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ABSTRACT

L2 DECAY OF CERTAIN BILINEAR OSCILLATORY INTEGRAL OPERATORS

Ellen T. Urheim

Philip Gressman

In this thesis, we study bilinear oscillatory integral operators of the form

Iλ(f1, f2) =

∫
M
eiλΦ(x)f1(x

1)f2(x
2)a(x)dσ(x)

where x1 := (x1, . . . , xd), x2 := (xd+1, . . . , x2d), and ρ,Φ, a are smooth functions on an open

box B1 with a compactly supported, ∂iρ nonvanishing on B1 for each i, and M := {x ∈

B1 | ρ(x) = 0}. Under an additional determinant condition that has similarities to both a

mixed Hessian condition on Φ and a Phong-Stein rotational curvature condition on ρ, we

prove that this operator has optimal L2 decay, namely that

|Iλ(f1, f2)| ≤ C|λ|−
d−1
2 ||f1||L2(Rd)||f2||L2(Rd)

The proof uses a frequency space decomposition which is a higher-dimensional analogue of

one developed in earlier work with Gressman, and applies this to the functions f1 and f2 to

generate a kernel which captures the oscillatory behavior of the phase and can be analyzed

using stationary phase arguments, among others. The constant C in the bound depends

continuously on parameters based on a,Φ, ρ, the dimension d, and the size of the support

of the integrand, and so the result is stable under small perturbations of these objects.

We then study two specific bilinear operators which have polynomial phase, and show how

the results of the main theorem can be leveraged to prove decay even when the determinant

condition in the hypothesis does not hold. We also use these examples to show that the

decay of the operator is affected by the precise way in which the determinant condition fails.
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CHAPTER 1

Introduction

1.1. Background

1.1.1. Oscillatory Integrals

The study of oscillatory integrals and oscillatory integral operators is a key area of harmonic

analysis with many connections to other fields of mathematics. An oscillatory integral can

take many forms, but a unifying feature is that the integrand is a product with an oscillating

function in the form of a complex exponential, which oscillates at a “speed,” in some sense,

that is controlled by a parameter. Often when studying oscillatory integrals, we are seeking

to quantify “smallness” of the output in terms of this speed parameter.

The prototypical example of an oscillatory integral is the Fourier transform:

F(f)(ξ) = f̂(ξ) =

∫
Rd

f(x)e−2πix·ξdx

There is a basic sense in which the Fourier transform exhibits the type of relationship between

speed of oscillation and size of output that we are looking for: the Riemann-Lebesgue Lemma

states that if f ∈ L1(Rd), then lim|ξ|→∞ |f̂(ξ)| = 0.

A major area of study in harmonic analysis is the Fourier restriction problem. This is a broad

question which asks: when can we take an Lp function f , restrict its Fourier transform to a set

S, and have this be an Lq function? (In many cases, the set S is taken to be a hypersurface.)

The Fourier restriction problem is related to other problems in harmonic analysis as well as

problems in other fields such as PDEs. A given Fourier restriction problem can also often

be viewed as an oscillatory integral problem, as the Fourier restriction operator can often

be written as the adjoint of a particular oscillatory integral operator.

Stein [32] divides oscillatory integrals into two types: oscillatory integrals of the first kind,

and oscillatory integrals of the second kind. We detail each type and list some major results
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below.

Oscillatory Integrals of the First Kind. Stein defines an oscillatory integral of the first

kind to be an integral of the form

I(λ) =

∫
eiλϕ(x)ψ(x)dx

where λ ∈ R is a parameter, ϕ is a real-valued smooth function, and ψ is complex-valued and

smooth, and usually assumed to have compact support. We seek to prove that I(λ) → 0

as λ → ∞, and specifically to determine how fast I(λ) decays with respect to λ. A key

property of oscillatory integrals of the first kind is that the limiting factor determining this

decay is the portion of the integral where ϕ(x) is stationary, i.e., where ∇ϕ(x) = 0. In other

words, if ∇ϕ(x) ̸= 0 on the support of ψ, then I(λ) decays rapidly. This is the principle

of non-stationary phase, which we state and give a proof for below, as a similar type of

argument is used in a proposition later on in the proof of Theorem 1. We will state and

prove the result for d = 1, but the result holds in any dimension.

Proposition (Principle of Non-Stationary Phase [32, p. 331]). Let ϕ and ψ be smooth

functions on R, with ψ compactly supported in [a, b] and ϕ′(x) ̸= 0 on [a, b]. Then for any

N ≥ 0,

|I(λ)| ≤ CN,ϕ,ψ|λ|−N

Proof. Define the following differential operator for functions on [a, b]:

Df(x) :=
1

iλϕ′(x)
· df
dx

and note that its transpose is

tDf(x) =
−d
dx

(
f(x)

iλϕ′(x)

)

By construction, for any x ∈ [a, b] and any N ≥ 0, we have DN (eiλϕ) = eiλϕ. Thus, by
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integration by parts, since ψ smooth and supp (ψ) ⊂ [a, b] implies ψ(a) = ψ(b) = 0, we have

I(λ) =

∫ b

a
eiλϕ(x)ψ(x)dx =

∫ b

a
DN (eiλϕ(x))ψ(x)dx =

∫ b

a
eiλϕ(x)(tD)N (ψ(x))dx (⋆)

Then, because |(tD)N (ψ(x))| = |λ|−N |(D̃)N (ψ(x))| where

D̃f(x) :=
−d
dx

(
f

ϕ′(x)

)
,

we can complete the proof by applying the triangle inequality to (⋆) and using the fact that

ϕ smooth and ϕ′(x) ̸= 0 on [a, b] implies that |ϕ′(x)| ≥ c for some c > 0 on [a, b].

If we do not necessarily have that ∇ϕ ̸= 0 on the support of the integral, we can still obtain

estimates for I(λ). One such result is the van der Corput lemma, which doesn’t necessarily

require any knowledge about whether ϕ is stationary or non-stationary. The van der Corput

lemma says that if the absolute value of the kth derivative of the phase is uniformly bounded

below by a positive constant, then I(λ) is O(|λ|−1/k).

Proposition (van der Corput lemma [32, p. 332]). Suppose ϕ is real-valued and smooth in

(a, b), and that |ϕ(k)(x)| ≥ 1 for all x ∈ (a, b). Then

∣∣∣∣∫ b

a
eiλϕ(x)dx

∣∣∣∣ ≤ ck|λ|−1/k

provided k ≥ 2 or k = 1 and ϕ′(x) is monotone. The bound ck is independent of ϕ and λ.

There is also an analogue of the van der Corput lemma for higher dimensional cases.

Proposition (van der Corput lemma analogue [32, p. 342]). Suppose ψ is smooth and

supported in the unit ball, and suppose ϕ is a real-valued function such that for some multi-

index α with |α| = k > 0, we have |∂αϕ| ≥ 1 throughout the support of ψ. Then

∣∣∣∣∫
Rd

eiλϕ(x)ψ(x)dx

∣∣∣∣ ≤ ck(ϕ) · |λ|−1/k · (||ψ||L∞ + ||∇ψ||L1)
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Finally, another useful result for oscillatory integrals of the first kind deals with the case

when the phase has a single nondegenerate critical point, i.e., ∇ϕ(x0) = 0 but the Hessian

of ϕ at x0 is invertible. This result is due to Hörmander [21].

Theorem (Hörmander [21, p. 220]). Suppose K ⊂ Rd is compact, X ⊃ K is open, and

N > 0 is an integer. If ψ ∈ C2N
0 (K), ϕ ∈ C3N+1(X), Imϕ ≥ 0 in X, Imϕ(x0) = 0,

∇ϕ(x0) = 0, det[H(ϕ)(x0)] ̸= 0, ∇ϕ ̸= 0 in K \ {x0}, then

∫
eiλϕ(x)ψ(x)dx =

(
2πi

λ

)d/2
eiλϕ(x0)(detH(ϕ)(x0))

−1/2
∑
k<N

λ−kLkψ +O(|λ|−N )

where Lk is a differential operator of order 2k acting on ψ at x0.

The definition of Lk and details on the constants in the term O(|λ|−N ) can be found in [21].

One way of viewing this result is that it gives us an asymptotic expansion for the λ decay

of I(λ); it essentially tells us that I(λ) ∼ λ−d/2
∑
ckλ

−k.

Oscillatory Integrals of the Second Kind. For Stein, oscillatory integrals of the second

kind are oscillatory integral operators, which he separates into three different types. The

first type is an operator from functions on Rd to functions on Rd of the form

(Tλf)(ξ) =

∫
Rd

eiλΦ(x,ξ)ψ(x, ξ)f(x)dx, ξ ∈ Rd

The second type is an operator from functions on Rd−1 to functions on Rd of the form

(Tλf)(ξ) =

∫
Rd−1

eiλΦ(x,ξ)ψ(x, ξ)f(x)dx, ξ ∈ Rd

where here, if we have the special case Φ(x, ξ) = x · ξ + ϕ(x)ξd where x ∈ Rd−1 and

ξ = (ξ1, . . . , ξd−1), then the adjoint T ∗
λ is essentially the operator which restricts the Fourier

transform of a function on Rd to the surface xn = ϕ(x) in Rd.

The third type is a Fourier integral operator, which has connections to the study of Radon
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transforms, but is less directly relevant to our results in this thesis, so we omit its description

here.

For the first type of operator above, we have another result from Hörmander [20] which

guarantees decay, provided a “mixed Hessian” condition is satisfied. This condition is related

to one of the assumptions in the hypothesis of Theorem 1.

Theorem (Hörmander [20]). Let a ∈ C∞
0 (R2d), let Φ ∈ C∞(R2d) be real-valued, and for

λ > 1 define

Tλf(x) =

∫
eiλΦ(x,y)a(x, y)f(y)dy

for f ∈ C∞
0 (Rd). If det ∂2Φ/∂x∂y ̸= 0 in supp a and 1 ≤ p ≤ 2, 1/p+ 1/p′ = 1, then

||Tλf ||Lp′ (Rd) ≤ Cλ−d/p
′ ||f ||Lp(Rd)

We note that with p = p′ = 2, this becomes

||Tλf ||L2(Rd) ≤ Cλ−d/2||f ||L2(Rd)

Outside of oscillatory integrals of the first and second kind, there has been significant work

done to understand the decay properties of multilinear oscillatory integrals. Phong, Stein,

and Sturm studied multilinear oscillatory integral operators with polynomial phase in [30]

and proved that decay was tied to the reduced Newton polyhedron of the phase. Carbery

and Wright also studied multilinear oscillatory integral operators on measurable real-valued

functions in [3] while proving a higher dimensional analogue of the van der Corput lemma.

Soon after, Christ, Li, Tao, and Thiele [7] introduced a general framework for studying

multilinear oscillatory integral operators:

Λλ(f1, . . . , fn) =

∫
Rd

eiλΦ(x)
n∏
j=1

fj(πj(x))a(x)dx

5



where λ ∈ R is a parameter, Φ : Rd → R is a measurable real-valued function, d ≥ 2, and

a ∈ C1
0 (Rd) is compactly supported. Each πj denotes orthogonal projection from Rd to a

linear subspace Vj ⊂ Rd of dimension κ < d, and fj : Vj → C is locally integrable with

respect to Lebesgue measure on Vj . The authors were interested in finding conditions on P

and Vj that allowed them to prove an inequality of the form

|Λλ(f1, . . . , fn)| ≤ C(1 + |λ|)−ϵ
n∏
j=1

||fj ||L∞(Vj).

for ϵ > 0 (bounds with other exponents on the fj can then be obtained through a simple

interpolation argument). Note that for any function P , this inequality is automatic with

ϵ = 0. The authors studied polynomial phases P and were able to prove results for κ = d−1

and κ = 1, provided that the polynomial phase P had bounded degree and satisfied a

nondegeneracy condition with respect to the subspaces Vj .

More recent progress in this area includes work by Christ and Silva [9], Deng, Shi, and Yan

[11], Dong, Maldague, and Villano [12], Gilula, Gressman, and Xiao [13], Greenblatt [14],

Gressman and Xiao [19], Niepla, O’Neill, and Zeng [24,25], Xiao [38], and Zeng [39].

1.1.2. Radon Transforms and Rotational Curvature

We can define the classical Radon transform for measurable functions on Rd to be the

following

Rf(ω, t) =

∫
x·ω=t

f(x)dσ(x), ω ∈ Sd−1, t ∈ R

where Sd−1 is the unit sphere in Rd and dσ(x) is Lebesgue measure on the hyperplane

{x ∈ Rd |x · ω = t}. Oberlin and Stein fully determined the boundedness properties of the

Radon transform in [26]:

Theorem (Oberlin and Stein, [26]). For d ≥ 2,

||Rf ||Lq
ωL

r
t
≤ Cp,q,r||f ||Lp

x

6



holds if and only if 1 ≤ p < d
d−1 , q ≤ p′, and 1

r = d
p − d + 1, where p′ is the dual exponent

to p (1p +
1
p′ = 1).

(The above uses the definition ||Rf ||Lq
ωL

r
t
= (
∫
Sd−1 ||Rf(ω, ·)||qLr(R)dσ(ω))

1/q.)

The Radon transform can be thought of as a type of geometric averaging operator, as it is

averaging the input function f over a family of submanifolds of Rd. Consider a more general

geometric averaging operator or Radon-like transform of the form

Tf(x) =

∫
Mx

f(y)dσx(y)

whereMx = {y | ρ(x, y) = 0} for ρ a real-valued and smooth function defined on U ⊂ Rd×Rd,

and dσx is Lebesgue measure on Mx. Note that if z ∈ Rd and Ψr(z) := z21 + · · · + z2d − r,

then setting ρ(x, y) = Ψr(x− y) means that

Tf(x) =

∫
∂Br(x)

f(y)dσx(y)

i.e., T is just a classical spherical averaging operator. In general, T can be shown to be

bounded from L2(Rd) to L2
d−1
2

(Rd) [33], provided that the function ρ defining the submani-

folds Mx satisfies a condition known as rotational curvature.

Rotational curvature was introduced by Phong and Stein in [27–29], in part to study singular

Radon transforms, which can be defined as being operators of the form:

T̃ f(x) =

∫
Mx

f(y)Kx(y)dσx(y) (⋆)

where x → Mx is any smooth mapping from Rd to smooth submanifolds, Kx(y) is a

Calderón-Zygmund kernel with singularity at x = y, and dσx(y) is any measure on Mx

with smooth density.

There are several equivalent ways of defining rotational curvature, but we will use the def-

inition that most closely relates to the setting of the results of this thesis, as there are
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connections between this definition and the hypothesis of our first main result, Theorem 1.

(The definition below is also the one used in the proof of the result for the Radon-like

transform T defined above.)

Suppose ρ(x, y) is a real-valued and smooth function defined on U ⊂ Rd × Rd. We define

the rotational curvature of ρ to be the determinant of the following block matrix

J(ρ) = det

 ρ(x, y) ∂ρ(x, y)/∂yj

∂ρ(x, y)

∂xk

∂2ρ(x, y)

∂xk∂yj


We say that ρ has rotational curvature if J(ρ) ̸= 0 when ρ = 0. Note that this is equivalent

to defining

J(ρ) = det

 0 ∂ρ(x, y)/∂yj

∂ρ(x, y)

∂xk

∂2ρ(x, y)

∂xk∂yj


and requiring J(ρ) ̸= 0 when ρ = 0.

To help understand this definition, we give two examples which come from Stein [32]. For

these examples, we consider the setting where we have a mapping from Rd to hypersurfaces,

defined by

x 7→Mx := {y ∈ Rd | ρ(x, y) = 0}

where ρ is smooth and real-valued as above. If ρ has rotational curvature, i.e., J(ρ) ̸= 0

when ρ = 0, then this immediately implies that ∇yρ(x, y) ̸= 0 when ρ = 0 (the first row

of an invertible matrix cannot vanish), and therefore the surfaces Mx are locally smooth

submanifolds and vary smoothly with x.

First, consider the case where Mx is given by Mx = x+M0, i.e., all of the hypersurfaces Mx

are given by some translate of a fixed hypersurface. One way that this might happen is if we

have ρ(x, y) = ψ(y − x), so that M0 = {y |ψ(y) = 0}. If y ∈ M0, then ∇yρ(x, y) = ∇yψ(y)

8



is a normal vector to M0 at y, and the requirement that J(ρ) ̸= 0 when ρ = 0 is equivalent

to requiring that the (n− 1)× (n− 1) symmetric matrix given by restricting

(
∂2ψ

∂yi∂yj

)
1≤i,j≤n

to the the tangent plane to M0 at y (the plane perpendicular to ∇yψ(y)) is invertible. Thus

in this case, ρ having rotational curvature is equivalent to M0 having nonvanishing Gaussian

curvature.

Second, consider the case where ρ(x, y) = x · y + c, for some constant c ̸= 0. If we calculate

J(ρ), we see that J(ρ) = c by the first definition and J(ρ) = −x · y by the second definition.

In either case, J(ρ) = c ̸= 0 whenever ρ = 0, so ρ has rotational curvature. In this situation,

each hypersurface Mx is just an affine hyperplane, so has zero Gaussian curvature, but the

idea is that ρ still has rotational curvature because the hypersurfaces Mx rotate as x varies.

After the introduction of rotational curvature by Phong and Stein to study singular Radon

transforms, a key development was made by Christ, Nagel, Stein, and Wainger [8], who

used vector field techniques to define a curvature condition on the submanifolds Mx which

implies Lp boundedness for the singular Radon transform defined as above in (⋆). Around

the same time, Christ [6] studied an operator that averages a function along translates of

the curve γ(t) := (t, t2, . . . , td), and established optimal Lp −Lq mapping behavior (outside

of two endpoint cases, in which restricted weak-type estimates are obtained), by iterating

the operator and using geometric and combinatorial techniques now known as the method

of refinements. Tao and Wright [36] then built on the techniques in these papers to study

Radon-like transforms which average over smooth families of curves, and also obtained

optimal Lp − Lq bounds up to endpoints.

Other key developments were due to Stovall [35], who generalized the result of Tao and

Wright, moving from a bilinear result to a multilinear result, and Gressman [17], who de-

veloped an alternate idea of curvature (similar to but distinct from rotational curvature),
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which he used to study Radon-like transforms of intermediate dimension and obtain sharp

Lp-improving estimates up to endpoints. Finally, other notable papers in this area include

works by Bak [1], Choi [4, 5], Dendrinos, Laghi, and Wright [10], Erdoğan and Oberlin [2],

Gressman [15,16], Lee [23], Iosevich and Sawyer [22], Seeger [31], and Stovall [34], although

this is by no means an exhaustive list.

1.2. Definitions and Assumptions

In this thesis, we will be looking at bilinear operators of the form

Iλ(f1, f2) =

∫
M
eiλΦ(x)f1(x

1)f2(x
2)a(x)dσ(x) (1.1)

where

• x1 := (x1, . . . , xd) and x2 := (xd+1, . . . , x2d)

• f1, f2 are measurable functions on Rd

• ρ,Φ are smooth and real-valued functions on B1 := (−b1, b1)2d

• a is smooth and compactly supported in B0 ⊂ B1 with B0 := [−b0, b0]2d

• The gradient of ρ is nonvanishing on B1 and M = {x ∈ B1 | ρ(x) = 0}

• dσ is Lebesgue measure on M

Furthermore, we assume that |λ| is bounded below, specifically that:

|λ|−1/2 ≤ min {b1 − b0, 1} (1.2)

and that |∂iρ| is uniformly bounded below by a positive constant on B1 for i = 1, . . . , 2d.

Throughout this thesis, we will use the notation a ≲ b to mean that there exists some

constant c such that a ≤ cb, with c depending only on the admissible positive constants d,

b0, b1, Cρ, C ′
ρ, CΦ, Ca, and the constant c appearing in (1.7). Here, d is the dimension,
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b0 and b1 are the constants from the definition of (1.1), and the remaining constants are

defined as follows:

max
|α|≤2d+2

sup
x∈B0

|∂αa(x)| ≤ Ca (1.3)

max
|α|≤2d+2

sup
x∈B1

|∂αΦ(x)| ≤ CΦ (1.4)

max
|α|≤2d+3

sup
x∈B1

|∂αρ(x)| ≤ Cρ (1.5)

min
1≤i≤2d

inf
x∈B1

|∂iρ(x)| ≥ (C ′
ρ)

−1 (1.6)

1.3. Main Results

The first result we will prove is a bilinear version of the main result in [18]. (The main result

in [18] is discussed in Section 1.4.) This bilinear version is analogous to the multilinear

version, with the main difference being in the formulation of the determinant condition

(1.7) in the hypothesis.

Theorem 1. Suppose that Iλ(f1, f2) is the operator defined by (1.1), satisfying all of the

conditions (1.2), (1.3), (1.4), (1.5), and (1.6). Suppose also that there exists a constant

c > 0 such that for every x ∈ B1 and every (ω1, ω2) ∈ S1, we have

∣∣∣∣∣∣∣∣∣∣∣∣∣
det



∂x1ρ(x) ∂2x1xd+1
(ω1Φ(x) + ω2ρ(x)) · · · ∂2x1x2d(ω1Φ(x) + ω2ρ(x))

...
...

. . .
...

∂xdρ(x) ∂2xdxd+1
(ω1Φ(x) + ω2ρ(x)) · · · ∂2xdx2d (ω1Φ(x) + ω2ρ(x))

0 ∂xd+1
ρ(x) · · · ∂x2dρ(x)



∣∣∣∣∣∣∣∣∣∣∣∣∣
≥ c (1.7)

Then for any f1, f2 ∈ L2(Rd), we have

|Iλ(f1, f2)| ≲ |λ|−
d−1
2 ||f1||L2(Rd)||f2||L2(Rd) (1.8)

and this decay is optimal in the sense that for any λ, there exist f1, f2 ∈ L2(Rd) such that

|Iλ(f1, f2)| ≥ c′|λ|−
d−1
2 ||f1||L2(Rd)||f2||L2(Rd), with c′ independent of |λ|.
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The determinant condition (1.7) in the hypothesis of Theorem 1 is only used in the final

stages of the proof, so we can leverage much of the machinery of the proof of Theorem 1

to prove results for two specific operators which satisfy all of the hypotheses of Theorem 1

except for the determinant condition (1.7). The first operator fails the determinant condition

only on the plane x2 = 0.

Theorem 2. Suppose that Ĩλ(f1, f2) is the operator defined as follows:

Ĩλ(f1, f2) =

∫
M
eiλ(

1
2
x22x4+x3x5)f1(x

1)f2(x
2)a(x)dσ(x) (1.9)

where f1, f2 are measurable functions on R3, B0, B1 are boxes as in (1.1), |λ| satisfies (1.2),

a is smooth and compactly supported in B0, and M = {x ∈ B1 | ρ(x) = 0} for

ρ(x) = −1
2x

2
2x5 + x3x4 + x1 + x2 + x3 + x4 + x5 + x6

Then for any f1, f2 ∈ L2(R3), we have

|Ĩλ(f1, f2)| ≲ |λ|−1/2 log |λ| ||f1||L2(R3)||f2||L2(R3) (1.10)

The second operator fails the determinant condition only on the plane x2 + x5 = 0, and

despite the similarities to the first operator, we get a slightly better result for the second

operator, with a slightly simpler proof.

Theorem 3. Suppose that ˜̃Iλ(f1, f2) is the operator defined as follows:

˜̃Iλ(f1, f2) =

∫
M
eiλ(x2x4+x2x3x5+

1
2
x3x25)f1(x

1)f2(x
2)a(x)dσ(x) (1.11)

where f1, f2 are measurable functions on R3, B0, B1 are boxes as in (1.1), |λ| satisfies (1.2),

a is smooth and compactly supported in B0, and M = {x ∈ B1 | ρ(x) = 0} for

ρ(x) = 1
2x

2
2x5 +

1
2x2x

2
5 − x3x4 − 1

2x
2
3x5 + x1 + x2 + x3 + x4 + x5 + x6
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Then for any f1, f2 ∈ L2(R3), we have

| ˜̃Iλ(f1, f2)| ≲ |λ|−1/2 ||f1||L2(R3)||f2||L2(R3) (1.12)

Note that for both of these specific operators, we are assuming that B1 = (−b1, b1)6 is not

too large (for example, b1 < 1), so that we have |∂iρ| uniformly bounded below on B1, per

the general requirement for these operators.

1.4. Motivation

In earlier work with Gressman [18], we proved the following theorem for multilinear oscilla-

tory integral operators.

Theorem 4. Suppose I ′λ(f1, . . . , f2d) is a multilinear operator on measurable functions fj

on R, given by

I ′λ(f1, . . . , f2d) =

∫
M
eiλΦ(x)

 2d∏
j=1

fj(xj)

 a(x)dσ(x) (1.13)

where we have the same definitions and assumptions as in the definition of (1.1). Suppose

that λ, a,Φ, ρ satisfy the bounds (1.2), (1.3), (1.4), (1.5), and (1.6). Further suppose that

there exists some c > 0 such that for every x ∈ B1 and every (ω1, ω2) ∈ S1, the indices

{1, . . . , 2d} can be partitioned into two sets {i1, . . . , id} and {j1, . . . , jd} such that

∣∣∣∣∣∣∣∣∣∣∣∣∣
det



∂i1ρ(x) ∂2i1j1(ω1Φ(x) + ω2ρ(x)) · · · ∂2i1jd(ω1Φ(x) + ω2ρ(x))

...
...

. . .
...

∂idρ(x) ∂2idj1(ω1Φ(x) + ω2ρ(x)) · · · ∂2idjd (ω1Φ(x) + ω2ρ(x))

0 ∂j1ρ(x) · · · ∂jdρ(x)



∣∣∣∣∣∣∣∣∣∣∣∣∣
≥ c

Then for all f1, . . . , f2d ∈ L2(R),

|I ′λ(f1, . . . , f2d)| ≲ |λ|−
d−1
2

2d∏
j=1

||fj ||L2(R)
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A natural next step is to ask whether a bilinear version of this theorem is possible. The

answer is yes: this is Theorem 1. The proof of Theorem 1 is similar in structure and content

to the proof of the multilinear result, although small but pervasive changes are required

to deal with the fact that for the bilinear operator, there is now a fixed partition of the x

variables into x1 := (x1, . . . , xd) and x2 := (xd+1, . . . , x2d).

Once we have proved Theorem 1, another natural next step is to ask what happens when the

determinant condition (1.7) fails. It turns out that if the determinant condition (1.7) fails,

the way in which it fails, i.e., the nature of the zeroes of the determinant, greatly influences

the decay of the resulting operator. To see this, consider the following two examples.

Example. An operator in dimension d = 3 which fails the determinant condition is

Φ(x) = x1x4 + x2x5

ρ(x) = x1 + x2 + x3 + x4 + x5 + x6

as then the determinant would be

det



1 ω1 0 0

1 0 ω1 0

1 0 0 0

0 1 1 1


= ω2

1

and this vanishes only at (ω1, ω2) = (0,±1) ∈ S1. We now show that this exhibits optimal

decay as a type of Fourier transform. To make the following estimates simpler, we assume

that the amplitude function a has the form a(x) = a1(x1, x2, x3)a2(x4, x5, x6). First, note
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that

∫
M
eiλ(x1x4+x2x5)f(x1, x2, x3)g(x4, x5, x6)a(x)dσ(x)

=

∫
x3+x6=0

eiλ(x1x4+x2x5)f̃(x1, x2, x3)g̃(x4, x5, x6)ã(x)dσ(x)

when we make the change of variables x1 + x2 + x3 → x3 and x4 + x5 + x6 → x6 (keeping

all other variables unchanged), as this has Jacobian determinant 1. Here, f̃(x1, x2, x3) =

f(x1, x2, x3 − x1 − x2) and g̃(x4, x5, x6) = g(x4, x5, x6 − x5 − x4), and by abuse of notation

we will drop the tildes going forward, as ||f̃ ||L2 = ||f ||L2 and ||g̃||L2 = ||g||L2 . From here,

we do another change of variables:

∫
M
eiλ(x1x4+x2x5)f(x1, x2, x3)g(x4, x5, x6)a(x)dσ(x)

=

∫
x3+x6=0

eiλ(x1x4+x2x5)f(x1, x2, x3)g(x4, x5, x6)ã(x)dσ(x)

=
√
2

∫
R5

eiλ(x1x4+x2x5)f(x1, x2, x3)g(x4, x5,−x3)˜̃a(x)dx

where x := (x1, x2, x3, x4, x5) and we’re using the change of variables x6 = Ψ(x) = −x3

which has Jacobian determinant (1 + |∇Ψ(x)|2)1/2 =
√
2. Going forward, we treat x3 as a

parameter, and use Fubini’s Theorem and the definition of the Fourier transform:

∫
M
eiλ(x1x4+x2x5)f(x1, x2, x3)g(x4, x5, x6)a(x)dσ(x)

=
√
2

∫
R5

eiλ(x1x4+x2x5)f(x1, x2, x3)g(x4, x5,−x3)˜̃a(x)dx

=
√
2

∫
R

[∫
R4

eiλ(x1x4+x2x5)f(x1, x2;x3)g(x4, x5;−x3)˜̃a(x)dx1dx2dx4dx5
]
dx3

=
√
2

∫ [ ∫ [∫
eiλ(x1x4+x2x5)f(x1, x2;x3)ã1(x1, x2;x3)dx1dx2

]
· g(x4, x5;−x3)ã2(x4, x5;−x3)dx4dx5

]
dx3

=
√
2

∫ [∫
(̂fã1)(λx4, λx5;x3)g(x4, x5;−x3)ã2(x4, x5;−x3)dx4dx5

]
dx3
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By (̂fã1)(·, ·;x3) we mean the situation in the center brackets on the fourth line above; a

Fourier transform of fã1 in only the first two variables. To finish, we apply Cauchy-Schwarz,

another change of variables, and Plancherel’s Theorem:

∣∣∣∣ ∫
M
eiλ(x1x4+x2x5)f(x1, x2, x3)g(x4, x5, x6)a(x)dσ(x)

∣∣∣∣
≈
∣∣∣∣∫ [∫ (̂fã1)(λx4, λx5;x3)g(x4, x5;−x3)ã2(x4, x5;−x3)dx4dx5

]
dx3

∣∣∣∣
≤
(∫ [∫

|(̂fã1)(λx4, λx5;x3)|2dx4dx4
]
dx3

)1/2

||gã2||L2(R3)

≲ |λ|−1

(∫ [∫
|(̂fã1)(x4, x5;x3)|2dx4dx4

]
dx3

)1/2

||g||L2(R3)

= |λ|−1||fã1||L2(R3)||g||L2(R3)

≲ |λ|−1||f ||L2(R3)||g||L2(R3)

Note also that this decay is optimal; if, without loss of generality, we assume a(0) is positive

and a(x) is real on a neighborhood of x = 0, and if we let

f(x1, x2, x3) = χ|·|<c1|λ|−1(x1)χ|·|<c2|λ|−1(x2)χ|·|<c3(x3)

g(x4, x5, x6) = χ|·|<c4(x4)χ|·|<c5(x5)χ|·|<c6(x6)

then as long as c1, . . . , c6 are small enough depending only on a (as well as on the specific

choice of ρ,Φ for this example), we can guarantee that Re[eiλ(x1x4+x2x5)] ≥ 1
2 and a(x) ≥

a(0)/2 > 0 on the support of the integrand. This implies

∣∣∣∣∣
∫
M
eiλ(x1x4+x2x5)f(x1, x2, x3)g(x4, x5, x6)a(x)dσ(x)

∣∣∣∣∣
≥
∣∣∣∣Re [∫

M
eiλ(x1x4+x2x5)f(x1, x2, x3)g(x4, x5, x6)a(x)dσ(x)

]∣∣∣∣
≥ C

∫
M
f(x1, x2, x3)g(x4, x5, x6)dσ(x)

= C ′|λ|−2 = C ′′|λ|−1||f ||L2(R3)||g||L2(R3)
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for some constant C ′′ that is independent of |λ|. Thus the decay of |λ|−1 proved above for

this operator is sharp; this operator cannot have decay greater than |λ|−1. (Very similar

arguments to the one above are explained in more detail at the end of Section 4.1 and in

Section 4.2.1.)

Example. As another example for d = 3, we can also consider the operator

Φ(x) = 0

ρ(x) = x1x4 + x2x5 + x1 + x2 + x3 + x4 + x5 + x6

as then the determinant would be

det



1 + x4 ω2 0 0

1 + x5 0 ω2 0

1 0 0 0

0 1 + x1 1 + x2 1


= ω2

2

which vanishes only at (ω1, ω2) = (±1, 0) ∈ S1. As Φ = 0, there is no λ dependency in the

integral, so the operator cannot have any λ decay.

Later in this thesis, we will deal with two more specific examples, also for d = 3, where the

determinant in the condition (1.7) has zeroes that only depend on the x variables: these are

the results Theorem 2 and Theorem 3. In both of these cases, where the zeroes are relatively

simple, we show how the machinery developed in the proof of Theorem 1 can be used to

prove decay on regions outside of the determinant’s zeroes.

One thing to note is that despite the fact that we are unable to prove optimal decay for the

specific operators in this thesis, we will prove that both operators decay at a rate of at least

|λ|−1/2 log |λ| and that both operators cannot decay at a rate greater than |λ|−3/4, which

makes them distinct from the examples above.
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CHAPTER 2

Frequency Space Decomposition

In this section we will first develop a decomposition of frequency space Rd, and then define

a transformation which decomposes a function in frequency space.

The following results are heavily adapted from the d = 1 case outlined in earlier work

with Gressman [18]. The structure of the decomposition requires only minor modifications

to translate the d = 1 case, while the transformation has a slightly different construction

that retains all the key properties that the d = 1 transformation has, but uses smooth cutoff

functions to localize on the frequency side as opposed to characteristic functions. This change

gives us the option of more easily relating the x variables in the original integral with f1(x1)

and f2(x
2) to the y variables in the integral of the transformed functions V f1(y1, ξ1) and

V f2(y
2, ξ2). This is done via a Schwartz tails argument, which we briefly outline at the end

of this section.

2.1. Construction of the Decomposition

For each n ∈ Z>0, define a cube Bn by the following.

Bn :=

[
−n(n+ 1)

2
,
n(n+ 1)

2

]d

Now consider what happens when we subdivide Bn into (n + 1)d smaller cubes with side

length n in every direction. If we take the union of the interior smaller cubes (that is, all

smaller cubes that do not intersect the boundary of Bn), then this union is exactly the cube

Bn−1. Let Bn be the collection of all cubes in the subdivision of Bn which are not contained

in Bn−1, and define Q =
⋃
n Bn.

For our purposes, it is helpful to create a frequency space division where there is a fixed

smallest side length of the cubes. To this end, define Qn0(n0+1)/2 to be the collection of boxes

which either belong to the subdivision of Bn0 or are in Bn for n > n0, and for any |λ| ≥ 2,
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Figure 2.1: An illustration of the frequency space decomposition Qλ of R2 for λ = 10; the
smallest cubes have side length n0 = 4.
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define Qλ to be equal to Qn0(n0+1)/1 for n0 the maximal integer satisfying n0(n0+1)/2 ≤ |λ|.

We now prove a result that gives an estimate on the side length of a box in the decomposition

Qλ. In the proposition below, and in the rest of this thesis, we denote by |Q| the measure

of the cube Q. Note that this means that |Q|1/d is the side length of the cube Q.

Proposition 1. Let ξ ∈ Rd satisfy ξ ∈ Q ∈ Qλ. Then

1
2 |Q|2/d ≤ max{|λ|, 3|ξ|} ≤ 3d1/2|Q|2/d (2.1)

Proof. As above, let n0 be the maximal integer satisfying n0(n0 + 1)/2 ≤ |λ|.

Case 1. Consider first the case that |λ| > 3|ξ|. Then

|ξ| < 1

3
|λ| < 1

3
· (n0 + 1)(n0 + 2)

2
=

1

3

[
n0(n0 + 1)

2
+

2(n0 + 1)

2

]
≤ n0(n0 + 1)

2

Thus ξ ∈ Bn0 , and therefore by construction of the decomposition we must have |Q|1/d = n0,

so:

|λ| ≥ n(n0 + 1)

2
≥ n20

2
= 1

2 |Q|2/d

|λ| < (n0 + 1)(n0 + 2)

2
= 1

2 [n
2
0 + 3n0 + 2] ≤ 3n20 = 3|Q|2/d

Since |λ| > 3|ξ|, we have max{|λ|, 3|ξ|} = |λ|, and therefore this case gives us the chain of

inequalities:

1
2 |Q|2/d ≤ max{|λ|, 3|ξ|} ≤ 3|Q|2/d (⋆)

Case 2. Next, suppose |λ| ≤ 3|ξ| and also ξ ∈ Q with |Q|1/d = n0. By construction of the

decomposition, this means ξ ∈ Bn0 , and therefore |ξi| ≤ n0(n0 + 1)/2 for all i. Using these
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inequalities, we get:

3|ξ| ≥ |λ| ≥ n0(n0 + 1)

2
≥ n20

2
= 1

2 |Q|2/d

3|ξ| = 3

(
d∑
i=1

|ξi|2
)1/2

≤ 3d1/2 · n0(n0 + 1)

2
= 3

2d
1/2[n20 + n0] ≤ 3d1/2n20 = 3d1/2|Q|2/d

Summarizing, since in this case 3|ξ| = max{|λ|, 3|ξ|},

1
2 |Q|2/d ≤ max{|λ|, 3|ξ|} ≤ 3d1/2|Q|2/d (⋆)

Case 3. Finally, suppose |λ| ≤ 3|ξ| and ξ ∈ Q with |Q|1/d = n > n0. By construction of the

decomposition, this implies ξ ∈ Bn \ Bn−1, and therefore by definition of the boxes Bn, all

components ξi of ξ = (ξ1, . . . , ξd) satisfy |ξi| ≤ n(n+1)
2 , and there is at least one component

ξj satisfying |ξj | ≥ (n−1)n
2 . Using this information, we can deduce the inequalities we need

for 3|ξ|:

3|ξ| ≥ 3|ξj | ≥ 3 · (n− 1)n

2
≥ 3 · n

2
· n
2
= 3

4 |Q|2/d

3|ξ| = 3

(
d∑
i=1

|ξi|2
)1/2

≤ 3d1/2 · n(n+ 1)

2
≤ 3d1/2 · n2 = 3d1/2|Q|2/d

where the third inequality in the first line above follows because n > n0 ≥ 1 and hence

(n− 1) ≥ n/2. Again, summarizing, this gives us

3
4 |Q|2/d ≤ max{|λ|, 3|ξ|} ≤ 3d1/2|Q|2/d (⋆)

To combine the three starred inequalities from the three exhaustive and mutually exclusive

cases, we take the minimum of the lower bounds, and the maximum of the upper bounds,

giving us our desired result.

This result highlights a key feature of how the decomposition Qλ scales: at small frequencies,
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the side lengths of the boxes are all the same and are all comparable to |λ|1/2, and at large

frequencies, the side lengths of the boxes begin to grow and are comparable to the square

root of their distance to the origin.

2.2. Construction of the Transformation

Before we define the transformation, we first introduce the frequency cutoff functions and

note a few of their key properties.

Lemma 1. Let ϕ be a positive radial mollifier on Rd supported in B1/16(0). Let ψ =

χ[−1/2,1/2]d ∗ ϕ, and for any cube Q ∈ Qλ with center ξQ and volume |Q|, define ψQ(ξ) :=

ψ(|Q|−1/d(ξ − ξQ)). Then ψQ has the following properties:

1. ψQ = χQ ∗ ϕQ, where ϕQ(ξ) = |Q|−1ϕ(|Q|−1/dξ)

2. ψQ is smooth

3. supp ψQ ⊂ 9
8Q

4. ψQ ≡ 1 on 7
8Q

5. ||ψQ||L∞ = 1

where for any cube Q and any positive number r, rQ is the cube with the same center as Q

and side length r|Q|1/d.

Proof. Property 2 follows from property 1 and the fact that ϕ is a mollifier, and properties

3 and 4 follow from property 1 and the fact that ϕQ is a mollifier supported in B|Q|1/d/16(0).

Property 5 follows from properties 1 and 4 and Young’s convolution inequality, because

||χQ||L∞ = 1 and as a mollifier ||ϕQ||L1 = 1. It suffices to prove property 1, which is just a
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statement about the compatibility of convolution with scaling and translation:

ψQ(ξ) = ψ(|Q|−1/d(ξ − ξQ))

=

∫
χ[−1/2,1/2]d(|Q|−1/d(ξ − ξQ)− y)ϕ(y)dy

=

∫
χ[−1/2,1/2]d(|Q|−1/d(ξ − |Q|1/dy − ξQ))ϕ(y)dy

=

∫
χQ(ξ − |Q|1/dy)ϕ(y)dy

=

∫
χQ(ξ − z) · |Q|−1ϕ(|Q|−1/dz)dz

= χQ ∗ ϕQ(ξ)

Now we define the transformation.

Lemma 2. Let φ ∈ C∞
c (Rd) be such that φ̂ is bounded below on [− 9

16 ,
9
16 ]

d for any Q ∈ Qλ,

let ξQ be the center of Q, let |Q| be the volume of Q, and define

φQ(x) := |Q|1/2e2πi⟨ξQ,x⟩φ(|Q|1/dx)

For any ξ ∈ Rd in the interior of Q, let φξ := φQ, and for any ξ ∈ Rd on the boundary of

Q ∈ Qλ, let φξ := 0. Then there exists a dense subspace of L2(Rd) and a bounded map V

from this subspace into L2(Rd × Rd) such that

f(x) =

∫
Rd×Rd

V f(y, ξ)φξ(x− y)dydξ (2.2)

for all f in the dense subspace.

Proof. Let the dense subspace be functions with Fourier transform in C∞
c (Rd). Let ψQ be

defined as in Lemma 1, and let

ω =
∑
Q∈Qλ

ψQ
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Note that the sum is everywhere nonzero and everywhere finite, as the support condition in

Lemma 1 guarantees that ψQ is only supported in the union of Q and its neighbors (more

precisely, Q and any cube Q′ which intersects 9
8Q). Finally, define ψ̃Q := ψQ/ω so that∑

Q∈Qλ
ψ̃Q = 1, i.e., the functions ψ̃Q form a partition of unity. Then

f̂ =
∑
Q∈Qλ

f̂ ψ̃Q

and as the sum is finite at any given point, and all functions in the sum are Schwartz

functions, we get the following equality on the physical side.

f =
∑
Q∈Qλ

F−1
[
f̂ ψ̃Q

]

Since the Fourier transform of φ is bounded below on [− 9
16 ,

9
16 ]

d and each ψ̃Q is supported

in 9
8Q, if we let

T̂Qf(ξ) := f̂(ξ)
ψ̃Q(ξ)

φ̂(|Q|−1/d(ξ − ξQ))

then the operators TQ are uniformly bounded:

||TQf ||L2 = ||T̂Qf ||L2

=

(∫
|f̂(ξ)|2

|ψ̃Q(ξ)|2

|φ̂(|Q|−1/d(ξ − ξQ))|2
dξ

)1/2

≤
(∫

|f̂(ξ)|2 1

C2
φ

dξ

)1/2

= C−1
φ ||f ||L2

where Cφ is just the lower bound of φ on [− 9
16

9
16 ]

d in the hypothesis, and is independent of

Q. Note also that the operators {TQ}Q∈Qλ
are almost orthogonal in the sense of Stein [32],

as

||T ∗
QTQ′ ||L2→L2 ≤


C−2
φ Q = Q′ or Q adjacent to Q′

0 else
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Also, since

F [TQf ∗ φQ] (ξ) = T̂Qf(ξ)φ̂Q(ξ)

= f̂(ξ)
ψ̃Q(ξ)

φ̂(|Q|−1/d(ξ − ξQ))
· |Q|−1/2φ̂(|Q|−1/d(ξ − ξQ))

= |Q|−1/2f̂(ξ)ψ̃Q(ξ)

we have the identity

∫
(TQf)(y)φQ(x− y)dy = |Q|−1/2F−1

[
f̂ ψ̃Q

]
(x)

for every Q ∈ Qλ and every f in the dense subspace. Now, for every ξ ∈ Rd, define

V f(y, ξ) := |Q|−1/2(TQf)(y) (2.3)

Then V f(y, ξ) is a Schwartz function in y and constant in ξ within the interior of any

Q ∈ Qλ. Also,

∫
Rd×Rd

V f(y, ξ)φξ(x− y)dydξ =
∑
Q∈Qλ

∫
Rd×Q

V f(y, ξ)φξ(x− y)dydξ

=
∑
Q∈Qλ

∫
Rd×Q

|Q|−1/2(TQf)(y)φQ(x− y)dydξ

=
∑
Q∈Qλ

|Q|
∫
Rd

|Q|−1/2(TQf)(y)φQ(x− y)dy

=
∑
Q∈Qλ

|Q|1/2
∫
Rd

TQf(y)φQ(x− y)dy

=
∑
Q∈Qλ

F−1
[
f̂ ψ̃Q

]
(x)

= f(x)

25



by earlier observations. Finally, note that

∫
Rd×Rd

|V f(y, ξ)|2dydξ =
∑
Q∈Qλ

∫
Rd×Q

|V f(y, ξ)|2dydξ

=
∑
Q∈Qλ

∫
Rd×Q

|Q|−1|TQf(y)|2dydξ

=
∑
Q∈Qλ

∫
Rd

|TQf(y)|2dy

=
∑
Q∈Qλ

∫
Rd

∣∣∣∣∣f̂(ζ) ψ̃Q(ζ)

φ̂(|Q|−1/d(ζ − ζQ))

∣∣∣∣∣
2

dζ

≤
∑
Q∈Qλ

1

C2
φ

∫
Rd

|f̂(ζ)ψ̃Q(ζ)|2dζ

≤
∑
Q∈Qλ

1

C2
φ

∫
Rd

|f̂(ζ)|2ψ̃Q(ζ)dζ

= C−2
φ ||f̂ ||2L2

= C−2
φ ||f ||2L2 (2.4)

The third-to-last line follows from the fact that 0 ≤ ψ̃Q(ζ) ≤ 1 per Lemma 1 and the

construction of ψ̃Q from ψQ. The second-to-last line follows from the fact that as a member

of the dense subspace, f̂ is compactly supported, and therefore the sum is finite and can be

exchanged with the integral to apply the fact that {ψ̃Q}Q∈Qλ
is a partition of unity.

One nice feature of the function φξ is that in addition to being supported in a box with side

length proportional to the inverse of the side length of Q, it also gains roughly a factor of

the side length of Q every time we take a derivative.

Proposition 2. Suppose that in addition to the hypotheses of Lemma 2, φ is supported

in [−1/(2d1/4
√
3), 1/(2d1/4

√
3)]d. For ξ ∈ Rd, let r = (max{|λ|, 3|ξ|})−1/2. Then for any
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multi-index α, there exists a constant Cα depending only on α and φ such that

|∂α(e−2πi⟨ξ,x⟩φξ(x))| ≤


Cαr

−d/2−|α| x ∈ [−r/2, r/2]d

0 else
(2.5)

Proof. If φ is supported in [−1/(2d1/4
√
3), 1/(2d1/4

√
3)]d, then φξ is supported in

[−1/(2d1/4|Q|1/d
√
3), 1/(2d1/4|Q|1/d

√
3)]d. Furthermore, the inequality (2.1) implies that

|Q|−1/d ≤ rd1/4
√
3, and so the support of φξ is contained in [−r/2, r/2]d. By the product

rule,

|∂α(e−2πi⟨ξ,x⟩φξ(x))| = ||Q|1/2∂α(e2πi⟨ξQ−ξ,x⟩φ(|Q|1/dx))|

≤ |Q|1/2
∑
β≤α

cα,β|2πi(ξQ − ξ)|β|Q|(|α|−|β|)/d|(∂α−βφ)(|Q|1/dx)|

≲ |Q|1/2+|α|/d
∑
β≤α

cα,β
|ξQ − ξ|β

|Q||β|/d
|(∂α−βφ)(|Q|1/dx)|

≲α,φ |Q|1/2+|α|/d

≲α,φ r
−d/2−|α|

where the second-to-last line follows from the fact that ξ ∈ Q and therefore |ξQ,j − ξj | ≤

|Q|1/d/2 for any index j ∈ {1, . . . , d}, and the last line follows from the fact that |Q|−1/d ≈ r

due to the inequality (2.1).

Before we proceed, we expand slightly on the comment at the beginning of the section:

using smooth cutoff functions to localize in frequency space (as opposed to characteristic

functions) allows us to more easily translate between localization on the frequency side and

localization on the physical side.

As an example, consider a Schwartz function f on Rd. Let η be a smooth cutoff function

with η = 1 on |x| < ϵ and η = 0 on |x| > 2ϵ, and let f̃(x) = f(x)(1 − η(x)), so that f̃ ≡ 0

on |x| < ϵ. We will now sketch how one can show that applying the transformation in some
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sense preserves the fact that f̃ is “small” near x = 0, by getting a (small) upper bound on

|V (f̃)(y, ξ)χ|y|<ϵ/2|.

Using the definition of the transformation, we note that

V (f̃)(y, ξ) = |Q|−1/2(TQf̃)(y)

= |Q|−1/2F−1

(
ˆ̃
f(·) ·

ψ̃Q(·)
φ̂(|Q|−1/d(· − ξQ))

)
(y)

=: |Q|−1/2f̃ ∗ ǧξ(y)

where ǧξ(y) = F−1[gξ](y) and

gξ(ζ) =
ψ̃Q(ζ)

φ̂(|Q|−1/d(ζ − ξQ))
=

ψQ(ζ)(∑
{Q′ adj. Q} ψQ′(ζ)

)
φ̂(|Q|−1/d(ζ − ξQ))

with the second equality coming from the definition of ψ̃Q and the support conditions on ψQ.

Here, the sum in the denominator is over cubes Q′ that are adjacent to Q, more precisely

cubes Q′ that intersect the slightly expanded cube 9
8Q.

Now, define gξ0(ζ) = gξ(|Q|1/dζ + ξQ), so that gξ0(ζ) is gξ translated and scaled to make

the numerator become our base function from Lemma 1, ψ(ζ) = ξ[−1/2,1/2]d ∗ ϕ. That is, we

have

gξ0(ζ) =
ψ(ζ)(∑

{Q′ adj. Q} ψQ′(|Q|1/dζ + ξQ)
)
φ̂(ζ)

One then shows by the quotient rule and properties of ψ,φ (with some effort) that for any

multi-index α and any ξ, we have ||∂αgξ0 ||L1 ≤ Cα,φ,ψ, for some C that depends only on

∂βψ, ∂γ(φ̂) for β, γ ≤ α, along with dimensional constants. Importantly, Cα can be chosen

to be independent of ξ and |Q|. By properties of the Fourier transform, this implies that

|ǧξ(y)| ≲k
|Q|

(1 + |Q|1/d|y|)k
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for any non-negative integer k, with k = |α| in the above reasoning. Recall also that (2.1)

tells us that |Q|1/d ≈ max{|λ|1/2, |ξ|1/2}. Putting everything together, we have

|V f̃(y, ξ)χ|y|<ϵ/2| =
∣∣∣χ|y|<ϵ/2|Q|−1/2f ∗ ǧξ(y)

∣∣∣
≤ χ|y|<ϵ/2|Q|−1/2

∫
|f̃(y − z)| · |ǧξ(z)|dz

≲ χ|y|<ϵ/2|Q|1/2
∫
|y−z|>ϵ

|f̃(y − z)|
(1 + |Q|1/d|z|)k

dz

≤ |Q|1/2||f̃ ||L∞(Rd)

∫
|z|>ϵ/2

dz

(1 + |Q|1/d|z|)k

where the fourth line follows from the third because the integrand is non-negative and

because |y − z| > ϵ and |y| < ϵ/2 imply |z| > ϵ/2 by the triangle inequality. Note also

that in the last line above, we could use Hölder’s inequality with different exponents to

introduce a different Lp norm on f̃ in the upper bound; here we have chosen the L∞ norm

for simplicity’s sake.

All that remains is to bound the integral in the last line above. Simplifying the denominator

and changing variables to polar coordinates gives us that

∫
|z|>ϵ/2

dz

(1 + |Q|1/d|z|)k
≤ |Q|−k/d

∫
|z|>ϵ/2

dz

|z|k
≲ |Q|−k/dϵd−k

provided k > d. Combining this with the above, we see

|V f̃(y, ξ)χ|y|<ϵ/2| ≲ |Q|1/2−k/dϵd−k||f̃ ||L∞(Rd)

= |Q|(d−2k)/2dϵd−k||f̃ ||L∞(Rd)

≈ (max{|λ|, |ξ|})(d−2k)/4 ϵd−k||f̃ ||L∞(Rd)

provided k > d. As long as ϵ is not too small in terms of λ, we can take k large to get an

upper bound that is as “small” as we like, in terms of both ξ decay and λ decay.
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CHAPTER 3

Rapid Decay Cases

In the original multilinear version of Theorem 1, the decomposition is applied to each of the

2d single-variable L2 functions and the kernel of the resulting operator is analyzed using, in

part, the stationary phase results that follow. There are regions where this kernel can be

shown to exhibit rapid decay without using the determinant condition in the hypothesis.

All of these kernel estimates and rapid decay results translate to the case of a bilinear

operator on L2(Rd) functions with only minor modifications. The following results and

proofs are adapted heavily from the results in [18].

3.1. Stationary Phase

In this section, we restate several results from [18], as they are used in the proofs in the

following sections, and outline the key points of their proofs.

Lemma 3. For each positive integer N , there is a constant CN such that for every smooth

manifold M with measure dσ of smooth positive density, every pair (φ,ψ) of CN real-valued

functions on M with ψ compactly supported, and every nonzero complex number K,

∣∣∣∣∫ eiφψdσ

∣∣∣∣ ≤ CN
|K|N

N∑
j=0

∫
|(X∗)jψ|

[
|Xφ−K|N−j +

N−j∑
ℓ=2

|Xℓφ|
N−j

ℓ

]
dσ, (3.1)

where X is any CN vector field on M and X∗ is the first-order differential operator dual to

X.

The proof begins by applying a type of stationary phase argument (similar in concept to

the argument outlined in Section 1.1.1) with integration by parts and a differential operator

that when applied to ψ in the integral generates a multiple of the original integral. One

can then obtain an expression for N th powers of this differential operator, and apply the

inequality for arithmetic and geometric means to get the desired result.
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The next result is not a stationary phase result, but a version of the simple size inequality for

the integral of a bounded function of compact support, translated so that it can be applied

to the integral over a smooth manifold of a bounded function of compact support.

Proposition 3. Suppose that M ⊂ B1 := (−b1, b1)2d is the zero set of a function ρ which

satisfies the inequalities (1.5) and (1.6) and that f is a measurable function on B1 supported

in a product of intervals I := I1 × · · · × I2d. Then for any j0 ∈ {1, . . . , 2d},

∣∣∣∣∫
M
fdσ

∣∣∣∣ | ≲ ||f ||L∞(M)

2d∏
j=1
j ̸=j0

|Ij | (3.2)

where dσ is Lebesgue measure on M .

The main features in the proof are an application of the Implicit Function Theorem, and a

change of variables to transform the integral into an integral over standard Euclidean space

R2d−1.

Lastly, the previous two results are combined in a helpful corollary.

Corollary 1. For M as in Proposition 3 and φ, ψ, and X as in Lemma 3, if ψ is supported

on a product of intervals I := I1× · · ·× I2d ⊂ B1 and if N is any fixed positive integer, then

∣∣∣∣∫
M
eiφψdσ

∣∣∣∣ ≲ CN |I|
|K|N |Ij0 |

N∑
k=0

||(X∗)kψ||L∞(M∩I)

[
||Xφ−K||N−k

L∞(M∩I)

+
N−k∑
ℓ=2

||Xℓφ||
N−k

ℓ

L∞(M∩I)

]
(3.3)

for any complex number K and any j0 ∈ {1, . . . , 2d}.

3.2. Kernel Estimates

As indicated earlier, we will now apply the frequency space decomposition to the functions

in our operator:

Iλ(f1, f2) =

∫
ρ=0

eiλΦ(x)f1(x
1)f2(x

2)a(x)dσ(x)
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We again emphasize that the results in this subsection and the following subsection still

hold in general terms and only require the assumptions in the definition of the operator

(1.1) along with (1.2), (1.3) (1.4), (1.5), and (1.6).

When we apply the frequency space decomposition, i.e., we use the identity (2.2), we get

Iλ(f1, f2) =

∫
R2d×R2d

I(y, ξ)f1(y1, ξ1)f2(y2, ξ2)dydξ

where above, we are somewhat abusing notation by renaming fj(yj , ξj) := V fj(y
j , ξj), but

there is no issue in doing this because per Lemma 2, ||V fj ||L2(Rd×Rd) ≲ ||fj ||L2(Rd). The

kernel here is

I(y, ξ) :=
∫
M
eiλΦ(x)φξ1(x

1 − y1)φξ2(x
2 − y2)a(x)dσ(x) (3.4)

Before proceeding, we first reiterate some notation that will be used going forward. For each

ξ ∈ R2d, write ξ1 := (ξ1, . . . , ξd) and ξ2 := (ξd+1, . . . , ξ2d), let rj := (max{|λ|, 3|ξj |})−1/2

(for j = 1, 2), and let r = min{r1, r2}. Note that by assumption and by (2.5), each φξj is

supported in [−rj/2, rj/2]d, so we must have xj − yj ∈ [−rj/2, rj/2]d. Also note that in

the integral I(y, ξ) we are only integrating over points x ∈ supp a ⊂ B0. Combining these

two observations with the condition (1.2), we have that for any k = 1, . . . , 2d, |xk − yk| ≤

maxj rj ≤ |λ|−1/2 ≤ b1 − b0, and |xk| ≤ b0, which, along with the triangle inequality, shows

that I(y, ξ) is supported in B1 × R2d.

Next, we will apply the results of the previous subsection to get a preliminary estimate on

the size of the kernel I(y, ξ). We will be using the smooth vector fields Xi defined as follows

for i = 1, . . . , 2d.

Xi = ∂i −
∂iρ

|∇ρ|2
2d∑
j=1

(∂jρ)∂j (3.5)

The result that follows is adapted from a multilinear version in [18].

Proposition 4. Let N ≤ 2d + 2 be a positive integer. Assuming (1.2), (1.3), (1.4), (1.5),
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and (1.6), we have

|I(y, ξ)| ≲

1 +
r2

maxj rj

(
2d∑
i=1

|Xi(λΦ+ 2πξ · x)|y|2
)1/2

−N

r−1
j0
r
d/2
1 r

d/2
2 (3.6)

for j0 = 1, 2. Also, if I(y, ξ) ̸= 0 then |ρ(y)| ≲ maxj rj.

Proof. If we first use the simple size estimate (3.2), we get

|I(y, ξ)| =
∣∣∣∣∫
M
eiλΦ(x)φξ1(x

1 − y1)φξ2(x
2 − y2)a(x)dσ(x)

∣∣∣∣
≲ ||eiλΦφξ1(· − y1)φξ2(· − y2)||L∞(M)r

d
1r
d
2r

−1
j0

≲ r
d/2
1 r

d/2
2 r−1

j0
(3.7)

because each φξj is supported in a product of d intervals of length rj and ||φξj ||L∞ ≲ r
−d/2
j

by (2.5).

Next, we rewrite I(y, ξ) to pull out expressions that match the left hand side of (2.5):

I(y, ξ) =
∫
M
ei(λΦ(x)+2πξ·x)

e−2πiξ·ya(x)

2∏
j=1

e−2πiξj ·(xj−yj)φξj (x
j − yj)


︸ ︷︷ ︸

=:ay,ξ(x)

dσ(x)

and use ay,ξ(x) to denote the function in brackets above. We will apply the stationary phase

and size estimate in Corollary 1 with ψ = ay,ξ, φ = λΦ(x) + 2πξ · x, and X = r̃Xi, where

r̃ := r2/maxj rj and i is any index in {1, . . . , 2d}. This gives

|I(y, ξ)| ≲ CNr
d
1r
d
2

|K|Nrj0

N∑
k=0

||(r̃X∗
i )
kay,ξ||L∞

[
||r̃Xi(λΦ+ 2πξ · x)−K||N−k

L∞ +

N−k∑
ℓ=2

||(r̃Xi)
ℓ(λΦ+ 2πξ · x)||(N−k)/ℓ

L∞

] (3.8)
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for any K ̸= 0,K ∈ C, and where the L∞ norm is taken over

M ∩ supp{φξ1(· − y1)φξ2(· − y2)} ⊂M ∩
[
y + [−r1/2, r1/2]d × [−r2/2, r2/2]d

]
=:M ∩ Iy,ξ

Now, we begin simplifying the right hand side of (3.8). First, we can calculate X∗
i g for an

arbitrary function g:

∫
Xifg =

∫ ∂if − ∂iρ

|∇ρ|2
2d∑
j=1

(∂jρ)(∂jf)

 g
=

∫ (∂if)g − ∂iρ

|∇ρ|2
2d∑
j=1

(∂jρ)(∂jf)g


=

∫ −f∂ig + f

2d∑
j=1

∂j

(
∂iρ

|∇ρ|2
(∂jρ)g

)
=

∫
f

−∂ig + 2d∑
j=1

∂iρ

|∇ρ|2
∂jρ∂jg + g

2d∑
j=1

∂j

(
∂iρ∂jρ

|∇ρ|2

)
And thus

X∗
i g = −∂ig +

2d∑
j=1

∂iρ

|∇ρ|2
∂jρ∂jg + g

2d∑
j=1

∂j

(
∂iρ∂jρ

|∇ρ|2

)
. (3.9)

By the product rule and quotient rule, X∗
i g is a linear combination of g and ∂jg for j =

1, . . . , 2d with coefficients that are polynomials in |∇ρ|−2 and the first and second derivatives

of ρ. Thus (X∗
i )
kg will be a linear combination of ∂αg for multiindices |α| ≤ k, with

coefficients that are polynomials in |∇ρ|−2 and ∂βρ for multiindices |β| ≤ k + 1, as the

coefficients are differentiated each time we apply X∗
i .

With all this in mind, we now find an estimate for (r̃X∗
i )
kay,ξ, where we recall the vector

fields Xi are given by (3.5) and r̃ = r2/maxj rj . By the reasoning above, (X∗
i )
kay,ξ will be

a linear combination of ∂αay,ξ for |α| ≤ k with coefficients that are polynomials in |∇ρ|−2

and ∂βρ for |β| ≤ k + 1. By the initial assumptions (1.5) and (1.6) on ρ, these coefficients
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are bounded by uniform constants, so applying the triangle inequality gives

|(r̃X∗
i )
kay,ξ| ≲

∑
|α|≤k

|r̃∂αay,ξ| (3.10)

By the product rule, triangle inequality, and (2.5), we have for any given multiindex α,

|∂αay,ξ| ≤
∑
γ≤α

cγ,α|∂α−γa| · |∂γ(φξ1(· − y1)φξ2(· − y2)|

≲
∑
γ≤α

r
−d/2
1 r

−d/2
2 r−|γ| (3.11)

because r = min{r1, r2} and thus r−|γ| is an upper bound for the additional negative powers

of r1, r2 which come from differentiating φξ1 , φξ2 a combined total of |γ| times. This then

gives us

|r̃k∂αay,ξ| ≲ r
−d/2
1 r

−d/2
2

∑
γ≤α

r−|γ|r̃k ≲ r
−d/2
1 r

−d/2
2 (3.12)

if |α| ≤ k, because γ ≤ α, r̃ = r2/maxj rj ≤ r, and r ≈ min{|λ|−1/2, |ξ1|−1/2, |ξ2|−1/2} ≲ 1

by the assumption (1.2) that |λ| ≥ 1. Combining (3.10), (3.11), and (3.12), we get

||(r̃X∗
i )
kay,ξ||L∞ ≲ r

−d/2
1 r

−d/2
2 (3.13)

Next, consider the term

N−k∑
ℓ=2

||(r̃X∗
i )
ℓ(λΦ+ 2πξ · x)||(N−k)/ℓ

L∞

We have |(r̃Xi)
ℓ(λΦ)| = r̃ℓ|λ| · |Xℓ

iΦ| ≲ r̃ℓ|λ| because of the uniform bounds on |∇ρ|−1,

the derivatives of ρ, and the derivatives of Φ. Similarly, we have |(r̃Xi)
ℓ(2πξ · x)| ≲ r̃ℓ|ξ|.

Since r ≈ min{|λ|−1/2, |ξ1|−1/2, |ξ2|−1/2}, we have r−2 ≈ max{|λ|, |ξ1|, |ξ2|}, and thus r−2 ≈
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|λ|+ |ξ|, as

max{|λ|, |ξ1|, |ξ2|} ≤ |λ|+ |ξ1|+ |ξ2| ≤ 2(|λ|+ |ξ|)

max{|λ|, |ξ1|, |ξ2|} ≥ 1
3(|λ|+ |ξ1|+ |ξ2|) ≳ |λ|+ |ξ|

Thus,

N−k∑
ℓ=2

||(r̃Xi)
ℓ(λΦ+ 2πξ · x)||(N−k)/ℓ

L∞ ≲
N−k∑
ℓ=2

(
r̃ℓ(|λ|+ |ξ|)

)(N−k)/ℓ

≲
N−k∑
ℓ=2

(r̃ℓr−2)(N−k)/ℓ

≲ 1 (3.14)

since ℓ ≥ 2 and again r̃ ≤ r ≲ 1. Combining (3.8), (3.13), and (3.14) gives us so far that

|I(y, ξ)| ≲ rd1r
d
2

|K|Nrj0

N∑
k=0

r
−d/2
1 r

−d/2
2

[
||r̃Xi(λΦ+ 2πξ · x)−K||N−k

L∞ + 1
]

=
r
d/2
1 r

d/2
2

|K|Nrj0

N∑
k=0

[
||r̃Xi(λΦ+ 2πξ · x)−K||N−k

L∞ + 1
]

(3.15)

and this holds for any i = 1, . . . , 2d, any j0 = 1, 2, and any K ̸= 0 in C.

To finish, for each choice of λ, y, and ξ, we will pick K accordingly and show that we get

the desired inequality. For any λ, y, ξ, and i, define

Ki := r̃Xi(λΦ(x) + 2πξ · x)|y

K := Kj for the minimum j satisfying |Kj | = max
i

|Ki|

If |K| ≤ 1, then

1 +
r2

maxj rj

(
2d∑
i=1

|Ki|2
)

≲ 1 +

(
2d∑
i=1

|K|2
)1/2

≲ 1
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and so if N ≥ 0, (3.7) immediately implies

|I(y, ξ)| ≲ r
d/2
1 r

d/2
2 r−1

j0

1 +
r2

maxj rj

(
2d∑
i=1

|Ki|2
)1/2

−N

which is exactly the desired result. So suppose instead that |K| ≥ 1. We turn now to

estimating the expression in the sum in (3.15). Recall that for ||r̃Xi(λΦ+2πξ ·x)−K||N−k
L∞

we are taking the L∞ norm over M ∩ Iy,ξ = M ∩
[
y + [−r1/2, r1/2]d × [−r2/2, r2/2]d

]
, so

let x ∈M ∩ Iy,ξ and pick i = j for the minimum j satisfying |Kj | = maxi |Ki|. Then

|r̃Xj(λΦ(x) + 2πξ · x)−K| = |r̃Xj(λΦ(x) + 2πξ · x)− r̃Xj(λΦ(x) + 2πξ · x)|y|

≤ r̃ [|λ||(XjΦ)(x)− (XjΦ)(y)|+ 2π|Xj(ξ · x)−Xj(ξ · x)|y|]

(3.16)

By the Mean Value Theorem and the assumptions (1.4), (1.5), and (1.6) on the derivatives

of Φ and ρ,

|(XjΦ)(x)− (XjΦ)(y)| ≤ |∇(XjΦ)(c)||x− y|

≲ |x− y|

≲ max{|x1 − y1|, |x2 − y2|}

≲ max
j
rj (3.17)

In the first step, c is some point on the line segment between x and y, and the second to
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last step just follows from the fact that (a2 + b2)1/2 ≈ max{|a|, |b|}. Similarly,

|Xj(ξ · x)−Xj(ξ · x)|y| =

∣∣∣∣∣
(
ξj −

∂jρ

|∇ρ|2
∇ρ · ξ

) ∣∣∣∣
x

−
(
ξj −

∂jρ

|∇ρ|2
∇ρ · ξ

) ∣∣∣∣
y

∣∣∣∣∣
=

∣∣∣∣( ∂jρ(x)

|∇ρ(x)|2
∇ρ(x)− ∂jρ(y)

|∇ρ(y)|2
∇ρ(y)

)
· ξ
∣∣∣∣

≤ |ξ| ·
∣∣∣∣ ∂jρ(x)|∇ρ(x)|2

∇ρ(x)− ∂jρ(y)

|∇ρ(y)|2
∇ρ(y)

∣∣∣∣
≲ |ξ||x− y|

≲ |ξ|max
j
rj (3.18)

where here the the Mean Value Theorem argument is slightly more complicated as we have a

vector-valued function, but the result is the same; to get from line 3 to line 4 above, we need

to obtain an inequality of the form |F (x)− F (y)| ≲ |x− y| for the function F : R2d → R2d

defined by F (x) = (∂jρ(x)/|∇ρ(x)|2)∇ρ(x). If the function F has components (F1, . . . , F2d)

then the Mean Value Theorem says, among other things, that for each i = 1, . . . , 2d, we

can find a point ci such that |Fi(x) − Fi(y)| = |DFi(ci) · (x − y)|. Each Fi is a monomial

in |∇ρ|−2 and first partial derivatives of ρ, so we can get a bound on |DFi(ci)| independent

of i, given our assumptions on ρ. Thus, for any i, we have an inequality of the form

|Fi(x) − Fi(y)| ≤ C|x − y| with C independent of i. Our desired inequality follows from

these inequalities, as |F (x)− F (y)| ≲ maxi{|Fi(x)− Fi(y)|}.

Combining (3.16), (3.17), and (3.18), we get

|r̃Xj(λΦ+ 2πξ · x)−K| ≤ r̃ [|λ||(XjΦ)(x)− (XjΦ)(y)|+ 2π|Xj(ξ · x)−Xj(ξ · x)|y|]

≲ r̃

[
|λ|max

j
rj + |ξ|max

j
rj

]
= r2(|λ|+ |ξ|)

≲ 1 (3.19)

because r−2 ≈ |λ| + |ξ|, as noted earlier. Going back to our main inequality (3.15) and
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applying (3.19), we now have

|I(y, ξ)| ≲ r
d/2
1 r

d/2
2

|K|Nrj0

N∑
k=0

[
||r̃Xj(λΦ+ 2πξ · x)−K||N−k

L∞ + 1
]

≲ r
d/2
1 r

d/2
2 r−1

j0
|K|−N

≲ r
d/2
1 r

d/2
2 r−1

j0
(1 + |K|)−N

= r
d/2
1 r

d/2
2 r−1

j0
(1 + max

i
|Ki|)−N

≈ r
d/2
1 r

d/2
2 r−1

j0

1 +

(
2d∑
i=1

|Xi(λΦ+ 2πξ · x)|y|2
)1/2

−N

which is the desired result. Note that the third line follows because in this case we are

assuming |K| ≥ 1 and therefore 1 + |K| ≲ |K|, and the last line follows from the definition

of Ki and the equivalence of ℓp norms on R2d.

It remains to prove the last statement that if I(y, ξ) ̸= 0 then |ρ(y)| ≲ maxj rj . Recall that

I(y, ξ) :=
∫
M
eiλΦ(x)φξ1(x

1 − y1)φξ2(x
2 − y2)a(x)dσ(x)

so (2.5) implies that if I(y, ξ) ̸= 0, then |xj − yj | ≲ rj for j = 1, 2. But then if I(y, ξ) ̸= 0,

the Mean Value Theorem gives us that

|ρ(y)| ≤ |ρ(x)|+ |ρ(y)− ρ(x)|

= 0 + |∇ρ(c) · (y − x)|

≤ |∇ρ(c)| · |y − x|

≲ max
j
rj

by similar arguments as before.
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3.3. Rapid Decay Cases

In this section, we show that in certain regions of (y, ξ) ∈ R2d × R2d, we can improve the

estimate in Proposition 4 to the point where it implies rapid decay for the operator in the

region. As a reminder, the only assumptions used up until this point and for the result in

this section are the assumptions in the definition of the operator (1.1) and the initial size

estimates (1.3), (1.4), (1.5), and (1.6) for the derivatives and support of a, Φ, and ρ.

Before introducing the specific regions in which rapid decay occurs, we first explain the

significance of the choice of vector fields Xi in the estimate (3.6) for I(y, ξ). Note that

Xi(λΦ+ 2πξ · x)|y =

∂i − ∂iρ

|∇ρ|2
2d∑
j=1

(∂jρ)∂j

 (λΦ+ 2πξ · x)
∣∣
y

=

(λ∂iΦ+ 2πξi)−
∂iρ

|∇ρ|2
2d∑
j=1

(∂jρ)(λ∂jΦ+ 2πξj)

 ∣∣∣∣∣
y

= (λ∂iΦ(y) + 2πξi)−
∂iρ(y)

|∇ρ(y)|2
∇ρ(y) · (λ∇Φ(y) + 2πξ)

and so as a vector,

(Xi(λΦ+ 2πξ · x)|y)2di=1 = (λ∇Φ(y) + 2πξ)−
(
∇ρ(y) · (λ∇Φ(y) + 2πξ)

|∇ρ(y)|2

)
∇ρ(y) (3.20)

which is exactly the projection of (λ∇Φ(y) + 2πξ) onto the space orthogonal to ∇ρ(y). In

other words, the expression

(
2d∑
i=1

|Xi(λΦ+ 2πξ · x)|y|2
)1/2

in (3.6) is essentially the length of the portion of the gradient of the phase (λ∇Φ(y) + 2πξ)

which is orthogonal to ∇ρ(y).

It turns out that there are two regions in which rapid decay occurs: the first is when r1 and r2

are not comparable, i.e., one is always bigger than the other by at least some (large enough)
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fixed multiple. The kernel I(y, ξ) experiences rapid decay on this region essentially because

the size difference between r1 and r2 ultimately implies that if, for example, r1 << r2, we

have |ξ1| >> |λ| and |ξ1| >> |ξ2|. Since the gradient of the phase is λ∇Φ + 2πξ, these

relations combined with the fact that the derivatives of Φ are controlled and all first partial

derivatives of ρ are uniformly bounded below in magnitude means that the phase cannot be

stationary with respect to the manifold M = {ρ(x) = 0}.

The other region in which rapid decay occurs is when r1 and r2 are comparable, but the

portion of the gradient of the phase (λ∇Φ(y) + 2πξ) that is parallel to ∇ρ(y) is not too

large, i.e., the portion of (λ∇Φ(y)+2πξ) that is orthogonal to ∇ρ(y) is not too small. Here,

the condition that the gradient of the phase cannot be “too close to parallel” to ∇ρ again

just means that the phase is non-stationary with respect to the manifold M .

We formalize this in the following proposition.

Proposition 5. Let Ξ1 ⊂ R2d be defined by

Ξ1 := {ξ ∈ R2d | min
j
rj ≤ cmax

j
rj} (3.21)

Then for all c > 0 small enough, depending only on admissible constants, and any fixed

N ≤ 2d+ 2, we have the following pointwise inequality for all (y, ξ) ∈ B1 × Ξ1.

|I(y, ξ)| ≲ (|λ|+ |ξ|)−(N−1)/2|λ|−d/2 (3.22)

Next, if c′ > 0 is small enough and c′′ > 0 is large enough, depending only on admissible

constants, then for any (y, ξ) ∈ B1 × (R2d \ Ξ1) satisfying |ξ| ≥ c′′|λ| and

∣∣∣∣(λ∇Φ(y) + 2πξ) · ∇ρ(y)
|∇ρ(y)|2

∣∣∣∣ ≤ c′r−2 (3.23)

we have the inequality

|I(y, ξ)| ≲ (|λ|+ |ξ|)−N/2λ−(d−1)/2 (3.24)
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Finally, if E ⊂ R2d × R2d is the set of all (y, ξ) where either (3.22) or (3.24) holds, then

∣∣∣∣∫
R2d×R2d

I(y, ξ)χE(y, ξ)f1(y1, ξ1)f2(y2, ξ2)dydξ
∣∣∣∣ ≲ |λ|−

d−1
2 ||f1||L2 ||f2||L2 (3.25)

for all fj ∈ L2(Rd × Rd).

Proof. To prove (3.22), suppose without loss of generality that r1 ≤ r2, so that r = r1 and

maxj rj = r2. If minj rj ≤ cmaxj rj , i.e., r1 ≤ cr2, then picking c < 1 means

r1 < r2 = min{|λ|−1/2, (3|ξ2|)−1/2} ≤ |λ|−1/2

so |r1| ≠ |λ|−1/2 and therefore r1 = (3|ξ1|)−1/2. Furthermore, r1 ≤ cr2 implies

(3|ξ1|)−1/2 ≤ cmin{|λ|−1/2, (3|ξ2|)−1/2} ≤ c|λ|−1/2 =⇒ |λ| ≤ 3c2|ξ1|

Next, pick k1 ∈ {1, . . . , d} and k2 ∈ {d + 1, . . . , 2d} to be the minimal indices such that

|ξk1 | = ||ξ1||∞ = ||(ξ1, . . . , ξd)||∞ and |ξk2 | = ||ξ2||∞ = ||(ξd+1, . . . , ξ2d)||∞. Then if c <

min{1,
(

π
3CΦ

√
d

)1/2
}, we have by the triangle inequality that

|∂k1(λΦ(x) + 2πξ · x)| = |λ∂k1Φ(x) + 2πξk1 |

≥ 2π|ξk1 | − |λ||∂k1Φ(x)|

≥ 2π√
d
|ξ1| − CΦ|λ|

≥ 2π√
d
|ξ1| − 3c2CΦ|ξ1|

≥ π√
d
|ξ1|

= π
3
√
d
r−2
1

for any x ∈ B1, where CΦ is the constant in the initial size assumption (1.4) on Φ, and the
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third line comes from the fact that

|ξk1 | = ||ξ1||∞ = 1√
d
(d||ξ1||2∞)1/2 ≥ 1√

d
(|ξ1|2 + · · ·+ |ξd|2)1/2 = 1√

d
||ξ1||2 = 1√

d
|ξ1|

Also by the triangle inequality,

|∂k2(λΦ(x) + 2πξ · x)| = |λ∂k2Φ(x) + 2πξk2 |

≤ |λ||∂k2Φ(x)|+ 2π|ξk2 |

≤ |λ|CΦ + 2π|ξ2|

≤ (CΦ + 2π
3 )r−2

2

≤ c2(CΦ + 2π
3 )r−2

1

Ultimately to estimate I(y, ξ) we will again apply (3.3), but this time with a different vector

field, which is why we need the above inequalities. Define the vector field

Xk1k2 =
∂k2ρ(x)√

∂k1ρ(x)
2 + ∂k2ρ(x)

2
∂k1 −

∂k1ρ(x)√
∂k1ρ(x)

2 + ∂k2ρ(x)
2
∂k2 (3.26)

which we can do without any issues as by assumption ∂iρ is bounded below for every i. By

the above inequalities and another application of the triangle inequality,

|Xk1k2(λΦ(x) + 2πξ · x)|

≥

∣∣∣∣∣ ∂k2ρ(x)√
∂k1ρ(x)

2 + ∂k2ρ(x)
2

∣∣∣∣∣ · π

3
√
d
r−2
1 −

∣∣∣∣∣ ∂k1ρ(x)√
∂k1ρ(x)

2 + ∂k2ρ(x)
2

∣∣∣∣∣ · c2(CΦ + 2π
3 )r−2

1

=

∣∣∣∣∣ 1√
1 + (∂k1ρ(x)/∂k2ρ(x))

2

∣∣∣∣∣ · π

3
√
d
r−2
1 −

∣∣∣∣∣ 1√
1 + (∂k2ρ(x)/∂k1ρ(x))

2

∣∣∣∣∣ · c2(CΦ + 2π
3 )r−2

1

≥

(
π

3
√
dCρC ′

ρ

− c2
(
CΦ +

2π

3

))
r−2
1

≳ r−2
1 (3.27)

if c > 0 is chosen small enough (and at least as small as specified earlier) depending only on
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admissible constants.

We also look at the other terms that will appear when we apply the stationary phase and

size result; for the same reasons given in the proof of Proposition 4, we have

N−k∑
ℓ=2

|(rXk1k2)
ℓ(λΦ+ 2πξ · x)|(N−ℓ)/k ≲ 1

Also, if η is a smooth function on B1 that has similar support and size inequalities as the

function ay,ξ from Proposition 4, namely, that η is supported in a box Ĩ which is a product

of 2d intervals, each of length at most r, and for |α| ≤ N , satisfies

|∂αη(x)| ≤ Cαr
−|α|

then by the same arguments as in Proposition 4, we have

|(rX∗
k1k2)

k(ay,ξη)| ≲ r
−d/2
1 r

−d/2
2

With these estimates in hand, applying (3.3) gives us

∣∣∣∣∣
∫
M
ei(λΦ(x)+2πξ·x)ay,ξ(x)η(x)dσ(x)

∣∣∣∣∣
≲
r2d−1

|K|N
N∑
k=0

||(rX∗
k1k2)

kay,ξη||L∞

[
||rXk1k2(λΦ+ 2πξ · x)−K||N−k

L∞

+

N−k∑
ℓ=2

||(rXk1k2)
ℓ(λΦ+ 2πξ · x)||(N−k)/ℓ

L∞

]

≲
r2d−1

|K|N
r
−d/2
1 r

−d/2
2

N∑
k=0

[
||rXk1k2(λΦ+ 2πξ · x)−K||N−k

L∞(M∩Iy,ξ∩Ĩ)
+ 1
]

Note the difference between the quantity on the first line and |I(y, ξ)|; we have an additional

factor of η(x) in the integral. This explains why we get a factor of r2d−1/|K|N in front of

the sum on the second line, as opposed to the factor we got when applying (3.3) in the proof
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of Proposition 4, which was rd1rd2/(|K|Nrj0); our amplitude here is ay,ξη, which is supported

in Iy,ξ ∩ Ĩ, as opposed to ay,ξ, which is supported in Iy,ξ.

Next, letK = rXk1k2(λΦ+2πξ·x)|z for any z ∈ Iy,ξ∩Ĩ. Then |K| = |rXk1k2(λΦ+2πξ·x)|z ≳

r · r−2
1 = r−1 by (3.27), and by the Mean Value Theorem and the same arguments as in

Proposition 4, we have

||rXk1k2(λΦ(x) + 2πξ · x)−K||L∞(M∩Ĩ) ≲ r2(|λ|+ |ξ|) ≲ 1

Note that it is important to multiply by η in the integral to restrict the domain of integration

to a product of 2d intervals of length r (restricted from the previous domain of Iy,ξ, which is

a product of d intervals of length r1 = r and d intervals of length r2 = maxj rj), as otherwise

this mean value argument would give us an upper bound of r ·maxj rj(|λ|+ |ξ|) here, as it

does in Proposition 4.

Combining everything that we have so far, we get the estimate

∣∣∣∣∫
M
ei(λΦ(x)+2πξ·x)ay,ξ(x)η(x)dσ(x)

∣∣∣∣ ≲ r2d−1rNr
−d/2
1 r

−d/2
1

To finish this piece, we just construct a partition of unity on Iy,ξ adapted to boxes of side

length r, where the cutoff functions η are smooth and satisfy |∂αη(x)| ≤ Cαr
−|α| uniformly.

This partition of unity can be constructed with the number of elements being at most a

constant multiple of r−2drd1r
d
2 (the volume of Iy,ξ divided by the volume of each Ĩ), so

summing over the partition and using the inequality above gives |I(y, ξ)| ≲ rN−1r
d/2
1 r

d/2
2 .

This then implies (3.22) because rj ≤ |λ|−1/2 for each j and r−2 ≈ |λ|+ |ξ|, as noted earlier.

Next, we prove (3.24). For this piece, the assumption ξ ∈ R2d \Ξ1 implies r1 ≈ r2, and thus

r̃ ≈ r, and this along with (3.20) gives

r̃

(
2d∑
i=1

|Xi(λΦ+ 2πξ · x)|y)2
)1/2

≈ r

∣∣∣∣λ∇Φ+ 2πξ −∇ρ(λ∇Φ+ 2πξ) · ∇ρ
|∇ρ|2

∣∣∣∣
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From here, we apply our other defining assumptions for this region: |ξ| ≥ c′′|λ| and (3.23)

and use the triangle inequality to get

r

∣∣∣∣λ∇Φ+ 2πξ −∇ρ(λ∇Φ+ 2πξ) · ∇ρ
|∇ρ|2

∣∣∣∣ ≥ r

[
2π|ξ| − |∇Φ|

c′′
|ξ| − |∇ρ|c′r−2

]

But then because r−2 ≈ |ξ| + |λ| and |ξ| ≥ c′′|λ|, we have r−2 ≈ |ξ|, so as long as c′′ is

sufficiently large and c′ is sufficiently small (both depending only on admissible constants),

we have that

1 + r̃

(
2d∑
i=1

|Xi(λΦ+ 2πξ · x)|y|2
)1/2

≳ r

[
2π|ξ| − |∇Φ|

c′′
|ξ| − |∇ρ|c′r−2

]
≳ r|ξ|

≈ |ξ|1/2

≳ (|λ|+ |ξ|)1/2

And so (3.24) follows from the above and (3.6), because r−1
j0
r
d/2
1 r

d/2
2 ≈ rd−1 ≤ |λ|−

d−1
2 .

Finally, we prove (3.25). Pick N = 2d + 2. (Note that this choice of N determines the

number of derivatives that we need control on for the initial assumptions (1.3), (1.4), (1.5),

and (1.6).) Then for (y, ξ) ∈ E, either (3.22) or (3.24) holds, and either of the two implies

|I(y, ξ)| ≲ (|λ|+ |ξ|)−(2d+1)/2|λ|−
d−1
2
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because |λ| is bounded below by assumption. Then, by Cauchy-Schwarz:

∣∣∣∣∣
∫
B1×R2d

I(y, ξ)χE(y, ξ)f1(y1, ξ1)f2(y2, ξ2)dydξ

∣∣∣∣∣
≲ |λ|−

d−1
2

(∫
B1×R2d

(|λ|+ |ξ|)−(2d+1)dydξ

)1/2

||f1||L2 ||f2||L2

≲ |λ|−
d−1
2

(∫
R2d

(|λ|+ |ξ|)−(2d+1)dξ

)1/2

||f1||L2 ||f2||L2

≲ |λ|−
d−1
2

(∫
R2d

(|λ|+ |λ||z|)−(2d+1)|λ|2ddz
)1/2

||f1||L2 ||f2||L2

≲ |λ|−
d−1
2

(
|λ|−1

∫
R2d

(1 + |z|)−(2d+1)dz

)1/2

||f1||L2 ||f2||L2

≲ |λ|−
d−1
2 ||f1||L2 ||f2||L2

where in the fourth line we are making the change of variables ξ = |λ|z. This completes the

proof of Proposition 5.
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CHAPTER 4

Main Contribution

In this chapter, we prove the general result, Theorem 1, and show how the same argument

can be leveraged to prove two specific results, Theorem 2 and Theorem 3, for which the

determinant condition does not hold, but does not hold only on a small set.

4.1. A General Bilinear Result

By the work in the previous chapter, we know that the operator in Theorem 1 exhibits

maximum decay on certain regions, and we are left to analyze the remaining region. If we

define

τ0(λ, y, ξ) :=
−∇ρ(y) · (λ∇Φ(y) + 2πξ)

|∇ρ(y)|2
(4.1)

and also define Ξ2 := R2d \ Ξ1, then the region we are left to consider is

E := {(y, ξ) ⊂ B1 × Ξ2 | |ξ| ≤ c′′|λ| or |τ0| ≥ c′r−2} (4.2)

where we note that another condition on the region implied by the fact that ξ ∈ Ξ2 is that

r1 ≈ r2. Before analyzing this region, we first transform the problem slightly, introducing

another variable τ , so that later an appropriate change of variables will have its Jacobian

determinant given by a multiple of the determinant (1.7) in the hypothesis of Theorem 1.

The following proposition comes from [18], and as the proof is short we prove it again here,

for clarity.

Proposition 6. For any positive integer N ≤ 2d+2, any sufficiently small c′′′ > 0 depending

only on admissible constants, and any (y, ξ) ∈ B1 × Ξ2, we have

|I(y, ξ)| ≲ χ|ρ(y)|≲rr
d

∫
|τ−τ0|≤c′′′r−1

dτ

(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)N
(4.3)

Proof. This estimate is a transformation of the bound in Proposition 4. First, note that the
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factor of χ|ρ(y)|≲r on the right hand side follows from the observation in Proposition 4 that

if |I(y, ξ)| ≠ 0 we necessarily have |ρ(y)| ≲ maxj rj , because ξ ∈ Ξ2 implies maxj rj ≲ r.

Next, note that by definition of τ0 in (4.1), the effect of the vector fields Xi shown in (3.20),

and the fact that ξ ∈ Ξ2 implies maxj rj ≈ r, we have

1 +
r2

maxj rj

(
2d∑
i=1

|Xi(λΦ+ 2πξ · x)|y|2
)1/2

≈ 1 + r|λ∇Φ(y) + 2πξ + τ0∇ρ(y)|

And if, as in the bounds of the integral in (4.3), we have |τ − τ0| ≲ r, then by the triangle

inequality,

1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)| = 1 + r|λ∇Φ(y) + 2πξ + τ0∇ρ(y) + (τ − τ0)∇ρ(y)|

≤ 1 + r|(τ − τ0)∇ρ(y)|+ r|λ∇Φ(y) + 2πξ + τ0∇ρ(y)|

≲ 1 + r · r−1 · |∇ρ(y)|+ r|λ∇Φ(y) + 2πξ + τ0∇ρ(y)|

≲ 1 + r|λ∇Φ(y) + 2πξ + τ0∇ρ(y)|

A completely symmetric proof shows the reverse inequality, so together we have

1 + r|λ∇Φ(y) + 2πξ + τ0∇ρ(y)| ≈ 1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|

Finally, if we start with Proposition 4 and apply the above estimates, along with the fact

that r1 ≈ r2 ≈ r, we get

|I(y, ξ)| ≲ χ|ρ(y)|≲maxj rj

1 +
r2

maxj rj

(
2d∑
i=1

|Xi(λΦ+ 2πξ · x)|y|2
)1/2

−N

r−1
j0
r
d/2
1 r

d/2
2

≈ χ|ρ(y)|≲r r
d−1(1 + r|λ∇Φ(y) + 2πξ + τ0∇ρ(y)|)−N

≈ χ|ρ(y)|≲r r
d

∫
|τ−τ0|≤c′′′r−1

(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)−Ndτ

which is exactly the desired estimate.
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At the beginning of this section, we saw that our work was reduced to estimating

∫
E
I(y, ξ)f1(y1, ξ1)f2(y2, ξ2)dydξ

Now, if we apply the triangle inequality to the above integral and apply Proposition 6 with

N = 2d+ 1, we can further reduce to estimating

∫
F

rdχ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)2d+1

dydξdτ (4.4)

where

F := {(y, ξ, τ) ∈ B1 × Ξ2 × R | |ξ| ≤ c′′|λ| or |τ0| ≥ c′r−2, and |τ − τ0| ≤ c′′′r−1}

(We can pick any N ≤ 2d+2 in applying Proposition 6, but as we will see later, N = 2d+1

is the best choice in this case.) Before proceeding, we first expand the set F slightly so that

its defining conditions are slightly easier to work with. First, note that for any ξ such that

(y, ξ, τ) ∈ F , we have ξ ∈ Ξ2 and therefore

r−2
1 ≈ r−2

2 ≈ r−2 = max{r−2
1 , r−2

2 } = max{|λ|, 3|ξ1|, 3|ξ2|} ≈ max{|λ|, |ξ|} ≈ |λ|+ |ξ|

where we are using the equivalence of ℓp norms on Rd to get that |ξ1| ≈ max{|ξ1|, . . . , |ξd|},

and similarly for |ξ2|, and then the equivalence of ℓp norms on R2d to get that

max{|ξ1|, . . . , |ξ2d|} ≈ |ξ|. Next, we claim that for any (y, ξ, τ) ∈ F , we have |λ| + |ξ| ≈

|λ|+ |τ |. To see this, note that if |τ0| ≥ c′r−2, then

|λ|+ |τ | ≤ |λ|+ |τ0|+ |τ − τ0|

≲ |λ|+ |ξ|+ r−1

≲ |λ|+ |ξ|+ r−2

≈ |λ|+ |ξ|
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because by definition of τ0 in (4.1), the triangle inequality, the Cauchy-Schwarz inequality,

and the bounds (1.4) and (1.6) on Φ and ρ, respectively, we have |τ0| ≲ |λ|+ |ξ|. Also,

|λ|+ |τ | ≥ |λ|+ |τ0| − |τ − τ0|

≥ |λ|+ c′r−2 − c′′′r−1

≥ |λ|+ c′r−2 − c′′′r−2

≳ |λ|+ r−2

≈ |λ|+ |ξ|

provided c′′′ is taken to be small enough that c′ > 2c′′′ (which is fine to do, per Proposition 6).

Note also that we are using the fact that r−1 ≥ |λ|1/2 ≳ 1 and therefore r−1 ≲ r−2.

On the other hand, if |τ0| ≤ c′r−2 then by definition of F we must have |ξ| ≤ c′′|λ|, and

therefore

|λ|+ |τ | ≥ |λ| ≳ |λ|+ |ξ|

and also

|λ|+ |τ | ≤ |λ|+ |τ0|+ |τ − τ0|

≤ |λ|+ c′r−2 + c′′′r−1

≲ |λ|+ r−2

≈ |λ|+ |ξ|

So in either case we have |λ| + |τ | ≈ |λ| + |ξ|. By abuse of notation, we redefine the set F

to be slightly larger, based on the above observations.

F :=
{
(y, ξ, τ) ∈ B1 × Ξ2 × R | r−2

1 ≈ r−2
2 ≈ |λ|+ |ξ| ≈ |λ|+ |τ |

}
(4.5)

It remains now to consider (4.4) with this new set F , and show that it is bounded above
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by |λ|−
d−1
2 ||f1||L2(Rd×Rd)||f2||L2(Rd×Rd). By interpolation, it suffices to bound (4.4) above by

both |λ|−
d−1
2 ||f1||L∞ ||f2||L1 and |λ|−

d−1
2 ||f1||L1 ||f2||L∞ . We will just show the first bound,

as the other case is completely symmetric. To that end, we first use Hölder’s inequality to

get

∫
F

rdχ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)2d+1

dydξdτ

≲ ||f1||L∞ ||f2||L1 ess sup
y2,ξ2

∫
rdχF (y, ξ, τ)χ|ρ(y)|≲rdξ

1dy1dτ

(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)2d+1

≈ ||f1||L∞ ||f2||L1 ess sup
y2,ξ2

∫
rd2χF (y, ξ, τ)χ|ρ(y)|≲r2dξ

1dy1dτ

(1 + r2|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)2d+1

where in the last line, we are just using the fact that r2 ≈ r to make calculations simpler,

as r2 is a constant with respect to the variables of integration ξ1, y1, τ . Next, we integrate

out the ξ1 variables. Write

∇1 =
(

∂
∂y1

, . . . , ∂
∂yd

)
and ∇2 =

(
∂

∂yd+1
, . . . , ∂

∂y2d

)

then

r2|λ∇Φ(y)+2πξ+τ∇ρ(y)| ≈ r2|λ∇1Φ(y)+2πξ1+τ∇1ρ(y)|+r2|λ∇2Φ(y)+2πξ2+τ∇2ρ(y)|

as |a|+ |b| ≈
√
a2 + b2. If we use this and then make the change of variables z = 2πr2ξ

1 +

r2(λ∇1Φ(y) + τ∇1ρ(y)) (so the first quantity on the right hand side above is |z|), we get

∫
dξ1

(1 + r2|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)N
≈
∫

r−d2 dz

(1 + r2|λ∇2Φ(y) + 2πξ2 + τ∇2ρ(y)|+ |z|)2d+1

≲
r−d2

(1 + r2|λ∇2Φ(y) + 2πξ2 + τ∇2ρ(y)|)d+1

To get the second line, we are just using polar coordinates and doing the calculation

∫
Rd

dz

(A+ |z|)2d+1
=

∫ ∞

0

∫
Bt(0)

td−1dSdt

(A+ t)2d+1
≈
∫ ∞

0

td−1dt

(A+ t)2d+1
≤
∫ ∞

0

dt

(A+ t)d+2
≈ 1

Ad+1
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with A = 1 + r2|λ∇1Φ(y) + 2πξ1 + τ∇1ρ(y)| > 0. Combining this with the work above, we

have now shown

∫
F

rdχ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)2d+1

dydξdτ

≲ ||f1||L∞ ||f2||L1 ess sup
y2,ξ2

∫
χF̃ (y

1, τ)χ|ρ(y)|≲r2dy
1dτ

(1 + r2|λ∇2Φ(y) + 2πξ2 + τ∇2ρ(y)|)d+1

where now after integrating out ξ1, we are left with the set F̃ = {(y, τ) | r−2
2 ≈ |λ| + |τ |}.

Next, we make the change of variables

(u, s) = φ(y1, τ) = (λ∇2Φ(y) + 2πξ2 + τ∇2ρ(y), ρ(y))

which has Jacobian determinant given by

| det(Dφ)(y1, τ)|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
det



∂2y1,yd+1
(λΦ(y) + τρ(y)) · · · ∂2yd,yd+1

(λΦ(y) + τρ(y)) ∂yd+1
ρ(y)

...
...

. . .
...

∂2y1,y2d(λΦ(y) + τρ(y)) · · · ∂2yd,y2d(λΦ(y) + τρ(y)) ∂y2dρ(y)

∂y1ρ(y) · · · ∂ydρ(y) 0



∣∣∣∣∣∣∣∣∣∣∣∣∣
= (|λ|2 + |τ |2)

d−1
2

·

∣∣∣∣∣∣∣∣∣∣∣∣∣
det



∂2y1,yd+1
(ω1Φ(y) + ω2ρ(y)) · · · ∂2yd,yd+1

(ω1Φ(y) + ω2ρ(y)) ∂yd+1
ρ(y)

...
...

. . .
...

∂2y1,y2d(ω1Φ(y) + ω2ρ(y)) · · · ∂2yd,y2d(ω1Φ(y) + ω2ρ(y)) ∂y2dρ(y)

∂y1ρ(y) · · · ∂ydρ(y) 0



∣∣∣∣∣∣∣∣∣∣∣∣∣
≥ c(|λ|2 + |τ |2)

d−1
2

≈ c(|λ|+ |τ |)d−1 (4.6)

In the second equality, ω1 = λ/(|λ|2+|τ |2) and ω2 = τ/(|τ |2+|λ|2), so ω2
1+ω

2
2 = 1 and we are

in the situation of (1.7) (up to reordering the columns, which doesn’t change the magnitude
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of the determinant), which gives us the inequality on the line below. We can factor out

(|λ|2 + |τ |2)(d−1)/2 from the determinant in the second equality because this determinant is

a sum of terms which are all a product of one (non-zero) entry in the last row, one (non-zero)

entry in the last column, and (d−1) entries of the form ∂2yiyj (λΦ(y)+ τρ(y)). Factoring out

(|λ|2+ |τ |2)(d−1)/2 from the determinant means that these terms being summed will instead

be a product of one (non-zero) entry in the last row, one (non-zero) entry in the last column,

and (d− 1) entries of the form ∂2yiyj (ω1Φ(y) + ω2ρ(y)) with ω2
1 + ω2

2 = 1.

Thus by hypothesis (1.7), this determinant is nonzero on the support of the integrand. It

remains to ensure that φ is injective on the support of the integrand, and then we can apply

our desired change of variables. There is a helpful lemma in [18] which guarantees that we

can do this by subdividing the support of the integrand; we state the relevant portion below:

Lemma 4 ([18, Lemma 3]). Suppose ρ(u, v) and Φ(u, v) are C3 functions on U × V ⊂

Rd×Rd, where U and V are both d-fold products of open intervals, and let ω := (ω1, ω2) ∈ S1.

Suppose ∣∣∣∣∣∣∣∣∣∣∣∣∣
det



0 ∂u1ρ · · · ∂udρ

∂v1ρ ∂2v1u1 (ω1Φ+ ω2ρ) · · · ∂2v1ud (ω1Φ+ ω2ρ)

...
...

. . .
...

∂vdρ ∂2vdu1 (ω1Φ+ ω2ρ) · · · ∂2vdud (ω1Φ+ ω2ρ)



∣∣∣∣∣∣∣∣∣∣∣∣∣
≥ c

at some point p := (up, vp, ωp) ∈ U × V × S1. Then there exist metric balls U0, V0, and W0,

centered at up, vp, and ωp, respectively, such that for all v ∈ V0 and all λ ∈ R, the map

Ψv,λ(u, τ) := (λ∇vΦ(u, v) + τ∇vρ(u, v), ρ(u, v)) ∈ Rd × R

is injective on the open set

Uλ :=

{
(u, τ) ∈ U0 × R :

(λ, τ)√
λ2 + τ2

∈W0

}

The radii of the balls U0, V0, and W0 can be taken to depend only on c, d and the C3-norms
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of ρ and Φ on U × V .

Per this lemma, we can cover the (compact) set [−b1 × b1]
d × S1 with a finite collection of

sets of the form U0 ×W0, and as the radii of these balls can be taken to depend only on

admissible constants, the size of this collection can be taken to depend only on admissible

constants as well1. This means that the (same-sized) collection of corresponding sets of the

form Uλ must cover (−b1, b1)d × R, as for any τ ∈ R, (λ, τ)/
√
λ2 + τ2 must fall somewhere

on S1 and therefore into a set of the form W0. Consider the collection formed by intersecting

each of these subsets of the form Uλ with the set F̃ that we are integrating over; call this

{F̃k}1≤k≤N . The above reasoning says that φ is injective on each F̃k and N depends only on

admissible constants. As each F̃k is a subset of F̃ , the lower bound (4.6) on the determinant

trivially still holds on F̃k. This is exactly what we need to be able to apply the change of

variables, and when we do this on each F̃k, we get

ess sup
y2,ξ2

∫
χF̃k

(y1, τ)χ|ρ(y)|≲r2dy
1dτ

(1 + r2|λ∇2Φ(y) + 2πξ2 + τ∇2ρ(y)|)d+1

= ess sup
y2,ξ2

∫
χF̃k

(y1, τ)χ|ρ(y)|≲r2
(1 + r2|λ∇2Φ(y) + 2πξ2 + τ∇2ρ(y)|)d+1

· | detDφ(y
1, τ)|

| detDφ(y1, τ)|
dy1dτ

≲ ess sup
y2,ξ2

∫
χF̃k

(y1, τ)χ|ρ(y)|≲r2
(1 + r2|λ∇2Φ(y) + 2πξ2 + τ∇2ρ(y)|)d+1

· | detDφ(y
1, τ)|

c(|λ|+ |τ |)d−1
dy1dτ

≲ ess sup
y2,ξ2

∫
χF̃k

(y1, τ)χ|ρ(y)|≲r2
(1 + r2|λ∇2Φ(y) + 2πξ2 + τ∇2ρ(y)|)d+1

· | detDφ(y
1, τ)|

cr
−2(d−1)
2

dy1dτ

≲ ess sup
y2,ξ2

r2d−2
2

∫
χ|s|≲r2duds

(1 + r2|u|)d+1

≲ ess sup
y2,ξ2

r2d−1
2

∫
du

(1 + r2|u|)d+1

≲ ess sup
y2,ξ2

rd−1
2

≲ |λ|−
d−1
2

1We stated this lemma as it appears in [18], but in our case, we have something stronger than what is
assumed in the hypothesis: the determinant in our case is bounded below by c everywhere, not just at a
particular point. The implication for our situation is that the radii of the balls U0, V0,W0 do not depend on
c. In fact, when one looks at the details of the proof of the lemma, there is actually no need to subdivide
our domain of integration to guarantee injectivity of φ. However, we still use the lemma here to streamline
the proof and to not reproduce work from [18].
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where the third line follows from applying (4.6), and the fourth line follows from the fact

that F̃ ⊃ F̃k. This finishes the proof of Theorem 1, as if we continue from earlier,

∫
F

rdχ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)2d+1

dydξdτ

≲ ||f1||L∞ ||f2||L1 ess sup
y2,ξ2

N∑
k=1

∫
χF̃k

(y1, τ)χ|ρ(y)|≲r2dy
1dτ

(1 + r2|λ∇2Φ(y) + 2πξ2 + τ∇2ρ(y)|)d+1

≲ |λ|−
d−1
2 ||f1||L∞ ||f2||L1

As we indicated earlier, the bound |λ|−
d−1
2 ||f1||L1 ||f2||L∞ for (4.4) follows by a completely

symmetric proof, as the partial derivatives commute on Φ and ρ, so we get exactly the same

Jacobian determinant. Note also that the choice of N = 2d + 1 does not directly influence

the power on λ in the final bound; it is just the minimal exponent needed to ensure that∫
Rd

du
(1+|u|)N−d is bounded, which is the last integral in the calculations estimating the integral

on each set F̃k.

As was the case in [18], the |λ| decay in Theorem 1 is actually optimal for any operator of

the form (1.1) that satisfies just a few smoothness and boundedness conditions on a, Φ, and

ρ – fewer assumptions than are required by Theorem 1. We show this below, even though

the argument in [18] suffices for the bilinear operator here as well. The key idea in proving

this is that if we apply the operator to certain L2(Rd) functions that are supported on a

box with side length proportional to |λ|−1/2 and that oscillate at a rate based on λ and

the derivatives of the phase Φ, the complex exponential in the operator will not be able to

oscillate enough to cause cancellation.

To make calculations simpler, suppose without loss of generality that 0 ∈M and that a(x) is

real and positive on a small neighborhood of 0. Also suppose that |λ| ≥ 1. We note a few key

inequalities: first, if ∂2dρ(x) ̸= 0 for all x ∈ B1, the Implicit Function Theorem guarantees a

function Ψ on a neighborhood U of 0 in R2d−1 such that M is the graph of x2d = Ψ(x) on U

(where we take x = (x1, . . . , x2d−1)). Moreover, as long as ρ is differentiable with bounded
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derivative on B1 and ∂2dρ(x) ≥ c0 > 0 for some c0 on B1, then the Mean Value Theorem

implies

|Ψ(x)−Ψ(0)| = |∇Ψ(c) · (x− 0)| ≤ c1max
j ̸=2d

|xj |

where c1 is some constant depending only on c0 and the upper bound of |∇ρ| on B1.

Next, note that if Φ is at least C2 with a uniform bound on all second derivatives on

B1, then Taylor’s Theorem implies that |Φ(x)−Φ(0)−
∑2d

j=1 xj∂jΦ(0)| is O(|x|2) as x→ 0.

This means that we can find some c2 > 0 such that if |xj | < c2|λ|−1/2 for j ̸= 2d and

|x2d| < c1c2|λ|−1/2, we have |λΦ(x) − λΦ(0) −
∑2d

j=1 λxj∂jΦ(0)| < π/4 and consequently

Re[ei(λΦ(x)−λΦ(0)−
∑2d

j=1 λxj∂jΦ(0))] > 1/
√
2. Finally, we also pick c2 small enough so that

|xj | < c2 for j ̸= 2d and |x2d| < c1c2 implies a(x) ≥ 1
2a(0). Note that both c1 and c2 are

independent of λ and depend only on constants relating to a,Φ, ρ, and d.

With all of this in mind, pick

f1(x
1) = e−i

∑d
j=1 λxj∂jΦ(0)χE1(x

1) f2(x
2) = e−i

∑2d
j=d+1 λxj∂jΦ(0)χE2(x

2)

for

E1 := (−c2|λ|−1/2, c2|λ|−1/2)d

E2 := (−c2|λ|−1/2, c2|λ|−1/2)d−1 × (−c1c2|λ|−1/2, c1c2|λ|−1/2)
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Then we have

|Iλ(f1, f2)| = |e−iλΦ(0)Iλ(f1, f2)|

≥ |Re[e−iλΦ(0)Iλ(f1, f2)]|

≳
∫
M
χE1(x

1)χE2(x
2)a(x)dσ(x)

≳
∫
M
χE1(x

1)χE2(x
2)dσ(x)

=

∫
M
χE1(x

1)χE2(xd+1, . . . , x2d−1,Ψ(x))(1 + |∇Ψ(x)|2)1/2dx

≥
∫
M
χE1(x

1)χE2(xd+1, . . . , x2d−1,Ψ(x))dx

≈ (|λ|−1/2)2d−1

≈ |λ|−
d−1
2 ||f1||L2 ||f2||L2

because ||fj ||L2 ≈ |λ|−d/4. (The fourth line follows because |xj | < c2|λ|−1/2 ≤ c2 for j ̸= 2d

and |x2d| < c1c2|λ|−1/2 ≤ c1c2, so a(x) ≳ 1 on the support of the integral by choice of c2.)

We reiterate that the constants implied in the inequality |Ĩλ(f1, f2)| ≳ |λ|−
d−1
2 ||f1||L2 ||f2||L2

depend only on admissible constants, per the initial definition of the notation ≳, and in

particular do not depend on λ.

Thus the decay in Theorem 1 is best possible for any operator of the form (1.1) that, by the

above reasoning, satisfies:

• a is continuous on B1

• Φ is C2 with uniformly bounded second derivatives on B1

• ρ is C1 and there is some index i for which ∂iρ(x) ≥ c0 > 0 for all x ∈ B1, and |∇ρ|

is bounded on B1.
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4.2. Two Specific Bilinear Results

4.2.1. Operator 1: Introduction and Maximum Decay

A natural question that arises when looking at Theorem 1 is: what happens when the

determinant condition fails to hold? In this section, we prove Theorem 2, which is concerned

with a specific operator for which the determinant condition fails to hold only on a “small”

set: the plane x2 = 0. As a reminder, here we are looking at the operator

Ĩλ(f1, f2) =

∫
ρ(x)=0

eiλ(
1
2
x22x4+x3x5)f1(x

1)f2(x
2)a(x)dσ(x)

for

ρ(x) = −1

2
x22x5 + x3x4 + x1 + x2 + x3 + x4 + x5 + x6

and f1, f2 measurable functions on R3.

If we calculate the determinant in (1.7), we get

det



∂x1ρ ∂2x1,x4(ω1Φ+ ω2ρ) ∂2x1,x5(ω1Φ+ ω2ρ) ∂2x1,x6(ω1Φ+ ω2ρ)

∂x2ρ ∂2x2,x4(ω1Φ+ ω2ρ) ∂2x2,x5(ω1Φ+ ω2ρ) ∂2x2,x6(ω1Φ+ ω2ρ)

∂x3ρ ∂2x3,x4(ω1Φ+ ω2ρ) ∂2x3,x5(ω1Φ+ ω2ρ) ∂2x3,x6(ω1Φ+ ω2ρ)

0 ∂x4ρ ∂x5ρ ∂x6ρ



= det



1 0 0 0

1− x2x5 x2ω1 −x2ω2 0

1 + x4 ω2 ω1 0

0 1 + x3 1− 1
2x

2
2 1


= x2(ω

2
1 + ω2

2)

which is zero only when x2 = 0, as by assumption ω2
1 + ω2

2 = 1. Notably, the magnitude of

this determinant is bounded below by ϵ whenever |x2| ≥ ϵ. As we said earlier, the question

is: how does this affect the decay of the operator? As it turns out, it is no longer possible
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to have the optimal decay of |λ|−1 = |λ|−
3−1
2 that occurs for an operator in dimension d = 3

for which this determinant is nonzero. In this thesis, we are only able to prove decay of

|λ|−1/2 log |λ|, but we can show that the maximum possible decay for this operator is |λ|−3/4.

Before we show this, we note that the operator may not actually achieve this maximum

possible decay of |λ|−3/4. As we will see below, this exponent just comes from testing the

operator on a specific group of indicator functions indexed by λ; when we evaluate the

operator at these functions we can get a lower bound that is a multiple of |λ|−3/4. This

means that it is impossible to prove any decay faster than |λ|−3/4 for this operator, but

doesn’t necessarily mean that the operator will achieve decay of |λ|−3/4.

Consider the following L2 functions

f1(x1, x2, x3) = χ|·|<c1(x1)χ|·|<c2|λ|−1/2(x2)χ|·|<c3(x3)

f2(x4, x5, x6) = χ|·|<c4(x4)χ|·|<c5|λ|−1(x5)χ|·|<c6(x6)

where the constants ci will be chosen later but will only depend on Φ, a, ρ and a lower bound

for |λ|. Then ||f1||L2 ≈ |λ|−1/4 and ||f2||L2 ≈ |λ|−1/2.

By choice of f1 and f2 we have |Φ(x)| ≤ (c22c4 + c3c5)|λ|−1 on the support of the integrand

and so by choosing c2, c4, c3, c5 sufficiently small, we may assume |λΦ(x)| ≤ π/4 and thus

Re[eiλΦ(x)] ≥ 1/
√
2 on the support of the integrand. Also, given a lower bound for |λ|, and if

we assume without loss of generality that a(x) is real and positive on a small neighborhood

of 0, by choosing all the ci sufficiently small we can guarantee a(x) ≈ 1 on the support

of the integrand. Finally, as we can write the hypersurface {ρ(x) = 0} as the graph of

x6 = Ψ(x1, x2, x3, x4, x5) =: Ψ(x), by choosing c1, c2, c3, c4, c5 sufficiently small depending

on c6 and other admissible constants, we may assume that |Ψ(x)| < c6 on the support of

the integrand.
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Combining these estimates allows us to write

|Ĩλ(f1, f2)| ≥ |Re[Ĩλ(f1, f2)]|

≳
∫
M
f1(x1, x2, x3)f2(x4, x5, x6)a(x)dσ(x)

≳
∫
M
χ|·|<c1(x1)χ|·|<c2|λ|−1/2(x2)χ|·|<c3(x3)χ|·|<c4(x4)χ|·|<c5|λ|−1(x5)χ|·|<c6(x6)dσ(x)

≥
∫
R5

χ|·|<c1(x1)χ|·|<c2|λ|−1/2(x2)χ|·|<c3(x3)χ|·|<c4(x4)χ|·|<c5|λ|−1(x5)χ|·|<c6(Ψ(x))dx

=

∫
R5

χ|·|<c1(x1)χ|·|<c2|λ|−1/2(x2)χ|·|<c3(x3)χ|·|<c4(x4)χ|·|<c5|λ|−1(x5)dx

≈ |λ|−3/2

≈ |λ|−3/4||f1||L2 ||f2||L2

and thus |Ĩλ(f1, f2)| ≳ |λ|−3/4||f1||L2 ||f2||L2 . Note also that if we instead use the triangle

inequality in the first step, we would get

Ĩλ(f1, f2) ≤
∫
M

|f1(x1, x2, x3)f2(x4, x5, x6)a(x)|dσ(x)

If we then make similar arguments (using this time that |a(x)| ≲ 1 and |Ψ(x)| ≲ 1), we get

|Ĩλ(f1, f2)| ≲ |λ|−3/4||f1||L2 ||f2||L2 , and thus in fact

|Ĩλ(f1, f2)| ≈ |λ|−3/4||f1||L2 ||f2||L2

which shows that decay better (or worse) than |λ|−3/4 is not possible for this specific choice

of functions f1, f2.

4.2.2. Operator 1: Dyadic Decomposition

We will show the desired bound in Theorem 2 by using a dyadic decomposition applied to

the main contribution piece (4.4) for this specific operator. Because our specific operator

satisfies all other hypotheses of Theorem 1 besides the determinant condition (1.7), we can
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apply all of the results in Section 3.3, and so we immediately get

|Ĩλ(f1, f2)| =
∣∣∣∣∫

R6×R6

Ĩ(y, ξ)f1(y1, ξ1)f2(y2, ξ2)dydξ
∣∣∣∣

≲

∣∣∣∣∣
∫
(R6×R6)\E

Ĩ(y, ξ)f1(y1, ξ1)f2(y2, ξ2)dydξ

∣∣∣∣∣+
∣∣∣∣∫
E
Ĩ(y, ξ)f1(y1, ξ1)f2(y2, ξ2)dydξ

∣∣∣∣
≲ |λ|−1||f1||L2 ||f2||L2 +

∫
F

r3χ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ

where E,F are the sets defined in (4.2) and (4.5), respectively2, and more specifically, the

above follows from applying the decomposition and then using Proposition 5 and Propo-

sition 6. As hinted at earlier, the issue in estimating the main contribution piece of our

specific operator arises when y2 = 0, as this is where the Jacobian determinant vanishes for

the change of variables we wish to apply. To get around this, we use a dyadic decomposition

in |y2|. Below, we state and then prove the estimates we need for the different pieces in the

dyadic decomposition.

Lemma 5. Let ϵ > 0, let ρ,Φ be given as in (1.9), and let F be defined by (4.5). Then we

have the following estimates

∫
F

r3χ|ρ(y)|≲rχ|y2|≥ϵ|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ ϵ−1|λ|−1||f1||L∞ ||f2||L1 (4.7)∫
F

r3χ|ρ(y)|≲rχ|y2|≥ϵ|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ ϵ−1|λ|−1||f1||L1 ||f2||L∞ (4.8)∫
F

r3χ|ρ(y)|≲rχ|y2|<ϵ|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ ϵ||f1||L∞ ||f2||L1 (4.9)∫
F

r3χ|ρ(y)|≲rχ|y2|<ϵ|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ ||f1||L1 ||f2||L∞ (4.10)

Proof. The proofs of (4.7) and (4.8) are very similar to each other, and are also very similar

to the proof for the general operator in Section 4.1, so we will just prove (4.8) here. First,
2For technical reasons in the proofs for these specific operators, we will assume that the set F originally

defined in (4.5) has the additional condition |τ − τ0| ≤ c′′′r−1. There is no issue in doing so, as the set F is
merely an enlargement of a set that we were integrating our (non-negative) function over, and this original
set contained the condition |τ − τ0| ≤ c′′′r−1. Thus, the only thing we are doing differently in the proofs for
these specific operators is using a slightly tighter upper bound in the step where we introduce the set F .
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we proceed as in the proof in Section 4.1:

∫
F

r3χ|ρ(y)|≲rχ|y2|≥ϵ|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ

≤ ||f1||L1 ||f2||L∞ ess sup
y1,ξ1

∫
r3χF (y, ξ, τ)χ|y2|≥ϵχ|ρ(y)|≲r

(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7
dξ2dy2dτ

≈ ||f1||L1 ||f2||L∞ ess sup
y1,ξ1

χ|y2|≥ϵ

∫
r31χF (y, ξ, τ)χ|ρ(y)|≲r1

(1 + r1|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7
dξ2dy2dτ

≲ ||f1||L1 ||f2||L∞ ess sup
y1,ξ1

χ|y2|≥ϵ

∫
χF̃ (y

2, τ)χ|ρ(y)|≲r1dy
2dτ

(1 + r1|λ∇1Φ(y) + 2πξ1 + τ∇1ρ(y)|)4

We want to make a similar change of variables as before, and we can write out the function

explicitly because in this example, Φ and ρ are simple:

(u, s) = φ(y2, τ)

= (λ∇1Φ(y) + 2πξ1 + τ∇1ρ(y), ρ(y))

= (2πξ1 + τ,

λy2y4 + 2πξ2 + τ − τy2y5,

λy5 + 2πξ3 + τ + τy4,

− 1
2y

2
2y5 + y3y4 + y1 + y2 + y3 + y4 + y5 + y6)

And we can still proceed with the change of variables, because the Jacobian determinant is

| det(Dφ(y2, τ)|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
det



0 0 0 1

λy2 −τy2 0 1− y2y5

τ λ 0 1 + y4

1 + y3 1− 1
2y

2
2 1 0



∣∣∣∣∣∣∣∣∣∣∣∣∣
= |y2(λ2 + τ2)|

≥ ϵ(|λ|2 + |τ |2)
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where in the last line we are using the fact that we are only taking the supremum over

{(y1, ξ1) | |y2| ≥ ϵ}. Furthermore

|det(Dφ(y2, τ))| ≥ ϵ(|λ|2 + |τ |2) ≳ ϵ(|λ|+ |τ |)2 ≈ ϵr−4
1

because |λ|2 + |τ |2 + 2|λ||τ | ≤ |λ|2 + |τ |2 + 2max{|λ|, |τ |}2 ≲ |λ|2 + |τ |2. By the same

argument as in the proof in Section 4.1, we can sub-divide F̃ into subsets {F̃k}1≤k≤N where

N depends only on admissible constants, such that on each F̃k, φ(y2, τ) is injective. Then

ess sup
y1,ξ1

χ|y2|≥ϵ

∫
χF̃k

(y2, τ)χ|ρ(y)|≲r1dy
2dτ

(1 + r1|λ∇1Φ(y) + 2πξ1 + τ∇1ρ(y)|)4

= ess sup
y1,ξ1

χ|y2|≥ϵ

∫
χF̃k

(y2, τ)χ|ρ(y)|≲r1
(1 + r1|λ∇1Φ(y) + 2πξ1 + τ∇1ρ(y)|)4

|Dφ(y2, τ)|
|Dφ(y2, τ)|

dy2dτ

≲ ess sup
y1,ξ1

χ|y2|≥ϵ

∫
χF̃k

(y2, τ)χ|ρ(y)|≲r1
(1 + r1|λ∇1Φ(y) + 2πξ1 + τ∇1ρ(y)|)4

|Dφ(y2, τ)|
ϵr−4

1

dy2dτ

≲ ess sup
y1,ξ1

ϵ−1r41 χ|y2|≥ϵ

∫
χ|s|≲r1duds

(1 + r1|u|)4

≲ ess sup
y1,ξ1

ϵ−1r51

∫
du

(1 + r1|u|)4

≲ ess sup
y1,ξ1

ϵ−1r21

≲ ϵ−1|λ|−1

and thus

∫
F

r3χ|ρ(y)|≲rχ|y2|≥ϵ|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ ϵ−1|λ|−1||f1||L1 ||f2||L∞

because we have the same estimate for each F̃k. This proves (4.8). Next, we prove (4.9).
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We proceed as before, but instead of the change of variables, we do a simple size estimate.

∫
F

r3χ|ρ(y)|≲rχ|y2|<ϵ|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ

≲ ||f1||L∞ ||f2||L1 ess sup
y2,ξ2

∫
χF̃ (y

1, τ)χ|y2|≤ϵχ|ρ(y)|≲r2dy
1dτ

(1 + r2|λ∇2Φ(y) + 2πξ2 + τ∇2ρ(y)|)4

≤ ||f1||L∞ ||f2||L1 ess sup
y2,ξ2

∫
χF̃ (y

1, τ)χ|y2|≤ϵχ|ρ(y)|≲r2dy
1dτ

≲ ||f1||L∞ ||f2||L1 ess sup
y2,ξ2

r−1
2

∫
χ ˜̃F

(y1, y2, y3)χ|y2|≤ϵχ|ρ(y)|≲r2dy1dy2dy3

≲ ||f1||L∞ ||f2||L1 ess sup
y2,ξ2

r−1
2 · ϵ · r2

≲ ϵ||f1||L∞ ||f2||L1

Here, the jump from the first line to the second line combines all of the same initial reasoning

in the analogous part of the proof of Theorem 1. The fourth line follows from integrating out

τ , because τ ∈ F̃ =⇒ |τ−τ0| ≲ r−1 ≈ r−1
2 . The fifth line follows from making the change of

variables (z1, z2, z3) = (ρ(y), y2, y3), which has Jacobian determinant 1, and then integrating

with respect to the z variables, keeping in mind that (y1, y2, y3) ∈ ˜̃F =⇒ |y1|, |y2|, |y3| < b1.

The proof of the last equation (4.10) is completely analogous to the proof of (4.9), except

that in this case, we are integrating over the y2 = (y4, y5, y6) variables, so doing the size

estimates in the final steps no longer picks up a factor of ϵ.

Now we proceed with the proof of Theorem 2. As noted earlier, we already have

|Ĩλ(f1, f2)| ≲ |λ|−1||f1||L2 ||f2||L2 +

∫
F

r3χ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ (4.11)

65



For the dyadic decomposition, we write

∫
F

r3χ|ρ(y)|≲r|f1(y1ξ1)||f2(y2, ξ2)|
1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ

=
∞∑

j=−∞

∫
Fj

r3χ|ρ(y)|≲r|f1(y1ξ1)||f2(y2, ξ2)|
1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ

where

Fj = {(y, ξ, τ) ∈ F | 2j ≤ |y2| ≤ 2j+1}

= {(y, ξ, τ) ∈ B1 × Ξ2 × R | r−2
1 ≈ r−2

2 ≈ |λ|+ |ξ| ≈ |λ|+ |τ |, and 2j ≤ |y2| ≤ 2j+1}

(4.12)

Now, we apply the four results from Lemma 5, and we get

∫
Fj

r3χ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ 2−j |λ|−1||f1||L∞ ||f2||L1 (4.13)∫
Fj

r3χ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ 2−j |λ|−1||f1||L1 ||f2||L∞ (4.14)∫
Fj

r3χ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ 2j ||f1||L∞ ||f2||L1 (4.15)∫
Fj

r3χ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ ||f1||L1 ||f2||L∞ (4.16)

(4.13) follows from (4.7) and the fact that y2 ∈ Fj =⇒ |y2| ≥ 2j . (4.14) follows from (4.8)

and the fact that y2 ∈ Fj =⇒ |y2| ≥ 2j . (4.15) follows from (4.9) and the fact that y2 ∈

Fj =⇒ |y2| ≤ 2j+1, and gives us the upper bound 2j+1||f1||L∞ ||f2||L1 ≲ 2j ||f1||L∞ ||f2||L1 .

(4.16) follows from (4.10) and the fact that y2 ∈ Fj =⇒ |y2| ≤ 2j+1. Combining these, we

have

∫
Fj

r3χ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ min{2−j |λ|−1, 2j}||f1||L∞ ||f2||L1∫
Fj

r3χ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ min{2−j |λ|−1, 1}||f1||L1 ||f2||L∞
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And then interpolating gives us

∫
Fj

r3χ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ

≲ min{2−j/2|λ|−1/2, 2j/2}min{2−j/2|λ|−1/2, 1}||f1||L2 ||f2||L2

There are three possible ways of doing the multiplication above. We can have

min{2−j/2|λ|−1/2, 2j/2}min{2−j/2|λ|−1/2, 1} ≤ (2−j/2|λ|−1/2) · (2−j/2|λ|−1/2) = 2−j |λ|−1

when j is large, i.e., for the upper tail of the sum j > J1 (we will pick J1 later). We can

have

min{2−j/2|λ|−1/2, 2j/2}min{2−j/2|λ|−1/2, 1} ≤ (2j/2) · (1) = 2j/2

when j is small, i.e., for the lower tail of the sum j < J2 (we will pick J2 later). Lastly, we

can have

min{2−j/2|λ|−1/2, 2j/2}min{2−j/2|λ|−1/2, 1} ≤ (2j/2) · (2−j/2|λ|−1/2) = |λ|−1/2

for summing finitely many terms, e.g., j = J2 to j = J1 if J1 > J2. In theory, we could also

use the inequality

min{2−j/2|λ|−1/2, 2j/2}min{2−j/2|λ|−1/2, 1} ≤ (2−j/2|λ|−1/2) · (1) = 2−j/2|λ|−1/2

but this is never an optimal choice: if j ≥ 0 then 2−j/2|λ|−1/2 ≤ 1, (because also |λ| ≥ 1 by

assumption), and so 2−j/2|λ|−1/2 ≥ (2−j/2|λ|−1/2 ≤ 1)2 = 2−j |λ|−1. On the other hand, if

j < 0, then 2−j/2 > 1 and thus 2−j/2|λ|−1/2 > |λ|−1/2.
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To complete the proof, we use these three estimates and sum over j:

∫
F

r3χ|ρ(y)|≲r|f1(y1ξ1)||f2(y2, ξ2)|
1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ

=
∞∑

j=−∞

∫
Fj

r3χ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ

≲
∑
j<J2

2j/2||f1||L2 ||f2||L2 +

J1∑
j=J2

|λ|−1/2||f1||L2 ||f2||L2 +
∑
j>J1

2−j |λ|−1||f1||L2 ||f2||L2

= ||f1||L2 ||f2||L2

∑
j<J2

2j/2 +

J1∑
j=J2

|λ|−1/2 +
∑
j>J1

2−j |λ|−1


≲ ||f1||L2 ||f2||L2

(
2J2/2 + (J1 − J2)|λ|−1/2 + 2−J1 |λ|−1

)

The middle term in the last line can never be smaller than |λ|−1/2 (unless we pick J1 = J2,

but one can check that doing so would lead to an overall bound of |λ|−1/3), so we pick J1, J2

so that

2J2/2 = |λ|−1/2 =⇒ 2J2 = |λ|−1 =⇒ J2 = − log2 |λ|

and

2−J1 |λ|−1 = |λ|−1/2 =⇒ 2−J1 = |λ|1/2 =⇒ J1 = −1
2 log2 |λ|

which gives us

∫
F

r3χ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ

≲ ||f1||L2 ||f2||L2

(
2J2/2 + (J1 − J2)|λ|−1/2 + 2−J1 |λ|−1

)
≲ ||f1||L2 ||f2||L2

(
|λ|−1/2 + (−1

2 log2 |λ|+ log2 |λ|)|λ|−1/2 + |λ|−1/2
)

≲ |λ|−1/2 log |λ| ||f1||L2 ||f2||L2

and this combined with (4.11) completes the proof of Theorem 2.
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4.2.3. Operator 2: A Simpler Argument

In this final section, we prove Theorem 3. As a reminder, here we are dealing with the

operator
˜̃Iλ(f1, f2) =

∫
M
eiλ(x2x4+x2x3x5+

1
2
x3x25)f1(x

1)f2(x
2)a(x)dσ(x) (4.17)

where M = {x ∈ B1 | ρ(x) = 0} for

ρ(x) = 1
2x

2
2x5 +

1
2x2x

2
5 − x3x4 − 1

2x
2
3x5 + x1 + x2 + x3 + x4 + x5 + x6

and in this case, the determinant in (1.7) is

det



∂x1ρ ∂2x1,x4(ω1Φ+ ω2ρ) ∂2x1,x5(ω1Φ+ ω2ρ) ∂2x1,x6(ω1Φ+ ω2ρ)

∂x2ρ ∂2x2,x4(ω1Φ+ ω2ρ) ∂2x2,x5(ω1Φ+ ω2ρ) ∂2x2,x6(ω1Φ+ ω2ρ)

∂x3ρ ∂2x3,x4(ω1Φ+ ω2ρ) ∂2x3,x5(ω1Φ+ ω2ρ) ∂2x3,x6(ω1Φ+ ω2ρ)

0 ∂x4ρ ∂x5ρ ∂x6ρ



= det



1 0 0 0

1 + x2x5 +
1
2x

2
5 ω1 ω1x3 + ω2(x2 + x5) 0

1− x4 − x3x5 −ω2 ω1(x2 + x5)− ω2x3 0

0 1− x3 1 + 1
2x

2
2 + x2x5 − 1

2x
2
3 1


= ω1(ω1(x2 + x5)− ω2x3)− (−ω2)(ω1x3 + ω2(x2 + x5))

= (x2 + x5)(ω
2
1 + ω2

2)

Note that we get the third line by first expanding the determinant along the first row, then

expanding the resulting determinant along the last column, which gives us that our original

determinant is equal to the determinant of the center 2× 2 block.

The proof of Theorem 3 is essentially a simpler version of the proof of Theorem 2, as in

this case we benefit from the symmetry in the determinant in (1.7): for the operator in

Theorem 2, the determinant in (1.7) is x2(ω2
1 + ω2

2), but for the operator in Theorem 3,
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the determinant is (x2 + x5)(ω
2
1 + ω2

2). As it turns out, we no longer need to do a dyadic

decomposition, and just need to do a standard optimization argument to choose where to

split the integral around the determinant’s zero.

Before we proceed with the proof of Theorem 3, we note that the maximum possible decay

for this operator is also |λ|−3/4, the same as for the previous operator. Again, this operator

may not necessarily achieve λ-decay of |λ|−3/4; all that this argument shows is that it is

impossible to prove that this operator has decay faster than |λ|−3/4, so the actual decay of

the operator must be |λ|−3/4 or worse.

Proving that the maximum possible decay is |λ|−3/4 follows from testing the operator on

the functions

f1(x1, x2, x3) = χ|·|<c1(x1)χ|·|<c2|λ|−1/2(x2)χ|·|<c3(x3)

f2(x4, x5, x6) = χ|·|<c4|λ|−1/2(x4)χ|·|<c5|λ|−1/2(x5)χ|·|<c6(x6)

for all of the constants ci chosen to be appropriately small. The argument showing that
˜̃Iλ(f1, f2) ≳ |λ|−3/4||f1||L2 ||f2||L2 is completely analogous to the argument in Section 4.2.1,

so we omit it here.

To start the proof of Theorem 3, we note, as for the previous operator, that because our spe-

cific operator satisfies all other hypotheses of Theorem 1 besides the determinant condition

(1.7), we can apply all of the results in Section 3.3, and so we immediately get

| ˜̃Iλ(f1, f2)| =
∣∣∣∣∫

R6×R6

˜̃I(y, ξ)f1(y1, ξ1)f2(y2, ξ2)dydξ
∣∣∣∣

≲

∣∣∣∣∣
∫
(R6×R6)\E

˜̃I(y, ξ)f1(y1, ξ1)f2(y2, ξ2)dydξ

∣∣∣∣∣+
∣∣∣∣∫
E

˜̃I(y, ξ)f1(y1, ξ1)f2(y2, ξ2)dydξ
∣∣∣∣

≲ |λ|−1||f1||L2 ||f2||L2 +

∫
F

r3χ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ
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where E,F are the sets defined in (4.2) and (4.5), respectively3. Next, we prove a lemma

that gives estimates for the integral above on the regions near y2 + y5 = 0 and away from

y2 + y5 = 0.

Lemma 6. Let ϵ > 0, let ρ,Φ be given as in (1.11), and let F be defined by (4.5). Then we

have the following estimates

∫
F

r3χ|ρ(y)|≲rχ|y2+y5|≥ϵ|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ ϵ−1|λ|−1||f1||L2 ||f2||L2 (4.18)∫
F

r3χ|ρ(y)|≲rχ|y2+y5|≤ϵ|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ ϵ||f1||L2 ||f2||L2 (4.19)

Proof. By completely analogous arguments to the ones in the proof of (4.7) and the proof

of (4.8), we have

∫
F

r3χ|ρ(y)|≲rχ|y2+y5|≥ϵ|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ ϵ−1|λ|−1||f1||L∞ ||f2||L1∫
F

r3χ|ρ(y)|≲rχ|y2+y5|≥ϵ|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ ≲ ϵ−1|λ|−1||f1||L1 ||f2||L∞

and interpolation gives us (4.18). To prove (4.19), we start out the same way as in the proof

of (4.9): in the first step, we apply Hölder’s inequality, using that r ≈ r1 ≈ r2, and integrate
3As explained earlier, here we are assuming that the set F originally defined in (4.5) has the additional

condition |τ − τ0| ≤ c′′′r−1.
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out the ξ1 variables. We then use a simple size estimate.

∫
F

r3χ|ρ(y)|≲rχ|y2+y5|≤ϵ|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ

≲ ||f1||L∞ ||f2||L1 ess sup
y2,ξ2

∫
χF̃ (y

1, τ)χ|y2+y5|≤ϵχ|ρ(y)|≲r2dy
1dτ

(1 + r2|λ∇2Φ(y) + 2πξ2 + τ∇2ρ(y)|)4

≤ ||f1||L∞ ||f2||L1 ess sup
y2,ξ2

∫
χF̃ (y

1, τ)χ|y2+y5|≤ϵχ|ρ(y)|≲r2dy
1dτ

≲ ||f1||L∞ ||f2||L1 ess sup
y2,ξ2

r−1
2

∫
χ ˜̃F

(y1, y2, y3)χ|y2+y5|≤ϵχ|ρ(y)|≲r2dy1dy2dy3

≲ ||f1||L∞ ||f2||L1 ess sup
y2,ξ2

r−1
2 · ϵ · r2

≲ ϵ||f1||L∞ ||f2||L1

To get from the fourth line to the fifth line, we’re using the change of variables (z1, z2, z3) =

(ρ(y), y2 + y5, y3), which has Jacobian determinant 1, and we’re also using the fact that
˜̃F ⊂ B1.

But now, unlike in the previous example, the L1 − L∞ estimate also has a factor of ϵ

appearing:

∫
F

r3χ|ρ(y)|≲rχ|y2+y5|≤ϵ|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ

≲ ||f1||L1 ||f2||L∞ ess sup
y1,ξ1

∫
χF̃ (y

2, τ)χ|y2+y5|≤ϵχ|ρ(y)|≲r1dy
2dτ

(1 + r1|λ∇1Φ(y) + 2πξ1 + τ∇1ρ(y)|)4

≤ ||f1||L1 ||f2||L∞ ess sup
y1,ξ1

∫
χF̃ (y

2, τ)χ|y2+y5|≤ϵχ|ρ(y)|≲r1dy
2dτ

≲ ||f1||L1 ||f2||L∞ ess sup
y1,ξ1

r−1
1

∫
χ ˜̃F

(y4, y5, y6)χ|y2+y5|≤ϵχ|ρ(y)|≲r1dy4dy5dy6

≲ ||f1||L1 ||f2||L∞ ess sup
y1,ξ1

r−1
1 · ϵ · r1

≲ ϵ||f1||L1 ||f2||L∞

And so again, interpolation gives us our desired result (4.19)
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With Lemma 6 proved, there is not much left to do to prove Theorem 3. To find the optimal

ϵ to use to split up the main contribution, we just set the two bounds in Lemma 6 equal:

ϵ−1|λ|−1 = ϵ, which implies that we should choose ϵ = |λ|−1/2. If we apply Lemma 6 with

this choice of ϵ, this finishes the proof of Theorem 3.

We note two things when comparing the result for this operator to the result for the op-

erator in Theorem 2. First, if we tried to use this argument on the previous operator

Ĩλ and we immediately interpolated the results of Lemma 5, we would get the bounds

ϵ−1|λ|−1||f1||L2 ||f2||L2 and ϵ1/2||f1||L2 ||f2||L2 . Moving forward with these estimates would

mean that the optimal choice of ϵ would be such that ϵ−1|λ|−1 = ϵ1/2, i.e., ϵ = |λ|−2/3, and

we would get an overall bound for the operator of |λ|−1/3||f1||L2 ||f2||L2 .

Second, we note that if we tried to use the previous dyadic argument on this operator, it

wouldn’t improve our result. To see why this is, note the L∞ − L1 and L1 − L∞ estimates

we get in the proof of Lemma 6. If we take these estimates and proceed as in the proof for

the previous operator in Section 4.2.2, dividing the set F into sets Fj := {(y, ξ, τ) ∈ F | 2j ≤

|y2 + y5| ≤ 2j+1}, we would get

∫
Fj

r3χ|ρ(y)|≲r|f1(y1, ξ1)||f2(y2, ξ2)|
(1 + r|λ∇Φ(y) + 2πξ + τ∇ρ(y)|)7

dydξdτ

≲ min{2−j/2|λ|−1/2, 2j/2}min{2−j/2|λ|−1/2, 2j/2}||f1||L2 ||f2||L2

There are three possible estimates we can pull out from this. First, we can do

min{2−j/2|λ|−1/2, 2j/2}min{2−j/2|λ|−1/2, 2j/2} ≤ 2−j/2|λ|−1/2 · 2−j/2|λ|−1/2 = 2−j |λ|−1

which is the best estimate to use when j is large, i.e. j > J1 for some J1. Next, we can do

min{2−j/2|λ|−1/2, 2j/2}min{2−j/2|λ|−1/2, 2j/2} ≤ 2j/2 · 2j/2 = 2j

which is the best estimate to use when j is small, i.e., j < J2 for some J2. Finally, the only
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other option is

min{2−j/2|λ|−1/2, 2j/2}min{2−j/2|λ|−1/2, 2j/2} ≤ 2−j/2|λ|−1/2 · 2j/2 = |λ|−1/2

which can be used only for a finite number of terms in the sum. However, if this last option

is used, it means that the best possible decay we can get through the dyadic approach is

|λ|−1/2. If this last estimate is not used, then we would only have two sums, and we would

be using the first estimate above for the sum
∑

j>J and the second estimate above for the

sum
∑

j≤J ; one can check that proceeding with that setup will also give an exponent of

|λ|−1/2. In either case, the dyadic approach cannot improve on the result that we have

already proved using the simpler method.
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