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ABSTRACT

F-THEORY REALIZATIONS OF EXACT MSSM MATTER SPECTRA

Muyang Liu

Mirjam Cvetič

F-theory is remarked by its powerful phenomenological model building potential due to

geometric descriptions of compactifications. It translates physics quantities in the effective

low energy theory to mathematical objects extracted from the geometry of the compactifi-

cations. The connection is built upon identifying the varying axio-dilaton field in type IIB

supergravity theory with the complex structure modulus of an elliptic curve, that serves

as the fiber of an elliptic fibration. This allows us to capture the non-perturbative back-

reactions of seven branes onto the compactification space B3 of an elliptically fibered

Calabi–Yau fourfold Y4. The ingredients of Standard model physics, including gauge

symmetries, charged matter, and Yukawa couplings, are then encoded beautifully by Y4’s

singularity structures in codimensions one, two, and three, respectively. Moreover, many

global consistency conditions, including the D3-tadpole cancellation, can be reduced to

simple criteria in terms of the intersection numbers of base divisors.

In this thesis, we focus on searching for explicit models in the language of F-theory

geometry that admit exact Minimal Supersymmetric Standard Model (MSSM) matter

spectra. We first present a concrete realization of the Standard Model (SM) gauge group

with Z2 matter parity, which admits three generations of chiral fermions. The existence

of this discrete symmetry beyond the SM gauge group forbids proton decay. We then

construct a family of O(1015) F-theory vacua. These are the largest currently known

class of globally consistent string constructions that admit exactly three chiral families

and gauge coupling unification.

We advance to study the vector-like spectra in 4d F-theory SMs. The 4-form gauge back-
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ground G4 controls the chiral spectra. This is the field strength of 3-form gauge potential

C3, which impacts the vector-like spectra. It is well known that these massless zero modes

are counted by line bundle cohomologies over matter curves induced by the F-theory

gauge background. In order to understand the line bundle cohomology’s dependence on

the moduli of the compactification geometry, we pick a simple geometry and create the

database consisted of matter curves, the line bundles and the vector-like spectra. We

analyze this database by machine learning techniques and ugain full understanding it via

the Brill-Nother theory. Subsequently, we present the appearance of root bundles and

how they enter as significant ingredients of realistic F-theory geometries. The algebraic

geometry approaches to root bundles allow combinatoric descriptions, which facilitate the

analyze of statistics on the vector-like spectra at the end of this thesis.
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CHAPTER 1: Motivation

From natural philosophy to modern physics Due to the rise of universities in me-

dieval times, the concepts of mass, energy and motion slowly shaped into the form we

are familiar with today. Those conceptual developments prompted physics to evolve from

the rubric of natural philosophy. During the renaissance, scholars devoted themselves to

the foundation of modern science. For instance, Galileo Galilei realized that the leading

criteria of a successful physics theory is the extent to which its predictions agree with em-

pirical observations. Since then, theoretical physicists endeavor to apply proposed models

to explain phenomena in nature that have been observed in experiments and predict new

phenomena. Meanwhile, they undertake great efforts to explore the connection between

mathematical theorems and physics objects. The vision provided by pure mathematical

systems can provide clues to how a physical system might be modeled. For instance,

the notion of differential geometry that spaces can be curved, had a significant impact

on the theory of general relativity (GR). Entering the 19th and 20th centuries, the most

significant conceptual achievements were the laws of thermodynamics as well as the elec-

tromagnetic force, which was initially explained by Maxwell’s equations. Moving forward,

the revolution of modern physics lies on the root of two branches: relativity theory and

quantum mechanics. The theory of GR describes the gravitational dynamics of large-scale

objects like galaxy clusters. In contrast, quantum mechanics attempts to understand the

internal structures and interactions of atoms and molecules at small scales.

To date, in the framework of quantum field theory (QFT), the Standard Model (SM)

of particle physics has combined effects of three of the four known fundamental forces.

It contains electromagnetism, weak and strong interactions described by a QFT with

SU(3)C × SU(2)L × U(1)Y gauge symmetry. However, if we bring GR naively to the

quantum scale, the theory is not renormalizable. To that end, string theory is one of the

promising candidates for a theory of quantum gravity. It provides various applications

which range from heavy ion physics to condensed matter, black hole physics, or early

2



universe cosmology. It has also stimulated a number of outstanding developments in pure

mathematics.

point like particles
open string closed string

Figure 1: Strings behave as ordinary point-like particles at the energy well below Ms.

String theory – A consistent theory of quantum gravity String theory proposes

that the building blocks of elementary particles are not point-like. Instead, they are small

one-dimensional objects, strings, of typical size ls = 1/Ms, with Ms known as the string

scale. As we have not observed strings in experiments, the string scale must be incredibly

large compared to any experimentally probed energy scale. Many string models believe

that the string scale Ms is of the order of the Planck energy MPlanck ∼ 1019 GeV. On

the distance at least several magnitudes larger than the string length ls (at the energy

well below Ms), strings behave as ordinary point-like particles, with dynamics described

by the low energy effective theory of particle physics. Different vibrational states of

strings determine various properties (mass, charges, spin, etc.) of the oscillation states

and behave as distinct particles.

There are two types of strings: they can be either open or closed as depicted in Figure

1. A closed string is topologically equivalent to a circle and has no end-points. On the

other hand, an open string has two end-points and is topologically equivalent to a line

interval of a closed string. One of the many oscillation states corresponds to a spin two

particle – graviton, the force carriers of gravity. Moreover, a string perturbation series

can provide its UV-completion – the string scattering amplitudes are finite at each loop,

hence are already renormalizations of the underlying effective field theory amplitudes.
1 Thus, it is commonly believed that string theory is a UV-finite quantum description

1It is commonly argued that the string is UV-finite to all orders. However, IR-finiteness is only discussed
much more recently at low loop order.

3



including a graviton, which makes it a consistent theory of quantum gravity. In addition,

string theory also leads to significant progress in other aspects of gravity, like accounting

for the microscopic degrees of freedom of certain black holes, and explicitly realizing

holography in terms of the AdS/CFT correspondence. Most remarkably, string theory

is not a purely gravitational theory, but contains the basic building blocks of the SM,

naturally including non-abelian gauge interactions, charged chiral fermions in replicated

families, fundamental scalars, Yukawa couplings, etc. [3, 4, 5, 6, 7, 8]

The earliest version of string theory, bosonic string theory, incorporated only the class of

particles known as bosons. It has good behavior at high energy only if the spacetime has

the critical dimension D = 26. If we include fermionic excitations and enforce supersym-

metry between bosons and the fermions, consistency of string theory requires D = 10.

This physical theory is known as superstring theory. Prior to the mid 1990s, five consistent

versions of superstring theories in flat 10-dimensional Minkowski spacetime, were known.

These are termed type I, type IIA, type IIB, heterotic E8×E8 and heterotic SO(32) string

theory. They were seemed to be independent of each other. However, Edward Witten

realized [9] that they were different perturbative limits of a single underlying theory in 11

dimensions, which is today known as M-theory. This insight uncovered relations among

these perturbative string theory formulation by so-called dualities.

Compactification As fermions are observed in our daily experience, we focus on su-

perstring theories in this thesis. In order to explore the connections between the con-

structed string models and the observed physics in the 4 dimensional spacetime, we em-

ploy the mechanism of compactification as a generalization of Kaluza–Klein (KK) theory

[10, 11, 12]. The theory of KK was an extension of GR. It is a classical unified field

theory of gravitation and electromagnetism built around the idea of an extra fifth dimen-

sion depicted as a circle beyond the common 4 dimensional spacetime. It turns out that

the 5d field equations can be reinterpreted in terms of physics in the four non-compact

dimensions as ‘ordinary’ GR coupled to an electromagnetic gauge field. Furthermore, the

4



Figure 2: A schematic visualization of the relationship amongst M-theory, the five super-
string theories and eleven-dimensional supergravity. The shaded region represents possible
physical configurations of M-theory (also known as its ‘moduli space’). The five different
superstring theories sitting at certain corners represent certain limits of the moduli space
of M-theory.

coupling strength can be related to the size of the extra dimension, which is a so-called

(Kähler) modulus. Each modulus gives rise to a massless scalar field that freely propa-

gates in 4D spacetime. Hence, KK theory is considered an important precursor to string

theory, where we introduce compact dimensions to obtain a higher-dimensional manifold

with much richer structure of the moduli space compared to the simple circle applied by

KK theory. This mechanism is referred to as string compactification.

The string compactification is defined on a spacetime M10 = M4 ×X6. X6 is called the

internal space, which is a 6-dimensional compact manifold. The size of the internal space

is taken small enough so that at energies well below Ms, the 4d effective theory agrees

with the physics of our everyday experience. Calabi-Yau manifolds were first considered

[13] for compactifications of six dimensions in superstring theory because they leave some

5



of the original supersymmetry unbroken. The unbroken N = 1 supersymmetry requires

that the manifolds have, for perturbatively accessible configurations, SU(3) holonomy

and that the four-dimensional cosmological constant vanishes. The existence of spaces

with SU(3) holonomy was conjectured by Calabi [14] and proven by Yau [15]. Many Cal-

abi–Yau varieties/orbifolds can be found as weighted complete intersections in a weighted

projective space. Various constructions of Calabi-Yau varieties allow us to explore possible

embeddings of the SM of particle physics in the 4 dimensional spacetime in string theory.

Such questions are interested in a field commonly known as string phenomenology, and

this thesis is part of it.

D-brane Objects called Dp-branes are extended objects of p spatial dimensions, which

at weak coupling can be defined as (p+1)-dimensional subspace of the spacetime on which

open strings end. These Dp-branes feature prominently in string compactifications and

obey non-perturbative dynamics [16]. It is crucial to observe that stacks of coincident

Dp-branes realize gauge algebras [3, 4, 5, 6, 7, 8] and thus make it possible to engineer

non-trivial gauge theories in string compactifiations. In braneworld models, systematic

studies of D-brane configurations in a Calabi-Yau manifold leads to various approaches of

SM building in string theory. Past work on intersecting branes models in type II include

[17, 18, 19, 20, 21, 22, 23] (see also [24] and references therein).

The most important ingredient in type IIA brane world models are the D6-branes as well as

their intersection patterns. We consider a flat 10d space, decomposed as M4×R2×R2×R2

and two stacks of D6-branes. 2 These D6-branes are ”flat” (considered as straight lines)

in each R2-factor and fill all of the external Minkowski space. Their relative position is

therefore completely specified by the enclosed angle θi in the i-th R2 factor.

N = 1 supersymmetry is preserved if ∑i θi = n · 2π, n ∈ Z. Chiral fermions are localized

at the intersection of the brane volumes. Perturbative type IIB superstring theory is
2In fact, many constructions consider T 2 instead of R2 (the 2-dimensional torus). Generalization

considers the orbifold quotients of this space.
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closely related to type IIA via T-duality. The engineering of desired gauge groups can

easily be realized in compactifications with D3- and D7-branes [24, 25] Unfortunately,

backreactions of the D7-branes cause a breakdown of the perturbative theory as reviewed

in [26]. Consequently, people began to push beyond the perturbative limits of M-theory to

handle such compactifications. One of the most prominent non-perturbative frameworks

of constructing string compactifications is F-theory.

F-theory As a branch of string compactifications, F-theory encodes the back-reactions

of the seven branes in IIB theory in the geometry of an elliptically fibered Calabi-Yau

space Yn+1 → Bn. 3 By studying this space Yn+1 with well-established tools of algebraic

geometry, one can then ensure the global consistency conditions of the physics in 10− 2n

non-compact real dimensions. Developed by Cumrun Vafa.[27], F-theory provides a very

flexible tool to cover the to date largest set of consistent vacua [28, 29, 30, 31, 32](see

[33, 34, 35, 26] for some reviews). This flexibility follows from the systematic engineering

of gauge theories coupled to gravity by use of powerful tools of algebraic geometry.

Motivated by the capability of F-theory constructions, this thesis focuses on an important

characteristic of 4d N = 1 F-theory compactifications (i.e.,n= 3). Namley, by following

the philosophy of string phenomenology, we search for geomemtries such that the 4d low

energy effective theory closely resembles the MSSM. As a first step beyond the gauge

group, we focus on a chiral fermionic spectrum. It is fixed by a background gauge flux,

which is specified by the internal C3 profile in the dual M-theory geometry. Namely,

the chiral spectrum only depends on the flux G4 = dC3 ∈ H(2,2)(Y4). By now, there

exists an extensive toolbox for creating and enumerating the so-called primary vertical

subspace of G4 configurations [36, 37, 38, 39, 40, 41, 42]. The application of these tools

led to the construction of globally consistent chiral F-theory models [40, 42, 43, 44], which

recently culminated in the largest class of explicit , globally consitent string vacua which

realize the Standard Model gauge group with its exact chiral spectrum and gauge coupling
3n is the complex dimension
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unification [32].

However, these methods are insufficient to determine the exact vector-like spectrum of the

chiral zero modes (i.e., not just the difference between chiral and anti-chiral fields). This

is because the zero modes depend not only on the flux G4, but also on the flat directions

of the potential C3. The complete information of the gauge potential is encoded in the so-

called Deligne cohomology. In [45, 46, 47], methods for determining the exact vector-like

spectra were put forward. This approach exploits the fact that (a subset of) the Deligne

cohomology can be parameterized by Chow classes. By use of this parameterization, one

can extract line bundles LR that are defined on curves CR ⊂ B3. In the dual IIB picture,

this can be interpreted as localization of gauge flux on matter curves, which lifts some

vector-like pairs on these curves. Explicitly, the zero modes are counted by the sheaf

cohomologies of LR and we have h0(CR, LR) massless chiral and h1(CR, LR) massless

anti-chiral superfields in representation R on CR. Based on this motivation, the goal of

this thesis is to find a realistic F-theory geometry with situable line bundle cohomology

on each matter curve CR such that the produced spectrum exactly matches the massless

matter spectrum of the MSSM.

Outline of the thesis Part I provides a broad summary of techniques used throughout

this thesis, which experts may skip. In section 1 we review generalities of String theory.

Subsequently, we explain in section 2 how F-theory encodes the physics of Bn in an elliptic

fibraton Yn+1 → Bn.

In Part II, we discuss the model building of the exact chiral spectrum in the F-theory

realizations. Different gauge symmetries are realized by different fiber geometries, as pre-

sented in chapter 3 and chapter 4. We advance to seek the approaches towards complete

matter spectra in 4d N = 1 F-theory compactifications in Part III. First, we introduce

how line bundle cohomologies dependen on the complex structure moduli of the compact-

ification geometry. To this end, we focus in chapter 5 on a simple geometry, for which

we can compute the vector-like spectrum by brutal force. We generate a database and
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analyze this data with machine learning techniques. We find that jumps in the vector-

like spectrum ca somtimes, but not always, be predicted from topology. A complete

understanding of our data is acheived with Brill-Nother theory. Equipped with this un-

derstanding, we turn back to fully F-theory steups in chapter 6. In QSM geomemtries, we

notice that root bundles are significant ingredients of realistic F-theory SMs. We prove

existence of root bundles on all/but the Higgs matter curve with cohomologies required

for F-theory MSSMs. The algebraic geometry approaches and the programming scanning

of root bundles give rise to key outputs of statistics that are heavily applied in chapter

7. We focus on searching for explicit models in our landscape of F-theory Standard Mod-

els that have a realistic vector-like spectrum. The results of chapters 3 to 7 have been

presented in the publications [44, 32, 48, 49, 50].
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Part II

Introduction
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CHAPTER 2: Preliminaries: String and F-Theory

In this chapter we start with the motivations for string compactifications followed by a

brief introduction to M-theory. For a detailed review of string theory, see [3, 4, 5, 6, 7, 8].

Then we follow with a very short review of F-theory [27] as a non-perturbative extension

of type IIB string theory and as a decompactification limit of M-theory compactifications.

With these ingredients, we will then present the appearance of gauge symmetries, matter

states and Yukawa couplings along singularities in 4D F-theory compactifications.

2.1 String Theory Basics

2.1.1 Warm up - the bosonic string

As a string propagates in spacetime, it sweeps out a two-dimensional surface Σ, known as

the worldsheet. Any point in the worldsheet is labeled by two coordinates (t, σ), where

t denotes the ”time” coordinate analogous to that in point particle worldlines, and with

σ parameterizing the extended spatial dimension of the string at fixed t. A classical

string configurations in D-dimensional Minkowski space MD is given by a set of functions

XM (t, σ) with M = 0, · · · , D− 1, which specify the spacetime position of the worldsheet

point (t, σ). More precisely, the functions XM (t, σ) provide an embedding of the surface

Σ (worldsheet) into D-dimensional spacetime MD (target space).

The string dynamics is defined by an action S[X(t, σ)]. A natural proposal for the classical

string action is called Nambu-Goto action, 1 which is the total area spanned by the

worldsheet (analogous to the point particle action given by the worldline interval)

SNG = − 1
2πα′

∫
Σ
dA = − 1

2πα′
∫

Σ

√
−dethdσdt , (2.1.1)

where 1/(2πα′) ' M2
s is the string tension. As for the second equality, we have express

the action in terms of XM (t, σ) by using the 2d worldsheet metric (which is the pullback
1The Polyakov action with a suitable worldvolume cosmological constant term added is classically

equivalent to the Nambu-Goto action.
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of the spacetime metric to the string worldsheet along the embedding Σ ↪→ XM (t, σ))

htt = ∂tX
M∂tXM , hσσ = ∂σX

M∂σXM , htσ = ∂tX
M∂σXM . (2.1.2)

Many remarkable properties of string theory emerge from the subtle relations between the

physics in 2d worldsheet and physics in spacetime. Different string theories are defined

by different worldsheet structures.

UV finiteness and critical dimensions A fundamental property of string theory is

that the scattering amplitudes are unitary, and moreover finite, order by order in perturba-

tion theory. It defines consistent quantum theories, which are free of the ultraviolet (UV)

divergences of quantum field theory. String theory provides a regularization of quantum

field theory, with the effective cutoff Ms, above which the amplitudes soften rather than

diverge. In a quantum field theory, UV divergences occur when two interaction vertices

coincide in spacetime; however, in string theory, they are delocalized in a region of size

Ls ' 1/Ms, which acts as an effective position space cutoff for the amplitude.

The conformal symmetry of the worldsheet action is the single reason we can fully solve

the quantum string (at least for flat target space). The conservation of the conformal

symmetry at quantum level restricts the dimension of the target space MD to a critical

value, called critical dimension. The Nambu-Goto action 2.1.1 can be extended by addi-

tion to the bosonic scalar fields XM fermionic fields in a natural way. This leads to the

action of the so-called superstring, for which the critical dimension is D = 10.

2.1.2 Superstrings

In order to have fermionic string excitations in the target space, one needs to modify the

worldsheet field content. Concretely, there is a set of 2d fermionic fields ϕM (ξ) (spinors)

as superpartners of bosonic fields XM (ξ). In addition, there is a worldsheet gravitino

ϕa(ξ), related to gab(ξ). Supersymmetry relates the worldsheet fermions to their bosonic

cousin fields in spacetime. Subtle exceptions include type 0 theories, which are omited
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here since these theories have no application to construct particle physics models and

deviate away from our focus in this thesis. The appearance of spacetime supersymmetry

guarantees the absence of spacetime tachyons, and thus provide stable string vacua. The

five superstring theories have a high degree of spacetime supersymmetry, with the same

number of supercharges as 4d N = 8 in type II theories and as of 4d N = 4 in heterotic

and tyoe I theories. In 4d compactifications, the degree of supersymmetry can be reduced,

leading to theories with 4d N = 1 (or no) supersymmetry, with potential particle physics

model building applications.

D-brane In particular, objects called Dp-branes feature prominently in string com-

pactifications when studying interesting non-perturbative dynamics [16] as well as its

low-energy limit towards gauge theories with non-perturbative effects. In short words,

Dp-branes are extended objects of p spatial dimensions, which at weak coupling can be

defined as (p+ 1)-dimensional subspace of the spacetime on which open strings end. It is

crucial to observe that stacks of coincident Dp-branes realize gauge algebras [3, 4, 5, 6, 7, 8]

and the gauge bosons are open strings that start and end on the same stack of D-branes.

Those observations thus make the string engineering of non-trivial gauge theories more

flexible. In braneworld models, we are confined to consider a small subset of the Calabi-

Yau manifold on which it intersects a D-brane. The systematic study of D-brane config-

urations in Calabi-Yau manifolds leads to various approaches to realize the SM in string

theory models/geometries.

As open string modes on D-brane describe the dynamics of the D-brane, one can gen-

eralize 2.1.1 to the so called Dirac-Born-Infeld (DBI) action. The DBI action describes

the coupling of the D-brane to the NSNS fields, and in particular to gravity. By using

the gauge transformations of the Kalb-Ramond field B2 in the DBI-action, one can de-

rive the Yang–Mills action for world worlume gauge field as well as its supersymmetric

completion, which involves the world-volume scalars XM and the world-volume fermions

ψM . However, there exists no similar symmetry on the brane like conformal symmetry on
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the worldsheet. Thus, we lack the ability to quantize the solutions to the D-brane action.

This can be understood as result of the non-perturbative nature of Dp-branes.

2.1.3 Compactification

The string compactification is defined on a spacetime M10 = M4 ×X6. X6 is called the

internal space, which is a 6-dimensional compact manifold. The size of the internal space

is taken small enough to agree with current experimental observations, and we expect that

the physics at energy well below Ms reduces to an effective 4 dimensional theory which is

in agreement with our everyday experience. Calabi-Yau manifolds were first considered in

[13] for compactifications of six dimensions in superstring theory because they leave some

of the original supersymmetry unbroken. The unbroken N = 1 supersymmetry requires

that the manifolds have, for perturbatively accessible configurations, SU(3) holonomy.

Calabi-Yau Manifolds The condition that compactifiations on X6 leads to some un-

broken supersymmetry can be described as follows. Around each point P in M4 × X6,

the spacetime is locally isomprphic to R10 and we have a local set of 10d supercharges,

which transform as spinors of SO(10). As Dirac spinor of SO(n) has 2(n/2) components

with the same amount of supercharges. Thus, we can naively argue that the Dirac spinor

of S0(10) is composed by that of SO(6) and SO(4). Supercharges of the 4d theory cor-

respond to supercharges which are well defined globally on X6. Since X6 is curved, local

supercharges at different points in X6 are related by parallel transport with the SO(6)

spin connection induced from the metric of X6. Supercharges which are rotated upon

parallel transport do not lead to globally well defined supercharges. Hence, the condition

that compactifiation on X6 preserves some supersymmetry is that there exist sufficiently

many 2 non-trivial spinors on X6, which remain constant upon parallel tranport. Such

covariantly constant spinors are called killing spinors. The existence of such spinor can

be recasted into demanding X6 to be a manifold with special holonomy, i.e. its holonomy
2’sufficiently many’ means that we want to demand the holonomy group of the Calabi–Yau threefolds

X6 is identical to SU(3). However, some authors introduce Calabi–Yau threefolds by the condition that
the holonomy group is allowed to be a proper subgroup of SU(3).
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group must be a subgroup of SO(6). This is satisfied by the Calabi–Yau manifolds with

SU(3) holonomy. According to the conjecture of Calabi [14], followed by its proof by Yau

[15], an N-dimensional complex Kähler manifold with vanishing first chern class admits a

metric with SU(N) holonomy.

The constructions of Calabi-Yau manifolds rely heavily on the computational power of

algebraic geometry and the model building potential benefited from programming skills.

In fact, a large portion of the geometry is encoded in the descriptions of vanishing loci,

which specify the Calabi-Yau spaces as hypersurfaces or even higher complete intersec-

tions of the ambient manifolds. For instance, many Calabi-Yau varieties/orbifolds can be

found as complete intersections in a weighted projective space. Those combinatoric data

derived from the applications of the toric geometry method upon Calabi-Yau manifolds

allows us to calculate many physically relevant quantities (i.e., charges, chiral indices) or

verify various physical conditions (e.g., tadpole cancellation for the global consistency,

quantization conditions). In this thesis, we will employ both toric geometry methods and

program scanning skills to systematically construct and study Calabi-Yau manifolds.

M-theory It turns out that the consistent formulation of superstring theory is not

unique in flat 10 dimensional Minkowski spacetime. Five superstring theories are related

by the so-called S-duality and T-duality. Moreover, they can be seen as different limits

of an 11 dimensional supergravity theory, which preserves N = 1 supersymmetry. It is

believed that there exists a UV-completion of 11 dimensional supergravity. This compact-

ifiation is called M-theory. Thus the 11 dimensional supergravity theory is comprehended

as the low energy limit of M-theory. Its bosonic part is governed by the metric G and an

anti-symmetric 3-tensor, i.e. 3-form C3. Denote the 11 dimensional Planck mass as M11D

and R being the Ricci scalar, the dynamics of M-theory is described by the action

S11D = M9
11D
2

∫
M11

d11x

(√
−detGR− 1

2G4 ∧ ∗G4 −
1
6C3 ∧G4 ∧G4

)
,
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where G4 = dC3. In analogy to the gauge transformations in Yang–Mills theory, the

action of dynamic is invariant under a gauge transformation: C3 → C3 + dΛ2, which

allows us to interpret G4 as the field strength of the gauge potential C3 followed from F-

M-theory duality. Moreover, there exist similar brane configurations in M-theory, which

are called M2-branes and M5-branes. They are charged electrically and magnetically,

respectively, under C3. M-branes and the G4-flux are prominent features of the F-theory

regime. Later in this thesis, we will parameterize a subset of G4-fluxes by the so-called

Chow ring [45] and the gauge potential C3 by Deligne Cohomology.

We emphasize that this thesis focuses on F-theory. This is because F-theory compacti-

fications provide physicists a large number set of compactifiations in the so-called string

theory landscape. We devote the following section to a brief review of type IIB theory,

followed by the approaches to F-theory as a non-perturbative formulation of Type IIB

compactifications.

2.1.4 Type IIB theory

The low energy description of type IIB string theory in flat 10d spacetime admits an

effective formulation, which preserves N = (2, 0) supersymmetry. The bosonic part of

this classical action is [26]

1
2πSIIB =

∫
d10x e−2φ√−g (R+ 4∂µφ∂µφ)− 1

2

∫
e−2φH3 ∧ ∗H3

− 1
4

4∑
p=0

∫
F2p+1 ∧ ∗F2p+1 −

1
2

∫
C4 ∧H3 ∧ F3 .

(2.1.3)

The relevant equation of motion is completed by the duality relation F5 = ∗F5 since this

action 2.1.3 is pseudo.It is conventional to define field strengths as follows:

H3 = dB2, F1 = dC0, F3 = dC2 − C0 dB2,

F5 = dC4 −
1
2C2 ∧ dB2 + 1

2B2 ∧ dC2, F9 = ∗F1, F7 = − ∗ F3 .
(2.1.4)
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field symbol type electric BPS state magnetic BPS state
dilaton φ scalar – –
metric Gµν symmetric 2-tensor – –
B-field B2 2-form F1-string NS5-brane

RR 0-form C0 0-form D(-1) instanton D7-brane
RR 2-form C2 2-form D1-string D5-brane
RR 4-form C4 4-form D3-brane D3-brane

Table 1: Bosonic field content of 10-dimensional type IIB supergravity – based on [1].

The vev of the dilaton φ affects the string coupling constant, gs = e〈φ〉, which plays a key

role in the perturbative description of type IIB strings[3, 4, 5, 6]. D7-branes, on the other

hand, are magnetic sources for the IIB Ramond-Ramond (RR) axion C0. Together with

the dilaton φ, we introduce the complex axio-dilaton field

τ = C0 + ie−φ. (2.1.5)

This allow us to rewrite 2.1.3 in the Einstein frame as

1
2πSIIB =

∫
d10x
√
−g

(
R− ∂µτ∂

µτ̄

2(Imτ)2 −
1
2
|G3|2

Imτ −
1
4 |F5|2

)
+ 1

4i

∫ 1
Imτ C4 +G3 ∧ Ḡ3,

(2.1.6)

where G3 = dC2 − τdB2 and |Fp|2 = 1
p!Fµ1...µpF

µ1...µp . This action enjoys an SL(2,R)

symmetry [51] under the transformations

C4

G

 7→
C4

G

 , τ 7→ aτ + b

cτ + d
,

C2

B2

 7→
a b

c d


C2

B2

 ,

a b

c d

 ∈ SL(2,R) ,

(2.1.7)

and even breaks to an SL(2,Z) subgroup upon quantizaion3. It is believed that this

remant group persists as a symmetry of the full non-perturbative IIB string theory.

Seven branes in type IIB Since seven branes are electric and magnetic sources for

the form fields C8 and C0 in the action, their presence will alter the fields by backreactions
3The breaking is induced by the factor exp(2iπτ) contributed by D(-1) instantons to the partition

function. This factor is only invariant under SL(2,Z) of τ .
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in a similar way as a classical electron backreacts onto the electromagnetic field. Consider

a D7-brane along R1,7 ⊂ R1,9 ' R1,7 × C. The Bianchi identity of F9 implies

∫
S1
∗F9 =

∫
S1
dC0 = 1 , (2.1.8)

where S1 is a circle around the D7-brane in the normal space C. Let z0 denote the position

of D7-brane in the normal space with coordinate z. To preserve supersymmetry, in the

vicinity of the D7-brane we must have a field profile

τ(z) = 1
2πi ln(z − z0) + terms regular at z0 . (2.1.9)

In the complex plane, as we encircle z0, the logarithmic branch cut induces a monodromy

of the axio-dilaton profile

τ → τ + 1 .

This monodromy can be interpreted by the SL(2,Z) symmetry 2.1.7, namely, one D7-

brane induces an SL(2,Z) transformation given by the matrix M[1,0] = ( 1 1
0 1 ). There are

other types of seven branes specified by different monodromy matrices. In the perturba-

tive regime of type IIB description, we define a (p, q) string as a BPS bound state of p

fundamental strings and q D1-strings, which ends on a [p, q] 7-brane. These strings are

invariant under the [p, q]-brane induced monodromy M[p,q] =
(

1+pq p2

−q2 1−pq

)
. Depending on

the brane configurations, various gauge algebras can be realized. For instance, a stack of

N coincident D7-branes ([1, 0]-branes) supports an SU(N) gauge groups. Hence a basis of

seven branes is sufficent to generate all ADE groups [52]. The study of (p, q)-strings and

branes by so-called string junctions [53, 54, 55] is one way to describe non-perturbative

type IIB theory. However, we follow a geometric approach to explore the profile of varing

axio-dilaton τ induced by general seven brane configurations. This geometric description

is F-theory, the main focus of this thesis.
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2.2 F-theory in a nutshell

Due to the backreactions on the seven branes, the axio-dilaton τ has non-trivial profile in

the normal space of the branes. This non-trivial profile connects to an elliptic fibration

by interpreting the axio-dilaton of type IIB theory as the complex structure modulus of

an elliptic curve. F-theory is remarked by its geometric descriptions of compactifications

involving such profiles.

Recall that an elliptic curve Eτ , which is a complex torus with a marked point. Every

complex torus can be described as

Eτ = C/Λ = {w ∈ C : w ' w + (n+mτ)} , n,m ∈ Z, τ = τ1 + iτ2 ∈ H , (2.2.1)

where H is the complex upper half-plane. The shape of lattice is invariant under the

= (z)

< (z)

τ

1

Figure 3: The lattice Λ defining a torus, it is obtained from identification z ∼ z+1 ∼ z+τ .

transformation τ → aτ+b
cτ+d with

(
a b
c d

)
∈ SL(2,Z). This inspires us to identify type IIB

supergravity field τ with the complex structure of the torus. Thus the varying of τ under

the monodromy SL(2,Z) is encoded in the geometry of elliptic curve Eτ , and it is natural

to consider an elliptic fibration Eτ ↪→ Yn+1 → Bn. Note that the elliptic curve fiber Eτ

19



In particular, the lattice spanning vectors can be related to the two non-trivial cycles on

the torus. The value of τ can be related to the ratio of the length of the two cycles, and

thus determine the shape of the torus. An infinite value of τ is geometrically interpreted

as shrinking the size of one of the cycles to zero, namley, the torus becomes singular. On

the other hand, in the type IIB decription, the axio-dilaton field function 2.1.9 indicates

that this infinity corresponds to the limit z → z0. Therefore, the singular torus occurs

at the postion where seven branes locate. From the compactification perspective, type

IIB compactified on Bn is corresponding to an F-theory compactification as a fibration

Xn+1, the elliptic fiber becomes singular at certain codimension one locus ∆ ∈ Bn as

depicted below. Furthermore, supersymmetry preserving requires that the fibration must

Bn

Singular fiber

P

Eτ

∆

Figure 4: The elliptic fibration Yn+1 of F-theory, where singular fiber appears along certain
base locus ∆ ∈ Bn.

be Calabi-Yau. We will see momentarily that the type of singularity over ∆ encodes the

gauge dynamics on the D7-branes in question.

The Weiestrass form It is commonly to apply the so-called Weierstrass form to rep-

resent an elliptic curve, which is described by the vanishing locus of the polynomial

PW := y2 − (x3 + fxz4 + gz6) , (2.2.2)

where [x, y, z] are homogeneous coordinates of the weighted projective space P231. Glob-

ally, f,g are sections of line bundles on the base Bn, such that they determine the shape

of the elliptic curve. The vanishing of the discriminant ∆ := 4f3 + 27g2 is tied to the
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degenerating of the fiber

f ∈ O(−4KBn), g ∈ O(−6KBn), ∆ ∈ O(−12KBn) (2.2.3)

On the local patch z = 1, where the point [1 : 1 : 0] lies at infinity, the real parts

of the vanishing locus can be ploted as below The singularity type has been classfied

y2
 x3

- x

smooth

y2
 x3

cusp

y2
 x3

- 3 x + 2

node

Figure 5: A smooth elliptic curve (a), and two types of singular curve (b) and (c).

systematically by Kodaira [56] by the vanishing order of f, g and ∆. Below we list the

Kodaira classification inspired by [57] of singularities as well as their associated gauge

groups:

ord (f) ord (g) ord (∆) singularity nonabelian symmetry algebra
≥ 0 ≥ 0 0 none none

0 0 n ≥ 2 An−1 su(n) or sp(bn/2c)
≥ 1 1 2 none none
1 ≥ 2 3 A1 su(2)
≥ 2 2 4 A2 su(3) or su(2)
≥ 2 ≥ 3 6 D4 so(8) or so(7) or g2
2 3 n ≥ 7 Dn−2 so(2n− 4) or so(2n− 5)
≥ 3 4 8 e6 e6 or f4
3 ≥ 5 9 e7 e7
≥ 4 5 10 e8 e8
≥ 4 ≥ 6 ≥ 12 does not occur in F-theory

Table 2: Kodaira’s classification of singular fibers and gauge groups.

Therefore, the framework of F-theory provide an one-to-one correspondence between seven

brane configurations with backreactions in the type IIB supergravity decription and Cal-
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abi–Yau elliptic fibration. The geometry of F-theory compactifications allows us to read

off physics concerned objects in type IIB, for instance, the non-abelian gauge group Gi

specified by stack of coincident seven branes are translated into the singularity occurance

at certain codimension one locus Σi of the base Bn. The origin of abelian symmetry like

U(1) can be traced back to the existence of extra rational sections other than the zero

section [1 : 1 : 0] in the fibration. We consider the appearance of multi-sections when the

discrete symmetry is involved.

Over special loci Ci,j = Σi∩Σj , the singularity becomes more severe due to the increasing

of vanishing orders (ord(f), ord(g), ord(∆)). We expect the occurance of matter charged

under both gauge group Gi and Gj and relates to the bifundamental representation of the

group Gi × Gj . Let us assume that the discriminant divisor is of the form Σ = Σ0 ∪ Σ1

with only one non-abelian gauge algebra along a smooth divisor Σ1, but the model is

otherwise maximally generic. The possible enhancement types of the Weierstrass model

in codimension two and the associated matter representations have been classified in

[58, 57] for all Weierstrass models.

We advance to seek more realizations of ingredients in the realistic model building.

Chirality in 4D F-theory compactification can be computed by introducing a G4-flux

[36, 37, 38, 39, 40, 41, 42]. Namely, the chiral index can computed by:

χ(R) =
∫
S(R)

G4 (2.2.4)

where S(R) is the fibration over the codimension two matter curve CR ∈ Bn. Moreover,

the exact value of chiral and anti-chiral multiplets are counted by the sheaf cohomolo-

gies of LR specified by the internal C3 profile in the dual M-theory geometry. We have

h0(CR, LR) massless chiral and h1(CR, LR) massless anti-chiral superfields in represen-

tation R on CR. We address more in the following chapters when visit the realizations

of different model buildings.
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Part III

F-theory Realization of the exact

Chiral MSSM
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CHAPTER 3: A Model with SU(3)× SU(2)× U(1)× Z2 Symmetry

After the pedagogical introductions of the previous chapters, we would like to use F-theory

to construct 4D N = 1 SUGRA theories with the Standard Model gauge group, three

chiral generations, and matter parity in order to forbid all dimension four baryon and

lepton number violating operators. The underlying geometries are derived by construct-

ing smooth genus-one fibered Calabi–Yau fourfolds using toric tops that have a Jacobian

fibration with rank one Mordell–Weil group and SU(3)×SU(2) singularities. The neces-

sary gauge backgrounds on the smooth fourfolds are shown to be fully compatible with the

quantization condition, including positive integer D3-tadpoles. This construction realizes

for the first time a consistent UV completion of an MSSM-like model with matter parity

in F-theory. Moreover our construction is general enough to also exhibit other relevant Z2

charge extensions of the MSSM such as lepton and baryon parity. Such models however

are rendered inconsistent by non-integer fluxes, which are necessary for producing the

exact MSSM chiral spectrum. These inconsistencies turn out to be intimately related

to field theory considerations regarding a UV-embedding of the Z2 into a U(1) and the

resulting discrete anomalies.

3.1 Introduction

One of the major goals of string theory is to provide a possible framework to UV complete

the Standard Model of particle physics together with gravity. The web of string theories,

connected by various dualities, exhibits a rich landscape of possibilities, and each corner

provides an interesting starting point towards this goal, coming with its own benefits and

challenges. In particular, F-theory [27] provides a very flexible tool to cover the to date

largest set of consistent vacua [28, 29, 30, 31] from string theory by using a non-peturbative

extension of Type IIB strings (see [33, 34, 35, 26] for some reviews).

This flexibility lies in the systematic engineering of gauge theories coupled to gravity using

powerful tools of algebraic geometry, that combines the strength of various perturbative
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string theories. In its early days, F-theory has been employed to engineer the whole

Standard Model through a unified gauge group SU(5) on a single divisor [59, 60, 61], which

then has to be broken to the Minimal Supersymmetric Standard Model (MSSM) by a flux

in the hypercharge Cartan subgroup [62]. The localization of the SU(5) made a simple

local treatment of the compactification space possible, although it was required to enhance

these models by additional Abelian symmetries to control proton decay and Yukawa

textures [63]. The global realization of Abelian gauge symmetries and its connection

to the Mordell–Weil group of the fibration, although already pointed out earlier [64],

was only further explored later on in [65, 66, 67]. These developments kicked off the

construction of globally consistent realizations of GUTs together with U(1) symmetries

[68, 38, 69, 39, 70, 71, 72]. Nevertheless, these construction were still relying on a GUT

breaking mechanism via hypercharge flux [73] which is often technically hard to implement

or might lead to vector-like exotics [74] when global Wilson lines are used.

However, the newly gained insights into Abelian symmetries made the direct engineering

of the MSSM another valid option [75, 76, 40, 42]. But similar as in the GUT picture,

the MSSM gauge group per se is not enough to forbid various dangerous proton decay

inducing operators and must be considered incomplete. One possibility is to extend the

symmetries by another gauged U(1) [76, 42], however, one is then faced with the issue of

how to lift the additional massless photon from the spectrum. Alternatively, one can add

a discrete symmetry, which from the effective field theory perspective is rather minimally

invasive and unproblematic, due to the lack of strong anomalies. However this is not

true anymore when coupled to (quantum) gravity, as here black hole arguments [77, 78]

suggest an inconsistency of every symmetry that does not have a gauged origin. Hence,

if we couple gravity to the MSSM, we can only add very specific discrete symmetries

that allow a gauging. One of the mildest additions to the MSSM that forbids baryon

and lepton number violating operators at the renormalizable level which is also known

to be (discrete) anomaly free [79] is matter parity. Therefore, a valid quest is to explore
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F-theory constructions of such models.

This article is structured as follows: In Section 3.2 we review the need for additional

discrete symmetries in the MSSM and their field theory constraints from anomaly con-

siderations. In Section 3.3 we present an F-theory model with matter parity, together

with the relevant computational details regarding the geometry and G4-fluxes. We then

demonstrate that these rather formal techniques, when applied to the most simplistic

fibrations over the base B = P3, can produce a number of different, consistent configura-

tions that has the exact chiral MSSM spectrum. Along the way, we highlight the subtle

interplay between discrete gauge anomalies in the field theory and intersection number

arithmetic of the geometry. In Section 3.4 we construct another fibration in which we will

look for other parity assignments, and confront these with discrete anomaly cancellation

conditions. Section 3.5 summarizes the results and gives an outlook onto possible future

directions.

3.2 Prelude: R-parity violation in the MSSM

In this section we provide a short summary of R-parity violating operators in the MSSM

and their tension with experimental bounds. These operators have also appeared in

earlier F-theory constructions that directly engineer the MSSM [75, 76, 40, 42]. We

review possible Z2 symmetries that can forbid these operators.

At the renormalizable level, the superpotential of the MSSM can be written as

WMSSM =Y u
i,jQuHu + Y d

i,jQdHd + Y e
i,jeLHd + µHuHd

+ βiLiHu + λi,j,keLL+ λ′i,j,kQdL+ λ′′i,j,kudd .

(3.2.1)

The couplings in the second row violate baryon and lepton number conservation and are

severely constrained by experimental bounds. These usually come from proton or lepton

decays mediated by massive superpartners. The strongest bounds are related to products
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of the above couplings and less strong for the single ones. Roughly, they are as follows:

λ′′ < 10−(2−6)
(

m̃

100GeV

)
, |λλ′′| < 10−(3−19)

(
m̃

100GeV

)2
,

λ′ < 0.01
(

m̃

100GeV

)
, |λ′λ′′| < 10−27

(
m̃

100GeV

)2
,

λ < 0.01
(

m̃

100GeV

)
,

(3.2.2)

where m̃ are the masses of the decay mediating superpartners generated upon SUSY

breakdown (see [80, 81] and references therein). These couplings can effectively be for-

bidden by imposing a discrete symmetry on the MSSM which in the simplest case is a Z2.

Differing by the discrete charge assignments of MSSM superfields, the phenomenologically

most relevant cases are matter, lepton and baryon parity, as summarized in Table 3.

GSM Rep Matter
(3,2) 1

6
Q

(3,1)− 2
3

u

(3,1) 1
3

d

(1,2)± 1
2

L,Hd, Hu

(1,1)1 e

Q u d L e Hd Hu

ZM1
2 + - - + - - -

ZM2
2 - - - - - + +
ZL2 + + + - - + +
ZB2 + - - - + - -

Table 3: Summary of gauge quantum numbers of chiral MSSM superfields. The left table
shows the gauged quantum numbers, while the table on the right shows the Z2 charge
assignments for matter parities ZM1

2 , ZM2
2 , lepton parity ZL2 and bayron parity ZB2 .

For each charge assignment we summarize the field theoretically forbidden tree level cou-

plings in Table 4.

Both matter parities can forbid all unwanted baryon and lepton number violating cou-

plings while lepton and baryon parity can only forbid their respective ones.

Two comments concerning the discrete charge assignments are in order. First we note

that the two matter parities are field theoretically equivalent by mixing the U(1)Y charge

27



Coupling ZM1
2 ZM2

2 ZL2 ZB2

Yukawa-
Couplings

QuHu X X X X

QdHd X X X X

eLHd X X X X

µ-term HuHd X X X X

B-& L-
Violation

LHu X X X X

QdL X X X X

eLL X X X X

udd X X X X

Table 4: Summary of allowed and forbidden tree level couplings under different Z2
symmetry charge assignments. While the first four terms are required to be present the
later four should better be forbidden.

with the Z2. Explicitly, we have

ZM1
2 = ZM2

2 + 6U(1)Y mod 2 . (3.2.3)

As all SU(3) triplets have hypercharges that are multiples of 1/3, the above redefinition is

trivial for them. Meanwhile, SU(2) doublets as well as the bifundamental states have hy-

percharge 1/2 or 1/6, which leads to a sign flip upon performing the rotation 3.2.3. Second

we note that matter parity is clearly superior to the other Z2 charge assignments when it

comes to the problematic tree level couplings. However, in SUSY breaking schemes where

the sfermion masses are large, the other charge assignments might still be phenomeno-

logically interesting. In such cases certain individual couplings might still be within their

mild experimental bounds and thus acceptable. Only the products in 3.2.2 with the λ′′

coupling are strongly constrained and those are still forbidden for both parities.

Z2 −G2 :
∑
RG

QZ2(R)C(2)
G (R) = m, m ∈ Z , (3.2.4)
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where G is the non-Abelian gauge group.1

3.3 F-theory construction of 4d MSSM vacua with matter

parity

In this section, we will present the details of an F-theory compactification which realizes

a three-family MSSM vacuum with an additional Z2 symmetry that is identified with the

matter parity ZM2
2 . The necessary ingredients, which we will now discuss in the same

order, are

1. the generic fiber structure that realizes the Abelian part of the gauge symmetry,

2. codimension one singularities (with resolution) corresponding to the non-Abelian

gauge algebra,

3. matter representations associated with codimension two fiber components and G4-

fluxes,

4. specification of the base and fibration and consistent three-family configurations.

By keeping the base generic for the first three points, we will have the capabilities to

analyze a large number of concrete models for the last point.

3.3.1 Toric hypersurface with two bisection classes

With our phenomenological motivations, we seek to realize an F-theory model whose

Abelian gauge sector is U(1) × Z2. As studied in [82], a straightforward fiber type that

does the job is described in terms of one of the 16 reflexive 2D polygons. Labelled as F2

in [82], the generic fiber f of this geometry is a bi-quadric curve, given as the vanishing of
1There are also mixed Abelian discrete symmetries, that are less conclusive due to ambiguities in the

charge normalization [79].
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the polynomial

pF2 = (b1 y2 + b2 s y + b3 s
2)x2 + (b5 y2 + b6 s y + b7 s

2)x t+ (b8 y2 + b9 s y + b10 s
2) t2

(3.3.1)

inside the surface P1 × P1 with homogeneous coordinates ([x : t], [y : s]). By promoting

the coefficients bi to functions over a complex threefold base B, we obtain a genus-one

fibered fourfold Y ⊂ A. Here, A is the ambient space obtained by fibering P1 × P1 over

the same base B. The full configuration is summarized via the commutative diagram:

f P1 × P1 A

Y Bπ

. (3.3.2)

The ambient space fibration is specified by two line bundles with divisor classes S7 and

S9 over the base. They determine the relative “twisting” of the fiber coordinates over the

base via the linear equivalence relations

[x] = [t]−KB + S9 , [y] = [s]−KB + S7 , (3.3.3)

where KB is the anti-canonical class of the base. For Y to be Calabi–Yau, the coefficients

bi of the polynomial 3.3.1 have to be sections with the following divisor classes:

[b1] = 3KB − S7 − S9 , [b2] = 2KB − S9 , [b3] = KB + S7 − S9 ,

[b5] = 2KB − S7 , [b6] = KB , [b7] = S7 ,

[b8] = KB + S9 − S7 , [b9] = S9 , [b10] = S7 + S9 −KB .

(3.3.4)

The genus-one fibration Y has no rational section, but two independent bisection classes

3.3.3, corresponding to the two hyperplanes of the fiber ambient space P1 × P1 (modulo

vertical divisors). They have been shown to give rise to a U(1) × Z2 symmetry in F-
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theory [82, 83]. A multisection of a genus-one fibration is just as good as a section of

an elliptic fibration when it comes to identifying the Kaluza–Klein (KK) U(1) in the

dual M-theory compactification [84]. However, in the absence of a section, new subtleties

arise in the additional possibilities that an n-section can intersect codimension two fiber

components. As has been extensively studied in [85, 86, 87, 88, 89], one can understand

these intersection numbers as the mod n charge of the matter states under a discrete Zn

symmetry, which in the M-theory phase is mixed with the KK-U(1) to give rise to the

massless Abelian vector field dual to the n-section class.

For the model 3.3.1, we pick the divisor class

DZ2 := [x] (3.3.5)

to be the one dual to the massless vector of the KK/Z2 combination. Then the other

bisection class, [y] = [s] mod DB, gives rise to another massless vector that uplifts to a

genuine massless U(1) gauge field in F-theory. To be precise, this U(1) is dual to a divisor

class that is “orthogonal” to DZ2 , which is

DU(1) = [y]− [x] + 1
2(KB + S7 − S9) . (3.3.6)

This modified divisor can be understood as a generalized Shioda map for genus-one fibra-

tions with more than one independent multisection class [83].

As extensively studied in [82], this bisection geometry can be obtained through a complex

structure deformation of an elliptic fibration with Mordell–Weil rank two, which in F-

theory gives rise to a U(1)2 gauge group. The associated conifold transition corresponds

in field theory to the Higgsing of one of these U(1) factors to a Z2 by giving vev to a

singlet of charge (0, 2). Therefore, we see explicitly that the Z2 symmetry we construct

via F-theory has a gauged origin, and hence should have a consistent quantum gravity

embedding.
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3.3.2 Non-Abelian symmetries with matter parity via tops

We include non-Abelian SU(3) × SU(2) gauge symmetries using the methods of tops

[90, 91]. There are four possibilities for each of the SU(3) and SU(2) tops, cf. appendix

In the following, we will focus on a combination of SU(3) top 3 and SU(2) top 1. The toric

description modifies the ambient spaceA to include additional toric divisors {fi}i=0,1,2 and

{ej}j=0,1, which themselves are fibered over codimension one loci {w3} resp. {w2} inside

the base B. Their restriction, or intersection, with the likewise modified hypersurface

Ŷ ≡ Y31 are now the exceptional, or “Cartan” divisors that resolve the SU(3) resp. SU(2)

singularities over respective codimension one loci on B. The P1 fibers of these divisors

intersect in the affine Dynkin diagrams of the corresponding Lie algebra.

Explicitly, the modified hypersurface equation is given by the vanishing of a polynomial

p31, which is a specialization of the polynomial 3.3.1 with coefficients

b1 = d1 e0 f1, b2 = d2 e0 f0 f1, b3 = d3 e0 f
2
0 f1, b5 = d5 f1 f2,

b6 = d6, b7 = d7 f0, b8 = d8 e1 f1 f
2
2 , b9 = d9 e1 f2, b10 = d10 e1 f0 f2 .

(3.3.7)

The functions di are again sections of line bundles over the base, whose divisor classes are

related to those without the top 3.3.4 via

[d1] = [b1]−W2 , [d2] = [b2]−W2 −W3 , [d3] = [b3]−W2 − 2W3 ,

[d5] = [b5] , [d6] = [b6] , [d7] = [b7]−W3 ,

[d8] = [b8] , [d9] = [b9] , [d10] = [b10]−W3 ,

(3.3.8)

where we have denoted the classes of {w2/3} by W2/3. Furthermore, we shall denote

the classes of the exceptional divisors by Fi resp. Ej . Though these are strictly speak-

ing classes on the ambient space A, we will abusively use the same notation for their

restrictions to Y31.

Through the toric construction, we can straightforwardly determine the linear equivalence
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relations (LIN) between the divisors and the Stanley–Reisner ideal (SRI), that is, the set

of divisors whose intersection product is trivial in the Chow ring. For Y31, these are

LIN = {[x] = [t] + E1 + F2 −KB + S9, W2 = E0 + E1 ,

[s] = [y] + F1 + F2 +KB − S7, W3 = f0 + f1 + f2} ,

SRI = {xt, xe1, xf2, ys, yf0, te0, e0f2, tf1, sf1, sf2} .

(3.3.9)

In the presence of codimension one reducible fibers, the divisors dual to the KK/Z2 and

the U(1) vector field needs to be refined, in order for these to be “orthogonal” to each

other and to the Cartan U(1)s of the non-Abelian symmetries. Geometrically, this is

necessary because the bisections will intersect the fibers of the exceptional divisors non-

trivially. For example, while the bisection [x] intersects only the affine node (the fiber

component of E0) of the SU(2), it intersects the SU(3) divisors non-trivially, namely each

of the fibers of F0 and F1 once. Physically, it would mean that the W-bosons of SU(3)

were charged non-trivially under the Z2, which is of course unacceptable. However, much

like in the case of U(1)s, we can add a linear combination of the Cartan divisors to the

(bi-)section to correct the intersection numbers [86, 87, 41, 92]. For the case at hand, it

can be checked that the correct Z2 is given by the divisor

DZ2 = [x] + 1
3(2F1 + F2) . (3.3.10)

Similarly, the modified U(1) generator that is orthogonal to the Cartans as well a the Z2

is

DU(1) = [x]− [y]− 1
2 E1 −

(1
3 F1 + 2

3 F2

)
− 1

3 W3 + 1
2 KB + 1

2 S7 −
1
2 S9 . (3.3.11)

Note that we have also flipped the sign of the bisections compared to 3.3.6, so that it

matches the hypercharge U(1)Y of the MSSM.
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The global gauge group structure

Let us briefly discuss the global group structure of this model. Though our fourfold Y31 is

not elliptically fibered, we can apply the same intersection number argument employed in

[93] to determine the constraints on the charges and non-Abelian representations of matter

states arising from M2-branes wrapping fibral curves Γ. Essentially, one employs the fact

that multisections as integer divisor classes have integer intersection number with any fiber

component. This in turns means that the Abelian charges—given by intersection numbers

of Γ with the divisors 3.3.10 and 3.3.11—differ by an integer from the specific fractional

linear combinations of the non-Abelian weights—given by the fraction linear combination

of exceptional divisors in 3.3.10 and 3.3.11. For the U(1), the fractional contributions

from the exceptional divisors of both SU(3) and SU(2) are exactly those compatible with

the Z6 quotient of the continuous part of the gauge algebra [93], namely charge 1/2 mod Z

for doublets, 2/3 mod Z for triplets, and 1/6 mod Z for bifundamentals.

For the discrete symmetry, note that triplets will generically have charges quantized in

1/3 with respect to the divisor in 3.3.10. Because the generic fiber still has intersection

2 with DZ2 , we can still only interpret the charge under DZ2 modulo 2. Thus, naively,

we would expect that the discrete symmetry is enhanced to a Z6 by the presence of the

non-Abelian symmetries. But not all charges of the Z6 can appear! First, it is clear

that SU(2) matter will only be charged under a Z2 subgroup, because their intersection

numbers with DZ2 are integer. Furthermore, by the analogous argument as in [93], one

can construct an order three central element of SU(3) × Z6 which acts trivially on any

matter states. Essentially, it follows because (DZ2 − 1/3(2F1 + F2)) · Γ = [x] · Γ ∈ Z.

Since Z6 = Z2 × Z3 has a unique order three subgroup, we conclude that the only non-

trivially acting part is the Z2. To infer the charges under it, we can simply multiply all

intersection numbers with DZ2 with three and then take the result modulo 2. In order

to differentiate it more easily from the U(1) charges, we will denote even/odd charges by
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+/−. To summarize, the global gauge group of the F-theory model on Y31 is

SU(3)× SU(2)× U(1)
Z6

× Z2 . (3.3.12)

Note that it was already anticipated before in [85] that, by engineering a non-Abelian

symmetry algebra g inside an n-section fibration, the discrete symmetry can be potentially

enhanced to Zn×r, where r is the order of the center Z(g). In general, Zn×r 6= Zn × Zr

(namely, whenever n and r are not coprime), and the enhancement can be physical.

However, due to the mechanism that leads to such an enhancement—namely, the divisor

associate with the discrete symmetry is shifted by the Cartan divisors—the resulting

global gauge group necessarily has to be non-trivial. For example, there is an SU(2) top

constructed over the F2 polygon that has an enhancement, such that the gauge group is

[SU(2) × Z4]/Z2 (we have omitted the U(1), which itself has a non-trivial gauge group

structure associated with the SU(2), see Table 17). We will leave a detailed derivation

and classification along the lines of [93] for future work.

3.3.3 Matter surfaces, fluxes and the chiral spectrum

To specify the chiral spectrum of the F-theory compactification, we need two geometric

ingredients, namely the surfaces on which the matter states are localized, and the descrip-

tion of the G4-flux in terms of their dual four cycle classes. Based on the techniques first

developed in [43, 37] and further advanced in [39, 40, 41, 42, 46], we perform a completely

base independent analysis of fluxes and chiralities, which then can be straightforwardly

applied to specific fibrations.

Matter surfaces and their homology classes

Through the mapping to its Jacobian [82], we can straightforwardly determine the codi-

mension two loci where the fiber singularities of Y31 enhance. These are of them form
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{wi} ∩ {gR} for some polynomials gR:

g21 = d10d
2
6d8 − d10d5d6d9 − d6d7d8d9 + d5d7d

2
9 + w3 (d2

10d
2
5 − 2d10d5 + d2

7d
2
8) ,

g22 = d1d3d
2
6 − d1d2d6d7 + d2

1d
2
7 + w3 (d2

2d5d7 − d2d3d5d6 − 2d1d3d5d7 + d2
3d

2
5w3) ,

g31 = d1 ,

g32 = d10d6 − d7d9 ,

g33 = d3d
2
6 − d2d6d7 + d1d

2
7 ,

g34 = d2
6d8 − d5d6d9 + d1d

2
9w2 .

(3.3.13)

Furthermore, there are two charged singlets with U(1) charge 1, but differ in their Z2

charge, which are localized over curves given by complicated ideals I+/−.

There is also an uncharged singlet with negative Z2 parity [82]. These matter states have

the same quantum numbers as right-handed neutrinos. Correspondingly, they interact

with Higgs and lepton doublets via perturbatively realized Yukawa couplings in the F-

theory geometry. The presence of such massless states in the effective field theory not

only depends on the flux, but also on the complex structure moduli [45, 46]. However,

because it is a real representation, there cannot be any net chirality associated with these

matter states. Geometrically, this is reflected in the fact that the components of the

I2 fiber associated with this matter are exchanged via monodromy. Consistently, the

transversality conditions 3.3.15 imply that the intersection product between the flux and

this singlet’s matter surface is 0. Hence, we will disregard this representation for the rest

of this paper, since we are mainly interested in the chiral spectrum.

Over the codimension two loci CR = {wi} ∩ {gR}, the reducible fibers contain localized

P1 components, giving rise to matter states in the representation R in F-theory. By

fibering one such P1 over the curve on the base, one obtains a four-cycle γR, a so-called

matter surface associated with a weight w of a representation R (or its conjugate). To
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determine the homology classes of these matter surfaces, we use prime ideals techniques

and algorithms detailed in [42], utilizing the computer algebra program Singular [94].

The specific states, whose matter surfaces we determine this way, are listed in Table 5.

Their corresponding matter surface classes are collected in the appendix, cf. Table 12.

rep U(1)× Z2 Cartan charges parent exceptional base locus ZM2
2 Rep.

21

(1
2 ,−

)
(0, 0 | 1) E0 {w2} ∩ {g21} L

22

(1
2 ,+

)
(0, 0 | − 1) E1 {w2} ∩ {g22} Higgs

31

(
−2

3 ,−
)

(0, 1 | 0) F0 {w3} ∩ {g31} d̄

32

(2
3 ,+

)
(−1, 1 | 0) F1 {w2} ∩ {g32} exotic

33

(1
3 ,−

)
(1,−1 | 0) F2 {w3} ∩ {g33} ū

34

(1
3 ,+

)
(0, 1 | 0) F0 {w3} ∩ {g34} exotic

(3,2)
(
−1

6 ,−
)

(0, 1 | − 1) E1, F0 {w2} ∩ {w3} Q

11 (1,−) (0, 0 | 0) n.a. V (I(1,−)) E

12 (−1,+) (0, 0 | 0) n.a. V (I(1,+)) exotic

13 (0,−) (0, 0 | 0) n.a. V (I(0,−)) exotic (νR)

Table 5: States and charges associated with the matter surfaces. The polynomials gi
defining the matter curves in the base are in equation 3.3.13. We have included the
identification with the MSSM spectrum, where the Z2 is identified with matter parity.

Note that the only bifundamental matter states we have in this model have odd Z2 charge.

Therefore, this toric model Y31 only allows for an identification of the geometrically real-

ized Z2 with the second matter parity ZM2
2 listed in Table 3. We will see in the next section

other geometries whose corresponding F-theory model may realize the other parities.
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Vertical fluxes from matter surfaces

We now turn to the computation of G4-fluxes. In practice, these are expressed through

their Poincaré-dual four cycle classes (also denoted by G4), such that the integral giving

the chiral index can also be computed via intersection product:

χ(R) =
∫
γR

G4 = G4 · [γR] (3.3.14)

Not all four cycles give rise to consistent fluxes. As is well known by now, the fluxes

have to satisfy the so-called transversality conditions [95] in order to uplift from M- to

F-theory. These conditions have been generalized in [41] to genus-one fibrations:

G4 ·D(1)
B ·D

(2)
B = 0 , G4 ·DB · [x] = 0 (3.3.15)

for some vertical divisors D(i)
B . In addition, the flux must not break the non-Abelian

symmetries, which requires

G4 · Ex ·DB = 0 , (3.3.16)

where Ex ∈ {E1, F1, F2} are the Cartan divisors.

For a fibration over a base threefold B, we can use the quotient ring description to

determine a basis of vertical fluxes [42]. For generic choices of fibration and base, i.e., such

that no further singularity enhancements are induced whose resolution would introduce

further divisors, the space of vertical fluxes is spanned by U(1)-fluxes of the form DU(1) ·F ,

where F ∈ π∗(H1,1(B)), and five non-U(1)-fluxes. In this paper, we follow the method

of [46] and express the non-U(1)-fluxes through so-called matter surfaces fluxes. At this

point, there is no technical advantage for this procedure, and we could also use the flux

basis provided by the algorithm of [42] to compute the chiralities. However, hoping that

in future works we will have the computational power to also determine the vector-like
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spectrum with the methods of [46], we will collect the necessary input in the Appendix

A.2. For now, we content ourselves with a basis for vertical fluxes in terms of matter

surfaces.

As the name suggests, the matter surface fluxes are constructed using the matter surfaces

[SR]. By construction, these surfaces are orthogonal to any curve in the base:

[SR] ·D(1)
B ·D

(2)
B = 0 , (3.3.17)

thus automatically satisfying the first of the transversality conditions 3.3.15. To satisfy

the other as well as the gauge symmetry condition 3.3.16, we can add correction terms of

the form Exi · DB + D
(a)
B · D

(b)
B to [SR]. Note that these correction terms will not spoil

the condition 3.3.17. Denoting such corrected matter surfaces by A(R), we can choose

a basis of five of them such that together with the U(1)-fluxes, they span the full space

of vertical fluxes. Here, we will use the fluxes associated with 22,32,34, (3,2),12, which

are:

A(22) = [S22 ] + E1 · (W2 +W3 − 3KB + S9) ,

A(32) = [S32 ] + 1
3 (−F1 + F2) · (S7 + S9 −W3)− 1

3 W3 · [g32 ] ,

A(34) = [S34
] + 1

3 (F1 + 2F2) · (3KB − S7 + S9)− 2
3 W3 · [g34 ] ,

A((3,2)) = [S(3,2)] + 1
3 (F1 + 2F2) ·W2 −

1
2 E1 ·W3 −

1
6 W2 ·W3 ,

A(12) = [S12
] .

(3.3.18)

Including the U(1)-flux, we parametrize the most generic vertical G4 in this model as

G4 = a1A(22) + a2A(32) + a3A(34) + a4A((3,2)) + a5A(12) +DU(1) ∧ F . (3.3.19)

The chiral indices of matter representations can be straightforwardly computed in the

quotient ring description of the vertical cohomology ring. Instead, one can also use the
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more geometric picture laid out in [45, 46] and relate the chiralities to the homology classes

of the Yukawa points. Their rather uninspiring explicit expressions are presented in the

appendix, Formula A.2.3. As a consistency check, it is straightforward to verify that all

4D continuous gauge anomalies induced by the chiral spectrum are indeed canceled. It

would be interesting to reproduce this result also in the weakly coupled type IIB limit of

this model, along the lines of [96].

3.3.4 Concrete three family models

We are now in a position to scan for configurations that admit a three family flux solution.

Recall that because the bifundamental states in this geometry have odd Z2 charge, the

only phenomenological parity extension that is compatible is the matter parity ZM2
2 .

Then, consistency with the observed spectrum (cf. table 3) requires to have the following

chiral indices of the matter representations:

R 21 22 31 32 33 34 (3,2) 1(1,+) 1(1,−)

χ −3 0 3 0 3 0 −3 0 3

(3.3.20)

In addition to these chiral indices, we have to ensure the vanishing of the flux-induced

D-term of the U(1),

ξ ∼ G4 ∧DU(1) ∧ JB , (3.3.21)

where JB is the Kähler form of the base. Note that this expression can be easily computed

when we express G4 in terms of the matter surface fluxes 3.3.18, because the U(1) gen-

erator DU(1) is orthogonal to all the correction terms. Hence, the D-term is just a linear

combination of the matter curves times the base’s Kähler form, where the coefficients are
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the U(1) charges. For the explicit flux parametrization 3.3.19, this yields

ξ ∼ JB ·

a1
2 C22 + 2 a2

3 C32 + a3
3 C32 −

a4
6 W2W3 − a5C12 +

(1
2 W2 + 2

3 W3 − 2KB

)
︸ ︷︷ ︸

=π∗(DU(1)·DU(1))

F

 .

(3.3.22)

To find explicit models with this chiral spectrum, we need to specify the base B, the

fibration structure in terms of the classes S7/9, the choices for the non-Abelian divisors

W2/3, and the explicit flux which induces the correct chiralities. To make our lives as easy

as possible, we will restrict ourselves to the simplest possible base, B = P3. As we shall

see, this choice admits multiple solution and is hence by no means too restrictive.

Realistic chiral models over the base P3

For this simple choice of the base, the only independent divisor class is the hyperplane

class H. Parametrizing the divisors in terms of H,

KB = 4H , W2 = n2H , W3 = n3H , S7 = s7H , S9 = s9H. (3.3.23)

the integers ni, sj have to be such that the classes 3.3.8 of the coefficients di as well as W2,3

are non-negative. On this specific base, the generic vertical flux 3.3.19 is parametrized by

the five coefficients ai of the matter surfaces fluxes and the U(1)-flux DU(1) ∧ (λH). We

collect these numbers in the flux vector F = (a1, a2, a3, a4, a5, λ). We can now scan over

all possible fibrations over B = P3 for flux solutions that generate the spectrum 3.3.20 as

well as a vanishing D-term 3.3.22 (for B = P3, the Kähler form is simply JB ∼ H). In

Table 6, we list the five configurations satisfying these requirements.

A few comments about these results are in order. First, we emphasize that the search

procedure is based on the base independent flux 3.3.19 and chirality computation. This

way, we do not have to first construct the full fibration and then construct the fluxes,

which, as demonstrated in [42], can be very inefficient (largely due to the technical issues
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(n2, n3, s7, s9) flux F = (a1, a2, a3, a4, a4, λ) nD3

ZM2
2

(1, 3, 7, 3) (0, 7
4 , −3

4 , −2, 3
4 , −3

2) 33

(3, 1, 5, 1) (0, − 5
12 , −

1
12 , −

2
3 ,

1
12 , −

1
2) 43

(1, 2, 5, 3) ( 7
48 ,

1
6 , − 1

48 , −
5
6 ,

1
48 ,

5
24) 38

(2, 1, 5, 2) ( 1
12 ,

7
24 , − 1

48 , −
5
6 ,

1
48 ,

5
24) 44

(3, 1, 5, 2) ( 7
96 ,

7
16 , − 1

32 , −
5
6 ,

1
32 ,

5
16) 39

Table 6: The summary of geometric and flux data that lead to three chiral generations
in the ZM2

2 matter parity assignment. The first two configurations each contain a re-
dundant flux parameter; we chose to eliminate this redundancy by setting a1 = 0. For
completeness, we have also included the D3-tadpole.

of triangulating the polytope of the toric ambient space). In particular, as our results in

Table 6 show, the gauge divisors W2,3 are never both toric (i.e., have the divisor class H)

in fibrations with three generation flux configurations. Realizing such fibrations explicitly

would of course be a good consistency check, but very ineffective for the purpose of scan-

ning a large number of different models. We content ourselves with the verification that

these choices of classes generically do not induce any additional non-abelian gauge divisors

or any factorization of the generically present matter curves. Second, we point out that

first two solutions in Table 6 are at the boundary of the allowed region for (n2, n3, s7, s9),

i.e., at these points, some of the coefficients di become constant. Concretely, in the two

cases here, it is d8. When this happens, also the chosen flux basis 3.3.19 becomes linearly

dependent, meaning that one parameter becomes redundant.2 For concreteness, we set

a1 = 0 in these cases. Third, note that in all these cases, the D3-tadpole (see below) is

positive, which is required for a stable vacuum. Moreover, the fact that all of them are

integer is a necessary condition that fluxes are properly quantized. In the following, we

will provide further arguments for the correct flux quantization in our realizations.
2In some cases it can happen, that some constant di lead to an enhanced Mordell–Weil group, induced

by a multi-section that can become rational. We checked that this jump does not happen in the [d8] = 0
case.
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3.3.5 Flux quantization and discrete anomalies

The condition for flux quantizaion reads [97]:

G4 + 1
2c2(Y ) ∈ H4(Z, Y ) , (3.3.24)

where c2(Y ) is the second Chern class of the fourfold. In practice, verifying this condition

explicitly is extremely challenging, and we will not attempt it here. However, we will

perform several non-trivial sanity checks, which in particular involves the relationship of

the quantization condition to the gauge anomalies of the Z2.

D3-tadpole and intersection numbers

One important quantity which has to be integer for a properly quantized flux is the

D3-tadpole [98],

n3 = χ

24 −
1
2

∫
Y
G4 ∧G4 . (3.3.25)

Here, χ is the Euler characteristic of the fourfold Y , which can be computed as the

integral of the fourth Chern class of Y over Y . For toric fibrations, one can compute the

Chern classes via adjunction for any base B (see [82, 41, 42] for examples). As we already

mentioned above, it turns out that the tadpole is always integer for all three generation

flux configurations (cf. table 6).

Furthermore, given the integrality condition 3.3.24, we necessarily need to have

(
G4 + 1

2c2(Y )
)
·D1 ·D2 ∈ Z (3.3.26)

for any two integer divisor classes D1, D2. In practice, we test this condition with Di being

the restrictions of one of the toric divisors from the ambient space. On the hypersurface,

these give rise to the Cartan divisors and the four bisections and are thus manifestly integer

classes. In the above models with three family spectra, all these intersection numbers are
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integer, thus further supporting the claim that the flux is properly quantized.

Geometric incarnation of discrete anomaly cancellation

One particularly fascinating aspect of the quantization condition is its relationship to

the cancellation of discrete anomalies 3.2.4. Recall that for the case at hand, we are only

interested in the Z2−G2 anomaly. For G = SU(2), it receives contributions from doublets

which have odd Z2 charge. Within the spectrum (cf. Table 5) of F-theory on Y31, these

are the bifundamentals (3,2) and the doublets 22. Therefore, the geometric version of

the Z2 − SU(2)2 anomaly cancellation condition is

AZ2−SU(2)2 = 3 · χ((3,2)) + χ(22) = G4 ·
(
3 [S(3,2)] + [S22 ]

)
∈ 2Z . (3.3.27)

Inserting the matter surface classes and using the transversality 3.3.15 and gauge sym-

metry 3.3.16 constraints of G4, this expression simplifies to

AZ2−SU(2)2 = G4 · (2 [y] [e0]− 4E1 F1) . (3.3.28)

Thus, the anomaly is canceled if and only if

AZ2−SU(2)2 ∈ 2Z ⇐⇒ 1
2AZ2−SU(2)2 = G4 · ([y] [e0]− 2E1 F1) ∈ Z . (3.3.29)

While this expression depends on the flux and has a priori no reason to be integer, we

note that the four cycle class in parenthesis is manifestly integer. Thus, as long as the

flux is properly quantized 3.3.24, one necessarily has to have

(
G4 + 1

2c2(Y31)
)
· ([y] [e0]− 2E1 F1) ∈ Z . (3.3.30)

Hence, to guarantee 3.3.29, it suffices to show that

1
2c2(Y31) · ([y] [e0]− 2E1 F1) ∈ Z . (3.3.31)
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The same method has been used in [88] to proof that an F-theory model with SU(5)×Z2

has no Z2 anomaly. There, to show that the equivalent version of 3.3.31 held for any

choice of base and fibration, it was crucial to know how the fluxes and chiralities matched

across the conifold transition which unhiggsed the Z2 into a U(1). Doing the same for

our model here is beyond the scope of this paper. However, we can simply evalute 3.3.31

for every explicit choices of base and fibration structure, in particular on which we found

three generation configurations. And indeed, it turns out that in all fibrations over P3,

the Z2 − SU(2)2 anomaly 3.3.29 is canceled due to 3.3.31.

Likewise, the Z2 − SU(3)2 anomaly is

AZ2−SU(3)2 = χ(31) + χ(33) = G4 · ([S31 ] + [S33 ]) = G4 · (2F1 F2)
!
∈ 2Z . (3.3.32)

Proceeding analogously as above, this condition is equivalent to

1
2c2(Y31) · F1 F2 ∈ Z , (3.3.33)

which we can explicitly verify to be true in all cases with B = P3.

3.4 Other Z2 symmetries assignments

In this section we want to consider other Z2 charge assignments that can be of phe-

nomenological relevance. These include the other matter parity assignment ZM1
2 as well

as lepton and baryon parity, as discussed in Table 3. In order to realize them, we consider

a different top combination, but perform exactly the same steps that were presented in

the previous section. Hence, we will be brief about the details in this section.

3.4.1 Summary of geometric data

The top combination that we are considering is SU(2) top 1 and SU(3) top 2, as given

in Appendix A.3. The toric data of the model is summarized in Table 7.
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top vertices SU(2) : e0 : (0, 0, 1) , e1 : (1, 0, 1) ,
SU(3) : f0 : (0, 0,−1) , f1 : (0, 1,−1) , f2 : (−1, 1,−1)

b1 = e0f1f
2
2d1 b3 = e0f0f2d3 b6 = d6 b8 = e1f1d8 b10 = e1f

2
0 f1d10

b2 = e0f2d2 b5 = f1f2d5 b7 = f0d7 b9 = e1f0f1d9

SRI: {xt, xe1, xf1, ys, yf0, te0, tf2, sf2, e1f2, sf1} .
DU(1) = [x]− [y]− 1

2E1 − (1
3F1 + 2

3F2)− 1
3W3 + 1

2KB + 1
2S7 − 1

2S9 ,

DZ2 = x+ 2
3(F1 + 2F2) .

[d1] = 3KB − S7 − S9 −W2 [d5] = 2KB − S7 [d8] = KB + S9 − S7

[d2] = 2KB − S9 −W2 [d6] = KB [d9] = S9 −W3

[d3] = KB + S7 − S9 −W3 −W2 [d7] = S7 −W3 [d10] = S9 + S7 −KB − 2W3

Table 7: Geometric data for the hypersurface specialization of the second top.

The matter loci can easily be determined by the information of the two tops given in

Appendix A.3 including the additional bifundamental representation at W2 = W3 = 0 as

summarized in Table 8. The spectrum is very similar as before but includes a Z2-even

charged bifundamental.

This allows for a straightforward identification of the geometric Z2 with the other three

parities listed in Table 3.

The matter homology classes of the curves in terms of ambient divisors is given in Table 13

of Appendix A.1 which can be used to obtain the five independent matter surface fluxes:

A(22) = [S22 ]− 1
2E1 · (−2W2 −W3 + 6KB − 2S9) ,

A(32) = [S32 ]− 1
3(2F1 + F2) · (2KB −W2 −W3 + S7 − S9) + 1

3C32 ,

A(34) = [S34 ] + 1
3(2F1 + F2) · (−W2 + 5KB − S7 − S9)− 1

3C34 ,

A((3,2) = [S(3,2)] + 1
3(−F1 + F2) ·W2 + 1

2E1 ·W3 −
1
3W2 ·W3 ,

A(12) = [S12
] ,

(3.4.1)

where CR denotes the classes of the associated matter curves. These admit the following
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Label GSM × Z2 Rep. ZM1
2 ZL2 ZB2

21 (1,2)(− 1
2 ,−) Hd, Hu L L

22 (1,2)(− 1
2 ,+) L Hd, Hu −

31 (3,1)(− 2
3 ,−) u − u

32 (3,1)(− 2
3 ,+) − u −

33 (3,1)(− 1
3 ,−) d − d

34 (3,1)(− 1
3 ,+) − d −

(3,2) (3,2)(− 1
6 ,+) Q Q Q

11 (1,1)(1,−) e e −

12 (1,1)(−1,+) − − e

Table 8: Matter curves and their charges as given for the second top combination. MSSM
field identifications under various Z2 symmetries are given in the last three columns. For
each identification we assign the chirality three to MSSM fields whereas states marked
with a “−” must be non-chiral.

algebraic equivalence relations between the above flux basis and other vertical 4-cycles:

A(22)−A((3,2))− 2DU(1) ·W2 +A(21) = 0 ,

A((3,2))−A(32) +DU(1) ·W3 −A(31) = 0 ,

A(34) +A((3,2))−DU(1) ·W3 +A(33) = 0 ,

A((3,2)) +A(12) +DU(1) · (−6KB + 2W2 + 3W3)−A(11) = 0 .

(3.4.2)

The G4-flux in the above basis is then given by

G4 = a1A(22) + a2A(32) + a3A(34) + a4A((3,2)) + a5A(12) +DU(1) ∧ F . (3.4.3)
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3.4.2 Three family searches and discrete anomalies

For concrete three family realizations, we again pick the base to be P3. In this model, we

now have the possibility to assign different physical interpretations to the Z2. In each fibra-

tion parametrized by (n2, n3, s7, s9), we search for flux configurations (a1, a2, a3, a4, a5, λ)

compatible with one of the three possible identifications listed in Table 8. In all of them,

we again impose the vanishing of the fluxed induced D-term of the U(1). Those solutions

that also have a positive integer D3-tadpole are listed in Table 9.

(n2, n3, s7, s9) (a1, a2, a3, a4, a5, λ) nD3

ZM1
2

(1,3,7,4) (0, −7
4 ,

3
4 , 2, 3

4 , −3
2) 33

(3,1,5,4) (0, − 5
12 ,

1
12 ,

2
3 ,

1
12 , −1

2) 43
(1,2,5,4) ( 7

48 , −1
6 ,

1
48 , −11

16 ,
1
48 , − 1

12) 38
(2,1,5,4) ( 1

12 , − 7
24 ,

1
48 ,

3
4 ,

1
48 , −1

8) 44
(3,1,5,3) ( 7

96 , − 7
16 ,

1
32 , −73

96 ,
1
32 , −1

8) 39

ZL2

(1,2,4,4) (0, 5
16 , − 5

96 ,
15
32 ,

1
6 , −73

48) 43
(1,2,5,3) (0, 1

12 , − 1
12 ,

1
2 , 0, 0) 42

(1,2,5,5) (0, 1
4 , −1

4 ,
1
2 , 0, 0) 40

(3,2,5,3) (0, 1
4 , −1

4 ,
1
6 , 0, 0) 32

(1,2,6,4) ( 41
384 ,

7
32 , − 61

384 ,
175
384 , − 23

384 ,
23
96) 39

ZB2
(3,2,5,4) (0, 0, −1

3 ,
1
3 , −1

6 ,
5
3) 34

(1,2,5,4) (− 1
12 , −1

3 , − 1
12 ,

3
4 , − 1

12 ,
4
3) 38

Table 9: The summary of geometric and flux quanta that lead the three chiral generations
for the three discrete symmetry assignments of the second top combination.

First we note that the solutions we obtain for the second matter parity assignment have

a very similar structure compared to the models we obtained in the previous section

(cf. Table 6), including the same number of D3-branes. This points towards an equivalence

between the two fibrations defined via the two different top combinations.3 A more general

analysis of this equivalence including the necessary redefinitions of the abelian symmetry
3The classes of the sections of the two tops can be related by a change d1 ↔ d8, d9 ↔ d2, d10 ↔ d3.
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generators is left for future research. Secondly it is important to emphasize that only the

flux configurations for matter parity fulfill the G4-flux integrality condition

(G4 + 1
2c2(Y )) ·D1 ·D2 ∈ Z , (3.4.4)

whereas the lepton and baryon parity assignments do not. Again, we can nicely relate

this rather obscure geometric property directly to the cancellation of Z2 anomalies.

Namely, these are

AZ2−SU(2)2 =χ(21) = G4 · ([S21 ]) = −2 [y]E0 ∈ 2Z

AZ2−SU(3)2 =χ(31) + χ(33) = G4 · (−[S31
] + [S33 ]) = 2F1 F2 ∈ 2Z .

(3.4.5)

Like in the previous section, the quantization condition translates these conditions into a

question about integrality of the intersection numbers

1
2c2(Y32) ·

 [y]E0

F1 F2

, (3.4.6)

which both turn out to be indeed integral for all the fibrations we scanned over. However,

we also know that only the matter parity ZM1
2 assignment of the chiralities is anomaly

free, whereas the lepton and baryon parity assignments are not with the spectrum in 8.

Since the flux configurations are chosen to reproduce these chiral spectra, we arrive at

the same conclusion—but based on field theoretic anomaly considerations—that the flux

solutions for these two assignments in Table 9 cannot be properly quantized.

3.5 Summary and Conclusion

In this chapter we have engineered globally consistent four dimensional MSSM-like parti-

cle physics models with three chiral generations that admit Z2 quantum numbers under

the matter parity extension of the Standard Model gauge group. Our compactifiations

are genus-one fibered fourfolds with G4-flux over a simple P3 base space that pass all
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necessary consistency conditions: The G4-flux is properly quantized, and the D3-tadpole

is canceled with a positive and integral number of D3-branes. For this explicit construc-

tion we employed toric geometry to engineer the resolved fourfold which allows the direct

computation of all (discrete) gauged quantum numbers. In addition, the fact that the

internal space is smooth allows us to easily handle the gauge background, giving us the

power to scan systematically for configurations leading to three chiral generations. These

constructions are flexible enough to also allow, at least in principle, for other Z2 symme-

tries, such as lepton and baryon parity, by choosing different flux configurations. These

models however suffer from non-properly quantized G4-fluxes, even though they give three

chiral families and a positive integer number of D3-branes. We have shown that this is

not just a coincidence, but actually intimately related to the fact that lepton and baryon

parities are not free of discrete anomalies with just the MSSM spectrum.

However several interesting questions remain. First it would be exciting to investigate the

interplay between fluxes and discrete anomalies further. For example, an analysis similar

to [87, 41] of the conifold transition that unhiggses the Z2 into a U(1) could allow us to

proof the cancellation of discrete anomalies for generic fibrations. Moreover we have left

out possible Abelian-Z2 anomalies as they are hard to investigate in the field theory due

to an ambiguous U(1) charge normalization [79]. However, since in F-theory there is a

natural charge quantization inherited from the Mordell–Weil lattice [93], one might hope

that a more geometric treatment of this issue is possible. Further important steps towards

more realistic phenomenology is to understand the full vector-like sector and to decouple

possible (vector-like) exotics while keeping one pair of Higgs doublets light. This would

also allow us to determine the presence of right-handed neutrinos, whose representation

is, at least in principle, realized explicitly in the geometry. Due to recent progress [45, 46]

this goal seems to be in reach. However, applying the methods presented there to a

complex configuration of matter curves, such as we have in our models, are not feasible

with the given algorithms and computing power today. But even without exotics, this
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model might still suffer from higher dimensional operators in the effective action such as

W 3 κ1QQQL+ κ2uudE , (3.5.1)

whose coefficients are strongly constrained by proton decay but can not be forbidden with

matter parity alone. Hence one might want to construct higher order discrete symmetries,

ideally the Z6 proton hexality [99] which forbids also other dangerous higher dimensional

operators, and is anomaly free. The classification or construction of higher order (possibly

non-Abelian [100, 101, 102]) discrete symmetries base-independently beyond Z4 [103, 104]

are unknown yet (see, however, [105] for some recent examples over specific bases) and,

hence, a topic of great interest. Once such a classification is available, we hope that a

generalization of our work can realize the chiral MSSM with such a discrete symmetry

extension.
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CHAPTER 4: A Quadrillion Standard Models from F-theory

This chapter is based on the paper [32]. In this chapter we presentO(1015) string compact-

ifications with the exact chiral spectrum of the Standard Model of particle physics. This

ensemble of globally consistent F-theory compactifications automatically realizes gauge

coupling unification. Utilizing the power of algebraic geometry, all global consistency

conditions can be reduced to a single criterion on the base of the underlying elliptically

fibered Calabi–Yau fourfolds. For toric bases, this criterion only depends on an associ-

ated polytope and is satisfied for at least O(1015) bases, each of which defines a distinct

compactification.

4.1 MSSM model buildings in F-theory constructions

As a theory of quantum gravity that naturally gives rise to rich gauge sectors at low

energies, string theory is a leading candidate for a unified theory. Achieving unification is

an ambitious goal that requires accounting for all aspects of our physical world, which in-

cludes not only a rich cosmological history, but also the detailed structure of the Standard

Model of particle physics.

In this paper we present an explicit construction that guarantees the existence of O(1015)

fully consistent string compactifications which realize the exact chiral particle spectrum of

the minimally supersymmetric Standard Model (MSSM). This construction is performed

in the framework of F-theory [27], a strongly coupled generalization of type IIB superstring

theory. It captures the non-perturbative back-reactions of 7-branes onto the compactifi-

cation space B3 in terms of an elliptically fibered Calabi–Yau fourfold π : Y4 → B3 over it.

Gauge symmetries, charged matter, and Yukawa couplings are then encoded beautifully

by Y4’s singularity structures in codimensions one, two, and three, respectively.1

In the present work, we consider a class of elliptically fibered Calabi–Yau fourfolds giving

rise to precisely the three-generation MSSM spectrum provided certain geometric condi-
1We refer the interested reader to [26] and references therein for recent reviews on F-theory.
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tions on the base of the fibration are satisfied. We perform a concrete analysis, finding

O(1015) such bases. All these models come equipped with moduli-dependent quark and

lepton Yukawa couplings, as well as gauge coupling unification at the compactification

scale.

The existence of a very large number of Standard Model realizations in string theory could

perhaps be anticipated within the set of an even larger number of string compactifica-

tions (see, e.g., [106]) that form the so-called string landscape. Indeed, though Standard

Model realizations within the landscape could potentially be scarce [107], recent works

hint towards an astronomical number of them [108]. Our construction explicitly demon-

strates this possibility, increasing the number of concretely known, global Standard Model

compactifications in string theory by about ten orders of magnitude.

There are also explicit constructions of the Standard Model in other corners of string

theory. Some of the early examples of globally consistent intersecting brane models [23] in

type II compactifications (see also [24] and references therein) were strongly constrained

by global consistency conditions such as tadpole cancellation. In the heterotic string,

the typical difficulties of constructions like [109, 110] arise from having a stable hidden

bundle and the existence of Yukawa couplings. These issues are solved elegantly in F-

theory through the geometrization of non-perturbative stringy effects: (almost all2) global

conditions analogous to tadpole cancellation or bundle stability are automatically taken

care of by having a compact, elliptic Calabi–Yau fourfold Y4, and the presence or absence

of Yukawa couplings can be easily read off from codimension three singularities of Y4.

Despite these advantages, only a handful [40, 44] of F-theory compactifications that realize

the exact chiral spectrum of the MSSM are currently known, due to focusing on a very

simple base, B3 = P3. This limitation will be avoided in the current work by instead

studying smooth toric varieties, which provide a much larger class [30] of geometries. To
2In F-theory, D3-tadpole cancellation requires extra care, and will be a major theme in our construc-

tions.
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take advantage of this large ensemble, we first construct a class of elliptic fibrations (based

on the class PF11 in [82]) that can be consistently fibered over all such toric threefolds.

Every such fibration realizes the precise Standard Model gauge group [SU(3)× SU(2)×

U(1)]/Z6 as well as its matter representations and Yukawa couplings [82, 40, 93]. More-

over, all models exhibit gauge coupling unification at the compactification scale, compat-

ible with the existence of a complex structure deformation to a geometry realizing the

Pati–Salam model with unified gauge coupling [82, 40].

Furthermore, for each compatible B3 there exists a G4-flux that induces three families

of chiral fermions. These models have a particularly pleasant feature: all global consis-

tency conditions on the flux (including quantization and D3-tadpole cancellation) can be

reduced to a single criterion on the intersection number K3
B of the anti-canonical class

KB of the base B3. For toric threefolds which have a description in terms of a reflexive

polytope ∆, K3
B depends only on the point configuration of ∆ and not its triangulation.

On the other hand, for a single polytope there can be multiple different toric threefolds

associated with the different fine regular star triangulations (FRSTs) of ∆, the number of

which grows exponentially with the number of lattice points in the polytope [30]. Putting

together these different components, we find that the number N toric
SM of globally consistent

three-family Standard Models in our construction is

7.6× 1013 . N toric
SM . 1.6× 1016. (4.1.1)

We emphasize that this number is construction dependent; F-theory could realize more

Standard Models.

The detailed derivation of this count first requires the construction in section 4.2 of a

class of elliptic fibrations with a flux inducing three chiral families. All flux consistency

conditions reduce to a single criterion on the base B3. To count how many B3 satisfy

this criterion, we discuss the methods to construct FRSTs of 3D polytopes in section
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4.3, which ultimately lead us to O(1015) possibilities. We close in section 4.4 with some

geometric and physical comments, as well as future directions.

4.2 Universally Consistent Fibrations with Three Families

The class of elliptic fibrations we are interested is based on an elliptic curve that is

a specialized cubic inside P2 with homogeneous coordinates [u : v : w], given by the

vanishing of the polynomial

P := s1u
3 + s2u

2v + s3uv
2 + s5u

2w + s6uvw + s9vw
2. (4.2.1)

By promoting the coefficients si to rational functions over a Kähler threefold B3, one

obtains a singular, elliptically fibered fourfold π : Y (s)
4 → B3. For Y (s)

4 to be Calabi–Yau,

the functions si have to be holomorphic sections of line bundles on B3 with first Chern

classes [si] ∈ H1,1(B3,Z) given by [82, 40]:

[s1] = 3KB − S7 − S9 , [s2] = 2KB − S9 , [s6] = KB ,

[s3] = KB + S7 − S9 , [s5] = 2KB − S7 , [s9] = S9 ,

(4.2.2)

where KB ≡ c1(B3) is the anti-canonical class of B3. The classes S7,9 ∈ H1,1(B3,Z)

parametrize different fibrations over the same base, on which {si = 0} define effective

divisors.

When all si are generic, (that is, irreducible and si 6= sj for i 6= j), F-theory compactified

on Y
(s)

4 has the gauge symmetry [SU(3) × SU(2) × U(1)]/Z6 [82, 93]. The global gauge

group structure is reflected in the precise agreement between the geometrically realized

matter representations and those of the Standard Model:

(3,2) 1
6
, (1,2)− 1

2
, (3,1)− 2

3
, (3,1) 1

3
, (1,1)1 . (4.2.3)

These data can be extracted via the M-/F-theory duality from an explicit resolution Y4
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of Y (s)
4 , which preserves the Calabi–Yau structure.

A chiral spectrum in F-theory requires a non-zero flux G4 ∈ H2,2(Y4), which must also

be specified. For the relevant subspace of so-called primary vertical G4-fluxes, there is by

now a large arsenal of computational methods [41, 42] (see also [39, 40, 96]) that allows

us to determine base-independently the most general flux on Y4.

For physical consistency, this G4-flux has to satisfy certain conditions. The first condition

is a proper quantization [95, 111]:

G4 + 1
2 c2(Y4) ∈ H2,2(Y4,Z) , (4.2.4)

where c2(Y4) is the second Chern class of Y4. Heuristically, this condition ensures that

the notion of fermions (that requires a flux-dependent spin structure on subspaces of Y4)

is well-defined. Since explicitly verifying this condition for concrete geometries is difficult,

we will content ourselves with the usual necessary consistency checks [112, 39, 40, 42, 44].

The second consistency condition is a D3-tadpole satisfying [98],

nD3 = χ(Y4)
24 − 1

2

∫
Y4
G4 ∧G4

!
∈ Z≥0 . (4.2.5)

While integrality follows as a consequence of the quantization condition 3.3.24, positivity

aids in ensuring the stability of the compactification.

We must also impose phenomenological constraints on the flux. A massless electroweak

hypercharge U(1)Y is guaranteed if the D-terms vanish [113, 114]:

∀η ∈ H1,1(B3) :
∫
Y4
G4 ∧ σ ∧ π∗η

!= 0. (4.2.6)

Here, σ is the (1, 1)-form Poincaré-dual to the so-called Shioda-divisor associated with
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the U(1) [115]. A three-family chiral Standard Model requires that [59],

χ(R) =
∫
γR

G4
!= 3 , (4.2.7)

for all representations R in 4.2.3. The geometric data c2(Y4), χ(Y4), and the matter

surfaces γR were computed in [82, 40]. In the supplemental material, we provide the

explicit expression of the generic vertical flux in the resolution Y4 presented in [82], and

explain in detail how the above conditions can be checked using well-studied topological

methods.

We now present our main result, on how these consistency conditions can be satisfied

for a large ensemble of explicit geometries. For that, we first consider the generic flux

configuration on (smooth) fibrations Y4 with S7,9 = KB, which simplifies the expressions

for the topological quantities 4.2.5–4.2.7. In fact, one can show that all consistency

conditions are reduced to a single criterion on B3 from the D3-tadpole:

nD3 = 12 + 5
8 K

3
B −

45
2K3

B

!
∈ Z≥0 , (4.2.8)

where K3
B denotes the triple self-intersection number of the anti-canonical class KB of

the base. This dramatic simplification only requires K3
B of appropriate value and a base

that allows irreducible and distinct si, all of which are sections of the anti-canonical class.

In summary, we have constructed a class of elliptically fibered Calabi–Yau fourfolds which

gives rise in F-theory to the Standard Model gauge group and matter representations

with three chiral generations. The only consistency requirement that guarantees flux

quantization and D3-tadpole cancellation is that the base B3 of the fibration is a smooth

Kähler threefold with non-rigid irreducible anti-canonical divisors that satisfy 4.2.8. In

fact, some basic arithmetic shows that the only values K3
B can take such that nD3 ∈ Z≥0
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are

K
3
B ∈ {2, 6, 10, 18, 30, 90} . (4.2.9)

4.3 Counting Standard Model Geometries

Any smooth threefold B3 with non-rigid anti-canonical divisors satisfying 4.2.9 realizes a

globally consistent three-family MSSM in F-theory. A subset of such spaces, which can

be enumerated combinatorially, is the set of weak Fano toric threefolds encoded by 3D

reflexive polytopes ∆. While there are “only” 4319 such polytopes [2], each ∆ can specify

inequivalent manifolds B3 through different fine-regular-star triangulations (FRSTs) of

the polytope, whose numbers can be very large [30].

What makes this ensemble particularly attractive for our purpose is the fact that the

intersection number K
3
B is determined solely by the polytope ∆, and is completely

triangulation-independent. Therefore any B3 associated to an FRST of ∆ gives rise

to a consistent chiral three-generation MSSM by our construction, provided that the

triangulation-independent constraint on K3
B is satisfied. In fact, there is a set S with 708

polytopes that satisfy 4.2.9. By our construction we immediately have

N toric
SM =

∑
∆∈S

NFRST(∆) , (4.3.1)

where NFRST(∆) is the number of FRSTs of ∆.

Hence, the problem of counting the number of consistent F-theory models that admit

the chiral MSSM spectrum by our construction reduces to counting FRSTs of reflexive

polytopes.

Since NFRST(∆) grows exponentially with the number of lattice points in ∆, the set

of consistent threefolds B3 is dominated by triangulations of the largest polytope [30],

labelled ∆8 in the list of [2]. The FRSTs of this polytope (with K
3
B = 6 and 39 lattice
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points) cannot be all constructed explicitly using the standard computer programs such

as SageMath [116]. To enumerate them, we therefore follow the strategy put forward in

[30] to provide bounds on NFRST(∆8).

The idea is to reduce the complexity by first counting the number of fine-regular trian-

gulations (FRTs) of each facet of a polytope ∆. Since the facets are two dimensional

polytopes, it is possible to brute-force the combinatorics of FRTs for (almost3) all poly-

topes’ facets. By virtue of the reflexivity of ∆, any combination of FRTs of all its facets

yields fine star triangulation of ∆.

The drawback of this approach is that the triangulation of ∆8 obtained this way is not

guaranteed to be regular. To tackle this issue, we randomly pick 1.3 × 104 samples out

of O(109) fine-star triangulations constructed by gluing together FRTs of the facets ∆8.

Out of these samples, we find roughly 2
3 to be also regular triangulations. Combining the

factor 2
3 with the bounds of fine-star triangulations (FSTs) for ∆8 [30], we then obtain

2.6× 1013 ≤ NFRST(∆8) ≤ 1.6× 1016.

For the other polytopes in S (i.e., those leading to threefolds satisfying 4.2.9) we can either

compute all FRSTs, or we can resort to a similar estimation as with ∆8 if the polytope is

too large to brute-force all FRSTs. We find that these other polytopes sum up to “only”

∼ 5 × 1013 FRSTs, which confirms the dominance of ∆8. In total, we therefore expect

the number of consistent three-family F-theory Standard Models in our construction over

toric threefold bases to be

7.6× 1013 . N toric
SM . 1.6× 1016 .

3For facets with more than 15 lattice points, brute-forcing FRTs also becomes computationally too
costly. For these facets, we use different methods outlined in [30] to obtain lower and upper bounds for
the number of FRTs.
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4.4 Discussion and Outlook

We have presented a construction that ensures the existence of O(1015) explicit, glob-

ally consistent string compactifications having the exact chiral spectrum of the Standard

Model within the framework of F-theory. To our knowledge, this is the largest such en-

semble in the literature, outnumbering existing results by about 10 orders of magnitude.

The models arise by varying the base of one “universal” class of elliptic fibrations intro-

duced in [82, 40]. We have only focused on the set of toric bases, which already produces

around a quadrillion examples. However, we expect that the ensemble of Standard Mod-

els arising from our construction is of orders of magnitude larger than this, as might be

shown, for instance, by including non-toric bases.

All these models have in common that the Higgs and lepton doublets are localized on

the same matter curve. As such, this curve must have non-zero genus to allow for the

existence of vector-like pairs [45]. Given the homology class of the doublet curve [40] and

our restriction S7,9 = KB, the genus in question is indeed g = 1 + 9/2K3
B > 0, since

K
3
B ≥ 2 by 4.2.9. It would be very interesting, albeit extremely difficult with current

methods, to study the precise complex structure dependence of the number of Higgs

doublets and other charged vector-like pairs in this ensemble.

Furthermore, since our models have no additional (possibly massive) abelian gauge sym-

metries, all Yukawa couplings relevant for the Standard Model are automatically realized

perturbatively, as can be shown by an explicit study of codimension three singularities

[82]. However, this in turn also implies that certain proton decay operators compatible

with the Standard Model gauge group will in general be present [40]. We expect that in

some corners of the moduli space, which incidentally could also support high-scale SUSY

breaking, these operators can be suppressed. Another avenue could be to instead focus on

“F-theory Standard Models” that have additional (U(1) [76, 42] or R-parity [44]) selection

rules, and estimate their numbers in the toric base landscape. We leave this for future
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work.

One interesting aspect of our ensemble is gauge coupling unification without a manifest

GUT-origin at the compactification scale. It can be easily read off geometrically from

the divisors on B3, which the 7-branes supporting the gauge symmetries in the type IIB

picture wrap. Due to our restriction S7,9 = KB, both SU(3) and SU(2) gauge symmetries

are realized on anti-canonical divisors {s9 = 0} and {s3 = 0} with class KB.4 Therefore,

the gauge couplings are g2
3,2 = 2/vol(KB) [113, 117].5 The U(1)Y coupling is the inverse

volume of the so-called height-pairing divisor b ⊂ B3 [67], which has been computed in

[82, 22] and reduces to b = 5KB/6 in our ensemble. Therefore, we have the standard

MSSM gauge coupling unification,

g2
3 = g2

2 = 5
3 g

2
Y = 2

vol(KB)
, (4.4.1)

which for our models is achieved at the compactification scale. While this scale as well

as the actual values of the couplings will depend on the details of moduli stabilization,

the relationship 4.4.1 is independent of Kähler moduli. It would be interesting to see

if this relationship originates from an honest geometric realization of a GUT-structure.

Given the known connection of our ensemble to a Pati–Salam [SU(4)×SU(2)2]/Z2 model

[82, 40], we expect an underlying SO(10).

Our results may provide phenomenological motivation for the study of new moduli sta-

bilization scenarios. Specifically, though gauge coupling unification is automatic in our

ensemble, it is natural to ask whether the correct value αGUT ' .03 can be obtained in

canonical moduli stabilization schemes. For instance, the KKLT and Large Volume sce-

narios assume that cycles are at sufficiently large volume to safely ignore string worldsheet
4Note that because KB is not rigid, its deformation moduli give rise to non-chiral charged matter at

the compactification scale. They have to stabilized suitably at low energies.
5The factor of 2 arises because in F-theory, the normalization dictated by geometry is one where the

Cartan generators satisfy trfund(Ti Tj) = Cij with C the Cartan matrix. On the other hand, the particle
physics convention necessary to determine the coupling is trfund(Ti Tj) = δij

2 .
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instanton corrections to the Kähler potential. This is essential because it is not known

how to systematically compute and control all instanton contributions in N = 1 back-

grounds. A necessary condition for safely ignoring these corrections is to have vol(C) > 1

(in string units) for all curves C ⊂ B3. This condition defines a stretched out subset of

the Kähler cone [118], where it was also shown that the Kähler cones become increasingly

narrow for increasing h1,1. In effect, this forces toric divisors to be increasingly large in

order to safely ignore worldsheet instantons, leading to smaller gauge couplings, because

on toric B3 the class KB is the sum of all toric divisors. Brief calculations suggest that the

correct αGUT cannot be obtained in this controlled regime, in which case realistic models

in our scenario are not consistent with the KKLT or Large Volume scenarios. Firmly

concluding this requires a more detailed study, but we emphasize that it would not rule

out our models, and instead motivate the study of new moduli stabilization scenarios that

allow for the observed value of gauge couplings.

Our compactifications also exhibit D3-branes. These sectors generically give rise to U(1)

gauge theories that could be cosmologically relevant as dark photons. Each has its own

open string moduli, the position of the D3-brane, which are massless at tree level but may

be stabilized by non-perturbative effects due to their appearance in instanton prefactors

[119]. However, since all but one of the toric divisors are rigid in the geometries we

study, it is likely that there are many instanton corrections to the superpotential. Each

instanton acts with an attractive force on the D3-brane, pulling it toward the associated

divisor, but the existence of many such contributions would provide competing forces that

stabilize the D3-brane away from each toric divisor. In particular, due to these competing

effects we see a priori no reason that the D3-branes should be stabilized anywhere near

the SU(3) or SU(2) 7-branes, in which case jointly charged matter in the form of 3-7

strings decouple from the spectrum. Such a scenario gives rise to numerous dark photon

sectors that have cosmological effects only through kinetic mixing with the visible sector

and with one another. It would be interesting to study these sectors further, in light of
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current and future dark photon experiments.

We note that gravity cannot be decoupled in our ensemble since the Standard Model gauge

divisors are in the anti-canonical class, yielding a non-trivial interplay between gravity and

the visible sector. This interplay arises due to the details of our construction and could

lead to other interesting interactions between particle physics and cosmology. At the level

of toric geometry, the models of our ensemble differ from one another by how the facets

are triangulated. This does not affect the structure of the anti-canonical divisors that

realize SU(3) and SU(2), and thus the particle physics spectrum is insensitive to details

of the triangulation; it is, after all, what gives rise to the large number of Standard Models

in our construction. The triangulation is critical, however, for moduli stabilization. For

instance, the classical Kähler potential on Kähler moduli is determined by triangulation-

dependent topological intersections. This affects numerous aspects of the cosmology of

these models, including inflation.

This visible sector universality in the midst of cosmological diversity might lead one to

question the extent to which these should be counted as truly different models. Though

a natural question, it has a clear answer: since the geometries are different they lead to

distinct four-dimensional effective theories below the Kaluza–Klein scale, each of which

could give rise to numerous metastable vacua. Instead, our view is that the universal

structure in the visible sector provides some evidence for a long-held hope in the string

landscape, that, despite large numbers of vacua, there could exist semi-universal features

that lead to meaningful statistical predictions.
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Part IV

Towards Complete Matter

Spectra in 4d F-theory
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CHAPTER 5: Machine learning and Algebraic Approaches

Motivated by engineering vector-like (Higgs) pairs in the spectrum of 4d F-theory com-

pactifications, we combine machine learning and algebraic geometry techniques to analyze

line bundle cohomologies on families of holomorphic curves. To quantify jumps of these

cohomologies, we first generate 1.8 million pairs of line bundles and curves embedded in

dP3, for which we compute the cohomologies. A white-box machine learning approach

trained on this data provides intuition for jumps due to curve splittings, which we use to

construct additional vector-like Higgs-pairs in an F-Theory toy model. We also find that,

in order to explain quantitatively the full dataset, further tools from algebraic geometry,

in particular Brill–Noether theory, are required. Using these ingredients, we introduce

a diagrammatic way to express cohomology jumps across the parameter space of each

family of matter curves, which reflects a stratification of the F-theory complex structure

moduli space in terms of the vector-like spectrum. Furthermore, these insights provide an

algorithmically efficient way to estimate the possible cohomology dimensions across the

entire parameter space.

5.1 Introduction

The spectrum of light chiral particles is a defining feature of any four dimensional quantum

field theory. Their precise number affects aspects such as the moduli space of vacua, or the

behavior of the theory under RG flow. Moreover, they are also of paramount importance

to phenomenology, in particular when it comes to models of beyond-the-Standard-Model

physics. Therefore, to be able to draw formal and phenomenological lessons from string

theory about 4d field theories, one needs efficient methods to compute the spectrum in

compactification scenarios.

From an effective field theory perspective, the chiral excess χ(R) — the difference be-

tween chiral and anti-chiral modes of the same matter representation R — is a discrete

parameter, whereas the individual number of light (anti-)chiral modes depend on contin-
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uous mass parameters. In string theory, this is reflected by the fact that χ(R) is typically

a topologically protected quantity, whereas the (perturbative) mass parameters1 are cap-

tured by continuous deformations, or moduli, which for certain values can lead to a pair

of chiral and anti-chiral modes — a vector-like pair — to become massless.

In many string compactification scenarios, we know in principle what the relevant compu-

tations are: massless fields are zero modes of some differential operators on the internal

space, and therefore counted by appropriate sheaf cohomologies. However, oftentimes

these computations are so complicated that in practice, they can only be carried out ex-

plicitly for toy models, or for specialized values of the deformation parameters. On the

other hand, an exact understanding of how the cohomologies depend on these parameters

is necessary for a complete description of the physical interpretation. The moduli depen-

dence and the possibility of jumps in the massless spectrum have been first discussed in

the context of heterotic string theory in [120, 121, 122, 123, 110, 124]. More recently, the

complex structure moduli dependence of the cohomology dimensions has been studied

in [125, 126] and [127] in the context of instanton and perturbative superpotential terms,

respectively.

In comparison, an analogous analysis in the context of F-theory compactifications [27]

is largely missing and has only been discussed in part in [128]. The main reason is

because, unlike the chiral spectrum which is accessible via intersection theory [59, 129,

130, 131, 43, 37, 132, 38, 39, 40, 41, 42, 44, 32], the vector-like spectrum in F-theory

depends on a gauge background, which is encoded in mathematically rather intricate

objects such as the intermediate Jacobian and Deligne cohomology [133, 134, 135, 136].

Recent progress [45, 46] has made the spectrum computationally more accessible. Namely,

for a four-dimensional N = 1 F-theory compactifications on an elliptically fibered Calabi–

Yau fourfold π : Y4 → B3 with a given gauge background, the massless spectrum of

chiral particles in representation R can be counted by certain line bundle cohomologies
1In this work we will neglect moduli stabilization, flux-induced superpotentials and non-perturbative

effects.
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hi(CR,LR), i = 0, 1 on complex curves CR ⊂ B3 — the matter curves — in the base.

Given a compact model with a fixed gauge background, CR and LR are specified by

global data in terms of polynomials on B3 , whose coefficients are (parts of) the complex

structure parameters of Y4. In this case, one can model the line bundle as a coherent sheaf

on B3, whose cohomology computation can be systematized in a computer algebra system

[47]. While this algorithm can be applied to a broad class of global F-theory models,

the calculations for almost all phenomenologically interesting examples overburden even

super-computers specifically designed for such tasks. The reason is that here, and in fact

in many cohomology computations using commutative algebra or computational algebraic

geometry, we need to compute Groebner Bases, whose computational complexity scales

extremely poorly.

The introduction of ideas from Big Data and machine learning (ML) to string phe-

nomenology [137, 138, 139, 140] provides new perspectives; see [141] for an introduction

and comprehensive overview. One advantage that a trained algorithm provides is that

it recognizes more subtle patterns without the need of a complete, “microscopic” under-

standing of the task. In particular, recent studies suggest that supervised learning can

be used to predict line bundle cohomologies in string compactifications [139, 142, 143].

One may be tempted to apply these techniques, which are mostly motivated by heterotic

compactifications, directly to the F-theory. However, there is a significant difference in

the way the line bundle data are specified in global heterotic vs. F-theory models. In

heterotic examples, the line bundles are typically given in a “canonical” way, namely as

an element of the Picard group Pic(X) of the underlying manifold X. This was used,

e.g., in [144, 145] to derive formulae for line bundle cohomologies in terms of topological

indices.

However, in the F-theory setting, there is no straightforward fashion to extract even the

structure of the Picard group of CR, given its polynomial description. Likewise, because

the same data specifies LR essentially as a sum of points pi on B3 that also lie on CR,
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it is by no means obvious if, say, p1 − p2 is trivial or not on CR. What makes the

situation particularly challenging is that, by varying the complex structure parameters,

the structure of Pic(CR) as well as the points specifying LR will change. Together with

the fact that we simply do not have a large data set of non-trivial F-theory examples, it is a

priori unclear whether we could train an algorithm that reliably predicts the cohomologies

for realistic models with arbitrary complex parameters.

Instead, we will use machine learning techniques on less complex examples to gain some

intuition for circumstances under which line bundle cohomologies jump. Physically, this is

already interesting as such a jump can engineer one or possibly more massless vector-like

pairs in situations where one generically expects none. Even if the trained algorithm does

not perform perfectly, understanding its strategy can provide a guiding principle for the

behavior of the vector-like spectrum in non-trivial examples. For this reason, we focus on

white-box machine learning techniques, in particular on decision trees.

To fully understand the results of the machine learning, we further employ “formal”

techniques from algebraic geometry, in the form of Brill–Noether theory. This allows to

identify “microscopically” the sources for jumps in cohomology, either from the curve

CR or the line bundle LR becoming non-generic. With these insights, we provide an

algorithmic way to estimate the admissible numbers of vector-like pairs over the entire

parameter space of a matter curve in a global F-theory model with given gauge back-

ground. Furthermore, our analysis also reveals a convenient diagrammatic way to encode

the stratification on the parameter space induced by the number of vector-like pairs. We

believe that this is progress towards understanding the full complex structure dependence

of the vector-like spectrum in global F-theory models.

The paper is organized as follows. In 5.2 we discuss our machine learning approach. Using

the exact methods implemented in [146], we generate a database [147] of cohomologies

of pullback line bundles on hypersurface curves in dP3. Interpreting these results with

decision trees, we find that curve splittings typically lead to jumps in the vector-like
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spectrum. In 5.3, we demonstrate that such curve splittings provide a practial way to

engineer jumps in a global F-theory GUT-model. To investigate the origin of these jumps,

we turn in 5.4 to algebraic and analytic techniques. We find a unified perspective on jumps

due to curve splittings and non-generic line bundles described by Brill–Noether theory,

and introduce a diagrammatic way to illustrate the natural stratification of the complex

structure parameter space in terms of the vector-like spectrum. In 5.5, we present a

refined analysis of jumps due to curve splittings. This rests on a procedure to count the

global sections by gluing “local contributions” along intersections of curve components,

which leads to two interesting results: First, we are able to formulate sufficient conditions

for jumps of vector-like spectra. Second, we can propose an algorithmic h0 estimate,

which relies mostly on topological data, and hence provides a quick, approximative scan

of the vector-like spectrum over the entire parameter space of a matter curve. In contrast

to currently existing exact methods, such as [146], our implementation [148] has a much

lower demand of computational resources and run times.

5.2 Machine learning

5.2.1 Introduction to Decision Trees

We are interested in tuning complex structure moduli to engineer jumps in the dimensions

of sheaf cohomologies over complex curves. It is a priori not clear how to efficiently identify

these subloci in complex structure moduli space. In order to state (at least) necessary

conditions for jumps to occur, we address the problem using ML. Since we are interested in

interpreting the results of the ML algorithm, we resort to white-box models, in particular

to binary decision trees.

In more detail, we use binary decision trees as classifiers in supervised machine learning,

following the notation and conventions of [141]. Supervised learning means that we have

a set of inputs xµi (called features) together with associated labels2 yi, where i = 1, . . . , N
2In general, there could be more than one label for each feature vector; however, for the cases studied

in this paper, the label corresponds to a class the input belongs to, labeled by an integer.
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counts the feature-label-pairs, and µ = 1, . . . , F counts the F features of each input. This

set of feature-label combinations is now divided into a train set and a test set (typically

around 90 percent of the pairs are assigned to the train set and 10 percent to the test

set). Using the train set, an algorithm is trained to learn a map from the features to the

labels. The training consists of adjusting parameters of the algorithm to optimize the

map. This is typically done by minimizing the loss, which is a measure for how well the

algorithm reproduces the labels. Once training ends, the algorithm is tested on the test

set. This is necessary in order to see how well it performs on (hitherto unseen) data. If

the test set have been chosen generically enough, performance on the test set will serve

as an indicator for how well the trained algorithm will perform.

After this general discussion, let us describe these steps in the context of binary decision

trees. Trees are data structures that appear abundantly in computer science. They can

be thought of as acyclic, directed, connected graphs with a unique root vertex (in trees,

vertices are called nodes). In binary trees, each node has either zero or exactly two

vertices, each of which is connected to a unique node. These two subnodes are called

child nodes, and the original node is called parent node. A node with no children is called

a leaf node.

A decision tree expects numerical features x
(0)
i . It then introduces boolean splitting

criteria of the type x(0)
i ≤ κi for some constant κi ∈ R. All data that satisfy this criterion

are assigned to one child node, while data that does not satisfy the criterion is assigned

to the other child node. The tree is now built recursively by splitting each child node

according to some other feature x(0)
j ≤ κj , etc. This procedure segments feature space

(which is in our case RN ) along hyperplanes xi = κi with the goal to find regions such

that all inputs in that region belong to the same class.

At each node, it is checked how many of the data carry which label. For single membership

classification problems, which is what we will be using, the labels are just the different

classes which the input feature vector belongs to. A typical loss function is the Gini
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impurity of a node, which measures how “impure” the data at that node actually is, i.e.,

how many features with different classes are in the region in feature space corresponding

to this node. Denoting the set of features in the region of node a by Na, we find for K

classes the fraction of elements that belong to a class yk ∈ K via

pa,k = 1
|Na|

∑
i∈Na

δi,k . (5.2.1)

The Gini impurity Ga at node a can then be written as

Ga =
K∑
k=1

pa,k(1− pa,k) . (5.2.2)

In particular, if all elements of Na belong to the same class, Ga = 0. In such a case, the

node is turned into a leaf, since no further splits are necessary.

The decision tree is now trained by starting from the root node and trying to split by

any of the F features. For κi, one tries all3 intermediate values between consecutive

values of feature i. The solution that leads to the lowest Gini impurity at the child nodes

is accepted, and the procedure is repeated for the two child nodes and the remaining

features, etc.

In cases where the map from the input to the labels is not one-to-many, one can eventually

reach a perfect classification, if need be with a single element in each region. Typically,

this is undesired and hence one stops splitting a node if there are less than some fixed

number of elements in its corresponding region. Turning this around, if the minimal

number at which a node is split is set to 2, and if the tree does not find a solution

where all leaves have Gini impurity zero, this means that the map defined by the input-

label-pairs is many-to-one, i.e., even all features combined are not sufficient to distinguish

between the class labels.
3In case of many different values for a feature, this might be unfeasible, in which case a number of

equally spaced values are tried for κi.

71



5.2.2 Divisors and line bundles on dP3

While in the general F-theoretic setup, matters curves CR are a priori defined on a

threefold B3, in most models there is a distinguished surface S ⊂ B3 that is wrapped

by the 7-branes supporting a non-abelian gauge theory, in which the matter curve sits.

A part of the complex structure moduli then parametrizes deformations of the curve

inside S, which will in general affect the vector-like spectrum. These deformations can be

described by pulling back all defining polynomials on B3 onto S, and then simply consider

the coefficients of these in terms of the homogeneous coordinates on S.

For our data collection, we will mimic such a “pulled back” description by focusing on

curves embedded inside the del Pezzo surface dP3. One advantage of this choice is that dP3

has a toric description in terms of a reflexive polygon, which simplifies many computations.

Another one is that it fits the setup for section 5.3, where we consider an F-theory toy

model with non-abelian gauge degrees of freedom localized precisely on a dP3 surface.

To set the notation, we denote the toric coordinates of dP3 by xi, i = 1, ..., 6. They are

graded by homogeneous scalings with associated divisor classes, which are summarized in

the following table:

x1 x2 x3 x4 x5 x6

H 1 1 1

E1 −1 1 −1

E2 −1 1 −1

E3 −1 −1 1

(5.2.3)

The columns give the divisor classes of the coordinate’s vanishing loci. E.g., [{x1}] =

H − E1 − E2. The Stanley–Reisner ideal is

ISR = 〈x3x6, x2x6, x1x6, x4x5, x2x5, x1x5, x3x4, x1x4, x2x3〉 , (5.2.4)
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and the anti-canonical class is −KdP3 = ∑
i[{xi}] = 3H−E1−E2−E3. The independent

intersection numbers are

H2 = 1 , Ei · Ej = −δij , H · Ei = 0 . (5.2.5)

In order to simplify the notation, we introduce the short-hand notation (a; b, c, d) with

a, b, c, d ∈ Z for a divisor D = aH + bE1 + cE2 + dE3.

We then define curves C inside dP3 via C = {P = 0} ≡ V (P ) with

P =
∑
i

cimi(x1, . . . , x6) , (5.2.6)

where mis are monomials of appropriate multi-degree under the grading in 5.2.3. Impor-

tantly, the coefficients ci parametrize the shape of the curve and thus model (parts of)

the complex structure parameters of a global F-theory compactification. The (arithmetic)

genus of the curve depends only on the divisor class [C] of the curve (equivalently, the

multi-degree of the monomials in P ) and is given via adjunction formula as

g = 1 + 1
2[C] · ([C] +K) . (5.2.7)

Next, we also need to specify a line bundle L on C. Again, instead of focusing on the

most general setup, where L is directly specified by a set of points on C, we consider the

slightly simpler cases where L is a pullback of a line bundle L = OdP3(D) on dP3:

L = OdP3(D)|dP3
. (5.2.8)

One can think of the points then as the (weighted) intersections {ai pi} between C and a

generic representative in the class D. Note that in this case, another representative of D,

intersecting C at {bj p′j}, necessarily must give the same divisor on C, i.e., {ai pi} ∼ {bj p′j}

are linearly equivalent on C. However, in general we cannot say anything about linear
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equivalences among any two of the points. Therefore, we expect, and also will find, that

even for pullback line bundles, there can be special divisor alignments, i.e., p1 and p2, say,

move into special positions, when we deform C, thus leading to jumps in the cohomology.

5.2.3 Generating the data set

We generate training data by picking 6 different curve classes [C] with genus 1 ≤ g ≤ 6.

For each class we consider several line bundles L on dP3 and compute (using techniques

from [47]) the cohomologies hi(C(c), L|C(c)), where we vary the curve C(c) by considering

all possible combinations of ci ∈ {0, 1}, i = 1, . . . , d for the coefficients.4 This way, we

calculate cohomologies of L pulled back to 2d−1 genus g curves in the class [C]. While this

seems to be a very limited choice, it nevertheless reveals enough structures to correlate

jumps in cohomology with degenerations of the geometry. On the other hand, it also

introduces some bias in the data. For example, a common way the curve degenerates

is if all monomials in the defining polynomial share a common variable; this happens

frequently if many ci are set to 0. However, for certain polynomials, restricting ci ∈ {0, 1}

misses out possible factorizations, where factors are not just a single variable. We will

see later that we can easily generalize the interpretation based on our data with algebraic

methods to these cases as well.

For this data set, we then compute/collect the following features for each choice of line

bundle L on each curve C with coefficients ci:

1. The coefficients ci that define the curve.

2. The genus of the curve.

3. The number of global sections of the line bundle.5

4. Are the curves smooth?
4We exclude the case where all ci = 0.
5The dimension of H1(C,L) can then be computed from the index which is topological and does not

depend on ci.
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5. The number of components the curve splits into.

6. Are the splits smooth?

7. Are the splits reduced?

8. The genera of the split components.

9. The intersection numbers among the split components.

Note that all of this data is numerical (the true/false features are encoded as 1/0). We

aggregate the features above into a single feature called the split type. We want to consider

two curves as identical if their features F4-F9 are identical (up to relabeling the individual

components). In order to check this, we would in principle have to check all permutations

of all split components and see whether any of them have the same data. Since this

becomes prohibitively expensive, we perform the following necessary checks:

• Are the data F4 and F5 identical for the two curves?

• Are the data F6-F8 identical as sets for the two curves? This can be checked by

ordering the tuples and comparing them, which is much faster than checking actual

permutations.

• Is the determinant of the intersection matrix in F9 identical for the two curves?

Note that the determinant is permutation invariant. However, at that point we do

not check whether the permutations that make all sets match are actually the same.

Curves which are identical under these checks are assigned the same integer that encodes

the split type.

Equipped with this data, we generate four different data sets which we use to train the

decision trees and compare the results. In the first, we use the coefficients ci as features

and assign a label of 0 if the cohomology dimension of H0(C(c),L) has the generic (i.e.,
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Figure 6: Average accuracy on the test set as a function of the genera of the curves for
different features.

the lowest) value and a label of 1 if there is a jump. Note that at this point, we only

classify the curve according to whether a jump occurs, but not according to how large the

jump is. For the second data set, we use the same labels, while the features are taken to be

the topological intersection numbers between the curve components and the line bundle

divisors. For the third data set we use the split type as explained above. Finally, for

the fourth data set, we use both the split type and the topological intersection numbers

between the curve components and the line bundle divisor as features. In addition, we

perform a train:test split of 90:10 for all four data sets.
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5.2.4 Decision Trees to learn cohomology jumps

Training the decision trees only takes a few seconds on a modern desktop computer. We

train a separate decision tree for each line bundle and each of the four data sets. It is

instructive to compare the performance of all four training sets on both the train and the

test set.

The results for the accuracy of the trained trees on the test set are summarized in Figure 6.

One notices that the accuracy of all data sets improves with the genus of the curve. This

is due to the fact that the size of the data set grows with the genus: While the genus 0

curve we are considering has only 7 coefficients ci and hence only 27−1 = 128 data points

per line bundle, the genus 6 curve has 218 − 1 = 262143 data points.

For the blue data points, which uses the coefficients ci as labels, we find that the decision

tree performs best. This is to be expected, since these are the finest feature set, i.e., the

one with the most information, out of the four feature sets we studied. Indeed, the trees

reach an accuracy of essentially 1 as soon as the training set becomes large enough (there

are 3685 points in the training set for genus 3). For the other three data sets, we see

that they perform worse, but still reaches high accuracies. Using just the split type as

a feature, for the larger genus cases where enough data is available, we reach accuracies

around 80 to 85 percent. Using the intersection numbers, accuracies around 94 percent

are obtained. Lastly, combining the split type and the intersection numbers, improves the

results obtained when either is used individually, to an accuracy of around 97 percent.

This means that the two features contain different types of information which the three

can use in order to improve its prediction when given access to both.

One can learn more information about the data by also analyzing the performance on

the training set, as explained in Section 5.2.1. Indeed, we find that, when not imposing

constraints on the tree, the accuracy on the train set when using the coefficients as features

is always 100 percent. This is not surprising, since the coefficients uniquely identify each
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case and hence the tree can learn a sequence of splits that puts each data point in the

correct leaf node (if necessary, this leaf might only contain this single data point). For the

other data sets, we find that the performance on the test set is already below 100 percent.

Hence, the features are not enough to decide whether a jump in cohomology occurs, not

even in principle.

Let us illustrate this by looking at the decision tree trained on the full data set for a

genus three curve DC = (4;−1,−1,−1) inside dP3 with line bundle DL = (1, 2,−2,−1),

cf. Section B.2.1. We give the full decision tree in Figure 7. Looking at the root node, we

see that for this bundle, there are 4095 different data points (“samples”). Out of these,

1791 exhibit a cohomology jump for this line bundle, while 2304 do not. The tree assigns

a class label to this (non-leaf) node based on the majority, which is “no jump”. However,

there are almost as many data points with a jump as there are data points without, which

is why the uncertainty is high. This is encoded in the light blue color: the more certain

a node predicts no jump, the darker blue it is colored. Similarly, the more certain there

is a jump, the darker orange it is.

Recall that integers labelling the split type (based on the features F4-F9) are by construc-

tion small if the number of components the curve splits into is small. Hence, small split

types correspond to irreducible curves, or curves with only few split components. We

expect such curves being close to generic (in a sense that will be made mathematically

more precise in Section 5.4), hence the cohomologies should also take generic values.
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Indeed, we observe that the first split is performed according to whether or not the split

type is smaller than 5.5. This first split already gives a good indicator in the sense that

out of the 1710 training data points that have a split type of 5 or smaller, 85 percent

actually do not have a jump in their cohomologies. This also illustrates that decision

trees can be used for feature selection: important features that are good indicators for

the classes tend to be used for splitting higher up in the tree, while more unimportant

features are used further down the tree (or not at all, if they do not have any predictive

power for the class membership). Now, in our case, we only have a single feature, but it

is a composite feature of several quantities. The fact that the first split does not occur

around the median (which would be 27) but at much smaller value indicates that the

number of split components is a good criterion to distinguish jumps.

While the split types are integers, the tree always chooses half-integer decision boundaries.

The reason is that the tree does not know that the feature only takes integer values. Hence,

splitting in the middle between the feature values that appear in the train set will allow

the most slack in either direction when the tree is presented with unseen data.

By focusing on the leaf nodes, we can also see that the tree is not classifying the data

perfectly, not even the training data. Indeed, many nodes have a non-zero Gini impurity,

i.e., both curves with and without jumps share the same split type associated with this

leaf node. Looking for example at the bottom right leaf node, we see that three curves

have the same split type (with value 48). However, two of these have a jump while one

does not. This means that the topological data F4-F9 used to construct the split type is

not enough to decide whether or not a cohomology jump occurs.

5.2.5 Interpretation of results

Jumps from curve splittings

We have seen that the decision tree trained on a combination of split types and intersection

numbers performs very well. Moreover, the tree trained with just the split types splits
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on small split types first. This suggests that there is a tight correlation between changes

in the topology of the curve and jumps in the line bundle cohomology. In particular, the

data set has an abundance of cases with jumps where the curve C splits off one or more

rigid components: For 78 (about 95%) of the 82 pairs of geometries DC and line bundles

DL considered in our database, we find that we can split off a rigid component E, i.e.,

C → C̃ ∪ E, such that

h0
min(C̃ ∪ E,L|C̃∪E) > h0

min(C,L|C) . (5.2.9)

Put differently, for almost all pairs (DC , DL) in our database, there exists a rigid divisor

such that splitting off this rigid divisor from the curve C leads to a jump in the number

of global sections on that curve. At the same time, for a given combination (DC , DL), we

observe a jump of h0
min only for a subset of all possible splits C → C̃ ∪E, suggesting that

E and DL must have some correlation in order for the cohomology to enhance. We list

the details of these splittings and jumps in B.2.1.

It is obvious that the jumps stemming from rigid component splittings can be associated

with the curve C becoming non-generic. While per se not unexpected, the machine learn-

ing process reveals — without explicitly “knowing” algebraic geometry — these features.

It is important in this context to address the bias in the data coming from considering

only values of {0, 1} for the coefficients. Namely, within the data, we only observe jumps

associated with splittings of rigid components. Naively, one might conclude that rigidity

of a split component is a necessary condition. However, as we already stressed in the

beginning of 5.2.3, setting enough coefficients to 0 usually factors out one of the homo-

geneous coordinates xi. The corresponding curve splitting then always involves the toric

divisor V (xi) which on a dP3 is rigid for any i = 1, ..., 6. Therefore, the strong correlation

between a rigid component and a jump is likely due to the bias in the data.

Indeed, we will find in sections 5.4 and 5.5 with insights from algebraic geometry, that
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the main source for cohomology jumps in cases of curve splittings is actually insensitive

to components being rigid. We will also supplement a concrete example in 5.4.1 where

we find a jump from non-rigid curve splittings. Furthermore, we will combine these

arguments with the intuition about curve splittings we gained through the data to phrase

a sufficient condition for a jump in cohomology to occur in terms of topological data only.

We will discuss this idea in 5.5.

Unpredicted jumps

The fact that the decision tree cannot predict all jumps hints towards sources for addi-

tional sections (and hence cohomology jumps) beyond curve splitting. Within the data

set, we observe that in rare occasions, the curve remains smooth despite a deformation

which induces a jump.

For illustration purposes, consider again the genus three curve with the line bundle dis-

cussed above. Generically, this genus 3 curve is cut out by the polynomial

P (c) = c1x
3
1x

3
2x

2
3x4 + c2x

2
1x

3
2x3x

2
4x6 + c3x1x

3
2x

3
4x

2
6 + c4x

3
1x

2
2x

3
3x5 + c5x

2
1x

2
2x

2
3x4x5x6

+ c6x1x
2
2x3x

2
4x5x

2
6 + c7x

2
2x

3
4x5x

3
6 + c8x

2
1x2x

3
3x

2
5x6 + c9x1x2x

2
3x4x

2
5x

2
6

+ c10x2x3x
2
4x

2
5x

3
6 + c11x1x

3
3x

3
5x

2
6 + c12x

2
3x4x

3
5x

3
6 .

(5.2.10)

The pullback of OdP3(DL) onto C defines a line bundle L of degree d = 3. By Riemann–

Roch we have χ(L) = h0 − h1 = 1.

In our database, we have computed the number of global sections for this line bundle for

coefficient choices c ∈ {0, 1}12 − 0. For these 4095 curves, we find

• h0 = 1: 2304 (56.3%) ,

• h0 = 2: 1664 (40.6%) ,

• h0 = 3: 127 (3.1%) .
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Our database indicates that a jump to h0 = 3 occurs whenever c1 = c2 = c3 = c11 =

c12 = 0. This corresponds to a splitting

C = V (x2) ∪ V (x5) ∪ V (P |c1=c2=c3=c11=c12=0) . (5.2.11)

The majority of the cases with h0 = 2 are where either V (x2) or V (x5) splits off, each

being a rigid P1. This is in line with the above observation. However, we also have

instances (about 9% of all curves with h0 = 2) where the curve remains smooth and

irreducible. Despite having h0 = 2, the split type features cannot distinguish these cases

from the generic setup with h0 = 1, thus leading to an imperfect performance of the

decision tree.

While we will come back to a detailed discussion of this phenomenon and the associated

algebraic description in terms of Brill–Noether theory in 5.4.2, it is evident that these cases

of jumps are associated to the line bundle L on C becoming non-generic. Moreover, we

also observe that such Brill–Noether-type jumps can sometimes produce values of h0 that

cannot be obtained by splittings off rigid curve components. This becomes particularly

important in F-theory models, as we will discuss now.

5.3 Application: F-theory model building

In the previous section, we have used machine learning techniques to gain some intuition

on how line bundle cohomologies jump under complex structure deformations. While

we will discuss the underlying “precise” description of these various sources of jumps in

the next section, we would like to show that these “rules of thumb” inferred from the

withe-box machine learning results can be applied directly in string phenomenology. To

this end, we consider an F-theory toy model and exemplify how curve splittings help

“controlling” the number of vector-like pairs.6

6For the purpose of this work, and in particular this section, we will only focus on the matter curves
and their embeddings into the “GUT”-surface that supports the non-abelian gauge symmetry. We refer
the interested reader to recent reviews [26, 149] for detailed introduction to F-theory.
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Let us first summarize the relevant features of the model, whose explicit construction is

detailed in [47]. The model has an SU(5) gauge symmetry localized on a dP3 surface inside

the compact base threefold B3, which itself is a smooth hypersurface inside a toric variety.

There are matter states in the representations 101, 53 and 5−2, where the subscript denote

the charges under an additional U(1) gauge symmetry. Each representation R resides on

a curve CR inside the dP3 surface. One can find a globally consistent vertical G4-flux

configuration that induces the chiral spectrum

χ(101) = 3 , χ(53) = 15 , χ(5−2) = −18 . (5.3.1)

In the following, we will analyze in detail the vector-like spectrum in this setup.

Geometry of curves

In the global geometry, the matter curves CR are complete intersections involving the dP3

surface and another divisor on the base B3. As discussed in [47], a generic choice of the

complex structure parameters for the elliptic fourfold also induces a generic curve CR on

dP3. In other words, we can parametrize them in terms of global sections of OdP3([CR]),

where [CR] denotes the divisor class of the curve inside dP3.

Furthermore, the data defining the zero mode spectrum in a global F-theory model can be

extracted from the G4-configuration and packaged into a line bundle (or, more generally,

a coherent sheaf) for each curve CR [45, 46]. For the case at hand, the flux inducing the

chiral spectrum 5.3.1 induces line bundles which are pullbacks of various bundles on dP3

to the curves [47].

Using the same notation as in the previous section7, the curves with their genus and their
7Divisor classes aH + bE1 + cE2 + dE3 are denoted by (a; b, c, d).
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corresponding zero-modes counting bundles are:

curve class genus bundle hi

C101 (4;−1,−1,−2) 2 OdP3 (1;−1,−1, 1) (3, 0)

C53 (10;−3,−3,−4) 24 OdP3 (5;−4,−4, 3) (15 + n, n)

C5−2 (17;−5,−5,−7) 79 OdP3 (6; 0, 0,−6) (7, 25)

(5.3.2)

Note that the cohomologies on C101 and C5−2 are fixed by the exactness of the corre-

sponding Koszul resolutions, and hence there are no complex-structure-dependent jumps

possible.8 For the representation 53, no such arguments apply, and thus we expect the

number n of light vector-like pairs to vary.

The curve C53 = {a3,2 = 0} is the vanishing locus of a polynomial with class (10; -3, -3,

-4), whose explicit expression in the parametrization of the toric dP3 coordinates xi are

given in appendix B.1, cf. B.1.60. With the curve having genus 24, it would be almost

impossible to perform a scan by varying all the complex structure parameters (B.1.60 has

44 coefficients), as we did previously for the low genus cases. However, the intuition we

gained from the low genus examples will help us to “control” n — that is, to efficiently

find suitable geometries realizing the desired vector-like spectrum.

5.3.1 Engineering jumps in cohomology

What we have learned from the machine learning results is that the line bundle cohomol-

ogy is more likely to jump if the curve in question is reducible. Though we have already

emphasized that rigidity of the components is not necessary, the abundance of toric co-

ordinates makes it handy to factor out various different curves which in this case happen

to be rigid. For the purpose of finding a concrete realization of a particular jump in the

vector-like spectrum, these rigid factors turn out to be sufficient.
8This can change if we modify the flux by, e.g., horizontal pieces. However, for the purpose of this

work, we focus on jumps induced by geometric changes.
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We thus modify the coefficients of the defining polynomial a3,2 in B.1.60 such that individ-

ual toric coordinates xi of dP3 factor out. Of course, not every such factorization will lead

to a jump: the rigid component must in some way receive a “non-trivial contribution”,

i.e., intersection, from the divisor DL defining the line bundle. The intuitions we gained

from the previous section is that a negative intersection of DL with V (xi) will lead to a

jump. It is then intuitive to assume that the more rigid components splits off, the higher

the jumps tend to be. With this intuition, we now proceed to engineer step-wise jumps

of the vector-like spectrum.

Using the linear relations 5.2.3 and intersection numbers 5.2.5, we easily verify the divisor

defining the line bundle, DL = 5H − 4E1 − 4E2 + 3E3, has only negative intersections

with [x1] and [x6]. Inspecting B.1.60, one finds that if we set

c40 = c41 = c42 = c43 = c44 = 0 , (5.3.3)

the polynomial factors as a3,2 = x6R2, where R2 is an irreducible polynomial in the class

(10;−3,−3,−5). And indeed, a computer-assisted computation with methods from [47]

reveals that for this curve C2 = {x6R2 = 0}, we have

hi(C2, OdP3(5;−4,−4, 3)|C2
) = (17, 2) , (5.3.4)

We can factor out another factor x6 from R2 by setting

c34 = c35 = c36 = c37 = c38 = c39 = c40 = c41 = c42 = c43 = c44 = 0 , (5.3.5)

yielding C53 → C3 = {x2
6R3 = 0}, with R3 an irreducible polynomial of class (10; -3, -3,

-6). In this case, we find a jump by three,

hi(C3, OdP3((5;−4,−4, 3)|C3
) = (18, 3) . (5.3.6)
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To achieve a jump by four, we factorize C53 → C4 = {x1 x6R4 = 0}, with [R4] =

(9;−2,−2,−5), with the following choice of complex structure:

c1 = c2 = c3 = c4 = c5 = c40 = c41 = c42 = c43 = c44 = 0 . (5.3.7)

Then we find

hi(C4, OdP3((5;−4,−4, 3)|C4
) = (19, 4) . (5.3.8)

Lastly, we also easily construct a model with five vector-like pairs, by setting

c1 = c2 = c3 = c4 = c5 = c34 = c35 = c36 = c37 = 0

c38 = c39 = c40 = c41 = c42 = c43 = c44 = 0 .
(5.3.9)

On this sublocus in complex structure moduli space, the matter curve factorizes as C53 →

C5 = {x1 x
2
6R5 = 0}, with [R5] = (9;−2,−2,−6). In this case we have

hi(C5, OdP3((5;−4,−4, 3)|C5
) = (20, 5) . (5.3.10)

5.3.2 Single vector-like pair from Brill–Noether theory

The above examples demonstrate how the machine learning intuition led us to a step-wise

increase in the number of vector-like pairs by suitable tuning of the complex structure

parameters. These jumps occur because the matter curve in question splits into several

components. However, such splittings induce a jump from zero vector-like pairs to at least

two (or three, or four, or five). If we are interested in models with a single vector-like

pair — such as for the Higgs field in MSSM realizations — then we need to look for other

effects than curve splitting.

As we have seen earlier, such effects are related to the cases not predicted by the trained
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decision tree. Here, the jumps in cohomology are not due to the curve becoming non-

generic, but rather the line bundle. In fact, Brill–Noether theory (to be discussed in the

next section, see also B.1.1) tells us that for the matter curve C53 of genus 24, we expect

that a scenario with a single vector-like pair — i.e., one having hi = (16, 1) — to occur

on a subvariety of dimension ρ = g−h0 ·h1 = 8 of the space Jac(C53) which parametrizes

the line bundles on C53 . Note that the same formula would yield ρ = −10 for jumps by

two, and hence no such jumps can occur for a generic C53 . This agrees with the above

instances, as each of those requires the curve to become non-generic.

Because of this, engineering the jump by 1 becomes more challenging, and in particular

requires additional tools from algebraic geometry. We defer the details of the relevant

computations to B.1 and simply remark here that the necessary tuning is

c1 = c2 = c3 = c4 = c5 = c7 = c8 = c9 = c10 = c35 = c36 = c37 = c38 = 1 ,

c40 = c41 = c42 = c43 = c44 = 1, c11 = c34 = −1, c6 = c39 = 2 .
(5.3.11)

One can easily verify that the polynomial a3,2 in B.1.60 does not factorize in this case,

and that the curve C53 remains smooth. Therefore, the enhancement in cohomology in

this case is indeed of Brill–Noether type.

5.4 Cohomology jumps throughout the moduli space

To put the intuition we gained from machine learning onto more solid grounds, we now

apply tools from algebraic geometry to develop a more complete, “microscopic” under-

standing for the various sources of jumps we encountered in our data. As we will see, the

resulting insights lead to a diagrammatic representation of a stratification of the complex

structure moduli space of F-theory compactifications induced by vector-like spectra.

As we have alluded to in 5.2, based on our database we can essentially distinguish two

types of jumps:

1. Jumps due to a non-generic line bundle.
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2. Jumps due to a non-generic curve.

This shows that our samplings are very atypical. Namely, true jump loci have lower

dimensionality than the full set of parameters. Therefore, jump loci form sets of measure

0 and should never be encountered by a genuinely random sample.

It is central to our discussion that algebraic geomemtry can bound from below the ‘size’

of such jump loci. In particular, this is true for jumps due to non-generic line bundles.

Such jumps have been analyzed since 1874 in the context of Brill–Noether theory9 [150].

Given a generic curve Cg of genus g and an integer d, Brill–Noether theory provides an

integer ρ(r, g, d) which measures how likely it is that a line bundle Ld of degree d on Cg

has r + 1 independent non-trivial global sections, i.e., has h0(Cg,Ld) = r + 1.

To formulate this more precisely, first recall that the Jacobian Jac(Cg) of the curve Cg is

isomorphic to Cg/Λ where Λ is the full-dimensional period lattice of Cg. By the Abel–

Jacobi map, equivalence classes of line bundles of degree d form a copy of the Jacobian

Jac(Cg). Let us focus on the subset of the Jacobian formed by all equivalence classes of

line bundles of degree d which admit exactly r + 1 global sections. Then a lower bound

on the dimension of this space is given by the integer

ρ(r, g, d) = g − (r + 1) · (r + 1− (d− g + 1)) ≡ g − n0 · n1 . (5.4.1)

In the last equality we use the intuitive notation n0 = r + 1. Furthermore, we have

used that by the Riemann–Roch theorem, n1 ≡ n0 − (d− g + 1) is equal to h1(Cg,Ld) if

h0(Cg,Ld) = n0. Further details on Brill–Noether theory can be found in appendix B.1.1,

and a more complete presentation is given in [151, 152].

An important result follows from [153]: If the curve is generic, then lines bundles of degree

d only admit numbers r + 1 of global sections for which ρ(r, g, d) is non-negative. Put
9The physics community may find it entertaining to learn that this theory is named after Max Noether,

the father of Emmy Noether.
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differently, there are no line bundles on generic curves with r + 1 global sections with

ρ(r, g, d) < 0. Furthermore, the value of ρ gives a very clear notion of the likelihood to

have r + 1 sections in terms of a dimension on the “moduli” space of line bundles.

Let us demonstrate this for a line bundle L of degree d = 2 on a curve Cg of genus g = 3.

By general theory, the number of section of this line bundle cannot exceed its degree.

Hence, it has 0, 1 or 2 sections. With this information, let us compute ρ(r, d, g):

r hi ρ(r, d, g)

−1 (0, 0) 3

0 (1, 1) 2

1 (2, 2) −1

(5.4.2)

From this we learn, that most line bundles L of degree d = 2 on a genus g = 3 curve C3

satisfy h0 (C3,L) = 0. Since for these bundles ρ matches the dimension of the Jacobian

of C3, we can say that these line bundles are associated to generic points of the Jacobian.

Furthermore, we learn that there are line bundles with h0 (C3,L) = 1. However, these

are special in the sense that they are associated to a codimension-1 locus in the Jacobian

Jac(C3).

Finally, ρ = −1 for r = 1 begs for an explanation. This explanation follows from work of

Griffiths and Harris [153]:

On generic curves, dim(Gr+1
d ) = ρ (r, d, g).

So in particular, on generic curves it holds Gr+1
d = ∅ if and only if ρ (r, d, g) < 0. Con-

sequently, we conclude from B.1.14, that on generic genus g = 3 curve, there is no line

bundle L of degree 2 such that h0(C3,L) = 2.

Note however, that this does not rule out the possibility that non-generic curves may

host such line bundles. In the case at hand, it follows from the theorem of Clifford [153]
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that hyperelliptic curves H3 of genus g = 3 admit line bundles L of degree d = 2 and

h0(H3,L) = 2. Note that hyperelliptic curves of genus g > 2 are non-generic. Hence,

this points us to jumps of the vector-like spectrum, which originate from non-generic

deformations of the curve.

Let us give another such example, which illustrates a jump on a singular curve. To this

end, let us consider a line bundle L of degree d = 5 on a genus g = 2 curve. Then χ(L) = 4

and h0(C2,L) ∈ {4, 5}. Let us compute ρ(r, d, g) for these two values of global sections:

r hi(C2,L) ρ(r, d, g)

3 (4,0) 2

4 (5,1) −3

(5.4.3)

Thus, on a smooth curve of genus g = 2, any line bundle of degree d = 5 has 4 global

sections. Even more, since the degree d is in the stable range, we find 4 global sections

for this line bundle on every smooth curve of genus g = 2 — generic or not. Hence, 5

sections can only be realized on a singular curve.

This can be achieved by choosing the curve parameters (which model the complex struc-

ture moduli of global F-theory models) such that the curve becomes reducible, and factors

into various components which intersect transversely in a number of points. A way to

construct global sections on such curves is then as follows: First, consider each component

individually and identify which sections they support. Then, by demanding that these

sections agree at the intersection points, we glue these local sections to global sections.

We will return to this gluing procedure in more detail in 5.5.

In this section, we will take a closer look at the interplay of jumps that occur due to non-

genericity both of the line bundle and the curve. In particular, since in global F-theory

models, both the bundle and the curve depend on the complex structure parameters of

the elliptic fibration in the same fashion (namely through the coefficients of its defin-
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ing polynomials), they should be treated on the same footing, which we can summarize

diagrammatically. The following analysis requires, at a technical level, a working under-

standing of the Koszul resolution of a pullback bundle, its associated long exact sequence

in sheaf cohomology, inferring the maps in this long exact sequence from Čech ochomol-

ogy as well as a basic understanding of on-reduced curves. For convenience of the reader,

further details are provided in B.1.

5.4.1 Jumps from curve splittings

We first analyze examples with jumps from curve splittings. We will see that rigidity of

the components that split off play no role in the section counting. The reason why we

found in earlier chapters that rigid divisors split off is due to our special choice of setting

all coefficients in the polynomial that specify the curve in dP3 to either zero or one.

Example: one additional section

Setup Let us return to the example of a line bundle on a genus 2 curve discussed above.

In more detail, the curve and line bundle are given by

DC = (4;−1,−2,−1) , DL = (3;−3,−1,−2) . (5.4.4)

The curve C (c) = V (P (c)) is defined by a polynomial P (c) ∈ H0 (dP3,OdP3(DC)) ∼= C10

with

P (c) = c1x
3
1x

3
2x3x4 + c2x

2
1x

3
2x

2
4x6 + c3x

3
1x

2
2x

2
3x5 + c4x

2
1x

2
2x3x4x5x6 + c5x1x

2
2x

2
4x5x

2
6

+ c6x
2
1x2x

2
3x

2
5x6 + c7x1x2x3x4x

2
5x

2
6 + c8x2x

2
4x

2
5x

3
6 + c9x1x

2
3x

3
5x

2
6 + c10x3x4x

3
5x

3
6 ,

(5.4.5)

where the coefficients c ∈ C10 form the parameter space of this genus g = 2 setup. The

line bundle L(c) = OdP3(DL)|C(c) satisfies deg(L(c)) = 5. Hence, on smooth curves, the

92



theorem of Riemann–Roch tells us

χ(L(c)) = deg(L(c))− g + 1 = 5− 2 + 1 = 4 . (5.4.6)

Moreover, since deg(L(c)) = 5 > 2g−2, we know that for smooth curves h1(C(c),L(c)) =

0. Hence, h0(L(c)) = 5 is only possible on non-smooth curves.

Comparison with database In our database, we have considered choices of parame-

ters c ∈ {−1, 0, 1}10 − 0. On about 96% of these 59048 curves, L(c) has 4 sections. This

fits with the above picture, that generically we expect 4 sections. However, we also find

2186 curves for which L(c) has 5 sections. Those curves satisfy c3 = c6 = c9 = 0, which

means that C(c) = V (x4) ∪B, where

B = V (c1x
3
1x

3
2x3 + c2x

2
1x

3
2x4x6 + c4x

2
1x

2
2x3x5x6 + c5x1x

2
2x4x5x

2
6

+ c7x1x2x3x
2
5x

2
6 + c8x2x4x

2
5x

3
6 + c10x3x

3
5x

3
6)

(5.4.7)

is a genus-0 curve with V (x4) · B = 3. We will now argue that L(c) admits 5 sections if

and only if C(c) decomposes in this way.

Classification of jump geometries To this end, we consider the Koszul resolution

0→ OdP3 (DL −DC) α−→ OdP3 (DL)→ L(c)→ 0 . (5.4.8)

Its associated long exact sequence in sheaf cohomology takes the form

0 0 H0 (dP3, DL) ∼= C1 H0 (C(c),L(c))

H1 (dP3, DL −DC) ∼= C4 H1 (dP3, DL) ∼= C1 H1 (C(c),L(c))

0 0 0 0

ϕ

(5.4.9)
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The exactness of this sequence implies that

h0(C(c),L(c)) = 5− dim (imϕ) = 5− rk (Mϕ) , (5.4.10)

where Mϕ = (c3, c6, c9, 0). We explain the construction of the mapping matrix Mϕ in

more detail in B.1.

Obviously, Mϕ has rank 1 iff (c3, c6, c9) 6= 0 and its rank vanishes iff (c3, c6, c9) = 0. This

immediately leads to the following classification of curve geometries:

rk (Mϕ) explicit condition curve splitting

1 (c3, c6, c9) 6= 0 C

0 (c3, c6, c9) = 0 V (x4) ∪B

(5.4.11)

showing that we obtain one additional vector-like pair if and only if the curve factors as

V (x4) ∪B. We illustrate this result in the following diagram:

C

V (x4) ∪B

(h0, ρ) = (4, 1)

(h0, ρ) = (5,−3)

(5.4.12)

In this diagram, the ath node represents a family Fa of curves, for which we give the

generic element in this family.

For example, the family F1 of curves at the first node is defined by the nonvanishing

condition (c3, c6, c9) 6= 0 and has the curve C as its generic element, which is a smooth,

irreducible curve of genus g = 2. Note that (non-generic) members of F1 can also be

singular curves with several components. For example, the curve V (x3
1x

2
2x

2
3x5) is defined

by the condition that all ci but c3 vanish. This curve is clearly singular and has several

connected components. Recall that F1 is the family of curves on which the line bundle
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in question admits four global sections. Hence, the statement is that even on such a very

singular curve, the bundle in question admits exactly four sections.

This feature changes exactly on the family of curves F2, which are defined by (c3, c6, c9) ≡

0. Its generic element is a curve of the form V (x4)∪B, where B is a smooth genus g = 0

curve touching V (x4) in 3 distinct points. We can also view F1 = {c | (c3, c6, c9) 6= 0} and

F2 = {c | (c3, c6, c9) = 0} as subspaces of the parameter space C10 3 c. In this case it is

trivial to see that

F1 ∩ F2 = ∅ , F2 ⊂ F1 , (5.4.13)

where F1 the closure with respect to the standard topology on C10. We will come back

to this property shortly.

An h0-gap

Whilst factoring-off curve components typically increases the number of global sections,

this effect need not necessarily generate exactly one additional section, as we have already

seen above. Rather, it can force multiple additional sections to appear simultaneously.

An example of this sort is

DC = (3;−1,−1,−1) , DL = (1;−1,−3,−1) . (5.4.14)

In this case, C(c) = V (P (c)) is a genus 1 curve defined by

P (c) = c1x
2
1x

2
2x3x4 + c2x

2
1x2x

2
3x5 + c3x1x

2
2x

2
4x6 + c4x1x2x3x4x5x6

+ c5x1x
2
3x

2
5x6 + c6x2x

2
4x5x

2
6 + c7x3x4x

2
5x

2
6 .

(5.4.15)

Moreover, L is a line bundle of degree d = −2. Hence, its degree is in the stable regime

and on any smooth curve we find h0(C,L) = 0. Still, as demonstrated in 5.4.1, non-

smooth curves can admit higher numbers of global sections. Here, we will argue, that
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even on singular curve, the pullback line bundle L can never have exactly one section.

To see this, let us look at the long exact sequence in sheaf cohomology associated to the

Koszul resolution of the setup:

0 0 0 H0 (DC ,L)

H1 (dP3, DL −DC) ∼= C3 H1 (dP3, DL) ∼= C5 H1 (C,L)

0 0 0 0

ϕ

(5.4.16)

The exactness of this sequence implies h0(C,L) = 3− dim (imϕ) = 3− rk (Mϕ) with

Mϕ =

 c6 0 0
c7 c6 0
c3 0 0
c1 0 c3
c4 c3 c6

 . (5.4.17)

Consequently, the statement that on the curves in class DC the pullback of DL never has

exactly one section is equivalent to saying that Mϕ never has rank 2. We see this by

studying the four non-trivial and independent 3× 3-minors of Mϕ:

m1 = c2
6c3 , m2 = c3

6 m3 = c3
3 , m4 = c6c4c3 − c7c

2
3 − c2

6c1 . (5.4.18)

Now, rk(Mϕ) < 3 requires m1 = m2 = m3 = m4 = 0. This is equivalent to c3 = c6 = 0

and

Mϕ|c3=c6=0 =

 0 0 0
c7 0 0
0 0 0
c1 0 0
c4 0 0

 , (5.4.19)

which can have at most rank 1. More generally, we can classify the rank of Mϕ and
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thereby summarize the curve geometry as follows:

rk(Mϕ) explicit condition (Fi) splitting of curve

3 c3, c6 6= 0 C

1 c3 = c6 = 0 E2 ∪B

0 c1 = c3 = c4 = c6 = c7 = 0 E6 ∪ E4 ∪ E(2)
2 ∪A

(5.4.20)

Observe again that within the parameter space of c, we have

Fi ∩ Fj = ∅ , F1 ⊃ F2 , F2 ⊃ F3 . (5.4.21)

The corresponding diagram is

C

E2 ∪B

E6 ∪ E4 ∪ E(2)
2 ∪A

F1 : (h0, ρ) = (0, 1)

F2 : (h0, ρ) = (2,−7)

F3 : (h0, ρ) = (3,−14)

(5.4.22)

Jump from non-rigid curve splitting

We now address the bias in our data, and provide a concrete example of jumps from

curve splitting where none of the components are rigid. To this end, we consider DC =

(2;−1,−1, 0) and DL = (−2, 0, 4, 0). This curve is thus given by

P = c1x4x5x
2
6 + c2x1x3x5x6 + c3x1x2x4x6 + c4x

2
1x2x3 . (5.4.23)
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For generic coefficients ci, the curve C is a smooth curve of genus g = 0 and L has degree

d = 0. Hence we conclude h0(C,L) = 1.

To understand jumps at special coefficients, we employ the Koszul resolution and find

h0 (C(c),L(c)) = 7− rk(M) where

M =



0 0 0 c1 0 c3 0

c4 0 0 0 c1 c2 c3

c3 0 0 0 0 c1 0

0 c1 0 c2 c3 c4 0

0 0 c1 c3 0 0 0

0 0 0 0 c2 0 c4


. (5.4.24)

The rank drops of this matrix include both cases of rigid and non-rigid splittings. Ex-

plicitly, let us set Ai = V (xi), which are rigid components. Moreover, we also have the

following possible genus g = 0 components which are non-rigid:

D1 = V (c2x3x5x6 + c3x2x4x6 + c4x1x2x3) ,

D2 = V (c3x4x6 + c4x1x3) ,

D3 = V (c4x1x2 + c2x5x6) ,

D4 = V (c2x1x3 + c1x4x6) ,

D5 = V (c3x1x2 + c1x5x6) .

(5.4.25)
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With these, we can then summarize the rank drops as follows:

rk(M) explicit condition curve splitting

6 generic C

5 c1 = 0 A1 ∪D1

5 c1c4 = c2c3 D2 ∪D3

3 c1 = c3 = 0 A1 ∪A3 ∪D3

(5.4.26)

The corresponding diagram is of the form

C

A1 ∪D1 D2 ∪D3

A1 ∪A3 ∪D3

F1 : (h0, ρ) = (1, 0)

F2 : (h0, ρ) = (2,−2)

F4 : (h0, ρ) = (4,−12)

(5.4.27)

Similar to our discussion in 5.4.1, there is a gap at h0 = 3. Crucially, since D2 and D3

are non-rigid, the deformation C → D2 ∪ D3 provides an explicit example of a jump

associated to curve splitting with no rigid components.

5.4.2 Jumps from non-generic line bundles

We now turn to jumps due to special alignments of the points that define a line bundle

divisor. These phenomena are described by Brill–Noether theory.

Additional section due to special divisors

Let us consider the pair

DC = (4;−1,−1,−1) , DL = (1; 2,−2,−1) . (5.4.28)
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This genus g = 3 curve C(c) = V (P (c)) is defined by

P (c) = c1x
3
1x

3
2x

2
3x4 + c2x

2
1x

3
2x3x

2
4x6 + c3x1x

3
2x

3
4x

2
6 + c4x

3
1x

2
2x

3
3x5 + c5x

2
1x

2
2x

2
3x4x5x6

+ c6x1x
2
2x3x

2
4x5x

2
6 + c7x

2
2x

3
4x5x

3
6 + c8x

2
1x2x

3
3x

2
5x6 + c9x1x2x

2
3x4x

2
5x

2
6

+ c10x2x3x
2
4x

2
5x

3
6 + c11x1x

3
3x

3
5x

2
6 + c12x

2
3x4x

3
5x

3
6 .

(5.4.29)

Brill–Noether theory implies

curve g L χ d BN-theory

C = V (P ) 3 OdP3(DL)|C 1 3

h0 h1 ρ

1 0 3

2 1 1

3 2 −3

(5.4.30)

Hence, a jump on the generic curve — a Brill–Noether jump — to h0(C(c),L(c)) = 2 is

possible. To explicitly construct such curves, we again inspect the long exact sequence,

associated to the Koszul resolution of L(c), which is given by

0 0 0 H0 (DC ,L)

H1 (dP3, DL −DC) ∼= C3 H1 (dP3, DL) ∼= C2 H1 (C,L)

0 0 0 0 .

ϕ

(5.4.31)

From the exactness of this sequence, we learn that h0(C(c),L(c)) = 3− rk (Mϕ) with

Mϕ =
( c3 c2 c1

0 c12 c11

)
. (5.4.32)
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We set P1
a = V (x2), P1

b = V (x5). Then the possible h0 jumps are classified as

rk(Mϕ) explicit condition curve splitting

2 (c3c11, c3c12, c2c11 − c1c12) 6= 0 C1

1 c3 = 0, c2c11 − c1c12 = 0 C2

1 c1 = c2 = c3 = 0 B2 ∪ P1
b

1 c11 = c12 = 0 P1
a ∪B1

0 c1 = c2 = c3 = c11 = c12 = 0 P1
a ∪A ∪ P1

b

(5.4.33)

The corresponding diagram is of the form

C1

C2P1
a ∪B2 B1 ∪ P1

b

P1
a ∪A ∪ P1

b

F1 : (h0, ρ) = (1, 3)

F2 : (h0, ρ) = (2, 1)

F3 : (h0, ρ) = (3,−3)
(5.4.34)

The change of coefficients

c = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) → c = (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) (5.4.35)

leads to a transition C1 → C2 of smooth, irreducible curves. Since the topology of

the curve does not change for this choice of parameters, such a transition cannot be

detected from the topological data which we used for our machine learning. Therefore,

such transitions are the major source of error in our decision trees.

On smooth curves Ci, the nature of the jump C1 → C2 can be analyzed by using Serre
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duality:

h1 (C,OC (DL|C)) > 0 ⇔ h0 (C,OC (KC − DL|C)) > 0

⇔ KC − DL|C effective

⇔ ∃p ∈ C : KC − p ∼ DL|C .

(5.4.36)

Hence, the origin of this jump is that KC and the line bundle divisor differ, modulo linear

equivalence, only by a point on C. Such a divisor is known as a special divisor. Loosely

speaking, we may thus say that the origin of this one additional sections is that the points,

which define the line bundle on the curve, move into a special alignment.

Note that also in this case, the diagram 5.4.34 encodes a hierarchy F1 ⊃ F2, F2 ⊃ F3.

This is a generic feature of the parameter space and reflects a stratification induced by

the vector-like spectrum.

5.4.3 h0-stratification of the parameter space

A stratification of a topological space X is a decomposition X = ⋃
iFi into locally closed

subspaces Fi such that

1. Fi ∩ Fj = ∅ if i 6= j,

2. if Fi ∩ Fj 6= ∅, then Fi ⊂ Fj .

Intuitively speaking, a feature associated to a subspace Fi — a so-called stratum —

becomes “less likely” with increasing codimension of Fi, and being contained in (the

closure of) a higher dimensional stratum Fj implies a “specialization” of the feature

when going from Fi to Fj with j > i. The second defining property has a convenient

diagrammatic representation: Let the strata Fi form vertices of a graph, then there is a

directed edge going from j to i if Fi ⊂ Fj . This is precisely the structure of the diagrams

5.4.12, 5.4.22, 5.4.27, and 5.4.34. Here, the stratified X is the parameter space {c}

associated with a pair (DC , DL), and the strata are defined by the value of h0(C(c),L(c))
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in the notation of the previous subsections. Hence, we call these diagrams h0-stratification,

or in short, stratification diagrams.

Note that Brill–Noether theory basically provides an analog description of the moduli

space of line bundles / divisors on a smooth curve. In particular, it provides lower

bounds on the dimension of the strata in terms of ρ. For F-theory models, where also

deformations of the curve’s topology become relevant, we see that the stratification by h0

can be extended to the enlarged moduli space.

We observe that in this generalized setting, a stratum associated to a certain value of h0

can consist of several disjoint subfamilies of different dimensions. In the example 5.4.34,

the stratum F2 associated with h0 = 2 decomposes as F2 = F (a)
2 ∪ F (s)

2 ∪ F (b)
2 with

F (a)
2 = {c | c11 = c12 = 0 , c1 6= 0, c2 6= 0, c3 6= 0} ,

F (b)
2 = {c | c1 = c2 = c3 = 0, c11 6= 0 6= c12} ,

F (s)
2 = {c | c3 = 0 = c2c11 − c1c12 , c1 6= 0 6= c2 , c11 6= 0 6= c12} .

(5.4.37)

It is easy to see that each of these components also satisfies the axioms for strata (since

they satisfy F (x)
2 ∩ F (y)

2 = ∅ for x 6= y). Furthermore, their closure contains the common

stratum F3 = {c | c1 = ... = c12 = 0} of higher codimension with h0 = 3, as can be seen

from the arrows connecting the three subfamilies of the stratum F2 to F3 in 5.4.34.

In general, a stratification diagram can be roughly divided into three regions. At low

values of h0, jumps typically occur for divisor alignment, i.e., are allowed by Brill–Noether

theory on a smooth curve. To get to high h0, i.e., many vector-like pairs, the curve

typically needs to factorize into many components. In the middle regime, we can have

a mixture, meaning in particular that a jump occurs due to divisor alignment on a split

component.
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To illustrate such a “typical” case, consider

DC = (5;−1,−1,−2) , DL = (1; 1,−4, 1) . (5.4.38)

This genus g = 5 curve is given by C(c) = V (P (c)) with

P := c1x
3
1x

4
2x

2
3x

2
4 + c2x

2
1x

4
2x3x

3
4x6 + c3x1x

4
2x

4
4x

2
6 + c4x

3
1x

3
2x

3
3x4x5 + c5x

2
1x

3
2x

2
3x

2
4x5x6

+ c6x1x
3
2x3x

3
4x5x

2
6 + c7x

3
2x

4
4x5x

3
6 + c8x

3
1x

2
2x

4
3x

2
5 + c9x

2
1x

2
2x

3
3x4x

2
5x6

+ c10x1x
2
2x

2
3x

2
4x

2
5x

2
6 + c11x

2
2x3x

3
4x

2
5x

3
6 + c12x

2
1x2x

4
3x

3
5x6 + c13x1x2x

3
3x4x

3
5x

2
6

+ c14x2x
2
3x

2
4x

3
5x

3
6 + c15x1x

4
3x

4
5x

2
6 + c16x

3
3x4x

4
5x

3
6 .

(5.4.39)

From Brill–Noether theory, we then find

curve g L χ d BN-theory

C = V (P ) 5 OdP3(DL)|C 0 4

h0 h1 ρ

0 0 5

1 1 4

2 2 1

(5.4.40)

The stratification of curve geometries follows from the long exact sequence

0 0 0 H0 (C(c),L(c))

H1 (dP3, DL −DC) ∼= C7 H1 (dP3, DL) ∼= C7 H1 (C(c),L(c))

0 0 0 0

ϕ

(5.4.41)
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Consequently h0 (C(c),L(c)) = 7− rk(Mϕ) and we find

Mϕ =



c15 c11 c7 0 0 0 0

0 c10 c6 c3 c11 c7 0

c12 c6 c3 0 c7 0 0

0 c5 c2 0 c6 c3 c7

c8 c2 0 0 c3 0 0

0 c14 c11 c7 0 0 0

0 c1 0 0 c2 0 c3



. (5.4.42)

We list the curve strata in 10 and display the corresponding stratification diagram in 8.

Of particular interest is the transition A3 ∪ D1 → A3 ∪ D2. The former curve admits

3, the latter 4 sections. This change in the number of sections is due to a Brill–Noether

jump on the curve components Di:

curve class genus d h0 h1 ρ

Di (5,−1,−2,−2) 4 0
0 3 4

1 4 0

Hence, provided that the line bundle divisor is chosen such that KDi − DL|Di is effective,

we find an additional section on Di, due to a Brill–Noether effect. More explicitly, in the

case at hand this condition states that the line bundle divisor is linearly equivalent to the

trivial divisor, i.e. DL|Di ∼ ∅. This condition is satisfied on D2 but not on D1. For this

reason we find one additional section on A3 ∪D2.

5.5 Local to global section counting

In this section, we provide an in-depth analysis of the procedure of gluing local sections

on reducible curves. As a result, we can place a lower bound on the number of global

sections. We find sufficient topological conditions for a jump of h0 to occur. This further
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rk(Mϕ) explicit condition curve splitting
7 det(Mϕ) 6= 0 C0

6 det(Mϕ) = 0 C1
1

5 c3c7c12 = c15c
2
3 + c8c

2
7, c11c

2
3 = c3c6c7 − c2c

2
7 C2

1c1c
3
7 + c10c

2
3c7 = c14c

3
3 + c3c5c

2
7

4 c3 = c7 = 0 A3 ∪D1

3 c3 = c7 = 0 c11c8 = c15c2 c11c12 = c15c6 A3 ∪D2c11c2c5 = c14c
2
2 + c1c11c6 c10c11c2 = c1c

2
11 + c14c2c6

3 c3 = c7 = c8 = c12 = c15 = 0 A3 ∪A4 ∪D3

2 c2 = c3 = c6 = c7 = c11 = 0 A
(2)
3 ∪D4

1 c1 = c2 = c3 = c5 = c6 = c7 = c10 = c11 = c14 = 0 A
(3)
3 ∪A5 ∪D5

1 c2 = c3 = c6 = c7 = c8 = c11 = c12 = c15 = 0 A
(2)
3 ∪A4 ∪D6

0 c1 = c2 = c3 = c5 = c6 = c7 = 0
A

(3)
3 ∪A4 ∪A5 ∪D7c8 = c10 = c11 = c12 = c14 = c15 = 0

Table 10: The curve strata for DC = (5;−1,−1,−2) and DL = (1; 1,−4, 1).

allows us to formulate an algorithm to estimate the possible numbers of vector-like pairs

on the moduli space of F-theory compactifications.

5.5.1 Gluing local sections to global sections

Trivial boundary conditions

Let us start by looking at a simple example. To this end, we go back to the geometry

discussed in 5.4.1, i.e.

DC = (3;−1,−1,−1) , DL = (1;−1,−3,−1) . (5.5.1)

Recall that in this case, C(c) = V (P (c)) is a genus 1 curve defined by

P (c) = c1x
2
1x

2
2x3x4 + c2x

2
1x2x

2
3x5 + c3x1x

2
2x

2
4x6 + c4x1x2x3x4x5x6

+ c5x1x
2
3x

2
5x6 + c6x2x

2
4x5x

2
6 + c7x3x4x

2
5x

2
6 .

(5.5.2)
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C1
1

C2
1

A3 ∪D1

A3 ∪D2 A3 ∪A4 ∪D3

A
(2)
3 ∪D4

A
(3)
3 ∪A5 ∪D5 A

(2)
3 ∪A4 ∪D6

A
(3)
3 ∪A4 ∪A5 ∪D7

h0 = 0

h0 = 1

h0 = 2

h0 = 3

h0 = 4

h0 = 5

h0 = 6

h0 = 7

an
d

rig
id

cu
rv

e
sp
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tin
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Figure 8: The stratification diagram for DC = (5;−1,−1,−2), DL = (1; 1,−4, 1).

We found that for c1 = c3 = c4 = c6 = c7 = 0 we have 3 global sections. Furthermore, we

have already seen that for this choice of parameters, the curve has 4 components

C(c) = E6 ∪ E4 ∪ E(2)
2 ∪A . (5.5.3)
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These components have the following properties:

curve component equation class g d h0(Ci, DL)

A V (c2x1x2 + c5x5x6) (1; 0,−1, 0) 0 −2 0

E4 V (x1) (1;−1,−1, 0) 0 −3 0

E6 V (x5) (1; 0,−1,−1) 0 −3 0

E
(2)
2 V (x2

3) (0; 0, 2, 0) −2 6 9

(5.5.4)

In the last column we give the number of sections of the restriction of the bundle OdP3(DL)

to these curve components. We will refer to these sections in the following as the local

sections.

We display this geometry in 9. Our task is to glue the local sections to global sections on

the curve C = E6 ∪ E4 ∪ E(2)
2 ∪ A . To this end, we work out the sections explicitly and

then subject them to boundary conditions at the intersection points of the different curve

components.

For the components A, E4 and E6 we already know that the only allowed local section

vanishes identically. On E(2)
2 however, the situation is a bit more involved since E(2)

2 is a

non-reduced curve. As a set, E(2)
2 is the locus V (x3). Using the scaling relations of dP3,

we can then set x2 = x4 = x6 = 1 and thereby identify (x1, x5) as coordinates of E(2)
2 .

Note, however, that since E(2)
2 is a non-reduced curve, the polynomial x3 is a non-trivial

function on this curve component. These observations allow us to conclude

H0
(
E

(2)
2 , OdP3(DL)|

E
(2)
2

)
∼= P3(x1, x5)⊕ x3 · P4(x1, x5) , (5.5.5)

where Pi(x1, x5) is the space of polynomials of degree i in x1 and x5. Upon homogenization
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2×

2×

2×

V (x2
3)V (x1) A

V (x5)

DL · V (x1) = −3

h0 = 0

DL ·A = −2

h0 = 0

DL · V (x2
3) = 6

h0 = 9

DL · V (x5) = −3

h0 = 0

Figure 9: The 9 local sections on A lead to 9− 3× 2 = 3 global sections.

with x2, x4, x6, we can then write

H0
(
E

(2)
2 , OdP3(DL)|

E
(2)
2

)
∼= SpanC

{
x3

5
x3

2x
2
4
,
x1x

2
5

x2
2x

2
4x6

,
x2

1x5
x2x2

4x
2
6
,
x3

1
x2

4x
3
6

}

⊕ x3 · SpanC

{
x4

5
x4

2x
3
4
,
x3

5x1
x3

2x
3
4x6

,
x2

1x
2
5

x2
2x

3
4x

2
6
,
x3

1x5
x2x3

4x
3
6
,
x4

1
x3

4x
4
6

}
.

(5.5.6)

From this, we learn that the only sections on V (x2
3), which vanish at V (x1), V (x5) and

V (c2x1x2 + c5x5x6), are linear combinations of the following three sections:

s1 = c5
x1x

2
5

x2
2x

2
4x6

+ c2
x2

1x5
x2x2

4x
2
6

= x1x5 (c2x1x2 + c5x5x6)
x2

2x
2
4x

2
6

, (5.5.7)

s2 = c5
x3

5x1
x3

2x
3
4x6

+ c2
x2

1x
2
5

x2
2x

3
4x

2
6

= x1x
2
5 (c2x1x2 + c5x5x6)

x3
2x

3
4x

2
6

, (5.5.8)

s3 = c5
x2

1x
2
5

x2
2x

3
4x

2
6

+ c2
x3

1x5
x2x3

4x
3
6

= x2
1x5 (c2x1x2 + c5x5x6)

x2
2x

3
4x

3
6

. (5.5.9)

Consequently, by extending these sections by zero outside of V (x2
3), we obtain 3 global

sections.
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2×

E3 E
(2)
5 E

(2)
1 E4

h0 = 2 h0 = 1 h0 = 5 h0 = 0

Figure 10: A non-trivial gluing example which gives no global sections.

Non-trivial boundary conditions

Let us consider DC = (3,−1,−1,−1) and DL = (5;−4,−4, 3). We pick special values for

the parameters such that C = V (x1x
2
2x

2
4x6). The curve thus factors into four components,

as displayed in 10. These components have the following properties:

curve class eqn. d g h0 basis of sections

E3 (0; 0, 0, 1) V (x6) 1 0 2 x4
x3

3
, x5
x2x2

3

E
(2)
5 (2;−2, 0,−2) V (x2

4) −2 −2 1 x4
x3

3

E
(2)
1 (0; 2, 0, 0) V (x2

2) 2 −2 5 x1
x2

3x6
, x4
x3

3
,
x2x2

4
x4

3x5
, x2x1x4
x3

3x5x6
,
x2x2

1
x2

3x5x2
6

E4 (1;−1,−1, 0) V (x1) −3 0 0 0

(5.5.10)

We have also listed bases for the sections on the individual curve components. By starting

in E3, we see that there is a unique section which extends to E(2)
5 and then to E(2)

1 – this

section is x4
x3

3
. However, this section fails to vanish on V (x1). Consequently, this geometry

only admits the global section which is identically zero.

From trivial to non-trivial boundary conditions

We have seen an interesting geometric transition when we discussed DC = (5,−1,−1,−2)

and DL = (1; 1,−4, 1) in 5.4.3. Namely, the transition

A3 ∪D1 → A3 ∪D2 (5.5.11)
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enforces a Brill–Noether jump on D2. Whilst D1 only supports the trivial section, D2

supports a one-dimensional space of non-trivial sections. As a consequence, A3 ∪ D2

admits one additional section as compared to A3 ∪D1. Let us investigate this finding in

more detail. We depict this geometry in 11 and recall the following information:

curve class degree genus h0

A3 (0; 0, 1, 0) 4 0 5

D1 (5,−1,−2,−2) 0 4 0

D2 (5,−1,−2,−2) 0 4 1

To simplify our analysis, let us work with a particular class of curves D1 and D2, for

which the transition D1 → D2 is particularly simple:

D1 = V
(
c12x

2
1x2x

3
3x

3
5x6 + c13x1x2x

2
3x4x

3
5x

2
6 + c16x

2
3x4x

4
5x

3
6 + c4x

3
1x

3
2x

2
3x4x5

+ c9x
2
1x

2
2x

2
3x4x

2
5x6 + x3

1x
4
2x3x

2
4 + x3

1x
2
2x

3
3x

2
5 + x2

1x
4
2x

3
4x6

− x2
1x

3
2x3x

2
4x5x6 − x1x

2
2x3x

2
4x

2
5x

2
6 − x1x

3
3x

4
5x

2
6 − x2

2x
3
4x

2
5x

3
6

+x2x3x
2
4x

3
5x

3
6

)
,

D2 = D1|c12=0 .

(5.5.12)

Next, we turn to the sections on A3 ∼= P1. We note that the homogeneous coordinates

are [x1 : x5]. Hence, the line bundle sections at hand are of the form (λ = x2x
−1
6 ):

H0
(
A3, L|A3

)
= 1
x3

4
· SpanC

{
x4

1 · λ2, x3
1x5 · λ, x2

1x
2
5, x1x

3
5 · λ−1, x4

5 · λ−2
}
. (5.5.13)

At x3 = 0, we may set x2 = x4 = x6 = 1 by the scaling relations of dP3. In terms of these

inhomogeneous coordinates, we find

A3 ∩Di = V (x3, x1 − x5) ∪ V (x3, x1 + x5) . (5.5.14)
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1×

1×

A3 D1/D2

h0 = 5 h0 = 0/1

Figure 11: A Brill–Noether jump D1 → D2 generates one additional global section.

That all said, we can discuss the global sections on A3 ∪D1 and A3 ∪D2:

• On D1, the only supported section vanishes identically. Hence, we may only consider

sections on A3, which vanish at A3 ∩D1. It is not too hard to see that the space of

these sections is generated by

s1 = −x4
1 + x4

5 , s2 = −x3
1x5 + x1x

3
5 , s3 = −x4

1 + x2
1x

2
5 . (5.5.15)

• On D2 however, the line bundle divisor is special. In fact, since it is a divisor of

degree zero, this divisor must be the trivial divisor. Consequently, the sections on

D2 are the constant ones. It is not too hard to see that the sections on A3, which

have value 1 at the intersection points A3 ∩D2, are generated by

t1 = x4
1 , t2 = t1 + s1 , t3 = t1 + s2 , t4 = t1 + s3 . (5.5.16)

This explains the one additional section on A3 ∩D2 as opposed to A3 ∩D1.
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Overcounting boundary conditions

As a final example, let us look at DC = (4;−1,−1,−1) and DL = (1, 1,−3, 0). Let us

deform the curve C such that it is given by

P = x1 ·Q , Q = x2
1x

2
2x

3
3x5 + x3

2x
3
4x

2
6 + x3

3x
3
5x

2
6 . (5.5.17)

We display this curve geometry in 12. The two curve components have the following

properties:

component equation class g d h0

C1 V (x1) (1;−1,−1, 0) 0 −1 0

C2 V (Q) (3; 0, 0,−1) 1 3 3

Up to canonical isomorphism (induced from the connection homomorphism), we find a

basis of the sections on C2 as

B =
{ 1
x2x3

3x
2
4x6

,
x5

x2
2x

2
3x

3
4x6

,
x1

x2x2
3x

3
4x

2
6

}
. (5.5.18)

From this we can see that the third section automatically vanishes at the intersection

C1∩C2, whilst the other two sections do not vanish there. Consequently, and in agreement

with the computational results by gap, we find h0 (C1 ∪ C2,L) = 1.

Importantly, a naive guess cannot predict this number. In this case, we would have

counted as follows: 3 sections on C2 subject to vanishing conditions at the 3 intersection

points C1 ∩ C2 should leave us only with the trivial section. Hence, in this example, a

naive counting fails. Such phenomena were originally studied more generally in [154, 155]

— see also [156] for a more modern exposition of the material.
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1×

1×

1×

C1 C2

h0 = 0 h0 = 3

Figure 12: Naively, we expect 3 − 3 = 0 global sections. However, one section on C2
automatically vanishes at C1 ∩ C2, leading to h0 (C1 ∪ C2,L) = 1.

5.5.2 Sufficient jump condition and algorithmic section estimate

As demonstrated in the previous section, gluing local sections to global sections is a non-

trivial task. The exact details depend, among other things, on the relative position of

the line bundle divisor and the intersection points of the curve components: the results

change when some of these intersection points coincide and when the bundle divisor is

special on some curve components.

In the following, we will propose a counting mechanism with the following key properties:

• It relies mostly on topological data.

• It provides a lower bound on the number of global sections.

Of course, such a simplified counting procedure will fail to predict intricate geometries

as discussed in [154, 155, 156]. Still, it has two distinct advantages. First, since it relies

mostly on topological data, it is very fast. Given a curve C and a line bundle L on C, we

114



can apply the strategy to place a lower bound on h0 (C(c),L(c)) for many different choices

of parameters c of C. The collection of these lower bounds can then serve as an estimate

of the vector-like spectrum of (C,L) over the parameter space. Note that obtaining such

an estimate is unfeasible with existing exact algorithms, e.g., those implemented in [146],

since these algorithms require extensive computational resources and often take a long

time to finish. The second advantage results from the fact that our counting procedure

systematically underestimates the actual number of global sections. Therefore, it allows

us to formulate sufficient conditions for a jump in the vector-like spectrum to happen.

Counting procedure

Let us consider a curve C with

C =
N⋃
i=1

Ci , (5.5.19)

i.e., C has N components Ci. For our counting procedure to be as simple and reliable

as possible, let us avoid setups of the type discussed in 5.5.1 and 5.5.1. Hence, let us

consider a line bundle L on C such that neighboring curve components do not support

non-trivial sections simultaneously. Put different, we only consider setups where for all

curve components Ci the following holds true:

h0
(
Ci, L|Ci

)
> 0 ⇒ h0

(
Cj , L|Cj

)
= 0 ∀ Cj with Ci ∩ Cj 6= ∅ . (5.5.20)

Let us denote by bi the number of intersection points of Ci with the other curve compo-

nents. Generically, we then impose bi conditions on the “local” sections in H0(Ci, L|Ci).

Consequently,

ni(Ci) =


h0(Ci, L|Ci)− bi if h0(Ci, L|Ci) ≥ bi

0 else
(5.5.21)
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is a lower bound to the number of sections on Ci which satisfy the gluing boundary

conditions. The sum of these contributions over all curve components places a lower

bound on h0(C,L):

N∑
i=1

ni(Ci) ≤ h0(C,L) . (5.5.22)

We expect that equality holds in generic situations and that only fairly tuned geometries,

in the spirit of [154, 155, 156], will lead to a proper inequality.

As simple demonstration, let us apply this procedure to the geometry discussed in 5.5.1:

5.5.1:

component Ci h0(Ci, L|Ci) bi ni

V (x1) 0 2 0

V (x2
3) 9 6 3

V (x5) 0 2 0

A 0 2 0

Indeed, ∑3
i=1 ni = 3 in agreement with our discussion in 5.4.1. However, if we apply this

counting to A3 ∪D2, as discussed in 5.5.1, then we find the inequality

n1 + n2 = (5− 2) + 0 = 3 < 4 = h0(A3 ∪D2,L) . (5.5.23)

This shows that, if we are interested in the exact number rather than a lower bound,

we should restrict our counting procedure to curve geometries where neighboring curve

components do not support non-trivial sections simultaneously. Furthermore, the geom-

etry studied in 5.5.1 shows that even under this assumption, there are exceptions to this

counting procedure. In this case, this can be attributed to a special alignment of the line

bundle divisor and the intersection points, such that one of the sections automatically

satisfies all of the boundary conditions.
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Accuracy on our database

Let us now apply this counting procedure to our database [147] to obtain an estimate

of how often the inequality is satisfied. To this end, we need to identify the number of

local sections, which can be challenging for complicated curve geometries and could call

for an application of, e.g., the exact methods implemented in [146]. However, given the

vast number of curve components in our database, we find it more appealing to focus on

those curves for which we can identify the number of local sections quicker. To this end,

we focus on the following two types of curves:

• Smooth curves:

We consider the line bundle degree d = deg(L|Ci). Provided that d < 0, we know

that L|Ci does not admit non-trivial sections. Conversely, if d > 2g(Ci) − 2, then

it follows from application of the Kodaira vanishing theorem, that h0(Ci, L|Ci) =

d− g + 1. If none of these conditions is satisfied, we discard the curve for this test.

• Non-split curves:

For these curves, we can simply read off the number of local sections from our

database.

Based on these local section counts, we have then applied the counting procedure presented

in 5.5.2. Recall that a large number of curves in our database do neither consist of

smooth curve components nor are non-split. Furthermore, recall that we subject the

curve geometry to the condition that neighboring components do not support non-trivial

sections simultaneously. Let us emphasize that the latter is a simplifying assumption to

simplify our counting procedure. Whilst we leave extensions in this direction to future

work, we can still apply our (restricted) counting procedure to roughly 60% of the cases

in our database. For these, we predict the correct number of global sections with an

accuracy of more than 99%, i.e. our counting procedure works remarkably well. We list

the detailed results in B.2.2.
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Sufficient conditions for jumps in cohomology

These insights of gluing local sections to form global sections, imply sufficient conditions

for jumps in cohomology. First, we have the following

Lemma 5.5.1. Let S be a smooth surface, L ∈ Pic(S) a line bundle, and |C| a linear

system of curves on S. Consider a special member C1 ∪ C2 such that the curves C1,

C2 meeting transversely in C1 · C2 > 0 distinct points. Let N1 = h0(C1, L|C1
) and

N2 = h0(C2, L|C2
). Then

h0 (C1 ∪ C2,L) ≥ N1 +N2 − C1 · C2 . (5.5.24)

Proof We consider the short exact sequence 0→ L|C1∪C2
→ L|C1tC2

→ L|C1∩C2
→ 0.

The associated long exact sequence in sheaf cohomology begins with

0→ h0
(
C1 ∪ C2, L|C1∪C2

)
→ h0

(
C1 t C2, L|C1tC2

)
→ h0

(
C1 ∩ C2, L|C1∩C2

)
→ . . .

(5.5.25)

Now, since h0(C1 t C2, L|C1tC2
) = N1 + N2 and h0(C1 ∩ C2, L|C1∩C2

) = C1 · C2, the

statement follows.

We can use this result, together with the insights on gluing local sections to global sections,

to derive the following

Corollary 5.5.2. Let S be a smooth surface, L ∈ Pic(S) a line bundle, and |C| a lin-

ear system of curves on S with smooth general member C and special member C1 ∪ C2

where C1, C2 are smooth curves of genera g1, g2 meeting transversely in C1 · C2 > 0

distinct points. We assume h1(C, L|C) = 0, deg
(
L|C2

)
> 2g2 − 2 and deg

(
L|C1

)
<

min {0, g1 − 1}. Then

h0 (C1 ∪ C2,L)− h0 (C,L) ≥ g1 − 1− deg
(
L|C1

)
. (5.5.26)
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Proof Since deg
(
L|C1

)
< 0, there are no sections on C1. Hence, from 5.5.1 we obtain

the inequality

h0 (C1 ∪ C2,L) ≥ h0
(
C2, L|C2

)
− C1 · C2 . (5.5.27)

Note that gC = g1 + g2 + C1 · C2 − 1. Consequently, since deg
(
L|C2

)
> 2g2 − 2, we can

write

h0(C2, L|C2
) = deg

(
L|C2

)
− g2 + 1

= deg
(
L|C2

)
− (gC − g1 − C1 · C2 + 1) + 1

= (deg (L|C)− gC + 1) + C1 · C2 + g1 − 1− deg
(
L|C1

)
= h0(C, L|C) + C1 · C2 + g1 − 1− deg

(
L|C1

)
.

(5.5.28)

Hence, we conclude

h0(C1 ∪ C2,L) ≥ h0
(
C2, L|C2

)
− C1 · C2 = h0(C, L|C) + g1 − 1− deg

(
L|C1

)
,

⇔ h0(C1 ∪ C2,L)− h0(C, L|C) ≥ g1 − 1− deg
(
L|C1

)
.

(5.5.29)

Finally, since we assume deg
(
L|C1

)
< min {0, g1 − 1}, the number of additional sections

on C1 ∪ C2 is bounded from below by the positive integer g1 − deg
(
L|C1

)
− 1.

We expect that equality holds in generic situations and that only special setups in the

spirit of [154, 155] lead to a proper inequality. Still, our result is powerful enough to give

a sufficient condition for a jump. Let us demonstrate this in the geometries discussed in

5.3.1. Recall that we are looking at S = dP3 and

DC = (10;−3,−3,−4) , DL = (5;−4,−4, 3) . (5.5.30)

We found that on the genus g = 24 curve C it holds h1(C, L|C) = 0. Moreover, let
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us consider the splitting C → C1 ∪ C2 where C1 = V (x6). These two curves have the

following properties:

curve class degree genus h0

C1 (0;0,0,1) -3 0 0

C2 (10;-3,-3,-5) 41 20 22

(5.5.31)

From this we see that 5.5.2 applies to this geometry and implies

h0 (C1 ∪ C2,L)− h0 (C,L) ≥ g1 − 1− deg
(
L|C1

)
= 0− 1− (−3) = 2 , (5.5.32)

This is in agreement with our discussion in 5.3.1.

In many string theory constructions, it is important to engineer exactly one additional

vector-like pair. This is particularly true when generating exactly one Higgs pair in MSSM

constructions. It is intuitive, that such a minimal change in the vector-like spectrum,

requires only mild changes in the geometry. As long as 5.5.2 applies, a necessary condition

for such a mild change is to merely split off either a P1 or a torus — g1 ≥ 2 implies

h0 (C1 ∪ C2,L)− h0 (C,L) ≥ 2.

More generally, it is of interest to identify the allowed numbers of global sections on a

given curve. Therefore, we will now describe an estimate for these values, which is based

on the counting procedure presented in 5.5.2, 5.5.1 and 5.5.2.

Algorithmic spectrum estimates

We can use our results to formulate an algorithmic estimate for the vector-like spectrum

over the parameter space of a given setup (DC , DL) in a global model. For the time

being, our algorithm is focused on the case of a curve in dP3 defined by {P = 0} and

pullback line bundles on these curves. We have implemented this algorithm in the package

H0Approximator [148] as part of [146]. Our algorithm proceeds as follows:
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1. Input: Curve class DC and line bundle class DL

2. Identify all combinations of toric P1s that can be split off from the curve DC .

3. Identify the generic number of sections of DL on each curve component.

4. Use the counting procedure presented in 5.5.2 as well as 5.5.1 and 5.5.2 to place a

lower bound on the number of global sections.

⇒ The collection of all these global section estimates forms an estimate for h0 of DL

on the parameter space of the curve DC .

Let us emphasize a couple of important points of this counting procedure. First, in the

second step we do not apply exact methods, such as [146], to find the exact number of

local sections. Rather, we identify the generic number of sections, by which we mean

h0(C,L) = χ(L) if χ(L) ≥ 0 and h0(C,L) = 0 otherwise. The advantage of this is, that

the chiral index can be obtained from topology only. Hence, the number of global sections

can be estimated very quickly. Furthermore, this strategy does not violate our lower bound

philosophy, since the generic number of sections is never larger than the actual number of

sections. Consequently, this strategy allows us to quickly identify a lower bound to the

actual number of global sections.

Secondly, let us point out that one disadvantage of our approach of generic local sections

is that we are unable to identify Brill–Noether jumps on the curve components in this

way. However, since such a quick spectrum estimate over the entire parameter space of

the curve is currently unfeasible or impossible to obtain with the fully accurate methods,

we accept this minor drawback.

Finally, note that upon splitting off P1s from the curve, the curve could (accidentally)

factor further. Computing these further factorizations requires a primary ideal decompo-

sition of the corresponding principal ideal. Currently, this is the most time consuming

operation in our algorithm. We reserve optimizations for future work.
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This algorithm correctly predicts all the possible values of h0 for 67 of the 83 pairs

(DC , DL) in our database [147]. Only for one pair (DC , DL), our prediction misses more

than 2 values of the exact spectrum. Given the simplicity of our approximation, which

means that we cannot detect intricate Brill–Noether jumps and effects discussed in [154,

155], we consider this a very positive result. We list the details in B.2.2.

Let us complete this section by applying our procedure to estimate the vector-like spec-

trum of the F-theory setup discussed in 5.3. Recall that in this case we are looking at

DC = (10;−3,−3,−4), i.e., a complicated genus 24 curve. The line bundle in this case

is DL = (5;−4,−4, 3). Even though this geometry is fairly involved, our approximator

can estimate the spectrum in a couple of minutes10. Hence, we have identified 26 curve

splittings into irreducible components, for which our counting procedure can estimate the

spectrum. Based on this, we expect h0 ∈ {15, 17, 18, 19, 20, 21}. As we know from our

analysis in 5.3, indeed 15 ≤ h0 ≤ 21 and h0 = 16 is only possible by a Brill–Noether jump.

The latter cannot be predicted by this method. More information on this implementation

can be found in [146].

5.6 Conclusion and Outlook

Motivated by a better understanding of the exact massless spectra of 4d F-theory com-

pactifications, we have analyzed in this work families of curves C(c) in a complex surface

and line bundles L(c) on these. Our focus has been on the interplay between changes in

the cohomology h0(C(c),L) and variations of the parameters c, which play the role of

complex structure moduli in the context of global F-theory models. To gain insights on

how these two are related, we have used two approaches.

To begin with, we first used ideas from Big data and machine learning to gain some

intuitions, based on computationally simpler examples, under what circumstances the

cohomology may jump, leading to additional vector-like pairs in the F-theory interpreta-
10In this case, this long run time is mostly attributed to the primary decomposition, which we perform

to check irreducibility of the curve components.
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tion. To this end we have generated, in 5.2, a database [147] of cohomologies for pairs

(C(c),L(c)) by varying the parameters c, where the curves are of genus 1 ≤ g ≤ 6, and

the line bundles were pullback bundles from a dP3 surface. For these less complex exam-

ples, the cohomologies can be computed using the computer implementations in [146]. We

then use supervised learning on decision trees to predict jumps in the value of h0. Using

different features for training, we find that, while not performing perfectly, topological

criteria are surprisingly well-suited (reaching about 95% accuracy) for distinguishing cases

with generic vs. enhanced h0. In particular, the algorithm learns from the data a strong

correlation between jumps and curves C(c) which split into various components. This

intuition can be applied, without any detailed understanding of the origin of the jumps,

directly to find complex structure tunings targeted at generating additional vector-like

pairs in F-theory model building. We demonstrate this in 5.3 with an F-theory toy model

containing a curve of genus 24, for which a scan over the relevant parameter space would

be computationally infeasible. Nevertheless, we found that we can use curve splittings

alone to easily engineer 2 to 5 additional vector-like pairs. This highlights the effective-

ness of the machine learning approach to learn certain features from simpler examples,

and without any previous knowledge. However, we also saw there that by curve splitting

alone, a spectrum with just one vector-like pair is impossible to achieve.

To overcome this obstacle, we have employed well-known techniques in algebraic geometry,

such as the Koszul resolution and Čech cohomology, which also helps to explain our find-

ings from the machine learning approach in more detail. We conclude that deformations

of the parameters c leading to a jump in cohomology can be largely classified as either

the curve C(c) or the line bundle L(c) becoming non-generic. While the former comes

from curve splittings and is thus topological11, the latter is due to special alignments of

the points on C(c) defining L(c), and not visible just from topological criteria. The fact

that the learner performed so well with the topological criteria is due to a bias in the
11More generally, a curve can also remain smooth while being non-generic, e.g., if it becomes hyper-

elliptic. Such transitions are of non-topological nature, and therefore more subtle to detect. We have
neglected them for simplicity in our discussions.
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dataset, which contains only a small number of instances with non-generic line bundles.

Such jumps can never be predicted by the learner based just on split type and intersection

numbers. However, as we discussed in 5.4, we find in general “equally likely” jumps due

to non-generic line bundles. The likeliness can be quantified by comparing the dimension

of the corresponding subspace of the parameter space on which the jumps occur, which

for non-generic line bundles is the subject of Brill–Noether theory. This is generalized in

the F-theoretic setup, where complex structure deformations affect genericity of the curve

and line bundle democratically. This leads to a stratification of the parameter space by

the values of h0. That is, the complex structure moduli space of global F-theory models

decomposes into disjoint subspaces labelled by the vector-like spectrum. The relation-

ship between the strata can be represented by a Hasse-type diagram, which we term

h0-stratification diagrams.

The connection between decision trees and the stratification diagrams, which are also

Hasse diagrams, is rather intriguing. While they bear some resemblance with decision

trees, a key difference is that, unlike in decision trees, nodes can have more than one

incoming edge. It would be interesting to investigate whether other graph-based machine

learning techniques, such as Graph NNs, can be used to train algorithms that can predict

the presence of jumps more accurately than the decision trees. Furthermore, recall that

global F-theory models typically contain more than one matter curve. The complex

structures of these curves are determined by the global moduli of the elliptic fibration,

and it is in general not possible to tune the complex structures of all of these curves

independently. Therefore, it would be important to extend our analysis to a simultaneous

h0-stratification of the moduli space by all the matter curves in a global F-theory model.

In 5.5, we then investigated the “microscopic” origins of jumps due to curve-splittings.

It follows a simple counting procedure of local sections on individual curve components,

which we then glue to global contributions to h0 on the whole curve. The boundary

conditions are imposed by the intersection patterns of the components, these can lead
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to a net-increase of global sections on the reducible curve compared to the generic case.

We have used this understanding to formulate sufficient conditions for a jump in the

vector-like spectrum to occur as a result of a curve splitting. These criteria are purely

topological, and combine the gluing arguments with vanishing theorems on individual

components. Let us stress that this in general provides only a lower bound for h0 for the

split curve, because it does not take into account alignments of the intersection points

of the components and divisors on the individual components. It will be interesting to

investigate, if these bounds can be further improved by topological considerations.

Despite these simplifications, we found these criteria extremely useful to provide a rough

estimate of the possible spectrum of h0 on the moduli space of F-theory compactifications,

and implemented the algorithm in [148]. To fully appreciate this implementation, let us

mention that to the best knowledge of the authors, the exact algorithms implemented

in[157, 158, 146] do not allow for a parametric cohomology computation. Rather, they

will focus on one particular point in the complex structure moduli space and provide the

exact answer at this very point. Since each of these computations requires huge amounts

of computational resources and runtime, it is impractical to repeat such computations

for many points in the complex structure moduli space. In contrast, the new algorithm

yields an approximate, but oftentimes sufficiently accurate, estimate — even for compli-

cated examples such as the genus 24 curve discussed in 5.3 — within minutes. We leave

generalizations of this counting algorithm, as well as extensions to other toric surfaces,

for future work.

Another limitation of our approach is that we have only considered pullback line bundles

so far. However, as already alluded to in the introduction, vector-like spectra in F-theory

are oftentimes encoded in line bundles described by a formal weighted sum of points. Such

a description is computationally harder for two main reasons. First, it takes much longer

to compute line bundle cohomologies of non-pullback bundles with the technologies of

[146]. This makes it more challenging to generate a sufficiently large database to apply
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ideas from Big data and machine learning. The second obstacle is the parametrization of

the line bundles. Namely, distinct point configuration can encode equivalent line bundles

if their difference is the divisor of a meromorphic function. To have a better handle on

tracking how these equivalences change with complex structure deformations, we need a

better understanding of meromorphic functions on higher genus curves. The crucial tool

in this direction is the Abel–Jacobi map, which also plays a similar role in the hyperelliptic

curve cryptography. It would be interesting to see to what extent machine learning ideas

can be beneficial here.

A related issue arises for fractional bundles or root bundles. These appear frequently in

explicit global F-theory constructions that engineer a three-generation Standard-Model-

like particle physics sector [43, 40, 42, 44, 32]. The constraint to have chiral indices with

|χ| = 3 in these models lead to line bundles L on curves C which satisfy L⊗n = L|C , where

L is a line bundle on the base B3 of the elliptic fibration. In case n = 2 and L = KB3

is the canonical bundle of the base, the bundle L can be understood as the pullback of

the spin bundle of B3 to C. However, for general F-theory constructions, also 3rd and

higher roots of bundles L 6= KB3 appear. An understanding of which line bundles L on

C satisfy such an equation again requires a detailed understanding of which points — in

this case the intersection points of C with the divisor on B3 dual to L — on the curve

define equivalent divisors. We expect that this will also be intimately related to satisfying

the quantization condition [97] for the gauge flux background.

Finally, it is important to point out that the complex structure parameters of the elliptic

fibration are not the only parameters of the physical theory. Rather, a large part of this

parameter space which we have not touched upon is in the parametrization of all possible

gauge backgrounds. This includes in particular backgrounds with so-called non-vertical

G4-flux [159, 160], for which explicit construction methods in global models are largely

unknown. While these typically do not contribute to the chiral index, it is not clear at the

moment if they could modify the flux-induced line bundles on the matter curves. However,
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since non-vertical fluxes contribute prominently to a superpotential for the moduli, their

presence will dynamically select points in the moduli space that can be a vacuum for the

theory, thus have a very different, but direct influence on the vector-like spectrum. We

will therefore need a much better handle on these gauge backgrounds first before we can

develop a full understanding for the space of 4d F-theory vacua.
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CHAPTER 6: Root bundles in F-Theory and Limit root applications in F-theory

Motivated by the appearance of fractional powers of line bundles in studies of vector-like

spectra in 4d F-theory compactifications, we analyze the structure and origin of these

bundles. Fractional powers of line bundles are also known as root bundles and can be

thought of as generalizations of spin bundles. We explain how these root bundles are

linked to inequivalent F-theory gauge potentials of a G4-flux.

While this observation is interesting in its own right, it is particularly valuable for F-

theory Standard Model constructions. In aiming for MSSMs, it is desired to argue for

the absence of vector-like exotics. We work out the root bundle constraints on all matter

curves in the largest class of currently-known F-theory Standard Model constructions

without chiral exotics and gauge coupling unification. On each matter curve, we conduct

a systematic “bottom”-analysis of all solutions to the root bundle constraints and all

spin bundles. Thereby, we derive a lower bound for the number of combinations of root

bundles and spin bundles whose cohomologies satisfy the physical demand of absence of

vector-like pairs.

On a technical level, this systematic study is achieved by a well-known diagrammatic

description of root bundles on nodal curves. We extend this description by a counting

procedure, which determines the cohomologies of so-called limit root bundles on full blow-

ups of nodal curves. By use of deformation theory, these results constrain the vector-like

spectra on the smooth matter curves in the actual F-theory geometry.

6.1 Introduction

String theory elegantly couples gauge dynamics to gravity. This makes string theory a

leading candidate for a unified theory of quantum gravity. As such, it must account for all

aspects of our physical reality, especially the low energy particle physics that we observe.

As a first order approximation, one desires an explicit demonstration in which one can

actually obtain the particle spectrum of the Standard Model from string theory.
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In the past decades, enormous efforts have been undertaken to achieve this goal. Many of

these models concentrated on perturbative corners of string theory, such as the E8 × E8

heterotic string [13, 161, 109, 110, 124, 162, 163, 108] or intersecting branes models in type

II [17, 18, 19, 20, 21, 22, 23] (see also [24] and references therein). These perturbative

models were among the first compactifications from which the Standard Model gauge

sector emerged with its chiral or, in the case of [110, 124], even the vector-like spectrum.

Unfortunately, these constructions are limited due to their perturbative nature in the

string coupling, and they typically suffer from chiral and vector-like exotic matter. Among

these perturbative models, the first globally consistent MSSM constructions are [110, 124]

(see [164, 165] for more details on the subtle global conditions for slope-stability of vector

bundles).

The non-perturbative effects in string theory are elegantly described by F-theory [27, 166,

167]. As a non-perturbative extension of type IIB string theory, the framework of F-theory

describes the gauge dynamics on 7-branes including their back-reactions (to all orders in

the string coupling) onto the compactification geometry Bn. These back-reactions are

encoded in the geometry of an elliptically fibered Calabi-Yau space π : Yn+1 � Bn. By

studying this space Yn+1 with well-established tools of algebraic geometry, one can then

ensure the global consistency conditions of the physics in 10−2n non-compact dimensions.

An important characteristic of 4d N = 1 F theory compactifications (i.e., n = 3), which

must match the particle physics that we observe, is the chiral fermionic spectrum. In

F-theory, this spectrum is uniquely fixed by a background gauge flux, which in turn is

most conveniently specified by the internal C3 profile in the dual M-theory geometry. The

chiral spectrum then only depends on the flux G4 = dC3 ∈ H(2,2)(Y4). By now, there

exists an extensive toolbox for creating and enumerating the so-called primary vertical

subspace of G4 configurations [131, 37, 38, 39, 40, 41, 42]. The application of these tools

led to the construction of globally consistent chiral F-theory models [43, 40, 42, 44], which

recently culminated in the largest class of explicit string vacua that realize the Standard
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Model gauge group with their exact chiral spectrum and gauge coupling unification [32].

However, these methods are insufficient to determine the exact vector-like spectrum of the

chiral zero modes (i.e., not just the difference between chiral and anti-chiral fields). This

is because the zero modes depend not only on the flux G4, but also on the flat directions

of the potential C3. The complete information is encoded in the so-called Deligne coho-

mology. In[45, 46, 47], methods for determining the exact vector-like spectra were put

forward. This approach exploits the fact that (a subset of) the Deligne cohomology can

be parameterized by Chow classes. By use of this parameterization, one can extract line

bundles LR that are defined on curves CR in B3. In the dual IIB picture, this can be in-

terpreted as localization of gauge flux on matter curves, which lifts some vector-like pairs

on these curves. Explicitly, the zero modes are counted by the sheaf cohomologies of LR

and we have h0(CR, LR) massless chiral and h1(CR, LR) massless anti-chiral superfields

in representation R on CR.

Although this procedure works in theory for any compactification, technical limitations

arise in practical applications. Intuitively, one may think of the technical difficulties as

reflections of the delicate complex structure dependence of the line bundles cohomologies.

Even state-of-the-art algorithms such as [168, 157, 169] (see also [46, 47]) on supercomput-

ers specifically designed for such computations (such as Plesken at Siegen University),

can oftentimes not perform the necessary operations in realistic compactification geome-

tries. For instance, the models studied in [45, 46, 47] focused on computationally simple

geometries as a result. While this led to a proof of principle, these models have unreal-

istically large numbers of chiral fermions. Therefore — even though it is expected — it

remains an open question whether or not F-theory compactifications can actually realize

effective theories that resemble the matter spectra of the Standard Model.

Recently, [48] the complex structure dependence of line bundle cohomologies was

investigated . This analysis was inspired from the F-theory GUT models discussed in

[47] and focused on simple geometries, in which the algorithms in [168] could generate a

130



large data set [147]. This data was analyzed by use of data science techniques, in particu-

lar decision trees. A theoretical understanding of this data was achieved by supplementing

the data science results by Brill-Noether theory [150] (see [156] for a modern exposition

and [128] for an earlier application of Brill-Noether theory in F-theory). These insights

led to a quantitative study of jumps of charged matter vector pairs as a function of the

complex structure parameters of the matter curves.

Results In globally consistent F-theory constructions with the exact chiral spectra of

the Standard Model and gauge coupling unification [32], the vector-like spectra on the

low-genus matter curves are encoded in cohomologies of a line bundle, which are identified

with a fractional power of the canonical bundle. On high-genus curves, these fractional

powers of the canonical bundle are further modified by contributions from Yukawa points.

In order to make sense of these fractional powers, we study the G4-flux in more detail.

The models in [32] consider a background G4-flux, which not only leads to the exact chiral

spectra but also satisfies global consistency conditions, such as the D3-tadpole cancelation

and masslessness of the U(1)-gauge boson. We lift this very background G4-flux to a gauge

potential in the Deligne cohomology to identify the line bundles LR. This process requires

an understanding of the intermediate Jacobian J2(Y4), which labels inequivalent gauge

backgrounds. A naive analysis, which does not properly take the intermediate Jacobian

into account, leads to the fractional line bundle powers mentioned above. In past works

[45, 46, 47], such scenarios were avoided as it is not immediately clear how to interpret

these fractional expressions. However, since these expressions appear ubiquitously in

compact models with realistic chiral indices, this work analyzes the origin and meaning

of these bundles in detail.

The objects we are therefore interested in are fractional powers of line bundles, also known

as root bundles. They may be thought of as generalizations of spin bundles. Similar to

spin bundles, root bundles are far from unique. The mathematics of root bundles indicates

that we should think of the different root bundles as being induced from inequivalent gauge
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potentials for a given G4-flux. While [45, 46, 47] has already anticipated that inequivalent

gauge potentials for a given G4-flux lead to different vector-like spectra, the root bundle

interpretation allows one to test this expectation.

In general, not all root bundles on the matter curves are induced from F-theory gauge

potentials in the Deligne cohomology H4
D(Ŷ4,Z(2)). This mirrors the expectation that

only some of the spin bundles on the matter curves are consistent with the F-theory

geometry Ŷ4. This raises the interesting and important question of identifying which roots

and spin bundles are induced top-down. While this work does not answer this question,

we hope that it initiates and facilitates this analysis by providing a systematic approach

to all root bundles and spin bundles on the matter curves. In particular, we identify pairs

of root bundles and spin bundles such that their tensor product is a line bundle whose

cohomologies satisfy the physical demand of the presence/absence of vector-like pairs.

On a technical level, this requires a sufficient understanding of root bundles and their

cohomologies on a matter curve CR. We gain this control from a deformation CR → C•R

into a nodal curve. On the latter, root bundles are described in a diagrammatic way by

so-called limit roots [170]. We extend these ideas to a counting procedure for the global

sections of limit roots, which we use to infer the cohomologies of root bundles on CR.

This approach is demonstrated in the largest class of currently-known constructions of

globally consistent F-theory Standard Models without chiral exotics and gauge coupling

unification [32]. In one particular such geometry, we derive a lower bound to the number

of pairs of root bundles and spin bundles whose tensor product is a line bundle without

vector-like exotics.

Outline In 6.2, we recall zero mode counting in F-theory and the appearance of frac-

tional line bundle powers. We explain that these fractional powers of line bundles, also

known as root bundles, relate to inequivalent gauge potentials in F-theory. These ideas are

subsequently applied to the largest currently-known family of globally consistent F-theory

Standard Model constructions without chiral exotics and gauge coupling unification [32].
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We explain how the background G4-flux, which satisfies global consistency conditions

such as the cancellation of the D3-tadpole and the masslessness of the U(1)-gauge boson,

induces root bundles on the matter curves. Details of this derivation are summarized in

C.2. This derivation heavily relies on a detailed understanding of the elliptically fibered

4-fold F-theory geometry Ŷ4, including intersection numbers in the fiber over the Yukawa

points. We supplement the earlier works [82, 40, 32] with a complete list of all fiber

intersection numbers in C.1.

In 6.3 we first summarize well-known results about root bundles before we describe the

limit root constructions, which were originally introduced in [170]. We extend the limit

root constructions by a counting procedure for the global sections of limit roots on full

blow-ups of nodal curves. In fortunate instances, this even provides a means to explore

Brill-Noether theory of limit roots, which we demonstrate in an example inspired from

[171].

Finally, we apply these ideas to globally consistent constructions of F-theory Standard

Models without chiral exotics and gauge coupling unification [32] in 6.4. In an explicit

base space geometry, we deform the matter curves to nodal curves, construct limit roots

on these nodal curves, identify the number of global sections of these limit roots and

finally use deformation theory to relate these counts to the cohomologies of root bundles

in the actual F-theory geometry. Thereby, we explicitly prove the existence of root bundle

solutions without vector-like pairs. Technical details of the specific base geometry and

the limit root constructions are summarized in C.2.4.

6.2 Root bundles in F-theory

6.2.1 The appearance of root bundles

Zero mode counting in F-theory We consider an F-theory compactification to four

dimensions given by a singular, elliptically fibered 4-fold π : Y4 � B3. We assume that

this fibration has a section s ∼= B3 and admits a smooth, flat, crepant resolution π̂ : Ŷ4 �
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B3. In such a compactification, the flux G4 ∈ H(2,2)(Ŷ4) is subject to the quantization

condition [97]

G4 + 1
2c2(T

Ŷ4
) ∈ H(2,2)

Z (Ŷ4) = H(2,2)(Ŷ4) ∩H4(Ŷ4,Z) . (6.2.1)

For simplicity, we focus on compactifications with even c2(T
Ŷ4

), which holds true for F-

theory compactifications on an elliptically fibered smooth Calabi-Yau 4-fold with globally

defined Weierstrass model [111].1 Under the simplifying assumption that c2(T
Ŷ4

) is even,

6.2.1 requires that G4 ∈ H(2,2)
Z (Ŷ4). We will show an example of this and the following

root bundle analysis in the largest currently-known class of F-theory Standard Model

constructions with gauge coupling unification and no chiral exotics [32] in 6.2.2.

Over the codimension-2 matter curves CR ⊆ B3, the reducible fibers of Ŷ4 contain a chain

of P1s. A state with weight w in the representation R corresponds to a linear combination

of these P1’s. By fibering this linear combination over the matter curve CR, one obtains

the matter surface SR.2 The chiral index of the massless matter localized on the matter

curve CR ⊆ B3 is then specified by [59, 172, 173, 174, 130, 36, 129] [43, 37, 112] as

χ (R) =
∫
SR

G4 . (6.2.2)

The vector-like spectrum induced by a G4-flux has been analyzed in [45, 46, 47]. We

employ the short exact sequence

0→ J2(Ŷ4) ↪→ ιH4
D(Ŷ4,Z(2))→ ĉH

(2,2)
Z (Ŷ4)→ 0 , (6.2.3)

where there exists a surjection ĉ that maps the gauge potential A ∈ H4
D(Ŷ4,Z(2)) as an

element of the Deligne cohomology group to its G4-flux. The Deligne cohomology classes
1For zero mode counting of half-integer quantized G4-fluxes, see e.g. [45].
2In general, a G4-flux can induce different chiral indices and vector-like spectra on the different weight

states. In such instances, it makes sense to keep track of w and write Sw
R . However, in anticipation of

[32], we focus on gauge invariant G4-fluxes, which induce the same chiral index and vector-like spectra for
all weight states.
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encode the full gauge background data. Therefore, they parallel the internal 3-form

potentials C3 in the dual M-theory picture in which G4 = dC3. As long as C ′3 − C3 is a

closed 3-form, C ′3 has the same field strength G4 as C3. In F-theory, such closed 3-form

potentials are encoded by the intermediate Jacobian. Put differently, two inequivalent

A′, A ∈ H4
D(Ŷ4,Z(2)) with ĉ(A′) = ĉ(A) = G4 differ by A′ −A = ι(B), where B ∈ J2(Ŷ4)

is an element of the intermediate Jacobian corresponding to a closed M-theory 3-form

potential.3

The Deligne cohomology group H4
D(Ŷ4,Z(2)) is hard to handle in explicit computations.

However, we can parametrize (at least a subset of) H4
D(Ŷ4,Z(2)) by the Chow group

CH2(Ŷ4,Z). This is summarized in the commutative diagram4

0 CH2
hom(Ŷ4,Z) CH2(Ŷ4,Z) H

(2,2)
alg (Ŷ4) 0

0 J2(Ŷ4) H4
D(Ŷ4,Z(2)) H

(2,2)
Z (Ŷ4) 0

γ̂

γ

ĉ

(6.2.4)

Unless stated differently, the symbol A is reserved for an element A ∈ CH2(Ŷ4,Z), by

which we specify an F-theory gauge potential A = γ̂(A).

In order to count the zero modes in representation R in the presence of such a gauge

potential γ̂(A) ∈ H4
D(Ŷ4,Z(2)), we consider the matter surface SR with

ιSR : SR ↪→ Ŷ4 , πSR : SR � CR . (6.2.5)

The cylinder map, which sends A ∈ CH2(Ŷ4,Z) to a class DR(A) ∈ Pic (CR), is the

restriction to SR followed by integration over the fibers to CR:

DR (A) = πSR∗
(
ι∗SR (A)

)
∈ Pic (CR) . (6.2.6)

3Equivalently, different gauge potentials in H4
D(Ŷ4,Z(2)) differ by their Wilson lines [175, 176].

4For more details, see [45] and references therein.
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The matter spectrum is then determined in terms of sheaf cohomology groups:

h0 (CR, LR (A)) ↔ chiral zero modes ,

h1 (CR, LR (A)) ↔ anti-chiral zero modes ,
(6.2.7)

where

LR (A) = OCR (DR (A))⊗OCR
Ospin
CR

, (6.2.8)

withOspin
CR

an appropriate spin bundle on CR. This is a refinement of 6.2.2, since Riemann-

Roch gives

χ(R) = h0 (CR, LR (A))− h1 (CR, LR (A)) = χ (LR(A)) = deg (DR(A)) =
∫
SR

G4. (6.2.9)

Roots of F-theory gauge potentials For an F-theory model, we need an F-theory

gauge potential, i.e. a class in the Deligne cohomology group H4
D(Ŷ4,Z(2)). This will

be specified as γ̂(A) for some “potential” A ∈ CH2(Ŷ4,Z). We find that the geometry

determines a class γ̂(A′) ∈ H4
D(Ŷ4,Z(2)) and an integer ξ ∈ Z>0 such that A is subject

to the two constraints:

γ(A) = G4 , ξ · γ̂(A) ∼ γ̂(A′) . (6.2.10)

The condition γ(A) = G4 immediately follows from 6.2.4 and it means that γ̂(A) is an

F-theory gauge potential for the given G4-flux. We will illustrate with several examples

below that the absence of chiral exotics in the F-theory Standard Models boils down to

the second constraint. It is important to notice that the gauge potential A specified by

the two conditions in 6.2.10 is in general not unique. It is difficult to say much about

solutions in the Chow group itself, but going to the bottom row in 6.2.4, we see that the

collection of all ξ-th roots of γ̂(A′) (if non empty) is a coset of the group of all ξ-th roots

of 0. In particular, the number of solutions is ξ2·dimC
(
J2(Ŷ4)

)
.
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All these solutions lead to the same chiral spectrum 6.2.2, since they all have the same

degree when restricted to the curves CR, hence the same index. However, they could

differ in their actual spectrum 6.2.7. This extra flexibility is the key tool that we intend

to use to produce a desirable spectrum such as the MSSM.

Roots on the matter curves In theory, we could simply analyze the algebraic cycles

A which satisfy 6.2.10. However, as we will demonstrate momentarily, we can explicitly

construct A′ ∈ CH2(Ŷ4,Z). Therefore, we have a sufficient level of arithmetic control over

γ̂(A′) and it is natural to ask how the induced divisors DR(A′) and DR(A) are related.

The map DR : CH2(Ŷ4,Z)→ CH1(CR,Z) ∼= Pic(CR), as defined in 6.2.6, factors through

γ̂ and a group homomorphism

H4
D(Ŷ4,Z(2))→ Pic(CR) . (6.2.11)

Thus, it follows that

ξ ·DR (A) ∼ DR
(
A′
)
∈ Pic(CR) . (6.2.12)

This means that the F-theory gauge potential A = γ̂(A) induces a divisor DR(A), whose

ξ-th multiple is linearly equivalent to the divisor DR (A′) that is induced by the F-theory

gauge potential A′ = γ̂(A′) ∈ H4
D(Ŷ4,Z(2)). Such a divisor DR (A) is termed a ξ-th root

of DR (A′).

In general, ξ-th roots of DR (A′) do not exist. When they do, they are not unique. This is

particularly well known for the case ξ = 2 and DR (A′) = KR, where the 2nd roots of the

canonical bundle are the spin structures on CR. If CR is a curve of genus g, then it admits

22g spin structures (see e.g. [177, 178]). This easily extends to ξ > 2 and DR (A′) 6= KR.

While we will provide more details on root bundles in 6.3.1, it suffices to state here that

ξ-th roots of DR (A′) do exist if and only if ξ divides deg (DR (A′)). So on a genus g

curve, there exist ξ2g ξ-th roots of DR (A′).
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In general, it cannot be expected that ξ-th roots of DR (A′) ∈ Pic(CR) and ξ-th roots

of A′ = γ̂(A′) ∈ H4
D(Ŷ4,Z(2)) are one-to-one. Rather, only a subset of the ξ-th roots of

DR (A′) will be realized from F-theory gauge potentials in H4
D(Ŷ4,Z(2)). In this sense,

the root bundle constraint in 6.2.12 is necessary but not sufficient to conclude that the

divisor DR (A) stems from an F-theory gauge potential.

It is an interesting question to investigate which roots of DR (A′) ∈ Pic(CR) are induced

from F-theory gauge potentials. While this work does not answer this question, we hope

to initiate and facilitate this study by providing a systematic approach to all ξ-th roots

of DR (A′). In particular, we will provide a counting procedure, which allows one to infer

the cohomologies of some of these root bundles. This allows one to search for roots which

satisfy the physical demand of the presence/absence of vector-like pairs.

Before we show an example of these notions in the F-theory Standard Models [32], let us

briefly comment on spin bundles Ospin
CR

. Recall that Freed-Witten anomaly cancelation

requires spinc-structures on D7-branes in perturbative IIB-compactifications [179]. As

explained in [60], this extends to the demand of spinc-structures on gauge surfaces S ⊂ B3

in F-theory compactifications. Then, a choice of spinc-structure onNCR|S induces a unique

spinc-structure on CR [180]. Therefore, the question of which spinc-structures are realized

from the F-theory geometry Ŷ4 arises. While this is a fascinating question, we will not

answer it in this work. Rather, we will systematically study all ξ-th roots of DR (A′) and

all spin bundles on CR. Our goal is to identify combinations of root and spin bundles

such that their tensor product is a line bundle whose cohomologies satisfy the physical

demand of presence/absence of vector-like pairs.

6.2.2 Root bundles in F-theory Standard Models

We will now exhibit an example of the root bundle analysis in the largest class of currently-

known globally consistent F-theory Standard Model constructions that support gauge

coupling unification and avoid chiral exotics [32]. Earlier geometric details can be found

in the works [82, 40]. For convenience, we briefly summarize the geometry before we
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discuss the G4-flux and its lifts.

The analysis of the induced line bundles, i.e., evaluating 6.2.6, is both tedious and lengthy.

It makes use of the intersection numbers in the fibers over the matter curves and Yukawa

points. As an extension of the past works on this class of F-theory geometries, we list

exhaustive details of the fiber geometry in C.1. The necessary intersection computations

are detailed in C.2. The latter includes a section on topological intersection numbers of

non-complete intersections, which we determine rigorously from the Euler characteristic

of the structure sheaf of the intersection variety.

The resolved elliptic fibration Ŷ4

4-fold geometry For a base 3-fold B3, the resolved elliptic fibration Ŷ4 is a hypersurface

in the space X5 = B3 × PF11 . The fiber ambient space PF11 is the toric surface with the

following toric diagram. In the accompanying table, we indicate its Z6-graded Cox ring:

w

e1

e4

u

e2

e3 v

u v w e1 e2 e3 e4

H 1 1 1

E1 -1 -1 1

E2 -1 -1 1

E3 -1 -1 1

E4 -1 -1 1

(6.2.13)

Equivalently, the Stanley-Reisner ideal of PF11 is given by

ISR (PF11) = 〈e4w, e4e2, e4e3, e4v, e1u, e1e2, e1e3, e1v, wu,we2, we3, ve2, uv, e3u〉 . (6.2.14)
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Consider sections si ∈ H0(B3,KB3). Then, in the space X5, the resolved 4-fold Ŷ4 is the

hypersurface V (pF11) with

pF11 = s1e
2
1e

2
2e3e

4
4u

3 + s2e1e
2
2e

2
3e

2
4u

2v + s3e
2
2e

3
3uv

2 + s5e
2
1e2e

3
4u

2w

+ s6e1e2e3e4uvw + s9e1vw
2 .

(6.2.15)

It is instructive to note that

{
e2

1e
2
2e3e

4
4u

3, e1e
2
2e

2
3e

2
4u

2v, e2
2e

3
3uv

2, e2
1e2e

3
4u

2w, e1e2e3e4uvw, e1vw
2
}

(6.2.16)

is a basis of H0
(
PF11 ,KPF11

)
. Since X5 = B3 × PF11 and si ∈ H0(B3,KB3), it follows

from the Künneth-formula that pF11 is a section of KX5 . Consequently, Ŷ4 is a smooth

elliptically fibered Calabi-Yau 4-fold.

Gauge group, matter curves and Yukawa points Over V (s3) = {s3 = 0} ⊂ B3,

the fibration Ŷ4 admits an SU(2) gauge enhancement. Similarly, there is an SU(3)

enhancement over V (s9). The fibration π̂ : Ŷ4 � B3 admits two independent sections

s0 = V (v) and s1 = V (e4). We call s0 = V (v) the zero section and employ the

Shioda map to associate a U(1)-gauge symmetry to s1. Consequently, Ŷ4 admits an

SU(3)× SU(2)× U(1) gauge symmetry with zero section s0 = V (v).

We label the matter curves by the representations of SU(3)×SU(2)×U(1) in which the

zero modes, localized on these curves, transform:

C(3,2)1/6 = V (s3, s9) , C(1,2)−1/2 = V
(
s3, s2s

2
5 + s1(s1s9 − s5s6)

)
, (6.2.17)

C(3,1)−2/3
= V (s5, s9) , C(3,1)1/3

= V
(
s9, s3s

2
5 + s6(s1s6 − s2s5)

)
, (6.2.18)

C(1,1)1 = V (s1, s5) . (6.2.19)

These curves intersect in the Yukawa loci

Y1 = V (s3, s5, s9) , Y2 = V (s3, s9, s2s5 − s1s6) , Y3 = V (s3, s6, s9) , (6.2.20)
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Y4 = V (s1, s3, s5) , Y5 = V (s9, s5, s
2
6) , Y6 = V (s1, s5, s9) . (6.2.21)

We represent the intersections among the matter curves including the physically relevant

self-intersections as follows:

Y1 Y2
Y3

Y4

Y5

Y6

(1, 2)−1/2

(3, 2)1/6

(1, 1)1

(3, 1)1/3

(3, 1)−2/3

(6.2.22)

The topological intersection number is K3
B3 at Y1, Y3, Y4, Y6 and 2 ·K3

B3 at Y2, Y5.

G4-flux

Let us identify the root bundles whose sections count the localized zero modes in the

presence of the (candidate) G4-flux introduced in [32]. This flux is a base dependent

linear combination of the U(1)-flux ω ∧ σ, where σ is the Shioda (1, 1)-form associated to

the divisor s1 = V (e4), and of the matter surface flux G(3,2)1/6
4 on the curve C(3,2)1/6 :

G4(a, ω) = a ·G(3,2)1/6
4 + ω ∧ σ ∈ H(2,2)

alg (Ŷ4) . (6.2.23)

The parameters a ∈ Q and ω ∈ π∗
(
H(1,1)(B3)

)
are subjected to flux quantization, D3-

tadpole cancelation, masslessness of the U(1)-gauge boson, and exactly three chiral fam-

ilies on all matter curves. These conditions are solved by

ω = 3
K

3
B3

·KB3 , a = 15
K

3
B3

. (6.2.24)
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Explicitly, the resulting flux candidate can be expressed as (see C.2.1 for details)

G4 = −3
K

3
B

·
(

5[e1] ∧ [e4]

+ π̂∗
(
KB

)
∧
(
−3[e1]− 2[e2]− 6[e4] + π̂∗

(
KB

)
− 4 [u] + [v]

))∣∣∣∣
Ŷ4

.

(6.2.25)

In this expression, [e1] = γ(V (e1)) ∈ H(1,1)
alg (X5) is the image of the divisor V (e1) ⊆ X5

under the cycle map γ. Also, we use the projection map π̂ : Ŷ4 � B3. This G4-flux

candidate cancels the D3-tadpole and ensures the masslessness of a U(1)-gauge boson.

We must verify that the G4-flux candidate in 6.2.25 satisfies the flux quantization G4 +
1
2c2(T

Ŷ4
) ∈ H(2,2)

Z (Ŷ4)[97]. As a necessary check, in [32], the integrals of G4+ 1
2c2(T

Ŷ4
) over

all matter surfaces SR and complete intersections of toric divisors were worked out. By

employing the results in [111, 181], these were found to be integral. A sufficient check for

6.2.25 to be properly quantized is computationally very demanding and currently beyond

our arithmetic abilities. Therefore, the authors of [32] proceeded under the assumption

that this candidate G4-flux is properly quantized. We will also follow this line of thought.

Furthermore, we slightly extend this result. Namely, we integrate only c2(T
Ŷ4

) over the

matter surfaces and over the complete intersections of toric divisors. By the reduction

technique in [42], we can relate these integrals to intersection numbers in the base B3. An

explicit computation reveals that the only quantities which are not manifestly even are

∫
B3
c2(B) ∧KB ,

∫
B3
α ∧ (c2(B3) +K

2
B) for all α ∈ H1,1(B3,Z) , (6.2.26)

where c2(B3) is the second Chern class of B3. For smooth 3-folds B3 that appear as a

base of a smooth elliptic Calabi–Yau 4-fold, it is known [111] that c2(B3) +K
2
B is an even

class. Furthermore, [181] states that
∫
B3
c2(B3) ·KB = 24 is even as well. It thus follows

that c2(T
Ŷ4

) passes the necessary conditions for being even. Likewise, we can integrate

the G4-flux candidate 6.2.25 over the matter surfaces and over the complete intersections
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of toric divisors. All of those are found to be integral. Since a sufficient check is currently

beyond our arithmetic abilities, we proceed under the assumption that c2(T
Ŷ4

) is even

and that the G4-flux candidate 6.2.25 is integral.

It should be mentioned that the G4-flux (candidate) 6.2.25 was chosen so that the F-

theory Standard Model vacua are stable, that is the D3-tadpole can be canceled. This

requires

nD3 =
χ
(
T
Ŷ4

)
24 − 1

2

∫
Ŷ4

G4 ∧G4
!
∈ Z≥0 . (6.2.27)

Moreover, the masslessness condition for the U(1)-gauge boson was enforced:

∀η ∈ H1,1(B3) :
∫
Y4
G4 ∧ σ ∧ π∗η

!= 0 . (6.2.28)

Here, σ is the (1, 1)-form that relates to the so-called Shioda-divisor associated with the

U(1) [115, 66].

Zero modes and root bundles

We now discuss the zero modes in the presence of the flux in 6.2.25. As explained in

6.2.1, we thus look for a lift to H4
D(Ŷ4,Z(2)) in the diagram 6.2.4. For computational

simplicity, we aim to parametrize such a lift as A = γ̂(A) with A ∈ CH2(Ŷ4,Z). To

describe a candidate, we recall that the cycle map γ : CH2(Ŷ4,Z) → H2,2
alg (Ŷ4) is a ring

homomorphism in which the intersection product in CH∗(X5,Z) is compatible with the

cup product in H∗(X5,C). By De Rham’s theorem and the Hodge decomposition, it

follows that

H2k(X5,C) ∼= H2k
DR(X5,C) =

⊕
p+q=2k

Hp,q(X5) . (6.2.29)

The cup product in H∗(X5,C) respects the grading, and restricts to the wedge product

of (p, q)-forms. For any two divisors V (r) and V (s) on X5, it therefore follows that
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γ(V (r, s)) = γ(V (r) · V (s)) = [r] ∧ [s]. This also shows that [r] ∧ [s] ∈ H2,2
alg (Ŷ4) is in the

image of γ. With this in mind, it is natural to consider

A′ = −3·
(

5V (e1, e4)− 3V (e1, t1)− 2V (e2, t2)− 6V (e4, t3)

+V (t4, t5)− 4V (t6, u) + V (t6, v)
)∣∣∣∣
Ŷ4

∈ CH2(Ŷ4,Z) ,
(6.2.30)

where ti ∈ H0(X5, α
∗(KB)) and α : X5 = B3 × PF11 � B3. Note that γ(A′) = K

3
B · G4.

Therefore, the gauge potential A′ = γ̂(A′) would induce chiral exotics unless we “divide”

it by ξ = K
3
B. Hence, we are led to consider gauge potentials A = γ̂(A) ∈ H4

D(Ŷ4,Z(2))

with

γ(A) = G4 , ξ · γ̂(A) ∼ γ̂(A′) . (6.2.31)

Hence, we can infer that the line bundles induced from A = γ̂(A) are K3
B3-th roots of

the ones induced from A′ = γ̂(A′). We can explicitly compute the latter from 6.2.30 and

6.2.6. As an example, let us consider the curve C(3,2)1/6 . For this curve, we find (details

in C.2)

D(3,2)1/6

(
A′
)

= 3 · V (t, s3, s9) = 3 · KB

∣∣∣
C(3,2)1/6

, t ∈ H0(B3,KB) , (6.2.32)

where the last equality follows from the adjunction formula. From this, we conclude that

D(3,2)1/6 (A) satisfies

ξ ·D(3,2)1/6 (A) = K
3
B ·D(3,2)1/6 (A) ∼ D(3,2)1/6

(
A′
)

= 3 · KB

∣∣∣
C(3,2)1/6

. (6.2.33)

The zero modes in the representation (3,2)1/6 are counted by the tensor product of the

line bundle associated with D(3,2)1/6 (A) and a spin bundle. Let us emphasize again that

we wish to provide a systematic study of all ξ-th roots of D(3,2)1/6 (A′) and all the spin
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bundles on C(3,2)1/6 . To this end, recall the defining property of spin bundles on C(3,2)1/6 :

2 ·Dspin
(3,2)1/6

∼ K(3,2)1/6 ∼ KB

∣∣∣
C(3,2)1/6

. (6.2.34)

Consequently, we notice

2K3
B ·
(
D(3,2)1/6 (A) +Dspin

(3,2)1/6

)
∼ 2 ·

(
K

3
B ·D(3,2)1/6 (A)

)
+K

3
B ·
(
2 ·Dspin

(3,2)1/6

)
∼
(
6 +K

3
B

)
· KB

∣∣∣
C(3,2)1/6

.

(6.2.35)

Expressed in line bundles, we thus conclude that5

P
⊗2K3

B

(3,2)1/6
∼
(
KB

∣∣∣
C(3,2)1/6

)⊗(6+K3
B

)
∼ K

⊗
(

6+K3
B

)
(3,2)1/6

. (6.2.36)

By repeating this computation for the other matter curves, one finds the following root

bundle constraints:

curve root bundle constraint

C(3,2)1/6 = V (s3, s9) P
⊗2K3

B

(3,2)1/6
= K

⊗
(

6+K3
B

)
(3,2)1/6

C(1,2)−1/2 = V (s3, PH) P
⊗2K3

B

(1,2)−1/2
= K

⊗
(

4+K3
B

)
(1,2)−1/2

⊗OC(1,2)−1/2
(−30 · Y1)

C(3,1)−2/3
= V (s5, s9) P

⊗2K3
B

(3,1)−2/3
= K

⊗
(

6+K3
B

)
(3,1)−2/3

C(3,1)1/3
= V (s9, PR) P

⊗2K3
B

(3,1)1/3
= K

⊗
(

4+K3
B

)
(3,1)1/3

⊗OC(3,1)1/3
(−30 · Y3)

C(1,1)1 = V (s1, s5) P
⊗2K3

B

(1,1)1
= K

⊗
(

6+K3
B

)
(1,1)1

(6.2.37)

In this table, we use PH = s2s
2
5 + s1(s1s9 − s5s6) and PR = s3s

2
5 + s6(s1s6 − s2s5). Note

that the line bundles on the Higgs curve C(1,2)−1/2 and the curve C(3,1)1/3
depend on the

Yukawa points Y1 = V (s3, s5, s9) and Y3 = V (s3, s6, s9) (see C.2 for details). It must also
5Inspired by greek word for root, P refers to root bundles throughout this article.
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be noted that for two divisors D and E,

D ∼ E ⇒ n ·D ∼ n · E . (6.2.38)

The converse is not true. This is why we do not cancel common factors. Finally, let

us point out that the toric base spaces for these F-theory Standard Model constructions

must satisfy K
3
B ∈ {6, 10, 18, 30} [32]. We provide an explicit list of the root bundles

constraints for these values of K3
B in C.2.3.

6.3 Root bundles from limit roots

In the previous section, we explained that root bundles feature prominently in vector-like

spectra in F-theory. For the largest currently-known class of globally consistent F-theory

Standard Model constructions without chiral exotics and gauge coupling unification [32],

we have worked out these bundle expressions explicitly and summarized them in C.2.3. In

aiming for MSSM constructions, i.e., vacua without vector-like exotics, the cohomologies

of root bundles beg to be investigated. Therefore, our goal is to construct roots whose

number of global sections is exactly the amount required by the physical considerations.

Before we exhibit an example of this in 6.4, we first summarize well-known facts about

root bundles in general. In particular, we outline an argument for the existence of such

bundles on smooth, irreducible curves. From this argument, it can be extrapolated that

explicit constructions of root bundles on smooth, irreducible curves – not to mention an

explicit count of their sections – are very challenging at best. Fortunately, we can employ

deformation theory to simplify the task. Namely, it is possible to relate root bundles on

smooth, irreducible curves to so-called limit roots on nodal curves. This follows from the

detailed study in [170]. For convenience to the reader, we summarize the essential steps in

these limit root constructions before we extend these ideas. Namely, we provide a simple

counting procedure for the global sections of many limit root bundles. Our analysis in

6.4 will employ exactly this counting strategy in order to gain insights into the vector-like
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spectra of F-theory Standard Models.

6.3.1 Root bundles

Let us look at root bundles on a smooth, complete Riemann surface (or curve) C of genus

g. We focus on a line bundle L ∈ Pic(C) and an integer n with n ≥ 2, and n|deg(L). We

first recall the following definition.

Definition 6.3.1 (n-th root bundle). An n-th root bundle of L is a line bundle P such

that Pn ∼= L. Collectively, we denote the n-th roots of P by Roots(n,L)

Equivalently, in the language of divisors, an n-th root D of a divisor D̃ is a divisor such

that nD ∼ D̃. The first important result about root bundles concerns their existence.

While this seems to be a well-known fact, we were surprised to notice that well-established

references, such as [182, 183, 152], do not give an explicit proof. Not only does the proof

nicely illustrates the challenge in constructing root bundles on high genus curves, it also

allows us to easily understand why there are n2g root bundles and why their differences

are torsion divisors. For all these reasons, let us give a proof for the existence of root

bundles on smooth, complete Riemann surfaces.

Proposition 6.3.2. Let n ∈ Z with n ≥ 2. For every L ∈ Pic(C), there exists an n-th

root bundle P of L if and only if n|deg(L).

Proof. For the forward direction, if there exists an n-th root bundle P such that Pn ∼= L,

then n deg(P ) = deg(L) and n| deg(L). Conversely, suppose that n|deg(L). Recall that

J(C) is a complex torus of the form V/Λ, where V is a vector space of dimension g, and

Λ is a discrete subgroup of V of rank 2g. Denote the n-fold tensor product of line bundles

by [n] : P 7→ nP .

First, we will describe some properties of the map [n] : J(C) → J(C). Observe that its
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kernel is given by

ker([n]) = {P ∈ V/Λ : nP + Λ = Λ} = ((1/n)Λ)/Λ ∼= Λ/nΛ ∼= (Z/nZ)2g , (6.3.1)

because Λ is a discrete subgroup of rank 2g. Hence, ker([n]) = [n]−1(0) is finite, and has

dimension 0. Since J(C) is a complete variety, its image [n](J(C)) is a closed subvariety.

For any a ∈ [n](J(C)), the translation map

ta : [n]−1(0)→ [n]−1(a), x 7→ x+ a , (6.3.2)

is an isomorphism. It follows from the dimension formula that

0 = dim[n]−1(0) = dim[n]−1(a) ≥ dim(J(C))− dim[n](J(C)) ≥ 0 . (6.3.3)

Hence, [n] : J(C)→ J(C) is surjective.

Now, consider the following commutative diagram, where deg is the degree map, and (×n)

is the multiplication of integers by n.

0 J(C) Pic(C) Z 0

0 J(C) Pic(C) Z 0

deg

deg
[n] [n] ×n (6.3.4)

Applying the Snake Lemma yields an exact sequence of the cokernels of the vertical maps,

i.e.

0 = J(C)/[n](J(C))→ Pic(C)/[n](Pic(C))
∼=−→ Z/nZ→ 0 , (6.3.5)

where the isomorphism is provided by the degree map. Since n| deg(L), we have that

L ∈ [n](Pic(C)). So, there exists P ∈ Pic(C) such that Pn ∼= L, i.e. an n-th root
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bundle.

There are two important lessons that we can learn from this proposition. First, there are

n2g n-th root bundles P of L. This is because 6.3.2 is an isomorphism, and so,

tdeg(L) : (Z/nZ)2g ∼= ker([n]) = [n]−1(0)→ [n]−1(deg(L)) = Roots(n,L) , (6.3.6)

is an isomorphism as well. If L = KC , then the n-th roots are called n-spin bundles [184].

The second lesson concerns the difference between two root bundles. Any two n-th root

bundles differ by an n-torsion line bundle, i.e. a line bundle M ∈ J(C) such that Mn ∼=

OC .

The Jacobian and the linear equivalence of divisors is well-understood for elliptic curves

E (see [182, 183, 152] for background). This allows us to exhibit examples of the above

notions fairly explicitly. First, recall that E ∼= J(E) ∼= C/Λ and Λ = Z ⊕ Z · τ , where

τ ∈ C is the complex structure modulus of the elliptic curve. We denote D ∈ Div(E) by

D =
n∑
i=1

ni · (pi) , ni ∈ Z, pi ∈ E , (6.3.7)

i.e. we place the points pi ∈ E in round brackets for notational clarity. Note that

deg(D) = ∑n
i=1 ni and that a zero degree divisor satisfies

D ∼ 0 ⇔
(

n∑
i=1

ni · pi

)
∈ Λ . (6.3.8)

From this, we can work out the divisor classes of the 2-torsion divisors in J(E):

D1 = [0] , D2 =
[
−1 · (0) + 1 ·

(1
2

)]
, (6.3.9)

D3 =
[
−1 · (0) + 1 ·

(
τ

2

)]
, D4 =

[
−1 · (0) + 1 ·

(1 + τ

2

)]
. (6.3.10)

149



It follows ker([2]) ∼= (Z/2Z)2, which we can intuitively collect in the following picture:

= (z)

< (z)D1

D2

D3

D4

τ

(6.3.11)

Note that {D1, D2, D3, D4} are exactly the four spin structures on E.

In making contact with our physics applications, we should next investigate the sheaf co-

homologies of root bundles. Generally speaking, this is a very challenging task. However,

on elliptic curves, the situation simplifies and we can achieve a complete classification.

Recall that any line bundle L ∈ Pic(E) with deg(L) 6= 0 is in the Kodaira stable regime,

i.e. we can infer its cohomologies from its degree. For deg(L) = 0 we have

h0(E,L) = 1 ⇔ L ∼= OE . (6.3.12)

Therefore, it merely remains to study the cohomologies of roots P of a line bundle L ∈

Pic(E) with deg(L) = 0. This is achieved by the following proposition.

Proposition 6.3.3. Let L ∈ Pic(E) with deg(L) = 0 and consider an integer n with

n ≥ 2. Then,

1. L ∼= OE: Exactly one n-th root P of L has h0(E,P ) = 1, and the remaining n-th

roots Q have h0(E,Q) = 0.

2. L 6∼= OE: All n-th roots P of L have h0(E,P ) = 0.

Proof. 1. Since OE is an n-th root of itself, there is one n-th root P = OE with

h0(E,P ) = 1. Any other n-th root Q differs from P by a non-trivial n-torsion line
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bundle. As such, Q is non-trivial and has h0(E,Q) = 0.

2. L is non-trivial. Hence, all n-th roots P are non-trivial and have h0(E,P ) = 0.

For example, among the 9 3rd roots P of a line bundle L ∈ Pic(E) with deg(L) = 0, at

least 8 have h0(E,P ) = 0. We will make use of this simple result in 6.4.2.

6.3.2 Deformation theory and global sections

For applications in F-theory, we wish to generalize 6.3.3 to matter curves CR with g > 1.

Unfortunately on such curves, it is very hard to tell if a divisor is linearly equivalent to

zero. This is due to the current lack of practical understanding of the Abel-Jacobi map

Div0(CR)→ J(CR), whose kernel is exactly given by the (classes of) trivial divisors. This

in turn makes it very challenging to identify n-torsion bundles, which forms a measure-0

subset of the Jacobian J(CR). Consequently, it becomes almost impossible to explicitly

identify a single n-th root bundle P of a line bundle L on CR.

To overcome this hurdle, we wonder if it is possible to simplify the matter curves CR.

However, recall that the geometry of the matter curves is dictated by that of the elliptic

fibration π̂ : Ŷ4 � B3. Therefore, even though special, non-generic elliptic fibrations Ŷ4

may contain matter curves CR with simple geometries, it can be expected that such

fibrations lead to physically unwanted gauge enhancements.

Therefore, in order to remain on physically solid grounds, we stick to the geometry of the

matter curves CR as enforced by the generic fibration Ŷ4. In this situation, there is still

a way to improve our situation. Namely, suppose that ϕ : Csimple
R → CR is a deformation

of a curve Csimple
R , whose simple geometry allows easy access to root bundles and their

cohomologies, into the actual physical matter curve CR ⊂ Ŷ4. Then, we can wonder if

the root bundles P simple
R on Csimple

R approximate the roots PR on CR.

In general, this sort of question leads to a deep discussion of deformation theory (see e.g.

[185, 186] for a modern exposition). In this work, we will not attempt to give a complete
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answer. Rather, we make a special choice for Csimple
R . Inspired by [170], we focus on

curves Csimple
R with singularities, which locally look like {x · y = 0}, i.e. are nodes. On

such nodal curves C•R, roots P •R admit a description in terms of weighted diagrams [170].

Even more, there are exactly as many roots P •R as there are roots PR and we can, at

least in theory, identify them with each other by tracing them along the deformation

C•R → CR.

That said, the next question is in what sense we can use the roots P •R on C•R to approx-

imate the cohomologies of the roots PR on the physical matter curve CR. To this end,

we first recall that refined section counting mechanisms exist for line bundles on singular

curves [48]. In exactly this spirit, we are able to extend the ideas from [170]. In 6.3.3 we

will argue that it is often possible to count the number of global sections of roots P •R on

a nodal curve C•R from simple combinatorics.

It now remains to relate the cohomologies hi(C•R, P •R) to hi(CR, PR). Since, the chiral

index is fixed from topology, it suffices to study how h0(C•R, P •R) relates to h0(CR, PR).

Since C•R is singular (and therefore non-generic) and CR expected to be smooth, a ten-

dency is known. This tendency goes by the name upper semi-continuity. It means that

the number of global sections of PR must not increase when traced along C•R → CR to

the root PR, i.e.

h0 (CR, PR) ≤ h0 (C•R, P •R) . (6.3.13)

It is a very interesting but also very challenging question to distinguish the roots P •R that

lose sections along C•R → CR from the roots with a constant number of sections. While

we hope to return to this question in the future, the physics applications in 6.4 focus on

a subset of roots, which do not lose sections. Namely, if χ (P •R) ≥ 0 and

h0 (C•R, P •R) = χ (P •R) , (6.3.14)
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then P •R cannot lose sections, since its numbers of sections is already minimal. In partic-

ular, it then holds h0 (CR, PR) = h0 (C•R, P •R).

6.3.3 Limit roots

In 6.3.2 we saw that n-th roots P of a line bundle L on a smooth curve C exist if

deg(L) is divisible by n. This is not the case for reducible, nodal curves C•. Indeed, a

root P • of a line bundle L• on such curves should restrict to a root on the irreducible

components. However, even if n divides the degree of L•, it may not divide deg(L|Z)

for some irreducible component Z of C•. This is elegantly circumvented by passing to

limit n-th root bundles P ◦ on (partial) blow-ups C◦ of C•, as originally introduced in

[170]. Just as every nodal curve C• can be described through its dual graph, these limit

n-th root bundles P ◦ are determined by weighted graphs. This combinatorial data can

be exploited to make the task of section-counting more tractable. For convenience to the

reader, let us outline the important steps in these constructions before we explain the

section counting for limit roots. For more material on limit roots, we refer the reader to

[187, 188] in which the pushforwards of these limits roots along the blow-up map, and

their moduli are extensively studied.

Nodal curves and blow-ups

A point is a node if it has a neighborhood where the curve locally looks like {xy = 0} in

C2. A nodal curve is a complete algebraic curve such that every point is either smooth,

or a node. Let C• be a connected (possibly reducible) nodal curve of arithmetic genus g.

We associate to C• a dual graph ΠC• in which

1. every vertex corresponds to an irreducible component C•i of C•,

2. every half-edge emanating from a vertex C•i is a node on C•i .

If a node lies on both C•i and C•j , then the half-edges exiting from C•i and C•j join together

to form an edge. For example, consider the Holiday lights – a nodal curve H• with 11
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components given by:6

• a rational curve Γ with genus g(Γ) = 0,

• 10 elliptic curves E1, . . . , E10 with genus g(Ei) = 1.

Each elliptic curve intersects no other curve except Γ, hence the name Holiday lights. Its

dual graph can be visualized as follows:

Γ
E1

E2

E3 E4

E5

E6

E7

E8E9

E10

(6.3.15)

Each elliptic curve Ei is represented by a green vertex, while the rational curve Γ is

represented by the pink vertex.

If π : C◦ → C• is a blow-up of C•, then for every node ni ∈ C•, we denote the exceptional

components by

π−1(ni) = Ei ∼= P1 . (6.3.16)

Set CN = C◦ \ ∪iEi. Then, π|CN : CN → C• is the normalization of C•. For every node

ni, the points in (π|CN )−1(ni) = Ei ∩ CN = {pi, qi} are called the exceptional nodes.
6In all base spaces B3 of the globally consistent F-theory Standard Model constructions discussed in

6.2.2 and originally introduced in [32], the matter curves CR are contained in K3-surfaces. Motivated from
[171], it stands to wonder if the matter curves CR admit a deformation into such a Holiday lights. Even
more, Holiday lights allow easy access to Brill-Noether theory of limit roots as we will see momentarily.
As such, they are very favorable nodal curves for our study. We hope to return to this question in the
future.

154



From this point forward, we will consider blow-ups of C• on the full set of nodes un-

less stated otherwise. We will often refer to this setup as a full blow-up. More general

statements exist for partial blow-ups, the details of which are fully treated in [170].

Limit n-th roots and weighted graphs

Let n be a positive integer, and L• be a line bundle on C• so that n|deg(L•). Denote the

full set of nodes by ∆C• .

Definition 6.3.4. A limit n-th root of L• associated to ∆C• is a triple (C◦, P ◦, α) con-

sisting of:

• the (full) blow-up π : C◦ → C•,

• a line bundle P ◦ on C◦,

• a homomorphism α : (P ◦)n → π∗(L•),

satisfying the following properties:

1. deg(P ◦|Ei) = 1 for every exceptional component Ei,

2. α is an isomorphism at all points of C◦ outside of the exceptional components.

3. for every exceptional component Ei of C◦, the orders of vanishing of α at the excep-

tional nodes pi and qi add up to n.

We can also define limit n-th roots associated to a subset ∆ ⊆ ∆C• in which the full

blow-up is replaced by the partial blow-up at ∆, see [170] for details.

Limit n-th roots over C• carry some combinatorial data, in the form of weighted graphs,

that takes into account the combinatorial aspects of the nodal curve C•. Conversely,

these weighted graphs allow one to construct and recover limit n-th roots. Although the

correspondence between limit n-th roots and these weighted graphs are not one-to-one, it

allows for a convenient parametrization of limit roots. First, let us introduce the weighted
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graphs in question. Let ∆̃C• be the exceptional nodes corresponding to ∆C• .

Definition 6.3.5. A weighted graph associated to a limit n-th root (C◦, P ◦, α) of L• is

the dual graph ΠC• endowed with weights assigned by the weight function

w : ∆̃C• → {1, . . . , n− 1} , (6.3.17)

where w(pi) = ui and w(qi) = vi are the orders of the vanishing of α at pi and qi

respectively.

Such weighted graphs naturally satisfy two conditions:

1. w(pi) + w(qi) = ui + vi = n,

2. For every irreducible component C•i of C•, the sum of all weights assigned to the

vertex corresponding to C•i is congruent to degC•
i
L• (mod n).

We illustrate an example of a weighted graph by returning to the Holiday lights H•.

We wish to find the limit 3rd roots of K2
H• . If C•i is a component of H•, then set

ki = #C•i ∩ (H• \ C•i ). Therefore, deg(KH• |C•
i
) = 2g(C•i )− 2 + ki, and the multi-degree

of KH• is

(deg(KH• |Γ), deg(KH• |E1), ..,deg(KH• |E10)) = (8, 1, . . . , 1) , (6.3.18)

which has total degree is 2g(H•) − 2 = 18. So, the multi-degree of K2
H• is (16, 2, . . . , 2).

A weighted graph associated to the limit 3rd roots of K2
H• , as well as the multi-degrees

of K2
H• , is given below. The labels inside the vertices are the multi-degrees of K2

H• , while
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the labels outside the vertices are the weights.

2 1 21

2
1

2
1

2
1

2
1

2

1

2

1

2

1

2

1

162

2

2 2

2

2

2

22

2

(6.3.19)

Given a weighted graph satisfying conditions A and B, we have a recipe for constructing

limit n-th roots of L•.

Proposition 6.3.6. Every weighted graph, whose underlying graph is ΠC•, and whose

weight function w : ∆̃C• → {1, . . . , n− 1} satisfies conditions A and B, encodes a limit n-

th root (C◦, P ◦, α) of L. Moreover, this weighted graph coincides with the weighted graph

associated to (C◦, P ◦, α) of L•.

Proof. Suppose we have a weighted graph satisfying the hypothesis of the proposition,

and let π|CN : CN → C• be the normalization of C•. Thanks to condition B, the line

bundle

(π|CN )∗(L•)

− ∑
pi,qi∈∆̃

(uipi + viqi)

 (6.3.20)

has on each irreducible component of CN degree divisible by n. Thus, on each irreducible

component of CN it admits an n-th root. The collection formed from an n-th root on

each irreducible component is a line bundle PN ∈ Pic(CN ). Let π : C◦ → C• be the

full blow-up. Over each exceptional component, glue a degree one line bundle to PN to

obtain a line bundle P ◦ ∈ Pic(C◦). Finally, define α : (P ◦)n → π∗(L•) to be zero on the
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exceptional components, and

α|CN : (PN )n = (π|CN )∗(L•)

− ∑
pi,qi∈∆̃

(uipi + viqi)

 ↪→ (π|CN )∗(L•) (6.3.21)

on CN . Then, (C◦, P ◦, α) is the desired limit n-th root of L• associated to ∆C• .

The same statements follow when ∆C• is replaced by a subset ∆. In this case, the limit

roots associated to ∆ give rise to weighted subgraphs satisfying conditions A and B. Using

the same procedure from 6.3.6, we can construct a limit root from a weighted subgraph.

Every nodal curve C• and line bundle L• on C• has a total of nb1(ΠC• ) weighted subgraphs

satisfying conditions A and B, where

b1(ΠC•) = #edges + #connected components−#vertices , (6.3.22)

is the first Betti number of ΠC• . We emphasize that this counts all of the weighted

subgraphs, whose edge sets coincide with subsets of ∆C• . Curves, whose dual graphs are

trees, will have zero b1, and thus, will only have one weighted graph. These curves are

said to be of compact type. This is certainly the case for the Holiday lights H•. Here,

b1(ΠH•) = 0 and the weighted graph depicted in eq. 6.3.19 is the only possible weighted

graph for the 3rd limit roots of K2
H• .

The correspondence between limit n-th roots and weighted graphs satisfying conditions

A and B is not one-to-one. Indeed, the construction detailed in 6.3.6 involves a choice of

a root PN of (π|CN )∗(L•)(−∑(uipi + viqi)). A careful count reveals that there are n2g

limit n-th roots [170].

We will apply the limit root construction in 6.3.6 to describe the limit 3rd roots of K2
H•

on the Holiday lights H•. We proceed as follows:

1. Blow-up all nodal singularities, and denote the exceptional component at the i-th
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node by Ei ∼= P1. This P1 touches Ei at the exceptional node pi and Γ at qi.

2. Let HN be the (full) normalization of H•, and consider the bundle

(π|HN )∗(K2
H•)

(
−2

10∑
i=1

pi −
10∑
i=1

qi

)
, (6.3.23)

which has multi-degree (16− 10, 2− 2, . . . , 2− 2) = (6, 0, . . . , 0). This bundle admits

3rd roots on HN , namely 32g(Ei) = 9 roots on each elliptic curve Ei and 32g(Γ) = 1

root on Γ. Hence, there are 910 = 320 roots, and each has multi-degree (2, 0, . . . , 0).

3. Pick a 3rd root PN , and glue to it a degree one bundle over every Ei. The resulting

limit 3rd root P ◦ of K2
H• has multi-degree (2, 0, . . . , 0, 1, . . . , 1) over H◦, where

deg(P ◦|C•
i
) = deg(PN |C•

i
), deg(P ◦|Ei) = 1. (6.3.24)

These limit roots can be represented as follows:

20

0

0 0

0

0

0

00

0

1

1

1 1

1

1

1

11

1

(6.3.25)

As before, the green vertices represent the elliptic curves Ei, and the pink vertex

represents Γ. The blue vertices represent the exceptional component Ei, which

intersects Ei and Γ. The multi-degrees of the limit root P ◦ is written inside the

vertices. In particular, P ◦ restricts to a degree 1 line bundle over each exceptional
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component.

6.3.4 Global sections of full blow-up limit roots

Of ample importance for our analysis is the number of global sections of the limit roots.

These arise from gluing sections on the irreducible components of the nodal curve across

exceptional divisors, which is addressed in the next lemma.

Lemma 6.3.7. Let p1, p2 be two distinct points on P1, and a1, a2 ∈ C. For every p3 ∈

P1 \ {p1, p2}, there exists a unique section s ∈ H0(P1,OP1(p3)) such that s(p1) = a1 and

s(p2) = a2.

Proof. Endow P1 with its standard open cover {U0, U1}. Let z ∈ U0 and w ∈ U1 be local

coordinates so that w = 1
z in U0 ∩ U1. Since PGL(2) acts transitively on P1, we may

assume that

p1 = 0, p2 = 1, p3 =∞ , (6.3.26)

without loss of generality. The desired section s is given by

s|U0(z) = (a2 − a1)z + a1 , s|U1 = (a2 − a1) + a1w . (6.3.27)

It remains to show uniqueness. Recall that every section t ∈ Γ(P1,OP1(p3)) is given by

two analytic functions t0 = t|U0 ∈ Γ(U0,OP1(p3)) and t1 = t|U1 ∈ Γ(U1,OP1(p3)) such

that over U0 ∩ U1,

t0(z) = zt1(w) = zt1(1/z) . (6.3.28)

If t0(z) = ∑
k≥0 αkz

k and t1(w) = ∑
k≥0 βkw

k, the above implies that

∑
k≥0

αkz
k = z

∑
k≥0

βkw
k

 = z

∑
k≥0

βkz
−k

 =
∑
k≥0

βkz
1−k . (6.3.29)
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It follows that αk = βk = 0 for k > 1, which leaves α0 = β1 and α1 = β0. As such, every

section t is given by t0(z) = α0z + α1 and t1 = α0 + α1w. If t also satisfies t(0) = a1 and

t(1) = a2, then within the chart U0 containing 0, 1 ∈ P1,

a1 = t0(0) = α1 , a2 = t0(1) = α0 + α1 = α0 + a1 . (6.3.30)

Thus, t0(z) = (a2 − a1)z + a1 and t1(w) = (a2 − a1) + a1w, which coincides with s.

By virtue of the above lemma, there is a unique way of gluing a local section over an

exceptional component to local sections over the irreducible components at each end.

This leads us to the following corollary.

Corollary 6.3.8. Let C• be a connected nodal curve with irreducible components C•i . Let

L• be a line bundle on C•, and n be an integer with n ≥ 2 and n|deg(L•). For any limit

n-th root (C◦, P ◦, α) of L•,

h0(C◦, P ◦) =
k∑
i=1

h0(C•i , P ◦|C•
i
). (6.3.31)

Proof. Let two irreducible components C•i and C•j intersect an exceptional component

E ∼= P1 at pi ∈ C•i and pj ∈ C•j respectively. Set Y = C•i ∪ E ∪ C•j . Then, we have

h0(Y, P ◦) ≥ h0(C•i , P ◦|C•
i
) + h0(C•j , P ◦|C•

j
) + h0(E , P ◦|E)

− h0(C•i ∩ E , P ◦|C•
i ∩E)− h

0(C•j ∩ E , P ◦|C•
j ∩E)

≥ h0(C•i , P ◦|C•
i
) + h0(Cj , P ◦|C•

j
) + 2− 1− 1

≥ h0(C•i , P ◦|C•
i
) + h0(C•j , P ◦|C•

j
). (6.3.32)

It remains to prove equality. Recall that the number of independent conditions met at pi

and pj is at most 2 – the number of intersection points on E . The previous lemma showed

that there are exactly two independent conditions; one at each pi and pj . Thus, equality
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holds. Since any two irreducible components of C• either intersect a common exceptional

component, or they do not in the full blow-up, the result follows.

Let us apply these results to the Holiday lights H•, and count the global sections of the

limit 3rd roots of K2
H• . Recall that H• is the union of a rational curve Γ, and 10 elliptic

curves Ei. Also, the limit 3rd root P ◦ of K2
H• has multi-degree (2, 0, . . . , 0, 1, . . . , 1). Since

Γ is rational, h0(Γ, P ◦|Γ) = h0(P1,OP1(2)) = 3. By the above results, we have

h0(H◦, P ◦) = h0(Γ, P ◦|Γ) +
10∑
i=1

h0(Ei, P ◦|Ei) = 3 +

 0

1

+ · · ·+

 0

1

 (6.3.33)

The last term in the above expression means 0 or 1. This refers to the two cases described

in 6.3.3 in which P ◦|Ei is either non-trivial or trivial.

This example highlights the general fact that a line bundle of degree d over a smooth curve

can have different h0’s. Since counting the global sections of a limit root is equivalent to

counting its local sections over the smooth irreducible components, we address the effect

of this phenomenon on section-counting in the following corollary.

Corollary 6.3.9. Let C• be a connected nodal curve with irreducible components C•1 . Let

L• be a line bundle on C•, and n be an integer with n ≥ 2 and n| deg(L•). For any limit

n-th root (C◦, P ◦, α) of L•,

k∑
i=1

min h0(C•i , P ◦|C•
i
) ≤ h0(C◦, P ◦) ≤

k∑
i=1

max h0(C•i , P ◦|C•
i
), (6.3.34)

where for each i, the minimum and maximum are taken over all line bundles of degree

deg(P ◦|C•
i
) over C•i .

In the example of the Holiday lights H•,

min
P ◦|Γ∈Pic2(Γ)

h0(Γ, P ◦|Γ) = 3, max
P ◦|Γ∈Pic2(Γ)

h0(Γ, P ◦|Γ) = 3, (6.3.35)

162



min
P ◦|Ei∈J(Ei)

h0(Ei, P ◦|Ei) = 0, max
P ◦|Ei∈J(Ei)

h0(Ei, P ◦|Ei) = 1, (6.3.36)

for i = 1, ..., 10. Hence, 3 ≤ h0(H◦, P ◦) ≤ 13.

Let Roots(n,L•)◦ be the set of limit n-th roots of L• on C•. In a broader sense, we wish

to understand the map,

h0(C◦, ·) : Roots(n,L•)◦ → N ∪ {0}, P ◦ 7→ h0(C◦, P ◦), (6.3.37)

For curves of compact type, every limit root comes from one weighted graph, and is

constructed over the full blow-up. In this case, the global sections of the limit root are

fully determined by the local sections over the irreducible components. Hence, we can

compute |h0(C◦, ·)−1(a)| for every a ∈ N ∪ {0}, i.e. the number of limit n-th roots with

h0 = a. We illustrate this with the Holiday lights, which is a curve of compact type.

Denote the number of elliptic curves on which P ◦|Ei is non-trivial by Ni. Then, the

number NP ◦(h0) of limit 3rd roots with specific h0 are as follows:

Ni 10 9 8 7 6 5 4 3 2 1 0

NP ◦(3) 1
(1
0
)
· 8

(2
0
)
· 82 (3

0
)
· 83 (4

0
)
· 84 (5

0
)
· 85 (6

0
)
· 86 (7

0
)
· 87 (8

0
)
· 88 (9

0
)
· 89 (10

0
)
· 810

NP ◦(4) 1
(2
1
)
· 81 (3

1
)
· 82 (4

1
)
· 83 (5

1
)
· 84 (6

1
)
· 85 (7

1
)
· 86 (8

1
)
· 87 (9

1
)
· 88 (10

1
)
· 89

NP ◦(5) 1
(3
2
)
· 81 (4

2
)
· 82 (5

2
)
· 83 (6

2
)
· 84 (7

2
)
· 85 (8

2
)
· 86 (9

2
)
· 87 (10

2
)
· 88

NP ◦(6) 1
(4
3
)
· 81 (5

3
)
· 82 (6

3
)
· 83 (7

3
)
· 84 (8

3
)
· 85 (9

3
)
· 86 (10

3
)
· 87

NP ◦(7) 1
(5
4
)
· 81 (6

4
)
· 82 (7

4
)
· 83 (8

4
)
· 84 (9

4
)
· 85 (10

4
)
· 86

NP ◦(8) 1
(6
5
)
· 81 (7

5
)
· 82 (8

5
)
· 83 (9

5
)
· 84 (10

5
)
· 85

NP ◦(9) 1
(7
6
)
· 81 (8

6
)
· 82 (9

6
)
· 83 (10

6
)
· 84

NP ◦(10) 1
(8
7
)
· 81 (9

7
)
· 82 (10

7
)
· 83

NP ◦(11) 1
(9
8
)
· 81 (10

8
)
· 82

NP ◦(12) 1
(10

9
)
· 81

NP ◦(13) 1

Factor 320 318 316 314 312 310 38 36 34 33 30
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This table says that for Ni = 10, we find NP ◦(3) = 1 · 320 limit 3rd roots P ◦ with h0 = 3.

Similarly, for Ni = 4, we find NP ◦(3) =
(6
3
)
· 83 · 38 limit 3rd roots P ◦ with h0 = 6. For

ease of presentation, the overall factors are collected at the bottom of this table.

We would like to generalize this section-counting of limit roots for all curves, which may

have multiple weighted subgraphs. Complications arise when counting the global sections

of limits roots over partial blow-ups; namely, it is unclear what h0 of a limit root is over

a singular component of the curve, i.e., the component containing a singularity that has

not been blown up. Although we will not discuss this direction in this paper, it presents

an interesting problem which we hope to revisit in the future.

6.4 Limit root applications in F-theory

After the detailed exposition of root bundles and limit roots in the previous section, we

now wish to apply these techniques to F-theory. We first outline how limit roots can

be used to provide an explicit and oftentimes constructive argument for the absence of

certain vector-like exotics. We demonstrate these ideas in one particular geometry among

the largest class of currently-known globally consistent F-theory Standard Models without

chiral exotics and gauge coupling unification [32]. We will argue that there are solutions

without vector-like exotics in the representations C(3,2)1/6 , C(3,1)−2/3
, C(3,1)1/3

and C(1,1)1 .

6.4.1 Absence of vector-like exotics

Let us look at an F-theory compactification to 4-dimensions on a space Y4, which admits a

smooth, flat, crepant resolution Ŷ4. As explained in 6.2.1, root bundles appear naturally in

such settings when studying vector-like spectra. We found that the geometry determines

a class A′ = γ̂(A′) ∈ H4
D(Ŷ4,Z(2)) for some A′ ∈ CH2(Ŷ4,Z), and an integer ξ ∈ Z>0 such

that A is subject to the two constraints:

γ(A) = G4 , ξ · γ̂(A) ∼ γ̂(A′) . (6.4.1)
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The condition γ(A) = G4 immediately follows from 6.2.4 and it means that A = γ̂(A)

is an F-theory gauge potential for the given G4-flux. The second condition ensures the

absence of chiral exotics in the F-theory Standard Models [32]. It follows that the line

bundle on the matter curve CR satisfies

PR = OCR (DR(A))⊗OCR
OCR

(
Dspin
CR

)
, (6.4.2)

where DR(A) and Dspin
CR

are solutions to the root bundle constraints

ξ ·DR(A) ∼ DR(A′) , 2 ·Dspin
CR
∼ KR . (6.4.3)

Recall from 6.3 that these root bundle constraints have many solutions. In general, it

cannot be expected that all solutions are realized from roots in H4
D(Ŷ4,Z(2)) and spinc-

structures on the gauge surfaces. We reserve a detailed study of this interesting and

challenging question for future works. In this article, we study all the ξ-th roots of

DR (A′) and all of the spin divisors Dspin
CR

systematically. Our goal is to identify roots PR

subject to the physical demand of absence/presence of vector-like pairs. In future works,

we hope to identify which of these desired roots stem from F-theory gauge potentials in

H4
D(Ŷ4,Z(2)).

At special loci of the complex structure moduli space, massive vector-like pairs can be

rendered massless. Mathematically, this is reflected in the fact that deformations of a line

bundle can have higher cohomologies. For example, if we assume χ(PR) ≥ 0, then we

could have:
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Geometry of curves CR
(
h0(CR, PR), h1(CR, PR)

)
Generic (χ(PR), 0)

Less generic (χ(PR) + 1, 1) ≡ (χ(PR), 0)⊕ (1, 1)

Even less generic (χ(PR) + 2, 2) ≡ (χ(PR), 0)⊕ (2, 2)
...

...

In [48], such cohomology jumps have been analyzed in large detail. In particular, it was

explained that even on generic curves, line bundles with the same chiral index need not

have the same cohomologies. This classic observation goes by the name of Brill-Noether

theory [150] (see also [128] for another application of Brill-Noether theory to F-theory).

This observation in particular applies to root bundles. In 6.3.1, we have explained that

of the four spin structures on an elliptic curve, one has h0(E,Ospin
E ) = 1 and the other

three have vanishing number of global sections. This is a special instance of the results in

[177, 178], which show that all odd spin structures have odd number of zero modes, while

the remaining even spin structures have even number of zero modes. Generally speaking,

different roots PR will have different numbers of zero modes.

That said, our task is to construct root bundles PR with the cohomologies that are

physically desired. For simplicity, let us assume χ(PR) ≥ 0. Inspired by physics, we should

then distinguish the generic case h0(PR) = χ(PR) and the non-generic case h0(PR) >

χ(PR). The former corresponds to the absence of exotic vector-like pairs, while the latter

most prominently features on the Higgs curve in F-theory Standard Model constructions.

In the latter case, for MSSM constructions, one wishes to achieve h0(PR) = χ(PR) + 1 so

that the additional vector-like pair describes a Higgs field.

We approach the task of constructing such physically desired root bundles PR by first

considering a deformation CR → C•R, where C•R is a nodal curve. Therefore, PR → P •R

becomes a root bundle on the nodal curve C•R. We focus on roots P •R, which we can

describe by limit roots P ◦R on the full blow-up C◦R of C•R. For those limit roots, we can
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employ the technology described in 6.3 in order to identify h0(C◦R, P ◦R). This enables

us to identify roots P ◦R with h0(C◦R, P ◦R) = χ(P ◦) + δ from simple combinatorics, where

δ ∈ Z≥0 is the physically desired offset.

The pushforward of limit roots P ◦R along the blow-up map π : C◦R → C•R preserves the

number of global sections, i.e. h0(C◦R, P ◦R) = h0(C•R, P •R). We have thus identified the

roots on C• which have the physically desirable cohomologies. In theory, we can trace

those roots P •R along the deformation C•R → CR to find roots PR on the original curve

CR. Crucially though, such a deformation can change the number of sections (see e.g.

[48]). For the deformation C•R → CR, which turns a nodal (i.e. singular and thus non-

generic) curve into a smooth, irreducible curve, it is known that the number of sections

is an upper semi-continuous function. This means that the number of sections either

remains constant or decreases as we trace P •R to PR on CR:

h0(CR, PR) ≤ h0(C•R, P •R) = χ(PR) + δ . (6.4.4)

The natural question is thus to look for roots P •R for which equality holds. This happens

in the generic case, i.e. the case δ = 0. This is because the number of sections is then

already minimal on C•R and thus, it must remain constant along the deformation to C•R:

h0(CR, PR) = h0(C•R, P •R) = χ(PR) . (6.4.5)

The upshot of this strategy, which we summarize in 13, is that we can provide a lower

bound to the number of roots PR without vector-like exotics by studying the combinatorics

of limit roots on the full blow-up C◦R of the nodal curve C•R.7

In aiming for F-theory MSSMs, the non-generic case δ = 1 is also fairly important for

the Higgs curve. While it is not hard to construct limit roots on C◦(1,2)−1/2
with exactly

4 sections, the corresponding roots P •(1,2)−1/2
satisfy h0(C•(1,2)−1/2

, P •(1,2)−1/2
) = 4, which

7Recall that at least one of these roots stems from an F-theory gauge potential in CH2(Ŷ4,Z).
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Deformation

Upper SC

h0 remains 3

Matter curve CR Nodal curve C•
R

PR Limit roots

Pushforward

h0(P ◦) = h0(P •)

Blow-up curve C◦
R

P •R
P ◦R

Figure 13: Roots PR with h0(CR, PR) = 3 from roots P •R on a nodal curve C•R and limit
roots P ◦R on its blow-up C◦R.

is larger than the minimal value χ(P(1,2)−1/2) = 3. Since the number of sections is non-

minimal, we cannot conclude from upper semi-continuity that the number of sections

remains constant. Rather, we expect some of those roots P •(1,2)−1/2
to lose a section when

traced to C(1,2)−1/2 . Currently, we do not know a sufficient discriminating property that

allows us to identify the roots P •(1,2)−1/2
for which the number of sections remains constant.

We reserve this interesting mathematical question for future work.

6.4.2 Application to F-theory Standard Models

We now continue the analysis initiated in 6.2.2, where we summarized the geometry of the

largest currently-known class of globally consistent F-theory Standard Models without

chiral exotics and gauge coupling unification [32]. The chiral index on all five matter

curves

C(3,2)1/6 = V (s3, s9) , C(1,2)−1/2 = V
(
s3, s2s

2
5 + s1(s1s9 − s5s6)

)
, (6.4.6)

C(3,1)−2/3
= V (s5, s9) , C(3,1)1/3

= V
(
s9, s3s

2
5 + s6(s1s6 − s2s5)

)
, (6.4.7)

C(1,1)1 = V (s1, s5) , (6.4.8)

is thus exactly three. We worked out the root bundle constraints (c.f. C.2.3). In aiming

for an MSSM construction, which comes with exactly one Higgs pair, the vector-like

spectrum is subject to the demand 4 = h0(C(1,2)−1/2 , P(1,2)−1/2). As explained above,

since 4 = 1 + χ(P(1,2)−1/2), our current technology does not allow us to tend to this case.

However, we can address the absence of vector-like exotics on the remaining matter curves
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in a constructive way. That is, we can construct solutions to the constraint

3 = h0(C(3,2)1/6 , P(3,2)1/6) = h0(C(3,1)−2/3
, P(3,1)−2/3

)

= h0(C(3,1)1/3
, P(3,1)1/3

) = h0(C(1,1)1 , P(1,1)1) .
(6.4.9)

To outline these steps, let us first look at the quark-doublet curve C(3,2)1/6 = V (s3, s9),

where s3, s9 are generic sections of KB. To make our construction explicit, let us focus

on base spaces B3 with K
3
B = 18. It then follows from C.2.3 that we are trying to argue

for the existence of root bundles that satisfy

P⊗36
(3,2)1/6

∼ K⊗24
(3,2)1/6

, h0(C(3,2)1/6 , P(3,2)1/6) = 3 . (6.4.10)

For this, it suffices to argue that root bundles with the following properties exist

P⊗3
(3,2)1/6

∼ K⊗2
(3,2)1/6

, h0(C(3,21/6), P(3,2)1/6) = 3 . (6.4.11)

We achieve a proof of existence by studying a deformation C(3,2)1/6 → C•(3,2)1/6
. Let

us work with a concrete base geometry, we opt for the toric base space B3 = P39 with

K
3
B = 18, whose details are summarized in C.2.4.

To describe the deformation C(3,2)1/6 → C•(3,2)1/6
, we first notice that s3 is a polynomial in

the homogeneous coordinates {xi}1≤i≤11 of P39. Since s3 is a section of KP39 , it contains

the monomial ∏11
i=1 xi.8 This allows us to consider the deformation

V (s3, s9) = C(3,2)1/6 → C•(3,2)1/6
= V

( 11∏
i=1

xi, s9

)
. (6.4.12)

Since we assume generic s9, C•(3,2)1/6
is manifestly nodal in the K3-surface V (s9) and the

techniques of 6.3 apply. To this end, we first identify the dual graph of C•(3,2)1/6
, which

8For any toric base space B3 with homogeneous coordinates xi,
∏
i
xi is a section of KB ∼

∑
i
[xi].

169



has 17 irreducible components:

curve equation genus deg
(

2 · KC•
(3,2)1/6

∣∣∣∣
Ci

)

C1 V (x1, s9) 1 6

C3 V (x3, s9) 1 6

C6 V (x6, s9) 0 12

C11 V (x11, s9) 0 12

C2 V (x2, s9) 0 0{
C

(i)
8

}
1≤i≤6

V (x8, x1 − αix3) 0 0{
C

(i)
10

}
1≤i≤6

V (x10, x1 − αix3) 0 0

(6.4.13)

For convenience, we list the degree of 2 · KC•
(3,2)1/6

on all irreducible components since

6.4.11 instructs us to construct third roots of this bundle. By taking the Stanley-Reisner

ideal of P39 into account (see C.2.4), one finds the dual graph of C•(3,2)1/6
:

C6 C11C1

C2

C3

C
(i)
8 C

(i)
10 (6.4.14)

We mark the P1s in pink and the elliptic curves in green. This diagram is easily extended

to a weighted diagram, which encodes a 3rd root of 2 ·KC•
(3,2)1/6

. This involves placing

weights wi ∈ {1, 2} subject to the following two rules (cf. 6.3.3):

1. Along each edge: The sum of weights is 3.
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2. At each node: The sum of weights equals the degree in 6.4.13 modulo 3.

It is readily verified that the following weighted diagram satisfies these rules:

1 2

2

1

2
1

2
1

2

1

12

2 1
2 1

2 1
2 1

2 1
2 1

2

1

2

1

2

1

2

1

2

1

2

1

1

2

1

2

1

2

1

2

1

2

1

2

12 126

0

6000000 0 0 0 0 0 0

(6.4.15)

We then study the limit roots P ◦(3,2)1/6
on the full blow-up C◦(3,2)1/6

of C•(3,2)1/6
, which are
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encoded by this diagram. The degree of each such limit root P ◦(3,2)1/6
is as follows:

−1 1
C11

0 C1

−1

1 C3

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

1

1

1

1

1

1

1 1 1 1 1 1111111

1

11 1

1 1

(6.4.16)

Note that we denote the blow-up P1s in blue and that, by construction of the limit roots,

we consider a degree 1 line bundle on each of these. It follows that the (total) degree of

each such limit root P ◦(3,2)1/6
is 12. This is expected from 6.4.11 since it is equivalent to

χ(P ◦(3,2)1/6
) = 3. Here, we claim even more, namely that some of these limit roots have

exactly three global sections.

To see this, recall from 6.3.4 that the number of global sections of a limit root P ◦(3,2)1/6
is

simply given by the sum of the sections on each irreducible component of C•(3,2)1/6
. Hence,

we have to add the number of sections on the green and pink components in 6.4.16. From

the degrees, it follows that only C1, C3 and C11 support a non-zero number of sections,

namely

h0
(
C1, P

◦
(3,2)1/6

)
=

 0

1

 , h0
(
C3, P

◦
(3,2)1/6

)
= 1 , h0

(
C11, P

◦
(3,2)1/6

)
= 2 . (6.4.17)

The notation for C1 reminds us of the fact that on an elliptic curve, a line bundle with
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vanishing degree can either have 0 or 1 global section. Moreover, recall from 6.3.3 that

the limit roots on C1 are actually the 3rd roots of a line bundle of vanishing degree. In

anticipation of this situation, we have already given a detailed exposition of exactly those

root bundles on elliptic curves in 6.3.1. In particular, it follows from 6.3.3 that at least 8

of the 9 3rd roots on C1 satisfy h0(C1, P
◦
(3,2)1/6

) = 0.

Note that also C3 admits 9 = 32·1 different roots. However, in contrast to C1, all of

these roots are in the Kodaira stable regime and have exactly one section. Therefore, we

conclude that we found at least 8 · 9 = 72 limit roots P ◦(3,2)1/6
with

3 = h0
(
C◦(3,2)1/6

, P ◦(3,2)1/6

)
. (6.4.18)

It therefore follows from our discussion in 6.4.1 that there are at least 72 solutions to 6.4.11

and consequently, also to 6.4.10. Let us emphasize that this analysis does not guarantee

that one of these 72 solutions stems from an F-theory gauge potential in H4
D(Ŷ4,Z(2)).

This top-down study is reserved for future work.

Along exactly the same lines, we can argue that also C(3,1)−2/3
= V (s5, s9) and the singlet

curve C(1,1)1 = V (s1, s5) admit at least 72 solutions to the root bundle constraints with

exactly three global sections. This leaves us to discuss the vector-like spectrum on

C(3,1)1/3
= V

(
s9, s3s

2
5 + s6(s1s6 − s2s5)

)
. (6.4.19)

On this curve we look for root bundles spicied in C.2.3 To this end we consider the

deformation C(3,1)1/3
→ C•(3,1)1/3

with

C•(3,1)1/3
= V (s9, s5 − s6) ∪ V (s9, s3 − s6) ∪ V (s9, s5 + s6) ≡ Q1 ∪Q2 ∪Q3 , (6.4.20)
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which is obtained from

s1 → s6 − s3 , s2 → s5 −
11∏
i=1

xi , s9 →
11∏
i=1

xi , (6.4.21)

and generic s3, s5, s6. Therefore, C(3,1)1/3
→ C•(3,1)1/3

turns this matter curve into three

nodal curves, each of which looks like the curve C•(3,2)1/6
that we discussed above. From

this point on, we can again employ the limit root techniques. On a technical level, the only

distinction to the constructions presented for C•(3,2)1/6
is that we have to carefully take

into account the line bundle contributions from the Yukawa point Y3. Also, the resulting

weighted diagrams become very large since the nodal curve C•(3,1)1/3
has 51 irreducible

components. For these reasons, it suffices to state that we can argue for at least 362 · 354

solutions. Details are provided in C.2.4. We reserve a detailed top-down study of which

root bundles arise from an F-theory gauge potential in H4
D(Ŷ4,Z(2)) for the future.

6.5 Conclusion and Outlook

This work is motivated by the frequent appearance of fractional powers of line bundles

when studying vector-like spectra of globally consistent 4d F-theory Standard Models

with three chiral families and gauge coupling unification [32]. In these models, the vector-

like spectra on the low-genus matter curves are naively encoded in cohomologies of a

line bundle that is identified with a fractional power of the canonical bundle. On high-

genus curves, these fractional powers of the canonical bundle are further modified by

contributions from Yukawa points. In order to understand these fractional bundles, we

have analyzed their origin and nature.

First, in 6.2.1, we analyzed the origin of such fractional powers of line bundles. We recalled

that the vector-like spectra are not specified by a G4-flux, but rather by its associated

gauge potential in the Deligne cohomology H4
D(Ŷ4,Z(2)) [45, 46, 47]. In fact, a given

G4-flux has many such gauge potentials. To see this, recall that in the dual M-theory

picture, G4 = dC3, where C3 is the internal M-theory 3-form potential. Any other 3-form
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potential C ′3 with closed C ′3 − C3 still has G4 as its field strength. Such closed 3-form

potentials are encoded by the intermediate Jacobian J2(Ŷ4) in the F-theory geometry.

While it is well-defined in theory, it can be very challenging to associate even a single

gauge potential in H4
D(Ŷ4,Z(2)) to a given G4-flux in practice. We were able to tie the

appearance of fractional powers of line bundles to exactly this challenge.

For an F-theory model, we need an F-theory gauge potential, i.e., a class in the Deligne

cohomology group A ∈ H4
D(Ŷ4,Z). This will be specified as γ̂(A) for some “potential” A ∈

CH2(Ŷ4,Z). We found that the geometry determines a class A′ = γ̂(A′) ∈ H4
D(Ŷ4,Z(2))

and an integer ξ ∈ Z>0 such that A is subject to the two constraints:

γ(A) = G4 , ξ · γ̂(A) ∼ γ̂(A′) . (6.5.1)

The condition γ(A) = G4 immediately follows from 6.2.4 and it means that A = γ̂(A) is

an F-theory gauge potential for the given G4-flux. In the dual M-theory picture, it states

that the 3-form potential C3 satisfies dC3 = G4. We illustrated with several examples

that the absence of chiral exotics in the F-theory Standard Models [32] boils down to the

second constraint.

It is important to notice that the gauge potential A = γ̂(A) specified by the two conditions

in 6.5.1 is in general not unique. The collection of all ξ-th roots of γ̂(A′) (if non-empty)

is a coset of the group of all ξ-th roots of 0. In particular, the number of solutions is

ξ2·dimC
(
J2(Ŷ4)

)
. All these solutions lead to the same chiral spectrum (6.2.2) since they

all have the same degree when restricted to the curves CR, and hence, the same index.

However, they could differ in their actual spectrum (6.2.7). This extra flexibility is the

key tool that we intend to use to produce a desirable spectrum such as the MSSM.

In theory, we could proceed by studying gauge potentials A = γ̂(A) ∈ H4
D(Ŷ4,Z(2))

subject to 6.5.1. However, in practice it seems more efficient to proceed with the alge-

braic cycle A′, which we could construct explicitly in the largest currently-known class of
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globally consistent F-theory Standard Models without chiral exotics and gauge coupling

unification [32]. Hence, we have a sufficient level of arithmetic control over A′ = γ̂(A′). In

particular, we can identify the Z-Cartier divisor DR(A′) induced from A′ on the matter

curve CR. It follows that

ξ ·DR(A) ∼ DR(A′) . (6.5.2)

Divisors DR(A), which solve this equation for given DR(A′) and ξ, are called root divisors

and their associated line bundles are root bundles. They exist if and only if ξ divides the

degree of DR(A′). Such root bundles are by no means unique. For example, spin bundles

on a genus g matter curve CR are 2nd roots of the canonical bundle KR and there are

22g such roots. Similarly, on a genus g-curve, 6.5.2 admits ξ2g solutions (if they exist).

It is well-known that not all spin bundles have the same number of global sections. Rather,

roughly half of the spin bundles on a curve CR have an odd number of global sections

and the remaining ones have an even number [177, 178]. More generally, we can therefore

expect that the gauge potentials A = γ̂(A) subject to 6.5.1 lead to different vector-

like spectra. This mirrors the physical expectation that inequivalent F-theory gauge

potentials — equivalently, in the dual M-theory picture, two 3-form potentials C3 and C ′3
that differ by a closed 3-form — will in general lead to different vector-like spectra. This

was anticipated e.g. in [45, 46, 47].

In general, only a subset of the root divisors in 6.5.2 are induced from F-theory gauge

potentials in H4
D(Ŷ4,Z(2)). While this work does not answer the important question of

which root divisors are induced from F-theory potentials, we hope that this work initiates

and facilitates this study by providing a systematic analysis of all root bundles and spin

bundles on the matter curves. Our goal in this work was to identify combinations of root

bundles and spin bundles on the matter curves, such that their global sections satisfy the

physical demand of the presence/absence of vector-like pairs.
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While we expect that our techniques apply more generally, we have focused on the largest

currently-known class of globally consistent F-theory Standard Models with realistic chiral

spectra [32], which emphasizes the genuine appearance of root bundles in vector-like

spectra of F-theory compactifications. It should be mentioned that the background G4-

flux in these F-theory Standard Models models does not only lead to realistic chiral

spectra, but also allows cancelation of the D3-tadpole and ensures masslessness of the

U(1)-gauge boson. We summarize the involved technical steps in the derivation of these

root bundle constraints in C.2. This derivation heavily relies on a detailed understanding

of the elliptically fibered 4-fold F-theory geometry Ŷ4, including intersection numbers

in the fiber over the Yukawa points. We supplement the earlier works [82, 40, 32] by

providing a complete list of all fiber intersection numbers in C.1.

Our approach to identifying root and spin bundles on the matter curves, whose coho-

mologies are physically desired for the presence/absence of vector-like pairs, is inspired

by the work in [170], which gives a diagrammatic description of root bundles on nodal

curves C•R. More explicitly, it relates these roots with so-called limit roots on (partial)

blow-ups C◦R of C•R. We summarized these ideas in 6.3, and then introduced counting

procedures for the global sections. In order to fully appreciate this finding, recall from

[48] that in general one will merely find a lower bound. The argument that we provide in

this work is stronger – it provides an exact count of the global sections of limit roots on

full blow-ups of C•R. This observation may be interesting in its own right since it provides

a combinatoric access to Brill-Noether theory of limit roots. We demonstrated this for a

nodal curve – the Holiday lights H•. This curve is of compact type and its only blow-up

that is to be considered for the limit root is its full blow-up. Our approach then allowed

us to identify exactly how many limit roots possess a certain number of global sections.

It will be an interesting mathematical question to extend these ideas to partial blow-ups.

We reserve this analysis for future work.

Given these insights on root bundles on nodal curves C•R, it remained to extract informa-
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tion on root bundles on actual matter curves CR in F-theory compactifications. As the

latter are typically smooth, it is natural to wonder what we can say about (limit) roots

when traced along a deformation C•R → CR. In particular, we can wonder if there are

deformations of CR that are conducive for a more fruitful analysis. As we have already

mentioned, curves of compact type, such as the Holiday lights, are prime candidates. The

lack of cycles in their dual graph limits the number of possible weighted graphs, so much

so that we have a complete understanding of the limit roots and their global sections. In

contrast, the dual graphs of the deformed matter curves C•R in explicit geometries are

more complex in which there are multiple weighted subgraphs, and limit roots over partial

blow-ups. In particular, some singularities on the curve still remain in its partial blow-up,

and it is therefore far more challenging to count the sections. It would be useful to com-

pare these two examples in more depth and to determine exactly what features of the dual

graph allow for better section-counting. One obvious feature is the cyclomatic number,

which happens to be the first Betti number of a graph when viewed as a 1-dimensional

simplicial complex. Curves of compact type have zero cyclomatic number, and thus, are

topologically simple. Subsequently, we can explore possible ways of deforming CR to a

nodal curve whose dual graph has these desirable features.

In this work, we have focused on deformations CR → C•R which arise naturally by mod-

ifying the defining polynomials in a concrete base geometry B3. Most curves that we

encountered in this way had planar dual graphs. Still, for the most involved matter curve

discussed in this article, the dual graph is non-planar. The subject of planarity raises

many interesting questions and applications in graph theory [189, 190, 191, 192, 193].

However, the geometric significance for a nodal curve to have a non-planar dual graph is

not mentioned in the literature to our knowledge [194, 195]. It is possible that planarity

does not play a role in the geometry of nodal curves. Indeed, the curve associated to the

well-known non-planar graph K3,3 is quite ordinary. Nevertheless, it would be useful to

explore this feature as it raises the question of whether there are better ways to represent
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a given dual graph.

For a physical application, we have studied vector-like spectra of F-theory Standard Mod-

els without chiral exotics in 6.4. In aiming for MSSM constructions, we should wonder

what we can say about the global sections of a root P •R as we trace it to a root PR along

a deformation C•R → CR. In this work, we did not attempt to provide a complete answer

to this question. Rather, we recalled that a certain behavior of the cohomologies along

such a deformation is known. This is called upper semi-continuity and it means that the

number of global sections cannot increase when tracing a root P •R on C•R to a root PR on

CR. Put differently,

h0 (CR, PR) ≤ h0 (C•R, P •R) . (6.5.3)

For F-theory MSSM constructions, it is important to understand (limit) roots on the

Higgs curve with h0(C(1,2)−1/2 , P(1,2)−1/2) = 4 = 1+χ(P(1,2)−1/2). While we can construct

roots P •(1,2)−1/2
with h0(C•(1,2)−1/2

, P •(1,2)−1/2
) = 4, upper semi-continuity does then not

guarantee that P •(1,2)−1/2
→ P(1,2)−1/2 along C•(1,2)−1/2

→ C(1,2)−1/2 yields roots with 4

global sections. Rather, the roots could lose sections along this transition (cf. [48]). To

our knowledge, a sufficient criterion that identifies the Higgs roots P •(1,2)−1/2
that do not

lose sections is currently unknown. However, given the physical significance of such a

condition, we hope to return to this interesting question in the future.

Even a subset of (limit) roots that do not lose sections along C•R → CR is valuable. We

identified a family of such roots P •R. Namely, for a root with h0 (C•R, P •R) = χ(PR) ≥ 0,

it follows from upper semi-continuity that h0 (CR, PR) = h0 (C•R, P •R). Any such root

thus satisfies hi (CR, PR) = (χ(PR), 0), which means it describes a zero mode spectrum

on CR without vector-like pairs. For example, in the F-theory MSSM constructions, this

is a desired feature for the representations C(3,2)1/6 , C(3,1)−2/3
, C(3,1)1/3

, C(1,1)1 for which

vector-like pairs are exotic, i.e. have thus far not been observed in particle accelerators.
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We have applied these techniques to a particular F-theory geometry among the largest

currently-known class of globally consistent F-theory Standard Model constructions with-

out chiral exotics and gauge coupling unification [32]. To this end, we worked with the

base space B3 = P39. This 3-fold is one of the triangulations of the 39-th polyhedron of

the Kreuzer-Skarke list[2], hence the name. In this space, we have explicitly deformed

the matter curves CR to nodal curves C•R. On those nodal curves, we could then easily

construct limit roots on the full blow-up C◦R of C•R which have exactly 3 sections. We

collect details on the base space B3 = P39 and limit roots on the blow-up of a genus g = 82

matter curve in C.2.4. In future works, we hope to investigate which of these desired root

bundles are realized from F-theory gauge potentials in H4
D(Ŷ4,Z(2)).

To fully appreciate these findings, let us point out that this task cannot be performed

with state-of-the-art algorithms such as [168] unless one explicitly specifies the line bundle

divisor in question. In past works [46, 47], such constructions were described. A computer

model of such line bundles (by dualizing the corresponding ideal sheaf) requires Gröbner

basis computations. Even by the use of state-of-the-art algorithms such as [94], the

involved geometries resulted in excessively long runtimes and heavy memory consumption.

By approaching root bundles from limit roots on full blow-ups, these complications are

circumvented at the cost of studying deformation theory.

This work provides a constructive approach to identifying limit root bundles on full blow-

ups of a nodal curve with specific number of global sections. Since our approach is

completely constructive, we anticipate a computer implementation which can find all such

limit roots. For this, one would work out all of the weighted diagrams associated to the

dual graph of a nodal curve C•R, and then identify the limit roots with the desired number

of global sections. In generalizing this approach even further, we anticipate a scan over

many of the F-theory Standard model geometries in [32]. By employing state-of-the-art

data-science and machine learning techniques, it can be expected that such a scan will

lead to a more refined understanding of F-theory Standard Model constructions. We hope
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to return to this fascinating question in the near future.
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CHAPTER 7: Statistics of Limit Root Bundles

In the largest, currently known, class of one Quadrillion globally consistent F-theory

Standard Models with gauge coupling unification and no chiral exotics, the vector-like

spectra are counted by cohomologies of root bundles. In this work, we apply a previously

proposed method to identify toric base 3-folds, which are promising to establish F-theory

Standard Models with exactly three quark-doublets and no vector-like exotics in this

representation. The base spaces in question are obtained from triangulations of 708

polytopes. By studying root bundles on the quark doublet curve C(3,2)1/6 and employing

well-known results about desingularizations of toric K3-surfaces, we derive a triangulation

independent lower bound Ň (3)
P for the numberN (3)

P of root bundles on C(3,2)1/6 with exactly

three sections. The ratio Ň (3)
P /NP , where NP is the total number of roots on C(3,2)1/6 , is

largest for base spaces associated with triangulations of the 8-th 3-dimensional polytope

∆◦8 in the Kreuzer-Skarke list. For each of these O(1015) 3-folds, we expect that many root

bundles on C(3,2)1/6 are induced from F-theory gauge potentials and that at least every

3000th root on C(3,2)1/6 has exactly three global sections and thus no exotic vector-like

quark-doublet modes.

7.1 Introduction

Like no other framework for quantum gravity, string theory encodes the consistent cou-

pling of gauge dynamics to gravity. Therefore, it is a leading candidate for a unified

theory that accounts for all aspects of the observed low energy physics. Enormous

efforts have been undertaken to demonstrate the particle spectrum of the Standard

Model from string theory. The earliest studies focus on the E8 × E8 heterotic string

[13, 161, 109, 110, 124, 162, 163, 108] and were later extended by intersecting branes

models [17, 18, 19, 20, 21, 22, 23, 24].

While these compactifications realize the gauge sector and chiral spectrum of the Standard

Model, they are limited to the perturbative regime in the string coupling. Typically, they
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also suffer from vector-like exotics. The first globally consistent, perturbative MSSM

constructions are [110, 124] (see [164, 165] for more details).

In string compactifications, a significant amount of information is encoded in the geometry

of the compactification space. A coherent approach to analyze the relations between

geometry and physics is F-theory [27, 166, 167]. It describes the gauge dynamics of 7-

branes including their back-reactions to all orders in string coupling. In 4-dimensional

compactifications, this is achieved by encoding the back-reactions in the geometry of

a singular elliptically fibered Calabi-Yau 4-fold π : Y4 � B3. The global consistency

conditions of the 4-dimensional physics are enforced by studying the geometry of Y4, e.g.,

by a smooth, flat, crepant resolution Ŷ4.

The chiral spectrum of 4d N = 1 F-theory compactifications is determined by a back-

ground G4-flux. This flux is specified by the internal C3 profile of the dual M-theory

compactification via G4 = dC3 ∈ H2,2(Ŷ4), where H2,2(Ŷ4) is the middle vertical fourth

cohomology of Ŷ4. The primary vertical subspace of G4-configurations has been studied

extensively [131, 37, 38, 39, 40, 41, 42]. Applications to globally consistent chiral F-

theory models [43, 40, 42, 44] have lead to the discovery of the largest, currently-known,

class of one Quadrillion globally consistent F-theory Standard Models (QSMs) with gauge

coupling unification and no chiral exotics [32].

The massless vector-like spectrum depends not only on G4, but also on the C3-flat di-

rections. The full gauge information is encoded in Deligne cohomology. In [45, 46, 47],

F-theory gauge potentials were parametrized by Chow classes, which in turn induce line

bundles LR on the matter curves CR ⊂ B3. The (vector-like) zero modes are counted by

the cohomologies of these line bundles.

In principle, this approach works for any compactification. Technical limitations arise in

explicit geometries due to the intricate complex structure dependence of the cohomologies

hi(CR, LR) of the line bundles LR on the matter curves CR. This dependence was

183



investigated for special examples of F-theory compactifications in [48]. A large data set

was generated [147, 168] and investigated with data science techniques and completely

understood by Brill-Noether theory [150] (cf., [156, 128]).

For the QSMs [32] another complication arises. As explained in [196], in these models the

line bundles LR are necessarily root bundles PR, which one may think of as generalizations

of spin bundles. Just as spin bundles, there are typically NP (CR)g1 root bundles on CR.

Some of the NP (CR) roots stem from F-theory gauge backgrounds which induce the same

chiral index but differ in their C3-flat directions. An important task is to find the roots

which are induced from F-theory gauge potentials and have cohomologies that define

Minimal Supersymmetric Standard Models (MSSMs).

As a first step, a “bottom-up” analysis was conducted in [196]. This work does not

identify exactly which root bundles on CR are induced from F-theory gauge potentials in

the Deligne cohomology. Rather, a systematic study of the cohomologies of all admissable

root bundles on CR has been performed. Except for the Higgs curve, the prime interest

are the N (3)
P (CR) ≤ NP (CR) roots with exactly three sections. By extending the results in

[197], the authors formulated a technique to derive a lower bound Ň (3)
P (CR) to N (3)

P (CR).

The toric base spaces of the QSMs are obtained from triangulations of 708 polytopes in

Kreuzer-Skarke list [2]. The goal of this letter is to explain that Ň (3)
P (CR) is independent

of the triangulations. We use this observation to identify promising toric 3-folds for F-

Theory Standard Models without vector-like exotics on the quark-doublet curve C(3,2)1/6 .

In 7.2 we recall the relation of the toric QSM base 3-folds and toric K3-surfaces. By

studying limit roots on a nodal curve C•(3,2)1/6
and employing results of resolutions [198,

199, 200, 201, 202], we demonstrate in 7.3 that the derived lower bound Ň
(3)
P (CR) is

independent of the triangulation. We utilize the Gap4-package QSMExplorer [168] in

7.3.3 to compute the ratio Ň
(3)
P /NP for several classes of toric QSM base 3-folds. We

focus on bases, for which it can be expected that many root bundles on C(3,2)1/6 are
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“top-down” determined by gauge potentials of the F-theory compactification. This points

us to the 3-folds associated with the O(1015) triangulations [30] of the 8-th polytope ∆◦8
in the Kreuzer-Skarke list [2]: At least every 3000-th root on C(3,2)1/6 has exactly three

global sections and thus no vector-like exotics.

7.2 Genesis of 3-fold bases

Desingularizations of Calabi-Yau (CY) hypersurfaces in toric ambient space are studied

in [198]. We focus on CY 2-folds, i.e. toric K3-surfaces. Those are associated to three-

dimensional, reflexive lattice polytopes ∆ ⊂ MR and their polar duals ∆◦ ⊂ NR, defined

by 〈∆,∆◦〉 ≥ −1. Kreuzer and Skarke list all possible 3-dimensional polytopes [2]. We

consider the i-th polytope ∆◦i in the Kreuzer-Skarke list as subset of NR.

From a polytope ∆ ⊂ MR, one can build the normal fan Σ∆. Its ray generators are

the facet normals of ∆ and the maximal cones are in one-to-one correspondence to the

vertices of ∆. We give a two-dimensional example in 14. Neither the toric variety X∆ ≡

XΣ∆ nor the CY-hypersurface need be smooth. Resolutions of these CY-hypersurfaces

were introduced in [198] as maximal projective crepant partial (MPCP) desingularizations.

Equivalently, [200] refers to such desingularizations as maximal projective subdivisions of

the normal fan.

To find MPCPs, we note that a refinement of the normal fan Σ∆ by ray generators

corresponding to lattice points of ∆◦ is crepant. We can therefore consider refinements

Σ(T )→ Σ∆ where Σ(T ) is associated to a fine, regular, star triangulation (FRST) of the

lattice polytope ∆◦. We recall that star means that every simplex in the triangulation

contains the origin, fine ensures that every lattice point of ∆◦ is used as ray generator and

that regular implies that XΣ(T ) is projective. Together, this implies that Σ(T ) defines a

maximal projective refinement of Σ∆. This is illustrated in 14.

In our applications to toric K3-surfaces, XΣ(T ) is guaranteed to be smooth. This is be-

cause a maximal projective subdivision of Σ∆ then constructs a 3-dimensional Gorenstein

185



orbifold with terminal singularities [200] which must be smooth by proposition 11.4.19 in

[203] (see also [198]).

Of the 4319 polytopes in [2], 708 lead to toric 3-folds with K3
XΣ(T ) ∈ {6, 10, 18, 30}. Those

are the base spaces for the Quadrillion F-theory Standard Models (QSMs) [32], in which

the gauge divisors are K3-surfaces. This leads to gauge coupling unification. In the rest

of this paper, we reserve the symbol B3(∆◦) for the family of all toric 3-folds obtained

from FRSTs of the polytope ∆◦. Our standing example will be the spaces obtained from

∆◦52 displayed in 15.

σ1

σ2

σ0

F2

F ◦
2

V1

V2

V0

E3

Figure 14: MPCP of F ◦2 = Conv(e1, e2,−2e1−e2) ⊂ NR refines normal fan ΣF2 of polytope
F2 ⊆MR by E3.

Figure 15: ∆◦52 ⊂ NR on the left and ∆52 ⊆ MR on the right [2]. The magenta point
is the origin. The generic K3-surface meets trivially with gray divisors, in an irreducible
curve with the pinks and in finite families of P1s with the cyans.
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7.3 Triangulation independence

7.3.1 Dual graph

We will demonstrate that the dual graph of the nodal quark-doublet curve C•(3,2)1/6
in-

troduced in [196] is identical for all 3-folds B3(∆◦) obtained from FRSTs of ∆◦. Hence,

this dual graph only depends on ∆◦.

The homogeneous coordinates of XΣ(T ) correspond to the lattice points of ∆◦. A coor-

dinate associated to a facet interior point is denoted by zc. For a lattice point in the

interior of an edge Θ◦ ⊂ ∆◦, two facets F1, F2 of ∆◦ meet at Θ◦. We notice that they are

dual to vertices m1,m2 ∈ ∆, and the dual edge Θ is the edge connecting m1 and m2. If

Θ has interior points, we denote the homogeneous coordinate as yb and otherwise by xa.

We mark these distinct types of lattice points in different colors in 15. The nodal curve

C•(3,2)1/6
[196] is given by

C•(3,2)1/6
= ⋃

a∈A
V (xa, s9) ∪ ⋃

b∈B
V (yb, s9) ∪ ⋃

c∈C
V (zc, s9) , (7.3.1)

where s9 is a generic section of KXΣ(T ) . The rational behind this classification is that

will now explain that V (xa, s9) is irreducible, V (yb, s9) a finite collection of P1s and

V (zc, s9) = ∅.

We begin with V (zc, s9) = ∅, which was originally proven in [198, 200] (see also [204]).

SinceXΣ(T ) is associated to a refinement of Σ∆, there is a toric morphism ϕ : XΣ(T ) → X∆.

By construction, this blow-down morphism is crepant and V (zc) is blown-down to a point,

so that it does not intersect generic members of |KX∆ |. Since ϕ is crepant and birational,

V (zc) does therefore not intersect generic members of KΣ(T ), i.e., V (zc, s9) = ∅. Hence,

only the pink and cyan lattice points in 15 matter.

To see that V (yb, s9) is reducible, we compute its self-intersection in the K3-surface V (s9).

More generally, topological intersection numbers capture properties of C•(3,2)1/6
. For ex-
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ample, a curve component Ci associated to Di ∈ DivT (XΣ(T )) has arithmetic genus g(Ci)

with 2g(Ci) − 2 = D2
iKXΣ(T ) . Similarly, the topological intersection of Ci and Cj is

DiDjKXΣ(T ) . From the original work [199] (see also [201]), it follows that these inter-

section numbers are counted by properties of (∆◦,∆) and are thus independent of the

FRST. Let us restate this result.

Proposition 7.3.1. Let D1, D2 ∈ DivT (XΣ(T )) be two distinct divisors corresponding

to lattice points v1, v2 ∈ ∆◦. If v1, v2 are not contained in an edge Θ◦ ⊂ ∆◦, then

D1D2KXΣ(T ) = 0. Otherwise, D1D2KXΣ(T ) = 1 + l′(Θ), where l′(Θ) is the number of

interior lattice points on the dual edge Θ.

Proof. Consider a triangulation T of ∆◦. Then the triple intersection among divisors D1,

D2 and KXΣ(T ) vanishes unless v1, v2 belong to two triangles in T , which we denote as

v1v2v3 and v1v2v4. It follows D1D2Di = 0 if i /∈ {1, 2, 3, 4} and D1D2D3 = D1D2D4 = 1.

Hence

D1D2KXΣ(T ) = D1D2 (D1 +D2 +D3 +D4) . (7.3.2)

The affine span of v1, v2, v3 contains a facet F3 of ∆◦. The dual of F3 is a vertex

m3 ∈ ∆ with 〈m3, vi〉 = −1. Let N = rk
(
DivT (XΣ(T ))

)
, then 0 ∼ ∑N

i=1 〈m3, vi〉Di and

D1 + D2 + D3 ∼ 〈m3, v4〉D4 + S, where S satisfies SD1D2 = 0. By substituting this

back into 7.3.2 we find D1D2KXΣ(T ) = 1 + 〈m3, v4〉. If v1, v2 are not contained in an edge

Θ◦ ⊂ ∆◦, then v4 ∈ F3, 〈m3, v4〉 = −1 and D1D2KXΣ(T ) = 0.

Conversely, if v1, v2 ∈ Θ◦ ⊆ ∆◦, then v1v2v4 is contained in a facet F4 6= F3 of ∆◦ with

dual vertex m4 ∈ ∆. The dual edge Θ from m3 to m4 only depends on v1, v2 but not the

triangulation T . We now compare the number of interior lattice points l′(Θ) on Θ to

I12 = D1D2KXΣ(T ) = 1 + 〈m3, v4〉 . (7.3.3)
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v1, v2, v4 generate NR. Therefore, m ∈ MR is a lattice point iff 〈m, v1〉, 〈m, v2〉 and

〈m, v4〉 are integers. Hence, lattice points on Θ are m(k) = m3 +
(

1+k
I12

)
· (m4 − m3),

where k ∈ {−1, . . . , I12}. Therefore, l′(Θ) = I12 − 1.

We extend this to the arithmetic genera by restating another result from [199].

Corollary 7.3.2. Let D1 ∈ Cl(XΣ(T )) be the divisor associated to the lattice point v1 ∈

∆◦. Then D2
1KXΣ(T ) is independent of triangulations of ∆◦. Furthermore, if v1 is an

interior point of an edge Θ◦ ⊂ ∆◦, then D2
1KXΣ(T ) = −2− 2l′(Θ).

Proof. We consider a facet F ⊂ ∆◦ with v1 ∈ F . The dual vertex m ∈ ∆ ∈ MR

establishes 0 ∼ ∑N
i=1 〈m, vi〉Di and hence D2

1KXΣ(T ) = ∑N
i=2 〈m, vi〉D1DiKXΣ(T ) , which

is independent of FRSTs of ∆◦ by the preceding proposition.

Next, assume that v1 in an interior point of an edge Θ◦ ⊂ ∆◦ and denote its neighbors

along Θ◦ by v2, v3. The associated divisors D2, D3 are the only divisors with non-zero

D1D2KXΣ(T ) , D1D3KXΣ(T ) . Note that v1, v2, v3 are contained in a facet of ∆◦, whose

dual vertex m ∈ ∆ establishes D1 ∼ −D2 − D3 + S with D1SKXΣ(T ) = 0. Hence,

D2
1KXΣ(T ) = −2− 2l′(Θ).

V (yb, s9) corresponds to vb ∈ Θ◦ ⊂ ∆◦ with l′(Θ) > 0. Hence D2
b ·KXΣ(T ) = −2(l′(Θ) +

1) < −2 and V (yb, s9) is reducible into a collection of l′(Θ) + 1 non-intersecting and

smooth P1s [198, 199].

Finally, let us turn to the components V (xa, s9). A subset of these components is as-

sociated to lattice points va ∈ Θ◦ such that l′(Θ) = 0. By the previous result, these

components are irreducible and smooth. The remaining V (xa, s9)’s are associated to the

vertices of ∆◦. These components are smooth and irreducible by [198].
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7.3.2 Computing the lower bound Ň
(3)
P

We have established that in every space in B3(∆◦), C•(3,2)1/6
consists of the same com-

ponents Ci with the same topological properties. Therefore, the dual graph G(C•(3,2)1/6
),

in which components are vertices and intersections are edges, only depends on ∆◦. We

recall from [196], that on C•(3,2)1/6
we look for limit roots P •(3,2)1/6

with

(
P •(3,2)1/6

)⊗2K3
XΣ(T ) =

KXΣ(T )

∣∣∣
C•

(3,2)1/6

⊗(6+K3
XΣ(T )

)

. (7.3.4)

Such roots are specified by weight assignments to G(C•(3,2)1/6
), constrained by (6 +

K
3
XΣ(T )

)-times the degree of KXΣ(T )

∣∣∣
Ci

. For V (xa, s9), KXΣ(T )

∣∣∣
Ci

has degree DaK
2
XΣ(T )

.

For the irreducible components of V (yb, s9), this degree is DbK
2
XΣ(T )

/(l′(Θ) + 1). Since

KXΣ(T ) = ∑N
i=1Di, we have DK2

XΣ(T )
= ∑N

i=1DDiKXΣ(T ) and by the results of [199]

restated in the previous section, these degrees are FRST-invariant. Similarly, K3
XΣ(T )

is

FRST-invariant. Consequently, the data that specifies the limit roots on C•(3,2)1/6
depends

only on ∆◦. By extending the techniques of [196], we can thus compute an FRST-invariant

lower bound Ň
(3)
P to the number of root bundles on C(3,2)1/6 with exactly three global

sections.

We illustrate our strategy with ∆◦52 in 15. Its FRSTs give toric 3-folds with h21(Ŷ4) =

7 > 6 = g(C(3,2)1/6) and K
3
B = 10. The dual graph G(C(3,2)1/6) is:

0 0

0

0

0

0

0

0

48

C3

16C4 0 0 0 16 C0

16 C2

16

C50

0

48C1

The labels inside the nodes are the degree of 16 ·KC•
(3,2)1/6

on the components Ci. To find

the (2K3
XΣ(T )

)-th roots, we place weights ui, vi ∈ {1, 2, . . . , 2K
3
XΣ(T )

− 1} along each edge

in G(C(3,2)1/6) subject to the following rules (see [197, 196] for details):
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1. Along each edge, the sum of weights is 2K3
XΣ(T )

.

2. At each node Ci, the sum of weights equals (6 + K
3
XΣ(T )

)-times DiK
2
XΣ(T )

modulo

2K3
XΣ(T )

.

The number of possible weight assignments grows rapidly with the complexity of the dual

graph. To speed up the counting, it is possible to replace G(C(3,2)•
1/6

) with a simplified

graph. We remove components Ci which are connected to exactly two other components

and have DiK
2
XΣ(T )

= 0. We are thus looking at transitions:

Cj
0

Ci Ck

n− ui n− viviui
Cj Ck

n− ui n− vi

To see that this does not change the lower bound Ň
(3)
P , let us focus on n-th roots. Then

1 ≤ ui, vi ≤ n − 1. For given ui the weight vi is uniquely fixed as vi = n − ui. Since,

DiK
2
XΣ(T )

= 0, the resulting root on Ci has degree −1 and supports no non-trivial sections

(cf. [197, 196]). Conversely, given the diagram at the bottom, we can reconstruct the

top-line by noting that vi = n− ui. For ∆◦52, this leads to the simplified graph:

16C4

48C1

48

C3
16 C0

16 C2

16

C5

The algorithmic task of finding all weight assignments and counting the associated limit

roots, can be conducted with a computer implementation. The algorithms employed are

available in the Gap4-package QSMExplorer, as part of the ToricVarieties project [168].

On the computer plesken.mathematik.uni-siegen.de, our algorithm completes for ∆◦51

in roughly three minutes and finds Ň (3)
P = 34.980.351. This number is to be compared to

the total number of root bundles NP = 2012 on this g = 6 curve. Hence, at least every

1.2× 108-th root on C(3,2)1/6 has exactly three global sections.
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7.3.3 Towards favorable F-theory base spaces

We extend this analysis to several classes B3(∆◦). Among the 708 polytopes, we focus

on base spaces for which it can be expected that many roots stem from inequivalent F-

theory gauge potentials in the Deligne cohomology H4
D(Ŷ4,Z(2)), i.e., gauge potentials

which induce the same chiral index but differ in their C3-flat directions. In the 4-fold

geometry Ŷ4, these C3-flat directions are described by the intermediate Jacobian J2(Ŷ4).

Since h3,0(Ŷ4) = 0, we have (see [45] and references therein) J2(Ŷ4) = H2,1(Ŷ4)/H3(Ŷ4,Z)

and dimC(J2(Ŷ4)) = h2,1(Ŷ4). In particular, if a gauge potential in H4
D(Ŷ4,Z(2)) admits

(2K3
XΣ(T )

)-th roots, then it admits (2K3
XΣ(T )

)2h2,1(Ŷ4) roots. On the genus g curve C(3,2)1/6 ,

we find (2K3
XΣ(T )

)2g roots. Therefore, a necessary condition for many roots on C(3,2)1/6

to stem from F-theory gauge potentials is h2,1(Ŷ4) ≥ g:

K
3
B # Polytopes h21(Ŷ4) g

6 7 {8, 9, 10, 12, 16} 4

10 54 {2, 3, . . . , 11} ∪ {13} 6

18 373 {0, 1, . . . , 12} 10

30 274 {0, 1, . . . , 9} 16

All 7 polytopes with K
3
B = 6 satisfy this necessary condition. Their triangulations give

at least 50% of the QSM 3-fold base spaces [30]. In addition, 27 polytopes with K3
B = 10

and three with K3
B = 18 have this property. For the K3

B = 10 polytope ∆◦14 and the three

K
3
B = 18 polytopes ∆◦72, ∆◦229 and ∆◦527, the quark-doublet curve has a component with

genus larger than one. Hence, for these space the counting procedure introduced in [196]

does not apply. However, for the remaining 33 polytopes, our computer implementation

finds Ň (3)
P (C(3,2)1/6) within a few minutes. These results are listed in 11.

Among these 33 polytopes, the ratio Ň (3)
P /NP is largest for ∆◦8. In addition, within the

QSMs, base spaces obtained from FRSTs of ∆◦8 have the maximal 16 = h21(Ŷ4) and the
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minimal g = 4. In this sense, they most positively satisfy the necessary condition for a

top-down origin of at least some of the root bundles. In this sense, these O(1015) toric base

3-folds [30] are currently the most promising candidates to establish an F-theory Standard

Model with exactly three quark-doublets and no vector-like exotics in this representation.

7.4 Discussion and Outlook

A construction of one Quadrillion globally consistent F-theory Standard Models (QSMs)

with gauge coupling unification and no chiral exotics was presented in [32]. In this work,

we apply the techniques introduced in [196] systematically to the toric QSM base 3-folds.

Our goal is to identify toric base spaces, which are promising candidates to establish F-

theory Standard Models with exactly three quark-doublets and no vector-like exotics in

this representation.

We recall that vector-like spectra are counted by cohomologies of line bundles LR on

the matter curves CR. In [196], it was argued that these bundles must necessarily be

root bundles. For instance, on the quark-doublet curve C(3,2)1/6 we consider line bundles

P(3,2)1/6 which solve 7.3.4, where K3
B is the triple intersection number of the anticanonical

class of the 3-fold B3. This constraint has NP (C(3,2)1/6) = (2K3
B)2g solutions, where g

is the genus of C(3,2)1/6 . In every QSM vacuum, the zero mode spectrum is counted

by the cohomologies of one of these solutions. It is currently not known exactly which

roots stem from F-theory gauge potentials in the Deligne cohomology H4
D(Ŷ4,Z(2)) of the

elliptic 4-fold Ŷ4.

In this work, we did not attempt to give a detailed answer to this question. Rather,

we focused on base spaces for which it can be expected that many roots are induced

from inequivalent F-theory gauge potentials, i.e., gauge potentials which induce the same

chiral index but differ in their C3-flat directions. In the 4-fold geometry Ŷ4, these C3-

flat directions are described by the intermediate Jacobian J2(Ŷ4). Since h3,0(Ŷ4) = 0, it

holds J2(Ŷ4) = H2,1(Ŷ4)/H3(Ŷ4,Z) (see [45] for details) and dimC(J2(Ŷ4)) = h2,1(Ŷ4). If
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a gauge potential in H4
D(Ŷ4,Z(2)) admits (2K3

B)-th roots, then it admits (2K3
B)2h2,1(Ŷ4)

roots. On C(3,2)1/6 , we find (2KB)2g roots. Therefore, a necessary condition for many

roots on C(3,2)1/6 to stem from F-theory gauge potentials is h2,1(Ŷ4) ≥ g.

The QSM toric base 3-folds are obtained from fine, regular, star triangulations (FRSTs)

of 708 3-dimensional, reflexive, lattice polytopes [32]. In these spaces, the gauge divisors

are K3-surfaces. This leads to gauge coupling unification and emphasizes the physical

significance of KB. Only 37 of the QSM polytopes lead to spaces with h2,1(Ŷ4) ≥ g. Still,

the triangulations of these 37 polytopes provide the majority of the O(1015) toric QSM

base 3-folds [30, 32].

The natural next step is to count the number N (3)
P of roots which solve 7.3.4 and admit

exactly three global sections, thus ensuring no vector-like exotics on the quark-doublet

curve. In following [196], we achieve this by studying limit roots on a nodal curve C•(3,2)1/6

introduced in [196], which establishes a lower bound Ň
(3)
P ≤ N

(3)
P . Crucially, we argue

that Ň (3)
P is identical for all spaces B3(∆◦) obtained from FRSTs of ∆◦, that is Ň (3)

P

depends only on ∆◦ and not the FRSTs.

We establish this result by arguing that the data, which specifies the limit roots, is

identical for all spaces in B3(∆◦). This in turn follows by noting that the QSM base

spaces are obtained from desingularizations of toric K3-hypersurfaces. Since the nodal

curve C•(3,2)1/6
is closely related to the Picard lattice of the resulting smooth, toric K3-

surface, we could employ powerful and well-known results about such desingularizations

[198, 199, 200, 201] (see also [202] for recent work on related topics), and thereby establish

the claim. Explicitly, this reduces to the FRST-invariance of topological triple-intersection

numbers, which are related to FRST-independent counts of lattice points in the polytope

∆ [199].

Among the 37 polytopes with h21(Ŷ4) ≥ g, there are four polytopes for which C(3,2)1/6

has components with genus larger than one, so that the techniques introduced in [196]
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cannot be applied. For the remaining 33 polytopes, we list the lower bounds in 11.

These counts were determined with the Gap4 package QSMExplorer, which is part of the

ToricVarieties project [168]. We have optimized the input for this algorithm by simpli-

fying the dual graph of C•(3,2)1/6
. For one polytope and a personal computer, we expect

runtimes from a few seconds to around 10 minutes for the lower bounds in 11.

Surprisingly, the simplifications of the dual graph of C•(3,2)1/6
lead to very similar graphs

for distinct polytopes, and at times even identical lower bounds. For example, this applies

to ∆◦128, ∆◦130, ∆◦136 and ∆◦236. We reserve a detailed study of this phenomenon for future

work.

We read-off from 11 that Ň (3)
P /NP and h21(Ŷ4)/g(C(3,2)1/6) are largest for B3(∆◦8). At

least every 3000-th root on C(3,2)1/6 has exactly three global sections. Furthermore,

16 = h21(Ŷ4) ≥ g ≡ g(C(3,2)1/6) = 4, for these spaces, which is the largest, respectively

smallest possible value among all QSMs. Therefore, the triangulations of ∆◦8 lead to

O(1015) [30] promising toric base 3-folds for F-theory Standard Models with exactly three

quark-doublets and no vector-like exotics in this representation.

The study of root bundles on the matter curves C(1,1)1 and C(3,1)−2/3 is identical to the

presented study of roots on C(3,2)1/6 . The matter curve C(3,1)1/3 is more complicated

due to its higher genus, but can at least in principle be treated analogously. The real

challenge however, is to establish one vector-like pair on the Higgs curve C(1,2)−1/2 and

to investigate the “top-down” origin of the root bundles from F-theory gauge potentials.

It can be anticipated that a detailed study of these questions will shed more light on the

structure and construction of F-theory MSSMs. We hope to return to this thrilling and

challenging task in the near future.
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K
3
B = 6: NP (C(3,2)1/6) = 128

Ň
(3)
P NP /Ň

(3)
P Ň

(3)
P NP /Ň

(3)
P

∆◦8 142560 3.0 · 103 ∆◦130 8910 4.8 · 104

∆◦4 11110 3.8 · 104 ∆◦136 8910 4.8 · 104

∆◦134 10100 4.3 · 104 ∆◦236 8910 4.8 · 104

∆◦128 8910 4.8 · 104

K
3
B = 10: NP (C(3,2)1/6) = 2012

Ň
(3)
P NP /Ň

(3)
P Ň

(3)
P NP /Ň

(3)
P

∆◦88 781.680.888 5.2 · 106 ∆◦762 32.858.151 1.2 · 108

∆◦110 738.662.983 5.5 · 106 ∆◦417 32.857.596 1.2 · 108

∆◦272 736.011.640 5.6 · 106 ∆◦838 32.845.047 1.2 · 108

∆◦274 736.011.640 5.6 · 106 ∆◦782 32.844.379 1.2 · 108

∆◦387 733.798.30 5.6 · 106 ∆◦377 30.846.440 1.3 · 108

∆◦798 690.950.608 5.9 · 106 ∆◦499 30.846.440 1.3 · 108

∆◦808 690.950.608 5.9 · 106 ∆◦503 30.846.440 1.3 · 108

∆◦810 690.950.608 5.9 · 106 ∆◦1348 30.845.702 1.3 · 108

∆◦812 690.950.608 5.9 · 106 ∆◦882 30.840.098 1.3 · 108

∆◦254 35.004.914 1.2 · 108 ∆◦1340 28.954.543 1.4 · 108

∆◦52 34.980.351 1.2 · 108 ∆◦1879 28.950.852 1.4 · 108

∆◦302 34.908.682 1.2 · 108 ∆◦1384 27.178.020 1.5 · 108

∆◦786 32.860.461 1.2 · 108 ∆◦856 22.807.749 1.8 · 108

Table 11: Ň (3)
P for 33 QSM polytopes with h21(Ŷ4) ≥ g.
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CHAPTER 8: Conclusions

In summary, F-theory is remarked by its powerful phenomenological model building po-

tential due to its geometric description of compactification. It translates physics quanti-

ties in the effective low energy theory to the mathematical objects in en elliptic fibration

Yn+1 → Bn. This connection is built upon identifying the varying axio-dilaton field in

type IIB supergravity theory with the complex structure modulus of an elliptic curve,

which serves as the fiber of the elliptic fibration. In 4d compactifiation, this allows us

to capture the non-perturbative back-reactions of seven branes onto the compactification

space B3 in elliptically fibered Calabi–Yau fourfold Y4. The ingredients of SM physics,

including gauge symmetries, charged matter, and Yukawa couplings, are then encoded

beautifully in Y4’s singularities in codimensions one, two, and three, respectively. More-

over, many global consistency conditions, including the D3-tadpole cancellation, can be

reduced to simple criteria on intersection numbers of base divisors.

In this thesis, we focus on searching for F-theory SM geometries that admit exact MSSM

matter spectra. Our goal is to realize the gauge group, chiral and vector-like spectra of

MSSM in F-theory. To begin with, Part I of the thesis constructs torus fibered Calabi–

Yau fourfolds which realize a SM with exactly three chiral families in the presence of a

G4-flux. In chapter 3, we present a compactification which realize the SM gauge group

with an additional Z2 matter parity. This additional discrete symmetry beyond the SM

gauge group forbids proton decay. In chapter 4, we explicitly construct O(1015) globally

consistent F-theory SMs without chiral exotics and support the gauge unificston. To

our knowledge, this is the largest such ensemble in the literature, outnumbering existing

results by about 5 orders of magnitude.

We advance to seek approaches towards exact matter spectra in 4d F-theory, i,e. the full

determination of the vector-ike spectra. This is important to identify the number of Higgs

pairs in this compactification. It is well known that certain line bundle cohomologies count
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the massless zero modes localized on matter curves in the presenece of a gauge background.

The 3-form potential C3 in the dual M-theory encodes the full gauge data, whose field

strength G4-flux only controls the chiral spectra. In order to understand the line bundle

cohomology’s dependence on the moduli of the compactification geometry, we investigate

this dependence of vector-like spectra in computationally simple geometry in chapter 5.

We approach it by collecting the topological data extracted from various curve and line

bundle setups on this surface for which we compute the vector-like spectra by brutal force.

Utilizing machine learning techniques, we eventually achieve a comprehensive analysis

of the input data by decision tree and successfully predict the appearance of vector-like

jumps with accuracy of 95% accuracy. The pure topological data here surprisingly predict

vector-like jumps, which is very unexpected since the vector-like spectra depend heavily

on the complex structure moduli. We employ additional tools, particularly Brill–Noether

theory. To explain cohomology jumps occurrence in the rest corner.

Moving to the realistic F-theory geometry, the appearance of fractional powers of line

bundles in studies of vector-like spectra in 4d F-theory compactifications is presented in

chapter 6. They are also known as root bundles and can be thought of as generalizations

of spin bundles. We explain how these root bundles are linked to inequivalent F-theory

gauge potentials of a G4-flux. In aiming for MSSMs, it is desired to argue for the absence

of vector-like exotics. We work out the root bundle constraints on all matter curves in the

largest class of currently-known, globally consistent F-theory Standard Model construc-

tions without chiral exotics and gauge coupling unification [32]. On a technical level, this

systematic study is achieved by a well-known diagrammatic description of root bundles

on nodal curves. We extend this description by a counting procedure, which determines

the cohomologies of so-called limit root bundles on full blow-ups of nodal curves. Conse-

quently, We identify roots on all matter curves except the Higgs curve in SM that admit

exactly three sections.

In generalizing this and perform even further, we anticipate a scan over many of the F-
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theory Standard model geometries in [32]. By studying root bundles on the quark doublet

curve C(3,2)1/6 and employing well-known results about desingularizations of toric K3-

surfaces, we derive a triangulation independent lower bound Ň
(3)
P for the number N (3)

P of

root bundles on C(3,2)1/6 with exactly three sections. The ratio Ň (3)
P /NP , where NP is the

total number of roots on C(3,2)1/6 , provides a numerical discrimination. The larger the

ratio computed on a specific base the higher chance that we catch a meaningful physics

root on C(3,2)1/6 with exactly three global sections and thus no exotic vector-like quark-

doublet modes. This discrimination indicates that the most promising base are associated

with triangulations of the 8-th 3-dimensional polytope ∆◦8 in the Kreuzer-Skarke list. For

each of these O(1015) 3-folds, we expect that many root bundles on C(3,2)1/6 are induced

from F-theory gauge potentials and that at least every 3000th root on C(3,2)1/6 has exactly

three global sections and thus no exotic vector-like quark-doublet modes.

It remains to establish one vector-like pair on the Higgs curve C(1,2)−1/2 and to investi-

gate the “top-down” origin of the root bundles from F-theory gauge potentials. It can be

anticipated that a detailed study of these questions will shed more light on the structure

and construction of F-theory MSSMs. We hope to return to this thrilling and challenging

task in the near future. As a long-term goal, by a continued study of F-theory compact-

ifications, we may hope to reproduce the whole picture of physics in the 4d effective low

energy theory and thereby reveal new insights on the inner workings of our universe.
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CHAPTER A: Chapter 3 Appendix

A.1 Homology classes of matter surfaces

In this appendix, we collect the matter surface homology classes of the two top combina-

tions considered in Sections 3.3 and 3.4, in Table 12 and 13, respectively.

R Matter surface homology classes

21
−(E1F1)− E1KB + E1S7 − E1S9 + F1W2 +KBW2 − S7W2 + S9W2 −W2[x]

−W2[x]− 2E1[y] + 2W2[y]
22 3E1KB − E1S7 − E1S9 + F2W2 −KBW2 + S9W2 −W2[x] + 2E1[y]
31 F 2

2 − F2KB + F2S9 + F2W2 − E1W3 − F2W3 +KBW3 − S9W3 +W3[x]
32 −(E1F1) + F 2

2 + F1KB + F2KB − F2S7 +W3[y]
33 −2F1F2 − F 2

2 + F2S7

34 E1F1 + 2F1F2 + F 2
2 − 2F1KB − F2KB − F2S9 + F1W3 + 2KBW3
−S7W3 + S9W3 −W3[x] +W3[y]

(3,2) E1F0

11

−2F1F2 − F 2
2 + E1KB + 3F1KB + F2KB + 2K2

B − E1S7 − F1S7 − 3KBS7 + S2
7

+E1S9 − F1S9 + F2S9 + 2KBS9 − S7S9 − F1W2 −KBW2 + S7W2 − S9W2
−4KB [x] + 2S7[x] +W2[x] + 2E1[y] + 2KB [y] + 2S9[y]− 2W2[y]− 2W3[y]− 4[x][y]

12

−(E1F1)− 2F1F2 − F 2
2 − 2E1KB + F1KB − 3F2KB + 2K2

B − E1S7 − F1S7
+2KBS7 + E1S9 − F1S9 + F2S9 − 3KBS9 − S7S9 + S2

9 + E1W2 + F2W2
−KBW2 + 2E1W3 + F1W3 + 2F2W3 − 3KBW3 + 2S9W3 + 2KB [x] + 2S7[x]

−W2[x]− 3W3[x] + 2E1[y]− 4KB [y] + 2S9[y] +W3[y]− 4[x][y]

Table 12: Summary of matter homology classes restricted to CY of first top combination.
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R Matter surface homology classes

21
−(E1KB)− E1S7 − E1S9 +KBW2 + S7W2 + S9W2

+2E1W3 − 2W2W3 +W2[x] + 2E1[y]− 2W2[y]

22
−(E1F1) + 3E1KB + E1S7 − E1S9 − 2E1W2 + F2W2

+KBW2 − S9W2 − E1W3 +W2[x]− 2E1[y]
31 F 2

2 + F2KB − F2S9 +W3[x]
32 −(E1F1)− F 2

2 + F1KB − F2KB + F1S7 + F2S7 − F1S9 − F1W3 −W3[y]
33 2F1F2 + F 2

2 + F2KB + F2S9 − 2F2W3

34 E1F1 − 2F1F2 − F 2
2 − 3F1KB − 2F2KB + F1S7 + F2S7 + F1S9

−E1W3 − F1W3 + F2W3 + 2KBW3 − S9W3 +W3[x]−W3[y]
(3,2) −(E1F1) + F1W2

11

2F1F2 + 3F 2
2 + E1KB + F1KB + 3F2KB + 2K2

B − E1S7 − F1S7 − 2F2S7 − 3KBS7
+S2

7 + E1S9 + F1S9 − F2S9 + 2KBS9 − S7S9 −KBW2 + S7W2 − S9W2 − 4KB [x]
+2S7[x] +W2[x] + 2E1[y] + 2KB [y] + 2S9[y]− 2W2[y]− 2W3[y]− 4[x][y]

12

E1F1 + 2F1F2 + 3F 2
2 − 2E1KB − F1KB + 5F2KB + 2K2

B − E1S7 − F1S7 − 2F2S7
+2KBS7 + E1S9 + F1S9 − F2S9 − 3KBS9 − S7S9 + S2

9 + E1W2 − F2W2 −KBW2
+S9W2 + E1W3 + F1W3 − F2W3 − 2KBW3 + S9W3 + 2KB [x] + 2S7[x]−W2[x]

−3W3[x] + 2E1[y]− 4KB [y] + 2S9[y] +W3[y]− 4[x][y]

Table 13: Matter surface homology classes of the second top restricted on the fourfold.

A.2 Towards the vector-like spectrum of the first top

In this section we want to give all information that is needed to compute the vector-like

spectrum of our first model realizing ZM2
2 using the methods of [46]. The key point is

to assign to each matter curve CR ⊂ B a divisor D, i.e., a collection of points on CR,

based on the intersection properties between the G4-flux and the matter surface SR.

By expression the flux in terms of matter surfaces, evaluating this intersection product

reduce to properly counting the points, in which various matter surfaces meet. In F-theory

geometries, these points are in the fibers over codimension three enhancement loci, i.e.,

Yukawa points Yi. Thus, the resulting divisor D is a linear combination ∑i µiYi of these

points. From this divisor, one can then extract the left- and right-handed fermions as the

sheaf cohomologies

hi(CR , OCR(D)⊗
√
KCR) , i = 0, 1 , (A.2.1)
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where
√
KCR is the spin bundle on CR. These cohomologies depend on the complex

structure parameters of the fourfold. However, the chiral index χ = h0−h1 is a topological

invariant, which is simply the number of points (including signs) that constitutes D ⊂ B.

More details and examples can be found in [46].

For the first top realizing the MSSM with matter parity ZM2
2 , we need, in addition to

the particular flux basis (3.3.19) that we have picked, also algebraic equivalence relations

between fluxes and other vertical 4-cycles. Explicitly, these are

A(22)−A((3,2)) + 2DU(1) ·W2 + [S21 ] + 1
2 E1 · [{f21}]−

1
2 C21 = 0 ,

A((3,2))−A(32)−DU(1) ·W3 + [S31 ] + 1
3 (F1 + 2F2) · [{f31}]−

1
6 C31 = 0 ,

A(34) +A((3,2)) +DU(1) ·W3 + [S33 ] + 1
3 (F1 − F2) · [{f33}]−

1
6 C33 = 0 ,

A((3,2))−A(1(1,+)) +DU(1) · (6KB − 2W2 − 3W3) + [S1(1,−) ]−
1
2 C1(1,−) = 0 .

(A.2.2)

The Yukawa points and their homology classes are listed in Table 14. In terms of the

homology classes, we can write the chiral indices of the matter states induced by the flux

(3.3.19) as

χ(31) =− 2
3C31

F + a1[Y8] + 1
3a2[Y16] + a3 (2

3 [Y9]− 1
3 [Y13])− 1

3a4[Y8]− a5[Y12] ,

χ(32) =2
3C32 F + a2 (1

3 [Y16] + 1
3 [Y6]− 2

3 C32 W3)− a3(4
3[Y11]− 1

3[Y15])

+ 1
3a4[Y6] + a5[Y15] ,

χ(33) =1
3C33

F − a1[Y7] + a2(1
3[Y14]− 4

3[Y10]) + a3(2
3[Y9]− 1

3[Y17])− 1
3a4[Y7] + a5[Y12] ,

χ(34) =1
3C34

F + a2(−4
3[Y11] + 1

3[Y15]) + a3(1
3[Y5]− 2

3[Y18]− 2
3[Y9] + 1

3[Y17]− 1
3C34

W3)

+ a4(−1
3[Y5] + 2

3[Y18]) + a5[Y15] ,

(A.2.3)
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Coupling Homology classes

21 · 22 · 1(1,−)
[Y1] = W2 · (6K

2
B − 4KBS7 + 2S2

7 + 4KBS9 − 2S2
9 − 2KBW2

−2S9W2 −KBW3 − 3S7W3 − S9W3 +W2W3 + 2W 2
3 )

21 · 21 · 1(1,+) [Y2] = W2 · (2KBS7 − S2
7 +KBS9 + S2

9 − 2KBW3 + S7W3 − S9W3)

21 · 22 · 1(0,−)
[Y3] = W2 · (6K

2
B + 4KBS7 − 2S2

7 + 4KBS9 − 2S2
9 − 2KBW2

−2S9W2 − 9KBW3 + 3S7W3 − S9W3 +W2W3)

22 · 22 · 1(1,+)
[Y4] = W2 · (6K

2
B + 2KBS7 − S2

7 − 5KBS9 + S2
9 − 5KBW2 + 2S9W2

+W 2
2 − 7KBW3 + 2S7W3 + 2S9W3 + 2W2W3)

21 · 34 · (3,2) [Y5] = W2 ·W3 · (2KB − S7 + S9)
21 · 32 · (3,2) [Y6] = W2 ·W3 · (S7 + S9 −W3)
22 · 33 · (3,2) [Y7] = W2 ·W3 · (3KB + S7 − S9 −W2 − 2W3)
22 · 31 · (3,2) [Y8] = W2 ·W3 · (3KB − S7 − S9 −W2)

31 · 33 · 34 [Y9] = W3 ·KB(3KB − S7 − S9 −W2)
32 · 33 · 33 [Y10] = W3 ·KB(S7 −W3)
32 · 34 · 34 [Y11] = W3 ·KBS9

31 · 33 · 1(1,+) [Y12] = W3 · (3KB − S7 − S9 −W2)(2KB + S7 − S9 −W2 − 2W3)
31 · 34 · 1(1,−) [Y13] = W3 · (2KB − S7 + S9)(3KB − S7 − S9 −W2)

32 · 33 · 1(1,−)
[Y14] = W3 · (KBS7 + S2

7 + 3KBS9 − S2
9 − S7W2 − S9W2 −KBW3

−3S7W3 − S9W3 +W2W3 + 2W 2
3 )

32 · 34 · 1(1,+) [Y15] = W3 · (3KBS7 − S2
7 +KBS9 + S2

9 − 3KBW3 + S7W3 − S9W3)
31 · 32 · 1(0,−) [Y16] = W3 · (3KB − S7 − S9 −W2)(S7 + S9 −W3)

33 · 34 · 1(0,−)
[Y17] = W3 · (6K

2
B +KBS7 − S2

7 +KBS9 + 2S7S9 − S2
9 − 2KBW2

+S7W2 − S9W2 − 6KBW3 + 2S7W3 − 2S9W3)
(3,2) ·(3,2) · 34 [Y18] = W2 ·W3 ·KB

Table 14: Yukawa points of the first top.

χ(3,2) =− 1
6C(3,2) F + 1

2a1([Y7]− [Y8]) + 1
3a2[Y6] + 1

6a4C(3,2) (6KB − 2W2 − 3W3)

+ a3(2
3[Y18]− 1

3[Y5]) ,

χ(22) =1
2C22 F + a1(−1

2[Y8] + 1
2[Y7]− C22 W2 + 1

2[Y1]− 1
2[Y3])

+ a4(−1
2[Y8] + 1

2[Y7]) + 2a5[Y4] ,

χ(21) =1
2C21 F + a1(1

2[Y1]− 1
2[Y3])− a2[Y6]− a3[Y5] + a4(1

2[Y5]− 1
2[Y6]) + 2a5[Y2] ,

χ(1(1,−)) =− C1(1,+) F + 2a1[Y4] + a2[Y15] + a3[Y15] + a5 V ,

χ(1(1,+)) =C1(1,−) F − a1[Y1]− a2[Y14]− a3[Y13] + a5 V ,

(A.2.4)
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where

V =− C1(1,+) (6KB − 2W2 − 3W3)−W 2
2W3 − 2W2W

2
3 + 2W 2

2KB

+ 13W2W3KB + 12W 2
3KB − 10W2K

2
B − 24W3K

2
B + 12K3

B − 2W2W3S7

− 4W 2
3 S7 − 4W2KBS7 −W3KBS7 + 8K2

BS7 + 2W2S
2
7 + 3W3S

2
7 − 4KBS

2
7

+ 2W 2
2 S9 + 4W2W3S9 − 8W2KBS9 − 9W3KBS9 + 8K2

BS9 + 2W3S7S9

+ 2W2S
2
9 + 3W3S

2
9 − 4KBS

2
9 .

(A.2.5)

A.3 Summary of toric tops

In this section we summarize the toric data of all four SU(2) and SU(3) tops over polygon

F2, following the prescription of [91]. The factorization of the generic hypersurface is

given together with the SR-ideal and the abelian generators. Furthermore we present the

matter loci, the class of fiber component we use for the matter surfaces, and the associated

representations.

Figure 16: The toric diagram of the four inequivalent SU(2) tops over F2.
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Factorization:
b1 → e0d1 b2 → e0d2 b3 → e0d3

b5 → d5 b6 → d6 b7 → d7

b8 → e1d8 b9 → e1d9 b10 → e1d10

SRI: {xt, xe1, ys, te0}

Charge Generators DU(1) = [y]− [x] + 1/2[e1]
DZ2 = [x]

Locus V(f, g,∆) matter P1 weight Rep
d2

10d
2
5 + d10d

2
6d8 − 2d10d5d7d8 + d2

7d
2
8

−d6(d10d5 + d7d8)d9 + d5d7d
2
9 = 0

(0, 0, 3) [e0][s] (−1, 1)(− 1
2 ,1) 2(− 1

2 ,−)

d2
3d

2
5 − d2d3d5d6 + d1d3d

2
6 + d2

2d5d7

−2d1d3d5d7 − d1d2d6d7 + d2
1d

2
7 = 0

(0, 0, 3) [e1][s] (1,−1)(− 1
2 ,0) 2( 1

2 ,+)

4d1d10 − d2
6 = 0 (1, 2, 3) - - -

Table 15: Summary of SU(2) top 1.

Factorization:
b1 → d1 b2 → e0d2 b3 → e2

0d3
b5 → e1d5 b6 → d6 b7 → e0d7
b8 → e2

1d8 b9 → e1d9 b10 → d10
SRI: {xt, ys, xe0, se1}

Charge Generators DU(1) = [y]− [x]− [e0]
DZ2 = [x]

Locus V(f, g,∆) matter P1 Weight Rep
d1 = 0 (0, 0, 3) [e0][t] (−1, 1)(1,0) 2(1,+)
d10 = 0 (0, 0, 3) [e0][y] (−1, 1)(−1,1) 2(−1,−)

−d10d
2
2 + 4d1d10d3

−d3d
2
6 + d2d6d7 − d1d

2
7 = 0 (0, 0, 3) [e1][y] (1,−1)(0,0) 2(0,+)

−d10d
2
5 + 4d1d10d8 − d2

6d8
+d5d6d9 − d1d

2
9 = 0 (0, 0, 3) [e0][e1 + t+ y] (1,−1)(0,1) 2(0,−)

4d1d10 − d2
6 = 0 (1, 2, 3) - - -

Table 16: Summary of SU(2) top 2.
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Factorization:
b1 → e1d1 b2 → d2 b3 → e0d3
b5 → e1d5 b6 → d6 b7 → e0d7
b8 → e1d8 b9 → d9 b10 → e0d10

SRI: {xt, ys, ye0, se1}

Charge Generators DU(1) = [y]− [x] + 1/2[e1]
DZ2 = [x] + 1/2[e1]

Locus V(f, g,∆) matter P1 Weight Rep
−d2d5d6d8 + d1d

2
6d8 + d2

2d
2
8 + d2d

2
5d9

−d1d5d6d9 − 2d1d2d8d9 + d2
1d

2
9 = 0 (0, 0, 3) [e1][x+ t] (1,−1)( 1

2 ,−
1
2 ) 2(− 1

2 ,
1
2 )

d10d3d
2
6 − d10d2d6d7 − 2d10d2d3d9

+d2
10d

2
2 − d3d6d7d9 + d2d

2
7d9 + d2

3d
2
9 = 0 (0, 0, 3) [e0][x+ t] (−1, 1)( 1

2 ,
1
2 ) 2( 1

2 ,
1
2 )

4d2d9 − d2
6 = 0 (1, 2, 3) - - -

Table 17: Summary of SU(2) top 3. In this model the discrete symmetry is enhanced to
Z2 due to the form of DZ2 . Hence, the representations are labeled by Z4 charges, which
here are multiples of 1

2 modulo 2Z. Note that the charge assignments exhibit the global
gauge group structure [SU(2) × U(1) × Z4]/(ZU(1)

2 × Zbisec
2 ). Both quotient factors are

embedded in the center of SU(2), however, the first one only affects the U(1) charges
while the second one restricts the Z4 charges.

Factorization:
b1 → e2

1d1 b2 → e1d2 b3 → d3
b5 → e1d5 b6 → d6 b7 → e0d7
b8 → d8 b9 → e0d9 b10 → e2

0d10
SRI: {xt, ys, xe1, se1}

Charge Generators σ(s1) = [y]− [x]
σ(s(2)) = [x] + [e1]

Locus V(f, g,∆) matter P1 Weight Rep
d3 = 0 (0, 0, 3) [e0][y] (−1, 1)(−1,1) 2(−1,−)
d8 = 0 (0, 0, 3) [e0][x] (−1, 1)(1,0) 2(1,+)

d3d
2
5 − d2d5d6 + d1d

2
6

+d2
2d8 − 4d1d3d8 = 0 (0, 0, 3) [e0][x+ s] (−1, 1)(0,1) 2(0,−)

−d10d
2
6 + 4d10d3d8 − d2

7d8
+d6d7d9 − d3d

2
9 = 0 (0, 0, 3) [e1][x+ s] (1,−1)(0,0) 2(0,+)

4d3d8 − d2
6 = 0 (1, 2, 3) - - -

Table 18: Summary of SU(2) top 4.
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Figure 17: The toric diagram of the four inequivalent SU(3) tops over F2.

Factorization:
b1 → f2d1 b2 → f0f2d2 b3 → f2

0 d3
b5 → f1f2d5 b6 → d6 b7 → f0d7
b8 → f2

1 f2d8 b9 → f1d9 b10 → f0f1d10
vertices: f0 : (0, 0, 1), f1 : (1, 1, 1), f2 : (0, 1, 1)

SRI: {xt, xf1, ys, yf0, tf2, sf2, sf1}

Charge Generators σ(s1) = [y]− [x] + 1
3(2[f1] + [f2])

σ(s(2)) = [x] + +1
3(2[f1] + [f2])

Locus V(f, g,∆) matter P1 Weight Rep
d1 = 0 (0, 0, 4) [f0][t] (1, 0)( 2

3 ,
1
3 ) 3( 2

3 ,−)
d10d6 − d7d9 = 0 (0, 0, 4) [f2][x] (0,−1)( 2

3 ,−
2
3 ) 3( 2

3 ,+)
d3d

2
6 − d2d6d7

+d1d
2
7 = 0 (0, 0, 4) [f1][y] (−1, 1)(− 1

3 ,
1
3 ) 3(− 1

3 ,−)

d2
6d8 − d5d6d9

+d1d
2
9 = 0 (0, 0, 4) [f0][x] (0, 1)( 1

3 ,−
2
3 ) 3(− 1

3 ,+)

d6 = 0 (2, 2, 4) - - -

Table 19: Summary of SU(3) top 1.

Factorization:
b1 → f2d1 b2 → f1d2 b3 → f0f1d3
b5 → f1f2d5 b6 → d6 b7 → f0d7
b8 → f2d8 b9 → f0f2d9 b10 → f2

0 f2d10
vertices: f0 : (0, 0, 1), f1 : (−1, 1, 1), f2 : (0, 1, 1)

SRI: {xt, xf2, ys, yf0, tf1, sf1, sf2}

Charge Generators σ(s1) = [y]− [x]− 1
3([f1]− [f2])

σ(s(2)) = [x] + 2
3(2[f1] + [f2])

Locus V(f, g,∆) matter P1 Weight Rep
d8 = 0 (0, 0, 4) [f0][x] (1, 0)( 2

3 ,
1
3 ) 3( 2

3 ,−)
−d3d6 + d2d7 = 0 (0, 0, 4) [f2][t] (0,−1)( 2

3 ,−
2
3 ) 3( 2

3 ,+)
−d2d5d6 + d1d

2
6

+d2
2d8 = 0 (0, 0, 4) [f0][t] (0, 1)( 1

3 ,
2
3 ) 3(− 1

3 ,+)

d10d2
6 + d2

7d8
−d6d7d9 = 0 (0, 0, 4) [f1][y] (−1, 1)(− 1

3 ,
1
3 ) 3(− 1

3 ,−)

d6 = 0 (2, 2, 4) - - -

Table 20: Summary of SU(3) top 2.
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Factorization:
b1 → f0f2d1 b2 → f0d2 b3 → f2

0 f1d3
b5 → f2d5 b6 → d6 b7 → f0f1d7
b8 → f1f

2
2 d8 b9 → f1f2d9 b10 → f1d10

vertices: f0 : (0, 0, 1), f1 : (0, 1, 1), f2 : (1, 1, 1)
SRI: {xt, xf1, xf2, ys, yf1, tf0, sf2}

Charge Generators σ(s1) = [y]− [x] + 2
3([f1] + 2[f2])

σ(s(2)) = [x]
Locus V(f, g,∆) matter P1 Weight Rep
d10 = 0 (0, 0, 4) [f0][y] (0, 1)(− 2

3 ,1) 3( 2
3 ,−)

d2d5 − d1d6 = 0 (0, 0, 4) [f1][t] (−1, 1)( 2
3 ,0) 3( 2

3 ,+)
d10d2

2 + d3d
2
6

−d2d6d7 = 0 (0, 0, 4) [f2][t] (1,−1)( 1
3 ,0) 3( 1

3 ,+)

d10d2
5 + d2

6d8
−d5d6d9 = 0 (0, 0, 4) [f0][s] (1, 0)(− 1

3 ,1) 3(− 1
3 ,−)

d6 = 0 (2, 2, 4) - - -

Table 21: Summary of SU(3) top 3.

Factorization:
b1 → f0f

2
1 d1 b2 → f0f1d2 b3 → f0d3

b5 → f1d5 b6 → d6 b7 → f0f2d7
b8 → f1f2d8 b9 → f2d9 b10 → f0f

2
2 d10

vertices: f0 : (0, 0, 1), f1 : (0, 1, 1), f2 : (1, 0, 1)
SRI: {xt, xf2, ys, yf0, yf2, sf1, tf0}

Charge Generators σ(s1) = [y]− [x] + 1
3(2[f1] + [f2])

σ(s(2)) = [x] + 1
3(2[f1] + [f2])

Locus V(f, g,∆) matter P1 Weight Rep
d3 = 0 (0,0,4) [f1][t] (−1, 1)( 2

3 ,−
1
3 ) 3( 2

3 ,−)
−d6d8 + d5d9 = 0 (0,0,4) [f0][x] (1, 0)( 2

3 ,
2
3 ) 3( 2

3 ,+)
d3d

2
5 − d2d5d6

+d1d
2
6 = 0 (0, 0, 4) [f2][s] (0,−1)(− 1

3 ,−
1
3 ) 3(− 1

3 ,−)

d10d
2
6 − d6d7d9

+d3d9 = 0 (0, 0, 4) [f1][x] (−1, 0)( 1
3 ,−

2
3 ) 3(− 1

3 ,+)

d6 = 0 (2, 2, 4) - - -

Table 22: Summary of SU(3) top 4.
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CHAPTER B: Chapter 5 Appendix

B.1 Tools: Koszul resolution, Brill–Noether theory and fat

points

The purpose of this appendix is to cover some of the necessary mathematical backgrounds,

and also provide more details of computations carried out throughout the paper.

B.1.1 Brill–Noether theory

Our exposition of Brill–Noether theory is based on [151, 152]. We refer the interested

reader to these references for more details.

The Jacobian of Riemann surfaces

To each smooth Riemann surface Cg one can associate a Jacobian variety Jac(Cg). This

variety is of dimension g and classifies equivalence classes of line bundle divisors of degree

0:

Jac(Cg) = Div0(Cg)/Prin(Cg) . (B.1.1)

In this expression Div0(Cg) is the group of all divisors of degree 0 and Prin(Cg) the group

of all principal divisors on Cg. Line bundles on Cg are isomorphic iff their divisors differ

by a divisor in Prin(Cg). Hence, sheaf cohomologies of line bundles can only differ if

the line bundles are not isomorphic, or equivalently if their divisors differ by more than

elements of Prin(Cg). Consequently, the Jacobian of Cg plays an important role for our

analysis and in Brill–Noether theory. Let us therefore introduce the Jacobian in more

detail.

Historically, the Jacobian of a curve Cg of genus g was discovered by investigating integrals∫
P ω where P ⊂ Cg is a (not necessarily closed) path and ω a holomorphic differential.

More generally, mark a point p0 ∈ Cg, let (ω1, . . . , ωg) be a basis of the holomorphic
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differentials on Cg and consider the map

φ : Cg → Cg , p 7→
(∫ p

p0
ω1 , . . . ,

∫ p

p0
ωg

)
. (B.1.2)

The value of this map strongly depends on the path P ⊂ Cg which we choose to connect p0

and p. This redundancy can be removed by taking the period lattice of Cg into account.

To this end, recall that there are 2g homologically distinct closed 1-cycles in Cg, i.e.,

H1(Cg,Z) is a 2g-dimensional vector space over Z.1 We now consider the map

φ : H1(Cg,Z)→ Cg , α 7→
(∫

α
ω1 , . . . ,

∫
α
ωg

)
, (B.1.3)

where ωi denote the above basis of holomorphic differentials on Cg. Hence, for every of

the 2g-basis elements of H1(Cg,Z), we obtain an element φ(α) ∈ Cg. It turns out that

these 2g elements span a full-dimensional lattice Λ in Cg — the period lattice of Cg. By

virtue of this lattice, we obtain a well-defined map

φ : Cg → Cg/Λ , p 7→
(∫ p

p0
ω1 , . . . ,

∫ p

p0
ωg

)
. (B.1.4)

This map is known as the Abel–Jacobi map. It can easily be extended to divisors in Cg.

Namely, for a divisor

D =
N∑
i=1

λi · pi , λi ∈ Z, pi ∈ Cg , (B.1.5)

we define

φ : Div(Cg)→ Cg/Λ , D 7→
N∑
i=1

λi · φ (pi) . (B.1.6)

The theorem of Abel (see [183] and references therein) states that two effective divisors D

and E satisfy φ(D) = φ(E) iff D and E are linearly equivalent. Consequently, we obtain
1See e.g. [151] for an explicit construction of the 2g-generators Ai, Bi of H1(Cg,Z).
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an injective group homomorphism

Φ: Div0(Cg)/Prin(Cg)→ Cg/Λ , [D] 7→
N∑
i=1

λi · φ (pi) , (B.1.7)

of divisor classes of degree 0. It turns out that this map is also surjective (see [183] for a

proof). Hence, there is a natural isomorphism

Jac(Cg) = Div0(Cg)/Prin(Cg) ∼= Cg/Λ . (B.1.8)

Central results

For ease of notation let Div(Cg)d denote all divisors of degree d. Then, let us consider

the restriction of B.1.6 to Div(Cg)d, i.e.

Φd : Div(Cg)d/Prim(Cg)→ Cg/Λ , D 7→
N∑
i=1

λi · φ (pi) . (B.1.9)

Let us pick an integer r ≥ −1 and study the subvariety of Jac(Cg)

Grd =
{
p ∈ im (Φd) , h0

(
Cg,OCg(Φ−1

d (p))
)

= r + 1
}
. (B.1.10)

Then, the central result of Brill–Noether theory states [150]

dim(Grd) ≥ ρ (r, d, g) ≡ g − (r + 1) · ((r + 1)− (d− g + 1)) . (B.1.11)

By use of the Riemann–Roch theorem

h0 (Cg,OCg(D)
)
− h1 (Cg,OCg(D)

)
= deg

(
OCg(D)

)
− g + 1 = d− g + 1 , (B.1.12)

we can rewrite this results in the suggestive form

dim(Grd) ≥ ρ (r, d, g) ≡ g − n0 · n1 , (B.1.13)
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with n0 ≡ r+ 1 and n1 = r+ 1− (d− g+ 1). We may thus use ρ (r, d, g) as a measure for

how likely it is that a line bundle of degree d on a genus g curve Cg has n0 = r+ 1 global

sections.

Let us demonstrate this for degree d = 2 bundles on a genus-3 curve. By general theory,

the number of section of a line bundle on a curve Cg with g ≥ 1 can never exceed its

degree. Hence n0 ∈ {0, 1, 2}. With this information, let us compute ρ(r, d, g) for the

admissible values of r:

r (n0, n1) ρ(r, d, g)

−1 (0, 0) 3

0 (1, 1) 2

1 (2, 2) −1

(B.1.14)

From this we learn, that most line bundles L of degree 2 on a genus-3 curve C3 satisfy

h0 (C3,L) = 0. Since for these bundles ρ matches the dimension of the Jacobian of

C3, we can say that these line bundles are associated to generic points of the Jacobian.

Furthermore, we learn that there are such line bundles with h0 (C3,L) = 1. However,

these are special in the sense that they are associated to a codimension-1 locus in the

Jacobian Jac(C3).

Finally, ρ = −1 for r = 1 begs for an explanation. This explanation follows from work of

Griffiths and Harris [153]:

On generic curves, dim(Grd) = ρ (r, d, g).

So in particular, on generic curves it holds Grd = ∅ if and only if ρ (r, d, g) < 0. Con-

sequently, we conclude from B.1.14, that on generic genus g = 3 curve, there is no line

bundle L of degree 2 such that h0(C3,L) = 2.

Note however, that this does not rule out the possibility that non-generic curves may host

such line bundles. In the case at hand, it follows from the theorem of Cliffford [153] that
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hyperelliptic curves H3 of genus g = 3 admit line bundles L of degree 2 and h0(H3,L) = 2.

Brill–Noether jump

As we see from B.1.14, we can in general modify a line bundle on a generic curve such

that it admits additional sections. A jump from r = rgeneric to rgeneric + 1 is equivalent to

saying that the Serre-dual bundle admits a section, i.e., becomes effective:

KC −D > 0 ⇔ ∃pi : KC −D ∼
∑
i

pi . (B.1.15)

where ∼ represents linear equivalence of divisors. Obviously, this requires the line bundle

divisor D to move into special alignment relative to KC . Such a divisor is termed a special

divisor. We term a change in h0, which is solely attributed to a special alignment of the

line bundle divisor, a Brill–Noether jump.

B.1.2 Koszul resolution

Generalities

Given a curve C and a line bundle L on C, we wish to identify which deformations of the

curve lead to an increased number of global sections for L. For hypersurface curves in dP3,

the answer follows from a study of the Koszul resolution. In this case C(c) = V (P (c))

for a polynomial P (c). The coefficients c model the complex structure moduli of a global

F-theory setting.

For such a setup, the Koszul resolution is given by the short-exact sequence

0→ OdP3 (DL −DC) α−→ OdP3 (DL)→ L(c)→ 0 . (B.1.16)

The map α is induced by the polynomial P (c). Namely, for U ⊆ dP3 open, α is given by

s ∈ OdP3 (DL −DC) (U) 7→ s · P (c) ∈ OdP3 (DL) (U) . (B.1.17)
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The Koszul resolution then induces the following long exact sequence in sheaf cohomology:

0 H0 (dP3, DL −DC) H0 (dP3, DL) H0 (C(c),L(c))

H1 (dP3, DL −DC) H1 (dP3, DL) H1 (C(c),L(c))

H2 (dP3, DL −DC) H2 (dP3, DL) 0 0 .

ϕ0

ϕ2

ϕ1 (B.1.18)

The maps ϕi = ϕi(c) are induced from multiplication with P (c). Therefore, these maps

are sensitive to the choice of parameters c for the curve C(c). Explicitly, the maps ϕi

are vector-space morphisms and the entries of their defining matrices are functions of the

parameters ci. Provided that we know these mapping matrices, we may thus use the

exactness of the Koszul resolution of infer hi (C(c),L(c)) as a function of the coefficients

ci in P (c).

For example, in 5.4.1, we consider DC = (4;−1,−2,−1) and DL = (3;−3,−1,−2). In

this case, the Koszul resolution simplifies and takes the form

0 0 0 H0 (C(c),L(c))

H1 (dP3, DL −DC) ∼= C4 H1 (dP3, DL) ∼= C1 H1 (C(c),L(c))

0 0 0 0 .

ϕ

(B.1.19)

Then it follows

H1 (C(c),L(c)) ∼= cokerϕ ,

h1(C(c),L(c)) = 1− dim (imϕ) .
(B.1.20)

A detailed study of Čech cohomology [203] shows that in this geometry we have Mϕ =

(c3, c6, c9, 0). Hence, h1(C(c),L(c)) = 1 on curves with c3 = c6 = c9 = 0 and otherwise

h1(C(c),L(c)) = 0. Along these lines, we classify the curve geometries according to their
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admitted number of global sections.

Recall that Čech cohomology expresses H i(dP3,OdP3(DL−DC)) and H i(dP3,OdP3(DL))

as collections of local sections. The mappings of these local sections follow from B.1.17,

i.e., are given by multiplication with the polynomial P (c) which defines the curve C(c).

Importantly, these bases are expressed modulo equivalence relations induced from Čech

coboundaries. Therefore, these computations are typically fairly tedious.

Oftentimes, cohomCalg [205, 206, 207, 208, 209, 210, 211] can help to simplify this task.

Namely, it identifies bases of H i(dP3,OdP3(DL −DC)) and H i(dP3,OdP3(DL)) in terms

of rationoms — quotients of monomials in the homogeneous coordinates — and therefore

simplifies the task to find the bases in Čech cohomology. Even more, we may be tempted

to simply multiply the basis elements identifed by cohomCalg [205, 206, 207, 208, 209,

210, 211] with the polynomial P (c) and ignore all image rationoms that have not been

identified as bases for H i(dP3,OdP3(DL)) by cohomCalg under the assumption that they

correspond to Čech coboundaries.

This procedure fails whenever Čech cohomology chamber factors greater than 1 appear. In

this case, cohomCalg finds that one rationom R spans a vector space of dimension greater

than 1 in sheaf cohomology. The interpretation of this is, that there are at least two

distinct Čech cochains, i.e., collections of local sections, in which the rationomR is the only

non-trivial entry. Hence, these distinct Čech cochains are both canonically isomorphic to

R. However, to identify the mapping matrices of the line bundle cohomologies correctly,

the information about R is insufficient. Rather, the corresponding Čech cochains need to

be identified explicitly.

Given these insights, we have taken extra care, to work out the mappings presented in

this work carefully with Čech cohomology. We present such a computation in large detail

in the following section.
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Before we come to this, let us mentioned that a detailed study of the Koszul resolution

is not original to this work. For example, in the context of heterotic compactifications,

these resolutions — including the mappings in the induced long exact sequence — have

been studied extensively [212, 213, 162, 163, 108]. However, to the best of our knowledge,

chamber factor greater than 1 do not show in products of projective spaces. Hence, this

complication does not arise in heterotic compactifications with CICYs.

Čech cohomologies for 5.4.2

Here, we present a more detailed computation of the example discussed in 5.4.2. Recall

that the curve and line bundle in question are given by

DC = (4;−1,−1,−1) , DL = (1; 2,−2,−1) . (B.1.21)

Moreover, recall that in this case h0 (C(c),L(c)) is uniquely determined by the mapping

ϕ : H1 (dP3,OdP3 (DL −DC)) ·P (c)−−−→ H1 (dP3,OdP3 (DL)) , (B.1.22)

where

P (c) = c1x
3
1x

3
2x

2
3x4 + c2x

2
1x

3
2x3x

2
4x6 + c3x1x

3
2x

3
4x

2
6 + c4x

3
1x

2
2x

3
3x5 + c5x

2
1x

2
2x

2
3x4x5x6

+ c6x1x
2
2x3x

2
4x5x

2
6 + c7x

2
2x

3
4x5x

3
6 + c8x

2
1x2x

3
3x

2
5x6 + c9x1x2x

2
3x4x

2
5x

2
6

+ c10x2x3x
2
4x

2
5x

3
6 + c11x1x

3
3x

3
5x

2
6 + c12x

2
3x4x

3
5x

3
6 .

(B.1.23)

Namely, h0(C(c),L(c)) = 3−rk (Mϕ). With cohomCalg [205, 207, 208, 209, 210, 206, 211],

we obtain a basis of the line bundle cohomologies:

H1(DL −DC) ∼= SpanC

{ 1
x3x3

4x
3
6
,

1
x1x2

3x
2
4x

2
6
,

1
x2

1x
3
3x4x6

}
∼= C3 , (B.1.24)

H1(DL) ∼= SpanC

{
x3

5x6
x1x4

,
x1x

3
2

x3x6

}
∼= C2 . (B.1.25)
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By polynomial multiplication we then have

1
x3x3

4x
3
6
· P (c) = c3

x1x
3
2

x3x6
+ . . . , (B.1.26)

1
x1x2

3x
2
4x

2
6
· P (c) = c2

x1x
3
2

x3x6
+ c12

x3
5x6
x1x4

+ . . . , (B.1.27)

1
x2

1x
3
3x4x6

· P (c) = c1
x1x

3
2

x3x6
+ c11

x3
5x6
x1x4

+ . . . . (B.1.28)

On the RHS of these equations, we have omitted all rationoms which cannot be expressed

as Z-linear combinations of those listed in B.1.25. The remainder of this section will

justify that we can indeed omit these terms. For the time being, note that this leads to

Mϕ =
( c3 c2 c1

0 c12 c11

)
, (B.1.29)

which is the matrix analyzed in 5.4.2.

Strategy In order to justify that all omitted terms in B.1.28 can be ignored, we will now

analyse H1(dP3,OdP3(DL)) and H1(dP3,OdP3(DL − DC)) from the perspective of Čech

cohomology. For additional background we refer the interested reader to [203]. Recall

that for H1(dP3,OdP3(DL)) it holds

H1(dP3,OdP3(DL)) ∼= Ȟ1(U ,OdP3(DL)) = ker (δ1) /im (δ0) . (B.1.30)

In this expression, U is the affine open cover of the dP3 surface — we will discuss this

momentarily — and the maps δi are the boundary morphisms in the Čech complex

0→ Č0(U ,OdP3(DL)) δ0−→ Č1(U ,OdP3(DL)) δ1−→ . . . . (B.1.31)

Thereby, let us specify our statement regarding the RHS of B.1.28. We claim that all

omitted terms are in im(δ0), i.e., are Čech coboundaries. To justify this statement, we

proceed by investigating the following objects:
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1. im (δ0(DL)).

2. ker (δ1(DL)),

3. ker (δ1(DL −DC)),

4. the map ker (δ1(DL −DC))→ ker (δ1(DL)).

Čech 0-cocycles of DL To understand Č0(U ,OdP3(DL)), recall that dP3 has 6 homo-

geneous variables xi. These correspond to the ray generators

u1 = (0,−1) , u2 = (−1, 0) , u3 = (1,−1) , (B.1.32)

u4 = (−1, 1) , u5 = (1, 0) , u6 = (0, 1) . (B.1.33)

In terms of these, the maximal cones in the fan of dP3 are given by

U1 = Span≥0 {u1, u3} , U2 = Span≥0 {u3, u5} , U3 = Span≥0 {u5, u6} ,

U4 = Span≥0 {u6, u4} , U5 = Span≥0 {u4, u2} , U6 = Span≥0 {u2, u1} .
(B.1.34)

These cones correspond to open affine subsets of the dP3, namely the subsets of the form

{xi 6= 0}. Collectively, U = {Ui}1≤i≤6 is the open affine cover of dP3. To compute

Č0(U ,OXΣ(DL)) with respect to this open affine cover U , we note

DL = (1; 2,−2,−1) = H + 2E1 − 2E2 − E3 =
6∑
i=1

aiV (xi) , (B.1.35)

with a1 = a4 = a6 = 0 and a2 = 2, a3 = −1, a5 = 1. Now, we can quote from [203] that

Č0(U ,OXΣ(DL)) =
⊕

1≤i≤6
H0(Ui, OXΣ(DL)|Ui , (B.1.36)

H0(Ui, OXΣ(DL)|Ui)
∼=

 6∏
j=1

x
aj
j

 · ⊕
m∈PD(Ui)

C ·

 6∏
j=1

x
〈m,uj〉
j

 , (B.1.37)

PD(Ui) = {m ∈ Z2 , 〈m,uρ〉 ≥ −aρ ∀ρ ∈ σ(1)} . (B.1.38)
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The normalization in B.1.37 ensures that we are looking at rationoms of degree DL, as

analysed by cohomCalg. Explicitly, it holds

PD(U1) = {m ∈ Z2 ,−m2 ≥ 0 and m1 −m2 ≥ 1} , (B.1.39)

PD(U2) = {m ∈ Z2 ,m1 −m2 ≥ 1 and m1 ≥ −1} , (B.1.40)

PD(U3) = {m ∈ Z2 ,m1 ≥ −1 and m2 ≥ 0} , (B.1.41)

PD(U4) = {m ∈ Z2 ,m2 ≥ 0 and −m1 +m2 ≥ 0} , (B.1.42)

PD(U5) = {m ∈ Z2 ,−m1 +m2 ≥ 0 and −m1 ≥ −2} , (B.1.43)

PD(U6) = {m ∈ Z2 ,−m1 ≥ −2 and −m2 ≥ 0} . (B.1.44)

To express these polytopes in simpler terms, we define the regions A, B, C, D, E, F , G,

H:

H A B

C

DEF

G

In an abuse of terminology, we use A to denote all polynomials formed from linear combi-

nation of the Laurent monomials associated to the lattice points of the region A. Similarly,
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we use the names for the other regions. Thereby, we can write

Č0(U ,OXΣ(DL)) = x2
2x5
x3
· (H +A+B,A+B + C,C +D + E, (B.1.45)

D + E + F,E + F +G,G+H +A) . (B.1.46)

Finally note that the map δ0 : Č0(U ,OXΣ(DL))→ Č1(U ,OXΣ(DL)) is given by multipli-

cation with the following matrix:

Mδ0 =



−1 1 0 0 0 0
−1 0 1 0 0 0
−1 0 0 1 0 0
−1 0 0 0 1 0
−1 0 0 0 0 1
0 −1 1 0 0 0
0 −1 0 1 0 0
0 −1 0 0 1 0
0 −1 0 0 0 1
0 0 −1 1 0 0
0 0 −1 0 1 0
0 0 −1 0 0 1
0 0 0 −1 1 0
0 0 0 −1 0 1
0 0 0 0 −1 1


. (B.1.47)

Čech 1-cocycles of DL We repeat this analysis for Č1(U ,OdP3(DL)). The elements in

this Čech cohomology are given by local sections on pairwise intersections of the Ui which

form the affine open cover of dP3. These pairwise intersections and the corresponding

polytopes are as follows:
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Intersection Cone PD(Uij) Presentation

U1 ∩ U2 Span≥0(u3) {m ∈ Z2 , m1 ≥ 1 +m2} B,C,D,E, F,N

U1 ∩ U3 Span≥0(0) Z2

U1 ∩ U4 Span≥0(0) Z2

U1 ∩ U5 Span≥0(0) Z2

U1 ∩ U6 Span≥0(u1) {m ∈ Z2 , m1 ≤ 0} A,B,C, I,K,L

U2 ∩ U3 Span≥0(u5) {m ∈ Z2 , m1 ≥ −1} C,D,E, F,G,H, I, L,M,N

U2 ∩ U4 Span≥0(0) Z2

U2 ∩ U5 Span≥0(0) Z2

U2 ∩ U6 Span≥0(0) Z2

U3 ∩ U4 Span≥0(u6) {m ∈ Z2 , m2 ≥ 0} A,B,C,D,E,L,M

U3 ∩ U5 Span≥0(0) Z2

U3 ∩ U6 Span≥0(0) Z2

U4 ∩ U5 Span≥0(u4) {m ∈ Z2 , m2 ≥ m1} A,G,H, I,K,L

U4 ∩ U6 Span≥0(0) Z2

U5 ∩ U6 Span≥0(u2) {m ∈ Z2 , m1 ≤ 2} A,B,C,D,H, I,K,L,M,N

In this table, we have use the following geometric loci to express the polytopes in question:
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A B C D E

F

GHIK

L M
N

To identify a basis of ker(δ1), we look at the corresponding mapping matrix

Mδ1 =



−1 1 0 0 0 −1 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 −1 0 0 0 0 0 0 0 0
−1 0 0 1 0 0 0 −1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 −1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 −1 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 0 −1 0 0 0 0
0 −1 0 0 1 0 0 0 0 0 0 −1 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 −1 0 0
0 0 −1 0 1 0 0 0 0 0 0 0 0 −1 0
0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 −1 1 0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 1 0 0 −1 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 −1 1 0 −1 0 0
0 0 0 0 0 0 0 0 0 −1 0 1 0 −1 0
0 0 0 0 0 0 0 0 0 0 −1 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 −1



. (B.1.48)

Let us introduce the points

p2 = (2, 1) , p9 = (−1,−1) . (B.1.49)

The corresponding Laurent monomials, once multiplied by xa ≡ ∏6
j=1 x

aj
j , are x3

5x6
x1x4

, x1x3
2

x3x6
,

i.e., exactly those rationoms which cohomCalg identified in B.1.25 as basis of the coho-
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mology:

H1(DL) ∼= SpanC

{
x3

5x6
x1x4

,
x1x

3
2

x3x6

}
. (B.1.50)

However, here we can make this isomorphism explicit. In an abuse of terminology let p2,

p9 denote their Laurent monomials. Then it is readily verified that the following Čech

1-cocycles furnish a basis of ker (δ1):

(0,−p2,−p2,−p2, 0,−p2,−p2,−p2, 0, 0, 0, p2, 0, p2, p2) ∼=
x3

5x6
x1x4

, (B.1.51)

(0,−p9,−p9,−p9, 0,−p9,−p9,−p9, 0, 0, 0, p9, 0, p9, p9) ∼=
x1x

3
2

x3x6
. (B.1.52)

Čech 1-cocycles of DL −DC Finally, let us identify Č1(U ,OdP3(DL−DC)). We have

DL −DC = (−3; 3,−1, 0) = 3V (x2)− 4V (x3)− 3V (x5)− 3V (x6) . (B.1.53)

Thus a1 = a4 = 0, a2 = 3, a3 = −4 and a5 = a6 = −3. The points associated to the

Laurent monomials identified by cohomCalg in B.1.24 are:

1
x3x3

4x
3
6

= x3
2

x4
3x

3
5x

3
6
· x

3
3x

3
5

x3
2x

3
4

↔ q1 = (3, 0) ,

1
x1x2

3x
2
4x

2
6

= x3
2

x4
3x

3
5x

3
6
· x

2
3x

3
5x6

x3
2x

2
4x1

↔ q2 = (3, 1) ,

1
x2

1x
3
3x4x6

= x3
2

x4
3x

3
5x

3
6
· x3x

3
5x

2
6

x4x3
2x

2
1

↔ q3 = (3, 2) .

(B.1.54)

The relevant pairwise intersection and polytopes are as follows:
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Intersection Cone PD(Uij) Points contained

U1 ∩ U2 Span≥0(u3) {m ∈ Z2 , m1 −m2 ≥ 4} ∅

U1 ∩ U3 Span≥0(0) Z2 q1, q2, q3

U1 ∩ U4 Span≥0(0) Z2 q1, q2, q3

U1 ∩ U5 Span≥0(0) Z2 q1, q2, q3

U1 ∩ U6 Span≥0(u1) {m ∈ Z2 , −m2 ≥ 0} q1

U2 ∩ U3 Span≥0(u5) {m ∈ Z2 , m1 ≥ 3} q1, q2, q3

U2 ∩ U4 Span≥0(0) Z2 q1, q2, q3

U2 ∩ U5 Span≥0(0) Z2 q1, q2, q3

U2 ∩ U6 Span≥0(0) Z2 q1, q2, q3

U3 ∩ U4 Span≥0(u6) {m ∈ Z2 , m2 ≥ 3} ∅

U3 ∩ U5 Span≥0(0) Z2 q1, q2, q3

U3 ∩ U6 Span≥0(0) Z2 q1, q2, q3

U4 ∩ U5 Span≥0(u4) {m ∈ Z2 , −m1 +m2 ≥ 0} ∅

U4 ∩ U6 Span≥0(0) Z2 q1, q2, q3

U5 ∩ U6 Span≥0(u2) {m ∈ Z2 , −m1 ≤ −3} q1, q2, q3

It is not hard to verify that ker (δ1) = SpanZ {b1, b2, b3} where

b1 = (0, q1, q1, q1, 0, q1, q1, q1, 0, 0, 0,−q1, 0,−q1,−q1) ,

b2 = (0, q2, q2, q2, 0, q2, q2, q2, 0, 0, 0,−q2, 0,−q2,−q2) ,

b3 = (0, q3, q3, q3, 0, q3, q3, q3, 0, 0, 0,−q3, 0,−q3,−q3) .

(B.1.55)
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Images of b1, b2, b3 in Č1(U , DL) The mapping between the Čech cocycles happens

through the following mapping of complexes

0 Č0(U , DL −DC) Č1(U , DL −DC) Č2(U , DL −DC) · · ·

0 Č0(U , DL) Č1(U , DL) Č2(U , DL) · · ·

δ0 δ1

δ0 δ1

·P (c) ·P (c) ·P (c)

(B.1.56)

where P (c) is the global section of DC in B.1.23. From this it is now readily verified, that

the terms omitted on the RHS of B.1.28 correspond to elements of Č1(U , DL) of the form

ϕi = (0, ri, ri, ri, 0, ri, ri, ri, 0, 0, 0,−ri, 0,−ri,−ri) , (B.1.57)

where ri is the Laurent monomial associated — upon multiplication by xa = x2
2x5
x3

— to

r1 = (−1,−3), r2 = (−1,−2), r3 = (2,−1), r4 = (−1, 0),

r5 = (2, 0), r6 = (−1, 1), r7 = (1, 1).
(B.1.58)

From this we can verify that ϕi = δ0(µi) for µi ∈ Č0(U , DL) as follows:

ϕi µi

ϕ1 (r1, r1, 0, 0, 0, r1)

ϕ2 (r2, r2, 0, 0, 0, r2)

ϕ3 (−r3,−r3, 0, 0, 0,−r3)

ϕ4 (0, 0, r4, r4, r4, 0)

ϕ5 (−r5,−r5, 0, 0, 0,−r5)

ϕ6 (0, 0, r6, r6, r6, 0)

ϕ7 (0, 0, r7, r7, r7, 0)
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Hence, we conclude

ϕ (b1) ∼= c3
x1x

3
2
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3
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5x6
x1x4

. (B.1.59)

Application to GUT-example

For the example in 5.3 we consider DC = (10;−3,−3,−4) and DL = (5;−4,−4, 3). This

curve C53 is cut-out by the following polynomial a3,2:
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(B.1.60)

Hence, the Koszul resolution of the line bundle L = OdP3 (DL)|C53
is given by

0→ OdP3 (DL −DC) φ−→ OdP3 (DL)→ L → 0 , (B.1.61)
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and the map φ is induced from multiplication with a3,2. The associated long exact se-

quence in sheaf cohomology is then:

0 0 H0 (dP3, DL) ∼= C4 H0 (DC ,L)

H1 (dP3, DL −DC) ∼= C4 H1 (dP3, DL) ∼= C6 H1 (C53 ,L)

0 0 0 0 .

ϕ

(B.1.62)

By exactness of this sequence, we have h1(C53 ,L) = 6 − rk(Mϕ), where the mapping

matrix Mϕ is determined by the coefficients of a3,2:

Mϕ =



0 c1 0 0 c2 c3 c4 c5 0 0 0 0 0 0 0 0 0

c5 0 0 0 c1 c2 c3 c4 0 0 0 0 0 0 0 0 0

c11 c6 0 0 c7 c8 c9 c10 c1 c2 c3 c4 c5 0 0 0 0

0 0 c39 c34 0 0 0 0 c40 c41 c42 c43 c44 c35 c36 c37 c38

0 0 c44 0 0 0 0 0 0 0 0 0 0 c40 c41 c42 c43

0 0 0 c40 0 0 0 0 0 0 0 0 0 c41 c42 c43 c44


.

(B.1.63)

Some linear algebra yields that the rank of this map drops by one, if

c1 = c2 = c3 = c4 = c5 = c7 = c8 = c9 = c10 = c35 = c36 = c37 = c38 = 1

c40 = c41 = c42 = c43 = c44 = 1, c11 = c34 = −1, c6 = c39 = 2 .
(B.1.64)

One can easily verify that the polynomial B.1.60 does not factorize for generic other

coefficients not tuned above. Hence the curve C53 remains irreducible. By applying

sagemath [169], one can further justify the smoothness of C53 . Therefore, this tuning

condition leads to one additional section without topology change for C53 . This is an

example of jump from Brill–Noether theory.
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B.1.3 The fat point

Finally, in our analysis, non-reduced curves feature prominently. Consequently, a basic

understanding of such curves is required. Let us therefore briefly discuss the mother of all

non-reduced varieties, the fat point. This is an example in non-compact affine space C2

with coordinates x, y. Most of this intuition carries over to compact curves. More details

can for example be found in [152, 214].

Let us consider V (x) ⊆ C2. This is the complex (non-compact) curve with coordinate

y. The difference between V (x) and V (x2) is not the collection of points, which these

vanishing sets contain, but rather the allowed functions on these spaces. Namely, recall

that in the modern language of algebraic geometry, a scheme (or equivalently in the

analytic regime — a geometric space) is a pair of a topological space and a structure

sheaf. The difference between V (x) and V (x2) is this very structure sheaf.

In staying within the regime of algebraic geometry, the structure sheaf of C2 is given by

(the sheafification of) the total coordinate ring C[x, y] — the ring of all polynomials in

the variables x and y. Likewise, we can understand the structure sheaf on V (x) from its

coordinate ring:

RV (x) = C[x, y]/ 〈x〉 = C[y] . (B.1.65)

Hence, functions on the variety V (x) correspond to polynomials in y. How about V (x2)?

On this space it holds

RV (x2) = C[x, y]/
〈
x2
〉

= C[y]⊕ 〈x〉 . (B.1.66)

Consequently, on V (x2), the polynomial x provides a non-trivial function! This is the

difference between V (x) and V (x2).
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We can extend this example slightly by looking at V (y, x2). For this space we find

RV (y,x2) = C[x, y]/
〈
y, x2

〉
= 〈x〉 . (B.1.67)

Hence, on this point in the affine plane C, the set of non-trivial functions is 1-dimensional

and is generated by the polynomial x. This lends V (y, x2) its name — as point set it is

just a single point, yet this point is large enough to admit non-trivial functions — it is a

fat point.

B.2 Collection of data

B.2.1 Curve splittings and jumps

Recall that the six toric P1s of dP3 correspond to the exceptional divisors E1, E2, E3 and

the following three divisors:

E4 = H − E1 − E2 , E5 = H − E1 − E3 , E6 = H − E2 − E3 . (B.2.1)

DC = (3;−1,−1,−1)

For this genus-1 curve we find:
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bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits

(2, 1, -4, 1) (4, 5, 6) (4, 5, 6) (4, 5, 6) (4, 5, 6) (4, 5, 6) (4, 5, 6) (4, 5, 6)

(1, -3, -3, -2) (0, 1, 2, 3, 4, 5) (2, 3, 4, 5) (2, 3, 4, 5) (1, 3, 4, 5) (0, 1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5)

(1, -1, -3, 0) (0, 1, 2, 3) (0, 1, 2, 3) (2) (0, 1, 2, 3) (1, 2, 3) (0, 1, 2) (0, 2, 3)

(1, -2, -3, -2) (0, 1, 2, 3, 4) (1, 2, 3, 4) (2, 3, 4) (1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4)

(1, -1, -3, -1) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2) (0, 2, 3)

(1, -3, -4, -2)
(0, 1, 2, 3, 4)

(2, 3, 5, 6, 7) (3, 4, 5, 6) (1, 3, 4, 6)
(0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4)

(5, 6, 7) (5, 6) (5, 6) (5, 6, 7)

(2, 1, -4, 2) (5, 6, 7) (5, 6, 7) (5, 6, 7) (6, 7) (5, 6, 7) (5, 6, 7) (5, 6, 7)

(2, 2, -4, 2) (6, 7, 8, 9) (7, 8, 9) (6, 7, 8) (7, 8, 9) (6, 7, 8, 9) (6, 7, 8) (6, 7, 8, 9)

(1, -1, -4, -1) (0, 3, 5) (0, 3, 5) (3) (0, 3, 5) (0, 3, 5) (0, 3) (0, 3, 5)

(1, 1, -3, 1) (2, 3, 4) (2, 3, 4) (2, 3, 4) (2, 3, 4) (2, 3, 4) (2, 3, 4) (2, 3, 4)

(1, 1, -3, 0) (1, 2, 3) (1, 2, 3) (2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3) (2, 3)

(1, -1, -2, 0) (0, 1) (0, 1) (1) (0, 1) (1) (0, 1) (0, 1)

(1, 1, -3, 2) (3, 4, 5) (3, 4, 5) (3, 4, 5) (4, 5) (3, 4, 5) (3, 4, 5) (3, 4, 5)

DC = (4;−1,−2,1)

For this (generically disjoint) union of a genus-0 and a genus-2 curve, we find:

bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits

(2, -1, -2, 5) (2, 5, 7, 8) (2, 5, 7, 8) (2, 5, 7, 8) (2) (2, 5, 7, 8) (5, 7, 8) (5, 7, 8)

(1, -1, -2, -1) (2, 3) (2, 3) (2, 3) (2) (2, 3) (3) (3)

(1, -2, -2, -2) (3, 4, 5, 6, 7) (4, 6, 7) (3, 4, 5, 6, 7) (3, 4) (3, 4, 5, 6, 7) (5, 6, 7) (5, 6, 7)

(2, -3, -2, -1) (2, 3, 4, 5, 6) (4, 5) (2, 3, 4, 5, 6) (2, 3, 4, 5) (4, 5, 6) (3, 5, 6) (3, 4, 5, 6)

(1, -2, -1, 4) (0, 1, 2, 3) (1, 2, 3) (0, 1, 2, 3) (0, 1) (1, 2, 3) (1, 2, 3) (1, 2, 3)

(1, -2, -2, -3)
(4, 5, 7, 8, 9)

(5, 8, 10, 11)
(4, 5, 7, 8, 9)

(4,5)
(4, 5, 7, 8, 9)

(7, 8, 9, 10, 11) (7, 8, 9, 10, 11)
(10, 11) (10, 11) (10, 11)

(2, -3, -2, -2)
(3, 4, 5, 6, 7)

(5, 6, 7, 8) (3, 5, 6, 7, 8, 9) (3, 4, 5, 6) (5, 6, 7, 8, 9) (5, 6, 7, 8, 9) (5, 6, 7, 8, 9)
(8, 9)

(1, -2, 1, -1) (5, 6) (5, 6) (5, 6) (5) (5, 6) (6) (5, 6)

(2, -2, -1, -2) (6, 7) (6, 7) (6, 7) (6) (6, 7) (7) (6, 7)

(2, -2, -2, 7)
(1, 2, 6, 7, 10) (2, 6, 7, 10, 11) (1, 2, 6, 7, 10)

(1, 2) (2, 7, 11, 14)
(6, 7, 10, 11, 13) (6, 7, 10, 11, 13)

(11, 13, 14, 15) (11, 13, 14, 15) (13, 14, 15) (13, 14, 15) (14)

(3, -1, -2, 10) (6, 14, 21, 27, 32) (6, 14, 21, 27, 32) (6, 14, 21, 27, 32) (6) (6, 14, 21, 27) (14, 21, 27, 32) (14, 21, 27)

(1, -3, 1, -1) (4, 5, 6, 7) (4, 5, 6, 7) (4, 5, 6, 7) (4, 5, 6) (4, 5, 6, 7) (6, 7) (4, 5, 6, 7)

DC = (4;−1,−2,−1)

For this genus-2 curve we find:
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bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits

(2, 3, -3, 1) (5, 7, 8) (7) (5, 7, 8) (5, 7, 8) (5, 7, 8) (5, 7, 8) (5, 7, 8)

(3, 1, -4, -1) (3, 4) (3, 4) (3, 4) (3, 4) (3, 4) (3, 4) (4)

(2, 2, -4, 0) (1, 2, 3, 4) (2, 3, 4) (2, 3, 4) (1, 2, 3, 4) (1, 2, 3, 4) (2, 3, 4) (2, 3, 4)

(2, 1, -4, -3)
(0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 3, 4, 5, 6) (2, 3, 4, 5) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4)

(1, 2, 3, 4)
(5, 6) (5) (5, 6) (5, 6)

(1, -1, -3, -2) (0, 1, 2) (0, 1, 2) (1, 2) (1, 2) (0, 1, 2) (0, 1, 2) (0, 1, 2)

(1, -2, -4, 2) (0, 1, 2, 3, 4) (1, 2, 3, 4) (2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4)

(4, 3, -3, -8)

(4, 5, 6, 7, 8) (6, 7, 8, 9, 10) (4, 5, 6, 7, 8) (7, 10, 12, 13, 15) (4, 5, 6, 7, 8) (4, 7, 9, 10, 12)

(10, 12, 13, 15, 16)(10, 12, 13, 15) (12, 13, 15, 16) ( 9, 10, 12, 13) ( 17) (9, 10, 12, 13, 15) (13, 15, 16, 18, 19)

(16, 17, 18, 19) (17, 18) (15, 17, 18, 19) ( 16, 17, 18, 19)

(1, 3, -4, -5)
(0, 1, 2, 4, 6) (0, 2, 4, 6, 7) (2, 4, 6, 8, 9) (4, 6, 8) (0, 1, 2, 4, 6) (0, 2, 4, 6, 7) (0, 1, 2, 4, 6)

(7, 8, 9, 11) (8, 9) ( 11) ( 7, 8, 9, 11) (9,11) (7)

(3, 1, -4, -5)
(0, 1, 2, 4, 5) (0, 1, 2, 4, 5) (2, 4, 6, 8, 9) (4, 5, 6, 8) (0, 1, 2, 4, 5) (0, 1, 2, 4, 5) (4, 5, 6, 7)

(6, 7, 8, 9, 11) (6, 7, 8, 9) (11) (6, 7, 8, 9, 11) (6, 7, 8, 9, 11)

(3, 2, -3, -7)

(0, 1, 2, 3, 4) (1, 2, 3, 4, 6) (1, 3, 4, 6, 7) (6, 7, 9, 10, 11) (1, 2, 3, 4, 6) (1, 3, 4, 6, 7) (6, 7, 9, 10, 11)

(6, 7, 9, 10, 11) (7, 9, 10, 11) ( 7, 9, 10, 11) ( 12) ( 7, 9, 10, 11) (9, 10, 11, 12) ( 12)

(12, 14, 15, 16) (12, 14, 15) (12, 14, 15, 16) (12, 14, 15) (14, 15, 16)

(3, 2, -3, -5)
(2, 3, 4, 5, 6) (3, 4, 5, 7, 8) (2, 3, 4, 6, 7) (4, 5, 6, 7, 8) (2, 3, 4, 5, 6) (2, 3, 4, 5, 6) (6, 7, 8)

(7, 8, 9, 10, 11) (10) ( 8, 9, 10, 11) ( 9,10) ( 7, 8, 9, 10, 11) (7, 8, 9, 10, 11)

(1, 1, -4, 2) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 3, 4) (0, 1, 2, 3, 4)

(1, 0, -4, -1) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2) (0, 2, 3)

(3, -3, -1, -2) (4, 5) (4, 5) (4, 5) (4, 5) (4, 5) (4, 5) (4, 5)

(4, -7, -1, -3)

(3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 8) (3, 4, 5, 6, 7) (3, 4, 5, 6, 8) (3, 4, 5, 6, 7)

( 8, 10, 11, 12) (8, 10, 11, 12) (8, 10, 11, 13, 15) ( 10, 11, 12, 13) ( 8, 11, 13, 15) (10, 11, 13, 15) (10, 11, 12, 13, 15)

(13, 15, 17) (15, 17)

DC = (4;−1,−2,0)

For this genus-2 curve we find:

bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits

(1, -2, -1, 4) (0, 1, 2, 3, 4, 5, 6) (1, 2, 3, 4, 5, 6) (0, 1, 2, 3, 4, 5, 6) (2, 3) (1, 3, 5, 6) (2, 3, 4, 5, 6) (2, 3, 4, 5, 6)

DC = (4;−1,−1,−1)

On this genus-3 curve we find:
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bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits

(1, -2, -3, -1) (0, 1, 2, 3, 4) (1, 3, 4) (2, 3) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4)

(1, -3, -4, -3)
(0, 2, 3, 4, 5) (2, 4, 5, 7, 8) (3, 5, 6, 7, 8) (2, 4, 5, 7, 8) (0, 2, 3, 4, 5) (0, 2, 3, 4, 5) (0, 2, 3, 4, 5)

(6, 7, 8, 9, 10) (9, 10) (9) (9, 10) (6, 7, 8, 9, 10) (6, 7, 8, 9, 10) (6, 7, 8, 9, 10)

(1, 1, -3, 0) (0, 1, 2, 3) (0, 1, 2, 3) (2) (0, 1, 2, 3) (1, 2, 3) (0, 1, 2, 3) (1, 2, 3)

(1, -3, -3, -3)
(0, 2, 3, 4, 5) (2, 4, 5, 6, 7) (2, 4, 5, 6, 7) (2, 4, 5, 6, 7) (0, 2, 3, 4, 5) (0, 2, 3, 4, 5) (0, 2, 3, 4, 5)

(6, 7, 8) (8) (8) (8) (6, 7, 8) (6, 7, 8) (6, 7, 8)

(1, -3, -2, -3)
(0, 1, 2, 3, 4) (2, 3, 4, 5, 6) (1, 3, 4, 5, 6) (2, 3, 4, 5, 6) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4)

(5, 6, 7) (7) (5, 6, 7) (5, 6) (5, 6, 7)

(1, 2, -2, -1) (1, 2, 3) (2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3) (2, 3)

(1, 1, -3, -3)
(0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 4, 5) (2, 4, 5) (0, 2, 3, 4, 5) (0, 2, 3, 4, 5) (1, 2, 3, 4, 5)

(5, 6) (5, 6) (6) (6)

(2, 3, -4, -1) (4, 5, 6, 7, 8, 9) (6, 7, 8, 9) (4, 5, 6, 7, 8, 9) (4, 5, 6, 7, 8, 9) (4, 5, 6, 7, 8, 9) (4, 5, 6, 7, 8, 9) (6, 7, 8, 9)

(1, 2, -4, 2)
(2, 3, 4, 5, 6) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (2, 3, 4, 5, 6) (3, 4, 5, 6, 7) (2, 3, 4, 5, 6)

(7, 8) (8) (8) (8) (7, 8) (8) (7, 8)

(1, -2, -3, -2) (0, 1, 2, 3, 4, 5) (1, 2, 3, 4, 5) (2, 3, 4) (1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5)

(1, 3, -3, 1) (3, 4, 5, 6, 7) (5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7)

(1, -1, -3, 0) (0, 1, 2, 3) (0, 1, 2, 3) (2) (0, 1, 2, 3) (1, 2, 3) (0, 1, 2, 3) (0, 2, 3)

DC = (5;−2,−2,−1)

On this genus-4 curve we find:

bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits

(2, -2, -4, -2) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 3) (1, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4)

(1, -1, -3, 0) (0, 1) (0, 1) (1) (0, 1) (0, 1) (0, 1) (0, 1)

(1, 2, -2, 0) (2, 3) (3) (2, 3) (2, 3) (2, 3) (2, 3) (2, 3)

(1, 2, -2, 1) (3, 4) (4) (3, 4) (3, 4) (3, 4) (3, 4) (3, 4)

(1, 1, -4, -1) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2, 3) (0, 2, 3)

(1, -1, -4, -1) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2, 3) (0, 2, 3)

(1, -2, -4, 2) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2, 3) (0, 2, 3)

(1, 1, -4, 1) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 3) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (1, 3, 4) (0, 1, 2, 3, 4)

(1, -1, -2, 3) (0, 1, 2, 3) (0, 1, 2, 3) (0, 1, 2, 3) (1, 2) (0, 1, 2, 3) (1, 2, 3) (0, 1, 2, 3)

(2, -1, -4, 1) (0, 1, 2, 3) (0, 1, 2, 3) (2) (0, 1, 2, 3) (0, 1, 2, 3) (0, 1, 2, 3) (0, 1, 2, 3)

(1, 2, -3, 1) (1, 2, 3, 4) (2, 3, 4) (1, 2, 3, 4) (1, 2, 3, 4) (1, 2, 3, 4) (2, 3, 4) (1, 2, 3, 4)

(1, 1, -4, 0) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2, 3) (0, 2, 3)

(1, 2, -2, -2) (0, 1, 2, 3, 4) (1, 2, 3, 4) (0, 1, 2, 3, 4) (1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 3)
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DC = (5;−1,−1,−2)

On this genus-5 curve we find:

bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits

(1, -2, -2, -3) (0, 1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3) (0, 1, 2, 3) (0, 1, 2, 3) (0, 1, 2, 3)

(1, 1, -4, 2)
(2, 3, 4, 5, 6) (2, 3, 4, 5, 6) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (2, 3, 4, 5, 6) (2, 3, 4, 5, 6)

(7, 8) (7, 8) (8) (8) (7, 8) (7, 8)

(1, 1, -4, 1)
(0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (3, 4) (0, 1, 2, 3, 4) (1, 2, 3, 4, 5) (1, 2, 4, 6, 7) (1, 2, 3, 4, 5)

(5, 6, 7) (5, 6, 7) (5, 6, 7) (5, 6, 7) (6, 7)

(1, -1, -3, -2) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2, 3) (0, 2, 3)

(1, 1, -3, -1) (0, 1, 2, 3) (0, 1, 2, 3) (2) (0, 1, 2, 3) (0, 2, 3) (0, 1, 2, 3) (1, 2, 3)

(1, 1, -3, -2) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2, 3) (0, 2, 3)

(1, 2, -2, -1) (0, 1) (0, 1) (1) (0, 1) (0, 1) (0, 1) (1)

(1, 1, -4, 0) (0, 1, 3, 5, 6) (0, 1, 3, 5, 6) (3) (0, 1, 3, 5, 6) (1, 3, 5, 6) (0, 1, 3, 5, 6) (1, 3, 5, 6)

(1, -2, -1, -3) (0, 1, 2) (1, 2) (0, 1, 2) (1, 2) (0, 1, 2) (0, 1, 2) (0, 1, 2)

(1, 1, -3, 1) (1, 2, 3, 4) (1, 2, 3, 4) (2, 3) (1, 2, 3, 4) (1, 2, 3, 4) (1, 2, 3, 4) (1, 2, 3, 4)

(1, -1, -2, -2) (0, 1) (0, 1) (1) (0, 1) (0, 1) (0, 1) (0, 1)

(1, -2, -3, -3) (0, 1, 2, 3, 4, 5) (1, 2, 3, 4, 5) (2, 3, 4) (1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5)

(1, 1, -4, -1) (0, 1, 3, 5, 6) (0, 1, 3, 5, 6) (3) (0, 1, 3, 5, 6) (0, 3, 5, 6) (0, 1, 3, 5, 6) (1, 3, 5, 6)

DC = (6;−3,−2,−1)

On this genus-6 curve we find:

bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits

(1, 1, -4, 1) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 3) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (1, 3, 4) (0, 1, 2, 3, 4)

(1, 0, -3, 1) (0, 1) (0, 1) (1) (0, 1) (0, 1) (0, 1) (0, 1)

B.2.2 Local to global section counting applied to our database

In this section, we list results which quantify how good the counting procedure proposed

in 5.5.2 works, when applied to our database. We have preformed two tests:

1. We consider those curves in our data, for which we can quickly identify the exact

number of sections on all curve components. This can be done quickly for non-split

curves and for curves with only smooth components. For the latter curves, we have
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read-off the genus g and the line bundle degree d from our database. If d < 0, we

know that there are no non-trivial sections on this curve component. However, if

d > 2g − 2, then h0(C,L) = d − g + 1. Based on these exact local section counts,

we have then tried to predict the number of global sections. The accuracy for this

is listed in B.2.2.

2. Our second test is based on our H0Approximator-program [148], which is part of

[168]. This program considers curve degeneration, which split-off combinations of

the 6 toric P1s in dP3. For each such curve splitting, the program assumes that the

number of local sections on each curve component is generic. Since this generic value

is a lower bound to the actual number of local sections, we can use these estimates

to derive a lower bound on the number of global sections. By repeating this strategy

for many curve splittings, we obtain an estimate for the allowed h0-values over the

parameter space of the curve in question. We list the so-obtained results for all

pairs (DC , DL) in our database [147] in B.2.2.

Accuracy

Table 23: Accuracy of counting procedure for exact numbers of local sections

DC DL Applicable data sets [%] Accuracy [%]

(3, -1, -1, -1) (1, 1, -3, 0) 62.2 100

(3, -1, -1, -1) (1, 1, -3, 1) 71.6 100

(3, -1, -1, -1) (1, 1, -3, 2) 52.7 100

(3, -1, -1, -1) (1, -1, -2, 0) 52.7 100

(3, -1, -1, -1) (1, -1, -3, 0) 66.9 100

(3, -1, -1, -1) (1, -1, -3, -1) 76.4 100

(3, -1, -1, -1) (1, -1, -4, -1) 76.4 100

(3, -1, -1, -1) (1, -2, -3, -2) 90.5 100

(3, -1, -1, -1) (1, -3, -3, -2) 90.5 100

(3, -1, -1, -1) (1, -3, -4, -2) 90.5 100

(3, -1, -1, -1) (2, 1, -4, 1) 62.2 100

(3, -1, -1, -1) (2, 1, -4, 2) 48.0 100

Continued on next page
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Table 23 – Continued from previous page

DC DL Applicable data sets [%] Accuracy [%]

(3, -1, -1, -1) (2, 2, -4, 2) 37.0 100

(4, -1, -2, 1) (1, -1, -2, 0) 38.7 100

(4, -1, -2, 1) (1, -1, -2, -1) 38.7 100

(4, -1, -2, 1) (1, -2, 1, -1) 26.9 100

(4, -1, -2, 1) (1, -2, -1, 4) 12.6 65.1

(4, -1, -2, 1) (1, -2, -2, -2) 43.4 100

(4, -1, -2, 1) (1, -2, -2, -3) 43.4 100

(4, -1, -2, 1) (1, -3, 1, -1) 9.2 100

(4, -1, -2, 1) (2, -1, -2, 5) 4.3 100

(4, -1, -2, 1) (2, -2, -1, -2) 28.3 100

(4, -1, -2, 1) (2, -2, -2, 7) 4.4 100

(4, -1, -2, 1) (2, -3, -2, -1) 12.6 100

(4, -1, -2, 1) (2, -3, -2, -2) 12.6 100

(4, -1, -2, 1) (3, -1, -2, 10) 23.9 100

(4, -1, -2, -1) (1, 0, -4, -1) 80.4 100

(4, -1, -2, -1) (1, 3, -4, -5) 83.4 99

(4, -1, -2, -1) (1, -1, -3, -2) 88.3 100

(4, -1, -2, -1) (1, -2, -4, 2) 84.2 100

(4, -1, -2, -1) (3, 2, -3, -7) 71.8 100

(4, -1, -2, -1) (2, 1, -4, -3) 76.4 100

(4, -1, -2, -1) (2, 2, -4, 0) 50.6 100

(4, -1, -2, -1) (2, 3, -3, 1) 44.8 100

(4, -1, -2, -1) (3, 1, -4, -1) 45.4 100

(4, -1, -2, -1) (3, 1, -4, -5) 69.4 100

(4, -1, -2, -1) (3, 2, -3, -5) 54.3 100

(4, -1, -2, -1) (1, 1, -4, 2) 76.3 98.6

(4, -1, -2, -1) (4, 3, -3, -8) 60.6 100

(4, -1, -2, -1) (3, -3, -1, -2) 66.5 98.7

(4, -1, -2, -1) (4, -7, -1, -3) 74.1 92.6

(4, -1, -2, 0) (1, -2, -1, 4) 58.7 92.5

(4, -1, -1, -1) (1, 1, -3, 0) 52.2 95.8

Continued on next page

235



Table 23 – Continued from previous page

DC DL Applicable data sets [%] Accuracy [%]

(4, -1, -1, -1) (1, 1, -3, -1) 56.5 100

(4, -1, -1, -1) (1, 1, -3, -3) 73.8 100

(4, -1, -1, -1) (1, 2, -2, -1) 45.6 100

(4, -1, -1, -1) (1, 2, -4, 2) 65.3 100

(4, -1, -1, -1) (1, 3, -3, 1) 56.9 100

(4, -1, -1, -1) (1, -1, -3, 0) 64.3 96.6

(4, -1, -1, -1) (1, -2, -3, -1) 82.4 100

(4, -1, -1, -1) (1, -2, -3, -2) 87.5 100

(4, -1, -1, -1) (1, -3, -2, -3) 85.8 100

(4, -1, -1, -1) (1, -3, -3, -3) 84.0 100

(4, -1, -1, -1) (1, -3, -4, -3) 86.2 100

(4, -1, -1, -1) (2, 3, -4, -1) 45.5 100

(5, -2, -2, -1) (1, 1, -4, 0) 62.0 100

(5, -2, -2, -1) (1, 1, -4, 1) 58.4 99.7

(5, -2, -2, -1) (1, 1, -4, -1) 67.9 100

(5, -2, -2, -1) (1, 2, -2, 0) 45.2 100

(5, -2, -2, -1) (1, 2, -2, 1) 50.8 100

(5, -2, -2, -1) (1, 2, -2, -2) 46.7 98.9

(5, -2, -2, -1) (1, 2, -3, 1) 48.9 99.0

(5, -2, -2, -1) (1, -1, -2, 3) 45.1 99.9

(5, -2, -2, -1) (1, -1, -3, 0) 72.7 100

(5, -2, -2, -1) (1, -1, -4, -1) 88.6 100

(5, -2, -2, -1) (1, -2, -4, 2) 77.3 100

(5, -2, -2, -1) (2, -1, -4, 1) 51.4 97.9

(5, -2, -2, -1) (2, -2, -4, -2) 75.2 100

(5, -1, -1, -2) (1, -2, -2, -3) 88.1 100

(5, -1, -1, -2) (1, -2, -1, -3) 84.4 100

(5, -1, -1, -2) (1, -1, -3, -2) 82.7 100

(5, -1, -1, -2) (1, -1, -2, -2) 79.3 100

(5, -1, -1, -2) (1, 2, -2, -1) 42.1 100

(5, -1, -1, -2) (1, 1, -4, 2) 54.3 99.2

(5, -1, -1, -2) (1, 1, -4, 1) 47.5 99.2

Continued on next page
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Table 23 – Continued from previous page

DC DL Applicable data sets [%] Accuracy [%]

(5, -1, -1, -2) (1, 1, -4, 0) 56.8 95.0

(5, -1, -1, -2) (1, 1, -3, -2) 65.9 100

(5, -1, -1, -2) (1, 1, -3, -1) 55.5 98.6

(5, -1, -1, -2) (1, 1, -3, 1) 46.1 99.4

(5, -1, -1, -2) (1, -2, -3, -3) 88.1 100

(5, -1, -1, -2) (1, 1, -4, -1) 64.4 98.8

(6, -3, -2, -1) (1, 0, -3, 1) 51.8 100

(6, -3, -2, -1) (1, 1, -4, 1) 52.4 99.7

Spectrum estimate

Table 24: Spectrum estimates from the H0Approximator

DC DL Predicted spectrum Missing values

(5, -2, -2, -1) (2, -2, -4, -2) ( 0, 1, 2, 3, 4 ) –

(5, -2, -2, -1) (1, -1, -3, 0) ( 0, 1 ) –

(5, -2, -2, -1) (1, 2, -2, 0) ( 2, 3 ) –

(5, -2, -2, -1) (1, 2, -2, 1) ( 3, 4 ) –

(5, -2, -2, -1) (1, 1, -4, -1) ( 0, 2, 3 ) –

(5, -2, -2, -1) (1, -1, -4, -1) ( 0, 2, 3 ) –

(5, -2, -2, -1) (1, -2, -4, 2) ( 0, 2, 3 ) –

(5, -2, -2, -1) (1, 1, -4, 1) ( 0, 1, 2, 3, 4 ) –

(5, -2, -2, -1) (1, -1, -2, 3) ( 0, 1, 2, 3 ) –

(5, -2, -2, -1) (2, -1, -4, 1) ( 0, 1, 2, 3 ) –

(5, -2, -2, -1) (1, 2, -3, 1) ( 1, 2, 3, 4 ) –

(5, -2, -2, -1) (1, 1, -4, 0) ( 0, 2, 3 ) –

(5, -2, -2, -1) (1, 2, -2, -2) ( 0, 1, 2, 3, 4 ) –

(3, -1, -1, -1) (2, 1, -4, 1) ( 4, 5, 6 ) –

(3, -1, -1, -1) (1, -3, -3, -2) ( 0, 1, 2, 3, 4 ) ( 5 )

(3, -1, -1, -1) (1, -1, -3, 0) ( 0, 1, 2, 3 ) –

(3, -1, -1, -1) (1, -2, -3, -2) ( 0, 1, 2, 3 ) ( 4 )

Continued on next page
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Table 24 – Continued from previous page

DC DL Predicted spectrum Missing values

(3, -1, -1, -1) (1, -1, -3, -1) ( 0, 2, 3 ) –

(3, -1, -1, -1) (1, -3, -4, -2) ( 0, 1, 2, 3, 4, 5 ) ( 6, 7 )

(3, -1, -1, -1) (2, 1, -4, 2) ( 5, 6, 7 ) –

(3, -1, -1, -1) (2, 2, -4, 2) ( 6, 7, 8, 9 ) –

(3, -1, -1, -1) (1, -1, -4, -1) ( 0, 3, 5 ) –

(3, -1, -1, -1) (1, 1, -3, 1) ( 2, 3, 4 ) –

(3, -1, -1, -1) (1, 1, -3, 0) ( 1, 2, 3 ) –

(3, -1, -1, -1) (1, -1, -2, 0) ( 0, 1 ) –

(3, -1, -1, -1) (1, 1, -3, 2) ( 3, 4, 5 ) –

(5, -1, -1, -2) (1, -2, -2, -3) ( 0, 1, 2, 3 ) –

(5, -1, -1, -2) (1, 1, -4, 2) ( 2, 3, 4, 5, 6, 7, 8 ) –

(5, -1, -1, -2) (1, 1, -4, 1) ( 0, 1, 2, 3, 4, 5, 6, 7 ) –

(5, -1, -1, -2) (1, -1, -3, -2) ( 0, 2, 3 ) –

(5, -1, -1, -2) (1, 1, -3, -1) ( 0, 2, 3 ) ( 1 )

(5, -1, -1, -2) (1, 1, -3, -2) ( 0, 2, 3 ) –

(5, -1, -1, -2) (1, 2, -2, -1) ( 0, 1 ) –

(5, -1, -1, -2) (1, 1, -4, 0) ( 0, 3, 5, 6 ) ( 1 )

(5, -1, -1, -2) (1, -2, -1, -3) ( 0, 1, 2 ) –

(5, -1, -1, -2) (1, 1, -3, 1) ( 1, 2, 3, 4 ) –

(5, -1, -1, -2) (1, -1, -2, -2) ( 0, 1 ) –

(5, -1, -1, -2) (1, -2, -3, -3) ( 0, 1, 2, 3, 4, 5 ) –

(5, -1, -1, -2) (1, 1, -4, -1) ( 0, 3, 5, 6 ) ( 1 )

(4, -1, -1, -1) (1, -2, -3, -1) ( 0, 1, 2, 3, 4 ) –

(4, -1, -1, -1) (1, -3, -4, -3) ( 0, 2, 3, 4, 5, 6, 7, 8, 9 ) ( 10 )

(4, -1, -1, -1) (1, 1, -3, 0) ( 0, 1, 2, 3 ) –

(4, -1, -1, -1) (1, -3, -3, -3) ( 0, 2, 3, 4, 5, 6, 7 ) ( 8 )

(4, -1, -1, -1) (1, -3, -2, -3) ( 0, 1, 2, 3, 4, 5, 6 ) ( 7 )

(4, -1, -1, -1) (1, 2, -2, -1) ( 1, 2, 3 ) –

(4, -1, -1, -1) (1, 1, -3, -3) ( 0, 1, 2, 3, 4, 5, 6 ) –

(4, -1, -1, -1) (1, 1, -3, -3) ( 0, 1, 2, 3, 4, 5, 6 ) –

(4, -1, -1, -1) (2, 3, -4, -1) ( 4, 5, 6, 7, 8, 9 ) –

(4, -1, -1, -1) (1, 2, -4, 2) ( 2, 3, 4, 5, 6, 7, 8 ) –

Continued on next page
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Table 24 – Continued from previous page

DC DL Predicted spectrum Missing values

(4, -1, -1, -1) (1, -2, -3, -2) ( 0, 1, 2, 3, 4, 5 ) –

(4, -1, -1, -1) (1, 3, -3, 1) ( 3, 4, 5, 6, 7 ) –

(4, -1, -1, -1) (1, -1, -3, 0) ( 0, 2, 3 ) ( 1 )

(4, -1, -2, 0) (1, -2, -1, 4) ( 0, 1, 2, 3, 4, 5, 6 ) –

(4, -1, -2, 1) (2, -1, -2, 5) ( 2, 5, 7, 8 ) –

(4, -1, -2, 1) (1, -1, -2, -1) ( 2, 3 ) –

(4, -1, -2, 1) (1, -2, -2, -2) ( 3, 4, 5, 6, 7 ) –

(4, -1, -2, 1) (2, -3, -2, -1) ( 2, 3, 4, 5, 6 ) –

(4, -1, -2, 1) (1, -2, -1, 4) ( 0, 1, 2, 3 ) –

(4, -1, -2, 1) (1, -2, -2, -3) ( 4, 5, 7, 8, 9, 10, 11 ) –

(4, -1, -2, 1) (2, -3, -2, -2) ( 3, 5, 6, 7, 8, 9 ) (4)

(4, -1, -2, 1) (1, -2, 1, -1) ( 5, 6 ) –

(4, -1, -2, 1) (2, -2, -1, -2) ( 6, 7 ) –

(4, -1, -2, 1) (2, -2, -2, 7) ( 1, 2, 6, 7, 10, 11, 13, 14, 15 ) –

(4, -1, -2, 1) (3, -1, -2, 10) ( 6, 14, 21, 27, 32 ) –

(4, -1, -2, 1) (1, -3, 1, -1) ( 4, 5, 6, 7 ) –

(6, -3, -2, -1) (1, 1, -4, 1) ( 0, 1, 2, 3, 4 ) –

(6, -3, -2, -1) (1, 0, -3, 1) ( 0, 1 ) –

(4, -1, -2, -1) (3, -3, -1, -2) ( 4, 5 ) –

(4, -1, -2, -1) (4, -7, -1, -3) ( 3, 6, 8, 11, 12, 13, 15 ) ( 4, 5, 7, 10, 17 )

(4, -1, -2, -1) (2, 3, -3, 1) ( 5, 7, 8 ) –

(4, -1, -2, -1) (3, 1, -4, -1) ( 3, 4 ) –

(4, -1, -2, -1) (2, 2, -4, 0) ( 1, 2, 3, 4 ) –

(4, -1, -2, -1) (2, 1, -4, -3) ( 0, 1, 2, 3, 4, 5, 6 ) –

(4, -1, -2, -1) (1, -1, -3, -2) ( 0, 1, 2 ) –

(4, -1, -2, -1) (1, -2, -4, 2) ( 0, 1, 2, 3, 4 ) –

(4, -1, -2, -1) (4, 3, -3, -8) ( 4, 6, 7, 9, 10, 12, 13, 15, 16, 17, 18, 19) ( 5, 8 )

(4, -1, -2, -1) (1, 3, -4, -5) ( 0, 2, 4, 6, 7, 8, 9, 11 ) ( 1 )

(4, -1, -2, -1) (3, 1, -4, -5) ( 0, 2, 4, 5, 6, 7, 8, 9, 11 ) ( 1 )

(4, -1, -2, -1) (3, 2, -3, -7) ( 0, 1, 3, 4, 6, 7, 9, 10, 11, 12, 14, 15 ) ( 2, 16 )

Continued on next page
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Table 24 – Continued from previous page

DC DL Predicted spectrum Missing values

(4, -1, -2, -1) (3, 2, -3, -5) ( 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) –

(4, -1, -2, -1) (1, 1, -4, 2) ( 0, 1, 2, 3, 4 ) –

(4, -1, -2, -1) (1, 0, -4, -1) ( 0, 2, 3 ) –
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CHAPTER C: Chapter 6 Appendix

C.1 Fiber structure of F-theory Standard Models

In this section, we investigate the fiber structure of the resolved 4-fold with the SM gauge

symmetry as employed in the largest currently-known class of globally consistent F-theory

Standard Models without chiral exotics and gauge coupling unification [32]. We work out

the intersection numbers in the fibers over generic points of the gauge divisors, matter

curves and Yukawa loci. The knowledge of the fiber structure determines the vector-like

spectrum in this F-theory vacuum.

C.1.1 Away from Matter Curves

SU(2) Gauge Divisor

This gauge divisor is V (s3). Here, the defining equation of PF11 factors as

pF11 = e1
(
e1e

2
2e3e

4
4s1u

3 + e2
2e

2
3e

2
4s2u

2v + e1e2e
3
4s5u

2w + e2e3e4s6uvw + s9vw
2
)
. (C.1.1)

The Cartan divisors are therefore as follows

D
SU(2)
0 = V

(
e1e

2
2e3e

4
4s1u

3 + e2
2e

2
3e

2
4s2u

2v + e1e2e
3
4s5u

2w + e2e3e4s6uvw + s9vw
2, s3

)
,

D
SU(2)
1 = V (e1, s3) .

(C.1.2)

The intersection numbers in the fiber over a generic base point p ∈ V (s3) are:

D
SU(2)
i ·DSU(2)

j · π̂−1 (p) D
SU(2)
0 D

SU(2)
1 U(1)Y

D
SU(2)
0 -2 2 0

D
SU(2)
1 2 -2 0

(C.1.3)
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SU(3) Gauge Divisor

This SU(3) gauge divisor V (s9) relates to the Cartan divisors as follows:

D
SU(3)
0 = V

(
e2

1e2e3e
4
4s1u

2 + e1e2e
2
3e

2
4s2uv + e2e

3
3s3v

2 + e2
1e

3
4s5uw + e1e3e4s6vw, s9

)
,

D
SU(3)
1 = V (e2, s9) , D

SU(3)
2 = V (u, s9) .

(C.1.4)

The intersection numbers in the fiber over a generic base point p ∈ V (s9) are:

D
SU(3)
i ·DSU(3)

j · π̂−1 (p) D
SU(3)
0 D

SU(3)
1 D

SU(3)
3 U(1)Y

D
SU(3)
0 -2 1 1 0

D
SU(3)
1 1 -2 1 0

D
SU(3)
2 1 1 -2 0

(C.1.5)

C.1.2 Over Matter Curves

Intersection Structure over C(3,2)1/6 away from Yukawa Loci

Over the matter curves, singularity enhancements occur. They are geometrically related

to the presence of new P1-fibrations, of which linear combinations eventually serve as

matter surfaces. Over C(3,2)1/6 = V (s3, s9) the following P1-fibrations are present:

P1
0

(
(3,2)1/6

)
= V (s3, s9, e1e2e3e

3
4s1u

2 + e2e
2
3e4s2uv + e1e

2
4s5uw + e3s6vw) ,

P1
1

(
(3,2)1/6

)
= V (s3, s9, e1) , P1

2

(
(3,2)1/6

)
= V (s3, s9, e4) ,

P1
3

(
(3,2)1/6

)
= V (s3, s9, u) , P1

4

(
(3,2)1/6

)
= V (s3, s9, e2) .

(C.1.6)
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These P1-fibrations relate to restrictions of the SU(3) and SU(2) Cartan divisors:

Original Split components over CR

D
SU(2)
0 P1

0

(
(3,2)1/6

)
+ P1

2

(
(3,2)1/6

)
+ P1

3

(
(3,2)1/6

)
+ P1

4

(
(3,2)1/6

)
D
SU(2)
1 P1

1

(
(3,2)1/6

)
D
SU(3)
0 P1

0

(
(3,2)1/6

)
+ P1

1

(
(3,2)1/6

)
+ P1

2

(
(3,2)1/6

)
D
SU(3)
1 P1

4

(
(3,2)1/6

)
D
SU(3)
2 P1

3

(
(3,2)1/6

)

(C.1.7)

Over p ∈ C(3,2)1/6 which is not a Yukawa point, these P1-fibrations intersect as follows:

P1
0

(
(3,2)1/6

)
P1

1

(
(3,2)1/6

)
P1

2

(
(3,2)1/6

)
P1

3

(
(3,2)1/6

)
P1

4

(
(3,2)1/6

)
P1

0

(
(3,2)1/6

)
-2 1 0 0 1

P1
1

(
(3,2)1/6

)
1 -2 1 0 0

P1
2

(
(3,2)1/6

)
0 1 -2 1 0

P1
3

(
(3,2)1/6

)
0 0 1 -2 1

P1
4

(
(3,2)1/6

)
1 0 0 1 -2

(C.1.8)

The intersection numbers between the pullbacks of the Cartan divisors and the P1-

fibrations over C(3,2)1/6 and are readily computed as follows:

D
SU(2)
0 D

SU(2)
1 D

SU(3)
0 D

SU(3)
1 D

SU(3)
2 U(1)Y

P1
0

(
(3,2)1/6

)
-1 1 -1 1 0 -1/6

P1
1

(
(3,2)1/6

)
2 -2 0 0 0 0

P1
2

(
(3,2)1/6

)
0 1 0 0 1 1/6

P1
3

(
(3,2)1/6

)
0 0 1 1 -2 0

P1
4

(
(3,2)1/6

)
0 0 1 -2 1 0

(C.1.9)

The matter surfaces S(a)
(3,2)1/6

over C(3,2)1/6 are linear combinations of the above P1-fibrations.

We use P to denote such a linear combination compactly. Explicitly, P is a list of the
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multiplicities with which these P1-fibrations appear in the above order:

P = (0, 1, 0, 4, 0) ↔ 1 · P1
1

(
(3,2)1/6

)
+ 4 · P1

3

(
(3,2)1/6

)
.

We apply β to indicate the Cartan charges of such a linear combination, these notations

will also be adopted for the other matter curves. All that said, the matter surfaces over

C(3,2)1/6 take the following form:

Label ~P β Label ~P β

S
(1)
(3,2)1/6

(0, 0, 1, 0, 0) (1)⊗ (0, 1) S
(4)
(3,2)1/6

(0, 1, 1, 1, 0) (−1)⊗ (1,−1)

S
(2)
(3,2)1/6

(0, 1, 1, 0, 0) (−1)⊗ (0, 1) S
(5)
(3,2)1/6

(0, 0, 1, 1, 1) (1)⊗ (−1, 0)

S
(3)
(3,2)1/6

(0, 0, 1, 1, 0) (1)⊗ (1,−1) S
(6)
(3,2)1/6

(0, 1, 1, 1, 1) (−1)⊗ (−1, 0)

(C.1.10)

Intersection Structure over C(1,2)−1/2 away from Yukawa Loci

For convenience, we employ pHi to denote the following polynomials:

pH1 = s1e2e3e4u+ s5w , pH2 = s2
1e1e2e

3
4u

2 + s1s2e2e3e4uv − s2s5vw + s1s6vw ,

pH3 = s2e
2
2e

2
3e

2
4u

2 + s6e2e3e4uw + s9w
2 , pH4 = s2s5e2e3e4u+ s5s6w − s1s9w ,

pH5 = s2s
2
5 + s2

1s9 − s1s5s6 , pH6 = s1s5e1e2e
3
4u

2 + s2s5e2e3e4uv + s1s9vw ,

pH7 = s2
5e1e2e

3
4u

2 + s5s6e2e3e4uv − s1s9e2e3e4uv + s5s9vw .

(C.1.11)

Over C(1,2)−1/2 which is not a Yukawa point, the following P1-fibrations are present:

P1
0

(
(1,2)−1/2

)
= V (s3, p

H
1 , p

H
3 , p

H
4 , p

H
5 ) ,

P1
1

(
(1,2)−1/2

)
= V (s3, p

H
2 , p

H
5 , p

H
6 , p

H
7 , p

H
1 · e1e2e

3
4u

2 + pH3 · v) ,

P1
2

(
(1,2)−1/2

)
= V (s3, p

H
5 , e1) .

(C.1.12)
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Equivalently, P1
0 = V (s3, p

H
1 , p

H
3 ) arises from the analysis of a primary decomposition.

The above P1-fibrations relate to restrictions of the SU(2) Cartan divisors as follows:

Original Split components over CR Original Split components over CR

D
SU(2)
0 P1

0

(
(1,2)−1/2

)
+ P1

1

(
(1,2)−1/2

)
D
SU(2)
1 P1

2

(
(1,2)−1/2

)
(C.1.13)

Over p ∈ C(1,2)−1/2 which is not a Yukawa point, these P1-fibrations correspond to the

representation state at the right column and intersect each other as follows:

P1
0

(
(1,2)−1/2

)
P1

1

(
(1,2)−1/2

)
P1

2

(
(1,2)−1/2

)
P1

0

(
(1,2)−1/2

)
-2 1 1

P1
1

(
(1,2)−1/2

)
1 -2 1

P1
2

(
(1,2)−1/2

)
1 1 -2

(C.1.14)

The matter surfaces are

Label ~P β Label ~P β

S
(1)
(1,2)−1/2

(1, 0, 0) (1) S
(2)
(1,2)−1/2

(1, 0, 1) (−1)
(C.1.15)

Intersection Structure over C(3,1)−2/3
away from Yukawa Loci

Over C(3,1)−2/3
= V (s5, s9) the following P1-fibrations are present:

P1
0

(
(3,1)−2/3

)
= V (s5, s9, e

2
1e2e

4
4s1u

2 + e1e2e3e
2
4s2uv + e2e

2
3s3v

2 + e1e4s6vw) ,

P1
1

(
(3,1)−2/3

)
= V (s5, s9, u) , P1

2

(
(3,1)−2/3

)
= V (s5, s9, e2) ,

P1
3

(
(3,1)−2/3

)
= V (s5, s9, e3) .

(C.1.16)
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These P1-fibrations relate to restrictions of the SU(3) Cartan divisors as follows:

Original Split components over CR Original Split components over CR

D
SU(3)
0 P1

0

(
(3,1)−2/3

)
+ P1

3

(
(3,1)−2/3

)
D
SU(3)
1 P1

2

(
(3,1)−2/3

)
D
SU(3)
2 P1

1

(
(3,1)−2/3

) (C.1.17)

Over p ∈ C(3,1)−2/3
which is not a Yukawa point, these P1-fibrations intersect as follows:

P1
0

(
(3,1)−2/3

)
P1

1

(
(3,1)−2/3

)
P1

2

(
(3,1)−2/3

)
P1

3

(
(3,1)−2/3

)
P1

0

(
(3,1)−2/3

)
-2 1 0 1

P1
1

(
(3,1)−2/3

)
1 -2 1 0

P1
2

(
(3,1)−2/3

)
0 1 -2 1

P1
3

(
(3,1)−2/3

)
1 0 1 -2

(C.1.18)

The matter surfaces S(a)
(3,1)−2/3

take the following form:

Label ~P β Label ~P β Label ~P β

S
(1)
(3,1)−2/3

(0, 0, 0, 1) (1, 0) S
(2)
(3,1)−2/3

(0, 0, 1, 1) (−1, 1) S
(3)
(3,1)−2/3

(0, 1, 1, 1) (0,−1)

(C.1.19)
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Intersection Structure over C(3,1)1/3
away from Yukawa Loci

Over C(3,1)1/3
which is not a Yukawa point, the following P1-fibrations are present:

P1
0

(
(3,1)1/3

)
= V (s9, s3s

2
5 − s2s5s6 + s1s

2
6, s5e1e

2
4u+ s6e3v,

s1s6e1e
2
4u− s3s5e3v + s2s6e3v, s1e

2
1e

4
4u

2 + s2e1e3e
2
4uv + s3e

2
3v

2) ,

P1
1

(
(3,1)1/3

)
= V (s9, s3s

2
5 − s2s5s6 + s1s

2
6, s1s6e1e2e3e

2
4u+ s3s5e2e

2
3v + s5s6e1e4w,

s1e
2
1e2e3e

4
4u

2 + s2e1e2e
2
3e

2
4uv + s5e

2
1e

3
4uw + s3e2e

3
3v

2 + s6e1e3e4vw,

s3s5e1e2e3e
2
4u− s2s6e1e2e3e

2
4u− s3s6e2e

2
3v − s2

6e1e4w,

s1s5e1e2e3e
2
4u+ s2s5e2e

2
3v − s1s6e2e

2
3v + s2

5e1e4w) ,

P1
2

(
(3,1)1/3

)
= V (s9, s3s

2
5 + s1s

2
6 − s2s5s6, u) ,

P1
3

(
(3,1)1/3

)
= V (s9, s3s

2
5 + s1s

2
6 − s2s5s6, e2) .

(C.1.20)

Due to primary decomposition analysis, P1
0

(
(3,1)1/3

)
can be rewritten as

P1
0

(
(3,1)1/3

)
= V (s9, us5e1e

2
4 + vs6e3, s1s6e1e

2
4u− s3s5e3v + s2s6e3v)− V (s9, s5, s6) .

(C.1.21)

The above P1-fibrations relate to restrictions of the SU(3) Cartan divisors as follows:

Original Split components over C(3,1)1/3
Original Split components over C(3,1)1/3

D
SU(3)
0 P1

0

(
(3,1)1/3

)
+ P1

1

(
(3,1)1/3

)
D
SU(3)
1 P1

3

(
(3,1)1/3

)
D
SU(3)
2 P1

2

(
(3,1)1/3

)
(C.1.22)
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Over p ∈ C(3,1)1/3
which is not a Yukawa point, these P1-fibrations intersect as follows:

P1
0

(
(3,1)1/3

)
P1

1

(
(3,1)1/3

)
P1

2

(
(3,1)1/3

)
P1

3

(
(3,1)1/3

)
P1

0

(
(3,1)1/3

)
-2 1 0 1

P1
1

(
(3,1)1/3

)
1 -2 1 0

P1
2

(
(3,1)1/3

)
0 1 -2 1

P1
3

(
(3,1)1/3

)
1 0 1 -2

(C.1.23)

The matter surfaces S(a)
(3,1)1/3

take the following form:

Label ~P β Label ~P β Label ~P β

S
(1)
(3,1)1/3

(1, 0, 0, 0) (1, 0) S
(2)
(3,1)1/3

(1, 0, 0, 1) (−1, 1) S
(3)
(3,1)1/3

(1, 0, 1, 1) (0,−1)

(C.1.24)

Intersection Structure over C(1,1)1
away from Yukawa Loci

Over the singlet curve C(1,1)1 = V (s1, s5) the following two P1-fibrations are present:

P1
0 ((1,1)1) = V

(
s1, s5, e1e

2
2e

2
3e

2
4s2u

2 + e2
2e

3
3s3uv + e1e2e3e4s6uw + e1s9w

2
)
,

P1
1 ((1,1)1) = V (s1, s5, v) .

(C.1.25)

These fibrations intersect as follows:

P1
0 ((1,1)1) P1

1 ((1,1)1) U(1)Y

P1
0 ((1,1)1) -2 2 -1

P1
1 ((1,1)1) 2 -2 1

(C.1.26)

We use P1
1 ((1,1)1) as matter surface for the singlet state with qU(1)Y = 1.
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C.1.3 Over Yukawa Loci

Intersection Structure over Yukawa Locus Y1

Over the Yukawa point Y1 = V (s3, s5, s9) the following P1-fibrations are present:

P1
0 (Y1) = V (s3, s5, s9, e1) , P1

1 (Y1) = V (s3, s5, s9, e2) , P1
2 (Y1) = V (s3, s5, s9, e3) ,

P1
3 (Y1) = V (s3, s5, s9, e4) , P1

4 (Y1) = V (s3, s5, s9, u) ,

P1
5 (Y1) = V

(
s3, s5, s9, e1e2e

3
4s1u

2 + e2e3e4s2uv + s6vw
)
.

(C.1.27)

The intersection numbers in the fiber over Y1 are as follows:

P1
0 (Y1) P1

1 (Y1) P1
2 (Y1) P1

3 (Y1) P1
4 (Y1) P1

5 (Y1)

P1
0 (Y1) -2 0 0 1 0 1

P1
1 (Y1) 0 -2 1 0 1 0

P1
2 (Y1) 0 1 -2 0 0 1

P1
3 (Y1) 1 0 0 -2 1 0

P1
4 (Y1) 0 1 0 1 -2 0

P1
5 (Y1) 1 0 1 0 0 -2

(C.1.28)

Restrictions of the fibrations over the matter curves relate to the P1
i (Y1) as follows:

Split P1 over CR Split P1 over Y1 Split P1 over CR Split P1 over Y1

P1
0

(
(3,2)1/6

)
P1

2 (Y1) + P1
5 (Y1) P1

1

(
(1,2)−1/2

)
P1

5 (Y1)

P1
1

(
(3,2)1/6

)
P1

0 (Y1) P1
2

(
(1,2)−1/2

)
P1

0 (Y1)

P1
2

(
(3,2)1/6

)
P1

3 (Y1) P1
0

(
(3,1)−2/3

)
P1

0 (Y1) + P1
3 (Y1) + P1

5 (Y1)

P1
3

(
(3,2)1/6

)
P1

4 (Y1) P1
1

(
(3,1)−2/3

)
P1

4 (Y1)

P1
4

(
(3,2)1/6

)
P1

1 (Y1) P1
2

(
(3,1)−2/3

)
P1

1 (Y1)

P1
0

(
(1,2)−1/2

) ∑4
i=1 P1

i (Y1) P1
3

(
(3,1)−2/3

)
P1

2 (Y1)

(C.1.29)
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Intersection Structure over Yukawa Locus Y2

Over the Yukawa point Y2 = V (s3, s9, s2s5− s1s6) the following P1-fibrations are present:

P1
0 (Y2) = V

(
s9, s3, s2s5 − s1s6, s5e1e

2
4u+ s6e3v, s1e1e

2
4u+ s2e3v

)
,

P1
1 (Y2) = V (s9, s3, s2s5 − s1s6, e1) , P1

2 (Y2) = V (s9, s3, s2s5 − s1s6, e2) ,

P1
3 (Y2) = V (s9, s3, s2s5 − s1s6, e4) , P1

4 (Y2) = V (s9, s3, s2s5 − s1s6, u) ,

P1
5 (Y2) = V (s9, s3, s2s5 − s1s6, s2e2e3e4u+ s6w, s1e2e3e4u+ s5w) .

(C.1.30)

The intersection numbers in the fiber over Y2 are as follows:

P1
0 (Y2) P1

1 (Y2) P1
2 (Y2) P1

3 (Y2) P1
4 (Y2) P1

5 (Y2)

P1
0 (Y2) -2 0 1 0 0 1

P1
1 (Y2) 0 -2 0 1 0 1

P1
2 (Y2) 1 0 -2 0 1 0

P1
3 (Y2) 0 1 0 -2 1 0

P1
4 (Y2) 0 0 1 1 -2 0

P1
5 (Y2) 1 1 0 0 0 -2

(C.1.31)

Restrictions of the fibrations over the matter curves relate to the P1
i (Y2) as follows:

Split P1 over CR Split P1 over Y2 Split P1 over CR Split P1 over Y2

P1
0

(
(3,2)1/6

)
P1

0 (Y2) + P1
5 (Y2) P1

1

(
(1,2)−1/2

)
P1

0 (Y2) +∑4
i=2 P1

i (Y2)

P1
1

(
(3,2)1/6

)
P1

1 (Y2) P1
2

(
(1,2)−1/2

)
P1

1 (Y2)

P1
2

(
(3,2)1/6

)
P1

3 (Y2) P1
0

(
(3,1)1/3

)
P1

0 (Y2)

P1
3

(
(3,2)1/6

)
P1

4 (Y2) P1
1

(
(3,1)1/3

)
P1

1 (Y2) + P1
3 (Y2) + P1

5 (Y2)

P1
4

(
(3,2)1/6

)
P1

2 (Y2) P1
2

(
(3,1)1/3

)
P1

4 (Y2)

P1
0

(
(1,2)−1/2

)
P1

5(Y2) P1
3

(
(3,1)1/3

)
P1

2 (Y2)

(C.1.32)
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Intersection Structure over Yukawa Locus Y3

Over the Yukawa point Y3 = V (s3, s6, s9), we use A1
i to denote the reduced P1-fibrations

such that the following structure is presented:

P1
0 (Y3) = A1

0 (Y3) = V (s3, s6, s9, e1) , P1
1 (Y3) = A1

1 (Y3) = V (s3, s6, s9, e2) ,

P1
2 (Y3) = 2A1

2 (Y3) = V
(
s3, s6, s9, e

2
4

)
, P1

3 (Y3) = 2A1
3 (Y3) = V

(
s3, s6, s9, u

2
)
,

P1
4 (Y3) = A1

4 (Y3) = V
(
s3, s6, s9, us1e1e2e3e

2
4 + vs2e2e

2
3 + ws5e1e4

)
.

(C.1.33)

Restrictions of the fibrations over the matter curves relate to the P1
i (Y3) as follows:

Split P1 over CR Split P1 over Y3 Split P1 over CR Split P1 over Y3

P1
0

(
(3,2)1/6

) ∑4
i=2A

1
i (Y3) P1

0

(
(3,1)1/3

)
A1

0 (Y3) +A1
3 (Y3) +A1

2 (Y3)

P1
1

(
(3,2)1/6

)
A1

0 (Y3) P1
1

(
(3,1)1/3

)
A1

4 (Y3)

P1
2

(
(3,2)1/6

)
A1

2 (Y3) P1
2

(
(3,1)1/3

)
A1

3 (Y3)

P1
3

(
(3,2)1/6

)
A1

3 (Y3) P1
3

(
(3,1)1/3

)
A1

1 (Y3)

P1
4

(
(3,2)1/6

)
A1

1 (Y3)

(C.1.34)

Their intersection numbers are slightly away from standard, namely

A1
0 (Y3) A1

1 (Y3) A1
2 (Y3) A1

3 (Y3) A1
4 (Y3)

A1
0 (Y3) -2 0 1 0 0

A1
1 (Y3) 0 -2 0 1 0

A1
2 (Y3) 1 0 -3

2 1 0

A1
3 (Y3) 0 1 1 -2 1

A1
4 (Y3) 0 0 0 1 -2

(C.1.35)
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The meaning of
(
A1

2 (Y3)
)2 = −3

2 becomes clear once we draw the associated diagram:

A1
2 (Y3)

A1
0 (Y3)

A1
3 (Y3)

A1
1 (Y3)

A1
4 (Y3)missing node N6

(C.1.36)

Consequently, we see that the node N6 is missing and it holds P1
2(Y3) = 2 ·N2 +N6, where

N2 is the standard node that ordinarily appear instead of P1
2(Y3). It follows

(
P1

2(Y3)
)2

= 4 ·N2
2 + 4N2N6 +N2

6 = 4 · (−2) + 4 · 1 + (−2) = −6 . (C.1.37)

Likewise, A1
2(Y3) = N2 + 1

2 ·N6 leads to the half-integer intersection in C.1.35.

Intersection Structure over Yukawa Locus Y4

Over the Yukawa point Y4 = V (s1, s3, s5) the following P1-fibrations are present:

P1
0 (Y4) = V (s1, s3, s5, e1) , P1

1 (Y4) = V (s1, s3, s5, v) ,

P1
2 (Y4) = V

(
s1, s3, s5, s2e

2
2e

2
3e

2
4u

2 + s6e2e3e4uw + s9w
2
)
.

(C.1.38)

Restrictions of the fibrations over the matter curves relate to the P1
i (Y4) as follows:

Split P1 over CR Split P1 over Y4 Split P1 over CR Split P1 over Y4

P1
0

(
(1,2)1/2

)
P1

2 (Y4) P1
1 ((1,1)0) P1

1 (Y4) + P1
2 (Y4)

P1
1

(
(1,2)1/2

)
P1

1 (Y4) P1
2 ((1,1)0) P1

0 (Y4)

P1
2

(
(1,2)1/2

)
P1

0 (Y4)

(C.1.39)
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The intersection numbers in the fiber over Y4 are as follows:

P1
0 (Y4) P1

1 (Y4) P1
2 (Y4)

P1
0 (Y4) -2 1 1

P1
1 (Y4) 1 -2 1

P1
2 (Y4) 1 1 -2

(C.1.40)

Intersection Structure over Yukawa Locus Y5

Over the Yukawa point Y5 = V (s5, s
2
6, s9) the following P1-fibrations are present:

P1
0 (Y5) = V

(
s5, s

2
6, s9, e

3
2, s6e

2
2, u

2s1e
2
1e

2
2e

4
4 + uvs2e1e

2
2e3e

2
4 + v2s3e

2
2e

2
3 + vws6e1e2e4

)
= n0 · V (s5, s6, s9, e2) = n0 ·A0(Y5) ,

P1
1 (Y5) = V

(
s5, s

2
6, s9, e3

)
= n1 · V (s5, s6, s9, e3) = n1 ·A1(Y5) ,

P1
2 (Y5) = V

(
s5, s

2
6, s9, u

)
= n2 · V (s5, s6, s9, u) = n2 ·A2(Y5) ,

P1
3 (Y5) = V (s5, s

2
6, s9, u

2s1e
2
1e2e

4
4 + uvs2e1e2e3e

2
4 + v2s3e2e

2
3 + vws6e1e4,

u4s2
1e

4
1e

8
4 + 2u3vs1s2e

3
1e3e

6
4 + u2v2s2

2e
2
1e

2
3e

4
4 + 2u2v2s1s3e

2
1e

2
3e

4
4

+ 2uv3s2s3e1e
3
3e

2
4 + v4s2

3e
4
3, u

2s1s6e
2
1e

4
4 + uvs2s6e1e3e

2
4 + v2s3s6e

2
3)

= n3 · V
(
s5, s6, s9, u

2s1e
2
1e

4
4 + uvs2e1e3e

2
4 + v2s3e

2
3

)
= n3 ·A3(Y5) .

(C.1.41)

The total elliptic fiber over Y5 is given

T 2 (Y5) =
3∑
i=0

P1
i (Y5) = n0 ·A0(Y5) + n1 ·A1(Y5) + n2 ·A2(Y5) + n3 ·A3(Y5) . (C.1.42)

Restrictions of the fibrations over the gauge divisor DSU(3)
i are:

D
SU(3)
0 |Y5 = n3 ·A3(Y5) + n1 ·A1(Y5) + n4 ·A0(Y5) ,

D
SU(3)
1 |Y5 = n5 ·A0(Y5) ,

D
SU(3)
2 |Y5 = n2 ·A2(Y5) .

(C.1.43)
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The total elliptic fiber can be obtained from the total torus over the gauge divisor DSU(3)
i :

T 2
(
D
SU(3)
i |Y5

)
= (n4 + n5) ·A0(Y5) + n1 ·A1(Y5) + n2 ·A2(Y5) + n3 ·A3(Y5) . (C.1.44)

Since this must recover (C.1.42), we conclude that

n0 = n4 + n5 (C.1.45)

Restrictions of the fibrations over the matter curves (3,1)1/3) are as follows:

P1
0

(
(3,1)1/3

)
|Y5 = V

(
s5, s6, s9, u

2s1e
2
1e

4
4 + uvs2e1e3e

2
4 + v2s3e

2
3

)
= A3(Y5) ,

P1
1

(
(3,1)1/3

)
|Y5 = V

(
s5, s6, s9, u

2s1e
2
1e

4
4 + uvs2e1e3e

2
4 + v2s3e

2
3

)
+ P1

1 (Y5) +

V (s5, s
2
6, s9, e

2
2, s6e2, u

2s1e
2
1e

2
2e

4
4 + uvs2e1e

2
2e3e

2
4 + v2s3e

2
2e

2
3 + vws6e1e2e4)

= A3(Y5) + n1 ·A1(Y5) + n4 ·A0(Y5) ,

P1
2

(
(3,1)1/3

)
|Y5 = V

(
s5, s

2
6, s9, e2

)
= n5 ·A0(Y5) ,

P1
3

(
(3,1)1/3

)
|Y5 = V

(
s5, s

2
6, s9, u

)
= n2 ·A2(Y5) .

(C.1.46)

The fibrations over the matter curves (3,1)1/3 give the total elliptic fiber over Y5 as:

T 2
(
(3,1)1/3|Y5

)
= (n4 + n5) ·A0(Y5) + n1 ·A1(Y5) + n2 ·A2(Y5) + 2 ·A3(Y5) . (C.1.47)

Restrictions of the fibrations over the matter curves (3,1)−2/3 are:

P1
0

(
(3,1)−2/3

)
|Y5 = V (s5, s

2
6, s9, e

2
2, s6e2, u

2s1e
2
1e

2
2e

4
4 + uvs2e1e

2
2e3e

2
4 + v2s3e

2
2e

2
3 + vws6e1e2e4)

+ P1
3 (Y5) = n3 ·A3(Y5) + n4 ·A0(Y5) ,

P1
1

(
(3,1)−2/3

)
|Y5 = V

(
s5, s

2
6, s9, u

)
= n2 ·A2(Y5) ,

P1
2

(
(3,1)−2/3

)
|Y5 = V

(
s5, s

2
6, s9, e2

)
= n5 ·A0(Y5) ,

P1
3

(
(3,1)−2/3

)
|Y5 = V

(
s5, s

2
6, s9, e3

)
= n1 ·A1(Y5) .

(C.1.48)
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The fibrations over the matter curves (3,1)−2/3 give the total elliptic fiber over Y5 as:

T 2
(
(3,1)−2/3|Y5

)
= (n4 + n5) ·A0(Y5) + n1 ·A1(Y5) + n2 ·A2(Y5) + n3 ·A3(Y5) . (C.1.49)

We conclude that the restriction from the two triplet matter curves to the Yukawa point

Y5 preserve the elliptic fiber structure as presented in (C.1.42) iff n3 = 2.

Before we continue our discussion of the factors ni, let us look at the intersection numbers

among the Ai(Y5) as follows:

A1
0 (Y5) A1

1 (Y5) A1
2 (Y5) A1

3 (Y5)

A1
0 (Y5) -2 1 1 2

A1
1 (Y5) 1 -2 0 0

A1
2 (Y5) 1 0 -2 0

A1
3 (Y5) 2 0 0 -2

(C.1.50)

Let us return to the factors ni we can fix n1 = n2 = 2 intuitively. Then, by infering that

−2 =
(
P0((3,1)−2/3)

∣∣∣
Y5

)2
, we find n4 ∈ {1, 3}. Intuitively, we discard n4 = 1 and pick

n4 = 3 instead. By accepting all these steps above, we are then left to conclude

n0 = 5, n1 = n2 = n3 = 2 , n4 = 3 , n5 = 2 . (C.1.51)

This finally, completes our understanding of the fiber structure over Y5.

Intersection Structure over Yukawa Locus Y6

Over the Yukawa point Y6 = V (s1, s5, s9) the following P1-fibrations are present:

P1
0 (Y6) = V (s1, s5, s9, e2) , P1

1 (Y6) = V (s1, s5, s9, e3) , P1
2 (Y6) = V (s1, s5, s9, u) ,

P1
3 (Y6) = V (s1, s5, s9, v) , P1

4 (Y6) = V
(
s1, s5, s9, s2e1e2e3e

2
4u+ s3e2e

2
3v + s6e1e4w

)
.

(C.1.52)

255



Restrictions of the fibrations over the matter curves relate to the P1
i (Y6) as follows:

Split P1 over CR Split P1 over Y6 Split P1 over CR Split P1 over Y6

P1
0

(
(3,1)1/3

)
P1

1 (Y6) + P1
3 (Y6) P1

1

(
(3,1)−2/3

)
P1

2 (Y6)

P1
1

(
(3,1)1/3

)
P1

4 (Y6) P1
2

(
(3,1)−2/3

)
P1

0 (Y6)

P1
2

(
(3,1)1/3

)
P1

2 (Y6) P1
3

(
(3,1)−2/3

)
P1

1 (Y6)

P1
3

(
(3,1)1/3

)
P1

0 (Y6) P1
0

(
(3,1)−2/3

)
P1

3 (Y6) + P1
4 (Y6)

P1
1 ((1,1)1) ∑2

i=0 P1
i (Y6) + P1

4 (Y6) P1
2 ((1,1)1) P1

3 (Y6)

(C.1.53)

The intersection numbers in the fiber over Y6 are as follows:

P1
0 (Y6) P1

1 (Y6) P1
2 (Y6) P1

3 (Y6) P1
4 (Y6)

P1
0 (Y6) -2 1 1 0 0

P1
1 (Y6) 1 -2 0 1 0

P1
2 (Y6) 1 0 -2 0 1

P1
3 (Y6) 0 1 0 -2 1

P1
4 (Y6) 0 0 1 1 -2

(C.1.54)

C.2 Induced line bundles in F-theory Standard Models

In this section, we give details on how we identify the root bundles in the largest currently-

known class of globally consistent F-theory Standard Model constructions without chiral

exotics and gauge coupling unification [32]. More details can be found in the earlier

works [82, 40]. We provide details on the employed G4-flux in C.2.1. Subsequently, we

outline our computational techniques in C.2.2 and summarize the resulting root bundle

constraints in C.2.3. Finally, we construct root bundle solutions in compactifications over

a particular 3-fold base space B3 in C.2.4.
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C.2.1 G4-flux and matter surfaces

U(1)-flux We associate to the section s1 = V (e4) a U(1)-flux. To this end, we employ

the Shioda map to turn s1 into σ ∈ H(1,1)(Ŷ4):

σ =
(

[e4]− [v]−
[
π̂∗
(
KB

)]
+ 1

2 [e1] + 1
3 [e2] + 2

3 [u]
)∣∣∣∣
Ŷ4

. (C.2.1)

In this expression, [e4] = γ(V (e4)) ∈ H(1,1)(Ŷ4) denotes the image of the divisor

V (e4) ⊆ X5 under the cycle map γ. Furthermore, recall that π̂ : Ŷ4 � B3. The U(1)-

flux is then given by

G
U(1)
4 ≡ ω ∧ σ ∈ H(2,2)(Ŷ4) , ω ∈ π∗(H(1,1)(B3)) . (C.2.2)

Matter surface flux To the matter surface S
(1)
(3,2)1/6

over the quark-doublet curve

C(3,2)1/6 (cf. C.1) one can associate a gauge invariant flux

G
(3,2)1/6
4 ≡

[
S

(1)
(3,2)1/6

]
+ 1

2 ·
[
P1

1((3,2)1/6)
]

+ 1
3 ·
[
P1

3((3,2)1/6)
]

+ 2
3 ·
[
P1

4((3,2)1/6)
]
.

(C.2.3)

Total flux expression One can now consider a linear combination of these fluxes

G4(a, ω) = a ·G(3,2)1/6
4 + ω ∧ σ ∈ H(2,2)(Ŷ4) . (C.2.4)

The parameters a ∈ Q and ω ∈ π∗
(
H(1,1)(B3)

)
are subject to flux quantization, D3-tadpole

cancelation, masslessness of the U(1)-gauge boson and exactly three chiral families on all

matter curves. These conditions are solved base-independently by

ω = 3
K

3
B3

·KB3 , a = 15
K

3
B3

. (C.2.5)
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This leads to

G4 = −3
K

3
B

·
(
5[e1] ∧ [e4]−KB ∧ (3[e1]− 2[e2]− 6[e4] +KB − 4u+ v)

)
. (C.2.6)

For this G4, it was verified in [32], that the integral over all matter surfaces SR and

complete intersections of toric divisors is integral. This is a necessary condition, for this

algebraic cycle to be integral. A sufficient check is computationally very demanding and

currently beyond our arithmetic abilities. Therefore, we proceed under the assumption

that this G4-flux candidate 6.2.25, is indeed integral and thus a proper G4-flux.

We next look at

A′ = −3· (5V (e1, e4)− 3V (e1, t1)− 2V (e2, t2)− 6V (e4, t3)

+V (t4, t5)− 4V (t6, u) + V (t6, v))|
Ŷ4
∈ CH2(Ŷ4,Z) ,

(C.2.7)

where ti ∈ H0(X5, α
∗(KB)) and α : X5 = B3 × PF11 � B3. Note that γ(A′) = K

3
B · G4.

Therefore, this gauge potential would induce chiral exotics, unless we ”devide“ it by

ξ = K
3
B. Hence, we are led to consider gauge potentials A = γ̂(A) ∈ H4

D(Ŷ4,Z(2)) with

γ(A) = G4 , ξ · γ̂(A) ∼ γ̂(A′) . (C.2.8)

Hence, we can infer that the line bundles induced from A = γ̂(A) are K3
B3-th roots of the

ones induced from A′ = γ̂(A′). The divisors DR(A′) are then K3
B-th roots of the DR(A′).

In the following, we outline the arithmetic identification of the divisors DR(A′).
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Matter surfaces As C.2.7 is gauge invariant, it suffices to focus on the following matter

surfaces (cf. C.1)

S
(1)
(3,2)1/6

= V (s3, s9, e4) , S
(1)
(3,1)−2/3

= V (s5, s9, e3) , S
(1)
(1,1)1

= V (s1, s5, v) ,

S
(1)
(1,2)−1/2

= V (s3, s2s
2
5 + s2

1s9 − s1s5s6, s1e2e3e4u+ s5w,

s2s5e2e3e4u+ s5s6w − s1s9w, s2e
2
2e

2
3e

2
4u

2 + s6e2e3e4uw + s9w
2) ,

S
(1)
(3,1)1/3

= V (s9, s3s
2
5 − s2s5s6 + s1s

2
6, s5e1e

2
4u+ s6e3v,

s1s6e1e
2
4u− s3s5e3v + s2s6e3v, s1e

2
1e

4
4u

2 + s2e1e3e
2
4uv + s3e

2
3v

2) .

(C.2.9)

Note that S(1)
(1,2)−1/2

and S(1)
(3,1)1/3

are not complete intersections. In C.2.2, we explain how

one can compute topological intersection numbers of cycles with them. Moreover, we can

simplify the expressions for those two matter surfaces.

S
(1)
(1,2)−1/2

= V (s3, us1e2e3e4 + ws5, u
2s2e

2
2e

2
3e

2
4 + uws6e2e3e4 + w2s9) ,

S
(1)
(3,1)1/3

= V (s9, us5e1e
2
4 + vs6e3, u

2s1e
2
1e

4
4 + uvs2e1e3e

2
4 + v2s3e

2
3)− V (s9, s5, s6) .

(C.2.10)

Therefore, we can express all matter surfaces as pullbacks from elements in CH2(X5):

S
(1)
(3,2)1/6

= V (s3, e4)− V (e1, e4)|Ŷ4
,

S
(1)
(1,2)−1/2

= V (s3, p1)− V (e1, p1)− V (s3, v)|Ŷ4
,

S
(1)
(3,1)−2/3

= V (s5, e3)− V (v, e3)|Ŷ4
,

S
(1)
(3,1)1/3

= V (s9, q1) + V (e2, e3)− V (e2
2, q1)− V (e3, s9)− V (u, q1)

∣∣∣
Ŷ4
,

S
(1)
(1,1)1

= V (s1, v)− V (v, w)|Ŷ4
,

(C.2.11)

where p1 = us1e2e3e4 +ws5 and q1 = us5e1e
2
4 +vs6e3. We exploit this in C.2.2 to compute

the actual intersection loci.

Finally in C.2.2, we make use of the fact that we know that the matter surfaces are

particular P1-fibrations over the matter curves. The matter surface flux originates from
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the matter surface S(3,2)1/6 . This allows us to derive the divisors DR(A′) intuitively

from intersections in the fiber and intersections in the base. The former is facilitated by

knowledge of the intersection numbers listed in C.1.

C.2.2 Computational strategies

Euler characteristic of structure sheaf of intersection variety

The twisted cubic – a non-complete intersection Let us start with a simple and

instructive example that involves a non-complete intersection. We consider P3 with ho-

mogeneous coordinates [x : y : z : w] and focus on the hypersurface Y = V (xw − yz). In

this hypersurface Y , we consider the twisted cubic

S = V (xz − y2, yw − z2) ∩ Y = V (xz − y2, yw − z2, xw − yz) ∼= P1 , (C.2.12)

and a union of two lines

A = V (x) ∩ Y = V (x, xw − yz) = V (x, y) ∪ V (x, z) . (C.2.13)

Crucially, note that S is not a complete intersection and cannot be expressed as any sort of

pullback from P3. In order to compute the topological intersection number S ·A, we notice

that this intersection number coincides with the Euler characteristic of the structure sheaf

of the intersection variety V (x, xz − y2, yw − z2, xw − yz).

Let us denote the coordinate ring of P3 by R. Then an f.p. graded (left) R-module, which

sheafifies to the structure sheaf in question, is given by

R(−2)⊕3 ⊕R(−1)

(
xw − yz xz − y2 yw − z2 x

)T
−−−−−−−−−−−−−−−−−−−−−−−−−→ R� OS·A → 0 . (C.2.14)

Denote this sequence by F1
M1−−→ R� OS·A → 0. A minimal free resolution is given by

0→ F3
M3−−→ F2

M2−−→ F1
M1−−→ R� OS·A → 0 , (C.2.15)
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where F2 = R(−3)⊕5, F3 = R(−4)⊕2 and

M2 =



−wz y 0

−y w x 0

−y w 0 yz − w2

−x 0 0 xz − yw

0 x 0 y2 − xw


, M3 =

 0 0 x −y −w

x −y y −w −z

 . (C.2.16)

The vector bundles F̃i has the following sheaf cohomologies:

OP3(−4)⊕2 OP3(−3)⊕5 OP3(−2)⊕3 ⊕OP3(−1) F̃0 ≡ R̃ ∼= OP3

h0 0 0 0 1

h1 0 0 0 0

h2 0 0 0 0

h3 2 0 0 0

(C.2.17)

It follows that hi(P3,OS·A) = (3, 0, 0, 0), i.e. S · A = χ(OS·A) = 3. Equivalently, we find

V (xw − yz, xz − y2, yw − z2, x) = V (x, y, z) , (C.2.18)

which allows us to conclude S · A = 3 · V (x, y, z).

Application to Higgs matter surface We employ this technique as a consistency

check on intersections with the non-complete matter surfaces. For instance, let us work

out the topological intersection number of B = V (e1, e4, pF11) with (cf. C.2.9 for pi)

S ≡ S(1)
(1,2)−1/2

= V (p1, p2, p3, p4, p5) . (C.2.19)

in the elliptic fibration Ŷ4 over the base space B3 = P39 (cf. C.2.4). To construct the

structure sheaf of the variety V (p1, p2, p3, p4, p5, e1, e4), we model the coordinate ring of
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X5 as R = Q [s1, s2, s3, s5, s6, s9, u, v, w, e1, e2, e3, e4] with Z6-grading1

s1 s2 s3 s5 s6 s9 u v w e1 e2 e3 e4

KB3 1 1 1 1 1 1

H 1 1 1

E1 -1 -1 1

E2 -1 -1 1

E3 -1 -1 1

E4 -1 -1 1

(C.2.20)

Then, an f.p. graded (left) R-module OS·B which sheafifies to OS·B is given by



R(−KB3)

R(−3KB3)

R(−KB3 −H + E1)

R(−2KB3 −H + E1)

R(−KB3 − 2H + 2E1)

R(−E1 + E4)

R(−E4)



T (
p1 p2 p3 p4 p5 e1 e4 pF11

)T
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ R� OS·B → 0 . (C.2.21)

Denote this sequence by F2
M1−−→ F1 � OS·B → 0. A minimal free resolution is given by

0→ F7
M6−−→ F6

M5−−→ F5
M4−−→ F4

M3−−→ F3
M2−−→ F2

M1−−→ F1 � OS·B → 0 , (C.2.22)

where rk(F1) = rk(F7) = 1, rk(F6) = 6, rk(F2) = 7, rk(F3) = rk(F5) = 19, rk(F4) = 25.2

We compute the Euler characteristics of the F̃i by computing their sheaf cohomologies.

The latter is performed by use of the Künneth formula. Namely, since X5 = P39 × PF11 ,
1We could use the actual coordinate ring for the fibration over P39. This ring has 18 indeterminates

and is Z14-graded. As a consequence, the resulting computations take longer than the ones performed
with the simpler ring. Both lead to the same result.

2The twists of these free modules and the mapping matrices are huge. We therefore omit them here.
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and

Hk (X5, L) = Hk(P39 × PF11 , L) =
⊕
i+j=k

H i(P39, L)⊗Hj(PF11 , L) . (C.2.23)

we can easily compute the cohomologies in question from line bundle cohomologies on P39

and PF11 . The Euler characteristics of the vector bundles F̃i are

χ(F̃1) = 1 , χ(F̃2) = −50 , χ(F̃3) = −82 , χ(F̃4) = 384 , (C.2.24)

χ(F̃5) = 699 , χ(F̃6) = 266 , χ(F̃7) = 0 . (C.2.25)

It follows that

S ·B = χ(ÕS·B) = χ(F̃1)− χ(F̃2) + χ(F̃3)− χ(F̃4) + χ(F̃5)− χ(F̃6) + χ(F̃7)

= 1− (−50) + (−82)− 384 + 699− 266 + 0 = 18 .
(C.2.26)

Line bundles from Chow ring of toric ambient space

Let us repeat the intersection computation S ·B by using

S ≡ S(1)
(1,2)−1/2

= V (s3, p1)− V (e1, p1)− V (s3, v)|Ŷ4
, (C.2.27)

instead. Similarly, B = V (e1, e4)|Ŷ4
. We define S′, T ′ ∈ CH2(X5,Z) via

S′ = V (s3, p3)− V (e1, p3)− V (s3, v), T ′ = V (e1, e4) . (C.2.28)

Then, it follows S ·
Ŷ4
T = S′ ·X5 T

′ ·X5 V (pF11). Explicitly, we find

V (s3, p3) ·X5 V (e1, e4) = V (s3, s5w, e1, e4) = V (s3, s5, e1, e4) ,

V (e1, p3) ·X5 V (e1, e4) = ∅ , V (s3, v) ·X5 V (e1, e4) = ∅ .
(C.2.29)
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From a primary decomposition, we find 〈s3, s5, e1, e4, pF11〉 = 〈e1, e4, s3, s5, s9〉. Note that

e1 = e4 = 0 fixes all other homogeneous coordinates of PF11 . Hence

π∗
(
S ·

Ŷ4
T
)

= V (s3, s5, s9) . (C.2.30)

If we consider B3 = P39, then it follows from C.2.26 that V (s3, s5, s9) must be a divisor

of degree 18 on C(1,2)−1/2 . Indeed, this is true because K3
P39 = 18. It is not too hard to

repeat this computation and find that A′ in C.2.7 gives

D(3,2)1/6

(
A′
)

= 3 · V (KB, s3, s9) , (C.2.31)

D(1,2)−1/2

(
A′
)

= −3
[
5V (s3, s5, s9)− 2V (KB, s3, PH)

]
, (C.2.32)

D(3,1)−2/3

(
A′
)

= 3 · V (KB, s5, s9) , (C.2.33)

D(3,1)1/3

(
A′
)

= −3
[
5V (s3, s6, s9)− 2V (KB, s9, PR)

]
, (C.2.34)

D(1,1)1

(
A′
)

= 3 · V (KB, s1, s5) . (C.2.35)

In this expression, we are using

PH = s2s
2
5 + s1(s1s9 − s5s6) , PR = s3s

2
5 + s6(s1s6 − s2s5) . (C.2.36)

By considering K3
B-th roots and adding spin bundles on the matter curves, one arrives at

the root bundle expressions summarized in C.2.3.

Line bundles from fiber structure

Finally, let us present a third way to compute the induced line bundles. Even though

this approach is equivalent, it provides more intuition than the brute-force intersection

computations in CH∗(X5). To this end we make use of the genesis of the G4-flux and the

fiber structure of Ŷ4, which we outlined in C.1.

Let us apply this strategy for the Higgs curve. We first recall that A′ in C.2.7 can be
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thought of as

A′ = A′(3,2)1/6
+A′U(1) = 15 · A(3,2)1/6 + 3 · π∗

(
KB

)
· σ ∈ CH2(Ŷ4,Z) , (C.2.37)

where (in abuse of notation) σ denotes the canonical lift of the 1-form associated to the

section s1 = V (e4) via the Shioda map. On general grounds, it now follows that

π∗(SR · A′U(1)) = qU(1) · 3KB

∣∣∣
CR

. (C.2.38)

For the Higgs curve, we have qU(1) = −1/2. Thus,

π∗
(
S(1,2)−1/2 · A

′
U(1)

)
= −3

2 · KB

∣∣∣
C(1,2)−1/2

. (C.2.39)

Note that (c.f. 6.2.22) C(1,2)−1/2 · C(3,2)1/6 = Y1 ∪ Y2. Hence, the intersection number of

the Higgs matter surface and A′(3,2)1/6
is found in the fiber over Y1 and Y2:

A′(3,2)1/6

∣∣∣
Y1
· S(1,2)−1/2

∣∣∣
Y1

= (1/2, 2/3, 0, 1, 1/3, 0) · (0, 1, 1, 1, 1, 0) = −1/2 , (C.2.40)

A′(3,2)1/6

∣∣∣
Y2
· S(1,2)−1/2

∣∣∣
Y2

= (0, 1/2, 2/3, 1, 1/3, 0) · (0, 0, 0, 0, 0, 1) = +1/2 . (C.2.41)

This implies

D(1,2)−1/2

(
A′(3,2)1/6

)
= 15 ·

[
−1

2Y1 + 1
2Y2

]
. (C.2.42)

We now use Y1 + Y2 = K
∣∣∣
C(1,2)−1/2

(c.f. 6.2.22) to conclude that

D(1,2)−1/2

(
A′(3,2)1/6

)
= 15 ·

[
−1

2Y1 + 1
2Y2

]
− 3

2 · K
∣∣∣
C(1,2)−1/2

(C.2.43)

= 6 K
∣∣∣
C(1,2)−1/2

− 15Y1 .
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Noting that Y1 = V (s3, s5, s9), and PH = s2s
2
5 + s1(s1s9 − s5s6), we thus find

D(1,2)−1/2

(
A′(3,2)1/6

)
= −3

[
5V (s3, s5, s9)− 2V (KB, s3, PH)

]
. (C.2.44)

This is exactly the result that we found in C.2.32. Similarly, the line bundle expressions

found in C.2.2 for C(1,1)1 , C(3,1)−2/3
, C(3,1)1/3

can be verified by using this strategy. For

the quark-doublet curve, the situation is more involved since the matter surface flux is

defined over this very matter curve so that self-intersections are to be taken into account.

Equivalently, we can give a quick argument by noting that the divisor in question must

be a linear combination of the Yukawa loci on C(3,2)1/6 . Any of these Yukawa loci Y1, Y2,

Y3 admits a pullback description:

OC(3,2)1/6
(Y1) ∼= OC(3,2)1/6

(Y3) ∼= KB3

∣∣∣
C(3,2)1/6

, OC(3,2)1/6
(Y2) ∼= 2KB3

∣∣∣
C(3,2)1/6

.

(C.2.45)

Therefore, the bundle must be of the form n · KB3

∣∣∣
C(3,2)1/6

and the prefactor n is fixed

by the chiral index. This gives D(3,2)1/6

(
A′(3,2)1/6

)
= 3 · KB3

∣∣∣
C(3,2)1/6

.

C.2.3 Root bundle constraints

By repeating the intersection computations, we obtain the root bundle constraints as func-

tions of K3
B (c.f. 6.2.37). Since we analyze the case K3

B = 18 in more detail momentarily,

let us list the root bundles for such base spaces explicitly:
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curve g P d BN-theory

C(3,2)1/6 = V (s3, s9) 10 P⊗36
(3,2)1/6

= KB3

∣∣∣⊗24

C(3,2)1/6
12

h0 h1 ρ

3 0 10

4 1 6

5 2 0

82 P⊗36
(1,2)−1/2

= KB3

∣∣∣⊗66

C(1,2)−1/2

⊗OC(1,2)−1/2
(−30 · Y1) 84

h0 h1 ρ

C(1,2)−1/2 = 3 0 82

4 1 78

V
(
s3, s2s

2
5 + s1(s1s9 − s5s6)

) ...
...

...

10 7 12

C(3,1)−2/3
= V (s5, s9) 10 P⊗36

(3,1)−2/3
= KB3

∣∣∣⊗24

C(3,1)−2/3
12

h0 h1 ρ

3 0 10

4 1 6

5 2 0

82 P⊗36
(3,1)1/3

= KB3

∣∣∣⊗66

C(3,1)1/3

⊗OC(3,1)1/3
(−30 · Y3) 84

h0 h1 ρ

C(3,1)1/3
= 3 0 82

4 1 78

V
(
s9, s3s

2
5 + s6(s1s6 − s2s5)

) ...
...

...

10 7 12

C(1,1)1 = V (s1, s5) 10 P⊗36
(1,1)1

= KB3

∣∣∣⊗24

C(1,1)1
12

h0 h1 ρ

3 0 10

4 1 6

5 2 0

The parameter ρ from Brill-Noether theory [150] provides a measure of how likely it

is to find a degree d line bundle with certain number of global sections – the larger ρ

is, the more likely such bundles exist. Notably, this parameter does not take the root

bundle constraints into account. See [128, 48] for an application of Brill-Noether theory

to F-theory and further explanations.

In F-theory Standard Model constructions, the toric base spaces must satisfy K
3
B ∈

{6, 10, 18, 30} [32]. Therefore, let us list the root bundle constraints for these values of

K
3
B. For ease of presentation, we will merely list the constraints on C(3,2)1/6 and C(1,2)−1/2 :
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K
3
B3 curve g P d BN-theory

6

C(3,2)1/6 = V (s3, s9) 4 P⊗12
(3,2)1/6

= KB3

∣∣∣⊗12

C(3,2)1/6
6

h0 h1 ρ

3 0 4

4 1 0

5 2 -6

28 P⊗12
(1,2)−1/2

= KB3

∣∣∣⊗30

C(1,2)−1/2

⊗OC(1,2)−1/2
(−30 · Y1) 30

h0 h1 ρ

C(1,2)−1/2 = 3 0 28

4 1 24

V
(
s3, s2s

2
5 + s1(s1s9 − s5s6)

) ...
...

...

7 4 0

10

C(3,2)1/6 = V (s3, s9) 6 P⊗20
(3,2)1/6

= KB3

∣∣∣⊗16

C(3,2)1/6
8

h0 h1 ρ

3 0 6

4 1 2

5 2 -4

46 P⊗20
(1,2)−1/2

= KB3

∣∣∣⊗42

C(1,2)−1/2

⊗OC(1,2)−1/2
(−30 · Y1) 48

h0 h1 ρ

C(1,2)−1/2 = 3 0 46

4 1 42

V
(
s3, s2s

2
5 + s1(s1s9 − s5s6)

) ...
...

...

8 5 6

18

C(3,2)1/6 = V (s3, s9) 10 P⊗36
(3,2)1/6

= KB3

∣∣∣⊗24

C(3,2)1/6
12

h0 h1 ρ

3 0 10

4 1 6

5 2 0

82 P⊗36
(1,2)−1/2

= KB3

∣∣∣⊗66

C(1,2)−1/2

⊗OC(1,2)−1/2
(−30 · Y1) 84

h0 h1 ρ

C(1,2)−1/2 = 3 0 82

4 1 78

V
(
s3, s2s

2
5 + s1(s1s9 − s5s6)

) ...
...

...

10 7 12

30

C(3,2)1/6 = V (s3, s9) 16 P⊗60
(3,2)1/6

= KB3

∣∣∣⊗36

C(3,2)1/6
18

h0 h1 ρ

3 0 16

4 1 12

5 2 6

136 P⊗60
(1,2)−1/2

= KB3

∣∣∣⊗102

C(1,2)−1/2

⊗OC(1,2)−1/2
(−30 · Y1) 138

h0 h1 ρ

C(1,2)−1/2 = 3 0 136

4 1 132

V
(
s3, s2s

2
5 + s1(s1s9 − s5s6)

) ...
...

...

13 10 6
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C.2.4 Limit roots in base space P39

We consider the smooth, complete toric 3-fold base P39, whose Cox ring is Z8-graded

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 -2 1 0 0 0 0 0 0 0 0

0 1 0 -2 1 0 0 0 0 0 0

0 2 0 -3 0 1 0 0 0 0 0

0 -1 0 1 0 0 1 0 0 0 0

0 1 0 -1 0 0 0 1 0 0 0

0 -1 0 2 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 1 0

0 -1 0 3 0 0 0 0 0 0 1

(C.2.46)

and whose Stanley-Reisner ideal is given by

ISR = 〈x8x11, x7x11, x6x11, x5x11, x4x11, x2x11, x9x10, x7x10, x6x10, x5x10,

x4x10, x2x10, x8x9, x6x9, x5x9, x4x9, x2x9, x7x8, x5x8, x4x8, x2x8, x6x7,

x5x7, x4x7, x4x6, x2x6, x2x5, x1x3〉 .

(C.2.47)

P39 is a particular triangulation of the 39-th polytope in the Kreuzer-Skarke list of toric

threefolds [2], hence the name. It follows that K3
P39 = 18. Furthermore, for Di = V (xi),

we find non-trivial topological intersection numbers

Di D3 D6 D11

Di ·K
2
P39 3 3 6 6

(C.2.48)

The remaining divisors have vanishing topological intersection numbers. Even more, for

Di ∈ {D4, D5, D7, D9}, we find Di · V (si) · V (sj) = ∅ for any si, sj ∈ H0(P39,KP39). The

divisors D2, D8, D10 intersect the generic curve V (si, sj) trivially but admit non-trivial
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intersections with non-generic curves.

In 6.4.2, we discussed roots on the quark-doublet curve C(3,2)1/6
. Here, we provide details

on the limit roots on C(3,1)1/3
= V

(
s9, s3s

2
5 + s6(s1s6 − s2s5)

)
. We use

s1 → s6 − s3 , s2 → s5 −
11∏
i=1

xi , s9 →
11∏
i=1

xi , (C.2.49)

and generic s3, s5, s6 to deform this curve into

C•(3,1)1/3
= V

( 11∏
i=1

xi, s5 − s6

)
∪ V

( 11∏
i=1

xi, s3 − s6

)
∪ V

( 11∏
i=1

xi, s5 + s6

)
≡ Q1 ∪Q2 ∪Q3 .

(C.2.50)

It is important to verify that this curve is nodal so that we can apply the limit root

techniques outlined in 6.3. A computationally favorable description is that a point p is a

node if and only if the Jacobian matrices vanish identically at p but the Hessian matrix

does not [195]. Therefore, it is readily verified that for example, the points V (x1, s5 −

s6, s3 − s6) are indeed nodes.

Consequently, we proceed to identify roots P •(3,1)1/3
that solve the root bundle constraint

in C.2.3 and admit exactly three sections. For this, it suffices to construct solutions to

(
P •(3,1)1/3

)⊗6
= KB3

∣∣∣⊗11

C•
(3,1)1/3

⊗OC•
(3,1)1/3

(−5 · Y3) , h0
(
C•(3,1)1/3

, P •(3,1)1/3

)
= 3 ,

(C.2.51)
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where Y3 = V (s3, s6, s9). We notice that Y3 ∩Q1 = Y3 ∩Q3 = ∅, which implies

(
P •(3,1)1/3

)⊗6
∣∣∣∣∣
Q1

= KB3

∣∣∣⊗11

Q1
,

(
P •(3,1)1/3

)⊗6
∣∣∣∣∣
Q2

= KB3

∣∣∣⊗11

Q2
⊗OQ2(−5 · Y3) = KB3

∣∣∣⊗11

Q2
⊗ KB3

∣∣∣⊗(−5)

Q2
= KB3

∣∣∣⊗6

Q2
,

(
P •(3,1)1/3

)⊗6
∣∣∣∣∣
Q3

= KB3

∣∣∣⊗11

Q3
.

(C.2.52)

These observations allow us to draw a weighted graph, which encodes roots P •(3,1)1/3
on

C•(3,1)1/3
. This graph is displayed in 18.

We find it important to mention that this graph is non-planar. This is remarkable because

all other dual graphs considered in this work are planar. To our knowledge, there does

not seem to be any result in the literature which suggests that the dual graph of a nodal

curve is necessarily planar. In fact, most of the literature, such as [194] and [195], only

discuss examples of nodal curves with planar dual graphs. Although there are well-

known planarity criterion theorems, such as the Kuratowski’s theorem [215], we resorted

to excessive computational checks to verify that C•(3,1)1/3
has a non-planar dual graph 18.

A more minimalistic example of this sort is the nodal curve whose dual graph is K3,3.

There are many interesting questions concerning planarity that arise in graph theory,

such as criterion theorems [189, 190], enumeration [191], and other variants of planarity

[192, 193]. However, the significance of non-planarity for the geometry of nodal curves is

unknown. We hope to return to this interesting question in the future.

Turning back to solving C.2.51, we note that the degrees of the roots encoded by 18 are

listed in 19. In particular, the total degree is d = 84, as expected for χ(P •(3,1)1/3
) = 3

on this g = 82 curve. Recall that we identify the number of global sections from 6.3.8,

i.e. we add the number of sections on all curve components except the exceptional P1s,

which are colored in blue. Therefore, it suffices to focus on the curves CQ1
1 , CQ1

3 , CQ2
1 ,
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CQ2
3 , CQ2

6 , CQ3
1 and CQ3

3 . Each curve CQ1
1 and CQ3

1 admits 36 roots whereas CQ2
6 only

admits a unique root. These roots each have one section. It follows from 6.3.3 that of

the roots on CQ1
3 , CQ2

1 , CQ2
3 and CQ3

3 , each curve admits at least 35 roots which have no

sections. We have thus found at least 362 · 354 solutions to C.2.51. In future works, we

wish to investigate which of these root bundles stem from F-theory gauge potentials in

H4
D(Ŷ4,Z(2)).

272



51 4 2

1 5 1 5

4 251

3
3

3
3

3
3

3
3

3
3

3
3

3

3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

33

3

3

3

3

3

5 5 5
A

3 3 3
C

5 5
5

4
44

D

33
3

3
3 3

F

5 5 5
4

44

G

333
3

3 3

I

5 5 5
K

3 3 3
M

66
66

33 0 33

0 0 0000

0 0 0000

24 1 5

4 2 4 2

1 524

3
3

3
3

3
3

3
3

2
4

1
5

3

3

3

3

3

33

3

2

4

1

5

3

3

3

3

3

33

3

4

2

5

1

1 1 1
A

1 1 1
B

1 1
1

2
22

D

11
1

2
2 2

E

1 1 1
2

22

G

111
2

2 2

H

1 1 1
K

1 1 1
L

36
36

18 0 18

0 0 0000

0 0 0000

51 4 2

1 5 1 5

4 251

3
3

3
3

3
3

3
3

3
3

3
3

3

3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

33

3

3

3

3

3

3 3 3
C

5 5 5
B

5 5
5

4
44

E

33
3

3
3 3

F

5 5 5
4

44

H

333
3

3 3

I

3 3 3
M

5 5 5
L

66
66

33 0 33

0 0 0000

0 0 0000

Fi
gu

re
18

:
W

ei
gh

te
d

di
ag

ra
m

of
ro

ot
s
P
• (3
,1

) 1
/
3

on
C
• (3
,1

) 1
/
3

w
hi

ch
so

lv
e

C
.2

.5
1.

273



A
C

D F

G I

K
M

−
1

−
1

1

C
H

1
1 −
1 0

C
H

1
3

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

A
B

D E

G H

K
L

0
C
H

2
6

−
1

0

C
H

2
1 −
1 0

C
H

2
3

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

B
C

E F

H I

L
M

−
1

−
1

1

C
H

3
1 −
1 0

C
H

3
3

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

−
1

Fi
gu

re
19

:
D

eg
re

es
of

ro
ot

s
P
• (3
,1

) 1
/
3

on
C
• (3
,1

) 1
/
3

en
co

de
d

by
18

.
Ex

ce
pt

io
na

lP
1 s

ar
e

in
di

ca
te

d
in

bl
ue

an
d

ea
ch

ca
rr

ie
s

a
lin

e
bu

nd
le

of
de

gr
ee
d

=
1.

274



CHAPTER D: Chapter 7 Appendix

275



BIBLIOGRAPHY

[1] L. Lin, Gauge fluxes in F-theory compactifications, Ph.D. thesis, U. Heidelberg
(main), 2016. 10.11588/heidok.00021601.

[2] M. Kreuzer and H. Skarke, Classification of reflexive polyhedra in
three-dimensions, Adv. Theor. Math. Phys. 2 (1998) 853 [hep-th/9805190].

[3] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string,
Cambridge Monographs on Mathematical Physics, Cambridge University Press
(12, 2007), 10.1017/CBO9780511816079.

[4] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge
Monographs on Mathematical Physics, Cambridge University Press (12, 2007),
10.1017/CBO9780511618123.

[5] M.B. Green, J.H. Schwarz and E. Witten, SUPERSTRING THEORY. VOL. 1:
INTRODUCTION, Cambridge Monographs on Mathematical Physics (7, 1988).

[6] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory Vol. 2: 25th
Anniversary Edition, Cambridge Monographs on Mathematical Physics,
Cambridge University Press (11, 2012), 10.1017/CBO9781139248570.

[7] L.E. Ibanez and A.M. Uranga, String theory and particle physics: An introduction
to string phenomenology, Cambridge University Press (2, 2012).
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