrations for each of the 

monitored envelopes are graphed in Figure 4. 4. The graphs show that the indoor ozone 

concentrations typically follow the same pattern as the outdoor ozone concentration. In 

addition, indoor ozone concentrations were almost always significantly lower than 

outdoor ozone, suggesting that building envelopes filter the outdoor air yielding lower 

indoor ozone concentrations. This finding agrees with data reported in the literature 

(Gao and Zhang 2012; Walker and Sherman 2013). Additionally, Figure 5 shows that 

ozone concentration follows a distinct diurnal pattern. The ozone concentration 

fluctuates most dramatically during the daytime and early night (7:00–21:00), and 

changes in ozone concentration from 00:00–06:00 are relatively low. The relatively low 

ozone concentrations before 7:00 local solar time (LST) are produced by weak 

photochemical reactions. The phenomenon was observed in previous studies (Xu et al. 

2021; Masiol et al. 2017). The dramatic changes in indoor ozone concentration can be 

explained by variations in the strength of sunlight and photochemical processes of local 

traffic emissions, as well as the building’s location and orientation. Different peak ozone 
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concentrations in indoor spaces can be caused by slow airflow under durative stagnant 

weather conditions. 

  

Figure 4. 4: Indoor and outdoor ozone concentrations of (a) ENV1, (b) ENV2, (c) ENV3, and (d) ENV4. 

Average indoor and outdoor ozone concentrations were 14.23 and 27.19 ppb, 

respectively. The mean (± SD) of the ratio of indoor to outdoor ozone concentration was 

0.53 ± 0.22. ENV3 has the highest median indoor concentrations and I/O ratio. 

Compared to the other study envelopes, ENV3 has the largest window and wall surface 

area implying a greater potential for cracks which allow more high ozone concentration 

outdoor air to infiltrate into the space. In addition, ENV3 is located in the heavy traffic 

zone of the downtown area and its UHI severity is evaluated as 5 (The Trust for Public 

Land 2021). Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat 

area and 5 being a severe heat area. It is believed that the chemical transformations and 

transport of ozone are effectively exerted by thermal circulations induced by UHI (Li et 

al. 2016). 
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By excluding the daily window closed periods, the I/O ozone ratios were found to be 

0.652, 0.740, 0.694 for ENV1, ENV3, and ENV4, respectively, when windows were open. 

Open windows lead to higher air exchange rates and can remarkably elevate indoor 

ozone levels, particularly when urban ozone pollution is poor. In previous residential 

field studies, a noteworthy study by Zhang and Lioy reported I/O was 0.625 with 

windows open in six New Jersey residences (Zhang and Lioy 1994). Lee et al.’s study 

reported the I/O ratio was 0.68 with windows open in houses in California (Lee et al. 

1999). Our findings are in line with the considerable variances of I/O ratios as a result of 

window opening behavior and air-conditioning system operation presented in Avol et al. 

and Lee et al.’s investigation (Avol, Navidi, and Colome 1998; Lee et al. 2002). 

Additionally, the wide range of I/O ratios measured in our study homes can be ascribed 

to a combination of differences in infiltration rate, furnishings, exterior envelope 

finishes, and window opening size (Zhong, Lee, and Haghighat 2017; Fadeyi 2015). 

It is worth noting that ENV2 has not undergone any renovation since 1935 when it was 

built, and the windows were kept closed during the monitoring period. However, the 

median I/O ratio was still higher than ENV1. This could be ascribed to the size of the 

leakage area and the infiltration rate which is the second highest among all the study 

envelopes. A few published studies have found that the average pollutant concentration 

in exfiltrating air, air leaving the building, is proportional to the concentration in 

infiltrating air, air entering a building (Liu and Nazaroff 2001; Salonen, Salthammer, 

and Morawska 2018; Fadeyi 2015). A greater number of cracks might cause greater air 

infiltration and therefore contribute to an elevated indoor ozone concentration. 
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4.3.3. Exploration of Variables Affecting Ozone Penetration 

To evaluate the hypothesis that the building characteristics and environmental features 

influence the indoor ozone exposure risk, a number of potential explanatory variables — 

the year of construction, infiltration rate (𝑁𝑁), indoor air temperature (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖), relative 

humidity (𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖), CO2 (𝐶𝐶𝐶𝐶𝑂𝑂2), PM2.5 (𝐶𝐶𝑃𝑃𝑃𝑃), volume flow rate (𝑄𝑄), solar radiation (𝐺𝐺), 

outdoor air temperature (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜), outdoor relative humidity (𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜), outdoor ozone 

concentration(𝐶𝐶𝑂𝑂3_𝑜𝑜𝑜𝑜𝑜𝑜) and wind speed (𝑣𝑣) — were statistically evaluated against the 

indoor ozone concentration. Envelope design variables that may play a critical role in 

reducing outdoor ozone penetration were examined as well, including the thickness of 

the wall (𝑡𝑡), exterior envelope finishes (EEF), wall surface area (𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤), window 

perimeter (𝐿𝐿𝑤𝑤𝑤𝑤𝑤𝑤), wall length-to-width ratio (LWR) and window-to-wall ratio (WWR). 

Pearson correlations were performed between indoor ozone concentration (𝐶𝐶𝑂𝑂3_𝑖𝑖𝑖𝑖𝑖𝑖) and 

18 of the above-mentioned factors across the four envelopes. Some of the correlation 

coefficients were excluded from Figure 4. 5 due to the small effect size. For example, 

infiltration rate and exterior envelope finishes are highly correlated while only four 

samples in total were observed. The small sample size tends to reduce the power of 

correlation tests and increase the margin of error. As can be observed from , indoor 

ozone concentrations are significantly and positively associated with outdoor ozone 

levels (r = 0.774, p < 0.001), solar radiation (r = 0.507, p < 0.001), outdoor temperature 

(r = 0.492, p < 0.001) and wind speed (r = 0.413, p < 0.001). By contrast, 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 and 

𝐶𝐶𝑂𝑂3_𝑖𝑖𝑖𝑖𝑖𝑖 have significant and negative correlation (r = -0.534, p < 0.001). The relationship 

between 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜  and 𝐶𝐶𝑂𝑂3_𝑜𝑜𝑜𝑜𝑜𝑜 also follows the correlative tendency of 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 and 𝐶𝐶𝑂𝑂3_𝑖𝑖𝑖𝑖𝑖𝑖 

which are significantly and negatively correlated (r = -0.681, p < 0.001). Additionally, 
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indoor ozone concentration is weakly but significantly correlated with  LWR, 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝐿𝐿𝑤𝑤𝑤𝑤𝑤𝑤 

and 𝐶𝐶𝐶𝐶𝐶𝐶2. 

 

Figure 4. 5: Heat map representation of the correlation matrix for the observed dataset. 

4.4. Discussion and Limitation of This Study 

This study examines how building characteristics, design variables, window conditions 

and environmental features determine the accumulation of indoor ozone from outdoor 

sources in four envelopes during occupied periods of time. The results were used to 

estimate the lifetime health risks for exposure to measured ozone concentrations with an 

emphasis on public health implications. 

The envelope design variables EEF and WWR play equally important roles of inferring 

indoor ozone concentration. EEF was selected as one of the important independent 

variables because exterior envelope materials can chemically react to outdoor ozone 
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decreasing the concentration in air near the building. As Lamble et al. (Lamble, Corsi, 

and Morrison 2011) reported in their study, intentionally selecting indoor and outdoor 

surface materials like brick can passively control ozone concentration without the need 

for an energy intensively active system. Other green building materials such as bamboo 

and ceramic tile, which were not covered in this study also hold promise as a means of 

reducing indoor exposure to ozone through chemical reactions with ozone (Hoang, 

Kinney, and Corsi 2009). No previous discussion was found and revealed the design 

variable of WWR has mixed effects with other independent variables on indoor ozone 

concentrations. However, much study has shown that greater WWR increases energy 

usage intensity due to higher unwanted infiltration (Troup et al. 2019; Mathur and 

Damle 2021). The intentional and unintentional infiltration tends to pull outdoor ozone 

through the envelope into indoors. In addition, the surface area of the envelope 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is 

also considered as an important factor in this model configuration which is determined 

by the building envelope geometries. The wall surface area is linked to infiltration rate 

which can be computed as a function of the surface area of the building envelope using 

the ASHRAE standard default values (Lambie and Saelens 2020).  However, 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is 

usually determined at building design phase prior to the infiltration rate that can be 

measured. 

4.5. Conclusion 

This study is a snapshot reflecting the ability of ambient ozone to penetrate and persist 

in residential houses in one of the most ozone polluted cities. The findings of our four-

envelope study, together with those of previous investigations, showed that indoor ozone 

concentrations are consistently lower than those outdoors. The mean (±SD) indoor to 

outdoor ozone concentration ratio was derived which is between 0.48 ± 0.20 to 0.68 ± 
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0.19 in all building conditions, with an average value of 0.53 ± 0.22; while the mean 

ratios are 0.700 ± 0.13 with window open. These results highlight that building envelope 

plays a critical role in removing urban ozone pollution and reducing the associated 

health risks of exposure to elevated indoor ozone concentration. 

The outcome of this study suggests ozone concentration follows a distinct diurnal 

pattern. The ozone concentration fluctuates most dramatically during the daytime and 

early night (7:00–21:00), and changes in ozone concentration from 00:00–06:00 are 

relatively low. This finding indicates that opening windows during nighttime (e.g., 12AM 

– 6AM) can help dilute indoor ozone levels.  Overall, this chapter investigates the 

importance of sensors to measure factor that people cannot sense and the importance of 

the envelope design and operation in ozone reduction indicating the complementary 

responses of human and instrumental detection (e.g., physical IoT sensors). The sensors 

can monitor the factors that people cannot sense and let them be aware of IAQ issues so 

that they can take actions to modify IAQ accordingly (e.g., open windows and turn on air 

purifier). Night ventilation, or night flushing,  is more demand compared to daytime 

ventilation concerning ozone pollution in residential houses. 
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CHAPTER 5: SENSING THE ENVIRONMENT: ENVIRONMENTAL 

DETERMINATORS OF SLEEP HEALTH 

 

Figure 5. 1: Human acts as passive receptors while sleeping 

In Chapter 1, I discussed that two kinds of occupant involvement with indoor 

environments. This chapter looks into how the building performance influences sleep 

quality when humans become the passive receptors of environmental factors. Sleep is 

essential for the body to recover from both physical and psychological fatigue suffered 

throughout the day and to restore bodily functions. Recent consensus reports that the 

ideal amount of sleep required each night for children and adults are 8-12 hours and 7-9 

hours, respectively. Up to 50% of children experience a sleep problem and approximately 

30% of adults complain of sleep disruption. Environmental sleep disrupters such as 

temperature, humidity, light, ambient noise, and air quality are recognized as 

contributors to sleep disorders. However, there are some unsolved questions in the 

building standards and design guidelines regarding the design and operation of an 

environment conducive to sleep. In addition, there are few resources available to 

architects and engineers providing explicit guidance on the necessary characteristics for 
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the design of an optimal sleep environment, especially for children. Specifically, it has 

not been well-defined how the environmental parameters potentially affect children 

sleep quality and how to utilize available demographic, environmental, physiological, 

and polysomnographic parameters to optimize current sleep environment design. 

Therefore, this chapter aims to examine the effects of thermal, ambient, luminous, and 

acoustic environments on children’s sleep quality in mechanically ventilated study 

rooms. 

5.1. Environmental Parameters and Sleep Quality 

Thermal parameters and sleep disturbance: The thermal environment is one of 

the primary causes of sleep disturbance (Okamoto-Mizuno and Mizuno 2012). However, 

thermal comfort theories and standards in sleep health are limited. Few guidelines or 

standards specify the design criteria of air temperature for sleep environment. For 

example, the World Health Organization (WHO) recommends a minimum air 

temperature of 18oC for sleep environment (Ranson and Organization 1988), while other 

guidelines such as those by the American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE) exclude sleep temperature recommendations. Are 

people thermally satisfied when they sleep? Humans usually set their sleep environment 

based on their thermal preference at the pre-sleep waking state; and most importantly, 

parents usually set it up for their children possibly based on their own comfort. This 

assumes that there is no difference between adults and children with respect to thermal 

preference. Some research studies have demonstrated that thermal comfort differs 

between wakefulness and sleep (Wang et al. 2015; L. Lan et al. 2017). High air 

temperature or cold exposures have been shown to reduce total sleep time, duration of 

rapid eye movement (REM) and slow-wave sleep (SWS), and increased sleep onset 

latency and wakefulness (Li Lan et al. 2014; Haskell et al. 1981). The negative effects of 
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heat exposure are aggravated when the humidity is high, but the appropriate range of 

humidity in children's sleep environment remains unknown. The ambient temperature 

and humidity are associated with body sweat loss as sweating significantly increases with 

increasing heat and humidity. Another important consideration is that children and 

adults usually sleep with bed coverings, especially during cold months. However, many 

studies investigating the effects of thermal parameters on sleep quality were carried out 

with naked subjects. The total insulation of the bedding environment varies greatly and 

depends on the mattress, covering, sleepwear and percentage of covering. All of these 

factors can affect the bed thermal micro-environment of the human body. 

Indoor air quality and sleep health: Airflow is an effective way to increase heat loss. 

A faster air velocity increases the convective heat loss and decreases skin temperature 

and wakefulness (Tsuzuki et al. 2008). It is worth noting that lower ventilation rates 

usually characterize sleep environments, promoting pollutants’ accumulation. 

Insufficient airflow velocity and air exchange rate lead to elevated CO2 concentrations 

and decreased sleep quality. Contaminants, such as Formaldehyde embedded in 

mattresses and pillows, contribute to a significant impact on children and adults’ 

respiratory health, including diseases like asthma and chronic obstructive pulmonary 

disease (Kim, Jahan, and Lee 2011). More research is also needed on how airflow directs 

the close proximity of the pollutant source to the breathing zone as we identified very few 

studies examining these factors. Other air pollutants such as PM2.5 and PM10, their 

elevated concentration is significantly associated with respiratory disturbance index and 

increased severity of obstructive sleep apnea (OSA) (Lappharat et al. 2018). Reducing 

exposure to air pollutants in the sleep environment may promote sleep quality and 

health. 
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Light, sound, and sleep quality: Lighting and acoustic conditions also play an 

important role in designing an optimal sleep environment. The potency of the light 

stimulus on the human circadian physiology depends on the light’s wavelength and 

intensity. More research is needed to understand how the wavelength, intensity, and 

timing of light before and after sleep should be optimized to improve sleep outcomes in 

children. In terms of ambient noises, intermittent noise is generally perceived to be more 

disruptive to sleep than continuous noise. There are numerous sources of intermittent 

noise that can infiltrate the sleep environment (Basner, Müller, and Elmenhorst 2011), 

such as door slamming, trains, aircraft flyovers, and traffic noise. The state-of-the-art 

environmental noise guidelines by WHO suggested controlling the noise exposure below 

40 dB (Pirrera, De Valck, and Cluydts 2014), regardless of age. Few studies have focused 

on children’s noise sensitivity, and very few studies have investigated the importance of 

window orientation, and window opening/closing behavior. The soundproof 

performance of the window system is usually worse than those of walls and windows. 

5.2. Study Procedures and Subject Recruitment 

This study was conducted in full accordance all applicable Children’s Hospital of 

Philadelphia (CHOP) Research Policies and Procedures and all applicable Federal and 

state laws and regulations including 45 CFR 46. All episodes of noncompliance were 

documented. The protocol and all accompanying materials provided to participants were 

reviewed and approved by the institutional review boards (IRB) at CHOP (IRB#: 20-

018313). Collection, recording, and reporting of data were accurate and ensured the 

privacy, health, and welfare of research subjects during and after the study. 

As illustrated in Figure 5. 2, this was a prospective cohort pilot study of environmental 

determinants on children and adults’ sleep quality. Children scheduled to have a 
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polysomnography (PSG) as part of clinical care and their parent/legal guardians were 

recruited to wear an actigraphy device on their wrist. Participants who met the inclusion 

criteria completed self-rated questionnaires and wore skin temperature, skin heat flux, 

and skin conductance sensors. The sleep environment was monitored during the sleep 

study night using environmental sensors which include ambient temperature, black 

globe temperature, supply air temperature, relative humidity, air velocity, volume flow 

rate, surface temperature, CO2, luminous, and sound levels. The environmental sensors 

were placed next to the bed, and they normally are quiet when operating. 

 

Figure 5. 2: Schedule of study procedures. 

5.2.1. Study Population 

This study involved the participation of children and their parents/ legal guardians, who 

may or may not experience sleep disorder but are physically and psychologically healthy. 

The following inclusion criteria was used for recruiting children: 1) Parental/guardian 

permission (informed consent) and child assent for child subject; 2) Children are 

English-speaking; 3) Children referred to a clinical PSG; 4) Children aged between 8 -17 

years old. The inclusion criteria were adopted for recruiting parents/legal guardians 

include parental/guardian permission (informed consent) and parents/legal guardians 

are English-speaking. However, the children were excluded at the screening phase if they 

have claustrophobia, autism, sensory processing disorder, distortion of the perception of 
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smell, and mental disorders such as depression and anxiety. Children were also excluded 

if they were unable to feel the environmental conditions and/or complete the 

questionnaires due to brain injuries or other neurological disorders that affect brain 

function and structure. A few exclusion criteria were applied for the parents/legal 

guardians such as: 1) Non-English proficient as questionnaires will be conducted in 

English; 2) Parent/legal guardians experience sensory processing disorder, distortion of 

the perception of smell so that they are unable to complete the questionnaires; 3) 

Parent/legal guardians have a prolonged exposure in highly polluted environments due 

to occupation. Subjects that did not meet all the enrollment criteria were not enrolled. 

The procedures performed for the overnight sleep study are clarified in the following 

sections. 

5.2.2. Sleep Quality and Efficiency Measures 

Polysomnography (PSG) studies were performed overnight. A Rembrandt 

polysomnography system (Embla, Broomfield, CO) recorded the following parameters: 

electroencephalogram (C3/A2, C4/A1, F3A2, F4A1, O1/A2, O2/A1), left and right 

electroculograms, submental electromyogram (EMG), chest and abdominal wall motion 

using respiratory inductance plethysmography, heart rate by electrocardiogram, arterial 

oxygen saturation (SpO2) by pulse oximetry (Masimo, Irvine, CA); end-tidal PCO2 

(PETCO2), measured at the nose by infrared capnometry (Novametrix Medical System, 

Inc., Wallingford, CT), airflow using a 3-pronged thermistor (Pro- Tech Services, Inc., 

Mukilteo, WA), nasal pressure by a pressure transducer (Pro-Tech Services, Inc., Walnut 

Cove, NC), and bilateral tibialis anterior EMG. Study participants were continuously 

observed by a polysomnography technician and were recorded on video with an infrared 

video camera. Studies were scored using standard pediatric sleep scoring criteria. 
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5.2.3. Sleep Environment Monitoring 

Environmental quality by sensing: Environmental measurements and sampling were 

carried out at mechanically ventilated rooms at the Sleep Center. The thermal variables 

such as temperature and relative humidity were continuously measured by placing a 

sensor (HOBO 1104, temperature accuracy: ±0.20 °C, humidity accuracy: ±2.5%) on the 

ground next to the bed. The supply air temperature was measured, and the sensor was 

installed next to the vent on the ceiling (Onset UX100-011, accuracy: ±0.21°C). Globe 

temperature was measured by a temperature sensor (Onset S-TMB-M002, , accuracy: 

±0.21°C) placed on the center of a 10 mm-diameter matt-black ball. The bedding micro-

climate temperature was recorded with iButton sensor (DS1922L, iButtonLink, accuracy: 

0.0625°C) at 1-min time interval which was placed under the subject’s bedding coverage. 

The air velocity and volume flow rate will be collected at the same position with an air 

flow sensor (Model 9545, TSI Inc., Shoreview, MN, USA, range: 0.00 –30.00 m/s, 

accuracy: ±3% of reading). CO2 was continuously measured at 1-min sampling intervals 

by Telaire 7001 (Amphenol, St. Marys, PA, USA, range: 0-5,000ppm, accuracy: ±3% of 

reading) to give an impression of the CO2 levels at one point in the sleep environment. 

The level of environmental brightness was monitored using a HOBO 1104 (accuracy: 

±10% of the readings). A low/high range noise level meter (EXTECH SDL600, accuracy: 

±1.4dB) will be used to measure environmental noises. 

5.2.4. Questionnaires Completion Before and After Sleep 

Self-evaluated questionnaires on sleep quality and perceived environmental effects on 

sleep will be performed before and after sleep during the monitoring period. 

I am aware of no published article examining the full range of environmental conditions 

in children. Therefore, we will assess the children’s perception of sleep quality and 
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environment, with items adapted from valid questionnaires (Bruni et al. 1996; Mezick et 

al. 2008; LeBourgeois et al. 2005; Schmit et al. 2021) and empirical research related to 

the subjective pediatric sleep measures (Storfer‐Isser et al. 2013; Bagley et al. 2015). To 

explore the mediating role of environmental conditions in relations to sleep quality, I 

include pre-sleep and sleeping environment evaluations as well as the overall satisfaction 

of sleep on a Likert-type rating scale. In terms of overall sleep quality rating and it will be 

assessed by children: (1) I awakened last night due to the coldness or hotness; (2) I feel 

tired in the morning; (3) I prefer to be cooler or warmer when stay in this room; (4) I am 

uncomfortable with the bed. 

5.3. Thermal Environment, IAQ, and Sleep Disturbance 

The results and discussions shown in this chapter were based on four female and four 

male children subjects (mean ± SD age: 11.6 ± 1.9 years, height: 148.3 ± 11.4 cm, weight: 

64.5 ± 33.1 kg) that were recruited for the experiment. The subjects received financial 

compensation for participating in the experiments. 

Mean radiant temperature (MRT) is first calculated based on air temperature, relative 

humidity, wind velocity and black globe temperature, according to the Eq. 5.1 given in  

the Eq. 5.1 given in  (ISO 1998). 

where: 

MRT = mean radiant temperature (oC); 

𝑇𝑇𝑔𝑔 = black globe temperature (oC); 

𝑣𝑣𝑎𝑎 = air velocity at the level of the globe (m/s); 

𝜀𝜀 = emissivity of the globe (black globe’s emissivity is 0.95); 

 
𝑀𝑀𝑀𝑀𝑀𝑀 =  ��𝑇𝑇𝑔𝑔  +  273�4  +  

1.1 × 108 ×  𝑣𝑣𝑎𝑎0.6

𝜀𝜀 × 𝐷𝐷0.4 �𝑇𝑇𝑔𝑔 − 𝑇𝑇𝑎𝑎��
1/4

− 273 (5.1) 
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𝐷𝐷 = the diameter of the globe (m); The diameter of the globe used in the experiment is 

0.1m. 

𝑇𝑇𝑎𝑎 = air temperature (oC); 

Figure 5. 3 compares different measurements related to the thermal environment for all 

subjects. It is apparent that air temperature and MRT are very close to each other with 

mean ± SD 22.71 ± 3.13 and 22.4 ± 3.08, respectively. The mean value of supply air 

temperature and bedding microclimate temperature is the lowest and highest one, which 

is 18.39 (SD = 2.26) and 31.42 (SD = 3.17), respectively. The descriptive statistics may 

suggest that when the supply air temperature and the bedding insulation value changes, 

as long as the bed temperature is appropriate, the conditions can meet the demand of 

thermal comfort for sleep. The results also could have practical implications in achieving 

energy saving in residential buildings, where the indoor temperatures are usually kept 

being unnecessarily high with air conditioner in winter. 
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Figure 5. 3: Comparisons of different thermal environment measurements for all subjects. 

To further reveal the thermal environment that each subject experienced,  Figure 5. 4 

reports the variance of air temperature, MRT, bed temperature, and supply air 

temperature. The widest range of air temperature was found in subject ID 3 and 4’s 

overnight study, and accordingly MRT had largest range as well. Noticeably, the supply 

air temperature for the subject ID 3 and 4’s overnight study ranged narrowly, and no 

large temperature difference was observed. It could be ascribed to substantial heat 

generated in the room which contributed to the room temperature increases. In addition, 

analyzing to what extent the room temperature changes influence local skin temperature 

changes is worth investigating. 
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Figure 5. 4: Comparisons of different thermal environment measurements for each subject. 

Among many sleep scorings that the PSG examines, arousals are important indicator to 

quantify sleep disruptions. Frequent arousals cause sleep fragmentation leading to 
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impaired cognitive function and decreased sleep quality (Azarbarzin et al. 2015). 

Arousals are scored according to the American Academy of Sleep Medicine (AASM) 

criteria (Berry et al. 2020), which require an abrupt shift in electroencephalography 

(EEG) including alpha, theta, and/or frequencies greater than 16 Hz for at least 3 sec 

preceded by at least 10 sec of stable sleep. In addition, self-reported evaluation on sleep 

quality and thermal environment was retrieved in questionnaires, including feeling 

rested or tired, sleep quality, thermal sensation, and thermal comfort. Their descriptive 

statistics are reported in Table 5. 1. 

Table 5. 1. Statistical summary of arousals and self-reported measures. 

Variables Unit Minimum Mean ± SD Maximum 

Total count of 
arousals - 31 83 ± 54.54 191 

Feeling rested or tired From 1 (very rested) to 5 (very tired) 1 3 ± 1.60 5 

Self-reported sleep 
quality From -3 (very bad) to +3 (very good) -1 0.57 ± 1.27 3 

Thermal sensation From -3 (very cold) to +3 (very warm) -3 0.125 ± 1.89 3 

Thermal comfort From -3 (very uncomfortable) to +3 
(very comfortable) -2 -0.375 ± 1.18 2 

 

The two-sample t test (also known as the independent samples t-test) is a method of 

inferential statistics which was applied to judge that whether the average of the two 

groups is significantly different. Therefore, it can be used to analyze change of self-

reported sleep quality, thermal sensation, and thermal comfort under different thermal 

conditions. The main output parameters include calculated test statistic observed value, 

corresponding possibility P and mean difference. Wherein, test statistics is t statistics, its 

mathematical definition is: 

 
𝑡𝑡 =  

𝑋𝑋1���  −  𝑋𝑋2���
𝑆𝑆𝑋𝑋1����∙𝑋𝑋2���� 

 (5.2) 
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where: 

 𝑋𝑋1��� = mean of the first group of samples; 

𝑋𝑋2��� = mean of the second group of samples; 

𝑆𝑆𝑋𝑋1����∙𝑋𝑋2����  = standard error of the difference between the mean of the first group of samples 

and the second group of samples. 

The null hypothesis is that there is no difference between these two groups that are 

classified based on the self-reported sleep quality and total number of arousals. The 

significant level was selected as 0.05 and the p-values were calculated consequently, with 

a statistically significant difference when the p-values are less than 0.05. In addition, 

when p value is smaller than 0.05, the null hypothesis that there are no significant 

differences between the two populations shall be rejected, and it shall be thought that 

there are significant differences between the two populations; vice versa. 

The t-test results of sleep quality evaluations against different thermal environment 

variables are shown in Figure 5. 5. The p-values of each level of sleep quality evaluation 

are less than 0.05, which indicates that all of these thermal environment variables (i.e., 

Figure 5(a) air temperature, Figure 5(b) bed temperature, Figure 5(c) MRT, and Figure 

5(d) supply air temperature) can have great impacts on children’s sleep quality. In 

addition, it is worth noting that the subjects who voted “good” sleep had the highest 

mean bed temperature and lowest supply air temperature. It suggests a practical 

implication, which is that the supply air temperature can be increased to conserve 

building energy, while the bed temperature can still maintain comfort without sacrificing 

children’s sleep quality. When considering the PSG-measured total number of arousals 

against different thermal environment variables, the results are illustrated in Figure 5. 6. 

The t-statistics’ p-values are always less than 0.5 for bed temperatures and supply air 

temperature implying that there are statistically significant differences across different 

level of sleep interruptions. However, the pairwise comparison on children’s arousals 
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showed the statistically significant differences in terms of air temperature and MRT in 

the most cases, except for the group of 55 and 67 as well as group of 112 and 120. It 

indicates that there was no difference with the statistical significance was found. 

 

Figure 5. 5: Thermal environment and self-reported sleep quality. 

***: p-value <0.01, **:p-value <0.5 
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Figure 5. 6: Thermal environment and total count of arousals measured by PSG. 
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Carbon Dioxide (CO2) level is often used as the proxy for ventilation rates and IAQ 

evaluation. Figure 5. 7 illustrates CO2 concentrations across different voting levels of 

self-evaluated sleep quality and total count of arousals. According to the independent t-

test, significant differences were found among the IAQ conditions. Noticeably, the “very 

bad” sleep quality had the highest average CO2 concentration compared to other voting 

results. Children who had less number of arousals (e.g., 31, 35, 53, and 55) were exposed 

to very low CO2 concentrations. 

 

Figure 5. 7: IAQ against (left) perceived sleep quality and (right) arousals. 

5.4. Luminous and Acoustic Environment Analysis 

The noise levels were recorded at 5-second intervals for all nights. The noise levels were 

generally stable throughout the night with mean value 42.12 lux. During some part of the 

nights, the recruited children and/or their parents snored, and this is represented in the 

outliers shown in Figure 5. 8 and Figure 5. 9. The subjects went out to the bathroom 

during night as well which contribute to the noise box plots’ outliers, and this affected 

the average measured noise levels. 
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Table 5. 2. All night averaged noise and brightness levels. 

Environmental 
Parameters Minimum Median Mean ± SD Maximum 

Noise levels (db) 35.90 40.90 42.12 ± 3.74 71.3 

Brightness levels (lux) 3.9 11.8 11.8 ± 13.09 130.1 

 

A pairwise T-test was performed for further comparison, as illustrated in Figure 5. 8 and 

Figure 5. 9. For the self-reported sleep quality, the statistically significant differences 

were found for all groups indicating that the difference of noise and brightness levels are 

greatly important for the children. It is worth noting that the subject(s) voted “very bad” 

sleep quality actually had the darkest night compared to the rest of night. The “very bad” 

sleep quality might be ascribed to the uncomfortable noise levels. 

 

Figure 5. 8: Noise level (left) and brightness level (right) against perceived sleep quality. 

The statistically significant differences were found in seven groups out of eight groups 

and only one group’s p-value is larger than 0.05, as Figure 5. 9 demonstrates. The results 
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are sufficient to conclude that the noise and brightness levels of the sleep environment 

offer important arousal reductions.  

 

Figure 5. 9: Noise level (left) and brightness level (right) against arousals. 

In general, the findings support the importance of reducing noise and light pollution on 

sleep. In buildings where sleep and common spaces must be co-located, such as in 

hospitals and hotels, measures to reduce noise emanating from other rooms (such as 

sound attenuating doors) should confer a positive impact on sleep quality for children. 

More research is needed to understand how the wavelength, intensity, and timing of 

light before and after sleep should be optimized to improve sleep outcomes.  

5.5. Discussion and Conclusion 

This preliminary analysis presented in this chapter was based on the sleep environment 

measured in the study rooms at CHOP and investigated the total number of arousals, 

self-reported sleep quality and thermal comfort of 8 children subjects (four girls and four 

boys) using subjective questionnaires, objective environment and PSG measures. An 
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important result observed in this study was that both self-reported sleep quality and 

total count of arousals were statistically significantly affected by environmental factors 

(e.g., thermal, luminous, and acoustic measures ), as shown from the two-sample t-test 

results in Figure 5. 5 - Figure 5. 9. The results of this study also highlighted that the 

bedding microclimate temperatures against either self-reported sleep quality or total 

number of arousals were consistently critical compared to the other measured 

environmental factors. This finding is very important for understanding energy-saving 

potentials in the sleep environment as heating energy with reduced setpoints and/or 

cooling energy with increased setpoints tend to be possible without sacrificing sleep 

quality. However, the analysis that was performed and conducted in this chapter was 

only based on eight subjects. The sample size is generally small and may not be 

representative of the general children population. Future work should be carried out to 

confirm the observed relationships in larger sample size. Since skin temperature and 

conductance are usually considered as human peripheral signals. Additional studies are 

required to investigate how human physiological responses are regulated with sleep 

architecture and the duration of light sleep and deep sleep for children. 
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CHAPTER 6: REFLECTION AND OUTLOOK 

 

People are the reason buildings exist. Buildings are designed to facilitate many aspects of 

human activities. Modern research to quantify human thermal comfort arose to support 

HVAC equipment’s massive deployment and create a super-controlled environment for 

people. To achieve carbon-neutral or net-zero buildings, it is imperative to enhance 

building performance by implementing better controls of the building system. Yet by and 

large, contemporary architecture overlooks the fact that it is people we are attempting to 

make comfortable, rather than buildings. The reasons for this failure should be examined 

from different perspectives. First, architects have to make compromises between 

contradictory performance requirements. First, architects have to make compromises 

between contradictory performance requirements. For example, a problem in thermal 

performance may render more difficult an optimal solution for the illumination system. 

Second, almost all buildings are expected to satisfy the often divergent environmental 

requirements of the people and the processes inhabited under one shelter. However, we 

have to admit that there is no “one size fits all”. 
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Such conflicts must be studied, understood, and resolved, though they involve factors 

that are subjective and objective, dynamic and static, theoretical and practical. The main 

aim of this dissertation is to provide more information which allows the human-system-

building nexus to work together better and to investigate when and where sensors could 

enhance our understanding of the environment and when humans themselves are the 

best sensors. Coordination between the four parts - building, technical solutions, people, 

and sensors - is currently undervalued in architectural discourse and this dissertation is 

aimed at bringing this topic to the forefront of discussion. The problems outlined here 

evolve around what lessons we can learn from the occupied buildings and their 

inhabitants to improve future building design and how much uncertainty sources can be 

quantified given human-building dynamic interaction. 

To clarify what solutions architects can have, this dissertation firstly investigates which 

factors are worth measuring in addition to the standard temperature and humidity 

variables used for thermal comfort metrics and IAQ indices, as portrayed in Chapter 2. 

Eighteen critical variables were extracted based on the systematic literature review 

including outdoor temperature, wind velocity, outdoor relative humidity, outdoor 

contaminants concentration, room dimensions, ceiling height, total surface area, 

penetration factor through envelope/door, radiant temperature, surface temperature, 

indoor relative humidity, volume flow rate (natural, mechanical, infiltration), indoor 

temperature, air density, contaminants generation/ deposition/ removal rates, number 

of occupants, exposure time, and air exchange rate. It is evident that these variables 

resulted from decisions made in different phases of the building life cycle - design, 

construction, and occupancy phase. However, a limited number of studies have 

examined the building geometry, such as room dimension, ceiling height, and total 
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surface area to incorporate into building modeling and environmental system control in 

the real buildings. 

Chapter 3 examined how building occupants as environmental controllers influence 

building performance and how to integrate our prior knowledge to quantify the 

uncertainty associated with the model predictions in building thermal environmental 

studies. The proposed Bayesian inferred thermal preference model is able to represent 

occupant thermal preference accurately (0.693), but we have to acknowledge that there 

is no “one size fits all”. It is even harder to design environmental systems to meet 100% 

thermal satisfaction for all occupants in high-performance buildings. The proposed BNN 

model demonstrates that the importance of accounting for the actions that people take to 

make themselves comfortable (e.g., opening and closing windows). “Putting people in the 

loop” helps get better thermal preference predictions with more data related to people. 

Compared to thermal comfort, many colorless and odorless pollutants are not sensible to 

humans. Therefore, Chapter 4 focused on ozone and showed how physical IoT sensors 

could stand in for people as indicators of environmental health. The field investigation 

was carried out on four envelopes and results showed that design variables such as the 

exterior envelope finishes, wall surface area, window-to-wall ratio are reasonable 

predictors if outdoor ozone concentration measurements are not available in the study 

region while urban ozone pollution can reach unhealthy levels. The outcome of this study 

also suggested ozone concentration follows a distinct diurnal pattern indicating that 

opening windows during nighttime (e.g., 12AM – 6AM) can help dilute indoor ozone 

levels. Night ventilation, or design intervention such as night flushing,  would be 

beneficial for ozone removal compared to daytime ventilation in residential buildings. 
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Two kinds of occupant involvement (i.e., active and passive role) in indoor environments 

were discussed in Chapter 5. The study conducted in Chapter 5 looked into how the 

building performance influences sleep quality when humans become the passive 

receptors of environmental factors. The preliminary analysis based on eight subjects 

suggested that bedding microclimate temperatures, noise, and light intensity were 

consistently important. The findings on bedding microclimate temperature implied 

potential energy savings as heating energy with reduced setpoints and/or cooling energy 

with increased setpoints tend to be possible without sacrificing sleep quality. 

As I continue to tread across the human dimensions of building performance, I intend to 

continue to pursue opportunities in the area of IEQ modeling and occupant behavior to 

search for answers - how building sensors and human senses can synthesize and inform 

the organization and optimization of various performance targets such as sustainability, 

resiliency, and public health. The research plans that I will take immediately include 1) 

further exploration of thermal comfort in the sleeping environment and its association 

with sleep quality, 2) Energy saving potentials due to the temperature differences 

between bedding microenvironment and ambient environment, and 3) Effects of 

environmental noises on children sleep based on PSG EEG results. 
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