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ABSTRACT 

 

UNDERSTANDING GENE REGULATION IN DEVELOPMENT AND DIFFERENTIATION USING 

SINGLE CELL MULTI-OMICS 

 

Qin Zhu 

Kai Tan and Junhyong Kim 

Transcriptional regulation is a major determinant of tissue-specific gene expression 

during development. My thesis research leverages powerful single-cell approaches to 

address this fundamental question in two developmental systems, C. elegans 

embryogenesis and mouse embryonic hematopoiesis. I have also developed much-

needed computational algorithms for single-cell data analysis and exploration.  

C. elegans is an animal with few cells, but a striking diversity of cell types. In this 

thesis, I characterize the molecular basis for their specification by analyzing the 

transcriptomes of 86,024 single embryonic cells. I identified 502 terminal and pre-

terminal cell types, mapping most single cell transcriptomes to their exact position in C. 

elegans’ invariant lineage. Using these annotations, I find that: 1) the correlation 

between a cell’s lineage and its transcriptome increases from mid to late gastrulation, 

then falls dramatically as cells in the nervous system and pharynx adopt their terminal 

fates; 2) multilineage priming contributes to the differentiation of sister cells at dozens of 

lineage branches; and 3) most distinct lineages that produce the same anatomical cell 

type converge to a homogenous transcriptomic state. 

Next, I studied the development of hematopoietic stem cells (HSCs). All HSCs 

come from a specialized type of endothelial cells in the major arteries of the embryo 

called hemogenic endothelium (HE). To examine the cellular and molecular transitions 
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underlying the formation of HSCs, we profiled nearly 40,000 rare single cells from the 

caudal arteries of embryonic day 9.5 (E9.5) to E11.5 mouse embryos using single-cell 

RNA-Seq and single-cell ATAC-Seq. I identified a continuous developmental trajectory 

from endothelial cells to early precursors of HSCs, and several critical transitional cell 

types during this process. The intermediate stage most proximal to HE, which we termed 

pre-HE, is characterized by increased accessibility of chromatin enriched for SOX, FOX, 

GATA, and SMAD binding motifs. I also identified a developmental bottleneck separates 

pre-HE from HE, and RUNX1 dosage regulates the efficiency of the pre-HE to HE 

transition. A distal enhancer of Runx1 shows high accessibility in pre-HE cells at the 

bottleneck, but loses accessibility thereafter. Once cells pass the bottleneck, they follow 

distinct developmental trajectories leading to an initial wave of lympho-myeloid-biased 

progenitors, followed by precursors of HSCs. 

During the course of both projects, I have developed novel computational 

methods for analyzing single-cell multi-omics data, including VERSE, PIVOT and 

VisCello. Together, these tools constitute a comprehensive single cell data analysis suite 

that facilitates the discovery of novel biological mechanisms. 
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CHAPTER 1 INTRODUCTION 

 

During development, a fertilized egg undergoes repeated cell divisions to produce an 

embryo that contains distinct cell types. This sequence of cell divisions is called the 

organism’s cell lineage. Each cell in the lineage expresses a different set of genes in 

various quantities (the cell’s transcriptome), thus directing cells to differentiate into 

specific cell types. It is not yet fully understood how cells control its gene expression 

during differentiation, and how cells interact with each other to form complex tissue 

structures.  

Historically, researchers have studied gene expression during development 

through analysis of pooled population of cells from different developmental time points. 

These “bulk” methods were able to capture global expression changes over time and 

upon perturbation, but often fail to address the heterogeneous change and response of 

each individual cell type. Therefore, it is extremely difficult to study the development of 

rare cell types such as hematopoietic stem cells (HSCs). The emergence of single cell 

technology made it possible to simultaneously profile the molecular state of almost every 

cell in a multi-cellular organism. Unlike bulk methods, single-cell approach does not 

require purification of cell population or synchronization of the developing organism. 

Instead, by sampling cells across tissues and developmental stages, methods like single 

cell RNA sequencing (scRNA-Seq) are able to capture transcriptomes of various cell 

types and differentiation states (1, 2), bringing unprecedented resolution to the study of 

development. Recent technologies such as single cell ATAC (Assay for Transposase 

Accessible Chromatin) sequencing (scATAC-Seq) (3, 4) can identify active DNA 

elements that likely promote or inhibit gene expression, thus facilitating mechanistic 
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understanding of gene regulatory program. Furthermore, multiplexed cytometric imaging 

techniques such as CODEX (CO-Detection by indEXing) (5) imaging made it possible to 

visualize the spatial distribution of different cell types in the tissue microenvironment and 

investigate cell-cell interactions. Such interactions play critical roles in cell fate 

specification and tissue patterning during normal development, and mediate pathological 

processes such as immune cell infiltration and tumor metastasis in cancer. 

This technological revolution provides exciting opportunities to study 

development, but also poses challenges in data analysis and visualization. For 

developmental biology, it is particularly important to model the differentiation trajectory 

and characterize the underlying gene regulatory network. Novel methods are required to 

integrate different data modalities, such as scRNA-Seq and scATAC-Seq data, to gain 

mechanistic understanding of cell differentiation. The rapid growth of single cell data also 

requires robust software environment for easy and fast data exploration to bridge the 

gap between data generation and biological discovery. 

 

Development and differentiation 

C. elegans embryogenesis 

Caenorhabditis elegans (C. elegans) is a simple, transparent organism with only 558 

somatic cells upon hatching and 959 somatic cells in its adult hermaphroditic form. 

Unlike many complex organisms, the cell lineage of C. elegans is invariant across 

different individuals and has been fully resolved (6, 7), making it an ideal organism to 

study cellular differentiation and organismal development. C. elegans is the first 

multicellular organism whose genome gets completely sequenced, revealing a small 
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genome size of 97Mb and about 19,000 genes in total (8). The self-fertilization capability 

of the hermaphrodites enables easy genetic screening to recover recessive mutants and 

identify genes critical to the developmental process. Cross-fertilization could also 

happen between males and hermaphrodites and will produce over 1000 fertilized eggs. 

Fertilization initiates the embryogenesis process, which takes about 14 hours to 

transform a single zygote into a moving L1 larva. 

Embryogenesis of C. elegans can be divided into several stages, including 

fertilization, proliferation, gastrulation, morphogenesis, elongation, quickening and 

hatching (Figure 1.1) (9). Upon fertilization, anterior-posterior axis is established based 

on the entry position of the sperm. The sperm pronucleus is pushed to the nearest end 

of the elongated oocyte, making it the posterior pole (10). In the first 150 min post 

fertilization, a series of asymmetric division happens to establish a set of founder cells, 

including AB, MS, E, C and D (Figure 1.2). Each founder cell undergoes subsequent 

divisions to give rise to cells that will differentiate into various cell types. Gastrulation 

happens in conjunction with the proliferation of the founder cell lineages, where the AB 

and C lineages produce ectoderm and pharynx, MS descendants form mesoderm and 

pharynx, and E descendants form endoderm. Towards the end of gastrulation, the 

majority of cells start terminal differentiation and organize into various tissues, while the 

rest of cells undergo programmed cell death. Elongation occurs in parallel with tissue 

morphogenesis, and the embryo grows about three-fold to adopt its long worm-like 

shape. The embryo can be seen moving inside the egg about 650 minutes post-

fertilization, and hatches with about 600 cells 14 hours post-fertilization. 

The simplicity of the organism makes it possible to experimentally perturb the 

developmental process to gain insight into cellular differentiation and tissue 
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development. For example, individual cells in the early developing embryo can be 

destroyed via laser ablation to reveal its developmental potential (7, 11, 12). Using this 

approach, it has been shown that every single cell in the early embryo is indispensable 

for normal development, and their fate is determined either autonomously or 

conditionally. Autonomous fate specification means the intrinsic cellular factors 

determine the fate of the cell and its progenies, and no extrinsic signaling is required. 

The determination of P1 lineage is autonomous as it can generate the posterior part of 

the embryo without the presence of AB (11). After P1 divides, one of its daughter cells, 

EMS, also have the capacity to produce pharyngeal tissues in isolation. The maternal 

protein SKN-1 is likely a key intrinsic factor that specifies the fate of EMS. 

Hermaphrodites with skn-1 mutation produce embryos without pharyngeal mesoderm 

and endoderm, but with extra skin and muscle cells (13). When EMS cell divides, the 

specification of the E cell lineage (endoderm) is conditional, as it requires interaction with 

the P2 blastomere through Wnt signaling (14, 15). Without contact with P2, which 

expresses Wnt ligands mom, EMS cell will produce two MS cells but no intestine will be 

formed (15). Similarly, specification of the ABp cell fates depends on the contact 

between ABp and P2 through Notch signaling (16). The Notch receptor GLP-1 protein 

can be found in both ABa and ABp cells, but only ABp contacts P2 which has the Notch 

ligand APX-1. This signaling asymmetry cause ABp to adopt a different fate from its 

sister, thus establishing the dorsal-ventral axis of the embryo. 

In recent years, omics technologies have enabled profiling of hundreds and 

thousands of gene expression patterns in the C. elegans embryo, allowing systematic 

characterization of gene regulatory pathways. For example, using fluorescent reporters, 

Murray et al. traced expression of 127 genes across cell lineages and developmental 
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time points (17). They identified several genes downstream of the Wnt signaling 

pathway, which interact with the transcription factor POP-1 to generate diverse lineage-

specific expression patterns. One of the earliest scRNA-Seq technologies, CEL-Seq, 

was first applied to study C. elegans embryogenesis (18). By comparing the gene 

expression profile of daughter cells with the mother cell, the researchers found 

transcription factors are highly enriched among daughter-cell-expressed genes, 

suggesting their critical roles in early lineage specification. Similarly, using scRNA-Seq, 

Tintori et al. profiled gene expression in the early embryo up to the 16-cell stage (19). 

They observed a global similarity in gene expression between AB descendants, except 

for a few genes including known Notch targets, hlh-27, ref-1, and tbx-38. Therefore, 

Notch signaling may be one of the key discriminating factors that drives different fate 

choice of early AB lineage cells.   

Despite all these efforts, it largely remains a mystery how the fate of every single 

cell is robustly specified throughout embryonic development. Comprehensive gene 

expression profiling of single cells during C. elegans embryogenesis could provide the 

first step towards mechanistic understanding of this process. In Chapter 2, I describe our 

efforts to construct a lineage-resolved molecular atlas of the C. elegans embryo, which 

includes 86,024 single-cell gene expression profiles covering 87% of the embryonic 

lineages. Using this dataset, we modeled the differentiation trajectories of the cells and 

identified developmental patterns that are prevalent across embryonic lineages. 
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Embryonic origin of blood 

Development of the blood system is a highly conserved process across vertebrates, and 

has been extensively studied in chicken, zebrafish, and mouse (20). The mouse 

hematopoiesis system shares a lot of similarity with that of human and therefore has 

been used as a model system for studying mammalian blood development. During early 

embryogenesis, there are multiple waves of blood cell progenitor formation (21). The first 

wave occurs around embryonic day (E) 7 in the extra-embryonic yolk sac of mouse, 

where a group of mesodermal progenitor cells differentiate into erythrocyte, 

megakaryocyte, and macrophage progenitors (22-24). These cells are transiently 

produced to support fetal development and will not last until adulthood, thus were termed 

the “primitive wave” of blood formation. The second wave originates from the 

vasculature of yolk sac around E8.25 (25). A subset of the endothelial cells in the blood 

vessel undergoes “endothelial to hematopoietic transition” (EHT), and form erythro-

myeloid progenitors (EMPs) (26, 27). The second wave also involves generation of 

lymphoid progenitors from the yolk sac, dorsal aorta, vitelline arteries, and umbilical 

arteries, which will differentiate into T cells and B cells (28-30). 

Hematopoietic stem cells (HSCs) first emerge from the aorta-gonad-

mesonephros (AGM) region between E10.5 to E11.5 during the third “definitive wave” of 

blood formation (31, 32). These cells have both self-renew capability and the potential to 

differentiate into all blood cell types. Formation of HSCs involves multiple differentiation 

steps and several intermediate cell types (20, 33). Around E9.5, a subset of endothelial 

cells in the dorsal aorta is specified as hemogenic endothelial (HE) cells, which can be 

distinguished by the expression of the transcription factor Runx1 (34). The HE cells 

undergo EHT to give rise to hematopoietic stem and progenitor cells (HSPCs) that 
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accumulate in intra-arterial clusters (IAC) (35). Limiting dilution analysis revealed that at 

E10.5, fewer than 10% of the several hundred IAC cells are HSC precursors, or pre-

HSCs (36, 37). Pre-HSCs cannot engraft adult mice directly, but can mature in vivo or ex 

vivo into HSCs that can engraft (38). All pre-HSCs at E10.5 lack the pan-hematopoietic 

marker CD45, and are called type I pre-HSCs (38). At E11.5, the IACs contain type I 

pre-HSCs, CD45+ type II pre-HSCs that have matured from type I pre-HSCs, and ~1 

HSC (36). CD45+ cells are also found in the IACs at E10.5, but these cells cannot be 

matured into HSCs and hence are not pre-HSCs (38). The lineage relationship between 

the CD45+ IAC cells that appear at E10.5 and the CD45+ type II pre-HSCs at E11.5 is 

unknown. Pioneering scRNA-seq analyses identified type I and II pre-HSCs within IACs 

(39, 40), but the overall composition of the IACs was not described due to the small 

number of cells that were previously analyzed. The pre-HSCs eventually detaches from 

the blood vessel and migrates to fetal liver, where they undergo rapid expansion and 

further maturation before colonizing the bone marrow to support adult hematopoiesis 

(33). 

Formation of pre-HSCs from the arterial endothelium is regulated by multiple 

transcription factors and signaling pathways. The transcription factor Runx1 is a critical 

regulator of the definitive waves of hematopoiesis (33, 41, 42). Runx1-deficient embryos 

dies by E12.5 with severe anemia due to the lack of blood production from the last two 

waves (33). Conditional knock-out of Runx1 in vascular endothelial cells shows Runx1 is 

essential for the generation of pre-HSCs and formation of the IACs (41). But Runx1 is 

not required to maintain the hematopoietic cell identity as conditional knock-out of Runx1 

in the hematopoietic cells does not cause embryonic lethality (41). Previous studies 

show Runx1 functions in HE to recruit hematopoietic regulators, Tal1 and Fli1 to induce 



8 
 

the transition towards hematopoietic fate (43). Direct targets of Runx1 include Spi1 and 

Gfi1 (33, 44), both are essential for EHT and are used in a transduction cocktail along 

with Runx1 and Fosb to reprogram endothelial cells to hematopoietic cells in vitro (45). 

Besides Runx1, Gata2 is another transcription factor essential for EHT (46). 

Haploinsufficiency of Gata2 results in severe reduction of HSC production in the AGM 

region (47). Gata2 expression is induced by Notch1 signaling, which is transiently 

required for the specification of HE (48). The Notch ligand, Dll4 and Jag1 are both 

expressed in the dorsal aorta. When in contact with Dll4, Notch activity is upregulated 

and promotes the arterial fate of endothelium (49). When bound by Jag1, Notch activity 

is restricted, permitting the induction of hematopoietic program (49). Other signaling 

pathways involved in HE specification and EHT includes retinoid acid signaling (50), 

BMP signaling (51), cytokine signaling (52) and fluid shear stress (53). However, due to 

the technical difficulties in isolating the rare cell population involved in EHT, little is 

known about the interplay between these pathways and the transcriptional regulatory 

network downstream of the signaling pathways. 

In Chapter 3, I describe our effort to map a continuous developmental trajectory 

from endothelial cells to early precursors of HSCs by analyzing ~40,000 rare single cells 

from early developing mouse embryos. Through joint analysis of scRNA-Seq and 

scATAC-Seq data, I identified a developmental bottleneck regulated by Runx1 dosage, 

and a distal enhancer of Runx1 with transient activity at the bottleneck. I also identified 

pathways with increased activities at the bottleneck. Once cells pass the bottleneck, they 

follow distinct developmental trajectories leading to an initial wave of lympho-myeloid-

biased progenitors, followed by precursors of HSCs. 
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Single cell technologies  

The past decade has witnessed rapid development of single cell technology. The 

following section reviews several key methodology innovations that enable measuring 

molecular phenotypes of cells in a high-throughput fashion.     

Single cell RNA sequencing (scRNA-Seq) 

Single cell RNA sequencing enables measurement of mRNA transcript abundance 

across thousands of cells simultaneously. Figure 1.3 shows an overview of the general 

procedure of scRNA-Seq. First, biological samples are harvested and are dissociated 

into a single cell suspension. Cells of interest are then loaded onto a single cell isolating 

device which captures each cell in e.g., a droplet. After cells are lysed, reverse 

transcription and cDNA amplification are performed to generate libraries for sequencing. 

Sequencing reads are analyzed to obtain mRNA abundance measure of each gene in 

every cell, which can be further analyzed to gain biological insights.  

scRNA-Seq technology has evolved a lot over the past years and several major 

breakthroughs were made to improve the throughput and robustness of the method. For 

example, the utilization of microfluidic device enables sorting cells into separate oil 

droplets, beads, or wells (54, 55). Each of the cells were lysed and labeled with a unique 

molecular barcode, such that they can be pooled for library construction and 

sequencing. The Fluidigm® C1 system was one of the earliest microfluidic-based 

technology which allows capturing of 96 to 800 cells (2). Since then, technologies such 

as inDrop, Drop-Seq and Next GEM from 10x GenomicsTM were developed, enabling 

partitioning and labeling of thousands of single cells (54-56). A different strategy to 

increase the throughput is using combinatorial barcoding, which is implemented in the 
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SPLiT-Seq and sci-RNA-Seq protocols (57-59). The methods randomly distribute fixed 

cells into wells and label the cells with well-specific barcodes. With several rounds of 

random splitting, barcoding, and pooling, the overall complexity of the ligated barcodes 

will be high enough to uniquely label almost every single cell, allowing 1-2 million cells to 

be sequenced in a single experiment. Such approaches significantly reduce the cost for 

library preparation but may not robustly capture lowly expressed genes in the cell due to 

limitations in sequencing depth. For certain biological questions, medium cell number 

and high read coverage per cell may be preferred, as many key regulatory genes, such 

as transcription factors, are present in small amount in each cell but have global 

regulatory effects.       

The limited materials in each single cell also require robust library preparation 

methods, such that technical variations do not distort the biological signal. To this end, 

linear amplification protocols such as in vitro transcription (IVT) have been developed 

(18, 60, 61), which avoids the uncontrolled scaling by exponential amplification methods. 

To make the counting of mRNA molecules even more accurate, a unique molecular 

identifier (UMI) can be attached to each molecule, such that after amplification the reads 

can be readily de-multiplicated (62). Technologies such as IVT and UMI have been 

incorporated into modern single cell platforms such as the 10x Genomics Chromium 

system, allowing robust quantification of single cell gene expression. 

 

Single cell ATAC sequencing (scATAC-Seq) and single-cell multi-omics 

Gene expression in development is regulated by both cis-acting DNA elements and 

trans-acting factors. ATAC-Seq uses the hyperactive transposase Tn5 to insert 
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sequencing adaptors to accessible chromatin regions, enabling identification of active 

DNA regions and potential trans-factor binding sites (63) (Figure 1.4). The successful 

application of microfluidic device for scRNA-Seq inspired development of single-cell 

ATAC sequencing. Using the Fluidigm® C1 system, Buenrostro et al. developed a single 

cell ATAC-Seq protocol allowing simultaneous measurement of chromatin accessibility 

in hundreds of cells (3). Although the data are very sparse, it shows that scATAC was 

able to capture cell-type-specific epigenetic features and global chromosome 

compartments. Around the same time, Cusanovich et al. developed a different scATAC-

Seq protocol using combinatorial indexing (4). Like sci-RNA-Seq, the sci-ATAC-Seq 

protocol uses two rounds of splitting and pooling of cells on a 96-well plate to introduce 

unique combination of barcodes for each single cell. The method is capable of profiling 

1500 cells in a single run but have ∼11-12% collision rate. Recently, scATAC-Seq using 

the 10x Chromium platform has gained much popularity due to its high throughput 

(thousands of cells) and low collision rate (0.8-4%). After nuclei suspension is made and 

incubated with Tn5 transposase, the Chromium device encapsulates each cell in a Gel 

bead-in EMulsion (GEM), where cell barcoding and linear amplification happens. The 

GEMs are then pooled and broken to release the barcoded DNA fragments for library 

construction and sequencing. A study by Satpathy et al. used this technology to profile 

more than 200,000 single cells from human blood and tumor microenvironment. They 

were able to reconstruct the trajectory of multiple immune cell lineages using this 

dataset, demonstrating that scATAC is a valuable tool to understand gene regulatory 

programs in development and differentiation (64). 

Recently, several methods were developed to jointly profile mRNA level and 

chromatin accessibility in the same cell, such as sci-CAR (65), Paired-Seq (66), SNARE-
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seq (67) and SHARE-seq (68). Besides these, other types of multi-omics methods were 

developed for joint assay of transcriptome and epitopes (69), chromosome conformation 

and methylomes (70), transcriptome and histone modification (71), and even three 

different modalities (72, 73). These assays show lots of promises for understanding 

hierarchical gene regulatory program during development and differentiation. For 

example, using SHARE-Seq, Ma et al. observed during skin development, domains of 

regulatory chromatin (DORCs) became accessible before many fate-specific genes are 

expressed, suggesting chromatin accessibility is predictive of cell fate decisions (68). 

This dynamic relationship between chromatin accessibility and gene expression, which 

they termed “chromatin potential”, can be quantified to estimate the time scale of fate 

commitment, and to facilitate the discovery of key lineage-determining genes.     

 

Single cell imaging technologies 

Although scRNA-Seq and scATAC-Seq provide quantitative readout of key molecular 

features of each cell, the sequencing-based technologies alone are unable to resolve the 

spatial location and dynamical changes of the cell. Such information is critical for 

understanding the interaction between the cell and its surrounding environment, which 

plays a pivotal role in cell fate specification during development and differentiation. 

The development of reporter genes and microscopy technology has made it 

possible to visualize gene expression in living organism at single cell resolution (74). For 

example, using confocal microscopy and fluorescent reporter constructs, Murray et al. 

measured reporter expression of more than one hundred genes in the C. elegans 

embryo on a cell-by-cell basis (17, 75). With this cellular-resolution compendium of gene 
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expression, the researchers identified interesting spatial expression patterns such as 

left-right-asymmetric gene expression, as well as temporal expression cascades that 

define cell fates in a sequential manner. The GFP-based single cell imaging technique 

has also been applied to other model organisms such as Drosophila (76), but has 

fundamental limitation in throughput due to overlapping fluorophore emission spectra. 

Multiplexed in situ fluorescent imaging, such as CODEX (CO-Detection by 

indEXing) (5), DEI (DNA Exchange Imaging) (77) and t-CyCIF (Tissue-based cyclic 

immunofluorescence) (78), circumvents this limitation by repeated imaging of the same 

specimen over multiple cycles. For example, the CODEX technology (5) uses DNA-

conjugated antibodies to stain the cells. In each cycle, three fluorophores tagged with 

complementary DNA sequence were introduced and bound to matched antibodies, 

allowing imaging of three proteins at the same time. The fluorophores were then washed 

away to start another cycle of imaging. With repeated cycling, CODEX is able to capture 

fluorescent images of up to 45 proteins for a single tissue section. Using this technology, 

researchers were able to identify spatial distribution of different cell types and infer cell-

cell communication network in normal and diseased tissues (5, 79). 

Besides measuring protein abundance at single cell level, direct imaging of single 

RNA molecules in the cell has been made possible through single-molecule 

fluorescence in situ hybridization (smFISH) (80, 81). Several variations of this technique 

have been developed to increase the throughput and robustness of the method, allowing 

thousands of mRNA species to be measured at cellular or sub-cellular resolution (82-

86). For example, Long Cai’s group developed seqFISH (sequential Fluorescence In 

Situ Hybridization) technology (82, 87-89), which uses sequential rounds of hybridization 

and fluorescent imaging to read out the temporal barcode for each mRNA transcript. 
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seqFISH enables in situ quantification of gene expression that preserves spatial gene 

expression pattern (87), as well as direct read out of lineage barcodes introduced using 

CRISPR/Cas9-based targeted mutagenesis (88). Another technology, multiplexed error-

robust FISH (MERFISH) (84), also enables transcriptome-scale quantification of RNA 

species, and has been extended to DNA imaging to enable simultaneous capture of the 

3D organization and transcription activity (90). Compared to scRNA-Seq, smFISH data 

contain additional information about cellular and sub-cellular localization of individual 

mRNA species. Therefore, smFISH offers critical insight into many developmental 

processes that are regulated by mRNA localization, such as embryonic patterning, cell 

fate specification, cell migration and synapse development of neurons. 

 

Lineage tracing 

A cell’s developmental history could involve multiple rounds of cell division, cell migration 

and programmed cell death. During cell division, a parental cell gives rise to two 

daughter cells with same identity, or with completely different cell fates. Methods such as 

scRNA-Seq and scATAC-Seq capture snapshots of each cell’s molecular state but 

cannot record the consecutive cell divisions which represents a cell’s lineage history. 

The cell lineage history, although by nature is tree-like, may be reflected in the molecular 

state space as several disjoint clusters, bifurcating trajectories, or loops. Therefore, 

tracking a cell’s lineage history and mapping it back to the state space could help 

researchers understand how cells traverse the molecular state space to reach its 

terminally differentiated state. 
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In the past, lineage tracing was done using microscopy on simple, transparent 

organisms such as ascidians (91) and C. elegans (7). Recent in toto confocal 

microscopy technique enables cell tracking in more complicated organisms such as 

zebrafish (92) and mouse (93). In addition, it is possible to label cells with dyes, 

radioactive tracers, or reporter genes at an early embryonic stage, and track the fate of 

its descendants (94). Although these methods were able to reconstruct partial or full cell 

lineage tree, they cannot be readily used in conjunction with single cell omics methods to 

link a cell’s lineage with its molecular state.  

With high-throughput sequencing, it is possible to use DNA or RNA sequences 

as lineage labels, which can be directly read out using single cell sequencing methods. 

For example, using naturally occurring mutations in mitochondria genome, Ludwig et al. 

was able to identify subclones in human cell lines and human colorectal cancer and 

simultaneously measure chromatin accessibility using scATAC-Seq (95). Genetic 

modification can also be introduced using recombination (96), transposition (97), and in 

vivo editing of DNA targets by CRISPR-Cas9 (40, 88, 98, 99). Through consecutive 

editing of a lineage-recording barcode, CRISPR-Cas9 based methods such as 

scGESTALT (98) and ScarTrace (40) enables tracking cell lineage history and 

measuring transcriptome at the same time. However, resolution of such methods is 

limited by the editing efficiency and barcode detection rate, thus not every cell lineage 

can be confidently resolved.  
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Computational methods for single cell analysis of development and 

differentiation 

Identifying cell types and cell states 

A multicellular organism is composed of various cell types that are functionally 

specialized and morphologically distinct. Although the definition of cell type is 

controversial, scRNA-Seq offers a unique way to relate a cell’s identity with its 

transcriptomic profile, which is inherently associated with morphology and function (100, 

101). Furthermore, scRNA-Seq enables detailed characterization of different molecular 

states of the same cell type as cell cycle, circadian rhythm, aging and disease often 

cause altered gene expression pattern (102-104). To robustly group and annotate cells 

as different cell types and cell states, numerous computational methods have been 

developed, which can be grouped into two major categories – the unsupervised 

clustering-based approach and the supervised reference-based approach.  

Clustering algorithms have long been developed in the field of statistics and 

computer science. However, most of these methods cannot be readily applied to single 

cell data due to several important limitations. One of such limitations is the sparsity of 

the data, as current single cell technologies sometimes fail to capture transcripts of lowly 

expressed genes, leading to zeros in the data matrix (105). This “dropout” effect distorts 

the true gene expression pattern, leading to biases in the downstream analysis. To 

reduce the effect of dropouts, many groups have developed algorithms to impute the 

missing values (106-110). Others take a slightly different approach by explicitly modeling 

the dropout events. For example, the ZIFA algorithm uses zero-inflated factor analysis to 

impute the cell coordinates in a low dimensional latent space (111). A similar algorithm, 
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ZINB-WaVE, uses zero-inflated negative binomial model on the count data, and 

observed tighter, biologically meaningful clusters (112).  

Another challenge for single cell clustering is the curse of dimensionality, which 

refers to the instability of distance metrics in high dimensional space (113). Therefore, a 

common procedure prior to clustering analysis is to reduce the dimensionality of the 

data. Principal component analysis (PCA) is one of the most extensively used linear 

dimensionality reduction method. By successively maximizing the variance in each 

principal component (PC), the method projects cells into a low-dimensional space where 

many clustering methods, such as K-means clustering and density-based clustering, can 

be readily applied. Furthermore, each PC represents a linear combination of genes that 

contribute to the separation of the clusters, thus can be biologically interpreted. In one 

single-cell study on metastatic melanoma, the researchers observed different partition of 

cells along each PC, which suggests transcriptional heterogeneity associated with cell 

cycle, spatial context and drug resistance program (114). In another study on the 

development of early C. elegans embryo, iterative PCA was applied to identify distinct 

cell lineages arising from asymmetric divisions, where each PC corresponds to lineage-

specific transcription programs (19).  

Although linear methods like PCA enable visualization and clustering of high 

dimensional gene expression data, biological data are intrinsically nonlinear. In recent 

years, several nonlinear dimensionality reduction methods, such as t-distributed 

stochastic neighbor embedding (t-SNE) (115) and uniform manifold approximation and 

projection (UMAP) (116, 117) have gained much popularity. The t-SNE algorithm creates 

an embedding of cells that preserves the probability distribution of neighbors around 

each cell, such that cells close to each other in the high dimensional space have high 



18 
 

probability being close together in the low dimensional embedding. With t-SNE, distinct 

cell types often appear as disjoint islands in the embedding, making it easy to identify 

rare cell types. For example, with t-SNE performed on ~7000 single cells from the airway 

epithelium, Montoro et al. discovered the presence of a rare CFTR-expressing cell type 

(96). These cells are found to be the primary source of the cystic fibrosis transmembrane 

conductance regulator CFTR, and their dysfunction leads to phenotypes that are 

characteristic of cystic fibrosis (96). The discovery was also made independently by 

another group using a non-linear, graph-based algorithm, SPRING, which uses force-

directed layout to preserve the nearest-neighbor relationship of cells (118, 119). The 

UMAP algorithm was recently favored by many biologists, as it not only preserves local 

nearest neighbor structure like t-SNE, but also preserves the global distance relationship 

to some degree (116, 117). In this way, dissimilar cells are often segregated into clusters 

that are far away from each other, making it ideal to apply density-based clustering 

algorithms, such as DBSCAN (120), or graph-based community detection algorithms, 

such as the Louvain method (121).  

To further improve accuracy and robustness of the clustering result, several 

methods explore different metrics of cell-cell similarity. For example, SIMLR uses multi-

kernel learning to generate a similarity matrix with an approximate block-diagonal 

structure, which can be visualized with t-SNE and clustered using spectral method (122). 

Similarly, the SC3 algorithm performs K-means clustering with various distance metrics 

and performs consensus clustering on top of the K-means results (123). Other clustering 

approaches aim to improve the flexibility of single cell clustering by allow varying 

resolutions, such that cell types, subtypes and states can be hierarchically explored. To 
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this end, several graph-based clustering methods have been developed, such as PAGA 

(124) and Toomanycells (125). 

Currently, annotation of clusters heavily relies on cell-type marker genes curated 

from past literatures, and there is no gold standard for evaluating the accuracy of 

clustering and cell type annotation. This paradigm may soon change due to the influx of 

well-annotated single cell data, such as those from the Human Cell Atlas project (126) 

and the Human BioMolecular Atlas Program (HuBMAP) (127). For developmental 

biology, transcriptional atlases have also been created for multiple species (see Table 

1.1 for a list of published datasets). Therefore, it is possible to train a cell type classifier 

using large-scale reference datasets and predict cell type labels for newly profiled single 

cells. Many methods have adapted classification algorithms such as random forest, 

elastic net and neural network for this purpose, which has been extensively reviewed by 

Pasquini et al (128). One limitation of such approaches is the accuracy of the classifier 

heavily relies on the quality of the reference data. If a rare cell type or a transient cell 

type is missing from the reference data, the algorithm may fail to identify it and may 

classify it into a close cell type. Therefore, for analysis described in this thesis, I mainly 

used unsupervised clustering to discover various cell types and cell states. In addition, I 

compared data from this study to published datasets using enrichment of cell-type 

signatures and projection method, which further validates our cell type annotations. 

 

Modeling of differentiation trajectory, velocity, and potential 

Single cell RNA-Seq provides a powerful way to investigate the sequential transcriptional 

regulatory events during differentiation. To recapitulate the temporal sequence of gene 
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regulation, a trajectory inference algorithm can be applied to order cells based on their 

transcriptome similarity. Trajectory inference algorithms differ in their assumption about 

the temporal structure of the underlying process, and the resulting trajectory can be 

linear, cyclic, tree-like or of mixed types. For example, Wanderlust constructs K-nearest 

neighbor (KNN) graphs based on cosine similarity between cells and draws shortest 

path on the graph to obtain a single linear trajectory (129). The algorithm was applied to 

model the B cell development and revealed a rare B cell precursor marked by its unique 

pSTAT5 response to the cytokine IL-7. However, for complex developmental systems, 

algorithms that allow branching and cyclic trajectories may be preferred, as cell cycle 

and fate bifurcation occur recurrently throughout development. One of the earliest 

trajectory inference method uses the PQ-tree algorithm to model the time-series 

microarray data such as the cell cycle of bacteria (130), and was later adapted for single 

cell data (131). Many other graph-based or tree-based algorithms for modeling 

differentiation trajectory have been developed in recent years (124, 132-134) and have 

been extensively reviewed by Saelens et al. (135).  

Like single cell clustering, trajectory inference methods often rely on 

dimensionality reduction techniques to obtain a low dimensional representation of the 

“manifold” of transcriptomic states. Besides the widely used PCA, t-SNE and UMAP, 

diffusion map (136) is another popular method for modeling differentiation as a diffusion-

like dynamical process and has been successfully applied to complex developmental 

systems such as the differentiation hierarchy of HSCs (137). A flexible trajectory 

inference method, Slingshot (138), allows user to input custom dimensionality reduction 

results and use principal curve analysis to fit linear or bifurcating trajectories. Slingshot is 

one of the top ranked methods in terms of accuracy, stability and usability based on a 



21 
 

recent comparison of trajectory inference methods (135). Therefore, it is used to 

reconstruct the developmental trajectory of HSCs in this thesis, as described in Chapter 

3.  

With the inferred trajectory, “pseudo-time” can be assigned for each cell to reflect 

its relative position along the differentiation trajectory. This enables differential 

expression analysis to derive temporally differentially expressed genes that may be 

responsible for cell fate specification. For example, one can apply the switchde algorithm 

to find switch-like genes along single-cell trajectories (139), or use the BEAM method to 

discover genes that are differentially activated at branching points (132). 

Trajectory inference methods connect cells across developmental stages but 

cannot determine the direction and rate of differentiation. To model the velocity of 

transcriptome change during differentiation, the Velocyto algorithm exploits the RNA 

splicing dynamics (140). When a gene is up-regulated, transcription initiation produces 

large amount of unspliced mRNAs. The immature mRNAs undergo alternative splicing 

and degradation, which brings the system to a steady state. Conversely, when a gene’s 

expression is repressed, reduction of unspliced mRNA precedes the downregulation of 

spliced mRNA, leading to a fast drop of unspliced versus spliced mRNA ratio. The RNA 

dynamics can be modeled with a set of ordinary differential equations (ODEs), solving 

which gives estimation of the rate of transcriptome change, or “RNA velocity”, for each 

cell. Using the RNA velocity, one can extrapolate the future state of the cell, and project 

that onto a dimensionality reduction plot. The projected velocity field enables automatic 

identification of start and end point of differentiation and allows investigation of the cell 

fate choices at bifurcating points. With RNA velocity estimated for the developing mouse 

hippocampus, the authors identified radial glia cells as the root of the lineage tree of the 
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hippocampus and observed fate biases before the trajectory branches into CA and 

granule fate. One limitation of Velocyto is that it assumes the induction and repression of 

gene expression last long enough to reach steady state, which is often not true for 

transient cell populations in development. Therefore, a recent method scVelo was 

developed to address this limitation by solving the full gene-wise transcriptional 

dynamics (141). The concept was further extended to account for the protein translation 

kinetics, such that protein velocity and acceleration can be estimated with joint profiling 

of proteins and RNAs (142). 

Lastly, during development, cells may have multiple differentiation potentials 

before committing to a terminal fate. For example, scRNA-Seq and lineage tracing 

experiment reveals that the hematopoietic stem and progenitor cells (HSPCs) exhibit a 

continuum of transcriptome states with different fate biases (143). To computationally 

resolve the fate potential of early progenitor cells, several algorithms, such as FateID 

(144), Waddington-OT (145), and population balance analysis (146) have been 

developed. Weinreb et al. benchmarked these methods using the HSPC lineage tracing 

data and observed all three methods were able to resolve lineage potential for late-stage 

cells but performed poorly on early-stage progenitors (143). Nevertheless, these 

algorithms, combined with lineage tracing, provides important information about fate 

specification mechanisms in early progenitors. By comparing the progenitors with 

different fate biases, factors that drive fate choices can be derived and functionally 

tested. 
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Identifying transcriptional regulatory network 

Transcriptional regulatory network (TRN) describes the regulatory relationship between 

genes and provides systematic understanding of transcriptional regulation. However, 

multiple challenges exist for the robust reconstruction of TRN with single cell data. For 

example, currently, the state-of-art TRN algorithms for bulk gene expression data has a 

precision of ~50% for prokaryotes, and performs poorly for eukaryotic organisms (147). 

The technical noise and high dropout rate of single cell data adds to the variance, so the 

performance of these bulk algorithms, if applied directly to single cell data, would be 

even worse.  

Despite of these caveats, single cell data presents unique opportunities for 

accurate and robust inference of TRN. First, gene correlation analysis using single cell 

data yields much more accurate estimation of co-expression relationship compared to 

bulk methods, as the latter may suffer from Simpson’s Paradox (148). With single cell 

clustering analysis, individual cell types can be identified and cell-type-specific TRNs can 

be constructed. Second, trajectory inference and velocity analysis give temporal ordering 

to the gene expression profiles, making causal inference of gene regulatory relationship 

possible. Finally, other single cell data modalities such as scATAC-Seq provide 

important information about active DNA regulatory elements, which can be used to infer 

the cis- and trans-regulatory relationship. Indeed, many recently developed single cell 

network analysis methods exploit these unique properties of single cell data and have 

been successfully applied to several developmental systems (149-153). 

In one of the earliest single cell study of blood stem and progenitor cells, cell-

type-specific TRN was constructed using expression profiles of 18 transcription factors 

with known important roles in hematopoiesis (154). The authors observed that although 
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most regulatory connections remain stable across cell types, some show clear 

differences. For example, strong negative correlation between Gfi1 and Gata2 was only 

observed in HSCs, and the correlation between Gata1 and PU.1 was strongly dependent 

on the cell type, consistent with their switch-like function in controlling erythroid and 

myelomonocytic fates (155, 156). Several single cell TRN inference methods, such as 

LEAP (149), SINCERITIES (150), SCODE (151) and SCRIBE (152), explicitly uses time 

information in their model. SINCERITIES first computes the Kolmogorov-Smirnov (KS) 

distance to measure the differences in marginal gene expression distributions between 

two consecutive time points (150). Regulatory connections were then inferred using 

Granger causality, where the changes in transcription factor (TF) expression were used 

to predict changes in its target genes. SINCERITIES were benchmarked using time-

stamped single cell data of monocytic THP-1 human myeloid leukemia cell differentiation 

and gave much better predictions compared to methods that do not use time 

information. To further improve the accuracy of TRN inference, several algorithms utilize 

TF motif enrichment in active regulatory DNA elements. For example, the SCENIC 

method (157) first infers TRN using expression-based methods, GRNBoost (157) and 

GENIE3 (158), and then refines the TRN using motif enrichment analysis on promoters 

of co-expressed genes. A recently developed method, CellOracle (153), uses scATAC-

Seq data and motif enrichment analysis to assemble a “base” TRN, and then uses 

scRNA-Seq data to convert the base TRN into cell-type specific TRNs. CellOracle was 

used to map the network structure during hematopoiesis and correctly predicts the effect 

of Gata1 knock-out on myeloid cell identity. Finally, it is worth noting that a newly 

emerged single cell technology, Perturb-Seq (159, 160), enables profiling of thousands 

of cells with genome-scale CRISPR perturbations, therefore presenting a new 
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opportunity for causal TRN inference. So far, only a few TRN inference methods have 

been developed for this type of data (159, 161).  

 

Integrative analysis of single cell transcriptome and epigenome 

The fast development of single cell technology has enabled profiling of various types of 

molecular features at single cell resolution. The collection of multimodal single cell data 

can be performed separately using biological replicates, or parallelly on one sample with 

true multi-omics technologies (65-68). In the first case, both features and cells are 

different across modalities, while in the second case, various types of features are 

measured for the same set of cells. Statistical challenges for each of these cases are 

different. At the time of the study described in this thesis, only the first type of technology 

is commercially available. Therefore, I will focus on reviewing integrative analysis 

methods for separately collected scRNA and scATAC data. However, it is worth noting 

that several methods have been recently developed for integrative analysis of true multi-

omics datasets (162, 163).  

One important challenge of integrative analysis of transcriptome and epigenome 

data is that the correspondence between the features is unclear. For example, the 

association between chromatin accessibility and gene expression is not completely 

understood, thus there is no simple transformation that maps cells from gene expression 

space to chromatin accessibility space, and vice versa. However, such relationship can 

be learned if cells collected for both modalities have the same underlying distributions of 

molecular states, which can be achieved through collection of biological replicates. The 

MATCHER algorithm makes a simple assumption that single cell measurements are 
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made from cells changing unidirectionally along a one-dimensional manifold, and for 

each data modality cells are sampled from the same population, process, and cell type 

(164). Given these assumptions, MATCHR performs manifold alignment to project cells 

of different data modalities onto a shared 1D pseudo-time space. The authors applied 

MATCHR to jointly analyze gene expression and DNA methylation changes during 

human induced pluripotent stem cell (iPSC) reprogramming and observed an overall 

trend that DNA methylation changes lag behind gene expression changes. 

Several integration algorithms do not have strong assumption on the latent 

manifold structure, but make certain assumptions about feature correspondence. For 

example, LIGER leverages the well-established negative relationship between gene-

body methylation and expression to integrate single cell methylome and transcriptome of 

mouse cortical cells (165, 166). Joint embedding of the two data modalities were learned 

using integrative nonnegative matrix factorization and revealed multiple cell populations 

that could not be identified using the methylation data alone. The Seurat v3 algorithm 

builds upon a gene activity matrix, which can be computed by summing the scATAC-Seq 

fragments in the gene body and promoter region (167). Canonical correlation analysis 

(CCA) is applied to the gene activity matrix and gene expression matrix to obtain a joint 

dimensionality reduction of both data modalities. Next, Mutual nearest neighbors (MNNs) 

are identified and used as “anchors” for computing a set of correction vectors. 

Subtracting these vectors from one dataset allows the two datasets to be merged and 

jointly analyzed. GLUER (168) and scDART (169) also requires a pre-defined gene 

activity matrix and utilizes the deep learning framework to learn a joint latent 

representation of the cells.  
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The technological development presents a unique opportunity for investigating 

the association between transcriptome and epigenome during development and 

differentiation. For example, Cao et al. (65) used a linear regression model to predict 

gene expression from chromatin accessibility data and found that accounting for 

accessibility at distal sites improved prediction by four-fold compared to using promoter 

accessibility alone. One limitation of such method is that it can only be applied to true 

multi-omics dataset. In Chapter 3, I developed a computational framework for joint 

analysis of paired scRNA-Seq and scATAC-Seq data. The method first learns feature 

correspondence from the data by matching differentially accessible peaks with 

differentially expressed genes, then uses Seurat v3 to obtain a joint embedding of 

scRNA and scATAC cells. Using paired meta-cells, I performed linear regression to 

identify enhancer-promoter links that are important for the endothelial to hematopoietic 

transition.  
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Figures 

 
Figure 1.1 C. elegans embryogenesis. 

Reprinted from WormAtlas (9). Horizontal axis shows approximate time in minutes after 

fertilization at 20-22°C. The stages, number of nuclei, marker events and DIC images of 

the embryos and larva are shown above the axis. Yellow bars indicate period of early 

cell migration. Blue bar shows gastrulation period (between 270 and 330 minutes). Red 

bar indicates elongation of the embryo between 400 and 640 minutes.  
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Figure 1.2 Cell lineage tree of C. elegans embryogenesis.  

Only cells with birth time before 500 mins are shown. Lineage tree reproduced from 

WormAtlas (9) and Sulston et al. (7) using VisCello.celegans (170). Length of each edge 

is proportional to the lifespan of the cell, and the color represents the birth time of the 

cell. 

 

 

 

Figure 1.3 Single-cell RNA sequencing. 

Created with BioRender.com. Biological samples are harvested and are dissociated into 

a single cell suspension. Single cells are then isolated with a cell isolating device. Once 

cells are isolated and lysed, sequencing library is prepared by reverse transcription and 

cDNA amplification. After sequencing, the reads are aligned and quantified for 

downstream data analysis.  

 

 



31 
 

 

Figure 1.4 Single-cell ATAC sequencing. 

Created with BioRender.com. Depending on the protocol, the order of single nuclei 

isolation and tagmentation can be reversed. Single nuclei isolation can be performed 

using methods such as microfluidics technology. Tagmentation involves using Tn5 

transposase to insert sequencing adaptors to open chromatin regions. The resulting 

DNA fragments are then amplified and indexed for sequencing. 
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Tables 

Table 1.1 List of large-scale single cell datasets for developmental biology.  

SPECIES DEV. STAGE TECHNOLOGY CELL# REFERENCE 
Mus musculus E6.5-8.5 10x Genomics 116,312 (171) 
Mus musculus E8.5-E9.5 10x Genomics 22,264 (172) 
Mus musculus E9.5-13.5 sci-RNA-seq3 2,072,011 (59) 

Drosophila 
melanogaster Embryo Drop-seq 7,975 (173) 

Xenopus 
tropicalis Embryo InDrop 136,966 (174) 

Danio rerio 
(Zebrafish) Embryo inDrop 92,000 (97) 

Danio rerio 
(Zebrafish) Embryo Drop-seq 38,731 (175) 

Hydra Adult Drop-Seq 25,000 (176) 
Schmidtea 

mediterranea Adult Drop-seq 21,612 (177) 

Spongilla 
lacustris Juvenile 10x Genomics 39,552 (178) 

Schmidtea 
mediterranea Adult Drop-seq 66,783 (179) 

Ciona 
intestinalis Embryo 10x Genomics 90,579 (180) 

Caenorhabditis 
elegans Embryo 10x scRNA 86,024 (170), this 

thesis 
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CHAPTER 2 A LINEAGE-RESOLVED MOLECULAR ATLAS OF C. ELEGANS 

EMBRYOGENESIS AT SINGLE-CELL RESOLUTION 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The contents of this chapter have been previously published as: 

Packer JS*, Zhu Q*, Huynh C, Sivaramakrishnan P, Preston E, Dueck H, Stefanik D, 
Tan K, Trapnell C, Kim J, Waterston RH, Murray JI. A lineage-resolved molecular atlas 
of C. elegans embryogenesis at single-cell resolution. Science. 2019 Sep 
20;365(6459):eaax1971. 

* These authors contributed equally   



34 
 

Introduction 

To understand how cell fates are specified during development, it is essential to know 

the temporal sequence of gene expression in cells during their trajectories from early 

uncommitted precursors to differentiated terminal cell types. Gene expression patterns 

near branch points in these developmental trajectories can help identify candidate 

regulators of cell fate decisions (181). Single cell RNA sequencing (sc-RNA-seq) has 

made it possible to obtain comprehensive measurements of gene expression in whole 

animals (58, 177, 179, 182-184) and embryos (19, 59, 97, 171, 173-175). sc-RNA-seq 

profiling of multiple developmental stages in a time series can be particularly informative, 

as algorithms can use the data to reconstruct the developmental trajectories followed by 

specific cell types. However, confounding factors can generate misleading trajectories. 

For example, progenitor cell populations with distinct lineage origins may be conflated if 

their transcriptomes are too similar, and abrupt changes in gene expression can result in 

discontinuous trajectories. Thus, information from independent assays is necessary to 

conclusively validate an inferred trajectory as an accurate model of development. 

Here, we comprehensively reconstruct and validate developmental trajectories 

for the embryo of the nematode worm Caenorhabditis elegans. C. elegans develops 

through a known and invariant cell lineage from the fertilized egg to an adult 

hermaphrodite with 959 somatic cells (6, 7), which creates the potential for a truly 

comprehensive understanding of its development. Using sc-RNA-seq, the known C. 

elegans lineage, and imaging of fluorescent reporter genes (17, 185), we produce a 

lineage-resolved single cell atlas of embryonic development that includes trajectories for 

most individual cells in the organism. Our atlas expands on previous studies of the 

earliest embryonic blastomeres (18, 19), covering 87% of embryonic lineage branches. 
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We use this dataset to quantitatively model the relationship between the cell 

lineage and the temporal dynamics of gene expression. We find that during gastrulation, 

lineage distance between cells is a strong predictor of transcriptome dissimilarity. The 

strength of this correlation increases from the middle to the end of gastrulation. After 

gastrulation, expression patterns of closely related cells diverge as they adopt their 

terminal cell fates. Body wall muscle, hypodermis, and the intestine are exceptions to 

this trend, as they are produced by semi-clonal lineage clades that maintain within-clade 

transcriptomic similarity. In the ectoderm, the final two rounds of cell division produce 

distinct neuron and glia cell types, which rapidly differentiate, often resulting in 

discontinuities in computational reconstructions of their developmental trajectories. In 

several cases, the transcriptomes of distant lineages converge as they adopt the same 

terminal cell fate, and at the same time diverge from their close relatives in the lineage. 

Our ability to reconstruct these complex gene expression dynamics highlights 

both the utility of the known C. elegans lineage and the challenges that will be faced 

when trying to use single cell RNA sequencing to reconstruct the lineages of other 

organisms. 

 

Results 

Single-cell RNA-seq of C. elegans embryos 

We sequenced the transcriptomes of single cells from C. elegans embryos with the 10x 

Genomics platform. We assayed loosely synchronized embryos enriched for pre-

terminal cells as well as embryos that had been allowed to develop for ~300, ~400, and 

~500 minutes after the first cleavage of the fertilized egg. We processed the datasets 
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with the Monocle software package (132). After quality control, the final integrated 

dataset contained 86,024 single cells, representing a more than 60x oversampling of the 

1,341 branches in the C. elegans embryonic lineage. 

We estimated the embryo stage of each cell by comparing its expression profile 

with a high-resolution whole-embryo RNA-seq time series (186) (Supplemental Figure 

2.1). We then visualized the data with the Uniform Manifold Approximation and 

Projection (UMAP) (116, 187) algorithm, which projects the data into a low-dimensional 

space and is well suited for data with complex branching structures (187). We found that 

trajectories in the UMAP projection reflect a smooth progression of embryo time (Figure 

2.1A), with cells collected from later time points usually occupying more peripheral 

positions (Figure 2.1B). Unique transcripts per cell, as estimated with Unique Molecular 

Identifiers (UMIs), decreased with increasing embryo time throughout the period of 

embryonic cell division, consistent with decreasing physical cell size (Supplemental 

Figure 2.2). These observations suggest that UMAP trajectories corresponded to 

developmental progression and that embryo time estimates are a reasonable proxy for 

developmental stage for most cells. Approximately 75% of the cells recovered (64,384 

cells) were from embryos spanning 210-510 minutes post first cleavage, corresponding 

to mid-gastrulation (~190 cell stage) to terminal differentiation (3-fold stage of 

development) (Figure 2.1C); however, cells were also recovered from earlier embryos (< 

210 minutes, 9,886 cells), and later embryos (> 510 minutes, 11,754 cells). 

We clustered cells in the UMAP using the Louvain algorithm (121) and annotated 

clusters with cell type identities using marker genes from the literature on C. elegans 

gene expression (188). Markers used for each annotation are listed in Table 2.1. The 

global UMAP arranges cells into a central group of progenitor cells and branches 
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corresponding to eight major tissues (Figure 2.1A, Supplemental Figure 2.3): 

muscle/mesoderm, epidermis, pharynx, ciliated neurons, non-ciliated neurons, 

glia/excretory cells, intestine, and germline. While some individual cell types were 

identifiable in this global UMAP, many were not, especially progenitor lineages. To gain 

resolution, we hierarchically created separate UMAPs of each tissue (Supplemental 

Figures 2.4-2.13). These “sub-UMAPs” better resolved specific cell types, allowing us to 

make extensive, fine-grained annotations. 

A combination of marker genes, lineage assignments, and developmental time 

allowed us to locate 112 specific terminal anatomical cell types, including every lineage 

input to body wall muscle, every distinct subtype of pharyngeal muscle (pm1-2, pm3-5, 

pm6, pm7, and pm8) and hypodermis (hyp1-2, hyp3, hyp4-6, hyp7, hyp8-11, seam, and 

P cells), and every non-neuronal cell type in the mesoderm. We identified 69 of 82 non-

pharyngeal neuron types and 9 of 12 glial cell types present in the embryo. We could not 

identify 12 of 14 pharyngeal neuron types. A cluster corresponding to the most 

differentiated pm3-5 pharyngeal muscle cells had a low level of expression of neuron-

specific genes, suggesting that we failed to dissociate the neurons that innervate these 

muscles in late embryos. 

We successfully annotated 93% of cells in our dataset with a cell type (for 

terminal cells) or a cell lineage (for progenitor cells, discussed below) (Figure 2.1D). The 

number of cells annotated for each cell type was variable but roughly fit the expectation 

on the basis of the number of cells of that type present in a single embryo (Figure 2.1E, r 

= 0.64, p = 2.4e-13, t test). 
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Mapping single cells to known C. elegans cell lineage tree 

The structure of the global and single-tissue UMAPs was dominated by trajectories of 

terminal cell differentiation. We hypothesized that closely related lineages could be 

better resolved by separately analyzing progenitor cells prior to terminal differentiation. 

Thus, we ran UMAP with only cells with embryo time <= 150, 250, or 300 minutes and 

found branching patterns that reflect lineage identities (Figure 2.2, Supplemental Figures 

2.14-2.16). Intestine and germline cells commit to their terminal fates very early and 

have very divergent expression that distorts the projections, so they were removed and 

analyzed separately (Supplemental Figures 2.7, 2.12). The 300-minute UMAP contained 

several large quasi-connected groups corresponding approximately to major founding 

lineages, roughly organized by the major fates produced by each founder cell lineage 

(MS muscle, MS pharynx, C/D muscle and AB-derived lineages that produce either 

pharynx, neurons/glia, or hypodermis). We were able to resolve additional details by 

recursively making sub-UMAP projections of these cell subsets. 

To annotate progenitor lineages, we exploited lineage marker genes from the 

literature and the EPiC database, which contains single cell resolution expression 

profiles extracted by cell tracking software from confocal movies of C. elegans embryos 

expressing fluorescent reporters (17). In addition to the 180 previously described 

patterns (17, 189), we have collected movies for 71 additional genes, increasing the total 

number of patterns in EPiC to 251 genes. We annotated branches with lineage identities 

between the 28-cell and 350-cell stages by finding genes that were differentially 

expressed both between sister lineages in the EPiC data and between branches of the 

sub-UMAP trajectories in a concordant manner (Figure 2.2, Supplemental Figures 2.14-

2.16). For example, expression of ceh-51 is restricted to the MS (mesoderm-producing) 
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lineage (190), allowing us to label the single group of ceh-51(+) cells in 150-minute 

UMAP as part of the MS lineage (Figure 2.2A, B). Within this lineage, we used 

expression of pha-4 to annotate the anterior granddaughters of MS (MSaa and MSpa) 

and hnd-1 to annotate the posterior granddaughters (MSap and MSpp) (Figure 2.2C). 

We applied this same logic iteratively across the different UMAPs and lineage marker 

genes to annotate each branch with its lineage identity. 

In most cases, branches in the progenitor lineage UMAPs corresponded directly 

to sister cells in the lineage (Figure 2.2D, E), but some branches were unclear or 

misleading, and marker gene expression was critical to annotate lineages correctly. For 

example, ABpxpaaaa and ABpxpaapa are cousin lineages, but appear to branch as 

sisters in the UMAP trajectory, and the same is true for their sisters (ABpxpaaap and 

ABpxpaapp) (Figure 2.2D). In other cases, such as the ABpxppap lineage (Figure 2.2D), 

marker gene combinations were required to annotate lineages that were not contiguous 

with their parent or sister lineages in the UMAP. These misleading branches 

demonstrate the importance of having independent expression or lineage data to 

correctly interpret trajectories visualized in low-dimensional embeddings of sc-RNA-seq 

data. 

To complete our annotations, we used UMAPs of selected subsets of cells with 

embryo time <= 350 or 400 minutes to reconstruct trajectories leading from the 

grandparents and parents of terminal cells to their terminal descendants (Supplemental 

Figure 2.17). Most terminal cell types were thus identified by two methods: first using 

marker genes for the differentiated cell type, and second by following UMAP trajectories 

from the cell’s progenitors. Notably, in all cases, the cell type predictions of these two 

mostly independent methods were concordant.  
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In total, we annotated 502 distinct cell lineages. Most lineage annotations 

correspond to a symmetric pair of cells, with the exception of some terminal cell types in 

which 3-18 cells converge to a homogenous transcriptomic state and could not be 

further resolved. Our annotations account for 1,068 out of 1,228 individual branches in 

the C. elegans embryonic lineage (Supplemental Figure 2.18), excluding the 113 

branches that lead to programmed cell death. Combined with the dataset of Tintori et al. 

(19), which profiles the 1- to 16-cell stages, we now have a near-complete molecular 

atlas of C. elegans embryogenesis. 

The lineages included in our atlas partially overlap with the Tintori et al. dataset 

(19) at the 16-cell stage. Gene expression profiles for lineages annotated in both 

datasets were concordant (Supplemental Figure 2.19). Additionally, gene expression 

profiles for terminal cells in our data were concordant with previously published 

microarray data (191) (Supplemental Figure 2.20). 

 

Bifurcating cell fates and multi-lineage priming 

Developmental trajectories in which a parent cell divides to produce two terminal 

daughter cells of different cell types are a basic type of cell fate decision. Bifurcations 

like these are common in neuronal lineages in C. elegans, such as those that produce 

ciliated neurons. To examine the molecular basis for such developmental decisions, we 

used recursive UMAP projections of ciliated neurons (Figure 2.3A) to identify 

developmental trajectories for all but one of the 22 ciliated neuron types and their 

parents, missing only the PHA phasmid neurons. The distinction between neuroblasts 

and terminal neurons was supported by embryo time estimates consistent with terminal 
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cell division times (192), by the expression patterns of cell cycle associated genes and 

transcription factors (Figure 2.3B), and by the structure of the UMAP projection. A 3D 

version of the UMAP featured better continuity for several trajectories, including those 

connecting the ASG-AWA, ADF-AWB, and ASJ-AUA neuroblasts with their daughter 

cells, as well as the branching of the laterally asymmetric left and right ASE neurons 

(Supplemental Figure 2.21). 

To identify potential regulators of cell fate decisions, we identified genes that 

were differentially expressed between the branches of each bifurcating ciliated neuron 

lineage. The lineage of the ASE, ASJ, and AUA neurons (spanning embryo time ~215-

650 minutes) serves as a representative example (Figure 2.3C). About 3-4 TFs are 

specific to each terminal neuron type in this lineage (Figure 2.3D). Similar numbers of 

branch-specific TFs were observed for other lineage bifurcations (Supplemental Figure 

2.22). Beyond these simple cases, we also found several TFs that were expressed in a 

parent cell and had expression selectively maintained in one daughter but not the other. 

For example, the TFs ceh-36/37/43/45, ham-1, and hlh-3 are all co-expressed within 

single ASE-ASJ-AUA neuroblast cells. ceh-36/37 and hlh-3 expression was maintained 

in only one daughter of this neuroblast, the ASE parent, while ceh-43/45 and ham-1 

expression was maintained only in the other daughter, the ASJ-AUA neuroblast 

(Supplemental Figure 2.23). 

This pattern, where a progenitor cell co-expresses genes specific to each of its 

daughters, has been termed “multilineage priming” and has been observed in several 

organisms and developmental contexts (174, 193-198). Our transcriptomic atlas of the 

C. elegans cell lineage allows us to provide an unbiased quantification of the prevalence 

of multilineage priming throughout the organism’s ectoderm and mesoderm (we lack 
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sufficient resolution in our annotations of the endoderm, which produces only one cell 

type, the intestine). There are 172 instances in which we have data for a parent cell and 

both of its distinct daughters. Of these, 52% exhibit multilineage priming. Multilineage 

priming events are distributed throughout several generations of both the ectoderm and 

mesoderm (Supplemental Figure 2.24), demonstrating that it is a common and pervasive 

mechanism of gene regulation. The expression patterns of many TFs involved in 

multilineage priming, e.g. hlh-3 (Supplemental Figure 2.23D), are confirmed by the 

movies in EPiC (17).  

Transcription factors that are both required for neuron type specification and 

have expression maintained throughout the lifetime of the neuron are referred to as 

“terminal selectors” (198). To identify potential terminal selectors, we looked for 

transcription factors that were 1) expressed in a neuron type but not its sister in the 

embryo and 2) expressed in the same neuron type at the L2 stage. This analysis 

replicated 23 known neuron-TF associations (198) and identified 116 novel associations. 

Other known associations may have been missed due to the extreme sparsity of the L2 

stage data, and the fact that many terminal selectors are expressed at low levels in fully 

differentiated neurons, or are expressed in both daughters of a terminal division. In 

cases where a neuron’s sister undergoes programmed cell death, we looked for TFs that 

are both enriched in the terminal cell’s most recent ancestor that has a surviving sister 

cell (compared to that sister), and also have expression maintained throughout the 

lifespan of the terminal neuron. This revealed novel associations, including ceh-6 for 

AVH, ceh-8 for RIA, unc-62 for RIC, and lin-11 for RIC and RIM, in which the putative 

terminal selector TF is expressed in a neuroblast before the terminal cell is produced, 

suggesting that these lineages commit to a cell fate early. 
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Only two neurons (ASE and AWC) are known to have left-right asymmetric gene 

expression (199, 200). For both neuron types, the lineages of the left and right neurons 

diverge in the early embryo at the 4-cell stage (< 50 minutes). Asymmetric gene 

expression in our data, however, emerges only much later in embryogenesis. The 

transcriptomes of ASEL and ASER diverged in our UMAP at ~650-700 minutes, with lim-

6 expressed specifically in the ASEL branch, consistent with previous studies (201, 202). 

AWC left/right asymmetry occurs stochastically, with one neuron becoming “AWC-ON” 

and the other becoming “AWC-OFF” (200). We identified a small cluster in the UMAP 

with embryo time >700 minutes as AWC-ON based on srt-28 expression (Figure 2.3A) 

(203). AWC-OFF is putatively part of the main AWC trajectory. No evidence of left/right 

asymmetry was observed in neurons besides ASE and AWC. 

 

Transcriptional convergence of co-fated lineages 

While most bilaterally symmetric cells were not distinguishable by UMAP (as expected), 

several cell types with >2-fold symmetry are produced by multiple non-symmetric lineage 

inputs. These lineage inputs tended to cluster separately in our progenitor cell UMAPs, 

while in our late-cell tissue UMAPs, we saw almost no evidence of heterogeneity within 

the terminal cell types that they produce. This difference suggested that the 

transcriptomes of these co-fated lineages were converging during differentiation. 

One example of apparent molecular convergence of cells from distinct lineages 

was the IL1-IL2 neuroblasts. The six IL1 and six IL2 neurons are produced by three 

symmetric pairs of neuroblast lineages. Each neuroblast pair produces a pair of 

bilaterally symmetric IL1 neurons, and likewise a pair of IL2 neurons. A UMAP of IL1/2 
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neurons and progenitors revealed trajectories for these neuroblasts that converge 

gradually over their lifespan (Figure 2.4A). The transcription factor ast-1 was transiently 

expressed at extremely high levels (>10,000 TPM) during this process, suggesting that it 

might play a role in homogenizing the IL1/2 neuroblast transcriptomes (Figure 2.4B). 

Correspondingly, expression of genes differentially expressed between the input 

lineages decreased over time, while expression of genes specific to terminal neurons 

increased (Figure 2.4C-D). We observed similar lineage convergence via continuous 

gene expression trajectories for other cell types, including hypodermis (Supplemental 

Figure 2.8), head body wall muscle (Supplemental Figure 2.17), and GLR cells 

(Supplemental Figure 2.17).  

Like the IL1/2 neurons, IL socket glia (ILso) are produced by three symmetric 

pairs of lineages. In contrast to the examples discussed above, trajectories formed by 

the ILso progenitors and their terminal descendants were discontinuous in UMAP space 

(Supplemental Figure 2.25). Discontinuous trajectories were also observed for several 

other cell types from multiple tissues, including other glia, several neuron types, the 

excretory gland, coelomocytes, and somatic gonad precursors (Z1/Z4) (Supplemental 

Figure 2.25). Several lines of evidence suggest that these discontinuities reflect sudden 

changes in the transcriptome rather than technical artifacts of sc-RNA-seq or UMAP. 

Discontinuous trajectories had more genes differentially expressed between the parent 

and daughter cells than continuous trajectories (Supplemental Figure 2.26). Almost all 

discontinuous trajectories were observed in lineages where a parent cell gives rise to 

two daughters of different broadly-defined cell types, e.g. a glia and a non-glial cell, or a 

ciliated neuron and a non-ciliated neuron (Supplemental Figure 2.26). These 

discontinuities were seen in both the global and the tissue-specific UMAPs, and with 
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different UMAP parameters. Finally, for most discontinuous trajectories, cells had a 

continuous distribution of embryo times (Supplemental Figure 2.27). However, a few 

trajectories, such as that of the BAG neuron, had gaps in the embryo time distribution 

indicative of potential sampling bias. 

Body wall muscle (BWM) was exceptional in that lineage-related heterogeneity 

persisted throughout differentiation. BWM is produced by multiple distinct lineages (C, D, 

MS) and occupies a wide range of positions along the anterior-posterior (A-P) axis of the 

animal. A UMAP of BWM cells identified distinct trajectories for the 1st row of head BWM 

vs. all other BWM (Figure 2.4E). The non-1st-row trajectory was formed by input 

trajectories that corresponded to lineages and progressed in parallel along the temporal 

axis. Using marker genes that are expressed in domains along the A-P axis (17, 204-

206), we divided BWM cells in the UMAP into six “bands” (Figure 2.4E) and identified the 

specific anatomical cells present in each band (Figure 2.4F). We found that the Jensen-

Shannon (JS) distance, a measure of transcriptome difference, between the 

transcriptomes of posterior BWM (C lineage) vs. both the 1st and 2nd rows of BWM 

(D/MS lineage) did not decrease over time (Figure 2.4G), indicating that BWM 

heterogeneity persists throughout differentiation. 

 

Temporal dynamics of the lineage-transcriptome relationship 

The presence of discontinuities between progenitor cells and terminal cells in the UMAP 

projections suggested that the terminal division could mark a shift from lineage-

correlated to fate-correlated gene expression. We asked how well the distance between 

two cells in the lineage predicts the difference between their transcriptomes (as defined 
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with the JS distance). We focused on the AB lineage, which produces mostly ectoderm 

and accounts for ~70% of the terminal cells in the embryo. The AB lineage undergoes 

roughly synchronized cell divisions, allowing us to group cells by generation. For 

example, we refer to the 32 cells produced by 5 divisions of AB as “AB5” and so on. 

In AB5 (early/mid-gastrulation; 50-cell stage), the earliest stage where our 

lineage annotations were near-complete, sister cells were more similar than distant 

relatives, but the difference was not large (Figure 2.5A). In AB6 (mid-gastrulation; 100-

cell stage) and AB7 (late gastrulation; 200-cell stage), the transcriptomes of sister cells 

become more similar than in AB5, while those of distant relatives become more 

divergent, resulting in a strong correlation between transcriptome distance and lineage 

distance. In AB8 (350-cell stage), most epidermal cells exit the cell cycle and begin 

terminal differentiation, while neuron/glia progenitors continue for 1-2 more cell divisions. 

AB8 thus features a bimodal distribution of transcriptome JS distances: terminal 

epidermal cells become highly distinct from neuron/glia progenitors, but cells within each 

group are more similar (Supplemental Figure 2.28). Finally, most neuron/glia progenitors 

in AB8 produce two terminal daughters in AB9 that have distinct cell fates and a much 

weaker lineage-transcriptome correlation than in earlier generations. 

Together, these statistics suggest that progenitor cells develop strong expression 

signatures of their lineage identity, and that these signatures are rapidly lost or 

overshadowed by new expression at the time of the terminal division. An analysis of 

cells from the mesoderm (MS lineage) replicated the trends observed in the ectoderm 

(Supplemental Figure 2.29A). 
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 To summarize the strength of the lineage-transcriptome correlation in a cell 

generation as a single number, we developed a statistic analogous to the concept of 

pseudo-R2 in generalized linear regression models. Consistent with the above analysis, 

we find that the extent to which lineage predicts the transcriptome increases throughout 

gastrulation, peaks at 55% in AB7, and then falls to 18% after terminal differentiation in 

AB9 (Figure 2.5B). Next, we asked how much of the total pseudo-R2 for one cell 

generation was attributable to gene expression signatures associated with each 

preceding cell generation. For cells in AB5-8, the largest contributor to pseudo-R2 was 

the identity of their ancestor in the AB3 generation (Supplemental Figure 2.30). This is 

interesting because many of the clades formed at AB3 share a broadly-defined tissue 

fate. For example, the clade founded by the cell ABala produces only neurons and glia, 

while the clade founded by the cell ABarp produces mostly (but not exclusively) 

epidermal cells. The second largest lineage signal was from the identity of a cell’s parent 

in the preceding generation (i.e. the tendency of sister cells to be more similar than 

cousins). Thus, both broad and fine-grained structure in the lineage contribute towards 

shaping the transcriptome. 

To investigate the potential regulatory mechanisms that differentiate sister cells, 

we identified transcription factors (TFs) that distinguish each cell in AB5-9 from its sister. 

The median number of these “lineage signature TFs” per cell increased over time, 

ranging from 1.5 in AB5 to 14 in AB9 (Figure 2.5C). A substantial number of lineage 

signature TFs (~40-50%) had expression selectively maintained in only one of a cell’s 

two daughters (Figure 2.5D). In other words, TFs that distinguish a cell from its sister in 

one generation are frequently re-used to distinguish that cell’s daughters from each 

other. Sister cells are also differentiated by the expression of new TFs not present in 
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their parents. The proportion of lineage signature TFs that are newly expressed ranged 

from 33-61% and increased over time in AB6-9 (Figure 2.5E). Temporal dynamics of 

lineage signature TFs were similar in the mesoderm (Supplemental Figure 2.29). 

Taken together, these results highlight the incremental nature of cell fate 

decisions: every terminal cell is the result of a series of lineage bifurcations, each of 

which, on average, involves multiple differentially expressed TFs. 

 

Global patterns of gene expression and transcriptome specialization  

Hierarchical clustering of expression levels in all annotated lineages and cell types 

provides a global view of expression dynamics for all genes in our dataset. A heatmap of 

pre-terminal lineage expression profiles (Supplemental Figure 2.31) does not reveal 

large clusters of genes specific to specific lineages, other than one cluster of genes 

specific to the early C and D lineages. Similarly, most marker genes used for lineage 

annotation are not part of large clusters of co-expressed genes. The clusters that do 

form are composed of early tissue-specific genes. The lack of cluster structure in the 

heatmap suggests that differential fates for tissue sub-lineages are specified by relatively 

small sets of genes. By contrast, a heatmap of terminal cell type expression profiles 

(Supplemental Figure 2.32) has more obvious structure. Cells in each major tissue 

express ~500-1500 tissue-enriched genes. There is little reuse of tissue-enriched genes 

between tissues other than hypodermis, which shares many genes with glia and 

intestine. Neuron subtypes and other specialized cells (such as the hmc or M cell) are 

typically distinguished from other cells within their tissue by expression of <20-300 
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genes. Finally, there are substantial temporal changes in expression, especially in 

muscle and hypodermis. 

We observed substantial variation between cells in the Gini coefficient, which 

measures how unequally different genes are expressed in a given cell type 

(Supplemental Figure 2.33A). Hypodermis, seam cells, and the pharyngeal gland 

express small sets of cell type specific genes at very high levels (high Gini coefficient), 

while the intestine and germline feature diverse gene expression patterns (low Gini 

coefficient). In several cell types, such as the pharyngeal gland, increases in Gini 

coefficient over time coincide with decreases in the number of TFs expressed per cell 

(Supplemental Figure 2.33B). Families of TFs also exhibit differential expression 

patterns over time and across lineages. Nuclear hormone receptors (NHRs) are on 

average activated later in development than other TF families, such as Forkhead and 

Homeodomain TFs (Supplemental Figure 2.33C). Hypodermis and intestine express 

many distinct NHRs, while expression of Sox family TFs is largely restricted to neurons, 

glia and pharynx (Supplemental Figure 2.33D). 

 

Discussion 

The cells of C. elegans are limited in number and invariant in lineage and cell fate, 

making it feasible to conduct comprehensive, whole-organism investigations. Yet within 

this limited repertoire of cells exists an impressive diversity of cell types, which work 

together to produce complex anatomical structures and behaviors. This study and our 

previous work (17, 58) have shed light on the molecular basis for the specification of 

these cell types, but are only the first step toward a comprehensive understanding of the 
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molecular basis of development. We hope that this resource will help guide future 

projects in the C. elegans community. 

In contrast to developmental sc-RNA-seq datasets from other species, this 

dataset links gene expression trajectories to the exact cell lineages they correspond to, 

allowing steps in the process of differentiation to be associated with specific cell division 

events. Thus, our data provide a quantitative portrait of Waddington’s landscape (207) 

for a whole organism. The abruptness of many cell fate decisions in C. elegans, with 

many distinct terminal cell types becoming distinguished only in the final embryonic cell 

division, contrasts, however, with the smooth landscape in Waddington’s illustrations 

and warrants further investigation. 

We observe convergence of gene expression patterns in many instances where 

distinct cell lineages produce identical or related cell types. Data from a recent atlas of 

mouse organogenesis (59) suggests that this phenomenon is also prevalent in 

vertebrates. For example, myocytes in the mouse atlas are produced by two convergent 

trajectories, and excitatory neurons are produced by several trajectories.  

Our analysis highlights two important challenges that will be faced by efforts to 

reconstruct the cell lineages of other organisms using single cell RNA-seq. First is the 

difficulty of accurately connecting developmental trajectories that start after the 

convergence of lineages with similar cell fates to trajectories that span earlier stages of 

development. A naive interpretation of the UMAP projection of the full dataset (Figure 

2.1A) could lead to inferred trajectories that are inconsistent with the correct lineage (for 

example, incorrectly concluding that hypodermis and seam cells are produced from a 

common ancestor that previously diverged from the progenitors of neurons). Second is 
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the difficulty of constructing continuous trajectories for lineages that undergo abrupt 

changes in gene expression. In our data, progenitor cells that give rise to glia, excretory 

cells, and non-ciliated neurons were more often than not disconnected to their terminal 

daughters in UMAP space (Supplemental Figure 2.25, Supplemental Figure 2.26), 

reflecting the fact that many of these lineages only commit to a terminal fate after their 

final cell division.  

Due to these challenges, we anticipate that constructing end-to-end trajectories 

of vertebrate organogenesis will require single cell RNA-seq to be integrated with 

experimental lineage tracing methods (208). It will also require improved computational 

methods that can model heterogeneity among poorly-differentiated progenitor cells and 

highly-differentiated cell types in an integrated manner.  

Between this study, our previous study of the L2 stage (58), and earlier studies of 

the 1 to 16-cell stage embryos (18, 19), a large portion of the early C. elegans life-cycle 

has now been profiled by single cell transcriptomics. However, more datasets will be 

needed to complete missing stages, including other larval stages and the adult soma 

and germline. In the future, single cell profiling of different strains or species will be a 

useful approach to examine the evolution of cell types and their expression programs. All 

of these datasets will ideally be integrated into a single visualization platform, such as 

VisCello (170), to allow full tracking of cell trajectories from fertilization through the end 

of life. A greater challenge will be to discover the precise mechanisms that produce 

transcriptomic outputs. Single cell transcriptome analysis of mutants will likely need to be 

integrated with new single cell multi-omic technologies (209) to bring mechanistic studies 

to a whole-organism scale.  
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Materials and Methods 

Sample preparation 

To obtain a broad range of embryo ages, including early stages, roughly 

synchronized C. elegans adults (N2 strain) were obtained by releasing embryos with 

standard hypochlorite treatment and letting the L1 larvae hatch and undergo growth 

arrest on unseeded plates. Starved L1s were transferred to NGM plates seeded with E. 

coli OP50 bacteria. Embryos were released from these synchronized young adults using 

hypochlorite treatment followed by three washes with L15-10 media. To generate cell 

suspensions, embryos were then treated with 0.5 mg/ml chitinase at room temperature 

until the shells were dissolved (30-40 minutes at ~22 °C) followed by dissociation of the 

cells using a 3 ml syringe fitted with a 21 gauge 1¼ inch needle until >80% of embryos 

were disrupted. The cell suspension was then passed through a 10 µm filter, washed in 

phosphate buffered saline (PBS) and finally resuspended in PBS. An estimated 14,000 

cells were loaded immediately onto a 10x Chromium instrument. The trypan blue 

negative viable cell count was estimated using a hemocytometer and was >84% for all 

samples.  

To sample later stages more deeply, more tightly synchronized embryo 

populations (used for the 300-minute, 400-minute, and 500-minute time series shown in 

Figure 2.1B) were obtained through two cycles of bleaching adult worms (strain VC2010, 

a strain derived from N2 that has been completely sequenced). On the first round of 

synchronization, populations of mixed stage embryos recovered by hypochlorite 

treatment of mixed populations were hatched overnight in egg buffer (118 mM NaCl, 48 

mM KCl, 3 mM CaCl2, 3 mM MgCl2, 5 mM HEPES pH 7.2) with gentle shaking. The 
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hatched L1s were plated onto 150 mm peptone rich NGM plates seeded with E. coli 

NA22 at no more than 100,000 worms per plate. When worms reached the adult stage, 

the number of embryos inside the adults was monitored until most had about 4 embryos 

on each gonad arm. The adult worms were collected and treated with hypochlorite to 

release embryos. The embryos were again allowed to hatch in the absence of food at 20 

°C for 12 hours yielding a more tightly synchronized population of L1 worms. Around 

250,000 L1 larvae were plated onto four 100 mm petri plates seeded with NA22 bacteria 

and allowed to develop at 20 °C. As the worms reached the young adult stage, the 

population was closely monitored. When about 20-30% of the adults had a single 

embryo in either arm of the gonad, worms were subjected to hypochlorite treatment. The 

time hypochlorite was added to the worms was considered t = 0 (see Warner et al. (210) 

for typical age distributions). The capture time was taken as when the cells were loaded 

onto the 10x Chromium instrument. The embryos were allowed to develop in egg buffer 

until one hour prior to capture time. The embryos were collected by centrifugation, 

resuspended in 0.5 ml egg buffer and 1 ml chitinase (1 U/ml), and transferred to 30 mm 

petri dishes. The degradation of eggshell was monitored; after ~20 min (when about half 

the eggs had lost the shell), the suspension was transferred to a 15 ml falcon tube and 

centrifuged at 200 g for 5 min. The chitinase solution was aspirated; a solution of 200 ul 

pronase (15 mg/ml) together with 0.5 ml egg buffer was added to the embryo pellet. The 

vitelline membrane was disrupted and the cells released by repeated passage through 

21 gauge 1¼ inch needle attached to a 1 ml syringe. When sufficient single cells were 

observed, the reaction was stopped by adding 1 ml of egg buffer containing 1% BSA. 

Cells were separated from intact embryos by centrifuging the pronase treated embryos 

at 150 g for 5 min at 4 °C. The supernatant was transferred to a 1.5 ml microcentrifuge 
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tube and centrifuged at 500 g for 5 min at 4 °C. The cell pellet was washed twice with 

egg-buffer containing 1% BSA. 

Single cell capture and library preparation followed 10x Genomics published 

protocols. For each channel, 14,000 C. elegans cells were mixed with reverse 

transcriptase reaction solution and loaded immediately onto the capture chip to minimize 

the time that the cells spent in the reverse transcription cocktail. The exception was the 

first 500 minute sample, when three channels were loaded with 14,000, 4,666, and 

1,555 cells respectively. 

 

Read mapping and gene expression quantification 

The single cell RNA-seq data was processed using the 10x Genomics CellRanger 

pipeline. Reads were mapped to the C. elegans reference transcriptome from 

WormBase (188), version WS260. We noticed that many 3’ UTR annotations in the 

reference transcriptome were too short, causing genic reads to be called as intergenic, 

affecting gene expression quantification. To address this, we also mapped reads to 

modified versions of the WS260 transcriptome in which all 3’ UTRs were extended by 

either 100, 200, 300, 400, or 500 bp (these 3’ UTR extensions were cut short if the 

extended UTR would overlap with a downstream gene). 

We then defined a set of criteria that specified for each gene whether it was 

beneficial to extend the 3’ UTR for that gene, and if so, by how much. For each gene, we 

counted the number of reads across the entire dataset mapped to that gene for each 

version of the reference. We computed the ratio of the read counts from the 500 bp 3’ 

UTR extended reference to the baseline reference. If this ratio was < 1.2, or if the total 
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read count for the gene in the 500 bp 3’ UTR extended reference was < 20, we used the 

baseline 3’ UTR annotation for that gene. Otherwise, we used the shortest 3’ UTR 

extension (100, 200, 300, 400, or 500 bp) that gave at least 90% of the read count gain 

that was given by the 500 bp 3’ UTR extension. 

We repeated this process with reads from our previous study on L2 worms (58). 

If a gene met our criteria for extending the 3’ UTR based on embryo reads, we used the 

extension length determined by the embryo reads. If a gene did not meet our criteria for 

extending the 3’ UTR based on embryo reads but did meet the criteria based on L2 

stage reads, we used the extension length determined by the L2 stage reads. After 

deciding on how much to extend each gene’s 3’ UTR, we made a final reference 

transcriptome incorporating all of the per-gene 3’ UTR extension lengths. We then used 

this final reference transcriptome as input to the CellRanger pipeline to generate gene-

by-cell UMI count matrices. 

 

Criteria for distinguishing cells from empty droplets 

The default barcode filtering algorithm in the 10x CellRanger pipeline can fail for 

experiments where the cells profiled are highly variable in size, resulting in a non-normal 

distribution of UMIs per cell. This is the case for our data. The total volume of the C. 

elegans embryo remains constant as cells divide within it, making cells of later 

generations smaller than those from earlier generations. Additionally, some cell types 

are more prone to damage and mRNA leakage than others. Neurons in particular usually 

have lower UMI counts than other cell types. To account for these factors, we manually 

set UMI count thresholds to distinguish cell barcodes from empty droplet barcodes on a 
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sample-by-sample basis, based on the knee plots reported by CellRanger. The UMI 

count thresholds ranged for 700-1100. 

 While performing downstream analyses, we noticed that several neuronal, glial, 

rectal, and excretory cell types were missing from our data. We discovered that this was 

due to cells with extra low UMI counts (< 700 UMIs) being excluded by our UMI count 

thresholds. Lowering the UMI count threshold for all cells, however, would include low-

quality, potentially damaged cells for other cell types where the average UMIs/cell is 

higher. To integrate the low-UMI count cells, we: 

1. made a set of all cells with UMI count >= 500 (vs. the previous threshold of 700) 

2. ran UMAP dimensionality reduction (described below) on this set of cells 

3. identified clusters of cells corresponding to neurons (using the pan-neuronal 

marker genes sbt-1 and egl-21) or glia, rectal, and excretory cells (using a variety 

of markers, see Table 2.1) 

4. made new UMAPs from just neurons, just glia and excretory cells, or just rectal 

cells 

5. filtered putative doublets (i.e. cells also expressing markers of non-neuronal cell 

types in the neuron UMAP, or cells also expressing markers of non-

glia/hypodermal cell types in the glia UMAP) 

6. made whitelists of the remaining cells 

These whitelisted low-UMI count cells were then included when generating the final 

tissue UMAPs presented in this paper (Figure 2.3A, Supplemental Figures 2.9-2.11, 

2.13). They are not included in the original global UMAP (Figure 2.1A). 
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Dimensionality reduction 

For each dimensionality reduction (both for the global analysis of all cells and the tissue 

specific analyses), the first step was to perform PCA and adjust the PCA results to 

correct for batch effects. We performed PCA on the size-factor corrected, log 

transformed expression matrix, typically with 50-100 PCs depending on the dataset. 

For batch effect correction, we noted that the predominant source of batch 

effects in our data appeared to be background contamination where RNA from lysed or 

damaged cells enters droplets in the 10x sc-RNA-seq apparatus that contain intact cells, 

causing each cell to receive reads from exogenous RNA. For each experimental sample, 

we computed the gene expression distribution of this background RNA by summing the 

read counts for cell barcodes that had < 50 UMIs, i.e. empty droplets. We transformed 

the background RNA count vector for each sample as if it were the count vector for a 

cell, and projected this vector into the PCA space computed from real cells. We then 

computed the dot product of each real cell PCA coordinate vector with each sample’s 

background vector, calling this the “background loading” of a given cell for a given 

sample (each cell actually comes from exactly one sample, but computing each cell’s 

loading for each sample’s background made the next step 

mathematically/computationally simpler). Next, we fit a linear regression model, real cell 

PCA coordinate matrix ~ cell background loadings, and called its residuals the 

“background corrected PCA matrix.” This background correction method is similar to, but 

developed independently of, a recently published method (211). 

We found that the UMAP (116, 187) algorithm, which provides a way to project 

the data into a low-dimensional space, better maintains the topology of the dataset 

compared to the commonly used t-SNE algorithm. In our dataset, UMAP often creates 
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long, continuous trajectories, while t-SNE clusters distinct cell types but does not clearly 

show the relationships between them. UMAP and t-SNE have been compared in the 

context of sc-RNA-seq by Becht et al. (187), but this paper focuses on the empirical 

performance of the algorithms and does not explain precisely how and why the 

mathematical differences between the algorithms underlie their qualitatively different 

results. We chose UMAP over t-SNE based on our subjective evaluation of how the two 

algorithms’ results compared to our expectations given the known C. elegans lineage. 

 We reduced the dimensionality of the background corrected PCA matrix to 2 or 3 

dimensions using UMAP, using the wrapper function for this algorithm provided by the 

Monocle software package, version 3 alpha (the reduceDimension function). The UMAP 

parameters were: metric = “cosine”, min_dist = 0.1, n_neighbors = 20. 

Lastly, cells in the UMAP space were clustered using the Louvain algorithm 

(121). The Louvain algorithm is one of several algorithms that group nodes in a 

weighted, undirected graph into clusters in a way that seeks to maximize a statistic 

called “modularity.” Modularity is essentially the difference between the total edge weight 

between nodes assigned to the same cluster and the expectation of the total within-

cluster edge weight if all edges were randomized. Exact optimization of modularity is 

computationally intractable for large graphs, so the Louvain algorithm uses a heuristic. In 

the context of our study, the graph used for the Louvain algorithm is a k-nearest 

neighbor graph (k = 20) constructed from cell coordinates in UMAP space. 
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Doublet identification 

We used two complementary methods to identify doublets. The first method involved 

identifying clusters of doublets in iterated UMAP projections of the data on the basis of 

co-expression of high-confidence cell type specific marker genes, reported in WormBase 

(188), for >1 cell type (e.g. a cluster expressing the muscle markers myo-3 and pat-10 

along with the neuron markers egl-21 and sbt-1 was considered a muscle-neuron 

doublet cluster). We applied this simple approach to a global UMAP of all cells and 

iterated UMAPs of tissues / related groups of cells from the global UMAP (e.g. muscle, 

intestine, ciliated neurons, etc.). 

 The second approach involved logistic regression models, one for each broadly-

defined terminal cell type (e.g. body wall muscle, intestine, ciliated neurons, non-ciliated 

neurons, etc.), that predict whether a cell is part of that cell type or not. We fit one such 

model for each broadly-defined cell type and used the models to score each cell for the 

probability of it being a member of each broadly-defined cell type. Cells that had >= 2 

cell types with a >= 20% predicted probability of the cell being a member of that cell type 

were considered doublets. Clusters in the UMAP projections that were enriched for cells 

considered doublets by these regression models were manually examined, and in some 

cases manually filtered. 

 Due to the abundance of cell type specific marker genes, we estimate that we 

were able to filter out almost all terminal cell type doublets. Residual expression of 

genes from one cell type in a cluster corresponding to another cell type appears to be 

driven by background RNA contamination, not doublets. Our approach is less likely to 

catch doublets between progenitor cells that do not yet express marker genes of 

differentiated terminal cell types. For earlier-stage embryos however, the cell 
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dissociation protocol works more reliably than for late-stage embryos, so we expect the 

doublet rate to be close to the reported rate for the 10x Genomics Chromium platform, 

which is low (~4.5% given ~9k cells loaded per lane). 

 While performing downstream analyses, we noticed that a few cell types were 

missing from our data, including rectal epithelial and gland cells, the excretory duct and 

pore, and the T cell. These were erroneously excluded by our doublet filter due to co-

expressing genes that were enriched in two or more tissues (e.g. co-expressing 

hypodermis-enriched genes with pharynx-enriched genes). We used marker genes to 

identify these cells in a non-doublet-filtered global UMAP, whitelisted them, and included 

them in the appropriate tissue UMAPs (Figure 2.3A, Supplemental Figures 2.9-2.11, 

2.13). These cells are not included in the global UMAP (Figure 2.1A). 

 

Embryo time estimation 

For each cell, we estimated the age of the embryo that the cell came from (“embryo 

time”) based on Pearson correlation of its transcriptome with bulk RNA-seq time series 

data from Hashimshony et al. (18). Their data show that the majority of genes that 

change expression over time in any given lineage are not lineage specific. Thus, we first 

defined a list of genes with time-dependent expression patterns, requiring an auto-

correlation greater than 0.6 and standard deviation greater than 1.5 across bulk RNA-

seq time points (units = log TPM). Pearson correlation was then computed between log-

scaled single cell and bulk data using only the time-dependent genes. We observed for 

non-multiplet cells, the Pearson correlation across time shows a strong peak pattern 
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(Supplemental Figure 2.1A). Thus, by fitting a Loess regression curve and finding its 

maximal point, we were able to assign each cell with its most correlated bulk time point.  

Embryo times estimated based on data from Hashimshony et al. (18) 

approximately agree with embryo collection times from our experimental design 

(Supplemental Figure 2.1B), and also have a strong correlation with embryo times 

estimated based on data from Boeck et al. (212) (Supplemental Figure 2.1C). To further 

validate our embryo time estimates, we computed for each anatomical cell in the C. 

elegans embryonic lineage the 5th percentile of the embryo times for the set of sc-RNA-

seq cells that we annotated as corresponding to that anatomical cell. This effectively 

estimates the birth time of the anatomical cell. These cell birth time estimates correlated 

well with cell birth time estimates derived from live imaging (192) (Supplemental Figure 

2.1D). 

In the Waterston lab samples, embryos were incubated for a specific amount of 

time after hypochlorite treatment. However, each sample has some outlier cells with 

abnormally low embryo time estimates, i.e. lower than the incubation time. There are 

several biological and technical factors that could produce these outlier cells. The 

developmental rate of C. elegans embryos can vary by over 2-fold depending on 

temperature, and may also be influenced by differences in crowding, hypoxia, or the 

effects of hypochlorite and chitinase treatment. Consistent with this, embryo times 

estimated using data from Boeck et al (212), which was collected using methods more 

similar to those used in this study, were systematically later than embryo times 

estimated using data from Hashimshony et al. (18) (Supplemental Figure 2.1C). 

Alternatively, some cells may have embryo time estimates that are lower than the true 

developmental age of the embryo they came from. Sparsity in the single cell data 
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contributes to noise in the estimates. Finally, the most extreme outlier embryo time 

estimates in each sample are for germline cells. The germline maintains expression of 

many genes that turn off during early embryogenesis in all other cells. This causes 

embryo time estimates based on correlation to bulk RNA-seq to be inaccurate for this 

cell type. 

 

Per-cell background correction and filtering 

Our method for correcting for background RNA contamination, described in the section 

above titled “Dimensionality reduction”, works solely on the level of PCA coordinates and 

does not change the underlying gene-by-cell expression matrices. We used a separate 

background correction method to adjust these gene expression matrices on a per-cell 

basis for purposes of making plots of gene expression. 

Our per-cell background correction method relies on a panel of cell-type specific 

marker genes that are assumed, based on the literature (and confirmed empirically in 

our data), to be specific to either hypodermis (including seam and P cells) or body wall 

muscle (BWM). The hypodermis-specific genes were: sqt-3, dpy-17, dpy-14, dpy-10, 

dpy-7, dpy-2, dpy-3, bus-8, wrt-2, and noah-1. The BWM-specific genes were: pat-10, 

mlc-3, cpn-3, clik-1, ost-1, mlc-1, mlc-2, tni-1, ttn-1, unc-15, and myo-3. 

The gene expression distribution for the background contamination of each 

biological sample was estimated by aggregating the reads for cell barcodes that had < 

50 UMIs, which were assumed to correspond to empty droplets in the 10x sc-RNA-seq 

apparatus. The expression level of each gene in the panel was computed for each 

sample’s background, measured in transcripts per million (TPM). Similarly, the 
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expression level of each gene in the panel was computed for each cell, also measured in 

TPM. The background fraction of a cell was estimated as the sum of the expression of 

panel genes in the cell divided by the sum of the expression of panel genes in the 

background distribution for the sample that cell came from. For cells annotated as 

hypodermis, glia, or potential progenitors of those cell types, hypodermis-specific genes 

from the panel were excluded from the computation. Likewise, for cells annotated as 

body wall muscle, intestinal/rectal muscle, or a non-pharyngeal mesoderm cell type, as 

well as progenitors of those cell types, BWM-specific genes from the panel were 

excluded from the computation. For all other cells, all genes from the panel were used. 

The median estimated background fraction across all cells in the dataset was 

17.7%. Putatively damaged cells with an estimated background fraction >= 75% (8.3% 

of all cells, see Supplemental Figure 2.34A) were filtered entirely from all subsequent 

plots and analyses. For the remaining cells, the cells’ gene expression profiles were 

corrected to subtract the contribution from background. A cell’s raw gene expression 

vector (UMI counts) was converted to transcripts per million by dividing each entry by the 

sum and multiplying by one million. The background-corrected TPM value for each gene 

was computed according to the formula: 

background-corrected TPM = 

    max(raw TPM - background fraction * background TPM, 0) 

where background TPM is the expression of the given gene in the background 

distribution for the biological sample that the cell came from. The background-corrected 

TPM values were then rescaled to sum to 1,000,000 and then converted back to 

(pseudo-)counts based on the total UMI count of the cell. Fractional count values were 
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rounded probabilistically (i.e. a value of 2.7 was rounded to 3.0 with a 70% chance and 

to 2.0 with a 30% chance). 

 After background correction, cells with low background fractions and cells with 

high background fractions have near-identical average gene expression profiles 

(Supplemental Figure 2.34B). This indicates that non-background gene expression 

observed in high background cells is not systematically biased compared to low 

background cells. 

 

Differential expression analysis for Figure 2.3D and Supplemental Figure 2.22 

We included four classes of transcription factors (TFs) in the heatmaps of Figure 2.3D 

and Supplemental Figure 2.22. Both figures consider differential expression of TFs 

between different ciliated neuron lineages. For the division of a parent neuroblast into 

two daughter cells, the four TF classes of interest were: 

1. TFs enriched in one daughter vs. the parent and vs. the other daughter 

2. TFs depleted in one daughter vs. the parent and vs. the other daughter 

3. TFs enriched in the parent vs. both daughters and vs. other neuroblasts of the 

same cell generation 

4. TFs enriched in parent vs. other neuroblasts of the same cell generation; and in 

both daughters vs. other terminal cells 

We considered a TF “enriched” in cell set A vs. cell set B if the expression in A was at 

least 3-fold higher than in B; and if the difference in expression was statistically 

significant with q-value < 0.01. We considered a TF “depleted” in cell set A vs. cell set B 

if it was “enriched” in B vs. A. q-values were computed using the Monocle (version 3 
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alpha) function “differentialGeneTest”. Differential expression tests were performed for 

all genes, not just TFs-the non-TF results were discarded, but this was done to produce 

more conservative q-values compared to considering only TF DE tests. Cells with 

embryo time >650 minutes were excluded from all comparisons. Due to limited figure 

space, some TFs that matched the criteria of the four TF classes but had low absolute 

expression levels were excluded from the figure heatmaps. 

 

Derivation of lineage specific and terminal cell type specific genes for Figure 

2.4D 

Lineage specific genes were derived by one vs. rest differential expression analysis on 

the three input branches based on Louvain clustering results and annotations from 

Supplemental Figure 2.15, using “sSeq” (213), as implemented in the cellrangerRkit 

package. Genes associated with IL1/IL2 terminal cell types were derived by comparing 

IL1/IL2 cells to all other ciliated neurons in Figure 2.3A. For each of the gene sets, the 

average TPM across all genes in the set was computed for cells from each of the three 

input branches, binned in 30-minute intervals up to 390 minutes, where the branches 

can no longer be distinguished from each other in the UMAP. Values in each heatmap 

were linearly rescaled to be within the range of 0 to 1. 

 

Pseudo-R2 statistic 

For each anatomical cell annotated in our dataset, we compute an aggregate gene 

expression profile from all of the sc-RNA-seq cells that we annotated as corresponding 



66 
 

to that anatomical cell. This procedure is described in above section titled, “Computing 

aggregate gene expression profiles for cell types and lineages.” The result is that each 

anatomical cell is associated with a vector of relative gene expression values. We refer 

to this vector as the anatomical cell’s “transcriptome.” 

In Figure 2.5B and Supplemental Figure 2.29B, we seek to estimate the extent to 

which the transcriptomes of cells in a given generation of the AB or MS lineages are 

predicted by the lineage. To do this, we have defined a statistic that measures how 

much more similar, on average, are the transcriptomes of sister cells compared to 

random pairs of cells. Specifically, we compute: 

       average Jensen-Shannon divergence between the transcriptomes 

       of pairs of sister cells in the cell generation 

   1 - —————————————————————————————————————————————————————————————— 

       average Jensen-Shannon divergence between the transcriptomes 

       of random pairs of cells in the cell generation 

In the main text and figures, we refer to our statistic as a pseudo-R2 statistic. The 

so-called pseudo-R2 statistics are a family of statistics that have been proposed in the 

context of generalized linear regression models (214) and aim to have similar properties 

to the coefficient of determination, R2, that is commonly used in the analysis of ordinary 

linear regression models. Similarly, the statistic we have defined aims to have similar 

properties to R2, despite not being mathematically comparable to it in a rigorous sense. 

Below, we discuss the similarities between our pseudo-R2 statistic and R2. 

One of several equivalent definitions of R2 for an ordinary linear regression model 

is: 
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  mean squared error of the regression model’s predictions  

   1 - ———————————————————————————————————————————————————————— 

              overall variance of the response variable         

This formula for R2 and our formula for pseudo-R2 are both expressed in terms of a 

fraction subtracted from one. The numerator in our formula for pseudo-R2, which we 

defined in terms of the Jensen-Shannon divergence, can be re-expressed as the 

average prediction error of a certain regression model, analogous to the numerator of 

regular R2.  

Specifically, the numerator in our pseudo-R2 is equivalent to the average 

prediction error of a model that: 

1. seeks to predict a cell’s transcriptome based on the identity of its parent. 

2. measures the deviation between its predicted transcriptome and the observed 

transcriptome for a cell using the Kullback-Leibler (KL) divergence. 

 

Methods used in Supplemental Figure 2.30 

In Supplemental Figure 2.30, we estimate the extent to which the ability of lineage to 

predict the transcriptome in a given cell generation, “generation N”, is a consequence of 

gene expression signatures associated with each of the preceding cell generations 1 to 

N-1. We compute the overall ability of the lineage to predict the transcriptome in 

generation N using the pseudo-R2 statistic described in the previous section. To 

compute the contribution of the parent generation N-1 to the total pseudo-R2 for 

generation N, we use the formula: 
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   (average JS divergence between cells that share a grandparent - 

    average JS divergence between sisters) 

   ——————————————————————————————————————————————————————————————— 

    average JS divergence between random pairs of cells 

This formula evaluates how much more similar are cells that share a parent (i.e. sisters) 

than cells that share a grandparent (i.e. cousins or sisters), and scales this relative to the 

average dissimilarity of random pairs of cells in the same generation. 

Generalizing this formula, we estimate the contribution of the generation N - M 

as: 

   (average JS divergence between cells with lineage distance <= M+1 - 

    average JS divergence between cells with lineage distance <= M) 

    —————————————————————————————————————————————————————————————————— 

    average JS divergence between random pairs of cells 

where the lineage distance between two cells is the number of cell divisions since their 

most recent common ancestor (1 for sisters, 2 for cousins, etc.). 

Using this formula, the sum of the contributions of each ancestor generation 1 to 

N-1 simplifies to: 

   (average JS divergence between cells with lineage distance <= N-1 - 

    average JS divergence between cells with lineage distance <= 1) 

   ——————————————————————————————————————————————————————————————————— 

    average JS divergence between random pairs of cells 
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All cells in generation N have lineage distance <= N-1, so the first term in the numerator 

is equal to the average JS divergence between random pairs of cells (same as the 

denominator). Furthermore, the only cells with lineage distance <= 1 are sisters. Making 

these substitutions, we get: 

   (average JS divergence between random pairs of cells - 

    average JS divergence between sisters) 

    ————————————————————————————————————————————————————— 

    average JS divergence between random pairs of cells 

Which simplifies to our original statistic for total pseudo-R2: 

  average JS divergence between sister cells 

   1 - ————————————————————————————————————————————————————— 

  average JS divergence between random pairs of cells 

This equivalence is a consequence of the following: 

1. When tasked to predict the transcriptomes of two sister cells, a model that 

predicts a cell’s transcriptome based on the identity of its parent effectively 

guesses the midpoint of the two sister cells’ transcriptomes. 

 

2. Therefore, if one measures the deviation between the model’s predictions and 

the observed transcriptomes using KL divergence, then the mean prediction error 

of the model, when applied to pairs of sister cells, is simply the average KL 

divergence between each cell’s transcriptome and the midpoint of it and its 

sister’s transcriptomes. 

 



70 
 

3. By the definition of Jensen-Shannon (JS) divergence, this is the same as the 

average JS divergence between each pair of sister cells’ transcriptomes, which is 

the numerator used in our pseudo-R2. 

 

The denominator of our formula for pseudo-R2, the average JS divergence 

between the transcriptomes of random pairs of cells, is a measure of the overall 

variability in the transcriptomic data. This is analogous to the denominator of regular R2, 

which is also a measure of the overall variability (i.e. the variance) of the response 

variable in an ordinary linear regression model. 

Thus, both the numerator and the denominator in our formula for pseudo-R2 

are qualitatively similar measurements to the numerator and denominator of regular R2. 

 

Computing the adjusted Gini coefficient for Supplemental Figure 2.33A 

The Gini coefficient is biased by sample size (215). Therefore, to adjust for total UMI 

count differences between cells, we first downsampled the data from each cell to a total 

of 500 UMIs (the minimum UMI count across all cells) using a multinomial distribution, 

with probability equal to each gene’s UMI count divided by the total UMI count of the cell. 

We then computed Gini coefficients for each cell using the downsampled data, and used 

the z-score of the adjusted Gini coefficients to compare transcriptome inequality across 

cells. 
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Comparison of data from this study to public single cell dataset 

Due to technical limitations, we have data from relatively few cells prior to the 28-cell 

stage. Therefore, we compared single cell RNA-seq profiles of cells from the 16-cell 

stage collected by Tintori et al. (19) to their corresponding lineages or immediate 

descendants in our dataset (Supplemental Figure 2.19). We downloaded normalized 

expression data (measured in reads per kilobase of transcript per million mapped reads, 

RPKM) from Tintori et al. (19) and computed average log2 normalized expression levels 

for each of their annotated lineages. We then applied the same log2 transformation on 

our normalized gene expression data, and measured pairwise similarity between the 

expression vectors for each lineage using Pearson correlation. To enrich for lineage-

specific signals, we computed correlation using gene sets that had been selected by 

Tintori et al. (19) using an iterative PCA approach. Gene sets 7, 9, and 10 in 

supplemental document S1 of Tintori et al. (19) were used to discriminate 16-cell stage 

lineages. Set 8 was excluded because most germline (P4) specific genes are also 

differentially expressed over time throughout the whole embryo and thus confound time 

with lineage. Intersecting genes from sets 7, 9, and 10 with genes detected in our data, 

we obtained a list of 593 genes that we then used to generate the correlation matrix 

shown in Supplemental Figure 2.19A. Hierarchical clustering was performed on the 

correlation matrix using the pheatmap package with default parameters (216). 

To demonstrate that our data are consistent with Tintori et al. (19) at the level of 

single cells, we repeated their PCA analysis and projected 16- and 28-cell stage cells 

from our dataset onto the PCA space derived from their dataset (Supplemental Figure 

2.19B-E). The distribution and orientation of lineages in the PCA space was similar for 

our and their data. For example, the PCA in the top sub-panel of Supplemental Figure 
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2.19B was computed using all 16-stage cells from Tintori et al. (19) and 421 genes 

(intersection of Set 7 and expressed genes in our data). In the bottom sub-panel of 

Supplemental Figure 2.19B, we projected 292 cells from the 16- and 28-cell stages from 

our dataset using the loading matrix derived from the PCA of the Tintori et al. data (19). 

Germline (P4, Z2/Z3) and endoderm lineage (Ex, Exx) cells from our data are located at 

the left and right-hand sections of the PCA projection respectively, consistent with the 

pattern observed with cells from Tintori et al (19). 

Spencer et al. (191) used microarrays to profile the transcriptomes of C. elegans 

cell types obtained by fluorescent activated cell sorting. For each cell type they profiled, 

they derived a set of genes that are enriched in that cell type compared to all other cells. 

We used these “signature” gene sets to validate our cell type annotation and the 

robustness of our data. First, we downloaded signature gene sets from cell types profiled 

at the embryonic stage from 

https://www.vanderbilt.edu/wormdoc/wormmap/Enriched_genes.html. We then used the 

AUCell package (217) to check for enrichment of Spencer et al. (191) signature genes in 

single cells from our dataset. For each cell, AUCell ranks genes by expression level and 

computes a recovery curve for each gene set. It then uses “Area Under the Curve” 

(AUC) as a measure of enrichment of the gene set. 

We found most Spencer et al. (191) signature genes have strong enrichment in 

the corresponding cell types in our data (Supplemental Figure 2.20). Due to the method 

by which the Spencer et al. (191) signature genes were derived—comparing one cell 

type to all other cells—most of the genes are tissue-specific, not cell-type specific, so 

enrichment was in some cases also observed in a set of several related cell types in our 

data. 
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Spencer et al. (191) signature genes for pharyngeal muscle were unusual in that 

they were enriched in intestine cells from our dataset. Examining the pharyngeal muscle 

gene set, we noticed it contains elt-2 and elt-7, which are known to be endoderm specific 

(218). Checking this gene set against expression patterns from Warner et al., 2019 

(210), we found that 18 out of the top 20 genes are intestine specific/enriched. 

Therefore, we concluded the pharyngeal muscle signature list is problematic and 

dropped the comparison from Supplemental Figure 2.20. 



74 
 

Figures 

 

 

Figure 2.1 UMAP projection shows tissues and developmental trajectories in C. 

elegans embryogenesis.  

(A) UMAP projection of the 81,286 cells from our sc-RNA-seq dataset that passed our 

initial QC. This UMAP does not include 4,738 additional cells that were initially filtered, 

but were later whitelisted and included in downstream analyses. Color indicates the age 

of the embryo that a cell came from, estimated from correlation to a whole-embryo RNA-
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seq time series (186) and measured in minutes after an embryo’s first cell cleavage. (B) 

Positions of cells from four samples of synchronized embryos on the UMAP plot. (C) 

Histogram of estimated embryo time for all cells in the dataset. (D) Bar plot showing for 

bins of embryo time, the percentage of cells in that embryo time bin that we were able to 

assign to a terminal cell type or pre-terminal lineage. (E) Scatter plot showing correlation 

of the number of cells of a given anatomical cell class in a single embryo (X axis, log 

scale) with the number of cells recovered in our data (Y axis, log scale). Each point 

corresponds to a cell class. Only cells with estimated embryo time >= 390 minutes are 

included in the counts (many earlier cells are still dividing). Red line is a linear fit, 

excluding points with y = 0. 
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Figure 2.2 Annotation of the early lineage.  

(A) Diagram showing the position of early mesoderm (MS lineage) cells marked by 

expression of ceh-51. The lineage radiograph shows the average fluorescent intensity 

(log10 scaled) of a CEH-51::GFP protein fusion measured by live imaging. The inner 

rings show the generation of the founder cells, AB (which produces almost exclusively 
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ectoderm and pharynx), MS (mesoderm and pharynx), C (muscle and ectoderm) and 

P3, which gives rise to P4 (germline) and D (muscle). Daughter cells are named by their 

relative positions at mitosis (e.g. ABa is the anterior daughter of AB, ABal is left daughter 

of ABa). (B) UMAP projection of 926 early-stage cells (estimated embryo time <= 150 

minutes), colored by embryo time. E lineage and germline cells are excluded and shown 

separately in Supplemental Figure 2.7 and Supplemental Figure 2.12, as they 

differentiate early compared to other lineages. (C) Same UMAP as (B), colored by ceh-

51 expression (red indicates cells with >0 UMIs for ceh-51). (D) Expression of hnd-1 and 

pha-4 measured by sc-RNA-seq (UMAP) and live imaging of GFP protein fusions 

(radiograph). (E) Cropped section of a UMAP of 8,083 neuron/glia/rectal progenitor cells 

with embryo time <= 250 minutes (Supplemental Figure 2.15). This plot shows the 

section of that UMAP that corresponds to the 3,233 cells from the ABpxp ectodermal 

lineage (“ABpxp” is short-hand for two symmetric lineages, ABplp and ABprp). Colored 

bold annotations highlight specific lineages that are discussed in the text. (F) Lineage 

tree for the ABpxppp sub-lineage, highlighting cells that are present in the circled section 

of (E). The (co-)expression pattern of marker genes identifies branches in the UMAP that 

correspond to specific ABpxppp descendants. Additional ABpxppp descendants not 

shown in this panel are annotated in (E), below the circled section.  
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Figure 2.3 Developmental trajectories of ciliated neurons.  

(A) UMAP of 10,740 ciliated neurons and precursors. Colors correspond to cell identity. 

Text labels indicate terminal cell types. Numbers 1-16 indicate parents of 1 ADE-ADA, 2 

CEP-URX 3 PHB-HSN 4 IL1 5 OLL 6 OLQ 7 ASJ-AUA 8 ASE 9 ASI 10 ASK 11 ADF-

AWB 12 ASG-AWA 13 ADL 14 ASH-RIB 15 AFD-RMD 16 AWC-SAA (purple) and BAG-

SMD (red). 4-6, 8-10, and 13 are listed as parents of only one cell type as the sister cells 



79 
 

die. Numbers 17-20 indicate grandparents of 17 IL1 (= IL2 parent) 18 OLQ-URY 19, 20 

ASE-ASJ-AUA. Differentiated PHA was not conclusively identified but may co-cluster 

with PHB. The parent of PHA is not present in this UMAP, but was located separately 

within the area annotated as “rectal cells” in the UMAP in Supplemental Figure 2.3. The 

tiny cluster labeled with an asterisk (*) is putatively AWC-ON on the basis of srt-28 

expression. (B) UMAP plot colored by embryo time (colors matched to Figure 2.1A) and 

gene expression (red indicates >0 reads for the listed gene). egl-21 codes for an 

enzyme that is essential for processing neuropeptides (219). Its expression is used as a 

proxy for the onset of neuron differentiation. mcm-7 codes for a DNA replication 

licensing factor. Loss of mcm-7 expression in each UMAP trajectory approximately 

marks the boundary between neuroblasts and terminal cells. unc-130 is known to be 

expressed in the ASG-AWA neuroblast but neither terminal cell (220). (C) Cartoon 

illustrating the lineage of the ASE, ASJ, and AUA neurons. (D) Heatmap showing 

patterns of differential transcription factor expression associated with branches in the 

ASE-ASJ-AUA lineage. Expression values are log-transformed, then centered and 

scaled by standard deviation for each row (gene). 
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Figure 2.4 Full vs. incomplete convergence of lineages producing common cell 

types.  

(A) UMAP of 854 IL1/2 neurons and progenitors colored by estimated embryo time (cells 

selected on the basis of annotations in Figure 2.3A and Supplemental Figure 2.15). (B) 

IL1/2 UMAP colored by ast-1 expression level (log2 size-factor normalized UMI counts). 

(C) IL1/2 UMAP colored by expression of unc-39, a gene specific to branch 1. (D) 

Heatmap showing the average expression level of lineage specific and terminal cell type 

specific genes over time for each of the 3 branches. (E) Supplemental Figure 2.5A 
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shows a UMAP of body wall muscle and mesoderm cells. This panel is a zoomed-in 

view of that UMAP, including only 17,520 BWM cells, which are grouped into “bands” 

based on marker gene expression patterns (here, a cell is considered to express a gene 

if it or >= 2 of 5 of its nearest neighbors have >0 reads for the gene). (F) Physical 

positions of cells in each BWM band (colors matched to panel E) in the embryo at 430 

minutes. Adapted from Fig. 8B of (7). (G) Transcriptome Jensen-Shannon distance for 

posterior (orange+green bands in panel E) BWM vs. row 2 (blue band) or row 1 (pink 

band) head BWM over time. Heterogeneity between BWM subsets persists throughout 

development and may reflect functional differences. 
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Figure 2.5 Correlation between cell lineage and the transcriptome in the ectoderm.  

(A) Jensen-Shannon (JS) distance between the transcriptomes of pairs of ectodermal 

cells (AB lineage), faceted by cell generation and lineage distance. AB5 refers to the cell 

generation produced by 5 divisions of the AB founder cell, and likewise for generations 

AB6-9. The “transcriptome” of a given anatomical cell is defined as the average gene 

expression profile of all sc-RNA-seq cells annotated as that anatomical cell. Pairs of 
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bilaterally symmetric cells are excluded from the statistics. (B) Estimates of the extent to 

which lineage predicts the transcriptome in AB5-9. (C) Distribution of the number of 

“lineage signature transcription factors”—TFs that distinguish a cell from its sister—for all 

cells in AB5-9. The outlier points in AB8 are instances where a terminal epidermal cell is 

a sister of a neuroblast. (D) Proportion of lineage signature transcription factors for a cell 

in a given generation that have expression maintained in 0, 1, or 2 of the cell’s daughters 

in the subsequent generation. (E) Proportion of lineage signature TFs for which 

expression in a given cell was maintained from the cell’s parent vs. newly activated after 

the parent’s division. 
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Tables 

Table 2.1 Marker genes for terminal cell type annotations. 

This table lists the marker genes that were used to annotate sc-RNA-seq cells with their 

corresponding cell types. Expression patterns for marker genes were retrieved from 

Wormbase (188) (https://wormbase.org) and EPiC (17) 

(http://epic.gs.washington.edu/Epic2/). The UMAP column lists which UMAP the cell type 

was located in. These UMAPs are shown in Supplemental Figures 2.4-S2.13 and can be 

explored in the VisCello application (https://cello.shinyapps.io/celegans_explorer/). For 

marker genes that have expression profiles in EPiC (17) 

(http://epic.gs.washington.edu/Epic2/), we used protein fusion datasets when available, 

and only used promoter fusion datasets when protein fusions were unavailable. 

Cell type UMAP Marker genes 
BWM_far_posterior Muscle and mesoderm hlh-1, myo-3, egl-20 

BWM_posterior Muscle and mesoderm hlh-1, myo-3, cwn-1 
BWM_anterior Muscle and mesoderm hlh-1, myo-3, ceh-13 

BWM_head_row_2 Muscle and mesoderm hlh-1, myo-3, ceh-34 

BWM_head_row_1 Muscle and mesoderm hlh-1, myo-3, ceh-34, eya-
1 

Coelomocyte Muscle and mesoderm cup-4, lgc-26, let-381 
GLR Muscle and mesoderm unc-30, let-381, sfrp-1 

hmc Muscle and mesoderm hlh-8, sfrp-1, glb-26, dmd-
4 

M_cell Muscle and mesoderm hlh-8, pal-1 

mu_int_mu_anal Muscle and mesoderm hlh-8, mls-1, dsc-1, exp-1, 
mig-1, unc-62 

mu_sph Muscle and mesoderm hlh-8, mls-1, dsc-1 
Z1_Z4 Muscle and mesoderm ehn-3, unc-39 
g1A Pharynx hlh-6, phat-2, phat-5, lys-8 
g1P Pharynx hlh-6, phat-2, phat-1, lys-8 

g2 Pharynx hlh-6, ceh-6, irx-1, dmd-4, 
gly-15 
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mc1 Pharynx ttx-1, pax-1, agr-1, ceh-45, 
ceh-2 

mc2 Pharynx ttx-1, pax-1, agr-1 
mc3 Pharynx ttx-1, pax-1, agr-1, irx-1 

Pharyngeal_intestinal_valve Pharynx ttx-1, lec-8, cwn-2, unc-62, 
fos-1 

pm1_pm2 Pharynx tnc-2, tnt-4, tni-4, inx-20, 
eyg-1 

pm3_pm4_pm5 Pharynx tnc-2, tnt-4, tni-4, ceh-22 

pm6 Pharynx tnc-2, ser-2, elt-4, 
W05B10.4 

pm7 Pharynx tnc-2, tni-4, ceh-22, spp-7, 
W05B10.4 

pm8 Pharynx ref-1, aff-1, pax-1, inx-20, 
unc-129 

Anterior_arcade_cell Pharynx inx-12 
Posterior_arcade_cell Pharynx inx-12, let-23 

hyp1_hyp2 Pharynx mlt-11, mlt-8, slt-1, nhr-25, 
nhr-67 

MC Pharynx ceh-19, nhr-239, glr-8 
Intestine_anterior Intestine ZC204.12, cpr-1, ceh-37 

Intestine_middle_and_posterio
r Intestine irg-7, pal-1 

cpr-1 and ceh-37 in subset 
Intestine_far_posterior Intestine irg-7, faah-1, pbo-4, psa-3 

hyp4_hyp5_hyp6 Hypodermis and seam 
cells 

elt-1, elt-3, slt-1, vab-3, 
unc-130, 

egl-17, ceh-32 in subset 

hyp7_AB_lineage Hypodermis and seam 
cells 

elt-1, elt-3, unc-62, vab-3, 
unc-130, tbx-2 

ceh-13 in subset 

hyp7_C_lineage Hypodermis and seam 
cells 

elt-1, elt-3, tbx-8, tbx-9 
lin-39 in subset 

Tail_hypodermis Hypodermis and seam 
cells elt-1, elt-3, lin-44, vab-7 

P_cell Hypodermis and seam 
cells 

elt-1, elt-3, pax-3, plx-2, 
lin-39, mab-5 

Seam_cell Hypodermis and seam 
cells 

bus-4, bus-8, bus-12, ceh-
16, rnt-1, elt-6 

G2_and_W_blasts Hypodermis and seam 
cells lin-12, ahr-1 

AMsh Glia and excretory cells aff-1, kcc-3, nas-31, pros-
1, F52E1.2, F16F9.3 

ADEsh Glia and excretory cells aff-1, unc-62 
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CEPsh Glia and excretory cells 
aff-1, kcc-3, aqp-7, 
K09F5.6, mltn-13, 

K08D12.4  
ILsh_OLLsh_OLQsh Glia and excretory cells aff-1, kcc-3 

AMso Glia and excretory cells grd-15, grl-12 
CEPso Glia and excretory cells mls-2, inx-12, inx-13 

ILso Glia and excretory cells grl-18, wrt-6 

hyp3 Glia and excretory cells nhr-25, ceh-32, slt-1, sym-
1 

Excretory_cell Glia and excretory cells pros-1, ceh-37, ceh-6, hlh-
11 

Excretory_gland Glia and excretory cells lim-6, ser-2, aat-1 
Excretory_duct_and_pore Glia and excretory cells irx-1, ceh-37, grl-2, let-23 

XXX Glia and excretory cells eak-3, sdf-9, eak-6 
Possibly_hyp1V Glia and excretory cells mlt-8, qua-1, nhr-25 

Possibly_ant_arc_V Glia and excretory cells See note. 

Germline Early embryo, 
germline, and rectum glh-1, pgl-1, nos-1 

ADF Ciliated neurons ceh-19, cat-4, bas-1 
ADL Ciliated neurons K04D7.6, xbx-9, F15A4.5 

AFD Ciliated neurons gcy-8, gcy-18, gcy-23, 
dac-1, ttx-1 

ASE Ciliated neurons 
che-1, ceh-36 

ASEL: gcy-6, gcy-14, lim-6 
ASER: gcy-5, gcy-22 

ASG Ciliated neurons gcy-11, capa-1 

ASH Ciliated neurons osm-10, R102.2, deg-1, 
M04B2.6, unc-42 

ASI Ciliated neurons ins-6, cng-2 
ASJ Ciliated neurons ssu-1, trx-1, nhr-6, sptf-1 
ASK Ciliated neurons F09E8.8, pax-2, C47D2.1 
AWA Ciliated neurons odr-7, nhr-216, ocr-1 

AWB Ciliated neurons srd-23, odr-1, daf-11, sox-
2 

AWC Ciliated neurons ceh-36, odr-1, daf-11, sox-
2 

ADE Ciliated neurons dat-1, cat-2, tba-9, pdf-1, 
unc-62, cwn-2, ceh-13 

CEP Ciliated neurons dat-1, cat-2, tba-9, nhr-67, 
nhr-67 

URX Ciliated neurons gcy-32, gcy-35, gcy-36, 
gcy-37 



87 
 

BAG Ciliated neurons gcy-9, gcy-31, gcy-33 
IL1 Ciliated neurons flp-3, agr-1, sox-2 

IL2 Ciliated neurons tba-6, klp-6, cil-7, agr-1, 
sox-2 

OLL Ciliated neurons sox-2, tbx-2 

OLQ Ciliated neurons ocr-4, dyla-1, dhc-3, pcrg-
1 

PHB_and_possibly_PHA Ciliated neurons 

osm-10, R102.2, gpa-6, 
cog-1 

low expression of ceh-14, 
srb-6, srh-74 

AUA 
Non-ciliated neurons 

and 
Ciliated neurons 

ceh-6, dop-1, flr-4, che-7 

AIA Non-ciliated neurons ttx-3, mgl-1, flp-2, ins-1 
AIB Non-ciliated neurons snet-1, aptf-1, odr-2, glr-2 

AIM Non-ciliated neurons snet-1, flp-22, mbr-1, mls-
2, mod-5, unc-86, inx-19 

AIN Non-ciliated neurons ttx-3, mgl-1, K07C5.9, ast-
1 

AIY Non-ciliated neurons 
ttx-3, ceh-10, F17C11.2, 

flp-9, glc-3, 
bus-18, ser-2, nlp-15 

AIZ Non-ciliated neurons ser-2, unc-86, eat-4, acc-2 

ALA Non-ciliated neurons flp-24, ceh-17, des-2, deg-
3, snf-11, flp-13 

ALN Non-ciliated neurons unc-86, lad-2, gcy-35 

ALM_PLM Non-ciliated neurons mec-17, mec-3, mec-7, 
unc-86 

ALM_BDU Non-ciliated neurons mec-17, mec-3, mec-7, 
unc-86, unc-62 

AVA Non-ciliated neurons 

acc-1, fax-1, unc-42, unc-
3, 

flp-18, acr-16, acr-15 
rig-3, gpa-14, 

glr-1, glr-2, nmr-2, unc-3 

AVB Non-ciliated neurons fax-1, unc-42, unc-3, ceh-
31, pdf-1 

AVD Non-ciliated neurons unc-42, unc-3, unc-17, rig-
5, glr-1, glr-2, nmr-2 

AVE Non-ciliated neurons fax-1, unc-42, unc-3, glr-1, 
glr-2, glr-5 

AVG Non-ciliated neurons 

lite-1, glr-1, glr-2, nmr-2, 
lin-11, 

ast-1, odr-2, F59E11.7, 
unc-62 
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AVH Non-ciliated neurons unc-42, lin-11, hlh-34, ceh-
6, flp-12, pdf-1 

AVJ Non-ciliated neurons unc-42, lin-11, glr-1 

AVK Non-ciliated neurons flp-1, fax-1, unc-42, sox-2, 
glr-5 

AVL Non-ciliated neurons unc-25, unc-46, unc-47, 
lim-6, ceh-27, alr-1 

CAN Non-ciliated neurons pks-1, ceh-10, ace-3, acy-
2 

DA Non-ciliated neurons gbb-1, gbb-2, unc-3, unc-
4, unc-17, unc-62, mab-9 

DB Non-ciliated neurons 
gbb-1, gbb-2, unc-3, unc-
4, unc-17, unc-62, mab-9, 

vab-7, ceh-6 

DD Non-ciliated neurons unc-25, unc-30, unc-46, 
unc-47, unc-62, snf-11 

DVA Non-ciliated neurons lin-44, nob-1, fax-1, nlp-12, 
twk-16, lin-11 

DVC Non-ciliated neurons ceh-63, hlh-14, hlh-13, egl-
20 

FLP Non-ciliated neurons unc-86, mec-7, mec-3, 
unc-62 

I5 Non-ciliated neurons unc-4, ceh-34, tbx-2, flp-4, 
flp-13, unc-7 

PLM Non-ciliated neurons mec-17, mec-3, mec-7, 
unc-86, egl-5 

PVP Non-ciliated neurons mbr-1, nlp-7, unc-30, lin-
11, pdf-1, glb-17 

PVQ_and_possibly_PVC Non-ciliated neurons 

lin-11, vab-15, ceh-43, glr-
1 

nlp-17, C35B1.7, 
F26A10.1, Y43F8B.20, 

acr-23, irx-1 
PVR Non-ciliated neurons hlh-14, unc-86, egl-20 

PVT Non-ciliated neurons 
gpa-2, mec-1, zig-5, vab-
15, dop-5, pdf-1, lim-6, 

unc-6 
RIA Non-ciliated neurons glr-3, glr-6 

RIB Non-ciliated neurons aptf-1, glr-4, ser-4, sto-3, 
unc-29 

RIC Non-ciliated neurons tbh-1, tdc-1, glr-5 
RID Non-ciliated neurons unc-3, ceh-10, lim-4, pdf-1 

RIH Non-ciliated neurons unc-86, unc-130, nhr-67, 
slt-1, rig-4 

RIM Non-ciliated neurons tdc-1, cex-1, glr-1, nmr-2 
RIS Non-ciliated neurons flp-11, unc-25, aptf-1, lim-6 
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RIV Non-ciliated neurons odr-2, lim-4, ceh-75, ast-1 

RMD Non-ciliated neurons 
lad-2, acc-1, unc-42, glr-1, 

glr-4, glr-5, 
ceh-6, mgl-1, unc-7, ast-1 

RME Non-ciliated neurons ceh-32, unc-25, unc-46, 
snf-11, sox-2, ser-2 

SIA Non-ciliated neurons ceh-17, ceh-24, unc-42, 
vab-8, ser-6, lim-4 

SIB Non-ciliated neurons fax-1, ceh-24, unc-42, vab-
8, tmc-1, glr-5 

SMB Non-ciliated neurons sox-3, ceh-24, lim-4, vab-
8, unc-42 

SMD Non-ciliated neurons lad-2, acc-1, flp-22, odr-2, 
unc-42, glr-1, glr-5 

URB_and_possibly_URA Non-ciliated neurons unc-86, sox-2, glr-8 

T Time 350min 
hypodermis + glia 

psa-3, ceh-16, tlp-1, php-
3, elt-1 

Excretory_duct Duct and pore irx-1, ceh-37, grl-2, aff-1 

Excretory_pore_G1 Duct and pore irx-1, ceh-37, grl-2, lack of 
aff-1 

B Rectal cells ceh-6, ref-2, mab-9, ceh-
27 

F_U Rectal cells egl-38, egl-20, mom-2 
K_Kprime Rectal cells pha-4, pal-1, egl-38 

Y Rectal cells ceh-6, ref-2, mom-2, nhr-
25, lack of cnd-1 

B_F_K_Kp_U_Y Rectal cells ceh-6, ref-2, mab-9, daf-6 
rect_D Rectal cells pha-4, pal-1, dve-1 

Rectal_gland Rectal cells pha-4, pal-1, dve-1, nac-2, 
elt-3, tat-4 
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Supplemental Figures 

 

Supplemental Figure 2.1 Method for estimating the age of the embryo that a sc-

RNA-seq cell came from.  

Embryo times are measured in minutes post first cleavage. (A) Embryo times are 

estimated based on Pearson correlation of a single cell’s transcriptome to a bulk RNA-

seq time series (see Methods). Pointwise estimates of the correlation to each time point 
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are smoothed using a Loess regression. (B) Distribution of estimated embryo times for 

each biological sample. The average embryo time estimate in the Waterston lab sample 

correlates with the real time duration that the embryos were incubated. Each sample 

contains some outlier cells with abnormally low embryo times. Potential biological and 

technical causes for the presence of these outlier cells are discussed in the Methods. (C) 

Correlation of embryo time estimates based on Hashimshony et al. (186) to an alternate 

set of embryo time estimates based on Boeck et al. (212). Estimates based on 

Hashimshony et al. (186) were used for all downstream analyses. (D) Correlation 

between cell birth times estimated based on our lineage annotations (x-axis) with cell 

birth times computed based on automated analysis of imaging data (y-axis) (192). 
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Supplemental Figure 2.2 UMIs recovered per cell decreases with embryo age.  

All Y-axes are log scaled. (A) Distributions of number of UMIs recovered per cell, binned 

by estimated embryo age. Median UMIs per cell decreases until ~400 minutes, after 

which almost all cell division has stopped. Comparing each embryo time bin on the X-

axis to the subsequent bin, e.g. comparing 100-150 minutes to 150-200 minutes, the 

decrease in median UMIs per cell is statistically significant for each step from 100-400 

minutes (Wilcoxon rank sum tests, all p-values < 2.2e-16). Note that our quality control 

procedures exclude cells with < 700 UMIs (or < 500 UMIs for neurons), causing the 

decrease in UMIs/cell to be understated, as the proportion of cells falling below the cutoff 

is greater for later stage embryos. (B) Number of cells included in each time bin from 

panel A. (C and D) Number of UMIs and genes detected for cells with embryo time in the 

range of 390-650 minutes, by tissue. 
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Supplemental Figure 2.3 Cell type annotations for the global UMAP of 81,286 cells.  

This plot shows more cell type annotations for the global UMAP from Figure 2.1A. This 

UMAP does not include 4,738 additional cells that were initially filtered, but were later 

whitelisted and included in downstream analyses (see Materials and Methods). For 

fine-grained annotations of cell types in each major tissue, see Figure 2.3A and 

Supplemental Figures 2.5-2.13. For fine-grained annotations of progenitor cell lineages, 

see Supplemental Figures 2.14-2.17. 
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Supplemental Figure 2.4 Cells included in each sub-UMAP.  

Plots show which cells from the global UMAP (Supplemental Figure 2.3) are included in 

each sub-UMAP (Supplemental Figures 2.5-2.17), including UMAPs aimed at visualizing 

terminal cell types (A, B) and UMAPs focused aimed at visualizing progenitor lineages 

(C, D). Note that the actual assignment of cells to sub-UMAPs was performed based on 

a 3D version of the global UMAP (not shown). In (C), all cells included in the Time 150 

min. sub-UMAP are also included in the Time 300 min. sub-UMAP.  
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Note: The figures below show UMAPs of muscle and the non-pharyngeal mesoderm 

(Supplemental Figure 2.5), pharynx (Supplemental Figure 2.6), intestine (Supplemental 

Figure 2.7), hypodermis and seam cells (Supplemental Figure 2.8), glia and excretory 

cells (Supplemental Figure 2.9), non-ciliated neurons (Supplemental Figure 2.10), touch 

receptor neurons (Supplemental Figure 2.11), germline (Supplemental Figure 2.12), and 

rectum (Supplemental Figure 2.13). A UMAP of ciliated neurons is shown in the main 

text (Figure 2.3A). UMAPs focused on annotating progenitor lineages are shown in 

Supplemental Figures 2.14-2.17. 
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Supplemental Figure 2.5 UMAP of 22,371 body wall muscle and non-pharyngeal 

mesoderm cells.  

(A) Labels indicate cell types. See Table 2.1 for marker genes used to annotate cell 

types. MS, C, and D indicate cell lineages. Abbreviations: BWM = body wall muscle, 

mu_int = intestinal muscle, mu_anal = anal depressor muscle, mu_sph = anal sphincter 

muscle, hmc = head mesodermal cell. (B) Colors show estimated embryo times (minutes 

post first cleavage) for each cell. 
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Supplemental Figure 2.6 UMAP of 10,784 pharyngeal cells.  

(A) Labels indicate cell types. Abbreviations: pm = pharyngeal muscle, mc = pharyngeal 

marginal cell, g1A/g1P/g2 = pharyngeal gland, vpi = pharyngeal-intestinal valve, hyp = 

hypodermis, ant. arc. = anterior arcade cells, post. arc. = posterior arcade cells. Anterior 

and posterior arcades from late embryos converge in the UMAP to a common 

transcriptomic profile (pink cells at the bottom of the plot). Numeric labels indicate: 1 

parent of NSM 2 MC 3 parent of MI and pm1DR 4 grandparent of I2 5 parent of M1 6 

parent of M2 and M3 7 parent of M5 and I6 8 parent of I1 9 parent of M4 10 parent of g2 

11 parent of g1P and I3 12 parent of g1A. (B) Colors show estimated embryo times 

(minutes post first cleavage) for each cell. 
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Supplemental Figure 2.7 UMAP of 1,734 intestine cells.  

(A) Labels indicate subsets of intestine cells and their relative position on the anterior-

posterior axis. See Table 2.1 for marker genes used to annotate cell types. (B) Colors 

show estimated embryo times (minutes post first cleavage) for each cell. 
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Supplemental Figure 2.8 UMAP of 12,254 hypodermis and seam cells.  

(A) Labels indicate cell types. See Table 2.1 for marker genes used to annotate cell 

types. hyp1-3 are not included here. hyp1-2 appear in the pharynx UMAP (Supplemental 

Figure 2.6), and hyp3 appears in the glia UMAP (Supplemental Figure 2.9), consistent 

with their cell lineage (hyp1-2 are sisters/cousins of arcade cells, and hyp3 are sisters of 

ILsoDx). (B) Colors show estimated embryo times (minutes post first cleavage) for each 

cell. 
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Supplemental Figure 2.9 UMAP of 7,512 glia, excretory cells, and progenitors.  

(A) Labels indicate cell types. Some non-glial/excretory cells are also included in the 

UMAP, such as neuron/glia/rectal progenitors. (B) Colors show estimated embryo times 

(minutes post first cleavage) for each cell. 
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Supplemental Figure 2.10 UMAP of 14,728 non-ciliated neurons and progenitors.  

For a UMAP of ciliated neurons, see Figure 2.3A. (A) Text labels indicate terminal cell 

types. Numeric labels indicate: 1 PVC-LUA neuroblast 2 parent of PVQ 3 parent of DVC 

4 FLP-AIZ neuroblast 5 FLP-AIZ-RMG neuroblast 6 parent of URADx 7 progenitors of 

ALM, BDU, PLM, and ALN (see Supplemental Figure 2.11 for a UMAP of the touch 

receptor lineages) 8 parent of RIM 9 AVG-RIR neuroblast 10 parent of RIC 11 parent of 

AVH 12 parent of RIA 13 ALA-RMED neuroblast 14 RMED, early after parent’s division 

15 parent of RID. (B) Colors show estimated embryo times (minutes post first cleavage) 

for each cell.  
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Supplemental Figure 2.11 UMAP of 1,300 touch receptor neurons, URB neurons, 

and progenitors.  

URB neurons are included because they cluster near the touch receptors in the UMAP 

of all non-ciliated neurons (Supplemental Figure 2.10). This is in part due to high unc-86 

expression. (A) Labels indicate cell type (for terminal cells) or lineage (for progenitors). 

(B) Colors show estimated embryo times (minutes post first cleavage) for each cell. (C) 

Location of cells shown in panel A on the UMAP of all non-ciliated neurons from 
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Supplemental Figure 2.10. (D) Expression pattern of unc-86 on the UMAP of all non-

ciliated neurons. Both touch receptor lineages and URB express high levels of unc-86. 
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Supplemental Figure 2.12 UMAP of 3,476 early embryo, germline, and rectal cells.  

This UMAP was used only for its trajectory of germline development (500 cells). Other 

lineages that are included in this UMAP were better resolved in other UMAPs, shown 

below. (A) Germline cells highlighted in red. (B) Colors show estimated embryo times 

(minutes post first cleavage) for each cell. These estimates, which are based on 

correlation to a whole-embryo bulk RNA-seq time series, are inaccurate for germline 

cells, as genes that follow the same temporal dynamics for all somatic cells often have 

different expression dynamics in the germline. 
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Supplemental Figure 2.13 UMAP of 1,598 rectal cells and progenitors.  

(A) Text labels indicate terminal cell types. Numeric labels indicate: 1 parents of (Y and 

DA7) and (DA6 and DA9). 2 parent of PVP and rect_V 3 parent of PVT and rect_D 4 

parent of K and K’ 5 parents of (B and DVA) and (F and U) 6 Parent of the tail spike cells 

and hyp10 7 Parent of PHsh and hyp8/9. (B) colors show estimated embryo times 

(minutes post first cleavage) for each cell. The cluster of cells from late embryos (>580 

minutes) in the center of the UMAP are AMsh (glia, not rectal cells) that were included in 

this UMAP by mistake. 
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Note: Supplemental Figures 2.14-2.17 show a representative subset of the UMAPs 

that were used to annotate progenitor lineages. Several additional UMAPs can be 

visualized in VisCello (https://cello.shinyapps.io/celegans_explorer/).  

 

Supplemental Figure 2.14 UMAP and detailed annotation of 926 cells from 

embryos < 150 minutes post first cleavage.  

E lineage and germline cells are excluded from the UMAP and were analyzed separately 

(Supplemental Figure 2.7 and Supplemental Figure 2.12). (A) Detailed labeling of 

lineages, co-visualized with the lineage tree. (B) Colors show estimated embryo times 

(minutes post first cleavage) for each cell. (C) Screenshot of an interactive co-

visualization implemented in VisCello (https://cello.shinyapps.io/celegans_explorer/), 

highlighting the connection between MS lineage clusters and corresponding leaves in 

the lineage tree. 
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Supplemental Figure 2.15 UMAP and detailed annotation of 8,083 AB lineage 

neuron/glia/rectal progenitor cells from embryos < 250 minutes post first 

cleavage.  

This UMAP includes only AB lineage cells that give rise to neurons, glia, and rectal cells. 

(A) Detailed labeling of lineages, co-visualized with the AB lineage tree. (B) Colors show 

estimated embryo times (minutes post first cleavage) for each cell. (C) Screenshot of an 

interactive co-visualization implemented in VisCello 

(https://cello.shinyapps.io/celegans_explorer/), highlighting the connection between 

ABpxppp lineage clusters and corresponding leaves in the lineage tree. 
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Supplemental Figure 2.16 UMAP and detailed annotation of 31,683 cells from 

embryos < 300 minutes post first cleavage.  
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E lineage and germline cells are excluded from the UMAPs and were analyzed 

separately (Supplemental Figure 2.7 and Supplemental Figure 2.12). (A) Detailed 

labeling of lineages, co-visualized with the lineage tree. (B) Colors show estimated 

embryo times (minutes post first cleavage) for each cell. (C) Screenshot of an interactive 

co-visualization implemented in VisCello (https://cello.shinyapps.io/celegans_explorer/), 

highlighting the connection between the pharynx cluster in the UMAP and the 

corresponding leaves in the lineage tree. All cells in the pharynx cluster are annotated as 

descendants of the ABalp, ABara and MS lineages, consistent with previous 

observations that pharyngeal cells only arise from these lineages. 
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Supplemental Figure 2.17 UMAP of 8,233 non-pharyngeal mesoderm cells, 

focused on the early lineage.  

This UMAP includes the same cells as the muscle and mesoderm UMAP (Supplemental 

Figure 2.5), but excludes putative C and D lineage body wall muscle, MS lineage body 

wall muscle with estimated embryo time >400 minutes (post first cleavage), and 

coelomocytes with embryo time >400 minutes. This UMAP serves as a representative 

example of a set of several UMAPs used to connect terminal cells to their immediate 

progenitors. Additional UMAPs can be viewed in VisCello. (A) Text labels indicate MS 
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lineages (i.e. “xppa” = MSxppa). Bold text labels indicate cell types. MSxppapx was not 

conclusively identified, but is presumed to be included in the head BWM cluster. (B) 

Estimated embryo time for each cell. (C) diagram of the MS lineage. Colored sub-

lineages match the colors of cell groups in panel (A). 
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Supplemental Figure 2.18 Summary of lineage annotations.  

Each row corresponds to a subset of cells in the C. elegans embryonic cell lineage. Row 

labels consist of one or two letters, which identify a broad lineage (AB, MS, C, D, or E), 

and a number, which specifies the number of cell divisions since the founding cell of the 

broad lineage. For example, “AB5” refers to the 32 cells produced by 5 divisions of the 

AB founder cell, and “C2” refers to the 4 cells produced by 2 divisions of the C founder 

cell. The founder cells themselves are not included in the plot. The label “Z2/Z3” is an 

exception to the nomenclature and refers to the two germline lineages, Z2 and Z3. 

 Bar lengths indicate the percent of cells within the specific lineage and cell 

generation specified by the row label that are included in our annotations of our single 

cell RNA-seq dataset. Lineages that undergo programmed cell death are excluded from 

the statistics. Numbers to the right of the bars indicate the absolute number of lineages 

annotated and the total number of lineages present within a particular cell generation. 
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Supplemental Figure 2.19 Comparison of data from this study to data from Tintori 

et al., 2016 (19).  
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Tintori et al. (19) profiled the transcriptomes of single cells from the C. elegans 1- to 16-

cell stages. (A) Heatmap showing Pearson correlations between the log2-scaled gene 

expression profiles of 16-cell stage cells from Tintori et al. (19) vs. 16- and 28-cell stage 

cells from this study. Correlation was computed using informative genes selected by an 

iterative PCA approach used by Tintori et al. (19) (see Materials and Methods). (B-E) 

First sub-panel shows a PCA projection computed using 16-cell stage cells from Tintori 

et al. (19), reproducing their original analysis. Second sub-panel shows a projection of 

16- and 28-cell stage cells from this study into the same PCA space. Each PCA uses a 

different set of informative genes, as originally defined by Tintori et al. (19), to 

discriminate particular lineages (see Materials and Methods). For each PCA, the gene 

expression level of a selected lineage-specific marker gene was plotted. Gene 

expression is measured in log2 RPKM for data from Tintori et al. (19), and log2 size-

factor normalized UMI counts for data from this study. 
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Supplemental Figure 2.20 Comparison of data from this study to microarray data 

from Spencer et al., 2011 (191).  

Each panel shows a global UMAP of cells from this study, colored by a score that 

measures the extent to which each single-cell transcriptome is enriched for genes from a 

particular gene set reported by Spencer et al. (191). Signature gene sets from Spencer 

et al. (191) were downloaded from 

https://www.vanderbilt.edu/wormdoc/wormmap/Enriched_genes.html. Each signature 

gene set corresponds to genes that are enriched in a particular embryonic cell type 

compared to all other cells in the Spencer et al. microarray data (191). Signature genes 

are therefore mostly tissue-specific, rather than cell-type specific. Gene set enrichment 

scores were computed using the AUCell package (157). Comparison with pharyngeal 

muscle was dropped because most of the signature genes reported in Spencer et al. 

(191) for this cell type are intestine specific, as confirmed by a third dataset (191). See 

Materials and Methods for more details. 
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Supplemental Figure 2.21 Ciliated neuron developmental trajectories are more 

continuous in a 3D UMAP.  

This plot is a 2D screenshot of part of a 3D UMAP of ciliated neuron cells, oriented to 

show specific lineage relationships. The cells are the same as in Figure 2.3A; the only 

difference is projecting into 3D instead of 2D. Developmental trajectories connecting the 

ASG-AWA and ADF-AWB neuroblasts to their respective daughter cells are continuous 

in this UMAP space, as is the branching trajectory of the left and right ASE neurons 

(ASEL and ASER). In the ASG-AWA and ADF-AWB trajectories, there are sections that 

appear before the branch points in the UMAP, but based on our embryo time estimates 

are likely to be terminal cells and not the parent neuroblasts. These sections may 
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contain both daughter cells of each trajectory after their birth but before they 

differentiate. Cells in the “ADF and AWB” section co-express in the same cells the 

marker genes lag-1, which persists only in ADF, and lim-4, which persists only in AWB; 

however, their estimated embryo times span ~100 minutes after the parent cells’ division 

time. Note that the grey, unannotated cells below the ADF trajectory are behind the ADF 

cells in 3D space, as are the grey cells overlapping the AWB trajectory. 
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Supplemental Figure 2.22 Differentially expressed transcription factors associated 

with ciliated neuron lineage branches.  

Heatmaps showing patterns of differential transcription factor expression associated with 

branches in (A) the ASG-AWA lineage, (B) the ADF-AWB lineage, (C) the IL1-IL2 

lineage, and (D) the URX-CEPDx lineage. A heatmap for the ASE-ASJ-AUA lineage is 

shown in Figure 2.3D. Expression values are log-transformed, then centered and scaled 

by standard deviation for each row (gene). In each of the ASG-AWA and ADF-AWB 

lineages, there is a set of cells that are before the branch point of the trajectory in UMAP 

space (see Supplemental Figure 2.21), but based on embryo time estimates and marker 

gene expression patterns, are likely to be terminal cells. In the ADF-AWB lineage, these 
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cells co-express lag-1, which is selectively retained in ADF, and lim-4, which is 

selectively retained in AWB, suggesting that this cell set may include undifferentiated, 

terminal ADF and AWB cells. 
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Supplemental Figure 2.23 Multilineage priming in the ASE-ASJ-AUA lineage.  

(A) Section of the ciliated neuron UMAP from Figure 2.3A that is shown in panels B and 

C. This section includes the trajectory of the lineage that produces the ASE, ASJ, and 

AUA neurons (ABalpppppp/ABpraaappp). (B) Expression patterns for transcription 

factors that are expressed in the ASE-ASJ-AUA neuroblast and selectively maintained in 

only one of its daughters. Red and blue points indicate cells that express >= 1 TF for 

which expression is maintained only in the ASE lineage (red) or only the ASJ lineage 

(blue). Purple points indicate cells that express >= 1 TF from both sets. (C) Expression 

pattern of hlh-3, which is expressed in the ASE-ASJ-AUA neuroblast and maintained in 
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the ASE parent but not the ASJ-AUA parent. (D) Fluorescent signal from a HLH-3::GFP 

protein fusion from EPiC (17) (series 20160301_hlh-3_OP650_L2). Red indicates high 

signal, yellow/green indicate medium signal, blue indicates low signal, and purple 

indicates no signal. Due to translation and the folding time of GFP, the fluorescent signal 

has a time lag compared to the RNA expression in panel C. The presence of signal in 

the ASJ-AUA parent indicates that HLH-3 protein does not undergo asymmetric 

localization during cell division; instead, it is simply maintained in the ASE lineage and 

allowed to degrade in the ASJ-AUA lineage. 
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Supplemental Figure 2.24 Prevalence of multilineage priming in C. elegans.  

X-axis shows different cell generations of the ectoderm (AB lineage) and mesoderm (MS 

lineage). “AB5” refers to the generation produced by 5 divisions of the AB founder cell, 

and likewise for AB6-8 and MS3-5. Y-axis shows the proportion of lineages in a given 

generation that co-express at least one transcription factor (TF) that has expression 

selectively maintained in one daughter, and at least one TF that has expression 

selectively maintained in the other daughter (e.g. TF A expressed in parent and daughter 

1, TF B expressed in parent and daughter 2). Lineages that satisfy these criteria are 

considered to exhibit “multilineage priming.” Text labels above each bar indicate the 

absolute number of lineages in each generation that exhibit multilineage priming 

(numerator) and the total number of lineages included in the analysis (denominator). 

Lineages that do not have exactly two, transcriptomically distinct daughters annotated in 

our dataset are excluded from the statistics. Cell generations that are not shown in this 

plot were excluded due to having a sample size of <= 3 lineages. 
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Supplemental Figure 2.25 Examples of lineages that form discontinuous 

trajectories in UMAP space.  

(A)  UMAP of 7,512 glia, excretory cells, and progenitors (same as Supplemental Figure 

2.9). ILso glia are formed by three input lineages. Two input lineages, the ILso-AVD 

parent and the ILso(D)-hyp3 parent, form discontinuous trajectories with terminal ILso. 

Some early terminal ILso cells are likely to be unannotated, so it is not clear if there is a 
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continuous or discontinuous trajectory with the third input lineage, the ILso(V)-SAA(D) 

parent. (B) Global UMAP of 81,286 cells (same as Figure 2.1A). Annotated cell 

populations are the same as in panel A, plus additional neuron types. The AVD, AVK, 

and URB neurons are sisters of glia/excretory cells, but form discontinuous trajectories 

with their parents. (C) UMAP of 8,233 non-pharyngeal mesoderm cells (same as 

Supplemental Figure 2.17). Coelomocytes and Z1/Z4 (the somatic gonad precursors) 

form discontinuous trajectories with their parents. (D) Global UMAP, same as panel B. 

Annotated cell populations are the same as in panel C. 
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Supplemental Figure 2.26 Counts of differentially expressed genes for lineages 

that form continuous vs. discontinuous trajectories in UMAP space.  

Each row (y-axis) corresponds to a pair of terminal sister cells in the ectoderm (AB 

lineage, generations 9 and 10) or mesoderm (MS lineage, generation 6). Bar length (x-
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axis) indicates the number of genes that are both differentially expressed (fold difference 

> 3, q-value < 0.1) between the sister cells and also differentially expressed (same 

thresholds) between at least one of the sisters and their parent. Genes that satisfy these 

criteria are genes that are changing over time in a lineage-specific manner (and 

therefore exclude broadly expressed genes). Before performing differential expression 

analysis, the sc-RNA-seq cells that correspond to each of the listed anatomical cells and 

their parent were downsampled to ensure that each comparison had approximately the 

same statistical power. Rows are grouped based on whether or not the developmental 

trajectories formed by the sister cells and their parent in UMAP space were 

discontinuous for at least one sister. Trajectories were considered discontinuous only if 

the discontinuity was present in both the global UMAP (Figure 2.1A, Supplemental 

Figure 2.3) and the relevant tissue UMAP (Figure 2.3A, Supplemental Figures 2.9-2.10, 

2.17). Rows are colored to indicate whether or not the sister cells share the same 

broadly-defined cell type. For example, ASG and AWA, two ciliated neurons, are 

considered to have the same broadly-defined cell type, while AFD and RMD, a ciliated 

and non-ciliated neuron respectively, are considered to have different broadly-defined 

cell types. 
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Supplemental Figure 2.27 Embryo time distributions for trajectories included in 

Supplemental Figure 2.26.  

Ridge plot shows the distribution of estimated embryo times (minutes post first cleavage) 

for all of the sc-RNA-seq cells annotated as one of the terminal cells listed in 

Supplemental Figure 2.26, or its parent. For example, the ridge line for the row labeled 

AFD has the distribution of embryo times for all sc-RNA-seq cells annotated as either 

AFD (lineage = ABalpppapav/ABpraaaapav) or the AFD-RMD parent (lineage = 

ABalpppapa/ABpraaaapa). Rows are grouped based on whether or not the listed 

terminal cell forms a discontinuous trajectory with its parent in UMAP space. Trajectories 

were considered discontinuous only if the discontinuity was present in both the global 

UMAP (Figure 2.1A, Supplemental Figure 2.3) and the relevant tissue UMAP (Figure 

2.3A, Supplemental Figures 2.9-2.10, 2.17). 
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Supplemental Figure 2.28 Lineage distance vs. transcriptome distance in AB 

generation 8.  

Jensen-Shannon (JS) distance between the transcriptomes of pairs of cells in AB8, the 

generation produced by 8 cell divisions since the AB founder cell. Data is faceted by 

lineage distance and by whether the pair consists of two pre-terminal cells, one pre-

terminal and one terminal cell, or two terminal cells. Most terminal epidermal cells in the 

AB lineage are produced in AB8, while most terminal neurons, glia, and pharyngeal cells 

are produced in the subsequent generation, AB9. The terminal epidermal cells in AB8 

exit the cell cycle and begin to differentiate, resulting in a large transcriptome distance 

between them and neuron/glia/pharynx progenitor cells that remain in the cell cycle. 
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Supplemental Figure 2.29 Correlation between cell lineage and the transcriptome 

in the mesoderm.  

(A) Jensen-Shannon (JS) distance between the transcriptomes of pairs of mesoderm 

cells (MS lineage), faceted by cell generation and lineage distance. MS4 refers to the 
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cell generation produced by 4 divisions of the mesoderm founder cell (MS), and likewise 

for generations MS5-6. The “transcriptome” of a given anatomical cell is defined as the 

average gene expression profile of all sc-RNA-seq cells annotated as that anatomical 

cell. Pairs of bilaterally symmetric cells are excluded from the statistics. The MS6 

generation contains both terminal cells and pre-terminal cells that are still dividing. The 

data for MS6 in the plot is faceted to separate these, comparing only pairs of pre-

terminal cells (left panel) or only pairs of terminal cells (right panel). (B) Estimates of the 

extent to which lineage explains the transcriptome in MS4-6, using a pseudo-R^2 

statistic (see Materials and Methods). (C) Distribution of the number of “lineage 

signature transcription factors”—TFs that distinguish a cell from its sister—for cells in 

MS4-6. (D) Proportion of lineage signature transcription factors for a cell in a given 

generation that have expression maintained in 0, 1, or 2 of the cell’s daughters in the 

subsequent generation. (E) Proportion of lineage signature TFs for which expression in a 

given cell was maintained from the cell’s parent vs. newly activated after the parent’s 

division. 
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Supplemental Figure 2.30 Both recent and distant ancestry contribute to the 

ability of the lineage to predict a cell’s transcriptome. 

In Figure 2.5B, we used a pseudo-R2 statistic to estimate the extent to which lineage 

predicts the transcriptomes of cells within a given generation. Specifically, our pseudo-R2 

statistic computes how much more similar are the transcriptomes of sister cells than 

those of random pairs of cells (see methods section titled “Pseudo-R2 statistic”). 

Here, we estimate how much of the similarity of sisters is specifically due to gene 

expression signatures associated with their parent, and how much is due to gene 

expression signatures associated with more distant ancestors. We describe how these 
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estimates are computed in the methods section titled “Methods used in Supplemental 

Figure 2.30”. 

Each panel in the figure corresponds to a generation of the AB lineage. Each bar 

on the x-axis corresponds to one of the generations that precede it. For example, AB5 is 

preceded by the generations AB4, AB3, AB2, and AB1. The height of each bar 

represents the contribution of gene expression signatures associated with that specific 

ancestor generation to the ability of the lineage to predict the transcriptome in the 

descendant generation. The sum of the heights of all bars in a panel is equal to the total 

pseudo-R2 for the descendant generation (Figure 2.5B). 
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Supplemental Figure 2.31 Hierarchical clustering of progenitor lineage 

transcriptomes.  

This heatmap shows the log2 expression (log2 transcripts per million) of all genes (rows) 

that are expressed in at least one pre-terminal lineage (columns). Genes and lineages 
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are ordered by hierarchical clustering. The right panel shows the expression values in 

terminal cell bins, with genes (rows) ordered by the clustering as generated from the pre-

terminal lineages and terminal cell bins (columns) ordered as in Supplemental Figure 

2.32. 
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Supplemental Figure 2.32 Hierarchical clustering identifies signatures of tissue 

and cell type differentiation.  
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This heatmap shows the log2 expression (log2 transcripts per million) of all genes (rows) 

that are expressed in at least one terminal cell bin (columns). Genes are ordered by 

hierarchical clustering, and cell bins are ordered by tissues (colored as in the legend), 

and within tissues by the beginning of the time bin in minutes (early to late). Gene 

clusters are labeled by sites of predominant expression. Numbers in parentheses are the 

number of genes in that cluster. 
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Supplemental Figure 2.33 Transcriptome specialization and transcription factor 

usage across cell types and time.  

(A) A global UMAP with 81,286 cells colored by the Gini coefficient of their gene 

expression vector, adjusted to correct for sample size bias and scaled by converting to 

z-scores. High Gini coefficients indicate that a small set of genes produces a large 

fraction of cell mRNA content. (B) Number of TF expressed in g1 gland over time. 

Equation shows linear regression result. Points are colored by estimated embryo time. 

(C) Box plot showing TF activation times—the embryo time when a TF first becomes 

expressed—grouped by TF family. For each TF, its activation time is defined as the 5th 
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percentile of the estimated embryo time values for cells that express that TF. TF family 

annotations are taken from the CIS-BP database (221). Families that have fewer than 10 

members detected in the current dataset were excluded from this plot. (D) Number of 

differentially expressed TFs and TF family composition across broad cell types. 
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Supplemental Figure 2.34 Distribution of estimates for the proportion of UMIs in a 

cell that come from background RNA.  

(A) The process for making the estimates is described in the methods section “Per-cell 

background correction and filtering”. Due to the sparsity of the single cell data, the 

estimates are noisy. Numbers to the left and right of the vertical line indicate the 

proportion of cells with estimated background fraction < or >= 75%. Cells with 

background fraction >= 75% are filtered from all downstream analyses. (B) After per-cell 

background correction, cells with low and high background fractions have near-identical 

average gene expression profiles. Plot shows average gene expression profiles 

(measured in transcripts per million) computed from non-head body wall muscle cells 

divided into two groups: cells with estimated background fraction < 30% (x axis) and 

cells with background fraction in the range [30%, 75%]. 
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CHAPTER 3 DEVELOPMENTAL TRAJECTORY OF PRE-HEMATOPOIETIC STEM 

CELL FORMATION FROM ENDOTHELIUM 
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Introduction 

Hematopoietic ontogeny involves multiple “waves” in which HSPCs with different 

potentials differentiate from HE cells. HE cells in the yolk sac (YS) differentiate into 

committed erythro-myeloid (EMP) and lymphoid progenitors, and the caudal arteries 

produce lymphoid progenitors and pre-HSCs (222, 223). YS hematopoiesis can be 

recapitulated in embryonic stem (ES) cell cultures, where the molecular events are well-

described (224, 225). Groundbreaking studies described the transcriptomes of HE and 

pre-HSCs in the major caudal artery, the dorsal aorta, at single cell resolution (39, 226-

228). However, these analyses did not examine the distribution or chromatin landscapes 

of cells along the trajectory, or the heterogeneity of cells in the intra-arterial clusters 

(IACs), due to the limited number of cells sequenced. To gain insights into the molecular 

mechanisms mediating the differentiation of arterial E cells into IACs we performed 

single-cell RNA sequencing (scRNA-Seq) and single-cell assay for transposase-

accessible chromatin sequencing (scATAC-Seq). Our data reveal a continuous trajectory 

from E to IAC cells, previously undefined transitional cell populations along the 

trajectory, the pathways and transcription factors active in these cells, and describe the 

molecular heterogeneity of IAC cells.  

 

Results 

scRNA-Seq reveals a continuous trajectory from endothelial cells to IAC cells 

Our strategy was to analyze all cells along the trajectory in a single sample to determine 

their distribution between different transcriptional states, and combine that with analyses 

of purified sub-populations to make accurate cell assignments and obtain additional 
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coverage of rare cells (Figure 3.1A). We captured the entire trajectory by purifying a 

population containing all E, HE, and IAC cells (E+HE+IAC) from E9.5 and E10.5 

embryos using a combination of endothelial markers (Supplemental Figure 3.1A). We 

also purified subpopulations of HE and E cells from E9.5 and E10.5 embryos based on 

expression of green fluorescent protein (GFP) from the Runx1 locus(229) (Supplemental 

Figure 3.1B). We confirmed that only HE cells were capable of producing hematopoietic 

cells ex vivo (Supplemental Figure 3.1C).  Kithi IAC cells were excluded in the sorts, 

therefore HE and E cells were negligibly contaminated with HSPCs (Supplemental 

Figure 3.1D). We purified IAC cells from E10.5 and E11.5 embryos using antibodies 

recognizing endothelial markers and Kit, E9.5 yolk sac EMPs (E9.5 YS-EMP), and E14.5 

fetal liver HSCs (FL-HSCs) (Supplemental Figure 3.2).  

Summary statistics for collected cell populations are shown in Figure 3.1B and 

Table 3.1. We used uniform manifold approximation and projection (UMAP) to reduce 

the data dimension (117). After filtering out non-endothelial and non-hematopoietic cells 

(Supplemental Figure 3.3A) and reducing batch effect using an “informative feature 

selection” method (Supplemental Figure 3.4, Materials and Methods), UMAP of the 

combined datasets shows a continuous trajectory from E to IAC cells (Figure 3.1C,D, 

Supplemental Figure 3.3). E14.5 FL-HSCs are disconnected from this trajectory, 

therefore, are more distantly related (Figure 3.1C).  

Two streams of Efbn2+ E cells in the UMAP converge to form a stem leading to 

HE and IACs (Figure 3.1E). Analyses of E10.5 E+HE+IAC cells manually separated into 

VU arteries and DA demonstrated that VU cells contribute to one of these streams and 

DA to both streams (Figure 3.1F). The E+HE+IAC samples, which demonstrate the 

distribution of cells at various stages, show that at E9.5, IAC cells constitute only 0.5% of 
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the E+HE+IAC population, but at E10.5 the fraction of IAC cells expands 7 fold, 

representing 3.5% of the population, consistent with histological analyses showing 

increased numbers of IACs between these two embryonic stages (230, 231) (Figure 

3.1D,G).  

Unsupervised clustering identified 7 distinct populations in the combined dataset, 

and separated the two streams of E cells into distinct clusters (Supplemental Figure 

3.5A-C). One cluster, containing only DA E cells, expresses high levels of Wnt target 

genes (Wnthi E) (Supplemental Figure 3.5D). The second cluster, Wntlo E containing 

both DA and UV cells, expresses lower levels of Wnt target genes. Wnthi E and Wntlo E 

could be further subdivided into arterial E (AE) and venous E (VE) by computing an 

arterial/venous score based on sets of AE and VE specific genes (232) (Figure 3.2A-D). 

Pseudo-time-ordered Wnthi and Wntlo E cells prior to the point where the AE score 

exceeded the VE score were defined as VE, and after that point were defined as AE. 

Wnthi AE and Wntlo AE then converge to form a distinct cluster determined by both 

UMAP and another method PHATE (233), that we termed conflux AE (Figure 3.2A, 

Supplemental Figure 3.5E). The confluence of transcriptomes in conflux AE is driven by 

the loss of Wnthi/lo AE-specific gene expression and increased levels of transcripts from 

later stage-specific genes (Figure 3.2D,E). For example, expression of Wnt target genes 

Foxq1 and Nkd1 in Wnthi AE cells, and Tmem255a in Wntlo AE cells are down-regulated 

in conflux AE (Figure 3.2D). Cell cycle is also significantly inhibited in conflux AE 

(Supplemental Figure 3.5F,G), while Notch signaling is elevated, seen by increased 

expression of the Notch ligand Dll4 and transcription factor Hey2 (Figure 3.2D; 

Supplemental Figure 3.3C). Additional pathways activated in conflux AE include those 

regulating cell shape and motility (“elastin fiber formation””, “platelet adhesion to 
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exposed collagen”, “gap junction assembly”) and processes important in hematopoietic 

cells (“MAPK signaling for integrins”) (Figure 3.2F).  

 

Runx1 regulates progression through a developmental bottleneck between pre-

HE and HE 

Conflux AE gives rise to HE and IAC cells, which are characterized by high levels of 

Runx1 and Gfi1, and IAC by expression of the pan-hematopoietic marker gene Ptprc 

(encoding CD45) (Figure 3.3B; Supplemental Figure 3.3C). Between conflux AE and HE 

is a distinct cluster of endothelial cells that we named pre-HE. UMAP and pseudotime 

trajectories of E10.5 E+HE+IAC reveal an accumulation of pre-HE cells, suggesting a 

bottleneck between pre-HE and HE (Figure 3.3C) that is prominent at E10.5 although 

not at E9.5 (Figure 3.1D). Gfi1, a direct RUNX1 target that participates in extinguishing 

endothelial fate (234), shows elevated expression immediately after cells pass through 

the bottleneck and become HE, while high levels of Sox17, the Notch target Hey2, and 

the arterial marker Cd44 are found in pre-bottleneck populations including conflux E and 

pre-HE (Figure 3.3B).  To provide further evidence for the bottleneck, we utilized 

Velocyto and scVelo, which infer directionality of differentiation by modeling dynamics of 

unspliced versus spliced RNAs when a gene is up or down-regulated (141, 235). 

Velocyto and scVelo showed a marked decrease in RNA velocity in pre-HE cells, 

suggesting a differentiation barrier restricting their progression towards HE (Figure 3.3C, 

Supplemental Figure 3.6). Once pre-HE cells transit to HE, however, they smoothly 

differentiate to IAC cells. Several pathways known to promote Runx1 expression and 

HSPC formation are upregulated in pre-HE, including Notch, tumor necrosis factor, fluid 
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shear stress, cytokine signaling, and synthesis of eicosanoids, vitamins, and sterols (52, 

53, 236-241), suggesting these pathways are important in pre-HE (Figure 3.3D, 

Supplemental Figure 3.7). Once cells transition to HE, RUNX1 plays a predominant role.  

Runx1 expression is upregulated in approximately 7% of pre-HE cells suggesting 

that RUNX1 levels regulate passage through the bottleneck (Figure 3.3B, Supplemental 

Figure 3.6B). We tested this hypothesis using several approaches. First, we compared 

the distribution of cells between conflux AE, pre-HE, HE, and IAC in Runx1+/- and 

Runx1+/+ littermates by scRNA-Seq. We observed a 68% reduction in the proportion of 

HE and IAC cells in E10.5 Runx1+/- compared to Runx1+/+ embryos, and a 

commensurate 56% increase in pre-HE, consistent with the hypothesis that RUNX1 

levels regulate transit through the bottleneck (Figure 3.3E). We also performed the 

reciprocal experiment; ectopically expressing RUNX1 in all endothelial cells by activating 

a conditional Runx1 cDNA in the Rosa26 locus (cR1) using an endothelial-specific 

tamoxifen-inducible Cre driven from the vascular endothelial cadherin (Cdh5) regulatory 

sequences (Cre) (242). We previously showed that ectopic expression of RUNX1 in all 

endothelial cells in Cre;cR1/+ embryos increased the frequency of functional HE cells 

compared to control embryos (cR1/+) (242). scRNA-Seq analysis demonstrates these 

results from an increase in the proportion of HE cells and a proportionate decrease in 

pre-HE cells (Figure 3.3F), confirming that RUNX1 levels regulate the number of pre-HE 

cells that transit through the bottleneck to become HE. Second, we determined whether 

RUNX1 haploinsufficiency reduced the number of phenotypic HE cells by confocal 

microscopy.  SOX17 is expressed in AE cells and promotes HE specification, whereas 

HE cells are RUNX1+SOX17low/- (243, 244). The ratio of RUNX1+SOX17low/- HE cells 

versus RUNX1-SOX17+ AE cells in the dorsal aorta was significantly lower in E9.5 
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Runx1+/- embryos compared to Runx1+/+ embryos (Supplemental Figure 3.8). Finally, we 

measured the frequency of functional HE cells within a purified population of CD44+ 

E+HE+IAC cells (Supplemental Figure 3.2G), which are enriched for conflux AE, pre-HE, 

HE, and IAC (245) (Figure 3.3B). RUNX1 haploinsufficiency reduced the frequency of 

functional HE cells by 77% (Figure 3.3G), consistent with the observed reduction in the 

scRNA-Seq experiment (Figure 3.3E). Together these data confirm that RUNX1 level 

regulates the number of pre-HE cells that transit through the bottleneck to become HE 

cells.  

 

scATAC-Seq identifies putative Runx1 enhancers and transcription factor motifs 

that gain accessibility in pre-HE  

To identify signals that may activate Runx1 expression in pre-HE, we performed paired 

scRNA-Seq and scATAC-Seq on E10.5 CD44+ E+HE+IAC cells to identify Runx1 

enhancers and the stages they are accessible. High quality open chromatin profiles were 

obtained for 1670 cells, covering various cell types from E to IAC (Supplemental Figure 

3.9). The joint embedding of scRNA-Seq and scATAC introduced a gap between pre-HE 

and IAC cells on the UMAP. This results from the developmental bottleneck around 

E10.5 that causes an underrepresentation of HE cells connecting pre-HE and IAC in 

some samples. (Figure 3.4A). We devised a computational approach that matches 

scATAC-Seq clusters with scRNA-Seq clusters (Figure 3.4A, Supplemental Figure 3.10), 

and subsequently linked enhancers with their target promoters (Figure 3.4B). Accuracy 

of our method was benchmarked using known hematopoietic and endothelial enhancers 

(Figure 3.4C, D). We applied chromVar (246) to assess differential transcription factor 
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(TF) binding patterns along the EHT trajectory (Figure 3.4E). Results show strong 

correlation with the TF expression patterns and are consistent with pathway analyses 

from scRNA-Seq data. For example, strong TCF/LEF binding activity was detected in 

Wnthi E that abruptly decreased in conflux AE (Figure 3.4E, F). SOX and FOX binding 

sites are mostly open in conflux AE and pre-HE. Binding sites for a large group of TFs 

had increased accessibility beginning at the pre-HE stage, including HES1, GATA, 

SMAD, and TFs such as MECOM, EGR1, and YY1 that regulate HSC homeostasis 

(247-249), the latter group suggesting that an HSC-specific transcriptional program may 

initiate at the pre-HE stage.  

Runx1 contains two promoters, an upstream P1 promoter that is first utilized in 

committed HSPCs, and a more proximal P2 promoter that is active in HE and HSPCs 

(250). Consistent with this, P1 first becomes accessible in IAC cells, whereas P2 is 

accessible in all endothelial cells including pre-HE (Figure 3.5A), which may permit or 

contribute to the stochastic Runx1 expression observed in a subset of endothelial cells 

(Figure 3.3B). Using our computational approach, we predicted 27 enhancer-promoter 

(E-P) interactions, which recapitulate 11 out of 22 previously identified E-Ps based on 

chromosome conformation capture assays (251, 252) (Figure 3.5A, also see Materials 

and Methods). All of the predicted enhancers exhibit higher co-accessibility with P1 

compared to P2, therefore only E-Ps to P1 are indicated. A significance plot of the 

predicted E-Ps reveals several enhancers whose chromatin openness is significantly 

correlated with Runx1 expression, including the Runx1 +23 enhancer (Figure 3.5B). 

Several of the predicted enhancers exhibit stage-specific co-accessibility with the P1 

promoter (Figure 3.5C). Interestingly, one candidate enhancer located 371 kb upstream 

of Runx1 P1 was accessible only in pre-HE and IACs, and not in other endothelial cell 
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populations (Figure 3.5A, C). This candidate enhancer was previously shown by circular 

chromosome conformation capture sequencing to interact with the +23 enhancer and P1 

in a hematopoietic progenitor cell line (251). The -371 enhancer drove expression of a 

reporter gene in the intermediate cell mass and posterior blood island of zebrafish 

embryos, both of which are sites of hematopoietic ontogeny (251). The scATAC-Seq 

signal encompassing the -371 enhancer begins to increase in conflux AE cells and 

reaches a maximum in pre-HE cells (Figure 3.5A, D). This change in accessibility in pre-

HE coincides with the activation of Runx1 expression in a subset of pre-HE cells (Figure 

3.5D). However, unlike the +23 enhancer, the chromatin accessibility of the -371 

enhancer subsequently decreases in IAC cells and is no longer open in FL-HSCs 

(Figure 3.5A). The candidate -371 enhancer contains GATA, STAT, and JUN motifs, 

indicating that GATA2 and cytokine and/or inflammatory signaling may contribute to the 

opening of this enhancer in pre-HE (Figure 3.5A). An independent co-expression 

analysis based on the scRNA-Seq data reveals that these factors form a co-expression 

gene module that precedes and correlates with Runx1 expression (Figure 3.5E), 

suggesting they may cooperatively regulate Runx1 expression. Notably, neither the -371 

nor the +23 enhancers contain SOX motifs, which are recognized by a repressor of 

Runx1 expression, Sox17 (244). Other TF motifs enriched in the 27 called Runx1 

enhancers include ETS, FOX, SOX, KLF/SP, RUNX, and SMAD, which are recognized 

by TFs with well-documented roles in HSPC formation (253-255).  

 

Two waves of HSPCs form in the IACs 

We also examined the transition of HE to IAC cells and the composition of IAC cells. 

Principal component analysis (PCA) depicts a sharp U-turn as HE differentiates into IAC 
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cells, reflective of a marked decrease in AE gene expression and activation of 

hematopoietic genes (Figure 3.6A). For example, the AE-specific gene Gja5 is primarily 

expressed on the HE side of the trajectory, while expression of Spn (encoding CD43), 

Ptprc (encoding CD45) and the Rho GTPase Rac2 rapidly increases in IAC cells (Figure 

3.6B, Supplemental Figure 3.11A, B). Transient expression of the chromatin remodeling 

protein Nupr1 occurs at the U-turn, while Hey1 and Sox17 transcripts significantly 

diminish as IAC cells mature (Figure 3.6B, Supplemental Figure 3.11B). 

IACs contain pre-HSCs that cannot engraft adult mice directly, but can mature in 

vivo or ex vivo into adult-repopulating HSCs(36, 38, 256). Pre-HSCs are classified as 

type I or II based on CD45 expression; type I are CD45-, and the more mature type II are 

CD45+ (38). E10.5 IACs contain only type I pre-HSCs, whereas E11.5 IACs contain both 

type I and II pre-HSCs(38). Additionally, multiple progenitors with lymphoid, myeloid, 

lympho-myeloid, or multi-lineage potential emerge prior to or contemporaneously with 

pre-HSCs (222), at least a subset of which are CD45+ (226, 257, 258). We compared 

E10.5 CD45+IAC cells that contain HSC-independent progenitors and lack pre-HSCs to 

E11.5 CD45+CD27+CD144+ IAC cells enriched for type II pre-HSCs (E11.5 pre-HSCs) 

(38, 259) to determine their developmental relationship (Supplemental Figure 3.2C,D). 

The two populations bifurcate in the third principal component of PCA plots; specifically, 

the majority of E10.5 CD45+ IAC cells occupy one end of the PC3 axis, and E11.5 pre-

HSCs reside on the other end (Figure 3.6C, D). E11.5 pre-HSCs demonstrated a high 

correspondence with previously published data (39) (Supplemental Figure 3.12A). We 

determined the fraction of pre-HSCs in E10.5 and E11.5 IAC cells using a K-nearest-

neighbor classifier. About 2% of E10.5 IAC cells were found to be molecularly similar to 

E11.5 type II pre-HSCs; this fraction of pre-HSCs increases to 67% in E11.5 IAC cells 
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(Figure 3.6D), consistent with previous limiting dilution assay results demonstrating an 

increase in functional pre-HSCs between E10.5 and E11.5 (36). To determine the fate 

bias of cells from earlier stages, we used Palantir and FateID (144, 260). T-SNE plot 

generated by Palantir analysis shows a bifurcation pattern similar to the PCA result 

(Supplemental Figure 3.11C). Distribution of the fate probabilities suggests that 

compared to E9.5 HE, E10.5 HE has higher probability of choosing pre-HSC fate, and 

E11.5 IACs contain more pre-HSC-like cells than E10.5 IACs (one-sided Kolmogorov-

Smirnov test, Supplemental Figure 3.11D, E).  

The 974 genes more highly expressed in E11.5 pre-HSCs compared to E10.5 

CD45+ IAC cells include known markers of pre-HSCs and/or HSCs (Eya2, Procr, Cd27, 

and Mecom) (39, 247, 259, 261, 262), while the 877 genes up-regulated in E10.5 CD45+ 

IAC cells include proliferation related genes (Myc) and lympho-myeloid associated 

genes (Il7r, Fcer1g) (Figure 3.6E, F). Among the differentially expressed genes, some 

transcription factors, such as Myc, Klf2, Smad7, Mecom, Meis2 and Nfix, are expressed 

in HE cells, and show strong bifurcation in expression as cells become IAC cells 

(Supplemental Figure 3.11F).  Pathway analysis suggests E11.5 pre-HSCs gain stem-

cell specific features such as “OCT4, SOX2, NANOG represses genes related to 

differentiation”, while pathways associated with E10.5 CD45+ IAC cells are associated 

with cell cycle and/or related to a specific hematopoietic lineage, such as “TCF 

dependent signaling in response to WNT” (Figure 3.6G). Interestingly, E11.5 pre-HSCs, 

although sampled 1 day later in development compared to E10.5 CD45+ IAC cells, retain 

many pathways from E/HE stages, such as “Signaling by BMP” and “eNOS activation”, 

suggesting a relatively slow shutdown of the E/HE program in pre-HSCs. In contrast, 
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subsets of E10.5 CD45+ IAC cells show lineage-specific differentiation bias; Il7r is up-

regulated in 26%, and Gata1 in 3% of E10.5 CD45+ IAC cells (Figure 3.6F). 

Previous scRNA-Seq studies identified committed progenitors in E10.5 and 

E11.5 IACs but concluded they were contaminating erythro-myeloid progenitors (EMPs), 

likely originating from the yolk sac, that had been circulating in the blood and became 

attached to the IACs (39, 226). We addressed the possibility that the E10.5 CD45+ IAC 

cells we profiled are contaminating YS EMPs. Direct comparison shows E10.5 CD45+ 

IAC cells and E9.5 YS-EMP are molecularly and functionally distinct (Figure 3.6H, 

Supplemental Figure 3.12C). E10.5 CD45+ IAC cells contained progenitors of 

macrophages and granulocytes/monocytes, but very few erythroid or megakaryocytic 

progenitors compared to E9.5 YS-EMPs (Figure 3.6H). E10.5 CD45+ IACs have potent 

lymphoid potential; limiting dilution assays revealed a high frequency of cells (1:6) 

capable of producing B cells following culture on OP9 stromal cells or T cells on OP9 

expressing the Notch ligand delta-like 1 (Figure 3.6I, J). E10.5 CD45- IAC cells also 

contained progenitors with lymphoid and myeloid potential, although their frequency was 

lower than in the E10.5 CD45+ IAC population. In summary, E10.5 CD45+ IAC cells 

represent a distinct wave of lympho-myeloid-biased progenitors in IACs that appear prior 

to E11.5 type II pre-HSCs.  

 

Discussion 

Our single cell analyses provide new insights into the process by which endothelial cells 

differentiate into pre-HSCs. First, we define a precursor of HE we have named pre-HE, 

in which multiple pathways known to regulate HSPC formation appear to act. Also, 
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through trajectory analyses and genetic perturbation experiments we identified a 

bottleneck separating pre-HE from HE, indicative of a developmental barrier that must 

be overcome at that transition. It is long known that embryonic hematopoiesis is 

exquisitely sensitive to Runx1 dosage, as reduced Runx1 dosage decreases the number 

of HE cells, IACs and committed hematopoietic progenitors in the embryo (263-265).  

Our scRNA-Seq analyses show that the deficits caused by reduced Runx1 dosage are 

caused, at least in part, by the inefficient transition of pre-HE to HE cells. The molecular 

underpinnings of the bottleneck at the pre-HE to HE transition are not known. One 

possibility is that Runx1 expression may be actively repressed in the majority of pre-HE 

cells by TFs such as Sox17 (244, 266), which is highly expressed in pre-HE, and binding 

sites for which are accessible in pre-HE. A requirement for chromatin remodeling may 

also be a limiting factor in pre-HE, as multiple epigenetic regulatory proteins have been 

shown to affect Runx1 expression in HE, some of which may act at the pre-HE to HE 

transition (267). 

Prior to HE, Runx1 is expressed at low levels in a subset of endothelial cells, 

consistent with the chromatin accessibility of the P2 promoter and of several Runx1 

enhancers in endothelial cells. Runx1 expression in endothelial cells appears to be 

stochastic; it then becomes elevated in a subset of pre-HE cells, and is uniformly high in 

HE and IACs. The mechanism by which Runx1 expression is activated in a subset of 

pre-HE cells is not known, but our experiments provide some clues. scATAC-Seq 

revealed that a distal enhancer in Runx1 (-371), previously validated in zebrafish 

transgenic embryos and conserved in mammals (251), first becomes accessible in pre-

HE. Highly conserved TF motifs in the -371 enhancer include GATA, STAT, and JUN, 

implying that TFs that bind these motifs may play a role in opening the enhancer in pre-



157 
 

HE. Gata2 expression is activated in a pulsatile manner in endothelial cells in the DA 

(268), which may contribute to the stochastic expression of Runx1 in arterial endothelial 

cells. STAT and JUN motifs are recognized by TFs that are effectors of inflammatory 

signaling pathways, including type I and II interferons, and tumor necrosis factor, all of 

which promote HSPC formation from arterial endothelium (52, 269, 270). Hence 

signaling pathways known to promote later Runx1 expression in HE could potentially 

initiate Runx1 expression in a subset of pre-HE cells by activating the candidate -371 

pre-HE enhancer. At later stages, in IACs and FL-HSCs, multiple additional enhancers, 

including the +23 enhancer gain accessibility and interact with the P1 promoter to further 

elevate Runx1 expression. 

A second important concept gleaned from our data is that the IACs contain at 

least two distinct HSPC subtypes, committed lympho-myeloid-biased progenitors and 

pre-HSCs, that can be distinguished molecularly. These appear sequentially, with CD45+ 

lympho-myeloid-biased progenitors preceding the formation of type II pre-HSCs. The 

mechanisms underlying the generation of these two types of HSPCs is of great interest. 

It is not known, for example, if they independently differentiate from an equivalent 

population of immature IAC cells. Alternatively, they may be derived from distinct 

populations of HE cells. Our cell fate analysis suggests that E10.5 HE is more likely to 

assume pre-HSC fate than E9.5 HE, which is consistent with the observation that E11.5 

IACs contain more pre-HSCs than E10.5 IACs. The bifurcation of fate may be partially 

driven by early differential expression of transcription factors specific to pre-HSCs or 

lympho-myeloid-biased progenitors. The lympho-myeloid-biased progenitors are more 

developmentally “mature” compared to the type II pre-HSCs, suggesting that they are 

more driven towards terminal differentiation. A similar population of lympho-myeloid 
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restricted progenitors that originates in the yolk sac colonizes the FL and thymus prior to 

HSCs (271, 272). Lympho-myeloid-biased progenitors in the arterial IACs may serve a 

similar function.   

The earlier emergence of lympho-myeloid-biased progenitors in the arteries may 

have implications for ongoing efforts to generate pre-HSCs from ES cells. The 

acquisition of lymphoid potential is often used as a surrogate for pre-HSC formation. 

However, it is possible that conditions favoring the production of this earlier population of 

committed lympho-myeloid progenitors may be suboptimal for the later formation of pre-

HSCs. If this is the case, then inhibiting the differentiation of lympho-myeloid progenitors 

in ES cell cultures may improve pre-HSC production ex vivo. 

 

Materials and Methods 

Animal husbandry 

B6C3F1/J 3-week old female mice were purchased from Jackson Laboratories (Stock 

no: 100010). Females were injected with 5 IU pregnant mare serum gonadotropin and 

48 hours later with 5 IU human chorionic gonadotropin (Sigma), then immediately paired 

overnight with C57BL6/J male mice. Runx1:GFP (Runx1tm4Dow) (229) homozygous male 

mice were mated to super-ovulated B6C3F1/J 3-week old female mice to generate 

embryos for purification of E and HE cells. Female B6C3F1/J mice were mated with 

male B6129SF1/J mice for isolating fetal liver HSCs. Ectopic RUNX1 expression in 

endothelial cells in Tg(Cdh5-cre/ERT2)1Rha embryos (273) that contained an 

activatable Runx1 cDNA in the Rosa26 locus was described previously (242). Runx1+/- 

mice (Runx1tm1Spe) were described previously (264). The morning post mating is 
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considered embryonic day (E) 0.5. E9.5-E11.5 embryos were accurately staged at the 

time of harvest by counting somites. Embryos that showed abnormal development were 

discarded. Mice were handled according to protocols approved by the University of 

Pennsylvania’s Institutional Animal Care and Use Committee and housed in a specific-

pathogen-free facility. 

 

Embryo dissection and FACS 

Yolk sacs were removed from embryos, and vitelline vessels were retained with the 

embryonic portion. The head, cardiac and pulmonary regions, liver, digestive tube, tail 

and limb buds were removed. The remaining portion containing the aorta-gonad-

mesonephros (AGM) region, portions of somite, umbilical and vitelline vessels were 

collected. E9.5 and E10.5 yolk sacs were collected for isolation of EMPs. Tissues were 

dissected in phosphate buffered saline (PBS)/10% Fetal Bovine Serum (FBS) and 

Penicillin/Streptomycin (Sigma), followed by dissociation in 0.125 Collagenase (Sigma) 

for 1 hour. Tissues were washed and filtered through a 40-micron filter and resuspended 

in antibody solution. Cells were sorted on either BD Influx, MoFlow Astrios EQ 

(Beckman), BD Jazz, or BD Aria, all equipped with a 100-micron nozzle, and run at a 

pressure of 17 psi with flow rates less than 4000 events/second. Sorted cells for 

functional assays were collected in PBS/20% FBS/25mM HEPES. For scRNA-Seq and 

scATAC-Seq, cells were collected in IMDM/20% FBS in low-retention microcentrifuge 

tubes (Denville). 
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scRNA-Seq 

Sorted cells were immediately processed for library preparation using the 10x Genomics 

Chromium Single Cell 3′ Reagent Kit v2. Libraries were quantified using the dsDNA 

High-Sensitivity (HS) Assay Kit (Invitrogen) on a Qubit fluorometer and the qPCR-based 

KAPA assay (Kapa Biosystems). Library quality assessment was performed on the 

Agilent 2100 Bioanalyzer in combination with the Agilent High Sensitivity DNA kit. 

Indexed libraries were pooled and sequenced on an Illumina HiSeq 4000 or NextSeq 

550 using paired-end 26 × 98 bp read length. 

 

scATAC-Seq 

Sorted cells were centrifuged at 300x g for 5 min at 4 °C and resuspended in 50 µL of 1x 

PBS + 0.04% BSA. 45 µL of supernatant was carefully discarded, and 45 µL of chilled 

lysis buffer was added and mixed by pipetting gently. After incubation for 5 min on ice, 

50 µL of chilled wash buffer was added without mixing. The mix was centrifuged at 500x 

g for 5 min at 4 °C, and 95 µL of supernatant was discarded. 45 µL of chilled diluted 

nuclei buffer was added without mixing, and the mix was centrifuged at 500x g for 5 min 

at 4 °C. The nuclei pellet was resuspended in 7 µL of chilled diluted nuclei buffer. 2 µL of 

nuclei suspension was used to determine the cell concentration by a Countess II cell 

counter (Invitrogen), and the remaining 5 µL of nuclei suspension was processed for 

library preparation using the Chromium Single Cell ATAC Reagent Kits protocol. 

Libraries were quantified using the dsDNA HS Assay Kit on a Qubit fluorometer and the 

qPCR-based KAPA assay. Library quality assessment was performed using the Agilent 



161 
 

2100 Bioanalyzer with the Agilent High Sensitivity DNA kit. Indexed libraries were pooled 

and sequenced on an Illumina NextSeq 550 using paired-end 50 × 50 bp read length. 

 

OP9 co-culture assays 

FACS sorted cells were plated in limiting dilutions on OP9 (ATCC) or OP9-delta-like 1 

stromal cells in 96-well plates containing Minimum Essential Medium Eagle - alpha 

modification (alpha MEM), 20% FBS (Hyclone, Gibco) and Pen/Strep. 5 ng/mL Flt3L and 

10 ng/mL IL-7 were added to the medium for OP9 co-cultures. The medium for the OP9-

DL1 co-cultures was supplemented with 5 ng/mL Flt3L and 1 ng/mL IL-7. Co-cultures 

were conducted for 10-13 days and subsequently, flow cytometry was performed on a 

LSR-II (BD). The flow cytometry antibody panel for OP9 co-cultures included the 

hematopoietic markers Mac1, Gr1, CD19, B220, and CD45, while the OP9-DL1 co-

cultures were analyzed for CD45, CD90, and CD25. Limiting range was determined 

using the extreme limiting dilution analysis (ELDA) software analysis tool (274). 

 

Methylcellulose assays 

To enumerate erythroid, myeloid, and megakaryocyte progenitors, sorted cells were 

cultured in M3434 (StemCell Technologies) for 7 days. Colonies were scored based on 

morphological criteria.   
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Hemogenic endothelial (HE) cell assay 

Sorted cells were plated in limiting dilutions with OP9 stromal cells for 8-10 days in alpha 

MEM containing 10ng/mL of IL-3, IL-7, Flt3, and SCF. Cells were analyzed by flow 

cytometry for hematopoietic markers (B220, CD19, Mac1, Gr1, and CD45), and ELDA 

software analysis tool (274) was used to determine the frequency of HE. 

 

Whole-mount immunofluorescence and confocal microscopy 

Embryos were prepared as previously described (37). Embryos were stained with rabbit 

anti-mouse/human RUNX1/AML1+RUNX2+RUNX3 and rabbit anti-mouse/human Sox17 

at a working concentration of 1:500. Secondary antibodies used were goat anti-rabbit 

Alexa Fluor 488 (1:1000, Abcam ab150077, against Runx1) and goat anti-rabbit Alexa 

Fluor 647 (1:500, Abcam ab 150083, against Sox17). Images were acquired on a Zeiss 

LSM 880 AxioObserver inverted microscope equipped to detect 488, 561, and 633nm 

wavelengths. Images were analyzed using Fiji software (275). 

 

scRNA-Seq data analysis 

Data pre-processing and filtering of non-endothelial and non-hematopoietic cells 

Raw sequencing reads were first pre-processed with 10x Genomics Cell Ranger pipeline 

and aligned to the mouse mm10 reference genome. An initial filtering was performed on 

the raw gene-barcode matrix output by the Cell Ranger cellranger count function, 

removing barcodes that have less than 1000 transcripts (quantified by unique molecular 

identifier (UMI)) and 1000 expressed genes (“expressed” means that there is at least 1 
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transcript from the gene in the cell). Barcodes that pass this filter were considered as 

cells and were fed into downstream dimensionality reduction and clustering analysis. In 

the global UMAP with 37,766 cells combined from all datasets, we noticed several 

contaminant cell types, including mesenchymal-like cells that express high levels of 

collagen, erythroid progenitors, and Lyve1+ endothelial cells that likely have a lymphatic 

or YS origin (Supplemental Figure 3.3A). Since these contaminant cell types are not 

directly associated with EHT, we removed them from our downstream analyses, thereby 

obtaining a UMAP exclusively with endothelial cells and hematopoietic cells 

(Supplemental Figure 3.3B). 

Unsupervised clustering on the cleaned global UMAP reveals a clear separation 

between IACs and other hematopoietic progenitors. For example, Haptoglobin (Hp) is 

highly expressed in most YS EMPs, but has almost zero expression in IAC cells 

(Supplemental Figure 3.3B). Genes such as Gata1 were found to be expressed in 

subset of EMP and a few IAC cells (Supplemental Figure 3.3B). We found a Bnip3hi 

population in the E10.5 CD44+ E+HE+IAC samples, and a group of low-quality 

endothelial cells marked by low UMI counts per cell (Supplemental Figure 3.3B). After 

filtering out these cells, we obtained a final UMAP with 23,081 cells representing the 

EHT trajectory (Supplemental Figure 3.3C). We ran Louvain clustering on this global 

UMAP and assigned cell types based on differentially expressed genes (Supplemental 

Figure 3.3C). The cell distributions of each dataset post cleaning are shown in Figure 

2C. 
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Feature selection, dimensionality reduction, and unsupervised clustering 

Gene-barcode UMI count matrix combined from all datasets was first processed with a 

standard pipeline utilizing the Monocle 3 package (276). An initial variable expressed 

gene (VEG) selection was performed on the size-factor corrected, log2 transformed 

expression matrix using the feature dispersion table output by Monocle 

estimateDispersions and dispersionTable functions. The estimateDispersions function 

models how a gene’s variance is related to its average expression. We tested various 

cutoffs for dispersion, and found a relatively consistent pattern in the resulting UMAP. 

We found relaxing the cutoff to dispersion_empirical/dispersion_fit > 0.5 improves the 

clustering result, especially in detecting rare cell types/states. This procedure is similar 

to choosing x number of top variable genes in the Seurat pipeline, where x is an arbitrary 

number selected by the user. Furthermore, we require a gene to be expressed in at least 

more than 1 transcript in a minimum of 10 cells in order to be used as a VEG for 

dimensionality reduction. To produce a low dimensional embedding of the data, principal 

component analysis (PCA) was performed on the VEG-cell matrix, and the top PCs were 

used as features for the UMAP algorithm. UMAP was computed using the umap function 

in the uwot R package, with “cosine” distance metric, 20 nearest neighbors, and the rest 

of the parameters utilized were default. Louvain clustering was run on the K-nearest 

neighbor graph (K = 20) constructed from cell embeddings on the UMAP. Additionally, 

we ran PHATE (233) on the same set of EHT cells with the default parameter setting, 

and obtained a similar trajectory as in the UMAP (Supplemental Figure 3.5E).  

We noticed that VEGs selected using Monocle 3 or Seurat contained genes that 

are cell-type specific, as well as genes associated with cell cycle and batch differences. 

Some highly expressed house-keeping genes are also called as VEGs, likely due to 
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variation in sequencing depth across batches. The UMAP produced by the Monocle 3 or 

Seurat pipeline is globally reflective of cell type, but locally affected by batch and cell 

cycle, causing some clusters to be less representative of underlying cell states 

(Supplemental Figure 3.4D). 

To select features that are most reflective of cell type transitions during EHT and 

less affected by batch or cell cycle difference, we devised a feature selection procedure 

called informative feature (IFF) selection. IFF takes an initial clustering generated by 

other single-cell clustering methods such as Monocle 3, Seurat and SC3 (277-279) and 

then computes the expressed (non-zero) fraction of each gene for each cluster. Genes 

that are detected in too few cells (e.g., less than 10% in every cluster) are filtered out. To 

determine the “inequality” of the gene’s expression across clusters, we calculated Gini 

coefficient on the per-cluster-expressed-fraction vector. The distribution of Gini 

coefficients shows a clear peak on the left (Supplemental Figure 3.4A). Genes in the 

peak are highly enriched for housekeeping and cell cycle functions, while genes in the 

right long tail are strongly enriched for cell type specific ontologies (Supplemental Figure 

3.4B, C). This allows us to separate the majority of “cell-type-informative-features” from 

“ubiquitous features”. We found that IFF significantly improves the clustering result by 

mitigating the batch effect (Supplemental Figure 3.4D) and identifies underlying cell 

subtypes and states (Supplemental Figure 3.4F-H). The method is also robust to initial 

clustering parameter choice (Supplemental Figure 3.4E).  

The IFF selection procedure is conceptually similar to the dpFeature selection 

introduced in the Monocle 2 package, which requires an initial clustering that is most 

reflective of cell type and selects cell-type-specific features by differential gene 

expression test. However, unlike the dpFeature, IFF selection is more permissive, as it 
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does not require a gene to be significantly differentially expressed in one cell type to be 

selected. Additionally, genes expressed in a subset of clusters with a relatively weak but 

specific pattern are informative of cell type segregation, and a high Gini coefficient 

enables them to be selected as IFFs. Since Gini coefficient computation is based on the 

per-cluster-expressed-fraction rather than normalized expression, this procedure is also 

insensitive to various modeling assumptions underlying different single cell data 

normalization methods.  

  

Differential expression analysis 

We ran differential expression analysis using the “sSeq” algorithm implemented in the 

cellrangerRkit package and used FDR < 0.05 and log2 fold change >1 to call 

differentially expressed genes (DEGs).  

 

Pathway enrichment analysis 

To directly compute a per-cell enrichment score for each pathway in the Reactome 

database (280), we used an approach based on the AUCell package (157). We slightly 

modified the standard AUCell pipeline; instead of using all genes for ranking, we initially 

removed the majority of housekeeping genes using the IFF selection method described 

above, thereby retaining genes that are mostly cell-type specific (top 25% of genes 

ranked by Gini coefficient). To derive pathways that are differentially active along the 

EHT trajectory and between pre-HSC and lympho-myeloid-biased progenitors, we 

subsequently performed stage-wise Student’s t test on the enrichment score (q-value <= 
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0.01). For Figure 3.2F, 3.6G, Supplemental Figure 3.5D, and Supplemental Figure 3.7, 

we removed pathways with fewer than 5 genes. Redundant pathways were removed if 

the Jaccard index (number of shared genes/number of all genes) for the pair of 

pathways was greater than 0.1 and the pathway had a higher q-value. For Supplemental 

Figure 3.4B, C, we computed gene ontology (GO) enrichment using the ClusterProfiler 

package (281), q-value cutoff of 0.05 and ontology type “Biological Process” (BP).  

 

Pseudotime assignment 

We applied Slingshot, one of the best performing trajectory inference methods based on 

a benchmark study of 45 methods (135), to the cleaned data, as described above. 

Slingshot infers trajectory by fitting a principal curve along a user-selected low 

dimensional embedding of the data and assigns each cell a pseudotime based on its 

projection onto the curve. We used the UMAP in Figure 1C, excluding FL-HSC, as the 

input to the Slingshot algorithm. The starting cluster was set to the “E9.5 E” population, 

and the terminal cluster was set to the “IAC” population. Computed pseudotime was 

used for ordering cells along heatmaps in Figure 1G, 2F, and Supplemental Figure 3.7. 

For Figure 3.2B, C and F, Slingshot was re-run with cells in the Figure 3.2B UMAP, 

which is a subset of the Figure 3.2A UMAP containing only Wnthi E, Wntlo E, Conflux AE 

and pre-HE. Cells in heatmaps of Figure 3.6E, G and Supplemental Figure 3.11B were 

ordered based on the PC score, rather than Slingshot-assigned pseudotime.  
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Single cell RNA velocity analysis 

We applied two methods, Velocyto and scVelo to estimate cell velocity in EHT. We used 

the “velocyto run10x” command with mm10 reference genome to quantify spliced and 

unspliced mRNAs. The output loom file was analyzed using the “velocyto.R” package 

and the scVelo python package. For the E10.5 E+HE+IAC dataset shown in Figure 3.3, 

we sequenced ~56k reads/cell, and 13.3% UMIs contained unspliced intronic 

sequences. Velocyto analysis allows estimation of RNA velocity of single cells by 

distinguishing between unspliced and spliced mRNAs, which is predictive of the rate of 

transcriptome change along the EHT trajectory. We used the 

“gene.relative.velocity.estimates” function with fit.quantile = 0.05, deltaT = 1, kCells = 20 

to calculate RNA velocity and subsequently, visualized the velocity vector field in the 

UMAP using the “show.velocity.on.embedding.cor” function with 20-cell neighborhood 

and 80 grid points along each UMAP axis. Compared with the steady-state model used 

in Velocyto, scVelo implements a more sophisticated dynamic model that models the full 

splicing kinetics. We ran scVelo with its default parameter setting and plotted its 

predicted velocity on the same UMAP as Velocyto. 

 

Fate probability analysis 

We applied Palantir and FateID to determine the probabilities of HE cells becoming pre-

HSCs and lympho-myeloid-biased progenitors (144, 260). Input to both methods are 

log2 transformed normalized UMI count matrix, filtered with genes selected by the IFF 

method. Results with default parameter settings are plotted on the T-SNE embedding by 

Palantir as shown in Supplemental Figure 3.11D. 
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Comparison with published scRNA-Seq data 

We compared our data to three published scRNA-Seq datasets. Zhou et al. (39) 

sequenced 181 cells including E, pre-HSC and HSC cells. Baron et al. (226) sequenced 

1121 E, HE, EHT and IAC cells from E10 and E11 AGM using CEL-Seq. Mass et al. 

(282) sequenced ~90 E10.25 EMP cells. First, we performed PCA on our data using 

shared genes with the public data, then used the top 10 PCs to compute a UMAP using 

the umap function from the uwot package. Using the PCA loading matrix, we projected 

public data onto the same PCA space, then predicted UMAP embedding using 

umap_transform function with the previously computed UMAP model. For each 

projected cell, we mapped it to cell types annotated in this study by 3-nearest-neighbor 

classification. The final co-embedding for public data with our data are shown in 

Supplemental Figure 3.12. 

 

scATAC-Seq data analysis 

Data pre-processing and peak calling  

scATAC-Seq reads were aligned to the mouse mm10 reference genome using the 

“cellranger-atac mkfastq” command. Peaks were called using MACS2 with the FDR 

cutoff of 0.10 and the following parameters:  -q 0.10 --broad --broad-cutoff 0.10) (283). 

Quality control statistics of the data were generated using the scATAC-pro package 

(284) and are shown in Supplemental Figure 3.9. We implemented a custom PERL 

script to quantify the reads overlapping with peaks individually for each cell. The read is 
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considered to overlap with the peak if at least half of the read overlaps. By quantifying 

the reads for each individual cell, we obtained a peak-barcode matrix. The peak-barcode 

matrix underwent an initial filtering, requiring a barcode to have at least 2,000 fragments, 

1,000 detected peaks and at least 20 percent fragments in peak to be considered as a 

“cell”. Additionally, for each peak, we computed the fraction of cells with non-zero value, 

and removed peaks that were detected in fewer than 1% of all cells. The final cleaned 

matrix contains 1670 cells and 150,427 peaks. We also computed a normalized data 

matrix by first log2 transforming the data (with 1 pseudocount added) and regressing out 

variance explained by total detected peaks per cell estimated with the “lmFit” function in 

the limma package (285). This normalized matrix was used for differential accessibility 

test and preliminary matching of scRNA-Seq and scATAC-Seq clusters. 

 

scATAC-Seq clustering and differential accessibility analysis 

Traditional feature selection methods designed for scRNA-Seq data do not work well on 

scATAC-Seq data, due to much greater sparsity and a binary data distribution (per 

genomic locus per cell, the expected read count is 0, 1 or 2). This makes it difficult to 

select the most informative features for clustering and cell identity mapping. 

Using the IFF selection method described above, we were able to obtain a 

UMAP with cells separated into several distinct neighborhoods, which significantly 

improved the Louvain clustering quality (Supplemental Figure 3.4F-H). To identify 

differentially accessible peaks (DAPs), we first binarized data as either open (>1) or 

closed (0), then calculated the fraction of cells that have open states for each peak in 

each cluster. We ran one-vs-rest Chi-square test on the fractions and called cluster-
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specific peaks (DAPs) using FDR < 0.05 and absolute log2 fold change >1. Fold change 

is defined as the ratio of open fractions between the two groups. 

We observed that DAPs and DEGs show strong co-enrichment patterns at 

genomic loci for certain pairs of scATAC-Seq and scRNA-Seq clusters (Supplemental 

Figure 3.10A). Many of the DAPs are located near promoters of the matched DEG, but 

some are much more distant. By computing a co-enrichment value, we established an 

initial mapping between DAPs and DEGs (Supplemental Figure 3.10A).   

 

Seurat alignment and co-embedding of scATAC-Seq and scRNA-Seq cells 

We used the Seurat alignment algorithm (279) to co-embed scATAC-Seq and scRNA-

Seq cells onto a single UMAP shown in Figure 3.4A. We first matched each cell-type-

specific DEGs with corresponding DAPs 200 kb up and downstream of the TSS, using 

the method described above, obtaining 12,768 links between 2,379 DEGs and 10,126 

DAPs. We then summed up DAP fragments for each DEG, obtaining a gene-by-cell 

activity score matrix as the “gene activity matrix” for Seurat alignment. Transfer anchors 

were computed using the “FindTransferAnchors” function in Seurat, with dimensionality 

reduction method set to “cca” (canonical correlation analysis). scATAC-Seq cells were 

then transferred to scRNA-Seq reference using the “TransferData” function, using 15 

nearest neighbors and PCA for computing the weighted correction vectors. Finally, 

scATAC-Seq and scRNA-Seq Seurat objects were merged using the “merge.Seurat” 

function, and joint UMAP was computed with top 20 PCs and 15 nearest neighbors. Cell 

type labels were transferred from scRNA to scATAC using Seurat. Contaminant cell 

types, including mesenchymal, Lyve1+ E and Bnip3hi E were removed from both scRNA-
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Seq and scATAC-Seq data, and only cells involved in EHT were used to generate the 

UMAP shown in Figure 3.4A. 

 

Inference of enhancer-promoter (E-P) links  

The DAP-DEG matching procedure could link cell-type-specific peaks to nearby cell-

type-specific genes. However, this association required both differential expression and 

differential chromatin accessibility to be significant, potentially missing E-P links with 

weaker signal. Inspired by the Seurat alignment algorithm and eQTL inference method, 

we used linear regression on matched scATAC-Seq and scRNA-Seq meta cells to find 

gene-distal peaks (defined as enhancers) that have a chromatin accessibility pattern 

significantly correlated with a gene’s expression. First, for each scATAC-Seq cell, we 

paired it to its nearest scRNA-Seq neighbor in the joint UMAP, establishing links 

between 1,186 scATAC-Seq cells and 659 scRNA-Seq cells. Note that not all scRNA-

Seq cells were paired with a scATAC-Seq cell and some scRNA-Seq cells were paired 

to multiple scATAC-Seq cells, but the paired scRNA-Seq cells were uniformly distributed 

along the EHT trajectory.  

To overcome the sparsity in scRNA-Seq and scATAC-Seq data, we expanded 

the paired scATAC-Seq and scRNA-Seq neighbors to paired scATAC-Seq and scRNA-

Seq neighborhoods by pooling counts from 10 nearest neighbors. We normalized the 

pooled expression and accessibility by regressing out per-meta-cell total counts from 

log2 transformed data, followed by z-score transformation. For each expressed gene, we 

ran linear regression with its pooled expression against pooled accessibility peaks 200kb 

upstream and downstream of its TSS in the paired scATAC-Seq meta-cell. Links with 
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Bonferroni corrected p-values < 0.01 and regression coefficients > 0.1 were considered 

significant and these called peaks are likely enhancers that contribute to the 

corresponding gene’s expression. E-P links for Runx1 shown in Figure 3.5 were called 

separately, including additional peaks within 500kb upstream and downstream of Runx1 

P1. For genes with multiple promoters (defined as regions 2,000 bp upstream and 500 

bp downstream of each TSS), we ran a second regression using the promoter 

accessibility as dependent variable and each called peak as independent variable. This 

allowed us to link each called enhancer to a specific promoter. We computed “cis-

regulatory-activity matrix” based on the called E-Ps, and observed consistent pattern 

between a gene’s expression and its cis-regulatory-activity score (Supplemental Figure 

3.10B). 

 

TF activity assessment using chromVar 

We assessed TF binding activity to enhancers with chromVar (246) using its default 

setting, but changed the default p.value cutoff in “matchMotifs” function to 0.1 / (2 * 

median(enhancer length)) to account for multiple testing. The input TF motifs were 

curated from the CIS-BP motif database (286). For each TF motif and each cell, a GC-

bias and background-corrected deviation score was computed using the 

“computeDeviations” function, which represents the relative gain or loss of TF binding 

activity. Lastly, to identify TFs with stage-specific binding activity, we ran stage-wise 

Mann-Whitney U-test with the deviation scores, and considered those with FDR < 0.05 

as significant. 
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Figures 

 

Figure 3.1 Experimental design, and overview of single cell RNA-Seq data.  

(A) The caudal part of embryos were isolated (boundaries are illustrated with scissors), 
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then organs and gut tube removed. Vitelline and umbilical arteries (VU) were isolated 

and included in the sample. The tissue was dissociated and cells were isolated by 

FACS, then analyzed by scRNA-Seq, scATAC-Seq, or in functional assays. All cell 

populations purified and sequenced are listed in Table 3.1, and sort plots are shown in 

Supplemental Figures 3.1 and 3.2. (B) The number of cells sequenced (x-axis) and 

genes per cell detected for representative samples. (C) UMAP of continuous EHT 

trajectory and FL-HSCs, with selected cell populations labeled. (D) Distribution of cells 

from each dataset in the UMAP reflecting EHT trajectory. (E) UMAP illustrating the two 

streams of E cells expressing high levels of the arterial marker Efnb2 that converge to 

form the stem leading to HE and IACs. (F) E+HE+IAC cells separately purified from the 

vitelline and umbilical (VU) arteries, and from the dorsal aorta (DA) within the caudal half 

of the embryo, highlighted on the global UMAP plot. (G) Cell count along the pseudotime 

trajectory. Bar graph quantifies results from a single sort of E10.5 E+HE+IAC cells; heat 

maps below the graph show distribution of cells in all sorted cell populations. 
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Figure 3.2 Two streams of endothelial cells converge before hemogenic 

endothelium.  

(A) UMAP of EHT trajectory (from Figure 3.1C, with FL-HSC removed) showing the 7 

clusters identified by Louvain clustering in Supplemental Figure 3.5A, with Wnthi  E 

subdivided into Wnthi AE and Wnthi VE, plus Wntlo E subdivided into Wntlo AE and Wntlo 
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VE based on the arterial/venous score determined as shown in panels B and C. (B) 

Zoom-in UMAP highlighting the two streams of endothelial cells converging to conflux 

AE. Numbers in yellow circles represent pseudotime bins up to the point of convergence. 

The dotted gray line represents the boundary between AE and VE. (C) Arterial score vs 

venous score over pseudotime bins. Cluster VE from panel A is used as the first 

pseudotime bin. Curves are fitted for AE score and VE score of each branch using a 

generalized additive model. (D) Violin plots of expression of cluster specific genes, 

including venous marker Nr2f2, arterial marker Sox17, Wntlo AE specific gene 

Tmem255a, Wnthi AE specific gene Foxq1 and Nkd1, and Notch ligand Dll4. (E) Average 

expression of Wntlo E, Wnthi E, and pre-HE-specific genes over pseudotime. 

Differentially expressed genes were derived by pairwise expression analysis between 

Wntlo E and Wnthi E. Pre-HE specific genes were derived by comparing pre-HE with 

Wntlo plus Wnthi E. (F) Heatmap showing stream-specific Reactome pathway activity 

over pseudotime. AUCell package(157) was used to compute a pathway activity score 

for each cell. One vs the rest Student’s t-test was used to identify group-specific 

pathways and the top 6 most significant pathways were plotted. 
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Figure 3.3 Developmental bottleneck between pre-HE and HE cells.  

(A) UMAP of E10.5 E+HE+IAC cells showing 9 cell types from Figure 3.2A. (B) 

Expression of key markers of clusters, including Hey2 in conflux AE and pre-HE, Cd44 in 

conflux AE, pre-HE, HE and IACs, Ptprc in IACs, Gfi1 and Runx1 in HE and IACs, and 

high levels of Sox17 in conflux AE and pre-HE, with downregulation in HE. Note Runx1 
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is expressed at low levels in all subsets of endothelial cells. (C) Velocyto analysis 

revealing different differentiation dynamics along the EHT in E10.5 E+HE+IAC cells. To 

the right is a zoom-in velocity of pre-HE cells that have accumulated at the bottleneck 

between pre-HE and HE. (D) Activity of pathways from Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database, computed for each cell using the AUCell method 

(157). (E) UMAP of E+HE+IAC cells from E10.5 Runx1+/+ and Runx1+/- littermates. Bars 

on the bottom depict the distribution of cells between conflux AE, pre-HE, combined HE, 

and IAC populations in E10.5 Runx1+/+ and Runx1+/- littermates. P-values indicate 

significant differences in the distributions of cells in pre-HE and HE in Runx1+/+ versus 

Runx1+/- samples based on proportion test. (F) UMAP of E+HE+IAC cells from E10.5 

control embryos (cR1/+) and littermates ectopically expressing RUNX1 in all endothelial 

cells from the Rosa26 locus (Cre;cR1/+) (242). Bars on the bottom as in panel E. (G) 

Limiting dilution assay to determine the frequency of HE in the CD44+ fraction of 

E+HE+IAC cells isolated from E10.5 embryos (see Supplemental Figure 3.2G for FACS 

plots). Shown are frequencies of cells that yielded hematopoietic cells (B220+, CD19+, 

Mac1+, Gr1+, and/or CD41 and CD45) ex vivo. Frequencies were calculated by 

ELDA(274). Data represent three independent cell purifications and limiting dilution 

assays (mean ± SD, unpaired two-tailed Student’s t-test). 
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Figure 3.4 Joint scRNA-Seq and scATAC-Seq analysis of bottleneck populations.  

(A) UMAP of 1637 cells from scRNA-Seq and 1186 cells from scATAC-Seq, aligned 

using Seurat algorithm with a custom defined gene-by-cell activity score matrix (see 

Materials and Methods). The number of HE cells was too few to be resolved by UMAP, 

and clustered with pre-HE. To gain enough statistical power for predicting E-P, we 

pooled reads from 10 nearest neighbors as “meta cells”, and paired scATAC meta cells 

to nearby scRNA meta cells. Additional details can be found in the Materials and 

Methods section. (B) UCSC genome browser tracks showing open chromatin signal of 

Cldn5 promoter and its predicted enhancers. Dots below each aggregated signal track 
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represent signal from 50 sampled cells of each type. (C) Linear regression shows high 

correlation between Runx1 +23 enhancer chromatin accessibility and Runx1 expression 

levels (z-score transformed). Each point represents a paired ATAC-RNA meta cell in 

panel A, with pooled RNA expression on the y-axis and pooled enhancer accessibility on 

the x-axis.  (D) Prediction of enhancer-promoter interaction using linear regression. 

Predictions (points in blue shaded area, 5% of total candidate interactions) were made 

using p < 0.01 and regression coefficient > 0.1. We recapitulated the majority of known 

enhancer-promoter interactions (E-Ps) that function during EHT, with the Runx1 +23 

enhancer (287) and Gfi1 enhancer (288) among the top predictions. (E) TF binding 

patterns among called scATAC-Seq peaks assessed using chromVar (246), which 

defines a deviation score reflecting the accessibility change at binding sites of each TF 

across all cells. Binding sites were determined using DNA motif scan on the called 

enhancers, which does not discriminate TFs in the same family with very similar motifs. 

Top significant TFs based on Mann-Whitney U test are plotted for each stage. (F) 

ChromVar deviation score for selected TF motifs plotted on the UMAP, showing specific 

binding pattern for Tcf7 in Wnthi E, Sox17 in conflux E, Foxc2 in pre-HE, Gata2 and Klf2 

in both pre-HE and IAC. Runx1 binding sites are highly accessible post bottleneck, but 

also exhibit medium to high level of chromatin accessibility in some early-stage cells. 



182 
 

 

Figure 3.5 Developmental-stage-specific enhancers of Runx1.  

(A) UCSC genome browser tracks showing open chromatin signal for each of the 

populations. Tracks from E to IAC are cumulative scATAC-Seq signals (per-base unique 

fragment coverage) normalized by the number of cells in that population. Tracks for FL-

HSC are bulk ATAC-Seq data from Chen, C. et al. (252). Experimentally validated 

enhancers and E-Ps from Marsman et al. (251) are shown in magenta. Enhancers and 

E-P links from Chen, C. et al.(252) are shown in dark green. E-P links were inferred 

based on linear regression on paired scRNA-scATAC meta cells (see Materials and 

Methods). Placental mammal conservation by PhastCons score is shown as a grey 

track. For each of the inferred enhancers, we scanned for known motifs from CIS-BP 

database and grouped TFs from the same family having similar motifs. Motif hits of 

several previously reported early hematopoietic TFs are highlighted below the track. (B) 
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Distribution of linear regression P-values for predicted Runx1 enhancers. Highly 

significant peaks include the validated +23 and -371 enhancers. The most significant 

peak is ~3.6 kb downstream of P1. (C) Co-accessibility of Runx1 P1 promoter and its 

predicted linked enhancers in each cell type. P-values for co-accessibility in each cell 

type were computed using Fisher’s exact test with multiple testing correction. (D) Stage-

specific chromatin accessibility of Runx1 -371 enhancer and Runx1 expression levels (z-

score transformed). Each point in the scatter plot represents a paired ATAC-RNA meta 

cell in Figure 3.5A, with pooled RNA expression on the y-axis and pooled enhancer 

accessibility on the x-axis. A 2-dimensional density plot is superimposed on the scatter 

plot. (E) Co-expression of transcription factors that have binding motifs at Runx1 

enhancers and whose expression precedes Runx1. Correlations were computed using 

gene expression matrix including conflux E, pre-HE and HE cells. TFs with Pearson 

correlation with Runx1 < 0.05 were removed. Hierarchical clustering was performed on 

the correlation matrix and a strong TF co-expression module was highlighted.  
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Figure 3.6 Two waves of CD45+ HSPCs in IAC cells.  

(A) PCA plot of a subset of data containing IACs, illustrating the trajectory of IAC 

differentiation from HE along the PC1 axis. (B) Expression of Gja5, Hey1, and Rac2 

illustrating the maturation of IAC cells along the trajectory. (C) PCA plot showing the 

separation of E10.5 and E11.5 IAC cells along the PC3 axis. (D) E10.5 and E11.5 IAC 
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cells, E10.5 CD45+ IAC cells, and E11.5 pre-HSCs plotted separately to visualize their 

relative distribution along the PC3 axis. A K-nearest-neighbor classifier (K = 3 with PC1-

10 as feature input) was trained using E10.5 CD45+ IAC cells and E11.5 pre-HSCs to 

determine the fraction of pre-HSCs (labeled in red) in E10.5 and E11.5 IAC cells. (E) 

Heatmap showing top differentially expressed genes in E10.5 CD45+ IAC cells versus 

E11.5 pre-HSCs. (F) Preferential expression of Mecom in E11.5 pre-HSCs and IAC 

cells, versus Myc, Il7r, and Gata1 in E10.5 CD45+ IAC enriched for lympho-myeloid-

biased progenitors and in E10.5 IAC cells. (G) Reactome pathway analysis comparing 

E11.5 pre-HSC and E10.5 CD45+ IAC cells. Color indicates pathway activity score 

computed using the AUCell package (157). (H) Methylcellulose (colony forming unit-

culture, CFU-C) assay performed in the presence of stem cell factor (SCF), interleukin 3 

(IL3), IL6, and erythropoietin (EPO) to measure the frequency of committed erythroid 

and myeloid progenitors in E10.5 CD45+ IAC cells, CD45- IAC cells, and E9.5 yolk sac 

EMPs. BFU-E, burst forming unit-erythroid; GM, granulocyte/macrophage; Mac, 

macrophage; MK, megakaryocyte; GEMM, 

granulocyte/erythroid/monocyte/megakaryocyte. Error bars; mean ± SD. Frequencies of 

total progenitors are indicated above the bars. n = 3 experiments. (I) Limiting dilution 

assays on OP9 stromal cells to determine the frequencies of progenitors in purified 

E10.5 CD45+ IAC and E10.5 CD45- IAC cells yielding B (CD45+CD19+B220mid/lo), 

myeloid (M) (Gr1+Mac1+or Gr1+Mac1-), and B+myeloid (B/M) cells in culture. Also shown 

are frequencies of progenitors in purified E10.5 CD45+ IAC and E10.5 CD45- IAC cells 

that produced T cells (CD90+ CD25+) when cultured on OP9 cells expressing the Notch 

ligand delta like 1. Error bars; mean ± SD. Frequencies of all progenitors are indicated 

above the bars. n = 7 experiments. (J) Percentage of wells at the limiting cell dose 

containing B, M, or B/M cells from experiments in panel I. n = 8 experiments.  
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Tables 

Table 3.1. Summary statistics for collected cell populations. 

Dataset/ 
Cell type1 

Surface 
Phenotype 

# 
Embryo

s 

Somit
e Pairs 

# Cells 
Sequenced 

Media
n # 

Expres
sed 

Genes 

Median # 
UMIs 

E9.5 E [1] CD41- CD45- 
Kit- CD31+ 

Runx1:GFP- 

60 22-27 1582 3454 15703 

E9.5 E [2] 2 Ter119- CD41- 
CD45- Kit- 
CD144+ 
ESAM+ 

Runx1:GFP- 

51 25-27 754 3398 12491 

E9.5 HE 
[1] 

CD41- CD45- 
Kitlo/- CD31+ 
Runx1:GFP+   

60 22-27 182 3418 12554 

E9.5 HE 
[2] 2 

Ter119- CD41- 
CD45- Kitlo/- 

CD144+ 
ESAM+ 

Runx1:GFP+ 

51 25-27 686 4094 18223 

E9.5 
E+HE+IAC 

Ter119- 
CD41lo/- Kitlo/- 

CD31+ CD144+ 
ESAM+  

60 23-26 2171 3598 17139 

E9.5 EMP CD41+ Kit+ 
CD16/32+ 

30 25-29 1875 4476 25617 

E10.5 E [1] CD41- CD45- 
Kit- CD31+ 

Runx1:GFP- 

43 ND3 1073 1675 5245 

E10.5 E [2] 
2 

Ter119- CD41- 
CD45- Kit- 
CD144+ 

100 33-38 1017 2672 8131 
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ESAM+ 
Runx1:GFP- 

E10.5 HE Ter119- CD45- 
CD31+ CD144+ 

ESAM+ Kitlo/ 

CD41lo/mid/- 

Runx1:GFP+ 

84 33-38 1795 3431 15518 

E10.5 
E+HE+IAC 

Ter119- 
CD41lo/- 

CD31+CD144+ 
ESAM+ 

60 33-36 4776 3208 11991 

E10.5 IAC Ter119- 
CD41lo/- CD31+ 

CD144+ 
ESAM+ Kit+ 

60 33-36 2288 3600 18246 

E10.5 
CD45+ IAC 

CD31+ CD144+ 
ESAM+ Kit+ 

CD45+  

18 33-37 602 4910 29978 

E10.5 VU 
E+HE+IAC 

Ter119- 
CD41lo/- 

CD31+CD144+ 
ESAM+ 

46 35-37 1173 4059 17760 

E10.5 DA 
E+HE+IAC 

Ter119- 
CD41lo/- 

CD31+CD144+ 
ESAM+ 

10 33-37 1951 3133 13707 

E10.5 
Runx1+/+ 

E+HE+IAC 
[1] 

Ter119- 
CD41lo/- 

CD31+CD144+ 
ESAM+ 

7 34-37 963 4005 17965 

E10.5 
Runx1+/- 

E+HE+IAC 
[1] 

Ter119- 
CD41lo/- 

CD31+CD144+ 
ESAM+ 

11 34-37 1355 4320 20296 

E10.5 
Runx1+/+ 

E+HE+IAC 
[2] 

Ter119- 
CD41lo/- 

CD31+CD144+ 
ESAM+ 

8 32-35 2449 3290 14659 
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E10.5 
Runx1+/- 

E+HE+IAC 
[2] 

Ter119- 
CD41lo/- 

CD31+CD144+ 
ESAM+ 

10 32-35 3944 3396 14880 

E10.5 
CD44+ 

E+HE+IAC 
(paired 

scRNA) [1] 

Ter119- 
CD41lo/- 

CD31+CD144+ 
ESAM+ 
CD44lo/+ 

56 33-37 2317 3565 15307 

E10.5 
CD44+ 

E+HE+IAC 
(paired 

scATAC) 
[1] 

Ter119- 
CD41lo/- 

CD31+CD144+ 
ESAM+ 
CD44lo/+ 

56 33-37 2317 3565 15307 

E10.5 
CD44+ 

E+HE+IAC 
(cR1/+)3 

Ter119- 
CD41lo/- 

CD31+CD144+ 
ESAM+ 
CD44lo/+ 

42 30-34 3437 2505 8200 

E10.5 
CD44+ 

E+HE+IAC 
(Cre;cR1/+

)4 

Ter119- 
CD41lo/- 

CD31+CD144+ 
ESAM+ 
CD44lo/+ 

31 30-34 4845 2741 9696 

E11.5 IAC 
[1] 

Ter119- CD31+ 
CD144+ 

ESAM+ Kit+ 

12 ND 1267 3520 16230 

E11.5 IAC 
[2] 

Ter119- 
CD41lo/- CD31+ 

CD144+ 
ESAM+ Kit+ 

71 45-48 299 3304 17188 

E11.5 pre-
HSC 

CD144+ CD45+ 
CD27+ 

41 ND 279 4854 29507 

E11.5 FL-
LMPP5 

Ter119- Nk1.1- 
Gr1- CD3e- 

CD19- B220- 
F4/80- Kit+ 

90 ND 1860 3400 16624 
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CD45+CD135+ 
IL7ra+ 

E14.5 FL-
HSC 

Ter119- Gr1- 
B220- CD3e- 
Sca1+ Kit+ 

CD48- CD150+  

22 ND 1108 3865 16500 

Total  1134 - 44940 - - 

1Numbers in brackets indicate replicate samples. 

2Markers were adjusted on subsequent sorts to reduce the fraction of contaminating 

cells detected by scRNA-Seq. 

3ND, not determined 

4Ectopic RUNX1 expression in endothelial cells in Tg(Cdh5-cre/ERT2)1Rha embryos 

(Cre) (273) that contained an activatable Runx1 cDNA in the Rosa26 locus (cR1/+) 

(242). Cre was activated by injection of 1 mg tamoxifen into pregnant dams at E9.5.  

5LMPP, lymphoid-primed multipotent progenitor. 
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Supplemental Figures 

 

Supplemental Figure 3.1 Purification of endothelial cell populations by FACS.  

(A) Quantile contour FACS plots depicting gating strategy for isolating E+HE+IAC cells 

(plots are representative sorts from E9.5 embryos). Embryos were collected from 

B6C3F1 females mated to C57BL6/J males. Bulk endothelium and clusters were purified 

as Ter119-CD41mid/-CD31+CD144+ESAM+cells. Kit was not used to exclude cells in order 

to capture IAC cells with the other endothelial cell populations. Fluor-minus-one (FMO) 

controls for CD41, Kit, CD144 (vascular endothelial cadherin), and ESAM are shown in 

the bottom four panels. Numbers on the x and y-axes are indicated on the first plot on 

the left, and unless changed are not depicted on plots to the right of the preceding plot. 
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eF450, eFluorTM-450; APC-e780, APC-eFluor 780; eF450, eFluor 450. (B) Quantile 

contour FACS plots depicting gating strategies for isolating endothelial cells (E) (Ter119-

CD41-CD45-CD31+CD144+ESAM+Kit-Runx1:GFP-) and hemogenic endothelial cells (HE) 

(Ter119-CD41-CD45-CD31+CD144+ESAM+Kitlo/-Runx1:GFP+) from E10.5 Runx1-IRES-

GFP embryos. Embryos were collected from Runx1-IRES-GFP male mice (229) mated 

to B6C3F1 females. FMO controls for Kit and CD41 are shown in the two panels below. 

(C) Frequency of purified endothelial cells from E9.5 and E10.5 embryos that gave rise 

to CD45+cells when cultured in a limiting dilution assay on OP9 stromal cells. 

Frequencies are indicated on top of the bars. HE, Runx1:GFP+ endothelial cells, purified 

as described in panel B; E, Runx1:GFP- endothelial cells. Error bars, mean ± standard 

deviation (SD); n = 5-6 experiments. Frequencies were calculated using ELDA software 

(274). (D) Colony forming units (CFU) representing frequency of contaminating 

committed HSPCs in purified HE and E populations. Meg, megakaryocyte; Mac, 

macrophage; GEMM, granulocyte/erythroid/monocyte/megakaryocyte; BFU-E, burst 

forming unit-erythroid; GM, granulocyte/monocyte. Error bars, mean ± SD; n = 2-3 

experiments.  
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Supplemental Figure 3.2 IAC cell purification by FACS.  

(A) Quantile contour FACS plots for purification of E10.5 IAC cells (Ter119-CD41med/-
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CD31+Kit+CD144+ESAM+).  (B) Quantile contour FACS plots for E11.5 IAC cells. (C)  

Quantile contour FACS plots for purification of E10.5 CD45+ IAC cells containing 

lympho-myeloid-biased progenitors (Ter119-CD41med/-CD31+Kit+CD144+ESAM+CD45+), 

and E10.5 CD45- IAC cells (Ter119-CD41med/-CD31+Kit+CD144+ESAM+CD45-). (D) 

Quantile contour FACS plots from purification of E11.5 CD144+CD45+CD27+ IAC cells 

containing type II pre-HSCs (E11.5 pre-HSC) (E) Quantile contour FACS plots from 

purification of E9.5 yolk sac EMPs (CD16/32+Kit+CD41hi). (F) Quantile contour FACS 

plots from purification of E14.5 FL-HSCs [lineage- (Ter119- Gr1- B220- CD3e-) 

Kit+Sca1+CD48- CD150+]. (G) Quantile contour FACS plots from purification of E10.5 

CD44+ E+HE+IAC cells (Ter119-CD41med/-CD31+CD144+ESAM+CD44+). (H) Quantile 

contour FACS plots from purification of yolk sac-derived lymphoid-primed multipotent 

progenitors from the E11.5 FL (E11.5 FL-LMPP), which are included in the UMAP plots 

in Supplemental Figure 3.3A, B and Supplemental Figure 3.12C.   
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Supplemental Figure 3.3 Assignment of cell types, computational filtering of 

contaminant cells.  

(A) Top: UMAP with all datasets. Labeled populations are contaminant cell types 

identified using Louvain clustering and differentially expressed genes (examples shown 

below). Populations circled with dashed line were used as input cells for a UMAP 

recomputed in panel B. Bottom: expression of representative top differentially expressed 

genes, including Col1a2 (mesenchymal-fibroblast cells), Hba-a1 (erythroid 

cells/progenitors), Cldn5 (endothelial cells), Lyve1 (combined with Cldn5, marks 

lymphatic endothelial or yolk sac endothelial cells). Clusters proximal to the 

mesenchymal-fibroblast cluster have distinct gene expression patterns, but are mostly 

non-endothelial or non-hematopoietic. (B) Top panel, UMAP with contaminant cells 

removed. Example DEGs shown below. E9.5 YS-EMP and E11.4 FL-LMPP are 

committed progenitors unrelated to pre-HSCs. Populations circled with a dashed line 

represent the continuous EHT trajectory that leads to E10.5 CD45+ IAC cells and E11.5 

pre-HSCs. Bottom panel, expression of representative top differentially expressed 
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genes. Bnip3 marks endothelial cells likely undergoing apoptosis, autophagy, or 

mitophagy (289); Il7r marks E11.5 FL-LMPP and a subset of IACs, and is low in E9.5 

YS-EMPs; Hp (haptoglobin) is expressed in E11.5 FL-LMPP and E9.5 YS-EMP, at low 

levels in IAC cells; Gata1 is expressed in the Hp- subset of E9.5 YS-EMPs, a subset of 

IAC cells, and at low levels in  E11.5 FL-LMPPs. (C) Top panel, UMAP of continuous 

EHT trajectory and FL-HSCs, same as Figure 3.2A. Labeled clusters are cell types 

determined based on differentially expressed genes (examples shown below). Bottom 

panel, expression of representative top differentially expressed genes, including Foxq1 

in Wnthi E, Hey2 in conflux AE and pre-HE, Runx1 in HE and IACs, and Ptprc in IACs.  
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Supplemental Figure 3.4 Informative feature selection.  

(A) Distribution of Gini coefficient for each expressed gene calculated with cells from 

Supplemental Figure 3.3A, using the approach described in Materials and Methods. 

Genes in the left peak have low Gini coefficients and ubiquitous expression patterns. 
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Genes in the right tail show unequal expression across clusters, and were chosen as 

IFFs for downstream dimensionality reduction analysis. (B) GO enrichment results for 

ubiquitous genes in panel A. Redundant terms were removed and top 15 enriched GO 

terms were plotted using clusterProfiler (281). Bar height represents gene counts for 

each enriched term. (C) GO enrichment results for IFFs in panel A. (D) IFF selection 

applied to two scRNA-Seq batches, E10.5 E+HE+IAC and E10.5 E+HE+IAC for paired 

scATAC, sampled under similar biological conditions. Panel 1 shows UMAP with top 

2000 VEG from Seurat, 2 shows Seurat clusters, 3 shows UMAP with IFF selected 

based on Seurat clustering, 4 shows the UMAP colored by cell type. (E) Intersection of 

top 2000 IFFs selected across different Seurat clustering results with varied resolution. 

Intersections with less than 30 genes are not plotted. Seurat resolution parameters 

under which overlap is observed are indicated by a series of dots in a column below the 

x-axis. (F) Gini coefficient distribution of open chromatin peaks when applying IFF 

method to scATAC-Seq data. Peaks with Gini coefficient greater than the 85th percentile 

were selected as IFFs for analysis in panel F. (G) UMAP computed with EHT cells using 

variable features defined by Seurat (279). (H) UMAP computed using IFFs derived 

based on Gini coefficient distribution in panel F. Louvain clustering on the UMAP 

revealed finer endothelial cell subtypes compared to result in panel E. 
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Supplemental Figure 3.5 Unsupervised clustering and dimension reduction on 

EHT cells.  

(A) UMAP of continuous EHT trajectory and FL-HSCs colored by Louvain clustering 
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result. (B) UMAP, same as in A, colored by Seurat clustering result. (C) Heatmap 

showing overlap of cells between Seurat clusters and Louvain clusters (number of cells 

in each Seurat cluster divided by number of cells in corresponding Louvain cluster). (D) 

Heatmap of expression of Wnt pathway genes (based on GO annotation) that are 

differentially expressed between Wntlo E and Wnthi E. (E) PHATE low dimensional 

embedding of EHT trajectory and FL-HSCs colored by cell type. (F) UMAP, same as in 

A, colored by Seurat predicted cell cycle phases. (G) Bar plot showing cell cycle phase 

composition for each cell type. 
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Supplemental Figure 3.6 RNA velocity estimate with scVelo dynamic model.  

(A) scVelo estimated velocity embedded on the same UMAP as in Figure 3.3C. (B) 

Velocity estimation for genes induced at different stages of EHT, including Kitl in E, 

Vegfc in conflux AE, Meis2 in pre-HE and Runx1 in HE and subset of E cells. For each 

gene, the phase plot shows unspliced versus spliced transcript counts and the scVelo 

fitted model. The velocity and expression are plotted on the same UMAP in panel A. 
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Supplemental Figure 3.7 Reactome pathway analysis for the transitions between 

conflux AE, pre-HE, and HE.  

Top stage-wise differentially activated pathways were plotted. Rows were clustered 

using hierarchical clustering with Ward’s method. 
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Supplemental Figure 3.8 RUNX1 haploinsufficiency reduces phenotypic 

hemogenic endothelial cells in the dorsal aorta.  

(A) Confocal z-projection stacks of dorsal aortas with z-intervals of 2 μM of E9.5 

embryos immunostained with antibodies against RUNX1 and SOX17. Scale bar: 100μM. 

Enlargement of outlined area shown below. Scale bar: 50μM. Runx1+/+ n=6, Runx1+/- 

n=3 (23-27 somite pairs). Representative images are shown for each genotype. (B) 

Quantification of absolute number of AE cells (RUNX1+SOX17-) and HE cells 

(RUNX1+SOX17low/-) per mm of dorsal aorta. Two-way ANOVA and Tukey’s test. (C) 

Proportion of HE and AE cells [(# of HE or AE)/(total # of AE+HE)] in E9.5 embryos. 

Two-way ANOVA and Tukey’s test. **p<0.01. 
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Supplemental Figure 3.9 Quality assessment of scATAC-Seq data.  

Quality assessment was performed using the scATAC-pro software. (A) Enrichment 

profile of scATAC-seq reads around the transcription start site (TSS). Scores were 

calculated based on the aggregate read distribution centered on the TSSs, extending 

1000 bp in both directions. (B) Distribution of ATAC-Seq insert size for all unique 

fragments. (C) Scatter plot (with points down-sampled) of the fraction of unique 

fragments in peaks versus total number of unique fragments per cell barcode, 

discriminating cells from non-cells. (D) Box plots of the fraction of unique fragments 

overlapping with annotated genomic regions from Ensemble regulatory build release 95. 

Mito, mitochondrial genome. 
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Supplemental Figure 3.10 Mapping between scRNA and scATAC data.  

(A) Signature matching of scATAC-Seq and scRNA-Seq data. Differentially accessible 
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peaks (DAPs) and differentially expressed genes (DEGs) were separately derived, and 

hypergeometric test was performed on DAPs and DEGs within predefined genomic 

windows around DEG/DAP (10k bp, 100k bp and 500k bp) for each pair of scATAC-Seq 

(labeled as C1-6) and scRNA-Seq clusters (labeled by cell type names). We did not 

obtain enough DAPs for C2 and C4 for this matching. (B) Heatmap of stage-wise 

differentially expressed genes and their corresponding cis-regulatory-activity score. 

Values are log2 transformed and scaled across cells.  
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Supplemental Figure 3.11 Transition from HE to IAC and fate probability analysis. 

 (A) Differentially expressed genes in HE to IAC cell transition. Expression heatmap is 

plotted for top genes ranked by PC1 loading (PCA shown in Figure 3.6A). Cells are 

ordered based on PC1 score. Expression values are log2 transformed and z-score 

scaled. (B) Expression pattern of Sox17, Nupr1, Spn (CD43) and Ptprc (CD45) on the 

PC1 vs PC2 PCA plot. Values are log2 transformed normalized UMI counts. (C) T-SNE 

plot generated with the Palantir package (260), colored by cell population. (D) Fate 

probability of becoming pre-HSC versus lympho-myeloid-biased progenitors predicted by 

FateID and Palantir for each cell in the T-SNE plot. (E) Cumulative distribution of pre-

HSC fate probability for each cell population. One-sided Kolmogorov–Smirnov test was 

carried out between E9.5 HE and E10.5 HE, E10.5 IAC and E11.5 IAC for probabilities 

computed with both methods. ***p<0.001. (F) Transcription factors expressed in HE that 

show bifurcation in expression along the trajectory. Expression is imputed with MAGIC 

(290). Gene expression trends are modeled with a generalized additive model, using 

cells with probability greater than 0.5 for each fate branch.   



208 
 

 

Supplemental Figure 3.12 Comparison with previously published scRNA-Seq data.  

(A) Left panel shows UMAP of EHT trajectory computed with genes shared with Zhou et 

al. (39), with the same cells in Figure 3.1C. Middle panel shows projection of Zhou et al. 

(39) data to the same UMAP (see Methods). Right panel shows heatmap for the fraction 

of each cell population from Zhou et al. mapped to each of the cell types from this study. 
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(B) Projection of E10 (left panel) and E11 (right panel) cells from Baron et al. (226) to 

those from this study. The UMAP is slightly different from those in panel A, due to 

differences in shared genes, but each cell type has an almost identical relative position. 

Heatmap shows the fraction of each cell population from Baron et al. mapped to each of 

the cell types from this study. (C) Top panel: UMAP of EMP, macrophage precursors 

and macrophage single cell data highlighting the EMP signature score (average 

expression level of signature genes listed in Supplemental Table 2 from Mass et al. 

(282)). Bottom panel: UMAP of indicated populations from this study (circles). E9.5 

EMPs form a separate cluster from IAC cells and other cell types. Cells with a high EMP 

signature score from Mass et al. (282) (brown triangles) were projected onto the same 

UMAP (see Materials and Methods). 64 out of 91 E10.25 EMP cells projected onto the 

E9.5 YS-EMP cluster, and none overlapped with E10.5 CD45+ IAC cells. Yolk sac-

derived lymphoid-primed multipotent progenitors purified from the E11.5 fetal liver 

(E11.5 FL-LMPP) are also separated from E10.5 CD45+ IAC cells. Heatmap shows top 

differentially expressed genes of each cell population. 
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CHAPTER 4 SOFTWARE FOR SINGLE CELL TRANSCRIPTOMICS DATA 

ANALYSIS 
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Introduction 

Technologies such as single cell RNA-sequencing measure gene expressions and 

present them as high-dimensional expression matrixes for downstream analyses. In 

recent years, many methods have been developed for the statistical analysis of 

transcriptomics data, such as edgeR (291) and DESeq (292) for differential expression 

testing, and monocle (131), Seurat (293), SC3 (123) and SCDE (294) for single cell 

RNA-Seq data analysis. Besides these, the Comprehensive R Archive Network (CRAN) 

(295) and Bioconductor (296) host various statistical packages addressing different 

aspects of transcriptomics study and provides recipes for a multitude of analysis 

workflows. Making use of these R analysis packages requires expertise in R and often 

custom scripts to integrate the results of different packages. In addition, many 

exploratory analyses of transcriptomics data involve repeated data manipulations such 

as normalizations, filtering, merging, etc., each step generating a derived dataset whose 

version and provenance must be tracked. Previous efforts to address these problems 

include designing standardized workflows (297), building a comprehensive package 

(293) or assembling pipelines into integrative platforms such as Galaxy (298). Designing 

workflows or using large packages still requires a significant amount of programming 

skills and it can be difficult to make various components compatible or applicable to 

specific datasets. Integrative platforms offer greater usability but trade off flexibility, 

functionality and efficiency due to limitations on data size, parameter choice and 

computing power. For example, the Galaxy platform is designed as discrete functional 

modules which require separate file inputs for different analysis. This design not only 

makes user-end file format conversion complicated and time-consuming, but also breaks 

the integrity of the analysis workflow, limiting the sharing of global parameters, filtering 
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criteria and analysis results between modules. Tools such as RNASeqGUI (299), 

START (300), ASAP (301) and DEApp (302) provide an interactive graphical interface 

for a small number of packages. But these and other similar packages all adopt a rigid 

workflow design, have limited data provenance tracking, and none of the packages 

provide mechanisms for tracking, saving and sharing analysis results. Furthermore, 

many web-based applications require users to upload data to a server, which might be 

prohibited by HIPPA (Health Insurance Portability and Accountability Act of 1996) for 

clinical data analysis. 

Here we developed PIVOT, an R-based platform for exploratory transcriptomics 

data analysis. We leverage the Shiny framework (303) to bridge open source R 

packages and JavaScript-based web applications, and to design a user-friendly 

graphical interface that is consistent across statistical packages. The Shiny framework 

translates user-driven events (e.g. pressing buttons) into R interpretable reactive data 

objects, and present results as dynamic web content. PIVOT incorporates four key 

features that assists user interactions, integrative analysis and provenance 

management: 

• PIVOT directly integrates existing open-source packages by wrapping the 

packages with a uniform user-interface and visual output displays. The user 

interface replaces command line options of many packages with menus, sliders, 

and other option controls, while the visual outputs provide extra interactive 

features such as change of view, active objects, and other user selectable tools.  

• PIVOT provides many tools to manipulate a dataset to derive new datasets 

including different ways to normalize a dataset, subset a dataset, etc. In 

particular, PIVOT supports manipulating the datasets using the results of an 
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analysis; for example, a user might use the results of differential gene expression 

analysis to select all gene satisfying some p-value filter. PIVOT implements a 

visual data management system, which allows users to create multiple data 

views and graphically display the linked relationship between data variants, 

allowing navigation through derived data objects and automated re-analysis.   

• PIVOT dynamically bridges analysis packages to allow results from one package 

to be used as inputs to another. Thus, it provides a flexible framework for users 

to combine tools into customizable pipelines for various analysis purposes. 

• PIVOT provides facilities to automatically generate reports, publication-quality 

figures, and reproducible computations. All analyses and data generated in an 

interactive session can be packaged as a single R object that can be shared to 

exactly reproduce any results. 

 Recently, we extended PIVOT to a new tool, VisCello, which supports analysis and 

hosting of large-scale single cell data. VisCello preserves key functions of PIVOT, 

incorporates several latest single cell analysis packages, and have multiple function and 

speed optimizations. 

 

Results and Discussion 

We describe the general workflow of PIVOT and demonstrate its versatile and practical 

use in the following sections. We also briefly describe VisCello, an extension of PIVOT 

which facilitates large-scale single cell data analysis. 
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Data input and transformations 

Read counts obtained from RNA-Seq quantification tools such as HTSeq (304) or 

featureCounts (305) can be directly uploaded into PIVOT as text, csv or Excel files. Data 

generated using the 10x Genomics Cell Ranger pipeline can also be readily read in and 

processed by PIVOT. PIVOT automatically performs user selected data transformations 

including normalization, log transformation, or standardization. We have included 

multiple RNA-Seq data normalization methods including DESeq normalization (306), 

trimmed mean of M-values (TMM) (307), quantile normalization (308), RPKM/TPM 

(309), Census normalization (181), and Remove Unwanted Variation (RUVg) (310) 

(Table 4.1). If samples contain spike-in control mixes such as ERCC (311), PIVOT will 

also separately analyze the ERCC count distribution and allow users to normalize the 

data using the ERCC control. Existing methods can be customized by the user by setting 

detailed normalization parameters. For example, we implement a modification of the 

DESeq method by making the inclusion criterion a user set parameter, making it more 

applicable to sparse expression matrices such as single cell RNA-Seq data (312).  

Users can upload experiment design information such as conditions and batches, 

which can be visualized as annotation attributes (e.g., color points/sidebars) or used as 

model specification variables for downstream analyses such as differential expression. 

PIVOT supports flexible operations to filter data for row and column subsets as well as 

for merging datasets, creating new derived datasets. Multiple summary statistics and 

quality control plots are automatically generated to help users identify possible outliers. 

Users can manually select samples for analysis, or specify statistical criteria on analysis 

results such as expression threshold, dropout rate cutoff, Cook’s distance or size factor 

range to remove unwanted features and samples.  
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Visual data management with data map 

When analyzing large datasets, a common procedure is to first perform quality control to 

remove low quality elements, then normalize the data and finally generate different data 

subsets for various analysis purposes. Some analyses require filtering out genes with 

low expressions, while others are designed to be performed on a subset of the genes 

such as transcription factors. During secondary analyses, outliers may be detected 

requiring additional scrutiny. All these data manipulations generate a network of derived 

datasets from the original data and require a significant amount of effort to track. Failure 

to track the data lineage could affect the reproducibility and reliability of the study. 

Furthermore, an investigator might wish to repeat an analysis over a variety of derived 

datasets, which may be tedious and error-prone to carry out manually. To address this 

problem, we implemented a graphical data management system in PIVOT.  

As the user generates derived datasets with various data manipulations, PIVOT 

records and presents the data provenance in an interactive tree graph, the "Data Map". 

As shown in Figure 4.1, each node in the data map represents a derived dataset and the 

edges contain information about the details of the derivation operation. Users can attach 

analysis results to the data nodes as interactive R markdown reports (313) and switch 

between different datasets or retrieve analysis reports by simply clicking the nodes. 

Upon switch to a new dataset selected from the Data Map, PIVOT automatically re-runs 

analyses and updates parameter choices when needed. Thus, a user can easily 

compare results of a workflow across derived datasets. The data map is generated with 

the visNetwork package (314) and can be directly edited, so that users can rename 

nodes, add notes, or delete data subsets and analysis reports that are no longer useful. 
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The full data history is also presented as downloadable tables with all sample and 

feature information as well as data manipulation details. 

 

Comprehensive toolset for exploratory analysis 

PIVOT is designed to aid exploratory analysis for both single cell and bulk RNA-Seq 

data, thus we have incorporated a large set of commonly used tools (see Table 4.1).  

PIVOT supports many visual data analytics including QC plots (number of detected 

genes, total read counts, dropout rates and estimated size factors; Figure 4.2A, data 

from (100)), transcriptome statistics plots (e.g., rank-frequency plots, mean-variability 

plots, etc; Figure 4.2B), and sample and feature correlation plots (e.g., heatmaps, 

smoothened scatter plots, etc.). All visual plots feature interactive options and a query 

function is provided which allows users to search for features sharing similar expression 

patterns with a target feature. PIVOT provides users extensive control over parameter 

choices. Each analysis module contains multiple visual controls allowing users to adjust 

parameters and obtain updated results on the fly. 

 

Integrative analysis and interactive visualization 

PIVOT transparently bridges multiple sequences of analyses to form customizable 

analysis pipelines. For example, with single cell data collected from heterogeneous 

tissues, a user can first perform PCA or t-SNE (115) (Figure 4.2C) to visualize the low 

dimensional embedding of the data. If there is clear clustering pattern, possibly 

originated from different cell types, the user can directly specify cell clusters by dragging 
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selection boxes on the graph, or perform K-means or hierarchical clustering with the 

projection matrix. One can proceed to run DE or penalized LDA (315) to identify cluster-

specific marker genes, which can then be used to filter the datasets for generating a 

heatmap showing distinctive expression pattern across cell types (Figure 4.2D). Within 

each determined cell type, a user may further apply the walk-trap community detection 

method (316) to identify densely connected network of cells, which are indicative of 

potential subpopulations.  

As another example, for time-series data such as cells collected at different 

stages of development or differentiation, one can use diffusion pseudotime (DPT) (317), 

which reconstructs the lineage branching pattern based on the diffusion map algorithm 

(136), or Monocle (131), which implements an unsupervised algorithm for pseudo-

temporal ordering of single cells (130). We have incorporated the latest Monocle 2 

workflow in PIVOT, including cell state ordering, unsupervised cell clustering, gene 

clustering by pseudo-temporal expression pattern and cell trajectory analysis. Besides 

the DE method implemented in monocle, one can also run DESeq, edgeR, SCDE or the 

Mann-Whitney U test. A user can specify whether to perform basic DE analysis or a 

multi-factorial DE analysis with customized formula for complex experimental designs 

such as time-series or controlling for batch effects. Results are presented as dynamic 

tables including all essential statistics such as maximum likelihood estimation and 

confidence intervals. Each gene entry in the table can be clicked and visualized as violin 

plots or box plots, showing the actual expression level across conditions. Once DE 

results are obtained, the user can further explore the connections between DE genes 

and identify potential trans-differentiation factors as introduced in the Mogrify algorithm 

(318). PIVOT provides several extensions of functionality from the original Mogrify 
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method. The network analysis module allows users to plot the log fold changes (LFC) of 

DE genes in a protein-protein interaction network obtained from the STRING database 

(Figure 4.3A) (319) or a directed regulatory network graph constructed from the 

Regnetwork repository (Figure 4.3B) (320). With scoring based on the p-value and log 

fold change, the graph can be filtered to only include top-rank genes, showing the 

regulatory "hot spot" of the network. PIVOT provides users with multiple options for 

defining the network influence score of transcription factors, and will produce lists of 

potential trans-differentiation factors based on the final ranking. As shown in Figure 

4.3C, with the FANTOM5 expression data of fibroblasts and ES cells (321), PIVOT 

correctly reports OCT4 (POU5F1), NANOG and SOX2 as key factors for trans-

differentiation (322). In addition to the DESeq results used by the original Mogrify 

algorithm, a user can choose to use SCDE or edgeR results to perform trans-

differentiation analysis on single cell datasets. 

Another useful feature of PIVOT is that it provides users multiple visualization 

options by exploiting the power of various plotting packages. For example, users can 

either generate publication-quality heatmap graphs (implemented in gplots package 

[43]), or interactively explore the heatmap with the heatmaply view (323). For principal 

component analysis, PIVOT uses three different packages to present the 2D and 3D 

projections. The plotly package (324) displays sample names and relevant information 

as mouse-over labels, while the ggbiplot (325) presents the loadings of each gene on 

the graph as vectors. The threejs package (326) fully utilizes the power of WebGL and 

outputs rotatable 3D projections. In the network analysis module, we utilize both igraph 

(327) and networkD3 (328) package to plot the transcription factor centered local 
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network. The latter provides a force directed layout, which allows users to drag the 

nodes and visualize the physical simulation of the network response. 

 

Reproducible research and complete provenance capture 

PIVOT automatically records all data manipulations and analysis steps. Once an 

analysis has been performed, users will have the option of pasting related R markdown 

code to a shinyAce report editor (329), or download the report as either a pdf or 

interactive html document. All results and associated parameters will be captured and 

saved to the report along with user-provided comments. PIVOT states are automatically 

saved in cases of browser refresh, crash or user exit, and can also be manually 

exported, shared and loaded. Thus, all analyses performed in PIVOT are fully 

encapsulated and can be shared or disseminated as a single data+provenance object, 

allowing universally reproducible research. 

 

VisCello: extending PIVOT for large-scale single cell data 

We extended PIVOT to VisCello for distributing single cell analyses and providing 

interactive visualizations (Figure 4.4). VisCello can be installed as an R package 

(https://github.com/qinzhu/VisCello) or hosted as an interactive web app. Compared to 

PIVOT, VisCello had multiple optimizations, including the adoption of the sparse matrix 

format (330), which significantly improves the speed and reduces memory use. VisCello 

hosts dimensionality reductions (e.g. UMAPs), cell annotations, and marker gene tables 

for different subsets of the data. Users can visualize gene expression on UMAP or PCA 
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plots, on a lineage tree diagram, or as box/violin plots grouped by cell type or lineage. 

The plots are interactive, allowing users to zoom in on subsets of cells, define new cell 

annotation groups, and run differential expression analysis and GO/KEGG enrichment 

with these newly defined groups. Program state can be downloaded and shared, 

facilitating collaboration. VisCello has been used to host and disseminate various single 

cell datasets (170, 331, 332).  

 

Conclusions 

We developed PIVOT and VisCello for easy, fast, and exploratory analysis of single cell 

transcriptomics data. Toward this goal we have automated the analysis procedures and 

data management, and we provide users with detailed explanations both in tooltips and 

user manuals. PIVOT and VisCello exploits the power of multiple plotting packages and 

gives users full control of key analysis and plotting parameters. Given user input that 

leads to function errors, PIVOT and VisCello will alert the user and provide corrective 

suggestions. Program states and reports can be shared between researchers to 

facilitate the discussion of expression analysis and future experimental design. Future 

versions of the software will continue to integrate popular transcriptome analysis routines 

as they are made available to the research community. 
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Figures 

 

Figure 4.1 Data management with data map.  

The map shows the history of the data change and the association between analysis 

and data nodes. Users can hover over edges to see operation details, or click nodes to 

get analysis reports or switch active subsets. 
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Figure 4.2 Selected analysis modules in PIVOT.  

(A) The table on the left lists basic sample statistics. The selected statistics are plotted 

below the table, and clicking a sample in the table will plot its count 

distribution. (B) Mean-Standard deviation plot (top left, with vsn package), rank 

frequency plot (top right) and mean variability plot (bottom, with Seurat 

package). (C) The t-SNE module plots 1D, 2D and 3D projections (3D not shown due to 

space). (D) Feature heatmap with the top 100 differentially expressed genes reported by 

DESeq2 likelihood ratio test. 
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Figure 4.3 Network analysis for the identification of potential transdifferentiation 

factors.  

(A, B) Graphs showing the connection between transcription factors differentially 

expressed between fibroblasts and ES cells. A is an undirected graph showing the 

protein-protein interaction relationship based on the STRING database, and B is 

constructed based on the Regnetwork repository, showing the regulatory relationship. 

The size of the nodes and the color gradient indicate the log fold change of the genes. 

The graphs have been zoomed in to only include the genes with large LFC and small p-

value. (C) Predicted transdifferentiation factor lists based on the network score ranking. 

The table includes information such as the center transcription factor score, the total 

number of vertices in its direct neighborhood, and the number of activated neighbors 
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with gene score above a user-specified threshold. Clicking entries on the table will plot 

the local neighborhood network centered on that TF. 
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Figure 4.4 Screenshots of VisCello.  

(A) Screenshot of the cell type explorer, which enables interactive visualization of 2D 

and 3D UMAPs and PCA plots for different subsets of the data. The view shown in the 

panel is a 3D UMAP for all cells colored by estimated embryo time. Users can overlay 

gene expression, cell type, number of expressed genes and other statistics on this plot. 

The cell type explorer also features box/violin plots for gene expression across cell 

types, lineages or time, summarized gene expression tables, and marker gene tables. 

(B) Screenshot of the early cell lineage explorer, which enables interactive visualization 

and comparison of the sc-RNA-seq data and summarized live imaging data. Panel 

shows a radiograph of average fluorescent intensity (log10 scaled) of pha-4, measured 

by live imaging.  
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Tables 

Table 4.1. List of tools currently integrated/implemented in PIVOT. 

PIVOT Modules Tools Integrated 

Normalization DESeq, Modified DESeq, TMM, Upper quartile, 
CPM/RPKM/TPM, RUV, Spike-in regression, Census 

Feature/Sample Filtering List based, Expression based and Quality based filters 

Basic Analysis Modules Data distribution plots, Dispersion analysis, Rank-
frequency plot, Spike-in analysis, Feature heatmap, etc. 

Differential Expression DESeq2, edgeR, SCDE, Monocle, Mann-Whitney U test 

Clustering/Classification 
Hierarchical, K-means, SC3, Community detection, 
Classification with caret, Cell state ordering with 
Monocle2/Diffusion pseudotime 

Dimensionality 
Reduction 

PCA, t-SNE, Metric/Non-Metric MDS, penalized LDA,  
Diffusion Map 

Correlation Analysis 
Pairwise scatter plots, Sample/feature correlation 
heatmap,  
Co-expression analysis 

Gene Set Enrichment 
Analysis KEGG pathway analysis, Gene ontology analysis 

Network Analysis 
STRING protein association network, Regnetwork 
visualization, Mogrify based transcription factor 
prediction 

Other Utilities 
Data map, Gene ID/Name conversion, BioMart gene 
annotation query, Venn diagram, Report generation, 
State saving 
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CHAPTER 5 CONCLUSION AND FUTURE DIRECTIONS 

 

Conclusion 

In this thesis I have presented two investigations of gene regulation in development and 

differentiation. The first study examines cell type transitions and gene expression 

change at whole-organism scale using the nematode Caenorhabditis elegans. The 

second study aims to understand a specific developmental process, endothelial to 

hematopoietic transition, which leads to the formation of pre-HSCs. For both studies, I 

have developed computational methods that facilitate sophisticated statistical analysis of 

single cell data. 

In the C. elegans study described in Chapter 2, we profiled the transcriptome 

of >80,000 single cells across C. elegans developmental stages ranging from ~100-600 

minutes post-fertilization. Using the scRNA-Seq data, a known C. elegans lineage tree, 

and imaging of fluorescent reporter genes, we generated a lineage-resolved single-cell 

atlas of embryonic development with 93% cells annotated with a cell type or a cell lineage. 

This atlas covers early events starting from initial diversification of founder lineages 

through the specification of terminal cell fates. It enables us to make several unique 

discoveries about the gene regulatory programs underly development and differentiation. 

First, by modeling the bifurcating differentiation in neuron development, we identified the 

widespread presence of ‘multilineage priming’, where the regulators of multiple alternative 

fates are co-expressed in a progenitor cell and were selectively inherited by its 

descendants. Second, by tracing the development of AB lineage, we found a time-

dependent association between a cell’s transcriptome with its lineage history and fate 

choice. Gene expression associated with lineage identity is rapidly lost at the time of the 
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terminal division and is replaced by transcriptional program related to the terminal fate. 

Lastly, we identified several types of convergent development, where distinct lineages 

converge to a homogeneous transcriptomic state before differentiating to the same cell 

type. 

In Chapter 3, we studied the process of pre-HSC formation in the mouse embryo. 

By profiling ~40,000 single cells from early mouse embryos, we were able to capture the 

entire developmental trajectory from arterial endothelial cells to lympho-myeloid biased 

progenitors and pre-HSCs. Using this dataset, we discovered an endothelial cell precursor 

of HE cells that we termed pre-HE, in which multiple signaling pathways known to be 

important for the specification of HE cells are active. Furthermore, through trajectory 

modeling and RNA velocity analysis, we identified a developmental bottleneck between 

pre-HE and HE cells. We observed Runx1, a key regulator of EHT (33, 41), is expressed 

in approximately 7% of pre-HE cells and hypothesized that its expression level regulates 

the cell passage through the bottleneck. We validated the hypothesis by performing 

scRNA-Seq on Runx1+/- and Runx1+/+ littermates and observed a 68% reduction in the 

proportion of HE and IAC cells in Runx1 haploinsufficient mice. To investigate the 

epigenetic mechanism regulating Runx1 expression at the bottleneck, we performed 

paired scRNA-Seq and scATAC-Seq on E10.5 CD44+ E+HE+IAC cells and developed a 

computational pipeline for integrative analysis of these two data modalities. We identified 

a candidate enhancer 371 kb upstream of the Runx1 P1 promoter that first becomes 

accessible in pre-HE cells and contains motifs of TFs that are downstream of signaling 

pathways active in pre-HE. We also found that after cells pass the bottleneck, they follow 

distinct developmental trajectories leading to an initial wave of lympho-myeloid-biased 
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progenitors at E10.5, followed by precursors of HSCs at E11.5. The findings of this study 

will inform efforts to generate HSCs from human ESCs and iPSCs in vitro.  

Interestingly, we observed recurrent gene regulatory patterns in both 

developmental systems. For example, both systems involve convergence in cellular 

differentiation that give rise to a common progenitor population. In C. elegans 

embryogenesis, transcriptome state of three sets of distinct cell lineages converges over 

time and give rise to IL1/IL2 neuroblasts (Figure 2.4A-D). Similarly, two streams of 

arterial endothelial cells with different Wnt signaling level converge to form conflux AE 

(Figure 3.2). This phenomenon, known as developmental homoplasy, has been reported 

for other developmental systems (333). The exact mechanism driving the convergence 

is unknown, but in both cases, we observed coordinated up-regulation of a set of 

transcription factors in the converging cells, suggesting TFs (and upstream signaling 

pathways) likely play a key role in homogenizing the transcriptome of distinct cell 

populations (Figure 2.4A-D and Figure 3.2).  

In addition, we observed discontinuous trajectories for many cell types in the 

UMAP of C. elegans embryogenesis, suggesting sudden changes in the transcriptome. 

In contrast, a developmental bottleneck was found in the trajectory leading to HE, where 

most cells are blocked at the pre-HE stage. These observations suggest that rate of 

transcriptome changes may vary during differentiation. Therefore, analysis of the RNA 

velocity and acceleration will likely reveal important regulatory points in cellular 

differentiation.  

Finally, we found during C. elegans embryogenesis, terminal cell fate is specified 

through a series of lineage bifurcations, each involving multiple differentially expressed 
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TFs (Figure 2.5C-E). Similarly, analysis of scATAC-Seq data reveals sequential 

activation of TFs during EHT (Figure 3.4E). Taken together, these results highlight the 

incremental nature of cell fate decisions and the coordination of the transcriptional 

regulatory program underlie development and differentiation. 
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Future direction: Comparative analysis of embryogenesis across 

species 

Comparative analysis of gene expression across species has enabled discovery of 

conserved gene expression patterns and coordinated evolution of regulators (334). With 

the increasing amount of single cell data for various developmental systems such as our 

C. elegans single cell atlas and those listed in Table 1.1, it is now possible to investigate 

evolutionary conserved gene regulatory mechanism at single cell resolution. 

For example, using the single cell developmental datasets, one can test the 

“hourglass” model of development, which predicts that the most conserved 

developmental period of animal phyla is not the early and late embryonic stage, but a 

mid-embryonic period, or “phylotypic period” (335). The hourglass model is supported by 

many morphological evidence as well as molecular evidence (336), but has never been 

examined at the single cell resolution, where both cell type and embryonic time can be 

resolved. Using single cell analysis, one can test this model through a cell-centric 
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approach and a gene-centric approach. In the first approach, homology between cell 

types across species can be established by comparing the gene expression profile. 

Then, differentiation trajectories of homologous cell types can be aligned through 

dynamic time warping (DTW), such that the transcriptome divergence across 

developmental timepoints can be compared. In the second gene-centric approach, one 

can perform TRN inference for each species and search for conserved TRN modules, 

and check if these modules are activated at specific developmental stage.  

One potential caveat is that most published single cell data on development are 

from evolutionarily distant species, making it difficult to establish homology between cells 

from these species. The Caenorhabditis genus of nematodes includes ~50 species with 

almost identical cell lineage structure, and thus provides an ideal system for comparative 

study of embryogenesis. Furthermore, for one of these species, C. elegans, we have 

generated a lineage-resolved single cell atlas, which can be used as a reference 

dataset. Therefore, single cell sequencing on other closely related species, such as C. 

remanei, C. brenneri and C. briggsae, will likely enable a comprehensive survey of 

evolutionarily conserved gene regulatory principles during embryogenesis.  

 

Future direction: Uncover gene regulatory mechanisms underlie EHT 

Understanding how HSC form in vivo is essential for producing HSCs from other cell 

sources ex vivo. Our recent work expanded our knowledge about EHT, but the complete 

gene regulatory mechanisms underlie EHT has not been resolved.  

For example, in Chapter 3, we showed using single cell analysis that a 

developmental bottleneck exists between pre-HE and HE, and Runx1 dosage regulates 
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cell passage through the bottleneck. We further showed, using scATAC analysis, that a 

distal enhancer 371 kb upstream of Runx1 is transiently accessible in pre-HE cells. 

However, we do not yet know if the Runx1 -371 enhancer is required to activate Runx1 

expression at the bottleneck. Some evidence from zebrafish suggest that this enhancer 

is capable of driving reporter gene expression in the intermediate cell mass and 

posterior blood island of zebrafish embryos (251), but it remains to be shown that the 

enhancer directly regulates Runx1 expression in pre-HE and HE cells. To answer this 

question, one can use the CRISPR/Cas9 system to delete this enhancer in mouse 

models and observe the effect on Runx1 expression. Furthermore, to test which 

transcription factors bind to the enhancer to activate its activity, point mutations can be 

introduced to destroy the GATA/TAL1, STAT, JUN, and RAR/RXR motifs at the 

enhancer site. A significant reduction of enhancer activity in these mutants would 

suggest the requirement for the corresponding transcription factor. Finally, one can 

perform circular chromosome conformation capture sequencing (4C-seq) to identify the 

changes in enhancer-promoter looping during pre-HE to HE transition. It is possible that 

the -371 enhancer is required to initiate Runx1 expression through a long-range 

interaction with Runx1 promoter but is no longer required thereafter as other Runx1 

enhancers take over. 

Another unsolved problem is what regulates the pre-HSC production from HE 

cells. Our single cell data suggest that at E10.5, most of the HE cells differentiate into 

lympho-myeloid progenitors, and only 2% of the IAC cells are pre-HSCs. However, at 

E11.5, the proportion shifts dramatically, where 67% of the IAC cells are found to be pre-

HSCs. The fate probability analysis shown in Supplemental Figure 3.11 provides some 

clue, as we observe down-regulation of Myc and up-regulation of Smad7, Mecom, Meis2 
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and Nfix in the trajectory leading to pre-HSC. Myc is a proto-oncogene which drives cell 

proliferation (337), and previous study have shown that cell cycle is slowed down 

considerably as pre-HSC mature (338). On the other hand, Mecom encodes the 

transcription factors Evi1 and Mds1-Evi1, which are known to promote stemness and 

quiescence of adult HSCs (339, 340). These suggest that regulation of cell cycle may 

play an important role in the specification of the pre-HSC fate. Future experiments that 

perturb expression level of these transcription factors may reveal the underlying gene 

regulatory network controlling the fate choice of HE cells. 

 

Future direction: In silico modeling of development and 

differentiation 

The pace and volume of single cell data collection across a variety of developmental 

systems is exploding, giving the hope that we now have the data density to meaningfully 

apply latest machine learning technologies to model complex organismal development.  

First, at the single-cell level, development involves cell differentiation where each 

cell adopts a series of molecular changes and differentiates into the terminal cell type, 

such as a neuron or a blood cell. Although significant progress has been made to 

discover molecular switches regulating differentiation, we do not yet know how the 

control fully works even for a small part of the process. For example, in this thesis I 

showed that the Runx1 is a key regulator helping endothelial cells (blood vessel cells) 

overcome a developmental bottleneck to become hematopoietic stem cells (HSCs). Yet 

little is known about which genes activate Runx1 expression in the first place. To decode 

the regulatory program of cell differentiation, a different approach from that described in 
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previous section is to build an in silico cell differentiation model using deep learning. 

Deep learning has demonstrated great power in solving problems in dynamical domain 

such as autonomous driving (341). Self-driving cars uses information about a car’s 

current state, such as speed, direction, and surroundings, to make decisions on the 

adjustments to speed and direction. Like self-driving cars, a deep neural network can 

take the cell’s molecular state at each time point, as measured by single-cell 

sequencing, and make predictions about the cell’s future state. The model can be 

trained with currently available 104-106 single cell data points along the differentiation 

trajectory, such that it can robustly predict the series of molecular changes happening 

inside a developing cell. One caveat of using deep neural network is that the learned 

model is presented as a black box and is hard to interpret (342). But recent advances 

such as SHAP (SHapley Additive exPlanations) (343) have made it possible to look 

inside the black box and examine which genes contribute most to the prediction result. 

Therefore, we might use the model as an in silico hypothesis generating platform to 

query the potential role of a gene during differentiation.  

Second, development is a multi-cellular process involving different types of cells 

interacting with each other in a spatial context and organizing into intricate tissue 

structures. So far, efforts to re-create functional tissues in vitro by organoid culture 

systems have largely failed, as the organoids cannot recapitulate the cell type diversity 

and cell-cell interaction in vivo (344). Recently, multi-agent reinforcement learning has 

achieved great success in modeling multi-component systems such as real-time strategy 

games (345) and drone systems (346). Therefore, it might be possible to expand the 

single cell models into a multi-agent system to simulate cell-cell communications in 

silico. One of the best ground truth datasets for benchmarking is our embryogenesis 
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atlas of C. elegans, which is a simple organism with only 558 cells at hatching and 

spatial location of every cell known. Building on top of this, it might be possible to use 

multi-agent learning to simulate the interactions between spatially adjacent cells and the 

development of a “virtual embryo” over time.  

Finally, to make the models trained using data from model organisms applicable 

for understanding human developmental processes, transfer learning techniques can be 

applied. The Human Cell Atlas project has by far collected millions of cells from human 

post-mortem tissues. However, the majority of the cells come from adults. In other 

words, we only have information from the end point of human development. These 

existing data can be used as “anchor points” for establishing the connections between 

human and mouse. With these anchor points, a model trained in mouse can be adapted 

using transfer learning to make predictions for matched human developmental stages. 
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