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Abstract Abstract 
Stochastic motion planning is of crucial importance in robotic applications not only because of the 
imperfect models for robot dynamics and sensing but also the potentially unknown environment. Due to 
efficiency considerations, practical methods often introduce additional assumptions or heuristics, like the 
use of separation theorem, into the solution. However, there are intrinsic limitations of practical 
frameworks that prevent further improving reliability and robustness of the system, which cannot be 
addressed with minor tweaks. Therefore, it is necessary to develop theoretically justified solutions to 
stochastic motion planning problems. Despite the challenges in developing such solutions, the reward is 
unparalleled due to their wide impact on a majority of, if not all, robotic applications. The overall goal of 
this dissertation is to develop solutions for stochastic motion planning problems with theoretical 
justifications and demonstrate their superior performance in real world applications. 

In the first part of this dissertation, we model the stochastic motion planning problem as Partially 
Observable Markov Decision Processes (POMDP) and propose two solutions featuring different 
optimization regimes trading off model generality and efficiency. The first is a gradient-based solution 
based on iterative Linear Quadratic Gaussian (iLQG) assuming explicit model formulations and Gaussian 
noises. The special structure of the problem allows a time-varying affine policy to be solved offline and 
leads to efficient online usage. The proposed algorithm addresses limitations of previous works on iLQG 
in working with nondifferentiable system models and sparse informative measurements. The second 
solution is a sampled-based general POMDP solver assuming mild conditions on the control space and 
measurement models. The generality of the problem formulation promises wide applications of the 
algorithm. The proposed solution addresses the degeneracy issue of Monte Carlo tree search when 
applied to continuous POMDPs, especially for systems with continuous measurement space. Through 
theoretical analysis, we show that the proposed algorithm is a valid Monte Carlo control algorithm 
alternating unbiased policy evaluation and policy improvement. 

In the second part of this dissertation, we apply the proposed solutions to different robotic applications 
where the dominant uncertainty either comes from the robot itself or external environment. We first 
consider the the application of mobile robot navigation in known environment where the major sources of 
uncertainties are the robot dynamical and sensing noises. Although the problem is widely studied, few 
work has applied POMDP solutions to the application. By demonstrating the superior performance of 
proposed solutions on such a familiar application, the importance of stochastic motion planning may be 
better appreciated by the robotics community. We also apply the proposed solutions to autonomous 
driving where the dominant uncertainty comes from the external environment, i.e. the unknown behavior 
of human drivers.In this work, we propose a data-driven model for the stochastic traffic dynamics where 
we explicitly model the intention of human drivers. To our best knowledge, this is the first work that 
applies POMDP solutions to data-driven traffic models. Through simulations, we show the proposed 
solutions are able to develop high-level intelligent behaviors and outperform other similar methods that 
also consider uncertainties in the autonomous driving application. 
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ABSTRACT

STOCHASTIC MOTION PLANNING FOR MOBILE ROBOTS

Ke Sun

Vijay Kumar

Stochastic motion planning is of crucial importance in robotic applications not only

because of the imperfect models for robot dynamics and sensing but also the potentially

unknown environment. Due to efficiency considerations, practical methods often introduce

additional assumptions or heuristics, like the use of separation theorem, into the solution.

However, there are intrinsic limitations of practical frameworks that prevent further im-

proving reliability and robustness of the system, which cannot be addressed with minor

tweaks. Therefore, it is necessary to develop theoretically justified solutions to stochastic

motion planning problems. Despite the challenges in developing such solutions, the reward

is unparalleled due to their wide impact on a majority of, if not all, robotic applications.

The overall goal of this dissertation is to develop solutions for stochastic motion planning

problems with theoretical justifications and demonstrate their superior performance in real

world applications.

In the first part of this dissertation, we model the stochastic motion planning problem

as Partially Observable Markov Decision Processes (POMDP) and propose two solutions

featuring different optimization regimes trading off model generality and efficiency. The

first is a gradient-based solution based on iterative Linear Quadratic Gaussian (iLQG)

assuming explicit model formulations and Gaussian noises. The special structure of the

problem allows a time-varying affine policy to be solved offline and leads to efficient online

usage. The proposed algorithm addresses limitations of previous works on iLQG in working

with nondifferentiable system models and sparse informative measurements. The second

solution is a sampled-based general POMDP solver assuming mild conditions on the control

space and measurement models. The generality of the problem formulation promises wide
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applications of the algorithm. The proposed solution addresses the degeneracy issue of

Monte Carlo tree search when applied to continuous POMDPs, especially for systems with

continuous measurement space. Through theoretical analysis, we show that the proposed

algorithm is a valid Monte Carlo control algorithm alternating unbiased policy evaluation

and policy improvement.

In the second part of this dissertation, we apply the proposed solutions to different

robotic applications where the dominant uncertainty either comes from the robot itself or

external environment. We first consider the the application of mobile robot navigation in

known environment where the major sources of uncertainties are the robot dynamical and

sensing noises. Although the problem is widely studied, few work has applied POMDP

solutions to the application. By demonstrating the superior performance of proposed so-

lutions on such a familiar application, the importance of stochastic motion planning may

be better appreciated by the robotics community. We also apply the proposed solutions to

autonomous driving where the dominant uncertainty comes from the external environment,

i.e. the unknown behavior of human drivers. In this work, we propose a data-driven model

for the stochastic traffic dynamics where we explicitly model the intention of human drivers.

To our best knowledge, this is the first work that applies POMDP solutions to data-driven

traffic models. Through simulations, we show the proposed solutions are able to develop

high-level intelligent behaviors and outperform other similar methods that also consider

uncertainties in the autonomous driving application.
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Chapter 1

Introduction

Robots may be changing our life at a faster pace than we expect. Precision agriculture

(Figure 1.1a), personal robotics (Figure 1.1b), search and rescue mission (Figure 1.1c), first

response applications (Figure 1.1d), autonomous driving (Figure 1.1e), cellular and chemical

delivery (Figure 1.1f), and infrastructure inspection (Figure 1.1g), all these applications and

beyond have the potential to change or have already changed the world as we know it. In

order to have the robot complete the tasks required by these applications, one has to answer

the simply phrased yet profound question: how to get from A to B.1 The key to find answers

of the question lies with motion planning algorithms.

Depending on the assumptions imposed on the system, motion planning problems can

be, in general, categorized into the following three broad categories:

• Deterministic motion planning

Problems in this category assume a deterministic system model and a known initial

state, for which an open-loop control policy suffices. Such problems are well ad-

dressed by search-based algorithms such as A* (Hart et al., 1968), or sampling-based

algorithms such as RRT, RRT*, and PRM* (Karaman and Frazzoli, 2011).

1A and B can be locations as in autonomous driving. More often, A and B are abstract states. As in the
first response application, we hope to become fully situation-aware of an initially unknown environment.
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• Motion planning with stochastic dynamics and perfect state information

In this class, uncertainty of system dynamics is taken into account, while perfect state

information is assumed to be accessible. Receding Horizon Control (RHC) (Mayne and

Michalska, 1990), combined with deterministic motion planning algorithms, directly

lends itself to the generation of a feedback control policy for such problems, which

implements the idea of certainty equivalent control (Bertsekas et al., 2017, Ch.6.2).

However, in order to obtain an optimal feedback policy, it requires motion planning

algorithms to consider motion uncertainty explicitly (Melchior and Simmons, 2007;

Alterovitz et al., 2007; Tedrake et al., 2010).

• Motion planning with stochastic systems and imperfect state information

Compared with the last two categories, problems in this category provide the most

general modeling of a robotic system, which not only respect uncertainty originated

from system dynamics and sensor data but an unknown initial state. Practitioners

often extend the idea of the separation theorem, and rely on the state estimation

algorithms to provide an accurate estimate. Then, methods from the second category

could be applied directly assuming perfect state information.

In this dissertation, we consider the problems in the third category, and specifically

refer to such problems as stochastic motion planning. Problems in this category try to

compensate imperfect system models with stochastic processes, i.e. noise, solving which

could potentially improve safety, robustness, and reliability of systems in completing tasks.

In the following, we provide an overview of the practical approach to stochastic motion

planning problems through the lens of an autonomous flight project with an Micro Aerial

Vehicle (MAV). Despite the specificity of the application, the hardware configuration and

the software framework transfer to a wide range of applications and various robotic plat-

forms (Montemerlo et al., 2008; Salavasidis et al., 2019). By exposing the limitations of the

practical approach, we motivate the necessity of seeking new solutions to stochastic motion

planning problems, especially the ones with theoretical justifications.

2



(a) (b)

(c) (d)

(e) (f) (g)

Figure 1.1: Applications of robots relevant to various aspects of our life. (a) Fruit counting
with a monocular camera (Liu et al., 2019). (b) Precise pouring with a robotic arm from an
unknown container (Kennedy et al., 2019). (c) Searching for targets in a tunnel environment
with a quadrupedal robot team (Miller et al., 2020). (d) Mapping a disastrous environment
with a MAV (Thakur et al., 2020). (e) Autonomous driving on highways (Sun et al., 2020a).
(f) Cellular and chemical delivery with micro robots (Hunter et al., 2018). (g) Penstock
inspection with multirotor aerial vehicles (Özaslan et al., 2017).
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1.1 A Motivating Case Study

Motivated by the search and rescue mission, the goal of the FLA project2 is to develop a

complete solution, including both hardware and software, that could navigate a MAV from

point A to B and back in an unknown environment. A lightweight platform is preferred so

that the robot not only moves fast but is agile to maneuver. In addition, the robot should

be able to complete the task autonomously using onboard sensing only, while external

intervention from human operators is disabled. In the following, we provide a brief overview

of the hardware platforms and software framework that we developed in this project followed

by a summary of the outcome. Then we show a few representative failure cases to study the

limitations of the current solution. More details about our system can be found in Mohta

et al. (2018b) and Mohta et al. (2018a).

1.1.1 Hardware and Software Solutions

We have developed quadrotor platforms of different sizes, shown in Figure 1.2, adapting to

different target environments. The sensor configurations across the platforms are mostly

the same, which include monochrome stereo cameras, IMUs, and a downward single-beam

Lidar. An additional color camera is installed at the front to detect the landmark (a red

barrel) at the goal location. The major difference of the sensors lies with the mapping device.

Based on the payload of different platforms, we use a 3-D Lidar3, a gimbled 2-D Lidar4, or a

time-of-flight depth sensor5 to create maps of the environment. For computation, the large

platforms support Intel NUC6. Nvidia Jetson TX27 is slightly slower but lighter, which is

installed on the small platform. As shown in Figure 1.2d, we integrate the computer and

sensors on a single PCB board (Quigley et al., 2019) to further reduce the weight of the

small platform.

2https://www.darpa.mil/program/fast-lightweight-autonomy
3https://velodynelidar.com/products/puck/
4https://hokuyo-usa.com/products/lidar-obstacle-detection/utm-30lx
5https://pmdtec.com/en/technology/time-of-flight/
6https://www.intel.com/content/www/us/en/products/details/nuc.html
7https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
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(a)

(b) (c) (d)

Figure 1.2: Different quadrotor platforms developed in the FLA project. (a) shows the
relative size of the platforms. From left to right, the diameters (motor-to-motor) of the
quadrotors are 450mm, 350mm and 250mm, with weight ranges from 3.4kg to 1.3kg. (b, c,
d) show the sensor configurations. All platforms are equipped with stereo cameras, IMUs
and downward single-beam Lidars. Based on the payload of the platforms, we use a 3-D
Lidar, a gimbled 2-D Lidar, or a time-of-flight depth sensor for mapping respectively.

As shown in Figure 1.3, the software stack consists of three main modules for estimation,

planning, and control respectively. In the estimation module, we apply a stereo visual

inertial odometry (Sun et al., 2018) to estimate the current state of the robot, which is

then fused with other sensors to bump up the estimation frequency (Mohta et al., 2018a).

Point clouds from Lidars or depth sensors are directly registered in the map using the

estimated pose for efficiency. Based on the estimated robot state and map, components in

the planning module generate reference trajectories. For open environments, we developed

algorithms based on either optimization (Liu et al., 2017b) or graph search (Liu et al.,

2017a) to plan feasible trajectories considering the dynamics of the robot. In contrast,

the speed is significantly lower indoors where we could switch to a simpler line tracking

algorithm only considering kinematics. Finally, the control algorithm in the last module
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Figure 1.3: The software architecture designed for autonomous flight of a MAV.

generates commands to ensure the robot could closely follow the reference trajectory.

1.1.2 Results and Limitations

We have successfully tested the quadrotor platforms in a variety of environments including

indoors and outdoors as shown in Figure 1.6. Figure 1.6e shows a representative complete

mission. To complete the task in this case, the robot has to first traverse through a wooded

area, then find the only opening of the warehouse located on the opposite side, get to the

target in the warehouse, and finally go back to the starting position. The total distance of

the round trip is about 700m. Many elements of the mission are considered challenging for

the state-of-the-art autonomous flight solutions, such as long-distance traveling, cluttered

environments, indoor-outdoor transitions, etc.

We also observe failure cases with two examples shown in Figure 1.48. In Figure 1.4a,

the robot fails to detecting branches because of the limited angle resolution of the range

sensor, and gets tangled with the tree on the right. In Figure 1.4b, the robot turns while

facing a blank wall. Due to the lack of features, the estimation uncertainty of visual odom-

etry grows significantly. The robot collides into the wall within the next few seconds due to

8See failure_case_tree_tangle.mp4 and failure_case_warehouse_collision.mp4 for supplementary
videos for the failure cases.
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(a) (b)

Figure 1.4: Failure examples in the field tests. (a) the robot get tangled with the tree since
it does not see the thin branches due to the limited angle resolution of the range sensor.
(b) during turning, the robot faces a blank wall which is notoriously challenging for visual
odometries. As a result, the uncertainty of estimation increases significantly. The robot
collide into the wall within the next few seconds.

Figure 1.5: The growth of position uncertainty (one standard deviation) estimated by our
stereo VIO (Sun et al., 2018) as the quadrotor travels along a straight line with top speed
close to 18m/s. For scale reference, the solid grid lines are of 10m resolution.

the large estimation error. To summarize, both failure cases are caused by the fact that the

planner or controller does not consider estimation uncertainty, either uncertainty of maps

or of state estimates. This limitation is embedded into the software structure since the

adoption of separation theorem. The separation theorem allows planners and controllers to

assume perfect state knowledge. Therefore, the whole software stack can be decoupled into

separate modules, which eases the development process. Unfortunately, it also rules out the

possibility of a proper treatment of estimation uncertainty during decision making.

Despite the huge amount of effort in improving estimation accuracy over the past

decades, estimation algorithms are still subject to theoretical limitations, such as observ-

ability issues with Lidar or visual odometries. Non-degeneracy of such algorithms not only

depends on the external environment (structure geometry or feature density) (Zhang et al.,
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2016), but also the motion of the robot (Martinelli, 2012; Wu and Roumeliotis, 2016). As

shown in Figure 1.5, we test our stereo VIO with a straight line constant velocity flight.

The top speed is close to 18m/s. As the quadrotor travels, the standard deviation along

y-axis of the robot can grow up to 8m in a few seconds. The large uncertainty can easily

cause divergence of the estimation, or collision if there is any obstacle. Addressing the issue

would require active intervention of motion planning algorithms.

There are works, often known as perception-aware planning (Falanga et al., 2018; Spaso-

jevic et al., 2020; Watterson et al., 2018), trying to avoid estimation degeneracy by tweaking

the existing framework shown in Figure 1.3. The common feature of related works is to

introduce perception related costs into the objective function in order to motivate intelligent

behaviors like active localization. However, the ideology may not be sufficient for two major

reasons. First, the desire of reducing perception uncertainty can conflict with the ultimate

goal of completing a task. Consider the case where the robot starts with a known initial

state, the optimal way of staying well-localized is to remain static and never move to com-

plete the task. Expected behaviors of the robot can only be obtained by carefully calibrating

the weights of different cost terms. In theory, the task, when modeled properly, should have

already motivated the robot to actively reduce estimation uncertainty whenever necessary.

Second, introducing sensible additional cost terms relies on human heuristics of the desired

intelligent behaviors. For relatively simple tasks, like motion planning in a known envi-

ronment, proposing such heuristics might be straightforward. However, the method does

not transfer to more complicated tasks, like exploration, where human fails to have reason-

able heuristics of intelligent behaviors, or tasks, like autonomous driving, where intelligent

behaviors are hard to encode mathematically.

In the following section, we provide a precise problem formulation for stochastic motion

planning. Inspired by the literature of stochastic control (Maybeck, 1982), we formulate the

problem considering system stochasticity from various sources, which then provides room

for formally addressing the uncertainty in motion planning.
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(a) (b)

(c) (d)

(e)

Figure 1.6: A variety of field test environments. (a) warehouse. (b) hallways. (c) cluttered
forest. (d) a debris environment simulating collapsed structures. (e) shows a representative
complete mission. In this case, the robot has to navigate from the start (blue) to the goal
(red) located in the warehouse and then return. To complete the task, the robot has to first
travel through the wooded area, find the only opening of the warehouse (yellow), get to the
goal, and finally return to the start. The round trip is about 700m. The colored points
overlaid on the satellite image are the global map registered with the estimated robot poses.
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1.2 The General Problem Formulation of Stochastic Motion

Planning

We assume the system9 under consideration can be modeled by its transition probability

and measurement likelihood, i.e.,

P (xt+1|xt,ut),

P (zt|xt),
(1.1)

where x ∈ X , u ∈ U , and z ∈ Z are the continuous state, control and measurement of

the system. We note (1.1) imposes minimal assumptions on the system modeling where

explicit formulations for motion and measurement models are not required. Meanwhile, we

do not assume to know the explicit p.d.f. of the transition probability or the measurement

likelihood. Instead, generative models are sufficient at this moment, i.e. given a state, we

could sample possible measurements, and with an addition control input, we could further

sample the next states.

We assume the task can be modeled by a summation of stage rewards10 in the form of,

V0(b0) = E
x0,zt,

t=0,1,...,N−1

{
N−1∑
t=0

γtrt(xt,ut,xt+1) + γNrN (xN )

}
, (1.2)

where b ∈ B is the belief state, i.e. the distribution of the system state. N is the planning

horizon. rt(·) : X 2 × U 7→ R is the stage reward function11, while rN (·) : X 7→ R is

the terminal reward function. To ensure (1.2) is well defined, we assume both stage and

terminal reward functions are bounded, i.e. |rt(·)| < ∞ and |rN (·)| < ∞. The task model

in (1.2) could also adapt to infinite horizon cases (N →∞) where rN (·) can be trivially set

to 0. γ ∈ (0, 1) is the discount factor, the major purpose of which is to ensure that (1.2)

remains well-defined even for infinite horizon cases.

9The “system” may not only refer to the robot itself. It could also be both the robot and the operating
environment when the environment cannot be modeled as a constant known a prior.

10Equivalently, we could also model the task with cost terms instead of rewards.
11It is also common to set the stage reward in the form of rt(·) : X × U 7→ R, which only depends on the

current state instead of both current and future states.
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The goal of planning algorithms is to find a control policy, π = {u0,u1, . . . ,uN−1},

that drive the robot to complete the task. Mathematically, the optimal control policy, π∗,

can be found by optimizing the objective function in (1.2), i.e.

π∗ = arg max
π

V0(b0) = arg max
π

E
x0,zt

t=0,1,...N−1

{
N−1∑
t=0

γtrt(xt,ut,xt+1) + γNrN (xN )

}
. (1.3)

Combining the models for the system and the task in (1.1) and (1.2), we have modeled

the stochastic motion planning problem as a Partially Observable Markov Decision Process

(POMDP) (Kaelbling et al., 1998). There are some known results of POMDPs. We, here,

state a few that are relevant to this dissertation without proofs. More on POMDPs can be

found in (Kaelbling et al., 1998; Bertsekas et al., 2017; Thrun et al., 2005).

In POMDPs, one possible sufficient statistic is belief, which summarizes all information

in the history that is necessary to make the optimal decision at the current moment. There-

fore, POMDPs are also known as belief state MDPs. Leveraging the result, if a feedback

control policy is to be found, the optimization in (1.3) can be rewritten as,

π∗ = arg max
π

V0(b0) = arg max
π

E
x0,zt

t=0,1,...N−1

{
N−1∑
t=0

γtrt(xt, µt(bt),xt+1) + γNrN (xN )

}
.

(1.4)

The control policy in this case is in the form of π = {µ0, µ1, . . . , µN−1} with µt(·) : B 7→ U .

Specially, for infinite horizon cases, there exists a stationary optimal policy, i.e. π∗ ={
µ∗0, µ

∗
1, . . . , µ

∗
N−1

}
with µ∗t (·) = µ∗(·) for t = 0, 1, . . . , N − 1 (Kaelbling et al., 1998; Porta

et al., 2006).

There are cases where POMDP problems are easy to solve. If the underlying system

is linear and the objective function is quadratic, the POMDP problem can be decoupled

into an estimator and a controller. The estimator is the optimal solution of the problem of

estimating the current state assuming no control takes place. The controller, on the other

hand, is the optimal solution of the control problem assuming perfect state information.
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Together, both solutions constitute the optimal solution of the POMDP problem. Above

is the celebrated separation theorem that we have mentioned at the beginning of this chap-

ter. Specially, when the noises of the system dynamics and measurement are of Gaussian

distributions, Kalman filters and LQRs lend themselves to be the optimal estimator and

controller. However, for nonlinear system or more complicated objective functions, the

separation theorem no longer applies.

In general, POMDP problems are indeed very hard. The challenges are twofold. First,

as discussed before, policies for POMDP problems are functions of beliefs instead of states.

Even for a system with finite state space of size n, the belief space is continuous and resides

in Rn−1. Second, in order to find an optimal policy, one also has to consider all future

outcomes alternating controls and measurements, the number of which grows exponentially

with the search depth. Pineau et al. (2003) summarize the two challenges vividly as curse

of dimensionality and curse of history.

1.3 Outline and Contributions

This dissertation formulates the stochastic motion planning problem as a general continu-

ous POMDP respecting system uncertainty. We propose solutions of different optimization

regimes to address the problem with theoretical justifications. Without introducing ad-

ditional assumptions or heuristics into the solutions12, it is expected that the proposed

stochastic motion planning algorithms could “discover” high-level intelligent behaviors by

itself and drive the robot to complete the task reliably and safely. The effectiveness of the

proposed solutions are demonstrated with various applications where the dominant uncer-

tainty comes from either the robotic system or external environment. In the following, we

briefly summarize the content and contributions of each chapter.

12We assume additional structures on the system and task models to make the problem more accessible.
As a result, the proposed solutions work for subcategories of the problem formulated in Sec. 1.2.
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Chapter 2

In this chapter, we review the existing literature that are relevant to the proposed solutions

or considered applications.

Chapter 3

We propose a gradient-based optimization solution to the problem in Sec. 1.2 based on

iterative Linear Quadratic Gaussian (iLQG) (van den Berg et al., 2012b). Compared to

the limitations of the previous works, the proposed solution is not only able to work with

nondifferentiable system models, but sensors with sparse informative measurements due to

limited sensing ranges. Such features enable practical applications of the proposed solution

with commonly used sensors, like Lidars or cameras.

Chapter 4

We propose a sampled-based general POMDP solver for continuous systems to solve the

problem in Sec. 1.2. A few limitations of existing online general POMDP solvers are ad-

dressed. First, the proposed solution is able to work with continuous measurement spaces.

Second, with more accurate belief approximation at traversing the tree, we fix the issue of

over optimistic reward-to-go estimation from a rollout policy. Through theoretical analysis,

we show the proposed continuous POMDP solver could produce unbiased policy value es-

timation with sufficient samples and simulation episodes, which makes the solution a valid

Monte Carlo Tree Search (MCTS) algorithm, or a valid Monte Carlo control algorithm in

general.

Chapter 5

In this chapter, we consider an application where the dominant uncertainties come from the

robot itself, while assuming a static and known environment. More specifically, we apply the

proposed algorithms in previous chapters to navigate a car-like robot with range sensors

in a known environment. We compare the performance of the proposed solutions with
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other applicable methods. The methods are compared not only in terms of the objective

functions but also other metrics relevant to robotic applications. By demonstrating the

superior performance of the proposed methods with such a familiar application to the

robotics community, we believe the importance of stochastic motion planning could be

better appreciated.

Chapter 6

In this chapter, we consider a more challenging autonomous driving application. Compared

to Ch. 5, the dominant uncertainty in autonomous driving comes from external environment,

i.e. the unknown behavior of other players in the traffic. In this work, we first propose

a data-driven model for stochastic traffic dynamics sharing the motion model structure

in (1.1). Then, we apply the proposed solution in Ch. 4 to plan motions for the ego vehicle

within the stochastic traffic. Through comparisons in both handcrafted and real traffic

scenarios, we show that the proposed solution achieves better performance compared to

other approaches that also consider traffic stochasticity. To our best knowledge, this is the

first work that applies a full POMDP solution to autonomous driving in general scenarios.

Meanwhile, this might also be the first work that tightly couples planning and predictions

with a data-driven traffic model for the autonomous driving problem.

Chapter 7

Ch. 7 concludes the dissertation and provides prospects for future research directions.
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Chapter 2

Background Literature

In this chapter, we review background literature that is relevant to the stochastic motion

planning problem considered in this dissertation. The problem is often known as belief space

planning in the robotics community, of which we review the existing works in Sec. 2.1. There

is also a strong body of literature in the AI community addressing the general POMDP prob-

lems. Related works are reviewed in Sec. 2.2. In Ch. 6 of this dissertation, we consider the

stochastic motion planning problem in the context of autonomous driving. The application

requires a stochastic model for the traffic dynamics, and, meanwhile, a motion planning al-

gorithm considering uncertainties originated from not only traffic but sensor data. Related

works on both topics are reviewed in Sec. 2.3 and 2.4 respectively.

2.1 Belief Space Planning

Algorithms for belief space planning are often related to Linear systems with Quadratic

cost and Gaussian noise (LQG) for practical considerations. Most works on LQG sys-

tems (Prentice and Roy, 2009; Platt et al., 2010; Kopitkov and Indelman, 2019) assume

maximum likelihood measurements, which help in identifying a unique posterior distribu-

tion, but introduce additional information. Du Toit and Burdick (2012) later prove that

maximum likelihood measurement introduces the least amount of information comparing

with other future measurement sequences. van den Berg et al. (2011) first figure out the
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actual dynamics of the belief state of an LQG system. He shows that the covariance of

the posterior Gaussian distribution is fixed for arbitrary future measurements, while the

mean follows a Gaussian distribution. His finding motivates later works that remove the

maximum likelihood assumption (Vitus and Tomlin, 2011b; van den Berg et al., 2012b; Sun

et al., 2016; Rafieisakhaei et al., 2017).

The LQG-related approaches can also be categorized based on its origin of the deter-

ministic counterpart. Censi et al. (2008) solve the problem with graph search. Bry and

Roy (2011) propose RRBT by extending RRT*. More works are based on PRM since the

belief roadmap proposed by Prentice and Roy (2009). Agha-mohammadi et al. (2014, 2018)

introduces “belief stablizers”, which assume the existence of a local controller at each node

in PRM that can bring the belief at a node to its neighbor nodes representing other belief.

A known problem of graph-based solutions is the lack of strict ordering of covariance matri-

ces. Censi et al. (2008) and Bry and Roy (2011) address this problem by imposing partial

ordering for beliefs. In contrast, Shan and Englot (2017) avoid the necessity of partial

ordering by simply considering the largest eigenvalue of a covariance matrix.

In addition to originating from graph search methods, there are algorithms trying to

find a control policy through optimization inheriting the idea of Linear Quadratic Regulator

(LQR). van den Berg et al. (2012b) and Sun et al. (2016) directly solve for the feedback

control policy through dynamic programming. Vitus and Tomlin (2011b), Indelman et al.

(2015), and Rafieisakhaei et al. (2017), on the other hand, find the next best action and

form a feedback policy through RHC.

2.2 General Solutions for Partially Observable Markov De-

cision Process (POMDP)

In the AI community, there is also a strong body of literature on POMDP solvers for general

systems, where only generative models, instead of explicit model formulations, are required.
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For finite discrete systems, Pineau et al. (2003) first propose offline point-based method,

which forms the basis for many later extensions (Shani et al., 2013). There are two main

ideas embedded in the point-based methods which break the curse of dimensionality and

the curse of history respectively. In the case that an initial belief is known, it is believed

that only a small subset of the belief space is reachable. Therefore, one can only consider

the reachable belief space, which can be approximated by a set of belief samples. The

second idea is to exploit the fact that the optimal value function for a finite discrete system

is a convex piecewise linear function of the belief, first proved by Sondik (1971). Although

the number of piecewise linear regions grows with search depth, one can only keep a fixed

number of “α-vectors” in order to bound the computation complexity. Extensions of point-

based methods (Smith and Simmons, 2004; Hanna Kurniawati, 2008) are usually different

in how to choose the belief samples and update the “α-vectors”.

Offline POMDP solvers often estimate the value function over the entire belief space.

In contrast, online POMDP solvers focus on estimating the value for the current belief

and generating the next best action. Most of the online POMDP solvers are based on tree

search (Ross et al., 2008), alternating three steps: find the most promising leaf node; expand

the node; update the parents of the leaf node through dynamic programming. Variations of

online POMDP solvers (Paquet et al., 2005; Ross and Chaib-Draa, 2007) are usually different

in what heuristics is applied in finding the next best leaf node to expand. Developments

in sampling based online POMDP solvers, such as POMCP (Silver and Veness, 2010) and

DESPOT (Ye et al., 2017), have demonstrated their effectiveness and efficiency in solving

large scale problems (PacMan with 1056 states).

It is worth noting the subtle difference between POMCP and tree search methods.

POMCP is based on Monte Carlo Tree Search, where the tree and the predefined rollout

policy, together, construct a single policy. As the number of simulations increases, the

policy represented by the tree may hopefully converge to the optimal policy. In contrast,

tree search methods, such as DESPOT, embed all policies in the tree. The job of the
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algorithm is to identify the optimal policy by accurately estimating the values at the nodes

in the tree.

Most of the general POMDP solvers, either offline or online, are limited to finite discrete

measurement space. A few works attempt to relax this limitation (Porta et al., 2006). Hoey

and Poupart (2005) propose the insight that observations should only be differentiated when

they result in different posterior distributions, which provides a metric to partition large, or

even continuous, observation space. van den Berg et al. (2012a), Chaudhari et al. (2013),

and Sunberg and Kochenderfer (2018) try to solve the continuous POMDPs in general.

van den Berg et al. (2012a) generalize iLQG (van den Berg et al., 2012b), focusing on

continuous POMDPs with Gaussian noise. Chaudhari et al. (2013) propose a sequential

approach to discretize a continuous POMDP through incremental sampling. Sunberg and

Kochenderfer (2018) extend POMCP and utilize progressive widening (Couëtoux et al.,

2011) to handle both continuous control and observation spaces.

A few works try to apply general POMDP solvers for stochastic motion planning prob-

lems. Kurniawati et al. (2011) propose milestone guided sampling, which is, at its root,

a point-based method and is still limited to discrete problems. The specialty of milestone

guided sampling is that it employs a similar idea with PRM to guide the sampling of belief

space. Lauri and Ritala (2016) address the navigation of a ground vehicle with range sensors

using POMCP. The continuous observation space is discretized by converting range sensor

measurements to tuples consisting of cell indices and corresponding occupancy status. How-

ever, the number of possible discrete measurements is still huge, which could results in an

overly shallow tree and, therefore, barely useful for long term planning.

2.3 Traffic Dynamics Modeling

A critical component of autonomous driving, before considering motion planning, is mod-

eling the traffic dynamics. Simple parametric models, such as IDM (Treiber and Kesting,

2013) and MOBIL (Kesting et al., 2007), may serve this purpose, which has been used
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in our previous work (Sun et al., 2020a) and more (Sunberg et al., 2017; Evestedt et al.,

2016; Zhang et al., 2020). However, such models suffer from two major limitations. First,

the models are not able to describe the detailed behavior of agent vehicles, like a trajec-

tory of lane change. Second, the models are designed for study the macro traffic behavior.

Predictions of the models may not agree with the local behavior of agent vehicles. Such

limitations of hardcrafted parametric models motivate data-driven approaches in predict-

ing agent behavior, harnessing the power of deep neural networks. Thanks to the recently

available datasets, such as ArgoVerse (Chang et al., 2019), nuScenes (Caesar et al., 2020),

Lyft5 (Houston et al., 2020), and Waymo Open (Sun et al., 2020b), data-driven approaches

to modeling the stochastic traffic dynamics become possible.

Traffic models in related works are often non-Markovian (Chai et al., 2019; Cui et al.,

2019; Phan-Minh et al., 2020; Rhinehart et al., 2019), which predict the future in the next

few seconds based on the past agent trajectories of a short duration. The non-Markovian

structure allows more flexibility for the network to exploit data over multiple steps and

could therefore potentially improve prediction accuracy. However, it may be hard to apply

efficient planning algorithms implementing concepts like dynamic programming with such

models because of the lack of Markovian structure. Recurrent models (Sanchez-Gonzalez

et al., 2018) are suitable for this purpose, which take the network output as the input for

the next time step. However, recurrent models are known to be subject to compounding

errors (Ross et al., 2011). Although not fully resolved, the issue can be alleviated with

scheduled sampling as shown by Bengio et al. (2015).

Another important aspect of the traffic model is to reflect the interactions between the

ego and agents, i.e. make predictions of the traffic conditioned on the motion of the ego

vehicle. The property is investigated by Rhinehart et al. (2019), Khandelwal et al. (2020),

Salzmann et al. (2020), and Tolstaya et al. (2021). Rhinehart et al. (2019) and Khandelwal

et al. (2020) both infer agent motion conditioned on a local goal of the ego. Simply condi-

tioning on the goal might be insufficient, since various ego motions could lead to the same
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goal, while each of them could interact with the agents differently. Instead, Salzmann et al.

(2020) and Tolstaya et al. (2021) perform inference conditioned on the future trajectory of

the ego. It is straightforward to use both models for query, i.e. predicting agent trajecto-

ries with a complete ego trajectory. However, constructing an ego trajectory incrementally

would be hard to realize with such models.

A large body of prior works (Chai et al., 2019; Cui et al., 2019; Phan-Minh et al.,

2020; Messaoud et al., 2020; Gao et al., 2020; Zhao et al., 2020) focus on predicting the

future of a single agent. However, a traffic scene may consist of various numbers of players,

where predictions for all are required. Although the previously mentioned algorithms can

be applied to all agents sequentially, they are limited in capturing the complex interactions

between agents. As a result, the predictions may not be consistent, i.e. predictions of

different agents could lead to collisions. To address the issue, more recent works (Salzmann

et al., 2020; Casas et al., 2020; Casas et al., 2020; Liang et al., 2020; Zeng et al., 2021) are

able to make joint predictions for all agents of interest, which either explicitly or implicitly

apply the idea of a GNN (Battaglia et al., 2018).

Casas et al. (2018); Rhinehart et al. (2019); Salzmann et al. (2020) try to model the

partial observability of traffic dynamics by introducing latent variables into the network.

Rhinehart et al. (2019) applies latent variables per agent per step in order to randomize

the predictions. Casas et al. (2018) and Salzmann et al. (2020) introduce discrete la-

tent variables intended to affect the high-level behavior of agent predictions. In the first

case (Rhinehart et al., 2019), latent variables are i.i.d, therefore, independent of the traffic

state. In the second case (Casas et al., 2018; Salzmann et al., 2020), the latent variables

are internal to the network and generated as intermediate results. In either case, it is not

straightforward to include such latent variables as part of the traffic state.
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2.4 Autonomous Driving in POMDP frameworks

In terms of planning motions for autonomous vehicles, most existing works focus on de-

terministic motion planning algorithms (Montemerlo et al., 2008; Urmson et al., 2008; Mc-

Naughton et al., 2011; Ding et al., 2019; Sun et al., 2020a; Paden et al., 2016) for efficiency.

Similar to the work in this dissertation, a few consider the uncertain nature of traffic dy-

namics and sensor measurements, and plan motion for the autonomous vehicle in a POMDP

framework. To reduce the complexity, works in the latter category often simplify the au-

tonomous driving problem by either focusing on specific scenarios (Brechtel et al., 2014;

Hubmann et al., 2018b), like lane change, or only considering an over-simplified dynamics

for the ego vehicle (Hubmann et al., 2018a; Liu et al., 2015; Sunberg et al., 2017), like

only planning velocity profiles. In addition, despite the minor data-driven components (Liu

et al., 2015), most works assume a handcrafted traffic model. Predictions with such models

may not agree with real driver behaviors. As a result, it might be hard to argue that the

motion planned with the above methods should adapt to actual traffic scenarios.

Methodology-wise, Liu et al. (2015); Hubmann et al. (2018a,b, 2019) solve for the pol-

icy with discrete POMDP solvers (Ye et al., 2017; Kurniawati and Yadav, 2016). Hubmann

et al. (2018a,b, 2019) attempt to avoid continuous measurement space by assuming noise-

free measurements. Effectively, the ego vehicle measures the reference paths that the agents

are following which only include finite options. The assumed measurement model fails to

capture the intrinsic uncertainty of observations. The problem quickly degenerates to a de-

terministic problem once the ambiguity of reference paths is resolved. Brechtel et al. (2014)

propose to apply an offline continuous POMDP method for autonomous driving. However,

the solved policy only targets a specific scenario. Resolving the continuous POMDP is re-

quired if a new scenario is encountered. Sunberg et al. (2017) applies a continuous online

POMDP solver, to plan motions for an autonomous vehicle in highway lane change scenar-

ios. To simplify the problem, vehicle dynamics is modeled with a second-order integrator

in Sunberg et al. (2017), where vehicle orientation is ignored.
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Closest to the problem setup in this dissertation is the MultiPolicy Decision Mak-

ing method (MPDM) (Galceran et al., 2017) and an improved variant of it, Efficient

Uncertainty-aware Decision Making (EUDM) (Zhang et al., 2020). Both methods consider

uncertainty resulting from traffic dynamics and sensor observations, and can be applied

in general scenarios. Compared to MPDM, a major difference of EUDM is being able to

switch policies for the ego within the planning horizon. Generally speaking, MPDM is a

sampling-based POMDP method. To simplify the solution, MPDM ignores the change of

belief caused by different possible future measurements. Instead, within each planning hori-

zon, it considers the belief to be fixed at the current estimation provided by the external

state estimator.
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Chapter 3

Belief Space Planning with Iterative

Linear Quadratic Gaussian (iLQG)

As reviewed in Sec. 2.1, compared to graph-based solutions, iLQG (van den Berg et al.,

2012b) could be more efficient in solving the stochastic motion planning problem since it

exploits the gradient of the system and task models when available. However, few success

has been reported in applying iLQG in practice to plan motions for real robots equipped

with commonly used sensors like Lidars or cameras. The rare application is caused by two

limitations of iLQG. First, iLQG requires differentiable system models. Although the mo-

tion models of many robots are differentiable, it is not the case for measurement models

for commonly used sensors. For example, measurement models for Lidars are not differ-

entiable due to the discontinuity in the environment. Second, informative measurements,

i.e. measurements that are effective in reducing uncertainty, are sparse due to the limited

sensing range. In this chapter, we extend iLQG and address both of the above mentioned

limitations.

Related to the improvements introduced in this work, van den Berg et al. (2012b)

briefly mention that Unscented Kalman Filters (UKF) could replace Extended Kalman

Filters (EKF) to approximate belief dynamics. Nishimura and Schwager (2018) also applies
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a UKF as belief dynamics approximation in an active multi-target tracking problem with

(unlimited) range measurements. In both works, the application of UKFs are not intended

for nondifferentiable system models. Bachrach et al. (2012) share the same spirit with this

work, where a UKF is applied in the belief roadmap framework (Prentice and Roy, 2009)

for nondifferentiable measurement models of RGB-D cameras. One technical flaw cannot

be avoided. With the application of UKF in BRM, the computation of “transfer functions”

of covariance requires the prior uncertainty, which is unavailable while constructing the

roadmap.

A few works consider randomness in measurement acquisition, which is similar to the

sparse informative measurements problem. Patil et al. (2014) introduce signed distance field

to model sensing regions. The use of signed distance field implicitly assumes the direction

of movement for obtaining measurements is unique and known a priori, which is often

not the case. Indelman et al. (2015) and Chaves et al. (2015) introduce Bernoulli random

variables to model the randomness in measurement acquisition. In the work of Indelman

et al. (2015), the binary random variable is computed with the expected state and is fixed

during the optimization. Chaves et al. (2015), on the other hand, assume the random

variable is independent of the state. The issue of sparse informative measurements cannot

be addressed by either method because of the assumed independence between the state and

measurement acquisition during the optimization.

Contributions

In this work, we address the limitations of iLQG when working with commonly used sensors

like Lidars or cameras so that the proposed solution can be applied in practice to solve the

stochastic motion planning problem.

First, the application of iLQG only requires the belief dynamics to be differentiable.

We show that the differentiability of the true discrete-time belief dynamics, modeled by a

Bayes filter, is independent of the underlying motion or measurement models. The explicit
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requirement for differentiability (van den Berg et al., 2012b) is because of the use of an

EKF in approximating the belief dynamics. To overcome this issue, we propose to use a

derivative-free filter based on a UKF for belief dynamics modeling.

Second, the discontinuity of the noise standard deviation of a sensor model can be

understood as the cause of sparse informative measurements. The noise standard deviation

is infinite when the measurement is outside the sensing range. We propose to approximate

the scaling function of measurement noise with a sigmoid function, which is equivalent to

introducing artificial gradient into the optimization, therefore, densifying the informative

measurements. By properly scheduling the sigmoid parameters in an outer loop of iLQG,

the modified measurement model eventually converges to the true model, ensuring that the

resulting control policy is designed for the original system.

In the following of this chapter, we first present the problem formulation in Sec. 3.1.

In Sec. 3.2, we provide a quick overview of iLQG proposed by van den Berg et al. (2012b).

In Sec. 3.3 and 3.4, we address the two previously mentioned limitations of iLQG, namely

nondifferentiable system models and sparse informative measurements. The work in this

chapter is published in Sun and Kumar (2021).

3.1 Problem Formulation

Consider a system modeled as follows,

xt+1 = f(xt,ut,mt), mt ∼ N (0,Σm),

zt = h(xt,nt), nt ∼ N (0,Σn).

(3.1)

In (3.1), f(·) : X × U × Rm 7→ X and h(·) : X × Rn 7→ Z are the motion and measurement

models. x ∈ X , u ∈ U , z ∈ Z are the state, control, and measurement. m ∈ Rm and

n ∈ Rn are the Gaussian motion and measurement noises with zero mean and covariance

Σm and Σn.
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Assuming one does not have access to the perfect state information, but is given the

initial belief b0 ∈ B, with which we could model the task as the following objective function,

V0(b0) = E

{
N−1∑
t=0

ct(bt,ut) + cN (bN )

}
. (3.2)

In (3.2), ct(·) : B×U 7→ R and cN (·) : B 7→ R are the stage and terminal costs respectively1.

In the rest of this chapter, we assume that both ct(·) and cN (·) are second-order differentiable

with positive-(semi)definite Hessians.

The problem is to find a control policy, πt(·) = {µ0, µ1, . . . , µN−1} with µt(·) : B 7→

U , that drives the robot to complete a task, which could be obtained by minimizing the

objective function in (3.2),

π∗t = arg min
πt

V0(b0) = arg min
πt

E

{
l−1∑
t=0

ct(bt, µt(bt)) + cN (bN )

}
. (3.3)

Compared the general problem formulation in Sec. 1.2, the problem formulated in

this chapter assumes more structure on the system and task models. To summarize, (3.1)

implicitly assumes known system formulations (generative models are insufficient) with

Gaussian noises. Meanwhile, the stage and terminal cost functions should be second-order

differentiable with positive-(semi)definite Hessians.

3.2 Preliminaries on iLQG

Assuming both the motion, f(·), and measurement, h(·), models in (3.1) are differentiable,

an EKF can be applied to approximate the belief dynamics.

In EKFs, belief is approximated with Gaussian distributions, N (x̂,Σ), where x̂ is

the estimated mean of the state, while Σ is the covariance. With the latest control and

1Cost, instead of reward, is used in (3.2) to align with the existing literature in belief space planning. It
should be further noted that we assume costs are functions of belief directly instead of states as in (1.2).
Effectively, we are directly modeling the expected stage cost, i.e. ct(bt,ut) = E{c′t(xt,ut)}.
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measurement, the belief is updated as,

x̂t+1 = f(x̂t,ut,0) +Kt+1(zt+1 − h(f(x̂t,ut,0),0)),√
Σt+1 =

√
Γt −Kt+1Ht+1Γt.

(3.4)

where,

Γt = AtΣtA
>
t +MtM

>
t ,

Kt+1 = ΓtH
>
t+1(Ht+1ΓtH

>
t+1 +Nt+1N

>
t+1)−1,

At =
∂f

∂x
(x̂t,ut,0),

Mt =
∂f

∂m
(x̂t,ut,0),

Ht+1 =
∂h

∂x
(f(x̂t,ut,0),0),

Nt+1 =
∂h

∂n
(f(x̂t,ut,0),0).

(3.5)

Note, in (3.4), the square root of Σ,
√

Σ (the Cholesky factorization of Σ), is used for

numerical stability. We may also take advantage of the sparsity of
√

Σ, and represent the

belief in a vector form, i.e. b =
(
x̂>, vech(

√
Σ)>

)
>, where vech(

√
Σ) stacks the lower (or

equivalently upper) triangular entries of
√

Σ as a vector. With the new belief representation,

the belief dynamics in (3.4) can be rewritten as,

bt+1 =

f(x̂t,ut,0) +
√
Kt+1Ht+1Γtwt+1

vech
(√

Γt −Kt+1Ht+1Γt
)

 , (3.6)

where wt+1 ∼ N (0, I) is the normalized innovation.

The key observation by van den Berg et al. (2012b) is that the belief dynamics approx-

imated with an EKF has the form,

bt+1 = Φ(bt,ut, zt+1), (3.7)

sharing the same form of a motion model. Specially, b is the (belief) state, u is the control
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Algorithm 1: The iLQG Algorithm ( van den Berg et al. (2012b))

Input: initial belief trajectory {b̄0, b̄1, . . . , b̄N},
initial policy {µ0, µ1, . . . , µN−1}.

Output: local optimal policy {µ∗0, µ∗1, . . . , µ∗N−1}.
1 Initialize

{
µ∗0, . . . , µ

∗
N−1

}
with {µ0, . . . , µN−1}.

2 while policy has not converged do
3 Generate the nominal trajectory

{
b̄0, ū0, . . . , b̄N

}
with ūt = µ∗t (b̄t).

4 Approximate the final step optimal value function V ∗N with a second-order
Taylor expansion of cN in (3.2) around b̄N .

5 for t from N − 1 to 0 do
6 Approximating Φ in (3.7) with a first-order Taylor expansion around b̄t

and ūt to produce a linear belief dynamics Φ′.
7 Approximating ct in (3.2) with a second-order Taylor expansion around b̄t

and ūt to produce a quadratic stage cost c′t.
8 Solve for µ∗t and V ∗t through minimizing

c′t(bt,ut) + E{V ∗t+1(Φ′(bt,ut, zt+1))}.
9 end

10 end

input, and z, or equivalently innovation, plays the role of motion noise. Therefore, iterative

Linear Quadratic Regulator (iLQR) (Li and Todorov (2004)) can be applied on (3.7) to

obtain a local optimal feedback policy of belief.

The general framework of iLQG is summarized in Alg. 1. Given an initial control pol-

icy, the original nonlinear optimization problem is converted to an LQG by approximating

the belief dynamics (Line 6) and the cost functions (Line 4 and 7) through first and second

order Taylor expansions respectively. The control policy for the LQG can be solved recur-

sively through dynamic programming (Line 8). With the new control policy, the nominal

trajectory is updated (Line 3), which is then used to update the approximations for the

belief dynamics and costs for the next iteration. Note steps like line search and trust region

methods are omitted for brevity, which are necessary in practice to ensure convergence.
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Figure 3.1: Nondifferentiable range sensor measurements. If the position of the robot (dark
red circle) is perturbed downward, the light red beam no longer hits the obstacle (dark blue
rectangle). As a result, the range measured by the light red beam can produce a significant
change.

3.3 Nondifferentiable System Models

One major limitation of iLQG that prevents its wide application comes from the requirement

of differentiable motion and measurement models of the system. However, sensors that are

often used in practice, such as Lidars and cameras, have nondifferentiable measurement

models. Here, by “nondifferentiable measurement models”, we specifically mean that the

measurement model, h(·) in (3.1), is not differentiable w.r.t. the state, i.e. ∂h
∂x does not

exist for all x ∈ X . Figure 3.1 illustrates this limitation with an example of a range sensor.

In the rest of this section, we introduce modifications of iLQG in order to work with

systems with nondifferentiable models.

3.3.1 Differentiability of the Belief Dynamics

The key insight is that the application of iLQG only requires differentiability of the belief

dynamics in (3.7). The requirement of explicit differentiability of the motion and measure-

ment models in the work of van den Berg et al. (2012b) actually comes from the usage of

an EKF to approximate belief dynamics. In the following, we show that the true belief

dynamics is differentiable by itself with mild assumptions.

The true discrete-time belief dynamics is modeled by the Bayes filter in the following
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form,

pt+1(x) =

∫
t(x|y,ut)bt(y)dy,

qt+1(x) = l(zt+1|x)pt+1(x),

bt+1(x) =
1∫

qt+1(y)dy
qt+1(x).

(3.8)

In (3.8), t(·) : X 2×U 7→ R is the transition probability. l(·) : X×Z 7→ R is the measurement

likelihood. pt+1 is the prior p.d.f.. qt+1 is the unnormalized posterior p.d.f., normalizing

which gives the belief at t+ 1, bt+1.

Assumption 3.1. We assume the following properties on the transition probability, mea-

surement likelihood, and initial belief.

(1) t(·) is continuous on X 2 × U , and 0 < t(·) <∞.

(2) ∂t/∂ut exists and is continuous on X 2 × U .

(3) l(·) is continuous on X × Z, and 0 < l(·) <∞.

(4) ∂l/∂zt+1 exists.

(5) bt, as a p.d.f., is continuous on X .

We note that the above properties are mild assumptions of a system. The first four

items are trivially satisfied by assuming both the motion and measurement noises are of

Gaussian distributions, which align with the system models in (3.1). Meanwhile, we show

in the following that the continuity of bt can be preserved by (3.8). Therefore, it is sufficient

to assume the continuity of b0 in order to ensure the continuity of bt’s for future steps.

Theorem 3.1 (Preservation of Belief Continuity). With Assumption 3.1, continuity of

belief is preserved by the Bayes filter in (3.8), i.e. bt+1 is continuous on X given bt is so.

Proof. Since t(·), l(·), and bt are continuous functions, pt+1 and qt+1 are continuous. Given

that 0 < t(·), l(·) <∞ and
∫
bt(y)dy = 1, we have 0 <

∫
qt+1(y)dy <∞. Therefore, bt+1

30



is continuous.

Next we show the differentiability of bt+1 w.r.t. ut, zt, and bt. Note here we consider

bt’s as probability density functions. Therefore, it does not make sense to discuss the

differentiability of a function w.r.t. vectors or other functions directly. Instead, we consider

the pointwise differentiability, i.e., the relationships between dbt+1(x) and dut, dzt+1, and

dbt. Specially, bt+1(x) should be considered as a functional of bt.

Theorem 3.2 (Differentiability of the Discrete-time Belief Dynamics). With Assump-

tion 3.1, bt+1 is pointwise differentiable w.r.t. ut, zt, and bt.

Proof. The differentiability of bt+1(x) could be shown by construction.

dpt+1(x) =

∫
∂t

∂ut
(x|y,ut)dutbt(y)dy +

∫
t(x|y,ut)dbt(y)dy,

dqt+1(x) =
∂l

∂zt+1
(zt+1|x)dzt+1pt+1(x) + l(zt+1|x)dpt+1(x),

dbt+1(x) =
dqt+1(x)∫
qt+1(y)dy

−
qt+1(x) ·

∫
dqt+1(y)dy(∫

qt+1(y)dy
)

2
.

(3.9)

The differential equations hold because of Assumption 3.1, which allows the application of

Leibniz’s rule to switch the order of differentiation and integration. Applying the chain

rule to (3.9) produces the required partial derivatives, ∂bt+1(x)/∂bt(y), ∂bt+1(x)/∂ut, and

∂bt+1(x)/∂zt+1.

Therefore, the differentiability of belief dynamics is independent of differentiability of

the system motion, f(·), and measurement, h(·), models in (3.1).

In Gaussian filters, such as KFs and EKFs, (multivariate) Gaussian distributions are

used to approximate the underlying belief with the first and second moments. In the

following, we show the differentiability of the first two moments of bt+1 by construction,

assuming bt is Gaussian.

Corollary 3.2.1 (Differentiability of the First Two Moments). The first two moments of
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bt+1 are differentiable w.r.t. ut and zt, and the first two moments of bt assuming bt is

Gaussian.

Proof. Consider the mean, E{xt+1} of bt+1. Differentiating E{xt+1} w.r.t. bt+1 while

applying Theorem 3.2 gives,

dE{xt+1} =

∫
x · dbt+1(x)dx,

dbt+1(x) =
∂bt+1(x)

∂ut
dut +

∂bt+1(x)

∂zt+1
dzt+1 +

∫
∂bt+1(x)

∂bt(y)
dbt(y)dy.

(3.10)

Recall bt is an (multivariate) Gaussian parameterized by E{xt} and E
{
xx>

}
. Therefore,

dbt(x) =
∂bt(x)

∂E{xt}
dE{xt}+

∂bt(x)

∂E
{
xtx>t

}dE{xtx>t }. (3.11)

Details of ∂bt(x)/∂E{xt} and ∂bt(x)/∂E
{
xtx

>
t

}
are provided by Petersen and Pedersen

(2012). Combining (3.10) and (3.11) produces ∂E{xt+1}/∂E{xt} and ∂E{xt+1}/∂E
{
xtx

>
t

}
.

Similar steps can be applied for ∂E
{
xt+1x

>
t+1

}
/∂E{xt} and ∂E

{
xt+1x

>
t+1

}
/∂E

{
xtx

>
t

}
,

which completes the proof.

As a result of Corollary 3.2.1, if bt+1 is approximated as a Gaussian distribution using

the first two moments, the parametric representation of the belief is differentiable.

3.3.2 Approximate Belief Dynamics with Unscented Kalman Filters

The results of the previous section confirm that the successful application of iLQG as

reported in van den Berg et al. (2012b) does not rely on the EKF belief dynamics ap-

proximation, but the nice properties of the underlying true belief dynamics. Furthermore,

the differentiability of the discrete-time belief dynamics, modeled as a Bayes filter, does

not depend on the differentiability of the actual motion and measurement models in (3.1).

Therefore, in theory, we could apply iLQR directly on the Bayes filter to generate control

policies for systems with nondifferentiable models, although it could be computationally
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intractable in practice.

The insight inspires us to approximate the belief dynamics with a derivative-free filter.

In this work, we use a UKF to avoid explicitly differentiating system models. In the follow-

ing, we provide the details of using a UKF for belief dynamics approximation. Specially,

we consider an on-manifold UKF (Brossard et al., 2017) instead of a plain UKF (Thrun

et al., 2005, Ch.3), since in robotic applications, the state spaces are often Lie groups, such

as SE(2) and SE(3).

In an on-manifold UKF, belief, b = N (x,Σ), is approximated with 2n+1 sigma points

with n for the state dimension.

si = x ◦ exp
(√

(n+ λ)Σ
(i)
)
,

si+n = x ◦ exp
(
−
√

(n+ λ)Σ
(i)
)
,

s0 = x, i = 1, 2, . . . , n.

(3.12)

In (3.12), λ = α2(n + κ) − n, where α and κ control the spread of the sigma points. We

use ◦ and exp(·) to denote the composition and exponential operations on Lie groups. For

brevity, we omit ·̂ or ·̌ operations that convert elements in Lie algebra between matrix and

vector representations. The notation A(i) refers to the ith column in matrix A. The weights

for the sigma points are,

w0
m =

λ

n+ λ
,

wim =
λ

n+ λ
+ (3− α2),

w0
c = wic =

1

2(n+ λ)
, i = 1, 2, . . . , 2n.

(3.13)

wm’s and wc’s are used to recover the first and second moments of the Gaussian distribution

respectively. We define S = s(x,Σ) with S =
{(
si, wim, w

i
c

)
, i = 0, 1, . . . , 2n

}
, to represent

the process of generating sigma points, (3.12), and the weights, (3.13), from a Gaussian

distribution, N (x,Σ).
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At the prediction step, sigma points generated with bt = N (x̂t,Σt) are propagated

through the motion model to obtain the prior belief b̄t = N
(
x̄t+1, Σ̄t+1

)
,

St = s(x̂t,Σt),

ξit = log
(
f−1(s0

t ,ut,0) ◦ f(sit,ut,0)
)
,

x̄t+1 = f(s0
t ,ut,0) ◦ exp

(
2n∑
i=0

wimξ
i
t

)
,

Σ̄t+1 =

2n∑
i=0

wicξ
i
tξ
i>
t +MtΣmM

>
t ,

(3.14)

where Mt = ∂f(x̂t,ut,0)/∂mt as in (3.5) for an EKF. Note here we implicitly assume that

the motion model, f(·), is differentiable w.r.t. the motion noise, mt. The assumption is

less restrictive compared to assuming the differentiability of f(·) w.r.t. the state or control.

One sufficient condition to satisfy the assumption is that the motion model is in, or can

be approximated with, the form of xt+1 = f(xt,ut,mt) = f̄(xt,ut) +mt. Although being

more restricted compared to (3.1), it is also widely acceptable to robotics application.

At the update step, the posterior belief, bt+1 = N (x̂t+1,Σt+1), is obtained based on

the difference between the actual measurement and the measurement predicted with the

sigma points,

S̄t+1 = s(x̄t+1, Σ̄t+1),

ξit+1 = x̄−1
t+1 ◦ s̄

i
t+1,

z̄t+1 =
2n∑
i=0

wimh
(
s̄it+1,0

)
,

δit+1 = h
(
s̄it+1,0

)
− z̄t+1,

(3.15)

and,

x̂t+1 = x̄t+1 ◦ exp(Kt+1(zt+1 − z̄t+1)),

Σt+1 = Σ̄t+1 −Kt+1Vt+1Kt+1,

(3.16)
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where,

Vt+1 =
2n∑
i=0

wicδ
i
t+1δ

i>
t+1 +Nt+1ΣnN

>
t+1,

Pt+1 =

2n∑
i=0

wicξ
i
t+1δ

i>
t+1,

Kt+1 = Pt+1V
−1
t+1.

(3.17)

Again, we assume the measurement model h(·) is differentiable w.r.t. the measurement

noise nt with Nt+1 = ∂h(x̄t+1,0)/∂nt+1. As for the motion model discussed previously,

the assumption can be trivially satisfied by formulating the measurement model in the form

of zt = h(xt,nt) = h̄(xt) + nt.

By representing the belief, b = N (x̂,Σ), in the vector form,
(
x̂>, vech(Σ)>

)>, the

belief dynamics modeled by a UKF can be rewritten compactly as,

bt+1 =

x̄t+1 ◦ exp
(√

Kt+1Vt+1K>t+1wt+1

)
vech

(
Σ̄t+1 −Kt+1Vt+1K

>
t+1

)
 . (3.18)

Note that (3.18) is in the same form of (3.6). Therefore, the iLQG as in Alg. 1 can be

applied seamlessly. Meanwhile, we have avoided explicitly differentiating the motion or

measurement models.

3.4 Sparse Informative Measurements

The iLQG algorithm also suffers from the sparsity of informative measurements of com-

mon sensors, such as Lidar and cameras, because of the limited sensing range. Here, by

“informative measurements”, we refer to measurements that are effective in reducing the

uncertainty of belief. Consider Lidar as an example, informative measurements are only

available when the sensor is close to an obstacle. If the sensor is sufficiently far from the ob-

stacles with all measurements saturated at the maximum range, it cannot be known where

to move to collect informative measurements by just locally perturbing the sensor pose.
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In terms of optimization, it means a majority of states are saddle points, providing trivial

gradient information and preventing iLQG from converging to a sensible solution.

To further understand the issue, we may take a closer look at the measurement model.

The measurement models for commonly used sensors with limited sensing range are often

in the form of,

zt = h(xt,nt) = h̄(xt) +N(xt)nt. (3.19)

In (3.19), N(·) : X 7→ R plays the role of a state-dependent noise scaling factor. To model

the limited sensing range, N(·) is defined as,

N(x) =


1 if informative measurements are available at x

∞ otherwise (features are outside sensing range).

(3.20)

When N(x) is infinity, it implies the Kalman gain in (3.5) or (3.17) remains zeros regardless

of the local motion of the robot. Therefore, the measurements have no effect in updating

the belief, which only propagates with the motion model.

In our work, we address this issue by approximating N(·) with a sigmoid function,

Ns(x) =
ξ

1 + e−ν(h̄(x)−rm)
+ 1. (3.21)

In (3.21), rm represents maximum sensing range. ν controls the gradient of Ns(·). ξ controls

the maximum value of Ns(·).

With the modified sensor model, iLQG can be applied. As shown in Alg. 2, an outer

loop, controlling the change of ξ and ν, wraps around the original iLQG algorithm in Alg. 1.

When both ξ and ν are relatively small, unlike N(·), Ns(·) provides necessary gradient

information which guides the robot to collect informative measurements if necessary. By

increasing both ν and ξ monotonically, Ns(·) converges to N(·) 2. The measurement model

2Numerically, N(·) in (3.20) is not well defined because of the involvement of infinity. Here we assume
N(·) can be approximated by Ns(·) at ξ = ξm and ν = νm with sufficient accuracy.
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Algorithm 2: iLQG with a modified sensor model

Input: initial belief trajectory {b̄0, b̄1, . . . , b̄N},
initial policy {µ0, µ1, . . . , µN−1}.

Output: local optimal policy {µ∗0, µ∗1, . . . , µ∗N−1}.
// ξ0 and ν0 are predefined initial values of the sigmoid function parameters.

1 ξ ← ξ0, ν ← ν0

// ξm and νm are the predefined upper bounds.
2 while ξ < ξm and ν < νm do
3 Apply Alg. 1 to obtain {µ∗0, µ∗1, . . . , µ∗N−1}.
4 ξ ← λξξ, ν ← λνν, (λξ, λν > 1).
5 Update the belief in the nominal trajectory of the feedback policy with the new

measurement model.
6 end

used by iLQG would eventually converge to (3.19). Therefore, the final policy is optimized

for the original system.
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Chapter 4

A General Online POMDP Solver

In this chapter, we consider a more general problem formulation, compared to Ch. 3, for

the stochastic motion planning. We propose a general POMDP solver based on MCTS to

find the control policy for continuous systems.

Recent developments on tree search based general POMDP solvers, POMCP (Silver

and Veness, 2010) and DESPOT (Ye et al., 2017), have demonstrated effective solutions to

large scale problems. However, two difficulties follow immediately in applying the general

tree-based POMDP solvers, such as POMCP and DESPOT, to solve stochastic motion

planning problems considered in this dissertation.

First, the general POMDP solvers usually assume a (finite) discrete system, but robotic

systems are continuous. The continuity of the state space should not pose a problem.

Instead of being represented explicitly as a finite dimensional vector, the belief of the state

can be approximated with samples. The continuity of the action space can also be removed

by considering only a finite set of motion primitives. However, it remains unclear how to

handle the continuous observation space. A naive application of the existing tree search

methods will result in an overly shallow tree, which is unlikely to produce informed actions

that account for a longer horizon, as is necessary in planning problems.

The second difficulty, which is less obvious, comes from estimating the value of the
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rollout policy. Consider using deterministic motion planning methods as the rollout policy.

During the rollout phase of tree search based POMDP solvers, one has to find an action

sequence based on a sample at a leaf node; apply the actions to the same sample; use

the simulated results to estimate the value of the rollout policy. This is equivalent to

the assumption of a known state at the start of rollout phase, which results in an overly

optimistic estimated value. The limitation can lead to incorrect action selection in the tree

policy.

Contributions

In this work, we address the stochastic motion planning problem for robotic systems with

continuous measurements. Building upon POMCP (Silver and Veness, 2010), a MCTS

solution of general POMDPs, we propose a new algorithm, named POMCP++.

Our POMCP++ algorithm addresses the above mentioned difficulties by introducing

two major improvements to POMCP. First, measurement likelihood of the original system is

distorted so that existing measurement branches in the tree can be revisited with nontrivial

probability. Second, a group of samples, instead of one, is enforced to traverse downstream

the same set of nodes in the tree simultaneously. The belief at a leaf node can be well

represented, resulting in more accurate value estimate of the rollout policy. The correct

update of the values at the traversed nodes is still guaranteed through the application of

importance sampling.

Because of the distorted measurement likelihood, the estimated value from the simu-

lation episodes is biased for the current policy. Notwithstanding, we prove that such an

estimate is unbiased as the number of simulations, and the size of sample group tend to

infinity. Therefore, the proposed POMCP++ algorithm is shown to be a valid MCTS

algorithm.

In the following, we first formulate the problem in Sec. 4.1. In Sec. 4.2, we provide a

brief overview of POMCP (Silver and Veness, 2010). Then, we introduce the improvements

39



of POMCP++ that address the previously mentioned limitations in Sec. 4.3. Meanwhile,

we study the theoretical properties of the proposed algorithm. Supplementary proofs for

the theoretical results can be found in Appendix A. The work in this chapter is published

in Sun et al. (2021).

4.1 Problem Formulation

Compared to the iLQG algorithm introduced in Ch. 3, the general POMDP solvers are more

forgiving in system modeling. In this case, we assume that the motion and measurement

models of the system are in the forms of transition probability and measurement likelihood

as in Sec. 1.2,

P (xt+1|xt,at),

P (zt|xt),
(4.1)

where x ∈ X , a ∈ A, z ∈ Z are the state, action1, and measurement. To reduce the com-

plexity of the problem, we assume A is a finite discrete set consisting of predefined motion

primitives, while both X and Z are continuous. An additional assumption of (4.1) is that

one should be able to compute the measurement likelihood given a state and measurement

pair. Meanwhile, a generative motion model remains sufficient.

Given the initial belief b0 ∈ B, we assume the task could be modeled as an objective

function in the form of discounted summation of stage reward up to an infinite horizon.

Although summation of a finite horizon is often applied to model a task, situations are

common where the number of steps to complete the task is not known a priori. Objective

functions of infinite horizon, in the following form, provide the flexibility in letting the

control policy implicitly determine the total number of steps.

V0(b0) = E
xt,zt
t=0,1,...

{ ∞∑
t=0

γtr(xt,at,xt+1)

}
, (4.2)

1We use the term “action” instead of “control” as a reminder of the assumed discrete control space.
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where r(·) : X 2×U 7→ R is a bounded stage reward function, with |r(·)| <∞ and γ ∈ (0, 1)

is the discount factor. The bounded stage reward, together with the discounted factor

within the unit interval, guarantees the objective function is always well defined.

The problem is to find a control policy π = {a0,a1, . . . } that maximizes the objective

function in (4.2),

π∗t = arg max
πt

V0(b0) = arg max
πt

E
x0,zt
t=0,1,...

{ ∞∑
t=0

γtr(xt,at,xt+1)

}
(4.3)

The problem formulated in this chapter is close to the general problem formulation

in Sec. 1.2. The mild additional assumptions include a discrete control space consisting of

motion primitives and a known measurement likelihood.

4.2 Partially Observable Monte Carlo Planning (POMCP)

In this section, we provide a brief overview of POMCP (Silver and Veness, 2010), which

forms the basis of our work to be introduced later in this chapter.

Alg. 3 shows the steps of POMCP. Some notations in Alg. 3 are defined as follows.

h = (a0, z0, . . . ) represents historical information containing a sequence of actions and

measurements. Together with b0, h uniquely determines the current belief, i.e. a node in

the tree. Appending actions and measurements to h, such as ha or haz, represent a node in

the subtree of h. Specially, h = ∅ is the root node. h’s in the form of (a0, z0, . . . ,zt) ended

with a measurement represent the belief nodes, while those ended with an action represent

the belief-action nodes. Functions V (·) and N(·) keep track of the estimated value and the

number of visits of a node.

For each iteration of the algorithm, a state sample, x0 is drawn from the initial belief

b0 (Line 4). The state sample is first simulated recursively following the tree policy (Line 5

and 22). Once a leaf node in the tree is met, it is expanded (Line 15). The sample is
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forward simulated following the predefined rollout policy (Line 16) as a continuation. The

traversed nodes are updated based on the simulation results (Line 24-25). The tree policy

is, therefore, implicitly updated due to the addition of the new leaf nodes and the update

of the corresponding parent nodes.

POMCP is for discrete systems. It is the first algorithm that extends MCTS (Kocsis and

Szepesvári, 2006) to POMDPs. However, it cannot be directly applied to solve the problem

formulated in Sec. 4.1 because of the continuous measurement space. In the following of

this chapter, we introduce POMCP++, an improved version of POMCP addressing its

limitations, which could work with the problem in Sec. 4.1.
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Algorithm 3: POMCP

1 Function a = search(b0)

2 h = NULL
3 while not termination() do
4 x0 ← draw one sample w.r.t. b0

5 simulate(x0, h, 0)

6 end
7 return arg max

a
V (ha)

8 end

9 Function a = selectAction(h)
// c trades off exploitation and exploration.

10 return arg max
a

V (ha) + c ·
√

logN(h)
N(ha)

11 end

12 Function r = simulate(x, h, d)
13 if γd < ε then return 0
14 if h is NULL then
15 foreach a ∈ A do ha ← (Ninit, Vinit)
16 r = rollout(x, d)
17 return r

18 end
19 a ← selectAction(h)
20 x, rs ← process(x,a)
21 z ← sampleMeasurement(x)
22 rt ← simulate(x, haz, d+ 1)
23 r ← rs + γ · rt
24 N(h)← N(h) + 1
25 N(ha)← N(ha) + 1
26 V (ha)← V (ha) + 1

N(ha)(r − V (ha))

27 end
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4.3 POMCP++

Alg. 4 shows the proposed algorithm POMCP++, with a graphical illustration in Figure 4.1.

The overall procedure in POMCP++ follows POMCP in Alg. 3. One obvious modification

is the change from UCB1 (Auer et al., 2002) (Alg. 3 Line 9) to ε-greedy (Sutton and Barto,

2018, Ch.5) (Alg. 4 Line 26) in action selection, both of which trade off exploitation versus

exploration. Kuleshov and Precup (2014) show experimentally that the relative performance

of the two methods vary with problem setups. In this work, ε-greedy policy is applied in

order to ease the theoretical analysis.

Other major changes of POMCP++ include 1) replacing forward sampling measure-

ments with measurement selection (Alg. 4 Line 34); 2) using a group of samples (Alg. 4

Line 4), instead of a single one, to approximate belief while ensuring correct update of nodes

through importance sampling; 3) estimating the value of the rollout policy (Alg. 4 Line 9)

using the sample group in order to overcome over-optimism. Details of the three major

changes in POMCP++ are discussed in the following subsections.

In addition to the notations defined for Alg. 3, a few more are introduced in Alg. 4.

S := {(x, w)} is a set consisting of pairs of states and corresponding weights, approximating

the belief. Function C(·) returns all child nodes of the input node, while |C(·)| represents

the number of child nodes.

4.3.1 Measurement Selection

In POMCP, measurements are forward sampled (Alg. 3 Line 21) to determine whether

to traverse along the tree or expand a new node. It is valid for cases of small-size finite

discrete measurement space or large ones with concentrated distributions. In such cases,

repeated measurements can be forward sampled with high probability, leading to the growth

of the tree in depth. However, it is no longer true for continuous measurement space.

The probability of generating a repeated measurement is zero for a general continuous
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measurement p.d.f..

To overcome the issue, our proposed algorithm POMCP++ uses a new measurement

selection strategy, which distorts the measurement likelihood and enforces the selection of

existing measurements. In the function of measurement selection (Alg.4 Line 34), a new

measurement branch is only created with probability (|C(ha)|+ 1)εz . Recall that |C(ha)|

is the number of child nodes, i.e. existing measurement branches, for the belief-action node

ha. Otherwise, an existing measurement is enforced. With εz < 0, a new measurement is

less likely to be generated as C(ha) grows.

A similar notion of measurement selection appears in another recent work, POM-

CPOW (Sunberg and Kochenderfer, 2018). As action selection, measurement selection

in POMCPOW favors measurement branches that promise high reward. This may result in

a biased estimation of the policy value. In other words, the estimated policy value obtained

by following the tree may not be a valid estimation of the actual value obtained by applying

the policy to the real system. The underlying reason is that, unlike actions, the robot has

no control over what measurement should be acquired in the future. Future measurement is

completely determined by the measurement likelihood. In principle, measurement should be

forward sampled to ensure that “measurement selection” exactly follows the measurement

likelihood. However, this leads to an overly shallow tree, the problem to be addressed in

the first place.

With the proposed method selection method, POMCP++ could circumvent the limi-

tation and produce unbiased policy value estimation. We postpone the theoretical analysis

of the proposed measurement selection method and the induced property of the overall

POMCP++ algorithm to Sec. 4.4.

4.3.2 Importance Sampling

Albeit the enforcement in selecting measurement branches, the selected measurement se-

quence may not be representative for a single sample from the initial belief. Instead, K
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samples are drawn from the initial belief (Alg. 4 Line 4). All of the K samples are pushed

downstream the tree, traversing the same set of nodes. Simply averaging the simulation

results leads to inaccurate policy evaluation, since each initial state sample has different

likelihood of generating the measurement sequence in the traversed path.

The theory of importance sampling comes to the rescue. Assume the selected action

and measurement sequence following the belief node ht is at, zt,at+1, zt+1, . . . . Then the

current policy value at the belief action node htat is,

EXt{R(Xt, At, Zt)} =

∫
Xt

R(Xt, At, Zt)p(Xt|At, Zt)dXt, (4.4)

where Xt := xt:∞, At := at:∞, Zt := zt:∞ for simplicity. R(·) computes the discounted

summation of reward of a simulation episode. Applying Bayes rule,

p(Xt|At, Zt) =
p(Zt|Xt, At)p(Xt|At)

p(Zt|At)
. (4.5)

In the spirit of importance sampling, p(Xt|At) is the proposal distribution, while p(Xt|At, Zt)

is the target distribution. p(Xt|At), the proposal distribution, is approximated by for-

ward sampling. The measurement likelihood p(Zt|Xt, At) serves as the importance weight.

p(Zt|At), as the normalization factor, is constant for all state sequences. Therefore, the

current policy value at node htat can be approximated with,

1

η

K−1∑
i=0

p
(
Zt|Xi

t , At
)
·R(Xi

t , At, Zt), (4.6)

with η =
∑

i p
(
Zt|Xi

t , At
)

(Alg. 4 Line 62- 66).

4.3.3 The Rollout Policy

It is often desirable to apply domain knowledge in designing the rollout policy. However,

since such rollout policies are usually state-dependent, direct application of them in the

framework of POMCP can lead to over-optimism. More specifically, in POMCP or POM-
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CPOW, a single state sample, x0, is simulated from the root to a leaf node to obtain xt,

which is then fed to the rollout policy to find an action sequence, art:T . T is implicitly deter-

mined by the length of the rollout action sequence. In the case that a feasible rollout policy

cannot be found, T can be set large enough so that γT � 1 and the reward-to-go beyond

T can be ignored. The reward-to-go of the rollout policy is estimated with R(xt:T ,a
r
t:T ),

whose actual value is,

E
p(xt:T |art:T )

{R(xt:T ,a
r
t:T )}

=

∫
xt:T

R(xt:T ,a
r
t:T )p(xt:T |art:T )dxt:T .

(4.7)

Note that xt may be from belief with high uncertainty at the leaf node. Since art:T is found

using xt in the first place, the rollout action sequence is expected to obtain high reward-to-

go starting from xt. However, art:T may not perform well with states that are significantly

different from xt. Therefore, E
p(xt:T |art:T )

{R(xt:T ,a
r
t:T )} may be much less than R(xt:T ,a

r
t:T ).

If R(xt:T ,a
r
t:T ) is then back propagated to the parent nodes, the high reward-to-go may

mislead action selection in later steps to favor this branch albeit the high uncertainty at the

leaf node. In other words, the implicit assumption of perfect state information of xt should

be accused for the over-optimism.

Because of the measurement selection and importance sampling introduced previously,

in the proposed POMCP++ algorithm, one has K state samples when reaching a leaf node.

One of the K samples, xt, can be chosen and used to find the rollout action sequence art:T .

The estimated reward for the rollout policy is then
∑K−1

i=0 R
(
xit:T ,a

r
t:T

)
(Alg. 4 Line 9).

Removal of the implicit perfect state information assumption at the leaf nodes helps

address the active information acquisition problem which often shows up in robotic appli-

cations. Active information acquisition requires the robot to actively collect informative

measurements to reduce uncertainty and, therefore, complete the task with high confi-

dence. In POMCP++, since the action sequence art:T is constructed with xt, the rollout

policy only attains high reward-to-go when all samples are close to xt. Such mechanism

implicitly motivates the robot to reduce uncertainty whenever necessary.
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Algorithm 4: POMCP++

1 Fn a = search(b0)

2 h = NULL
3 while not termination() do
4 S ← draw K samples w.r.t b0

5 simulate(S, h, 0)

6 end
7 return arg max

a
V (ha)

8 end

9 Fn r = rollout(S, d)
10 if γd < ε then return 0
11 sample x ∼ S w.r.t w
12 {ar} ← rolloutPolicy(x)
13 r ← 0
14 foreach xi, ri ∈ S, r do
15 foreach ar,j ∈ {ar} do
16 if γj+d < ε then break
17 xi, r ← process(xi, ar,j)
18 ri ← ri + γj · r
19 end
20 if xi is not at the target location

then
// r̄ is the average stage reward.

21 ri ← ri + γlen(ad) · r̄
22 end

23 end
24 return r

25 end

26 Fn a = selAction(h)
27 if rand() > εa then
28 a ← arg max

a
V (ha)

29 else
30 uniformly choose a ∈ A
31 end
32 return a

33 end

34 Fn z = selMeasurement(ha, S)
35 if rand() <

(
|C(ha)|+ 1

)εz then
36 sample x ∼ S w.r.t w
37 z ← sampleMeasurement(x)

38 else
39 uniformly choose z from C(ha)
40 end
41 return z

42 end

43 Fn r,w = simulate(S, h, d)
44 if γd < ε then return 0,1
45 if h is NULL then
46 foreach a ∈ Am do
47 ha ← (Ninit, Vinit)
48 end
49 r = rollout(S, d)
50 return r,1

51 end
52 a ← selAction(h)
53 S, rs ← process(S, a)
54 z ← selMeasurement(ha, S)
55 ws ← likelihood(S, z)
56 w ← {wi} s.t. (xi, wi) ∈ S
57 foreach wi, ws,i ∈ w,ws do
58 wi ← wi · ws,i
59 end
60 rt,wt ← simulate(S, haz, d+ 1)
61 r = rs + γ · rt
62 foreach wi, ws,i, wt,i ∈ w,ws,wt do
63 wi ← ws,i · wt,i
64 end
65 w ← w/‖w‖2
66 r ← w>r
67 N(ha) ← N(ha) + 1

68 V (ha)← V (ha) + r−V (ha)
N(ha)

69 return r, w

70 end
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Figure 4.1: (a) shows a starting tree configuration with two possible actions, a0 and a1,
rooted at h. “©” and “•” denote the belief and belief action nodes respectively. (b) assumes
K samples are drawn from the initial belief and a1 is selected. The flow of the samples
are marked by “→”. After forward simulating the motion model, different cases happen
depending on whether (c) a new measurement branch should be created or (d) an existing
measurement branch should be followed. In the case of creating a new measurement branch
as in (c), rollout policy is followed afterwards, denoted as “· · · ”. (e) shows the creation of
the new leaf nodes. The simulation results are back propagated to the belief action node,
shown as “→”. The difference in (d) and (f) is that action and measurement selection
procedure are repeated until a leaf node is encountered. The simulation results are, again,
backpropagated to all traversed belief action nodes.
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4.4 Theoretical Analysis of POMCP++

In this section, we analyze the theoretical properties of the proposed POMCP++ algorithm.

For brevity, we only list the conclusions here, while intermediate results and proofs are

provided in Appendix A.

First, we attempt to understand the properties of the measurement selection method

introduced in Sec. 4.3.1. We would like to study, under the measurement selection method,

how often a node in the tree is visited and how many child nodes a belief action node would

spawn. The answer to the above questions are summarized by the following two theorems.

Theorem 4.1. If the root node is visited i.o., i.e. N → ∞, 0 < εa < 1, and εz < 0, all

nodes will be visited i.o..

Theorem 4.2. If a belief action node h is visited i.o., it spawns child nodes i.o. given

−1 ≤ εz < 0.

Next, we would like to show that POMCP++ is a valid MCTS algorithm, which is,

at its base, an asynchronous value iteration algorithm interleaving policy evaluation and

policy improvement. Since POMCP++ already shares the algorithm structure with MCTS,

the validity of POMCP++ depends on whether the value computed from the simulation

episodes serves as unbiased estimates of value at the corresponding belief-action nodes. It

seems straightforward, at first glance, that estimation from simulation episodes is unbiased.

However, one should be careful in drawing the conclusion since the measurements in simu-

lation episodes are not always obtained by forward simulating the measurement model, but

are enforced to be repeated most of the time.

The key in filling the gap comes from Theorem 4.1 and Theorem 4.2. Combining the

two theorems, it is implied that a belief node in the tree will spawn infinitely many different

measurement branches with a properly chosen εz. As a result, selecting an existing child

measurement branch of a belief-action node following the measurement selection method
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would accurately approximate the process of sampling a measurement from the underlying

measurement likelihood. In other words, the measurement branches/samples of a belief-

action node provide an accurate approximation of the corresponding measurement distri-

bution over the continuous measurement space. Therefore, we have the following theorem

under the condition of sufficient simulation episodes, N , and samples, K, in approximating

the belief.

Theorem 4.3. The discounted summation of rewards of the simulation episode is an un-

biased estimate of the value at all traversed nodes as N →∞ and K →∞.

Finally, we would like to provide a few remarks on the convergence of POMCP++.

Combining unbiased policy evaluation (Theorem 4.3) and valid policy improvement (ε-

greedy at Line 26 in Alg. 4), POMCP++ is a valid MCTS method. However, to the best

of our knowledge, there is no formal proof yet that MCTS would converge to the optimal

action at the root when applied to stochastic systems. Kocsis and Szepesvári (2006) presents

conclusions on the convergence of UCT. Unfortunately, the details of the proof are not

available. On a related note, it is also commented by Sutton and Barto (2018) and quoted

“Convergence to this optimal fixed point seems inevitable as the changes to the action-value

function decrease over time, but has not yet been formally proved. In our opinion, this

is one of the most fundamental open theoretical questions in reinforcement learning (for a

partial solution, see Tsitsiklis (2003)).”2

2The comment of Sutton and Barto (2018) is on the convergence of Monte Carlo Control, a more general
algorithm that MCTS is based on.
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Chapter 5

Stochastic Motion Planning with

System (Internal) Uncertainty

Ch. 3 and 4 introduce different stochastic motion planning solutions with an abstract prob-

lem formulation. In this chapter, we apply both methods in a concrete application where

the dominant uncertainty comes from the robot itself. More specifically, we consider the

application of navigating a car-like robot with range sensors in a known environment.

Navigating a mobile robot within a known environment may be considered as a well-

studied and solved problem in the robotics community (Thrun et al., 2005; LaValle, 2006;

Choset et al., 2005). Besides the advancement of estimation, planning, and control algo-

rithms, much of the simplicity of the problem also benefits from the improvement of sensors,

such as high-frequency and accurate IMUs, dense and long-range Lidars, and high-resolution

and low-cost cameras. State estimation algorithms could often produce close-to-ground-

truth estimates with just passively collected data1. As a result, it may be reasonable to

assume perfect state knowledge and leverage the separation theorem in similar applications.

However, when the sensor has a relatively small footprint compared to the deployed

environment, the assumption of perfect state knowledge fails. Meanwhile, given the nonlin-

1By “passively collected data”, we refer to the sensor measurements collected by the robot without
intentionally caring about the actual content of the data.
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ear nature of the considered application, the separation theorem no longer applies. Naively

applying the practical solutions in this case would no longer produce expected outcome.

Instead, the robot has to make decisions respecting uncertainties from different sources in

order to complete the task with a high probability while maintaining safety. By demon-

strating the superior performance of the proposed algorithms in such a familiar application,

we hope more researchers could be convinced with the importance of stochastic motion

planning.

Contributions

In this chapter, we formulate the mobile robot navigation problem as required in Ch. 3

and 4 respectively, and apply the proposed methods in the previous two chapters to plan

motions for the robot.

The proposed methods are tested through extensive simulations. Meanwhile, We com-

pare the performance of the proposed methods with other methods that could also work

with the same problem formulations, including practical solutions assuming the separation

theorem, belief space planning methods assuming maximum likelihood measurements, and

other general POMDP solutions. The performance of the methods are compared not only in

terms of the objective functions, but also other metrics that are often of concern in robotics

applications, such as failure rates due to different causes, traveled distance, total number

of steps, final entropy of belief, etc. We show that the proposed stochastic motion planning

algorithms excel in terms of the considered metrics. Meanwhile, we demonstrate the active

localization behavior of the robot controlled with the proposed methods, even though the

behavior is never explicitly encoded into the objective functions.

The rest of the chapter is organized as follows. We first apply the improved version of

iLQG proposed in Ch. 3 to the application. In Sec. 5.1, we formulate the navigation problem

as required by Sec. 3.1. Following which, we present the simulation setup and report the

performance of improved iLQG together with other methods considered in comparisons.
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A similar organization is employed in Sec. 5.2, where we apply POMCP++, proposed in

Ch. 4, in the same application. The reported experimental results in this chapter are also

published in Sun and Kumar (2021) and Sun et al. (2021).

5.1 Motion Planning with iLQG

In this section, we try to plan motions for the mobile robot using the improved iLQG

algorithm introduced in Ch. 3.

We start by formulating the models for the system and the task in the form of (3.1).

Then, we test the performance the algorithm in simulated environments. First, with the

considered application, we show the effectiveness of the proposed modifications of iLQG,

namely UKF belief dynamics and informative measurement densification, introduced in

Sec. 3.3 and 3.4 respectively. Second, we apply the proposed algorithm in simulations of

large scale real world environments. By comparing to state-of-the-art solutions that either

assume the separation theorem or the maximum likelihood measurements, we show the

proposed algorithm could achieve superior performance.

5.1.1 System and Task Models

We assume the mobile robot is controlled with velocity command. The discrete-time dy-

namics is,

ξ =


1 0

0 0

0 1

 (ut +mt), mt ∼ N

0,

σv 0

0 σω


,

xt+1 = f(xt,ut,mt) = xt ◦ exp(ξ · τ).

(5.1)

In (5.1), x ∈ SE(2) is the state of the mobile robot. u = (v, ω)> ∈ R2 is the control

input, consisting of linear velocity, v, and angular velocity, ω. m is the i.i.d. motion noise

of a Gaussian distribution. ξ is the 2-D twist. τ is the duration of each discrete time

step. Within each discrete time step, the control input and motion noise are assumed to
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be constant. Finally, ◦ and exp(·) denote the composition and exponential operations on

SE(2). For brevity, we omit ·̂ or ·̌ operations that convert elements in Lie algebra between

matrix and vector representations.

The range sensor on the robot is modeled as follows,

nt =
(
n1
t , n

2
t , . . . , n

m
t

)> ∼ N (0, σn · I),

zit = r(xt,o, θ
i) +N

(
r(xt,o, θ

i)
)
nit, i = 1, . . . ,m,

N(r) =


1 if r < rm,

∞ otherwise,

zt = h(xt,nt) =
(
z1
t , z

2
t , . . . , z

m
t

)>.

(5.2)

In (5.2), z ∈ Rm consists of range measurements from m beams. n is the i.i.d Gaussian

measurement noise. o is the known map in the form of an occupancy grid. r(x,o, θ)

models the ray casting process of a beam oriented at θ in the frame x. The noise of a

range measurement is scaled by N(r), depending on whether the beam hits an obstacle or

not. As in (3.20), the noise has standard deviation σn if the predicted range r is within the

maximum sensing range rm. Otherwise, the noise standard deviation is infinite, indicating

that measurements that beyond sensing range are not effective in update the belief2.

To model the motion planning task, the cost functions used in this work include three

kinds of objectives, namely reaching the goal, minimizing control effort, and avoiding colli-

2The measurement model in (5.2) does not exactly match the behavior of a range sensor in practice
when r ≥ rm. In the cases that r ≥ rm, range measurements of real sensors often saturate at rm. For the
considered application, the measurement model is only used to construct belief dynamics. Scaling the noise
with infinity simply means that measurements with r ≥ rm have no effect in belief update. In practice, the
same assumption is often applied in range sensor based estimation algorithms (Pomerleau et al., 2013).
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sions. More specifically, the stage cost is in the form of,

ct(bt,ut) = log>(b−1
t ◦ bg) ·Qb

t · log(b−1
t ◦ bg)

+ u>t Rtut

− qc · log

(
Γ−1(1) · γ

(
1,
σ2(bt,o)

2

))
+ qd · d−1(bt,o).

(5.3)

In (5.3), the first two terms are quadratic costs trying to reduce the distance to the goal

belief state, and the control magnitude. We approximate the belief space B with SE(2)×R6,

with SE(2) and R6 for mean and uncertainty respectively. Compared to approximating B

with R9, which combines mean and uncertainty into a single vector space, SE(2) × R6

respects the kinematic constraints of the state space, therefore, can more accurately reflect

the difference between belief states.

To avoid collisions, we use the method proposed by van den Berg et al. (2012b) to

approximate the collision probability. The function σ(b,o) is defined as minc

∥∥t̂− c∥∥
Σ

,

the minimum normalized distance (normalized with the uncertainty Σ) between the posi-

tion estimate t̂ and occupied cells c in o. With σ(b,o), the regularized gamma function,

Γ−1(1)γ(·), provides a lower bound for the probability of not colliding with obstacles. The

optimization increases the clearance probability by minimizing the negative logarithm of

the regularized gamma function.

In practice, we find the collision probability cost may degenerate when the uncertainty,

Σ, is small. For the extreme case when Σ = 0, the collision probability cost is zero regardless

of the robot position. To resolve this issue, we introduce an additional cost, d−1(b,o), de-

pending on the absolute Euclidean distance between the position estimate and the occupied

cells. d(b,o) is defined as minc ‖t̂− c‖2.

The terminal cost cN is defined in a similar way as ct, The minor differences between
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(a) initial guess (b) N-iLQG (c) E-iLQG (d) U-iLQG

Figure 5.1: Belief nominal trajectories of (a) the initial guess, (b) N-iLQG, (c) E-iLQG,
and (d) U-iLQG on a boundary map (100× 100). In each figure, the frames at the bottom
left and upper right mark the start and goal locations. The light blue lines represent five
range sensor beams at the maximum range (2m). The dark blue arrows and purple ellipses
mark the expected poses and one-standard-deviation position uncertainty.

cN and ct include the change of parameter, such as Qb, and the removal of control effort

cost.

5.1.2 Experiments

For all simulations, the resolution of the occupancy grid map, i.e. cell size, is assumed to

be 0.1m. In the motion model, (5.1), the time interval is set to τ = 0.1s, motion noise is set

to σv = 0.5m/s, σω = 0.05rad/s. We assume the application of a low-cost range sensor with

small footprint. The range sensor has five beams oriented at {−π/2,−π/4, 0, π/4, π/2rad}

with maximum range rm = 2m. The measurement noise in (5.2) is set to σz = 0.5m.

Sigmoid function parameters ξm and νm, in Alg. 2, are both fixed at 1000 for all simulations,

while ξ0, ν0, λξ, and λν are reported for individual test cases. The initial trajectories are

created with stable sparse RRT (Li et al., 2016) implemented in the Open Motion Planning

Library (OMPL) (Şucan et al., 2012). The algorithms are timed on a laptop scale computer

with Intel i7-6670HQ CPU (4 cores at 2.6GHz) and 32GB RAM.

An Ablation Study

We perform an ablation study to demonstrate the effectiveness of the proposed improve-

ments to iLQG in Ch. 3. In the first variant, we naively apply iLQG on the measurement
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Table 5.1: Comparing N-iLQG, E-iLQG, and U-iLQG on the boundary map1

method ξ0/ν0 λξ/λν E(c) CR2 iter.3 time (s)

N-iLQG 1e3/1e34 − 2229.89 0.00 2005 14.71

E-iLQG 10.0/5.0 2.0/2.0 872.94 0.02 112 9.13

U-iLQG

10.0/5.0

1.2/1.2 853.04 0.02 227 47.90

2.0/2.0 850.78 0.01 91 16.79

4.0/4.0 861.97 0.02 82 13.61

5.0/2.5
2.0/2.0

1581.43 0.00 143 21.87

20.0/10.0 1802.00 0.00 157 22.05

1 The cost and collision rate are evaluated over 100 Monte Carlo simulations.
2 CR refers to collision rate.
3 The total number of iLQG iterations summed over all outer loops if any. The inner

loops of iLQG that adjust the damping factor of the Levenberg–Marquardt algorithm
are not counted.

4 For N-iLQG, we directly set ξ0 = ξm = 1e3 and ν0 = νm = 1e3.
5 For each iLQG optimization, the number of iterations is capped at 200, which is other-

wise terminated based on either absolute or relative cost reduction.

model, (5.2), without using the sigmoid function approximation. In the second variant, we

use an EKF to approximate the belief dynamics, where numerical differentiation is applied

to approximate the measurement Jacobians. For sanity, we refer to the two variants as

N-iLQG and E-iLQG. The proposed method with both modifications is named as U-iLQG.

As show in Figure 5.1, N-iLQG is not able to utilize the boundaries for localization

without the sigmoid function approximation. In contrast, both E-iLQG and U-iLQG are

able to utilize the top right corner to reduce the localization uncertainty, even though the

structure is not within the measurement range of the initial trajectory. Comparing E-

iLQG and U-iLQG, the nominal trajectories in the optimized feedback control policies are

similar. However, the lower cost of U-iLQG, shown in Table 5.1 (comparing the entries with

ξ0 = 10.0, ν0 = 5.0, and λξ = λν = 2.0), confirms that UKFs could more accurately model

the belief dynamics.

Meanwhile, we study the effect of the parameters in the sigmoid function on U-iLQG.
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(a) M-iLQG (b) U-iLQG

Figure 5.2: Mean of simulated belief trajectories using policies optimized with (a) M-iLQG
and (b) U-iLQG on “intel”. Note the marked region in (a). The robot just enters the
corridor with relatively large uncertainty. The measurements collected at the doorway
induce large innovation, which leads to instability of the policy optimized with M-iLQG.
The same problem does not appear with U-iLQG.

In the simulations, a reasonable combination of the parameters, ξ0 = 10.0, ν0 = 5.0,

λξ = λν = 2.0, is determined through trial and error. By changing the parameters in

the neighborhood, it could be observed in Table 5.1 that the optimized cost is more sensi-

tive to the initial values, ξ0 and ν0, compared to the scaling factors, λξ and λν . As general

nonlinear optimization problems (Nocedal and Wright, 2006), systematically determining

and scheduling the parameters λξ and λν are hard, but remain as a promising future research

direction.

Real World Environments

We also apply the proposed method to large scale maps of real world environments con-

structed with 2-D Lidar (Cyrill, 2020). The two maps, named “fr101” (1279 × 620) and

“intel” (579× 581), are representative for environments of different clutteredness. In order

to be used in this work, the probabilistic cells in the map are classified as free, occupied,

or unknown through thresholding. The unknown cells are treated as occupied for collision

detection in the motion model, while treated as free for ray casting in the measurement
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(a) initial guess (b) iLQR

(c) M-iLQG (d) U-iLQG

(e) initial guess (f) iLQR (g) M-iLQG (h) U-iLQG

Figure 5.3: Belief nominal trajectories of (a, e) the initial guess, (b, f) iLQG, (c, g) M-
iLQG, and (d, h) U-iLQG in real world environments (a-d) “fr101” (1279× 620) and (e-h)
“intel” (579 × 581). In each figure, the frames on the left and right mark the start and
goal location. The dark blue arrows and purple ellipses mark the expected poses and three-
standard-deviation position uncertainty.
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Table 5.2: Comparing iLQR, M-iLQG, and U-iLQG on map “fr101” and “intel”1, 2

map method ξ0/ν0 E(c) CR iter. time (s)

fr101

iLQR − 1.90e4 0.00 15 58.94

M-iLQG 50.0/25.0 9.17e3 0.00 34 654.56

U-iLQG 50.0/25.0 3.26e3 0.00 26 703.41

intel

iLQR − 2.15e3 0.06 11 45.72

M-iLQG 250.0/125.0 1.92e3 0.22 25 369.03

U-iLQG 250.0/125.0 1.79e3 0.00 22 631.78

1 See Table 5.1 for related notes.
2 For M-iLQG and U-iLQG, all simulations use λξ = λν = 2.0.

model.

The performance of the proposed method is compared with the existing state-of-the-art

methods. In practice, the separation theorem is often extended to nonlinear systems to solve

stochastic motion planning problems. In this case, iLQR (Li and Todorov, 2004) is directly

applied to the motion model in (5.1). At the online phase, a UKF is used to estimate

belief, the mean of which is fed back to the iLQR policy to generate control inputs. In the

following, we refer to this method as iLQR. We also compare the proposed method with

methods that assume maximum likelihood measurements. The assumption is equivalent to

assuming wt+1 = 0 in (3.18). We refer to this method as M-iLQG in the following. Note

that the modifications in Sec. 3.3 and 3.4 are also applied to M-iLQG in the comparison.

As shown in Figure 5.3a-d, the feedback policy of U-iLQG is able to actively localize the

robot by moving along the wall in an open environment. Therefore, as shown in Table 5.2,

the cost of U-iLQG is significantly lower compared with the other two methods. In a

more cluttered environment, Figure 5.3e-h, active localization is no longer necessary. The

nominal trajectories are similar for all methods. However, Table 5.2 shows the collision rate

of iLQR and M-iLQG are higher compared to U-iLQG. The high collision rate has different

causes for iLQR and M-iLQG. In iLQR, the nominal trajectory is over close to the wall
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since the state estimation uncertainty is ignored. For M-iLQG, the feedback policy is less

robust to innovation noise as a result of assuming deterministic belief dynamics. Especially,

when ∂bt+1/∂wt+1 is large, the nonzero innovation may result in a large update in belief

which deviates significantly from the nominal trajectory, and possibly leads to collisions in

M-iLQG. Figure 5.2 illustrates the issue of M-iLQG with simulated belief trajectories.

5.2 Motion Planning with POMCP++

In this section, we apply the POMCP++ algorithm introduced in Ch. 4 to the same appli-

cation of mobile robot navigation.

As shown in Sec. 4.1, POMCP++, as a general POMDP solver, allows a more general

problem formulation. Therefore, noise characteristics of the system can be better captured

in both motion and measurement models. Meanwhile, there is more flexibility in modeling

the task where we could avoid juggling the weights for different cost terms as in (5.3).

In the experiments, we first compare POMCP++ with other state-of-the-art methods

in relatively simple simulated environments, where the optimal policy can be anticipated.

The performance of different methods are compared in terms of the summation of discounted

reward. The discounted reward is the objective to be maximized, and is widely used as a

metric to quantify the performance of general POMDP solvers in the literature. Second,

we evaluate the methods in a more realistic hallway environment. The performance of the

methods are compared in terms of metrics that are of more interest to robotics community,

such as the rate of collisions, total number of actions, the entropy of the final distribution,

etc. Finally, we demonstrate the usage of POMCP++ by transitioning the simulation in

the hallway environment to hardware experiments.
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5.2.1 System and Task Models

The discrete-time dynamics of the robot is modeled as (Thrun et al., 2005).


xt+1

yt+1

θt+1

 =


xt

yt

θt

+


vtτt · sinc

(
ωtτt

2

)
cos(θt + ωtτt

2 )

vtτt · sinc
(
ωtτt

2

)
sin(θt + ωtτt

2 )

ωtτt

 , (5.4)

where x = (x, y, θ)> ∈ SE(2) is the state of the robot representing the position and orien-

tation. a = (v, ω)> ∈ A ⊂ R2 represents the velocity command consisting of linear velocity,

v, and angular velocity, ω. In this work, we restrict the allowable controls to a finite subset

A ⊆ R2, i.e. motion primitives, of the control space in order to reduce the complexity of

the problem.

To model the uncertainty of system dynamics, the input command a is distinguished

from the executed command ã = (ṽ, ω̃),

ṽ = v + nv,

ω̃ = ω + nω + nγ ,

nv ∼ N (0, αv(v)2 + βv(ω)2),

nω ∼ N (0, αω(v)2 + βω(ω)2),

nγ ∼ N (0, αγ(v)2 + βγ(ω)2).

(5.5)

where α{α,ω,γ} and β{α,ω,γ} are empirical parameters controlling the scale of the motion

noise.

Measurements, z ∈ Rm, are ranges of the beams produced by a 2-D Lidar. Assuming

the range of each beam, zi i = 0, 1, . . . ,m − 1 is independent, the measurement likelihood

of z is the product of the p.d.f. of zi’s, i.e.

p(z|x,o) =
∏
i

p(zi|x,o), (5.6)
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where o is a known occupancy grid map. Therefore, it is sufficient to model a single beam.

In this work, we use the beam model (Thrun et al., 2005),

p(z|x,o) =



zh

zs

zm

zr



>

·



ph(z|x,o)

ps(z|x,o)

pm(z|x,o)

pr(z|x,o)


(5.7)

where,

ph(z|x,o) =


ηh · N (r, σ2

h), if 0 ≤ z ≤ rm,

0, otherwise,

ps(z|x,o) =


ηs · λs exp(−λsz), if 0 ≤ z ≤ r,

0, otherwise,

pm(z|x,o) = δ(z − rm),

pr(z|x,o) =


1
rm
, if 0 ≤ z ≤ rm,

0, otherwise,

(5.8)

are four different types of measurement errors due to Gaussian noise, unexpected objects,

sensor failure and unexplainable noise respectively. The probability of each noise mode

is captured by (zh, zs, zm, zr) with zh + zs + zm + zr = 1. In Eq. (5.8), r is the nominal

range measurement predicted with ray-casting, while rm represents the maximum range of

the sensor. For ph and ps, σh is the standard deviation for the normal distribution, λs is

the rate of the exponential distribution, and η{h,s} are the normalization factors. For pm,

δ(·) : R 7→ {0,∞} is the Dirac delta function.

For the task, we define a stage reward function in the objective function, (4.2), as
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follows:

r(xt,at,xt+1) =



−5 if o(xt+1) = 1,

−5 if at = 0 and d(xt+1,xg) > εg,

0 if at = 0 and d(xt+1,xg) ≤ εg,

−1 otherwise,

d(xt+1,xg) =
√
‖xt+1 − xg‖2 + ‖yt+1 − yg‖2,

(5.9)

where xg is the target state. Cost is induced if the robot keeps moving, which encourages

fewer actions. Colliding with obstacles, or stopping outside the target location, will intro-

duce additional cost. The accumulation of cost only stops if the robot determines to stop

within the target region, which is defined by εg. Note the orientation of the xg is ignored

in determining task completion.

5.2.2 Experiments

In the simulations, we compare the performance of POMCP++ with RHC, DESPOT (Ye

et al., 2017), and POMCPOW (Sunberg and Kochenderfer, 2018). In practice, the idea

of certainty equivalence control and separation principle is often extended and applied in

the RHC framework to solve the stochastic motion planning problem. In the following,

methods of this kind is called RHC for short. Particularly, to solve the proposed problem,

one state sample is drawn from the belief at each step, which is regarded as the true state.

A*, with inflated heuristics (Likhachev et al., 2004), is then used to find the next action

assuming a deterministic motion model. DESPOT (Ye et al., 2017) is the state-of-the-art

online POMDP solver designed for discrete systems. The simulation results of DESPOT

serve as the benchmark for naively applying discrete POMDP solvers to continuous sys-

tems. POMCPOW (Sunberg and Kochenderfer, 2018), also an extension of POMCP, is

the most similar to our work. Comparison with POMCPOW shows the importance of the

improvements in POMCP++.

There are minor modifications to POMCPOW and DESPOT to adapt to the proposed
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Table 5.3: Hyper-parameters for different methods

DESPOT

tree depth = {10,50, 100}

scenario # = {30, 100,500, 1000}

per-step planning time = {30}

POMCPOW

εa = {0.05, 0.1, 0.2,0.3}

α = {0.1, 0.5,1, 2}

κ = {0.1, 0.5, 1, 5}

N = {1000,3000, 5000}

POMCP++

εa = {0.05,0.1, 0.2, 0.3}

εz = {−1,−3,−5,−7}

K = {16, 32,64}

N = {3000}

problem. POMCPOW is designed to handle continuous control space in addition to contin-

uous state and measurement spaces. The action space in the problem setup of this work is

discrete and finite, consisting of motion primitives. Therefore, we apply the same ε-greedy

action selection strategy (Alg 4 Line 26) in the POMCPOW framework. For all DESPOT,

POMCPOW and POMCP++, we use Anytime A* (Likhachev et al., 2004), with the infla-

tion factor set to infinity, to generate the action sequence as the rollout policy. Although

the action sequence could be sub-optimal, it is efficient in finding a feasible solution.

Simulated Environments

In the simulated environments, the cell size of the used occupancy grid maps is set to

0.1m. The action space consists of six different motion primitives, Am = {0, 0.2m/s} ×

{−π
2 0, π2 rad/s}×{0.5s}. The robot models a differential drive ground vehicle with forward

motion only. The range sensor installed on the robot has seven beams covering 2π uniformly.

Each beam has a maximum range of zmax = 0.3m. εg in (5.9), the radius of the goal region,

is 0.05m.3 γ, the discount factor, is set to 0.99.

3The setup is merely for the ease to convert quantities to metric length units. All related quantities can
be scaled proportionally.
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(a) (b) RHC (c) DESPOT (d) POMCPOW (e) POMCP++

(f) (g) RHC (h) DESPOT (i) POMCPOW (j) POMCP++

(k) (l)

Figure 5.4: (a) and (f) show the initial configurations for the experiments in fixed simulated
environements. Occupied cells in the maps are marked with black squares. The green
circular region is the target location. The gray circle is the initial state of the robot. The
orange circles with the arrows in (f) are the two modes in the initial belief. (b), (c), (d), and
(e) are the paths executed with RHC, DESPOT, POMCPOW, and POMCP++ in setup
(a) over the 100 experiments. Blue lines are the paths for the successful trials, while red
lines are the failed ones. The paths executed by the methods in setup (f) are shown in
(g), (h), (i), and (j). (k) and (l) are the success rate and average discounted reward with
standard deviation obtained through the 100 experiments for setup (a) and (f) respectively.
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(a) (b)

Figure 5.5: For each method and map configuration, the performance of the method is
measured with 100 experiments on randomly generated maps. (a) The success rate of
different methods. Recall (5.9), a trial is successful when the robot actively chooses to stop
around the target location. (b) The average summation of discounted reward with standard
deviation. For failure trials, it is assumed that the robot will take feasible actions (with
reward -1 per step) onward but never reach the target location.

We first show both qualitative and quantitative results of the methods on two fixed

representative maps. In the first setup, Figure 5.4a, we use a 20×20 map with no obstacles.

The initial state is known to the robot. In order to reach the target location with high

confidence, it is expected that the robot will take advantage of the map boundaries for

localization. The second setup, Figure 5.4f, is a 10×10 map, designed to be more challenging

in that the initial distribution is ambiguous, consisting of two modes located at the bottom

corners. The obstacles in this setup are also set in a way such that the robot is not able to

remove the state ambiguity passively, but has to actively approach the obstacles. We run

each method 100 times on the two setups to obtain the average performance.

Figure 5.4k and 5.4l show the success rate and the average discounted reward of dif-

ferent methods. More insightful observations can be obtained by plotting the paths as

shown in Figure 5.4. In the first setup, the proposed POMCP++ is able to reliably utilize

the right upper corner to reduce the uncertainty accumulated during the movement, and

then come back to the target location. This capability explains the high success rate of
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POMCP++. For the second setup, an immediate observation is that all methods try to go

along the bottom and right side of the map. This is due to the best-first-search nature of

the algorithms. Going along the bottom edge is the fastest way to move one of the belief

modes to the target location. Occasionally, the planning algorithms may wrongly choose to

stop at this moment. More often, exploring the policies helps the algorithms realize that

moving along the right side can further reduce the uncertainty and eventually leave a single

belief mode stopping at the target. A more interesting observation is that the proposed

POMCP++ is able to find another cluster of paths by moving the robot diagonally across

the map. The paths in this cluster are able to remove the ambiguity in the belief within

the first few steps by utilizing the obstacles on the left. Although such paths deviate from

the “promising” path (going right, then up) of the short horizon, they obtain higher overall

reward.

In addition, we evaluate the average performance of the methods using random maps

with different configurations. Four map configurations are included by permuting differ-

ent map size, {20× 20, 30× 30}, and obstacle density, {0.01, 0.05}. 100 experiments are

performed for each method and map configuration. In each experiment, a random map is

generated as per the map configuration. For all experiments, the robot starts with a known

initial state.

Figure 5.5 shows the success rate and summation of discounted reward for different

methods. POMCP++ is able to achieve much higher success rate and reward, consistently

outperforming the other three methods. It should be also noted that RHC performs reason-

ably well in this experiment, better than POMDP methods, DESPOT and POMCPOW,

on some map configurations.

A Hallway Environment

In this section, we compare the performance of POMCP++ with RHC and POMCPOW

in a real world hallway environment. The dimension of the map is 153 × 277, with 0.1m
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(a) (b)

Figure 5.6: (a) shows an initial configuration with the initial belief consisting of a single
mode. The green circle marks the goal region. The initial belief is represented with red
particles. blue lines represents the sparse beams of a range sensor with small footprint. The
initial configuration in (b) is more challenging with two modes in the initial belief. The
second scenario requires the robot to move out of the corridors in order to collapse the belief
into a single mode distribution.

resolution. To adapt to the enlarged map and narrow corridors, the motion primitives are

changed to A = {0, 0.5m/s}×{−π
6 0, π6 rad/s}×{1.0s}. The radius of the goal region, εg, is

enlarged to 0.5m. Seven Lidar beams are used as sensor measurements covering 3
2π, with

zmax = 1.5m. As in the experiments in simulated environments, γ is 0.99. The algorithms

are compared in two scenarios with different initial belief shown in Figure 5.6. The hyper-

parameters for POMCPOW and POMCP++ remain the same as in Table 5.3.

The comparison with DESPOT is omitted, since the robot fails to reach the goal for

all trials with DESPOT. Considering the enlarged environment, experiments for DESPOT

are also performed by increasing tree depth to 100 and per-step planning time to 120s.

However, there is still no successful trails for either of the initial belief setups. The failure

of DESPOT may be caused by using a single simulation episode to estimate the value at

a belief node. To elaborate, a naive application of DESPOT to systems with continuous

measurement causes the degeneracy of the belief tree. All nodes in the tree, other than

the root, are only visited once, i.e. when the node is constructed. Therefore, only one

simulation episode is available in estimating the value at the nodes, which may be far

from adequate in providing an accurate estimate. The inaccurate estimation at the nodes,
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eventually, leads to the wrong selection of optimal policy. In the experiments of small

simulated environments, simulation episodes are short. It takes around 10 steps to drive

the robot to the goal. Simulation episodes obtained with the same action sequence may not

differ much. Therefore, using only one simulation episode in estimating the value at the

nodes may be sufficient and leads to meaningful actions. However, the number of actions

required to reach the goal in the hallway experiments is over 60. The effect of degeneracy

for DESPOT becomes more apparent.

Table 5.4 summarizes the performance of RHC, POMCPOW, and POMCP++. For

each algorithm and initial belief setup, we run the experiment 50 times. The paths of all

trials are shown in Figure 5.9. It is expected that RHC takes fewer actions on average for

successful trials, whose planning is based on A*. However, the total traveled distance is

similar among the algorithms. This implies that, under POMDP solutions, the robot takes

more rotation actions utilizing the local environment to reduce state uncertainty. Figure 5.9

also shows that POMDP solutions are able to maintain the robot in the middle of a narrow

corridor, which reduces the chance of collision caused by state uncertainty and motion

stochasticity. Comparing POMCPOW and POMCP++, although the performance of the

success trails of the two algorithms is similar, POMCP++ is able to achieve higher success

rate, especially when the initial belief contains ambiguity. The improvement of POMCP++

is due to the two major modifications of POMCP, namely the new strategy of measurement

selection, and the removal of the implicit perfect state assumption at the start of the rollout

phase.

We also compare the anytime performance of POMCPOW and POMCP++ in the hall-

way environment with single mode initial belief setup. Table 5.5 and Figure 5.10 summarize

the performance of POMCPOW and POMCP++ under different per-step time constraints.

The simulations are conducted on a desktop computer using Intel Core i9-9920X CPU with

12 cores running at 3.5GHz. The maximum per-step planning time is set to 15s, where both

POMCPOW and POMCP++ are able to finish 3000 episodes (the default N in Table 5.3).
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(a) (b)

Figure 5.7: (a) shows the differential drive ground robot used in the hardware experiments.
Seven beams, spanning 3

2π with zmax = 1.5m, are used as sensor measurements. (b) is the
map of the hallway environment, built with gmapping (Grisetti et al., 2007). The dimension
of the occupancy grid map, 280 × 186 with 0.1m resolution, is slightly different from the
one used in the simulation.

It can be observed in Table 5.5 that POMCP++ is able to consistently outperform POM-

CPOW in terms of success rate. Table 5.5 and Figure 5.10 also indicate that albeit the

anytime feature, sufficient per-step planning time is required for both methods in order to

make reasonable decisions.

Hardware Demonstration

To further demonstrate the application of POMCP++, the same experiments in the simu-

lations are carried out with hardware. Figure 5.7 shows the setup of the ground robot and

the map of the hallway environment similar to the one used in the simulations.

Figure 5.8 shows paths and the change of belief with the two different initial belief

configurations4. It should be noted that the hardware experiment only serves as a demon-

stration that POMCP++ can be applied to actual hardware robots and realistic environ-

ments in addition to ideal models in the simulations. In terms of efficiency, POMCP++

4See pomcp++_single_mode_initial_belief.mp4 and pomcp++_two_mode_initial_belief.mp4 for sup-
plementary videos on the hardware demonstrations.
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Figure 5.8: Change of belief (red particles) of the robot position in the hardware experiments
using POMCP++. The first row is the belief snapshots for the single mode initial belief
setup, while the second row are the ones for the two mode initial belief setup. The orange
and green patches are the start and target locations. Blue lines are paths estimated with
an onboard Lidar odometry.

may not be sufficient for real-time planning purposes, especially with onboard computers.

Most of the planning time for each step is spent on constructing rollout policies and forward

simulating the system. Using the onboard processor i7-6600U, 2 cores running at 2.6GHz,

the planning time for an initial step can take as long as 2min, when the robot is far from the

goal. Improving the efficiency of the algorithm is a promising direction of future research.
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(a) RHC (one mode) (b) RHC (two modes)

(c) POMCPOW (one mode) (d) POMCPOW (two modes)

(e) POMCP++ (one mode) (f) POMCP++ (two modes)

Figure 5.9: (a), (c), and (e) show paths of RHC, POMCPOW, and POMCP++ with single
mode initial belief, while (b), (d), and (f) are for the two mode initial belief. The orange and
green patches are the start and target locations. Blue and red lines are paths of successful
and failure trials. More details of the setup for the two different scenarios can be found in
Figure 5.6.
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(a) POMCPOW (1s) (b) POMCP++ (1s)

(c) POMCPOW (5s) (d) POMCP++ (5s)

(e) POMCPOW (10s) (f) POMCP++ (10s)

(g) POMCPOW (15s) (h) POMCP++ (15s)

Figure 5.10: Paths executed by POMCPOW and POMCP++ under different one-step time
budgets with the single-model belief set-up. The orange and green patches are the start and
target locations. Blue and red lines are paths of successful and failure trials. More details
of the setup for the scenario can be found in Figure 5.6.
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Chapter 6

Stochastic Motion Planning with

Environmental (External)

Uncertainty

In Ch. 5, we consider the problem of navigating a car-like robot within a known environ-

ment. One feature of the problem is that, the uncertainty of the problem, either motion

or measurement noise, is intrinsic to the robot itself. In this chapter, we switch gears and

consider the application of autonomous driving. Besides the obvious change in terms of

the application context, another major difference is that the dominant uncertainty in au-

tonomous driving originates from the unknown agent driver behaviors. In other words, the

major source of uncertainty comes from external environment instead of the robot itself in

the application of autonomous driving.

Before considering motion planning, a major challenge is to model the stochastic traffic

dynamics. As reviewed in Sec. 2.3, thanks to the recently available traffic datasets, data-

driven approaches can now be applied to learn a traffic dynamical model, which could

potentially agree with real traffic scenarios better compared to handcrafted traffic models.

In learning the traffic dynamics, models with high prediction accuracy is certainly preferred.
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It is also important that the model could be applied with common planning algorithms (not

limited to the stochastic planning algorithms proposed in this dissertation).

In order to work with common planning frameworks, the learned traffic model should at

least share the structure of the motion model in Sec. 1.2, which has already posed minimal

assumptions. In terms of structure, the traffic model should be able to make predictions for

the next time step based on the current traffic state and immediate motion of the ego vehicle.

The former is also known as the Markovian property of a dynamical model. In terms of

state representation, the traffic state should consist of the states of all agents, both vehicles

and pedestrians, in a local neighborhood. Traffic is also inherently partially observable.

Hidden states of agents, often known as “intention”, are not directly observable. Modeling

the hidden states provides the opportunity to estimate them online and potentially reduce

the future prediction uncertainty.

In addition to the traffic dynamical model, we adopt relatively simple models for the

measurement and the task that agree with the problem formulation in Sec. 4.1. Given a

proper rollout policy, we could therefore apply POMCP++, introduced in Ch. 4, to plan

motions for the ego vehicle.

Contributions

In this work, we first propose a recurrent model (Sanchez-Gonzalez et al., 2018) based

on GNNs (Battaglia et al., 2018) to model the stochastic traffic dynamics. The proposed

traffic model shares the same structure with the motion model in Sec. 1.2, which enables

the model to be tightly integrated to common planning frameworks. In terms of learning,

the additional model structure and explicit hidden state representation impose regulations.

Nevertheless, we show that the proposed traffic model could achieve state-of-the-art predic-

tion accuracy.

In addition to a data-driven traffic model, we apply POMCP++ for motion planning

considering uncertainties from traffic dynamics and sensor observations. We show that
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the motions planned with POMCP++ agree with human intuition in handcrafted and real

traffic scenarios. By comparing to MPDM (Galceran et al., 2017), POMCP++ is able to

achieve higher reward in most of the considered scenarios. To the best of our knowledge, this

is the first work that applies a full POMDP solution to plan motions for the ego vehicle in

general scenarios. Meanwhile, this could also be the first work that tightly couples planning

and predictions with a learned traffic model for the autonomous driving problem.

In the following of this chapter, we first introduce the GNN-based traffic dynamical

model in Sec. 6.1. Then, we complete the problem formulation by introducing the models

for the measurement and task in Sec. 6.2. Finally, in Sec. 6.3, we apply POMCP++ as the

motion planning algorithm for the ego vehicle.

6.1 Stochastic Traffic Dynamics Modeling

In this section, we proposed Recurrent Traffic Graph Neural Network (RTGNN) to model

the stochastic traffic dynamics. The section starts by introducing the network model as well

as the loss function in Sec. 6.1.1. Then, in Sec. 6.1.2, predictions of the proposed model

is compared with state-of-the-art solutions both qualitatively and quantitatively on the

nuScenes dataset (Caesar et al., 2020). Additional details on the definition of the network

and hyperparameters used for training are provided in Appendix B.

6.1.1 Traffic Model Structure

For clarity, we begin by considering the traffic as an autonomous system, i.e. the ego vehicle

is not distinguished from other agents. Discussions on adapting the model to perform

inference conditioned on the ego motion are deferred to later in this section.

We start by modeling the dynamics of a single vehicle as a (dynamically extended)

unicycle, which is of the form,

xt+1 = fx(xt,ut). (6.1)
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x = (x, y, θ, v)> ∈ X is the vehicle state consisting of 2-D position x and y, orientation

θ, and speed v. The control input, u = (a, ω)> ∈ U , includes both linear acceleration, a,

and angular velocity, ω. The explicit formulation of (6.1) could be found in LaValle (2006)

and Salzmann et al. (2020).

Instead of having a continuous control space U , we define A ⊆ U , a finite set consisting

of predetermined motion primitives, i.e. A = {(ai, ωi), i = 0, 1, . . . ,M − 1}. Meanwhile, we

define q ∈ R|A| as a discrete probability distribution over A. In the following, we refer to

q as the “intention” of an agent, which determines the probability of taking each motion

primitive at a single time step. Combining the vehicle state and intention, the agent state

is defined as y> = (x>, q>). In this work, we assume uncertainty of an agent only comes

from its intention, or equivalently, the unknown motion primitive to be executed.

Presumably, the intention of an agent is affected by its neighbors. We define X, Q, and

Y as the aggregation of vehicle states, intentions, and agents states of all agents (including

the ego) in a local traffic. We assume the dynamics of the intentions is in the form of,

Qt+1 = fq(Yt,mt) = fq(Xt,Qt,mt), (6.2)

wherem represents the local environment, reflecting components such as drivable areas, lane

geometry, etc. The form of (6.2) implicitly assumes deterministic transition of intention.

However, it does not imply deterministic transition of agent motion, but deterministic

transition of motion distribution.

To reduce the complexity of the traffic model, we only consider vehicles and assume

a deterministic first-order motion model for pedestrians. Equivalently, we could keep us-

ing (6.1) to model the motion of pedestrians, but with a fixed intention concentrating all

probability mass on the motion primitive (0, 0), i.e. the motion primitive with zero linear

acceleration and angular velocity.
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Figure 6.1: An example graph constructed for a local traffic scene. Blue dots represent
agents in the scene. Blue dots on the yellow and red boxes represent vehicles. Standalone
blue dots are pedestrians. Directed edges (blue lines) between agents are introduced based
on spatial proximity. Specially, since we do not learn the behavior of pedestrians, directed
edges with pedestrians as the target nodes are removed. Implicitly, this means the motion
of pedestrians is not affected by other agents. On the background shows the semantic map
where lane directions are color coded as suggested by Cui et al. (2019).

Modeling Intention Dynamics with a GNN

As mentioned earlier, fx, modeled as a unicycle in this work, is relatively straightforward

to specify. However, fq involves human factor, making it hard to be specified in any simple

parametric form. Therefore, we structure fq as a deep neural network and learn the param-

eters through data. In this work, we use a GNN for the intention dynamics, fq. The major

motivation is that GNNs are able to handle graphs with various number nodes and edges,

as is the case in the traffic scenes where there are multiple agents with complex interactions.

As shown in Figure 6.1 and 6.2, each node in the graph represents an agent in the

local traffic, either a vehicle or a pedestrian, while edges are introduced based on spatial

proximity. The feature of a node/agent includes vehicle state xa = (xa, ya, θa, va), future

vehicle states at the next step under different motion primitives wa, intention qa, and a

local agent-centric view of semantic map ma similar to what is shown in Figure 6.1. The
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(a) (b)

Figure 6.2: Schematic figures showing major steps in GNN for intention update. (a) shows
the message computation along an edge. (b) shows the intention update at a node. Red,
yellow, and orange boxes represent nodes of the ego vehicle, agent vehicles, and pedestrians.
Curves next to each player are the future vehicle states under different motion primitives.
Green patches represent the local agent-centric semantic maps. In the figures, the variables
to be computed are marked with red boxes. Variables involved in the computation are
highlighted while unrelated variables are grayed out. See Sec. 6.1.1 for the definitions of
variables and Alg. 5 for the detailed steps.

task of the GNN is to update the intention of agents utilizing the graph structure and the

node features. Alg. 5 shows the detailed steps in updating agent intention, which follows

the general procedure of a message passing GNN. Within each major iteration, messages

to each agent are constructed, followed by update of agent intention. Figure 6.2 delineates

the two steps with schematic diagrams.

We make a few remarks on Alg. 5. First, recalling (6.1), the motion primitive for a

vehicle is 2-D, consisting of linear acceleration and angular velocity. Therefore, it might

be natural to combine the future states, w, and the intention, q, into a multi-channel 2-D

“image”. The resulted 3-D tensor can be encoded with a Convolutional Neural Network

(CNN) (Line 3). A major benefits of using CNN, compared to using a Multi-Layer Percep-

tron (MLP), is to reduce the number of parameters in the network. Second, at constructing
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Algorithm 5: GNN for intention dynamics

Input: Traffic Graph G = {V, E}.
Output: Intention of all agents Q.
1 for k from 0 to K − 1 do // K defines iterations of message passing.

// Construct the message to each node.
2 foreach (b, a) in E do

// T ag converts data from global frame to local frame of agent a.

3 ca ← CNNw(T agw
a, qa)

4 cb ← CNNw(T agw
b, qb)

5 mb→a ← MLPm(T ag x
a, ca, T ag x

b, cb)

6 end
// Update the intention of each node.

7 foreach a in V do
8 ma ← Aggr({mb→a : (b, a) ∈ E}) // Element-wise max is used as Aggr.
9 ca ← CNNw(T agw

a, qa)

10 pa ← CNNm(T agm
a)

11 qa ← MLPq(v
a, ca, pa,ma)

12 end

13 end
14 return {qa : a ∈ V}

the messages (Line 5, 9, and 10), data is converted to the target agent frame whenever

applicable in order to preserve the symmetry of nodes in the graph. Finally, Alg. 5 only

generates the predicted intention for the next step. For multi-step predictions, the model

can be applied recurrently using the predicted intention and sampled vehicle states as the

input for the next step.

Inference Conditioned on the Ego Motion

Until this point, we have considered the traffic as an autonomous system. However, as

discussed in the introduction, it is important to infer the motion of agents conditioned on

the planned motion of the ego. The proposed GNN model can be easily adapted for this

purpose.

At graph construction, we could remove the directed edges to the ego node, while

keeping the intention of the ego vehicle fixed based on the planned control input. Therefore,

the ego vehicle would only broadcast its current state and intention to neighbor agents but
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would not be affected by their reactions. Effectively, the modifications enable the network

to perform inference conditioned on the ego motion.

As a result, fx in (6.1) and fq in (6.2), together, model the controlled stochastic traffic

dynamics,

Yt+1 = f(Yt,u
e
t ,nt), (6.3)

which satisfies the assumptions of the general motion model in (1.1). In (6.3), ue is the

control of the ego vehicle. n is the random variable determining the controls to be executed

by the agents following their intention. Note we consider the local map m as a time-varying

constant in the traffic model. Therefore, m is not explicitly listed as inputs in (6.3).

Training Loss

The parameters in fq are learned by minimizing the cross entropy between the predicted

intention qat for agent a and the target (ground truth) intention qa∗t for the same agent.

Unfortunately, the ground truth intention of agents cannot be known from a dataset. In-

stead, we approximate the target intention through the known vehicle states at consecutive

time steps. One simple way is to define the target intention qa∗t as a one-hot vector, i.e.,

qa∗t (i) =


1, if i = arg min

i
‖xa∗t+1 − fx(xa∗t ,ui)‖,

0, otherwise.

(6.4)

where xa∗t and xa∗t+1 are the ground truth states for agent a at consecutive time steps1. In

practice, we find that it can easily lead to overfitting by defining the target intention as (6.4)

since the exact same traffic state hardly shows up repeatedly. To promote generalization,

the target intention in (6.4) is “smoothed” to a Gaussian distribution,

qa∗t (i) =
1

η
exp

(
−1

2
‖xa∗t+1 − fx(xa∗t ,ui)‖2Σ

)
, (6.5)

1The velocity of agents is obtained through numerical differentiation.
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(a) (b)

Figure 6.3: (a) The block structure for one-step learning corresponding to the loss function
in (6.6). (b) The block structure for multi-step learning corresponding to the loss function
in (6.7) where consecutive traffic snapshots are combined into a sequence in order to improve
the consistency of intention transition.

where η serves as a normalization factor. Σ = diag
(
σ2
x, σ

2
y , σ

2
θ , σ

2
v

)
represents the covariance

matrix modeling the empirical uncertainty for the difference between the true and predicted

vehicle states after one time step.

With the target intention defined, we could use cross entropy as the loss function shown

as the following,

l =
∑
n

∑
a

∑
i

−qa∗t,n(i) log(qat,n(i)). (6.6)

In (6.6), i indexes the elements in q, a indexes agents in a traffic snapshot, and n in-

dexes snapshots in the dataset. We may also chain together consecutive snapshots, as the

following, to ensure consistent intention transition over a longer period.

l =
∑
n

∑
t

∑
a

∑
i

−qa∗t,n(i) log(qat,n(i)), (6.7)

where t indexes different steps in a sequence, while n, instead of indexing snapshots, indexes

snapshot sequences in the dataset. In a sequence from the real dataset, an agent may appear

or disappear at any intermediate step of the total t steps, making the agent have a shorter

lifetime than t. Thanks to the Markovian property of RTGNN, data for agents with a

shorter lifetime can still be used in (6.7) where loss of an agent is only considered when it

is within the local region.

Figure 6.3 shows the block structures corresponding to the loss functions in (6.6)

and (6.7). It should be highlighted that the chained block structure of RTGNN, in Fig-
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ure 6.3b, naturally avoids a few common issues in training recurrent neural networks. First,

the hidden states, named as intentions in this work, are explicitly defined as discrete prob-

ability distribution and therefore remain well-behaved numerically. Second, gradients of

parameters in the initial blocks do not disappear because of the existence of “gradient high-

way” resulting from combining training losses from multiple steps. Such features of RTGNN

shares similarity with the Long Short Term Memory (LSTM) (Hochreiter and Schmidhu-

ber, 1997). Compared to LSTM, RTGNN is different in a more explicit and interpretable

definition of the hidden states and a special internal block structure adapted to different

traffic scenes.

6.1.2 Experiments

In this work, we use the nuScenes dataset (Caesar et al., 2020) to train and evaluate the

proposed traffic model. Specially, only the data collected at Boston Seaport2 is used. Each

training sample consists of four-second traffic, which includes eight time steps given the data

is labeled at 2Hz. Built upon the official split (Caesar et al., 2020), the training set includes

4055 non-overlapped samples/sequences, while the validation set includes 352 samples. Al-

though the length of training samples is fixed, RTGNN can be applied to make predictions

of arbitrary length. The number of testing samples depends on the required prediction

length. For four-second prediction, there exists 915 non-overlapped testing samples. We

train RTGNN as an autonomous system, i.e. treating the ego as a nominal agent vehicle.

For experiments on making predictions conditioned on ego motions, the input graph rep-

resentation is modified as introduced in Sec. 6.1.1, while the parameters for the network

remain the same. More details on the network implementation and training are provided

in Appendix B.

In the following, we compare the performance of RTGNN with Trajectron++ (Salz-

mann et al., 2020), a recently open-sourced work on traffic prediction. Within the existing

2The rest of the data in nuScenes is collected in Singapore, where vehicles drive on the left side of the
roads. The concern is that mixing training data of different driving conventions may have negative impact
on the outcome.
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literature on this subject, Trajectron++ might be the most similar to this work in terms of

the properties of the traffic model, which has also been evaluated on the nuScenes dataset.

Trajectron++ is able to predict trajectories for all agents in a scene jointly. The predic-

tions could be made conditioned on a future trajectory of the ego vehicle. On the difference,

Trajectron++ is not designed to be used as a Markovian model. It takes historic trajecto-

ries of agents and predicts their future for multiple time steps. Meanwhile, Trajectron++

does not explicitly model the hidden states of the agents as in this work, it adopts a CVAE

framework (Sohn et al., 2015) which introduces discrete latent variables to encode high-level

behaviors.

We make a few minor tweaks on the implementation of Trajectron++3. First, in the

existing implementation of Trajectron++, future data of an agent are used to compute

velocity and acceleration at the exact present time4. However, the assumption is invalid in

practice due to the unavailability of the future data. Instead, we use delayed velocity and

acceleration computed with only past data. Second, parked vehicles are also included in

the scene. There are chances that parked vehicles merge into the traffic which may cause

collisions with the ego if not anticipated. With the above two modifications, we retrain

Trajectron++ for twenty epochs, among which the model with the least validation error is

used for testing. In training Trajectron++, we use training samples with four seconds of

future traffic data as in training RTGNN. In testing RTGNN, one-second past data is used

to compute agent velocity and acceleration at the present. For fair comparison, past traffic

data of the same length are used as input for Trajectron++.

Qualitative Results

We compare sampled and maximum likelihood predictions of Trajectron++ and RTGNN

qualitatively in different scenarios, where we consider the traffic as an autonomous system.

For RTGNN, a sampled prediction is generated by sampling controls of an agent according

3https://github.com/StanfordASL/Trajectron-plus-plus
4https://github.com/StanfordASL/Trajectron-plus-plus/issues/40
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Figure 6.4: An example prediction of RTGNN at an intersection. The red and yellow are
the ego and agent vehicles. The orange squares represent pedestrians. Purple lines are
the ground truth paths. Green lines are predictions of a constant velocity model, serving
as a baseline. Blue lines are the maximum likelihood predictions, while gray lines are five
sampled predictions.

to its intention. The maximum likelihood predictions are produced in a similar way. The

difference is that the control with the maximum probability is selected at each time step.

Note that a trajectory obtained by sequentially selecting maximum likelihood controls may

not be the overall maximum likelihood trajectory, but only serves as an approximation.

However, it would be computationally intractable to generate the true maximum likeli-

hood predictions with the proposed traffic model in this work. Figure 6.4 shows example

predictions of RTGNN along with the legends for different types of predictions5.

Figure 6.5 shows the prediction results of both methods in four traffic scenarios. It could

be observed that overall RTGNN is able to produce more sensible predictions. Compared

to Trajectron++, cases are rarer for RTGNN where the sampled or maximum likelihood

predictions are infeasible, i.e. violate the traffic rules. Meanwhile, RTGNN generates more

stable predictions for parked vehicles. It should also be noted that, even though there

5See RTGNN.mp4 for a compilation of RTGNN predictions for different traffic scenes
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Table 6.1: Comparison of six-second predictions of the ego vehicle1

method ADE FDE min5ADE min5FDE

Const. Vel. 4.61 11.21

MTP (Cui et al., 2019) 4.41 10.26 2.22 4.83

MultiPath (Chai et al., 2019) 4.43 10.16 1.78 3.62

CoverNet (Phan-Minh et al., 2020) 5.41 11.36 2.62

MHA (Messaoud et al., 2020) 3.69 8.57 1.81 3.72

Const. Vel.2 4.39 10.54

RTGNN 3.74 8.90 2.21 4.51

1 The results of other methods (Cui et al., 2019; Chai et al., 2019; Phan-Minh et al., 2020; Messaoud
et al., 2020) are summarized by Messaoud et al. (2020), and are reproduced here for comparison.

2 Since we are only able to use the testing set collected at “Boston Seaport”, we report the error
of a constant velocity model on our testing set for normalization purpose.

is no explicit modeling of high-level behaviors, RTGNN is able to produce predictions of

multi-modality, such as lane-change versus lane-keep and right-turn versus forward-move as

shown in Figure 6.5.

Figure 6.6 compares the predictions of RTGNN with or without conditioning on the ego

motion. For unconditional predictions, the traffic is considered as an autonomous system

where RTGNN makes predictions for all vehicles in the scene. For conditional predictions,

the traffic is considered as an controlled system, where the ego motion is fixed to its ground

truth. In Figure 6.6, different behaviors of agent vehicles can be observed depending on

the motion of the ego. We would like to note that such examples are rare in the dataset.

In order to observe the difference, strong interactions should exist between the ego and

agent vehicles. Meanwhile, there should be significant difference between the predictions

for the ego vehicle and the corresponding ground truth. As a result, predictions for agents

under conditional and unconditional inferences are similar in most cases. This observation

is aligned with the results presented in Tolstaya et al. (2021).
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Quantitative Results

To quantitatively measure the prediction performance, we adopt some common metrics

in the literature. The definitions of the metrics are listed below, where T represents the

prediction horizon. For sanity, the following definitions consider only one agent. In practice,

the error of all agents in the testing set should be averaged.

• Average Displacement Error (ADE),

ADE =
1

T

T−1∑
t=0

‖(xt, yt)− (x∗t , y
∗
t )‖2, (6.8)

averages the displacement over the entire predicted path.

• Final Displacement Error (FDE),

FDE = ‖(xT , yT )− (x∗T , y
∗
T )‖2, (6.9)

only considers the displacement at the final step, where the displacement is often the

largest over the prediction horizon.

• minkADE and minkFDE are for sampled predictions. The metrics report the minimum

ADE and FDE over k sampled predictions. In this work, we consider the minimum

error over five samples, i.e. k = 5.

Table 6.2 compares RTGNN with Trajectron++ and a baseline constant velocity model

in terms of the above metrics. It could be observed that RTGNN is able to consistently

produce more accurate maximum likelihood and sampled predictions with prediction hori-

zons from one to four seconds. Note compared to the results reported by Salzmann et al.

(2020), the FDE of Trajectron++ in Table 6.2 shifts backwards in time approximately by

one second. This might be related to the fix of using past, instead of future, data to compute

velocities and accelerations of the vehicles, mentioned at the beginning of this section.
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In addition, we also compare the accuracy of RTGNN with other state-of-the-art meth-

ods using the setup specified by the nuScenes prediction challenge6, which requires the pre-

diction for the future six seconds of the ego given the traffic data for the past two seconds.

We make a few remarks on applying RTGNN with this setup. First, RTGNN makes pre-

dictions for all players in the scene by considering the traffic as an autonomous system,

whereas only the prediction of the ego vehicle is used for error evaluation. Second, since we

are not able to use the full testing set7, we report the error of a constant velocity model in

Table 6.1, alongside the prediction error of RTGNN, for normalization purpose. As shown

in Table 6.1, despite the regulations resulting from model structure and state representa-

tion, RTGNN could achieve similar prediction accuracy as the state-of-the-art methods in

terms of displacement errors.

6https://www.nuscenes.org/prediction?externalData=all&mapData=all&modalities=Any
7We only use the data collected at “Boston Seaport” which has the same driving convention as the data

used for training.
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Figure 6.5: Comparisons between (left) RTGNN and (right) Trajectron++ in different
scenarios, including (first row) traffic circles, (second row) parking lots, (third row) straight
roads and (last row) intersections. Note in the last two scenarios, RTGNN demonstrates
predictions of multi-modality, (third row) lane keep v.s. lane change, (last row) forward
move v.s. right turn. See Figure 6.4 for legends.
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Figure 6.6: Comparisons between (left) unconditional and (right) conditional inferences of
RTGNN. (Top) given that the ego is turning right instead of going back to the same lane,
the agent at the intersection is able to turn left faster. (Middle) given that the ego is
changing lane with a relatively high speed, the leading agent may defer lane changing to a
later time step. (Bottom) given that the ego yields, the agent waiting at the intersection
may start turning. See Figure 6.4 for legends.
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6.2 Measurement and Task Models

In this section, we provide the measurement model and the objective function in order to

complete the problem formulation in Sec. 4.1 for the autonomous driving application.

Instead of using the raw sensor models, we assume an abstract measurement model for

the perception system, where the ego vehicle directly measures the vehicle state of itself

and 2-D poses of other agents. More specifically, the measurement model is of the form,

zt =
(
ze>t , za>t

)
= h(Yt), a = 0, 1, . . . , N − 1,

zet = (xet , y
e
t , θ

e
t , v

e
t )
>,

zat = (xat , y
a
t , θ

a
t ) ◦ n, n ∼ N (0,Σn),

(6.10)

where ◦ represents the composition operation for SE(2). In (6.10), we assume the ego

vehicle could measure the vehicle state, including both pose and velocity, of itself noise-free.

Meanwhile, the ego vehicle could measure the poses of other agents with Gaussian noise.

Specially, the measurement noise is specified in the local frame of agents so that the model

could capture different noise characteristics for the longitudinal, latitudinal directions and

the orientation. For a reasonable perception system on self-driving vehicles, measurement

noise along the latitudinal direction and orientation is expected to be small because of the

constraints from the structured environment. However, the measurement noise along the

longitudinal direction could be large.

In this work, we consider the task of autonomous driving as navigating the ego vehicle

to a local goal waypoint. In the objective function, we try to reflect common objectives

in the autonomous driving application, such as increasing ride comfort and reducing travel

time. More specifically, the stage reward function is in the form of,

r(Yt,u
e
t ,Yt+1) = ra(a

e
t ) + rω(ωet ) + rv

(
vet+1

)
+ rd(v

e
t , a

e
t ) + rt + rc(Xt+1). (6.11)
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The first two terms ra(·) : R 7→ R and rω(·) : R 7→ R defined as,

ra(a) =


0 if a = 0,

−2.5 otherwise,

and, rω(ω) =


0 if ω = 0,

−2.5 otherwise,

(6.12)

are functions of the executed motion primitive and therefore related to the ride comfort.

rv(·) : R 7→ R motivates the ego vehicle to maintain a reasonable speed,

rv(v) =


0 if 10 ≤ v ≤ 20,

−5 otherwise.

(6.13)

rd(·) : R×A 7→ R defined as,

rd(v, a) = −vτ − 1

2
a · τ2, (6.14)

and the scalar rt = 10 tries to reduce the traveled distance and the number of steps taken

to get to the waypoint. In (6.14), τ is the fixed duration for each discrete time step.

rc(·) : XN+1 7→ R penalizes collisions between the ego and other agents,

rc(Xt) =


0 if the ego vehicle does not collide with other agents,

−1000 otherwise.

(6.15)

In (6.11), terms related to collision with environment or failing in completing the task are

not included. At the planning phase, infeasible motion primitives at each step, i.e. motion

primitives that collide with environment or not result in a feasible trajectory to the goal,

can be detected and ignored. This is possible since we assume that the ego state can be

measured without noise. Therefore, we could avoid additional terms in the reward function

by only considering feasible motions in planning.

Finally, we note that the objective function, (6.11), is over-simplified. Although it is
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sufficient to demonstrate the advantage of stochastic motion planning in the autonomous

driving application, which is the major purpose of this work, it may not lead to human-like

driving behavior. Developing objective functions motivating human-like behaviors (Zeng

et al., 2019), or inverse optimal control in general (Ziebart et al., 2008), is an active research

area and is beyond the scope of this work.

6.3 Motion Planning for the Ego Vehicle with POMCP++

In this section, we apply POMCP++, introduced in Ch. 4, to plan motions of the ego vehicle

within the stochastic traffic. One critical step before the application of POMCP++ is to

figure out a suitable rollout policy. In Sec. 6.3.1, we extend hybrid A* (Dolgov et al., 2008)

to plan motions in structured environments, which could then be used as a rollout policy

to estimate the reward-to-go. In Sec. 6.3.2, we study the behavior of the ego vehicle under

POMCP++ with various handcrafted and real traffic scenarios. Meanwhile, we compare the

performance of POMCP++ with MPDM (Galceran et al., 2017) in terms of the objective

function.

6.3.1 A Hybrid A* Rollout Policy

The hybrid A* algorithm, first introduced by Dolgov et al. (2008), is used to plan motions

for Junior (name of the vehicle used by the Stanford team in the DARPA Urban Challenge).

Compared to common search-based algorithms solving for trajectories, hybrid A* associates

a continuous state, instead of discretized states, to each cell in the graph. When two

continuous states fall onto the same cell, one dominates the other even if they are not exactly

the same state. As a result, hybrid A* is not guaranteed to find the optimal solution since

it violates the principle of optimality. However, as a major advantage of hybrid A*, it is

able to directly produce a dynamically feasible trajectory without further refining.

As reported by Dolgov et al. (2008), hybrid A* is used for planning in the unstructured

environments, such as parking lots and U-turns. The challenge in applying hybrid A* to
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Algorithm 6: Creating the Heuristic Function for Hybrid A*

Input: The graph conformal to the road structure G = {V, E}.
The goal node, ng.

Output: The heuristic function d(·) : N 7→ R.
The path retrival function, c(·) : N 7→ N .

// Initialize the functions for all nodes in the graph.
1 foreach n ∈ N do d(n)←∞, c(n)← n
2 d(ng)← 0, Q ← {n|(n, ng) ∈ E}
3 while Q 6= ∅ do
4 n←pop(Q), dn ← d(n)
5 foreach (n, no) ∈ E do

// ‖ · ‖2 computes the Euclidean distance between two nodes.
6 if ‖n, no‖2 + d(bo) < d(n) then
7 d(n)← ‖n, no‖2 + d(bo)
8 c(n)← no
9 end

10 end
11 if d(n) < dn then Q ← Q∪ {n|(ni, n) ∈ E}
12 end
13 return d(·) and c(·)

normal on-road driving is the lack of a sensible heuristic function that could accelerate the

search process. We note that commonly used Euclidean distance is not sufficient in this

case. Counter-intuitively, there are plenty of “deadends” on roads, not necessarily because

of the undrivable areas, but due to the lane geometries to be respected in planning. As a

result, with Euclidean distance as the heuristics, the search process of hybrid A* can be

easily trapped, and cannot finish within limited time.

In the following, we extend hybrid A* to on-road motion planning. We first introduce a

heuristic function that computes the path length from the given state to the goal respecting

the road geometry. Then, we show the performance of hybrid A* with the proposed heuristic

function.

The Heuristic Function

Like Euclidean distance, in this work, we use the path length between the given state and

the goal as the heuristics. Since, regardless of the objective function used by hybrid A*,
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Figure 6.7: An example of edge construction. Considering the orientation of the source
node (the red node), it is connected to the target nodes forward with the same direction
(blue nodes in the middle row) with possible lane changes. Meanwhile, the source node is
also connected to nodes forward with slightly different orientations (blue nodes in the top
and bottom rows) to reflect the possible heading change of a vehicle following a path.

nodes that are close to the goal might be always promising to be expanded first. Especially,

if path length is part of the objective function of hybrid A*, the heuristics is admissible.

The constraint is that paths considered by the heuristic function should be conformal to

the road structure.

The general idea for this purpose is to represent the structured environment with

a graph. By carefully selecting the nodes and edges, the graph could be considered as a

discretized version of the environment. Therefore, paths obtained by searching on the graph

are kinematically feasible.

To be more specific, nodes are initialized by discretizing the 3-D space (2-D position

and orientation). Instead of preserving all nodes, nodes that are at undrivable area or

misaligned with the corresponding lanes are removed. A node is considered misaligned with

the underlying lane when the orientation difference between the node and lane is greater

than a predefined threshold. Directed edges are introduced based on the closeness of the

nodes in the 3-D space. An edge is created between two nodes when it is (approximately)
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(a) (b)

(c) (d)

Figure 6.8: Results of Alg. 6 for an intersection environment. Given the goal pose (green
circle on the top right corner of each image), (a) color codes the shortest distance from
different positions to the goal position (yellow and purple represent large and small values
respectively). Area without colors are infeasible. (b)-(d) show the reconstructed paths (blue
lines) from different initial poses. Although violating the traffic rules, the path in (d) is
considered feasible by the heuristic function. This is because the graph may not accurately
reflect all structures of the environment, especially at intersections where lane connections
are complex. However, as long as there are feasible paths from the query state to the goal
state, cases in (d) can be avoided.

feasible for a vehicle to reach the state at the target node from the state at the source node.

Figure 6.7 shows an example of edge construction. With the graph constructed, we could

find the length of the shortest path between every node and the goal node as shown in

Alg. 6. As a byproduct, we could also retrace the shortest path.

In this work, we set the spatial resolution and orientation resolution to 0.1m and π
4 rad

when creating the graph used in the heuristic function. The threshold in determining

orientation alignment is set to π
8 rad. Figure 6.8 shows the computed distance map for
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a local environment of size 140m×80m, together with reconstructed paths from different

initial poses.

Finally, we would like to note that, although the length of the paths are the shortest

in terms of the graph, they might be different from the length of the shortest trajectories,

where the latter considers the dynamics of a vehicle. Empirically, we find the length of the

paths is within 5% error compared to the length of (approximately) shortest trajectories

found by hybrid A*. Given the small difference, the path length found with Alg. 6 serves

as an effective heuristics in accelerating hybrid A*.

The hybrid A* algorithm

Alg. 7 shows the hybrid A* algorithm implemented in this work using the proposed heuristic

function. In the following we make a few remarks on Alg. 7.

First, for convenience, we assume the heuristic function takes vehicle states instead of

graph nodes, which is slightly different from the output of Alg. 6. The minor difference

can be made up by introducing additional steps that convert vehicle states to node indices

based on the graph resolution used in the heuristic function.

Second, in the function simulateMotion (Line 10), only the ego vehicle is considered

while other agents are ignored. The stage cost returned by the simulation is based on

the trajectory length if the input motion primitive is feasible, i.e. not collide with the

environment and respect the traffic rules. Otherwise, the stage cost is set to infinity. Hybrid

A* could support more complicated stage cost in addition to trajectory length. However,

given that the heuristic function is based on path length, using the same cost in hybrid A*

could improve search efficiency.

Finally, in our implementation, we check the feasibility of the nodes on the fly (Line 15

and 21), i.e. check whether there exists a feasible trajectory from the state at the node to

the goal. Nodes that fail the test are pruned from further expansion in later steps (Line 6).
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In practice, the additional pruning step could significantly accelerate the search process.

However, we note that the pruning may be premature, since when revisited, an infeasible

node may be associated with a new state and become feasible again. However, the issue does

not trigger concerns given that hybrid A* is not guaranteed to find the optimal trajectory

in the first place. Meanwhile, the algorithm is used as a rollout policy in POMCP++.

Although finding the optimal solution is preferred, it is more important to find a feasible

solution efficiently considering the algorithm would be repeatedly called in POMCP++.

Figure 6.9 shows example solutions of hybrid A* with random start and goal poses. In

the examples, the set of motion primitives is {-2, 0, 2 m/s2} × {-0.25, 0, 0.25 rad/s}. The

duration of each discrete time step is 0.5s. The resolution used in the function toNode in

Alg. 7 is 0.5m for position, 0.1125rad for orientation, and 0.9m/s for velocity. Given the

resolution, the vehicle state is guaranteed to land on a different node after one time step

with non-zero motion primitives. It could be observed from Figure 6.9 that significantly

more nodes are expanded in Figure 6.9f. This is due to the fact that dynamical feasibility

is not considered in the heuristic function. For example, at the region close to the goal

in Figure 6.9f, the heuristic function assigns shorter paths to the nodes on the diagonal.

However, once dynamics is considered, these nodes are infeasible. All such nodes need to

be expanded in full before a feasible trajectory can be found. In practice, we find cases like

Figure 6.9f are rare. In most configurations, hybrid A* could finish by expanding under

1000 nodes.
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Algorithm 7: Hybrid A* based on the Work of Dolgov et al. (2008)

Input: The start state xs. The goal state xg.
The heuristic function d(·) : X 7→ R.

Output: The trajectory from the start to the goal T .
// Initialize the state, cost, parent, and motion primitive at the starting node.

1 ns ← toNode(xs), s(ns)← xs, c(ns)← 0, p(ns)← ns, a(ns)← nan
2 G ← {ns} // Keep track of all visited nodes.
3 Q ← {(d(xs), ns)} // A priority queue of nodes to be expanded.
4 while Q 6= ∅ do
5 n← pop(Q)
6 if c(n) is nan then continue
7 if close(s(n),xg) then ng ← n, break
8 f(n)← False // Mark the feasibility of this node.
9 foreach a ∈ A do

10 s′, g ← simulateMotion(s(n), a)
11 n′ ← toNode(s′)
12 if d(s′) is ∞ then continue
13 if n′ ∈ G and c(n′) is nan then continue
14 if g is ∞ then continue
15 f(n)← True
16 if n′ /∈ G or c(n) + g < c(n′) then
17 s(n′)← s′, c(n′)← c(n) + g, p(n′)← n, a(n′)← a
18 Q ← Q∪ {(c(n′) + d(s′), n′)}
19 end

20 end
// The node is marked if it does not lead to feasible solutions.
// Next time the same node is visited, we can simply ignore it for efficiency.

21 if not f(n) then c(n)← nan
// Backtrace the trajectory as a sequence of motion primitives.

22 T ← {}, n← ng, np ← p(ng)
23 while n 6= np do
24 T ← {a(np)} ∪ T
25 n← np, np ← p(n)

26 end
27 return T
28 end
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Example results of hybrid A* (Alg. 7) in an intersection environment of size
140m×80m with random start and goal poses. (a), (c), and (e) show the final trajectories
(green curves). (b), (d), and (f) show the corresponding expanded nodes projected onto the
2-D plane (yellow and purple represent large and small values respectively). For (b), (d),
and (f), the number of expanded nodes are 177, 45, and 14665 respectively.

104



6.3.2 Experiments

With the rollout policy defined, we are able to apply POMCP++ to plan motions for the

ego vehicle within stochastic traffic following Alg. 4. In the rest of this section, instead

of directly applying POMCP++ with the learned stochastic traffic model, we first study

the performance of POMCP++ with handcrafted scenarios. Although we are not able

to model the responsive behavior of agents in handcrafted scenarios, it is much easier to

create scenarios of interest, which are often tail events in real driving experience. Then, we

close the loop between POMCP++ and the learned stochastic traffic dynamical model with

real traffic scenarios. In real scenarios, the traffic dynamics is forward simulated using the

learned model, of which the initial traffic states are set using the data in nuScenes (Caesar

et al., 2020).

In both handcrafted and real traffic scenarios, we compare the performance of POMCP++

with MPDM (Galceran et al., 2017), which might be the most similar to our work in terms

of both problem setup and solution. As reviewed at the beginning of this chapter, MPDM

also employs a POMDP solution to plan motions for the ego vehicle within a stochastic

traffic environment. One special feature of MPDM is that it partially ignores the belief

dynamics. At planning, belief is not affected by different possible future measurements. We

note that MPDM is a system-level method, for which we are not able to reproduce all details

in our implementation. As a result, we adapt POMCP++ to capture the high level idea of

MPDM. In our implementation of MPDM, we follow the most of the steps in POMCP++.

However, at traversing the tree, belief does not change with different measurement branches.

Handcrafted Traffic Scenarios

With the handcrafted traffic scenarios, we create situations where motion of the ego vehicle

heavily depends on the behavior of the agent vehicle. Each scenario starts from the same

initial traffic state, but rollouts differently based on different behaviors of the agent vehicle,

which is either obliging or disobliging. The motion of agents is predetermined, i.e. the agent
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Table 6.3: Hyper-parameters used in the Handcrafted Traffic Scenarios

γ εa εz K1 N tmax
2

0.99 0.2 -2 2 1000 600s

1 There are two cases for each scenario. Since we assume no motion uncertainty, instead
of a particle filter, the belief can be directly tracked with a Bayes filter.

2 The planning algorithm stops with either the episode limit N or time limit tmax hits.

(a) (b) (c)

Figure 6.10: Average velocity profiles of the ego vehicle planned with POMCP++ in (a)
unprotected left turn, (b) lane change, and (c) braking scenarios. Blue curves are the veloc-
ity profiles with obliging agent vehicles, while orange curves are obtained with disobliging
agents. Each velocity profile is averaged over 10 independent simulations. Note simulations
may finish at different time steps. Here, we only consider the average velocity profile up to
the shortest duration of all simulations of the corresponding scenario.

would not respond to different motions of the ego vehicle. For handcrafted scenarios, we

assume the traffic dynamics is deterministic. However, the initial traffic state is unknown.

In the simulations, the ego vehicle is presented with both agent behaviors initially, with

each accounts for 50% probability. The ego vehicle has to estimate the real agent behavior

on the fly using the noisy measurement, (6.10), and make decisions correspondingly. Ta-

ble 6.3 summarizes the common hyper-parameters for the planning algorithms used in the

handcrafted scenarios. In the following, we describe each scenario in detail.

• Unprotected left turn scenario

The ego vehicle is at an intersection waiting to turn left. There is an on-coming agent

vehicle on the opposite lane. The agent vehicle may accelerate through the intersec-

tion, or decelerate to stop before the intersection. The situation is often encountered
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Table 6.4: Average Discounted Summation of Rewards of MPDM and POMCP++ in Hand-
crafted Traffic Scenarios1

scenario method obliging disobliging mean2

Unprotected
left turn

MPDM -135.64 -891.23 -513.44

POMCP++ -155.38 -178.72 -167.05

Lane change
MPDM -113.21 -114.09 -113.65

POMCP++ -113.81 -112.43 -113.12

Braking3
MPDM -137.09 -136.71 -136.90

POMCP++ -139.72 -141.01 -140.37

1 For each entry in the table, the data is averaged over 10 independent trials.
2 This column shows the average reward of cases with obliging and disobliging agent

drivers. It is the actual objective the planning algorithms try to maximize.
3 For the braking scenario, the disobliging agent refers to the one that hard-breaks, while

the obliging agent refers to the one that maintains speed.

when waiting to turn at intersections with yellow lights. In this scenario, the motion

primitives of the ego vehicle is set to {-2, 0, 2 m/s2}×{-0.25, 0, 0.25 rad/s}.

• Lane change scenario

The ego vehicle intends to change to the target lane on the right. There is a fast-

approaching agent vehicle on the target lane at the back of the ego vehicle. The agent

vehicle may decelerate to yield or accelerate to discourage the lane change. In this

scenario, the motion primitives of the ego vehicle is set to {-1, 0, 1 m/s2}×{-0.2, 0,

0.2 rad/s}.

• Braking scenario

The ego vehicle maintains its lane following a leading agent vehicle. The agent vehicle

may keep its speed or break abruptly due to emergencies. In this scenario, the motion

primitives of the ego vehicle is set to {-1, 0, 1 m/s2}×{-0.2, 0, 0.2 rad/s}.

Figure 6.11 shows the paths of the ego vehicle controlled with POMCP++ in different

scenarios. Figure 6.10 shows the corresponding velocity profiles. For the unprotected left
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turn scenario, although the paths followed by the ego vehicle for different agent behaviors

are similar as shown in Figure 6.11a and 6.11b. It is clear from Figure 6.10a the ego

vehicle starts to turn much earlier when the agent vehicle yields compared to the case with

a disobliging agent. For the lane change scenario, the ego vehicle either merges ahead or

behind of the agent vehicle depending on estimated behavior of the corresponding agent.

Also from Figure 6.10b, it could be observed that the ego vehicle moves slightly faster when

the agent vehicle yields. In the braking scenario, there exists a high reward trajectory for

the ego vehicle regardless of the behavior of agents. The ego vehicle could always change

to a neighbor lane and then back to avoid potential collisions with the leading agent, while

keeping the total number of steps small.

Table 6.4 compares the average discounted summation of rewards achieved by MPDM

and POMCP++ in the handcrafted traffic scenarios. Although Table 6.4 reports the reward

of both methods under different agent behaviors separately, we note that the average reward

obtained under different agent behaviors, the actual objective, should be considered for

comparison. In the following, we provide remarks on the reported data. We first comment

on the low reward of MPDM with the unprotected left turn scenario. Then we analyze

the high reward of MPDM compared to POMCP++ in the braking scenario. In short, the

underlying reason for both is that belief dynamics is (partially) ignored in MPDM. It causes

collision in the former case, but works favorably in the latter.

It could be observed from Table 6.4 that MPDM has significantly low reward with

a disobliging agent in the unprotected left turn scenario. The low reward of MPDM is

caused by the high collision rate, 8 out of 10 times. Recall in MPDM, the change of belief

due to future measurements is not considered. Therefore, given the initial uncertainty, a

collision cannot be avoided without creating deep branches for an initial unpromising node.

Considering the nature of MCTS, it is rarely the case to generate a subtree with sufficient

depth for an unpromising node under the limitations of episodes and running time. Given

that a collision cannot be avoided, under the reward function in (6.11), the logical decision
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Table 6.5: Hyper-parameters used in the Real Traffic Scenarios

γ1 εa εz K2 N tmax

0.8 0.2 -2 10 1000 600s

1 Predictions from the learned traffic model is only valid for a short horizon. Compared
to handcrafted scenarios, γ in real scenarios is decreased to reduce the effective planning
horizon.

2 Although particle filters are subject to particle deprivation with a small number of
particles. Empirically, we find 10 samples are sufficient for a short horizon.

is to start the turn early which minimizes the total time steps. Even though the state

estimator is eventually certain that the agent vehicle would not yield, the ego vehicle is

not able to stop in time to avoid collisions. For the same reason, MPDM could achieve a

higher reward with an obliging agent in the unprotected left turn scenario. With full belief

dynamics considered in POMCP++, initial nodes with zero motion is promising since they

help in avoiding collisions when the agent is disobliging. Therefore, such nodes are explored

more thoroughly. The above issue with MPDM is avoided in POMCP++.

In the braking scenario, MPDM could achieve a higher reward for a similar reason as

discussed above. In this scenario, the same trajectory for the ego would yield high reward

regardless of the agent behavior. MPDM actually searches for a trajectory that works well

for both cases. Therefore, it could lock on to the corresponding branch in the tree early

and spend much effort later exploring the branch. In POMCP++, since belief dynamics is

considered, extra effort is spent in looking for if there are better options for different cases.

As a result, the branch of the final trajectory is not explored thoroughly, which explains

the lower reward of POMCP++ compared to MPDM.

Real Traffic Scenarios

In addition to the handcrafted scenarios, we also show the performance of POMCP++ with

real traffic scenarios. We create four scenarios, lane following, lane change, left turn, and

right turn, with each requiring different maneuver from the ego vehicle. In real scenarios,

traffic is initialized with selected data from nuScenes (Caesar et al., 2020) dataset, and
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Table 6.6: Average Discounted Summation of Rewards of MPDM and POMCP++ in Real
Traffic Scenarios1

Lane following Lane change Left turn Right turn

MPDM -65.19 -51.25 -65.01 -64.96

POMCP++ -62.03 -46.81 -64.18 -64.75

1 For each entry in the table, the data is averaged over 5 independent trials.

forward simulated with the learned stochastic traffic dynamical model introduced in Sec. 6.1.

In contrast to the handcraft scenarios, we assume the initial traffic state, including both

vehicle states and intention8, are known. Instead, uncertainty is introduced by the stochastic

traffic model. In our implementation, a particle filter is used to keep track of the belief at

each step. The hyper-parameters used for real scenarios are reported in Table 6.5.

Figure 6.12 shows the trajectories of the ego vehicle controlled with POMCP++ in the

four real traffic scenarios. For each scenario, we show two independent simulations with

different traffic predictions and/or ego trajectories. A few interesting behaviors of the ego

vehicle can be observed. In the lane following scenario, the ego vehicle swerves to the right

in both simulations. The traffic model predicts the agent vehicle on the neighbor lane may

intrude into the lane of the ego. Therefore, the ego vehicle makes room beforehand in order

to prevent collisions. Meanwhile, the ego vehicle adjusts its speed according to the neighbor

agent so that they would not drive in parallel which agrees with common defensive driving

behavior. In the right turn scenario, it could be also observed that the ego vehicle adjusts

its speed based on the motion of its leading vehicle. However, we note that most of the

simulations of the same scenario are similar. As discussed at the beginning of this section,

strong interactions between vehicles are rare cases in actual driving experiences. The ego

may always follow the same trajectory, possibly with slight perturbations, regardless of the

behavior of other agent vehicles.

Table 6.6 compares the discounted summation of rewards obtained by MPDM and

8The intention of an agent is computed based on its past and initial states.
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POMCP++ with real traffic scenarios. It could be observed that POMCP++ outperforms

MPDM consistently over all scenarios. Compared to the handcrafted scenarios, this could

be due to the extra stochasticity introduced by the learned traffic model.

Running Time

Finally, we comment on the running time of POMCP++ in the autonomous driving appli-

cation. In this section, we demonstrate that POMCP++ is able to make sensible decisions

in various scenarios, which is the goal of this work. However, it may not be sufficiently

efficient for real time usage in the current form. Each reported simulation of handcrafted

or real scenarios may take half to one hour to finish.

One obvious reason for the inefficiency is that POMCP++ is a sampling-based algo-

rithm which requires a large number of episode to generate reasonable actions. In addition,

the implementation of this work is constrained to Python. The GNN model for stochastic

traffic dynamics is implemented with PyTorch. More importantly, the toolkit9 to work with

the nuScenes dataset is only available in Python. Unfortunately, Python is known to be

inefficient with unparallelizable loops that show up frequently not only in POMCP++ but

also in the hybrid A* algorithm. In the future work, we may need to transfer the current

implementation to C++ in order to better assess the running time of POMCP++ in the

autonomous driving application and make further improvements.

9https://github.com/nutonomy/nuscenes-devkit
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(a) (b)

(c) (d)

(e) (f)

Figure 6.11: Simulations of POMCP++ with handcrafted scenarios. The Red and yellow
boxes represent the ego and the agent vehicles. More transparent boxes represent vehicle
poses further into the history. The green dots mark the local goal waypoint. The top to
bottom rows are the (a, b) unprotected left turn, (c, d) lane change, and (e, f) braking
scenarios respectively. The left column (a, c, e) shows the cases with obliging agent vehicles
for each scenario, while the right column (b, d, f) shows the cases with disobliging agent
vehicles.
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Figure 6.12: Example simulation results of POMCP++ in (first row) lane following, (second
row) lane change, (third row) left turn, and (fourth row) right turn real traffic scenarios.
For each scenario, the traffic starts from the same initial state but may rollout differently
due to the learned stochastic traffic models. See Figure 6.11 for the annotations in the
figures.

113



Chapter 7

Conclusions and Future Work

In this dissertation, we address the stochastic motion planning problem by modeling it

as POMDPs and propose two solutions with theoretical justifications featuring different

optimization regimes. We demonstrate the effectiveness of the proposed solutions in various

applications through comparisons with other applicable approaches.

In Ch. 3, we propose an improved version of iLQG. It is a gradient-based method that

can directly work with systems having nondifferentiable models and sparse informative

measurements. The improvement promises a wider range of applications compared to the

original work on iLQG (van den Berg et al., 2012b). In Ch. 5, we show an application of the

proposed solution in navigating a mobile robot with range sensors, which is not previously

possible with the original iLQG algorithm.

Ch. 4 presents POMCP++, a sampling-based general POMDP solver. The proposed

solution overcomes the degeneracy issue of MCTS when working with continuous mea-

surement spaces. Meanwhile, with sufficient simulation episodes and samples, we show that

POMCP++ is a valid Monte Carlo control algorithm alternating unbiased policy evaluation

and policy improvement. Again, we apply POMCP++ in navigating a mobile robot with

range sensors in Ch. 5. In this application, we show that POMCP++ is able to consistently

outperform other similar works.
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In addition to the navigation application in Ch. 5 where the dominant uncertainty

comes from the robot itself, we show the application of POMCP++ in autonomous driving

in Ch. 6 featuring uncertainty from the external environment. In this work, we propose a

data-driven model for the stochastic traffic dynamics in the form of a general motion model,

where we explicitly model the intention of human drivers. Through comparisons with other

similar works, we show the superior performance of POMCP++, which is able to compose

intelligent high-level behaviors with motion primitives. To our best knowledge, this is the

first work that applies a full POMDP solution to navigate a self-driving car in a general

setting. This work might also be the first to close the loop between motion planning and

data-driven traffic models.

In the following, we propose future research directions in hard constraints, solution

efficiency and system modeling for stochastic motion planning problems.

Hard Constraints

In both proposed solutions in this dissertation, we assume the task can be sufficiently

modeled with an objective function. However, hard constraints might be necessary for

certain applications and robotic platforms. The hard constraints may be on the control

input due to dynamical limitations or on the belief for safety and reliability considerations.

The latter is often known as risk-aware (Pereira et al., 2013) or chance-constrained (Vitus

and Tomlin, 2011a) motion planning.

Incorporating such constraints transfers iLQG into a constrained nonlinear program-

ming (Nocedal and Wright, 2006), which is notoriously challenging to solve. It might be

promising to look for reasonable additional structures on the problem formulation which

may lead to efficient and reliable convergence of the solution. On the other hand, hard

constraints on control and belief can be incorporated into POMCP++ more easily with

careful selection of motion primitives and sufficient number of samples to approximate the

underlying belief. However, it still remains as an important question to determine the num-
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ber of samples adaptively so that the constraints can be satisfied with high confidence while

maintaining low computation burden.

Solution Efficiency

Another limitation of the proposed solutions lies with their runtime complexity. Neither of

the work is sufficiently efficient to be applied for real time purposes1. This is simply because

controlling the stochastic belief dynamics, or stochastic process in general, in an optimal

way is genuinely hard.

Fortunately, the optimality of a control policy is not often of critical concern in practical

applications. In order to improve efficiency, we may draw insights from the framework of

controlling stochastic physical dynamics in practice, which consists of a “planner” and a

“controller” as shown in Figure 1.3. The planner generates a reference trajectory, while

the controller ensures the trajectory is being closely followed. Given the closeness2 between

the target and current state, the task of the controller might be relatively easy in terms of

computation since constraints and objective functions are often no longer of concern.

In the case of controlling stochastic belief dynamics, we may expect the planner to

generate a belief reference trajectory possibly assuming a deterministic belief dynamics.

Such a planner might already exist given the literature assuming maximum likelihood mea-

surements (Kopitkov and Indelman, 2019; Patil et al., 2014). Developing a spatiotemporal

stationary “belief controller”, on the other hand, is challenging, which might require in-

depth understanding of the underlying belief space and the corresponding belief dynamics.

If successful, it might revolutionize the existing practical frameworks applied in relevant

applications.

1Although iLQG optimizes for control policies offline which can then be deployed online efficiently, it
may not meet the real time requirement if replanning is necessary.

2The closeness is not necessarily defined with Euclidean space, but any sensible metric adapted to the
state space under consideration.
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System Modeling

In addition to developing algorithms, system modeling is also of crucial importance since

they are tightly coupled into motion planning algorithms for making predictions.

In Ch. 5, we consider the application of navigating a mobile robot in a known envi-

ronment. For more applications, however, robots are operated in unknown environments.

Modeling the belief dynamics for such applications requires the solution of Simultaneous

Localization and Mapping (SLAM) (Thrun et al., 2005) problems. More challenging than

SLAM problems, it requires the joint distribution of robot state and map instead of simply

maximum a posterior estimation. Common SLAM solutions, especially ones based on op-

timization, are not sufficient for this purpose. The key to address the issue may lie with a

better map representation. The new map representation should not only lead to compact

measurement models but also efficient computation of joint distributions.

We believe the challenge of the autonomous driving application is also from modeling

the stochastic traffic dynamics. In Ch. 6, we propose a traffic model sharing the same struc-

ture as the general motion model in (1.1), so that it can be tightly coupled with planning

algorithms. However, there might be more features of traffic dynamics to be captured. For

joint predictions of all agents, samples are drawn from marginal distributions of each agent

instead of a joint distribution. As a result, the predictions might be inconsistent and lead to

collisions. It remains to be addressed how to define and generate a joint distribution for all

agents in the traffic. The proposed traffic model is also limited to only making predictions

for detected agents. It fails in capturing undetected agents which might show up in the

future and affect the ego motion at the present. The capability of the model is especially

important for scenarios like blind turning where we expect the ego vehicle to creep forward

and take a better observation of potential up-coming vehicles. The above mentioned two

limitations are not unique to this work, but exist in almost all works in the literature. It

might be important to have a consensus on traffic modeling among the community before

we could further improve motion planning for self-driving cars.
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Appendix A

Supplementary Proofs of

POMCP++

A.1 Infinitely Often Visits of Nodes

Lemma A.1. A belief action node ha will be visited i.o. given that its parent belief node h

is visited i.o. and 0 < εa < 1.

Proof. Define An as the event that ha is visited at the nth visit of h. An’s are independent

events following the definition of the action selection function in Alg. 4. Note P (An) is

lower bounded by 1/εa with 0 < εa < 1. Therefore,

∞∑
n=1

P (An) ≥ lim
n→∞

n

εa
=∞. (A.1)

Define A as the event that infinitely many An’s occur, i.e. A = lim sup
n→∞

An. We have

P (A) = 1 as a result of Borel-Cantelli lemmas (Grimmett and Stirzaker, 2020).

Lemma A.2. A belief node hz will be visited i.o. given that its parent belief action node h

is visited i.o. and εz < 0.
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Proof. Assume hz is the mth spawned child node of h. Define Zn as the independent events

that ha is visited at the nth visit of h after hz is spawned. P (Zn) with n = 1, 2, . . . is a

nonincreasing sequence since the number of child nodes of h is nondecreasing. Note P (Zn)

is lower bounded by (1− (m+ n)εz)/(m+ n− 1), which assumes new child node is added

at every visit of h. Therefore,

∞∑
n=1

P (Zn) ≥
∞∑
n=1

1− (m+ n)εz

m+ n− 1

=
∞∑
n=1

1

m+ n− 1
−
∞∑
n=1

1

(m+ n− 1)(m+ n)−εz

=

∞∑
k=m

1

k
−
∞∑
k=m

1

k(k + 1)−εz

≥
∞∑
k=m

1

k
−
∞∑
k=m

1

k1−εz .

(A.2)

Given εz < 0,
∑∞

n=1 P (Zn) =∞ following the property of p-series. We have P (lim sup
n→∞

Zn) =

1 as a result of Borel-Cantelli lemmas.

Proof of Theorem 4.1. Based on Lemma A.1 and A.2, the i.o. visit of a node in the tree

depends on the i.o. visit of its parent nodes. Therefore, all nodes are visited i.o. if the root

node is visited i.o..

Proof of Theorem 4.2. Define Sn as the independent events that a new child belief node is

spawned by h at its nth visit. The sequence P (Sn), n = 1, 2, . . . is nonincreasing, with each

P (Sn) lower bounded by (n+ 1)εz . Therefore,

∞∑
n=1

P (Sn) ≥
∞∑
n=1

(n+ 1)εz

A sufficient condition for
∑∞

n=1 P (Sn) = ∞ is −1 ≤ εz < 0 (εz < 0 is enforced to ensure

0 < (n+ 1)εz < 1), under which P (lim sup
n→∞

Sn) = 1, i.e. h spawns new child nodes i.o. .
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A.2 Unbiased policy evaluation

Lemma A.3. The discounted summation of rewards of the simulation episode is an unbiased

estimate of the value at the traversed belief nodes as N →∞ and K →∞.

Proof. Represent a simulation episode from belief node ht ∈ T as St := xt,at, zt, . . . ,

with xt sampled from bt. For the sake of notation sanity, define Xt := xt:∞, At := at:∞,

Zt := zt:∞, i.e. St = Xt, At, Zt. Then the value of the node ht under the policy π is,

Vπ(ht) =

∫
St

R(St)pπ(St)dSt. (A.3)

Recall R(St) is the discounted summation of reward of a simulation episode, pπ(St) is the

p.d.f. of St. Here and also in the following context, the subscript π in pπ(·) indicates the

p.d.f. is related to the policy π. With some application of conditional probability and

Bayes’ rule, one has,

Vπ(ht) =

∫
St

R(St)pπ(St)dSt

=

∫
St

R(St)p(Xt|At, Zt)pπ(At, Zt)dSt

=

∫
St

pπ(At, Zt)R(St)
p(Zt|Xt, At)p(Xt|At)

p(Zt|At)
dSt

=

∫
At,Zt

pπ(At, Zt)V (ht|At, Zt)dAtdZt,

(A.4)

where,

V (ht|At, Zt) =

∫
Xt

R(St)
p(Zt|Xt, At)p(Xt|At)

p(Zt|At)
dXt. (A.5)

V (ht|At, Zt) is the value of the node ht given the future measurement and action sequence.

In Alg. 4, V (ht|At, Zt) is estimated with,

Ṽ (ht|At, Zt) =
1

η

K−1∑
i=0

R(Sit)p(Zt|Xi
t , At), (A.6)
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where Xi
t is forward sampled following the given action sequence At with the initial state xit

sampled from bt. Geweke (1989) proves the validity of estimation with importance sampling

under weak assumptions1, i.e.,

Ṽ (ht|At, Zt)
a.s.−−−−−−→

as K→∞
V (ht|At, Zt), (A.7)

where
a.s.−−→ means almost surely convergence. Therefore,

∫
At,Zt

pπ(At, Zt)Ṽ (ht|At, Zt)dAtdZt
a.s.−−−−−−→

as K→∞
Vπ(ht). (A.8)

If one samples a measurement and action sequence from pπ(At, Zt), (A.8) shows Ṽ (ht|At, Zt)

is an unbiased estimate of Vπ(ht). However, in following the tree policy, (At, Zt) is sampled

from the distribution pT (At, Zt) defined implicitly by the tree T , instead of pπ(At, Zt). In

the following, we show that if new measurements are sampled i.o. from each belief-action

node in T , Ṽ (ht|At, Zt) still serves as an unbiased estimate of Vπ(ht) even though (At, Zt)

is sampled based on pT (At, Zt).

To start, consider the first action measurement pair (at, zt) in (At, Zt). Define f(·) to

be an integrable function w.r.t. the corresponding probability measure (a bounded function

defined on the sample space should suffice). Then,

E
pT (at,zt)

{f(at, zt)} =

∫
at

(
1

n

n−1∑
i=0

f(at, z
i
t)

)
pπ(at)dat

a.s.−−−−−→
as n→∞

∫
at

(∫
zt

f(at, zt)pπ(zt|at)dzt
)
pπ(at)dat

=

∫
at,zt

f(at, zt)pπ(at, zt)datdzt.

(A.9)

The first equality in (A.9) is based on how actions and measurements are selected at node

ht ∈ T in Alg. 4. Here and in the following context, we assume that n measurements are

1Briefly speaking, the four assumptions by Geweke (1989) require the proper definition of prior density
and the likelihood function, i.i.d. sample sequence, and an integrable r.v. w.r.t. posterior density. All of
the assumptions are satisfied in our problem setup.
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sampled for each belief-action node in the tree with n sufficiently large. With large n, we

can safely ignore the probability of sampling new measurements at the belief action nodes,

i.e. one of the n measurements will be selected. The a.s. convergence in (A.9) follows the

strong law of large numbers.

Mathematical induction lends itself to prove the rest of the action, measurement se-

quence. Suppose,

E
pT (at:T−1,zt:T−1)

{f(at:T−1, zt:T−1)} a.s.−−→ E
pπ(at:T−1,zt:T−1)

{f(at:T−1, zt:T−1)}. (A.10)

Note,

E
pT (at:T ,zt:T )

{f(at:T , zt:T )}

= E
pT (at:T−1,zt:T−1)

{
E

pT (aT ,zT )
{f(aT , zT ,at:T−1, zt:T−1)}

}
a.s.−−→ E

pπ(at:T−1,zt:T−1)

{
E

pT (aT ,zT )
{f(aT , zT ,at:T−1, zt:T−1)}

}
.

(A.11)

The a.s. convergence in (A.11) follows the assumption in (A.10). It is worth mentioning that

both E
pT (at:T ,zt:T )

{f(at:T , zt:T )} and E
pπ(at:T ,zt:T )

{f(at:T , zt:T )} are also bounded functions on

(at:T−1, zt:T−1). Therefore, in order to show,

E
pT (at:T ,zt:T )

{f(at:T , zt:T )} a.s.−−→ E
pπ(at:T ,zt:T )

{f(at:T , zt:T )}, (A.12)

(A.11) suggests it is suffice to have,

E
pT (aT ,zT )

{f(aT , zT ,at:T−1, zt:T−1)} a.s.−−→ E
pπ(aT ,zT )

{f(aT , zT ,at:T−1, zt:T−1)}. (A.13)

The same argument as (A.9) can be applied again to show the validity of (A.13). Recall that

the belief action nodes in T are visited i.o. and spawn new measurements i.o. as N →∞,

proved in Theorem 4.2. Therefore, Ṽ (ht|At, Zt), a bounded function, is an unbiased estimate
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of Vπ(ht) with (At, Zt) sampled from pT (At, Zt), i.e.,

E
pT (At,Zt)

{
Ṽ (ht|At, Zt)

}
a.s.−−−−−−→

as N→∞
E

pπ(At,Zt)

{
Ṽ (ht|At, Zt)

}
, (A.12),

a.s.−−−−−−→
as K→∞

E
pπ(At,Zt)

{V (ht|At, Zt)}, (A.7),

= Vπ(ht), (A.4),

(A.14)

which completes the proof.

Proof of Theorem 4.3. Given the results of Lemma A.3, it is left to show that the summation

of discounted rewards is also an unbiased estimation at the traversed belief action nodes.

Recall (4.6),

Ṽ (htat|At+1, Zt) =
1

η

K−1∑
i=0

p
(
Zt|Xi

t , At
)
R(St). (A.15)

Applying the theory of importance sampling again,

Ṽ (htat|At+1, Zt)
a.s.−−→

∫
Xt

p(Xt|At, Zt)R(St)dXt

=

∫
Xt

p(Xt|At, Zt)(r(xt,at,xt+1) + γR(St+1))dXt,

(A.16)

shows the summation of stage reward and reward-to-go. The stage reward can be simplified

to, ∫
Xt

p(Xt|At, Zt)r(xt,at,xt+1)dXt

=

∫
xt,xt+1

r(xt,at,xt+1)p(xt,xt+1|At, Zt)dxtdxt+1

=r(bt,at, bt+1).

(A.17)

With some abuse of notation, r(·) denotes both the stage reward for xt, xt+1, and its

expectation w.r.t. p(xt,xt+1|At, Zt). Meanwhile, the reward-to-go is,

∫
Xt

p(Xt|At, Zt) · γR(St+1)dXt = γṼ (htatzt|At+1, Zt+1). (A.18)
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Therefore, (A.15) can be rewritten as,

Ṽ (htat|At+1, Zt) = r(bt,at, bt+1) + γṼ (htatzt|At+1, Zt+1). (A.19)

One should be reminded that (At+1, Zt) is sampled based on pT (At+1, Zt). Then, the

expectation of Ṽ (htat|At+1, Zt) is,

E
pT (At+1,Zt)

{
Ṽ (htat|At+1, Zt)

}
= r(bt,at, bt+1) + γ

n−1∑
i=0

E
pT (At+1,Zt+1)

{
Ṽ (htatz

i
t|At+1, Zt+1)

}
a.s.−−→ r(bt,at, bt+1) + γ

n−1∑
i=0

Vπ
(
htatz

i
t

)
a.s.−−→ r(bt,at, bt+1) + γ

∫
zt

Vπ
(
htatz

i
t

)
p(zt|at)dzt

= Vπ(htat)

(A.20)

The first a.s. convergence is based on Lemma A.3, while the second is, again, from the strong

law of large numbers. Therefore, Ṽ (htat|At+1, Zt) is an unbiased estimate of Vπ(htat).

Comparing (A.6) and (A.15), one might find it striking that Ṽ (htat|At+1, Zt) is the

same as Ṽ (ht|At, Zt). The results should not be over-interpreted leading to the conclusion

that Vπ(htat) = Vπ(ht). The correct interpretation should be 1
η

∑K−1
i P (Zt|Xi

t , At)R(Sit)

serves as an unbiased estimate for both Vπ(htat) and Vπ(ht). The discomfort should be

resolved by considering that Vπ(ht) is updated (implicitly) when any of its child belief-action

nodes is visited, while updating Vπ(htat) requires htat, one child of ht, to be visited.
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Appendix B

Implementation Details of the Data-

driven Traffic Model

B.1 Graph Neural Network (GNN) Setup

The implementation of RTGNN is setup with PyTorch1. Specially, the implementation of

the GNN is based on the framework provided by PyTorch Geometric2 (Fey and Lenssen,

2019).

As introduced in Sec. 6.1.1, we consider a discretized control space for the vehicles.

The discretized acceleration space consists of 21 accelerations equally spaced from -8m/s2

to 8m/s2, while the discretized angular velocities consist of 21 angular velocities equally

spaced from -0.5rad/s to 0.5rad/s. The fixed duration of the motion primitives is set to

0.5s, which agrees with the labeling frequency of the nuScenes dataset.

To define the graph, we consider agents within a square of 50m around the ego. More

precisely, the boundaries of the square is set to be 40m ahead, 10m behind, and 25m on

both sides of the ego vehicle. Edges of the graph are introduced based on spatial proximity

with a radius of 25m. The max iterations of message passing, K in Alg. 5, is set to 2.

1https://pytorch.org/
2https://pytorch-geometric.readthedocs.io/en/latest/
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In Alg. 5, CNNm contains three layers encoding a local map of size 100 × 100 into a

vector of size 32. The three layers include 4, 8 and 16 filters with kernel size 5, 5, and 3

and stride 1. Each convolution layer is followed by relu activation and max pooling. CNNw

consists of two layers encoding the possible future states and intention of an agent of size

21 × 21 × 6 to a vector of size 32. Each layer uses 16 and 32 filters with kernel size 5 and

stride 1. In CNNw, a convolution layer is followed by leaky relu activation and max pooling.

MLPm consists of 3 layers encoding the message from a vector of dimension 70 to 16. The

number of hidden units in the first two layers of MLPm are 64 and 32. MLPq decodes the

node feature and aggregated message from a vector fo size 68 to the intention which is of

dimension 441. MLPq consists of 3 layers, the first two of which have 64 and 128 hidden

units. In total, the network consists of 94,105 parameters.

B.2 Training Setup

To define the target intention in (6.5), we set σx = σy = 5e−2m, σθ = 1.75e−2rad and

σv = 0.1m/s. As introduced in Sec. 6.1.2, each training samples accounts for four seconds

of traffic, i.e. t = 8 in (6.7) given that data are labeled at 2Hz in nuScenes. To train

the network, we use the Adam optimizer (Kingma and Ba, 2015) implemented in PyTorch

with learning rate set to 2e−3. The batch size for each training iteration is 16. We set

the maximum epochs to be 50. It takes about 10 hours to train on a desktop with an

Intel i9-9920X CPU (12 cores at 3.5GHz), 32G RAM, and a Nvidia 2080Ti GPU. With the

same hardware configuration, it takes 0.176s on average to make one four-second sample

prediction. The time required varies depending on the number of agents in the scene.

To alleviate the compounding error issue of recurrent neural networks, we apply sched-

uled sampling as in Bengio et al. (2015). Specifically, the sampling rate, the rate of using

sampled vehicle states instead of ground truth states as the input to the next step, increases

linearly from 0.0 at Epoch 10 to 0.5 at Epoch 30. The sampling rate maintains constant

otherwise.
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