- . o
cnn ) \ University of Pennsylvania

Libraries ,_
UNIVERSITY of PENNSYLVANIA 4 ScholarlyCOmmonS

Publicly Accessible Penn Dissertations

2021

Towards A Practically Useful Text Simplification System

Reno Joseph Kriz
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

b Part of the Artificial Intelligence and Robotics Commons

Recommended Citation

Kriz, Reno Joseph, "Towards A Practically Useful Text Simplification System" (2021). Publicly Accessible
Penn Dissertations. 4551.

https://repository.upenn.edu/edissertations/4551

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/4551
For more information, please contact repository@pobox.upenn.edu.


https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F4551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=repository.upenn.edu%2Fedissertations%2F4551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4551?utm_source=repository.upenn.edu%2Fedissertations%2F4551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4551
mailto:repository@pobox.upenn.edu

Towards A Practically Useful Text Simplification System

Abstract

While there is a vast amount of text written about nearly any topic, this is often difficult for someone
unfamiliar with a specific field to understand. Automated text simplification aims to reduce the
complexity of a document, making it more comprehensible to a broader audience. Much of the research
in this field has traditionally focused on simplification sub-tasks, such as lexical, syntactic, or sentence-
level simplification. However, current systems struggle to consistently produce high-quality
simplifications. Phrase-based models tend to make too many poor transformations; on the other hand,
recent neural models, while producing grammatical output, often do not make all needed changes to the
original text. In this thesis, | discuss novel approaches for improving lexical and sentence-level
simplification systems. Regarding sentence simplification models, after noting that encouraging diversity
at inference time leads to significant improvements, | take a closer look at the idea of diversity and
perform an exhaustive comparison of diverse decoding techniques on other generation tasks. | also
discuss the limitations in the framing of current simplification tasks, which prevent these models from yet
being practically useful. Thus, | also propose a retrieval-based reformulation of the problem. Specifically,
starting with a document, | identify concepts critical to understanding its content, and then retrieve
documents relevant for each concept, re-ranking them based on the desired complexity level.
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ABSTRACT

TOWARDS A PRACTICALLY USEFUL TEXT SIMPLIFICATION SYSTEM

Reno Kriz

Chris Callison-Burch and Marianna Apidianaki

While there is a vast amount of text written about nearly any topic, this is often difficult
for someone unfamiliar with a specific field to understand. Automated text simplification
aims to reduce the complexity of a document, making it more comprehensible to a broader
audience. Much of the research in this field has traditionally focused on simplification sub-
tasks, such as lexical, syntactic, or sentence-level simplification. However, current systems
struggle to consistently produce high-quality simplifications. Phrase-based models tend
to make too many poor transformations; on the other hand, recent neural models, while
producing grammatical output, often do not make all needed changes to the original text. In
this thesis, I discuss novel approaches for improving lexical and sentence-level simplification
systems. Regarding sentence simplification models, after noting that encouraging diversity
at inference time leads to significant improvements, I take a closer look at the idea of
diversity and perform an exhaustive comparison of diverse decoding techniques on other
generation tasks. I also discuss the limitations in the framing of current simplification
tasks, which prevent these models from yet being practically useful. Thus, I also propose
a retrieval-based reformulation of the problem. Specifically, starting with a document, I
identify concepts critical to understanding its content, and then retrieve documents relevant

for each concept, re-ranking them based on the desired complexity level.
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CHAPTER 1 : Introduction

1.1. Overview

In the modern era, anyone can go online, search for any topic in which they are interested,
and immediately find hundreds, if not thousands, of documents related to that topic. The
current power of technology gives people the possibility to learn about almost anything,
at least in theory. In reality however, it is often the case that documents are written in
a relatively complex way, and/or require prior knowledge in a particular field before truly
understanding the material. This is especially problematic for children, but also is an issue
for adults with learning disabilities, foreign language learners, or other adults simply trying
to learn about a completely new field. To solve this problem, we can consider the task of

text simplification.

Automated text simplification is the process that involves transforming a complex text into
one with the same meaning that can be more easily read and understood by a broader
audience (Saggion, 2017). This process can include several sub-tasks such as lexical and
phrasal simplification (Devlin and Tait, 1998; Shardlow, 2013b), reordering (Chandrasekar
and Bangalore, 1997; Feblowitz and Kauchak, 2013), deletion, and sentence splitting (Zhu
et al., 2010).

Gnally moving to end a dispute that \

besmirched its hip, all-American brand with Retailer Abercrombie & Fitch has
charges of religious intolerance, retail agreed to change controversial rules
fashion giant Abercrombie & Fitch has ‘ about how its employees can dress.
agreed to change a controversial policy The change comes after two San
dictating employee dress and grooming in Francisco Bay Area women sued the
response to discrimination lawsuits filed by company.

ino San Francisco Bay Area women. J

Figure 1: An example of an ideal output from a text simplification system. On the left,
we show a long and complex text. On the right, we show a simplified version of this text,
which preserves the meaning of the original text.



As a grounding example that shows these sub-tasks in practice, let’s consider the complex
text shown on the left of Figure 1 and its simplified version written by professional editors
from Newsela!, shown on the right. As examples of phrasal simplification, we see that
policy was changed to rules, and in response to was changed to after. As a more syntactic
modification, the final part of the complex text, discrimination lawsuits filed by two San
Francisco Bay area women, was re-arranged to be presented in the active voice, two San
Francisco Bay area women sued the company. The beginning of the complex text, Finally
moving to end a dispute that besmirched its hip, all-American brand with charges of religious
intolerance, has been removed, as this part does not contribute much to the meaning of the
original text. Finally, we can see that the main part of the complex text has been split into
two sentences; this required the addition of a clause, The change comes, in order to preserve

grammaticality in the simplified version.

Many recent approaches attempt to formulate text simplification as a monolingual genera-
tion task and apply sequence-to-sequence (Seq2Seq) models (Nisioi et al., 2017; Zhang and
Lapata, 2017; Zhao et al., 2018). These have been shown to give state-of-the-art results
in machine translation (Sutskever et al., 2014), dialogue systems (Vinyals and Le, 2015),
and many other natural language processing fields. While these methods have shown im-
provement over previous statistical and phrase-based approaches, their practical uses are
still somewhat limited. There are several reasons for this. First, although recent simplifi-
cation models generate grammatical output, they do not make all necessary changes to the
original text (Zhang and Lapata, 2017). Second, there is a lack of quality simplification
data available for training (Xu et al., 2015). Finally, current evaluation metrics have low
or negative correlations with human judgments of simplification quality (Xu et al., 2016;
Sulem et al., 2018). Beyond these issues, a higher-level problem is that these models view
simplification as translating from a specific complex to a specific simple level. However,

texts can be written at many complexity levels, and even the same text can be of varying

'Newsela is a commonly used simplification corpus introduced by Xu et al. (2015), discussed more in
Section 2.3.2.



difficulty depending on a reader’s background knowledge. Moreover, a text might contain
domain-specific terminology which requires a more detailed explanation to be understood,

rather than merely substituting it with a simpler term.

1.2. Thesis Statement

In this thesis, we claim that the textual complexity at any level is not a static value,
but instead is influenced both by the surrounding text and especially the knowledge of a
particular reader. Thus, in order to create a practically useful simplification system, it is

critical to be able to adjust the outputs of our models depending on the situation.

In the chapters that follow, we demonstrate how this framing can inform and improve sim-
plification systems at three levels: at the word level, where we show how to identify complex
words and replace them with simpler substitutes while better taking the surrounding con-
text into account; at the sentence level, where we show how to produce simpler outputs
by generating a large number of diverse candidate sequences; and at the document level,
where we consider how to identify concepts that are critical to understanding a document,

and then how to retrieve related documents from a variety of complexity levels.
1.3. Outline of this Document

The rest of this document is organized as follows.

Chapter 2

We begin with an overview of related work in the field of text simplification, and include
a general discussion of generation and language modeling. First, we present previous work
specifically focusing on the lexical simplification task, which includes two sub-tasks: identi-
fying complex words in a text (known as complex word identification or CWI), and replacing
them with simpler substitutes. We also present several widely-used paraphrase datasets,
which can be effectively leveraged for lexical simplification. Next, we briefly discuss corpora

used for training sentence simplification systems. We then review several state-of-the-art



approaches for training a holistic statistical simplification system, where the input is a com-
plex English sentence and the output is a simple English sentence. The chapter continues
with a discussion of Sequence-to-Sequence models, their applications to text simplification,
and how to effectively generate outputs at inference time. Subsequently, we discuss in detail
several commonly-used metrics for evaluating these systems; in this section, we also discuss
the limitations of these metrics, and why human evaluation is still considered the most
trustworthy method of evaluation simplification systems. We conclude this section with a

discussion of large-scale pre-trained language models.

Chapter 3

In Chapter 3, we present our proposed approach to the task of lexical simplification. We
propose to solve this task in two steps: we first identify words that are difficult to understand

within a text, and then replace them with simpler alternatives that make sense in the same

context.
pictures
head gallery sketches
manager show images

The museum's director said there has never been such an exhibition of Dutch portraits.

Figure 2: An example sentence with complex words identified by our classifier, and substi-
tutes proposed by our embedding-based lexical simplification model.

Specifically, in order to identify complex words, we train a Support Vector Machine (SVM)
classifier which uses both word-based and context-based features. To train this classifier, we
create a corpus of in-context complex and simple words annotated by Amazon Mechanical
Turk workers. For the substitution step, we extract candidate substitutes from a large-scale
database of simplifying paraphrase rules (Pavlick and Callison-Burch, 2016). We select the
substitutes that best fit each context using a word embedding-based lexical substitution
model. We show that our CWI classifier and lexical simplification model yield results that

outperform several baseline approaches, and provide a detailed error analysis to show when



our methods fall short. This chapter expands on our NAACL 2018 long paper on lexical

simplification (Kriz et al., 2018).

Chapter 4

A simplification model that is useful in practice should not only make lexical or phrasal sub-
stitutions, but also perform other operations, such as reordering and deletion. In Chapter 4,
we consider the task of sentence simplification, which aims to holistically simplify entire sen-
tences. In this task, we start with a complex English sentence and attempt to generate a sim-
ple English sentence that is fluent (i.e. grammatical), adequate (i.e. meaning-preserving),
and simpler than the original. In this part of our work, we leverage a Sequence-to-Sequence

(Seq2Seq) model, which learns how to perform all simplification operations simultaneously.

Vanilla Sequence-to-Sequence (Seq2Seq) models (Sutskever et al., 2014) have been shown
to work well on this task (Nisioi et al., 2017), although they often make very few changes
to the original complex sentence (Zhang and Lapata, 2017). We address this problem by
proposing extensions to the generic Seq2Seq framework at training, inference, and post-
inference time. During training, we propose a custom loss function that rewards the model
more for correctly generating simpler content words. We do so by multiplying the standard
cross entropy loss function by the predicted complexities of each word in our vocabulary.
At inference time, rather than using the standard greedy search to generate a single system
output, we implement a diverse beam search approach which penalizes candidates that come
from the same partial parent output, thus allowing us to explore more of the search space.
Finally, at post-inference time we re-rank the multiple generated candidates using external
methods to judge the fluency, adequacy, and simplicity of each output. An example output
of our model compared with that generated from a vanilla Seq2Seq model is shown in Figure
3. While these extensions do result in simpler output sentences, there is a trade-off where
we sometimes lose critical information from the original. We again provide an error analysis

to discuss limitations of our approach in more detail. This section discusses work from our



NAACL 2019 long paper on sentence simplification (Kriz et al., 2019).

She also tests out vehicles in different
environments around the world.

[ She also tests out vehicles in different ]

Seq2Seq subjects around the world.

Our
[ She also tests out cars. ]

Figure 3: Comparison of a simplification generated by a vanilla Seq2Seq model vs. our
proposed model.

We observed that while our sentence simplification method yielded higher performance than
previous methods, as measured using standard automatic simplification metrics, the results
were more mixed after collecting manual human annotations. Thus, in the last part of
this chapter, we discuss the creation of an automatic quality estimation metric that corre-
lates better with human judgments, without requiring a reference sentence for comparison.
Given a complex sentence and the corresponding simplified output, we fine-tune BERT (De-
vlin et al., 2019) to predict its fluency, adequacy, and relative complexity simultaneously.
We show that training a single model rather than three separate models results in better
performance, likely due to the fact that each individual dimension is somewhat correlated
with the others. This section discusses work from our ArXiv short paper on simplification

evaluation (Kriz et al., 2020).

Chapter 5

In Chapter 4, we implemented several extensions to Seq2Seq models for the task of text
simplification; from these extensions, encouraging diversity at inference time led to signif-
icant improvements. This notion of diversity is not unique to text simplification, in fact
many NLP generation tasks, including conversational dialogue systems (i.e. chatbots), im-
age captioning, and story generation, can benefit from leveraging diverse candidate outputs
for a single input. In Chapter 5, we take closer look at the idea of diversity, and perform

an exhaustive comparison of current diverse decoding techniques. In this chapter, we define



Beam Search

A bus is stopped at a bus stop.

A bus is parked at a bus stop.

A bus stopped at a bus stop in a city.

A bus stopped at a bus stop at a bus stop.
A bus that is parked in front of a building.
Random Sampling

A bus parked at a bus stop at a bus stop.

There is a bus that is at the station.

A man standing by a bus in a city.

A bus pulling away from the train station.
A bus stopped at a stop on the sunny day.

Figure 4: An image with the top five captions produced by standard beam search and by
random sampling. Note that the latter set is more diverse but of lower quality.

diversity as the ability of a generative method to create a set of possible outputs that are
all valid for a given input, but vary as much as possible in terms of word choice, topic, and

meaning.

Early neural machine translation work found that beam search is an effective heuristic to
sample likely sequences from conditional language models (Sutskever et al., 2014). However,
this was initially restricted to tasks where only the most likely output sequence was con-
sidered; if we want to use beam search to generate multiple candidates, it has been shown
that these tend to only differ in punctuation and/or minor morphological variations (Li and
Jurafsky, 2016). A variety of alternatives and extensions to beam search have thus been pro-
posed for generating diverse candidate responses (Li et al., 2016a; Vijayakumar et al., 2016;
Kulikov et al., 2018; Tam et al., 2019). Many of these approaches show marked improve-
ment in diversity over standard beam search across a variety of generative tasks. However,
there has been little comparison and evaluation of these strategies against each other on
a single task. In this work we systematically compare existing diverse decoding methods
on two tasks: chatbots and image captioning. We also propose the use of over-sampling

followed by re-ranking at post-inference time.

In our experiments, we show that if the underlying model performs relatively well on a task,



leveraging the increased diversity in a random sampling-based approach will likely lead to
high-quality and diverse outputs. On the other hand, if the underlying model performs
relatively poorly on the initial task, encouraging too much diversity will likely come at the
cost of output quality. This work is based on work from our ACL 2019 long paper on
diversity in conditional language models (Ippolito et al., 2019); with this paper, Daphne

Ippolito and I were co-first authors, and share equal credit for this work.

Chapter 6

In Chapters 3 and 4 our proposed methodologies for lexical- and sentence-level simplification
yield better results than previous approaches; however in our error analyses we identified
several fluency and adequacy errors that our models still make quite often. At the sentence
level, the errors are particularly pronounced the input sentences are long and complex. Fine-
tuning pre-trained language generation models (Radford et al., 2019; Brown et al., 2020)
could serve to better address some quality issues at the sentence level. However, these
models would still fall short at the document level, as the text they generate still contains
many long-term inconsistencies (Ippolito et al., 2020). Thus, it is currently difficult to scale

generation further in order to simplify entire documents without significant loss in meaning.

To address these issues, Chapter 6 proposes to reformulate the text simplification task.
Given a document D on some topic, we can 1) identify the concepts that are critical for
understanding D, 2) retrieve a set of documents D’ related to each concept from a large
general corpus, where D’ contains documents from a variety of complexity levels, and 3)
re-rank D’ to find documents written at levels that are most appropriate for the user. This
is an extremely ambitious reformulation; thus the experiments in this Chapter are meant

to serve as steps taken towards this final goal.

In the first section of Chapter 6, we discuss our methodology for identifying the critical
concepts in a document D. There has been an extensive amount of work on keyphrase

extraction, a field related to critical concept identification, so first we discuss the most



prominent unsupervised methods that have been proposed to identify keyphrases in a single
document. Furthermore, we present several simple Wikipedia-based baselines, which extract
a set of domain-specific concepts by leveraging the internal Wikipedia category hierarchy.
Finally, we describe recent BERT-based keyphrase extraction approaches, and propose a
novel BERT-based approach that first identifies several high-quality seed concepts, before
iteratively identifying additional concepts based on their similarity to the seed concepts. In
order to evaluate these methods on real data, we create a test set consisting of computer
science web articles. From there, we collect annotations for each article, and perform a
secondary round of adjudication to ensure agreement. When tested on this evaluation set,
BERT-based methods interestingly perform worse than previous unsupervised approaches

that do not leverage large-scale pre-trained language models.

In the second section of Chapter 6, we focus on the tasks of retrieving related documents
at different complexity levels ranked based on embedding similarity, and their re-ranking
according to the desired complexity level. For this task, our methodology relies on a mech-
anism that combines embedding-based text similarity (Reimers and Gurevych, 2019) with
a complexity re-ranking module. We conduct experiments in settings of varying difficulty,
involving a diverse number of distractor documents. Initially, we leverage Newsela, a par-
allel corpus of 1,882 news articles rewritten at 5 complexity levels. Given a Newsela article
written at complexity level 4 (L4), we attempt to retrieve the rewritten articles from LO,

L1, L2, and L3, using the rest of the articles as distractors.



Original
Document
isis-antiquities, L4

Top-5 Ranked Articles Top-5 Re-ranked Articles

1. isis-antiquities, L3
2. isis-antiquities, L2
3. syria-heritage, L3
4. syria-heritage, L4
5. christians-egypt, L4

1. isis-antiquities, LO
2. syria-heritage, LO
3. peace-prize, LO

4. egypt-clashes, LO
5. egypt-unrest, LO

7. isis-antiquities, L1

121. isis-antiquities, LO

Figure 5: Given an input article at complexity Level 4 (1.4), we show the ranking of aligned
articles based on SBERT embedding similarity Reimers and Gurevych (2019), and the
output of our re-ranking methodology which boosts articles at the lowest complexity level
(LO).

We show that we can effectively retrieve L3 and L2 documents, as these are the versions
with the least amount of changes and, thus, the most similar. However, current embeddings-
based retrieval approaches seem to struggle with L1 and especially with L0 documents. To
address this, we introduce a re-ranking mechanism which involves fine-tuning BERT to
predict document-level complexity (Devlin et al., 2019). This mechanism allows us to ef-
fectively filter out documents at incorrect complexity levels, making our retrieval approach
significantly more effective. Finally, in a large-scale experiment, we show that our method-
ology successfully retrieves related documents at the desired complexity level even in a

challenging scenario with over one million candidate documents.

Chapter 7

Chapter 7 summarizes the key ideas and take aways from this thesis, along with its limita-

tions and areas for future work.
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CHAPTER 2 : Background and Related Work

2.1. Introduction

In this chapter, we will discuss related works of various subfields of English text simplifica-
tion, as well as text generation more generally. This chapter is broken down into six main
sections. First, Section 2.2 discusses lexical simplification, the most well-researched subtask
of text simplification involving identifying complex words within a text, and replacing them
with simpler words that preserve the meaning of the original sentence. This section also
discusses various commonly-used resources used for lexical and phrasal substitution and
simplification. This section is most relevant for the work involved in Chapter 3, though
the idea of understanding textual complexity is something that is discussed throughout this

thesis.

Next, Section 2.3 focuses on the main text simplification corpora leveraged by these sentence-
level statistical systems, and later neural-based systems as well, to learn common simplifica-
tion operations. In particular, we consider Parallel Wikipedia, which aligns sentences from
Simple Wikipedia articles with their corresponding Wikipedia articles (Zhu et al., 2010);
and also Newsela, a dataset of news articles re-written at five complexity levels by profes-
sional editors (Xu et al., 2015). These corpora, especially Newsela, are critical in many

paraphrasing, generation, and retrieval experiments in Chapters 3, 4, and 6, respectively.

Section 2.4 focuses on phrase-based and statistical text simplification systems. These sys-
tems still attempt to address lexical and phrasal substitution, but also attempt to address
other common subtasks such as deletion, reordering, and sentence splitting. These models
often create statistically-driven components for each subtask, before combining them to-
gether into a pipeline to holistically simplify a sentence. This work is generally considered
the state-of-the-art approach to text simplification prior to the rise of neural-based meth-
ods. Note that this is a trend common to machine translation, dialogue systems, and many

other generation tasks.
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After this, Section 2.5.1 focuses on the rise of neural-based approaches, both within text
simplification and across natural language processing. We first provide a high-level descrip-
tion of the structure of a basic Sequence-to-Sequence (Seq2Seq) model (Sutskever et al.,
2014), which typically involves an initial model that encodes an input into some latent
representation, and a second model that takes this representation and uses it to decode an
output one token at a time. Next, we discuss several applications of Seq2Seq approaches to
sentence simplification, which we use as a basis of comparison for our own sentence simpli-
fication models in Chapter 4. Finally, we discuss several standard approaches for effectively
decoding an output from a Seq2Seq model. These include greedy search, which involves
simply taking the most likely token from the probability distribution at each time step; and
beam search, which involves keeping track of the £ most likely partial sequences through-
out the decoding process. This section serves as a basis for the various diverse decoding

approaches discussed some in Chapter 4, but especially in Chapter 5.

Section 2.6 considers various methods for evaluating sentence simplification systems. We
first discuss the three main dimensions upon which systems are evaluated: fluency, adequacy,
and relative complexity. We consider several metrics that attempt to approximate human
judgments on these three dimensions when comparing to a single reference sentence or
multiple reference sentences. After this, we also consider quality estimation metrics, which
attempt to estimate the quality of a generated simple sentence without a reference. These
metrics are used significantly in Chapter 4, both as ways to evaluate the quality of our own
sentence simplification models, as well as the basis of comparison for the creation of our

own metric.

Lastly, Section 2.7 briefly discusses large-scale pre-trained language models that have rev-
olutionized nearly every aspect of natural language process in recent years. In particular,
we focus on BERT, a contextual word embedding model trained on two very general lan-
guage understanding tasks with a vast amount of data (Devlin et al., 2019). We discuss

the importance of these language models on their own, but that the most noteworthy prop-
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erty of these models is that they can be fine-tuned on a small amount of task-specific data
to significantly outperform models trained from scratch. We refer to BERT-based models
throughout all Chapters: in Chapter 3 we perform a post-hoc comparison of our models
to RoBERTa-based approaches; in Chapter 4 we fine-tuned BERT to estimate the quality
of sentence simplification systems; in Chapter 5 we use BERT to cluster similar sentences
together; and in Chapter 6 we leverage BERT-based models both for identifying critical
concepts, for predicting document-level complexity, and ultimately for retrieving related

documents at various complexity levels.
2.2. Lexical Simplification
2.2.1. Disambiguation-based and Direct Methods

Lexical simplification is a sub task of text simplification, which involves replacing complex
words in a text with simpler substitutes that preserve their meaning. Lexical simplification
can involve identifying complex words in context (Shardlow, 2013b), substitute generation

(Biran et al., 2011), and finally choosing the appropriate substitute for each complex word.

To identify the words to be simplified, Shardlow (2013a) proposes to use a Support Vector
Machine (SVM) that exploits several lexical features, such as token length, token frequency,
number of characters, and number of syllables. Our best approach in Chapter 3 also inte-
grates a SVM classifier for identifying complex words, but complements this set of features
with context-related and embedding-based features that have not been exploited in previous

work.

In lexical simplification, existing methods differ as to whether they include a word sense
disambiguation (WSD) step for substitute selection, and in the ranking method used. Rank-
ing is often performed based on word frequency in a large corpus, since it has been shown
that frequent words increase a text’s readability (Devlin and Tait, 1998; Kauchak, 2013).
Models that include a semantic processing step for substitute selection aim to ensure that

the selected substitutes express the correct meaning of words in specific contexts. WSD is
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often carried out by selecting the correct synset (i.e. set of synonyms describing a sense)
for a target word in WordNet; the synonyms in the synset are then used as substitutes.
Thomas and Anderson (2012) use WordNet’s tree structure to reduce the size of the vo-
cabulary in a document; we discuss WordNet and other paraphrase corpora in detail in the
next section. Biran et al. (2011) perform disambiguation in an unsupervised manner. They
learn simplification rules from comparable corpora and apply them to new sentences using
vector-based context similarity measures to select words that are the most likely candidates
for substitution in a given context. This process does not involve an explicit WSD step,
and simplification is addressed as a context-aware lexical substitution task. The SemEval
2012 English Lexical Simplification task (Specia et al., 2012) also addresses simplification
as lexical substitution (McCarthy and Navigli, 2007), allowing systems to use external sense

inventories or to directly perform in-context substitution.
2.2.2. Lexical Semantic Resources

One of the earliest and best-known lexico-semantic resources is WordNet, a manually cu-
rated lexical network which encodes semantic relationships between words (Miller, 1995).
WordNet contains 155,327 words grouped into 175,979 synsets, i.e. synonym sets, along
with relationships between these synsets. Relationships between two synsets S and So in-
clude hypernymy, which occurs when the words in S; are subtypes of those in S3; meronymy,
which occurs when the words in S; denote parts of those in S9; and antonymy, where the
words in S1 have opposite meaning from those in Sy. In addition, some words can appear
in multiple distinct synsets, indicating that they have multiple meanings. For example, the
word bug is related to nouns such as insect and beetle, but also separately to nouns such as

error and mistake (Cocos and Callison-Burch, 2016).

Semantic resources have also been created using automatic methods. One such resource is
the Paraphrase Database (PPDB), which contains more than 220 million English paraphrase
pairs (Ganitkevitch et al., 2013; Pavlick et al., 2015). PPDB was created using a bilingual

pivoting technique, which assumes that two English phrases that translate to the same
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foreign phrase have the same meaning (Bannard and Callison-Burch, 2005). This pivoting
technique was applied to a parallel corpus containing more than 106 million sentence pairs
and over 2 billion English words, spanning 22 pivot languages. Word-level alignments inside
the parallel sentences were done automatically, and thus do contain some noise; this results
in paraphrase pairs of varying quality. In addition, PPDB paraphrases are not always
synonyms, but are often categorized by other types of relationships, as in WordNet. To
address these issues and promote good paraphrase pairs, the PPDB 2.0 score was introduced
which reflects the strength of paraphrase relations (Pavlick et al., 2015). This work also

classified the relation of each paraphrase pair (P, P») as one of six entailment relations:
e Equivalence, where P; and P, are true synonyms (e.g.,distant vs. remote)
e Forward Entailment, where P; is a specific type of P (e.g., mosquito vs. bug)
e Reverse Entailment, where P, is a specific type of P (e.g., bug vs. mosquito)
e Exclusion, where P; has the opposite meaning of P» (e.g., nobody vs. someone)
e Independent, where P; and P, have no relation (e.g., car vs. family)

e Other Related, where P} and P, have some relation other than entailment (e.g.,

swim vs. water)

In order to leverage a paraphrase resource for the task of text simplification, it is critical
to know given a paraphrase pair (P;, P»), which phrase is simpler than the other. The
Simple Paraphrase Database (SimplePPDB) was created for this purpose, which is a set of
4.5 million simplification rules extracted from PPDB (Pavlick and Callison-Burch, 2016).
These rules come with both the predicted strength of the paraphrase relation (PPDB 2.0
score) and a simplification confidence score. This takes into account the strength of the
paraphrase relation, and how well the right side of the rule simplifies the word on the
left. For example, perish — die has a confidence score of 0.909, while perish — murder

has a confidence score of 0.108. This simplification score was created by sampling 1,000
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PPDB phrases, and extracting up to 10 of their paraphrases found in the resource. For
each pair (P, P,), crowdsourced annotations were collected which determine how well P,
preserves the meaning of P;, and which paraphrase is simpler than the other (or if there
is no difference in complexity between the two). Pavlick and Callison-Burch (2016) train a
multi-class logistic regression model on this data to predict if applying a paraphrase rule
will result in a simpler or more complex output, or in an output that does not make sense.
We show how we can effectively rank SimplePPDB paraphrases for an in-context lexical

simplification task in Chapter 3.
2.3. Sentence Simplification Corpora

One of the main problems in simplification work is collecting a reasonable amount of quality
data. Early works focused on specific aspects of simplification, allowing systems to lever-
age more general corpora. The lexical simplification work of Carroll et al. (1999) utilized
lexico-semantic resources such as WordNet (Miller, 1992), while work focusing on deletion
(Filippova and Strube, 2008) leveraged sentence compression corpora built from the British
National Corpus and the American News Text Corpus. However, with the rise of statistical-
and neural-based methods, which need to be trained on parallel sentences, collecting sen-

tences containing a variety of simplification operations has become increasingly important.
2.3.1. Simple Wikipedia

In order to build an effective statistical-based system that takes into account all aspects of
text simplification, Zhu et al. (2010) created a corpus of parallel sentences by leveraging
Wikipedia and Simple English Wikipedia, which is tailored for younger children and adult
English language learners. To do this, the authors first aligned regular and Simple English
Wikipedia documents by tracking the language link found in Wikipedia dumps. After
segmenting the articles into sentences, Zhu et al. (2010) aligned similar sentences in the
aligned articles using sentence-level Term Frequency-Inverse Document Frequency (TF-

IDF) (Nelken and Shieber, 2006). TF-IDF is a standard scoring scheme which indicates
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the importance of a particular word to a document within a corpus (Salton and Buckley,
1988). In order to compute sentence-level TF-IDF, Nelken and Shieber (2006) consider each
sentence as a document. They then can define the weight w for a term t in a sentence s as

follows:

(2.1)

In this formula, T'Fs(t) represents whether or not the token ¢ is found in sentence s, N is
the total number of sentences in the corpus, and DF represents the number of sentences in

which ¢ is found.

The PWKP corpus has been widely used in simplification research, since it allows for the
training of advanced statistical simplification systems (Woodsend and Lapata, 2011; Coster
and Kauchak, 2011; Wubben et al., 2012). However, in their descriptive statistics of the
dataset, Zhu et al. (2010) show that the aligned Simple English Wikipedia sentences are
only slightly shorter than their corresponding Wikipedia sentences (20.87 vs. 25.01 tokens
per sentence). Siddharthan (2014) further points out it is necessary to perform a more
exhaustive examination of the quality of Simple English Wikipedia. The main reason is
that, contrary to machine translation evaluation, which typically relies on native speakers
to judge quality, it is generally difficult to find a “native Simple English speaker” because

most adult English speakers are relatively advanced.

Taking this analysis further, Xu et al. (2015) perform an in-depth analysis of Simple English
Wikipedia and PWKP. The authors extract 200 random sentence pairs from PWKP, and
find that 50% of the pairs were either not correctly aligned (17%) or not good examples
of actual simplifications (33%). Additionally, only 12% of the sentence pairs feature both
deletion and paraphrasing, two key operations in simplification. Xu et al. (2015) argue
that this is likely due to the fact that Simple English Wikipedia was created by volunteers,

and these articles are also rarely complete rewrites of the original Wikipedia articles, often
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Statistic L4 L3 L2 L1 LO
# words/doc | 1,152.01 | 996.59 | 931.78 | 799.48 | 676.20
# words/sent 23.23 19.44 | 16.60 14.11 11.91

Table 1: Descriptive statistics depicting the difference in complexity levels in the Newsela
corpus (Xu et al., 2015). Here, L3 is the least simplified version of the original document,
while LO is the most simplified version.

leaving much of the information out.
2.3.2. The Newsela Corpus

To reduce the field’s reliance on Simple Wikipedia, Xu et al. (2015) proposed a new corpus
based on articles collected by Newsela, an education company that focuses on creating
K-12 reading materials. This corpus (hereafter called Newsela V1) initially consisted of
1,130 news articles on a variety of topics, which were rewritten at four complexity levels by
Newsela editors. In what follows, we describe the original document as Level 4 (L4), and the
simplified documents as Level 3 (L3) to Level 0 (L0), depending on their complexity level.
Table 1 shows descriptive statistics about the complexity of documents and sentences at
the five Newsela levels. We can see that L0 documents indeed have on average significantly

shorter sentences, a significant improvement over PWKP.

To extract parallel sentences, Xu et al. (2015) first align sentences from an article with
complexity ¢ with the most similar sentence in the same article with complexity ¢ — 1.
Unlike in PWKP, sentential similarity is calculated using the proportion of overlapping

lemmatized words between two sentences s; and so:

, |lemmas(s1) N lemmas(s2)]
_ 2.2
sim(s1, 52) |lemmas(s1) Ulemmas(s2)| (22)

In order to analyze the quality of the Newsela corpus, Xu et al. (2015) manually annotate
50 sentences from each level. This experiment finds that in L2, 34% of sentences are not

simpler, while in L0, only 6% of the sentences are considered not simpler, and 68% had
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undergone both deletion and paraphrase operations. In total, this version of the Newsela

corpus includes 141,582 sentence pairs.

Although the Newsela corpus was an improvement over previous datasets, the initial align-
ment algorithm used struggled to effectively align longer sentences, as these sentences were
likely to have been changed significantly or split into multiple sentences in the simplified
articles. Recently, Jiang et al. (2020) introduced a two-step process to better align sen-
tences from parallel corpora. This work starts with an initial paragraph alignment step.
Given two paragraphs in aligned documents p; € D; ;) and p2 € D; 1, paragraph-
level semantic similarity score (simP) is computed by taking an average of the maximum
sentence-level similarities for each sentence s; € p; and sy € ps). A pair of paragraphs (p1,
p2) is considered aligned if they are both similar and found in similar positions in their
respective documents; additionally, paragraphs are aligned if two continuous paragraphs

(p2,p3) € D; 1,(;r) are both relatively similar to p;.

Next, Jiang et al. (2020) train a neural conditional random field (CRF) model to iden-
tify similar sentences within the aligned paragraphs. This model is able to leverage both
sentence-level similarities as well as an alignment label transition, which accounts for the
fact that if a complex sentence ¢; is aligned with a simple sentence s;, it’s likely that ¢;_1
is aligned with s;_q, and ¢;11 is aligned with s;;1. In this work, semantic similarity is
computed by fine-tuning BERT (Devlin et al., 2019) on manually labeled data. Compared
with the first version, these changes result in a significant increase in sentence pairs that
contain both sentence splitting and additional rewrite operations, while also increasing the
number of aligned sentences to 666,645. Note that this is partially due to the second version
of the Newsela corpus (Newsela V2) being larger and containing 1,882 aligned articles, but
the improvements introduced in this work further increase both the quality and quantity of

parallel sentences.
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2.4. Phrase-based and Statistical Text Simplification

Most recent work has attempted to solve the problem of text simplification holistically,
formulating the task as a monolingual translation problem. Here, the input is a complex
English sentence and the output is a sentence in simplified English. Training on a large
corpus of aligned sentences allows models to perform transformation operations needed for
simplification simultaneously. In this section, we discuss various statistical simplification
systems, which have served as building blocks for later neural-based simplification models.
We discuss in detail a seminal work on combining simplification subtasks into a holistic
system (Zhu et al., 2010); a hybrid phrase-based model that has been proposed in order to
better incorporate deletion and sentence splitting (Narayan and Gardent, 2014); and finally
a statistical machine translation approach augmented with lexical substitutions (Xu et al.,

2016).

While these methods have attempted to address the problem of sentence simplification
holistically, in general these models are still broken down into several sub-models. This
is not always a bad idea, particularly when phenomena related to simplification are not
seen much in the training data, as is often the case for sentence splitting. However, under
the assumption that the data is sufficient, a single model that jointly learns to perform all
aspects of simplification simultaneously would likely generate more coherent and simpler

output.
2.4.1. Tree-based Simplification Model

The first work that focused on integrating simplification subtasks into a holistic sentence-
level simplification system is the Tree-based simplification model (TSM) (Zhu et al., 2010).
This work integrates sentence splitting, deletion, reordering, and substitution operations
into a single cohesive model. This work was also the first to effectively leverage Simple

Wikipedia in order to collect parallel sentences.

The first step in TSM is to perform sentence splitting, if needed. To do this, Zhu et al. (2010)

20



— O\
NP VP
RN
August was ),NP«
NP I
s PP SBAR .
the sixth month in NP WHNP s
the ancient Roman calendar which \‘/p
started PP
/N
in  735BC
S SBAR
N / ~_
NP /VP WHNP s
| N )
August was - r\fP which VP
NP PP tarted PP
~ 1N T~ starte N
the sixth month jn _ NP in  735BC
/ \\ T~

the ancient Roman calendar

Figure 6: A potential split based on the parse tree of the sentence, “August was the sixth
month in the ancient Roman calendar which started in 735BC.”. Example recreated from
Zhu et al. (2010).

decide whether or not to split a sentence on a boundary word, such as “which” in Figure
6, by using the relative length of the original sentence compared to the simplified version.
Subsequently, the model determines whether to drop the boundary word by considering
the word itself and the corresponding constituent within the parse tree; in Figure 6, this

corresponds to “which” and “WHNP”, respectively.

Similarly, for deletion, Zhu et al. (2010) utilize a word’s direct parent node along with the
constituent pattern of its children. In the example in Figure 6, the phrase “the sixth month”
represents the constituent rule “NP — DT JJ NN”. The model then probabilistically

determines which parts of the rule should be kept, and which can be deleted.

Finally, for substitution, Zhu et al. (2010) use of a substitution table that tracks the prob-
abilities P(s|w), where w is a word and s is any candidate substitute for w. We can easily
extend this to phrasal substitution by instead tracking the probabilities P(s|n), where n is

a non-terminal node in the constituency parse. The decision to make a phrasal or lexical
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substitution is determined by the node n having a higher probability than the most likely
substitutions for all children of n. To calculate the probabilities in the substitution tables,
these are initialized to a uniform distribution, and then updated by running an Expectation

Maximization (EM) algorithm on the parallel sentences from PWKP.

Subsequent work built on the phrase-based machine translation framework by incorporating
additional deletion (PBMT) (Coster and Kauchak, 2011) and post-hoc reranking (PBMT-R)
(Wubben et al., 2012) mechanisms. In addition, Woodsend and Lapata (2011) presented a
phrase-based model based on quasi-synchronous grammar to capture structural mismatches

and complex rewrite operations.
2.4.2. Adding Deep Semantics to Phrase-based Machine Translation

While phrase-based systems such as TSM (Zhu et al., 2010) perform reasonably well when
making simplifications at the lexical and phrasal level, they tend to perform poorly when
deleting tokens and splitting sentences, two key aspects of simplification. To circumvent this
problem, Narayan and Gardent (2014) incorporate better pre-processing steps for deletion
and sentence splitting, before utilizing a probabilistic phrase-based system. Regarding
sentence splitting, the authors argue that a purely syntactic approach (Zhu et al., 2010) is
often inadequate. This is because in cases where the split sentences share a phrase, relying
on syntax alone often fails to correctly generate this phrase in both sentences. Instead,
the authors recommend using a formal semantic representation of the sentence which is
derived from Discourse Representation Theory (DRT). In particular, the Hybrid model
takes as input a Discourse Representation Structure (DRS). A simple example sentence

and its corresponding DRS is shown below:
e Sentence: The man walks the dog.
e DRS: [x,y: man(x), dog(y), walks(x, y)]

With this representation, it is possible to clearly identify phrases that are shared across
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different parts of the sentence, and which are critical components, e.g. agents or patients.

Similarly, the authors leverages the DRS to determine what parts of the sentence should
be deleted. The model can determine which phrases are crucial components, and which are
optional content that can potentially be removed. In contrast, work that only considers the
input sentence or the syntactic structure does not discriminate between phrases, and thus

can delete important parts of the sentence.

The last component is to further simplify by making lexical and phrasal substitutions,
and reordering the sentence. Narayan and Gardent (2014) train a standard phrase-based
machine translation system on PWKP. In addition, to ensure the output is relatively fluent,
the authors train a general language model on Simple Wikipedia, and integrate this into
their phrase-based simplification system. Altogether, the Hybrid model can be defined as

follows:

Hybrid(c) = arginax P(DRS.|s")P(s'|s)P(s) (2.3)

Here, ¢ represents the original complex sentence, D RS, is the semantic representation of ¢,
s’ represents the intermediate sentence(s) after performing splitting and deletion, and s is a
candidate simplified sentence. Their results show that their hybrid method greatly outper-
forms previous phrase-based simplification systems in terms of simplicity, while remaining

competitive on fluency and adequacy.
2.4.3. Integrating Lexical Simplification into Statistical Machine Translation

In contrast to previous phrase-based work which utilizes several components to model dif-
ferent aspects of simplification, Xu et al. (2016) instead start from a standard statistical
machine translation approach and integrate several simplification-specific aspects, focusing
mainly on substitution. In addition, for substitution this work leverages the Paraphrase

database (PPDB), a collection of more than 100 million English paraphrase pairs (Ganitke-
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vitch et al., 2013). While PPDB rules are not simplification-specific, the sheer size allows for
much greater coverage compared to previous simplification datasets, and non-simplifying

rules can subsequently be filtered out.

To properly leverage PPDB rules for simplification, Xu et al. (2016) train a linear model
lw(c, s), where ¢ is the original complex sentence, s is the candidate simplified sentence, and
w are the weights learned by the model. As features, the authors first consider all features
available in PPDB for each paraphrase pair (p1, p2); these include the conditional paraphrase
probability P(p2|p1), the distributional similarity between the paraphrases’ contexts, part-
of-speech information, n-gram based features for words seen in the left and right of a
phrase, among others. Beyond paraphrase-specific features, Xu et al. (2016) also calculate
paraphrase length in characters, their length in words, the maximum number of syllables,
and the fraction of common English words included in the paraphrases. These features are

computed for both p; and ps.

In order to learn w, Xu et al. (2016) use a pairwise ranking optimization algorithm, which
differentiates a good simplification s, from a bad simplification s; using some automatic
metric m. In other words, the pair (s1,s2) is labeled as 1 if m(c, s1) > m(c, s2), and as
0 otherwise, for some metric m. This work tries three metrics as m: BLEU, a standard
n-gram-based metric to measure quality in machine translation (Papineni et al., 2002);
FKBLEU, a novel metric which combines BLEU with the difference in Flesch-Kincaid Grade
Level between the original sentence and the candidate (Kincaid et al., 1975); and SARI, a
second novel metric which tracks how many n-grams are correctly kept, added, and deleted

by the candidate. These metrics are discussed in detail in Section 2.6.

Using both automatic metrics as well as human judgments of fluency, adequacy, and number
of good simplifications made (simplicity+), Xu et al. (2016) find that optimizing on BLEU
results in candidates that are identical to the original sentence; this is one of many experi-
ments that demonstrates the fact that BLEU is generally not a good metric for optimizing

simplification systems (Sulem et al., 2018). The combination of PPDB and SARI seems to
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perform best overall, making more simplifications while preserving fluency and adequacy
better than the previous state-of-the-art system of Wubben et al. (2012). However, the
number of actual simplifications is still quite low compared to the reference sentences (0.65

vs 1.35).
2.5. Neural Machine Translation and Applications to Simplification

Sequence-to-Sequence (Seq2Seq) models, which learn mappings from one sequence to an-
other using a neural network, have had enormous success in not just text simplification, but
also a variety of natural language processing applications, notably including machine trans-
lation (Sutskever et al., 2014; Luong et al., 2015; Vaswani et al., 2017), text summarization
(Nallapati et al., 2016), and dialog systems (Vinyals and Le, 2015). In this section, we first
present an overview of the Seq2Seq framework, followed by a discussion of recent applica-
tions of Seq2Seq models to text simplification. We also include a description of common

decoding strategies.
2.5.1. Sequence-to-Sequence Models

Seq2Seq models generally include an encoder and a decoder model. The encoder transforms
some input x into a fixed-size latent representation, z € RY, while the decoder transforms
this representation to output a conditional probability for each word in the target sequence,
y, given the input sequence and tokens generated so far. Here, V is the cardinality of
the enumerated vocabulary V. Generally, the encoder and decoder are both Recurrent
Neural Networks (RNNs) (Sutskever et al., 2014), though more recent works have sometimes
replaced these with attention-based Transformer networks (Vaswani et al., 2017). The
encoder and decoder are then jointly trained in order to maximize the conditional probability

of the target sentence given the source sentence, i.e. P(y|x).

At every step t of the input sequence, the encoder generates the hidden state as follows:

ht = f(l’t,htfl) (24)
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where x; is the current token in the sentence and h;_; is the hidden state at the previous
time step. Here, the function f(.) is generally a Long Short-Term Memory (LSTM) network.
The final hidden state of the encoder is then taken as the context vector ¢ to be passed to

the decoder.

At each time step t, the decoder generates the next token y; and its hidden state d; as

follows:

di = f(di—1,¥¢-1,¢)
P(yt’yl:t—la C) = g(dta Yt—1, C)

Here, the function g(.) is a softmax layer to convert scores into a valid probability distribu-

tion.

During the decoding process, most strategies attempt to find the most likely overall se-

quence, i.e. choose a ¥ such that:

N
§ = argmax P(y|x) = argmax [ T Py | y1.4,%)
t=1

However, unlike Markovian processes, no sub-exponential algorithm exists to find the best
decoded sequence, and thus we instead use approximation algorithms. The simplest ap-
proach to decoding a likely sequence is to greedily select the most likely word at each
timestep:

i = arg rr;ztix P(yt\ym—b X)

There are several key limitations in this original architecture. Since the last step of the
encoder is the only thing that is passed to the decoder, it is expected to contain informa-
tion from the entire sentence; this problem, known as bottlenecking, becomes increasingly
problematic with longer sentences. In addition, recurrent neural networks (RNNs) that
were generally used as the encoder and decoder models are generally somewhat slow to

train; since each RNN step takes the output from the previous step, only one step can be
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computed at a time.

To address the bottlenecking problem, the concept of attention was introduced, which allows
the decoder to focus on the relevant parts of the source sentence (Bahdanau et al., 2015;
Luong et al., 2015). With this approach, the context vector at time step ¢, ¢, is no longer

static; instead, it now depends on the entire sequence of hidden states.

In this formula, Ty represents the number of time steps in the input x, and «ay; represents
the weight of each hidden state. The decoder now receives all encoder hidden states, each
of which represents the addition of a single token from the source sentence. Each step in
the decoder learns a score for each encoder state, where important states are given higher
scores. Finally, we take the softmax of these scores, and multiply them by the hidden states
to get an overall context vector. Incorporating attention into Seq2Seq models was shown

to greatly improve performance on machine translation and other generation tasks.

To speed up training, Vaswani et al. (2017) proposed removing the RNN component of
the model altogether and to rely solely on attention; this is known as the transformer
architecture. The model still consists of separate encoder and decoder components. In the
original architecture, the encoder is six encoders stacked on top of each other; the decoder
is set up in the same way. Each encoder contains two layers: a self-attention layer, followed
by a feed-forward neural network. For each word w, the self-attention layer looks at the rest
of the input to better encode w. Since the attention mechanisms has no knowledge of the
position of each word in the input, before being passed into the encoder, the embeddings
corresponding to the input text are modified using positional encodings. The decoding
side is similarly structured, with the output from the previous decoder layer being used as
input to the subsequent layer. After the decoders, there is a final linear layer, followed by

a softmax layer to produce a final probability distribution over the vocabulary. Following
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the standard Seq2Seq framework, after each word is predicted, the output sequence so far
is passed through the decoder as additional context.! The transformer architecture is much
faster to train and also delivers better results when compared to previous state-of-the-art

RNN-based Seq2Seq models.
2.5.2. Applications of Seq2Seq models to Text Simplification

After the success of Seq2Seq models in machine translation and other text generation tasks,
it was natural for this architecture to be applied to text simplification as well, as this has
often been viewed as a monolingual machine translation task from complex to simple En-
glish. Nisioi et al. (2017) proposed the first major application of Seq2Seq models to text
simplification, applying the standard encoder-decoder approach with attention, and using
beam search as their decoding strategy. This work shows that a vanilla Seq2Seq model di-
rectly applied to text simplification is able to generate output that is more grammatical and
better at preserving the meaning of the original sentence compared to previous statistical

and phrase-based models.

However, although a higher proportion of the changes proposed by Seq2Seq models are high
quality, they still make significantly fewer changes compared to previous approaches (Nisioi
et al., 2017). This illustrates one of the key challenges in applying standard Seq2Seq models
to simplification. If we consider sentence pairs in the Newsela dataset, 73% of tokens are
copied from the original to the simplified version in Newsela, making the copy operation
by far the most common operation (Zhang and Lapata, 2017). Because standard Seq2Seq
models are extremely good at picking up on patterns present in the data, they naturally
learn to copy very well, resulting in output that is often either identical to the original
sentence, or only with a few small changes. Due to this issue, most subsequent work focuses
on how to encourage the model to make more simplification operations that do not involve

copying from the original.

1 This description of transformers is partially based on the blog post
http://jalammar.github.io/illustrated-transformer/.
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To counteract this tendency of the models, Zhang and Lapata (2017) integrate reinforce-
ment learning into the Seq2Seq framework. This rewards the model for producing output
that is simpler than the original text but also is grammatical (fluency) and perserves the
meaning of the original sentence (adequacy). To do this, we can view the standard Seq2Seq
model as the agent who generates an output sequence y according to its current “policy”,
defined in Equation 2.5.1. The output sequence, the original sentence x, and the reference
simplification y are then passed into several functions which generate a reward for that

sequence, which is used by the REINFORCE algorithm to update the original agent.

Zhang and Lapata (2017) make use of three separate reward functions that score the quality
of each generated output in terms of its fluency, adequacy, and simplicity. The fluency
reward function is based on a language model trained on simple text, to simulate the
likelihood that the generated output is a simple sentence. Formally, this function takes as

input y, and calculates the normalized probability as follows (Zhang and Lapata, 2017):

M
o) = e ( > tog(Puar(ilnsi-1) (25)
i=
In this formula, PypM(-) represents the conditional probability assigned by the language
model to the token generated at time ¢, given the previous tokens. Regarding adequacy, the
reward function makes use of a sentential autoencoder (Dai and Le, 2015) trained jointly on
the complex and simple sentences. In order to calculate how well the meaning of the original
sentence is preserved, this function takes in x and y, converts them to vector representations

ex and ey, and simply calculates their cosine similarity:

ra(x,§) = cos(w) (2.6)

[lexl[ [leg ]

Finally, for simplicity the reward function utilizes SARI, an automatic metric commonly

used to evaluate simplification systems (discussed more in Section 2.6.3) (Xu et al., 2016),
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which calculates the quality of ¥ given both x and y. While this is the current metric that
correlates best with simplicity, Zhang and Lapata (2017) argues that due to the noise in the
corpora used for training (Zhu et al., 2010; Xu et al., 2015), it is important to also take into
account “reverse SARI”, which instead calculates the quality of y given x and y. Formally,
the simplicity reward function is defined as follows; here, § is a hyperparameter to be tuned

while training:

rs(x,y,¥) = BSARI(x,y,y) + (1 - B)SARI(x,y,y) (2.7)

Vu et al. (2018) extend the standard Seq2Seq framework to incorporate memory augmenta-
tion which simultaneously performs lexical and syntactic simplification, outperforming pre-
vious vanilla Seq2Seq models on both human and automatic metrics. Similarly, Zhao et al.
(2018) propose DMASS (Deep Memory Augmented Sentence Simplification), a Transformer-
based approach (Vaswani et al., 2017) which also integrates simplification rules. This work
has also been shown to outperform previous models using automatic metrics. However,
Zhao et al. (2018) critically do not perform a human evaluation; restricting evaluation to
automatic metrics is generally insufficient for comparing simplification models. In Section
4.2.2, we gather human annotations to evaluate outputs from DMASS compared with other
state-of-the-art simplification models, and find that DMASS was rated lower on fluency,
adequacy, and simplicity. This is initially somewhat surprising, because Transformer ar-
chitectures have generally led to large improvements on many NLP tasks (Vaswani et al.,
2017). However, it is important to note that Transformers are extremely sensitive to hyper-
parameter tuning (Popel and Bojar, 2018); thus, if not properly trained, these models will
likely generate sub-optimal output. Indeed, subsequent attempts to train a transformer-
based model were able to achieve far superior performance (Mallinson and Lapata, 2019b;
Jiang et al., 2020) as estimated by human judges. The improvement seen in Jiang et al.
(2020) is likely also due to initializing a Transformer with BERT embeddings (Devlin et al.,

2019).
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2.5.83. Decoding Strategies

As discussed above, greedy search is the simplest decoding strategy, and can be used if
only one output sequence is required. However, greedy search is a deterministic approach,
which typically yields repetitive and short output sequences. Additionally, it does not allow
for generating multiple samples. Thus, in practice it is rarely used with modern language

models.

Instead, the most common decoding strategies are random sampling and beam search.
Random sampling, as the name implies, involves randomly sampling from the model’s dis-
tribution at every time step. This allows for more uncommon words (according to language
model probability) to sometimes be chosen, often allowing for more interesting output. In
addition, the randomness involved in the process allows a user to quickly generate multiple
non-identical candidate outputs. This can be extremely useful for more open-ended tasks
such as conversational dialogue systems (i.e. chatbots) where multiple unique outputs can

be valid.

Beam search approximates finding the most likely sequence by performing breadth-first
search over a restricted search space. At every decoding step, the method keeps track of b
partial hypotheses. The next set of partial hypotheses is chosen by expanding every path
from the existing set of b hypotheses, and then choosing the b with the highest scores. Most
commonly, the log-likelihood of the partial sequence is used as the scoring function. We
present the standard beam search algorithm in Algorithm 1. Note that SOS represents the

start of sentence token, and FOS the end of sentence token.

We discuss additional variations of these decoding strategies and compare their relative

effectiveness in generating high-quality and diverse outputs in Chapter 5.
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Algorithm 1 Beam Search Inference

1: procedure BEAM SEARCH

2 B+ {SOS}

3 k < BeamWidth

4 out < k-best output list

5: while |out| < k do

6 front < remove all nodes from B
7 for w € front do

8 succ <— w’s k-best successors
9: for s € succ do

10: if s == FEOS then

11: out < out U {s}

12: else

13: B+ BU{s}

14: Sort B

15: if |B| > k then

16: Prune B to k-best successors

return out

2.5.4. Dwersity Promotion During Training

In Section 5, we compare a variety of post-training diversity-promoting algorithms. Here,
we discuss other related works that instead promote diversity at training time. Several
works have attempted to encourage diversity during training by replacing the standard log-
likelihood loss with a diversity-promoting objective. Li et al. (2016a) introduce an objective
that maximizes mutual information between the source and target sequences. Zhang et al.
(2018) use an adversarial information maximization approach to encourage generated text
to be simultaneously informative and diverse. Xu et al. (2018) also use an adversarial loss;
their loss function rewards fluent text and penalizes repetitive text. In our comparison of
decoding strategies in Chapter 5, we do not use these methods, as they tend to be task-
specific and difficult to implement. All of the diversity strategies we apply in this thesis
share the trait that they are agnostic to the model architecture and the data type of the
input, as long as the output of the model is a probability distribution over tokens in a

sequence.
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2.6. Evaluation of Simplification Systems

In many text generation tasks, it is important to evaluate model quality using human
judgments (Bojar et al., 2016). However, this procedure is expensive, time consuming, and
untenable when testing many model variations. Thus, there have been several attempts to
develop automatic metrics for evaluating the quality of the generated texts. In this section,
we first discuss human evaluation, before describing early automatic evaluation approaches
and the current state-of-the-art metrics. At the end of the section, we discuss limitations

that have not yet been addressed in simplification evaluation.
2.6.1. Human FEvaluation

Despite the recent advances in automatic metrics, the most reliable method to compare
simplification systems is still through the collection of human judgments. Given a com-
plex sentence ¢ and its simplified version s, judgments are typically collected along three

dimensions, using either a three-point or a five-point Likert scale.
e Fluency: Is s grammatical, i.e. is s a well-formed sentence?
e Adequacy: Does s preserve the meaning of ¢?
e Simplicity: Is s simpler than ¢?

Simplicity is generally the most difficult dimension to evaluate, as it is the most open ended.
Some work has attempted to make this dimension more quantifiable by asking workers to
count the number of rewrites found in the simper sentence (Xu et al., 2015), however most
recent papers have simply left the term “simpler” up to the interpretation of the workers

(Zhang and Lapata, 2017; Jiang et al., 2020).
2.6.2. BLEU and FKGL

One of the earliest metrics for simplification is Flesch-Kincaid Grade Level (FKGL), which

measures the readability of a text using surface-level features (Kincaid et al., 1975). For-
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mally, FK is defined as follows:

F#Hwords #syllables
FK =0.39 -_— 11.8 ——— | — 15.59 2.8
% <#sentences + % Hwords (28)

To determine the coefficients in Equation 2.8, Kincaid et al. (1975) used reading compre-

hension test scores on Navy personnel reading training manuals to train a regression.

Simplification systems are often inspired by machine translation models, as discussed in
Sections 2.4 and 2.5. We also find a strong influence of translation evaluation practices
in the simplification literature. The most commonly-used automatic metric is Bilingual
Evaluation Understudy, or BLEU (Papineni et al., 2002). At the sentence level, BLEU
compares a candidate translation to one or more reference translations by counting the
number of overlapping n-grams. BLEU generally correlates well with human judgments of
translation quality (Papineni et al., 2002; Doddington, 2002), though this does not hold
when there are many translations of similar quality or phrasal permutation (Callison-Burch
et al., 2006). Still, BLEU is reasonably intuitive and fast to use. This has led to its
adaptation for the evaluation of a variety of monolingual text generation tasks, including
summarization (Graham, 2015) and text simplification (Zhu et al., 2010; Woodsend and
Lapata, 2011; Wubben et al., 2012).

While BLEU and FKGL are reasonable automatic metrics, they both have clear flaws when
applied to modern text simplifications systems. Although FKGL is widely accepted for
measuring readability, it relies on the assumption that the evaluated text is well-formed (Xu
et al., 2016); but, in practice, generated simplifications often contain grammatical errors.
In addition, a lower predicted readability level is insufficient for determining whether a
candidate simplification is appropriate for a given sentence. BLEU would in theory be more
appropriate as a holistic evaluation metric, because it compares to reference simplifications.
However, in practice BLEU often falls short, correlating poorly with human judgments

for lexical simplicity (Xu et al., 2016) and sentence splitting (Sulem et al., 2018), two
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critical components of the text simplification process. In addition, Sulem et al. (2018) show
that BLEU often correlates negatively with human judgments on general simplicity due to

BLEU’s brevity penality, leading to the incorrect scoring of shorter and simpler sentences.
2.6.3. The SARI Metric

Given the flaws of previous metrics, Xu et al. (2016) argue that a quality simplification
metric needs to not only take into account reference simplifications, but also the original
sentence. The main reason is that a common operation in simplification is to copy words
directly from the source sentence, which is uncommon in machine translation outside of
named entities or untranslatable words. To effectively incorporate information from the

original sentence, Xu et al. (2016) introduce two novel metrics: FKBLEU and SARI.

FKBLEU, as its name indicates, combines the readability aspects captured by FKGL with
the overall appropriateness captured by a modified version of BLEU, known as input-aware
BLEU (iBLEU). iBLEU extends BLEU to take into account the input sentence, which allows
the metric to measure the diversity of paraphrase outputs, as well as the quality of these
paraphrases (Sun and Zhou, 2012). Taking into account this diversity avoids rewarding the
model too much for simply copying directly from the input sentence. Formally, iBLEU for

simplification is defined as follows:

iBLEU(C,R,S) = aBLEU(S,R) — (1 — a)BLEU(C, S) (2.9)

In Equation 2.9, C represents the original complex sentence, R represents the reference
simplifications, and S represents the candidate simplification generated by the model. « is
a hyperparameter that determines how much weight should be given to the adequacy and

dissimilarity aspects, and is generally set to 0.9 (Sun and Zhou, 2012).

To create FKBLEU, Xu et al. (2016) combine the geometric mean between iBLEU and

the difference in readability between the original sentence and the candidate simplification,
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as measured by FKGL. We define FKBLEU formally below (note that we use the same

variables from Equation 2.9):

FKBLEU(C,R,S) =iBLEU(C,R,S) x FKDiff(C,S) (2.10)

FKDiff(C,S) = Sigmoid(FKGL(C) — FKGL(S)) (2.11)

Algorithm 2 Evaluating Addition Operation

1: procedure RECALL AND PRECISION
2 for n € [1,4] do
3 correct < 0, total, < 0, total, <— 0
4 fort € S, do
5: if te S, "R, NC, then
6 correct +=1
7 if t€S,NC, then
8 total, +=1
9: if t ¢ R, NC, then
10: total, < total, + 1
11: for r, € R, do
12: Ty < T — {t}
13: precision, = %
_ £

14: recall, = e
15: precision $— i Zne[m} Precision,
16: recall + iZnG[IA} recally,

. precisionXrecall
17: F-score «+ 2 x precisiontrecall

return F-score

Xu et al. (2016) also introduce SARI, a novel metric for evaluating the quality of simpli-
fication systems’ output at the lexical level. Similar to FKBLEU, SARI utilizes both the
original sentence along with reference sentence(s). Specifically, SARI breaks down simpli-
fication evaluation into three key aspects: how often the generated sentence S correctly
preserves tokens from the original sentence C' (keep), according to the reference sentences
R; how often S correctly adds tokens to C' (addition); and how often S correctly deletes

tokens from C' (deletion).

To determine how to calculate the F-score for each individual operation, let’s consider the
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Metric | References | Fluency | Adequacy | Simplicity+
FKGL none -0.002 0.136 0.147
BLEU single 0.366 0.459 0.151
BLEU multiple 0.589 0.701 0.111

FKBLEU multiple 0.349 0.410 0.235
SARI multiple 0.342 0.397 . 0.343

Table 2: Comparison of various metrics with human judgments on fluency, adequacy, and
simplicity gain (Xu et al., 2016).

addition operation, as an example. In this section, we will denote .S,, as all n-grams from
a sentence S. Intuitively, this operation tracks three main aspects: additions made in the
generated simplification (S, N C,); n-grams in the reference simplifications not found in
the original complex sentence (R,, N C,,); and the number of additions made that were also
found in at least one of the reference sentences (S, N R, ﬂén). Overall precision and recall
is then computed by averaging 1-gram, 2-gram, 3-gram and 4-gram precision and recall,
and F-score is then reported as the final result. The full description of how to calculate the
F-score for the addition operation is given in Algorithm 2. The process for calculating the

F-scores for the deletion and keep metrics follows a similar logic.

To show that their metrics better capture differences in simplification quality than previ-
ous metrics, Xu et al. (2016) generate outputs from several state-of-the-art systems. They
then collect human judgments of fluency and adequacy. In addition, the authors consider a
modified simplification measure called simplification gain, which asks annotators to count
the number of good lexical and/or syntactic simplifications that were made in the gener-
ated sentences. This approach helps annotators focus specifically on lexical and phrasal

simplification, resulting in higher inter-annotator agreement.

As shown in Table 2, BLEU correlates strongly with judgments on fluency and adequacy,
but poorly with simplicity estimates. On the other hand, SARI correlates best with sim-
plicity judgments, while still correlating reasonably well with fluency and adequacy (though
worse than BLEU). Xu et al. (2016) discusse this tradeoff in detail. The authors point out

that BLEU generally scores a sentence highly when there are relatively few changes from
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the original sentence; this is because with multiple reference sentences, it is very likely that
most n-grams from the original sentence will be found in at least one of the references.
Similarly, human annotators will trivially rate these sentences high with regards to ade-
quacy; in addition, since the original sentences are human-generated, they also tend to be
grammatical. However, several candidates containing little or no changes from the original
sentence would naturally result in lower simplicity judgments, thus SARI is more appro-
priate for estimating the overall quality of simplification systems than previous automatic
metrics. However, as SARI only shows mild correlation with all three simplification di-
mensions, collecting human judgments is still viewed as the most reliable way to compare

sentence simplification systems.
2.6.4. Quality Estimation

Quality Estimation (QE) methods were first introduced in the field of machine transla-
tion to measure the quality of automatically translated text without need for reference
translations (Bojar et al., 2017; Martins et al., 2017; Specia et al., 2018). Recently, a QE
approach has been proposed for summarization evaluation. Xenouleas et al. (2019) propose
several extensions to the BERT fine-tuning process (Devlin et al., 2019) to estimate sum-
mary quality. Their proposed model, Sum-QE, predicts five linguistic qualities of generated
summaries using multi-task training: Grammaticality, Non-redundancy, Referential Clar-
ity, Focus, and Structure and Coherence. Apart from the state-of-the-art results obtained
by BERT on many classification tasks, Xenouleas et al. (2019) show that it can also be
successfully applied to QE. In Section 4.3, we adapt Sum-QE to simplification QE, and

estimate the Fluency, Adequacy and Complexity of simplified text.

Alva-Manchego et al. (2019) recently created a toolkit to calculate various standard auto-
matic simplification metrics, including SARI, word-level accuracy scores, and QE features
such as the compression ratio and the average number of added/deleted words. Recent
works that addresses QE for simplification have experimented with a variety of features,

including sentence length, average token length, and language model probabilities (Sta-
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jner et al., 2016; Martin et al., 2018). However, the best models from these works also
use reference-reliant features such as BLEU and translation error rate, as these have been
shown to correlate well with fluency and adequacy. Note that these works were carried out

before the rise of large-scale pre-trained models (Peters et al., 2018; Devlin et al., 2019).
2.7. Large-Scale Pre-trained Language Models

The advancements in attention-based Sequence-to-Sequence translation models had broad
implications in other NLP tasks. In particular, they allowed for the creation of large-scale
pre-trained language models, including ELMO (Peters et al., 2018), GPT (Radford and
Narasimhan, 2018), ULMFiT (Howard and Ruder, 2018), and BERT (Bidirectional Encoder
Representations from Transformers) (Devlin et al., 2019), which we make extensive use of in
this thesis. BERT, like the Transformer, is a set of self-attention-based encoders stacked on
top of each other. These encoders are trained on two tasks. The first is a masked language
modeling task, where 15% of the words in the input are randomly selected to be removed,
and the model needs to predict these words. The second is a next sentence prediction task,
where given two sentences, the model needs to determine if the second sentence is indeed
the one that should follow directly after the first. The result of this general pre-training
is a model that can generate word-level embeddings that take into account the context
surrounding each word. While these embeddings by themselves are already quite useful for
tasks such as predicting textual similarity, the most important property of this model is
that it can be fine-tuned for a variety of tasks simply by adding a single output layer on
top of the original architecture, and training on a relatively small amount of task-specific
data. This has shown to produce state-of-the-art results in many NLP tasks, including
sentiment analysis, question answering, and common-sense inference, among many others

(Devlin et al., 2019).

Since BERT was introduced, there have been many follow-up works that have attempted
to further improve upon this model. These extensions include: optimizing BERT’s training

and removing the next sentence prediction task (Liu et al., 2019); incorporating parameter-
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reduction techniques to lower memory usage and increase training speed (Sanh et al., 2019;
Lan et al., 2020); relying on an autoregressive framework, which circumvents the need for
using artificial [MASK] symbols (Yang et al., 2019); and changing the pre-training objective

to a discriminator (Clark et al., 2020).

Traditionally, combining word-level representations using a simple mean pooling strategy
has been shown to be surprisingly effective for measuring textual similarity (Faruqui et al.,
2015; Yu et al., 2014; Tom Kenter and de Rijke, 2015). Combining subword-level BERT
embeddings in a similar way does a reasonable job of ranking texts by their similarity;
however, doing so results in embeddings that are extremely close together, making it dif-
ficult to compare embedding similarity using the traditional cosine similarity measure. To
alleviate this issue, SBERT fine-tunes BERT on Natural Language Inference data to create
sentence embeddings that are more semantically meaningful (Reimers and Gurevych, 2019).
Specifically, SBERT relies on a Siamese BERT-network architecture, which involves passing
two text segments (77, T5) through two BERT networks that share the same weights. The
model performs mean pooling on the output word-level embeddings, resulting in sentence
embeddings (er,, er,). These embeddings are concatenated together, along with their ab-
solute difference |er, — er,|, before being passed through a final Softmax layer to predict

the label of (17, T5); for the NLI task, the labels are entailment, contradiction, and neutral.
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CHAPTER 3 : Simplification Using Paraphrases and

Context-based Lexical Substitution

3.1. Introduction

Farly text simplification works break down the problem into sub-tasks, to make it more
tractable. These sub-tasks include complex word and sentence identification, lexical sim-
plification, syntactic simplification, and sentence splitting (Saggion, 2017). In this section,
we focus on lexical simplification, the task of replacing difficult words in a text with words
that are easier to understand. Lexical simplification can involve identifying complex words
in context (Shardlow, 2013b), context-aware lexical substitution (Biran et al., 2011), and
finally choosing the appropriate simple word. This last step is often done by ranking words

based on their frequency in a large general corpus (Devlin and Tait, 1998).

To identify complex words, we train a model on data manually annotated for complexity.
Unlike previous work, our classifier takes into account both lexical and context features. We
extract candidate substitutes for the identified complex words from SimplePPDB (Pavlick
and Callison-Burch, 2016), a database of 4.5 million English simplification rules linking
English complex words to simpler paraphrases. We select the substitutes that best fit
each context using a word embedding-based lexical substitution model (Melamud et al.,
2015). We show that our complex word identification and substitution model improves over
several baselines which exploit other types of information and do not account for context.
Our approach proposes accurate substitutes that are simpler than the target words and

preserve the meaning of the corresponding sentences.
3.2. Complex Word Identification

The first step for lexical simplification is to identify the complex words that should be sim-
plified. To accomplish this task, Shardlow (2013b) proposed several features that help to

determine whether a word is complex, including word length, number of syllables, word fre-
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quency, number of unique WordNet synsets and synonyms. We also leverage these features
in this work. For word frequency, Shardlow (2013b) used frequency counts collected from
SUBTLEX, a corpus of 51 million words extracted from English subtitles.!. In contrast,
we use word-level frequencies from the Google WeblT corpus (Brants and Franz, 2006)
(henceforth Google n-gram), as this is significantly larger and contains texts across many
genres and time periods, making it more suitable for extracting general word frequency

information.

We add to these features from previous workbinary Part-of-Speech (POS) features and
Word2Vec embeddings (Mikolov et al., 2013a). Embeddings in particular are important
as they can serve to capture the context in which a word is typically found, and a word’s
complexity can often be influenced by its context. Following this intuition, we additionally
include several explicit context-based features: average length of words in the sentence,
average number of syllables, average word frequency, average number of WordNet synsets
and synonyms, and sentence length. We train Support Vector Machine (SVM) classifiers

using these features.

The experiments from our initial work on complex word identification occurred prior to the
rise of large-scale pre-trained language models. Thus, as a sanity check, we now present
two additional models that show how recent improvements in NLP can help with our task.
Specifically, we train two models. First, we fine-tune RoBERTa (Liu et al., 2019) using
only a single word and a binary label indicating complexity. We expect that this model
would not work that well, because the main idea of BERT-based embeddings is that they
are contextual, but this initial approach does not take advantage of this. Thus, in order
to more effectively leverage contextual embeddings, we also fine-tune RoBERTa with both
the word and the sentence it originally came from concatenated together. Specifically, the

input to this model looks as follows:

'SUBTLEX can be found at:
https://www.ugent.be/pp/experimentele-psychologie/en/research/documents/subtlexus
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Annotators | Prevalence | Example Words

least complex 0 0.617 heard, sat, feet, shops, town

1 0.118 protests, pump, trial

2 0.062 sentenced, fraction, primary

3 0.047 measures, involved, elite

4 0.035 fore, pact, collapsed

5 0.031 slew, enrolled, widespread

6 0.029 edible, seize, dwindled

7 0.023 perilous, activist, remorse

8 0.023 vintners, adherents, amassed
most complex 9 0.015 abdicate, detained, liaison

Table 3: Examples of words identified as complex (i.e. difficult to understand within a text)
by n annotators, where 0 < n < 9. Column 2 (Prevalence) shows the proportion of the
total number of words identified as complex by n annotators.

[CLS] <word> [SEP] <sentence-containing-word> [SEP]

3.2.1. Complex Word Identification Data

We present a new corpus with complexity annotations for training and testing our mod-
els. We hired annotators on Amazon Mechanical Turk; their task consisted of identifying
complex words in the context of given texts. We randomly selected 200 texts from the
Newsela corpus (Xu et al., 2015), and had the first 200 tokens from each text labeled by
nine annotators. We pre-process the texts using the Stanford CoreNLP suite (Manning
et al., 2014) for tokenization, lemmatization, POS tagging, and named entity recognition.
The annotators were instructed to label at least 10 complex words they deemed worth sim-
plifying for young children, people with disabilities, and second language learners. After
filtering out stop words (articles, conjunctions, prepositions, pronouns) and named entities,
we are left with 17,318 labeled tokens. For our binary classification task, tokens labeled
by at least three annotators are considered to be complex, and tokens labeled by less than
three annotators are considered to be “simple”. This increases the likelihood of complex
segments being actually complex; as we can see from Table 3, tokens identified by only one

or two annotators tend to be quite simple.

Datasets for training and evaluating Complex Word Identification (CWI) systems were
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created and released in the SemEval 2016 competition (Paetzold and Specia, 2016) but we
decided not to use them for several reasons. Although this was a CWI task, surprisingly only
4.7% of the words in the test data were identified as complex, and all the other words were
viewed as simple. As a consequence, none of the systems that participated in the SemEval
task managed to beat the accuracy of the “All Simple” baseline which labeled all words in
the test set as simple (0.953). As noted by Paetzold and Specia (2016), the inverse problem
is present in the corpus developed by Shardlow (2013b), where the “All Complex” baseline
achieved higher accuracy, recall and F-scores than all other tested systems, suggesting that

marking all words in a sentence as complex is the most effective approach for CWI.

Another problem in the SemEval-2016 dataset is that although the number of complex words
is much higher in the training data (32%), 18% of all words were annotated as complex by
only one out of 20 annotators and considered as complex. In addition to the highly different
number of complex words in the training and test data, the two datasets are also imbalanced
in terms of size, with only 2,237 training instances and 88,211 testing instances. These
factors make this dataset a dubious choice for system training and evaluation. Comparison
to the participating systems is also extremely difficult, since the best systems are ones that

label most of the data as simple.
3.2.2. Complex Word Identification Experiments and Results

We compare the performance of three SVM classifiers trained with different feature sets;
one classifier trained with only word-based features (SVM Word), one trained with both
word- and context-based features (SVM Word+Context); and a third was trained with
word, context, POS, and embedding features (SVM-ALL). We compare our models to two
simple baselines: Word Length, where we simply threshold for word length in characters,
considering longer words as complex; the length threshold with the best performance was
7; and n-gram Frequency: thresholding for word frequency using Google n-gram counts,
considering more frequent words as simple; the frequency threshold with the best perfor-

mance was 19,950,000. In addition, we compare our approaches to two fine-tuned models:
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Model Precision | Recall | F-Score
Word Length 0.595 0.802 0.683
n-gram Frequency 0.432 1.0 0.603
SVM-Word 0.787 0.724 0.754
SVM-Word+Context 0.789 0.731 0.759
SVM-ALL 0.784 0.759 0.771
RoBERTa-Word 0.785 0.706 0.743
RoBERTa-Word+Context 0.803 0.849 0.825

Table 4: Cross-validation performance for three complex word identification classifiers,
along with comparisons to three baselines. Scores are calculated using unique words in our
training data.

RoBERTa Word, where we fine-tune RoBERTa using just word-level information; and
RoBERTa Word+Context, where we fine-tune RoBERTa using both the word and the

sentence from which it came.

The results of this experiment are shown in Table 4. While n-gram Frequency baselines
have higher recall, both our models show substantial improvements in terms of precision
and overall F-score. Incorporating embedding-based features further improves performance.
The explicit context-based features seem to have an ambiguous impact, in that they do not
improve the performance of the SVM classifier. However, when considering the RoBERTa-
based models, adding the context surrounding the word significantly improves the perfor-
mance. This finding validates our initial hypothesis that there are indeed some cases where

a word’s complexity can be significantly impacted depending on its context.
3.3. In-context Ranking and Substitution

In order to accurately replace words in texts with simpler paraphrases and ensure that
the generated sentences preserve the meaning of the original, we need to take into account
the surrounding context. To perform this operation, we adapt the word embedding-based
lexical substitution model of Melamud et al. (2015) to the simplification task. Vector-space
models have previously been shown to effectively filter PPDB paraphrases in context while

preserving the meaning of the original sentences (Apidianaki, 2016; Cocos et al., 2017).
The substitution model proposed by Melamud et al. (2015) (hereafter AddCos) quantifies
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the fit of a substitute word s for a target word ¢ in a context C by measuring the semantic

similarity of the substitute to the target, and the similarity of the substitute to the context:

cos(s,t) + D ,co cos(s,w)

AddCos(s,t,C) = Cl+1

(3.1)

The vectors s and t are word embeddings of the substitute and target generated by the skip-
gram with negative sampling model, which is also known as the Word2Vec model (Mikolov
et al.,, 2013a). The context C' is the set of context embeddings generated by skip-gram
for words appearing within a fixed-width window of the target t in a sentence. We use a
context window of 1; while this seems counter-intuitive, this is the best-performing window
found in an analogous lexical substitution work (Cocos et al., 2017), and we confirm this
result in Section 3.3.2. We utilize the implementation of AddCos proposed by Cocos et al.
(2017)? with 300-dimensional word and context embeddings trained over the 4 billion words
in the Annotated Gigaword corpus (Napoles et al., 2012) using the gensim word2vec package
(Mikolov et al., 2013a).

Given a set of substitution candidates, the model needs to select the ones that best preserve
the meaning of target words in specific contexts. We only consider content words (nouns,
verbs, adjectives and adverbs) as simplification targets. For a “target word-substitute” pair,
we include in the model the following features which encode the strength of the semantic

relationship between them:
e PPDB 1.0 and 2.0 scores, which represent the overall quality of paraphrases.

e Distributional similarity scores calculated by Ganitkevitch et al. (2013) on the

Google n-grams and the Annotated Gigaword corpora.

e Independence probability, that is the probability that there is no semantic entail-

ment relationship between the paraphrase pair, as calculated by Pavlick et al. (2015).

2 Available at https://github.com/acocos/lexsub_addcos
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e SimplePPDB score (Pavlick and Callison-Burch, 2016) which reflects the confidence

in the simplification rule; this is used only when considering SimplePPDB paraphrases.

Again, as this work was completed prior to the rise of pre-trained language models, we
additionally will compare AddCos to a BERT-based approach. Unlike with complex word
identification, here we do not perform any fine-tuning. For each target word ¢ and its
corresponding sentence S, we generate RoOBERTa embeddings for S, and extract the vectors
corresponding to t; here, rather than take the output of the last layer, we perform mean
pooling over the last four layers similar to Devlin et al. (2019). Due to RoBERTa relying
on subword units, in the case that ¢ is represented by multiple subwords (and thus multiple
vectors), we simply perform mean pooling to combine the subword unit embeddings into
a single 768-dimension vector, e;. From there, for each candidate substitute word s, we
replace the instance of ¢ in sentence S with s, resulting in a new sentence S’. From there,
we again generate RoOBERTa for S/, and extract a vector for s, e, in the same way as before.
We then compute the cosine similarity between e; and eg, and then rank the candidate

substitutes based on their cosine similarity.
8.8.1. Lexical Simplification Data

In our experiments, candidate substitutes for a target word are its synonyms in WordNet
(Miller, 1995), and its paraphrases in the Paraphrase database (PPDB) (Ganitkevitch et al.,
2013) and in SimplePPDB (Pavlick and Callison-Burch, 2016). WordNet is a network that
contains manually identified semantic relationships between words, which has been widely
used in substitution tasks (McCarthy and Navigli, 2007). PPDB is a collection of more
than 100 million English paraphrase pairs, while SimplePPDB is a subset of PPDB which
contains 4.5 million simplification rules. These corpora are discussed in more detail in

Section 2.2.

To evaluate the performance of our lexical simplification model, we again create a test

set from the Newsela corpus. We extract lexical simplification rules from aligned parallel
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‘Words with >1 paraphrase

All words

Model Coverage | Top 1 | Top 5 Oracle Top 1 | Top 5 | Oracle
WordNet frequency 0.911 0.141 0.267 0.291 0.129 0.244 0.265
SimplePPDB Score 0.935 0.180 0.403 0.669 0.168 0.377 0.626
AddCos-PPDB 0.975 0.196 0.444 0.962 0.191 0.433 0.938
AddCos-SimplePPDB 0.819 0.353 | 0.601 0.643 0.289 | 0.492 0.527
RoBERTa-SimplePPDB 0.819 0.161 0.487 0.643 0.132 0.397 0.527

Table 5: Performance of the lexical simplification models on the Newsela aligned test set.
We present the Coverage of each lexico-semantic resource, the performance of each model
on words with at least one paraphrase in the dataset, and the performance of each model

on all words.

sentences (Xu et al., 2015) using two methods. First, we find sentence pairs with a single

lexical replacement and use these word pairs as simplification instances. Next, we use a

monolingual word alignment software (Sultan et al., 2014) to extract all aligned word pairs.

We only consider word pairs corresponding to different lemmas (i.e. words with different

base forms). Through this process, we collect a test set of 14,436 word pairs.

e WordNet Frequency: We extract all WordNet synonyms for a target word ¢, and

rank them in decreasing order of Google n-gram frequency, i.e. the most frequent

synonym will be ranked first and the least frequent one will be ranked last.

e SimplePPDB Score: We extract all SimplePPDB unigram paraphrases for ¢ and

rank them in decreasing order of their SimplePPDB score.

e AddCos-PPDB: We extract all PPDB synonyms for ¢t and rank them using the

AddCos model described above.

¢ RoBERTa-SimplePPDB: We extract all SimplePPDB unigram paraphrases for t,

and then rank the synonyms based on their contextual RoOBERTa embedding similarity

to t.

3.8.2. Experiments and Results

We evaluate the performance of the lexical substitution model on our substitution evaluation

dataset using Simple PPDB paraphrases. We retrieve the top suggestions made by our word
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Context Window || Top 1 | Top 5
0 0.180 0.403
1 0.353 | 0.601
2 0.352 | 0.596
3 0.334 0.590
4 0.312 0.585
5 0.291 0.581
6 0.269 0.578
7 0.264 0.577
8 0.252 0.576
9 0.247 0.574
10 0.242 0.572

Table 6: Quality of substitutions proposed by AddCos-SimplePPDB with different context
window sizes as measured using Top 1 and Top 5 accuracy on the Newsela aligned test set.

embedding-based substitution model for a complex word in a sentence using the paraphrases
of the word in SimplePPDB as our substitute pool (AddCos-SimplePPDB). We compare

our method to three baselines:

We report the results of our experiment in Table 5. For each model, we calculate Top 1 and
Top 5 accuracy scores, which show how often the gold-standard simple word was proposed
as the best fitting or among the 5 highest-ranked paraphrases. In addition, we calculate the
upper bound performance for each dataset (PPDB, SimplePPDB and WordNet), i.e. how
often the gold-standard simple word was found as a paraphrase of the target word in the
dataset. This is useful in telling us how well we could potentially do, if we could perfectly
rank the paraphrases. As expected, AddCos-SimplePPDB outperforms all previous base-
lines, even despite the lower oracle coverage when compared with using PPDB. Somewhat
surprisingly, leveraging RoBERTa performed significantly worse than AddCos; this may be
because the context around a word significantly impacts a word’s RoBERTa embedding,
and because all substitutes were put into the same context, it made it difficult to determine

which was more appropriate.

When performing this experiment, we also evaluated the impact of the context window size
on the quality of the proposed substitutions. We varied the context window used by the

AddCos-SimplePPDB model from 0 to 10. The results of this comparison are found in Table
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Synonym Rank | Good Substitution | Good Simplification | Both
1 0.396 0.280 0.227
2 0.311 0.214 0.153
3 0.278 0.184 0.127
4 0.228 0.142 0.093
5 0.193 0.123 0.075
> 1 good substitute | 0.622 \ 0.553 | 0.435 |

Table 7: Human judgments of our overall lexical simplification system. We give the pro-
portion of substitutes the system ranked at positions 1 to 5 (i.e. from the top ranked to the
fifth-ranked paraphrase in context) which was identified by a majority of workers as (a) a
good substitute in context (Substitution); (b) simpler than the target word (Simplification);
(c) both a good and simpler substitute (Both). We also show the proportion of complex
words where at least one of the top 5 paraphrases satisfies these criteria in the last row.

6. As we can see, a context window of 1 results in the best performance, which confirms
the finding from Cocos et al. (2017). We conducted additional experiments to filter the
substitution candidates using SimplePPDB confidence scores, PPDB paraphrase quality
scores, and AddCos context similarity scores, but these all resulted in a non-significant

change in performance, and a significant decrease in coverage.
3.4. Overall Simplification System

We integrate our Complex Word Identification (CWI) classifier (SVM-context) and the
substitution model that provided the best ranking in context (AddCos-SimplePPDB) into
a simplification pipeline. The input is a complex text that needs to be simplified. The
output consists of simplification suggestions for experts to choose from in order to create
simpler versions of texts. The SVM-Context classifier is used to classify each content word
that is not part of a named entity as either simple or complex. The lexical substitution
model then gathers the SimplePPDB substitutes available for the complex target word and
ranks them according to how well they fit the corresponding context. We only keep the top

five suggestions made by the model as the final output.

To evaluate the performance of the overall simplification system, we used the 930 texts

from the Newsela corpus that were not used for training the CWI classifier. Our model
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Baseline Simple Complex

n-gram Frequency dug, sled, chart, lakes, push, estimates, frequent, attributed,
tight, harm isolated, preferred, liability

Token Length nursing, unknown, squares, adorns, asylum, myriad, rigors,
feeling, teaching, strength nutria, edible

RF-Context malls, hungry, therefore, hears, engaging, secular, gridlock,
heavily, rainy torrent, sanctions, lobbying

SVM-Context peacefully, favorite, amazing, swelled, entice, tether, chaotic,
websites, harmful, somewhat vessel, midst

Table 8: Examples of words that were incorrectly classified by the two best performing
baselines and the RF-Context model, but were correctly classified by the SVM-Context
model. The last row shows examples of words that were incorrectly classified by the SVM-
Context model.

identified over 170,000 complex words with paraphrases in SimplePPDB. We again asked
crowdsourced annotators to evaluate the suggestions made by AddCos-SimplePPDB for a
random sample of 2,500 complex words on Amazon Mechanical Turk, in order to determine
the number of good substitutions in context, the number of suggested paraphrases that are
simpler than the target words, and the suggestions that are both simpler paraphrases and
good in-context substitutes. Table 7 shows the quality of the paraphrases ranked by our
system in positions from one to five. We can see that the paraphrases our system selects
as the best have a higher likelihood of being both good substitutes in context and simpler
than the target word. We also show the proportion of target words that had at least one

good substitute in context, one simple substitute, and one good and simple substitute.
3.5. Error Analysis

In this section, we give examples of words for which our models give the correct output and
the baselines fail to do so. In addition, we show examples on which our models perform

poorly.

In Table 8, we consider examples that were incorrectly classified by each of the four best
performing CWI models: the RF-Context and SVM-Context models, and the n-gram Fre-
quency and Token Length baselines. In the first three rows, we show words that were

correctly identified by SVM-Context, but incorrectly categorized by the two baselines and
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Sentence Gold- WordNet SimplePPDB | AddCos-PPDB AddCos-
Standard | Frequency Score SimplePPDB

(7.1) Advocates say reason, fence, say, think, contend, assert, say, claim,

argue that debate, tell, talk, acknowledge, believe,

including women will contend, mean insist, complain suggest,

help end harassment indicate debate

of female troops.

(7.2) But in April , watch supervise, find, meet, track, track, control,

detainees covered proctor, give, try, manipulate, check, watch,

cameras used to admonisher allow control, analyze, | follow

monitor them. supervise

(7.3) Similarly , power agency, force, jurisdiction, power,

police can potency, control, discretion, right, | responsibility,

investigate cases and bureau, permission, prerogative, body, agency

have the authority assurance office, limit ability

to seize animals.

Table 9: Examples of the top-5 substitutes for our three baselines and our best model
(AddCos-SimplePPDB). We also provide the gold-standard simplification (Gold-Standard).

RF-Context; in the last row, we show words incorrectly classified by SVM-Context. We ob-
serve that the n-gram Frequency model tends to incorrectly classify relatively short words
that are rare in the Google n-gram corpus as complex. On the other end, the Token Length
model shows that using this feature alone leads to incorrectly identifying shorter words such

as “adorn” and “myriad” as simple, when these words are relatively complex.

Table 9 presents examples of substitution where the baseline systems did not find the correct
paraphrase, but AddCos-SimplePPDB did. As we have mentioned, even when a model did
not find the gold-standard paraphrase, they sometimes did find a different paraphrase that
works well in the context. In Example 7.2, the top paraphrase proposed by both AddCos-
PPDB and AddCos-Simple PPDB for the word “monitor” is “track”, which is a reasonable
substitute. On the other hand, in Example 7.3, AddCos-Simple PPDB model was able to
identify a good simple substitute, when none of the other models were able to identify a

suitable word with comparable complexity.

Finally, Table 10 shows examples of output of the overall simplification system. Here, the
blue word is a word that our CWI classifier identified as complex (for simplicity, we only look
at one complex word per sentence). From there, we consider the five top-ranked substitutes

proposed by AddCos-Simple PPDB, and show which were identified by the majority of
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Sentence Bad Substitutions

(8.1) Officials will offer the lunch program at basic

elementary schools.

(8.2) Russian poultry is more expensive, and U.S. prospect, benefits,
producers enjoy numerous cost advantages. revenue, merit, feature
(8.3) Although the calculus may be different with life, right, return, shelter,
Syrian refugees, the parallel for me is politics. million

(8.4) He saw them bring in animals to a university, | acceptance, passage,
where they’ll be cared for and put up for adoption. | approval, endorsement

Table 10: Examples of words and their context where our model fails to provide any good
replacements.

annotators as good substitutes for the target word, simpler than the target, good simpler
substitutes, and bad substitutes. After reviewing the examples where our system failed to
generate acceptable substitutions for the identified complex words, we identified four main

categories of errors:

e The identified complex term is part of a phrase and no substitution is acceptable. For
example, in Example 8.1, Elementary, Middle or High School is a description of the
type of school. Elementary School has an alternative name in some cases but High

School should never become Tall School.

e The complex word has no simpler synonym that would be a good substitute. The
difficulty of the word might reside in its meaning which can be unknown to the reader.

In Example 8.3, it would be more useful to point to the definition of refugees.

e The complex word is part of a predicate with arguments that are not accessible to our
model. In Example 8.4, the intended meaning of adoption, human adoption, is hard

to capture in the vicinity of the complex word.

e Finally, in some cases, our annotators were quite strict in admitting a substitute.
In Example 8.2, for example, cost merit would not be syntactically correct but cost

merits would be acceptable.
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3.6. Summary

In this chapter, we presented a model for simplification that first identifies complex words
in texts, and then ranks lexical simplification candidates according to their adequacy in
these specific contexts. We performed experiments showing that our model makes correct
simplification suggestions 35% of the time as measured by top-1 accuracy (versus 20% of the
time for the best baseline), and produces a good substitution in its top-5 predictions 60%
of the time (versus 44% for the best baseline). We performed a detailed error analysis that
suggests future improvements, e.g. not replacing words within collocations like elementary
school, and extending the context model to include the arguments of words that are going

to be simplified.
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CHAPTER 4 : Modeling and Evaluation of Sentence Simplification

4.1. Introduction

In the previous chapter, we focused on complex words, and their substitution with simpler
words that preserve the original in-context meaning. In this chapter, we instead consider
the task of simplifying an entire sentence, a task known as sentence simplification. Most
recent sentence simplification research has approached this task as a monolingual machine
translation problem, where the goal is to transform a complex English sentence into a simpler
sentence that preserves the meaning of the original sentence (Zhu et al., 2010; Narayan and

Gardent, 2014).

This chapter includes two sections. In the first section, we consider applying sequence-
to-sequence (Seq2Seq) models to the task of sentence simplification, and propose various
modifications to extend the generic framework during training, inference, and post-inference.
We also provide an extensive error analysis to show where current sentence simplification
models fall short. In the second section, we discuss how to fine-tune a BERT-based model
on fluency, adequacy, and complexity simultaneously in order to predict the overall quality

of sentence simplification system output without the need for references.
4.2. Complexity-Weighted Loss and Diverse Re-Ranking for Sentence Simplification

If we frame simplification as a monolingual translation problem, a natural approach is to
follow a machine translation approach and apply sequence-to-sequence (Seq2Seq) models
(Sutskever et al., 2014; Luong et al., 2015; Vaswani et al., 2017). Seq2Seq models learn
mappings from one sequence to another using a neural network, and have shown state-of-
the-art performance on other related monolingual natural language processing generation
tasks, including text summarization (Nallapati et al., 2016) and dialog systems (Vinyals

and Le, 2015).

One of the main limitations in applying standard Seq2Seq models to simplification is that
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these models tend to copy directly from the original complex sentence too often, as this
is the most common operation in simplification. Several recent efforts have attempted to
alleviate this problem using reinforcement learning (Zhang and Lapata, 2017) and memory
augmentation (Zhao et al., 2018), but these systems often still produce outputs that are
longer than the reference sentences. To avoid this problem, we propose to extend the
generic Seq2Seq framework at both training and inference time by encouraging the model
to choose simpler content words, and by effectively choosing an output based on a large
set of candidate simplifications. The main extensions from this work can be summarized as

follows:

e We propose a custom loss function to replace standard cross entropy probabilities

during training, which takes into account the complexity of content words.

e We include a similarity penalty at inference time to generate more diverse simplifi-
cations, and we further cluster similar sentences together to remove highly similar

candidates.

e We develop methods to re-rank candidate simplifications to promote fluency, ade-
quacy, and simplicity, helping the model choose the best option from a diverse set of

sentences.

An analysis of each individual components reveals that of the three contributions, re-ranking
simplifications at post-decoding stage brings about the largest benefit for the simplification
system. We compare our model to several state-of-the-art systems in both an automatic
and human evaluation settings, and show that the generated simple sentences are shorter
and simpler, while remaining competitive with respect to fluency and adequacy. We also
include a detailed error analysis to explain where the model currently falls short and provide

suggestions for addressing these issues.
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4.2.1. Seq2Seq Approach

Complexity-Weighted Loss Function

Standard Seq2Seq models use cross entropy as the loss function at training time. This only
takes into account how similar our generated tokens are to those in the reference simple
sentence, and not the complexity of said tokens. Therefore, we first develop a model to

predict word complexities, and incorporate these into a custom loss function.

Extending the binary complex word identification model from Chapter 3, we train a linear
regression model using length, number of syllables, and word frequency; we also include
Word2Vec embeddings (Mikolov et al., 2013b). We leverage the Newsela corpus to collect
data for this task by extracting word counts in each of the five reading levels, labeling each
word with a complexity level based on those counts. We propose using Algorithm 3 to
obtain the complexity label for each word w, where [,, represents the level given to the

word, and ¢, represents the number of times that word occurs in level .

Algorithm 3 Word Complexity Data Collection

1: procedure DATA COLLECTION
2 ly < 4

3 for i € {3,0} do

4: if ¢y, > 0.7 % ¢y, then
5

6

if ¢y, > 0.4 * ¢y, then
ly <1
return [,

Here, we initially label the word with the most complex level, 4. If at least 70% of the
instances of this word is preserved in level 3, we reassign the label as level 3; if the label was
changed, we then do this again for progressively simpler levels. As examples, Algorithm 3
labels “pray”, “sign”, and “ends” with complexity level 0, and “proliferation”, “consensus”,
and “emboldened” with complexity level 4. We split the data extracted from Algorithm
3 into Train, Validation and Test sets (90%, 5% and 5%, respectively, and use them for

training and evaluating the complexity prediction model. Note that we also tried continuous
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. Mean Squared Error
Model Correlation Overall 0 1 9 3 4
Frequency -0.031 1.9 224 038 0.64 3.01 6.99
Length 0.344 1.51 1.03 0.32 0.89 295 6.90
LinReg 0.659 0.92 0.92 039 049 1.17 3.27

Table 11: Pearson Correlation, Overall Mean Squared Error (MSE), and MSE by complex-
ity level for our word-level complexity prediction model. We compare to length-based and
frequency-based baselines.

rather than discrete labels for words by averaging frequencies, but found that this increased
the noise in the data. For example, “the” and “dog” were incorrectly labeled as level 2

instead of 0, since these words are seen frequently across all levels.

We report the Mean Squared Error (MSE) and Pearson correlation on our test set in Table
11. We compare our model (LinReg) to the two strongest baselines from Chapter 3, which
predict complexity using log Google n-grams frequency (Brants and Franz, 2006) and word

length, respectively.

Once we have a reliable way of making word-level complexity predictions, we then propose
a method that modifies cross entropy loss to up-weight simple words while down-weighting
more complex words. More formally, the probabilities of our simplified loss function can
be generated by the process described in Algorithm 4. Since our word complexities are
originally from 0 to 4, with 4 being the most complex, we need to reverse this ordering and
add one, so that more complex words and non-content words are not given zero probability.
In this algorithm, we denote the original probability vector as CE, our vocabulary as V,
the predicted word complexity of a word v as score,, the resulting weight for a word as w,,

and our resulting weights as SCE, which we then normalize and convert back to logits.

Here, a is a parameter we can tune during experimentation. Note that we only upweight

simple content words, not stopwords or entities.
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Algorithm 4 Simplified Loss Function

1: procedure SIMPLIFIED LOSS
2 CE <« softmax(logitscg)
3 for v € V do
4 score, < WordComplexity(v)
5: if v is a content word then
6 Wy — (4 —sy) + 1
7 else
8 Wy < 1 N
9: wv%<%> forveV
10: SCE + CE - w

return SCE

Diverse Candidate Simplifications

To increase the diversity of our candidate simplifications, we apply a beam search scoring
modification proposed in Li et al. (2016b). In standard beam search with a beam width
of b, given the b hypotheses at time ¢ — 1, the next set of hypotheses is generated by first
selecting the top b candidate expansions from each hypothesis. These b x b hypotheses are
then ranked by the joint probabilities of their sequence of output tokens, and the top b

according to this ranking are chosen.

We observe that candidate expansions from a single parent hypothesis tend to dominate the
search space over time, even with a large beam. To increase diversity, we apply a penalty
term based on the rank of a generated token among the b candidate tokens from its parent

hypothesis.

If Y?_l is the j* top hypothesis at time ¢t — 1, j € [1..b], and yz’j/ is a candidate token
generated from Ytﬂ 1» where j' € [1..b] represents the rank of this particular token among
its siblings, then our modified scoring function is as follows (here, d is a parameter we can

tune during experimentation):

S, yl7 ) =logp(yl, .- yi_1,yl7 |2) — §' %6 (4.1)

Extending the work of Li et al. (2016b), to further increase the distance between candidate
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simplifications, we can cluster similar sentences after decoding. To do this, we convert each
candidate into a document embedding using Paragraph Vector (Le and Mikolov, 2014),
cluster the vector representations using k-means, and select the sentence nearest to the
centroids. This allows us to group similar sentences together, and only consider candidates
that are relatively more different. Note that this is only one of many possible diverse

decoding approaches, I explore these in more detail in Chapter 5.

Re-ranking Diverse Candidates

Generating diverse sentences is helpful only if we are able to effectively re-rank them in a
way that promotes simpler sentences while preserving fluency and adequacy. To do this, we

propose three ranking metrics for each sentence 1:

e Fluency (f;): We calculate the perplexity based on a 5-gram language model trained

on English Gigaword v.5 (Parker et al., 2011) using KenLM (Heafield, 2011).

e Adequacy (a;): We generate Paragraph Vector representations Le and Mikolov

(2014) for the input sentence and each candidate and calculate the cosine similar-

ity.

e Simplicity (s;): We develop a sentence complexity prediction model to predict the

overall complexity of each sentence we generate.

To calculate sentence complexity, we modify a Convolutional Neural Network (CNN) for
sentence classification (Kim, 2014) to make continuous predictions. We use aligned sentences
from the Newsela corpus (Xu et al., 2015) as training data, labeling each with the complexity
level from which it came. We normalize each individual score between 0 and 1, and calculate

a final score as follows:

score; = Brfi + Bati + Bssi (4.2)
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Parameter Value Parameter Value
Batch size 86 Embeddings 300:300
RNN hidden units 256 LR 0.001
RNN attention dot LR reduce 0.7
# of layers 2 Loss CE
RNN type LSTM Min Epochs 1
Dropout inputs 0.2 Max epochs 30
Dropout states 0.2 Max updates 500000
Min vocab freq 3 # Last params )
Max length 85 Optimizer Adam
Label smoothing 0 Seed 13

Table 12: Training Hyperparameters for the baseline Seq2Seq model and our extended
model.

We tune these weights () on our validation data during experimentation to find the most

appropriate combinations of re-ranking metrics.
4.2.2. FExperiments

We train our models on the Newsela Corpus (Xu et al., 2015). Following Zhang and Lapata
(2017), we exclude sentence pairs corresponding to levels 4-3, 3-2, 2-1, and 1-0, where the
simple and complex sentences are just one level apart, as these are too close in complexity.
After this filtering, we are left with 94,208 training, 1,129 validation, and 1,077 test sentence
pairs; these splits are the same as Zhang and Lapata (2017). We preprocess our data by

tokenizing and replacing named entities using CoreNLP (Manning et al., 2014).

For our experiments, we use Sockeye, an open source Seq2Seq framework built on Apache
MXNet (Hieber et al., 2017; Chen et al., 2015). In this model, we use LSTMs with attention
for both our encoder and decoder models. We attempt to match the hyperparameters
described in Zhang and Lapata (2017) as closely as possible; as such, we use 300-dimensional
pretrained GloVe word embeddings (Pennington et al., 2014), and Adam optimizer (Kingma
and Ba, 2015). Table 12 shows a comprehensive list of all hyperparameters we used when
training our default Seq2Seq model. This list includes learning rate (LR), learning rate
reduction rate (LR reduce), size of embeddings (Embeddings), loss function (loss, we use

CE to represent Cross Entropy), among others.
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For our extensions to the standard Seq2Seq framework, we use nearly all the same pa-
rameters, the only exception being that we change the loss function from cross entropy
to our custom complexity-weighted loss function. With this loss, we use a = 2 during
training. At inference time, we set the beam size b = 100, and the similarity penalty
d = 1.0. After inference, we set the number of clusters to 20, and we compare two sepa-
rate re-ranking weightings: one which uses fluency, adequacy, and simplicity (FAS), where
1

Bf =Ba=PBs = %; and one which only uses fluency and adequacy (FA), where 3y = 3, = 5

and fBs = 0. Note that our best model uses FA weights.
We compare our models to the following baselines:

e Hybrid performs sentence splitting and deletion before simplifying with a phrase-

based machine translation system (Narayan and Gardent, 2014).

e DRESS is a Seq2Seq model trained with reinforcement learning which integrates

lexical simplifications (Zhang and Lapata, 2017).1

e DMASS is a Seq2Seq model which integrates the transformer architecture and ad-

ditional simplifying paraphrase rules (Zhao et al., 2018).2

We also present results on several variations of our models, to isolate the effect of each in-
dividual improvement. Seq2Seq is a standard sequence-to-sequence model with attention
and greedy search. Seq2Seq-Loss is trained using our complexity-weighted loss function
and greedy search. Seq2Seq-FA uses beam search, where we re-rank all sentences using
fluency and adequacy (FA weights). Seq2Seq-Cluster-FA clusters the sentences before re-
ranking using FA weights. Seq2Seq-Diverse-FA uses diversified beam search, re-ranking
using FA weights. Seq2Seq-All-FAS uses all contributions, re-ranking using fluency, ade-
quacy, and simplicity (FAS weights). Finally, Seq2Seq-All-FA integrates all modifications

we propose, and re-ranks using FA weights.

'For Hybrid and DRESS, we use the generated outputs provided in Zhang and Lapata (2017). We made
a significant effort to rerun the code for DRESS, but were unable to do so.

2For DMASS, we ran the authors’ code on our data splits from Newsela, in collaboration with the first
author to ensure an accurate comparison.

62



Model SARI Oracle | Len FKGL TER 1Ins Edit

Complex - - 23.1  11.14 0 0

Hybrid 33.27 - 12.4 7.82 0.49 0.01 —
DRESS 36.00 - 14.4 7.60 0.44  0.07 -
DMASS 34.35 - 15.1 7.40 0.59 0.28 -
Seq2Seq 36.32 — 16.1 7.91 0.41  0.23 —
Seq2Seq-Loss 36.03 - 16.4 8.11 0.40 0